๑) Reprint Editioneo

Analytical Mechanics

A Comprehensive Treatise on the

Dynamics of Constrained Systems

John G Papastavridis

Analytical Mechanics

A Comprehensive Treatise on the Dynamics of Constrained Systems

This page intentionally left blank

Reprint Edition

Analytical Mechanics

A Comprehensive Treatise on the

Dynamics of Constrained Systems

John G. Papastavridis, Ph.d.

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data

Papastavridis, J. G. (John G.)
Analytical mechanics : a comprehensive treatise on the dynamics of constrained systems / by John G Papastavridis.
-- Reprint edition.
pages cm
Reprint of 2002 edition.
Includes bibliographical references and index.
ISBN 978-981-4338-71-4 (hardcover : alk. paper)

1. Mechanics, Analytic. I. Title.

QA805.P355 2014
531.01'515--dc22

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

This edition is a corrected reprint of the work first published by Oxford University Press in 2002.

Copyright © 2014 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

To the living and loving memory of my father,

GEORGE S. PAPASTAVRIDIS (ГЕЛРГIOY. ПАПАГТАYРIДH)

A lawyer and fearless maverick, who, throughout his life, fought with fortitude, conviction, and class to better his world;
and to whom I owe a critical part of my Weltanschaunng.

PREFACE TO THE CORRECTED REPRINT

This is a corrected reprint of a work first published in early 2002, by Oxford University Press, and which went out of print shortly thereafter.

A few sign misprints and similar errors have been corrected; some notations have been, hopefully, improved (especially in Chs. 1, 2); a useful addition has been made on p. 336, and a couple of sections have been thoroughly revised (e.g. §3.12, §8.13).

I am grateful to (a) the many reviewers, in some of the most prestigious professional journals and elsewhere (e.g. Bulletin of the American Mathematical Society, IEEE Control Systems Magazine, Zentralblatt für Mathematik; amazon.com and amazon.co.uk, private communications, and references in advanced works of mechanics), for their enthusiastic comments; (b) the American Association of Publishers for selecting, in January 2003, the book for their "Annual Award for Outstanding Professional and Scholarly Titles of 2002, in Engineering"; and (c) last but not least, my WSPC editor, Dr. S. W. Lim, and his most capable and courteous staff, for their continuous and effective support. All these have been of essential moral and practical help to me in the making of this "new" edition!

Here, I take the opportunity to restate that, in this book, I have:
(a) Sought to combine the best of the old and new, i.e. no age discrimination; no knee-jerk disdain for "dusty old stuff" nor automatic following of "progress/modernity" - even in the exact sciences, and especially in mechanics, new is not necessarily or uniformly better; and
(b) Avoided developments of considerable but nevertheless purely mathematical interest, especially those of the a-historical and intuition-deadening ("epsilonic") type.

May this treatise, as well as my other two works on mechanics ["Tensor Calculus and Analytical Dynamics" (CRC, 1999) and "Elementary Mechanics" (WSPC, under production)], keep making many and loyal readers!

John G. Papastavridis
Atlanta, Georgia, Spring 2014

PREFACE

Abstract

Many of the scientific treatises today are formulated in a halfmystical language, as though to impress the reader with the uncomfortable feeling that he is in the permanent presence of a superman. The present book is conceived in a humble spirit and is written for humble people.

(Lanczos, 1970, pp. vii-viii)

GENERAL DESCRIPTION

This book is a classical and detailed introduction to advanced analytical mechanics (AM), with special emphasis on its basic principles and equations of motion, as they apply to the most general constrained mechanical systems with a finite number of degrees of freedom (this term is explained in Chapter 2). For the reasons detailed below, and in spite of the age of the subject, I think that no other single volume exists, in English and in print, that is comparable to the one at hand in breadth and depth of the material covered - and, in this nontrivial sense, this ca. 1400-page and 174-figure long work is unique.

The book is addressed to graduate students, professors, and researchers, in the areas of applied mechanics, engineering science, and mechanical, aerospace, structural, (even) electrical engineering, as well as physics and applied mathematics. Advanced undergraduates are also very welcome to browse, and thus get initiated into higher dynamics. The sole technical prerequisite here, a relatively modest one, is a solid working knowledge of "elementary/intermediate" (i.e., undergraduate) dynamics; roughly, equivalent to the (bulk of the) material covered in, say, Spiegel's Theoretical Mechanics, part of the well-known Schaum's outline series. Also, familiarity with the simplest aspects of Lagrange's equations, that is, how to take the partial and total derivatives of scalar energetic functions, would be helpful; although, strictly, it is not necessary. [See also "Suggestions to the Reader" (Introduction, §3).]

CONTENTS

Specifically, the book covers in what I consider to be a most logical and pedagogical sequence, the following topics:

Introduction: Introduction to analytical mechanics, brief summary of the history of theoretical mechanics; suggestions to the reader; and list of symbols/notations, abbreviations, and basic formulae.

Chapter 1: Background: Algebra of vectors and Cartesian tensors, and basic concepts and equations of Newton-Euler (or momentum) mechanics of particles and rigid bodies; that is, a highly selective compendium of undergraduate dynamics, and (some of) its mathematics, from a mature viewpoint.
Chapter 2: Kinematics of constrained systems (i.e., Lagrangean kinematics); including the general theory of up to linear velocity (i.e., Pfaffian) constraints, in both holonomic (or true) and nonholonomic (or quasi) coordinates; and a uniquely readable account of the fundamental theorem of Frobenius, for testing the nonholonomicity of such constraints.
Chapter 3: Kinetics of constrained systems (i.e., Lagrangean kinetics); including the fundamental principles of AM; that is, those of d'Alembert-Lagrange and of relaxation of the constraints, the central equation of Heun-Hamel; equations of motion with or without reactions, with or without multipliers, in true or quasi system variables; an introduction to servoconstraints (theories of Appell-Beghin, et al.); and rigid-body applications. This is the key chapter of the entire book, as far as engineering readers are concerned.
Chapter 4: Impulsive motion, under ideal constraints; including the associated extremum theorems of Carnot, Kelvin, Bertrand, Robin, et al.
Chapter 5: Nonlinear nonholonomic constraints; that is, kinematics and kinetics under nonlinear, and generally nonholonomic, velocity constraints.
Chapter 6: Differential variational principles, of Jourdain, Gauss, Hertz, et al., and their derivative higher-order equations of motion of Nielsen, Tsenov, et al.

Chapter 7: Time-integral theorems and variational principles, of Lagrange, Hamilton, Jacobi, O. Hölder, Voss, Suslov, Voronets, Hamel, et al.; for linear and nonlinear velocity constraints in true and quasi variables, with or without multipliers; plus energy and virial theorems.
Chapter 8: Introduction to Hamiltonian/Canonical methods; that is, equations of Hamilton and Routh-Helmholtz, cyclic systems, steady motion and its stability, variation of constants, canonical transformations and Poisson's brackets, Hamilton-Jacobi integration theory, integral invariants, Noether's theorem, and action-angle variables and their applications to adiabatic invariants and perturbation theory.

Chapters 2-8 each contain a large number of completely solved examples, and problems with their answers (and, occasionally, hints), to illustrate and extend the previous theories; short ones are integrated within each chapter section, and longer, more synthetic, ones are collected at each chapter's end; and also, critical comments/ references for further study. The exposition ends with a relatively extensive, cumulative, and alphabetical list of References and Suggested Reading, including everything from standard textbooks all the way to epoch-making memoirs of the last (more than) two hundred years. This list complements those found in such wellknown references as Neimark and Fufaev (1967/1972) and Roberson and Schwertassek (1988).

Parts of the text have, unavoidably, state-of-the-art flavor. However, as far as fundamental ideas go, very little, if anything, of the topics covered is truly new today, no one can claim much originality in classical mechanics! The newness here, a nontrivial one, I think, consists in restoring, clarifying, putting together, and presenting, in what I hope is a readable form, material most of which has appeared over the past one hundred fifty, or so, years; frequently in little known, and/or hard to find and decipher, sources. (In view of the thousands of books, lecture notes, articles, and so on, used in the writing of this work, failure to acknowledge an author's
particular contribution is not intentional, merely an oversight.) But, given the astonishing unfamiliarity, confusion, and intellectual provincialism so prevalent in many theoretical and applied mechanics circles today, even in the fundamental concepts and principles of analytical dynamics (like virtual displacements/work and principle of d'Alembert-Lagrange, which is, by far, the most misunderstood "principle" of physics!), I felt very strongly that this noble, beautiful, and powerful body of knowledge, that diamond of our cultural heritage, should be accurately preserved and represented, so as to benefit present and future workers in dynamics.

No single volume can even pretend to cover satisfactorily all aspects of this vast and fascinating subject; in particular, both its theoretical and applied aspects, let alone the currently popular computational ones. Since this is not an encyclopedia of theoretical and applied dynamics, an inescapable and necessary selection has operated, and so, the following important topics are not covered: applications of differential forms/exterior calculus (of Cartan, Gallissot, et al.) and symplectic geometry to Lagrangean and Hamiltonian mechanics; group theoretic applications; nonlinear dynamics (incl. regular and stochastic/chaotic motion) and stability of motion; theory of orbits; and computational/numerical techniques. For all these, there already exists an enormous and competent literature (see "Suggestions to the Reader"). However, with the help of this treatise, the conscientious reader will be able to move quickly and confidently into any particular theoretical and/or computational area of modern dynamics. In this sense, the work at hand constitutes an optimal investment of the reader's precious energies.

RAISON D'ÊTRE, AND SOME PHILOSOPHY

The customary words of explanation, or apology, for writing "another" book on advanced dynamics are now in order. The main theme of this work, like a Wagnerian leitmotiv, is deductive order, formal structure, and physical ideas, as they pertain to that particular energetic form of mechanics of constrained systems founded by Lagrange and known as analytical (=deductive) mechanics; to be differentiated from the also analytical but momentum, or "elementary," form of system mechanics, founded by Euler. It is a book for people who place theory (theories), ideas, knowledge, and understanding above all else - and do not apologize for it. Here, AM is studied not as the "maid" of some other (allegedly) more important discipline, but as a subject worth knowing in its own right; that is, as a "king or queen." As such, it will attract those with a qualitative and theoretical bent of mind; while it may not be as agreeable to those with purely computational and/or intellectually local predilections. [In the words of the late Professor R.M. Rosenberg (University of California, Berkeley): "The field of dynamics is plowed by two classes of people: those who enjoy the inherent beauty, symmetry and consistency of this discipline, and those who are satisfied with having a machine that manufactures equations of motion of complex mechanisms" (private communication, 1986).] Generally, science is more than a collection of particular problems and special techniques, even involved ones - it is much more than mere information. However, practical people should be reminded that theory and application are mutually complementary rather than adversarial; in fact, contemporary important practical problems and the availability of powerful computational capabilities have made the thorough understanding of the fundamental principles of mechanics more necessary today than before. Applications and computers have, among other things, helped resurrect, restore, and sharpen old academic curiosities (for engineers anyway), such as the differential variational
principles of Jourdain and Gauss (which have found applications in such "unrelated" areas as multibody dynamics, nonlinear oscillations, even the elasto-plastic buckling of shells); and Hamilton's canonical equations in quasi variables (which have found applications in robotic manipulators).

A more concrete reason for writing this book is that, outside of the truly monumental British treatise of Pars (1965) and the English translations of the beautiful (former) Soviet monographs of Neimark and Fufaev (1967/1972) and Gantmacher (1966/1970), there is no comprehensive exposition of advanced engineering-oriented dynamics in print, in the entire English language literature! True, the famous treatise of Whittaker (1904/1917/1927/1937), for many years out of print, has recently been reprinted (1988). However, even Whittaker, although undeniably a classic and in many respects the single most influential dynamics volume of the twentieth century (primarily, to celestial and quantum mechanics), nevertheless leaves a lot to be desired in matters of logic, fundamental principles, and their earthly applications; for example, there is no clear and general formulation of the principle of d'Alembert-Lagrange and its use, in connection with Hamel's method of quasi variables, to uncouple the equations of motion and obtain constraint reactions; also, Whittaker would be totally unacceptable with the better of today's educational philosophies. Such drawbacks have plagued most British texts of that era; for example, the otherwise excellent works of Thomson/Tait, Routh, Lamb, Ramsey, Smart, and many of their U.S.-made descendants. [In a way, Whittaker et al. have been pretty lucky in that most of the great continental European works on advanced dynamics - for example, those of Boltzmann, Heun, Maggi, Appell, Marcolongo, Suslov, Nordheim et al. (vol. 5 of Handbuch der Physik, 1927), Winkelmann (vol. 1 of Handbuch der Physikalischen und Technischen Mechanik, 1929), Prange (vol. 4 of Encyclopädie der Mathematischen Wissenschaften, 1935), Rose, Hamel, Pérès, Lur'e, et al. were never translated into English.] Next, the comprehensive three-volume work of MacMillan (late 1920s to early 1930s) and the encyclopedic treatise of Webster (early 1900s), probably the two best U.S.-made mechanics texts, are, unfortunately, out of print. The very lively and deservedly popular monograph of Lanczos (1949-1970) does not go far enough in areas of engineering importance; for example, nonholonomic variables and constraints; and, also, lacks in examples and problems. Only the excellent encyclopedic article of Synge (1960) comes close to our objectives; but, that, too, has Lanczos' drawbacks for engineering students and classroom use.

The existing contemporary expositions on advanced dynamics, in English and in print, fall roughly into the following three groups:

Formalistic/Abstract, of the by-and-for-mathematicians variety, and, as such, of next to zero relevance and/or usefulness to most nonmathematicians. Considering the high mental effort and time that must be expended toward their mastery vis-à-vis their meager results in understanding mechanics better and/or solving new and nontrivial problems, these works represent a pretty poor investment of ever scarce intellectual resources; that is, they are not worth their "money." The effort should be commensurate to the returns. And, contrary to the impression given by authors of this group, even in the most exact sciences, books are written by and for concrete people; not by superlogical, detached, and cold machines. As Winner puts it: "The accepted form of 'objectivity' in scientific and technical reports (one can also include books and articles in social science) requires that the prose read as if there were no person in the room when the writing took place" (1986, p. 71). Also, I categorically reject soothing apologies of the type "oh, well, that is a book for mathematicians"; that is, the book has little or no consideration for ordinary folk. The distinguished physicist F. J. Dyson confirms our
suspicions that "the marriage of mathematics and physics [about which we have been told so many nice things since our high school days] has ended in divorce" (quoted in M. Kline's Mathematics, The Loss of Certainty, Oxford University Press, 1980, pp. 302-303).

Applied, which either emphasize the numerical/computational aspects of mechanics, but, perhaps unavoidably, are soft and/or sketchy on its fundamental principles; or are so theoretically/conceptually impoverished and unmotivated that the reader is soon led to a narrow and dead-end view of mechanics. [Notable and refreshing exceptions to this style are the recent compact but rich-in-ideas works by Bremer et al. [1988(a), (b), 1992] in dynamics/control/flexible multibody systems.]
Mainstream or traditionalist; for example, those by (alphabetically): Arya, Baruh, Calkin, Crandall et al., Corben et al., Desloge, Goldstein, Greenwood, Kilmister et al., Konopinski, Kuypers, Lanczos, Marion, McCauley, Meirovitch, Park, Rosenberg, Woodhouse. The problem with this group, however, is that its representatives either do not go far and deep enough (somehow, the more advanced topics seem to be monopolized by the expositions of the first group); or they could use some improvements in the quality and/or quantity of their engineeringly relevant examples and problems.

The book at hand belongs squarely and unabashedly to this last group, and aims to remedy its above-mentioned shortcomings by bridging the space between it and some of the earlier-mentioned classics, such as (chronologically): Heun (1906, 1914), Prange (1933-1935), Hamel (1927, 1949), Pérès (1953), Lur’e (1961/1968), Gantmacher (1966/1970), Neimark and Fufaev (1967/1972), Dobronravov (1970, 1976), and Novoselov (1966, 1967, 1979). Hence, my earlier claim that this treatise is unique in the entire contemporary literature; and my strong belief that it does meet real and long overdue needs of students and teachers of advanced (engineering) dynamics of the international community. I have sought to combine the best of the old and new - no age discrimination here - and I hope that this work will help counter the very real and disturbing trend, brought about by the proponents of the first two groups, toward a dynamical tower of Babel.

ON NOTATION

To make the exposition accessible to as many willing and able readers as possible, and following the admirable and ever applicable example of Lanczos (1949-1970), I have chosen, wherever possible, an informal approach; and I have, thus, deliberately avoided all set-theoretic and functional-analytic formalisms, all unnecessary rigor ("epsilonics") and similar ahistorical/unmotivating/intuition-deadening tools and methods. For the same reasons, I have also avoided the currently popular direct/ dyadic (coordinate-free) and matrix notations (except in a very small number of truly useful situations); and I have, instead, chosen good old-fashioned elementary/ geometrical (undergraduate) form, for vectors, and/or indicial Cartesian tensorial notation for vectors, tensors, etc.

The ad nauseam advertised "advantages" of the coordinate-free ("direct") notation and matrices are vastly exaggerated and misguiding. To begin with, it is no accident that the solution of all concrete physical problems is intimately connected with a specific and convenient (or natural, or canonical) system of coordinates. Indicial tensorial notation seems to kill two birds with one stone: it combines both coordinate invariance (generality) and coordinate specificity; that is, one knows exactly what to do in a given set of coordinates/axes; see, for example, Korenev
(1979), Maißer (1988) for robotics applications. However, the systematic use of general tensors in dynamics has been kept out of this book. [That is carried out in my monograph, Tensor Calculus and Analytical Dynamics (CRC Press, 1999).] The only thing tensorial used here amounts to nothing more than the earlier-mentioned indicial Cartesian tensor notation; and for reasons that will become clear later, not even the well-known summation convention is employed. Indicial tensorial notation turns out to be the best tool in "unknown and rugged terrain"; and frequently it is the only available notation, for example, in dealing with nonvectorial/tensorial "geometrical objects," such as the Christoffel symbols and the Ricci/Boltzmann/Hamel coefficients. Once the fundamental theory is thoroughly understood, and the numerical implementation of a (frequently large-scale) concrete problem is sought, then one can profitably use matrices, and so on. Heavy use of matrices, with their noncommutativity "straitjacket," at an early stage [e.g., Haug, 1992(a)] is likely to restrict creativity and replace physical understanding with the local mechanical manipulation of symbols.

FURTHER PHILOSOPHY: On Computerization, Applications, and Ultimate Goals of Research

I do not think that the author of a book on analytical mechanics (AM) should be constantly defending it as simply a means to some other allegedly higher ends [e.g., a prerequisite to quantum mechanics, as Goldstein (1980) does], or in terms of its current "real life" applications in space or earth (e.g., artificial satellites, rocketry, robotics, etc.; i.e., in terms of dollars to be made); although, clearly, such connections do exist and can be helpful. What should worry us is that these days, under what B. Schwartz calls "economic imperialism," or what R. Bellah calls "market totalitarianism" (i.e., the penetration of purely monetary values into every aspect of social life; or, to regard all aspects of human relations as matters of economic selfinterest, and model them after the market) every activity is fast becoming a means for something else, preferably quantifiable and monetary. In the process, daily work, craftsmanship, and the pleasure derived from the practice of that activity, have all been degraded. Unless we restore some internal, or intrinsic, goals and rewards to our subject and disseminate them to our young students, pretty soon such an activity will be no different from clerical or assembly-line work; that is, just a paycheck. As stated earlier, we view AM as a course worth pursuing in its own terms. We study it because it is worth learning, and because it is a grand and glorious part of our intellectual/ cultural heritage - those who do not care about the past cannot possibly care about the present, let alone the future.

On a more practical level, a few years from now such applied areas as multibody dynamics, a subject with which so many dynamicists are preoccupied today, will be exhausted - some say that that has already happened. What are the practical mechanicians going to do then? Most of their expositions (second of the earlier groups) are too narrow and do not prepare the reader for the long haul. But there is a more fundamental reason for adopting "my" particular approach to mechanics: I strongly believe that every generation has to rediscover (better, reinvent) AM, and most other areas of knowledge for that matter, anew and on its own terms; that is, replow the soil and not just be handed down from their predecessors, discontinuously, prepackaged and predigested "information" in a diskette (the electronic equivalent of ashes in an urn). To squeeze the "entire" mechanics into a huge master computer
program, which (according to common but nevertheless vulgar advertisements) "does everything," and makes it available to the reader ("user") in the form of data inputs, is not only dangerous for the present (e.g., accidents, screw-ups, which are especially consequential in today's large-scale systems - recall the omnipresent Murphy's laws), but also, being a degradation and dehumanization of knowledge, it guarantees the intellectual death of our society. If the job makes the person (mentally, psychologically, and physically), then how are we going to answer the question "What are people for?"

Typical of such contemporary one-dimensional, or "digital," approaches to dynamics are sweeping statements like: "pre-computer analytical methods for deriving the system equations must be replaced by systematic computer oriented formalisms, which can be translated conveniently into efficient computer codes for * generating the system equations based on simple user data describing the system model, * solving those complex equations yielding results ready for design evaluation" and "Emphasis is on computer based derivation of the system equations thus freeing the user from the time consuming and error-prone task of developing equations of motion for various problems again and again." [From advertisement of Roberson and Schwertassek (1988) in Ingenieur-Archiv, 59, p.A.3, 1989.] Here, the advertisers hide the well-known fact of how much error prone is the formulating and running of any complicated program; and how the combination of this with the absence of any physically simple and meaningful checks for finding errors - something of a certainty for the structureless/formless mechanics of Newton-Euler, on which so much of multibody dynamics rests - is a recipe for chaos (\Rightarrow arbitrariness)! Our reading of this ad is that the whole process will, eventually, "free" the user from thinking at all-first, we replace the human functions and then we replace humans altogether [first industrial revolution: mechanization of muscles, second (current) industrial revolution: automation of both muscles and brains]; and anyone who dares to criticize, or inquire about choices (i.e., politics), is summarily and arrogantly dismissed as a technophobe or, worse, a neo-Luddite!

As the mathematicians Davis and Hersh put it accurately:
By turning attention away from underlying physical mechanisms and towards the possibility of once-for-all algorithmization, it encourages the feeling that the purpose of computation is to spare mankind of the necessity of thinking deeply.... Excessive computerization would lead to a life of formal actions devoid of meaning, for the computer lives by precise languages, precise recipes, abstract and general programs wherein the underlying significance of what is done becomes secondary. [Inimitably captured in M. McLuhan's well-known dictum: The medium is the message.] It fosters a spirit-sapping formalism. The computer is often described as a neutral but willing slave. The danger is not that the computer is a robot but that humans will become robotized as they adapt to its abstractions and rigidities (1986, pp. 293, 16).

And, in a similar vein, H. R. Post adds: "You understand a subject when you have grasped its structure, not when you are merely informed of specific numerical results" (quoted in Truesdell, 1984, p. 601).

The issue is not whether the complete computer codification of (some version of) dynamics can be achieved or not; it clearly can, somehow. The issue is the desirability of it; that is, the could versus the should, its scale compared with the other approaches, and the temporal order of such a presentation to the student ("user"). The only safe way for using such heavily computerized schemes is for the student to already possess a very thorough grounding in the fundamentals of mechanics - like
vaccination against a virus! There is no painless and short way to bypass several centuries of hard thinking by a handful of great fellow humans - no royal road to mechanics! Otherwise, we are headed for more confusion, degradation, errors, and accidents, and eventual disengagement from our subject. [For iconoclastic, devastating, and sobering critiques of the contemporary mindless and rabid computeritis, see, for example, Truesdell (1984, pp. 594-631), Davis and Hersh (1986), and Mander (1985).]

As for the applications of mechanics, there is nothing wrong with them; as long as they do not hurt or exploit people and nature - alas, several such contemporary applications do just that. Those preoccupied with them rarely, if ever, ask the natural question: What are the (most likely) applications of the applications; namely, their social/environmental consequences? In this light, common statements like "the computer is only a tool" are utterly naive and meaningless. I should also add that the current relentless emphasis, even in the academia, on applied research with quick tangible results - that is, dollars at the expense of every other nonmonetary aspect is a relatively recent phenomenon imposed on us from outside; it is neither intrinsic nor accidental to science, but instead is an intensely socio-economic activity technology is neither autonomous nor neutral! [And as Truesdell concurs, with depressing accuracy (1987, p. 91): "It is not philosophers of science who will enforce one kind of research or another. No, it will be the national funding agencies, the sources of manna, nectar, and ambrosia for the corrupted scientists. The directors of funds are birds of a feather, chattering mainly to each other and at any one moment singing more or less the same cacophonous tune. There may come a time when even the scholarly foundations will give preference to those who claim to promote national 'defense' by research on the basic principles governing some new, as yet totally secret - that is, known only to the directors of war in the U.S. and Russia allegedly secret idea for a broader and more effective death by torture in a world full of humanitarians and their -isms.'"]

If applications, even worthwhile ones, are but one motive for studying mechanics, and science in general, then what else is? Here are some plausible (existential?) reasons offered by Einstein, which I have found particularly inspiring, since my high school years:

> Man tries to make for himself in the fashion that suits him best a simplified and intelligible picture of the world; he then tries to some extent to substitute this cosmos of his for the world of experience, and thus to overcome it. This is what the painter, the poet, the speculative philosopher, and the natural philosopher do, each in his own fashion. Each makes this cosmos and its construction the pivot of his emotional life, in order to find in this way the peace and security which he cannot find in the narrow whirlpool of personal experience (emphasis added; from "Principles of Research," an address delivered in 1918, on the occasion of M. Planck's sixtieth birthday).

From a broader perspective, I am convinced that the quality of our lives depends not so much on specific gadgets/artifacts, no matter how technically advanced they may be (e.g., from artificial hearts to space stations), but on our collective abilities to formulate simple, clear, and unifying ideas that will allow us to understand (and then change gently and gracefully - sustainably) our increasingly complicated, unstable and fragile societies; and, in the process, understand ourselves. The resulting psychological and intellectual peace of mind from such a liberal arts (= liberating) approach cannot be overstated. It is this kind of activity and attitude that gives human life meaning - we do not do science just to make money, merely to exchange and consume. This book is intended as a small but tangible contribution to this lofty goal.

SOME PERSONAL HISTORY

My interest in AM began during my undergraduate studies (mid-to-late 1960s) upon reading in Hamel (1949, pp. 233-236, 367) about the differences between the calculus of variations (mathematics) and Hamilton's variational principle (mechanics) for nonholonomic systems. The need for a deeper understanding of the underlying kinematical concepts led me, about twenty years later, to the study of the original epoch-making memoirs of such mechanics masters as Appell, Boltzmann, Heun, and Hamel. Then, in the spring of 1986, in related studies on variational calculus, I had the good fortune to stumble upon the virtually unknown but excellent papers of Schaefer (1951) and Stückler (1955), which, along with my earlier acquaintance with tensors, showed me the way toward the correct understanding of everything virtual: virtual displacements and virtual work/Lagrange's principle; that is, I arrived at AM via the calculus of variations, just like Lagrange in the 1760s! Finally, the emphasis on the fundamental distinction between particle and system quantities I owe to the writings of Heun, the founder of theoretical engineering dynamics (early 20th century), and especially to those of his students: Winkelmann and the great Hamel.

In closing, I would like to recommend the reading of the preface(s) of Lanczos (1949-1970); the present work has been conceived and driven by a similar overall philosophy.

May this book make many and loyal friends!
john.papas@me.gatech.edu
Atlanta, Georgia J. G. P.
Autumn 2001

This page intentionally left blank

ACKNOWLEDGMENTS

Abstract

(Where the author recognizes, with gratitude and pleasure, the social dimension of his activity)

Every book on analytical mechanics is better off the closer it comes to the simplicity, clarity, and thoroughness of Georg Hamel's classic Theoretische Mechanik, arguably the best (broadest and deepest) single work on mechanics; and, secondarily, of Anatolii I. Lur'e's outstanding Analiticheskaya Mekhanika. I hope that this treatise follows closely and loyally the tradition created by these great masters. My indebtedness to their monumental works is hereby permanently registered.

Next, I express my deep appreciation and thanks to
Ms. Katharine L. Calhoun, of the Georgia Tech library, for her most courteous and capable help in locating and obtaining for me, over the past several years (1986 to present), hundreds of rare and critically needed references, from all over the country. Katharine is an oasis of humanity and graciousness in an otherwise arid and grim campus.

Drs. Feng Xiang Mei, professor at the Beijing Institute of Technology, China, and Zhen Wu, professor at the University of Tsiao Tong, China; and Drs. Sergei A. Zegzhda and Mikhail P. Yushkov, professors at the Mathematics and Mechanics faculty of St. Petersburg University, Russia [birthplace of the first treatise on theoretical/analytical mechanics (Euler's, Mechanica Sive Motus Scientia..., 2 vols, 1736)] for making available to me copies of their excellent textbooks and papers on advanced dynamics, which are virtually unavailable in the West (see the list of References and Suggested Reading).

Dr. John L. Junkins, chaired (and distinguished) professor of aeronautical engineering at Texas A\&M University, for early encouragement on a previous version (outline) of the manuscript (1986) - what John aptly dubbed "the zeroth approximation."

Dr. Donald T. Greenwood, professor of aerospace engineering at the University of Michigan (Ann Arbor) and a true Nestor among American dynamicists, also author of internationally popular and instructive graduate texts on dynamics, for his detailed and mature (and very time- and energy-consuming) comments on the entire technical part of the manuscript; and for sharing with me his (soon to appear in book form) notes on Special Advanced Topics in Dynamics.

Dr. Wolfram Stadler, professor and scholar of mechanics at San Francisco State University and author of uniquely encyclopaedic work on robotics/mechatronics, for qualitative and constructive criticism on Chapter 1 (Background). Wolf remains a staunch and creative individualist, in an age of ruthless academic collectivization.

A very special expression of indebtedness to my friend Dr. Hartmut Bremer (O. Univ.-Prof. Dr.-Ing. habil.), professor of mechatronics at the University of Linz, Austria (formerly, professor of mechanics at the Technical University of Munich, Germany) and author of two dense and comprehensive textbooks on dynamics/ control/multibody systems, for extensive, thoughtful and critical discussions/comments on several topics of theoretical and applied dynamics, including their historical, cultural, and educational aspects; and for supplying me with rare and precious references on the subject. To Hartmut's persistent efforts (1989-1993), I owe a very rare photograph of Karl Heun (to appear in a special gallery of photos of mechanics masters, which will be included in my forthcoming Elementary Mechanics).

In addition, I consider myself very fortunate to have benefited from the "mechanical" knowledge and wisdom of my friend Dr. Leon Y. Bahar, professor of mechanical engineering and mechanics at Drexel University and another American Nestor. Leon, a veritable engineering science scholar, craftsman, and above all dedicated teacher (i.e., representative of an academic species that is somewhere between endangered and extinct, as professionalism goes up and scholarship goes down), has over the past several years selflessly provided me with critical and enlightening quanta of knowledge and insight (lecture notes, papers, and extensive letters), and much valued mentorship.

These are not the best of times for writing "another" book on advanced theoretical mechanics - to put it mildly. However, and this provides a certain consolation, even such all-time titans of mathematics and mechanics as Euler, Lagrange, and Gauss had considerable difficulties in publishing, respectively, their Theoria Motus ... (1765), Méchanique Analitique (1788), and Disquisitiones Arithmeticae (1801). [According to Truesdell (1984, p. 352), all that Euler received for his masterpiece on rigid-body dynamics (1765) was ... twelve free copies of it!] Aspiring academic writers in this area are forewarned that the contemporary "research" university is not particularly supportive to such scholarly activities; these latter, obviously "interfere" with the more lucrative business (to the university bureaucrats, but not necessarily to students and society at large) of contracts and grants from big business and big government. Such an inimical "academic" environment makes it much more natural than usual that I reserve the strongest expression of gratitude, by far, to my family, here in Atlanta, Georgia: my wife Kim Ann and daughter Julia Constantina; and in my native Athens, Greece: my mother Konstantina and brother Stavros (in my nonobjective but fair view, one of the brightest mathematicians of contemporary Greece, and an island of moral and intellectual nobility, in an archipelago of petty greed and irrationality) - for their continual and critical moral and material support throughout the several long and solitary years of writing of the book.

Last, this volume (as well as my other two mechanics books) could not have been written without (i) the institution of academic tenure (much maligned and curtailed recently by reactionary ideologues, demagogues, and ignoramuses) and (ii) the (alas, fast disappearing) policy of most university libraries, of open, direct, and free access to books and journals. Regrettably, and in spite of high-tech millennarian promises, the next generation of scholarly authors will not be as lucky as I have been, in both these areas!

Contents

INTRODUCTION 3
1 Introduction to Analytical Mechanics 4
2 History of Theoretical Mechanics: A Bird's-Eye View 9
3 Suggestions to the Reader 13
4 Abbreviations, Symbols, Notations, Formulae 14
1 BACKGROUND: BASIC CONCEPTS AND EQUATIONS OF PARTICLE AND RIGID-BODY MECHANICS 71
1.1 Vector and (Cartesian) Tensor Algebra 72
1.2 Space-Time Axioms; Particle Kinematics 89
1.3 Bodies and their Masses 98
1.4 Force; Law of Newton-Euler 101
1.5 Space-Time and the Principle of Galilean Relativity 104
1.6 The Fundamental Principles (or Balance Laws) of General System Mechanics 106
1.7 Accelerated (Noninertial) Frames of Reference (or Relative Motion, or Moving Axes); Angular Velocity and Acceleration 113
1.8 The Rigid Body: Introduction 138
1.9 The Rigid Body: Geometry of Motion and Kinematics (Summary of Basic Theorems) 140
1.10 The Rigid Body: Geometry of Rotational Motion; Finite Rotation 155
1.11 The Rigid Body: Active and Passive Interpretations of a Proper Orthogonal Tensor; Successive Finite Rotations 178
1.12 The Rigid Body: Eulerian Angles 192
1.13 The Rigid Body: Transformation Matrices (Direction Cosines) Between Space-Fixed and Body-Fixed Triads; and Angular Velocity Components along Body-Fixed Axes, for All Sequences of Eulerian Angles 205
1.14 The Rigid Body: An Introduction to Quasi Coordinates 212
1.15 The Rigid Body: Tensor of Inertia, Kinetic Energy 214
1.16 The Rigid Body: Linear and Angular Momentum 222
1.17 The Rigid Body: Kinetic Energy and Kinetics of Translation and Rotation (Eulerian "Gyro Equations") 225
1.18 The Rigid Body: Contact Forces, Friction 237
2 KINEMATICS OF CONSTRAINED SYSTEMS
(i.e., LAGRANGEAN KINEMATICS) 242
2.1 Introduction 242
2.2 Introduction to Constraints and their Classifications 243
2.3 Quantitative Introduction to Nonholonomicity 257
2.4 System Positional Coordinates and System Forms of the Holonomic Constraints 270
2.5 Velocity, Acceleration, Admissible and Virtual Displacements; in System Variables 278
2.6 System Forms of Linear Velocity (Pfaffian) Constraints 286
2.7 Geometrical Interpretation of Constraints 291
2.8 Noncommutativity versus Nonholonomicity; Introduction to the Theorem of Frobenius 296
2.9 Quasi Coordinates, and their Calculus 301
2.10 Transitivity, or Transpositional, Relations; Hamel Coefficients 312
2.11 Pfaffian (Velocity) Constraints via Quasi Variables, and their Geometrical Interpretation 323
2.12 Constrained Transitivity Equations, and Hamel's Form of Frobenius' Theorem 334
2.13 General Examples and Problems 345
3 KINETICS OF CONSTRAINED SYSTEMS (i.e., LAGRANGEAN KINETICS) 381
3.1 Introduction 381
3.2 The Principle of Lagrange (LP) 382
3.3 Virtual Work of Inertial Forces (δI), and Related Kinematico-Inertial Identities 399
3.4 Virtual Work of Forces: Impressed $\left(\delta^{\prime} W\right)$ and Constraint Reactions ($\delta^{\prime} W_{R}$) 405
3.5 Equations of Motion via Lagrange's Principle: General Forms 409
3.6 The Central Equation (The Zentralgleichung of Heun and Hamel) 461
3.7 The Principle of Relaxation of the Constraints (The Lagrange- Hamel Befreiungsprinzip) 469
3.8 Equations of Motion: Special Forms 486
3.9 Kinetic and Potential Energies; Energy Rate, or Power, Theorems 511
3.10 Lagrange's Equations: Explicit Forms; and Linear Variational Equations (or Method of Small Oscillations) 537
3.11 Appell's Equations: Explicit Forms 563
3.12 Equations of Motion: Integration and Conservation Theorems 566
3.13 The Rigid Body: Lagrangean-Eulerian Kinematico-Inertial Identities 581
3.14 The Rigid Body: Appellian Kinematico-Inertial Identities 594
3.15 The Rigid Body: Virtual Work of Forces 597
3.16 Relative Motion (or Moving Axes/Frames) via Lagrange's Method 606
3.17 Servo (or Control) Constraints 636
3.18 General Examples and Problems 650
APPENDIX 3.A1
Remarks on the History of the Hamel-type Equations of AnalyticalMechanics702
APPENDIX 3.A2
Critical Comments on Virtual Displacements/Work; and Lagrange's Principle 708
4 IMPULSIVE MOTION 718
4.1 Introduction 718
4.2 Brief Overview of the Newton-Euler Impulsive Theory 718
4.3 The Lagrangean Impulsive Theory; Namely, Constrained Discontinuous Motion 721
4.4 The Appellian Classification of Impulsive Constraints, and Corresponding Equations of Impulsive Motion 724
4.5 Impulsive Motion via Quasi Variables 751
4.6 Extremum Theorems of Impulsive Motion (of Carnot, Kelvin, Bertrand, Robin, et al.) 784
5 NONLINEAR NONHOLONOMIC CONSTRAINTS 817
5.1 Introduction 818
5.2 Kinematics; The Nonlinear Transitivity Equations 819
5.3 Kinetics: Variational Equations/Principles; General and Special Equations of Motion (of Johnsen, Hamel, et al.) 831
5.4 Second- and Higher-Order Constraints 871
6 DIFFERENTIAL VARIATIONAL PRINCIPLES, AND ASSOCIATED GENERALIZEDEQUATIONS OF MOTION OF NIELSEN, TSENOV, ET AL.875
6.1 Introduction 875
6.2 The General Theory 876
6.3 Principle of Jourdain, and Equations of Nielsen 879
6.4 Introduction to the Principle of Gauss and the Equations of Tsenov 884
6.5 Additional Forms of the Equations of Nielsen and Tsenov 894
6.6 The Principle of Gauss (Extensive Treatment) 911
6.7 The Principle of Hertz 930
7 TIME-INTEGRAL THEOREMS AND VARIATIONAL PRINCIPLES 934
7.1 Introduction 935
TIME-INTEGRAL THEOREMS 936
7.2 Time-Integral Theorems: Pfaffian Constraints, Holonomic Variables 936
7.3 Time-Integral Theorems: Pfaffian Constraints, Linear Nonholonomic Variables 948
7.4 Time-Integral Theorems: Nonlinear Velocity Constraints, Holonomic Variables 957
7.5 Time-Integral Theorems: Nonlinear Velocity Constraints, Nonlinear Nonholonomic Variables 958
TIME-INTEGRAL VARIATIONAL PRINCIPLES (IVP) 960
7.6 Hamilton's Principle versus Calculus of Variations 960
7.7 Integral Variational Equations of Mechanics 966
7.8 Special Integral Variational Principles (of Suslov, Voronets, et al.) 974
7.9 Noncontemporaneous Variations; Additional IVP Forms 990
APPENDIX 7.A
Extremal Properties of the Hamiltonian Action (Is the Action Really a Minimum; Namely, Least?) 1055
8 INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS: EQUATIONS OF HAMILTON AND ROUTH; CANONICAL FORMALISM 1070
8.1 Introduction 1070
8.2 The Hamiltonian, or Canonical, Central Equation and Hamilton's Canonical Equations of Motion 1073
8.3 The Routhian Central Equation and Routh's Equations of Motion 1087
8.4 Cyclic Systems; Equations of Kelvin-Tait 1097
8.5 Steady Motion (of Cyclic Systems) 1115
8.6 Stability of Steady Motion (of Cyclic Systems) 1119
8.7 Variation of Constants (or Parameters) 1143
8.8 Canonical Transformations (CT) 1161
8.9 Canonicity Conditions via Poisson's Brackets (PB) 1176
8.10 The Hamilton-Jacobi Theory 1192
8.11 Hamilton's Principal and Characteristic Functions, and Associated Variational Principles/Differential Equations 1218
8.12 Integral Invariants 1230
8.13 Noether's Theorem 1243
8.14 Periodic Motions; Action-Angle Variables 1250
8.15 Adiabatic Invariants 1290
8.16 Canonical Perturbation Theory in Action-Angle Variables 1305
References and Suggested Reading 1323
Index 1371

Words of Wisdom and Beauty

On Rigor It is not so much important to be rigorous as to be right.
-A. N. KOLMOGOROV
On Theory There is nothing more practical than a good theory. -L. BOLTZMANN

We have no access to a theory-independent world - that is, a world unconditioned by our point of view The world we see is ... theory-laden: it already bears the ineliminable mark of our involvement in it Knowledge is always a representation of reality from within a particular perspective We cannot assume ... "the view from nowhere."
-T. W. CLARK
I really do not at all like the now fashionable "positivistic" tendency of clinging to what is observable ... I think ... that theory cannot be fabricated out of the results of observation, but that it can only be invented.
-A. EINSTEIN
On Method In the sciences the subject is not only set by the method; at the same time it is set into the method and remains subordinate to the method In the method lies all the power of knowledge. The subject belongs to the method. (emphasis added)
-M. HEIDEGGER
The core of the practice of science - the thread that keeps it going as a coherent and developing activity - lies in the actions of those whose goals are internal to the practice. And these internal goals are all noneconomic. (emphasis added.)
-B. SCHWARTZ
On Beauty My own students, few they have been, I have tried to teach how to ask questions humbly and to see ways to some taste in a vulgar, obscene epoch. Taste is acquired by those who can face questions, especially insoluble questions.

-C. A. TRUESDELL

It is by the steady elimination of everything which is ugly thoughts and words no less than tangible objects - and by the substitution of things of true and lasting beauty that the whole progress of humanity proceeds.

This page intentionally left blank

๑ Reprint Edition e®

Analytical Mechanics

A Comprehensive Treatise on the Dynamics of Constrained Systems

This page intentionally left blank

Introduction

KO¿MON TON $\triangle E$, TON AYTON AПANT Ω N, OYTE Tİ ӨE ΩN OYTE ANOP $\Omega \Pi \Omega$ N EПOIH乏EN, A $\wedge \wedge^{\prime} H N$ AEI KAI E EXTIN KAI E ETAI ПYP AEIZ $\Omega O N$, AПTOMENON METPA KAI AПO¿BENNYMENON METPA.
[HPAK^EITO乏 (Herakleitos, Greek philosopher; Ephesos, Ionia, late 6th century в.c.)]
[Translation: "This world [order], which is the same for all [beings], no one of gods or humans have created; but it was ever, is now, and ever shall be an ever-living Fire, that starts and goes out according to certain rules [laws]."
This magnificent statement marks the beginning of science-one of the countless, fundamental, and original gifts of Greece to the world. (See, e.g., Burnet, 1930, p. 134; also Frankfort et al., 1946, chap. 8.)]

Die Mechanik ist die Wissenschaft von der Bewegung; als ihre Aufgabe bezeichnen wir: die in der Natur vor sich gehenden Bewegungen vollständig und auf die einfachste Weise zu beschreiben.
(Translation: Mechanics is the science of motion; we define as its task the complete description and in the simplest possible manner of such motions as occur in nature.)
(Kirchhoff, 1876, p. 1, author's emphasis)
Dynamics or Mechanics is the science of motion The problem of dynamics according to Kirchhoff, is to describe all motions occurring in nature in an unambiguous and the simplest manner. In addition it is our object to classify them and to arrange them on the basis of the simplest possible laws. The success which has attended the efforts of physicists, mathematicians, and astronomers in achieving this object from the time of Galileo and Newton through that of Lagrange and Laplace to that of Helmholtz and Kelvin, constitutes one of the greatest triumphs of the human intellect.
(Webster, 1912, p. 3, emphasis added)
Die Mechanik ist ein Teil der Physik. (Translation: Mechanics is a part of physics.)
(Föppl, 1898, vol. 1, p. 1)

1 INTRODUCTION TO ANALYTICAL MECHANICS

What Is Analytical Mechanics?

Classical mechanics (CM)-that is, the exact science of nonrelativistic and nonquantum motion (effects) and forces (causes)-was founded in the 17th century (Galileo, 1638; Newton, 1687), and was brought to fruition and generality during the next century, almost single-handedly, by Euler (1752: principle of linear momentum; 1775: principle of angular momentum). [D'Alembert too had formulated separate laws of linear and angular momentum (1743, 1758), but his approach came nowhere near that of Euler in generality and power.] That was the first complete dynamical theory in history. We shall call it, conveniently (even though not quite accurately), the Newton-Euler method of mechanics (NEM).

The second such theory was also initiated in the (late) 17th century, this time by Huygens and Jakob Bernoulli; it was further developed during the 18th century by Johann Bernoulli (Jakob's brother) and d'Alembert (early 1740s), and was finally brought to relative mathematical and physical completion by the other great mathematician of that century, Lagrange (1760: principle of "least" action; 1764: principle of d'Alembert in Lagrange's form, or Lagrange's principle; 1780: central equation and Lagrange's equations; 1788: Méchanique Analitique; 1811-1812: transitivity equations). This second approach, what we shall call the method of d'Alembert-Lagrange, or, simply and more accurately, the method of Lagrange, forms the basis of what has come to be known as analytical mechanics (AM); or, equivalently, Lagrangean mechanics (LM). Although both these methods are, roughly, theoretically equivalent, since there is only one classical mechanics, the second approach proved much more influential and fertile to the subsequent development not only of mechanics, but also of practically all areas of physics: from generalized coordinates and configuration space to Riemannian geometry and tensors, and from there to general relativity; and similarly for quantum mechanics.

Analytical mechanics proved particularly significant and useful to engineers, although it took another century after Lagrange for this to be fully realized (see §2). The reason for this is that AM was specifically designed by its inventors to handle constrained (earthly) systems - the concept of constraint is central to $A M$. Not that NEM could not handle such systems, but AM proved incomparably more expedient both for formulating their simplest (or minimal) equations of motion, and also for offering numerous theoretical and practical insights and tools for their solution (e.g., theorems of conservation and invariance, variational "principles" and associated direct methods of approximation, etc.-detailed in chaps. 3-8).

In NEM, the basic principles (or axioms) are those of linear and angular momentum, and, secondarily, that of action-reaction, for the internal (or mutual) forces (see chap. 1); that is,

NEM is a mechanics of systems based on momentum principles.
In LM, on the other hand, the primary axiom is the kinetic principle of virtual work for the constraint reactions [=Lagrange's principle (LP)] and, secondarily, the principle of relaxation (or liberation, or freeing) of the constraints (see chap. 3); that is,

With the help of his LP, Lagrange and many others later (see §2) formulated the most general equations of motion of systems subject to general positional and/or motional constraints. [The former are called holonomic, while the latter, if they cannot be brought (integrated) to positional form are called nonholonomic (see chap. 2).]

Last, from the viewpoint of applications, AM constitutes the theoretical foundation of advanced engineering dynamics; which, in turn, is very useful to the following: structural dynamics (e.g., bridges, airport runways); machine dynamics (e.g., internal combustion engines); vehicle dynamics (e.g., automobiles, locomotives); rotor dynamics (e.g., turbines); robot dynamics (e.g., robotic manipulators); aero-/astrodynamics (e.g., airplanes, artificial satellites); control theory/system dynamics (e.g., electromechanical systems, valves); celestial dynamics (e.g., astronomy), and so on.

Comments on the Methodology of AM

1. From the otherwise physically complete (particle) mechanics of Newton two things were missing: rotation and constraints (and, of course, deformation, but we do not deal with continua here). The first was taken care of by Euler, Mozzi, Cauchy, Chasles, Rodrigues et al. (1750s to the mid 19th century), and the second by Lagrange ($1760 \mathrm{~s}-1780 \mathrm{~s}$) and later many others (1870-1910). Of course, special cases of both problems had been examined earlier: for example, Newton discussed motions on specified curves and the associated forces, and, as Heun points out, with the help of his third law of action/reaction, he could have built a constrained particle mechanics, had he pursued that possibility; d'Alembert worked with particles "constrained in rigid body connections"; and even Huygens had such pendula involving several constrained particles. Much later (early 1810s), Lagrange brought rotation under his energetic plan (genesis of nonholonomic, or quasi-coordinates; special transitivity equations - see bridge between Euler and Lagrange below).
2. Analytical versus synthetical, Euler versus Lagrange. To begin with, CM holds quite satisfactorily for sizes, or lengths, from $10^{-10} \mathrm{~m}$ (atom) to $10^{20} \mathrm{~m}$ (galaxy), and for speeds up to $c / 10(c=$ speed of light $\approx 300,000 \mathrm{~km} / \mathrm{s})$. Outside of these broad ranges, CM is replaced by relativity (high speeds) and quanta (small sizes) (see, e.g., French, 1971, p. 8). Now, depending on the method adopted, CM can be classified as follows:

This classification, a logically possible one out of many (see below; e.g., Hamel, 1917), stresses the following:

2(a). Contrary to popular declarations, and Lagrange himself is partly to blame for this, AM does not mean mechanics via mathematical analysis; that is, it does not
mean an ageometrical and figureless mechanics. [Even such 20th century mechanics authorities as Whittaker state that "The name Analytical Dynamics is given to that branch of knowledge in which the motions of material bodies, ..., are discussed by the aid of mathematical analysis" (1937, p. 1).] Instead, and in the sense used in philosophy/logic, AM means a deductive mechanics: everything flowing from a few selected initial postulates/principles/axioms by logical (mathematical) reasoning; that is, from the general to the particular-as contrasted with inductive, or synthetic, mechanics; that is, from the particular to the general. As such, AM is by no means ageometrical (and, similarly, synthetic mechanics does not necessarily mean geometrical and nonmathematical mechanics). Also, in the past (mainly 19th century) the terms theoretical, rational, and analytical have frequently been used synonymously.

2(b). In such a classification, the mechanics of Euler also deserves to be called analytical! The reason that we in this book, and most everybody else, do not have more to do with historical tradition and usage rather than with strict logic: today AM has come to mean, specifically,

Lagrangean method $=$ Principle of Lagrange

($=$ Principle of d'Alembert + Johann Bernoulli's principle of virtual work)

+ Principle of relaxation of the constraints (Hamel's Befreiungsprinzip)

After more than 200 years, AM is defined by its practice-that is, by its methods, tools, and range of problems dealt with by its practitioners-and because, contrary to the mechanics of Newton-Euler, it is capable of extending to other areas of physics: for example, statistical mechanics, electrodynamics. As the distinguished applied mathematician Gantmacher puts it
[A]nalytical mechanics is characterized both by a specific system of presentation and also by a definite range of problems investigated. The characteristic feature \ldots is that general principles (differential or integral) serve as the foundation; then the basic differential equations of motion are derived from these principles analytically. The basic content of analytical mechanics consists in describing the general principles of mechanics, deriving from them the fundamental differential equations of motion, and investigating the equations obtained and methods of integrating them (1970, p. 7).

2(c). Frequently, one is left with the impression that Eulerian mechanics is vectorial, whereas Lagrangean mechanics is scalar. This, however, is only superficially true: LM can be quite geometrical and vectorial, but in generalized nonphysical/nonEuclidean (Riemannian and beyond) spaces [see, e.g., Papastavridis (1999), Synge (1926-1927, 1936), and references therein].

2(d). Euler and Lagrange should be viewed as mutually complementary, not as adversarial-as some historians of mechanics do. And although it is undeniably true that, of the two, Euler was the greater "geometer" in both quantity and quality, yet it was the method of Lagrange that shaped and drove the subsequent epoch-making developments of theoretical physics and a fair part of applied mathematics (i.e., differential geometry/tensors \rightarrow relativity; Hamiltonian mechanics/phase space \rightarrow statistical mechanics, quantum mechanics). Lagrange himself, shortly before his death (in 1813), succeeded in building the bridge between his method and that of Euler (rigid-body equations) by obtaining a special case of "transitivity equations"
[so named by Heun (early 20th century) because they allow the transition from Lagrangean to Eulerian], which appeared in the second volume of the second edition of his Mécanique Analytique (1815). And that is why the great mechanician Hamel, in 1903-1904, dubbed his own famous equations the "Lagrange-Euler equations"; and in his magnum opus Theoretische Mechanik (1949) he founded the entire mechanics on Lagrangean principles. [With the exception of Neimark and Fufaev (1972), the transitivity equations are completely and conspicuously absent from the entire English and French literature!]
3. Newtonian particles versus Eulerian continua. There is a certain viewpoint, particularly popular among celestial dynamicists/astronomers, (particle) physicists, and some applied mathematicians, according to which classical mechanics is the study of the motions of systems of particles under mutually attractive/repulsive forces, whose intensities depend only on the distances among these particles (molecules, etc.); and that, eventually, all physical phenomena are to be explained by such a "mechanistic" model. This Newtonian mindset dominated 19th century mechanics and physics almost completely, and obscured the fact that such a "central force + particle(s)" mechanics [launched, mainly, by P. S. de Laplace in his monumental fivevolume Traité de Mécanique Celeste (1799-1825)] is but one possibility, even within the nonrelativistic and nonquantum confines of the 19th century. Under other, physically more realistic, possibilities the total interparticle force, generally, consists of a reaction to the geometrical and/or kinematical constraints imposed, and an impressed, or physical, part that can depend explicitly on time, position(s), and velocity(-ies) of some or all of the system particles. However, the introduction of such forces to mechanics creates effects that cannot be accounted by mechanics alone, such as thermal and/or electromagnetic phenomena; whereas, the consequences of Newtonian forces stay within mechanics.

The "mechanistic theory of matter"- namely, to explain all nonmechanical phenomena via simple models of internal nonvisible (concealed) motions of the system's molecules (second half of 19th century, proposed by physicists like W. Thomson, J. Thomson, Helmholtz, Hertz et al.)-was only partially successful, and eventually evolved to statistical mechanics and physics (Boltzmann, Gibbs) and quantum mechanics [Planck, Einstein, Bohr, Born, Heisenberg, Schrödinger, Dirac et al.; see also Stäckel (1905, p. 453 ff.)].

Finally, as Hamel (1917) points out, it should be remembered that AM is not restricted to particles: even though Lagrange himself starts with particles, that fact is totally unimportant to his method; he could have just as well spoken of "volume elements."
4. Theory versus experiment. The logical consequences of the principles of AM should not contradict experience. This, however, does not mean that these consequences (theorems, corollaries, etc.) should be derived from experiments; the latter cannot supply missing mathematics, or be used to prove and/or verify something, but they can be used to disprove a hypothesis. As H. R. Post puts it:

[^0]But if the axioms of mechanics do not flow simply ("mechanically") and uniquely out of experiments, then where do they come from? Paraphrasing Hamel, Einstein et al., we may say that these axioms are erected from the facts of experience (the object) by the human mind (the subject) as an equal and imaginative partner, from a little observation, a lot of thought and eventually a rather sudden (qualitative) understanding and insight into nature. In other words, humans are not passive at all in the formation of scientific theories, but because of the enormous difficulty involved, the creation of a successful set of axioms is the rare act of genius [e.g. (chronologically): Euclid, Archimedes, Newton, Euler, Lagrange, Maxwell, Gibbs, Boltzmann, Planck, Einstein, Heisenberg, Schrödinger].

In CM, although open and nontrivial problems still remain, yet they are to be solved by the adoped principles; namely, we do not risk much in stating that this science is essentially closed, and that is why here the analytical/deductive method is possible. Otherwise, we would have to adopt a synthetic/inductive approach and change it slowly, depending on the new empirical facts.
5. In addition to the Lagrangean (and Hamiltonian) analytical formulation of mechanics-namely, the classical tradition of Whittaker, Hamel, Lur'e, Pars, Gantmacher et al. followed here, and depending on the emphasis laid on their most significant aspects, the following complementary formulations of CM also exist:

[^1]All these, and other, formulations testify once more to the vitality and importance of CM for the entire natural science, even today.
6. For engineering purposes, the following (nonunique) partitioning of mechanics seems useful:

[We consider this preferable to the following partitioning, customary in the U.S. undergraduate engineering education:

In addition, we will be using the following, not so common, terms:

Stereomechanics: mechanics of rigid bodies (and, accordingly, stereostatics, stereokinetics, etc.-mainly, after Maggi, late 1800s to early 1900s);
Kinetostatics: study of internal and external reactions in rigid bodies in motion (after Heun, early 1900s).
7. Finally, the problem of $A M$ consists in the following:
(a). Formulation of the smallest, or minimal, number of equations of motion without (external and/or internal) constraint reactions; namely, the so-called kinetic equations; and also the ability to retrieve these reactions if needed; namely, the socalled kinetostatic equations. And then,
(b). The ability to solve these equations for the motion and unknown forces, respectively, either analytically (exactly or approximately) or numerically (computationally or symbolically). This is aided by the possible existence of first integrals; for example, energy, momentum, and conservation/invariance principles; more on these in chapter 3 .

2 HISTORY OF THEORETICAL MECHANICS: A BIRD'S-EYE VIEW

For us believing physicists the distinction between past, present, and future is only an illusion, even if a stubborn one.
(A. Einstein, Aphorisms)

The past is intelligible to us only in the light of the present; and we can fully understand the present only in the light of the past Past, present, and future are linked together in the endless chain of history.
(E. H. Carr, What is History?, 1961)

But it is from the Greeks, and not from any other ancient society, that we derive our interest in history and our belief that events in the past have relevance for the present.
(M. Lefkowitz, 1996, p. 6)

For in a real sense, history isn't the past-it's a posture in the present toward the future.
(L. Weschler, American author/journalist, 1986)

Rootless men and women take no more interest in the future than they take in the past.
(C. Lasch, The Minimal Self, 1984)

The devaluation of history is a prerequisite for the free exercise of pure power.
(J. Rifkin, Time Wars, 1988)

The complete history of analytical mechanics, including 20th century contributions, has not been written yet - in English, anyway-and lack of space prevents us from doing so here. However, we hope that the following brief, selective, subjective, and unavoidably incomplete (but essentially correct and fair) summary, and references, will inspire others to pursue such a worthwhile and long overdue task more fully.

Most Important Milestones in the Evolution of Theoretical Engineering Dynamics (from the Viewpoint of Analytical Mechanics)

Unconstrained 1638:	System Mechanics (Momentum mechanics of Newton-Euler) 1687:
	Special particle motions (Galileo) Physical foundations of mechanics [Newton: incomplete principles, no method (no equations of motion in his Principia)]
1730s:	Mechanics of a particle (Euler)
1740s:	Mechanics of a system of particles (Euler, late 1740s: Newtonian equa- tions of motion!)
1750s:	General principle of linear momentum (Euler); kinetics of rigid bodies
(Euler)	

1879:	Gauss' Principle for inequality constraints; Gibbs-Appell equations for unconstrained systems, but in general nonholonomic velocities (quasi velocities; Gibbs)
1870s-1910s:	Dynamics of nonholonomic systems, under linear (or Pfaffian) velocity constraints, possibly nonholonomic (Routh, Appell, Chaplygin, Voronets, Maggi, Heun, Hamel et al.--see below)
1903-1904:	Definitive and general study of nonholonomic systems (Pfaffian con- straints) in nonholonomic variables; Lagrange-Euler equations (Hamel)
1910s-1930s:	Dynamics of nonholonomic systems, under nonlinear velocity con- straints (Appell, Delassus, Chetaev, Johnsen, Hamel); Study of non- holonomic systems via general tensor calculus (Schouten, Synge,
Vranceanu, Wundheiler, Horák, Vagner et al.)	

Let us elaborate a little on the dynamics of nonholonomic systems. The original Lagrangean equations (1780) were limited to holonomically constrained systems. At that time, and for several decades afterwards, velocity constraints (holonomic or not) were only a theoretical possibility; though one that could be easily handled by the Lagrangean method (i.e., principles of Lagrange and of the relaxation of the constraints (detailed in chap. 3)). But it was not until about a century later that such constraints were studied systematically. However, that necessitated a thorough reexamination of the entire edifice of Lagrangean mechanics: roughly between 1870 and 1910, what may be accurately called the second golden age of analytical mechanics, a host of first-rate mathematicians (Ferrers, Lindelöf, Hadamard, Appell, Volterra, Poincaré, Klein, Jourdain, Stäckel, Maurer), physicists (Gibbs, C. Neumann, Korteweg, Boltzmann), mechanicians (Routh, Maggi, Chaplygin, Voronets, Suslov, Heun, Hamel), and engineering scientists (Vierkandt, Beghin) developed the modern AM of constrained systems, including nonholonomic ones; and, also, the unified theory of differential variational principles of Lagrange, Jourdain, Gauss, Hertz et al. Up until then (ca. 1900), AM was used almost exclusively, by mathematicians and physicists, to study unconstrained systems: for example, celestial mechanics. The Promethean transition from heavens down to earth (i.e., constraints) was led by the great German mechanician Heun (18591929), who can be fairly considered as the founder of modern engineering dynamics; and, also, by his more famous student Hamel (1877-1954), arguably the greatest mechaniker of the 20th century. For instance, to these two we owe the correct formulation and interpretation of the d'Alembert-Lagrange principle (i.e., LP), and its successful application (along with additional geometrical and kinematical concepts, already in embryonic or special forms in Lagrange's works) to systems under general holonomic and/or linear velocity (or Pfaffian, possibly nonholonomic) constraints. Therein lie the roots of all correct treatments of the subject. [Heun also made important contributions to applied mathematics. For example, the well-known Runge-Kutta method in ordinary differential equations should be called method of Runge-Kutta-Heun; see, for example, Renteln (1995).]

Between the two world wars, on the basis of the so-accumulated powerful insights into the mathematical structure of LM (especially from the differential variational principles), its methods were extended to nonlinear nonholonomic constraints; first
by Appell (1911-1925) and his student Delassus (1910s) [also by Prange and Müller (1923)] and then by Chetaev (1920s), Johnsen (1936-1941), and Hamel (1938). During the post World War II era, the entire field was summarized by Hamel himself in his magnum opus Theoretische Mechanik (1949); and then elaborated upon by a new generation of Soviet mechanicians [(alphabetically) Dobronravov, Fradlin, Fufaev, Lobas, Lur'e, Novoselov, Neimark, Poliahov, Rumyantsev (or Rumiantsev), et al.], whose efforts culminated in the unique and classic monograph Dynamics of Nonholonomic Systems by Neimark and Fufaev (1967, transl. 1972). Both of these works are most highly recommended to all serious dynamicists.
[(a) On the history of the nonholonomic equations of motion, see also chapter 3, appendix I. (b) Nonlinear (possibly nonholonomic) constraints are an area that, probably, constitutes the last theoretical frontier of LM and is of potential interest to nonlinear control theory. Also, the differential variational principles have rendered important services in the numerical treatment of problems of multibody dynamics, and promise to do more in the future.]

Guide Through the Literature on the History of Mechanics

1. General (Mechanics and Physics):

D'Abro (1939, 2nd ed.): Qualitative and quantitative tracing of the evolution of ideas from antiquity to modern quantum mechanics; excellent. Hoppe [1926(a), (b)]: Concise history of physics, with some quantitative detail; good place to start. Hund (1972): Panoramic, competent and compact history of physics, from antiquity to modern quantum mechanics, cosmology, and so on; one of the best places to start. Simonyi (1990): Comprehensive and sufficiently quantitative history of physics from antiquity to modern; beautifully and richly illustrated; most highly recommended.

2. Mechanics-General:

Dugas (1955): Comprehensive and quantitative history of classical and modern mechanics, from a French physicist's viewpoint; quite useful. Dühring (1887): Comprehensive treatment of the history of mechanics from antiquity to the middle of the 19th century; difficult to read due to its complete absence of figures and almost complete absence of mathematics; for specialists/scholars. Haas (1914): Detailed and pedagogical treatment of the principles of classical mechanics, from antiquity to the early 19th century; very warmly recommended, especially for undergraduates in science/engineering. Mach (1883-1933): Leisurely and mostly qualitative history of the principles of classical mechanics, from antiquity to the end of the 19th century; interesting and influential, but in some respects incomplete and misleading. Papastavridis [Elementary Mechanics (under production)] and references cited there. Szabó (1979): Selective history of entire mechanics, with lots of beautiful photographs and diagrams; combines features of Mach, Dugas, and Truesdell. Tiolina (1979) and Vesselovskii (1974): General histories of mechanics, with detailed accounts of Russian contributions; very highly recommended for both their contents and references.
3. Mechanics-Specialized:

Cayley (1858, 1863): Excellent and authoritative summaries of theoretical developments until the mid 19th century; by a very famous mathematician. Hankins (1970): Detailed account of the life and work of d'Alembert; highly recommended to mechanics historians/scholars. Hankins (1985): Physics during the 18th century (of enlightenment). Kochina (1985): Life and works of S. Kovalevskaya. Oravas and

McLean (1966): Detailed account of the development of energetic/variational principles, mainly of elastostatics. Polak (1959, 1960): Detailed and lively history of differential and integral variational principles of mechanics and classical/modern physics, from antiquity to the 20th century; most highly recommended. Stäckel (1905): Excellent quantitative history of particle and rigid-body dynamics (elementary to intermediate), from antiquity to the early 20th century; a must for mature dynamicists; complements Voss's article. Truesdell (1968, 1984, 1987): Authoritative and lively detailing of the life and contributions of Euler; but invariably unfair/ misleading to Lagrange and to anything remotely connected to particles and physics; for mature mechanicians/physicists. Voss (1901): Detailed and quantitative history of the principles of theoretical mechanics; with extensive lists of original references, from antiquity to ca. 1900; very highly recommended to mechanics and physics specialists. Wheeler (1952): Life and works of J. W. Gibbs. Wintner (1941, pp. 410-443): Notes and references on the history of analytical mechanics, with special emphasis on the mathematical aspects of celestial mechanics-the book, in general, is not recommended to anyone but specialists in theoretical astronomy. Ziegler (1985): Detailed and quantitative history of geometrical approach to rigid-body mechanics; primarily for kinematicians, not dynamicists.

4. Histories of Mathematics:

Bell (1937): Lively and enjoyable; concentrates on the lives and times of famous mathematicians. Bochner (1966): Informative, unconventional. Klein (1926(b), 1927): Detailed and authoritative. Kline (1972): Arguably, the best of its kind in English; encyclopedic, reliable, insightful, witty; a scholarly masterpiece. Kramer (1970): Like a more elementary version of Kline's book; interesting account of the evolution of determinism in physics (pp. 204-245). Struik (1987): Compact, dependable; includes socioeconomic explanations of mathematical inventions. Also Dictionary of Scientific Biography (ed. Gillispie, 1970s).

3 SUGGESTIONS TO THE READER

A cumulative and alphabetical bibliography is located at the end of the book (see References and Suggested Reading, pp. 1323-1370). The following grouping of textbooks and treatises aims to better orient the reader relative to (some of) the best available international mechanics/dynamics literature, and thus obtain maximum benefit from this work. References in bold, below, happen to be our personal favorites, and have influenced us the most in the writing of this book.

1. For Background (Elementary to Intermediate Level):

Butenin et al. (1985), Coe (1938), Crandall et al. (1968), Easthope (1964), Fox (1967), Hamel (1912, 1st ed.; 1927), Loitsianskii and Lur'e (1983), Milne (1948), Nielsen (1935), Osgood (1937), Papastavridis (EM, in preparation), Parkus (1966), Rosenberg (1977), Smith (1982), Sommerfeld (1964), Spiegel (1967), Stäckel (1905), Suslov (1946), Synge and Griffith (1959), Wells (1967).
2. For Concurrent Reading (Intermediate to Advanced Level):

Boltzmann (1902, 1904), Butenin (1971), Dobronravov (1970, 1976), Gantmacher (1970), Gray (1918), Greenwood (1977, 2000), Hamel (1949), Heil and Kitzka (1984), Heun (1906), Lamb (1943), Lanczos (1970), Lur’e (1968), MacMillan (1927, 1936), Mei (1985, 1987), Neimark and Fufaev (1972), Nordheim (1927), Pars (1965),

Päsler (1968), Pérès (1953), Poliahov et al. (1985), Prange (1935), Rose (1938), Synge (1960), Winkelman (1929, 1930).

3. For Further Reading:

Theoretical Physics, Nonlinear Dynamics, and so on:
Arnold (1989), Arnold et al. (1988), Bakay and Stepanovskii (1981), Birkhoff (1927), Born (1927), Corben and Stehle (1960), Dittrich and Reuter (1994), Dobronravov (1976), Fues (1927), Hagihara (1970), Lichtenberg and Lieberman (1983/1992), McCauley (1997), Mittelstaedt (1970), Nordheim and Fues (1927), Pars (1965), Prange (1935), Santilli (1978, 1980), Straumann (1987), Synge (1960), Tabor (1989), van Vleck (1926), Vujanovic and Jones (1989), Whittaker (1937).

Special Topics (Analytical):
Altmann (1986), Arhangelskii (1977), Chertkov (1960), Korenev (1967, 1979), Koshlyakov (1985), Leimanis (1965), Lobas (1986), Lur'e (1968), Merkin (1974, 1987), Neimark and Fufaev (1972), Novoselov (1969), Timerding (1908).

Applied (Multibody Dynamics/Computational/Numerical, etc.):
Battin (1987), Bremer [1988(a)], Bremer and Pfeiffer (1992), Haug (1992), Hughes (1986), Huston (1990), Junkins and Turner (1986), Magnus (1971), McCarthy (1990), Roberson and Schwertassek (1988), Schiehlen (1986), Shabana (1989), Wittenburg (1977).

4 ABBREVIATIONS, SYMBOLS, NOTATIONS, FORMULAE

These are the customary meanings; but, of course, some, hopefully easily understood, exceptions are possible. The reader is urged always to keep common sense handy!

Numbering of Equations, Examples, and Problems

Chapters are divided into sections; for example, $\S 3.4$ means chapter 3 , section 4. Equations are numbered consecutively within each section. For example, reference to eq. (3.4.2) means equation (2) of chapter 3, section 4. Related equations are indicated, further, by letters; for example, eq. (3.4.2a) follows eq. (3.4.2) and somehow complements or explains it.

In chapters 2-8, examples and problems are placed anywhere within a section, and are numbered consecutively within it; for example, ex. 5.7.2 means the second example of chapter 5 , section 7 and prob. 5.7.3 means the third problem of the same section. Within examples/problems, equations are numbered consecutively alphabetically; for example, reference to (ex. 5.7.3: b) means equation (b) of the third example of chapter 5, section 7. Related equations in examples/problems are followed by numbers; for example, (ex. 5.7.2: k2) is related to or explains (ex. 5.7.2: k).

Abbreviations

AD Analytical dynamics
AM Analytical mechanics
CM Classical mechanics
GP Gauss' principle $(\S 6.4, \S 6.6)$
H Holonomic (coordinate/constraint/ system)
HP Hamilton's principle (ch. 7)
HZP Hertz's principle (§6.7)

JP Jourdain's principle (§6.3)
LP Lagrange's principle (or D'Alembert's principle in Lagrange's form, §3.2)
NP Nonholonomic (coordinate/ constraint/system)
VD Virtual displacement (§2.5)
PVW Principle of virtual work (§3.2)

Chapter 1: Background

Scalars in italics: for example, a, A, ω, Ω
Vectors in boldface italics: for example, $\boldsymbol{a}, \boldsymbol{A}, \boldsymbol{\omega}, \boldsymbol{\Omega}$
Tensors/Dyads in boldface, upper case, italics; Matrices in boldface (always), upper case (usually), roman (usually, but sometimes in italics, like tensors; should be clear from context, or clarified locally)

General symbols

N Number of particles of a system
$(P=1, \ldots, N)$
h Number of holonomic constraints
$(H=1, \ldots, h)$
n Number of Lagrangean (or global) coordinates
$(=3 N-h)$
m Number of Pfaffian (holonomic and/or non-
holonomic) constraints
f Number of (local or global) degrees of freedom
($\equiv n-m$)
k, l, p, r, \ldots General (system) indices $(=1, \ldots, n)$
$I, I^{\prime}, I^{\prime \prime}, \ldots$ Independent variable indices $(=m+1, \ldots, n)$
$D, D^{\prime}, D^{\prime \prime}, \ldots$ Dependent variable indices $(=1, \ldots, m<n)$
$A \Rightarrow B \quad A$ implies, or leads to, $B(A \Leftrightarrow B$, for both
"directions")
\sum Discrete summation; usually, over a pair of
indices (one \sum for each such pair)
$S(\ldots)$ Summation over all the material points (par-
ticles) of a system, for a fixed time; a three-
dimensional material Stieltjes integral, equiva-
lent to Lagrange's famous integration sign
S...
$(\ldots)^{\cdot} \equiv d(\ldots) / d t \quad$ Total/inertial time derivative
$(\ldots)^{\prime}$ The (...) have been subjected to some kind of
transformation
$(\ldots)_{o} \equiv(\ldots) \quad$ Evaluated at some special value: for example,
initial or equilibrium; or with some constraints
enforced in it
$(\ldots)^{*} \equiv(\ldots) \quad$ Expressed as function of the variables t, q, ω
(quasi velocities)
$(\ldots)^{\mathrm{T}} \equiv$ Transpose of matrix (...)
$(\ldots)^{-1} \equiv$ Inverse of matrix (...)
$\delta_{k l}$ Kronecker delta
$\varepsilon_{k r s}$ Permutation symbol (\rightarrow tensor, in rectangular
Cartesian coordinates)

$$
\begin{aligned}
& \boldsymbol{\alpha}^{\prime} / \mathcal{A}^{\prime} \equiv \mathrm{d} \boldsymbol{\Omega}^{\prime} / \mathrm{dt} \quad \text { Angular acceleration vector/tensor (space- } \\
& \text { fixed axes components) } \\
& \boldsymbol{E} \equiv \mathcal{A}+\boldsymbol{\Omega} \cdot \boldsymbol{\Omega} \text { Sometimes referred to as tensor of angular } \\
& \text { acceleration } \\
& G \text { Center of mass of a rigid body } \\
& \text { C Contact point between two bodies } \\
& \text { - Generic/arbitrary body point } \\
& \text { - Generic/arbitrary space point } \\
& \boldsymbol{H}_{\cdot, \text { absolute }} \equiv \boldsymbol{H} . \equiv \boldsymbol{S}(\boldsymbol{r}-\boldsymbol{r} .) \times d m \boldsymbol{v} \quad \text { Absolute angular momentum about } \bullet \\
& \boldsymbol{H}_{\text {.relative }} \equiv \boldsymbol{\boldsymbol { h }} . \equiv \boldsymbol{S}(\boldsymbol{r}-\boldsymbol{r} .) \times d m(\boldsymbol{v}-\boldsymbol{v} .) \quad \text { Relative angular momentum about } \\
& \equiv \boldsymbol{S} \boldsymbol{r}_{/ \cdot} \times d m \boldsymbol{v} / . \\
& \text { M... Moment of a force (or couple) about ... } \\
& \text { I... Moment of inertia tensor about ... } \\
& T \equiv(1 / 2) \boldsymbol{S} \boldsymbol{v} \cdot \boldsymbol{v} d m \text { (Usually inertial) kinetic energy of a system }
\end{aligned}
$$

Chapter 2: Kinematics

$$
\begin{aligned}
q \equiv\left(q_{1}, \ldots, q_{n}\right) & \begin{array}{l}
\text { Holonomic, or global, or Lagrangean, or } \\
\text { system, coordinates; otherwise known as } \\
\text { generalized coordinates }
\end{array} \\
\boldsymbol{r}=\boldsymbol{r}(t, q) & \begin{array}{l}
\text { Fundamental Lagrangean representation of } \\
\text { position of typical system particle } P
\end{array} \\
\boldsymbol{r}(t, q+\delta q)-\boldsymbol{r}(t, q) \approx \delta \boldsymbol{r} \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k} & \text { (First-order) virtual displacement of } P \\
\boldsymbol{e}_{k} \equiv \partial \boldsymbol{r} / \partial q_{k}, \boldsymbol{e}_{0} \equiv \boldsymbol{e}_{n+1} \equiv \partial \boldsymbol{r} / \partial t & \begin{array}{l}
\text { Fundamental holonomic particle and system } \\
\text { vectors (Heun's begleitvektoren) }
\end{array} \\
\boldsymbol{v} \equiv\left(d q_{1} / d t \equiv \dot{q}_{1} \equiv v_{1}, \ldots, d q_{n} / d t \equiv \dot{q}_{n} \equiv v_{n}\right) & \begin{array}{l}
\text { Holonomic, or global, or Lagrangean, or } \\
\text { system, velocities; otherwise known as } \\
\text { generalized velocities }
\end{array} \\
\boldsymbol{v}=\sum \boldsymbol{e}_{k} \dot{q}_{k}+\boldsymbol{e}_{0} & \begin{array}{l}
\text { Particle velocity expressed in holonomic } \\
\text { variables }
\end{array} \\
\boldsymbol{a}=\sum \boldsymbol{e}_{k} \ddot{q}_{k}+\text { No other } \ddot{q}_{k} \text { terms } & \begin{array}{l}
\text { Particle acceleration expressed in holonomic } \\
\text { variables }
\end{array} \\
\partial \boldsymbol{r} / \partial q_{k}=\partial \boldsymbol{v} / \partial \dot{q}_{k}=\partial \boldsymbol{a} / \partial \ddot{q}_{k}=\cdots=\boldsymbol{e}_{k} & \begin{array}{l}
\text { Basic kinematical identity (holonomic } \\
\text { variables) }
\end{array} \\
\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0 & \begin{array}{l}
\text { Pfaffian constraints in velocity form (ans } \\
\text { constraint coefficients, functions of } t \text { and } q ; \\
\text { w: quasi velocities) }
\end{array} \\
d \theta_{D} \equiv \sum a_{D k} d q_{k}+a_{D} d t=0 & \begin{array}{l}
\text { Pfaffian constraints in kinematically admissible, } \\
\text { or possible, form } \theta: \text { quasi coordinates) }
\end{array} \\
\delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 & \begin{array}{l}
\text { Pfaffian constraints in virtual form }
\end{array}
\end{aligned}
$$

General, kinematically admissible, variations of (...):
$d(\ldots) \equiv \sum\left(\partial \ldots / \partial q_{k}\right) d q_{k}+(\partial \ldots / \partial t) d t=\sum\left(\partial \ldots / \partial \theta_{k}\right) d \theta_{k}+\left(\partial \ldots / \partial \theta_{n+1}\right) d t$

Virtual variation of (...):

$$
\delta(\ldots) \equiv \sum\left(\partial \ldots / \partial q_{k}\right) \delta q_{k}=\sum\left(\partial \ldots / \partial \theta_{k}\right) \delta \theta_{k}
$$

Quasi chain rules

$$
\begin{aligned}
& \partial \ldots / \partial \theta_{k} \equiv \sum\left(\partial \ldots / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)=\sum A_{l k}\left(\partial \ldots / \partial q_{l}\right) \\
& \partial \ldots / \partial q_{l} \equiv \sum\left(\partial \ldots / \partial \theta_{k}\right)\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)=\sum a_{k l}\left(\partial \ldots / \partial \theta_{k}\right) \\
& \begin{aligned}
\partial \ldots / \partial \theta_{n+1} & \equiv \sum\left(\partial \ldots / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{n+1}\right)+\partial \ldots / \partial t \\
& =\sum A_{l}\left(\partial \ldots / \partial q_{l}\right)+\partial \ldots / \partial t \equiv \partial \ldots / \partial(t)+\partial \ldots / \partial t
\end{aligned} \\
& \partial \ldots / \partial t=\sum a_{k}\left(\partial \ldots / \partial \theta_{k}\right)+\partial \ldots / \partial \theta_{n+1}=-\sum A_{k}\left(\partial \ldots / \partial q_{k}\right)+\partial \ldots / \partial \theta_{n+1}
\end{aligned}
$$

GENERAL (LOCAL) QUASI-VELOCITY
TRANSFORMATIONS
Velocity form

$$
\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0, \quad \omega_{I} \equiv \sum a_{I k} \dot{q}_{k}+a_{I} \neq 0, \quad \omega_{n+1} \equiv \dot{q}_{n+1}=\dot{t}=1
$$

Kinematically admissible (or possible) form

$$
\begin{aligned}
d \theta_{D} \equiv \sum a_{D k} d q_{k}+a_{D} d t & =0, \quad d \theta_{I} \equiv \sum a_{I k} d q_{k}+a_{I} d t \neq 0 \\
d \theta_{n+1} & \equiv d q_{n+1}=d t \neq 0
\end{aligned}
$$

Virtual form

$$
\delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0, \quad \delta \theta_{I} \equiv \sum a_{I k} \delta q_{k} \neq 0, \quad \delta \theta_{n+1} \equiv \delta q_{n+1}=\delta t=0
$$

HOLONOMIC VELOCITIES EXPRESSED IN TERMS OF

QUASI VELOCITIES $\left[\left(a_{k l}\right)\right.$ and $\left(A_{k l}\right)$ are inverse matrices]
Velocity form

$$
\dot{q}_{k} \equiv v_{k}=\sum A_{k l} \omega_{l}+A_{k}=\sum A_{k I} \omega_{I}+A_{k} \neq 0
$$

Kinematically admissible (or possible) form

$$
d q_{k}=\sum A_{k l} d \theta_{l}+A_{k} d t=\sum A_{k I} d \theta_{I}+A_{k} d t \neq 0 \quad\left(\text { under } d \theta_{D}=0\right)
$$

Virtual form

$$
\delta q_{k}=\sum A_{k l} \delta \theta_{l}=\sum A_{k I} \delta \theta_{I} \neq 0 \quad\left(\text { under } \delta \theta_{D}=0\right)
$$

PARTICLE KINEMATICS IN TERMS OF QUASI VARIABLES

(θ, ω, etc.)
Virtual displacement

$$
\delta \boldsymbol{r} \equiv \sum \boldsymbol{e}_{k} \delta q_{k}=\sum \boldsymbol{\varepsilon}_{k} \delta \theta_{k}=\sum \varepsilon_{I} \delta \theta_{I}
$$

Velocity

$$
\boldsymbol{v}=\sum \omega_{l} \boldsymbol{\varepsilon}_{I}+\boldsymbol{\varepsilon}_{n+1} \equiv \sum \omega_{l} \boldsymbol{\varepsilon}_{I}+\boldsymbol{\varepsilon}_{0}
$$

Acceleration

$$
\begin{aligned}
\boldsymbol{a} & =\sum \dot{\omega}_{k} \varepsilon_{k}+\text { No other } \dot{\omega} \text { terms } \\
& =\sum \dot{\omega}_{I} \varepsilon_{I}+\text { No other } \dot{\omega} \text { terms }
\end{aligned}
$$

Basic kinematical identity [where $\left.f=f(t, q, \dot{q})=f^{*}(t, q, \omega)=f^{*}\right]$

$$
\partial \boldsymbol{r} / \partial \theta_{k}=\partial \boldsymbol{v}^{*} / \partial \omega_{k}=\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}=\cdots=\boldsymbol{\varepsilon}_{k}
$$

Transformation relations between the holonomic and nonholonomic bases $\boldsymbol{e}_{\ldots, \ldots}, \varepsilon_{\ldots}$

$$
\begin{aligned}
& \boldsymbol{\varepsilon}_{k}=\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \boldsymbol{e}_{l}=\sum A_{l k} \boldsymbol{e}_{l} \\
& \boldsymbol{\varepsilon}_{n+1} \equiv \sum \boldsymbol{\varepsilon}_{0}=\sum A_{l} \boldsymbol{e}_{l}+\boldsymbol{e}_{n+1}=-\sum a_{k} \boldsymbol{\varepsilon}_{k}+\boldsymbol{e}_{n+1} \\
& \boldsymbol{e}_{l}=\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \boldsymbol{\varepsilon}_{k}=\sum a_{k l} \boldsymbol{\varepsilon}_{k} \\
& \boldsymbol{e}_{n+1} \equiv \boldsymbol{e}_{0} \equiv \boldsymbol{e}_{t}=\sum a_{k} \boldsymbol{\varepsilon}_{k}+\boldsymbol{\varepsilon}_{n+1}=-\sum A_{l} \boldsymbol{e}_{l}+\boldsymbol{\varepsilon}_{n+1}
\end{aligned}
$$

FROM PARTICLE TO SYSTEM VECTORS

(i.e., vectors characterizing, or expressing, system variables)

$$
\begin{array}{rlrl}
\boldsymbol{S} \text { (particle vector }) \cdot \boldsymbol{e}_{k} & =(\text { system vector })_{k} & & \text { (holonomic components) } \\
\boldsymbol{S} \text { (particle vector) } \cdot \boldsymbol{\varepsilon}_{k}=(\text { system vector })_{k} & & \text { (nonholonomic components) }
\end{array}
$$

SPECIAL FORMS OF PFAFFIAN CONSTRAINTS

Chaplygin

$$
\begin{aligned}
\omega_{D} & \equiv \dot{q}_{D}-\sum b_{D I} \dot{q}_{I}=0 ; \quad b_{D I}: \text { functions of } q_{I} \equiv\left(q_{m+1}, \ldots, q_{n}\right) \\
\omega_{I} & \equiv \dot{q}_{I} \neq 0
\end{aligned}
$$

Voronets

$$
\begin{aligned}
& \omega_{D} \equiv \dot{q}_{D}-\sum b_{D I} \dot{q}_{I}-b_{D}=0 ; \quad b_{D I}, b_{D}: \text { functions of } t \text { and all } q \mathrm{~s} \\
& \omega_{I} \equiv \dot{q}_{I} \neq 0 \\
& \quad\left[\Rightarrow \dot{q}_{D}=\sum b_{D I} \omega_{I}+b_{D}, \quad \dot{q}_{I} \equiv \omega_{I}\right]
\end{aligned}
$$

Corresponding particle virtual displacement

$$
\delta \boldsymbol{r} \equiv \sum \boldsymbol{e}_{k} \delta q_{k}=\sum \boldsymbol{\beta}_{I} \delta q_{I}
$$

Corresponding particle velocity

$$
\boldsymbol{v}=\sum \dot{q}_{I} \boldsymbol{\beta}_{I}+\boldsymbol{\beta}_{n+1} \equiv \boldsymbol{v}_{o}
$$

HAMEL COEFFICIENTS

$$
\begin{aligned}
& \gamma_{r s}^{k}=-\gamma_{s r}^{k}= \sum \sum\left(\partial a_{k b} / \partial q_{c}-\partial a_{k c} / \partial q_{b}\right) A_{b r} A_{c s} \\
&= \sum \sum a_{k b}\left[A_{c r}\left(\partial A_{b s} / \partial q_{c}\right)-A_{c s}\left(\partial A_{b r} / \partial q_{c}\right)\right] \\
&= \sum \sum\left(A_{b r} A_{c s}-A_{c r} A_{b s}\right)\left(\partial a_{k b} / \partial q_{c}\right) \\
& \gamma_{r, n+1}^{k}=-\gamma_{n+1, r}^{k} \equiv \gamma_{r}^{k}=\sum \sum\left(\partial a_{k b} / \partial q_{c}-\partial a_{k c} / \partial q_{b}\right) A_{b r} A_{c} \\
&+\sum\left(\partial a_{k b} / \partial t-\partial a_{k} / \partial q_{b}\right) A_{b r} \\
& \gamma^{n+1}=0, \quad \gamma_{k l}^{n+1}{ }_{k, n+1}=-\gamma^{n+1}{ }_{n+1, k}=0, \quad \gamma^{n+1}{ }_{n+1, n+1}=0
\end{aligned}
$$

TRANSITIVITY EQUATIONS

$$
\begin{aligned}
& \left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\sum a_{k l}\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]+\sum \sum \gamma_{b s}^{k} \omega_{s} \delta \theta_{b}+\sum \gamma_{b}^{k} \delta \theta_{b} \\
& \left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)=\sum A_{k l}\left\{\left[\left(\delta \theta_{l}\right)^{\cdot}-\delta \omega_{l}\right]-\sum \sum \gamma_{b s}^{l} \omega_{s} \delta \theta_{b}-\sum \gamma_{b}^{l} \delta \theta_{b}\right\} \\
& \left(\delta \theta_{n+1}\right)^{\cdot}-\delta \omega_{n+1} \equiv\left(\delta q_{n+1}\right)^{\cdot}-\delta\left(\dot{q}_{n+1}\right) \equiv(\delta t)^{\cdot}-\delta(\dot{t})=0
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
& d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)=\sum a_{k l}\left[d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)\right]+\sum \sum \gamma_{b s}^{k} d \theta_{s} \delta \theta_{b}+\sum \gamma_{b}^{k} d t \delta \theta_{b} \\
& d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)=\sum A_{k l}\left\{\left[d\left(\delta \theta_{l}\right)-\delta\left(d \theta_{l}\right)\right]-\sum \sum \gamma_{b s}^{l} d \theta_{s} \delta \theta_{b}-\sum \gamma_{b}^{l} d t \delta \theta_{b}\right\} \\
& d\left(\delta \theta_{n+1}\right)-\delta\left(d \theta_{n+1}\right)=d(\delta t)-\delta(d t)=d(0)-\delta(d t)=0-0=0
\end{aligned}
$$

or, assuming (Hamel viewpoint)

$$
\begin{aligned}
& \left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right) \quad \text { or } \quad d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right) \\
& \left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\sum \sum \gamma_{b s}^{k} \omega_{s} \delta \theta_{b}+\sum \gamma_{b}^{k} \delta \theta_{b} \equiv \sum h_{b}^{k} \delta \theta_{b} \\
& \begin{aligned}
d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right) & =\sum \sum \gamma^{k}{ }_{b s} d \theta_{s} \delta \theta_{b}+\sum \gamma_{b}^{k} d t \delta \theta_{b} \\
& =\sum \sum^{\prime} \gamma_{b s}^{k}\left(d \theta_{s} \delta \theta_{b}-\delta \theta_{s} d \theta_{b}\right)+\sum \gamma_{b}^{k} d t \delta \theta_{b}
\end{aligned}
\end{aligned}
$$

(where $\sum \sum$ ' means that the summation extends over b and s only once; say, $s<b$) Generally [with $o, \bullet=1, \ldots, n ; \delta \theta_{n+1} \equiv \delta t=0$]

$$
d\left(\delta \theta_{*}\right)-\delta\left(d \theta_{*}\right)=\sum \sum \gamma^{*}{ }_{o} d \theta_{o} \delta \theta_{\cdot}+\sum \gamma^{*} . d t \delta \theta .
$$

FROBENIUS' THEOREM

(Necessary and sufficient conditions for holonomicity $=$ complete integrability of a system of m Pfaffian constraints in the $n+1$ variables $q_{1}, \ldots, q_{n} ; q_{n+1}$)

$$
\gamma_{I I^{\prime}}^{D}=0, \quad \gamma_{I, n+1}^{D} \equiv \gamma_{I}^{D}=0 \quad\left(D=1, \ldots, m ; I, I^{\prime}=m+1, \ldots, n\right)
$$

Chapter 3: Kinetics

BASIC QUANTITIES

$$
\begin{array}{ll}
T \equiv(1 / 2) \boldsymbol{S} \boldsymbol{v} \cdot \boldsymbol{v} d m & \text { (Usually inertial) Kinetic Energy of system } \\
S \equiv(1 / 2) \boldsymbol{S} \boldsymbol{a} \cdot \boldsymbol{a} d m & \text { (Usually inertial) Gibbs-Appell function of system, } \\
& \text { or simply Appellian }
\end{array}
$$

NOTATION

$$
f(t, q, \dot{q})=f\left[t, q, \dot{q}_{D}(t, q, \omega)\right] \equiv f^{*}(t, q, \omega) \equiv f^{*} \quad[\text { arbitrary function }]
$$

for example,

$$
\begin{aligned}
T(t, q, \dot{q})= & T\left[t, q, \dot{q}_{D}(t, q, \omega)\right] \equiv T^{*}(t, q, \omega) \equiv T^{*} \\
& \Rightarrow T^{*}\left(t, q, \omega_{D}=0, \omega_{I}\right) \equiv T_{o}^{*}\left(t, q, \omega_{I}\right) \equiv T_{o}^{*} \\
T(t, q, \dot{q})= & \left.T\left[t, q, \dot{q}_{D}\left(t, q, \dot{q}_{I}\right), \dot{q}_{I}\right] \equiv T_{o}\left(t, q, \dot{q}_{I}\right) \equiv T_{o} \quad \text { (and similarly for } S\right)
\end{aligned}
$$

LAGRANGE'S PRINCIPLE

$$
\delta^{\prime} W_{R} \geq 0 \quad \Rightarrow \quad \delta I \geq \delta^{\prime} W
$$

(for unilateral constraints; for bilateral constraints, \geq is replaced by $=$)
Particle (or raw) forms

$$
\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}, \quad \delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}, \quad \delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}
$$

Holonomic variable forms

$$
\begin{aligned}
& \delta^{\prime} W_{R}=\sum R_{k} \delta q_{k}, \quad R_{k} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k} \\
& \delta^{\prime} W=\sum Q_{k} \delta q_{k}, \quad Q_{k} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k} \\
& \delta I=\sum\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}\right] \delta q_{k}=\sum\left(\partial S / \partial \ddot{q}_{k}\right) \delta q_{k} \equiv \sum E_{k} \delta q_{k}
\end{aligned}
$$

Nonholonomic variable forms

$$
\begin{array}{ll}
\delta^{\prime} W_{R}=\sum \Lambda_{k} \delta \theta_{k}=\sum \Lambda_{I} \delta \theta_{I}, & \Lambda_{k} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{k}, \\
\delta^{\prime} W=\sum \Theta_{k} \delta \theta_{k}, & \Theta_{k} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{k}, \\
\delta I=\sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\Gamma_{k}\right] \delta \theta_{k}=\sum\left(\partial S^{*} / \partial \dot{\omega}_{k}\right) \delta \theta_{k} \equiv \sum I_{k} \delta \theta_{k}
\end{array}
$$

INERTIAL "FORCES" IN HOLONOMIC VARIABLES

$$
\begin{aligned}
E_{k} & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k} & & \\
& =\left(\partial T / \partial \dot{q}_{k} \cdot-\partial T / \partial q_{k}\right. & & \text { (Lagrangean form) } \\
& =\partial S / \partial \ddot{q}_{k} & & \text { (Appellian form) } \\
& =\partial \dot{T} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right) \equiv N_{k}(T) \equiv N_{k} & & \text { (Nielsen form; see chap. 5) }
\end{aligned}
$$

INERTIAL "FORCES" IN NONHOLONOMIC VARIABLES

$$
\begin{aligned}
I_{k} & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \varepsilon_{k} & & \\
& =\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\Gamma_{k} \equiv E_{k}^{*}\left(T^{*}\right)-\Gamma_{k} & & (\text { Volterra-Hamel form }) \\
& =\partial S^{*} / \partial \dot{\omega}_{k} & & (\text { Gibbs-Appell form }) \\
& =\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) E_{l}=\sum A_{l k} E_{l} & & (\text { Maggi form })
\end{aligned}
$$

Nonholonomic deviation

$$
\begin{aligned}
\Gamma_{k} & \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left[\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)^{*}-\partial \boldsymbol{v}^{*} / \partial \theta_{k}\right] \\
& \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot E_{k}^{*}\left(\boldsymbol{v}^{*}\right) \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot \gamma_{k} \quad \text { (particle/raw form) } \\
& =-\sum \sum \gamma_{k s}^{l}\left(\partial T^{*} / \partial \omega_{l}\right) \omega_{s}-\sum \gamma_{k}^{l}\left(\partial T^{*} / \partial \omega_{l}\right) \\
& =-\sum h_{k}^{l}\left(\partial T^{*} / \partial \omega_{l}\right) \quad \quad\left[h_{k}^{l} \equiv \sum \gamma_{k s}^{l} \omega_{s}+\gamma_{k}^{l}\right]
\end{aligned}
$$

TRANSFORMATION EQUATIONS

$$
\begin{aligned}
R_{l} & =\sum a_{k l} \Lambda_{k} \Leftrightarrow \Lambda_{k}=\sum A_{l k} R_{l} \\
Q_{l} & =\sum a_{k l} \Theta_{k} \Leftrightarrow \Theta_{k}=\sum A_{l k} Q_{l} \\
E_{l} & =\sum a_{k l} I_{k} \Leftrightarrow I_{k}=\sum A_{l k} E_{l}
\end{aligned}
$$

THE CENTRAL EQUATION

(Lagrange-Heun-Hamel Zentralgleichung)
First Form

$$
\delta T+\delta^{\prime} W+\delta D=(\delta P)^{.}
$$

Second Form

$$
\sum \dot{P}_{k} \delta \theta_{k}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k}
$$

where

$$
\begin{aligned}
& \delta T=\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{v}=\sum\left[\left(\partial T / \partial q_{k}\right) \delta q_{k}+\left(\partial T / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right] \\
&=\sum\left[\left(\partial T^{*} / \partial q_{k}\right) \delta q_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
& \equiv \sum\left[\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right]=\delta T^{*} \\
& \delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\sum Q_{k} \delta q_{k}=\sum \Theta_{k} \delta \theta_{k} \\
& \delta D \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot {\left[(\delta \boldsymbol{r})^{\cdot}-\delta \boldsymbol{v}\right] } \\
&=\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum h_{k}^{l}\left(\partial T^{*} / \partial \omega_{l}\right) \delta \theta_{k} \\
& \delta P=\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}=\sum p_{k} \delta q_{k}=\sum P_{k} \delta \theta_{k} \\
& p_{k} \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}=\partial T / \partial \nu_{k} \quad \quad(\text { holonomic momentum) } \\
& P_{k} \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot \varepsilon_{k}=\partial T^{*} / \partial \omega_{k} \quad \text { (nonholonomic momentum) } \\
& p_{l}=\sum a_{k l} P_{k} \Leftrightarrow P_{k}=\sum A_{l k} p_{l} \quad \text { (transformation formulae) }
\end{aligned}
$$

EQUATIONS OF MOTION
COUPLED
Routh-Voss (adjoining of constraints via multipliers)

$$
E_{k}=Q_{k}+R_{k} \quad \text { (multipliers; holonomic variables) }
$$

UNCOUPLED

Maggi (projections)
Kinetostatic: $\sum A_{D k} E_{D}=\sum A_{D k} Q_{D}+\Lambda_{D} \quad$ (multipliers; holonomic variables)
Kinetic: $\quad \sum A_{l k} E_{I}=\sum A_{I k} Q_{I} \quad$ (no multipliers; holonomic variables)
Hamel (embedding of constraints via quasi variables)
Kinetostatic: $E_{D}{ }^{*}\left(T^{*}\right)-\Gamma_{D}=\Theta_{D}+\Lambda_{D}$ (multipliers; nonholonomic variables)
Kinetic: $\quad E_{I}^{*}\left(T^{*}\right)-\Gamma_{I}=\Theta_{I} \quad$ (no multipliers; nonholonomic variables)

SPECIAL FORMS (constraints of form $\dot{q}_{D}=\sum b_{D I} \dot{q}_{I}+b_{D} ; b_{D I}, b_{D}$ functions of t, q)
Maggi \rightarrow Hadamard

$$
\begin{aligned}
& E_{D}=Q_{D}+\lambda_{D} \quad(\text { kinetostatic }) \\
& \Rightarrow E_{I}+\sum Q_{I}-\sum b_{D I} E_{D} \lambda_{D} \\
& Q_{I}+\sum b_{D I} Q_{D} \equiv Q_{I, o} \equiv Q_{I o} \quad \text { (kinetic) }
\end{aligned}
$$

Hamel \rightarrow Voronets

$$
\begin{aligned}
& {\left[T_{o}=T_{o}\left(t, q, \dot{q}_{I}\right), \quad \dot{q}_{D}=\sum b_{D I} \dot{q}_{I}+b_{D}\right]} \\
& \left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum b_{D I}\left(\partial T_{o} / \partial q_{D}\right) \\
& \quad-\sum \sum w_{I I^{\prime}}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}}-\sum w_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o}=Q_{I}+\sum b_{D I} Q_{D}, \\
& \quad-\sum b_{I I^{\prime}}^{D} \equiv\left[\partial b_{D I} / \partial q_{I^{\prime}}+\sum b_{D^{\prime} I}\left(\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right)\right]-\left[\partial b_{D I} / \partial q_{I^{\prime}}+\sum b_{D^{\prime} I^{\prime}}\left(\partial b_{D I} / \partial q_{D^{\prime}}\right)\right] \\
& w_{I}^{D} \equiv w_{I, n+1}^{D} \equiv\left[\partial b_{D} / \partial q_{I}+\sum b_{D^{\prime} I}\left(\partial b_{D} / \partial q_{D^{\prime}}\right)\right]-\left[\partial b_{D I} / \partial t+\sum b_{D^{\prime}}\left(\partial b_{D I} / \partial q_{D^{\prime}}\right)\right]
\end{aligned}
$$

Voronets \rightarrow Chaplygin

$$
\begin{aligned}
& {\left[T_{o}=T_{o}\left(q_{I}, \dot{q}_{I}\right), \quad \dot{q}_{D}=\sum b_{D I}\left(q_{m+1}, \ldots, q_{n}\right) \dot{q}_{I} ; \quad \text { i.e., } b_{D}=0\right]} \\
& \left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I} \\
& \quad-\sum \sum t_{I I^{\prime}}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}}=Q_{I}+\sum b_{D I} Q_{D} \\
& t^{D}{ }_{I I^{\prime}} \equiv \partial b_{D I} / \partial q_{I^{\prime}}-\partial b_{D I^{\prime}} / \partial q_{I}
\end{aligned}
$$

POWER (OR ENERGY RATE) THEOREMS

Holonomic variables

$$
\begin{aligned}
d h / d t & =-\partial L / \partial t+\sum Q_{k, \text { nonpotential }} \dot{q}_{k}-\sum \lambda_{D} a_{D}, \\
h & \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L=T_{2}+\left(V_{0}-T_{0}\right), \quad L \equiv T-V \\
d E / d t & =-\partial L / \partial t+d\left(T_{1}+2 T_{0}\right) / d t+\sum Q_{k, \text { nonpotential }} \dot{q}_{k}-\sum \lambda_{D} a_{D} \\
E & \equiv T+V_{0}, \quad L=T-V=T-\left(V_{0}+V_{1}\right), \quad h \equiv E-\left(T_{1}+2 T_{0}\right)
\end{aligned}
$$

Nonholonomic variables

$$
\begin{aligned}
d h^{*} / d t & =-\partial L^{*} / \partial \theta_{n+1}+\sum \Theta_{I, \text { nonpotential }} \omega_{I}-R \\
& h^{*} \equiv \sum\left(\partial L^{*} / \partial \omega_{I}\right) \omega_{I}-L^{*}=T_{2}^{*}+\left(V_{0}-T_{0}^{*}\right) \\
& \partial L^{*} / \partial \theta_{n+1} \equiv \partial L^{*} / \partial t+\sum A_{k}\left(\partial L^{*} / \partial q_{k}\right) \\
& R \equiv \sum \sum \gamma_{I}^{r}\left(\partial L^{*} / \partial \omega_{r}\right) \omega_{I} \quad \text { (Rheonomic nonholonomic power) }
\end{aligned}
$$

EXPLICIT FORMS OF THE EQUATIONS OF MOTION

Lagrangean equations: with

$$
\begin{aligned}
& T=T_{2}+T_{1}+T_{0} ; \quad 2 T_{2} \equiv \sum \sum M_{k r} \dot{q}_{r} \dot{q}_{k}, \quad T_{1} \equiv \sum M_{r} \dot{q}_{r}, \quad 2 T_{0} \equiv M_{0} \\
& M_{k l}=M_{l k}, \quad M_{k, n+1}=M_{n+1, k} \equiv M_{k 0}=M_{0 k} \equiv M_{k}
\end{aligned}
$$

$$
M_{n+1, n+1} \equiv M_{00} \equiv M_{0}: \text { Inertia coefficients }
$$

$$
\begin{aligned}
& 2 \Gamma_{k, r s} \equiv 2 \Gamma_{k, s r} \equiv \partial M_{k r} / \partial q_{s}+\partial M_{k s} / \partial q_{r}-\partial M_{r s} / \partial q_{k}: 1 \text { st kind Christoffels, } \\
& G_{k} \equiv \sum g_{k r} \dot{q}_{r} \equiv \sum\left(\partial M_{r} / \partial q_{k}-\partial M_{k} / \partial q_{r}\right) \dot{q}_{r}: \text { Gyroscopic "force", } \\
& Q_{k}=Q_{k, \text { nonpotential }}+\left(\partial V / \partial \dot{q}_{k}\right)^{*}-\partial V / \partial q_{k}, \\
& V=\sum V_{k}(t, q) \dot{q}_{k}+V_{0}(t, q) \equiv V_{1}(t, q, \dot{q})+V_{0}(t, q): \text { Generalized potential, }
\end{aligned}
$$

the Lagrangean-type equations, say $E_{k}=Q_{k}$, assume the form

$$
\begin{aligned}
& E_{k}\left(T_{2}\right)+E_{k}\left(T_{1}\right)+E_{k}\left(T_{0}\right)=Q_{k}, \\
& E_{k}\left(T_{2}\right)=\sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}+\sum\left(\partial M_{k r} / \partial t\right) \dot{q}_{r}, \\
& E_{k}\left(T_{1}\right)=\partial M_{k} / \partial t-G_{k}, \\
& E_{k}\left(T_{0}\right)=-(1 / 2)\left(\partial M_{0} / \partial q_{k}\right) .
\end{aligned}
$$

Hamel equations (stationary case, no constraints), with

$$
\begin{aligned}
& 2 T^{*}=2 T^{*}{ }_{2}=\sum \sum M_{k r}^{*} \omega_{r} \omega_{k}, \\
& 2 \Gamma^{*}{ }_{k, r s} \equiv 2 \Gamma^{*}{ }_{k, s r} \equiv \partial M_{k r}^{*} / \partial \theta_{s}+\partial M^{*}{ }_{k s} / \partial \theta_{r}-\partial M_{r s}^{*} / \partial \theta_{k} \\
& \Lambda_{k, l p} \equiv \Gamma^{*}{ }_{k, l p}+\sum \gamma_{k l}^{r} M_{r p}^{*} \quad(\text { "nonholonomic Christoffels") }
\end{aligned}
$$

Hamel-type equations, say $I_{k}=\Theta_{k}$, assume the form

$$
\sum M_{k l}^{*} \dot{\omega}_{l}+\sum \sum \Lambda_{k, l p} \omega_{l} \omega_{p}=\Theta_{k} .
$$

APPELLIAN FUNCTION

Holonomic variables

$$
\begin{aligned}
2 S= & \sum M_{k r} \ddot{q}_{r} \ddot{q}_{k}+2 \sum \sum \sum \Gamma_{k, l p} \ddot{q}_{k} \dot{q}_{l} \dot{q}_{p} \\
& +4 \sum \sum \Gamma_{k, l, n+1} \ddot{q}_{k} \dot{q}_{l}+2 \sum \Gamma_{k, n+1, n+1} \ddot{q}_{k}
\end{aligned}
$$

Nonholonomic variables (stationary case)

$$
2 S^{*}=\sum \sum M_{k r}^{*} \dot{\omega}_{k} \dot{\omega}_{r}+2 \sum \sum \sum \Lambda_{k, l p} \dot{\omega}_{k} \omega_{l} \omega_{p}
$$

LAGRANGEAN TREATMENT OF THE RIGID BODY

Kinetic energy

$$
\begin{aligned}
& T=T_{\text {translation }}+T_{\text {rotation }}+T_{\text {coupling }} \\
& 2 T_{\text {translation }}=m \nu_{\star}^{2} \quad(\bullet \text { arbitrary body point; } m \text { : mass of body }) \\
& 2 T_{\text {rotation }}=\omega \cdot \boldsymbol{S} d m\left(\boldsymbol{r}_{\bullet} \times \boldsymbol{v}_{/ \bullet}\right) \\
& =\omega \cdot \boldsymbol{S} d m\left[\boldsymbol{r}_{/ \bullet} \times\left(\omega \times \boldsymbol{r}_{/ \bullet}\right)\right] \equiv \omega \cdot \boldsymbol{h}_{\bullet}=\omega \cdot I_{\bullet} \cdot \omega \\
& T_{\text {coupling }}=\omega \cdot \boldsymbol{S} d m\left(\boldsymbol{r}_{/ \bullet} \times \boldsymbol{v}_{\star}\right)=m \boldsymbol{v}_{\bullet} \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \star}\right)=m \boldsymbol{v}_{\star} \cdot \boldsymbol{v}_{G / \star}
\end{aligned}
$$

Momentum vectors

$$
\begin{aligned}
& \delta P=\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}=\boldsymbol{p} \cdot \delta \boldsymbol{r}_{\bullet}+\boldsymbol{H} \bullet \delta \boldsymbol{\theta} \\
& \boldsymbol{p} \equiv \boldsymbol{S} d m \boldsymbol{v}=m \boldsymbol{v}_{G}: \text { linear momentum of body } \\
& \boldsymbol{H}_{\bullet} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet} \times(d m \boldsymbol{v})=\boldsymbol{h}_{\bullet}+\boldsymbol{r}_{G /} \times\left(m \boldsymbol{v}_{\bullet}\right): \text { : absolute angular momentum of body } \\
& \boldsymbol{H}_{O} \equiv \boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{v})=\boldsymbol{H}_{\bullet}+\boldsymbol{r}_{\bullet / O} \times \boldsymbol{p} \quad(O: \text { fixed point })
\end{aligned}
$$

Kinetic energy in terms of the momentum vectors

$$
2 T=\boldsymbol{p} \cdot \boldsymbol{v}_{\star}+\boldsymbol{H}_{\star} \cdot \boldsymbol{\omega}, \quad \boldsymbol{p}=\partial T / \partial \boldsymbol{v}_{\star}, \quad \boldsymbol{H}_{\star}=\partial T / \partial \omega
$$

Kinematico-inertial (KI) acceleration vectors

$$
\begin{aligned}
\delta I= & \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{I} \cdot \delta \boldsymbol{r}_{\bullet}+\boldsymbol{A}_{\star} \cdot \delta \boldsymbol{\theta} \\
& \boldsymbol{I} \equiv \boldsymbol{S} d m \boldsymbol{a}=m \boldsymbol{a}_{G}: \text { linear KI acceleration of body } \\
& A_{\bullet} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet} \times(d m \boldsymbol{a}): \text { angular KI acceleration of body about }
\end{aligned}
$$

Eulerian principles in Lagrangean form
Linear momentum ($\boldsymbol{\Omega}$: vector of angular velocity of moving axes)

$$
\boldsymbol{I}=d \boldsymbol{p} / d t=\partial \boldsymbol{p} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{p}=\partial / \partial t\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right)+\boldsymbol{\Omega} \times\left(\partial T / \partial \boldsymbol{v}_{\boldsymbol{*}}\right)
$$

Angular momentum

$$
\begin{aligned}
\boldsymbol{A}_{\boldsymbol{\bullet}} & =d \boldsymbol{H}_{\bullet} / d t+\boldsymbol{v}_{\bullet} \times \boldsymbol{p} \\
& =\left(\partial \boldsymbol{H}_{\bullet} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{H}_{\bullet}\right)+\boldsymbol{v}_{\bullet} \times \boldsymbol{p} \\
& =\partial / \partial t(\partial T / \partial \omega)+\boldsymbol{\Omega} \times(\partial T / \partial \omega)+v_{\bullet} \times\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right)
\end{aligned}
$$

(also $\boldsymbol{A} .=d \boldsymbol{H} . / d t+\boldsymbol{v} . \times \boldsymbol{p} ; \quad \bullet$ any point)
APPELLIAN FUNCTION (to within acceleration-proportional terms)

$$
\begin{aligned}
& 2 S= m a_{\star}^{2}+2 m \boldsymbol{r}_{G / \bullet} \cdot(\boldsymbol{a} \times \boldsymbol{\alpha})+2 m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right) \cdot(\boldsymbol{a} \bullet \times \boldsymbol{\omega}) \\
&+\boldsymbol{\alpha} \cdot I_{\star} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot I_{\star} \cdot \boldsymbol{\omega} \\
&=m a_{G}^{2}+\boldsymbol{\alpha} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \omega) \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\omega}
\end{aligned}
$$

(Appellian counterpart of König's theorem)

RELATIVE MOTION (I: inertial origin; O: moving origin)

Positions

$$
\boldsymbol{r}_{I}=\boldsymbol{r}_{O}(t)+\boldsymbol{r}\left(q_{1}, \ldots, q_{n}\right) \quad \text { (motion of } O \text { known, } q: \text { noninertial coordinates) }
$$

Velocities

$$
\boldsymbol{v}=\boldsymbol{v}_{O}+\boldsymbol{v}_{\text {relative }}+\boldsymbol{\Omega} \times \boldsymbol{r}, \quad \boldsymbol{v}_{\text {relative }} \equiv \partial \boldsymbol{r} / \partial t=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \dot{q}_{k}
$$

Virtual displacements

$$
\delta \boldsymbol{r}_{I}=\delta \boldsymbol{r}_{O}+\delta \boldsymbol{r}=\delta \boldsymbol{r}_{O}+\delta_{\mathrm{rel}} \boldsymbol{r}+\delta \boldsymbol{\Theta} \times \boldsymbol{r} \quad(\boldsymbol{\Omega} \equiv d \boldsymbol{\Theta} / d t \text { : frame angular velocity })
$$

Kinetic energy

$$
\begin{array}{lc}
T=T_{\text {transport }}+T_{\text {relative }}+T_{\text {coupling }} & \\
2 T_{\text {transport }}=m v_{O}^{2}+2 m \boldsymbol{v}_{O} \cdot\left(\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right)+\boldsymbol{\Omega} \cdot \boldsymbol{I}_{O} \cdot \boldsymbol{\Omega} \equiv 2 T_{0} & {\left[\sim \dot{q}^{0}\right]} \\
2 T_{\text {relative }}=\boldsymbol{S} d m \boldsymbol{v}_{\text {rel've }} \cdot \boldsymbol{v}_{\text {rel've }} \equiv 2 T_{2} & {\left[\sim \dot{q}^{2}\right]} \\
T_{\text {coupling }}=\boldsymbol{p}_{\text {rel've }} \cdot \boldsymbol{v}_{O}+\boldsymbol{H}_{O, \text { rel've }} \cdot \boldsymbol{\Omega} \equiv T_{1} & {\left[\sim \dot{q}^{1}\right]} \\
\boldsymbol{p}_{\text {rel've }} \equiv \boldsymbol{S} d m \boldsymbol{v}_{\text {rel've }}=m\left(\partial \boldsymbol{r}_{G} / \partial t\right)=\sum\left(\boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right) \dot{q}_{k} &
\end{array}
$$

(noninertial linear momentum)

$$
\boldsymbol{H}_{O, \text { rel've }} \equiv \boldsymbol{S} \boldsymbol{r} \times(\partial \boldsymbol{r} / \partial t)=\sum\left(\boldsymbol{S} d m \boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right) \dot{q}_{k}
$$

(noninertial absolute angular momentum)

LAGRANGEAN TREATMENT OF RELATIVE MOTION

[equations of carried body; say, $E_{k}(T)=Q_{k}$]

Chapter 4: Impulsive Motion
Fundamental impulsive variational equation (impulsive principle of Lagrange-LIP):

$$
\widehat{\delta I}=\widehat{\delta^{\prime} W}
$$

$$
\begin{aligned}
& E_{k}\left(T_{2}\right)=Q_{k}+Q_{k, \text { transport transl'n }} \\
& +Q_{k, \text { transport rotat'n }}+Q_{k, \text { transport rotat'n centrifugal }}+Q_{k, \text { Coriolis }} \text {, } \\
& Q_{k, \text { transport trans'’n }} \equiv-\partial V_{\text {translation }} / \partial q_{k}, \quad V_{\text {translation }} \equiv m \boldsymbol{a}_{O} \cdot \boldsymbol{r}_{G} ; \\
& Q_{k, \text { transport rotat'n }} \equiv-(d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel've }} / \partial q_{k}\right) \\
& =-(d \boldsymbol{\Omega} / d t) \cdot\left(\boldsymbol{S} d m \boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right) ; \\
& Q_{k, \text { transport rotat'n centrifugal }} \\
& 2 V_{\text {centrifugal }} \equiv-\boldsymbol{S} d m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2}=-\boldsymbol{\Omega} \cdot \boldsymbol{I}_{O} \cdot \boldsymbol{\Omega} ; \\
& Q_{k, \text { Coriolis }} \equiv-2 \boldsymbol{S} \boldsymbol{\Omega} \times\left(d m \boldsymbol{v}_{\text {rel' }}{ }^{\prime}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)=\sum g_{k l} \dot{\boldsymbol{q}}_{l}, \\
& g_{k l} \equiv \boldsymbol{g}_{k l} \cdot \boldsymbol{\Omega}, \quad \boldsymbol{g}_{k l} \equiv 2 \boldsymbol{S} d m\left[\left(\partial \boldsymbol{r} / \partial q_{k}\right) \times\left(\partial \boldsymbol{r} / \partial q_{l}\right)\right]
\end{aligned}
$$

where

$$
\widehat{\delta I} \equiv \widehat{\boldsymbol{S}} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} \Delta(d m \boldsymbol{v}) \cdot \delta \boldsymbol{r}
$$

(first-order) virtual work of impulsive momenta, and

$$
\widehat{\delta^{\prime} W} \equiv \widehat{\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta \boldsymbol{r}:
$$

(first-order) virtual work of impulsive impressed " forces."

$$
\begin{aligned}
& \widehat{\delta^{\prime} W_{R}}=\boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \delta \boldsymbol{r}=\sum\left(\boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \equiv \sum \hat{R}_{k} \delta q_{k}, \\
& \widehat{\delta^{\prime} W}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta \boldsymbol{r}=\sum\left(\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \equiv \sum \hat{Q}_{k} \delta q_{k}, \\
& \widehat{\delta I}=\boldsymbol{S} \Delta(d m \boldsymbol{v}) \cdot \delta \boldsymbol{r}=\sum\left(\boldsymbol{S} d m \Delta \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \\
& \quad=\sum \Delta\left(\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \equiv \sum \Delta p_{k} \delta q_{k},
\end{aligned}
$$

and

$$
\begin{aligned}
& p_{k} \equiv \boldsymbol{S}\left(d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right) \equiv \partial T / \partial \dot{q}_{k} \\
& \Rightarrow \Delta p_{k}=\Delta\left(\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right)=\boldsymbol{S}\left[\Delta(d m \boldsymbol{v}) \cdot \boldsymbol{e}_{k}\right]:
\end{aligned}
$$

[holonomic (k)th component] impulsive system momentum change,

$$
\hat{Q}_{k} \equiv \widehat{\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{e}_{k}:
$$

[holonomic (k)th component] impulsive system impressed force; or, simply, impressed system impulse,

$$
\hat{R}_{k} \equiv \widehat{\boldsymbol{S d R} \cdot \boldsymbol{e}_{k}}=\widehat{S} \widehat{\boldsymbol{d} \boldsymbol{R} \cdot \boldsymbol{e}_{k}}:
$$

[holonomic (k) th component] impulsive system constraint reaction force, we finally obtain LIP in holonomic system variables:

$$
\sum \hat{R}_{k} \delta q_{k}=0, \quad \sum \Delta\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}=\sum \hat{Q}_{k} \delta q_{k}
$$

and similarly in quasi variables.
Energetic theorem

$$
\Delta T \equiv T^{+}-T^{-}=W_{-/+}
$$

where

$$
2 T^{+} \equiv \boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}, \quad 2 T^{-} \equiv \boldsymbol{S} d m \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-}
$$

and

$$
W_{-/+} \equiv \boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}^{+}+\boldsymbol{v}^{-}\right) / 2
$$

In words: The sudden change of the kinetic energy of a moving system, due to arbitrary impressed impulses, equals the sum of the dot products of these impulses with the mean (average) velocities of their material points of application, immediately before and after their action.

APPELLIAN CLASSIFICATION OF IMPULSIVE
CONSTRAINTS, AND CORRESPONDING EQUATIONS OF IMPULSIVE MOTION
At a given initial instant t^{\prime}, new constraints are suddenly introduced into the system and/or some old constraints are removed, or suppressed. As a result, mutual percussions are generated, which, in the very short time interval $\tau \equiv t^{\prime \prime}-t^{\prime}$ over which they are supposed to act and during which the shock lasts, produce finite velocity changes, but, according to our "first" approximation, produce negligible position changes; that is, for $\tau \rightarrow 0: \Delta q=0, \Delta(d q / d t) \neq 0$. The constraints existing at the shock moment are either persistent or nonpersistent. By persistent we mean constraints that, existing at the shock "moment," exist also after it, so that the actual postimpact displacements are compatible with them; whereas by nonpersistent we mean constraints that, existing at the shock moment, do not exist after it, so that the actual postimpact displacements are incompatible with them.

The constraints that exist at the shock instant can be classified into the following four distinct kinds or types:

1. Constraints that exist before, during, and after the shock; that is, the latter neither introduces new constraints, nor does it change the old ones; the system, however, is acted on by impulsive forces. An example of such a constraint is the striking of a physical pendulum with a nonsticking (or nonplastic) hammer at one of its points, and the resulting communication to it of a specified impressed impulsive force.
2. Constraints that exist during and after the shock, but not before it; that is, the latter introduces suddenly new constraints on the system. Examples: (a) A rigid bar that falls freely, until the two inextensible slack strings that connect its endpoints to a fixed ceiling become taut (during) and do not break (after). (b) The inelastic central collision of two solid spheres ("coefficient of restitution" $\equiv e=0$-see below). (c) In a ballistic pendulum, the pendulum is constrained to rotate about a fixed axis, which is a constraint that exists before, during, and after the percussion of the pendulum with a projectile (i.e., first-type constraint). The projectile, however, originally independent of the pendulum, strikes it and becomes embedded into it, which is a case of a new constraint whose sudden realization produces the shock, and which exists during and after the shock but not before it (i.e., second-type constraint).
3. Constraints that exist before and during the shock, but not after it. For example, let us imagine a system that consists of two particles connected by a light and inextensible bar, or thread, thrown up into the air. Then, let us assume that one of these particles is suddenly seized (persistent constraint introduced abruptly; i.e., second type), and, at the same time, the bar breaks (constraint that exists before the shock but does not exist after it; i.e., third type).
4. Constraints that exist only during the shock, but neither before nor after it. For example, when two solids collide, since their bounding surfaces come into contact, a constraint is abruptly introduced into this two-body system. If these bodies are
elastic ($e=1$-see coefficient of restitution, below), they separate after the collision, which is a case of a constraint that exists during the percussion but neither before nor after it (i.e., fourth type); while if they are plastic $(e=0)$, they do not separate (projectile and pendulum, above; i.e., second type). If $0<e<1$, the bodies separate; that is, we have a fourth kind constraint.

Clearly, the first two types contain the persistent constraints, while the last two contain the nonpersistent ones. Schematically, we have the classification shown in table 1.

Table 1 Appellian Classification of Impulsive Constraints

	Preshock (before)	Shock (during)	Postshock (after)
1 (persistent)			
2 (persistent)			
3 (nonpersistent)			
4 (nonpersistent)			

In impulsive problems: the excess of the number of unknowns (postimpact velocities and constraint reactions) over that of the available equations [those obtained from Lagrange's impulsive principle; plus preimpact velocities, impressed impulsive forces, constraints, and, sometimes, knowledge of the postimpact state (second type; e.g., $e=0$)]-namely, the degree of its indeterminancy-equals the number of its constraints, which, having existed before or during the shock, cease to do so at the end of it; that is:

$$
\text { Degree of indeterminacy }=\text { Number of nonpersistent constraints; }
$$

that is, the persistent types 1 and 2 are determinate, while the nonpersistent ones 3 and 4 are indeterminate.

COEFFICIENT OF RESTITUTION (e)

$$
e=-\frac{\left(\boldsymbol{v}_{2 / 1} \cdot \boldsymbol{n}\right)^{+}}{\left(\boldsymbol{v}_{2 / 1} \cdot \boldsymbol{n}\right)^{-}} \equiv-\frac{v_{2 / 1, n}{ }^{+}}{v_{2 / 1, n}^{-}}=-\frac{\text { Relative velocity of separation }}{\text { Relative velocity of approach }}
$$

where 1 and 2 are the two points of bodies A and B that come into contact during the collision, and \boldsymbol{n} is the unit vector along the common normal to their bounding surfaces there, say from A to B. This coefficient ranges from 0 (plastic impact, no separation) to 1 (elastic impact, no energy loss); that is, $0 \leq e \leq 1$.

ANALYTICAL EXPRESSION OF THE APPELLIAN
 CLASSIFICATION; PERSISTENCY VERSUS DETERMINACY

1. In terms of elementary dynamics: Consider a system that consists of N solids, in contact with each other at K points, out of which C are of the nonpersistent type, and/or with a number of foreign solid obstacles that are either fixed or have known motions. Assuming frictionless collisions, we shall have a total of $6 \mathrm{~N}+\mathrm{K}$ unknowns ($6 N$ postshock velocities, plus K percussions at the smooth contacts, along the common normals), and $6 N+K-C$ equations ($6 N$ impulsive momentum equations,
plus $K-C$ persistent-type constraints); and therefore the degree of indeterminacy equals the number of nonpersistent contacts C (i.e., the kind that disappear after the shock).

Hence: (a) a free (i.e., unconstrained) solid subjected to given percussions or (b) a system subjected only to persistent constraints are impulsively determinate.
2. From the Lagrangean viewpoint: (a) A number of constraints, imposed on a system originally defined by n Lagrangean coordinates, can always be put in the equilibrium form:

$$
q_{1}=0, \quad q_{2}=0, \ldots, \quad q_{m}=0 \quad(m: \text { number of such constraints }<n) .
$$

(b) Within our impulsive approximations, even Pfaffian constraints (including nonholonomic ones) can be brought to the holonomic form; that is, in impulsive motion, all constraints behave as holonomic; and to solve them, either we use impulsive multipliers, or we avoid them by choosing the above equilibrium coordinates; or we use quasi variables.

Assuming, henceforth, such a choice of Lagrangean coordinates for all our impulsive constraints (and, for convenience, re-denoting these new equilibrium coordinates by $q_{1}, \ldots, q_{m} ; \ldots, q_{n}$), we can quantify the four Appellian types of impulsive constraints as follows:

- First-type constraints (existing before, during, and after the shock). As a result of these constraints, let the system configurations depend on n, hitherto independent, Lagrangean parameters: $q \equiv\left(q_{1}, \ldots, q_{n}\right)$. During the shock interval $\left(t^{\prime}, t^{\prime \prime}\right)$, the corresponding velocities $\dot{q} \equiv\left(\dot{q}_{1}, \ldots, \dot{q}_{n}\right)$ pass suddenly from the known values $(\dot{q})^{-}$, at t^{\prime}, to other values $(\dot{q})^{+}$, while the q 's remain practically unchanged; that is, here we have

$$
\begin{aligned}
& \left(q_{k}\right)_{\text {before }}=0, \quad\left(q_{k}\right)_{\text {during }}=0, \quad\left(q_{k}\right)_{\text {after }}=0, \\
& \Delta \dot{q}_{k} \equiv\left(\dot{q}_{k}\right)^{+}-\left(\dot{q}_{k}\right)^{-} \neq 0 \quad\left[\left(\dot{q}_{k}\right)^{+}: \text {unknown, }\left(\dot{q}_{k}\right)^{-}: \text {known }\right] .
\end{aligned}
$$

- Second-type constraints (additional constraints existing during and after the shock, but not before it). Here, with $q_{D^{\prime \prime}} \equiv\left(q_{1}, \ldots, q_{m^{\prime \prime}}\right)$, where $m^{\prime \prime}<n$, we have

$$
\begin{aligned}
& \left(q_{D^{\prime \prime}}\right)_{\text {before }} \neq 0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {during }}=0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {after }}=0 \\
& \left(\dot{q}_{D^{\prime \prime}}\right)^{-} \neq 0, \quad\left(\dot{q}_{D^{\prime \prime}}\right)^{+}=0 \Rightarrow \Delta\left(\dot{q}_{D^{\prime \prime}}\right)=-\left(\dot{q}_{D^{\prime \prime}}\right)^{-} \neq 0
\end{aligned}
$$

- Third-type constraints (additional constraints existing before and during the shock, but not after it). Here, with $q_{D^{\prime \prime}} \equiv\left(q_{m^{\prime \prime}+1}, \ldots, q_{m^{\prime \prime}}\right)$, where $m^{\prime \prime \prime}<n$, we have

$$
\begin{aligned}
& \left(q_{D^{\prime \prime}}\right)_{\text {before }}=0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {during }}=0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {after }} \neq 0, \\
& \left(\dot{q}_{D^{\prime \prime}}\right)^{-}=0, \quad\left(\dot{q}_{D^{\prime \prime}}\right)^{+} \neq 0 \Rightarrow \Delta\left(\dot{q}_{D^{\prime \prime}}\right)=\left(\dot{q}_{D^{\prime \prime}}\right)^{+} \neq 0 .
\end{aligned}
$$

- Fourth-type constraints (additional constraints existing only during the shock, but neither before nor after it). Here, with $q_{D^{\prime \prime \prime}} \equiv\left(q_{m^{\prime \prime \prime}+1}, \ldots, q_{m^{\prime \prime \prime \prime}}\right)$, where $m^{\prime \prime \prime \prime}<n$, we have

$$
\begin{aligned}
\left(q_{D^{\prime \prime \prime \prime}}\right)_{\text {before }} \neq 0, & \left(q_{D^{\prime \prime \prime \prime}}\right)_{\text {during }}=0, \quad\left(q_{D^{\prime \prime \prime}}\right)_{\text {after }} \neq 0 \\
\left(\dot{q}_{D^{\prime \prime \prime}}\right)^{-} \neq 0, & \left(\dot{q}_{D^{\prime \prime \prime}}\right)^{+} \neq 0 \Rightarrow \Delta\left(\dot{q}_{D^{\prime \prime \prime \prime}}\right)=\left(\dot{q}_{D^{\prime \prime \prime}}\right)^{+}-\left(\dot{q}_{D^{\prime \prime \prime}}\right)^{-} \neq 0 .
\end{aligned}
$$

Hence, if no fourth-type constraints exist, $m^{\prime \prime \prime}=m^{\prime \prime \prime \prime}$; and if no third-type constraints exist, $m^{\prime \prime}=m^{\prime \prime \prime}$; etc.

Next, arguing as in the case of continuous motion (chap. 3), during the shock interval, we may view the constraints of the second, third, and fourth types as absent, provided that, in the spirit of the impulsive principle of relaxation (LIP), we add to the system the corresponding constraint reactions. All relevant equations of motion are contained in the LIP:

$$
\sum \Delta\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}=\sum \hat{Q}_{k} \delta q_{k} \quad(k=1, \ldots, n) .
$$

If the virtual displacements $\delta q \equiv\left(\delta q_{1}, \ldots, \delta q_{n}\right)$ are arbitrary, the right side of the above equation contains the impulsive virtual works of the reactions stemming from the second, third, and fourth type constraints, and operating during the shock interval $\left(t^{\prime}, t^{\prime \prime}\right)$. Therefore, to eliminate these "forces," and thus produce $n-m^{\prime \prime \prime \prime}$ reactionless, or kinetic, impulsive equations, we choose δq^{\prime} 's that are compatible with all constraints holding at the shock moment; that is, we take

$$
\begin{aligned}
& \delta q_{1}, \ldots, \delta q_{m^{\prime \prime}} ; \quad \delta q_{m^{\prime \prime}+1}, \ldots, \delta q_{m^{\prime \prime}} ; \quad \delta q_{m^{\prime \prime \prime}+1}, \ldots, \delta q_{m^{\prime \prime \prime}}=0 ; \\
& \delta q_{m^{\prime \prime \prime}+1}, \ldots, \delta q_{n} \neq 0 .
\end{aligned}
$$

Corresponding two (uncoupled) sets of equations:
$\begin{array}{lll}\text { Impulsive kinetostatic: } & \Delta\left(\partial T / \partial \dot{q}_{D}\right)=\hat{Q}_{D}+\hat{\lambda}_{D} & \left(D=1, \ldots, m^{\prime \prime \prime \prime}\right), \\ \text { Impulsive kinetic: } & \Delta\left(\partial T / \partial \dot{q}_{I}\right)=\hat{Q}_{I} & \left(I=m^{\prime \prime \prime \prime}+1, \ldots, n\right) .\end{array}$
Further, since the velocity jumps $\Delta \dot{q}$ are produced only by the very large impulsive constraint reactions, operating during the very small interval $t^{\prime \prime}-t^{\prime}$, within our approximations, the \hat{Q}_{I} [since they derive only from ordinary (i.e., finite, nonimpulsive) forces, like gravity] vanish: $\hat{Q}_{I}=0$; and so eq. (b) reduces to Appell's rule:

$$
\Delta\left(\partial T / \partial \dot{q}_{I}\right)=0 \Rightarrow\left(\partial T / \partial \dot{q}_{I}\right)^{+}=\left(\partial T / \partial \dot{q}_{I}\right)^{-} .
$$

In words: The partial derivatives of the kinetic energy relative to the velocities of those system coordinates q 's that are not forced to vanish at the shock instant (i.e., $q_{\text {during }} \neq 0$) have the same values before and after the impact; or, these $n-m^{\prime \prime \prime \prime}$ unconstrained momenta, $p_{I} \equiv \partial T / \partial \dot{q}_{I}$, are conserved.

To make the problem determinate, in the presence of nonpersistent-type constraints, we must make particular constitutive (i.e., physical) hypotheses: for example, elasticity assumptions about the postshock state.

EXTREMUM THEOREMS OF IMPULSIVE MOTION

All based on the following master equation (impulsive Lagrange's principle):

$$
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \delta \boldsymbol{r}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta \boldsymbol{r}
$$

Carnot (first part-collisions)

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}, \quad \widehat{d \boldsymbol{F}}=\mathbf{0} \rightarrow T^{+}-T^{-}<0
$$

Carnot (second part-explosions)

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{-}, \quad \widehat{d \boldsymbol{F}}=\mathbf{0} \rightarrow T^{+}-T^{-}>0
$$

Kelvin (prescribed velocities)

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}, \quad \delta \boldsymbol{r} \sim \boldsymbol{v}^{+}+\delta_{K} \boldsymbol{v}=\boldsymbol{v}, \quad \boldsymbol{v}^{-}=\mathbf{0} \rightarrow T(\boldsymbol{v})-T\left(\boldsymbol{v}^{+}\right)>0, \quad \delta_{K} T^{+}=0
$$

Bertrand-Delaunay (prescribed impulses)

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}, \quad \delta \boldsymbol{r} \sim \boldsymbol{v}^{+}+\delta_{B / D} \boldsymbol{v}=\boldsymbol{v} \quad \rightarrow \quad T(\boldsymbol{v})-T\left(\boldsymbol{v}^{+}\right)<0, \quad \delta_{B / D} T^{+}=0
$$

[Taylor: $T_{\text {Kelvin }}(\boldsymbol{v})-T\left(\boldsymbol{\nu}^{+}\right)>T\left(\boldsymbol{v}^{+}\right)-T(\boldsymbol{v})_{\text {Bertrand-Delaunay }}$]
Robin (prescribed impulses and constraints)

$$
\begin{aligned}
\delta \boldsymbol{r} & \sim \boldsymbol{v}^{+}, \quad \delta \boldsymbol{r} \sim \boldsymbol{v}^{+}+\delta_{R} \boldsymbol{v}=\boldsymbol{v} \\
& \rightarrow P \equiv \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)^{2}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right): \text {stationary and minimum }
\end{aligned}
$$

Gauss (impulsive compulsion)
$\hat{Z} \equiv \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}-\widehat{d \boldsymbol{F}} / d m\right)^{2}=P+\boldsymbol{S}(\widehat{d \boldsymbol{F}})^{2} / 2 d m$: stationary and minimum

Chapter 5: Nonlinear Nonholonomic Constraints

CONSTRAINTS

$$
f_{D}(t, q, \dot{q})=0
$$

QUASI VARIABLES
Velocity form

$$
\omega_{D} \equiv f_{D}(t, q, \dot{q})=0, \quad \omega_{I} \equiv f_{I}(t, q, \dot{q}) \neq 0, \quad \omega_{n=1} \equiv \dot{q}_{n+1}=\dot{t}=1
$$

Virtual form (by Maurer-Appell-Chetaev-Johnsen-Hamel)

$$
\begin{aligned}
\delta \theta_{D} & =\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 \\
\delta \theta_{I} & =\sum\left(\partial f_{I} / \partial \dot{q}_{k}\right) \delta q_{k}=\sum\left(\partial \omega_{I} / \partial \dot{q}_{k}\right) \delta q_{k} \neq 0 \\
\delta q_{k} & =\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \delta \theta_{l}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \delta \theta_{I}
\end{aligned}
$$

Compatibility

$$
\begin{aligned}
\sum\left(\partial f_{k} / \partial \dot{q}_{b}\right)\left(\partial \dot{q}_{b} / \partial \omega_{l}\right) & \equiv \sum\left(\partial \omega_{k} / \partial \dot{q}_{b}\right)\left(\partial \dot{q}_{b} / \partial \omega_{l}\right)=\partial \omega_{k} / \partial \omega_{l}=\delta_{k l} \\
\sum\left(\partial F_{k} / \partial \omega_{b}\right)\left(\partial \omega_{b} / \partial \dot{q}_{l}\right) & \equiv \sum\left(\partial \dot{q}_{k} / \partial \omega_{b}\right)\left(\partial \omega_{b} / \partial \dot{q}_{l}\right)=\partial \dot{q}_{k} / \partial \dot{q}_{l}=\delta_{k l}
\end{aligned}
$$

INTRODUCTION

PARTICLE KINEMATICS

Virtual displacements

$$
\delta \boldsymbol{r}=\sum\left(\partial \boldsymbol{r}^{*} / \partial \theta_{l}\right) \delta \theta_{l} \equiv \sum \varepsilon_{l} \delta \theta_{l} \equiv \delta \boldsymbol{r}^{*}
$$

where

$$
\begin{aligned}
\boldsymbol{\varepsilon}_{l} & =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \equiv \sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \boldsymbol{e}_{k} \\
\boldsymbol{e}_{k} & =\sum\left(\partial \boldsymbol{r}^{*} / \partial \theta_{l}\right)\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \equiv \sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \boldsymbol{\varepsilon}_{l}
\end{aligned}
$$

that is,

$$
\begin{aligned}
\partial(\ldots) / \partial \theta_{l} & \equiv \sum\left[\partial(\ldots) / \partial q_{k}\right]\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \\
\partial(\ldots) / \partial q_{k} & \equiv \sum\left[\partial(\ldots) / \partial \theta_{l}\right]\left(\partial \omega_{l} / \partial \dot{q}_{k}\right)
\end{aligned}
$$

[nonlinear symbolic (nonvectorial/tensorial) quasi chain rules]
Velocities

$$
\begin{aligned}
\boldsymbol{v} & =\sum \dot{q}_{k}(t, q, \omega) \boldsymbol{e}_{k}+\boldsymbol{e}_{0} \quad\left[t \equiv q_{n+1}\right] \\
& =\sum \omega_{k}(t, q, \dot{q}) \boldsymbol{\varepsilon}_{k}+\boldsymbol{\varepsilon}_{0} \equiv \boldsymbol{v}^{*}(t, q, \omega) \equiv \boldsymbol{v}^{*}
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\varepsilon}_{0} \equiv \partial \boldsymbol{r} / \partial \theta_{n+1} & \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{\alpha}\right)\left(\partial \dot{q}_{\alpha} / \partial \omega_{n+1}\right) \quad[\alpha=1, \ldots, n+1] \\
& =\sum\left(\partial \dot{q}_{k} / \partial \omega_{n+1}\right) \boldsymbol{e}_{k}+\boldsymbol{e}_{0} \\
& =\sum\left(\dot{q}_{k} \boldsymbol{e}_{k}-\omega_{k} \boldsymbol{\varepsilon}_{k}\right)+\boldsymbol{e}_{0} \\
& =\boldsymbol{e}_{0}+\sum\left(\dot{q}_{k}-\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \omega_{l}\right) \boldsymbol{e}_{k}
\end{aligned}
$$

and, inversely,

$$
\begin{aligned}
\boldsymbol{e}_{0} \equiv \partial \boldsymbol{r} / \partial t & \equiv \sum\left(\partial \boldsymbol{r} / \partial \theta_{\alpha}\right)\left(\partial \omega_{\alpha} / \partial \dot{q}_{n+1}\right) \quad[\alpha=1, \ldots, n+1] \\
& =\varepsilon_{0}+\sum\left(\omega_{k}-\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \dot{q}_{l}\right) \boldsymbol{\varepsilon}_{k}
\end{aligned}
$$

For any function $f^{*}=f^{*}(t, q, \omega)$,

$$
\partial f^{*} / \partial \theta_{n+1} \equiv \sum\left(\partial f^{*} / \partial q_{k}\right)\left(\dot{q}_{k}-\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \omega_{l}\right)+\partial f^{*} / \partial t
$$

which in the Pfaffian case reduces to the earlier

$$
\partial f^{*} / \partial \theta_{n+1}=\sum\left(\partial f^{*} / \partial q_{k}\right) A_{k}+\partial f^{*} / \partial t \equiv \partial f^{*} / \partial(t)+\partial f^{*} / \partial t
$$

In particular, for $f^{*}=q_{b}$ we find

$$
\begin{aligned}
& \partial q_{b} / \partial \theta_{s}=\partial \dot{q}_{b} / \partial \omega_{s}, \\
& \partial q_{b} / \partial \theta_{n+1}=\partial \dot{q}_{b} / \partial \omega_{n+1}=\dot{q}_{b}-\sum\left(\partial \dot{q}_{b} / \partial \omega_{l}\right) \omega_{l} \\
& {\left[=\dot{q}_{b}-\sum A_{b l} \omega_{l}=A_{b}, \text { in the Pfaffian case }\right] ;}
\end{aligned}
$$

and, inversely,

$$
\partial \theta_{k} / \partial t \equiv \partial \omega_{k} / \partial \dot{q}_{n+1}=\omega_{k}-\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \dot{q}_{l} .
$$

Accelerations

$$
\begin{aligned}
\boldsymbol{a} & \equiv d \boldsymbol{v} / d t=\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right) \ddot{q}_{k}+\text { No other } \ddot{q} / \dot{\omega} \text { terms } \\
& \equiv \sum\left(\partial \boldsymbol{v}^{*} / \partial \omega_{l}\right) \dot{\omega}_{l}+\cdots \\
& =\sum \varepsilon_{l} \dot{\omega}_{l}+\cdots=\sum\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{l}\right) \dot{\omega}_{l}+\cdots \\
& \equiv \boldsymbol{a}^{*}(t, q, \omega, \dot{\omega}) \equiv \boldsymbol{a}^{*}
\end{aligned}
$$

where

$$
\partial \boldsymbol{v}^{*} / \partial \omega_{l}=\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \quad \text { or } \quad \boldsymbol{\varepsilon}_{l}=\sum \boldsymbol{e}_{k}\left(\partial \dot{q}_{k} / \partial \omega_{l}\right)
$$

(which is a vectorial transformation equation, and not some quasi chain rule).

BASIC KINEMATIC IDENTITIES

Holonomic variables

$$
\partial \boldsymbol{r} / \partial q_{k}=\partial \boldsymbol{v} / \partial \dot{q}_{k}=\partial \boldsymbol{a} / \partial \ddot{q}_{k}=\cdots=\boldsymbol{e}_{k}
$$

Nonholonomic variables

$$
\partial \boldsymbol{r}^{*} / \partial \theta_{k}=\partial \boldsymbol{v}^{*} / \partial \omega_{k}=\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}=\cdots=\boldsymbol{\varepsilon}_{k}
$$

System forms

$$
\begin{aligned}
\partial q_{k} / \partial \theta_{l} & \equiv \partial \dot{q}_{k} / \partial \omega_{l}=\partial \ddot{q}_{k} / \partial \ddot{\omega}_{l}=\cdots \\
\partial \theta_{l} / \partial q_{k} & \equiv \partial \omega_{l} / \partial \dot{q}_{k}=\partial \dot{\omega}_{l} / \partial \ddot{q}_{k}=\cdots
\end{aligned}
$$

NONINTEGRABILITY RELATIONS

Nonholonomic deviation (vector)

$$
\gamma_{k} \equiv E_{k}^{*}\left(\boldsymbol{v}^{*}\right)=\sum E_{k}{ }^{*}\left(\dot{q}_{l}\right) \boldsymbol{e}_{l} \equiv \sum V_{k}^{l} \boldsymbol{e}_{l}=-\sum H_{k}^{b} \varepsilon_{b}
$$

where
Nonlinear Voronets-Chaplygin coefficients

$$
V_{k}^{l} \equiv\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k} \equiv E_{k}^{*}\left(\dot{q}_{l}\right)
$$

Nonlinear Hamel coefficients

$$
\begin{aligned}
& H_{b}^{k} \equiv \sum\left(\partial \dot{q}_{l} / \partial \omega_{b}\right)\left[\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)^{\cdot}-\partial \omega_{k} / \partial q_{l}\right] \equiv \sum\left(\partial \dot{q}_{l} / \partial \omega_{b}\right) E_{l}\left(\omega_{k}\right) \\
& {\left[\Rightarrow h_{b}^{k} \equiv \sum \gamma_{b \alpha}^{k} \omega_{\alpha}=\sum \gamma_{b s}^{k} \omega_{s}+\gamma_{b, n+1}^{k}(\text { in the Pfaffian case })\right]} \\
& H_{k}^{b} \equiv-\sum\left(\partial \omega_{b} / \partial \dot{q}_{l}\right) V_{k}^{l} \Leftrightarrow V_{k}^{l}=-\sum\left(\partial \dot{q}_{l} / \partial \omega_{b}\right) H_{k}^{b} \\
& E_{l}\left(\omega_{k}\right)=-\sum \sum\left(\partial \omega_{b} / \partial \dot{q}_{l}\right)\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) E_{b}{ }^{*}\left(\dot{q}_{s}\right) \\
& E_{b} *\left(\dot{q}_{s}\right)=-\sum \sum\left(\partial \dot{q}_{l} / \partial \omega_{b}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right) E_{l}\left(\omega_{k}\right)
\end{aligned}
$$

For a general function $f^{*}=f^{*}(t, q, \omega)$, the following noncommutativity relations hold:

$$
\begin{aligned}
\partial / \partial \theta_{l}\left(\partial f^{*} / \partial \theta_{k}\right)-\partial / \partial \theta_{k}\left(\partial f^{*} / \partial \theta_{l}\right)= & \sum \sum \sum \sum\left[\left(\partial^{2} \dot{q}_{b} / \partial q_{s} \partial \omega_{k}\right)\left(\partial \dot{q}_{s} / \partial \omega_{l}\right)\right. \\
& \left.-\left(\partial^{2} \dot{q}_{b} / \partial q_{s} \partial \omega_{l}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right)\right]\left(\partial \omega_{p} / \partial \dot{q}_{b}\right)\left(\partial f^{*} / \partial \theta_{p}\right)
\end{aligned}
$$

THE NONLINEAR TRANSITIVITY EQUATIONS

$$
\begin{aligned}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k} & =\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]+\sum E_{l}\left(\omega_{k}\right) \delta q_{l} \\
& =\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]+\sum H_{b}^{k} \delta \theta_{b} \\
& =\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]-\sum \sum V_{b}^{l}\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \delta \theta_{b} \\
\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right) & =\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum V_{k}^{l} \delta \theta_{k} \\
& =\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum \sum\left(\partial \dot{q}_{l} / \partial \omega_{b}\right) H_{k}^{b} \delta \theta_{k}
\end{aligned}
$$

SPECIAL CHOICE OF QUASI VELOCITIES

$$
\begin{aligned}
\omega_{D} & \equiv f_{D}(t, q, \dot{q})=0, \quad \omega_{I}=f_{I}(t, q, \dot{q})=\dot{q}_{I} \neq 0 \\
& \Rightarrow \dot{q}_{D}=\dot{q}_{D}\left(t, q, \dot{q}_{I}\right) \equiv \phi_{D}\left(t, q, \dot{q}_{I}\right)
\end{aligned}
$$

System virtual displacements

$$
\begin{aligned}
\delta q_{k}: \delta q_{D} & =\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}, \\
\delta q_{I} & =\sum\left(\partial \dot{q}_{I} / \partial \dot{q}_{I^{\prime}}\right) \delta q_{I^{\prime}}=\sum\left(\delta_{I I^{\prime}}\right) \delta q_{I^{\prime}}=\delta q_{I}
\end{aligned}
$$

Particle virtual displacements

$$
\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}=\sum \boldsymbol{B}_{I} \delta q_{I},
$$

where

$$
\boldsymbol{B}_{I} \equiv \partial \boldsymbol{r} / \partial\left(q_{I}\right) \equiv \partial \boldsymbol{r} / \partial q_{I}+\sum\left(\partial \boldsymbol{r} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \equiv \boldsymbol{e}_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \boldsymbol{e}_{D}
$$

and, in general,

$$
\partial \boldsymbol{B}_{I} / \partial q_{I^{\prime}} \neq \partial \boldsymbol{B}_{I^{\prime}} / \partial q_{I} \quad \text { (i.e., the } \boldsymbol{B}_{I} \text { are nongradient vectors) }
$$

Particle velocities and accelerations

$$
\begin{aligned}
\boldsymbol{v} \rightarrow \boldsymbol{v}_{o} & =\sum \boldsymbol{B}_{I} \dot{q}_{I}+\text { No other } \dot{q} \text { terms }, \\
\boldsymbol{a} \rightarrow \boldsymbol{a}_{o} & =\sum \boldsymbol{B}_{I} \ddot{q}_{I}+\text { No other } \ddot{q} \text { terms } ; \\
& \Rightarrow \partial \boldsymbol{r} / \partial\left(q_{I}\right) \equiv \partial \boldsymbol{v}_{o} / \partial \dot{q}_{I} \equiv \partial \boldsymbol{a}_{o} / \partial \ddot{q}_{I} \equiv \cdots \equiv \boldsymbol{B}_{I}
\end{aligned}
$$

Special transitivity relations

$$
\begin{aligned}
& \delta q_{D}=\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I} \quad \text { and } \quad \dot{q}_{D}=\dot{q}_{D}\left(t, q, \dot{q}_{I}\right) \equiv \phi_{D}\left(t, q, \dot{q}_{I}\right) \\
&\left(\delta q_{D}\right)^{\cdot}-\delta \dot{q}_{D}= \sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left[\left(\delta q_{I}\right)^{\cdot}-\delta\left(\dot{q}_{I}\right)\right] \\
&+\sum\left[\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial\left(q_{I}\right)\right] \delta q_{I},
\end{aligned}
$$

where

$$
\begin{aligned}
& \partial \phi_{D} / \partial\left(q_{I}\right) \equiv \partial \phi_{D} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right), \\
& \partial(\ldots) / \partial\left(q_{I}\right) \equiv \partial(\ldots) / \partial q_{I}+\sum\left[\partial(\ldots) / \partial q_{D}\right]\left(\partial \dot{\phi}_{D} / \partial \dot{q}_{I}\right)
\end{aligned}
$$

Nonlinear Suslov transitivity relations

$$
\begin{aligned}
\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right): & \left(\delta q_{D}\right)^{\cdot}-\delta \dot{q}_{D}=\sum W_{I}^{D} \delta q_{I} \quad(\neq 0) \\
& \left(\delta q_{I}\right)^{\cdot}-\delta \dot{q}_{I}=0 \quad\left[=0 ; \text { i.e., } W^{I^{\prime}}{ }_{I}=0\right]
\end{aligned}
$$

where

$$
\begin{aligned}
W_{I}^{D} & \equiv E_{I}\left(\phi_{D}\right)-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \\
& \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial\left(q_{I}\right) \equiv E_{(I)}\left(\phi_{D}\right)
\end{aligned}
$$

[special nonlinear Voronets coefficients]
Nonlinear Chaplygin system

$$
\begin{aligned}
& \dot{q}_{D}=\dot{q}_{D}\left(q_{I}, \dot{q}_{I}\right) \equiv \phi_{D}\left(q_{I}, \dot{q}_{I}\right) \\
& W^{D}{ }_{I} \rightarrow T_{I}^{D} \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I} \equiv E_{I}\left(\phi_{D}\right)
\end{aligned}
$$

[special nonlinear Chaplygin coefficients]

KINETIC PRINCIPLES ($P_{k} \equiv \partial T^{*} / \partial \omega_{k}$)

Central equation

$$
\sum\left(d P_{k} / d t\right) \delta \theta_{k}-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]=\sum \Theta_{k} \delta \theta_{k}
$$

INTRODUCTION
Lagrange's principle in NNH variables

$$
\sum\left(d P_{k} / d t-\partial T^{*} / \partial \theta_{k}+\sum H_{k}^{l} P_{l}-\Theta_{k}\right) \delta \theta_{k}=0
$$

EQUATIONS OF MOTION $(D=1, \ldots, m ; I=m+1, \ldots, n)$
Coupled

$$
E_{k}(T)=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \quad(\text { Routh-Voss form })
$$

Uncoupled

$$
I_{D}=\Theta_{D}+\Lambda_{D} \quad(\text { Kinetostatic }) \quad I_{I}=\Theta_{I} \quad(\text { Kinetic })
$$

where

$$
\begin{aligned}
I_{k} & \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{\varepsilon}_{k} & & (\text { Raw form }) \\
& =\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) E_{l} & & (\text { Maggi form }) \\
& =\partial S^{*} / \partial \dot{\omega}_{k} & & (\text { Appell form }) \\
& =\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\Gamma_{k} & & (\text { Johnsen-Hamel form })
\end{aligned}
$$

and

$$
\Gamma_{k} \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot E_{k}^{*}\left(\boldsymbol{v}^{*}\right)=\sum V_{k}^{l} p_{l}=-\sum H_{k}^{l} P_{l}
$$

[nonholonomic correction term]
Transformation equations between holonomic and nonholonomic components

$$
\begin{aligned}
& I_{k}=\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) E_{l} \Leftrightarrow E_{l}=\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) I_{k}, \\
& \Theta_{k}=\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) Q_{l} \Leftrightarrow Q_{l}=\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \Theta_{k}, \\
& E_{k^{\prime}}, ~-\Gamma_{k^{\prime}}=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)\left(E_{k} *-\Gamma_{k}\right)
\end{aligned}
$$

Transformation equations of $E_{k}^{*}\left(T^{*}\right)$ and Γ_{k} between the quasi velocities $\omega \leftrightarrow \omega^{\prime}$

$$
\begin{aligned}
E_{k^{\prime}} *\left(T^{* \prime}\right) & =\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) E_{k}^{*}\left(T^{*}\right)+\sum\left(\partial T^{*} / \partial \omega_{k}\right) E_{k^{\prime}} *\left(\omega_{k}\right), \\
\Gamma_{k^{\prime}} & =\sum\left(\partial T^{*} / \partial \omega_{k}\right) E_{k^{\prime}} *\left(\omega_{k}\right)+\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \Gamma_{k}
\end{aligned}
$$

Johnsen-Hamel forms in extenso

$$
\begin{gathered}
I_{k}=d P_{k} / d t-\partial T^{*} / \partial \theta_{k}+\sum H_{k}^{l} P_{l} \\
=d P_{k} / d t-\partial T^{*} / \partial \theta_{k}-\sum \sum\left(\partial \omega_{l} / \partial \dot{q}_{b}\right) V_{k}^{b} P_{l} \\
=d P_{k} / d t-\partial T^{*} / \partial \theta_{k}-\sum V_{k}^{b} p_{b}{ }^{*} \\
{\left[\sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) P_{l}=p_{k}=p_{k}(t, q, \dot{q})=p_{k}{ }^{*}(t, q, \omega) \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{*}\right]}
\end{gathered}
$$

SPECIAL FORMS OF THE EQUATIONS OF MOTION FOR
THE CHOICE

$$
\omega_{D} \equiv f_{D}(t, q, \dot{q})=\dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)=0, \quad \omega_{I} \equiv f_{I}(t, q, \dot{q})=\dot{q}_{I} \neq 0
$$

and its inverse

$$
\dot{q}_{D}=\omega_{D}+\phi_{D}\left(t, q, \dot{q}_{I}\right)=\omega_{D}+\phi_{D}\left(t, q, \omega_{I}\right), \quad \dot{q}_{I}=\omega_{I}
$$

and with the notation

$$
E_{k} \equiv E_{k}(T) \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=\partial S / \partial \ddot{q}_{k}
$$

Maggi equations \Rightarrow nonlinear Hadamard equations
Kinetostatic: $\quad E_{D}=Q_{D}+\lambda_{D}$
Kinetic:

$$
E_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) E_{D}=Q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) Q_{D}
$$

$$
\begin{aligned}
& \text { or } \\
& \partial S_{o} / \partial \ddot{q}_{I}=Q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) Q_{D} \quad\left(\equiv Q_{I, o} \equiv Q_{I o}\right) \text {, }
\end{aligned}
$$

where

$$
S=S(t, q, \dot{q}, \ddot{q})=\cdots=S_{o}\left(t, q, \dot{q}_{I}, \ddot{q}_{I}\right)=S_{o}, \text { constrained Appellian } S_{o}
$$

Hamel equations \Rightarrow nonlinear Voronets equations

$$
\begin{aligned}
& E_{I}\left(T_{o}\right)-\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial T_{o} / \partial q_{D}\right)-\Gamma_{I o} \equiv E_{(I)}\left(T_{o}\right)-\Gamma_{I o}=Q_{I o} \\
& H_{I}^{D} \rightarrow-E_{(I)}\left(\phi_{D}\right)=-W_{I}^{D} \\
& \Gamma_{I} \rightarrow \Gamma_{I, o} \equiv \Gamma_{I o}=\sum W_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \equiv \sum W_{I}^{D} p_{D o}
\end{aligned}
$$

Voronets equations \Rightarrow Chaplygin equations

$$
\begin{aligned}
{\left[\dot{q}_{D}=\right.} & \dot{q}_{D}\left(q_{I}, \dot{q}_{I}\right) \equiv \phi_{D}\left(q_{I}, \dot{q}_{I}\right) \quad \text { and } \quad T_{o}=T_{o}\left(q_{I}, \dot{q}_{I}\right) \\
\Rightarrow & W_{I}^{D} \equiv E_{(I)}\left(\phi_{D}\right) \rightarrow E_{I}\left(\phi_{D}\right) \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I} \equiv T_{I}^{D} \\
\Rightarrow & \left.\Gamma_{I o} \rightarrow \sum T_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o}\right] \\
& \left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum T_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o}=Q_{I o}
\end{aligned}
$$

Transformation of the nonlinear Hamel and Voronets coefficients V_{k}^{l}, H_{k}^{l} under

$$
\begin{aligned}
& \omega_{b^{\prime}}=\omega_{b^{\prime}}(t, q, \dot{q}) \Leftrightarrow \dot{q}_{l}=\dot{q}_{l}\left(t, q, \omega^{\prime}\right): \\
& \Gamma_{k}=\sum V_{k}^{l} p_{l}=-\sum H_{k}^{l} P_{l} \\
& V_{k^{\prime}}^{l}=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) V_{k}^{l}+\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {H^{l^{\prime}}{k^{\prime}}^{\prime}}^{=\sum \sum}\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)\left(\partial \omega_{l^{\prime}} / \partial \omega_{l}\right) H_{k}^{l}-\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial \omega_{l^{\prime}} / \partial \omega_{k}\right), \\
& {H^{l^{\prime}}{ }_{k^{\prime}}}=-\sum\left(\partial \omega_{l^{\prime}} / \partial \dot{q}_{l}\right) V_{k^{\prime}}^{l} \quad \Leftrightarrow \quad V_{k^{\prime}}^{l}=-\sum\left(\partial \dot{q}_{l} / \partial \omega_{l^{\prime}}\right) H_{l_{k^{\prime}}^{\prime}}^{l}
\end{aligned}
$$

Chapter 6: Differential Variational Principles

PRINCIPLE OF LAGRANGE

$$
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{r}=0, \quad \text { with } \quad \delta t=0
$$

PRINCIPLE OF JOURDAIN

$$
\mathbf{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{v}=0, \quad \text { with } \quad \delta t=0 \quad \text { and } \quad \delta \boldsymbol{r}=\mathbf{0}
$$

PRINCIPLE OF GAUSS

$$
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{a}=0, \quad \text { with } \quad \delta t=0, \quad \delta \boldsymbol{r}=\mathbf{0}, \quad \text { and } \quad \delta \boldsymbol{v}=\mathbf{0}
$$

PRINCIPLE OF MANGERON-DELEANU

$$
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{(s)}=0, \quad(s=1,2, \ldots)
$$

with

$$
\begin{aligned}
& \delta t=0, \quad \text { and } \quad \delta \boldsymbol{r}=\mathbf{0}, \quad \delta(\dot{\boldsymbol{r}})=\mathbf{0}, \quad \delta(\ddot{\boldsymbol{r}})=\mathbf{0}, \ldots, \\
& \delta\binom{(s-1)}{\boldsymbol{r}}=\mathbf{0} \quad(s-1 \geq 0)
\end{aligned}
$$

NIELSEN IDENTITY

$$
N_{k}(T) \equiv \partial \dot{T} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right)=\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k} \equiv E_{k}(T)
$$

TSENOV IDENTITIES

Second kind

$$
E_{k}(T)=C_{k}^{(2)}(T) \equiv(1 / 2)\left[\partial \ddot{T} / \partial \ddot{q}_{k}-3\left(\partial T / \partial q_{k}\right)\right]
$$

Third kind

$$
E_{k}(T) \equiv C_{k}{ }^{(3)}(T) \equiv(1 / 3)\left[\partial \dddot{T} / \partial \dddot{q}_{k}-4\left(\partial T / \partial q_{k}\right)\right]
$$

MANGERON-DELEANU IDENTITIES

$$
\begin{gathered}
E_{k}(T)=C_{k}^{(s)}(T) \equiv(1 / s)\left[\partial{\stackrel{(s)}{T} / \partial q_{k}^{(s)}}^{(s)}(s+1)\left(\partial T / \partial q_{k}\right)\right] \\
{\left[C_{k}{ }^{(1)}(T)=N_{k}(T)\right]}
\end{gathered}
$$

VARIOUS KINEMATICO-INERTIAL IDENTITIES

$$
\begin{aligned}
& \partial T^{(s-1)} / \partial q_{k}^{(s)}=\partial T / \partial \dot{q}_{k} \quad\left[=\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}\right)\right], \\
& \partial \stackrel{(s-1)}{T} / \partial \stackrel{(s-1)}{q_{k}}=s\left(\partial T / \partial q_{k}\right) \quad\left[=s \boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \dot{\boldsymbol{r}} / \partial q_{k}\right)\right] \text {, } \\
& \stackrel{(s)}{T}=\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot \stackrel{(s+1)}{\boldsymbol{r}}+s \boldsymbol{S} d m \ddot{\boldsymbol{r}} \cdot \stackrel{(s)}{\boldsymbol{r}}+\text { no }{ }^{(s+1)} \boldsymbol{r} \text { terms, } \\
& d / d t\left[\partial{ }^{(s-1)} T_{o} / \partial q_{I}\right]-\partial T / \partial q_{I} \\
& =d / d t\left(\partial T / \partial \dot{q}_{I}\right)-\partial T / \partial q_{I}+\sum d / d t\left[\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial q_{D}^{(s)} / \partial q_{I}^{(s)}\right)\right] \\
& \partial \stackrel{(s-1)}{T_{o}} / \partial \stackrel{(s)}{q}_{q_{I}}=\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s)}{q_{I}}+\sum\left(\partial \stackrel{(s-1)}{T} / \partial q_{D}\right)\left(\partial \stackrel{(s)}{q}_{D} / \partial \stackrel{(s)}{q}_{I}\right)
\end{aligned}
$$

VIRTUAL DISPLACEMENTS NEEDED TO PRODUCE THE CORRECT EQUATIONS OF MOTION

Constraints	Lagrange	Jourdain	Gauss
$f(t, q)=0: \partial f / \partial q$	$\delta f=(\partial f / \partial q) \delta q$	$\delta^{\prime} f=0$	$\delta^{\prime \prime} f=0$,
		$\delta^{\prime} \dot{f}=(\partial f / \partial q) \delta \dot{q}$	$\delta^{\prime \prime} \dot{f}=0$
$f(t, q, \dot{q})=0: \partial f / \partial \dot{q}$	-	$\delta^{\prime} f=(\partial f / \partial \dot{q}) \delta \dot{q}$	$\delta^{\prime \prime} \ddot{f}=(\partial f / \partial q) \delta \ddot{q}$
$f(t, q, \dot{q}, \ddot{q})=0: \partial f / \partial \ddot{q}$	-	$\delta^{\prime \prime} f=0$	
		$\delta^{\prime \prime} \dot{f}=(\partial f / \partial \dot{q}) \delta \ddot{q}$	
		$\delta^{\prime \prime} f=(\partial f / \partial \ddot{q}) \delta \ddot{q}$	

CORRECT EQUATIONS OF MOTION

[Notation: $M_{k} \equiv E_{k}(T)-Q_{k} \equiv N_{k}(T)-Q_{k} \equiv \partial S / \partial \ddot{q}_{k}-Q_{k}$.
Principle: $\left.\sum M_{k} \delta *_{k}=0, \delta *_{k}=\delta q_{k}, \delta \dot{q}_{k}, \delta \ddot{q}_{k}, \ldots\right]$

Constraints Virtual Displacements
$f_{D}(t, q)=0 \quad \delta f_{D}=\sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}$
$f_{D}(t, q, \dot{q})=0 \quad \delta^{\prime} f_{D}=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta \dot{q}_{k}$
$f_{D}(t, q, \dot{q}, \ddot{q})=0 \quad \delta^{\prime \prime} f_{D}=\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}$

Equations of Motion
$M_{k}=\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right)$
$M_{k}=\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)$
$M_{k}=\sum \lambda_{D}\left(\partial f_{D} / \partial \ddot{q}_{k}\right)$

SPECIAL FORM OF CONSTRAINTS

$$
\dot{q}_{D}=\phi_{D}\left(t, q, \dot{q}_{I}\right) \quad(D=1, \ldots, m ; I=m+1, \ldots, n)
$$

For an arbitrary differentiable function

$$
f=f(t, q, \dot{q})=f\left[t, q, \phi_{D}\left(t, q, \dot{q}_{I}\right), \dot{q}_{I}\right]=f_{o}\left(t, q, \dot{q}_{I}\right) \equiv f_{o}
$$

the following identity holds:

$$
\begin{aligned}
N_{I}\left(f_{o}\right) & =E_{I}\left(f_{o}\right)+\sum\left(\partial f_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \\
& \Rightarrow N_{I}\left(T_{o}\right)=E_{I}\left(T_{o}\right)+\sum\left(\partial T_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \\
& N_{I}\left(\dot{q}_{D}\right)=E_{I}\left(\dot{q}_{D}\right)+\sum\left(\partial \dot{q}_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)
\end{aligned}
$$

NIELSEN FORM OF SPECIAL NONLINEAR VORONETS

EQUATIONS

$$
N_{I}\left(T_{o}\right)-\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} N_{I}\left(\dot{q}_{D}\right)-2 \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)=Q_{I o}
$$

NIELSEN FORM OF SPECIAL NONLINEAR CHAPLYGIN

EQUATIONS

$$
\begin{aligned}
\partial \dot{T}_{o} / \partial \dot{q}_{I} & -2\left(\partial T_{o} / \partial q_{I}\right) \\
& -\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\partial \ddot{q}_{D} / \partial \dot{q}_{I}-2\left(\partial \dot{q}_{D} / \partial q_{I}\right)\right]=Q_{I o}
\end{aligned}
$$

Special Pfaffian \rightarrow Voronets form

$$
\dot{q}_{D}=\sum b_{D I}(t, q) \dot{q}_{I}+b_{D}(t, q)
$$

Then the above Voronets equations assume the special Nielsen form:

$$
\begin{aligned}
& \partial \dot{T}_{o} / \partial \dot{q}_{I}- 2\left(\partial T_{o} / \partial q_{I}\right) \\
&-\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left\{\sum\left[b_{I I^{\prime}}^{D}-2\left(\partial b_{D I^{\prime}} / \partial q_{I}\right)\right] \dot{q}_{I^{\prime}}+\left[b_{I}^{D}-2\left(\partial b_{D} / \partial q_{I}\right)\right]\right\} \\
&-2 \sum\left(\partial T / \partial q_{D}\right)_{o} b_{D I}=Q_{I o}
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{I I^{\prime}}^{D} \equiv \sum\left[\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I^{\prime}}+\left(\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}\right]+\left(\partial b_{D I} / \partial q_{I^{\prime}}+\partial b_{D I^{\prime}} / \partial q_{I}\right) \\
& b_{I}^{D} \equiv b_{I, n+1}^{D} \equiv \sum\left[\left(\partial b_{D} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}+\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime}}\right]+\left(\partial b_{D I} / \partial t+\partial b_{D} / \partial q_{I}\right)
\end{aligned}
$$

Special Voronets \rightarrow Chaplygin form

$$
\dot{q}_{D}=\sum b_{D I}\left(q_{I}\right) \dot{q}_{I}, \quad \text { and } \quad \partial T / \partial q_{D}=0
$$

Then the above Chaplygin equations assume the special Nielsen form:

$$
\begin{aligned}
& \partial \dot{T}_{o} / \partial \dot{q}_{I}-2\left(\partial T_{o} / \partial q_{I}\right)-\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left(\partial b_{D I} / \partial q_{I^{\prime}}-\partial b_{D I^{\prime}} / \partial q_{I}\right) \dot{q}_{I^{\prime}}=Q_{I o} \\
& {\left[b_{D}=0, \quad b^{D}{ }_{I}=0, \quad b^{D}{ }_{I I^{\prime}}=\partial b_{D I} / \partial q_{I^{\prime}}+\partial b_{D I^{\prime}} / \partial q_{I}\right]}
\end{aligned}
$$

NIELSEN FORMS OF HIGHER-ORDER EQUATIONS

Let

$$
\begin{aligned}
N_{k}^{(s)}(\ldots) & \equiv \partial\left({ }^{(s)} \ldots\right) / \partial q_{k}^{(s)}-2\left[\partial \left(_{(s-1)}^{(. .)} / \partial^{(s-1)} q_{k}\right.\right.
\end{aligned},
$$

Then, for any sufficiently differentiable function $f=f(t, q, \dot{q})$, and any $k=1,2, \ldots, n ; s=1,2,3, \ldots$,

$$
N_{k}^{(s)}(f)=E_{k}^{(s)}(f)
$$

Let

$$
\begin{aligned}
& N_{k}^{*(s)}(\ldots) \equiv \partial(\ldots) / \partial \stackrel{(s)}{\theta}_{k}-2\left[\partial(\ldots) / \partial^{(s-1)} \theta_{k}^{(s-1)}\right] \\
& E_{k}^{*}{ }^{(s)}(\ldots) \equiv d / d t\left[\partial\left(_{(s-1)}^{(s)}\right) / \partial \theta_{k}\right]-\left[\partial\left(^{(s-1)}\right) / \partial^{(s-1)} \theta_{k}\right]
\end{aligned}
$$

where

$$
\partial\left({ }^{(s-1)}\right) / \partial^{(s-1)} \theta_{k} \equiv \sum\left[\partial\left({ }^{(s-1)}\right) / \partial^{(s-1)} q_{l}\right]\left[\begin{array}{cc}
(s) & (s) \\
\partial q_{l} / \partial \theta_{k}
\end{array}\right]
$$

[(s)th-order quasi chain rule].
Then, for any sufficiently differentiable function $f^{*}=f^{*}(t, q, \omega)$, and any $k=1,2, \ldots, n ; s=1,2,3, \ldots$,

$$
N_{k}^{*(s)}\left(f^{*}\right)=E_{k}^{*(s)}\left(f^{*}\right)
$$

where

$$
\begin{aligned}
& f(t, q, \dot{q}) \Rightarrow \dot{f} \Rightarrow \ldots \stackrel{(s-1)}{f} \Rightarrow \stackrel{(s)}{f}, \\
& \stackrel{(s-1)}{f^{*}}=\stackrel{(s-1)}{f}\left[t, q, \dot{q} \equiv \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q} ; \stackrel{(s)}{q}_{q}(t, q, q, \ldots, \stackrel{(1)}{q}, \stackrel{(s-1)}{\theta})\right] \\
& =\stackrel{(s-1)}{f}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}), \\
& \stackrel{(s)}{f} *=\stackrel{(s)}{f}[t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q} ;(\stackrel{(s)}{q}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}) \stackrel{(s+1)}{q}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}, \stackrel{(s+1)}{\theta})] \\
& =\stackrel{(s)}{f}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}, \stackrel{(s+1)}{\theta}) \text {. }
\end{aligned}
$$

Hamel-type equations $(s=1,2,3, \ldots)$

$$
\begin{aligned}
(s) d / d t\left[\partial \stackrel{(s-1)}{T^{*}} / \partial \theta_{I}^{(s)}\right] & -\partial{ }^{(s-1)} T^{*} / \partial^{(s-1)} \theta_{I} \\
& -\sum\left[s\left(\partial \stackrel{(s)}{q_{k}} / \partial \theta_{I}\right) \cdot-\partial q_{k} / \partial^{(s-1)} \theta_{I}\right]\left(\partial^{(s-1)} T^{(s)} / \partial q_{k}\right)^{*} \\
& =\sum\left(\partial q_{k} / \partial \theta_{I}\right) Q_{k} \equiv \Theta_{I}
\end{aligned}
$$

Nielsen-type equations

$$
\begin{aligned}
(s)\left(\partial \stackrel{(s)}{T}^{*} / \partial \stackrel{(s)}{I}_{I}\right) & -(s+1)\left(\partial \partial^{(s-1)} T^{*} / \partial \partial^{(s-1)} \theta_{I}\right) \\
& -\sum\left[s\left(\partial \stackrel{(s+1)}{q_{k}} / \partial \theta_{I}^{(s)}\right)-(s+1)\left(\partial \stackrel{(s)}{q}_{k} / \partial \stackrel{(s-1)}{\theta_{I}}\right)\right]\left(\partial \stackrel{(s-1)}{T} / \partial q_{k}^{(s)}\right)^{*}=\Theta_{I}
\end{aligned}
$$

For $s=1$, the above yield, respectively,

$$
\begin{aligned}
& d / d t\left(\partial T^{*} / \partial \dot{\theta}_{I}\right)-\partial T^{*} / \partial \theta_{I} \\
&-\sum\left[\left(\partial \dot{q}_{k} / \partial \dot{\theta}_{I}\right)^{*}-\partial \dot{q}_{k} / \partial \theta_{I}\right]\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I}, \\
& \partial \dot{T}^{*} / \partial \dot{\theta}_{I}-2\left(\partial T^{*} / \partial \theta_{I}\right) \\
&-\sum\left[\partial \ddot{q}_{k} / \partial \dot{\theta}_{I}-2\left(\partial \dot{q}_{k} / \partial \theta_{I}\right)\right]\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} ;
\end{aligned}
$$

and, for $\boldsymbol{s}=2$,

$$
\begin{aligned}
2\left(\partial \dot{T}^{*} / \partial \ddot{\theta}_{I}\right)^{\cdot} & -\partial \dot{T}^{*} / \partial \dot{\theta}_{I} \\
& -\sum\left[2\left(\partial \ddot{q}_{k} / \partial \ddot{\theta}_{I}\right)^{\cdot}-\partial \ddot{q}_{k} / \partial \dot{\theta}_{I}\right]\left(\partial \dot{T} / \partial \ddot{q}_{k}\right)^{*}=\Theta_{I} \\
2\left(\partial \ddot{T}^{*} / \partial \ddot{\theta}_{I}\right) & -3\left(\partial \dot{T}^{*} / \partial \dot{\theta}_{I}\right) \\
& -\sum\left[2\left(\partial \dddot{q}_{k} / \partial \ddot{\theta}_{I}\right)-3\left(\partial \ddot{q}_{k} / \partial \dot{\theta}_{I}\right)\right]\left(\partial \dot{T} / \partial \ddot{q}_{k}\right)^{*}=\Theta_{I} .
\end{aligned}
$$

GAUSS' PRINCIPLE

Compulsion

$$
\begin{aligned}
& Z \equiv(1 / 2) \boldsymbol{S} d m[\boldsymbol{a}-(d \boldsymbol{F} / d m)]^{2} \equiv(1 / 2) \boldsymbol{S}(1 / d m)(d m \boldsymbol{a}-d \boldsymbol{F})^{2} \\
& \begin{aligned}
{\left[\equiv(1 / 2) \boldsymbol{S}(d \boldsymbol{R})^{2} / d m\right.} & \left.=\boldsymbol{S}(-d \boldsymbol{R})^{2} / 2 d m=\boldsymbol{S}(\text { Lost force })^{2} / 2 d m \geq 0\right] \\
& =S-\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{a}+\text { terms not containing accelerations, }
\end{aligned}
\end{aligned}
$$

where

$$
S=(1 / 2) \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{a}: \text { Appellian. }
$$

Gauss' principle

$$
\delta^{\prime \prime} Z=0,
$$

where

$$
\begin{aligned}
& \delta^{\prime \prime} t=0, \quad \delta^{\prime \prime} \boldsymbol{r}=\mathbf{0}, \quad \delta^{\prime \prime} \boldsymbol{v}=\mathbf{0}, \quad \delta^{\prime \prime}(d \boldsymbol{F})=\mathbf{0}, \quad \text { but } \delta^{\prime \prime} \boldsymbol{a} \neq \mathbf{0} \\
& {\left[d \boldsymbol{F}=d \boldsymbol{F}(t, \boldsymbol{r}, \boldsymbol{v}) \Rightarrow \delta^{\prime \prime}(d \boldsymbol{F})=\mathbf{0}, \quad \delta^{\prime \prime} Q_{k}=0\right]} \\
& \boldsymbol{a}=\sum \boldsymbol{e}_{k} \ddot{q}_{k}+\text { no } \ddot{q} \text {-terms }=\sum \varepsilon_{I} \dot{\omega}_{I}+\text { no } \dot{\omega} \text {-terms }, \\
& \Rightarrow \delta^{\prime \prime} \boldsymbol{a}=\sum \boldsymbol{e}_{k} \delta \ddot{q}_{k}=\sum \varepsilon_{I} \delta \dot{\omega}_{I},
\end{aligned}
$$

and so, explicitly,

$$
\begin{aligned}
\delta^{\prime \prime} Z & =(1 / 2) \boldsymbol{S} d m 2[\boldsymbol{a}-(d \boldsymbol{F} / d m)] \cdot \delta^{\prime \prime} \boldsymbol{a} \\
& =\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime \prime} \boldsymbol{a} \\
& =\boldsymbol{S}(d \boldsymbol{R} / d m) \cdot \delta^{\prime \prime}(d \boldsymbol{R})=\boldsymbol{S}(d \boldsymbol{R} / d m) \cdot \delta^{\prime \prime}(d m \boldsymbol{a}-d \boldsymbol{F}) \\
& =\boldsymbol{S}(d \boldsymbol{R} / d m) \cdot d m \delta^{\prime \prime} \boldsymbol{a}=\boldsymbol{S} d \boldsymbol{R} \cdot \delta^{\prime \prime} \boldsymbol{a}=0 .
\end{aligned}
$$

COMPATIBILITY BETWEEN THE PRINCIPLES OF GAUSS
AND LAGRANGE

$$
\begin{aligned}
\delta q_{k} & \equiv \sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \delta \theta_{l}, \\
\delta \theta_{I} & \equiv \sum\left(\partial \omega_{I} / \partial \dot{q}_{k}\right) \delta q_{k} \equiv \sum\left(\partial f_{I} / \partial \dot{q}_{k}\right) \delta q_{k} \neq 0
\end{aligned}
$$

Also,

$$
\delta f_{D} \equiv \delta \omega_{D}=\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \delta \boldsymbol{r}=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0
$$

instead of the formal (calculus of variations) definition

$$
\delta f_{D}=\sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta \dot{q}_{k}=0
$$

The same conclusion can be reached by requiring compatibility between the principles of Lagrange and Jourdain.

EQUATIONS OF MOTION

$$
\delta^{\prime \prime} Z+\sum \lambda_{D} \delta^{\prime \prime} \dot{f}_{D}=0
$$

where

$$
\begin{aligned}
\delta^{\prime \prime} Z & =\sum\left[E_{k}(T)-Q_{k}\right] \delta \ddot{q}_{k} & & \text { (Holonomic system variables) } \\
& =\sum\left(\partial S^{*} / \partial \dot{\omega}_{k}-\Theta_{k}\right) \delta\left(\dot{\omega}_{k}\right) & & \text { (Nonholonomic system variables) }
\end{aligned}
$$

$$
\begin{array}{rlr}
\delta^{\prime \prime}\left(\dot{f}_{D}\right) & =\delta^{\prime \prime}\left\{\partial f_{D} / \partial t+\boldsymbol{S}\left[\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}+\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \boldsymbol{a}\right]\right\} \\
& =\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \delta \boldsymbol{a} \quad & \text { (Particle form) } \\
& =\delta^{\prime \prime}\left\{\partial f_{D} / \partial t+\sum\left[\left(\partial f_{D} / \partial q_{k}\right) \dot{q}_{k}+\left(\partial f_{D} / \partial \dot{q}_{k}\right) \ddot{q}_{k}\right]\right\} \\
& =\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta \ddot{q}_{k} \quad & \text { (Holonomic system variables) }
\end{array}
$$

MINIMALITY OF THE COMPULSION

$$
\begin{aligned}
\Delta^{\prime \prime} Z & \equiv Z\left(\boldsymbol{a}+\delta^{\prime \prime} \boldsymbol{a}\right)-Z(\boldsymbol{a}) \\
& =(1 / 2) \boldsymbol{S} d m\left[\left(\boldsymbol{a}+\delta^{\prime \prime} \boldsymbol{a}\right)-(d \boldsymbol{F} / d m)\right]^{2}-(1 / 2) \boldsymbol{S} d m[\boldsymbol{a}-(d \boldsymbol{F} / d m)]^{2} \\
& =\delta^{\prime \prime} Z+(1 / 2) \delta^{\prime \prime 2} Z \geq 0,
\end{aligned}
$$

where

$$
\begin{array}{ll}
\delta^{\prime \prime} Z=\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime \prime} \boldsymbol{a} & (=0) \\
\delta^{\prime \prime 2} Z=\boldsymbol{S}\left(d m \delta^{\prime \prime} \boldsymbol{a} \cdot \delta^{\prime \prime} \boldsymbol{a}\right) & (\geq 0)
\end{array}
$$

Chapter 7: Time-Integral Theorems and Variational Principles

GENERALIZED HOLONOMIC VIRIAL IDENTITY

$$
\begin{aligned}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{z}_{k}+\sum\left(\partial T / \partial q_{k}\right.\right. & \left.\left.+Q_{k}+\sum \lambda_{D} a_{D k}\right) z_{k}\right\} d t \\
& =\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) z_{k}\right\}_{1}^{2}
\end{aligned}
$$

[$z_{k}=z_{k}(t)$: arbitrary functions, but as well behaved as needed; and integral extends from t_{1} to t_{2} (arbitrary time limits).
Specializations
$z_{k} \rightarrow \delta q_{k}\left[\right.$ virtual displacement of $q_{k} ;$ and assuming $\left.\delta \dot{q}_{k}=\left(\delta q_{k}\right){ }^{\circ}\right]$:

$$
\int\left(\delta T+\delta^{\prime} W\right) d t=\left\{\sum p_{k} \delta q_{k}\right\}_{1}^{2},
$$

[Hamilton's law of virtually/vertically varying action]
$z_{k} \rightarrow \Delta q_{k}=\delta q_{k}+\dot{q}_{k} \Delta t$ (noncontemporaneous, or skew, or oblique, variation of q_{k}):

$$
\begin{array}{r}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\Delta q_{k}\right)^{\cdot}+\sum\left(\partial T / \partial q_{k}+Q_{k}\right) \Delta q_{k}-\sum \lambda_{D} a_{D} \Delta_{D}\right\} d t \\
=\left\{\sum p_{k} \Delta \dot{q}_{k}\right\}_{1}^{2}
\end{array}
$$

[Hamilton's law of skew-varying action]

$$
\left(\Delta q_{k}\right)^{\cdot}-\Delta\left(\dot{q}_{k}\right)=\dot{q}_{k}(\Delta t)^{\cdot} \quad\left[\text { i.e., } \Delta(\ldots) \text { and }(\ldots)^{\cdot} \text { do not commute }\right]
$$

$z_{k} \rightarrow q_{k}$ (actual system coordinate):

$$
\begin{array}{r}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}+\sum\left(\partial T / \partial q_{k}+Q_{k}+\sum \lambda_{D} a_{D k}\right) q_{k}\right\} d t \\
=\left\{\sum p_{k} q_{k}\right\}_{1}^{2}
\end{array}
$$

[Virial theorem (of Clausius, Szily et al.)]
$z_{k} \rightarrow \dot{q}_{k}$ (actual system velocity): power theorem in holonomic variables.
GENERALIZED NONHOLONOMIC VIRIAL IDENTITY

$$
\begin{aligned}
& \int\left(\sum\left(\partial T^{*} / \partial \omega_{k}\right) \dot{z}_{k}+\sum\left(\partial T^{*} / \partial \theta_{k}\right) z_{k}-\sum \sum h_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) z_{k}\right. \\
& \left.+\sum\left(\Theta_{k}+\Lambda_{k}\right) z_{k}\right) d t=\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) z_{k}\right\}_{1}^{2}
\end{aligned}
$$

Specializations
$z_{k} \rightarrow \delta \theta_{k}$ (recalling that $\delta \theta_{D}=0, \delta \theta_{n+1} \equiv \delta t=0$, while $\delta \theta_{I} \neq 0$):

$$
\int\left(\delta T^{*}+\sum \Theta_{I} \delta \theta_{I}\right) d t=\left\{\sum P_{I} \delta \theta_{I}\right\}_{1}^{2}
$$

[Hamilton's law of virtual and nonholonomic action].
$z_{k} \rightarrow \dot{\theta}_{k} \equiv \omega_{k}$ (recalling that $\omega_{D}=0$): power theorem in nonholonomic variables.
$z_{k} \rightarrow \theta_{k}$: This case is meaningless because there is no such thing as θ_{k}.
$z_{k} \rightarrow \dot{\omega}_{k}$: This case does not seem to lead to any readily useful and identifiable result.
$z_{k} \rightarrow \Delta \theta_{k}:$

$$
\begin{aligned}
& {\left[\equiv \delta \theta_{b}+\dot{\theta}_{b} \Delta t \equiv \delta \theta_{b}+\omega_{b} \Delta t\right.} \\
& \qquad \begin{aligned}
\Rightarrow & \left.\left(\Delta \theta_{b}\right)^{\cdot}-\Delta \omega_{b}=\left(\delta \theta_{b}\right)^{\cdot}-\delta\left(\dot{\theta}_{b}\right)+\omega_{b}(\Delta t)^{*}=\sum h_{k}^{b} \delta \theta_{k}+\omega_{b}(\Delta t)^{\cdot}\right] \\
& \int\left\{\sum\left(\partial T^{*} / \partial \theta_{k}\right) \Delta \theta_{k}+\sum\left(\partial T^{*} / \partial \omega_{k}\right) \Delta \omega_{k}\right. \\
& \left.+\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left[\omega_{k}(\Delta t)^{\cdot}-\sum \gamma_{b}^{k} \omega_{b} \Delta t\right]+\sum\left(\Theta_{k}+\Lambda_{k}\right) \Delta \theta_{k}\right\} d t \\
& =\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \Delta \theta_{k}\right\}_{1}^{2}
\end{aligned}
\end{aligned}
$$

[Hamilton's law of skew-varying action in nonholonomic variables].

NONLINEAR NONHOLONOMIC CONSTRAINTS;
HOLONOMIC VARIABLES

$$
\begin{array}{r}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{z}_{k}+\sum\left[\partial T / \partial q_{k}+Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)\right] z_{k}\right\} d t \\
=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) z_{k}\right\}_{1}^{2}
\end{array}
$$

Specializations
$z_{k} \rightarrow q_{k}$ (Virial theorem):

$$
\begin{array}{r}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}+\sum\left[\partial T / \partial q_{k}+Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)\right] q_{k}\right\} d t \\
=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) q_{k}\right\}_{1}^{2}
\end{array}
$$

$z_{k} \rightarrow \dot{q}_{k}$ (Nonlinear (nonpotential) generalized power equation):

$$
\begin{aligned}
& d / d t\left(\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T\right) \\
& \quad=-\partial T / \partial t+\sum Q_{k} \dot{q}_{k}+\sum \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \dot{q}_{k}
\end{aligned}
$$

$z_{k} \rightarrow \delta q_{k}$ (Hamilton's law of varying action);
$z_{k} \rightarrow \Delta q_{k}$ (Hamilton's law of skew-varying action):

$$
\begin{aligned}
& \int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\Delta q_{k}\right)^{\cdot}+\sum\left(\partial T / \partial q_{k}+Q_{k}\right) \Delta q_{k}\right. \\
& \left.+\left(\sum \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \dot{q}_{k}\right) \Delta t\right\} d t \\
& =\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) z_{k}\right\}_{1}^{2}
\end{aligned}
$$

NONLINEAR NONHOLONOMIC CONSTRAINTS;
NONHOLONOMIC VARIABLES

$$
\int\left(\delta T^{*}+\delta^{\prime} W\right) d t=\left\{\sum P_{k} \delta \theta_{k}\right\}_{1}^{2}
$$

where

$$
\begin{aligned}
& \delta T^{*}=\cdots=\left(\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right)^{\cdot}-\sum\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot} \delta \theta_{k} \\
& \quad-\sum \sum H_{b}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{b}+\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k} \\
& \Rightarrow \delta \delta T^{*} d t \\
&=-\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}+\sum H_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right)\right] \delta \theta_{k} d t \\
&+\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right\}_{1}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b}=\sum E_{s}\left(\omega_{b}\right) \delta q_{s}=\sum \sum E_{s}\left(\omega_{b}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right) \delta \theta_{k} \equiv \sum H_{k}^{b} \delta \theta_{k} \\
&=-\sum \sum E_{k}\left(\dot{q}_{l}\right)\left(\partial \omega_{b} / \partial \dot{q}_{l}\right) \delta \theta_{k} \equiv-\sum \sum V_{k}^{l}\left(\partial \omega_{b} / \partial \dot{q}_{l}\right) \delta \theta_{k}, \\
& \Gamma_{k}=-\sum H_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right)=\sum V_{k}^{b}\left(\partial T / \partial \dot{q}_{b}\right)^{*}
\end{aligned}
$$

[assuming again that $\left.\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)\right]$.

GENERAL INTEGRAL EQUATIONS

$$
\begin{aligned}
& \int\{\delta T\left.+\sum\left(\partial T / \partial \dot{q}_{k}\right)\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]+\delta^{\prime} W\right\} d t \\
&= \int\left\{\delta T+\delta^{\prime} W+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum \sum V_{b}^{k} p_{k} \delta \theta_{b}\right\} d t \\
&=\int\left\{\delta T+\delta^{\prime} W+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{-}-\delta \omega_{k}\right]-\sum \sum H_{b}^{k} P_{k} \delta \theta_{b}\right\} d t \\
&=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)=\sum\left(\partial \dot{q}_{k} / \partial \omega_{b}\right)\left[\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b}\right]+\sum V_{b}^{k} \delta \theta_{b} \\
& \quad=\sum\left(\partial \dot{q}_{k} / \partial \omega_{b}\right)\left[\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b}\right]-\sum \sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) H_{b}^{l} \delta \theta_{b} \\
& T=T[t, q, \dot{q}(t, q, \omega)] \equiv T^{*}(t, q, \omega) \equiv T^{*} .
\end{aligned}
$$

The above yield the "equation of motion forms" [without the assumption $\left.\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)\right]:$

$$
\begin{aligned}
-\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}\right. & -\partial T^{*} / \partial \theta_{k} \\
& \left.-\sum\left(\partial T / \partial \dot{q}_{b}\right)^{*} V_{k}^{b}-\Theta_{k}\right] \delta \theta_{k} d t=0 \\
-\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}\right. & -\partial T^{*} / \partial \theta_{k} \\
& \left.+\sum\left(\partial T^{*} / \partial \omega_{b}\right) H_{k}^{b}-\Theta_{k}\right] \delta \theta_{k} d t=0
\end{aligned}
$$

HÖLDER-VORONETS-HAMEL VIEWPOINT
$\left(\delta q_{k}\right)^{\cdot}=\delta \dot{q}_{k}$, whether the δq_{k} are further constrained or not. Then, with: $\delta^{\prime} W^{*} \equiv \sum \Theta_{k} \delta \theta_{k}$, the above yield

$$
\begin{aligned}
\int\left(\delta T+\delta^{\prime} W\right) d t & =\int\left(\delta T^{*}+\delta^{\prime} W^{*}\right) d t \\
& =\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right\}_{1}^{2}
\end{aligned}
$$

CONSTRAINED INTEGRAL FORMS

[i.e., in terms of $T^{*} \rightarrow T^{*}{ }_{o}=T^{*}\left(t, q, \omega_{I}\right)$]
Generally:

$$
\begin{aligned}
& \delta T^{*}=\delta T_{o}^{*}+\sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \delta \omega_{D}, \\
& \delta T_{o}^{*}=\sum\left(\partial T_{o}^{*} / \partial \theta_{I}\right) \delta \theta_{I}+\sum\left(\partial T_{o}^{*} / \partial \omega_{I}\right) \delta \omega_{I}
\end{aligned}
$$

Under the Hölder-Voronets-Hamel viewpoint:

$$
\begin{aligned}
& \delta\left(\dot{q}_{k}\right)=\left(\delta q_{k}\right)^{\cdot}, \quad \delta \theta_{D}=0, \quad d\left(\delta \theta_{D}\right)=0 \Rightarrow\left(\delta \theta_{D}\right)^{\cdot}=0 ; \\
& \text { but } \quad \delta\left(d \theta_{D}\right) \neq 0, \quad \delta \omega_{D}=\sum \sum V_{I}^{k}\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta \theta_{I}=-\sum H_{I}^{D} \delta \theta_{I} \neq 0, \\
& \text { and } \quad \delta \omega_{I}=\left(\delta \theta_{I}\right)^{\cdot}-\sum H_{I^{\prime}}^{I} \delta \theta_{I^{\prime}} ;
\end{aligned}
$$

we obtain the constrained integral equation

$$
\begin{aligned}
& \int\left[\delta T_{o}^{*}+\sum \sum\left(\partial T / \partial \dot{q}_{k}\right)_{o} V_{I}^{k} \delta \theta_{I}+\delta^{\prime} W_{o}^{*}\right] d t \\
& =\int\left[\delta T_{o}^{*}-\sum \sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o} H_{I}^{D} \delta \theta_{I}+\delta^{\prime} W_{o}^{*}\right] d t \\
& =\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} .
\end{aligned}
$$

Special form of the constraints:

$$
\begin{aligned}
& \dot{q}_{D}=\phi_{D}\left(t, q, \dot{q}_{I}\right) \\
& \Rightarrow \omega_{D} \equiv \dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)=0, \quad \omega_{I} \equiv \dot{q}_{I} \neq 0, \\
& \dot{q}_{D}=\omega_{D}+\phi_{D}\left[t, q, \dot{q}_{I}\left(t, q, \omega_{I}\right)\right]=\omega_{D}+\phi_{D}\left(t, q, \omega_{I}\right), \\
& \delta \theta_{D}=\delta q_{D}-\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}=0, \quad \delta \theta_{I}=\delta q_{I} \neq 0 .
\end{aligned}
$$

Suslov transitivity assumptions and integral equation:

$$
\left(\delta q_{D}\right)^{\cdot} \neq \delta\left(\dot{q}_{D}\right), \quad\left(\delta q_{I}\right)^{\cdot}-\delta\left(\dot{q}_{I}\right)=0
$$

but

$$
\delta\left(d \theta_{D}\right)=0
$$

or

$$
\begin{aligned}
& \delta \omega_{D}=\delta\left(\dot{q}_{D}-\phi_{D}\right)=\delta\left(\dot{q}_{D}\right)-\delta \phi_{D}=0 \quad\left[\operatorname{and}\left(\delta \theta_{D}\right)^{\cdot}=0\right] \\
& \Rightarrow \delta\left(\dot{q}_{D}\right)=\delta \phi_{D} \quad\left[\text { definition of } \delta\left(\dot{q}_{D}\right)\right] ; \\
& \Rightarrow\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)=\left(\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right)-\delta \phi_{D} \\
&=\cdots=\sum E_{(I)}\left(\phi_{D}\right) \delta q_{I} \equiv \sum W_{I}^{D} \delta q_{I} \neq 0
\end{aligned}
$$

$$
\Rightarrow \delta T=\delta T_{o}
$$

Suslov principle:

$$
\begin{array}{r}
\int\left\{\delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\left(\delta q_{D}\right)^{\cdot}-\delta \phi_{D}\right]+\delta^{\prime} W_{o}\right\} d t \\
=\int\left\{\delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right) W^{D}{ }_{I} \delta q_{I}+\delta^{\prime} W_{o}\right\} d t \\
=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}
\end{array}
$$

Hölder-Voronets-Hamel transitivity assumptions:

$$
\delta\left(\dot{q}_{k}\right)=\left(\delta q_{k}\right)^{\cdot}, \quad \delta \theta_{D}=0, \quad d\left(\delta \theta_{D}\right)=0 \Rightarrow\left(\delta \theta_{D}\right)^{\cdot}=0 ;
$$

but

$$
\delta\left(d \theta_{D}\right) \neq 0
$$

or

$$
\begin{aligned}
\delta \omega_{D} & =\delta\left(\dot{q}_{D}-\phi_{D}\right)=\delta\left(\dot{q}_{D}\right)-\delta \phi_{D}=\left(\delta q_{D}\right)^{\cdot}-\delta \phi_{D} \\
& \left.=\sum E_{(I)}\left(\phi_{D}\right) \delta q_{I} \equiv \sum W_{I}^{D} \delta q_{I} \neq 0 \quad \text { [definition of } \delta\left(\dot{q}_{D}\right)\right] ; \\
& \Rightarrow \delta T=\delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right) W_{I}^{D} \delta q_{I} .
\end{aligned}
$$

Voronets principle:

$$
\begin{array}{r}
\int\left[\delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right) W_{I}^{D} \delta q_{I}+\delta^{\prime} W_{o}\right] d t \\
=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}
\end{array}
$$

In both cases:

$$
\begin{aligned}
& T \rightarrow T_{o}\left(t, q, \dot{q}_{I}\right) \rightarrow \delta T_{o}(\text { variation of constrained } T), \\
& \partial T / \partial \dot{q}_{D} \rightarrow\left(\partial T / \partial \dot{q}_{D}\right)_{o}=p_{D}\left[t, q, \dot{q}_{I}, \phi_{D}\left(t, q, \dot{q}_{I}\right)\right] \equiv p_{D, o}\left(t, q, \dot{q}_{I}\right) \equiv p_{D o}, \\
& \left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}=\cdots=\left\{\sum(\ldots)_{I} \delta q_{I}\right\}_{I}^{2}, \\
& \delta^{\prime} W_{o} \equiv \sum Q_{I o} \delta q_{I} .
\end{aligned}
$$

NONCONTEMPORANEOUS VARIATIONS AND RELATED
THEOREMS
Definition:

$$
\begin{aligned}
\Delta(\ldots) & \equiv \delta(\ldots)+[d(\ldots) / d t] \Delta t: \text { noncontemporaneous variation operator } \\
& \Rightarrow \Delta q_{k}=\delta q_{k}+\dot{q}_{k} \Delta t, \quad \Delta t=\delta t+(d t / d t) \Delta t=0+(1) \Delta t=\Delta t
\end{aligned}
$$

Basic identities:

$$
\begin{aligned}
& \Delta \int(\ldots) d t=\int \delta(\ldots) d t+\{(\ldots) \Delta t\}_{1}^{2} \\
& =\int\{\Delta(\ldots)+(\ldots)[d(\Delta t) / d t]\} d t \\
& =\int[\Delta(\ldots) d t+(\ldots) d(\Delta t)], \\
& \int \Delta(\ldots) d t=\int\{\delta(\ldots)-(\ldots)[d(\Delta t) / d t]\} d t+\{(\ldots) \Delta t\}_{1}^{2} \\
& =\int[\delta(\ldots) d t-(\ldots) d(\Delta t)]+\{(\ldots) \Delta t\}_{1}^{2} ; \\
& \Rightarrow \Delta \int(\ldots) d t-\int \Delta(\ldots) d t=\int(\ldots) d(\Delta t) \\
& =\int\{(\ldots)[d(\Delta t) / d t]\} d t ; \\
& \Delta \int(\ldots) d t=\cdots=-\int \sum E_{k}(\ldots) \Delta q_{k} d t \\
& +\int[d h(\ldots) / d t+\partial(\ldots) / \partial t] \Delta t d t \\
& +\left\{\sum\left(\partial \ldots / \partial \dot{q}_{k}\right) \Delta q_{k}-h(\ldots) \Delta t\right\}_{1}^{2} \\
& =-\int \sum E_{k}(\ldots) \delta q_{k} d t+\left\{\sum\left(\partial \ldots / \partial \dot{q}_{k}\right) \Delta q_{k}-h(\ldots) \Delta t\right\}_{1}^{2} \\
& =-\int \sum E_{k}(\ldots) \delta q_{k} d t+\left\{\sum\left(\partial \ldots / \partial \dot{q}_{k}\right) \delta q_{k}+(\ldots) \Delta t\right\}_{1}^{2} ;
\end{aligned}
$$

where

$$
h(\ldots) \equiv \sum\left[\partial(\ldots) / \partial \dot{q}_{k}\right] \dot{q}_{k}-(\ldots): \text { generalized energy operator. }
$$

With

$$
\begin{aligned}
& h \equiv h(L) \equiv \sum p_{k} \dot{q}_{k}-L=h(t, q, \dot{q}): \text { generalized energy } \\
& A_{H} \equiv \int(T-V) d t \equiv \int L d t: \text { Hamiltonian action (functional) } \\
& A_{L} \equiv \int 2 T d t: \text { Lagrangean action (functional) } \\
& E \equiv T+V: \text { total energy of the system; }
\end{aligned}
$$

we have the following mechanical integral theorems:

$$
\Delta \int T d t+\int \delta^{\prime} W d t=\left\{\sum p_{k} \Delta q_{k}+\left(T-\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{1}^{2},
$$

$$
\begin{aligned}
& \Delta A_{H}+\int \delta^{\prime} W_{n p} d t=\left\{\sum p_{k} \Delta q_{k}-h \Delta t\right\}_{1}^{2} \\
& =\left\{\sum p_{k} \delta q_{k}+L \Delta t\right\}_{1}^{2}, \\
& \Delta A_{L}-\int\left(\delta E-\delta^{\prime} W_{n p}\right) d t=\left\{\sum p_{k} \Delta q_{k}-\left(\sum p_{k} \dot{q}_{k}-2 T\right) \Delta t\right\}_{1}^{2} \\
& =\left\{\sum p_{k} \delta q_{k}+2 T \Delta t\right\}_{1}^{2}, \\
& \Delta \int E d t=\int \delta E d t+\{E \Delta t\}_{1}^{2}, \\
& \Delta \int 2 T d t=\int\left(\delta E-\delta^{\prime} W_{n p}\right) d t \\
& +\left\{\sum p_{k} \Delta q_{k}+\left(2 T-\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{1}^{2}, \\
& \Delta \int 2 V d t=\int\left(\delta E+\delta^{\prime} W_{n p}\right) d t \\
& +\left\{-\sum p_{k} \Delta q_{k}+\left(2 V+\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{1}^{2}, \\
& \int\left[\Delta T+2 T(\Delta t)^{\cdot}+\dot{T} \Delta t\right] d t+\int \delta^{\prime} W d t \\
& =\int\left[\Delta T d t+2 T d(\Delta t)+d T \Delta t+\delta^{\prime} W d t\right] \\
& =\left\{\sum p_{k} \delta q_{k}+(2 T) \Delta t\right\}_{1}^{2} \\
& =\left\{\sum p_{k} \Delta q_{k}-\left(\sum p_{k} \dot{q}_{k}-2 T\right) \Delta t\right\}_{1}^{2}
\end{aligned}
$$

SECOND (VIRTUAL) VARIATION OF A_{H}
Total (virtual) variation:

$$
\delta^{T} A_{H} \equiv A_{H}(q+\delta q)-A_{H}(q)=\delta A_{H}+(1 / 2) \delta^{2} A_{H}+\cdots
$$

First (virtual) variation:

$$
\delta A_{H}=\int \delta L d t=\cdots=-\int E(q) \delta q d t+\{p \delta q\}_{1}^{2}
$$

Second (virtual) variation (one Lagrangean coordinate):

$$
\begin{aligned}
\delta^{2} A_{H} \equiv \delta\left(\delta A_{H}\right) & =\int \delta^{2} L d t \\
& =\cdots=-\int J(\delta q) \delta q d t+\{\delta p \delta q\}_{1}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\delta^{2} L & \equiv \delta(\delta L)=[(\partial / \partial q) \delta q+(\partial / \partial \dot{q}) \delta(\dot{q})]^{2} L \\
& =\cdots=\left(\partial^{2} L / \partial \dot{q}^{2}\right)(\delta \dot{q})^{2}+2\left(\partial^{2} L / \partial q \partial \dot{q}\right) \delta q \delta \dot{q}+\left(\partial^{2} L / \partial q^{2}\right)(\delta q)^{2}
\end{aligned}
$$

Jacobi's variational equation:

$$
\begin{aligned}
J(\delta q) & =\{d / d t[\partial / \partial(\delta \dot{q})]-[\partial / \partial(\delta q)]\}(1 / 2) \delta^{2} L \\
& =\left(\partial^{2} L / \partial \dot{q}^{2}\right) \delta \ddot{q}+\left(\partial^{2} L / \partial \dot{q}^{2}\right)^{\cdot} \delta \dot{q}+\left[\left(\partial^{2} L / \partial q \partial \dot{q}\right)^{\cdot}-\left(\partial^{2} L / \partial q^{2}\right)\right] \delta q \\
& =d / d t\left[\left(\partial^{2} L / \partial \dot{q}^{2}\right) \delta \dot{q}\right]-\left[\partial^{2} L / \partial q^{2}-d / d t\left(\partial^{2} L / \partial q \partial \dot{q}\right)\right] \delta q=0
\end{aligned}
$$

Equivalently:

$$
\begin{aligned}
E[L(t, q+\delta q, \dot{q}+\delta \dot{q})]-E[L(t, q, \dot{q})] & \approx \delta E(q, \delta q) \quad(\text { to first-order }) \\
& =J(\delta q ; q) \equiv J(\delta q)
\end{aligned}
$$

Chapter 8: Hamiltonian/Canonical Methods

CONJUGATE (HAMILTONIAN) KINETIC ENERGY

$$
\begin{aligned}
T^{\prime} & \left.\equiv\left(\sum p_{k} \dot{q}_{k}-T\right)\right|_{\dot{q}=\dot{q}(t, q, p)}=\sum p_{k} \dot{q}_{k}(t, q, p)-T_{(q p)} \equiv T^{\prime}(t, q, p) \\
{[} & =\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T=\left(2 T_{2}+T_{1}\right)-\left(T_{2}+T_{1}+T_{0}\right)=T_{2}-T_{0}
\end{aligned}
$$

i.e., if $T=T_{2}$ (e.g., stationary constraints), then $\left.T^{\prime}=T\right]$

CANONICAL, OR HAMILTONIAN, CENTRAL EQUATION

$$
\sum\left(d p_{k} / d t+\partial T^{\prime} / \partial q_{k}-Q_{k}\right) \delta q_{k}+\sum\left(d q_{k} / d t-\partial T^{\prime} / \partial p_{k}\right) \delta p_{k}=0
$$

CANONICAL, OR HAMILTONIAN, EQUATIONS OF MOTION

(for unconstrained variations)

$$
\begin{aligned}
& d p_{k} / d t=-\left(\partial T^{\prime} / \partial q_{k}\right)+Q_{k} \quad\left(=\partial T / \partial q_{k}+Q_{k} \Rightarrow \partial T / \partial q_{k}=-\partial T^{\prime} / \partial q_{k}\right) \\
& d q_{k} / d t=\partial T^{\prime} / \partial p_{k}
\end{aligned}
$$

If $Q_{k}=-\partial V(t, q) / \partial q_{k}$, the above assume the antisymmetrical form:

$$
d p_{k} / d t=-\partial H / \partial q_{k}, \quad d q_{k} / d t=\partial H / \partial p_{k}
$$

where

$$
\begin{aligned}
H \equiv T^{\prime}+V & =\left.\left(\sum p_{k} \dot{q}_{k}-T+V\right)\right|_{\dot{q}=\dot{q}(t, q, p)} \equiv \sum p_{k} \dot{q}_{k}(t, q, p)-\left(T_{(q p)}-V\right) \\
& =\left.\left(\sum p_{k} \dot{q}_{k}-L\right)\right|_{\dot{q}=\dot{q}(t, q, p)} \equiv \sum p_{k} \dot{q}_{k}(t, q, p)-L_{(q p)} \\
& \equiv H(t, q, p): \text { Hamiltonian of system (function of } 2 n+1 \text { arguments). }
\end{aligned}
$$

If both potential and nonpotential forces $\left(Q_{k}\right)$ are present, the above are replaced by

$$
d p_{k} / d t=-\partial H / \partial q_{k}+Q_{k}, \quad d q_{k} / d t=\partial H / \partial p_{k}
$$

also,

$$
\partial H / \partial q_{k}=-\partial L / \partial q_{k} \quad \text { and } \quad \partial L / \partial t=-\partial H / \partial t
$$

For stationary (holonomic) constraints,

$$
H=T(t, q, p)+V_{0}(t, q) \equiv E(t, q, p)=\text { total energy, in Hamiltonian variables. }
$$

In all cases, the following kinematico-inertial identities hold:

$$
\begin{array}{lcc}
\partial T^{\prime} / \partial t=-\partial T / \partial t, & \partial T^{\prime} / \partial q_{k}=-\partial T / \partial q_{k}, & \partial T^{\prime} / \partial p_{k}=d q_{k} / d t \\
\partial H / \partial t=-\partial L / \partial t, & \partial H / \partial q_{k}=-\partial L / \partial q_{k}, & \partial H / \partial p_{k}=d q_{k} / d t
\end{array}
$$

LEGENDRE TRANSFORMATION (LT)

An LT transforms a function $Y(\ldots, y, \ldots)$ into its conjugate function $Z(\ldots, z, \ldots)$, where $z=\partial Y / \partial y$, so that $\partial Z / \partial z=y$. Here in dynamics we have the following identifications:

$$
\begin{aligned}
& Y(\ldots) \rightarrow L, \quad \ldots \rightarrow q, t, \quad y \rightarrow \dot{q}, \quad z=\partial Y / \partial y \rightarrow p=\partial L / \partial \dot{q}, \\
& Z(\ldots) \rightarrow H, \quad \partial Z / \partial z=y \rightarrow \partial H / \partial p=\dot{q} .
\end{aligned}
$$

POWER THEOREM

$$
d H / d t=\partial H / \partial t+\sum Q_{k} \dot{q}_{k}
$$

If $\partial H / \partial t=0$ (e.g., stationary constraints) and $Q_{k}=0$ (e.g., potential forces), then the Hamiltonian energy of the system is conserved:

$$
H=H(q, p)=\text { constant } .
$$

CANONICAL ROUTH-VOSS EQUATIONS

Under the m Pfaffian constraints

$$
\sum a_{D k} \delta q_{k}=0
$$

the canonical equations are

$$
\begin{aligned}
& d p_{k} / d t=-\partial T^{\prime} / \partial q_{k}+Q_{k}+\sum \lambda_{D} a_{D k}=-\partial H / \partial q_{k}+Q_{k, \text { nonpotential }}+\sum \lambda_{D} a_{D k} \\
& d q_{k} / d t=\partial T^{\prime} / \partial p_{k}\left(=\partial H / \partial p_{k}\right)
\end{aligned}
$$

ROUTH'S EQUATIONS

Ignorable (or cyclic) coordinates and momenta

$$
\left(q_{1}, \ldots, q_{M}\right) \equiv\left(\psi_{1}, \ldots, \psi_{M}\right) \equiv\left(\psi_{i}\right) \equiv \psi, \quad\left(p_{1}, \ldots, p_{M}\right) \equiv\left(\Psi_{1}, \ldots, \Psi_{M}\right) \equiv\left(\Psi_{i}\right) \equiv \Psi
$$

Positional (or palpable) coordinates and velocities

$$
\left(q_{M+1}, \ldots, q_{n}\right) \equiv\left(q_{p}\right) \equiv q \quad\left(\dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \equiv\left(\dot{q}_{p}\right) \equiv \dot{q}
$$

Kinetic energy

$$
\begin{aligned}
T & \equiv T\left(t ; \psi_{1}, \ldots, \psi_{M} ; q_{M+1}, \ldots, q_{n} ; \dot{\psi}_{1}, \ldots, \dot{\psi}_{M} ; \dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \\
& \equiv T(t, \psi, q ; \dot{\psi}, \dot{q})=T[t, \psi, q ; \dot{\psi}(t, \psi, q ; \Psi, \dot{q}), \dot{q}] \\
& =T(t, \psi, q ; \Psi, \dot{q}) \equiv T_{\psi \Psi}
\end{aligned}
$$

Modified (Routhian) kinetic energy

$$
\left.T^{\prime \prime} \equiv\left(T-\sum \Psi_{i} \dot{\psi}_{i}\right)\right|_{\dot{\psi}=\dot{\psi}(t ; \psi, q ; \Psi, \dot{q})}=T^{\prime \prime}(t, \psi, q ; \Psi, \dot{q})
$$

Routhian central equation

$$
\begin{aligned}
\sum\left(d p_{k} / d t\right. & \left.-\partial T^{\prime \prime} / \partial q_{k}-Q_{k}\right) \delta q_{k}+\sum\left(p_{p}-\partial T^{\prime \prime} / \partial \dot{q}_{p}\right) \delta \dot{q}_{p} \\
& -\sum\left(d \psi_{i} / d t+\partial T^{\prime \prime} / \partial \Psi_{i}\right) \delta \Psi_{i}=0
\end{aligned}
$$

Routh's equations (for unconstrained variations)

$$
\begin{array}{lll}
d p_{k} / d t=\partial T^{\prime \prime} / \partial q_{k}+Q_{k}: & d \Psi_{i} / d t=\partial T^{\prime \prime} / \partial \psi_{i}+Q_{i} & (i=1, \ldots, M) \\
& d p_{p} / d t=\partial T^{\prime \prime} / \partial q_{p}+Q_{p} & (p=M+1, \ldots, n) ; \\
d \psi_{i} / d t=-\partial T^{\prime \prime} / \partial \Psi_{i} & & (i=1, \ldots, M), \\
p_{p}=\partial T^{\prime \prime} / \partial \dot{q}_{p} & & (p=M+1, \ldots, n)
\end{array}
$$

Hamilton-like Routh's equations

$$
d \Psi_{i} / d t=-\partial\left(-T^{\prime \prime}\right) / \partial \psi_{i}+Q_{i}, \quad d \psi_{i} / d t=\partial\left(-T^{\prime \prime}\right) / \partial \Psi_{i}
$$

Lagrange-like Routh's equations

$$
\begin{aligned}
d p_{p} / d t & =\partial T^{\prime \prime} / \partial q_{p}+Q_{p}, \quad p_{p}=\partial T^{\prime \prime} / \partial \dot{q}_{p} \quad\left(=\partial T / \partial \dot{q}_{p}\right) \\
& \Rightarrow\left(\partial T^{\prime \prime} / \partial \dot{q}_{p}\right)^{\prime}-\partial T^{\prime \prime} / \partial q_{p}=Q_{p}
\end{aligned}
$$

Additional Routhian kinematico-inertial identities

$$
\begin{array}{ll}
\partial T / \partial q_{k}=\partial T^{\prime \prime} / \partial q_{k}: \quad \partial T / \partial \psi_{i}=\partial T^{\prime \prime} / \partial \psi_{i} & (i=1, \ldots, M), \\
\partial T / \partial q_{p}=\partial T^{\prime \prime} / \partial q_{p} & \\
& (p=M+1, \ldots, n)
\end{array}
$$

In sum, we have the following two groups of such kinematico-inertial identities:

$$
\begin{array}{llll}
\partial T^{\prime \prime} / \partial \psi_{i}=\partial T / \partial \psi_{i} & \text { and } & \partial T^{\prime \prime} / \partial \Psi_{i}=-d \psi_{i} / d t ; & \\
\partial T^{\prime \prime} / \partial q_{p}=\partial T / \partial q_{p} & \text { and } & \partial T^{\prime \prime} / \partial \dot{q}_{p}=\partial T / \partial \dot{q}_{p} & \left(=p_{p}\right) .
\end{array}
$$

If $p_{k} \equiv \partial L / \partial \dot{q}_{k}$, the above are replaced by the following:
Hamilton-like Routh's equations

$$
d \Psi_{i} / d t=\partial R / \partial \psi_{i}+Q_{i}, \quad d \psi_{i} / d t=-\partial R / \partial \Psi_{i}
$$

and Lagrange-like Routh's equations

$$
\begin{aligned}
d p_{p} / d t & =\partial R / \partial q_{p}+Q_{p}, \quad p_{p}=\partial R / \partial \dot{q}_{p} \quad\left(=\partial L / \partial \dot{q}_{p}\right) \\
& \Rightarrow E_{p}(R) \equiv\left(\partial R / \partial \dot{q}_{p}\right)^{-}-\partial R / \partial q_{p}=Q_{p} ;
\end{aligned}
$$

where

$$
\begin{aligned}
R & \left.\equiv\left(L-\sum \Psi_{i} \dot{\psi}_{i}\right)\right|_{\dot{\psi}=\dot{\psi}(t ; \psi, q ; \Psi, \dot{q})}=R(t ; \psi, q ; \Psi, \dot{q}) \\
& =\text { Routhian function, or modified Lagrangean, } \\
L & =L(t ; \psi, q ; \Psi, \dot{q}) \equiv T_{\psi \Psi}-V \equiv L_{\psi} \Psi \\
& =\text { Lagrangean expressed in Routhian variables }
\end{aligned}
$$

that is, the Routhian is a Hamiltonian [times (-1)] for the ψ_{i}, and a Lagrangean for the q_{p}.

Relation between Routhian and Hamiltonian

$$
H \equiv \sum p_{k} \dot{q}_{k}-L, \quad R=\sum p_{p} \dot{q}_{p}-H=L-\sum \Psi_{i} \dot{\psi}_{i}
$$

STRUCTURE OF THE ROUTHIAN

Decomposition of T (scleronomic system):

$$
T=T_{\dot{q} \dot{q}}+T_{\dot{q} \dot{\psi}}+T_{\dot{\psi} \dot{\psi}}=T(\psi, q ; \dot{\psi}, \dot{q}),
$$

where

$$
\begin{gathered}
2 T_{\dot{q} \dot{q}} \equiv \sum \sum a_{p q} \dot{q}_{p} \dot{q}_{q}=\text { homogeneous quadratic in the } \dot{q} \text { 's } \\
\left(a_{p q}=a_{q p}: \text { positive definite }\right), \\
T_{\dot{q} \dot{\psi}} \equiv \sum \sum b_{p i} \dot{q}_{p} \dot{\psi}_{i}=\text { homogeneous bilinear in the } \dot{q} \text { 's and } \dot{\psi} \text { 's } \\
\text { (in general: } b_{p i} \neq b_{i p} ; \text { sign indefinite) },
\end{gathered}
$$

$$
\begin{aligned}
2 T_{\dot{\psi} \dot{\psi}} \equiv \sum \sum c_{i j} \dot{\psi}_{i} \dot{\psi}_{j}= & \text { homogeneous quadratic in the } \dot{\psi} \text { 's } \\
& \left(c_{i j}=c_{j i}: \text { positive definite }\right)
\end{aligned}
$$

$\left[i, j=1, \ldots, M ; p, q=M+1, \ldots, n ;\right.$ and the coefficients are functions of all $n q_{k}$'s $]$.
Next,

$$
\begin{aligned}
& \Psi_{i} \equiv \partial T / \partial \dot{\psi}_{i}=\sum c_{j i} \dot{\psi}_{j}+\sum b_{p i} \dot{q}_{p} \Rightarrow \sum c_{j i} \dot{\psi}_{j}=\Psi_{i}-\sum b_{p i} \dot{q}_{p} \\
& d \psi_{j} / d t=\sum C_{j i}\left(\Psi_{i}-\sum b_{p i} \dot{q}_{p}\right)
\end{aligned}
$$

(since $T_{\psi \dot{\psi}}$ is positive definite $\Rightarrow c_{i j}$ is nonsingular), where

$$
\begin{aligned}
C_{j i}= & {\left[\text { cofactor of element } c_{j i} \text { in } \operatorname{Det}\left(c_{j i}\right)\right] / \operatorname{Det}\left(c_{j i}\right)=C_{i j} } \\
& (=\text { known function of the } q \text { 's and } \psi \text { 's }) .
\end{aligned}
$$

Then

$$
T=T_{2,0}+T_{0,2}=T(\psi, q ; \Psi, \dot{q})
$$

where

$$
2 T_{2,0} \equiv \sum \sum\left(a_{p q}-\sum \sum C_{j i} b_{p j} b_{q i}\right) \dot{q}_{p} \dot{q}_{q}, \quad 2 T_{0,2} \equiv \sum \sum \sum C_{j i} \Psi_{j} \Psi_{i}
$$

that is, $T=T(\psi, q ; \Psi, \dot{q})$ does not contain any bilinear terms in the \dot{q} 's and Ψ 's; and so

$$
\begin{aligned}
T^{\prime \prime} & \equiv T-\sum \Psi_{i} \dot{\psi}_{i}=T-\sum \Psi_{i}\left(\sum C_{i j}\left(\Psi_{j}-\sum b_{p j} \dot{q}_{p}\right)\right) \\
& =T_{2,0}+T_{1,1}^{\prime \prime}-T_{0,2} \equiv T_{2,0}^{\prime \prime}+T_{1,1}^{\prime \prime}+T_{0,2}^{\prime \prime} \\
& =T^{\prime \prime}(\psi, q ; \Psi, \dot{q})
\end{aligned}
$$

where

$$
\begin{aligned}
2 T_{2,0}^{\prime \prime} & \equiv \sum \sum\left(a_{p q}-\sum \sum C_{j i} b_{p j} b_{q i}\right) \dot{q}_{p} \dot{q}_{q} \equiv \sum \sum r_{p q}(q) \dot{q}_{p} \dot{q}_{q} \\
& =2 T_{2,0}(=\text { positive definite in the } \dot{q} \mathrm{~s}), \\
T_{1,1}^{\prime \prime} & \equiv \sum \sum\left(\sum C_{j i} b_{p i}\right) \Psi_{j} \dot{q}_{p} \equiv \sum r_{p}(q, \Psi) \dot{q}_{p}
\end{aligned}
$$

[No counterpart in $T=T(\psi, q ; \Psi, \dot{q})$, i.e., $T_{1,1}=0 ;$ sign indefinite],

$$
\begin{aligned}
2 T_{0,2}^{\prime \prime} & \equiv-\sum \sum C_{j i} \Psi_{j} \Psi_{i}=2 T_{0,2}^{\prime \prime}(q, \Psi) \\
& =-2 T_{0,2}(=\text { negative definite in the } \Psi ’ s) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
T & \equiv T^{\prime \prime}+\sum \Psi_{i} \dot{\psi}_{i}=T^{\prime \prime}-\sum \Psi_{i}\left(\partial T^{\prime \prime} / \partial \Psi_{i}\right) \\
& =\left(T_{2,0}^{\prime \prime}+T_{1,1}^{\prime \prime}+T_{0,2}^{\prime \prime}\right)-\left(T_{1,1}^{\prime \prime}+2 T_{0,2}^{\prime \prime}\right) \\
& =T_{2,0}^{\prime \prime}-T_{0,2}^{\prime \prime}=T(\psi, q ; \Psi, \dot{q}) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& L=T-V=\left(T_{2,0}+T_{0,2}\right)-V=T_{2,0}-\left(V-T_{0,2}\right) \\
& =\left(T_{2,0}^{\prime \prime}-T_{0,2}^{\prime \prime}\right)-V=T_{2,0}^{\prime \prime}-\left(V+T_{0,2}^{\prime \prime}\right)=L(\psi, q ; \Psi, \dot{q}) \\
& \Rightarrow R=L-\sum \Psi_{i} \dot{\psi}_{i}=L+\sum\left(\partial T^{\prime \prime} / \partial \Psi_{i}\right) \Psi_{i} \\
& \\
& =\left(T_{2,0}^{\prime \prime}-T_{0,2}^{\prime \prime}-V\right)+\left(2 T_{0,2}^{\prime \prime}+T_{1,1}^{\prime \prime}\right) \\
& \\
& \equiv R_{2}+R_{1}+R_{0}=R(\psi, q ; \Psi, \dot{q}),
\end{aligned}
$$

where

$$
R_{2} \equiv T_{2,0}^{\prime \prime}=T_{2,0}, \quad R_{1} \equiv T_{1,1}^{\prime \prime}, \quad R_{0} \equiv T_{0,2}^{\prime \prime}-V=-T_{0,2}-V
$$

Additional results
(i) With

$$
\begin{aligned}
T & =T_{\dot{q} \dot{q}}+T_{\dot{q} \dot{\psi}}+T_{\dot{\psi} \dot{\psi}}=T(\psi, q ; \dot{\psi}, \dot{q}) \\
& \Rightarrow T^{\prime \prime}=T-\sum \Psi_{i} \dot{\psi}_{i}=T-\sum\left(\partial T / \partial \dot{\psi}_{i}\right) \dot{\psi}_{i}=T_{\dot{q} \dot{q}}-T_{\dot{\psi} \dot{\psi}}=T^{\prime \prime}(t, \psi, q ; \dot{\psi}, \dot{q})
\end{aligned}
$$

(ii)

$$
d \psi_{i} / d t=-\partial T^{\prime \prime} / \partial \Psi_{i}=\cdots=\partial T_{0,2} / \partial \Psi_{i}-\partial K_{2,2} / \partial \pi_{i},
$$

where

$$
2 T_{0,2}=-2 T_{0,2}^{\prime \prime} \equiv \sum \sum C_{j i} \Psi_{j} \Psi_{i}
$$

and

$$
2 K_{2,2} \equiv \sum \sum C_{j i}\left(\sum b_{p j} \dot{q}_{p}\right)\left(\sum b_{q i} \dot{q}_{q}\right) \equiv \sum \sum C_{j i} \pi_{j} \pi_{i} .
$$

Matrix form of these results:

$$
\begin{aligned}
& \dot{\mathbf{q}}^{\mathrm{T}}=\left(\dot{q}_{M+1}, \ldots, \dot{q}_{n}\right), \quad \dot{\boldsymbol{\psi}}^{\mathrm{T}}=\left(\dot{\psi}_{1}, \ldots, \dot{\psi}_{M}\right), \quad \boldsymbol{\Psi}^{\mathrm{T}}=\left(\Psi_{1}, \ldots, \Psi_{M}\right), \\
& \mathbf{a}=\left(a_{p q}\right)=\left(a_{q p}\right)=\mathbf{a}^{\mathrm{T}}, \quad \mathbf{b}=\left(b_{i p}\right) \neq\left(b_{p i}\right)=\mathbf{b}^{\mathrm{T}}, \quad \mathbf{c}=\left(c_{i j}\right)=\left(c_{j i}\right)=\mathbf{c}^{\mathrm{T}}, \\
& 2 T=\dot{\mathbf{q}}^{\mathrm{T}} \mathbf{a} \dot{\mathbf{q}}+2 \dot{\boldsymbol{\psi}}^{\mathrm{T}} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}+\dot{\boldsymbol{\psi}}^{\mathrm{T}} \mathbf{c} \dot{\boldsymbol{\psi}}, \\
& \partial T / \partial \dot{\boldsymbol{\psi}}=\mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}+\mathbf{c} \dot{\boldsymbol{\psi}}=\boldsymbol{\Psi} \\
& \quad \Rightarrow \dot{\boldsymbol{\psi}}=\mathbf{c}^{-1}\left(\boldsymbol{\Psi}-\mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}\right) \equiv \mathbf{C}\left(\boldsymbol{\Psi}-\mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}\right) \Rightarrow \dot{\boldsymbol{\psi}}^{\mathrm{T}}=\left(\boldsymbol{\Psi}^{\mathrm{T}}-\dot{\mathbf{q}}^{\mathrm{T}} \mathbf{b}\right) \mathbf{C}
\end{aligned}
$$

[since \mathbf{c} is symmetric, so is its inverse $\left.\mathbf{C} \equiv\left(C_{j i}\right): \mathbf{C} \equiv \mathbf{c}^{-1}=\left(\mathbf{c}^{-1}\right)^{\mathrm{T}} \equiv \mathbf{C}^{\mathrm{T}}\right]$,

$$
\begin{aligned}
& T=\cdots=(1 / 2) \dot{\mathbf{q}}^{\mathrm{T}}\left(\mathbf{a}-\mathbf{b} \mathbf{C} \mathbf{b}^{\mathrm{T}}\right) \dot{\mathbf{q}}+(1 / 2) \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi} \equiv T_{2,0}+T_{0,2}=T_{2,0}^{\prime \prime}-T_{0,2}^{\prime \prime}, \\
& \quad\left[\operatorname{since} \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}=\dot{\mathbf{q}}^{\mathrm{T}} \mathbf{b} \mathbf{C} \boldsymbol{\Psi}\right] \\
& \boldsymbol{\Psi}^{\mathrm{T}} \dot{\boldsymbol{\psi}}=\cdots=\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi}-\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}=-2 T_{0,2}^{\prime \prime}-\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}, \\
& R=(T-V)-\boldsymbol{\Psi}^{\mathrm{T}} \dot{\boldsymbol{\psi}}=\cdots=R_{2}+R_{1}+R_{0} \\
& R_{2} \equiv T_{2,0}^{\prime \prime}=T_{2,0}=(1 / 2) \dot{\mathbf{q}}^{\mathrm{T}}\left(\mathbf{a}-\mathbf{b} \mathbf{C} \mathbf{b}^{\mathrm{T}}\right) \dot{\mathbf{q}}, \\
& R_{1} \equiv T_{1,1}^{\prime \prime}=\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}} \\
& R_{0} \equiv T_{0,2}^{\prime \prime}-V=-\left(V+T_{0,2}\right)=-(1 / 2) \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi}-V .
\end{aligned}
$$

If $\mathbf{b}=0$ (i.e., \dot{q} 's and $\dot{\psi}$'s uncoupled in the original T), R reduces to

$$
R=(1 / 2) \dot{\mathbf{q}}^{\mathrm{T}} \mathbf{a} \dot{\mathbf{q}}-(1 / 2) \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi}-V .
$$

CYCLIC (OR GYROSTATIC) SYSTEMS

$$
\begin{equation*}
\left(q_{1}, \ldots, q_{M}\right) \equiv\left(\psi_{1}, \ldots, \psi_{M}\right) \equiv\left(\psi_{i}\right) \equiv \psi \tag{i}
\end{equation*}
$$

do not appear explicitly, neither in its kinetic energy nor in its nonvanishing impressed forces; only the corresponding Lagrangean velocities

$$
\left(\dot{q}_{1}, \ldots, \dot{q}_{M}\right) \equiv\left(\dot{\psi}_{1}, \ldots, \dot{\psi}_{M}\right) \equiv\left(\dot{\psi}_{i}\right) \equiv \dot{\psi}
$$

appear there, and, of course, time t and the remaining coordinates and/or velocities

$$
\left(q_{M+1}, \ldots, q_{n}\right) \equiv\left(q_{p}\right) \equiv q \quad \text { and } \quad\left(\dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \equiv\left(\dot{q}_{p}\right) \equiv \dot{q} ;
$$

respectively; that is,

$$
\partial T / \partial \psi_{i}=0
$$

but, in general,

$$
\partial T / \partial \dot{\psi}_{i} \neq 0 \Rightarrow T=T(t ; q, \dot{\psi}, \dot{q}) .
$$

(ii) The corresponding impressed forces vanish; that is,

$$
Q_{i}=0, \quad \text { but } \quad Q_{p}=Q_{p}(q) \neq 0 .
$$

If all impressed forces are wholly potential, the above requirements are replaced, respectively, by

$$
\partial L / \partial \psi_{i}=0 \quad \text { and } \quad \partial L / \partial \dot{\psi}_{i} \neq 0 \Rightarrow L=L(t ; q, \dot{\psi}, \dot{q})
$$

The coordinates ψ, and corresponding velocities $\dot{\psi}$, are called cyclic (Helmholtz), or absent (Routh), or kinosthenic, or speed (J. J. Thomson), or ignorable (Whittaker). The remaining coordinates q, and corresponding velocities \dot{q}, are called palpable, or
positional. Then the Lagrangean equations corresponding to the cyclic coordinates/ variables, become

$$
\left(\partial T / \partial \dot{\psi}_{i}\right)^{\cdot}-\partial T / \partial \psi_{i}=Q_{i}: \quad\left(\partial T / \partial \dot{\psi}_{i}\right)^{\cdot}=0 \Rightarrow \partial T / \partial \dot{\psi}_{i} \equiv \Psi_{i}=\mathrm{constant} \equiv C_{i} ;
$$

that is, the momenta Ψ_{i} corresponding to the cylic coordinates ψ_{i} are constants of the motion. [Conversely, however, if $\partial T / \partial \dot{\psi}_{i}=0$, then $\partial T / \partial \psi_{i}=0$, and, as a result, $T=T(t ; q, \dot{q})$; that is, the evolution of the ψ 's does not affect that of the q 's.] Hence, the Routhian of a cyclic system is a function of t, q, \dot{q} and $\Psi \equiv\left(\Psi_{i}\right)$; that is, with $C \equiv\left(C_{i}\right)$,

$$
\begin{aligned}
R \equiv & \left.\left(L-\sum \Psi_{i} \dot{\psi}_{i}\right)\right|_{\dot{\psi}=\dot{\psi}(t ; q ; \dot{q}, C)} \\
& {\left[\text { after solving } \partial T / \partial \dot{\psi}_{i} \equiv \Psi_{i}=C_{i} \text { for the } \dot{\psi} \text { in terms of } t, q, \dot{q}, C\right] } \\
= & L[t, q, \dot{q}, \dot{\psi}(t ; q ; C, \dot{q}) ; C]-\sum \Psi_{i} \dot{\psi}_{i}(t ; q, \dot{q} ; C) \\
= & R(t ; q, \dot{q} ; C) \\
& {\left[\Rightarrow L=\sum C_{i} \dot{\psi}_{i}(t ; q, \dot{q} ; C)+R(t ; q, \dot{q} ; C)\right] }
\end{aligned}
$$

that is, the system has been reduced to one with only $n-M$ Lagrangean coordinates, new "reduced Lagrangean" R, and, therefore, Lagrange-type Routhian equations for the positional coordinates and the "palpable motion" $q_{p}(t)$:

$$
\left(\partial R / \partial \dot{q}_{p}\right)^{\cdot}-\partial R / \partial q_{p}=Q_{p, \text { nonpotential impressed positional forces }} .
$$

Then,

$$
\begin{aligned}
& R=\text { known function of time } \\
& \Rightarrow \partial R / \partial C_{i}=\text { known function of time } \equiv-f_{i}(t ; C), \\
& \Rightarrow \psi_{i}=-\int\left(\partial R / \partial \Psi_{i}\right) d t+\text { constant }=\int f_{i}(t ; C) d t+\text { constant } \\
&=\psi_{i}(t, C)+\text { constant } .
\end{aligned}
$$

EQUATIONS OF KELVIN-TAIT

Let

$$
\begin{aligned}
T & =T(q, \dot{q}, \dot{\psi})=\text { homogeneous quadratic in the } \dot{\psi} \text { and } \dot{q} \\
& \Rightarrow R=R_{2}+R_{1}+R_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{2} \equiv T_{2,0}^{\prime \prime}=(1 / 2) \sum \sum r_{p q}(q) \dot{q}_{p} \dot{q}_{q}\left(=T_{2,0}\right) \\
&=R_{2}(q, \dot{q})=\text { homogeneous quadratic in the nonignorable velocities } \dot{q}, \\
& R_{1} \equiv T_{1,1}^{\prime \prime}=\sum r_{p}(q, C) \dot{q}_{p} \\
&=R_{1}(q, \dot{q}, C)=\text { homogeneous linear in the nonignorable velocities } \dot{q}, \\
&\left.\quad \quad \quad \text { apparent kinetic energy } T_{1,1}^{\prime \prime}\right] ;
\end{aligned}
$$

and

$$
\begin{aligned}
r_{p} & =\sum \rho_{p i} C_{i} \quad\left[\rho_{p i} \equiv \sum C_{i j} b_{p j}=\rho_{p i}(q)\right] \\
R_{0} & \equiv T_{0,2}^{\prime \prime}-V=-\left(V-T_{0,2}^{\prime \prime}\right) \equiv-(1 / 2) \sum \sum C_{j i} C_{j} C_{i}-V \quad\left[=-\left(V+T_{0,2}\right)\right]
\end{aligned}
$$

$=R_{0}(q ; C)=$ homogeneous quadratic in the constant ignorable momenta $\Psi=C$ [apparent potential energy $T_{0,2}^{\prime \prime}=-T_{0,2}(<0)$].

Hence, the situation is mathematically identical to that of relative motion (§3.16) Lagrangean equations of palpable motion:

$$
\left(\partial R / \partial \dot{q}_{p}\right)^{\cdot}-\partial R / \partial q_{p}=Q_{p, \text { nonpotential impressed positional forces }} .
$$

From the above we obtain the following.
Kelvin-Tait equations (with $p, p^{\prime}=M+1, \ldots, n$)

$$
E_{p}(R) \equiv E_{p}\left(R_{2}+R_{1}+R_{0}\right)=E_{p}\left(R_{2}\right)+E_{p}\left(R_{1}\right)+E_{p}\left(R_{0}\right)=Q_{p},
$$

or

$$
E_{p}\left(R_{2}\right)=Q_{p}-E_{p}\left(R_{1}\right)-E_{p}\left(R_{0}\right),
$$

or, explicitly,

$$
\begin{aligned}
\left(\partial R_{2} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{2} / \partial q_{p} & =Q_{p}+\partial R_{0} / \partial q_{p}-\left[\left(\partial R_{1} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{1} / \partial q_{p}\right] \\
& =Q_{p}-\partial\left(V-T_{0,2}^{\prime \prime}\right) / \partial q_{p}+\sum\left(\partial r_{p^{\prime}} / \partial q_{p}-\partial r_{p} / \partial q_{p^{\prime}}\right) \dot{q}_{p^{\prime}} \\
& =Q_{p}-\partial\left(V-T_{0,2}^{\prime \prime}\right) / \partial q_{p}+G_{p}
\end{aligned}
$$

where

$$
\begin{aligned}
G_{p} & \equiv-\left[\left(\partial R_{1} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{1} / \partial q_{p}\right] \\
& =\sum\left(\partial r_{p^{\prime}} / \partial q_{p}-\partial r_{p} / \partial q_{p^{\prime}}\right) \dot{q}_{p^{\prime}} \equiv \sum G_{p p^{\prime}} \dot{q}_{p^{\prime}}
\end{aligned}
$$

[Gyroscopic Routhian "force," since $G_{p p^{\prime}}=-G_{p^{\prime} p}=G_{p p^{\prime}}(q ; C)$].
These are the equations of motion of a fictitious scleronomic system (sometimes referred to as "conjugate" to the original, or reduced, system) with $n-M$ positional coordinates q, and subject, in addition to the impressed forces Q_{p} (nonpotential) and $-\partial V / \partial q_{p}$ (potential), to two special constraint forces: a centrifugal-like $\partial T_{0,2}^{\prime \prime} / \partial q_{p}$, and a gyroscopic one G_{p}.
Ignorable motion, once the palpable motion has been determined:

$$
q_{p}(t) \Rightarrow d \psi_{i} / d t=-\partial R / \partial C_{i}=-\partial R_{1} / \partial C_{i}-\partial R_{0} / \partial C_{i}=-\partial T_{0,2}^{\prime \prime} / \partial C_{i}-\sum \rho_{p i} \dot{q}_{p}
$$

Gyroscopic uncoupling $G_{p p^{\prime}}=0$

$$
\Rightarrow E_{p}\left(R_{2}\right) \equiv\left(\partial R_{2} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{2} / \partial q_{p}=Q_{p}+\partial R_{0} / \partial q_{p}
$$

A system is gyroscopically uncoupled if, and only if, $R_{1} d t \equiv \sum r_{p}(q ; C) d q_{p}$ is an exact differential. [A similar uncoupling occurs if all the C_{i} vanish: $r_{p}=0 \Rightarrow R_{1}=0$; and $R_{0}=-V(q)$.]

A cyclic power theorem

$$
d h_{R} / d t=\sum Q_{p} \dot{q}_{p},
$$

where

$$
\begin{aligned}
h_{R} & \equiv R_{2}-R_{0}=T_{2,0}^{\prime \prime}+\left(V-T_{0,2}^{\prime \prime}\right) \\
& =T_{2,0}+\left(V+T_{0,2}\right)=T(q, \dot{q}, C)+V(q) \equiv E(q, \dot{q}, C) \\
& =\text { Modified (or cyclic) generalized energy; }
\end{aligned}
$$

if $\quad \sum Q_{p} \dot{q}_{p}=0:$

$$
h_{R} \equiv T_{2,0}^{\prime \prime}+\left(V-T_{0,2}^{\prime \prime}\right) \equiv T(q, \dot{q}, C)+V(q)=\text { constant. }
$$

Alternatively,

$$
\begin{aligned}
H & \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L \quad\left(=\text { constant }, \text { if } Q_{p}=0 \quad \text { and } \quad \partial L / \partial t=\partial R / \partial t=0\right) \\
& =-R+\sum\left(\partial R / \partial \dot{q}_{p}\right) \dot{q}_{p} \\
& =-\left(R_{2}+R_{1}+R_{0}\right)+\left(2 R_{2}+R_{1}\right) \\
& =R_{2}-R_{0}=H(q, \dot{q}, C) \quad\left(=h_{R}\right) .
\end{aligned}
$$

For rheonomic cyclic systems; that is, $L=L(t, q, \dot{q}, C)$

$$
\Rightarrow R=L(t, q, \dot{q}, C)-\sum C_{i} \dot{\psi}_{i}(t, q, \dot{q}, C)=R(t, q, \dot{q}, C) .
$$

STEADY MOTION (OR CYCLIC SYSTEMS)

$$
\begin{aligned}
& \dot{\psi}_{i}=\text { constant } \equiv c_{i}\left(\text { in addition to } \Psi_{i}=\text { constant } \equiv C_{i}\right) \\
& \text { and } q_{p}=\text { constant } \equiv s_{P}\left(\Rightarrow \dot{q}_{p}=0\right) \\
& (\text { with } i=1, \ldots, M ; p=M+1, \ldots, n)
\end{aligned}
$$

that is, all velocities are constant (and, hence, all accelerations vanish); and, for scleronomic such systems, the Lagrangean has the form $L=L\left(c_{i}, s_{p}\right)$.

Conditions for steady motion [necessary and sufficient conditions for the steady motion of an originally (scleronomic and holonomic) system; or, equivalently, for the equilibrium of the corresponding reduced q-system]:

$$
Q_{p}+\partial R_{0} / \partial q_{p} \equiv Q_{p}+\left(\partial T_{0,2}^{\prime \prime} / \partial q_{p}-\partial V / \partial q_{p}\right)=0
$$

or, if the forces are wholly potential:

$$
\partial R_{0} / \partial q_{p}=0, \quad \text { or } \quad \partial T_{0,2}^{\prime \prime} / \partial q_{p}=\partial V / \partial q_{p} .
$$

Equivalently, since

$$
\begin{aligned}
R= & R_{2}(\text { homogeneous quadratic in the } \dot{q} ' \mathrm{~s}) \\
& \left.+R_{1} \text { (homogeneous bilinear in the } \Psi \text { 's and } \dot{q} \text { 's }\right) \\
& \left.+R_{0} \text { (homogeneous quadratic in the } \Psi \text { 's }\right)
\end{aligned}
$$

and

$$
\partial R / \partial q_{p}=\partial L / \partial q_{p}
$$

the above equations can be rewritten as

$$
\left(\partial R / \partial q_{p}\right)_{o}=\left(\partial L / \partial q_{p}\right)_{o}=0 \quad\left[\left.(\ldots)_{o} \equiv(\ldots)\right|_{\dot{\psi}=c, q=s}\right]
$$

expressing q 's $\equiv s$'s in terms of the arbitrarily chosen $\Psi ' s \equiv C$'s. The $\dot{\psi}$'s can then be found from the second (Hamiltonian) group of Routh's equations:

$$
\begin{aligned}
d \psi_{i} / d t= & -\left(\partial R / \partial \Psi_{i}\right)_{o}=-\left(\partial R_{o} / \partial \Psi_{i}\right)_{o}=-\left(\partial T_{0,2}^{\prime \prime} / \partial \Psi_{i}\right)_{o} \\
= & \sum C_{i j} C_{j}=\mathrm{constant} \equiv c_{i} \quad\left[\text { with } \dot{q}_{p}=0\right] \\
= & \text { Function of the } s \text { 's and the (arbitrarily chosen) } C \text { 's, } \\
\Rightarrow & \psi_{i}(t)=-c_{i}\left(t-t_{\text {initial }}\right)+\psi_{i, \text { initial }} \\
= & \text { Function of the } s \text { 's and the (now) arbitrarily chosen } c_{i} \text { 's and } \psi_{\text {initial }} \text { 's; } \\
& \quad \text { i.e., in steady motion, the cyclic coordinates vary linearly with time. }
\end{aligned}
$$

If we initially choose arbitrarily the Ψ 's, then the above equations relate them to the q 's. If, on the other hand, we choose the $\dot{\psi}$'s $\equiv c$'s, then, to relate them directly to the q 's: first, we take $T_{0,2}^{\prime \prime}$, and, using $\Psi_{i}=\sum c_{j i} \dot{\psi}_{j}$, change it to a homogeneous quadratic function in the $\dot{\psi}$'s (with $i, j, j^{\prime}, j^{\prime \prime}: 1, \ldots, M$):

$$
\begin{aligned}
2 T_{0,2}^{\prime \prime} & \equiv 2 T^{\prime \prime}{ }_{\Psi \Psi} \equiv-\sum \sum C_{j i} \Psi_{j} \Psi_{i} \quad\left[\text { recalling that } \sum C_{j i} c_{j^{\prime} j}=\delta_{i j^{\prime}}\right] \\
& =\cdots=-\sum \sum c_{i j} \dot{\psi}_{i} \dot{\psi}_{j} \equiv 2 T^{\prime \prime}{ }_{\psi \psi}=-2 T_{\psi \dot{\psi} ;}
\end{aligned}
$$

or, since

$$
\partial T^{\prime \prime}{ }_{\Psi \Psi} / \partial q_{p}=-\left(\partial T_{\psi \dot{\psi}}^{\prime \prime} / \partial q_{p}\right)=\partial T_{\psi \dot{\psi}} / \partial q_{p}
$$

we can, finally, replace the steady motion conditions by

$$
-\left(\partial T_{\psi \psi \dot{\psi}}^{\prime \prime} / \partial q_{p}\right)=\partial V / \partial q_{p}, \quad \text { or } \quad \partial T_{\psi \dot{\psi}} / \partial q_{p}=\partial V / \partial q_{p}
$$

relating the q 's to the $\dot{\psi}$'s; and, using $\Psi_{i}=\sum c_{j i} \dot{\psi}_{j}$, we can relate both to the Ψ 's.

VARIATION OF CONSTANTS (OR PARAMETERS)

Theorem of Lagrange-Poisson:
Equations of motion:

$$
\begin{gathered}
d p_{k} / d t=f_{k}(t, q, p) \quad \text { and } \quad d q_{k} / d t=g_{k}(t, q, p) \\
{\left[f_{k}=-\partial H / \partial q_{k}+Q_{k} \quad \text { and } \quad g_{k}=\partial H / \partial p_{k}, \text { for a Hamiltonian system }\right]}
\end{gathered}
$$

general solutions:

$$
p_{k}=p_{k}(t ; c) \quad \text { and } \quad q_{k}=q_{k}(t ; c)
$$

where

$$
c \equiv\left(c_{1}, \ldots, c_{2 n}\right) \equiv\left(c_{\nu} ; \nu=1, \ldots, 2 n\right): \text { constants of integration. }
$$

Adjacent trajectory, $I I=I+\delta(I)$,

$$
\delta p_{k}=\sum\left(\partial p_{k} / \partial c_{\nu}\right) \delta c_{\nu} \quad \text { and } \quad \delta q_{k}=\sum\left(\partial q_{k} / \partial c_{\nu}\right) \delta c_{\nu}
$$

Linear variational, or perturbational, equations:

$$
\begin{aligned}
& \left(\delta p_{k}\right)^{\cdot}=\delta\left(\dot{p}_{k}\right)=\sum\left[\left(\partial f_{k} / \partial p_{l}\right) \delta p_{l}+\left(\partial f_{k} / \partial q_{l}\right) \delta q_{l}\right] \\
& \left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)=\sum\left[\left(\partial g_{k} / \partial p_{l}\right) \delta p_{l}+\left(\partial g_{k} / \partial q_{l}\right) \delta q_{l}\right] .
\end{aligned}
$$

Then, for a Hamiltonian system,

$$
d / d t\left(\sum\left(\partial_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)\right)=\sum\left(\delta_{1} Q_{k} \delta_{2} q_{k}-\delta_{2} Q_{k} \delta_{1} q_{k}\right)
$$

Theorem of Lagrange-Poisson: In a holonomic and potential (i.e., $Q_{k}=0$, or $\partial Q_{k} / \partial q_{l}=\partial Q_{l} / \partial q_{k}$, for all $\left.k, l=1, \ldots, n\right)$, but possibly rheonomic, system, the bilinear expression

$$
I \equiv \sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)
$$

is time-independent; that is, it is a constant of the motion.
Lagrange's brackets (LB):

$$
I=\sum \sum\left[c_{\mu}, c_{\nu}\right] \delta_{1} c_{\mu} \delta_{2} c_{\nu}
$$

where

$$
\begin{aligned}
{\left[c_{\mu}, c_{\nu}\right] } & \equiv \sum\left[\left(\partial p_{k} / \partial c_{\mu}\right)\left(\partial q_{k} / \partial c_{\nu}\right)-\left(\partial p_{k} / \partial c_{\nu}\right)\left(\partial q_{k} / \partial c_{\mu}\right)\right] \\
& =\text { Lagrangean bracket of } c_{\mu}, c_{\nu} .
\end{aligned}
$$

Properties of LB:

$$
\begin{gathered}
{\left[c_{\mu}, c_{\mu}\right]=0 ; \quad\left[c_{\mu}, c_{\nu}\right]=-\left[c_{\nu}, c_{\mu}\right]} \\
\partial\left[c_{\mu}, c_{\nu}\right] / \partial c_{\lambda}+\partial\left[c_{\nu}, c_{\lambda}\right] / \partial c_{\mu}+\partial\left[c_{\lambda}, c_{\mu}\right] / \partial c_{\nu}=0 \\
{\left[c_{\mu}, c_{\nu}\right]=\partial / \partial c_{\nu}\left(\sum q_{k}\left(\partial p_{k} / \partial c_{\mu}\right)\right)-\partial / \partial c_{\mu}\left(\sum q_{k}\left(\partial p_{k} / \partial c_{\nu}\right)\right)}
\end{gathered}
$$

PERTURBATION EQUATIONS

Unperturbed problem and its solution

$$
d p_{k} / d t=-\partial H / \partial q_{k}, \quad d q_{k} / d t=\partial H / \partial p_{k} ; \quad p_{k}=p_{k}(t ; c), \quad q_{k}=q_{k}(t ; c)
$$

INTRODUCTION
Slightly perturbed problem

$$
d p_{k} / d t=-\partial H / \partial q_{k}+X_{k}, \quad d q_{k} / d t=\partial H / \partial p_{k}
$$

where

$$
\begin{aligned}
& X_{k}=X_{k}(t, q, p)=\text { given function of its arguments } \\
& \approx X_{k}^{(1)}(t ; c) \\
& \text { [first-order approximation, upon substitution of unperturbed } \\
& \text { solution in it] }
\end{aligned}
$$

$2 n$ first-order differential equations for the $c_{\mu}=$ constant $\rightarrow c_{\mu}(t)$:

$$
\sum\left(\partial p_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=X_{k}^{(1)}, \quad \sum\left(\partial q_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=0
$$

Lagrangean form of the perturbation equations:

$$
\sum\left[c_{\nu}, c_{\mu}\right]\left(d c_{\nu} / d t\right)=\sum X_{k}^{(1)}\left(\partial q_{k} / \partial c_{\mu}\right)
$$

If the perturbations are potential-that is, if $X_{k}=-\partial \Omega / \partial q_{k}$-then, since $q_{k}=q_{k}(t ; c)$, the above specializes to

$$
\sum\left[c_{\nu}, c_{\mu}\right]\left(d c_{\nu} / d t\right)=-\partial \Omega / \partial c_{\mu}
$$

Inverting, we obtain

$$
\begin{aligned}
& c_{\mu}=h_{\mu}(t, q, p)=\text { first integral (constant) of the unperturbed problem, } \\
& d c_{\mu} / d t=\sum\left(\partial h_{\mu} / \partial p_{k}\right) X_{k}=\sum\left(\partial c_{\mu} / \partial p_{k}\right) X_{k}^{(1)}
\end{aligned}
$$

Poisson's brackets. If the perturbations are potential-that is, if

$$
X_{k}=-\partial \Omega / \partial q_{k}=-\sum\left(\partial \Omega / \partial c_{\nu}\right)\left(\partial c_{\nu} / \partial q_{k}\right),
$$

then

$$
d c_{\mu} / d t=-\sum\left(\partial \Omega / \partial c_{\nu}\right)\left(c_{\mu}, c_{\nu}\right)
$$

where

$$
\begin{aligned}
\left(c_{\mu}, c_{\nu}\right) & \equiv \sum\left[\left(\partial c_{\mu} / \partial p_{k}\right)\left(\partial c_{\nu} / \partial q_{k}\right)-\left(\partial c_{\mu} / \partial q_{k}\right)\left(\partial c_{\nu} / \partial p_{k}\right)\right] \\
& =\text { Poisson bracket of } c_{\mu}, c_{\nu} .
\end{aligned}
$$

Compatibility with LB:

$$
\sum\left[c_{\nu}, c_{\mu}\right]\left(c_{\nu}, c_{\lambda}\right)=\delta_{\mu \lambda}
$$

First-order corrections. Setting in $c_{\mu}=c_{\mu o}+c_{\mu 1}$, where $c_{\mu o}=$ unperturbed values and $c_{\mu 1}=$ corresponding first-order corrections, we have

$$
d c_{\mu 1} / d t=-\sum\left(\partial \Omega_{o} / \partial c_{\nu o}\right)\left(c_{\mu o}, c_{\nu o}\right) \quad\left[\text { where } \Omega_{o} \equiv \Omega\left(c_{o}\right)\right]
$$

Lagrange's result. Let

$$
q_{k}=q_{k 0}+q_{k 1} t+q_{k 2} t^{2}+\cdots, \quad p_{k}=p_{k 0}+p_{k 1} t+p_{k 2} t^{2}+\cdots
$$

Then, with

$$
c_{k}=q_{k 0} \quad \text { and } \quad c_{n+l}=p_{l 0} \quad(k, l=1, \ldots, n)
$$

the perturbation equations assume the canonical form:

$$
d c_{k} / d t=\partial \Omega / \partial c_{n+k}, \quad d c_{n+k} / d t=-\partial \Omega / \partial c_{k} \quad(k=1, \ldots, n)
$$

CANONICAL TRANSFORMATIONS

Transformations

$$
q=q\left(t, q^{\prime}, p^{\prime}\right) \leftrightarrow q^{\prime}=q^{\prime}(t, q, p) ; \quad p=p\left(t, q^{\prime}, p^{\prime}\right) \leftrightarrow p^{\prime}=p^{\prime}(t, q, p),
$$

[with nonvanishing Jacobian $\left|\partial\left(q^{\prime}, p^{\prime}\right) / \partial(q, p)\right|$] that leave Hamilton's equations form invariant.

Requirements:

$$
\begin{aligned}
L d t & =L^{\prime} d t+d F \\
& \Rightarrow \sum p_{k} d q_{k}-H d t=\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t+d F, \\
& \Rightarrow \sum p_{k} d q_{k}-\sum p_{k^{\prime}} d q_{k^{\prime}}=\left(H-H^{\prime}\right) d t+d F,
\end{aligned}
$$

where F is the generating function of the transformation (an arbitrary differentiable function of the coordinates, momenta, and time); and H^{\prime} satisfies the Hamiltonian equations in the new variables.

Alternatively,

$$
\begin{aligned}
& \sum p_{k} d q_{k}-H d t=d f(t, q, p) \quad \text { and } \quad \sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t=d f^{\prime}\left(t, q^{\prime}, p^{\prime}\right) \\
& \Rightarrow \sum p_{k} d q_{k}-\sum p_{k^{\prime}} d q_{k^{\prime}}-\left(H-H^{\prime}\right) d t \\
& =d f(t, q, p)-d f^{\prime}\left(t, q^{\prime}, p^{\prime}\right) \equiv d F
\end{aligned}
$$

Virtual form of a canonical transformation:

$$
\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}}=\delta F
$$

Forms of F and their relations with the corresponding conjugate variables:

$$
\begin{array}{llll}
F=F_{1}\left(t, q, q^{\prime}\right): & p_{k}=\partial F_{1} / \partial q_{k}, & p_{k^{\prime}}=-\partial F_{1} / \partial q_{k^{\prime}} ; & H^{\prime}=H+\partial F_{1} / \partial t ; \\
F=F_{2}\left(t, q, p^{\prime}\right): & p_{k}=\partial F_{2} / \partial q_{k}, & q_{k^{\prime}}=\partial F_{2} / \partial p_{k^{\prime}} ; & H^{\prime}=H+\partial F_{2} / \partial t ; \\
F=F_{3}\left(t, p, q^{\prime}\right): & q_{k}=-\partial F_{3} / \partial p_{k}, & p_{k^{\prime}}=-\partial F_{3} / \partial q_{k^{\prime}} ; & H^{\prime}=H+\partial F_{3} / \partial t ; \\
F=F_{4}\left(t, p, p^{\prime}\right): & q_{k}=-\partial F_{4} / \partial p_{k}, & q_{k^{\prime}}=\partial F_{4} / \partial p_{k^{\prime}} ; & H^{\prime}=H+\partial F_{4} / \partial t ; \\
F_{2}=F_{1}+\sum p_{k^{\prime}} q_{k^{\prime}}, & \\
F_{3}=F_{1}-\sum p_{k} q_{k}, & \\
F_{4}=F_{1}+\sum p_{k^{\prime}} q_{k^{\prime}}-\sum p_{k} q_{k}=F_{2}-\sum p_{k} q_{k}=F_{3}+\sum p_{k^{\prime}} q_{k^{\prime}} .
\end{array}
$$

POISSON'S BRACKETS (PB) AND CANONICITY

CONDITIONS
The PB of f, g (where f, g, h are arbitrary differentiable dynamical quantities) is

$$
(f, g) \equiv \sum\left[\left(\partial f / \partial p_{k}\right)\left(\partial g / \partial q_{k}\right)-\left(\partial f / \partial q_{k}\right)\left(\partial g / \partial p_{k}\right)\right] \equiv \sum \partial(f, g) / \partial\left(p_{k}, q_{k}\right)
$$

Then

$$
d f / d t=\partial f / \partial t+(H, f)+\sum\left(\partial f / \partial p_{k}\right) Q_{k} ;
$$

and so for f to be an integral of the motion, we must have
$\partial f / \partial t+\sum\left(\partial f / \partial p_{k}\right) Q_{k}+(H, f)=0 \Rightarrow(H, f)=0, \quad$ if $f=f(q, p)$ and $Q_{k}=0$,
that is, its PB with the Hamiltonian of its variables must be zero.
[Remarks on notation: A number of authors define PBs as the opposite of ours; that is, as

$$
(f, g) \equiv \sum\left[\left(\partial f / \partial q_{k}\right)\left(\partial g / \partial p_{k}\right)-\left(\partial f / \partial p_{k}\right)\left(\partial g / \partial q_{k}\right)\right]
$$

Therefore, a certain caution should be exercised when comparing references. Also, others denote our Lagrangean brackets, [...], by $\{\ldots\}$; and our Poisson brackets, (...), by [...].]

Properties/theorems of PBs

$$
\begin{array}{ll}
(f, g)=-(g, f)=(-g, f) \Rightarrow f, f)=0 & \text { (anti-symmetry) } \\
(f, c)=0 & (c=\text { a constant }) \\
\left(f_{1}+f_{2}, g\right)=\left(f_{1}, g\right)=\left(f_{2}, g\right) & \text { (distributivity) } \\
\left(f_{1} f_{2}, g\right)=f_{1}\left(f_{2}, g\right)+f_{2}\left(f_{1}, g\right) & \\
\quad \Rightarrow(c f, g)=c(f, g) & (c=\text { a constant }) \\
\quad \Rightarrow \text { If } f=\sum c_{k} f_{k}, \text { then }(f, g)=\sum c_{k}\left(f_{k}, g\right) & \left(c_{k}=\text { constants }\right)
\end{array}
$$

```
\(\partial / \partial t(f, g)=(\partial f / \partial t, g)+(f, \partial g / \partial t) \quad\) ("Leibniz rule")
[Actually, \(\partial / \partial x(f, g)=(\partial f / \partial x, g)+(f, \partial g / \partial x) ; \quad x=\) any variable]
\(\left(f, q_{k}\right)=\partial f / \partial p_{k}\),
\(\left(f, p_{k}\right)=-\partial f / \partial q_{k}\),
\(\left(q_{k}, q_{l}\right)=0\),
\(\left(p_{k}, p_{l}\right)=0\),
\(\left(p_{k}, q_{l}\right)=\delta_{k l}(=\) Kronecker delta \()\).
```

[The last three types of brackets are called fundamental, or basic, PB]

$$
\begin{aligned}
(f,(g, h))+(g,(h, f))+(h,(f, g)) & =0 \\
((f, g), h)+((g, h), f)+((h, f), g) & =0 \quad \text { (Poisson-Jacobi identity) }
\end{aligned}
$$

Theorem of Poisson-Jacobi: If f and g are any two integrals of the motion, so is their PB ; that is, if $f=c_{1}$ and $g=c_{2}$, then $(f, g)=c_{3}\left(c_{1,2,3}=\right.$ constants $)$.

Theorem: The $P B s$ are invariant under $C T$; that is, $(f, g)_{q, p}=(f, g)_{q^{\prime}, p^{\prime}}=\cdots$; where f and g keep their value, but not necessarily their form, in the various canonical coordinates involved.

Canonicity conditions via PB

$$
\begin{array}{lll}
{\left[p_{l^{\prime}}, p_{k^{\prime}}\right]=0,} & {\left[q_{l^{\prime}}, q_{k^{\prime}}\right]=0,} & {\left[p_{k^{\prime}}, q_{l^{\prime}}\right]=\delta_{k l},} \\
\left(p_{l^{\prime}}, p_{k^{\prime}}\right)=0, & \left(q_{l^{\prime}}, q_{k^{\prime}}\right)=0, & \left(p_{l^{\prime}}, q_{k^{\prime}}\right)=\delta_{l k},
\end{array}
$$

since both Poisson and Lagrange brackets are canonically invariant.
Theorem of Jacobi
(i) The integration of the canonical equations

$$
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k}
$$

is reduced to the integration of the Hamilton-Jacobi equation $(H-J)$:

$$
H(t, q, \partial A / \partial q)+\partial A / \partial t=0
$$

$$
A=A\left(t, q, p^{\prime}\right): \text { generating function (Hamiltonian action). }
$$

(ii) If we have a complete solution of $H-J$; that is, a solution of the form

$$
A=A\left(t ; q_{1}, \ldots, q_{n} ; \beta_{1}, \ldots, \beta_{n}\right) \equiv A(t ; q, \beta)
$$

where $\beta \equiv\left(\beta_{1}, \ldots, \beta_{n}\right)=n$ essential arbitrary constants, and $\left|\partial^{2} A / \partial q \partial \beta\right| \neq 0$ (nonvanishing Jacobian), then the solution of the algebraic system:

$$
\partial A / \partial \beta_{k}=\alpha_{k}
$$

[Finite equations of motion, α : new arbitrary constants $\Rightarrow q_{k}=q_{k}(t, \alpha, \beta)$],

$$
\begin{aligned}
& \partial A / \partial q_{k}=p_{k} \\
& {\left[\Rightarrow p_{k}=p_{k}(t, \alpha, \beta):\right. \text { canonically conjugate (finite) equations of motion], }}
\end{aligned}
$$

constitutes a complete solution of the canonical equations. Schematically, these are as follows.

Hamilton: Differential equations of motion:

$$
d q / d t=\partial H / \partial p, \quad d p / d t=-\partial H / \partial q
$$

(If these equations can be integrated, an action function can be obtained)
Hamilton-Jacobi:

$$
H(t, q, \partial A / \partial q)+\partial A / \partial t=0 \Rightarrow A=A(t, q, \beta)
$$

Jacobi: Finite equations of motion:

$$
\begin{aligned}
& \partial A / \partial \beta=\alpha \rightarrow q=q(t, \alpha, \beta) ; \\
& \partial A / \partial q=p \rightarrow p=p(t, \alpha, \beta)
\end{aligned}
$$

(If an action function can be obtained, then Hamilton's equations can be integrated.)

No significant new notations are involved in the remaining sections §8.12-§8.16 (i.e. special topics on Hamiltonian mechanics).

1

Background
 Basic Concepts and Equations of Particle and Rigid-Body Mechanics

Abstract

Therefore it would seem right that any systematic treatment of classical dynamics should start with axioms carefully laid down, on which the whole structure would rest as a house rests on its foundations. The analogy to a house is, however, a false one. Theories are created in mid-air, so to speak, and develop both upward and downward. Neither process is ever completed. Upward, the ramifications can extend indefinitely, downward, the axiomatic base must be rebuilt continually as our views change as to what constitutes logical precision. Indeed, there is little promise of finality here, as we seem to be moving towards the idea that logic is a man-made thing, a game played according to rules to some extent arbitrary.

(Synge, 1960, p. 5, emphasis added)

In this chapter we summarize, without detailed proofs and/or elaborate discussions, in a handbook (not textbook) fashion, like a first-aid kit, but in a hopefully accurate and serviceable form, the basic concepts, definitions, axioms, and theorems of "elementary" (or momentum/Newton-Euler, or general) theoretical mechanics. This compact, highly selective, perhaps nonhomogeneous, and unavoidably incomplete account should help to establish a common background with readers, and thus enhance their understanding of the rest of this relatively self-contained book.

For complementary reading, we recommend (alphabetically):
Fox (1967): one of the best, and most economically written, U.S. texts on elementaryintermediate general mechanics.

Hamel (1909), (1912, 1st ed., 1922, 2nd ed.): arguably the best text on elementaryintermediate general mechanics written to date, (1927), (1949).

Hund (1972): concise, insightful.
Langner (1996-1997): dense, clear; "best buy."
Loitsianskii and Lur'e (1982, 1983): excellent.
Marcolongo (1905, 1911/1912): rigorous, comprehensive.
Milne (1948): interesting vectorial treatment of rigid dynamics.
Papastavridis: Elementary Mechanics (EM for short), under production: encyclopedia/ handbook of Newton-Euler momentum mechanics, from an advanced and unified viewpoint; includes the elements of continuum mechanics.

Parkus (1966): an educational classic.
Synge and Griffith (1959): clear, reliable.
Synge (1960): comprehensive, encyclopedic, mature.
Winkelmann (1929, 1930): concise, comprehensive
Additional references, at particular sections, and so on, will also be given, as deemed beneficial.

1.1 VECTOR AND (CARTESIAN) TENSOR ALGEBRA

Vectors: Basic Concepts/Definitions and Algebra

Geometrically, vectors are straight line segments that, in the most general case, have the following five characteristics: (i) length, (ii) direction, (iii) sense, (iv) line of action (or carrier), and (v) origin (or point of application) on carrier; (iv) and (v) can be replaced with spatial origin. Also, vectors obey the well-known parallelogram law of addition (\Rightarrow commutativity); that is, not all line segments with characteristics (i)-(v) are vectors (e.g., finite rotations, §1.10). Next, if only characteristics (i)-(iii) matter, but (iv) and (v) do not, the vector is called free; if characteristics (i)-(iv) matter, but (v) does not, the vector is called line bound or sliding; and if all five characteristics matter, the vector is called point bound. As a rule, the vectors of continuum mechanics and the system vectors of analytical mechanics (chap. 2 ff .) are point bound; while those of rigid-body mechanics are line bound.

Notation for vectors: $\boldsymbol{a}, \boldsymbol{b}, \ldots$ (bold italic).
Length, or magnitude, or modulus, or intensity, or norm, of $\boldsymbol{a}:|\boldsymbol{a}| \equiv a \geq 0$. If $a=0$, the vector is called null; if $a=1$, the vector is called unit (or normalized).

The physical space of classical mechanics is a three-dimensional Euclidean point space, denoted by E_{3} or E; while the associated (also Euclidean) vector space is denoted by \boldsymbol{E}_{3} or \boldsymbol{E}.

An orthonormal basis (i.e., one whose vectors are unit and mutually orthogonalsee below)

$$
\begin{align*}
\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\} & \equiv\left\{\boldsymbol{u}_{1,2,3}\right\} \equiv\left\{\boldsymbol{u}_{k} ; k=1,2,3\right\} \equiv\left\{\boldsymbol{u}_{k}\right\} \\
& \equiv\left\{\boldsymbol{u}_{x}, \boldsymbol{u}_{y}, \boldsymbol{u}_{z}\right\} \equiv\left\{\boldsymbol{u}_{x, y, z}\right\} \equiv\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\} \tag{1.1.1}
\end{align*}
$$

together with an "origin," O, make up a (local) rectangular Cartesian frame: $\left\{O, \boldsymbol{u}_{k}\right\}$. If the origin is not important, we simply write $\left\{\boldsymbol{u}_{k}\right\}$.
[Since E is flat (noncurved), a single such frame, and associated rectilinear and mutually rectangular axes of coordinates $O-123 \equiv O-x y z$, can be extended to cover, or represent, the entire space: local frame \rightarrow global frame. For details, see, for example, Papastavridis (1999, pp. 84-91, 211-218), or Lur'e (1968, p. 807).]

In such a basis, a vector \boldsymbol{a} can be represented by its rectangular Cartesian components

$$
\begin{equation*}
\left\{a_{1}, a_{2}, a_{3}\right\} \equiv\left\{a_{1,2,3}\right\} \equiv\left\{a_{k} ; k=1,2,3\right\} \equiv\left\{a_{k}\right\} \equiv\left\{a_{x}, a_{y}, a_{z}\right\} \equiv\left\{a_{x, y, z}\right\} \tag{1.1.2a}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{a}=a_{1} \boldsymbol{u}_{1}+a_{2} \boldsymbol{u}_{2}+a_{3} \boldsymbol{u}_{3}=a_{x} \boldsymbol{u}_{x}+a_{y} \boldsymbol{u}_{y}+a_{z} \boldsymbol{u}_{z}=\sum a_{k} \boldsymbol{u}_{k} . \tag{1.1.2b}
\end{equation*}
$$

In terms of the famous Einsteinian summation convention $[=$ lone, or free, subscripts range over the integers $1,2,3$, or x, y, z, while summation is implied over repeated (i.e., pairs) of subscripts], we can simply write $\boldsymbol{a}=a_{k} \boldsymbol{u}_{k}$. In this book, however, and for reasons that will gradually become clear (chap. 2), we shall NOT use this convention!

Dotting (1.1.2b) with \boldsymbol{u}_{k}, and noting the six orthonormality (metric!) conditions or constraints:

$$
\begin{align*}
& \boldsymbol{u}_{k} \cdot \boldsymbol{u}_{l}: \text { scalar, or dot, or inner, product of } \boldsymbol{u}_{k}, \boldsymbol{u}_{l}=\delta_{k l}=\delta_{l k} \text { (Kronecker delta) } \\
& =1 \quad \text { if } k=l, \quad=0 \quad \text { if } k \neq l \quad(k, l=1,2,3, \text { or } x, y, z), \tag{1.1.3}
\end{align*}
$$

in extenso:

$$
\begin{equation*}
\boldsymbol{i} \cdot \boldsymbol{j}=\boldsymbol{j} \cdot \boldsymbol{j}=\boldsymbol{k} \cdot \boldsymbol{k}=1 \text { (normality), } \boldsymbol{i} \cdot \boldsymbol{j}=\boldsymbol{i} \cdot \boldsymbol{k}=\boldsymbol{j} \cdot \boldsymbol{k}=0 \text { (orthogonality). } \tag{1.1.3a,b}
\end{equation*}
$$

we obtain the following expression for the \boldsymbol{a}-components:

$$
\begin{equation*}
a_{k}=\boldsymbol{a} \cdot \boldsymbol{u}_{k} . \tag{1.1.2c}
\end{equation*}
$$

In such a basis, the dot product of two vectors \boldsymbol{a} and \boldsymbol{b} is expressed as

$$
\begin{equation*}
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{b} \cdot \boldsymbol{a}=\left(\sum a_{k} \boldsymbol{u}_{k}\right) \cdot\left(\sum b_{l} \boldsymbol{u}_{l}\right)=\cdots=\sum a_{k} b_{k} . \tag{1.1.4}
\end{equation*}
$$

For $\boldsymbol{a}=\boldsymbol{b}$, the above yields the length, or norm, or magnitude, of \boldsymbol{a} :

$$
\begin{equation*}
N(\boldsymbol{a}) \equiv a=|\boldsymbol{a}|=(\boldsymbol{a} \cdot \boldsymbol{a})^{1 / 2}=\left(\sum a_{k} a_{k}\right)^{1 / 2} \geq 0 \quad \text { (this book). } \tag{1.1.5}
\end{equation*}
$$

The basis $\left\{\boldsymbol{u}_{1,2,3}\right\}$ is called $\mathrm{O}_{\text {rtho }} \mathrm{N}_{\text {ormal }} \mathrm{D}_{\text {extral (i.e., right-handed) }} \equiv \mathrm{OND}$, if, in addition to (1.1.3), it satisfies

$$
\begin{align*}
& \boldsymbol{u}_{k} \cdot\left(\boldsymbol{u}_{r} \times \boldsymbol{u}_{s}\right) \equiv\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{r}, \boldsymbol{u}_{s}\right) \equiv \varepsilon_{k r s}(\text { permutation symbol, or alternator, of Levi-Civita) } \\
&=+1 /-1 / 0 \quad \begin{array}{l}
\text { according as } k, r, s \text { are an } \text { even/odd/no permutation } \\
\text { of } 1,2,3
\end{array} \\
& {\left[\text { i.e., } \varepsilon_{123}=\varepsilon_{231}=\varepsilon_{312}=+1, \quad \varepsilon_{132}=\varepsilon_{213}=\varepsilon_{321}=-1,\right.} \\
&\left.\varepsilon_{112}=\varepsilon_{122}=\varepsilon_{313}=\varepsilon_{222}=\cdots=0 \text { (two or more indices equal) }\right], \tag{1.1.6}
\end{align*}
$$

or, equivalently, if

$$
\begin{equation*}
\boldsymbol{u}_{r} \times \boldsymbol{u}_{s}=\sum \varepsilon_{r s k} \boldsymbol{u}_{k}=\sum \varepsilon_{k r s} \boldsymbol{u}_{k} \Leftrightarrow \boldsymbol{u}_{k}=(1 / 2) \sum \sum \varepsilon_{k r s}\left(\boldsymbol{u}_{r} \times \boldsymbol{u}_{s}\right) \tag{1.1.6a}
\end{equation*}
$$

that is, $\left(\boldsymbol{u}_{r} \times \boldsymbol{u}_{s}\right)_{k}=\varepsilon_{r s k}$; otherwise $\left\{\boldsymbol{u}_{1,2,3}\right\}$ is left-handed, or sinister, in which case $\left(\boldsymbol{u}_{k}, \boldsymbol{u}_{r}, \boldsymbol{u}_{s}\right) \equiv-\varepsilon_{k r s}$. Henceforth, only OND bases will be used.

- The symbols of Kronecker and Levi-Civita are connected by the following "ed identity":

$$
\begin{equation*}
\sum \varepsilon_{k r s} \varepsilon_{l m s}=\sum \varepsilon_{s k r} \varepsilon_{s l m}=\delta_{k l} \delta_{r m}-\delta_{k m} \delta_{r l} ; \tag{1.1.6b}
\end{equation*}
$$

which, for $r=m$ (and then summation over repeated subscripts), produces

$$
\begin{equation*}
\sum \sum \varepsilon_{k r s} \varepsilon_{l r s}=2 \delta_{k l} \tag{1.1.6c}
\end{equation*}
$$

and this, for $k=l$, etc., yields

$$
\begin{equation*}
\sum \sum \sum \varepsilon_{k r s} \varepsilon_{k r s}=2\left(\sum \delta_{k k}\right)=2(3)=6 \tag{1.1.6~d}
\end{equation*}
$$

- The dextrality of the orthonormal basis (i, $\boldsymbol{j}, \boldsymbol{k}$) (i.e., $\boldsymbol{i} \times \boldsymbol{i}=\boldsymbol{j} \times \boldsymbol{j}=\boldsymbol{k} \times \boldsymbol{k}=\mathbf{0}$), is expressed by

$$
\begin{equation*}
i \times j=-(j \times i)=k, \quad j \times k=-(k \times j)=i, k \times i=-(i \times k)=\boldsymbol{j} \tag{1.1.6e}
\end{equation*}
$$

With the help of the above, we express the vector, or cross, or outer, product of \boldsymbol{a} and \boldsymbol{b} as

$$
\begin{equation*}
\boldsymbol{a} \times \boldsymbol{b}=-(\boldsymbol{b} \times \boldsymbol{a})=\sum \sum \sum \varepsilon_{k l r} a_{k} b_{l} \boldsymbol{u}_{r} \tag{1.1.7a}
\end{equation*}
$$

that is,

$$
\begin{equation*}
(\boldsymbol{a} \times \boldsymbol{b})_{r}=\sum \sum \varepsilon_{k l r} a_{k} b_{l}=\sum \sum \varepsilon_{r k l} a_{k} b_{l} \tag{1.1.7b}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
\left|\boldsymbol{u}_{1} \times \boldsymbol{u}_{2}\right|^{2}=\left|\boldsymbol{u}_{2} \times \boldsymbol{u}_{3}\right|^{2}=\left|\boldsymbol{u}_{3} \times \boldsymbol{u}_{1}\right|^{2}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)^{2}=+1 \tag{1.1.8a}
\end{equation*}
$$

where

$$
\begin{align*}
(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) & \equiv \boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b}) \\
& =(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=(\boldsymbol{b} \times \boldsymbol{c}) \cdot \boldsymbol{a}=(\boldsymbol{c} \times \boldsymbol{a}) \cdot \boldsymbol{b} \\
& =\sum \sum \sum \varepsilon_{k r s} a_{k} b_{r} c_{s} \tag{1.1.8b}
\end{align*}
$$

$[+$, if $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ is right; - , if $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ is left; 0 , if $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ are coplanar or zero]: scalar triple product of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}=$ signed volume of parallelepiped having $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ as sides; also

$$
\begin{align*}
{[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}] } & \equiv \boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})
\end{align*}=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c} \text {. }
$$

vector triple product of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$.
The dyadic, or direct, or open, or tensor product of two vectors \boldsymbol{a} and \boldsymbol{b},

$$
\begin{equation*}
\boldsymbol{a} \boldsymbol{b} \equiv \boldsymbol{a} \otimes \boldsymbol{b} \quad(\neq \boldsymbol{b} \otimes \boldsymbol{a}, \text { in general }) \tag{1.1.9a}
\end{equation*}
$$

is defined as (the tensor - see below):

$$
\begin{equation*}
\boldsymbol{a} \boldsymbol{b} \equiv \boldsymbol{a} \otimes \boldsymbol{b}=\left(\sum a_{k} \boldsymbol{u}_{k}\right) \otimes\left(\sum b_{l} \boldsymbol{u}_{l}\right)=\sum \sum a_{k} b_{l}\left(\boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}\right) \tag{1.1.9b}
\end{equation*}
$$

- This product can also be defined as the tensor that assigns to each vector \boldsymbol{x} the vector $\boldsymbol{a}(\boldsymbol{b} \cdot \boldsymbol{x})$:

$$
\begin{equation*}
(a \otimes b) \cdot x=a(b \cdot x)=(b \cdot x) a \tag{1.1.9c}
\end{equation*}
$$

and also

$$
\begin{equation*}
x \cdot(a \otimes b)=(x \cdot a) b=b(x \cdot a) \tag{1.1.9d}
\end{equation*}
$$

In components, these read, respectively,

$$
\begin{equation*}
(\boldsymbol{a} \otimes \boldsymbol{b}) \cdot \boldsymbol{x}=\sum \sum\left(a_{k} b_{l} x_{l}\right) \boldsymbol{u}_{k}, \quad \boldsymbol{x} \cdot(\boldsymbol{a} \otimes \boldsymbol{b})=\sum \sum\left(x_{l} a_{l} b_{k}\right) \boldsymbol{u}_{k} \tag{1.1.9e}
\end{equation*}
$$

- It can be shown that

$$
\begin{equation*}
[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]=[(\boldsymbol{b} \otimes \boldsymbol{c})-(\boldsymbol{c} \otimes \boldsymbol{b})] \cdot \boldsymbol{a} \tag{1.1.8d}
\end{equation*}
$$

Tensors: Basic Concepts/Definitions and Algebra

[For a detailed classical mostly indicial treatment of general tensors, see, for example, Papastavridis (1999), and our Elementary Mechanics.]

A second-order (or rank) tensor (or dyadic, from the Greek $\Delta Y O=t w o$) or, here, simply tensor \boldsymbol{T} (bold, in italics or roman) is defined as a linear transformation from V to V; or as a linear mapping assigning to each vector another vector \boldsymbol{b} :

$$
\begin{equation*}
b=T \cdot a \tag{1.1.10a}
\end{equation*}
$$

or in components

$$
\begin{equation*}
\sum b_{k} \boldsymbol{u}_{k}=\sum \sum T_{k l} a_{l} \boldsymbol{u}_{k} \Rightarrow b_{k}=\sum T_{k l} a_{l} \tag{1.1.10b}
\end{equation*}
$$

or as

$$
\boldsymbol{b}=\boldsymbol{a} \cdot \boldsymbol{T}=\sum \sum a_{k} T_{k l} \boldsymbol{u}_{l} \Rightarrow b_{l}=\sum T_{k l} a_{k}
$$

where

$$
\begin{equation*}
T_{k l} \equiv \boldsymbol{u}_{k} \cdot\left(\boldsymbol{T} \cdot \boldsymbol{u}_{l}\right)=\left(\boldsymbol{T} \cdot \boldsymbol{u}_{l}\right) \cdot \boldsymbol{u}_{k}=\boldsymbol{T} \cdot\left(\boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}\right) \tag{1.1.10c}
\end{equation*}
$$

are the Cartesian components of \boldsymbol{T} (see tensor products, below). Alternatively, a vector $/$ tensor $/ /(n)$ th order tensor associates a scalar/vector $/ /(n-1)$ th order tensor with each spatial direction $\boldsymbol{u}_{d}=\left(u_{(d) k}\right.$: direction cosines of unit vector $\left.\boldsymbol{u}_{d}\right)$, via a linear and homogeneous expression in the $u_{(d) k}$; that is, for a (second-order) tensor:
$\boldsymbol{T} \rightarrow \boldsymbol{v}_{d}=\boldsymbol{T} \cdot \boldsymbol{u}_{d} \quad$ (direct notation),$\quad v_{(d) k}=\sum T_{k l} u_{(d) l} \quad$ (component notation).
Thus (and in addition to the well-known 3×3 matrix form), \boldsymbol{T} has the following representations:

$$
\begin{align*}
\boldsymbol{T} & =\sum \sum T_{k l} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l} & & (\text { Dyadic or nonion representation }) \\
& =\sum \boldsymbol{u}_{k} \otimes \boldsymbol{t}_{k}, & & \text { where } \boldsymbol{t}_{k} \equiv \sum T_{k l} \boldsymbol{u}_{l} \tag{1.1.10d}\\
& =\sum \boldsymbol{\tau}_{l} \otimes \boldsymbol{u}_{l}, & & \text { where } \boldsymbol{\tau}_{l} \equiv \sum T_{k l} \boldsymbol{u}_{k} \tag{1.1.10e}
\end{align*}
$$

The nine tensors $\left\{\boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}\right\}$ span the set of all (second-order) tensors; they form an orthonormal "tensor basis" there. If $T_{12}=T_{21}\left(=-T_{21}\right)$, etc., then \boldsymbol{T} is called symmetric (anti-, or skew-symmetric). Generally [see definition of transpose, (...) ${ }^{\mathrm{T}}$, below]:
$\begin{array}{lll}\text { Symmetric tensor: } & \boldsymbol{T}=\boldsymbol{T}^{\mathrm{T}}, & T_{k l}=T_{l k} ; \\ \text { Antisymmetric tensor: } & \boldsymbol{T}=-\boldsymbol{T}^{\mathrm{T}}, & T_{k l}=-T_{l k} \quad\left(\Rightarrow T_{k k}=0, \text { no sum! }\right)\end{array}$

Algebra of Tensors: Basic Operations

- Sum/difference of tensors \boldsymbol{T} and \boldsymbol{S} :

$$
\begin{equation*}
\boldsymbol{T} \pm \boldsymbol{S}=\sum \sum\left(T_{k l} \pm S_{k l}\right) \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l /} \tag{1.1.12a}
\end{equation*}
$$

- Product of \boldsymbol{T} with a scalar (number) $\lambda, \lambda \boldsymbol{T}$:

$$
\begin{equation*}
\lambda \boldsymbol{T}=\sum \sum\left(\lambda T_{k l}\right) \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l} \tag{1.1.12b}
\end{equation*}
$$

- Tensor product of \boldsymbol{T} and $\boldsymbol{S}, \boldsymbol{T} \cdot \boldsymbol{S}$, is defined by

$$
\boldsymbol{T} \cdot \boldsymbol{S}=\sum \sum \sum T_{k r} S_{r l} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l} \quad(\neq \boldsymbol{S} \cdot \boldsymbol{T}, \text { in general })
$$

that is,

$$
\begin{equation*}
(\boldsymbol{T} \cdot \boldsymbol{S})_{k l}=\sum T_{k r} S_{r l} \neq(\boldsymbol{S} \cdot \boldsymbol{T})_{k l}=\sum S_{k r} T_{r l} \tag{1.1.12c}
\end{equation*}
$$

- Inner, or dot, scalar product of \boldsymbol{T} and $\boldsymbol{S}, \boldsymbol{T}: \boldsymbol{S}$, is defined by (see trace below)

$$
\begin{align*}
\boldsymbol{T}: \boldsymbol{S} & \equiv \sum \sum T_{k l} \boldsymbol{S}_{k l}=\operatorname{Tr}\left(\boldsymbol{T} \cdot \boldsymbol{S}^{\mathrm{T}}\right) \\
& =\sum \sum S_{k l} T_{k l}=\operatorname{Tr}\left(\boldsymbol{S} \cdot \boldsymbol{T}^{\mathrm{T}}\right) \equiv \boldsymbol{S}: \boldsymbol{T} \tag{1.1.12d}
\end{align*}
$$

where Tr means "trace of." If $\boldsymbol{T}=\boldsymbol{S}$,

$$
\begin{equation*}
T \equiv|\boldsymbol{T}|=(\boldsymbol{T}: \boldsymbol{T})^{1 / 2}: \text { magnitude of } \boldsymbol{T}(>0, \text { unless } \boldsymbol{T}=\mathbf{0}) \tag{1.1.12e}
\end{equation*}
$$

If either of $\boldsymbol{T}, \boldsymbol{S}$ is symmetric (as is almost always the case in mechanics), then,

$$
\begin{align*}
\boldsymbol{T}: \boldsymbol{S} & \equiv \sum \sum T_{k l} S_{k l}=\sum \sum T_{k l} \boldsymbol{S}_{l k} \\
{[} & =\operatorname{Tr}(\boldsymbol{T} \cdot \boldsymbol{S}) \equiv \boldsymbol{T} \cdots \boldsymbol{S} \\
& \left.=\sum \sum S_{l k} T_{k l}=\operatorname{Tr}(\boldsymbol{S} \cdot \boldsymbol{T}) \equiv \boldsymbol{S} \cdot \boldsymbol{T}\right] \tag{1.1.12f}
\end{align*}
$$

In sum, we have defined the following three tensorial products:

$$
\begin{equation*}
(\boldsymbol{T} \cdot \boldsymbol{S})_{k l}=\sum T_{k r} S_{r l} \quad \text { (Tensor) } \tag{1.1.12~g}
\end{equation*}
$$

$\boldsymbol{T}: \boldsymbol{S} \equiv \sum \sum T_{k l} S_{k l} \quad($ Scalar $), \quad \boldsymbol{T} \cdots \boldsymbol{S} \equiv \sum \sum T_{k l} S_{l k} \quad$ (Scalar).

The reader should be warned that these notations are by no means uniform, and so caution should be exercised in comparing various references.

- Transpose of $\boldsymbol{T}, \boldsymbol{T}^{\mathrm{T}}$, is defined uniquely by

$$
\begin{equation*}
(\boldsymbol{T} \cdot \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{a} \cdot\left(\boldsymbol{T}^{\mathrm{T}} \cdot \boldsymbol{b}\right), \text { for all } \boldsymbol{a}, \boldsymbol{b} \tag{1.1.12h}
\end{equation*}
$$

- Trace of \boldsymbol{T} is defined by

$$
\begin{equation*}
\text { Trace of } \boldsymbol{T} \equiv \operatorname{Tr}(\boldsymbol{T}) \equiv T_{11}+T_{22}+T_{33} \equiv \sum T_{k k} \text {. } \tag{1.1.12i}
\end{equation*}
$$

- Determinant of \boldsymbol{T} is defined by

$$
\begin{equation*}
\text { Determinant of } \boldsymbol{T} \equiv \operatorname{Det}(\boldsymbol{T})=\operatorname{Det}\left(T_{k l}\right) \equiv\left|T_{k l}\right| . \tag{1.1.12j}
\end{equation*}
$$

It can be shown that:

$$
\begin{equation*}
\operatorname{Tr}(\boldsymbol{T})=\operatorname{Tr}\left(\boldsymbol{T}^{\mathrm{T}}\right), \quad \operatorname{Det}(\boldsymbol{T})=\operatorname{Det}\left(\boldsymbol{T}^{\mathrm{T}}\right) \tag{i}
\end{equation*}
$$

(ii) For any two vectors \boldsymbol{a} and \boldsymbol{b} :

$$
\begin{equation*}
(\boldsymbol{a} \otimes \boldsymbol{b})^{\mathrm{T}}=\boldsymbol{b} \otimes \boldsymbol{a}, \quad \operatorname{Tr}(\boldsymbol{a} \otimes \boldsymbol{b})=\boldsymbol{a} \cdot \boldsymbol{b}=\sum a_{k} b_{k}, \quad \operatorname{Det}(\boldsymbol{a} \otimes \boldsymbol{b})=0 \tag{1.1.121}
\end{equation*}
$$

(iii) For any two tensors \boldsymbol{T} and \boldsymbol{S} :

$$
\begin{gather*}
(\boldsymbol{T} \cdot \boldsymbol{S})^{\mathrm{T}}=\boldsymbol{S}^{\mathrm{T}} \cdot \boldsymbol{T}^{\mathrm{T}}, \quad \operatorname{Tr}(\boldsymbol{T} \cdot \boldsymbol{S})=\operatorname{Tr}(\boldsymbol{S} \cdot \boldsymbol{T})=\boldsymbol{T} \cdot \cdot \boldsymbol{S}, \tag{1.1.12m}\\
\operatorname{Det}(\boldsymbol{T} \cdot \boldsymbol{S})=\operatorname{Det}(\boldsymbol{T}) \operatorname{Det}(\boldsymbol{S}) \tag{1.1.12n}
\end{gather*}
$$

also (in three dimensions):

$$
\begin{equation*}
\operatorname{Det}(t \boldsymbol{T})=t^{3} \operatorname{Det}(\boldsymbol{T}), \text { for any real number } t . \tag{1.1.12o}
\end{equation*}
$$

- Inverse of $\boldsymbol{T}, \boldsymbol{T}^{-1}$, is defined uniquely by:

$$
\begin{equation*}
\boldsymbol{T} \cdot \boldsymbol{T}^{-1}=\boldsymbol{T}^{-1} \cdot \boldsymbol{T}=\boldsymbol{1} \text { (unit tensor), } \quad[\operatorname{Det}(\boldsymbol{T}) \neq 0] . \tag{1.1.12p}
\end{equation*}
$$

From the above, we can easily deduce that

$$
\begin{equation*}
\operatorname{Det}\left(\boldsymbol{T}^{-1}\right)=(\operatorname{Det} \boldsymbol{T})^{-1} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
(\boldsymbol{T} \cdot \boldsymbol{S})^{-1}=\boldsymbol{S}^{-1} \cdot \boldsymbol{T}^{-1} \quad(\boldsymbol{T}, \boldsymbol{S}: \text { invertible }) \tag{1.1.12q}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
d / d x(\text { Det } \boldsymbol{T})=(\operatorname{Det} \boldsymbol{T}) \operatorname{Tr}\left[(d \boldsymbol{T} / d x) \cdot \boldsymbol{T}^{-1}\right] \tag{ii}
\end{equation*}
$$

where $\boldsymbol{T}=\boldsymbol{T}(x)=$ invertible, $x=$ real parameter, and $d \boldsymbol{T} / d x \equiv\left(d T_{k l} / d x\right)$.

- A tensor can be built from two vectors; but, in general, it cannot be decomposed into two vectors.
- Every tensor can be decomposed uniquely into a sum of a symmetric part ($T_{k l}^{\prime}$) and an antisymmetric part $\left(T^{\prime \prime}{ }_{k l}\right)$:

$$
\begin{gather*}
T_{k l}=T_{k l}^{\prime}+T_{k l}^{\prime \prime}, \\
2 T_{k l}^{\prime} \equiv T_{k l}+T_{l k}=2 T_{l k}^{\prime}, \quad 2 T_{k l}^{\prime \prime} \equiv T_{k l}-T_{l k}=-2 T^{\prime \prime}{ }_{l k} \tag{1.1.13a}
\end{gather*}
$$

that is,

$$
\begin{equation*}
\boldsymbol{T}=\boldsymbol{T}^{\prime}+\boldsymbol{T}^{\prime \prime}, \quad \boldsymbol{T}^{\prime}=\left(\boldsymbol{T}^{\prime}\right)^{\mathrm{T}}, \quad \boldsymbol{T}^{\prime \prime}=-\left(\boldsymbol{T}^{\prime \prime}\right)^{\mathrm{T}} \tag{1.1.13b}
\end{equation*}
$$

- For any tensor \boldsymbol{T} and any three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, the following identities hold:
(i) $\boldsymbol{a} \cdot(\boldsymbol{T} \cdot \boldsymbol{b})=\boldsymbol{T}:(\boldsymbol{a} \otimes \boldsymbol{b}), \quad \sum a_{k}\left(\sum T_{k l} b_{l}\right)=\sum \sum T_{k l}\left(a_{k} b_{l}\right) \quad$ (in components).
(ii) Since

$$
\boldsymbol{T} \cdot \boldsymbol{a}=\sum \sum\left(T_{k l} a_{l}\right) \boldsymbol{u}_{k}, \quad \boldsymbol{a} \cdot \boldsymbol{T}=\sum \sum\left(a_{l} T_{l k}\right) \boldsymbol{u}_{k},
$$

we will have $\boldsymbol{T} \cdot \boldsymbol{a}=\boldsymbol{a} \cdot \boldsymbol{T}$, only if \boldsymbol{T} is symmetric; from which we also conclude that

$$
\begin{equation*}
\left(\boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}\right):\left(\boldsymbol{u}_{r} \otimes \boldsymbol{u}_{s}\right)=\delta_{k r} \delta_{l s} . \tag{1.1.14b}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
(a \times \boldsymbol{T}) \cdot \boldsymbol{b}=\boldsymbol{a} \times(\boldsymbol{T} \cdot \boldsymbol{b}), \quad(\boldsymbol{T} \times \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{T} \cdot(\boldsymbol{a} \times \boldsymbol{b}), \tag{1.1.14c}
\end{equation*}
$$

where

$$
\boldsymbol{T} \times \boldsymbol{a}=\sum \sum \sum \sum\left(T_{k r} a_{s} \varepsilon_{r s l}\right) \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l} ;
$$

that is,

$$
\begin{equation*}
(\boldsymbol{T} \times \boldsymbol{a})_{k l}=\sum \sum \varepsilon_{l r s} T_{k r} a_{s}, \tag{1.1.14d}
\end{equation*}
$$

and
$\boldsymbol{a} \times \boldsymbol{T}=\sum \sum \sum \sum\left(T_{s l} a_{r} \varepsilon_{r s k}\right) \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}, \quad(\boldsymbol{a} \times \boldsymbol{T})_{k l}=\sum \sum \varepsilon_{k r s} a_{r} T_{s l}$.
(iv)

$$
\begin{equation*}
(\boldsymbol{T} \cdot \boldsymbol{a}, \boldsymbol{T} \cdot \boldsymbol{b}, \boldsymbol{T} \cdot \boldsymbol{c})=(\operatorname{Det} \boldsymbol{T})(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) \tag{1.1.14e}
\end{equation*}
$$

(v)

$$
\begin{equation*}
\boldsymbol{T}^{\mathrm{T}} \cdot(\boldsymbol{T} \cdot \boldsymbol{a} \times \boldsymbol{T} \cdot \boldsymbol{b})=(\operatorname{Det} \boldsymbol{T})(\boldsymbol{a} \times \boldsymbol{b}) \tag{1.1.14f}
\end{equation*}
$$

Special Tensors

Zero tensor \boldsymbol{O} :

$$
\begin{equation*}
\boldsymbol{O} \cdot \boldsymbol{a}=\mathbf{0}, \quad \text { for every vector } \boldsymbol{a} \tag{1.1.15a}
\end{equation*}
$$

Unit, or identity, tensor 1:

$$
\begin{equation*}
\boldsymbol{1} \cdot \boldsymbol{a}=\boldsymbol{a}, \quad \text { for every vector } \boldsymbol{a} \tag{1.1.15b}
\end{equation*}
$$

$$
\begin{array}{rlrl}
\boldsymbol{1} & =\sum \sum \delta_{k l} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}=\boldsymbol{u}_{1} \otimes \boldsymbol{u}_{1}+\boldsymbol{u}_{2} \otimes \boldsymbol{u}_{2}+\boldsymbol{u}_{3} \otimes \boldsymbol{u}_{3} & & (\text { Dyadic form }) \\
& =\left(\delta_{k l}\right)=\operatorname{diagonal}(1,1,1) & & \text { (Matrix form) } \\
& \Rightarrow \operatorname{Det} \boldsymbol{1}=+1 . & \tag{1.1.15c}
\end{array}
$$

Diagonal tensor D:

$$
\begin{align*}
\boldsymbol{D} & =D_{11} \boldsymbol{u}_{1} \otimes \boldsymbol{u}_{1}+D_{22} \boldsymbol{u}_{2} \otimes \boldsymbol{u}_{2}+D_{33} \boldsymbol{u}_{3} \otimes \boldsymbol{u}_{3} & & \text { (Dyadic form) } \\
& =\text { diagonal }\left(D_{11}, D_{22}, D_{33}\right) & & \text { (Matrix form). } \tag{1.1.15d}
\end{align*}
$$

If $D_{11}=D_{22}, \boldsymbol{D}$ reduces to

$$
\begin{equation*}
\boldsymbol{D}=D_{11} \boldsymbol{I}+\left(D_{33}-D_{11}\right) \boldsymbol{u}_{3} \otimes \boldsymbol{u}_{3} \tag{1.1.15e}
\end{equation*}
$$

a result that is useful in the representation of moments of inertia of bodies of revolution.

Alternator tensor ε :

$$
\begin{equation*}
\boldsymbol{\varepsilon}=\sum \sum \sum \varepsilon_{k l m} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l} \otimes \boldsymbol{u}_{m} \tag{1.1.15f}
\end{equation*}
$$

It can be shown that
(i) $\quad \operatorname{Det} \boldsymbol{T} \equiv\left|T_{k l}\right|=\sum \sum \sum \sum \sum \sum(1 / 6) \varepsilon_{k l m} \varepsilon_{p q r} T_{k p} T_{l q} T_{m r}$.
(ii) If \boldsymbol{S} is symmetric, then $\boldsymbol{T}: \boldsymbol{S}=\boldsymbol{T}^{\mathrm{T}}: \boldsymbol{S}=(1 / 2)\left(\boldsymbol{T}+\boldsymbol{T}^{\mathrm{T}}\right): \boldsymbol{S}$,

If \boldsymbol{S} is antisymmetric, then $\boldsymbol{T}: \boldsymbol{S}=-\left(\boldsymbol{T}^{\mathrm{T}}: \boldsymbol{S}\right)=(1 / 2)\left(\boldsymbol{T}-\boldsymbol{T}^{\mathrm{T}}\right): \boldsymbol{S}$,
If S is symmetric and \boldsymbol{T} is antisymmetric, then $\boldsymbol{T}: \boldsymbol{S}=0$.
(iii) If $\boldsymbol{T}: \boldsymbol{S}=0$ for every tensor \boldsymbol{S}, then $\boldsymbol{T}=\mathbf{0}$,

If $\boldsymbol{T}: \boldsymbol{S}=0$ for every symmetric tensor \boldsymbol{S}, then $\boldsymbol{T}=$ antisymmetric,
If $\boldsymbol{T}: \boldsymbol{S}=0$ for every antisymmetric tensor \boldsymbol{S}, then $\boldsymbol{T}=$ symmetric. $(1.1 .15 \mathrm{~m})$

Axial Vectors

There exists a one-to-one correspondence between antisymmetric tensors and vectors: given a (any) antisymmetric tensor \boldsymbol{W} - that is, $\boldsymbol{W}=-\boldsymbol{W}^{\mathrm{T}}$ - there exists a unique vector \boldsymbol{w}, its axial (or dual) vector or axis, such that for every vector \boldsymbol{a} :

$$
\begin{equation*}
W \cdot a=w \times a \tag{1.1.16a}
\end{equation*}
$$

that is, (recalling the earlier definitions of products, etc.)

$$
\begin{equation*}
W \cdot(\ldots)=(w \times \boldsymbol{1}) \cdot(\ldots)=\boldsymbol{w} \times(\ldots) \quad[\Rightarrow \boldsymbol{a} \cdot(\boldsymbol{W} \cdot \boldsymbol{a})=0] . \tag{1.1.16b}
\end{equation*}
$$

And, conversely, given a vector \boldsymbol{w}, there exists a unique antisymmetric tensor \boldsymbol{W}, such that $(1.1 .16 \mathrm{a}, \mathrm{b})$ hold. In components, the above read:

$$
\begin{align*}
& w_{k}=-(1 / 2) \sum \sum \varepsilon_{k l m} W_{l m}=(1 / 2) \sum \sum \varepsilon_{l k m} W_{l m} \tag{1.1.16c}\\
& W_{l m}=-\sum \varepsilon_{l m k} w_{k}=\sum \varepsilon_{l k m} w_{k} \tag{1.1.16d}
\end{align*}
$$

or, in matrix form:

$$
\boldsymbol{W}=\left(W_{l m}\right)=\left(\begin{array}{c|c|c}
0 & W_{12}=-w_{3} & W_{13}=w_{2} \tag{1.1.16e}\\
\hline W_{21}=w_{3} & 0 & W_{23}=-w_{1} \\
\hline W_{31}=-w_{2} & W_{32}=w_{1} & 0
\end{array}\right) .
$$

[Sometimes (especially in general indicial tensorial treatments) w_{k} is defined as the negative of the above; that is,

$$
\begin{equation*}
w_{k}=(1 / 2) \sum \sum \varepsilon_{k l m} W_{l m} \Leftrightarrow W_{l m}=\sum \varepsilon_{l m k} w_{k}, \tag{1.1.16f}
\end{equation*}
$$

or

$$
\begin{equation*}
W \cdot a=-w \times a=a \times w \tag{1.1.16g}
\end{equation*}
$$

and so, here too, the reader should be careful when comparing references.]
It can be shown that:
(i) The axial vector of a general nonsymmetric tensor equals the axial vector of its antisymmetric part; that is, the axial vector of its symmetric part (and, generally, of any symmetric tensor) vanishes; and, conversely, the vanishing of that vector shows that that tensor is symmetric.
(ii) The axial vector of $\boldsymbol{T}, \boldsymbol{t}$ (or $\boldsymbol{T}_{\mathrm{x}}$, or $\boldsymbol{t}_{\mathrm{x}}$), can be expressed as

$$
\begin{align*}
-2 \boldsymbol{t} & =\left(T_{23}-T_{32}\right) \boldsymbol{u}_{1}+\left(T_{31}-T_{13}\right) \boldsymbol{u}_{2}+\left(T_{12}-T_{21}\right) \boldsymbol{u}_{3} \\
& =\boldsymbol{u}_{1} \times \boldsymbol{t}_{1}+\boldsymbol{u}_{2} \times \boldsymbol{t}_{2}+\boldsymbol{u}_{3} \times \boldsymbol{t}_{3} . \tag{1.1.16h}
\end{align*}
$$

(iii) The axial vector of

$$
\boldsymbol{W}=\sum \sum W_{k l} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}=\sum \sum(1 / 2) W_{k l}\left(\boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}-\boldsymbol{u}_{l} \otimes \boldsymbol{u}_{k}\right),
$$

\boldsymbol{w} has the following dyadic representation (note k, l order):

$$
\begin{equation*}
\boldsymbol{w}=\sum \sum \sum\left[-(1 / 2) \varepsilon_{r k l} W_{k l}\right] \boldsymbol{u}_{r}=\cdots=\sum \sum(1 / 2) W_{k l}\left(\boldsymbol{u}_{l} \times \boldsymbol{u}_{k}\right) \tag{1.1.16i}
\end{equation*}
$$

(iv) Let $\boldsymbol{w}=w \boldsymbol{u}_{1}$. Then,

$$
\begin{equation*}
\boldsymbol{W}=w\left(\boldsymbol{u}_{3} \otimes \boldsymbol{u}_{2}-\boldsymbol{u}_{2} \otimes \boldsymbol{u}_{3}\right), \quad w=\boldsymbol{u}_{3} \cdot\left(\boldsymbol{W} \cdot \boldsymbol{u}_{2}\right) ; \tag{1.1.16j}
\end{equation*}
$$

and cyclically for $\boldsymbol{w}=w \boldsymbol{u}_{2}, \boldsymbol{w}=w \boldsymbol{u}_{3}$.
(v) The antisymmetric part of the tensor $\boldsymbol{a} \otimes \boldsymbol{b}$ equals (in matrix form)

$$
\left(\begin{array}{ccc}
0 & -w_{3} & w_{2} \tag{1.1.16k}\\
w_{3} & 0 & -w_{1} \\
-w_{2} & w_{1} & 0
\end{array}\right)
$$

where

$$
\begin{equation*}
\boldsymbol{w}=(1 / 2) \boldsymbol{b} \times \boldsymbol{a} \quad \text { (note order) } . \tag{1.1.161}
\end{equation*}
$$

(vi) The tensor $\boldsymbol{a} \otimes \boldsymbol{b}-\boldsymbol{b} \otimes \boldsymbol{a}$, where $\boldsymbol{a}, \boldsymbol{b}$ are arbitrary vectors, is antisymmetric; and, by the preceding, its axial vector is $\boldsymbol{b} \times \boldsymbol{a}$ (note order).
(vii) Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ be the axial vectors of the antisymmetric tensors $\boldsymbol{W}_{1}, \boldsymbol{W}_{2}$, respectively. Then,

$$
\begin{align*}
& \boldsymbol{W}_{1} \cdot \boldsymbol{W}_{2}=\boldsymbol{w}_{2} \otimes \boldsymbol{w}_{1}-\left(\boldsymbol{w}_{1} \cdot \boldsymbol{w}_{2}\right) \boldsymbol{1}, \quad \operatorname{Tr}\left(\boldsymbol{W}_{1} \cdot \boldsymbol{W}_{2}\right)=-2\left(\boldsymbol{w}_{1} \cdot \boldsymbol{w}_{2}\right) . \tag{1.1.16m}\\
& \Rightarrow \boldsymbol{W} \cdot \boldsymbol{W}=\boldsymbol{w} \otimes \boldsymbol{w}-(\boldsymbol{w} \cdot \boldsymbol{w}) \boldsymbol{1}, \text { or } \boldsymbol{W}^{2}=\boldsymbol{w} \otimes \boldsymbol{w}-\boldsymbol{w}^{2} \boldsymbol{1} . \tag{1.1.16n}
\end{align*}
$$

Spectral Theory of Tensors

DEFINITION

A scalar λ is a principal, or characteristic, or proper value, or eigenvalue, of \boldsymbol{T} if there exists a unit vector $\boldsymbol{n}=\left(n_{1}, n_{2}, n_{3}\right)$ such that

$$
\begin{equation*}
\boldsymbol{T} \cdot \boldsymbol{n}=\lambda \boldsymbol{n}, \quad \text { or in components } \sum T_{k l} n_{l}=\lambda n_{k} \tag{1.1.17a}
\end{equation*}
$$

Then \boldsymbol{n} is called a principal, or characteristic, or proper, or eigen-direction of \boldsymbol{T} corresponding to that value of λ.

DEFINITION

The principal, or characteristic, or proper, or eigen-space of \boldsymbol{T} corresponding to λ is the subspace of V consisting of all vectors \boldsymbol{a} satisfying (1.1.17a): $\boldsymbol{T} \cdot \boldsymbol{a}=\lambda \boldsymbol{a}$; that is, the subspace of all the eigenvectors of \boldsymbol{T}.

If \boldsymbol{T} is positive definite - that is, if $\boldsymbol{a} \cdot(\boldsymbol{T} \cdot \boldsymbol{a})>0$ for all $\boldsymbol{a} \neq \mathbf{0}$ - then its eigenvalues are strictly positive.

THEOREM OF SPECTRAL DECOMPOSITION (of \boldsymbol{T})

If $\boldsymbol{T}=\boldsymbol{T}^{\mathrm{T}}$ (i.e., symmetric), there exists an orthonormal basis $\left\{\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{n}_{3}\right\}$ for V and three real, but not necessarily distinct, eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of \boldsymbol{T} such that

$$
\begin{equation*}
\boldsymbol{T} \cdot \boldsymbol{n}_{k}=\lambda_{k} \boldsymbol{n}_{k} \quad(k=1,2,3 ; \text { no sum }) \tag{1.1.17b}
\end{equation*}
$$

and

$$
\begin{aligned}
& \boldsymbol{T}=\boldsymbol{T} \cdot \boldsymbol{1}=\boldsymbol{T} \cdot\left(\sum \boldsymbol{n}_{k} \otimes \boldsymbol{n}_{k}\right)=\sum\left(\boldsymbol{T} \cdot \boldsymbol{n}_{k}\right) \otimes \boldsymbol{n}_{k} \\
&=\sum \lambda_{k}\left(\boldsymbol{n}_{k} \otimes \boldsymbol{n}_{k}\right) \quad(\text { Dyadic representation }) \\
&=\operatorname{diagonal}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \quad(\text { Matrix representation }) \\
& \Rightarrow \boldsymbol{n}_{k} \cdot\left(\boldsymbol{T} \cdot \boldsymbol{n}_{l}\right)=\boldsymbol{T} \cdot \boldsymbol{n}_{k} \cdot \boldsymbol{n}_{l}=\lambda_{k} \delta_{k l}\left(=\lambda_{k} \text { or } 0, \text { according as } k=l \text { or } k \neq l\right)
\end{aligned}
$$

that is, with

$$
\begin{align*}
& \boldsymbol{n}_{k}=\left(n_{(k) l}: \text { components of } \boldsymbol{n}_{k}\right) \\
& T_{k l}=\lambda_{1} n_{(1) k} n_{(1) l}+\lambda_{2} n_{(2) k} n_{(2) l}+\lambda_{3} n_{(3) k} n_{(3) l} \tag{1.1.17d}
\end{align*}
$$

Conversely, if $\boldsymbol{T}=\sum \lambda_{k}\left(\boldsymbol{n}_{k} \otimes \boldsymbol{n}_{k}\right)$, with $\left\{\boldsymbol{n}_{k}\right\}=$ orthonormal, then $\boldsymbol{T} \cdot \boldsymbol{n}_{k}=\lambda_{k} \boldsymbol{n}_{k}$ (no sum).

Depending on the relative sizes of the three eigenvalues, we distinguish the following three cases:
(i) If $\lambda_{1}, \lambda_{2}, \lambda_{3}=$ distinct, then the eigendirections of \boldsymbol{T} are the three mutually orthogonal lines, through the origin, spanned by $\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{n}_{3}$.
(ii) If $\lambda_{1} \neq \lambda_{2}=\lambda_{3}$ (i.e., two distinct eigenvalues), then the spectral decomposition (1.1.17c) reduces to the following (with $\left|\boldsymbol{n}_{1}\right|=1$):

$$
\begin{equation*}
\boldsymbol{T}=\lambda_{1}\left(\boldsymbol{n}_{1} \otimes \boldsymbol{n}_{1}\right)+\lambda_{2}\left(\boldsymbol{1}-\boldsymbol{n}_{1} \otimes \boldsymbol{n}_{1}\right) \tag{1.1.17e}
\end{equation*}
$$

Conversely, if (1.1.17e) holds with $\lambda_{1} \neq \lambda_{2}=\lambda_{3}$, then λ_{1} and λ_{2} are the sole distinct eigenvalues of \boldsymbol{T}; which, in this case, has the two distinct eigenspaces: (a) the line spanned by \boldsymbol{n}_{1}, and (b) the plane perpendicular to \boldsymbol{n}_{1}.
(iii) If $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda$, in which case

$$
\begin{align*}
\boldsymbol{T}=\lambda \boldsymbol{I} & =\lambda\left(\boldsymbol{n}_{1} \otimes \boldsymbol{n}_{1}+\boldsymbol{n}_{2} \otimes \boldsymbol{n}_{2}+\boldsymbol{n}_{3} \otimes \boldsymbol{n}_{3}\right) & & \text { (Dyadic representation) } \\
& =\operatorname{diagonal}(\lambda, \lambda, \lambda) & & \text { (Matrix representation) }, \tag{1.1.17f}
\end{align*}
$$

then the eigenspace of \boldsymbol{T} is the entire space V. Conversely, if V is the eigenspace of \boldsymbol{T}, then \boldsymbol{T} has the form (1.1.17f). [For extensions of the theorem to polynomial functions of \boldsymbol{T} see books on linear algebra; also Bradbury (1968, pp. 113-116).] The requirement of nontrivial solutions for \boldsymbol{n}, in (1.1.17a), leads, in well-known ways, to the characteristic (polynomial) equation for T :

$$
\begin{equation*}
-\operatorname{Det}(\boldsymbol{T}-\lambda \boldsymbol{I})=\operatorname{Det}(\lambda \boldsymbol{I}-\boldsymbol{T}) \equiv D(\lambda) \equiv \lambda^{3}-I_{1} \lambda^{2}+I_{2} \lambda-I_{3}=0, \tag{1.1.18a}
\end{equation*}
$$

where the coefficients, or principal invariants of \boldsymbol{T} (i.e., quantities independent of the choice of the basis used for the representation of \boldsymbol{T}), are given by

$$
\begin{align*}
I_{1}(\boldsymbol{T}) & \equiv I_{1} \equiv \operatorname{Tr}(\boldsymbol{T})=\sum T_{k k}=\lambda_{1}+\lambda_{2}+\lambda_{3}, \\
I_{2}(\boldsymbol{T}) & \equiv I_{2} \equiv(1 / 2)\left[(\operatorname{Tr} \boldsymbol{T})^{2}-\operatorname{Tr}\left(\boldsymbol{T}^{2}\right)\right] \\
& =(1 / 2)\left[\left(\sum T_{k k}\right)\left(\sum T_{l l}\right)-\left(\sum \sum T_{k l} T_{l k}\right)\right]=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}, \\
I_{3}(\boldsymbol{T}) & \equiv I_{3} \equiv \operatorname{Det} \boldsymbol{T}=\left|T_{k l}\right|=\sum \sum \sum \varepsilon_{k l m} T_{k 1} T_{l 2} T_{m 3}=\lambda_{1} \lambda_{2} \lambda_{3} \\
& =(1 / 6)\left[(\operatorname{Tr} \boldsymbol{T})^{3}-3(\operatorname{Tr} \boldsymbol{T})\left(\operatorname{Tr} \boldsymbol{T}^{2}\right)+2 \operatorname{Tr}\left(\boldsymbol{T}^{3}\right)\right] \tag{1.1.18b}
\end{align*}
$$

also

$$
\begin{equation*}
I_{1}{ }^{2}-2 I_{2}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=\operatorname{Tr}\left(\boldsymbol{T}^{2}\right) . \tag{1.1.18c}
\end{equation*}
$$

[(a) It is shown in linear algebra/matrix theory that:

- In general, that is, $\boldsymbol{T}=$ nonsymmetric, eq. (1.1.18a) has either three real roots; or one real and two complex (conjugate) roots.
- Every tensor \boldsymbol{T} satisfies its own characteristic equation; that is, eq. (1.1.18a) with λ replaced by $\boldsymbol{T}: \boldsymbol{T}^{3}-I_{1} \boldsymbol{T}^{2}+I_{2} \boldsymbol{T}-I_{3} \boldsymbol{I}=\mathbf{0}$ (Cayley-Hamilton theorem). And, more generally, if $f(\lambda)=$ real polynomial in an eigenvalue λ of \boldsymbol{T}, then $f(\lambda)$ is an eigenvalue of $f(\boldsymbol{T})$; and, an eigenvector of \boldsymbol{T} corresponding to λ is also an eigenvector of $f(\boldsymbol{T})$ corresponding to $f(\lambda)$.
(b) The above show that $\operatorname{Tr} \boldsymbol{T}, \operatorname{Tr}\left(\boldsymbol{T}^{2}\right), \operatorname{Tr}\left(\boldsymbol{T}^{3}\right)$ may also be considered as principal invariants of \boldsymbol{T}.]

Further, it can be shown, that:
(i) If $\boldsymbol{N}_{1,2,3}$ are the antisymmetric tensors whose axial vectors are, respectively, the three orthonormal eigenvectors of (the symmetric tensor) $\boldsymbol{T}: \boldsymbol{n}_{1,2,3}$, then \boldsymbol{T} has, in addition to $(1.1 .17 \mathrm{c})$, the following spectral decomposition:

$$
\begin{equation*}
\boldsymbol{T}=\lambda_{1}\left(\boldsymbol{N}_{1} \cdot \boldsymbol{N}_{1}\right)+\lambda_{2}\left(\boldsymbol{N}_{2} \cdot \boldsymbol{N}_{2}\right)+\lambda_{3}\left(\boldsymbol{N}_{3} \cdot \boldsymbol{N}_{3}\right)+\operatorname{Tr}(\boldsymbol{T}) \boldsymbol{1} ; \tag{1.1.18d}
\end{equation*}
$$

and, therefore, for an arbitrary vector \boldsymbol{a},

$$
\begin{equation*}
\boldsymbol{T} \cdot \boldsymbol{a}=\lambda_{1}\left(\boldsymbol{N}_{1} \cdot \boldsymbol{N}_{1}\right) \cdot \boldsymbol{a}+\lambda_{2}\left(\boldsymbol{N}_{2} \cdot \boldsymbol{N}_{2}\right) \cdot \boldsymbol{a}+\lambda_{3}\left(\boldsymbol{N}_{3} \cdot \boldsymbol{N}_{3}\right) \cdot \boldsymbol{a}+\operatorname{Tr}(\boldsymbol{T}) \boldsymbol{a} \tag{1.1.18e1}
\end{equation*}
$$

also,

$$
\begin{equation*}
\operatorname{Tr}\left(\boldsymbol{N}_{1} \cdot \boldsymbol{N}_{1}\right)=\operatorname{Tr}\left(\boldsymbol{N}_{2} \cdot \boldsymbol{N}_{2}\right)=\operatorname{Tr}\left(\boldsymbol{N}_{3} \cdot \boldsymbol{N}_{3}\right)=-2 . \tag{1.1.18e2}
\end{equation*}
$$

(ii) If $\boldsymbol{a}=$ axial vector of \boldsymbol{A}, then

$$
\begin{equation*}
\boldsymbol{T} \cdot \boldsymbol{a}=\text { axial vector of }[-(\boldsymbol{T} \cdot \boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{T})+\operatorname{Tr}(\boldsymbol{T}) \boldsymbol{A}] . \tag{1.1.18f}
\end{equation*}
$$

(iii) The principal invariants of

$$
\begin{equation*}
\boldsymbol{T}=\sum \sum T_{k l} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}=\sum \boldsymbol{u}_{k} \otimes \boldsymbol{t}_{k}, \quad \text { where } \quad \boldsymbol{t}_{k} \equiv \sum T_{k l} \boldsymbol{u}_{l} \tag{1.1.18g}
\end{equation*}
$$

can be expressed as

$$
\begin{align*}
I_{1} & =\boldsymbol{u}_{1} \cdot \boldsymbol{t}_{1}+\boldsymbol{u}_{2} \cdot \boldsymbol{t}_{2}+\boldsymbol{u}_{3} \cdot \boldsymbol{t}_{3} \tag{1.1.18h}\\
I_{2} & =\boldsymbol{u}_{1} \cdot\left(\boldsymbol{t}_{2} \times \boldsymbol{t}_{3}\right)+\boldsymbol{u}_{2} \cdot\left(\boldsymbol{t}_{3} \times \boldsymbol{t}_{1}\right)+\boldsymbol{u}_{3} \cdot\left(\boldsymbol{t}_{1} \times \boldsymbol{t}_{2}\right) \tag{1.1.18i}\\
I_{3} & =\boldsymbol{t}_{1} \cdot\left(\boldsymbol{t}_{2} \times \boldsymbol{t}_{3}\right) \tag{1.1.18j}
\end{align*}
$$

(iv) The principal invariants of an antisymmetric tensor \boldsymbol{W} are

$$
\begin{align*}
I_{1} & =\operatorname{Tr} \boldsymbol{W}=0 \tag{1.1.18k}\\
I_{2} & =W_{23}^{2}+W_{31}^{2}+W_{12}^{2} \\
& =\left(-w_{1}\right)^{2}+\left(-w_{2}\right)^{2}+\left(-w_{3}\right)^{2}=w_{1}^{2}+w_{2}^{2}+w_{3}^{2} \tag{1.1.181}\\
I_{3} & =\text { Det } \boldsymbol{W}=0 \quad\left[|\boldsymbol{w}|^{2}=w^{2}=(\text { axial vector of } \boldsymbol{W})^{2}\right] \tag{1.1.18m}
\end{align*}
$$

from which, and from (1.1.18a), we can deduce that W has a single real eigenvalue $\lambda=0$.
(v) If \boldsymbol{T} is a symmetric and positive definite tensor with (\Rightarrow positive) eigenvalues, then
$\operatorname{Det} \boldsymbol{T}>0 \quad$ (i.e., \boldsymbol{T} is invertible), $\quad \boldsymbol{T}^{-1}=\sum \lambda_{k}^{-1}\left(\boldsymbol{n}_{k} \otimes \boldsymbol{n}_{k}\right)$.
(vi) If \boldsymbol{T} is an invertible tensor, and the characteristic equation of \boldsymbol{T}^{-1} is

$$
\begin{equation*}
\operatorname{Det}\left(\boldsymbol{T}^{-1}-\mu \boldsymbol{I}\right)=0 \Rightarrow \mu^{3}-I^{\prime}{ }_{1} \mu^{2}+I^{\prime}{ }_{2} \mu-I^{\prime}{ }_{3}=0 \tag{1.1.18o}
\end{equation*}
$$

then

$$
\begin{align*}
& \mu=1 / \lambda ; \text { i.e., the eigenvalues of } \boldsymbol{T}^{-1} \text { are the inverse of those of } \boldsymbol{T}, \tag{1.1.18p}\\
& I_{1}^{\prime}=I_{2} / I_{3}, \quad I_{2}^{\prime}=I_{1} / I_{3}, \quad I_{3}^{\prime}=1 / I_{3}, \tag{1.1.18q}\\
& \boldsymbol{T}^{-1}=\left(\boldsymbol{T}^{2}-I_{1} \boldsymbol{T}+I_{2} \boldsymbol{I}\right) / I_{3} . \tag{1.1.18r}
\end{align*}
$$

Orthogonal Transformations

A tensor \boldsymbol{T} is called orthogonal (or length-preserving) if it satisfies

$$
\begin{equation*}
\boldsymbol{T} \cdot \boldsymbol{T}^{\mathrm{T}}=\boldsymbol{T}^{\mathrm{T}} \cdot \boldsymbol{T}=\boldsymbol{1} \Rightarrow \boldsymbol{T}^{-1}=\boldsymbol{T}^{\mathrm{T}} \tag{1.1.19a}
\end{equation*}
$$

or, in components,

$$
\begin{align*}
& \sum T_{k l}\left(\boldsymbol{T}^{\mathrm{T}}\right)_{l r}=\sum T_{k l} T_{r l}=\delta_{k r}, \tag{1.1.19b}\\
& \sum\left(\boldsymbol{T}^{\mathrm{T}}\right)_{k l} T_{l r}=\sum T_{l k} T_{l r}=\delta_{k r} \tag{1.1.19c}
\end{align*}
$$

from which, since $\operatorname{Det} \boldsymbol{T}=\operatorname{Det} \boldsymbol{T}^{\mathrm{T}}$ (always), and $\operatorname{Det}\left(\boldsymbol{T} \cdot \boldsymbol{T}^{\mathrm{T}}\right)=(\operatorname{Det} \boldsymbol{T})\left(\operatorname{Det} \boldsymbol{T}^{\mathrm{T}}\right)$ and Det $\boldsymbol{1}=1$, it follows that

$$
\begin{equation*}
(\operatorname{Det} \boldsymbol{T})^{2}=1 \Rightarrow \operatorname{Det} \boldsymbol{T}= \pm 1 \tag{1.1.19d}
\end{equation*}
$$

THEOREM

The set of all orthogonal tensors forms the (full) orthogonal group; and the set of all orthogonal tensors with $\operatorname{Det} \boldsymbol{T}=+1$ forms the proper orthogonal (sub) group.

THEOREM (transformation of bases and preservation of their dextrality)
If $\boldsymbol{A}=\left(A_{k^{\prime} k}=A_{k k^{\prime}}\right)$ is a proper orthogonal tensor, or a rotation, and the basis $\left\{\boldsymbol{u}_{k} ; k=1,2,3\right\}$ is ortho-normal-dextral (OND), the new basis $\left\{\boldsymbol{u}_{k^{\prime}} ; k^{\prime}=1,2,3\right\}$ defined by

$$
\begin{equation*}
\boldsymbol{u}_{k^{\prime}}=\sum A_{k^{\prime} k} \boldsymbol{u}_{k} \Leftrightarrow \boldsymbol{u}_{k}=\sum A_{k k^{\prime}} \boldsymbol{u}_{k^{\prime}} \tag{1.1.19e}
\end{equation*}
$$

is also OND. Conversely, if both $\left\{\boldsymbol{u}_{k}\right\}$ and $\left\{\boldsymbol{u}_{k^{\prime}}\right\}$ are OND, then there exists a unique proper orthogonal tensor such that (1.1.19e) holds. It is not hard to see that

$$
\begin{equation*}
A_{k^{\prime} k}=\cos \left(\boldsymbol{u}_{k^{\prime}}, \boldsymbol{u}_{k}\right)=\cos \left(\boldsymbol{u}_{k}, \boldsymbol{u}_{k^{\prime}}\right)=A_{k k^{\prime}} ; \tag{1.1.19f}
\end{equation*}
$$

and in this commutativity of the indices lies one of the advantages of the nonaccented/accented index notation: one does not have to worry about their order. [In a matrix representation: $\mathbf{A}=\left(A_{k^{\prime} k}\right), k^{\prime}$: rows, k : columns; $\mathbf{A}^{\mathrm{T}}=\left(A_{k k^{\prime}}\right), k$: rows, k^{\prime} : columns; where (in general): $A_{I^{\prime} 2}=A_{2 I^{\prime}} \neq A_{2^{\prime} l}=A_{12^{\prime}}$ etc.] Also, in view of the earlier orthonormality conditions (or constraints):

$$
\begin{equation*}
\boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{l^{\prime}}=\delta_{k^{\prime} l^{\prime}} \quad \text { and } \quad \boldsymbol{u}_{k} \cdot \boldsymbol{u}_{l}=\delta_{k l}, \tag{1.1.19~g}
\end{equation*}
$$

[which, due to (1.1.19e) are none other than (1.1.19a): $\boldsymbol{A} \cdot \boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}^{\mathrm{T}} \cdot \boldsymbol{A}=\boldsymbol{1}$] only three of the nine elements (direction cosines) of \boldsymbol{A} are independent.

- For a vector \boldsymbol{a}, we have the following component representations in $\left\{\boldsymbol{u}_{k}\right\},\left\{\boldsymbol{u}_{k^{\prime}}\right\}$:

$$
\begin{equation*}
\boldsymbol{a}=\sum a_{k} \boldsymbol{u}_{k}=\sum a_{k^{\prime}} \boldsymbol{u}_{k^{\prime}} \tag{1.1.19h}
\end{equation*}
$$

and from this, using the basis transformation equations (1.1.19e), we readily obtain the corresponding component transformation equations:

$$
\begin{equation*}
a_{k^{\prime}}=\sum A_{k^{\prime} k} a_{k}=\sum A_{k k^{\prime}} a_{k} \Leftrightarrow a_{k}=\sum A_{k k^{\prime}} a_{k^{\prime}}=\sum A_{k^{\prime} k} a_{k^{\prime}} \tag{1.1.19i}
\end{equation*}
$$

- Polar versus axial vectors: In general tensor algebra, the word axial (vector, tensor) is frequently used in the following broader sense:
(a) Vectors that transform as (1.1.19i) under any/all orthogonal transformations $\left\{\boldsymbol{u}_{k}\right\} \Leftrightarrow\left\{\boldsymbol{u}_{k^{\prime}}\right\}$ proper or not, are called polar (or genuine); whereas,
(b) Vectors that, under such transformations, transform as

$$
\begin{aligned}
a_{k^{\prime}} & =(\operatorname{Det} \boldsymbol{A})^{-1} \sum A_{k^{\prime} k} a_{k}=(\operatorname{Det} \boldsymbol{A}) \sum A_{k^{\prime} k} a_{k} \Leftrightarrow \\
a_{k} & =\left(\operatorname{Det} \boldsymbol{A}^{-1}\right)^{-1} \sum A_{k k^{\prime}} a_{k^{\prime}}=\left(\operatorname{Det} \boldsymbol{A}^{\mathrm{T}}\right)^{-1} \sum A_{k k^{\prime}} a_{k^{\prime}}=(\operatorname{Det} \boldsymbol{A}) \sum A_{k k^{\prime}} a_{k^{\prime}}
\end{aligned}
$$

are called axial (or pseudo-) vectors. Hence, under a change from a right-hand system to a left-hand system (a reflection), in which case $\operatorname{Det} \boldsymbol{A}=\operatorname{Det}\left(A_{k^{\prime} k}\right)=-1$, the components of the axial vectors are unaffected; while those of polar vectors are multiplied by -1 . Since only proper orthogonal transformations are used in this book, this difference disappears - all our vectors will be polar, in that sense. This polar/axial distinction is of importance in other areas of physics; for example, relativity, electrodynamics (see, e.g., Bergmann, 1942, p. 56; Malvern, 1969, pp. 25-29).

- Every orthogonal tensor is either a rotation, $\boldsymbol{A} \rightarrow \boldsymbol{R}$, or the product of a rotation with $-\boldsymbol{1}$; that is, \boldsymbol{R} or $\mathbf{- 1} \cdot \boldsymbol{R}(\mathbf{1}: 3 \times 3$ unit tensor $)$.
- The eigenvectors of \boldsymbol{R} - that is, the set of vectors satisfying $\boldsymbol{R} \cdot \boldsymbol{x}=\boldsymbol{x}(\boldsymbol{R} \neq \boldsymbol{1})-$ build a one-dimensional subspace of V called the axis (of rotation) of \boldsymbol{R}.
- Under $\left\{\boldsymbol{u}_{k}\right\} \Leftrightarrow\left\{\boldsymbol{u}_{k^{\prime}}\right\}$ transformations, the components of a tensor $\boldsymbol{T}=\left(T_{k l}\right)=$ ($T_{k^{\prime} l^{\prime}}$) transform as follows:

$$
\begin{align*}
& T_{k^{\prime} l^{\prime}}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} T_{k l}=\sum \sum A_{k k^{\prime}} A_{l l^{\prime}} T_{k l}, \tag{1.1.19j}\\
& T_{k l}=\sum \sum A_{k k^{\prime}} A_{l l^{\prime}} T_{k^{\prime} l^{\prime}}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} T_{k^{\prime} l^{\prime}} \tag{1.1.19k}
\end{align*}
$$

or, in matrix form (also shown, frequently, in bold but roman),

$$
\begin{array}{lll}
(1.1 .19 \mathrm{j}):\left(T_{k^{\prime} l^{\prime}}\right)=\left(A_{k^{\prime} k}\right)\left(T_{k l}\right)\left(A_{l l^{\prime}}\right) & \text { or } & \boldsymbol{T}^{\prime}=\boldsymbol{A} \cdot \boldsymbol{T} \cdot \boldsymbol{A}^{\mathrm{T}}, \\
(1.1 .19 \mathrm{k}):\left(T_{k l}\right)=\left(A_{k k^{\prime}}\right)\left(T_{k^{\prime} l^{\prime}}\right)\left(A_{l^{\prime} l}\right) & \text { or } & \boldsymbol{T}=\boldsymbol{A}^{\mathrm{T}} \cdot \boldsymbol{T}^{\prime} \cdot \boldsymbol{A} . \tag{1.1.19m}
\end{array}
$$

[(a) Here, \boldsymbol{T}^{\prime} should not be confused with the symmetrical part of \boldsymbol{T}, (1.1.13a, b). The precise meaning should be clear from the context.
(b) We do not see much advantage of $(1.1 .191, \mathrm{~m})$ over $(1.1 .19 \mathrm{j}, \mathrm{k})$, especially as a working tool in new and nontrivial situations. However, (1.1.191,m) could be useful once the general theory has been thoroughly understood and is about to be applied to a concrete/numerical problem.]

It can be shown that:
(i) If W is antisymmetric, then
(a) $\boldsymbol{1}+\boldsymbol{W}$ is nonsingular; that is, $\operatorname{Det}(\boldsymbol{1}+\boldsymbol{W}) \neq 0$; and
(b) $(\boldsymbol{1}-\boldsymbol{W}) \cdot(\boldsymbol{1}+\boldsymbol{W})^{-1}$ is orthogonal (a result useful in rigid-body rotations).
(ii) If $O-\boldsymbol{u}_{123}$ and $O-\boldsymbol{u}_{1^{\prime} 2^{\prime} 3^{\prime}}$ originally coincide, then the rotation tensor of a counterclockwise (positive) rotation of $O-\boldsymbol{u}_{123}$ through an angle ϕ about $\boldsymbol{u}_{3}=\boldsymbol{u}_{3^{\prime}}$ has the matrix form (with $c \phi \equiv \cos \phi, s \phi \equiv \sin \phi$):

$$
\boldsymbol{A} \rightarrow \boldsymbol{R}=\left(\begin{array}{ccc}
c \phi & -s \phi & 0 \tag{1.1.19o}\\
s \phi & c \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Moving Axes Theorems for Vectors and Tensors

Let us consider the following representation of a vector \boldsymbol{a} and a tensor \boldsymbol{T}, measured relative to inertial, or fixed, OND axes $\left\{\boldsymbol{u}_{k^{\prime}}\right\}$, but expressed in terms of their components along (also OND) moving axes $\left\{\boldsymbol{u}_{k}\right\}$ rotating with angular velocity ω relative to $\left\{\boldsymbol{u}_{k^{\prime}}\right\}$:

$$
\begin{equation*}
\boldsymbol{a}=\sum a_{k} \boldsymbol{u}_{k}, \quad \boldsymbol{T}=\sum \sum T_{k l} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l} . \tag{1.1.20a}
\end{equation*}
$$

Let us calculate their inertial rates of change [i.e., relative to the fixed axes, $d \boldsymbol{a} / d t$, $d \boldsymbol{T} / d t\left(t=t^{\prime}:\right.$ time $)$, but in terms of their moving axes representations (1.1.20a) and their rates of change.
(i) By $d(\ldots) / d t$-differentiating the first of (1.1.20a) and invoking the fundamental kinematical result (most likely known from undergraduate dynamics) - a result which, along with the concept of angular velocity, is detailed in §1.7:

$$
\begin{equation*}
d \boldsymbol{u}_{k} / d t=\omega \times \boldsymbol{u}_{k}, \tag{1.1.20b}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
d \boldsymbol{a} / d t=\sum\left[\left(d a_{k} / d t\right) \boldsymbol{u}_{k}+a_{k}\left(\boldsymbol{\omega} \times \boldsymbol{u}_{k}\right)\right]=\partial \boldsymbol{a} / \partial t+\boldsymbol{\omega} \times \boldsymbol{a}, \tag{1.1.20c}
\end{equation*}
$$

where

$$
\begin{equation*}
\partial \boldsymbol{a} / \partial t \equiv \sum\left(d a_{k} / d t\right) \boldsymbol{u}_{k}: \text { rate of change of } \boldsymbol{a} \text { relative to the moving axes. } \tag{1.1.20d}
\end{equation*}
$$

(ii) Repeating this process for the second of (1.1.20a) we obtain

$$
\begin{align*}
d \boldsymbol{T} / d t & =\sum \sum\left\{\left(d T_{k l} / d t\right) \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}+T_{k l}\left[\left(\boldsymbol{\omega} \times \boldsymbol{u}_{k}\right) \otimes \boldsymbol{u}_{l}+\boldsymbol{u}_{k} \otimes\left(\boldsymbol{\omega} \times \boldsymbol{u}_{l}\right)\right]\right\} \\
& =\partial \boldsymbol{T} / \partial t+\omega \times \boldsymbol{T}-\boldsymbol{T} \times \omega \tag{1.1.20e}
\end{align*}
$$

where
$\partial \boldsymbol{T} / \partial t \equiv \sum \begin{gathered}\left(d T_{k l} / d t\right) \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}: \text { rate of change of } \boldsymbol{T} \text { relative to the moving axes } \\ (\text { or Jaumann, or corotational, derivative of } \boldsymbol{T}) .\end{gathered}$
Recalling the earlier results on the algebra of vectors/tensors and axial vectors [eqs (1.1.12), (1.1.14), (1.1.16)] we can rewrite (1.1.20c,e) in \boldsymbol{u}_{k}-components as follows:

$$
\begin{align*}
(d \boldsymbol{a} / d t)_{k} & =d a_{k} / d t+(\boldsymbol{\omega} \times \boldsymbol{a})_{k} \quad\left(\neq d a_{k} / d t\right) \tag{i}\\
& =d a_{k} / d t+\sum \sum \varepsilon_{k r s} \omega_{r} a_{s}=d a_{k} / d t+\sum \Omega_{k s} a_{s}, \tag{ii}
\end{align*}
$$

[after some index renaming in the last (third) group of terms, and noting that $\left.\Omega_{l s}=-\Omega_{s l}\right]$

$$
\begin{equation*}
=d T_{k l} / d t+\sum \Omega_{k s} T_{s l}-\sum T_{k s} \Omega_{s l} \tag{1.1.20h}
\end{equation*}
$$

where

$$
\begin{gathered}
\boldsymbol{\Omega}=\sum \sum \Omega_{k k} \boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}: \text { moving axes representation of angular velocity tensor } \\
\text { (of these axes relative to the fixed ones); }
\end{gathered}
$$

i.e., antisymmetric tensor whose axial vector is $\boldsymbol{\omega}: \boldsymbol{\Omega} \cdot \boldsymbol{a}=\boldsymbol{\omega} \times \boldsymbol{a}$, in components:

$$
\begin{equation*}
\omega_{k}=-(1 / 2) \sum \sum \varepsilon_{k r s} \Omega_{r s} \Leftrightarrow \Omega_{r s}=-\sum \varepsilon_{k r s} \omega_{k} . \tag{1.1.20i}
\end{equation*}
$$

Thus, in dyadic/matrix notation (see table 1.1), eq. (1.1.20e) reads

$$
\begin{align*}
d \boldsymbol{T} / d t & =\partial \boldsymbol{T} / \partial t+\boldsymbol{\Omega} \cdot \boldsymbol{T}-\boldsymbol{T} \cdot \boldsymbol{\Omega} \tag{1.1.20j}\\
{[} & \left.=\partial \boldsymbol{T} / \partial t+\boldsymbol{\Omega} \cdot \boldsymbol{T}+(\boldsymbol{\Omega} \cdot \boldsymbol{T})^{\mathrm{T}}, \quad \text { if } \boldsymbol{T}=\boldsymbol{T}^{\mathrm{T}}\right] . \tag{1.1.20k}
\end{align*}
$$

REMARKS

(i) Overdots, like (...) , are unambiguous only when applied to well-defined components of vectors/tensors; that is, $\dot{a}_{k}, \dot{a}_{k^{\prime}}, \dot{T}_{k l}, \dot{T}_{k^{\prime} l^{\prime}}, \ldots ;$ not when applied to their direct or dyadic, and/or matrix representations; that is, does $\dot{\boldsymbol{a}}$ mean $d \boldsymbol{a} / d t$ or $\partial \boldsymbol{a} / \partial t$? This is a common source of confusion in rigid-body dynamics.
(ii) We hope that this has convinced the reader of the superiority of the indicial notation over the (currently popular but nevertheless cumbersome and after-thefactish) dyadic/matrix notations.

Coordinate Transformations versus Frame of Reference Transformations

See also $\S 1.2, \S 1.5$. Let \boldsymbol{a}^{\prime} and \boldsymbol{a} be the values of a vector as measured, respectively, in the fixed (inertial) and moving (noninertial) frames. Then [recalling (1.1.19e-i)], we have

Inertial: $\quad \boldsymbol{a}^{\prime}=\sum a_{k}^{\prime} \boldsymbol{u}_{k}=\sum a_{k^{\prime}}^{\prime} \boldsymbol{u}_{k^{\prime}} ;$

$$
\begin{equation*}
\Rightarrow a_{k^{\prime}}^{\prime}=\sum A_{k^{\prime} k} a_{k}^{\prime} \Leftrightarrow a_{k}^{\prime}=\sum A_{k k^{\prime}} a_{k^{\prime}}^{\prime}\left(\text { definition of } a_{k^{\prime}}^{\prime}, a_{k}^{\prime}\right) \tag{1.1.201}
\end{equation*}
$$

Noninertial: $\boldsymbol{a}=\sum a_{k} \boldsymbol{u}_{k}=\sum a_{k^{\prime}} \boldsymbol{u}_{k^{\prime}} ;$

$$
\begin{equation*}
\left.\Rightarrow a_{k^{\prime}}=\sum A_{k^{\prime} k} a_{k} \Leftrightarrow a_{k}=\sum A_{k k^{\prime}} a_{k^{\prime}} \quad \text { (definition of } a_{k^{\prime}}, a_{k}\right) .(1.1 .20 \mathrm{o}) \tag{1.1.20n}
\end{equation*}
$$

Table 1.1 Common Tensor Notations

Direct/Dyadic	Matrix	Indicial/Component
$\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{b} \cdot \boldsymbol{a}$ (Dot product)	$\mathbf{a}^{\mathrm{T}} \cdot \mathbf{b}=\mathbf{b}^{\mathrm{T}} \cdot \mathbf{a}$	$\sum_{k} a_{k} b_{k}$
$\boldsymbol{T}=\boldsymbol{a} \otimes \boldsymbol{b}$ (Outer product)	$\mathbf{T}=\mathbf{a} \cdot \mathbf{b}^{\mathrm{T}}$	$T_{k l}=a_{k} b_{l}$
$\boldsymbol{b}=\boldsymbol{T} \cdot \boldsymbol{a}$	$\mathbf{b}=\mathbf{T} \cdot \mathbf{a}$	$b_{k}=\sum_{k l} T_{l}$
$\boldsymbol{b}=\boldsymbol{a} \cdot \boldsymbol{T}$	$\mathbf{b}^{\mathrm{T}}=\mathbf{a}^{\mathrm{T}} \cdot \mathbf{T}$ or $\mathbf{b}=\mathbf{T}^{\mathrm{T}} \cdot \mathbf{a}$	$b_{k}=\sum_{l} T_{l k}$
$\boldsymbol{a} \cdot \boldsymbol{T} \cdot \boldsymbol{b}$ (Bilinear form)	$\mathbf{a}^{\mathrm{T}} \cdot \mathbf{T} \cdot \mathbf{b}$	$\sum \sum_{k l} a_{k} b_{l}$
$\boldsymbol{T} \cdot \boldsymbol{S}$ (Tensor product)	$\mathbf{T} \cdot \mathbf{S}$	$\sum T_{k r} S_{r l}$
$\boldsymbol{T} \cdot \boldsymbol{S}^{\mathrm{T}}$ (Tensor product)	$\mathbf{T} \cdot \mathbf{S}^{\mathrm{T}}$	$\sum T_{k r} S_{l r}$
$\boldsymbol{T}: \boldsymbol{S}=\boldsymbol{S}: \boldsymbol{T}$ (Dot product)	$\operatorname{Tr}\left(\mathbf{T} \cdot \mathbf{S}^{\mathrm{T}}\right)=\operatorname{Tr}\left(\mathbf{S} \cdot \mathbf{T}^{\mathrm{T}}\right)$	$\sum \sum_{k l} S_{k l}$
$\boldsymbol{T} \cdot \boldsymbol{S}=\boldsymbol{S} \cdot \boldsymbol{T}$ (Dot product)	$\operatorname{Tr}(\mathbf{T} \cdot \mathbf{S})=\operatorname{Tr}(\mathbf{S} \cdot \mathbf{T})$	$\sum \sum T_{k l} \boldsymbol{S}_{l k}$

[^2]However, to relate the noninertial components $a_{k^{\prime}}, a_{k}$ to the inertial components $a_{k^{\prime}}^{\prime}$, a_{k}^{\prime}, say, to be able to write something like

$$
\begin{equation*}
a_{k}=a_{k}^{\prime} \Leftrightarrow a_{k^{\prime}}=a_{k^{\prime}}^{\prime} \tag{1.1.20p}
\end{equation*}
$$

we need additional assumptions (postulates) or derivations-eqs. (1.1.20p) express frame of reference (physical) transformations; that is, they do not follow from eqs. ($1.1 .20 \mathrm{~m}, \mathrm{o}$), which are simply coordinate system (geometrical/projection) transformations; (1.1.20p) have to be either postulated or derived from these postulates! Mathematically, a frame of reference transformation is equivalent to an explicitly time-dependent transformation between coordinate systems representing the two frames: $x_{k^{\prime}}=x_{k^{\prime}}\left(x_{k}, t\right) \Leftrightarrow x_{k}=x_{k}\left(x_{k^{\prime}}, t\right)$, while an ordinary coordinate transformation is explicitly time-independent: $x_{k^{\prime}}=x_{k^{\prime}}\left(x_{k}\right) \Leftrightarrow x_{k}=x_{k}\left(x_{k^{\prime}}\right)$.

For example, let us consider an inertial frame represented by the (fixed) axes $O-x_{k^{\prime}}$ and a noninertial one represented by the (moving) axes $O-x_{k}$, related by the homogeneous transformation (common origin!)

$$
\begin{equation*}
x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k} \Leftrightarrow x_{k}=\sum A_{k k^{\prime}} x_{k^{\prime}}, \tag{1.1.20q}
\end{equation*}
$$

where

$$
A_{k^{\prime} k}=A_{k k^{\prime}}=A_{k^{\prime} k}(t)
$$

Clearly, from geometry [i.e., (1.1.20p)-type postulates]:

$$
\begin{equation*}
x_{k^{\prime}}^{\prime}=x_{k^{\prime}}, \quad x_{k}^{\prime}=x_{k} \tag{1.1.20r}
\end{equation*}
$$

By $(\ldots)^{-}$-differentiating the first of (1.1.20q), and since $d x_{k^{\prime}}^{\prime} / d t=d x_{k^{\prime}} / d t \equiv v_{k^{\prime}}^{\prime}$: inertial velocity of particle (with inertial coordinates $x_{k^{\prime}}$) resolved along inertial axes, $d x_{k}^{\prime} / d t=d x_{k} / d t \equiv v_{k}$: noninertial velocity of same particle (with noninertial coordinates x_{k}) resolved along noninertial axes, we get

$$
\begin{equation*}
v_{k^{\prime}}^{\prime}=\sum A_{k^{\prime} k} v_{k}+\sum\left(d A_{k^{\prime} k} / d t\right) x_{k}=v_{k^{\prime}}+\sum\left(d A_{k^{\prime} k} / d t\right) x_{k} \tag{1.1.20s}
\end{equation*}
$$

[invoking (1.1.200)], where $d A_{k^{\prime} k} / d t=\sum \Omega_{k^{\prime} l^{\prime}} A_{l^{\prime} k}=\sum A_{k^{\prime} l} \Omega_{l k}$ (see §1.7); that is, $v_{k^{\prime}}^{\prime} \neq v_{k^{\prime}}$, even if the x_{k} and $x_{k^{\prime}}$ are, instantaneously, aligned (i.e., $A_{k^{\prime} k}=\delta_{k^{\prime} k}$-see §1.7); and, similarly, from the second of (1.1.20q), $v_{k}^{\prime} \neq v_{k}$, where $v_{k}^{\prime}=\sum A_{k k^{\prime}}^{\prime} v_{k^{\prime}}$. As eq. (1.1.20s) shows, $v_{k^{\prime}}^{\prime}$ depends on both the relative orientation between x_{k} and $x_{k^{\prime}}$ (term $\sum A_{k^{\prime} k} v_{k}=v_{k^{\prime}}$: noninertial particle velocity, but resolved along inertial axes-a geometrical effect) as well as on their relative motion [term $\sum\left(d A_{k^{\prime} k} / d t\right) x_{k}$ - a kinematical effect]. There is more on moving axes theorems/ applications in $\S 1.7$. Vectors transforming between frames as (1.1.20p) are called objective - namely, frame-independent; otherwise they are called nonobjective. Similarly for tensors: if $T_{k^{\prime} l^{\prime}}^{\prime}=T_{k^{\prime} l^{\prime}}$, or $T_{k l}^{\prime}=T_{k l}$, where $T_{k^{\prime} l^{\prime}}^{\prime}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} T_{k l}^{\prime}$ and $T_{k^{\prime} l^{\prime}}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} T_{k l}$, that tensor is called objective.

These concepts are important in continuum mechanics: the constitutive (physical) equations - namely, those relating stresses with strains/deformations and their time rates of change - must be objective. They also constitute the fundamental, or guiding, philosophical principle of the "Theory of Relativity" [A. Einstein, 1905 (special theory); 1916 (general theory)]. Classical mechanics does not admit of a fully physically invariant formulation (although its geometrically invariant formulation is easy via tensor calculus), and the reason is that it is based on Euclidean geometry
and on a sharp separation between space and (absolute, or Newtonian) time. Hence, to obtain such a physically invariant mechanics, one had to change these conceptsand this was the great achievement of relativity: The latter replaced classical space and time with a more general non-Euclidean "space-time," a fusion of both space and time (and gravity). In this new "space," physical invariance is again expressed as geometrical invariance, via a "physical tensor calculus." (See, e.g., Bergmann, 1942.)

Table 1.1 summarizes, for the readers' convenience, common vector and tensor operations in all three notations. [We are reminded that in matrix notation, vectors are displayed as 3×1 column matrices, so that, in order to save space, we write $\left.\boldsymbol{a} \rightarrow \boldsymbol{a}^{\mathrm{T}}=\left(a_{1}, a_{2}, a_{3}\right)^{\mathrm{T}}.\right]$

Differential Operators (Field Theory)

The most important differential operators of scalar $(f) /$ vector $(\boldsymbol{a}) /$ tensor (\boldsymbol{T}) field theory, needed not so much in analytical mechanics as in continuum mechanics/ physics, are

$$
\begin{align*}
& (\partial / \partial \boldsymbol{r}) f \equiv \operatorname{grad} f \equiv \partial f / \partial \boldsymbol{r}=\sum\left(\partial f / \partial x_{k}\right) \boldsymbol{u}_{k} ; \tag{1.1.21a}\\
& (\partial / \partial \boldsymbol{r}) \otimes \boldsymbol{a} \equiv \operatorname{grad} \boldsymbol{a} \equiv \partial \boldsymbol{a} / \partial \boldsymbol{r}=\sum \sum\left(\partial a_{l} / \partial x_{k}\right)\left(\boldsymbol{u}_{k} \otimes \boldsymbol{u}_{l}\right), \tag{1.1.21b}\\
& (\partial / \partial \boldsymbol{r}) \cdot \boldsymbol{a}=\operatorname{Tr}(\boldsymbol{g r a d} \boldsymbol{a}) \equiv \operatorname{div} \boldsymbol{a} \equiv \sum\left(\partial a_{k} / \partial x_{k}\right), \tag{1.1.21c}\\
& (\partial / \partial \boldsymbol{r}) \times \boldsymbol{a} \equiv \operatorname{curl} \boldsymbol{a} \equiv \sum \sum \sum \varepsilon_{k r s}\left(\partial a_{s} / \partial x_{r}\right) \boldsymbol{u}_{k} ; \tag{1.1.21d}\\
& (\partial / \partial \boldsymbol{r}) \otimes \boldsymbol{T} \equiv \operatorname{grad} \boldsymbol{T}=\sum \sum \sum\left(\partial T_{r s} / \partial x_{k}\right)\left[\boldsymbol{u}_{k} \otimes\left(\boldsymbol{u}_{r} \otimes \boldsymbol{u}_{s}\right)\right], \tag{1.1.21e}\\
& (\partial / \partial \boldsymbol{r}) \cdot \boldsymbol{T}=\operatorname{Tr}(\operatorname{grad} \boldsymbol{T}) \equiv \operatorname{div} \boldsymbol{T} \equiv \sum \sum\left(\partial T_{k s} / \partial x_{k}\right) \boldsymbol{u}_{s} ; \tag{1.1.21f}
\end{align*}
$$

where $\boldsymbol{r}=(x, y, z)$: position vector, from some origin O, on which $f, \boldsymbol{a}, \boldsymbol{T}$ depend; and $\left(a_{k}\right),\left(T_{k l}\right)$ are the respective components of $\boldsymbol{a}, \boldsymbol{T}$ relative to an OND basis $\left\{O, \boldsymbol{u}_{k}\right\}$.

1.2 SPACE-TIME AXIOMS; PARTICLE KINEMATICS

Space, Time, Events

Classical mechanics (CM), the only kind of mechanics studied here, and that of which analytical mechanics is the most illustrious exponent, studies the motions of material bodies, or systems, under the action of mechanical loads (forces, moments). Hence, bodies, forces, and motions are its fundamental ingredients. Before examining them, however, we must postulate a certain space-time, or stage, where these phenomena occur, so that we may describe them via numbers assigned to elements of length/area/volume/time interval. In CM: (i) space is assumed to be three-dimensional and Euclidean $\left(E_{3}\right)$; that is, in good experimental agreement with the Pythagorean theorem, both locally and globally; and (ii) there is a definite method for assigning numbers to time intervals, which is based on the existence of perfect clocks; that is, on completely periodic physical systems (i.e., such that a certain of their configurations is repeated indefinitely; e.g., an oscillating pendulum in vacuo, or our Earth in its daily rotation about its axis). Further, we assume that space and time are homogeneous (i.e., no preferred positions), and that space is also isotropic (i.e., no preferred directions). A physical phenomenon that is more or less sharply localized spatially
and temporally (i.e., one that is occurring in the immediate neighborhood of a space point at a definite time: e.g., the arrival of a train at a certain station at a certain time) is called an event. Geometrically, events can be viewed as points in space-time, or event space; that is, in a four-dimensional mathematical space formed jointly by three-dimensional space and time. There, the four coordinates of an event, three for space and one for time, are measured by observers using geometrically invariant, or rigid, yardsticks (space) and the earlier postulated perfect clocks (time). [Fuller understanding of this measurement process requires elaboration of the concepts of immediate (spatial) neighborhood and (temporal) simultaneity. This is done in relativistic physics. Here, we take them with their intuitive meaning.]

Frame of Reference

A frame of reference is a rigid material framework, or rigid body, relative to which spatial and temporal measurements of events are made, by a team of (equivalent) observers, distributed over that body (at rest relative to it), equipped with rigid yardsticks and mutually synchronized perfect clocks. Clearly, some, if not all, of these measurements will depend on the state of motion of the frame (relative to some other frame!); that is, this "coordinate-ization of events" is, generally, nonunique. The relation between the measurements of the same event(s), as registered in two such frames, in relative motion to each other, is called a frame of reference transformation; and the latter is expressed, mathematically, by an explicitly time-dependent coordinate transformation - one coordinate system rigidly embedded to each frame and "representing" it.

Inertial Frame of Reference

This is a frame determined by the center of mass ("origin") of our Sun and the socalled fixed stars (directions of axes of frame). This primary, or astronomical, frame is Newton's absolute space; and, like a cosmic substratum, is assumed to exist (in Newton's words) "in its own nature, and without reference to anything external, remains always similar and immovable." Similarly, Newton assumes the existence of absolute time, which is measured by standard clocks, and flows uniformly and independently of any physical phenomena or processes - something that, today, is considered physically absurd: " $[\mathrm{I}]$ t is contrary to the mode of thinking in science to conceive of a thing (the space-time continuum) which acts itself, but which cannot be acted upon" (Einstein, 1956, pp. 55-56). In spite of its logically/epistemologically crude and no longer tenable foundations, CM is astonishingly accurate in several areas. For example, the planet Mercury in its motion around our Sun sweeps out a total angle of $150,000^{\circ} /$ century; which is only $43^{\prime \prime}$ more than the Newtonian prediction! In this sense, of Machean Denkökonomie (\approx Principle of economy, in the formation of concepts), CM is an extremely economical intellectual and practical investment.

As the mathematical structure of the Newton-Euler laws of motion shows (§1.4,5), any other frame moving with (vectorially) constant velocity, relative to the primary frame, is also inertial; so we have a family, or group, of secondary inertial frames. In inertial frames, the laws of motion have their simplest form [the familiar "force equals mass times acceleration (relative to that frame)"].

Particle Kinematics

The instantaneous position, or place, of a particle P relative to an origin, or reference point, O, fixed in a, say, inertial frame F in E_{3}, is given by its position vector $\boldsymbol{r}=(x, y, z)$; where x, y, z are at least twice (piecewise) continuously differentiable functions of time t. Clearly, \boldsymbol{r} depends on O while x, y, z depend on the kind of coordinates used in F. (Also, we are reminded that in kinematics, the frame does not really matter; any frame is as good as any other.) At time t, a collection of particles, or body B, occupies in E_{3} a certain shape, or configuration, described by the singlevalued and invertible mapping

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{f}(P, t): \text { Place of } P, \text { in } F, \text { at time } t \tag{1.2.1a}
\end{equation*}
$$

from which, inverting (conceptually), we obtain

$$
\begin{equation*}
P=\boldsymbol{f}^{-1}(\boldsymbol{r}, t) . \tag{1.2.1b}
\end{equation*}
$$

A motion of B is a change of its configuration with time; that is, it is the locus of \boldsymbol{r} of each and every P of B, for all time in a certain interval. Formally, this is a oneparameter family \boldsymbol{f} of configurations with time as the (real) parameter.

Often, especially in continuum mechanics, the motion of P is described as

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{f}\left(\boldsymbol{r}_{o}, t\right) \equiv \boldsymbol{r}\left(\boldsymbol{r}_{o}, t\right) \tag{1.2.2}
\end{equation*}
$$

where \boldsymbol{r}_{o} is the position of P at some "initial or reference" time; that is, a reference configuration used as the name of P (see also $\S 2.2 \mathrm{ff}$.). The above representation - in addition to being single-valued, continuous, and twice (piecewise) continuously differentiable in t - must also be single-valued and invertible in \boldsymbol{r}_{o}; that is, one-to-one in both directions. (In mathematicians' jargon: a configuration is a smooth homeomorphism of B onto a region of E_{3}.)

The velocity and acceleration of P, relative to a frame F, are defined, respectively, by (assuming rectangular Cartesian coordinates)

$$
\begin{align*}
& \boldsymbol{v} \equiv d \boldsymbol{r} / d t=(d x / d t, d y / d t, d z / d t) \\
& \boldsymbol{a} \equiv d \boldsymbol{v} / d t=d^{2} \boldsymbol{r} / d t^{2}=\left(d^{2} x / d t^{2}, d^{2} y / d t^{2}, d^{2} z / d t^{2}\right) \tag{1.2.3}
\end{align*}
$$

Clearly, \boldsymbol{v} and \boldsymbol{a} depend on the frame, but not on its chosen fixed origin O. The representation of the velocity and acceleration of P, relative to F, moving on a general space, or skew, (F-fixed) curve C, along its natural, or intrinsic, ortho-normal-dextral moving trihedron/triad $\left\{\boldsymbol{u}_{t}, \boldsymbol{u}_{n}, \boldsymbol{u}_{b}\right\} \equiv\{\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b}\}$ (see fig. 1.1 for definitions, etc.) is

$$
\begin{align*}
\boldsymbol{v}=d \boldsymbol{r} / d t & =(d \boldsymbol{r} / d s)(d s / d t) \equiv(d s / d t) \boldsymbol{t} \equiv v_{t} \boldsymbol{t} \quad\left(=v_{t} \boldsymbol{t}+0 \boldsymbol{n}+0 \boldsymbol{b}\right), \tag{1.2.3a}\\
\boldsymbol{a}=d \boldsymbol{v} / d t & =\left(d^{2} s / d t^{2}\right) \boldsymbol{t}+\left[(d s / d t)^{2} / \rho\right] \boldsymbol{n} \equiv\left(d v_{t} / d t\right) \boldsymbol{t}+\left(v_{t}{ }^{2} / \rho\right) \boldsymbol{n} \\
& =\left(d v_{t} / d t\right) \boldsymbol{t}+\left(v^{2} / \rho\right) \boldsymbol{n} \quad\left(=a_{t} \boldsymbol{t}+a_{n} \boldsymbol{n}+0 \boldsymbol{b}, \text { see below }\right) . \tag{1.2.3b}
\end{align*}
$$

- The speed of P is defined as the magnitude of its velocity:

$$
\begin{gather*}
\text { Speed } \equiv v \equiv|\boldsymbol{v}|=\left|v_{t}\right|=|d s / d t|=+\left[(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}\right]^{1 / 2} \geqslant 0 \\
\text { i.e., } \quad v_{t} \equiv \boldsymbol{v} \cdot \boldsymbol{t}=\dot{s}= \pm v . \tag{1.2.3c}
\end{gather*}
$$

Figure 1.1 Natural, or intrinsic, triad representation in particle kinematics. s : arc coordinate along C, measured (positive or negative) from some origin A on C; ρ : radius of curvature of C at $P(0 \leq \rho \leq \infty)$; orthonormal and dextral (OND) triad: $\left\{\boldsymbol{u}_{t}, \boldsymbol{u}_{n}, \boldsymbol{u}_{b}\right\} \equiv\{\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b}\}$; (oriented) tangent: $\boldsymbol{u}_{t} \equiv \boldsymbol{t} \equiv d \mathbf{r} / d s$) [always pointing toward (algebraically) increasing values of s (= positive C-sense)]; (first, or principal) normal: $\boldsymbol{u}_{n} \equiv \boldsymbol{n} \equiv \rho(\boldsymbol{d} / / d s)$ (always in sense of concavity, toward center of curvature); (second) normal, or binormal: $\boldsymbol{u}_{b} \equiv \boldsymbol{b} \equiv \boldsymbol{t} \times \boldsymbol{n}$; osculating plane: plane spanned by \boldsymbol{t} and \boldsymbol{n} (locus of tip of acceleration vector); rectifying plane: plane spanned by \boldsymbol{t} and \boldsymbol{b}; normal plane: plane spanned by \boldsymbol{n} and $\boldsymbol{b} ; \boldsymbol{t} \cdot(\boldsymbol{n} \times \boldsymbol{b}) \equiv(\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b})=+1>0$. [More in §1.7: (1.7.18a)ff.]

Hence, in general, since $v^{2}=v_{t} v_{t}=(\dot{s})^{2}$,

$$
a \equiv|\boldsymbol{a}| \equiv|d \boldsymbol{v} / d t|=\left[(d v / d t)^{2}+\left(v^{4} / \rho^{2}\right)\right]^{1 / 2} \neq\left|d v_{t} / d t\right| \equiv\left|d^{2} s / d t^{2}\right|=|d v / d t| ;
$$

i.e., $a_{t} \equiv \ddot{s}$ (tangential accel'n), $\quad a_{n} \equiv(\dot{s})^{2} / \rho$ (normal a.), $\quad a_{b} \equiv 0$ (binormal a.)

$$
\begin{equation*}
\Rightarrow \quad \boldsymbol{v} \cdot \boldsymbol{a}=\dot{s} \ddot{s}=\left(\dot{s}^{2} / 2\right)^{\circ}, \quad \boldsymbol{v} \times \boldsymbol{a}=\left(\dot{s}^{3} / \rho\right) \boldsymbol{b} \tag{1.2.3.d}
\end{equation*}
$$

REMARKS

(i) The difference between speed $v \equiv|d \boldsymbol{r} / d t|=|\boldsymbol{v}|=|d s / d t|>0$ and the (tangential) velocity component $v_{t} \equiv \boldsymbol{v} \cdot \boldsymbol{t}=d s / d t= \pm v$ [i.e. by equation (1.2.3c): $v_{t}=+v>0$ if $d s>0$, and $v_{t}=-v<0$ if $d s<0$] results from the oriented-ness of the curve C [i.e. that it is equipped with (a) an origin A, and (b) a positive/negative sense of traverse $\Rightarrow \pm s$]; i.e. in any motion of P along it, the unit tangent vector $\boldsymbol{t} \equiv d \boldsymbol{r} / d s(\neq \mathbf{0})$ points always towards the increasing arcs s (just like $\boldsymbol{i} \equiv \partial \boldsymbol{r} / \partial x$ always points towards the positive/ increasing x - see below). Fortunately, this v_{t} versus v difference (almost never noticed in the literature) rarely results in fatal errors.
(ii) Thus, it becomes clear that s [\equiv (intrinsic) arc/path/trajectory curvilinear coordinate/abscissa, of P relative to a chosen C-origin A] is the "natural" curvilinear generalization of the rectilinear position (-al) coordinates x, y, z (and $\{\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b}\}$ are of $\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$, respectively).
(iii) The equation $s=s(t)$, resulting by integrating $d s= \pm|\boldsymbol{v}(t)| d t= \pm v(t) d t \quad$ [say, from $t(A)$ to $t(P)]$, is referred to as the equation/law of motion of P on C.
(iv) Last, (a) the length of the arc $A P$ is defined as the absolute value of $s,|s| \geq 0$, while (b) the (total) distance traveled by our particle P, along C, from an origin A to its current/final position (i.e. what a car odometer shows) is defined by:

$$
\begin{equation*}
\int_{\text {origin } \rightarrow \text { current C-position }}|d s| \quad(\geq|s| \geq 0) . \tag{1.2.3e}
\end{equation*}
$$

For details on arc length, admissible curve parametrizations etc, see works on differential geometry.

It can be shown that [with the additional notation $\left.(\ldots)^{\prime} \equiv d(\cdots) / d u\right]$:

$$
\begin{equation*}
\boldsymbol{t}=\boldsymbol{r}^{\prime} / s^{\prime}=\boldsymbol{r}^{\prime} /\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{1 / 2}=(d x / d s) \boldsymbol{i}+(d y / d s) \boldsymbol{j}+(d z / d s) \boldsymbol{k} \tag{i}
\end{equation*}
$$

(ii) $\quad \boldsymbol{n}=\rho(d \boldsymbol{t} / d s)=\rho\left(d^{2} \boldsymbol{r} / d s^{2}\right)=\rho\left[\left(d^{2} x / d s^{2}\right) \boldsymbol{i}+\left(d^{2} y / d s^{2}\right) \boldsymbol{j}+\left(d^{2} z / d s^{2}\right) \boldsymbol{k}\right]$

$$
\begin{align*}
& =\rho\left(\boldsymbol{t}^{\prime} / s^{\prime}\right)=\rho \boldsymbol{t}^{\prime} /\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{1 / 2} \\
& =\left[\rho /\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{3 / 2}\right]\left[\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{1 / 2} \boldsymbol{r}^{\prime \prime}-\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{-1 / 2}\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime \prime}\right) \boldsymbol{r}^{\prime}\right] \\
& =\left[\rho /\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{2}\right]\left[\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right) \boldsymbol{r}^{\prime \prime}-\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime \prime}\right) \boldsymbol{r}^{\prime}\right] ; \tag{1.2.4b}
\end{align*}
$$

(iii) $\quad \kappa \equiv 1 / \rho=|d \boldsymbol{t} / d s|=\left|d^{2} \boldsymbol{r} / d s^{2}\right| \quad(\geqslant 0, \quad 0 \leqslant \rho \leqslant+\infty)$:
(first) curvature of C, at P,
(iv) $\kappa^{2}=1 / \rho^{2}=\left(\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right)^{2} /\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{3}=\left[\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)\left(\boldsymbol{r}^{\prime \prime} \cdot \boldsymbol{r}^{\prime \prime}\right)-\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime \prime}\right)^{2}\right] /\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{3}$

$$
\begin{equation*}
\left[=\left(d^{2} x / d s^{2}\right)^{2}+\left(d^{2} y / d s^{2}\right)^{2}+\left(d^{2} z / d s^{2}\right)^{2}, \quad \text { if } u=s\right] \tag{1.2.4d}
\end{equation*}
$$

(v) $\boldsymbol{r}^{\prime}=s^{\prime} \boldsymbol{t}$,

$$
\begin{align*}
\boldsymbol{r}^{\prime \prime} & =s^{\prime \prime} \boldsymbol{t}+s^{\prime} \boldsymbol{t}^{\prime}=s^{\prime \prime} \boldsymbol{t}+s^{\prime}[(d \boldsymbol{t} / d s)(d s / d u)] \quad\left[=s^{\prime \prime} \boldsymbol{t}+\left(s^{\prime}\right)^{2}(d \boldsymbol{t} / d s)\right] \\
& =s^{\prime \prime} \boldsymbol{t}+\kappa\left(s^{\prime}\right)^{2} \boldsymbol{n}=s^{\prime \prime} \boldsymbol{t}+\left[\left(s^{\prime}\right)^{2} / \rho\right] \boldsymbol{n} \tag{1.2.4e}\\
& {\left[=\left(d v_{t} / d t\right) \boldsymbol{t}+\left(v^{2} / \rho\right) \boldsymbol{n}, \quad v_{t} v_{t}=v v=(d s / d t)^{2} ; \quad \text { if } u=t\right] ; }
\end{align*}
$$

(vi) $\boldsymbol{t}=\boldsymbol{v} /(d s / d t) \equiv \boldsymbol{v} / v_{t}$,

$$
\begin{equation*}
\boldsymbol{n}=\rho\left[v^{2} \boldsymbol{a}-(\boldsymbol{v} \cdot \boldsymbol{a}) \boldsymbol{v}\right] / v^{4}=\frac{s^{\prime} \boldsymbol{r}^{\prime \prime}-s^{\prime \prime} \boldsymbol{r}^{\prime}}{\kappa\left(s^{\prime}\right)^{3}} \tag{1.2.4f}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{b}=\boldsymbol{t} \times \boldsymbol{n}=\rho\left[(d \boldsymbol{r} / d s) \times\left(d^{2} \boldsymbol{r} / d s^{2}\right)\right]=\rho\left(\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right) /\left(\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}\right)^{3 / 2} \tag{1.2.4~g}
\end{equation*}
$$

$$
\begin{equation*}
=\rho(\boldsymbol{v} \times \boldsymbol{a}) / v_{t}^{3}=\rho(\boldsymbol{v} \times \boldsymbol{a}) / v_{t} v^{2} \tag{1.2.4h}
\end{equation*}
$$

(vii) $\kappa^{2}=1 / \rho^{2}=(\boldsymbol{v} \times \boldsymbol{a})^{2} / v^{6}=\left[v^{2} a^{2}-(\boldsymbol{v} \cdot \boldsymbol{a})^{2}\right] / v^{6}$;
(viii) $\quad a_{t} \equiv \boldsymbol{a} \cdot \boldsymbol{t}=\left[v_{x}\left(d v_{x} / d t\right)+v_{y}\left(d v_{y} / d t\right)+v_{z}\left(d v_{z} / d t\right)\right] / v_{t}$;
(ix) $\quad a_{n}=|\boldsymbol{a} \times \boldsymbol{t}|=\left\{\left[v_{x}\left(d v_{y} / d t\right)-v_{y}\left(d v_{x} / d t\right)\right]^{2}+\left[v_{y}\left(d v_{z} / d t\right)-v_{z}\left(d v_{y} / d t\right)\right]^{2}\right.$

$$
\begin{equation*}
\left.+\left[v_{z}\left(d v_{x} / d t\right)-v_{x}\left(d v_{z} / d t\right)\right]^{2}\right\}^{1 / 2} /\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)^{1 / 2} \tag{1.2.4k}
\end{equation*}
$$

- In plane polar coordinates, the position/velocity/acceleration of a particle P are (where $\boldsymbol{u}_{r}, \boldsymbol{u}_{\phi}$: unit vectors along $O P$ and perpendicular to it, in the sense of increasing r, ϕ respectively):

$$
\begin{align*}
& d \boldsymbol{u}_{r} / d t=(d \phi / d t) \boldsymbol{u}_{\phi} \quad \text { and } \quad d \boldsymbol{u}_{\phi} / d t=-(d \phi / d t) \boldsymbol{u}_{r} ; \\
& \text { or } \quad d \boldsymbol{u}_{r}=d \phi \boldsymbol{u}_{\phi} \text { and } \quad d \boldsymbol{u}_{\phi}=-d \phi \boldsymbol{u}_{r}, \\
& \boldsymbol{r}=r \boldsymbol{u}_{r} \quad\left[=(r) \boldsymbol{u}_{r}+(0) \boldsymbol{u}_{\phi}\right], \tag{1.2.5a}\\
& \boldsymbol{v}=(d r / d t) \boldsymbol{u}_{r}+r(d \phi / d t) \boldsymbol{u}_{\phi} \equiv v_{r} \boldsymbol{u}_{r}+v_{\phi} \boldsymbol{u}_{\phi}, \tag{1.2.5b}\\
& \boldsymbol{a}=\left[d^{2} r / d t^{2}-r(d \phi / d t)^{2}\right] \boldsymbol{u}_{r}+\left\{r^{-1} d / d t\left[r^{2}(d \phi / d t)\right]\right\} \boldsymbol{u}_{\phi} \\
& =\left[d^{2} r / d t^{2}-r(d \phi / d t)^{2}\right] \boldsymbol{u}_{r}+\left[2(d r / d t)(d \phi / d t)+r\left(d^{2} \phi / d t^{2}\right)\right] \boldsymbol{u}_{\phi} \\
& \equiv a_{(r)} \boldsymbol{u}_{r}+a_{(\phi)} \boldsymbol{u}_{\phi} . \tag{1.2.5c}
\end{align*}
$$

The vectors $(d \phi / d t) \boldsymbol{k}$ and $\left(d^{2} \phi / d t^{2}\right) \boldsymbol{k}$ are, respectively, the angular velocity and angular acceleration of the radius $\boldsymbol{O P}=\boldsymbol{r}$ relative to $O-x y$. It can be shown that
(i) $a_{t} \equiv \boldsymbol{a} \cdot \boldsymbol{t}= \pm\left(v_{r} a_{r}+v_{\phi} a_{\phi}\right) /\left(v_{r}^{2}+v_{\phi}^{2}\right)^{1 / 2} \quad\left[+\right.$ if $v_{t}>0,-$ if $\left.v_{t}<0\right]$.
(ii) The rectangular Cartesian components of the velocity and acceleration are, respectively,
$d x / d t=(d r / d t) \cos \phi-[r(d \phi / d t)] \sin \phi, \quad d y / d t=(d r / d t) \sin \phi+[r(d \phi / d t)] \cos \phi ;$
$d^{2} x / d t^{2}=\left[d^{2} r / d t^{2}-r(d \phi / d t)^{2}\right] \cos \phi-\left[2(d r / d t)(d \phi / d t)+r\left(d^{2} \phi / d t^{2}\right)\right] \sin \phi$,
$d^{2} y / d t^{2}=\left[d^{2} r / d t^{2}-r(d \phi / d t)^{2}\right] \sin \phi+\left[2(d r / d t)(d \phi / d t)+r\left(d^{2} \phi / d t^{2}\right)\right] \sin \phi$,
and, inversely,

$$
d r / d t=\left(x v_{x}+y v_{y}\right) /\left(x^{2}+y^{2}\right)^{1 / 2}, \quad d \phi / d t=\left(x v_{y}-y v_{x}\right) /\left(x^{2}+y^{2}\right), \text { etc. } \quad(1.2 .5 \mathrm{~g})
$$

[A more precise notation of vector components along various bases of orthogonal curvilinear (i.e., nonrectangular Cartesian) coordinates is introduced below.]

- In general (i.e., not necessarily plane) motion, the areal velocity $d A / d t$ of a particle equals

$$
\begin{array}{r}
d A / d t=(1 / 2)|\boldsymbol{r} \times \boldsymbol{v}|=(1 / 2) \left\lvert\, \begin{array}{c}
\text { angular momentum of particle about origin, } \\
\text { per unit mass } \mid .
\end{array}\right.
\end{array}
$$

It can be shown that (assuming $\boldsymbol{r} \neq \mathbf{0}$)

$$
\begin{equation*}
d^{2} A / d t^{2}=(\boldsymbol{r} \times \boldsymbol{v}) \cdot(\boldsymbol{r} \times \boldsymbol{a}) / 2|\boldsymbol{r} \times \boldsymbol{v}| . \tag{1.2.6b}
\end{equation*}
$$

Velocity and Acceleration in Orthogonal Curvilinear Coordinates

(A certain familiarity with the latter is assumed-otherwise, this topic can be omitted at this point.) In such coordinates, say $q \equiv\left(q_{1}, q_{2}, q_{3}\right) \equiv\left(q_{1,2,3}\right)$ [see fig. 1.2(a)] the position vector \boldsymbol{r}, of a particle P, is expressed as:

$$
\begin{equation*}
\boldsymbol{r}=x(q) \boldsymbol{i}+y(q) \boldsymbol{j}+z(q) \boldsymbol{k} \equiv \boldsymbol{r}(q), \tag{1.2.7a}
\end{equation*}
$$

and so the corresponding unit tangent vectors along the coordinate lines $q_{1,2,3}, \boldsymbol{u}_{1,2,3}$, are

$$
\begin{aligned}
& \boldsymbol{u}_{1}=\left(1 / h_{1}\right)\left(\partial \boldsymbol{r} / \partial q_{1}\right) \equiv \boldsymbol{e}_{1} / h_{1}, \\
& \boldsymbol{u}_{2}=\left(1 / h_{2}\right)\left(\partial \boldsymbol{r} / \partial q_{2}\right) \equiv \boldsymbol{e}_{2} / h_{2}, \\
& \boldsymbol{u}_{3}=\left(1 / h_{3}\right)\left(\partial \boldsymbol{r} / \partial q_{3}\right) \equiv \boldsymbol{e}_{3} / h_{3},
\end{aligned}
$$

where

$$
\begin{equation*}
\boldsymbol{u}_{k} \cdot \boldsymbol{u}_{l}=\delta_{k l} \quad(k, l=1,2,3) \tag{1.2.7b}
\end{equation*}
$$

Figure 1.2 (a) General orthogonal curvilinear coordinates;
(b) cylindrical (polar) coordinates: $x=r \cos \phi, y=r \sin \phi, z=z, r=\left|O P^{\prime}\right| ; h_{1,2,3} \equiv h_{r, \phi, z}=1, r, 1$;
(c) spherical coordinates: $x=(r \sin \theta) \cos \phi, y=(r \cos \theta) \sin \phi, z=r \cos \theta, r=|\mathbf{O P}|$;
$h_{1,2,3} \equiv h_{r, \theta, \phi}=1, r, r \sin \theta$.
and since

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial q_{1}=\left(\partial x / \partial q_{1}\right) \boldsymbol{i}+\left(\partial y / \partial q_{1}\right) \boldsymbol{j}+\left(\partial z / \partial q_{1}\right) \boldsymbol{k}, \quad \partial \boldsymbol{r} / \partial q_{2}=\cdots, \quad \partial \boldsymbol{r} / \partial q_{3}=\cdots, \tag{1.2.7c}
\end{equation*}
$$

the (normalizing) Lamé coefficients $h_{1,2,3}$ are given by

$$
\begin{equation*}
h_{1} \equiv\left|\partial \boldsymbol{r} / \partial q_{1}\right|=\left[\left(\partial x / \partial q_{1}\right)^{2}+\left(\partial y / \partial q_{1}\right)^{2}+\left(\partial z / \partial q_{1}\right)^{2}\right]^{1 / 2}, \quad h_{2}=\cdots, h_{3}=\cdots . \tag{1.2.7d}
\end{equation*}
$$

We notice that

$$
\cos \left(\boldsymbol{u}_{k}, x\right)=\boldsymbol{u}_{k} \cdot \boldsymbol{i}=\left[\left(1 / h_{k}\right)\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right] \cdot \boldsymbol{i}=\left(1 / h_{k}\right)\left(\partial x / \partial q_{k}\right), \text { etc. }
$$

or, generally, with $x \equiv x_{1}, y \equiv x_{2}, z \equiv x_{3}$, and $\boldsymbol{i} \equiv \boldsymbol{i}_{1}, \boldsymbol{j} \equiv \boldsymbol{i}_{2}, \boldsymbol{k} \equiv \boldsymbol{i}_{3}$,

$$
\begin{equation*}
\cos \left(\boldsymbol{u}_{k}, x_{l}\right)=\boldsymbol{u}_{k} \cdot \boldsymbol{i}_{l}=\left(1 / h_{k}\right)\left(\partial x_{l} / \partial q_{k}\right) \tag{1.2.7e}
\end{equation*}
$$

As a result of the above, and since $\partial \boldsymbol{r} / \partial q_{k} \equiv \boldsymbol{e}_{k}=h_{k} \boldsymbol{u}_{k}$, the arc length element ds, velocity \boldsymbol{v}, and speed $|\boldsymbol{v}|$ of P are given, respectively, by
(i) $\quad d s=|d \boldsymbol{r}|=\left|\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) d q_{k}\right|=\left(h_{1}{ }^{2} d q_{1}{ }^{2}+h_{2}^{2} d q_{2}^{2}+h_{3}^{2} d q_{3}^{2}\right)^{1 / 2}$,
(ii) $\quad \boldsymbol{v} \equiv d \boldsymbol{r} / d t=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(d q_{k} / d t\right) \equiv \sum v_{k} \boldsymbol{e}_{k}=\sum v_{k}\left(h_{k} \boldsymbol{u}_{k}\right) \equiv \sum v_{(k)} \boldsymbol{u}_{k}$,

$$
\begin{equation*}
|\boldsymbol{v}| \equiv v=\left(h_{1}^{2} v_{1}^{2}+h_{2}^{2} v_{2}^{2}+h_{3}^{2} v_{3}^{2}\right)^{1 / 2} \tag{iii}
\end{equation*}
$$

where
$d q_{k} / d t \equiv v_{k}$: "contravariant" or generalized component of \boldsymbol{v} along q_{k},
$v_{(k)} \equiv h_{k}\left(d q_{k} / d t\right) \equiv h_{k} v_{k}: \quad$ corresponding physical component (with units of length/time),

Next, we define the generalized and physical components of the particle acceleration a as

$$
\begin{equation*}
a_{k} \equiv \boldsymbol{a} \cdot \boldsymbol{e}_{k}=(d \boldsymbol{v} / d t) \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right), \quad a_{(k)} \equiv \boldsymbol{a} \cdot \boldsymbol{u}_{k}=\boldsymbol{a} \cdot\left(\boldsymbol{e}_{k} / h_{k}\right)=a_{k} / h_{k} \tag{1.2.7k}
\end{equation*}
$$

REMARKS

(i) For an arbitrary vector \boldsymbol{b}, in general orthogonal curvilinear coordinates, we have the following representations:

$$
\boldsymbol{b}=\sum b^{k} \boldsymbol{e}_{k}=\sum b_{k} \boldsymbol{e}^{k}=\sum b_{k}\left(\boldsymbol{e}_{k} / h_{k}^{2}\right)=\sum\left(b_{k} / h_{k}\right)\left(\boldsymbol{e}_{k} / h_{k}\right) \equiv \sum b_{(k)} \boldsymbol{u}_{k}
$$

where

$$
\begin{gathered}
\boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l} \equiv g_{k l}=0, \text { if } k \neq l ; \quad=h_{k}^{2} \text { if } k=l ; \quad \boldsymbol{e}^{k} \cdot \boldsymbol{e}_{l}=\delta_{l}^{k}=\delta_{k l}, \quad \boldsymbol{e}^{k} \cdot \boldsymbol{e}^{l}=g^{k l}=g^{l k} \\
\Rightarrow g^{k k}=1 / h_{k}^{2}, \quad g_{k k}=1 / g^{k k}=h_{k}{ }^{2}, \quad \operatorname{Det}\left(g_{k l}\right)=h_{1}{ }^{2} h_{2}{ }^{2} h_{3}{ }^{2} ; \quad \boldsymbol{e}^{k}=\boldsymbol{e}_{k} / h_{k}{ }^{2} ; \\
b_{k} \equiv \boldsymbol{b} \cdot \boldsymbol{e}_{k}=\boldsymbol{b} \cdot\left(h_{k} \boldsymbol{u}_{k}\right)=h_{k}\left(\boldsymbol{b} \cdot \boldsymbol{u}_{k}\right) \equiv h_{k} b_{(k)} ; \quad b^{k} \equiv \boldsymbol{b} \cdot \boldsymbol{e}^{k}=\boldsymbol{b} \cdot\left(\boldsymbol{u}_{k} / h_{k}\right)=b_{(k)} / h_{k} ;
\end{gathered}
$$

that is,
$b_{(k)}=b^{k} h_{k}=b_{k} / h_{k}$: physical components of $\boldsymbol{b}, b^{k}=b_{k} / h_{k}^{2} ; \boldsymbol{u}_{k}=\boldsymbol{e}_{k} / h_{k}=h_{k} \boldsymbol{e}^{k}$.
(ii) Strictly speaking, q_{k} should have been written as q^{k}; and, consequently, v_{k} as v^{k} !
(iii) In rectangular Cartesian coordinates/axes (this book), clearly, $h_{k}=1 \Rightarrow b_{(k)}=$ $b_{k}=b^{k}$.
(iv) For the extension of the above to general curvilinear coordinates, see books on tensor calculus; for example, Papastavridis (1999, chap. 2, especially §2.10).

From the first of (1.2 .7 k) we obtain successively (what are, in essence, the famous Lagrangean kinematico-inertial transformations, to be generalized and detailed in chaps. 2 and 3):

$$
\begin{aligned}
& a_{k} \equiv \boldsymbol{a} \cdot \boldsymbol{e}_{k} \equiv(d \boldsymbol{v} / d t) \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)= d / d t\left[\boldsymbol{v} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right]-\boldsymbol{v} \cdot d / d t\left(\partial \boldsymbol{r} / \partial q_{k}\right) \\
&\{\text { and, using the basic kinematical identities: } \\
& \begin{aligned}
& \text { (a) } \partial \boldsymbol{r} / \partial q_{k}=\partial \boldsymbol{v} / \partial v_{k}[\text { from }(1.2 .7 \mathrm{~g})] \\
& \text { (b) } d / d t\left(\partial \boldsymbol{r} / \partial q_{k}\right) \\
&=\sum \partial / \partial q_{l}\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(d q_{l} / d t\right)+\partial / \partial t\left(\partial \boldsymbol{r} / \partial q_{k}\right) \\
&= \partial / \partial q_{k}\left(\sum\left(\partial \boldsymbol{r} / \partial q_{l}\right)\left(d q_{l} / d t\right)+\partial \boldsymbol{r} / \partial t\right) \\
&= \partial \boldsymbol{v} / \partial q_{k} ;
\end{aligned} \\
&\left.\quad \text { i.e., } d / d t\left(\partial \boldsymbol{v} / \partial v_{k}\right)-\partial \boldsymbol{v} / \partial q_{k}=\mathbf{0}\right\} \\
&= d / d t\left[\boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial v_{k}\right)\right]-\boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial q_{k}\right) \\
&= d / d t\left[\partial / \partial v_{k}\left(v^{2} / 2\right)\right]-\partial / \partial q_{k}\left(v^{2} / 2\right)
\end{aligned}
$$

$$
\begin{equation*}
\left(\text { since } \boldsymbol{v} \cdot \boldsymbol{v}=v^{2}\right) \tag{1.2.71}
\end{equation*}
$$

and, invoking the second of (1.2.7k), we get, finally, the Lagrangean form:

$$
\begin{equation*}
a_{(k)}=a_{k} / h_{k}=\left(1 / h_{k}\right)\left[d / d t\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k}\right], \tag{1.2.7m}
\end{equation*}
$$

where

$$
\begin{align*}
T \equiv v^{2} / 2 & =(1 / 2)\left[h_{1}^{2}\left(d q_{1} / d t\right)^{2}+h_{2}^{2}\left(d q_{2} / d t\right)^{2}+h_{3}{ }^{2}\left(d q_{3} / d t\right)^{2}\right]^{1 / 2} \\
& \equiv(1 / 2)\left(h_{1}^{2} v_{1}^{2}+{\left.h_{2}{ }^{2} v_{2}^{2}+{h_{3}}^{2} v_{3}^{2}\right)^{1 / 2}:}^{\text {a }}\right. \text {. } \tag{1.2.7n}
\end{align*}
$$

kinetic energy of a particle of unit mass (i.e., $m=1$).

Application

(i) Cylindrical (polar) coordinates [fig. 1.2(b)]. Here, $x=r \cos \phi, y=r \sin \phi, z=z$, and, therefore,

$$
\begin{equation*}
d s^{2}=d s_{r}^{2}+d s_{\phi}^{2}+d s_{z}^{2}=d r^{2}+r^{2} d \phi^{2}+d z^{2} \tag{1.2.8a}
\end{equation*}
$$

from which we immediately read off the following Lamé coefficients:

$$
\begin{equation*}
h_{1} \rightarrow h_{r}=1, \quad h_{2} \rightarrow h_{\phi}=r, \quad h_{3} \rightarrow h_{z}=1 . \tag{1.2.8b}
\end{equation*}
$$

Hence, the "unit kinetic energy" equals

$$
\begin{equation*}
2 T=(d s / d t)^{2}=v^{2}=\left[(d r / d t)^{2}+r^{2}(d \phi / d t)^{2}+(d z / d t)^{2}\right] \equiv v_{r}^{2}+r^{2} v_{\phi}^{2}+v_{z}^{2} \tag{1.2.8c}
\end{equation*}
$$

and so, by (1.2.71), the (physical) components of the acceleration are

$$
\begin{align*}
a_{(1)} \rightarrow a_{(r)} & =d / d t\left(\partial T / \partial v_{r}\right)-\partial T / \partial r=d^{2} r / d t^{2}-r(d \phi / d t)^{2} \tag{1.2.8d}\\
a_{(2)} \rightarrow a_{(\phi)} & =(1 / r)\left[d / d t\left(\partial T / \partial v_{\phi}\right)-\partial T / \partial \phi\right] \\
& =(1 / r)\left\{d / d t\left[r^{2}(d \phi / d t)\right]\right\}=r\left(d^{2} \phi / d t^{2}\right)+2(d r / d t)(d \phi / d t) \tag{1.2.8e}\\
a_{(3)} \rightarrow a_{(z)} & =d / d t\left(\partial T / \partial v_{z}\right)-\partial T / \partial z=d^{2} z / d t^{2} \tag{1.2.8f}
\end{align*}
$$

(ii) Spherical coordinates. Here, $x=(r \sin \theta) \cos \phi, y=(r \cos \theta) \sin \phi, z=r \cos \theta$ [fig. 1.2(c)]. Using similar steps, we can show that

$$
\begin{align*}
a_{(1)} \rightarrow a_{(r)} & =d / d t\left(\partial T / \partial v_{r}\right)-\partial T / \partial r=d^{2} r / d t^{2}-r(d \theta / d t)^{2}-r(d \phi / d t)^{2} \sin ^{2} \theta ; \\
a_{(2)} \rightarrow a_{(\theta)} & =(1 / r)\left[\partial T / \partial v_{\theta}-\partial T / \partial \theta\right] \tag{1.2.8g}\\
& =(1 / r)\left\{d / d t\left[r^{2}(d \theta / d t)\right]-r^{2}(d \phi / d t)^{2} \sin \theta \cos \theta\right\} ; \tag{1.2.8h}\\
a_{(3)} \rightarrow a_{(\phi)} & =(1 / r \sin \theta)\left[d / d t\left(\partial T / \partial v_{\phi}\right)-\partial T / \partial \phi\right] \\
& =(1 / r \sin \theta)\left\{d / d t\left[r^{2}(d \phi / d t) \sin ^{2} \theta\right]\right\} ; \tag{1.2.8i}\\
v_{x} & =d x / d t=(d r / d t) \sin \theta \cos \phi+r(d \theta / d t) \cos \theta \cos \phi-r(d \phi / d t) \sin \theta \sin \phi, \tag{1.2.8j}
\end{align*}
$$

$$
\begin{align*}
v_{y}=d y / d t= & (d r / d t) \sin \theta \sin \phi+r(d \theta / d t) \cos \theta \sin \phi+r(d \phi / d t) \sin \theta \cos \phi, \tag{1.2.8k}\\
v_{z}=d z / d t=(& d r / d t) \cos \theta-r(d \theta / d t) \sin \theta \tag{1.2.81}\\
a_{x}=d^{2} x / d t^{2}= & {\left[d^{2} r / d t^{2}-r(d \theta / d t)^{2}-r(d \phi / d t)^{2}\right] \sin \theta \cos \phi } \\
& +\left[r\left(d^{2} \theta / d t^{2}\right)+2(d r / d t)(d \theta / d t)\right] \cos \theta \cos \phi \\
& -\left[r\left(d^{2} \phi / d t^{2}\right)+2(d r / d t)(d \phi / d t)\right] \sin \theta \sin \phi \\
& -2 r(d \phi / d t)(d \theta / d t) \cos \theta \sin \phi ; \tag{1.2.8~m}\\
a_{y}=d^{2} y / d t^{2}= & {\left[d^{2} r / d t^{2}-r(d \theta / d t)^{2}-r(d \phi / d t)^{2}\right] \sin \theta \sin \phi } \\
& +\left[r\left(d^{2} \theta / d t^{2}\right)+2(d r / d t)(d \theta / d t)\right] \cos \theta \sin \phi \\
& +\left[r\left(d^{2} \phi / d t^{2}\right)+2(d r / d t)(d \phi / d t)\right] \sin \theta \cos \phi \\
& +2 r(d \phi / d t)(d \theta / d t) \cos \theta \cos \phi \tag{1.2.8n}\\
& -\left[r\left(d^{2} \theta / d t^{2}\right)+2(d r / d t)(d \theta / d t)\right] \sin \theta
\end{align*}
$$

and, inversely,

$$
\begin{equation*}
d r / d t=[x(d x / d t)+y(d y / d t)+z(d z / d t)] /\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \tag{1.2.8p}
\end{equation*}
$$

$d \theta / d t=\left\{[x(d x / d t)+y(d y / d t)] z-\left(x^{2}+y^{2}\right)(d z / d t)\right\} /\left(x^{2}+y^{2}\right)^{1 / 2}\left(x^{2}+y^{2}+z^{2}\right)$,
$d \phi / d t=[x(d y / d t)-y(d x / d t)] /\left(x^{2}+y^{2}\right) ;$
and

$$
d^{2} r / d t^{2}=\cdots, \quad d^{2} \theta / d t^{2}=\cdots, \quad d^{2} \phi / d t^{2}=\cdots,
$$

in complete agreement with (1.2.5).

REMARK

From now on, parentheses around subscripts (employed to denote physical components) will, normally, be omitted; that is, unless absolutely necessary, we shall simply write $a_{r}, a_{\theta}, a_{\phi}$ for $a_{(r)}, a_{(\theta)}, a_{(\phi)}$, respectively, etc.

1.3 BODIES AND THEIR MASSES

Body or System

A body or system is an ordinary three-dimensional material object whose points fill a spatial region completely; or a continuous connected three-dimensional set of material points, or mass points, or particles, such that any part of it, no matter how small, possesses the same physical properties as the entire object. The interactions of bodies, under the action of forces/fields, produces the various physical phenomena.

Bodies are usually classified as solids, fluids, and gases.

- The rigid body is a special solid whose deformation (or strain), relative to its other motions, can be neglected; and whose geometric form/shape and spatial material distribution are invariable.
- The particle is a special rigid body whose rotation, relative to its other motions, can be neglected; it is small relative to its distance from other bodies, and its motion as a whole is virtually unaffected by its internal motion. It is a special localized continuum of infinite material density (see below).

The complete characterization of a particle requires specification of its spatial position and of the values of its associated parameters (e.g., mass, electric charge). The former varies with time but the latter, since they describe the internal constitution of our particle, do not; if they did, we would have a more complex system.

Whether one and the same body or system will be modeled as deformable continuum, or rigid, or particle, etc., depends on the problem at hand. Below, we show such a problem to model correspondence for the system Earth:
Problem
Orbit around the Sun
Tides and/or lunar eclipses
Precession of the equinoxes
Earthquakes
etc.

Mathematical Model
Particle
Rigid sphere
Rigid ellipsoid
Elastic sphere

Mass

To each body, B, that instantaneously occupies continuously a spatial region of volume V, we assign, or order, a real, positive and time-independent number expressing the quantity of matter in B, its mass m; a primitive concept with dimensions independent of the (also primitives) length and time. Symbolically, we have

$$
\begin{equation*}
B \rightarrow m(B) \equiv m=S_{B} d m=\int_{V}(d m / d V) d V \equiv \int_{V} \rho d V>0 \tag{1.3.1}
\end{equation*}
$$

where (continuity hypothesis)

$$
\rho \equiv[\lim (\Delta m / \Delta V)]_{\Delta V \rightarrow 0} \equiv d m / d V: \quad \text { mass density, or specific mass, of } B
$$

$$
\begin{equation*}
\text { (a piecewise continuous function of } t \text { and } \boldsymbol{r} \text {) } \tag{1.3.2}
\end{equation*}
$$

and $m=$ constant, for a given body (conservation of mass).
The above imply that the mass is additive: the mass of a body, or system, equals the sum of the masses of its parts; with some intuitively obvious notation:

$$
\begin{equation*}
m(B)=m\left(B_{1}+B_{2}\right)=m\left(B_{1}\right)+m\left(B_{2}\right)=m_{1}+m_{2} \tag{1.3.3}
\end{equation*}
$$

REMARKS

(i) For so-called "variable mass problems" (clearly, a misleading term); for example, rockets, chemical reactions, see Fox (1967, pp. 321-326) and, particularly, Novoselov (1969).
(ii) To describe several bodies, including possible gaps, via (1.3.1) and (1.3.2), we may have to assume that in some regions $\rho=0$.
(iii) Mathematically, mass additivity can be expressed as follows: Consider an arbitrary subset of the body B, b. If we can associate with b a nonnegative real number $m(b)$, with physical dimensions independent of those of time and length, and such that

$$
m\left(b_{1} \cup b_{2}\right)=m\left(b_{1}\right)+m\left(b_{2}\right) \quad[\cup \equiv \text { union of two sets }]
$$

for all pairs b_{1} and b_{2} of disjoint subsets of b; and

$$
m(b) \rightarrow 0,
$$

as the volume occupied by b goes to zero; then we call B a material body with mass function m. The additive set function $m(b)$ is the mass of b; or the mass content of the corresponding set of points occupied by b. The above properties of $m(\ldots)$ imply the existence of a scalar field $\rho=$ mass density of B, defined over the configuration of B, such that (1.3.1) holds.

Impenetrability Axiom (and One-to-One Event Occurrence)

Not more than one particle may occupy any position in space, at any given time. More generally (continuum form), if, during its motion, the material system initially occupies the spatial region V_{o}, and later the region V, then the relation between V_{o} and V is mutually one-to-one, and piecewise continuously differentiable (for the associated field functions). Discontinuities (e.g., rupture, impact) and accompanying loss of uniqueness can occur only across certain (two-dimensional) boundary surfaces.

Remarks on Particles, Bodies, Mathematical Modeling, and so on

(i) A finite, or extended, body B or system S can be treated exactly, or approximately, as a particle in the following three cases:
(a) If B undergoes pure translation; that is, all its points describe congruent paths with (vectorially) equal velocities and accelerations. In this case, any point of B can play the role of that particle.
(b) If the description of the kinetic properties of B requires only the investigation of the motion of its center of mass (§1.4).
(c) If B is such that its dimensions are so small (or its distances from other bodies, its environment, are so large) that its size can be neglected; and its motion can be represented satisfactorily by the motion of either its mass center or any other internal point of it. Such bodies we call small.

- In cases (b) (always) and (c) (usually) that particle is the mass center.
- Cases (a,b) are exact, while (c) is only approximate.
- In case (a), that particle describes the motion of B completely, in (b) only partially (the motion about the mass center is neglected), and in (c) with an error depending on the neglected dimensions of B.

From such a continuum viewpoint, a particle is viewed not as the building block of matter, but as a rigid and rotationless body! As Hamel (1909, p. 351) aptly summarizes: "What one understands, in practice, by particle mechanics
(Punktmechanik) is none other than the theorem of the center of mass (Schwerpunktsatz)."
(ii) Both models of a body-that is, the one based on the atomistic hypothesis (body as a finite, discrete, set of material points, or particles; namely, small hard balls with no rotational characteristics) and the other based on the continuity hypothesis (body as a family of measurable sets, with associated additive set functions representing the mass of that set)-have advantages and disadvantages; and both are useful for various purposes. The sometimes (in some engineering circles) fierce debate for/ against one or the other viewpoint, we consider counterproductive and petty hairsplitting; and so we will use both models as needed. Such dualisms are no strangers to physics (e.g., particles/corpuscules vs. waves/fields in atomic phenomena) and constitute a creative, dialectical, stress in it.

Thus, we will view the rigid body ($\S 1.8 \mathrm{ff}$.) either as a (finite or infinite) set of particles whose mutual distances are constrained to remain invariable (i.e., fixed in time); or, more conveniently, as a rigid continuum, and accept the Newton-Euler law of motion for its differential mass elements as for a particle ($\$ 1.4, \S 1.6$). In the discrete model, the building block is the single "sizeless," but possibly quite "massive," particle of mass $m_{k}>0(k=1,2, \ldots)$; while, in the continuum model, it is the differential element with mass $d m=\rho d V>0$. In sum, we shall adopt the logically unorthodox, but quite fertile and successful, dialectical compromise: particle language and continuum notation; and eventually (chap. 3 ff .) we will end up with ordinary differential equations.
[In general, it is extremely difficult, if not impossible, to go by a limiting process from a statement about particles to one about continua; whereas, conversely, continuum statements formulated in terms of Stieltjes' integrals, like our earlier $S(\ldots)$:

$$
S(\ldots) d m: \quad \sum(\ldots)_{k} m_{k} \quad(\text { discrete }), \quad \text { or } \quad \int_{B}(\ldots) d m \quad \text { (continuum) }
$$

lead to the same statements for discrete systems without much difficulty, almost automatically. See, for example, Kilmister and Reeve (1966, pp. 129-131).]

1.4 FORCE; LAW OF NEWTON-EULER

[I]n the concept of force lies the chief difficulty in the whole of mechanics.
(Hamel, 1952; as quoted in Truesdell, 1984, p. 527)
Jeder wei β aus der Erfahrung, was Schwerkraft ist; jede gerichtete Physikalische Größe, die sich mit der Schwerkraft in Gleichgewicht befinden kann, ist eine Kraft! [Approximate translation: Everyone knows from experience what gravity is; every directed physical quantity that can be in equilibrium with gravity is a force! (emphasis added).]
(How Hamel used to begin his mechanics lectures; quoted in Szabó, 1954, p. 26)

The fundamental law of mechanics [i.e. mass \times acceleration $=$ force] is a blank form which acquires a concrete content only when the conception of force occurring in it is filled in by physics.

Local Form of Newton-Euler Law

To each and every material particle P of elementary mass $d m$ and inertial acceleration \boldsymbol{a}, of a body B or system S, we associate a total elementary force vector $d \boldsymbol{f}$ acting on it, such that

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{f}, \tag{1.4.1}
\end{equation*}
$$

where $d \boldsymbol{f}$ itself is the resultant of other "partial" elementary forces of various origins (to be examined later); that is,

$$
\begin{equation*}
d \boldsymbol{f}=\sum d \boldsymbol{f}_{k} \quad(k=1,2, \ldots) . \tag{1.4.2}
\end{equation*}
$$

Equation (1.4.1) is not simply a definition of one vector $(d \boldsymbol{f})$ in terms of another $(d m \boldsymbol{a})$, but is an equality of two physically very different vectors: one, the effect or kinetic reaction $(d m a)$, depending only on the properties of the particle P itself; and another, the cause $(d \boldsymbol{f})$, depending on the interaction between P and the rest of the universe - that is, on the action of the external world on the moving system, and the mutual, or internal, actions of the body parts on each other. Paraphrasing Hamel (1927, p. 3) slightly, we may state: The forces are determined by their "causes"; that is, by variables that represent the geometrical, kinematical, and physical state of the matter surrounding P (local causes) and away from it (global causes). This dependence is single-valued and, in general, continuous and differentiable; and, in addition, these forces are objective - that is, independent of the frame of reference (see also Hamel, 1949, pp. 509-512). In practice, this leads to constitutive equations for the forces (stresses) that, when combined with the field, or ponderomotive, equations (1.4.1) lead to relations of the form:

$$
\begin{equation*}
\boldsymbol{a}=\boldsymbol{a}(t, \boldsymbol{r}, \boldsymbol{v} ; \text { physical constants }) \tag{1.4.3}
\end{equation*}
$$

where \boldsymbol{a} may also depend on the \boldsymbol{r} 's and \boldsymbol{v} 's of other system (and even external) particles, but not on accelerations or other higher (than the first) $d / d t(\ldots)$-derivatives. Such an \boldsymbol{a}-dependence would introduce an additional constitutive, or constraint, equation of the form: $d m \boldsymbol{a}=d \boldsymbol{f}(\ldots, \boldsymbol{a}, \ldots)$. However, and this does not contradict (1.4.1), such equations can occur as part of the solution process; namely, through elimination of variables from the complete set of equations of the problem; that is, elimination of forces related to the accelerations of other parts of the body, so that the acceleration of point P depends on, among other things, the accelerations of points Q, R, \ldots On this delicate and sometimes confusing point, see Hamel (1949, p. 49). In view of such difficulties in defining the force, a number of authors (mostly continuum mechanicians) consider it as a primitive concept - along with space, time, and mass.

Force Classification

[This also includes moments; and, in analytical mechanics, both forces and moments are replaced by system, or generalized, forces (§3.4).]

The most important such classifications are as follows:

[^3]External: originating, even partially, from outside the system. Only such forces appear in the corresponding equations of equilibrium/motion.

Lagrangean (or energetic) mechanics:
Impressed: depending, even partially, on physical (material) coefficients (chap. 3).
Constraint reactions: depending exclusively on the constraints; geometrical and/or kinematical forces (chap. 3).

Continuum mechanics:
Surface, or contact: continuously distributed over material surfaces (and/or lines and points).
Volume, or body: continuously distributed over material volumes.

Usually, a given force is a combination of the above, and more. For example:

Gravity: external, impressed, body;
Stresses in rigid bodies: internal, reactions, surface;
Stresses in elastic bodies: internal, impressed, surface;
Dry rolling friction: internal or external, reaction, surface;
Dry sliding friction: internal or external, impressed, surface.

Other, more specialized force classifications are the following: potential/nonpotential, conservative/nonconservative, gyroscopic/nongyroscopic, circulatory/noncirculatory, autonomous/nonautonomous, etc. They will be introduced later, if and when needed. Occasionally, forces are classified with the help of the momentum principles as follows:

Linear or translatory loads: forces;
Angular or rotatory loads: moments of forces and moments of couples;
but such terminology is not uniform. For example, the authoritative Truesdell and Toupin (1960, p. 531) states that, in the general case, the (total) torque consists of two parts: the moment of the force(s) and the couple; also, virtually alone among mechanics works, it refuses to use the term internal forces, opting instead for the term mutual (loc. cit., pp. 533-535).

On Centers of Gravity and Mass, and Centroid

The center of gravity $(C G)$ of a material system in a parallel gravitational field is a point defined uniquely by

$$
\begin{equation*}
r_{C G}=\boldsymbol{S} \boldsymbol{r} d G / \boldsymbol{S} d G \tag{1.4.4}
\end{equation*}
$$

where $d G=$ elementary gravity force $=g d m=\rho g d V \equiv \gamma d V ; g=$ acceleration of gravity; $\rho=$ density of matter; $\gamma=$ specific weight; $d m=$ element of mass; $d V=$ element of volume; and $C G$ is independent of the orientation of the system, and through it passes the resultant gravity force, or weight, of the system, and: $S(\ldots)$: material summation, for a fixed time, and valid for discrete and/or continuous distributions (Stieltjes' integral). This helpful notation, originated informally by Lagrange, is used a lot in the main body of this work.

The center of mass, or inertial center, (CM) of a material distribution is defined uniquely by

$$
\begin{equation*}
\boldsymbol{r}_{C M} \equiv \boldsymbol{r}_{G}=\boldsymbol{S} \boldsymbol{r} d m / \boldsymbol{S} d m \tag{1.4.5}
\end{equation*}
$$

The centroid (or geometrical center, or geometrical center of gravity) (C) of a figure is defined uniquely by

$$
\begin{equation*}
\boldsymbol{r}_{C}=\boldsymbol{S} \boldsymbol{r} d V / \boldsymbol{S} d V \tag{1.4.6}
\end{equation*}
$$

- If $g=$ constant, the gravitational field is uniform. Then, $g=g \boldsymbol{u}=$ constant, $\boldsymbol{u}=$ vertical unit vector (positive downward).
- If $\rho=$ constant, the body (matter) is homogeneous.

In a uniform field:

$$
\begin{equation*}
\boldsymbol{r}_{C G}=\boldsymbol{r}_{C M} \equiv \boldsymbol{r}_{G} ; \tag{1.4.7a}
\end{equation*}
$$

For a homogeneous body:

$$
\begin{equation*}
\boldsymbol{r}_{C M} \equiv \boldsymbol{r}_{G}=\boldsymbol{r}_{C} \tag{1.4.7b}
\end{equation*}
$$

For a homogeneous body in a uniform field:

$$
\begin{equation*}
\boldsymbol{r}_{C G}=\boldsymbol{r}_{C M}=\boldsymbol{r}_{C} \tag{1.4.7c}
\end{equation*}
$$

REMARK

In nonuniform fields, eq. (1.4.7a) is no longer true: the parts of the body closer to the attracting earth experience stronger gravity forces than those farther from it; and, therefore, upon rotation of the body, the point of application of the resultant of such forces changes relative to the body; that is, the center of gravity is no longer definable as a unique body-fixed point, independent of the orientation of the body relative to the field. The center of mass and centroid, however, are still defined uniquely by (1.4.5) and (1.4.6), respectively. Such complications may arise in problems of astronautics/ spacecraft dynamics; there, we replace the constant \boldsymbol{g} with a central-symmetric gravitational field.

1.5 SPACE-TIME AND THE PRINCIPLE OF GALILEAN RELATIVITY

Galilean Transformations (GT)

These are frame of reference transformations that leave the Newton-Euler law (1.4.1) form invariant. The most general such transformations have the following form (fig. 1.3):

$$
\begin{equation*}
\left.\boldsymbol{r}^{\prime}=\boldsymbol{A} \cdot \boldsymbol{r}+\boldsymbol{b} t+\boldsymbol{c} \quad \text { (Direct } / \text { matrix notation }\right) \tag{1.5.1a}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k}+b_{k^{\prime}} t+c_{k^{\prime}} \quad(\text { Component notation }) \tag{1.5.1b}
\end{equation*}
$$

Figure 1.3 On the geometry of Galilean transformations.
where $\boldsymbol{A}=\left(A_{k^{\prime} k}\right)$ is a proper orthogonal tensor with constant components - that is, $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}} ;$ Det $\boldsymbol{A}=+1$; and $\boldsymbol{b}=\left(b_{k^{\prime}}\right)$ and $\boldsymbol{c}=\left(c_{k^{\prime}}\right)$ are constant vectors - that is, F and F^{\prime} are in nonrotating uniform motion (uniform translation) relative to each other, with velocity \boldsymbol{b}; and

$$
\begin{equation*}
t^{\prime}=\alpha t+\beta, \tag{1.5.1c}
\end{equation*}
$$

where t is measured in F and t^{\prime} in F^{\prime}, and α, β are constant scalars; α depends on the units of time, while β depends on its origin in the two systems of time measurement. Hence, if these units are taken to be the same, and these origins are made to coincide, then $\alpha=1$ and $\beta=0$; in which case (henceforth assumed in this book),

$$
\begin{equation*}
t^{\prime}=t \tag{1.5.1d}
\end{equation*}
$$

that is, in classical (Newtonian) mechanics there is, essentially, only one time scale.
From the transformation equations (1.5.1a-d) we immediately obtain the following:

$$
\begin{equation*}
d^{2} \boldsymbol{r}^{\prime} / d t^{2}=\boldsymbol{A} \cdot\left(d^{2} \boldsymbol{r} / d t^{2}\right) \quad \text { or } \quad \boldsymbol{a}^{\prime}=\boldsymbol{A} \cdot \boldsymbol{a}, \tag{1.5.2a}
\end{equation*}
$$

or, explicitly, with some easily understood notation,

$$
\begin{equation*}
d^{2} x^{\prime} / d t^{2}=\cos \left(x^{\prime}, x\right)\left(d^{2} x / d t^{2}\right)+\cos \left(x^{\prime}, y\right)\left(d^{2} y / d t^{2}\right)+\cos \left(x^{\prime}, z\right)\left(d^{2} z / d t^{2}\right), \text { etc. } \tag{1.5.2b}
\end{equation*}
$$

that is, the accelerations of a particle P as measured in F and F^{\prime} differ only by an ordinary (time-independent) geometrical transformation due to the, possibly, different orientation of their axes; and, therefore, they are physically equal: that is, unaffected by the relative motion of F and F^{\prime}. Hence, we may take, with no loss in physical generality, the corresponding axes of F and F^{\prime} to be ever parallel, in which case $\boldsymbol{A}=\boldsymbol{1}$ (unit tensor), in which case (1.5.1a) simplifies to

$$
\begin{equation*}
r^{\prime}=r+b t+c \Rightarrow a^{\prime}=a . \tag{1.5.2c}
\end{equation*}
$$

Since $\left.d m\right|_{F}=\left.d m\right|_{F^{\prime}} \equiv d m$, and assuming that from $d m \boldsymbol{a}=d \boldsymbol{f}(t, \boldsymbol{r}, \boldsymbol{v})$ and (1.5.2c) it follows that

$$
\begin{equation*}
d m \boldsymbol{a}^{\prime}=d \boldsymbol{f}\left(t, \boldsymbol{r}^{\prime}-\boldsymbol{b} t-\boldsymbol{c}, d \boldsymbol{r}^{\prime} / d t-\boldsymbol{b}\right) \equiv d \boldsymbol{f}^{\prime}\left(t, \boldsymbol{r}^{\prime}, d \boldsymbol{r}^{\prime} / d t \equiv \boldsymbol{v}^{\prime}\right) \equiv d \boldsymbol{f}^{\prime} \tag{1.5.3}
\end{equation*}
$$

that is, $d \boldsymbol{f}$ is also invariant under $G T$, and, therefore, as far as the law of motion (1.4.1) is concerned, there is no one (absolute) frame in which it holds, but, in fact, once
one such "inertial" frame is established, there is a whole family of them dynamically equivalent to it. More precisely, there is a (continuous linear) group that depends on ten (10) parameters: three for \boldsymbol{A} [out of its nine components (direction cosines), due to the six orthonormality constraints, only three are independent], three for \boldsymbol{b}, three for \boldsymbol{c}, and one for β [equations (1.5.1c, d), $\alpha=1$, with no loss in generality]. This Galilean, or Newtonian, principle of relativity can be summed up as follows: an inertial frame - that is, one in which $d m\left(d^{2} \boldsymbol{r} / d t^{2}\right)=d \boldsymbol{f}$ holds-is determined only to within a Galilean transformation (1.5.1a-d).

REMARKS

(i) The linear transformation (1.5.1c) can also be obtained by requiring that if

$$
\begin{equation*}
\boldsymbol{a}=d^{2} \boldsymbol{r} / d t^{2}=\mathbf{0}, \tag{1.5.4a}
\end{equation*}
$$

then also

$$
\begin{equation*}
d^{2} \boldsymbol{r} / d\left(t^{\prime}\right)^{2}=\mathbf{0}, \tag{1.5.4b}
\end{equation*}
$$

for arbitrary values of \boldsymbol{r} and $d \boldsymbol{r} / d t$. Indeed, using chain rule, we find: $d \boldsymbol{r} / d t^{\prime}=(d \boldsymbol{r} / d t) /\left(d t^{\prime} / d t\right)$

$$
\begin{equation*}
\Rightarrow d^{2} \boldsymbol{r} / d\left(t^{\prime}\right)^{2}=\left[\left(d t^{\prime} / d t\right)\left(d^{2} \boldsymbol{r} / d t^{2}\right)-(d \boldsymbol{r} / d t)\left(d^{2} t^{\prime} / d t^{2}\right)\right] /\left(d t^{\prime} / d t\right)^{3}, \tag{1.5.4c}
\end{equation*}
$$

and so, due to (1.5.4a), the requirement (1.5.4b) translates to

$$
\begin{equation*}
(d \boldsymbol{r} / d t)\left(d^{2} t^{\prime} / d t^{2}\right)=\mathbf{0}, \quad \text { for arbitrary } d \boldsymbol{r} / d t \tag{1.5.4d}
\end{equation*}
$$

that is,

$$
d^{2} t^{\prime} / d t^{2}=0 \Rightarrow t^{\prime}=\alpha t+\beta, \quad \alpha, \beta: \quad \text { integration constants; } \quad \text { Q.E.D. (1.5.4e) }
$$

(ii) The logical circularity involved in the classical mechanics definition of inertial frames (i.e., "if $d m \boldsymbol{a}=d \boldsymbol{f}$ holds, the frame is inertial" and "if the frame is inertial frame then $d m \boldsymbol{a}=d \boldsymbol{f}$ holds") can be resolved only by relativistic physics. Here, we are content to postulate the existence of frames in which $d m \boldsymbol{a}=d \boldsymbol{f}$ holds exactly (or, equivalently, of frames in which forceless motions are also unaccelerated motions; i.e., the position vectors are linear functions of time, and vice versa); and to call such frames inertial. For detailed discussions of this important topic, see any good text on the physical foundations of relativity; e.g., Bergmann, 1942; Nevanlina, 1968.

1.6 THE FUNDAMENTAL PRINCIPLES (OR BALANCE LAWS) OF GENERAL SYSTEM MECHANICS

An Axiom is a proposition, the truth of which must be admitted as soon as the terms in which it is expressed are clearly understood ... physical axioms are axiomatic to those only who have sufficient knowledge of the action of physical causes to enable them to see their truth.
(Thomson and Tait, 1912, part 1, section 243, p. 240)

Conservation of Mass (Euler, Early 1760s)

$$
\begin{equation*}
d m(B) / d t \equiv d m / d t=d / d t(\mathbf{S} d m)=d / d t\left(\int \rho d V\right)=\int d / d t(\rho d V)=0 \tag{1.6.1a}
\end{equation*}
$$

(Henceforth, we shall, usually, omit the subscripts $V, \partial V$, etc., in the various integrals.)

In the absence of discontinuities, the above leads to the local (differential) form:

$$
\begin{equation*}
d / d t(\rho d V)=0 \Rightarrow \rho d V=\text { constant }=\rho_{o} d V_{o} \tag{1.6.1b}
\end{equation*}
$$

[Material, or Lagrangean, or referential, equation of continuity]
where $\rho_{o}\left(d V_{o}\right)=$ density (element of volume) in some initial or reference configuration.

Principle of Linear Momentum [Euler, 1750 (publ. 1752)]

$$
\begin{equation*}
d / d t(\boldsymbol{S} \boldsymbol{v} d m)=\boldsymbol{S} d \boldsymbol{f} \quad \text { or } \quad d \boldsymbol{p} / d t=\boldsymbol{f} \tag{1.6.2a}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{p}(B, t) \equiv \boldsymbol{p} \equiv \boldsymbol{S} \boldsymbol{v} d m=\int \rho \boldsymbol{v} d V: \quad \text { Linear momentum of } B \tag{1.6.2b}
\end{equation*}
$$

a system vector that depends on the frame, but not on the (fixed) origin in it; equivalent to Newton's "quantitas motus"; and $\boldsymbol{S} d \boldsymbol{f} \equiv \boldsymbol{f}$. From the above, and invoking mass conservation [\$1.3:(1.3.1)ff.), (1.6.1a, b)] and the definition of mass center (§1.4), we obtain

$$
\begin{equation*}
\boldsymbol{p}=m \boldsymbol{v}_{G} \Rightarrow m \boldsymbol{a}_{G}=\boldsymbol{f} \tag{1.6.2c}
\end{equation*}
$$

where $\boldsymbol{r}_{G} / \boldsymbol{v}_{G} / \boldsymbol{a}_{G}$ are, respectively, the position/velocity/acceleration vectors of the center of mass of B, G. Equation (1.6.2c) shows that the motion of the center of mass G, of a body (or any material system, rigid or not), B, is identical to that of a fictitious particle of mass m located at G and acted upon by the body resultant on B, f; that is, by the vector sum of all (\rightarrow external) forces transported parallel to themselves to G. Thus, the motion of G is taken care of by this simple principle \rightarrow theorem. But the remaining problem of the motion of B about G (and, generally, of the motion of other body points) is far more difficult, and, unlike the motion of G, does depend on the specific material constitution of B (e.g., rigid, elastic), as well as on its motion (i.e., 1-, 2-, 3-dimensional); and, therefore, that problem necessitates additional considerations, such as the following.

Principle of Angular Momentum [Euler, 1775 (publ. 1776)]

$$
\begin{equation*}
d / d t(\boldsymbol{S}(\boldsymbol{r} \times \boldsymbol{v} d m))=\boldsymbol{S}(\boldsymbol{r} \times d \boldsymbol{f}) \quad \text { or } \quad d \boldsymbol{H}_{O} / d t=\boldsymbol{M}_{O} \tag{1.6.3a}
\end{equation*}
$$

Figure 1.4 On the meaning of absolute and relative angular momentum.
where
$\boldsymbol{H}_{O}(B, t) \equiv \boldsymbol{H}_{O} \equiv \boldsymbol{S}(\boldsymbol{r} \times \boldsymbol{v} d m):$ absolute angular momentum (or moment of momentum, or kinetic moment), about the fixed point O,
and

$$
\begin{equation*}
\boldsymbol{M}_{O} \equiv \boldsymbol{S}(\boldsymbol{r} \times d \boldsymbol{f}): \text { total moment about } O \text { (fig. 1.4). } \tag{1.6.3c}
\end{equation*}
$$

Other angular momenta, and their interrelations, are detailed in "Additional Forms of the Angular Momentum," below.

External and Internal Loads

In the Newton-Euler approach to system mechanics, whether discrete or continuous, we classify body and/or surface forces and moments as internal or mutual (i.e., those due exclusively to internal causes) and external [i.e., those whose cause(s) lie, even partially, outside of the body or system]. Stresses are caused by one or more of the following: (i) deformations (solids); (ii) flows (gases, liquids); (iii) geometrical/kinematical constraints [e.g., incompressibility, inextensibility ($=$ incompressibility in one or two dimensions)].

Analytical mechanics necessitates a different force/moment classification (chap. 3).

Principle of Action-Reaction

(i) Discrete version. Let us consider a system of N particles $\left\{P_{k} ; k=1, \ldots, N\right\}$. Each particle P_{k} is acted upon by a total external (to that system) force $\boldsymbol{f}_{k, \text { ext }}$ and a total internal force $\boldsymbol{f}_{k \text {,int }}$ due to the other $N-1$ particles:

$$
\begin{equation*}
\boldsymbol{f}_{k, \text { int }}=\sum \boldsymbol{f}_{k l}, \quad \text { with } l \neq k ; \text { i.e., } \boldsymbol{f}_{k k} \text { is, as yet, undefined(!) } \tag{1.6.4a}
\end{equation*}
$$

Now, by Newton's third law of motion (action-reaction) we shall understand the constitutive (i.e., physical) postulate;
(a) $\boldsymbol{f}_{k l}=-\boldsymbol{f}_{l k}$ and $\boldsymbol{f}_{k k}=\mathbf{0} \quad$ (i.e., the particle cannot act on itself!)
and
(b) $\quad\left(\boldsymbol{r}_{k}-\boldsymbol{r}_{l}\right) \times \boldsymbol{f}_{k l}=\mathbf{0}$ (i.e., the internal forces are central and opposite; or oppositely directed pair by pair and collinear). (1.6.4c)
[The second of (1.6.4b) is not included in the original Newtonian formulation. We follow Hamel (1949, p. 51).]

In the discrete/particle model, so popular among physicists and such an anathema among certain mechanicians, this postulate, plus the principle of linear momentum, lead to the theorem of angular momentum for the external loads only. However, the converse is not necessarily true; that is, the angular momentum equation for a finite body $d \boldsymbol{H}_{O} / d t=\boldsymbol{M}_{O, \text { external }}$ does not necessarily lead to (1.6.4b, c); other combinations of the internal forces may lead to the same effect (e.g., a sum of terms may vanish in a number of different ways). The converse may hold if we assume the validity of the angular momentum equation for any part of the system, or for any size subsystem.
(ii) Continuum version. For every pair of particles P_{1} and P_{2}, with respective positions \boldsymbol{r}_{1} and \boldsymbol{r}_{2}, the mutual forces and moments satisfy the following constitutive postulate:

$$
\begin{equation*}
d \boldsymbol{f}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-d \boldsymbol{f}\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right) \quad \text { and } \quad d \boldsymbol{M}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-d \boldsymbol{M}\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right) . \tag{1.6.4d}
\end{equation*}
$$

Without (1.6.4d), or something equivalent that supplies knowledge of the internal loads, the problem of mechanics would, in general, be indeterminate (i.e., the adopted model would produce more unknowns than the number of scalar equations furnished by its laws).

Additional Forms of the Angular Momentum

Although the results derived below hold for any body or system, they become useful only for rigid ones. We define the following two kinds of (inertial) angular momentum (fig. 1.4):

$$
\boldsymbol{H}_{\bullet, \text { absolute }} \equiv \boldsymbol{H}_{\bullet} \equiv \boldsymbol{S}\left(\boldsymbol{r}-\boldsymbol{r}_{\bullet}\right) \times d m \boldsymbol{v} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{v}: \quad[\boldsymbol{v} \equiv d \boldsymbol{r} / d t]
$$

Absolute angular momentum of body B, about the arbitrarily moving point \bullet
[because it involves the absolute (inertial) velocity $\boldsymbol{v} \equiv d \boldsymbol{r} / d t]$, and

$$
\boldsymbol{H}_{\bullet, \text { relative }} \equiv \boldsymbol{h}_{\boldsymbol{\bullet}} \equiv \boldsymbol{S}\left(\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{\bullet}}\right) \times d m\left(\boldsymbol{v}-\boldsymbol{v}_{\mathbf{0}}\right) \equiv \boldsymbol{S} \boldsymbol{r}_{\boldsymbol{\bullet}} \times d m \boldsymbol{v}_{/ \bullet}:
$$

Relative angular momentum of body B, about the arbitrarily moving point \bullet

$$
\begin{equation*}
\text { [because it involves the relative (inertial) velocity } \boldsymbol{v}-\boldsymbol{v}_{\mathbf{\bullet}} \equiv \boldsymbol{v} / \mathbf{\bullet} \text {]. } \tag{1.6.5b}
\end{equation*}
$$

REMARKS

(i) Although these kinematico-inertial definitions hold for any frame of reference (with $\boldsymbol{r}, \boldsymbol{r}_{\boldsymbol{\bullet}}, \boldsymbol{v}, \boldsymbol{v}_{\boldsymbol{\bullet}}$ denoting the positions and velocities relative to points fixed or moving with respect to that frame - see §1.7), they will normally be understood to refer to a specific inertial frame, unless explicitly stated to the contrary.
(ii) Some authors define absolute angular momentum as in our (1.6.5a), but only for fixed points (i.e., $\boldsymbol{v}_{\mathbf{0}}=\mathbf{0}$); in which case, clearly, (1.6.5a) and (1.6.5b) coincide. Unfortunately, here too, there is no uniformity of terminology and or notation in the literature; but, as will be seen in kinetics, some angular momenta are more useful than others. The connection between the above two angular momenta is given by the following basic theorem.

THEOREM

The angular momenta $\boldsymbol{H}_{\boldsymbol{\bullet}}$ and $\boldsymbol{h}_{\boldsymbol{\bullet}}$, defined by equations (1.6.5a, b), are related by

$$
\begin{equation*}
\boldsymbol{H}_{\bullet}-\boldsymbol{h}_{\boldsymbol{\bullet}}=m\left(\boldsymbol{r}_{G}-\boldsymbol{r}_{\bullet}\right) \times \boldsymbol{v}_{\mathbf{\bullet}} \equiv m \boldsymbol{r}_{G / \bullet} \times \boldsymbol{v}_{\mathbf{\bullet}} \tag{1.6.5c}
\end{equation*}
$$

PROOF
Subtracting (1.6.5b) from (1.6.5a) side by side, and then utilizing the properties of the center of mass of B, G, we obtain

$$
\begin{align*}
\boldsymbol{H}_{\bullet}-\boldsymbol{h}_{\bullet} & =\boldsymbol{S} \boldsymbol{r}_{\mathbf{\bullet}} \times\left(\boldsymbol{v}-\boldsymbol{v}_{\bullet \bullet}\right) d m=\boldsymbol{S}\left(\boldsymbol{r}_{\bullet \bullet} \times \boldsymbol{v}_{\boldsymbol{\bullet}}\right) d m \\
& =\boldsymbol{S} \boldsymbol{r} \times\left(d m \boldsymbol{v}_{\bullet}\right)-\boldsymbol{S}\left(\boldsymbol{r}_{\bullet} \times \boldsymbol{v}_{\mathbf{\bullet}}\right) d m=\left(m \boldsymbol{r}_{G}\right) \times \boldsymbol{v}_{\bullet}-\boldsymbol{r}_{\bullet} \times\left(m \boldsymbol{v}_{\bullet}\right), \quad \text { Q.E.D. } \tag{1.6.5d}
\end{align*}
$$

Equations ($1.6 .5 \mathrm{c}, \mathrm{d}$) show immediately that, in the following three cases, the difference between absolute and relative angular momentum disappears:
(i) $\boldsymbol{r}_{G / \bullet}=\mathbf{0}$, i.e., $\bullet=G: \quad \boldsymbol{H}_{G}=\boldsymbol{h}_{G}=\boldsymbol{S} \boldsymbol{r}_{/ G} \times\left(d m \boldsymbol{v}_{/ G}\right)$,
(ii) $\boldsymbol{v}_{\bullet}=\mathbf{0}$, i.e., $\bullet=$ fixed origin, say $O: \quad \boldsymbol{H}_{O}=\boldsymbol{h}_{O}=\boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{v})$,
(iii) $\boldsymbol{r}_{G / \bullet}$ parallel to $\boldsymbol{v}_{\mathbf{0}}$.

The first and second cases, (1.6.5e, f), are, by far, the most important; (1.6.5g) may be hard to check before solving the (kinetic) problem.

Next, let us relate $\boldsymbol{H}_{\mathbf{\bullet}}$ and $\boldsymbol{h}_{\mathbf{\bullet}}$ with \boldsymbol{H}_{O} (which appears in the basic Eulerian form of the angular momentum principle). We have, successively,

$$
\begin{align*}
\boldsymbol{H}_{O} & =\boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{v}) \quad(\text { introducing positions/velocities relative to } \bullet) \\
& =\boldsymbol{S}\left[\left(\boldsymbol{r}_{\bullet}+\boldsymbol{r} / \bullet\right) \times d m\left(\boldsymbol{v}_{\bullet}+\boldsymbol{v} / \bullet\right)\right] \\
& =\cdots=\boldsymbol{h}_{\bullet}+m\left(\boldsymbol{r}_{\bullet} \times \boldsymbol{v}_{G}\right)+m\left(\boldsymbol{r}_{G / \bullet} \times \boldsymbol{v}_{\mathbf{\bullet}}\right) \tag{1.6.5h}\\
& =\boldsymbol{H}_{\bullet}+m\left(\boldsymbol{r}_{\bullet} \times \boldsymbol{v}_{G}\right) \quad[\text { thanks to }(1.6 .5 \mathrm{c})] . \tag{1.6.5i}
\end{align*}
$$

The above leads easily to the following corollaries:
(i) If $\bullet=$ fixed $\Rightarrow \boldsymbol{v}_{\boldsymbol{\bullet}}=\mathbf{0}$, then

$$
\begin{equation*}
\boldsymbol{H}_{O}=\boldsymbol{H}_{\mathbf{\bullet}}+\boldsymbol{r}_{\mathbf{\bullet}} \times\left(m \boldsymbol{v}_{G}\right)=\boldsymbol{h}_{\mathbf{\bullet}}+m\left(\boldsymbol{r}_{\mathbf{\bullet}} \times \boldsymbol{v}_{G}\right) \quad\left[\boldsymbol{r}_{\mathbf{\bullet}} \equiv \boldsymbol{r}_{\bullet} / O, \boldsymbol{H}_{\bullet}=\boldsymbol{h}_{\bullet}\right] ; \tag{1.6.5j}
\end{equation*}
$$

a slight generalization over (1.6.5f).
(ii) If $\bullet=G$, then

$$
\begin{gather*}
\boldsymbol{H}_{O}=\boldsymbol{H}_{G}+\boldsymbol{r}_{G} \times\left(m \boldsymbol{v}_{G}\right)=\boldsymbol{h}_{G}+m\left(\boldsymbol{r}_{G} \times \boldsymbol{v}_{G}\right) \\
{\left[\boldsymbol{r}_{G} \equiv \boldsymbol{r}_{G / O}, \boldsymbol{v}_{G} \equiv d \boldsymbol{r}_{G} / d t ; \quad \boldsymbol{H}_{G}=\boldsymbol{h}_{G}\right] .} \tag{1.6.5k}
\end{gather*}
$$

By comparing ($1.6 .5 \mathrm{~h}, \mathrm{i}$) with $(1.6 .5 \mathrm{k})$, it can be seen that

$$
\begin{equation*}
\boldsymbol{H}_{\bullet}=\boldsymbol{H}_{G}+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{v}_{G}\right), \quad \boldsymbol{h}_{\bullet}=\boldsymbol{H}_{G}+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{v}_{G / \bullet}\right) . \tag{1.6.51}
\end{equation*}
$$

(Interpret these "transfer" equations geometrically. What happens if • is fixed; say, an origin O ?) Finally, by applying the transfer equations (1.6 .5 h , i) between O and the arbitrarily moving points 1 and 2 , and then comparing, we can obtain the relation between the absolute, relative, and absolute-relative angular momenta of a body: $\boldsymbol{H}_{1} \leftrightarrow \boldsymbol{H}_{2}, \boldsymbol{H}_{1} \leftrightarrow \boldsymbol{h}_{2}, \boldsymbol{h}_{1} \leftrightarrow \boldsymbol{h}_{2}$.

Additional Forms of the Principle of Angular Momentum

With the help of the preceding kinematico-inertial identities/results, and the purely geometrical theorem of transfer of moments (hopefully well known from elementary statics)

$$
\begin{array}{rlrl}
\boldsymbol{M}_{\bullet} & =\boldsymbol{M}_{G}+\boldsymbol{r}_{G / \bullet} \times \boldsymbol{f} & & {[\text { where the force resultant } \boldsymbol{f} \text { goes through } G]} \\
& =\boldsymbol{M}_{G}+\boldsymbol{r}_{G / \bullet} \times\left(\boldsymbol{m a}_{G}\right) & {[\text { by the principle of linear momentum }],} \tag{1.6.6a}
\end{array}
$$

the Eulerian principle of angular momentum

$$
\boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{a})=d / d t(\mathbf{S} \boldsymbol{r} \times(d m \boldsymbol{v}))=\boldsymbol{S} \boldsymbol{r} \times d \boldsymbol{f}
$$

that is,

$$
\begin{equation*}
d \boldsymbol{H}_{O} / d t=\boldsymbol{M}_{O} \tag{1.6.6b}
\end{equation*}
$$

$$
\left[\Rightarrow \boldsymbol{M}_{O, \text { external }},\right. \text { by action-reaction (plus, in the continuum version, }
$$

assumes the following forms:

Center of Mass Form
By (1.6.5k):

$$
\begin{equation*}
d \boldsymbol{H}_{O} / d t=d / d t\left[\boldsymbol{H}_{G}+\boldsymbol{r}_{G} \times\left(m \boldsymbol{v}_{G}\right)\right]=d \boldsymbol{H}_{G} / d t+m\left(\boldsymbol{r}_{G} \times \boldsymbol{a}_{G}\right), \tag{1.6.6c}
\end{equation*}
$$

and by (1.6.6a), for $\bullet \rightarrow O$:

$$
\begin{equation*}
\boldsymbol{M}_{O}=\boldsymbol{M}_{G}+\boldsymbol{r}_{G} \times\left(m \boldsymbol{a}_{G}\right) \tag{1.6.6d}
\end{equation*}
$$

and comparing these expressions with (1.6.6b), we obtain the fundamental form

$$
\begin{equation*}
\boldsymbol{M}_{G}=d \boldsymbol{H}_{G} / d t\left(=d \boldsymbol{h}_{G} / d t\right) . \tag{1.6.6e}
\end{equation*}
$$

Absolute Form

Using the above, and (1.6.51), we obtain, successively,

$$
\begin{aligned}
\boldsymbol{M}_{\bullet} & =\boldsymbol{M}_{G}+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right)=d \boldsymbol{H}_{G} / d t+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right) \\
& =d / d t\left[\boldsymbol{H}_{\bullet}-\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{v}_{G}\right)\right]+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right) \\
& =d \boldsymbol{H}_{\bullet} / d t-\boldsymbol{v}_{G / \bullet} \times\left(m \boldsymbol{v}_{G}\right)-\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right)+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right) ;
\end{aligned}
$$

that is, finally,

$$
\begin{align*}
\boldsymbol{M}_{\bullet} & =d \boldsymbol{H}_{\bullet} / d t-\boldsymbol{v}_{G / \bullet} \times\left(m \boldsymbol{v}_{G}\right) \quad\left(\text { using } \boldsymbol{v}_{G / \bullet} \equiv \boldsymbol{v}_{G}-\boldsymbol{v}_{\bullet}\right) \\
& =d \boldsymbol{H}_{\bullet} / d t+\boldsymbol{v}_{\bullet} \times\left(m \boldsymbol{v}_{G}\right)=d \boldsymbol{H}_{\bullet} / d t+\boldsymbol{v}_{\bullet} \times\left(m \boldsymbol{v}_{G / \bullet}\right) \tag{1.6.6f}
\end{align*}
$$

Relative Form

Similarly, using the above, and (1.6.51), we obtain, successively,

$$
\begin{aligned}
\boldsymbol{M}_{\bullet} & =\boldsymbol{M}_{G}+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right)=d \boldsymbol{H}_{G} / d t+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right) \\
& =d / d t\left(\boldsymbol{h}_{\bullet}-\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{v}_{G / \bullet}\right)\right)+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right) \\
& =d \boldsymbol{h}_{\bullet} / d t-\boldsymbol{v}_{G / \bullet} \times\left(m \boldsymbol{v}_{G / \bullet}\right)-\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G / \bullet}\right)+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right) ;
\end{aligned}
$$

that is, finally,

$$
\begin{equation*}
\boldsymbol{M}_{\bullet}=d \boldsymbol{h}_{\mathbf{0}} / d t+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{\mathbf{0}}\right) . \tag{1.6.6~g}
\end{equation*}
$$

In particular, if \bullet is fixed, then $(1.6 .6 \mathrm{f}, \mathrm{g})$ reduce at once to

$$
\begin{equation*}
\boldsymbol{M}_{\bullet}=d \boldsymbol{H}_{\mathbf{\bullet}} / d t \quad\left(=d \boldsymbol{h}_{\mathbf{0}} / d t\right) ; \tag{1.6.6h}
\end{equation*}
$$

which, since it holds for any fixed point, is a slight generalization of (1.6.6b). These forms show clearly the importance of fixed points and of the center of mass, above all other points, in rotational dynamics, especially rigid-body dynamics. All these forms of the principle of angular momentum, and many more flowing from them, can be quite confusing, they are almost impossible to remember, and may be error-prone in concrete applications. They are stated here only for comparison purposes with the existing literature. From them, the most useful in both theoretical and practical situations, are, by far, (1.6.6b,e), and, secondarily, (1.6.6a) with (1.6.6e). We summarize them here:

$$
\begin{align*}
& \boldsymbol{M}_{O}=d \boldsymbol{H}_{O} / d t \quad\{\equiv d / d t(\boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{v}))\}, \quad \text { O: fixed origin; } \tag{1.6.6i}\\
& \boldsymbol{M}_{G}=d \boldsymbol{H}_{G} / d t \quad\left\{\equiv d / d t\left(\boldsymbol{S}_{/ G} \times\left(d m \boldsymbol{v}_{/ G}\right)\right)\right\}, \quad \text { G: center of mass; } \tag{1.6.6j}\\
& \boldsymbol{M}_{\bullet}=d \boldsymbol{H}_{G} / d t+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right), \quad \bullet: \text { arbitrarily moving spatial point } \tag{1.6.6k}
\end{align*}
$$

or, compactly,
Kinetic vectors ("torsor") at $G:\left(m \boldsymbol{a}_{G}, d \boldsymbol{H}_{G} / d t\right)$
\sim Kinetic torsor at $\bullet:\left(m \boldsymbol{a}_{G}, d \boldsymbol{H}_{G} / d t+\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{G}\right)\right)$;
and we are reminded that their left sides, by action-reaction (plus Boltzmann's axiom, i.e., symmetry of stress tensor), include only external moments and couples.

By comparing the absolute and relative forms of the principle of angular momentum, eqs. (1.6.6f, g) [or by $d / d t(\ldots)$, eq. (1.6.5c)], we can show that

$$
\begin{align*}
d \boldsymbol{H}_{\bullet} / d t-d \boldsymbol{h}_{\bullet} / d t & =\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{\bullet}\right)+\boldsymbol{v}_{G / \bullet} \times\left(m \boldsymbol{v}_{\mathbf{\bullet}}\right) \\
& =\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{\mathbf{0}}\right)+\boldsymbol{v}_{G} \times\left(m \boldsymbol{v}_{\bullet}\right)=\boldsymbol{r}_{G / \bullet} \times\left(m \boldsymbol{a}_{\bullet}\right)+\boldsymbol{v}_{G} \times\left(m \boldsymbol{v}_{\bullet} / G\right) \tag{1.6.61}
\end{align*}
$$

Finally, crossing the local law of motion $d m \boldsymbol{a}=d \boldsymbol{f}$ with $\boldsymbol{r}_{\boldsymbol{\bullet}} \equiv \boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}$, and then integrating over the body, etc., we obtain the following additional form of the principle of angular momentum:

$$
\begin{equation*}
\boldsymbol{M}_{\bullet}=d \boldsymbol{H}_{O} / d t-r_{\bullet} \times\left(m \boldsymbol{a}_{G}\right) \quad\left(=\boldsymbol{M}_{O}-\boldsymbol{r}_{\bullet} \times \boldsymbol{f}, \text { with } \boldsymbol{f} \text { applied at } \bullet\right) . \tag{1.6.6m}
\end{equation*}
$$

1.7 ACCELERATED (NONINERTIAL) FRAMES OF REFERENCE (OR RELATIVE MOTION, OR MOVING AXES); ANGULAR VELOCITY AND ACCELERATION

The theory of moving axes, a subject indispensable to rigid-body dynamics and other key areas of mechanics (including the transition to relativity), is based on the following fundamental kinematical theorem.

Theorem (of Moving Axes)

Let us consider two frames of reference in arbitrary relative motion, each represented by an ortho-normal-dextral (OND) basis and associated coordinate axes, rigidly attached to the frame; say, for concreteness but no loss in generality, one fixed or inertial F :

$$
\begin{align*}
\left(O_{F}-\boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K} / X, Y, Z\right) & \equiv\left(O_{F}-\boldsymbol{u}_{X}, \boldsymbol{u}_{Y}, \boldsymbol{u}_{Z} / X, Y, Z\right) \equiv\left(O_{F}-\boldsymbol{u}_{X, Y, Z} / X, Y, Z\right) \\
& \equiv\left(O_{F}-\boldsymbol{u}_{k^{\prime}} / x_{k^{\prime}} ; k^{\prime}=1,2,3 / X, Y, Z\right), \tag{1.7.1a}
\end{align*}
$$

and one moving or noninertial M :

$$
\begin{align*}
\left(O_{M}-\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k} / x, y, z\right) & \equiv\left(O_{M}-\boldsymbol{u}_{x}, \boldsymbol{u}_{y}, \boldsymbol{u}_{z} / x, y, z\right) \equiv\left(O_{M}-\boldsymbol{u}_{x, y, z} / x, y, z\right) \\
& \equiv\left(O_{M}-\boldsymbol{u}_{k} / x_{k} ; k=1,2,3 / x, y, z\right), \tag{1.7.1b}
\end{align*}
$$

and an arbitrary (say free) vector \boldsymbol{p} [fig. 1.5(a)]. Then its rate of change in F and M, $d \boldsymbol{p} / d t$ and $\partial \boldsymbol{p} / \partial t$, respectively, are related by

$$
\begin{equation*}
d \boldsymbol{p} / d t=\partial \boldsymbol{p} / \partial t+\omega \times \boldsymbol{p} \tag{1.7.2a}
\end{equation*}
$$

Figure 1.5 (a) Geometry of moving frames; (b) geometrical proof of (1.7.3c).
where (recalling the moving axes theory, §1.1)

$$
\begin{equation*}
\boldsymbol{p}=p_{X} \boldsymbol{u}_{X}+p_{Y} \boldsymbol{u}_{Y}+p_{Z} \boldsymbol{u}_{Z} \equiv \sum p_{k^{\prime}} \boldsymbol{u}_{k^{\prime}}=p_{x} \boldsymbol{u}_{x}+p_{y} \boldsymbol{u}_{y}+p_{z} \boldsymbol{u}_{z} \equiv \sum p_{k} \boldsymbol{u}_{k} \tag{1.7.2b}
\end{equation*}
$$

[assumed instantaneous representation of \boldsymbol{p} in F and M];

$$
\begin{equation*}
d \boldsymbol{p} / d t \equiv\left(d p_{X} / d t\right) \boldsymbol{u}_{X}+\left(d p_{Y} / d t\right) \boldsymbol{u}_{Y}+\left(d p_{Z} / d t\right) \boldsymbol{u}_{Z}=\sum\left(d p_{k^{\prime}} / d t\right) \boldsymbol{u}_{k^{\prime}}: \tag{1.7.2c}
\end{equation*}
$$

Absolute rate of change of \boldsymbol{p} (or time flux); i.e., relative to F;

$$
\begin{equation*}
\partial \boldsymbol{p} / \partial t \equiv\left(d p_{x} / d t\right) \boldsymbol{u}_{x}+\left(d p_{y} / d t\right) \boldsymbol{u}_{y}+\left(d p_{z} / d t\right) \boldsymbol{u}_{z}=\sum\left(d p_{k} / d t\right) \boldsymbol{u}_{k}: \tag{1.7.2d}
\end{equation*}
$$

Relative rate of change of \boldsymbol{p}; i.e., relative to M;

$$
\begin{aligned}
\boldsymbol{\omega} & =\omega_{X} \boldsymbol{u}_{X}+\omega_{Y} \boldsymbol{u}_{Y}+\omega_{Z} \boldsymbol{u}_{Z} \equiv \sum \omega_{k^{\prime}} \boldsymbol{u}_{k^{\prime}}=\omega_{x} \boldsymbol{u}_{x}+\omega_{y} \boldsymbol{u}_{y}+\omega_{z} \boldsymbol{u}_{z} \equiv \sum \omega_{k} \boldsymbol{u}_{k} \\
& \equiv\left[\left(d \boldsymbol{u}_{y} / d t\right) \cdot \boldsymbol{u}_{z}\right] \boldsymbol{u}_{x}+\left[\left(d \boldsymbol{u}_{z} / d t\right) \cdot \boldsymbol{u}_{x}\right] \boldsymbol{u}_{y}+\left[\left(d \boldsymbol{u}_{x} / d t\right) \cdot \boldsymbol{u}_{y}\right] \boldsymbol{u}_{z}:
\end{aligned}
$$

Angular velocity (vector) of $M_{\text {moving frame }}$ relative to $F_{\text {fixed frame }}$;

$$
\begin{equation*}
\text { i.e., of }\left(O_{M}-\boldsymbol{u}_{k^{\prime}}\right) \text { relative to }\left(O_{F}-\boldsymbol{u}_{k}\right) \text {; } \tag{1.7.2e}
\end{equation*}
$$

$\omega \times \boldsymbol{p}=$ Transport rate of change of \boldsymbol{p} relative to F.

NOTATIONAL CLARIFICATION

Here, partial derivatives, $\partial(\ldots) / \partial t$, are, normally, associated with moving frame(s); while, for simplicity, primed subscripts signify fixed axes/components.

To express this theorem in components, which is the best way to understand it, the simplest way is to choose the axes $O_{F}-X Y Z$ and $O_{M}-x y z$ so that, instantaneously, either they coincide or are parallel. Then, since in such a case,

$$
\begin{equation*}
(d \boldsymbol{p} / d t)_{X} \equiv(d \boldsymbol{p} / d t) \cdot \boldsymbol{u}_{X} \equiv d p_{X} / d t=(d \boldsymbol{p} / d t) \cdot \boldsymbol{u}_{x} \equiv(d \boldsymbol{p} / d t)_{x}, \quad \text { etc., cyclically, } \tag{1.7.3a}
\end{equation*}
$$

$$
\begin{equation*}
(\partial \boldsymbol{p} / \partial t)_{x} \equiv(\partial \boldsymbol{p} / \partial t) \cdot \boldsymbol{u}_{x} \equiv d p_{x} / d t=(\partial \boldsymbol{p} / \partial t) \cdot \boldsymbol{u}_{X} \equiv(\partial \boldsymbol{p} / \partial t)_{X}, \quad \text { etc., cyclically, } \tag{1.7.3b}
\end{equation*}
$$

the theorem assumes the component form:

$$
\begin{align*}
d p_{X} / d t & =d p_{x} / d t+\omega_{y} p_{z}-\omega_{z} p_{y} \\
d p_{Y} / d t & =d p_{y} / d t+\omega_{z} p_{x}-\omega_{x} p_{z} \tag{1.7.3c}\\
d p_{Z} / d t & =d p_{z} / d t+\omega_{x} p_{y}-\omega_{y} p_{x}
\end{align*}
$$

and gives inertial rates of change, but expressed in terms of noninertial (relative) and transport rates. The above show clearly that

$$
\begin{equation*}
(d \boldsymbol{p} / d t)_{k} \neq d p_{k} / d t \quad(k=x, y, z) \tag{1.7.3d}
\end{equation*}
$$

even though, instantaneously,

$$
\begin{equation*}
p_{X}=p_{x}, \quad \text { etc., cyclically } \tag{1.7.3e}
\end{equation*}
$$

unless $\boldsymbol{\omega} \times \boldsymbol{p}=\mathbf{0}(\Rightarrow \boldsymbol{\omega}=\mathbf{0}$, or $\boldsymbol{p}=\mathbf{0}$, or $\boldsymbol{\omega}$ parallel to $\boldsymbol{p})$.

A geometrical interpretation of (1.7.3c) is shown in fig. 1.5(b): the moving axes $O_{M}-x y z$ momentarily coincide with the axes $O_{M}-X Y Z$; the latter are always translating relative to $O_{F}-X Y Z$-that is, they are "rotationally equivalent" to them.

PROOF OF EQUATION (1.7.2a)
By $d / d t(\ldots)$-differentiating (1.7.2b), we obtain

$$
\begin{equation*}
d \boldsymbol{p} / d t=\left(d p_{x} / d t\right) \boldsymbol{u}_{x}+p_{x}\left(d \boldsymbol{u}_{x} / d t\right)+\cdots=\partial \boldsymbol{p} / \partial t+\sum p_{k}\left(d \boldsymbol{u}_{k} / d t\right) . \tag{1.7.4a}
\end{equation*}
$$

To transform the key second term in the above, we begin by $d / d t(\ldots)$-differentiating the six geometrical orthonormality $(\Rightarrow$ rigidity) constraints of these basis vectors $\boldsymbol{u}_{k} \cdot \boldsymbol{u}_{l}=\delta_{k l}(k, l=x, y, z)$, thus translating them into the following six kinematical constraints:

$$
\begin{equation*}
\left(d \boldsymbol{u}_{k} / d t\right) \cdot \boldsymbol{u}_{l}+\boldsymbol{u}_{k} \cdot\left(d \boldsymbol{u}_{l} / d t\right)=0 \tag{1.7.4b}
\end{equation*}
$$

that is, from the nine components of $\left\{d \boldsymbol{u}_{k} / d t\right\}$ only $9-6=3$ are independent.
Let us find them. By (1.7.4b) for $k, l=x, d \boldsymbol{u}_{x} / d t$ is perpendicular to \boldsymbol{u}_{x}; that is, it must lie in the plane of $\boldsymbol{u}_{y}, \boldsymbol{u}_{z}$. Therefore, we can write

$$
\begin{equation*}
d \boldsymbol{u}_{x} / d t=l_{1} \boldsymbol{u}_{y}+l_{2} \boldsymbol{u}_{z} ; \tag{1.7.4c}
\end{equation*}
$$

and, cyclically,

$$
\begin{equation*}
d \boldsymbol{u}_{y} / d t=l_{3} \boldsymbol{u}_{z}+l_{4} \boldsymbol{u}_{x}, \quad d \boldsymbol{u}_{z} / d t=l_{5} \boldsymbol{u}_{x}+l_{6} \boldsymbol{u}_{y} \tag{1.7.4d}
\end{equation*}
$$

where $l_{1, \ldots, 6}$ are scalar functions of time. Substituting these representations back into (1.7.4b) for $k=x, l=y$, and taking into account the geometrical constraints, we obtain

$$
\begin{equation*}
\left(d \boldsymbol{u}_{x} / d t\right) \cdot \boldsymbol{u}_{y}+\boldsymbol{u}_{x} \cdot\left(d \boldsymbol{u}_{y} / d t\right)=0 \Rightarrow l_{1}+l_{4}=0 \tag{1.7.4e}
\end{equation*}
$$

and, cyclically,

$$
\begin{align*}
& \left(d \boldsymbol{u}_{y} / d t\right) \cdot \boldsymbol{u}_{z}+\boldsymbol{u}_{y} \cdot\left(d \boldsymbol{u}_{z} / d t\right)=0 \Rightarrow l_{3}+l_{6}=0, \tag{1.7.4f}\\
& \left(d \boldsymbol{u}_{z} / d t\right) \cdot \boldsymbol{u}_{x}+\boldsymbol{u}_{z} \cdot\left(d \boldsymbol{u}_{x} / d t\right)=0 \Rightarrow l_{5}+l_{2}=0 . \tag{1.7.4g}
\end{align*}
$$

Hence, ($1.7 .4 \mathrm{c}, \mathrm{d}$) can be rewritten in terms of the following three independent (unconstrained) l 's, or in terms of the three equivalent parameters $\omega_{x}, \omega_{y}, \omega_{z}$:

$$
\begin{equation*}
l_{1}=-l_{4} \equiv \omega_{z}, \quad l_{3}=-l_{6} \equiv \omega_{x}, \quad l_{5}=-l_{2} \equiv \omega_{y} \tag{1.7.4h}
\end{equation*}
$$

as

$$
\begin{align*}
& d \boldsymbol{u}_{x} / d t=\omega_{z} \boldsymbol{u}_{y}-\omega_{y} \boldsymbol{u}_{z}=\omega \times \boldsymbol{u}_{x}, \\
& d \boldsymbol{u}_{y} / d t=\omega_{x} \boldsymbol{u}_{z}-\omega_{z} \boldsymbol{u}_{x}=\boldsymbol{\omega} \times \boldsymbol{u}_{y}, \tag{1.7.4i}\\
& d \boldsymbol{u}_{z} / d t=\omega_{y} \boldsymbol{u}_{x}-\omega_{x} \boldsymbol{u}_{y}=\omega \times \boldsymbol{u}_{z} ;
\end{align*}
$$

where

$$
\begin{aligned}
\boldsymbol{\omega} & =\omega_{x} \boldsymbol{u}_{x}+\omega_{y} \boldsymbol{u}_{y}+\omega_{z} \boldsymbol{u}_{z} \\
& =\boldsymbol{u}_{x}\left[\left(d \boldsymbol{u}_{y} / d t\right) \cdot \boldsymbol{u}_{z}\right]+\boldsymbol{u}_{y}\left[\left(d \boldsymbol{u}_{z} / d t\right) \cdot \boldsymbol{u}_{x}\right]+\boldsymbol{u}_{z}\left[\left(d \boldsymbol{u}_{x} / d t\right) \cdot \boldsymbol{u}_{y}\right]
\end{aligned}
$$

[a form that shows the cyclicity of the subscripts x, y, z]

$$
\begin{equation*}
=-\boldsymbol{u}_{x}\left[\left(d \boldsymbol{u}_{z} / d t\right) \cdot \boldsymbol{u}_{y}\right]-\boldsymbol{u}_{y}\left[\left(d \boldsymbol{u}_{x} / d t\right) \cdot \boldsymbol{u}_{z}\right]-\boldsymbol{u}_{z}\left[\left(d \boldsymbol{u}_{y} / d t\right) \cdot \boldsymbol{u}_{x}\right] . \tag{1.7.4j}
\end{equation*}
$$

Finally, substituting these results into (1.7.4a), we obtain (1.7.2a):

$$
\begin{align*}
d \boldsymbol{p} / d t & =\partial \boldsymbol{p} / \partial t+\sum p_{k}\left(\boldsymbol{\omega} \times \boldsymbol{u}_{k}\right)=\partial \boldsymbol{p} / \partial t+\boldsymbol{\omega} \times\left(\sum p_{k} \boldsymbol{u}_{k}\right) \\
& =\partial \boldsymbol{p} / \partial t+\boldsymbol{\omega} \times \boldsymbol{p} . \tag{1.7.4k}
\end{align*}
$$

REMARKS

(i) Frequently, and with some good reason, the notation $\delta \boldsymbol{p} / \delta t$ is employed for our $\partial \boldsymbol{p} / \partial t$. Here, however, we chose the latter because in analytical mechanics $\delta(\ldots)$ is reserved for virtual changes, under which $\delta t=0$ (chap. 2ff.). Other popular notations for the relative rate of change are $\partial^{*} \boldsymbol{p} / \partial t$ (British authors; but some German authors use $\partial \boldsymbol{p} / \partial t$ for our $\boldsymbol{\omega} \times \boldsymbol{p}),(d \boldsymbol{p} / d t)_{M}$ or $(d \boldsymbol{p} / d t)_{\text {rel }}$ or $d^{*} \boldsymbol{p} / d t$; or with a tilde over d (Soviet/Russian authors) \tilde{d}. Also recall remarks made regarding eq. (1.1.20i) about the overdot notation.
(ii) The vector equation (1.7.2a) can be expressed in component form (i.e., it can be projected) along any axes, fixed or moving, by eqs. (1.7.3c), if $O_{M}-x y z$ and $O_{M}-X Y Z$ momentarily coincide; and, if they do not, by

$$
\begin{align*}
(d \boldsymbol{p} / d t)_{x} & =\cos (x, X)\left(d p_{X} / d t\right)+\cos (x, Y)\left(d p_{Y} / d t\right)+\cos (x, Z)\left(d p_{Z} / d t\right) \quad\left(\neq d p_{x} / d t\right) \\
& =\cos (x, X)\left(d p_{1} / d t+\omega_{2} p_{3}-\omega_{3} p_{2}\right)+\cdots, \tag{1.7.5a}
\end{align*}
$$

where the new axes $O_{M}-123$ coincide momentarily with $O_{M}-X Y Z$, but, in general, have an angular velocity $\omega^{\prime}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ relative to them.
(iii) The above show that as long as no rates of change are involved, the components of a vector along the various axes (fixed or moving) are related by ordinary coordinate transformations, with possibly time-dependent coefficients - that is, like the first line of (1.7.5a), or (1.7.5b), below; all such axes are mechanically (though not mathematically) equivalent. But when rates of change between such moving axes $(\rightarrow$ frames) are compared, then, in general, a component of a vector derivative $(d \boldsymbol{p} / d t)_{x}$ does not equal the derivative of that component $d p_{x} / d t[(1.7 .3 \mathrm{~d}, \mathrm{e})]$; these quantities are related by a frame of reference transformation - that is, like the second line of (1.7.5a). Mathematically, this is equivalent to an explicitly time-dependent coordinate transformation: $x=x(X, Y, Z ; t), \ldots \Leftrightarrow X=X(x, y, z ; t), \ldots$ (recall discussion following eq. (1.1.20k)). In such cases, to obtain equations like (1.7.3c), we begin with $O_{M}-X Y Z$ and $O_{M}-x y z$ in arbitrary relative orientations, then we $d / d t(\ldots)$-differentiate the component transformations, like

$$
\begin{equation*}
p_{x}=\cos (x, X) p_{X}+\cos (x, Y) p_{Y}+\cos (x, Z) p_{Z}, \quad \text { etc., cyclically, } \tag{1.7.5b}
\end{equation*}
$$

(not like $p_{x}=p_{X}$) and then we make $O_{M}-X Y Z$ and $O_{M}-x y z$ coincide.
(iv) In kinematics, all frames are theoretically equivalent; and thus during the 17th century both Galileo and the Catholic church were ... kinematically correct! This is
expressed by the following geometrical, or Euclidean, and kinematical principle of relativity: any system of rectangular Cartesian coordinates can be replaced by any other such system that moves in an arbitrary fashion relative to the first; or, alternatively, the form of geometrical relationships must be invariant under the proper orthogonal group of rotations - and this, in effect, constitutes a definition of Euclidean geometry- that is, any two such sets of coordinates $x_{k^{\prime}}$ and x_{k} are related by

$$
\begin{equation*}
x_{k^{\prime}}=\sum A_{k^{\prime} k}(t) x_{k}+A_{k^{\prime}}(t) \tag{1.7.6a}
\end{equation*}
$$

where

$$
\sum A_{k^{\prime} k}(t) A_{l^{\prime} k}(t)=\delta_{k^{\prime} l^{\prime}}, \quad \sum A_{k^{\prime} k}(t) A_{k^{\prime} l}(t)=\delta_{k l},
$$

and

$$
\begin{equation*}
\operatorname{Det}\left(A_{k^{\prime} k}(t)\right)=+1, \tag{1.7.6b}
\end{equation*}
$$

and $A_{k^{\prime} k}(t), A_{k^{\prime}}(t)$ are continuous functions of time, with first and second time derivatives. Such transformations include all frames/motions produced from the moving frame M by a continuous rigid-body movement (translations and rotations, but not mirror reflections).
(v) If the moving triad $\boldsymbol{u}_{x, y, z}$ is non-OND, then its inertial angular velocity is, instead of (1.7.4j),

$$
\begin{equation*}
\boldsymbol{\omega}=\left\{\boldsymbol{u}_{x}\left[\left(d \boldsymbol{u}_{y} / d t\right) \cdot \boldsymbol{u}_{z}\right]+\boldsymbol{u}_{y}\left[\left(d \boldsymbol{u}_{z} / d t\right) \cdot \boldsymbol{u}_{x}\right]+\boldsymbol{u}_{z}\left[\left(d \boldsymbol{u}_{x} / d t\right) \cdot \boldsymbol{u}_{y}\right]\right\} /\left[\boldsymbol{u}_{x} \cdot\left(\boldsymbol{u}_{y} \times \boldsymbol{u}_{z}\right)\right] . \tag{1.7.6c}
\end{equation*}
$$

[See, for example, Truesdell and Toupin (1960, p. 437). In case such angular velocity vector definitions seem unmotivated, another more natural one, based on the linearization of the finite rotation equation, is detailed in §1.10.]

Corollaries of the Moving Axes Theorem

Applying (1.7.2a) for ω, we get

$$
\begin{equation*}
d \boldsymbol{\omega} / d t=\partial \boldsymbol{\omega} / \partial t+\boldsymbol{\omega} \times \boldsymbol{\omega}=\partial \boldsymbol{\omega} / \partial t \equiv \boldsymbol{\alpha}: \tag{1.7.7a}
\end{equation*}
$$

Angular acceleration of moving axes relative to fixed axes.
This result shows the special position of ω in moving axes theory.
From eq. (1.7.2a) and its derivation, we easily obtain the following general operator form:

$$
\begin{equation*}
d(\ldots) / d t=\partial(\ldots) / \partial t+\omega \times(\ldots), \quad(\ldots): \text { any vector } . \tag{1.7.7b}
\end{equation*}
$$

Applying (1.7.7b) to (1.7.2a), and invoking (1.7.7a), we obtain the following expression for the second absolute rate of $\boldsymbol{p}, d / d t(d \boldsymbol{p} / d t) \equiv d^{2} \boldsymbol{p} / d t^{2}$:

$$
\begin{align*}
d^{2} \boldsymbol{p} / d t^{2} & =d(\ldots) / d t(\partial \boldsymbol{p} / \partial t+\boldsymbol{\omega} \times \boldsymbol{p}) \\
& =[\partial(\ldots) / \partial t+\boldsymbol{\omega} \times(\ldots)](\partial \boldsymbol{p} / \partial t)+(d \boldsymbol{\omega} / d t) \times \boldsymbol{p}+\boldsymbol{\omega} \times(d \boldsymbol{p} / d t) \\
& =\cdots=\partial^{2} \boldsymbol{p} / \partial t^{2}+[\boldsymbol{\alpha} \times \boldsymbol{p}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{p})]+2 \boldsymbol{\omega} \times(\partial \boldsymbol{p} / \partial t), \tag{1.7.7c}
\end{align*}
$$

where

$$
\begin{equation*}
\partial^{2} \boldsymbol{p} / \partial t^{2}=\left(d^{2} p_{x} / d t^{2}\right) \boldsymbol{u}_{x}+\left(d^{2} p_{y} / d t^{2}\right) \boldsymbol{u}_{y}+\left(d^{2} p_{z} / d t^{2}\right) \boldsymbol{u}_{z} . \tag{1.7.7d}
\end{equation*}
$$

In general, if $\boldsymbol{a} \rightarrow \boldsymbol{b}=d \boldsymbol{a} / d t \rightarrow \boldsymbol{c}=d \boldsymbol{b} / d t=d^{2} \boldsymbol{a} / d t^{2} \rightarrow \ldots$, then we shall have for their components:

$$
\begin{align*}
b_{X}=b_{x} & =d a_{x} / d t+\omega_{y} a_{z}-\omega_{z} a_{y}, \tag{1.7.7e}\\
c_{X}=c_{x} & =d b_{x} / d t+\omega_{y} b_{z}-\omega_{z} b_{y} \\
& =d / d t\left(d a_{x} / d t+\omega_{y} a_{z}-\omega_{z} a_{y}\right)+\omega_{y}\left(d a_{z} / d t+\omega_{x} a_{y}-\omega_{y} a_{x}\right) \\
& -\omega_{z}\left(d a_{y} / d t+\omega_{z} a_{x}-\omega_{x} a_{z}\right), \quad \text { etc., cyclically. } \tag{1.7.7f}
\end{align*}
$$

For example, application of (1.7.7c, d) to the moving basis vectors $\boldsymbol{u}_{x, y, z}$ yields

$$
\begin{align*}
d^{2} \boldsymbol{u}_{x} / d t^{2} & =\partial^{2} \boldsymbol{u}_{x} / \partial t^{2}+\left[\boldsymbol{\alpha} \times \boldsymbol{u}_{x}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{u}_{x}\right)\right]+2 \boldsymbol{\omega} \times\left(\partial \boldsymbol{u}_{x} / \partial t\right) \\
& =\mathbf{0}+\left[\boldsymbol{\alpha} \times \boldsymbol{u}_{x}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{u}_{x}\right)\right]+\mathbf{0} \\
& =\boldsymbol{\alpha} \times \boldsymbol{u}_{x}+\omega \times\left(\boldsymbol{\omega} \times \boldsymbol{u}_{x}\right), \quad \text { etc. }, \text { cyclically } . \tag{1.7.7~g}
\end{align*}
$$

Since (1.7.2a) is a purely kinematical result, the roles of the frames F and M can be interchanged. Indeed, from it, we immediately obtain

$$
\begin{equation*}
\partial \boldsymbol{p} / \partial t=d \boldsymbol{p} / d t+(-\boldsymbol{\omega}) \times \boldsymbol{p} \tag{1.7.7h}
\end{equation*}
$$

where $-\omega$ is the angular velocity of F relative to M.
In particular, if \boldsymbol{p} remains constant (i.e., fixed) relative to F, (1.7.2a) and (1.7.7h) yield

$$
\begin{equation*}
\partial \boldsymbol{p} / \partial t=(-\boldsymbol{\omega}) \times \boldsymbol{p} ; \tag{1.7.7i}
\end{equation*}
$$

that is, an observer, stationed in M, sees the tip of \boldsymbol{p} rotate relative to that frame with an angular velocity $-\omega$. Application of (1.7.7i) to the fixed basis $\boldsymbol{u}_{X, Y, Z}$ gives

$$
\begin{align*}
\partial \boldsymbol{u}_{X} / \partial t=(-\boldsymbol{\omega}) \times \boldsymbol{u}_{X} & =-\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right) \times(1,0,0) \\
& =\cdots=(0) \boldsymbol{u}_{X}+\left(-\omega_{Z}\right) \boldsymbol{u}_{Y}+\left(\omega_{Y}\right) \boldsymbol{u}_{Z}, \\
\partial \boldsymbol{u}_{Y} / \partial t=(-\boldsymbol{\omega}) \times \boldsymbol{u}_{Y} & =\cdots=\left(\omega_{Z}\right) \boldsymbol{u}_{X}+(0) \boldsymbol{u}_{Y}+\left(-\omega_{X}\right) \boldsymbol{u}_{Z}, \\
\partial \boldsymbol{u}_{Z} / \partial t=(-\boldsymbol{\omega}) \times \boldsymbol{u}_{Z} & =\cdots=\left(-\omega_{Y}\right) \boldsymbol{u}_{X}+\left(\omega_{X}\right) \boldsymbol{u}_{Y}+(0) \boldsymbol{u}_{Z} \tag{1.7.7j}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
& \left(\partial \boldsymbol{u}_{X} / \partial t\right) \cdot \boldsymbol{u}_{Y}=-\omega_{Z}\left(=-\omega_{z}, \text { for coinciding axes }\right) \\
& \left(\partial \boldsymbol{u}_{X} / \partial t\right) \cdot \boldsymbol{u}_{Z}=+\omega_{Y}\left(=+\omega_{y}, \text { for coinciding axes }\right), \quad \text { etc., cyclically. } \tag{1.7.7k}
\end{align*}
$$

Alternative Definition of Angular Velocity

(i) Below, we show that

$$
\begin{equation*}
\boldsymbol{\omega}=\sum(1 / 2)\left[\boldsymbol{u}_{k} \times\left(d \boldsymbol{u}_{k} / d t\right)\right] \quad(\text { where } k=1,2,3 \rightarrow x, y, z), \tag{1.7.8a}
\end{equation*}
$$

which can be viewed as an alternative to (1.7.2e, 6 c) definition of angular velocity.

Indeed, using the fundamental equations (1.7.4i), we obtain, successively,

$$
\begin{align*}
\sum\left[\boldsymbol{u}_{k} \times\left(d \boldsymbol{u}_{k} / d t\right)\right] & \left.=\sum\left[\boldsymbol{u}_{k} \times\left(\boldsymbol{\omega} \times \boldsymbol{u}_{k}\right)\right]=\sum\left[\left(\boldsymbol{u}_{k} \cdot \boldsymbol{u}_{k}\right) \boldsymbol{\omega}-\left(\boldsymbol{u}_{k} \cdot \omega\right) \boldsymbol{u}_{k}\right)\right] \\
& =\omega\left(\sum\left(\boldsymbol{u}_{k} \cdot \boldsymbol{u}_{k}\right)\right)-\sum\left(\omega_{k} \boldsymbol{u}_{k}\right)=\omega(3)-\boldsymbol{\omega}=2 \omega, \quad \text { Q.E.D. } \tag{1.7.8b}
\end{align*}
$$

From the above, and using the results of §1.1, we can show that the (inertial) angular velocity tensor of the moving frame $\boldsymbol{\omega}$ [i.e., the antisymmetric tensor whose axial vector is the (inertial) angular velocity of that frame ω] can be expressed as

$$
\begin{equation*}
\boldsymbol{\omega}=(1 / 2) \sum\left[\left(d \boldsymbol{u}_{k} / d t\right) \otimes \boldsymbol{u}_{k}-\boldsymbol{u}_{k} \otimes\left(d \boldsymbol{u}_{k} / d t\right)\right] \tag{1.7.8c}
\end{equation*}
$$

(ii) Next, if the (orthonormal) basis vectors \boldsymbol{u}_{k} are functions of the curvilinear coordinates $q=\left(q_{1}, q_{2}, q_{3}\right)$ - that is, $\boldsymbol{u}_{k}=\boldsymbol{u}_{k}(q)$ - then, applying (1.7.8a), we find, successively (with all Latin subscripts running from 1 to 3 ; i.e., x, y, z),

$$
\begin{equation*}
\omega=\sum(1 / 2)\left\{\boldsymbol{u}_{k} \times\left(\sum\left(\partial \boldsymbol{u}_{k} / \partial q_{l}\right)\left(d q_{l} / d t\right)\right)\right\}=\cdots=\sum c_{k}\left(d q_{l} / d t\right) \tag{1.7.9a}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\boldsymbol{c}_{l} \equiv \sum(1 / 2)\left[\boldsymbol{u}_{k} \times\left(\partial \boldsymbol{u}_{k} / \partial q_{l}\right)\right] \quad \text { ("Eulerian basis" for } \omega\right) ; \tag{1.7.9b}
\end{equation*}
$$

that is, the $d q_{l} / d t$ are the (contravariant) components of ω in the (covariant) basis \boldsymbol{c}_{l}.
By formally comparing (1.7.8a) and the earlier equations (1.7.4i), (1.7.2e, 4 j), with $(1.7 .9 \mathrm{a}, \mathrm{b})$ [i.e., $\omega \rightarrow \boldsymbol{c}_{l}$ and $d \boldsymbol{u}_{k} / d t \rightarrow \partial \boldsymbol{u}_{k} / \partial q_{l}$], it is easy to conclude that

$$
\begin{gather*}
\partial \boldsymbol{u}_{k} / \partial q_{l}=\boldsymbol{c}_{l} \times \boldsymbol{u}_{k}, \tag{1.7.9c}\\
\boldsymbol{c}_{l}=\boldsymbol{u}_{1}\left[\left(\partial \boldsymbol{u}_{2} / \partial q_{l}\right) \cdot \boldsymbol{u}_{3}\right]+\boldsymbol{u}_{2}\left[\left(\partial \boldsymbol{u}_{3} / \partial q_{l}\right) \cdot \boldsymbol{u}_{1}\right]+\boldsymbol{u}_{3}\left[\left(\partial \boldsymbol{u}_{1} / \partial q_{l}\right) \cdot \boldsymbol{u}_{2}\right] . \tag{1.7.9d}
\end{gather*}
$$

We leave it to the reader to extend the above to the "rheonomic" case: $\boldsymbol{u}_{k}=\boldsymbol{u}_{k}(q, t)$.

EXAMPLES

1. The absolute (i.e., inertial) components of the angular acceleration of a rigid body rotating with angular velocity ω_{B} are (with the hitherto used notations)

$$
\begin{equation*}
d \omega_{B, X} / d t=d \omega_{B, x} / d t+\omega_{y} \omega_{B, z}-\omega_{z} \omega_{B, y}, \quad \text { etc., cyclically. } \tag{1.7.10a}
\end{equation*}
$$

What happens if $\omega_{B}=\omega$?
2. The conditions for a straight line with direction cosines (relative to moving axes) l_{x}, l_{y}, l_{z} to have a fixed inertial direction are

$$
\begin{equation*}
d l_{x} / d t+\omega_{y} l_{z}-\omega_{z} l_{y}=0, \quad \text { etc., cyclically. } \tag{1.7.10b}
\end{equation*}
$$

How many of these three conditions are independent? Hint: $l_{x}{ }^{2}+l_{y}{ }^{2}+l_{z}{ }^{2}=1$.
3. The moving axis theorem (1.7.2a), applied to the generic vector \boldsymbol{p} expressed in plane polar coordinates:

$$
\begin{equation*}
\boldsymbol{p}=p_{r} \boldsymbol{u}_{r}+p_{\phi} \boldsymbol{u}_{\phi}, \tag{1.7.10c}
\end{equation*}
$$

yields

$$
\begin{equation*}
d \boldsymbol{p} / d t=\left[d p_{r} / d t-p_{\phi}(d \phi / d t)\right] \boldsymbol{u}_{r}+\left[d p_{\phi} / d t+p_{r}(d \phi / d t)\right] \boldsymbol{u}_{\phi} . \tag{1.7.10d}
\end{equation*}
$$

Apply (1.7.10d) for $\boldsymbol{p}=$ position vector of a particle \boldsymbol{r}, and velocity vector of a particle \boldsymbol{v}.
Hint: The angular velocity of the moving polar ortho-normal-dextral triad $\boldsymbol{u}_{r, \phi, z=Z}$, relative to the inertial one $\boldsymbol{u}_{X, Y, Z}$, is

$$
\begin{equation*}
\omega=(d \phi / d t) \boldsymbol{u}_{z}=(d \phi / d t) \boldsymbol{u}_{Z} . \tag{1.7.10e}
\end{equation*}
$$

Particle Kinematics in Moving Frames

Velocities
Application of the fundamental formula (1.7.2a) to the motion of a particle P, of inertial position vector $\mathfrak{R}=\boldsymbol{r}_{O}+\boldsymbol{r}$ (fig. 1.6) (i.e., for $\boldsymbol{p} \rightarrow \boldsymbol{r}$), yields

$$
\begin{align*}
\boldsymbol{v} \equiv d \mathfrak{R} / d t & =d\left(\boldsymbol{r}_{O}+\boldsymbol{r}\right) / d t=d \boldsymbol{r}_{O} / d t+d \boldsymbol{r} / d t \\
& =d \boldsymbol{r}_{O} / d t+(\partial \boldsymbol{r} / \partial t+\omega \times \boldsymbol{r}), \tag{1.7.11a}
\end{align*}
$$

(since, in general, \boldsymbol{r} is known only along the moving axes) or, rearranging,

$$
\begin{equation*}
\boldsymbol{v}=\left(d \boldsymbol{r}_{o} / d t+\omega \times \boldsymbol{r}\right)+\partial \boldsymbol{r} / \partial t \tag{1.7.11b}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{abs}}=\boldsymbol{v}_{\text {trans }}+\boldsymbol{v}_{\mathrm{rel}}, \tag{1.7.11c}
\end{equation*}
$$

where

$$
\begin{gather*}
\boldsymbol{v}_{\mathrm{abs}} \equiv \boldsymbol{v} \equiv d \mathfrak{R} / d t=(d X / d t) \boldsymbol{u}_{X}+(d Y / d t) \boldsymbol{u}_{Y}+(d Z / d t) \boldsymbol{u}_{Z}: \\
\text { Absolute velocity of } P, \tag{1.7.11d}\\
\boldsymbol{v}_{\mathrm{rel}} \equiv \partial \boldsymbol{r} / \partial t \equiv(d x / d t) \boldsymbol{u}_{x}+(d y / d t) \boldsymbol{u}_{y}+(d z / d t) \boldsymbol{u}_{z}: \tag{1.7.11e}
\end{gather*}
$$

Relative velocity of P,

$$
\begin{equation*}
\boldsymbol{v}_{\text {trans }} \equiv d \boldsymbol{r}_{O} / d t+\boldsymbol{\omega} \times \boldsymbol{r}=d \boldsymbol{r}_{O} / d t+\left[x\left(d \boldsymbol{u}_{x} / d t\right)+y\left(d \boldsymbol{u}_{y} / d t\right)+z\left(d \boldsymbol{u}_{z} / d t\right)\right]: \tag{1.7.11f}
\end{equation*}
$$

Transport velocity of P.

Figure 1.6 (a) Relative kinematics of particle P in two dimensions; (b) geometry of centripetal acceleration.

Clearly, if P is rigidly attached to $M_{\text {moving }}$ frame (e.g., if it is one of the particles of the rigid body M), then $\boldsymbol{v}_{\text {rel }}=\mathbf{0}$ and $\boldsymbol{v}=\boldsymbol{v}_{\text {trans }}$; that is, generally, $\boldsymbol{v}_{\text {trans }}$ is the velocity of a particle rigidly attached to M and instantaneously coinciding with P.

Accelerations
Application of (1.7.2a) to (1.7.11a-f) yields

$$
\begin{equation*}
\boldsymbol{a}_{\mathrm{abs}}=\boldsymbol{a}_{\mathrm{rel}}+\boldsymbol{a}_{\mathrm{trans}}+\boldsymbol{a}_{\mathrm{cor}}, \tag{1.7.12a}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{a}_{\mathrm{abs}} \equiv \boldsymbol{a} \equiv d^{2} \boldsymbol{R} / d t^{2}=\left(d^{2} X / d t^{2}\right) \boldsymbol{u}_{X}+\left(d^{2} Y / d t^{2}\right) \boldsymbol{u}_{Y}+\left(d^{2} Z / d t^{2}\right) \boldsymbol{u}_{Z} \text { : } \tag{1.7.12b}
\end{equation*}
$$

Absolute acceleration of P,

$$
\begin{equation*}
\boldsymbol{a}_{\mathrm{rel}} \equiv \partial \boldsymbol{v}_{\mathrm{rel}} / \partial t=\partial^{2} \boldsymbol{r} / \partial t^{2} \equiv\left(d^{2} x / d t^{2}\right) \boldsymbol{u}_{x}+\left(d^{2} y / d t^{2}\right) \boldsymbol{u}_{y}+\left(d^{2} z / d t^{2}\right) \boldsymbol{u}_{z}: \tag{1.7.12c}
\end{equation*}
$$

Relative acceleration of P,

$$
\begin{aligned}
\boldsymbol{a}_{\text {trans }} & \equiv d^{2} \boldsymbol{r}_{O} / d t^{2}+\boldsymbol{\alpha} \times \boldsymbol{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) \\
& =d^{2} \boldsymbol{r}_{O} / d t^{2}+\left[x\left(d^{2} \boldsymbol{u}_{x} / d t^{2}\right)+y\left(d^{2} \boldsymbol{u}_{y} / d t^{2}\right)+z\left(d^{2} \boldsymbol{u}_{z} / d t^{2}\right)\right]:
\end{aligned}
$$

Transport (or drag) acceleration of P
[= Inertial acceleration of a particle fixed relative to M, and momentarily coinciding with P; its first term,

$$
d^{2} \boldsymbol{r}_{O} / d t^{2}=d \boldsymbol{v}_{O} / d t=\partial \boldsymbol{v}_{O} / \partial t+\omega \times \boldsymbol{v}_{O}
$$

is due to the inertial acceleration of the origin of M; its second, $\boldsymbol{\alpha} \times \boldsymbol{r}$, to the inertial angular acceleration of M; and its last term,

$$
\omega \times(\boldsymbol{\omega} \times \boldsymbol{r}) \equiv(\boldsymbol{\omega} \cdot \boldsymbol{r}) \boldsymbol{\omega}-\omega^{2} \boldsymbol{r} \equiv-\omega^{2} \boldsymbol{r}_{p}
$$

where $\boldsymbol{r}_{p}=$ vector of perpendicular distance from ω - axis (through O) to P, (fig. 1.6(b)), is called centripetal acceleration of P],

$$
\begin{align*}
\boldsymbol{a}_{\mathrm{cor}} \equiv 2 \boldsymbol{\omega} \times \boldsymbol{v}_{\mathrm{rel}} \equiv 2 \boldsymbol{\omega} \times(\partial \boldsymbol{r} / \partial t)=2\left[(d x / d t)\left(d \boldsymbol{u}_{x} / d t\right)+\right. & (d y / d t)\left(d \boldsymbol{u}_{y} / d t\right) \tag{1.7.12d}\\
& \left.+(d z / d t)\left(d \boldsymbol{u}_{z} / d t\right)\right]:
\end{align*}
$$

Coriolis (or complementary) acceleration of P
[= Acceleration due to the coupling between the relative motion of the particle $P, \boldsymbol{v}_{\text {rel }}$, and the absolute rotation (transport motion) of the frame

$$
\begin{equation*}
\left.M, \boldsymbol{\omega} \text {; it vanishes if } \boldsymbol{v}_{\text {rel }}=\mathbf{0} \text {, or if } \boldsymbol{\omega} \text { is parallel to } \boldsymbol{v}_{\text {rel }}\right] . \tag{1.7.12e}
\end{equation*}
$$

If $\boldsymbol{\omega}=\mathbf{0}$ and $\boldsymbol{\alpha}=\mathbf{0}$ - that is, if M translates relative to F - these equations reduce to

$$
\begin{align*}
& \boldsymbol{v}=\boldsymbol{v}_{\mathrm{rel}}+\boldsymbol{v}_{O}=\partial \boldsymbol{r} / \partial t+d \boldsymbol{r}_{O} / d t=d \boldsymbol{r} / d t+d \boldsymbol{r}_{O} / d t \tag{1.7.12f}\\
& \boldsymbol{a}=\boldsymbol{a}_{\mathrm{rel}}+\boldsymbol{a}_{O}=\partial^{2} \boldsymbol{r} / \partial t^{2}+d^{2} \boldsymbol{r}_{O} / d t^{2}=d^{2} \boldsymbol{r} / d t^{2}+d^{2} \boldsymbol{r}_{O} / d t^{2} \tag{1.7.12g}
\end{align*}
$$

Component Forms

To appreciate eqs. (1.7.11) and (1.7.12) better, and prepare the reader for the key concept of nonholonomic coordinates, and so on ($\$ 2.9 \mathrm{ff}$.), we present them below in terms of their components. In the general case of nonaligned axes we can project them on an arbitrary, fixed, or moving axis; that is, each of their terms can be resolved along any set of axes.
(i) The position relation $\mathfrak{R}=\boldsymbol{r}_{O}+\boldsymbol{r}$, with $\boldsymbol{r}_{O}=\left(X_{O}, Y_{O}, Z_{O}\right)$, reads

$$
\begin{equation*}
X=X_{O}+\cos (X, x) x+\cos (X, y) y+\cos (X, z) z, \quad \text { etc., cyclically. } \tag{1.7.13a}
\end{equation*}
$$

(ii) The velocity equations (1.7.11a ff.) assume the following forms, along the fixed axes:

$$
\begin{align*}
d X / d t= & d X_{O} / d t
\end{align*}+\cos (X, x)\left(d x / d t+\omega_{y} z-\omega_{z} y\right) ~ 子 ~(1.7 .13 \mathrm{~b}
$$

and, along the moving axes:

$$
\begin{equation*}
\boldsymbol{v} \cdot \boldsymbol{u}_{x} \equiv v_{x}=v_{O, x}+d x / d t+\omega_{y} z-\omega_{z} y, \quad \text { etc., cyclically, } \tag{1.7.13c}
\end{equation*}
$$

where

$$
v_{O, x} \equiv \boldsymbol{v}_{O} \cdot \boldsymbol{u}_{x}=\cos (x, X)\left(d X_{O} / d t\right)+\cos (x, Y)\left(d Y_{O} / d t\right)+\cos (x, Z)\left(d Z_{O} / d t\right):
$$

component of inertial velocity of moving origin O, along the moving axis $O x$ [in general, not equal to the $d / d t(\ldots)$-derivative of a coordinate, like $d X_{O} / d t$ or $d x / d t$, and hence a quasi velocity ($\left.\left.\$ 2.9 \mathrm{ff}.\right)\right]$, etc., cyclically.
(iii) The acceleration equations (1.7.12a ff.) read, along the fixed axes:

$$
\begin{align*}
& d^{2} X / d t^{2}=d^{2} X_{O} / d t^{2}+\cos (X, x)\left[d / d t\left(d x / d t+\omega_{y} z-\omega_{z} y\right)\right. \\
&\left.+\omega_{y}\left(d z / d t+y \omega_{x}-x \omega_{y}\right)-\omega_{z}\left(d y / d t+x \omega_{z}-z \omega_{x}\right)\right]+\cdots \\
&=d^{2} X_{O} / d t^{2}+\cos (X, x)\left\{\left(d^{2} x / d t^{2}\right)+\left[z\left(d \omega_{y} / d t\right)-y\left(d \omega_{z} / d t\right)\right]\right. \\
&+\omega_{y}\left(\omega_{x} y-\omega_{y} x\right)-\omega_{z}\left(\omega_{z} x-\omega_{x} z\right) \\
&\left.+2\left[\omega_{y}(d z / d t)-\omega_{z}(d y / d t)\right]\right\}+\cdots \\
&=d^{2} X_{O} / d t^{2}+d^{2} / d t^{2}\left(X-X_{O}\right), \quad \text { etc., cyclically; } \tag{1.7.13e}\\
&=\left(d^{2} X / d t^{2}\right)_{\text {rel }}+\left(d^{2} X / d t^{2}\right)_{\text {trans }}+\left(d^{2} X / d t^{2}\right)_{\text {cor }}, \tag{1.7.13f}
\end{align*}
$$

where

$$
\begin{align*}
& \begin{aligned}
\left(d^{2} X / d t^{2}\right)_{\text {rel }}= & \cos (X, x)\left(d^{2} x / d t^{2}\right)+
\end{aligned} \cos (X, y)\left(d^{2} y / d t^{2}\right)+\cos (X, z)\left(d^{2} z / d t^{2}\right) \\
& \left(d^{2} X / d t^{2}\right)_{\text {trans }}=d^{2} X_{O} / d t^{2}+\cos (X, x)\left\{\left[z\left(d \omega_{y} / d t\right)-y\left(d \omega_{z} / d t\right)\right]\right. \\
& \\
& \left.\quad+\omega_{y}\left(\omega_{x} y-\omega_{y} x\right)-\omega_{z}\left(\omega_{z} x-\omega_{x} z\right)\right\}+\cdots, \tag{1.7.13g}\\
& \left(d^{2} X / d t^{2}\right)_{\text {cor }}=\cos (X, x)\left\{2\left[\omega_{y}(d z / d t)-\omega_{z}(d y / d t)\right]\right\}+\cdots, \quad \text { etc., cyclically; }
\end{align*}
$$

and, along the moving axes:

$$
\begin{align*}
\boldsymbol{a} \cdot \boldsymbol{u}_{x} \equiv a_{x}= & a_{O, x}+\left[d / d t\left(d x / d t+\omega_{y} z-\omega_{z} y\right)\right. \\
& \left.+\omega_{y}\left(d z / d t+y \omega_{x}-x \omega_{y}\right)-\omega_{z}\left(d y / d t+x \omega_{z}-z \omega_{x}\right)\right] \\
= & a_{x, \text { rel }}+a_{x, \text { trans }}+a_{x, \text { cor }}, \tag{1.7.13h}
\end{align*}
$$

where

$$
\begin{align*}
& a_{x, \text { rel }}=d^{2} x / d t^{2}, \\
& a_{x, \text { trans }}=a_{O, x}+\left[z\left(d \omega_{y} / d t\right)-y\left(d \omega_{z} / d t\right)\right]+\omega_{y}\left(\omega_{x} y-\omega_{y} x\right)-\omega_{z}\left(\omega_{z} x-\omega_{x} z\right), \\
& a_{x, \text { cor }}=2\left[\omega_{y}(d z / d t)-\omega_{z}(d y / d t)\right], \text { and } \tag{1.7.13i}\\
& a_{O, x} \equiv \boldsymbol{a}_{O} \cdot \boldsymbol{u}_{x}=\cos (x, X)\left(d^{2} X_{O} / d t^{2}\right)+\cos (x, Y)\left(d^{2} Y_{O} / d t^{2}\right)+\cos (x, Z)\left(d^{2} Z_{O} / d t^{2}\right), \\
& \quad \quad \text { (in general, a quasi acceleration }), \text { etc., cyclically. } \tag{1.7.13j}
\end{align*}
$$

EXAMPLES

1. It is not hard to show that the conditions for a particle, with coordinates x, y, z, relative to moving axes, to be stationary relative to absolute space are

$$
\begin{equation*}
u+d x / d t+z \omega_{y}-y \omega_{z}=0, \quad \text { etc., cyclically, } \tag{1.7.14}
\end{equation*}
$$

where $(u, v, w)=$ inertial components of velocity of origin of moving frame.
2. Plane Rotation Case. Let us find the components of velocity and acceleration of a particle P in motion on a plane described by the two sets of momentarily coincident rectangular Cartesian axes, a fixed $O-X Y$ and a second $O-x y$ rotating relative to the first so that always $O Z=O z$, with angular velocity $\omega=\left(0,0, \omega_{z}=\omega_{Z} \equiv \omega\right)$. Here, momentarily,

$$
\begin{equation*}
X=x, \quad Y=y . \tag{1.7.15a,b}
\end{equation*}
$$

Application of the moving axes theorem (1.7.2a), or (1.7.3c), (1.7.7e), with $\omega_{x, y}=0$ and $\omega_{z}=\omega$, yields the velocity components:

$$
\begin{equation*}
d X / d t=d x / d t-y \omega, \quad d Y / d t=d y / d t+x \omega ; \tag{1.7.15c,d}
\end{equation*}
$$

and application of that theorem, or (1.7.3c), (1.7.7f), to the above gives the acceleration components:

$$
\begin{align*}
d^{2} X / d t^{2} & =d / d t(d x / d t-y \omega)-(d y / d t+x \omega) \omega \\
& =d^{2} x / d t^{2}-y(d \omega / d t)-x \omega^{2}-2(d y / d t) \omega \\
& (=\text { relative }+ \text { transport }+ \text { Coriolis }) \tag{1.7.15e}\\
d^{2} Y / d t^{2} & =d / d t(d y / d t+x \omega)+(d x / d t-y \omega) \omega \\
& =d^{2} y / d t^{2}+x(d \omega / d t)-y \omega^{2}+2(d x / d t) \omega \\
(& =\text { relative }+ \text { transport }+ \text { Coriolis }) \tag{1.7.15f}
\end{align*}
$$

and similarly for higher $d / d t(\ldots)$-derivatives.
[Alternatively, we may start from the geometrical $O-X Y / O-x y$ relationship for a generic angle of orientation $\phi=\phi(t)$:

$$
\begin{equation*}
X=(\cos \phi) x+(-\sin \phi) y, \quad Y=(\sin \phi) x+(\cos \phi) y \tag{1.7.15~g}
\end{equation*}
$$

$d / d t(\ldots)$-differentiate it, and then set $\phi=0 \quad(d \phi / d t \equiv \omega \neq 0)$, thus obtaining (1.7.15c, d); then $d / d t(\ldots)$-differentiate once more, for general ϕ, and then set $\phi=0(\omega \neq 0, d \omega / d t \equiv \alpha \neq 0)$, thus obtaining (1.7.15e, f). The details of this straightforward calculation are left to the reader. In this way we do not have to remember any kinematical theorems-differential calculus does it for us!]
3. Velocity and Acceleration in Plane Polar Coordinates via the Moving Axes Theorem [continued from (1.7.10c-e)]. Here, with the usual notations,

$$
\begin{equation*}
\boldsymbol{r}=r \boldsymbol{u}_{r} \quad \text { and } \quad \omega=(d \phi / d t) \boldsymbol{u}_{z}=(d \phi / d t) \boldsymbol{u}_{Z} \tag{1.7.16a}
\end{equation*}
$$

and, therefore, by direct $d / d t(\ldots)$-differentiation and then use of (1.7.4i) - that is, treating the corresponding $O N D$ basis/axes through $P, P-\boldsymbol{u}_{r} \boldsymbol{u}_{\phi} / r, \phi$, as the moving frame - we obtain

$$
\begin{align*}
\boldsymbol{v} & =d \boldsymbol{r} / d t=(d r / d t) \boldsymbol{u}_{r}+r\left(d \boldsymbol{u}_{r} / d t\right)=(d r / d t) \boldsymbol{u}_{r}+r\left(\boldsymbol{\omega} \times \boldsymbol{u}_{r}\right) \tag{i}\\
& =(d r / d t) \boldsymbol{u}_{r}+r(d \phi / d t)\left(\boldsymbol{u}_{z} \times \boldsymbol{u}_{r}\right)=(d r / d t) \boldsymbol{u}_{r}+r(d \phi / d t) \boldsymbol{u}_{\phi} \equiv v_{r} \boldsymbol{u}_{r}+r v_{\phi} \boldsymbol{u}_{\phi} \tag{1.7.16b}
\end{align*}
$$

$$
\begin{align*}
\boldsymbol{a} & \left.=d \boldsymbol{v} / d t=\left(d v_{r} / d t\right) \boldsymbol{u}_{r}+v_{r}\left(d \boldsymbol{u}_{r} / d t\right)+\left[d\left(r v_{\phi}\right) / d t\right)\right] \boldsymbol{u}_{\phi}+\left(r v_{\phi}\right)\left(d \boldsymbol{u}_{\phi} / d t\right) \tag{ii}\\
& \left.=\left(d v_{r} / d t\right) \boldsymbol{u}_{r}+v_{r}\left(\boldsymbol{\omega} \times \boldsymbol{u}_{r}\right)+\left[d\left(r v_{\phi}\right) / d t\right)\right] \boldsymbol{u}_{\phi}+\left(r v_{\phi}\right)\left(\boldsymbol{\omega} \times \boldsymbol{u}_{\phi}\right) \\
& \left.=\left(d v_{r} / d t\right) \boldsymbol{u}_{r}+v_{r}\left[(d \phi / d t) \boldsymbol{u}_{\phi}\right]+\left[d\left(r v_{\phi}\right) / d t\right)\right] \boldsymbol{u}_{\phi}+\left(r v_{\phi}\right)\left[(-d \phi / d t) \boldsymbol{u}_{r}\right] \\
& =\left[d v_{r} / d t-(d \phi / d t)\left(r v_{\phi}\right)\right] \boldsymbol{u}_{r}+\left[v_{r}(d \phi / d t)+d\left(r v_{\phi}\right) / d t\right] \boldsymbol{u}_{\phi} \\
& =\left[d^{2} r / d t^{2}-r(d \phi / d t)^{2}\right] \boldsymbol{u}_{r}+\{(d r / d t)(d \phi / d t)+d / d t[r(d \phi / d t)]\} \boldsymbol{u}_{\phi} \\
& =\left[d^{2} r / d t^{2}-r(d \phi / d t)^{2}\right] \boldsymbol{u}_{r}+\left[2(d r / d t)(d \phi / d t)+r\left(d^{2} \phi / d t^{2}\right)\right] \boldsymbol{u}_{\phi} \\
& \equiv a_{(r)} \boldsymbol{u}_{r}+a_{(\phi)} \boldsymbol{u}_{\phi} . \tag{1.7.16c}
\end{align*}
$$

4. Velocity and Acceleration in Spherical Coordinates via the Moving Axes Theorem. Proceeding as in the preceding example, and since here $\boldsymbol{r}=r \boldsymbol{u}_{r}$ (not the r of the polar cylindrical case) and $\omega=(d \phi / d t) \boldsymbol{u}_{Z}+(d \theta / d t) \boldsymbol{u}_{\phi}$, $\boldsymbol{u}_{Z}=-\sin \theta \boldsymbol{u}_{\theta}+\cos \theta \boldsymbol{u}_{r}$, we can show that the velocity and acceleration are given, respectively, by

$$
\begin{align*}
& \boldsymbol{v}=(d r / d t) \boldsymbol{u}_{r} \tag{1.7.17a}\\
& \boldsymbol{a}=\left[[r(d \theta / d t)] \boldsymbol{u}_{\theta}+[r(d \phi / d t) \sin \theta] \boldsymbol{u}_{\phi} \equiv v_{r} \boldsymbol{u}_{r}+r v_{\theta} \boldsymbol{u}_{\theta}+v_{\phi} \boldsymbol{u}_{\phi},\right. \\
&\left.+r(d \theta / d t)^{2}-r(d \phi / d t)^{2} \sin ^{2} \theta\right] \boldsymbol{u}_{r} \\
&+\left[2(d r / d t)(d \theta / d t)+r\left(d^{2} \theta / d t^{2}\right)-r(d \phi / d t)^{2} \sin \theta \cos \theta\right] \boldsymbol{u}_{\theta} \\
&+\left[2(d r / d t)(d \phi / d t) \sin \theta+r\left(d^{2} \phi / d t^{2}\right) \sin \theta+2 r(d \phi / d t)(d \theta / d t) \cos \theta\right] \boldsymbol{u}_{\phi} \tag{1.7.17b}\\
& \equiv a_{(r)} \boldsymbol{u}_{r}+a_{(\theta)} \boldsymbol{u}_{\theta}+a_{(\phi)} \boldsymbol{u}_{\phi} .
\end{align*}
$$

The above are, naturally, in agreement with (1.2.8a ff.)
5. Inertial Angular Velocity of the Natural, or Intrinsic, OND Triad $O_{M}-\boldsymbol{u}_{t} \boldsymbol{u}_{n} \boldsymbol{u}_{b} \equiv$ $O_{M}-\boldsymbol{t n} \boldsymbol{b}$; Frenet-Serret Equations (fig. 1.7). We have already seen (§1.2) that

$$
\begin{equation*}
d \boldsymbol{t} / d s=\boldsymbol{n} / \rho \Rightarrow d \boldsymbol{t} / d t=(d \boldsymbol{t} / d s)(d s / d t)=[(d s / d t) / \rho] \boldsymbol{n} \equiv\left(v_{t} / \rho\right) \boldsymbol{n}, \tag{1.7.18a}
\end{equation*}
$$

also

$$
\begin{equation*}
b=t \times n \tag{1.7.18b}
\end{equation*}
$$

Next, $d / d t(\ldots)$-differentiating $\boldsymbol{b} \cdot \boldsymbol{t}=0$, we obtain

$$
\begin{equation*}
0=(d \boldsymbol{b} / d t) \cdot \boldsymbol{t}+\boldsymbol{b} \cdot(d \boldsymbol{t} / d t)=(d \boldsymbol{b} / d t) \cdot \boldsymbol{t}+\boldsymbol{b} \cdot\left[\left(v_{t} / \rho\right) \boldsymbol{n}\right]=(d \boldsymbol{b} / d t) \cdot \boldsymbol{t} \tag{1.7.18c}
\end{equation*}
$$

and, similarly, $d / d t(\ldots)$-differentiating $\boldsymbol{b} \cdot \boldsymbol{b}=1$ we readily conclude that

$$
\begin{equation*}
(d \boldsymbol{b} / d t) \cdot \boldsymbol{b}=0 . \tag{1.7.18d}
\end{equation*}
$$

Equations (1.7.18c, d) show that $d \boldsymbol{b} / d t$ must be perpendicular to both \boldsymbol{t} and \boldsymbol{b}. Hence, we can set

$$
\begin{equation*}
d \boldsymbol{b} / d s=-(1 / \tau) \boldsymbol{n} \Rightarrow d \boldsymbol{b} / d t=(d \boldsymbol{b} / d s)(d s / d t)=-\left(v_{t} / \tau\right) \boldsymbol{n} \tag{1.7.18e}
\end{equation*}
$$

where $\tau=$ radius of torsion (or second curvature) of the curve C, traced by the moving origin $O_{M} \equiv O$, at O; positive (negative) whenever the tip of $d \boldsymbol{b} / d t$ turns around \boldsymbol{t} positively (negatively); that is, like a right- (left-)hand screw; or, according as $d \boldsymbol{b} / d t$ has the opposite (same) direction as \boldsymbol{n}. [Some authors use τ for our l / τ; others use ρ_{κ} and ρ_{τ} for our ρ and τ, respectively.]

Now, the angular velocity of $O-\boldsymbol{t n b}$, relative to some background fixed triad $O_{F}-\boldsymbol{u}_{X} \boldsymbol{u}_{Y} \boldsymbol{u}_{Z}$, is found by application of the basic formulae (1.7.4j), with the identification $O_{M}-\boldsymbol{u}_{x} \boldsymbol{u}_{y} \boldsymbol{u}_{z}=O-\boldsymbol{t n} \boldsymbol{b}$, and eqs. (1.7.18a-e). Thus, we find

Tangent: $\omega_{t} \rightarrow \omega_{x}=\boldsymbol{u}_{z} \cdot\left(d \boldsymbol{u}_{y} / d t\right)=-\boldsymbol{u}_{y} \cdot\left(d \boldsymbol{u}_{z} / d t\right)=-\boldsymbol{n} \cdot(d \boldsymbol{b} / d t)=v_{t} / \tau ; \quad$ (1.7.18f)
Normal: $\quad \omega_{n} \rightarrow \omega_{y}=\boldsymbol{u}_{x} \cdot\left(d \boldsymbol{u}_{z} / d t\right)=-\boldsymbol{u}_{z} \cdot\left(d \boldsymbol{u}_{x} / d t\right)=-\boldsymbol{b} \cdot(d \boldsymbol{t} / d t)=0$;
Binormal: $\omega_{b} \rightarrow \omega_{z}=\boldsymbol{u}_{y} \cdot\left(d \boldsymbol{u}_{x} / d t\right)=-\boldsymbol{u}_{x} \cdot\left(d \boldsymbol{u}_{y} / d t\right)=\boldsymbol{n} \cdot(d \boldsymbol{t} / d t)=v_{t} / \rho$.

Figure 1.7 On the geometry and kinematics of the Frenet-Serret triad O-tnb.

In sum, the triad $O-\boldsymbol{t n} \boldsymbol{b}$ rotates with inertial angular velocity:

$$
\begin{equation*}
\boldsymbol{\omega}=\left(v_{t} / \tau\right) \boldsymbol{t}+(0) \boldsymbol{n}+\left(v_{t} / \rho\right) \boldsymbol{b}=v_{t}(\boldsymbol{t} / \tau+\boldsymbol{b} / \rho) . \tag{1.7.18i}
\end{equation*}
$$

In general, $\omega \neq d \boldsymbol{\theta} / d t$, where $\boldsymbol{\theta}$ is some vector expressing angular displacement/rotation; that is, $\boldsymbol{\theta}$ is a quasi vector ($\S 1.10$, chap. 2). Further, from (1.7.18a-e) we also conclude that

$$
\begin{align*}
d \boldsymbol{n} / d s & =d / d s(\boldsymbol{b} \times \boldsymbol{t})=(d \boldsymbol{b} / d s) \times \boldsymbol{t}+\boldsymbol{b} \times(d \boldsymbol{t} / d s) \\
& =-(1 / \tau)(\boldsymbol{n} \times \boldsymbol{t})+(1 / \rho)(\boldsymbol{b} \times \boldsymbol{n}) \\
& =-(1 / \tau)(-\boldsymbol{b})+(1 / \rho)(-\boldsymbol{t})=(-1 / \rho) \boldsymbol{t}+(1 / \tau) \boldsymbol{b} . \tag{1.7.18j}
\end{align*}
$$

Equations (1.7.18a, e, j) (where $0 \leqslant \rho \leqslant+\infty$ and $-\infty \leqslant \tau \leqslant+\infty, \tau \neq 0$) are the famous Frenet-Serret formulae for a space (or skew, or twisted) curve. It is shown in differential geometry that: the "naturalintrinsic" curve equations $\rho=\rho(s)$ and $\tau=\tau(s)$ determine the spatial position of that curve to within a rigid displacement (i.e., a translation and a rotation).

The F-S equations can also be written in the following memorable "antisymmetric form":

$$
\begin{align*}
d \boldsymbol{t} / d t & =(0) \boldsymbol{t}+\left(v_{t} / \rho\right) \boldsymbol{n}+(0) \boldsymbol{b}, \tag{1.7.18k}\\
d \boldsymbol{n} / d t & =\left(-v_{t} / \rho\right) \boldsymbol{t}+(0) \boldsymbol{n}+\left(v_{t} / \tau\right) \boldsymbol{b}, \tag{1.7.181}\\
d \boldsymbol{b} / d t & =(0) \boldsymbol{t}+\left(-v_{t} / \tau\right) \boldsymbol{n}+(0) \boldsymbol{b} . \tag{1.7.18m}
\end{align*}
$$

The above allow us to calculate the torsion, $1 / \tau$. From (1.7.18j, k, l), with $(\ldots)^{\prime} \equiv d(\ldots) / d s$, we get

$$
\begin{equation*}
\boldsymbol{b} / \tau=\boldsymbol{t} / \rho+\left(\rho \boldsymbol{t}^{\prime}\right)^{\prime}=\boldsymbol{t} / \rho+\rho^{\prime} \boldsymbol{t}^{\prime}+\rho \boldsymbol{t}^{\prime \prime}=\boldsymbol{t} / \rho+\rho^{\prime}(\boldsymbol{n} / \rho)+\rho \boldsymbol{r}^{\prime \prime \prime} \tag{1.7.18n}
\end{equation*}
$$

and so, dotting this equation with \boldsymbol{b}, we find

$$
\begin{equation*}
1 / \tau=\rho\left(\boldsymbol{b} \cdot \boldsymbol{r}^{\prime \prime \prime}\right)=\rho\left[(\boldsymbol{t} \times \boldsymbol{n}) \cdot \boldsymbol{r}^{\prime \prime \prime}\right]=\rho^{2}\left[\left(\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right) \cdot \boldsymbol{r}^{\prime \prime \prime}\right] \tag{1.7.18o}
\end{equation*}
$$

or, since [recalling (1.2.4c)]

$$
\begin{equation*}
1 / \rho^{2}=\boldsymbol{r}^{\prime \prime} \cdot \boldsymbol{r}^{\prime \prime}=\left|\boldsymbol{r}^{\prime \prime}\right|^{2} \tag{1.7.18p}
\end{equation*}
$$

finally,

$$
\begin{equation*}
\text { Torsion } \equiv 1 / \tau=\left[\left(\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right) \cdot \boldsymbol{r}^{\prime \prime \prime}\right] /\left|\boldsymbol{r}^{\prime \prime}\right|^{2} \tag{1.7.18q}
\end{equation*}
$$

With the help of the above, we can easily show that
(i) The Frenet-Serret equations can be put in the following kinematical form:

$$
\begin{equation*}
d \boldsymbol{t} / d t=\boldsymbol{\omega} \times \boldsymbol{t}, \quad d \boldsymbol{n} / d t=\boldsymbol{\omega} \times \boldsymbol{n}, \quad d \boldsymbol{b} / d t=\boldsymbol{\omega} \times \boldsymbol{b} \tag{1.7.19a}
\end{equation*}
$$

(ω : kinematical Darboux vector, (1.7.18i)).
(ii) If $\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b}$ can be expressed, in terms of their direction cosines along a fixed OND triad, as

$$
\begin{equation*}
\boldsymbol{t}=\left(t_{1}, t_{2}, t_{3}\right), \quad \boldsymbol{n}=\left(n_{1}, n_{2}, n_{3}\right), \quad \boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right), \tag{1.7.19b}
\end{equation*}
$$

then

$$
\begin{equation*}
d t_{1} / d s=n_{1} / \rho, \quad d n_{1} / d s=b_{1} / \tau-t_{1} / \rho, \quad d b_{1} / d s=-n_{1} / \tau ; \tag{1.7.19c}
\end{equation*}
$$

and similarly for the other components.
(iii) The (inertial) angular acceleration of the Frenet-Serret triad, $\boldsymbol{\alpha} \equiv d \boldsymbol{\omega} / d t$, is given by

$$
\begin{equation*}
\boldsymbol{\alpha}=\left[\left(d v_{t} / d t\right) / \tau-\left(v_{t}^{2} / \tau^{2}\right)(d \tau / d s)\right] \boldsymbol{t}+\left[\left(d v_{t} / d t\right) / \rho-\left(v_{t}^{2} / \rho^{2}\right)(d \rho / d s)\right] \boldsymbol{b} \tag{1.7.19d}
\end{equation*}
$$

(iv) The (inertial) $\boldsymbol{j} \boldsymbol{e r} \boldsymbol{k}$ vector of a particle, $\boldsymbol{j} \equiv d \boldsymbol{a} / d t$ (or hyperacceleration, or velocity of the acceleration) is expressed along the Frenet-Serret triad as

$$
\begin{align*}
\boldsymbol{j} & \left.\left.=\left[d^{2} v_{t} / d t^{2}-\left(v_{t}^{3} / \rho^{2}\right)\right] \boldsymbol{t}+\left\{v_{t}^{2}[d / d t(1 / \rho)]+3 v_{t}\left(d v_{t} / d t\right) / \rho\right)\right]\right\} \boldsymbol{n}+\left(v_{t}^{3} / \rho \tau\right) \boldsymbol{b} \\
& \left.=\left[d^{2} v_{t} / d t^{2}-\left(v_{t}^{3} / \rho^{2}\right)\right] \boldsymbol{t}+\left[d / d t\left(v_{t}^{3} / \rho\right) / v_{t}\right] \boldsymbol{n}+\left(v_{t}^{3} / \rho \tau\right)\right] \boldsymbol{b} \\
& \left.=\left[d^{2} v_{t} / d t^{2}-\left(v_{t}^{3} / \rho^{2}\right)\right] \boldsymbol{t}+\left[\left(3 v_{t}^{2} / \rho\right)\left(d v_{t} / d s\right)-\left(v_{t}^{3} / \rho^{2}\right)(d \rho / d s)\right] \boldsymbol{n}+\left(v_{t}^{3} / \rho \tau\right)\right] \boldsymbol{b} \tag{1.7.19e}
\end{align*}
$$

where

$$
d(\ldots) / d t=[d(\ldots) / d s](d s / d t)=v_{t}[d(\ldots) / d s] ;
$$

that is, contrary to the acceleration, $\boldsymbol{a}=\left(d v_{t} / d t\right) \boldsymbol{t}+\left(v_{t}^{2} / \rho\right) \boldsymbol{n}$, the jerk vector has $\boldsymbol{t}, \boldsymbol{n}$, and \boldsymbol{b} components, and involves both ρ and τ.
(v) The following kinematic formulae hold for the curvature and torsion:

$$
\begin{align*}
\kappa & =l / \rho=|\boldsymbol{v} \times \boldsymbol{a}| /|\boldsymbol{v}|^{3}=\left[v^{2} a^{2}-(\boldsymbol{v} \cdot \boldsymbol{a})^{2}\right]^{1 / 2} / v^{3}, \\
l / \tau & =[\boldsymbol{v} \cdot(\boldsymbol{a} \times \boldsymbol{j})] /(\boldsymbol{a} \times \boldsymbol{j})^{2}=(\boldsymbol{v}, \boldsymbol{a}, \boldsymbol{j}) / \kappa^{2} v^{6} . \tag{1.7.19f}
\end{align*}
$$

HISTORICAL

The theory of accelerations of any order (along general curvilinear coordinates) is due to the Russian mathematician/mechanician Somov (1860s), who also gave recurrence formulae, from the $(n-1)$ th order to the (n) th order; and to the French mathematician Bouquet (1879). The second order shown above is due to the French mechanician Resal (1862), although the earliest such investigations seem to be due to a certain Transon (1845) (see, e.g., Schönflies and Grübler, 1902: 19011908). The jerk vector is called "accéleration du second ordre" (Resal), or "Beschleunigung $\boldsymbol{a}^{(2)}$ " (Schönflies/Grübler), where the ordinary acceleration (of the first order) is denoted by $\boldsymbol{a}^{(1)} \equiv \boldsymbol{a}$. Clearly, such derivations are enormously aided with the use of vectors. These results allowed Möbius $(1846,1848)$ to give a geometrical interpretation to Taylor's expansion (with some standard notations):

$$
\begin{aligned}
\Delta \boldsymbol{r} & \equiv \boldsymbol{r}(t)-\boldsymbol{r}(0)=\boldsymbol{v} t+\boldsymbol{a}^{(1)}\left(t^{2} / 2\right)+\boldsymbol{a}^{(2)}\left(t^{3} / 1.2 .3\right)+\cdots \\
& =\text { chord of particle trajectory between the times } 0 \text { and } t .
\end{aligned}
$$

Particle Kinetics in Moving Frames

Substituting the inertial acceleration \boldsymbol{a} of a particle P of mass m, in terms of its moving axes representation, into its Newton-Euler equation of motion

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{f} \quad(=\text { total noninertial, or real, or objective, force on } P), \tag{1.7.20a}
\end{equation*}
$$

and, rearranging slightly, we obtain its fundamental equation of relative motion (fig. 1.8):

$$
\begin{equation*}
m a_{\mathrm{rel}}=\boldsymbol{f}+\boldsymbol{f}_{\mathrm{trans}}+\boldsymbol{f}_{\mathrm{cor}} \tag{1.7.20b}
\end{equation*}
$$

Figure 1.8 Geometry and forces in two-dimensional relative motion.
in words:
mass \times relative acceleration $\left(\boldsymbol{a}_{\mathrm{rel}}\right)=$ total real (\boldsymbol{f}) plusinertial $\left(\boldsymbol{f}_{\text {trans }}+\boldsymbol{f}_{\text {cor }}\right)$ force,
where
$\boldsymbol{a}_{\mathrm{rel}} \equiv \partial \boldsymbol{v}_{\mathrm{rel}} / \partial t \equiv \partial^{2} \boldsymbol{r} / \partial t^{2}$: apparent or Relative acceleration of P,
$\boldsymbol{f}_{\text {trans }} \equiv-m \boldsymbol{a}_{\text {trans }} \equiv-m\left[d^{2} \boldsymbol{r}_{O} / d t^{2}+\boldsymbol{\alpha} \times \boldsymbol{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})\right]$:
total iniertial force of Transport on P
$=-m\left(d^{2} \boldsymbol{r}_{O} / d t^{2}\right)$ [due to the inertial acceleration of the origin of the moving
$-m(\boldsymbol{\alpha} \times \boldsymbol{r})$ [due to the inertial angular acceleration of frame M]
$-m[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})]=-m\left[(\boldsymbol{\omega} \cdot \boldsymbol{r}) \boldsymbol{\omega}-\omega^{2} \boldsymbol{r}\right]=\cdots \equiv m \omega^{2} \boldsymbol{r}_{P}$
[centrifugal force on P, due to the inertial angular velocity of frame M; always perpendicular to the instantaneous axis of ω, in the plane of P and that axis, and directed away from it (fig. 1.6(b))],
$\boldsymbol{f}_{\text {cor }} \equiv-m \boldsymbol{a}_{\text {cor }} \equiv-2 m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\text {rel }}\right)=-2 m[\boldsymbol{\omega} \times(\partial \boldsymbol{r} / \partial t)]:$
inertial force of Coriolis (or composite centrifugal force) on P [due to the interaction of the relative motion of $P\left(\boldsymbol{v}_{\text {rel }}=\partial \boldsymbol{r} / \partial t\right)$ with the absolute rotation of the moving frame (ω); normal to both $\boldsymbol{v}_{\text {rel }}, \omega$, and such that $\boldsymbol{v}_{\text {rel }}, \boldsymbol{\omega}$, and $\boldsymbol{f}_{\text {cor }}=2 m\left(\boldsymbol{v}_{\text {rel }} \times \boldsymbol{\omega}\right)$, in that order, form a right-hand system].

REMARKS

(i) In classical mechanics, only f is a frame independent, or objective (or absolute) force; $\boldsymbol{f}_{\text {trans }}$ and $\boldsymbol{f}_{\text {cor }}$ are relative (i.e., frame dependent). At most, \boldsymbol{f} can depend explicitly on relative positions (displacements), relative velocities, and time; but not on relative accelerations (as an independent constitutive equation). [In relativity all forces are relative, and hence can be eliminated by proper frame choice. On the classical objectivity requirements for f, see, for example, Pars (1965, pp. 11-12), Rosenberg (1977, pp. 12-16).] In addition, in general, the relative forces are not additive; for example, the total force acting on a particle P due to two or more attracting masses, each exerting separately on it the absolute forces \boldsymbol{f}_{1} and \boldsymbol{f}_{2}, equals $\left(\boldsymbol{f}_{1}+\boldsymbol{f}_{2}\right)+\left(\boldsymbol{f}_{\text {trans }}+\boldsymbol{f}_{\text {cor }}\right) ; \operatorname{not}\left(\boldsymbol{f}_{1}+\boldsymbol{f}_{\text {trans }}+\boldsymbol{f}_{\text {cor }}\right)+\left(\boldsymbol{f}_{2}+\boldsymbol{f}_{\text {trans }}+\boldsymbol{f}_{\text {cor }}\right)$. As for the Coriolis "force" $\boldsymbol{f}_{\text {cor }}=-2 m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\text {rel }}\right)$, even for the same problem (i.e., same m and \boldsymbol{f}) that term obviously does depend on the particular noninertial frame used. This, however, does not mean that its effects on people, property, and so on, are any less physically/technically real than those of the real force f. [In fact, the study of such similarities between these forces led to the general theory of relativity (mid-1910s).]

For the comoving (noninertial) observer, both $\boldsymbol{f}_{\text {trans }}$ and $\boldsymbol{f}_{\text {cor }}$ are very real! Some of the most spectacular Coriolis effects occur in the atmospheric sciences (meteorology, etc.); that is, in phenomena involving the coupling between the motion of large liquid and/or gas masses and the Earth's rotation about its axis. A prime such example is Baer's law of river displacements: The inertia force on the northbound flowing water, along a meridian, presses against the right (left) bank in the northern (southern) hemisphere. The effects of this pressure are a stronger erosion of the right embankment; and a slightly but measurably higher water level at the right shore of the river. [In view of these realities, statements like the following cannot be taken seriously: "From the foregoing it is clear that the Coriolis-acceleration term arises from the description adopted, namely, via moving observers, and hence, contrary to popular belief it bears no physical significance" [Angeles, 1988, p. 74 (the italics are that author's)].]

Finally, since $\boldsymbol{f}_{\text {cor }}$ is perpendicular to $\boldsymbol{v}_{\text {rel }}$, its "relative power" $\boldsymbol{f}_{\text {cor }} \cdot \boldsymbol{v}_{\text {rel }}$ vanishes (more on such "gyroscopic forces" in §3.9).
(ii) In the case of a finite body, $\boldsymbol{v}_{\mathrm{rel}}\left(\boldsymbol{a}_{\mathrm{rel}}\right)$ in (1.7.20b) refers to the relative velocity (acceleration) of its center of mass G; and \boldsymbol{r} is the position of G relative to the origin of the moving frame.

Power Theorem in Relative Motion

This constitutes the vector/particle form of theorems treated in detail in §3.9. Let us consider a system S in motion relative to the noninertial axes $O-x y z$. To find its power equation in relative variables, we start with the equation of relative motion of a generic particle P of S, of mass $d m$ [recall (1.7.20b ff.)]

$$
\begin{equation*}
d m \boldsymbol{a}_{\mathrm{rel}}=d \boldsymbol{f}+d \boldsymbol{f}_{\mathrm{trans}}+d \boldsymbol{f}_{\mathrm{cor}}, \tag{1.7.21a}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{a}_{\mathrm{rel}} \equiv \partial \boldsymbol{v}_{\mathrm{rel}} / \partial t \equiv \partial^{2} \boldsymbol{r} / \partial t^{2}, \tag{1.7.21b}\\
& d \boldsymbol{f}=d \boldsymbol{F}+d \boldsymbol{R} \text { (impressed }+ \text { constraint reaction-see } \S 3.2) \tag{1.7.21c}\\
& d \boldsymbol{f}_{\text {trans }} \equiv-d m \boldsymbol{a}_{\mathrm{trans}} \equiv-d m\left[d^{2} \boldsymbol{r}_{O} / d t^{2}+\boldsymbol{\alpha} \times \boldsymbol{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})\right], \tag{1.7.21d}\\
& d \boldsymbol{f}_{\text {cor }} \equiv-d m \boldsymbol{a}_{\text {cor }} \equiv-2 d m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\mathrm{rel}}\right)=-2 d m[\boldsymbol{\omega} \times(\partial \boldsymbol{r} / \partial t)] \tag{1.7.21e}
\end{align*}
$$

Now, the system power equation corresponding to the particle equation (1.7.21a) is

$$
\begin{equation*}
S d m a_{\mathrm{rel}} \cdot v_{\mathrm{rel}}=S d f \cdot v_{\mathrm{rel}}+S d f_{\mathrm{rel}} \cdot v_{\mathrm{rel}}+S d f_{\mathrm{cor}} \cdot v_{\mathrm{rel}} . \tag{1.7.21f}
\end{equation*}
$$

Let us transform each of its terms:

$$
\begin{align*}
\boldsymbol{S} d m \boldsymbol{a}_{\mathrm{rel}} \cdot \boldsymbol{v}_{\mathrm{rel}} & =\boldsymbol{S} d m \boldsymbol{v}_{\mathrm{rel}} \cdot\left(\partial \boldsymbol{v}_{\mathrm{rel}} / \partial t\right) \tag{i}\\
& =\partial / \partial t\left(\boldsymbol{S}(1 / 2) d m \boldsymbol{v}_{\mathrm{rel}} \cdot \boldsymbol{v}_{\mathrm{rel}}\right) \equiv \partial T_{\mathrm{rel}} / \partial t \tag{1.7.21~g}
\end{align*}
$$

or, since

$$
\boldsymbol{v}_{\mathrm{rel}} \cdot\left(d \boldsymbol{v}_{\mathrm{rel}} / d t\right)=\boldsymbol{v}_{\mathrm{rel}} \cdot\left(\partial \boldsymbol{v}_{\mathrm{rel}} / \partial t+\boldsymbol{\omega} \times \boldsymbol{v}_{\mathrm{rel}}\right)=\boldsymbol{v}_{\mathrm{rel}} \cdot\left(\partial \boldsymbol{v}_{\mathrm{rel}} / \partial t\right)
$$

finally,

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a}_{\mathrm{rel}} \cdot \boldsymbol{v}_{\mathrm{rel}}=\partial T_{\mathrm{rel}} / \partial t=d T_{\mathrm{rel}} / d t \tag{1.7.21h}
\end{equation*}
$$

(ii) We define

$$
\begin{equation*}
\boldsymbol{S} d \boldsymbol{f} \cdot \boldsymbol{v}_{\mathrm{rel}}=\boldsymbol{S} d \boldsymbol{f} \cdot(\partial \boldsymbol{r} / \partial t) \equiv \partial^{\prime} W / \partial t \tag{1.7.21i}
\end{equation*}
$$

where, in general, no W exists (i.e., W is a quasi variable - more on this in §2.9). If

$$
\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{v}_{\mathrm{rel}}=0, \quad \text { then } \quad \partial^{\prime} W / \partial t=\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{v}_{\mathrm{rel}}
$$

(iii) Clearly,
$\begin{array}{ll}\quad \boldsymbol{S} d \boldsymbol{f}_{\text {cor }} \cdot \boldsymbol{v}_{\text {rel }}=\boldsymbol{S}\left[-2 d m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\text {rel }}\right)\right] \cdot \boldsymbol{v}_{\text {rel }}=0 . \\ \text { (iv) } \quad & \boldsymbol{S} d \boldsymbol{f}_{\text {rel }} \cdot \boldsymbol{v}_{\text {rel }}=-\boldsymbol{S} d m\left[\boldsymbol{a}_{O}+\boldsymbol{\alpha} \times \boldsymbol{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})\right] \cdot \boldsymbol{v}_{\text {rel }} .\end{array}$
(a) $-\boldsymbol{S} d m \boldsymbol{a}_{O} \cdot \boldsymbol{v}_{\text {rel }}=-\boldsymbol{a}_{O} \cdot\left(\boldsymbol{S} d m \boldsymbol{v}_{\text {rel }}\right)=-m \boldsymbol{v}_{G, \text { rel }} \cdot \boldsymbol{a}_{O} \quad\left(\boldsymbol{v}_{G, \text { rel }} \equiv \partial \boldsymbol{r}_{\mathrm{G}} / d t\right)$.
(b) $\quad-\boldsymbol{S} d m\left[\boldsymbol{v}_{\text {rel }} \cdot(\boldsymbol{\alpha} \times \boldsymbol{r})\right]=-\boldsymbol{\alpha} \cdot\left(\boldsymbol{S} d m\left(\boldsymbol{r} \times \boldsymbol{v}_{\text {rel }}\right)\right) \equiv-\boldsymbol{\alpha} \cdot \boldsymbol{H}_{O, \text { rel }}$.
(c) We have, successively,

$$
\begin{align*}
\boldsymbol{v}_{\mathrm{rel}} \cdot[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})] & =(\boldsymbol{\omega} \times \boldsymbol{r}) \cdot\left(\boldsymbol{v}_{\mathrm{rel}} \times \boldsymbol{\omega}\right)=-(\boldsymbol{\omega} \times \boldsymbol{r}) \cdot[\boldsymbol{\omega} \times(\partial \boldsymbol{r} / \partial t)] \\
& =-\partial / \partial t\left[(\boldsymbol{\omega} \times \boldsymbol{r})^{2} / 2\right]=-\partial / \partial t\left[|\boldsymbol{\omega} \times \boldsymbol{r}|^{2} / 2\right]=-d / d t\left[|\boldsymbol{\omega} \times \boldsymbol{r}|^{2} / 2\right] \tag{1.7.21n}
\end{align*}
$$

(i.e., as if during $\partial / \partial t$ the vector $\boldsymbol{\omega}$ remains constant) and, therefore,

$$
\begin{align*}
-\boldsymbol{S} d m \boldsymbol{v}_{\mathrm{rel}} \cdot[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})] & =\partial / \partial t\left(\boldsymbol{S} d m\left[|\boldsymbol{\omega} \times \boldsymbol{r}|^{2} / 2\right]\right) \\
& =d / d t\left(\boldsymbol{S} d m\left[|\boldsymbol{\omega} \times \boldsymbol{r}|^{2} / 2\right]\right) \tag{1.7.21o}
\end{align*}
$$

In view of (1.7.21g-o), eq. (1.7.21f) takes the following definitive form:
$d T_{\text {rel }} / d t=\partial^{\prime} W / \partial t-\left(m \boldsymbol{v}_{G, \text { rel }}\right) \cdot \boldsymbol{a}_{O}-\boldsymbol{H}_{O, \text { rel }} \cdot \boldsymbol{\alpha}+d / d t\left(\boldsymbol{S} d m\left[|\boldsymbol{\omega} \times \boldsymbol{r}|^{2} / 2\right]\right)$.

Specializations
If $O-x y z$ spins about a fixed axis through $O, O l$, then $\boldsymbol{a}_{O}=\mathbf{0}$ and eq. (1.7.21p) reduces to

$$
\begin{equation*}
d T_{\text {rel }} / d t=\partial^{\prime} W / d t-\boldsymbol{H}_{O, \text { rel }} \cdot \alpha+d / d t\left(I \omega^{2} / 2\right) \tag{1.7.21q}
\end{equation*}
$$

where

$$
\begin{equation*}
I \equiv S d m \boldsymbol{r}^{2}=\text { moment of inertia of } S \text { about } O l \tag{1.7.21r}
\end{equation*}
$$

If, further, $\omega=$ constant , then (1.7.21q) simplifies to

$$
\begin{equation*}
d T_{\mathrm{rel}} / d t=\partial^{\prime} W / \partial t+(d I / d t) \omega^{2} / 2 \tag{1.7.21s}
\end{equation*}
$$

Finally, if $\partial^{\prime} W / \partial t=-d V_{O}(\boldsymbol{r}) / t$, where $V_{O}=V_{O}(\boldsymbol{r})=$ potential of impressed forces, then (1.7.21s) yields the conservation theorem:

$$
\begin{equation*}
d / d t\left[T_{\mathrm{rel}}+\left(V_{O}-I \omega^{2} / 2\right)\right]=0 \Rightarrow T_{\mathrm{rel}}+\left(V_{O}-I \omega^{2} / 2\right)=\text { constant } . \tag{1.7.21t}
\end{equation*}
$$

The above is a special case of the Jacobi-Painlevé integral (§3.9). As with the equations of motion, the "Newton-Euler" power equation (1.7.21p) may be physically clearer than its Lagrangean counterparts, but the latter have the same form in both inertial and noninertial frames, and hence are easier to remember and apply. For further details and insights, see Hamel (1912, pp. 440-443).

The Angular Velocity Tensor

Moving Axes Components

Let us consider two $O N D$ frames/axes with common origin $O_{F} \equiv O_{M} \equiv O$ (no loss in generality here), in arbitrary relative motion (rotation): one fixed $O-\boldsymbol{u}_{X} \boldsymbol{u}_{Y} \boldsymbol{u}_{Z} /-X Y Z$ and another moving $O-\boldsymbol{u}_{x} \boldsymbol{u}_{y} \boldsymbol{u}_{z} /-x y z$; or, compactly (in view of the heavy indicial notation that follows), $O-\boldsymbol{u}_{k^{\prime}} /-x_{k^{\prime}}$ and $O-\boldsymbol{u}_{k} /-x_{k}$, respectively.

Now, $d / d t(\ldots)$-differentiating their transformation relations,

$$
\begin{equation*}
\boldsymbol{u}_{k}=\sum A_{k k^{\prime}} \boldsymbol{u}_{k^{\prime}}, \quad A_{k k^{\prime}} \equiv \boldsymbol{u}_{k} \cdot \boldsymbol{u}_{k^{\prime}}=\cos \left(x_{k}, x_{k^{\prime}}\right)=\cos \left(x_{k^{\prime}}, x_{k}\right) \equiv A_{k^{\prime} k} \tag{1.7.22a}
\end{equation*}
$$

and then employing their inverses, we find (since $d \boldsymbol{u}_{k^{\prime}} / d t=\mathbf{0}$):

$$
\begin{equation*}
d \boldsymbol{u}_{k} / d t=\sum\left(d A_{k k^{\prime}} / d t\right) \boldsymbol{u}_{k^{\prime}}=\sum\left(d A_{k k^{\prime}} / d t\right)\left(\sum A_{k^{\prime} l} \boldsymbol{u}_{l}\right) \equiv \sum \Omega_{l k} \boldsymbol{u}_{l} \tag{1.7.22b}
\end{equation*}
$$

where

$$
\begin{aligned}
\Omega_{l k} & \equiv \sum A_{k^{\prime} l}\left(d A_{k k^{\prime}} / d t\right)=\sum A_{l k^{\prime}}\left(d A_{k k^{\prime}} / d t\right)=\sum\left(d A_{k k^{\prime}} / d t\right) A_{l k^{\prime}}=\cdots \\
& =\sum\left\{\cos \left(x_{l}, x_{k^{\prime}}\right) d / d t\left[\cos \left(x_{k}, x_{k^{\prime}}\right)\right]\right\} \\
& =\boldsymbol{u}_{l} \cdot\left(d \boldsymbol{u}_{k} / d t\right)=\left(d \boldsymbol{u}_{k} / d t\right) \cdot \boldsymbol{u}_{l} \quad\left[=(l) t h \text { component of } d \boldsymbol{u}_{k} / d t\right]:
\end{aligned}
$$

Tensor of angular velocity of moving axes relative to the fixed axes; but resolved along the moving axes.
[As already pointed out ($\S 1.1$), this commutativity of subscripts in A.. constitutes one of the big advantages of the accented indices over other notations, such as $A_{k l}, A_{k l}^{\prime}$.] Below we show that this tensor is antisymmetric: $\Omega_{l k}=-\Omega_{k l}$. Indeed, $d / d t(\ldots)$ differentiating the orthonormality conditions (constraints!),

$$
\begin{equation*}
\boldsymbol{u}_{k} \cdot \boldsymbol{u}_{l}=\left(\sum A_{k k^{\prime}} \boldsymbol{u}_{k^{\prime}}\right) \cdot\left(\sum A_{l l^{\prime}} \boldsymbol{u}_{l^{\prime}}\right)=\cdots=\sum A_{k k^{\prime}} A_{l k^{\prime}}=\delta_{k l}, \tag{1.7.22d}
\end{equation*}
$$

and then invoking the definition (1.7.22c) we obtain

$$
\begin{align*}
0 & =\sum\left(d A_{k k^{\prime}} / d t\right) A_{l k^{\prime}}+\sum A_{k k^{\prime}}\left(d A_{l k^{\prime}} / d t\right) \quad\left[=\boldsymbol{u}_{l} \cdot\left(d \boldsymbol{u}_{k} / d t\right)+\boldsymbol{u}_{k} \cdot\left(d \boldsymbol{u}_{l} / d t\right)\right] \\
& =\Omega_{l k}+\Omega_{k l} \Rightarrow \Omega_{l k}=-\Omega_{k l}, \quad \text { Q.E.D.; } \tag{1.7.22e}
\end{align*}
$$

that is, due to the six constraints (1.7.22d), only three of the nine components of $\Omega_{k l}$ are independent. Hence, we can replace this tensor by its axial vector (1.1.16a ff.)

$$
\begin{equation*}
\omega_{k}=-\sum \sum(1 / 2) \varepsilon_{k r s} \Omega_{r s}=-\sum \sum \sum(1 / 2) \varepsilon_{k r s}\left[A_{r p^{\prime}}\left(d A_{s p^{\prime}} / d t\right)\right] \tag{1.7.22f}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
\Omega_{r s}=-\sum \varepsilon_{k r s} \omega_{k}=-\sum \varepsilon_{r s k} \omega_{k} . \tag{1.7.22~g}
\end{equation*}
$$

In extenso, and recalling the properties of $\varepsilon_{k r s}$ (\$1.1), eqs. (1.7.22f) yield

$$
\begin{align*}
& \omega_{1} \equiv \omega_{x}=-(1 / 2)\left(\varepsilon_{123} \Omega_{23}+\varepsilon_{132} \Omega_{32}\right)=-\Omega_{23}=\Omega_{32} \\
&=-\sum A_{2 k^{\prime}}\left(d A_{3 k^{\prime}} / d t\right) \quad\left[=-\boldsymbol{u}_{2} \cdot\left(d \boldsymbol{u}_{3} / d t\right) \equiv-\boldsymbol{u}_{y} \cdot\left(d \boldsymbol{u}_{z} / d t\right)\right] \\
&=\sum A_{3 k^{\prime}}\left(d A_{2 k^{\prime}} / d t\right) \quad\left[=\boldsymbol{u}_{3} \cdot\left(d \boldsymbol{u}_{2} / d t\right) \equiv \boldsymbol{u}_{z} \cdot\left(d \boldsymbol{u}_{y} / d t\right)\right] \\
&\left\{\begin{array}{l}
\text { with } 1,2,3 \rightarrow x, y, z ; 1^{\prime}, 2^{\prime}, 3^{\prime} \rightarrow X, Y, Z: \\
\\
\\
= \\
\\
\\
=-\left[A_{X y}\left(d A_{X z} / d t\right)+A_{Y y}\left(d A_{X y} / d t\right)+A_{Y z}\left(d A_{Y y} / d t\right)+A_{Z z}\left(d A_{Z y} / d t\right)\right\} ; \\
\omega_{2} \equiv \omega_{y}
\end{array}=-(1 / 2)\left(\varepsilon_{231} \Omega_{31}+\varepsilon_{213} \Omega_{13}\right)=-\Omega_{31}=\Omega_{13}\right. \\
&=-\sum A_{3 k^{\prime}}\left(d A_{1 k^{\prime}} / d t\right) \quad\left[=-\boldsymbol{u}_{3} \cdot\left(d \boldsymbol{u}_{1} / d t\right) \equiv-\boldsymbol{u}_{z} \cdot\left(d \boldsymbol{u}_{x} / d t\right)\right] \\
&=\sum A_{1 k^{\prime}}\left(d A_{3 k^{\prime}} / d t\right) \quad \quad\left[=\boldsymbol{u}_{1} \cdot\left(d \boldsymbol{u}_{3} / d t\right) \equiv \boldsymbol{u}_{x} \cdot\left(d \boldsymbol{u}_{z} / d t\right)\right] \tag{1.7.23a}\\
&\{ =-\left[A_{X z}\left(d A_{X x} / d t\right)+A_{Y z}\left(d Y_{Y x} / d t\right)+A_{Z z}\left(d A_{Z x} / d t\right)\right] \\
&\left.=A_{X x}\left(d A_{X z} / d t\right)+A_{Y x}\left(d A_{Y z} / d t\right)+A_{Z x}\left(d A_{Z z} / d t\right)\right\} ; \\
& \omega_{3} \equiv \omega_{z}=-(1 / 2)\left(\varepsilon_{312} \Omega_{12}+\varepsilon_{321} \Omega_{21}\right)=-\Omega_{12}=\Omega_{21} \\
&=-\sum A_{1 k^{\prime}}\left(d A_{2 k^{\prime}} / d t\right) \quad\left[=-\boldsymbol{u}_{1} \cdot\left(d \boldsymbol{u}_{2} / d t\right) \equiv-\boldsymbol{u}_{x} \cdot\left(d \boldsymbol{u}_{y} / d t\right)\right] \\
&=\sum A_{2 k^{\prime}}\left(d A_{1 k^{\prime}} / d t\right) \quad\left[=\boldsymbol{u}_{2} \cdot\left(d \boldsymbol{u}_{1} / d t\right) \equiv \boldsymbol{u}_{y} \cdot\left(d \boldsymbol{u}_{x} / d t\right)\right] \tag{1.7.23b}\\
&\{ =-\left[A_{X x}\left(d A_{X y} / d t\right)+A_{Y x}\left(d A_{Y y} / d t\right)+A_{Z x}\left(d A_{Z y} / d t\right)\right] \\
&\left.=A_{X y}\left(d A_{X x} / d t\right)+A_{Y y}\left(d A_{Y x} / d t\right)+A_{Z y}\left(d A_{Z x} / d t\right)\right\} ;
\end{align*}
$$

which are in complete agreement with (1.7.4j), and justify the name angular velocity tensor for (1.7.22c). In terms of matrices, the above assume the following memorable form:

$$
\begin{align*}
\left(\Omega_{k l}\right) & =\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) \\
& =\left(\begin{array}{c|c|c}
0 & \sum A_{1 k^{\prime}}\left(d A_{2 k^{\prime}} / d t\right) & \sum A_{1 k^{\prime}}\left(d A_{3 k^{\prime}} / d t\right) \\
\hline \sum A_{2 k^{\prime}}\left(d A_{1 k^{\prime}} / d t\right) & 0 & \sum A_{2 k^{\prime}}\left(d A_{3 k^{\prime}} / d t\right) \\
\hline \sum A_{3 k^{\prime}}\left(d A_{1 k^{\prime}} / d t\right) & \sum A_{3 k^{\prime}}\left(d A_{2 k^{\prime}} / d t\right) & 0
\end{array}\right) \tag{1.7.23d}
\end{align*}
$$

REMARKS

(i) The formulae (1.7.22f ff.) can be combined into the following useful form:

$$
\begin{equation*}
\omega_{k}=\left(d \boldsymbol{u}_{r} / d t\right) \cdot \boldsymbol{u}_{s} \tag{1.7.24}
\end{equation*}
$$

where

$$
k, r, s=\text { cyclic (even) permutation of } 1,2,3(\equiv x, y, z) .
$$

(ii) The final expressions (1.7.23d) would have resulted if we had employed the following common angular velocity tensor definitions:

$$
\begin{equation*}
\Omega_{k l} \equiv\left(d \boldsymbol{u}_{k} / d t\right) \cdot \boldsymbol{u}_{l}=-\left(d \boldsymbol{u}_{l} / d t\right) \cdot \boldsymbol{u}_{k}=\sum\left(d A_{k k^{\prime}} / d t\right) A_{l k^{\prime}}=-\sum\left(d A_{l k^{\prime}} / d t\right) A_{k k^{\prime}} \tag{1.7.25a}
\end{equation*}
$$

but in connection with the also common axial vector definition:

$$
\begin{equation*}
\omega_{k}=\sum \sum(1 / 2) \varepsilon_{k r s} \Omega_{r s} \tag{1.7.25b}
\end{equation*}
$$

Then, we would have

$$
\begin{align*}
\omega_{1} & =(1 / 2)\left(\varepsilon_{123} \Omega_{23}+\varepsilon_{132} \Omega_{32}\right)=\Omega_{23}=-\Omega_{32} \\
& =\sum\left(d A_{2 k^{\prime}} / d t\right) A_{3 k^{\prime}}=-\sum\left(d A_{3 k^{\prime}} / d t\right) A_{2 k^{\prime}}, \text { etc. } \tag{1.7.25c}
\end{align*}
$$

Fixed Axes Components

Let us express the above inertial angular velocity tensor in terms of their components along the fixed axes $O-\boldsymbol{u}_{X} \boldsymbol{u}_{Y} \boldsymbol{u}_{Z} /-X Y Z \equiv O-\boldsymbol{u}_{k^{\prime}} /-x_{k^{\prime}}$. Dotting the representations of the position vector of a typical particle P,

$$
\begin{equation*}
\boldsymbol{r}=\sum x_{k} \boldsymbol{u}_{k}=\sum x_{k^{\prime}} \boldsymbol{u}_{k^{\prime}}, \tag{1.7.26a}
\end{equation*}
$$

with \boldsymbol{u}_{l} and $\boldsymbol{u}_{l^{\prime}}$, respectively, and taking into account the orthonormality constraints of their basis vectors:

$$
\begin{align*}
& \boldsymbol{u}_{k} \cdot \boldsymbol{u}_{l}=\left(\sum A_{k k^{\prime}} \boldsymbol{u}_{k^{\prime}}\right) \cdot\left(\sum A_{l l^{\prime}} \boldsymbol{u}_{l^{\prime}}\right)=\sum A_{k k^{\prime}} A_{l k^{\prime}}=\delta_{k l}, \tag{1.7.26b}\\
& \boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{l^{\prime}}=\left(\sum A_{k^{\prime} k} \boldsymbol{u}_{k}\right) \cdot\left(\sum A_{l^{\prime} l} \boldsymbol{u}_{l}\right)=\sum A_{k^{\prime} k} A_{l^{\prime} k}=\delta_{k^{\prime} l^{\prime}}, \tag{1.7.26c}
\end{align*}
$$

we easily obtain the component transformation equation

$$
\begin{equation*}
x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k} \Leftrightarrow x_{k}=\sum A_{k k^{\prime}} x_{k^{\prime}} \tag{1.7.26d}
\end{equation*}
$$

If the two sets of axes do not have a common origin, but [recalling fig. 1.6(a)]

$$
\begin{equation*}
\mathfrak{R}=\boldsymbol{r}_{O}+\boldsymbol{r} \tag{1.7.26e}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathfrak{R}=\sum x_{k^{\prime}} \boldsymbol{u}_{k^{\prime}}, \tag{1.7.26f}\\
& \boldsymbol{r}_{O} \equiv \boldsymbol{r}_{\text {moving origin/fixed origin }}=\sum b_{k} \boldsymbol{u}_{k}=\sum b_{k^{\prime} \boldsymbol{u}_{k^{\prime}}} \\
& \Rightarrow \quad b_{k^{\prime}}=\sum A_{k^{\prime} k} b_{k} \Leftrightarrow b_{k}=\sum A_{k k^{\prime}} b_{k^{\prime}}, \tag{1.7.26~g}\\
& \boldsymbol{r}=\sum x_{k} \boldsymbol{u}_{k}, \tag{1.7.26h}
\end{align*}
$$

then (1.7.26d) are replaced by

$$
\begin{align*}
& x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k}+b_{k^{\prime}} \equiv \sum A_{k^{\prime} k}\left(x_{k}+b_{k}\right) \\
& \Leftrightarrow x_{k}=\sum A_{k k^{\prime}}\left(x_{k^{\prime}}-b_{k^{\prime}}\right)=\sum A_{k k^{\prime}} x_{k^{\prime}}-b_{k} \tag{1.7.26i}
\end{align*}
$$

Now, let us consider P to be rigidly attached to the moving axes. Then $d / d t(\ldots)$ differentiating the $x_{k^{\prime}}$, while recalling that in this case $x_{k}=$ constant $\Rightarrow d x_{k} / d t=0$, we obtain, successively,

$$
d x_{k^{\prime}} / d t=\sum\left(d A_{k^{\prime} k} / d t\right) x_{k}=\sum\left(d A_{k^{\prime} k} / d t\right)\left(\sum A_{k l^{\prime}} x_{l^{\prime}}\right) \equiv \sum \Omega_{k^{\prime} l^{\prime}} x_{l^{\prime}}
$$

[which is none other than the familiar $\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{r}$, resolved along the fixed axes]
where

$$
\begin{aligned}
\Omega_{k^{\prime} l^{\prime}} & \equiv \sum\left(d A_{k^{\prime} k} / d t\right) A_{k l^{\prime}} \equiv \sum\left(d A_{k^{\prime} k} / d t\right) A_{l^{\prime} k} \\
& =\sum\left\{\cos \left(x_{l^{\prime}}, x_{k}\right) d / d t\left[\cos \left(x_{k^{\prime}}, x_{k}\right)\right]\right\}:
\end{aligned}
$$

Tensor of angular velocity of moving axes relative to the fixed axes; but resolved along the fixed axes [Note order of accented indices, and compare with order of unaccented indices in expression (1.7.22c, 25a).](1.7.26k)

The components $\Omega_{k^{\prime} l^{\prime}}$, just like the $\Omega_{k l}$, are antisymmetric. Indeed, $d / d t(\ldots)$-differentiating (1.7.26c), we obtain

$$
\begin{gather*}
0=\sum\left(d A_{k^{\prime} k} / d t\right) A_{l^{\prime} k}+\sum A_{k^{\prime} k}\left(d A_{l^{\prime} k} / d t\right)=\Omega_{l^{\prime} k^{\prime}}+\Omega_{k^{\prime} l^{\prime}} \\
\Rightarrow \Omega_{l^{\prime} k^{\prime}}=-\Omega_{k^{\prime} l^{\prime}}, \quad \text { Q.E.D. } \tag{1.7.261}\\
\omega_{k^{\prime}}=-\sum \sum(1 / 2) \varepsilon_{k^{\prime} r^{\prime} s^{\prime}} \Omega_{r^{\prime} s^{\prime}}=-\sum \sum \sum(1 / 2) \varepsilon_{k^{\prime} r^{\prime} s^{\prime}}\left[A_{r^{\prime} r}\left(d A_{s^{\prime} r} / d t\right)\right] \tag{1.7.26m}
\end{gather*}
$$

and, inversely,

$$
\begin{equation*}
\Omega_{r^{\prime} s^{\prime}}=-\sum \varepsilon_{k^{\prime} r^{\prime} s^{\prime}} \omega_{k^{\prime}}=-\sum \varepsilon_{r^{\prime} s^{\prime} k^{\prime}} \omega_{k^{\prime}} ; \tag{1.7.26n}
\end{equation*}
$$

or, in extenso,

$$
\begin{align*}
\omega_{1^{\prime}} \equiv \omega_{x^{\prime}} \equiv \omega_{X} & =-(1 / 2)\left(\varepsilon_{1^{\prime} 2^{\prime} 3^{\prime}} \Omega_{2^{\prime} 3^{\prime}}+\varepsilon_{1^{\prime} 3^{\prime} 2^{\prime}} \Omega_{3^{\prime} 2^{\prime}}\right)=-\Omega_{2^{\prime} 3^{\prime}}=\Omega_{3^{\prime} 2^{\prime}} \\
& \left\{\text { with } 1,2,3 \rightarrow x, y, z ; 1^{\prime}, 2^{\prime}, 3^{\prime} \rightarrow X, Y, Z:\right. \\
& =-\left[A_{Z x}\left(d A_{Y x} / d t\right)+A_{Z y}\left(d A_{Y_{y}} / d t\right)+A_{Z z}\left(d A_{Y z} / d t\right)\right] \\
& \left.=A_{Y x}\left(d A_{Z x} / d t\right)+A_{Y y}\left(d A_{Z y} / d t\right)+A_{Y z}\left(d A_{Z z} / d t\right)\right\} ; \tag{1.7.27a}\\
\omega_{2^{\prime}} \equiv \omega_{y^{\prime}} \equiv \omega_{Y} & =-(1 / 2)\left(\varepsilon_{2^{\prime} 3^{\prime} 1^{\prime}} \Omega_{3^{\prime} 1^{\prime}}+\varepsilon_{2^{\prime} 1^{\prime} 3^{\prime}} \Omega_{1^{\prime} 3^{\prime}}\right)=-\Omega_{3^{\prime} 1^{\prime}}=\Omega_{1^{\prime} 3^{\prime}} \\
& =-\sum A_{1^{\prime} k}\left(d A_{3^{\prime} k} / d t\right)=\sum A_{3^{\prime} k}\left(d A_{1^{\prime} k} / d t\right) \\
\{ & =-\left[A_{X x}\left(d A_{Z x} / d t\right)+A_{X y}\left(d A_{Z y} / d t\right)+A_{X z}\left(d A_{Z z} / d t\right)\right] \\
& \left.=A_{Z x}\left(d A_{X x} / d t\right)+A_{Z y}\left(d A_{X y} / d t\right)+A_{Z z}\left(d A_{X z} / d t\right)\right\} ; \tag{1.7.27b}\\
\omega_{3^{\prime}} \equiv \omega_{z^{\prime}} \equiv \omega_{Z} & =-(1 / 2)\left(\varepsilon_{3^{\prime} 1^{\prime} 2^{\prime}} \Omega_{1^{\prime} 2^{\prime}}+\varepsilon_{3^{\prime} 2^{\prime} 1^{\prime}} \Omega_{2^{\prime} 1^{\prime}}\right)=-\Omega_{1^{\prime} 2^{\prime}}=\Omega_{2^{\prime} 1^{\prime}} \\
& =-\sum A_{2^{\prime} k}\left(d A_{1^{\prime} k} / d t\right)=\sum A_{1^{\prime} k}\left(d A_{2^{\prime} k} / d t\right) \\
\{ & =-\left[A_{Y x}\left(d A_{X x} / d t\right)+A_{Y y}\left(d A_{X y} / d t\right)+A_{Y z}\left(d A_{X z} / d t\right)\right] \\
& \left.=A_{X x}\left(d A_{Y x} / d t\right)+A_{X y}\left(d A_{Y y} / d t\right)+A_{X z}\left(d A_{Y z} / d t\right)\right\} ; \tag{1.7.27c}
\end{align*}
$$

or, finally, in the following memorable matrix form:

$$
\begin{align*}
\left(\Omega_{k^{\prime} l^{\prime}}\right) & =\left(\begin{array}{ccc}
0 & -\omega_{3^{\prime}} & \omega_{2^{\prime}} \\
\omega_{3^{\prime}} & 0 & -\omega_{1^{\prime}} \\
-\omega_{2^{\prime}} & \omega_{1^{\prime}} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc|c}
0 & \sum\left(d A_{1^{\prime} k} / d t\right) A_{2^{\prime} k} & \sum\left(d A_{1^{\prime} k} / d t\right) A_{3^{\prime} k} \\
\hline \sum\left(d A_{2^{\prime} k} / d t\right) A_{1^{\prime} k} & 0 & \sum\left(d A_{2^{\prime} k} / d t\right) A_{3^{\prime} k}
\end{array}\right) \tag{1.7.27d}
\end{align*}
$$

or

$$
\begin{equation*}
\Omega_{k^{\prime} l^{\prime}}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} \Omega_{k l} \Leftrightarrow \Omega_{k l}=\sum \sum A_{k k^{\prime}} A_{l l^{\prime}} \Omega_{k^{\prime} l^{\prime}} \tag{1.7.27e}
\end{equation*}
$$

A Special Case

If the axes x_{k} and $x_{k^{\prime}}$ coincide momentarily-that is, if instantaneously $A_{k^{\prime} k}=\delta_{k^{\prime} k}$ (Kronecker delta), then eqs. (1.7.23) and (1.7.27) yield

$$
\begin{array}{ll}
\omega_{x}=d A_{Z y} / d t=-d A_{Y_{z}} / d t, & \omega_{y}=d A_{X z} / d t=-d A_{Z x} / d t \\
& \omega_{z}=d A_{Y x} / d t=-d A_{X y} / d t \\
\omega_{X}=d A_{Z y} / d t=-d A_{Y z} / d t, & \omega_{Y}=d A_{X z} / d t=-d A_{Z x} / d t, \\
& \omega_{Z}=d A_{Y x} / d t=-d A_{X y} / d t . \tag{1.7.28b}
\end{array}
$$

Rates of Change of Direction Cosines

Let us calculate $d A_{k^{\prime} k} / d t$ in term of $\Omega_{k l}, \Omega_{k^{\prime} l^{\prime}}$.
(i) Fixed axes representation: Multiplying both sides of (1.7.22c) with $A_{l^{\prime} l}$ and summing over l, we obtain

$$
\begin{equation*}
\sum \Omega_{l k} A_{l^{\prime} l}=\sum\left(d A_{k^{\prime} k} / d t\right)\left(\sum A_{k^{\prime} l} A_{l^{\prime} l}\right)=\sum\left(d A_{k^{\prime} k} / d t\right)\left(\delta_{k^{\prime} l^{\prime}}\right)=d A_{l^{\prime} k} / d t \tag{1.7.29a}
\end{equation*}
$$

(ii) Moving axes representation: Multiplying both sides of (1.7.26k) with $A_{l^{\prime} s}$ and summing over l^{\prime}, we obtain

$$
\begin{array}{r}
\sum \Omega_{k^{\prime} l^{\prime}} A_{l^{\prime} s}=\sum\left(d A_{k^{\prime} k} / d t\right)\left(\sum A_{k l^{\prime}} A_{l^{\prime} s}\right)=\sum\left(d A_{k^{\prime} k} / d t\right)\left(\delta_{k s}\right)=d A_{k^{\prime} s} / d t ; \tag{1.7.29b}\\
d A_{k^{\prime} k} / d t=\sum A_{k^{\prime} l} \Omega_{l k}=\sum \Omega_{k^{\prime} l^{\prime}} A_{l^{\prime} k} ; \\
d A_{k^{\prime} k} / d t=A_{k^{\prime} 1} \Omega_{1 k}+A_{k^{\prime} 2} \Omega_{2 k}+A_{k^{\prime} 3} \Omega_{3 k} \\
\Rightarrow d A_{k^{\prime} 1} / d t=A_{k^{\prime} 2} \omega_{3}-A_{k^{\prime} 3} \omega_{2} ; \quad \text { i.e., } d A_{k^{\prime} x} / d t=A_{k^{\prime} y} \omega_{z}-A_{k^{\prime} z} \omega_{y}, \\
d A_{k^{\prime} 2} / d t=A_{k^{\prime} 3} \omega_{1}-A_{k^{\prime} 1} \omega_{3} ; \quad \text { i.e., } d A_{k^{\prime} y} / d t=A_{k^{\prime} z} \omega_{x}-A_{k^{\prime} x} \omega_{z}, \\
d A_{k^{\prime} 3} / d t=A_{k^{\prime} 1} \omega_{2}-A_{k^{\prime} 2} \omega_{1} ; \quad \text { i.e., } d A_{k^{\prime} z} / d t=A_{k^{\prime} x} \omega_{y}-A_{k^{\prime} y} \omega_{x} \\
\left(k^{\prime}=X, Y, Z\right) ;
\end{array}
$$

$$
\begin{array}{rr}
d A_{k^{\prime} k} / d t= & A_{1^{\prime} k} \Omega_{k^{\prime} 1^{\prime}}+A_{2^{\prime} k} \Omega_{k^{\prime} 2^{\prime}}+A_{3^{\prime} k} \Omega_{k^{\prime} 3^{\prime}} \\
\Rightarrow d A_{1^{\prime} k} / d t=A_{3^{\prime} k} \omega_{2^{\prime}}-A_{2^{\prime} k} \omega_{3^{\prime}} ; & \text { i.e., } d A_{X k} / d t=A_{Z k} \omega_{Y}-A_{Y k} \omega_{Z}, \\
d A_{2^{\prime} k} / d t=A_{1^{\prime} k} \omega_{3^{\prime}}-A_{3^{\prime} k} \omega_{1^{\prime}} ; & \text { i.e., } d A_{Y k} / d t=A_{X k} \omega_{Z}-A_{Z k} \omega_{X}, \\
d A_{3^{\prime} k} / d t=A_{2^{\prime} k} \omega_{1^{\prime}}-A_{1^{\prime} k} \omega_{2^{\prime}} ; & \text { i.e., } d A_{Z k} / d t=A_{Y k} \omega_{X}-A_{X k} \omega_{Y} \\
(k=x, y, z) . \tag{1.7.29e}
\end{array}
$$

Additional Useful Results

(i) By $d / d t(\ldots)$-differentiating the fixed basis vectors:

$$
\begin{equation*}
\mathbf{0}=d \boldsymbol{u}_{k^{\prime}} / d t=\sum\left[\left(d A_{k^{\prime} k} / d t\right) \boldsymbol{u}_{k}+A_{k^{\prime} k}\left(d \boldsymbol{u}_{k} / d t\right)\right]=\cdots, \tag{1.7.30a}
\end{equation*}
$$

it can be shown that

$$
\begin{equation*}
d \boldsymbol{u}_{k} / d t=\sum \Omega_{k^{\prime} k} \boldsymbol{u}_{k^{\prime}} \tag{1.7.30b}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{k^{\prime} k} \equiv \sum A_{l^{\prime} k} \Omega_{k^{\prime} l^{\prime}}=\sum\left(\partial x_{l^{\prime}} / \partial x_{k}\right) \Omega_{k^{\prime} l^{\prime}}=\cdots=d A_{k^{\prime} k} / d t \quad \text { (mixed "tensor") } \tag{1.7.30c}
\end{equation*}
$$

Similarly, we can define the following mixed angular velocity "tensor":

$$
\begin{aligned}
\Omega_{k k^{\prime}} & \equiv \sum \Omega_{k l} A_{l k^{\prime}}=\sum\left(\partial x_{l} / \partial x_{k^{\prime}}\right) \Omega_{k l}=\sum A_{l k^{\prime}}\left(\sum \sum A_{k p^{\prime}} A_{l q^{\prime}} \Omega_{p^{\prime} q^{\prime}}\right) \\
& \left.=\cdots=\sum A_{k l^{\prime}} \Omega_{l^{\prime} k^{\prime}} \cdot\right]
\end{aligned}
$$

(ii) By $d / d t(\ldots)$-differentiating $x_{k^{\prime}}^{\prime}=x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k}$, and noticing that $v_{k}^{\prime}=\sum A_{k k^{\prime}} v_{k^{\prime}}^{\prime}$, it can be shown that the inertial velocity of a particle permanently fixed in the moving frame (i.e., $d x_{k} / d t \equiv v_{k}=0 \Rightarrow v_{k^{\prime}}=0$) equals:

$$
\begin{array}{ll}
v_{k}^{\prime}=\sum \Omega_{k l} x_{l} & (\text { along the moving axes) } \\
d x_{k^{\prime}} / d t \equiv v_{k^{\prime}}^{\prime}=\sum \Omega_{k^{\prime} l^{\prime}} x_{l^{\prime}} & (\text { along the fixed axes) } \tag{1.7.30e}
\end{array}
$$

(iii) Let us define the following matrices:
$\boldsymbol{\Omega}=\left(\Omega_{k l}\right)$: matrix of angular velocity tensor, along the moving axes,
$\boldsymbol{\Omega}^{\prime}=\left(\Omega_{k^{\prime} l^{\prime}}\right)$: matrix of angular velocity tensor, along the fixed axes,
$\mathbf{A}=\left(A_{k^{\prime} k}\right)$: matrix of direction cosines between moving and fixed axes.
It can be shown that the earlier relations among them (i.e., among their elements) can be put in the following matrix forms [recalling that $\mathbf{A}^{-1}=\mathbf{A}^{\mathrm{T}}$ and $(\ldots)^{\mathrm{T}} \equiv$ Transpose of $\left.(\ldots)\right]$:

$$
\begin{align*}
& \boldsymbol{\Omega}=\mathbf{A}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{A} / \mathrm{dt})=-(\mathrm{d} \mathbf{A} / \mathrm{dt})^{\mathrm{T}} \cdot \mathbf{A} \Leftrightarrow \mathrm{~d} \mathbf{A} / \mathrm{dt}=\mathbf{A} \cdot \boldsymbol{\Omega}, \tag{1.7.30i}\\
& \boldsymbol{\Omega}^{\prime}=(\mathrm{d} \mathbf{A} / \mathrm{dt}) \cdot \mathbf{A}^{\mathrm{T}}=-\mathbf{A} \cdot(\mathrm{d} \mathbf{A} / \mathrm{dt})^{\mathrm{T}} \Leftrightarrow \mathrm{~d} \mathbf{A} / \mathrm{dt}=\boldsymbol{\Omega}^{\prime} \cdot \mathbf{A}, \tag{1.7.30j}\\
& \boldsymbol{\Omega}^{\prime}=\mathbf{A} \cdot \boldsymbol{\Omega} \cdot \mathbf{A}^{\mathrm{T}} \Leftrightarrow \boldsymbol{\Omega}=\mathbf{A}^{\mathrm{T}} \cdot \boldsymbol{\Omega}^{\prime} \cdot \mathbf{A} . \tag{1.7.30k}
\end{align*}
$$

[(a) Equation (1.7.30j) expresses the following important general theorem: for an arbitrary (differentiable) orthogonal matrix (or tensor) $\mathbf{A}=\mathbf{A}(\mathrm{t})$,

$$
\begin{equation*}
\mathrm{d} \mathbf{A} / \mathrm{dt}=(\text { matrix of second-order antisymmetric tensor }) \cdot \mathbf{A} ; \tag{1.7.301}
\end{equation*}
$$

and similarly for equation (1.7.30i).
(b) Recall remarks on p. 84, below (1.1.19f), e.g. $A_{1^{\prime} 2}=A_{21^{\prime}} \neq A_{2^{\prime} 1}=A_{12^{\prime}}$.]

Angular Velocity Vector in General Orthogonal Curvilinear Coordinates

[This section may be omitted in a first reading. For background, see (1.2.7a ff.).]
In such coordinates, say $q \equiv\left(q_{1}, q_{2}, q_{3}\right) \equiv\left(q_{1,2,3}\right)$, the inertial position vector of a particle \boldsymbol{r} becomes

$$
\begin{equation*}
\boldsymbol{r}=X(q) \boldsymbol{u}_{X}+Y(q) \boldsymbol{u}_{Y}+Z(q) \boldsymbol{u}_{Z} \equiv \sum x_{k^{\prime}}(q) \boldsymbol{u}_{k^{\prime}} \tag{1.7.31a}
\end{equation*}
$$

and so the corresponding moving $O N D$ basis along $q_{1,2,3}$ (i.e., the earlier x_{k}) is

$$
\begin{equation*}
\boldsymbol{u}_{k}=\left(\partial \boldsymbol{r} / \partial q_{k}\right) /\left|\partial \boldsymbol{r} / \partial q_{k}\right| \equiv\left(1 / h_{k}\right)\left(\partial \boldsymbol{r} / \partial q_{k}\right) \quad(k=x, y, z) \tag{1.7.31b}
\end{equation*}
$$

with

$$
\begin{equation*}
\boldsymbol{u}_{k} \cdot \boldsymbol{u}_{l}=\delta_{k l} \quad(k, l=x, y, z) \tag{1.7.31c}
\end{equation*}
$$

Next, $d / d t(\ldots)$-differentiating (1.7.31b), we obtain, successively,

$$
\begin{align*}
d / d t\left(\partial \boldsymbol{r} / \partial q_{r}\right) & =d / d t\left(h_{r} \boldsymbol{u}_{r}\right)=\left(d h_{r} / d t\right) \boldsymbol{u}_{r}+h_{r}\left(d \boldsymbol{u}_{r} / d t\right) \\
& =\left(d h_{r} / d t\right) \boldsymbol{u}_{r}+h_{r}\left(\boldsymbol{\omega} \times \boldsymbol{u}_{r}\right) \quad[\text { by }(1.7 .4 \mathrm{i})], \tag{1.7.31d}
\end{align*}
$$

and dotting this with $\partial \boldsymbol{r} / \partial q_{s}=h_{s} \boldsymbol{u}_{s}\left(\equiv \boldsymbol{e}_{s}\right.$, where $\left.r \neq s\right)$, in order to isolate ω_{k}, we get

$$
\begin{aligned}
{\left[d / d t\left(\partial \boldsymbol{r} / \partial q_{r}\right)\right] \cdot\left(\partial \boldsymbol{r} / \partial q_{s}\right) } & =\left(d h_{r} / d t\right) h_{s}\left(\boldsymbol{u}_{r} \cdot \boldsymbol{u}_{s}\right)+h_{r} h_{s}\left[\left(\boldsymbol{\omega} \times \boldsymbol{u}_{r}\right) \cdot \boldsymbol{u}_{s}\right] \\
& =0+h_{r} h_{s}\left[\left(\boldsymbol{\omega} \cdot\left(\boldsymbol{u}_{r} \times \boldsymbol{u}_{s}\right)\right]=h_{r} h_{s}\left(\boldsymbol{\omega} \cdot \boldsymbol{u}_{k}\right) \equiv h_{r} h_{s} \omega_{k}\right.
\end{aligned}
$$

[definition of ω_{k} 's; where $k, r, s=$ even (cyclic) permutation of $1,2,3 \equiv x, y, z$], that is, finally,

$$
\begin{align*}
\omega_{k} & =\left(1 / h_{r} h_{s}\right)\left[d / d t\left(\partial \boldsymbol{r} / \partial q_{r}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{s}\right)\right] \\
\{ & \left.=\left(d \boldsymbol{u}_{r} / d t\right) \cdot \boldsymbol{u}_{s}=d / d t\left[\left(1 / h_{r}\right)\left(\partial \boldsymbol{r} / \partial q_{r}\right)\right] \cdot\left[\left(1 / h_{s}\right)\left(\partial \boldsymbol{r} / \partial q_{s}\right)\right]\right\} . \tag{1.7.31e}
\end{align*}
$$

Additional forms for these components exist in the literature; for example, with the help of the differential-geometric identities:

$$
\begin{array}{ll}
\partial \boldsymbol{u}_{r} / \partial q_{s}=\left(1 / h_{r}\right)\left(\partial h_{s} / \partial q_{r}\right) \boldsymbol{u}_{s} & (r \neq s), \\
\partial \boldsymbol{u}_{r} / \partial q_{r}=-\left(1 / h_{s}\right)\left(\partial h_{r} / \partial q_{s}\right) \boldsymbol{u}_{s}-\left(1 / h_{k}\right)\left(\partial h_{r} / \partial q_{k}\right) \boldsymbol{u}_{k} & (r \neq s \neq k \neq r), \tag{1.7.31~g}
\end{array}
$$

and applying the second line of (1.7.31e), we can easily show that

$$
\begin{align*}
& \omega_{1}=\left(1 / h_{2}\right)\left(\partial h_{3} / \partial q_{2}\right)\left(d q_{3} / d t\right)-\left(1 / h_{3}\right)\left(\partial h_{2} / \partial q_{3}\right)\left(d q_{2} / d t\right), \tag{1.7.31h}\\
& \omega_{2}=\left(1 / h_{3}\right)\left(\partial h_{1} / \partial q_{3}\right)\left(d q_{1} / d t\right)-\left(1 / h_{1}\right)\left(\partial h_{3} / \partial q_{1}\right)\left(d q_{3} / d t\right), \tag{1.7.31i}\\
& \omega_{3}=\left(1 / h_{1}\right)\left(\partial h_{2} / \partial q_{1}\right)\left(d q_{2} / d t\right)-\left(1 / h_{2}\right)\left(\partial h_{1} / \partial q_{2}\right)\left(d q_{1} / d t\right) . \tag{1.7.31j}
\end{align*}
$$

[See Richardson (1992), also Ames and Murnaghan (1929, pp. 26-34, 94-98), for an alternative derivation based on the direction cosines between the moving and fixed axes:

$$
\begin{align*}
A_{k^{\prime} k} & =A_{k k^{\prime}} \equiv \boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{k}=\left(\partial \boldsymbol{r} / \partial x_{k^{\prime}}\right) \cdot\left[\left(1 / h_{k}\right)\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right] \\
& =\left(1 / h_{k}\right)\left\{\left(\partial \boldsymbol{r} / \partial x_{k^{\prime}}\right) \cdot\left(\sum\left(\partial \boldsymbol{r} / \partial x_{l^{\prime}}\right)\left(\partial x_{l^{\prime}} / \partial q_{k}\right)\right)\right\} \\
& =\left(1 / h_{k}\right)\left(\sum\left(\boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{l^{\prime}}\right)\left(\partial x_{l^{\prime}} / \partial q_{k}\right)\right) \quad\left(\text { since } \boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{l^{\prime}}=\delta_{k^{\prime} l^{\prime}}\right) \\
& =\left(1 / h_{k}\right)\left(\partial x_{k^{\prime}} / \partial q_{k}\right), \tag{1.7.31k}
\end{align*}
$$

and their $d / d t(\ldots)$-derivatives.]

1.8 THE RIGID BODY: INTRODUCTION

The following material relies heavily on the preceding theory of moving axes (§1.7). The reason for this is that every set of such axes can be thought of as a moving rigid body; and, conversely, every rigid body in motion carries along with it one or more sets of axes rigidly attached to it, or embedded in it. To describe the translatory and

Figure 1.9 Axes used to describe rigid-body motion.
O-XYZ/IJK: fixed axes/basis; -xyz/ijk: moving (body-fixed) axes/basis;
$\bullet-X Y Z / I J K$: moving, translating but nonrotating axes/basis.
angular motion of a rigid body B, we consider (at least) two sets of rectangular Cartesian axes and associated bases:
(i) a fixed: that is, inertial, $O-X Y Z / I J K$ or compactly $O-x_{k^{\prime}} / \boldsymbol{u}_{k^{\prime}}$; and
(ii) a moving: that is, noninertial, and body-fixed set $-x y z / i j k$ or compactly $-x_{k} / \boldsymbol{u}_{k}$, at the arbitrary body point (fig. 1.9).

In the language of constraints (chap. 2), a free rigid body in space is a mechanical system with six degrees of global freedom; that is, six independent possibilities of finite spatial mobility: (i) three for the location of its body point \downarrow, say its $O-X Y Z$ coordinates

$$
\begin{equation*}
X \bullet=f_{1}(t), \quad Y \bullet=f_{2}(t), \quad Z \bullet=f_{3}(t) \text {; } \tag{1.8.1a}
\end{equation*}
$$

and (ii) three for its orientation - that is, of $-x y z$ relative to either $O-X Y Z$ or $X Y Z$; where the latter are a translating frame at ever parallel to $O-X Y Z-$ that is, one that is nonrotating but translating and hence is, generally, noninertial. Such "rotational freedoms" can be described via the nine direction cosines of $-x y z$ relative to $-X Y Z$ (of which, as explained in $\S 1.7$, only three are independent); or via their three attitude angles: for example, their Eulerian or Cardanian angles

$$
\begin{equation*}
\phi=f_{4}(t), \quad \theta=f_{5}(t), \quad \psi=f_{6}(t) \tag{1.8.1b}
\end{equation*}
$$

or via a directed line segment called rotation "vector" [or via four parameter formalisms (plus one constraint among them); for example, Hamiltonian quaternions, Euler-Rodrigues parameters, or complex numbers; detailed in kinematics treatises, also our Elementary Mechanics, ch. 16 (under production)]. With the help of the six positional system parameters, or system coordinates, $f_{1, \ldots, 6}(t)$, the location/motion of any other body point P can be determined:

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(P, t)=\boldsymbol{r}\left(P ; f_{1}, \ldots, f_{6}\right)=\boldsymbol{r}_{\star}\left(f_{1}, f_{2}, f_{3}\right)+\boldsymbol{r}_{\bullet}\left(P ; f_{4}, f_{5}, f_{6}\right), \tag{1.8.2a}
\end{equation*}
$$

or, in components,

$$
\begin{equation*}
X=X_{\bullet}+\cos (X, x) x_{/}+\cos (X, y) y_{/}+\cos (X, z) z_{/}, \quad \text { etc., cyclically, } \tag{1.8.2b}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{r}_{/ \bullet}=\left(x_{/ \bullet}, y_{/ \bullet}, z_{/ \bullet}\right): \tag{1.8.2c}
\end{equation*}
$$

constant rectangular Cartesian coordinates of P relative to $\uparrow-x y z$,
or, in compact (self-explanatory) indicial notation,

$$
\begin{equation*}
x_{k^{\prime}}=x_{*, k^{\prime}}+\sum A_{k^{\prime} k} x_{k} . \tag{1.8.2d}
\end{equation*}
$$

In addition to $-x y z$ and $-X Y Z$, we occasionally use other intermediate axes (or accessory axes, in Routh's terminology) that, like $-X Y Z$, are neither space- nor body-fixed, but have their own special translatory and/or rotatory motion.

1.9 THE RIGID BODY: GEOMETRY OF MOTION AND KINEMATICS (SUMMARY OF BASIC THEOREMS)

Sections §1.9-1.13 cover material that is due to Euler, Mozzi, Cauchy, Chasles, Poinsot, Rodrigues, Cayley et al. (late 18th to mid-19th century). For detailed discussions, proofs, insights, and so on, see for example (alphabetically): Alt (1927), Altmann (1986), Beyer (1929, 1963), Bottema and Roth (1979), Coe (1938), Garnier (1951, 1956, 1960), Hunt (1978), McCarthy (1990), Schönflies and Grübler (1902), Timerding (1902, 1908).

The position, or configuration, of a rigid body B is known when the positions of any three noncollinear of its points are known; hence, six independent parameters are needed to specify it [e.g., $3 \times 3=9$ rectangular Cartesian coordinates of these points, minus the three independent constraints of distance invariance (i.e., rigidity) among them; or six coordinates for two of its points defining an axis of rotation, minus one invariance constraint between them, plus the angle of rotation of a body-fixed plane with a space-fixed plane, both through that axis]. If the body is further constrained, this number is less than six. It follows that the most general change of position, or displacement, of B is determined by the displacements of any three noncollinear of its points; that is, given their initial and final positions and the initial (final) position of a fourth, fifth, and so on, we can find their final (initial) positions with no additional data.

Special Rigid-Body Displacements

(i) Plane, or planar, displacement: One in which the paths of all body points are plane curves on planes parallel to each other and to a fixed plane f [fig. 1.10(a)]: the body fiber $P^{\prime} P P^{\prime \prime}$ remains perpendicular to f, and the distance $P \bullet$ remains constant, so that we need to study only the motion of a typical body section, or rigid lamina, b imagined superimposed on f and sliding on it.

THEOREM

Every displacement of a rigid lamina in its plane is equivalent to a rotation about some plane point I [fig. 1.10(b)].

Figure 1.10 (a) Plane displacement of a rigid body. (b) The plane displacement of a rigid lamina on its plane is equivalent to a rotation about I; if $I \rightarrow \infty$, that displacement degenerates to a translation.
(ii) Translational displacement: One in which all body points have vectorially equal velocities. Translations can be either rectilinear or curvilinear, and can be represented by a free vector (three components).
(iii) Rotational displacement: One in which at least two points remain fixed. These points define the axis of rotation; and either they are actual body points, or belong to its appropriate fictitious rigid extensions. Rotations are, by far, the more complex and interesting part of rigid-body displacements/motions.

The rotation is specified by its axis (i.e., its line of action) and by its angle of rotation; and since a line is specified by, say, its two points of intersection with two coordinate planes - that is, four coordinates - and an angle is specified by one coordinate, the complete characterization of rotation requires $4+1=5$ positional parameters.

THEOREM

Every translation can be decomposed into rotations.

COROLLARY

All rigid displacements can be reduced to rotations. The above special displacements (plane, translations, rotations) are all examples of constrained motions; that is, they result from special geometrical [or finite, or holonomic (chap. 2)] restrictions on the global mobility of the body; as contrasted with local restrictions of its mobility [by nonholonomic constraints (chap. 2)].

EULER'S THEOREM (1775-1776)

Any displacement of a rigid body, one point of which is fixed but is otherwise free to move, can be achieved by a single rotation, of 180° or less, about some axis through that point; that is, any displacement of such a system is equivalent to a rotation. Or: any rigid displacement of a spherical surface into itself leaves two (diametrically opposed) points of that surface fixed; and hence, in such a displacement, an infinite number of points, lying on the axis of rotation defined by the preceding two points,
remain fixed. (Under certain conditions this theorem extends to deformable bodies: one body-fixed line remains invariant.)

To understand this fundamental theorem, let us consider a body-fixed unit sphere S_{B} with center the fixed point \star, representing the body, and let us follow its motion as it slides over another unit sphere S_{S} concentric to S_{B} but space-fixed and representing fixed space. (This is the spatial equivalent of the earlier plane motion problem where a representative rigid lamina slides over another fixed lamina.) Now, since this is a three degree-of-freedom system, its position can be specified by the coordinates of two of its points on S_{B}, P, and $Q[f i g .1 .11(\mathrm{a})]: 2 \times 2=4$ coordinates [of which, since the distance between P and Q ($=$ length of arc of great circle joining P and Q) remains invariable, only three can be varied independently]. Hence, to study two positions of the body-that is, a displacement of it-it suffices to study two positions of an arbitrary pair of surface points of it: an initial $P Q$ and a final $P^{\prime} Q^{\prime}$ [fig. 1.11(b)]. Then we join P and P^{\prime}, and Q and Q^{\prime} by great arcs and draw the two symmetry planes of the arcs $P P^{\prime}$ and $Q Q^{\prime}$; that is, the two great circle planes that halve these two arcs. Their intersection, C (which, contrary to the plane
(a)

$C \rightarrow C, P \rightarrow P^{\prime}, Q \rightarrow Q^{\prime}$
$\stackrel{\Delta}{C P} Q, \stackrel{\Delta}{C P^{\prime}} Q^{\prime}:$ Congruent Triangles
$\left[C P=C P^{\prime}, C Q=C Q^{\prime}, P Q=P^{\prime} Q^{\prime}\right]$

Figure 1.11 (a, b) The motion of a rigid body about a fixed point \leqslant can be found by studying the motion of a pair of its points on the unit sphere with center : from $P Q$ to $P^{\prime} Q^{\prime}$; (c) special case of (b) where the planes of symmetry of the arcs $P P^{\prime}$ and $Q Q^{\prime}$ coincide.
motion case, always lies a finite distance away), defines the axis of rotation; and their angle, χ, defines the angle of rotation (around $\bullet C$) that brings the spherical triangle $C P Q$ into coincidence with its congruent triangle $C P^{\prime} Q^{\prime}$; and hence $\operatorname{arc}\left(P P^{\prime}\right)$ into coincidence with $\operatorname{arc}\left(Q Q^{\prime}\right)$; and $\bullet P Q$ into coincidence with $\bullet P^{\prime} Q^{\prime}$, and similarly for any other point of S_{B}. In the special case where these two symmetry planes coincide [fig. 1.11(c)], the rotation axis is the intersection of the planes defined by $P Q$ and $\rightarrow P^{\prime} Q^{\prime}$.

FUNDAMENTAL THEOREM OF GEOMETRY OF RIGID-BODY MOTION

Any rigid-body displacement can be reduced to a succession of translations and rotations. Specifically, any such displacement can be produced by the translation of an arbitrary "base point," or "pole," of the body, from its initial to its final position, followed by a rotation about an axis through the final position of the chosen pole - and this is the most general rigid-body displacement. The translatory part varies with the pole, but the rotatory part (i.e., the axis direction and angle of rotation) is independent of it (fig. 1.12).

COROLLARY FOR PLANE MOTION

Any rigid planar displacement can be produced by a single rotation about a certain axis perpendicular to the plane of the motion; in the translation case, that axis recedes to infinity [fig. 1.10(b)].

THEOREMS OF CHASLES (1830) AND POINSOT (1830s, 1850s)

Any rigid-body displacement can be reduced, by a certain choice of pole, to a screw displacement; that is, to a rotation about an axis and a translation along that axis. In special cases, either of these two displacements may be missing.

In a screw displacement: (a) The axis of rotation is called central axis, and (for given initial and final body positions) it is unique, except when the displacement is a pure translation; (b) The ratio of the translation (l) to the rotation angle (χ), which

Figure 1.12 The most general displacement of the rigid body $\bullet P Q$ can be effected by a translation of the pole \bullet, from $\bullet P Q$ to $\bullet^{\prime} P^{\prime \prime} Q^{\prime \prime}$; followed by a rotation about an axis through \bullet^{\prime}, from $\bullet^{\prime} P^{\prime \prime} Q^{\prime \prime}$ to $\bullet ' P^{\prime} Q^{\prime}$.
equals the advance (p) per revolution (2π), is called pitch of the screw: $p / 2 \pi=l / \chi \Rightarrow p=2 \pi(l / \chi)$; and (c) The translation and rotation commute.

EXTENSION TO DEFORMABLE BODIES

(Chasles' Theorem + Deformation $=$ Cauchy's Theorem)
The total displacement of a generic point of a continuous medium, say a small deformable sphere (fig. 1.13), is the result of a translation, a rigid rotation [of the local principal axes (or directions) of strain], and stretches along these axes; that is, the sphere becomes a general ellipsoid. Hence, rigid-body kinematics is of interest to continuum mechanics too; the latter, however, will not be pursued any further here.

Rigid-Body Kinematics

Thus far, no restrictions have been placed on the size of the displacements; the above theorems hold whether the translations and rotations are finite or infinitesimal. The finite case is detailed quantitatively in the following sections.

Next, let us examine the important case of sequence of rigid infinitesimal displacements in time, namely, rigid motion. In particular, let us return to the motion about a fixed point (Euler's theorem) and consider the case where the initial and final positions of the $\operatorname{arcs} P Q$ (at time t) and $P^{\prime} Q^{\prime}\left(\right.$ at time $\left.t^{\prime}=t+\Delta t\right)$ are very close to each other. Now, as $\Delta t \rightarrow 0$ the earlier (great circle) planes that halve the arcs $P P^{\prime}$ and $Q Q^{\prime}$ coincide with the normal planes to the directions of motion of P and Q, respectively, at time t; and their intersection yields the instantaneous axis of rotation. Then the velocity of the generic body point P equals

$$
\begin{equation*}
\boldsymbol{v}_{P} \equiv \boldsymbol{v}=\left[\lim \left(\boldsymbol{P} \boldsymbol{P}^{\prime} / \Delta t\right)\right]_{\Delta t \rightarrow 0}=\boldsymbol{\omega} \times \boldsymbol{r}_{P / \bullet} \equiv \boldsymbol{\omega} \times \boldsymbol{r} \tag{1.9.1}
\end{equation*}
$$

since $v_{P} \equiv \nu \equiv|\nu|$ equals the magnitude of the angular velocity of that rotation, $|\omega|$, times the perpendicular distance of P from the rotation axis. [Euler (1750s), Poisson (1831); of course, in components.] Hence, the instantaneous rotation of the body B about the fixed point is described by the single vector ω, which combines all three characteristics of rotation: axis, magnitude, and sense. As the motion proceeds, and since only the point \downarrow is fixed, the axis of rotation (carrier of ω) traces, or generates, two general and generally open conical surfaces with common center $\boldsymbol{\text { : }}$: one fixed on the body, the

Figure 1.13 General displacement of a small deformable sphere:
Translation \rightarrow Rotation \rightarrow Strain (Sphere \rightarrow Ellipsoid).

Figure 1.14 Rolling of body cone ($P_{\text {Polhode }}$) on space cone ($H_{e r} P_{\text {Polhode }}$).
polhode cone; and one fixed in space, the herpolhode cone (fig. 1.14). Hence, the following theorem:

THEOREM

Every finite motion of a rigid body, having one of its points fixed, can be described by the pure (or slippingless) rolling of the polhode cone on the herpolhode cone; and, at every moment, their common generator (through \bullet) gives the direction of the instantaneous axis of rotation/angular velocity. If \bullet recedes to infinity, these two cones reduce to cylinders and their normal sections become, respectively, the body and space centrodes.

Velocity Field (Mozzi, 1763)

Since, for the first-order geometrical changes involved here ("infinitesimal displacements") superposition holds, we conclude that the velocity of a generic body point P in general motion, $\boldsymbol{v}_{P} \equiv \boldsymbol{v}$, is given by the following fundamental formula of rigid body kinematics:

$$
\begin{gather*}
v=v_{\star}+\omega \times\left(r-r_{\star}\right) \equiv v_{\star}+\omega \times r_{\bullet} \equiv v_{\star}+v_{/ *} \\
{\left[v_{\bullet}=\text { velocity of } P \text { relative to } \bullet \text { (both measured in the same frame) }\right]} \tag{1.9.2}
\end{gather*}
$$

where is any body point (pole) (fig. 1.15); or, in terms of components (fig. 1.9) as follows:

Space-Fixed Axes

$$
\begin{equation*}
d X / d t \equiv d X_{\bullet} / d t+\omega_{Y}\left(Z-Z_{\bullet}\right)-\omega_{Z}\left(Y-Y_{\bullet}\right), \quad \text { etc., cyclically, } \tag{1.9.2a}
\end{equation*}
$$

Figure 1.15 Geometrical interpretation of eq. (1.9.2).
or, equivalently,

$$
\begin{equation*}
v_{X} \equiv v_{\bullet, X}+\omega_{Y} Z_{/}-\omega_{Z} Y_{/}, \quad \text { etc., cyclically } \tag{1.9.2b}
\end{equation*}
$$

Body-Fixed Axes

$$
\begin{equation*}
v_{x} \equiv v_{\star, x}+\omega_{y} z / \bullet-\omega_{z} y_{/}, \quad \text { etc., cyclically; } \tag{1.9.2c}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{\bullet, x}=\cos (x, X) v_{\bullet, X}+\cos (x, Y) v_{\bullet, Y}+\cos (x, Z) v_{\bullet, Z}, \quad \text { etc., cyclically; } \tag{1.9.2d1}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
v_{\bullet, X}=\cos (X, x) v_{\bullet, x}+\cos (X, y) v_{\bullet, y}+\cos (X, z) v_{\bullet, z}, \quad \text { etc., cyclically. } \tag{1.9.2d2}
\end{equation*}
$$

The six functions of time $v_{* x, y, z}, \omega_{x, y, Z}$ (or $v_{*: X, Y, Z}, \omega_{X, Y, Z}$) characterize the rigidbody motion completely. The line-bound vectors ω and ν_{*} constitute the torsor of motion, or velocity torsor, at \bullet, from which the rigid-body velocity field can be determined uniquely. [Just as, in elementary statics, the resultant force f (or \boldsymbol{R}) and moment M, of a system of forces constitute the force system torsor at (see "Formal Analogies ..." section that follows.] In the case of motion about a fixed point \star, that torsor reduces there to $(\omega, \mathbf{0})$.

Now, from the displacement viewpoint, the velocity transfer equation (1.9.2) states that:
(i) The state of motion of the body consists of an elementary translation $\left(d \boldsymbol{r}_{\star} \equiv \boldsymbol{v}_{\star} d t\right)$ of a base point (or pole) \uparrow, and an elementary rotation $(d \boldsymbol{\chi} \equiv \omega d t)$ about that point. Therefore, applying the earlier theorem of Chasles, we deduce that:
(ii) Any infinitesimal rigid (nontranslatory) displacement can be reduced uniquely to an infinitesimal screw; that is, an infinitesimal translation plus an infinitesimal rotation about a (central) axis parallel to the translation. (The location of that axis and the pitch of the screw are given in the "Formal Analogies ..." section below.) As the motion proceeds, that axis traces two (ruled) surfaces with it as common generator: one fixed in space $\left(\Gamma_{S}\right)$ and another fixed in the body $\left(\Gamma_{B}\right)$-which constitute the "no fixed point" generalization of the herpolhode and polhode, respectively. Hence, the following theorem:
(iii) The general finite motion of a rigid body can be produced by the rolling and sliding of Γ_{B} over Γ_{S}. (In plane motion, sliding is absent.) Next, we prove that
(iv) The angular velocity vector ω is independent of the choice of the pole. Applying the fundamental formula (1.9.2) for the two arbitrary and distinct poles \bullet and \bullet^{\prime}, we have

$$
\begin{align*}
v & =v_{\bullet}+\omega \times\left(r-r_{\bullet}\right) \equiv v_{\bullet}+\omega \times r_{/} \\
& =v_{\bullet^{\prime}}+\omega^{\prime} \times\left(r-r_{\bullet^{\prime}}\right) \equiv v_{\bullet^{\prime}}+\omega^{\prime} \times r_{/ \bullet^{\prime}} \tag{1.9.2e}
\end{align*}
$$

where initially, we assume that ω and ω^{\prime} are different and go through \bullet and \star^{\prime}, respectively. We shall show that

$$
\begin{equation*}
\omega=\omega^{\prime} \tag{1.9.2f}
\end{equation*}
$$

Indeed, since

$$
\begin{equation*}
r_{/ \star}=r_{\bullet^{\prime}}+r_{\star^{\prime}} \quad \text { and } \quad v_{\star^{\prime}}=v_{\star}+\omega \times r_{\star^{\prime} / \star} \tag{1.9.2g}
\end{equation*}
$$

equating the right sides of (1.9.2e) we obtain

$$
\begin{equation*}
\omega \times r_{/ \bullet}=\omega \times r_{\bullet^{\prime}}+\omega^{\prime} \times r_{/ \bullet} \Rightarrow \omega \times r_{/ \bullet}=\omega^{\prime} \times r_{/ \bullet}, \tag{1.9.2h}
\end{equation*}
$$

from which, since $\boldsymbol{r}_{/ \bullet}$, is arbitrary, (1.9.2f) follows.
[Since ω is a body quantity (a system vector), it carries no body point subscripts (like $\boldsymbol{v}_{. . .}$), just like a force resultant. The only "insignia" it may carry are those needed to specify a particular body and/or frame of reference. Perhaps this supposed "base point invariance" of it may have given rise to the false notion that " ω [of a bodyfixed basis relative to a space-fixed basis] is a free vector, not bound to any point or line in space" (Likins, 1973, p. 105, near page bottom); emphasis added. A correct interpretation of (1.9.2e,f), however, shows that ω is a line-bound, or sliding, vector, not a free one (just like the force on a rigid body); hence, ω in eq. (1.9.2), is understood to be going through point *.]

A USEFUL RESULT

Let \boldsymbol{r}_{1} and \boldsymbol{r}_{2} be the position vectors of two arbitrary points of a rigid body. Then, its angular velocity ω equals

$$
\begin{equation*}
\boldsymbol{\omega}=\left(\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}\right) /\left(\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}\right), \quad \text { where } \quad \boldsymbol{v}_{\ldots} \equiv d \boldsymbol{r}_{\ldots} / d t \tag{1.9.2i}
\end{equation*}
$$

Formal Analogies Between Forces/Moments and
 Linear/Angular Velocities

Comparing (1.9.2), rewritten as $\boldsymbol{v}_{2}=\boldsymbol{v}_{1}+\boldsymbol{r}_{1 / 2} \times \boldsymbol{\omega}$ (1,2: two arbitrary body points) with the well-known moment transfer theorem of elementary statics (with some, hopefully, self-explanatory notation): $\boldsymbol{M}_{2}=\boldsymbol{M}_{1}+\boldsymbol{r}_{1 / 2} \times \boldsymbol{f}$, we may say that the
velocity \boldsymbol{v}_{2} is the moment of the motion, or velocity torsor $\left(\boldsymbol{\omega}, \boldsymbol{v}_{1}\right)$ about point 2 ; that is, ω is the kinematic counterpart of the force resultant $(\boldsymbol{f}$ or $\boldsymbol{R})$, and hence is a linebound, or sliding vector; while $\boldsymbol{v} \ldots$ is the counterpart of the point-dependent moment of the torsor \boldsymbol{M}. Hence, recalling the (presumably, well-known) theorems of elementary statics, we can safely state the following:

- An elementary rotation $d \boldsymbol{\chi} \equiv \omega d t$ about an axis can always be replaced with an elementary rotation of equal angle about another arbitrary but parallel axis, plus an elementary translation $d \boldsymbol{r}=\boldsymbol{v} d t$, where $\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{r}$ is perpendicular to (the plane of) both axes of rotation, and \boldsymbol{r} is the vector from an arbitrary point of the original axis to an arbitrary point of the second axis; that is, an elementary rotation here is equivalent to an equal rotation plus an elementary perpendicular translation there.
- Several elementary rotations about a number of arbitrary axes can be replaced by a resultant motion as follows: (a) We choose a reference point O, and transport all these elementary rotations parallel to themselves to O, and then add them geometrically there. Then, (b) We combine the corresponding translational velocities, created by the parallel transport of the rotations in (a) (according to the preceding statement), to a single translational velocity at O. For example, two equal and opposite elementary rotations about parallel axes can be replaced by a single elementary translation perpendicular to (the plane of) both axes. These formal analogies between forces/ moments and linear/angular velocities (also, linear/angular momenta), which are quite useful from the viewpoint of economy of thought (elimination of unnecessary duplication of proofs), are summarized in table 1.2.

Table 1.2 Formal Analogies Among Vectors/Forces/Rigid-Body Velocities

Vector Systems	Forces/Moments (On Rigid Bodies)	Rigid-Body Velocities (Instantaneous Geometry)
Single vector \boldsymbol{a}	Single force f (along line of action)	Angular velocity ω (about axis of rotation)
Moment of \boldsymbol{a} about point O	Moment of f about O	Linear velocity of body point Ov_{0}
$\begin{aligned} & \text { Vector couple }\left(a_{1}, a_{2}=-a_{1}\right) \\ & \quad \Rightarrow \text { Constant moment } \end{aligned}$	Force couple ($\boldsymbol{f}_{1}, \boldsymbol{f}_{2}=-\boldsymbol{f}_{1}$) \Rightarrow Constant moment; or couple	Rotational pair ($\omega_{1}, \omega_{2}=-\omega_{1}$) \Rightarrow Constant translational velocity
Vector resultant R	Force resultant R	Rotation resultant ω
Vector torsor ($\boldsymbol{R}, \mathrm{M}_{\mathrm{O}}$)	Force torsor (R, M_{\bigcirc})	Motion torsor (ω, v_{O})
Spatial Variation (or Transfer) Theorem: $\mathrm{O} \rightarrow \mathrm{O}^{\prime}(\boldsymbol{R}, \omega$ at O$)$		
$\boldsymbol{M}_{\text {O }^{\prime}}=\boldsymbol{M}_{\text {O }}+\boldsymbol{r}_{\mathrm{O}^{\prime} \mathrm{O}^{\prime}} \times \boldsymbol{R}$	$\boldsymbol{M}_{\text {O }^{\prime}}=\boldsymbol{M}_{\mathrm{O}}+\boldsymbol{r}_{\mathrm{O}_{\left(\mathrm{O}^{\prime}\right.} \times \boldsymbol{R}}$	$v_{O^{\prime}}=v_{\mathrm{O}}+\mathrm{r}_{\mathrm{O} / \mathrm{O}^{\prime}} \times \omega$
Invariants: $R \cdot R, R \cdot M$.	Invariants: $R \cdot R, R \cdot M$.	Invariants: $\omega \cdot \omega, \omega \cdot v$.
Simplest Representation of Torsor		
Vector wrench (or screw) $\left(\boldsymbol{R}, \boldsymbol{M}_{c}\right)$	Force wrench $\left(\boldsymbol{R}, \boldsymbol{M}_{c}\right)$	Motion screw $\left(\boldsymbol{\omega}, \boldsymbol{v}_{c}\right)$
Central Axis of Wrench/Screw		
$\begin{gathered} \boldsymbol{r}=\lambda \boldsymbol{R}+\left(\boldsymbol{R} \times \boldsymbol{M}_{\mathrm{O}}\right) / \boldsymbol{R}^{2} \\ {\left[\lambda \equiv(\boldsymbol{r} \cdot \boldsymbol{R}) / \boldsymbol{R}^{2}\right]} \end{gathered}$	$\boldsymbol{r}=\lambda \boldsymbol{R}+\left(\boldsymbol{R} \times \boldsymbol{M}_{\bigcirc}\right) / \boldsymbol{R}^{2}$	$\begin{gathered} \boldsymbol{r}=\mu \boldsymbol{\omega}+\left(\boldsymbol{\omega} \times \boldsymbol{v}_{O}\right) / \omega^{2} \\ {\left[\mu \equiv(\boldsymbol{r} \cdot \boldsymbol{\omega}) / \omega^{2}\right]} \end{gathered}$
$\begin{aligned} & \text { Pitch } \equiv p=\boldsymbol{M}_{c} / \boldsymbol{R}=\boldsymbol{R} \cdot \boldsymbol{M}_{\bigcirc} / R^{2} \\ & \text { - } p=0: \end{aligned}$	$p=\boldsymbol{M}_{c} / \boldsymbol{R}=\boldsymbol{R} \cdot \boldsymbol{M}_{\mathrm{O}} / R^{2}$	$p=\boldsymbol{v}_{c} / \boldsymbol{\omega}=\omega \cdot \boldsymbol{v}_{\mathrm{O}} / \omega^{2}$
Vector resultant R	Pure force (resultant) R	Pure rotation ω
- $p=\infty$: Couple	Pure couple	Pure translation*

[^4]
Acceleration Field

By $d / d t(\ldots)$-differentiating (1.9.2), we readily obtain the acceleration field of a rigid body in general motion:

$$
\begin{align*}
\boldsymbol{a} & =a_{\star}+\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}+\omega \times\left(\omega \times \boldsymbol{r}_{/ \bullet}\right)=\boldsymbol{a}+\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}+\left[\left(\omega \cdot \boldsymbol{r}_{/ \bullet}\right) \omega-\omega^{2} \boldsymbol{r}_{/ \bullet}\right] \\
& =\boldsymbol{a}_{\star}+\left(\boldsymbol{a}_{/ \bullet}\right)_{\text {tangent }}+\left(\boldsymbol{a}_{\bullet}\right)_{\text {normal }} \quad\left(\equiv \boldsymbol{a}_{\star}+\boldsymbol{a}_{/ \bullet}\right) ; \tag{1.9.3}
\end{align*}
$$

or in terms of components (figure 1.9):

Space-Fixed Axes

$$
\begin{align*}
a_{X} \equiv a_{\bullet, X} & +\left(\alpha_{Y} Z_{/}-\alpha_{Z} Y_{/}\right) \\
& +\left[\omega_{X}\left(\omega_{X} X_{/} \bullet+\omega_{Y} Y_{/} \bullet \omega_{Z} Z_{/ \bullet}\right)-\omega^{2} X_{/} \bullet\right], \quad \text { etc., cyclically. } \tag{1.9.3a}
\end{align*}
$$

Body-Fixed Axes

$$
\begin{align*}
a_{x} \equiv a_{\bullet, x} & +\left(\alpha_{y} z_{\bullet}-\alpha_{z} y_{\bullet}\right) \\
& +\left[\omega_{x}\left(\omega_{x} x / \bullet+\omega_{y} y_{/}+\omega_{z} z / \bullet\right)-\omega^{2} x_{/}\right], \quad \text { etc., cyclically; } \tag{1.9.3b}
\end{align*}
$$

where

$$
\begin{align*}
& a_{\bullet, x}=\cos (x, X) a_{\bullet, X}+\cos (x, Y) a_{\bullet, Y}+\cos (x, Z) a_{\bullet Z} \\
& \equiv \cos (x, X)\left(d^{2} X_{\bullet} / d t^{2}\right)+\cos (x, Y)\left(d^{2} Y_{\bullet} / d t^{2}\right)+\cos (x, Z)\left(d^{2} Z_{\bullet} / d t^{2}\right), \\
& \quad \text { etc., cyclically; } \tag{1.9.3c}
\end{align*}
$$

and, inversely,

$$
\begin{equation*}
a_{\star, X}=\cos (X, x) a_{\bullet, x}+\cos (X, y) a_{\bullet, y}+\cos (X, z) a_{\star, z}, \quad \text { etc., cyclically; } \tag{1.9.3d}
\end{equation*}
$$

and

$$
\begin{align*}
\alpha_{X} & =(d \boldsymbol{\omega} / d t)_{X}=d \omega_{X} / d t, \quad \text { etc., cyclically }, \tag{1.9.3e}\\
\alpha_{x} & =(d \boldsymbol{\omega} / d t) \cdot \boldsymbol{i}=d(\boldsymbol{\omega} \cdot \boldsymbol{i}) / d t-\boldsymbol{\omega} \cdot(d \boldsymbol{i} / d t) \\
& =d \omega_{x} / d t-\boldsymbol{\omega} \cdot(\boldsymbol{\omega} \times \boldsymbol{i})=d \omega_{x} / d t, \quad \text { etc., cyclically. } \tag{1.9.3f}
\end{align*}
$$

Plane Motion

The distances of all body points from a fixed, say inertial, plane f^{\prime} remain constant; and so the body B moves parallel to f^{\prime} (fig. 1.10a). [For extensive discussions of this pedagogically and technically important topic, see, for example, Pars (1953, pp. 336356), Loitsianskii and Lur'e (1982, pp. 227-261).] A rigid body in plane (but otherwise free) motion is a system with three global, or finite, degrees of freedom. As such, we choose (fig. 1.16): (a) The two positional coordinates of an arbitrary body point (pole) (that is, of a point belonging to the cross section of B with a generic

Figure 1.16 Plane motion of a rigid body B.
plane f ever parallel to f^{\prime}) relative to arbitrary but f-fixed rectangular Cartesian coordinates $O-X Y,\left(X_{\star}, Y_{\star}\right)$; and (b) The angle between an arbitrary f-fixed line, say the axis $O X$, and an arbitrary B-fixed line, say $\diamond P$, where P is a generic body point.
(i) The velocity field (i.e., the instantaneous spatial distribution of velocity)

Here,

$$
\begin{equation*}
\left.\omega=\omega_{z} \boldsymbol{k}=\omega_{Z} \boldsymbol{K} \equiv \omega \boldsymbol{K}=(d \phi / d t) \boldsymbol{K} \quad \text { (i.e., } \omega \text { is perpendicular to } \boldsymbol{v}\right), \tag{1.9.4a}
\end{equation*}
$$

and so the general velocity formula (1.9.2) becomes

$$
\begin{align*}
\boldsymbol{v}_{P} & \equiv d \boldsymbol{r}_{P / O} \equiv d \boldsymbol{r} / d t \\
& \equiv \boldsymbol{v}=\boldsymbol{v}_{\star}+\boldsymbol{v}_{P / \star} \equiv \boldsymbol{v}_{\star}+\boldsymbol{v}_{\bullet}=\boldsymbol{v}_{\star}+\omega \times \boldsymbol{r}_{P / \star} \equiv \boldsymbol{v}_{\star}+\omega \times \boldsymbol{r}_{/ \star}, \tag{1.9.4b}
\end{align*}
$$

or, in components [along space-fixed (inertial) axes]

$$
\begin{gather*}
(d X / d t, d Y / d t, 0)=\left(d X_{\bullet} / d t, d Y_{\bullet} / d t, 0\right)+(0,0, \omega) \times\left(X_{/}, Y_{/}, 0\right) \\
\Rightarrow d X / d t=d X_{\bullet} / d t-\omega Y_{/}, \quad d Y / d t=d Y_{\bullet} / d t+\omega X_{/} \tag{1.9.4c}
\end{gather*}
$$

The above show that, in plane motion, there exists - in every configuration-a point, either belonging to the body or to its fictitious rigid extension, called instantaneous center of zero velocity, or velocity pole (IC, or I, for short), whose velocity, at least momentarily, vanishes; that is, locally, at least, the motion can be viewed as an elementary rotation about that point (local version of fig. 1.10b). Indeed, setting in (1.9.4b,c)

$$
\begin{equation*}
\boldsymbol{v} \rightarrow \boldsymbol{v}_{I}=\mathbf{0}, \quad \text { i.e., choosing } P=I, \tag{1.9.4d}
\end{equation*}
$$

we obtain its inertial instantaneous coordinates relative to our originally chosen pole \bullet :

$$
\begin{equation*}
X_{I / \star} \equiv X_{I}-X_{\star}=-\left(d Y_{\bullet} / d t\right) / \omega, \quad Y_{I / \star} \equiv Y_{I}-Y_{\bullet}=+\left(d X_{\bullet} / d t\right) / \omega \tag{1.9.4e}
\end{equation*}
$$

From these equations we conclude that, as long as $\omega \neq 0, I$ is located at a finite distance from the body and is unique; if $\omega=0$, then I recedes to infinity, and the motion becomes a translation; and if we choose I as our pole - that is, $=I$ - then $(1.9 .4 \mathrm{~b}, \mathrm{c})$ yield

$$
\begin{equation*}
d X / d t=-\omega Y_{/ I}, \quad d Y / d t=\omega X_{/ I}, \quad \text { or } v=\omega r_{/ I} \quad\left[v^{2}=(d X / d t)^{2}+(d Y / d t)^{2}\right] . \tag{1.9.4f}
\end{equation*}
$$

[In the case of translation, eq. (1.9.4f) can be written qualitatively/symbolically as

$$
\text { finite velocity }=(\text { zero angular velocity }) \times(\text { infinite radius of rotation })] .
$$

As the body moves, I traces two curves: one fixed on the body (space centrode) and one fixed in the plane (space centrode); so that the general plane motion can be described as the slippingless rolling of the body centrode on the space centrode, with angular velocity ω.
(ii) The acceleration field

Here,

$$
\begin{equation*}
\boldsymbol{\alpha} \equiv d \omega / d t=(d \omega / d t) \boldsymbol{k} \equiv \alpha \boldsymbol{k}=\alpha \boldsymbol{K} \tag{1.9.4~g}
\end{equation*}
$$

and $\omega \cdot \boldsymbol{r}_{/ \bullet}=0$, and so the general acceleration formula (1.9.3) becomes

$$
\begin{align*}
a_{P} \equiv a \equiv a_{\bullet}+a_{/ \bullet} & =a_{\bullet}+\alpha \times r_{/ \bullet}+\omega \times\left(\omega \times r_{/ \bullet}\right) \\
& =a_{\bullet}+\alpha \times r_{/ \bullet}-\omega^{2} r_{/ \bullet}, \tag{1.9.4h}
\end{align*}
$$

or, in components [along space-fixed (inertial) axes],

$$
\begin{align*}
& \left(d^{2} X / d t^{2}, d^{2} Y / d t^{2}, 0\right)=\left(d^{2} X_{\bullet} / d t^{2}, d^{2} Y_{\bullet} / d t^{2}, 0\right) \\
& +(0,0, \alpha) \times\left(X_{/}, Y_{/}, 0\right)-\omega^{2}\left(X_{/}, Y_{/ \bullet}, 0\right), \\
& \Rightarrow d^{2} X / d t^{2}=d^{2} X_{\bullet} / d t^{2}-\alpha Y_{\bullet}-\omega^{2} X_{/}, \quad d^{2} Y / d t^{2}=d^{2} Y_{\bullet} / d t^{2}+\alpha X_{/}-\omega^{2} Y_{/} . \tag{1.9.4i}
\end{align*}
$$

Along body-fixed axis $-x y$, eq. (1.9.4h) yields the components (with some easily understood notation):

$$
\begin{equation*}
a_{x}=\left(\boldsymbol{a}_{\star}\right)_{x}-\alpha y_{/}-\omega^{2} x_{\bullet}, \quad a_{y}=\left(\boldsymbol{a}_{\star}\right)_{y}+\alpha x_{/}-\omega^{2} y_{/} \tag{1.9.4j}
\end{equation*}
$$

where

$$
\left(\boldsymbol{a}_{\bullet}\right)_{x} \equiv \boldsymbol{a} \cdot \boldsymbol{i}=\cos (x, X)\left(d^{2} X \bullet / d t^{2}\right)+\cos (x, Y)\left(d^{2} Y_{\bullet} / d t^{2}\right), \text { etc.; }
$$

and similarly for the velocity field (1.9.4b), if needed.

Here, too, there exists an instantaneous center of zero acceleration, or acceleration pole, I^{\prime}, whose coordinates are found by setting in (1.9.4i) $d^{2} X / d t^{2}=0, d^{2} Y / d t^{2}=0$ and then solving for $X_{/}, Y_{/ \star}\left(P \rightarrow I^{\prime}\right)$:

$$
\begin{align*}
& X_{I^{\prime} / \bullet} \equiv X_{I^{\prime}}-X_{\bullet}=\left[\omega^{2}\left(d^{2} X_{\bullet} / d t^{2}\right)-\alpha\left(d^{2} Y_{\bullet} / d t^{2}\right)\right] /\left(\alpha^{2}+\omega^{4}\right), \\
& Y_{I^{\prime} / \bullet} \equiv Y_{I^{\prime}}-Y_{\bullet}=\left[\omega^{2}\left(d^{2} Y_{\bullet} / d t^{2}\right)+\alpha\left(d^{2} X_{\bullet} / d t^{2}\right)\right] /\left(\alpha^{2}+\omega^{4}\right) \text {. } \tag{1.9.4k}
\end{align*}
$$

These equations show that as long as $\alpha^{2}+\omega^{4} \neq 0$ (i.e., not both ω and α vanish), the acceleration pole I^{\prime} exists and is unique. If $\omega, \alpha=0$ (i.e., if the body translates), then I^{\prime} (as well as I) recedes to infinity. Finally, with the choice $=^{\prime}$ eqs. $(1.9 .4 \mathrm{~h}, \mathrm{i})$ specialize to

$$
\begin{equation*}
\boldsymbol{a} \equiv a_{\bullet}+\boldsymbol{a}_{/ \bullet}=\boldsymbol{\alpha} \times \boldsymbol{r}_{/ I^{\prime}}+\omega \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ I^{\prime}}\right)=\boldsymbol{\alpha} \times \boldsymbol{r}_{/ I^{\prime}}-\omega^{2} \boldsymbol{r}_{/ I^{\prime}} \tag{1.9.41}
\end{equation*}
$$

or, in components

$$
\begin{equation*}
d^{2} X / d t^{2}=-\alpha Y_{/ I^{\prime}}-\omega^{2} X_{/ I^{\prime}}, \quad d^{2} Y / d t^{2}=+\alpha X_{/ I^{\prime}}-\omega^{2} Y_{/ I^{\prime}} \tag{1.9.4m}
\end{equation*}
$$

For the geometrical properties of I^{\prime}, the reader is referred to texts on kinematics.

Additional Useful Results
(i) Crossing $\mathbf{0}=\boldsymbol{v}_{\boldsymbol{*}}+\boldsymbol{\omega} \times\left(\boldsymbol{r}_{I}-\boldsymbol{r}_{\boldsymbol{\star}}\right)$ with ω, expanding, and so on, it can be shown that the position of the instantaneous velocity center is given by

$$
\begin{equation*}
\boldsymbol{r}_{I / \star} \equiv \boldsymbol{r}_{I}-\boldsymbol{r}_{\star}=\left(\omega \times \boldsymbol{v}_{\star}\right) / \omega^{2} \tag{1.9.4n}
\end{equation*}
$$

and similarly for the location of the acceleration pole I^{\prime}.
(ii) The location of the instantaneous center of zero velocity I, and zero acceleration I^{\prime}, in body-fixed coordinates $\uparrow-x y$, are given, respectively, by (fig. 1.17)

Figure 1.17 Body-fixed axes in plane motion.

$$
\begin{align*}
& x_{I}=(1 / \omega)\left[\left(d X_{\bullet} / d t\right) \sin \phi-\left(d Y_{\bullet} / d t\right) \cos \phi\right]=-\left(v_{*}\right)_{y} / \omega, \tag{1.9.4o}\\
& y_{I}=(1 / \omega)\left[\left(d X_{\bullet} / d t\right) \cos \phi+\left(d Y_{\bullet} / d t\right) \sin \phi\right]=\left(v_{\bullet}\right)_{x} / \omega, \tag{1.9.4p}\\
& x_{I^{\prime}}=\left[\omega^{2}\left(a_{\bullet}\right)_{x}-\alpha\left(\boldsymbol{a}_{\bullet}\right)_{y}\right] /\left(\omega^{4}+\alpha^{2}\right), \quad y_{I^{\prime}}=\left[\alpha\left(\boldsymbol{a}_{\bullet}\right)_{x}+\omega^{2}\left(\boldsymbol{a}_{\bullet}\right)_{y}\right] /\left(\omega^{4}+\alpha^{2}\right), \tag{1.9.4q}
\end{align*}
$$

where

$$
\left(\boldsymbol{v}_{\bullet}\right)_{x} \equiv \boldsymbol{v}_{\star} \cdot \boldsymbol{i}=\cos (x, X)\left(d X_{\bullet} / d t\right)+\cos (x, Y)\left(d Y_{\bullet} / d t\right), \quad \text { etc. }
$$

Contact of Two Rigid Bodies;
 Slipping, Rolling, Pivoting

Let us consider a system of rigid bodies forced to remain in mutual contact at points, or along curves or surfaces of their boundaries. For simplicity and concreteness, we restrict the discussion to two rigid bodies, B^{\prime} (fixed) and B (moving), in contact at a space point C; that is, a certain point P of the bounding surface of B, S, is in contact with a point P^{\prime} of the bounding surface of B^{\prime}, S^{\prime}; that is, then, $C=P=P^{\prime}$ (fig. 1.18).

Now: (i) If C is fixed on both bodies, we call such a "bilateral constraint" (i.e., one expressible by equalities) a hinge, and we say that the bodies are pivoting about it.
(ii) If, on the other hand, C is not fixed on one (both) of the bodies, we say that it is wandering on it (them). In this case, we call the relative velocity of P and P^{\prime}, which are instantaneously at C, the slip velocity there:

$$
\begin{equation*}
\boldsymbol{v}_{P / P^{\prime}} \equiv \boldsymbol{v}_{P}-\boldsymbol{v}_{P^{\prime}} \equiv \boldsymbol{v}_{s} . \tag{1.9.5a}
\end{equation*}
$$

If we view the motion of C relative to $B^{\prime}, C / B^{\prime}$, as the resultant of C / B and B / B^{\prime}, then, since the velocities of the latter are tangent to the surfaces S and S^{\prime}, respectively, at C we conclude that \boldsymbol{v}_{s} lies on their common tangent plane there, p. Analytically,

$$
\begin{equation*}
\boldsymbol{v}_{s}=\boldsymbol{v}_{s, T}+\boldsymbol{v}_{s, N}=\boldsymbol{v}_{s, T}, \tag{1.9.5b}
\end{equation*}
$$

Figure 1.18 Two rigid bodies in contact at a space point C.
where
$\boldsymbol{v}_{s, T}=$ component of \boldsymbol{v}_{s} along $p, \quad \boldsymbol{v}_{s, N}=$ component of \boldsymbol{v}_{s} normal to p
($=\mathbf{0}$; i.e., contact is preserved; the two bodies cannot penetrate each other);
and if, at that instant, B and B^{\prime} separate, then $\boldsymbol{v}_{s, N}$ lies on the side of B^{\prime}.
Next, if the angular velocity of B relative to B^{\prime}, at C, is ω with components along and normal to $p: \omega_{T}, \omega_{N}$, respectively; that is,

$$
\begin{equation*}
\omega=\omega_{T}+\omega_{N}, \tag{1.9.5d}
\end{equation*}
$$

then we can say that the most general infinitesimal motion of B relative to $B^{\prime}, B / B^{\prime}$, is a superposition of the following special motions:
$\begin{array}{llll}\text { a pure slipping: } & \boldsymbol{v}_{s} \neq \mathbf{0}, & \boldsymbol{\omega}_{T}=\mathbf{0}, & \boldsymbol{\omega}_{N}=\mathbf{0} ; \\ \text { a pure rolling: } & \boldsymbol{v}_{s}=\mathbf{0}, & \boldsymbol{\omega}_{T} \neq \mathbf{0}, & \boldsymbol{\omega}_{N}=\mathbf{0} ; \\ \text { a pure pivoting: } & \boldsymbol{v}_{s}=\mathbf{0}, & \boldsymbol{\omega}_{T}=\mathbf{0}, & \boldsymbol{\omega}_{N} \neq \mathbf{0} .\end{array}$
If $\boldsymbol{v}_{s}=\mathbf{0}$ and $\boldsymbol{\omega} \neq \mathbf{0}$, the motion B / B^{\prime} is an instantaneous rotation called rolling and pivoting; which results in two (scalar) equations of constraint. In this case, the point C has identical velocities relative to both B and B^{\prime}; and hence its trajectories, or loci, on the bounding surfaces of B and B^{\prime}, γ and γ^{\prime} respectively, are continuously tangent, and are traced at the same pace; that is, if, starting from C, we grade them in, say centimeters, then the points that will come into contact during the subsequent motion will have the same arc-coordinates numerically. Such a B / B^{\prime} rolling is expressed by saying that P and P^{\prime}, both at C at the moment under consideration, have equal velocities relative to a (third) arbitrary body, or frame or reference; and the velocities of B about B^{\prime} are the same as if B had only a rotation ω about an axis through the "instantaneous hinge" C. If the locus of ω on B is the ruled surface Σ, and on B^{\prime} the also ruled surface Σ^{\prime}, then the slippingless motion B / B^{\prime} can be obtained by rolling Σ on Σ^{\prime} [The earlier curve $\gamma\left(\gamma^{\prime}\right)$ is the intersection of Σ with $S\left(\Sigma^{\prime}\right.$ with $\left.S^{\prime}\right)$].

If B and B^{\prime} are in contact at two points, say C and C^{\prime}, and if $\boldsymbol{v}_{s}=\boldsymbol{v}_{s^{\prime}}=\mathbf{0}$, then the motion B / B^{\prime} is an instantaneous rotation about the line $C C^{\prime}$; that is, ω is along it. And if B, B^{\prime} contact each other at several points $C, C^{\prime}, C^{\prime \prime}, \ldots$, then slipping cannot vanish at all of them unless they all lie on a straight line. If, in addition, $\boldsymbol{\omega}_{N}=\mathbf{0}$ (or $\boldsymbol{\omega}_{T}=\mathbf{0}$), we have pure rolling (or pure pivoting). In sum, slippingless rolling along a curve can happen only if that curve is a straight line carrying ω (like a long hinge).

Some Analytical Remarks on Rolling

(i) The contact among rigid bodies is expressed analytically by one or more equations of the form

$$
\begin{equation*}
f\left(t ; q_{1}, q_{2}, \ldots, q_{n}\right)=0 \tag{1.9.6a}
\end{equation*}
$$

where $q \equiv\left(q_{1}, \ldots, q_{n}\right)$ are geometrical parameters that determine the position, or configuration, of the bodies of the system; hence, their alternative name: system coordinates. Equation (1.9.6a) is called a holonomic constraint.
(ii) If, in addition to contact, there is also slippingless rolling, and possibly pivoting, then equating the velocities of the two (or more pairs of) material points in contact, we obtain constraints of the form

$$
\begin{equation*}
a_{1} d q_{1}+a_{2} d q_{2}+\cdots+a_{n} d q_{n}+a_{n+1} d t=0 \tag{1.9.6b}
\end{equation*}
$$

or, (roughly) equivalently,

$$
\begin{equation*}
a_{1}\left(d q_{1} / d t\right)+a_{2}\left(d q_{2} / d t\right)+\cdots+a_{n}\left(d q_{n} / d t\right)+a_{n+1}=0 \tag{1.9.6c}
\end{equation*}
$$

where $a_{k}=a_{k}(t, q)(k=1, \ldots, n)$. If $(1.9 .6 \mathrm{~b}, \mathrm{c})$ is not integrable [i.e., if it cannot be replaced, through mathematical manipulations, by a finite (1.9.6a)-like equation], it is called nonholonomic. In mechanical terms, holonomic constraints restrict the mobility of a system in the large (i.e., globally); whereas nonholonomic constraints restrict its mobility in the small (i.e., locally). The systematic study of both these types of constraints (chap. 2) and their fusion with the general principles and equations of motion (chap. 3 ff .) is the object of Lagrangean analytical mechanics.

1.10 THE RIGID BODY: GEOMETRY OF ROTATIONAL MOTION; FINITE ROTATION

The peculiarities of the algebra of finite rotations are just the peculiarities of matrix multiplication.
(Crandall et al., 1968, p. 58)

Recommended for concurrent reading with this section are (alphabetically): Bahar (1987), Coe (1938, pp. 157 ff.), Hamel (1949, pp. 103-117), Shuster (1993), Timerding (1908).

The Fundamental Equation of Finite Rotation

Since, by the fundamental theorem of the preceding section, the rotatory part of a general displacement of a rigid body is independent of the base point (pole), let us examine first, with no loss in generality, the finite rotation of a rigid body B about the (body- and space-) fixed point O; and later we will add to it the translatory displacement of O. Specifically, let us examine the finite rotation of B about an axis through O, with positive direction (unit) vector \boldsymbol{n}, by an angle χ that is counted positive in accordance with the right-hand (screw) rule (fig. 1.19).

As a result of such an angular displacement, a generic body point P moves from an initial position P_{i} to a final position P_{f}; or, symbolically,

$$
\begin{equation*}
\left(\boldsymbol{r}_{i}, \boldsymbol{p}_{i}\right) \rightarrow\left(\boldsymbol{r}_{f}, \boldsymbol{p}_{f}\right), \tag{1.10.1a}
\end{equation*}
$$

where \boldsymbol{p} is the projection, or component, of the actual position vector of P, \boldsymbol{r}, on the plane through it normal to the axis of rotation; that is, to \boldsymbol{n}. Our objective here is to express \boldsymbol{r}_{f} in terms of $\boldsymbol{r}_{i}, \boldsymbol{n}$, and χ. To this end, we decompose the displacement $\Delta \boldsymbol{r} \equiv \boldsymbol{r}_{f}-\boldsymbol{r}_{i}=\boldsymbol{p}_{f}-\boldsymbol{p}_{i} \equiv \Delta \boldsymbol{p}$, which lies on the plane of the triangle $A P_{i} P_{f}$, into two components: one along $\boldsymbol{p}_{i}, \boldsymbol{P}_{i} \boldsymbol{B}=\Delta \boldsymbol{r}_{1}$, and one perpendicular to it, $\boldsymbol{B} \boldsymbol{P}_{f}=\Delta \boldsymbol{r}_{2}$:

$$
\begin{equation*}
\Delta \boldsymbol{r}=\Delta \boldsymbol{r}_{1}+\Delta \boldsymbol{r}_{2} \tag{1.10.1b}
\end{equation*}
$$

Figure 1.19 Finite rigid rotation about a fixed point O (axis n, angle χ).

Now, from fig. 1.19 and some simple geometry, we find, successively,
(i) $\Delta \boldsymbol{r}_{1}=-\left(\boldsymbol{A} \boldsymbol{P}_{i}-\boldsymbol{A} \boldsymbol{B}\right)=-\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{i} \cos \chi\right)=-\boldsymbol{p}_{i}(1-\cos \chi)=-2 \boldsymbol{p}_{i} \sin ^{2}(\chi / 2)$; or, since $\Delta \boldsymbol{r}_{1}$ is perpendicular to both $\boldsymbol{n} \times \boldsymbol{r}_{i}$ and \boldsymbol{n}, and

$$
\boldsymbol{n} \times\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right)=\left(\boldsymbol{n} \cdot \boldsymbol{r}_{i}\right) \boldsymbol{n}-(\boldsymbol{n} \cdot \boldsymbol{n}) \boldsymbol{r}_{i}=\boldsymbol{O} \boldsymbol{A}-\boldsymbol{r}_{i}=\boldsymbol{P}_{i} \boldsymbol{A}=-\boldsymbol{p}_{i},
$$

finally,

$$
\begin{equation*}
\Delta \boldsymbol{r}_{1}=\boldsymbol{n} \times\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right) 2 \sin ^{2}(\chi / 2) . \tag{1.10.1c}
\end{equation*}
$$

(ii) The component $\Delta \boldsymbol{r}_{2}$ is perpendicular to the plane $O A P_{i}$, and lies along $\boldsymbol{n} \times \boldsymbol{r}_{i}$; and since the length of the latter equals

$$
\left|\boldsymbol{n} \times \boldsymbol{r}_{i}\right|=\left|\boldsymbol{n} \|\left|\boldsymbol{r}_{i}\right| \sin \sigma=\left|\boldsymbol{r}_{i}\right| \sin \sigma=\left|\boldsymbol{p}_{i}\right|,\right.
$$

and

$$
\left|\boldsymbol{p}_{i}\right| \sin \chi=\left|\boldsymbol{C} \boldsymbol{P}_{i}\right|=\left|\boldsymbol{B} \boldsymbol{P}_{f}\right| \equiv\left|\Delta \boldsymbol{r}_{2}\right| \quad \text { (the triangle } A P_{i} P_{f} \text { being isosceles!), }
$$

finally

$$
\begin{equation*}
\Delta \boldsymbol{r}_{2}=\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right) \sin \chi \tag{1.10.1d}
\end{equation*}
$$

Substituting the expressions (1.10.1c, d) into (1.10.1b), we obtain the following fundamental equation of finite rotation:

$$
\begin{equation*}
\Delta \boldsymbol{r} \equiv \boldsymbol{r}_{f}-\boldsymbol{r}_{i}=\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right) \sin \chi+\boldsymbol{n} \times\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right) 2 \sin ^{2}(\chi / 2) . \tag{1.10.1e}
\end{equation*}
$$

All subsequent results on this topic are based on it.

Alternative Forms of the Fundamental Equation

(i) With the help of the so-called "Gibbs vector of finite rotation"

$$
\begin{equation*}
\gamma \equiv \tan (\chi / 2) \boldsymbol{n} \equiv\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \equiv\left(\gamma_{X}, \gamma_{Y}, \gamma_{Z}\right)=\text { Rodrigues parameters } \tag{1.10.2a}
\end{equation*}
$$

relative to some background axes, say $O-X Y Z$ [Rodrigues (1840) - Gibbs (late $1800 s$ s) 'vector'] and, since by simple trigonometry,

$$
\begin{align*}
\sin \chi & =2 \sin (\chi / 2) \cos (\chi / 2)=2 \tan (\chi / 2) /\left[1+\tan ^{2}(\chi / 2)\right] \\
& =2 \gamma /\left(1+\gamma^{2}\right), \quad \text { where } \gamma=|\gamma|=|\tan (\chi / 2)|, \tag{1.10.2b}\\
\sin ^{2}(\chi / 2) & =\tan ^{2}(\chi / 2) /\left[1+\tan ^{2}(\chi / 2)\right]=(1-\cos \chi) / 2=\gamma^{2} /\left(1+\gamma^{2}\right), \tag{1.10.2c}
\end{align*}
$$

we can easily rewrite (1.10.1e) as

$$
\begin{equation*}
\Delta \boldsymbol{r}=\left[2 /\left(1+\gamma^{2}\right)\right]\left[\gamma \times \boldsymbol{r}_{i}+\gamma \times\left(\gamma \times \boldsymbol{r}_{i}\right)\right] ; \tag{1.10.2d}
\end{equation*}
$$

and from this, since $\gamma \times\left(\boldsymbol{\gamma} \times \boldsymbol{r}_{i}\right)=-\gamma^{2} \boldsymbol{r}_{i}+\left(\gamma \cdot \boldsymbol{r}_{i}\right) \boldsymbol{\gamma}$, we obtain the additional form

$$
\begin{equation*}
\boldsymbol{r}_{f}=\left[2 /\left(1+\gamma^{2}\right)\right]\left[\boldsymbol{\gamma} \times \boldsymbol{r}_{i}+\left(\gamma \cdot \boldsymbol{r}_{i}\right) \gamma\right]+\left[\left(1-\gamma^{2}\right) /\left(1+\gamma^{2}\right)\right] \boldsymbol{r}_{i} \tag{1.10.2e}
\end{equation*}
$$

which, clearly, has a singularity at $\gamma= \pm i$.
Further, in terms of the normal projection of \boldsymbol{r}_{i} to the rotation axis $\boldsymbol{n}, \boldsymbol{r}_{i, n}$, defined by

$$
\begin{equation*}
\boldsymbol{r}_{i, n} \equiv \boldsymbol{r}_{i}-\left(\gamma \cdot \boldsymbol{r}_{i}\right) \gamma / \gamma^{2}=\boldsymbol{r}_{i}-\left[(\boldsymbol{\gamma} \otimes \gamma) \cdot \boldsymbol{r}_{i}\right] / \gamma^{2} \tag{1.10.2f}
\end{equation*}
$$

we can rewrite (1.10.2e) successively as

$$
\begin{align*}
\boldsymbol{r}_{f} & =\boldsymbol{r}_{i}+\left[2 /\left(1+\gamma^{2}\right)\right]\left(\boldsymbol{\gamma} \times \boldsymbol{r}_{i, n}-\gamma^{2} \boldsymbol{r}_{i, n}\right) \\
& =\boldsymbol{r}_{i}+\left[2 /\left(1+\gamma^{2}\right)\right]\left[\boldsymbol{\gamma} \times \boldsymbol{r}_{i}-\gamma^{2} \boldsymbol{r}_{i}+(\boldsymbol{\gamma} \otimes \gamma) \cdot \boldsymbol{r}_{i}\right] \\
& =\boldsymbol{r}_{i}+\left[2 /\left(1+\gamma^{2}\right)\right]\left[\gamma \times \boldsymbol{r}_{i}+\boldsymbol{\gamma} \times\left(\gamma \times \boldsymbol{r}_{i}\right)\right] \\
& =\boldsymbol{r}_{i}+\left[2 \gamma /\left(1+\gamma^{2}\right)\right] \times\left(\boldsymbol{r}_{i}+\boldsymbol{\gamma} \times \boldsymbol{r}_{i}\right) ; \tag{1.10.2~g}
\end{align*}
$$

that is, express \boldsymbol{r}_{f} in terms of \boldsymbol{r}_{i} and the single vector γ.
\{It is not hard to show that the components, or projections, of a vector along ($\boldsymbol{a}_{\text {along }} \equiv \boldsymbol{a}_{l}$) and perpendicular to ($\boldsymbol{a}_{\text {perpendicular/normal }} \equiv \boldsymbol{a}_{n}$) another vector \boldsymbol{b} (of common origin) are

$$
\left.\boldsymbol{a}_{l}=(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{b} / b^{2}, \quad \boldsymbol{a}_{n}=\boldsymbol{a}-\boldsymbol{a}_{l}=\boldsymbol{a}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{b} / b^{2}=[\boldsymbol{b} \times(\boldsymbol{a} \times \boldsymbol{b})] / b^{2}\right\}
$$

Inversion of Eqs. (1.10.2e,g)
Since a rotation $-\boldsymbol{\gamma}$ should bring \boldsymbol{r}_{f} back to \boldsymbol{r}_{i}, if in (1.10.2g) we swap the roles of \boldsymbol{r}_{i} and \boldsymbol{r}_{f} and replace γ with $-\gamma$, we obtain the initial position in terms of the final one and its rotation:

$$
\begin{equation*}
\boldsymbol{r}_{i}=\boldsymbol{r}_{f}-\left[2 \boldsymbol{\gamma} /\left(1+\gamma^{2}\right)\right] \times\left(\boldsymbol{r}_{f}-\boldsymbol{\gamma} \times \boldsymbol{r}_{f}\right) ; \tag{1.10.3}
\end{equation*}
$$

and thus avoid complicated vector-algebraic inversions.

Rodrigues' Formula (1840)
Adding \boldsymbol{r}_{i} to both sides of (1.10.2e), we obtain

$$
\begin{equation*}
\boldsymbol{r}_{i}+\boldsymbol{r}_{f}=\left[2 /\left(1+\gamma^{2}\right)\right]\left[\boldsymbol{r}_{i}+\boldsymbol{\gamma} \times \boldsymbol{r}_{i}+\left(\gamma \cdot \boldsymbol{r}_{i}\right) \boldsymbol{\gamma}\right], \tag{1.10.4a}
\end{equation*}
$$

and crossing both sides of the above with γ, and then using simple vector identities and (1.10 .2 g) [or, adding (1.10 .2 g) and (1.10.3) and setting the coefficient of $2 \gamma /\left(1+\gamma^{2}\right)$ equal to zero, since it cannot be nonzero and parallel to γ], we arrive at the formula of Rodrigues:

$$
\begin{equation*}
\boldsymbol{r}_{f}-\boldsymbol{r}_{i}=\boldsymbol{\gamma} \times\left(\boldsymbol{r}_{i}+\boldsymbol{r}_{f}\right) \equiv 2 \boldsymbol{\gamma} \times \boldsymbol{r}_{m}=2 \boldsymbol{n} \times \boldsymbol{r}_{m} \tan (\chi / 2), \tag{1.10.4b}
\end{equation*}
$$

where

$$
\begin{equation*}
2 \boldsymbol{r}_{m} \equiv \boldsymbol{r}_{i}+\boldsymbol{r}_{f}=2\left(\text { position vector of midpoint of } P_{i} P_{f}\right) \tag{1.10.4c}
\end{equation*}
$$

or, rearranging,

$$
\begin{equation*}
\boldsymbol{r}_{f}+\boldsymbol{r}_{f} \times \gamma=\boldsymbol{r}_{i}+\gamma \times \boldsymbol{r}_{i} \tag{1.10.4d}
\end{equation*}
$$

Finally, dotting both sides of this equation with γ (or \boldsymbol{n}), we obtain

$$
\begin{equation*}
\gamma \cdot \boldsymbol{r}_{f}=\gamma \cdot \boldsymbol{r}_{i} \tag{1.10.4e}
\end{equation*}
$$

as expected.
(ii) With the help of the finite rotation vector

$$
\begin{equation*}
\chi \equiv \chi \boldsymbol{n}, \tag{1.10.5a}
\end{equation*}
$$

which is, obviously, related to the earlier Gibbs vector γ by

$$
\begin{equation*}
\gamma=\tan (\chi / 2)(\chi / \chi) \tag{1.10.5b}
\end{equation*}
$$

and since

$$
\begin{equation*}
1+\gamma^{2}=1 / \cos ^{2}(\chi / 2), \quad 1-\gamma^{2}=\cos \chi / \cos ^{2}(\chi / 2) \tag{1.10.5c}
\end{equation*}
$$

the preceding rotation equations yield

$$
\begin{equation*}
\boldsymbol{r}_{f}=2 \cos ^{2}(\chi / 2)\left[\tan (\chi / 2)\left(\boldsymbol{\chi} \times \boldsymbol{r}_{i}\right)(1 / \chi)+\tan ^{2}(\chi / 2)\left(\boldsymbol{\chi} \cdot \boldsymbol{r}_{i}\right)\left(\boldsymbol{\chi} / \chi^{2}\right)\right]+\cos \chi \boldsymbol{r}_{i} \tag{1.10.5d}
\end{equation*}
$$

or finally,

$$
\begin{equation*}
\boldsymbol{r}_{f}=\boldsymbol{r}_{i} \cos \chi+\left(\boldsymbol{\chi} \times \boldsymbol{r}_{i}\right)(\sin \chi / \chi)+\left(\boldsymbol{\chi} \cdot \boldsymbol{r}_{i}\right) \boldsymbol{\chi}\left[(1-\cos \chi) / \chi^{2}\right] \tag{1.10.5e}
\end{equation*}
$$

a form that is symmetrical and (integral) transcendental function of $\chi \cdot \chi=\chi^{2}$.
The above can also be rewritten as

$$
\begin{align*}
\boldsymbol{r}_{f}-\boldsymbol{r}_{i} & =(\sin \chi)\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right)+(1-\cos \chi)\left[\boldsymbol{n} \times\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right)\right] \\
& =(\sin \chi)\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right)+(1-\cos \chi)\left[\left(\boldsymbol{n} \cdot \boldsymbol{r}_{i}\right) \boldsymbol{n}-\left(\boldsymbol{n}^{2}\right) \boldsymbol{r}_{i}\right] \tag{1.10.5f}
\end{align*}
$$

or, slightly rearranged (since $\boldsymbol{n}^{2}=1$),

$$
\begin{align*}
\boldsymbol{r}_{f} & =\boldsymbol{r}_{i} \cos \chi+\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right) \sin \chi+\left(\boldsymbol{n} \cdot \boldsymbol{r}_{i}\right) \boldsymbol{n}(1-\cos \chi) \\
& =\boldsymbol{r}_{i}+\sin \chi\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right)+(\cos \chi-1)\left[\boldsymbol{r}_{i}-\left(\boldsymbol{r}_{i} \cdot \boldsymbol{n}\right) \boldsymbol{n}\right] \tag{1.10.5g}
\end{align*}
$$

$\left[=\boldsymbol{r}_{i}+\sin \chi\left(\boldsymbol{n} \times \boldsymbol{r}_{i}\right)+(\cos \chi-1)\left(\right.\right.$ component of \boldsymbol{r}_{i} perpendicular to $\left.\left.\boldsymbol{n}\right)\right]$.

REMARK

The preceding rotation equations give the final position vector \boldsymbol{r}_{f} in terms of the initial position vector \boldsymbol{r}_{i} and the various rotation vectors $\boldsymbol{\gamma}, \boldsymbol{\chi}, \boldsymbol{n}$ (and χ). It is shown later in this section that, despite appearances, γ is not a vector in all respects, but simply a directed line segment; that is, it has some but not all of the vector characteristics (§ 1.1). This is a crucial point in the theory of finite rotations.

Additional Useful Results

(i) In the preceding rotation formulae:
(a) For $\chi= \pm 2 \pi n(n=1,2,3, \ldots)$ they yield

$$
\begin{equation*}
\boldsymbol{r}_{f}=\boldsymbol{r}_{i} \tag{1.10.6a}
\end{equation*}
$$

that is, the body point returns to its initial position, as it should; and
(b) If $\boldsymbol{r}_{i} \cdot \boldsymbol{n}=0$, and $\chi=\pi / 2$, then

$$
\begin{equation*}
\boldsymbol{r}_{f}=\boldsymbol{n} \times \boldsymbol{r}_{i} \tag{1.10.6b}
\end{equation*}
$$

that is, $\boldsymbol{n}, \boldsymbol{r}_{i}, \boldsymbol{r}_{f}$ form an orthogonal and dextral triad at O.
(ii) By swapping the roles of \boldsymbol{r}_{f} and \boldsymbol{r}_{i} and replacing χ with $-\chi$ in (1.10.5g) (i.e., inverting it), we get

$$
\begin{equation*}
\boldsymbol{r}_{i}=\boldsymbol{r}_{f} \cos \chi-\left(\boldsymbol{n} \times \boldsymbol{r}_{f}\right) \sin \chi+\left(\boldsymbol{n} \cdot \boldsymbol{r}_{f}\right) \boldsymbol{n}(1-\cos \chi) \tag{1.10.6c}
\end{equation*}
$$

(iii) For small χ, eqs. (1.10.5d, e) linearize to the earlier "Euler-Mozzi" formula:

$$
\begin{equation*}
\boldsymbol{r}_{f}=\boldsymbol{r}_{i}+\boldsymbol{\chi} \times \boldsymbol{r}_{i} \Rightarrow \Delta \boldsymbol{r} \equiv \boldsymbol{r}_{f}-\boldsymbol{r}_{i}=\boldsymbol{\chi} \times \boldsymbol{r}_{i} \tag{1.10.6d}
\end{equation*}
$$

Finite Rotation of a Line

By using the rotation formulae, one can show that the final position of a body-fixed straight fiber joining two arbitrary such points P_{1} and P_{2}, or 1 and 2 (fig. 1.20), is given by

$$
\begin{aligned}
\left(\boldsymbol{r}_{2 / 1}\right)_{f} & \equiv \boldsymbol{r}_{2, f}-\boldsymbol{r}_{1, f} \\
& =\cdots=(\sin \chi) \boldsymbol{n} \times\left(\boldsymbol{r}_{2 / 1}\right)_{i}+(\cos \chi)\left(\boldsymbol{r}_{2 / 1}\right)_{i}+(1-\cos \chi)\left[\boldsymbol{n} \cdot\left(\boldsymbol{r}_{2 / 1}\right)_{i}\right] \boldsymbol{n},(1.10 .7 \mathrm{a})
\end{aligned}
$$

where

$$
\begin{equation*}
\text { Initial position } \equiv\left(\boldsymbol{r}_{2 / 1}\right)_{i} \rightarrow \text { Final position } \equiv\left(\boldsymbol{r}_{2 / 1}\right)_{f} \tag{1.10.7b}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{r}_{2 / 1} \equiv \boldsymbol{r}_{2}-\boldsymbol{r}_{1}, \quad \text { for both } i \text { and } f \tag{1.10.7c}
\end{equation*}
$$

Finite Rotation of an Orthonormal Basis
By employing the finite rotation equations, let us find the relations between the two ortho-normal-dextral (OND) bases of common origin, $O-\boldsymbol{u}_{k^{\prime}}$ (space-fixed) and

Figure 1.20 Finite rotation of straight segment 12, from (12); to (12) $)_{f}$.
$O-\boldsymbol{u}_{k}$ (body-fixed), if the latter results from the former by a rotation χ about an axis \boldsymbol{n}; that is, symbolically,

$$
\begin{equation*}
\boldsymbol{u}_{k^{\prime}} \xrightarrow{(\boldsymbol{n}, \chi)} \boldsymbol{u}_{k} . \tag{1.10.8a}
\end{equation*}
$$

Applying the earlier rotation equations to this transformation, with $\boldsymbol{r}_{i}=\boldsymbol{u}_{k^{\prime}}$ and $\boldsymbol{r}_{f}=\boldsymbol{u}_{k}$, we obtain the following equivalent expressions:

$$
\begin{equation*}
\boldsymbol{u}_{k}=\boldsymbol{u}_{k^{\prime}}+(\sin \chi)\left(\boldsymbol{n} \times \boldsymbol{u}_{k^{\prime}}\right)+(\cos \chi-1) \boldsymbol{u}_{k^{\prime}, n} \tag{i}
\end{equation*}
$$

where

$$
\begin{align*}
\boldsymbol{u}_{k^{\prime}, n} & \equiv \boldsymbol{u}_{k^{\prime}}-\left(\boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{n}\right) \boldsymbol{n}=\boldsymbol{u}_{k^{\prime}}-(\boldsymbol{n} \otimes \boldsymbol{n}) \cdot \boldsymbol{u}_{k^{\prime}}=(\boldsymbol{1}-\boldsymbol{n} \otimes \boldsymbol{n}) \cdot \boldsymbol{u}_{k^{\prime}} \\
& \equiv \boldsymbol{P} \cdot \boldsymbol{u}_{k^{\prime}}=\text { Component of } \boldsymbol{u}_{k^{\prime}} \text { normal to } \boldsymbol{n} \\
& {[\boldsymbol{P}=\text { projection operator, } \boldsymbol{1}=\text { unit tensor }(\S 1.1)] } \tag{1.10.8c}
\end{align*}
$$

(ii)

$$
\begin{align*}
\boldsymbol{u}_{k} & =(\cos \chi) \boldsymbol{u}_{k^{\prime}}+(\sin \chi)\left(\boldsymbol{n} \times \boldsymbol{u}_{k^{\prime}}\right)+(1-\cos \chi)\left(\boldsymbol{n} \cdot \boldsymbol{u}_{k^{\prime}}\right) \boldsymbol{n} \\
& =[(\cos \chi) \boldsymbol{1}+(\sin \chi)(\boldsymbol{n} \times \boldsymbol{1})+(1-\cos \chi)(\boldsymbol{n} \otimes \boldsymbol{n})] \cdot \boldsymbol{u}_{k^{\prime}} \\
& \equiv(\text { rotation tensor }) \cdot \boldsymbol{u}_{k^{\prime}} \quad[\text { examined in detail below }] \\
& =\boldsymbol{u}_{k^{\prime}}+(\chi \boldsymbol{n}) \times \boldsymbol{u}_{k^{\prime}} \quad(\text { to the first order in } \chi) \\
& \approx \boldsymbol{u}_{k^{\prime}}+(\chi \boldsymbol{n}) \times \boldsymbol{u}_{k^{\prime}} \\
& =\boldsymbol{u}_{k^{\prime}}+\boldsymbol{\chi} \times \boldsymbol{u}_{k^{\prime}} \quad[\text { Euler-Mozzi formula for small rotations }] \tag{1.10.8d}
\end{align*}
$$

(iii)

$$
\begin{align*}
\boldsymbol{u}_{k} & =\boldsymbol{u}_{k^{\prime}}+\left[2 /\left(1+\gamma^{2}\right)\right]\left[\gamma \times \boldsymbol{u}_{k^{\prime}}-\gamma^{2} \boldsymbol{u}_{k^{\prime}}+(\gamma \otimes \gamma) \cdot \boldsymbol{u}_{k^{\prime}}\right] \\
& =\boldsymbol{u}_{k^{\prime}}+\left[2 /\left(1+\gamma^{2}\right)\right]\left[\gamma \times \boldsymbol{u}_{k^{\prime}}+\boldsymbol{\gamma} \times\left(\gamma \times \boldsymbol{u}_{k^{\prime}}\right)\right] \\
& =\boldsymbol{u}_{k^{\prime}}+\left[2 \gamma /\left(1+\gamma^{2}\right)\right] \times\left(\boldsymbol{u}_{k^{\prime}}+\gamma \times \boldsymbol{u}_{k^{\prime}}\right) . \tag{1.10.8e}
\end{align*}
$$

To express the initial basis vectors $\boldsymbol{u}_{k^{\prime}}$ in terms of the final ones \boldsymbol{u}_{k}, we simply replace in any of the above, say (1.10.8e), γ with $-\gamma$. The result is

$$
\begin{equation*}
\boldsymbol{u}_{k^{\prime}}=\boldsymbol{u}_{k}-\left[2 \gamma /\left(1+\gamma^{2}\right)\right] \times\left(\boldsymbol{u}_{k^{\prime}}-\gamma \times \boldsymbol{u}_{k^{\prime}}\right) \tag{1.10.8f}
\end{equation*}
$$

From the above, we can easily deduce that

$$
\begin{equation*}
\boldsymbol{\gamma} \cdot \boldsymbol{u}_{k}=\gamma \cdot \boldsymbol{u}_{k^{\prime}}, \tag{1.10.8~g}
\end{equation*}
$$

as expected; or setting

$$
\begin{equation*}
\boldsymbol{\gamma}=\sum \gamma_{k} \boldsymbol{u}_{k}=\sum \gamma_{k^{\prime}} \boldsymbol{u}_{k^{\prime}}, \tag{1.10.8h}
\end{equation*}
$$

in component form

$$
\begin{equation*}
\gamma_{k}=\gamma_{k^{\prime}} \tag{1.10.8i}
\end{equation*}
$$

The Tensor of Finite Rotation

Let us express the earlier rotation equations in direct/matrix and component forms. Along the rectangular Cartesian axes $O-X Y Z \equiv O-X_{k}$, common to all vectors and tensors involved here, and with the component notations $(k=X, Y, Z)$:

$$
\boldsymbol{r}_{i} \equiv\left(X_{k}\right), \quad \boldsymbol{r}_{f} \equiv\left(Y_{k}\right)
$$

$\gamma=\left(\gamma_{k}:\right.$ Rodrigues parameters $) \Rightarrow \gamma^{2}=\sum \gamma_{k}{ }^{2}=\left(\gamma_{X}\right)^{2}+\left(\gamma_{Y}\right)^{2}+\left(\gamma_{Z}\right)^{2}$, $\boldsymbol{n}=\left(n_{k}\right.$: direction cosines of unit vector defining the axis of rotation $)$,
our rotation equations become

$$
\begin{equation*}
\boldsymbol{r}_{f}=\boldsymbol{R} \cdot \boldsymbol{r}_{i}, \quad Y_{k}=\sum R_{k l} X_{l}=\sum\left[r_{k l} /\left(1+\gamma^{2}\right)\right] X_{l} \tag{1.10.9b}
\end{equation*}
$$

where, recalling (1.10.2e ff.) and the simple tensor algebra of $\S 1.1$, the (nonsymmetrical but proper orthogonal) tensor of finite rotation,

$$
\begin{equation*}
\boldsymbol{R} \equiv \boldsymbol{R}(\boldsymbol{n}, \chi) \equiv\left(R_{k l}\right) \equiv\left(r_{k l} /\left(1+\gamma^{2}\right)\right), \tag{1.10.9c}
\end{equation*}
$$

has the following equivalent representations.
(i) Direct/matrix form (with \boldsymbol{N} : antisymmetric tensor of vector \boldsymbol{n}):
$\boldsymbol{R}=\boldsymbol{1} \cos \chi+\boldsymbol{N} \sin \chi+\boldsymbol{n} \otimes \boldsymbol{n}(1-\cos \chi)$

$$
\begin{align*}
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cos \chi+\left(\begin{array}{ccc}
0 & -n_{Z} & n_{Y} \\
n_{Z} & 0 & -n_{X} \\
-n_{Y} & n_{X} & 0
\end{array}\right) \sin \chi \\
& +\left(\begin{array}{ccc}
n_{X}{ }^{2} & n_{X} n_{Y} & n_{X} n_{Z} \\
n_{Y} n_{X} & n_{Y}{ }^{2} & n_{Y} n_{Z} \\
n_{Z} n_{X} & n_{Z} n_{Y} & n_{Z}^{2}
\end{array}\right)(1-\cos \chi) \\
& =\left(\begin{array}{ccc}
c \chi+n_{X}^{2}(1-c \chi) & -n_{Z} s \chi+n_{X} n_{Y}(1-c \chi) & n_{Y} s \chi+n_{X} n_{Z}(1-c \chi) \\
n_{Z} s \chi+n_{X} n_{Y}(1-c \chi) & c \chi+n_{Y}^{2}(1-c \chi) & -n_{X} s \chi+n_{Y} n_{Z}(1-c \chi) \\
-n_{Y} s \chi+n_{X} n_{Z}(1-c \chi) & n_{X} s \chi+n_{Y} n_{Z}(1-c \chi) & c \chi+n_{Z}^{2}(1-c \chi)
\end{array}\right) \\
& =\boldsymbol{R}\left(n_{X}, n_{Y}, n_{Z} ; \chi\right), \quad \text { under } \quad n_{X}^{2}+n_{Y}^{2}+n_{Z}^{2}=1, \tag{1.10.10a}
\end{align*}
$$

where, as usual, $c(\ldots) \equiv \cos (\ldots), s(\ldots) \equiv \sin (\ldots)$.
(ii) Indicial (Cartesian tensor) form [with $\boldsymbol{N}=\left(N_{k l}\right), \boldsymbol{n}=\left(n_{k}\right)$]:

$$
\begin{align*}
R_{k l} \equiv R_{k l}\left(n_{r}, \chi\right) & =\left(\delta_{k l}\right) \cos \chi+\left(N_{k l}\right) \sin \chi+n_{k} n_{l}(1-\cos \chi) \\
& =\left(\delta_{k l}\right) \cos \chi+\left(\sum \varepsilon_{k r l} n_{r}\right) \sin \chi+n_{k} n_{l}(1-\cos \chi) \tag{1.10.10b}
\end{align*}
$$

Occasionally, the rotation formula is written as

$$
\begin{equation*}
\Delta \boldsymbol{r}=\boldsymbol{R}^{\prime} \cdot \boldsymbol{r}, \quad \text { where } \quad \Delta \boldsymbol{r} \equiv \boldsymbol{r}_{\boldsymbol{f}}-\boldsymbol{r}_{\boldsymbol{i}}, \quad \boldsymbol{r} \equiv \boldsymbol{r}_{i} \tag{1.10.10c}
\end{equation*}
$$

and

$$
\begin{gather*}
\boldsymbol{R}^{\prime} \equiv\left(R_{k l}^{\prime}\right) \equiv \boldsymbol{R}-\boldsymbol{1}=\left(R_{k l}-\delta_{k l}\right) ; \quad \text { rotator tensor }, \\
R_{k l}^{\prime} \equiv R_{k l}-\delta_{k l}=\cdots=\left(\sum \varepsilon_{k r l} n_{r}\right) \sin \chi+\left(n_{k} n_{l}-\delta_{k l}\right)(1-\cos \chi) . \tag{1.10.10d}
\end{gather*}
$$

We notice that the representation (1.10.10d) coincides with the decomposition of $R_{k l}^{\prime}$ into its antisymmetric part:

$$
\sum\left(\varepsilon_{k r l} n_{r}\right) \sin \chi=N_{k l} \sin \chi
$$

and symmetric part:

$$
\left(n_{k} n_{l}-\delta_{k l}\right)(1-\cos \chi)
$$

of which, the former is of the first order in χ, while the latter is of the second order; a result that explains the antisymmetry of the angular velocity tensor [(1.7.22e)].
(iii) In terms of the Rodrigues parameters (a form, most likely, due to G. Darboux):

$$
\left(r_{k l}\right)=\left(\begin{array}{ccc}
1+\gamma_{X}^{2}-\left(\gamma_{Y}^{2}+\gamma_{Z}^{2}\right) & 2\left(\gamma_{X} \gamma_{Y}-\gamma_{Z}\right) & 2\left(\gamma_{X} \gamma_{Z}+\gamma_{Y}\right) \tag{1.10.10e}\\
2\left(\gamma_{X} \gamma_{Y}+\gamma_{Z}\right) & 1+\gamma_{Y}^{2}-\left(\gamma_{Z}^{2}+\gamma_{X}^{2}\right) & 2\left(\gamma_{Y} \gamma_{Z}-\gamma_{X}\right) \\
2\left(\gamma_{X} \gamma_{Z}-\gamma_{Y}\right) & 2\left(\gamma_{Y} \gamma_{Z}+\gamma_{X}\right) & 1+\gamma_{Z}^{2}-\left(\gamma_{X}^{2}+\gamma_{Y}^{2}\right)
\end{array}\right)
$$

The properties of \boldsymbol{R} can be summarized as follows:
(i)

$$
\begin{equation*}
\left.\lim \boldsymbol{R}(\boldsymbol{n}, \chi)\right|_{\chi \rightarrow 0}=\boldsymbol{R}(\boldsymbol{n}, 0)=\boldsymbol{1}, \quad \text { for all } \boldsymbol{n} \tag{1.10.11a}
\end{equation*}
$$

that is, $\boldsymbol{R}(\boldsymbol{n}, \chi)$ is a continuous function of χ.

$$
\begin{equation*}
\boldsymbol{R}(\boldsymbol{n}, \chi) \cdot \boldsymbol{n}=\boldsymbol{n} ; \quad \boldsymbol{n}=\text { axis of rotation } . \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{R}\left(\boldsymbol{n}, \chi_{1}\right) \cdot \boldsymbol{R}\left(\boldsymbol{n}, \chi_{2}\right)=\boldsymbol{R}\left(\boldsymbol{n}, \chi_{1}+\chi_{2}\right) . \tag{iii}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\boldsymbol{R}(\boldsymbol{n}, \chi) \cdot \boldsymbol{R}^{\mathrm{T}}(\boldsymbol{n}, \chi)=\boldsymbol{1} \tag{1.10.11d}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{R}^{\mathrm{T}}(\boldsymbol{n}, \chi)=\boldsymbol{R}^{-1}(\boldsymbol{n}, \chi)=\boldsymbol{R}(\boldsymbol{n},-\chi) \tag{1.10.11e}
\end{equation*}
$$

Also, since the elements of $\boldsymbol{R}, R_{k l}$, depend continuously and differentiably on three independent parameters - for example, Euler's angles (§1.12) - we can say that the

Figure 1.21 Plane rotation about $O z$, through an angle χ.
rotation group is a continuous one; or a Lie group; see, for example, Argyris and Poterasu (1993).

Plane Rotation

This is a special rotation in which

$$
\begin{equation*}
\gamma=\left(\gamma_{X}=0, \gamma_{Y}=0, \gamma_{Z}=\tan (\chi / 2)\right)=\tan (\chi / 2) \boldsymbol{n} \Rightarrow \boldsymbol{n}=\boldsymbol{K} \tag{1.10.12a}
\end{equation*}
$$

Then, with $X_{k} \equiv X, Y$ and $Y_{k} \equiv X^{\prime}, \quad Y^{\prime}$ (fig. 1.21), the rotational equations, (1.10.2g), and so on, specialize to

$$
\begin{equation*}
X^{\prime}=\left[\left(1-\gamma^{2}\right) /\left(1+\gamma^{2}\right)\right] X-\left[2 \gamma /\left(1+\gamma^{2}\right)\right] Y=\cdots=(\cos \chi) X+(-\sin \chi) Y \tag{1.10.12b}
\end{equation*}
$$

$Y^{\prime}=\left[2 \gamma /\left(1+\gamma^{2}\right)\right] X+\left[\left(1-\gamma^{2}\right) /\left(1+\gamma^{2}\right)\right] Y=\cdots=(\sin \chi) X+(\cos \chi) Y$,

$$
\begin{equation*}
Z^{\prime}=Z \tag{1.10.12c}
\end{equation*}
$$

Additional Useful Results

(i) Alternative expressions of the rotation tensor:
(a) Indicial notation:

$$
\begin{align*}
R_{k l} & =\delta_{k l}+\left(\sum \varepsilon_{k r l} n_{r}\right) \sin \chi+\left(n_{k} n_{l}-\delta_{k l}\right)(1-\cos \chi) \\
& =\delta_{k l}+N_{k l} \sin \chi+\sum N_{k s} N_{s l}(1-\cos \chi) \tag{1.10.13a}
\end{align*}
$$

(b) Direct/matrix form $\left[\boldsymbol{N}=\left(N_{k l}\right)\right.$ antisymmetric tensor of vector $\left.\boldsymbol{n}=\left(n_{k}\right)\right]$:

$$
\begin{align*}
\boldsymbol{R} & =\boldsymbol{1}+\boldsymbol{N} \sin \chi+2 \boldsymbol{N} \cdot \boldsymbol{N} \sin ^{2}(\chi / 2) \tag{1.10.13b}\\
& =\boldsymbol{1}+(\sin \chi) \boldsymbol{N}+\left[2 \sin ^{2}(\chi / 2)\right] \boldsymbol{N}^{2} \tag{1.10.13c}\\
& =\boldsymbol{1}+(\sin \chi) \boldsymbol{N}+(1-\cos \chi) \boldsymbol{N}^{2} \tag{1.10.13d}\\
& =\boldsymbol{1}+2 \boldsymbol{N} \sin (\chi / 2)[\boldsymbol{1} \cos (\chi / 2)+\boldsymbol{N} \sin (\chi / 2)] \tag{1.10.13e}
\end{align*}
$$

[Notice that $1-\cos \chi=2 \sin ^{2}(\chi / 2)$ and $\sum N_{k s} N_{s l}=n_{k} n_{l}-\delta_{k l}$, or, in direct notation, $\boldsymbol{N} \cdot \boldsymbol{N}=\boldsymbol{n} \otimes \boldsymbol{n}-\mathbf{1}$. See also Bahar (1970)].
(ii) By swapping the roles of \boldsymbol{r}_{i} and \boldsymbol{r}_{f} and setting $\chi \rightarrow-\chi$, in the preceding rotation formulae, one can show that

$$
\begin{equation*}
\boldsymbol{r}_{i}=\boldsymbol{R}^{-1} \cdot \boldsymbol{r}_{f} \tag{1.10.14a}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{R}^{-1}=\boldsymbol{1}-\boldsymbol{N} \sin \chi+2 \boldsymbol{N} \cdot \boldsymbol{N} \sin ^{2}(\chi / 2)=\boldsymbol{R}^{\mathrm{T}}=\boldsymbol{R}(\boldsymbol{n},-\chi) \tag{1.10.14b}
\end{equation*}
$$

that is, the rotation tensor is indeed orthogonal.
(iii) Let $\boldsymbol{\Gamma} \equiv \boldsymbol{N} \tan (\chi / 2)$: antisymmetric tensor of the Gibbs vector γ. By applying the Cayley-Hamilton theorem to $\boldsymbol{\Gamma}$ [i.e., every tensor satisfies its own characteristic equation (§1.1)],

$$
\begin{equation*}
\Delta(\lambda) \equiv|\boldsymbol{\Gamma}-\lambda \boldsymbol{I}|=0 \Rightarrow \Delta(\boldsymbol{\Gamma})=-\boldsymbol{\Gamma}^{3}-\left[\tan ^{2}(\chi / 2)\right] \boldsymbol{\Gamma}=\mathbf{0} \tag{1.10.15a}
\end{equation*}
$$

(since $\operatorname{Tr} \boldsymbol{\Gamma}=0$ and $\operatorname{Det} \boldsymbol{\Gamma}=0$), one can show that

$$
\begin{equation*}
\boldsymbol{R}=\boldsymbol{1}+2 \cos ^{2}(\chi / 2)\left(\boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{2}\right), \quad \boldsymbol{R}=(\boldsymbol{1}-\boldsymbol{\Gamma})^{-1} \cdot(\boldsymbol{1}+\boldsymbol{\Gamma}) . \tag{1.10.15b}
\end{equation*}
$$

Next, expanding (1.10.15b) symbolically in powers of $\boldsymbol{\Gamma}$, we obtain the representation

$$
\begin{align*}
& \boldsymbol{R}=(\boldsymbol{1}+\boldsymbol{\Gamma}+\cdots) \cdot(\boldsymbol{1}+\boldsymbol{\Gamma})=\boldsymbol{1}+2 \boldsymbol{\Gamma}, \quad \text { to first } \boldsymbol{\Gamma} \text {-order } ; \tag{1.10.15c}\\
& \Rightarrow \boldsymbol{R}^{\prime} \equiv \boldsymbol{R}-\boldsymbol{1}=2 \boldsymbol{\Gamma}, \quad \text { to first } \boldsymbol{\Gamma} \text {-order } . \tag{1.10.15d}
\end{align*}
$$

[Equations $(1.10 .15 \mathrm{c}, \mathrm{d})$ shed some light into the meaning of γ and Γ, and prepare us for the treatment of angular velocity later in this section.] Similar results can be obtained in terms of N.

The Mathematical Problem of Finite Rotation

Usually, this takes one of the following two forms: (i) given χ and \boldsymbol{n}, find \boldsymbol{R}; or (ii) given \boldsymbol{R}, find χ and \boldsymbol{n}. Now, from the preceding indicial forms, we easily obtain (with $k=X, Y, Z$):
(i) $\operatorname{Tr} \boldsymbol{R} \equiv \sum R_{k k}=\cos \chi\left(\sum \delta_{k k}\right)+\sin \chi\left(\sum \sum \varepsilon_{k r k} n_{r}\right)$

$$
\begin{gather*}
+(1-\cos \chi)\left(\sum \sum n_{k} n_{k}\right) \\
=\cos \chi(3)+\sin \chi(0)+(1-\cos \chi)(1)=2 \cos \chi+1 \tag{1.10.16a}
\end{gather*}
$$

(ii) $\quad \sum \sum \varepsilon_{s k l} R_{k l}=\cos \chi\left(\sum \sum \varepsilon_{s k l} \delta_{k l}\right)+\sin \chi\left(\sum \sum \sum \varepsilon_{s k l} \varepsilon_{k r l} n_{r}\right)$

$$
\begin{align*}
& \quad+(1-\cos \chi)\left(\sum \sum \varepsilon_{s k l} n_{k} n_{l}\right) \\
& =\cos \chi(0)+\sin \chi\left(\sum\left(-2 \delta_{r s}\right) n_{r}\right)+(1-\cos \chi)(\boldsymbol{n} \times \boldsymbol{n})_{s} \\
& =-2(\sin \chi) n_{s} \quad[\text { Thanks to the } \varepsilon \text {-identities (1.1.6b ff.) }) . \tag{1.10.16b}
\end{align*}
$$

In sum,

$$
\begin{gather*}
I_{1} \equiv \operatorname{Tr} \boldsymbol{R} \equiv \sum R_{k k}=1+2 \cos \chi=\text { First invariant of } \boldsymbol{R} \tag{1.10.16c}\\
-\sum \sum \varepsilon_{s k l} R_{k l}=2 R_{s}=2(\text { Axial vector of } \boldsymbol{R})_{s}=2(\sin \chi) n_{s} \Rightarrow R_{k}=(\sin \chi) n_{k} \tag{1.10.16d}
\end{gather*}
$$

or, explicitly,

$$
\begin{align*}
& R_{1}=(-1 / 2)\left(\varepsilon_{123} R_{23}+\varepsilon_{132} R_{32}\right)=\left(R_{32}-R_{23}\right) / 2=(\sin \chi) n_{1}, \tag{1.10.16e}\\
& R_{2}=(-1 / 2)\left(\varepsilon_{231} R_{31}+\varepsilon_{213} R_{13}\right)=\left(R_{13}-R_{31}\right) / 2=(\sin \chi) n_{2}, \tag{1.10.16f}\\
& R_{3}=(-1 / 2)\left(\varepsilon_{312} R_{12}+\varepsilon_{321} R_{21}\right)=\left(R_{21}-R_{12}\right) / 2=(\sin \chi) n_{3} . \tag{1.10.16~g}
\end{align*}
$$

Now, the first problem of rotation is, clearly, answered by the earlier rotation formulae (1.10.10 ff.); while the second is answered by solving the system of the four equations ($1.10 .16 \mathrm{c}, \mathrm{e}-\mathrm{g}$) for the four unknowns $\chi ; n_{1,2,3}$. Indeed,
(i) From $(1.10 .16 \mathrm{c})$, we obtain

$$
\begin{equation*}
\cos \chi=\left(I_{1}-1\right) / 2 \equiv(\operatorname{Tr} \boldsymbol{R}-1) / 2 \tag{1.10.17a}
\end{equation*}
$$

(a) From (1.10.16e-g), if $\sin \chi \neq 0$,
$n_{1}=\left(R_{32}-R_{23}\right) / 2 \sin \chi, \quad n_{2}=\left(R_{13}-R_{31}\right) / 2 \sin \chi, \quad n_{3}=\left(R_{21}-R_{12}\right) / 2 \sin \chi$,
or, vectorially,

$$
\boldsymbol{n}=\left(1 / n^{\prime}\right)\left[\left(R_{32}-R_{23}\right) \boldsymbol{I}+\left(R_{13}-R_{31}\right) \boldsymbol{J}+\left(R_{21}-R_{12}\right) \boldsymbol{K}\right]
$$

where

$$
\begin{equation*}
n^{\prime} \equiv 2 \sin \chi=\cdots=[(1+\operatorname{Tr} \boldsymbol{R}) \cdot(3-\operatorname{Tr} \boldsymbol{R})]^{1 / 2}: \text { normalizing factor } \tag{1.10.17c}
\end{equation*}
$$

(b) If $\sin \chi=0$, then $\chi=0$ or $\pm \pi$ (or some integral multiple thereof);
(b.1) If $\chi=0$, then, as (1.10.11a) shows, $\boldsymbol{R}=\left(R_{k l}\right)=\left(\delta_{k l}\right) \equiv \boldsymbol{1}$; that is, \boldsymbol{n} becomes undetermined: no rotation occurs; while
(b.2) If $\chi= \pm \pi \Rightarrow \cos \chi=-1$, then, as (1.10.10 ff.) show,

$$
\begin{align*}
\boldsymbol{R}=\left(R_{k l}\right) & =\left(2 n_{k} n_{l}-\delta_{k l}\right) \\
& =\left(\begin{array}{ccc}
2 n_{1}^{2}-1 & 2 n_{1} n_{2} & 2 n_{1} n_{3} \\
2 n_{2} n_{1} & 2 n_{2}^{2}-1 & 2 n_{2} n_{3} \\
2 n_{3} n_{1} & 2 n_{3} n_{2} & 2 n_{3}^{2}-1
\end{array}\right), \tag{1.10.17d}
\end{align*}
$$

or, explicitly,

$$
\begin{align*}
& R_{11}=2 n_{1}^{2}-1 \Rightarrow n_{1}= \pm\left[\left(1+R_{11}\right) / 2\right]^{1 / 2} \tag{1.10.17e}\\
& R_{22}=2 n_{2}^{2}-1 \Rightarrow n_{2}= \pm\left[\left(1+R_{22}\right) / 2\right]^{1 / 2} \tag{1.10.17f}\\
& R_{33}=2 n_{3}^{2}-1 \Rightarrow n_{3}= \pm\left[\left(1+R_{33}\right) / 2\right]^{1 / 2} \tag{1.10.17~g}
\end{align*}
$$

and the ultimate signs of $n_{1,2,3}$ are chosen so that ($1.10 .17 \mathrm{e}-\mathrm{g}$) are consistent with the rest of (1.10.17d):

$$
n_{1} n_{2}=R_{12} / 2=R_{21} / 2, \quad n_{1} n_{3}=R_{13} / 2=R_{31} / 2, \quad n_{2} n_{3}=R_{23} / 2=R_{32} / 2
$$

The angle χ can also be obtained from the off-diagonal elements of \boldsymbol{R} as follows: multiplying (1.10.17b) with n_{1}, n_{2}, n_{3}, respectively, adding together, and invoking the normalization constraint $n_{1}{ }^{2}+n_{2}{ }^{2}+n_{3}{ }^{2}=1$, we find

$$
\begin{equation*}
\sin \chi=(1 / 2)\left[n_{1}\left(R_{32}-R_{23}\right)+n_{2}\left(R_{13}-R_{31}\right)+n_{3}\left(R_{21}-R_{12}\right)\right] . \tag{1.10.17h}
\end{equation*}
$$

Rotation as an Eigenvalue Problem

(This subsection relies heavily on the spectral theory of § 1.1.) In view of the rotation formula

$$
\begin{equation*}
\boldsymbol{r}_{f}=\boldsymbol{R} \cdot \boldsymbol{r}_{i} \tag{1.10.18a}
\end{equation*}
$$

the earlier fundamental Eulerian theorem (§1.9: The most general displacement of a rigid body about a fixed point can be effected by a rotation about an axis through that point \Rightarrow that axis is carried onto itself: $\boldsymbol{R} \cdot \boldsymbol{n}=\boldsymbol{n}$) translates to the following algebraic statement: The real proper orthogonal tensor of rotation \boldsymbol{R} has always the eigenvalue +1 ; that is, at least one of the eigenvalues of the eigenvalue problem

$$
\begin{equation*}
\left(\boldsymbol{r}_{f}=\right) \boldsymbol{R} \cdot \boldsymbol{r}_{i}=\lambda \boldsymbol{r}_{i} \tag{1.10.18b}
\end{equation*}
$$

equals +1 ; or, every rotation has an invariant vector, which is Euler's theorem.
Let us examine these eigenvalues more systematically. The latter are the three roots of

$$
\begin{equation*}
|\boldsymbol{R}-\lambda \boldsymbol{I}|=0 \quad\left(\lambda: \lambda_{1,2,3}\right) \tag{1.10.18c}
\end{equation*}
$$

and it is shown in linear algebra that:
(a) They all have unit magnitude $\left[\right.$ Since $\boldsymbol{r}_{f} \cdot \boldsymbol{r}_{f}=\left(\boldsymbol{R} \cdot \boldsymbol{r}_{i}\right) \cdot\left(\boldsymbol{R} \cdot \boldsymbol{r}_{i}\right)=\left(\boldsymbol{r}_{i} \cdot \boldsymbol{R}^{\mathrm{T}}\right) \cdot\left(\boldsymbol{R} \cdot \boldsymbol{r}_{i}\right)=$ $\boldsymbol{r}_{i} \cdot \boldsymbol{r}_{i}=\boldsymbol{r}_{i}^{2}$, the eigenvalue equation (1.10.18b) becomes

$$
\left.\boldsymbol{r}_{f} \cdot \boldsymbol{r}_{f}=\boldsymbol{r}_{i} \cdot \boldsymbol{r}_{i}=\lambda^{2} \boldsymbol{r}_{i} \cdot \boldsymbol{r}_{i} \Rightarrow \lambda^{2}=1 \quad\left(\text { for } \boldsymbol{r}_{i} \neq \mathbf{0}\right)\right] ;
$$

(b) At least one of them is real [From the corresponding characteristic equation:

$$
\Delta(\lambda) \equiv|\boldsymbol{R}-\lambda \boldsymbol{I}|=(-1)^{3} \lambda^{3}+\cdots+(\operatorname{Det} \boldsymbol{R}) \lambda^{0}=0
$$

we readily see that

$$
\left.\lim \Delta(\lambda)\right|_{\lambda \rightarrow-\infty}=+\infty, \quad \text { and }\left.\quad \lim \Delta(\lambda)\right|_{\lambda \rightarrow+\infty}=-\infty
$$

Hence, $\Delta(\lambda)$ crosses the λ axis at least once; that is, $\Delta(\lambda)=0$ has at least one real root; and, by (i), that root is either +1 or -1 .]
(c) Complex eigenvalues occur in pairs of complex conjugate numbers [since the coefficients of $\Delta(\lambda)=0$ are real];
(d) $I_{3}(\boldsymbol{R}) \equiv I_{3}=\operatorname{Det} \boldsymbol{R} \equiv\left|R_{k k}\right| \equiv R=\lambda_{1} \lambda_{2} \lambda_{3}=+1$. [Initially, that is before the rotation, $\quad \boldsymbol{r}_{f}=\boldsymbol{R} \cdot \boldsymbol{r}_{i}=\boldsymbol{r}_{i} \Rightarrow \boldsymbol{R}=\boldsymbol{1} \Rightarrow \operatorname{Det} \boldsymbol{l}=+1$, and since thereafter \boldsymbol{R} evolves continuously from 1 , it must be a proper orthogonal tensor; that is, $|\boldsymbol{R}| \equiv \operatorname{Det} \boldsymbol{R}=+1=\Delta(0)$. This expresses the "obvious" kinematical fact that, as long as we remain inside our Euclidean three-dimensional space, a right-handed coordinate system cannot change to a left-handed one by a continuous rigid-body
motion of its axes; such "polarity" changes, called inversions or reflections, require continuous transformations in a higher dimensional space; for example, righthanded two-dimensional axes can be changed to left-handed $t w o$-dimensional axes by a continuous rotation inside the surrounding three-dimensional space.]

Combining these results, we conclude that either: (i) All three eigenvalues of \boldsymbol{R} are real and equal to +1 ; which is the trivial case of the identity transformation; or, and this is the case of main interest (Euler's theorem), (ii) Only one of these eigenvalues is real and equals $+1[\Rightarrow \Delta(1) \equiv|\boldsymbol{R}-\boldsymbol{1}|=0]$; while the other two are the complex conjugate numbers: $\cos \chi \pm i \sin \chi \equiv \exp (\pm i \chi)$. As a result of the above:
(a) The direction cosines of the axis of rotation $\boldsymbol{n}=\left(n_{X}, n_{Y}, n_{Z}\right)$ can be obtained by setting in eq. (1.10.18b) $\lambda=1, \boldsymbol{r}_{i}=\boldsymbol{n}$:

$$
\begin{equation*}
(\boldsymbol{R}-\lambda \boldsymbol{I}) \cdot \boldsymbol{r}_{i}=0 \Rightarrow \boldsymbol{R} \cdot \boldsymbol{n}=\boldsymbol{n}, \tag{1.10.19a}
\end{equation*}
$$

and then solving for $n_{X, Y, Z}$ under the constraint $n_{X}{ }^{2}+n_{Y}{ }^{2}+n_{Z}{ }^{2}=1$; and
(b) The invariants of \boldsymbol{R} can be summarized as follows:

$$
\begin{align*}
I_{1}(\boldsymbol{R}) & =\operatorname{Tr} \boldsymbol{R} \equiv R_{11}+R_{22}+R_{33} \\
& =\lambda_{1}+\lambda_{2}+\lambda_{3}=1+\exp (+i \chi)+\exp (-i \chi)=1+2 \cos \chi ; \tag{1.10.19b}\\
I_{2}(\boldsymbol{R}) & =\left[(\operatorname{Tr} \boldsymbol{R})^{2}-\operatorname{Tr}\left(\boldsymbol{R}^{2}\right)\right] / 2=(\operatorname{Det} \boldsymbol{R})\left(\operatorname{Tr} \boldsymbol{R}^{-1}\right) \\
& =(+1)\left(\operatorname{Tr} \boldsymbol{R}^{\mathrm{T}}\right)=(+1)(\operatorname{Tr} \boldsymbol{R})=I_{1}(\boldsymbol{R}) \\
{[} & =\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \\
& =(1)[\exp (i \chi)]+(1)[\exp (-i \chi)]+\exp (i \chi) \exp (-i \chi)=2 \cos \chi+1] ;(1.10 .19 \mathrm{c}) \\
I_{3}(\boldsymbol{R}) & =\operatorname{Det} \boldsymbol{R}=\lambda_{1} \lambda_{2} \lambda_{3}=+1 ; \tag{1.10.19d}
\end{align*}
$$

that is, \boldsymbol{R} has only two independent invariants.

Composition of Finite Rotations

Here we show that finite rotations are noncommutative; specifically, that two or more successive finite rotations of a rigid body with a fixed point O (or, generally, about axes intersecting at the real or fictitious rigid extension of the body) can be reproduced by a single rotation about an axis through O; but that resultant or equivalent single rotation does depend on the order of the component or constituent rotations.

Quantitatively, let the rotation vector γ_{1} carry the generic body point position vector from \boldsymbol{r}_{1} to \boldsymbol{r}_{2}; and, similarly, let $\boldsymbol{\gamma}_{2}$ carry \boldsymbol{r}_{2} to \boldsymbol{r}_{3}. We are seeking to express the vector of the resultant rotation $\gamma_{1,2}$ (i.e., of the one carrying \boldsymbol{r}_{1} to \boldsymbol{r}_{3}) in terms of its "components" γ_{1} and γ_{2}. Schematically,

By Rodrigues' formula (1.10.4b), applied to $\boldsymbol{r}_{1} \rightarrow \boldsymbol{r}_{2}$ and $\boldsymbol{r}_{2} \rightarrow \boldsymbol{r}_{3}$, we obtain

$$
\begin{equation*}
\boldsymbol{r}_{2}-\boldsymbol{r}_{1}=\boldsymbol{\gamma}_{1} \times\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{1}\right), \quad \boldsymbol{r}_{3}-\boldsymbol{r}_{2}=\boldsymbol{\gamma}_{2} \times\left(\boldsymbol{r}_{3}+\boldsymbol{r}_{2}\right) \tag{1.10.20b}
\end{equation*}
$$

respectively. Now, on these two basic equations we perform the following operations:
(i) We dot the first of the above with γ_{1} and the second with γ_{2} :

$$
\begin{align*}
& \boldsymbol{\gamma}_{1} \cdot\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right)=\gamma_{1} \cdot\left[\gamma_{1} \times\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{1}\right)\right]=0 \Rightarrow \boldsymbol{\gamma}_{1} \cdot \boldsymbol{r}_{2}=\boldsymbol{\gamma}_{1} \cdot \boldsymbol{r}_{1}, \tag{1.10.20c}\\
& \boldsymbol{\gamma}_{2} \cdot\left(\boldsymbol{r}_{3}-\boldsymbol{r}_{2}\right)=\boldsymbol{\gamma}_{2} \cdot\left[\gamma_{2} \times\left(\boldsymbol{r}_{3}+\boldsymbol{r}_{2}\right)\right]=0 \Rightarrow \boldsymbol{\gamma}_{2} \cdot \boldsymbol{r}_{3}=\boldsymbol{\gamma}_{2} \cdot \boldsymbol{r}_{2} . \tag{1.10.20d}
\end{align*}
$$

(ii) We cross the first of $(1.10 .20 \mathrm{~b})$ with γ_{2} and the second with γ_{1} and subtract side by side:

$$
\begin{aligned}
\boldsymbol{\gamma}_{2} \times\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right)-\boldsymbol{\gamma}_{1} \times\left(\boldsymbol{r}_{3}-\boldsymbol{r}_{2}\right)= & \left(\boldsymbol{\gamma}_{1}+\boldsymbol{\gamma}_{2}\right) \times \boldsymbol{r}_{2}-\boldsymbol{\gamma}_{2} \times \boldsymbol{r}_{1}-\boldsymbol{\gamma}_{1} \times \boldsymbol{r}_{3} \\
= & \boldsymbol{\gamma}_{2} \times\left[\gamma_{1} \times\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{1}\right)\right]-\gamma_{1} \times\left[\gamma_{2} \times\left(\boldsymbol{r}_{3}+\boldsymbol{r}_{2}\right)\right] \\
= & \left\{\boldsymbol{\gamma}_{1}\left[\gamma_{2} \cdot\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{1}\right)\right]-\left(\gamma_{1} \cdot \boldsymbol{\gamma}_{2}\right)\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{1}\right)\right\} \\
& -\left\{\boldsymbol{\gamma}_{2}\left[\gamma_{1} \cdot\left(\boldsymbol{r}_{3}+\boldsymbol{r}_{2}\right)\right]-\left(\gamma_{1} \cdot \boldsymbol{\gamma}_{2}\right)\left(\boldsymbol{r}_{3}+\boldsymbol{r}_{2}\right)\right\}
\end{aligned}
$$

[expanding, and then rearranging while taking into account $(1.10 .20 \mathrm{c}, \mathrm{d})$]

$$
\begin{align*}
& =\left[\left(\gamma_{2} \cdot \boldsymbol{r}_{2}+\gamma_{2} \cdot \boldsymbol{r}_{1}\right) \boldsymbol{\gamma}_{1}-\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right) \boldsymbol{r}_{2}-\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right) \boldsymbol{r}_{1}\right] \\
& -\left[\left(\gamma_{1} \cdot \boldsymbol{r}_{3}+\gamma_{1} \cdot \boldsymbol{r}_{2}\right) \gamma_{2}-\left(\boldsymbol{\gamma}_{1} \cdot \gamma_{2}\right) \boldsymbol{r}_{3}-\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right) \boldsymbol{r}_{2}\right] \\
& =\left[\left(\gamma_{2} \cdot \boldsymbol{r}_{3}+\gamma_{2} \cdot \boldsymbol{r}_{1}\right) \boldsymbol{\gamma}_{1}-\left(\gamma_{1} \cdot \gamma_{2}\right) \boldsymbol{r}_{2}-\left(\gamma_{1} \cdot \gamma_{2}\right) \boldsymbol{r}_{1}\right] \\
& -\left[\left(\gamma_{1} \cdot \boldsymbol{r}_{3}+\gamma_{1} \cdot \boldsymbol{r}_{1}\right) \boldsymbol{\gamma}_{2}-\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right) \boldsymbol{r}_{3}-\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right) \boldsymbol{r}_{2}\right] \\
& =\left[\left(\gamma_{2} \cdot \boldsymbol{r}_{3}+\gamma_{2} \cdot \boldsymbol{r}_{1}\right) \boldsymbol{\gamma}_{1}\right]-\left[\left(\gamma_{1} \cdot \boldsymbol{r}_{3}+\gamma_{1} \cdot \boldsymbol{r}_{1}\right) \boldsymbol{\gamma}_{2}\right]-\left(\gamma_{1} \cdot \boldsymbol{\gamma}_{2}\right)\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{3}\right) \\
& =\left[\left(\gamma_{2} \cdot \boldsymbol{r}_{1}\right) \boldsymbol{\gamma}_{1}-\left(\gamma_{1} \cdot \boldsymbol{r}_{1}\right) \gamma_{2}\right]+\left[\left(\gamma_{2} \cdot \boldsymbol{r}_{3}\right) \boldsymbol{\gamma}_{1}-\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{r}_{3}\right) \boldsymbol{\gamma}_{2}\right] \\
& -\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right)\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{3}\right) \\
& =\left(\gamma_{2} \times \gamma_{1}\right) \times \boldsymbol{r}_{1}+\left(\gamma_{2} \times \boldsymbol{\gamma}_{1}\right) \times \boldsymbol{r}_{3}-\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right)\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{3}\right) \\
& =\left(\gamma_{2} \times \boldsymbol{\gamma}_{1}\right) \times\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{3}\right)+\left(\gamma_{1} \cdot \boldsymbol{\gamma}_{2}\right)\left(\boldsymbol{r}_{3}-\boldsymbol{r}_{1}\right), \tag{1.10.20e}
\end{align*}
$$

or, equating the right side of the first line with the last line of (1.10.20e) and rearranging,

$$
\begin{align*}
\left(\gamma_{1}+\gamma_{2}\right) \times \boldsymbol{r}_{2}=\gamma_{2} \times \boldsymbol{r}_{1} & +\boldsymbol{\gamma}_{1} \times \boldsymbol{r}_{3} \\
& +\left(\gamma_{2} \times \gamma_{1}\right) \times\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{3}\right)+\left(\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\gamma}_{2}\right)\left(\boldsymbol{r}_{3}-\boldsymbol{r}_{1}\right) \tag{1.10.20f}
\end{align*}
$$

(iii) We add (1.10.20b) side by side and rearrange to obtain

$$
\begin{gather*}
\boldsymbol{r}_{3}-\boldsymbol{r}_{1}=\gamma_{1} \times\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{1}\right)+\boldsymbol{\gamma}_{2} \times\left(\boldsymbol{r}_{3}+\boldsymbol{r}_{2}\right)=\gamma_{1} \times \boldsymbol{r}_{2}+\gamma_{1} \times \boldsymbol{r}_{1}+\gamma_{2} \times \boldsymbol{r}_{3}+\gamma_{2} \times \boldsymbol{r}_{2} \\
\Rightarrow\left(\gamma_{1}+\gamma_{2}\right) \times \boldsymbol{r}_{2}=\boldsymbol{r}_{3}-\boldsymbol{r}_{1}-\gamma_{1} \times \boldsymbol{r}_{1}-\gamma_{2} \times \boldsymbol{r}_{3} . \tag{1.10.20~g}
\end{gather*}
$$

(iv) Finally, equating the two expressions for $\left(\gamma_{1}+\gamma_{2}\right) \times \boldsymbol{r}_{2}$, right sides of (1.10.20f) and (1.10 .20 g), and rearranging, we obtain the Rodrigues-like formula [i.e., à la (1.10.4b)]

$$
\begin{equation*}
\boldsymbol{r}_{3}-\boldsymbol{r}_{1}=\boldsymbol{\gamma}_{1,2} \cdot\left(\boldsymbol{r}_{3}+\boldsymbol{r}_{1}\right) \tag{1.10.20h}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma_{1,2} \equiv \gamma_{1 \rightarrow 2} & \equiv\left[\gamma_{1}+\gamma_{2}+\gamma_{2} \times \gamma_{1}\right] /\left(1-\gamma_{1} \cdot \gamma_{2}\right) \\
& =\text { Resultant single rotation "vector," that brings } \boldsymbol{r}_{1} \text { to } \boldsymbol{r}_{3} . \tag{1.10.20i}
\end{align*}
$$

This is the sought fundamental formula for the composition of finite rigid rotations. [For additional derivations of $(1.10 .20 \mathrm{~h}, \mathrm{i})$ see, for example, Hamel (1949, pp. 107117; via complex number representations and quaternions), Lur'e (1968, pp. 101104; via spherical trigonometry); also, Ames and Murnaghan (1929, pp. 82-85). The above vectorial proof seems to be due to Coe (1938, p. 170); see also Fox (1967, p. 8); and, for a simpler proof, Chester (1979, pp. 246-248).]

In terms of the corresponding rotation tensors, we would have (with some ad hoc notations),

$$
\begin{align*}
\boldsymbol{r}_{i} \rightarrow \boldsymbol{r}_{f^{\prime}}: & \boldsymbol{r}_{f^{\prime}}=\boldsymbol{R}_{1} \cdot \boldsymbol{r}_{i} \tag{1.10.21a}\\
\boldsymbol{r}_{f^{\prime}} \rightarrow \boldsymbol{r}_{f}: & \boldsymbol{r}_{f}=\boldsymbol{R}_{2} \cdot \boldsymbol{r}_{f^{\prime}}=\boldsymbol{R}_{2} \cdot\left(\boldsymbol{R}_{1} \cdot \boldsymbol{r}_{i}\right) \equiv \boldsymbol{R}_{1,2} \cdot \boldsymbol{r}_{i} \tag{1.10.21b}
\end{align*}
$$

where

$$
\boldsymbol{R}_{1,2} \equiv \boldsymbol{R}_{2} \cdot \boldsymbol{R}_{1} \quad\left(\neq \boldsymbol{R}_{1} \cdot \boldsymbol{R}_{2} \equiv \boldsymbol{R}_{2,1}\right): \text { resultant rotation tensor. } \quad \text { (1.10.21c) }
$$

REMARKS ON $\gamma_{1,2}$

(i) Equation (1.10.20i) readily shows that the γ 's are not genuine vectors; as the presence of $\gamma_{2} \times \gamma_{1}$ there makes clear [or the noncommutativity in (1.10.21c)], in general, finite rotations are noncommutative. Indeed, had we applied γ_{2} first, and γ_{1} second, the resultant would have been [swap the order of γ_{1} and γ_{2} in (1.10.20i)]

$$
\begin{equation*}
\left(\gamma_{2}+\gamma_{1}+\gamma_{1} \times \gamma_{2}\right) /\left(1-\gamma_{2} \cdot \gamma_{1}\right) \equiv \gamma_{2,1} \equiv \gamma_{2 \rightarrow 1} \neq \gamma_{1,2} \equiv \gamma_{1 \rightarrow 2} \tag{1.10.22a}
\end{equation*}
$$

For rotations to commute, like genuine vectors, the term $\gamma_{2} \times \gamma_{1}$ must vanish, either exactly or approximately. The former happens for rotations about the same axis; and the latter for infinitesimal (i.e., linear) rotations: there, $\gamma_{2} \times \gamma_{1}=$ second-order quantity $\approx \mathbf{0}$.
(ii) If $\boldsymbol{\gamma}_{1} \cdot \gamma_{2}=1$, the composition formula (1.10.20i), obviously, fails. Then, the corresponding "resultant angle" $\chi_{1,2}$ is an integral multiple of π.
(iii) From (1.10.20i) it is not hard to show that

$$
\begin{equation*}
1 /\left(1+\gamma_{1,2}^{2}\right)^{1 / 2}=\left(1-\gamma_{2} \cdot \gamma_{1}\right) /\left[\left(1+\gamma_{1}^{2}\right)^{1 / 2}\left(1+\gamma_{2}^{2}\right)^{1 / 2}\right] \tag{1.10.22b}
\end{equation*}
$$

and combining this, again, with (1.10.20i) we readily obtain

$$
\begin{equation*}
\gamma_{1,2} /\left(1+\gamma_{1,2}^{2}\right)^{1 / 2}=\left[\gamma_{1}+\gamma_{2}+\gamma_{2} \times \gamma_{1}\right] /\left[\left(1+\gamma_{1}^{2}\right)^{1 / 2}\left(1+\gamma_{2}^{2}\right)^{1 / 2}\right] \tag{1.10.22c}
\end{equation*}
$$

[which is the formula for the vector part of a product of two (unit) quaternions; see Papastavridis (Elementary Mechanics, under production)].

Finite rotations may not be commutative, but they are associative: the sequence of rotations, expressed in terms of their γ vectors-for example, $\gamma_{1} \rightarrow \gamma_{2} \rightarrow \gamma_{3}$-can be achieved either by combining the resultant of $\gamma_{1} \rightarrow \gamma_{2}$ with γ_{3}, or by combining γ_{1} with the resultant of $\gamma_{2} \rightarrow \gamma_{3}$. In view of this, the sequence $-\gamma_{1} \rightarrow \gamma_{1} \rightarrow \gamma_{2}$ is equiva-
lent to the rotation γ_{2}, and also to the sequence $-\gamma_{1} \rightarrow \gamma_{1,2}$. Therefore, if in the fundamental "addition" formula (1.10.20i) we make the following replacements:

$$
\begin{equation*}
\gamma_{1} \rightarrow-\gamma_{1}, \quad \gamma_{2} \rightarrow \gamma_{1,2}, \quad \gamma_{1,2} \rightarrow \gamma_{2} \tag{1.10.23a}
\end{equation*}
$$

we obtain the "subtraction" formula:

$$
\begin{equation*}
\gamma_{2}=\left[-\gamma_{1}+\gamma_{1,2}+\gamma_{1,2} \times\left(-\gamma_{1}\right)\right] /\left[1-\left(-\gamma_{1}\right) \cdot \gamma_{1,2}\right] \tag{1.10.23b}
\end{equation*}
$$

or, finally,

$$
\begin{equation*}
\gamma_{2}=\left[\gamma_{1,2}-\gamma_{1}+\gamma_{1} \times \gamma_{1,2}\right] /\left(1+\gamma_{1} \cdot \gamma_{1,2}\right), \tag{1.10.23c}
\end{equation*}
$$

which allows us to find the second rotation "vector" from a knowledge of the first and the compounded rotation "vectors." Similarly, to find γ_{1} from γ_{2} and $\gamma_{1,2}$, we consider the rotation sequence $\gamma_{1,2} \rightarrow-\gamma_{2}$, which, clearly, is equivalent to the rotation γ_{1}. Hence, with the following replacements:

$$
\begin{equation*}
\gamma_{1} \rightarrow \gamma_{1,2}, \quad \gamma_{2} \rightarrow-\gamma_{2}, \quad \gamma_{1,2} \rightarrow \gamma_{1} \tag{1.10.23d}
\end{equation*}
$$

in (1.10.20i) we obtain the "subtraction" formula:

$$
\begin{equation*}
\gamma_{1}=\left(\gamma_{1,2}-\gamma_{2}+\gamma_{1,2} \times \gamma_{2}\right) /\left(1+\gamma_{2} \cdot \gamma_{1,2}\right) . \tag{1.10.23e}
\end{equation*}
$$

With such simple (and obviously nonunique) geometrical arguments, we can avoid solving (1.10.20i) for γ_{1}, γ_{2}. (These results prove useful in relating γ to the angular velocity ω.)

Infinitesimal (Linearized) Rotations Commute
First, let us apply the infinitesimal rotation χ_{1} to \boldsymbol{r}_{i} [recalling (1.10.6d)]:

$$
\begin{equation*}
\boldsymbol{r}_{i} \rightarrow \boldsymbol{r}_{1}^{\prime}=\boldsymbol{r}_{i}+d \boldsymbol{r}_{i}=\boldsymbol{r}_{i}+\chi_{1} \times \boldsymbol{r}_{i} . \tag{1.10.24a}
\end{equation*}
$$

Next, let us apply $\boldsymbol{\chi}_{2}$ to $\boldsymbol{r}_{1}{ }^{\prime}$:

$$
\begin{align*}
\boldsymbol{r}_{1}^{\prime} \rightarrow \boldsymbol{r}_{f}^{\prime} & =\boldsymbol{r}_{1}^{\prime}+d \boldsymbol{r}_{1}^{\prime}=\boldsymbol{r}_{1}^{\prime}+\chi_{2} \times \boldsymbol{r}_{1}^{\prime} \\
& =\left(\boldsymbol{r}_{i}+\chi_{1} \times \boldsymbol{r}_{i}\right)+\chi_{2} \times\left(\boldsymbol{r}_{i}+\chi_{1} \times \boldsymbol{r}_{i}\right) \\
& =\boldsymbol{r}_{i}+\left(\chi_{1}+\chi_{2}\right) \times \boldsymbol{r}_{i}+\chi_{2} \times\left(\chi_{1} \times \boldsymbol{r}_{i}\right) . \tag{1.10.24b}
\end{align*}
$$

Reversing the order of the process - that is, applying χ_{2} first to \boldsymbol{r}_{i}, and then χ_{1} to the result - we obtain

$$
\begin{align*}
\boldsymbol{r}_{f}{ }^{\prime \prime}=\boldsymbol{r}_{1}{ }^{\prime \prime}+d \boldsymbol{r}_{1}{ }^{\prime \prime} & =\boldsymbol{r}_{1}^{\prime \prime}+\chi_{1} \times \boldsymbol{r}_{1}{ }^{\prime \prime} \\
& =\left(\boldsymbol{r}_{i}+\chi_{2} \times \boldsymbol{r}_{i}\right)+\chi_{1} \times\left(\boldsymbol{r}_{i}+\chi_{2} \times \boldsymbol{r}_{i}\right) \\
& =\boldsymbol{r}_{i}+\left(\chi_{2}+\chi_{1}\right) \times \boldsymbol{r}_{i}+\chi_{1} \times\left(\chi_{2} \times \boldsymbol{r}_{i}\right) ; \tag{1.10.24c}
\end{align*}
$$

and, therefore, subtracting $(1.10 .24 \mathrm{c})$ from (1.10.24b) side by side, we obtain

$$
\begin{equation*}
\boldsymbol{r}_{f}^{\prime}-\boldsymbol{r}_{f}^{\prime \prime}=\boldsymbol{\chi}_{2} \times\left(\boldsymbol{\chi}_{1} \times \boldsymbol{r}_{i}\right)-\boldsymbol{\chi}_{1} \times\left(\boldsymbol{\chi}_{2} \times \boldsymbol{r}_{i}\right)=\text { second-order vector in } \chi_{1}, \boldsymbol{\chi}_{2} \tag{1.10.24d}
\end{equation*}
$$

that is, to the first order in χ_{1}, χ_{2} :

$$
\begin{equation*}
\boldsymbol{r}_{f}^{\prime}=\boldsymbol{r}_{f}^{\prime \prime}, \quad \text { Q.E.D. } \tag{1.10.24e}
\end{equation*}
$$

Similarly, for an arbitrary number of infinitesimal rotations $\chi_{1}, \chi_{2}, \ldots$, to the first order:

$$
\begin{equation*}
\boldsymbol{r}_{f}=\boldsymbol{r}_{i}+\left(\chi_{1}+\chi_{2}+\cdots\right) \times \boldsymbol{r}_{i} . \tag{1.10.24f}
\end{equation*}
$$

Angular Velocity

(i) Angular Velocity from Finite Rotation

Expanding the rotation tensor (1.10.10e) [with (1.10.9b)] in powers of $\gamma_{X, Y, Z}$, and since (with customary calculus notations)

$$
\begin{equation*}
\gamma \equiv \tan (\chi / 2) \boldsymbol{n}=(\chi / 2) \boldsymbol{n}+\boldsymbol{O}\left(\chi^{3}\right)=\chi / 2+\boldsymbol{O}\left(\chi^{3}\right), \tag{1.10.25a}
\end{equation*}
$$

we find
$\boldsymbol{R}=\left(\begin{array}{ccc}1 & -2 \gamma_{Z} & 2 \gamma_{Y} \\ 2 \gamma_{Z} & 1 & -2 \gamma_{X} \\ -2 \gamma_{Y} & 2 \gamma_{X} & 1\end{array}\right)+\boldsymbol{O}\left(\gamma^{2}\right)$
[Linear rotation tensor $\equiv \boldsymbol{R}_{0}$]

$$
=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
0 & -2 \gamma_{Z} & 2 \gamma_{Y} \\
2 \gamma_{Z} & 0 & -2 \gamma_{X} \\
-2 \gamma_{Y} & 2 \gamma_{X} & 0
\end{array}\right)+\boldsymbol{O}\left(\gamma^{2}\right)
$$

[Identity tensor] [Linear rotator tensor $\equiv \boldsymbol{R}_{\mathrm{o}}{ }^{\prime}($ recall $\left.(1.10 .10 \mathrm{~d}, 15 \mathrm{~d}))\right]$

$$
\begin{align*}
& =\boldsymbol{1}+\left(\begin{array}{ccc}
0 & -n_{Z} & n_{Y} \\
n_{Z} & 0 & -n_{X} \\
-n_{Y} & n_{X} & 0
\end{array}\right) \chi+\boldsymbol{O}\left(\chi^{2}\right) \tag{1.10.25c}\\
& =\boldsymbol{1}+\left(\begin{array}{ccc}
0 & -\chi_{Z} & \chi_{Y} \\
\chi_{Z} & 0 & -\chi_{X} \\
-\chi_{Y} & \chi_{X} & 0
\end{array}\right)+\boldsymbol{O}\left(\chi^{2}\right)
\end{align*}
$$

and, with the notations

$$
\begin{align*}
\boldsymbol{r}_{i} & =(X, Y, Z) \equiv \boldsymbol{r} \\
\boldsymbol{r}_{f}=\boldsymbol{r}_{i}+\Delta \boldsymbol{r}_{i} & =(X+\Delta X, Y+\Delta Y, Z+\Delta Z) \equiv \boldsymbol{r}+\Delta \boldsymbol{r} \tag{1.10.25e}
\end{align*}
$$

we obtain, to the first order in the rotation angle,

$$
\begin{equation*}
\boldsymbol{r}+\Delta \boldsymbol{r}=\boldsymbol{R}_{\mathrm{o}} \cdot \boldsymbol{r}=\left(\boldsymbol{1}+\boldsymbol{R}_{\mathrm{o}}{ }^{\prime}\right) \cdot \boldsymbol{r} \Rightarrow \Delta \boldsymbol{r}=\boldsymbol{R}_{\mathrm{o}}{ }^{\prime} \cdot \boldsymbol{r} \tag{1.10.25f1}
\end{equation*}
$$

or, in extenso,

$$
\left(\begin{array}{c}
\Delta X \tag{1.10.25f2}\\
\Delta Y \\
\Delta Z
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\chi_{Z} & \chi_{Y} \\
\chi_{Z} & 0 & -\chi_{X} \\
-\chi_{Y} & \chi_{X} & 0
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

This basic kinematical result states that any orthogonal tensor that differs infinitesimally from the identity tensor, that is, to within linear terms, differs from it by an antisymmetric tensor.

Finally, dividing $(1.10 .25 f 1,2)$ by Δt, during which $\Delta \boldsymbol{r}$ occurs, assuming continuity and with the following notations:

$$
\left.\lim (\Delta X / \Delta t)\right|_{\Delta t \rightarrow 0}=d X / d t \equiv v_{X}, \text { etc. },\left.\quad \lim \left(\chi_{X} / \Delta t\right)\right|_{\Delta t \rightarrow 0} \equiv \omega_{X}, \text { etc. }
$$

we obtain the earlier found (1.9.1) fundamental kinematical equation of Poisson:

$$
\left(\begin{array}{l}
v_{X} \tag{1.10.25~g}\\
v_{Y} \\
v_{Z}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\omega_{Z} & \omega_{Y} \\
\omega_{Z} & 0 & -\omega_{X} \\
-\omega_{Y} & \omega_{X} & 0
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

or, in direct notation,

$$
\begin{equation*}
\boldsymbol{v} \equiv d \boldsymbol{r} / d \boldsymbol{t}=\boldsymbol{\Omega} \cdot \boldsymbol{r}=\omega \times \boldsymbol{r} \tag{1.10.25h}
\end{equation*}
$$

where

$$
\begin{align*}
\left.\Omega \equiv \lim \left(\boldsymbol{R}_{\mathrm{o}}{ }^{\prime} / \Delta t\right)\right|_{\Delta t \rightarrow 0}: & \text { angular velocity tensor }, \tag{1.10.25i}\\
\left.\omega \equiv \lim (2 \gamma / \Delta t)\right|_{\Delta t \rightarrow 0}: & \text { angular velocity vector } \tag{1.10.25j}
\end{align*}
$$

(axial vector of $\Omega-$ a genuine vector!).
As shown below [(1.10.26f)], (a) the velocities of the points of a rigid body moving with one point fixed are, at any instant, the same as they would be if the body were rotating in the positive sense about a fixed axis through the fixed point, in the direction and sense of ω and with an angular speed equal to $|\omega|$; and, (b) since both \boldsymbol{r} and \boldsymbol{v} are genuine vectors, so is ω (a fact that is re-established below). From all existing definitions of the angular velocity, this seems to be the most natural; but, in return, requires knowledge of finite rotation.
(ii) ω is a Genuine Vector

Using the Rodrigues equation (1.10.4b):

$$
\begin{equation*}
\boldsymbol{r}_{f}-\boldsymbol{r}_{i}=\boldsymbol{\gamma} \times\left(\boldsymbol{r}_{i}+\boldsymbol{r}_{f}\right), \tag{1.10.26a}
\end{equation*}
$$

let us prove directly that the angular velocity ω, defined as

$$
\begin{equation*}
\left.\omega \equiv \lim (2 \gamma / \Delta t)\right|_{\Delta t \rightarrow 0}, \quad \text { where } \gamma \equiv \tan (\chi / 2) \boldsymbol{n} \tag{1.10.26b}
\end{equation*}
$$

is a genuine vector, even though γ is not.

PROOF

With this in mind, we introduce the following judicious renamings:

$$
\begin{equation*}
\boldsymbol{r}_{i}=\boldsymbol{r}, \quad \boldsymbol{r}_{f}=\boldsymbol{r}_{i}+\Delta \boldsymbol{r}=\boldsymbol{r}+\Delta \boldsymbol{r} \tag{1.10.26c}
\end{equation*}
$$

Then, eq. (1.10.26a) yields

$$
\begin{equation*}
\Delta \boldsymbol{r}=\boldsymbol{\gamma} \times[(\boldsymbol{r} \times \Delta \boldsymbol{r})+\boldsymbol{r}]=\boldsymbol{\gamma} \times(2 \boldsymbol{r}+\Delta \boldsymbol{r})=(2 \boldsymbol{\gamma}) \times(\boldsymbol{r}+\Delta \boldsymbol{r} / 2) . \tag{1.10.26d}
\end{equation*}
$$

Dividing both sides of the above by Δt, and then letting $\Delta t \rightarrow 0$ (while assuming existence of a unique limit as $\Delta \boldsymbol{r} \rightarrow \mathbf{0}$), we obtain

$$
\begin{align*}
\boldsymbol{v} & \left.\equiv \lim (\Delta \boldsymbol{r} / \Delta t)\right|_{\Delta t \rightarrow 0}=\left.\lim [(2 \boldsymbol{\gamma} / \Delta t) \times \boldsymbol{r}]\right|_{\Delta t \rightarrow 0}+\left.\lim [2 \boldsymbol{\gamma} \times(\Delta \boldsymbol{r} / 2)]\right|_{\Delta t \rightarrow 0} \\
& =\boldsymbol{\omega} \times \boldsymbol{r}+\mathbf{0}=\boldsymbol{\omega} \times \boldsymbol{r} \quad(\boldsymbol{v}, \boldsymbol{r}: \text { vectors } \Rightarrow \boldsymbol{\omega}: \text { vector }) ; \text { Q.E.D. } \tag{1.10.26e}
\end{align*}
$$

The physical significance of ω is understood by examination of the following case: $\dot{\chi}=$ constant, in the direction and sense of the constant unit vector \boldsymbol{n}. Then, with $\chi \rightarrow \dot{\chi} \Delta t \Rightarrow$ $\gamma=[\tan (\dot{\chi} \Delta t / 2)] \boldsymbol{n}$, and so (1.10.26b) specializes to:

$$
\begin{equation*}
\omega=\left.\lim (2 \gamma / \Delta t)\right|_{\Delta t \rightarrow 0}=\boldsymbol{n} \lim \left\{\frac{2[\tan (\dot{\chi} \Delta t / 2)]}{\Delta t}\right\}_{\Delta t \rightarrow 0}=\cdots=\dot{\chi} \boldsymbol{n} ; \tag{1.10.26f}
\end{equation*}
$$

i.e., here, ω has the direction and sense of \boldsymbol{n} (= instantaneous rotation axis), and length equal to the angular speed. Hence, Poisson's formula, (1.10 .25 h), allows us to draw the conclusions following (1.10.25j).

To complete the proof, let us next show that the line segments ω indeed commute. Dividing the composition of rotations equation (1.10.20i)

$$
\begin{equation*}
\gamma_{3} \equiv \gamma_{1,2}=\left(\gamma_{1}+\gamma_{2}+\gamma_{2} \times \gamma_{1}\right) /\left(1-\gamma_{1} \cdot \gamma_{2}\right) \tag{1.10.26~g}
\end{equation*}
$$

by $\Delta t / 2$, we get

$$
\begin{aligned}
2 \gamma_{3} / \Delta t=\left[2 \gamma_{1} / \Delta t\right. & +2 \gamma_{2} / \Delta t \\
& \left.+(\Delta t / 2)\left(2 \gamma_{2} / \Delta t\right) \times\left(2 \gamma_{1} / \Delta t\right)\right] /\left[1-(\Delta t / 2)^{2}\left(2 \gamma_{2} / \Delta t\right) \cdot\left(2 \gamma_{1} / \Delta t\right)\right]
\end{aligned}
$$

and then letting $\Delta t \rightarrow 0$, while recalling the earlier ω-definition (1.10.26b, f), we find

$$
\begin{equation*}
\omega_{3} \equiv \omega_{1,2}=\omega_{1}+\omega_{2}=\omega_{2}+\omega_{1} \equiv \omega_{2,1} \tag{1.10.26h}
\end{equation*}
$$

that is, simultaneous ω 's obey the parallelogram law for their addition and decomposition, Q.E.D.
(iii) $\omega \leftrightarrow \gamma$ Differential Equation

Let us consider a rigid body B with the fixed point O. Its instantaneous angular velocity ω is related to its Gibbs "vector" γ, which carries a typical B-particle

$$
\begin{equation*}
\text { from } \quad \boldsymbol{r}_{i} \equiv \boldsymbol{r}(t) \quad \text { to } \quad \boldsymbol{r}_{f} \equiv \boldsymbol{r}(t+\Delta t) \tag{1.10.27a}
\end{equation*}
$$

by a differential equation. The latter is obtained as follows: in the composition of rotations equation (1.10.20i) and in order to create the difference $\Delta \gamma$ there, we choose the rotation sequence

$$
\begin{equation*}
\gamma_{1}=-\gamma \rightarrow \gamma_{2}=\gamma+\Delta \gamma \tag{1.10.27b}
\end{equation*}
$$

which, clearly, is equivalent to the single rotation $\gamma_{1,2}=\Delta \gamma$, and occurs in time Δt. With these identifications in (1.10.20i), the earlier angular velocity definition yields

$$
\begin{aligned}
\omega & =\left.\lim (2 \Delta \gamma / \Delta t)\right|_{\Delta t \rightarrow 0}=2\left\{\left.\lim (\Delta \gamma / \Delta t)\right|_{\Delta t \rightarrow 0}\right\} \\
& =\left.2 \lim [(1 / \Delta t)\{[(-\gamma)+(\gamma+\Delta \gamma)+(\gamma \times \Delta \gamma)] /[1-(-\gamma) \cdot(\gamma+\Delta \gamma)]\}]\right|_{\Delta t \rightarrow 0} \\
& =\left.2 \lim \{[(\Delta \gamma / \Delta t)+\gamma \times(\Delta \gamma / \Delta t)] /[1+\gamma \cdot \gamma+\gamma \cdot \Delta \gamma]\}\right|_{\Delta t \rightarrow 0},
\end{aligned}
$$

or, finally,

$$
\begin{equation*}
\omega=\left[2 /\left(1+\gamma^{2}\right)\right][d \gamma / d t+\gamma \times(d \gamma / d t)] . \tag{1.10.27c}
\end{equation*}
$$

This remarkable formula, due to A. Cayley (Cambridge and Dublin J., vol. 1, 1846), shows that, in general, ω and $d \gamma / d t$ are not parallel!

REMARK
Equation (1.10 .27 c) also results if we apply to the formula for the subtraction of rotations (1.10 .23 c), the sequence

$$
\begin{equation*}
\gamma_{1}=\gamma-\Delta \gamma \rightarrow \gamma_{2}=\Delta \gamma^{\prime} \tag{1.10.27d}
\end{equation*}
$$

which is equivalent to $\gamma_{1,2}=\gamma$. Thus, we obtain

$$
\begin{align*}
\Delta \gamma^{\prime} & =[\gamma-(\gamma-\Delta \gamma)+(\gamma-\Delta \gamma) \times \gamma] /[1+(\gamma-\Delta \gamma) \cdot \gamma] \\
& =(\Delta \gamma+\gamma \times \Delta \gamma) /\left(1+\gamma^{2}-\gamma \cdot \Delta \gamma\right), \tag{1.10.27e}
\end{align*}
$$

then divide by Δt and take the limit as $\Delta t \rightarrow 0$ to obtain

$$
\begin{align*}
\omega & =\left.2 \lim \left(\Delta \gamma^{\prime} / \Delta t\right)\right|_{\Delta t \rightarrow 0} \\
& =\left.2\left\{[\lim (\Delta \gamma / \Delta t)+\gamma \times \lim (\Delta \gamma / \Delta t)] /\left(1+\gamma^{2}-\gamma \cdot \Delta \gamma\right)\right\}\right|_{\Delta t \rightarrow 0} \\
& =\left[2 /\left(1+\gamma^{2}\right)\right][d \gamma / d t+\gamma \times(d \gamma / d t)] \tag{1.10.27f}
\end{align*}
$$

as before. The reader may verify that the sequence $\gamma_{1}=\gamma \rightarrow \gamma_{2}=\Delta \gamma^{\prime}$, which is equivalent to $\gamma_{1,2}=\gamma+\Delta \gamma$, also leads to the same formula.
(iv) Inversion of the Preceding Formula $\omega=\omega(\gamma, d \gamma / d t)$

First Derivation. Dotting both sides of that equation, (1.10.27c), by γ yields

$$
\begin{equation*}
\gamma \cdot \omega=\left[2 /\left(1+\gamma^{2}\right)\right][\gamma \cdot(d \gamma / d t)] ; \tag{1.10.28a}
\end{equation*}
$$

while crossing it with γ gives

$$
\begin{align*}
\gamma \times \omega & =\left[2 /\left(1+\gamma^{2}\right)\right]\{\gamma \times(d \gamma / d t)+\gamma \times[\gamma \times(d \gamma / d t)]\} \\
& =\left[2 /\left(1+\gamma^{2}\right)\right]\left\{\gamma \times(d \gamma / d t)+[\gamma \cdot(d \gamma / d t)] \gamma-\gamma^{2}(d \gamma / d t)\right\} . \tag{1.10.28b}
\end{align*}
$$

Eliminating $\gamma \cdot(d \gamma / d t)$ between (1.10.28a, b) produces

$$
\begin{aligned}
\gamma \times \omega= & {\left[2 /\left(1+\gamma^{2}\right)\right] \gamma \times(d \gamma / d t) } \\
& -\left[2 \gamma^{2} /\left(1+\gamma^{2}\right)\right](d \gamma / d t)+(\gamma \cdot \omega) \gamma
\end{aligned}
$$

[expressing the first right-side term of the above via $(1.10 .27 \mathrm{c})$]

$$
\begin{align*}
& =\left\{\omega-\left[2 /\left(1+\gamma^{2}\right)\right](d \gamma / d t)\right\}-\left[2 \gamma^{2} /\left(1+\gamma^{2}\right)\right](d \gamma / d t)+(\gamma \cdot \omega) \gamma \\
& =\omega-2(d \gamma / d t)+(\gamma \cdot \omega) \gamma, \tag{1.10.28c}
\end{align*}
$$

or, rearranging, finally gives

$$
\begin{equation*}
2(d \gamma / d t)=\omega+(\gamma \cdot \omega) \gamma+\omega \times \gamma \tag{1.10.28d}
\end{equation*}
$$

which, for a given $\omega(t)$, is a vector first-order nonlinear (second-degree) differential equation for $\gamma(t)$ (and can be further reduced to a "Ricatti-type equation").

Equations (1.10 .27 d), and $(1.10 .27 \mathrm{c})$ clearly demonstrate the one-to-one relation between ω and $d \gamma / d t$: if one of them vanishes, so does the other.

Second Derivation. Applying the earlier rotation sequence

$$
\begin{equation*}
\gamma_{1}=\gamma \rightarrow \gamma_{2}=\Delta \gamma^{\prime} \tag{1.10.28e}
\end{equation*}
$$

which is equivalent to $\gamma_{1,2}=\gamma+\Delta \gamma$, both occurring in time Δt, to the composition formula (1.10.20i) we obtain

$$
\begin{equation*}
\gamma+\Delta \gamma=\left(\gamma+\Delta \gamma^{\prime}+\Delta \gamma^{\prime} \times \gamma\right) /\left(1-\Delta \gamma^{\prime} \cdot \gamma\right) \tag{1.10.28f}
\end{equation*}
$$

from which, subtracting γ, we get

$$
\begin{equation*}
\Delta \gamma=\left[\Delta \gamma^{\prime}+\left(\gamma \cdot \Delta \gamma^{\prime}\right) \gamma+\Delta \gamma^{\prime} \times \gamma\right] /\left(1-\gamma \cdot \Delta \gamma^{\prime}\right), \tag{1.10.28~g}
\end{equation*}
$$

and from this, dividing by Δt and taking the limit as $\Delta t \rightarrow 0$, while recalling that [eq. (1.10.27f)] $\omega=\left.2 \lim \left(\Delta \gamma^{\prime} / \Delta t\right)\right|_{\Delta t \rightarrow 0}$, we re-obtain (1.10.28d).

For still alternative derivations of the $\omega \leftrightarrow \gamma$ equations, via the compatibility of the Eulerian kinematic relation $\boldsymbol{v} \equiv d \boldsymbol{r} / d t=\omega \times \boldsymbol{r}$ with the $d / d t(\ldots)$-derivative of the finite rotation equation $\boldsymbol{r}_{f}=\boldsymbol{r}_{f}\left(\gamma ; \boldsymbol{r}_{i}\right)$ [eqs. (1.10.2-4)], see, for example (alphabetically): Coe (1938, chap. 5; best elementary/vectorial treatment), Ferrarese (1980, pp. 122-137), Hamel (1949, pp. 106-107; pp. 391-393).
(v) Additional Useful Results
(a) Starting with

$$
\begin{aligned}
& \gamma=\boldsymbol{n} \tan (\chi / 2) \\
& \Rightarrow d \gamma / d t=(d \boldsymbol{n} / d t) \tan (\chi / 2)+\boldsymbol{n}[(d \chi / d t) / 2] \sec ^{2}(\chi / 2), \quad \text { etc. }
\end{aligned}
$$

and then using the $\omega \leftrightarrow \gamma$ equation, we can show that

$$
\begin{equation*}
\boldsymbol{\omega}=(d \chi / d t) \boldsymbol{n}+(\sin \chi)(d \boldsymbol{n} / d t)+(1-\cos \chi) \boldsymbol{n} \times(d \boldsymbol{n} / d t) \tag{1.10.29a}
\end{equation*}
$$

(What happens if $\boldsymbol{n}=$ constant?)
(b) Again, starting with

$$
\boldsymbol{\gamma}=\boldsymbol{n} \tan (\chi / 2)=\tan (\chi / 2)(\boldsymbol{\chi} / \chi)=[\tan (\chi / 2) / \chi] \boldsymbol{\chi} \Rightarrow d \gamma / d t=\cdots, \text { etc. }
$$

and then using the $\omega \leftrightarrow \gamma$ equation, we can show that

$$
\begin{align*}
\omega=(\sin \chi / \chi)(d \chi / d t)+ & {\left[(1-\cos \chi) / \chi^{2}\right][\chi \times(d \chi / d t)] } \\
& +\left[(1 / \chi)-\left(\sin \chi / \chi^{2}\right)\right](d \chi / d t) \chi \\
=d \chi / d t & +\left[(1-\cos \chi) / \chi^{2}\right][\chi \times(d \chi / d t)] \\
& +\left[(\chi-\sin \chi) / \chi^{3}\right]\{\chi \times[\chi \times(d \chi / d t)]\} . \tag{1.10.29b}
\end{align*}
$$

(c) By inverting (1.10.29b), we can show that

$$
\begin{equation*}
d \chi / d t=\omega-(\chi \times \omega) / 2+\left(1 / \chi^{2}\right)[1-(\chi / 2) \cot (\chi / 2)][\chi \times(\chi \times \omega)] \tag{1.10.29c}
\end{equation*}
$$

More in our Elementary Mechanics ($\S 13.8$ - under production).

General Rigid-Body Displacement (i.e., no point fixed)

We have already seen (§1.9) that the most general rigid-body displacement can be effected by the translation of an arbitrary base point or pole of it, from its initial to its final position, followed by a rotation about an axis through the final position of that point (see figs 1.12 and 1.22). Here, we show that the translational part of the above total displacement does depend on the base point, but the rotational part - that is, the rotation tensor - does not.

Referring to fig. 1.22, let
$\boldsymbol{1 \boldsymbol { 1 } ^ { \prime }} \equiv \boldsymbol{r}_{1^{\prime} / 1}, \quad \boldsymbol{P} \boldsymbol{P}^{\prime \prime} \equiv \boldsymbol{r}_{f / i}, \quad \boldsymbol{P} \equiv \boldsymbol{r}_{/ 1}, \quad \boldsymbol{I}^{\prime} \boldsymbol{P}^{\prime} \equiv \boldsymbol{r}_{/ 1^{\prime}}, \quad \boldsymbol{1}^{\prime \prime} \boldsymbol{P}^{\prime \prime} \equiv \boldsymbol{1}^{\prime} \boldsymbol{P}^{\prime \prime} \equiv \boldsymbol{r}_{/ 1^{\prime \prime}}$,
$\boldsymbol{R}_{1} \equiv$ rotation tensor bringing $\boldsymbol{1}^{\prime} \boldsymbol{P}^{\prime}$ to $\boldsymbol{1}^{\prime} \boldsymbol{P}^{\prime \prime}$; i.e., $\boldsymbol{r}_{/ 1^{\prime \prime}}=\boldsymbol{R}_{1} \cdot \boldsymbol{r}_{/ 1^{\prime}}$.

Figure 1.22 Most general rigid-body displacement; the rotation tensor is independent of the base point (or pole).
$\boldsymbol{r}_{/ 1} \rightarrow \boldsymbol{r}_{/ 1^{\prime}} \rightarrow \boldsymbol{r}_{/ 1^{\prime \prime}}=\boldsymbol{R}_{1} \cdot \boldsymbol{r}_{/ 1^{\prime}}$;
$\boldsymbol{r}_{i}=\boldsymbol{r}_{1}+\boldsymbol{r}_{/ 1} \rightarrow \boldsymbol{r}_{i^{\prime}}=\boldsymbol{r}_{1^{\prime}}+\boldsymbol{r}_{/ 1^{\prime}} \rightarrow \boldsymbol{r}_{f}=\boldsymbol{r}_{1^{\prime \prime}}+\boldsymbol{r}_{/ 1^{\prime \prime}}=\boldsymbol{r}_{1^{\prime \prime}}+\boldsymbol{R}_{1} \cdot \boldsymbol{r}_{/ 1^{\prime}}\left(\boldsymbol{r}_{1^{\prime}}=\boldsymbol{r}_{1^{\prime \prime}}\right)$.

Then, successively,

$$
\begin{equation*}
\boldsymbol{P} \boldsymbol{P}^{\prime \prime}=\boldsymbol{P} \mathbf{1}+\boldsymbol{1} 1^{\prime}+\boldsymbol{1}^{\prime} \boldsymbol{P}^{\prime \prime}=-\boldsymbol{r}_{11}+\boldsymbol{r}_{1^{\prime} / 1}+\boldsymbol{R}_{1} \cdot \boldsymbol{r}_{11^{\prime}} \tag{1.10.30b}
\end{equation*}
$$

or since $\boldsymbol{1 P}=\boldsymbol{1}^{\prime} \boldsymbol{P}^{\prime}$ (i.e., $\boldsymbol{r}_{/ 1}=\boldsymbol{r}_{/ 1^{\prime}}$),

$$
\begin{equation*}
\boldsymbol{r}_{f / i}=\boldsymbol{r}_{1^{\prime} / 1}+\left(\boldsymbol{R}_{1}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{/ 1} . \tag{1.10.30c}
\end{equation*}
$$

Had we chosen another base point, say 2 , then reasoning as above we would have found (with some easily understood notations)

$$
\begin{equation*}
\boldsymbol{r}_{f / i}=\boldsymbol{r}_{2^{\prime} / 2}+\left(\boldsymbol{R}_{2}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{/ 2} . \tag{1.10.30d}
\end{equation*}
$$

But also, applying (1.10.30c) for $P=2$, we have (since $\boldsymbol{r}_{2^{\prime}}=\boldsymbol{r}_{2^{\prime \prime}}$)

$$
\begin{equation*}
\boldsymbol{r}_{2^{\prime} / 2}=\boldsymbol{r}_{1^{\prime} / 1}+\left(\boldsymbol{R}_{1}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{2 / 1} \tag{1.10.30e}
\end{equation*}
$$

Therefore, substituting (1.10.30e) in (1.10.30d) and equating its right side to that of (1.10.30c), we obtain

$$
\boldsymbol{r}_{1^{\prime} / 1}+\left(\boldsymbol{R}_{1}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{2 / 1}+\left(\boldsymbol{R}_{2}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{/ 2}=\boldsymbol{r}_{1^{\prime} / 1}+\left(\boldsymbol{R}_{1}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{/ 1},
$$

from which, rearranging, we get

$$
\begin{equation*}
\left(\boldsymbol{R}_{1}-\boldsymbol{1}\right) \cdot\left(\boldsymbol{r}_{/ 1}-\boldsymbol{r}_{2 / 1}\right) \equiv\left(\boldsymbol{R}_{1}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{/ 2}=\left(\boldsymbol{R}_{2}-\boldsymbol{1}\right) \cdot \boldsymbol{r}_{/ 2} \tag{1.10.30f}
\end{equation*}
$$

and since this must hold for all body point pairs P and 2 (i.e., it must be an identity in them), we finally conclude that

$$
\begin{equation*}
\boldsymbol{R}_{1}=\boldsymbol{R}_{2}=\cdots \equiv \boldsymbol{R} \tag{1.10.30~g}
\end{equation*}
$$

In words: the rotation tensor is independent of the chosen base point; it is a positionindependent tensor. This fundamental theorem simplifies rigid-body geometry enormously and brings out the intrinsic character of rotation. (In kinetics, however, as the reader probably knows, such a decoupling between translation and rotation is far more selective.)

1.11 THE RIGID BODY: ACTIVE AND PASSIVE INTERPRETATIONS OF A PROPER ORTHOGONAL TENSOR; SUCCESSIVE FINITE ROTATIONS

A 3×3 proper orthogonal tensor may be interpreted in the following consistent ways:
(i) As the matrix of the direction cosines orienting two orthonormal and dextral (OND) triads, or bases, and associated axes; say, a body-fixed, or moving, triad t:

$$
\mathbf{t} \equiv\left(\boldsymbol{u}_{k}\right) \equiv\left(\begin{array}{c}
\boldsymbol{u}_{1} \tag{1.11.1a}\\
\boldsymbol{u}_{2} \\
\boldsymbol{u}_{3}
\end{array}\right) \equiv\left(\begin{array}{c}
\boldsymbol{u}_{x} \\
\boldsymbol{u}_{y} \\
\boldsymbol{u}_{z}
\end{array}\right) \equiv\left(\begin{array}{l}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right),
$$

relative to a space-fixed triad \mathbf{T} :

$$
\mathbf{T} \equiv\left(\boldsymbol{u}_{k^{\prime}}\right) \equiv\left(\begin{array}{c}
\boldsymbol{u}_{1^{\prime}} \tag{1.11.1b}\\
\boldsymbol{u}_{2^{\prime}} \\
\boldsymbol{u}_{3^{\prime}}
\end{array}\right) \equiv\left(\begin{array}{c}
\boldsymbol{u}_{X} \\
\boldsymbol{u}_{Y} \\
\boldsymbol{u}_{Z}
\end{array}\right) \equiv\left(\begin{array}{c}
\boldsymbol{I} \\
\boldsymbol{J} \\
\boldsymbol{K}
\end{array}\right) .
$$

(ii) Then, since

$$
\begin{aligned}
\boldsymbol{I} & =(\boldsymbol{I} \cdot \boldsymbol{i}) \boldsymbol{i}+(\boldsymbol{I} \cdot \boldsymbol{j}) \boldsymbol{j}+(\boldsymbol{I} \cdot \boldsymbol{k}) \boldsymbol{k} \equiv A_{X x} \boldsymbol{i}+A_{X y} \boldsymbol{j}+A_{X z} \boldsymbol{k}, \quad \text { etc., cyclically, } \\
\boldsymbol{i} & =(\boldsymbol{i} \cdot \boldsymbol{I}) \boldsymbol{I}+(\boldsymbol{i} \cdot \boldsymbol{J}) \boldsymbol{J}+(\boldsymbol{i} \cdot \boldsymbol{K}) \boldsymbol{K} \equiv A_{X x} \boldsymbol{I}+A_{Y x} \boldsymbol{J}+A_{Z x} \boldsymbol{K}, \quad \text { etc., cyclically, }
\end{aligned}
$$

the two triads are related by

$$
\begin{equation*}
\mathbf{T}=\mathbf{A} \cdot \mathbf{t} \Leftrightarrow \mathbf{t}=\mathbf{A}^{-1} \cdot \mathbf{T}=\mathbf{A}^{\mathrm{T}} \cdot \mathbf{T} \tag{1.11.1c}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{A} & \equiv\left(\begin{array}{ccc}
\boldsymbol{I} \cdot \boldsymbol{i} & \boldsymbol{I} \cdot \boldsymbol{j} & \boldsymbol{I} \cdot \boldsymbol{k} \\
\boldsymbol{J} \cdot \boldsymbol{i} & \boldsymbol{J} \cdot \boldsymbol{j} & \boldsymbol{J} \cdot \boldsymbol{k} \\
\boldsymbol{K} \cdot \boldsymbol{i} & \boldsymbol{K} \cdot \boldsymbol{j} & \boldsymbol{K} \cdot \boldsymbol{k}
\end{array}\right) \equiv\left(\begin{array}{ccc}
A_{X x} & A_{X y} & A_{X Z} \\
A_{Y x} & A_{Y y} & A_{Y z} \\
A_{Z x} & A_{Z y} & A_{Z z}
\end{array}\right) \tag{1.11.1d}\\
& =\left(A_{k^{\prime} k}\right), \tag{1.11.1e}
\end{align*} A_{k^{\prime} k} \equiv \cos \left(x_{k^{\prime}}, x_{k}\right)=\boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{k}\left[=\cos \left(x_{k}, x_{k^{\prime}}\right)=A_{k k^{\prime}}\right] . .
$$

The rotation of an OND triad, equation (1.11.1c), $\mathbf{T} \rightarrow \mathbf{t}$, constitutes the second interpretation of a proper orthogonal tensor.
(iii) The third such interpretation is that of a coordinate transformation from the T-axes: $O-x_{k^{\prime}} \equiv O-X Y Z$ to the t-axes: $O-x_{k} \equiv O-x y z$ (of common origin, with no loss in generality). In this interpretation, known as passive or alias (meaning otherwise known as), the point P is fixed in \mathbf{T}-space and the \mathbf{t}-axes rotate. Then [fig. 1.23(a)],

$$
\begin{equation*}
\boldsymbol{O P} \equiv \boldsymbol{r}=\sum x_{k^{\prime}} \boldsymbol{u}_{k^{\prime}}=X \boldsymbol{I}+Y \boldsymbol{J}+Z \boldsymbol{K}=\sum x_{k} \boldsymbol{u}_{k}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}, \tag{1.11.2a}
\end{equation*}
$$

(a) PASSIVE (ALIAS) INTERPRETATJON

(b) ACTIVE (ALIBI) INTERPRETATION

Figure 1.23 (a) Passive and (b) Active interpretation of a proper orthogonal tensor (two dimensions).
and so we easily find

$$
\begin{align*}
& x_{k^{\prime}} \equiv \boldsymbol{r} \cdot \boldsymbol{u}_{k^{\prime}} \\
&=\cdots=\sum A_{k^{\prime} k} x_{k} \tag{1.11.2b}\\
& x_{k} \equiv \boldsymbol{r} \cdot \boldsymbol{u}_{k}
\end{align*}=\cdots=\sum A_{k k^{\prime}} x_{k^{\prime}} \quad\left(=\sum A_{k^{\prime} k} x_{k^{\prime}}\right), ~ l
$$

or explicitly, in matrix form,

$$
\begin{gather*}
\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{ccc}
A_{X x} & A_{X y} & A_{X z} \\
A_{Y x} & A_{Y y} & A_{Y z} \\
A_{Z x} & A_{Z y} & A_{Z z}
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \\
\boldsymbol{r}^{\prime}=\mathbf{A} \cdot \boldsymbol{r} \tag{1.11.2c}
\end{gather*}
$$

Old axes
New axes,

$$
\begin{gather*}
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
A_{X x} & A_{Y x} & A_{Z x} \\
A_{X y} & A_{Y y} & A_{Z y} \\
A_{X z} & A_{Y z} & A_{Z z}
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \\
\boldsymbol{r}=\mathbf{A}^{\mathrm{T}} \cdot \boldsymbol{r}^{\prime} \tag{1.11.2d}
\end{gather*}
$$

New axes
Old axes.
For example, in two dimensions [fig. 1.23(a)], the above yield

$$
\begin{align*}
&\binom{X}{Y}=\left(\begin{array}{cc}
\cos \chi & -\sin \chi \\
\sin \chi & \cos \chi
\end{array}\right)\binom{x}{y} \\
& \boldsymbol{r}^{\prime}=\mathbf{A} \cdot \boldsymbol{r},\binom{x}{y}= \tag{1.11.2e}\\
&\left(\begin{array}{cc}
\cos \chi & \sin \chi \\
-\sin \chi & \cos \chi
\end{array}\right)\binom{X}{Y} \\
& \boldsymbol{r}=\mathbf{A}^{\mathrm{T}} \cdot \boldsymbol{r}^{\prime}
\end{align*}
$$

(iv) Under the fourth interpretation, known as active or alibi (meaning elsewhere), the axes remain fixed in space, say $\mathbf{T}=\mathbf{t}$, and the point P rotates about O, from an initial position $\boldsymbol{r}_{i}=X \boldsymbol{I}+Y \boldsymbol{J}+Z \boldsymbol{K}$ to a final one $\boldsymbol{r}_{f}=X^{\prime} \boldsymbol{I}+Y^{\prime} \boldsymbol{J}+Z^{\prime} \boldsymbol{K}$. Then, following §1.10, and with $\mathbf{A} \rightarrow \mathbf{R}$ (rotation tensor),

$$
\begin{align*}
\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right) & =\mathbf{R}\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\mathbf{A}\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \\
\boldsymbol{r}_{f} & =\mathbf{R} \cdot \boldsymbol{r}_{i} \tag{1.11.2f}
\end{align*}
$$

Final position Initial position,

$$
\begin{aligned}
\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) & =\mathbf{R}^{\mathrm{T}}\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=\mathbf{A}^{\mathrm{T}}\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right) \\
\boldsymbol{r}_{i} & =\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{r}_{f}
\end{aligned}
$$

Equations (1.11.2f, g) hold about any common axes; and, clearly, the components of \mathbf{R} depend on the particular axes used. For example, in two dimensions [fig. 1.23(b)], the above yield

$$
\begin{gather*}
\binom{X^{\prime}}{Y^{\prime}}=\left(\begin{array}{cc}
\cos \chi & -\sin \chi \\
\sin \chi & \cos \chi
\end{array}\right)\binom{X}{Y} \quad\binom{X}{Y}=\left(\begin{array}{cc}
\cos \chi & \sin \chi \\
-\sin \chi & \cos \chi
\end{array}\right)\binom{X^{\prime}}{Y^{\prime}} \\
\boldsymbol{r}_{f}=\mathbf{R} \cdot \boldsymbol{r}_{i}, \tag{1.11.2h}
\end{gather*}
$$

and for the new triad (actually a dyad) $\boldsymbol{i}, \boldsymbol{j}$ in terms of the old triad $\boldsymbol{I}, \boldsymbol{J}$ [along the same (old) axes], they readily yield

$$
\begin{array}{cc}
\binom{\cos \chi}{\sin \chi}=\left(\begin{array}{cc}
\cos \chi & -\sin \chi \\
\sin \chi & \cos \chi
\end{array}\right)\binom{1}{0} & \binom{-\sin \chi}{\cos \chi}=\left(\begin{array}{cc}
\cos \chi & -\sin \chi \\
\sin \chi & \cos \chi
\end{array}\right)\binom{0}{1} \\
\boldsymbol{i}=\mathbf{R} \cdot \boldsymbol{I}, & \boldsymbol{j}=\mathbf{R} \cdot \boldsymbol{J} .
\end{array}
$$

The passive and active interpretations are based on the fact that: The rigid body rotation relative to space-fixed axes (active interpretation), and the axes rotation relative to a fixed body (passive interpretation) are mutually reciprocal motions. Hence [fig. 1.24(a, b)]: The coordinates of a rotated body-fixed vector along the old axes (final position, active interpretation), equal the coordinates of the unrotated rigid body along the inversely rotated axes (new axes, passive interpretation).

It follows that if the body is fixed relative to the new axes and $\boldsymbol{r}^{\prime}=X \boldsymbol{I}+Y \boldsymbol{J}$, $\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}$, then the rotation equations-for example, (1.10.2e)-yields (with $\boldsymbol{r}_{i} \rightarrow \boldsymbol{r}_{\text {new (body-fixed) axes }} \equiv \boldsymbol{r}$ and $\boldsymbol{r}_{f} \rightarrow \boldsymbol{r}_{\text {old axes }}^{\prime} \equiv \boldsymbol{r}^{\prime}$)

$$
\begin{equation*}
\boldsymbol{r}^{\prime}=\left[2 /\left(1+\gamma^{2}\right)\right]\left[\gamma \times \boldsymbol{r}+\left(\gamma \cdot \boldsymbol{r}_{i}\right) \gamma\right]+\left[\left(1-\gamma^{2}\right) /\left(1+\gamma^{2}\right)\right] \boldsymbol{r} . \tag{1.11.3}
\end{equation*}
$$

A correct understanding of the above four interpretations-in particular, the interchange of \mathbf{A} with $\mathbf{A}^{\mathrm{T}}=\mathbf{A}(-\chi)$ [and \mathbf{R} with $\left.\mathbf{R}^{\mathrm{T}}=\mathbf{R}(-\chi)\right]$ in single, and, especially, successive rotations (see below) -is crucial to spatial rigid-body kinematics. Lack of it, as Synge (1960, p. 16) accurately puts it "can be a source of such petty confusion."
(a) ACTIVE INTERPRETATION

(b) PASSIVE INTERPRETAIION

Figure 1.24 The final coordinates under χ [active interpretation (a)] equal the new coordinates under $-\chi$ [passive interpretation (b)], and vice versa. ($X_{\chi \text {-rotated vector, old axes }}^{\prime}=X_{\text {unrotated vector, },-\chi \text {-rotated axes, }}$, etc. $)$

Below, we summarize these four interpretations of an orthogonal tensor \mathbf{A} or \mathbf{R} :

$$
\begin{equation*}
\mathbf{A}=\left(A_{k^{\prime} k}\right)=\left(\boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{k}\right): \quad \text { Direction cosine matrix; } \tag{i}
\end{equation*}
$$

(ii) $\left(\begin{array}{l}\boldsymbol{I} \\ \boldsymbol{J} \\ \boldsymbol{K}\end{array}\right)=\mathbf{A}\left(\begin{array}{l}\boldsymbol{i} \\ \boldsymbol{j} \\ \boldsymbol{k}\end{array}\right)$
(iii) $\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right)=\mathbf{A}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
or $\quad \boldsymbol{r}_{\text {old axes }} \equiv \boldsymbol{r}^{\prime}=\mathbf{A} \cdot \boldsymbol{r}_{\text {new axes }} \equiv \mathbf{A} \cdot \boldsymbol{r}: \quad$ Passive interpretation
(Vector fixed; axes rotated);
(iv) $\left(\begin{array}{c}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right)=\mathbf{R}\left(\begin{array}{c}X \\ Y \\ Z\end{array}\right)$
or $\quad \boldsymbol{r}_{f}=\mathbf{R} \cdot \boldsymbol{r}_{i}:$ Active interpretation $\mathbf{A}=\mathbf{R}$
(Vector rotated; axes fixed, and common).

REMARKS

(i) In the passive interpretation, we denote the components of \mathbf{A} as $A_{k^{\prime} k}$; whereas, in the active one, we denote them, in an arbitrary but common set of axes, as $R_{k l}$ (or $R_{k^{\prime} l^{\prime}}$). This is an extra advantage of the accented indicial notation, especially in cases where both interpretations are needed.
(ii) The passive interpretation also holds for the components of any other vector; for example, angular velocity.

Successive Rotations

Let us consider a sequence of rotations compounded according to the following scheme:

$$
\begin{equation*}
\mathbf{T} \underset{\mathbf{A}_{1}}{\rightarrow} \mathbf{T}_{1} \underset{\mathbf{A}_{2}}{\rightarrow} \quad \mathbf{T}_{2} \underset{\mathbf{A}_{3}}{\rightarrow} \quad \underset{\mathbf{A}_{\mathrm{n}-1}}{\rightarrow} \quad \mathbf{T}_{\mathrm{n}-1} \underset{\mathbf{A}_{\mathrm{n}}}{\rightarrow} \mathbf{T}_{\mathrm{n}} \equiv \mathbf{t} \tag{1.11.4a}
\end{equation*}
$$

Then we shall have the following composition formulae, for the various interpretations.
(i) Triad Rotation

$$
\begin{equation*}
\mathbf{T}=\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2} \cdots \cdot \mathbf{A}_{\mathrm{n}}\right) \cdot \mathbf{t} \Leftrightarrow \mathbf{t}=\left(\mathbf{A}_{\mathrm{n}}{ }^{\mathrm{T}} \cdot \mathbf{A}_{\mathrm{n}-1}{ }^{\mathrm{T}} \cdots \cdot \mathbf{A}_{1}^{\mathrm{T}}\right) \cdot \mathbf{T} ; \tag{1.11.4b}
\end{equation*}
$$

or, in extenso,

$$
\begin{align*}
& \left(\begin{array}{l}
\boldsymbol{I} \\
\boldsymbol{J} \\
\boldsymbol{K}
\end{array}\right)=\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2} \cdots \cdots \cdot \mathbf{A}_{\mathrm{n}}\right)\left(\begin{array}{l}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right) \\
& \text { Initial triad (natural order Final triad, } \tag{1.11.4c}\\
& \text { of component } \\
& \text { matrices) } \\
& \left(\begin{array}{l}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right)=\left(\mathbf{A}_{\mathrm{n}}{ }^{\mathrm{T}} \cdot \mathbf{A}_{\mathrm{n}-1}{ }^{\mathrm{T}} \cdots \cdots \mathbf{A}_{1}{ }^{\mathrm{T}}\right)\left(\begin{array}{l}
\boldsymbol{I} \\
\boldsymbol{J} \\
\boldsymbol{K}
\end{array}\right) \\
& \text { Final triad } \tag{1.11.4d}\\
& \text { Initial triad. }
\end{align*}
$$

(ii) Passive Interpretation

Here, with some easily understood ad hoc notations, we will have

$$
\begin{align*}
& \boldsymbol{r}_{\text {old axes }} \equiv \boldsymbol{r}^{\prime}=\mathbf{A}_{1} \cdot \boldsymbol{r}_{1}=\mathbf{A}_{1} \cdot\left(\mathbf{A}_{2} \cdot \boldsymbol{r}_{2}\right)=\cdots=\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2} \cdot \cdots \cdot \mathbf{A}_{\mathrm{n}}\right) \cdot \boldsymbol{r}, \tag{1.11.4e}\\
& \boldsymbol{r}_{\text {new axes }} \equiv \boldsymbol{r}=\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2} \cdots \cdot \mathbf{A}_{\mathrm{n}}\right)^{\mathrm{T}} \cdot \boldsymbol{r}^{\prime}=\left(\mathbf{A}_{\mathrm{n}}^{\mathrm{T}} \cdot \mathbf{A}_{\mathrm{n}-1}{ }^{\mathrm{T}} \cdots \cdot \mathbf{A}_{1}^{\mathrm{T}}\right) \cdot \boldsymbol{r}^{\prime} ; \tag{1.11.4f}
\end{align*}
$$

or, in extenso,

$$
\begin{align*}
& \left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2} \cdots \cdots \cdot \mathbf{A}_{\mathrm{n}}\right)\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \\
& \text { Old axes } \quad \text { New axes, } \tag{1.11.4~g}
\end{align*}
$$

$$
\begin{align*}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\mathbf{A}_{\mathrm{n}}{ }^{\mathrm{T}} \cdot \mathbf{A}_{\mathrm{n}-1}{ }^{\mathrm{T}} \cdot \cdots \cdot \mathbf{A}_{1}{ }^{\mathrm{T}}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \\
& \text { New axes } \\
& \text { Old axes. } \tag{1.11.4h}
\end{align*}
$$

(iii) Active Interpretation

Here, choosing common axes corresponding to \mathbf{T}; that is,

$$
\begin{equation*}
\boldsymbol{r}_{i}=X \boldsymbol{I}+Y \boldsymbol{J}+Z \boldsymbol{K} \rightarrow \boldsymbol{r}_{f}=X^{\prime} \boldsymbol{I}+Y^{\prime} \boldsymbol{J}+Z^{\prime} \boldsymbol{K} \quad(=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}) \tag{1.11.4i}
\end{equation*}
$$

we obtain, successively,

$$
\begin{align*}
& \boldsymbol{r}_{i}=\mathbf{A}_{1}{ }^{\mathrm{T}} \cdot \boldsymbol{r}_{f, 1}=\mathbf{A}_{1}^{\mathrm{T}} \cdot\left(\mathbf{A}_{2}^{\mathrm{T}} \cdot \boldsymbol{r}_{f, 2}\right)=\cdots=\left(\mathbf{A}_{1}{ }^{\mathrm{T}} \cdot \mathbf{A}_{2}{ }^{\mathrm{T}} \cdots \cdot \mathbf{A}_{\mathrm{n}}{ }^{\mathrm{T}}\right) \cdot \boldsymbol{r}_{f} \\
& \equiv\left(\mathbf{R}_{1}^{\mathrm{T}} \cdot \mathbf{R}_{2}{ }^{\mathrm{T}} \cdots \cdot \mathbf{R}_{\mathrm{n}}^{\mathrm{T}}\right) \cdot \boldsymbol{r}_{f}, \tag{1.11.4j}\\
& \Rightarrow \boldsymbol{r}_{f}=\left(\mathbf{A}_{\mathrm{n}} \cdot \mathbf{A}_{\mathrm{n}-1} \cdots \cdot \mathbf{A}_{1}\right) \cdot \boldsymbol{r}_{i} \equiv\left(\mathbf{R}_{\mathrm{n}} \cdot \mathbf{R}_{\mathrm{n}-1} \cdots \cdots \cdot \mathbf{R}_{1}\right) \cdot \boldsymbol{r}_{i} ; \tag{1.11.4k}
\end{align*}
$$

or, in extenso,

$$
\left(\begin{array}{c}
X^{\prime} \tag{1.11.41}\\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=\left(\mathbf{R}_{\mathrm{n}} \cdot \mathbf{R}_{\mathrm{n}-1} \cdots \cdots \cdot \mathbf{R}_{1}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

Final position
Initial position,

$$
\left(\begin{array}{c}
X \tag{1.11.4m}\\
Y \\
Z
\end{array}\right)=\left(\mathbf{R}_{1}{ }^{\mathrm{T}} \cdot \mathbf{R}_{2}{ }^{\mathrm{T}} \cdots \cdots \cdot \mathbf{R}_{\mathrm{n}}{ }^{\mathrm{T}}\right)\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)
$$

Initial position
Final position.

Body-Fixed versus Space-Fixed Axes

The moving triad \mathbf{t} and associated axes ($O-x y z$) may be considered as a rigid body going through a sequence of rotations, either about these body-fixed axes themselves, or about the space-fixed axes $O-X Y Z$ with which it originally coincided. Either of these two types of sequences may be used (although the tensors/matrices of rotations about body-fixed axes have simpler structure than those about space-fixed axes), and their outcomes are related by the following remarkable theorem: The sequence of rotations about $O x, O y, O z$ has the same effect as the sequence of rotations of equal amounts about $O X, O Y, O Z$, but carried out in the reverse order. Symbolically,

$$
\left(\mathbf{R}_{1} \mathbf{R}_{2}\right)_{\text {body-fixed axes }}=\left(\mathbf{R}_{2} \mathbf{R}_{1}\right)_{\text {space-fixed axes }} \text {. }
$$

This nontrivial result will be proved in $\S 1.12$.
Thus, for a sequence about space-fixed axes, eq. (1.11.4h) (which expresses the passive interpretation for a body-fixed sequence) should be replaced by

$$
\begin{align*}
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) & =\left(\mathbf{S}_{1}{ }^{\mathrm{T}} \cdot \mathbf{S}_{2}{ }^{\mathrm{T}} \cdots \cdot \mathbf{S}_{\mathrm{n}}{ }^{\mathrm{T}}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \\
& =\left(\mathbf{S}_{\mathrm{n}} \cdot \mathbf{S}_{\mathrm{n}-1} \cdot \cdots \cdot \mathbf{S}_{1}\right)^{\mathrm{T}}\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \\
\text { New axes } & \text { Old axes, } \tag{1.11.4n}
\end{align*}
$$

where the \mathbf{S}_{k} are the space-fixed axes counterparts (of equal angle of rotation) of the \mathbf{R}_{k}; and similarly for the other compounded rotation equations.

REMARKS

(i) In algebraic terms, we say that such successive rotations form the Special Orthogonal (Unit Determinant) - Three Dimensional group of Real Matrices $[\equiv \mathrm{SO}(3, \mathrm{R})]$, and are representable by three independent parameters; for example, Eulerian angles (§1.12).
[By group, we mean, briefly, that (a) an identity rotation exists (i.e., one that leaves the body unchanged); (b) the product of two successive rotations is also a rotation; (c) every rotation has an inverse; and (d) these rotations are associative. See books on algebra/group theory.]
(ii) Some authors call rotation tensor/matrix the transpose of this book's, while others, in addition, fail to mention the distinction between active and passive interpretations. Hence, a certain caution is needed when comparing various references. Our choice was based on the fact that when the rotation tensor of the active interpretation is expanded à la Taylor around the identity tensor, and so on (1.10.25a ff.), it leads to an angular velocity compatible with the definition of the axial vector (ω) of an antisymmetric tensor (1.1.16a ff.) $\boldsymbol{\Omega}: \boldsymbol{\Omega} \cdot \boldsymbol{r}=\boldsymbol{\omega} \times \boldsymbol{r}$; otherwise we would have $\boldsymbol{\Omega} \cdot \boldsymbol{r}=-\boldsymbol{\omega} \times \boldsymbol{r}$.

Tensorial Derivation of the Finite Rotation Tensor

Let us consider the following two rectangular Cartesian sets of axes, $O-x_{k^{\prime}}$ ($\equiv O-X Y Z$, fixed) and $O-x_{k}(\equiv O-x y z$, moving), related by the proper orthogonal transformation:

$$
\begin{equation*}
x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k} \Leftrightarrow x_{k}=\sum A_{k k^{\prime}} x_{k^{\prime}}, \quad A_{k^{\prime} k}=A_{k k^{\prime}}=\cos \left(x_{k^{\prime}}, x_{k}\right) . \tag{1.11.5a}
\end{equation*}
$$

The corresponding components of the rotation tensor, $R_{k^{\prime} l^{\prime}}$ and $R_{k l}$, respectively, will be related by the well-known transformation rule for second-order tensors (1.1.19j ff.):

$$
\begin{equation*}
R_{k^{\prime} l^{\prime}}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} R_{k l} \Leftrightarrow R_{k l}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} R_{k^{\prime} l^{\prime}}, \tag{1.11.5b}
\end{equation*}
$$

or, in matrix form,

$$
\begin{equation*}
\mathbf{R}^{\prime}=\mathbf{A} \cdot \mathbf{R} \cdot \mathbf{A}^{\mathrm{T}} \Leftrightarrow \mathbf{R}=\mathbf{A}^{\mathrm{T}} \cdot \mathbf{R}^{\prime} \cdot \mathbf{A}, \tag{1.11.5c}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{R}^{\prime}=\left(R_{k^{\prime} l^{\prime}}\right), \quad \mathbf{R}=\left(R_{k l}\right), \quad \mathbf{A}=\left(A_{k^{\prime} k}\right) . \tag{1.11.5d}
\end{equation*}
$$

Here, choosing axes $O-x_{k}$ in which $R_{k l}$ have the simplest form possible, and then applying (1.11.5b, c), we will obtain the rotation tensor components in the general axes $O-x_{k^{\prime}}, R_{k^{\prime} l^{\prime}}$; that is, eq. (1.10.10a). To this end, we select $O x_{k}$ so that $x_{1} \equiv x$ is along the positive sense of the rotation axis \boldsymbol{n}, while $x_{2} \equiv y, x_{3} \equiv z$ are on the plane through O perpendicular to \boldsymbol{n} (fig. 1.25). For such special axes, the finite rotation is a

Figure 1.25 Tensor transformation of rotation tensor, between the general fixed axes $O-X Y Z$ and the special moving axes $O-x y z ; O x$ axis of rotation.
plane rotation of (say, right-hand rule) angle χ about $O x$, and, hence, there the rotation tensor has the following simple planar form:

$$
\mathbf{R}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{1.11.5e}\\
0 & \cos \chi & -\sin \chi \\
0 & \sin \chi & \cos \chi
\end{array}\right)
$$

Now, to apply (1.11.5c) we need \mathbf{A}. The latter, since

$$
\begin{equation*}
\boldsymbol{i}=A_{x X} \boldsymbol{I}+A_{x Y} \boldsymbol{J}+A_{x Z} \boldsymbol{K}=\boldsymbol{n} \equiv n_{X} \boldsymbol{I}+n_{Y} \boldsymbol{J}+n_{Z} \boldsymbol{K} \tag{1.11.5f}
\end{equation*}
$$

becomes

$$
\mathbf{A}=\left(\begin{array}{lll}
n_{X} & A_{X y} & A_{X Z} \tag{1.11.5~g}\\
n_{Y} & A_{Y y} & A_{Y z} \\
n_{Z} & A_{Z y} & A_{Z z}
\end{array}\right) ;
$$

and so, with the abbreviations $\cos (\ldots) \equiv c(\ldots), \sin (\ldots) \equiv s(\ldots),(1.11 .5 \mathrm{c})$ specializes to

$$
\mathbf{R}^{\prime}=\left(\begin{array}{lll}
n_{X} & A_{X y} & A_{X z} \\
n_{Y} & A_{Y y} & A_{Y z} \\
n_{Z} & A_{Z y} & A_{Z z}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \chi & -s \chi \\
0 & s \chi & c \chi
\end{array}\right)\left(\begin{array}{ccc}
n_{X} & n_{Y} & n_{Z} \\
A_{X y} & A_{Y y} & A_{Z y} \\
A_{X z} & A_{Y z} & A_{Z z}
\end{array}\right),
$$

or, carrying out the matrix multiplications, and recalling that $R_{1^{\prime} 1^{\prime}} \equiv R_{X X}$, $R_{1^{\prime} 2^{\prime}} \equiv R_{X Y}$, and so on,

$$
\begin{align*}
& R_{X X}=n_{X}{ }^{2}+\left(A_{X y}{ }^{2}+A_{X z}{ }^{2}\right) \cos \chi, \\
& R_{X Y}=n_{X} n_{Y}+\left(A_{X y} A_{Y y}+A_{X z} A_{Y z}\right) \cos \chi-\left(A_{X y} A_{Y z}-A_{Y y} A_{X z}\right) \sin \chi, \\
& R_{X Z}=n_{X} n_{Z}+\left(A_{X y} A_{Z y}+A_{X z} A_{Z z}\right) \cos \chi+\left(A_{Z y} A_{X z}-A_{X y} A_{Z z}\right) \sin \chi ; \\
& R_{Y X}=n_{Y} n_{X}+\left(A_{Y y} A_{X y}+A_{Y z} A_{X z}\right) \cos \chi+\left(A_{X y} A_{Z z}-A_{Y y} A_{X z}\right) \sin \chi, \\
& R_{Y Y}=n_{Y}{ }^{2}+\left(A_{Y y}{ }^{2}+A_{Y z}{ }^{2}\right) \cos \chi, \\
& R_{Y Z}=n_{Y} n_{Z}+\left(A_{Y y} A_{Z y}+A_{Y z} A_{Z z}\right) \cos \chi-\left(A_{Y y} A_{Z z}-A_{Z y} A_{Y z}\right) \sin \chi ; \\
& R_{Z X}=n_{Z} n_{X}+\left(A_{Z y} A_{X y}+A_{Z z} A_{X z}\right) \cos \chi-\left(A_{Z y} A_{X z}-A_{X y} A_{Z z}\right) \sin \chi, \\
& R_{Z Y}=n_{Z} n_{Y}+\left(A_{Z y} A_{Y y}+A_{Z z} A_{Y z}\right) \cos \chi+\left(A_{Y y} A_{Z z}-A_{Z y} A_{Y z}\right) \sin \chi, \\
& R_{Z Z}=n_{Z}{ }^{2}+\left(A_{Z y}{ }^{2}+A_{Z z}{ }^{2}\right) \cos \chi . \tag{1.11.5h}
\end{align*}
$$

However, the nine $A_{k^{\prime} k}$ are constrained by the six orthonormality conditions:

$$
\begin{align*}
& \boldsymbol{I} \cdot \boldsymbol{J}=n_{X} n_{Y}+A_{X y} A_{Y y}+A_{X z} A_{Y z}=0, \\
& \boldsymbol{J} \cdot \boldsymbol{K}=n_{Y} n_{Z}+A_{Y y} A_{Z y}+A_{Y z} A_{Z z}=0, \\
& \boldsymbol{K} \cdot \boldsymbol{I}=n_{Z} n_{X}+A_{Z y} A_{X y}+A_{Z z} A_{X z}=0 ; \\
& \boldsymbol{I} \cdot \boldsymbol{I}=n_{X}^{2}+A_{X y}^{2}+A_{X z}^{2}=1, \\
& \boldsymbol{J} \cdot \boldsymbol{J}=n_{Y}^{2}+A_{Y y}^{2}+A_{Y z}^{2}=1, \\
& \boldsymbol{K} \cdot \boldsymbol{K}=n_{Z}^{2}+A_{Z y}^{2}+A_{Z z}^{2}=1 ; \tag{1.11.5i}
\end{align*}
$$

and also $\boldsymbol{n}=\boldsymbol{u}_{y} \times \boldsymbol{u}_{z}$, or, in components,

$$
\begin{equation*}
n_{X}=A_{Y y} A_{Z z}-A_{Z y} A_{Y z}, \quad n_{Y}=A_{Z y} A_{X z}-A_{X y} A_{Z z}, \quad n_{Z}=A_{X y} A_{Y z}-A_{Y y} A_{X z} . \tag{1.11.5j}
\end{equation*}
$$

As a result of the above, it is not hard to verify that the $R_{k^{\prime} l^{\prime}},(1.11 .5 \mathrm{~h})$, reduce to

$$
\begin{align*}
& R_{X X}=n_{X}^{2}+\left(1-n_{X}^{2}\right) \cos \chi, \\
& R_{X Y}=n_{X} n_{Y}+\left(-n_{X} n_{Y}\right) \cos \chi+\left(n_{Z}\right) \sin \chi, \\
& R_{X Z}=n_{X} n_{Z}+\left(-n_{X} n_{Z}\right) \cos \chi+\left(n_{Y}\right) \sin \chi ; \\
& R_{Y X}=n_{Y} n_{X}+\left(-n_{X} n_{Y}\right) \cos \chi+\left(n_{Z}\right) \sin \chi, \\
& R_{Y Y}=n_{Y}^{2}+\left(1-n_{Y}^{2}\right) \cos \chi, \\
& R_{Y Z}=n_{Y} n_{Z}+\left(-n_{Y} n_{Z}\right) \cos \chi+\left(-n_{X}\right) \sin \chi ; \\
& R_{Z X}=n_{Z} n_{X}+\left(-n_{Z} n_{X}\right) \cos \chi+\left(-n_{Y}\right) \sin \chi, \\
& R_{Z Y}=n_{Z} n_{Y}+\left(-n_{Z} n_{Y}\right) \cos \chi+\left(n_{X}\right) \sin \chi, \\
& R_{Z Z}=n_{Z}^{2}+\left(1-n_{Z}^{2}\right) \cos \chi ; \tag{1.11.5k}
\end{align*}
$$

and when put to matrix form is none other than eq. (1.10.10a). We notice that the components $R_{k^{\prime} l^{\prime}}$ are independent of the orientation of the $O-x y z$ axes, as expected.

Angular Velocity via the Passive Interpretation

Let us consider a generic body point P fixed in the moving frame $\mathbf{t}: O-\boldsymbol{i j k} / O-x y z$, and hence representable by

$$
\begin{array}{ll}
\boldsymbol{r}^{\prime}=X \boldsymbol{I}+Y \boldsymbol{J}+Z \boldsymbol{K} & \text { (space-fixed frame } \mathbf{T}: O-\boldsymbol{I} \boldsymbol{J} \boldsymbol{K} / O-X Y Z) \\
\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} & \text { (body-fixed frame; i.e. } x, y, z=\text { constant) } \tag{1.11.6b}
\end{array}
$$

or, in matrix form,

$$
\begin{equation*}
\boldsymbol{r}^{\prime \mathrm{T}}=(X, Y, Z), \quad \boldsymbol{r}^{\mathrm{T}}=(x, y, z) . \tag{1.11.6c}
\end{equation*}
$$

According to the passive interpretation (1.11.2c) (with \mathbf{A} replaced by the rotation tensor/matrix \mathbf{R}),

$$
\begin{equation*}
\boldsymbol{r}^{\prime}=\mathbf{R} \cdot \boldsymbol{r} \tag{1.11.6d}
\end{equation*}
$$

and, therefore, the inertial velocity of P, resolved along the fixed axes $O-X Y Z$ equals

$$
\begin{align*}
\boldsymbol{v}^{\prime} \equiv d \boldsymbol{r}^{\prime} / d t & =(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \boldsymbol{r}+\mathbf{R} \cdot(d \boldsymbol{r} / d t)=(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \boldsymbol{r}+\mathbf{R} \cdot \mathbf{0} \\
& =(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot\left(\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{r}^{\prime}\right)=\boldsymbol{\Omega}^{\prime} \cdot \boldsymbol{r}^{\prime} \equiv \omega^{\prime} \times \boldsymbol{r}^{\prime}, \tag{1.11.6e}
\end{align*}
$$

where [recalling (1.7.30f ff.), with $\mathbf{A} \rightarrow \mathbf{R}$]
$\boldsymbol{\Omega}^{\prime} \equiv(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \mathbf{R}^{\mathrm{T}}=$ angular velocity tensor of body frame \mathbf{t} relative to the fixed frame \mathbf{T}, but resolved along the fixed axes $O-X Y Z$,
$\omega^{\prime}=$ axial vector of Ω^{\prime}; angular velocity vector of \mathbf{t} relative to \mathbf{T}, along \mathbf{T}.
The components of the angular velocity along the moving axes can then be found easily from the vector transformation (passive interpretation):
$\boldsymbol{v}=$ inertial velocity of P, but resolved along the moving axes (not to be confused with the velocity of P relative to \mathbf{t}, which is zero: $d \boldsymbol{r} / d t=\mathbf{0}$)
$=\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{v}^{\prime}=\mathbf{R}^{\mathrm{T}} \cdot[(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \boldsymbol{r}]=\boldsymbol{\Omega} \cdot \boldsymbol{r} \equiv \boldsymbol{\omega} \times \boldsymbol{r}$,
where
$\Omega \equiv \mathbf{R}^{\mathrm{T}} \cdot(\mathrm{d} \mathbf{R} / \mathrm{dt})=$ angular velocity tensor of body frame \mathbf{t} relative to the fixed frame \mathbf{T}, but resolved along the moving axes $O-x y z$
$\left\{=\left[\mathbf{R}^{\mathrm{T}} \cdot(\mathrm{d} \mathbf{R} / \mathrm{dt})\right] \cdot\left(\mathbf{R}^{\mathrm{T}} \cdot \mathbf{R}\right)=\mathbf{R}^{\mathrm{T}} \cdot\left[(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \mathbf{R}^{\mathrm{T}}\right] \cdot \mathbf{R}\right.$ $=\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{\Omega}^{\prime} \cdot \mathbf{R} ;$ a second-order tensor transformation, as it should be $\}$,
$\omega=$ axial vector of Ω; angular velocity of \mathbf{t} relative to \mathbf{T}, along $\mathbf{t}\left[=\mathbf{R}^{\mathrm{T}} \cdot \omega^{\prime}\right]$.

REMARK

If $\mathbf{R}=\mathbf{R}\left(q_{1}, q_{2}, q_{3}\right) \equiv \mathbf{R}\left(q_{\alpha}\right)$, where the q_{α} are system rotational parameters (e.g., the three Eulerian angles, $\S 1.12$), then Ω^{\prime} and ω^{\prime} can be expressed, respectively as follows:

$$
\begin{equation*}
\text { Tensor: } \boldsymbol{\Omega}^{\prime}=\sum \boldsymbol{\Omega}^{\prime}{ }_{\alpha}\left(d q_{\alpha} / d t\right), \quad \text { Vector: } \boldsymbol{\omega}^{\prime}=\sum \boldsymbol{\omega}^{\prime}{ }_{\alpha}\left(d q_{\alpha} / d t\right) \tag{1.11.6k}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Omega}_{\alpha}^{\prime} \equiv\left(\partial \mathbf{R} / \partial q_{\alpha}\right) \cdot \mathbf{R}^{\mathrm{T}} \quad \text { and } \quad \boldsymbol{\Omega}_{\alpha}^{\prime} \cdot \boldsymbol{x}=\boldsymbol{\omega}_{\alpha}^{\prime} \times \boldsymbol{x} \tag{1.11.61}
\end{equation*}
$$

for an arbitrary vector \boldsymbol{x}; that is, $\boldsymbol{\Omega}^{\prime}$ can be expressed in terms of the local basis $\left\{\boldsymbol{\Omega}^{\prime}{ }_{\alpha} ; \alpha=1,2,3\right\} ;$ and similarly for $\boldsymbol{\Omega}$ and $\boldsymbol{\omega}$.

Additional Useful Results

1. Consider the following two successive (component) rotations: First, from the "fixed" frame 0 to the moving frame $1, \mathbf{R}_{1 / 0} \equiv \mathbf{R}_{1}$, and, next, from 1 to the also moving frame $2, \mathbf{R}_{2 / 1} \equiv \mathbf{R}_{2}$. Then, by (1.11.4a ff.), the resultant rotation from 0 to 2 will be $\mathbf{R}=\mathbf{R}_{1} \cdot \mathbf{R}_{2}$. Now, let:

$$
\begin{align*}
& \boldsymbol{\Omega}_{1 / 0,0} \equiv\left(\mathrm{~d} \mathbf{R}_{1} / \mathrm{dt}\right) \cdot \mathbf{R}_{1}{ }^{\mathrm{T}} \text { : angular velocity tensor of frame } 1 \text { relative to frame } 0, \\
& \text { along 0-axes ; } \\
& \boldsymbol{\Omega}_{1 / 0,1} \equiv \mathbf{R}_{1}{ }^{\mathrm{T}} \cdot\left(\mathrm{~d} \mathbf{R}_{1} / \mathrm{dt}\right) \text { : angular velocity tensor of frame } 1 \text { relative to frame } 0, \\
& \text { along 1-axes ; } \\
& \boldsymbol{\Omega}_{2 / 1,1} \equiv\left(\mathrm{~d} \mathbf{R}_{2} / \mathrm{dt}\right) \cdot \mathbf{R}_{2}{ }^{\mathrm{T}} \text { : angular velocity tensor of frame } 2 \text { relative to frame } 1, \\
& \text { along 1-axes ; } \\
& \boldsymbol{\Omega}_{2 / 1,2} \equiv \mathbf{R}_{2}{ }^{\mathrm{T}} \cdot\left(\mathrm{~d} \mathbf{R}_{2} / \mathrm{dt}\right) \text { : angular velocity tensor of frame } 2 \text { relative to frame } 1, \\
& \text { along 2-axes ; } \\
& \boldsymbol{\Omega}_{2 / 0,0} \equiv(\mathrm{~d} \mathbf{R} / \mathrm{dt}) \cdot \mathbf{R}^{\mathrm{T}}: \quad \text { angular velocity tensor of frame } 2 \text { relative to frame } 0, \\
& \text { along 0-axes ; } \\
& \boldsymbol{\Omega}_{2 / 0,2} \equiv \mathbf{R}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{R} / \mathrm{dt}): \quad \text { angular velocity tensor of frame } 2 \text { relative to frame } 0, \\
& \text { along 2-axes ; } \tag{1.11.7a}
\end{align*}
$$

(this or some similar intricate notation is a must in matrix territory!) and therefore

$$
\begin{aligned}
& \boldsymbol{\Omega}_{1 / 0,0}=\mathbf{R}_{1} \cdot \boldsymbol{\Omega}_{1 / 0,1} \cdot \mathbf{R}_{1}^{\mathrm{T}} \Leftrightarrow \boldsymbol{\Omega}_{1 / 0,1}=\mathbf{R}_{1}^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{1 / 0,0} \cdot \mathbf{R}_{1}, \\
& \boldsymbol{\Omega}_{2 / 1,0}=\mathbf{R}_{1} \cdot \boldsymbol{\Omega}_{2 / 1,1} \cdot \mathbf{R}_{1}^{\mathrm{T}} \Leftrightarrow \boldsymbol{\Omega}_{2 / 1,1}=\mathbf{R}_{1} \cdot \boldsymbol{\Omega}_{2 / 1,0} \cdot \mathbf{R}_{1}^{\mathrm{T}}, \\
& \boldsymbol{\Omega}_{2 / 1,1}=\mathbf{R}_{2} \cdot \boldsymbol{\Omega}_{2 / 1,2} \cdot \mathbf{R}_{2}^{\mathrm{T}} \Leftrightarrow \boldsymbol{\Omega}_{2 / 1,2}=\mathbf{R}_{2}^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{2 / 1,1} \cdot \mathbf{R}_{2}, \\
& \boldsymbol{\Omega}_{2 / 0,1}=\mathbf{R}_{1}^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{2 / 0,0} \cdot \mathbf{R}_{1}=\mathbf{R}_{2} \cdot \boldsymbol{\Omega}_{2 / 0,2}=\mathbf{R}_{2}^{\mathrm{T}}:
\end{aligned}
$$

angular velocity of frame 2 relative to frame 0 , but expressed along l-axes; etc.; i.e., the multiplications $\mathbf{R}_{1} \cdot(\ldots) \cdot \mathbf{R}_{1}{ }^{\mathrm{T}}$ convert components from 1 -frame axes to 0-frame axes; while $\mathbf{R}_{1}{ }^{\mathrm{T}}(\ldots) \cdot \mathbf{R}_{1}$ convert components from 0-frame axes to 1-frame axes; and analogously for $\mathbf{R}_{2} \cdot(\ldots) \cdot \mathbf{R}_{2}{ }^{\mathrm{T}}, \mathbf{R}_{2}{ }^{\mathrm{T}} \cdot(\ldots) \cdot \mathbf{R}_{2}$.
Then, and since $\mathbf{R}, \mathbf{R}_{1}, \mathbf{R}_{2}$ are orthogonal tensors,

$$
\text { (a) } \begin{aligned}
\boldsymbol{\Omega}_{2 / 0,0} & =(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \mathbf{R}^{\mathrm{T}}=\left[\mathrm{d} / \mathrm{dt}\left(\mathbf{R}_{1} \cdot \mathbf{R}_{2}\right)\right] \cdot\left(\mathbf{R}_{1} \cdot \mathbf{R}_{2}\right)^{\mathrm{T}} \\
& =\cdots=\left(\mathrm{d} \mathbf{R}_{1} / \mathrm{dt}\right) \cdot \mathbf{R}_{1}{ }^{\mathrm{T}}+\mathbf{R}_{1} \cdot\left[\left(\mathrm{~d} \mathbf{R}_{2} / \mathrm{dt}\right) \cdot \mathbf{R}_{2}^{\mathrm{T}}\right] \cdot \mathbf{R}_{1}^{\mathrm{T}} \\
& =\boldsymbol{\Omega}_{1 / 0,0}+\mathbf{R}_{1} \cdot \boldsymbol{\Omega}_{2 / 1,1} \cdot \mathbf{R}_{1}^{\mathrm{T}} \equiv \boldsymbol{\Omega}_{1 / 0,0}+\boldsymbol{\Omega}_{2 / 1,0}
\end{aligned}
$$

(theorem of additivity of angular velocities, along 0-axes);

$$
\boldsymbol{\Omega}_{2 / 0,1}=\mathbf{R}_{1}^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{2 / 0,0} \cdot \mathbf{R}_{1}=\mathbf{R}_{1}^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{1 / 0,0} \cdot \mathbf{R}_{1}+\boldsymbol{\Omega}_{2 / 1,1} \equiv \boldsymbol{\Omega}_{1 / 0,1}+\boldsymbol{\Omega}_{2 / 1,1}
$$

(theorem of additivity of angular velocities, along 1-axes);

$$
\begin{align*}
\boldsymbol{\Omega}_{2 / 0,2} & =\mathbf{R}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{R} / \mathrm{dt}) \quad\left[=\mathbf{R}_{2}{ }^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{2 / 0,1} \cdot \mathbf{R}_{2}=\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{2 / 0,0} \cdot \mathbf{R}\right] \\
& \equiv\left(\mathbf{R}_{1} \cdot \mathbf{R}_{2}\right)^{\mathrm{T}} \cdot\left[\mathrm{~d} / \mathrm{dt}\left(\mathbf{R}_{1} \cdot \mathbf{R}_{2}\right)\right] \\
& =\cdots=\mathbf{R}_{2}^{\mathrm{T}} \cdot\left[\mathbf{R}_{1}^{\mathrm{T}} \cdot\left(\mathrm{~d} \mathbf{R}_{1} / \mathrm{dt}\right)\right] \cdot \mathbf{R}_{2}+\mathbf{R}_{2}{ }^{\mathrm{T}} \cdot\left(\mathrm{~d} \mathbf{R}_{2} / \mathrm{dt}\right) \\
& =\mathbf{R}_{2}{ }^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{1 / 0,1} \cdot \mathbf{R}_{2}+\boldsymbol{\Omega}_{2 / 1,2} \equiv \boldsymbol{\Omega}_{1 / 0,2}+\boldsymbol{\Omega}_{2 / 1,2} \tag{1.11.7d}
\end{align*}
$$

(theorem of additivity of angular velocities, along 2-axes).
(b) Next, $\mathrm{d}(\ldots) / \mathrm{dt}$-differentiating the above, say (1.11.7b), it is not hard to show that:

$$
\begin{aligned}
& \mathrm{d} \boldsymbol{\Omega}_{2 / 0,0} / \mathrm{dt}=\mathrm{d} \boldsymbol{\Omega}_{1 / 0,0} / \mathrm{dt}+\mathrm{d} / \mathrm{dt}\left(\mathbf{R}_{1} \cdot \boldsymbol{\Omega}_{2 / 1,1} \cdot \mathbf{R}_{1}^{\mathrm{T}}\right) \\
& \quad=\mathrm{d} \boldsymbol{\Omega}_{1 / 0,0} / \mathrm{dt}+\mathbf{R}_{1} \cdot\left(\mathrm{~d} \boldsymbol{\Omega}_{2 / 1,1} / \mathrm{dt}\right) \cdot \mathbf{R}_{1}^{\mathrm{T}}+\mathbf{R}_{1} \cdot\left(\boldsymbol{\Omega}_{1 / 0,1} \cdot \boldsymbol{\Omega}_{2 / 1,1}-\boldsymbol{\Omega}_{2 / 1,1} \cdot \boldsymbol{\Omega}_{1 / 0,1}\right) \cdot \mathbf{R}_{1}^{\mathrm{T}}
\end{aligned}
$$

(theorem of non-additivity of angular accelerations, along 0-axes); (1.11.7e) and similarly for $\mathrm{d} \boldsymbol{\Omega}_{2 / 0,1} / \mathrm{dt}, \mathrm{d} \boldsymbol{\Omega}_{2 / 0,2} / \mathrm{dt}$. The last (third) term of (1.11.7e) shows that if the elements of the matrices, $\Omega_{1 / 0,0}, \boldsymbol{\Omega}_{2 / 1,1}$ are constant, then, in general, the elements of $\boldsymbol{\Omega}_{2 / 0,0}$ will also be constant if $\boldsymbol{\Omega}_{1 / 0,1}$ and $\boldsymbol{\Omega}_{2 / 1,1}$ commute, a well-known result from vectorial (undergraduate) kinematics. The extension of the above to three or more successive rotations is obvious.
[As Professor D. T. Greenwood has aptly remarked: "Equations (1.11.7b-e) illustrate how the use of matrix notation can make the simple seem obscure."]
2. Matrix forms of relative motion of a particle, in two frames with common origin. By $d / d t(\ldots)$-differentiating the passive interpretation (1.11.2c),

$$
\begin{align*}
& \qquad\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)= \\
& \text { Fixed axes } \tag{1.11.8a}\\
& \text { Moving axes, }
\end{align*}
$$

we can show that

$$
\begin{align*}
\mathrm{d} / \mathrm{dt}\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) & =\mathbf{A} \cdot\left[\mathrm{d} / \mathrm{dt}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\boldsymbol{\Omega} \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right] \tag{i}\\
\{ & =\mathbf{A} \cdot[\text { relative velocity }+ \text { transport velocity }]\} \tag{1.11.8b}
\end{align*}
$$

(ii)

$$
\begin{aligned}
\mathrm{d}^{2} / \mathrm{dt}^{2}\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\mathbf{A} \cdot\left[\mathrm{d}^{2} / \mathrm{dt}^{2}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right. & +(\mathrm{d} \boldsymbol{\Omega} / \mathrm{dt}) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& \left.+\Omega^{2} \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+2 \boldsymbol{\Omega} \cdot \mathrm{~d} / \mathrm{dt}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right]
\end{aligned}
$$

$$
\left\{=\mathbf{A} \cdot\left[\text { relative acceleration }\left(\partial^{2} \boldsymbol{r} / \partial t^{2}\right)+\text { transportacceleration }(\boldsymbol{\alpha} \times \boldsymbol{r}+\omega \times(\boldsymbol{\omega} \times \boldsymbol{r}))\right.\right.
$$

$$
\begin{equation*}
+ \text { Coriolis acceleration }(2 \omega \times(\partial \boldsymbol{r} / \partial t))]\} ; \tag{1.11.8c}
\end{equation*}
$$

we point out that, in the matrix notation, the $\mathrm{d} / \mathrm{dt} \mathrm{vs} . \partial / \partial \mathrm{t}$ difference ($\S 1.7$) disappears.
(iii) If the position of the origin of the moving axes, relative to that of the fixed ones, is $\boldsymbol{r}_{o}=\left(X_{o}, Y_{o}, Z_{o}\right)^{\mathrm{T}}$, so that [instead of (1.11.8a)]

$$
\left(\begin{array}{c}
X \tag{1.11.8d}\\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
X_{o} \\
Y_{o} \\
Z_{o}
\end{array}\right)+\mathbf{A} \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

then we simply add $\mathrm{d} / \operatorname{dt}\left(X_{o}, Y_{o}, Z_{o}\right)^{\mathrm{T}}$ to the right side of (1.11.8b) and $\mathrm{d}^{2} / \mathrm{dt}^{2}\left(X_{o}, Y_{o}, Z_{o}\right)^{\mathrm{T}}$ to the right side of (1.11.8c).
3. Tensor of Angular Acceleration, and so on.
(i) $\operatorname{By~} \mathrm{d}(\ldots) / \mathrm{dt}$-differentiating $(1.7 .30 \mathrm{i}, \mathrm{j}): \mathrm{d} \mathbf{A} / \mathrm{dt}=\mathbf{A} \cdot \boldsymbol{\Omega}=\boldsymbol{\Omega}^{\prime} \cdot \mathbf{A}$, we can show that

$$
\begin{equation*}
\mathrm{d}^{2} \mathbf{A} / \mathrm{dt}^{2}=\mathbf{A} \cdot \mathbf{E} \Rightarrow \mathbf{E}=\mathbf{A}^{\mathrm{T}} \cdot\left(\mathrm{~d}^{2} \mathbf{A} / \mathrm{dt}^{2}\right), \tag{1.11.9a}
\end{equation*}
$$

where
$\mathbf{E} \equiv \mathcal{A}+\boldsymbol{\Omega} \cdot \boldsymbol{\Omega} \equiv \mathcal{A}+\boldsymbol{\Omega}^{2}$,
$\mathcal{A} \equiv \mathrm{d} \boldsymbol{\Omega} / \mathrm{dt}:$ (Matrix of components, along the moving axes, of the) tensor of angular acceleration of the moving axes relative to the fixed ones

$$
\begin{align*}
\left\{=\mathrm{d} / \mathrm{dt}\left[\mathbf{A}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{A} / \mathrm{dt})\right]\right. & =\left(\mathrm{d} \mathbf{A}^{\mathrm{T}} / \mathrm{dt}\right) \cdot(\mathrm{d} \mathbf{A} / \mathrm{dt})+\mathbf{A}^{\mathrm{T}} \cdot\left(\mathrm{~d}^{2} \mathbf{A} / \mathrm{dt}^{2}\right) \\
& =-\boldsymbol{\Omega} \cdot \boldsymbol{\Omega}+\mathbf{E}\} . \tag{1.11.9d}
\end{align*}
$$

[In fact, both \mathcal{A} and \mathbf{E} appear in (1.11.8c). Also, some authors call \mathbf{E} the angular acceleration tensor, but we think that that term should apply to $\mathrm{d} \boldsymbol{\Omega} / \mathrm{dt}$; that is, definition (1.11.9c).]
(ii) Both \mathbf{E} and \mathcal{A} are (second-order) tensors; that is,

$$
\begin{align*}
& \mathbf{E}^{\prime}\left(=\mathcal{A}^{\prime}+\boldsymbol{\Omega}^{\prime} \cdot \boldsymbol{\Omega}^{\prime}\right)=\mathbf{A} \cdot \mathbf{E} \cdot \mathbf{A}^{\mathrm{T}} \Leftrightarrow \mathbf{E}=\mathbf{A}^{\mathrm{T}} \cdot \mathbf{E}^{\prime} \cdot \mathbf{A} \tag{1.11.9e}\\
& \mathcal{A}^{\prime}\left(=\mathrm{d} \boldsymbol{\Omega}^{\prime} / \mathrm{dt}\right)=\mathbf{A} \cdot \mathcal{A} \cdot \mathbf{A}^{\mathrm{T}} \Leftrightarrow \mathcal{A}=\mathbf{A}^{\mathrm{T}} \cdot \mathcal{A}^{\prime} \cdot \mathbf{A} \tag{1.11.9f}
\end{align*}
$$

where, as before, an accent (prime) denotes matrix of components along the fixed axes.
(iii) The fixed axes counterpart of (1.11.9a) is:

$$
\begin{equation*}
\mathrm{d}^{2} \mathbf{A} / \mathrm{dt}^{2}=\mathbf{E}^{\prime} \cdot \mathbf{A} \Rightarrow \mathbf{E}^{\prime}=\left(\mathrm{d}^{2} \mathbf{A} / \mathrm{dt}^{2}\right) \cdot \mathbf{A}^{\mathrm{T}}, \tag{1.11.9g}
\end{equation*}
$$

(iv) It can be verified, independently of (1.11.9a-d) and (1.11.9e-g), that

$$
\begin{align*}
\boldsymbol{\Omega}^{2} \equiv \boldsymbol{\Omega} \cdot \boldsymbol{\Omega} & =-\boldsymbol{\Omega}^{\mathrm{T}} \cdot \boldsymbol{\Omega}=-\boldsymbol{\Omega} \cdot \boldsymbol{\Omega}^{\mathrm{T}} \\
& =\cdots=-(\mathrm{d} \mathbf{A} / \mathrm{dt})^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{A} / \mathrm{dt})=-\left(\mathrm{d} \mathbf{A}^{\mathrm{T}} / \mathrm{dt}\right) \cdot(\mathrm{d} \mathbf{A} / \mathrm{dt}), \tag{1.11.9h}\\
\left(\boldsymbol{\Omega}^{\prime}\right)^{2} \equiv \boldsymbol{\Omega}^{\prime} \cdot \boldsymbol{\Omega}^{\prime} & =-\left(\boldsymbol{\Omega}^{\prime}\right)^{\mathrm{T}} \cdot \boldsymbol{\Omega}^{\prime}=-\boldsymbol{\Omega}^{\prime} \cdot\left(\boldsymbol{\Omega}^{\prime}\right)^{\mathrm{T}} \\
& =\cdots=-(\mathrm{d} \mathbf{A} / \mathrm{dt}) \cdot(\mathrm{d} \mathbf{A} / \mathrm{dt})^{\mathrm{T}}=-(\mathrm{d} \mathbf{A} / \mathrm{dt}) \cdot\left(\mathrm{d} \mathbf{A}^{\mathrm{T}} / \mathrm{dt}\right) . \tag{1.11.9i}
\end{align*}
$$

(v) Since $\mathrm{d} \boldsymbol{\Omega} / \mathrm{dt}$ is antisymmetric, and $\boldsymbol{\Omega} \cdot \boldsymbol{\Omega}$ is symmetric (explain this), show that the axial vectors of (the nonsymmetric) \mathbf{E} and \mathcal{A} coincide, and are both equal to none other than the vector of angular acceleration $\boldsymbol{\alpha}$; thus justifying calling \mathcal{A} the tensor of angular acceleration.

Finally, if the moving axes are fixed relative to a body B, then Ω / Ω^{\prime} and $\mathcal{A} / \mathcal{A}^{\prime}$ are respectively, the tensors of angular velocity and acceleration of that body relative to the space-fixed axes; and if the earlier particle is frozen (fixed) relative to B (i.e., $d x / d t=0, d^{2} x / d t^{2}=0$, etc.), then (1.11.8b, c) give, respectively, the matrix forms of the well-known formulae for the distribution of velocities and acceleration of the various points of B (from body-axes components to space-axes components). [For an indicial treatment of these tensors, and recursive formulae for their higher rates, see Truesdell and Toupin (1960, pp. 439-440).]

1.12 THE RIGID BODY: EULERIAN ANGLES

We recommend for concurrent reading with this section: Junkins and Turner (1986, chap. 2), Morton (1984).

As explained already ($\$ 1.7, \S 1.11$), the nine elements of the proper orthogonal tensor \mathbf{A} (or \mathbf{R}), in all its four interpretations, depend on only three independent parameters. A particularly popular such parametrization is afforded by the three (generalized) Eulerian angles. These latter appear naturally as we describe the general orientation of an ortho-normal-dextral (OND) body-fixed triad, or local frame $\boldsymbol{t}=\left\{\boldsymbol{u}_{k}\right\} \equiv(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}) \quad$ relative to an OND space-fixed frame $\mathbf{T}=\left\{\boldsymbol{u}_{k^{\prime}}\right\} \equiv(\boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K})$, with which it originally coincides, via the following sequence of three, possibly hypothetical, simple planar rotations (i.e., in each of them, the two triads have one axis in common, or parallel, and so the corresponding "partial rotation tensor" depends on a single angle):
(i) Rotation about the (i)th body axis through an angle $\chi_{(i)} \equiv \chi_{1} \equiv \phi$; followed by a
(ii) Rotation about the (j) th body axis $(j \neq i)$ through an angle $\chi_{(j)} \equiv \chi_{2} \equiv \theta$; followed by a
(iii) Rotation about the (k) th body axis $(k \neq j)$ through an angle $\chi_{(k)} \equiv \chi_{3} \equiv \psi$.

The angles $\chi_{1}=\phi\left(\right.$ about the original $\left.\boldsymbol{u}_{i}=\boldsymbol{u}_{i^{\prime}}\right), \chi_{2}=\theta$ (about the ϕ-rotated $\boldsymbol{u}_{j} \rightarrow \boldsymbol{u}_{j^{\prime}}$), and $\chi_{3}=\psi$ (about the θ-rotated $\boldsymbol{u}_{k} \rightarrow \boldsymbol{u}_{k^{\prime \prime}}$) are known as the $i \rightarrow j \rightarrow k$ Eulerian angles.

Of the twelve possible such angle triplets, six form a group for which $i \neq j \neq k=i$ (two-axes group):

$$
1 \rightarrow 2 \rightarrow 1, \quad 1 \rightarrow 3 \rightarrow 1, \quad 2 \rightarrow 1 \rightarrow 2, \quad 2 \rightarrow 3 \rightarrow 2, \quad 3 \rightarrow 1 \rightarrow 3, \quad 3 \rightarrow 2 \rightarrow 3
$$

and six form a group for which $i \neq j \neq k \neq i$ (three-axes group):

$$
1 \rightarrow 2 \rightarrow 3, \quad 1 \rightarrow 3 \rightarrow 2, \quad 2 \rightarrow 1 \rightarrow 3, \quad 2 \rightarrow 3 \rightarrow 1, \quad 3 \rightarrow 1 \rightarrow 2, \quad 3 \rightarrow 2 \rightarrow 1
$$

[Similar results, but with more complicated rotation tensors, would hold for rotations about the space-fixed axes $\left\{\boldsymbol{u}_{\boldsymbol{k}^{\prime}}: \boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K}\right\}$. If the partial rotations were about arbitrary (body- or space-fixed) axes, then, due to the infinity of their possible directions, we would have an infinity of angle triplets. It is the restriction that these rotations are about the body-fixed axes $\left\{\boldsymbol{u}_{k}\right\}$ that brings them down to twelve.]

Eulerian Angles

The sequence $3 \rightarrow 1 \rightarrow 3$, shown and described in fig. 1.26 [with the customary abbreviations: $\cos (\ldots) \equiv c(\ldots), \sin (\ldots) \equiv s(\ldots)]$ is considered to be the classical Eulerian angle description, originated and frequently used in astronomy and physics, [although "In his original work in 1760, Euler used a combination of right-handed and left-handed rotations; a convention unacceptable today" Likins (1973, p. 97)]. (1973, p. 97)].

Using the passive interpretation and fig. 1.26, we readily find that the corresponding coordinates of the compounded transformation resulting from the above sequence of partial rotations about the nonmutually orthogonal axes $O Z, O x^{\prime}, O z^{\prime \prime}$ [i.e., the (originally assumed coinciding) space-fixed $O-X Y Z$ and body-fixed $O-x y z$] are related by

$$
\begin{align*}
&\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{ccc}
c \phi & -s \phi & 0 \\
s \phi & c \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
c \phi & -s \phi & 0 \\
s \phi & c \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \theta & -s \theta \\
0 & s \theta & c \theta
\end{array}\right)\left(\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
c \phi & -s \phi & 0 \\
s \phi & c \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \theta & -s \theta \\
0 & s \theta & c \theta
\end{array}\right)\left(\begin{array}{ccc}
c \psi & -s \psi & 0 \\
s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& \mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}\left(\boldsymbol{i}^{\prime}, \theta\right) \cdot \mathbf{R}\left(\boldsymbol{k}^{\prime \prime}, \psi\right) \equiv \mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi} \equiv \mathbf{R}, \tag{1.12.1a}
\end{align*}
$$

$$
\begin{gather*}
=\left(\begin{array}{c|c|c}
c \phi c \psi-s \phi c \theta s \psi & -c \phi s \psi-s \phi c \theta c \psi & s \phi s \theta \\
\hline s \phi c \psi+c \phi c \theta s \psi & -s \phi s \psi+c \phi c \theta c \psi & -c \phi s \theta \\
\hline s \theta s \psi & s \theta c \psi & c \theta
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\mathbf{R} \text { or } \mathbf{A}=\left(A_{k^{\prime} k}\right) \quad(=\mathbf{1}, \quad \text { if } \phi, \theta, \psi=0) . \tag{1.12.1b}
\end{gather*}
$$

> Classical Eulerian Sequence: $(\boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K}): 3(\phi) \rightarrow \mathbf{1}(\theta) \rightarrow 3(\psi):(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$
> $0 \leq \phi$ (precession, or azimuth, angle) $<2 \pi$,
> $0 \leq \theta$ [nutation (i.e., nodding), or pole, angle] $\leq \pi$,
> $0 \leq \psi$ [proper, or intrinsic, rotation angle; or (eigen-) spin] $<2 \pi$.

$$
\text { In sum: } \quad \mathbf{T}=\mathbf{R}_{\phi} \cdot\left[\mathbf{R}_{\theta} \cdot\left(\mathbf{R}_{\psi} \cdot \mathbf{t}\right)\right] \equiv\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}\right) \cdot \mathbf{t} \equiv \mathbf{R} \cdot \mathbf{t}
$$

Figure 1.26 Partial, or elementary, rotations of classical Eulerian sequence: $\phi \rightarrow \theta \rightarrow \psi$ (originally: $O-x y z=O-x_{0} y_{0} z_{0} \equiv O-X Y Z$).

REMARKS

(i) Equation (1.12.1b) readily shows that if the direction cosines $A_{k^{\prime} k}$ are known, the three Eulerian angles can be calculated from

$$
\begin{equation*}
\phi=\tan ^{-1}\left(-A_{1^{\prime} 3} / A_{2^{\prime} 3}\right), \quad \theta=\cos ^{-1}\left(A_{3^{\prime} 3}\right), \quad \psi=\tan ^{-1}\left(A_{3^{\prime} 1} / A_{3^{\prime} 2}\right) . \tag{1.12.1c}
\end{equation*}
$$

(ii) If the origin of the body-fixed axes \leqslant is moving relative to the space-fixed frame $O-X Y Z$, then in the above we simply replace X with $X-X$, and so on, cyclically. Then, x, y, z [or $\left.x_{/ \bullet}, y_{/}, z_{/} \cdot(\S 1.8)\right]$ are the particle coordinates relative to $-x y z$. In this case, eq. (1.12.1b) shows clearly that a free (i.e., unconstrained) rigid body has six (global) degrees of freedom:

```
q1,2,3}=\mp@subsup{X}{\bullet}{},\mp@subsup{Y}{\bullet}{},\mp@subsup{Z}{\bullet}{*}: inertial coordinates of base point (pole
q4,5,6}=\phi,0,\psi: Eulerian angles of body-fixed \diamond-xyz relative to *-XYZ
```

and the constant x, y, z is the "name" of a generic body particle [more on this in chap. 2].

Inverting (1.12.1b) — while noting that, since all three component matrices $\mathbf{R}_{\phi, \theta, \psi}$ are orthogonal, the inverse of each equals its transpose (or using the passive interpretation equations in §1.11) - we readily obtain

$$
\left(\begin{array}{l}
x \tag{1.12.2}\\
y \\
z
\end{array}\right)=\mathbf{R}^{\mathrm{T}} \cdot\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right),
$$

where

$$
\begin{align*}
\mathbf{R}^{\mathrm{T}} & =\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}\right)^{\mathrm{T}}=\mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\phi}^{\mathrm{T}}=\mathbf{R}_{-\psi} \cdot \mathbf{R}_{-\theta} \cdot \mathbf{R}_{-\phi} \\
& =\left(\begin{array}{ccc}
c \psi & s \psi & 0 \\
-s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \theta & s \theta \\
0 & -s \theta & c \theta
\end{array}\right)\left(\begin{array}{ccc}
c \phi & s \phi & 0 \\
-s \phi & c \phi & 0 \\
0 & 0 & 1
\end{array}\right) . \tag{1.12.2a}
\end{align*}
$$

By adopting the active interpretation, we can show that (along arbitrary but common axes)
(a) $\quad \boldsymbol{r}_{f}=\mathbf{R}\left(\boldsymbol{k}^{\prime \prime}, \psi\right) \cdot \mathbf{R}\left(\boldsymbol{i}^{\prime}, \theta\right) \cdot \mathbf{R}\left(\boldsymbol{k}^{o}=\boldsymbol{K}, \phi\right) \cdot \boldsymbol{r}_{i}=\left(\mathbf{R}_{\psi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\phi}\right) \cdot \boldsymbol{r}_{i}$,
(b) $\quad \boldsymbol{r}_{i}=\left(\mathbf{R}_{\psi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\phi}\right)^{\mathrm{T}} \cdot \boldsymbol{r}_{f}=\mathbf{R}_{\phi}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot \boldsymbol{r}_{f}=\left(\mathbf{R}_{-\phi} \cdot \mathbf{R}_{-\theta} \cdot \mathbf{R}_{-\psi}\right) \cdot \boldsymbol{r}_{f}$ $=\left[\mathbf{R}(\boldsymbol{K},-\phi) \cdot \mathbf{R}\left(\boldsymbol{i}^{\prime},-\theta\right) \cdot \mathbf{R}\left(\boldsymbol{k}^{\prime \prime},-\psi\right)\right] \cdot \boldsymbol{r}_{i} ;$
while, by adopting the rotation of a triad interpretation, we can show that

$$
\begin{align*}
\mathbf{T} & =\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}\right) \cdot \mathbf{t} \tag{a}\\
\mathbf{t} & =\left(\mathbf{R}_{-\psi} \cdot \mathbf{R}_{-\theta} \cdot \mathbf{R}_{-\phi}\right) \cdot \mathbf{T} \tag{1.12.4a}
\end{align*}
$$

where $\mathbf{T}=(\boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K})^{\mathrm{T}}, \mathbf{t}=(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})^{\mathrm{T}}$.
Next, we prove the following remarkable theorem.
THEOREM (on Compounded Rotations about Body-fixed versus Space-fixed Axes)

$$
\begin{align*}
\mathbf{R}_{\psi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\phi} & \equiv \mathbf{R}\left(\boldsymbol{k}^{\prime \prime}, \psi\right) \cdot \mathbf{R}\left(\boldsymbol{i}^{\prime}, \theta\right) \cdot \mathbf{R}\left(\boldsymbol{k}^{o}=\boldsymbol{K}, \phi\right) \\
& =\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{I}, \theta) \cdot \mathbf{R}(\boldsymbol{K}, \psi) \tag{1.12.5a}
\end{align*}
$$

In words: the resultant rotation tensor of the classical Eulerian sequence about the body-fixed axes: $\phi\left(\boldsymbol{k} \equiv \boldsymbol{k}^{0}=\boldsymbol{K}\right) \rightarrow \theta\left(\boldsymbol{i}^{\prime}\right) \rightarrow \psi\left(\boldsymbol{k}^{\prime \prime}\right)$, equals the resultant rotation of the reverse-order sequence about the corresponding space-fixed axes: $\psi(\boldsymbol{K}) \rightarrow \theta(\boldsymbol{I}) \rightarrow \phi(\boldsymbol{K})$.
(i) To this end, we first prove the following auxiliary theorem.

Shift of the Axis Theorem

Let us consider two concurrent axes of rotation described by the unit vectors \boldsymbol{n} and \boldsymbol{n}^{\prime}, and related by a rotation through an angle μ about a third (also concurrent) axis described by the unit vector \boldsymbol{m}; that is,

$$
\begin{equation*}
\boldsymbol{n}^{\prime}=\mathbf{R}(\boldsymbol{m}, \mu) \cdot \boldsymbol{n}=\boldsymbol{n} \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu) \tag{1.12.5b}
\end{equation*}
$$

Then, the corresponding rotation tensors about \boldsymbol{n} and \boldsymbol{n}^{\prime}, but with a common angle χ, are related by the tensor-like (or, generally, "similarity") transformation:

$$
\begin{equation*}
\mathbf{R}\left(\boldsymbol{n}^{\prime}, \chi\right)=\mathbf{R}(\boldsymbol{m}, \mu) \cdot \mathbf{R}(\boldsymbol{n}, \chi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu) \tag{1.12.5c}
\end{equation*}
$$

PROOF
Applying the rotation formula (1.10.10a) for $\boldsymbol{n} \rightarrow \boldsymbol{n}^{\prime}$ and χ, we obtain, successively, $\mathbf{R}\left(\boldsymbol{n}^{\prime}, \chi\right)=\mathbf{R}[\mathbf{R}(\boldsymbol{m}, \mu) \cdot \boldsymbol{n}, \chi]$

$$
\begin{aligned}
=(\cos \chi) \mathbf{1} & +(\sin \chi)[\mathbf{R}(\boldsymbol{m}, \mu) \cdot \boldsymbol{n}] \times \mathbf{1} \\
& +(1-\cos \chi)[\mathbf{R}(\boldsymbol{m}, \mu) \cdot \boldsymbol{n}] \otimes[\mathbf{R}(\boldsymbol{m}, \mu) \cdot \boldsymbol{n}]
\end{aligned}
$$

[using the fact that, for any vector, $\boldsymbol{v}:(\mathbf{R} \cdot \boldsymbol{v}) \times \mathbf{1}=\mathbf{R} \cdot(\boldsymbol{v} \times \mathbf{1}) \cdot \mathbf{R}^{\mathrm{T}}$

- see proof below]

$$
\begin{aligned}
=(\cos \chi) \mathbf{1} & +(\sin \chi)\left[\mathbf{R}(\boldsymbol{m}, \mu) \cdot(\boldsymbol{n} \times \mathbf{1}) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu)\right] \\
& +(1-\cos \chi)\left[\mathbf{R}(\boldsymbol{m}, \mu) \cdot(\boldsymbol{n} \otimes \boldsymbol{n}) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu)\right]
\end{aligned}
$$

[recalling that $\mathbf{R}(\boldsymbol{m}, \mu) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu)=\mathbf{1}$]
$=\mathbf{R}(\boldsymbol{m}, \mu) \cdot[(\cos \chi) \mathbf{1}+(\sin \chi)(\boldsymbol{n} \times \mathbf{1})+(1-\cos \chi)(\boldsymbol{n} \otimes \boldsymbol{n})] \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu)$
$=\mathbf{R}(\boldsymbol{m}, \mu) \cdot[(\cos \chi) \mathbf{1}+(\sin \chi) \mathbf{N}+(1-\cos \chi)(\boldsymbol{n} \otimes \boldsymbol{n})] \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu)$
[recalling again (1.10.10a)]
$=\mathbf{R}(\boldsymbol{m}, \mu) \cdot \mathbf{R}(\boldsymbol{n}, \chi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{m}, \mu), \quad$ Q.E.D.
[PROOF that $(\mathbf{R} \cdot \boldsymbol{v}) \times \mathbf{1}=\mathbf{R} \cdot(\boldsymbol{v} \times \mathbf{1}) \cdot \mathbf{R}^{\mathrm{T}}$
According to the passive interpretation, \boldsymbol{v} and its corresponding antisymmetric tensor $\boldsymbol{V}=\boldsymbol{v} \times \mathbf{1}$ transform as follows:

$$
\begin{aligned}
& \mathbf{R} \cdot \boldsymbol{v}=\text { components of } \boldsymbol{v} \text { along the old axes } \equiv \boldsymbol{v}^{\prime} \\
& \mathbf{R} \cdot \boldsymbol{V} \cdot \mathbf{R}^{\mathrm{T}}=\text { components of } \boldsymbol{V} \text { along the old axes } \equiv \boldsymbol{V}^{\prime} .
\end{aligned}
$$

Therefore,

$$
\left.(\mathbf{R} \cdot \boldsymbol{v}) \times \mathbf{1}=\boldsymbol{v}^{\prime} \times \mathbf{1}=\boldsymbol{V}^{\prime}=\mathbf{R} \cdot \boldsymbol{V} \cdot \mathbf{R}^{\mathrm{T}}=\mathbf{R} \cdot(\boldsymbol{v} \times \mathbf{1}) \cdot \mathbf{R}^{\mathrm{T}}, \quad \text { Q.E.D. }\right]
$$

This theorem allows one to relate the rotation tensors about the initial (\boldsymbol{n}) and final (i.e., rotated) (\boldsymbol{n}^{\prime}) positions of a body-fixed axis.
(ii) Now, back to the proof of (1.12.5a). Applying the preceding shift of axis theorem ($1.12 .5 \mathrm{~b}, \mathrm{c}$), we get

$$
\begin{equation*}
\mathbf{R}\left(\boldsymbol{k}^{\prime \prime}, \psi\right)=\mathbf{R}\left(\boldsymbol{i}^{\prime}, \theta\right) \cdot \mathbf{R}\left(\boldsymbol{k}^{\prime}, \psi\right) \cdot \mathbf{R}^{\mathrm{T}}\left(\boldsymbol{i}^{\prime}, \phi\right) \tag{a}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{R}\left(\boldsymbol{i}^{\prime}, \theta\right)=\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{I}, \theta) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi) \tag{b}\\
& \Rightarrow \mathbf{R}^{\mathrm{T}}\left(\boldsymbol{i}^{\prime}, \phi\right)=\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{I}, \theta) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi)
\end{align*}
$$

where
(c)

$$
\begin{equation*}
\mathbf{R}\left(\boldsymbol{k}^{\prime}, \psi\right)=\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{K}, \psi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi), \tag{1.12.5i}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{k}^{\prime}=\mathbf{R}(\boldsymbol{K}, \phi) \cdot \boldsymbol{K} \tag{1.12.5k}
\end{equation*}
$$

Substituting ($1.12 .5 \mathrm{~g}, \mathrm{~h}, \mathrm{j}$) into the right side of (1.12.5e), while recalling that all these R's are orthogonal tensors, yields

$$
\begin{align*}
\mathbf{R}\left(\boldsymbol{k}^{\prime \prime}, \psi\right)= & {\left[\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{I}, \theta) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi)\right] } \\
& \cdot\left[\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{K}, \psi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi)\right] \\
& \cdot\left[\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{I}, \theta) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi)\right] \\
= & \mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{I}, \theta) \cdot \mathbf{R}(\boldsymbol{K}, \psi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{I}, \theta) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi) . \tag{1.12.51}
\end{align*}
$$

In view of (1.12 .5 g) and (1.12.51), the left side of (1.12.5a) transforms successively to

$$
\begin{align*}
& \mathbf{R}\left(\boldsymbol{k}^{\prime \prime}, \psi\right) \cdot \mathbf{R}\left(\boldsymbol{i}^{\prime}, \theta\right) \cdot \mathbf{R}(\boldsymbol{K}, \phi) \\
&= {\left[\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{I}, \theta) \cdot \mathbf{R}(\boldsymbol{K}, \psi) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{I}, \theta) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi)\right] } \\
& \cdot\left[\mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{I}, \theta) \cdot \mathbf{R}^{\mathrm{T}}(\boldsymbol{K}, \phi)\right] \cdot \mathbf{R}(\boldsymbol{K}, \phi) \\
&= \mathbf{R}(\boldsymbol{K}, \phi) \cdot \mathbf{R}(\boldsymbol{I}, \theta) \cdot \mathbf{R}(\boldsymbol{K}, \psi), \quad \text { Q.E.D. } \tag{1.12.5~m}
\end{align*}
$$

Generally, consider a body-fixed frame $O-x y z$ originally coinciding with the spacefixed frame $O-X Y Z$. Then the sequence of rotations about $O x\left(\right.$ first, $\left.\chi_{1}\right) \rightarrow$ $O y\left(\right.$ second, $\left.\chi_{2}\right) \rightarrow O z\left(\right.$ third, $\left.\chi_{3}\right)$ has the same final orientational effect as the sequence about $O Z\left(\right.$ first, $\left.\chi_{3}\right) \rightarrow O Y\left(\right.$ second, $\left.\chi_{2}\right) \rightarrow O X\left(\right.$ third, $\left.\chi_{1}\right)$. [See also Pars, 1965, pp. 103-105.]

Angular Velocity via Eulerian Angle Rates

Let us calculate the vector of angular velocity of the body frame $O-x y z$ relative to the space frame $O-X Y Z$, in terms of the Eulerian angles ϕ, θ, ψ and their rates $\omega_{\phi} \equiv d \phi / d t, \omega_{\theta} \equiv d \theta / d t, \omega_{\psi} \equiv d \psi / d t$; both along the body- and the space-fixed axes. We present several approaches.
(i) Geometrical Derivation

By inspection of fig. 1.26 we easily find that

$$
\begin{equation*}
\omega=\omega_{\phi} \boldsymbol{K}+\omega_{\theta} \boldsymbol{i}^{\prime}+\omega_{\psi} \boldsymbol{k}^{\prime \prime} \tag{1.12.6a}
\end{equation*}
$$

But, again by inspection, along the space basis,

$$
\begin{align*}
\boldsymbol{K} & =(0) \boldsymbol{I}+(0) \boldsymbol{J}+(1) \boldsymbol{K} \\
\boldsymbol{i}^{\prime} & =(\cos \phi) \boldsymbol{I}+(\sin \phi) \boldsymbol{J}+(0) \boldsymbol{K}, \\
\boldsymbol{k}^{\prime \prime} & =(-\sin \theta) \boldsymbol{j}^{\prime}+(\cos \theta) \boldsymbol{k}^{\prime} \\
& =(-\sin \theta)[(-\sin \phi) \boldsymbol{I}+(\cos \phi) \boldsymbol{J}]+(\cos \theta) \boldsymbol{K} \\
& =(\sin \theta \sin \phi) \boldsymbol{I}+(-\sin \theta \cos \phi) \boldsymbol{J}+(\cos \theta) \boldsymbol{K} \tag{1.12.6b}
\end{align*}
$$

and along the body basis,

$$
\begin{align*}
\boldsymbol{K}=\boldsymbol{j}^{\prime \prime}(\sin \theta) & +\boldsymbol{k}^{\prime \prime}(\cos \theta)=(\boldsymbol{i} \sin \psi+\boldsymbol{j} \cos \psi) \sin \theta+\boldsymbol{k} \cos \theta, \\
\boldsymbol{i}^{\prime} & =\boldsymbol{i} \cos \psi-\boldsymbol{j} \sin \psi, \quad \boldsymbol{k}^{\prime \prime}=\boldsymbol{k} . \tag{1.12.6c}
\end{align*}
$$

Inserting (1.12.6b, c) in (1.12.6a) and rearranging, we obtain the representations

$$
\begin{equation*}
\omega=\omega_{X} \boldsymbol{I}+\omega_{Y} \boldsymbol{J}+\omega_{Z} \boldsymbol{K}=\omega_{x} \boldsymbol{i}+\omega_{y} \boldsymbol{j}+\omega_{z} \boldsymbol{k} \tag{1.12.7a}
\end{equation*}
$$

where, in matrix form

$$
\left(\begin{array}{l}
\omega_{X} \tag{1.12.7b}\\
\omega_{Y} \\
\omega_{Z}
\end{array}\right)=\left(\begin{array}{ccc}
0 & c \phi & s \phi s \theta \\
0 & s \phi & -c \phi s \theta \\
1 & 0 & c \theta
\end{array}\right)\left(\begin{array}{c}
\omega_{\phi} \\
\omega_{\theta} \\
\omega_{\psi}
\end{array}\right)
$$

Space axes $\quad \mathbf{E}_{\mathbf{s}(\text { pace })}(\phi, \theta) \quad[$ no ψ-dependence $]$,

$$
\left(\begin{array}{l}
\omega_{x} \tag{1.12.7c}\\
\omega_{y} \\
\omega_{z}
\end{array}\right)=\left(\begin{array}{ccc}
s \theta s \psi & c \psi & 0 \\
s \theta c \psi & -s \psi & 0 \\
c \theta & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\omega_{\phi} \\
\omega_{\theta} \\
\omega_{\psi}
\end{array}\right)
$$

Body axes

$$
\mathbf{E}_{\mathbf{b}(\text { ody })}(\theta, \psi) \quad[\text { no } \phi \text {-dependence }]
$$

Inverting (1.12.7b, c) (noting that, since the axes of $\omega_{\phi, \theta, \psi}$ are non-orthogonal, the transformation matrices $\mathbf{E}_{\mathbf{s}}, \mathbf{E}_{\mathbf{b}}$ are nonorthogonal also; that is, their inverses do not equal their transposes), we obtain, respectively,

$$
\begin{align*}
&\left(\begin{array}{c}
\omega_{\phi} \\
\omega_{\theta} \\
\omega_{\psi}
\end{array}\right)=(1 / \sin \theta)\left(\begin{array}{ccc}
-s \phi c \theta & c \phi c \theta & s \theta \\
c \phi s \theta & s \phi s \theta & 0 \\
s \phi & -c \phi & 0
\end{array}\right)\left(\begin{array}{l}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right) \tag{1.12.7~d}\\
& \mathbf{E}_{\mathbf{s}}^{-1}(\phi, \theta), \\
&=(1 / \sin \theta)\left(\begin{array}{ccc}
s \psi & c \psi & 0 \\
s \theta c \psi & -s \theta s \psi & 0 \\
-c \theta s \psi & -c \theta c \psi & s \theta
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \tag{1.12.7e}\\
& \mathbf{E}_{\mathbf{b}}^{-1}(\theta, \psi)
\end{align*}
$$

from which we can also calculate the $\omega_{X, Y, Z} \Leftrightarrow \omega_{x, y, z}$ (orthogonal!) transformation matrices.

REMARKS

(a) The transformations ($1.12 .7 \mathrm{~b}-\mathrm{e}$) readily reveal a serious drawback of the $3 \rightarrow 1 \rightarrow 3$ Eulerian angle description, for $\theta=0$ (or $\pm \pi$); that is, when $O z$ coincides with $O Z$ (or $-O Z$), in which case the nodal line $O N$ disappears, $\sin \theta=0$, and, so, assuming $\phi, \psi \neq 0$, eqs. ($1.12 .7 \mathrm{~b}, \mathrm{c}$) yield, respectively,
$\omega_{X}=(c \phi) \omega_{\theta}, \quad \omega_{Y}=(s \phi) \omega_{\theta}, \quad \omega_{Z}=\omega_{\phi}+\omega_{\psi} \Rightarrow \omega_{X}^{2}+\omega_{Y}^{2}=\omega_{\theta}^{2} ;$
$\omega_{x}=(-c \psi) \omega_{\theta}, \quad \omega_{y}=(-s \psi) \omega_{\theta}, \quad \omega_{z}=\omega_{\phi}+\omega_{\psi} \Rightarrow \omega_{x}{ }^{2}+\omega_{y}{ }^{2}=\omega_{\theta}{ }^{2} ;(1.12 .7 \mathrm{~g})$
which means that knowing $\omega_{X, Y, Z / x, y, Z}(t)$ [say, after solving the kinetic Eulerian equations (§1.17)], we can determine ω_{θ} uniquely, but not ω_{ϕ} and ω_{ψ} !

Actually, all twelve generalized Eulerian angle descriptions mentioned earlier, $\chi_{1} \rightarrow \chi_{2} \rightarrow \chi_{3}$, exhibit such singularities for some value(s) of their second rotation angle χ_{2}; in which case, the planes of the other two angles become indistinguishable! From the numerical viewpoint, this means that in the close neighborhood of these values of χ_{2}, it becomes difficult to integrate for the rates $d \chi_{k} / d t(k=1,2,3)$. This is the main reason that, in rotational (or "attitude") rigid-body dynamics, (singularity free) four-parameter formalisms are sought, and the reason that the classical Eulerian sequence $3 \rightarrow 1 \rightarrow 3$ has been of much use in astronomy (where x, y, z have origin at the center of the Earth, and point to three distant stars) and physics; whereas other Eulerian sequences, such as $1 \rightarrow 2 \rightarrow 3$ or $3 \rightarrow 2 \rightarrow 1$ [associated with the names of Cardan (1501-1576) (continental European literature), Tait (1869), Bryan (1911) (British literature); and examined below] are more preferable in engineering rigidbody dynamics; for example, airplanes, ships, railroads, satellites, and so on. [Similarly, the position $(\phi, \theta, \psi)=(0,0,0)$ represents a singular "gimbal lock": the motions ω_{ϕ} and ω_{ψ} are indistinguishable since each is about the vertical axis Z; only $\omega_{\phi}+\omega_{\psi}$ is known. The ω_{θ} motion is about the X-axis, and so it is impossible to represent rotations about the Y-axis; it is "locked out"; that is $(0,0,0)$ introduces artificially a constraint, $\omega_{Y}=0, \omega_{y}=0$ that mechanically is not there (then, $\omega_{X}=\omega_{\theta}$, $\left.\omega_{Y}=0, \omega_{Z}=\omega_{\phi}+\omega_{\psi} ; \omega_{x}=\omega_{\theta}, \omega_{z}=\omega_{\phi}+\omega_{\psi}\right)$.]
(b) Equations (1.12.7b, c) also show that the components $\omega_{X, Y, Z / x, y, z}$ are quasi or nonholonomic velocities; that is, although they are linear and homogeneous combinations of the Eulerian angle rates $\omega_{\phi} \equiv d \phi / d t, \omega_{\theta} \equiv d \theta / d t, \omega_{\psi} \equiv d \psi / d t$, they do not equal the rates of other angles. Indeed, if, for example, $\omega_{X}=d \theta_{X} / d t$, where $\theta_{X}=$ $\theta_{X}(\phi, \theta, \psi)$, then we should have

$$
\begin{align*}
d \theta_{X} / d t & =\left(\partial \theta_{X} / \partial \phi\right)(d \phi / d t)+\left(\partial \theta_{X} / \partial \theta\right)(d \theta / d t)+\left(\partial \theta_{X} / \partial \psi\right)(d \psi / d t) \\
& =(0)(d \phi / d t)+(c \phi)(d \theta / d t)+(s \phi s \theta)(d \psi / d t) \quad[\text { by }(1.12 .7 \mathrm{~b})] \tag{1.12.7h}
\end{align*}
$$

that is,

$$
\begin{equation*}
\partial \theta_{X} / \partial \phi=0, \quad \partial \theta_{X} / \partial \theta=c \theta, \quad \partial \theta_{X} / \partial \psi=s \phi s \theta . \tag{1.12.7i}
\end{equation*}
$$

But, from (1.12.7i), it follows that, in general,

$$
\begin{equation*}
\partial / \partial \theta\left(\partial \theta_{X} / \partial \phi\right)=0 \neq \partial / \partial \phi\left(\partial \theta_{X} / \partial \theta\right)=-s \phi \tag{1.12.7j}
\end{equation*}
$$

Hence, no such θ_{X} exists; and similarly for the other ω 's. (An introduction to quasi coordinates is given in $\S 1.14$; and a detailed treatment is given in chap. 2.)

(ii) Passive Interpretation Derivation

(a) Body-fixed axes representation. Since ω is a vector, we can express it as the sum of its three Eulerian angular velocities:

$$
\begin{equation*}
\omega=\omega_{\phi}+\omega_{\theta}+\omega_{\psi} \tag{1.12.8a}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{\phi}=(d \phi / d t) \boldsymbol{K}, \quad \omega_{\theta}=(d \theta / d t) \boldsymbol{i}^{\prime}, \quad \boldsymbol{\omega}_{\psi}=(d \psi / d t) \boldsymbol{k}^{\prime \prime} . \tag{1.12.8b}
\end{equation*}
$$

Then, using the passive interpretation, (1.11.4h, 7 a ff.), we can express (1.12.8a, b) along the (new) body axes basis $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$. Since the Eulerian basis ($\left.\boldsymbol{K}, \boldsymbol{i}^{\prime}, \boldsymbol{k}^{\prime \prime}\right)$ is nonorthogonal, we carry out this transformation, not for the entire ω, but for each of its above components $\boldsymbol{\omega}_{\phi}, \boldsymbol{\omega}_{\theta}, \boldsymbol{\omega}_{\psi}$, and then, adding the results, we obtain

$$
\begin{array}{r}
\boldsymbol{\omega}_{\phi, \text { body components }}=\mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}} \cdot\left(\begin{array}{c}
0 \\
0 \\
\omega_{\phi}
\end{array}\right)_{(\boldsymbol{I J} \boldsymbol{K})}=\mathbf{R}_{-\psi} \cdot \mathbf{R}_{-\theta} \cdot\left(\begin{array}{c}
0 \\
0 \\
\omega_{\phi}
\end{array}\right) \\
=\left(\begin{array}{ccc}
c \psi & s \psi & 0 \\
-s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \theta & s \theta \\
0 & -s \theta & c \theta
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\omega_{\phi}
\end{array}\right)=\left(\begin{array}{c}
(s \theta s \psi) \omega_{\phi} \\
(s \theta c \psi) \omega_{\phi} \\
(c \theta) \omega_{\phi}
\end{array}\right), \tag{1.12.8c}
\end{array}
$$

$\boldsymbol{\omega}_{\theta, \text { body components }}=\mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot\left(\begin{array}{c}\omega_{\theta} \\ 0 \\ 0\end{array}\right)_{\left(i^{\prime} \boldsymbol{j}^{\prime} \boldsymbol{k}^{\prime}\right)}=\mathbf{R}_{-\psi} \cdot\left(\begin{array}{c}\omega_{\theta} \\ 0 \\ 0\end{array}\right)$

$$
=\left(\begin{array}{ccc}
c \psi & s \psi & 0 \tag{1.12.8~d}\\
-s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\omega_{\theta} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
(c \psi) \omega_{\theta} \\
(-s \psi) \omega_{\theta} \\
(0) \omega_{\theta}
\end{array}\right)
$$

$\boldsymbol{\omega}_{\psi, \text { body components }}=\left(\begin{array}{c}0 \\ 0 \\ \omega_{\psi}\end{array}\right)_{(\boldsymbol{i} \boldsymbol{j} \boldsymbol{k})}$.
Adding ($1.12 .8 \mathrm{c}-\mathrm{e}$), we obtain the body axes components, equations (1.12.7c), as expected.
(b) Space-fixed axes representation. Proceeding similarly, we find

$$
\begin{align*}
\boldsymbol{\omega}= & \left(\begin{array}{c}
0 \\
0 \\
\omega_{\phi}
\end{array}\right)+\left(\begin{array}{ccc}
c \phi & -s \phi & 0 \\
s \phi & c \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\omega_{\theta} \\
0 \\
0
\end{array}\right) \\
& +\left(\begin{array}{ccc}
c \phi & -s \phi & 0 \\
s \phi & c \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \theta & -s \theta \\
0 & s \theta & c \theta
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\mathbf{R}_{\phi}
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \omega_{\phi}+\left(\begin{array}{c}
c \phi \\
s \phi \\
0
\end{array}\right) \omega_{\theta}+\left(\begin{array}{c}
s \phi s \theta \\
-c \phi s \theta \\
c \theta
\end{array}\right) \omega_{\psi} \tag{1.12.8f}
\end{align*}
$$

which is none other than (1.12.7b).
Let the reader verify that the space-axes representation (1.12.8f) can also be rewritten as

$$
\boldsymbol{\omega}=\mathbf{R}_{\phi} \cdot\left(\begin{array}{c}
0 \tag{1.12.8~g}\\
0 \\
\omega_{\phi}
\end{array}\right)+\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot\left(\begin{array}{c}
\omega_{\theta} \\
0 \\
0
\end{array}\right)+\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi} \cdot\left(\begin{array}{c}
0 \\
0 \\
\omega_{\psi}
\end{array}\right)
$$

while the body-axes representation $(1.12 .8 \mathrm{c}-\mathrm{e})$ can be rewritten as

$$
\boldsymbol{\omega}=\mathbf{R}_{-\psi} \cdot \mathbf{R}_{-\theta} \cdot \mathbf{R}_{-\phi} \cdot\left(\begin{array}{c}
0 \tag{1.12.8h}\\
0 \\
\omega_{\phi}
\end{array}\right)+\mathbf{R}_{-\psi} \cdot \mathbf{R}_{-\theta} \cdot\left(\begin{array}{c}
\omega_{\theta} \\
0 \\
0
\end{array}\right)+\mathbf{R}_{-\psi} \cdot\left(\begin{array}{c}
0 \\
0 \\
\omega_{\psi}
\end{array}\right)
$$

(iii) Tensor (Matrix) Derivation

We have already seen $[(1.7 .27 \mathrm{e})$ and $(1.7 .30 \mathrm{i}-\mathrm{k})$] that the space-axes components of the angular velocity tensor (vector) $\boldsymbol{\Omega}^{\prime}\left(\boldsymbol{\omega}^{\prime}\right)$ are related to its body-axes components $\boldsymbol{\Omega}(\omega)$ by the tensor (vector) transformation

$$
\begin{gather*}
\boldsymbol{\Omega}^{\prime}=\mathbf{R} \cdot \boldsymbol{\Omega} \cdot \mathbf{R}^{\mathrm{T}} \Leftrightarrow \boldsymbol{\Omega}=\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{\Omega}^{\prime} \cdot \mathbf{R} \\
\left(\omega^{\prime}=\mathbf{R} \cdot \omega \Leftrightarrow \omega=\mathbf{R}^{\mathrm{T}} \cdot \omega^{\prime}\right) \tag{1.12.9a}
\end{gather*}
$$

where \mathbf{R}, or \mathbf{A}, is the matrix of the direction cosines between these axes; and also that

$$
\begin{align*}
& \boldsymbol{\Omega}^{\prime}=(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \mathbf{R}^{\mathrm{T}}=-\mathbf{R} \cdot(\mathrm{d} \mathbf{R} / \mathrm{dt})^{\mathrm{T}} \quad\left[\mathrm{due} \text { to } \mathrm{d} / \mathrm{dt}\left(\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}}\right)=\mathrm{d} \mathbf{1} / \mathrm{dt}=\mathbf{0}\right] \\
& \boldsymbol{\Omega}=\mathbf{R}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{R} / \mathrm{dt})=-(\mathrm{d} \mathbf{R} / \mathrm{dt})^{\mathrm{T}} \cdot \mathbf{R}, \\
& \mathrm{~d} \mathbf{R}^{\prime} / \mathrm{dt}=\boldsymbol{\Omega}^{\prime} \cdot \mathbf{R} \quad\left[=\left(\mathbf{R} \cdot \boldsymbol{\Omega} \cdot \mathbf{R}^{\mathrm{T}}\right) \cdot \mathbf{R}\right]=\mathbf{R} \cdot \boldsymbol{\Omega} \tag{1.12.9b}
\end{align*}
$$

(a) Space-fixed axes representation. As we have seen, in the case of the classical Eulerian sequence $\phi \rightarrow \theta \rightarrow \psi: \mathbf{R} \equiv \mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}$, and therefore (1.12.9b) yields, successively,

$$
\begin{aligned}
\boldsymbol{\Omega}^{\prime}= & (\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \mathbf{R}^{\mathrm{T}}=\mathrm{d} / \mathrm{dt}\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}\right) \cdot\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}\right)^{\mathrm{T}} \\
= & {\left[\left(\mathrm{d} \mathbf{R}_{\phi} / \mathrm{dt}\right) \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}+\mathbf{R}_{\phi} \cdot\left(\mathrm{d} \mathbf{R}_{\theta} / \mathrm{dt}\right) \cdot \mathbf{R}_{\psi}+\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot\left(\mathrm{d} \mathbf{R}_{\psi} / \mathrm{dt}\right)\right] \cdot\left(\mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\phi}^{\mathrm{T}}\right) } \\
= & \left(\mathrm{d} \mathbf{R}_{\phi} / \mathrm{dt}\right) \cdot\left[\mathbf{R}_{\theta} \cdot\left(\mathbf{R}_{\psi} \cdot \mathbf{R}_{\psi}{ }^{\mathrm{T}}\right) \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}}\right] \cdot \mathbf{R}_{\phi}^{\mathrm{T}} \\
& +\mathbf{R}_{\phi} \cdot\left[\left(\mathrm{d} \mathbf{R}_{\theta} / \mathrm{dt}\right) \cdot\left(\mathbf{R}_{\psi} \cdot \mathbf{R}_{\psi}{ }^{\mathrm{T}}\right) \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}}\right] \cdot \mathbf{R}_{\phi}^{\mathrm{T}} \\
& \\
& \quad+\mathbf{R}_{\phi} \cdot\left\{\mathbf{R}_{\theta} \cdot\left[\left(\mathrm{d} \mathbf{R}_{\psi} / \mathrm{dt}\right) \cdot \mathbf{R}_{\psi}{ }^{\mathrm{T}}\right] \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}}\right\} \cdot \mathbf{R}_{\phi}{ }^{\mathrm{T}} \\
& =\left(\mathrm{d} \mathbf{R}_{\phi} / \mathrm{dt}\right) \cdot \mathbf{R}_{\phi}{ }^{\mathrm{T}}+\mathbf{R}_{\phi} \cdot\left[\left(\mathrm{d} \mathbf{R}_{\theta} / \mathrm{dt}\right) \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}}\right] \cdot \mathbf{R}_{\phi}{ }^{\mathrm{T}}+\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot\left[\left(\mathrm{d} \mathbf{R}_{\psi} / \mathrm{dt}\right) \cdot \mathbf{R}_{\psi}{ }^{\mathrm{T}}\right] \cdot\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta}\right)^{\mathrm{T}}
\end{aligned}
$$

[recalling the definition of tensor transformation (1.12.9a), and (1.12.9b)], (1.12.9c)

$$
\begin{equation*}
=\boldsymbol{\Omega}_{\phi}^{\prime}+\mathbf{R}_{\phi} \cdot \boldsymbol{\Omega}_{\theta}^{\prime} \cdot \mathbf{R}_{\phi}^{\mathrm{T}}+\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \boldsymbol{\Omega}_{\psi}^{\prime} \cdot\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta}\right)^{\mathrm{T}} \tag{1.12.9d}
\end{equation*}
$$

$\left[\boldsymbol{\Omega}^{\prime}{ }_{\phi, \theta, \psi}\right.$: "partial" rotation tensors, along the space-fixed axes],
from which, after some long but straightforward algebra, we obtain [recalling (1.12.1a ff.)]

$$
\begin{align*}
& \Omega_{1^{\prime} 1^{\prime}} \equiv \Omega_{X X}=0, \\
& \Omega_{1^{\prime} 2^{\prime}}=-\Omega_{2^{\prime} 1^{\prime}} \equiv \Omega_{X Y}=-\Omega_{Y X}=-\omega_{Z}=-[d \phi / d t+(c \theta)(d \psi / d t)], \\
& \Omega_{1^{\prime} 3^{\prime}}=-\Omega_{3^{\prime} 1^{\prime}} \equiv \Omega_{X Z}=-\Omega_{Z X}=-\omega_{Y}=(s \phi)(d \theta / d t)-(c \phi s \theta)(d \psi / d t), \\
& \Omega_{2^{\prime} 2^{\prime}} \equiv \Omega_{Y Y}=0, \\
& \Omega_{2^{\prime} 3^{\prime}}=-\Omega_{3^{\prime} 2^{\prime}} \equiv \Omega_{Y Z}=-\Omega_{Z Y}=-\omega_{X}=-[(c \phi)(d \theta / d t)+(s \phi s \theta)(d \psi / d t)], \\
& \Omega_{3^{\prime} 3^{\prime}} \equiv \Omega_{Z Z}=0, \tag{1.12.9e}
\end{align*}
$$

which coincide with (1.12.7b), as expected.
(b) Body-fixed axes representation. Proceeding analogously, we obtain

$$
\begin{align*}
\boldsymbol{\Omega}= & \mathbf{R}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{R} / \mathrm{dt})=\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}\right)^{\mathrm{T}} \cdot\left[\mathrm{~d} / \mathrm{dt}\left(\mathbf{R}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}\right)\right] \\
=\cdots= & \mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}} \cdot\left[\mathbf{R}_{\phi}{ }^{\mathrm{T}} \cdot\left(\mathrm{~d} \mathbf{R}_{\phi} / \mathrm{dt}\right)\right] \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi} \\
& \quad+\mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot\left[\mathbf{R}_{\theta}{ }^{\mathrm{T}} \cdot\left(\mathrm{~d} \mathbf{R}_{\theta} / \mathrm{dtt}\right)\right] \cdot \mathbf{R}_{\psi}+\mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot\left(\mathrm{~d} \mathbf{R}_{\psi} / \mathrm{dt}\right) \\
\equiv & \mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\theta}{ }^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{\phi} \cdot \mathbf{R}_{\theta} \cdot \mathbf{R}_{\psi}+\mathbf{R}_{\psi}{ }^{\mathrm{T}} \cdot \boldsymbol{\Omega}_{\theta} \cdot \mathbf{R}_{\psi}+\boldsymbol{\Omega}_{\psi} \tag{1.12.9f}
\end{align*}
$$

$\left[\boldsymbol{\Omega}_{\phi, \theta, \psi}\right.$: "partial" rotation tensors, along the body-fixed axes].
We leave it to the reader to verify that the above coincides with (1.12.7c). Alternatively, one can use the transformation equations (1.12.9a) to calculate $\boldsymbol{\Omega} / \omega$ from $\boldsymbol{\Omega}^{\prime} / \omega^{\prime}$. (See also Hamel, 1949, pp. 735-739.)

Cardanian Angles

This is the Eulerian rotation sequence $3 \rightarrow 2 \rightarrow 1$ (fig. 1.27). The angles $\chi_{1}=\gamma(3) \rightarrow$ $\chi_{2}=\beta(2) \rightarrow \chi_{3}=\alpha(1)$ are commonly (but not uniformly) referred to as Cardanian

Figure 1.27 Cardanian angles: $\chi_{1}=\gamma(3) \rightarrow \chi_{2}=\beta(2) \rightarrow \chi_{3}=\alpha(1)$.
(i) Rotation $\left(O Z, \chi_{1}=\gamma\right): O-X Y Z$ (space axes) $=0-x_{0} y_{0} z_{0}$ (initial body axes) $\rightarrow O-x^{\prime} y^{\prime} z^{\prime}$.
(ii) Rotation $\left(O y^{\prime}, \chi_{2}=\beta\right)$: $O-x^{\prime} y^{\prime} z^{\prime} \rightarrow O-x^{\prime \prime} y^{\prime \prime} z^{\prime \prime}$.
(iii) Rotation ($O x^{\prime \prime}, \chi_{3}=\alpha$): $O-x^{\prime \prime} y^{\prime \prime} z^{\prime \prime} \rightarrow O-x y z$ (final body axes).
angles. In vehicle and aeronautical dynamics, where such an attitude representation is popular, they are called yaw (γ), pitch (β), and roll (α).

Following the passive interpretation, we readily obtain

$$
\begin{align*}
& \left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\mathbf{R} \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\mathbf{R}_{\gamma} \cdot\left\{\mathbf{R}_{\beta} \cdot\left[\mathbf{R}_{\alpha} \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right]\right\} \\
& \begin{array}{c}
=\left(\begin{array}{ccc}
c \gamma & -s \gamma & 0 \\
s \gamma & c \gamma & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
c \beta & 0 & s \beta \\
0 & 1 & 0 \\
-s \beta & 0 & c \beta
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \alpha & -s \alpha \\
0 & s \alpha & c \alpha
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\mathbf{R}_{\gamma}
\end{array} \tag{1.12.10a}\\
& =\left(\begin{array}{ccc}
c \beta c \gamma & s \alpha s \beta c \gamma-c \alpha s \gamma & c \alpha s \beta c \gamma+s \alpha s \gamma \\
c \beta s \gamma & s \alpha s \beta s \gamma+c \alpha c \gamma & c \alpha s \beta s \gamma-s \alpha c \gamma \\
-s \beta & s \alpha c \beta & c \alpha c \beta
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \tag{1.12.10b}
\end{align*}
$$

and, inversely, since $\mathbf{R}_{\alpha, \beta, \gamma}$ are proper orthogonal,

$$
\begin{align*}
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\mathbf{R}^{\mathrm{T}} \cdot\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) & =\left(\mathbf{R}_{\alpha}{ }^{\mathrm{T}} \cdot \mathbf{R}_{\beta}^{\mathrm{T}} \cdot \mathbf{R}_{\gamma}^{\mathrm{T}}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \\
& =\left(\mathbf{R}_{-\alpha} \cdot \mathbf{R}_{-\beta} \cdot \mathbf{R}_{-\gamma}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) . \tag{1.12.10c}
\end{align*}
$$

Angular Velocity Tensors

Using the basic relations (1.12.9a, b), we can show, after some long and careful but straightforward algebra, that (with $\omega_{\gamma} \equiv d \gamma / d t, \omega_{\beta} \equiv d \beta / d t, \omega_{\alpha} \equiv d \alpha / d t$)

$$
\left(\begin{array}{l}
\omega_{X} \tag{1.12.10d}\\
\omega_{Y} \\
\omega_{Z}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -s \gamma & c \gamma c \beta \\
0 & c \gamma & s \gamma c \beta \\
1 & 0 & -s \beta
\end{array}\right)\left(\begin{array}{l}
\omega_{\gamma} \\
\omega_{\beta} \\
\omega_{\alpha}
\end{array}\right)
$$

Space axes $\quad \mathbf{E}_{\mathbf{s}(\text { pace })}(\gamma, \beta) \quad[$ no α-dependence $]$,

$$
\left(\begin{array}{l}
\omega_{x} \tag{1.12.10e}\\
\omega_{y} \\
\omega_{z}
\end{array}\right)=\left(\begin{array}{ccc}
-s \beta & 0 & 1 \\
c \beta s \alpha & c \alpha & 0 \\
c \alpha c \beta & -s \alpha & 0
\end{array}\right)\left(\begin{array}{l}
\omega_{\gamma} \\
\omega_{\beta} \\
\omega_{\alpha}
\end{array}\right)
$$

$$
\text { Body axes } \quad \mathbf{E}_{\mathbf{b}(\text { ody })}(\beta, \alpha) \quad \text { [no } \gamma \text {-dependence]. }
$$

Inverting (1.12.10d, e) (noting that, since the axes of $\omega_{\alpha, \beta, \gamma}$ are non-orthogonal, the transformation matrices $\mathbf{E}_{\mathbf{s}}(\gamma, \beta), \mathbf{E}_{\mathbf{b}}(\beta, \alpha)$ are nonorthogonal also; that is, their inverses do not equal their transposes), we obtain respectively,

$$
\begin{align*}
&\left(\begin{array}{c}
\omega_{\gamma} \\
\omega_{\beta} \\
\omega_{\alpha}
\end{array}\right)=(1 / \cos \beta)\left(\begin{array}{ccc}
s \beta c \gamma & s \beta s \gamma & c \beta \\
-s \gamma c \beta & c \gamma c \beta & 0 \\
c \gamma & s \gamma & 0
\end{array}\right)\left(\begin{array}{l}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right) \tag{1.12.10f}\\
& \mathbf{E}_{\mathbf{s}}^{-1}(\beta, \gamma) \tag{1.12.10~g}\\
&=(1 / \cos \beta)\left(\begin{array}{ccc}
0 & s \alpha & c \alpha \\
0 & c \alpha c \beta & -s \alpha c \beta \\
c \beta & s \beta s \alpha & s \beta c \alpha
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
\end{align*}
$$

from which it is clear that the Cardanian sequence $3(\gamma) \rightarrow 2(\beta) \rightarrow 1(\alpha)$ has a singularity at $\beta= \pm(\pi / 2)$. There, (1.12.10d, e) become, respectively (for $\beta=\pi / 2$),
$\omega_{X}=(-s \gamma) \omega_{\beta}, \quad \omega_{Y}=(c \gamma) \omega_{\beta}, \quad \omega_{Z}=\omega_{\gamma}-\omega_{\alpha} \Rightarrow \omega_{X}^{2}+\omega_{Y}^{2}=\omega_{\beta}^{2}, \quad$ (1.12.10h)
$\omega_{x}=-\omega_{\gamma}+\omega_{\alpha}, \quad \omega_{y}=(c \alpha) \omega_{\beta}, \quad \omega_{z}=(-s \alpha) \omega_{\beta} \Rightarrow \omega_{x}^{2}+\omega_{y}^{2}=\omega_{\beta}^{2} ;$
that is, a unique determination of ω_{γ} and ω_{α} from ω_{Z}, or ω_{x}, is impossible.

Finally, using (1.12.10f, g), we can obtain the $\omega_{X, Y, Z} \leftrightarrow \omega_{x, y, Z}$ transformation. For a complete listing of the transformations between $\omega_{x, y, z} \equiv \omega_{1,2,3}$ (body-fixed axes) and the Eulerian rates $d \chi_{1,2,3} / d t \equiv v_{1,2,3}$ (and corresponding singularities), for all body-/space-axis Eulerian rotation sequences, see the next section.

1.13 THE RIGID BODY: TRANSFORMATION MATRICES
 (DIRECTION COSINES) BETWEEN SPACE-FIXED AND BODY-FIXED TRIADS; AND ANGULAR VELOCITY COMPONENTS ALONG BODY-FIXED AXES, FOR ALL SEQUENCES OF EULERIAN ANGLES

Summary of Theory, Notations

$$
\begin{aligned}
& \mathbf{T}=\left(\boldsymbol{u}_{k^{\prime}}\right)^{\mathrm{T}} \equiv\left(\boldsymbol{u}_{1^{\prime}}, \boldsymbol{u}_{2^{\prime}}, \boldsymbol{u}_{3^{\prime}}\right)^{\mathrm{T}} \equiv(\boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K})^{\mathrm{T}} \text { : Space-fixed (fixed) triad. } \\
& \mathbf{t}=\left(\boldsymbol{u}_{k}\right)^{\mathrm{T}} \equiv\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right)^{\mathrm{T}} \equiv(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})^{\mathrm{T}}: \text { Body-fixed (moving) triad. }
\end{aligned}
$$

All triads are assumed ortho-normal-dextral (OND), and such that, initially, $\mathbf{T}=\mathbf{t}$. Eulerian angles (see $\S 1.12$): $\chi_{1}, \chi_{2}, \chi_{3}$ (the earlier ϕ, θ, ψ; or α, β, γ).

1. Basic Triad Transformation Formula

$$
\mathbf{T}=\mathbf{R} \cdot \mathbf{t} \Leftrightarrow \mathbf{t}=\mathbf{R}^{\mathrm{T}} \cdot \mathbf{T}
$$

where

$$
\begin{aligned}
\mathbf{R} & =\left(R_{k^{\prime} k}\right) \equiv\left(\boldsymbol{u}_{k^{\prime}} \cdot \boldsymbol{u}_{k}\right) \quad\left[\text { or }\left(A_{k^{\prime} k}\right)\right]: \text { Tensor/Matrix of rotation } \\
& =\mathbf{R}\left(\boldsymbol{u}_{i}, \chi_{1}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{j}, \chi_{2}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{k}, \chi_{3}\right) \equiv\left[i\left(\chi_{1}\right), j\left(\chi_{2}\right), k\left(\chi_{3}\right)\right]
\end{aligned}
$$

[Rotation sequence $\chi_{1} \rightarrow \chi_{2} \rightarrow \chi_{3}$ about the body-fixed axes $\boldsymbol{u}_{i} \rightarrow \boldsymbol{u}_{j} \rightarrow \boldsymbol{u}_{k}$]

$$
=\mathbf{R}\left(\boldsymbol{u}_{k^{\prime}}, \chi_{3}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{j^{\prime}}, \chi_{2}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{i^{\prime}}, \chi_{1}\right) \equiv\left[k^{\prime}\left(\chi_{3}\right), j^{\prime}\left(\chi_{2}\right), i^{\prime}\left(\chi_{1}\right)\right]
$$

[Rotation sequence $\chi_{3} \rightarrow \chi_{2} \rightarrow \chi_{1}$ about the space-fixed axes $\boldsymbol{u}_{k^{\prime}} \rightarrow \boldsymbol{u}_{j^{\prime}} \rightarrow \boldsymbol{u}_{i^{\prime}}$]

$$
\left[i, j, k=1,2,3 ; i^{\prime}, j^{\prime}, k^{\prime}=1^{\prime}, 2^{\prime}, 3^{\prime}\right] ;
$$

and, by the basic theorem on compounded rotations (§1.12), the inverse rotation

$$
\begin{aligned}
\mathbf{R}^{-1}=\mathbf{R}^{\mathrm{T}} & =\mathbf{R}\left(\boldsymbol{u}_{k},-\chi_{3}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{j},-\chi_{2}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{i},-\chi_{1}\right) \\
& =\mathbf{R}\left(\boldsymbol{u}_{i^{\prime}},-\chi_{1}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{j^{\prime}},-\chi_{2}\right) \cdot \mathbf{R}\left(\boldsymbol{u}_{k^{\prime}},-\chi_{3}\right)
\end{aligned}
$$

returns the body-triad \mathbf{t} to its original position, i.e. realigns it with the space-triad \mathbf{T}.
How to obtain space-axis rotations; i.e., $\left[k^{\prime}\left(\chi_{1}\right), j^{\prime}\left(\chi_{2}\right), i^{\prime}\left(\chi_{3}\right)\right]$, from a knowledge of body-axis rotations with the same rotation sequence: $\chi_{1} \rightarrow \chi_{2} \rightarrow \chi_{3}$; i.e., from $\left[i\left(\chi_{1}\right), j\left(\chi_{2}\right), k\left(\chi_{3}\right)\right]$, and vice versa. An example should suffice; by the above theorem, we will have

$$
\left[2\left(\chi_{1}\right), 3\left(\chi_{2}\right), 1\left(\chi_{3}\right)\right]=\left[1^{\prime}\left(\chi_{3}\right), 3^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{1}\right)\right]
$$

and, therefore, swapping in the latter χ_{3} with χ_{1} (and vice versa), we obtain $\left[1^{\prime}\left(\chi_{1}\right), 3^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{3}\right)\right]$, which appears in the listing below. Similarly, we have

$$
\left[2^{\prime}\left(\chi_{1}\right), 3^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{3}\right)\right]=\left[1\left(\chi_{3}\right), 3\left(\chi_{2}\right), 2\left(\chi_{1}\right)\right]
$$

and swapping in there χ_{3} with χ_{1} (and vice versa) we obtain $\left[1\left(\chi_{1}\right), 3\left(\chi_{2}\right), 2\left(\chi_{3}\right)\right]$. Abbreviations: $s_{i}(\ldots) \equiv \sin \left(\chi_{i}\right), c_{i}(\ldots) \equiv \cos \left(\chi_{i}\right)$.

2. Angular Velocity Components

Body-fixed (moving) axes components:

$$
\boldsymbol{\Omega}=\mathbf{R}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{R} / \mathrm{dt})=-(\mathrm{d} \mathbf{R} / \mathrm{dt})^{\mathrm{T}} \cdot \mathbf{R}, \quad\left[\text { due to } \mathrm{d} / \mathrm{dt}\left(\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}}\right)=\mathrm{d} \mathbf{1} / \mathrm{dt}=\mathbf{0}\right]
$$

Space-fixed (fixed) axes components:

$$
\boldsymbol{\Omega}^{\prime}=(\mathrm{d} \mathbf{R} / \mathrm{dt}) \cdot \mathbf{R}^{\mathrm{T}}=-\mathbf{R} \cdot(\mathrm{d} \mathbf{R} / \mathrm{dt})^{\mathrm{T}}
$$

with mutual transformations:

$$
\begin{array}{rlrl}
\boldsymbol{\Omega}^{\prime}=\mathbf{R} \cdot \boldsymbol{\Omega} \cdot \mathbf{R}^{\mathrm{T}} \Leftrightarrow \boldsymbol{\Omega}=\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{\Omega}^{\prime} \cdot \mathbf{R}, & & \boldsymbol{\omega}^{\prime}=\mathbf{R} \cdot \boldsymbol{\omega} \Leftrightarrow \boldsymbol{\omega}=\mathbf{R}^{\mathrm{T}} \cdot \boldsymbol{\omega}^{\prime} \\
& \text { where } \quad \boldsymbol{\omega}=\text { axial vector of } \boldsymbol{\Omega}, & & \boldsymbol{\omega}^{\prime}=\text { axial vector of } \boldsymbol{\Omega}^{\prime}
\end{array}
$$

[i.e. $\boldsymbol{\Omega} \cdot($ vector $)=\boldsymbol{\omega} \times($ vector $)$, etc.] ;

Rotation tensor derivative:

$$
\mathrm{d} \mathbf{R} / \mathrm{dt}=\boldsymbol{\Omega}^{\prime} \cdot \mathbf{R} \quad\left[=\left(\mathbf{R} \cdot \boldsymbol{\Omega} \cdot \mathbf{R}^{\mathrm{T}}\right) \cdot \mathbf{R}\right] \quad=\mathbf{R} \cdot \boldsymbol{\Omega} .
$$

Listing of Transformation Matrices; and Angular Velocity Components

(Body-fixed vs. Eulerian rates; and corresponding singularities. Notation: $\left.d \chi_{1,2,3} / d t \equiv v_{1,2,3}\right)$

1(a) $\left[1\left(\chi_{1}\right), 2\left(\chi_{2}\right), 3\left(\chi_{3}\right)\right]=\left[3^{\prime}\left(\chi_{3}\right), 2^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\left.\begin{aligned}
& \left(\begin{array}{ccc}
c_{2} c_{3} & -c_{2} s_{3} & s_{2} \\
s_{1} s_{2} c_{3}+s_{3} c_{1} & -s_{1} s_{2} s_{3}+c_{1} c_{3} & -s_{1} c_{2} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & c_{1} s_{2} s_{3}+s_{1} c_{3} & c_{1} c_{2}
\end{array}\right) ; \\
& \omega_{1}=\left(c_{2} c_{3}\right) v_{1}+\left(s_{3}\right) v_{2}+(0) v_{3} \\
& \omega_{2}=\left(-c_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} \\
& v_{2}=\left(\left(c_{3}\right) \omega_{1}+\left(-s_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
& \omega_{3}=\left(s_{2}\right) v_{1}+(0) v_{2}+(1) v_{3}
\end{aligned} \right\rvert\, \begin{aligned}
& \left.\left.c_{3}\right) \omega_{1}+\left(c_{2} c_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
& \left.c_{2}\right)^{-1}\left[\left(-s_{2} c_{3}\right) \omega_{1}+\left(s_{2} s_{3}\right) \omega_{2}+\left(c_{2}\right) \omega_{3}\right] .
\end{aligned}
$$

$1\left(\right.$ b) $\left[1^{\prime}\left(\chi_{1}\right), 2^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{3}\right)\right]=\left[3\left(\chi_{3}\right), 2\left(\chi_{2}\right), 1\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\left(\begin{array}{ccc}
c_{2} c_{3} & s_{1} s_{2} c_{3}-c_{1} s_{3} & c_{1} s_{2} c_{3}+s_{1} s_{3} \\
c_{2} s_{3} & s_{1} s_{2} s_{3}+c_{1} c_{3} & c_{1} s_{2} s_{3}-s_{1} c_{3} \\
-s_{2} & s_{1} c_{2} & c_{1} c_{2}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=(1) v_{1}+(0) v_{2}+\left(-s_{2}\right) v_{3} & v_{1}=\left(c_{2}\right)^{-1}\left[\left(c_{2}\right) \omega_{1}+\left(s_{1} s_{2}\right) \omega_{2}+\left(c_{1} s_{2}\right) \omega_{3}\right] \\
\omega_{2}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} c_{2}\right) v_{3} & v_{2}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(c_{1} c_{2}\right) \omega_{2}+\left(-s_{1} c_{2}\right) \omega_{3}\right. \\
\omega_{3}=(0) v_{1}+\left(-s_{1}\right) v_{2}+\left(c_{1} c_{2}\right) v_{3} & v_{3}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{1}\right) \omega_{2}+\left(c_{1}\right) \omega_{3}\right] .
\end{array}
$$

2(a) $\left[2\left(\chi_{1}\right), 3\left(\chi_{2}\right), 1\left(\chi_{3}\right)\right]=\left[1^{\prime}\left(\chi_{3}\right), 3^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\left(\begin{array}{ccc}
c_{1} c_{2} & -c_{1} s_{2} c_{3}+s_{1} s_{3} & c_{1} s_{2} s_{3}+s_{1} c_{3} \\
s_{2} & c_{2} c_{3} & -c_{2} s_{3} \\
-s_{1} c_{2} & s_{1} s_{2} c_{3}+c_{1} s_{3} & -s_{1} s_{2} s_{3}+c_{1} c_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=\left(s_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} & v_{1}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(c_{3}\right) \omega_{2}+\left(-s_{3}\right) \omega_{3}\right] \\
\omega_{2}=\left(c_{2} c_{3}\right) v_{1}+\left(s_{3}\right) v_{2}+(0) v_{3} & v_{2}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(c_{2} s_{3}\right) \omega_{2}+\left(c_{2} c_{3}\right) \omega_{3}\right] \\
\omega_{3}=\left(-c_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} & v_{3}=\left(c_{2}\right)^{-1}\left[\left(c_{2}\right) \omega_{1}+\left(-s_{2} c_{3}\right) \omega_{2}+\left(s_{2} s_{3}\right) \omega_{3}\right]
\end{array}
$$

2(b) $\left[2^{\prime}\left(\chi_{1}\right), 3^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{3}\right)\right]=\left[1\left(\chi_{3}\right), 3\left(\chi_{2}\right), 2\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
c_{1} c_{2} & -s_{2} & s_{1} c_{2} \\
c_{1} s_{2} c_{3}+s_{1} s_{3} & c_{2} c_{3} & s_{1} s_{2} c_{3}-c_{1} s_{3} \\
c_{1} s_{2} s_{3}-s_{1} c_{3} & c_{2} s_{3} & s_{1} s_{2} s_{3}+c_{1} c_{3}
\end{array}\right) ; \\
& \omega_{1}=(0) v_{1}+\left(-s_{1}\right) v_{2}+\left(c_{1} c_{2}\right) v_{3} \\
& \omega_{2}=(1) v_{1}+(0) v_{2}+\left(-s_{2}\right)^{-1}\left[\left(c_{1} s_{2}\right) \omega_{3}+\left(c_{2}\right) \omega_{2}+\left(s_{1} s_{2}\right) \omega_{3}\right] \\
& \omega_{3}=\left(c_{2}\right)^{-1}\left[\left(-s_{1} c_{2}\right) \omega_{1}+(0) \omega_{2}+\left(c_{1} c_{2}\right) \omega_{3}\right] \\
& \omega_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} c_{2}\right) v_{3}
\end{aligned} \begin{aligned}
& v_{3}=\left(c_{2}\right)^{-1}\left[\left(c_{1}\right) \omega_{1}+(0) \omega_{2}+\left(s_{1}\right) \omega_{3}\right] .
\end{aligned}
$$

3(a) $\left[3\left(\chi_{1}\right), 1\left(\chi_{2}\right), 2\left(\chi_{3}\right)\right]=\left[2^{\prime}\left(\chi_{3}\right), 1^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\left(\begin{array}{ccc}
-s_{1} s_{2} s_{3}+c_{1} c_{3} & -s_{1} c_{2} & s_{1} s_{2} c_{3}+c_{1} s_{3} \\
c_{1} s_{2} s_{3}+s_{1} c_{3} & c_{1} c_{2} & -c_{1} s_{2} c_{3}+s_{1} s_{3} \\
-c_{2} s_{3} & s_{2} & c_{2} c_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=\left(-c_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} & v_{1}=\left(c_{2}\right)^{-1}\left[\left(-s_{3}\right) \omega_{1}+(0) \omega_{2}+\left(c_{3}\right) \omega_{3}\right] \\
\omega_{2}=\left(s_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} & v_{2}=\left(c_{2}\right)^{-1}\left[\left(c_{2} c_{3}\right) \omega_{1}+(0) \omega_{2}+\left(c_{2} s_{3}\right) \omega_{3}\right] \\
\omega_{3}=\left(c_{2} c_{3}\right) v_{1}+\left(s_{3}\right) v_{2}+(0) v_{3} & v_{3}=\left(c_{2}\right)^{-1}\left[\left(s_{2} s_{3}\right) \omega_{1}+\left(c_{2}\right) \omega_{2}+\left(-s_{2} c_{3}\right) \omega_{3}\right] .
\end{array}
$$

3(b) $\left[3^{\prime}\left(\chi_{1}\right), 1^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{3}\right)\right]=\left[2\left(\chi_{3}\right), 1\left(\chi_{2}\right), 3\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
s_{1} s_{2} s_{3}+c_{1} c_{3} & c_{1} s_{2} s_{3}-s_{1} c_{3} & c_{2} s_{3} \\
s_{1} c_{2} & c_{1} c_{2} & -s_{2} \\
s_{1} s_{2} c_{3}-c_{1} s_{3} & c_{1} s_{3} c_{3}+s_{1} s_{3} & c_{2} c_{3}
\end{array}\right) ; \\
& \omega_{1}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} c_{2}\right) v_{3}
\end{aligned} \begin{aligned}
& v_{1}=\left(c_{2}\right)^{-1}\left[\left(s_{1} s_{2}\right) \omega_{1}+\left(c_{1} s_{2}\right) \omega_{2}+\left(c_{2}\right) \omega_{3}\right] \\
& \omega_{2}=(0) v_{1}+\left(-s_{1}\right) v_{2}+\left(c_{1} c_{2}\right) v_{3} \\
& v_{2}=\left(c_{2}\right)^{-1}\left[\left(c_{1} c_{2}\right) \omega_{1}+\left(-s_{1} c_{2}\right) \omega_{2}+(0) \omega_{3}\right] \\
& \omega_{3}=(1) v_{1}+(0) v_{2}+\left(-s_{2}\right) v_{3} \\
& v_{3}=\left(c_{2}\right)^{-1}\left[\left(s_{1}\right) \omega_{1}+\left(c_{1}\right) \omega_{2}+(0) \omega_{3}\right] .
\end{aligned}
$$

4(a) $\left[1\left(\chi_{1}\right), 3\left(\chi_{2}\right), 2\left(\chi_{3}\right)\right]=\left[2^{\prime}\left(\chi_{3}\right), 3^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
c_{2} c_{3} & -s_{2} & c_{2} s_{3} \\
c_{1} s_{2} c_{3}+s_{1} s_{3} & c_{1} c_{2} & c_{1} s_{2} s_{3}-s_{1} c_{3} \\
s_{1} s_{2} c_{3}-c_{1} s_{3} & s_{1} c_{2} & s_{1} s_{2} s_{3}+c_{1} c_{3}
\end{array}\right) ; \\
& \omega_{1}=\left(c_{2} c_{3}\right) v_{1}+\left(-s_{3}\right) v_{2}+(0) v_{3} \mid v_{1}=\left(c_{2}\right)^{-1}\left[\left(c_{3}\right) \omega_{1}+(0) \omega_{2}+\left(s_{3}\right) \omega_{3}\right] \\
& \omega_{2}=\left(-s_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} \quad v_{2}=\left(c_{2}\right)^{-1}\left[\left(-c_{2} s_{3}\right) \omega_{1}+(0) \omega_{2}+\left(c_{2} c_{3}\right) \omega_{3}\right] \\
& \omega_{3}=\left(c_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} \quad v_{3}=\left(c_{2}\right)^{-1}\left[\left(s_{2} c_{3}\right) \omega_{1}+\left(c_{2}\right) \omega_{2}+\left(s_{2} s_{3}\right) \omega_{3}\right] .
\end{aligned}
$$

4(b) $\left[1^{\prime}\left(\chi_{1}\right), 3^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{3}\right)\right]=\left[2\left(\chi_{3}\right), 3\left(\chi_{2}\right), 1\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\left(\begin{array}{ccc}
c_{2} c_{3} & -c_{1} s_{2} c_{3}+s_{1} s_{3} & s_{1} s_{2} c_{3}+c_{1} s_{3} \\
s_{2} & c_{1} c_{2} & -s_{1} c_{2} \\
-c_{2} s_{3} & c_{1} s_{2} s_{3}+s_{1} c_{3} & -s_{1} s_{2} s_{3}+c_{1} c_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=(1) v_{1}+(0) v_{2}+\left(s_{2}\right) v_{3} & v_{1}=\left(c_{2}\right)^{-1}\left[\left(c_{2}\right) \omega_{1}+\left(-c_{1} s_{2}\right) \omega_{2}+\left(s_{1} s_{2}\right) \omega_{3}\right] \\
\omega_{2}=(0) v_{1}+\left(s_{1}\right) v_{2}+\left(c_{1} c_{2}\right) v_{3} & v_{2}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{1} c_{2}\right) \omega_{2}+\left(c_{1} c_{2}\right) \omega_{3}\right] \\
\omega_{3}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(-s_{1} c_{2}\right) v_{3} & v_{3}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(c_{1}\right) \omega_{2}+\left(-s_{1}\right) \omega_{3}\right] .
\end{array}
$$

$$
\begin{aligned}
& \text { 5(a) }\left[2\left(\chi_{1}\right), 1\left(\chi_{2}\right), 3\left(\chi_{3}\right)\right]=\left[3^{\prime}\left(\chi_{3}\right), 1^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{1}\right)\right] \\
& \left.\qquad \begin{array}{ccc}
s_{1} s_{2} s_{3}+c_{1} c_{3} & s_{1} s_{2} c_{3}-c_{1} s_{3} & s_{1} c_{2} \\
c_{2} s_{3} & c_{2} c_{3} & -s_{2} \\
c_{1} s_{2} s_{3}-s_{1} c_{3} & c_{1} s_{2} c_{3}+s_{1} s_{3} & c_{1} c_{2}
\end{array}\right) ; \\
& \omega_{1}=\left(c_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} \\
& \left.\omega_{2}=\left(c_{2} c_{3}\right) v_{1}+\left(-s_{3}\right) v_{2}+(0) v_{3}\right)^{-1}\left[\left(s_{3}\right) \omega_{1}+\left(c_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
& v_{2}=\left(c_{2}\right)^{-1}\left[\left(c_{2} c_{3}\right) \omega_{1}+\left(-c_{2} s_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
& \omega_{3}=\left(-s_{2}\right) v_{1}+(0) v_{2}+(1) v_{3}
\end{aligned} \begin{aligned}
& v_{3}=\left(c_{2}\right)^{-1}\left[\left(s_{2} s_{3}\right) \omega_{1}+\left(s_{2} c_{3}\right) \omega_{2}+\left(c_{2}\right) \omega_{3}\right] .
\end{aligned}
$$

5(b) $\left[2^{\prime}\left(\chi_{1}\right), 1^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{3}\right)\right]=\left[3\left(\chi_{3}\right), 1\left(\chi_{2}\right), 2\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\left(\begin{array}{ccc}
-s_{1} s_{2} s_{3}+c_{1} c_{3} & -c_{2} s_{3} & c_{1} s_{2} s_{3}+s_{1} c_{3} \\
s_{1} s_{2} c_{3}+c_{1} s_{3} & c_{2} c_{3} & -c_{1} s_{2} c_{3}+s_{1} s_{3} \\
-s_{1} c_{2} & s_{2} & c_{1} c_{2}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(-s_{1} c_{2}\right) v_{3} & v_{1}=\left(c_{2}\right)^{-1}\left[\left(s_{1} s_{2}\right) \omega_{1}+\left(c_{2}\right) \omega_{2}+\left(-c_{1} s_{2}\right) \omega_{3}\right] \\
\omega_{2}=(1) v_{1}+(0) v_{2}+\left(s_{2}\right) v_{3} & v_{2}=\left(c_{2}\right)^{-1}\left[\left(c_{1} c_{2}\right) \omega_{1}+(0) \omega_{2}+\left(s_{1} c_{2}\right) \omega_{3}\right] \\
\omega_{3}=(0) v_{1}+\left(s_{1}\right) v_{2}+\left(c_{1} c_{2}\right) v_{3} & v_{3}=\left(c_{2}\right)^{-1}\left[\left(-s_{1}\right) \omega_{1}+(0) \omega_{2}+\left(c_{1}\right) \omega_{3}\right] .
\end{array}
$$

6(a) $\left[3\left(\chi_{1}\right), 2\left(\chi_{2}\right), 1\left(\chi_{3}\right)\right]=\left[1^{\prime}\left(\chi_{3}\right), 2^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\left(\begin{array}{ccc}
c_{1} c_{2} & c_{1} s_{2} s_{3}-s_{1} c_{3} & c_{1} s_{2} c_{3}+s_{1} s_{3} \\
s_{1} c_{2} & s_{1} s_{2} s_{3}+c_{1} c_{3} & s_{1} s_{2} c_{3}-c_{1} s_{3} \\
-s_{2} & c_{2} s_{3} & c_{2} c_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=\left(-s_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} & v_{1}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{3}\right) \omega_{2}+\left(c_{3}\right) \omega_{3}\right] \\
\omega_{2}=\left(c_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} & v_{2}=\left(c_{2}\right)^{-1}\left[(0) \omega_{1}+\left(c_{2} c_{3}\right) \omega_{2}+\left(-c_{2} s_{3}\right) \omega_{3}\right] \\
\omega_{3}=\left(c_{2} c_{3}\right) v_{1}+\left(-s_{3}\right) v_{2}+(0) v_{3} & v_{3}=\left(c_{2}\right)^{-1}\left[\left(c_{2}\right) \omega_{1}+\left(s_{2} s_{3}\right) \omega_{2}+\left(s_{2} c_{3}\right) \omega_{3}\right] .
\end{array}
$$

6(b) $\left[3^{\prime}\left(\chi_{1}\right), 2^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{3}\right)\right]=\left[1\left(\chi_{3}\right), 2\left(\chi_{2}\right), 3\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularity at $\left.\chi_{2}= \pm(\pi / 2)\right]$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
c_{1} c_{2} & -s_{1} c_{2} & s_{2} \\
c_{1} s_{2} s_{3}+s_{1} c_{3} & -s_{1} s_{2} s_{3}+c_{1} c_{3} & -c_{2} s_{3} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & s_{1} s_{2} c_{3}+c_{1} s_{3} & c_{2} c_{3}
\end{array}\right) ; \\
& \omega_{1}=(0) v_{1}+\left(s_{1}\right) v_{2}+\left(c_{1} c_{2}\right) v_{3} \\
& \left.\omega_{2}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(-s_{1} c_{2}\right) v_{3}\right)^{-1}\left[\left(-c_{1} s_{2}\right) \omega_{1}+\left(s_{1} s_{2}\right) \omega_{2}+\left(c_{2}\right) \omega_{3}\right] \\
& v_{2}=\left(c_{2}\right)^{-1}\left[\left(s_{1} c_{2}\right) \omega_{1}+\left(c_{1} c_{2}\right) \omega_{2}+(0) \omega_{3}\right] \\
& \omega_{3}=(1) v_{1}+(0) v_{2}+\left(s_{2}\right) v_{3}
\end{aligned} \begin{aligned}
& v_{3}=\left(c_{2}\right)^{-1}\left[\left(c_{1}\right) \omega_{1}+\left(-s_{1}\right) \omega_{2}+(0) \omega_{3}\right] .
\end{aligned}
$$

7(a) $\left[1\left(\chi_{1}\right), 2\left(\chi_{2}\right), 1\left(\chi_{3}\right)\right]=\left[1^{\prime}\left(\chi_{3}\right), 2^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\begin{gathered}
\left(\begin{array}{ccc}
c_{2} & s_{2} s_{3} & s_{2} c_{3} \\
s_{1} s_{2} & -s_{1} c_{2} s_{3}+c_{1} c_{3} & -s_{1} c_{2} c_{3}-c_{1} s_{3} \\
-c_{1} s_{2} & c_{1} c_{2} s_{3}+s_{1} c_{3} & c_{1} c_{2} c_{3}-s_{1} s_{3}
\end{array}\right) \\
\omega_{1}=\left(c_{2}\right) v_{1}+(0) v_{2}+(1) v_{3}
\end{gathered} \left\lvert\, \begin{aligned}
& v_{1}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{3}\right) \omega_{2}+\left(c_{3}\right) \omega_{3}\right] \\
& \omega_{2}=\left(s_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3}
\end{aligned} \begin{aligned}
& v_{2}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{2} c_{3}\right) \omega_{2}+\left(-s_{2} s_{3}\right) \omega_{3}\right] \\
& \omega_{3}=\left(s_{2} c_{3}\right) v_{1}+\left(-s_{3}\right) v_{2}+(0) v_{3} \\
& v_{3}=\left(s_{2}\right)^{-1}\left[\left(s_{2}\right) \omega_{1}+\left(-c_{2} s_{3}\right) \omega_{2}+\left(-c_{2} c_{3}\right) \omega_{3}\right] .
\end{aligned}\right.
$$

7(b) $\left[1^{\prime}\left(\chi_{1}\right), 2^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{3}\right)\right]=\left[1\left(\chi_{3}\right), 2\left(\chi_{2}\right), 1\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\left(\begin{array}{ccc}
c_{2} & s_{1} s_{2} & c_{1} s_{2} \\
s_{2} s_{3} & -s_{1} c_{2} s_{3}+c_{1} c_{3} & -c_{1} c_{2} s_{3}-s_{1} c_{3} \\
-s_{2} c_{3} & s_{1} c_{2} c_{3}+c_{1} s_{3} & c_{1} c_{2} c_{3}-s_{1} s_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=(1) v_{1}+(0) v_{2}+\left(c_{2}\right) v_{3} & v_{1}=\left(s_{2}\right)^{-1}\left[\left(s_{2}\right) \omega_{1}+\left(-s_{1} c_{2}\right) \omega_{2}+\left(c_{1} c_{2}\right) \omega_{3}\right] \\
\omega_{2}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} s_{2}\right) v_{3} & v_{2}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(c_{1} s_{2}\right) \omega_{2}+\left(-s_{1} s_{2}\right) \omega_{3}\right] \\
\omega_{3}=(0) v_{1}+\left(-s_{1}\right) v_{2}+\left(c_{1} s_{2}\right) v_{3} & v_{3}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{1}\right) \omega_{2}+\left(c_{1}\right) \omega_{3}\right] .
\end{array}
$$

8(a) $\left[1\left(\chi_{1}\right), 3\left(\chi_{2}\right), 1\left(\chi_{3}\right)\right]=\left[1^{\prime}\left(\chi_{3}\right), 3^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\left(\begin{array}{ccc}
c_{2} & -s_{2} c_{3} & s_{2} s_{3} \\
c_{1} s_{2} & c_{1} c_{2} c_{3}-s_{1} s_{3} & -c_{1} c_{2} s_{3}-s_{1} c_{3} \\
s_{1} s_{2} & s_{1} c_{2} c_{3}+c_{1} s_{3} & -s_{1} c_{2} s_{3}-c_{1} c_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=\left(c_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} & v_{1}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(-c_{3}\right) \omega_{2}+\left(s_{3}\right) \omega_{3}\right] \\
\omega_{2}=\left(-s_{2} c_{3}\right) v_{1}+\left(s_{3}\right) v_{2}+(0) v_{3} & v_{2}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{2} s_{3}\right) \omega_{2}+\left(s_{2} c_{3}\right) \omega_{3}\right] \\
\omega_{3}=\left(s_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} & v_{3}=\left(s_{2}\right)^{-1}\left[\left(s_{2}\right) \omega_{1}+\left(c_{2} c_{3}\right) \omega_{2}+\left(-c_{2} s_{3}\right) \omega_{3}\right]
\end{array}
$$

8(b) $\left[1^{\prime}\left(\chi_{1}\right), 3^{\prime}\left(\chi_{2}\right), 1^{\prime}\left(\chi_{3}\right)\right]=\left[1\left(\chi_{3}\right), 3\left(\chi_{2}\right), 1\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\left(\begin{array}{ccc}
c_{2} & -c_{1} s_{2} & s_{1} s_{2} \\
s_{2} c_{3} & c_{1} c_{2} c_{3}-s_{1} s_{3} & -s_{1} c_{2} c_{3}-c_{1} s_{3} \\
s_{2} s_{3} & c_{1} c_{2} s_{3}+s_{1} c_{3} & -s_{1} c_{2} s_{3}+c_{1} c_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=(1) v_{1}+(0) v_{2}+\left(c_{2}\right) v_{3} & v_{1}=\left(s_{2}\right)^{-1}\left[\left(s_{2}\right) \omega_{1}+\left(c_{1} c_{2}\right) \omega_{2}+\left(-s_{1} c_{2}\right) \omega_{3}\right] \\
\omega_{2}=(0) v_{1}+\left(s_{1}\right) v_{2}+\left(-c_{1} s_{2}\right) v_{3} & v_{2}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(s_{1} s_{2}\right) \omega_{2}+\left(c_{1} s_{2}\right) \omega_{3}\right] \\
\omega_{3}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} s_{2}\right) v_{3} & v_{3}=\left(s_{2}\right)^{-1}\left[(0) \omega_{1}+\left(-c_{1}\right) \omega_{2}+\left(s_{1}\right) \omega_{3}\right] .
\end{array}
$$

9(a) $\left[2\left(\chi_{1}\right), 1\left(\chi_{2}\right), 2\left(\chi_{3}\right)\right]=\left[2^{\prime}\left(\chi_{3}\right), 1^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-s_{1} c_{2} s_{3}+c_{1} c_{3} & s_{1} s_{2} & s_{1} c_{2} c_{3}+c_{1} s_{3} \\
s_{2} s_{3} & c_{2} & -s_{2} c_{3} \\
-c_{1} c_{2} s_{3}-s_{1} c_{3} & c_{1} s_{2} & c_{1} c_{2} c_{3}-s_{1} s_{3}
\end{array}\right) \\
& \omega_{1}=\left(s_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} \\
& \omega_{2}=\left(c_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} \\
& \omega_{3}=\left(-s_{2}\right)^{-1}\left[\left(s_{3}\right) \omega_{1}+(0) \omega_{2}+\left(-c_{3}\right) \omega_{3}\right] \\
& v_{2}=\left(s_{2}\right)^{-1}\left[\left(s_{2} c_{3}\right) \omega_{1}+(0) \omega_{2}+\left(s_{2} s_{3}\right) \omega_{3}\right] \\
& \omega_{2}+(0) v_{3}
\end{aligned} \begin{aligned}
& v_{3}=\left(s_{2}\right)^{-1}\left[\left(-c_{2} s_{3}\right) \omega_{1}+\left(s_{2}\right) \omega_{2}+\left(c_{2} s_{3}\right) \omega_{3}\right] .
\end{aligned}
$$

9(b) $\left[2^{\prime}\left(\chi_{1}\right), 1^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{3}\right)\right]=\left[2\left(\chi_{3}\right), 1\left(\chi_{2}\right), 2\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\left(\begin{array}{ccc}
-s_{1} c_{2} s_{3}+c_{1} c_{3} & s_{2} s_{3} & c_{1} c_{2} s_{3}+s_{1} c_{3} \\
s_{1} s_{2} & c_{2} & -c_{1} s_{2} \\
-s_{1} c_{2} c_{3}-c_{1} s_{3} & s_{2} c_{3} & c_{1} c_{2} c_{3}-s_{1} s_{3}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} s_{2}\right) v_{3} & v_{1}=\left(s_{2}\right)^{-1}\left[\left(-s_{1} c_{2}\right) \omega_{1}+\left(s_{2}\right) \omega_{2}+\left(c_{1} c_{2}\right) \omega_{3}\right] \\
\omega_{2}=(1) v_{1}+(0) v_{2}+\left(c_{2}\right) v_{3} & v_{2}=\left(s_{2}\right)^{-1}\left[\left(c_{1} s_{2}\right) \omega_{1}+(0) \omega_{2}+\left(s_{1} s_{2}\right) \omega_{3}\right] \\
\omega_{3}=(0) v_{1}+\left(s_{1}\right) v_{2}+\left(-c_{1} s_{2}\right) v_{3} & v_{3}=\left(s_{2}\right)^{-1}\left[\left(s_{1}\right) \omega_{1}+(0) \omega_{2}+\left(-c_{1}\right) \omega_{3}\right] .
\end{array}
$$

10(a) $\left[2\left(\chi_{1}\right), 3\left(\chi_{2}\right), 2\left(\chi_{3}\right)\right]=\left[2^{\prime}\left(\chi_{3}\right), 3^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\begin{gathered}
\left(\begin{array}{ccc}
c_{1} c_{2} c_{3}-s_{1} s_{3} & -c_{1} s_{2} & c_{1} c_{2} s_{3}+s_{1} c_{3} \\
s_{2} c_{3} & c_{2} & s_{2} s_{3} \\
-s_{1} c_{2} c_{3}-c_{1} s_{3} & s_{1} s_{2} & -s_{1} c_{2} s_{3}+c_{1} c_{3}
\end{array}\right) \\
\omega_{1}=\left(s_{2} c_{3}\right) v_{1}+\left(-s_{3}\right) v_{2}+(0) v_{3} \\
\omega_{2}=\left(c_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} \\
\omega_{3}=\left(s_{2}\right)^{-1}\left[\left(c_{3}\right) \omega_{1}+(0) \omega_{2}+\left(s_{3}\right) \omega_{3}\right] \\
v_{2}=\left(s_{2}\right)^{-1}\left[\left(-s_{2} s_{3}\right) \omega_{1}+(0) \omega_{2}+\left(s_{2} c_{3}\right) \omega_{3}\right] \\
\left.v_{3}\right) v_{3}
\end{gathered} \begin{aligned}
& v_{3}=\left(s_{2}\right)^{-1}\left[\left(-c_{2} c_{3}\right) \omega_{1}+\left(s_{2}\right) \omega_{2}+\left(-c_{2} s_{3}\right) \omega_{3}\right] .
\end{aligned}
$$

10(b) $\left[2^{\prime}\left(\chi_{1}\right), 3^{\prime}\left(\chi_{2}\right), 2^{\prime}\left(\chi_{3}\right)\right]=\left[2\left(\chi_{3}\right), 3\left(\chi_{2}\right), 2\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
c_{1} c_{2} c_{3}-s_{1} s_{3} & -s_{2} c_{3} & s_{1} c_{2} c_{3}+c_{1} s_{3} \\
c_{1} s_{2} & c_{2} & s_{1} s_{2} \\
-c_{1} c_{2} s_{3}-s_{1} c_{3} & s_{2} s_{3} & -s_{1} c_{2} s_{3}+c_{1} c_{3}
\end{array}\right) ; \\
& \omega_{1}=(0) v_{1}+\left(-s_{1}\right) v_{2}+\left(c_{1} s_{2}\right) v_{3} \\
& v_{1}=\left(s_{2}\right)^{-1}\left[\left(-c_{1} c_{2}\right) \omega_{1}+\left(s_{2}\right) \omega_{2}+\left(-s_{1} c_{2}\right) \omega_{3}\right] \\
& \omega_{2}=(1) v_{1}+(0) v_{2}+\left(c_{2}\right) v_{3} \\
& \omega_{3}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} s_{2}\right) v_{3}
\end{aligned} \begin{aligned}
& v_{3}=\left(s_{2}\right)^{-1}\left[\left(\left(s_{1} s_{2}\right) \omega_{1}+(0) \omega_{2}+\left(c_{1} s_{2}\right) \omega_{3}\right]\right. \\
& \left.\hline(0) \omega_{2}+\left(s_{1}\right) \omega_{3}\right] .
\end{aligned}
$$

11(a) $\left[3\left(\chi_{1}\right), 1\left(\chi_{2}\right), 3\left(\chi_{3}\right)\right]=\left[3^{\prime}\left(\chi_{3}\right), 1^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\left(\begin{array}{ccc}
-s_{1} c_{2} s_{3}+c_{1} c_{3} & -s_{1} c_{2} c_{3}-c_{1} s_{3} & s_{1} s_{2} \\
c_{1} c_{2} s_{3}+s_{1} c_{3} & c_{1} c_{2} c_{3}-s_{1} s_{3} & -c_{1} s_{2} \\
s_{2} s_{3} & s_{2} c_{3} & c_{2}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=\left(s_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} & v_{1}=\left(s_{2}\right)^{-1}\left[\left(s_{3}\right) \omega_{1}+\left(c_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
\omega_{2}=\left(s_{2} c_{3}\right) v_{1}+\left(-s_{3}\right) v_{2}+(0) v_{3} & v_{2}=\left(s_{2}\right)^{-1}\left[\left(s_{2} c_{3}\right) \omega_{1}+\left(-s_{2} s_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
\omega_{3}=\left(c_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} & v_{3}=\left(s_{2}\right)^{-1}\left[\left(-c_{2} s_{3}\right) \omega_{1}+\left(-c_{2} c_{3}\right) \omega_{2}+\left(s_{2}\right) \omega_{3}\right] .
\end{array}
$$

11(b) $\left[3^{\prime}\left(\chi_{1}\right), 1^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{3}\right)\right]=\left[3\left(\chi_{3}\right), 1\left(\chi_{2}\right), 3\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\left(\begin{array}{ccc}
-s_{1} c_{2} s_{3}+c_{1} c_{3} & -c_{1} c_{2} s_{3}-s_{1} c_{3} & s_{2} s_{3} \\
s_{1} c_{2} c_{3}+c_{1} s_{3} & c_{1} c_{2} c_{3}-s_{1} s_{3} & -s_{2} c_{3} \\
s_{1} s_{2} & c_{1} s_{2} & c_{2}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} s_{2}\right) v_{3} & v_{1}=\left(s_{2}\right)^{-1}\left[\left(-s_{1} c_{2}\right) \omega_{1}+\left(-c_{1} c_{2}\right) \omega_{2}+\left(s_{2}\right) \omega_{3}\right] \\
\omega_{2}=(0) v_{1}+\left(-s_{1}\right) v_{2}+\left(c_{1} s_{2}\right) v_{3} & v_{2}=\left(s_{2}\right)^{-1}\left[\left(c_{1} s_{2}\right) \omega_{1}+\left(-s_{1} s_{2}\right) \omega_{2}+(0) \omega_{3}\right] \\
\omega_{3}=(1) v_{1}+(0) v_{2}+\left(c_{2}\right) v_{3} & v_{3}=\left(s_{2}\right)^{-1}\left[\left(s_{1}\right) \omega_{1}+\left(c_{1}\right) \omega_{2}+(0) \omega_{3}\right] .
\end{array}
$$

12(a) $\left[3\left(\chi_{1}\right), 2\left(\chi_{2}\right), 3\left(\chi_{3}\right)\right]=\left[3^{\prime}\left(\chi_{3}\right), 2^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\left(\begin{array}{ccc}
c_{1} c_{2} c_{3}-s_{1} s_{3} & -c_{1} c_{2} s_{3}-s_{1} c_{3} & c_{1} s_{2} \\
s_{1} c_{2} c_{3}+c_{1} s_{3} & -s_{1} c_{2} s_{3}+c_{1} c_{3} & s_{1} s_{2} \\
-s_{2} c_{3} & s_{2} s_{3} & c_{2}
\end{array}\right)
$$

$$
\begin{array}{l|l}
\omega_{1}=\left(-s_{2} c_{3}\right) v_{1}+\left(s_{3}\right) v_{2}+(0) v_{3} & v_{1}=\left(s_{2}\right)^{-1}\left[\left(-c_{3}\right) \omega_{1}+\left(s_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
\omega_{2}=\left(s_{2} s_{3}\right) v_{1}+\left(c_{3}\right) v_{2}+(0) v_{3} & v_{2}=\left(s_{2}\right)^{-1}\left[\left(s_{2} s_{3}\right) \omega_{1}+\left(s_{2} c_{3}\right) \omega_{2}+(0) \omega_{3}\right] \\
\omega_{3}=\left(c_{2}\right) v_{1}+(0) v_{2}+(1) v_{3} & v_{3}=\left(s_{2}\right)^{-1}\left[\left(c_{2} c_{3}\right) \omega_{1}+\left(-c_{2} s_{3}\right) \omega_{2}+\left(s_{2}\right) \omega_{3}\right] .
\end{array}
$$

12(b) $\left[3^{\prime}\left(\chi_{1}\right), 2^{\prime}\left(\chi_{2}\right), 3^{\prime}\left(\chi_{3}\right)\right]=\left[3\left(\chi_{3}\right), 2\left(\chi_{2}\right), 3\left(\chi_{1}\right)\right] \quad\left[\right.$ Singularities at $\left.\chi_{2}=0, \pm \pi\right]$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
c_{1} c_{2} c_{3}-s_{1} s_{3} & -s_{1} c_{2} c_{3}-c_{1} s_{3} & s_{2} c_{3} \\
c_{1} c_{2} s_{3}+s_{1} c_{3} & -s_{1} c_{2} s_{3}+c_{1} c_{3} & s_{2} s_{3} \\
-c_{1} s_{2} & s_{1} s_{2} & c_{2}
\end{array}\right) ; \\
& \omega_{1}=(0) v_{1}+\left(s_{1}\right) v_{2}+\left(-c_{1} s_{2}\right) v_{3} \\
& \omega_{2}=(0) v_{1}+\left(c_{1}\right) v_{2}+\left(s_{1} s_{2}\right) v_{3}
\end{aligned} \begin{aligned}
& \left.s_{2}\right)^{-1}\left[\left(c_{1} c_{2}\right) \omega_{1}+\left(-s_{1} c_{2}\right) \omega_{2}+\left(s_{2}\right) \omega_{3}\right] \\
& \left.\omega_{3}=(1) v_{1}+(0) v_{2}+\left(s_{1} s_{2}\right) v_{3}+\left(c_{1} s_{2}\right) \omega_{2}+(0) \omega_{3}\right] \\
& v_{3}=\left(s_{2}\right)^{-1}\left[\left(-c_{1}\right) \omega_{1}+\left(s_{1}\right) \omega_{2}+(0) \omega_{3}\right] .
\end{aligned}
$$

1.14 THE RIGID BODY: AN INTRODUCTION TO QUASI COORDINATES

As an introduction to quasi coordinates, and quasi variables in general (a topic to be detailed in chap. 2), we show in this section that the angular velocity, although a vector, does not result by simple $d / d t(\ldots)$-differentiation of an angular displacement; its components along space-/body-fixed axes, say ω_{k}, do not equal the total time derivatives of angles or any other genuine (global) rotational coordinates/parameters, say θ_{k}; that is, $\omega_{k} \neq d \theta_{k} / d t$. This is another complication of rotational mechanics, one that is intimately connected with the noncommutativity of finite rotations; and it necessitates the hitherto search for connections of the ω_{k} 's with genuine angular coordinates and their rates, like the Eulerian angles ϕ, θ, ψ.

Let us consider, for concreteness, the body-axes components of the angular velocity tensor. From

$$
\begin{equation*}
\boldsymbol{\Omega}=\mathbf{A}^{\mathrm{T}} \cdot(\mathrm{~d} \mathbf{A} / \mathrm{dt})=-\left(\mathrm{d} \mathbf{A}^{\mathrm{T}} / \mathrm{dt}\right) \cdot \mathbf{A} \tag{1.14.1a}
\end{equation*}
$$

(1.7.30f ff.) we have

$$
\begin{equation*}
\omega_{x}=A_{X z}\left(d A_{X y} / d t\right)+A_{Y z}\left(d A_{Y y} / d t\right)+A_{Z z}\left(d A_{Z y} / d t\right), \quad \text { etc., cyclically, } \tag{1.14.1b}
\end{equation*}
$$

or, multiplying through by $d t$ and setting $\omega_{x} d t \equiv d \theta_{x}$ (just a suggestive shorthand!),

$$
\begin{equation*}
d \theta_{x} \equiv A_{X z} d A_{X y}+A_{Y z} d A_{Y y}+A_{Z z} d A_{Z y}, \text { etc., cyclically. } \tag{1.14.1c}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\delta\left(d \theta_{x}\right)-d\left(\delta \theta_{x}\right) \neq 0, \quad \text { etc. }, \text { cyclically } \tag{1.14.2a}
\end{equation*}
$$

where, for our purposes, $\delta(\ldots)$ can be viewed as just a differential of (...), along a different direction from $d(\ldots)$; that is, with $d(\ldots) \equiv d_{1}(\ldots)$ and $\delta(\ldots) \equiv d_{2}(\ldots)$,

$$
\begin{equation*}
\delta\left(d \theta_{x}\right) \equiv d_{2}\left(d_{1} \theta_{x}\right), \quad d\left(\delta \theta_{x}\right) \equiv d_{1}\left(d_{2} \theta_{x}\right) ; \tag{1.14.2b}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \theta_{x} \equiv A_{X z} \delta A_{X y}+A_{Y z} \delta A_{Y y}+A_{Z z} \delta A_{Z y}, \text { etc., cyclically. } \tag{1.14.2c}
\end{equation*}
$$

Now, $\delta(\ldots)$-differentiating $d \theta_{x}$ and $d(\ldots)$-differentiating $\delta \theta_{x}$, and then subtracting side by side, while noticing that

$$
\begin{equation*}
\delta\left(d A_{k^{\prime} k}\right)=d\left(\delta A_{k^{\prime} k}\right) \quad\left(k^{\prime}=X, Y, Z ; k=x, y, z\right) \tag{1.14.3a}
\end{equation*}
$$

we get

$$
\begin{align*}
\delta\left(d \theta_{x}\right)-d\left(\delta \theta_{x}\right)=\delta A_{X z} d A_{X y}-d A_{X z} \delta A_{X y} & +\delta A_{Y z} d A_{Y y}-d A_{Y z} \delta A_{Y y} \\
& +\delta A_{Z z} d A_{Z y}-d A_{Z z} \delta A_{Z y} . \tag{1.14.3b}
\end{align*}
$$

Next, in order to express $\delta A_{k^{\prime} k}, d A_{k^{\prime} k}$ in terms of $\delta \theta_{k}$ and $d \theta_{k}$, we multiply the components of $\mathrm{d} \mathbf{A} / \mathrm{dt}=\mathbf{A} \cdot \boldsymbol{\Omega}$ (1.7.30i) with $d t$, thus obtaining

$$
\begin{align*}
& d A_{X z}=A_{X x} d \theta_{y}-A_{X y} d \theta_{x} \Rightarrow \delta A_{X z}=A_{X x} \delta \theta_{y}-A_{X y} \delta \theta_{x}, \tag{1.14.4a}\\
& d A_{Y z}=A_{Y x} d \theta_{y}-A_{Y y} d \theta_{x} \Rightarrow \delta A_{Y z}=A_{Y x} \delta \theta_{y}-A_{Y y} \delta \theta_{x}, \tag{1.14.4b}\\
& d A_{Z z}=A_{Z x} d \theta_{y}-A_{Z y} d \theta_{x} \Rightarrow \delta A_{Z z}=A_{Z x} \delta \theta_{y}-A_{Z y} \delta \theta_{x}, \tag{1.14.4c}\\
& d A_{X y}=A_{X z} d \theta_{x}-A_{X x} d \theta_{z} \Rightarrow \delta A_{X y}=A_{X z} \delta \theta_{x}-A_{X x} \delta \theta_{z}, \tag{1.14.4d}\\
& d A_{Y y}=A_{Y z} d \theta_{x}-A_{Y x} d \theta_{z} \Rightarrow \delta A_{Y y}=A_{Y z} \delta \theta_{x}-A_{Y x} \delta \theta_{z}, \tag{1.14.4e}\\
& d A_{Z y}=A_{Z z} d \theta_{x}-A_{Z x} d \theta_{z} \Rightarrow \delta A_{Z y}=A_{Z z} \delta \theta_{x}-A_{Z x} \delta \theta_{z} . \tag{1.14.4f}
\end{align*}
$$

Substituting (1.14.4a-f) into the right side of (1.14.3b), and invoking the orthogonality of $\mathbf{A}=\left(A_{k^{\prime} k}\right)$ [e.g., (1.7.6a, b; 1.7.22d)], we find, after some straightforward algebra, the noncommutativity equation

$$
\begin{equation*}
\delta\left(d \theta_{x}\right)-d\left(\delta \theta_{x}\right)=d \theta_{y} \delta \theta_{z}-d \theta_{z} \delta \theta_{y} . \tag{1.14.5a}
\end{equation*}
$$

Working in complete analogy with the above, we obtain

$$
\begin{align*}
& \delta\left(d \theta_{y}\right)-d\left(\delta \theta_{y}\right)=d \theta_{z} \delta \theta_{x}-d \theta_{x} \delta \theta_{z}, \tag{1.14.5b}\\
& \delta\left(d \theta_{z}\right)-d\left(\delta \theta_{z}\right)=d \theta_{x} \delta \theta_{y}-d \theta_{y} \delta \theta_{x} . \tag{1.14.5c}
\end{align*}
$$

These remarkable transitivity equations [because they allow for a smooth transition from Lagrangean mechanics (chap. 2 ff .) to Eulerian mechanics ($\S 1.15 \mathrm{ff}$.)] show clearly that the $\theta_{x, y, z}$ are not ordinary (or genuine, or holonomic, or global; or as Lagrange puts it "variables finies") coordinates, like the Eulerian angles ϕ, θ, ψ; that is why they are called pseudo- or quasi coordinates. Their general theory, along with a simpler derivation of the above, are detailed in chap. 2.

Similarly, we can show that in terms of space-axes components, the transitivity equations are

$$
\begin{align*}
\delta\left(d \theta_{X}\right)-d\left(\delta \theta_{X}\right) & =d \theta_{Z} \delta \theta_{Y}-d \theta_{Y} \delta \theta_{Z} \tag{1.14.6a}\\
\delta\left(d \theta_{Y}\right)-d\left(\delta \theta_{Y}\right) & =d \theta_{X} \delta \theta_{Z}-d \theta_{Z} \delta \theta_{X} \tag{1.14.6b}\\
\delta\left(d \theta_{Z}\right)-d\left(\delta \theta_{Z}\right) & =d \theta_{Y} \delta \theta_{X}-d \theta_{X} \delta \theta_{Y} \tag{1.14.6c}
\end{align*}
$$

In compact vector form, $(1.14 .5 \mathrm{a}, \mathrm{b}, \mathrm{c})$ and $(1.14 .6 \mathrm{a}, \mathrm{b}, \mathrm{c})$ read, respectively,

$$
\begin{gather*}
\delta_{\text {rel }}(d \boldsymbol{\theta})-\partial(\delta \boldsymbol{\theta})=d \boldsymbol{\theta} \times \delta \boldsymbol{\theta}, \tag{1.14.7a}\\
\delta(d \boldsymbol{\theta})-d(\delta \boldsymbol{\theta})=\delta \boldsymbol{\theta} \times d \boldsymbol{\theta}, \tag{1.14.7b}
\end{gather*}
$$

where $d \boldsymbol{\theta}=d \theta_{x} \boldsymbol{i}+d \theta_{y} \boldsymbol{j}+d \theta_{z} \boldsymbol{k}=d \theta_{X} \boldsymbol{I}+d \theta_{Y} \boldsymbol{J}+d \theta_{z} \boldsymbol{K} \Rightarrow \delta \boldsymbol{\theta}=\delta \theta_{x} \boldsymbol{i}+\delta \theta_{y} \boldsymbol{j}+\delta \theta_{z} \boldsymbol{k}=$ $\delta \theta_{X} \boldsymbol{I}+\delta \theta_{Y} \boldsymbol{J}+\delta \theta_{Z} \boldsymbol{K} \Rightarrow \delta_{\text {rel }}(d \boldsymbol{\theta}) \equiv \delta\left(d \theta_{x}\right) \boldsymbol{i}+\delta\left(d \theta_{y}\right) \boldsymbol{j}+\delta\left(d \theta_{z}\right) \boldsymbol{k}, \partial(\delta \boldsymbol{\theta}) \equiv d\left(\delta \theta_{x}\right) \boldsymbol{i}+$ $d\left(\delta \theta_{y}\right) \boldsymbol{j}+d\left(\delta \theta_{z}\right) \boldsymbol{k}$; that is, again, $\boldsymbol{\theta}$ is a quasi vector. Here (recall 1.7.30j), $\boldsymbol{\Omega}^{\prime}=$ $(\mathrm{d} \mathbf{A} / \mathrm{dt}) \cdot \mathbf{A}^{\mathrm{T}}$ and $\mathrm{d} \mathbf{A} / \mathrm{dt}=\boldsymbol{\Omega}^{\prime} \cdot \mathbf{A}$. [More in Examples 2.13.9 and 2.13.11 (pp. 368 ff .).]

HISTORICAL

Equations (1.14.5a-c), along with the systematic use of direction cosines to rigidbody dynamics, are due to Lagrange. They appeared posthumously in the 2nd edition of the 2 nd volume of his Mécanique Analytique (1815/1816). See also (alphabetically): Funk (1962, pp. 334-335), Kirchhoff (1876, sixth lecture, §2), Mathieu (1878, pp. 138-139).

1.15 THE RIGID BODY: TENSOR OF INERTIA, KINETIC ENERGY

Introduction, Basic Definitions

To get motivated, let us begin by calculating the (inertial) kinetic energy T of a rigid body B rotating about a fixed point O; the extension to the case of general motion follows easily. If ω is the inertial angular velocity of B, then, since the inertial velocity of a genetic body particle P, of inertial position \boldsymbol{r}, is $\boldsymbol{\omega} \times \boldsymbol{r}=\boldsymbol{v}$, we have, successively,

$$
\begin{align*}
2 T & \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}=\boldsymbol{S} d m(\boldsymbol{\omega} \times \boldsymbol{r}) \cdot(\boldsymbol{\omega} \times \boldsymbol{r}) \\
& =\boldsymbol{S} d m[(\boldsymbol{\omega} \cdot \boldsymbol{\omega})(\boldsymbol{r} \cdot \boldsymbol{r})-(\boldsymbol{\omega} \cdot \boldsymbol{r})(\boldsymbol{\omega} \cdot \boldsymbol{r})] \quad \text { (by simple vector algebra) } \\
& =\boldsymbol{S} d m\left[\omega^{2} r^{2}-(\boldsymbol{\omega} \cdot \boldsymbol{r})^{2}\right], \tag{1.15.1a}
\end{align*}
$$

or, in terms of components along arbitrary (i.e., not necessarily body-fixed) rectangular Cartesian axes $O-x y z \equiv O-x_{k}$, in which $\boldsymbol{r}=(x, y, z) \equiv\left(x_{k}\right), \boldsymbol{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \equiv$ $\left(\omega_{k}\right)(k=1,2,3)$,

$$
\begin{array}{rlr}
2 T & =\boldsymbol{S} d m\left[\left(\sum \omega_{k}^{2}\right)\left(\sum x_{k}^{2}\right)-\left(\sum \omega_{k} x_{k}\right)\left(\sum \omega_{l} x_{l}\right)\right] \\
& =\boldsymbol{S} d m\left[\left(\sum \sum \delta_{k l} \omega_{k} \omega_{l}\right)\left(\sum x_{r}^{2}\right)-\left(\sum \sum \omega_{k} \omega_{l} x_{k} x_{l}\right)\right] \\
& =\sum \sum I_{k l} \omega_{k} \omega_{l} \quad \text { (Indicial notation) } \\
& =\boldsymbol{\omega} \cdot \boldsymbol{I} \cdot \boldsymbol{\omega} & \quad \text { (Direct notation) } \\
& =\boldsymbol{\omega}^{\mathrm{T}} \cdot \mathbf{I} \cdot \boldsymbol{\omega} \quad \text { (Matrix notation; } \boldsymbol{\omega}: \text { column vector) }, \tag{1.15.1d}
\end{array}
$$

where

$$
\begin{align*}
& \boldsymbol{I}_{O} \equiv \boldsymbol{I}=\left(I_{O, k l}\right) \equiv\left(I_{k l}\right) \tag{1.15.2a}\\
& I_{k l} \equiv \boldsymbol{S} d m\left(r^{2} \delta_{k l}-x_{k} x_{l}\right) \tag{1.15.2b}
\end{align*}
$$

Components of tensor of inertia of B, \boldsymbol{I}, at O, along $O-x_{k}$,

$$
\begin{equation*}
r^{2} \equiv \sum x_{k}^{2}=\sum x_{k} x_{k} \tag{1.15.2c}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
I_{k l}=J_{o} \delta_{k l}-J_{k l}, \tag{1.15.2d}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{J} O \equiv \boldsymbol{J}=\left(J_{O, k l}\right) \equiv\left(J_{k l}\right), \tag{1.15.2e}\\
J_{k l} & \equiv \boldsymbol{S} x_{k} x_{l} d m \\
& \equiv \text { Components of Binet's tensor of } B, \boldsymbol{J}, \text { at } O, \text { along } O-x_{k}, \tag{1.15.2f}\\
J_{o} & \equiv J_{11}+J_{22}+J_{33}=\boldsymbol{S} r^{2} d m=\operatorname{Tr} \boldsymbol{J} . \tag{1.15.2~g}
\end{align*}
$$

In direct notation, the above read

$$
\begin{equation*}
\boldsymbol{I}=\boldsymbol{S}[(\boldsymbol{r} \cdot \boldsymbol{r}) \boldsymbol{I}-\boldsymbol{r} \otimes \boldsymbol{r}] d m, \quad \boldsymbol{J}=\boldsymbol{S}(\boldsymbol{r} \otimes \boldsymbol{r}) d m \tag{1.15.2h}
\end{equation*}
$$

That \boldsymbol{I} is a (second-order) tensor follows from the fact that, under rotations of the axes, T is a scalar invariant while ω is a vector (what, in effect, constitutes a simple application of the tensorial "quotient rule"). This means that the components of \boldsymbol{I} along $O-x_{k}, I_{k l}$, and along $O-x_{k^{\prime}}, I_{k^{\prime} l^{\prime}}$, where $x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k}$ (proper orthogonal transformation), are related by

$$
\begin{align*}
& I_{k^{\prime} l^{\prime}}=\sum \sum A_{k^{\prime} k} A_{l^{\prime} l} I_{k l} \\
& =\sum \sum A_{k^{\prime} k} I_{k l} A_{l l^{\prime}} \\
& =\left(\boldsymbol{A} \cdot \boldsymbol{I} \cdot \boldsymbol{A}^{\mathrm{T}}\right)_{k^{\prime} l^{\prime}} \quad \text { [recalling eqs. (1.1.19j ff.)] } \tag{1.15.2i}\\
& \left.\left[\Leftrightarrow I_{k l}=\sum \sum A_{k k^{\prime}} A_{l l^{\prime}} I_{k^{\prime} l^{\prime}} \quad \text { (Since, indicially, } A_{k^{\prime} k}=A_{k k^{\prime}}\right)\right]
\end{align*}
$$

Properties of the Inertia Tensor

Clearly (and like most mechanics tensors), \boldsymbol{I} is symmetric: $I_{k l}=I_{l k}$; that is, at most six, of its nine components, are independent. In extenso, (1.15.2a, b) read

$$
\begin{align*}
\boldsymbol{I} & =\left(\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\boldsymbol{S} d m\left(y^{2}+z^{2}\right) & -\boldsymbol{S} d m x y & -\boldsymbol{S} d m x z \\
-\boldsymbol{S} d m y x & \boldsymbol{S} d m\left(z^{2}+x^{2}\right) & -\boldsymbol{S} d m y z \\
-\boldsymbol{S} d m z x & -\boldsymbol{S} d m z y & \boldsymbol{S} d m\left(x^{2}+y^{2}\right)
\end{array}\right) \tag{1.15.3}
\end{align*}
$$

The diagonal elements of $I, I_{x x}, I_{y y}, I_{z z}$, are called moments of inertia of B about $O-x y z$; and they are nonnegative; that is, $I_{x x, y y, z z} \geq 0$. The off-diagonal elements of $I, I_{x y}=I_{y x}, I_{x z}=I_{z x}, I_{y z}=I_{z y}$, are called products of inertia of B about $O-x y z$, and they are sign-indefinite; that is, they may be $>0,<0$, or $=0$.

In view of the above, T can be rewritten as

$$
\begin{equation*}
2 T=I_{x x} \omega_{x}^{2}+I_{y y} \omega_{y}^{2}+I_{z z} \omega_{z}^{2}+2 I_{x y} \omega_{x} \omega_{y}+2 I_{x z} \omega_{x} \omega_{z}+2 I_{y z} \omega_{y} \omega_{z} \tag{1.15.4}
\end{equation*}
$$

Now, evidently, the choice of the axes $O-x y z$ is nonunique. Not only can they be non-body-fixed (in which case, the $I_{k l}$ are, in general, time-dependent); but even if they are taken as body-fixed, $(1.15 .3,4)$ are still fairly complicated. Hence, to simplify matters as much as possible, and since the kinetic energy is so central to analytical mechanics, we, in general, strive to choose principal axes at $O: O-x y z \rightarrow O-123$; usually, but not always, body-fixed. Since \boldsymbol{I} is symmetric, such (mutually orthogonal) axes exist always; and along them \boldsymbol{I} becomes

$$
\boldsymbol{I} \rightarrow\left(\begin{array}{ccc}
I_{1} & 0 & 0 \tag{1.15.5}\\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right)=\text { Principal axes representation of inertia tensor }
$$

where the principal moments of inertia, at $O, I_{1,2,3}$ are the eigenvalues of

$$
\begin{equation*}
\sum I_{k l} \omega_{l}=\lambda \omega_{k}, \tag{1.15.6a}
\end{equation*}
$$

that is, they are the roots of its characteristic equation:

$$
\begin{equation*}
D(\lambda) \equiv-\operatorname{Det}\left(I_{k l}-\lambda \delta_{k l}\right)=0 ; \quad \lambda_{1,2,3} \equiv I_{1,2,3} \tag{1.15.6b}
\end{equation*}
$$

Using basic theorems of the spectral theory of tensors [(1.1.17a ff.)] we can show the following:
(i) At each point of a rigid body B there exists at least one set of principal axes.
(ii) Since, by ($1.15 .1 \mathrm{~b}-\mathrm{d}$), the inertia tensor is not only symmetric, but also positive definite [i.e., $\sum \sum I_{k l} a_{k} a_{l}>0$, for all vectors $\boldsymbol{a}=\left(a_{k}\right) \neq \mathbf{0}$], all three roots of (1.15.6b) are not only real but also strictly positive.

Further

- If $\lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \neq \lambda_{1}$ (all three eigenvalues distinct), then $O-123$ is unique.
- If $\lambda_{1} \neq \lambda_{2}=\lambda_{3}$ (two distinct eigenvalues), there exists a single infinity of such sets of principal axes; $O 1$ and every line perpendicular to it are principal axes; that is, the direction of either $O 2$ or $O 3$, in the plane perpendicular to $O 1$, can be chosen arbitrarily (e.g., a homogeneous right circular cylinder, with O on its axis of symmetry).
- If $\lambda_{1}=\lambda_{2}=\lambda_{3}$ (only one distinct eigenvalue), there exists a double infinity: any three mutually perpendicular axes can be chosen arbitrarily as $O-123$ (e.g., O being the center of a homogeneous sphere). Along principal axes, T, (1.15.4), with $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, reduces to

$$
\begin{equation*}
2 T=I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2} \tag{1.15.6c}
\end{equation*}
$$

The Generalized Parallel Axis Theorem ("Huygens-Steiner")

This explains how \boldsymbol{I} changes from point to point, among parallel sets of axes.

THEOREM

Let $O-x y z$ and $G-x y z$ be two sets of mutually parallel axes, and let the coordinates of the center of mass of B, G, relative to O, be

$$
\begin{equation*}
\boldsymbol{O} \boldsymbol{G} \equiv \boldsymbol{r}_{G} \equiv\left(x_{G}, y_{G}, z_{G}\right) \equiv\left(G_{1}, G_{2}, G_{3}\right) \equiv(-a,-b,-c) \tag{1.15.7a}
\end{equation*}
$$

that is, $a, b, c=$ coordinates of O relative to $G-x y z$. Then, the components of the inertia tensor of B at $O, I_{O, k l}$, and at $G, I_{G, k l}$, are related by

Direct notation :

$$
\begin{equation*}
\boldsymbol{I}_{O}=\boldsymbol{I}_{G}+m\left(r_{G}^{2} \boldsymbol{1}-\boldsymbol{r}_{G} \otimes \boldsymbol{r}_{G}\right) \tag{1.15.7b}
\end{equation*}
$$

Indicial notation:

$$
\begin{equation*}
I_{O, k l}=I_{G, k l}+m\left[\left(\sum G_{r} G_{r}\right) \delta_{k l}-G_{k} G_{l}\right] \tag{1.15.7c}
\end{equation*}
$$

or, in extenso,

$$
\boldsymbol{I}_{O}=\boldsymbol{I}_{G}+\left(\begin{array}{ccc}
m\left(b^{2}+c^{2}\right) & -m a b & -m a c \tag{1.15.7d}\\
-m b a & m\left(c^{2}+a^{2}\right) & -m b c \\
-m c a & -m c b & m\left(a^{2}+b^{2}\right)
\end{array}\right)
$$

PROOF
We have, successively,
(i) $I_{O, x x}=\mathbf{S} d m\left[(y-b)^{2}+(z-c)^{2}\right]$

$$
\begin{align*}
& =\boldsymbol{S} d m\left(y^{2}+z^{2}\right)-2 b(\boldsymbol{S} d m y)-2 b(\boldsymbol{S} d m z)+\boldsymbol{S} d m\left(b^{2}+c^{2}\right) \\
& =I_{G, x x}+0+0+m\left(b^{2}+c^{2}\right) ; \quad \text { etc., cyclically, for } I_{O, y y}, I_{O, z z} . \tag{1.15.7e}
\end{align*}
$$

(ii) $I_{O, y z}=-\mathbf{S} d m[(y-b)(z-c)]$

$$
=-\boldsymbol{S} d m y z+c(\boldsymbol{S} d m y)+b(\boldsymbol{S} d m z)-\boldsymbol{S} d m b c
$$

$$
\begin{equation*}
=I_{G, y z}+0+0-m b c ; \quad \text { etc., cyclically, for } I_{O, x z}, I_{O, x y} \tag{1.15.7f}
\end{equation*}
$$

More generally, it can be shown that between any two points A, B (with some ad hoc but, hopefully, self-explanatory notation),

$$
\begin{align*}
\boldsymbol{I}_{B}=\boldsymbol{I}_{A} & +m\left(r_{A / B}^{2} \boldsymbol{1}-\boldsymbol{r}_{A / B} \otimes \boldsymbol{r}_{A / B}\right) \\
& +2 m\left[\left(\boldsymbol{r}_{A / B} \cdot \boldsymbol{r}_{G / A}\right) \boldsymbol{1}-(1 / 2)\left(\boldsymbol{r}_{A / B} \otimes \boldsymbol{r}_{G / A}+\boldsymbol{r}_{G / A} \otimes \boldsymbol{r}_{A / B}\right)\right] \tag{1.15.7~g}
\end{align*}
$$

which, when $A \rightarrow G$ and $\boldsymbol{r}_{G / A} \rightarrow \mathbf{0}$, reduces to (1.15.7b) (see below). (See, e.g., Lur'e, 1968, p. 143; also Crandall et al., 1968, pp. 180-182, Magnus, 1974, pp. 200-201.)

It should be noted that the transfer formulae $(1.15 .7 \mathrm{~b}, \mathrm{~g})$ are based on definitions of moments of inertia about points, like (1.15.2h), not axes, and therefore hold for any set of axes through these points; that is, they are independent of the axes orientation at A, B. If, however, these axes are parallel, certain simplifications occur; indeed, $(1.15 .7 \mathrm{~g})$ then yields the component form,

$$
\begin{align*}
I_{B, k l}=I_{A, k l} & +m\left[\left(x_{A / B, 1}^{2}+x_{A / B, 2}^{2}+x_{A / B, 3}^{2}\right) \delta_{k l}-x_{A / B, k} x_{A / B, l}\right] \\
+ & 2 m\left[\left(x_{A / B, 1} x_{G / A, 1}+x_{A / B, 2} x_{G / A, 2}+x_{A / B, 3} x_{G / A, 3}\right) \delta_{k l}\right. \\
& \left.-(1 / 2)\left(x_{A / B, k} x_{G / A, l}+x_{G / A, k} x_{A / B, l}\right)\right] \tag{1.15.7h}
\end{align*}
$$

where $\boldsymbol{r}_{A / B} \equiv\left(x_{A / B, 1}, x_{A / B, 2}, x_{A / B, 3}\right)=$ coordinates of A relative to B, along axes $B-x y z \equiv B-x_{k}$, and $\boldsymbol{r}_{G / A} \equiv\left(x_{G / A, 1}, x_{G / A, 2}, x_{G / A, 3}\right)=$ coordinates of G relative to A, along axes $A-x y z \equiv A-x_{k} \quad$ (parallel to $B-x_{k}$); or, in extenso, with $x_{A / B, 1} \equiv x_{A / B}, x_{A / B, 2} \equiv y_{A / B}, x_{A / B, 3} \equiv z_{A / B}, x_{G / A, 1} \equiv x_{G / A}$, etc.,
$I_{B, x x}=I_{A, x x}+m\left(y_{A / B}^{2}+z_{A / B}^{2}\right)+2 m\left(y_{A / B} y_{G / A}+z_{A / B} z_{G / A}\right), \quad$ etc., cyclically,
$I_{B, x y}=I_{A, x y}-m\left(y_{A / B} x_{G / A}+x_{A / B} y_{G / A}\right)-m\left(x_{A / B} y_{A / B}\right), \quad$ etc., cyclically.
If $A \rightarrow G$, then $\boldsymbol{r}_{G / A} \rightarrow \mathbf{0}, \boldsymbol{r}_{A / B} \rightarrow \boldsymbol{r}_{G / B}$, and the above reduces to

$$
\begin{equation*}
I_{B, k l}=I_{G, k l}+m\left[\left(x_{G / B, 1}{ }^{2}+x_{G / B, 2}{ }^{2}+x_{G / B, 3^{2}}{ }^{2}\right) \delta_{k l}-x_{G / B, k} x_{G / B, l}\right], \tag{1.15.7k}
\end{equation*}
$$

from which, in extenso,
$I_{B, x x}=I_{G, x x}+m\left(y_{G / B}^{2}+z_{G / B}^{2}\right)=I_{G, x x}+m\left[(-b)^{2}+(-c)^{2}\right], \quad$ etc., cyclically,
$I_{B, x y}=I_{G, x y}-m\left(x_{G / B} y_{G / B}\right)=I_{G, x y}-m[(-a)(-b)], \quad$ etc., cyclically; i.e., $(1.15 .7 \mathrm{~b}-\mathrm{f})$.

Ellipsoid of Inertia

Let us consider a rectangular Cartesian coordinate system/basis $O-x y z / i j k$, and an axis u through O defined by the unit vector $\boldsymbol{u}=\left(u_{x}, u_{y}, u_{z}\right)$. Then, as the transformation equations against rotations (1.15.2i) show, the moment of inertia of a body B about $u, \quad I_{u u} \equiv I$, will be (with $k^{\prime}=l^{\prime}=u ; k, l=x, y, z ; \quad A_{k^{\prime} k}=u_{k}=u_{1,2,3}$, $A_{k^{\prime} l}=u_{l}=u_{1,2,3}$, etc.)

$$
\begin{equation*}
I=I_{x x} u_{x}^{2}+I_{y y} u_{y}^{2}+I_{z z} u_{z}^{2}+2 I_{x y} u_{x} u_{y}+2 I_{y z} u_{y} u_{z}+2 I_{x z} u_{x} u_{z} . \tag{1.15.8a}
\end{equation*}
$$

[For nontensorial derivations of (1.15.8a), see, for example, Lamb (1929, pp. 66-67), Spiegel (1967, pp. 263-264)]. We notice that if $\omega=\omega \boldsymbol{u}=\left(\omega u_{x}, \omega u_{y}, \omega u_{z}\right)=$ $\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$, then the kinetic energy of B, moving about the fixed point O, eq. (1.15.4), becomes

$$
\begin{equation*}
2 T=I \omega^{2} \tag{1.15.8b}
\end{equation*}
$$

Now, by defining the radius vector

$$
\begin{equation*}
\boldsymbol{r} \equiv \boldsymbol{u} / I^{1 / 2}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} \quad\left[\text { i.e. },|\boldsymbol{r}| \equiv r=(1 / I)^{1 / 2}\right] \tag{1.15.8c}
\end{equation*}
$$

we can rewrite (1.15.8a) as

$$
\begin{equation*}
I_{x x} x^{2}+I_{y y} y^{2}+I_{z z} z^{2}+2 I_{x y} x y+2 I_{y z} y z+2 I_{z x} z x=1 \tag{1.15.8d}
\end{equation*}
$$

Since I is positive [except when all the mass lies on u; then one of the principal moments of inertia, roots of (1.15.6b), is zero and the other two are equal and positive], every radius through O meets the quadric surface represented by (1.15.8d), in $O-x y z$, in real points located a distance $r=(1 / I)^{1 / 2}$ from O, and therefore (1.15.8d) is an ellipsoid; appropriately called ellipsoid of inertia or momental ellipsoid. [A term most likely introduced by Cauchy (1827), who also carried out similar investigations in the theory of stress in continuous media ("stress quadric").]

If the axes are rotated so as to coincide with the principal axes of the ellipsoid that is, $O-x y z \rightarrow O-123$ - then (1.15.8d) simplifies to

$$
I_{1} r_{1}^{2}+I_{2} r_{2}^{2}+I_{3} r_{3}^{2}=1,
$$

or

$$
\begin{equation*}
\left[r_{1} /\left(1 / I_{1}\right)^{1 / 2}\right]^{2}+\left[r_{2} /\left(1 / I_{2}\right)^{1 / 2}\right]^{2}+\left[r_{3} /\left(1 / I_{3}\right)^{1 / 2}\right]^{2}=1 \tag{1.15.8e}
\end{equation*}
$$

where $r_{1,2,3}$ are the "principal" coordinates of \boldsymbol{r}, and $\left(1 / I_{1,2,3}\right)^{1 / 2}$ are the semidiameters of the ellipsoid. [Some authors (mostly British) define the radius of the momental ellipsoid along \boldsymbol{u} (i.e., our r) as

$$
\begin{equation*}
r=m \varepsilon^{4} / I^{1 / 2} \sim I^{1 / 2} \tag{1.15.8c.1}
\end{equation*}
$$

where $m=$ mass of body, and $\varepsilon=$ any linear magnitude (taken in the fourth power for purely dimensional purposes), so that the ellipsoid equations (1.15.8d) and (1.15.8e) are replaced, respectively, by

$$
\begin{gather*}
I_{x x} x^{2}+I_{y y} y^{2}+I_{z z} z^{2}+2 I_{x y} x y+2 I_{y z} y z+2 I_{z x} z x=m \varepsilon^{4}, \tag{1.15.8d.1}\\
I_{1} r_{1}^{2}+I_{2} r_{2}^{2}+I_{3} r_{3}^{2}=m \varepsilon^{4} . \tag{1.15.8e.1}
\end{gather*}
$$

Also, for a discussion of the closely related concept of the ellipsoid of gyration (introduced by MacCullagh, 1844), see, for example, Easthope (1964, p. 134 ff .), Lamb (1929, p. 68 ff.)] However, it should be remarked that not every ellipsoid can represent an inertia ellipsoid; in view of the "triangle inequalities" (see below), certain restrictions apply on the relative magnitudes of the semidiameters, and hence the possible forms of the momental ellipsoid.

Now, and these constitute a geometrical sequel to the discussion of the roots of the characteristic equation (1.15.6b):

- If $I_{1}=I_{2}=I_{3}$, the momental ellipsoid is a sphere. All axes through O are principal, and all moments of inertia are mutually equal. Such a body is called kinetically symmetrical about O.
- If, say, $I_{2}=I_{3}$, the ellipsoid is one of revolution about $O x$ - all perpendicular diameters to $O x$ are principal axes. Such a body is called kinetically symmetric about that axis; or simply uniaxial (Routh).

The above show that, in general, the ellipsoid of inertia, at a point, is nonunique. The ellipsoid of inertia of a body at its mass center G, commonly referred to as its central ellipsoid (Poinsot), is of particular importance: As the parallel axis theorem shows, if the moment of inertia about an axis through G is known, I_{G}, then the moment of inertia about any other axis parallel to it is obtained by adding to I_{G} the nonnegative quantity $m d^{2}$, where d is the distance between the two axes.

Finally, the momental ellipsoid interpretation, plus the above parallel axis theorem, allow us to conclude the following extremum (i.e., maximum/minimum) properties of the principal axes:

- The principal axes of inertia, at a point O, are those with the larger or smaller moment of inertia than those about any other line through that point, I. Quantitatively, if

$$
\begin{equation*}
I_{1} \equiv I_{\max } \geq I_{2} \geq I_{3} \equiv I_{\min } \tag{1.15.8f}
\end{equation*}
$$

$\left[\Rightarrow\left(1 / I_{1}\right)^{1 / 2} \leq\left(1 / I_{2}\right)^{1 / 2} \leq\left(1 / I_{3}\right)^{1 / 2}\right]$, something that can always be achieved by appropriate numbering of the principal axes, then

$$
\begin{equation*}
I_{\max } \geq I \geq I_{\min } \tag{1.15.8g}
\end{equation*}
$$

- The smallest central principal moment of inertia of a body, say $I_{G, 3} \equiv I_{G, \text { min }}$, is smaller than or equal to any other possible moment of inertia of the body (i.e., moment of inertia about any other space point and direction there); that is, $I_{G, \min } \geq I_{. ., u, u}$.

Additional Useful Results

(i) It can be shown that

$$
\begin{equation*}
I_{1} \leq I_{2}+I_{3}, \quad I_{2} \leq I_{3}+I_{1}, \quad I_{3} \leq I_{1}+I_{2} \tag{1.15.8h}
\end{equation*}
$$

that is, no principal moment of inertia can exceed the sum of the other two. Equations (1.15.8h) are referred to as the triangle inequalities (since similar relations hold for the sides of a plane triangle). Actually, this theorem holds for the moments of inertia about any mutually orthogonal axes (McKinley, 1981).
(ii) Let $\rho_{1,2,3}$ be the semidiameters (semiaxes) of the ellipsoid of inertia; that is, $\rho_{1,2,3} \equiv\left(I_{1,2,3}\right)^{-1 / 2}$. Then, the third and second of (1.15.8h) lead, respectively, to the following lower and upper bounds for ρ_{3}, if $\rho_{1,2}$ are given,

$$
\begin{equation*}
\left(\rho_{2}^{-2}+\rho_{1}^{-2}\right)^{-1 / 2} \leq \rho_{3} \leq\left|\rho_{2}^{-2}-\rho_{1}^{-2}\right|^{-1 / 2} \tag{1.15.8i}
\end{equation*}
$$

and, cyclically, for $\rho_{1,2}$; that is, arbitrary inertia tensors, upon diagonalization, may yield (mathematically correct but) physically impossible principal moments of inertia!

As a result of the above, if two axes, say ρ_{1} and ρ_{2}, are approximately equal, the corresponding inertia ellipsoid can be quite prolate (longer in the third direction,
cigar shaped), but not too oblate (shorter in the third direction; flattened at the poles, like the Earth).
(iii) The quantity $\operatorname{Tr} \boldsymbol{I} \equiv I_{x x}+I_{y y}+I_{z z}$ (first invariant of \boldsymbol{I}) depends on the origin of the coordinates, but not on their orientation.

$$
\begin{equation*}
\text { (iv) }-I_{x x} / 2 \leq I_{y z} \leq I_{x x} / 2, \quad-I_{y y} / 2 \leq I_{z x} \leq I_{y y} / 2, \quad-I_{z z} / 2 \leq I_{x y} \leq I_{z z} / 2 \tag{1.15.8j}
\end{equation*}
$$

(v) Consider the following three sets of axes: (a) $O-X Y Z$: arbitrary "background" (say, inertial) axes; (b) $G-X Y Z \equiv G-x y z$: translating but nonrotating axes, at center of mass G; and (c) $G-123$: principal axes at G. By combining the transformation formulae for $I_{k l}$, between parallel axes of differing origins (like $O-X Y Z$ and $G-x y z$) and arbitrary oriented axis of common origin (like $G-x y z$ and $G-123$), we can show that

$$
\begin{align*}
I_{X X} & =m\left(Y_{G}{ }^{2}+Z_{G}^{2}\right)+A_{X 1}{ }^{2} I_{1}+A_{X 2}{ }^{2} I_{2}+A_{X 3}{ }^{2} I_{3}, \tag{1.15.8k}\\
I_{Y Y} & =m\left(Z_{G}{ }^{2}+X_{G}^{2}\right)+A_{Y 1}^{2} I_{1}+A_{Y 2}{ }^{2} I_{2}+A_{Y 3}{ }^{2} I_{3}, \tag{1.15.81}\\
I_{Z Z} & =m\left(X_{G}{ }^{2}+Y_{G}^{2}\right)+A_{Z 1}^{2} I_{1}+A_{Z 2}{ }^{2} I_{2}+A_{Z 3}{ }^{2} I_{3} ; \tag{1.15.8m}\\
I_{X Y} & =-m X_{G} Y_{G}+A_{X 1} A_{Y 1}\left(I_{3}-I_{1}\right)+A_{X 2} A_{Y 2}\left(I_{3}-I_{2}\right), \tag{1.15.8n}\\
I_{Y Z} & =-m Y_{G} Z_{G}+A_{Y 1} A_{Z 1}\left(I_{3}-I_{1}\right)+A_{Y 2} A_{Z 2}\left(I_{3}-I_{2}\right), \tag{1.15.8o}\\
I_{Z X} & =-m Z_{G} X_{G}+A_{Z 1} A_{X 1}\left(I_{3}-I_{1}\right)+A_{Z 2} A_{X 2}\left(I_{3}-I_{2}\right) ; \tag{1.15.8p}
\end{align*}
$$

where $A_{X 1} \equiv \cos (O X, G 1)=\cos (G x, G 1)$, etc., and X_{G}, Y_{G}, Z_{G} are the coordinates of G relative to $O-X Y Z$. The usefulness of $(1.15 .8 \mathrm{k}-\mathrm{p})$ lies in the fact that they yield the moments/products of inertia about arbitrary axes, once the principal moments of inertia at the center of mass are known.
(vi)
(a) If a body has a plane of symmetry, then (α) its center of mass and (β) two of its principal axes of inertia there lie on that plane; while the third principal axis is perpendicular to it.
(b) If a body has an axis of symmetry, then (α) its center of a mass lies there, and (β) that axis is one of its principal axes of inertia; while the other two are perpendicular to it.
(c) If two perpendicular axes, through a body point, are axes of symmetry, then they are principal axes there. (But principal axes are not necessarily axes of symmetry!)
(d) If the products of inertia vanish, for three mutually perpendicular axes at a point, these axes are principal axes there. [For a general discussion of the relations between principal axes and symmetry (via the concept of covering operation), see, for example, Synge and Griffith (1959, p. 288 ff.).]
(e) A principal axis at the center of mass of a body is a principal axis at all points of that axis.
(f) If an axis is principal at any two of its points, then it passes through the center of mass of the body, and is a principal axis at all its points.
(vii) Centrifugal forces: whence the products of inertia originate. Let us consider an arbitrary rigid body rotating about a fixed axis $O Z$ with constant angular velocity ω. Then, since the centripetal acceleration of a generic particle of it P, of mass $d m$, equals $v^{2} / r=\omega^{2} r$, where $r=$ distance of P from $O Z$, the associated centrifugal force
$d \boldsymbol{f}_{c}$ has magnitude $d f_{c}=d m\left(\omega^{2} r\right)$, and hence components along a, say, body-fixed set of axes $O-x y z(O Z=O z)$ will be

$$
\begin{equation*}
d f_{c, x}=d f_{c}(x / r)=d m x \omega^{2}, \quad d f_{c, y}=d f_{c}(y / r)=d m y \omega^{2}, \quad d f_{c, z}=0 \tag{1.15.9a}
\end{equation*}
$$

where x, y, z are the coordinates of P. Therefore, the components of the moment of $d f_{c}$ along these axes are

$$
\begin{align*}
& d M_{c, x}=y d f_{c, z}-z d f_{c, y} \\
&=-d m y z \omega^{2} \\
& d M_{c, y}=z d f_{c, x}-x d f_{c, z}=+d m x z \omega^{2} \tag{1.15.9b}\\
& d M_{c, z}=x d f_{c, y}-y d f_{c, x}=0
\end{align*}
$$

From the above, it follows that these centrifugal forces, when summed over the entire body and reduced to the origin O, yield a resultant centrifugal force \boldsymbol{f}_{c} :

$$
\begin{align*}
& f_{c, x} \equiv \boldsymbol{S} d f_{c, x}=\omega^{2} \boldsymbol{S} d m x \equiv \omega^{2} m x_{G} \\
& f_{c, y} \equiv \boldsymbol{S} d f_{c, y}=\omega^{2} \boldsymbol{S} d m y \equiv \omega^{2} m y_{G} \\
& f_{c, z} \equiv \boldsymbol{S} d f_{c, z}=0 \tag{1.15.9c}
\end{align*}
$$

where x_{G}, y_{G} are the coordinates of the mass center of B, G; and a resultant centrifugal moment \boldsymbol{M}_{c} :

$$
\begin{align*}
& M_{c, x} \equiv \boldsymbol{\equiv} d M_{c, x}=-\omega^{2} \boldsymbol{S} d m y z \equiv+\omega^{2} I_{y z}, \\
& M_{c, y} \equiv \boldsymbol{S} d M_{c, y}=\omega^{2} \boldsymbol{S} d m z x \equiv-\omega^{2} I_{x z}, \\
& M_{c, z} \equiv \boldsymbol{S} d M_{c, z}=0 \tag{1.15.9d}
\end{align*}
$$

Equations (1.15.9c, d) show clearly that if G lies on the $Z=z$ axis, then \boldsymbol{f}_{c} vanishes, but \boldsymbol{M}_{c} does not. For the moment to vanish, we must have $I_{y z}=0$ and $I_{x z}=0$; that is, $O z$ must be a principal axis. In sum: The centrifugal forces on a spinning body tend to change the orientation of its instantaneous axis of rotation, unless the latter goes through the center of mass of the body and is a principal axis there. Such kinetic considerations led to the formulation of the concept of principal axes of inertia, at a point of a rigid body [Euler, Segner (1750s)]; and to the alternative term deviation moments, for the products of inertia. We shall return to this important topic in §1.17.

1.16 THE RIGID BODY: LINEAR AND ANGULAR MOMENTUM

(i) The inertial, or absolute, linear momentum of a rigid body B (or system S), relative to an inertial frame F, represented by the axes $I-X Y Z$ (fig. 1.28), is defined as

$$
\begin{equation*}
\boldsymbol{p} \equiv \boldsymbol{S} d m \boldsymbol{v}=m \boldsymbol{v}_{G} \quad(G: \text { center of mass of } B) \tag{1.16.1a}
\end{equation*}
$$

Substituting in the above [recalling (1.7.11a ff.), and with $\boldsymbol{r}_{G / O}=\boldsymbol{r}_{G}, \omega \rightarrow \boldsymbol{\Omega}$: angular velocity vector of noninertial frame \rightarrow axes $O-x y z$ relative to inertial ones $I-X Y Z]$

$$
\begin{equation*}
\boldsymbol{v}_{G}=\boldsymbol{v}_{O}+\boldsymbol{v}_{G / O}=\boldsymbol{v}_{O}+\boldsymbol{v}_{G, \text { rel }}+\boldsymbol{\Omega} \times \boldsymbol{r}_{G} \quad\left(\boldsymbol{v}_{G, \text { rel }} \equiv \partial \boldsymbol{r}_{G} / \partial t\right) \tag{1.16.1b}
\end{equation*}
$$

Figure 1.28 Rigid body (B), or system (S), in general motion relative to the noninertial frame $O-x y z ; \boldsymbol{\Omega}$: inertial angular velocity of $O-x y z$ (two-dimensional case).
readily yields

$$
\begin{equation*}
\boldsymbol{p} \equiv \boldsymbol{p}_{\text {trans }}+\boldsymbol{p}_{\mathrm{rel}} \tag{1.16.1c}
\end{equation*}
$$

$$
\begin{align*}
& \boldsymbol{p}_{\text {trans }} \equiv m\left(\boldsymbol{v}_{O}+\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right): \text { Linear momentum of transport, } \tag{1.16.1d}\\
& \boldsymbol{p}_{\text {rel }} \equiv m \boldsymbol{v}_{G, \text { rel }} \equiv m\left(\partial \boldsymbol{r}_{G} / \partial t\right): \text { Linear momentum of relative motion. } \tag{1.16.1e}
\end{align*}
$$

If B is rigidly attached to the moving frame M, represented by the axes $O-x y z$ (fig. 1.28), then, clearly, $\boldsymbol{p}_{\text {rel }}=\mathbf{0}$.
(ii) The inertial and absolute angular momentum of B, relative to the inertial origin $I, \boldsymbol{H}_{I \text { abs }} \equiv \boldsymbol{H}_{I}$, is defined as

$$
\begin{align*}
& \boldsymbol{H}_{1} \equiv \boldsymbol{S}\left[\boldsymbol{r}_{I} \times d m\left(d \boldsymbol{r}_{I} / d t\right)\right] \equiv \boldsymbol{S}[\mathfrak{R} \times d m(d \mathfrak{R} / d t)] \\
& \quad\left[\text { substituting } \mathfrak{R}=\boldsymbol{r}_{O / I}+\boldsymbol{r} \equiv \boldsymbol{r}_{O}+\boldsymbol{r} \Rightarrow d \mathfrak{R} / d t=\boldsymbol{v}_{O}+\boldsymbol{v}_{\text {rel }}+\boldsymbol{\Omega} \times \boldsymbol{r}, \boldsymbol{v}_{\text {rel }} \equiv \partial \boldsymbol{r} / \partial t\right] \\
&=m \boldsymbol{r}_{O} \times\left(\boldsymbol{v}_{O}+\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right)+m \boldsymbol{r}_{G} \times \boldsymbol{v}_{O} \\
&+\boldsymbol{S} d m[\boldsymbol{r} \times(\boldsymbol{\Omega} \times \boldsymbol{r})]+\boldsymbol{S} d m\left(\boldsymbol{r} \times \boldsymbol{v}_{\text {rel }}\right), \tag{1.16.2a}
\end{align*}
$$

or, since

$$
\begin{align*}
\boldsymbol{S} d m[\boldsymbol{r} \times(\boldsymbol{\Omega} \times \boldsymbol{r})] & =\boldsymbol{S} d m\left[r^{2} \boldsymbol{\Omega}-(\boldsymbol{r} \otimes \boldsymbol{r}) \cdot \boldsymbol{\Omega}\right] \\
& =\boldsymbol{S} d m\left[r^{2} \boldsymbol{1}-(\boldsymbol{r} \otimes \boldsymbol{r})\right] \cdot \boldsymbol{\Omega} \equiv \boldsymbol{I}_{O} \cdot \boldsymbol{\Omega} \tag{1.16.2b}
\end{align*}
$$

and calling
$\boldsymbol{H}_{O, \text { rel }} \equiv \boldsymbol{S} \times\left(d m \boldsymbol{v}_{\mathrm{rel}}\right):$ Noninertial and absolute angular momentum of B, about O,
we finally obtain the following general kinematico-inertial result:

$$
\begin{equation*}
\boldsymbol{H}_{I}=\boldsymbol{H}_{O}+\boldsymbol{r}_{O} \times \boldsymbol{p}+m \boldsymbol{r}_{G} \times \boldsymbol{v}_{O}, \quad \boldsymbol{H}_{O}=\boldsymbol{I}_{O} \cdot \boldsymbol{\Omega}+\boldsymbol{H}_{O, \text { rel }} \tag{1.16.2d}
\end{equation*}
$$

Special Cases

(i) If the body B is rigidly attached to the moving frame M, then

$$
\begin{equation*}
\boldsymbol{v}_{\text {rel }}=\mathbf{0}, \quad \boldsymbol{p}_{\text {rel }}=\mathbf{0}, \quad \boldsymbol{H}_{O, \text { rel }}=\mathbf{0}, \quad \boldsymbol{\Omega}=\omega=\text { inertial angular velocity of } B, \tag{1.16.3a}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\boldsymbol{p}=m\left(\boldsymbol{v}_{O}+\boldsymbol{\omega} \times \boldsymbol{r}_{G}\right)=m \boldsymbol{v}_{G}, \quad \boldsymbol{H}_{I}=\boldsymbol{I}_{O} \cdot \boldsymbol{\omega}+\boldsymbol{r}_{O} \times \boldsymbol{p}+m \boldsymbol{r}_{G} \times \boldsymbol{v}_{O} . \tag{1.16.3b}
\end{equation*}
$$

(ii) If, further, $O=G$, then $\boldsymbol{r}_{G}=\mathbf{0}, \boldsymbol{r}_{O}=\boldsymbol{r}_{G}$, and, therefore,

$$
\begin{equation*}
\boldsymbol{p}=m \boldsymbol{v}_{G}, \quad \boldsymbol{H}_{I}=\boldsymbol{I}_{O} \cdot \boldsymbol{\omega}+\boldsymbol{r}_{O} \times \boldsymbol{p} \tag{1.16.3c}
\end{equation*}
$$

(iii) If $I=O$ (i.e., rigid-body motion with one point, O, fixed), then $\boldsymbol{r}_{O}=\mathbf{0}$, $\boldsymbol{v}_{O}=\mathbf{0}$, and, therefore,

$$
\begin{equation*}
\boldsymbol{p}=m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G}\right)=m \boldsymbol{v}_{G}, \quad \boldsymbol{H}_{I}=\boldsymbol{H}_{O}=\boldsymbol{I}_{O} \cdot \boldsymbol{\omega} \quad[\equiv \boldsymbol{S} \boldsymbol{r} \times d m \boldsymbol{v}] \tag{1.16.3~d1,2}
\end{equation*}
$$

It should be pointed out that the above hold for any set of axes, including non-bodyfixed ones, at the fixed point O; but along such axes the components of \boldsymbol{I}_{O} will, in general, not be constant. Equation (1.16.3d2) would then yield, in components [omitting the subscript O and with $\boldsymbol{r}=\left(x_{k}\right)$],

$$
\begin{gather*}
H_{k}=\sum I_{k l} \omega_{l}, \tag{1.16.4a}\\
I_{k l}=\boldsymbol{S} d m[(\boldsymbol{r} \cdot \boldsymbol{r}) \mathbf{1}-(\boldsymbol{r} \otimes \boldsymbol{r})]_{k l}=\boldsymbol{S} d m\left[\left(\sum x_{r} x_{r}\right) \delta_{k l}-x_{k} x_{l}\right] . \tag{1.16.4b}
\end{gather*}
$$

If the axes at O are body-fixed, then the $I_{k l}$ are constant; and, further, if they are principal, then

$$
\begin{equation*}
H_{k}=I_{k} \omega_{k} \tag{1.16.4c}
\end{equation*}
$$

Linear Momentum of a Rotating Body

To dispel possible notions that the linear momentum is associated only with translation, let us calculate the linear momentum of a rigid body rotating about a fixed point

- We have, successively, with the usual notations,

$$
\begin{align*}
\boldsymbol{p}=m \boldsymbol{v}_{G} & =m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G /}\right) \equiv m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G}\right) \\
& =m\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \times\left(x_{G}, y_{G}, z_{G}\right) \quad \text { [components along any }- \text {-axes] } \\
& =m\left(\omega_{y} z_{G}-\omega_{z} y_{G}, \quad \omega_{z} x_{G}-\omega_{x} z_{G}, \quad \omega_{x} y_{G}-\omega_{y} x_{G}\right) . \tag{1.16.5a}
\end{align*}
$$

In particular, if the body rotates about a fixed axis through \bullet, say \rightarrow [recalling (1.15.9a ff.)], then $\omega=\omega_{z} \boldsymbol{k} \equiv(d \phi / d t) \boldsymbol{k}$, and so (1.16.5a) reduces to

$$
\begin{equation*}
p_{x}=-\left(m y_{G}\right) \omega_{z} \equiv-m_{y} \omega_{z}, \quad p_{y}=\left(m x_{G}\right) \omega_{z} \equiv m_{x} \omega_{z}, \quad p_{z}=0 . \tag{1.16.5b}
\end{equation*}
$$

These expressions appear in the problem of rotation of a rigid body about a fixed axis, treated via body-fixed axes $-x y z$ [see, e.g., Butenin et al. (1985, pp. 266-278) and Papastavridis (EM, in preparation)].

It is not hard to show that, in this case, the (inertial and absolute) angular momentum of the body

$$
\begin{equation*}
\boldsymbol{H}_{\star} \equiv \boldsymbol{S} \boldsymbol{r} \times d m \boldsymbol{v}=\left(H_{x}, H_{y}, H_{z}\right) \tag{1.16.5c}
\end{equation*}
$$

reduces to

$$
\begin{equation*}
H_{x}=I_{x z} \omega_{z}, \quad H_{y}=I_{y z} \omega_{z}, \quad H_{z}=I_{z z} \omega_{z} \equiv I_{z} \omega_{z} \tag{1.16.5d}
\end{equation*}
$$

1.17 THE RIGID BODY: KINETIC ENERGY AND KINETICS OF TRANSLATION AND ROTATION (EULERIAN "GYRO EQUATIONS")

We recommend, for this section, the concurrent reading of a good text on rigid-body dynamics; for example (alphabetically): Grammel (1950), Gray (1918), Hughes (1986), Leimanis (1965), Magnus (1971, 1974), Mavraganis (1987), Stäckel (1905, pp. 556-563).
(i) The inertial kinetic energy of a rigid body B in general motion, T, is defined as the sum of the (inertial) kinetic energies of its particles:

$$
\begin{equation*}
2 T(B, t) \equiv 2 T \equiv S d m v \cdot v \tag{1.17.1}
\end{equation*}
$$

or, since

$$
\begin{align*}
& \boldsymbol{v}=v_{*}+\omega \times \boldsymbol{r}_{/} \quad(\star \text { : arbitrary body-fixed point }), \tag{1.17.2}\\
& 2 T=\boldsymbol{S} d m\left(\boldsymbol{v}_{\star}+\omega \times \boldsymbol{r}_{/ \bullet}\right) \cdot\left(\boldsymbol{v}_{\star}+\omega \times \boldsymbol{r}_{/ \bullet}\right)=2\left(T_{\text {transl’n }}+T_{\text {rot'n }}+T_{\text {cpl }{ }^{\prime} \mathrm{g}}\right), \tag{1.17.3}
\end{align*}
$$

where

$$
\begin{align*}
& 2 T_{\text {transl’’n }} \equiv m v_{\bullet} \cdot v_{\bullet}=m v_{\bullet}^{2}: \\
& \text { (twice of) Translatory (or sliding) kinetic energy of } B \text {, } \tag{1.17.3a}\\
& 2 T_{\text {rot'n }} \equiv \boldsymbol{S} d m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right) \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right)=\boldsymbol{\omega} \cdot \boldsymbol{I}_{\star} \cdot \boldsymbol{\omega}: \quad(\text { recalling } \S 1.15) \\
& \text { (twice of) Rotatory kinetic energy of } B \text {, } \tag{1.17.3b}\\
& T_{\text {cpl }{ }^{\mathrm{g}}} \equiv m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right) \cdot \boldsymbol{v}_{\star}=m \boldsymbol{v}_{G / \star} \cdot \boldsymbol{v}_{\star}=\left(m \boldsymbol{r}_{G / \bullet}\right)^{\bullet} \cdot \boldsymbol{v}_{\star} \equiv\left(d \boldsymbol{m}_{G / \bullet} / d t\right) \cdot \boldsymbol{v}_{\star},
\end{align*}
$$

or

$$
\begin{equation*}
T_{\text {cpl } 1 \mathrm{~g}} \equiv m \boldsymbol{r}_{G / \bullet} \cdot(\boldsymbol{v} \bullet \times \boldsymbol{\omega}) \equiv \boldsymbol{m}_{G / \bullet} \cdot(\boldsymbol{v} \bullet \times \boldsymbol{\omega}): \tag{1.17.3c}
\end{equation*}
$$

Kinetic energy of coupling between \boldsymbol{v}, and ω (where $\boldsymbol{m}_{G / \star} \equiv m \boldsymbol{r}_{G / \star}$) [$=0$; e.g. if $G=\star$, or if \boldsymbol{v}, and ω are parallel [\downarrow on instantaneous screw axis of motion (§1.9)]; in which case, T decouples into translatory and rotatory kinetic energy].

- These expressions hold for any axes, either body-fixed or moving in an arbitrary manner, or even inertial. But if they are non-body-fixed, the components of $\boldsymbol{r}_{G / \bullet}$ and I_{*} will, in general, not be constant.
- We also notice that, in there, the mass m appears as a scalar ($m: T_{\text {transl'n }}$), as a vector of a first-order moment ($\left.\boldsymbol{m}_{G / \bullet}: T_{\text {cpl } 1 \mathrm{~g}}\right)$, and as a second-order tensor ($\boldsymbol{I}_{\star}: T_{\text {rot'n }}$).
- From (1.17.3b), we obtain, successively,

$$
\begin{align*}
\boldsymbol{g r a d}_{\omega} T_{\text {rot’n }} & \equiv \partial T_{\text {rot’n }} / \partial \boldsymbol{\omega} \\
& =\boldsymbol{S} d m \boldsymbol{v}_{/ \bullet} \cdot\left(\partial \boldsymbol{v}_{/ \bullet} / \partial \boldsymbol{\omega}\right)=\boldsymbol{S} \boldsymbol{r} / \bullet \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right) d m=\boldsymbol{S} \boldsymbol{r}_{/ \bullet} \times\left(d m \boldsymbol{v}_{/ \bullet}\right) \\
& \equiv \boldsymbol{H}_{\star, \text { relative }} \equiv \boldsymbol{h} \bullet \quad[\text { recalling }(1.6 .5 \mathrm{~b})] ; \tag{1.17.4}
\end{align*}
$$

that is, the angular momentum is normal to the surface $T_{\text {rot'n }}=$ constant, in the space of the ω 's.

- If $\boldsymbol{v}_{\star}=\mathbf{0}$-for example, gyro spinning about a fixed point-(1.17.3b) yield

$$
\begin{equation*}
2 T \Rightarrow 2 T_{\text {rot’n }}=I_{x x} \omega_{x}^{2}+\cdots+2 I_{x y} \omega_{x} \omega_{y}+\cdots=\boldsymbol{H} \bullet \cdot \boldsymbol{\omega}=\boldsymbol{h} \bullet \cdot \boldsymbol{\omega} \geq 0 \tag{1.17.4a}
\end{equation*}
$$

that is, since T is positive definite, the angle between $\boldsymbol{H}_{\bullet}=\boldsymbol{h}_{\bullet}$ and $\boldsymbol{\omega}$ is never obtuse:

$$
\begin{equation*}
0^{\circ} \leq \text { angle }\left(\boldsymbol{H}_{\star}, \omega\right)<90^{\circ} \tag{1.17.4b}
\end{equation*}
$$

- Similarly, we can express T in terms of relative velocities; that is, with

$$
\begin{equation*}
v=v_{\star}+\Omega \times r_{/ \bullet}+v_{/ \bullet, \text { relative }}, \quad v_{/ \bullet, \text { relative }} \equiv \partial \boldsymbol{r}_{/ \bullet} / \partial t \tag{1.17.5}
\end{equation*}
$$

where $\boldsymbol{\Omega}$ is the inertial angular velocity of the moving axes.

Another Useful T-Representation

We have, successively,

$$
\begin{align*}
2 T & =\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}=\boldsymbol{S} \boldsymbol{v} \cdot(d m \boldsymbol{v})=\boldsymbol{S}\left(\boldsymbol{v} \bullet+\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right) \cdot(d m \boldsymbol{v}) \\
& =\boldsymbol{v}_{\bullet} \cdot(\boldsymbol{S} d m \boldsymbol{v})+\boldsymbol{S} d \boldsymbol{p} \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{\bullet \bullet}\right) \quad(\text { since } d m \boldsymbol{v} \equiv d \boldsymbol{p}) \\
& =\boldsymbol{v} \bullet \boldsymbol{p}+\omega \cdot\left(\boldsymbol{S} \boldsymbol{r}_{/ \bullet} \times d \boldsymbol{p}\right)=\boldsymbol{v}_{\bullet} \cdot \boldsymbol{p}+\boldsymbol{\omega} \cdot \boldsymbol{H}_{\star} \text {,absolute } . \tag{1.17.6}
\end{align*}
$$

Kinetic Energy of a Thin Plate of Mass m
in Plane Motion on its Own Plane (fig. 1.17)
Using plate-fixed axes $-x y$, we find $[$ with $\cos (\ldots) \equiv c(\ldots), \sin (\ldots) \equiv s(\ldots)]$

$$
\begin{align*}
\boldsymbol{r}_{G / *} & =x_{G} \boldsymbol{i}+y_{G} \boldsymbol{j} \equiv x \boldsymbol{i}+y \boldsymbol{j}, \quad(x, y: \text { constant }) \tag{1.17.7a}\\
v_{\bullet} & =(d X \bullet / d t) \boldsymbol{I}+(d Y \bullet / d t) \boldsymbol{J} \equiv(d X / d t) \boldsymbol{I}+(d Y / d t) \boldsymbol{J} \\
& =(d X / d t)(c \phi \boldsymbol{i}-s \phi \boldsymbol{j})+(d Y / d t)(s \phi \boldsymbol{i}+c \phi \boldsymbol{j}) \\
& =[(d X / d t) c \phi+(d Y / d t) s \phi] \boldsymbol{i}+[-(d X / d t) s \phi+(d Y / d t) c \phi] \boldsymbol{j} \\
& \equiv v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}, \quad \omega=(d \phi / d t) \boldsymbol{K}=(d \phi / d t) \boldsymbol{k} ; \tag{1.17.7~b,c}
\end{align*}
$$

and so, successively,

$$
\begin{align*}
& 2 T_{\text {transl'n }} \equiv m \boldsymbol{v} \bullet \cdot v_{\bullet}=m\left[(d X / d t)^{2}+(d Y / d t)^{2}\right] \tag{1.17.7d}\\
& \left.\begin{array}{rl}
T_{\text {cpl }} \cdot \mathrm{g} & \equiv m \boldsymbol{r}_{G / \bullet} \cdot(\boldsymbol{v} \bullet
\end{array}\right)=m(x, y, 0) \cdot\left[\left(v_{x}, v_{y}, 0\right) \times(0,0, d \phi / d t)\right] \\
& \\
& \quad=m(d \phi / d t)\left(v_{y} x-v_{x} y\right) \tag{1.17.7e}\\
& \\
& \quad=m(d \phi / d t)\{[(d Y / d t) x-(d X / d t) y] c \phi-[(d X / d t) x+(d Y / d t) y] s \phi\}
\end{align*}
$$

$2 T_{\mathrm{rot} \mathrm{n}} \equiv \omega \cdot I_{\star} \cdot \omega=I_{\star}, z z \omega_{z}^{2} \equiv I(d \phi / d t)^{2} ;$
that is,

$$
\begin{align*}
2 T= & 2 T(d X / d t, d Y / d t, d \phi / d t) \\
= & m\left[(d X / d t)^{2}+(d Y / d t)^{2}\right]+I(d \phi / d t)^{2} \\
& +2 m(d \phi / d t)\{[(d Y / d t) x-(d X / d t) y] c \phi-[(d X / d t) x+(d Y / d t) y] s \phi\} \tag{1.17.7~g}
\end{align*}
$$

An Application

It is shown in chap. 3 that for this three degrees of freedom ($D O F$) (unconstrained) system, defined by the positional coordinates $q_{1}=X, q_{2}=Y, q_{3}=\phi$, the Lagrangean equations of motion $d / d t\left[\partial T / \partial\left(d q_{k} / d t\right)\right]-\left(\partial T / \partial q_{k}\right)=Q_{k}$ $\left[=\right.$ system (impressed) force corresponding to $\left.q_{k}\right]$; or, explicitly, angular equation (with $M=$ total external moment about $*$):

$$
\begin{align*}
I\left(d^{2} \phi / d t^{2}\right)+ & m\left\{\left[\left(d^{2} Y / d t^{2}\right) x-\left(d^{2} X / d t^{2}\right) y\right] c \phi\right. \\
- & {\left.\left[\left(d^{2} X / d t^{2}\right) x+\left(d^{2} Y / d t^{2}\right) y\right] s \phi\right\}=M } \tag{1.17.7h}
\end{align*}
$$

which is none other than the (not-so-common form of the) angular momentum equation:

$$
\begin{equation*}
I_{\star} \alpha_{z}+\left(\boldsymbol{r}_{G / \bullet} \times m \boldsymbol{a}_{\bullet}\right)_{z}=I\left(d^{2} \phi / d t^{2}\right)+m\left[x\left(\boldsymbol{a}_{\bullet}\right)_{y}-y\left(\boldsymbol{a}_{\bullet}\right)_{x}\right]=M \tag{1.17.7i}
\end{equation*}
$$

where (fig. 1.17),

$$
\begin{align*}
\boldsymbol{r}_{G / \bullet} & =x_{G} \boldsymbol{i}+y_{G} \boldsymbol{j} \equiv x \boldsymbol{i}+y \boldsymbol{j}=\cdots \\
& =(x c \phi-y s \phi) \boldsymbol{I}+(x s \phi+y c \phi) \boldsymbol{J} \equiv X \boldsymbol{I}+Y \boldsymbol{J}, \tag{1.17.7j}\\
\boldsymbol{a}_{\bullet}= & \left(d^{2} X \bullet / d t^{2}\right) \boldsymbol{I}+\left(d^{2} Y \bullet / d t^{2}\right) \boldsymbol{J} \equiv\left(d^{2} X / d t^{2}\right) \boldsymbol{I}+\left(d^{2} Y / d t^{2}\right) \boldsymbol{J} \\
= & \left(d^{2} X / d t^{2}\right)(c \phi \boldsymbol{i}-s \phi \boldsymbol{j})+\left(d^{2} Y / d t^{2}\right)(s \phi \boldsymbol{i}+c \phi \boldsymbol{j}) \\
= & {\left[\left(d^{2} X / d t^{2}\right) c \phi+\left(d^{2} Y / d t^{2}\right) s \phi\right] \boldsymbol{i}+\left[-\left(d^{2} X / d t^{2}\right) s \phi+\left(d^{2} Y / d t^{2}\right) c \phi\right] \boldsymbol{j} } \\
\equiv & \left(\boldsymbol{a}_{\bullet}\right)_{x} \boldsymbol{i}+\left(\boldsymbol{a}_{\bullet}\right)_{y} \boldsymbol{j} \equiv a_{x} \boldsymbol{i}+a_{y} \boldsymbol{j} ; \tag{1.17.7k}
\end{align*}
$$

x, y-equations (with $f_{x, y}=$ components of total external force about x, y-axes, respectively):

$$
\begin{align*}
& m\left[d^{2} X / d t^{2}-\left(d^{2} \phi / d t^{2}\right)(x s \phi+y c \phi)-(d \phi / d t)^{2}(x c \phi-y s \phi)\right]=f_{x}, \tag{1.17.71}\\
& m\left[d^{2} Y / d t^{2}+\left(d^{2} \phi / d t^{2}\right)(x c \phi-y s \phi)-(d \phi / d t)^{2}(x s \phi+y c \phi)\right]=f_{y}, \tag{1.17.7~m}
\end{align*}
$$

which are none other than

$$
\begin{align*}
& m\left(\boldsymbol{a}_{\bullet}\right)_{x}-m\left[\left(d^{2} \phi / d t^{2}\right) Y+(d \phi / d t)^{2} X\right]=f_{x}, \tag{1.17.7n}\\
& m\left(\boldsymbol{a}_{\bullet}\right)_{y}+m\left[\left(d^{2} \phi / d t^{2}\right) X-(d \phi / d t)^{2} Y\right]=f_{y} . \tag{1.17.7o}
\end{align*}
$$

For additional related plane motion problems, see, for example, Wells (1967, pp. 150-152).

"British Theorem"

It can be shown that the (inertial) kinetic energy of a thin homogeneous bar $A B$ of mass m equals

$$
\begin{equation*}
T=(m / 6)\left(\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}+\boldsymbol{v}_{B} \cdot \boldsymbol{v}_{B}+\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{B}\right)=(m / 6)\left(v_{A}^{2}+v_{B}^{2}+\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{B}\right) . \tag{1.17.8}
\end{equation*}
$$

(This useful result appears almost exclusively in British texts on dynamics; hence, the name; see, for example, Chorlton, 1983, pp. 165-166.)

Principle of Linear Momentum; Motion of Mass Center
Since

$$
\begin{equation*}
\boldsymbol{v}_{G}=v_{\bullet}+\omega \times \boldsymbol{r}_{G / \bullet} \quad(\bullet \text { body-fixed point }) \tag{1.17.9a}
\end{equation*}
$$

the principle of linear momentum (\$1.6)

$$
\begin{equation*}
m\left(d \boldsymbol{v}_{G} / d t\right)=\boldsymbol{f} \quad(\text { total external force, acting at } G) \tag{1.17.9b}
\end{equation*}
$$

along body-fixe daxes (i.e., $\boldsymbol{\omega}=\boldsymbol{\Omega}$) yields, successively,

$$
\begin{align*}
& m d / d t\left(\boldsymbol{v}_{\bullet}+\boldsymbol{\omega} \times \boldsymbol{r}_{G / \star}\right) \\
& =m\left(\partial \boldsymbol{v}_{\bullet} / \partial t+\boldsymbol{\omega} \times \boldsymbol{v}_{\bullet}\right)+m\left[(d \omega / d t) \times \boldsymbol{r}_{G / \bullet}+\boldsymbol{\omega} \times\left(d \boldsymbol{r}_{G / \bullet} / d t\right)\right] \\
& \quad\left[\text { with } d \boldsymbol{\omega} / d t \equiv \boldsymbol{\alpha}, \quad d \boldsymbol{r}_{G / \bullet} / d t \equiv \boldsymbol{v}_{G / \bullet}=\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right] \\
& =m\left(\partial \boldsymbol{v}_{\star} / \partial t\right)+m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\bullet}\right)+\boldsymbol{\alpha} \times\left(m \boldsymbol{r}_{G / \bullet}\right)+\boldsymbol{\omega} \times\left[\boldsymbol{\omega} \times\left(m \boldsymbol{r}_{G / \bullet}\right)\right]=\boldsymbol{f}, \tag{1.17.9c}
\end{align*}
$$

or, in terms of the center of mass vector of the mass moment $\boldsymbol{m}_{G / \bullet} \equiv m \boldsymbol{r}_{G / \bullet}$ [as in (1.17.3c, d)],

$$
\begin{equation*}
m\left(\partial \boldsymbol{v}_{\star} / \partial t\right)+m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\bullet}\right)+\boldsymbol{\alpha} \times\left(\boldsymbol{m}_{G / \bullet}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{m}_{G / \bullet}\right)=\boldsymbol{f}\right. \tag{1.17.9d}
\end{equation*}
$$

Along body-fixed axes -xyz, and with $\boldsymbol{m}_{G / \star}=\left(m_{x, y, z}\right), \quad \boldsymbol{v}_{\star}=\left(v_{x, y, z}\right)$ there, the x-component of $(1.17 .9 \mathrm{~d})$ is

$$
\begin{align*}
m\left[d v_{x} / d t+\omega_{y} v_{z}-\omega_{z} v_{y}\right]+ & {\left[m_{z}\left(d \omega_{y} / d t\right)-m_{y}\left(d \omega_{z} / d t\right)\right] } \\
+ & {\left[\omega_{y}\left(m_{y} \omega_{x}-m_{x} \omega_{y}\right)-\omega_{z}\left(m_{x} \omega_{z}-m_{z} \omega_{x}\right)\right]=f_{x}, } \\
& \text { etc., cyclically. } \tag{1.17.9e}
\end{align*}
$$

Special Cases
(i) If $\bullet=G$, then $\boldsymbol{m}_{G / \bullet}=\mathbf{0}$ and, clearly, (1.17.9d) reduces to

$$
\begin{equation*}
m\left(\partial \boldsymbol{v}_{G} / \partial t+\omega \times \boldsymbol{v}_{G}\right)=\boldsymbol{f} \tag{1.17.9f}
\end{equation*}
$$

(ii) Along non-body-fixed axes at G, rotating with inertial angular velocity $\boldsymbol{\Omega}$, (1.17.9b) yields

$$
\begin{equation*}
m\left(\partial \boldsymbol{v}_{G} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{v}_{G}\right)=\boldsymbol{f} \tag{1.17.9g}
\end{equation*}
$$

or, in components, with $\boldsymbol{v}_{G}=\left(v_{G ; x, y, z}\right)$,

$$
\begin{equation*}
m\left(d \boldsymbol{v}_{G} / d t\right)_{x}=m\left(d v_{G, x} / d t+\Omega_{y} v_{G, z}-\Omega_{z} v_{G, y}\right)=f_{x}, \quad \text { etc., cyclically, } \tag{1.17.9h}
\end{equation*}
$$

where $\left(d \boldsymbol{v}_{G} / d t\right)_{x}=$ component of \boldsymbol{a}_{G} along an inertial axis that instantaneously coincides with the moving axis $G x$, and so on. In general, the $v_{G ; x, y, z}$ are quasi velocities.

Principle of Angular Momentum;
 Motion (Rotation) about the Mass Center

Along body-fixed axes $\bullet-x y z$, the principle of angular momentum [§1.6, with (arbitrary spatial point) \rightarrow (arbitrary body point), and \boldsymbol{H}_{\star}, relative $\equiv \boldsymbol{h}_{\bullet}$],

$$
\begin{equation*}
d \boldsymbol{h}_{\star} / d t+\boldsymbol{r}_{G / \bullet} \times\left[m\left(d \boldsymbol{v}_{\star} / d t\right)\right]=\boldsymbol{M}_{\star} \tag{1.17.10a}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\partial \boldsymbol{h}_{\star} / \partial t+\omega \times \boldsymbol{h} \bullet+\boldsymbol{m}_{G / \bullet} \times\left(\partial \boldsymbol{v}_{\star} / \partial t\right)+\boldsymbol{m}_{G / \star} \times\left(\omega \times v_{\bullet}\right)=\boldsymbol{M}_{\star} ; \tag{1.17.10b}
\end{equation*}
$$

or, in components, with $\boldsymbol{h} \boldsymbol{\bullet}=\left(h_{x, y, z}\right), \boldsymbol{m}_{G / \star} \equiv m \boldsymbol{r}_{G / \star}=\left(m_{x, y, z}\right), \boldsymbol{v}_{\bullet}=\left(v_{x, y, z}\right)$, and so on,

$$
\begin{aligned}
d h_{x} / d t+\omega_{y} h_{z}-\omega_{z} h_{y} & +m_{y}\left[d v_{z} / d t+\omega_{x} v_{y}-\omega_{y} v_{x}\right] \\
& -m_{z}\left[d v_{y} / d t+\omega_{z} v_{x}-\omega_{x} v_{z}\right]=M_{x}, \quad \text { etc., cyclically. (1.17.10c) }
\end{aligned}
$$

[The forms (1.17.9d, e) and (1.17.10b-c) seem to be due to Heun (1906, 1914); see also Winkelmann and Grammel (1927) for a concise treatment via von Mises' (not very popular) "motor calculus."]

Special Cases

(i) If $\bullet=G$, then $\boldsymbol{m}_{G / \star}=\mathbf{0}$, and (1.17.10b) reduces to

$$
\begin{equation*}
\partial \boldsymbol{h}_{G} / \partial t+\boldsymbol{\omega} \times \boldsymbol{h}_{G}=\boldsymbol{M}_{G} \tag{1.17.10d}
\end{equation*}
$$

(ii) Along non-body-fixed axes at G, rotating with inertial angular velocity $\boldsymbol{\Omega}$, (1.17.10a) yields

$$
\begin{equation*}
\partial \boldsymbol{h}_{G} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{h}_{G}=\boldsymbol{M}_{G} \tag{1.17.10e}
\end{equation*}
$$

or, in components,

$$
\begin{equation*}
\left(d \boldsymbol{h}_{G} / d t\right)_{x}=d h_{G, x} / d t+\Omega_{y} h_{G, z}-\Omega_{z} h_{G, y}=M_{G, x}, \quad \text { etc., cyclically. } \tag{1.17.10f}
\end{equation*}
$$

(iii) If the axes are body-fixed, then $\boldsymbol{\Omega}=\boldsymbol{\omega}$; and if they are also principal axes, then, since (omitting the subscript G throughout) $\boldsymbol{h}=\boldsymbol{I} \cdot \boldsymbol{\omega}: h_{k}=I_{k} \omega_{k}, k=1,2,3$, eqs. (1.17.10f) assume the famous Eulerian form (1758, publ. 1765):

$$
\begin{align*}
& I_{1}\left(d \omega_{1} / d t\right)-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}=M_{1} \\
& I_{2}\left(d \omega_{2} / d t\right)-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}=M_{2} \tag{1.17.11a}\\
& I_{3}\left(d \omega_{3} / d t\right)-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}=M_{3}
\end{align*}
$$

or, alternatively,

$$
\begin{equation*}
d \omega_{1} / d t-\left[\left(I_{2}-I_{3}\right) / I_{1}\right] \omega_{2} \omega_{3}=M_{1} / I_{1}, \quad \text { etc., cyclically. } \tag{1.17.11b}
\end{equation*}
$$

From the above we readily conclude that:

- A force-free rigid body in space can rotate permanently [i.e., $d \boldsymbol{\omega} / d t=\mathbf{0} \Rightarrow \boldsymbol{\omega}=\left(\omega_{1}, 0,0\right)$, or $\left(0, \omega_{2}, 0\right)$, or $\left(0,0, \omega_{3}\right)=$ constant $]$ only about a central principal axis of inertia. Or, if a free rigid body under no external forces begins to rotate about one of its central principal axes, it will continue to rotate uniformly about that axis; and, if a rigid body with a fixed point, and zero torque about that point, begins to rotate about a principal axis through that point, it will continue to do so uniformly about that axis.
- The principle of angular momentum takes the "elementary" form $M=d / d t(I \omega)$ only for principal axes of inertia, or if the body rotates about a (body- and space-) fixed axis. That is why a central principal axis was called a permanent axis (Ampère, 1823).

REMARKS

(i) Equations (1.17.10a ff.) also hold for any fixed point O.
(ii) The principles of linear and angular momentum are summarized as follows: the vector system of mechanical loads, or inputs [\boldsymbol{f} at G, \boldsymbol{M}_{G} (moments of forces and couples)] is equivalent to the kinematico-inertial vector system of the responses, or outputs, ($m \boldsymbol{a}_{G}$ at $G, d \boldsymbol{h}_{G} / d t$); and this equivalence, holding about any other space point \bullet, can be expressed via the (hopefully familiar from elementary statics) purely geometrical transfer theorem:

$$
\begin{equation*}
\boldsymbol{M}_{\bullet}=\boldsymbol{M}_{G}+\boldsymbol{r}_{G / \bullet} \times \boldsymbol{f}_{\mathrm{at} G}=\boldsymbol{M}_{G}+\boldsymbol{r}_{G / \bullet} \times m \boldsymbol{a}_{G} \equiv d \boldsymbol{h}_{G} / d t+\boldsymbol{m}_{G / \bullet} \times \boldsymbol{a}_{G} \tag{1.17.12}
\end{equation*}
$$

(iii) In general, the direct application of the vectorial forms of the principle of angular momentum, either about the mass center G, or a fixed point O, and then taking components of all quantities involved about common axes in which the inertia tensor components remain constant, is much preferable to trying to match a (any) particular problem to the various scalar components forms of the principle.
(iv) The relative magnitudes of the principal moments of inertia of a rigid body at, say its mass center $G, I_{G: 1,2,3} \equiv I_{1,2,3}$ (i.e., its mass distribution there) provide an important means of classifying such systems. Thus, we have the following classification (§1.15: subsection "Ellipsoid of Inertia"):

- If $I_{1}=I_{2}=I_{3} \equiv I$, we have a spherical top, or a kinetically symmetrical body. Then,

$$
\boldsymbol{H}_{G}=\boldsymbol{h}_{G}=\boldsymbol{I}_{G} \cdot \omega=(I \boldsymbol{1}) \cdot \omega=I \omega .
$$

- If $I_{1}=I_{2} \neq I_{3}$, the body (or "top") is symmetric; if $I_{1}>I_{3}$, it is elongated, and if $I_{1}<I_{3}$, it is flattened.
- If $I_{1} \neq I_{2} \neq I_{3} \neq I_{1}$, the body is unsymmetric.

For further details and insights on these fascinating equations, see Cayley (1863, pp. 230-231), Dugas (1955, pp. 276-278), Stäckel (1905, pp. 581-589).

Energy Rate, or Power, Theorem for a Rigid Body

By $d / d t(\ldots)$-differentiating the kinetic energy definition $2 T=S d m v \cdot v$, and then utilizing in there the rigid-body kinetic equation $v=v_{\bullet}+\omega \times \boldsymbol{r}_{/ \bullet}$, we obtain, successively,

$$
\begin{align*}
d T / d t & =\boldsymbol{S} d m \boldsymbol{v} \cdot(d \boldsymbol{v} / d t)=\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{a}=\boldsymbol{S} d m\left(\boldsymbol{v}_{\star}+\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right) \cdot \boldsymbol{a} \\
& =\boldsymbol{S} d m \boldsymbol{v}_{\bullet} \cdot \boldsymbol{a}+\boldsymbol{S} d m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right) \cdot \boldsymbol{a}=\boldsymbol{v}_{\bullet} \cdot(\boldsymbol{S} d m \boldsymbol{a})+\boldsymbol{\omega} \cdot\left(\boldsymbol{S} d m \boldsymbol{r}_{/ \bullet} \times \boldsymbol{a}\right) \\
& =\boldsymbol{v}_{\star} \cdot\left(m \boldsymbol{a}_{G}\right)+\boldsymbol{\omega} \cdot\left\{\boldsymbol{S} d m\left[d / d t\left(\boldsymbol{r}_{\bullet} \times \boldsymbol{v}\right)+\boldsymbol{v}_{\star} \times \boldsymbol{v}\right]\right\} \\
& =\boldsymbol{v}_{\star} \cdot(d \boldsymbol{p} / d t)+\boldsymbol{\omega} \cdot\left(d \boldsymbol{H}_{\star} / d t+\boldsymbol{v}_{\bullet} \times \boldsymbol{p}\right), \tag{1.17.13a}
\end{align*}
$$

where (recalling the definitions in §1.6),
$\boldsymbol{p} \equiv \boldsymbol{S} d m \boldsymbol{v}=m \boldsymbol{v}_{G}:$ Linear momentum of body,
$\boldsymbol{H}_{\star} \equiv \boldsymbol{S} d m\left(\boldsymbol{r}_{/ \bullet} \times \boldsymbol{v}\right): \quad$ Absolute (and inertial) angular momentum of body, about the body-fixed point \star.

Invoking the principles of linear and angular momentum (§1.6), we can rewrite (1.17.13a) as

$$
\begin{equation*}
d T / d t=v * f+\omega \cdot M_{\star} \tag{1.17.13d}
\end{equation*}
$$

On the other hand, the power of all forces, $d^{\prime} W / d t \equiv S d \boldsymbol{f} \cdot \boldsymbol{v}$, transforms, successively, to

$$
\begin{align*}
d^{\prime} W / d t=\boldsymbol{S} d \boldsymbol{f} \cdot\left(\boldsymbol{v}_{\star}+\omega \times \boldsymbol{r}_{/ \bullet}\right) & =v_{\star} \cdot(\boldsymbol{S} d \boldsymbol{f})+\omega \cdot\left(\boldsymbol{S} \boldsymbol{r}_{/ \bullet} \times d \boldsymbol{f}\right) \\
& =v_{\star} \cdot \boldsymbol{f}+\omega \cdot \boldsymbol{M}_{\star} \tag{1.17.13e}
\end{align*}
$$

that is,

$$
d T / d t=d^{\prime} W / d t
$$

which is the well-known power theorem, proved here for a rigid system.

Special Case
If $\boldsymbol{v}_{\bullet}=\mathbf{0}$ (i.e., rotation about a fixed point), (1.17.13d-f) reduce to

$$
\begin{equation*}
d T / d t=d^{\prime} W / d t=\omega \cdot M \tag{1.17.13g}
\end{equation*}
$$

If, in addition, $\boldsymbol{M}_{\bullet}=\mathbf{0}$ (torque-free motion), then $d^{\prime} W / d t=0$ and $T=$ constant (energy integral), and $\boldsymbol{M}_{\star}=d \boldsymbol{H}_{\star} / d t=d \boldsymbol{h}_{\bullet} / d t=\mathbf{0} \Rightarrow \boldsymbol{H}_{\star}=\boldsymbol{h}_{\star}=$ constant (angular momentum integral). These two integrals of the torque-free and fixed-point motion form the basis of an interesting geometrical interpretation of rigid-body motion, due to Poinsot (1850s). For details see, for example (alphabetically): MacMillan (1936, pp. 204-216), Webster (1912, pp. 252-270), Winkelmann and Grammel (1927, pp. 392-398).

Additional Useful Results
(i) By multiplying the Eulerian (rotational) equations with $\omega_{x, y, z}$, respectively, and then adding them, we obtain the following power equation:

$$
d / d t\left[\left(A \omega_{x}^{2}+B \omega_{y}^{2}+C \omega_{z}^{2}\right) / 2\right]=M_{x} \omega_{x}+M_{y} \omega_{y}+M_{z} \omega_{z},
$$

i.e., $d / d t($ Rotational kinetic energy $)=$ Power of external moments. (1.17.14)
(ii) Plane motion: Principle of angular momentum for a rigid body B, about its instantaneous center of rotation I. We have already seen (1.9.4d ff.) that the inertial coordinates of the instantaneous center (of zero velocity) I, relative to the center of mass G, are

$$
\begin{equation*}
\boldsymbol{r}_{I / G}=\left(X_{I / G}, Y_{I / G}, 0\right)=\left(-d Y_{G} / d t / \omega,+d X_{G} / d t / \omega, 0\right) \tag{1.17.15a}
\end{equation*}
$$

Therefore, application of the principle of angular momentum about I :

$$
\begin{equation*}
M_{I}=I_{G}(d \omega / d t)+\left(\boldsymbol{r}_{G / I} \times m \boldsymbol{a}_{G}\right)_{Z} \tag{1.17.15b}
\end{equation*}
$$

yields, successively (with $I_{G} \equiv m k^{2}$),

$$
\begin{aligned}
M_{I}= & I_{G}(d \omega / d t)+(m / \omega)\left[\left(d Y_{G} / d t,-d X_{G} / d t, 0\right) \times\left(d^{2} X_{G} / d t^{2}, d^{2} Y_{G} / d t^{2}, 0\right)\right] \\
= & I_{G}(d \omega / d t)+(m / \omega)\left[\left(d Y_{G} / d t\right)\left(d^{2} Y_{G} / d t^{2}\right)-\left(-d X_{G} / d t\right)\left(d^{2} X_{G} / d t^{2}\right)\right] \\
= & I_{G}(d \omega / d t)+(m / \omega)\left[\left(d X_{G} / d t\right)\left(d^{2} X_{G} / d t^{2}\right)+\left(d Y_{G} / d t\right)\left(d^{2} Y_{G} / d t^{2}\right)\right] \\
= & (m / \omega)\left[k^{2} \omega(d \omega / d t)+\left(d X_{G} / d t\right)\left(d^{2} X_{G} / d t^{2}\right)+\left(d Y_{G} / d t\right)\left(d^{2} Y_{G} / d t^{2}\right)\right] \\
= & (m / \omega)\left(d / d t\left\{(1 / 2)\left[k^{2} \omega^{2}+\left(d X_{G} / d t\right)^{2}+\left(d Y_{G} / d t\right)^{2}\right]\right\}\right) \\
& \quad\left[\text { noting that }\left(d X_{G} / d t\right)^{2}+\left(d Y_{G} / d t\right)^{2}=v_{G}^{2}=r^{2} \omega^{2}, \quad r=\left|\boldsymbol{r}_{G / I}\right|\right] \\
= & (1 / 2 \omega)\left\{d / d t\left[m\left(k^{2}+r^{2}\right) \omega^{2}\right]\right\},
\end{aligned}
$$

or, finally, with $I_{I} \equiv m\left(k^{2}+r^{2}\right) \equiv m K^{2}$: moment of inertia of B about I (by the parallel axis theorem),

$$
\begin{align*}
M_{I}=(1 / 2 \omega)\left[d / d t\left(I_{I} \omega^{2}\right)\right] & =I_{I}(d \omega / d t)+(1 / 2) \omega\left(d I_{I} / d t\right) \\
& =I_{I}(d \omega / d t)+m r(d r / d t) \omega . \tag{1.17.15c}
\end{align*}
$$

Special Cases

(a) If B is turning about a fixed axis, or if I is at a constant distance from G, then $d r / d t=0$ and $(1.17 .15 \mathrm{c})$ reduces to

$$
\begin{equation*}
M_{I}=I_{I}(d \omega / d t) \tag{1.17.15d}
\end{equation*}
$$

(b) If the axis of rotation is mobile, but the body starts from rest, then, since initially $\omega=0$ and $d r / d t=0$, the initial value of its angular acceleration is given by (1.17.15d):

$$
\begin{equation*}
d \omega / d t=M_{I} / I_{I} . \tag{1.17.15e}
\end{equation*}
$$

(c) If the body undergoes small angular oscillations about a position of equilibrium, then the term $d I_{I} / d t=2 m r(d r / d t)$ is of the order of the rate $d r / d t$, and therefore $\left(d I_{I} / d t\right) \omega$ is of the order of the square of a small velocity and so, to the first order (linear angular oscillations), it can be neglected; thus reducing (1.17.15c) to (1.17.15d), with I_{I} given by its equilibrium value.

In sum, eq. (1.17.15d) holds if the instantaneous axis of rotation is either fixed, or remains at a constant distance from the center of mass; or if the problem is one of initial motion, or of a small oscillation. In all other cases of moments about I, we must use (1.17.15c). For further details and applications, see, for example (alphabetically): Besant (1914, pp. 310-314), Loney (1909, pp. 287, 346-347), Pars (1953, pp. 403-404), Ramsey (1933, part I, pp. 241-242), Routh (1905(a), pp. 103-104, 171172). Somehow this topic is treated only in older British treatises!

Rigid-Body Mechanics in Matrix Form

[Here, following earlier remarks on notation (§1.1), we denote vectors by bold italics, and matrices/tensors by bold, roman, upper case (capital) letters; for example, $\boldsymbol{a}, \boldsymbol{A}$ (vectors),

A, \mathbf{B} (matrices, tensors). This material (notation) is presented here not because we think that it adds anything significant to our conceptual understanding of mechanics, but because it happens to be fashionable among some contemporary applied dynamicists.]

By recalling the tensor results of $\S 1.1$, and the earlier definitions and notations, (1.15.2a ff.),

$$
\begin{align*}
& \mathbf{I} \equiv \mathbf{S}[(\boldsymbol{r} \cdot \boldsymbol{r}) \mathbf{1}-\boldsymbol{r} \otimes \boldsymbol{r}] d m=-\mathbf{S}(\mathbf{r} \cdot \mathbf{r}) d m=(1 / 2)(\mathrm{Tr} \mathbf{I}) \mathbf{1}-\mathbf{J} \tag{1.17.16a1}\\
& {[\Rightarrow \operatorname{Tr} \mathbf{I}=2 \operatorname{Tr} \mathbf{J}]} \\
& \mathbf{J} \equiv \mathbf{S}(\boldsymbol{r} \otimes \boldsymbol{r}) d m \tag{1.17.16a2}
\end{align*}
$$

$[\boldsymbol{r}=$ axial vector of tensor \mathbf{r} and $d(\ldots) / d t$ is inertial rate of change], we can verify the following matrix forms of the earlier (§1.15-1.17) basic equations of rigid-body mechanics [while assuming that, in a given equation, all moments of inertia and moments of forces are taken either about the body's center of mass, or about a body-and-space-fixed point (if one exists), and along body-fixed axes; and suppressing all such point-dependence for notational simplicity, except in eqs. (1.17.16b1-3) for obvious reasons]:

$$
\begin{align*}
\mathbf{I}_{O}= & \mathbf{I}_{G}-m \mathbf{r}_{G} \cdot \mathbf{r}_{G}=\mathbf{I}_{G}+m\left[\left(\boldsymbol{r}_{G} \cdot \boldsymbol{r}_{G}\right) \mathbf{1}-\boldsymbol{r}_{G} \otimes \boldsymbol{r}_{G}\right] \tag{i}\\
& {\left[\boldsymbol{r}_{G} \equiv \boldsymbol{r}_{G / O}, \text { etc., parallel axis theorem in terms of } \mathbf{I}:(1.15 .7 \mathrm{~b})\right],(1.17 .16 \mathrm{bl}) } \\
\Rightarrow & \operatorname{Tr} \mathbf{I}_{O}=\operatorname{Tr} \mathbf{I}_{G}+2 m \boldsymbol{r}_{G} \cdot \boldsymbol{r}_{G}, \tag{1.17.16b2}\\
\mathbf{J}_{O}= & \mathbf{J}_{G}+m \boldsymbol{r}_{G} \otimes \boldsymbol{r}_{G}=\left(\operatorname{Tr} \mathbf{I}_{G} / 2\right) \mathbf{1}-\mathbf{I}_{G}+m \boldsymbol{r}_{G} \otimes \boldsymbol{r}_{G} \tag{1.17.16b3}
\end{align*}
$$

[Parallel axis theorem in terms of \mathbf{J}];

$$
\begin{equation*}
\mathrm{d} \mathbf{I} / \mathrm{dt}=\boldsymbol{\Omega} \cdot \mathbf{I}+\mathbf{I} \cdot \boldsymbol{\Omega}^{\mathrm{T}}=\boldsymbol{\Omega} \cdot \mathbf{I}-\mathbf{I} \cdot \boldsymbol{\Omega} \tag{ii}
\end{equation*}
$$

[recalling results of 1.1.20a ff.; $\omega=$ axial vector of tensor Ω]; (1.17.16c)
(iii)

$$
\begin{equation*}
\mathrm{d} \mathbf{I} / \mathrm{dt}=-(\mathrm{d} \mathbf{J} / \mathrm{dt}) \quad[=-(\boldsymbol{\Omega} \cdot \mathbf{J}-\mathbf{J} \cdot \boldsymbol{\Omega})] \tag{1.17.16d}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\boldsymbol{H}=\mathbf{I} \cdot \boldsymbol{\omega}=-\mathbf{J} \cdot \boldsymbol{\omega}+(\operatorname{Tr} \mathbf{J}) \boldsymbol{\omega} \tag{1.17.16e1}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{H} & =\mathbf{I} \cdot \boldsymbol{\Omega}^{\mathrm{T}}-\boldsymbol{\Omega} \cdot \mathbf{I}+(\operatorname{Tr} \mathbf{I}) \cdot \boldsymbol{\Omega}=(\boldsymbol{\Omega} \cdot \mathbf{I})^{\mathrm{T}}-\boldsymbol{\Omega} \cdot \mathbf{I}+(\operatorname{Tr} \mathbf{I}) \cdot \boldsymbol{\Omega} \tag{v}\\
& =\mathbf{J} \cdot \boldsymbol{\Omega}+\boldsymbol{\Omega} \cdot \mathbf{J}=\mathbf{J} \cdot \boldsymbol{\Omega}-(\mathbf{J} \cdot \boldsymbol{\Omega})^{\mathrm{T}}=\mathbf{J} \cdot \boldsymbol{\Omega}-\boldsymbol{\Omega}^{\mathrm{T}} \cdot \mathbf{J}
\end{align*}
$$

$[\boldsymbol{H}=$ axial vector of \mathbf{H} (angular momentum tensor)]
(vii)

$$
\begin{align*}
\boldsymbol{M} & =\mathrm{d} / \mathrm{dt}(\mathbf{I} \cdot \boldsymbol{\omega})=(\mathrm{d} \mathbf{I} / \mathrm{dt}) \cdot \boldsymbol{\omega}+\mathbf{I} \cdot(d \boldsymbol{\omega} / d t) \quad[\text { then invoking }(1.17 .16 \mathrm{c})] \tag{vi}\\
& =\mathbf{I} \cdot(d \boldsymbol{\omega} / d t)+\boldsymbol{\Omega} \cdot(\mathbf{I} \cdot \boldsymbol{\omega})=\mathbf{I} \cdot(d \boldsymbol{\omega} / d t)+\boldsymbol{\omega} \times(\boldsymbol{I} \cdot \boldsymbol{\omega}) \tag{1.17.16f1}\\
& =-[\mathbf{J} \cdot(d \boldsymbol{\omega} / d t)+\boldsymbol{\Omega} \cdot(\mathbf{J} \cdot \boldsymbol{\omega})]+(\operatorname{Tr} \mathbf{J})(\mathrm{d} \boldsymbol{\omega} / \mathrm{dt}) ; \tag{1.17.16f2}
\end{align*}
$$

$$
\begin{align*}
\mathbf{M} & =(\mathbf{E} \cdot \mathbf{I})^{\mathrm{T}}-\mathbf{E} \cdot \mathbf{I}+(\operatorname{Tr} \mathbf{I}) \cdot(\mathrm{d} \boldsymbol{\Omega} / \mathrm{dt}) \tag{1.17.16g1}\\
& =\mathbf{E} \cdot \mathbf{J}-(\mathbf{E} \cdot \mathbf{J})^{\mathrm{T}} \tag{1.17.16g2}
\end{align*}
$$

$[\boldsymbol{M}=$ axial vector of \mathbf{M} (moment, or torque, tensor);
recalling (1.11.9a ff.): $\mathbf{E} \equiv \mathrm{d} \boldsymbol{\Omega} / \mathrm{dt}+\boldsymbol{\Omega} \cdot \boldsymbol{\Omega} \equiv \mathcal{A}+\boldsymbol{\Omega} \cdot \boldsymbol{\Omega}]$.
Additional forms of the above are, of course, possible.

A Comprehensive Example: The Rolling Disk

Let us discuss the motion of a thin homogeneous disk D (or coin, or hoop) of mass m and radius r, on a fixed, horizontal, and rough plane P (fig. 1.29).

Kinematics

Relative to the intermediate axes/basis $G-x y z / \boldsymbol{i j k}$ (defined so that \boldsymbol{k} is perpendicular to D, at its center of mass $G ; \boldsymbol{i}$ is continuously horizontal and parallel to the tangent to D, at its contact point C; and \boldsymbol{j} goes through G, along the steepest diameter of D, and is such that $\boldsymbol{i j k}$ form an ortho-normal-dextral triad), whose inertial angular velocity $\boldsymbol{\Omega}$ is

$$
\begin{equation*}
\boldsymbol{\Omega}=\Omega_{x} \boldsymbol{i}+\Omega_{y} \boldsymbol{j}+\Omega_{z} \boldsymbol{k}=\left(\omega_{\theta}\right) \boldsymbol{i}+\left(\omega_{\phi} \sin \theta\right) \boldsymbol{j}+\left(\omega_{\phi} \cos \theta\right) \boldsymbol{k} \tag{1.17.17a}
\end{equation*}
$$

[where $\omega_{\phi} \equiv d \phi / d t, \omega_{\theta} \equiv d \theta / d t, \omega_{\psi} \equiv d \psi / d t$] the inertial angular velocity of D, ω, equals

$$
\begin{align*}
\omega=\omega_{x} \boldsymbol{i}+\omega_{y} \boldsymbol{j}+\omega_{z} \boldsymbol{k} & =\left(\omega_{\theta}\right) \boldsymbol{i}+\left(\omega_{\phi} \sin \theta\right) \boldsymbol{j}+\left(\omega_{\phi} \cos \theta+\omega_{\psi}\right) \boldsymbol{k} \\
& =\boldsymbol{\Omega}+\omega_{\psi} \boldsymbol{k} \tag{1.17.17b}
\end{align*}
$$

In view of the above, the rolling constraint $\boldsymbol{v}_{C}=\mathbf{0}$, becomes

$$
\begin{align*}
\boldsymbol{v}_{C} & =\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}=v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}+v_{z} \boldsymbol{k}+\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \times(0,-r, 0) \\
& =\left(v_{x}+r \omega_{z}\right) \boldsymbol{i}+\left(v_{y}\right) \boldsymbol{j}+\left(v_{z}-\omega_{x} r\right) \boldsymbol{k}=\mathbf{0}, \tag{1.17.17c}
\end{align*}
$$

Figure 1.29 Rolling of thin disk/coin D on a fixed, rough, and horizontal plane P. O-XYZ: space-fixed (inertial) axes; O-xyz: intermediate axes (of angular velocity Ω). $A, B=A$, C : principal moments of inertia at G. For our disk: $A=m r^{2} / 4, C=m r^{2} / 2$.
from which it follows that

$$
\begin{align*}
& v_{x}+r \omega_{z}=0 \Rightarrow v_{x}=-r \omega_{z}=-r\left(\omega_{\phi} \cos \theta+\omega_{\psi}\right), \tag{1.17.17d}\\
& v_{y}=0, \tag{1.17.17e}\\
& v_{z}-\omega_{x} r=0 \Rightarrow v_{z}=r \omega_{x}=r \omega_{\theta} . \tag{1.17.17f}
\end{align*}
$$

These equations connect the velocity of G with the angular velocity and the rates of the Eulerian angles.

Kinetics

To eliminate the rolling contact reaction \boldsymbol{R}, we apply the principle of angular momentum about C; that is, we take moments of all forces and couples [including inertial ones at G; i.e., $-m\left(d \boldsymbol{v}_{G} / d t\right)$ and $-d \boldsymbol{h}_{G} / d t$] about G (recalling 1.6.6a ff.) to give

$$
\begin{equation*}
\boldsymbol{M}_{C}=d \boldsymbol{h}_{G} / d t+\boldsymbol{r}_{G / C} \times\left[m\left(d \boldsymbol{v}_{G} / d t\right)\right] \tag{1.17.18a}
\end{equation*}
$$

But, with $W=$ weight of disk, and $\sin (\ldots) \equiv s(\ldots), \cos (\ldots) \equiv c(\ldots)$, we have
(i) $\quad \boldsymbol{M}_{C}=\boldsymbol{r}_{G / C} \times \boldsymbol{W}=(0, r, 0) \times(0,-W s \theta,-W c \theta)=(-r W c \theta) \boldsymbol{i}$;
(ii) $\quad d \boldsymbol{v}_{G} / d t=\partial \boldsymbol{v}_{G} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{v}_{G}$ [with the ad hoc notation $\left.d v_{x, y, z} / d t \equiv a_{x, y, z}\right]$

$$
\begin{align*}
& =a_{x} \boldsymbol{i}+a_{y} \boldsymbol{j}+a_{z} \boldsymbol{k}+\left(\Omega_{x}, \Omega_{y}, \Omega_{z}\right) \times\left(v_{x}, v_{y}, v_{z}\right) \\
& =\left(a_{x}+\Omega_{y} v_{z}-\Omega_{z} v_{y}\right) \boldsymbol{i} \\
& \quad+\left(a_{y}+\Omega_{z} v_{x}-\Omega_{x} v_{z}\right) \boldsymbol{j}+\left(a_{z}+\Omega_{x} v_{y}-\Omega_{y} v_{x}\right) \boldsymbol{k} \\
& =\left(a_{x}+v_{z} \omega_{\phi} s \theta-v_{y} \omega_{\phi} c \theta\right) \boldsymbol{i}+\left(a_{y}+v_{x} \omega_{\phi} c \theta-v_{z} \omega_{\theta}\right) \boldsymbol{j} \\
& \quad+\left(a_{z}+v_{y} \omega_{\theta}-v_{x} \omega_{\phi} s \theta\right) \boldsymbol{k} ; \tag{1.17.18c}
\end{align*}
$$

(iii) $\quad d \boldsymbol{h}_{G} / d t=\partial \boldsymbol{h}_{G} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{h}_{G} \quad\left[\right.$ with the ad hoc notation $\left.\quad d \omega_{x, y, z} / d t \equiv \alpha_{x, y, z}\right]$

$$
\begin{array}{r}
=\left[\left(A \alpha_{x}\right) \boldsymbol{i}+\left(A \alpha_{y}\right) \boldsymbol{j}+\left(C \alpha_{z}\right) \boldsymbol{k}\right]+\left(\Omega_{x}, \Omega_{y}, \Omega_{z}\right) \times\left(A \omega_{x}, B \omega_{y}, C \omega_{z}\right) \\
=\left(A \alpha_{x}+C \Omega_{y} \omega_{z}-A \Omega_{z} \omega_{y}\right) \boldsymbol{i}+\left(A \alpha_{y}+A \Omega_{z} \omega_{x}-C \Omega_{x} \omega_{z}\right) \boldsymbol{j} \\
+\left(C \alpha_{z}+A \Omega_{x} \omega_{y}-A \Omega_{y} \omega_{x}\right) \boldsymbol{k} \\
=\left(A \alpha_{x}+C \omega_{z} \omega_{\phi} s \theta-A \omega_{y} \omega_{\phi} c \theta\right) \boldsymbol{i}+\left(A \alpha_{y}+A \omega_{x} \omega_{\phi} c \theta-C \omega_{z} \omega_{\theta}\right) \boldsymbol{j} \\
 \tag{1.17.18d}\\
\quad+\left(C \alpha_{z}+A \omega_{y} \omega_{\theta}-A \omega_{x} \omega_{\phi} s \theta\right) \boldsymbol{k},
\end{array}
$$

and so (1.17.18a) yields the three component equations of angular motion:

$$
\begin{align*}
& m r\left(a_{z}+v_{y} \omega_{\theta}-v_{x} \omega_{\phi} s \theta\right)+\left(A \alpha_{x}+C \omega_{z} \omega_{\phi} s \theta-A \omega_{y} \omega_{\phi} c \theta\right)=-\operatorname{Wr} c \theta \tag{1.17.18e}\\
& A \alpha_{y}+A \omega_{x} \omega_{\phi} c \theta-C \omega_{z} \omega_{\theta}=0 \tag{1.17.18f}\\
& -m r\left(a_{x}+v_{z} \omega_{\phi} s \theta-v_{y} \omega_{\phi} c \theta\right)+\left(C \alpha_{z}+A \omega_{y} \omega_{\theta}-A \omega_{x} \omega_{\phi} s \theta\right)=0 \tag{1.17.18~g}
\end{align*}
$$

The nine equations (1.17.18e, $\mathrm{f}, \mathrm{g})+(1.17 .17 \mathrm{~d}, \mathrm{e}, \mathrm{f})+(1.17 .17 \mathrm{~b}$, in components $)$ constitute a determinate system for the nine functions (of time): $\phi, \theta, \psi ; \omega_{x, y, z}$ (quasi velocities); $v_{x, y, z}$ (quasi velocities). We may reduce it further to two steps:
(i) Using ($1.17 .17 \mathrm{~d}, \mathrm{e}, \mathrm{f}$) in (1.17.18e, f, g) (i.e., eliminating $v_{x, y, z}$), we obtain

$$
\begin{align*}
& m r\left(r \alpha_{x}+r \omega_{z} \omega_{\phi} s \theta\right)+A \alpha_{x}+C \omega_{z} \omega_{\phi} s \theta-A \omega_{y} \omega_{\phi} c \theta=-W r c \theta, \tag{1.17.19a}\\
& A \alpha_{y}+A \omega_{x} \omega_{\phi} c \theta-C \omega_{z} \omega_{\theta}=0 \tag{1.17.19b}\\
& -m r\left(-r \alpha_{z}+r \omega_{x} \omega_{\phi} s \theta\right)+C \alpha_{z}+A \omega_{y} \omega_{\theta}-A \omega_{x} \omega_{\phi} s \theta=0 \tag{1.17.19c}
\end{align*}
$$

(ii) Using (1.17.17b) in (1.17.19a, b, c) (i.e., eliminating $\omega_{x, y}$), we get three equations of rotational motion in terms of θ, the rates of ϕ, θ, and the total spin $\omega_{z}=\omega_{\psi}+\omega_{\phi} c \theta$:
$\left(A+m r^{2}\right)\left(d^{2} \theta / d t^{2}\right)+\left(C+m r^{2}\right) \omega_{z}(d \phi / d t) s \theta-A(d \phi / d t)^{2} c \theta s \theta=-W r c \theta, \quad$ (1.17.20a)
$A d / d t[(d \phi / d t) s \theta]+A(d \phi / d t)(d \theta / d t) c \theta-C \omega_{z}(d \theta / d t)=0$,
$\left(C+m r^{2}\right)\left(d \omega_{z} / d t\right)-m r^{2}(d \phi / d t)(d \theta / d t) s \theta=0 ;$
or, since $A=B=m r^{2} / 4=(1 / 2)\left(m r^{2} / 2\right)=C / 2$,
$\theta: \quad 5 r\left(d^{2} \theta / d t^{2}\right)+6 r \omega_{z}(d \phi / d t) \sin \theta-r(d \phi / d t)^{2} \sin \theta \cos \theta+4 g \cos \theta=0, \quad$ (1.17.21a)
$\phi: \quad 2 \omega_{z}(d \theta / d t)-2(d \phi / d t)(d \theta / d t) \cos \theta-\left(d^{2} \phi / d t^{2}\right) \sin \theta=0$,
$\omega_{z}: 3\left(d \omega_{z} / d t\right)-2(d \phi / d t)(d \theta / d t) \sin \theta=0$.
These three nonlinear coupled equations contain an enormous variety of disk motions. For simple particular solutions of them, see, for example, MacMillan (1936, pp. 276-281); also Fox (1967, pp. 263-267). Once $\phi(t), \theta(t), \psi(t)$ have been found, the rolling contact reaction $\boldsymbol{R}=\left(R_{x, y, z}\right)$ can be easily obtained from the principle of linear momentum:

$$
\begin{equation*}
m \boldsymbol{a}_{G}=m\left(\partial \boldsymbol{v}_{G} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{v}_{G}\right)=\boldsymbol{W}+\boldsymbol{R} \Rightarrow \boldsymbol{R}=\cdots=\boldsymbol{R}(t) . \tag{1.17.22}
\end{equation*}
$$

The details are left to the reader.

1.18 THE RIGID BODY: CONTACT FORCES, FRICTION

Recommended for concurrent reading with this section are (alphabetically): Beghin (1967, pp. 139-145), Kilmister and Reeve (1966, pp. 81-84, 141-143, 164-177), Pérès (1953; pp. 62-66); also, our Elementary Mechanics (§20.1, 2, under production).

Introduction and Constitutive Equations

The forces between two rigid bodies, B and B_{1}, at a mutual contact point C (actually, a small area around C that is practically independent of the macroscopic shape of the bodies and increases with pressure), say from B to B_{1}, reduce, in general, to a resultant force \boldsymbol{R} and a couple \boldsymbol{C}; frequently, \boldsymbol{C} can be neglected. Decomposing \boldsymbol{R}
and \boldsymbol{C} along the common normal to the bounding surfaces of B, B_{1}, say from B towards B_{1}, and along the common tangent plane, at C, we obtain

$$
\begin{align*}
\boldsymbol{R}= & \boldsymbol{R}_{N}+\boldsymbol{R}_{T} \\
= & \text { Normal reaction (opposing mutual penetration) } \\
& + \text { Tangential reaction (opposing relative slipping), } \tag{1.18.1}\\
\boldsymbol{C}= & \boldsymbol{C}_{N}+\boldsymbol{C}_{T} \\
= & \text { Pivoting couple (opposing mutual pivoting) } \\
& + \text { Rolling couple (opposing relative rolling). } \tag{1.18.2}
\end{align*}
$$

These components satisfy the following "laws" (better, constitutive equations) of dry friction; that is, for a solid rubbing against solid, without lubrication:
(i) As soon as an existing contact ceases, $\boldsymbol{R}=\mathbf{0}$.
(ii) Whenever there is slipping - that is, relative motion of B and $B_{1}\left(\boldsymbol{v}_{C} \neq \mathbf{0}\right)$ \boldsymbol{R}_{N} points toward B_{1}; and \boldsymbol{R}_{T} and \boldsymbol{v}_{C} are collinear and in opposite directions:

$$
\begin{equation*}
\boldsymbol{R}_{T} \times \boldsymbol{v}_{C}=\mathbf{0}, \quad \boldsymbol{R}_{T} \cdot \boldsymbol{v}_{C}<0 \tag{1.18.3}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{T}=f\left(R_{N}, v_{C}\right) \tag{1.18.4}
\end{equation*}
$$

or, approximately (for small relative velocities),
$\left|R_{T} / R_{N}\right|=\mu$: coefficient of friction between B and B_{1}; a nonnegative constant.

Frequently, we use the following notation:

$$
\begin{equation*}
R_{T} \equiv F \quad \text { and } \quad R_{N} \equiv N \tag{1.18.6}
\end{equation*}
$$

Then, with $|F|=\mu|N|$, the above read

$$
\begin{equation*}
\boldsymbol{R}=\boldsymbol{R}_{N}+\boldsymbol{R}_{T} ; \quad \boldsymbol{R}_{N}=N \boldsymbol{n}, \quad \boldsymbol{R}_{T}=F \boldsymbol{t}=-\mu|N| \boldsymbol{t} \tag{1.18.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{n}=\text { common unit normal vector, from } B \text { towards } B_{1}, \tag{1.18.7a}\\
& \boldsymbol{t}=\text { unit tangent vector, in direction of slipping velocity. } \tag{1.18.7b}
\end{align*}
$$

(iii) When $\boldsymbol{v}_{C}=\mathbf{0}$ (no slipping — relative rest), \boldsymbol{R}_{N} points toward B_{1}, while \boldsymbol{R}_{T} can have any arbitrary direction and value on the common tangent plane, as long as

$$
\begin{equation*}
\left|R_{T} / R_{N}\right| \equiv|F / N| \leq \mu ; \quad \text { or, vectorially, } \quad|\boldsymbol{R} \times \boldsymbol{n}| \leq \mu|\boldsymbol{R} \cdot \boldsymbol{n}| ; \tag{1.18.8}
\end{equation*}
$$

with the equality sign holding for impending tangential motion. Actually, the μ in (1.18.8) is called coefficient of static friction, μ_{S}; and the μ in (1.18.5) is called coefficient of kinetic friction, μ_{K}; and, generally,

$$
\begin{equation*}
\mu_{S} \geq \mu_{K} \tag{1.18.9}
\end{equation*}
$$

Here, unless specified otherwise, μ will mean μ_{K}.

The friction coefficient μ is, in general, not a constant but a function of: (a) the nature of the contacting surfaces; (b) the conditions of contact (e.g., dry vs. lubricated surfaces); (c) the normal forces (pressure) between the surfaces; and (d) the velocity of slipping. Further, in the dry friction case (solid/solid, no lubricant), μ increases with pressure, and decreases with v_{C}; and this dependence is particularly pronounced for small values of v_{C}, so that, if $\mu=\mu\left(v_{C}\right)$, then $\mu<\mu_{o}$, where $\mu_{o} \equiv \mu(0)$. In most such applications, we assume that μ is, approximately, a positive constant (rough surface). Then the relation $\mu=\tan \phi$ defines the "angle of friction." If $\mu \approx 0$ (smooth surfaces), then $\boldsymbol{R} \approx \boldsymbol{R}_{N} \equiv \boldsymbol{N}, \boldsymbol{R}_{T} \approx \mathbf{0}$. If, on the other end, $\mu \rightarrow \infty$ (perfect roughness), then $\boldsymbol{v}_{C}=\mathbf{0}$ throughout the motion, and \boldsymbol{R} can have any direction, as long as $\boldsymbol{R}_{N} \equiv N$ points toward B_{1}.
(iv) The contact couple \boldsymbol{C} is included in the cases of small μ and/or slippingless motion as follows:
(a) If at a given instant and immediately afterwards $\omega_{N}=\mathbf{0}$ (i.e., no instantaneous pivoting), then

$$
\begin{align*}
& \left|C_{N}\right| \leq\left|C_{N, \max }\right|, \quad C_{N, \max } \equiv f_{p} R_{N}=\text { limiting pivoting moment }, \tag{1.18.10}\\
& f_{p} \equiv \text { pivoting friction } / \text { resistance coefficient. } \tag{1.18.10a}
\end{align*}
$$

(b) If at a given instant $\omega_{N} \neq \mathbf{0}$, or if it stops being zero at that instant, then

$$
\begin{equation*}
\left|C_{N}\right|=\left|C_{N, \text { max }}\right| ; \tag{1.18.11}
\end{equation*}
$$

and \boldsymbol{C}_{N} and ω_{N} have opposite senses.
(c) If $\omega_{T}=\omega_{\text {rolling }} \equiv \omega_{R}=\mathbf{0}$, then

$$
\begin{equation*}
\left|C_{T}\right| \leq\left|C_{T, \max }\right|, \quad C_{T, \max } \equiv f_{r} R_{N}=\text { limiting rolling moment }, \tag{1.18.12}
\end{equation*}
$$

$f_{r} \equiv$ rolling friction/resistance coefficient.
(d) If at a given instant $\omega_{T} \neq \mathbf{0}$, or if it stops being zero at that instant, then

$$
\begin{equation*}
\left|C_{T}\right|=\left|C_{T, \text { max }}\right| \tag{1.18.13}
\end{equation*}
$$

and \boldsymbol{C}_{T} and $\boldsymbol{\omega}_{T}$ have opposite senses.
The coefficients f_{p} and f_{r} have dimensions of length (whereas μ is dimensionless!), and their values are to be determined experimentally. Theoretically, f_{p} can be related to μ, if \boldsymbol{C}_{N} is viewed as resulting from the slipping friction over a small area around the contact point C-something requiring use of the theory of elasticity (no such relationship can be established for f_{r}). It turns out that f_{p} is, generally, five to ten times smaller than f_{r}; in general, pivoting is produced faster than rolling.

In closing this very brief summary, we point out that the above "friction laws" supply only indirect criteria for relative rest or motion (rolling and slipping); that is, if, for example, we assume rest and the resulting equations are consistent with it, it means that rest is possible, not that it will happen. And if we end up with an inconsistency, it means that the particular assumption(s) that led to it is (are) false. Thus, to show that two contacting bodies roll (slip) on each other, all we can do is show that the assumptions of their slipping (rolling) lead to a contradiction. [For detailed examples
illustrating these points, see, for example (alphabetically): Hamel (1949, pp. 543-549, 629-639), Kilmister and Reeve (1966, pp. 165-177); also Pöschl (1927, pp. 484-497).]

Work of Contact Forces

Under a kinematically possible infinitesimal displacement of B_{1} relative to B (assumed fixed) that preserves their mutual contact at C, the total elementary (first-order) work of the contact actions (of B on B_{1}) is:

$$
\begin{equation*}
d^{\prime} W=\boldsymbol{R} \cdot d \boldsymbol{r}_{C}+\boldsymbol{C} \cdot d \boldsymbol{\theta} \tag{1.8.14}
\end{equation*}
$$

where

$$
\begin{aligned}
d \boldsymbol{r}_{C}= & \text { elementary translatory displacement of the } B_{1} \text {-fixed point, at contact, } \\
& \text { relative to } B
\end{aligned}
$$

$$
\begin{equation*}
\left(\equiv \boldsymbol{v}_{C} d t, \text { in an actual such displacement }\right) \tag{1.18.14a}
\end{equation*}
$$

$$
d \boldsymbol{\theta}=\text { elementary rotatory displacement of } B_{1} \text { relative to } B
$$

$$
\begin{equation*}
(\equiv \omega d t, \text { in an actual such displacement }) \tag{1.18.14b}
\end{equation*}
$$

- Since $d \boldsymbol{r}_{C}$ preserves the B / B_{1} contact, it lies on their common tangent plane at C. Then: (α) if $\boldsymbol{R}_{T} \approx \mathbf{0}$ (i.e., negligible slipping friction), or (β) if $d \boldsymbol{r}_{C}=\mathbf{0}$ (i.e., no slipping) and $d \boldsymbol{\theta}=\mathbf{0}$ (i.e., no rotating), then:

$$
\begin{equation*}
d^{\prime} W=0 \tag{1.18.15}
\end{equation*}
$$

- If $d \boldsymbol{r}_{C}$ violates contact, but remains compatible with the unilateral constraints, it makes an acute angle with the normal toward B_{1}. In this case, if $\boldsymbol{R}_{T} \approx \mathbf{0} \Rightarrow \boldsymbol{R} \approx \boldsymbol{R}_{N}$, and therefore

$$
\begin{equation*}
d^{\prime} W>0 \tag{1.18.16}
\end{equation*}
$$

while for elementary displacements incompatible with the constraints,

$$
\begin{equation*}
d^{\prime} W<0 \tag{1.18.17}
\end{equation*}
$$

- In a real, or actual, displacement $d^{\prime} W$ becomes

$$
d^{\prime} W=\left(\boldsymbol{R} \cdot \boldsymbol{v}_{C}+\boldsymbol{C} \cdot \boldsymbol{\omega}\right) d t
$$

From the earlier constitutive laws, we see that, as long as $\boldsymbol{v}_{C}, \omega_{N}, \omega_{T}$ do not vanish, the pairs

$$
\left(\boldsymbol{R}_{T}, \boldsymbol{v}_{C}\right), \quad\left(\boldsymbol{C}_{N}, \omega_{N}\right), \quad\left(\boldsymbol{C}_{T}, \omega_{T}\right)
$$

are collinear and oppositely directed. Hence, frictions do negative work; that is, in general,

$$
\begin{equation*}
d^{\prime} W \leq 0 \tag{1.18.18}
\end{equation*}
$$

If, as commonly assumed, $\boldsymbol{C} \approx \mathbf{0}$, then

$$
\begin{array}{rlrl}
d^{\prime} W & =\left(\boldsymbol{R}_{T} \cdot \boldsymbol{v}_{C}\right) d t \equiv\left(\boldsymbol{F} \cdot \boldsymbol{v}_{C}\right) d t \\
& =0 ; \quad \text { if } \boldsymbol{F}=\mathbf{0} & & \text { (frictionless, or smooth, contact) } \\
& =0 ; \quad \text { if } \boldsymbol{v}_{C}=\mathbf{0} & & \text { (slippingless, or rough, contact). } \tag{1.18.19}
\end{array}
$$

It should be stressed that, in all these considerations, the relevant velocities are those of material particles, and not those of geometrical points of application of the loads.

2

Kinematics of Constrained Systems

(i.e., Lagrangean Kinematics)

I cannot too strongly urge that a kinematical result is a result valid forever, no matter how time and fashion may change the "laws" of physics.
(Truesdell, 1954, p. 2)

It is my belief that students have difficulty with mechanics because of an inadequate knowledge of kinematics.
(Fox, 1967, p. xi)

2.1 INTRODUCTION

As complementary reading for this chapter, we recommend the following (alphabetically):

> General: Hamel (1904(a), (b)), Heun (1906, 1914), Lur'e (1968), Neimark and Fufaev (1972), Novoselov (1979), Papastavridis (1999), Prange (1935).
> Special problems, extensions: Carvallo (1900, 1901), Lobas (1986), Lur'e (1968), Stückler (1955), Synge (1960).
> Research journals (see the references at the end of this book): Acta Mechanica Sinica (Chinese), Applied Mathematics and Mechanics (Chinese), Archive of Applied Mechanics (former Ingenieur Archiv; German), Journal of Applied Mechanics (ASME; American), Applied Mechanics (Soviet \rightarrow Ukrainian), Journal of Guidance, Control, and Dynamics (AIAA; American), PMM (Soviet \rightarrow Russian), ZAMM (German), ZAMP (Swiss); also the various journals on kinematics, mechanisms, machine theory, design, robotics, etc.

In this chapter we begin the study of analytical mechanics proper with a detailed treatment of Lagrangean kinematics, i.e., the theory of position and linear velocity constraints (or Pfaffian constraints) in mechanical systems with a finite number of degrees of freedom; that is, a finite number of movable parts; as opposed to continuous systems that have a countably infinite set of such freedoms. All relevant fundamental concepts, definitions, equations - such as velocity, acceleration, constraint, holonomicity versus nonholonomicity, constraint stationarity (or scleronomicity) versus nonstationarity (or rheonomicity) - are detailed in both particle and system variables, along with elaborate discussions of quasi coordinates and the associated transitivity equations and Hamel coefficients; as well as a direct and readable (and very rare) treatment of Frobenius' fundamental necessary and sufficient conditions for the holonomicity, or lack thereof, of a system of Pfaffian constraints.

The examples and problems, some at the ends of the paragraphs and some (the more comprehensive ones) at the end of the chapter, are an indispensable part of the material; several secondary theoretical points and results are presented there.

This chapter, and the next one on Kinetics, constitute the fundamental essence and core of Lagrangean analytical mechanics.

2.2 INTRODUCTION TO CONSTRAINTS AND THEIR CLASSIFICATIONS

Positions, Configurations, Motions

Let us consider a general finite mechanical system S consisting of N (= positive integer), free, or unconstrained, material particles. The position r of a generic S-particle, P, at the generic time instant, t, relative to an "origin" fixed in a, say inertial, frame of reference, F, is defined by the vector function

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{f}(P, t) \equiv \boldsymbol{r}(P, t) \tag{2.2.1}
\end{equation*}
$$

The collection of all these particle vectors, at a current instant t, make up a current system position, or current configuration of $S, C(t)$, and its evolution in time constitutes a motion of S. The latter, clearly, depends on the frame of reference. Thus, the complete description of a motion of S, if the latter is modeled as a collection of N particles, requires (at most) knowledge of $3 N$ functions of time; for example, the $3 N$ rectangular Cartesian components $=$ coordinates of the $N \boldsymbol{r}$'s:

$$
\begin{equation*}
\left(x_{1}, y_{1}, z_{1} ; \ldots ; x_{N}, y_{N}, z_{N}\right) \equiv(x, y, z) \equiv\left(\xi_{1}, \ldots, \xi_{3 N}\right) \equiv \xi \tag{2.2.1a}
\end{equation*}
$$

These numbers can be viewed as the rectangular Cartesian coordinates of the 3 N -dimensional position vector of a single fictitious, or figurative, particle representing S, in a $3 N$-dimensional Euclidean space, $E_{3 N}$, henceforth called the system's unconstrained configuration space; and, therefore, a motion of S can be visualized as the path traced by the tip of that system position vector in $E_{3 N}$. Equation (2.2.1) can be replaced by

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{f}\left(\boldsymbol{r}_{o}, t ; t_{o}\right) \equiv \boldsymbol{r}\left(\boldsymbol{r}_{o}, t ; t_{o}\right), \tag{2.2.2}
\end{equation*}
$$

where (fig. 2.1): $\boldsymbol{r}_{o}=$ "reference position" of P at the "reference time" $t=t_{o}$, is used to distinguish, or label, the various S-particles; and the totality of \boldsymbol{r}_{o} 's constitutes the reference configuration of S at $t_{o}, C\left(t_{o}\right)$. For a fixed \boldsymbol{r}_{o} and variable t (i.e., a motion

Reference configuration: $C\left(t_{o}\right)$
Current configuration: $C(t)$

Figure 2.1 Position vectors, configurations, and paths of system particles.
of P), eqs. (2.2.1,2) give the path of a particle P that was initially at \boldsymbol{r}_{o}. (The same equations for fixed t and variable \boldsymbol{r}_{o} would give us the transformation of the spatial region initially occupied by the system, to its current position at time t.)

The one-to-one correspondence between \boldsymbol{r} (and t) and \boldsymbol{r}_{o} (and t_{o}), of the same particle P-that is, the physical fact that "initially distinct particles must remain distinct throughout the motion"-requires that (2.2.2) has an inverse:

$$
\begin{equation*}
\boldsymbol{r}_{o}=\boldsymbol{f}^{-1}\left(\boldsymbol{r}, t ; t_{o}\right) \equiv \boldsymbol{g}\left(\boldsymbol{r}, t_{o} ; t\right): \text { reference configuration at (variable) time } t_{o} \tag{2.2.2a}
\end{equation*}
$$

Switching the roles of (\boldsymbol{r}, t) and $\left(\boldsymbol{r}_{o}, t_{o}\right)$, we can view (2.2.2a) as expressing the "current" position \boldsymbol{r}_{o} in terms of the "reference" position and time ($\left.\boldsymbol{r}, t\right)$ and "current" time t_{o}. From now on, for simplicity, we shall drop, in the above, the explicit $\left(\boldsymbol{r}_{o}, t_{o}\right)$ and/or P-dependence [also, replace the rigorous notation $\boldsymbol{f}(\ldots)$ with $\boldsymbol{r}(\ldots)$, as done frequently in engineering mathematics, except whenever extra clarity is needed], and write (2.2.1) simply as

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(t) \tag{2.2.3}
\end{equation*}
$$

REMARKS

(i) For (2.2.2) and (2.2.2a) to be mutually consistent, we must have
(2.2.2) for $t=t_{o} \Rightarrow(2.2 .2 \mathrm{a}): \quad \boldsymbol{r}=\boldsymbol{f}\left(\boldsymbol{r}_{o}, t ; t_{o}\right) \Rightarrow \boldsymbol{r}_{o}=\boldsymbol{f}\left(\boldsymbol{r}_{o}, t_{o} ; t_{o}\right)=\boldsymbol{f}^{-1}\left(\boldsymbol{r}, t ; t_{o}\right)$;
(2.2.2a) for $t_{o}=t \Rightarrow(2.2 .2): \quad \boldsymbol{r}_{o}=\boldsymbol{f}^{-1}\left(\boldsymbol{r}, t ; t_{o}\right) \Rightarrow \boldsymbol{r}=\boldsymbol{f}^{-1}(\boldsymbol{r}, t ; t)=\boldsymbol{f}\left(\boldsymbol{r}_{o}, t ; t_{o}\right)$;
hence, also

$$
\boldsymbol{r}=\boldsymbol{f}\left[\boldsymbol{f}\left(\boldsymbol{r}_{o}, t_{1} ; t_{o}\right), t ; t_{1}\right]=\boldsymbol{f}\left(\boldsymbol{r}_{o}, t ; t_{o}\right),
$$

where t_{1} is another reference time.
(ii) In continuum mechanics, $\left(\boldsymbol{r}_{o}, t\right)$ and (\boldsymbol{r}, t) are called, respectively, material (or Lagrangean) and spatial (or Eulerian) variables; with the former preferred in solid mechanics (e.g., nonlinear elasticity), and the latter dominating fluid mechanics (e.g., hydrodynamics). (See, e.g., Truesdell and Toupin, 1960, and Truesdell and Noll, 1965.)
(iii) For systems with a finite number of particles, the dependence on the latter is, frequently, expressed by the discrete subscript notation (i.e., $\boldsymbol{r}_{o} \rightarrow$ positive integer denoting the "name" of the particle):

$$
\begin{equation*}
\boldsymbol{r}_{P}=\boldsymbol{r}_{P}(t)=\left\{x_{P}(t), y_{P}(t), z_{P}(t)\right\} \quad(P=1, \ldots, N) . \tag{2.2.4}
\end{equation*}
$$

The simpler continuum mechanics notation, eqs. (2.2.1, 3), dispenses with all unnecessary particle indices, and allows one to concentrate on the system indices (as we begin to show later), which is the essence of the method of analytical mechanics. It also allows for a more general exposition; for example, a unified treatment of systems containing both rigid (discrete) and flexible (continuous) parts.

Constraints

If the N vectors \boldsymbol{r}, and/or corresponding (inertial) velocities $\boldsymbol{v} \equiv d \boldsymbol{r} / d t$, are functionally unrelated and uninfluenced from each other (internally) or from their environment (externally), apart from continuity and consistency requirements, like (2.2.2b,c) -
something we will normally assume - that is, if, and prior to any kinetic considerations, the \boldsymbol{r} 's and \boldsymbol{v} 's are free to vary arbitrarily and independently from each other, then S is called (internally and/or externally) free or unconstrained; if not, S is called (internally and/or externally) constrained. In the latter case, certain configurations and/or (velocities \Rightarrow) motions are unattainable, or inadmissible; or, alternatively, if we know the positions and velocities of some of the particles of the system, we can deduce those of the rest, without recourse to kinetics. [Outside of areas like astronomy/celestial mechanics, ballistics, etc., almost all other Earthly systems of relevance, and a lot of non-Earthly ones, are constrained - hence, the importance of analytical mechanics, especially to engineers.]

Such restrictions, or constraints, on the positions and/or velocities of S are expressed analytically by one or more $(<3 N)$ scalar functional relations of the form

$$
\begin{equation*}
f\left(t, \boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N} ; \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right)=0, \quad \text { or, compactly, } \quad f(t, \boldsymbol{r}, \boldsymbol{v})=0 \tag{2.2.5}
\end{equation*}
$$

These equalities are assumed to be: (i) continuous and as many times differentiable in their arguments as needed (usually, continuity of the zeroth, first-, and second-order partial derivatives will suffice), in some region of the ($x, y, z ; d x / d t, d y / d t, d z / d t ; t)$; (ii) mutually consistent (i.e., kinematically possible, or admissible); (iii) independent [i.e., not connected by additional functional relations like $F\left(f_{1}, f_{2}, \ldots\right)=0$]; and (iv) valid for any forces acting on S, any motions of it, and any temporal boundary/initial conditions on these motions (see also semiholonomic systems below).

Following ordinary differential equation terminology, we call (2.2.5) a first-order (nonlinear) constraint, or nonlinear velocity constraint. With few exceptions [as in chaps. 5 and 6 , where generally nonlinear constraints of the form $f(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{a}, t)=0$ (\boldsymbol{a} : accelerations) are discussed], the velocity constraint (2.2.5) is the most general constraint examined here.
[Other, perhaps more suggestive terms, for constraints are conditions (Victorian English: equations of condition; German: bedingungen), and connections or couplings (French: liaisons; German: bindungen; Greek: $\sigma v ́ \nu \delta \varepsilon \sigma \mu o \iota ;$ Russian: svyaz').]

Special Cases of Equation (2.2.5)
(i) Constraints like

$$
\begin{equation*}
\phi(t, \boldsymbol{r})=0, \quad \text { or }[\text { recalling }(2.2 .1 \mathrm{a})], \quad \phi(t, \boldsymbol{\xi})=0 \tag{2.2.6}
\end{equation*}
$$

are called finite, or geometrical, or positional, or configurational, or holonomic. [From the Greek: hólos = complete, whole, integral; that is, finite, nondifferential; and nómos = law, rule, (here) condition, constraint. After Hertz (early 1890s); also C. Neumann (mid-1880s).]
(ii) Again, with the exception of chapters 5, 6, and 7, all velocity constraints treated here have the practically important linear velocity, or Pfaffian, form

$$
\begin{equation*}
f \equiv \boldsymbol{S}(\boldsymbol{B} \cdot \boldsymbol{v})+B=0 \tag{2.2.7}
\end{equation*}
$$

where $\boldsymbol{B}=\boldsymbol{B}(t, \boldsymbol{r}), B=B(t, \boldsymbol{r})$ are known functions of the \boldsymbol{r} 's and t, and Lagrange's symbol $S(\ldots)$ signifies summation over all the material particles of S, at a given instant, like a Stieltjes' integral (so it can handle uniformly both continuous and discrete situations). Those uncomfortable with it may replace it with the more familiar Leibnizian $\int(\ldots)$.

Multiplying (2.2.7) by $d t$, which does not interact with $S(\ldots)$, we obtain the kinematically possible, or kinematically admissible, form of the Pfaffian constraint,

$$
\begin{equation*}
f d t \equiv \boldsymbol{S}(\boldsymbol{B} \cdot d \boldsymbol{r})+B d t=0 \tag{2.2.7a}
\end{equation*}
$$

Degrees of Freedom

A system of N particles subject to h (independent) positional constraints:

$$
\begin{equation*}
\phi_{H}(t, \boldsymbol{r})=0 \quad(H=1, \ldots, h), \tag{2.2.8}
\end{equation*}
$$

and m (independent) Pfaffian constraints:

$$
\begin{equation*}
f_{D} \equiv \boldsymbol{S}\left(\boldsymbol{B}_{D} \cdot \boldsymbol{v}\right)+B_{D}=0 \quad(D=1, \ldots, m) \tag{2.2.9}
\end{equation*}
$$

that is, a total of $h+m$ constraints, is said to have a total of $3 N-(h+m)(>0)$ degrees of freedom $(D O F)$. This is a fundamental concept whose significance to both kinematics and kinetics (of constrained systems) will emerge gradually in what follows.
[Quick preview: $\mathrm{DOF}=$ Number of independent components of system vector of virtual displacement (§ 2.3-7)
$=$ Number of kinetic (i.e., reactionless) equations of motion of system (chap. 3).]

Holonomicity versus Nonholonomicity

A positional constraint like (2.2.6), since it holds identically during all system motions, can always be brought to the velocity form (2.2.7) by $d(\ldots) / d t$-differentiation:

$$
\begin{equation*}
d \phi / d t=\boldsymbol{S}(\partial \phi / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+\partial \phi / \partial t=0 \tag{2.2.10}
\end{equation*}
$$

that is, $\boldsymbol{B} \rightarrow \partial \phi / \partial \boldsymbol{r} \equiv \boldsymbol{\operatorname { g r a d }} \phi$ (normal to the $E_{3 N}$-surface $\phi=0$) and $B \rightarrow \partial \phi / \partial t$. However, the converse is not always true: the velocity constraint (2.2.7) may or may not be (able to be) brought to the positional form (2.2.6); that is, by integration and with no additional knowledge of the motion of the system; namely, without recourse to kinetics. If (2.2.7) can be brought to the form (2.2.6), then it is called completely integrable, or holonomic (H); if it cannot, it is called nonintegrable, or nonholonomic (NH); or, sometimes, anholonomic. This holonomic/nonholonomic distinction of velocity constraints is fundamental to analytical mechanics; it is by far the most important of all other constraint classifications. [The term anholonomic, more consistent than the term nonholonomic seems to be due to Schouten (1954).]

Schematically, we have

Hence, a H velocity constraint, like (2.2.10), is actually a positional constraint disguised in kinematical form. Before embarking into a detailed study of H / NH constraints, we will mention some additional, secondary but useful, constraint classifications.

Scleronomicity versus Rheonomicity

Velocity constraints of the form

$$
\begin{equation*}
f(\boldsymbol{r}, \boldsymbol{v})=0 \Rightarrow \partial f / \partial t=0 \tag{2.2.7b}
\end{equation*}
$$

are called stationary; otherwise (i.e., if $\partial f / \partial t \neq 0$), they are called nonstationary. If all the constraints of a system are stationary, the system is called scleronomic; if not, the system is called rheonomic. [From the Greek: sclerós = hard, rigid, invariable; rhéo = to flow; and the earlier nómos = law, rule, decree, (here) condition; that is, scleronomic $=$ invariable constraint, rheonomic $=$ variable/fluid constraint. After Boltzmann (1897-1904).] For positional constraints and Pfaffian constraints, stationarity means, respectively,

$$
\begin{equation*}
\phi(\boldsymbol{r})=0 \quad \text { and } \quad \boldsymbol{S} \boldsymbol{B}(\boldsymbol{r}) \cdot \boldsymbol{v}=0 \tag{2.2.11}
\end{equation*}
$$

Catastaticity versus Acatastaticity

Pfaffian constraints of the form

$$
\begin{equation*}
\boldsymbol{S B}(t, \boldsymbol{r}) \cdot \boldsymbol{v}+B(t, \boldsymbol{r})=0 \tag{2.2.11a}
\end{equation*}
$$

are called acatastatic; while those of the form

$$
\begin{equation*}
\boldsymbol{S} \boldsymbol{B}(t, \boldsymbol{r}) \cdot \boldsymbol{v}=0 \quad[\text { i.e., } B(t, \boldsymbol{r})=0] \tag{2.2.11b}
\end{equation*}
$$

are called catastatic. It is this classification [due to Pars (1965, pp. 16, 24) and, obviously, having meaning only for Pfaffian constraints], and not the earlier one of scleronomicity versus rheonomicity, that is important in the kinetics of systems under such constraints.

REMARKS

(i) The reason for calling the second of (2.2.11) scleronomic, instead of

$$
\begin{equation*}
\boldsymbol{S B}(\boldsymbol{r}) \cdot \boldsymbol{v}+B(\boldsymbol{r})=0 \tag{2.2.11c}
\end{equation*}
$$

that is, for requiring that scleronomic constraints linear in the velocities be also homogeneous in them (i.e., have $B=0 \Rightarrow$ catastaticity), is so that it matches the kinematic form generated by $d / d t(\ldots)$-differentiating the scleronomic positional constraint (first of 2.2.11):

$$
\begin{equation*}
\phi(\boldsymbol{r})=0 \Rightarrow d \phi / d t=\boldsymbol{S}(\partial \phi / \partial \boldsymbol{r}) \cdot \boldsymbol{v}=0 . \tag{2.2.11d}
\end{equation*}
$$

Geometrical interpretation of this requirement: Otherwise, the corresponding constraint surface, in "velocity space," would be a plane with distance from the origin proportional to B. That term, representing the (negative of the) velocity of the
constraint plane normal to itself, is clearly a rheonomic effect. (Remark due to Prof. D. T. Greenwood, private communication.)
(ii) Clearly, every scleronomic Pfaffian constraint is catastatic ($B=0$); but catastatic Pfaffian constraints may be scleronomic $[\boldsymbol{B}=\boldsymbol{B}(\boldsymbol{r})$, second of (2.2.11)] or rheonomic $[\boldsymbol{B}=\boldsymbol{B}(t, \boldsymbol{r}),(2.2 .11 \mathrm{~b})]$.

Bilateral versus Unilateral Constraints

Equality constraints of the form (2.2.5) are called bilateral, or two-sided, or equality, or reversible, or unchecked (after Langhaar, 1962, p. 16); while constraints of the form

$$
\begin{equation*}
f(t, \boldsymbol{r}, \boldsymbol{v}) \geq 0 \quad \text { or } \quad f(t, \boldsymbol{r}, \boldsymbol{v}) \leq 0 \tag{2.2.11e}
\end{equation*}
$$

are called unilateral, or one-sided, or inequality, or irreversible. Physically, bilateral constraints occur when the bodies in contact cannot separate from each other: for example, a rigid sphere moving between two parallel fixed planes, in continuous contact with both. In the unilateral case, the bodies in contact can separate: for example, a sphere in contact with only one plane, or a system of two particles connected by an inextensible string - their distance cannot exceed the string's length. Following Gantmacher (1970, p. 12), we can state that the general motion of a unilaterally constrained motion may be divided into segments, such that: (i) in certain segments the constraint is "taut" [(2.2.11e) with the $=$ sign; e.g., particle on a light, inextensible, and taut string], and motion occurs as if the constraint were bilateral; and (ii) in other segments, the constraint is not taut, it is "loose," and motion occurs as if the constraint were absent. Concisely, a unilateral constraint is either replaced by a bilateral one, or is eliminated altogether. Hence, in what follows, we shall limit ourselves to bilateral constraints.

REMARKS

(i) A small number of authors call all constraints of the form (2.2.6) holonomic, as well as those reducible to that form; and call all others nonholonomic. According to such a definition, bilateral constraints like (2.2.11e) would be nonholonomic! The reader should be aware of such historically unorthodox practices.
(ii) The equations $\phi(\boldsymbol{r}, t)=0$ and $d \phi / d t \equiv S(\partial \phi / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+\partial \phi / \partial t=0$ restrict a system's positions and velocities; equation $d \phi / d t=0$ is the compatibility of velocities with $\phi=0$. Similarly, the equation

$$
d^{2} \phi / d t^{2}=\boldsymbol{S}[d / d t(\partial \phi / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+(\partial \phi / \partial \boldsymbol{r}) \cdot \boldsymbol{a}]+d / d t(\partial \phi / \partial t)=0
$$

is the compatibility of accelerations with $\phi=0, d \phi / d t=0$; and likewise for higher such derivatives.
(iii) In the case of unilateral constraints, if at a certain time $t: f>0$, then, as explained earlier, that constraint plays no role in the system's motion. But if $f=0$, then, as a Taylor expansion around t shows, motion that satisfies either of these two relations may occur; in the former case $d f / d t=0$, and in the latter $d f / d t \geq 0$. Thus, the simultaneous conditions $f=0$ and $d f / d t<0$ allow us to detect a possible incompatibility between velocities and $f \geq 0$. Usually, such conditions occur in impact problems (chap. 4; also Kilmister and Reeve, 1966, pp. 67-68).
(iv) Geometrical/physical remarks: In a system S consisting of several rigid bodies, and its environment (i.e., other bodies/foreign obstacles, massless coupling elements:
e.g., springs, cables) the following conditions apply:
(a) Every condition expressing the direct contact of two rigid bodies of S, or the contact of one of its bodies with a foreign obstacle (environment) that is either fixed or has known motion (i.e., its position coordinates are known functions of time only), results in a holonomic equation of the form (2.2.6); and the corresponding contact forces are the reactions of that constraint.
(b) If, further, at those contact points, friction is high enough to guarantee us (in advance of kinetic considerations) slippinglessness, then the positions and velocities there satisfy (2.2.7)-like Pfaffian equations (usually, but not always, nonholonomic). These conditions express the vanishing of a component of (relative) slipping velocity in a certain direction; and, therefore, there are as many as the number of independent such nonslipping directions.
(c) If, in addition, friction there is very high, so that not only slipping but also pivoting vanishes, then we have additional (usually nonholonomic) (2.2.7)-like equations; that is, linear velocity constraints arise quite naturally and frequently in daily life. [Nonslipping and nonpivoting are maintained by constraint forces (and couples), just like contact. All these constraint forces are examples of passive reactions; for more general, active, constraint reactions, see, for example, § 3.17.]
(v) Holonomic and/or nonholonomic constraints due exclusively to the mutual interaction of the system bodies are called internal (or mutual); while those arising, even partially, from the interaction of the system with its environment are called external. The associated constraint reactions are called, respectively, internal (or mutual) and external.
(vi) Finally, we repeat that such holonomic and/or nonholonomic constraints express restrictions among positions and velocities independently of the equations of motion and associated (temporal) initial/boundary conditions, and before the complete solution of the problem is carried out. Solving the problem means finding $\boldsymbol{r}=\boldsymbol{r}(t)$: known function of time; then $\boldsymbol{v}=d \boldsymbol{r} / d t=\boldsymbol{v}(t)$: known function of time; and these \boldsymbol{r} 's and \boldsymbol{v} 's automatically satisfy the constraints. Under such a viewpoint, integrals of the system, like those of linear/angular momentum and energy, assuming they exist, do not qualify as constraint equations.

The (bilateral) constraints, discussed above, are summarized as follows:

General first-order constraints

```
f(r)=0: Holonomic (integrable) and scleronomic (stationary)
f(t,\boldsymbol{r})=0: Holonomic (integrable) and rheonomic (nonstationary)
f(\boldsymbol{r},\boldsymbol{v})=0:\quadNonholonomic (if nonintegrable) and scleronomic (stationary)
f(t,\boldsymbol{r},\boldsymbol{v})=0:\quadNonholonomic (if nonintegrable) and rheonomic (nonstationary)
```

Pfaffian velocity constraints

$$
\begin{array}{ll}
\boldsymbol{S B}(t, \boldsymbol{r}) \cdot \boldsymbol{v}+B(t, \boldsymbol{r})=0: & \text { Rheonomic and acatastatic } \\
\boldsymbol{S B}(\boldsymbol{r}) \cdot \boldsymbol{v}+B(\boldsymbol{r})=0: & \text { Rheonomic and acatastatic } \\
\boldsymbol{S B}(t, \boldsymbol{r}) \cdot \boldsymbol{v}=0: & \text { Rheonomic and catastatic } \\
\boldsymbol{S B}(\boldsymbol{r}) \cdot \boldsymbol{v}=0: & \text { Scleronomic and catastatic }
\end{array}
$$

(There is no such thing as scleronomic and acatastatic Pfaffian constraint.)

Figure 2.2 Plane pursuit problem: a dog (D) moving continuously toward its master (M).

Example 2.2.1 Plane Pursuit Problem - Catastatic but Rheonomic (or Nonstationary) Pfaffian constraint. The master (M) of a dog (D) walks along a given plane curve: $\boldsymbol{R}=\boldsymbol{R}(t)=\{X=X(t), Y=Y(t)\}$. Let us find the differential equation of the path of $D: \boldsymbol{r}=\boldsymbol{r}(t)=\{x=x(t), y=y(t)\}$, if D moves, with instantaneous velocity \boldsymbol{v}, to meet M, so that at every instant its velocity is directed toward M (fig. 2.2).

We must have:

$$
\boldsymbol{v}=\text { parallel to } \boldsymbol{R}-\boldsymbol{r}=v[(\boldsymbol{R}-\boldsymbol{r}) /|\boldsymbol{R}-\boldsymbol{r}|] \equiv v \boldsymbol{e}
$$

or, in components,

$$
\begin{equation*}
d x / d t=v[(X-x) /|\boldsymbol{R}-\boldsymbol{r}|], \quad d y / d t=v[(Y-y) /|\boldsymbol{R}-\boldsymbol{r}|] ; \tag{a}
\end{equation*}
$$

or, eliminating v between them,

$$
\begin{equation*}
[Y(t)-y](d x / d t)-[X(t)-x](d y / d t)=0 . \tag{b}
\end{equation*}
$$

It is not hard to show that this pursuit problem in space leads to the following constraints (with some obvious notation):

$$
\begin{align*}
& {[Y(t)-y](d x / d t)-[X(t)-x](d y / d t)=0} \tag{c}\\
& {[Z(t)-z](d x / d t)-[X(t)-x](d z / d t)=0} \tag{d}\\
& {[Z(t)-z](d y / d t)-[Y(t)-y](d z / d t)=0} \tag{e}
\end{align*}
$$

See also Hamel (1949, pp. 770-773).

Example 2.2.2 Acatastatic Constraints. Let us consider the rolling of a sphere S of radius r and center G on the rough inner surface of a vertical circular cylinder A of radius $R(>r)$. Let us introduce the following convenient intermediate axes/ basis $G-123 / G-i j k$ (fig. 2.3): Let ϕ be the azimuth, or precession-like, angle of the plane $G-13$, and $z=$ vertical coordinate of G (positive upward from some fixed

TOP VIEW:

Figure 2.3 Rolling of a sphere on a vertical circular cylinder. G1: vertically upward; G3: horizontally intersects the (vertical) cylinder axis; G2: horizontal, so that G-123 is orthogonal-normalized-dextral (OND).
plane, perpendicular to the cylinder axis). Then, $\boldsymbol{v}_{G}=$ inertial velocity of $G=\left(v_{1}=d z / d t, v_{2}=(R-r)(d \phi / d t) \equiv(R-r) \omega_{\phi}, v_{3}=0\right)$;
or, alternatively, if $\boldsymbol{O} \boldsymbol{G}=z \boldsymbol{K}+(R-r)(-\boldsymbol{k})$, then (with $d \phi / d t \equiv \omega_{\phi}$)

$$
\begin{equation*}
\boldsymbol{v}_{G}=d(\boldsymbol{O} \boldsymbol{G}) / d t=(d z / d t) \boldsymbol{K}+(R-r)(-d \boldsymbol{k} / d t)=(d z / d t) \boldsymbol{i}+(R-r)\left(\omega_{\phi} \boldsymbol{j}\right) . \tag{b}
\end{equation*}
$$

If $\boldsymbol{\omega}=$ inertial angular velocity of sphere $=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, then the inertial velocity of the contact point C, \boldsymbol{v}_{C}, is

$$
\begin{align*}
\boldsymbol{v}_{C}=\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G} & =\left(v_{1}, v_{2}, v_{3}\right)+\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \times(0,0,-r) \\
& =\left(v_{1}-\omega_{2} r, \quad v_{2}+\omega_{1} r, \quad v_{3}\right) . \tag{c}
\end{align*}
$$

Therefore: (i) If the cylinder is stationary (i.e., fixed), the rolling constraint is $\boldsymbol{v}_{C}=\mathbf{0}$, or, in components,
$v_{1}-\omega_{2} r=0 \Rightarrow \omega_{2}=(d z / d t) / r, \quad v_{2}+\omega_{1} r=0 \Rightarrow \omega_{1}=[1-(R / r)] \omega_{\phi}, \quad v_{3}=0$. (d)
(ii) If the cylinder is made to rotate about its axis with an (inertial) angular velocity $\boldsymbol{\Omega}=\boldsymbol{\Omega}(t)=$ given function of time, the rolling constraint is

$$
\boldsymbol{v}_{C}=\boldsymbol{\Omega} \times \boldsymbol{r}_{C / O}=(\Omega \boldsymbol{K}) \times(-\boldsymbol{R} \boldsymbol{k})=(\Omega \boldsymbol{i}) \times(-R \boldsymbol{k})=(\Omega R) \boldsymbol{j} \equiv(0, \Omega R, 0),
$$

or, in components [invoking (c)],

$$
\begin{align*}
& v_{1}-\omega_{2} r=0 \Rightarrow \omega_{2}=(d z / d t) / r \equiv v_{z} / r \\
& v_{2}+\omega_{1} r=\Omega(t) R \Rightarrow \omega_{1}=\omega_{\phi}+(R / r) \omega_{r}, \quad v_{3}=0, \tag{e}
\end{align*}
$$

where $\omega_{r} \equiv \Omega-\omega_{\phi}=$ relative angular velocity of cylinder about meridian plane $G-13$. The first of the constraints (e) is nonstationary and acatastatic, even if $\Omega=$ constant. [As explained in $\S 2.5 \mathrm{ff}$., the virtual form of that constraint is $\delta p_{2}+\delta \theta_{1} r=0$, where $d p_{2} \equiv v_{2} d t$ and $d \theta_{1} \equiv \omega_{1} d t$; and this coincides with the virtual form of the catastatic second of the constraints (d). In general, p_{2} and θ_{1} are "quasi coordinates" - see $\$ 2.9 \mathrm{ff}$.]

First and second of the constraints (d) in terms of the Eulerian angles of the sphere Φ, Θ, Ψ, relative to the "semiinertial" (translating but nonrotating) axes $G-X Y Z$

We have, successively (recalling §1.12,13),

$$
\begin{align*}
v_{1}= & d z / d t \equiv v_{Z} \\
\omega_{2}= & \cos (2, X) \omega_{X}+\cos (2, Y) \omega_{Y}+\cos (2, Z) \omega_{Z} \\
= & (-\sin \phi) \omega_{X}+(\cos \phi) \omega_{Y}+(0) \omega_{Z} \\
= & (-\sin \phi)[\cos \Phi(d \Theta / d t)+\sin \Phi \sin \Theta(d \Psi / d t)] \\
& +(\cos \phi)[\sin \Phi(d \Theta / d t)-\cos \Phi \sin \Theta(d \Psi / d t)] \\
= & \cdots=\sin (\Phi-\phi)(d \Theta / d t)-\cos (\Phi-\phi) \sin \Theta(d \Psi / d t) \tag{f}
\end{align*}
$$

that is, the familiar ω_{Y} component but with ϕ replaced by $\Phi-\phi$;

$$
\begin{align*}
v_{2} & =(R-r)(d \phi / d t) \\
\omega_{1} & =\cos (1, X) \omega_{X}+\cos (1, Y) \omega_{Y}+\cos (1, Z) \omega_{Z} \\
& =(0) \omega_{X}+(0) \omega_{Y}+(1) \omega_{Z}=d \Phi / d t+\cos \Theta(d \Psi / d t) \tag{g}
\end{align*}
$$

Therefore, the first and second constraints (d) transform to

$$
\begin{align*}
& v_{1}-\omega_{2} r=d z / d t-r[\sin (\Phi-\phi)(d \Theta / d t)-\cos (\Phi-\phi) \sin \Theta(d \Psi / d t)]=0, \tag{h}\\
& v_{2}+\omega_{1} r=(R-r)(d \phi / d t)+r[d \Phi / d t+\cos \Theta(d \Psi / d t)]=0 \tag{i}
\end{align*}
$$

and similarly for the first two of (e).

Example 2.2.3 Acatastatic Constraints. Let us consider the rolling of a sphere S of radius r and center G on a rough surface of revolution with a vertical axis. Let us introduce the convenient frame/axes/basis $G-123 / G-i j k$ shown in fig. 2.4. Further, let ϕ be the azimuth, or precession-like, angle of the meridian plane (and of plane $G-23$); and θ be the nutation-like angle between the positive surface axis and the common (outward) normal. Then, with $d \phi / d t \equiv \omega_{\phi}, d \theta / d t \equiv \omega_{\theta}$, we will have

$$
\begin{align*}
\boldsymbol{\Omega}_{o} & =\text { inertial angular velocity of } G-123 \equiv\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right) \\
& =\left(-\omega_{\phi} \sin \theta, \omega_{\theta}, \omega_{\phi} \cos \theta\right) \tag{a}\\
\boldsymbol{v}_{G} & =\text { inertial velocity of } G \equiv\left(v_{1}, v_{2}, v_{3}\right)=\left(\rho \omega_{\theta}, R \omega_{\phi}=\rho \sin \theta \omega_{\phi}, 0\right), \tag{b}
\end{align*}
$$

where $\rho=$ radius of curvature of meridian curve of parallel surface at G.

Figure 2.4 Rolling of a sphere on a vertical surface of revolution. G3: along common normal, outward; G1: parallel to tangent to meridian curve, at contact point C; G2: parallel to tangent to circular section through C (or, so that G-123 is OND).

If $\omega=$ inertial angular velocity of sphere $=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, then the inertial velocity of the contact point C, \boldsymbol{v}_{C}, equals

$$
\begin{align*}
\boldsymbol{v}_{C} & =\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G} \\
& =\left(v_{1}, v_{2}, v_{3}\right)+\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \times(0,0,-r)=\left(v_{1}-\omega_{2} r, v_{2}+\omega_{1} r, v_{3}\right) . \tag{c}
\end{align*}
$$

Therefore: (i) If the surface is stationary, the rolling constraint is $\boldsymbol{v}_{C}=\mathbf{0}$, or, in components,

$$
\begin{equation*}
v_{1}-\omega_{2} r=0, \quad v_{2}+\omega_{1} r=0, \quad v_{3}=0 . \tag{d}
\end{equation*}
$$

(ii) If the surface is compelled to rotate about its axis with (inertial) angular velocity $\boldsymbol{\Omega}=\boldsymbol{\Omega}(t)=$ given function of time, the rolling constraint is

$$
\begin{equation*}
\boldsymbol{v}_{C}=\boldsymbol{\Omega} \times \boldsymbol{r}_{C / O}=(0, \Omega(R-r \sin \theta), 0), \tag{e}
\end{equation*}
$$

or, in components,

$$
\begin{align*}
& v_{1}-\omega_{2} r=0 \Rightarrow \omega_{2}=v_{1} / r=\rho \omega_{\theta} / r \tag{f}\\
& v_{2}+\omega_{1} r=\Omega(R-r \sin \theta) \Rightarrow \omega_{1}=(R / r) \omega_{r}-\Omega \sin \theta, \quad v_{3}=0 \tag{g}
\end{align*}
$$

where $\omega_{r} \equiv \Omega-\omega_{\phi}=$ relative angular velocity of surface about meridian plane $G-13$. The first constraint (g) is nonstationary and acatastatic, even if $\Omega=$ constant. [As explained in $\S 2.5 \mathrm{ff}$., the virtual form of that constraint is $\delta p_{2}+\delta \theta_{1} r=0$, where $d p_{2} \equiv v_{2} d t$ and $d \theta_{1} \equiv \omega_{1} d t$; and it coincides with the virtual form of the catastatic second constraint (d). In general, p_{2} and θ_{1} are "quasi coordinates"see $\S 2.9 \mathrm{ff}$.]

SPECIALIZATIONS

(i) If the surface of revolution is another sphere with radius $\rho_{o} \equiv \rho-r=$ constant, since then $v_{1}=\left(\rho_{o}+r\right) \omega_{\theta}, v_{2}=\left[\left(\rho_{o}+r\right) \sin \theta\right] \omega_{\phi}$, the constraints (f) and the second of (g) reduce, respectively, to

$$
\begin{align*}
& \omega_{2}=\left[\left(\rho_{o}+r\right) / r\right] \omega_{\theta}=\left[\left(\rho_{o} / r\right)+1\right] \omega_{\theta}, \tag{h}\\
& \omega_{1}=\left[\left(\rho_{o} / r\right)+1\right] \sin \theta \omega_{r}-\Omega \sin \theta . \tag{i}
\end{align*}
$$

(ii) If the surface of revolution is another sphere with radius $\rho_{o} \equiv \rho-r$, that is free (i.e., unconstrained) to rotate about its fixed center with inertial angular velocity $\omega^{\prime} \equiv\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \omega_{3}^{\prime}\right)$, then, reasoning as earlier, we obtain the catastatic constraint equations

$$
\begin{equation*}
v_{1}-\omega_{2} r=\rho_{o} \omega_{2}^{\prime}, \quad v_{2}+\omega_{1} r=-\rho_{o} \omega_{1}^{\prime}, \quad v_{3}=0 \tag{j}
\end{equation*}
$$

However, if the $\omega_{1}^{\prime}, \omega_{2}^{\prime}, \omega_{3}^{\prime}$ are prescribed functions of time, then the first and second of (j) become nonstationary (and acatastatic).

For additional such rolling examples, including the corresponding Newton-Euler (kinetic) equations, and so on, see the older British textbooks: for example, Atkin (1959, pp. 253-259), Besant (1914, pp. 353-359), Lamb (1929, pp. 162-170), Milne (1948, chaps. 15, 17).

Example 2.2.4 Problem of Ishlinsky (or Ishlinskii). Let us consider the rolling of a circular rough cylinder of radius R on top of two other identical circular and rough cylinders, each of radius r, rolling on a rough, fixed, and horizontal plane (fig. 2.5).

Let $O-x y z$ and $O-x^{\prime} y^{\prime} z^{\prime}$ be inertial axes, such that $O-x y$ and $O-x^{\prime} y^{\prime}$ are both on that plane, while their axes $O x$ and $O x^{\prime}$ are parallel to the lower cylinder generators

Figure 2.5 Rolling of a cylinder on top of two other rolling cylinders. Transformation equations: $x=x^{\prime} \cos \chi-y^{\prime} \sin \chi, y=x^{\prime} \sin \chi+y^{\prime} \cos \chi$.
and make, with each other, a constant angle χ. To describe the (global) system motion, let us choose the following six position coordinates: (i) $(x, y)=$ inertial coordinates of mass center of upper cylinder G (as for its third, vertical, coordinate we have $z=2 r+R$); (ii) $\theta=$ angle between $+O x$ and upper cylinder generator; (iii) ψ, $\psi_{1}, \psi_{2}=$ spin angles of the upper and two lower cylinders, respectively. Finally, let \boldsymbol{r}_{1} and \boldsymbol{r}_{2} be the position vectors of the contact points of the lower cylinders with the upper one, relative to G, and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ be the corresponding (inertial) velocities.

The rolling constraints are

$$
\begin{equation*}
\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{1}=\boldsymbol{v}_{1} \quad \text { and } \quad \boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{2}=\boldsymbol{v}_{2} . \tag{a}
\end{equation*}
$$

Let us express them in terms of components along $O-x y z$. We have

$$
\boldsymbol{v}_{G}=(d x / d t, d y / d t, 0) \equiv\left(v_{x}, v_{y}, 0\right)
$$

ω : inertial angular velocity of upper cylinder

$$
\begin{align*}
& =((d \phi / d t) \cos \theta,(d \phi / d t) \sin \theta, d \theta / d t) \equiv\left(\omega_{\phi} \cos \theta, \omega_{\phi} \sin \theta, \omega_{\theta}\right), \\
\boldsymbol{r}_{1} & =\left(-\left(y-r \phi_{1}\right) \cot \theta,-\left(y-r \phi_{1}\right),-R\right), \\
\boldsymbol{r}_{2} & =\left[r \phi_{2}-(y \cos \chi-x \sin \chi)\right] \cot (\theta-\chi) \boldsymbol{i}^{\prime}+\left[r \phi_{2}-(y \cos \chi-x \sin \chi)\right] \boldsymbol{j}^{\prime}-R \boldsymbol{k}^{\prime} \\
& =\left(\left(r \phi_{2}+x \sin \chi-y \cos \chi\right) \cos \theta / \sin (\theta-\chi),\right. \\
& \left.\quad\left(r \phi_{2}+x \sin \chi-y \cos \chi\right) \sin \theta / \sin (\theta-\chi),-R\right), \\
\boldsymbol{v}_{1} & =\left(0,2 r \omega_{1}, 0\right) \quad\left[\text { where } \omega_{1,2} \equiv d \phi_{1,2} / d t\right], \\
\boldsymbol{v}_{2} & =\left(-2 r \omega_{2} \sin \chi, 2 r \omega_{2} \cos \chi, 0\right) . \tag{b}
\end{align*}
$$

Substituting the above into (a), we obtain the following four constraint components:

$$
\begin{align*}
& v_{x}-R \omega_{\phi} \sin \theta-\omega_{\theta}\left(r \phi_{1}-y\right)=0, \\
& v_{y}+R \omega_{\phi} \cos \theta+\omega_{\theta}\left(r \phi_{1}-y\right) \cot \theta-2 r \omega_{1}=0 \\
& v_{x} \sin (\theta-\chi)-R \omega_{\phi} \sin \theta \sin (\theta-\chi)-\omega_{\theta}\left(r \phi_{2}+x \sin \chi-y \cos \chi\right) \sin \theta \\
&+2 r \omega_{2} \sin \chi \sin (\theta-\chi)=0 \\
& v_{y} \sin (\theta-\chi)+R \omega_{\phi} \cos \theta \sin (\theta-\chi)+\omega_{\theta}\left(r \phi_{2}+x \sin \chi-y \cos \chi\right) \cos \theta \\
&-2 r \omega_{2} \cos \chi \sin (\theta-\chi)=0 . \tag{c}
\end{align*}
$$

For further details, see, for example, Mei (1985, pp. 33-35), Neimark and Fufaev (1972, pp. 99-101). It can be shown ($£ 2.11,12$) that these constraints are nonholonomic. Therefore, the system has $n=6$ global DOF, and $n-m=6-4=2$ local DOF (concepts explained in $\S 2.3 \mathrm{ff}$.).

Example 2.2.5 When is Rolling Holonomic? So as to dispell the possible notion that all problems of (slippingless) rolling among rigid bodies lead to nonholonomic constraints, let us summarize below the cases of rolling that lead to holonomic constraints. It has been shown by Beghin (1967, pp. 436-438) that these are the following two kinds:
(i) The paths of the contact point(s) of the rolling bodies are known ahead of time; that is, before any dynamical consideration of the system involved and as function of
its original position, on these bodies. Consider two such bodies whose bounding surfaces, S_{1} and S_{2}, are described by the curvilinear surface (Gaussian) coordinates $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$, respectively, in contact at a point C. Their relative positions, say of S_{1} relative to S_{2}, are determined by the values of these coordinates at C and the angle ϕ formed by the tangents to the lines $u_{1}=$ constant and $u_{2}=$ constant (or v_{1}, $v_{2}=$ constant) there. Knowledge of the paths of C on both S_{1} and S_{2} translates to knowledge of the four holonomic functional relations:

$$
\begin{equation*}
u_{1}=u_{1}\left(v_{1}\right), \quad u_{2}=u_{2}\left(v_{2}\right), \quad \phi=\phi\left(u_{1}, u_{2}\right), \quad s_{1}\left(u_{1}\right)=s_{2}\left(u_{2}\right) \pm c ; \tag{a}
\end{equation*}
$$

where s_{1} and s_{2} are the arc lengths (or curvilinear abscissas) of the contact point paths S_{1} and S_{2}, and c is an integration constant. It follows that, out of the five surface positional parameters, $u_{1}, v_{1}, u_{2}, v_{2}, \phi$, only one is independent; the other four can be expressed in terms of that one by finite (holonomic) relations.
(ii) The bounding surfaces S_{1} and S_{2} are applicable on each other; they touch at homologous points and their homologous curves (trajectories of the contact point C on them) join together there. This is expressed by the condition of contact, and by

$$
\begin{equation*}
u_{1}=u_{2}, \quad v_{1}=v_{2}, \quad \phi=0 \tag{b}
\end{equation*}
$$

at C; that is, again, a total of four holonomic equations. This condition is guaranteed to hold continuously if it holds initially and, afterwards, the pivoting vanishes. Such conditions are met in the following examples:
(a) Rolling of two plane curves (or normal cross sections of cylindrical surfaces S_{1} and S_{2}) on each other, and expressed by $s_{1}=s_{2} \pm c$.
(b) Rolling of a body on a fixed surface, which it touches on only two points. For example, the rolling of a sphere on a system made up of a fixed circular cylinder and a fixed plane perpendicular to it [fig. 2.6(a)]. (If the cylinder rotates about its axis in a known fashion, the trajectories of the contact points on both plane and cylinder are known, but they are unknown on the sphere and, hence, such rolling is nonholonomic.)
(c) Rolling of two equal bodies of revolution whose axes are constrained to meet and, initially, are in contact along homologous parallels, or meridians [fig. 2.6(b)]. The pivoting of such applicable surfaces vanishes.
(a)

(b)

Figure 2.6 Examples of holonomic rolling: (a) rolling of a sphere on a fixed circular cylinder and a fixed plane perpendicular to it; (b) rolling of a cone on another equal fixed cone.

2.3 QUANTITATIVE INTRODUCTION TO NONHOLONOMICITY

Let us examine the differences between holonomic and nonholonomic constraints, in some mathematical detail, for the simplest possible case: a single particle, with (inertial) rectangular Cartesian coordinates x, y, z, moving in space under the Pfaffian equation

$$
\begin{equation*}
a d x+b d y+c d z=0 \tag{2.3.1}
\end{equation*}
$$

where $a, b, c=$ continuously differentiable functions of x, y, z.
[The Pfaffian expression $a d x+b d y+c d z$ is a special differential form of the first degree. The total or Pfaffian differential equation (2.3.1) is a specialization of the Monge form:
$0=f(x, y, z ; d x, d y, d z)=$ stationary and homogeneous in the velocity components $(d x / d t, d y / d t, d z / d t)$, and hence (since t is absent) only path restricting.

The Monge form is, in turn, a specialization of the general first-order partial differential equation:

$$
F(t ; x, y, z ; d x / d t, d y / d t, d z / d t)=0 .]
$$

Now, the constraint (2.3.1) may be nonholonomic or it may be holonomic in differential (or velocity) form; specifically, if (2.3.1) can become, through multiplication with an appropriate integrating factor, $\mu=\mu(x, y, z)$, an exact, or perfect, or total differential $d \phi=d \phi(x, y, z)$ of a scalar function $\phi=\phi(x, y, z)$:

$$
\begin{equation*}
\mu(a d x+b d y+c d z)=d \phi \tag{2.3.1a}
\end{equation*}
$$

from which, by integration, we may obtain the (rigid and stationary) surface:

$$
\begin{equation*}
\phi(x, y, z)=\text { constant }, \quad \text { or } \quad z=z(x, y), \tag{2.3.1b}
\end{equation*}
$$

then (2.3.1) is holonomic; if not, it is nonholonomic.
[Since, as is well known, the two-variable Pfaffian $a(x, y) d x+b(x, y) d y$ has always an integrating factor (in fact, an infinity of them), eq. (2.3.1) is the simplest possibly nonholonomic constraint. More on this below.]

In particular, if $\mu=1$ (i.e., $d \phi=a d x+b d y+c d z$), the integrable Pfaffian $d \phi$ is exact. Then,

$$
\begin{equation*}
a=\partial \phi / \partial x, \quad b=\partial \phi / \partial y, \quad c=\partial \phi / \partial z \tag{2.3.2}
\end{equation*}
$$

and so the necessary and sufficient conditions for (2.3.1) to be exact are that the first partial derivatives of a, b, c, exist and satisfy (by equating the second mixed ϕ-derivatives):

$$
\begin{equation*}
\partial a / \partial y=\partial b / \partial x, \quad \partial a / \partial z=\partial c / \partial x, \quad \partial b / \partial z=\partial c / \partial y \tag{2.3.3}
\end{equation*}
$$

Equations (2.3.3) are sufficient for (2.3.1) to be completely integrable $=$ holonomic; but they are not necessary: every exact Pfaffian equation is integrable, but every integrable Pfaffian equation need not be exact; in general, a $\mu \neq 1$ may exist, even though not all of (2.3.3) hold. In mechanics, we are interested in the holonomicity (\equiv complete or unconditional) integrability, or absence thereof, of the constraints.

Let us now make a brief detour to the general case: the system of m Pfaffian constraints in the $n(>m)$ variables $x=\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{equation*}
d^{\prime} \theta_{D} \equiv \sum a_{D k}(x) d x_{k}=0 \quad[D=1, \ldots, m(<n)] \tag{2.3.4}
\end{equation*}
$$

where $\operatorname{rank}\left(a_{D k}\right)=m$ (i.e., these equations are linearly independent in a certain x-region), is called completely (or unconditionally) integrable, or complete, or holonomic, if either (i) it is immediately integrable, or exact; that is, if the $m d^{\prime} \theta_{D}$'s are the exact, or total, or perfect, differentials of m functions $\phi_{D}=\phi_{D}(x):$

$$
\begin{equation*}
\sum a_{D k}(x) d x_{k}=d \phi_{D}(x) \tag{2.3.4a}
\end{equation*}
$$

or (ii) each $d^{\prime} \theta_{D}$, although not immediately integrable, nevertheless admits a (nonzero) integrating factor $\Phi_{D}(x)$; that is, if the $2 m$ (not all zero) functions $\left\{\Phi_{D}(x), \phi_{D}(x) ; D=1, \ldots, m(<n)\right\}$ and (2.3.4) satisfy

$$
\begin{align*}
& \Phi_{1} d^{\prime} \theta_{1}=\Phi_{1}\left(a_{11} d x_{1}+\cdots+a_{1 n} d x_{n}\right)=d \phi_{1}(x), \tag{2.3.4b}\\
& \left.\cdots \cdots a_{m n} d x_{n}\right)=d \phi_{m}(x) \\
& \Phi_{m} d^{\prime} \theta_{m}=\Phi_{m}\left(a_{m 1} d x_{1}+\cdots \cdots a_{1}\right.
\end{align*}
$$

or, compactly, $\Phi_{D} d^{\prime} \theta_{D}=\Phi_{D}\left(\sum a_{D k} d x_{k}\right)=d \phi_{D}(x)$, where the $\left\{d \phi_{D}\right\}$ are (linearly) independent. Summing (2.3.4b), over D, we also obtain its following consequence:

$$
\begin{gathered}
\sum \Phi_{D} d^{\prime} \theta_{D}=\sum \Phi_{D}\left(\sum a_{D k} d x_{k}\right)=\sum d \phi_{k} \equiv d \phi=\sum\left(\partial \phi / \partial x_{k}\right) d x_{k} \\
\Rightarrow \sum \Phi_{D} a_{D k}=\partial \phi / \partial x_{k}
\end{gathered}
$$

Clearly, in both cases, $(2.3 .4 \mathrm{a}, \mathrm{b})$, the constraints (2.3.4) are equivalent to the holonomic equations

$$
\begin{equation*}
\phi_{1}(x)=C_{1}, \ldots, \phi_{m}(x)=C_{m} \tag{2.3.4c}
\end{equation*}
$$

where the m constants $\left\{C_{D} ; D=1, \ldots, m\right\}$ are fixed throughout the motion of the system. (Elaboration of this leads to the concept of semiholonomic constraints, treated later in this section.) If the constraints (2.3.4) are nonintegrable, neither immediately nor with integrating factors, they are called nonholonomic; and the mechanical system whose motion obeys, in addition to the kinetic equations, such nonholonomic constraints, either internally (constitution of its bodies) or externally (interaction with its environment, obstacles, etc.), is called a nonholonomic system.

An alternative definition of complete integrability of the system (2.3.4), equivalent to $(2.3 .4 \mathrm{~b})$, is the existence of m independent, that is, distinct, linear, combinations of the $m d^{\prime} \theta_{D}$ that are exact differentials of the m independent functions $f_{D}(x)$:

$$
\begin{equation*}
\mu_{11} d^{\prime} \theta_{1}+\cdots+\mu_{1 m} d^{\prime} \theta_{m}=d f_{1}, \ldots, \mu_{m 1} d^{\prime} \theta_{1}+\cdots+\mu_{m m} d^{\prime} \theta_{m}=d f_{m} \tag{2.3.4d}
\end{equation*}
$$

where $\mu_{D D^{\prime}}=\mu_{D D^{\prime}}(x)$, or, compactly,

$$
\begin{equation*}
\sum \mu_{D D^{\prime}} d^{\prime} \theta_{D^{\prime}}=d f_{D} \Leftrightarrow d^{\prime} \theta_{D}=\sum M_{D D^{\prime}} d f_{D^{\prime}} \quad\left(D, D^{\prime}=1, \ldots, m\right) \tag{2.3.4e}
\end{equation*}
$$

[where $\left(M_{D D^{\prime}}\right)$ is the inverse matrix of $\left(\mu_{D D^{\prime}}\right)$, and both $(m \times m)$ matrices are nonsingular] and, hence, yield the m independent integrals (hypersurfaces):
$f_{1}=c_{1}, \ldots, f_{m}=c_{m}$; that is, the system of eqs. (2.3.4) is completely integrable if there exists an m-parameter $(n-m)$-dimensional manifold that solves them. [Frobenius (1877) has shown that if $m=n$, or $n-1$, then the system (2.3.4) is always completely integrable - more on this later.]

Finally, calling the determinant of the coefficients $\mu_{D D^{\prime}}$ the multiplicator of (2.3.4) [i.e., $\left|\mu_{D D^{\prime}}\right| \equiv \mu(\neq 0)$], and generalizing from the single constraint case (2.3.1), we can state that every multiplicator has always the form $\mu F\left(f_{1}, \ldots, f_{D}\right)$, where $F(\ldots)$ is an arbitrary differentiable function of the f 's; that is, there exists an infinity of multiplicators.

From the above, it immediately follows that in the case of a single Pfaffian equation in the n variables $x=\left(x_{1}, \ldots, x_{n}\right)$ (i.e., for $m=1$), complete integrability, in a certain x-domain, means that there exists, locally at least, a one-parameter family of ($n-1$)-dimensional manifolds $f(x) \equiv \phi(x)$ - constant $=0$, which solves that equation.
[We remark that the solutions of $d^{\prime} \theta \equiv \sum a_{k}(x) d x_{k}=0$ are always one-dimensional manifolds, or curves: $x_{k}=x_{k}(u)$, where $u=$ curve parameter. And, generally, if the x are functions of the $m(<n)$ new variables $\left(u_{1}, \ldots, u_{m}\right)$, then $x_{k}=x_{k}\left(u_{1}, \ldots, u_{m}\right)$ is called an m-dimensional solution manifold of $d^{\prime} \theta=0$, if, upon substitution into it, identical satisfaction results.]

Problem 2.3.1 Verify that the sufficient (but non-necessary!) conditions for the complete integrability of the system of m Pfaffian equations [essentially the discrete version of (2.2.9) for a system of N particles],

$$
\begin{equation*}
f_{D} d t \equiv \sum\left(a_{D k} d x_{k}+b_{D k} d y_{k}+c_{D k} d z_{k}\right)+e_{D} d t=0 \tag{a}
\end{equation*}
$$

where $D=1, \ldots, m(<3 N), k=1, \ldots, N$, and $(a, b, c, e)=$ continuously differentiable functions of (x, y, z, t), are that

$$
\begin{array}{lll}
\partial a_{D k} / \partial x_{l}=\partial a_{D l} / \partial x_{k}, & \partial a_{D k} / \partial y_{l}=\partial b_{D l} / \partial x_{k}, & \\
& & \partial a_{D k} / \partial z_{l}=\partial c_{D l} / \partial x_{k}, \\
\partial a_{D k} / \partial y_{l}=\partial b_{D l} / \partial y_{k}, & \partial b_{D k} / \partial z_{l}=\partial c_{D l} / \partial y_{k}, \partial x_{k} ; \\
\partial c_{D k} / \partial z_{l}=\partial c_{D l} / \partial z_{k}, & \partial c_{D k} / \partial t=\partial e_{D} / \partial z_{k} ;
\end{array} \quad \begin{aligned}
& \partial b_{D k} / \partial t=\partial e_{D} / \partial y_{k} ; \tag{d}
\end{aligned}
$$

for all $k, l=1, \ldots, N$, for a fixed D. [In fact, the (obvious) choice: $a_{D k}=\partial \phi_{D} / \partial x_{k}$, $b_{D k}=\partial \phi_{D} / \partial y_{k}, c_{D k}=\partial \phi_{D} / \partial z_{k}, e_{D}=\partial \phi_{D} / \partial t ; \phi_{D}=\phi_{D}(t ; x, y, z)$ satisfies (b-d).] Then, (a) simply states that $d \phi_{D}=0$; and the latter integrates immediately to the holonomic constraints: $\phi_{D}=\phi_{D}(t ; x, y, z)=(\text { constant })_{D}$.

Introduction to Necessary and Sufficient Conditions for Holonomicity

Let us, for the time being, postpone the discussion of the general case and return to the single Pfaffian equation in three variables, eq. (2.3.1), and find the necessary and sufficient conditions for its holonomicity. Assuming that this is indeed the case, then from (2.3.1) and the second of (2.3.1b) we readily see that

$$
\begin{equation*}
d z=(\partial z / \partial x) d x+(\partial z / \partial y) d y=(-a / c) d x+(-b / c) d y \tag{2.3.5}
\end{equation*}
$$

must hold for all $d x, d y, d z$. Therefore, equating the coefficients of $d x$ and $d y$ of both
sides, we obtain [assuming $c \neq 0$, and that $z(x, y)$ is substituted for z in a, b, c]

$$
\begin{equation*}
\partial z / \partial x=-(a / c) \quad \text { and } \quad \partial z / \partial y=-(b / c) \tag{2.3.5a}
\end{equation*}
$$

and since $\partial / \partial y(\partial z / \partial x)=\partial / \partial x(\partial z / \partial y)$, we obtain $\partial / \partial y(a / c)=\partial / \partial x(b / c)$, or, explicitly,

$$
\begin{aligned}
& c[\partial a / \partial y+(\partial a / \partial z)(\partial z / \partial y)]-a[\partial c / \partial y+(\partial c / \partial z)(\partial z / \partial y)] \\
&=c[\partial b / \partial x+(\partial b / \partial z)(\partial z / \partial x)]-b[\partial c / \partial x+(\partial c / \partial z)(\partial z / \partial x)]
\end{aligned}
$$

and inserting in it the $\partial z / \partial x$ - and $\partial z / \partial y$-values from (2.3.5a), and simplifying, we finally find

$$
\begin{equation*}
I \equiv a(\partial b / \partial z-\partial c / \partial y)+b(\partial c / \partial x-\partial a / \partial z)+c(\partial a / \partial y-\partial b / \partial x)=0 \tag{2.3.6}
\end{equation*}
$$

Equation (2.3.6), being a direct consequence of the earlier mixed partial derivative equality, is the necessary and sufficient condition for (2.3.1) to be holonomic. If $I=0$ identically (i.e., for arbitrary x, y, z), then (2.3.1) is holonomic; if $I \neq 0$ identically, then (2.3.1) is nonholonomic.

REMARKS

(i) The form I is symmetric in (x, y, z) and (a, b, c); that is, it remains unchanged under simultaneous cyclic changes of (x, y, z) and (a, b, c).
(ii) Alternative derivation of equation (2.3.6): The mixed partial derivatives rule applied to (2.3.1a) readily yields

$$
\partial(\mu b) / \partial x=\partial(\mu a) / \partial y, \quad \partial(\mu c) / \partial x=\partial(\mu a) / \partial z, \quad \partial(\mu c) / \partial y=\partial(\mu b) / \partial z
$$

Multiplying the above equalities with c, b, a, respectively, and adding them together, we obtain (2.3.6); so, clearly, the latter is necessary and sufficient for the existence of an integrating factor (for further details, see, e.g., Forsyth, 1885 and 1954, pp. 247 ff.).
(iii) A special case: If $a=a(x, y), b=b(x, y)$, and $c=0$, then, clearly, $I=0$; which proves the earlier claim that the two-variable Pfaffian equation $a(x, y) d x+b(x, y) d y=0$ is always holonomic; that is, for nonholonomicity, we need at least three variables.
(iv) A special form: If (2.3.1) has the equivalent form

$$
\begin{align*}
d z & =(-a / c) d x+(-b / c) d y \equiv A(x, y, z) d x+B(x, y, z) d y \\
& =A[x, y, z(x, y)] d x+B[x, y, z(x, y)] d y \\
& \equiv A^{*}(x, y) d x+B^{*}(x, y) d y \tag{2.3.7}
\end{align*}
$$

(or, similarly, $d x=\cdots, d y=\cdots$; depending on analytical convenience and/or avoidance of singularities), then the mixed partial derivative rule

$$
\begin{equation*}
\partial A^{*}(x, y) / \partial y=\partial B^{*}(x, y) / \partial x \tag{2.3.7a}
\end{equation*}
$$

due to the chain rule (one should be extra careful here):

$$
\begin{align*}
& \partial A^{*} / \partial y=\partial A / \partial y+(\partial A / \partial z)(\partial z / \partial y)=\partial A / \partial y+(\partial A / \partial z) B \tag{2.3.7b}\\
& \partial B^{*} / \partial x=\partial B / \partial x+(\partial B / \partial z)(\partial z / \partial x)=\partial B / \partial x+(\partial B / \partial z) A \tag{2.3.7c}
\end{align*}
$$

finally yields

$$
\begin{equation*}
\partial A / \partial y+(\partial A / \partial z) B=\partial B / \partial x+(\partial B / \partial z) A \tag{2.3.7d}
\end{equation*}
$$

whose identical satisfaction in x, y, z, is the necessary and sufficient condition for the complete integrability, or holonomicity, of (2.3.7).

It is not hard to verify that (i) replacing, in (2.3.7d), A with $-a / c$ and B with $-b / c$, we recover (2.3.6); and, conversely, (ii) since (2.3.7) can be written in the (2.3.1)-like form: $A d x+B d y+(-1) d z=0$, replacing, in (2.3.6), a, b, c, with $A, B,-1$, respectively, we recover (2.3.7d). If, in (2.3.7), $\partial A / \partial z=0$ and $\partial B / \partial z=0$, then (2.3.7d) reduces to $\partial A / \partial y=\partial B / \partial x$. Finally, the sole analytical requirement here is the continuity of all partial derivatives appearing in these conditions (but not those of the nonappearing ones, such as $\partial A / \partial x$ and $\partial B / \partial y)$.

Example 2.3.1 Let us test, for complete integrability, the following constraints:

$$
\text { (i) } d z=(z) d x+\left(z^{2}+a^{2}\right) d y ; \quad \text { (ii) } d z=z(d x+x d y)
$$

(i) Here, $A=z$ and $B=z^{2}+a^{2}$, and therefore (2.3.7d) yields

$$
(1)\left(z^{2}+a^{2}\right)=(2 z) z \Rightarrow z^{2}=a^{2}
$$

that is, no identical satisfaction; or, our constraint is not completely integrable - it is nonholonomic. Then, the original equation becomes

$$
d z=z d x+2 z^{2} d y
$$

and so (a) if $a=0$, then $z=0$ is a constraint integral; but (b) if $a \neq 0$, then there is no integral. For complete integrability, we should have an infinity of integrals depending on an arbitrary integration constant.
(ii) Here, the test (2.3.7d) gives $x z=z+x z \Rightarrow z=0$; that is, no identical satisfaction, and therefore no holonomicity. As the original equation shows, this is the sole integral.

Problem 2.3.2 Show that the constraint of the plane pursuit problem (ex. 2.2.1):

$$
\begin{equation*}
[Y(t)-y](d x / d t)-[X(t)-x](d y / d t)=0 \tag{a}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
[Y(t)-y] d x-[X(t)-x] d y+(0) d t=0 \tag{b}
\end{equation*}
$$

is holonomic if and only if

$$
\begin{equation*}
[X(t)-x] /[Y(t)-y]=(d X / d t) /(d Y / d t) \quad[=(d x / d t) /(d y / d t)] \tag{c}
\end{equation*}
$$

Problem 2.3.3 Show that under a general one-to-one (nonsingular) coordinate transformation $(x, y, z) \Leftrightarrow(u, v, w): x=x(u, v, w), y=\cdots, z=\cdots$,

$$
\begin{equation*}
I=[\partial(u, v, w) / \partial(x, y, z)] \cdot I^{\prime} \tag{a}
\end{equation*}
$$

where (with subscripts denoting partial derivatives)

$$
\begin{gather*}
d \theta \equiv a d x+b d y+c d z=p d u+q d v+r d w, \tag{b}\\
I=I(x, y, z) \equiv a\left(b_{z}-c_{y}\right)+b\left(c_{x}-a_{z}\right)+c\left(a_{y}-b_{x}\right), \tag{c}\\
I^{\prime}=I^{\prime}(u, v, w) \equiv p\left(q_{w}-r_{v}\right)+q\left(r_{u}-p_{w}\right)+r\left(p_{v}-q_{u}\right), \tag{d}
\end{gather*}
$$

and $\partial(u, v, w) / \partial(x, y, z)=$ Jacobian of the transformation $(\neq 0)$; that is, I and I^{\prime} vanish simultaneously; or, the holonomicity of $d \theta=0$, or absence thereof, is coordinate invariant, and hence an intrinsic property of the constraint (a proof of this fundamental fact, for a general Pfaffian system, will be given later).
[Incidentally, the transformation law (a) also shows that scalars like I are not necessarily invariants ($I \neq I^{\prime}$, in general); in fact, in the more precise language of tensor calculus, they are called relative scalars of weight +1 , or scalar densities; see, e.g., Papastavridis (1999, pp. 46-49).]

Geometrical Interpretation of the Pfaffian Equation (2.3.1)

The latter, rewritten with the help of the vectors $d \boldsymbol{r}=(d x, d y, d z)$ and $\boldsymbol{h}=(a, b, c)$ as

$$
\begin{equation*}
\boldsymbol{h} \cdot d \boldsymbol{r}=0 \tag{2.3.8}
\end{equation*}
$$

means that, at each specified point $Q(x, y, z), d \boldsymbol{r}$ must lie on a local plane perpendicular to the "constraint coefficient vector" \boldsymbol{h} there; or, that the particle P can move only along those curves, emanating from Q, whose tangent is perpendicular to \boldsymbol{h}. Such curves are called kinematically admissible, or kinematically possible. If $(2.3 .1,8)$ is holonomic, then all motions lie on the integral surface (2.3.1b); that is, (2.3.6) is the necessary and sufficient condition for the existence of an orthogonal surface through Q, for the field $\boldsymbol{h}=(a, b, c)$ [actually, a family of surfaces $\phi=\phi(x, y, z)=$ constant, everywhere normal to \boldsymbol{h}-see below]. We also notice that, with the help of \boldsymbol{h}, the condition (2.3.6) takes the memorable (invariant) form:

$$
I \equiv \boldsymbol{h} \cdot \text { curl } \boldsymbol{h}=0 ; \quad \text { or, symbolically, } \quad\left|\begin{array}{ccc}
a & b & c \tag{2.3.8a}\\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
a & b & c
\end{array}\right|=0 ;
$$

that is, at every field point, \boldsymbol{h} is parallel to the plane of its rotation, or perpendicular to that rotation and tangent to the surface $\phi=$ constant there [W. Thomson (Lord Kelvin) called such fields doubly lamellar]; while (2.3.7d), with $\boldsymbol{h} \rightarrow \boldsymbol{H} \equiv(A, B,-1)$, becomes

$$
\begin{equation*}
\boldsymbol{H} \cdot \text { curl } \boldsymbol{H}=\partial A / \partial y+B(\partial A / \partial z)-\partial B / \partial x-A(\partial B / \partial z)=\left(1 / c^{2}\right) \boldsymbol{h} \cdot \text { curl } \boldsymbol{h}=0 . \tag{2.3.8b}
\end{equation*}
$$

Vectorial Derivation of Equation (2.3.8a)

We recall from vector analysis that a (continuously differentiable) vector is called irrotational, or singly lamellar, if (a) its line integral around every closed circuit
vanishes, or, equivalently, (b) if its curl (rotation) vanishes, or (c) if it equals the gradient of a scalar.

Now: (i) If $\boldsymbol{h}=(a, b, c)$ is irrotational, then there is a $\phi=\phi(x, y, z)$ such that $\boldsymbol{h}=\boldsymbol{\operatorname { g r a d }} \phi$, and, therefore, $\boldsymbol{h} \cdot d \boldsymbol{r}=\boldsymbol{\operatorname { g r a d }} \phi \cdot d \boldsymbol{r}=d \phi=$ exact differential.
(ii) If $\boldsymbol{h} \neq$ irrotational, still an integrating factor (IF) $\mu=\mu(x, y, z)$ may exist so that $\mu \boldsymbol{h}=\operatorname{grad} \phi$. Then, as before, $\mu \boldsymbol{h} \cdot d \boldsymbol{r}=\boldsymbol{\operatorname { g r a d }} \phi \cdot d \boldsymbol{r}=d \phi=$ exact differential.
(iii) Conversely, if $\mu=I F$, then $\mu \boldsymbol{h}=\boldsymbol{g r a d} \phi=$ irrotational; and "curling" both sides of this latter, we obtain: $\mathbf{0}=\operatorname{curl}(\boldsymbol{\operatorname { g r a d }} \phi)=\mu \operatorname{curl} \boldsymbol{h}+\boldsymbol{\operatorname { g r a d }} \mu \times \boldsymbol{h}$, and dotting this with $\boldsymbol{h}: 0=\mu(\boldsymbol{h} \cdot \boldsymbol{c u r l} \boldsymbol{h})$, from which, since $\mu \neq 0$, we finally get (2.3.8a). In this case, since \boldsymbol{h} and $\operatorname{grad} \phi$ are parallel: $\boldsymbol{h}=(1 / \mu) \operatorname{grad} \phi \equiv \nu(\operatorname{grad} \phi)$, and, therefore, $\operatorname{curl} \boldsymbol{h}=\operatorname{curl}(\nu \operatorname{grad} \phi)=\operatorname{grad} \nu \times \operatorname{grad} \phi$, so that

$$
\begin{equation*}
\boldsymbol{h} \cdot \operatorname{curl} \boldsymbol{h}=\nu \operatorname{grad} \phi \cdot(\boldsymbol{g r a d} \nu \times \operatorname{grad} \phi)=0 ; \tag{2.3.8c}
\end{equation*}
$$

that is, the doubly lamellar field \boldsymbol{h} is perpendicular to its rotation curl \boldsymbol{h}. [This condition is necessary for the existence of an IF. For its sufficiency, see, for example, Brand (1947, pp. 200, 230-231), Sneddon (1957, pp. 21-23); also Coe (1938, pp. 477-478), for an integral vector calculus treatment.] These derivations are based on a general vector field theorem according to which an arbitrary vector field can be written as the sum of a simple and a complex (or doubly) lamellar field: $\boldsymbol{h}=\operatorname{grad} f+\nu$ grad ϕ.

Finally, if the Pfaffian constraint is, nonholonomic, then (2.3.1,7) yield onedimensional "nonholonomic manifolds"; that is, space curves orthogonal to the field \boldsymbol{h} (or $\boldsymbol{H})$, and constituting a one-parameter family on an arbitrary surface.

Accessibility

The restrictions on the motion of the particle P in the two cases $I=0$ (holonomic) and $I \neq 0$ (nonholonomic) are of entirely different nature. If $I=0$, then P is obliged to move on the surface $\phi=\phi(x, y, z)=0$. If, on the other hand, $I \neq 0$, then the constraint (2.3.1) does not restrict the (x, y, z), but does restrict the direction (velocity) of the curves through a given point (x, y, z). The cumulative effect of these local restrictions in the direction of motion (velocity) is that the transition between two arbitrary points is not arbitrary; P can move (or be guided through) from an arbitrary initial (analytically possible) position, to any other arbitrary final (analytically possible) position, while at every point of its path satisfying (2.3.1, 8); that is, the particle can move from "anywhere" to "anywhere," not via any route we want, but along restricted paths. As Langhaar puts it, the particle is "constrained to follow routes that coincide with a certain dense network of paths" (1962, pp. 5-6); like kinematically possible tracks guiding the system.

In sum: (i) Holonomic constraints do reduce the dimension of the space of accessible configurations, but do not restrict motion and paths in there; in Hertz's words: "all conceivable continuous motions [between two arbitrary accessible positions] are also possible motions."
(ii) Nonholonomic constraints do not affect the dimension of the space of accessible configurations, but do restrict the motions locally (and, cumulatively, also globally) in there; not all conceivable continuous motions (between two arbitrary accessible positions) are possible motions (Hertz, 1894, p. 78 ff .).

These geometrical interpretations and associated concepts are extended to general systems in §2.7.

Degrees of Freedom

The above affect the earlier DOF definition: they force us to distinguish between DOF in the large (measure of global accessibility, or global mobility) and DOF in the small (measure of local/infinitesimal mobility). We define the former, $\operatorname{DOF}(L)$, as the number of independent global positional (or holonomic) "parameters," or Lagrangean coordinates $\equiv n(=3$ in our examples, so far); and the latter, $\operatorname{DOF}(S) \equiv f$, as n minus the number of additional (possibly nonholonomic) independent Pfaffian constraints: $f=n-m(>0)$. In the absence of the latter, $\operatorname{DOF}(L)=\operatorname{DOF}(S): f=n$. This fine distinction between DOFs rarely appears in the literature, where, as a rule, DOF means DOF in the small. \{For enlightening exceptions, see, for example, Sommerfeld (1964, pp. 48-51); also Roberson and Schwertassek (1988, p. 96), who call these DOFs, respectively, positional (L) and motional (S); and the pioneering Korteweg (1899, p. 134), who states that "Die anzahl der Freiheitsgrade sei bei ihr eine andere (kleinere) für unendlich kleine wie für endliche Verrückungen" [Translation: The number of degrees of freedom is different (smaller) for infinitesimal displacements than for finite displacements.]\}

As explained later in this chapter ($\$ 2.5 \mathrm{ff}$.), $\operatorname{DOF}(S) \equiv f$ equals the number of independent virtual displacements of the system; and this, in turn (chap. 3), equals the smallest, or minimal, number of kinetic (i.e., reactionless) equations of motion of it. In view of this, from now on by DOF we shall understand DOF in the small; that is, $D O F \equiv \operatorname{DOF}(S) \equiv n-m \equiv f$, unless explicitly specified otherwise. The concept of DOF in the large is more important in pure kinematics (mechanisms).

Finally, in the general constraint case, all these results hold intact, but for the figurative system "particle" in a higher dimensional space - more on this later.

Semiholonomic Constraints

We stated earlier that if $I=0$, the Pfaffian constraint (2.3.1) is holonomic; that is, it can be brought to the form

$$
\begin{equation*}
d \phi / d t=0 \Rightarrow \phi=\text { constant } \equiv c . \tag{2.3.9}
\end{equation*}
$$

Such situations necessitate an additional, albeit minor, classification of holonomic constraints into proper holonomic, or simply holonomic, and improper holonomic, or semiholonomic ones. In both cases, the constraints are finite (i.e., holonomic), but, in the proper case, the constraint constants have a priori fixed values, independent of the system's position/motion; whereas, in the semiholonomic case, those constants depend on the arbitrarily specified values of the system coordinates at some "initial" instant; that is, semiholonomic constraints are completely integrable velocity (Pfaffian) constraints \Rightarrow (generally) initial condition-depending holonomic constraints. In the proper holonomic case, the initial values of the coordinates must be determined in conjunction with the given constraints and their constants; that is, they must be compatible with the latter. However, semiholonomic constraints, being essentially holonomic, can be used to reduce the number of independent global/ Lagrangean coordinates; and, thus, differ profoundly from the nonholonomic ones. Clearly, the proper/semiholonomic distinction applies to rheonomic holonomic constraints, like $\phi(x, y, z, t)=c$. For further details, see (alphabetically): Delassus (1913(b), pp. 23-25: earliest extensive discussion of semiholonomicity), Moreau (1971, pp. 228-232), and Pérès (1953, pp. 60-62, 218-219).

Critical Comments on Nonholonomic Constraints

The concept of nonholonomicity (in mechanics) has been around since the 1880s, and has been thoroughly studied and expounded by some of the greatest mathematicians, physicists, and mechanicians, for example (approximately chronologically): Voss, Hertz, Hadamard, Appell, Chaplygin, Voronets, Maggi, Boltzmann, Hamel, Heun, Delassus, Carathéodory, Schouten, Struik, Goursat, Cartan, Synge, Vranceanu, Vagner, Dobronravov, Lur'e, Neimark, Fufaev, et al. Direct definitions of nonholonomicity and analytical tests have been available, on a large and readable scale, at least since the 1920s. And yet, on this topic, there exists widespread misunderstanding and confusion; especially in the engineering literature. For example, some authors state that constraints that can be represented by equations like $\phi(\boldsymbol{r}, t)=0$, or $\phi(x, y, z, t)=0$, are called holonomic, and that all others are called nonholonomic; for example, Goldstein (1980, p. 12 ff.), Kane (1968, p. 14), Kane and Levinson (1985, p. 43), Likins (1973, pp. 184, 295), Matzner and Shepley (1991, pp. 23-24). Under such an indirect, vague, negative definition, inequality constraints like $\phi \geq 0$, or (perhaps?!) holonomic ones, but in velocity form, like

$$
\begin{equation*}
d \phi / d t=\boldsymbol{S}(\partial \phi / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+\partial \phi / \partial t=0 \tag{2.2.10}
\end{equation*}
$$

would be called nonholonomic! Or, we read blatantly contradictory and erroneous statements like "With nonholonomic systems the generalized coordinates are not independent of each other, and it is not possible to reduce them further by means of equations of constraint of the form $f\left(q_{1}, \ldots, q_{n}, t\right)=0$. Hence it is no longer true that the q_{j} 's are independent" (Goldstein (1980, p. 45), emphasis added). Others call nonholonomic all velocity constraints that cannot be written in the above form $\phi=0$, which is correct; but they fail to supply the reader with analytical (or geometrical, or even numerical) tools on how to test this; for example, Roberson and Schwertassek (1988, p. 96), Shabana (1989, pp. 123, 128). The more careful of this last group talk clearly about integrability, exactness, and so on, but restrict themselves to only one velocity constraint; for example, Haug (1992, pp. 87-89). Still others mix nonholonomic coordinates (quasi coordinates, etc.) with nonholonomic constraints, and exactness of Pfaffian forms with (complete) integrability of a system of Pfaffian equations, without ever supplying clear and general definitions, let alone analytical tests. And this results in defective definitions of the concept of DOF; for example, Angeles (1988, pp. 80, 103). Even the (otherwise monumental) treatise of Pars (1965, pp. 16-19, 22-24, 35-37, 64-72, 196) is limited to an introduction to the subject, albeit a careful and precise one. Finally, there is the recent crop of texts on "modern" dynamics, where the problem of nonholonomicity is "solved" by ignoring it altogether; for example, Rasband (1983). Only Neimark and Fufaev (1967/1972) discuss the nonholonomicity issue clearly, competently, and in sufficient generality and completeness to be useful. We hope that our treatment complements and extends their beautiful work.

Extensions/Generalizations of the Integrability Conditions (May be omitted in a first reading)

(i) Single Pfaffian Equation in the n Variables $x=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{equation*}
d^{\prime} \theta \equiv \sum a_{k} d x_{k}=0, \quad a_{k}=a_{k}(x) \tag{2.3.10}
\end{equation*}
$$

It can be shown that the necessary and sufficient condition for the complete integrability $=$ holonomicity of (2.3.10) is the identical satisfaction of the following "symmetric" equations:

$$
\begin{align*}
I_{k l p} \equiv a_{k}\left(\partial a_{l} / \partial x_{p}-\partial a_{p} / \partial x_{l}\right) & +a_{l}\left(\partial a_{p} / \partial x_{k}-\partial a_{k} / \partial x_{p}\right) \\
& +a_{p}\left(\partial a_{k} / \partial x_{l}-\partial a_{l} / \partial x_{k}\right)=0 \tag{2.3.10a}
\end{align*}
$$

for all combinations of the indices $k, l, p=1, \ldots, n$. [For example, one may start with the integrability condition of (2.3.1), (2.3.6) (i.e., $n=3$) and then use the method of induction; or perform similar steps as in the three-dimensional case; see, for example, Forsyth (1885 and 1954, pp. 259-260).] Further, it can be shown (e.g., again, by induction) that out of a total of $n(n-1)(n-2) / 6$ equations (2.3.10a), equal to the number of triangles that can be formed with n given points as corners, only $n_{I} \equiv(n-1)(n-2) / 2$ are independent. For $n=3$, that number is indeed 1: eqs. (2.3.6) or (2.3.8a). Also, if $a_{k} \neq 0$, it suffices to apply (2.3.10) only for l and p different from k. Finally, with appropriate extension of the $c u r l$ of a vector to n-dimensional spaces, (2.3.10) can be cast into a (2.3.8a)-like form (see, e.g., Papastavridis, 1999, chaps. 3, 6).

Problem 2.3.4 (i) Specialize (2.3.10a) to the acatastatic constraint $(n=4)$:

$$
\begin{equation*}
a(t, x, y, z) d x+b(t, x, y, z) d y+c(t, x, y, z) d y+e(t, x, y, z) d t=0 \tag{a}
\end{equation*}
$$

(ii) Show that (a) is holonomic if, and only if, the symbolic matrix

$$
\left(\begin{array}{cccc}
a & b & c & e \tag{b}\\
\partial / \partial x & \partial / \partial y & \partial / \partial z & \partial / \partial t \\
a & b & c & e
\end{array}\right)
$$

has rank 2 (actually, less than 3); that is, all possible four of its 3×3 symbolic subdeterminants, each to be developed along its first row, vanish.
(iii) Further, show that if all such 2×2 subdeterminants of (b) vanish, then (a) is exact.
(iv) Specialize the preceding result to the catastatic case $e \equiv 0$; verify that, then, we obtain (2.3.6).

Problem 2.3.5 For the Pfaffian equation (2.3.10), define the $(n+1) \times n$ matrix

$$
\mathbf{P}=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{n} \tag{a}\\
\hline a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \cdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right),
$$

where $\quad a_{k l} \equiv \partial a_{k} / \partial x_{l}-\partial a_{l} / \partial x_{k}\left(=-a_{l k}\right) ; \quad k, l=1, \ldots, n . \quad$ Clearly, $\quad a_{11}=\cdots=$ $a_{n n}=0$. Now, it is shown in differential equations/differential geometry that for the holonomicity of (2.3.10), it is necessary and sufficient that the rank of \mathbf{P} equal 1 or 2.

Show that (i) rank $\mathbf{P}=1$ (i.e., all its 2×2 subdeterminants vanish) leads to the exactness conditions

$$
\begin{equation*}
a_{k l}=0 \tag{b}
\end{equation*}
$$

(ii) rank $\mathbf{P}=2$ (i.e., all its 3×3 subdeterminants vanish) leads to the earlier complete integrability conditions (2.3.10a)

$$
\begin{equation*}
a_{k} a_{l p}+a_{l} a_{p k}+a_{p} a_{k l}=0 \tag{c}
\end{equation*}
$$

Problem 2.3.6 Show that for $n=3$, equations (b, c) of the preceding problem become, respectively,

$$
\begin{equation*}
a_{k l}=0 \quad(k, l=1,2,3), \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1} a_{23}+a_{2} a_{31}+a_{3} a_{12}=0 \quad[\text { i.e., }(2.3 .6)] \tag{b}
\end{equation*}
$$

Problem 2.3.7 Consider the Pfaffian equation (2.3.10). Subject its variables x to the invertible coordinate transformation (with nonvanishing Jacobian) $x \rightarrow x^{\prime}$; in extenso:

$$
\begin{equation*}
x_{k}=x_{k}\left(x_{k^{\prime}}\right) \Leftrightarrow x_{k^{\prime}}=x_{k^{\prime}}\left(x_{k}\right) \quad\left(k, k^{\prime}=1, \ldots, n\right) \tag{a}
\end{equation*}
$$

Show that the requirement that, under that transformation, the Pfaffian form $d^{\prime} \theta$ remain (form) invariant; that is,

$$
\begin{equation*}
d^{\prime} \theta \rightarrow\left(d^{\prime} \theta\right)^{\prime} \equiv \sum a_{k^{\prime}} d x_{k^{\prime}}=d^{\prime} \theta \quad(=0), \quad a_{k^{\prime}}=a_{k^{\prime}}\left(x^{\prime}\right) \tag{b}
\end{equation*}
$$

leads to the following (covariant vector) transformations for the form coefficients:

$$
\begin{equation*}
a_{k^{\prime}}=\sum\left(\partial x_{k} / \partial x_{k^{\prime}}\right) a_{k} \Leftrightarrow a_{k}=\sum\left(\partial x_{k^{\prime}} / \partial x_{k}\right) a_{k^{\prime}} \tag{c}
\end{equation*}
$$

Problem 2.3.8 Continuing from the previous problem, define the antisymmetric quantities

$$
\begin{array}{ll}
a_{k l}=\partial a_{k} / \partial x_{l}-\partial a_{l} / \partial x_{k} & \left(=-a_{l k}\right), \\
a_{k^{\prime} l^{\prime}}=\partial a_{k^{\prime}} / \partial x_{l^{\prime}}-\partial a_{l^{\prime}} / \partial x_{k^{\prime}} & \left(=-a_{l^{\prime} k^{\prime}}\right), \quad\left(k^{\prime}, l^{\prime}=1, \ldots, n\right) . \tag{b}
\end{array}
$$

Show that under the earlier invariance requirement $d^{\prime} \theta \rightarrow\left(d^{\prime} \theta\right)^{\prime}=d^{\prime} \theta$, the above quantities transform as (second-order covariant tensors):

$$
\begin{equation*}
a_{k^{\prime} l^{\prime}}=\sum \sum\left(\partial x_{k} / \partial x_{k^{\prime}}\right)\left(\partial x_{l} / \partial x_{l^{\prime}}\right) a_{k l} \Leftrightarrow a_{k l}=\sum \sum\left(\partial x_{k^{\prime}} / \partial x_{k}\right)\left(\partial x_{l^{\prime}} / \partial x_{l}\right) a_{k^{\prime} l^{\prime}} \tag{c}
\end{equation*}
$$

Problem 2.3.9 Continuing from the preceding problems, assume that the x (and, therefore, also the x^{\prime}) depend on two parameters u_{1} and u_{2} :

$$
\begin{equation*}
x_{k}=x_{k}\left(u_{1}, u_{2}\right) \quad \text { and } \quad x_{k}^{\prime}=x_{k}^{\prime}\left(u_{1}, u_{2}\right) \tag{a}
\end{equation*}
$$

Introducing the simpler notation $d^{\prime} \theta \equiv d \theta$ and $\left(d^{\prime} \theta\right)^{\prime} \equiv d \theta^{\prime}$, show that

$$
\begin{equation*}
d_{2}\left(d_{1} \theta\right)-d_{1}\left(d_{2} \theta\right)=d_{2}\left(d_{1} \theta^{\prime}\right)-d_{1}\left(d_{2} \theta^{\prime}\right), \tag{b}
\end{equation*}
$$

where

$$
\begin{aligned}
& d_{1} \theta=\sum a_{k} d_{1} x_{k}=\sum a_{k}\left[\left(\partial x_{k} / \partial u_{1}\right) d u_{1}\right], \\
& d_{2} \theta=\sum a_{k} d_{2} x_{k}=\sum a_{k}\left[\left(\partial x_{k} / \partial u_{2}\right) d u_{2}\right],
\end{aligned}
$$

are equivalent to

$$
\begin{equation*}
\sum \sum\left(\partial x_{k} / \partial u_{1}\right)\left(\partial x_{l} / \partial u_{2}\right) a_{k l}=\sum \sum\left(\partial x_{k^{\prime}} / \partial u_{1}\right)\left(\partial x_{l^{\prime}} / \partial u_{2}\right) a_{k^{\prime} l^{\prime}} \tag{c}
\end{equation*}
$$

(ii) If the Pfaffian Constraint (2.3.10) has the Equivalent, (2.3.5, 7)-like, Special Form:

$$
\begin{equation*}
d z=\sum b_{k}(x, z) d x_{k} \quad(k=1, \ldots, n) \tag{2.3.10b}
\end{equation*}
$$

then, proceeding as in the three-dimensional case, or specializing (2.3.10a), we can show that the necessary and sufficient integrability conditions are the $n(n-1) / 2$ independent identities [replacing n with $n+1$ in the earlier n_{I}, following (2.3.10a)]:

$$
\begin{equation*}
\partial b_{k} / \partial x_{l}+\left(\partial b_{k} / \partial z\right) b_{l}=\partial b_{l} / \partial x_{k}+\left(\partial b_{l} / \partial z\right) b_{k} \quad(k, l=1, \ldots, n) \tag{2.3.10c}
\end{equation*}
$$

Here, too, only the existence and continuity of the partial derivatives involved is needed.
(iii) General Case of $m(<n)$ Independent Pfaffian Equations in n Variables
[In the slightly special total differential equation form, with $x \equiv\left(x_{D}, x_{I}\right)$]:

$$
\begin{equation*}
d x_{D}=\sum b_{D I}(x) d x_{I} \quad \text { or } \quad \partial x_{D} / \partial x_{I}=b_{D I}(x) \quad(\text { general form }) \tag{2.3.11}
\end{equation*}
$$

where (here and throughout this book)

$$
\begin{align*}
D & =1, \ldots, m(\text { for } \text { Dependent }) \quad \text { and } \quad I=m+1, \ldots, n(\text { for } \text { Independent }), \\
b_{D I}= & \text { given (continuously differentiable) functions of the } m \quad x_{D}=\left(x_{1}, \ldots, x_{m}\right), \\
& \text { and the }(n-m) \quad x_{I}=\left(x_{m+1}, \ldots, x_{n}\right) . \tag{2.3.11a}
\end{align*}
$$

The system (2.3.11) is called holonomic or completely integrable [i.e., functions $x_{D}\left(x_{I}\right)$ can be found whose total differentials are given by (2.3.11)], if, for any set of initial values $x_{I, o}, x_{D, o}$, for which the $b_{D I}$ are analytic, there exists one, and only one, set of D functions $x_{D}\left(x_{I}\right)$ satisfying (2.3.11) and taking on the initial values $x_{D, o}$ at $x_{I, o .}$. It is shown in the theory of partial (total) differential equations-see references below-that:

For the system (2.3.11) to be holonomic, it is necessary and sufficient that the following conditions hold:

$$
\begin{gather*}
\partial b_{D I} / \partial x_{I^{\prime}}+\sum b_{D^{\prime} I^{\prime}}\left(\partial b_{D I} / \partial x_{D^{\prime}}\right)=\partial b_{D I^{\prime}} / \partial x_{I}+\sum b_{D^{\prime} I}\left(\partial b_{D I^{\prime}} / \partial x_{D^{\prime}}\right) \\
{\left[D, D^{\prime}=1, \ldots, m ; \quad I, I^{\prime}=m+1, \ldots, n\right],} \tag{2.3.11b}
\end{gather*}
$$

identically in the x_{D}, x_{I} 's [i.e., not just for some particular motion(s)] and for all combinations of the above values of their indices; if they hold for some, but not all, m values of D, then the system (2.3.11) is called "partially integrable."

Now, and this is very important, as the second (sum) term, on each side of (2.3.11b), shows, the integrability of the D th constraint equation of (2.3.11) depends, through the coupling with $b_{D^{\prime} I^{\prime}}$ and $b_{D^{\prime} I}$, on all the other constraint equations of that system; that is, each (2.3.11b) tests the integrability of the corresponding constraint equation (i.e., same D) against the entire system - in general, holonomicity/nonholonomicity are system not individual constraint properties.

Geometrically, integrability means that the system (2.3.11) yields a field of $(n-m)$-dimensional surfaces in the n-dimensional space of the x 's; that is, mechanically, the system has $(n-m)$ global positional/Lagrangean coordinates, namely, $\operatorname{DOF}(L)=\operatorname{DOF}(S)=n-m$.

Further:

- With the notation

$$
\begin{equation*}
b_{D I}=b_{D I}\left(x_{D}, x_{I}\right)=b_{D I}\left[x_{D}\left(x_{I}\right), x_{I}\right] \equiv \beta_{D I}\left(x_{I}\right) \equiv \beta_{D I}, \tag{2.3.11c}
\end{equation*}
$$

and since, by careful application of chain rule to the above,

$$
\begin{aligned}
\partial \beta_{D I} / \partial x_{I^{\prime}} & =\partial b_{D I} / \partial x_{I^{\prime}}+\sum\left(\partial b_{D I} / \partial x_{D^{\prime}}\right)\left(\partial x_{D^{\prime}} / \partial x_{I^{\prime}}\right) \\
& =\partial b_{D I} / \partial x_{I^{\prime}}+\sum\left(\partial b_{D I} / \partial x_{D^{\prime}}\right) b_{D^{\prime} I^{\prime}}
\end{aligned}
$$

[if $x_{D}=x_{D}\left(x_{I}\right)$, then $d x_{D}=\sum\left(\partial x_{D} / \partial x_{I}\right) d x_{I}=\sum b_{D I}(x) d x_{I}$] the holonomicity conditions (2.3.11b) can also be expressed in the following perhaps more intelligible/ memorable ("exactness") form:

$$
\begin{equation*}
\partial \beta_{D I} / \partial x_{I^{\prime}}=\partial \beta_{D I^{\prime}} / \partial x_{I} \quad\left(I^{\prime}=m+1, \ldots, n\right) ; \tag{2.3.11d}
\end{equation*}
$$

- It is not hard to verify that the system (2.3.11b, d) stands for a total of $m(n-1)(n-2) / 2$ identities, out of which, however, only $m(n-m)(n-m-1) / 2 \equiv$ $m f(f-1) / 2$ are independent $[f \equiv n-m$; as in the general case of the first of (2.12.5)].
- In the special case where $b_{D I}=b_{D I}\left(x_{I}\right)$ [Chaplygin systems (§3.8)], (2.3.11b) reduce to the conditions:

$$
\begin{equation*}
\partial b_{D I} / \partial x_{I^{\prime}}=\partial b_{D I^{\prime}} / \partial x_{I} \quad[\text { compare with }(2.3 .11 \mathrm{~d})], \tag{2.3.11e}
\end{equation*}
$$

which, being uncoupled, test each constraint equation (2.3.11) independently of the others. Last, we point out that all these holonomicity conditions are special cases of the general theorem of Frobenius, which is discussed in $\S 2.8-2.11$.

- Equations $(2.3 .11 \mathrm{~b}, \mathrm{~d})$ also appear as necessary and sufficient conditions for a Riemannian ("curved") space to be Euclidean ("flat") \Rightarrow vanishing of RiemannChristoffel "curvature tensor", and in the related compatibility conditions in nonlinear theory of strain - see, for example, Sokolnikoff (1951, pp. 96-100), Truesdell and Toupin (1960, pp. 271-274).
- Historical: The fundamental partial differential equations (2.3.11b) are due to the German mathematician H. W. F. Deahna [J. für die reine und angewandte Mathematik (Crelle's Journal) 20, 340-349, 1840] and, also, the French mathematician J. C. Bouquet [Bull. Sci. Math. et Astron., 3(1), 265 ff., 1872]. For extensive and readable discussions, proofs, and so on, see, for example, De la Valée Poussin (1912,
pp. 312-336), Levi-Civita (1926, pp. 13-33), and the earlier Forsyth (1885/1954). Regrettably, most contemporary treatments of Pfaffian system integrability are written in the language of Cartan's "exterior forms," and so are virtually inaccessible to the average nonmathematician.

2.4 SYSTEM POSITIONAL COORDINATES AND SYSTEM FORMS OF THE HOLONOMIC CONSTRAINTS

So far, we have examined constraints in terms of particle vectors, and so on. Here, we begin to move into the main task of this chapter: to describe constrained systems in terms of general system variables. Let us assume that our originally free, or unconstrained, mechanical system S, consisting of N particles with inertial position vectors [recalling (2.2.4)]

$$
\begin{equation*}
\boldsymbol{r}_{P}=\boldsymbol{r}_{P}(t)=\left\{x_{P}(t), y_{P}(t), z_{P}(t)\right\} \quad(P=1, \ldots, N), \tag{2.4.1}
\end{equation*}
$$

is now subject to $h(<3 N)$ independent positional/geometrical/holonomic (internal and/or external) constraints

$$
\begin{equation*}
\phi_{H}\left(t, \boldsymbol{r}_{P}\right) \equiv \phi_{H}(t, \boldsymbol{r}) \equiv \phi_{H}(t ; x, y, z)=0 \quad[H=1, \ldots, h(<3 N)] \tag{2.4.2}
\end{equation*}
$$

or, in extenso,

$$
\begin{gather*}
\phi_{1}\left(t ; x_{1}, y_{1}, z_{1}, \ldots, x_{N}, y_{N}, z_{N}\right)=0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{2.4.2a}\\
\phi_{h}\left(t ; x_{1}, y_{1}, z_{1}, \ldots, x_{N}, y_{N}, z_{N}\right)=0
\end{gather*}
$$

where independent means that the $\phi_{1}, \ldots, \phi_{h}$ are not related by a(ny) functional equation of the form $\Phi\left(\phi_{1}, \ldots, \phi_{h}\right)=0$ \{In that case we would have, e.g., $\phi_{h}=F\left(t ; \phi_{1}, \ldots, \phi_{h-1}\right)$, so that one of the constraints (2.4.2, 2a), i.e., here $\phi_{h}=0$, would either be a consequence of the rest of them [if $F(t ; 0, \ldots, 0) \equiv 0$, while $\phi_{h}=0$], or it would contradict them [if $F(t ; 0, \ldots, 0) \neq 0$, while $\left.\left.\phi_{h}=0\right]\right\}$.

At this point, to simplify our discussion and improve our understanding, we rename the particle coordinates (x, y, z) as follows [recalling (2.2.1a)]:

$$
\begin{equation*}
x_{1} \equiv \xi_{1}, \quad y_{1} \equiv \xi_{2}, \quad z_{1} \equiv \xi_{3}, \ldots, \quad x_{N} \equiv \xi_{3 N-2}, \quad y_{N} \equiv \xi_{3 N-1}, \quad z_{N} \equiv \xi_{3 N} \tag{2.4.3}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
x_{P} \equiv \xi_{3 P-2}, \quad y_{P} \equiv \xi_{3 P-1}, \quad z_{P} \equiv \xi_{3 P} \quad(P=1, \ldots, N) \tag{2.4.3a}
\end{equation*}
$$

in which case, the constraints (2.4.2a) read simply

$$
\begin{equation*}
\phi_{H}\left(t ; \xi_{1}, \ldots, \xi_{3 N}\right) \equiv \phi_{H}\left(t, \xi_{*}\right)=0 \quad[H=1, \ldots, h(<3 N) ; \quad *=1, \ldots, 3 N] . \tag{2.4.3b}
\end{equation*}
$$

Therefore, using the h constraints (2.4.2a, 3b), we can express h out of the $3 N$ coordinates $\xi \equiv(x, y, z)$, say the first h of them ("dependent") in terms of the remaining $n \equiv 3 N-h$ ("independent"), and time:

$$
\begin{equation*}
\xi_{d}=\Xi_{d}\left(t ; \xi_{h+1}, \ldots, \xi_{3 N}\right) \equiv \Xi_{d}\left(t ; \xi_{i}\right) \quad[d=1, \ldots, h ; \quad i=h+1, \ldots, 3 N] \tag{2.4.4}
\end{equation*}
$$

and so it is now clear that our system has n (global) DOF, h down from the previous $3 N$ of the unconstrained situation. Further, since for $h=3 N$ (i.e., $n=0$) the solutions of (2.4.2a) would, in general, be incompatible with the equations of motion and/or initial conditions, while for $h=0$ (i.e., $n=3 N$) we are back to the original unconstrained system; therefore, we should always assume tacitly that

$$
\begin{equation*}
0<h<3 N \quad \text { or } \quad 0<n<3 N . \tag{2.4.5}
\end{equation*}
$$

Now, to express this n-parameter freedom of our system, we can use either the last n of the ξ 's [i.e., the earlier $\xi_{i} \equiv\left(\xi_{h+1}, \ldots, \xi_{3 N}\right)$], or, more generally, any other set of n independent (or unconstrained, or minimal), and generally curvilinear, coordinates, or holonomic positional parameters

$$
\boldsymbol{q} \equiv\left[q_{1}=q_{1}(t), \ldots, q_{n}=q_{n}(t)\right] \equiv\left\{q_{k}=q_{k}(t) ; k=1, \ldots, n\right\},
$$

or, simply,

$$
\begin{equation*}
q=\left(q_{1}, \ldots, q_{n}\right) \tag{2.4.6}
\end{equation*}
$$

related to the ξ_{i} via invertible transformations of the type

$$
\begin{equation*}
\xi_{i}=\xi_{i}(t ; q) \Leftrightarrow q_{k}=q_{k}\left(t ; \xi_{i}\right) . \tag{2.4.6a}
\end{equation*}
$$

[The reader has, no doubt, already noticed that sometimes we use ξ_{i} for the totality of the independent ξ 's; i.e., $\left(\xi_{h+1}, \ldots, \xi_{3 N}\right)$, and sometimes for a generic one of them; and similarly for other variables. We hope the meaning will be clear from the context.] In view of (2.4.6a), eq. (2.4.4) can be rewritten as

$$
\begin{equation*}
\xi_{d}=\Xi_{d}\left(t ; \xi_{i}\right)=\Xi_{d}\left[t ; \xi_{i}(t ; q)\right]=\Xi_{d}(t ; q), \tag{2.4.6b}
\end{equation*}
$$

that is, in toto, $\xi_{*}=\xi_{*}(t, q), *=1, \ldots, 3 N$; and so (2.2.4), (2.4.1) can be replaced by

$$
x_{P}=x_{P}(t, q), \quad y_{P}=y_{P}(t, q), \quad z_{P}=z_{P}(t, q),
$$

or

$$
\begin{equation*}
\boldsymbol{r}_{P}=\boldsymbol{r}_{P}(t, q) \tag{2.4.6c}
\end{equation*}
$$

or, finally, by the definitive continuum notation,

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(t, q) \tag{2.4.7}
\end{equation*}
$$

Let us pause and re-examine our findings.
(i) The $n \equiv 3 N-h$ independent positional parameters $q=q(t)$ are, at every instant t, common to all particles of the system (even though not every particle, necessarily, depends on all of them); that is, the q 's are system coordinates; but once known as functions of time they allow us, through (2.4.7), to calculate the motion of the individual particles of our system S. The q 's are also called holonomic (or true, or genuine, or global), independent (or unconstrained, or minimal) coordinates, although they might be constrained later (!); for short, Lagrangean coordinates; and the problem of analytical mechanics (AM) is to calculate them as functions of time. Most authors call them "generalized coordinates" (and, similarly, "generalized velocities, accelerations, forces, momenta, etc."). This pretensorial/Victorian terminology, introduced (most likely) by Thomson and Tait [1912, pp. 157-60, 286 ff .; also 1867 (1st ed.)], though inoffensive, we think is misguiding, because it
directs attention away from the true role of the q 's: the key word here is not generalized but system (coordinates)! The fact that they are, or can be, general-that is, curvilinear (nonrectangular Cartesian, nonrectilinear)-which is the meaning intended by Thomson and Tait, is, of course, very welcome but secondary to AM, whose task is, among others, to express all its concepts, principles, and theorems in terms of system variables. Nevertheless, to avoid breaking with such an entrenched tradition, we shall be using both terms, generalized and system coordinates, and the earlier compact expression, Lagrangean coordinates.
(ii) The ability to represent by (2.4.7) the most general position (and, through it, motion) of every system particle (i.e., in terms of a finite number of parameters), before any other kinetic consideration, is absolutely critical ("nonnegotiable") to AM; without it, no further progress toward the derivation of (the smallest possible number of) equations of motion could be made.
(iii) Further, as pointed out by Hamel, as long as the representation (2.4.7) holds, the original assumption of discrete mass-points/particles is not really necessary. We could, just as well, have modeled our system as a rigid continuum; for example, a rigid body moving about a fixed point, whether assumed discrete or continuum, needs three q 's to describe its most general (angular) motion, such as its three Eulerian angles (\$1.12). In sum, as long as (2.4.7) is valid, AM does not care about the molecular structure/ constitution of its systems. [However, as $n \rightarrow \infty$ (continuum mechanics), the description of motion changes so that the corresponding differential equations of motion experience a "qualitative" change from ordinary to partial.]
(iv) Even though, so far, \boldsymbol{r} has been assumed inertial, nevertheless, the q 's do not have to be inertial; they may define the system's configuration(s) relative to a noninertial body, or frame, of known or unknown motion, and that (on top of the possible curvilinearity of the q 's) is an additional advantage of the Lagrangean method. (As shown later, the \boldsymbol{r} 's may also be noninertial.) For example, in the double pendulum of fig. 2.7, $\phi_{1}, \phi_{2}, \theta_{1}$ are inertial angles, whereas θ_{2} is not.

If the constraints are stationary (\rightarrow scleronomic system), then we can choose the q 's so that (2.4.7) assumes the stationary form [recalling (2.2.2 ff.)]:

$$
\begin{equation*}
\boldsymbol{r}_{P}=\boldsymbol{r}_{P}(q) \quad \text { or } \quad \boldsymbol{r}=\boldsymbol{r}\left(\boldsymbol{r}_{o}, q\right) \equiv \boldsymbol{r}(q) \tag{2.4.7a}
\end{equation*}
$$

and, therefore, scleronomicity/rheonomicity ($=$ absence/presence of $\partial \boldsymbol{r} / \partial t$) are q-dependent properties, unlike holonomicity/nonholonomicity.

Figure 2.7 Inertial and noninertial descriptions of a double pendulum: $O A, A B$.
Coordinates: $\phi_{1,2}$: inertial; $\theta_{1}=\phi_{1}$: inertial; $\theta_{2} \equiv \phi_{2}-\phi_{1}$: noninertial; O, A, C : collinear.

Analytical Requirements on Equations (2.4.6a-c, 7)

The $n q$'s are arbitrary, that is, nonunique, except that when the representations $(2.4 .6 \mathrm{c}, 7)$ are inserted back into the constraints $(2.4 .2,2 \mathrm{a})$ they must satisfy them identically in the q 's, which, analytically, means that

$$
\phi_{H}\left(t ; \xi_{*}\right)=0 \Rightarrow \phi_{H}\left[t ; \xi_{*}(t ; q)\right] \equiv 0 \Rightarrow \sum\left(\partial \phi_{H} / \partial \xi_{*}\right)\left(\partial \xi_{*} / \partial q_{k}\right) \equiv \partial \phi_{H} / \partial q_{k} \equiv 0
$$

where

$$
\begin{equation*}
H=1, \ldots, h ; \quad *=1, \ldots, 3 N ; \quad k=1, \ldots, n(\equiv 3 N-h) ; \tag{2.4.8}
\end{equation*}
$$

and where, due to the constraint independence and to (2.4.5), the Jacobians of the transformations $\phi_{H} \Leftrightarrow \xi_{*}$ and $\xi_{*} \Leftrightarrow q_{k}$ must satisfy

$$
\begin{equation*}
\operatorname{rank}\left(\partial \phi_{H} / \partial \xi_{*}\right)=h, \quad \operatorname{rank}\left(\partial \xi_{*} / \partial q_{k}\right)=n \tag{2.4.8a}
\end{equation*}
$$

[and since $\left|\partial \xi_{i} / \partial q_{k}\right| \neq 0 \Rightarrow \operatorname{rank}\left(\partial \xi_{i} / \partial q_{k}\right)=n$], in the region of definition of the ξ and t. In addition, the functions in the transformations (2.4.6a, b) must be of class C^{2} (i.e., have continuous partial derivatives of zeroth, first, and second order, at least, to accommodate accelerations) in the region of definition of the q 's and t.

Last, conditions (2.4.8a) imply that the representations (2.4.6a, b) have a (nonunique) inverse:

$$
\begin{equation*}
q_{k}=q_{k}(t, \xi) \equiv q_{k}(t, x, y, z)=q_{k}=q_{k}(t, \boldsymbol{r}) . \tag{2.4.8b}
\end{equation*}
$$

Additional "regularity" requirements are presented in §2.7.
Example 2.4.1 Let us express the above analytical requirements in particle variables. Indeed, substituting into (2.2.8) and (2.2.10):

$$
\begin{equation*}
\boldsymbol{v}=d \boldsymbol{r} / d t=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(d q_{k} / d t\right)+\partial \boldsymbol{r} / \partial t \quad(k=1, \ldots, n) \tag{a}
\end{equation*}
$$

we obtain, successively,

$$
\begin{align*}
0=d \phi_{H} / d t & =\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot\left(\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(d q_{k} / d t\right)+\partial \boldsymbol{r} / \partial t\right)+\partial \phi_{H} / \partial t \\
& =\sum\left(\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right)\left(d q_{k} / d t\right) \\
& +\left(\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot(\partial \boldsymbol{r} / \partial t)+\partial \phi_{H} / \partial t\right) \\
& \equiv \sum\left(\partial \Phi_{H} / \partial q_{k}\right)\left(d q_{k} / d t\right)+\partial \Phi_{H} / \partial t \tag{b}
\end{align*}
$$

from which, since the holonomic system velocities $d q_{k} / d t$ are independent,

$$
\begin{align*}
& \partial \Phi_{H} / \partial q_{k}=0 \tag{c}\\
& \partial \Phi_{H} / \partial t=0 . \tag{d}
\end{align*}
$$

Constraint Addition and Constraint Relaxation

The $n q$'s (just like the $h \phi_{H}$'s) are independent; that is, we cannot couple them by nontrivial functions $\Phi(q)=0$, independent of the problem's initial conditions, and such that upon substitution of the q 's from (2.4.8b) into them they vanish identically
in the ξ 's and t (i.e., $\Phi[t, q(t, \xi)] \equiv \Phi(t, \xi)=0$ is impossible). Thus, as in differential calculus, when all the q 's except (any) one of them remain fixed, we are still left with a "nonempty" continuous numerical range for the nonfixed q 's; and these latter correspond to a "nonempty" continuous kinematically admissible range of system configurations (a similar conception of independence will apply to the various q differentials, $d q, \delta q, \ldots$, to be introduced later). However, upon subsequent imposition of additional holonomic constraints to the system, the $n q$'s will no longer be independent, or minimal. To elaborate: in the "beginning," the system of particles is free, or unconstrained ("brand new"); then, its q 's are the $3 N \xi$'s. Next, it is subjected to a mix of constraints; say, h holonomic ones like (2.4.2,2a), and m Pfaffian (possibly nonholonomic) ones like (2.2.7,9). Now, the introduction of the $n=3 N-h q$'s, as explained above, allows us to absorb, or build in, or embed, the h holonomic constraints into our description; the representations (2.4.6c, 7) guarantee automatically the satisfaction of the holonomic constraints, and thus achieve the primary goal of Lagrangean kinematics, which is the expression of the system's configurations, at every constrained stage, by the smallest, or minimal, number of positional coordinates needed [which, in turn (chap. 3) results in the smallest number of equations of motion. The corresponding embedding of the Pfaffian constraints, which is the next important objective of Lagrangean kinematics (to be presented later, $\S 2.11 \mathrm{ff}$.), follows a conceptually identical methodology, but requires new "nonholonomic, or quasi, coordinates'". Specifically, if at a later stage, $h^{\prime}(<n)$ additional, or residual, or non-built-in, independent holonomic constraints, say of the form

$$
\begin{equation*}
\Phi_{H^{\prime}}(t, q)=0 \quad\left(H^{\prime}=1, \ldots, h^{\prime}\right) \tag{2.4.9}
\end{equation*}
$$

are imposed on our already constrained system, then, repeating the earlier procedure, we express the $n q$'s in terms of $n^{\prime} \equiv n-h^{\prime}$ new positional parameters $q^{\prime} \equiv\left(q_{k^{\prime}} ; k^{\prime}=1, \ldots, n^{\prime}\right):$

$$
\begin{equation*}
q_{k}=q_{k}\left(t, q_{k^{\prime}}\right), \quad \operatorname{rank}\left(\partial q / \partial q^{\prime}\right)=n^{\prime} \tag{2.4.10}
\end{equation*}
$$

so that, now, (2.4.7) may be replaced by

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(t, q)=\boldsymbol{r}\left[t, q\left(t, q^{\prime}\right)\right] \equiv \boldsymbol{r}\left(t, q^{\prime}\right) \tag{2.4.11}
\end{equation*}
$$

the representation (2.4.7) still holds, no matter how many holonomic and nonholonomic constraints are imposed on the system; but then our q 's will not be independent: they have become the earlier ξ 's.

This process of adding holonomic constraints to an already constrained system, one or more at a time, can be continued until the number of (global) DOF reduces to zero: $3 N-\left(h+h^{\prime}+h^{\prime \prime}+\cdots\right) \rightarrow 0$. Also, no matter what the actual sequence (history) of constraint imposition is, it helps to imagine that they are applied successively, one or more at a time, in any desired order, until we reach the current, or last, state of "constrainedness" of the system. It helps to think of a given constrained system as being somewhere "in the middle of the constraint scale": when we first encounter it, it already has some constraints built into it; say, it was not born yesterday. Then, as part of a problem's requirements, it is being added new constraints that reduce its $\operatorname{DOF}(L)$, eventually to zero; and, similarly, proceeding in the opposite direction, we may subtract some of its built-in constraints, thus relaxing the system and increasing its $\operatorname{DOF}(L)$, eventually to $3 N$. [Usually, such a (mental) relaxation of
one or more built-in constraints is needed to calculate the reaction forces caused by them (\rightarrow principle of "relaxation," §3.7).]

In sum: Any given system may be viewed as having evolved from a former "relaxed" (younger) one by imposition of constraints; and it is capable of becoming a more "rigid" (older) one by imposition of additional constraints.

For example, let us consider a "newborn" free rigid body. The meaning of rigidity is that our system is internally constrained; and the meaning of free(dom) is that, when presented to us and unless additionally constrained later, the system is externally unconstrained; that is, at this point, its built-in constraints are all internal: hence, $n=6$. If, from there on, we require it to have, say, one of its points fixed (or move in a prescribed way), then, essentially, we add to it three external (holonomic) constraints; that is, $n^{\prime}=n-3=6-3=3$. If, further, we require it to have one more point fixed, then we add two more such constraints; that is, $n^{\prime \prime}=n^{\prime}-2=3-2=1$. And if, finally, we require that one more of its points (noncollinear with its previous two) be fixed, then we add one more such constraint; that is, $n^{\prime \prime \prime}=n^{\prime \prime}-1=1-1=0$. But if, on the other hand, we, mentally or actually, separate the original single free rigid body into two free rigid bodies, then we subtract from it six internal built-in constraints (in Hamel's terminology, we "liberate" the system from those constraints) so that this new relaxed system has $n+6=6+6=12$ (global) $D O F$.

Equilibrium, or Adapted, Coordinates

Frequently, we choose, in $E_{3 N}$, the following "equilibrium," or "adapted (to the constraints)" curvilinear coordinates:

$$
\begin{aligned}
& \chi_{1} \equiv \phi_{1}(t ; x, y, z) \quad(=0), \ldots, \quad \chi_{h} \equiv \phi_{h}(t ; x, y, z) \quad(=0) \\
& \chi_{h+1} \equiv \phi_{h+1}(t ; x, y, z) \quad(\neq 0), \ldots, \quad \chi_{3 N} \equiv \phi_{3 N}(t ; x, y, z) \quad(\neq 0) ;
\end{aligned}
$$

or, compactly,

$$
\begin{align*}
\chi_{d} & \equiv \phi_{d}(t ; x, y, z) \\
\chi_{i} & \equiv \phi_{i}(t ; x, y, z) \tag{2.4.12}
\end{align*} \quad(\neq 0) \quad(d=1, \ldots, h) ;
$$

and $\chi_{3 N+1} \equiv \phi_{3 N+1} \equiv t(\neq 0) ;$ where $\phi_{d} \equiv\left(\phi_{1}, \ldots, \phi_{h}\right)$ are the given constraints, and $\phi_{i} \equiv\left(\phi_{h+1}, \ldots, \phi_{3 N}\right)$ are n new and arbitrary functions, but such that when (2.4.12) are solved for the $3 N+1(t ; x, y, z)$, in terms of $\left(t ; \chi_{1}, \ldots, \chi_{3 N}\right)$, and the results are substituted back into the constraints $\phi_{d}=0$, they satisfy them identically in these variables. In terms of the latter, which are indeed a special case of q 's, the constraints take the simple equilibrium forms:

$$
\begin{equation*}
\chi_{d} \equiv\left(\chi_{1}=0, \ldots, \chi_{h}=0\right) \tag{2.4.12a}
\end{equation*}
$$

and so (2.4.7), with $q \rightarrow \chi_{i}$, reduces to

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}\left(t, \chi_{h+1}, \ldots, \chi_{3 N}\right) \equiv \boldsymbol{r}\left(t, \chi_{i}\right) . \tag{2.4.12b}
\end{equation*}
$$

Clearly, the earlier choice (2.4.4) corresponds to the following special χ-case (assuming nonvanishing Jacobian of the transformation):

$$
\begin{array}{ll}
\chi_{d}=\chi_{d}(t, \xi) \equiv \xi_{d}-\Xi_{d}\left(t, \xi_{i}\right)=0 & (d=1, \ldots, h) \\
\chi_{i}=\chi_{i}(t, \xi) \equiv \xi_{i} \neq 0 & (i=h+1, \ldots, 3 N) \tag{2.4.12c}
\end{array}
$$

In practice, the transition from ξ to q, χ_{i} is frequently suggested "naturally" by the geometry of the particular problem. However, the general method described above [but in differential forms; i.e., as $d \chi_{d} \equiv d \phi_{d}(=0)$ and $d \chi_{i} \equiv d \phi_{i}(\neq 0)$] will allow us, later ($\$ 2.11 \mathrm{ff}$.), to build in Pfaffian (possibly nonholonomic) constraints.

Finally, such equilibrium q, χ_{i} 's extend to the case of the earlier described $n^{\prime}(>0)$ additional constraints. There we may choose the new equilibrium coordinates:

$$
\begin{align*}
\chi_{d^{\prime}}^{\prime} & \equiv \Phi_{d^{\prime}} \quad(=0) \quad\left(d^{\prime}=1, \ldots, h^{\prime}\right) \\
\chi_{i^{\prime}}^{\prime} & \equiv \Phi_{i^{\prime}} \quad(\neq 0) \quad\left(i^{\prime}=h^{\prime}+1, \ldots, n\right) \tag{2.4.12d}
\end{align*}
$$

so that

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(t, q) \rightarrow \boldsymbol{r}\left(t, \chi_{i^{\prime}}^{\prime}\right) . \tag{2.4.12e}
\end{equation*}
$$

Excess Coordinates

Sometimes, in a system possessing n minimal Lagrangean coordinates, $q=\left(q_{1}, \ldots, q_{n}\right)$, we introduce, say for mathematical convenience, e additional excess, or surplus, Lagrangean coordinates $q_{E}=\left(q_{n+1}, \ldots, q_{n+e}\right)$. Since the $n+e$ positional coordinates q and q_{E} are nonminimal-that is, mutually dependentthey satisfy e constraints of the type

$$
\begin{equation*}
F_{E}\left(t ; q_{1}, \ldots, q_{n} ; q_{n+1}, \ldots, q_{n+e}\right) \equiv F_{E}\left(t ; q, q_{E}\right)=0 \quad(E=1, \ldots, e) \tag{2.4.13}
\end{equation*}
$$

and then we may have

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}\left(t, q, q_{E}\right) \tag{2.4.13a}
\end{equation*}
$$

If we do not need the q_{E} 's, we can easily get rid of them: solving the e equations (2.4.13) for them, we obtain $q_{E}=q_{E}(t ; q)$, and substituting these expressions back into (2.4.13a) we recover (2.4.7). For this to be analytically possible we must have (see any book on advanced calculus)

$$
\begin{equation*}
\left|\partial F_{E} / \partial q_{E^{\prime}}\right| \neq 0 \quad\left(E=1, \ldots, e ; E^{\prime}=n+1, \ldots, n+e\right) \tag{2.4.13b}
\end{equation*}
$$

Example 2.4.2 Let us consider the planar three-bar mechanism shown in fig. 2.8. The $O-x y$ coordinates of a generic point on bars $O A_{1}$ and $A_{2} A_{3}$ can be expressed in terms of the angles ϕ_{1} and ϕ_{3}, respectively; similarly, for a generic point P on $A_{1} A_{2}$, such that $A_{1} P=l$, we have

$$
\begin{equation*}
x=l_{1} \cos \phi_{1}+l \cos \phi_{2}, \quad y=l_{1} \sin \phi_{1}+l \sin \phi_{2} . \tag{a}
\end{equation*}
$$

So, $\phi_{1}, \phi_{2}, \phi_{3}$ express the configurations of this system; but they are not minimal (i.e., independent). Indeed, taking the x, y components of the obvious vector equation

$$
O A_{1}+A_{1} A_{2}+A_{2} A_{3}+A_{3} O=\mathbf{0}
$$

Figure 2.8 Excess coordinates in a planar three-bar mechanism.
we obtain the two constraints:

$$
\begin{align*}
& F_{1} \equiv l_{1} \cos \phi_{1}+l_{2} \cos \phi_{2}+l_{3} \cos \phi_{3}-L=0, \\
& F_{2} \equiv l_{1} \sin \phi_{1}+l_{2} \sin \phi_{2}-l_{3} \sin \phi_{3}=0 . \tag{b}
\end{align*}
$$

Therefore, here, $n=1$ and $e=2$; knowledge of any one of these three angles determines the mechanism's configuration.

However, it is preferable to work with the representation (a), under (b), because if we tried to use the latter to express x and y in terms of either ϕ_{1}, or ϕ_{2}, or ϕ_{3} only (wherever the corresponding Jacobian does not vanish), we would end up with fewer but very complicated looking equations of motion. It is preferable to have more but simpler equations (of motion and of constraint); that is, requiring minimality of coordinates, and thus embedding all holonomic constraints into the equations of motion, may be highly impractical. [See books on multibody dynamics; or Alishenas (1992). On the other hand, minimal formulations have numerical advantages (computational robustness).]

Another "excess representation" of this mechanism would be to use the four $O-x y$ coordinates of A_{1} and $A_{2},\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, respectively. Clearly, these latter are subject to the three constraints (so that, again, $n=1$ but $e=3$):

$$
\begin{gather*}
\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}=\left(l_{1}\right)^{2} ; \quad\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=\left(l_{2}\right)^{2} \\
\left(L-x_{2}\right)^{2}+\left(0-y_{2}\right)^{2}=\left(l_{3}\right)^{2} \tag{c}
\end{gather*}
$$

Example 2.4.3 Let us consider the planar double pendulum shown in fig. 2.9. The four bob coordinates x_{1}, y_{1} and x_{2}, y_{2} are constrained by the $t w o$ equations

$$
\begin{equation*}
\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}=\left(l_{1}\right)^{2}, \quad\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=\left(l_{2}\right)^{2} \tag{a}
\end{equation*}
$$

that is, here $N=2 \Rightarrow 2 N=4$, and so the number of holonomic constraints \equiv $H=2 \Rightarrow n=2 N-H=2$. A convenient minimal representation of the pendulum's

Figure 2.9 Excess coordinates in a planar double pendulum.
configurations is

$$
\begin{array}{ll}
x_{1}=l_{1} \cos \phi_{1}, & y_{1}=l_{1} \sin \phi_{1} \\
x_{2}=l_{1} \cos \phi_{1}+l_{2} \cos \phi_{2}, & y_{2}=l_{1} \sin \phi_{1}+l_{2} \sin \phi_{2} \tag{b}
\end{array}
$$

2.5 VELOCITY, ACCELERATION, ADMISSIBLE AND VIRTUAL DISPLACEMENTS; IN SYSTEM VARIABLES

Velocity and Acceleration

We begin with the fundamental representation of the inertial position of a typical system particle P in Lagrangean variables (2.4.7):

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(t, q) . \tag{2.5.1}
\end{equation*}
$$

[Again, the inertialness of \boldsymbol{r} is not essential, and is stated here just for concreteness. The methodology developed below applies to inertial and noninertial position vectors alike; and this, along with the possible curvilinearity (nonrectangular Cartesianness) and possible noninertialness of the coordinates, are the two key advantages of Lagrangean kinematics (and, later, kinetics) over that of Newton-Euler. This will become evident in the Lagrangean treatment of relative motion (§3.16).]

From this, it readily follows that the (inertial) velocity and acceleration of P, in these variables, are, respectively,

$$
\begin{align*}
& \boldsymbol{v} \equiv d \boldsymbol{r} / d t=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(d q_{k} / d t\right)+\partial \boldsymbol{r} / \partial t \equiv \sum v_{k} \boldsymbol{e}_{k}+\boldsymbol{e}_{0}, \tag{2.5.2}\\
& \boldsymbol{a} \equiv d \boldsymbol{v} / d t=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(d^{2} q_{k} / d t^{2}\right)+\sum \sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right)\left(d q_{k} / d t\right)\left(d q_{l} / d t\right) \\
&+2 \sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right)\left(d q_{k} / d t\right)+\partial^{2} \boldsymbol{r} / \partial t^{2} \\
& \equiv \sum w_{k} \boldsymbol{e}_{k}+\sum \sum v_{k} v_{l} \boldsymbol{e}_{k, l}+2 \sum v_{k} \boldsymbol{e}_{k, 0}+\boldsymbol{e}_{0,0}, \tag{2.5.3}
\end{align*}
$$

where

$$
\begin{array}{lr}
d q_{k} / d t \equiv v_{k}, & v=\left(v_{1}, \ldots, v_{n}\right) \equiv\left(v_{k} ; k=1, \ldots, n\right), \\
d^{2} q_{k} / d t^{2} \equiv d v_{k} / d t \equiv w_{k}, & w=\left(w_{1}, \ldots, w_{n}\right) \equiv\left(w_{k} ; k=1, \ldots, n\right) \\
{\left[\text { but, in general, } \quad \boldsymbol{a} \neq \sum w_{k} \boldsymbol{e}_{k}+w_{0} \boldsymbol{e}_{0} ;\right.} & \text { see }(2.5 .4-6) \text { below })], \tag{2.5.3a}
\end{array}
$$

associated with these q 's; and the fundamental (holonomic) basis vectors $\boldsymbol{e}_{k}, \boldsymbol{e}_{0}$, also associated with the q 's, are defined by

$$
\begin{equation*}
\boldsymbol{e}_{k}=\boldsymbol{e}_{k}(t, q) \equiv \partial \boldsymbol{r} / \partial q_{k}, \quad \boldsymbol{e}_{0}=\boldsymbol{e}_{0}(t, q) \equiv \partial \boldsymbol{r} / \partial t \quad\left(\text { or }, \text { sometimes }, \boldsymbol{e}_{n+1}, \text { or } \boldsymbol{e}_{t}\right) ; \tag{2.5.4}
\end{equation*}
$$

and the commas signify partial derivatives with respect to the q 's, t :

$$
\begin{array}{ll}
\boldsymbol{e}_{k, l} \equiv \partial \boldsymbol{e}_{k} / \partial q_{l}=\partial \boldsymbol{e}_{l} / \partial q_{k}=\boldsymbol{e}_{l, k} & {\left[\text { i.e., } \partial / \partial q_{l}\left(\partial \boldsymbol{r} / \partial q_{k}\right)=\partial / \partial q_{k}\left(\partial \boldsymbol{r} / \partial q_{l}\right)\right]} \\
\boldsymbol{e}_{k, 0} \equiv \partial \boldsymbol{e}_{k} / \partial t=\partial \boldsymbol{e}_{0} / \partial q_{k}=\boldsymbol{e}_{0, k} & {\left[\text { i.e., } \partial / \partial t\left(\partial \boldsymbol{r} / \partial q_{k}\right)=\partial / \partial q_{k}(\partial \boldsymbol{r} / \partial t)\right]} \tag{2.5.4b}
\end{array}
$$

we reserve the notation a_{k} for the representation $\boldsymbol{a}=\sum a_{k} \boldsymbol{e}_{k}+a_{0} \boldsymbol{e}_{0}$.
Also, note that with the help of the formal (nonrelativistic) notations:

$$
\begin{equation*}
t \equiv q_{0} \equiv q_{n+1} \Rightarrow d t / d t \equiv d q_{0} / d t \equiv d q_{n+1} / d t \equiv v_{0} \equiv v_{n+1}=1 \tag{2.5.5a}
\end{equation*}
$$

and

$$
\begin{equation*}
d^{2} t / d t^{2} \equiv d v_{0} / d t \equiv d v_{n+1} / d t \equiv w_{0} \equiv w_{n+1}=0 \tag{2.5.5b}
\end{equation*}
$$

we can rewrite (2.5.2, 3), respectively, in the "stationary" forms:

$$
\begin{equation*}
\boldsymbol{v}=\sum v_{\alpha} \boldsymbol{e}_{\alpha}, \quad \boldsymbol{a}=\sum w_{\alpha} \boldsymbol{e}_{\alpha}+\sum \sum v_{\alpha} v_{\beta} \boldsymbol{e}_{\alpha, \beta}, \tag{2.5.6}
\end{equation*}
$$

where, here and throughout the rest of the book, Greek subscripts range from 1 to $n+1$ (\equiv " 0 ").

The $v_{k} \equiv d q_{k} / d t$ are the holonomic (and contravariant, in the sense of tensor algebra) components, in the q-coordinates, of the system velocity or, simply, Lagrangean velocities or, briefly, but not quite accurately, "generalized velocities." The key point here is that the velocity and acceleration of each particle, \boldsymbol{v} and \boldsymbol{a}, respectively, are expressed in terms of system velocities $v \equiv d q / d t$ and their rates $w \equiv d v / d t \equiv d^{2} q / d t^{2}$, which are common to all particles, via the (generally, neither unit nor orthogonal) "mixed" = particle and system, basis vectors $\boldsymbol{e}_{k}, \boldsymbol{e}_{0}$. The latter, since they effect the transition from particle to system quantities, are fundamental to Lagrangean mechanics.

HISTORICAL

These vectors, most likely introduced by Somoff (1878 , p. 155 ff .), were brought to prominence by Heun (in the early 1900s; e.g., Heun, 1906, p. 67 ff., 78 ff .), and were called by him Begleitvektoren \approx accompanying, or attendant, vectors. Perhaps a better term would be "H(olonomic) mixed basis vectors" (see also Clifford, 1887, p. 81).

From the above, we readily deduce the following basic kinematical identities:

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial q_{k}=\partial \boldsymbol{v} / \partial v_{k}=\partial \boldsymbol{a} / \partial w_{k}=\cdots \equiv \boldsymbol{e}_{k} \tag{i}
\end{equation*}
$$

that is, $\left[\right.$ with $\left.(\ldots)^{\cdot} \equiv d(\ldots) / d t\right]$,

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial q_{k}=\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}=\partial \ddot{\boldsymbol{r}} / \partial \ddot{q}_{k}=\cdots=\boldsymbol{e}_{k} \quad \text { ("cancellation of the (over)dots"); } \tag{2.5.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
d / d t\left(\partial \boldsymbol{r} / \partial q_{k}\right) \equiv d / d t\left(\partial \boldsymbol{v} / \partial v_{k}\right) \equiv d \boldsymbol{e}_{k} / d t=\partial / \partial q_{k}(d \boldsymbol{r} / d t) \equiv \partial \boldsymbol{v} / \partial q_{k} \tag{ii}
\end{equation*}
$$

or, with the help of the Euler-Lagrange operator in holonomic coordinates:

$$
\begin{equation*}
E_{k}(\ldots) \equiv d / d t\left(\ldots / \partial \dot{q}_{k}\right)-\partial \ldots / \partial q_{k} \equiv d / d t\left(\ldots / \partial v_{k}\right)-\partial \ldots / \partial q_{k} \tag{2.5.9}
\end{equation*}
$$

finally,

$$
\begin{equation*}
E_{k}(\boldsymbol{v}) \equiv d / d t\left(\partial \boldsymbol{v} / \partial v_{k}\right)-\partial \boldsymbol{v} / \partial q_{k}=\mathbf{0} \tag{2.5.10}
\end{equation*}
$$

In fact, for any well-behaved function $f=f(t, q)$, we have

$$
\begin{align*}
\dot{f} \equiv d f / d t & \equiv \sum\left(\partial f / \partial q_{k}\right)\left(d q_{k} / d t\right)+\partial f / \partial t, \quad \ddot{f} \equiv d^{2} f / d t^{2}=\cdots, \\
& \Rightarrow \partial f / \partial q_{k}=\partial \dot{f} / \partial \dot{q}_{k}=\partial \ddot{f} / \partial \ddot{q}_{k}=\cdots ; \tag{2.5.8}
\end{align*}
$$

and

$$
\begin{equation*}
E_{k}(f) \equiv d / d t\left(\partial f / \partial \dot{q}_{k}\right)-\partial f / \partial q_{k} \equiv d / d t\left(\partial f / \partial v_{k}\right)-\partial f / \partial q_{k}=0 \tag{2.5.11}
\end{equation*}
$$

The integrability conditions $(2.5 .7,10)$ are crucial to Lagrangean kinetics (chap. 3); and, just like $(2.5 .2,3)$, have nothing to do with constraints; that is, they hold the same, even if holonomic and/or nonholonomic constraints are later imposed on the system, as long as the q 's are holonomic (genuine) coordinates (i.e., $q \neq$ nonholonomic or quasi coordinates; see $\S 2.6, \S 2.9$).

Admissible and Virtual Displacements

Proceeding as with the velocities, (2.5.2), we define the (first-order and inertial) kinematically admissible, or possible, and virtual displacements of a generic system particle P, respectively, by

$$
\begin{gather*}
d \boldsymbol{r}=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) d q_{k}+(\partial \boldsymbol{r} / \partial t) d t \equiv \sum \boldsymbol{e}_{k} d q_{k}+\boldsymbol{e}_{0} d t \tag{2.5.12a}\\
\delta \boldsymbol{r}=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k} \equiv \sum \boldsymbol{e}_{k} \delta q_{k} \tag{2.5.12b}
\end{gather*}
$$

whether the q-increments, or differentials, $d q, \delta q$, and $d t$ are independent or not (say, by imposition of additional holonomic and nonholonomic constraints, later).

As the above show:
(i) if $d q_{k}=\left(d q_{k} / d t\right) d t \equiv v_{k} d t$, then $d \boldsymbol{r}=\boldsymbol{v} d t$;
(ii) if all the $d q$'s and $d t(\delta q$'s) vanish, then $d \boldsymbol{r}=\mathbf{0}(\delta \boldsymbol{r}=\mathbf{0})$; and
(iii) $\partial(d \boldsymbol{r}) / \partial\left(d q_{k}\right)=\partial(\delta \boldsymbol{r}) / \partial\left(\delta q_{k}\right)=\boldsymbol{e}_{k}$.

These identities (in unorthodox but highly instructive notation) are useful in preparing the reader to understand, later, the nonholonomic coordinates.

REMARKS ON THE VIRTUAL DISPLACEMENT

Let us, now, pause to examine carefully this fundamental concept. First, we notice that $\delta \boldsymbol{r}$ is the linear (or first-order) and homogeneous, in the δq 's, part of the "total virtual displacement" $\Delta \boldsymbol{r}$, which is defined by the following Taylor-like \boldsymbol{r}-expansion in the first-order increments δq, from a generic system configuration corresponding to the values q, but for a fixed time t :

$$
\begin{equation*}
\Delta \boldsymbol{r} \equiv \boldsymbol{r}(t, q+\delta q)-\boldsymbol{r}(t, q) \equiv \delta \boldsymbol{r}+(1 / 2) \delta^{2} \boldsymbol{r}+\cdots \tag{2.5.13}
\end{equation*}
$$

In other words, $\delta \boldsymbol{r}$ is a special first position differential, mathematically equivalent to $d \boldsymbol{r}$ with $t=$ constant $\rightarrow d t=0$ (i.e., completely equivalent to it for stationary constraints); hence, the special notation $\delta(\ldots)$:

$$
\begin{equation*}
d \boldsymbol{r} \rightarrow \delta \boldsymbol{r}, \quad d q \rightarrow \delta q, \quad \text { and } \quad d t \rightarrow \delta t=0 \text { (isochrony, always). } \tag{2.5.13a}
\end{equation*}
$$

One could have denoted it as $d^{*} r$, or $(d \boldsymbol{r})^{*}$, or \boldsymbol{z}, and so on; but since we do not see anything wrong with $\delta(\ldots)$, and to keep with the best traditions of analytical mechanics [originated by Lagrange himself and observed by all mechanics masters, such as Kirchhoff, Routh, Schell, Thomson and Tait, Gibbs, Appell, Volterra, Poincaré, Maggi, Webster, Heun, Hamel, Prange, Whittaker, Chetaev, Lur'e, Synge, Gantmacher, Pars et al.], we shall stick with it. Readers who feel uncomfortable with $\delta(\ldots)$ may devise their own suggestive notation; $d \boldsymbol{r}$ and $d q$ won't do!

The above definitions also show the following:
(i) $\delta \boldsymbol{r}$ is mathematically equivalent to the difference between two possible/admissible displacements, say $d_{1} \boldsymbol{r}$ and $d_{2} \boldsymbol{r}$, taken along different directions but at the same time (and same dt); that is, skipping summation signs and subscripts, for simplicity,

$$
\begin{align*}
d_{2} \boldsymbol{r}-d_{1} \boldsymbol{r} & =\left[(\partial \boldsymbol{r} / \partial q) d_{2} q+(\partial \boldsymbol{r} / \partial t) d t\right]-\left[(\partial \boldsymbol{r} / \partial q) d_{1} q+(\partial \boldsymbol{r} / \partial t) d t\right] \\
& =(\partial \boldsymbol{r} / \partial q)\left(d_{2} q-d_{1} q\right) \sim(\partial \boldsymbol{r} / \partial q) \delta q=\delta \boldsymbol{r} . \tag{2.5.14}
\end{align*}
$$

(ii) For any well-behaved function $f=f(t): \delta f=(\partial f / \partial t) \delta t=0$; but if $f=f(t, q)$, then $\delta f=(\partial f / \partial q) \delta q \neq 0$ [even though, after the problem is solved, $q=q(t)!$].
(iii) The virtual displacements of mechanics do not always coincide with those of mathematics (i.e., calculus of variations). For example, even though, in general, $d \boldsymbol{r} \neq \delta \boldsymbol{r}$, for catastatic systems [i.e., $d \boldsymbol{r}=\sum \boldsymbol{e}_{k}(t, q) d q_{k}, \delta \boldsymbol{r}=\sum \boldsymbol{e}_{k}(t, q) \delta q_{k}$] the equality $d q_{k}=\delta q_{k} \Rightarrow d \boldsymbol{r}=\delta \boldsymbol{r}$ is kinematically possible [and in ($\left.q, t\right)$-space $d \boldsymbol{r}$ and $\delta \boldsymbol{r}$ are "orthogonal" to the t-axis, even though $d t \neq 0, \delta t=0$]; whereas, in variational calculus we are explicitly warned that $d q$ (parallel to the t-axis) $\neq \delta q$ (perpendicular to it). These differences, rarely mentioned in mechanics and/or mathematics books, are very consequential, especially in integral variational principles for nonholonomic systems (chap. 7).

As definitions (2.5.12, 13), and so on, show, the (particle and/or system) virtual displacement is a simple, direct, and, as explained in chapter 3 and elsewhere, indispensable concept - without it Lagrangean mechanics would be impossible! Yet, since its inception (in the early 18th century), this concept has been surrounded with mysticism and confusion; and even today it is frequently misunderstood and/ or ignorantly maligned. For instance, it has been called "too vague and cumbersome to be of practical use" by D. A. Levinson, in discussion in Borri et al. (1992); "illdefined, nebulous, and hence objectionable" by T. R. Kane, in rebuttal to Desloge (1986); or, at best, has been given the impression that it has to be defined, or "chosen properly" (Kane and Levinson (1983)), in an ad hoc or a posteriori fashion to fit the
facts, that is, to produce the correct equations of motion. For an extensive rebuttal of these false and misleading statements, from the viewpoint of kinetics, see chap. 3, appendix II. Others object to the arbitrariness of the δq 's. But it is precisely in this arbitrariness that their strength and effectiveness lies: they do the job (e.g., yielding of the equations of motion) and then, modestly, retreat to the background leaving behind the mixed basis vectors \boldsymbol{e}_{k}. It is these latter [and their nonholonomic counterparts (§2.9)] that appear in the final equations of motion (chap. 3), just as in the derivation of differential ("field") equations in other areas of mathematical physics. For example, in continuum mechanics, for better visualization, we may employ a small spatial element (e.g., a "control volume"), of "infinitesimal" dimensions $d x, d y, d z$, to derive the local field equations of balance of mass, momentum, energy, and so on; but the ultimate differential equations never contain lone differentials - only combinations of finite limits of ratios among them; that is, combinations of derivatives. Moreover, differentials, actual/admissible/virtual, in addition to being easier to visualize than derivatives, are invariant under coordinate transformations; whereas derivatives are not. [Such invariance ideas led the Italian mathematicians G. Ricci and T. Levi-Civita to the development of tensor calculus (late 19th to early 20th century); see, for example, Papastavridis (1999).] For example, taking for simplicity, a one (global) DOF system, under the transformation $q \rightarrow q^{\prime}=q^{\prime}(t, q)$, we find, successively,

$$
\delta \boldsymbol{r}=\boldsymbol{e} \delta q=(\partial \boldsymbol{r} / \partial q) \delta q=(\partial \boldsymbol{r} / \partial q)\left[\left(\partial q / \partial q^{\prime}\right) \delta q^{\prime}\right]=\left[(\partial \boldsymbol{r} / \partial q)\left(\partial q / \partial q^{\prime}\right)\right] \delta q^{\prime} \equiv \boldsymbol{e}^{\prime} \delta q^{\prime}
$$

that is,

$$
\begin{equation*}
\boldsymbol{e}^{\prime} \equiv \partial \boldsymbol{r} / \partial q^{\prime}=\left(\partial q / \partial q^{\prime}\right) \boldsymbol{e} \Leftrightarrow \boldsymbol{e} \equiv \partial \boldsymbol{r} / \partial q=\left(\partial q^{\prime} / \partial q\right) \boldsymbol{e}^{\prime} \tag{2.5.15}
\end{equation*}
$$

But there is an additional, deeper, reason for the representation (2.5.12b): the position vectors $\boldsymbol{r}(t, q)$ and (possible) additional constraints, say $\psi_{H^{\prime}}(t, \boldsymbol{r})=$ $0 \rightarrow \psi_{H^{\prime}}(t, q)=0$, cannot be attached in these finite forms to the general kinetic principles of analytical mechanics, which are differential, and lead to the equations of motion ($\$ 3.2 \mathrm{ff}$.). Only virtual forms of \boldsymbol{r} and $\psi_{H^{\prime}}=0$ - special first differentials of them, linear and homogeneous in the δq 's [like (2.5.12b)] - can be attached, or adjoined, to the Lagrangean variational equation of motion via the well-known method of Lagrangean multipliers ($\$ 3.5 \mathrm{ff}$.); and similarly for nonlinear (nonPfaffian) velocity constraints, an area that shows clearly that nonvirtual schemes (as well as those based on the calculus of variations) break down (chap. 5)! Hence, the older admonition that the virtual displacements must be "small" or "infinitesimal." For example, to incorporate the nonlinear holonomic constraint $\phi(x, y) \equiv x^{2}+y^{2}=$ constant to the kinetic principles, we must attach to them its first virtual differential, $\delta \phi=2(x \delta x+y \delta y)=0$; which is the linear and homogeneous part of the total constraint change, between the system configurations (x, y) and $(x+\delta x, y+\delta y)$:

$$
\Delta \phi \equiv \phi(x+\delta x, y+\delta y)-\phi(x, y)=\left[\delta \phi+(1 / 2) \delta^{2} \phi\right]_{\text {for small } \delta x, \delta y} \approx \delta \phi=0
$$

But in the case of the linear holonomic constraint $\phi \equiv x+y=$ constant, that total constraint change equals

$$
\Delta \phi=\delta \phi=\delta x+\delta y=0, \quad \text { no matter what the size of } \delta x, \delta y ;
$$

and both equations, $\phi=0$ and $\delta \phi=0$, have the same coefficients (\rightarrow slopes).
In sum: As long as we take the first virtual differentials of the constraints, the size of the δq 's is inconsequential, whether they are one millimeter or ten million miles! It
is the holonomic (or "gradient," or "natural") basis vectors $\left\{\boldsymbol{e}_{k} ; k=1, \ldots, n\right\}$, that matter.

As Coe puts it: "We often speak of displacements, both virtual and real, as being arbitrarily small or infinitesimal. This means that we are concerned only with the limiting directions of these displacements and the limiting values of the ratios of their lengths as they approach zero. Thus any two systems of virtual displacements are for our purposes identical if they have the same limiting directions and length ratios as they approach zero" (1938, p. 377). Coe's seems to be the earliest correct and vectorial exposition of these concepts in English; most likely, following the exposition of Burali-Forti and Boggio (1921, pp. 136 ff .). See also Lamb (1928, p. 113).

The earlier mentioned indispensability of the virtual displacements for kinetics will become clearer in chapter 3. Nevertheless, here is a preview: it is the virtual work of the forces maintaining the holonomic and/or nonholonomic constraints (i.e., the constraint reactions) that vanishes, and not just any work, admissible or actual; in fact, the latter would supply only one equation. This vanishing-of-the-virtual-work-of-constraint-reactions (principle of d'Alembert-Lagrange) is a physical postulate that generates not just one equation of motion (like the actual work/power equation does), but as many as the number of (local) DOFs; and, additionally, it allows us to eliminate/calculate these constraint forces. A more specialized virtual displacement \rightarrow virtual work-based postulate is used to characterize the more general "servo/ control" constraints (§3.17).

Example 2.5.1 Differences Between Kinematically Admissible/Possible and Virtual Displacements.
(i) Let us assume that we seek to determine the motion of a particle P capable of sliding along an ever straight line l rotating on the plane $O-x y$ about O. The configurations of l and of P relative to that plane are determined, respectively, by ϕ and r, ϕ (fig. 2.10). Since $\boldsymbol{r}=\boldsymbol{r}(r, \phi)$: position of P in $O-x y$, we will have, in the most general case,

$$
\begin{align*}
& d \boldsymbol{r}=(\partial \boldsymbol{r} / \partial r) d r+(\partial \boldsymbol{r} / \partial \phi) d \phi: \\
& \text { in } O-x y \tag{a}\\
& \delta \boldsymbol{r}=(\partial \boldsymbol{r} / \partial r) \delta r+(\partial \boldsymbol{r} / \partial \phi) \delta \phi: \text { virtual displacement of } P, \text { in } O-x y \tag{b}
\end{align*}
$$

Figure 2.10 On the difference between possible/admissible and virtual displacements (ex. 2.5.1: a, b).
(a) If the rotation of l is influenced by the motion of P relative to it, then ϕ is another unknown Lagrangean coordinate, like r, waiting to be found from the equations of motion of the system P and l (i.e., $n=2$). Then $d r$ and $\delta \boldsymbol{r}$ are given by (a, b), respectively, and are mathematically equivalent. (b) If, however, the motion of l is known ahead of time (i.e., if it is constrained to rotate in a specified way, uninfluenced by the, yet unknown, motion of P), then

$$
\begin{aligned}
& \phi=f(t) \text { : given function of time } \Rightarrow \\
& d \phi=d f(t)=[d f(t) / d t] d t \equiv \omega(t) d t \neq 0, \quad \text { but } \quad \delta \phi=\delta f(t)=\omega(t) \delta t=0 .
\end{aligned}
$$

As a result, (a, b) yield

$$
\begin{align*}
d \boldsymbol{r} & =(\partial \boldsymbol{r} / \partial r) d \boldsymbol{r}+(\partial \boldsymbol{r} / \partial \phi) d \phi=(\partial \boldsymbol{r} / \partial \boldsymbol{r}) d \boldsymbol{r}+(\partial \boldsymbol{r} / \partial \phi) \omega(t) d t=d \boldsymbol{r}(t, r ; d t, d r) \tag{c}\\
\delta \boldsymbol{r} & =(\partial \boldsymbol{r} / \partial r) \delta \boldsymbol{r}=\delta \boldsymbol{r}(t, r ; \delta \boldsymbol{r}) . \tag{d}
\end{align*}
$$

(ii) Let us consider the motion of a particle P along the inclined side of a wedge W that moves with a given horizontal motion: $x=f(t)$ (fig. 2.11). Here, we have

$$
\begin{align*}
& \boldsymbol{M M}_{1}=\boldsymbol{M}_{3} \boldsymbol{M}_{2}=(\partial \boldsymbol{r} / \partial x) d x=(\partial \boldsymbol{r} / \partial x)[d f(t) / d t] d t=(\partial \boldsymbol{r} / \partial t) d t \sim d t ; \tag{e}\\
& \boldsymbol{M M}_{3}=\boldsymbol{M}_{1} \boldsymbol{M}_{2}=\delta \boldsymbol{r}=(\partial \boldsymbol{r} / \partial q) \delta q \sim \delta q ; \tag{f}\\
& \boldsymbol{M}_{2} \sim d \boldsymbol{r}=(\partial \boldsymbol{r} / \partial q) d q+(\partial \boldsymbol{r} / \partial t) d t ; \quad \text { but } \delta x=0 \tag{g}
\end{align*}
$$

(iii) Let us consider the motion of a particle P on the fixed and rigid surface $\phi(x, y, z)=0$ or $z=z(x, y)$. Then, $\boldsymbol{r}=\boldsymbol{r}(x, y, z)=\boldsymbol{r}[x, y, z(x, y)] \equiv \boldsymbol{r}(x, y)$, and the classes of $d \boldsymbol{r}$ and $\delta \boldsymbol{r}$ are equivalent. But, on the moving and possibly deforming surface $\phi(t ; x, y, z)=0$ or $z=z(x, y ; t), \boldsymbol{r}=\cdots=\boldsymbol{r}(t ; x, y)$, and so $d \boldsymbol{r} \neq \delta \boldsymbol{r}$: $\delta \boldsymbol{r}$ still lies on the instantaneous tangential plane of the surface at P, whereas $d \boldsymbol{r}$ does not.

Figure 2.11 On the difference between possible/admissible and virtual displacements (ex. 2.5.1: b).

Figure 2.12 Two-particle system connected by a light rod.

Example 2.5.2 Lagrangean Coordinates and Virtual Displacements. Let us determine the Lagrangean description $\boldsymbol{r}=\boldsymbol{r}\left(\boldsymbol{r}_{o} ; t, q\right)$ and corresponding virtual displacements $\delta \boldsymbol{r}=\cdots$ for the following systems:
(i) Two particles, P_{1} and P_{2}, are connected by a massless rod of length l, in plane motion (fig. 2.12). For an arbitrary rod point $P(X, Y)$, including P_{1} and P_{2}, we have

$$
\begin{equation*}
X=X_{1}+x \cos \phi=X\left(x ; X_{1}, \phi\right), \quad Y=Y_{1}+x \sin \phi=Y\left(x ; Y_{1}, \phi\right) \tag{a}
\end{equation*}
$$

or, vectorially,

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}_{1}+x \boldsymbol{i}=\boldsymbol{r}\left(x ; X_{1}, Y_{1}, \phi\right), \quad 0 \leq x \leq l . \tag{b}
\end{equation*}
$$

Therefore, $\boldsymbol{r}_{o}=x \boldsymbol{i}$; while the (inertial) positions of P_{1} and P_{2} are given, respectively, by

$$
\begin{align*}
\boldsymbol{r}_{1}=\boldsymbol{r}\left(0 ; X_{1}, Y_{1}, \phi\right) & =X_{1} \boldsymbol{I}+Y_{1} \boldsymbol{J} \tag{c}\\
\boldsymbol{r}_{2}=\boldsymbol{r}\left(l ; X_{1}, Y_{1}, \phi\right) & =\left(X_{1}+l \cos \phi\right) \boldsymbol{I}+\left(Y_{1}+l \sin \phi\right) \boldsymbol{J} \\
& =\left(X_{1} \boldsymbol{I}+Y_{1} \boldsymbol{J}\right)+l(\cos \phi \boldsymbol{I}+\sin \phi \boldsymbol{J})=\boldsymbol{r}_{1}+l \boldsymbol{i} . \tag{d}
\end{align*}
$$

Hence, this is a (holonomic) three DOF system: $q_{1}=X_{1}, q_{2}=Y_{1}, q_{3}=\phi$. From (a) we obtain, for the virtual displacements,

$$
\begin{equation*}
\delta X=\delta X_{1}+x(-\sin \phi) \delta \phi, \quad \delta Y=\delta Y_{1}+x(\cos \phi) \delta \phi ; \tag{e}
\end{equation*}
$$

or, vectorially,

$$
\begin{equation*}
\delta \boldsymbol{r}=\delta \boldsymbol{r}_{1}+x \delta \boldsymbol{i}=\delta \boldsymbol{r}_{1}+x[(\delta \phi \boldsymbol{k}) \times \boldsymbol{i}]=\delta \boldsymbol{r}_{1}+(x \delta \phi) \boldsymbol{j} . \tag{f}
\end{equation*}
$$

(ii) A rigid body in plane motion (fig. 2.13). For this three DOF system we have

$$
\begin{align*}
X & =X_{\star}+x \cos \phi-y \sin \phi=X\left(x, y ; X_{\star}, \phi\right), \\
Y & =Y_{\bullet}+x \sin \phi+y \cos \phi=Y\left(x, y ; Y_{\star}, \phi\right), \tag{g}
\end{align*}
$$

Figure 2.13 Rigid body in plane motion.
(and $Z=Z *=0$, say), or, vectorially,

$$
\begin{equation*}
\boldsymbol{r}=X \boldsymbol{I}+Y \boldsymbol{J}=\boldsymbol{r}\left(x, y ; X_{\star}, Y_{\star}, \phi\right) \tag{h}
\end{equation*}
$$

that is, $\boldsymbol{r}_{o}=x \boldsymbol{i}+y \boldsymbol{j}$ and $q_{1}=X_{\star}, q_{2}=Y_{\star}, q_{3}=\phi$. Therefore, the virtual displacements are

$$
\begin{align*}
& \delta X=\delta X_{\bullet}-x \sin \phi \delta \phi-y \cos \phi \delta \phi=\delta X_{\bullet}-\delta \phi\left(Y-Y_{\bullet}\right), \\
& \delta Y=\delta Y_{\bullet}+x \cos \phi \delta \phi-y \sin \phi \delta \phi=\delta Y_{\bullet}+\delta \phi\left(X-X_{\bullet}\right), \tag{i}
\end{align*}
$$

(and $\delta Z=\delta Z_{*}=0$), or, vectorially,

$$
\begin{equation*}
\delta \boldsymbol{r}=\delta \boldsymbol{r}_{\boldsymbol{\bullet}}+\delta \boldsymbol{\phi} \times\left(\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{\bullet}}\right), \quad \delta \boldsymbol{\phi}=\delta \phi \boldsymbol{k} . \tag{j}
\end{equation*}
$$

The extension to a rigid body in general spatial motion (with the help of the Eulerian angles, $\S 1.12$, and recalling discussion in $\S 1.8$) is straightforward.

2.6 SYSTEM FORMS OF LINEAR VELOCITY (PFAFFIAN) CONSTRAINTS

Stationarity/Scleronomicity/Catastaticity for Positional/Geometrical (\Rightarrow Holonomic) Constraints in System Variables
We begin by extending the discussion of $\S 2.2$ to general system variables, inertial or not. Positional constraints of the form $\phi(q)=0(\Rightarrow \partial \phi / \partial t=0)$ are called stationary; otherwise - that is, if $\phi(t, q)=0(\Rightarrow \partial \phi / \partial t \neq 0)$ - they are called nonstationary; and if all constraints of a system are (or can be reduced to) such stationary (nonstationary) forms, the system is called scleronomic (rheonomic). Clearly, such a classification is nonobjective-that is, it depends on the particular mode and/or frame of reference used for the description of position/configuration: for example, substituting $\boldsymbol{r}(t, q)$ into the stationary constraint $\phi(\boldsymbol{r})=0$ turns it to a nonstationary constraint, $\phi[\boldsymbol{r}(t, q)]=\phi(t, q)=0$ (and this is a reason that certain authors prefer to base this classification only for constraints expressed in system variables); or, a constraint that
is stationary when expressed in terms of inertial coordinates (q) may very well become nonstationary when expressed in terms of noninertial coordinates $\left(q^{\prime}\right)$: under the frame of reference (i.e., explicitly time-dependent!) transformation $q \rightarrow q^{\prime}(t, q) \Leftrightarrow q^{\prime} \rightarrow q\left(t, q^{\prime}\right)$, the stationary constraint $\phi(q)=0$ transforms to the nonstationary one $\phi\left(t, q^{\prime}\right)=0$. Hence, a scleronomic constraint $\phi(q)=0$ remains scleronomic under all coordinate (not frame of reference) transformations $q \rightarrow q^{\prime}(q) \Leftrightarrow q^{\prime} \rightarrow q\left(q^{\prime}\right)$; that is, its scleronomicity under such transformations is an objective property.

Stationarity/Scleronomicity/Catastaticity for Pfaffian Constraints in System Variables

Next, let us assume that the h holonomic constraints have been embedded into our system by the $n \equiv 3 N-h$ Lagrangean coordinates q. To embed the additional, $m(<n)$ mutually independent and possibly nonholonomic Pfaffian constraints (2.2.9) into our Lagrangean kinematics and kinetics: first, we express them in system variables. Indeed, substituting \boldsymbol{v} from (2.5.2) into (2.2.9), we obtain the Pfaffian constraints in system (holonomic) variables:

$$
\begin{equation*}
f_{D} \equiv \boldsymbol{S}\left(\boldsymbol{B}_{D} \cdot \boldsymbol{v}\right)+B_{D}=\cdots=\sum c_{D k} v_{k}+c_{D}=0 \quad(D=1, \ldots, m) \tag{2.6.1}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{D k}=c_{D k}(t, q) \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right) \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{e}_{k} \tag{2.6.1a}\\
& c_{D} \equiv c_{D, n+1} \equiv c_{D, 0}=c_{D}(t, q) \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot(\partial \boldsymbol{r} / \partial t)+B_{D} \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{e}_{0}+B_{D} \tag{2.6.1b}
\end{align*}
$$

and $\operatorname{rank}\left(c_{D k}\right)=m$. Similarly, substituting $d \boldsymbol{r}$ from (2.5.12a) into the differential form of (2.2.9), $f_{D} d t=0$, we obtain the kinematically admissible, or possible, form of these constraints in (holonomic) system variables:

$$
\begin{equation*}
d^{\prime} \theta_{D} \equiv f_{D} d t=\sum c_{D k} d q_{k}+c_{D} d t=0 \tag{2.6.2}
\end{equation*}
$$

with $d^{\prime} \theta_{D}$: not necessarily an exact differential; that is, θ_{D} may not exist, it may be a "quasi variable" (\$2.9) and, in view of what has already been said about virtualness, namely, $d t \rightarrow \delta t=0$, the virtual form of these constraints in particle variables is

$$
\begin{equation*}
\delta^{\prime} \theta_{D} \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \delta \boldsymbol{r}=0 \tag{2.6.3}
\end{equation*}
$$

and, accordingly, invoking (2.5.12b), in system variables,

$$
\begin{equation*}
\delta^{\prime} \theta_{D} \equiv \sum c_{D k} \delta q_{k}=0 \tag{2.6.4}
\end{equation*}
$$

The above show that, as in the particle variable case, the virtual displacements are mathematically equivalent to the difference between two systems of possible displacements, $d_{1} q$ and $d_{2} q$, occurring at the same position and for the same time, but in different directions: apply (2.6.2) at (t, q), for $d_{1} q \neq d_{2} q$, and subtract side by side and a (2.6.4)-like equation results.

And, as in $(2.5 .12 \mathrm{a}, \mathrm{b})$, once the constraints have been brought to these Pfaffian forms, the size of the δq 's does not matter; it is the constraint coefficients $c_{D k}$ that do.

Now, if in (2.6.1-2),

$$
\begin{equation*}
\partial c_{D k} / \partial t=0 \Rightarrow c_{D k}=c_{D k}(q) \tag{i}
\end{equation*}
$$

and

$$
\begin{align*}
& c_{D} \equiv c_{D, n+1} \equiv c_{D, 0}=0 \tag{ii}\\
& \Rightarrow \text { constraint: } f_{D}=\sum c_{D k}(q) v_{k}=0 \tag{2.6.5b}
\end{align*}
$$

for all $D=1, \ldots, m$ and $k=1, \ldots, n$, these constraints are called stationary; otherwise they are nonstationary; and a system with even one nonstationary constraint is called rheonomic; otherwise it is scleronomic. The inclusion of (2.6.5b) in the stationarity definition is made so that the velocity form of stationary position constraints coincides with that of the stationary velocity constraints:

$$
\begin{equation*}
\phi_{D}(q)=0 \Rightarrow d \phi_{D} / d t=\sum\left(\partial \phi_{D} / \partial q_{k}\right) v_{k} \equiv \sum \phi_{D k}(q) v_{k}=0 \tag{2.6.5c}
\end{equation*}
$$

If only $c_{D} \equiv c_{D, n+1} \equiv c_{D, 0}=0$, for all D, but $\partial c_{D k} / \partial t \neq 0 \Rightarrow c_{D k}=c_{D k}(t, q)$ even for one value of D and k, the Pfaffian constraints are called catastatic $[\approx$ calm, orderly (Greek)]; otherwise they are called acatastatic. We notice that stationary constraints are catastatic, but catastatic constraints may not be stationary; we may still have $\partial c_{D k} / \partial t \neq 0$ for some D and k. As mentioned earlier (2.2.11a ff.), it is the castastatic/ acatastatic classification, having meaning only for Pfaffian constraints, that is the important one for analytical kinetics, not the stationary/nonstationary one.

Finally, as (2.6.1b) shows, the acatastatic coefficients c_{D} result from the nonstationary part of \boldsymbol{v} (i.e., $\partial \boldsymbol{r} / \partial t$), and the acatastatic part of (2.2.9) (i.e., B_{D}). From this comes the search for frames of reference/Lagrangean coordinates where the Pfaffian constraint coefficients take their simplest possible form; a problem that, in turn, leads us to the investigation of the following.

Transformation Properties of $c_{D k}$ and c_{D}, under a General Frame-of-Reference Transformation

The latter is mathematically equivalent to an explicitly time-dependent coordinate transformation: $q \rightarrow q^{\prime}=q^{\prime}(t, q)$ and $t \rightarrow t^{\prime}=t$. Then (2.6.1-1b) become

$$
\begin{align*}
f_{D} & =\sum c_{D k}\left(\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) v_{k^{\prime}}+\partial q_{k} / \partial t\right)+c_{D} \\
& =\cdots=\sum c_{D k^{\prime}} v_{k^{\prime}}+c_{D}^{\prime} \quad(=0) \quad\left(k, k^{\prime}=1, \ldots, n ; D=1, \ldots, m\right) \tag{2.6.6}
\end{align*}
$$

where

$$
\begin{array}{cc}
c_{D k^{\prime}} \equiv \sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) c_{D k} & (\text { covariant vector-like transformation in } k), \\
c_{D}^{\prime} \equiv \sum\left(\partial q_{k} / \partial t\right) c_{D k}+c_{D} & (\text { covariant vector-like transformation in } t \equiv n+1 \\
\text { with } \left.q_{n+1}^{\prime} \equiv t^{\prime}=t \Rightarrow \partial t^{\prime} / \partial t=1\right) \tag{2.6.6b}
\end{array}
$$

The above readily show that: (i) if $\partial q_{k} / \partial t=0$ [i.e., $q=q\left(q^{\prime}\right)$ ($=$ coordinate transformation; in the same frame of reference), then $c^{\prime}{ }_{D}=c_{D}$; and (ii) we can choose a frame of reference in which $c_{D}^{\prime}=0$; that is, catastaticity/acatastaticity (and stationarity/nonstationarity) are frame-dependent properties.

Holonomicity versus Nonholonomicity

The $m(<n)$ constraints (2.6.1) are independent if the $m \times n$ constraint matrix $\left(c_{D k}\right)$ has maximal rank (i.e., m) at each point in the region of definition of the q 's and t.

Now, if these constraints are completely integrable \equiv holonomic [i.e., either they are exact: $c_{D k}=\partial h_{D} / \partial q_{k}$ and $c_{D}=\partial h_{D} / \partial t$, where $h_{D}=h_{D}(t, q)(=0)$; or they possess integrating factors, as explained in §2.2], then there exists a set of n "equilibrium," or "adapted (to the constraints)" system coordinates $\chi=\left(\chi_{1}, \ldots, \chi_{n}\right)$ in which these constraints take the simple uncoupled form:

$$
\begin{align*}
\chi_{1} & \equiv h_{1}(t, q)=0, \ldots, \chi_{m} \equiv h_{m}(t, q)=0 \tag{2.6.7a}\\
\chi_{m+1} & \equiv h_{m+1}(t, q) \neq 0, \ldots, \chi_{n} \equiv h_{n}(t, q) \neq 0 \tag{2.6.7b}
\end{align*}
$$

where, as in $\S 2.4$, the $n-m$ functions $h_{m+1}(t, q), \ldots, h_{n}(t, q)$ are arbitrary, except that when (2.6.7a, b) are solved for the $n q$'s in terms of the $(n-m) \chi_{I} \equiv\left(\chi_{m+1}, \ldots, \chi_{n}\right)$ and these expressions are inserted back into the m holonomic constraints $h_{1}(t, q)=0, \ldots, h_{m}(t, q)=0$, they satisfy them identically in the χ_{I} 's and t. The χ_{I} 's are the new positional system coordinates of this $3 N-(h+m)=$ $(3 N-h)+m=n-m \equiv n^{\prime}$ (both global and local) DOF:

$$
\begin{equation*}
q \rightarrow q^{\prime} \equiv\left(\chi_{m+1}, \ldots, \chi_{n}\right) \equiv\left(q_{1}^{\prime}, \ldots, q_{n^{\prime}}^{\prime}\right) . \tag{2.6.7c}
\end{equation*}
$$

This process of adaptation to the constraints via new equilibrium coordinates can be repeated if additional holonomic constraints are imposed on the system; and with some nontrivial modifications it carries over to the case of additional nonholonomic constraints (§2.11: essentially, by expressing this adaptation ... idea in the small; i.e., locally, via "equilibrium quasi coordinates"). The importance of this method to AM lies in its ability to uncouple constraints, and thus to simplify significantly the equations of motion (chap. 3).

If, on the other hand, the constraints (2.6.1) are noncompletely integrable \equiv nonholonomic, then the number of independent Lagrangean coordinates ($=$ number of global DOF) remains n, but the system has $n-m \equiv f$ DOF (in the small, or local case); that is, under the additional m nonholonomic constraints [(2.6.1), (2.6.2)], the n q 's remain independent (unlike the holonomic case!), but the $n v / d q / \delta q$'s do not-or, if the differential increments δq are arbitrary (if, for example, we let q_{k} become $q_{k}+\delta q_{k}$ while all the other q 's remain constant), then they will no longer be virtual; that is, they will not be compatible with the virtual form of the constraints (2.6.4); and similarly for the v 's, $d q$'s. [Of course, if $m=0$, then the $n q$'s are independent and their arbitrary increments δq are virtual; that is, both q 's and δq 's satisfy the existing (initial) h holonomic constraints. For example, in the case of a sphere rolling on, say, a fixed plane: (a) if the plane is smooth (i.e., $m=0$), both the arbitrary q 's and the arbitrary $(q+d q)$'s, are kinematically possible; while (b) if the plane is sufficiently rough so that the sphere rolls on it (i.e., $m \neq 0$, and the additional (rolling) constraints are nonholonomic), only the q 's are still arbitrary (independent), the $(q+d q)$'s are not - or, if they are, the sphere does not roll. For details, see exs. 2.13.4, 2.13.5, 2.13.6.]

To find the number of independent δq 's under the additional m (holonomic or nonholonomic) constraints $(2.6 .1,2,4)$ we must now turn to the examination of the following.

Introduction to Virtual Displacements under Pfaffian Constraints (Introduction to Quasi Variables)

In this case, the particle virtual displacement is still represented by (2.5.12b):

$$
\begin{equation*}
\delta \boldsymbol{r}=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k} \equiv \sum \boldsymbol{e}_{k} \delta q_{k} \tag{2.6.8}
\end{equation*}
$$

but, due to the virtual constraints (2.6.4), out of the $n \delta q$'s only $n-m$ are independent; that is, if, now, all $n \delta q$'s vary arbitrarily, the resulting $\delta \boldsymbol{r}$, via (2.6.8), will not be virtual-denoting a differential increment of a system coordinate by δq does not necessarily make it virtual; it must also be constraint compatible. For example, solving (2.6.4) for the first $m \delta q$'s,

$$
\begin{equation*}
\delta q_{D} \equiv\left(\delta q_{1}, \ldots, \delta q_{m}\right)=\text { Dependent } \delta q^{\prime} \mathrm{s} \tag{2.6.9a}
\end{equation*}
$$

in terms of the last $n-m$ of them,

$$
\begin{equation*}
\delta q_{I} \equiv\left(\delta q_{m+1}, \ldots, \delta q_{n}\right)=\text { Independent } \delta q \text { 's } \tag{2.6.9b}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\delta q_{D}=\sum b_{D I} \delta q_{I} \quad(D=1, \ldots, m ; I=m+1, \ldots, n) \tag{2.6.9}
\end{equation*}
$$

where $b_{D I}=b_{D I}(q, t)=$ known functions of (generally, all) the q 's and t. Substituting (2.6.9) into (2.6.8), we obtain, successively,

$$
\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}=\sum \boldsymbol{e}_{D} \delta q_{D}+\sum \boldsymbol{e}_{I} \delta q_{I}=\sum \boldsymbol{e}_{D}\left(\sum b_{D I} \delta q_{I}\right)+\sum \boldsymbol{e}_{I} \delta q_{I}
$$

finally
either $\quad \delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}$, under $\sum c_{D k} \delta q_{k}=0 \quad\left(\delta q_{k}\right.$, nonarbitrary $)$,
or $\delta \boldsymbol{r}=\sum \boldsymbol{\beta}_{I} \delta q_{I} \quad\left(\delta q_{I}\right.$, arbitrary $)$,
where

$$
\begin{equation*}
\boldsymbol{\beta}_{I} \equiv \boldsymbol{e}_{I}+\sum b_{D I} \boldsymbol{e}_{D} \equiv \partial \boldsymbol{r} / \partial q_{I}+\sum b_{D I}\left(\partial \boldsymbol{r} / \partial q_{D}\right)[\text { see also (2.11.13a ff.) }] \tag{2.6.10c}
\end{equation*}
$$

that is, the most general particle virtual displacement under (2.6.4) can be expressed as a linear and homogeneous combination of the "narrower" basis $\left\{\boldsymbol{\beta}_{\boldsymbol{I}}\right.$; $I=m+1, \ldots, n\}$, whose vectors are, in general [and unlike the \boldsymbol{e}_{k} 's-recalling (2.5.4a ff.)], nongradient, or nonholonomic:

$$
\begin{equation*}
\boldsymbol{\beta}_{I} \neq \partial \boldsymbol{r} / \partial q_{I} \Rightarrow \partial \boldsymbol{\beta}_{I} / \partial q_{I^{\prime}} \neq \partial \boldsymbol{\beta}_{I^{\prime}} / \partial q_{I} \quad\left(I, I^{\prime}=m+1, \ldots, n\right) \tag{2.6.11}
\end{equation*}
$$

as can be verified directly by using (2.6.10c) in (2.6.11).
The number of independent δq 's, here $n-m \equiv f$, equals the earlier defined number of local DOFs; and, inversely, we can redefine the number of DOFs in the small, henceforth called simply DOF, as the smallest number of independent parameters $\dot{q}_{I} \equiv v_{I} / d q_{I} / \delta q_{I}$ needed to determine $\boldsymbol{v} / d \boldsymbol{r} / \delta \boldsymbol{r}$, for all system particles and any admissible, and so on, local motion; that is, the number of DOFs (in the small) $=$ minimum number of independent "local positional", or motional, parameters. Just as the number of DOFs in the large, $F=n$ (here), is the minimum number of
independent positional parameters needed to determine the configurations of all system particles in any admissible, and so on, global motion.

REMARKS

(i) The $f \delta q_{I}$ can, in turn, be expressed as linear and homogeneous combinations of another set of f-independent motional parameters, say $\eta_{I}: \delta q_{I}=\sum H_{I I^{\prime}}(t, q) \eta_{I^{\prime}}$ $\left(I, I^{\prime}=m+1, \ldots, n\right)$; in which case (2.6.10b) becomes

$$
\begin{align*}
\delta \boldsymbol{r}=\sum \boldsymbol{\beta}_{I} \delta q_{I}=\sum \boldsymbol{\beta}_{I}\left(\sum H_{I I^{\prime}} \eta_{I^{\prime}}\right) & =\sum\left(\sum H_{I I^{\prime}} \boldsymbol{\beta}_{I}\right) \eta_{I^{\prime}} \\
& \equiv \sum \boldsymbol{h}_{I^{\prime}} \eta_{I^{\prime}}=\sum \boldsymbol{h}_{I} \eta_{I} . \tag{2.6.10d}
\end{align*}
$$

(ii) As already mentioned, the importance of these considerations lies in kinetics (chap. 3), where it is shown that the number of independent kinetic equations of motion (= equations not containing forces of constraint) equals the number of independent δq 's.

Problem 2.6.1 Show that due to the m Pfaffian constraints (2.6.1) (expressed in terms of the notation $d q_{k} / d t \equiv v_{k}$):

$$
\begin{equation*}
\sum c_{D k} v_{k}+c_{D}=0 \quad(D=1, \ldots, m ; k=1, \ldots, n) \tag{a}
\end{equation*}
$$

or, equivalently, in the (2.6.9)-like form, in the velocities,

$$
\begin{equation*}
v_{D}=\sum b_{D I} v_{I}+b_{D} \quad(I=m+1, \ldots, n), \tag{b}
\end{equation*}
$$

the additional holonomic constraint $\phi(t, q)=0$ satisfies the following $(n-m)+1$ conditions:

$$
\begin{equation*}
\partial \phi / \partial q_{I}+\sum b_{D I}\left(\partial \phi / \partial q_{D}\right)=0 \quad \text { and } \quad \partial \phi / \partial t+\sum b_{D}\left(\partial \phi / \partial q_{D}\right)=0 \tag{c}
\end{equation*}
$$

which, in terms of the notation $\phi\left(t, q_{D}, q_{I}\right)=\phi\left[t, q_{D}\left(t, q_{I}\right), q_{I}\right] \equiv \phi_{o}\left(t, q_{I}\right)=0$, read simply

$$
\begin{equation*}
\partial \phi_{o} / \partial q_{I}=0 \quad \text { and } \quad \partial \phi_{o} / \partial t=0 \tag{d}
\end{equation*}
$$

respectively (compare with example 2.4.1.).
Before embarking into the detailed study of nonholonomic constraints and associated "coordinates" (to embed them), and the most general $\boldsymbol{v} / d \boldsymbol{r} / \delta \boldsymbol{r}$-representations in terms of $n-m$ arbitrary motional system parameters, of which the previous $v_{I} \equiv \dot{q}_{I} / d q_{I} / \delta q_{I}$ are a special case, let us pause to geometrize our analytical findings; and in the process dispel the incorrect impressions, held by many, that analytical mechanics is, somehow, only numbers (analysis), no pictures - an impression initiated, ironically, by Lagrange himself!

2.7 GEOMETRICAL INTERPRETATION OF CONSTRAINTS

Configuration Spaces

As explained in $\S 2.2$, before the imposition of any constraints, the configurations of a mechanical system S are described by the motion of its representative, or figurative, particle $P(S) \equiv P$ in a (clearly, nonunique) $3 N$-dimensional Euclidean, or noncurved/
flat, space, $E_{3 N}$, called unconstrained, or free, configuration space. [Briefly, Euclidean, or noncurved, or flat, means that, in it, the Pythagorean theorem ("distance squared = sum of squares of coordinate differences") holds globally; that is, between any two space points, no matter how far apart they may be; see, for example, Lur'e (1968, p. 807 ff .), Papastavridis (1999, §2.12.3).]

The position vector of P, in terms of its rectangular Cartesian coordinates/components relative to some orthonormal basis of fixed origin O, in there, is [recall (2.4.3 ff.)]

$$
\begin{equation*}
\boldsymbol{\xi}=\left[\xi_{1}=\xi_{1}(t), \ldots, \xi_{3 N}=\xi_{3 N}(t)\right] . \tag{2.7.1}
\end{equation*}
$$

However, as detailed in $\S 2.4$, upon imposition on S of h holonomic constraints and subsequent introduction of $n \equiv 3 N-h \quad$ Lagrangean coordinates $\boldsymbol{q} \equiv\left[q_{1}=q_{1}(t), \ldots, q_{n}=q_{n}(t)\right]$, or simply $q=\left(q_{1}, \ldots, q_{n}\right)$, the above assumes the parametric representation

$$
\begin{equation*}
\boldsymbol{\xi}=\boldsymbol{\xi}(t, \boldsymbol{q})=\left[\xi_{1}=\xi_{1}(t ; q), \ldots, \xi_{3 N}=\xi_{3 N}(t ; q)\right], \tag{2.7.1a}
\end{equation*}
$$

which, in geometrical terms, means that, as a result of these constraints, P can no longer roam throughout $E_{3 N}$, but is forced to remain on its time-dependent n-dimensional surface defined by (2.7.1a), called reduced, or constrained configuration space of the system; actually the portion of that surface corresponding to the mathematically and physically allowable range of its curvilinear coordinates q. In differential-geometric/tensorial terms, that space, described by the surface coordinates q, when equipped with a physically motivated metric, becomes, at every instant t, a generally non-Euclidean (or curved, or nonflat) metric manifold, $M_{n}(t) \equiv M_{n}$, usually a Riemannian one, embedded in $E_{3 N}$; and this explains the importance of Riemannian geometry to theoretical dynamics. [Riemannian manifold means one in which the square of the infinitesimal distance ("line element") is quadratic, homogeneous, and (usually) positive-definite in the coordinate differentials $d q_{k}$. In dynamics, the manifold metric is built from the system's kinetic energy (§3.9). See, for example, Lur'e (1968, pp. 810 ff .), Papastavridis (1999, §2.12, §5.6 ff.)] Schematically, we have

$$
\text { [} N=\text { number of particles, } h=\text { number of holonomic constraints, } n \equiv 3 N-h \text {] }
$$

Now, as S moves in any continuous, or finite, way in the ordinary physical (threedimensional and Euclidean) space, or some portion of it, P moves along a continuous M_{n}-curve, $q=q(t)$. The relevant analytical requirements on such q 's ($(2.4$) are summarized as follows:
(i) The correspondence between the q-tuples and some region of M_{n} must be one-toone and continuous (additional holonomic constraints would exclude some parts of that region from the possible configurations).
(ii) If $\Delta s=$ displacement, in M_{n}, corresponding to the q-increment Δq, we must have $\lim \left(\Delta s / \Delta q_{k}\right) \neq 0$, as $\Delta q_{k} \rightarrow 0(k=1, \ldots, n)$; or $d q_{k} / d s$ (= "direction cosines" of unit tangent vector to system path in M_{n}) $=$ finite. The q 's are then called regular. (See also Langhaar, 1962, p. 16.)

Event Spaces

Instead of the "dynamical" spaces $E_{3 N}$ and M_{n}, we may use their (formal and nonrelativistic) "union" with time $t \equiv q_{0} \equiv q_{n+1}$; symbolically,

$$
\begin{equation*}
E_{3 N+1} \equiv E_{3 N} \times T(\text { ime }) \quad \text { and } \quad M_{n+1} \equiv M_{n} \times T(\text { ime }) \tag{2.7.2}
\end{equation*}
$$

These latter are called (unconstrained and constrained, respectively): manifolds of configuration and time (or of extended configuration), or "geometrical" space-time manifolds, or film spaces; or, simply, event spaces. $M_{n}\left(M_{n+1}\right)$ is suitable for the study of scleronomic (rheonomic) systems. (One more such "generalized space," the phase space of Lagrangean coordinates and momenta, is examined in chap. 8.)

Constrained Configuration Spaces and their Tangent Planes

The h stationary and holonomic constraints define, in $E_{3 N}$, a stationary (nonmoving) and rigid (nondeforming) n-dimensional surface M_{n}; while h nonstationary holonomic constraints define, in $E_{3 N}$, a nonstationary (moving) and nonrigid (deforming) ndimensional surface $M_{n}(t)$. However, these same nonstationary constraints also define, in $E_{3 N+1}$, a stationary and rigid $(n+1)$-dimensional surface M_{n+1}; hence, the relativity of these terms! The equations $t=$ constant define ∞^{1} privileged surfaces $M_{n}(t)$ in M_{n+1}. Thus, the motion of the system can be viewed either as (i) a stationary curve in the geometrical space M_{n+1}; or (ii) as the motion of the representative system point in the deformable, or "breathing," dynamical space $M_{n}(t)$. Further, through each M_{n}-point $q(t)$ there passes a $(n-1)$-ple infinity of kinematically possible system paths, on each of which the "rate of traverse" $d q / d t$ is arbitrary; and through each M_{n+1}-point (q, t) there passes an n-ple infinity of such paths, but these latter, since there is no motion in M_{n+1}, are not traversed. The kinetic paths of a system in M_{n} and M_{n+1} are called its trajectories/orbits and world lines, respectively. Additional M_{n} / M_{n+1} differences are given below, in connection with nonholonomic constraints.

Next, and as differential geometry teaches, (i) the set of all $(n+1)$-ples $\left(d q_{\alpha}\right)$ make up the tangent point space (hyperplane) to M_{n+1} at $P, T_{n+1}(P)$; while (ii) the vectors $\left\{\boldsymbol{E}_{\alpha} \equiv \boldsymbol{E}_{\alpha}(P) ; \alpha=1, \ldots, n ; n+1\right\}$, defined by $d \boldsymbol{P} \equiv d \boldsymbol{\xi} \equiv d \boldsymbol{q} \equiv \sum \boldsymbol{E}_{\alpha} d q_{\alpha}$: vector of elementary system displacement determined by $P(q)$ and $P(q+d q)$ (each \boldsymbol{E}_{α} being tangent to the coordinate line q_{α} through P) constitute a "natural" basis for the tangent vector space associated with, or corresponding to, $T_{n+1}(P)$; and similarly for M_{n}. For simplicity, we shall denote both these point and vector spaces by $T_{n+1}(P)$, $T_{n}(P)$.

REMARKS

(i) Without a metric, these tangent spaces are affine. After they become equipped with one, they become Euclidean; properly Euclidean if the metric is positive definite, and pseudo-Euclidean if the metric is indefinite. As mentioned earlier, in mechanics the metric is based on the kinetic energy, and, therefore, it is either positive definite or positive semidefinite.
(ii) It is shown in differential geometry that the condition that $d \boldsymbol{E}_{\alpha}=\sum(\cdots)_{\alpha \beta} \boldsymbol{E}_{\beta}$ be an exact differential [i.e., $\partial / \partial q_{\gamma}\left(\partial \boldsymbol{E}_{\alpha} / \partial q_{\beta}\right)=\partial / \partial q_{\beta}\left(\partial \boldsymbol{E}_{\alpha} / \partial q_{\gamma}\right)$] leads to the requirement that M_{n+1} / M_{n} be a Riemannian manifold. For details, see, for example, Papastavridis (1999, p. 135).

Pfaffian Constraints

Let us begin with a system subjected to h holonomic constraints (2.4.2), and, therefore, described by the $n \equiv 3 N-h$ holonomic coordinates q. Then, a motion of the system in the physical space E_{3} corresponds to a certain curve in M_{n} (trajectory or orbit) $/ M_{n+1}$ (world line) traced by the figurative system particle P; and, conversely, admissible M_{n} / M_{n+1} curves represent some system motion. Now, let us impose on it the additional m Pfaffian constraints:

Kinematically admissible form: $\quad d^{\prime} \theta_{D} \equiv \sum c_{D k} d q_{k}+c_{D} d t=0$,
Virtual form :

$$
\begin{equation*}
\delta^{\prime} \theta_{D} \equiv \sum c_{D k} \delta q_{k}=0 \tag{2.7.3}
\end{equation*}
$$

As a result of the above, we have the following geometrical picture:
(i) At each admissible M_{n+1}-point $P \equiv(q, t)$, the m constraints (2.7.3) define (or order, or map, or form), the $[(n+1)-m]=[(n-m)+1]$-dimensional "element" $T_{(n+1)-m}(P) \equiv T_{(n-m)+1}(P) \equiv T_{I+1}(P)$: tangent space (plane) of kinematically admissible displacements (motions), of the earlier tangent plane $T_{n+1}(P)$, on which the kinematically admissible displacements of the system, $d q$, and $d t$ lie. Therefore, at every P, only world lines with velocities $v_{\alpha} \equiv d q_{\alpha} / d t$ on that plane are possible - the system can only move along directions compatible with (2.7.3).
(ii) At each such point P, the m constraints (2.7.4) define the $(n-m)$-dimensional plane $T_{n-m}(P)$: tangent space of virtual displacements (motions), or virtual plane, on which the virtual displacements of the system, δq, lie. Clearly, $T_{n-m}(P)$ is the intersection of $T_{(n-m)+1}(P)$ with the hyperplane $d t \rightarrow \delta t=0$ there; symbolically, $T_{n-m}(P)=\left.T_{(n-m)+1}\right|_{\delta t=0} \equiv V_{n-m}(P)$ (V for virtual). $\left\{\right.$ And a manifold M_{n} / M_{n+1} whose tangential bundle (i.e., totality of its tangential spaces) is restricted by the m nonholonomic equations (2.7.3) [assuming that (2.7.3), (2.7.4) are nonholonomic] is called nonholonomic manifold $M_{n, n-m} / M_{n+1, n-m}$. Some authors call the so-restricted bundle, $T_{(n-m)+1}$ or T_{n-m}, nonholonomic space embedded in M_{n}, or M_{n+1}. See also Maißer (1983-1984), Papastavridis (1999, chap. 6), Prange (1935, pp. 557-560), Schouten (1954, p. 196). $\}$
(iii) The given constraint coefficients $\left(c_{D k}, c_{D}\right)$ define, at P, an $(m+1)$-dimensional kinematically admissible constraint plane (element) $C_{m+1}(P)$ perpendicular to $T_{m+1}(P)$ (with orthogonality defined in terms of the kinetic energy-based metric); while the $\left(c_{D k}\right)$ define an m-dimensional virtual constraint plane (i.e., of the virtual form of the constraints) $C_{m}(P)$ perpendicular to $V_{n-m}(P)$. Sometimes, $C_{m}(P)$ is referred to as the orthogonal complement of $V_{n-m}(P)$ relative to $T_{n}(P)$. The $c_{D k}$ can be viewed as the covariant (in the sense of tensor calculus) and holonomic components of the m virtual constraint vectors $\boldsymbol{c}_{D}=\left(c_{D k}\right)$, which, by (2.7.4), are orthogonal to the virtual displacements $\delta q_{k}: \boldsymbol{c}_{D} \cdot \delta \boldsymbol{q}=\sum c_{D k} \delta q_{k}=0$. Hence since the \boldsymbol{c}_{D} are independent, they constitute a basis (span) for the earlier space $C_{m}(P)$. These two local planes are frequently called the $\operatorname{null}\left[V_{n-m}(P)\right]$ and range $\left[C_{n}(P)\right]$ spaces of the $m \times n$ constraint matrix $\left(c_{D n}\right)$. These geometrical results are shown in fig. 2.14 (see also fig. 3.1).

Let us consolidate our findings:
(i) Under n initial holonomic constraints, a system can go from any admissible initial M_{n} / M_{n+1}-point, P_{i}, to any other final such point, P_{f}, along any chosen $\left(M_{n} / M_{n+1}\right)$-lying path joining P_{i} and P_{f}.

Figure 2.14 Virtual displacement $\left(V_{n-m}\right)$ and constraint $\left(C_{m}\right)$ hyperplanes in configuration space (see also fig. 3.1).
(ii) If the additional m Pfaffian constraints $(2.7 .3,4)$ are holonomic, disguised in kinematical form, the local tangent planes become the earlier local tangent planes to reduced, or "smaller," configuration/event manifolds $M_{n-m} / M_{(n+1)-m}$, inside M_{n} / M_{n+1}. These reduced but finite surfaces contain all possible system motions through a given P_{i} - the system can go from any admissible initial $M_{n-m} / M_{(n+1)-m}$-point, P_{i}, to any other final such point, P_{f}, along any chosen $\left(M_{n} / M_{n+1}\right)$-lying path joining $\quad P_{i}$ and $P_{f} ;$ that is, $\quad D O F($ local $)=$ $\operatorname{DOF}($ global $)=n-m$.
(iii) On the other hand, if the additional m Pfaffian constraints are nonholonomic, we cannot construct these $M_{n-m} / M_{(n+1)-m}$. The global configuration/event manifolds of the system are still M_{n} / M_{n+1}, but these constraints have created, in there, a certain path-dependence: any $\left(M_{n} / M_{n+1}\right)$-point P_{f} (in the admissible portions of $\left.M_{n} / M_{n+1}\right)$ is, again, accessible from any other $\left(M_{n} / M_{n+1}\right)$-point P_{i} but only along a certain kinematical family, or "network," of tracks that is "narrower" than that of case (i); that is, the transition $P_{i} \rightarrow P_{f}$ is no longer arbitrary because of direction-ofmotion constraints, at every point of those paths. Or, under such constraints, all configurations/events are still possible, but not all velocities (and, hence, not all paths); only certain M_{n} / M_{n+1}-curves correspond to physically realizable motions the system is restricted locally, not globally; that is, $n=\operatorname{DOF}($ global $) \neq$ $\operatorname{DOF}($ local $)=n-m$. We continue this geometrical interpretation of constrained systems in §2.11.

Kinetic Preview, Quasi Coordinates

The importance of these considerations, and especially of the concept of virtualness, to contrained system mechanics arises from the fact that most of the constraint forces dealt by AM (the so-called "passive," or contact, ones; i.e., those satisfying the d'Alembert-Lagrange principle, chap. 3) are perpendicular to the virtual displacement plane V_{n-m}, and so lie on the virtual constraint plane C_{m}. And this, as detailed in chapter 3, allows us to bring the system equations of motion into their simplest form; that is (i) to their smallest possible, or minimal, number (n), and (ii) to a complete decoupling of them into $(n-m)$ purely kinetic equations-that is,
equations not containing constraint forces - by projecting them onto the local virtual hyperplane, and (m) kinetostatic equations - equations containing constraint forces - by projecting them onto the local constraint hyperplane, which is perpendicular to the virtual hyperplane there. This is the raison d'être of virtualness, and the essence of Lagrangean analytical mechanics. In all cases, under given initial/boundary conditions and forces, the system will follow a unique path (a trajectory, or orbit) determined, or singled out among the problem's kinematically admissible paths, by solving the full set of its kinetic and kinematic equations.

Schematically, our strategic plan is as the following:

Now, if the m Pfaffian constraints are holonomic, their uncoupling (and that of the corresponding equations of motion) is easily achieved by "adaptation to the constraints," as explained in $\S 2.4$ and $\S 2.6$; but, if they are nonholonomic this "adaptation" can be achieved only locally, via "equilibrium" nonholonomic coordinates, or quasi coordinates.

We begin the study of these fundamental kinematical concepts by first examining one of their important features: the possible commutativity/noncommutativity of the virtual and possible operations, $\delta(\ldots)$ and $d(\ldots)$, respectively, when applied to this new breed of "coordinates"; that is, we investigate the relation between $d[\delta($ quasi coordinate $)]$ and $\delta[d$ (quasi coordinate $)]$.

2.8 NONCOMMUTATIVITY VERSUS NONHOLONOMICITY; INTRODUCTION TO THE THEOREM OF FROBENIUS

Let us recall the admissible (d) and virtual (δ) forms of the Pfaffian constraints $(2.7 .3,4)$ (henceforth keeping possible non-exactness accents only when really necessary!):

$$
\begin{equation*}
d \theta_{D} \equiv \sum c_{D k} d q_{k}+c_{D} d t=0 \quad \text { and } \quad \delta \theta_{D} \equiv \sum c_{D k} \delta q_{k}=0 \tag{2.8.1}
\end{equation*}
$$

where $D=1, \ldots, m ; I=m+1, \ldots, n ; k$ (and all other small Latin indices) $=1, \ldots, n$. Now, $\delta(\ldots)$-varying the first of (2.8.1), and $d(\ldots)$-varying the second, and then subtracting them side by side, we find, after some straightforward differentiations and dummy index changes,

$$
\begin{align*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=\sum c_{D k} & {\left[d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)\right] } \\
+\sum(& \left(\partial c_{D k} / \partial q_{l}-\partial c_{D l} / \partial q_{k}\right) d q_{l} \\
& \left.+\left(\partial c_{D k} / \partial t-\partial c_{D} / \partial q_{k}\right) d t\right) \delta q_{k} \\
& +c_{D}[d(\delta t)-\delta(d t)] \tag{2.8.1a}
\end{align*}
$$

or, since the last term is zero $[\delta t=0 \Rightarrow d(\delta t)=0$, and, during $\delta(\ldots)$ time is kept constant $\Rightarrow \delta(d t)=0$], and with the earlier notations $q_{0} \equiv q_{n+1} \equiv t \Rightarrow \delta q_{0}=\delta q_{n+1}=$ $\delta t=0, c_{D} \equiv c_{D 0} \equiv c_{D, n+1}$, and Greek subscripts running from 1 to $n+1$ (or from 0 to n):

$$
\begin{align*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)= & \sum c_{D k}\left[d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)\right] \tag{2.8.2}\\
& +\sum \sum\left(\partial c_{D k} / \partial q_{\alpha}-\partial c_{D \alpha} / \partial q_{k}\right) d q_{\alpha} \delta q_{k}
\end{align*}
$$

A final simplification occurs with the useful notations $d(\delta \ldots)-\delta(d \ldots) \equiv D(\ldots)$, and

$$
\begin{equation*}
C_{\beta \alpha}^{D} \equiv \partial c_{D \beta} / \partial q_{\alpha}-\partial c_{D \alpha} / \partial q_{\beta}=-C_{\alpha \beta}^{D}, \tag{2.8.2a}
\end{equation*}
$$

$$
\begin{gather*}
F_{D} \equiv \sum \sum C_{k \alpha}^{D} d q_{\alpha} \delta q_{k}: \text { Frobenius' bilinear, or antisymmetric, covariant } \\
\text { of the Pfaffian forms }(2.8 .1) \tag{2.8.2b}
\end{gather*}
$$

Thus, (2.8.2) transforms to

$$
\begin{equation*}
D \theta_{D}=\sum c_{D k} D q_{k}+F_{D} \tag{2.8.2c}
\end{equation*}
$$

Problem 2.8.1 Starting with eqs. (2.5.12a,b):

$$
\begin{equation*}
d \boldsymbol{r}=\sum \boldsymbol{e}_{k} d q_{k}+\boldsymbol{e}_{0} d t, \quad \delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k} \tag{a}
\end{equation*}
$$

and repeating the above process, show that

$$
\begin{equation*}
D \boldsymbol{r}=\sum D q_{k} \boldsymbol{e}_{k} . \tag{b}
\end{equation*}
$$

From the above basic kinematical identities, we draw the following conclusions:
(i) If $C^{D}{ }_{k \alpha}=0$, identically in the q 's and t, and for all values of D, k, α then, since

$$
\begin{equation*}
D q_{k} \equiv d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)=0 \tag{2.8.3a}
\end{equation*}
$$

the q_{k} being genuine $=$ holonomic coordinates, it follows that

$$
\begin{equation*}
D \theta_{D} \equiv d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=0 \tag{2.8.3b}
\end{equation*}
$$

that is, the θ_{D} are also holonomic coordinates, the $d \theta_{D} / \delta \theta_{D}$ are exact differentials. In this case (2.8.1) may be replaced by m holonomic constraints; which, in turn, may be embedded into the system via $n^{\prime}=n-m$ new equilibrium coordinates, as explained in §2.4.
(ii) If $F_{D} \neq 0$, then $D \theta_{D} \neq 0$; or, more generally, we cannot assume that both $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$ and $d\left(\delta \theta_{D}\right)=\delta\left(d \theta_{D}\right)$ hold; it is either the one or the other. (As detailed in chap. 7 , this realization helps one understand the fundamental differences that exist between variational mathematics and variational mechanics. See also pr. 2.12.5.) If we assume (2.8.3a) for all holonomic coordinates, constrained or not, then $D \theta_{D} \neq 0$; that is, the θ_{D} are nonholonomic coordinates; and, as Frobenius' theorem shows (see below), the constraints (2.8.1) are nonholonomic.
(iii) If, however, $F_{D}=0$, since the $d q / \delta q$ are not independent, it does not necessarily follow that $C^{D}{ }_{k \alpha}=0$. To make further progress - that is, to establish necessary and sufficient holonomicity/nonholonomicity conditions in terms of the constraint coefficients, $c_{D k}$ and c_{D}, we need nontrivial help from differential equations/differential geometry; and this leads us directly to the following fundamental theorem of Frobenius (1877). First, let us formulate it in simple and general mathematical terms, and then we will tailor it to our kinematical context.

Theorem of Frobenius

The necessary and sufficient condition for the complete (or unrestricted) integrability \equiv holonomicity of the Pfaffian system:

$$
\begin{equation*}
X_{D} \equiv \sum X_{D K} d x_{K}=0 \quad[D=1, \ldots, m(<F) ; K, L=1, \ldots, F] \tag{2.8.4}
\end{equation*}
$$

where $X_{D K}=X_{D K}\left(x_{1}, \ldots, x_{F}\right) \equiv X_{D k}(x)=$ given and well-behaved functions of their arguments, and $\operatorname{rank}\left(X_{D K}\right)=m(<F)$; that is, for it to have m independent integrals $f_{D}(x)=C_{D}=$ constants, is the vanishing of the corresponding m bilinear forms:

$$
\begin{equation*}
F_{D} \equiv \sum \sum\left(\partial X_{D K} / \partial x_{L}-\partial X_{D L} / \partial x_{K}\right) u_{K} v_{L} \tag{2.8.5}
\end{equation*}
$$

identically (in the x 's) and simultaneously (for all D 's), for any/all solutions $u=\left(u_{1}, \ldots, u_{F}\right)$, and $v=\left(v_{1}, \ldots, v_{F}\right)$ of the m constraints $\sum X_{D K} \eta_{K}=0$; that is, for any/all $\eta_{K} \rightarrow u_{K}, v_{K}$ satisfying

$$
\begin{equation*}
\sum X_{D K} u_{K}=0 \quad \text { and } \quad \sum X_{D K} v_{K} \equiv \sum X_{D L} v_{L}=0 \tag{2.8.6}
\end{equation*}
$$

[Also, recall comments following eqs. (2.3.11e).]
[If the system (2.8.4) is completely integrable, then, since its finite form depends on the integration constants C_{D} (i.e., ultimately, on the initial values of the x 's), then it is semiholonomic (§2.3).]

Adapted to our kinematical problem - that is, with the identifications $F \rightarrow n+1$, $u_{K} \rightarrow \delta q_{k}, v_{L} \rightarrow d q_{\alpha}, x \rightarrow t, q$, and recalling that $q_{n+1} \equiv t$ satisfies the additional holonomic constraint $\delta q_{n+1} \equiv \delta t=0$ - Frobenius theorem states that: If

$$
\begin{align*}
F_{D} & \equiv d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=d\left(\sum c_{D k} \delta q_{k}\right)-\delta\left(\sum c_{D \alpha} d q_{\alpha}\right) \\
& =\sum\left(\sum\left(\partial c_{D k} / \partial q_{\alpha}-\partial c_{D \alpha} / \partial q_{k}\right) d q_{\alpha}\right) \delta q_{k} \equiv \sum \sum C_{k \alpha}^{D} d q_{\alpha} \delta q_{k}=0 \tag{2.8.7}
\end{align*}
$$

for arbitrary $d q_{\alpha}=d q_{k}, d q_{n+1} \equiv d q_{0} \equiv d t$ and δq_{k}, solutions of the constraints:

$$
\begin{equation*}
\sum c_{D \alpha} d q_{\alpha}=\sum c_{D k} d q_{k}+c_{D} d t=0 \quad \text { and } \quad \sum c_{D k} \delta q_{k}=0 \tag{2.8.1}
\end{equation*}
$$

then these constraints are holonomic.

The above show that since our $d q$'s and δq 's are not independent, the vanishing of the F_{D} 's does not necessarily lead to

$$
\begin{equation*}
C_{k \alpha}^{D}=0, \tag{2.8.8}
\end{equation*}
$$

as holonomicity conditions. For this to be the case, eqs. (2.8.8) are, clearly, sufficient but not necessary; they would be if the $d q$'s and δq 's were independent; namely, unconstrained.

This observation leads to the following implementation of Frobenius' theorem: we express each of the (n) nonindependent $d q$'s and δq 's as a linear and homogeneous combination of a new set of $n-m$ independent parameters (and $d t$, for the $d q$'s), insert these representations in $F_{D}=0$, and then, in each of the so resulting m bilinear covariants (in these new parameters), set its $n-m$ coefficients equal to zero. We shall see in $\S 2.12$ that, in the general case, this approach leads to a direct and usable form of Frobenius' theorem, due to Hamel. But before proceeding in that direction, we need to examine in sufficient detail the necessary tools: nonholonomic coordinates, or quasi coordinates (\$2.9), and the associated transitivity relations (§2.10).

REFERENCES ON PFAFFIAN SYSTEMS AND FROBENIUS' THEOREM

(for proofs, and so on, in decreasing order of readability for nonmathematicians):

Klein (1926(a), pp. 207-214): introductory, quite insightful.
De la Vallée Poussin (1912, vol. 2, chap. 7): most readable classical exposition.
Guldberg (1927, pp. 573-576) and Pascal (1927, pp. 579-588): outstanding handbook summaries.

Forsyth (1890/1959, especially chaps. 2 and 11): detailed classical treatment.
Lovelock and Rund (1975/1989, chap. 5): excellent balance between classical and modern approaches.
Cartan (1922, chaps. 4-10): the foundation of modern treatments.
Weber [1900(a), (b)]: older encyclopedic treatise (a) and article (b, pp. 317-319).
Heil and Kitzka (1984, pp. 264-295): relatively readable modern summary.
Chetaev (1987/1989, pp. 319-326): happens to be in English (not particularly enlightening).
Frobenius (1877, pp. 267-287; also, in his Collected Works, pp. 249-334): the original exposition; not for beginners.
Hartman (1964, chap. 6): quite advanced; for ordinary differential equations specialists.
Outside of Lovelock et al., we are unaware of any contemporary readable exposition of these topics in English; i.e., without Cartanian exterior forms, and so on.

Example 2.8.1 Necessary and Sufficient Condition(s) for the Holonomicity of the Single Pfaffian Constraint (2.3.1) via Frobenius' Theorem:

$$
\begin{equation*}
d \theta \equiv a(x, y, z) d x+b(x, y, z) d y+c(x, y, z) d z \equiv a d x+b d y+c d z=0 \tag{a}
\end{equation*}
$$

or, since it is catastatic,

$$
\begin{equation*}
\delta \theta \equiv a \delta x+b \delta y+c \delta z=0 . \tag{b}
\end{equation*}
$$

By d-varying (b), and δ-varying (a), and then subtracting side by side, we find, after some straightforward differentiations:

$$
\begin{aligned}
d(\delta \theta)-\delta(d \theta)=a[d(\delta x)-\delta(d x)] & +b[d(\delta y)-\delta(d y)]+c[d(\delta z)-\delta(d z)] \\
& +[(d a \delta x-\delta a d x)+(d b \delta y-\delta b d y)+(d c \delta z-\delta c d z)] \\
=(\partial a / \partial y-\partial b / \partial x)(d y \delta x-\delta y d x) & +(\partial a / \partial z-\partial c / \partial x)(d z \delta x-\delta z d x) \\
& +(\partial b / \partial z-\partial c / \partial y)(d z \delta y-\delta z d y)
\end{aligned}
$$

[substituting into this, $d z=(-a / c) d x+(-b / c) d y$ and $\delta z=$ $(-a / c) \delta x+(-b / c) \delta y$, solutions of the constraints (a, b), respectively; since here $n-m=3-1=2=$ number of independent differentials (for each form of the constraint); we could, just as well, substitute $d x=\cdots d y+\cdots d z$ and $\delta x=\cdots \delta y+\cdots \delta z$, or $d y=\cdots$ and $\delta y=\cdots$]
$=\cdots=(\partial a / \partial y-\partial b / \partial x)(d y \delta x-\delta y d x)$
$+(\partial a / \partial z-\partial c / \partial x)(-b / c)(d y \delta x-\delta y d x)$
$+(\partial b / \partial z-\partial c / \partial y)(-a / c)(d x \delta y-\delta x d y)$
$=[(\partial a / \partial y-\partial b / \partial x)+(b / c)(\partial c / \partial x-\partial a / \partial z)$ $+(a / c)(\partial b / \partial z-\partial c / \partial y)](d y \delta x-\delta y d x)$.

Setting $d(\delta \theta)-\delta(d \theta)=0$, and since now the bilinear terms $d y \delta x$ and $\delta y d x$ are independent, we recover the earlier holonomicity condition (2.3.6).

Vectorial Considerations
Equations (a)/(b), in terms of the vector notation

$$
\begin{equation*}
\boldsymbol{h}=(a, b, c), \quad d \boldsymbol{r}=(d x, d y, d z), \quad \text { and } \quad \delta \boldsymbol{r}=(\delta x, \delta y, \delta z), \tag{d}
\end{equation*}
$$

state that

$$
\begin{equation*}
\boldsymbol{h} \cdot d \boldsymbol{r}=0 \quad \text { and } \quad \boldsymbol{h} \cdot \delta \boldsymbol{r}=0 \tag{e}
\end{equation*}
$$

that is, \boldsymbol{h} is perpendicular to the plane defined by the two (generally independent) directions $d \boldsymbol{r}$ and $\delta \boldsymbol{r}$, through $\boldsymbol{r}=(x, y, z)$. On the other hand, the second of (c) states that

$$
\begin{equation*}
d(\delta \theta)-\delta(d \theta)=\operatorname{curl} \boldsymbol{h} \cdot(d \boldsymbol{r} \times \delta \boldsymbol{r})=0 \tag{f}
\end{equation*}
$$

that is, curl \boldsymbol{h} is perpendicular to the normal to that plane; and, hence, excluding the trivial case $d \boldsymbol{r} \times \delta \boldsymbol{r}=\mathbf{0}$, curl \boldsymbol{h} lies on that plane. Accordingly, \boldsymbol{h} and curl \boldsymbol{h} are perpendicular to each other:

$$
\begin{equation*}
\boldsymbol{h} \cdot \operatorname{curl} \boldsymbol{h}=0 . \quad \text { i.e., }(2.3 .8 \mathrm{a}) . \tag{g}
\end{equation*}
$$

Example 2.8.2 The Two Independent and Catastatic Pfaffian Constraints:

$$
\begin{array}{r}
d \theta \equiv a(x, y, z) d x+b(x, y, z) d y+c(x, y, z) d z \equiv a d x+b d y+c d z=0 \\
d \Theta \equiv A(x, y, z) d x+B(x, y, z) d y+C(x, y, z) d z \equiv A d x+B d y+C d z=0 \tag{b}
\end{array}
$$

when taken together (i.e., $n=3, m=2$) will always make up a holonomic system; even if each one of them separately (i.e., $n=3, m=1$) may be nonholonomic!

Solving (a) and (b) for any two of the $d x, d y, d z$ in terms of the third, say $d x$ and $d y$ in terms of $d z$, we obtain

$$
\begin{equation*}
d x \equiv e(x, y, z) d z \quad \text { and } \quad d y \equiv f(x, y, z) d z \tag{c}
\end{equation*}
$$

and, similarly, since (a) and (b) are catastatic,

$$
\begin{equation*}
\delta x \equiv e(x, y, z) \delta z \quad \text { and } \quad \delta y \equiv f(x, y, z) \delta z \tag{d}
\end{equation*}
$$

Therefore, we find, successively,

$$
\begin{align*}
d(\delta \theta)-\delta(d \theta) & = \\
& =\cdots=(\cdots)(d y \delta x-\delta y d x)+(\cdots)(d z \delta x-\delta z d x)+(\cdots)(d z \delta y-\delta z d y) \\
& =[\operatorname{using}(\mathrm{c}) \text { and (d) }]=\cdots=(\cdots)(d z \delta z-\delta z d z)=(\cdots) 0=0 \tag{e}
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
d(\delta \Theta)-\delta(d \Theta)=\cdots=(\cdots)(d z \delta z-\delta z d z)=(\cdots) 0=0 ; \quad \text { Q.E.D. } \tag{f}
\end{equation*}
$$

Proceeding in a similar fashion, we can show that: a system of $n-1$ (or n) independent Pfaffian equations, in n variables [like (2.8.1) with $m=n-1$ or $n]$ is always holonomic. This theorem illustrates the interesting kinematical fact that additional constraints may turn an originally (individually) nonholonomic constraint into a holonomic one (as part of a system of constraints); see also $\S 2.12$.

2.9 QUASI COORDINATES, AND THEIR CALCULUS

Let us, again, consider a holonomic system S described by the hitherto minimal, or independent, n Lagrangean coordinates $q=\left(q_{1}, \ldots, q_{n}\right)$, and hence having kinematically admissible/possible system displacements $(d q, d t) \equiv\left(d q_{1}, \ldots, d q_{n} ; d t\right)$. Now, at a generic admissible point of S 's configuration or event space (q, t), we can describe these local displacements via a new set of general differential positional and time parameters $(d \theta, d t) \equiv\left(d \theta_{1}, \ldots, d \theta_{n} ; d \theta_{n+1} \equiv d \theta_{0}\right)$, defined by the $n+1$ linear, homogeneous, and invertible transformations:

$$
\begin{gather*}
d \theta_{k} \equiv \sum a_{k l} d q_{l}+a_{k} d t, \quad d \theta_{n+1} \equiv d \theta_{0} \equiv d q_{n+1} \equiv d q_{0} \equiv d t, \tag{2.9.1}\\
\operatorname{rank}\left(a_{k l}\right)=n \Rightarrow \operatorname{Det}\left(a_{k l}\right) \neq 0, \quad(k, l=1, \ldots, n), \tag{2.9.1a}
\end{gather*}
$$

where the coefficients $a_{k l}$ and $a_{k} \equiv a_{k, n+1} \equiv a_{k 0}$ are given functions of the q 's and t (and as well-behaved as needed; say, continuous and once piecewise continuously differentiable, in some region of interest of their variables). Inverting (2.9.1), we obtain

$$
\begin{align*}
& d q_{l}=\sum A_{l k} d \theta_{k}+A_{l} d t, \quad d q_{n+1} \equiv d \theta_{n+1} \equiv d \theta_{0} \equiv d t, \tag{2.9.2}\\
& \operatorname{rank}\left(A_{l k}\right)=n \Rightarrow \operatorname{Det}\left(A_{l k}\right) \neq 0, \quad(k, l=1, \ldots, n), \tag{2.9.2a}
\end{align*}
$$

where the "inverted coefficients" $A_{l k}$ and $A_{l} \equiv A_{l, n+1} \equiv A_{l 0}$ become known functions of the q 's and t, and are also well-behaved. Clearly, since the transformations (2.9.1) and (2.9.2) are mutually inverse, their coefficients must satisfy certain consistency, or compatibility, conditions; so that, given the a 's, one can determine the A 's and vice versa. Indeed, substituting $d q_{l}$ from (2.9.2) into (2.9.1), and $d \theta_{k}$ from (2.9.1) into (2.9.2), and with $\delta_{k l}=$ Kronecker delta ($=1$ or 0 , according as $k=l$, or $k \neq l$), we obtain the inverseness relations:

$$
\begin{array}{ll}
\sum a_{k r} A_{r l} \equiv \sum A_{r l} a_{k r}=\delta_{k l}, & \sum a_{k r} A_{r} \equiv \sum A_{r} a_{k r}=-a_{k}, \\
\sum A_{l r} a_{r k} \equiv \sum a_{r k} A_{l r}=\delta_{k l}, & \sum A_{l r} a_{r} \equiv \sum a_{r} A_{l r}=-A_{l} . \tag{2.9.3b}
\end{array}
$$

Further, with the help of the unifying notations $a_{k} \equiv a_{k, n+1}$ and $A_{l} \equiv A_{l, n+1}$, the definitions $a_{n+1, k} \equiv \delta_{n+1, k}(=0)$ and $A_{n+1, l} \equiv \delta_{n+1, l}(=0)$, and recalling that Greek subscripts have been agreed to run from 1 to $n+1$, the transformation coefficient matrices in (2.9.1) and (2.9.2) take the $(n+1) \times(n+1)$ "Spatio-Temporal" forms:

$$
\begin{align*}
& \mathbf{a}=\left(\begin{array}{ccc|c}
a_{11} & \cdots & a_{1 n} & a_{1, n+1} \\
\cdots \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & \cdots & a_{n n} & a_{n, n+1} \\
\hline 0 & \cdots & 0 & 1
\end{array}\right) \equiv\left(\begin{array}{ccc}
a_{k l} & a_{k} \\
\hline \mathbf{0} & 1
\end{array}\right) \equiv\left(\begin{array}{c|c}
\mathbf{a}_{\mathrm{S}} & \mathbf{a}_{\mathrm{T}} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right) \equiv\left(a_{\beta \gamma}\right), \tag{2.9.4a}
\end{align*}
$$

Then $(2.9 .1,2)$ assume the simpler (homogeneous) forms:

$$
\begin{equation*}
d \theta_{\gamma}=\sum a_{\gamma \beta} d q_{\beta} \Leftrightarrow d q_{\beta}=\sum A_{\beta \gamma} d \theta_{\gamma} \tag{2.9.5}
\end{equation*}
$$

while the consistency relations (2.9.3a) read simply

$$
\begin{equation*}
\mathbf{a} \mathbf{A}=\mathbf{1} \quad \text { or } \quad \sum a_{\beta \delta} A_{\delta \gamma} \equiv \sum A_{\delta \gamma} a_{\beta \delta}=\delta_{\beta \gamma} \tag{2.9.6a}
\end{equation*}
$$

and from this we obtain the "spatio-temporally partitioned" matrix multiplications:

$$
\left(\begin{array}{c|c|c}
\mathbf{a}_{\mathrm{S}} & \mathbf{a}_{\mathrm{T}} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right)\left(\begin{array}{c|c}
\mathbf{A}_{\mathrm{S}} & \mathbf{A}_{\mathrm{T}} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right)=\left(\begin{array}{c|c}
\mathbf{a}_{\mathrm{S}} \mathbf{A}_{\mathrm{S}} & \mathbf{a}_{\mathrm{S}} \mathbf{A}_{\mathrm{T}}+\mathbf{a}_{\mathrm{T}} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right)=\left(\begin{array}{c|c}
\mathbf{1} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right)
$$

that is,

$$
\begin{equation*}
\mathbf{a}_{\mathrm{S}} \mathbf{A}_{\mathrm{S}}=\mathbf{1} \quad \text { and } \quad \mathbf{a}_{\mathrm{S}} \mathbf{A}_{\mathrm{T}}+\mathbf{a}_{\mathrm{T}}=\mathbf{0} \tag{2.9.7a}
\end{equation*}
$$

and, similarly, the consistency relations (2.9.3b) read

$$
\begin{equation*}
(\mathbf{a ~ A})^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}} \mathbf{a}^{\mathrm{T}}=\mathbf{1} \quad \text { or } \quad \sum A_{\gamma \delta} a_{\delta \beta}=\sum a_{\delta \beta} A_{\gamma \delta}=\delta_{\beta \gamma}, \tag{2.9.6b}
\end{equation*}
$$

from which

$$
\left(\begin{array}{c|c}
\mathbf{A}_{\mathrm{S}} & \mathbf{0} \\
\hline \mathbf{A}_{\mathrm{T}} & \mathbf{1}
\end{array}\right)\left(\begin{array}{c|c}
\mathbf{a}_{\mathrm{S}} & \mathbf{0} \\
\hline \mathbf{a}_{\mathrm{T}} & \mathbf{1}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{A}_{\mathrm{S}} \mathbf{a}_{\mathrm{S}} \\
\hline \mathbf{A}_{\mathrm{T}} \mathbf{a}_{\mathrm{S}}+\mathbf{a}_{\mathrm{T}} \\
\mathbf{1}
\end{array}\right)=\left(\begin{array}{c|c}
\mathbf{1} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right)
$$

that is,

$$
\begin{equation*}
\mathbf{A}_{\mathrm{S}} \mathbf{a}_{\mathrm{S}}=\mathbf{1} \quad \text { and } \quad \mathbf{A}_{\mathrm{T}} \mathbf{a}_{\mathrm{S}}+\mathbf{a}_{\mathrm{T}}=\mathbf{0} \tag{2.9.7b}
\end{equation*}
$$

Let us recapitulate the notations used here:
(i) Matrices are shown in roman and bold; vectors in italic and bold;
(ii) $(\ldots)^{\mathrm{T}} \equiv$ transpose of square matrix (...);
(iii) $\mathbf{a}_{\mathrm{S}}, \mathbf{A}_{\mathbf{S}}=(n \times n)$ spatial, or catastatic, submatrices of a and \mathbf{A}, respectively; and $\mathbf{a}_{\mathrm{T}}, \mathbf{A}_{\mathrm{T}}=(n \times 1)$ temporal, or acatastatic, submatrices of \mathbf{a} and \mathbf{A}, respectively;
(iv) $\mathbf{1}=$ square unit, or identity, matrix (of appropriate dimensions);
(v) $\mathbf{0}=$ zero matrix (column or row vector of appropriate dimension); and
(vi) Here, commas in subscripts - for example, $a_{k, n+1}, A_{l} \equiv A_{l, n+1}$ - are used only to separate the spatial from the temporary of these subscripts, for better visualization; that is, no partial differentiations are implied, unless explicitly specified to that effect.

Thus, for example, for $\beta \rightarrow k$ and $\gamma \rightarrow l$ eqs. (2.9.6a) yield

$$
\sum a_{k r} A_{r l}+a_{k, n+1} A_{n+1, l}=\delta_{k l} \rightarrow \sum a_{k r} A_{r l}=\delta_{k l}, \quad \text { i.e., first of (2.9.3a) }
$$

for $\beta \rightarrow n+1$ and $\gamma \rightarrow l$ they yield

$$
\sum a_{n+1, r} A_{r l}+a_{n+1, n+1} A_{n+1, l}=\delta_{n+1, l}, \quad \text { i.e., } 0+0=0
$$

while for $\beta \rightarrow k$ and $\gamma \rightarrow n+1$ they yield

$$
\sum a_{k r} A_{r, n+1}+a_{k, n+1} A_{n+1, n+1}=\delta_{k, n+1}=0, \quad \text { i.e., second of (2.9.3a); }
$$

and similarly with (2.9.6b).

Specializations, Remarks

(i) If $\left(a_{k l}\right)$ is an orthogonal matrix - that is, if

$$
\begin{equation*}
a_{k l}=A_{l k} \quad \text { and } \quad \operatorname{Det}\left(a_{k l}\right)= \pm 1 \tag{2.9.8a}
\end{equation*}
$$

then the spatial parts of $(2.9 .3 \mathrm{a}, 3 \mathrm{~b})$ are replaced, respectively, by

$$
\begin{equation*}
\sum a_{k r} a_{l r} \equiv \sum a_{l r} a_{k r}=\delta_{k l} \quad \text { and } \quad \sum a_{r l} a_{r k} \equiv \sum a_{r k} a_{r l}=\delta_{k l} ; \tag{2.9.8b}
\end{equation*}
$$

and, similarly, for the full $(n+1) \times(n+1)$ a and \mathbf{A} matrices.
(ii) As shown in chap. 3, and foreshadowed below, it is the spatial/catastatic submatrices \mathbf{a}_{S} and \mathbf{A}_{S} that enter the equations of motion; not the temporary/acatastatic submatrices \mathbf{a}_{T} and \mathbf{A}_{T}. The latter, however, enter the rate of energy, or power, equations (§3.9). In what follows, we shall have the opportunity to use all these,
mutually equivalent and complementary notations; primarily the indicial and secondarily the matrix ones. All have relative advantages/drawbacks, depending on the task at hand.

Velocities and Virtual Displacements

Just as we defined new general kinematically admissible/possible system displacements via (2.9.1, 2), etc., we next define the following:
(i) The corresponding general system velocities $(d \theta \rightarrow \omega d t)$;

$$
\begin{gather*}
\omega_{k} \equiv \sum a_{k l}\left(d q_{l} / d t\right)+a_{k} \equiv \sum a_{k l} \dot{q}_{l}+a_{k} \equiv \sum a_{k l} v_{l}+a_{k} \\
\omega_{n+1} \equiv \omega_{0} \equiv d q_{n+1} / d t \equiv d t / d t=1 \quad(\text { isochrony }) \tag{2.9.9}
\end{gather*}
$$

or, compactly,

$$
\begin{equation*}
\omega_{\beta} \equiv \sum a_{\beta \gamma}\left(d q_{\gamma} / d t\right) \equiv \sum a_{\beta \gamma} v_{\gamma} \tag{2.9.9a}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
d q_{l} / d t \equiv \dot{q}_{l} \equiv v_{l}=\sum A_{l k} \omega_{k}+A_{l}, \quad d q_{n+1} / d t \equiv \omega_{n+1} \equiv d t / d t=1 \tag{2.9.10}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
d q_{\gamma} / d t \equiv \dot{q}_{\gamma} \equiv v_{\gamma}=\sum A_{\gamma \beta} \omega_{\beta} \tag{2.9.10a}
\end{equation*}
$$

and
(ii) The corresponding general system virtual displacements $(d \theta \rightarrow \delta \theta$, $\left.d \theta_{n+1} \rightarrow \delta \theta_{n+1}=\delta t=0\right):$

$$
\begin{equation*}
\delta \theta_{k} \equiv \sum a_{k l} \delta q_{l}, \quad \delta \theta_{n+1} \equiv \delta q_{n+1} \equiv \delta t=0 \tag{2.9.11}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
\delta q_{l}=\sum A_{l k} \delta \theta_{k}, \quad \delta q_{n+1} \equiv \delta q_{0} \equiv \delta \theta_{n+1} \equiv \delta \theta_{0} \equiv \delta t=0 \tag{2.9.12}
\end{equation*}
$$

If the $d \theta$ and $d t$ describe an actual motion, then $d \theta_{k}=\omega_{k} d t$. But it would be incorrect to set $\delta \theta_{k}=\omega_{k} \delta t$, because of the ever present (better, ever assumed) virtual time constraint $\delta t=0$; whereas, in general, $\delta \theta_{k} \neq 0$!

Next, let us examine the integrability of these Pfaffian forms (not constraints!) (2.9.1, 11), of our hitherto $n D O F$ system.

Bilinear Covariants, Integrability, Quasi Coordinates

Indeed, proceeding as in $\S 2.8$, and assuming that $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$, constraints or not, we find that the Frobenius bilinear covariants of $(2.9 .1,11), d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)$, equal

$$
\begin{align*}
d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)= & \sum \sum\left(\partial a_{k l} / \partial q_{s}-\partial a_{k s} / \partial q_{l}\right) d q_{s} \delta q_{l} \\
& +\sum\left(\partial a_{k l} / \partial t-\partial a_{k} / \partial q_{l}\right) d t \delta q_{l} \\
\equiv & \sum d \psi_{k l} \delta q_{l} \tag{2.9.13}
\end{align*}
$$

Now, with the help of these expressions, and since the $d q$'s and δq 's are (as yet) unconstrained (i.e., $m=0$), like the q 's, we can enunciate the following "obvious" theorems, in increasing order of specificity:

- The necessary and sufficient conditions for the particular Pfaffian form (not constraint!)

$$
\begin{equation*}
d \theta_{k} \equiv \sum a_{k l} d q_{l}+a_{k} d t, \quad \text { or in virtual form } \quad \delta \theta_{k} \equiv \sum a_{k l} \delta q_{l}, \tag{2.9.14}
\end{equation*}
$$

to be an exact differential - that is, for the hitherto shorthand symbols $d \theta_{k}$ and $\delta \theta_{k}$ to be the genuine (first and total) differentials of a bona fide function $\theta_{k}=\theta_{k}(q, t)$ $(\rightarrow$ holonomic coordinate) - is that its bilinear covariant (2.9.13), vanish.

- The necessary and sufficient condition for a Pfaffian form (2.9.14) to be the exact differential of θ_{k} [since its $n \delta q$'s in (2.9.13) are arbitrary] is that its associated n Pfaffian forms

$$
\begin{equation*}
d \psi_{k l} \equiv \sum\left(\partial a_{k l} / \partial q_{s}-\partial a_{k s} / \partial q_{l}\right) d q_{s}+\left(\partial a_{k l} / \partial t-\partial a_{k} / \partial q_{l}\right) d t \tag{2.9.15}
\end{equation*}
$$

all vanish; that is, $d \psi_{k l}=0$ for all $l(=1, \ldots, n)$.

- The necessary and sufficient condition for a Pfaffian form (2.9.14) to be the exact differential of θ_{k} [since the $n d q$'s and $d t$ in (2.9.15) are arbitrary] is that the following $n(n+1) / 2$ integrability (or exactness) conditions hold:

$$
\begin{equation*}
\partial a_{k l} / \partial q_{s}-\partial a_{k s} / \partial q_{l}=0 \quad \text { and } \quad \partial a_{k l} / \partial t-\partial a_{k} / \partial q_{l}=0, \tag{2.9.16}
\end{equation*}
$$

identically in the q 's and t, and for all values of $l, s(=1, \ldots, n)$. [For additional insights and details, see, for example, Hagihara (1970, pp. 42-46), Whittaker (1937, p. 296 ff.).]

Hence, if (2.9.16) hold for all $k=1, \ldots, n$, the $n \theta$'s are just another minimal set of Lagrangean coordinates, like the q 's: $\theta_{k}=\theta_{k}\left(q_{1}, \ldots, q_{n} ; t\right)$; and $\omega_{k} \equiv d \theta_{k} / d t$ are the corresponding holonomic Lagrangean (generalized) velocities. But if, and this is the case of interest to AM,

$$
\begin{equation*}
\partial a_{k l} / \partial q_{s}-\partial a_{k s} / \partial q_{l} \neq 0 \quad \text { or } \quad \partial a_{k l} / \partial t-\partial a_{k} / \partial q_{l} \neq 0 \tag{2.9.17}
\end{equation*}
$$

even for one l, s, then ω_{k} is not a total time derivative, and $d \theta_{k}$ is not a genuine differential of a holonomic coordinate θ_{k}; only the $d \theta_{k} / \delta \theta_{k} / \omega_{k}$ are defined through (2.9.1, 9,11). Such undefined quantities, θ_{k}, are called pseudo- or quasi coordinates $[\mathrm{a}$ term, most likely, due to Whittaker (1904)], or nonholonomic coordinates; and the ω_{k}, depicted by some authors by symbolic (...)-derivatives, like

$$
\begin{equation*}
\omega_{k} \equiv d^{\prime} \theta_{k} / d t \equiv \stackrel{*}{\theta}_{k} \equiv \stackrel{o}{\theta}_{k}, \quad \text { etc. }, \tag{2.9.18}
\end{equation*}
$$

instead of $d \theta_{k} / d t$, are called quasi velocities. From now on we shall assume, with no loss in generality, that all (2.9.17) hold, and therefore all θ_{k} are quasi coordinates. $\left\{\right.$ We notice that, the isochrony choice $d \theta_{n+1} \equiv d q_{n+1} \equiv d t$, resulting in [recalling (2.9.4a, b)]

$$
\begin{equation*}
a_{n+1, k} \equiv \delta_{n+1, k}=0, \quad a_{n+1, n+1}=\delta_{n+1, n+1}=1, \tag{2.9.19a}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n+1, k} \equiv \delta_{n+1, k}=0, \quad A_{n+1, n+1}=\delta_{n+1, n+1}=1, \tag{2.9.19b}
\end{equation*}
$$

guarantees that θ_{n+1} remains holonomic.\}

REMARKS

(i) Let us consider, for simplicity, the catastatic version of (2.9.9),

$$
\begin{equation*}
\omega_{k}=\sum a_{k l}(t, q) v_{l}=\omega_{k}(t, q, \dot{q} \equiv v) . \tag{2.9.20}
\end{equation*}
$$

If the q 's are known/specified functions of time t, then integrating (2.9.20) between an initial instant t_{o} and a current one t we obtain the line integral

$$
\begin{equation*}
\theta_{k}(t)-\theta_{k}\left(t_{o}\right)=\int_{t_{o}}^{t} \omega_{k}[\tau, q(\tau), v(\tau)] d \tau=\int_{t_{o}}^{t}\left(\sum a_{k l}[\tau, q(\tau)] v_{l}(\tau)\right) d \tau \tag{2.9.20a}
\end{equation*}
$$

similar to the work integral of general mechanics and thermodynamics. Since this is the integral of an inexact differential, as calculus/vector field theory teach, $\theta_{k}(t)$ depends on both t (current configuration) and the particular path of integration/ history followed from t_{o} to t; it is point- and path-dependent. If it was a genuine global coordinate, it would be point-dependent, but path-independent. $\theta_{k}\left(t ; t_{o}\right)$ is a functional of the particular curves/motion $\left\{q(\tau), t_{o} \leq \tau \leq t\right\}$!
(ii) As will be explained in $\S 2.11$, the satisfaction of (2.9.16) guarantees that θ_{k}, as defined by (2.9.14), is a holonomic coordinate; and that property will hold even if, at a later stage, the $d q_{k} / \delta q_{k} / v_{k}$ become holonomically and/or nonholonomically constrained. One the other hand, if θ_{k} is originally [i.e., as defined by (2.9.14)] nonholonomic, then upon imposition on the latter's right side of a sufficient number of additional holonomic and/or nonholonomic constraints, later, it will become holonomic; but that would be a different Pfaffian form.

In sum: once a holonomic coordinate, always a holonomic coordinate; but once a nonholonomic coordinate, not always a nonholonomic coordinate.
(iii) The local transformations $\boldsymbol{a}_{\eta} \equiv \sum A_{\beta \eta} \boldsymbol{E}_{\beta} \Leftrightarrow \boldsymbol{E}_{\beta}=\sum a_{\eta \beta} \boldsymbol{a}_{\eta}$, where [recalling discussion in (§2.7)] each \boldsymbol{E}_{β} is tangent to the coordinate line $d q_{\beta}$ at (q, t) and all together they constitute a holonomic basis for the local tangent space T_{n+1}, and the coefficients satisfy the earlier (2.9.3a, 3b), define a new but, generally nonholonomic basis there: that is, $\sum \boldsymbol{a}_{\eta} d \theta_{\eta}$: nonexact differential $\Rightarrow \partial \boldsymbol{a}_{\eta} / \partial \theta_{\beta} \neq \partial \boldsymbol{a}_{\beta} / \partial \theta_{\eta}$ [where the nonholonomic gradients, $\partial / \partial \theta_{\beta}$, are defined in (2.9.27 ff.)]. And, in view of

$$
\begin{aligned}
\sum \dot{q}_{\beta} \boldsymbol{E}_{\beta} & \equiv \sum v_{\beta} \boldsymbol{E}_{\beta}=\sum v_{\beta}\left(\sum a_{\eta \beta} \boldsymbol{a}_{\eta}\right)=\sum\left(\sum a_{\eta \beta} v_{\beta}\right) \boldsymbol{a}_{\eta}=\sum \omega_{\eta} \boldsymbol{a}_{\eta} \\
& =\sum \omega_{\beta} a_{\beta}
\end{aligned}
$$

the ω_{β} are simply the nonholonomic components of the system velocity vector, while the v_{β} are its holonomic components. [The system basis $\left\{\boldsymbol{a}_{\eta}\right\}$ plays a key role in the geometrical interpretation of Pfaffian constraints (§2.11.19a ff.)]
(iv) The precise term for the θ_{k} 's is "nonholonomic (local) system coordinates," and for the ω_{k} 's "nonholonomic system velocity parameters," or "(contravariant) nonholonomic components of the system velocity" (Schouten, 1954/1989, pp. 194197). We shall call them collectively quasi variables; and their symbolic calculus, if proper precautions are taken, is quite useful. As Synge puts it: "In the theory of quasi-coordinates in dynamics, however, it pays to live dangerously and to use the notation $d \theta_{k}$ [in our notation]. Otherwise we shall be depriving ourselves of a very neat formal expression of the equations of motion" (1936, p. 29). On the symbolic calculus of quasi variables, see also Johnsen (1939).

Example 2.9.1 The most common example of quasi velocities in mechanics is the components of the (inertial) angular velocity of a rigid body moving, with no loss in generality here, about a fixed point O, resolved along either space-fixed (inertial) axes $O-X Y Z, \omega_{X}, \omega_{Y}, \omega_{Z}$; or body-fixed (moving) axes $O-x y z, \omega_{x}, \omega_{y}, \omega_{z}$. If $\phi \rightarrow \theta \rightarrow \psi$ are the three Eulerian angles $3 \rightarrow 1 \rightarrow 3$, then for body-axes, and with the convenient notations $s(\ldots) \equiv \sin (\ldots)$ and $c(\ldots) \equiv \cos (\ldots)$, and $d \phi / d t \equiv \omega_{\phi}, d \theta / d t \equiv \omega_{\theta}, d \psi / d t \equiv \omega_{\psi}$, we have (§1.12)

$$
\begin{align*}
& \omega_{x}=(s \psi s \theta) \omega_{\phi}+(c \psi) \omega_{\theta}+(0) \omega_{\psi}, \tag{a}\\
& \omega_{y}=(c \psi s \theta) \omega_{\phi}+(-s \psi) \omega_{\theta}+(0) \omega_{\psi} \tag{b}\\
& \omega_{z}=(c \theta) \omega_{\phi}+(0) \omega_{\theta}+(1) \omega_{\psi} \tag{c}
\end{align*}
$$

that is, with $k=x \rightarrow 1, y \rightarrow 2, z \rightarrow 3$; and $l=\phi \rightarrow 1, \theta \rightarrow 2, \psi \rightarrow 3$, the nonvanishing elements of $\left(a_{k l}\right)$ are

$$
\begin{equation*}
a_{11}=s \psi s \theta, \quad a_{12}=c \psi ; \quad a_{21}=c \psi s \theta, \quad a_{22}=-s \psi ; \quad a_{31}=c \theta, \quad a_{33}=1 . \tag{d}
\end{equation*}
$$

Clearly, not all (2.9.16) hold identically here. For example,

$$
\begin{equation*}
\partial a_{12} / \partial q_{3} \neq \partial a_{13} / \partial q_{2}: \quad \partial(c \psi) / \partial \psi \neq \partial(0) / \partial \theta: \quad-s \psi \neq 0 \tag{e}
\end{equation*}
$$

except in the special (nonidentical!) case: $\psi=0,2 \pi$. If we set $\omega_{x}=d \theta_{x} / d t$, then

$$
\begin{equation*}
\theta_{x}(t) \equiv \int_{t_{o}}^{t} \omega_{x}\left[\theta(\tau), \psi(\tau) ; \omega_{\phi}(\tau), \omega_{\theta}(\tau)\right] d \tau+\theta_{x}(\text { initial }): \text { path dependent } \tag{f}
\end{equation*}
$$

that is, θ_{x} is an (angular) quasi coordinate, and ω_{x} an (angular) quasi velocity; and similarly for $\theta_{y}, \theta_{z} ; \omega_{y}, \omega_{z}$; that is, they are quasi variables (if the ϕ, θ, ψ are unconstrained). However, if we impose additional constraints, for example, $\phi=$ constant, $\theta=$ constant (fixed-axis rotation), then $(\mathrm{a}-\mathrm{c})$ reduce to
$\omega_{x}=0, \quad \omega_{y}=0, \quad \omega_{z}=d \psi / d t \Rightarrow \omega_{x}, \omega_{y}, \omega_{z}:$ holonomic velocities;
$\theta_{z}(t)-\theta_{z}\left(t_{o}:\right.$ initial $)=\int_{t_{o}}^{t}[d \psi(\tau) / d \tau] d \tau=\psi(t)-\psi\left(t_{o}:\right.$ initial $)$: path independent. (h)

Problem 2.9.1 Let the reader verify that the corresponding space-fixed components $\theta_{X}, \theta_{Y}, \theta_{Z}$ and $\omega_{X}, \omega_{Y}, \omega_{Z}$ (such that $\omega_{X} \equiv d \theta_{X} / d t$, etc.) are also, respectively, quasi coordinates and quasi velocities; and that under additional constraints they too may become holonomic variables.

Particle Kinematics in Quasi Variables

Due to the $\theta \leftrightarrow q$ transformation relations (2.9.1, 2, $9,10,11,12$), the (inertial) velocity, acceleration, kinematically admissible/possible displacement, and virtual displacement, of a typical system particle, obtained in $\S 2.5$ in holonomic variables, assume the following quasi-variable representations, respectively:
(i) Velocity:

$$
\begin{equation*}
\boldsymbol{v}=\sum \boldsymbol{e}_{k}\left(\sum A_{k l} \omega_{l}+A_{k}\right)+\boldsymbol{e}_{0}=\cdots=\sum \varepsilon_{k} \omega_{k}+\varepsilon_{n+1} \equiv \sum \varepsilon_{k} \omega_{k}+\varepsilon_{0} ; \tag{2.9.21}
\end{equation*}
$$

(ii) Acceleration:

$$
\begin{align*}
\boldsymbol{a}=\cdots & =\sum \varepsilon_{k}\left(d \omega_{k} / d t\right)+\text { terms not containing }(d \omega / d t) \text { 's; } \\
& \equiv \sum \varepsilon_{k} \dot{\omega}_{k}+\text { terms not containing } \dot{\omega} ’ \mathrm{~s} \tag{2.9.22}
\end{align*}
$$

(iii) Kinematically possible/admissible displacement:

$$
\begin{equation*}
d \boldsymbol{r}=\sum \boldsymbol{e}_{k}\left(\sum A_{k l} d \theta_{l}+A_{k} d t\right)+\boldsymbol{e}_{0} d t=\cdots=\sum \varepsilon_{k} d \theta_{k}+\varepsilon_{0} d t \tag{2.9.23}
\end{equation*}
$$

(iv) Virtual displacement:

$$
\begin{equation*}
\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k}\left(\sum A_{k l} \delta \theta_{l}\right)=\cdots=\sum \varepsilon_{k} \delta \theta_{k} \tag{2.9.24}
\end{equation*}
$$

where the fundamental, generally nongradient, $n+1$ particle and system vectors $\boldsymbol{\varepsilon}_{k}$ and $\varepsilon_{n+1} \equiv \varepsilon_{0}$, corresponding to the θ 's, nonholonomic counterparts of the gradient vectors \boldsymbol{e}_{k} and $\boldsymbol{e}_{n+1} \equiv \boldsymbol{e}_{0}$, which correspond to the q 's [recalling (2.5.4-4b)], and defined naturally by (2.9.21-24), obey the following basic (covariant vector-like) transformation equations:

$$
\begin{align*}
\boldsymbol{\varepsilon}_{k} & \equiv \sum\left(\partial v_{l} / \partial \omega_{k}\right) \boldsymbol{e}_{l}=\sum A_{l k} \boldsymbol{e}_{l}, \tag{2.9.25a}\\
\boldsymbol{e}_{k} & \equiv \sum\left(\partial \omega_{l} / \partial v_{k}\right) \boldsymbol{\varepsilon}_{l}=\sum a_{l k} \boldsymbol{\varepsilon}_{l} \quad[\text { comparing with (2.9.11, 12)]; } \tag{2.9.25b}\\
\varepsilon_{0} & \equiv \sum A_{k} \boldsymbol{e}_{k}+\boldsymbol{e}_{0}=-\sum a_{k} \boldsymbol{\varepsilon}_{k}+\boldsymbol{e}_{0}, \tag{2.9.26a}\\
\boldsymbol{e}_{0} & \equiv \sum a_{k} \varepsilon_{k}+\varepsilon_{0}=-\sum A_{k} \boldsymbol{e}_{k}+\varepsilon_{0} \quad[\text { recalling (2.9.3a, 3b)] } \tag{2.9.26b}
\end{align*}
$$

Clearly, if the \boldsymbol{e} vectors are linearly independent (and $\left|a_{k l}\right|,\left|A_{k l}\right| \neq 0$), so are the ε vectors; even if the q 's and/or $d q / d t \equiv v$'s get constrained later. And, as with the $\delta \boldsymbol{r}$-representation (2.5.12b), so with (2.9.24): the size of the $\delta \theta$'s is unimportant; it is the $\boldsymbol{\varepsilon}$'s that matter, because they are the ones entering the equations of motion (chap. 3)!

Quasi Chain Rule, Symbolic Notations

The above, especially (2.9.24), suggest the adoption of the following very useful symbolic quasi-chain rule for quasi variables:

$$
\begin{aligned}
\partial \boldsymbol{r} / \partial \theta_{k} & \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{l}\right)\left(\partial v_{l} / \partial \omega_{k}\right) \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{l}\right)\left[\partial\left(d q_{l}\right) / \partial\left(d \theta_{k}\right)\right] \\
& =\sum\left(\partial \boldsymbol{r} / \partial q_{l}\right)\left[\partial\left(\delta q_{l}\right) / \partial\left(\delta \theta_{k}\right)\right],
\end{aligned}
$$

or, simply,

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial \theta_{k} \equiv \sum A_{l k}\left(\partial \boldsymbol{r} / \partial q_{l}\right): \quad \text { i.e., }(2.9 .25 \mathrm{a}) \tag{2.9.27}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial q_{k}=\sum\left(\partial \boldsymbol{r} / \partial \theta_{l}\right)\left(\partial \omega_{l} / \partial v_{k}\right)=\sum a_{l k}\left(\partial \boldsymbol{r} / \partial \theta_{l}\right): \quad \text { i.e., }(2.9 .25 \mathrm{~b}) \tag{2.9.28}
\end{equation*}
$$

Similarly, for a general well-behaved function $f=f(q, t)$, and recalling (2.9.12), we obtain, successively, (i) for its virtual variation δf :

$$
\begin{equation*}
\delta f=\sum\left(\partial f / \partial q_{k}\right) \delta q_{k}=\sum\left(\partial f / \partial q_{k}\right)\left(\sum\left(\partial v_{k} / \partial \omega_{l}\right) \delta \theta_{l}\right) \equiv \sum\left(\partial f / \partial \theta_{l}\right) \delta \theta_{l} \tag{2.9.29}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\partial f / \partial \theta_{l} \equiv \sum\left(\partial f / \partial q_{k}\right)\left(\partial v_{k} / \partial \omega_{l}\right)=\sum A_{k l}\left(\partial f / \partial q_{k}\right) \tag{2.9.30a}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
\partial f / \partial q_{k}=\sum\left(\partial f / \partial \theta_{l}\right)\left(\partial \omega_{l} / \partial v_{k}\right)=\sum a_{l k}\left(\partial f / \partial \theta_{l}\right) \tag{2.9.30b}
\end{equation*}
$$

and (ii) for its total differential df [recalling (2.9.2)]:

$$
\begin{align*}
d f & =\sum\left(\partial f / \partial q_{\beta}\right) d q_{\beta}=\sum\left(\partial f / \partial q_{k}\right) d q_{k}+(\partial f / \partial t) d t \\
& =\sum\left(\partial f / \partial q_{k}\right)\left(\sum A_{k l} d \theta_{l}+A_{k} d t\right)+(\partial f / \partial t) d t \\
& =\sum\left(\sum A_{k l}\left(\partial f / \partial q_{k}\right)\right) d \theta_{l}+\left(\sum A_{k}\left(\partial f / \partial q_{k}\right)+\partial f / \partial t\right) d t \\
& \equiv \sum\left(\partial f / \partial \theta_{l}\right) d \theta_{l}+\left(\partial f / \partial \theta_{0}\right) d t, \tag{2.9.31}
\end{align*}
$$

where we have introduced the additional symbolic notation [recalling that $\left.\dot{\theta}_{0} \equiv \dot{\theta}_{n+1} \equiv \omega_{n+1}=1\right]:$

$$
\begin{align*}
\partial \ldots / \partial \theta_{n+1} & \equiv \sum\left(\partial \ldots / \partial q_{\beta}\right)\left(\partial v_{\beta} / \partial \omega_{n+1}\right) \\
& =\sum\left(\partial \ldots / \partial q_{k}\right)\left(\partial v_{k} / \partial \omega_{n+1}\right)+(\partial \ldots / \partial t)\left(\partial v_{n+1} / \partial \omega_{n+1}\right) \\
& =\sum A_{k}\left(\partial \ldots / \partial q_{k}\right)+\partial \ldots / \partial t \tag{2.9.32}
\end{align*}
$$

instead of the formal extension of (2.9.30a) for $\theta_{l} \rightarrow \theta_{n+1}$. This latter we shall denote by $\partial \ldots / \partial(t)$:

$$
\begin{equation*}
\partial \ldots / \partial(t) \equiv \sum\left(\partial \ldots / \partial q_{k}\right)\left(\partial v_{k} / \partial \omega_{n+1}\right)=\sum A_{k}\left(\partial \ldots / \partial q_{k}\right) \tag{2.9.32a}
\end{equation*}
$$

so that (2.9.32) assumes the final symbolic form

$$
\begin{equation*}
\partial \ldots / \partial \theta_{n+1} \equiv \partial \ldots / \partial \theta_{0} \equiv \partial \ldots / \partial(t)+\partial \ldots / \partial t \tag{2.9.32b}
\end{equation*}
$$

Inversely, we have

$$
\begin{equation*}
\partial \ldots / \partial t=\sum\left(\partial \omega_{\alpha} / \partial v_{n+1}\right)\left(\partial \ldots / \partial \theta_{\alpha}\right)=\partial \ldots / \partial \theta_{n+1}+\sum a_{k}\left(\partial \ldots / \partial \theta_{k}\right) \tag{2.9.32c}
\end{equation*}
$$

and, comparing this with (2.9.30a, b), we readily conclude that

$$
\begin{equation*}
\partial \ldots / \partial(t)=\sum A_{k}\left(\partial \ldots / \partial q_{k}\right)=-\sum a_{k}\left(\partial \ldots / \partial \theta_{k}\right) \tag{2.9.32d}
\end{equation*}
$$

Such (by no means uniform) symbolic notations are useful in energy rate/power theorems in nonholonomic variables (§3.9).

Some Fundamental Kinematical Identities

From the above (2.9.21 ff.), we readily obtain the following fundamental kinematical identities, nonholonomic counterparts of (2.5.7-10), and like them, holding independently of any subsequent holonomic and/or nonholonomic constraints.

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial \theta_{k}=\partial \dot{\boldsymbol{r}} / \partial \dot{\theta}_{k}=\partial \ddot{\boldsymbol{r}} / \partial \ddot{\theta}_{k} \equiv \partial \ddot{\boldsymbol{r}} / \partial \dot{\omega}_{k}=\cdots \equiv \boldsymbol{\varepsilon}_{k} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial \theta_{k}=\partial \boldsymbol{v} / \partial \omega_{k}=\partial \boldsymbol{a} / \partial \dot{\omega}_{k}=\cdots \equiv \boldsymbol{\varepsilon}_{k} \tag{2.9.33}
\end{equation*}
$$

$$
\begin{equation*}
\partial q_{k} / \partial \theta_{l} \equiv \partial \dot{q}_{k} / \partial \dot{\theta}_{l}=\partial \ddot{q}_{k} / \partial \ddot{\theta}_{l} \equiv \partial \ddot{q}_{k} / \partial \dot{\omega}_{l}=\cdots \equiv A_{k l} \tag{ii}
\end{equation*}
$$

or

$$
\begin{equation*}
\partial q_{k} / \partial \theta_{l}=\partial v_{k} / \partial \omega_{l}=\partial w_{k} / \partial \dot{\omega}_{l}=\cdots \equiv A_{k l} ; \quad\left(\text { where } d v_{k} / d t \equiv w_{k}\right) \tag{2.9.34}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\partial \theta_{k} / \partial q_{l}=\partial w_{k} / \partial v_{l}=\partial \dot{\omega}_{k} / \partial w_{l}=\cdots \equiv a_{k l} \tag{2.9.35}
\end{equation*}
$$

with formal extensions for $\theta_{n+1} \equiv q_{n+1} \equiv t$. The $d \omega_{k} / d t \equiv d^{2} \theta_{k} / d t^{2}$ are called (not quite correctly) quasi accelerations; while the $\theta / \omega / \dot{\omega} / \ldots$ are referred to, collectively, as (system) quasi variables.
(iv) We have, successively,

$$
\begin{align*}
d\left(\partial \boldsymbol{r} / \partial \theta_{k}\right) / d t & =d\left(\partial \boldsymbol{v} / \partial \omega_{k}\right) / d t=d \boldsymbol{\varepsilon}_{k} / d t \\
& =d\left(\sum A_{l k} \boldsymbol{e}_{l}\right) / d t=\sum\left[\left(d A_{l k} / d t\right) \boldsymbol{e}_{l}+A_{l k}\left(d \boldsymbol{e}_{l} / d t\right)\right] \\
& =\sum\left(d A_{l k} / d t\right) \boldsymbol{e}_{l}+\sum A_{l k}\left(\partial \boldsymbol{v} / \partial q_{l}\right) \quad[\text { recalling }(2.5 .7,10)] \tag{2.9.36}
\end{align*}
$$

But by partial ∂q_{l}-differentiation of $\boldsymbol{v}(q, v, t)=\boldsymbol{v}[q, v(q, \omega, t), t] \equiv \boldsymbol{v}^{*}(q, \omega, t)$, we find

$$
\partial \boldsymbol{v}^{*} / \partial q_{l}=\partial \boldsymbol{v} / \partial q_{l}+\sum\left(\partial \boldsymbol{v} / \partial v_{r}\right)\left(\partial v_{r} / \partial q_{l}\right)=\partial \boldsymbol{v} / \partial q_{l}+\sum\left(\partial v_{r} / \partial q_{l}\right) \boldsymbol{e}_{r}
$$

and so

$$
\begin{aligned}
\sum A_{l k}\left(\partial \boldsymbol{v} / \partial q_{l}\right) & =\sum A_{l k}\left(\partial \boldsymbol{v}^{*} / \partial q_{l}\right)-\sum \sum A_{l k}\left(\partial v_{r} / \partial q_{l}\right) \boldsymbol{e}_{r} \\
& =\partial \boldsymbol{v}^{*} / \partial \theta_{k}-\sum \sum A_{l k}\left(\partial v_{r} / \partial q_{l}\right) \boldsymbol{e}_{r} .
\end{aligned}
$$

Therefore, returning to (2.9.36), we see that it yields

$$
\begin{equation*}
d \boldsymbol{\varepsilon}_{k} / d t-\partial \boldsymbol{v}^{*} / \partial \theta_{k}=\sum\left[d A_{l k} / d t-\sum A_{r k}\left(\partial v_{l} / \partial q_{r}\right)\right] \boldsymbol{e}_{l} \neq \mathbf{0} \tag{2.9.36a}
\end{equation*}
$$

that is, unlike the H coordinate case (2.5.10),

$$
\begin{equation*}
E_{k}^{*}\left(\boldsymbol{v}^{*}\right) \equiv\left(\partial \boldsymbol{v}^{*} / \partial \dot{\theta}_{k}\right)^{\cdot}-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \equiv d / d t\left(\partial \boldsymbol{v}^{*} / \partial w_{k}\right)-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \neq \mathbf{0} . \tag{2.9.37}
\end{equation*}
$$

This nonintegrability relation is a first proof that, in general, the $\boldsymbol{\varepsilon}_{k}$ basis vectors are nongradient, or nonholonomic. More comprehensible and useful forms of $E_{k}{ }^{*}\left(\boldsymbol{v}^{*}\right)$ are presented in the next section.
[Some authors call the $\boldsymbol{\varepsilon}_{k}$ vectors "partial velocities." However, in view of (2.9.33), they could just as well have been called partial positions, or partial accelerations, or even partial jerks (recall that $d \boldsymbol{a} / d t \equiv \boldsymbol{j}=$ jerk vector, and therefore $\partial \boldsymbol{j} / \partial \ddot{\omega}_{k}=\boldsymbol{\varepsilon}_{k}$), etc. Perhaps a better term would be nonholonomic mixed basis vectors (i.e., nonholonomic counterpart of Heun's Begleitvektoren).]

A Useful Nonholonomic-Variable Notation

Frequently, for extra clarity, we will be using the following " $(\ldots$.$) *-notation":$

$$
\begin{equation*}
f=f(t, q, d q / d t \equiv v)=f[t, q, v(t, q, \omega)] \equiv f^{*}(t, q, \omega) \equiv f^{*} . \tag{2.9.38}
\end{equation*}
$$

With its help:
(i) Equations (2.9.21), (2.9.22), (2.9.33) become, respectively,

$$
\begin{gather*}
\boldsymbol{v}(t, q, v)=\sum \boldsymbol{e}_{k}(t, q) v_{k}+\boldsymbol{e}_{0}(t, q)=\sum \boldsymbol{\varepsilon}_{k}(t, q) \omega_{k}+\boldsymbol{\varepsilon}_{0}(t, q) \equiv \boldsymbol{v}^{*}(t, q, \omega) ; \tag{2.9.39}\\
\boldsymbol{a}(t, q, v, w)=\sum \boldsymbol{e}_{k}(t, q) w_{k}+\text { no other } \ddot{q} \equiv w \text {-terms } \\
=\sum \boldsymbol{\varepsilon}_{k}(t, q) \dot{\omega}_{k}+\text { no other } \dot{\omega} \text {-terms } \equiv \boldsymbol{a}^{*}(t, q, \omega, \dot{\omega}) ; \tag{2.9.40}\\
\partial \boldsymbol{r} / \partial \theta_{k}=\partial \boldsymbol{v}^{*} / \partial \omega_{k}=\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}=\cdots \equiv \boldsymbol{\varepsilon}_{k} ; \tag{2.9.41}
\end{gather*}
$$

(ii) The quasi-chain rule (2.9.30a) and its inverse (2.9.30b) generalize, respectively, to

$$
\begin{equation*}
\partial f^{*} / \partial \theta_{l} \equiv \sum\left(\partial f^{*} / \partial q_{k}\right)\left(\partial v_{k} / \partial \omega_{l}\right)=\sum A_{k l}\left(\partial f^{*} / \partial q_{k}\right), \tag{2.9.42a}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial f^{*} / \partial q_{k}=\sum\left(\partial f^{*} / \partial \theta_{l}\right)\left(\partial \omega_{l} / \partial v_{k}\right)=\sum a_{l k}\left(\partial f^{*} / \partial \theta_{l}\right) ; \tag{2.9.42b}
\end{equation*}
$$

also, we easily obtain the related chain rules [recall derivation of (2.9.37), and (2.9.42a)]

$$
\begin{gather*}
\partial f^{*} / \partial q_{k}=\partial f / \partial q_{k}+\sum\left(\partial f / \partial v_{l}\right)\left(\partial v_{l} / \partial q_{k}\right), \tag{2.9.43a}\\
\Rightarrow \partial f^{*} / \partial \theta_{l}=\sum A_{k l}\left(\partial f^{*} / \partial q_{k}\right)=\sum A_{k l}\left[\partial f / \partial q_{k}+\sum\left(\partial f / \partial v_{r}\right)\left(\partial v_{r} / \partial q_{k}\right)\right] . \tag{2.9.43b}
\end{gather*}
$$

(iii) The following genuine (i.e., ordinary calculus) chain rule, and its inverse, hold:

$$
\begin{align*}
& \partial f^{*} / \partial \omega_{l} \equiv \sum\left(\partial f / \partial v_{k}\right)\left(\partial v_{k} / \partial \omega_{l}\right)=\sum A_{k l}\left(\partial f / \partial v_{k}\right), \tag{2.9.44a}\\
& \partial f / \partial v_{k}=\sum\left(\partial f^{*} / \partial \omega_{l}\right)\left(\partial \omega_{l} / \partial v_{k}\right)=\sum a_{l k}\left(\partial f^{*} / \partial \omega_{l}\right) \tag{2.9.44b}
\end{align*}
$$

We notice the difference between (2.9.42a, b) and (2.9.44a, b); the former are nonvectorial transformations, just symbolic definitions; while (for those familiar with tensors) the latter are genuine covariant vector transformations.
(iv) Finally, invoking (2.9.11, 12, 42a, b), it is not hard to see that

$$
\begin{equation*}
\sum\left(\partial f^{*} / \partial \theta_{k}\right) \delta \theta_{k}=\sum\left(\partial f^{*} / \partial q_{k}\right) \delta q_{k} \tag{2.9.45}
\end{equation*}
$$

Some Closing Comments on Quasi Coordinates

The theory of nonholonomic coordinates and constraints is, by now, a well established and well understood part of differential geometry/tensor calculus and mechanics, with many fertile applications in those areas. Its long and successful history has been created by several famous mathematicians, such as (chronologically): Gibbs, Volterra, Poincaré, Heun, Hamel, Synge, Schouten, Struik, Vranceanu, Vagner, Kron, Kondo, Dobronravov et al. And yet, we encounter contemporary statements of appalling ignorance and confusion, like the following from an advanced "Tract in Natural Philosophy" devoted to rigid kinematics: "It appears that the reason why many a book on classical dynamics follows Kirchhoff's approach is a lack of understanding of the kinematics of rigid bodies. Thus, one finds extensive discussions on ill-defined - or, sometimes, totally undefined - esoteric quantities such as quasi-coordinates and virtual displacements," (Angeles, 1988, p. 2, the italics are that author's).

2.10 TRANSITIVITY, OR TRANSPOSITIONAL, RELATIONS; hamel coefficients

So far, our system remains a holonomic (H) one, with $n \equiv 3 N-h \quad D O F$. Now, to be able to either (i) embed to it additional Pfaffian (possibly nonholonomic) constraints in their "simplest possible form" or, even if no such additional constraints are imposed, (ii) express the equations of the problem in quasi variables, or (iii) do both, we need to represent the right sides of the Frobenius bilinear covariants of the Pfaffian forms of its quasi variables, (...)dq δq [recall (2.9.13)], in terms of the latter's differentials, (...) d $\theta \delta \theta$. [By simplest possible form we mean uncoupled from each other; and, as
detailed in chap. 3, this leads to the simplest possible form of the equations of motion.] To this end, we insert expressions (2.9.2 and 12) into the right side of (2.9.13), and group the terms appropriately. The result is the following generalized transitivity, or transpositional, equations (Hamel's Übergangs-, or Transitivitätsgleichungen):

$$
\begin{align*}
d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right) & =\sum a_{k l}\left[d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)\right]+\sum \sum \gamma_{\alpha \beta}^{k} d \theta_{\beta} \delta \theta_{\alpha} \\
& =\sum a_{k l}\left[d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)\right]+\sum \sum \gamma_{r \beta}^{k} d \theta_{\beta} \delta \theta_{r}\left[\text { since } \delta \theta_{n+1} \equiv \delta t=0\right] \\
& =\sum a_{k l}\left[d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)\right]+\sum \sum \gamma_{r s}^{k} d \theta_{s} \delta \theta_{r}+\sum \gamma_{r}^{k} d t \delta \theta_{r}, \tag{2.10.1}
\end{align*}
$$

(again, we recall that all Latin (Greek) indices run from 1 to $n(1$ to $n+1)$) where the so-defined γ 's, known as Hamel (three-index) coefficients, are explicitly given (and sometimes also defined) by

$$
\begin{align*}
\gamma_{r s}^{k}=\sum \sum & \left(\partial a_{k \beta} / \partial q_{\varepsilon}-\partial a_{k \varepsilon} / \partial q_{\beta}\right) A_{\beta r} A_{\varepsilon s} \\
=\sum \sum & \left(\partial a_{k b} / \partial q_{c}-\partial a_{k c} / \partial q_{b}\right) A_{b r} A_{c s} \\
& +\sum\left(\partial a_{k b} / \partial t-\partial a_{k, n+1} / \partial q_{b}\right) A_{b r} A_{n+1, s} \\
& +\sum\left(\partial a_{k, n+1} / \partial q_{c}-\partial a_{k c} / \partial t\right) A_{n+1, r} A_{c s} \\
& +\left(\partial a_{k, n+1} / \partial t-\partial a_{k, n+1} / \partial t\right) A_{n+1, r} A_{n+1, s}, \tag{2.10.1a}
\end{align*}
$$

or, due to $A_{n+1, r}=\delta_{n+1, r}=0$ which leads to the vanishing of the last three groups/ sums of terms, finally,

$$
\begin{equation*}
\gamma_{r s}^{k}=\sum \sum\left(\partial a_{k b} / \partial q_{c}-\partial a_{k c} / \partial q_{b}\right) A_{b r} A_{c s} \tag{2.10.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{r, n+1}^{k}=-\gamma_{n+1, r}^{k} \equiv \gamma_{r}^{k} \equiv \sum \sum\left(\partial a_{k \beta} / \partial q_{\varepsilon}-\partial a_{k \varepsilon} / \partial q_{\beta}\right) A_{\beta r} A_{\varepsilon, n+1}, \tag{2.10.3}
\end{equation*}
$$

or, with $a_{k, n+1} \equiv a_{k}, A_{k, n+1} \equiv A_{k}$, and since $A_{n+1, n+1} \equiv \delta_{n+1, n+1}=1$, finally,

$$
\begin{equation*}
\gamma_{r}^{k} \equiv \sum \sum\left(\partial a_{k b} / \partial q_{c}-\partial a_{k c} / \partial q_{b}\right) A_{b r} A_{c}+\sum\left(\partial a_{k b} / \partial t-\partial a_{k} / \partial q_{b}\right) A_{b r} \tag{2.10.4}
\end{equation*}
$$

[The γ 's are a significant generalization of coefficients introduced by Ricci (mid1890s), Volterra (1898), Boltzmann (1902) et al.; and, hence, they are also referred as "Ricci/Boltzmann/Hamel (rotation) coefficients." See, for example, Papastavridis (1999, chaps. 3, 6).]

It is not hard to show [with the help of (2.9.3a, b)] that (2.10.1) inverts to

$$
\begin{align*}
d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)=\sum & A_{k l}\left\{\left[d\left(\delta \theta_{l}\right)-\delta\left(d \theta_{l}\right)\right]\right. \\
& \left.-\sum \sum \gamma_{r s}^{l} d \theta_{s} \delta \theta_{r}-\sum \gamma_{r}^{l} d t \delta \theta_{r}\right\} \tag{2.10.5}
\end{align*}
$$

For an actual motion, dividing both sides of (2.10.1) and (2.10.5) with $d t$ [which does not interact with $\delta(\ldots)$], we obtain, respectively, the (system) velocity transitivity equation and its inverse:

$$
\begin{align*}
& \left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\sum a_{k l}\left[\left(\delta q_{l}\right)^{\cdot}-\delta v_{l}\right]+\sum \sum \gamma_{r s}^{k} \omega_{s} \delta \theta_{r}+\sum \gamma_{r}^{k} \delta \theta_{r}, \tag{2.10.6}\\
& \left(\delta q_{k}\right)^{\cdot}-\delta v_{k}=\sum A_{k l}\left\{\left[\left(\delta \theta_{l}\right)^{\cdot}-\delta \omega_{l}\right]-\sum \sum \gamma_{r s}^{l} \omega_{s} \delta \theta_{r}-\sum \gamma_{r}^{l} \delta \theta_{r}\right\} . \tag{2.10.7}
\end{align*}
$$

Properties of the Hamel Coefficients

(i) Clearly, these coefficients depend, through the transformation coefficients $a_{\beta \varepsilon}$ and $A_{\beta \varepsilon}$, on the particular $v \leftrightarrow \omega$ choice; that is, they do not depend on any particular system motion.
(ii) The γ_{r}^{k} contain the contributions of (a) the acatastatic terms a_{k} and A_{k}, and of (b) the explicit time-dependence of the homogeneous coefficients of the $v \Leftrightarrow \omega$ transformation. Hence, for scleronomic such transformations (i.e., $a_{k}=0 \Rightarrow A_{k}=0$, and $\left.\partial a_{k l} / \partial t=0 \Rightarrow \partial A_{k l} / \partial t=0\right)$ they vanish; but for catastatic ones, in general, they do not. In fact then, as (2.10.4) shows, they reduce to

$$
\begin{equation*}
\gamma_{r}^{k}=\sum\left(\partial a_{k b} / \partial t\right) A_{b r} \quad \text { (for catastatic Pfaffian transformations). } \tag{2.10.4a}
\end{equation*}
$$

(iii) The matrix $\gamma^{k}=\left(\gamma_{r s}^{k}\right)$ is, obviously, antisymmetric; that is,

$$
\begin{equation*}
\gamma_{r s}^{k}=-\gamma_{s r}^{k} \Rightarrow \gamma_{r r}^{k}: \text { diagonal elements }=0 \quad(k, r, s=1, \ldots, n ; \text { also } n+1) . \tag{2.10.8}
\end{equation*}
$$

To stress this antisymmetry in r and s, we chose to raise k; that is, we wrote $\gamma^{k}{ }_{r s}$ instead of $\gamma_{r k s}$, or $\gamma_{k r s}$, or $\gamma_{r s k}$, and so on. [Nothing tensorial is implied here, although this happens to be the tensorially correct index positioning; see, for example, Papastavridis (1999, chaps. 3, 6).] Hence, each matrix γ^{k} can have at most $n(n-1) / 2$ nonzero (nondiagonal) elements.
(iv) From the above, we readily conclude that

$$
\begin{gather*}
\gamma_{\varepsilon \beta}^{n+1}=0 \Rightarrow \gamma_{k l}^{n+1}=0, \quad \gamma_{k, n+1}^{n+1}=-\gamma_{n+1, k}^{n+1}=0, \quad \gamma_{n+1, n+1}^{n+1}=0 \\
{[k, l=1, \ldots, n ; \varepsilon, \beta=1, \ldots, n ; n+1]} \tag{2.10.9}
\end{gather*}
$$

and from this (recalling that $a_{n+1, k}=\delta_{n+1, k}=0$), that

$$
\begin{align*}
\left(\delta \theta_{n+1}\right)^{\cdot}-\delta \omega_{n+1} & \equiv d / d t\left(\delta q_{n+1}\right)-\delta\left(d q_{n+1} / d t\right) \equiv d / d t(\delta t)-\delta(d t / d t) \\
& =\sum \sum \gamma_{r s}^{n+1} \omega_{s} \delta \theta_{r}+\sum \gamma_{r, n+1}^{n+1} \delta \theta_{r}=0+0=0 \tag{2.10.10}
\end{align*}
$$

which, essentially, states that

$$
\begin{equation*}
d\left(\delta \theta_{n+1}\right)-\delta\left(d \theta_{n+1}\right)=d(\delta t)-\delta(d t)=d(0)-\delta(d t)=0-0=0 \tag{2.10.10a}
\end{equation*}
$$

as it should, and also shows that (2.10.1) and (2.10.2) also hold for $k=n+1$.
(v) In concrete problems, the analytical calculation of the nonvanishing γ 's is best done, as Hamel et al. have pointed out, not by applying (2.10.1a-4), which
are admittedly laborious and error prone, but by reading them off as coefficients of the bilinear covariant $(2.10 .1,6)$, in terms of the general subindices: $o, \bullet=1, \ldots, n ; n+1$:

$$
\begin{equation*}
d\left(\delta \theta_{*}\right)-\delta\left(d \theta_{*}\right)=\cdots+\left(\gamma_{o}^{*}\right) d \theta * \delta \theta_{o}+\cdots \tag{2.10.11}
\end{equation*}
$$

Also, this task is independent of any particular assumptions about $d(\delta q)-\delta(d q)$; and, hence, assuming that for all holonomic coordinates $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$, or equivalently $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right) \equiv \delta v_{k}$ (Hamel viewpoint - see also pr. 2.12.5), even if they (or their differentials) become constrained later, we may safely and conveniently calculate all the nonvanishing γ 's from the simplified, and henceforth definitive, transitivity equation:

$$
\begin{equation*}
d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)=\sum \sum \gamma_{r s}^{k} d \theta_{s} \delta \theta_{r}+\sum \gamma_{r}^{k} d t \delta \theta_{r} \tag{2.10.12}
\end{equation*}
$$

Finally, dividing the above with $d t$, and so on, we obtain its velocity form:

$$
\begin{equation*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\sum \sum \gamma_{r s}^{k} \omega_{s} \delta \theta_{r}+\sum \gamma_{r}^{k} \delta \theta_{r} \tag{2.10.13}
\end{equation*}
$$

a representation useful in Hamilton's time integral "principle" in quasi variables (chap. 7). Unfortunately, the transitivity equations, and their relations with the γ 's, are nowhere to be found in the English language literature (with the exception of Neimark and Fufaev, 1967 and 1972, p. 126. ff.); although the definition of the γ 's via $(2.10 .1 \mathrm{a}, 2)$ appears in a number of places. This unnatural situation produces an incomplete understanding of these basic quantities.

REMARK (A PREVIEW)

As will become clear in chapter 3, the expression for the system kinetic energy (and the Appellian "acceleration energy") are simpler in terms of quasi variables, such as the ω 's and $d \omega / d t$'s, than in terms of holonomic variables like the v 's and $d v / d t$'s. And this leads to formally simpler equations of motion in the former variables than in the latter; for example, the well-known Eulerian rotational rigid-body equations (§1.17) are simpler in terms of such quasi variables than, say, in terms of Eulerian angles and their $(\ldots)^{\circ}$-derivatives. But there is a catch: to obtain such simpler-looking Lagrange-type equations of motion - that is, equations based on the kinetic energy and its various gradients - we must calculate the corresponding γ 's; something that, even with utilization of (2.10.11-13) and other practice-based short cuts, requires some labor and skill. On the positive side, however, the γ 's supply an important "amount" of understanding into the kinematical structure of the particular problem; and Appellian-type equations in quasi variables may not contain the γ 's, but they have other calculational difficulties. In sum, there is no painless way to obtain simple-looking equations of motion in quasi variables.

Problem 2.10.1 Verify that the transitivity equations, say (2.10.12), can be rewritten as

$$
\begin{equation*}
d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)=\sum \sum^{\prime} \gamma_{r s}^{k}\left(d \theta_{s} \delta \theta_{r}-\delta \theta_{s} d \theta_{r}\right)+\sum \gamma_{r}^{k} d t \delta \theta_{r}, \tag{a}
\end{equation*}
$$

where $\sum \sum^{\prime}$ means that the summation extends over r and s only once; say, for $s<r$. [We point out the following interesting geometrical interpretation of (a): each of its
double summation terms is proportional to a 2×2 determinant, which, in turn, equals the area of the infinitesimal parallelogram with sides two vectors on the local " $\theta_{s} \theta_{r}$-plane," at its origin (q, t) in configuration/event space, of respective rectangular Cartesian components $\left(d \theta_{s}, d \theta_{r}\right)$ and $\left(\delta \theta_{s}, \delta \theta_{r}\right)$ there; with the factor of proportionality being $\gamma_{r s}^{k}$. That parallelogram is the projection of the generalized parallelogram with sides $d \theta \equiv\left(d \theta_{1}, \ldots, d \theta_{n}\right)$ and $\delta \theta \equiv\left(\delta \theta_{1}, \ldots, \delta \theta_{n}\right)$, at (q, t), on the " $\theta_{s} \theta_{r}$-plane" (see, e.g., Boltzmann, 1904, pp. 104-107; Webster, 1912, pp. 84-87, 381-383; also Papastavridis, 1999, §3.14).]

Other Expressions for the $\gamma^{\prime} s$

By ∂q-differentiating (2.9.3a) and then rearranging so as to go from the $(\partial a / \partial q)$'s to the $(\partial A / \partial q)$'s, we obtain

$$
\begin{align*}
& \sum\left(\partial a_{k b} / \partial q_{c}\right) A_{b r}=-\sum a_{k b}\left(\partial A_{b r} / \partial q_{c}\right), \tag{2.10.14a}\\
& \sum\left(\partial a_{k c} / \partial q_{b}\right) A_{c s}=-\sum a_{k c}\left(\partial A_{c s} / \partial q_{b}\right) \tag{2.10.14b}
\end{align*}
$$

then, substituting the above into (2.10.2), and renaming some dummy indices, we obtain the equivalent γ-expression:

$$
\begin{equation*}
\gamma_{r s}^{k}=\sum \sum a_{k b}\left[A_{c r}\left(\partial A_{b s} / \partial q_{c}\right)-A_{c s}\left(\partial A_{b r} / \partial q_{c}\right)\right] . \tag{2.10.15}
\end{equation*}
$$

For $s \rightarrow n+1$, the above yields an alternative to the (2.10.3), (2.10.4) expression for $\gamma_{r, n+1}^{k} \equiv \gamma_{r}^{k}$.

Problem 2.10.2 Show that yet another γ-expression is

$$
\begin{equation*}
\gamma_{r s}^{k}=\sum \sum\left(A_{b r} A_{c s}-A_{c r} A_{b s}\right)\left(\partial a_{k b} / \partial q_{c}\right), \tag{a}
\end{equation*}
$$

and similarly for $\gamma_{r, n+1}^{k} \equiv \gamma_{r}^{k}$ (see also Stückler, 1955; Lobas, 1986, pp. 34-36).

Some Transformation Properties of the $\gamma^{\prime} s$

(i) With the help of the following useful notation:

$$
\begin{align*}
& a_{b c}^{k} \equiv \partial a_{k b} / \partial q_{c}-\partial a_{k c} / \partial q_{b}=-a_{c b}^{k}, \tag{2.10.16a}\\
& a_{b, n+1}^{k} \equiv a_{b}^{k} \equiv \partial a_{k b} / \partial t-\partial a_{k} / \partial q_{b} \tag{2.10.16b}
\end{align*}
$$

[recalling (2.9.16); also similar notation in (2.8.2a)], the γ-definitions (2.10.2)-(2.10.4) are rewritten, respectively, as

$$
\begin{equation*}
\gamma_{r s}^{k}=\sum \sum a_{b c}^{k} A_{b r} A_{c s}, \quad \gamma_{r}^{k}=\sum \sum a_{b c}^{k} A_{b r} A_{c}+\sum a_{b}^{k} A_{b r} \tag{2.10.17a,b}
\end{equation*}
$$

With the help of the inverseness conditions (2.9.3a, 3b) and a number of dummy index changes, it is not too hard to show that $(2.10 .17 \mathrm{a}, \mathrm{b})$ invert, respectively, to

$$
a_{b c}^{k}=\sum \sum \gamma_{r s}^{k} a_{r b} a_{s c}, \quad a_{b}^{k}=\sum \sum \gamma_{r s}^{k} a_{r b} a_{s}+\sum \gamma_{r}^{k} a_{r b} . \quad \text { (2.10.18a, b) }
$$

The above transformation equations show that if the $a^{k}{ }_{b c}$ and $a^{k}{ }_{b}$ vanish [recall conditions (2.9.16)], so do the $\gamma^{k}{ }_{r s}$ and γ^{k}; and vice versa; that is, the vanishing of $\gamma^{k} \ldots$ constitutes the necessary and sufficient condition for $d \theta_{k} / \delta \theta_{k}$ to be an exact differential, and hence, for θ_{k} to be a holonomic coordinate. If the $d q / \delta q / v$ are unconstrained, as is the case so far (i.e., $m=0$), this new set of exactness conditions in terms of the γ 's does not offer any advantages over (2.9.16); the $a^{k}{ }_{b c}$ and a_{b}^{k} are easier to calculate than $\gamma^{k}{ }_{r s}$ and $\gamma^{k}{ }_{r}$. As shown in the next section, the real value of the γ 's, in questions of holonomicity, appears whenever the $d q / \delta q / v$ are constrained $(m \neq 0)$.

REMARK

For those familiar with tensors, the transformation equations (2.10.17a, b) show that the $\gamma^{k} \ldots$ and $a^{k}{ }_{\ldots}$ transform as covariant tensors in their two subscripts; that is, both are components of the same geometrical entity: the a 's, its holonomic components in the local "coordinates" $d q / \delta q$, and the γ 's, its nonholonomic components in the local "coordinates" $d \theta / \delta \theta$, at (q, t). In precise tensor notation, using, for example, accented (unaccented) indices for nonholonomic (holonomic) components, summation convention over pairs of diagonal indices of the same kind (i.e., both holonomic, or both nonholonomic), and with the notational changes: $A_{b r} \rightarrow A_{r^{\prime}}^{b} \rightarrow A_{r^{\prime}}^{r}$, $A_{c s} \rightarrow A_{s^{\prime}}^{c} \rightarrow A_{s^{\prime}}^{s}$, and $a_{b c}^{k} \rightarrow a^{k^{\prime}}{ }_{b c} \rightarrow a^{k^{\prime}}{ }_{r s} \rightarrow \gamma^{k^{\prime}}{ }_{r s} \quad$ (= holonomic components), $\gamma_{r s}^{k} \rightarrow \gamma^{k^{\prime} r^{\prime} s^{\prime}}$ (= nonholonomic components), the transformation equations (2.10.17a) read

$$
\begin{equation*}
\gamma^{k_{r^{\prime} s^{\prime}}^{\prime}}=A_{r^{\prime}}^{r} A_{s^{\prime}}^{s} \gamma^{k_{r s}^{\prime}} ; \tag{2.10.17c}
\end{equation*}
$$

and similarly for (2.10.17b)-(2.10.18b). Such elaborate notation is a must in advanced differential-geometric investigations of nonholonomic systems. Fortunately, it will not be needed here.
(ii) The invariant definition of the γ 's via the transitivity equations (2.10.1) and (2.10.12) readily shows that, contrary to what one might conclude by casually inspecting their derivative definition via (2.10.2-4), these nontensorial coefficients, known in tensor calculus as geometrical objects of nonholonomicity (or anholonomicity), are independent of the original holonomic coordinates q, and thus express geometric properties of the local/differential basis $d \theta / \delta \theta / \omega$. In particular, it follows that if the γ 's do (not) vanish, when based on some (q, t) frame of reference, they will (not) vanish in any other frame (q^{\prime}, t), obtainable from the original frame by an admissible transformation.
(iii) However, under a local transformation $d \theta_{k} \Leftrightarrow d \theta_{k^{\prime}}$, that is, at the same (q, t) point, the γ 's, do change, in the earlier mentioned nontensorial fashion.
[(a) For further details on tensorial nonholonomic dynamics see, for example, Dobronravov (1948, 1970, 1976), Kil'chevskii (1972, 1977), Maißer (1981, 1982, 1983-1984, 1991(b), 1997), Papastavridis (1999), Schouten (1954), Synge (1936), Vranceanu (1936); and references cited there. (b) For transitivity equation-based proofs of these statements, see, for (ii): ex. 2.12.2, and for (iii): ex. 2.10.1; and for a derivative definition-based proof, see, for example, Golab (1974, pp. 140-141).]

Noncommutativity of Mixed Partial Quasi Derivatives

Below we show that the second mixed partial symbolic quasi derivatives of an arbitrary well-behaved function $f=f(q, t, \ldots)$, in general, do not commute:

$$
\begin{equation*}
\partial / \partial \theta_{k}\left(\partial f / \partial \theta_{l}\right) \neq \partial / \partial \theta_{l}\left(\partial f / \partial \theta_{k}\right) \tag{2.10.19}
\end{equation*}
$$

Invoking the basic quasi-derivative definition (2.9.30a, b), we obtain, successively,

$$
\begin{aligned}
\partial^{2} f / \partial \theta_{k} \partial \theta_{l} & \equiv \partial / \partial \theta_{k}\left(\partial f / \partial \theta_{l}\right) \equiv \sum A_{r k}\left\{\partial / \partial q_{r}\left(\sum A_{s l}\left(\partial f / \partial q_{s}\right)\right)\right\} \\
& =\sum \sum\left[A_{r k} A_{s l}\left(\partial^{2} f / \partial q_{r} \partial q_{s}\right)+A_{r k}\left(\partial A_{s l} / \partial q_{r}\right)\left(\partial f / \partial q_{s}\right)\right] \\
& =\sum \sum A_{r k} A_{s l}\left(\partial^{2} f / \partial q_{r} \partial q_{s}\right)+\sum\left(\sum \sum a_{b s} A_{r k}\left(\partial A_{s l} / \partial q_{r}\right)\right)\left(\partial f / \partial \theta_{b}\right)
\end{aligned}
$$

and, analogously (with $k \rightarrow l$ and $l \rightarrow k$ in the above),

$$
\begin{aligned}
\partial^{2} f / \partial \theta_{l} \partial \theta_{k} & \equiv \partial / \partial \theta_{l}\left(\partial f / \partial \theta_{k}\right)=\cdots \\
& =\sum \sum A_{r l} A_{s k}\left(\partial^{2} f / \partial q_{r} \partial q_{s}\right)+\sum\left(\sum \sum a_{b s} A_{r l}\left(\partial A_{s k} / \partial q_{r}\right)\right)\left(\partial f / \partial \theta_{b}\right)
\end{aligned}
$$

and therefore subtracting these two side by side, and recalling the γ-definition (2.10.15), we obtain the following alternative transitivity/noncommutativity relation:

$$
\begin{align*}
\partial^{2} f / \partial \theta_{k} \partial \theta_{l}-\partial^{2} f / \partial \theta_{l} \partial \theta_{k} & \equiv \partial / \partial \theta_{k}\left(\partial f / \partial \theta_{l}\right)-\partial / \partial \theta_{l}\left(\partial f / \partial \theta_{k}\right) \\
& =\sum\left\{\sum \sum a_{b s}\left[A_{r k}\left(\partial A_{s l} / \partial q_{r}\right)-A_{r l}\left(\partial A_{s k} / \partial q_{r}\right)\right]\right\}\left(\partial f / \partial \theta_{b}\right) \\
& =\sum \gamma^{b}{ }_{k l}\left(\partial f / \partial \theta_{b}\right) ; \tag{2.10.20}
\end{align*}
$$

which expresses noncommutativity in terms of $(\partial \ldots / \partial \theta)$-derivatives, rather than $(d \ldots / \delta \ldots)$-differentials, as (2.10.1) and (2.10.12) do.

REMARK

In the theory of continuous (or Lie) groups, it is customary to write $X_{k} f$ for our $\partial f / \partial \theta_{k},(2.9 .30 \mathrm{a})$; that is,

$$
\begin{equation*}
\partial \ldots / \partial \theta_{k} \equiv X_{k} \cdots \equiv \sum\left(\partial \ldots / \partial q_{l}\right)\left(\partial v_{l} / \partial \omega_{k}\right)=\sum A_{l k}\left(\partial \ldots / \partial q_{l}\right) \tag{2.10.21}
\end{equation*}
$$

The differential operators X_{k} are called the generators of that group. In this notation, equation (2.10.20) is rewritten as

$$
\begin{equation*}
\left[X_{k}, X_{l}\right] f=\sum \gamma_{k l}^{b}\left(X_{b} f\right) \tag{2.10.22}
\end{equation*}
$$

where $\left[X_{k}, X_{l}\right] \equiv X_{k} X_{l}-X_{l} X_{k} \equiv \sum \gamma^{b}{ }_{k l}\left(X_{b}\right)$: commutator of group. For further details, see texts on Lie groups, and so on; also Hamel (1904(a), (b)), Hagihara (1970), McCauley (1997).

Problem 2.10.3 Extend (2.10.20) to the case where one or both of θ_{k}, θ_{l} are the $\left(\theta_{n+1}\right)$ th "coordinate", that is, $\theta \rightarrow t$.

Problem 2.10.4 The choice $f \rightarrow q_{r}$ in (2.10.20), and then use of (2.9.34), yields the symbolic identity

$$
\begin{equation*}
\partial^{2} q_{r} / \partial \theta_{k} \partial \theta_{l}-\partial^{2} q_{r} / \partial \theta_{l} \partial \theta_{k}=\sum \gamma_{k l}^{b}\left(\partial q_{r} / \partial \theta_{b}\right)=\sum A_{r b} \gamma_{k l}^{b} . \tag{a}
\end{equation*}
$$

Solving (a) for the γ 's, derive the following alternative symbolic expression/definition for γ :

$$
\begin{equation*}
\gamma_{k l}^{b}=\sum a_{b r}\left(\partial^{2} q_{r} / \partial \theta_{k} \partial \theta_{l}-\partial^{2} q_{r} / \partial \theta_{l} \partial \theta_{k}\right) \tag{b}
\end{equation*}
$$

HINT
Multiply (a) with $a_{s r}$ and sum over r, and so on.

Nonintegrability Conditions for a Nonholonomic Basis

Since (2.10.20) holds for an arbitrary f, let us apply it for $f \rightarrow \boldsymbol{r}=\boldsymbol{r}(t, q)$. In this case, $\partial f / \partial \theta_{b} \rightarrow \partial \boldsymbol{r} / \partial \theta_{b} \equiv \boldsymbol{\varepsilon}_{b}$, and thus we obtain the basic nonintegrability conditions for the nonholonomic basis $\left\{\boldsymbol{\varepsilon}_{k} ; k=1, \ldots, n\right\}$:

$$
\begin{equation*}
\partial \boldsymbol{\varepsilon}_{l} / \partial \theta_{k}-\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{l}=\sum \gamma_{k l}^{b} \varepsilon_{b}, \tag{2.10.23}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
\left[\boldsymbol{\varepsilon}_{k}, \boldsymbol{\varepsilon}_{l}\right] \equiv \sum \gamma_{k l}^{b} \varepsilon_{b} \equiv \text { commutator of basis }\left\{\varepsilon_{k}\right\} . \tag{2.10.23a}
\end{equation*}
$$

In differential geometry, such bases are called nonholonomic, or noncoordinate, or nongradient; that is, they are not parts of a global coordinate system; like the $\left\{\boldsymbol{e}_{k} \equiv \partial \boldsymbol{r} / \partial q_{k}\right\}$ for which, clearly [recalling (2.5.4a)],

$$
\begin{equation*}
\partial \boldsymbol{e}_{l} / \partial q_{k}-\partial \boldsymbol{e}_{k} / \partial q_{l} \equiv\left[\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right] \equiv \mathbf{0} \tag{2.10.23b}
\end{equation*}
$$

In sum: the vanishing of the γ 's is the necessary and sufficient condition for the corresponding basis to be holonomic; or gradient, or coordinate.

We leave it to the reader to show that (2.10.23) also hold for $k, l=n+1$; that is, $\theta \rightarrow t$.

A Fundamental Kinematical Identity

Here, with the help of (2.10.23), we will complete the derivation of the basic identity (2.9.37). Indeed, since $\boldsymbol{\varepsilon}_{k}=\partial \boldsymbol{v} / \partial \omega_{k} \equiv \partial \boldsymbol{v}^{*} / \partial \omega_{k}=\boldsymbol{\varepsilon}_{k}(t, q)$, and [recalling (2.9.21)] $\boldsymbol{v}=\boldsymbol{v}^{*}(t, q, \omega)=\sum \varepsilon_{k} \omega_{k}+\varepsilon_{n+1} \equiv \sum \varepsilon_{k} \omega_{k}+\varepsilon_{0}$, we obtain, successively,

$$
\begin{align*}
d / d t\left(\partial \boldsymbol{v} / \partial \omega_{k}\right) & \equiv d / d t\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right) \equiv d \boldsymbol{\varepsilon}_{k} / d t \tag{i}\\
& =\sum\left(\partial \boldsymbol{\varepsilon}_{k} / \partial q_{l}\right) v_{l}+\partial \boldsymbol{\varepsilon}_{k} / \partial t
\end{align*}
$$

[recalling the inverse quasi chain rule (2.9.30b)]
$=\sum\left(\sum a_{r l}\left(\partial \varepsilon_{k} / \partial \theta_{r}\right)\right) v_{l}+\partial \boldsymbol{\varepsilon}_{k} / \partial t \quad$ [recalling (2.9.9)]
$=\sum\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{r}\right)\left(\omega_{r}-a_{r}\right)+\partial \boldsymbol{\varepsilon}_{k} / \partial t$
$=\sum\left(\partial \varepsilon_{k} / \partial \theta_{r}\right) \omega_{r}-\sum\left(\partial \varepsilon_{k} / \partial \theta_{r}\right) a_{r}+\partial \varepsilon_{k} / \partial t$.
(ii) $\partial \boldsymbol{v} / \partial \theta_{k} \equiv \partial \boldsymbol{v}^{*} / \partial \theta_{k}=\sum\left(\partial \boldsymbol{\varepsilon}_{r} / \partial \theta_{k}\right) \omega_{r}+\partial \boldsymbol{\varepsilon}_{0} / \partial \theta_{k}$.

Therefore, subtracting the above side by side, and recalling (2.9.32a, d), we obtain

$$
\begin{aligned}
& d \boldsymbol{\varepsilon}_{k} / d t-\partial \boldsymbol{v} / \partial \theta_{k}= \sum\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{r}-\partial \boldsymbol{\varepsilon}_{r} / \partial \theta_{k}\right) \omega_{r}+\left(\partial \boldsymbol{\varepsilon}_{k} / \partial t-\partial \boldsymbol{\varepsilon}_{0} / \partial \theta_{k}\right)-\sum\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{r}\right) a_{r} \\
&=\sum\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{r}\right.\left.-\partial \boldsymbol{\varepsilon}_{r} / \partial \theta_{k}\right) \omega_{r} \\
&+\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{0}-\sum A_{s}\left(\partial \boldsymbol{\varepsilon}_{k} / \partial q_{s}\right)\right) \\
&-\left(\partial \boldsymbol{\varepsilon}_{0} / \partial \theta_{k}-\sum\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{r}\right) a_{r}\right) \\
&=\sum\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{\beta}-\partial \boldsymbol{\varepsilon}_{\beta} / \partial \theta_{k}\right) \omega_{\beta} \\
&-\sum A_{s}\left(\sum a_{r s}\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{r}\right)\right)-\sum a_{r}\left(\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{r}\right)
\end{aligned}
$$

\{for the first sum we use (2.10.23), with $l \rightarrow k, k \rightarrow \beta, b \rightarrow r$ [recalling (2.10.9)]; and by the second of (2.9.3a) the last two sums add up to zero\}

$$
\begin{equation*}
=\sum\left(\sum \gamma_{\beta k}^{r} \varepsilon_{r}\right) \omega_{\beta} \tag{2.10.24c}
\end{equation*}
$$

and so, finally,

$$
\begin{align*}
E_{k}^{*}(\boldsymbol{v}) & \equiv E_{k}^{*}\left(\boldsymbol{v}^{*}\right): \text { Hamel vector of nonholonomic deviation of a particle } \\
& \equiv d / d t\left(\partial \boldsymbol{v} / \partial \omega_{k}\right)-\partial \boldsymbol{v} / \partial \theta_{k} \equiv d / d t\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \equiv d \boldsymbol{\varepsilon}_{k} / d t-\partial \boldsymbol{v} / \partial \theta_{k} \\
& =\sum \sum \gamma_{\beta k}^{r} \boldsymbol{\varepsilon}_{r} \omega_{\beta}=\sum \sum \gamma^{r}{ }_{l k} \omega_{l} \boldsymbol{\varepsilon}_{r}+\sum \gamma_{n+1, k}^{r} \omega_{n+1} \boldsymbol{\varepsilon}_{r} \quad[\text { swapping } k \text { and } l] \\
& =-\sum \sum \gamma_{k l}^{r} \omega_{l} \boldsymbol{\varepsilon}_{r}-\sum \gamma_{k}^{r} \boldsymbol{\varepsilon}_{r}=-\sum\left(\sum \gamma_{k l}^{r} \omega_{l}+\gamma_{k}^{r}\right) \boldsymbol{\varepsilon}_{r} \\
& \equiv-\sum h_{k}^{r} \boldsymbol{\varepsilon}_{r} ; \tag{2.10.25}
\end{align*}
$$

where

$$
\begin{equation*}
h_{k}^{r} \equiv \sum \gamma_{k l}^{r} \omega_{l}+\gamma_{k}^{r}=\sum \gamma_{k \beta}^{r} \omega_{\beta}: \text { Two-index Hamel symbols. } \tag{2.10.25a}
\end{equation*}
$$

This fundamental kinematical identity, in its various equivalent forms, like the transitivity equations (2.10.1, etc.), shows clearly the difference between holonomic and nonholonomic coordinates (not constraints): for the former, $E_{k}(\boldsymbol{v})=\mathbf{0}$; while for the latter, $E_{k} *(\boldsymbol{v}) \equiv E_{k}{ }^{*}\left(\boldsymbol{v}^{*}\right) \neq \mathbf{0}$. It is indispensable in the derivation of equations of motion in quasi variables (§3.3).

Problem 2.10.5 Transitivity Relations for System Velocities.
(i) Show that for the general nonstationary transformation (with $\dot{q}_{l} \equiv v_{l}$)

$$
\begin{equation*}
\omega_{k} \equiv \sum a_{k l} v_{l}+a_{k} \Leftrightarrow v_{l}=\sum A_{l k} \omega_{k}+A_{l} \tag{a}
\end{equation*}
$$

the following transitivity identities hold:

$$
\begin{align*}
E_{l}\left(\omega_{k}\right) & \equiv d / d t\left(\partial \omega_{k} / \partial v_{l}\right)-\partial \omega_{k} / \partial q_{l}=\sum\left(\sum \gamma_{r \beta}^{k} \omega_{\beta}\right) a_{r l} \\
& =\sum\left(\sum \gamma_{r s}^{k} \omega_{s}+\gamma_{r}^{k}\right) a_{r l} \equiv \sum h_{r}^{k} a_{r l} \tag{b}
\end{align*}
$$

(ii) Then show that, in the stationary case, (b) specializes to

$$
\begin{equation*}
E_{l}\left(\omega_{k}\right) \equiv d / d t\left(\partial \omega_{k} / \partial v_{l}\right)-\partial \omega_{k} / \partial q_{l}=\sum \sum \gamma_{r s}^{k} \omega_{s} a_{r l} \tag{c}
\end{equation*}
$$

that is, the first line of (b) with $\beta \rightarrow s$.
(iii) Show that, as a result of the above, the transitivity equations (2.10.13), become

$$
\begin{align*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k} & =\sum \sum \gamma_{r s}^{k} \omega_{s} \delta \theta_{r}+\sum \gamma_{r}^{k} \delta \theta_{r}=\sum h_{r}^{k} \delta \theta_{r} \\
& =\sum \sum E_{l}\left(\omega_{k}\right) A_{l r} \delta \theta_{r}=\sum \sum\left(\partial v_{l} / \partial \omega_{r}\right) E_{l}\left(\omega_{k}\right) \delta \theta_{r} \tag{d}
\end{align*}
$$

where the $\sum\left(\partial v_{l} / \partial \omega_{r}\right) E_{l}\left(\omega_{k}\right)$ can be viewed as the nonlinear generalization of the h_{r}^{k} (§5.2).

Problem 2.10.6 By direct d / δ-differentiations of $\delta \boldsymbol{r}=\sum \boldsymbol{\varepsilon}_{k} \delta \theta_{k} \quad$ and $d \boldsymbol{r}=\sum \varepsilon_{k} d \theta_{k}$, respectively (assume stationary systems, for algebraic simplicity but no loss in generality), and then use of

$$
\begin{equation*}
d \varepsilon_{k}=d\left(\sum A_{l k} \boldsymbol{e}_{l}\right)=\sum\left(d A_{l k} \boldsymbol{e}_{l}+A_{l k} d \boldsymbol{e}_{l}\right) \tag{a}
\end{equation*}
$$

and

$$
\begin{gather*}
d \boldsymbol{e}_{l}=\sum\left(\partial \boldsymbol{e}_{l} / \partial q_{r}\right) d q_{r}=\sum \sum\left(\partial \boldsymbol{e}_{l} / \partial q_{r}\right) A_{r s} d \theta_{s} \\
d A_{l k}=\sum\left(\partial A_{l k} / \partial q_{r}\right) d q_{r}=\sum \sum\left(\partial A_{l k} / \partial q_{r}\right) A_{r s} d \theta_{s} \tag{b}
\end{gather*}
$$

and similarly for $\delta \boldsymbol{\varepsilon}_{k}=\delta\left(\sum A_{l k} \boldsymbol{e}_{l}\right)=\ldots$, and then recalling the γ-definitions, obtain the following basic particle/vectorial transitivity equation:

$$
\begin{equation*}
d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})=\sum\left\{\left[d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)\right]+\sum \sum \gamma^{k}{ }_{r s} d \theta_{r} \delta \theta_{s}\right\} \boldsymbol{\varepsilon}_{k} \tag{c}
\end{equation*}
$$

or, dividing by $d t$, its equivalent velocity form

$$
\begin{equation*}
(\delta \boldsymbol{r})^{\cdot}-\delta \boldsymbol{v}=\sum\left\{\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum \sum \gamma^{k}{ }_{r s} \omega_{r} \delta \theta_{s}\right\} \boldsymbol{\varepsilon}_{k} \tag{d}
\end{equation*}
$$

Replacing in the above r with $\beta=1, \ldots, n+1$, extends it to the nonstationary/ rheonomic case.
[Note that (c) and (d) are independent of any $d(\delta q)-\delta(d q)$ assumptions. Therefore, since

$$
\begin{equation*}
d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})=\sum\left[d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)\right] \boldsymbol{e}_{l}=\sum \sum\left[d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)\right] a_{k l} \boldsymbol{\varepsilon}_{k} \tag{e}
\end{equation*}
$$

if we assume $d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)=0$ (Hamel viewpoint), then $d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})=\mathbf{0}$, and this leads us back to the transitivity equations (2.10.12) and (2.10.13).]

Example 2.10.1 Local Transformation Properties of the Hamel Coefficients. Let us find how the γ 's transform under the admissible (and, for simplicity, but with no loss in generality) stationary quasi-variable transformation $\theta \rightarrow \theta^{\prime}$:

$$
\begin{equation*}
d \theta_{k^{\prime}}=\sum a_{k^{\prime} k} d \theta_{k} \Leftrightarrow d \theta_{k}=\sum A_{k k^{\prime}} d \theta_{k^{\prime}} \tag{a}
\end{equation*}
$$

where $a_{k^{\prime} k}=a_{k^{\prime} k}(q), A_{k k^{\prime}}=A_{k k^{\prime}}(q)$, and all Latin indices run from 1 to n. We find, successively,

$$
\begin{align*}
& d\left(\delta \theta_{k^{\prime}}\right)-\delta\left(d \theta_{k^{\prime}}\right)= d\left(\sum a_{k^{\prime} k} \delta \theta_{k}\right)-\delta\left(\sum a_{k^{\prime} k} d \theta_{k}\right) \\
&= \sum\left[d a_{k^{\prime} k} \delta \theta_{k}+a_{k^{\prime} k} d\left(\delta \theta_{k}\right)-\delta a_{k^{\prime} k} d \theta_{k}-a_{k^{\prime} k} \delta\left(d \theta_{k}\right)\right] \\
&= \sum\left\{\left(\sum\left(\partial a_{k^{\prime} k} / \partial q_{p}\right) d q_{p}\right) \delta \theta_{k}+a_{k^{\prime} k} d\left(\delta \theta_{k}\right)\right. \\
&\left.-\left(\sum\left(\partial a_{k^{\prime} k} / \partial q_{p}\right) \delta q_{p}\right) d \theta_{k}-a_{k^{\prime} k} \delta\left(d \theta_{k}\right)\right\} \\
& {\left[\text { recalling that } d q_{p}=\sum A_{p r} d \theta_{r},\right. \text { etc.] }} \\
&= \sum a_{k^{\prime} k}\left[d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)\right] \\
&+\sum \sum \sum\left[\left(\partial a_{k^{\prime} k} / \partial q_{p}\right) A_{p r} d \theta_{r} \delta \theta_{k}-\left(\partial a_{k^{\prime} k} / \partial q_{p}\right) A_{p r} d \theta_{k} \delta \theta_{r}\right] \\
&= \sum a_{k^{\prime} k}\left(\sum \sum \gamma_{b c}^{k} d \theta_{c} \delta \theta_{b}\right) \\
&+\sum \sum \sum\left[\left(\partial a_{k^{\prime} k} / \partial q_{p}\right) A_{p r}-\left(\partial a_{k^{\prime} r} / \partial q_{p}\right) A_{p k}\right] d \theta_{r} \delta \theta_{k} \\
&= \sum \sum \sum a_{k^{\prime} k} \gamma^{k}{ }_{b c}\left(\sum A_{c c^{\prime}} d \theta_{c^{\prime}}\right)\left(\sum A_{b b^{\prime}} \delta \theta_{b^{\prime}}\right) \\
&+\sum \sum \sum\left[\left(\partial a_{k^{\prime} k} / \partial q_{p}\right) A_{p r}-\left(\partial a_{k^{\prime} r} / \partial q_{p}\right) A_{p k}\right]\left(\sum A_{r r^{\prime}} d \theta_{r^{\prime}}\right)\left(\sum a_{k l^{\prime}} \delta \theta_{l^{\prime}}\right) \\
&= \sum \sum \sum \sum \sum\left(a_{k^{\prime} k} A_{r r^{\prime}} A_{l l^{\prime}} \gamma_{l r}^{k}\right) d \theta_{r^{\prime}} \delta \theta_{l^{\prime}} \\
&+\sum \sum \sum \sum \sum\left(\partial a_{k^{\prime} k} / \partial \theta_{r}-\partial a_{k^{\prime} r} / \partial \theta_{k}\right) A_{r r^{\prime}} A_{k l^{\prime}} d \theta_{r^{\prime}} \delta \theta_{l^{\prime}} ; \quad \text { (b) } \tag{b}
\end{align*}
$$

and since, by definition,

$$
\begin{equation*}
d\left(\delta \theta_{k^{\prime}}\right)-\delta\left(d \theta_{k^{\prime}}\right)=\sum \sum \gamma^{k_{l^{\prime} r^{\prime}}^{\prime}} d \theta_{r^{\prime}} \delta \theta_{l^{\prime}} \tag{c}
\end{equation*}
$$

we conclude that

$$
\begin{equation*}
\gamma^{k^{\prime}{ }^{\prime} r^{\prime}}=\sum \sum \sum a_{k^{\prime} k} A_{l l^{\prime}} A_{r r^{\prime}} \gamma_{l r}^{k}+\sum \sum\left(\partial a_{k^{\prime} k} / \partial \theta_{r}-\partial a_{k^{\prime} r} / \partial \theta_{k}\right) A_{k l^{\prime}} A_{r r^{\prime}} \tag{d}
\end{equation*}
$$

In tensor calculus language, the transformation equation (d) shows that the $\gamma^{k}{ }_{l r}$ do not constitute a tensor: if $\gamma^{k}{ }_{l r}=0$ (i.e., if the θ_{k} are holonomic coordinates), it does not necessarily follow that $\gamma^{k^{\prime}}{ }_{l^{\prime} r^{\prime}}=0$; and that is why these quantities are called, instead, components of a geometrical object. However, if the second group of terms (double sum) in (d), which looks (symbolically) like a Hamel coefficient between the $d \theta_{k}$ and $d \theta_{k^{\prime}}$, vanishes, the $\gamma^{k}{ }_{l r}$ transform tensorially. In such a case, we call the $d \theta_{k}$ and $d \theta_{k^{\prime}}$ relatively holonomic; that happens, for example, if the coefficients $a_{k^{\prime} k}$ are constant.

For futher details, and the relation of the γ 's to the Christoffell symbols (§3.10) and the Ricci rotation coefficients, both of which are also geometrical objects, see, for example (alphabetically): Papastavridis (1999), Schouten (1954), Synge (1936), Vranceanu (1936); also, for an alternative derivation of (d), see Golab (1974, pp. 141-142), Lynn (1963, pp. 201-203).

We have developed all the necessary analytical tools of Lagrangean kinematics. In the following sections, we will show how to apply them to the handling of additional Pfaffian (possibly nonholonomic) constraints.

For quick comparison, when working with other references, we present below the following, admittedly incomplete, but hopefully helpful, list of common γ-notations in the literature:
(i) Our notation (also in Papastavridis, 1999): $\gamma_{a}{ }^{b}{ }_{c} \equiv \gamma^{b}{ }_{a c}$ (sometimes, for extra clarity, a subscript dot is added between a and c, directly below b).
(ii) Authors whose notation coincides with ours: Dobronravov (1948, 1970, 1976), Golomb and Marx (1961), Gutowski (1971), Kil'chevskii (1972, 1977), Koiller (1992): $\gamma_{a}{ }^{b}$.
(iii) Authors whose notation differs from ours: Butenin (1971), Fischer and Stephan (1972), Neimark and Fufaev (1967/1972), Whittaker (1937; but his $a_{k l}$ is our $a_{l k}$): $\gamma_{a b c}$; Corben and Stehle (1960): $\gamma_{a c b}$; Nordheim (1927): $\gamma_{c b a}$; Rose (1938): $\gamma_{b a c}$; Päsler (1968): $-\gamma_{b a c}$; Djukic (1976), Funk (1962), Lur’e (1961/1968), Mei (1985), Prange (1935): $\gamma_{c}{ }^{b}{ }_{a}$; Kilmister (1964, 1967): $\gamma_{b}^{a}{ }_{b}{ }^{c}$; Maißer (1981): $A_{c}{ }^{b}{ }_{a}$; Desloge (1982): $\alpha_{a b c}$; Stückler (1955): $\beta_{a b c}$; Heun (1906): $\beta_{a c b}$; Winkelmann and Grammel (1927): $\beta_{c a b}$; Morgenstern and Szabó (1961): $\beta_{b, a c}$; Hamel (1904(a), (b)): $\beta_{a, c, b}$; Hamel (1949): $\beta_{b}{ }^{a, c}$; Schaefer (1951): $\beta_{c}{ }^{b}{ }_{a}$; Vranceanu (1936): $w_{a}{ }^{b}$; Wang (1979): $K_{A}{ }^{B}{ }_{C}$; Schouten (1954): $2 \Omega_{c}{ }_{c}{ }_{a}$; Levi-Civita and Amaldi (1927): $\eta_{b \mid c a}$.

2.11 PFAFFIAN (VELOCITY) CONSTRAINTS VIA QUASI VARIABLES, AND THEIR GEOMETRICAL INTERPRETATION

Let us, now, assume that our hitherto holonomic $n(\equiv 3 N-h)$-DOF system is subjected to the additional m independent Pfaffian constraints [recalling (2.7.3 and 2.7.4)]:

Kinematically admissible/possible form:

$$
\begin{equation*}
\sum c_{D k} d q_{k}+c_{D} d t=0 \tag{2.11.1a}
\end{equation*}
$$

Virtual form:

$$
\begin{equation*}
\sum c_{D k} \delta q_{k}=0 \tag{2.11.1b}
\end{equation*}
$$

Velocity form (with $d q_{k} / d t \equiv v_{k}$):

$$
\begin{equation*}
\sum c_{D k} v_{k}+c_{D}=0 \tag{2.11.1c}
\end{equation*}
$$

where $D=1, \ldots, m(<n), k=1, \ldots, n$; and the constraint independence is expressed by the algebraic requirement $\operatorname{rank}\left(c_{D k}\right)=m$. Since additional holonomic constraints (in any form) can always be embedded, or built in, with a new set of fewer q 's, we can, with no loss of generality, assume that all constraints (2.11.1) are nonholonomic.

Now, and in what constitutes a direct and natural extension of the method of holonomic equilibrium coordinates ($\$ 2.4$) to the embedding Pfaffian constraints, we introduce the following equilibrium quasi variables (Hamel's choice):

Kinematically admissible/possible form:

$$
\begin{align*}
& d \theta_{D} \equiv \sum a_{D k} d q_{k}+a_{D} d t \quad(=0) \tag{2.11.2a}\\
& d \theta_{I} \equiv \sum a_{I k} d q_{k}+a_{I} d t \quad(\neq 0) \tag{2.11.2b}\\
& d \theta_{n+1} \equiv d \theta_{0} \equiv d q_{n+1} \equiv d q_{0} \equiv d t \quad(\neq 0) \tag{2.11.2c}
\end{align*}
$$

Virtual form:

$$
\begin{align*}
& \delta \theta_{D} \equiv \sum a_{D k} \delta q_{k} \quad(=0) \tag{2.11.2d}\\
& \delta \theta_{I} \equiv \sum a_{I k} \delta q_{k} \quad(\neq 0) \tag{2.11.2e}\\
& \delta \theta_{n+1} \equiv \delta q_{n+1} \equiv \delta t \quad(=0) \tag{2.11.2f}
\end{align*}
$$

Velocity form:

$$
\begin{align*}
& \omega_{D} \equiv \sum a_{D k} v_{k}+a_{D} \quad(=0), \tag{2.11.2~g}\\
& \omega_{I} \equiv \sum a_{I k} v_{k}+a_{I} \quad(\neq 0), \tag{2.11.2h}\\
& \omega_{n+1} \equiv \omega_{0} \equiv v_{n+1} \equiv v_{0} \equiv d t / d t=1 \quad(\neq 0) \tag{2.11.2i}
\end{align*}
$$

where (here and throughout the rest of the book): $D=1, \ldots, m(<n)=$ Dependent, $I=m+1, \ldots, n=$ Independent [additional dependent (independent) indices will be denoted by $\left.D^{\prime}, D^{\prime \prime}, \ldots\left(I^{\prime}, I^{\prime \prime}, \ldots\right)\right]$; and the coefficients $a_{k l}, a_{k}$ are chosen as follows:
(i) $\quad a_{D k} \equiv c_{D k} \quad$ and $\quad a_{D} \equiv c_{D} \quad\left[\right.$ i.e., $\theta_{D} \equiv \chi_{D}$, recall (2.6.2-4; 2.8.1)],
(ii) The $a_{I k}$ and a_{I} are arbitrary, except that when eqs. (2.11.2) are solved (inverted) for the $d q / \delta q / v$ in terms of the independent $d \theta / \delta \theta / \omega$, respectively; that is,

Kinematically admissible/possible form:

$$
\begin{gather*}
d q_{k} \equiv \sum A_{k I} d \theta_{I}+A_{I} d t \quad(\neq 0) \tag{2.11.4a}\\
d q_{n+1} \equiv d q_{0} \equiv d \theta_{n+1} \equiv d \theta_{0} \equiv d t \quad(\neq 0) \tag{2.11.4b}
\end{gather*}
$$

Virtual form:

$$
\begin{gather*}
\delta q_{k} \equiv \sum A_{k I} \delta \theta_{I} \quad(\neq 0), \tag{2.11.4c}\\
\delta q_{n+1} \equiv \delta q_{0} \equiv \delta \theta_{n+1} \equiv \delta \theta_{0} \equiv \delta t=0 \tag{2.11.4d}
\end{gather*}
$$

Velocity form:

$$
\begin{align*}
v_{k} & \equiv \sum A_{k I} \omega_{I}+A_{I} \quad(\neq 0) \tag{2.11.4e}\\
v_{n+1} \equiv v_{0} & \equiv \omega_{n+1} \equiv \omega_{0} \equiv d t / d t=1 \quad(\neq 0) \tag{2.11.4f}
\end{align*}
$$

and then these results are substituted back into (2.11.1a-c) and (2.11.3), they satisfy them identically. Other choices of θ 's and a 's are, of course, possible (see special forms/choices, below), but Hamel's choice (2.11.2) is the simplest and most natural, because then our Pfaffian constraints assume the simple and uncoupled form:

Kinematically admissible/possible form:

$$
\begin{equation*}
d \theta_{D}=0, \tag{2.11.5a}
\end{equation*}
$$

Virtual form:

$$
\begin{equation*}
\delta \theta_{D}=0, \tag{2.11.5b}
\end{equation*}
$$

Velocity form:

$$
\begin{equation*}
\omega_{D}=0 \tag{2.11.5c}
\end{equation*}
$$

and, as a result (already described in $\S 2.7$ and detailed in ch. 3), the equations of motion decouple into $n-m$ kinetic equations (no constraint forces) and m kinetostatic equations (constraint forces).

Constrained Particle Kinematics

In view of the constraints (2.11.5), the particle kinematical quantities (2.9.23-26) reduce to the following:

Kinematically admissible/possible displacement:

$$
\begin{equation*}
d \boldsymbol{r}=\sum \varepsilon_{I} d \theta_{I}+\varepsilon_{n+1} d t \equiv \sum \varepsilon_{I} d \theta_{I}+\varepsilon_{0} d t \tag{2.11.6a}
\end{equation*}
$$

Virtual displacement:

$$
\begin{equation*}
\delta \boldsymbol{r}=\sum \varepsilon_{I} \delta \theta_{I} \tag{2.11.6b}
\end{equation*}
$$

Velocity:

$$
\begin{equation*}
\boldsymbol{v}=\sum \varepsilon_{I} \omega_{I}+\varepsilon_{n+1} \equiv \sum \varepsilon_{I} \omega_{I}+\varepsilon_{0} \tag{2.11.6c}
\end{equation*}
$$

Acceleration:

$$
\begin{equation*}
\boldsymbol{a}=\sum \varepsilon_{I} \dot{\omega}_{I}+\text { terms not containing } \dot{\omega} . \tag{2.11.6d}
\end{equation*}
$$

Special Forms/Choices of Quasi Variables

1. Once we have chosen the equilibrium quasi variables $d \theta / \delta \theta / \omega$, we can move to any other such set $d \theta^{\prime} / \delta \theta^{\prime} / \omega^{\prime}$, defined via linear (invertible) transformations of the following type:

$$
\begin{gather*}
d \theta_{k^{\prime}} \equiv \sum a_{k^{\prime} k} d \theta_{k}+a_{k^{\prime}} d t=\sum a_{k^{\prime} I} d \theta_{I}+a_{k^{\prime}} d t \quad(\neq 0), \tag{2.11.7a}\\
d \theta_{(n+1)^{\prime}} \equiv d \theta_{n+1} \equiv d q_{n+1} \equiv d t \quad(\neq 0) \tag{2.11.7b}
\end{gather*}
$$

and, inversely $\left[\left(a_{k^{\prime} k}\right),\left(A_{k k^{\prime}}\right)\right.$: nonsingular matrices],

$$
\begin{equation*}
d \theta_{k} \equiv \sum A_{k k^{\prime}} d \theta_{k^{\prime}}+A_{k} d t \rightarrow d \theta_{D}=0 \quad \text { and } \quad d \theta_{I} \neq 0 \tag{2.11.7c}
\end{equation*}
$$

and similarly for $\delta \theta_{k^{\prime}}, \omega_{k^{\prime}}$.
2. If the Pfaffian nonholonomic constraints are given in the quasi-variable forms:

$$
\begin{equation*}
\sum a_{D^{\prime} k} d \theta_{k}+a_{D^{\prime}} d t=0, \quad \text { or } \quad \sum a_{D^{\prime} k} \delta \theta_{k}=0, \quad \text { or } \quad \sum a_{D^{\prime} k} \omega_{k}+a_{D^{\prime}}=0 \tag{2.11.8a}
\end{equation*}
$$

then, proceeding à la Hamel again, we may introduce new quasi variables by

$$
\begin{equation*}
d \theta_{D^{\prime}} \equiv \sum a_{D^{\prime} k} d \theta_{k}+a_{D^{\prime}} d t=0, \quad d \theta_{I^{\prime}} \equiv \sum a_{I^{\prime} k} d \theta_{k}+a_{I^{\prime}} d t \neq 0 \tag{2.11.8b}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta \theta_{D^{\prime}} \equiv \sum a_{D^{\prime} k} \delta \theta_{k}=0, \quad \delta \theta_{I^{\prime}} \equiv \sum a_{I^{\prime} k} \delta \theta_{k} \neq 0 \tag{2.11.8c}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega_{D^{\prime}} \equiv \sum a_{D^{\prime} k} \omega_{k}+a_{D^{\prime}}=0, \quad \omega_{I^{\prime}} \equiv \sum a_{I^{\prime} k} \omega_{k}+a_{I^{\prime}} \neq 0 \tag{2.11.8d}
\end{equation*}
$$

where, again, the coefficients $a_{I^{\prime} k}, a_{I^{\prime}}$ are arbitrary; but when (2.11.8b-d) are solved for the $d \theta / \delta \theta / \omega$ in terms of the $d \theta^{\prime} / \delta \theta^{\prime} / \omega^{\prime}$, and the results are substituted back into (2.11 .8 a), they satisfy them identically (see also their specialization in item 4, below).
3. Frequently, the Pfaffian constraints (2.11.1) are given, or can be easily brought to, the special form [recalling (2.6.9-11), and, using the notation $d q_{k} / d t \equiv v_{k}$]:

$$
\begin{equation*}
d q_{D}=\sum b_{D I} d q_{I}+b_{D} d t, \quad \text { or } \quad \delta q_{D}=\sum b_{D I} \delta q_{I}, \quad \text { or } \quad v_{D}=\sum b_{D I} v_{I}+b_{D} \tag{2.11.9}
\end{equation*}
$$

where the coefficients $b_{D I}, b_{D}$ are known functions of q and t; that is, the first m (or dependent) $d q_{D} / \delta q_{D} / v_{D}$ are expressed in terms of the last $n-m$ (independent) $d q_{I} / \delta q_{I} / v_{I}$. [In terms of the elements of the original $m \times n$ constraint matrix $\left(c_{D k}\right) \equiv\left(a_{D k}\right)$, we, clearly, have $\left(b_{D I}\right)=-\left(a_{D D^{\prime}}\right)^{-1}\left(a_{D I}\right)$, and so on. See also pr. 2.11.2.]

Now, the transformations (2.11.9) can be viewed as the following special choice of $d \theta / \delta \theta / \omega$:

$$
\begin{align*}
& d \theta_{D}=d q_{D}-\sum b_{D I} d q_{I}-b_{D} d t=0, \quad d \theta_{I} \equiv d q_{I} \neq 0, \quad d \theta_{n+1} \equiv d q_{n+1} \equiv d t \neq 0 ; \tag{2.11.10a}\\
& \tag{2.11.10b}\\
& \tag{2.11.10c}\\
& \hline(2.11 .10 \mathrm{a}) \\
& \delta \theta_{D} \equiv \delta q_{D}-\sum b_{D I} \delta q_{I}=0, \quad \delta \theta_{I} \equiv \delta q_{I} \neq 0, \quad \delta \theta_{n+1} \equiv \delta q_{n+1} \equiv \delta t=0 ; \\
& \\
& \\
& \\
& \omega_{D} \equiv v_{D}-\sum b_{D I} v_{I}-b_{D}=0, \quad \omega_{I} \equiv v_{I} \neq 0, \quad \omega_{n+1} \equiv v_{n+1} \equiv d t / d t=1 \neq 0 .
\end{align*}
$$

The above invert easily to

$$
d q_{D}=d \theta_{D}+\sum b_{D I} d \theta_{I}+b_{D} d t=\sum b_{D I} d \theta_{I}+b_{D} d t
$$

$$
\begin{align*}
& d q_{I}=d \theta_{I}, \quad d q_{n+1} \equiv d \theta_{n+1} \equiv d t \tag{2.11.11a}\\
& \delta q_{D}=\delta \theta_{D}+\sum b_{D I} \delta q_{I}=\sum b_{D I} \delta q_{I} \\
& \delta q_{I}=\delta \theta_{I}, \quad \delta q_{n+1} \equiv \delta \theta_{n+1} \equiv \delta t=0 \tag{2.11.11b}\\
& v_{D}=\omega_{D}+\sum b_{D I} \omega_{I}+b_{D}=\sum b_{D I} \omega_{I}+b_{D}, \\
& v_{I}=\omega_{I}, \quad v_{n+1} \equiv v_{0}=\omega_{n+1} \equiv \omega_{0}=d t / d t=1 \tag{2.11.11c}
\end{align*}
$$

Comparing $(2.11 .10,11)$ with $(2.11 .2,4)$ we readily conclude that, in this case, the (mutually inverse) transformation matrices a and \mathbf{A} [recalling (2.9.4a ff.)] have the following special forms:

$$
\mathbf{a}=\left(\begin{array}{cc|c}
\mathbf{1} & -\mathbf{b} & -\mathbf{b}_{\mathrm{n}+1} \tag{2.11.12}\\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right) \quad \mathbf{A}=\left(\begin{array}{cc|c}
\mathbf{1} & \mathbf{b} & \mathbf{b}_{\mathrm{n}+1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right)
$$

that is,

$$
\begin{align*}
& \mathbf{a}_{\mathrm{S}}=\left(\begin{array}{c|c}
\mathbf{1} & -\mathbf{b} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right) \quad \mathbf{a}_{\mathrm{T}}=\binom{-\mathbf{b}_{\mathrm{n}+1}}{\hline \mathbf{0}}, \tag{2.11.12a}\\
& \mathbf{A}_{\mathrm{S}}=\left(\begin{array}{c|c}
\mathbf{1} & \mathbf{b} \\
\hline \mathbf{0} & \mathbf{1}
\end{array}\right) \quad \mathbf{A}_{\mathrm{T}}=\binom{\mathbf{b}_{\mathrm{n}+1}}{\hline \mathbf{0}} ; \tag{2.11.12b}
\end{align*}
$$

where $\mathbf{b}=\left(b_{D I}\right), \mathbf{b}_{\mathrm{n}+1}=\left(b_{D, n+1} \equiv b_{D}\right)$; and, of course, satisfy the consistency relations (2.9.3a, b). For a slight generalization of the choice (2.11.10c), see pr. 2.11.2.

Particle Kinematics

In this case, the particle kinematical quantities [recalling (2.5.2 ff.) and (2.11.6a ff.), and that $\left.\boldsymbol{e}_{n+1} \equiv \boldsymbol{e}_{0} \equiv \partial \boldsymbol{r} / \partial t\right]$ specialize to

$$
\begin{align*}
d \boldsymbol{r} & =\sum \boldsymbol{e}_{k} d q_{k}+\boldsymbol{e}_{n+1} d t=\sum \boldsymbol{e}_{D} d q_{D}+\sum \boldsymbol{e}_{I} d q_{I}+\boldsymbol{e}_{n+1} d t \\
& =\sum \boldsymbol{e}_{D}\left(\sum b_{D I} d q_{I}+b_{D} d t\right)+\sum \boldsymbol{e}_{I} d q_{I}+\boldsymbol{e}_{n+1} d t \\
& \equiv \sum \boldsymbol{\beta}_{I} d q_{I}+\boldsymbol{\beta}_{n+1} d t \equiv \sum \boldsymbol{\beta}_{I} d q_{I}+\boldsymbol{\beta}_{0} d t \tag{2.11.13a}\\
\delta \boldsymbol{r} & =\cdots=\sum \boldsymbol{\beta}_{I} \delta q_{I} \tag{2.11.13b}\\
\boldsymbol{v} & =\sum \boldsymbol{\beta}_{I} v_{I}+\boldsymbol{\beta}_{n+1}=\boldsymbol{v}\left(t, q, v_{I}\right) \equiv \boldsymbol{v}_{o} \tag{2.11.13c}\\
\boldsymbol{a} & =\sum \boldsymbol{\beta}_{I} \dot{v}_{I}+\text { terms not containing } \dot{v}_{I}=\boldsymbol{a}\left(t, q, v_{I}, \dot{v}_{I}\right) \equiv \boldsymbol{a}_{o} \tag{2.11.13d}
\end{align*}
$$

where $\left(\varepsilon_{I} \rightarrow \boldsymbol{\beta}_{I}\right)$:

$$
\begin{equation*}
\boldsymbol{\beta}_{I} \equiv \boldsymbol{e}_{I}+\sum b_{D I} \boldsymbol{e}_{D}, \quad \boldsymbol{\beta}_{n+1} \equiv \boldsymbol{\beta}_{0} \equiv \boldsymbol{e}_{n+1}+\sum b_{D} \boldsymbol{e}_{D} \equiv \boldsymbol{e}_{0}+\sum b_{D} \boldsymbol{e}_{D} \tag{2.11.13e}
\end{equation*}
$$

REMARK

It should be pointed out that under the quasi-variable choice (2.11.9), and, according to an unorthodox yet internally consistent interpretation [advanced, mainly, by Ukrainian/Soviet/Russian authors, like Suslov, Voronets, Rumiantsev; and at odds with the earlier statement (\$2.9) that the q 's are always holonomic coordinates], the q_{I}, and hence also the q_{D}, are no longer genuine \equiv holonomic coordinates, but have instead become quasi-, or nonholonomic coordinates; even though one could not tell that very well from their notation. To avoid errors in this slippery terrain, some authors have introduced the particular notation (q) (Johnsen, 1939); we shall use it occasionally, for extra clarity. Thus, specializing (2.9.27), while recalling the first of (2.11.12b), we can write

$$
\begin{align*}
\partial \boldsymbol{r} / \partial\left(q_{I}\right) & \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(\partial v_{k} / \partial v_{I}\right) \\
& =\sum\left(\partial \boldsymbol{r} / \partial q_{D}\right)\left(\partial v_{D} / \partial v_{I}\right)+\sum\left(\partial \boldsymbol{r} / \partial q_{I^{\prime}}\right)\left(\partial v_{I^{\prime}} / \partial v_{I}\right) \\
& =\partial \boldsymbol{r} / \partial q_{I}+\sum b_{D I}\left(\partial \boldsymbol{r} / \partial q_{D}\right)=\sum A_{D I} \boldsymbol{e}_{D}+\sum A_{I^{\prime} I} \boldsymbol{e}_{I^{\prime}} \\
& =\sum b_{D I} \boldsymbol{e}_{D}+\sum \delta_{I^{\prime} \boldsymbol{I}} \boldsymbol{e}_{I^{\prime}}=\sum b_{D I} \boldsymbol{e}_{D}+\boldsymbol{e}_{I} \equiv \boldsymbol{\beta}_{I} \tag{2.11.14a}
\end{align*}
$$

and analogously for $\boldsymbol{\beta}_{n+1} \equiv \boldsymbol{\beta}_{0}$. Similarly, with the helpful notation [(2.11.13c)]: $\boldsymbol{v}=\boldsymbol{v}(t, q, v)=\cdots=\boldsymbol{v}_{o}\left(t, q, v_{I}\right) \equiv \boldsymbol{v}_{o}$, chain rule, and recalling (2.11.9), we obtain

$$
\begin{equation*}
\partial \boldsymbol{v}_{o} / \partial v_{I} \equiv \partial \boldsymbol{v} / \partial v_{I}+\sum\left(\partial \boldsymbol{v} / \partial v_{D}\right)\left(\partial v_{D} / \partial v_{I}\right)=\boldsymbol{e}_{I}+\sum \boldsymbol{e}_{D} b_{D I}=\boldsymbol{\beta}_{I} \tag{2.11.14b}
\end{equation*}
$$

that is, the fundamental identities (2.9.33) specialize to

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial\left(q_{I}\right)=\partial \boldsymbol{v}_{o} / \partial v_{I}=\partial \boldsymbol{a}_{o} / \partial \dot{v}_{I}=\cdots=\boldsymbol{\beta}_{I}=\boldsymbol{\beta}_{I}(t, q) \tag{2.11.14c}
\end{equation*}
$$

[not to be confused with the analogous holonomic identities (2.5.7, 7a)].
Equation (2.11.14a) gives rise to the special symbolic quasi chain rule (see also chap. 5):

$$
\begin{align*}
\partial \ldots / \partial\left(q_{I}\right) & \equiv \sum\left(\partial \ldots / \partial q_{k}\right)\left(\partial v_{k} / \partial v_{I}\right) \\
& =\sum\left(\partial \ldots / \partial q_{D}\right)\left(\partial v_{D} / \partial v_{I}\right)+\sum\left(\partial \ldots / \partial q_{I^{\prime}}\right)\left(\partial v_{I^{\prime}} / \partial v_{I}\right) \\
& =\partial \ldots / \partial q_{I}+\sum b_{D I}\left(\partial \ldots / \partial q_{D}\right) \tag{2.11.15a}
\end{align*}
$$

which, when applied to v_{D}, yields

$$
\begin{align*}
\partial v_{D} / \partial\left(q_{I}\right) & \equiv \sum\left(\partial v_{D} / \partial q_{D^{\prime}}\right)\left(\partial v_{D^{\prime}} / \partial v_{I}\right)+\sum\left(\partial v_{D} / \partial q_{I^{\prime}}\right)\left(\partial v_{I^{\prime}} / \partial v_{I}\right) \\
& =\partial v_{D} / \partial q_{I}+\sum b_{D^{\prime} I}\left(\partial v_{D} / \partial q_{D^{\prime}}\right) \tag{2.11.15b}
\end{align*}
$$

Generally, applying chain rule to

$$
\begin{equation*}
f=f(t, q, v)=f\left[t, q, v_{D}\left(t, q, v_{I}\right), v_{I}\right] \equiv f_{o}\left(t, q, v_{I}\right)=f_{o} \tag{2.11.15c}
\end{equation*}
$$

we obtain the useful formulae

$$
\begin{equation*}
\partial f_{o} / \partial v_{I}=\partial f / \partial v_{I}+\sum\left(\partial f / \partial v_{D}\right)\left(\partial v_{D} / \partial v_{I}\right)=\partial f / \partial v_{I}+\sum b_{D I}\left(\partial f / \partial v_{D}\right) \tag{2.11.15d}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial f_{o} / \partial q_{I}=\partial f / \partial q_{I}+\sum\left(\partial f / \partial v_{D}\right)\left(\partial v_{D} / \partial q_{I}\right) \tag{2.11.15e}
\end{equation*}
$$

while $(2.11 .15 \mathrm{a}, \mathrm{b})$ are seen as specializations of

$$
\begin{align*}
\partial f_{o} / \partial\left(q_{I}\right) & \equiv \partial f_{o} / \partial q_{I}+\sum\left(\partial f_{o} / \partial q_{D}\right)\left(\partial v_{D} / \partial v_{I}\right) \\
& \equiv \partial f_{o} / \partial q_{I}+\sum b_{D I}\left(\partial f_{o} / \partial q_{D}\right) \quad \text { [notation, not chain rule!]. } \tag{2.11.15f}
\end{align*}
$$

Problem 2.11.1 With the help of the above symbolic identities [recall (2.11.12 ff.)] show that:

$$
\begin{align*}
& \partial q_{k} / \partial \theta_{l} \equiv \partial v_{k} / \partial \omega_{l} \rightarrow \partial q_{k} / \partial\left(q_{l}\right): \tag{i}\\
& \partial q_{D} / \partial\left(q_{D^{\prime}}\right)=A_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad \partial q_{D} / \partial\left(q_{I}\right)=A_{D I}=b_{D I}, \quad \partial q_{I} / \partial\left(q_{D}\right)=A_{I D}=0 \\
& \partial q_{I} / \partial\left(q_{I^{\prime}}\right)=A_{I I^{\prime}}=\delta_{I I^{\prime}} . \tag{a}
\end{align*}
$$

(ii) $\quad \partial \theta_{k} / \partial q_{l} \equiv \partial \omega_{k} / \partial v_{l} \rightarrow \partial\left(q_{k}\right) / \partial q_{l}$:

$$
\begin{array}{ll}
\partial\left(q_{D}\right) / \partial q_{D^{\prime}}=a_{D D^{\prime}}=\delta_{D D^{\prime}}, & \partial\left(q_{D}\right) / \partial q_{I}=a_{D I}=-b_{D I}, \\
\left.\partial\left(q_{I}\right) / \partial q_{I^{\prime}}=a_{I I^{\prime}}\right) / \partial q_{D}=\delta_{I D}=0, \tag{b}
\end{array}
$$

[Notice that $\partial q_{D} / \partial\left(q_{I}\right)=b_{D I} \neq \partial\left(q_{D}\right) / \partial q_{I}=-b_{D I}$.]
(iii) $\quad \partial \ldots / \partial \theta_{n+1} \rightarrow \partial \ldots / \partial\left(q_{n+1}\right)\left[\right.$ recall (2.9.32 ff.), and since $\left.A_{k, n+1} \equiv A_{k}\right]$

$$
\begin{align*}
& =\sum A_{k}\left(\partial \ldots / \partial q_{k}\right)+\partial \ldots / \partial t \\
& =\sum A_{D}\left(\partial \ldots / \partial q_{D}\right)+\sum A_{I}\left(\partial \ldots / \partial q_{I}\right)+\partial \ldots / \partial t \\
& =\sum b_{D}\left(\partial \ldots / \partial q_{D}\right)+0+\partial \ldots / \partial t \equiv \partial \ldots / \partial(t)+\partial \ldots / \partial t \tag{c}
\end{align*}
$$

which for \boldsymbol{r} yields the earlier (2.11.13e).
(iv) $\quad \partial \boldsymbol{r} / \partial\left(q_{D}\right) \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(\partial v_{k} / \partial v_{D}\right)=\sum \boldsymbol{e}_{k} A_{k D}=\cdots=\partial \boldsymbol{r} / \partial q_{D}$,

$$
\begin{equation*}
\text { i.e., } \boldsymbol{\beta}_{D}=\boldsymbol{e}_{D} \text {. } \tag{d}
\end{equation*}
$$

(v) $\quad \partial \boldsymbol{\beta}_{I} /\left(q_{I^{\prime}}\right) \neq \partial \boldsymbol{\beta}_{I^{\prime}} / \partial\left(q_{I}\right)$;
which is a specialization of (2.10.23), and shows clearly that the basis $\left\{\boldsymbol{\beta}_{I}\right\}$ is nongradient.
4. Occasionally, the constraints appear in the (2.11.9)-like form, but in the quasi variables $d \theta / \delta \theta / \omega$ [special case of (2.11.8a)]:

$$
\begin{equation*}
d \theta_{D}=\sum B_{D I} d \theta_{I}+B_{D} d t ; \quad \text { or } \quad \delta \theta_{D}=\sum B_{D I} \delta \theta_{I} ; \quad \text { or } \quad \omega_{D}=\sum B_{D I} \omega_{I}+B_{D} \tag{2.11.16}
\end{equation*}
$$

where the coefficients $B_{D I}, B_{D}$ are known functions of q and t.
To uncouple them, proceeding as before, we introduce the following new equilibrium quasi variables $d \theta^{\prime} / \delta \theta^{\prime} / \omega^{\prime}$ (to avoid accented indices, we accent the quasi variables themselves):

$$
\begin{equation*}
d \theta_{D}^{\prime} \equiv d \theta_{D}-\sum B_{D I} d \theta_{I}-B_{D} d t=0, d \theta_{I}^{\prime} \equiv d \theta_{I} \neq 0, d \theta_{n+1}^{\prime} \equiv d \theta_{n+1} \equiv d t \neq 0 \tag{2.11.17a}
\end{equation*}
$$

$\delta \theta^{\prime}{ }_{D} \equiv \delta \theta_{D}-\sum B_{D I} \delta \theta_{I}=0, \quad \delta \theta^{\prime}{ }_{I} \equiv \delta \theta_{I} \neq 0, \quad \delta \theta^{\prime}{ }_{n+1} \equiv \delta \theta_{n+1} \equiv \delta t=0 ;$
$\omega_{D}^{\prime} \equiv \omega_{D}-\sum B_{D I} \omega_{I}-B_{D}=0, \quad \omega^{\prime}{ }_{I} \equiv \omega_{I} \neq 0, \quad \omega_{n+1}^{\prime} \equiv \omega_{n+1} \equiv d t / d t=1 \neq 0 ;$
which invert easily to

$$
\begin{align*}
& d \theta_{D}=d \theta^{\prime}{ }_{D}+\sum B_{D I} d \theta_{I}^{\prime}+B_{D} d t=\sum B_{D I} d \theta_{I}^{\prime}+B_{D} d t, \\
& d \theta_{I}=d \theta^{\prime}{ }_{I}, \quad d \theta_{n+1} \equiv d \theta^{\prime}{ }_{n+1} \equiv d t \tag{2.11.18a}\\
& \delta \theta_{D}=\delta \theta^{\prime}{ }_{D}+\sum B_{D I} \delta \theta^{\prime}{ }_{I}=\sum B_{D I} \delta \theta^{\prime}{ }_{I}, \\
& \delta \theta_{I}=\delta \theta_{I}^{\prime}, \quad \delta \theta_{n+1} \equiv \delta \theta^{\prime}{ }_{n+1} \equiv \delta t=0 \tag{2.11.18b}\\
& \omega_{D}=\omega^{\prime}{ }_{D}+\sum B_{D I} \omega^{\prime}{ }_{I}+B_{D}=\sum B_{D I} \omega^{\prime}{ }_{I}+B_{D}, \\
& \omega_{I}=\omega^{\prime}{ }_{I}, \quad \omega_{n+1}=\omega^{\prime}{ }_{n+1}=d t / d t=1 . \tag{2.11.18c}
\end{align*}
$$

Clearly, (2.11.16)-(2.11.18) bear the same formal relation to (2.11.8a) that (2.11.9)-(2.11.11) bear to (2.11.2)-(2.11.4).

In sum, the possibilities are endless and, in practice, they are dictated by the specific features and needs of the problem at hand. The essential point in all these descriptions is that, ultimately, they express the $n d q / \delta q / v$ in terms of $n-m$ independent parameters $d \theta_{I} / \delta \theta_{I} / \omega_{I}$; and if the nonholonomic constraints are in coupled form, either among the $d q / \delta q / v$ or among another set of n quasi variables $d \theta / \delta \theta / \omega$ then, following Hamel, we introduce new equilibrium quasi variables $d \theta^{\prime} / \delta \theta^{\prime} / \omega^{\prime}$ such that $d \theta_{D}^{\prime} / \delta \theta_{D}^{\prime} / \omega_{D}^{\prime}=0$ and $d \theta_{I}^{\prime} / \delta \theta_{I}^{\prime} / \omega_{I}^{\prime} \neq 0$. And, as already stated, this uncoupling of the Pfaffian constraints is the main advantage of the method.

Problem 2.11.2 Consider the homogeneous Pfaffian constraints,

$$
\begin{align*}
& \omega_{D}=\sum a_{D k} v_{k}=\sum a_{D D^{\prime}} v_{D^{\prime}}+\sum a_{D I^{\prime}} v_{I^{\prime}} \quad(=0) \tag{a}\\
& \omega_{I}=v_{I}=\sum \delta_{I D^{\prime}} v_{D^{\prime}}+\sum \delta_{I I^{\prime}} v_{I^{\prime}} \quad\left(=\sum a_{I k} v_{k} \neq 0\right) \tag{b}
\end{align*}
$$

where $D, D^{\prime}=1, \ldots, m ; I, I^{\prime}=m+1, \ldots, n$; that is, (with some easily understood notations)

$$
\mathbf{a} \Rightarrow \mathbf{a}_{\mathrm{S}}=\left(a_{k l}\right) \equiv\left(\begin{array}{cc}
\left(a_{D D^{\prime}}\right) & \left(a_{D I^{\prime}}\right) \tag{c}\\
\left(a_{I D^{\prime}}\right) & \left(a_{I I^{\prime}}\right)
\end{array}\right)=\left(\begin{array}{cc}
\left(a_{D D^{\prime}}\right) & \left(a_{D I^{\prime}}\right) \\
\left(0_{I D^{\prime}}\right) & \left(\delta_{I I^{\prime}}\right)
\end{array}\right) .
$$

(i) Verify that its inverse (assuming that \mathbf{a} is nonsingular) equals

$$
\mathbf{A} \Rightarrow \mathbf{A}_{\mathrm{S}}=\left(A_{k l}\right) \equiv\left(\begin{array}{cc}
\left(A_{D D^{\prime}}\right) & \left(A_{D I^{\prime}}\right) \tag{d}\\
\left(A_{I D^{\prime}}\right) & \left(A_{I I^{\prime}}\right)
\end{array}\right)=\left(\begin{array}{cc}
\left(a_{D D^{\prime}}\right)^{-1} & -\left(a_{D D^{\prime}}\right)^{-1}\left(a_{D^{\prime} I^{\prime}}\right) \\
\left(0_{I D^{\prime}}\right) & \left(\delta_{I I^{\prime}}\right)
\end{array}\right)
$$

(ii) Extend the above to the nonhomogeneous case; that is, $\omega_{D}=\sum a_{D k} v_{k}+a_{D}(=0)$, $\omega_{I}=v_{I}(\neq 0)$.
(iii) Verify that the earlier particular choice (2.11.9 ff.) is a specialization of the above.

Geometrical Interpretation of Constraints

(May be omitted in a first reading.) We begin by partitioning the mutually inverse $n \times n$ matrices of the virtual transformation between $\delta q \leftrightarrow \delta \theta, \mathbf{a}_{\mathrm{S}}=\left(a_{k l}\right)$ and $\mathbf{A}_{\mathrm{S}}=\left(A_{k l}\right)$, into their dependent and independent parts:

$$
\begin{gather*}
\mathbf{a}_{\mathrm{S}}=\binom{\mathbf{a}_{\mathrm{D}}}{\mathbf{a}_{\mathrm{I}}}=\binom{a_{D k}}{a_{I k}}, \tag{2.11.19a}\\
\mathbf{A}_{\mathrm{S}}=\left(\mathbf{A}_{\mathrm{D}} \mid \mathbf{A}_{\mathrm{I}}\right)=\left(A_{k D} \mid A_{k I}\right) . \tag{2.11.19b}
\end{gather*}
$$

Clearly,

$$
\mathbf{a}_{\mathrm{S}} \mathbf{A}_{\mathrm{S}}=\left(\begin{array}{cc}
\mathbf{a}_{\mathrm{D}} \mathbf{A}_{\mathrm{D}} & \mathbf{a}_{\mathrm{D}} \mathbf{A}_{\mathrm{I}} \tag{2.11.19c}\\
\mathbf{a}_{\mathrm{I}} \mathbf{A}_{\mathrm{D}} & \mathbf{a}_{\mathrm{I}} \mathbf{A}_{\mathrm{I}}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right)
$$

Next, we partition these submatrices in terms of their dependent and independent (column) vectors as follows [with $(\ldots)^{\mathrm{T}} \equiv$ transpose of (\ldots), and using strict matrix notation for vectors and their dot products, instead of the customary vector notation used before and after this subsection]:

$$
\begin{align*}
& \mathbf{a}_{\mathrm{D}}=\left(\begin{array}{c}
\boldsymbol{a}_{1}{ }^{\mathrm{T}} \\
\cdots \\
\boldsymbol{a}_{m}^{\mathrm{T}}
\end{array}\right), \quad \mathbf{a}_{\mathrm{D}}{ }^{\mathrm{T}}=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right), \quad \boldsymbol{a}_{D}^{\mathrm{T}}=\left(a_{D 1}, \ldots a_{D n}\right), \tag{2.11.20a}\\
& \mathbf{a}_{\mathrm{I}}=\left(\begin{array}{c}
\boldsymbol{a}_{m+1}{ }^{\mathrm{T}} \\
\cdots \\
\boldsymbol{a}_{n}{ }^{\mathrm{T}}
\end{array}\right), \quad \mathbf{a}_{\mathrm{I}}{ }^{\mathrm{T}}=\left(\boldsymbol{a}_{m+1}, \ldots, \boldsymbol{a}_{n}\right), \quad \boldsymbol{a}_{I}{ }^{\mathrm{T}}=\left(a_{I 1}, \ldots a_{I n}\right), \tag{2.11.20b}
\end{align*}
$$

$$
\begin{align*}
& \mathbf{A}_{\mathrm{D}}=\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{m}\right), \quad \mathbf{A}_{\mathrm{D}}^{\mathrm{T}}=\left(\begin{array}{c}
\boldsymbol{A}_{1}^{\mathrm{T}} \\
\ldots \\
\boldsymbol{A}_{m}^{\mathrm{T}}
\end{array}\right), \quad \boldsymbol{A}_{D}^{\mathrm{T}}=\left(A_{1 D}, \ldots, A_{n D}\right), \tag{2.11.20c}\\
& \mathbf{A}_{\mathrm{I}}=\left(\boldsymbol{A}_{m+1}, \ldots, \boldsymbol{A}_{n}\right), \quad \mathbf{A}_{\mathrm{I}}^{\mathrm{T}}=\left(\begin{array}{c}
\boldsymbol{A}_{m+1}{ }^{\mathrm{T}} \\
\cdots \\
\boldsymbol{A}_{n}^{\mathrm{T}}
\end{array}\right), \quad \boldsymbol{A}_{I}{ }^{\mathrm{T}}=\left(A_{1 I}, \ldots, A_{n I}\right), \tag{2.11.20d}
\end{align*}
$$

Also, since $\left(\mathbf{a}_{D} \cdot \mathbf{a}_{D}{ }^{T}\right)^{-1} \cdot\left(\mathbf{a}_{D} \cdot \mathbf{a}_{D}{ }^{\mathrm{T}}\right)=\mathbf{1}$ and $\mathbf{A}_{D}{ }^{\mathrm{T}} \cdot \mathbf{a}_{\mathrm{D}}{ }^{\mathrm{T}}=\mathbf{1}$, it follows that

$$
\begin{equation*}
\mathbf{A}_{\mathrm{D}}^{\mathrm{T}}=\left(\mathbf{a}_{\mathrm{D}} \cdot \mathbf{a}_{\mathrm{D}}{ }^{\mathrm{T}}\right)^{-1} \cdot \mathbf{a}_{\mathrm{D}} . \tag{2.11.20e}
\end{equation*}
$$

Now, in linear algebra terms, the virtual form of the constraint equations

$$
\begin{equation*}
\sum a_{D k} \delta q_{k}=0 \quad\left[\operatorname{rank}\left(a_{D k}\right)=m(<n)\right], \tag{2.11.21a}
\end{equation*}
$$

[we note, in passing, that $\left.\operatorname{rank}\left(a_{D k}\right)_{m \times n}=\operatorname{rank}\left(a_{D k} \mid a_{D}\right)_{[m \times(n+1)]}\right]$ or, in the aboveintroduced matrix notation,

$$
\begin{equation*}
\left.\mathbf{a}_{\mathrm{D}} \cdot \delta \boldsymbol{q}=\mathbf{0} \text { (one matrix eq. }\right), \quad \boldsymbol{a}_{D}{ }^{T} \cdot \delta \boldsymbol{q}=0[m \text { vector (dot product) eqs. }], \tag{2.11.21b}
\end{equation*}
$$

state that every virtual displacement (column) vector $\delta \boldsymbol{q}^{T}=\left(\delta q_{1}, \ldots, \delta q_{n}\right)$, at the point (q, t), lies on the local $(n-m)$-dimensional tangent/null/virtual plane of the (virtual form of the) constraint matrix $\mathbf{a}_{\mathrm{D}}=\left(a_{D k}\right), T_{n-m}(P) \equiv V_{n-m}(P) \equiv V_{n-m} \quad$ (§2.7, suppressing the point dependence); or, equivalently, that $\delta \boldsymbol{q}$ is always orthogonal to the local m-dimensional range space/constraint plane of $\mathbf{a}_{\mathrm{D}}{ }^{\mathrm{T}}, C_{m}(P) \equiv C_{m}$ (which is orthogonally complementary to V_{n-m}).

Next, in view of our quasi-variable choice, that is, $\delta \boldsymbol{q}=\mathbf{A}_{\mathrm{I}} \cdot \delta \boldsymbol{\theta}_{I}$, where $\delta \boldsymbol{\theta}_{I}^{T}=\left(\delta \theta_{m+1}, \ldots, \delta \theta_{n}\right)$, the $(n-m)$ vectors $\left(\boldsymbol{A}_{m+1}, \ldots, \boldsymbol{A}_{n}\right) \equiv\left\{\boldsymbol{A}_{I}\right\}$ constitute a basis for V_{n-m}; while the m constraint vectors $\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right) \equiv\left\{\boldsymbol{a}_{D}\right\}$ constitute a basis for C_{m}. Or, all $\left(\delta q_{k}\right)$ satisfying (2.11.21a, b), at (q, t), form a local vector space V_{n-m}, which is orthogonal to the local vector space C_{m} built (spanned) by the m constraint vectors $\boldsymbol{a}_{D}{ }^{T}=\left(a_{D 1}, \ldots, a_{D n}\right)$.

More precisely, expressing (2.9.3a, b) in the above matrix/vector notation, we have

$$
\begin{gather*}
\sum a_{I k} A_{k I^{\prime}}=\boldsymbol{a}_{I}^{T} \cdot \boldsymbol{A}_{I^{\prime}}=\delta_{I I^{\prime}} \quad\left(I, I^{\prime}=m+1, \ldots, n\right), \tag{i}\\
\text { or } \quad \mathbf{a}_{\mathrm{I}} \cdot \mathbf{A}_{\mathrm{I}}=\mathbf{1}, \quad \text { or } \quad \mathbf{A}_{\mathrm{I}}^{\mathrm{T}} \cdot \mathbf{a}_{\mathrm{I}}^{\mathrm{T}}=\mathbf{1} \tag{2.11.22a}
\end{gather*}
$$

that is, the columns of $\mathbf{a}_{I}{ }^{\mathrm{T}}$ and \mathbf{A}_{I}, or the rows of \mathbf{a}_{I} and $\mathbf{A}_{\mathrm{I}}{ }^{\mathrm{T}}$, namely, the vectors $\left\{\boldsymbol{a}_{I}\right\}$ and $\left\{\boldsymbol{A}_{I}\right\}$, are mutually dual, or reciprocal, bases of V_{n-m}; and

$$
\begin{align*}
& \sum a_{D k} A_{k D^{\prime}}=\boldsymbol{a}_{D}^{T} \cdot \boldsymbol{A}_{D^{\prime}}=\delta_{D D^{\prime}}\left(D, D^{\prime}=1, \ldots, m\right), \tag{ii}\\
& \text { or } \quad \mathbf{a}_{\mathrm{D}} \cdot \mathbf{A}_{\mathrm{D}}=\mathbf{1}, \quad \text { or } \quad{\mathbf{\mathbf { A } _ { \mathrm { D } }}}^{\mathrm{T}} \cdot \mathbf{a}_{\mathrm{D}}^{\mathrm{T}}=\mathbf{1} ; \tag{2.11.22c}
\end{align*}
$$

that is, the columns of $\mathbf{a}_{D}{ }^{\mathrm{T}}$ and \mathbf{A}_{D}, or the rows of \mathbf{a}_{D} and $\mathbf{A}_{D}{ }^{\mathrm{T}}$, namely, the vectors $\left\{\boldsymbol{a}_{D}\right\}$ and $\left\{\boldsymbol{A}_{D}\right\}$, are mutually dual bases of C_{m}. Clearly, if the $\left\{\boldsymbol{a}_{D}\right\}$ are orthonormal, so are the $\left\{\boldsymbol{A}_{D}\right\}$, and the two bases coincide; and similarly for the bases $\left\{\boldsymbol{a}_{I}\right\},\left\{\boldsymbol{A}_{I}\right\}$.

Likewise, from (2.9.3a, b) we obtain

$$
\begin{gather*}
\sum a_{D k} A_{k I}=\boldsymbol{a}_{D}{ }^{T} \cdot \boldsymbol{A}_{I}=\delta_{D I}=0 \quad(D=1, \ldots, m ; I=m+1, \ldots, n), \tag{iii}\\
\text { or } \quad \mathbf{a}_{\mathrm{D}} \cdot \mathbf{A}_{\mathrm{I}}=\mathbf{0}, \quad \text { or } \quad \mathbf{A}_{\mathrm{I}}^{\mathrm{T}} \cdot \mathbf{a}_{\mathrm{D}}{ }^{\mathrm{T}}=\mathbf{0} ; \tag{2.11.22e}
\end{gather*}
$$

that is, the vectors $\left\{\boldsymbol{a}_{D}\right\}$ and $\left\{\boldsymbol{A}_{I}\right\}$ are mutually orthogonal.

$$
\begin{gather*}
\sum a_{I k} A_{k D}=\boldsymbol{a}_{I}^{T} \cdot \boldsymbol{A}_{D}=\delta_{I D}=0 \quad(I=m+1, \ldots, n ; D=1, \ldots, m), \tag{iv}\\
\text { or } \quad \mathbf{a}_{\mathrm{I}} \cdot \mathbf{A}_{\mathrm{D}}=\mathbf{0}, \quad \text { or } \quad \mathbf{A}_{\mathrm{D}}{ }^{\mathrm{T}} \cdot \mathbf{a}_{\mathrm{I}}^{\mathrm{T}}=\mathbf{0} . \tag{2.11.22~g}
\end{gather*}
$$

that is, the vectors $\left\{\boldsymbol{a}_{I}\right\}$ and $\left\{\boldsymbol{A}_{D}\right\}$ are mutually orthogonal. Equations (2.11.22f) and (2.11.22h) state, in linear algebra terms, that the "virtual displacement matrix" \mathbf{A}_{I} is the orthogonal complement of the "constraint matrix" \mathbf{a}_{D}.
[Hence, the projections of an arbitrary system vector $\boldsymbol{M}=\left(M_{1}, \ldots, M_{n}\right)$ on the local mutually orthogonal (complementary) subspaces V_{n-m} and C_{m}, are, respectively,

Null/Virtual space projection P . . (. . .):

$$
\begin{equation*}
\sum A_{k I} M_{k}=\left(\mathbf{A}_{\mathrm{I}}^{\mathrm{T}} \cdot \boldsymbol{M}\right)_{I}=\boldsymbol{A}_{I}^{T} \cdot \boldsymbol{M} \equiv M_{I} \equiv P_{N(\mathrm{Null})}(\boldsymbol{M}) \equiv P_{V(\mathrm{Virtual})}(\boldsymbol{M}) \tag{2.11.23a}
\end{equation*}
$$

Range/constraint space projection $P \ldots(\cdots)$:

$$
\begin{equation*}
\left.\sum A_{k D} M_{k}=\left(\mathbf{A}_{\mathrm{D}}^{\mathrm{T}} \cdot \boldsymbol{M}\right)_{D}=\boldsymbol{A}_{D}^{T} \cdot \boldsymbol{M} \equiv M_{D} \equiv P_{R(\text { Range })}(\boldsymbol{M}) \equiv P_{C(\text { Constraint })}(\boldsymbol{M}) \cdot\right] \tag{2.11.23b}
\end{equation*}
$$

The above hold, locally at least, for any velocity constraints, be they holonomic or nonholonomic. However: (a) If the constraints are nonholonomic, the corresponding null and range spaces are only local; at each admissible point of the system's constrained configuration (or event) space; but (b) If they are holonomic, then these spaces become global; that is, the hitherto n-dimensional configuration space is replaced by a new "smaller" such space described by $n-m$ Lagrangean coordinates, as detailed in $\S 2.4$ and $\S 2.7$.

Tensorial Hors d'Oeuvre

These projection ideas, originated by G. A. Maggi (1890s) and elaborated, via tensors, by J. L. Synge, G. Vranceanu, V. V. Vagner, G. Prange, G. Ferrarese, P. Maißer, N. N. Poliahov et al. (1920s-1980s), are very useful in interpreting the general problem of AM [i.e., of decoupling its equations of constrained motion into those containing the forces resulting from these constraints and those not containing these forces], in terms of simple geometrical pictures of the motion of a single "particle" in a generalized system space. They have become quite popular among multibody dynamicists, in recent decades; but, predominantly as exercises in linear
algebra/matrix manipulations, that is, without the geometrical understanding and insight resulting from the full use of general tensors.

To show the advantages of the powerful tensorial indicial notation, over the noncommutative straightjacket of matrices, we summarize below some of the above results. With the help of the summation convention [over pairs of indices, one up and one down, from 1 to n; and where, here, capital indices (accented and/ or unaccented), signify nonholonomic components], we have the following:
(a) Equations $(2.11 .21 \mathrm{a}, \mathrm{b})$, and their inverses:

$$
\begin{equation*}
\delta \theta^{D} \equiv a^{D}{ }_{k} \delta q^{k}=0, \quad \delta q^{k}=A^{k}{ }_{I} \delta \theta^{I} \tag{2.11.24a}
\end{equation*}
$$

(b) Equations (2.11.22a, b):

$$
\begin{equation*}
a_{k}^{I} A_{I^{\prime}}^{k}=\delta_{I^{\prime}}^{I} \tag{2.11.24b}
\end{equation*}
$$

(c) Equations ($2.11 .22 \mathrm{c}, \mathrm{d}$):

$$
\begin{equation*}
a^{D}{ }_{k} A^{k}{ }_{D^{\prime}}=\delta^{D}{ }_{D^{\prime}}, \tag{2.11.24c}
\end{equation*}
$$

(d) Equations (2.11.23a):

$$
\begin{equation*}
P_{V}(\boldsymbol{M}) \equiv A_{I}^{k} M_{k}=M_{I}, \tag{2.11.24d}
\end{equation*}
$$

(e) Equations (2.11.23b):

$$
\begin{equation*}
P_{C}(\boldsymbol{M}) \equiv A_{D}^{k} M_{k}=M_{D} \tag{2.11.24e}
\end{equation*}
$$

The summation convention explains why, in order to project the (covariant) M_{k}, above, we dot them with A_{I}^{k} and A_{D}^{k}, instead of $a_{k}^{I}, a^{D}{ }_{k}$, respectively. [Briefly, the $\boldsymbol{a}^{I}\left(\boldsymbol{A}_{I}\right)$ build a nonholonomic contravariant (covariant) basis in V_{n-m}, while the $\boldsymbol{a}^{D}\left(\boldsymbol{A}_{D}\right)$ build a nonholonomic contravariant (covariant) basis in C_{m}.]

Last, a higher level of tensorial formalism may be achieved, if, as described briefly in (2.10 .17 c), we use accented (unaccented) indices to denote nonholonomic (holonomic) components; for example, successively: $a_{k l} \rightarrow a_{l}^{k} \rightarrow A^{k^{\prime}}{ }_{k}, A_{k l} \rightarrow A_{l}^{k} \rightarrow A_{k^{\prime}}^{k}$; so that $\mathbf{a} \cdot \mathbf{A}=\mathbf{1}$ reads $A^{k^{\prime}}{ }_{k} A^{k}{ }_{l^{\prime}}=\delta^{k^{\prime}}{ }_{l^{\prime}}$, and similarly for the other equations. For further details on tensorial nonholonomic dynamics, see, for example, Papastavridis (1999) and references cited therein.

2.12 CONSTRAINED TRANSITIVITY EQUATIONS, AND HAMEL'S FORM OF FROBENIUS' THEOREM

Constrained Transitivity Equations

Let us begin by examining the transitivity relations (2.10.1) under the Pfaffian constraints (2.11, 2a ff.), $d \theta_{D}=0, \delta \theta_{D}=0$, and their implications for the latter's holonomicity/nonholonomicity. Indeed, assuming $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$ for all $k=1, \ldots, n$, whether the $d q / \delta q$ are constrained or not (what is known as the Hamel viewpoint,
see pr. 2.12.5), the general transitivity equations (2.10.1) reduce to

$$
\begin{align*}
& d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=\sum \sum \gamma^{D}{ }_{I I^{\prime}} d \theta_{I^{\prime}} \delta \theta_{I}+\sum \gamma_{I}^{D} d t \delta \theta_{I}, \tag{2.12.1a}\\
& d\left(\delta \theta_{I}\right)-\delta\left(d \theta_{I}\right)=\sum \sum \gamma_{I^{\prime} I^{\prime \prime}}^{I} d \theta_{I^{\prime \prime}} \delta \theta_{I^{\prime}}+\sum \gamma_{I^{\prime}}^{I} d t \delta \theta_{I^{\prime}} \tag{2.12.1b}
\end{align*}
$$

From the above we conclude that, even though $\omega_{D}(t)=0$ (or a constant), or $d \theta_{D}(t)=0$, or $\delta \theta_{D}(t)=0$, from which it follows that $\left(\delta \theta_{D}\right)^{\cdot}=0$ or $d\left(\delta \theta_{D}\right)=0$, yet, in general, $d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right) \neq 0 \Rightarrow-\delta\left(d \theta_{D}\right) \neq 0$! Specifically, as (2.12.1a) shows,

$$
\begin{equation*}
-\delta\left(d \theta_{D}\right)=\sum \sum \gamma^{D}{ }_{I I^{\prime}} d \theta_{I^{\prime}} \delta \theta_{I}+\sum \gamma_{I}^{D} d t \delta \theta_{I} \neq 0 \quad \text { (in general) } ; \tag{2.12.1c}
\end{equation*}
$$

that is, we cannot assume that both $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$ and $d\left(\delta \theta_{D}\right)=\delta\left(d \theta_{D}\right)(=0)$! This is a delicate point that has important consequences in time-integral variational principles for nonholonomic systems (see Hamel, 1949, pp. 476-477; and this book, chapter 7; also pr. 2.12.5).

The Frobenius Theorem Revisited (and Made Easier to Implement)

We have already stated (§2.8) that the necessary and sufficient condition for the holonomicity of the system of m Pfaffian constraints

$$
\begin{equation*}
d \theta_{D} \equiv \sum a_{D k} d q_{k}+a_{D} d t=0, \quad \delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 \quad(D=1, \ldots, m) \tag{2.12.2}
\end{equation*}
$$

that is, for the existence of m linear combinations of the $d \theta_{D}=0$, or $\delta \theta_{D}=0$, that equal m independent exact differential equations $d f_{1}=0, \ldots, d f_{m}=0 \Rightarrow f_{1}=$ constant $, \ldots, f_{m}=$ constant, is the identical vanishing of their Frobenius bilinear covariants [recall (2.9.13)]

$$
\begin{align*}
d\left(\delta \theta_{D}\right) & -\delta\left(d \theta_{D}\right) \\
& =\sum \sum\left(\partial a_{D k} / \partial q_{l}-\partial a_{D l} / \partial q_{k}\right) d q_{l} \delta q_{k}+\sum\left(\partial a_{D k} / \partial t-\partial a_{D} / \partial q_{k}\right) d t \delta q_{k} \tag{2.12.3}
\end{align*}
$$

for all $d q_{k}, d t, \delta q_{k}$ solutions of (2.12.2). From this fundamental theorem we draw the following conclusions:
(i) If the $d q_{k}, d t, \delta q_{k}$ are unconstrained, that is, if $m=0$, then the identical satisfaction of the conditions

$$
\begin{equation*}
a_{k l}^{D} \equiv \partial a_{D k} / \partial q_{l}-\partial a_{D l} / \partial q_{k}=0, \quad a_{k}^{D} \equiv \partial a_{D k} / \partial t-\partial a_{D} / \partial q_{k}=0, \tag{2.12.3a}
\end{equation*}
$$

for all $k, l=1, \ldots, n$, is both necessary and sufficient for the holonomicity of θ_{D} (§2.9).
(ii) But, if the $d q_{k}$, dt, and δq_{k} are constrained by (2.12.2), then the vanishing of $d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)$ does not necessarily lead to (2.12.3a).

To obtain necessary conditions for the holonomicity of the system (2.12.2), we must express the $d q_{k}, d t, \delta q_{k}$, on the right side of (2.12.3), as linear and homogeneous combinations of $n-m$ independent parameters (Maggi's idea); that is, we must take the constraints (2.12.2) themselves into account. Indeed, substituting into (2.12.3) the
general solutions of (2.12.2) [recalling (2.11.4)]:

$$
\begin{equation*}
d q_{k} \equiv \sum A_{k I} d \theta_{I}+A_{I} d t, \quad \delta q_{k} \equiv \sum A_{k I} \delta \theta_{I} \tag{2.12.4}
\end{equation*}
$$

we obtain (2.12.1a). From this, it follows that (and this is the crux of this argument), since the $2(n-m)$ differentials $d \theta_{I}, \delta \theta_{I}$ are independent/unconstrained, the conditions

$$
\begin{equation*}
\gamma^{D}{ }_{I I^{\prime}}=0 \quad \text { and } \quad \gamma_{I, n+1}^{D} \equiv \gamma_{I}^{D}=0, \tag{2.12.5}
\end{equation*}
$$

for all $D=1, \ldots, m ; I, I^{\prime}=m+1, \ldots, n\{$ i.e. maximum total number of distinct/ independent such γ^{D}..' s is $[m(n-m)(n-m-1) / 2]+m(n-m)=m(n-m)(n-m+1) / 2=$ $m f(f+1) / 2, f \equiv n-m\}$, are both sufficient and necessary for the holonomicity of the Pfaffian system (2.12.2).

- Since [recalling the γ-definition (2.10.2 ff.)] (2.12.5) can be rewritten as

$$
\begin{align*}
\gamma^{D}{ }_{I I^{\prime}} & =\sum \sum\left(\partial a_{D b} / \partial q_{c}-\partial a_{D c} / \partial q_{b}\right) A_{b I} A_{c I^{\prime}} \equiv \sum \sum a_{b c}^{D} A_{b I} A_{c I^{\prime}}=0 \tag{2.12.5a}\\
\gamma^{D}{ }_{I} & \equiv \sum \sum\left(\partial a_{D b} / \partial q_{c}-\partial a_{D c} / \partial q_{b}\right) A_{b I} A_{c}+\sum\left(\partial a_{D b} / \partial t-\partial a_{D} / \partial q_{b}\right) A_{b I} \\
& \equiv \sum \sum a_{b c}^{D} A_{b I} A_{c}+\sum a^{D}{ }_{b} A_{b I}=0 \tag{2.12.5b}
\end{align*}
$$

we readily recognize that the (identical) vanishing of (all) the γ^{D}.'s does not necessarily lead to the vanishing of (all) the $a^{D}{ }_{b c}, a^{D}{ }_{b}$, while the vanishing of all the latter leads to the vanishing of all the γ^{D}..'s; that is, (2.12.3a) lead to (2.12.5,5a, b) but not the other way around. Hence, (2.12.3a) are sufficient for holonomicity but not necessary, whereas $(2.12 .5,5 \mathrm{a}, \mathrm{b})$ are both necessary and sufficient.

- Since, as $(2.12 .5 \mathrm{a}, \mathrm{b})$ make clear, each $\gamma^{D} . .\left(\gamma^{D}\right)$ depends, in general, on all the coefficients $a_{D k}, A_{k I}\left(a_{D k}, A_{k I} ; a_{D}, A_{k}\right)$, the holonomicity/nonholonomicity of a(ny) particular constraint, of the given system (2.12.2), depends on all the others; that is, on the entire system of constraints. In other words: eqs. (2.12.5) check the holonomicity, or absence thereof, of each equation $d \theta_{D}, \delta \theta_{D}=0$ against the entire system; that is, there is no such thing as testing an individual Pfaffian constraint, of a given system of such constraints, for holonomicity; doing that would be testing the new system consisting of that Pfaffian equation alone (i.e., $m=1$) for holonomicity. In short, holonomicity/nonholonomicity is a system property.

As Neimark and Fufaev put it "the existence of a single nonintegrable constraint (in a system of constraints) does not necessarily mean a system is nonholonomic, since this constraint may prove to be integrable by virtue of the remaining constraint equations" (1972, p. 6, italics added). However [and recalling (2.10.16a-18b)], we can see that the identical vanishing of all coefficients $\gamma_{r s}^{k}$ and $\gamma_{r, n+1}^{k} \equiv \gamma_{r}^{k}$ (for all $r, s=1, \ldots, n)$ in

$$
\begin{equation*}
d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)=\cdots+\left(\gamma^{k} . .\right) d \theta \delta \theta+\left(\gamma^{k} . .\right) d t \delta \theta \tag{2.12.5c}
\end{equation*}
$$

independently of the constraints $d \theta_{D}, \delta \theta_{D}=0$ (or, as if no constraints had been applied; and which is equivalent to $a_{r s}^{k}=0, a_{r}^{k}=0$, identically), is the necessary and sufficient condition for that particular θ_{k} to be a genuine/Lagrangean coordinate; that is, $a_{k r}=\partial \theta_{k} / \partial q_{r}, a_{k}=\partial \theta_{k} / \partial t$.

Let us recapitulate/summarize our findings:
(i) Pfaffian forms (not equations), like

$$
\begin{equation*}
d \theta_{k} \equiv \sum a_{k l}(q) d q_{l} \quad\left(k=1, \ldots, n^{\prime} ; l=1, \ldots, n ; n \text { and } n^{\prime} \text { unrelated }\right) \tag{2.12.6}
\end{equation*}
$$

(for algebraic simplicity, but no loss in generality, we consider the stationary case), are either exact differentials, or inexact differentials.

If their $d q$'s are unconstrained, then the necessary and sufficient conditions for $d \theta_{k}$ to be exact, and hence for θ_{k} to be a holonomic coordinate, are

$$
\begin{equation*}
a_{r s}^{k}=0 \quad(r, s=1, \ldots, n) \tag{2.12.7}
\end{equation*}
$$

In this case, each of the n^{\prime} forms $d \theta_{k}$ is tested for exactness independently of the others; k, in (2.12.7), is a free index, uncoupled to both r and s. If $n=n^{\prime}$, then, as already stated, conditions (2.12.7) can be replaced by

$$
\begin{equation*}
\gamma_{r s}^{k}=0 \quad(r, s=1, \ldots, n) ; \tag{2.12.8}
\end{equation*}
$$

but since calculating the γ 's requires inverting (2.12.6) for the $n d q$'s in terms of the $n d \theta$'s, eqs. (2.12.8) offer no advantage over eqs. (2.12.7).

If eqs. (2.12.7) hold, then $d \theta_{k}$ remains exact no matter how many additional constraints may be imposed on its dq's later. For, then, we have

$$
\begin{equation*}
d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)=\sum \sum\left(\partial a_{k r} / \partial q_{s}-\partial a_{k s} / \partial q_{r}\right) d q_{s} \delta q_{r}=0 \tag{2.12.9}
\end{equation*}
$$

that is, if θ_{k} is a holonomic coordinate, it remains holonomic if additional constraints be imposed among its $d q, \delta q$'s, later. This is the meaning of Hamel's rule: $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$, for all q 's, constrained or not.

If eqs. (2.12.7) do not hold, $d \theta_{k}$ is inexact; but it can be made exact by additional constraints among its $d q, \delta q$'s; that is, if θ_{k} is a quasi coordinate, it may become a holonomic coordinate by imposition of additional appropriate $d q, \delta q$ constraints. For example, let us consider the Pfaffian form (not constraint)

$$
d \theta \equiv a(x, y, z) d x+b(x, y, z) d y+c(x, y, z) d z
$$

Under the additional constraints $y=$ constant $\Rightarrow d y=0$ and $z=$ constant \Rightarrow $d z=0$, it becomes $d \theta \equiv a(x, y, z) d x \equiv f(x) d x=$ exact differential, even if, originally, χ was a quasi coordinate.
(ii) Pfaffian systems of constraints

$$
\begin{equation*}
d \theta_{D} \equiv \sum a_{D k} d q_{k}=0, \quad \delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 \tag{2.12.10a}
\end{equation*}
$$

are either holonomic or they are nonholonomic. The necessary and sufficient conditions for holonomicity are

$$
\begin{equation*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=\sum \sum \gamma_{I I^{\prime}}^{D} d \theta_{I^{\prime}} \delta \theta_{I}=0 \tag{2.12.10b}
\end{equation*}
$$

or, since the $d \theta_{I^{\prime}}, \delta \theta_{I}$ are independent,

$$
\begin{equation*}
\gamma^{D}{ }_{I I^{\prime}}=0 \quad\left(D=1, \ldots, m ; I, I^{\prime}=m+1, \ldots, n\right) ; \tag{2.12.10c}
\end{equation*}
$$

that is, the "dependent" γ 's relative to their "independent" indices (subscripts) should vanish; or, the components of the dependent (constrained) Hamel coefficients along the independent (unconstrained) directions vanish.
\{This, more easily implementable, form of Frobenius’ theorem seems to be due to Hamel (1904(a), 1935); also Cartan (1922, p. 105), Synge [1936, p. 19, eq. (4.16)], and Vranceanu [1929, p. 17, eq. (9'); 1936, p. 13].\}

In closing this section, we repeat that Frobenius' theorem is about the integrability of systems of Pfaffian equations, like (2.12.2), not about the exactness of individual Pfaffian forms, like (2.12.6).

Example 2.12.1 Special Case of the Hamel Coefficients, via Frobenius' Theorem. Let us calculate the Hamel coefficients corresponding to the special constraint form

$$
\begin{equation*}
d q_{D}=\sum b_{D I} d q_{I}, \quad \delta q_{D}=\sum b_{D I} \delta q_{I} \tag{a}
\end{equation*}
$$

where $b_{D I}=b_{D I}(q)$, and formulate the necessary/sufficient conditions for their holonomicity. We begin by viewing (a) as the following special Hamel choice [stationary version of (2.11.10a-12b)]:
$d \theta_{D}=d q_{D}-\sum b_{D I} d q_{I}=0, \quad d \theta_{I} \equiv d q_{I} \neq 0, \quad d \theta_{n+1} \equiv d q_{n+1} \equiv d t \neq 0 ;$
$\delta \theta_{D} \equiv \delta q_{D}-\sum b_{D I} \delta q_{I}=0, \quad \delta \theta_{I} \equiv \delta q_{I} \neq 0, \quad \delta \theta_{n+1} \equiv \delta q_{n+1} \equiv \delta t=0 ;$
$d q_{D}=d \theta_{D}+\sum b_{D I} d \theta_{I}=\sum b_{D I} d \theta_{I}, \quad d q_{I}=d \theta_{I}, \quad d q_{n+1} \equiv d \theta_{n+1} \equiv d t ;$
$\delta q_{D}=\delta \theta_{D}+\sum b_{D I} \delta q_{I}=\sum b_{D I} \delta q_{I}, \quad \delta q_{I}=\delta \theta_{I}, \quad \delta q_{n+1} \equiv \delta \theta_{n+1} \equiv \delta t=0 ;$
also, since here $d q_{I}=d \theta_{I}$, we can rewrite the system (a) as

$$
d q_{k}=\sum B_{k I} d q_{I} \equiv \sum A_{k I} d \theta_{I}
$$

where

$$
\left(B_{k I}\right)=\left(\begin{array}{ccc}
b_{1, m+1} & \ldots & b_{1 n} \tag{f}\\
\ldots \ldots \ldots & \ldots & \ldots \\
b_{m, m+1} & \ldots & b_{m n} \\
\hline & & \ldots \\
1 & \ldots & 0 \\
\cdots \ldots & \ldots & \cdots \\
0 & \ldots & 1
\end{array}\right) .
$$

Since $\theta_{I}=q_{I}$, we shall have $\gamma^{I}{ }_{\alpha \beta}=0$; while (2.12.9), with $k \rightarrow D$ and (f), becomes, successively,

$$
\begin{align*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right) & =\sum \sum a^{D}{ }_{r s} d q_{s} \delta q_{r}=\sum \sum a^{D}{ }_{r s}\left(\sum B_{s I} d q_{I}\right)\left(\sum B_{r I^{\prime}} \delta q_{I^{\prime}}\right) \\
& =\cdots=\sum \sum \sum \sum\left(a_{r s} b_{s I} b_{r I^{\prime}}\right) d q_{I} \delta q_{I^{\prime}} \\
& =\cdots=\sum \sum \gamma_{I^{\prime} I} d q_{I} \delta q_{I^{\prime}} \\
& {\left[=\sum \sum \gamma_{I I^{\prime}}^{D} d q_{I^{\prime}} \delta q_{I}=\sum \sum \gamma^{D}{ }_{I I^{\prime}} d \theta_{I^{\prime}} \delta \theta_{I}\right], } \tag{g}
\end{align*}
$$

where (expanding the sums in r and s, with $D, D^{\prime}, D^{\prime \prime}=1, \ldots, m ; I, I^{\prime}=m+1, \ldots, n$)

$$
\begin{equation*}
\gamma_{I^{\prime} I}^{D} \equiv \sum \sum a_{D^{\prime} D^{\prime \prime}}^{D} b_{D^{\prime \prime} I} b_{D^{\prime} I^{\prime}}+\sum a_{D^{\prime} I}^{D} b_{D^{\prime} I^{\prime}}+\sum a_{I^{\prime} D^{\prime}}^{D} b_{D^{\prime} I}+a_{I^{\prime} I}^{D} \tag{h}
\end{equation*}
$$

or, since $a^{D}{ }_{D^{\prime} D^{\prime \prime}} \equiv a_{D D^{\prime}, D^{\prime \prime}}-a_{D D^{\prime \prime}, D^{\prime}}$, where commas denote partial differentiations
relative to the indicated q 's and [by (2.11.12-12b)] $a_{D D^{\prime}} \rightarrow \delta_{D D^{\prime}}, a_{D I} \rightarrow-b_{D I}$, $a_{I D} \rightarrow 0, a_{I I^{\prime}} \rightarrow \delta_{I I^{\prime}}:$

$$
\begin{aligned}
\gamma_{I^{\prime} I}^{D}= & \sum \sum(0) b_{D^{\prime \prime} I} b_{D^{\prime} I^{\prime}}+\sum\left[0-\left(-\partial b_{D I} / \partial q_{D^{\prime}}\right)\right] b_{D^{\prime} I^{\prime}} \\
& +\sum\left[\left(-\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right)-0\right] b_{D^{\prime} I}+\left[\left(-\partial b_{D I^{\prime}} / \partial q_{I}\right)-\left(-\partial b_{D I} / \partial q_{I^{\prime}}\right)\right]
\end{aligned}
$$

or finally,

$$
\begin{align*}
\gamma_{I^{\prime} I}^{D} & =\left[\partial b_{D I} / \partial q_{I^{\prime}}+\sum\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I^{\prime}}\right]-\left[\partial b_{D I^{\prime}} / \partial q_{I}+\sum\left(\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}\right] \\
& \equiv-w_{I^{\prime} I}=w_{I I^{\prime}}^{D}=\text { Voronets (or Woronetz) coefficients; } \tag{i}
\end{align*}
$$

clearly, a specialization of $\gamma^{D}{ }_{I^{\prime} I}$. Thus, (g) becomes

$$
\begin{equation*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=\sum \sum \gamma_{I^{\prime} I}^{D} d q_{I} \delta q_{I^{\prime}}=\sum \sum w_{I I^{\prime}}^{D} d q_{I} \delta q_{I^{\prime}}, \tag{j}
\end{equation*}
$$

and, since the $d q_{I}$ and δq_{I} are independent, by Frobenius' theorem, the necessary and sufficient conditions for the holonomicity of the system (a) are

$$
\begin{equation*}
w_{I I^{\prime}}^{D}=0, \tag{k}
\end{equation*}
$$

which are none other than the earlier Deahna-Bouquet conditions (2.3.11b ff.).

REMARKS

(i) With the help of the symbolic notation (2.11.15a), we can rewrite (k) in the more memorable form,

$$
\begin{equation*}
\gamma_{I^{\prime} I}^{D}=w_{I I^{\prime}}^{D}=\partial b_{D I} / \partial\left(q_{I^{\prime}}\right)-\partial b_{D I^{\prime}} / \partial\left(q_{I}\right) . \tag{1}
\end{equation*}
$$

(ii) In the special "Chaplygin (or Tchapligine) case" (§3.8), where $b_{D I}=$ $b_{D I}\left(q_{m+1}, \ldots, q_{n}\right) \equiv b_{D I}\left(q_{D}\right)$, the above reduce to

$$
\begin{equation*}
\gamma_{I^{\prime} I}^{D}=\partial b_{D I} / \partial q_{I^{\prime}}-\partial b_{D I^{\prime}} / \partial q_{I} \equiv t_{I I^{\prime}}^{D} \tag{m}
\end{equation*}
$$

Problem 2.12.1 Continuing from the previous example, show that eqs. (i) for the Voronets coefficients also result by direct application of the definition (2.10.2)

$$
\begin{equation*}
\gamma^{D}{ }_{I I^{\prime}}=\sum \sum\left(\partial a_{D k} / \partial q_{r}-\partial a_{D r} / \partial q_{k}\right) A_{k I} A_{r I^{\prime}} \tag{a}
\end{equation*}
$$

to the constraints (ex. 2.12.1:a) in the equilibrium forms (ex. 2.12.1:b-e).
HINT
Here [recalling again (2.11.12-12b)]: $a_{D D^{\prime}}=\delta_{D D^{\prime}}, a_{D I}=-b_{D I}, a_{I D}=0, a_{I I^{\prime}}=\delta_{I I^{\prime}}$; $A_{D D^{\prime}}=\delta_{D D^{\prime}}, A_{D I}=b_{D I}, A_{I D}=0, A_{I I^{\prime}}=\delta_{I I^{\prime}}$.

Problem 2.12.2 Continuing from the above, show that in the general nonstationary case

$$
\begin{gather*}
d q_{D}=\sum b_{D I} d q_{I}+b_{D} d t, \quad d q_{I}=\sum \delta_{I I^{\prime}} d q_{I^{\prime}}=d q_{I} \tag{a}\\
\delta q_{D}=\sum b_{D I} \delta q_{I}, \delta q_{I}=\sum \delta_{I I^{\prime}} \delta q_{I^{\prime}}=\delta q_{I} ; \quad b_{D I}=b_{D I}(t, q), \quad b_{D}=b_{D}(t, q) \tag{b}
\end{gather*}
$$

the $\gamma^{D}{ }_{I I^{\prime}}$ remain unchanged, but we have, the additional nonstationary Voronets coefficients:

$$
\begin{align*}
\gamma_{I, n+1}^{D} & \equiv \gamma_{I}^{D}=-w_{I, n+1}^{D} \equiv-w_{I}^{D} \\
& =\left[\partial b_{D} / \partial q_{I}+\sum\left(\partial b_{D} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}\right]-\left[\partial b_{D I} / \partial t+\sum\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime}}\right] \\
& =\partial b_{D} / \partial\left(q_{I}\right)-\partial b_{D I} / \partial\left(q_{n+1}\right) \tag{c}
\end{align*}
$$

[recalling the symbolic (2.9.32 ff.), (2.11.15): $A_{k} \rightarrow b_{D}$, and $\sum\left(\partial \ldots / \partial q_{D}\right) b_{D}=$ $\partial \ldots / \partial(t)]$.

REMARK

In concrete problems, use of the above definitions to calculate the w-coefficients is not recommended. Instead, the safest way to do this is to read them off directly as coefficients of the following bilinear difference/covariant:

$$
\begin{align*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right) & =\cdots+\gamma^{D}{ }_{I I^{\prime}} d \theta_{I^{\prime}} \delta \theta_{I}+\cdots+\gamma^{D}{ }_{I} d t \delta \theta_{I}+\cdots \\
& =\cdots-w_{I^{\prime}} d q_{I^{\prime}} \delta q_{I}+\cdots-w_{I}^{D} d t \delta q_{I}+\cdots \tag{d}
\end{align*}
$$

Problem 2.12.3 Continuing from the preceding problem, verify that:
(i) in the catastatic Voronets case, the $w^{D}{ }_{I I^{\prime}}$ remain unchanged, while $w^{D}{ }_{I}=\partial b_{D I} / \partial t$; and
(ii) in the stationary Voronets case, the $w^{D}{ }_{I I}$ remain unchanged, while $w^{D}{ }_{I}=0$.

Problem 2.12.4 Continuing from the above problems, verify that

$$
\begin{equation*}
\gamma_{\beta \varepsilon}^{I}=0 \quad(I=m+1, \ldots, n ; \beta, \varepsilon=1, \ldots, n ; n+1) ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{D^{\prime} \varepsilon}^{D}=0 \quad\left(D, D^{\prime}=1, \ldots, m ; \varepsilon=1, \ldots, n ; n+1\right) ; \tag{a}
\end{equation*}
$$

(recall that $\theta_{I}=q_{I}$ is a holonomic coordinate).

Problem 2.12.5 Continuing from the above example and problems, consider again the nonstationary constraints in the special form (2.11.10a ff.):

$$
\begin{equation*}
d q_{D}=\sum b_{D I} d q_{I}+b_{D} d t, \quad \delta q_{D}=\sum b_{D I} \delta q_{I}, \quad v_{D}=\sum b_{D I} v_{I}+b_{D} \tag{a}
\end{equation*}
$$

where $b_{D I}=b_{D I}(t, q), b_{D}=b_{D}(t, q)$, and, as usual, $v_{k} \equiv d q_{k} / d t$.
Show by direct d / δ-differentiations of the above, and assuming that $d\left(\delta q_{I}\right)-$ $\delta\left(d q_{I}\right)=0$, that

$$
\begin{equation*}
d\left(\delta q_{D}\right)-\delta\left(d q_{D}\right)=\sum \sum w_{I I^{\prime}}^{D} d q_{I^{\prime}} \delta q_{I}+\sum w_{I}^{D} d t \delta q_{I} \tag{b}
\end{equation*}
$$

or, dividing both sides by $d t$,

$$
\begin{equation*}
\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right) \equiv\left(\delta q_{D}\right)^{\cdot}-\delta v_{D}=\sum\left(\sum w_{I I^{\prime}}^{D} v_{I^{\prime}}+w_{I}^{D}\right) \delta q_{I} \equiv \sum v_{I}^{D} \delta q_{I} \tag{c}
\end{equation*}
$$

that is, in general, and contrary to the hitherto adopted Hamel viewpoint (§2.12), $d\left(\delta q_{D}\right) \neq \delta\left(d q_{D}\right)$, as if the q_{D} are no longer holonomic coordinates!

REMARKS

The alternative (and, as shown below, internally consistent) viewpoint exhibited by (c) [originally advanced by Suslov (1901-1902), (1946, pp. 596-600), and continued by Levi-Civita (and Amaldi), Neimark and Fufaev, Rumiantsev, and others], is based on the following assumptions:
(i) If the n differentials/velocities $d q / \delta q / v$ are unconstrained, then we assume that the Hamel viewpoint holds for all of them; that is, $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)(k=1, \ldots, n)$.
(ii) But, if these differentials/velocities are subject to m (a)-like constraints, then we assume that the Hamel viewpoint holds only for the independent of them, say the last $n-m$, but not for the dependent of them, that is for the remaining (first) m :

$$
\begin{equation*}
\text { Suslov viewpoint: } \quad d\left(\delta q_{I}\right)-\delta\left(d q_{I}\right)=0, \text { but } \quad d\left(\delta q_{D}\right)-\delta\left(d q_{D}\right) \neq 0 \tag{d}
\end{equation*}
$$

Let us examine this quantitatively, from the earlier generalized transitivity equations (2.10.1, 5):

$$
\begin{align*}
& d\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k}\right)=\sum a_{k l}\left[d\left(\delta q_{l}\right)-\delta\left(d q_{l}\right)\right]+\sum \sum \gamma_{r s}^{k} d \theta_{s} \delta \theta_{r}+\sum \gamma_{r}^{k} d t \delta \theta_{r}, \tag{e}\\
& d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)=\sum A_{k l}\left\{\left[d\left(\delta \theta_{l}\right)-\delta\left(d \theta_{l}\right)\right]-\sum \sum \gamma_{r s}^{l} d \theta_{s} \delta \theta_{r}-\sum \gamma_{r}^{l} d t \delta \theta_{r}\right\} . \tag{f}
\end{align*}
$$

(a) Hamel viewpoint: $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$, always. Then, since $d \theta_{D}, \delta \theta_{D}=0$, (e) yields

$$
\begin{align*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right) & =\sum \sum \gamma^{D_{I^{\prime}}} d \theta_{I^{\prime}} \delta \theta_{I}+\sum \gamma^{D}{ }_{I} d t \delta \theta_{I} \quad[\text { by (pr. 2.12.4: b) }] \tag{g}\\
& =-\sum \sum w_{I I^{\prime}}^{D} d q_{I^{\prime}} \delta q_{I}-\sum w_{I}^{D} d t \delta q_{I} \quad[\text { by (ex. 2.12.1: g, j)]; } \tag{h}\\
d\left(\delta \theta_{I}\right)-\delta\left(d \theta_{I}\right) & =\sum \sum \gamma_{I^{\prime} I^{\prime \prime}}^{I} d \theta_{I^{\prime \prime}} \delta \theta_{I^{\prime}}+\sum \gamma_{I^{\prime}}^{I} d t \delta \theta_{I^{\prime}}=0 \tag{i}
\end{align*}
$$

[by (pr. 2.12.4: a)].
(b) Suslov viewpoint [for the Voronets-type constraints (a)]. Since here, $A_{D D^{\prime}}=\delta_{D D^{\prime}}$, $A_{I D}=0, A_{I I^{\prime}}=\delta_{I I^{\prime}}$, eq. (f) yields, successively,
(1) $0=d\left(\delta q_{I}\right)-\delta\left(d q_{I}\right)$

$$
\begin{align*}
& =\sum A_{I I^{\prime}}\left\{\left[d\left(\delta \theta_{I^{\prime}}\right)-\delta\left(d \theta_{I^{\prime}}\right)\right]-\sum \sum \gamma_{I^{\prime} I^{\prime \prime}} d \theta_{I^{\prime \prime}} \delta \theta_{I^{\prime}}-\sum \gamma_{I^{\prime}}^{I} d t \delta \theta_{I^{\prime}}\right\} \\
& =\left[d\left(\delta \theta_{I}\right)-\delta\left(d \theta_{I}\right)\right]-\sum \sum \gamma_{I^{\prime} I^{\prime \prime}}^{I} d \theta_{I^{\prime \prime}} \delta \theta_{I^{\prime}}-\sum \gamma_{I^{\prime}}^{I} d t \delta \theta_{I^{\prime}} \\
& =d\left(\delta \theta_{I}\right)-\delta\left(d \theta_{I}\right) \quad[\text { by (pr. 2.12.4: a) }] ; \tag{j}
\end{align*}
$$

$$
\begin{align*}
& d\left(\delta q_{D}\right)-\delta\left(d q_{D}\right) \tag{2}\\
& \quad=\sum A_{D D^{\prime}}\left\{\left[d\left(\delta \theta_{D^{\prime}}\right)-\delta\left(d \theta_{D^{\prime}}\right)\right]-\sum \sum \gamma^{D^{\prime}} d \theta_{I^{\prime}} \delta \theta_{I}-\sum \gamma^{D^{\prime}} d t \delta \theta_{I}\right\} \\
& \quad=\left[d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)\right]-\sum \sum \gamma^{D}{ }_{I I^{\prime}} d \theta_{I^{\prime}} \delta \theta_{I}-\sum \gamma^{D}{ }_{I} d t \delta \theta_{I} \\
& \quad=\left[d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)\right]+\sum \sum w_{I I^{\prime}}^{D} d \theta_{I^{\prime}} \delta \theta_{I}+\sum w_{I}^{D} d t \delta \theta_{I}
\end{align*}
$$

[by (ex. 2.12.1: i), (pr. 2.12.2: c)]
$=\sum \sum w^{D}{ }_{I I^{\prime}} d q_{I^{\prime}} \delta q_{I}+\sum w^{D}{ }_{I} d t \delta q_{I} \quad[$ by (b) $]$,
and comparing the last two expressions of $d\left(\delta q_{D}\right)-\delta\left(d q_{D}\right)$, we immediately conclude that

$$
\begin{equation*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=0 \tag{k}
\end{equation*}
$$

Hence: In the Suslov viewpoint we must assume that $d\left(\delta \theta_{k}\right)=\delta\left(d \theta_{k}\right)(k=1, \ldots, n)$.
Both viewpoints are internally consistent; but, if applied improperly, they may give rise to contradictions/paradoxes. Hamel's viewpoint, however, has the advantage of being in agreement with variational calculus (more on this in §7.8).

Problem 2.12.6 Consider the special stationary $d \theta \Leftrightarrow d q$ transformation:
$d \theta_{D} \equiv \sum a_{D D^{\prime}} d q_{D^{\prime}}(=0)$ and $d \theta_{I} \equiv d q_{I}\left(\neq 0\right.$; the θ_{I} are holonomic coordinates), (a) where $a_{D D^{\prime}}=a_{D D^{\prime}}\left(q_{1}, \ldots, q_{m}\right) \equiv a_{D D^{\prime}}\left(q_{D}\right)$. Show that, in this case, the Hamel coefficients are

$$
\begin{equation*}
\gamma_{D^{\prime} D^{\prime \prime}}^{D^{\prime}}=\sum \sum\left(\partial a_{D d^{\prime}} / \partial q_{d^{\prime \prime}}-\partial a_{D d^{\prime \prime}} / \partial q_{d^{\prime}}\right) A_{d^{\prime} D^{\prime}} A_{d^{\prime \prime} D^{\prime \prime}} \tag{i}
\end{equation*}
$$

where $D, D^{\prime}, D^{\prime \prime}, d^{\prime}, d^{\prime \prime}=1, \ldots, m$ and $d q_{D^{\prime}}=\sum A_{D^{\prime} D} d \theta_{D}$; and

$$
\begin{equation*}
\gamma_{r s}^{k}=0, \text { for any one of } k, r, s \text { greater than } m \tag{ii}
\end{equation*}
$$

Example 2.12.2 Transformation of the Hamel Coefficients under Frame of Reference Transformations. Let us again consider, for algebraic simplicity but no loss in generality, the stationary Pfaffian constraint system:

$$
\begin{equation*}
d \theta_{D} \equiv \sum a_{D k} d q_{k}=0, \quad \delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 \tag{a}
\end{equation*}
$$

Further, let us assume that (a) is nonholonomic; that is, $\gamma^{D}{ }_{I I^{\prime}} \neq 0$. Now we ask the question: Is it possible, by a frame of reference transformation $q \rightarrow q^{\prime}(t, q)$, to make the constraints (a) holonomic? In other words, is it possible to find new Lagrangean coordinates $q_{k^{\prime}}=q_{k^{\prime}}\left(t, q_{k}\right)$, in which the corresponding $\left(d q_{k^{\prime}} \Leftrightarrow d \theta_{k}\right)$ Hamel coefficients $\gamma\left(q^{\prime}\right)^{D}{ }_{I I^{\prime}} \equiv \gamma^{\prime D}{ }_{I I^{\prime}}$ vanish? Below we show that the answer to this is no; that is, if a system of constraints is nonholonomic in one frame of reference, it remains nonholonomic in all other frames of reference obtainable from the original via admissible frame of reference transformations.

Indeed, we find, successively [with $\gamma(q)^{D}{ }_{I I^{\prime}} \equiv \gamma^{D}{ }_{I I^{\prime}}$],

$$
\begin{aligned}
0 \neq & d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right)=\sum \sum \gamma_{I^{\prime} I}^{D} d \theta_{I} \delta \theta_{I^{\prime}}=\sum \sum a_{r s}^{D} d q_{s} \delta q_{r} \\
= & \sum \sum a_{r s}^{D}\left(\sum\left(\partial q_{s} / \partial q_{s^{\prime}}\right) d q_{s^{\prime}}+\left(\partial q_{s} / \partial t\right) d t\right)\left(\sum\left(\partial q_{r} / \partial q_{r^{\prime}}\right) \delta q_{r^{\prime}}\right) \\
= & \sum \sum \sum \sum\left[\left(\partial q_{s} / \partial q_{s^{\prime}}\right)\left(\partial q_{r} / \partial q_{r^{\prime}}\right) a_{r s}^{D}\right] d q_{s^{\prime}} \delta q_{r^{\prime}} \\
& +\sum \sum \sum\left[\left(\partial q_{s} / \partial t\right)\left(\partial q_{r} / \partial q_{r^{\prime}}\right) a_{r s}^{D}\right] d t \delta q_{r^{\prime}} \\
\equiv & \sum \sum a_{r^{\prime} s^{\prime}}^{D} d q_{s^{\prime}} \delta q_{r^{\prime}}+\sum a_{r^{\prime}} d t \delta q_{r^{\prime}}
\end{aligned}
$$

$$
\left[\text { where } a_{r^{\prime} s^{\prime}}^{D} \equiv \partial a_{D r^{\prime}} / \partial q_{s^{\prime}}-\partial a_{D s^{\prime}} / \partial q_{r^{\prime}}\right. \text {, etc.] }
$$

$$
\begin{align*}
& =\sum \sum a^{D}{ }_{r^{\prime} s^{\prime}}\left(\sum A_{s^{\prime} I} d \theta_{I}+A_{s^{\prime}} d t\right)\left(\sum A_{r^{\prime} I^{\prime}} \delta \theta_{I^{\prime}}\right)+\sum a^{D}{ }_{r^{\prime}}\left(\sum A_{r^{\prime} I^{\prime}} \delta \theta_{I^{\prime}}\right) d t \\
& \left.=\sum \sum \sum \sum a^{D}{ }_{r^{\prime} s^{\prime}} A_{s^{\prime} I} A_{r^{\prime} I^{\prime}}\right) d \theta_{I} \delta \theta_{I^{\prime}}+\sum\left(\sum \sum a_{r^{\prime} s^{\prime}} A_{r^{\prime} I^{\prime}} A_{s^{\prime}}+\sum a^{D}{ }_{r^{\prime}} A_{r^{\prime} I^{\prime}}\right) d t \delta \theta_{I^{\prime}} \\
& =\sum \sum \gamma_{I^{\prime} I}^{\prime D} d \theta_{I} \delta \theta_{I^{\prime}}+\sum \gamma_{I^{\prime}}^{\prime D} d t \delta \theta_{I^{\prime}}, \tag{b}
\end{align*}
$$

from which, comparing with the first line of this equation, we readily conclude that

$$
\begin{equation*}
\gamma(q)^{D}{ }_{I^{\prime} I}=\gamma\left(q^{\prime}\right)^{D}{ }_{I^{\prime} I} \quad \text { and } \quad \gamma\left(q^{\prime}\right)^{D}{ }_{I^{\prime}}=0 ; \tag{c}
\end{equation*}
$$

that is, the Hamel coefficients remain invariant under frame of reference transformations; or, these coefficients depend on the nonholonomic "coordinates" θ_{k} but they are independent of the particular holonomic coordinates frame used for their derivation.

Incidentally, this derivation also demonstrates that the γ-definition (2.10.1) is both practically and theoretically superior to the more common (2.10.2-4).

REMARKS

(i) We are reminded that the transformation properties of the γ 's under local transformations: $d \theta_{k} \Leftrightarrow d \theta_{k^{\prime}}$, at (q, t), have already been given in ex. 2.10.1.
(ii) The reader can easily verify that if, instead of (a), we had chosen a general nonstationary $d \theta \Leftrightarrow d q$ transformation, we would have found $\gamma\left(q^{\prime}\right)^{D}{ }_{I^{\prime}}=\gamma(q)^{D}{ }_{I^{\prime}}$, instead of the second of (c). Also, then,

$$
\begin{aligned}
d \theta_{r}=\sum a_{r s} d q_{s}+a_{r} d t & =\sum a_{r s}\left(\sum\left(\partial q_{s} / \partial q_{s^{\prime}}\right) d q_{s^{\prime}}+\left(\partial q_{s} / \partial t\right) d t\right)+a_{r} d t \\
& \equiv \sum a_{r r^{\prime}} d q_{r^{\prime}}+a_{r}^{\prime} d t
\end{aligned}
$$

from which we can readily deduce the transformation relations among the coefficients $a(q), a\left(q^{\prime}\right)$ [recall (2.6.6 ff.)].

Problem 2.12.7 (see Forsyth, 1890, p. 54.) Verify that a system of n independent Pfaffian constraints in the n (or even $n+1$) variables; that is,

$$
\begin{equation*}
d \theta_{k} \equiv \sum a_{k l} d q_{l}=0 \quad(k, l=1, \ldots, n) \tag{a}
\end{equation*}
$$

is always holonomic.

Problem 2.12.8 Alternative Formulation of Frobenius' Theorem. It has been shown, by Frobenius and others (see, e.g., Pascal, 1927, p. 584), that the Pfaffian system:

$$
\begin{equation*}
d \theta_{D} \equiv \sum a_{D k}(q) d q_{k}=0 \quad(D=1, \ldots, m ; k=1, \ldots, n) \tag{a}
\end{equation*}
$$

is holonomic if, and only if, each of its $m(n+m) \times(n+m)$ antisymmetric "Frobenius matrices":

$$
\mathbf{F}_{\mathrm{D}} \equiv\left(\begin{array}{ccccc|ccc}
0 & a_{12}^{D} & a_{13}^{D} & \cdots & a_{1 n}^{D} & a_{11} & \cdots & a_{m 1} \\
a_{21}^{D} & 0 & a_{23}^{D} & \cdots & a_{2 n}^{D} & a_{12} & \cdots & a_{m 2} \\
\cdots \ldots \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \ldots \ldots & \ldots
\end{array}\right)
$$

where $\quad a_{D}^{D}{ }_{k l} \equiv \partial a_{D k} / \partial q_{l}-\partial a_{D l} / \partial q_{k} \equiv a_{D k, l}-a_{D, l k}=-a^{D}{ }_{l k} \quad$ (e.g., $\quad a^{D}{ }_{12}=-a^{D}{ }_{21}$, $a^{D}{ }_{11}=-a^{D}{ }_{11} \Rightarrow a^{D}{ }_{11}=0$, etc.), has rank $2 m$.

Apply this theorem for various simple cases: for example, $m=0$ (i.e., $d q_{k}$ unconstrained), $m=1$ (one constraint), and $m=2$ (two constraints).

Example 2.12.3 Geometrical Interpretations of the Frobenius Conditions (May be omitted in a first reading.) In terms of the earlier (2.11.20a ff.) m constraint vectors $\boldsymbol{a}_{D}=\left(a_{D 1}, \ldots, a_{D n}\right)$ and $n-m$ virtual vectors $\boldsymbol{A}_{I}=\left(A_{I 1}, \ldots, A_{I n}\right)$ (in ordinary vector, nonmatrix notation), Frobenius' conditions first of (2.12.5) assume the following forms:
(i) First interpretation: From the \boldsymbol{a}_{D} we build the antisymmetric tensor:

$$
\begin{equation*}
\left(a_{k l}^{D}\right)=\left(-a_{l k}^{D}\right) \equiv\left(\partial a_{D k} / \partial q_{l}-\partial a_{D l} / \partial q_{k}\right) \tag{a}
\end{equation*}
$$

These can be viewed as the holonomic (covariant) components of the "rotation or $\operatorname{curl}\left(\right.$ ing) of $\boldsymbol{a}_{D} ": a_{k l}^{D}=-\left(\boldsymbol{c u r l} \boldsymbol{a}_{D}\right)_{k l}$. Also, we recall that $A_{k l} \equiv \partial v_{k} / \partial \omega_{l}$. As a result of the above, (2.12.5):

$$
\begin{equation*}
\gamma_{I I^{\prime}}^{D}=\sum \sum\left(\partial a_{D k} / \partial q_{l}-\partial a_{D l} / \partial q_{k}\right) A_{k I} A_{l I^{\prime}} \equiv \sum \sum a_{k l}^{D} A_{k I} A_{I I^{\prime}}=0, \tag{b}
\end{equation*}
$$

assumes the (covariant) tensor transformation form, in k, l :

$$
\begin{align*}
\gamma_{I I^{\prime}}^{D} & =\sum \sum\left(\partial v_{k} / \partial \omega_{I}\right)\left(\partial v_{l} / \partial \omega_{I^{\prime}}\right) a_{k l}^{D} \\
& =\boldsymbol{A}_{I^{\prime}} \cdot \boldsymbol{\operatorname { c u r l }} \boldsymbol{a}_{D} \cdot \boldsymbol{A}_{I}=\sum \sum\left(\boldsymbol{A}_{I^{\prime}}\right)^{l}\left(\boldsymbol{\operatorname { c u r l }} \boldsymbol{a}_{D}\right)_{l k}\left(\boldsymbol{A}_{I}\right)^{k}=0 \tag{c}
\end{align*}
$$

that is, the (covariant) components of the curl of the dependent/constraint vectors \boldsymbol{a}_{D} along the independent nonholonomic directions \boldsymbol{A}_{I} should vanish.
(ii) Second interpretation: The Frobenius conditions (first of 2.12.5), rewritten with the help of the alternative expression (2.10.15) and the quasi chain rule
(2.9.30a) as

$$
\begin{align*}
\gamma^{D}{ }_{I I^{\prime}} & =\sum \sum\left\{a_{D b}\left[A_{c I}\left(\partial A_{b I^{\prime}} / \partial q_{c}\right)-A_{c I^{\prime}}\left(\partial A_{b I} / \partial q_{c}\right)\right]\right\} \\
& \equiv \sum a_{D b}\left(\partial A_{b I^{\prime}} / \partial \theta_{I}-\partial A_{b I} / \partial \theta_{I^{\prime}}\right)=0, \tag{d}
\end{align*}
$$

state that the constraint vectors \boldsymbol{a}_{D} should be perpendicular to the $(n-m)(n-m-1) / 2$ vectors:
$\boldsymbol{A}_{I I^{\prime}}=\left(\sum A_{c I}\left(\partial A_{b I^{\prime}} / \partial q_{c}\right)-\sum A_{c I^{\prime}}\left(\partial A_{b I} / \partial q_{c}\right)\right) \equiv\left(\partial A_{b I^{\prime}} / \partial \theta_{I}-\partial A_{b I} / \partial \theta_{I^{\prime}}\right)=-\boldsymbol{A}_{I^{\prime} I}$,
that is,

$$
\begin{equation*}
\gamma_{I I^{\prime}}^{D}=\boldsymbol{a}_{D} \cdot \boldsymbol{A}_{I I^{\prime}}=0 \tag{e}
\end{equation*}
$$

Similarly for the nonstationary/rheonomic Frobenius conditions (second of 2.12.5): $\gamma^{D}{ }_{I}=0$.

For further details, including the precise positioning of indices, as practiced in general tensor analysis (and not observed in the above discussion!), see, for example, Papastavridis (1999, §6.9).

2.13 GENERAL EXAMPLES AND PROBLEMS

Example 2.13.1 Introduction to the Simplest Nonholonomic Problem: Knife, Sled, Scissors, and so on. Let us consider the motion of a knife S, whose rigid blade remains perpendicular to the fixed plane $O-x y$, and in contact with it at the point $C(x, y)$, and whose mass center G lies a distance $b(\neq 0)$ from C along the blade (fig. 2.15). The instantaneous angular orientation of S is given by its blade's angle with the $+O x$ axis ϕ.

Let us choose as Lagrangean coordinates: $q_{1}=x, q_{2}=y, q_{3}=\phi$. If $\boldsymbol{v}=(d x / d t$, $d y / d t, d z / d t=0) \equiv\left(v_{x}, v_{y}, 0\right)=($ inertial $)$ velocity of C , and $\boldsymbol{u} \equiv(\cos \phi, \sin \phi, 0)$: unit vector along the blade, then the velocity constraint is

$$
\begin{equation*}
\boldsymbol{v} \times \boldsymbol{u}=\mathbf{0} \Rightarrow(\sin \phi) v_{x}+(-\cos \phi) v_{y}=0, \quad \text { or } \quad d y / d x=\tan \phi \tag{a}
\end{equation*}
$$

Figure 2.15 Knife in motion on fixed plane.

Since this is a stationary (and, of course, catastatic) constraint, we will also have, for its kinematically admissible/possible and virtual forms, respectively,

$$
\begin{equation*}
(\sin \phi) d x+(-\cos \phi) d y=0 \quad \text { and } \quad(\sin \phi) \delta x+(-\cos \phi) \delta y=0 \tag{b}
\end{equation*}
$$

Other physical problems leading to such a constraint are:
(i) A racing boat with thin, deep, and wide keel, sailing on a still sea. Since the water resistance to the boat's longitudinal motion is much larger than the resistance to its transverse motion, the direction of the boat's instantaneous velocity must be always parallel to its keel's instantaneous heading;
(ii) a lamina moving on its plane, with a short and very stiff razor blade (or some similar rigid and very thin object: e.g., a small knife) embedded on its underside. Again, the lamina can move only along the instantaneous direction of its guiding blade;
(iii) a sled;
(iv) a pair of scissors cutting through a piece of paper;
(v) a pizza cutter, etc.

Application of the holonomicity criterion (2.3.6) or (2.3.8a) to (a), (b), with $\boldsymbol{h}=(\sin \phi,-\cos \phi, 0)$ and $d \boldsymbol{r}=(d x, d y, d \phi)$ [as if x, y, ϕ were rectangular Cartesian right-handed coordinates] yields

$$
\begin{align*}
I \equiv \boldsymbol{h} \cdot \text { curl } \boldsymbol{h} & =\boldsymbol{h} \cdot[(\partial / \partial x, \partial / \partial y, \partial / \partial \phi) \times(\sin \phi,-\cos \phi, 0)] \\
& =(\sin \phi,-\cos \phi, 0) \cdot(-\sin \phi, \cos \phi, 0)=-1 \neq 0 \tag{c}
\end{align*}
$$

that is, the constraint (a), (b) is nonholonomic. This means that, although the general (global) configuration of S is specified completely by the three independent coordinates x, y, ϕ, not all three of them can be given, simultaneously, small arbitrary variations; that is, although there is no functional restriction of the type $f(x, y, \phi)=0$, there is one of the type $g(d x, d y, d \phi ; x, y, \phi)=0$, namely the Pfaffian constraint (a), (b). Put geometrically: the blade has three global freedoms (x, y, ϕ), but only two local freedoms (any two of $d x, d y, d \phi$). Since $n=3$ and $m=1$, this is the simplest nonholonomic problem; and, accordingly, it has been studied extensively (by Bahar, Carathéodory, Chaplygin, et al.).

The independence of x, y, ϕ can be demonstrated as follows: we keep any two of them constant, and then show that varying the third results in a nontrivial (or nonempty) range of kinematically admissible positions:
(i) keep x and y fixed and vary ϕ continuously; the constraint (a), (b) is not violated [fig. 2.16(a)];
(ii) keep y and ϕ fixed. Varying x we can achieve other admissible configurations with different x 's but the same y and ϕ;
but to go from one of them to another we have to vary all three coordinates [fig. 2.16(b)];
(iii) similarly when x and ϕ are fixed and y varies [fig. 2.16(c)].

The precise kinetic path followed in each case, among the kinematically possible/ admissible ones, depends on the system's equations of (constrained) motion and on its initial conditions.

Figure 2.16 Global motions of a knife showing the independence of its three positional coordinates. We can always, through a suitable finite motion, bring the knife to a position and orientation as close as we want to any specified original position and orientation; that is, the relation among x, y, ϕ is nonunique.

An Ad Hoc Proof of the
Impossibility of Obtaining a Relation $f(x, y, \phi)=0$
Let us assume that such a constraint exists. Then d-varying it, and with subscripts for partial derivatives, yields

$$
\begin{equation*}
d f=f_{x} d x+f_{y} d y+f_{\phi} d \phi=0 \tag{d}
\end{equation*}
$$

or, taking into account the constraint in the form: $d y=(\tan \phi) d x$,

$$
\begin{equation*}
d f=\left(f_{x}+f_{y} \tan \phi\right) d x+\left(f_{\phi}\right) d \phi=0 \tag{e}
\end{equation*}
$$

where now $d x$ and $d \phi$ are independent. Equation (e) leads immediately to

$$
\begin{equation*}
f_{\phi}=0 \Rightarrow f=f(x, y) \quad \text { and } \quad f_{x}+f_{y} \tan \phi=0 \tag{f}
\end{equation*}
$$

By $(\partial / \partial \phi)$-differentiating the second of (f), while observing the first of (f), we obtain

$$
\begin{equation*}
f_{y}\left(1 / \cos ^{2} \phi\right)=0, \tag{g}
\end{equation*}
$$

from which, since in general $1 / \cos ^{2} \phi \neq 0$, it follows that $f_{y}=0 \Rightarrow f=f(x)$. But then the second of (f) leads to $f_{x}=0 \Rightarrow f=$ constant (independent of x, y, ϕ), and as such it cannot enforce the constraint $f(x, y, \phi)=0$. Hence, no such f exists (with or without integrating factors).

However, if the knife was constrained to move along a prescribed path, on the $O-x y$ plane, the system would be holonomic! In that case, we would have in advance the path's equations, say in the parametric form:

$$
\begin{equation*}
x=x(s) \quad \text { and } \quad y=y(s) \quad(s=\operatorname{arc} \text { length }), \tag{h}
\end{equation*}
$$

from which ϕ could be uniquely determined for every s [i.e., $\phi=\phi(s)$], via

$$
\begin{equation*}
d y / d x=d y / d s / d x / d s \equiv y^{\prime}(s) / x^{\prime}(s)=\tan \phi(s) \tag{i}
\end{equation*}
$$

This is somewhat analogous to the basic variables of Lagrangean mechanics q_{k}, $d q_{k} / d t \equiv v_{k}$, which, before the problem is solved, are considered as independent, and then, after the problem is completely solved, become dependent through time.

Example 2.13.2 The Knife Problem: Hamel Coefficients. Continuing from the preceding example: in view of the constraint (a), (b) there, and following Hamel's methodology ("equilibrium quasi velocities," §2.11), let us introduce the following three quasi velocities:

$$
\begin{align*}
& \omega_{1} \equiv(-\sin \phi) v_{x}+(\cos \phi) v_{y}+(0) v_{\phi} \quad(=0) \\
& \omega_{2} \equiv(\cos \phi) v_{x}+(\sin \phi) v_{y}+(0) v_{\phi}=v \quad(\neq 0) \\
& \omega_{3} \equiv(0) v_{x}+(0) v_{y}+(1) v_{\phi}=v_{\phi} \quad(\neq 0) \tag{a}
\end{align*}
$$

where $v=$ velocity component of the knife's contact point C; and hence $v_{x}=v \cos \phi$, $v_{y}=v \sin \phi$, and the constraint is simply $\omega_{1}=0$. Clearly, since

$$
\begin{equation*}
\partial(\cos \phi) / \partial \phi \neq \partial(0) / \partial x \quad \text { and } \quad \partial(\sin \phi) / \partial \phi \neq \partial(0) / \partial y \tag{b}
\end{equation*}
$$

$\omega_{2}=v$ is a quasi velocity; that is, $v \neq$ total time derivative of a genuine position coordinate, or of any function of x, y, ϕ. Inverting (a), we obtain

$$
\begin{align*}
& v_{x}=(-\sin \phi) \omega_{1}+(\cos \phi) \omega_{2}+(0) \omega_{3}, \\
& v_{y}=(\cos \phi) \omega_{1}+(\sin \phi) \omega_{2}+(0) \omega_{3}, \\
& v_{\phi}=(0) \omega_{1}+(0) \omega_{2}+(1) \omega_{3} . \tag{c}
\end{align*}
$$

If \mathbf{a} and \mathbf{A} are the matrices of the transformations (a) and (c), respectively, then we easily verify that $\mathbf{a}=\mathbf{A}$, and $\operatorname{Det} \mathbf{a}=\operatorname{Det} \mathbf{A}=-\sin ^{2} \phi-\cos ^{2} \phi=-1$ (i.e., nonsingular transformations). Further, we notice that (a), (c) hold with $\omega_{1,2,3}$ and v_{x}, v_{y}, v_{ϕ} replaced, respectively, with $d \theta_{1,2,3}=\omega_{1,2,3} d t$ and $(d x, d y, d \phi)=\left(v_{x}, v_{y}, v_{\phi}\right) d t$; and, since they are stationary, also for $\delta \theta_{1,2,3}$ and $\delta x, \delta y, \delta \phi$.

Next, by direct d / δ-differentiations of $\delta \theta_{1}, d \theta_{1}$, and then subtraction, we find, successively,

$$
\begin{aligned}
d\left(\delta \theta_{1}\right)-\delta\left(d \theta_{1}\right)= & d[(-\sin \phi) \delta x+(\cos \phi) \delta y+(0) \delta \phi] \\
& -\delta[(-\sin \phi) d x+(\cos \phi) d y+(0) d \phi] \\
= & (-\sin \phi)(d \delta x-\delta d x)+(\cos \phi)(d \delta y-\delta d y) \\
& -\cos \phi d \phi \delta x-\sin \phi d \phi \delta y+\cos \phi d x \delta \phi+\sin \phi d y \delta \phi \\
= & 0+0-\cos \phi(1) d \theta_{3}\left[(-\sin \phi) \delta \theta_{1}+(\cos \phi) \delta \theta_{2}+(0) \delta \theta_{3}\right]-\cdots
\end{aligned}
$$

[i.e., expressing $d x, \delta x, d y, \delta y, d \phi, \delta \phi$ from (c), with $\omega_{1,2,3}$ replaced with $\left.d \theta_{1,2,3}, \delta \theta_{1,2,3}\right]$ and so we, finally, obtain the differential transitivity equation:

$$
\begin{equation*}
d\left(\delta \theta_{1}\right)-\delta\left(d \theta_{1}\right)=d \theta_{2} \delta \theta_{3}-d \theta_{3} \delta \theta_{2} \tag{d}
\end{equation*}
$$

[i.e., $d\left(\delta \theta_{1}\right)-\delta\left(d \theta_{1}\right) \neq 0$, even though $\delta \theta_{1}=0$ and $\left.d \theta_{1}=0\right]$; and, also, dividing this by $d t$, which does not couple with $\delta(\ldots)$, we obtain its (equivalent) velocity transitivity equation:

$$
\begin{equation*}
\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1}=(0) \delta \theta_{1}+(-1) \omega_{3} \delta \theta_{2}+(1) \omega_{2} \delta \theta_{3} \quad(\neq 0) \tag{e}
\end{equation*}
$$

Similarly, after some straightforward differentiations, we find

$$
\begin{align*}
& \left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=(1) \omega_{3} \delta \theta_{1}+(0) \delta \theta_{2}+(-1) \omega_{1} \delta \theta_{3} \quad(=0) \tag{f}\\
& \left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}=(0) \delta \theta_{1}+(0) \delta \theta_{2}+(0) \delta \theta_{3} \quad(=0) \tag{g}
\end{align*}
$$

From (e, f, g) we readily read off the nonvanishing Hamel's coefficients:

$$
\begin{align*}
& \gamma_{I I^{\prime}}^{D}\left(D=1 ; I, I^{\prime}=2,3\right): \quad \gamma_{23}^{1}=-\gamma_{32}^{1}=-1 ; \tag{h}\\
& \gamma_{k l}^{I}(I=2 ; k, l=1,3): \quad \gamma_{13}^{2}=-\gamma_{31}^{2}=1 . \tag{i}
\end{align*}
$$

REMARKS

(i) Since not all $\gamma_{I I^{\prime}}^{D} \rightarrow \gamma_{k l}^{1}(k, l=2,3)$ vanish, we conclude, by Frobenius' theorem (§2.12), that our constraint, in any one of the following three forms:
Velocity:

$$
\begin{equation*}
\omega_{1} \equiv(-\sin \phi) v_{x}+(\cos \phi) v_{y}+(0) v_{\phi} \quad(=0) \tag{j}
\end{equation*}
$$

Kinematically admissible:

$$
\begin{equation*}
d \theta_{1} \equiv(-\sin \phi) d x+(\cos \phi) d y+(0) d \phi \quad(=0) \tag{k}
\end{equation*}
$$

Virtual:

$$
\begin{equation*}
\delta \theta_{1} \equiv(-\sin \phi) \delta x+(\cos \phi) \delta y+(0) \delta \phi \quad(=0) \tag{1}
\end{equation*}
$$

is nonholonomic.
(ii) The fact that upon imposition of the constraints $\delta \theta_{1}=0, \omega_{1}=0$, the transitivity equation (f) yields $\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=0$ does not mean that

$$
\begin{equation*}
d \theta_{2} \equiv(\cos \phi) d x+(\sin \phi) d y+(0) d \phi=v d t \quad(\neq 0) \tag{m}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta \theta_{2} \equiv(\cos \phi) \delta x+(\sin \phi) \delta y+(0) \delta \phi \quad(\neq 0) \tag{n}
\end{equation*}
$$

are exact; it does not mean that θ_{2} is a genuine (Lagrangean) coordinate. For exactness, we should have $\gamma^{2}{ }_{k l}=0(k, l=1,2,3) \Rightarrow\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=0$, independently of the constraints $\omega_{1} / d \theta_{1} / \delta \theta_{1}=0$. [We recall ($\$ 2.12$) that Frobenius' theorem tests the holonomicity, or absence thereof, of a system of Pfaffian equations of constraint; whereas the exactness, or inexactness, of a particular Pfaffian form, like $d \theta_{2}$ and $d \theta_{3}(\neq 0)$ is a property of that form; that is, it is ascertained by examination of that form alone, independently of other constraint equations. In sum: constraint holonomicity is a system (coupled) property; while coordinate holonomicity is an individual (uncoupled) property.]
(iii) Since $\omega_{3}=d \phi / d t \equiv v_{\phi}$ is a genuine velocity, $\gamma^{3}{ }_{k l}=0 \quad(k, l=1,2,3)$; as expected.

Hamel Viewpoint versus Suslov Viewpoint
So far, we have assumed Hamel's viewpoint; that is,

$$
\begin{equation*}
d(\delta x)=\delta(d x), \quad d(\delta y)=\delta(d y), \quad d(\delta \phi)=\delta(d \phi) ; \tag{o}
\end{equation*}
$$

and $d\left(\delta \theta_{1}\right) \neq \delta\left(d \theta_{1}\right)$, in spite of the constraint $\delta \theta_{1}=0$ and $d \theta_{1}=0$ [and that even if $d\left(\delta \theta_{1}\right)=0$, still $\left.-\delta\left(d \theta_{1}\right) \neq 0!\right]$.

Let us now examine the Suslov viewpoint: with the analytically convenient choice, $q_{D}=y$ and $q_{I}=x, \phi$, we can rewrite the constraint as

$$
d \theta_{1} \equiv d y-(\tan \phi) d x=0 \quad \text { and } \quad \delta \theta_{1} \equiv \delta y-(\tan \phi) \delta x=0 \quad[\text { instead of }(\mathrm{a})]
$$

or

$$
\begin{equation*}
d y=(\tan \phi) d x+(0) d \phi \quad \text { and } \quad \delta y=(\tan \phi) \delta x+(0) \delta \phi ; \tag{p}
\end{equation*}
$$

and, therefore, the corresponding transitivity equations become [instead of (d)-(g)]
Dependent: $\quad d(\delta y)-\delta(d y)=d(\delta x \tan \phi)-\delta(d x \tan \phi)=\cdots$

$$
\begin{align*}
& =[d(\delta x)-\delta(d x)] \tan \phi+\left(1 / \cos ^{2} \phi\right)(d \phi \delta x-d x \delta \phi) \\
& =\left(1 / \cos ^{2} \phi\right)(d \phi \delta x-d x \delta \phi) \neq 0 \tag{q}
\end{align*}
$$

Independent: $\quad d(\delta x)-\delta(d x)=0, \quad d(\delta \phi)-\delta(d \phi)=0 ;$
from which we readily read off the sole nonvanishing Voronets symbol:

$$
\begin{equation*}
w_{x \phi}^{y}=-w_{\phi x}^{y}=1 / \cos ^{2} \phi \tag{s}
\end{equation*}
$$

Under Hamel's viewpoint, using the same variables, from $\delta y=(\tan \phi) \delta x$ (i.e., $\delta \theta_{1}=0$) it follows that $d(\delta y)=d(\delta x) \tan \phi+\left(1 / \cos ^{2} \phi\right) d \phi \delta x$ [i.e., $d\left(\delta \theta_{1}\right)=0$]; but from $d y=(\tan \phi) d x$ (i.e., $d \theta_{1}=0$) it does not follow that $\delta(d y)=$ $\delta(d x) \tan \phi-\left(1 / \cos ^{2} \phi\right) \delta \phi d x$ [i.e., $\left.\delta\left(d \theta_{1}\right) \neq 0\right]$.

Problem 2.13.1 Consider a knife (or sled, or scissors, etc.) moving on a uniformly rotating turntable T (fig. 2.17). In T-fixed (moving) coordinates $O-x y \phi$, its constraint is

$$
\begin{equation*}
(\sin \phi) v_{x}+(-\cos \phi) v_{y}=0 \quad\left[v_{x} \equiv d x / d t, v_{y} \equiv d y / d t\right] \tag{a}
\end{equation*}
$$

Show that in inertial (fixed) coordinates $O-X Y \Phi$, where

$$
\begin{align*}
& X=(\cos \theta) x+(-\sin \theta) y+(0) \phi, \\
& Y=(\sin \theta) x+(\cos \theta) y+(0) \phi, \\
& \Phi=(0) x+(0) y+(1) \phi+\theta, \tag{b}
\end{align*}
$$

Figure 2.17 Knife moving on a uniformly rotating turntable.
and $\theta=\omega t, \omega$: constant angular velocity of $O-x y$ relative to $O-X Y$ [i.e., say, $X=X(x, y, t)$, etc.], the constraint takes the (acatastatic) form (with $v_{X} \equiv d X / d t$, $\left.v_{Y} \equiv d Y / d t\right)$,

$$
\begin{equation*}
(\sin \Phi) v_{X}+(-\cos \Phi) v_{Y}+\omega[(\cos \Phi) X+(\sin \Phi) Y]=0 \tag{c}
\end{equation*}
$$

Example 2.13.3 Rolling Disk—Vertical Case. Let us consider a circular thin disk D, of center G and radius r, rolling while remaining vertical on a fixed, rough, and horizontal plane P (fig. 2.18). (The general nonvertical case is presented later in ex. 2.13.7.) This system has four Lagrangean coordinates (or global DOF): the $(x, y, z=r)$ coordinates of G, and the Eulerian angles ϕ (precession) and ψ (spin). The constraints $z=r$ (contact) and $\theta=\pi / 2$ are, clearly, holonomic (H). The velocity constraint is $\boldsymbol{v}_{C}=\mathbf{0}$ (where C is the contact point); or, since along the fixed axes $O-X Y Z$ [with the notation $d x / d t \equiv v_{x}, \quad d y / d t \equiv v_{y} ; \quad d \phi / d t \equiv \omega_{\phi}$, $\left.d \psi / d t \equiv \omega_{\psi}\right]$:

$$
\begin{align*}
\boldsymbol{v}_{G} & =\left(v_{x}, v_{y}, 0\right), \quad \omega=\left(-\omega_{\psi} \sin \phi, \omega_{\psi} \cos \phi, \omega_{\phi}\right), \quad \text { and } \quad \boldsymbol{r}_{C / G}=(0,0,-r), \\
& \Rightarrow \boldsymbol{v}_{C}=\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}=\cdots=\left(v_{x}-r \omega_{\psi} \cos \phi, v_{y}-r \omega_{\psi} \sin \phi, 0\right)=\mathbf{0}, \tag{a}
\end{align*}
$$

or, in components, in the following equivalent forms:
Velocity: $\quad v_{x}=r \omega_{\psi} \cos \phi \quad$ and $\quad v_{y}=r \omega_{\psi} \sin \phi$,

Kinematically admissible: $d x=(r \cos \phi) d \psi \quad$ and $\quad d y=(r \sin \phi) d \psi$,

Virtual:

$$
\delta x=(r \cos \phi) \delta \psi \quad \text { and } \quad \delta y=(r \sin \phi) \delta \psi
$$

Figure 2.18 Rolling of vertical disk on a fixed plane.

As shown below, these constraints are nonholonomic (NH). Hence, the disk is a scleronomic NH system with $f \equiv n-m=4-2=2$ DOF in the small.

It is not hard to see that imposition, on ($\mathrm{b}-\mathrm{d}$), of the additional H constraint $d \phi=0 \Rightarrow \phi=$ constant, say $\phi=0$, would reduce them to the well-known H case of plane rolling: $d x=r d \psi \Rightarrow x=r \psi+$ constant, and $d y=0 \Rightarrow y=$ constant. \{Also, the problem would become H if the disk was forced to roll along a prescribed $O-X Y$ path. For, then, the rolling condition would be [with s : arc-length along (c)] $d s=r d \psi \Rightarrow s=r \psi+$ constant, and (c) would yield the parametric equations $x=x(s)$ and $y=y(s)$; that is, for each s there would correspond a unique x, y, ψ, and $\phi[$ from (b-d)], and that would make the disk a 1 (global) DOF H system. $\}$

Ad Hoc Proof of the Nonholonomicity of the Constraints (b-d)
Let us assume that we could find a finite relation $f(x, y, \phi, \psi)=0$, compatible with (b-d). Then (with subscripts denoting partial derivatives), we would have

$$
\begin{equation*}
d f=f_{x} d x+f_{y} d y+f_{\phi} d \phi+f_{\psi} d \psi=0 \tag{e}
\end{equation*}
$$

Substituting $d x$ and $d y$ from (c) into (e) — that is, embedding the constraints into it yields

$$
\begin{equation*}
\left(r f_{x} \cos \phi+r f_{y} \sin \phi+f_{\psi}\right) d \psi+\left(f_{\phi}\right) d \phi=0 \tag{f}
\end{equation*}
$$

which, since now $d \psi$ and $d \phi$ are independent, gives

$$
\begin{equation*}
f_{\phi}=0 \Rightarrow f=f(x, y, \psi) \quad \text { and } \quad r f_{x} \cos \phi+r f_{y} \sin \phi+f_{\psi}=0 \tag{g}
\end{equation*}
$$

Next, $(\partial / \partial \phi)$-differentiating the second of (g) once, while taking into account the first of (g), yields

$$
\begin{equation*}
-r f_{x} \sin \phi+r f_{y} \cos \phi=0 \tag{h}
\end{equation*}
$$

and repeating this procedure on (h), while again observing the first of (g), produces

$$
\begin{equation*}
-r f_{x} \cos \phi-r f_{y} \sin \phi=0 \tag{i}
\end{equation*}
$$

[Further $(\partial / \partial \phi)$-differentiations would not produce anything new.] The system (h), (i) has the unique solution,

$$
\begin{equation*}
f_{x}=0 \quad \text { and } \quad f_{y}=0 \tag{j}
\end{equation*}
$$

due to which the second of (g) reduces to $f_{\psi}=0$. It is clear that the above result in $f=$ constant, and such a functional relation, obviously, cannot produce the constraints (b-d) - no $f(x, y, \phi, \psi)$ exists. Geometrically, this nonholonomicity has the following consequences: Starting from a certain initial configuration, we can roll the disk along two different paths to two final configurations with the same contact point-namely, same final (x, y), but rotated relative to each other; that is, with different final (ϕ, ψ). If the constraints were H , then ϕ and ψ would be functions of (x, y) and the two final positions of the disk would coincide completely.

Proof that the Constraints (b-d) are NH via Frobenius'
Theorem
Let us rewrite the two constraints (c, d) in the equilibrium forms:
Kinematically admissible :

$$
\begin{array}{lll}
& d \theta_{1} \equiv d x-(r \cos \phi) d \psi=0, & d \theta_{2} \equiv d y-(r \sin \phi) d \psi=0, \\
\text { Virtual : } & \delta \theta_{1} \equiv \delta x-(r \cos \phi) \delta \psi=0, & \delta \theta_{2} \equiv \delta y-(r \sin \phi) \delta \psi=0 \tag{1}
\end{array}
$$

It follows that the corresponding bilinear covariants (2.8.2 ff.) are

$$
\begin{align*}
& d\left(\delta \theta_{1}\right)-\delta\left(d \theta_{1}\right)=\cdots=(r \sin \phi)(d \phi \delta \psi-d \psi \delta \phi) \tag{m}\\
& d\left(\delta \theta_{2}\right)-\delta\left(d \theta_{2}\right)=\cdots=(-r \cos \phi)(d \phi \delta \psi-d \psi \delta \phi) \tag{n}
\end{align*}
$$

and, clearly, these vanish for arbitrary values of the independent differentials $d \phi, \delta \phi, d \psi, \delta \psi$, if $\sin \phi=0$ and $\cos \phi=0$. But then the constraints (c) reduce to $d x=0 \Rightarrow x=$ constant and $d y=0 \Rightarrow y=$ constant, which is, in general, impossible. Hence, the constraints are NH [one can arrive at the same conclusion with the help of the γ 's (§2.12), but that is more laborious].

Problem 2.13.2 Continuing from the previous problem (vertically rolling disk), show that its velocity constraints can be expressed in the equivalent form:

$$
\begin{align*}
& \boldsymbol{v}_{G} \cdot \boldsymbol{u}=v_{x} \cos \phi+v_{y} \sin \phi=r \omega_{\psi}, \tag{a}\\
& \boldsymbol{v}_{G} \cdot \boldsymbol{n}=-v_{x} \sin \phi+v_{y} \cos \phi=0 \tag{b}
\end{align*}
$$

where \boldsymbol{u} and \boldsymbol{n} are unit vectors on the disk plane (parallel to $O-X Y$) and perpendicular to it, respectively (fig. 2.18). [Notice that (b) coincides, formally, with the knife problem constraint.]

Example 2.13.4 Rolling Sphere - Introduction. Let us consider a sphere of center G and radius r, rolling without slipping on a fixed, rough and, say, horizontal plane P (fig. 2.19). The complete specification of a generic sphere configuration requires five independent (minimal) Lagrangean coordinates. As such, we could take the (inertial)

Figure 2.19 Rolling of a sphere on a fixed horizontal plane.
coordinates of $G(X, Y)$, and the three Eulerian angles (ϕ, θ, ψ) of body-fixed axes $G-x y z$ relative to translating (nonrotating) axes $G-X Y Z$. The contact constraint is expressed by the holonomic (H) equation, $Z \equiv$ vertical coordinate of $G=r$. The rolling constraint is found by equating the (inertial) velocity of the contact point of the sphere C with that of its (instantaneously) adjacent plane point, which here is zero; $\omega \equiv$ inertial angular velocity of sphere. Using components along $O-X Y Z$ axes throughout, we find

$$
\begin{aligned}
\boldsymbol{v}_{C} & =\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}=d \boldsymbol{\rho}_{G} / d t+\boldsymbol{\omega} \times(-r \boldsymbol{K}) \\
& =\left(v_{X}, v_{Y}, 0\right)+\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right) \times(0,0,-r)=\cdots=\left(v_{X}-r \omega_{Y}, v_{Y}+r \omega_{X}, 0\right)=\mathbf{0} .
\end{aligned}
$$

Hence, the rolling conditions are

$$
\begin{equation*}
v_{X}-r \omega_{Y}=0, \quad v_{Y}+r \omega_{X}=0 \tag{a}
\end{equation*}
$$

or, expressing the space-fixed components $\omega_{X, Y}$ in terms of their Eulerian angle rates (§1.12),

$$
\begin{equation*}
v_{X}-r\left(\sin \phi \omega_{\theta}-\sin \theta \cos \phi \omega_{\psi}\right)=0, \quad v_{Y}+r\left(\cos \phi \omega_{\theta}+\sin \theta \sin \phi \omega_{\psi}\right)=0 \tag{b}
\end{equation*}
$$

or, further, in kinematically admissible form,

$$
\begin{equation*}
d X-r(\sin \phi d \theta-\sin \theta \cos \phi d \psi)=0, \quad d Y+r(\cos \phi d \theta+\sin \theta \sin \phi d \psi)=0 \tag{c}
\end{equation*}
$$

or, finally, since these constraints are catastatic, in virtual form,

$$
\begin{equation*}
\delta X-r(\sin \phi \delta \theta-\sin \theta \cos \phi \delta \psi)=0, \quad \delta Y+r(\cos \phi \delta \theta+\sin \theta \sin \phi \delta \psi)=0 \tag{d}
\end{equation*}
$$

[Absence of pivoting would have meant the following additional constraint:

$$
(\omega)_{\text {normal to sphere at } C}=\omega_{Z}=\omega_{\phi}+\cos \theta \omega_{\psi}=0
$$

or

$$
\begin{equation*}
d \phi+\cos \theta d \psi=0 \Rightarrow d \phi / d \psi=-\cos \theta \equiv h(\theta)] . \tag{e}
\end{equation*}
$$

As shown later, the constraints (a-d) are nonholonomic (NH). [We already notice that (c), for example, do not involve $d \phi$, and yet the constraints feature $\sin \phi$ and $\cos \phi$.] Mathematically, this means that it is impossible to obtain them by differentiating two finite constraint equations of the form $F(X, Y, \phi, \theta, \psi)=0$ and $E(X, Y, \phi, \theta, \psi)=0$; that is, the coordinates X, Y, ϕ, θ, ψ are independent. But their differentials $d X, d Y, d \phi, d \theta, d \psi$, in view of (a-d), are not independent; that is, in general, only three of them can be varied simultaneously and arbitrarily. We say that the sphere has five DOF in the large, but only three DOF in the small: $f \equiv n-m=5-2=3$. (Had we added pivoting, we would have $f=2$.)

Kinematically, the above mean that the sphere may roll from an initial configuration, along two different routes, to two final configurations, which have both the same contact point and center location (i.e., same X, Y), but different angular orientations relative to each other (i.e., different ϕ, θ, ψ). If the constraints (a-d) were holonomic - for example, if the plane was smooth-it would be possible to vary all X, Y, ϕ, θ, ψ independently and arbitrarily without violating the (then) constraints; namely, the sphere's rigidity and the constancy of distance between G and C. Further, the sphere can roll from any initial configuration, with the sphere point C_{i} in contact with the plane point P_{i}, to any other final configuration, with the sphere point C_{f} in contact with the plane point P_{f}. To see this property, known as accessibility (§2.3), we draw on the plane a curve (γ) joining C_{i} and P_{f}, and another curve on the sphere (δ), of equal length to (γ), joining C_{i} and C_{f}. Now, a pivoting of the sphere can make the two $\operatorname{arcs}(\gamma)$ and (δ) tangent, at $C_{i}=P_{i}$. Then, we bring C_{f} to P_{f} by rolling (δ) on (γ). A final pivoting of the sphere brings it to its final configuration (see also Rutherford, 1960, pp. 161-162).

A Special Case

Assume, next, that the sphere rolls without pivoting, and also moves so that $\theta=$ constant $\equiv \theta_{0}$. Let us find the path of G. With $\theta=$ constant $\Rightarrow d \theta=0$, the rolling constraints (c) reduce to

$$
\begin{equation*}
d X+r\left(\sin \theta_{o}\right) \cos \phi d \psi=0, \quad d Y+r\left(\sin \theta_{o}\right) \sin \phi d \psi=0 \tag{f}
\end{equation*}
$$

and the no-pivoting constraint (e) to

$$
\begin{equation*}
d \phi / d \psi=-\cos \theta_{o}=\text { constant } \tag{g}
\end{equation*}
$$

This leaves only $n-m=5-4=1$ DOF in the small. Taking ϕ as the independent coordinate and eliminating $d \psi$ between (f), with the help of (g), yields

$$
\begin{equation*}
d X=r\left(\tan \theta_{o}\right) \cos \phi d \phi, \quad d Y=r\left(\tan \theta_{o}\right) \sin \phi d \phi \tag{h}
\end{equation*}
$$

which integrates readily to the curve (with X_{o} and Y_{o} as integration constants):

$$
\begin{equation*}
X-X_{0}=r\left(\tan \theta_{o}\right) \sin \phi, \quad Y-Y_{0}=-r\left(\tan \theta_{o}\right) \cos \phi \tag{i}
\end{equation*}
$$

that is, G describes, on the plane $Z=r$, a circle of radius $r \tan \theta_{o}$.
[These considerations also show how imposition of a sufficient number of
additional holonomic and/or nonholonomic constraints turns an originally nonholonomic system into a holonomic one.]

Example 2.13.5 Rolling Sphere on a Spinning Table - Introduction. Let us extend the previous example to the case where the plane P is not fixed, but rotates about a fixed axis $O Z$ perpendicular to it with, say, constant (inertial) angular velocity $\boldsymbol{\Omega}$. In this case, the rolling condition expresses the fact that the contact points of the sphere and the plane, C, have equal inertial velocities:

$$
\begin{equation*}
\left(\boldsymbol{v}_{C}\right)_{\text {sphere }}=\left(\boldsymbol{v}_{C}\right)_{\text {plane }}: \quad \boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}=\boldsymbol{\Omega} \times \boldsymbol{r}_{C / O} \quad(=\boldsymbol{\Omega} \times \boldsymbol{\rho}) ; \tag{a}
\end{equation*}
$$

or, in terms of their components along inertial (background) axes $O-X Y Z / O-I J K$:

$$
\begin{equation*}
\left(v_{X}, v_{Y}, 0\right)+\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right) \times(0,0,-r)=(0,0, \Omega) \times(X, Y, 0), \tag{b}
\end{equation*}
$$

from which we easily obtain the two rolling conditions:

$$
\begin{equation*}
v_{X}-r \omega_{Y}=-\Omega Y, \quad v_{Y}+r \omega_{X}=\Omega X \tag{c}
\end{equation*}
$$

Next, expressing ω_{X}, ω_{Y} in terms of their Eulerian angles (between translating/ nonrotating axes $G-X Y Z$ and sphere-fixed axes $G-x y z$) and their time rates, as in the preceding example, we transform (c) to

$$
\begin{align*}
& v_{X}-r\left(\sin \phi \omega_{\theta}-\sin \theta \cos \phi \omega_{\psi}\right)+\Omega Y=0 \\
& v_{Y}+r\left(\cos \phi \omega_{\theta}+\sin \theta \sin \phi \omega_{\psi}\right)-\Omega X=0 \tag{d}
\end{align*}
$$

The Ω-proportional terms in (d) are the acatastatic parts of these constraints, and arise out of our use of inertial coordinates to describe the kinematics in a noninertial frame; had we used plane-fixed (noninertial) coordinates, the constraints would have been catastatic in them. It is not hard to see that the kinematically admissible/possible and virtual forms of these constraints are, respectively (note differences between them resulting from constraint $\delta t=0$),

$$
\begin{align*}
& d X-r(\sin \phi d \theta-\sin \theta \cos \phi d \psi)+(\Omega Y) d t=0 \\
& d Y+r(\cos \phi d \theta+\sin \theta \sin \phi d \psi)-(\Omega X) d t=0 \tag{e}\\
& \delta X-r(\sin \phi \delta \theta-\sin \theta \cos \phi \delta \psi)=0 \\
& \delta Y+r(\cos \phi \delta \theta+\sin \theta \sin \phi \delta \psi)=0 \tag{f}
\end{align*}
$$

Example 2.13.6 Rolling Sphere on Spinning Table - the Transitivity Equations. Continuing from the preceding example, let us show that its rolling constraints (c-f); as well as those of its previous, stationary table case) are nonholonomic; that is, the system has $n=5$ DOF in the large, and $f \equiv n-m=5-2=3$ DOF in the small.

In view of the structure of these constraints, we choose the following equilibrium quasi velocities (with the usual notations: $d X / d t \equiv v_{X}, \ldots, d \phi / d t \equiv \omega_{\phi}, \ldots$):

Dependent:

$\omega_{1} \equiv v_{X}-r \omega_{Y}+\Omega Y=v_{X}-r\left(\sin \phi \omega_{\theta}-\cos \phi \sin \theta \omega_{\psi}\right)+\Omega Y=v_{X}-r \omega_{4}+\Omega Y(=0)$,
$\omega_{2} \equiv v_{Y}+r \omega_{X}-\Omega X=v_{Y}+r\left(\cos \phi \omega_{\theta}+\sin \phi \sin \theta \omega_{\psi}\right)-\Omega X=v_{Y}+r \omega_{3}-\Omega X(=0)$,

Independent:

$$
\begin{align*}
& \omega_{3} \equiv \omega_{X}=(\cos \phi) \omega_{\theta}+(\sin \phi \sin \theta) \omega_{\psi} \quad(\neq 0), \tag{c}\\
& \omega_{4} \equiv \omega_{Y}=(\sin \phi) \omega_{\theta}+(-\cos \phi \sin \theta) \omega_{\psi} \quad(\neq 0), \tag{d}\\
& \omega_{5} \equiv \omega_{Z}=(1) \omega_{\phi}+(\cos \theta) \omega_{\psi} \quad(\neq 0), \tag{e}\\
& \omega_{6} \equiv d t / d t=1 \quad \text { (isochrony). } \tag{f}
\end{align*}
$$

Recalling results from $\S 1.12$, we readily see that these partially decoupled equations invert to

$$
\begin{align*}
& v_{1} \equiv v_{X}=\omega_{1}+r \omega_{4}-\Omega Y \quad\left(\text { without enforcement of constraints } \omega_{1,2}=0\right), \\
& v_{2} \equiv v_{Y}=\omega_{2}-r \omega_{3}+\Omega X \quad\left(\text { without enforcement of constraints } \omega_{1,2}=0\right), \\
& v_{3} \equiv \omega_{\phi}=(-\cot \theta \sin \phi) \omega_{3}+(\cot \theta \cos \phi) \omega_{4}+\omega_{5}, \tag{g3}\\
& v_{4} \equiv \omega_{\theta}=(\cos \phi) \omega_{3}+(\sin \phi) \omega_{4}, \tag{g4}\\
& v_{5} \equiv \omega_{\psi}=(\sin \phi / \sin \theta) \omega_{3}+(-\cos \phi / \sin \theta) \omega_{4}, \tag{g5}\\
& v_{6} \equiv d t / d t=\omega_{6}=1 \tag{g6}
\end{align*}
$$

The virtual forms of (a-g6) are as follows [note absence of acatastatic terms in (h1, 2)]:

Dependent:

$$
\begin{align*}
& \delta \theta_{1} \equiv \delta X-r \delta \theta_{Y}=\delta X+(-r \sin \phi) \delta \theta+(r \cos \phi \sin \theta) \delta \psi=\delta X-r \delta \theta_{4} \quad(=0), \tag{h1}\\
& \delta \theta_{2} \equiv \delta Y+r \delta \theta_{X}=\delta Y+(r \cos \phi) \delta \theta+(r \sin \phi \sin \theta) \delta \psi=\delta Y+r \delta \theta_{3} \quad(=0) \tag{h2}
\end{align*}
$$

Independent:

$$
\begin{align*}
\delta \theta_{3} & \equiv \delta \theta_{X}=(\cos \phi) \delta \theta+(\sin \phi \sin \theta) \delta \psi \quad(\neq 0) \tag{h3}\\
\delta \theta_{4} & \equiv \delta \theta_{Y}=(\sin \phi) \delta \theta+(-\cos \phi \sin \theta) \delta \psi \quad(\neq 0), \tag{h4}\\
\delta \theta_{5} & \equiv \delta \theta_{Z}=(1) \delta \phi+(\cos \theta) \delta \psi \quad(\neq 0), \tag{h5}\\
\delta \theta_{6} & \left.\equiv \delta q_{6} \equiv \delta t=0 \quad \text { isochrony }\right) \tag{h6}\\
\delta q_{1} & \equiv \delta X=\delta \theta_{1}+r \delta \theta_{4} \tag{i1}\\
\delta q_{2} & \equiv \delta Y=\delta \theta_{2}-r \delta \theta_{3} \tag{i2}\\
\delta q_{3} & \equiv \delta \phi=(-\cot \theta \sin \phi) \delta \theta_{3}+(\cot \theta \cos \phi) \delta \theta_{4}+\delta \theta_{5}, \tag{i3}
\end{align*}
$$

$$
\begin{align*}
\delta q_{4} & \equiv \delta \theta=(\cos \phi) \delta \theta_{3}+(\sin \phi) \delta \theta_{4} \tag{i4}\\
\delta q_{5} & \equiv \delta \psi=(\sin \phi / \sin \theta) \delta \theta_{3}+(-\cos \phi / \sin \theta) \delta \theta_{4} \tag{i5}\\
\delta q_{6} & \equiv \delta t=\delta \theta_{6}=0 \tag{i6}
\end{align*}
$$

Now we are ready to calculate Hamel's coefficients from the transitivity equations (§2.10):

$$
\begin{equation*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\sum \sum \gamma_{r \beta}^{k} \omega_{\beta} \delta \theta_{r}=\sum \sum \gamma_{r S}^{k} \omega_{s} \delta \theta_{r}+\sum \gamma_{r}^{k} \delta \theta_{r} \tag{j}
\end{equation*}
$$

where $k, r, s=1, \ldots, 5 ; \beta=1, \ldots, 6 ; \gamma_{r}^{k} \equiv \gamma_{r, n+1}^{k}=\gamma_{r 6}^{k}{ }_{r}$
By direct differentiations, use of the above, and the indicated shortcuts [and noting that, even if $\Omega=\Omega(t)=$ given function of time, still $\delta \Omega=0$], we obtain, successively,

$$
\begin{aligned}
\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1} & =\left(\delta X-r \delta \theta_{Y}\right)^{\cdot}-\delta\left(v_{X}-r \omega_{Y}+\Omega Y\right) \\
& =\left[(\delta X)^{\cdot}-\delta v_{X}\right]-r\left[\left(\delta \theta_{Y}\right)^{\cdot}-\delta \omega_{Y}\right]-\Omega \delta Y \\
& =0-r\left[\left(\delta \theta_{4}\right)^{\cdot}-\delta \omega_{4}\right]-\Omega \delta Y
\end{aligned}
$$

[invoking the rotational transitivity equations (§1.14 and ex. 2.13.9), and (i2)]

$$
\begin{aligned}
& =-r\left(\omega_{Z} \delta \theta_{X}-\omega_{X} \delta \theta_{Z}\right)-\Omega\left(\delta \theta_{2}-r \delta \theta_{3}\right) \\
& =-r\left(\omega_{5} \delta \theta_{3}-\omega_{3} \delta \theta_{5}\right)-\Omega\left(\delta \theta_{2}-r \delta \theta_{3}\right)
\end{aligned}
$$

or, finally,

$$
\begin{align*}
\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1} & =(-r) \omega_{5} \delta \theta_{3}+(r) \omega_{3} \delta \theta_{5}+(-\Omega) \delta \theta_{2}+(r \Omega) \delta \theta_{3} \tag{kl}\\
\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2} & =\left(\delta Y+r \delta \theta_{X}\right)^{\cdot}-\delta\left(v_{Y}+r \omega_{X}-\Omega X\right) \\
& =\left[(\delta Y)^{\cdot}-\delta v_{Y}\right]+r\left[\left(\delta \theta_{X}\right)^{\cdot}-\delta \omega_{X}\right]+\Omega \delta X \\
& =0+r\left[\left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}\right]+\Omega \delta X
\end{align*}
$$

[invoking again the rotational transitivity equations and (i1)]

$$
\begin{aligned}
& =r\left(\omega_{Y} \delta \theta_{Z}-\omega_{Z} \delta \theta_{Y}\right)+\Omega\left(\delta \theta_{1}+r \delta \theta_{4}\right) \\
& =r\left(\omega_{4} \delta \theta_{5}-\omega_{5} \delta \theta_{4}\right)+\Omega\left(\delta \theta_{1}+r \delta \theta_{4}\right)
\end{aligned}
$$

or, finally,

$$
\begin{equation*}
\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=(-r) \omega_{5} \delta \theta_{4}+(r) \omega_{4} \delta \theta_{5}+(\Omega) \delta \theta_{1}+(r \Omega) \delta \theta_{4} \tag{k2}
\end{equation*}
$$

and, again, the rotational transitivity equations (with $X \rightarrow 3, Y \rightarrow 4, Z \rightarrow 5$) give

$$
\begin{align*}
& \left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}=\omega_{4} \delta \theta_{5}-\omega_{5} \delta \theta_{4} \tag{k3}\\
& \left(\delta \theta_{4}\right)^{\cdot}-\delta \omega_{4}=\omega_{5} \delta \theta_{3}-\omega_{3} \delta \theta_{5} \tag{k4}\\
& \left(\delta \theta_{5}\right)^{\cdot}-\delta \omega_{5}=\omega_{3} \delta \theta_{4}-\omega_{4} \delta \theta_{3} \tag{k5}
\end{align*}
$$

Comparing (j) with ($\mathrm{k} 1-5$) we readily find that the nonvanishing γ 's are

$$
\begin{align*}
& \gamma^{1}{ }_{35}=-\gamma^{1}{ }_{53}=-r, \quad \gamma^{1}{ }_{26}=-\gamma^{1}{ }_{62} \equiv \gamma^{1}{ }_{2}=-\Omega, \quad \gamma^{1}{ }_{36}=-\gamma^{1}{ }_{63} \equiv \gamma^{1}{ }_{3}=r \Omega \tag{11}\\
& \gamma^{2}{ }_{45}=-\gamma^{2}{ }_{54}=-r, \quad \gamma^{2}{ }_{16}=-\gamma^{2}{ }_{61} \equiv \gamma^{2}{ }_{1}=\Omega, \quad \gamma^{2}{ }_{46}=-\gamma^{2}{ }_{64} \equiv \gamma^{2}{ }_{4}=r \Omega \tag{12}\\
& \gamma^{3}{ }_{45}=-\gamma^{3}{ }_{54}=\gamma^{4}{ }_{53}=-\gamma^{4}{ }_{35}=\gamma^{5}{ }_{34}=-\gamma^{5}{ }_{43}=-1 \quad[=-1 \text { (permutation symbol) }] . \tag{13}
\end{align*}
$$

Here, $D($ ependent $)=1,2$ and $I, I^{\prime}($ ndependent $\left.)\right)=3,4,5$. Therefore,

$$
\begin{equation*}
\gamma_{I I^{\prime}}^{D}: \gamma_{35}^{1}=-r \neq 0, \gamma_{45}^{2}=-r \neq 0 ; \quad \gamma_{I}^{D}: \gamma_{3}^{1}=\gamma_{4}^{2}=r \Omega \neq 0 \tag{m}
\end{equation*}
$$

and so, according to Frobenius' theorem (§2.12), the system of Pfaffian constraints $\omega_{1}=0$ and $\omega_{2}=0$ is nonholonomic, in both the catastatic (rolling on fixed plane) and acatastatic (rolling on rotating plane) cases; that is, for any given $\Omega=\Omega(t)$.

Example 2.13.7 Rolling Disk on Fixed Plane. Let us consider a thin circular disk (or coin, or ring, or hoop), of radius r and center G, rolling on a fixed horizontal and rough plane (fig. 2.20). A generic configuration of the disk is determined by the following six Lagrangean coordinates:
X, Y, Z : inertial coordinates of G;
ϕ, θ, ψ : Eulerian angles of body-fixed axes $G-x y z$ relative to the cotranslating but nonrotating axes $G-X Y Z$ (similar to the rolling sphere case).

$$
\begin{array}{|l}
\boldsymbol{i}^{\prime}=\cos \phi \boldsymbol{I}+\sin \phi \boldsymbol{J}, \quad \boldsymbol{j}^{\prime}=\cos \theta \boldsymbol{u}_{N}+\sin \theta \boldsymbol{K}, \quad \boldsymbol{k}^{\prime}=-\sin \theta \boldsymbol{u}_{N}+\cos \theta \boldsymbol{K} ; \\
\boldsymbol{u}_{N}=-\sin \phi \boldsymbol{I}+\cos \phi \boldsymbol{J}, \quad \boldsymbol{u}_{n} \equiv \boldsymbol{i}^{\prime}
\end{array}
$$

Figure 2.20 Geometry and kinematics of circular disk rolling on fixed rough plane. Axes: $G-n N Z \equiv G-x^{\prime} N Z$: semifixed; $G-n n^{\prime} z \equiv G-x^{\prime} y^{\prime} z^{\prime}$: semimobile; $G-x y z$: body axes (not shown, but easily pictured); $G-X Y Z$: space axes.
[In view of the complicated geometry, we avoid all ad hoc, possibly shorter, treatments, in favor of a fairly general and uniform approach. An alternative description is shown later.]

The vertical coordinate of G, clearly, satisfies the holonomic constraint

$$
\begin{equation*}
Z=r \sin \theta \tag{a}
\end{equation*}
$$

and this brings the number of independent Lagrangean coordinates down to five: X, Y, ϕ, θ, ψ; that is, $n=5$.

The rolling constraint becomes, successively,

$$
\begin{align*}
\mathbf{0}=\boldsymbol{v}_{C} & =\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G} \quad(\boldsymbol{\omega}: \text { inertial angular velocity of disk) } \\
& =\boldsymbol{v}_{G}-r \boldsymbol{\omega} \times \boldsymbol{j}^{\prime} \\
& =\boldsymbol{v}_{G}-r\left(\omega_{x^{\prime}} \boldsymbol{i}^{\prime}+\omega_{y^{\prime}} \boldsymbol{j}^{\prime}+\omega_{z^{\prime}} \boldsymbol{k}^{\prime}\right) \times \boldsymbol{j}^{\prime} \quad(\text { semimobile } \omega \text {-decomposition) } \\
& =\boldsymbol{v}_{G}-r \omega_{x^{\prime}}\left(\boldsymbol{i}^{\prime} \times \boldsymbol{j}^{\prime}\right)-r \omega_{z^{\prime}}\left(\boldsymbol{k}^{\prime} \times \boldsymbol{j}^{\prime}\right) \\
& =\boldsymbol{v}_{G}-r \omega_{x^{\prime}}\left(\boldsymbol{k}^{\prime}\right)-r \omega_{z^{\prime}}\left(-\boldsymbol{i}^{\prime}\right) \tag{b}
\end{align*}
$$

from which we obtain the constraint components along the two "natural" (semifixed) directions $n\left(\boldsymbol{i}^{\prime}\right)$ and $N\left(\boldsymbol{u}_{N}\right)$:

$$
\begin{equation*}
0=\boldsymbol{v}_{C} \cdot \boldsymbol{i}^{\prime}=\boldsymbol{v}_{G} \cdot \boldsymbol{i}^{\prime}+r \omega_{z^{\prime}} \quad \text { or } \quad v_{G, n}+r \omega_{z^{\prime}}=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
0=\boldsymbol{v}_{C} \cdot \boldsymbol{u}_{N}=\boldsymbol{v}_{G} \cdot \boldsymbol{u}_{N}-r \omega_{x^{\prime}}\left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{u}_{N}\right)+r \omega_{z^{\prime}}\left(\boldsymbol{i}^{\prime} \cdot \boldsymbol{u}_{N}\right)=\boldsymbol{v}_{G} \cdot \boldsymbol{u}_{N}-r \omega_{x^{\prime}}\left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{u}_{N}\right) \tag{c1}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{G, N}-r \omega_{x^{\prime}} \cos (\pi / 2+\theta)=v_{G, N}+r \omega_{x^{\prime}} \sin \theta=0 \tag{c2}
\end{equation*}
$$

The third semifixed direction component gives the earlier constraint (a):

$$
0=\boldsymbol{v}_{C} \cdot \boldsymbol{K}=\boldsymbol{v}_{G} \cdot \boldsymbol{K}-r \omega_{x^{\prime}}\left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{K}\right)+r \omega_{z^{\prime}}\left(\boldsymbol{i}^{\prime} \cdot \boldsymbol{K}\right)=\boldsymbol{v}_{G} \cdot \boldsymbol{K}-r \omega_{x^{\prime}}\left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{K}\right)
$$

or, since $\omega_{x^{\prime}}=\omega_{\theta}$,

$$
0=v_{G, Z}-r \omega_{\theta} \cos \theta \Rightarrow d Z-r \cos \theta d \theta=0 \Rightarrow Z-r \sin \theta=\text { constant } \rightarrow 0
$$

Equations ($\mathrm{c} 1,2$) contain nonholonomic velocities. Let us express them in terms of holonomic velocities exclusively. It is not hard to see that, with $\boldsymbol{v}_{G}=(\dot{X}, \dot{Y}, \dot{Z}) \equiv\left(v_{X}, v_{Y}, v_{Z}\right)$,

$$
\begin{equation*}
\omega_{x^{\prime}}=\omega_{\theta}, \quad \omega_{y^{\prime}}=(\sin \theta) \omega_{\phi}, \quad \omega_{z^{\prime}}=(\cos \theta) \omega_{\phi}+\omega_{\psi} \tag{i}
\end{equation*}
$$

(ii) $v_{G, n}=\boldsymbol{v}_{G} \cdot \boldsymbol{i}^{\prime} \equiv \boldsymbol{v}_{G} \cdot \boldsymbol{u}_{n}$

$$
\begin{equation*}
=\left(v_{X} \boldsymbol{I}+v_{Y} \boldsymbol{J}+v_{Z} \boldsymbol{K}\right) \cdot(\cos \phi \boldsymbol{I}+\sin \phi \boldsymbol{J})=(\cos \phi) v_{X}+(\sin \phi) v_{Y} \tag{d2}
\end{equation*}
$$

(iii) $v_{G, N}=\boldsymbol{v}_{G} \cdot \boldsymbol{u}_{N}$

$$
\begin{equation*}
=\left(v_{X} \boldsymbol{I}+v_{Y} \boldsymbol{J}+v_{Z} \boldsymbol{K}\right) \cdot(-\sin \phi \boldsymbol{I}+\cos \phi \boldsymbol{J})=(-\sin \phi) v_{X}+(\cos \phi) v_{Y} \tag{d3}
\end{equation*}
$$

With the help of ($\mathrm{d} 1-3$), the constraints $(\mathrm{c} 1,2)$ take, respectively, the holonomic velocities form:

$$
\begin{equation*}
\boldsymbol{v}_{C} \cdot \boldsymbol{i}^{\prime} \equiv v_{C, n}=(\cos \phi) v_{X}+(\sin \phi) v_{Y}+r\left(\omega_{\psi}+\cos \theta \omega_{\phi}\right)=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{v}_{C} \cdot \boldsymbol{u}_{N} \equiv v_{C, N}=(-\sin \phi) v_{X}+(\cos \phi) v_{Y}+r \sin \theta \omega_{\theta}=0 \tag{el}
\end{equation*}
$$

In view of (e1, 2), we introduce the following equilibrium quasi velocities:
Dependent:

$$
\begin{align*}
& \omega_{1} \equiv v_{C, n}=v_{G, n}+r \omega_{z^{\prime}}=(\cos \phi) v_{X}+(\sin \phi) v_{Y}+(r \cos \theta) \omega_{\phi}+(r) \omega_{\psi} \quad(=0), \tag{f1}\\
& \omega_{2} \equiv v_{C, N}=v_{G, N}+r \sin \theta \omega_{x^{\prime}}=(-\sin \phi) v_{X}+(\cos \phi) v_{Y}+(r \sin \theta) \omega_{\theta} \quad(=0) ; \tag{f2}
\end{align*}
$$

Independent (semimobile components of ω):

$$
\begin{align*}
& \omega_{3} \equiv \omega_{n} \equiv \omega_{x^{\prime}}=\omega_{\theta} \quad(\neq 0) \tag{f3}\\
& \omega_{4} \equiv \omega_{n^{\prime}} \equiv \omega_{y^{\prime}}=(\sin \theta) \omega_{\phi} \quad(\neq 0) \tag{f4}\\
& \omega_{5} \equiv \omega_{z} \equiv \omega_{z^{\prime}}=(\cos \theta) \omega_{\phi}+\omega_{\psi} \quad(\neq 0) \tag{f5}
\end{align*}
$$

These catastatic, and partially uncoupled, equations invert easily to

$$
\begin{align*}
& v_{1} \equiv v_{X}=(\cos \phi) \omega_{1}+(-\sin \phi) \omega_{2}+(r \sin \theta \sin \phi) \omega_{3}+(-r \cos \phi) \omega_{5} \tag{g1}\\
& v_{2} \equiv v_{Y}=(\sin \phi) \omega_{1}+(\cos \phi) \omega_{2}+(-r \sin \theta \cos \phi) \omega_{3}+(-r \sin \phi) \omega_{5} \tag{g2}\\
& v_{3} \equiv \omega_{\phi}=(1 / \sin \theta) \omega_{4}, \tag{g3}\\
& v_{4} \equiv \omega_{\theta}=\omega_{3} \tag{g4}\\
& v_{5} \equiv \omega_{\psi}=\omega_{5}-(\cot \theta) \omega_{4} . \tag{g5}
\end{align*}
$$

Below, we show that the constraints $\omega_{1}=0$ and $\omega_{2}=0$ are nonholonomic; that is, $n=5$ global DOF, $m=2 \rightarrow f \equiv n-m=3$ local DOF .

Indeed, by direct d - and δ-operations on (f1-g5), and their virtual forms (which can be obtained from the above velocity forms in, by now, obvious ways), and combination of simple shortcuts with some straightforward algebra, we find, successively,

$$
\begin{align*}
& \left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1}=\left[\left(\delta p_{G, n}\right)^{\cdot}-\delta v_{G, n}\right]+r\left[\left(\delta \theta_{5}\right)^{\cdot}-\delta \omega_{5}\right] \quad\left[\text { where } \quad d p_{G, n} \equiv v_{G, n} d t\right] \\
& =\cdots=\left\{[(\cos \phi) \delta X+(\sin \phi) \delta Y]^{\cdot}-\delta\left[(\cos \phi) v_{X}+(\sin \phi) v_{Y}\right]\right\} \\
& +r\left(\omega_{4} \delta \theta_{3}-\omega_{3} \delta \theta_{4}\right) \\
& =\cdots=\left\{\omega_{\phi}[(-\sin \phi) \delta X+(\cos \phi) \delta Y]-\delta \phi\left[(-\sin \phi) v_{X}+(\cos \phi) v_{Y}\right]\right\} \\
& +r\left(\omega_{4} \delta \theta_{3}-\omega_{3} \delta \theta_{4}\right) \\
& =\left(\omega_{\phi} \delta p_{G, N}-v_{G, N} \delta \phi\right)+r\left(\omega_{4} \delta \theta_{3}-\omega_{3} \delta \theta_{4}\right) \quad\left[\text { where } \quad d p_{G, N} \equiv v_{G, N} d t\right] \\
& =\left[\left(\omega_{4} / \sin \theta\right) \delta p_{G, N}-v_{G, N}\left(\delta \theta_{4} / \sin \theta\right)\right]+r\left(\omega_{4} \delta \theta_{3}-\omega_{3} \delta \theta_{4}\right) \\
& =\left(\omega_{4} / \sin \theta\right)\left(\delta p_{G, N}+r \sin \theta \delta \theta_{3}\right)-\left(\delta \theta_{4} / \sin \theta\right)\left(v_{G, N}+r \sin \theta \omega_{3}\right) \\
& =(1 / \sin \theta)\left(\omega_{4} \delta p_{C, N}-v_{C, N} \delta \theta_{4}\right) \quad\left[\text { where } \quad d p_{C, N} \equiv v_{C, N} d t\right] \\
& =(1 / \sin \theta)\left(\omega_{4} \delta \theta_{2}-\omega_{2} \delta \theta_{4}\right)=0 \\
& \text { (after enforcing the constraints } \delta \theta_{2}, \omega_{2}=0 \text {), } \tag{h1}
\end{align*}
$$

$$
\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=\left[\left(\delta p_{G, N}\right)^{\cdot}-\delta v_{G, N}\right]+\left[\left(r \sin \theta \delta \theta_{3}\right)^{\cdot}-\delta\left(r \sin \theta \omega_{3}\right)\right]
$$

[since $\omega_{3} \sin \theta=\omega_{\theta} \sin \theta$ is integrable, the second bracket term vanishes]

$$
=[(-\sin \phi) \delta X+(\cos \phi) \delta Y]^{\cdot}-\delta\left[(-\sin \phi) v_{X}+(\cos \phi) v_{Y}\right]
$$

$$
=-\omega_{\phi}(\cos \phi \delta X+\sin \phi \delta Y)+\delta \phi\left[(\cos \phi) v_{X}+(\sin \phi) v_{Y}\right]
$$

$$
=-\omega_{\phi} \delta p_{G, n}+\delta \phi v_{G, n}
$$

$$
=-\left(\omega_{4} / \sin \theta\right)\left(\delta \theta_{1}-r \delta \theta_{5}\right)+\left(\delta \theta_{4} / \sin \theta\right)\left(\omega_{1}-r \omega_{5}\right)
$$

$$
=-(1 / \sin \theta)\left(\omega_{4} \delta \theta_{1}-\omega_{1} \delta \theta_{4}\right)+(r / \sin \theta)\left(\omega_{4} \delta \theta_{5}-\omega_{5} \delta \theta_{4}\right)
$$

$$
=(r / \sin \theta)\left(\omega_{4} \delta \theta_{5}-\omega_{5} \delta \theta_{4}\right) \neq 0
$$

$$
\begin{equation*}
\text { (even after enforcing the constraints } \delta \theta_{1}, \omega_{1}=0 \text {); } \tag{h2}
\end{equation*}
$$

$\left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}=0$ (independently of constraints) $\Rightarrow \theta_{3}=$ holonomic coordinate,

$$
\begin{align*}
\left(\delta \theta_{4}\right)^{\cdot}-\delta \omega_{4} & =(\sin \theta \delta \theta)^{\cdot}-\delta\left(\sin \theta \omega_{\phi}\right)=(\cos \theta)\left(\omega_{\theta} \delta \phi-\omega_{\phi} \delta \theta\right) \tag{h3}\\
& =(\cot \theta)\left(\omega_{3} \delta \theta_{4}-\omega_{4} \delta \theta_{3}\right) \tag{h4}\\
\left(\delta \theta_{5}\right)^{\cdot}-\delta \omega_{5} & =(\delta \psi+\cos \theta \delta \phi)^{\cdot}-\delta\left(\omega_{\psi}+\cos \theta \omega_{\phi}\right)=(\sin \theta)\left(\omega_{\phi} \delta \theta-\omega_{\theta} \delta \phi\right) \\
& =\omega_{4} \delta \theta_{3}-\omega_{3} \delta \theta_{4} ; \tag{h5}
\end{align*}
$$

and since $Z=r \sin \theta$, with $\omega_{6} \equiv v_{Z}-r \cos \theta \omega_{\theta} \Rightarrow \delta \theta_{6}=\delta Z-r \cos \theta \delta \theta$, we get

$$
\begin{aligned}
\left(\delta \theta_{6}\right)^{\cdot}-\delta \omega_{6} & =(\delta Z-r \cos \theta \delta \theta)^{\cdot}-\delta\left(v_{Z}-r \cos \theta \omega_{\theta}\right) \\
& =(\delta Z)^{\cdot}-r(\cos \theta)^{\cdot} \delta \theta-r \cos \theta(\delta \theta)^{\cdot}-\delta v_{Z}+r(-\sin \theta) \delta \theta \omega_{\theta}+r \cos \theta \delta \omega_{\theta}=0
\end{aligned}
$$

(independently of the other constraints) as expected.
From the above, we immediately read off the nonvanishing γ 's:

$$
\begin{align*}
& \gamma^{1}{ }_{24}=-\gamma^{1}{ }_{42}=1 / \sin \theta ; \\
& \gamma^{2}{ }_{41}=-\gamma^{2}{ }_{14}=1 / \sin \theta, \quad \gamma^{2}{ }_{54}=-\gamma^{2}{ }_{45}=r / \sin \theta ; \\
& \gamma^{4}{ }_{43}=-\gamma^{4}{ }_{34}=\cot \theta ; \\
& \gamma^{5}{ }_{34}=-\gamma^{5}{ }_{43}=1 . \tag{i}
\end{align*}
$$

Here, $D($ ependent $)=1,2$ and $I, I^{\prime}($ ndependent $)=3,4,5$. Therefore,

$$
\begin{equation*}
\gamma_{I I^{\prime}}^{D}: \quad \gamma_{54}^{2}=r / \sin \theta \neq 0 ; \tag{j}
\end{equation*}
$$

and so, according to Frobenius' theorem (§2.12), the system of Pfaffian constraints $\omega_{1}=0$ and $\omega_{2}=0$ is nonholonomic. We also notice that to calculate all nonvanishing γ 's, we must refrain from enforcing the constraints $\omega_{1}, \delta \theta_{1}=0$ and $\omega_{2}, \delta \theta_{2}=0$, in the earlier bilinear covariants.

Rolling Constraints via Components along Space Axes
With reference to fig. 2.20, we have, successively,

$$
\begin{align*}
\boldsymbol{r}_{C / G} & =-(r \cos \theta) \boldsymbol{u}_{N}-(r \sin \theta) \boldsymbol{K}=(-r \cos \theta)(-\sin \phi \boldsymbol{I}+\cos \phi \boldsymbol{J})+(-r \sin \theta) \boldsymbol{K} \\
& =(r \cos \theta \sin \phi) \boldsymbol{I}+(-r \cos \theta \cos \phi) \boldsymbol{J}+(-r \sin \theta) \boldsymbol{K}, \tag{k1}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{\omega}=\omega_{X} \boldsymbol{I}+\omega_{Y} \boldsymbol{J}+\omega_{Z} \boldsymbol{K} \quad[\text { recalling formulae in §1.12] } \\
&=\left[(\cos \phi) \omega_{\theta}+(\sin \phi \sin \theta) \omega_{\psi}\right] \boldsymbol{I}+\left[(\sin \phi) \omega_{\theta}\right.\left.+(-\cos \phi \sin \theta) \omega_{\psi}\right] \boldsymbol{J} \\
&+\left[\omega_{\phi}+(\cos \theta) \omega_{\psi}\right] \boldsymbol{K}, \tag{k2}
\end{align*}
$$

and, of course,

$$
\begin{equation*}
\boldsymbol{v}_{G}=v_{X} \boldsymbol{I}+v_{Y} \boldsymbol{J}+v_{Z} \boldsymbol{K} \tag{k3}
\end{equation*}
$$

Substituting these fixed-axes representations into the constraint (b): $\mathbf{0}=\boldsymbol{v}_{C}=\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}$, and setting its components along $\boldsymbol{I}, \boldsymbol{J}, \boldsymbol{K}$, equal to zero, we obtain the scalar conditions:

$$
\begin{aligned}
v_{X}+r\left(\cos \phi \cos \theta \omega_{Z}-\right. & \left.\sin \theta \omega_{Y}\right) \\
& =v_{X}+r\left[(\cos \phi \cos \theta) \omega_{\phi}-(\sin \phi \sin \theta) \omega_{\theta}+(\cos \phi) \omega_{\psi}\right]=0,
\end{aligned}
$$

$v_{Y}+r\left(\sin \theta \omega_{X}+\sin \phi \cos \theta \omega_{Z}\right)$

$$
=v_{Y}+r\left[(\sin \phi \cos \theta) \omega_{\phi}+(\cos \phi \sin \theta) \omega_{\theta}+(\sin \phi) \omega_{\psi}\right]=0,
$$

$$
v_{Z}-r \cos \theta\left(\cos \phi \omega_{X}+\sin \phi \omega_{Y}\right)
$$

$$
\begin{equation*}
=v_{Z}-r \cos \theta \omega_{\theta}=0 \Rightarrow Z=r \sin \theta \quad \text { (i.e., holonomic) } \tag{k4,5,6}
\end{equation*}
$$

We leave it to the reader to verify that $(\mathrm{k} 4,5)$ are equivalent to the earlier (e1-f2); and, also, that they can be brought to the (perhaps simpler) form,

$$
\begin{equation*}
[(X / r)+\sin \phi \cos \theta]^{\cdot}+(\cos \phi) \omega_{\psi}=0, \quad[(Y / r)+\cos \phi \cos \theta]^{\cdot}+(\sin \phi) \omega_{\psi}=0 \tag{k7}
\end{equation*}
$$

Constraints and Transitivity Equations in Terms of the (Inertial) Coordinates of the Contact Point of the Disk (X_{C}, Y_{C})
[This is a popular choice among mechanics authors (e.g., Hamel, 1949, pp. 470 ff ., 478-479; Rosenberg, 1977, pp. 265 ff .) but our choice - that is, in terms of the coordinates of the disk center, G - shows more clearly the connection with the Eulerian angles.]

Taking the fixed-axes components of the obvious relation $\boldsymbol{r}_{G}=\boldsymbol{r}_{C}+\boldsymbol{r}_{G / C}$, and then $d / d t(\ldots)$-differentiating them, we obtain (consulting again fig. 2.20, and with $\left.v_{C, X} \equiv d X_{C} / d t, v_{C, Y} \equiv d Y_{C} / d t\right)$
(i) $X=X_{C}-(r \cos \theta) \sin \phi \Rightarrow v_{X}=v_{C, X}-(r \cos \phi \cos \theta) \omega_{\phi}+(r \sin \phi \sin \theta) \omega_{\theta}$,
(ii) $Y=Y_{C}+(r \cos \theta) \cos \phi \Rightarrow v_{Y}=v_{C, Y}-(r \sin \phi \cos \theta) \omega_{\phi}-(r \cos \phi \sin \theta) \omega_{\theta}$;
and substituting these v_{X}, v_{Y} expressions into ($k 4,5$), respectively, we eventually obtain the simpler forms

$$
\begin{equation*}
v_{C, X}+(r \cos \phi) \omega_{\psi}=0 \quad \text { and } \quad v_{C, Y}+(r \sin \phi) \omega_{\psi}=0 \tag{13}
\end{equation*}
$$

(The above can, also, be obtained by ad hoc knife problem-type considerations.)

In view of (13), we introduce the following new equilibrium quasi velocities:

Dependent:

$$
\begin{array}{ll}
\omega_{1} \equiv v_{C, X}+(r \cos \phi) \omega_{\psi} & (=0), \\
\omega_{2} \equiv v_{C, Y}+(r \sin \phi) \omega_{\psi} & (=0) ; \tag{m2}
\end{array}
$$

Independent:

$$
\begin{align*}
\omega_{3} & \equiv \omega_{\phi}(\neq 0) \Rightarrow \gamma^{3} . .=0 \tag{m3}\\
\omega_{4} & \equiv \omega_{\theta}(\neq 0) \Rightarrow \gamma^{4} . .=0 \tag{m4}\\
\omega_{5} & \equiv(\cos \phi) v_{C, X}+(\sin \phi) v_{C, Y} \quad\left[=-r \omega_{\psi}, \text { by }(13)\right] ; \tag{m5}
\end{align*}
$$

or, instead, the equivalent but simpler, knife-type, quasi velocities:
Dependent:

$$
\begin{align*}
& \Omega_{1} \equiv(-\sin \phi) v_{C, X}+(\cos \phi) v_{C, Y} \quad[=0, \text { by }(13)], \tag{n1}\\
& \Omega_{2} \equiv r \omega_{\psi}+(\cos \phi) v_{C, X}+(\sin \phi) v_{C, Y}=r \omega_{\psi}+\omega_{5}(=0) \tag{n2}
\end{align*}
$$

Independent:

$$
\begin{align*}
& \Omega_{3} \equiv \omega_{3} \equiv \omega_{\phi} \quad(\neq 0) \tag{n3}\\
& \Omega_{4} \equiv \omega_{4} \equiv \omega_{\theta} \quad(\neq 0) \tag{n4}\\
& \Omega_{5} \equiv \omega_{5} \equiv(\cos \phi) v_{C, X}+(\sin \phi) v_{C, Y} \quad\left[=-r \omega_{\psi}+\Omega_{2}=-r \omega_{\psi}\right] . \tag{n5}
\end{align*}
$$

Inverting the above yields

$$
\begin{align*}
& v_{1} \equiv v_{C, X}=(-\sin \phi) \Omega_{1}+(\cos \phi) \Omega_{5}, \tag{ol}\\
& v_{2} \equiv v_{C, Y}=(\cos \phi) \Omega_{1}+(\sin \phi) \Omega_{5}, \tag{o2}\\
& v_{3} \equiv \omega_{\phi}=\Omega_{3}, \tag{o3}\\
& v_{4} \equiv \omega_{\theta}=\Omega_{4}, \tag{o4}\\
& v_{5} \equiv \omega_{\psi}=(1 / r)\left(\Omega_{2}-\Omega_{5}\right) . \tag{o5}
\end{align*}
$$

By direct d / δ-differentiations of (n1-5), use of (o1-5), and the obvious notation $d \Theta_{k} \equiv \Omega_{k} d t ; k=1, \ldots, 5$, we obtain the corresponding transitivity equations as follows:

$$
\begin{align*}
\left(\delta \Theta_{1}\right)^{\cdot}-\delta \Omega_{1}= & {\left[(-\sin \phi) \delta X_{C}+(\cos \phi) \delta Y_{C}\right]^{\cdot}-\delta\left[(-\sin \phi) v_{C, X}+(\cos \phi) v_{C, Y}\right] } \\
= & \cdots=\cos \phi\left(v_{C, X} \delta \phi-\omega_{\phi} \delta X_{C}\right)+\sin \phi\left(v_{C, Y} \delta \phi-\omega_{\phi} \delta Y_{C}\right) \\
= & \cos \phi\left[\left(-\sin \phi \Omega_{1}+\cos \phi \Omega_{5}\right) \delta \Theta_{3}-\Omega_{3}\left(-\sin \phi \delta \Theta_{1}+\cos \phi \delta \Theta_{5}\right)\right] \\
& +\sin \phi\left[\left(\cos \phi \Omega_{1}+\sin \phi \Omega_{5}\right) \delta \Theta_{3}-\Omega_{3}\left(\cos \phi \delta \Theta_{1}+\sin \phi \delta \Theta_{5}\right)\right] \\
= & \Omega_{5} \delta \Theta_{3}-\Omega_{3} \delta \Theta_{5}, \tag{p1}
\end{align*}
$$

$$
\begin{align*}
\left(\delta \Theta_{2}\right)^{\cdot}-\delta \Omega_{2}= & {\left[r \delta \psi+(\cos \phi) \delta X_{C}+(\sin \phi) \delta Y_{C}\right]^{\cdot}-\delta\left[r \omega_{\psi}+(\cos \phi) v_{C, X}+(\sin \phi) v_{C, Y}\right] } \\
= & \cdots=\sin \phi\left(v_{C, X} \delta \phi-\omega_{\phi} \delta X_{C}\right)+\cos \phi\left(\omega_{\phi} \delta Y_{C}-v_{C, Y} \delta \phi\right) \\
= & \sin \phi\left[\left(-\sin \phi \Omega_{1}+\cos \phi \Omega_{5}\right) \delta \Theta_{3}-\Omega_{3}\left(-\sin \phi \delta \Theta_{1}+\cos \phi \delta \Theta_{5}\right)\right] \\
& +\cos \phi\left[\Omega_{3}\left(\cos \phi \delta \Theta_{1}+\sin \phi \delta \Theta_{5}\right)-\left(\cos \phi \Omega_{1}+\sin \phi \Omega_{5}\right) \delta \Theta_{3}\right] \\
= & \Omega_{3} \delta \Theta_{1}-\Omega_{1} \delta \Theta_{3} \\
& \quad\left(=0, \text { upon imposition of the constraints } \delta \Theta_{1}, \Omega_{1}=0\right), \\
\left(\delta \Theta_{3}\right)^{\cdot}-\delta \Omega_{3}= & (\delta \phi)^{\cdot}-\delta \omega_{\phi}=0 \quad\left(\Theta_{3}=\text { holonomic }\right), \tag{p3}\\
\left(\delta \Theta_{4}\right)^{\cdot}-\delta \Omega_{4}= & (\delta \theta)^{\cdot}-\delta \omega_{\theta}=0 \quad\left(\Theta_{4}=\text { holonomic }\right), \tag{p4}\\
\left(\delta \Theta_{5}\right)^{\cdot}-\delta \Omega_{5}= & {\left[(\cos \phi) \delta X_{C}+(\sin \phi) \delta Y_{C}\right]^{\cdot}-\delta\left[(\cos \phi) v_{C, X}+(\sin \phi) v_{C, Y}\right] } \\
= & (-r \delta \psi)^{\cdot}-\delta\left(-r \omega_{\psi}\right)+\left(\delta \Theta_{2}\right)^{\cdot}-\delta \Omega_{2}=0+\Omega_{3} \delta \Theta_{1}-\Omega_{1} \delta \Theta_{3} \\
= & \Omega_{3} \delta \Theta_{1}-\Omega_{1} \delta \Theta_{3} \\
& \quad\left(=0, \text { upon imposition of the constraints } \delta \Theta_{1}, \Omega_{1}=0\right) ; \tag{p5}
\end{align*}
$$

that is, just like the knife problem (ex. 2.13.2), all the γ 's are either ± 1 or 0 .
Finally, here, $D($ ependent $)=1,2$ and $I, I^{\prime}($ ndependent $)=3,4,5$. Therefore,

$$
\begin{equation*}
\gamma_{I I^{\prime}}^{D}: \quad \gamma_{35}^{1}=-\gamma_{53}^{1}=1 \neq 0 \tag{j}
\end{equation*}
$$

and so, by Frobenius' theorem (§2.12), the constraint system $\Omega_{1}=0$ and $\Omega_{2}=0$ is nonholonomic.

Problem 2.13.3 Rolling Disk in Accelerating Plane. Continuing from the preceding example, show that if the plane translates (i.e., no rotation), relative to inertial space, with a given velocity $\left(v_{X}(t), v_{Y}(t), v_{Z}(t)\right.$), and the new inertial axes $O-X Y Z$ are chosen so that $O Z$ is always perpendicular to the translating plane, and X, Y, Z are the new inertial coordinates of the center of the disk G, then the rolling constraints take the rheonomic form

$$
\begin{align*}
& (\cos \phi)\left[V_{X}-v_{X}(t)\right]+(\sin \phi)\left[V_{Y}-v_{Y}(t)\right]+(r \cos \theta) \omega_{\phi}+(r) \omega_{\psi}=0, \tag{a}\\
& (-\sin \phi)\left[V_{X}-v_{X}(t)\right]+(\cos \phi)\left[V_{Y}-v_{Y}(t)\right]+(r \sin \theta) \omega_{\theta}=0 \tag{b}
\end{align*}
$$

where $V_{X} \equiv d X / d t, V_{Y} \equiv d Y / d t ; \omega_{\phi} \equiv d \phi / d t$, and so on; that is, they are the same as in the fixed plane case, but with \boldsymbol{v}_{G} replaced with $\boldsymbol{v}_{G}-\boldsymbol{v}_{C}$ (where \boldsymbol{v}_{C} is the inertial velocity of contact point of disk with plane).

Example 2.13.8 Pair of Rolling Wheels on an Axle. Let us discuss the kinematics of a pair of two thin identical wheels, each of radius r, connected by a light axle and able to turn freely about its ends (fig. 2.21), rolling on a fixed, horizontal, and rough plane. For its description, we choose the following $($ six \rightarrow) five Lagrangean coordinates:
$(X, Y, Z=r)$: inertial coordinates of midpoint of axle, G;
ϕ : angle between the $O-X Y$ projection of the axle (say, from $G^{\prime \prime}$ toward G^{\prime}) and $+O X$;
$\psi^{\prime}, \psi^{\prime \prime}$: spin angles of the two wheels.

Figure 2.21 Rolling of two wheels on an axle, on fixed plane.

Here, the constraints are $\boldsymbol{v}_{C^{\prime}}=\mathbf{0}$ and $\boldsymbol{v}_{C^{\prime \prime}}=\mathbf{0}$, where C^{\prime} and $C^{\prime \prime}$ are the contact points of the two wheels. However, due to the constancy of $G^{\prime \prime} G^{\prime}$ (and $C^{\prime \prime} C^{\prime}=2 b$) and the continuous perpendicularity of the wheels to the axle, these conditions translate to three independent component equations, not four; say, the vanishing of $\boldsymbol{v}_{C^{\prime}}$ and $\boldsymbol{v}_{C^{\prime \prime}}$ along and perpendicularly to the axle (the "natural" directions of the problem). Let us express this analytically: since

$$
\boldsymbol{v}_{C^{\prime}}=\boldsymbol{v}_{G^{\prime}}+\omega_{w^{\prime}} \times \boldsymbol{r}_{C^{\prime} / G^{\prime}}=\left(\boldsymbol{v}_{G}+\omega_{A} \times \boldsymbol{r}_{G^{\prime} / G}\right)+\omega_{w^{\prime}} \times \boldsymbol{r}_{C^{\prime} / G^{\prime}}
$$

[$\omega_{w^{\prime}}$ and ω_{A} : inertial angular velocities of first wheel and axle, respectively]

$$
\begin{align*}
& =\left(v_{X}, v_{Y}, 0\right)+\left(0,0, \omega_{\phi}\right) \times(b \cos \phi, b \sin \phi, 0)+\left(\omega_{\psi^{\prime}} \cos \phi, \omega_{\psi^{\prime}} \sin \phi, \omega_{\phi}\right) \times(0,0,-r) \\
& =\left(v_{X}-b \omega_{\phi} \sin \phi-r \omega_{\psi^{\prime}} \sin \phi, v_{Y}+b \omega_{\phi} \cos \phi+r \omega_{\psi^{\prime}} \cos \phi, 0\right) \tag{a}
\end{align*}
$$

and similarly, for the second wheel [whose inertial angular velocity is $\omega_{w^{\prime \prime}}=$ $\left.\left(\omega_{\psi^{\prime \prime}} \cos \phi, \omega_{\psi^{\prime \prime}} \sin \phi, \omega_{\phi}\right)\right]$,

$$
\begin{equation*}
\boldsymbol{v}_{C^{\prime \prime}}=\left(v_{X}+b \omega_{\phi} \sin \phi-r \omega_{\psi^{\prime \prime}} \sin \phi, v_{Y}-b \omega_{\phi} \cos \phi+r \omega_{\psi^{\prime \prime}} \cos \phi, 0\right) ; \tag{b}
\end{equation*}
$$

the constraints are (with $\boldsymbol{u} \ldots$ for unit vector):

$$
0=v_{C^{\prime}, n} \equiv \boldsymbol{v}_{C^{\prime}} \cdot \boldsymbol{u}_{n}=\boldsymbol{v}_{C^{\prime}} \cdot(\cos \phi, \sin \phi, 0)=v_{C^{\prime \prime}, n} \equiv \boldsymbol{v}_{C^{\prime \prime}} \cdot \boldsymbol{u}_{n}=\boldsymbol{v}_{C^{\prime \prime}} \cdot(\cos \phi, \sin \phi, 0)
$$

or

$$
\begin{equation*}
v_{C^{\prime}, n}=v_{C^{\prime \prime}, n}=v_{X} \cos \phi+v_{Y} \sin \phi=0 \tag{c1}
\end{equation*}
$$

and

$$
\begin{align*}
& v_{C^{\prime}, t} \equiv \boldsymbol{v}_{C^{\prime}} \cdot \boldsymbol{u}_{t}=\boldsymbol{v}_{C^{\prime}} \cdot(-\sin \phi, \cos \phi, 0)=-v_{X} \sin \phi+v_{Y} \cos \phi+b \omega_{\phi}+r \omega_{\psi^{\prime}}=0, \tag{c2}\\
& v_{C^{\prime \prime}, t} \equiv \boldsymbol{v}_{C^{\prime \prime}} \cdot \boldsymbol{u}_{t}=\boldsymbol{v}_{C^{\prime \prime}} \cdot(-\sin \phi, \cos \phi, 0)=-v_{X} \sin \phi+v_{Y} \cos \phi-b \omega_{\phi}+r \omega_{\psi^{\prime \prime}}=0 . \tag{c3}
\end{align*}
$$

[The above can also be obtained by simple geometrical considerations based on fig. 2.21.]

By inspection, we see that $(\mathrm{c} 2,3)$ yield the integrable combination
$2 b \omega_{\phi}+r\left(\omega_{\psi^{\prime}}-\omega_{\psi^{\prime \prime}}\right)=0 \Rightarrow 2 b \phi=c-r\left(\psi^{\prime}-\psi^{\prime \prime}\right)$,
[$c=$ integration constant, depending on the initial values of $\left.\phi, \psi^{\prime}, \psi^{\prime \prime}\right]$.
Hence, we may take $X, Y, \psi^{\prime}, \psi^{\prime \prime}$, as the minimal Lagrangean coordinates of our system, subject to the two knife-like nonholonomic (to be shown below) constraints

$$
\begin{align*}
& v_{C^{\prime}, n}=v_{C^{\prime \prime}, n}=v_{X} \cos \phi+v_{Y} \sin \phi=0 \tag{el}\\
& v_{C^{\prime}, t}=-v_{X} \sin \phi+v_{Y} \cos \phi+(r / 2)\left(\omega_{\psi^{\prime}}+\omega_{\psi^{\prime \prime}}\right)=0 \tag{e2}
\end{align*}
$$

that is, $n=4, m=2 \Rightarrow f \equiv n-m=4-2=2$ DOF in the small, and 4 DOF in the large.

In view of (e1, 2), we introduce the following equilibrium quasi velocities:

$$
\begin{align*}
& \omega_{1} \equiv(\cos \phi) v_{X}+(\sin \phi) v_{Y} \quad(=0) \tag{f1}\\
& \omega_{2} \equiv(-\sin \phi) v_{X}+(\cos \phi) v_{Y} \quad(\neq 0) \tag{f2}\\
& \omega_{3} \equiv \omega_{\phi} \quad(\neq 0) \tag{f3}\\
& \omega_{4} \equiv 2\left(-v_{X} \sin \phi+v_{Y} \cos \phi\right)+r\left(\omega_{\psi^{\prime}}+\omega_{\psi^{\prime \prime}}\right) \quad(=0) \tag{f4}\\
& \omega_{5} \equiv 2 b \omega_{\phi}+r\left(\omega_{\psi^{\prime}}-\omega_{\psi^{\prime \prime}}\right) \quad\left(=0 ; \omega_{5}=\text { holonomic velocity }\right) \tag{f5}
\end{align*}
$$

which invert easily to

$$
\begin{align*}
& v_{X}=(\cos \phi) \omega_{1}+(-\sin \phi) \omega_{2}, \tag{f6}\\
& v_{Y}=(\sin \phi) \omega_{1}+(\cos \phi) \omega_{2}, \tag{f7}\\
& \omega_{\phi}=(0) \omega_{1}+(0) \omega_{2}+(1) \omega_{3}, \tag{f8}\\
& \omega_{\psi^{\prime}}=(1 / 2 r)\left(-2 \omega_{2}-2 r \omega_{3}+\omega_{4}+\omega_{5}\right), \tag{f9}\\
& \omega_{\psi^{\prime \prime}}=(1 / 2 r)\left(-2 \omega_{2}+2 r \omega_{3}+\omega_{4}-\omega_{5}\right) . \tag{f10}
\end{align*}
$$

Comparing the above with the quasi velocities of the knife problem (ex. 2.13.2), to be denoted in this example by ω^{K}..., we readily see that we have the following correspondences:

$$
\begin{equation*}
\omega_{1} \rightarrow \omega_{2}^{K}, \quad \omega_{2} \rightarrow \omega_{1}^{K}, \quad \omega_{3} \rightarrow \omega_{3}^{K} . \tag{f11}
\end{equation*}
$$

Hence, and recalling the transitivity equations of that example, we find

$$
\begin{gather*}
\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1}=\left(\delta \theta_{2}^{K}\right)^{\cdot}-\delta \omega^{K}{ }_{2}=\omega^{K}{ }_{3} \delta \theta_{1}^{K}-\omega^{K}{ }_{1} \delta \theta^{K}{ }_{3}=\omega_{3} \delta \theta_{2}-\omega_{2} \delta \theta_{3} \quad(\neq 0), \\
\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=\left(\delta \theta_{1}{ }_{1}\right)^{\cdot}-\delta \omega_{1}^{K}=\omega^{K}{ }_{2} \delta \theta_{3}^{K}-\omega^{K}{ }_{3} \delta \theta^{K}{ }_{2}=\omega_{1} \delta \theta_{3}-\omega_{3} \delta \theta_{1} \quad(\neq 0), \\
\quad\left(=0, \text { after enforcement of the constraints } \delta \theta_{1}, \omega_{1}=0\right), \tag{g2}\\
\left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}=0 \quad\left(\theta_{3}=\phi=\text { holonomic coordinate }\right), \tag{g3}
\end{gather*}
$$

$$
\begin{align*}
\left(\delta \theta_{4}\right)^{\cdot}-\delta \omega_{4} & =2\left[\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}\right]+r\left[\left(\delta \psi^{\prime}+\delta \psi^{\prime \prime}\right)^{\cdot}-\delta\left(\omega_{\psi^{\prime}}+\omega_{\psi^{\prime \prime}}\right)\right] \\
& =2\left(\omega_{1} \delta \theta_{3}-\omega_{3} \delta \theta_{1}\right)+0 \quad\left(=0, \text { after enforcing } \delta \theta_{1}, \omega_{1}=0\right) \tag{g4}\\
\left(\delta \theta_{5}\right)^{\cdot}-\delta \omega_{5} & =2 b\left[(\delta \phi)^{\cdot}-\delta \omega_{\phi}\right]+r\left[\left(\delta \psi^{\prime}-\delta \omega^{\prime \prime}\right)^{\cdot}-\delta\left(\omega_{\psi^{\prime}}-\omega_{\psi^{\prime \prime}}\right)\right] \\
& \quad\left[=0 \Rightarrow \theta_{5}=2 b \phi+r\left(\psi^{\prime}-\psi^{\prime \prime}\right)=\text { holonomic coordinate }\right] . \tag{g5}
\end{align*}
$$

The above immediately show that the nonvanishing γ 's equal ± 1, as in the knife problem; and since here $D=1,4 ; I, I^{\prime}=2,3$ and

$$
\begin{equation*}
\gamma_{I I^{\prime}}^{D}: \quad \gamma_{23}^{1}=-\gamma_{32}^{1}=1 \neq 0 \tag{h}
\end{equation*}
$$

the system of Pfaffian constraints $\omega_{1}=0$ and $\omega_{4}=0$ is nonholonomic.
For additional wheeled vehicle applications, see also Lobas (1986), Lur'e (1968, pp. 27-31), Mei (1985, pp. 35-36, 168-175, 437-439), Stückler (1955-excellent treatment).

Example 2.13.9 Transitivity Equations for a Rigid Body in General (Uncontrained) Motion. As explained in $\S 1.8 \mathrm{ff}$., to describe the general spatial motion of a rigid body B we employ, among others, the following two sets of rectangular Cartesian axes [and associated orthogonal-normalized-dextral (OND) bases]: (i) a body-fixed set $-x y z /-i j k$ (noninertial), where \bullet is a generic body point (pole); and (ii) a space-fixed one $O-X Y Z / O-\mathbf{I J K}$ (inertial), where O is a generic fixed origin. Frequently (recalling §1.17, "A Comprehensive Example: The Rolling Coin"), we also use other "intermediate" axes/bases that are neither space- nor body-fixed: $-x^{\prime} y^{\prime} z^{\prime} /-\boldsymbol{i}^{\prime} \boldsymbol{j}^{\prime} \boldsymbol{k}^{\prime}$; for example, axes $-X Y Z$ translating, or comoving, with B but nonrotating (i.e., ever parallel to $O-X Y Z$).

Let us examine the transitivity equations associated with the translation of B with pole \bullet, and its rotation about (earliest systematic treatment in Kirchhoff, 1883, pp. 56-59).
(i) Rotation. As shown in $\S 1.12$, the transformation relations among the spatial and body components of the inertial angular velocity of B, ω, and the Eulerian angles (and their rates) between $-x y z$ and $O-X Y Z$ (or $\bullet-X Y Z$) are [with $s \ldots \equiv \sin \ldots, c \ldots \equiv \cos \ldots]$ as follows:
Body axes components (assuming $\sin \theta \neq 0$):

$$
\begin{gather*}
\omega_{x}=(s \theta s \psi) \omega_{\phi}+(c \psi) \omega_{\theta}, \quad \omega_{y}=(s \theta c \psi) \omega_{\phi}+(-s \psi) \omega_{\theta}, \quad \omega_{z}=(c \theta) \omega_{\phi}+\omega_{\psi} \tag{a1}\\
\Rightarrow \omega_{\phi}=(s \psi / s \theta) \omega_{x}+(c \psi / s \theta) \omega_{y}, \quad \omega_{\theta}=(c \psi) \omega_{x}+(-s \psi) \omega_{y} \\
\omega_{\psi}=(-\cot \theta s \phi) \omega_{x}+(-\cot \theta c \psi) \omega_{y}+\omega_{z} \tag{a2}
\end{gather*}
$$

Space axes components (assuming $\sin \theta \neq 0$):

$$
\begin{gather*}
\omega_{X}=(c \phi) \omega_{\theta}+(s \phi s \theta) \omega_{\psi}, \quad \omega_{Y}=(s \phi) \omega_{\theta}+(-c \phi s \theta) \omega_{\psi}, \quad \omega_{Z}=\omega_{\phi}+(c \theta) \omega_{\psi} \tag{b1}\\
\Rightarrow \omega_{\phi}=(-\cot \theta s \phi) \omega_{X}+(\cot \theta c \phi) \omega_{Y}+\omega_{Z}, \quad \omega_{\theta}=(c \phi) \omega_{X}+(s \phi) \omega_{Y} \\
\omega_{\psi}=(s \phi / s \theta) \omega_{X}+(-c \phi / s \theta) \omega_{Y} \tag{b2}
\end{gather*}
$$

Since these transformations are stationary, they also hold with the $\omega_{x, y, z ; X, Y, Z}$ replaced by the $d \theta_{x, y, z ; X, Y, Z}$ or $\delta \theta_{x, y, z ; X, Y, Z}$ and the $\omega_{\phi, \theta, \psi}$ replaced by $d \phi, \ldots$, or $\delta \phi, \ldots$, respectively.

Transitivity Equations

(a) Body axes: Differentiating/varying the first of (a1), while invoking the " $d \delta=\delta d$ " rule for ϕ, θ, ψ, we obtain, successively,

$$
\begin{aligned}
\left(\delta \theta_{x}\right)^{\cdot}-\delta \omega_{x} & =[(s \theta s \psi) \delta \phi+(c \psi) \delta \theta]^{\cdot}-\delta\left[(s \theta s \psi) \omega_{\phi}+(c \psi) \omega_{\theta}\right] \\
& =c \theta s \psi\left(\omega_{\theta} \delta \phi-\omega_{\phi} \delta \theta\right)+s \theta c \psi\left(\omega_{\psi} \delta \phi-\omega_{\phi} \delta \psi\right)+s \psi\left(\omega_{\theta} \delta \psi-\omega_{\psi} \delta \theta\right),
\end{aligned}
$$

and substituting $\omega_{\phi}, \ldots / \delta \phi, \ldots$ in terms of $\omega_{x}, \ldots / \delta \theta_{x}, \ldots$, from (a2), we eventually find

$$
\begin{equation*}
\left(\delta \theta_{x}\right)^{\cdot}-\delta \omega_{x}=\omega_{z} \delta \theta_{y}-\omega_{y} \delta \theta_{z}, \tag{cl}
\end{equation*}
$$

and similarly, for the other two,

$$
\begin{align*}
\left(\delta \theta_{y}\right)^{-}-\delta \omega_{y} & =\omega_{x} \delta \theta_{z}-\omega_{z} \delta \theta_{x} \tag{c2}\\
\left(\delta \theta_{z}\right)^{-}-\delta \omega_{z} & =\omega_{y} \delta \theta_{x}-\omega_{x} \delta \theta_{y} \tag{c3}
\end{align*}
$$

Hence, the nonvanishing γ 's are

$$
\begin{equation*}
\gamma_{y z}^{x}=-\gamma_{z y}^{x}=1, \quad \gamma_{z x}^{y}=-\gamma_{x z}^{y}=1, \quad \gamma_{x y}^{z}=-\gamma_{y x}^{z}=1 ; \tag{d1}
\end{equation*}
$$

or, compactly [with $k, r, s \rightarrow x, y, z: 1,2,3]$,
$\gamma_{r s}^{k}=\varepsilon_{k r s} \equiv(k-r)(r-s)(s-k) / 2$
$= \pm 1$, according as $k, r, s / x, y, z$ are an even or odd permutation of $1,2,3$;
and $=0$ in all other cases: Levi-Civita permutation symbol (1.1.6 ff.).
(b) Space axes: Applying similar steps to (b1, 2), we eventually obtain

$$
\begin{equation*}
\left(\delta \theta_{X}\right)^{\cdot}-\delta \omega_{X}=\omega_{Y} \delta \theta_{Z}-\omega_{Z} \delta \theta_{Y}, \tag{el}
\end{equation*}
$$

and similarly, for the other two,

$$
\begin{align*}
\left(\delta \theta_{Y}\right)^{\cdot}-\delta \omega_{Y} & =\omega_{Z} \delta \theta_{X}-\omega_{X} \delta \theta_{Z}, \tag{e2}\\
\left(\delta \theta_{Z}\right)^{\cdot}-\delta \omega_{Z} & =\omega_{X} \delta \theta_{Y}-\omega_{Y} \delta \theta_{X} . \tag{e3}
\end{align*}
$$

Hence, the nonvanishing γ 's are

$$
\begin{equation*}
\gamma_{Y Z}^{X}=-\gamma_{Z Y}^{X}=-1, \quad \gamma_{Z X}^{Y}=-\gamma_{X Z}^{Y}=-1, \quad \gamma_{X Y}^{Z}=-\gamma_{Y X}^{Z}=-1 \tag{f1}
\end{equation*}
$$

or, compactly (with $k, r, s \rightarrow X, Y, Z: 1,2,3$),

$$
\begin{equation*}
\gamma^{K}{ }_{R S}=-\varepsilon_{K R S}=\varepsilon_{R K S} . \tag{f2}
\end{equation*}
$$

The above show clearly that the orthogonal components of $\omega, \omega_{x, y, Z}$ and $\omega_{X, Y, Z}$ are nonholonomic; while the nonorthogonal components $\omega_{\phi, \theta, \psi}$ are holonomic (and,
again, this has nothing to do with constraints, but is a mathematical consequence of the noncommutativity of rigid rotations).

REMARK

These transitivity relations and γ-values, (c1-f2), are independent of the particular $\omega_{x, y, z ; X, Y, Z} \Leftrightarrow \omega_{\phi, \theta, \psi}$ relationships (a1-b2); they express, in component form, invariant noncommutativity properties between the differentials of the vectors of infinitesimal rotation and angular velocity. A direct vectorial proof of these properties is presented in the next example.
(c) Intermediate axes: Such sets are the following axes of ex. 2.13.7: (i) $G-n n^{\prime} z \equiv$ $G-x^{\prime} y^{\prime} z^{\prime}$, with $O N D$ basis $G-\boldsymbol{i}^{\prime} \boldsymbol{j}^{\prime} \boldsymbol{k}^{\prime} \equiv G-\boldsymbol{u}_{n} \boldsymbol{u}_{n^{\prime}} \boldsymbol{k}$; and (ii) $G-n N Z$, with $O N D$ basis $G-\boldsymbol{u}_{n} \boldsymbol{u}_{N} \boldsymbol{K} \quad\left(\boldsymbol{u}_{n} \equiv \boldsymbol{i}^{\prime}=\right.$ unit vector along + nodal line $)$; and they are called by some authors semimobile ($S M$) and semifixed $(S F)$, respectively.

Below, we collect some kinematical data pertinent to them. Since their inertial angular velocities are (consult fig. 2.20)

$$
\begin{align*}
& \omega_{S M} \equiv \omega^{\prime}=\omega_{\phi} \boldsymbol{K}+\omega_{\theta} \boldsymbol{i}^{\prime}=\omega_{\theta} \boldsymbol{i}^{\prime}+\omega_{\phi}\left(\sin \theta \boldsymbol{j}^{\prime}+\cos \theta \boldsymbol{k}^{\prime}\right) \\
&=\left(\omega_{\theta}\right) \boldsymbol{i}^{\prime}+\left(\omega_{\phi} \sin \theta\right) \boldsymbol{j}^{\prime}+\left(\omega_{\phi} \cos \theta\right) \boldsymbol{k}^{\prime} \\
&=\omega_{\phi} \boldsymbol{K}+\omega_{\theta} \boldsymbol{u}_{n}=\omega_{S F}+\omega_{\theta} \boldsymbol{u}_{n} \equiv \omega^{\prime \prime}+\omega_{\theta} \boldsymbol{u}_{n} \tag{g1}\\
& \omega_{S F} \equiv \omega^{\prime \prime}=\omega_{\phi} \boldsymbol{K} \tag{g2}
\end{align*}
$$

we will have the following relations for the rates of change of their bases:

$$
\begin{align*}
& d \boldsymbol{u}_{n} / d t=\omega^{\prime} \times \boldsymbol{u}_{n}=\omega_{\phi} \boldsymbol{u}_{N}=\omega_{\phi}\left(\cos \theta \boldsymbol{u}_{n^{\prime}}-\sin \theta \boldsymbol{k}^{\prime}\right) ; \tag{g3}\\
& d \boldsymbol{u}_{n^{\prime}} / d t=\omega^{\prime} \times \boldsymbol{u}_{n^{\prime}}=\left(-\omega_{\phi} \cos \theta\right) \boldsymbol{u}_{n}+\omega_{\theta} \boldsymbol{k}^{\prime} ; \tag{g4}\\
& d \boldsymbol{k}^{\prime} / d t=\omega^{\prime} \times \boldsymbol{k}^{\prime}=\left(\omega_{\phi} \sin \theta\right) \boldsymbol{u}_{n}-\omega_{\theta} \boldsymbol{u}_{n^{\prime}} ; \tag{g5}\\
& d \boldsymbol{u}_{n} / d t=\omega^{\prime \prime} \times \boldsymbol{u}_{n}=\omega_{\phi} \boldsymbol{u}_{N} ; \tag{g6}\\
& d \boldsymbol{u}_{N} / d t=\boldsymbol{\omega}^{\prime \prime} \times \boldsymbol{u}_{N}=-\omega_{\phi} \boldsymbol{u}_{n} \tag{g7}\\
& d \boldsymbol{K} / d t=\omega^{\prime \prime} \times \boldsymbol{K}=\mathbf{0} \tag{g8}
\end{align*}
$$

Finally, the body angular velocity along the $S M$ axes, thanks to the second line of (g1), equals

$$
\begin{align*}
\boldsymbol{\omega}=\omega^{\prime}+\omega_{\psi} \boldsymbol{k}^{\prime} & =\left(\omega_{\theta}\right) \boldsymbol{i}^{\prime}+\left(\omega_{\phi} \sin \theta\right) \boldsymbol{j}^{\prime}+\left(\omega_{\psi}+\omega_{\phi} \cos \theta\right) \boldsymbol{k}^{\prime} \\
& \equiv \omega_{x^{\prime}} \boldsymbol{i}^{\prime}+\omega_{y^{\prime}} \boldsymbol{j}^{\prime}+\omega_{z^{\prime}} \boldsymbol{k}^{\prime} \tag{g9}
\end{align*}
$$

and since this is a scleronomic system, (g9) holds with $\omega_{x^{\prime}, y^{\prime}, z^{\prime}}$, replaced with $d \theta_{x^{\prime}, y^{\prime}, z^{\prime}}$ and $\delta \theta_{x^{\prime}, y^{\prime}, z^{\prime}}$; and $\omega_{\phi, \theta, \psi}$ replaced with $d \phi, d \theta, d \psi$ and $\delta \phi, \delta \theta, \delta \psi$, respectively.

From the above, by straightforward differentiations, we obtain the rotational transitivity equations in terms of semimobile components:

$$
\begin{align*}
& \left(\delta \theta_{x^{\prime}}\right)^{\cdot}-\delta \omega_{x^{\prime}}=0 \quad\left(\theta_{x^{\prime}} \equiv \theta=\text { holonomic coordinate } \Rightarrow \gamma_{. .}^{x^{\prime}}=0\right) \tag{h1}\\
& \left(\delta \theta_{y^{\prime}}\right)^{\cdot}-\delta \omega_{y^{\prime}}=\cot \theta\left(\omega_{x^{\prime}} \delta \theta_{y^{\prime}}-\omega_{y^{\prime}} \delta \theta_{x^{\prime}}\right) \tag{h2}\\
& \left(\delta \theta_{z^{\prime}}\right)^{\cdot}-\delta \omega_{z^{\prime}}=\left(\omega_{y^{\prime}} \delta \theta_{x^{\prime}}-\omega_{x^{\prime}} \delta \theta_{y^{\prime}}\right) \tag{h3}
\end{align*}
$$

and hence the nonvanishing γ^{\prime} s are (assuming $\cot \theta=$ finite)

$$
\begin{equation*}
\gamma^{y^{\prime} y^{\prime} x^{\prime}}=-\gamma^{y^{\prime}}{ }_{x^{\prime} y^{\prime}}=\cot \theta, \quad \gamma^{z^{\prime}}{ }_{x^{\prime} y^{\prime}}=-\gamma^{z^{\prime}}{ }_{y^{\prime} x^{\prime}}=1 \tag{h4}
\end{equation*}
$$

Note that (h1-4) are none other than (h3-5) and (i) of ex. 2.13.7.
(ii) Translation of pole (or basepoint) *. Let us assume that \bullet has inertial position:

$$
\begin{equation*}
\boldsymbol{O P}=\boldsymbol{\rho}=\rho_{X} \boldsymbol{I}+\rho_{Y} \boldsymbol{J}+\rho_{Z} \boldsymbol{K} \tag{h5}
\end{equation*}
$$

and, therefore, inertial velocity:

$$
\begin{aligned}
\boldsymbol{v} & \equiv d \boldsymbol{\rho} / d t \\
& =\left(d \rho_{X} / d t\right) \boldsymbol{I}+\left(d \rho_{Y} / d t\right) \boldsymbol{J}+\left(d \rho_{Z} / d t\right) \boldsymbol{K} \equiv v_{X} \boldsymbol{I}+v_{Y} \boldsymbol{J}+v_{Z} \boldsymbol{K}
\end{aligned}
$$

[along space-axes: $v_{X} \equiv d \rho_{X} / d t=\boldsymbol{v} \cdot \boldsymbol{I}$, etc.;
$\rho_{X, Y, Z}\left(v_{X, Y, Z}\right):$ holonomic coordinates (velocities) of $\left.\bullet.\right]$
$=v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}+v_{z} \boldsymbol{k} \equiv\left(d p_{x} / d t\right) \boldsymbol{i}+\left(d p_{y} / d t\right) \boldsymbol{j}+\left(d p_{z} / d t\right) \boldsymbol{k}$
[along body-axes: $v_{x} \equiv d p_{x} / d t \equiv \boldsymbol{v} \cdot \boldsymbol{i}$, etc.;

$$
\begin{equation*}
p_{x, y, z}\left(v_{x, y, z}\right): \text { nonholonomic coordinates (velocities) of } \bullet \text {.] } \tag{h6}
\end{equation*}
$$

Clearly, the above velocity components are related by the following vector transformations:

$$
\begin{align*}
& v_{x}=\cos (x, X) v_{X}+\cos (x, Y) v_{Y}+\cos (x, Z) v_{Z}, \quad \text { etc. } \\
& v_{X}=\cos (X, x) v_{x}+\cos (X, y) v_{y}+\cos (X, z) v_{z}, \quad \text { etc. } \tag{h7}
\end{align*}
$$

and, since this is a scleronomic system, their differentials are related by
$d p_{x} \equiv v_{x} d t=(\boldsymbol{\nu} \cdot \boldsymbol{i}) d t \equiv d \boldsymbol{\rho} \cdot \boldsymbol{i}=\cos (x, X) d \rho_{X}+\cos (x, Y) d \rho_{Y}+\cos (x, Z) d \rho_{Z}, \quad$ etc. $\delta p_{x} \equiv \delta \boldsymbol{\rho} \cdot \boldsymbol{i}=\cos (x, X) \delta \rho_{X}+\cos (x, Y) \delta \rho_{Y}+\cos (x, Z) \delta \rho_{Z}, \quad$ etc.

Next, since

$$
\begin{equation*}
d \boldsymbol{i}=d \boldsymbol{\theta} \times \boldsymbol{i}, \quad \delta \boldsymbol{i}=\delta \boldsymbol{\theta} \times \boldsymbol{i} \quad \text { etc. }, \tag{i1}
\end{equation*}
$$

where $d \boldsymbol{\theta} \equiv \boldsymbol{\omega} d t=d \theta_{x} \boldsymbol{i}+d \theta_{y} \boldsymbol{j}+d \theta_{z} \boldsymbol{k}=d \phi \boldsymbol{K}+d \theta \boldsymbol{u}_{n}+d \psi \boldsymbol{k}=$ elementary (inertial) kinematically admissible/possible rotation vector, hence $\delta \boldsymbol{\theta}=\delta \theta_{x} \boldsymbol{i}+\delta \theta_{y} \boldsymbol{j}+\delta \theta_{z} \boldsymbol{k}=$ $\delta \phi \boldsymbol{K}+\delta \theta \boldsymbol{u}_{n}+\delta \psi \boldsymbol{k}=($ inertial $)$ virtual rotation vector, we find by direct calculation [with $(\ldots)^{\cdot}=$ inertial rate of change, for vectors]

$$
\begin{align*}
& \left(\delta p_{x}\right)^{\cdot}=(\delta \boldsymbol{\rho} \cdot \boldsymbol{i})^{\cdot}=(\delta \boldsymbol{\rho})^{\cdot} \cdot \boldsymbol{i}+\delta \boldsymbol{\rho} \cdot(\boldsymbol{i})^{\cdot}=(\delta \boldsymbol{\rho})^{\cdot} \cdot \boldsymbol{i}+\delta \boldsymbol{\rho} \cdot(\boldsymbol{\omega} \times \boldsymbol{i}), \\
& \delta\left(d p_{x} / d t\right) \equiv \delta v_{x}=\delta(\boldsymbol{v} \cdot \boldsymbol{i})=\delta \boldsymbol{v} \cdot \boldsymbol{i}+\boldsymbol{v} \cdot \delta \boldsymbol{i}=\delta \boldsymbol{v} \cdot \boldsymbol{i}+\boldsymbol{v} \cdot(\delta \boldsymbol{\theta} \times \boldsymbol{i}), \tag{i2}
\end{align*}
$$

and subtracting the above side by side, while noting that $(\delta \boldsymbol{\rho})^{-}-\delta \boldsymbol{v}=$ $\delta(d \boldsymbol{\rho} / d t)-\delta \boldsymbol{v}=\delta \boldsymbol{v}-\delta \boldsymbol{v}=\mathbf{0}$, we obtain the x-component of the pole velocity transitivity equation:

$$
\begin{align*}
\left(\delta p_{x}\right)-\delta v_{x} & =\delta \boldsymbol{\rho} \cdot(\boldsymbol{\omega} \times \boldsymbol{i})-\boldsymbol{v} \cdot(\delta \boldsymbol{\theta} \times \boldsymbol{i})=(\delta \boldsymbol{\rho} \times \boldsymbol{\omega}) \cdot \boldsymbol{i}-(\boldsymbol{v} \times \delta \boldsymbol{\theta}) \cdot \boldsymbol{i} \\
& =(\delta \boldsymbol{\rho} \times \boldsymbol{\omega}-\boldsymbol{v} \times \delta \boldsymbol{\theta}) \cdot \boldsymbol{i} ; \tag{i3}
\end{align*}
$$

and similarly for its y and z components. Hence, our pole transitivity equation can be written in the following vector form [with $\partial(\ldots)$ and $\delta_{\text {rel }}(\ldots)$ denoting differentials of vectors, and so on, relative to the moving, here body-fixed, axes]:

$$
\begin{equation*}
\partial(\delta \boldsymbol{\rho}) / \partial t-\delta_{\text {rel }}(d \boldsymbol{\rho} / d t)=\delta \boldsymbol{\rho} \times \boldsymbol{\omega}-\boldsymbol{v} \times \delta \boldsymbol{\theta} \tag{i4a}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{\text {rel }} \boldsymbol{v}=\partial(\delta \boldsymbol{\rho}) / \partial t+\boldsymbol{\omega} \times \delta \boldsymbol{\rho}+\boldsymbol{v} \times \delta \boldsymbol{\theta} \tag{i4b}
\end{equation*}
$$

In component form, along $-x y z$, (i4a) reads

$$
\begin{align*}
\left(\delta p_{x}\right)^{\cdot}-\delta v_{x} & =\left(\omega_{z} \delta p_{y}-\omega_{y} \delta p_{z}\right)-\left(v_{y} \delta \theta_{z}-v_{z} \delta \theta_{y}\right), \tag{i5}\\
\left(\delta p_{y}\right)^{\cdot}-\delta v_{y} & =\left(\omega_{x} \delta p_{z}-\omega_{z} \delta p_{x}\right)-\left(v_{z} \delta \theta_{x}-v_{x} \delta \theta_{z}\right) \tag{i6}\\
\left(\delta p_{z}\right)^{\cdot}-\delta v_{z} & =\left(\omega_{y} \delta p_{x}-\omega_{x} \delta p_{y}\right)-\left(v_{x} \delta \theta_{y}-v_{y} \delta \theta_{x}\right) \tag{i7}
\end{align*}
$$

and, therefore, the nonvanishing γ 's are [with accented (unaccented) indices for the components $\delta p_{x, y, z}\left(\delta \theta_{x, y, z}\right)$]

$$
\begin{array}{lll}
\gamma^{x^{\prime}} y^{\prime}=-\gamma^{x^{\prime}}{ }_{z y^{\prime}}=1 & \text { and } & \gamma^{x^{\prime}}{ }_{y z^{\prime}}=-\gamma^{x^{\prime}}{ }_{z^{\prime} y}=1, \\
\gamma^{y^{\prime}}{ }_{z^{\prime} x}=-\gamma^{y^{\prime}}{ }_{x z^{\prime}}=1 & \text { and } & \gamma^{y^{\prime}}{ }_{z x^{\prime}}=-\gamma^{y^{\prime}}{ }_{x^{\prime} z}=1, \\
\gamma^{z^{\prime}}{ }_{x^{\prime} y}=-\gamma^{z^{\prime}}{ }_{y x^{\prime}}=1 & \text { and } & \gamma^{z^{\prime}}{ }_{x y^{\prime}}=-\gamma^{z^{\prime}}{ }_{y^{\prime} z}=1 . \tag{i10}
\end{array}
$$

Semifixed axes $-\boldsymbol{u}_{n} \boldsymbol{u}_{N} \boldsymbol{K}$. Here, we have

$$
\begin{align*}
& v_{n} \equiv\left(p_{n}\right)^{\cdot}=\boldsymbol{v} \cdot \boldsymbol{u}_{n} \equiv \boldsymbol{v} \cdot \boldsymbol{i}^{\prime}=\left(\rho_{X}\right)^{\cdot} \cos \phi+\left(\rho_{Y}\right)^{\cdot} \sin \phi \tag{j1}\\
& v_{N} \equiv\left(p_{N}\right)^{\cdot}=\boldsymbol{v} \cdot \boldsymbol{u}_{N}=-\left(\rho_{X}\right)^{\cdot} \sin \phi+\left(\rho_{Y}\right)^{\cdot} \cos \phi \tag{j2}\\
& v_{Z} \equiv\left(p_{Z}\right)^{\cdot}=\boldsymbol{v} \cdot \boldsymbol{K}=\left(\rho_{Z}\right)^{\cdot} \Rightarrow \gamma^{Z}{ }_{. .}=0 \quad \text { (i.e., } v_{Z}=\text { holonomic velocity). } \tag{j3}
\end{align*}
$$

We leave it to the reader to show that (recalling the earlier semimobile axes kinematics)

$$
\begin{align*}
\left(\delta p_{n}\right)^{\cdot}-\delta v_{n} & =-\left[\omega_{\phi} \delta \rho_{X}-\left(\rho_{X}\right)^{\cdot} \delta \phi\right] \sin \phi+\left[\omega_{\phi} \delta \rho_{Y}-\left(\rho_{Y}\right)^{\cdot} \delta \phi\right] \cos \phi \\
& =\omega_{\phi} \delta p_{N}-v_{N} \delta \phi=(1 / \sin \phi)\left(\omega_{y} \delta p_{N}-v_{N} \delta \theta_{y}\right) \tag{j4}\\
\left(\delta p_{N}\right)^{\cdot}-\delta v_{N} & =-\left[\omega_{\phi} \delta \rho_{X}-\left(\rho_{X}\right)^{\cdot} \delta \phi\right] \cos \phi+\left[\left(\rho_{Y}\right)^{\cdot} \delta \phi-\omega_{\phi} \delta \rho_{Y}\right] \sin \phi \\
& =-\omega_{\phi} \delta p_{n}+\left(p_{n}\right)^{\cdot} \delta \phi=(1 / \sin \phi)\left[\left(p_{n}\right)^{\cdot} \delta \theta_{y}-\omega_{y} \delta p_{n}\right] ; \tag{j5}
\end{align*}
$$

and hence that the nonvanishing γ 's are (with some, easily understood, ad hoc notation; and assuming that $\sin \theta \neq 0$)

$$
\begin{equation*}
\gamma_{N y}^{n}=-\gamma_{y N}^{n}=1 / \sin \theta, \quad \gamma^{N}{ }_{y n}=-\gamma^{N}{ }_{n y}=1 / \sin \theta . \tag{j6}
\end{equation*}
$$

[Recalling ex. 2.13.7 (rolling disk problem), eqs. (d2, 3), (h1, 2), (i), etc.]
For related discussions of the rigid-body transitivity equations, see also Bremer (1988(b)) and Moiseyev and Rumyantsev (1968, pp. 7-8).

Example 2.13.10 Cardanian Suspension of a Gyroscope. Let us consider a gyroscope suspended à le Cardan (fig. 2.22). The rotation sequence

$$
q_{1} \equiv \phi(\text { precession }) \rightarrow q_{2} \equiv \theta(\text { nutation }) \rightarrow q_{3} \equiv \psi(\text { spin })
$$

(i.e., $3 \rightarrow 2 \rightarrow 1$, in the Eulerian angle sense of $\S 1.12$) brings the original axes $G-X Y Z$, through the intermediate position $G-x^{\prime} y^{\prime} z^{\prime}$ (outer gimbal), to the also intermediate position $G-x y z$ (inner gimbal).

Now: (i) The inertial angular velocity of the outer gimbal ω_{O}, along outer gimbalfixed axes, is

$$
\begin{equation*}
\omega_{O, x^{\prime}}=0, \quad \omega_{O, y^{\prime}}=0, \quad \omega_{O, z^{\prime}}=\omega_{\phi} ; \tag{a}
\end{equation*}
$$

(ii) the inertial angular velocity of the inner gimbal ω_{I}, along inner gimbal-fixed axes, is

$$
\begin{equation*}
\omega_{I, x}=-\omega_{\phi} \sin \theta, \quad \omega_{I, y}=\omega_{\theta}, \quad \omega_{I, z}=\omega_{\phi} \cos \theta ; \tag{b}
\end{equation*}
$$

and (iii) the inertial angular velocity of the gyroscope ω, along inner gimbal-fixed axes, is

$$
\begin{equation*}
\omega_{x}=\omega_{\psi}-\omega_{\phi} \sin \theta, \quad \omega_{y}=\omega_{\theta}, \quad \omega_{z}=\omega_{\phi} \cos \theta \tag{c}
\end{equation*}
$$

Let us find the transitivity equations corresponding to these quasi velocities. Equations (c) can be rewritten as

$$
\begin{align*}
& \omega_{1} \equiv \omega_{x} \equiv(-\sin \theta) \omega_{\phi}+(0) \omega_{\theta}+(1) \omega_{\psi} \quad(\neq 0), \tag{d}\\
& \omega_{2} \equiv \omega_{y} \equiv(0) \omega_{\phi}+(1) \omega_{\theta}+(0) \omega_{\psi} \quad(\neq 0), \tag{e}\\
& \omega_{3} \equiv \omega_{z} \equiv(\cos \theta) \omega_{\phi}+(0) \omega_{\theta}+(0) \omega_{\psi} \quad(\neq 0) ; \tag{f}
\end{align*}
$$

Figure 2.22 Kinematics of Cardanian suspension of a gyroscope.
and their inverses are readily found to be

$$
\begin{align*}
& v_{1} \equiv \omega_{\phi}=(0) \omega_{x}+(0) \omega_{y}+(1 / \cos \theta) \omega_{z}, \tag{g}\\
& v_{2} \equiv \omega_{\theta}=(0) \omega_{x}+(1) \omega_{y}+(0) \omega_{z}, \tag{h}\\
& v_{3} \equiv \omega_{\psi}=(1) \omega_{x}+(0) \omega_{y}+(\sin \theta / \cos \theta) \omega_{z} . \tag{i}
\end{align*}
$$

From these stationary relations, and assuming $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)(k=x, y, z)$, we obtain, successively,
(i) $\quad d\left(\delta \theta_{x}\right)-\delta\left(d \theta_{x}\right)=d[(-\sin \theta) \delta \phi+\delta \psi]-\delta[(-\sin \theta) d \phi+d \psi]$

$$
\begin{equation*}
=\cdots=(\cos \theta)(d \phi \delta \theta-d \theta \delta \phi)=\cdots=d \theta_{z} \delta \theta_{y}-d \theta_{y} \delta \theta_{z} \tag{j}
\end{equation*}
$$

(ii) $d\left(\delta \theta_{y}\right)-\delta\left(d \theta_{y}\right)=0 \quad\left(\Rightarrow \theta_{y}=\right.$ holonomic coordinate $)$;
(iii) $d\left(\delta \theta_{z}\right)-\delta\left(d \theta_{z}\right)=d[(\cos \theta) \delta \phi]-\delta[(\cos \theta) d \phi]$

$$
\begin{equation*}
=\cdots=(\sin \theta)(d \phi \delta \theta-d \theta \delta \phi)=\cdots=(\tan \theta)\left(d \theta_{z} \delta \theta_{y}-d \theta_{y} \delta \theta_{z}\right) \tag{1}
\end{equation*}
$$

and so the nonvanishing γ 's are (assuming $\theta \neq \pm \pi / 2$)

$$
\begin{align*}
& \gamma_{y z}^{x}=-\gamma_{z y}^{x} \equiv \gamma_{23}^{1}=-\gamma_{32}^{1}=+1 \tag{m}\\
& \gamma_{y z}^{z}=-\gamma_{z y}^{z} \equiv \gamma_{23}^{3}=-\gamma_{32}^{3}=\tan \theta \tag{n}
\end{align*}
$$

Example 2.13.11 An Elementary ad hoc Vectorial Derivation of the Rotational Rigid-Body Transitivity Equations. Let us consider, with no loss of generality, a free rigid body B rotating with (inertial) angular velocity ω about a fixed point O. Then, as is well known ($\S 1.9 \mathrm{ff}$.), and since this is an internally scleronomic system, the (inertial) velocity/kinematically admissible displacements/virtual displacements of a typical B-particle of (inertial) position vector \boldsymbol{r}, are, respectively,

$$
\begin{equation*}
\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{r} \Rightarrow d \boldsymbol{r}=d \boldsymbol{\theta} \times \boldsymbol{r}, \quad \delta \boldsymbol{r}=\delta \boldsymbol{\theta} \times \boldsymbol{r} \tag{a}
\end{equation*}
$$

where $d \boldsymbol{\theta} \equiv \boldsymbol{\omega} d t$, and $d(\ldots) / \delta(\ldots)$ are kinematically admissible/virtual (inertial) variation operators. Now, $d(\ldots)$-varying the last of (a), $\delta(\ldots)$-varying the second, and then subtracting the results side by side, while invoking (a) and the rule $d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})=\mathbf{0}$, we obtain, successively,

$$
\begin{aligned}
\mathbf{0} & =d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})=[d(\delta \boldsymbol{\theta}) \times \boldsymbol{r}+\delta \boldsymbol{\theta} \times d \boldsymbol{r}]-[\delta(d \boldsymbol{\theta}) \times \boldsymbol{r}+d \boldsymbol{\theta} \times \delta \boldsymbol{r}] \\
& =[d(\delta \boldsymbol{\theta}) \times \boldsymbol{r}+\delta \boldsymbol{\theta} \times(d \boldsymbol{\theta} \times \boldsymbol{r})]-[\delta(d \boldsymbol{\theta}) \times \boldsymbol{r}+d \boldsymbol{\theta} \times(\delta \boldsymbol{\theta} \times \boldsymbol{r})] \\
& =[d(\delta \boldsymbol{\theta})-\delta(d \boldsymbol{\theta})] \times \boldsymbol{r}+[\delta \boldsymbol{\theta} \times(d \boldsymbol{\theta} \times \boldsymbol{r})-d \boldsymbol{\theta} \times(\delta \boldsymbol{\theta} \times \boldsymbol{r})]
\end{aligned}
$$

[and applying to the second bracket (last two triple cross-products) the cyclic vector identity, holding for any three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}: \boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})+\boldsymbol{b} \times(\boldsymbol{c} \times \boldsymbol{a})+$ $\boldsymbol{c} \times(\boldsymbol{a} \times \boldsymbol{b})=\mathbf{0}$, with the identifications: $\boldsymbol{a} \rightarrow \delta \boldsymbol{\theta}, \boldsymbol{b} \rightarrow d \boldsymbol{\theta}, \boldsymbol{c} \rightarrow \boldsymbol{r}]$

$$
=[d(\delta \boldsymbol{\theta})-\delta(d \boldsymbol{\theta})] \times \boldsymbol{r}+(\delta \boldsymbol{\theta} \times d \boldsymbol{\theta}) \times \boldsymbol{r}
$$

from which, since \boldsymbol{r} is arbitrary, we finally get the fundamental and general inertial rotational transitivity equation:

$$
\begin{equation*}
d(\delta \boldsymbol{\theta})-\delta(d \boldsymbol{\theta})=d \boldsymbol{\theta} \times \delta \boldsymbol{\theta} \tag{b}
\end{equation*}
$$

Dividing the above with $d t$, which does no interact with these differentials (and noting that, by Newtonian relativity, $d t=\partial t$, we also obtain the equivalent transitivity equation in terms of the angular velocities:

$$
\begin{equation*}
d(\delta \boldsymbol{\theta}) / d t-\delta \boldsymbol{\omega}=\boldsymbol{\omega} \times \delta \boldsymbol{\theta} \tag{c}
\end{equation*}
$$

Next, let us find the counterparts of (b, c) in terms of relative differentials/variations, i.e. relative to moving (here body-fixed) axes, to be denoted by $\partial(\ldots) / \delta_{\text {rel }}(\ldots)$. Applying the well-known kinematical operator identities [(§1.7 ff.)]

$$
\begin{equation*}
d(\ldots)=\partial(\ldots)+d \boldsymbol{\theta} \times(\ldots), \quad \delta(\ldots)=\delta_{\text {rel }}(\ldots)+\delta \boldsymbol{\theta} \times(\ldots) \tag{d}
\end{equation*}
$$

(which immediately yield $\partial \boldsymbol{r}=\mathbf{0}$ and $\delta_{\text {rel }} \boldsymbol{r}=\mathbf{0}$, as expected) to $\delta \boldsymbol{\theta}$ and $d \boldsymbol{\theta}$, respectively, and then substracting side by side, we find, successively,

$$
\begin{align*}
d(\delta \boldsymbol{\theta})-\delta(d \boldsymbol{\theta}) & =\partial(\delta \boldsymbol{\theta})-\delta_{\text {rel }}(d \boldsymbol{\theta})+(d \boldsymbol{\theta} \times \delta \boldsymbol{\theta}-\delta \boldsymbol{\theta} \times d \boldsymbol{\theta}) \\
& =\partial(\delta \boldsymbol{\theta})-\delta_{\text {rel }}(d \boldsymbol{\theta})+2(d \boldsymbol{\theta} \times \delta \boldsymbol{\theta}), \tag{e}
\end{align*}
$$

or, invoking (b) for its left side and rearranging slightly, we get, finally,

$$
\begin{equation*}
\partial(\delta \boldsymbol{\theta})-\delta_{\text {rel }}(d \boldsymbol{\theta})=\delta \boldsymbol{\theta} \times d \boldsymbol{\theta} ; \tag{f}
\end{equation*}
$$

and dividing by $d t$, we also obtain its velocity equivalent,

$$
\begin{equation*}
\partial(\delta \boldsymbol{\theta}) / d t-\delta_{\text {rel }} \boldsymbol{\omega}=\delta \boldsymbol{\theta} \times \boldsymbol{\omega} \tag{g}
\end{equation*}
$$

The kinematical identities (f, g) are the noninertial counterparts of (b, c).
The difference between (b, c) and (f, g) often goes unnoticed in the literature. To understand it better, let us write them down in component form, along spacefixed axes $-X Y Z$ and body-fixed axes $-x y z$. Only the first equations are shown (i.e., X, x); the rest follow cyclically:

Space-fixed (inertial) axes:

$$
\begin{equation*}
d\left(\delta \theta_{X}\right)-\delta\left(d \theta_{X}\right)=d \theta_{Y} \delta \theta_{Z}-d \theta_{Z} \delta \theta_{Y}, \quad \text { or } \quad\left(\delta \theta_{X}\right)^{\cdot}-\delta \omega_{X}=\omega_{Y} \delta \theta_{Z}-\omega_{Z} \delta \theta_{Y} \tag{h1}
\end{equation*}
$$

Body-fixed (noninertial) axes:

$$
d\left(\delta \theta_{x}\right)-\delta\left(d \theta_{x}\right)=d \theta_{z} \delta \theta_{y}-d \theta_{y} \delta \theta_{z}, \quad \text { or } \quad\left(\delta \theta_{x}\right)^{\cdot}-\delta \omega_{x}=\omega_{z} \delta \theta_{y}-\omega_{y} \delta \theta_{z} ; \quad \text { (h2) }
$$

which, naturally, coincide with equations (c1-f2) of ex. 2.13.9, and §1.14.
[When dealing with derivatives/differentials of components, we may safely use the same notation $(\ldots)^{\cdot} / d(\ldots) / \delta(\ldots)$ for both space and body such changes; here, the intended meaning is conveyed unambiguously].

Additional Special Results

(i) Applying the second of (d) for ω, and then equating the resulting $\delta \omega$-expression with that obtained from (c), we get $d(\delta \boldsymbol{\theta}) / d t-\omega \times \delta \boldsymbol{\theta}=\delta_{\text {rel }} \boldsymbol{\omega}+\delta \boldsymbol{\theta} \times \omega$, or, simplifying, $d(\delta \boldsymbol{\theta}) / d t=\delta_{\text {rel }} \omega$; or, equivalently (multiplying with $d t$),

$$
\begin{equation*}
d(\delta \boldsymbol{\theta})=\delta_{\text {rel }}(d \boldsymbol{\theta}) . \tag{i}
\end{equation*}
$$

(ii) Starting from (c), and then invoking the first of (d), we obtain, successively,

$$
\begin{array}{rlrl}
\delta \boldsymbol{\omega} & =d(\delta \boldsymbol{\theta}) / d t-\omega \times \delta \boldsymbol{\theta}= & {[\partial(\delta \boldsymbol{\theta}) / \partial t+\boldsymbol{\omega} \times \delta \boldsymbol{\theta}]-\boldsymbol{\omega} \times \delta \boldsymbol{\theta}} \\
& =\partial(\delta \boldsymbol{\theta}) / \partial t \quad\left[=\delta_{\text {rel }} \boldsymbol{\omega}+\delta \boldsymbol{\theta} \times \boldsymbol{\omega}, \quad \text { by }(\mathrm{g})\right] ;
\end{array}
$$

that is,

$$
\begin{equation*}
\delta \boldsymbol{\omega}=\partial(\delta \boldsymbol{\theta}) / \partial t, \quad \text { or, equivalently }, \quad \delta(d \boldsymbol{\theta})=\partial(\delta \boldsymbol{\theta}) ; \tag{j}
\end{equation*}
$$

which is "symmetrical" to (i).
(iii) Applying the first of (d) for ω yields

$$
\begin{equation*}
d \boldsymbol{\omega}=\partial \boldsymbol{\omega}, \quad \text { or, equivalently }, \quad d(d \boldsymbol{\theta})=\partial(d \boldsymbol{\theta}) \tag{k}
\end{equation*}
$$

but the second of (d) shows that

$$
\begin{equation*}
\delta \boldsymbol{\omega} \neq \delta_{\text {rel }} \boldsymbol{\omega}, \quad \text { or, equivalently }, \quad \delta(d \boldsymbol{\theta}) \neq \delta_{\text {rel }}(d \boldsymbol{\theta}) \tag{l}
\end{equation*}
$$

Problem 2.13.4 Rigid-body Transitivity Equations. Using the results of the preceding example and its notations, show that, for a rigid body rotating about a fixed point,

$$
\begin{equation*}
\partial(\delta \boldsymbol{r})-\delta_{\text {rel }}(d \boldsymbol{r})=(\delta \boldsymbol{\theta} \times d \boldsymbol{\theta}) \times \boldsymbol{r} \neq \mathbf{0} \tag{a}
\end{equation*}
$$

or, equivalently (dividing by $d t=\partial t$),

$$
\begin{equation*}
\partial(\delta \boldsymbol{r}) / \partial t-\delta_{\text {rel }} \boldsymbol{v}=(\delta \boldsymbol{\theta} \times \boldsymbol{\omega}) \times \boldsymbol{r} \neq \mathbf{0} ; \tag{b}
\end{equation*}
$$

even though $d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})=\mathbf{0}$; that is, the rule $d(\delta \ldots)=\delta(d \ldots)$ is not frameinvariant!

Example 2.13.12 A Special Rigid-Body Transitivity Equation - Holonomic Coordinates. Continuing from the above examples, we show below that, for a rigid body rotating about a fixed point, the following transitivity/nonintegrability identity holds:

$$
\begin{equation*}
E_{k}(\boldsymbol{\omega}) \equiv d / d t\left(\partial \omega / \partial v_{k}\right)-\partial \omega / \partial q_{k}=\omega \times\left(\partial \omega / \partial v_{k}\right) \tag{a}
\end{equation*}
$$

For such a system (with $k=1,2,3$; and $q_{k}=$ angular Lagrangean coordinates; e.g., Eulerian angles ϕ, θ, ψ) we will have

$$
\begin{align*}
\omega & =\omega\left(q_{k}, d q_{k} / d t \equiv v_{k}\right) \equiv \omega(q, v) \\
& =\text { linear and (for our system, also) homogeneous function of the } v_{k}^{\prime} \text { 's } \\
& =\sum\left(\partial \omega / \partial v_{k}\right) v_{k} \text { (by Euler's homogeneous function theorem) } \equiv \sum c_{k} v_{k} \tag{b}
\end{align*}
$$

[definition of the \boldsymbol{c}_{k} 's; also, recalling (1.7.9a, b)] from which it follows that

$$
d \boldsymbol{\theta} \equiv \boldsymbol{\omega} d t=\sum \boldsymbol{c}_{k} d q_{k}
$$

and since this is a scleronomic system

$$
\begin{equation*}
\delta \boldsymbol{\theta}=\sum \boldsymbol{c}_{k} \delta q_{k} \tag{c}
\end{equation*}
$$

and so the basis (quasi) vectors $\boldsymbol{c}_{k} \equiv \partial \omega / \partial v_{k}$ (independent of the v_{k} 's) can also be defined symbolically by

$$
\begin{equation*}
\boldsymbol{c}_{k} \equiv \partial \boldsymbol{\theta} / \partial q_{k} \equiv \partial(d \boldsymbol{\theta}) / \partial\left(d q_{k}\right) \equiv \partial(\delta \boldsymbol{\theta}) / \partial\left(\delta q_{k}\right) \tag{d}
\end{equation*}
$$

Now, let us substitute the above representations into the earlier (inertial) transitivity equation

$$
\begin{equation*}
d(\delta \boldsymbol{\theta}) / d t-\delta \boldsymbol{\omega}=\boldsymbol{\omega} \times \delta \boldsymbol{\theta} \tag{e}
\end{equation*}
$$

We find, successively,
(i) Left side [we assume that $\left.(\delta q)^{\cdot}=\delta(d q / d t) \equiv \delta v\right]$:

$$
\begin{align*}
d(\delta \boldsymbol{\theta}) / d t-\delta \boldsymbol{\omega} & =d / d t\left(\sum\left(\partial \omega / \partial v_{k}\right) \delta q_{k}\right)-\sum\left[\left(\partial \omega / \partial q_{k}\right) \delta q_{k}+\left(\partial \omega / \partial v_{k}\right) \delta v_{k}\right] \\
& =\cdots=\sum\left[d / d t\left(\partial \omega / \partial v_{k}\right)-\partial \omega / \partial q_{k}\right] \delta q_{k}=\sum E_{k}(\boldsymbol{\omega}) \delta q_{k} . \tag{f}
\end{align*}
$$

(ii) Right side:

$$
\begin{equation*}
\omega \times \delta \boldsymbol{\theta}=\omega \times\left(\sum\left(\partial \omega / \partial v_{k}\right) \delta q_{k}\right)=\sum\left[\omega \times\left(\partial \omega / \partial v_{k}\right)\right] \delta q_{k} \tag{g}
\end{equation*}
$$

and therefore (since the δq_{k} are independent-but even if they were constrained that would only affect the equations of motion) equating the right sides of (f) and (g), the identity (a) follows.

In terms of the earlier \boldsymbol{c}_{k} vectors, (a) reads

$$
\begin{equation*}
d \boldsymbol{c}_{k} / d t=\omega \times \boldsymbol{c}_{k}+\partial \omega / \partial q_{k}=\sum\left(\boldsymbol{c}_{l} \times \boldsymbol{c}_{k}+\partial \boldsymbol{c}_{l} / \partial q_{k}\right) v_{l} . \tag{h}
\end{equation*}
$$

Finally, applying the first of (d) of ex. 2.13 .11 to $\partial \omega / \partial v_{k}$, and inserting the result into (a, h) produces the following interesting result:

$$
\begin{equation*}
E_{k, r e l}(\boldsymbol{\omega}) \equiv \partial / \partial t\left(\partial \omega / \partial v_{k}\right)-\partial \omega / \partial q_{k}=\mathbf{0} \quad \text { or } \quad \partial \boldsymbol{c}_{k} / \partial t=\partial \omega / \partial q_{k} \tag{i}
\end{equation*}
$$

Problem 2.13.5 Using the well-known kinematical result

$$
\begin{equation*}
d \boldsymbol{u}_{k} / d t=\omega \times \boldsymbol{u}_{k} \tag{a}
\end{equation*}
$$

where $\left\{\boldsymbol{u}_{k}=\boldsymbol{u}_{k}(q)\right\}$ is, say, a body-fixed basis rotating with inertial angular velocity ω (like the earlier $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$), with the ω-representation (b) of the preceding example:

$$
\begin{equation*}
\omega=\omega\left(q_{k}, v_{k}\right) \equiv \omega(q, v)=\sum c_{k} v_{k} \tag{b}
\end{equation*}
$$

show that

$$
\begin{equation*}
\partial \boldsymbol{u}_{k} / \partial q_{l}=\boldsymbol{c}_{l} \times \boldsymbol{u}_{k} \quad[\text { note subscript order] }, \tag{c}
\end{equation*}
$$

i.e., (1.7.9c). Clearly, such a result holds for any vector $\boldsymbol{b}=\boldsymbol{b}(q)$ rotating with angular velocity $\boldsymbol{\omega}: \quad \partial \boldsymbol{b} / \partial q_{l}=\boldsymbol{c}_{l} \times \boldsymbol{b} \equiv\left(\partial \boldsymbol{\omega} / \partial v_{k}\right) \times \boldsymbol{b} . \quad$ Also: (i) $\quad d / d t\left(\partial \boldsymbol{b} / \partial q_{l}\right)=$ $\partial / \partial q_{l}(d \boldsymbol{b} / d t)$, and (ii) $\partial \boldsymbol{b} / \partial v_{l}=\mathbf{0}$.

Problem 2.13.6 By direct substitution of the representations

$$
\begin{equation*}
d \boldsymbol{\theta} \equiv \boldsymbol{\omega} d t=\sum \boldsymbol{c}_{k} d q_{k} \quad \text { and } \quad \delta \boldsymbol{\theta}=\sum \boldsymbol{c}_{k} \delta q_{k} \tag{a}
\end{equation*}
$$

into the earlier inertial rotational transitivity equation [ex. 2.13.11: eq. (b)].

$$
\begin{equation*}
d(\delta \boldsymbol{\theta})-\delta(d \boldsymbol{\theta})=d \boldsymbol{\theta} \times \delta \boldsymbol{\theta} \tag{b}
\end{equation*}
$$

and some simple differentiations, show that

$$
\begin{equation*}
\partial \boldsymbol{c}_{k} / \partial q_{l}-\partial \boldsymbol{c}_{l} / \partial q_{k}=\boldsymbol{c}_{l} \times \boldsymbol{c}_{k} . \tag{c}
\end{equation*}
$$

This nonintegrability relation shows clearly that the basis $\left\{\boldsymbol{c}_{k}\right\}$ is nonholonomic (nongradient); whereas if $\boldsymbol{c}_{k}=\partial \boldsymbol{\theta} / \partial q_{k}$, then $d(\delta \boldsymbol{\theta})=\delta(d \boldsymbol{\theta}) \Rightarrow \boldsymbol{\theta}=$ genuine angular coordinate. Simplify (c) if the $\left\{\boldsymbol{c}_{k}\right\}$ are an orthogonal-unit-dextral basis (see also Brunk, 1981).

Example 2.13.13 A Special Rigid-Body Transitivity Equation-Nonholonomic Coordinates. Continuing from ex. 2.13.11, let us substitute the (fully nonholonomic) representations
$\boldsymbol{\omega}=\sum\left(\partial \boldsymbol{\omega} / \partial \omega_{k}\right) \omega_{k} \equiv \sum \varepsilon_{k} \omega_{k}=\boldsymbol{\omega}(q, \omega), \quad d \boldsymbol{\theta}=\sum \varepsilon_{k} d \theta_{k}, \quad \delta \boldsymbol{\theta}=\sum \boldsymbol{\varepsilon}_{k} \delta \theta_{k}$,
where, as usual, $\theta_{k}=$ quasi coordinates, $\omega_{k} \equiv d \theta_{k} / d t=$ quasi velocities, and

$$
\begin{equation*}
\boldsymbol{\varepsilon}_{k} \equiv \partial \boldsymbol{\omega} / \partial \omega_{k} \equiv \partial(d \boldsymbol{\theta}) / \partial\left(d \theta_{k}\right) \equiv \partial(\delta \boldsymbol{\theta}) / \partial\left(\delta \theta_{k}\right) \equiv \partial \boldsymbol{\theta} / \partial \theta_{k}: \text { nonholonomic basis, } \tag{b}
\end{equation*}
$$

into the fundamental inertial rotational transitivity equation

$$
\begin{equation*}
d(\delta \boldsymbol{\theta}) / d t-\delta \omega=\omega \times \delta \boldsymbol{\theta} \tag{c}
\end{equation*}
$$

We find, successively,
(i) Left side:

$$
\begin{aligned}
d(\delta \boldsymbol{\theta}) / d t-\delta \boldsymbol{\omega}= & \sum\left[\left(\partial \boldsymbol{\omega} / \partial \omega_{k}\right)^{\cdot} \delta \theta_{k}+\left(\partial \boldsymbol{\omega} / \partial \omega_{k}\right)\left(\delta \theta_{k}\right)^{\cdot}\right] \\
& -\sum\left[\left(\partial \boldsymbol{\omega} / \partial q_{k}\right) \delta q_{k}+\left(\partial \boldsymbol{\omega} / \partial \omega_{k}\right) \delta \omega_{k}\right]
\end{aligned}
$$

[and setting $\delta q_{k}=\sum A_{k l} \delta \theta_{l} \equiv \sum\left(\partial v_{k} / \partial \omega_{l}\right) \delta \theta_{l} \quad$ (definition of the $\left.A_{k l}\right)$]

$$
=\sum\left[\left(\partial \omega / \partial \omega_{k}\right)^{\cdot}-\sum A_{l k}\left(\partial \omega / \partial q_{l}\right)\right] \delta \theta_{k}+\sum\left(\partial \omega / \partial \omega_{l}\right)\left[\left(\delta \theta_{l}\right)^{\cdot}-\delta \omega_{l}\right]
$$

[recalling the $\partial \ldots / \partial \theta_{k}$ definition (2.9.30a); and setting (as in pr. 2.10.5)

$$
\begin{align*}
\left(\delta \theta_{l}\right)^{\cdot}-\delta \omega_{l} & \left.\left.=\sum h_{k}^{l} \delta \theta_{k} \quad \text { (definition of the } h_{k}^{l}\right)\right] \\
& \equiv \sum\left[\left(\partial \omega / \partial \omega_{k}\right)^{\cdot}-\partial \omega / \partial \theta_{k}\right] \delta \theta_{k}+\sum \sum\left(\partial \omega / \partial \omega_{l}\right) h_{k}^{l} \delta \theta_{k} \\
& \equiv \sum\left[E_{k}^{*}(\omega)+\sum h_{k}^{l}\left(\partial \omega / \partial \omega_{l}\right)\right] \delta \theta_{k} . \tag{d}
\end{align*}
$$

(ii) Right side:

$$
\begin{equation*}
\boldsymbol{\omega} \times \delta \boldsymbol{\theta}=\boldsymbol{\omega} \times\left(\sum\left(\partial \boldsymbol{\omega} / \partial \omega_{k}\right) \delta \theta_{k}\right)=\sum\left[\boldsymbol{\omega} \times\left(\partial \boldsymbol{\omega} / \partial \omega_{k}\right)\right] \delta \theta_{k} \tag{e}
\end{equation*}
$$

and, therefore, equating the right sides of (d) and (e), we obtain the identity

$$
\begin{equation*}
d / d t\left(\partial \omega / \partial \omega_{k}\right)-\partial \omega / \partial \theta_{k}+\sum h_{k}^{l}\left(\partial \omega / \partial \omega_{l}\right)=\omega \times\left(\partial \omega / \partial \omega_{k}\right) \tag{f}
\end{equation*}
$$

or, in terms of the quasi vectors $\boldsymbol{\varepsilon}_{k}=\boldsymbol{\varepsilon}_{k}(q)$,

$$
\begin{equation*}
d \varepsilon_{k} / d t-\partial \omega / \partial \theta_{k}=\omega \times\left(\partial \omega / \partial \omega_{k}\right)-\sum h_{k}^{l} \boldsymbol{\varepsilon}_{l} . \tag{g}
\end{equation*}
$$

Finally, since $d \varepsilon_{k} / d t=\partial \varepsilon_{k} / \partial t+\omega \times \varepsilon_{k},(\mathrm{~g})$ takes the body-axes form:

$$
\begin{equation*}
\partial \boldsymbol{\varepsilon}_{k} / \partial t-\partial \omega / \partial \theta_{k} \equiv \partial / \partial t\left(\partial \omega / \partial \dot{\theta}_{k}\right)-\partial \omega / \partial \theta_{k} \equiv E_{k, r e l}^{*}(\omega)=-\sum h_{k}^{l} \boldsymbol{\varepsilon}_{l} \tag{h}
\end{equation*}
$$

which is a special case of the transitivity equation (2.10.25).
[Here too, we point out the differences between the notation:

$$
\begin{equation*}
\partial \boldsymbol{\omega}(q, \omega) / \partial \theta_{l} \equiv \sum\left[\partial \boldsymbol{\omega}(q, \omega) / \partial q_{k}\right]\left(\partial v_{k} / \partial \omega_{l}\right) \tag{i}
\end{equation*}
$$

and the vector transformation (by chain rule):

$$
\begin{equation*}
\left.\partial \boldsymbol{\omega}(q, \omega) / \partial \omega_{l}=\sum\left[\partial \boldsymbol{\omega}(q, v) / \partial v_{k}\right]\left(\partial v_{k} / \partial \omega_{l}\right) \quad \text { or } \quad \boldsymbol{\varepsilon}_{l}=\sum A_{k l} \boldsymbol{e}_{k} \cdot\right] \tag{j}
\end{equation*}
$$

See also Papastavridis, 1992.

Problem 2.13.7 By direct substitution of the representations

$$
\begin{equation*}
d \boldsymbol{\theta} \equiv \boldsymbol{\omega} d t=\sum \boldsymbol{\varepsilon}_{k} d \theta_{k} \quad \text { and } \quad \delta \boldsymbol{\theta}=\sum \boldsymbol{\varepsilon}_{k} \delta \theta_{k} \tag{a}
\end{equation*}
$$

into the earlier inertial rotational transitivity equation [ex. 2.13.11, eq. (b)]

$$
\begin{equation*}
d(\delta \boldsymbol{\theta})-\delta(d \boldsymbol{\theta})=d \boldsymbol{\theta} \times \delta \boldsymbol{\theta} \tag{b}
\end{equation*}
$$

and some simple differentiations, show that

$$
\begin{equation*}
\partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{l}-\partial \boldsymbol{\varepsilon}_{l} / \partial \theta_{k}+\sum \eta_{k l}^{b} \boldsymbol{\varepsilon}_{b}=\boldsymbol{\varepsilon}_{l} \times \varepsilon_{k}, \tag{c}
\end{equation*}
$$

where these special Hamel coefficients $\eta^{b}{ }_{k l}$ are defined by $d\left(\delta \theta_{b}\right)-\delta\left(d \theta_{b}\right)=$ $\sum \sum \eta_{k l}^{b} d \theta_{l} \delta \theta_{k}$.

Example 2.13.14 Angular Acceleration. Let us consider intermediate axes $-\boldsymbol{u}_{k}$ rotating with inertial angular velocity $\boldsymbol{\Omega}=\sum \Omega_{k} \boldsymbol{u}_{k}$. If the inertial angular velocity of a rigid body, resolved along these axes, is $\omega=\sum \omega_{k} \boldsymbol{u}_{k}$ then its inertial angular acceleration equals

$$
\begin{equation*}
\boldsymbol{\alpha} \equiv d \omega / d t=\partial \omega / \partial t+\Omega \times \omega=\partial \omega / \partial t-\omega_{o} \times \omega \tag{a}
\end{equation*}
$$

where $\partial \boldsymbol{\omega} / \partial t=\sum\left(d \omega_{k} / d t\right) \boldsymbol{u}_{k}$, and $\omega_{o} \equiv \boldsymbol{\omega}-\boldsymbol{\Omega}=$ angular velocity of body relative to the intermediate axes.

Applying this result to the earlier case of semimobile axes $-\boldsymbol{i}^{\prime} \boldsymbol{j}^{\prime} \boldsymbol{k}^{\prime} \equiv-\boldsymbol{u}_{n} \boldsymbol{u}_{n^{\prime}} \boldsymbol{k}$ (ex. 2.13.9) where

$$
\begin{equation*}
\boldsymbol{\omega}=\left(\omega_{\theta}\right) \boldsymbol{u}_{n}+\left(\omega_{\phi} \sin \theta\right) \boldsymbol{u}_{n^{\prime}}+\left(\omega_{\psi}+\omega_{\phi} \cos \theta\right) \boldsymbol{k}=\boldsymbol{\Omega}+\omega_{\psi} \boldsymbol{k}=\boldsymbol{\Omega}+\boldsymbol{\omega}_{o}, \tag{b}
\end{equation*}
$$

[with the customary notations: $\omega_{\phi} \equiv d \phi / d t, \omega_{\theta} \equiv d \theta / d t, \omega_{\psi} \equiv d \psi / d t$]
that is, $\omega_{o}=\omega_{\psi} \boldsymbol{k}$, we find, after some straightforward calculations,

$$
\begin{equation*}
\boldsymbol{\alpha} \equiv \alpha_{n} \boldsymbol{u}_{n}+\alpha_{n^{\prime}} \boldsymbol{u}_{n^{\prime}}+\alpha_{k} \boldsymbol{k} \tag{c}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{n} \equiv d \omega_{\theta} / d t+\omega_{\phi} \omega_{\psi} \sin \theta \\
& \alpha_{n^{\prime}} \equiv\left(d \omega_{\phi} / d t\right) \sin \theta+\omega_{\phi} \omega_{\theta} \cos \theta-\omega_{\theta} \omega_{\psi} \\
& \alpha_{k} \equiv\left(d \omega_{\phi} / d t\right) \cos \theta+d \omega_{\psi} / d t-\omega_{\phi} \omega_{\theta} \sin \theta \tag{d}
\end{align*}
$$

Let the reader repeat the above for the semifixed axes $-\boldsymbol{u}_{n} \boldsymbol{u}_{N} \boldsymbol{K}$, where

$$
\begin{align*}
\boldsymbol{\omega} & =\left(\omega_{\phi} \boldsymbol{K}+\omega_{\theta} \boldsymbol{u}_{n}\right)+\omega_{\psi} \boldsymbol{k}=\left(\omega_{\phi} \boldsymbol{K}+\omega_{\theta} \boldsymbol{u}_{n}\right)+\omega_{\psi}\left(-\sin \theta \boldsymbol{u}_{N}+\cos \theta \boldsymbol{K}\right) \\
& =\left(\omega_{\theta}\right) \boldsymbol{u}_{n}+\left(-\omega_{\psi} \sin \theta\right) \boldsymbol{u}_{N}+\left(\omega_{\phi}+\omega_{\psi} \cos \theta\right) \boldsymbol{K} \\
& \equiv \omega_{\phi} \boldsymbol{K}+\omega_{o} \equiv \boldsymbol{\Omega}+\boldsymbol{\omega}_{o} . \tag{e}
\end{align*}
$$

[For matrix forms of rigid-body accelerations, see (1.11.9a ff.); also Lur'e (1968, pp. 68-72).]

3

Kinetics of Constrained Systems

(i.e., Lagrangean Kinetics)

Abstract

Where we may appear to have rashly and needlessly interfered with methods and systems of proof in the present day generally accepted, we take the position of Restorers, and not of Innovators.

(Thomson and Tait, 1867-1912, Preface, p. vi)
[A] work of which the unity of method is one of the most striking characteristics.... That which most distinguishes the plan of this treatise from the usual type is the direct application of the general principle to each particular case.
(Gibbs, 1879, 3rd footnote, emphasis added; the work/treatise
Gibbs refers to is Lagrange's Mećanique Analytique, and the
"general principle" is Lagrange's Principle (§3.2))
[T]he author . . . again and again . . . experienced the extraordinary elation of mind which accompanies a preoccupation with the basic principles and methods of analytical mechanics.
(Lanczos, 1970, p. vii)

3.1 INTRODUCTION

This is the key chapter of the entire book; and since it is based on chapter 2 , it should be read after the latter. We begin with a detailed coverage of the two fundamental principles, or pillars, of Lagrangean analytical mechanics:
(i) The Principle of Lagrange (and its velocity form known as The Central Equation); and
(ii) The Principle of Relaxation of the Constraints.

From these two, with the help of virtual displacements, and so on ($\$ 2.5 \mathrm{ff}$.), we, subsequently, obtain all possible kinetic energy-based (Lagrangean) and acceleration energy-based (Appellian) equations of motion of holonomic and/or Pfaffian (possibly nonholonomic) systems; in holonomic and/or nonholonomic variables, with/without constraint reactions; such as the equations of Routh-Voss, Maggi, Hamel, and Appell, to name the most important.

Next, applying standard mathematical transformations to these equations, we obtain the theorem of work-energy in its various forms; that is, in holonomic and/ or nonholonomic variables, with/without constraint reactions, and so on. This concludes the first, general, part of the chapter (§3.1-12). The second and third parts apply the previous Lagrangean and Appellian methods/principles/equations,
respectively, to the rigid body (§3.13-15) and to noninertial frames of reference (or moving axes) (\$3.16). The chapter ends with (i) a concise discussion of the servo-, or control, constraints of Beghin-Appell (§3.17); and (ii) two Appendices on the historical evolution of (some of) the above principles/equations of motion, and their relations to virtual displacements and the confusion-laden principle of d'Alembert-Lagrange.

As with the previous chapters, a large number of completely solved examples and problems with their answers and/or helpful hints, many of them kinetic continuations of corresponding kinematical examples and problems of chapter 2, have been appropriately placed throughout this chapter.

For complementary reading, we recommend (alphabetically): Butenin (1971), Dobronravov (1970, 1976), Gantmacher (1966/1970), Hamel (1912/1922(b), 1949), Kilchevskii (1977), Lur'e (1961/1968/2002), Mei (1985, 1987(a), 1991), Mei and Liu (1987), Neimark and Fufaev (1967/1972), Nordheim (1927), Pars (1965), Poliahov et al. (1985), Prange (1935), Synge (1960). As with chapter 2, we are unaware of any other single exposition, in English, comparable to this one in the range of topics covered. Only Hamel (1949), Mei et al. (1991) and Neimark and Fufaev (1967/1972) cover major portions of the material treated here.

3.2 THE PRINCIPLE OF LAGRANGE (LP)

We begin with a finite mechanical system S consisting of particles $\{P\}$; each of mass $d m$, inertial acceleration $\boldsymbol{a} \equiv d \boldsymbol{v} / d t \equiv d^{2} \boldsymbol{r} / d t^{2}$, and each obeying the Newton-Euler equation of motion (§1.4):

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{f} \tag{3.2.1}
\end{equation*}
$$

where $d \boldsymbol{f}=$ total force acting on P. As explained in chapter 2 , the continuum notation for particle quantities, employed here, simplifies matters, since it allows us to reserve all indices (to be introduced below) for system quantities.

The Force Classification

Now, and here we start parting company with the Newton-Euler mechanics, we decompose $d \boldsymbol{f}$ into two parts: (i) a total physical, or impressed, force $d \boldsymbol{F}$, and (ii) a total constraint force, or constraint reaction, $d \boldsymbol{R}$:

$$
\begin{equation*}
d \boldsymbol{f}=d \boldsymbol{F}+d \boldsymbol{R} \tag{3.2.2}
\end{equation*}
$$

Let us elaborate on these fundamental concepts:
(i) By constraint reactions, on our particle P, we shall understand (external and/or internal) forces, due solely to the (external and/or internal) geometrical and/or kinematical constitution of the system S; that is, forces caused exclusively by the prescribed (external and/or internal) constraints of S, and whose raison d'être is the preservation of these constraints. As a result, such forces are (a) passive (i.e., they appear only when absolutely needed; see below), and (b) expressible only through these constraints (since, by their definition, they contain neither physical constants nor material functions/coefficients). Therefore, these reactions become fully known only after the motion of S (under possible additional, nonconstraint forces and initial conditions) has been found. Examples of constraint reactions are: inextensible
cable tensions, internal forces in a rigid body, normal forces among contacting (rolling/sliding/pivoting/nonpivoting) rigid bodies, and rolling (or static) friction.
(Generally, constraints and their reactions are classified, on the basis of the precise physical manner by which they are maintained, as passive, or as active. Except §3.17, where the latter are elaborated, this chapter deals only with passive constraints/ reactions.)
(ii) By physical or impressed forces, on our particle P, we shall understand all other (external and/or internal, nonconstraint) forces acting on it, which means that [since the total force on P is determined through variables describing the geometrical/ kinematical and physical state of the rest of the matter surrounding that particle (recalling §1.4)] the impressed forces depend, at least partially, on physical, or material, constants, unrelated to the constraints, and which can be determined only experimentally. Examples of such constants are: mass, gravitational constant, elastic moduli, viscous and/or dry friction coefficients, readings of the scale of a barometer or manometer; and examples of physical/impressed forces are gravity (weight), elastic (spring) forces, viscous damping forces, steam pressure, slipping (or sliding, or kinetic) friction [see remark (iii) below].

In other words, the impressed forces are forces expressed by material, or constitutive, equations, that contain those physical constants, and are assumed to be valid for any motion of the system; physical means physically (functionally) given - it does not mean that the values of these forces are necessarily known ahead of time!

In sum: Impressed forces are given by constitutive equations, while reactions are not; but, in general, both these forces require, for their complete determination, knowledge of the subsequent motion of the system (which, in turn, requires solution of an initialvalue problem; namely, that of its equations of motion plus initial conditions).

Impressed forces are also, variously, referred to as (directly) applied, active, acting, assigned, given, known (where the last two terms have the meaning described above see also remarks (iii) and (iv) below). In addition, the great physicist Planck (1928, pp. 101-103) calls our impressed forces "treibende" (driving, or propelling), while the highly instructive Langner (1997-1998, p. 49) proposes the rare but conceptually useful terms "urgente" (urging) for the impressed forces, and "cogente" (cogent, convincing) for the constraint forces. We follow Hamel (1949, pp. 65, 82, 517, 551), who calls impressed forces "physikalisch gegebene" (physically given) or "eingeprägte"; also Sommerfeld (1964, pp. 53-54), who calls them "forces of physical origin."

REMARKS

(i) From the viewpoint of continuum mechanics, practically all forces are physical (i.e., impressed); for example, an inextensible cable tension can be viewed as the limit of the tension of an elastic cable, or rubber band, whose modulus is getting higher and higher $(\rightarrow \infty)$; and a rigid body can be viewed as a very stiff, practically strainless, deformable body. But there is also the exactly opposite viewpoint: kinetic and statistical theories of matter explain macroscopic phenomena, such as friction, viscosity, rust, by the motion of large numbers of smooth molecules, atoms, and so on. Their 19th century forerunners (Kelvin, Helmholtz, et al.) even tried to reduce the internal potential energy of bodies to the kinetic energy of a number of spinning "molecular gyrostats" strategically located inside them - see, for example, Gray (1918, chap. 8). And there is, of course, general relativity, which, continuing traditions of forceless mechanics, initiated by Hertz et al., set out to geometrize gravity completely; that is, replace tactile mechanics by a visual mechanics, albeit in a four-dimensional "space." For the modest purposes of macroscopic earthly
mechanics, the impressed/constraint force division is both logically consistent and practically useful (economical), and so we uphold it throughout this book.
(ii) The decomposition (3.2.2), what Hamel (1949, p. 218) calls "d'Alembertsche Ansatz" (\sim initial proposition), is the hallmark of analytical mechanics. Expressing system accelerations as partial/total derivatives of kinetic energies with respect to system coordinates, velocities, and time ($\$ 3.3$) is a welcome but secondary characteristic of Lagrangean analytical mechanics; the primary one is the decomposition (3.2.2) and its consequences with regard to the equations of motion. By contrast, the Newton-Euler mechanics decomposes $d \boldsymbol{f}$ into (a) a total external force $d \boldsymbol{f}_{e}$ (= force originating, even partially, from outside of our system S), and (b) a total internal, or mutual, force $d f_{i}$ (= force due exclusively to the rest of S, on its generic particle P):

$$
\begin{equation*}
d \boldsymbol{f}=d \boldsymbol{f}_{e}+d \boldsymbol{f}_{i} . \tag{3.2.3}
\end{equation*}
$$

The connection between (3.2.2) and (3.2.3) is easily seen by decomposing $d \boldsymbol{F}(d \boldsymbol{R})$ into an external part $d \boldsymbol{F}_{e}\left(d \boldsymbol{R}_{e}\right)$ and an internal part $d \boldsymbol{F}_{i}\left(d \boldsymbol{R}_{i}\right)$, and then rearranging à la (3.2.3); that is, successively,

$$
\begin{align*}
d \boldsymbol{f} & =d \boldsymbol{F}+d \boldsymbol{R}=\left(d \boldsymbol{F}_{e}+d \boldsymbol{F}_{i}\right)+\left(d \boldsymbol{R}_{e}+d \boldsymbol{R}_{i}\right) \\
& =\left(d \boldsymbol{F}_{e}+d \boldsymbol{R}_{e}\right)+\left(d \boldsymbol{F}_{i}+d \boldsymbol{R}_{i}\right) \equiv d \boldsymbol{f}_{e}+d \boldsymbol{f}_{i} \tag{3.2.4}
\end{align*}
$$

where

$$
\begin{equation*}
d \boldsymbol{f}_{e} \equiv d \boldsymbol{F}_{e}+d \boldsymbol{R}_{e} \quad \text { and } \quad d \boldsymbol{f}_{i} \equiv d \boldsymbol{F}_{i}+d \boldsymbol{R}_{i} \tag{3.2.4a}
\end{equation*}
$$

The decompositions (3.2.2) and (3.2.3), although physically different, may, for some special systems, coincide. For example, in a free (i.e., externally unconstrained) rigid body all external forces are impressed (i.e., external reactions $=0$), and all internal forces are reactions (i.e., internal impressed forces $=0$). The coincidence of external forces with impressed forces and of internal forces with reactions in this popular and well-known system is, probably, responsible for the frequent confusion and error accompanying d'Alembert's principle (detailed below), even in contemporary dynamics expositions.
(iii) Rolling friction should be counted as a constraint reaction because it is expressed by a geometrical/kinematical condition, not by a constitutive equation; while slipping friction should be counted as an impressed force because, according to the well-known Coulomb-Morin friction "law," it depends both on the contact condition (through the normal force, which is in both cases a constraint reaction) and on the physical properties of the contacting surfaces (through the kinetic friction coefficient). (That slipping friction is governed by a physical inequality does not affect our force classification.) The above apply to the (possible) rolling/slipping and pivot-ing/non-pivoting couples.

The difference between rolling and slipping friction, from the viewpoint of analytical mechanics (principle of virtual work, etc.), has been a source of considerable confusion and error, even among the better authors on the subject.
(iv) The force decomposition (3.2.2) is completely analogous to that occurring in continuum mechanics. For instance, in an incompressible (i.e., internally constrained) elastic solid, the total stress (force) consists of a "hydrostatic pressure" or "reaction stress" term (constraint reaction), plus an "elastic stress" term (impressed force) expressed by a constitutive equation/function of the elastic moduli
(material constants) and the strains (motion \rightarrow deformation), and it is assumed to be valid for any motion of that system. In general, the values of the stresses, both "incompressible/pressure" and "elastic" parts, for specific initial and boundary conditions, are found after solving that particular "initial- and boundary-value problem"; namely, the equations of motion of the solid plus its initial and boundary conditions.

HISTORICAL

The fundamental decomposition (3.2.2) seems to have been first given by Delaunay (1856); see, for example (alphabetically): Rumyantsev (1990, p. 268), Stäckel (1905, p. 450, footnote 11a); also Hamel (1912, pp. 81-82, 301-302, 457-458, 469-470), Heun [1902 (a, d)], Pars (1953, pp. 447-448), Webster (1912, pp. 41-42, 63-65).

Example 3.2.1 Let us Find the Most Important Internal/External and Impressed/ Constraint Forces in a Diesel-Powered Electric Locomotive, Rolling on Rails. These are as follows:
(i) Gravity and air resistance (drag) are both external (their cause lies outside the system locomotive), and impressed (both depend partially on the physical constants: $g=$ acceleration of gravity and $\rho=$ air density, respectively).
(ii) Pressure of burnt diesel fuel is internal (it originates within the engine's cylinders) and impressed (depends on the gas temperature, density, etc.).
(iii) Forces on connecting rods and other moving parts of the engine:
(a) If these bodies are considered rigid, the forces are internal reactions;
(b) If they are considered flexible, say elastic, these forces are internal but impressed (and to calculate them we must know their elastic moduli).
(iv) Forces between axles and their wheel bearings are internal (for obvious reasons) and impressed (due to the relative motion among them - no constraints).
(v) Friction forces between wheels and rail are external (caused, partially, by an external body, the rail) and reactions (due to the slippingless rolling of wheels), and this holds for both their tangential (friction) and normal components; however, in the case of slipping (skidding), the friction changes to an external impressed force (it depends, partially, on the wheel-rail friction coefficient).

Example 3.2.2 Let us Identify and Classify the Key Forces on a Person Walking up a Rough Hilly Road. The external forces needed to overcome the (also external) forces of gravity and air resistance are those generated by the road friction. The latter are reactions, since there is no relative motion (i.e., constraint) between the walker's shoes and the road surface.

Arguments of the Forces

In classical (Newtonian) mechanics, the force $d \boldsymbol{f}$ on a particle P, of a system S, can depend, at most, on its position, velocity, and time; and on those of other particles of S, or even outside of S; and also, on material functions/coefficients. But, as an independent constitutive equation (i.e., not by some artificial control law), $d \boldsymbol{f}$ cannot depend on the acceleration \boldsymbol{a} of P (and/or its higher time derivatives). This, however, does not preclude the occurrence of such a dependence by elimination: in the course of solving the equations of motion, and so on, of a problem, it is possible to relate
functionally a force with an acceleration; but that is a mathematical coupling, not an independent physical one.
[Pars (1965, pp. 11-12; also 24-25) has shown that if $d \boldsymbol{f}$ depended on \boldsymbol{a}, then the initial state of P, that is, its initial position and velocity, would not determine its future uniquely; see also Rosenberg (1977, pp. 10-17); and Hamel (1949, p. 49). But in other areas of classical physics, for instance electrodynamics (e.g., radiation damping), such a non-Newtonian explicit \boldsymbol{a}-dependence does not create inconsistencies.]

Lagrange's Principle

Dotting each of (3.2.1) and (3.2.2) with the corresponding particle's inertial virtual displacement $\delta \boldsymbol{r}$ ($\$ 2.5 \mathrm{ff}$.) and then summing the resulting equations over all system particles, for a fixed generic time, we obtain

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}+\boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r} \tag{3.2.5}
\end{equation*}
$$

or, rearranging,

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{r}+\boldsymbol{S}(-d \boldsymbol{R}) \cdot \delta \boldsymbol{r}=0 \tag{3.2.6}
\end{equation*}
$$

where [recall ($\$ 2.2 .7 \mathrm{ff}$.)] the material sum $S(\ldots)$ is to be understood as a Stieltjes' integral extending over all the continuously and/or discretely distributed system particles and their geometric/kinematic/inertial/kinetic variables.

Equations $(3.2 .5,6)$ do not contain anything physically new; that is, they result from (3.2.1, 2) by purely mathematical transformations. To make further progress towards the derivation of reactionless equations of motion, one of the key objectives of analytical mechanics, we now postulate that (for bilateral, or equality, or reversible, constraints)

$$
\begin{equation*}
-\delta^{\prime} W_{R} \equiv \boldsymbol{S}(-d \boldsymbol{R}) \cdot \delta \boldsymbol{r} \equiv-\boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0 \tag{3.2.7}
\end{equation*}
$$

in words: at each instant, the (first-order) total virtual work of the system of (external and internal) "lost" (or forlorn, or accessory) forces $\{-d \boldsymbol{R}\},-\delta^{\prime} W_{R}$, vanishes. Then, equations $(3.2 .5,6)$ immediately reduce to the new and nontrivial principle of d'Alembert in Lagrange's form, or, simply and more accurately, principle of Lagrange ($L P$) for such constraints:

$$
\begin{equation*}
S d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \quad \text { or } \quad \boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{r}=0 \tag{3.2.8}
\end{equation*}
$$

what Lagrange calls "la formule générale de la Dynamique pour le mouvement d'un système quelconque de corps."

This fundamental differential variational equation states that during the motion of a constrained system whose reactions, at each instant, satisfy the physical postulate (3.2.7), the total (first-order) virtual work of (the negative of) its "inertial forces" $-\{-d m \boldsymbol{a}\}=\{d m \boldsymbol{a}\}$,

$$
\begin{equation*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r} \tag{3.2.9}
\end{equation*}
$$

equals the similar virtual work of its (external and internal) impressed forces $\{d \boldsymbol{F}\}$,

$$
\begin{equation*}
\delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \tag{3.2.10}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\delta^{\prime} W_{R}=0 \Rightarrow \delta I=\delta^{\prime} W . \tag{3.2.11}
\end{equation*}
$$

The entire Lagrangean kinetics is based on $L P$, equations (3.2.7-11). Let us, therefore, examine them closely.

- Another, equivalent, formulation of the above is the following: during the motion, the totality of the lost forces $\{-d \boldsymbol{R}=d \boldsymbol{F}-d m \boldsymbol{a}\}$ are, at each instant, in equilibrium; not in the elementary sense of zero force and moment, but in that of the virtual work equation (3.2.7) (see also chap. 3, appendix 2).
- Here, we must stress that the above equations, and associated virtual work conception of equilibrium, are the contemporary formulation and interpretation of d'Alembert's principle; and they are due, primarily, to Heun and Hamel (early 20th century). As such, they bear practically zero resemblance to the original workless exposition of d'Alembert (1743). The latter postulated what, again in contemporary terms, amounts to equilibrium of the $\{-d \boldsymbol{R}\}$ in the elementary (i.e., Newton-Euler) sense of zero resultant force and moment:

$$
\begin{align*}
\boldsymbol{S}(-d \boldsymbol{R})=\mathbf{0} & \Rightarrow \boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F})=\mathbf{0} \\
\mathbf{S} \times(-d \boldsymbol{R})=\mathbf{0} & \Rightarrow \boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{a}-d \boldsymbol{F})=\mathbf{0} \tag{3.2.12}
\end{align*}
$$

It is not hard to see that for a rigid body (what d'Alembert dealt with) (3.2.7) specializes to (3.2.12). Indeed, substituting into (3.2.7) the most general rigid virtual displacement, $\delta \boldsymbol{r}=\delta \boldsymbol{r} \bullet+\delta \boldsymbol{\theta} \times\left(\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{*}}\right) \quad$ [where $\boldsymbol{=}$ generic body point, and $\delta \boldsymbol{\theta}=$ (first-order/elementary) virtual rigid body rotation (recalling $\S 1.10 \mathrm{ff}$.)] and simple vector algebra, we obtain, successively,

$$
\begin{align*}
-\delta^{\prime} W_{R} & =\boldsymbol{S}(-d \boldsymbol{R}) \cdot\left[\delta \boldsymbol{r}_{\star}+\delta \boldsymbol{\theta} \times\left(\boldsymbol{r}-\boldsymbol{r}_{\star}\right)\right] \\
& =[\boldsymbol{S}(-d \boldsymbol{R})] \cdot \delta \boldsymbol{r}_{\star}+\left[\boldsymbol{S}\left(\boldsymbol{r}-\boldsymbol{r}_{\star}\right) \times(-d \boldsymbol{R})\right] \cdot \delta \boldsymbol{\theta} \\
& \equiv(-\boldsymbol{R}) \cdot \delta \boldsymbol{r}_{\star}+\boldsymbol{M}_{\star}(-\boldsymbol{R}) \cdot \delta \boldsymbol{\theta}=0, \tag{3.2.13}
\end{align*}
$$

from which, since $\delta \boldsymbol{r}$, and $\delta \boldsymbol{\theta}$ are arbitrary, (3.2.12) follows [and if $\boldsymbol{S}(-d \boldsymbol{R})=\mathbf{0}$, then $\boldsymbol{M}_{\star}(-\boldsymbol{R})=\boldsymbol{M}_{\text {origin }}(-\boldsymbol{R})$]. If, further, the rigid body is free, that is, unconstrained, then, as explained earlier, all its external (internal) forces are impressed (reactions) (i.e., $\left\{d \boldsymbol{f}_{e}\right\}=\{d \boldsymbol{F}\}$ and $\left\{d \boldsymbol{f}_{i}\right\}=\{d \boldsymbol{R}\}$), and the above lead to the Eulerian principles of linear and angular momentum (recall §1.8.18):

$$
\begin{equation*}
\boldsymbol{S} d \boldsymbol{f}_{e}=\boldsymbol{S} d m \boldsymbol{a} \quad \text { and } \quad \boldsymbol{S}\left(\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{\bullet}}\right) \times d \boldsymbol{f}_{e}=\boldsymbol{S}\left(\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{*}}\right) \times d m \boldsymbol{a} \tag{3.2.14}
\end{equation*}
$$

It follows that, in studying the statics of free rigid bodies via virtual work, we only need include their external = impressed forces; and that is why here the methods of Newton-Euler and d'Alembert-Lagrange coincide and supply conditions that are both necessary and sufficient for equilibrium (see also Hamel, 1949, pp. 80-83).

This preoccupation of d'Alembert, and many others since him, with the special case of (systems of) rigid bodies and elementary vector equilibrium (3.2.12), has diverted attention from the far more general scalar virtual work equilibrium (3.2.7), which constitutes the essence of LP.

- In LP it is the sum $\delta^{\prime} W_{R} \equiv S d \boldsymbol{R} \cdot \delta \boldsymbol{r}$ that vanishes, and not necessarily each of its terms $d \boldsymbol{R} \cdot \delta \boldsymbol{r}$ separately; although this latter may happen in special cases.

For example, as explained above, in a free rigid body (3.2.7) reduces to $\delta^{\prime} W_{R} \rightarrow$ $\left(\delta^{\prime} W\right)_{\text {internal forces }}=0$, although individually $d \boldsymbol{f}_{i} \cdot \delta \boldsymbol{r}$ may not vanish.

- While the dm a are present wherever a mass is accelerated, the $d \boldsymbol{F}$ may act only at a few system particles.
- In general, $\delta^{\prime} W_{R}$ and $\delta^{\prime} W$ are not the exact (or perfect, or total) virtual differentials of some system "work/force functions" W_{R} and W, respectively; that is, in general, they are quasi variables, and that is the purpose of the accented delta δ^{\prime} (recall $\S 2.9 \mathrm{ff}$.). The same holds for δI, but here, for convenience, we will make an exception and leave it unaccented.
- For unilateral (or inequality, or irreversible) constraints, LP is enlarged from (3.2.7-11) to

$$
\begin{equation*}
\boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{r} \geq 0 \Rightarrow \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r} \geq \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \tag{3.2.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta^{\prime} W_{R} \geq 0 \Rightarrow \delta I \geq \delta^{\prime} W \tag{3.2.15a}
\end{equation*}
$$

For example, in the case of a block resting under its own weight on a fixed horizontal table, the sole impressed force on the block, gravity, cannot perform positive virtual work; while the normal table reaction cannot perform negative virtual work: $\delta^{\prime} W_{R}=-\delta^{\prime} W \geq 0$.

Lagrange's Principle as a Constitutive Postulate

It must be stressed that LP, eqs. (3.2.7-11), is what is known in continuum mechanics as a constitutive postulate for the nonphysical part of the $d \boldsymbol{f}$'s, namely, the constraint reactions $\{d \boldsymbol{R}\}$; like Hooke's law in elasticity, or the Navier-Stokes law in fluid mechanics; hence, applying LP to a free (i.e., unconstrained) particle is like, say, applying the theory of elasticity to a rigid body! As such, LP is not a law of nature, like the Newton-Euler equation (3.2.1) (and its Cauchy form, in continuum mechanics), but subservient to them; if (3.2.1) can be likened to a constitution article, LP is a secondary law (say, a state law). Just as in continuum mechanics, where not all parts of the stress need be elastic, here in analytical mechanics too, not all constraint reactions need satisfy (3.2.7) (see §3.17). Those reactions that do, which is most of this book, we shall call ideal (or perfect, or passive, or frictionless).

In view of these facts, the frequently occurring expression "workless, or nonworking, constraints" must be replaced by the more precise one, virtually workless constraints. Indeed, under the most general kinematically admissible/possible particle displacement (\$2.5)

$$
\begin{equation*}
d \boldsymbol{r}=\sum \boldsymbol{e}_{k} d q_{k}+\boldsymbol{e}_{0} d t, \quad \text { where } \quad \boldsymbol{e}_{k} \equiv \partial \boldsymbol{r} / \partial q_{k}, \quad \boldsymbol{e}_{0} \equiv \partial \boldsymbol{r} / \partial t\left(\equiv \boldsymbol{e}_{n+1}\right) \tag{3.2.16}
\end{equation*}
$$

the corresponding (first-order, or elementary) work of the constraint reactions is

$$
\begin{equation*}
d^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot d \boldsymbol{r}=\cdots=\left(d^{\prime} W_{R}\right)_{1}+\left(d^{\prime} W_{R}\right)_{2} \tag{3.2.16a}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(d^{\prime} W_{R}\right)_{1} \equiv \sum R_{k} d q_{k}, \quad R_{k} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k}, \tag{3.2.16b}\\
& \left(d^{\prime} W_{R}\right)_{2} \equiv R_{0} d t, \quad R_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{0}\left(\equiv R_{n+1}\right) \tag{3.2.16c}
\end{align*}
$$

while, under an equally general virtual displacement $\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}$, the corresponding work is

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=\cdots=\sum R_{k} \delta q_{k}=0 \tag{3.2.16d}
\end{equation*}
$$

and therefore, since $\left(d^{\prime} W_{R}\right)_{1}$ and $\delta^{\prime} W_{R}$ are mathematically equivalent $(d q \sim \delta q)$,

$$
\begin{equation*}
\left(d^{\prime} W_{R}\right)_{1}=0 \Rightarrow d^{\prime} W_{R}=\left(d^{\prime} W_{R}\right)_{2}=[\boldsymbol{S} d \boldsymbol{R} \cdot(\partial \boldsymbol{r} / \partial t)] d t \neq 0 \tag{3.2.16e}
\end{equation*}
$$

[In view of (3.2.16 ff.), it is, probably, better to think of first-order virtual work as projection of the forces in certain directions; and to forget all those traditional (and confusion-prone) definitions of it like "work of forces for a constraint compatible infinitesimal movement of the system."]

In sum: in general, the constraint reactions are working; even when virtually nonworking. Actually, that is why the whole concept of virtualness was invented in analytical mechanics. For example, let us consider a particle P constrained to remain on a rigid surface S, which undergoes a given motion. Then, the virtual work of the normal reaction exerted by S on P is zero, while the corresponding $d^{\prime} W_{R}$ is not; but, if S is stationary, then both $\delta^{\prime} W_{R}$ and $d^{\prime} W_{R}$ vanish. From the viewpoint of continuum mechanics, the need for LP, or something equivalent, for the constraint reactions is relatively obvious.

Below, we present a simple such mathematical argument from the viewpoint of discrete mechanics. In an N-particle system with equations of motion [discrete counterparts of (3.2.1)],

$$
\begin{equation*}
m_{P} \boldsymbol{a}_{P}=\boldsymbol{F}_{P}+\boldsymbol{R}_{P} \quad(P=1, \ldots, N), \tag{3.2.17a}
\end{equation*}
$$

and assuming that the impressed \boldsymbol{F}_{P} 's are completely known functions of $t, \boldsymbol{r}, \boldsymbol{v}$ (something that may not always be the case: e.g., sliding friction), we have $3 N+3 N=6 N$ unknown scalar functions: (i) the $3 N$ position vector components/ coordinates $\left\{x_{P}(t), y_{P}(t), z_{P}(t)\right.$: rectangular Cartesian components of $\left.\boldsymbol{r}_{P}\right\} \rightarrow$ $\left\{d^{2} x_{P} / d t^{2}=a_{P, x}, \quad d^{2} y_{P} / d t^{2}=a_{P, y}, \quad d^{2} z_{P} / d t^{2}=a_{P, z}\right.$: rectangular Cartesian components of $\left.\boldsymbol{a}_{P}=d^{2} \boldsymbol{r}_{P} / d t^{2}\right\}$, plus (ii) the $3 N$ reaction force components $\left\{R_{P, x}, R_{P, y}, R_{P, z}\right\}$. Against these unknowns, we have available: (i) the 3 N scalar equations of motion (3.2.17a), and (ii) a total of $h+m$ scalar equations of constraint (recall §2.2 ff.):
hgeometric: $\phi_{H}\left(t, \boldsymbol{r}_{P}\right)=0 \quad(H=1, \ldots, h ; P=1, \ldots, N)$,
m velocity (possibly nonholonomic): $f_{D}\left(t, \boldsymbol{r}_{P}, \boldsymbol{v}_{P}\right)=0 \quad(D=1, \ldots, m ; P=1, \ldots, N)$;
that is, a total of $3 N+h+m$ (differential) equations. Therefore, to make our problem determinate, we need $6 N-(3 N+h+m)=(3 N-h)-m \equiv n-m \equiv f$ ($\equiv \#$ DOF in the small) additional scalar equations. And here is where LP comes in: as shown later in this chapter, the single energetic but variational equation
$\delta^{\prime} W_{R}=0 \Rightarrow \delta I=\delta^{\prime} W$ produces precisely these f needed independent scalar equations (unlike the single actual, nonvariational, work/energy theorem, which always produces only one such equation!); and the latter, along with initial/boundary conditions make the above constrained dynamical problem determinate, or closed.

This simple argument, number of equations $=$ number of unknowns [probably originated by Lur'e (1968, pp. 245-248) and Gantmacher (1970, pp. 16-23)], shows clearly the impossibility of building a general constrained system mechanics without additional physical postulates, like LP, or something equivalent (it would be like trying to build a theory of elasticity without Hooke's law, or something similar relating stress to strain!), and thus lays to rest frequent but nevertheless erroneous claims that "analytical mechanics is nothing but a mathematically sophisticated rearrangement of Newton's laws."

In sum, analytical mechanics is both mathematically and physically different from the momentum mechanics of Newton-Euler. Schematically:

Lagrangean analytical mechanics $=$ Newton--Euler laws + d'Alembert's physical postulate.

As Lanczos puts it: "Those scientists who claim that analytical mechanics is nothing but a mathematically different formulation of the laws of Newton must assume that [LP] is deducible from the Newtonian laws of motion. The author is unable to see how this can be done. Certainly the third law of motion, "action equals reaction," is not wide enough to replace [LP]" (1970, p. 77).

The above also show clearly that trying to prove LP is meaningless; although, in the past, several scientists have tried to do that (like trying to prove Hooke's law in elasticity!). These considerations also indicate that if we choose to decompose the total force $d \boldsymbol{f}$ according to some other physical characteristic, then we must equip that mechanics with appropriate constitutive postulates for (some of) the forces involved, so as to make the corresponding dynamical problem determinate. Thus, in the Newton-Euler mechanics, where, as we have already seen, $d \boldsymbol{f}$ is decomposed into external and internal parts, the system equations of motion-that is, the principles of linear and angular momentum - thanks to the additional constitutive postulate of action-reaction, contain only the external forces (and couples); without that postulate, the equations of motion would involve all the forces, and the corresponding problem would be, in general, indeterminate. And in the case of matter-electromagnetic field interactions (e.g., electroelasticity, magneto-fluidmechanics), we must, similarly, either know all forces involved, or supplement the equations of motion (of Newton-Euler and Maxwell) with special electromechanical constitutive equations, so that we end up again with a determinate system of equations.

More on Lagrange's Principle as a Constitutive Postulate

Here is what the noted mechanics historian E. Jouguet says about the physical nature of Lagrange's Principle (freely translated):

In sum, therefore, Huygens and Jacob Bernoulli implicitly admit that the forces developed by the constraints in the case of motion, are, like the forces developed by the constraints in the case of equilibrium, forces that do no work in the virtual displacements
compatible with the constraints. There is here a new physical postulate. It could be quite possible that the property of not doing work be true for the constraint forces during equilibrium and not for the constraint forces during motion; the reaction of a fixed surface on a point could be normal if the point was in equilibrium, and inclined if the point was moving; the reaction of a surface on a point could be normal if the surface was fixed and oblique if it was moving or deformable. This new postulate expresses, to use the language of Mr. P. Duhem [a French master (1861-1916), particularly famous for his contributions to continuum thermodynamics/energetics (in the tradition of Gibbs), and the history/axiomatics of theoretical mechanics], that the constraints, that have already been supposed [statically] frictionless, are also without viscosity. (1908, pp. 195-196),
and
The dynamics of systems with constraints rests therefore on the property of forces generated, during the motion, by the constraints, of not doing work in the virtual displacements compatible with the given constraints. This is an experimental property, and at the same time an experimental property distinct from those that we have found for the forces developed by the constraints in the case of equilibrium, because it introduces the condition that the constraints are without viscosity. (1908, p. 202, emphasis added).

When Are the Methods of Newton-Euler (NE) and d'Alembert-Lagrange (AL) Equivalent?

Since there is only one mechanics, this is a natural question, but not an easy one. To begin with, since NE divides forces into external and internal ("apples"), while AL divides them into impressed and reactions ("oranges"), we should not be surprised if, for general mechanical systems and forces, no such equivalence exists, or should be expected, at all stages of the formulation and solution of a problem.

Equivalence at the highest level of the fundamental principles may exist only for special systems and problems: that is, those for which (i) the internal forces (NE) coincide with those of constraint (AL), and (ii) the external forces (NE) coincide with the impressed ones (AL). The only such system that we are aware of, satisfying both (i) and (ii), is the earlier-examined free rigid body; and there we saw that LP leads to the NE principles of linear and angular momentum. For other systems where the internal forces may be (wholly or partly) impressed, for example, an elastic body, the NE principles do not follow from LP; the latter, as an independent axiom, says nothing about impressed forces. However, for a given system and forces, both methods of NE and AL do the job pledged by all classical descriptions of motion, which is, given (i) the external (NE) and impressed (AL) forces, along with (ii) the system's state at an "initial" instant (i.e., initial configuration and velocities = initial conditions), and (iii) appropriate constitutive postulates for its internal forces (NE) and constraint reactions (AL), respectively (and possibly other additional geometrical/ kinematical/physical facts intrinsic to that problem), then both NE and AL are theoretically equally capable in predicting the subsequent motion of the system and its remaining unknown forces (although both approaches may not be equivalent laborwise, or from the important Machian viewpoint of conceptual economy). On these fundamental issues, see also the masterful treatment of Hamel (1909; 1927, pp. 8-10, 14-18, 23-27, 38-39; 1949, chap. 4 and pp. 513-524).

The above can be summarized in the following:
(i) Force decomposition:

(ii) Whence the need for d'Alembert's principle:

Unknown forces
NE: Internal $\left\{d \boldsymbol{f}_{i}\right\} \rightarrow$ Discrete: action-reaction $\quad \boldsymbol{S} d \boldsymbol{f}_{i}=\mathbf{0}, \quad \boldsymbol{S} \times d \boldsymbol{f}_{i}=\mathbf{0}$
[\rightarrow Continuum: Boltzmann's axiom; i.e., symmetry of stress tensor]
AL: Reactions $\{d \boldsymbol{R}\} \rightarrow$ Lagrange's principle $\quad \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0$
(iii) Consequences:

NE: Linear momentum: $\quad \boldsymbol{S} d \boldsymbol{f}_{i}+\boldsymbol{S} d \boldsymbol{f}_{e}=\boldsymbol{S} d m \boldsymbol{a}$

$$
\Rightarrow \boldsymbol{S} d \boldsymbol{f}_{e}=\boldsymbol{S} d m \boldsymbol{a} \Rightarrow \boldsymbol{f}_{e}=m \boldsymbol{a}_{G} \quad(G=\text { mass center })
$$

Angular momentum: $\quad \boldsymbol{S}\left[\boldsymbol{r} \times\left(d \boldsymbol{f}_{i}+d \boldsymbol{f}_{e}\right)\right]=\boldsymbol{S}(\boldsymbol{r} \times d m \boldsymbol{a})$

$$
\Rightarrow \boldsymbol{S}^{\boldsymbol{r}} \times d \boldsymbol{f}_{e}=d / d t[\boldsymbol{S}(\boldsymbol{r} \times d m \boldsymbol{v})]
$$

AL: Lagrange's principle: $\quad\left[-\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0\right]+[d m \boldsymbol{a}=d \boldsymbol{F}+d \boldsymbol{R}]$

$$
\Rightarrow \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}
$$

(iv) Unknown force retrieval:

NE: Principles of rigidification and cut
AL: Principle of constraint relaxation (Befreiungsprinzip, see below and §3.7)
(v) Coincidence of NE with d'AL: free rigid body

Free: External forces $=$ Impressed forces; i.e., $\left\{d \boldsymbol{f}_{e}\right\}=\{d \boldsymbol{F}\} \quad\left(\left\{d \boldsymbol{R}_{e}\right\}=\mathbf{0}\right)$
Rigid: Internal forces $=$ Constraint reactions; i.e., $\left\{d \boldsymbol{f}_{i}\right\}=\{d \boldsymbol{R}\} \quad\left(\left\{d \boldsymbol{F}_{i}\right\}=\mathbf{0}\right)$
[Briefly (a) Rigidification principle: If a system is in equilibrium under impressed and constraint forces, it will remain in equilibrium if additional constraints are imposed on it so as to render it partly or wholly rigid; that is, deformable bodies in equilibrium can be treated just like rigid ones - both satisfy the same (necessary) conditions; (b) Cut principle: We can replace the action of two contiguous parts
of the body by corresponding force systems (\Rightarrow free body diagrams). Both principles are due to Euler. For details, see books on statics; also Papastavridis (EM, in prep.).]

Example 3.2.3 Plane Mathematical Pendulum: Comparison Between Principles of Moment (Original d'Alembert) and Virtual Work (Lagrange). Let us consider the motion of a mathematical pendulum, of length l and mass m, about a fixed point O on a vertical plane.
(i) According to the original formulation of the principle (first by Jakob Bernoulli and then by d'Alembert), the string reaction \boldsymbol{S} on the oscillating particle P must be in equilibrium; that is, its moment about O must vanish:

$$
\begin{equation*}
\boldsymbol{M}_{O} \equiv \boldsymbol{r} \times \boldsymbol{S}=\mathbf{0} \Rightarrow \boldsymbol{S} \text { must be parallel to the string } O P(\boldsymbol{r} \equiv \boldsymbol{O P}) \tag{a}
\end{equation*}
$$

As a result, the second part of the principle-that is, impressed forces minus inertia forces must be in equilibrium, yields (with $\boldsymbol{W}=$ weight of P)

$$
\begin{align*}
\boldsymbol{r} \times \boldsymbol{W}=\boldsymbol{r} \times(m \boldsymbol{a}) & \Rightarrow-(W)(l \sin \phi)=\left\{m\left[l\left(d^{2} \phi / d t^{2}\right)\right]\right\}(l) \\
\Rightarrow & d^{2} \phi / d t^{2}+(g / l) \sin \phi=0 . \tag{b}
\end{align*}
$$

(ii) According to Lagrange's formulation of the principle, the virtual work of \boldsymbol{S} must vanish:

$$
\begin{equation*}
\delta^{\prime} W_{R}=\boldsymbol{S} \cdot \delta \boldsymbol{r}=0 \Rightarrow \boldsymbol{S} \text { must be perpendicular to the virtual displacement of } P, \tag{c}
\end{equation*}
$$

and since the latter is along the instantaneous tangent to P 's circular path about O, we conclude that S must be parallel to $O P$, as before.

Hence, the second part of the principle - that is, virtual work of impressed forces minus that of inertia forces must vanish, yields

$$
\begin{align*}
\boldsymbol{W} \cdot \delta \boldsymbol{r}=(m \boldsymbol{a}) \cdot \delta \boldsymbol{r} & \Rightarrow-(W \sin \phi)(l \delta \phi)=\left\{m\left[l\left(d^{2} \phi / d t^{2}\right)\right]\right\}(l \delta \phi) \\
& \Rightarrow d^{2} \phi / d t^{2}+(g / l) \sin \phi=0 ; \tag{d}
\end{align*}
$$

that is, the moment condition (b) and the virtual work condition (d) differ only by an inessential factor $\delta \phi$, and thus they produce the same reactionless equation of motion.

In view of the extreme similarity, almost identity, of these two approaches in this and other rigid-body problems, we can see how, over the 19th and 20th centuries, various scientists came to confuse the zero moment method of James (Jakob) Bernoulli-d'Alembert \{i.e., $\boldsymbol{S r} \times(d \boldsymbol{F}-d m \boldsymbol{a})=\mathbf{0}$, in our notation $\}$ with the zero virtual work method of Lagrange \{i.e., $S \delta \boldsymbol{r} \cdot(d \boldsymbol{F}-d m \boldsymbol{a})=0\}$, and to view the former as equivalent to the latter. (Also, the fact that the string tension \boldsymbol{S} is not zero-that is, that the constraint reaction is in equilibrium, not in the elementary sense of zero moment and force, but in the sense of zero virtual work, demonstrates clearly one of the drawbacks of the original d'Alembertian formulation of the principle.)

Example 3.2.4 Motion of an Unconstrained System Relative to its Mass Center G, via Lagrange's Principle (Adapted from Williamson and Tarleton, 1900,
pp. 242-293). Substituting $\boldsymbol{r}=\boldsymbol{r}_{G}+\boldsymbol{r}_{/ G} \Rightarrow \boldsymbol{a}=\boldsymbol{a}_{G}+\boldsymbol{a}_{/ G}$ into LP, (3.2.8), and regrouping, we obtain

$$
\begin{align*}
0= & \delta \boldsymbol{r}_{G} \cdot\left[\boldsymbol{S}\left(d m \boldsymbol{a}_{G}-d \boldsymbol{F}\right)\right]+\delta \boldsymbol{r}_{G} \cdot\left(\boldsymbol{S} d m \boldsymbol{a}_{/ G}\right) \\
& +\boldsymbol{a}_{G} \cdot\left(\boldsymbol{S} d m \delta \boldsymbol{r}_{/ G}\right)+\boldsymbol{S}\left(d m \boldsymbol{a}_{/ G}-d \boldsymbol{F}\right) \cdot \delta \boldsymbol{r}_{/ G} \tag{a}
\end{align*}
$$

from which, since $\boldsymbol{S} d m \boldsymbol{r}_{/ G}=\mathbf{0} \Rightarrow \boldsymbol{S} d m \delta \boldsymbol{r}_{/ G}=\mathbf{0}$ and $\boldsymbol{S} d m \boldsymbol{a}_{/ G}=\mathbf{0}$, and the $\delta \boldsymbol{r}_{G}$, $\delta \boldsymbol{r}_{/ G}$ are unrelated, we obtain

$$
\begin{equation*}
\delta \boldsymbol{r}_{G} \cdot\left[\boldsymbol{S}\left(d m \boldsymbol{a}_{G}-d \boldsymbol{F}\right)\right]=0 \Rightarrow \boldsymbol{S} d m \boldsymbol{a}_{G}=\boldsymbol{S} d \boldsymbol{F} \tag{i}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left.m \boldsymbol{a}_{G}=\boldsymbol{F} \quad \text { (Principle of linear momentum }\right) \tag{b}
\end{equation*}
$$

if $\delta \boldsymbol{r}_{G}$ is unconstrained, and
(ii) $\quad \boldsymbol{S}\left(d m \boldsymbol{a}_{/ G}-d \boldsymbol{F}\right) \cdot \delta \boldsymbol{r}_{/ G}=0, \quad$ under the constraint $\quad \boldsymbol{S} d m \delta \boldsymbol{r}_{/ G}=\mathbf{0}$.

Combining, or adjoining, the second of (c) into the first of (c) with the vectorial Lagrangean multiplier $\lambda=\lambda(t)$ (see $\S 3.5$), we readily get

$$
\begin{equation*}
d m \boldsymbol{a}_{/ G}=d \boldsymbol{F}+\lambda d m \tag{d}
\end{equation*}
$$

and, summing this over the system, we obtain

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a}_{/ G}=\boldsymbol{S} d \boldsymbol{F}+\lambda(\boldsymbol{S} d m) \Rightarrow \mathbf{0}=\boldsymbol{F}+\lambda m \Rightarrow \lambda=-\boldsymbol{F} / m \tag{e}
\end{equation*}
$$

so that, finally, (d) becomes

$$
\begin{equation*}
d m \boldsymbol{a}_{/ G}=d \boldsymbol{F}-d m(\boldsymbol{F} / m) \quad\left(=d \boldsymbol{F}-d m \boldsymbol{a}_{G}, \text { as expected }\right) . \tag{f}
\end{equation*}
$$

Example 3.2.5 Sufficiency of the Statical Principle of Virtual Work (PVW) for the Equilibrium of Ideally Constrained Systems Deduced from LP. In analytical statics (i.e., LP with $\boldsymbol{a}=\mathbf{0}$), the PVW states that in a bilaterally constrained and originally motionless system (in an inertial frame), the vanishing of $\delta^{\prime} W$ is a necessary and sufficient condition for it to remain in equilibrium in that frame. In concrete applications, what we really employ is the sufficiency of the principle; that is, if $\delta^{\prime} W=0$, then the originally motionless system remains in equilibrium.

Here, we will start with LP as the basic axiom, set $\delta^{\prime} W=0$, and then derive sufficient conditions to maintain equilibrium; that is, go from kinetics to statics. Most authors proceed inversely-that is, go from statics to kinetics-and that makes the detection of the importance of the various constraints more difficult.
(i) Necessary conditions: If the system is in (inertial) equilibrium, then $\boldsymbol{a}=\mathbf{0}$, and therefore

$$
\begin{equation*}
\delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=0 \quad\left(\Rightarrow \delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0\right) \tag{a}
\end{equation*}
$$

for $t_{i} \leq t \leq t_{f}$, where $t_{i}\left(t_{f}\right)=\operatorname{initial}($ final $)$ time and $t_{f}-t_{i} \equiv \tau$.
(ii) Sufficiency conditions: If $\delta^{\prime} W=0$, for $t_{i} \leq t \leq t_{f}$, then LP gives

$$
\begin{equation*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=0, \quad \text { for } \quad t_{i} \leq t \leq t_{f} \tag{b}
\end{equation*}
$$

Let us investigate the consequences of (a, b) for equilibrium. Substituting into (b) the particle displacement $d \boldsymbol{r}-\boldsymbol{e}_{0} d t=\left(\boldsymbol{v}-\boldsymbol{e}_{0}\right) d t \equiv[\boldsymbol{v}-(\partial \boldsymbol{r} / \partial t)] d t$, which is mathematically equivalent to its virtual displacement, and cancelling $d t(\neq 0)$, we obtain

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{v}=\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{0} \tag{c}
\end{equation*}
$$

and since $2 T \equiv S d m \boldsymbol{v} \cdot \boldsymbol{v} \Rightarrow d T / d t=S d m \boldsymbol{a} \cdot \boldsymbol{v}$, we are readily led to the following rheonomic-type power equation:

$$
\begin{equation*}
d T / d t=\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{0}=\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{0}+\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{0} \tag{d}
\end{equation*}
$$

Integrating the above between t_{i} and $t\left(\leq t_{f}\right)$, and setting $T_{i} \equiv T\left(t_{i}\right), T \equiv T(t)$ yields

$$
\begin{equation*}
\Delta T \equiv T-T_{i}=\int_{t_{i}}^{t}\left(\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{0}\right) d t \tag{e}
\end{equation*}
$$

which also follows from $\int_{t_{i}}^{t} \delta^{\prime} W d t=0$. Equation (e) leads to the following conclusions:
(a) If $\boldsymbol{e}_{0}=\mathbf{0}$, then $\Delta T=0$, and since $\boldsymbol{v}_{i} \equiv \boldsymbol{v}\left(t_{i}\right)=\mathbf{0} \Rightarrow T_{i}=0$, it follows that $T=0$ for some time $t-t_{i}\left(\leq t_{f}-t_{i}\right)$; and from this, since $T=$ positive definite in the $v \cdot v=v^{2}$, we conclude that then all the \boldsymbol{v} 's vanish for $t-t_{i}\left(\leq t_{f}-t_{i}\right)$; that is, the system remains in equilibrium in that time interval.

Conversely, if $\Delta T=0$ for any $t>t_{i}$, then (e) leads, for arbitrary systems, to $\boldsymbol{e}_{0}=\mathbf{0}$. In this case, (c) gives $\boldsymbol{v}=\mathbf{0}$; that is, equilibrium [while (a) yields $\left.\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{v}=\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{0}=0\right]$. The consequences of this in the presence of additional Pfaffian constraints are discussed below.
(b) If $\boldsymbol{e}_{0} \neq \mathbf{0}$, then, in general, $\Delta T \neq 0$; that is, the system moves away from its original equilibrium configuration, even though $\delta^{\prime} W=0$, for $t_{i} \leq t \leq t_{f}$, and $\boldsymbol{v}_{i}=\mathbf{0}$. Weaker special assumptions for equilibrium result for the following conditions:
(c) If $\boldsymbol{e}_{0} \neq \mathbf{0}$, but $\int_{t_{i}}^{t}\left(S d m \boldsymbol{a} \cdot \boldsymbol{e}_{0}\right) d t=0$; or
(d) If $\boldsymbol{e}_{0} \neq \mathbf{0}$ but $\boldsymbol{a} \cdot \boldsymbol{e}_{0}=0$, for $t_{i} \leq t \leq t_{f}$.

Comparison with Gantmacher

Gantmacher's formulation of the PVW is as follows: "For some position (compatible with constraints) of a system to be an equilibrium position, it is necessary and sufficient that in this position the sum of the works of effective forces [our impressed forces] on any virtual displacements of the system be zero" and "If the constraints are nonstationary, then the term 'compatible with constraints' signifies that they are satisfied for any t if in them we put [our notation] $\boldsymbol{r}=\boldsymbol{r}_{i}$ and $\boldsymbol{v}=\mathbf{0}$ " and "It is then assumed that [our] equation (a) holds for any value of t if in the expression for $d \boldsymbol{F}$ we put all $\boldsymbol{r}=\boldsymbol{r}_{i}$ and all $\boldsymbol{v}=\mathbf{0}$ " (1970, p. 25). Let us relate this formulation with ours. By (2.5.2) $\boldsymbol{v}=\sum \boldsymbol{e}_{k} v_{k}+\boldsymbol{e}_{0}$. Hence, if $\boldsymbol{v}=\mathbf{0}$:
(i) If the v_{k} 's are unconstrained, and since $\boldsymbol{e}_{k} \neq \mathbf{0}$, then $v_{k}=0 \Rightarrow q_{k}=$ constant and $\boldsymbol{e}_{0}=\mathbf{0}$-that is, the constraints are stationary-then the system will remain in equilibrium.
(ii) If, on the other hand, the v_{k} 's are constrained, then, invoking the convenient representations ($2.11 .9,13 \mathrm{c}, \mathrm{e}$), we have

$$
\begin{aligned}
& \boldsymbol{v} \rightarrow \boldsymbol{v}_{0}=\sum \boldsymbol{\beta}_{I} v_{I}+\boldsymbol{\beta}_{0}=\mathbf{0} \Rightarrow v_{i}=0 \Rightarrow q_{I}=\text { constant, } \quad \text { and } \boldsymbol{\beta}_{0}=\mathbf{0} ; \\
& \boldsymbol{\beta}_{0}=\boldsymbol{e}_{0}+\sum b_{D} \boldsymbol{e}_{D}=\mathbf{0} \Rightarrow \boldsymbol{e}_{0}=\mathbf{0}, \quad \text { and } b_{D}=0 ; \\
& v_{D}=\sum b_{D I} v_{I}+b_{D} \Rightarrow v_{D}=0 \Rightarrow q_{D}=\text { constant } \quad\left(\Rightarrow q_{k}=\text { constant }\right) .
\end{aligned}
$$

In the light of the above, the PVW can be reformulated as follows: An originally motionless system remains in equilibrium if and only if (i) $\delta^{\prime} W=0$ and (ii) its holonomic constraints are stationary ($\boldsymbol{e}_{0} \equiv \partial \boldsymbol{r} / \partial t=\mathbf{0}$) and its Pfaffian constraints are catastatic ($a_{D}=0$ or $b_{D}=0$). (The latter, however, may be nonstationary; and this explains Gantmacher's statement: "Note that in this case the virtual displacements ... may also be different for different t.")

REMARKS

(i) That "compatibility with constraints (during equilibrium)" leads to the above conclusions about them can be seen more clearly as follows. Let our system be subject to h holonomic constraints and m Pfaffian (holonomic and/or nonholonomic constraints):
$\phi_{H}(t, \boldsymbol{r})=0, \quad f_{D} \equiv \boldsymbol{S} \boldsymbol{B}_{D}(t, \boldsymbol{r}) \cdot \boldsymbol{v}+B_{D}(t, \boldsymbol{r})=0 \quad(H=1, \ldots, h ; D=1, \ldots, m)$.

By $d / d t(\ldots)$-differentiating the above, to make them explicit in both velocities and accelerations, we readily obtain [recalling dot-product-of-tensor-definition [(see 1.1.12d ff.)], in the first sum in (g2) below]:
(a) $d \phi_{H} / d t=\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}+\partial \phi_{H} / \partial t=0$,
(b) $d^{2} \phi_{H} / d t^{2}=\boldsymbol{S}\left[\left(\partial^{2} \phi_{H} / \partial \boldsymbol{r} \partial \boldsymbol{r}\right):(\boldsymbol{v} \otimes \boldsymbol{v})+\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{a}+2\left(\partial^{2} \phi_{H} / \partial t \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}\right]$

$$
\begin{equation*}
+\partial^{2} \phi_{H} / \partial t^{2}=0 \tag{g2}
\end{equation*}
$$

(c) $d f_{D} / d t \equiv \boldsymbol{S}\left\{\left[\left(\partial \boldsymbol{B}_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}+\left(\partial \boldsymbol{B}_{D} / \partial t\right)\right] \cdot \boldsymbol{v}+\boldsymbol{B}_{D} \cdot \boldsymbol{a}\right\}$

$$
\begin{equation*}
+\boldsymbol{S}\left(\partial B_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}+\partial B_{D} / \partial t=0 \tag{g3}
\end{equation*}
$$

Now, since compatibility requires that, for $t_{i} \leq t \leq t_{f}$, eqs. (f-g3) should hold with $\boldsymbol{v}=\mathbf{0}$ and $\boldsymbol{a}=\mathbf{0}$ in them (just like the equations of motion), we readily obtain from the above the following conditions on these constraints:

$$
\begin{align*}
& \phi_{H}=0 \tag{h1}\\
& d \phi_{H} / d t=0 \Rightarrow \partial \phi_{H} / \partial t=0 \tag{h2}\\
& d^{2} \phi_{H} / d t^{2}=0 \Rightarrow \partial^{2} \phi_{H} / \partial t^{2}=0 \tag{h3}\\
& f_{D}=0 \Rightarrow B_{D}=0 \tag{h4}\\
& d f_{D} / d t=0 \Rightarrow \partial B_{D} / \partial t=0 \tag{h5}
\end{align*}
$$

that is, for $t_{i} \leq t \leq t_{f}$, the holonomic constraints must be stationary, and the Pfaffian ones must be catastatic, as found earlier.
(ii) If we assume Earth to be inertial, then an Earth-bound system is scleronomic. But if we assume it to have a given motion, then our system is rheonomic. In both cases, the contact (nongravitational) forces from the Earth to that system are external reactions. If, finally, the Earth interacts with our system, then the two taken together constitute a scleronomic system whose internal forces are impressed (see also Nordheim, 1927, pp. 47-49).

Example 3.2.6 Nonideal Constraints. Let us consider a particle P of mass m, moving under an impressed force \boldsymbol{F} and subject to the velocity constraint

$$
\begin{equation*}
f(t, \boldsymbol{r}, \boldsymbol{v})=0 \tag{a}
\end{equation*}
$$

If the reaction created by (a) is \boldsymbol{R}, then the equation of motion of P is

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{F}+\boldsymbol{R} . \tag{b}
\end{equation*}
$$

To relate the constraint equation to the reaction, so as to incorporate (a) into (b), we $d / d t(\ldots)$-differentiate the former:

$$
\begin{equation*}
f=0 \Rightarrow d f / d t=\partial f / \partial t+(\partial f / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+(\partial f / \partial \boldsymbol{v}) \cdot \boldsymbol{a}=0 \tag{c}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
m \boldsymbol{a} \cdot(\partial f / \partial \boldsymbol{v})=-m[\partial f / \partial t+(\partial f / \partial \boldsymbol{r}) \cdot \boldsymbol{v}] ; \tag{d}
\end{equation*}
$$

but, also, from (b),

$$
\begin{equation*}
m \boldsymbol{a} \cdot(\partial f / \partial \boldsymbol{v})=\boldsymbol{F} \cdot(\partial f / \partial \boldsymbol{v})+\boldsymbol{R} \cdot(\partial f / \partial \boldsymbol{v}) \tag{e}
\end{equation*}
$$

Equating the right sides of (d, e), thus eliminating the acceleration, and rearranging, we obtain

$$
\begin{equation*}
\boldsymbol{R} \cdot(\partial f / \partial \boldsymbol{v})=-[m(\partial f / \partial t)+m(\partial f / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+\boldsymbol{F} \cdot(\partial f / \partial \boldsymbol{v})] \tag{f}
\end{equation*}
$$

Now, the most general solution of (f), for \boldsymbol{R}, is

$$
\begin{equation*}
\boldsymbol{R}=-(\partial f / \partial \boldsymbol{v})[m(\partial f / \partial t)+m(\partial f / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+\boldsymbol{F} \cdot(\partial f / \partial \boldsymbol{v})] /(\partial f / \partial \boldsymbol{v})^{2}+\boldsymbol{T} \tag{g}
\end{equation*}
$$

where $\boldsymbol{T}=$ arbitrary vector orthogonal to $\partial f / \partial \boldsymbol{v}$. The above shows that, generally, the constraint reaction consists of two parts: (i) one parallel to $\partial f / \partial v$:

$$
\begin{equation*}
\boldsymbol{N}=-(\partial f / \partial \boldsymbol{v})[m(\partial f / \partial t)+m(\partial f / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+\boldsymbol{F} \cdot(\partial f / \partial \boldsymbol{v})] /(\partial f / \partial \boldsymbol{v})^{2} \equiv \lambda(\partial f / \partial \boldsymbol{v}) \tag{h}
\end{equation*}
$$

[where $\lambda=$ Lagrangean multiplier - see Lagrange's equations of the first kind, (§3.5)]; and (ii) one normal to it, \boldsymbol{T}.

If $\boldsymbol{T}=\mathbf{0}$, the constraint (a) is called ideal; and in that case, clearly, the equation of motion of the particle (b), under (a), becomes

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{F}-[\boldsymbol{F} \cdot(\partial f / \partial \boldsymbol{v})+m(\partial f / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+m(\partial f / \partial t)]\left[(\partial f / \partial \boldsymbol{v}) /(\partial f / \partial \boldsymbol{v})^{2}\right] . \tag{i}
\end{equation*}
$$

To make the problem determinate, we, usually, introduce a constitutive equation between \boldsymbol{N} and \boldsymbol{T}. For example, in the common case of dry (solid/solid) sliding friction, we postulate the following relation between their magnitudes:

$$
\begin{equation*}
T=\mu N=\mu|\lambda(\partial f / \partial \boldsymbol{v})|, \quad \mu=\text { coefficient of kinetic friction. } \tag{j}
\end{equation*}
$$

Then, and with (g, h), eq. (b) becomes

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{F}+\lambda(\partial f / \partial \boldsymbol{v})-\mu|\lambda(\partial f / \partial \boldsymbol{v})| \boldsymbol{u} \tag{k}
\end{equation*}
$$

where $\boldsymbol{u}=\boldsymbol{v} /|\boldsymbol{v}|$.
For further details and applications of (k) see Poliahov et al. (1985, pp. 152-170).
Problem 3.2.1 Continuing from the preceding example, show that if the constraint (a) has the holonomic form

$$
\begin{equation*}
\phi(t, \boldsymbol{r})=0, \tag{a}
\end{equation*}
$$

then (h) and (i) reduce, respectively, to

$$
\begin{equation*}
\boldsymbol{N}=-(\partial \phi / \partial \boldsymbol{r})[m(\partial \dot{\phi} / \partial t)+m(\partial \dot{\phi} / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+\boldsymbol{F} \cdot(\partial \phi / \partial \boldsymbol{r})] /(\partial \phi / \partial \boldsymbol{r})^{2} \equiv \lambda(\partial \phi / \partial \boldsymbol{r}) \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{F}-[\boldsymbol{F} \cdot(\partial \phi / \partial \boldsymbol{r})+m(\partial \dot{\phi} / \partial \boldsymbol{r}) \cdot \boldsymbol{v}+m(\partial \dot{\phi} / \partial t)]\left[(\partial \phi / \partial \boldsymbol{r}) /(\partial \phi / \partial \boldsymbol{r})^{2}\right] \tag{c}
\end{equation*}
$$

(See also Lagrange's equations of the first kind, in §3.5.)

Introduction to the Principle of Relaxation of the Constraints (PRC)

Before we embark into a detailed quantitative discussion of Lagrange's Principle (LP) and its derivative equations of motion, let us discuss briefly the second pillar of analytical mechanics, the principle of relaxation of the constraints (Befreiungsprinzip; Hamel, 1917). LP allows us to get rid of the constraint forces and, eventually, obtain reactionless equations of motion; and, historically, this has been considered (and is) one of the advantages of the method, especially in physics. However, in many engineering problems we do need to calculate these reactions, and thus the question arises: How do we achieve this with such a reaction-eliminating Lagrangean formalism?

Here is where PRC comes in: to retrieve a(ny) particular, external and/or internal, "lost" reaction we, hypothetically, free, or relax, the system of its particular, external and/or internal, geometrical and/or motional, constraint(s) causing that reaction; that is, we, mentally, allow the formerly rigid, or unyielding, constraint(s) to deform, or become flexible, relaxed, so that the former reaction becomes an impressed force that depends on the deformation of the violated constraint via some constitutive equation. Then we calculate its virtual work, add it to $\delta^{\prime} W$, and apply LP: $\left(\delta I=\delta^{\prime} W\right)_{\text {relaxed system }}$; and so on and so forth, for as many reactions as needed (one, or more, or all, at a time). Last, since in our model the constraints are rigid, we enforce them in the final stage of the differential equations of motion. The mathematical expression of PRC is the very well-known and widely applied method of "undetermined," or Lagrangean, multipliers (§3.5).

REMARKS

(i) Another, mixed, method is, first, to use LP to calculate the reactionless equations (and from them the motion), and to then use the method of Newton-Euler (NE) to calculate the external and/or internal reactions. This may be practically expedient,
but it is not logically/conceptually satisfactory; it makes Lagrangean mechanics look incomplete.
(ii) The counterpart of PRC in the NE method is the following: if, for example, we want to calculate an internal force - that is, one that, due to the action-reaction postulate, drops out of the force/moment side in the NE principles of linear/angular momentum - then, applying Euler's cut principle, we choose an appropriate new free-body diagram so that the former internal force(s)/moment(s) becomes external, and then apply to these new subsystems, the NE principles.

3.3 VIRTUAL WORK OF INERTIAL FORCES (δI), AND RELATED KINEMATICO-INERTIAL IDENTITIES

Here we transform (3.2.9), $\delta I \equiv S d m \boldsymbol{a} \cdot \delta \boldsymbol{r}$, from particle variables to system variables; both holonomic and nonholonomic. (Actually, δI is the negative of the virtual work of the "inertial forces" $\{-d m \boldsymbol{a}\}$. We hope that this slight deviation from traditional terminology will not cause any problems.) Understandably, this relies critically on the kinematical results of chapter 2 and, therefore knowledge of that material is absolutely necessary. To obtain the most general system equations of motion from LP, we must use the most general expressions for \boldsymbol{a} and $\delta \boldsymbol{r}$. We recall ($\$ 2.5 \mathrm{ff}$.) that these are (with $k, l=1, \ldots, n$)

$$
\begin{align*}
\delta \boldsymbol{r} & =\sum \boldsymbol{e}_{k} \delta q_{k}=\text { holonomic variable representation } \\
& =\sum \varepsilon_{l} \delta \theta_{l}=\text { nonholonomic variable representation }\left(\equiv \delta \boldsymbol{r}^{*}\right) \\
(& \left.=\sum \varepsilon_{I} \delta \theta_{I}, \text { under the constraints } \delta \theta_{D}=0 ; D+1, \ldots, m ; I=m+1, \ldots, n\right) \tag{3.3.1}
\end{align*}
$$

where the fundamental mixed basis vectors $\left\{\boldsymbol{e}_{k}\right\}$ and $\left\{\boldsymbol{\varepsilon}_{l}\right\}$ are related by

$$
\begin{equation*}
\boldsymbol{e}_{k} \equiv \partial \boldsymbol{r} / \partial q_{k}=\sum a_{l k} \boldsymbol{\varepsilon}_{l} \Leftrightarrow \boldsymbol{\varepsilon}_{l} \equiv \partial \boldsymbol{r} / \partial \theta_{l}=\sum A_{k l} \boldsymbol{e}_{k} . \tag{3.3.1a}
\end{equation*}
$$

1. Holonomic System Variables

Substituting the first of (3.3.1) into δI we obtain, successively,

$$
\begin{equation*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\sum \boldsymbol{e}_{k} \delta q_{k}\right)=\cdots=\sum E_{k} \delta q_{k} \tag{3.3.2}
\end{equation*}
$$

where $E_{k} \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}$: holonomic (k)th component of system inertial "force"

$$
\begin{align*}
{[} & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)=\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right)=\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{a} / \partial \ddot{q}_{k}\right) \\
& \left.\equiv \boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)=\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{v} / \partial v_{k}\right)=\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{a} / \partial w_{k}\right)\right] \tag{3.3.3}
\end{align*}
$$

Now, E_{k} transforms, successively, as follows:

$$
\begin{align*}
E_{k} \equiv & \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\boldsymbol{S} d m(d \boldsymbol{v} / d t) \cdot\left(\partial \boldsymbol{v} / \partial v_{k}\right) \\
= & d / d t\left[\boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial v_{k}\right)\right]-\boldsymbol{S}\left[d m \boldsymbol{v} \cdot(d / d t)\left(\partial \boldsymbol{v} / \partial v_{k}\right)\right] \\
& {\left[\text { recalling identity }(2.5 .10): E_{k}(\boldsymbol{v}) \equiv d / d t\left(\partial \boldsymbol{v} / \partial v_{k}\right)-\partial \boldsymbol{v} / \partial q_{k}=\mathbf{0}\right] } \\
= & d / d t\left[\boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial v_{k}\right)\right]-\boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial q_{k}\right), \tag{3.3.4}
\end{align*}
$$

or, finally, with the help of the (inertial) kinetic energy

$$
\begin{equation*}
T \equiv \boldsymbol{S}(1 / 2)(d m \boldsymbol{v} \cdot \boldsymbol{v})=T(t, q, \dot{q}) \equiv T(t, q, v) \quad[\text { since } \boldsymbol{v}=\boldsymbol{v}(t, q, v)] \tag{3.3.5}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
E_{k}=d / d t\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k} \equiv d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k} \equiv E_{k}(T), \tag{3.3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{k}(\ldots)=d / d t\left(\partial \ldots / \partial v_{k}\right)-\partial \ldots / \partial q_{k} \equiv d / d t\left(\partial \ldots / \partial \dot{q}_{k}\right)-\partial \ldots / \partial q_{k}: \tag{3.3.6a}
\end{equation*}
$$

(holonomic Euler--Lagrange operator) ${ }_{k}$.
Equation (3.3.6) is a kinematico-inertial identity; that is, it holds always, independently of any possible additional constraints, as long as the q 's are holonomic coordinates. Its cardinal importance to Lagrangean mechanics lies in the fact that it expresses system accelerations in terms of the partial and total derivatives of a scalar energetic function of the system coordinates and velocities, $T(t, q, v), A S I F$ the q 's and \dot{q} 's $\equiv v$'s (and t) were independent variables. That is why we have reserved the special notation $E_{k}(T) \equiv E_{k}$ when that operator is applied to the kinetic energy; even though $E_{k}(\ldots)$ can be applied to any function of the q 's, v 's, and t. Also, (3.3.1-6a) clearly show the indispensability of virtual displacements (i.e., the \boldsymbol{e}_{k} vectors) to Lagrangean mechanics/equations of motion [i.e., the particular T-based expression for the system inertia/acceleration given by (3.3.6)], whether the constraint reactions are ideal or not.

In sum: no \boldsymbol{e}_{k} 's, no Lagrangean equations, that is, for an arbitrary particle/system vector $\boldsymbol{z}_{k} \neq \boldsymbol{e}_{k}$,

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot z_{k} \neq(d / d t)\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k} \tag{3.3.6b}
\end{equation*}
$$

This should put to rest once and for all false claims that "one can build Lagrangean mechanics without virtual displacements." The $\delta(\ldots)$ is not the issue; the $\boldsymbol{e}_{k}(\rightarrow$ projections $)$ are!

Let us collect the key kinematico-inertial identities involved here:
(a) $\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}=\boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial v_{k}\right)=\partial T / \partial v_{k} \equiv \partial T / \partial \dot{q}_{k} \equiv p_{k}(t, q, v)=p_{k}$:

Holonomic (k)th component of system momentum;
(b) $\quad \boldsymbol{S} d m \boldsymbol{v} \cdot\left(d \boldsymbol{e}_{k} / d t\right)=\boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial q_{k}\right)=\partial T / \partial q_{k} \equiv r_{k}(t, q, v)=r_{k}$:

Holonomic (k)th component of "associated, or momental, inertial force";
(c)

$$
\begin{equation*}
E_{k} \equiv d p_{k} / d t-r_{k} . \tag{3.3.7b}
\end{equation*}
$$

[$p_{k} \equiv \partial T / \partial \dot{q}_{k}$ is the only kind of momentum that there is in analytical (Lagrangean and Hamiltonian) mechanics; and, as shown later, it comprises both the linear and angular momentum of the Newton-Euler mechanics.]

2. Nonholonomic System Variables

Substituting the second of (3.3.1) into δI, we obtain, successively with $\boldsymbol{a}=\boldsymbol{a}^{*}=$ particle acceleration in nonholonomic variables (and similarly for other quantities):

$$
\begin{equation*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\sum \varepsilon_{k} \delta \theta_{k}\right)=\cdots=\sum I_{k} \delta \theta_{k} \tag{3.3.8}
\end{equation*}
$$

where $\quad I_{k} \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \varepsilon_{k}=$ nonholonomic (k) th component of system inertial force $\left[\equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)=\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}\right)\right.$, recalling $\left.(2.9 .35,43)\right]$

$$
\begin{equation*}
=I_{k}(t, q, \omega, \dot{\omega}) \quad\left[\text { since } \boldsymbol{a}^{*}=\boldsymbol{a}^{*}(t, q, \omega, \dot{\omega}) \text { and } \boldsymbol{\varepsilon}_{k}=\boldsymbol{\varepsilon}_{k}(t, q)\right] . \tag{3.3.9}
\end{equation*}
$$

From the invariance of $\delta I: \sum E_{k} \delta q_{k}=\sum I_{k} \delta \theta_{k}$, and [recalling (2.9.11, 12)] $\delta q_{k}=\sum A_{k l} \delta \theta_{l} \Leftrightarrow \delta \theta_{l}=\sum a_{l k} \delta q_{k}$, we readily obtain the basic (covariant vectorlike) transformation equations:

$$
\begin{equation*}
I_{k}=\sum A_{l k} E_{l} \Leftrightarrow E_{k}=\sum a_{l k} I_{l} . \tag{3.3.10}
\end{equation*}
$$

The above expresses the nonholonomic inertial components in holonomic variables. To express them in terms of nonholonomic variables, we transform (3.3.9), successively, as follows:

$$
\begin{aligned}
I_{k} & \equiv \mathbf{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{\varepsilon}_{k}=\mathbf{S} d m\left(d \boldsymbol{v}^{*} / d t\right) \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right) \\
& =d / d t\left(\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)\right)-\boldsymbol{S}\left[d m \boldsymbol{v}^{*} \cdot d / d t\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)\right]
\end{aligned}
$$

[adding and subtracting $S d m v^{*} \cdot\left(\partial v^{*} / \partial \theta_{k}\right)$, and regrouping]

$$
\begin{align*}
=d / d t\left(\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)\right) & -\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \theta_{k}\right) \\
& -\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left[(d / d t)\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)-\partial \boldsymbol{v}^{*} / \partial \theta_{k}\right] \tag{3.3.11a}
\end{align*}
$$

or, invoking the nonintegrability identity $(2.10 .24,25)$ [Greek subscripts run from 1 to $n+1$ (time)],

$$
\begin{align*}
E_{k}^{*}\left(\boldsymbol{v}^{*}\right) & \equiv d / d t\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \equiv d \boldsymbol{\varepsilon}_{k} / d t-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \\
& =-\sum \sum \gamma_{k l}^{r} \omega_{l} \boldsymbol{\varepsilon}_{r}-\sum \gamma_{k}^{r} \boldsymbol{\varepsilon}_{r} \quad\left[\text { since } \omega_{n+1} \equiv \omega_{0} \equiv d t / d t=1\right] \\
& =-\sum \sum \gamma_{k \alpha}^{r} \omega_{\alpha} \boldsymbol{\varepsilon}_{r}=-\sum \sum \gamma_{k \alpha}^{r} \omega_{\alpha}\left(\partial \boldsymbol{v}^{*} / \partial \omega_{r}\right) \tag{3.3.11b}
\end{align*}
$$

introducing the (inertial) kinetic energy in quasi variables

$$
\begin{equation*}
T \equiv \boldsymbol{S}^{1 / 2}\left(d m \boldsymbol{v}^{*} \cdot \boldsymbol{v}^{*}\right)=T(t, q, \omega) \equiv T^{*} \quad\left[\text { since } \boldsymbol{v}^{*}=\boldsymbol{v}^{*}(t, q, \omega)\right] \tag{3.3.11c}
\end{equation*}
$$

and recalling the symbolic quasi chain rule (2.9.32a, 44a)

$$
\begin{equation*}
\partial T^{*} / \partial \theta_{k} \equiv \sum\left(\partial T^{*} / \partial q_{l}\right)\left(\partial v_{l} / \partial \omega_{k}\right)=\sum A_{l k}\left(\partial T^{*} / \partial q_{l}\right) \tag{3.3.11d}
\end{equation*}
$$

and the (nonholonomic Euler-Lagrange operator) ${ }_{k}$

$$
\begin{equation*}
E_{k}{ }^{*}(\ldots) \equiv d / d t\left(\partial \ldots / \partial \omega_{k}\right)-\partial \ldots / \partial \theta_{k}, \tag{3.3.11e}
\end{equation*}
$$

we finally obtain the nonholonomic (system) variable counterpart of E_{k} :

$$
\begin{align*}
I_{k} & =d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k l}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{l}+\sum \gamma_{k}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \\
& =d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha} \\
& \equiv E_{k}^{*}\left(T^{*}\right)-\Gamma_{k} \equiv E_{k}^{*}-\Gamma_{k} \quad \text { [note difference from (3.3.6)], } \tag{3.3.12}
\end{align*}
$$

where [recalling (2.10.25a)]

$$
\begin{align*}
-\Gamma_{k} & \equiv-S d m \boldsymbol{v}^{*} \cdot E_{k}^{*}\left(\boldsymbol{v}^{*}\right)=\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha} \equiv \sum h_{k}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \\
& =-(\text { System nonholonomic deviation, or correction, term })_{k} \tag{3.3.12a}
\end{align*}
$$

We summarize the key kinematico-inertial identities below:
(a) $\quad \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot \varepsilon_{k}=\mathbf{S} d m \boldsymbol{v}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)=\partial T^{*} / \partial \omega_{k} \equiv P_{k}(t, q, \omega)=P_{k}$:

Nonholonomic (k)th component of system momentum,
(b)

$$
\begin{align*}
\boldsymbol{\gamma}_{k} & \equiv E_{k} *\left(\boldsymbol{v}^{*}\right) \equiv d \boldsymbol{\varepsilon}_{k} / d t-\partial \boldsymbol{v}^{*} / \partial \theta_{k}=\cdots=\sum \sum \gamma_{\alpha k}^{r} \omega_{\alpha} \boldsymbol{\varepsilon}_{r} \tag{3.3.13a}\\
& =-(\text { Particle nonholonomic deviation, or correction, term })_{k} \tag{3.3.13b}
\end{align*}
$$

$$
\begin{array}{rl}
\mathbf{S} & d m \boldsymbol{v}^{*} \cdot\left(d \boldsymbol{\varepsilon}_{k} / d t\right) \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \theta_{k}\right)+\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot \gamma_{k} \\
& =\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{\alpha k}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha}=\partial T^{*} / \partial \theta_{k}-\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha} \\
& =\partial T^{*} / \partial \theta_{k}+\Gamma_{k} \quad[\text { note difference from (3.3.7b)], } \\
& -\Gamma_{k}=\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha}=-\Gamma_{k, n}-\Gamma_{k, 0}, \tag{3.3.13d}
\end{array}
$$

where

$$
\begin{align*}
& -\Gamma_{k, n} \equiv \sum \sum \gamma_{k l}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{l}, \tag{3.3.13e}\\
& -\Gamma_{k, 0} \equiv-\Gamma_{k, n+1} \equiv \sum \gamma_{k}^{r}\left(\partial T^{*} / \partial \omega_{r}\right): \\
& \text { "nonholonomic rheonomic force". } \tag{3.3.13f}
\end{align*}
$$

With the help of the above, I_{k}, (3.3.12), can be rewritten in the momentum form:

$$
\begin{equation*}
I_{k}=d P_{k} / d t-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{r} P_{r} \omega_{\alpha} . \tag{3.3.14}
\end{equation*}
$$

[Originally due to Hamel [1904(a),(b)], but for stationary/scleronomic transformations; that is, with α replaced by, say, $l=1, \ldots, n$.]

$$
\begin{equation*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\sum E_{k} \delta q_{k}=\sum I_{k} \delta \theta_{k}, \tag{c}
\end{equation*}
$$

where

$$
\begin{align*}
E_{k} & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=d / d t\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k} \equiv E_{k}(T)=\sum a_{l k} I_{l} \tag{3.3.15a}\\
I_{k} & \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{\varepsilon}_{k}=d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha} \\
& \equiv E_{k}^{*}\left(T^{*}\right)-\Gamma_{k} \equiv E_{k}^{*}-\Gamma_{k}=\sum A_{l k} E_{l} \tag{3.3.15b}
\end{align*}
$$

that is, it is $E_{k} \equiv E_{k}(T)$ and I_{k} that transform like covariant vectors; the $E_{k}{ }^{*} \equiv E_{k}{ }^{*}\left(T^{*}\right)$ do not (or, the terms $E_{k}{ }^{*}$ and Γ_{k}, considered separately, do not transform as covariant vectors; but taken together, as $E_{k}{ }^{*}-\Gamma_{k} \equiv I_{k}$, they do!).

3. Acceleration, or Appellian, Forms

The above expressions for the inertia vector E_{k} (or I_{k}) are based on the kinetic energy $T\left(\right.$ or $\left.T^{*}\right)$, because for their derivation we used the velocity identities $\boldsymbol{e}_{k}=\partial \boldsymbol{v} / \partial v_{k}$ (or $\left.\boldsymbol{\varepsilon}_{k}=\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)$. Let us now find expressions for these vectors using the acceleration identities $\boldsymbol{e}_{k}=\partial \boldsymbol{a} / \partial \ddot{q}_{k} \equiv \partial \boldsymbol{a} / \partial w_{k}$ (or $\boldsymbol{\varepsilon}_{k}=\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}$). The results will turn out to be based on a scalar function that depends on the accelerations in a similar way that T (or T^{*}) depend on the velocities. [The choice $\boldsymbol{e}_{k}=\partial \boldsymbol{r} / \partial q_{k}$ does not seem to lead to any useful expression for E_{k}; while the choice $\boldsymbol{\varepsilon}_{k}=\partial \boldsymbol{r}^{*} / \partial \theta_{k} \equiv$ $\sum A_{l k} \boldsymbol{e}_{l} \equiv \sum A_{l k}\left(\partial \boldsymbol{v} / \partial v_{l}\right)$ will be examined later.]
(i) Holonomic variables

We have, successively,

$$
\begin{equation*}
E_{k} \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{a} / \partial \ddot{q}_{k}\right)=\partial S / \partial \ddot{q}_{k} \equiv \partial S / \partial w_{k} \tag{3.3.16a}
\end{equation*}
$$

where

$$
\begin{align*}
S \equiv & \underset{ }{\boldsymbol{S}}(1 / 2)(d m \boldsymbol{a} \cdot \boldsymbol{a})=\boldsymbol{S}(1 / 2)\left(d m a^{2}\right)=S(t, q, \dot{q}, \ddot{q}) \equiv S(t, q, v, w) \text { : } \\
& \text { "Gibbs-Appell function," or simply Appellian, in holonomic variables } \\
& \text { [or "acceleration energy"" (Saint-Germain, 1901)]. } \tag{3.3.16b}
\end{align*}
$$

(ii) Nonholonomic variables

Similarly, we obtain

$$
\begin{equation*}
I_{k} \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \varepsilon_{k}=\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}\right)=\partial S^{*} / \partial \dot{\omega}_{k} \tag{3.3.17a}
\end{equation*}
$$

where

$$
\begin{equation*}
S^{*} \equiv \boldsymbol{S}(1 / 2)\left(d m \boldsymbol{a}^{*} \cdot \boldsymbol{a}^{*}\right)=\boldsymbol{S}(1 / 2)\left[d m\left(a^{*}\right)^{2}\right]=S^{*}(t, q, \omega, \dot{\omega}): \tag{3.3.17b}
\end{equation*}
$$

Appellian, in nonholonomic variables.
To relate the above, we apply chain rule to $S=S^{*}$. We obtain, successively,

$$
\begin{equation*}
\partial S / \partial \ddot{q}_{k} \equiv \partial S / \partial w_{k}=\sum\left(\partial S^{*} / \partial \dot{\omega}_{l}\right)\left(\partial \dot{\omega}_{l} / \partial \ddot{q}_{k}\right)=\sum a_{l k}\left(\partial S^{*} / \partial \dot{\omega}_{l}\right) \tag{3.3.17c}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
\partial S^{*} / \partial \dot{\omega}_{k}=\sum\left(\partial S / \partial \ddot{q}_{l}\right)\left(\partial \ddot{q}_{l} / \partial \dot{w}_{k}\right)=\sum A_{l k}\left(\partial S / \partial \ddot{q}_{l}\right) \equiv \sum A_{l k}\left(\partial S / \partial w_{l}\right) ; \tag{3.3.17d}
\end{equation*}
$$

which are none other than the transformation equations (3.3.10).
In sum, we have the following theoretically equivalent expressions for E_{k} and I_{k} :
(i) $\quad E_{k} \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}\left(=\sum a_{l k} I_{l}\right)$

$$
=d / d t\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k}
$$

[Lagrange (1780)]
$=\sum a_{l k}\left[E_{l} *\left(T^{*}\right)-\Gamma_{l}\right]$
$=\sum a_{l k}\left(\partial S^{*} / \partial \dot{\omega}_{l}\right)=\partial S / \partial \ddot{q}_{k} \equiv \partial S / \partial w_{k} \quad[$ Appell (1899)];
(ii) $\quad I_{k} \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{\varepsilon}_{k} \quad\left(=\sum A_{l k} E_{l}\right)$

$$
=d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha}
$$

$$
\equiv E_{k}^{*}\left(T^{*}\right)-\Gamma_{k} \quad[\text { Volterra (1898), Hamel }(1903 / 1904)]
$$

$$
=\sum A_{l k}\left[d / d t\left(\partial T / \partial v_{l}\right)-\partial T / \partial q_{l}\right] \quad[\operatorname{Maggi}(1896,1901,1903)]
$$

$$
\begin{equation*}
=\sum A_{l k}\left(\partial S / \partial \ddot{q}_{l}\right)=\partial S^{*} / \partial \dot{\omega}_{k} \quad[\text { Gibbs (1879) }] \tag{3.3.18b}
\end{equation*}
$$

REMARKS

(i) We can define $(n+1)$ th, or (0)th, "temporal" holonomic and nonholonomic components of the system inertia vector by (with $d q_{n+1} / d t \equiv d q_{0} / d t \equiv d t / d t \equiv$ $v_{n+1} \equiv v_{0}=1$)

$$
\begin{align*}
E_{n+1} & \equiv E_{0} \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{n+1}=\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{0}=\boldsymbol{S} d m \boldsymbol{a} \cdot(\partial \boldsymbol{r} / \partial t) \\
& =\cdots=d / d t\left(\partial T / \partial v_{0}\right)-\partial T / \partial q_{0}=d / d t(\partial T / \partial t)-\partial T / \partial t, \tag{3.3.19a}\\
I_{n+1} & \equiv I_{0} \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{\varepsilon}_{n+1}=\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \varepsilon_{0}=\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\partial \boldsymbol{r}^{*} / \partial \theta_{0}\right)=\cdots . \tag{3.3.19b}
\end{align*}
$$

However, such nonvirtual components will not be needed in the equations of motion; they could play a role in the formulation of "partial work/energy rate" equations (§3.9).
(ii) Here, as throughout this book [e.g. (2.9.38ff.), ch. 5], superstars (...)* denote functions of $t, q, \omega, \dot{\omega}, \ldots$:

$$
f(t, q, \dot{q}, \ddot{q}, \ldots)=f[t, q, \dot{q}(t, q, \omega), \ddot{q}(t, q, \omega, \dot{\omega}), \ldots] \equiv f^{*}(t, q, \omega, \dot{\omega}, \ldots)
$$

A Special Case

Let us find E_{k} and I_{k} for the following special quasi-velocity choice (recalling 2.11.9 ff.)

$$
\begin{equation*}
v_{D}=\sum b_{D I}(t, q) v_{I}+b_{D}(t, q), \quad v_{I}=\sum \delta_{I I^{\prime}} v_{I^{\prime}}=v_{I}, \tag{3.3.20a}
\end{equation*}
$$

and its inverse

$$
\begin{equation*}
\omega_{D}=\sum b_{D I}(t, q) v_{I}+b_{D}(t, q), \quad \omega_{I}=v_{I} \tag{3.3.20b}
\end{equation*}
$$

Here, clearly [recalling (2.11.12b), and with $\delta . .=$ Kronecker delta];

$$
\begin{equation*}
A_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad A_{D I}=b_{D I}, \quad A_{I D}=0, \quad A_{I I^{\prime}}=\delta_{I I^{\prime}} \tag{3.3.20c}
\end{equation*}
$$

and so the Maggi form $I_{k}=\sum A_{l k} E_{l}$ specializes to $I_{k}=\sum A_{D k} E_{D}+\sum A_{l k} E_{I}$

$$
\begin{align*}
\Rightarrow I_{D^{\prime}} & =\sum \delta_{D D^{\prime}} E_{D}+\sum(0) E_{I} \tag{3.3.20~d}
\end{align*}=E_{D^{\prime}}, ~=\delta_{I I^{\prime}} E_{I}=E_{I^{\prime}}+\sum b_{D I^{\prime}} E_{D} .
$$

In sum, for the special choice (3.3.20a, b) I_{k} takes the following form, in terms of holonomic Lagrangean (T) and Appellian (S) variables (with $D=1, \ldots, m$; $I=m+1, \ldots, n$ as usual):

$$
\begin{align*}
& I_{D}=E_{D} \equiv\left(\partial T / \partial v_{D}\right)^{\cdot}-\partial T / \partial q_{D}=\partial S / \partial \dot{v}_{D} \equiv \partial S / \partial w_{D} ; \tag{3.3.20f}\\
& I_{I}=E_{I}+\sum b_{D I} E_{D} \equiv\left[\left(\partial T / \partial v_{I}\right)^{\cdot}-\partial T / \partial q_{I}\right]+\sum b_{D I}\left[\left(\partial T / \partial v_{D}\right)^{\cdot}-\partial T / \partial q_{D}\right]
\end{align*}
$$

$$
\begin{equation*}
=\partial S / \partial \ddot{q}_{I}+\sum b_{D I}\left(\partial S / \partial \ddot{q}_{D}\right) \equiv \partial S / \partial w_{I}+\sum b_{D I}\left(\partial S / \partial w_{D}\right) \tag{3.3.20~g}
\end{equation*}
$$

The specialization of I_{k}, for (3.3.20a, b), to nonholonomic variables [due to Chaplygin (1895/1897), in addition to his equations (3.3.20g); and Voronets (1901)] and other related results, are given in §3.8.

We have expressed the (total, first order) virtual work of the (negative of the) inertial "forces," δI, in system variables. The kinematico-inertial identities obtained are central to analytical mechanics, and that is why they were deliberately presented before any discussion of system forces and constraints; because, indeed, they are independent of the latter. These identities also show clearly the importance of the kinetic energy (primarily) and the Appellian (secondarily) to our subject, and so these quantities are examined in detail later (§3.9.11, 13-16).

Now, let us proceed to express the virtual works of the real forces, namely, $\delta^{\prime} W$ and $\delta^{\prime} W_{R}$, in system variables. This will be considerably easier than the task just completed.

3.4 VIRTUAL WORKS OF FORCES: IMPRESSED ($\boldsymbol{\delta}^{\prime} \boldsymbol{W}$) AND CONSTRAINT REACTIONS ($\boldsymbol{\delta}^{\prime} \boldsymbol{W}_{R}$)

1. Holonomic Variables

Substituting $\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}$ into the earlier expressions for $\delta^{\prime} W$ and $\delta^{\prime} W_{R}$ (3.2.7, 10), we readily obtain

$$
\begin{align*}
& \delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum \boldsymbol{e}_{k} \delta q_{k}\right)=\cdots=\sum Q_{k} \delta q_{k} \tag{3.4.1a}\\
& \delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{R} \cdot\left(\sum \boldsymbol{e}_{k} \delta q_{k}\right)=\cdots=\sum R_{k} \delta q_{k} \tag{3.4.1b}
\end{align*}
$$

where
$Q_{k} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}:$ Holonomic (k) th component of system impressed force, (3.4.1c)
$R_{k} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k}:$ Holonomic (k) th component of system constraint reaction.

2. Nonholonomic Variables

Substituting $\delta \boldsymbol{r}=\sum \boldsymbol{\varepsilon}_{k} \delta \theta_{k}\left(\equiv \delta \boldsymbol{r}^{*}\right)$ into $\delta^{\prime} W$ and $\delta^{\prime} W_{R}$, we, similarly, obtain

$$
\begin{align*}
& \delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}^{*}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum \varepsilon_{k} \delta \theta_{k}\right)=\cdots=\sum \Theta_{k} \delta \theta_{k} \tag{3.4.2a}\\
& \delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}^{*}=\boldsymbol{S} d \boldsymbol{R} \cdot\left(\sum \varepsilon_{k} \delta \theta_{k}\right)=\cdots=\sum \Lambda_{k} \delta \theta_{k} \tag{3.4.2b}
\end{align*}
$$

where
$\Theta_{k} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{k}:$ Nonholonomic (k) th component of system impressed force,

$$
\begin{equation*}
\Lambda_{k} \equiv S d \boldsymbol{R} \cdot \varepsilon_{k}: \text { Nonholonomic }(k) \text { th component of system constraint force. } \tag{3.4.2c}
\end{equation*}
$$

Here too, these are ever valid definitions/results, no matter how many constraints may be imposed on the system later.

3. Transformation Relations

From the invariance of the virtual differentials $\delta^{\prime} W$ and $\delta^{\prime} W_{R}$, we obtain the following transformation formulae for the various system forces; that is, from

$$
\begin{align*}
\delta^{\prime} W=\sum Q_{k} \delta q_{k}=\sum Q_{k}\left(\sum A_{k l} \delta \theta_{l}\right)=\sum \Theta_{l} \delta \theta_{l} & =\sum \Theta_{l}\left(\sum a_{l k} \delta q_{k}\right) \\
& =\sum Q_{k} \delta q_{k} \tag{3.4.3a}
\end{align*}
$$

we conclude

$$
\begin{equation*}
\Theta_{l}=\sum A_{k l} Q_{k} \quad\left[=\sum Q_{k}\left(\partial v_{k} / \partial \omega_{l}\right)\right] \tag{3.4.3b}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
Q_{k}=\sum a_{l k} \Theta_{l} \quad\left[=\sum\left(\partial \omega_{l} / \partial v_{k}\right) \Theta_{l}\right] \tag{3.4.3c}
\end{equation*}
$$

and, similarly, from $\delta^{\prime} W_{R}=\cdots$, we conclude

$$
\begin{equation*}
\Lambda_{l}=\sum A_{k l} R_{k} \quad\left[=\sum R_{k}\left(\partial v_{k} / \partial \omega_{l}\right)\right] \tag{3.4.3d}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
R_{k}=\sum a_{l k} \Lambda_{l} \quad\left[=\sum\left(\partial \omega_{l} / \partial v_{k}\right) \Lambda_{l}\right] \tag{3.4.3e}
\end{equation*}
$$

[These formulae can also be obtained from the $\boldsymbol{e}_{k} \Leftrightarrow \boldsymbol{\varepsilon}_{k}$ transformation equations (2.9.25a, b) as follows:

$$
\begin{aligned}
& \Theta_{l} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{l}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum A_{k l \boldsymbol{\varepsilon}} \boldsymbol{\varepsilon}_{k}\right)=\sum A_{k l}\left(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}\right)=\sum A_{k l} Q_{k}, \\
& \left.Q_{k} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum a_{l k} \boldsymbol{\varepsilon}_{l}\right)=\sum a_{l k}\left(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{l}\right)=\sum a_{l k} \Theta_{l .}\right]
\end{aligned}
$$

Rheonomic, or "temporal," $(n+1)$ th nonvirtual force components can also be defined by
$Q_{n+1} \equiv Q_{0} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{n+1} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{0} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot(\partial \boldsymbol{r} / \partial t) \quad$ (holonomic impressed),
$R_{n+1} \equiv R_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{n+1} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot(\partial \boldsymbol{r} / \partial t) \quad$ (holonomic reaction) $;$
$\Theta_{n+1} \equiv \Theta_{0} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{n+1} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{0} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{r}^{*} / \partial \theta_{n+1}\right)$
(nonholonomic impressed),
$\Lambda_{n+1} \equiv \Lambda_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \varepsilon_{n+1} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot\left(\partial \boldsymbol{r}^{*} / \partial \theta_{n+1}\right)$
(nonholonomic reaction);
and, recalling (2.9.26a, b), we can easily deduce the following transformation equations among these components:

$$
\begin{align*}
Q_{n+1} & \equiv Q_{0} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{n+1}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum a_{k, n+1} \boldsymbol{\varepsilon}_{k}+\boldsymbol{\varepsilon}_{n+1}\right) \\
& =\sum a_{k, n+1}\left(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{k}\right)+\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{n+1}=\sum a_{k, n+1} \Theta_{k}+\Theta_{n+1} \tag{3.4.4e}\\
R_{n+1} & \equiv R_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{n+1}=\boldsymbol{S} d \boldsymbol{R} \cdot\left(\sum a_{k, n+1} \boldsymbol{\varepsilon}_{k}+\boldsymbol{\varepsilon}_{n+1}\right) \\
& =\sum a_{k, n+1}\left(\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{k}\right)+\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{n+1}=\sum a_{k, n+1} \Lambda_{k}+\Lambda_{n+1} \tag{3.4.4f}
\end{align*}
$$

and, conversely,

$$
\begin{align*}
\Theta_{0} & \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{0}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum A_{k} \boldsymbol{e}_{k}+\boldsymbol{e}_{0}\right) \\
& =\sum A_{k}\left(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}\right)+\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{0}=\sum A_{k} Q_{k}+Q_{0} \tag{3.4.4g}\\
\Lambda_{0} & \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{0}=\boldsymbol{S} d \boldsymbol{R} \cdot\left(\sum A_{k} \boldsymbol{e}_{k}+\boldsymbol{e}_{0}\right) \\
& =\sum A_{k}\left(\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k}\right)+\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{0}=\sum A_{k} R_{k}+R_{0} . \tag{3.4.4h}
\end{align*}
$$

Problem 3.4.1 With the help of the second of each of $(2.9 .3 \mathrm{a}, \mathrm{b})$, prove the additional forms of the above transformation equations:

$$
\begin{array}{lll}
\Theta_{n+1}=-\sum a_{k, n+1} \Theta_{k}+Q_{n+1}, & \text { or, simply, } & \Theta_{0}=-\sum a_{k} \Theta_{k}+Q_{0} \\
\Lambda_{n+1}=-\sum a_{k, n+1} \Lambda_{k}+R_{n+1}, & \text { or, simply, } & \Lambda_{0}=-\sum a_{k} \Lambda_{k}+R_{0} \tag{b}
\end{array}
$$

REMARK

A little analytical reflection will show that all these transformations can be condensed in the formulae [with Greek subscripts running from 1 to $n+1$, recall (2.9.6a, b)]:

$$
\begin{align*}
& \Theta_{\alpha}=\sum A_{\beta \alpha} Q_{\beta} \Leftrightarrow Q_{\beta}=\sum a_{\alpha \beta} \Theta_{\alpha} \tag{3.4.5a}\\
& \Lambda_{\alpha}=\sum A_{\beta \alpha} R_{\beta} \Leftrightarrow R_{\beta}=\sum a_{\alpha \beta} \Lambda_{\alpha} \tag{3.4.5b}
\end{align*}
$$

A Special Case

For the earlier particular case (3.3.20a ff.: $A_{D D^{\prime}}=\delta_{D D^{\prime}}, A_{D I}=b_{D I}, \quad A_{I D}=0$, $A_{I I^{\prime}}=\delta_{I I^{\prime}}$), the above transformation equations specialize to

$$
\begin{gather*}
\Theta_{D^{\prime}}=\sum A_{k D^{\prime}} Q_{k}=\sum \delta_{D D^{\prime}} Q_{D}+\sum(0) Q_{I}=Q_{D^{\prime}}, \quad \text { i.e., } \Theta_{D}=Q_{D} \tag{3.4.6a}\\
\Theta_{I^{\prime}}=\sum A_{k I^{\prime}} Q_{k}=\sum b_{D I^{\prime}} Q_{D}+\sum \delta_{I I^{\prime}} Q_{I}=Q_{I^{\prime}}+\sum b_{D I^{\prime}} Q_{D} \\
\text { i.e., } \quad \Theta_{I}=Q_{I}+\sum b_{D I} Q_{D} \equiv Q_{I, o} \equiv Q_{I o} \tag{3.4.6b}
\end{gather*}
$$

and, similarly,

$$
\begin{equation*}
\Theta_{0}=\cdots=\sum b_{D} Q_{D}+Q_{0} \equiv Q_{0, o} \tag{3.4.6c}
\end{equation*}
$$

Example 3.4.1 Virtually Workless Forces. The following are examples of forces that do zero virtual work:
(i) Forces among the particles of a rigid body; generally, the forces among rigidly connected particles and/or bodies.
(ii) Forces on particles that are either at rest (e.g., a fixed pivot, or hinge, about which a system body may turn, or a joint between two system bodies), or are constrained to move in prescribed ways; that is, their (inertial) motion is known in advance as a function of time.
(iii) Forces from completely smooth curves and/or surfaces that are either at (inertial) rest or have prescribed (inertial) motions.
(iv) Forces from perfectly rough curves and/or surfaces, either at rest or having prescribed motions. See also Pars (1965, pp. 24-25), Whittaker (1937, pp. 31-32).

Example 3.4.2 If z is a virtual displacement, then $S d \boldsymbol{R} \cdot \boldsymbol{z}=0$. Let us show the converse: If for a kinematically admissible/possible vector \boldsymbol{z} we have $\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{z}=0$, then z is a virtual displacement; that is,

$$
\begin{equation*}
z=\sum \varepsilon_{I} \delta \theta_{I} \quad(I=m+1, \ldots, n) \tag{a}
\end{equation*}
$$

The proof is by contradiction: Let $\boldsymbol{z}=\delta \boldsymbol{r}+\boldsymbol{y}(\neq \delta \boldsymbol{r})$, where the relaxed part \boldsymbol{y} may be, at most,

$$
\begin{equation*}
\boldsymbol{y}=\sum \varepsilon_{D} \delta^{\prime} \theta_{D}+\varepsilon_{0} \delta^{\prime} t \quad\left(D=1, \ldots, m ; \quad \delta^{\prime} \theta_{D}, \delta^{\prime} t: \text { components of } \boldsymbol{y}\right) . \tag{b}
\end{equation*}
$$

Substituting (b) into LP we get, successively,

$$
0=\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{z}=\boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}+\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{y}=\cdots=0+\sum \Lambda_{D} \delta^{\prime} \theta_{D}+\Lambda_{0} \delta^{\prime} t
$$

from which, since the $m+1 \delta^{\prime} \theta_{D}$ and $\delta^{\prime} t$ are independent, we obtain $\Lambda_{D}, \Lambda_{0}=0$. But, clearly, due to the constraints $\delta \theta_{D}=0$ and $\delta t=0$, this is impossible. Thus, if we assume that $\boldsymbol{y} \neq \mathbf{0}$, we are led to a contradiction. Hence, $\boldsymbol{y}=\mathbf{0}$, and \boldsymbol{z} is a virtual displacement expressible by (a).

3.5 EQUATIONS OF MOTION VIA LAGRANGE'S PRINCIPLE: GENERAL FORMS

Let us now proceed to the final synthesis; that is, the formulation of equations of motion in general system variables. We begin with the "constraint reaction part" of LP, eq. (3.2.7), and so on:

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=\sum R_{k} \delta q_{k}=\sum \Lambda_{k} \delta \theta_{k}=0 \tag{3.5.1}
\end{equation*}
$$

If the $n \delta q$'s are unconstrained (or independent, or free), so are the $n \delta \theta$'s. Then, (3.5.1) leads to

$$
\begin{equation*}
R_{k}=0, \quad \Lambda_{k}=0 \tag{3.5.2}
\end{equation*}
$$

If, however, the $n \delta q$'s are constrained by the $m(<n)$ Pfaffian, holonomic and/or nonholonomic, constraints

$$
\begin{equation*}
\delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 \quad(D=1, \ldots, m) \tag{3.5.3}
\end{equation*}
$$

then, introducing m Lagrangean (hitherto) undetermined multipliers $-\lambda_{D}=-\lambda_{D}(t)$ (the minus sign is only for algebraic convenience - see multiplier rule, below), and invoking (3.5.3), we can replace (3.5.1) with

$$
\begin{align*}
\delta^{\prime} W_{R}+\sum\left(-\lambda_{D}\right) \delta \theta_{D} & =\sum \Lambda_{k} \delta \theta_{k}+\sum\left(-\lambda_{D}\right) \delta \theta_{D} \\
& =\sum R_{k} \delta q_{k}+\sum \sum\left(-\lambda_{D}\right) a_{D k} \delta q_{k}=0 \tag{3.5.4}
\end{align*}
$$

where, now, the $n \delta q$'s and $\delta \theta$'s (can be treated as if they) are free. Therefore, (3.5.4) leads immediately to the following:
(i) in holonomic variables,

$$
\begin{equation*}
\sum\left(R_{k}-\sum \lambda_{D} a_{D k}\right) \delta q_{k}=0 \Rightarrow R_{k}=\sum \lambda_{D} a_{D k} \quad\left[=R_{k}(q, t)\right] \tag{3.5.5}
\end{equation*}
$$

(ii) in nonholonomic variables (with $I=m+1, \ldots, n$),

$$
\begin{equation*}
\sum \Lambda_{k} \delta \theta_{k}-\sum \lambda_{D} \delta \theta_{D}=\sum\left(\Lambda_{D}-\lambda_{D}\right) \delta \theta_{D}+\sum\left(\Lambda_{I}-0\right) \delta \theta_{I}=0 \tag{3.5.6}
\end{equation*}
$$

and from this to the nonholonomic counterpart of (3.5.5),

$$
\begin{equation*}
\Lambda_{D}=\lambda_{D} \quad\left(1 \cdot \delta \theta_{D}=0\right) \quad \text { and } \quad \Lambda_{I}=0 \quad\left(0 \cdot \delta \theta_{I}=0\right) ; \tag{3.5.7}
\end{equation*}
$$

that is, the m Lagrangean multipliers associated with the m "equilibrium" constraints $\omega_{D}=0$ or $\delta \theta_{D}=0$ are, in effect, the first m nonholonomic (covariant) components of the system reaction vector in configuration space. We also notice that whenever $\delta \theta_{k}=0, \Lambda_{k} \neq 0$, and vice versa $(k=1, \ldots, n$; and even $n+1)$, that is,

$$
\begin{align*}
& \Lambda_{D} \delta \theta_{D}=\left(\Lambda_{D}\right)(0)=0 \text { and } \Lambda_{I} \delta \theta_{I}=(0)\left(\delta \theta_{I}\right)=0, \text { so that } \\
& \qquad \delta^{\prime} W_{R}=\sum \Lambda_{D} \delta \theta_{D}+\sum \Lambda_{I} \delta \theta_{I}=0+0=0, \tag{3.5.8}
\end{align*}
$$

in accordance with LP.
The advantage of the nonholonomic $(3.5 .7,8)$ over the holonomic (3.5.5) is that, in the former, constraints and reactions decouple naturally; whereas in the latter they are coupled; that is, in general,

$$
\begin{equation*}
\delta q_{k} \neq 0, \quad R_{k} \neq 0 \Rightarrow R_{k} \delta q_{k} \neq 0, \quad \text { but } \quad \sum R_{k} \delta q_{k}=0 \tag{3.5.9}
\end{equation*}
$$

Finally, substituting the first of (3.5.7) into (3.5.5), we recover the earlier transformation equations (3.4.3e): $R_{k}=\sum \Lambda_{D} a_{D k}=\sum \Lambda_{l} a_{l k}$, as expected.

REMARK

In the case of unilateral constraints $\delta \theta_{D} \geq 0$ (if, originally, they have the form $\delta \theta_{D} \leq 0$, we replace $\delta \theta_{D}$ with $-\delta \theta_{D}$), from the "unilateral LP" $\delta^{\prime} W_{R} \geq 0$ and (3.5.4) we conclude that $\sum \lambda_{D} \delta \theta_{D} \geq 0$; and since the $\delta \theta_{D}$ are positive or zero, the λ_{D} must also be positive or zero.

In sum: If the unilateral constraints are chosen so that $\delta \theta_{*}>0$ is possible/admissible, then the corresponding reaction λ_{*} is positive or zero (see also $\S 3.7$).

The Lagrangean Multiplier Rule, or Adjoining of Constraints

This fundamental mathematical theorem [one of the most useful mathematical results of the 18th century, initiated by Euler, but brought to prominence by Lagrange - see Hoppe (1926(a), p. 62)] states that:

The single (differential) variational equation

$$
\begin{equation*}
\delta^{\prime} M \equiv \sum M_{k} \delta q_{k}=0 \tag{3.5.10a}
\end{equation*}
$$

where $M_{k}=M_{k}(q, \dot{q}, \ddot{q}, \ldots, t)$ and the $n \delta q$'s are restricted by the $m(<n)$ independent Pfaffian constraints

$$
\begin{equation*}
\delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 \quad\left[\operatorname{rank}\left(a_{D k}\right)=m\right] \tag{3.5.10b}
\end{equation*}
$$

is completely equivalent to the new variational equation

$$
\delta^{\prime} M+\sum\left(-\lambda_{D}\right) \delta \theta_{D}=\delta^{\prime} M+\sum \sum\left(-\lambda_{D} a_{D k}\right) \delta q_{k}=0
$$

or

$$
\begin{equation*}
\sum\left(M_{k}-\sum \lambda_{D} a_{D k}\right) \delta q_{k}=0 \tag{3.5.10c}
\end{equation*}
$$

where the $n \delta q$'s are (better, can be viewed as) unconstrained; that is, (3.5.10a, b) are equivalent to the n equations

$$
\begin{equation*}
M_{k}=\sum \lambda_{D} a_{D k} \tag{3.5.10d}
\end{equation*}
$$

which, along with the m constraints (3.5.10b), in velocity form

$$
\begin{equation*}
\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0 \tag{3.5.10e}
\end{equation*}
$$

make up a system of $n+m$ equations for the $n+m$ unknown functions $q(t)$ and $\lambda(t)$.
INFORMAL PROOF
Let us define the $m \lambda_{D}$'s by the m nonsingular equations

$$
\begin{equation*}
M_{D^{\prime}}=\sum \lambda_{D} a_{D D^{\prime}} \quad\left(D, D^{\prime}=1, \ldots, m\right) \tag{3.5.10f}
\end{equation*}
$$

that is, eqs. (3.5.10d) with $k \rightarrow D^{\prime}$. For such λ 's eq. (3.5.10c) reduces to

$$
\begin{equation*}
\sum\left(M_{I}-\sum \lambda_{D} a_{D I}\right) \delta q_{I}=0 \tag{3.5.10g}
\end{equation*}
$$

where the $(n-m) \delta q_{I}$'s are now free. From the above, we immediately conclude that

$$
\begin{equation*}
M_{I}=\sum \lambda_{D} a_{D I} \tag{3.5.10h}
\end{equation*}
$$

that is, eqs. (3.5.10d) with $k \rightarrow I$.
[References on the multiplier rule: Gantmacher (1970, pp. 20-23), Hamel (1949, pp. 85-91), Osgood (1937, pp. 316-318), Rosenberg (1977, pp. 132, 212-214). For a linear algebra based proof, see, for example, Woodhouse (1987, pp. 114-115).]

Example 3.5.1 Lagrange's Equations of the First Kind. The multiplier rule applied to

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0 \tag{a}
\end{equation*}
$$

where the $\delta \boldsymbol{r}$ are restricted by (i) the h holonomic constraints $(H=1, \ldots, h)$

$$
\begin{equation*}
\phi_{H}(t, \boldsymbol{r})=0 \Rightarrow \delta \phi_{H}=\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot \delta \boldsymbol{r}=0 \tag{b1}
\end{equation*}
$$

and (ii) the m Pfaffian (possibly nonholonomic) constraints $[D=1, \ldots, m$ $(<n \equiv 3 N-h)$ and $\left.\boldsymbol{B}_{D}=\boldsymbol{B}_{D}(t, \boldsymbol{r})\right]$

$$
\begin{equation*}
\boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{v}+B_{D}=0 \Rightarrow \boldsymbol{S} \boldsymbol{B}_{D} \cdot \delta \boldsymbol{r}=0 \tag{b2}
\end{equation*}
$$

leads, with the help of the $h+m$ Lagrangean multipliers $\mu_{H}=\mu_{H}(t)$ and $\lambda_{D}=\lambda_{D}(t)$, to

$$
\begin{equation*}
\boldsymbol{S}\left(d \boldsymbol{R}-\sum \mu_{H}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right)-\sum \lambda_{D} \boldsymbol{B}_{D}\right) \cdot \delta \boldsymbol{r}=0 \tag{cl}
\end{equation*}
$$

from which, since the $\delta \boldsymbol{r}$ can now be treated as free, we obtain the constitutive equation for the total constraint reaction on the typical particle P due to all system constraints:

$$
\begin{equation*}
d \boldsymbol{R}=\sum \mu_{H}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right)+\sum \lambda_{D} \boldsymbol{B}_{D} . \tag{c2}
\end{equation*}
$$

Then, the Newton-Euler/d'Alembert particle equation $d m \boldsymbol{a}=d \boldsymbol{F}+d \boldsymbol{R}$ becomes the famous Lagrange's equation of the first kind:

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{F}+\sum \mu_{H}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right)+\sum \lambda_{D} \boldsymbol{B}_{D} . \tag{c3}
\end{equation*}
$$

In the more common discrete notation, the constraints (b1,2) become (with $P=1, \ldots, N \equiv$ number of system particles)

$$
\begin{equation*}
\delta \phi_{H}=\sum\left(\partial \phi_{H} / \partial \boldsymbol{r}_{P}\right) \cdot \delta \boldsymbol{r}_{P}=0 \quad \text { and } \quad \sum \boldsymbol{B}_{D P} \cdot \delta \boldsymbol{r}_{P}=0 \tag{c4}
\end{equation*}
$$

respectively, while the equation of constrainted motion (c3) assumes the form

$$
\begin{equation*}
m_{P} \boldsymbol{a}_{P}=\boldsymbol{F}_{P}+\boldsymbol{R}_{P}=\boldsymbol{F}_{P}+\sum \mu_{H}\left(\partial \phi_{H} / \partial \boldsymbol{r}_{P}\right)+\sum \lambda_{D} \boldsymbol{B}_{D P} . \tag{c5}
\end{equation*}
$$

To understand the relation between the particle reactions $d \boldsymbol{R}, \boldsymbol{R}_{P}$ and their system counterparts R_{k}, Λ_{k}, we insert (c2) into their corresponding definitions (3.4.1d, 2d). We find, successively,

$$
\begin{align*}
R_{k} & \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k}=\boldsymbol{S}\left(\sum \mu_{H}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right)+\sum \lambda_{D} \boldsymbol{B}_{D}\right) \cdot \boldsymbol{e}_{k} \tag{i}\\
& =\sum \mu_{H}\left(\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right)+\sum \lambda_{D}\left(\boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{e}_{k}\right) \\
& \equiv \sum \mu_{H}\left(\partial \phi_{H} / \partial q_{k}\right)+\sum \lambda_{D} B_{D k}, \tag{d1}
\end{align*}
$$

and, comparing with the second of (3.5.5), $R_{k}=\sum \lambda_{D} a_{D k}$, we readily conclude that

$$
\begin{equation*}
\partial \phi_{H}(t, q) / \partial q_{k} \equiv \boldsymbol{S}\left[\partial \phi_{H}(t, \boldsymbol{r}) / \partial \boldsymbol{r}\right] \cdot\left[\partial \boldsymbol{r}(t, q) / \partial q_{k}\right]=0 \tag{d2}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{D k} \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{e}_{k}=a_{D k} \tag{d3}
\end{equation*}
$$

recall ex. 2.4.1 and (2.6.1ff.).

REMARK

The above also show that, as long as the quasi variables are chosen so that

$$
\begin{equation*}
0=\boldsymbol{S} \boldsymbol{B}_{D} \cdot \delta \boldsymbol{r} \equiv \delta \theta_{D}=\sum a_{D k} \delta q_{k} \Rightarrow \boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{e}_{k}=a_{D k} \tag{el}
\end{equation*}
$$

the multipliers λ_{D} in (c2, 3) coincide with those in the second of (3.5.5). Indeed, \boldsymbol{e}_{k} - dotting (c3) and then S-summing, we obtain the "Routh-Voss" equations [see (3.5.15) below]:

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}+\sum \mu_{H}\left(\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{e}_{k}\right)+\sum \lambda_{D}\left(\boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{e}_{k}\right) \tag{e2}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{k}=Q_{k}+0+\sum \lambda_{D} a_{D k} \tag{e3}
\end{equation*}
$$

$$
\begin{align*}
\Lambda_{k} & \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{k}=\boldsymbol{S}\left(\sum \mu_{H}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right)+\sum \lambda_{D} \boldsymbol{B}_{D}\right) \cdot \varepsilon_{k} \tag{ii}\\
& =\sum \mu_{H}\left(\mathbf{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot\left(\partial \boldsymbol{r} / \partial \theta_{k}\right)\right)+\sum \lambda_{D}\left(\boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{\varepsilon}_{k}\right) \\
& \equiv \sum \mu_{H}\left(\partial \phi_{H} / \partial \phi_{k}\right)+\sum \lambda_{D} B_{D k}^{\prime}, \tag{f1}
\end{align*}
$$

and, comparing with (3.5.7), $\Lambda_{D}=\lambda_{D}$ and $\Lambda_{I}=0$, we readily conclude that

$$
\begin{align*}
\partial \phi_{H} / \partial \theta_{k} & \equiv \boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot \varepsilon_{k}=\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot\left(\sum A_{l k} \boldsymbol{e}_{l}\right) \\
& =\cdots=\sum A_{l k}\left(\partial \phi_{H} / \partial q_{l}\right)=0, \tag{f2}
\end{align*}
$$

and (with $k=1, \ldots, n ; D, D^{\prime}=1, \ldots, m ; I=m+1, \ldots, n$)

$$
B_{D k}^{\prime} \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{\varepsilon}_{k}=\boldsymbol{S} \boldsymbol{B}_{D} \cdot\left(\sum A_{l k} \boldsymbol{e}_{l}\right)=\sum A_{l k}\left(\boldsymbol{S} \boldsymbol{B}_{D} \cdot \boldsymbol{e}_{l}\right)=\sum A_{l k} a_{D l}=\delta_{k D}
$$

that is,

$$
\begin{equation*}
B_{D D^{\prime}}^{\prime} \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \varepsilon_{D^{\prime}}=\delta_{D D^{\prime}}, \quad B_{D I}^{\prime} \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \varepsilon_{I}=\delta_{D I}=0 \tag{f3}
\end{equation*}
$$

Some of the above can also be obtained from the virtual forms of the constraints. Thus, we find, successively,

$$
\begin{align*}
& 0=\delta \phi_{H}=\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot \delta \boldsymbol{r}=\boldsymbol{S}\left(\partial \phi_{H} / \partial \boldsymbol{r}\right) \cdot\left(\sum \varepsilon_{k} \delta \theta_{k}\right)=\cdots=\sum\left(\partial \phi_{H} / \partial \theta_{k}\right) \delta \theta_{k} \tag{a}\\
& =\sum\left(\partial \phi_{H} / \partial \theta_{D}\right) \delta \theta_{D}+\sum\left(\partial \phi_{H} / \partial \theta_{I}\right) \delta \theta_{I}=0+\sum\left(\partial \phi_{H} / \partial \theta_{I}\right) \delta \theta_{I} \Rightarrow \partial \phi_{H} / \partial \theta_{I}=0 . \tag{g1}
\end{align*}
$$

$$
\begin{align*}
0=\delta \theta_{D} & \equiv \boldsymbol{S} \boldsymbol{B}_{D} \cdot \delta \boldsymbol{r}=\boldsymbol{S} \boldsymbol{B}_{D} \cdot\left(\sum \varepsilon_{k} \delta \theta_{k}\right)=\cdots=\sum B_{D k}^{\prime} \delta \theta_{k} \tag{b}\\
& =\sum B_{D D^{\prime}}^{\prime} \delta \theta_{D^{\prime}}+\sum B_{D I}^{\prime} \delta \theta_{I}=0+\sum B_{D I}^{\prime} \delta \theta_{I} \Rightarrow B_{D I}^{\prime}=0 \tag{g2}
\end{align*}
$$

HISTORICAL
The terms Lagrange's equations of the first kind (and second kind-see below) seem to have originated in Jacobi's famous Lectures on Dynamics (winter 1842/1843, publ. 1866), and have been widely used in the German and Russian literature. They are not too well known among English and French authors (see, e.g., Voss, 1901, p. 81, footnote \#220).

Example 3.5.2 Lagrange's Principle and Multipliers: Particle on a Surface (Kraft, 1885, vol. 2, pp. 194-195). Let us consider a particle P of mass m moving on a smooth surface $\phi(x, y, z, t)=0$, where x, y, z are inertial rectangular Cartesian coordinates of P, under a total impressed force with rectangular Cartesian components (X, Y, Z). According to LP, the motion is given by (with the customary notations $d x / d t \equiv v_{x}, d^{2} x / d t^{2} \equiv d v_{x} / d t \equiv a_{x}, \ldots$)

$$
\begin{equation*}
\left(m a_{x}-X\right) \delta x+\left(m a_{y}-Y\right) \delta y+\left(m a_{z}-Z\right) \delta z=0 \tag{a}
\end{equation*}
$$

under the (virtual form of the surface) constraint

$$
\begin{equation*}
\delta \phi=0: \quad(\partial \phi / \partial x) \delta x+(\partial \phi / \partial y) \delta y+(\partial \phi / \partial z) \delta z=0 . \tag{b}
\end{equation*}
$$

By Lagrange's multipliers, (a) and (b) combine to the unconstrained variational equation,

$$
\begin{align*}
{\left[m a_{x}-X-\lambda(\partial \phi / \partial x)\right] \delta x } & +\left[m a_{y}-Y-\lambda(\partial \phi / \partial y)\right] \delta y \\
& +\left[m a_{z}-Z-\lambda(\partial \phi / \partial z)\right] \delta z=0 \tag{c}
\end{align*}
$$

and this leads directly to the three Lagrangean (Routh-Voss) equations of the first kind:

$$
\begin{equation*}
m a_{x}=X+\lambda(\partial \phi / \partial x), \quad m a_{y}=Y+\lambda(\partial \phi / \partial y), \quad m a_{z}=Z+\lambda(\partial \phi / \partial z) \tag{d}
\end{equation*}
$$

Eliminating the multiplier λ among (d) we obtain the two reactionless equations (with subscripts denoting partial derivatives):

$$
\begin{equation*}
\left(m a_{x}-X\right) / \phi_{x}=\left(m a_{y}-Y\right) / \phi_{y}=\left(m a_{z}-Z\right) / \phi_{z} \quad(=\lambda) \tag{e}
\end{equation*}
$$

Next:
(i) either we solve the system consisting of any two of (e), plus the constraint $\phi=0$, for the three unknown functions $x(t), y(t), z(t)$, and then calculate $\lambda \rightarrow \lambda(t)$ from (d), or (e), if needed;
(ii) or we solve the system consisting of (d) and $\phi=0$ for the four unknown functions $x(t), y(t), z(t)$, and $\lambda(t)$.

Equations (e) can also be obtained as follows: in view of (b), only two out of the three virtual displacements are independent; here $n=3$ and $m=1$. Taking δx as the dependent virtual displacement, and solving (b) for it in terms of the other two (assuming that $\phi_{x} \neq 0$), we obtain

$$
\begin{equation*}
\delta x=-\left(\phi_{y} / \phi_{x}\right) \delta y-\left(\phi_{z} / \phi_{x}\right) \delta z \tag{f}
\end{equation*}
$$

and substituting this into (a), and regrouping terms, we get the new unconstrained variational equation of motion

$$
\begin{align*}
{\left[m a_{y}-Y-\left(m a_{x}\right.\right.} & \left.-X)\left(\phi_{y} / \phi_{x}\right)\right] \delta y \\
& +\left[m a_{z}-Z-\left(m a_{x}-X\right)\left(\phi_{z} / \phi_{x}\right)\right] \delta z=0 . \tag{g}
\end{align*}
$$

The above, since δy and δz are now free, leads immediately to the two reactionless \equiv kinetic equations,

$$
\begin{equation*}
m a_{y}=Y+\left(m a_{x}-X\right)\left(\phi_{y} / \phi_{x}\right), \quad m a_{z}=Z+\left(m a_{x}-X\right)\left(\phi_{z} / \phi_{x}\right) \tag{h}
\end{equation*}
$$

which are none other than the earlier eqs. (e).

REMARKS

(i) Equations (h) can be, fairly, called "Maggi \rightarrow Hadamard equations of the first kind"; and the extension of this idea to holonomic system variables and corresponding Pfaffian constraints yields "Hadamard's equations (of the second kind)" (§3.8).
(ii) Equations ($\mathrm{b}-\mathrm{d}=$ "adjoining of constraints") and equations ($\mathrm{f}-\mathrm{h}=$ "embedding of constraints") embody the two available ways of handling constrained stationary problems in differential calculus; although, there, the former is discussed much more frequently than the latter!

Specialization

Let the reader verify that if the surface constraint has the special form $z=f(x, y)$, then:
(i) eqs. (d, e) reduce, respectively, to

Routh-Voss equations:

$$
\begin{equation*}
m a_{x}=X+\lambda(\partial f / \partial x), \quad m a_{y}=Y+\lambda(\partial f / \partial y), \quad m a_{z}=Z-\lambda, \tag{i}
\end{equation*}
$$

Kinetic Maggi \rightarrow Hadamard equations (of the first kind):

$$
\begin{gather*}
\left(m a_{x}-X\right) / f_{x}=\left(m a_{y}-Y\right) / f_{y}=\left(m a_{z}-Z\right) /(-1) \quad(=\lambda), \tag{j}\\
\Rightarrow\left(m a_{x}-X\right)+\left(m a_{z}-Z\right) f_{x}=0, \quad\left(m a_{y}-Y\right)+\left(m a_{z}-Z\right) f_{y}=0 . \tag{k}
\end{gather*}
$$

(ii) Substituting into (k): $a_{z} \equiv \ddot{z}=\cdots=\ddot{x} f_{x}+\ddot{y} f_{y}+(\dot{x})^{2} f_{x x}+(\dot{y})^{2} f_{y y}+2 \dot{x} \dot{y} f_{x y}$; that is, using the constraint and its (...) -derivatives to eliminate z and its derivatives from them, we obtain the two kinetic equations in x, y and their derivatives alone:

$$
\begin{aligned}
& \ddot{x}\left(1+f_{x}^{2}\right)+\ddot{y} f_{x} f_{y}+(\dot{x})^{2} f_{x} f_{x x}+2 \dot{x} \dot{y} f_{x} f_{x y}+(\dot{y})^{2} f_{x} f_{y y}=\left(X+f_{x} Z\right) / m \\
& \ddot{y}\left(1+f_{y}^{2}\right)+\ddot{x} f_{x} f_{y}+(\dot{y})^{2} f_{y} f_{y y}+2 \dot{x} \dot{y} f_{y} f_{x y}+(\dot{x})^{2} f_{y} f_{x x}=\left(Y+f_{y} Z\right) / m
\end{aligned}
$$

[which are the "Chaplygin-Voronets"-type equations of the problem (see §3.8)].
(iii) Solving the last of (j) for λ, and then using into it the earlier expression $\ddot{z}=\cdots$, we obtain the following (kinetostatic) expression:

$$
\begin{align*}
\lambda & =Z-m \ddot{z} \\
& =Z-m\left[\ddot{x} f_{x}+\ddot{y} f_{y}+(\dot{x})^{2} f_{x x}+(\dot{y})^{2} f_{y y}+\dot{x} \dot{y} f_{x y}\right] \tag{n}
\end{align*}
$$

which, once the motion has been found: $x=x(t), y=y(t)$, yields the constraint reaction $\lambda=\lambda(t)$.
(iv) Finally, substituting (n) into the first and second of (i), we recover (k, 1), respectively.

Example 3.5.3 Let us apply the results of the preceding example to a particle P of mass m moving under gravity on a smooth vertical plane that spins about a vertical of its straight lines, $O z$ (positive upward), with constant angular velocity ω (Kraft, 1885, vol. 2, pp. 194-195). Choosing inertial axes $O-x y z$ so that $O x$ coincides with the original intersection of the spinning plane and the horizontal plane $O-x y$ through the origin, we have, for the impressed forces,

$$
\begin{equation*}
X=0, \quad Y=0, \quad Z=+m g \tag{a}
\end{equation*}
$$

and, for the constraint,

$$
\begin{equation*}
y / x=\sin (\omega t) / \cos (\omega t) \Rightarrow \phi(t, x, y, z)=y \cos (\omega t)-x \sin (\omega t)=0 \tag{b}
\end{equation*}
$$

Therefore, equations (e) of the preceding example yield

$$
(m \ddot{x}-0) /[-\sin (\omega t)]=(m \ddot{y}-0) / \cos (\omega t)=(m \ddot{z}-m g) / 0 \quad(=-\lambda),
$$

or, rearranging (to avoid the singularity caused by $f_{z}=0$),

$$
\begin{align*}
(m \ddot{x}-0) \cos (\omega t) & =(m \ddot{y}-0)[-\sin (\omega t)] \Rightarrow \ddot{x} \cos (\omega t)+\ddot{y} \sin (\omega t)=0, \tag{c}\\
(m \ddot{x}-0)(0) & =(m \ddot{z}-m g)[-\sin (\omega t)] \Rightarrow \ddot{z}=g, \tag{d}\\
(m \ddot{y}-0)(0) & =(m \ddot{z}-m g) \cos (\omega t) \Rightarrow \ddot{z}=g . \tag{e}
\end{align*}
$$

Let us, now, solve (c-e). Using plane polar coordinates $(r, \phi): x=r \cos (\omega t) \Rightarrow$ $\dot{x}=\cdots \Rightarrow \ddot{x}=\cdots$ and $y=r \sin (\omega t) \Rightarrow \dot{y}=\cdots \Rightarrow \ddot{y}=\cdots$, we can rewrite (c) in the simpler form

$$
\begin{equation*}
\ddot{r}-\omega^{2} r=0 . \tag{f}
\end{equation*}
$$

The solution of $(\mathrm{d})=(\mathrm{e})$, with initial conditions $z(0) \equiv z_{o}$ and $\dot{z}(0) \equiv v_{o}$, is

$$
\begin{equation*}
z=(1 / 2) g t^{2}+v_{o} t+z_{o}, \tag{g}
\end{equation*}
$$

while that of (f), with initial conditions $r(0)=r_{o}$ and $\dot{r}(0)=v_{r, o}$, is

$$
\begin{equation*}
2 \omega r=\left(\omega r_{o}+v_{r, o}\right) e^{\omega t}+\left(\omega r_{o}-v_{r, o}\right) e^{-\omega t} . \tag{h}
\end{equation*}
$$

Equations (g, h) locate P on the spinning plane at time t, and, with the help of (b), specify its inertial position at the same time. (See also Walton, 1876, pp. 398-411.)

Example 3.5.4 Lagrange's Equations of the First Kind; Particle on Two Surfaces. Let us calculate the reactions on a particle P moving in space under the two constraints (where x, y, z are the inertial rectangular Cartesian coordinates of P)

$$
\begin{equation*}
\phi_{1} \equiv x^{2}+y^{2}+z^{2}-l^{2}=0 \quad \text { and } \quad \phi_{2} \equiv z-y \tan \theta=0 \tag{a}
\end{equation*}
$$

that is, $n=3-2=1$: for example, the bob of spherical pendulum of (constant) length l, forced to remain on the plane $\phi_{2}=0$, that makes an angle θ with the plane $z=0$. Using commas followed by subscripts to denote partial (coordinate) derivatives, we find, from (a),

$$
\begin{equation*}
\delta \phi_{1}=\phi_{1, x} \delta x+\phi_{1, y} \delta y+\phi_{1, z} \delta z=0, \quad \delta \phi_{2}=\phi_{2, x} \delta x+\phi_{2, y} \delta y+\phi_{2, z} \delta z=0 \tag{b}
\end{equation*}
$$

Solving (b) for the two excess virtual displacements in terms of the third, say δy and δz in terms of δx, we obtain

$$
\begin{equation*}
\delta y=-(2 x / J) \delta x \quad \text { and } \quad \delta z=-(2 x \tan \theta / J) \delta x \tag{c}
\end{equation*}
$$

where

$$
J \equiv\left|\begin{array}{ll}
\phi_{1, y} & \phi_{1, z} \tag{d}\\
\phi_{2, y} & \phi_{2, z}
\end{array}\right|=2(y+z \tan \theta) \quad(\neq 0, \text { assumed })
$$

Substituting δy and δz from (c) into the principle of d'Alembert-Lagrange for the particle reaction - that is,

$$
\begin{equation*}
R_{x} \delta x+R_{y} \delta y+R_{z} \delta z=0 \tag{e}
\end{equation*}
$$

results in

$$
\begin{equation*}
\left[R_{x}-(2 x / J) R_{y}-(2 x \tan \theta / J) R_{z}\right] \delta x \equiv R_{x}^{\prime} \delta x=0 \tag{f}
\end{equation*}
$$

from which, since δx is independent, we obtain $R_{x}^{\prime}=0$; that is,

$$
\begin{equation*}
R_{x} /\left(R_{y}+\tan \theta R_{z}\right)=x /(y+z \tan \theta) \tag{g}
\end{equation*}
$$

Further, the ideal reaction postulate for \boldsymbol{R} :

$$
\begin{equation*}
\boldsymbol{R}=\lambda_{1}\left(\partial \phi_{1} / \partial \boldsymbol{r}\right)+\lambda_{2}\left(\partial \phi_{2} / \partial \boldsymbol{r}\right) \tag{h}
\end{equation*}
$$

with (a) and in components, yields

$$
\begin{align*}
& R_{x}=\lambda_{1} \phi_{1, x}+\lambda_{2} \phi_{2, x}=\cdots=2 \lambda_{1} x \tag{i}\\
& R_{y}=\lambda_{1} \phi_{1, y}+\lambda_{2} \phi_{2, y}=\cdots=2 \lambda_{1} y-\lambda_{2} \tan \theta \tag{j}\\
& R_{z}=\lambda_{1} \phi_{1, z}+\lambda_{2} \phi_{2, z}=\cdots=2 \lambda_{1} z+\lambda_{2} \tag{k}
\end{align*}
$$

which, of course, are consistent with (g). Finally, since $J \neq 0$, we can use any two of ($\mathrm{i}-\mathrm{k}$) to express $\lambda_{1,2}$ uniquely, in terms of $R_{x, y, z}$; for instance, solve (j, k) for $\lambda_{1,2}$ in terms of $R_{y, z}$. (See also Routh, 1891, p. 35.)

Example 3.5.5 Lagrange's Equations of the First Kind; and Elimination of Reactions. Let us consider a system of N particles, moving under the $h+m \equiv M$ (possibly nonholonomic but ideal) constraints

$$
\begin{equation*}
f_{D}(t, \boldsymbol{r}, \boldsymbol{v})=0 \quad(D=1, \ldots, M<3 N) \tag{a}
\end{equation*}
$$

and, therefore (recalling ex. 3.2.6), having Lagrangean equations of motion of the first kind (we revert to continuum notation for convenience),

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{F}+\sum \lambda_{D}\left(\partial f_{D} / \partial \boldsymbol{v}\right) \tag{b}
\end{equation*}
$$

Now, to obtain reactionless $=$ kinetic equations of motion, we will combine (b) with the acceleration form of (a). To this end, we (...)-differentiate (a) once, thus obtaining

$$
\begin{equation*}
d f_{D} / d t=\partial f_{D} / \partial t+\boldsymbol{S}\left[\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}+\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \boldsymbol{a}\right]=0 \tag{c}
\end{equation*}
$$

and from this, rearranging, we get

$$
\begin{equation*}
\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \boldsymbol{a}=-\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}-\partial f_{D} / \partial t \tag{d}
\end{equation*}
$$

Now, to be able to use (d) in (b), so as to eliminate \boldsymbol{a}, we dot the latter with $\partial f_{D} / \partial v$ and sum over the particles (with $D, D^{\prime}=1, \ldots, M$):

$$
\begin{equation*}
\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \boldsymbol{a}=\boldsymbol{S}\left[(d \boldsymbol{F} / d m) \cdot\left(\partial f_{D} / \partial \boldsymbol{v}\right)\right]+\sum \lambda_{D^{\prime}}\left(\boldsymbol{S}\left(\partial f_{D^{\prime}} / \partial \boldsymbol{v}\right) \cdot\left(\partial f_{D} / \partial \boldsymbol{v}\right) / d m\right) \tag{e}
\end{equation*}
$$

and, comparing the right sides of the above with (d), we readily conclude that

$$
\begin{align*}
\sum \lambda_{D^{\prime}} & \left\{\boldsymbol{S}\left[\partial f_{D^{\prime}} / \partial(d m \boldsymbol{v})\right] \cdot\left(\partial f_{D} / \partial \boldsymbol{v}\right)\right\} \\
& =-\boldsymbol{S}\left\{d \boldsymbol{F} \cdot\left[\partial f_{D} / \partial(d m \boldsymbol{v})\right]\right\}-\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}-\partial f_{D} / \partial t \tag{f}
\end{align*}
$$

Since $\operatorname{rank}\left[\partial f_{D} / \partial(d m \boldsymbol{v})\right]=\operatorname{rank}\left(\partial f_{D} / \partial \boldsymbol{v}\right)=M$, and therefore

$$
\begin{equation*}
\operatorname{Det}\left\{\boldsymbol{S}\left[\partial f_{D^{\prime}} / \partial(d m \boldsymbol{v})\right] \cdot\left(\partial f_{D} / \partial \boldsymbol{v}\right)\right\} \neq 0 \tag{g}
\end{equation*}
$$

the M linear nonhomogeneous equations (f) can supply uniquely (locally, at least) the λ_{D} 's as functions of the \boldsymbol{r} 's, \boldsymbol{v} 's, and t. Finally, substituting the so-calculated λ_{D} 's back into (b), we obtain N second-order equations for the $\boldsymbol{r}=\boldsymbol{r}(t)$. (See also exs. 3.10.2, 5.3.5, and 5.3.6; and Voss, 1885.)

Problem 3.5.1 Continuing from the preceding example, find the form that (f) takes if the constraints (a) have the holonomic form

$$
\begin{equation*}
\phi_{H}(t, \boldsymbol{r})=0 . \tag{a}
\end{equation*}
$$

HINT

Calculate $f_{D} \equiv d \phi_{D} / d t=0$, and then show that $\partial f_{D} / \partial \boldsymbol{v}=\partial \phi_{D} / \partial \boldsymbol{r}$.

Let us now turn to the second, and more important, "reactionless part" of LP, (eqs. 3.2.8, 11), and express it in system variables.

1. Holonomic Variables

In this case LP, $\delta I=\delta^{\prime} W$, assumes the form

$$
\sum E_{k} \delta q_{k}=\sum Q_{k} \delta q_{k}
$$

or, explicitly,

$$
\begin{align*}
& \sum\left\{\left[d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}\right]-Q_{k}\right\} \delta q_{k} \\
& \quad \equiv \sum\left\{\left[d / d t\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k}\right]-Q_{k}\right\} \delta q_{k}=0 \tag{3.5.11}
\end{align*}
$$

This differential variational equation is fundamental to Lagrangean analytical mechanics; all conceivable/possible Lagrangean equations of motion are based on it and flow from it.
(a) Now, if the $n \delta q$'s are independent (i.e., $m=0 \Rightarrow f=n D O F$), (3.5.11) leads immediately to Lagrange's equations of the second kind: $E_{k}=Q_{k}$; or explicitly (recalling the kinematico-inertial results of $\S 3.3$ in holonomic variables),

$$
\begin{align*}
E_{k} & \equiv d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k} & & \\
& \equiv d / d t\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k}=Q_{k} & & {[\text { Lagrange (1780)] }} \tag{3.5.12}\\
& \equiv \partial S / \partial \ddot{q}_{k} \equiv \partial S / \partial \dot{v}_{k} \equiv \partial S / \partial w_{k}=Q_{k} & & {[\text { Appell }(1899)] . } \tag{3.5.13}
\end{align*}
$$

Further, substituting $\delta q_{k}=\sum A_{k l} \delta \theta_{l}(k, l=1, \ldots, n)$ into (3.5.11) readily yields

$$
\begin{equation*}
\left.\sum A_{k l} E_{k}=\sum A_{k l} Q_{k} \quad \text { (i.e., } I_{l}=\Theta_{l} \text {, but in holonomic variables }\right) \tag{3.5.14}
\end{equation*}
$$

[Maggi (1896, 1901, 1903)].
However, in this unconstrained case, neither Appell's equations, (3.5.13), nor Maggi's equations, (3.5.14), offer any particular advantages over those of Lagrange, (3.5.12); their real usefulness/advantages over eqs. (3.5.12) lie in the constrained case (see below). Equations (3.5.12) are rightfully considered among the most important ones of the entire mathematical physics and engineering; we shall call them simply Lagrange's equations.
(b) If the $n \delta q$'s are constrained by (3.5.3): $\sum a_{D k} \delta q_{k}=0 \quad(D=1, \ldots, m$; $k=1, \ldots, n$), that is, $f \equiv n-m=$ number of $D O F$, then application of the multiplier
rule, between these constraints and (3.5.11), leads immediately to the Routh-Voss equations

$$
\begin{equation*}
E_{k}=Q_{k}+\sum \lambda_{D} a_{D k}\left(\equiv Q_{k}+R_{k}\right) \tag{3.5.15}
\end{equation*}
$$

or, explicitly, as in $(3.5 .12,13)$,

$$
\begin{align*}
& E_{k} \equiv d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D} a_{D k} \\
& \quad[\text { Routh (1877), Voss (1885)], } \tag{3.5.16}\\
& \equiv \partial S / \partial \ddot{q}_{k}=Q_{k}+\sum \lambda_{D} a_{D k} \text { (Appellian form of the Routh--Voss eqs.). } \tag{3.5.17}
\end{align*}
$$

The corresponding Maggi form is presented below.
[Equations (3.5.15) are not to be confused with the other, more famous, equations of Routh of steady motion, etc. (§8.3 ff.)]

CAUTION

Some authors (e.g., Haug, 1992, pp. 169-170) state, falsely, that if the $n q$'s are independent, the $n \delta q$'s are arbitrary, and then (3.5.12, 13) follow from (3.5.11). But as we have seen ($\$ 2.3, \S 2.8$, and $\S 2.12$), if the additional constraints (3.5.3, 10b) are nonholonomic the q 's remain independent, whereas, obviously, the δq 's are no longer arbitrary, that is, $(3.5 .12,13)$ do not always hold for independent q 's.

2. Holonomic \rightarrow Nonholonomic Variables

In this case LP, $\delta I=\delta^{\prime} W$, assumes the form

$$
\begin{equation*}
\sum I_{k} \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k} \tag{3.5.18}
\end{equation*}
$$

(a) If the $n \delta \theta$'s are unconstrained (i.e., if $m=0 \Rightarrow f \equiv n-m=n=\# D O F$), then (3.5.18) leads to $I_{k}=\Theta_{k}$, or, due to the kinematico-inertial identities (3.3.10 ff.) for I_{k}, to the following three general forms:

$$
I_{k} \equiv \sum A_{l k} E_{l}=\sum A_{l k} Q_{l}
$$

or, in extenso,

$$
\begin{align*}
& \sum\left[d / d t\left(\partial T / \partial \dot{q}_{l}\right)-\partial T / \partial q_{l}\right] A_{l k}=\sum A_{l k} Q_{l} \\
& \quad(\text { Maggi form: holonomic variables }) \tag{3.5.19a}\\
& \equiv \sum A_{l k}\left(\partial S / \partial \ddot{q}_{l}\right)=\sum A_{l k} Q_{l} \\
& \quad(\text { Appellian form of Maggi form: holonomic variables }), \tag{3.5.19b}\\
& \equiv \partial S^{*} / \partial \dot{\omega}_{k}=\Theta_{k} \tag{3.5.19c}
\end{align*}
$$

[Gibbs (1879): nonholonomic variables, but no constraints!],

$$
\begin{align*}
& \equiv d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha}=\Theta_{k} \\
& \equiv E_{k}{ }^{*}\left(T^{*}\right)-\Gamma_{k}=\Theta_{k} \\
& \quad \quad \quad \text { Volterra (1898), Hamel (1903-1904)]. } \tag{3.5.19d}
\end{align*}
$$

Equations (3.5.19a, b) have no advantages over Lagrange's equations (3.5.12); but equations $(3.5 .19 \mathrm{c}, \mathrm{d})$ may be truly useful for unconstrained systems in quasi
variables, for example, a rigid body moving about a fixed point $[\rightarrow$ Eulerian rotational equations (§1.17)].
(b) If the $\delta \theta$'s are constrained by $\delta \theta_{D}=0$, but $\delta \theta_{I} \neq 0$ (i.e., if $f \equiv n-m=$ \# DOF), then the multiplier rule applied to (3.5.18) yields the following two groups of equations:

Kinetostatic (i.e., reaction containing) equations:

$$
\begin{equation*}
I_{D}=\Theta_{D}+\Lambda_{D} \quad\left[=\Theta_{D}+\lambda_{D} \quad(D=1, \ldots, m)\right] \tag{3.5.20a}
\end{equation*}
$$

Kinetic (i.e., reactionless) equations:

$$
\begin{equation*}
I_{I}=\Theta_{I} \quad(I=m+1, \ldots, n) \tag{3.5.20b}
\end{equation*}
$$

[and in view of the constraint $1 \cdot \delta \theta_{n+1}=1 \cdot \delta t=0$, we also have $I_{n+1}=\Theta_{n+1}+\Lambda_{n+1}$, but that nonvirtual relation is more of an energy rate-like equation (as in §3.9)].

Alternative Derivation of Equations (3.5.20a, b)
First, with the help of the Kronecker delta (hopefully, not to be confused with the virtual variation symbol $\delta \ldots$), we rewrite the constraints $\delta \theta_{D}=0$ as

$$
\begin{equation*}
0=\delta \theta_{D}=\sum \delta_{D D^{\prime}} \delta \theta_{D^{\prime}}=\sum \delta_{D D^{\prime}} \delta \theta_{D^{\prime}}+\sum \delta_{D I} \delta \theta_{I}=\sum \delta_{D k} \delta \theta_{k} \tag{3.5.20c}
\end{equation*}
$$

Then, using the method of Lagrangean multipliers, we combine them with (3.5.18): (1) we multiply each constraint $\delta \theta_{D}(=0)$ with $-\lambda_{D}(\neq 0)$ and sum over D; (2) we multiply each "nonconstraint" $\delta \theta_{I}(\neq 0)$ with $-\lambda_{I}(=0)$ and sum over I; and, (3), we add the so-resulting two zeros to (3.5.18), thus obtaining

$$
\begin{equation*}
\sum\left(I_{k}-\Theta_{k}-\sum \lambda_{D} \delta_{D k}\right) \delta \theta_{k}=0 \tag{3.5.20d}
\end{equation*}
$$

Since the $\delta \theta_{k}$ can now be viewed as unconstrained, (3.5.20d) decouples to the two sets of equations:

$$
\left.\begin{array}{lc}
k=D^{\prime}: & I_{D^{\prime}}-\Theta_{D^{\prime}}=\sum \lambda_{D} \delta_{D D^{\prime}}=\lambda_{D^{\prime}} \\
k=I: & \quad I_{I}-\Theta_{I}=\sum \lambda_{D} \delta_{D I}=\lambda_{I}=0 \tag{3.5.20f}
\end{array} \quad(\text { Kinetic equations }), ~ . ~ \text { Kinetostatic equations }\right) .
$$

Here, too, as with the unconstrained case (3.5.19a-d), we have the following three general forms for (3.5.20a) and (3.5.20b):

- Kinetic equations (with $I, I^{\prime}=m+1, \ldots, n ; k=1, \ldots, n ; \gamma_{I}^{r} \equiv \gamma^{r}{ }_{I, n+1}$):

$$
I_{I} \equiv \sum A_{k I} E_{k}=\sum A_{k I} Q_{k}
$$

or, in extenso,
$\sum\left[d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}\right] A_{k I}=\sum A_{k I} Q_{k}$
[Maggi (1896, 1901, 1903): holonomic variables],
$\equiv \sum A_{k I}\left(\partial S / \partial \ddot{q}_{k}\right)=\sum A_{k I} Q_{k}$
(Appellian form of Maggi form: holonomic variables),
$\equiv \partial S^{*} / \partial \dot{\omega}_{I}=\Theta_{I}$
[Appell (1899-1925): special cases of nonholonomic variables],

$$
\begin{align*}
\equiv d / d t\left(\partial T^{*} / \partial \omega_{I}\right)-\partial T^{*} / \partial \theta_{I} & +\sum \sum \gamma_{I I^{\prime}}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{I^{\prime}} \tag{3.5.21c}\\
& +\sum \gamma_{I}^{k}\left(\partial T^{*} / \partial \omega_{k}\right)=\Theta_{I} \tag{3.5.21d}
\end{align*}
$$

[Hamel (1903-1904): "Lagrange-Euler equations"];

- Kinetostatic equations (with $D=1, \ldots, m ; I=m+1, \ldots, n ; k=1, \ldots n$; $\left.\gamma_{D}^{r} \equiv \gamma^{r}{ }_{D, n+1}\right):$

$$
I_{D} \equiv \sum A_{k D} E_{k}=\sum A_{k D} Q_{k}+\Lambda_{D}
$$

or, in extenso,

$$
\begin{align*}
& \sum\left[d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}\right] A_{k D}=\sum A_{k D} Q_{k}+\Lambda_{D} \tag{3.5.22a}\\
& \equiv \sum A_{k D}\left(\partial S / \partial \ddot{q}_{k}\right)=\sum A_{k D} Q_{k}+\Lambda_{D} \tag{3.5.22b}\\
& \equiv \partial S^{*} / \partial \dot{\omega}_{D}=\Theta_{D}+\Lambda_{D} \tag{3.5.22c}
\end{align*}
$$

[Cotton (1907): special variables]

$$
\begin{align*}
\equiv & d / d t\left(\partial T^{*} / \partial \omega_{D}\right)-\partial T^{*} / \partial \theta_{D} \\
& +\sum \sum \gamma_{D I}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{I}+\sum \gamma_{D}^{k}\left(\partial T^{*} / \partial \omega_{k}\right)=\Theta_{D}+\Lambda_{D} \tag{3.5.22d}
\end{align*}
$$

[Stückler (1955); special case by Schouten (late 1920s, 1954)].

REMARKS

(i) In the absence of constraints, the above n equations in the ω 's, plus the n transformation equations $\dot{q}_{k}=\sum A_{k l} \omega_{l}+A_{k}$, constitute a system of $2 n$ first-order equations in the $2 n$ unknown functions $\omega_{k}=\omega_{k}(t)$ and $q_{k}=q_{k}(t)$. [Or, after using the $\omega \leftrightarrow \dot{q}$ equations in them, thus expressing the ω_{k} 's in terms of the \dot{q}_{k} 's, they constitute a set of n second-order equations for the n unknowns $q_{k}(t)$.] In the presence of m constraints $\omega_{D}=0$, the $n-m$ kinetic equations plus the n transformation equations $\dot{q}_{k}=\sum A_{k I} \omega_{I}+A_{k}$ constitute a system of $2 n-m$ first-order equations in the $2 n-m$ functions $\omega_{I}=\omega_{I}(t)$ and $q_{k}=q_{k}(t)$. Or, equivalently, substituting $\omega_{I}=\sum a_{I l} \dot{q}_{k}+a_{I}(\neq 0)$ into the $n-m$ kinetic equations, we obtain a system of $n-m$ second-order equations for the $q_{k}=q_{k}(t)$; and then, pairing them with the m constraints $\sum a_{D k} \dot{q}_{k}+a_{D}=0$, we finally obtain a system of $(n-m)+m=n$ second-order reactionless equations for the $q_{k}=q_{k}(t)$. Further, it can be shown that there exists a nonsingular linear transformation $\dot{q}_{k}=\sum A_{k l} \omega_{l}+A_{k}$, or
$\dot{q}_{\alpha}=\sum A_{\alpha \beta} \omega_{\beta}$ (recalling that $d q_{n+1} / d t=\omega_{n+1}=d t / d t=1$) that brings the nonnegative kinetic energy $2 T=\sum \sum M_{\alpha \beta} \dot{q}_{\alpha} \dot{q}_{\beta}$ to the following sum of squares form:

$$
\begin{equation*}
2 T \rightarrow 2 T^{*}=\sum \omega_{\alpha}^{2}=\sum \omega_{k}^{2}+\omega_{n+1}^{2} \tag{3.5.23a}
\end{equation*}
$$

in which case, since $P_{k} \equiv \partial T^{*} / \partial \omega_{k}=\omega_{k}$ and $P_{n+1} \equiv \partial T^{*} / \partial \omega_{n+1}=\omega_{n+1}=1$, $\partial T^{*} / \partial \theta_{k} \equiv \sum\left(\partial T^{*} / \partial q_{l}\right) A_{l k}=0$, the nonholonomic system inertia assumes the Eulerian form (recall inertia side of Eulerian rigid-body rotational equations, §1.17):

$$
\begin{equation*}
I_{k}=d \omega_{k} / d t+\sum \sum \gamma_{k \alpha}^{r} \omega_{r} \omega_{\alpha} \tag{3.5.23b}
\end{equation*}
$$

and that is why Hamel called his equations "Lagrange-Euler equations." (However, by choosing the ω_{k} 's so as to nullify the $\partial T^{*} / \partial \theta_{k}$'s, we probably end up complicating the $\gamma_{k \alpha}^{r}$'s.)
(ii) The advantage of nonholonomic variables in the Hamel "equilibrium form" $\omega_{D}=0$ is that then both constraints and equations of motion decouple naturally into $n-m$ purely kinetic (i.e., reactionless) equations ($\delta \theta_{I} \neq 0 ; \Lambda_{I}=0 \Rightarrow I_{I}=\Theta_{I}$) and m reaction-containing, or kinetostatic, equations ($\delta \theta_{D}=0 ; \Lambda_{D} \neq 0 \Rightarrow I_{D}=\Theta_{D}+\Lambda_{D}$). In holonomic variables, by contrast, both (Pfaffian) constraints and (Routh-Voss and Appell) equations of motion are coupled. Solving the $n-m$ kinetic equations (plus constraints, etc.) constitutes the lion's share of the difficulty of the problem. Once this has been achieved, then the reactions Λ_{D} follow immediately from the (now) algebraic equations: $\Lambda_{D}=\Lambda_{D}(t)=I_{D}(t)-\Theta_{D}(t)$.
(iii) When using Hamel's equations under the constraints $\omega_{D}=0$, we must enforce the latter after all partial differentiations have been carried out, not before; otherwise, we would not, in general, calculate correctly the key nonholonomic terms $\left(k, r=1, \ldots, n ; \alpha=1, \ldots, n+1 ; I^{\prime}=m+1, \ldots, n\right)$

$$
\begin{equation*}
-\Gamma_{k}=\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha}=\sum \sum \gamma_{k I^{\prime}}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{I^{\prime}}+\sum \gamma_{k}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \tag{3.5.24a}
\end{equation*}
$$

and, unfortunately, this drawback holds for both kinetic and kinetostatic equations. Let us see why. Expanding T^{*} à la Taylor around $\omega_{D}=0$, we obtain

$$
\begin{equation*}
T^{*}=T^{*}{ }_{o}+\sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \omega_{D}+\text { quadratic terms in } \omega_{D} \tag{3.5.24b}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{*}{ }_{o}=T^{*}\left(q, \omega_{D}=0, \omega_{I}, t\right)=T^{*}{ }_{o}\left(q, \omega_{I}, t\right) ; \tag{3.5.24c}
\end{equation*}
$$

and, generally, $(\ldots)_{o} \equiv\left(\ldots, \omega_{D}=0, \ldots\right)$ (a useful notation, to be utilized frequently, for extra clarity); and, therefore,

$$
\begin{align*}
& \left(\partial T^{*} / \partial \omega_{D}\right)_{o} \neq \partial T_{o}^{*} / \partial \omega_{D}=0 \tag{3.5.24d}\\
& \left(\partial T^{*} / \partial \omega_{I}\right)_{o}=\partial T_{o}^{*} / \partial \omega_{I} \Rightarrow d / d t\left[\left(\partial T^{*} / \partial \omega_{I}\right)_{o}\right]=d / d t\left(\partial T_{o}^{*} / \partial \omega_{I}\right) \tag{3.5.24e}\\
& \left(\partial T^{*} / \partial \theta_{k}\right)_{o} \equiv \sum A_{r k}\left(\partial T^{*} / \partial q_{r}\right)_{o}=\sum A_{r k}\left(\partial T_{o}^{*} / \partial q_{r}\right) \tag{3.5.24f}
\end{align*}
$$

In view of these results, $-\Gamma_{k},(3.5 .24 \mathrm{a})$, transforms to

$$
\begin{align*}
-\Gamma_{k}= & \sum \sum \gamma^{D}{ }_{k I^{\prime}}\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \omega_{I^{\prime}}+\sum \sum \gamma^{I^{\prime \prime}}{ }_{k I^{\prime}}\left(\partial T^{*}{ }_{o} / \partial \omega_{I^{\prime \prime}}\right) \omega_{I^{\prime}} \\
& +\sum \gamma^{D}{ }_{k}\left(\partial T^{*} / \partial \omega_{D}\right)_{o}+\sum \gamma^{I}{ }_{k}\left(\partial T^{*}{ }_{o} / \partial \omega_{I}\right) \tag{3.5.24~g}
\end{align*}
$$

an expression that shows clearly that the presence of the first (double) and third (single) sums generally necessitates the use of T^{*}, instead of $T^{*}{ }_{o}$.

However, with the help of the above expression we can obtain conditions that tell us when we can use the constrained kinetic energy $T^{*}{ }_{o}$ in Hamel's equations right from the start. Let us do this, for simplicity, for the common case of the kinetic such equations of a scleronomic system. Then,

$$
\begin{equation*}
-\Gamma_{k} \rightarrow-\Gamma_{I}=\sum \sum \gamma_{I I^{\prime}}^{D}\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \omega_{I^{\prime}}+\sum \sum \gamma_{I I^{\prime}}^{I^{\prime \prime}}\left(\partial T^{*}{ }_{o} / \partial \omega_{I^{\prime \prime}}\right) \omega_{I^{\prime}} ; \tag{3.5.24h}
\end{equation*}
$$

and ($3.5 .24 \mathrm{~d}, \mathrm{e}$) make it clear that the sought conditions will result from the (identical) vanishing of the first sum in (3.5.24h); that is,

$$
\begin{equation*}
\sum \sum \gamma_{I I^{\prime}}^{D}\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \omega_{I^{\prime}}=0 \tag{3.5.24i}
\end{equation*}
$$

But (as made clear in §3.9),

$$
\begin{align*}
2 T^{*} & =\sum \sum M_{k l}^{*}(q) \omega_{k} \omega_{l}=\sum \sum\left(\partial^{2} T^{*} / \partial \omega_{k} \partial \omega_{l}\right) \omega_{k} \omega_{l} \\
& \Rightarrow\left(\partial T^{*} / \partial \omega_{D}\right)_{o}=\sum\left(\partial^{2} T^{*} / \partial \omega_{D} \partial \omega_{I}\right) \omega_{I} \tag{3.5.24j}
\end{align*}
$$

and so (3.5.24i) reduces to

$$
\begin{equation*}
\sum \sum \sum \gamma_{I I^{\prime}}^{D}\left(\partial^{2} T^{*} / \partial \omega_{D} \partial \omega_{I^{\prime \prime}}\right) \omega_{I^{\prime \prime}} \omega_{I^{\prime}}=0 \tag{3.5.24k}
\end{equation*}
$$

and from this we easily conclude that the necessary and sufficient conditions for the use of $T^{*}{ }_{o}$ in Hamel's equations are

$$
\begin{equation*}
\sum \gamma_{I I^{\prime}}^{D}\left(\partial^{2} T^{*} / \partial \omega_{D} \partial \omega_{I^{\prime \prime}}\right)=0 \tag{3.5.241}
\end{equation*}
$$

For example, in the case of a single Pfaffian constraint, $\omega_{1}=0$ (i.e., $m=1$), (3.5.241) yields

$$
\begin{equation*}
\gamma_{I I^{\prime}}^{1}\left(\partial^{2} T^{*} / \partial \omega_{1} \partial \omega_{I^{\prime \prime}}\right)=0 \quad\left(I, I^{\prime}, I^{\prime \prime}=2, \ldots, n\right) \tag{3.5.24~m}
\end{equation*}
$$

which means that either all "nonholonomic inertial coefficients" $\partial^{2} T^{*} / \partial \omega_{1} \partial \omega_{I "}$ $\equiv M^{*}{ }_{1 I \prime}$ vanish [i.e., T^{*} consists of an ω_{1}-free part and an $\omega_{1}{ }^{2}$-proportional part; or $\gamma_{I I^{\prime}}^{1}=0$, which means that constraint is holonomic (by Frobenius' theorem, §2.12)]. The consequences of (3.5.241) are detailed in Hamel (1904(a), pp. 22-29); see also Hadamard (1895).

In sum, in using the Hamel equations, even if we are not interested in constraint reactions, we must begin with the unconstrained kinetic energy $T^{*}=T^{*}\left(q, \omega_{D}, \omega_{I}, t\right)$, carry out all required differentiations, and then enforce the constraints $\omega_{D}=0$, at the end; and, a constraint $\omega_{D}=0$ can be enforced ahead of time in T^{*}-terms that are quadratic in that ω_{D}; namely, in $(\ldots) \omega_{D}{ }^{2}$ terms.

This inconvenience is a small price to pay for such powerful and conceptually insightful equations. Similarly, a detailed analysis of $(3.5 .24 \mathrm{~g})$ shows that it is possible to have $\Gamma_{k}=0$ (i.e., Hamel equations \rightarrow Lagrange's equations) even though not all γ 's are zero. An analogous situation occurs in the Maggi equations, even in the kinetic case-that is,

$$
\begin{equation*}
I_{I} \equiv \sum A_{k I} E_{k} \equiv \sum\left[d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}\right] A_{k I}=\sum A_{k I} Q_{k} \tag{3.5.24n}
\end{equation*}
$$

since $k=1, \ldots, n$, we have to calculate $T=T\left(t, q, \dot{q}_{D}, \dot{q}_{I}\right)$; the "reduced," or constrained, kinetic energy

$$
\begin{equation*}
T_{o} \equiv T\left(t, q, \dot{q}_{D}=\sum b_{D I} \dot{q}_{I}+b_{D}, \dot{q}_{I}\right) \equiv T_{o}\left(t, q, \dot{q}_{I}\right) \tag{3.5.24o}
\end{equation*}
$$

obviously will not do. This seems to be a drawback of all T-based (i.e., Lagrangean) equations. No such problems appear for the kinetic Appellian equations: there, with the convenient notation

$$
\begin{align*}
& S^{*}=S^{*}\left(t, q, \omega_{D}, \omega_{I}, \dot{\omega}_{D}, \dot{\omega}_{I}\right)=\text { original, or unconstrained, or relaxed, Appellian } \\
& \qquad \begin{aligned}
\rightarrow S^{*}\left(t, q, \omega_{D}=0, \omega_{I}, \dot{\omega}_{D}=0, \dot{\omega}_{I}\right) & \equiv S^{*}{ }_{o}\left(t, q, \omega_{I}, \dot{\omega}_{I}\right) \\
& \equiv S^{*}{ }_{o}=\text { constrained Appellian, }
\end{aligned}
\end{align*}
$$

and the help of the Taylor expansion (with some obvious calculus notations)

$$
\begin{equation*}
S^{*}=S^{*}{ }_{o}+\sum\left[\left(\partial S^{*} / \partial \omega_{D}\right)_{o} \omega_{D}+\left(\partial S^{*} / \partial \dot{\omega}_{D}\right)_{o} \dot{\omega}_{D}\right]+\text { quadratic terms in } \omega_{D}, \dot{\omega}_{D} \tag{3.5.25b}
\end{equation*}
$$

we get the general results [similar to (3.5.24c, e)]

$$
\begin{equation*}
\left(\partial S^{*} / \partial \dot{\omega}_{I}\right)_{o}=\partial S_{o}^{*} / \partial \dot{\omega}_{I} \quad \text { and } \quad\left(\partial S^{*} / \partial \dot{\omega}_{D}\right)_{o} \neq \partial S_{o}^{*} / \partial \dot{\omega}_{D}=0 \tag{3.5.25c}
\end{equation*}
$$

Therefore, if we are not interested in finding constraint reactions, we can enforce the constraints $\omega_{D}=0$ and $\dot{\omega}_{D}=0$ into S^{*} right from the beginning; that is, start working with $S^{*}{ }_{o}$, and thus save a considerable amount of labor. This property, due to the first of $(3.5 .25 \mathrm{c})$, marks a key difference between the equations of Appell and Hamel, and their corresponding special cases.

Special Case

If all constraints on the q 's are holonomic and have the equilibrium form $\theta_{D} \rightarrow q_{D}=$ constant $\equiv q_{D o}$, then

$$
\left.\left(\partial S^{*} / \partial \dot{\omega}_{I}\right)_{o} \rightarrow E_{I}(T)\right|_{o} \rightarrow E_{I}\left(T_{o}\right)
$$

where $T_{o} \equiv T\left(t, q_{D}=\right.$ constant, $\left.q_{I}, \dot{q}_{D}=0, \dot{q}_{I}\right) \equiv T_{o}\left(t, q_{I}, \dot{q}_{I}\right)$, and, similarly for the impressed forces, $Q_{I}=Q_{I}(t, q, \dot{q}) \rightarrow Q_{I}\left(t, q_{I}, \dot{q}_{I}\right) \equiv Q_{I o}$, and so the kinetic equations become $E_{I} \equiv E_{I}\left(T_{o}\right) \equiv \partial S_{o} / \partial \ddot{q}_{I}=Q_{I o}$.
(iv) Comparison between Lagrange's equations of the first and second kind, and their respective constraints. Those of the first kind, eq. (ex. 3.5.1: c3), constitute a set of

$$
3 N+(h+m)=[(3 N-h)+m]+2 h \equiv(n+m)+2 h
$$

scalar equations, for the $3 N+(h+m)$ unknown functions:
$\left\{x_{P}, y_{P}, z_{P} ; P=1, \ldots, N\right\}, \quad\left\{\mu_{H} ; H=1, \ldots, h\right\} \quad$ and $\quad\left\{\lambda_{D} ; D=1, \ldots, m\right\}$.
Once the positions (and hence accelerations) and multipliers become known functions of time, (ex. 3.5.1: c2) supply the reactions.

Those of the second kind, actually the Routh-Voss equations (3.5.15, 16), constitute a set of

$$
n+m \equiv(3 N-h)+m
$$

equations for the $n+m$ unknowns:

$$
\left\{q_{k} ; k=1, \ldots, n\right\} \quad \text { and } \quad\left\{\lambda_{D} ; D=1, \ldots, m\right\} .
$$

Once the q 's and λ 's have been found as functions of time, then $\boldsymbol{r}_{P}=\boldsymbol{r}_{P}(t, q) \rightarrow \boldsymbol{r}_{P}(t)$ $\left[\rightarrow \boldsymbol{a}_{P}=\boldsymbol{a}_{P}(t)\right]$, and, again, (ex. 3.5.1: c2) supply the reactions. From the latter and the (now) known λ 's, we can calculate the μ 's.

In sum, in the second-kind case we have $2 h$ fewer equations, which is the result of having absorbed the h holonomic constraints into that description with the $n \equiv 3 N-h \quad q$'s [see remark (v) below]. Also, even in the presence of additional holonomic and/or nonholonomic constraints, we still work with the unconstrained kinetic energy T.

However, and this is a general comment, the ultimate judgement regarding the relative merits of various types of equations of motion must be shaped by several, frequently intangible/nonquantifiable considerations (in the sense of the famous Machian principle of Denkökonomie), in addition to the mere tallying of their number of equations, and so on ("bean counting").
(v) Purpose for appearance of the multipliers. That the multipliers μ_{H}, of the h holonomic constraints $\phi_{H}(t, \boldsymbol{r})=0$, are not present in Lagrange's equations of the second kind (and in the Routh-Voss equations) is no accident: the $m \lambda_{D}$'s (and this is a general remark) express the reactions of whatever constraints have not been taken care of by our chosen q 's; that is, they are due to the additional holonomic and/ or nonholonomic constraints not yet built in (or embedded, or absorbed) into our particular q's description. Then, the multipliers appear as coefficients in the virtual work of the reactions of these additional constraints.
(vi) Apparent indeterminacy of Lagrange's equations. Let us consider a system with equations of motion

$$
\begin{equation*}
E_{k} \equiv d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}=Q_{k} . \tag{3.5.26a}
\end{equation*}
$$

Since, as explained earlier, all possible constraints are already built in into the chosen q-description, the corresponding system constraint reactions R_{k} have been eliminated from the right side of (3.5.26a); the Q_{k} are wholly impressed. However, occasionally, the latter depend on constraint reactions: for example, the sliding Coulomb-Morin friction F on a particle sliding on a rough surface - according to our definition, an impressed force - is given by

$$
\begin{equation*}
-\mu N(\boldsymbol{v} /|\boldsymbol{v}|), \tag{3.5.26b}
\end{equation*}
$$

where $N=$ normal force from surface to particle (clearly, a contact constraint reaction), $\mu=$ sliding friction coefficient, and $\boldsymbol{v}=$ particle velocity relative to the surface. In such a case, if we embed all holonomic constraints into our q 's, and hence into our T
and Q_{k} 's, the resulting Lagrangean equations (3.5.26a) will, in general, constitute an indeterminate system; that is, the total number of equations, including constitutive ones like (3.5.26b), will be smaller than the number of unknowns involved. Such an indeterminacy [what Kilmister and Reeve (1966, p. 215) call "failure" of Lagrange's equations] can be easily removed by relaxing the system's constraints, and thus generating the hitherto missing equations (see also "principle of relaxation" in §3.7). Similar "failures" would appear if one used minimal quasi velocities to embed all nonholonomic constraints (see also Rosenberg, 1977, pp. 152-157).
(vii) We have presented the four basic types of equations of motion: Routh-Voss, Maggi, Hamel, and Appell. They can be classified as follows:

Kinetic energy-based equations of motion
Holonomic variables: Routh-Voss (coupled)
Maggi (uncoupled: kinetic, kinetostatic)
Nonholonomic variables: Hamel (uncoupled: kinetic, kinetostatic)
Acceleration-based equations of motion
Holonomic variables: Appell (coupled)
Nonholonomic variables: Appell (uncoupled: kinetic, kinetostatic)
Additional special cases and/or combinations of the above-for example, equations of Ferrers, Hadamard, Chaplygin, Voronets, et al.-are presented in §3.8.

- From all the equations of constrained motion given earlier, only those by Hamel (and their special cases-see §3.8), through their γ-proportional terms (recall Hamel's formulation of Frobenius' theorem, §2.12), can distinguish between genuinely nonholonomic Pfaffian constraints and holonomic ones disguised in Pfaffian/ velocity form. All other types, that is the equations of Routh-Voss, Maggi, Appell (and their special cases-see $\S 3.8$), hold unchanged in form whether their Pfaffian constraints are holonomic or nonholonomic; that is, those equations cannot detect nonholonomicity, only Hamel's equations can do that.
- On the other hand, only Appell's equations preserve their form in both holonomic and nonholonomic variables; and, in the kinetic ones, the nonholonomic constraints can be enforced in the Appellian function right from the start.
(viii) The terms kinetic and kinetostatic, in the particular sense used here (brought to mainstream dynamics by Heun and his students, in the early 20th century), and observed by some of the best contemporary textbooks on engineering dynamics, for example, Butenin et al. (1985, vol. 2, chap. 16, pp. 330-339), Loitsianskii and Lur'e (1983, vol. 2, chap. 28, pp. 345-384), Ziegler (1965, vol. 2, pp. 146-152), are not well known among English language authors, and so one should be careful in comparing various references.
(ix) Finally, we would like to state that we are not partial to any particular set of equations of motion; all have advantages and disadvantages; all are worth learning!

All such conceivable equations (whose combinations and special cases are practically endless; see also §3.8) flow out of the differential variational principles of analytical mechanics; that is, the principles of Lagrange and of relaxation of the constraints, in their various forms (see also $\S 3.6$ and $\S 3.7$). These principles, being invariant, constitute the sole physical and mathematical glue that holds all these (coordinate and constraint-dependent) equations of motion together-and they keep reminding us that, in spite of appearances, there is only one (classical) mechanics!

Geometrical Interpretation of the Uncoupling of the Equations of Motion into Kinetic and Kinetostatic

The Routh-Voss equations,

$$
\begin{equation*}
E_{k} \equiv d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D} a_{D k} \tag{3.5.27a}
\end{equation*}
$$

represent an equation among (covariant) components of vectors at a point (q) in configuration space, or a point (t, q) in event space. Now, we recall from $\S 2.11$, eq. (2.11.19a ff.), that the $n-m$ vectors $A_{I}^{T}=\left(A_{1 I}, \ldots, A_{n I}\right)$ span, at that point, the null, or virtual, hyperplane (or affine space) $N_{I} \equiv V$, of the constraint matrix $\mathbf{A}_{\mathrm{D}}=\left(a_{D k}\right)$; while the m vectors $\boldsymbol{A}_{D}{ }^{T}=\left(A_{1 D}, \ldots, A_{n D}\right)$ span its orthogonal complement, the range, or constraint, hyperplane (or affine space) C_{m}. Therefore, multiplying (3.5.27a) with $A_{k I}\left(A_{k D}\right)$ and then summing over k, from 1 to n, means projecting that equation onto the local virtual (constraint) space; and since the constraint reactions $R_{k}=\sum \lambda_{D} a_{D k}$ are perpendicular to the virtual space, they disappear from the kinetic Maggi equations. Indeed, we have, successively,

$$
\begin{align*}
\sum A_{k I} E_{k} & =\sum A_{k I} Q_{k}+\sum \sum \lambda_{D} a_{D k} A_{k I} \tag{i}\\
& =\sum A_{k I} Q_{k}+\sum \lambda_{D} \delta_{D I}=\sum A_{k I} Q_{k}+0
\end{align*}
$$

that is,

$$
\begin{equation*}
\sum A_{k I} E_{k}=\sum A_{k I} Q_{k} \quad \text { or } \quad I_{I}=\Theta_{I} \tag{3.5.27b}
\end{equation*}
$$

$$
\begin{align*}
\sum A_{k D^{\prime}} E_{k} & =\sum A_{k D^{\prime}} Q_{k}+\sum \sum \lambda_{D} a_{D k} A_{k D^{\prime}} \tag{ii}\\
& =\sum A_{k D^{\prime}} Q_{k}+\sum \lambda_{D} \delta_{D D^{\prime}}=\sum A_{k D^{\prime}} Q_{k}+\lambda_{D^{\prime}}
\end{align*}
$$

that is,

$$
\begin{equation*}
\sum A_{k D} E_{k}=\sum A_{k D} Q_{k}+\lambda_{D} \quad \text { or } \quad I_{D}=\Theta_{D}+\lambda_{D} \tag{3.5.27c}
\end{equation*}
$$

Tensorial Treatment

(Kinetic complement of comments made at the end of §2.11; may be omitted in a first reading.) In the language of tensors (whose general indicial notation begins to show its true simplicity and power here), the $I_{I}, \Theta_{I}, \Lambda_{I}=0\left(I_{D}, \Theta_{D}, \Lambda_{D}=\lambda_{D}\right)$ are covariant components of the corresponding system vectors along the contravariant basis $\boldsymbol{A}^{I}\left(\boldsymbol{A}^{D}\right)$, which is dual to the earlier basis $\boldsymbol{A}_{I}\left(\boldsymbol{A}_{D}\right)$. Dotting the vectorial Routh-Voss equations [fig. 3.1(a)]

$$
\begin{equation*}
E=\boldsymbol{Q}+\boldsymbol{R} \tag{3.5.28a}
\end{equation*}
$$

where (with summation convention) $\boldsymbol{R}=R_{k} \boldsymbol{E}^{k}=\left(\lambda_{D} a^{D}{ }_{k}\right) \boldsymbol{E}^{k}=\lambda_{D} \boldsymbol{A}^{D}$ (i.e., \boldsymbol{R} is perpendicular to the virtual local plane) with $\boldsymbol{A}_{I}=A_{I}^{k} \boldsymbol{E}_{k}$-that is, projecting it onto the virtual local plane - yields

$$
\begin{equation*}
\boldsymbol{E} \cdot \boldsymbol{A}_{I}=\boldsymbol{Q} \cdot \boldsymbol{A}_{I}+\boldsymbol{R} \cdot \boldsymbol{A}_{I}, \tag{3.5.28b}
\end{equation*}
$$

Figure 3.1 (a) Geometrical interpretation of uncoupling of equations of motion ("Method of projections" of Maggi); and (b) its application to the planar mathematical pendulum.
or, since $\boldsymbol{R} \cdot \boldsymbol{A}_{I}=\lambda_{D}\left(\boldsymbol{A}^{D} \cdot \boldsymbol{A}_{I}\right)=\lambda_{D} \delta^{D}{ }_{I}=0$, finally $\boldsymbol{E} \cdot \boldsymbol{A}_{I}=\boldsymbol{Q} \cdot \boldsymbol{A}_{I}$,

$$
\begin{equation*}
\text { i.e., } A_{I}^{k} E_{k}=A_{I}^{k} Q_{k}(\text { kinetic Maggi }), \quad \text { or } \quad I_{I}=\Theta_{I} \tag{3.5.28c}
\end{equation*}
$$

while dotting them with $\boldsymbol{A}_{D}=A^{k}{ }_{D} \boldsymbol{E}_{k}$-that is, projecting it onto the constraint local plane-yields

$$
\begin{equation*}
\boldsymbol{E} \cdot \boldsymbol{A}_{D}=\boldsymbol{Q} \cdot \boldsymbol{A}_{D}+\boldsymbol{R} \cdot \boldsymbol{A}_{D} \tag{3.5.28d}
\end{equation*}
$$

or, since $\boldsymbol{R} \cdot \boldsymbol{A}_{D}=\lambda_{D^{\prime}}\left(\boldsymbol{A}^{D^{\prime}} \cdot \boldsymbol{A}_{D}\right)=\lambda_{D^{\prime}} \delta^{D^{\prime}}{ }_{D}=\lambda_{D}$, finally

$$
\begin{equation*}
A_{D}^{k} E_{k}=A_{D}^{k} Q_{k}+\lambda_{D} \text { (kinetostatic Maggi) }, \quad \text { or } \quad I_{D}=\Theta_{D}+\lambda_{D} . \tag{3.5.28e}
\end{equation*}
$$

For the planar mathematical pendulum of length l, mass m, and string tension S [fig. 3.1(b)], $\boldsymbol{A}_{I}=\partial \boldsymbol{r} / \partial \phi=$ along tangent, $\boldsymbol{A}_{D}=\partial \boldsymbol{r} / \partial \boldsymbol{r}=$ along normal, and so (3.5.28b, d) become
$\boldsymbol{E} \cdot \boldsymbol{A}_{I}=\boldsymbol{Q} \cdot \boldsymbol{A}_{I}: \quad \quad m l\left(d^{2} \phi / d t^{2}\right)=-m g \sin \phi \quad$ (kinetic Maggi eq.),
$\boldsymbol{E} \cdot \boldsymbol{A}_{D}=\boldsymbol{Q} \cdot \boldsymbol{A}_{D}+\boldsymbol{R} \cdot \boldsymbol{A}_{D}: \quad m l(d \phi / d t)^{2}=-m g \cos \phi+S \quad$ (kinetostatic Maggi eq.).

These geometrical considerations demonstrate the importance of the method of projections of Maggi, over and above that of the Maggi equations. His method can be applied to any kind of multiplier-containing (mixed) equations.

Example 3.5.6 Lagrange's Equations (Williamson and Tarleton, 1900, pp. 437438). Let us consider a scleronomic system described by the Lagrangean equations

$$
\begin{equation*}
d / d t\left(\partial T / \partial v_{k}\right)-\partial T / \partial q_{k}=Q_{k} \quad(k=1, \ldots, n) \tag{a}
\end{equation*}
$$

Now, the change of the system momentum $p_{k} \equiv \partial T / \partial v_{k}$ during an elementary time interval $d t$ is $\left(d p_{k} / d t\right) d t$, and this, according to (a), equals $Q_{k} d t+\left(\partial T / \partial q_{k}\right) d t$. Since the system is scleronomic, $\partial T / \partial q_{k}=$ quadratic homogeneous function of the v_{k} 's (see also §3.9), and therefore if the system is at rest, it vanishes. Hence, the result: The elementary change of a typical component of the system momentum consists of two parts: one due to the corresponding impressed force, and one due to the (possible) previous motion.

Problem 3.5.2 Lagrange's Equations: 1 DOF. Let us consider the most general holonomic and rheonomic 1 DOF system; that is, $n=1$ and $m=0$, with inertial (double) kinetic energy

$$
\begin{equation*}
2 T=A(t, q) \dot{q}^{2}+2 B(t, q) \dot{q}+C(t, q), \quad(A, C \geq 0, \text { always }) \tag{a}
\end{equation*}
$$

and hence Lagrangean (negative) inertial force

$$
\begin{align*}
E_{q}(T) & \equiv(\partial T / \partial \dot{q})^{\cdot}-\partial T / \partial q \\
& =(1 / 2)\left[2 A \ddot{q}+(\partial A / \partial q) \dot{q}^{2}+2(\partial A / \partial t) \dot{q}+2(\partial B / \partial t)-\partial C / \partial q\right] \tag{b}
\end{align*}
$$

(i) Show that the new Lagrangean coordinate x, defined by

$$
\begin{equation*}
x \equiv \int[A(t, q)]^{1 / 2} d q=x(t, q) \Leftrightarrow q=q(t, x) \tag{c}
\end{equation*}
$$

reduces $2 T$ to

$$
\begin{equation*}
2 T=\dot{x}^{2}+2 b(x, t) \dot{x}+c(x, t) \tag{d}
\end{equation*}
$$

where

$$
\begin{align*}
b(t, x) & \equiv\left\{A^{1 / 2}(B / A+\partial q / \partial t)\right\}_{\text {evaluated at } q=q(t, x)}, \tag{e}\\
c(t, x) & \equiv\left\{A(\partial q / \partial t)^{2}+2 B(\partial q / \partial t)+C\right\}_{\text {evaluated at } q=q(t, x)}, \tag{f}
\end{align*}
$$

and generates the following (negative) Lagrangean inertial force:

$$
\begin{equation*}
E_{x}(T) \equiv(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=d^{2} x / d t^{2}+\partial b / \partial t-(1 / 2)(\partial c / \partial x) \tag{g}
\end{equation*}
$$

that is, no $(d x / d t)$-proportional (i.e., damping/friction) terms. Such coordinate transformations may prove useful in nonlinear oscillation problems.
(ii) Show that in the scleronomic case, i.e., when $B, C \equiv 0$ and hence $2 T=A(q) \dot{q}^{2}$, the inertia forces (b) and (g) reduce, respectively, to

$$
\begin{equation*}
A\left(d^{2} q / d t^{2}\right)+(1 / 2)(d A / d q)(d q / d t)^{2} \quad \text { and } \quad d^{2} x / d t^{2} \tag{h}
\end{equation*}
$$

Problem 3.5.3 Lagrange's Equations: 1 DOF. Let us consider a 1 DOF system with kinetic and potential energies

$$
\begin{equation*}
2 T=A(q)(d q / d t)^{2} \quad \text { and } \quad V=V(q) \tag{a}
\end{equation*}
$$

respectively, capable of oscillating about its equilibrium position $q=0$. Show that the period of its small amplitude (i.e., linearized, or harmonic) vibration equals [with $\left.(\ldots)^{\prime} \equiv d(\ldots) / d q\right]$

$$
\begin{equation*}
2 \pi\left[A(0) / V^{\prime \prime}(0)\right]^{1 / 2} \tag{b}
\end{equation*}
$$

HINT
Here, $A(0)>0, V(0)=0, V^{\prime}(0)=0, V^{\prime \prime}(0)>0$; and, as shown in $\S 3.9 \mathrm{ff}$,,

$$
Q=-\partial V / \partial q=-d V / d q \equiv-V^{\prime}
$$

Expand T and V à la Taylor about $q=0$, and keep only up to quadratic terms in q and \dot{q}, etc.

Problem 3.5.4 Lagrange's Equation: 1 DOF. Continuing from the preceding problem, show that if $q=q_{o}$ is an equilibrium position, instead of $q=0$, then (b) is replaced by

$$
\begin{equation*}
2 \pi\left[A\left(q_{o}\right) / V^{\prime \prime}\left(q_{o}\right)\right]^{1 / 2} \tag{a}
\end{equation*}
$$

Problem 3.5.5 Lagrange's Equations: Pendulum of Varying Length. Show that the planar oscillations of a mathematical pendulum of varying, or variable, length $l=l(t)=$ given function of time, on a vertical plane, are governed by the (variable coefficient) equation

$$
\begin{equation*}
\left(l^{2} \dot{\phi}\right)^{\cdot}+g l \sin \phi=0 \Rightarrow d^{2} \phi / d t^{2}+2(\dot{l} / l)(d \phi / d t)+(g / l) \sin \phi=0 \tag{a}
\end{equation*}
$$

where $\phi=$ angle of pendulum string with vertical.
For the treatment of special cases, see for example, Lamb (1943, pp. 198-199).

Example 3.5.7 Lagrange's Equations: Planar Double Pendulum; Work of Impressed Forces. Let us consider a double mathematical pendulum in vertical plane motion, under gravity [fig. 3.2(a)]. Below we calculate the components of the system impressed force by several methods.

Figure 3.2 (a-c) Double planar mathematical pendulum, under gravity; calculation of impressed system forces.
(i) From the Q_{k}-definitions (§3.4). Here, with $q_{1}=\phi_{1}, q_{2}=\phi_{2}$ and some obvious notations, we have

$$
\begin{align*}
\boldsymbol{r}_{1} & =\left(l_{1} \cos \phi_{1}, l_{1} \sin \phi_{1}, 0\right), \quad \boldsymbol{r}_{2}=\left(l_{1} \cos \phi_{1}+l_{2} \cos \phi_{2}, l_{1} \sin \phi_{1}+l_{2} \sin \phi_{2}, 0\right), \\
\boldsymbol{F}_{1} & =\left(m_{1} g, 0,0\right), \quad \boldsymbol{F}_{2}=\left(m_{2} g, 0,0\right), \tag{b}
\end{align*}
$$

and, therefore, we obtain

$$
\begin{align*}
& Q_{1} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{r} / \partial q_{1}\right)=\boldsymbol{F}_{1} \cdot\left(\partial \boldsymbol{r}_{1} / \partial q_{1}\right)+\boldsymbol{F}_{2} \cdot\left(\partial \boldsymbol{r}_{2} / \partial q_{1}\right) \\
& \quad=\cdots=-m_{1} g l_{1} \sin \phi_{1}-m_{2} g l_{1} \sin \phi_{1}=-\left(m_{1}+m_{2}\right) g l_{1} \sin \phi_{1} \tag{c}\\
& \begin{array}{c}
Q_{2} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{r} / \partial q_{2}\right)=\boldsymbol{F}_{1} \cdot\left(\partial \boldsymbol{r}_{1} / \partial q_{2}\right)+\boldsymbol{F}_{2} \cdot\left(\partial \boldsymbol{r}_{2} / \partial q_{2}\right) \\
=\cdots=-m_{2} g l_{2} \sin \phi_{2}
\end{array}
\end{align*}
$$

(ii) Directly from virtual work. Let us find Q_{2}; that is, $\delta^{\prime} W$ for $\delta \phi_{1}=0$ and $\delta \phi_{2} \neq 0:\left(\delta^{\prime} W\right)_{2} \equiv Q_{2} \delta \phi_{2}$. Referring to fig. 3.2(b), we have

$$
\begin{equation*}
\left(\delta^{\prime} W\right)_{2}=\left(m_{2} g\right) \delta\left(l_{2} \cos \phi_{2}\right)=-m_{2} g l_{2} \sin \phi_{2} \delta \phi_{2} \Rightarrow Q_{2}=-m_{2} g l_{2} \sin \phi_{2} \tag{e}
\end{equation*}
$$

Similarly, to find Q_{1} - that is, $\delta^{\prime} W$ for $\delta \phi_{1} \neq 0$ and $\delta \phi_{2}=0:\left(\delta^{\prime} W\right)_{1} \equiv Q_{1} \delta \phi_{1}$, referring to fig. 3.2(c), we find

$$
\begin{align*}
\left(\delta^{\prime} W\right)_{1} & =\left(m_{1} g\right) \delta\left(l_{1} \cos \phi_{1}\right)+\left(m_{2} g\right) \delta\left(l_{1} \cos \phi_{1}\right)=\left(m_{1}+m_{2}\right) g \delta\left(l_{1} \cos \phi_{1}\right) \\
& =-\left(m_{1}+m_{2}\right) g l_{1} \sin \phi_{1} \delta \phi_{1} \Rightarrow Q_{1}=-\left(m_{1}+m_{2}\right) g l_{1} \sin \phi_{1} \tag{f}
\end{align*}
$$

(iii) From potential energy (see also \$3.9). Here, the total potential energy of gravity (\rightarrow impressed forces), $V=V\left(\phi_{1}, \phi_{2}\right)$, is

$$
\begin{align*}
V & =-\left(m_{1} g\right)\left(l_{1} \cos \phi_{1}\right)-\left(m_{2} g\right)\left(l_{1} \cos \phi_{1}+l_{2} \cos \phi_{2}\right) \\
& =-\left(m_{1}+m_{2}\right) g l_{1} \cos \phi_{1}-m_{2} g l_{2} \cos \phi_{2}, \tag{g}
\end{align*}
$$

and since $\delta^{\prime} W=-\delta V$, we obtain

$$
\begin{equation*}
Q_{1}=-\partial V / \partial \phi_{1}=-\left(m_{1}+m_{2}\right) g l_{1} \sin \phi_{1}, \quad Q_{2}=-\partial V / \partial \phi_{2}=-m_{2} g l_{2} \sin \phi_{2} \tag{h,i}
\end{equation*}
$$

REMARK

Had we chosen as system positional coordinates (fig. 3.3)

$$
\begin{equation*}
q_{1}=\theta_{1} \equiv \phi_{1} \quad \text { and } \quad q_{2}=\theta_{2} \equiv \phi_{2}-\phi_{1}=\phi_{2}-\theta_{1} \tag{j}
\end{equation*}
$$

then (g) would assume the form

$$
\begin{equation*}
V=V\left(\theta_{1}, \theta_{2}\right)=-\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}-m_{2} g l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \tag{k}
\end{equation*}
$$

and the corresponding Lagrangean forces would be

$$
\begin{align*}
& Q_{1}=-\partial V / \partial \theta_{1}=-\left(m_{1}+m_{2}\right) g l_{1} \sin \theta_{1}-m_{2} g l_{2} \sin \left(\theta_{1}+\theta_{2}\right), \tag{1}\\
& Q_{2}=-\partial V / \partial \theta_{2}=-m_{2} g l_{2} \sin \left(\theta_{1}+\theta_{2}\right) . \tag{m}
\end{align*}
$$

Figure 3.3 Double planar mathematical pendulum under gravity; alternative coordinates.

Example 3.5.8 Lagrange's Equations: Planar Double Pendulum; Derivation of Equations of Motion. Continuing from the preceding example (and its figures), let us first calculate the kinetic energy of the pendulum. We find, successively,

$$
\begin{align*}
x_{1} & =l_{1} \cos \phi_{1} \Rightarrow \dot{x}_{1}=-l_{1} \dot{\phi}_{1} \sin \phi_{1} \tag{a}\\
y_{1} & =l_{1} \sin \phi_{1} \Rightarrow \dot{y}_{1}=l_{1} \dot{\phi}_{1} \cos \phi_{1} \tag{b}\\
x_{2} & =l_{1} \cos \phi_{1}+l_{2} \cos \phi_{2} \Rightarrow \dot{x}_{2}=-l_{1} \dot{\phi}_{1} \sin \phi_{1}-l_{2} \dot{\phi}_{2} \sin \phi_{2}, \tag{c}\\
y_{2} & =l_{1} \sin \phi_{1}+l_{2} \sin \phi_{2} \Rightarrow \dot{y}_{2}=l_{1} \dot{\phi}_{1} \cos \phi_{1}+l_{2} \dot{\phi}_{2} \cos \phi_{2} ; \tag{d}\\
v_{1}^{2} & =\left(\dot{x}_{1}\right)^{2}+\left(\dot{y}_{1}\right)^{2}=\cdots=l_{1}^{2}\left(\dot{\phi}_{1}\right)^{2} \tag{e}\\
v_{2}^{2} & =\left(\dot{x}_{2}\right)^{2}+\left(\dot{y}_{2}\right)^{2}=\cdots=l_{1}^{2}\left(\dot{\phi}_{1}\right)^{2}+2 l_{1} l_{2} \cos \left(\phi_{2}-\phi_{1}\right) \dot{\phi}_{1} \dot{\phi}_{2}+l_{2}^{2}\left(\dot{\phi}_{2}\right)^{2} \tag{f}\\
2 T & =m_{1} v_{1}^{2}+m_{2} v_{2}^{2} \\
& =\cdots=\left(m_{1}+m_{2}\right) l_{1}^{2}\left(\dot{\phi}_{1}\right)^{2}+2 m_{2} l_{1} l_{2} \cos \left(\phi_{2}-\phi_{1}\right) \dot{\phi}_{1} \dot{\phi}_{2}+m_{2} l_{2}^{2}\left(\dot{\phi}_{2}\right)^{2} \tag{g}
\end{align*}
$$

and by the preceding example,

$$
\begin{equation*}
Q_{1}=-\left(m_{1}+m_{2}\right) g l_{1} \sin \phi_{1}, \quad Q_{2}=-m_{2} g l_{2} \sin \phi_{2} \tag{h}
\end{equation*}
$$

From the above, we obtain

$$
\begin{align*}
\partial T / \partial \dot{\phi}_{1}= & \left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\phi}_{1}+m_{2} l_{1} l_{2} \cos \left(\phi_{2}-\phi_{1}\right) \dot{\phi}_{2}, \\
\left(\partial T / \partial \dot{\phi}_{1}\right)^{\cdot}= & \left(m_{1}+m_{2}\right) l_{1}^{2} \ddot{\phi}_{1} \\
& \quad+m_{2} l_{1} l_{2} \cos \left(\phi_{2}-\phi_{1}\right) \ddot{\phi}_{2}-m_{2} l_{1} l_{2} \sin \left(\phi_{2}-\phi_{1}\right)\left(\dot{\phi}_{2}-\dot{\phi}_{1}\right) \dot{\phi}_{2}, \tag{i}\\
\partial T / \partial \phi_{1}= & m_{2} l_{1} l_{2} \sin \left(\phi_{2}-\phi_{1}\right) \dot{\phi}_{1} \dot{\phi}_{2} . \tag{j}
\end{align*}
$$

Therefore, Lagrange's equation for $q_{1}=\phi_{1}:\left(\partial T / \partial \dot{\phi}_{1}\right)^{\cdot}-\partial T / \partial \phi_{1}=Q_{1}$, becomes after some simple algebra,

$$
\begin{align*}
\left(m_{1}+m_{2}\right) l_{1}^{2} & \left(d^{2} \phi_{1} / d t^{2}\right)+m_{2} l_{1} l_{2} \cos \left(\phi_{2}-\phi_{1}\right)\left(d^{2} \phi_{2} / d t^{2}\right) \\
& \quad-m_{2} l_{1} l_{2} \sin \left(\phi_{2}-\phi_{1}\right)\left(d \phi_{2} / d t\right)^{2}+\left(m_{1}+m_{2}\right) g l_{1} \sin \phi_{1}=0 \tag{k}
\end{align*}
$$

Similarly, we find Lagrange's equation for $q_{2}=\phi_{2}$:

$$
\begin{align*}
m_{2} l_{2}^{2}\left(d^{2} \phi_{2} / d t^{2}\right) & +m_{2} l_{1} l_{2} \cos \left(\phi_{2}-\phi_{1}\right)\left(d^{2} \phi_{1} / d t^{2}\right) \\
& +m_{2} l_{1} l_{2} \sin \left(\phi_{2}-\phi_{1}\right)\left(d \phi_{1} / d t\right)^{2}+m_{2} g l_{2} \sin \phi_{2}=0 \tag{1}
\end{align*}
$$

The above constitute a set of two coupled nonlinear second-order equations for $\phi_{1}(t)$ and $\phi_{2}(t)$.

Constraints
(i) Assume, next, that we impose on our system the constraint

$$
\begin{equation*}
f_{1} \equiv y_{1}=l_{1} \sin \phi_{1}=0 \quad\left[\Rightarrow \phi_{1}(t)=0 \Rightarrow \delta \phi_{1}=0\right] ; \tag{m}
\end{equation*}
$$

that is, we restrict the upper half $O P_{1}$ to remain vertical, so that the double pendulum reduces to a simple pendulum $P_{1} P_{2}$ oscillating about the fixed point P_{1}.

Since $\partial f_{1} / \partial \phi_{1}=l_{1} \cos \phi_{1}=l_{1}$ and $\partial f_{1} / \partial \phi_{2}=0\left[\Rightarrow \delta f_{1}=\left(l_{1} \cos \phi_{1}\right) \delta \phi_{1}+(0) \delta \phi_{2}=\right.$ $\left(l_{1}\right) \delta \phi_{1}+(0) \delta \phi_{2}$], the equations of motion in this case are (k) and (1), but with the terms $\lambda_{1} l_{1} \cos \phi_{1}=\lambda_{1} l_{1}$ and and $\lambda_{1} \cdot 0=0$ (where $\lambda_{1}=$ multiplier corresponding to the constraint $\delta f_{1}=0$) added, respectively, to their right sides; that is, in general, it is not enough to simply set in these two equations $\phi_{1}=0\left(\Rightarrow \dot{\phi}_{1}=0, \ddot{\phi}_{1}=0\right)$! Indeed, then the equations of the (m)-constrained pendulum motion decouple to the Routh-Voss equations:

$$
\begin{array}{lll}
\phi_{1}: & \lambda_{1}=m_{2} l_{2}\left[\cos \phi_{2}\left(d^{2} \phi_{2} / d t^{2}\right)-\sin \phi_{2}\left(d \phi_{2} / d t\right)^{2}\right] & \text { (kinetostatic), } \\
\phi_{2}: & d^{2} \phi_{2} / d t^{2}+\left(g / l_{2}\right) \sin \phi_{2}=0 & \text { (kinetic). }
\end{array}
$$

With the initial conditions at, say, $t=0: \phi_{2}(0) \equiv \phi_{o}=0$ and $\dot{\phi}_{2}(0) \equiv \dot{\phi}_{o}$, equation (o) readily integrates, in well-known elementary ways, to (the energy equation)

$$
\begin{equation*}
\left(\dot{\phi}_{2}\right)^{2}=\left(\dot{\phi}_{o}\right)^{2}-\left(2 g / l_{2}\right)\left(1-\cos \phi_{2}\right) \tag{p}
\end{equation*}
$$

in which case, (n) yields the constraint reaction in terms of the angle $\phi_{2}=\phi_{2}(t)$ and its initial conditions

$$
\begin{equation*}
\lambda_{1}=\cdots=m_{2}\left[\left(2-3 \cos \phi_{2}\right) g-l_{2}\left(\dot{\phi}_{o}\right)^{2}\right] \sin \phi_{2}=\lambda_{1}\left(t ; \phi_{o}, \dot{\phi}_{o}\right) \tag{q}
\end{equation*}
$$

Finally, since

$$
\begin{align*}
\delta^{\prime} W_{R} & =\left[\lambda_{1}\left(\partial f_{1} / \partial \phi_{1}\right)\right] \delta \phi_{1} \equiv R_{1} \delta \phi_{1} \\
& =\left(\lambda_{1} l_{1} \cos \phi_{1}\right) \delta \phi_{1}=\lambda_{1} \delta\left(l_{1} \sin \phi_{1}\right)=\lambda_{1} \delta y_{1}(=0), \tag{r}
\end{align*}
$$

the multiplier represents the (variable) horizontal force of reaction needed to preserve the constraint (m). [Other forms of (m) will result in different, but physically equivalent, forms of the multiplier. See also §3.7: Relaxation of Constraints.]
(ii) Similarly, if ϕ_{2} acquires a prescribed motion, say $\phi_{2}=f(t)=$ known function of time, then, since in that case $\delta \phi_{2}=\delta f(t)=0\left[=(0) \delta \phi_{1}+(1) \delta \phi_{2}\right]$, we must add a term $\lambda_{2} \cdot 0=0$ to the right side of the ϕ_{1}-equation, and a term $\lambda_{2} \cdot 1$ to the right side of the ϕ_{2}-equation [where $\lambda_{2}=$ multiplier corresponding to the constraint $f_{2} \equiv \phi_{2}-f(t)=0 \Rightarrow \delta f_{2}=0$]. The rest of the calculations are left to the reader.

Problem 3.5.6 Constrained Double Pendulum. Continuing from the preceding example, assume that we impose on our pendulum the constraint

$$
\begin{equation*}
f_{2} \equiv y_{2}=l_{1} \sin \phi_{1}+l_{2} \sin \phi_{2}=0 \tag{a}
\end{equation*}
$$

(i) Show that in this case, and for the special simplifying choice $l_{1}=l_{2} \equiv$ $l\left[\Rightarrow \sin \phi_{1}+\sin \phi_{2}=0 \Rightarrow \phi_{1}+\phi_{2}=0\right]$, the equations of motion reduce to

$$
\begin{align*}
& \left(m_{1}+m_{2}\right) l^{2}\left(d^{2} \phi_{1} / d t^{2}\right)-m_{2} l^{2} \cos \left(2 \phi_{1}\right)\left(d^{2} \phi_{1} / d t^{2}\right)+m_{2} l^{2} \sin \left(2 \phi_{1}\right)\left(d \phi_{1} / d t\right)^{2} \\
& \quad+\left(m_{1}+m_{2}\right) g l \sin \phi_{1}=\lambda_{1} l \cos \phi_{1} \tag{b}\\
& -m_{2} l^{2}\left(d^{2} \phi_{1} / d t^{2}\right)+m_{2} l^{2} \cos \left(2 \phi_{1}\right)\left(d^{2} \phi_{1} / d t^{2}\right)-m_{2} l^{2} \sin \left(2 \phi_{1}\right)\left(d \phi_{1} / d t\right)^{2} \\
& \quad-m_{2} g l \sin \phi_{1}=\lambda_{1} l \cos \phi_{1} . \tag{c}
\end{align*}
$$

(ii) From the above, deduce that [e.g. by adding (b) and (c) etc.]:

$$
\begin{equation*}
\lambda_{1}=\left(m_{1} l / 2\right)\left(1 / \cos \phi_{1}\right)\left(d^{2} \phi_{1} / d t^{2}\right)+\left(m_{1} g / 2\right) \tan \phi_{1} \tag{d}
\end{equation*}
$$

Interpret the multiplier λ_{1} physically.
(iii) From the above, deduce that [e.g. by subtracting (b) and (c) from each other etc.]:

$$
\begin{equation*}
\left(m_{1}+4 m_{2} \sin ^{2} \phi_{1}\right)\left(d^{2} \phi_{1} / d t^{2}\right)+2 m_{2} \sin \left(2 \phi_{1}\right)\left(d \phi_{1} / d t\right)^{2}+\left(m_{1}+2 m_{2}\right)(g / l) \sin \phi_{1}=0 \tag{e}
\end{equation*}
$$

i.e., a single pendulum-like, reactionless (kinetic) and nonliner equation.

Example 3.5.9 Small (Linearized) Oscillations of Double Pendulum. Continuing from the preceding example, let us study the small (linearized) amplitude/velocity/ acceleration oscillatory motions of our planar double mathematical pendulum about its equilibrium configuration $\phi_{1}=0, \phi_{2}=0$.

There are two ways to proceed. Either (i) we keep up to quadratic terms in ϕ_{1}, ϕ_{2} and their derivatives in T and V (or up to linear ones in the Q 's) so that the corresponding Lagrangean equations end up linear in these functions; or (ii) we directly linearize the earlier-found equations of motion (for a more general treatment of linearized motions, see $\S 3.10$).

Let us begin with the first way; it is not hard to show that the earlier T, $V\left(Q_{1,2}\right)$ approximate to the homogeneous quadratic (linear) forms:

$$
\begin{align*}
2 T & =\left(m_{1}+m_{2}\right) l_{1}^{2}\left(\dot{\phi}_{1}\right)^{2}+2 m_{2} l_{1} l_{2} \dot{\phi}_{1} \dot{\phi}_{2}+m_{2} l_{2}^{2}\left(\dot{\phi}_{2}\right)^{2} ; \tag{a}\\
2 V & =\left(m_{1}+m_{2}\right) g l_{1} \phi_{1}^{2}+m_{2} g l_{2} \phi_{2}^{2}+\text { constant terms }, \tag{b}\\
Q_{1} & =-\left(m_{1}+m_{2}\right) g l_{1} \phi_{1}, \quad Q_{2}=-m_{2} g l_{2} \phi_{2} . \tag{c}
\end{align*}
$$

Then, with $L \equiv T-V=$ Lagrangean of the system, we easily obtain

$$
\begin{align*}
& \partial L / \partial \dot{\phi}_{1}=\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\phi}_{1}+m_{2} l_{1} l_{2} \dot{\phi}_{2}, \tag{d}\\
& \left(\partial L / \partial \dot{\phi}_{1}\right)^{\cdot}=\left(m_{1}+m_{2}\right) l_{1}^{2} \ddot{\phi}_{1}+m_{2} l_{1} l_{2} \ddot{\phi}_{2}, \tag{e}\\
& \partial L / \partial \phi_{1}=-\left(m_{1}+m_{2}\right) g l_{1} \phi_{1} \quad\left(=Q_{1}\right) ; \tag{f}\\
& \partial L / \partial \dot{\phi}_{2}=m_{2} l_{1} l_{2} \dot{\phi}_{1}+m_{2} l_{2}^{2} \dot{\phi}_{2}, \tag{g}\\
& \left(\partial L / \partial \dot{\phi}_{2}\right)^{\cdot}=m_{2} l_{1} l_{2} \ddot{\phi}_{1}+m_{2} l_{2}^{2} \ddot{\phi}_{2}, \tag{h}\\
& \partial L / \partial \phi_{2}=-m_{2} g l_{2} \phi_{2} \quad\left(=Q_{1}\right) . \tag{i}
\end{align*}
$$

Therefore, Lagrange's linearized (but still coupled!) equations are

$$
\begin{align*}
& \left(m_{1}+m_{2}\right) l_{1}\left(d^{2} \phi_{1} / d t^{2}\right)+m_{2} l_{2}\left(d^{2} \phi_{2} / d t^{2}\right)+\left(m_{1}+m_{2}\right) g \phi_{1}=0, \tag{j}\\
& l_{1}\left(d^{2} \phi_{1} / d t^{2}\right)+l_{2}\left(d^{2} \phi_{2} / d t^{2}\right)+g \phi_{2}=0 . \tag{k}
\end{align*}
$$

The reader can verify that (j, k) result by direct linearization of (k, l) of the preceding example, respectively.

Solution of System of Equations (j, k)

As the theory of differential equations/linear vibration teaches us, the general solution of this homogeneous system is a linear combination, or superposition, of the following harmonic motions (or modes):

$$
\begin{equation*}
\phi_{1}=A \sin (\omega t+\varepsilon) \quad \text { and } \quad \phi_{2}=B \sin (\omega t+\varepsilon), \tag{1}
\end{equation*}
$$

where $A, B=$ mode amplitudes, $\omega=$ mode frequency, and $\varepsilon=$ mode phase. Substituting (l) into (j, k), we are readily led to the algebraic system for the mode amplitudes:

$$
\begin{gather*}
{\left[\left(m_{1}+m_{2}\right)\left(g-l_{1} \omega^{2}\right)\right] A+\left(-m_{2} l_{2} \omega^{2}\right) B=0} \tag{m}\\
\left(-l_{1} \omega^{2}\right) A+\left(g-l_{2} \omega^{2}\right) B=0 \tag{n}
\end{gather*}
$$

The requirement for nontrivial A and B leads, in well-known ways, to the determinantal (secular) equation

$$
\left|\begin{array}{cc}
\left(m_{1}+m_{2}\right)\left(g-l_{1} \omega^{2}\right) & -m_{2} l_{2} \omega^{2} \tag{o}\\
-l_{1} \omega^{2} & g-l_{2} \omega^{2}
\end{array}\right|=0
$$

which, when expanded, becomes

$$
\begin{equation*}
\left(m_{1} l_{1} l_{2}\right) \omega^{4}-\left[\left(m_{1}+m_{2}\right)\left(l_{1}+l_{2}\right) g\right] \omega^{2}+\left(m_{1}+m_{2}\right) g^{2}=0 . \tag{p}
\end{equation*}
$$

To simplify the algebra we, henceforth, assume that $m_{1}=m_{2} \equiv m$ and $l_{1}=l_{2} \equiv l$. Then (p) reduces to

$$
\begin{equation*}
\omega^{4}-4(g / l) \omega^{2}+2(g / l)^{2}=0 \tag{q}
\end{equation*}
$$

and its positive roots can be easily shown to be

$$
\begin{array}{ll}
\omega_{1}=\left\{\left[2-(2)^{1 / 2}\right](g / l)\right\}^{1 / 2} & (\text { lower frequency }) \\
\omega_{2}=\left\{\left[2+(2)^{1 / 2}\right](g / l)\right\}^{1 / 2} & \left(>\omega_{1},\right. \text { higher frequency) } \tag{r2}
\end{array}
$$

For $\omega=\omega_{1}, \omega_{2}$, the amplitude ratios

$$
\begin{equation*}
\mu \equiv B / A=\left[l_{1} \omega^{2} /\left(g-l_{2} \omega^{2}\right)\right]=\omega^{2} /\left[(g / l)-\omega^{2}\right] \quad\left[=\mu\left(\omega^{2}\right)\right] \tag{s}
\end{equation*}
$$

[obtained from (n), for $l_{1}=l_{2}$] are found to be

$$
\begin{align*}
& \mu_{1}=B_{1} / A_{1}=\left[2-(2)^{1 / 2}\right] /\left[(2)^{1 / 2}-1\right]=(2)^{1 / 2} \tag{s1}\\
& \mu_{2}=B_{2} / A_{2}=-\left[2+(2)^{1 / 2}\right] /\left[1+(2)^{1 / 2}\right]=-(2)^{1 / 2} \tag{s2}
\end{align*}
$$

that is, $B_{1}=(2)^{1 / 2} A_{1}$ and $B_{2}=-(2)^{1 / 2} A_{2}$, for any initial conditions, and therefore the general solution of (j, k) is

$$
\begin{equation*}
\phi_{1}=\phi_{1,1}+\phi_{1,2}, \quad \phi_{2}=\phi_{2,1}+\phi_{2,2}, \tag{t}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\phi_{1,1}=A_{1} \sin \left(\omega_{1} t+\varepsilon_{1}\right), & \phi_{2,1}=\mu_{1} A_{1} \sin \left(\omega_{1} t+\varepsilon_{1}\right), \\
\phi_{1,2}=A_{2} \sin \left(\omega_{2} t+\varepsilon_{2}\right), & \phi_{2,2}=\mu_{2} A_{2} \sin \left(\omega_{2} t+\varepsilon_{2}\right) . \tag{t2}
\end{array}
$$

The above show that, for each frequency $\omega_{k}(k=1,2)$, the ratio of the corresponding mode amplitudes $\phi_{1, k}$ and $\phi_{2, k}$ is constant; that is, independent of the initial conditions

$$
\begin{equation*}
\phi_{2,1} / \phi_{1,1}=\mu_{1}=(2)^{1 / 2} \quad \text { and } \quad \phi_{2,2} / \phi_{1,2}=\mu_{2}=-(2)^{1 / 2} \tag{t3}
\end{equation*}
$$

The remaining four constants A_{1}, ε_{1}, and A_{2}, ε_{2} are determined from the initial conditions.

For example, if at $t=0$ we choose $\phi_{1}=0, \dot{\phi}_{1}=0$, and $\phi_{2}=\phi_{o}, \dot{\phi}_{2}=0$, then, since

$$
\begin{align*}
& \dot{\phi}_{1}=A_{1} \omega_{1} \cos \left(\omega_{1} t+\varepsilon_{1}\right)+A_{2} \omega_{2} \cos \left(\omega_{2} t+\varepsilon_{2}\right) \tag{u1}\\
& \dot{\phi}_{2}=(2)^{1 / 2} A_{1} \omega_{1} \cos \left(\omega_{1} t+\varepsilon_{1}\right)-(2)^{1 / 2} A_{2} \omega_{2} \cos \left(\omega_{2} t+\varepsilon_{2}\right) \tag{u2}
\end{align*}
$$

eqs. ($\mathrm{t}-\mathrm{t} 2$), the above, and the initial conditions lead to the following algebraic system:

$$
\begin{array}{ll}
\phi_{1}: & 0=A_{1} \sin \varepsilon_{1}+A_{2} \sin \varepsilon_{2}, \\
\phi_{2}: & \phi_{o}=(2)^{1 / 2} A_{1} \sin \varepsilon_{1}-(2)^{1 / 2} A_{2} \sin \varepsilon_{2}, \\
\dot{\phi}_{1}: & 0=A_{1} \omega_{1} \cos \varepsilon_{1}+A_{2} \omega_{2} \cos \varepsilon_{2}, \\
\dot{\phi}_{2}: & 0=(2)^{1 / 2} A_{1} \omega_{1} \cos \varepsilon_{1}-(2)^{1 / 2} A_{2} \omega_{2} \cos \varepsilon_{2} \tag{v4}
\end{array}
$$

From the last two equations, we readily conclude that $\cos \varepsilon_{1}=\cos \varepsilon_{2}=$ $0 \Rightarrow \varepsilon_{1}=\varepsilon_{2}=\pi / 2$; and so the first two reduce to $A_{1}+A_{2}=0$ and $A_{1}-A_{2}=$ $\left[(2)^{1 / 2} / 2\right] \phi_{0}$, and from these we easily find $A_{1}=\left[(2)^{1 / 2} / 4\right] \phi_{0}$ and $A_{2}=$

LOWER Frequency $\left(\omega_{l}\right)$

HIGHER Frequency (ω_{2})

Figure 3.4 Angular modes of planar double pendulum, for its two frequencies: (a) lower frequency, (b) higher frequency. The amplitudes of $\phi_{1,1}, \phi_{1,2}$ depend on the initial conditions.
$-\left[(2)^{1 / 2} / 4\right] \phi_{o}$. Hence, the particular solution of our system (j , k), satisfying the earlier chosen initial conditions, is

$$
\begin{align*}
& \phi_{1}=\left[\phi_{o}(2)^{1 / 2} / 4\right]\left[\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right], \tag{w1}\\
& \phi_{2}=\left(\phi_{o} / 2\right)\left[\cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)\right] ; \tag{w2}
\end{align*}
$$

where ω_{1}, ω_{2} are given by (r1, 2).
The relative modal contributions for each frequency are shown in fig. 3.4(a, b).
Problem 3.5.7 Double Pendulum; Noninertial Coordinates. Consider the double pendulum of fig. 3.3.
(i) Show that its (Lagrangean) equations of motion in the angles $\theta_{1}\left(\equiv \phi_{1}\right)$ and θ_{2}, under gravity, are

$$
\begin{align*}
& {\left[m_{1} l_{1}^{2}+m_{2}\left(l_{1}^{2}+2 l_{1} l_{2} \cos \theta_{2}+l_{2}^{2}\right)\right]\left(d^{2} \theta_{1} / d t^{2}\right)+m_{2} l_{2}\left(l_{1} \cos \theta_{2}+l_{2}\right)\left(d^{2} \theta_{2} / d t^{2}\right)} \\
& \quad \quad-\left(m_{2} l_{1} l_{2} \sin \theta_{2}\right)\left(d \theta_{2} / d t\right)^{2}-\left(2 m_{2} l_{1} l_{2} \sin \theta_{2}\right)\left(d \theta_{1} / d t\right)\left(d \theta_{2} / d t\right) \\
& \quad+\left(m_{1}+m_{2}\right) l_{1} g \sin \theta_{1}+m_{2} l_{2} g \sin \left(\theta_{1}+\theta_{2}\right)=0 \tag{a}\\
& \left(m_{2} l_{2}^{2}\right)\left(d^{2} \theta_{2} / d t^{2}\right)+m_{2} l_{2}\left(l_{1} \cos \theta_{2}+l_{2}\right)\left(d^{2} \theta_{1} / d t^{2}\right) \\
& \quad+\left(m_{2} l_{1} l_{2} \sin \theta_{2}\right)\left(d \theta_{1} / d t\right)^{2}+m_{2} l_{2} g \sin \left(\theta_{1}+\theta_{2}\right)=0 \tag{b}
\end{align*}
$$

(ii) Obtain its equations of small motion; that is, linearize (a, b).
(iii) What do (a, b) reduce to for $l_{1}=0$, or $l_{2}=0$, before and after their linearization?

Problem 3.5.8 Double Physical Pendulum. A rigid body I of mass M can rotate freely about a fixed and smooth vertical axis. A second rigid body $I I$ of mass m can rotate freely about a second smooth and also vertical axis that is fixed on body I (fig. 3.5).
(i) Show that the (double) kinetic energy of this double planar "physical" pendulum is

$$
\begin{equation*}
2 T=A \dot{\phi}^{2}+2 \Gamma \dot{\phi} \dot{\psi}+B \dot{\psi}^{2} \tag{a}
\end{equation*}
$$

Figure 3.5 Double and planar physical pendulum, moving on horizontal plane.
where $A \equiv M K^{2}+m a^{2}, B \equiv m\left(k^{2}+b^{2}\right), \Gamma \equiv m a b \cos (\phi-\psi)=m a b \cos (\psi-\phi) \equiv$ $m a b \cos \chi$ (definition of angle χ); $K(k)=$ radius of gyration of $I(I I)$ about $O\left(G^{\prime}\right)$.
(ii) Show that, in this (force-free) case,

$$
\begin{align*}
\partial T / \partial \dot{\phi}+\partial T / \partial \dot{\psi} & \equiv p_{\phi}+p_{\psi} \equiv \text { total angular momentum about } O \text {-axis } \\
& =\text { constant } \equiv c, \tag{b}
\end{align*}
$$

or

$$
\begin{equation*}
(A+\Gamma)(d \phi / d t)+(B+\Gamma)(d \psi / d t)=c ; \tag{b1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 T=E(\text { another constant }) \tag{c}
\end{equation*}
$$

(iii) Show that, with the help of $\chi \equiv \phi-\psi$, eq. (b1) can be further transformed to

$$
(A+2 \Gamma+B)(d \psi / d t)=c-(A+\Gamma)(d \chi / d t),
$$

or

$$
\begin{equation*}
(A+2 \Gamma+B)[A(d \phi / d t)+\Gamma(d \psi / d t)]=(A+\Gamma) c+\left(A B-\Gamma^{2}\right)(d \chi / d t) \tag{d}
\end{equation*}
$$

(iv) With the help of this integral, show that the energy integral (c) can be rewritten as

$$
(d \chi / d t)[A(d \phi / d t)+\Gamma(d \psi / d t)]+c(d \psi / d t)=E
$$

or

$$
\begin{equation*}
(d \chi / d t)^{2}\left(A B-\Gamma^{2}\right)+c^{2}=(A+2 \Gamma+B) E \tag{e}
\end{equation*}
$$

(v) Finally, and recalling the Γ-definition, show that (e) transforms to

$$
\begin{equation*}
(d \chi / d t)^{2}=\left[(A+B+2 m a b \cos \chi) E-c^{2}\right] /\left[A B-(m a b)^{2} \cos ^{2} \chi\right] \equiv f(\chi) \tag{f}
\end{equation*}
$$

that is, the problem has been led to a quadrature.
For further discussion of this famous problem, and of its many variations, see, for example (alphabetically): Marcolongo (1912, pp. 213-216), Schell (1880, pp. 549551), Thomson and Tait (1912, pp. 310, 324-325), Timoshenko and Young (1948, pp. 209-211, 215-216, 249-250, 276-278, 312-314).

Problem 3.5.9 Double Physical Pendulum: Vertical Axes. Continuing from the preceding problem (penduli axes through O and O^{\prime} vertical), obtain its Lagrangean equations of motion. What happens to these equations if the center of mass of the entire system $I+I I$ is at its maximum/minimum distance from O ? Assume that O, G, O^{\prime} are collinear, and $O G=h$.

HINT
Introduce the new angular variables $q_{1}=\phi$ and $q_{2}=\theta \equiv \psi-\phi(=-\chi)=$ inclination of body $I I$ relative to I (positive counterclockwise). Then, $T \rightarrow T(\theta ; \dot{\phi}, \dot{\theta})$, and so on.

Problem 3.5.10 Double Physical Pendulum: Horizontal Axes. Consider the preceding double pendulum problem, but now with both axes through O and O^{\prime} horizontal. In addition, assume that the mass center of body I, G, lies in the plane of the axes O and O^{\prime}, and $O G=h$. Show that here T is the same, in form, as in the previous vertical axes case, but the potential of gravity forces, V, equals (exactly)

$$
\begin{equation*}
V=-M g h \cos \phi-m g(a \cos \phi+b \cos \psi)+\text { constant } \tag{a}
\end{equation*}
$$

and therefore the corresponding Lagrangean impressed forces are

$$
\begin{equation*}
Q_{\phi}=-\partial V / \partial \phi=\cdots \quad \text { and } \quad Q_{\psi}=-\partial V / \partial \psi=\cdots \tag{b}
\end{equation*}
$$

Then write down Lagrange's equations for $q_{1}=\phi$ and $q_{2}=\psi$.
Problem 3.5.11 Double Physical Pendulum: Horizontal Axes; Small Oscillations. Continuing from the preceding problem (O and O^{\prime} horizontal), show that for small oscillations about the vertical equilibrium position $\phi, \psi=0$, linearization of the exact equations leads to the coupled system

$$
\begin{align*}
& (M h+m a)\left[L\left(d^{2} \phi / d t^{2}\right)+g \phi\right]+m a b\left(d^{2} \psi / d t^{2}\right)=0 \\
& a\left(d^{2} \phi / d t^{2}\right)+L^{\prime}\left(d^{2} \psi / d t^{2}\right)+g \psi=0 \tag{a}
\end{align*}
$$

where

$$
\begin{equation*}
L \equiv\left(M K^{2}+m a^{2}\right) /(M h+m a) \quad \text { and } \quad L^{\prime} \equiv\left(k^{2}+b^{2}\right) / b . \tag{b}
\end{equation*}
$$

Interpret L and L^{\prime} in terms of single pendulum quantities. Then, assume as solutions of (a)

$$
\begin{equation*}
\phi=\phi_{0} \sin (\omega t+\varepsilon) \quad \text { and } \quad \psi=\psi_{o} \sin (\omega t+\varepsilon), \tag{c}
\end{equation*}
$$

where $\phi_{o}, \psi_{o}=$ angular amplitudes, $\varepsilon=$ initial phase, and $\omega=$ frequency, and show that the ω^{2} are real, positive, and unequal, and are the roots of

$$
\begin{equation*}
(\Omega-L)\left(\Omega-L^{\prime}\right)=\left(m a^{2} b\right) /(M h+m a), \quad \text { where } \Omega \equiv g / \omega^{2} \tag{d}
\end{equation*}
$$

say $\Omega_{1}<\Omega_{2}$; and thus conclude that

$$
\begin{equation*}
\Omega_{1}<\min \left(L, L^{\prime}\right) \leq \max \left(L, L^{\prime}\right)<\Omega_{2} \tag{e}
\end{equation*}
$$

Finally, show that

$$
\begin{equation*}
\psi_{o} / \phi_{o}=a /\left(\Omega-L^{\prime}\right)=\cdots, \tag{f}
\end{equation*}
$$

and, therefore, (i) for the smaller $\omega\left(\rightarrow\right.$ larger $\left.\Omega=\Omega_{2}\right), \phi \cdot \psi>0$ (i.e., in the slower mode, the angles have the same sign); while (ii) for the larger $\omega\left(\rightarrow\right.$ smaller $\left.\Omega=\Omega_{1}\right), \phi \cdot \psi<0$ (i.e., in the faster mode, the angles have opposite signs).
[For a discussion of the historically famous case of the nonringing, or "silent", bell of Köln (Cologne), Germany (1876; bell + clapper = double pendulum), based on (a), see, for example, Hamel ([1922(b)] 1912, 1st ed., pp. 514 ff.), Szabó (1977, pp. 89-90), Timoshenko and Young (1948, p. 278).]

Problem 3.5.12 General Form of Lagrange's Equations for a 2 DOF System. Consider a 2 DOF holonomic and scleronomic system; for example, a particle on a fixed surface, or the previous double pendulum, with (double) kinetic energy

$$
\begin{equation*}
2 T=A(d x / d t)^{2}+2 \Gamma(d x / d t)(d y / d t)+B(d y / d t)^{2} \tag{a}
\end{equation*}
$$

and such that $\delta^{\prime} W=X \delta x+Y \delta y$, where $A, B, \Gamma ; X, Y$, are functions of x, y.
(i) Show that its Lagrangean equations of motion in $q_{1}=x$ and $q_{2}=y$ are

$$
\begin{align*}
A\left(d^{2} x / d t^{2}\right)+\Gamma\left(d^{2} y / d t^{2}\right) & +(1 / 2)(\partial A / \partial x)(d x / d t)^{2}+(\partial A / \partial y)(d x / d t)(d y / d t) \\
& +[\partial \Gamma / \partial y-(1 / 2)(\partial B / \partial x)](d y / d t)^{2}=X \tag{b}\\
B\left(d^{2} y / d t^{2}\right)+\Gamma\left(d^{2} x / d t^{2}\right) & +(1 / 2)(\partial B / \partial y)(d y / d t)^{2}+(\partial B / \partial x)(d x / d t)(d y / d t) \\
& +[\partial \Gamma / \partial x-(1 / 2)(\partial A / \partial y)](d x / d t)^{2}=Y \tag{c}
\end{align*}
$$

and ponder over the geometrical/kinematical/inertial meaning and origin of each of these terms.
(ii) Show that these equations linearize to the (still coupled) system:

$$
\begin{align*}
& A_{o}\left(d^{2} x / d t^{2}\right)+\Gamma_{o}\left(d^{2} y / d t^{2}\right)=(\partial X / \partial x)_{o} x+(\partial X / \partial y)_{o} y \tag{d}\\
& B_{o}\left(d^{2} y / d t^{2}\right)+\Gamma_{o}\left(d^{2} x / d t^{2}\right)=(\partial Y / \partial x)_{o} x+(\partial Y / \partial y)_{o} y \tag{e}
\end{align*}
$$

where $(\ldots)_{o} \equiv(\ldots)$ evaluated at $x, y=0$.

Example 3.5.10 Lagrange's Equations, 2 DOF: Elastic Pendulum, or Swinging Spring. Let us derive and discuss the equations of plane motion, under gravity, of a pendulum consisting of a heavy particle (or bob) of mass m suspended by a linearly elastic and massless spring of stiffness k (a positive constant) and unstretched (or natural) length b (fig. 3.6). This is a holonomic and scleronomic

Figure 3.6 Geometry and forces on plane elastic pendulum.
two $D O F$ system; that is, $n=2, m=0$. With Lagrangean coordinates as the polar coordinates of the bob: $q_{1}=r, q_{1}=\phi$, its (double) kinetic energy is

$$
\begin{equation*}
2 T=m v^{2}=m(d s / d t)^{2}=m\left[(\dot{r})^{2}+r^{2}(\dot{\phi})^{2}\right] \tag{a}
\end{equation*}
$$

while the virtual work of its impressed forces, gravity and spring force, equals

$$
\begin{equation*}
\delta^{\prime} W=-k(r-b) \delta r+(m g \cos \phi) \delta r-(m g \sin \phi)(r \delta \phi) \equiv Q_{r} \delta r+Q_{\phi} \delta \phi \tag{b}
\end{equation*}
$$

that is,

$$
\begin{equation*}
Q_{r}=-k(r-b)+m g \cos \phi, \quad Q_{\phi}=-m g r \sin \phi \tag{c}
\end{equation*}
$$

Alternatively, the potential energy of the system is

$$
\begin{equation*}
V=(1 / 2) k(r-b)^{2}-m g r \cos \phi=V(r, \phi) \tag{d}
\end{equation*}
$$

and so the corresponding Lagrangean forces are $Q_{r}=-\partial V / \partial r=\cdots, Q_{\phi}=$ $-\partial V / \partial \phi=\cdots$, equations (c). We also notice that for $r>b$: $Q_{r \text {,spring }}$ $\equiv-k(r-b)<0$, as it should; and analogously for $r<b$. Lagrange's equations, then, are

$$
\begin{align*}
& E_{r}(T) \equiv E_{r}=Q_{r}: \quad(m \dot{r})^{\cdot}-m r(\dot{\phi})^{2}=-k(r-b)+m g \cos \phi \tag{e}\\
& E_{\phi}(T) \equiv E_{\phi}=Q_{\phi}: \quad\left(m r^{2} \dot{\phi}\right)^{\cdot}=-m g r \sin \phi \tag{f}
\end{align*}
$$

or, after some simplifications (since $r \neq 0$),

$$
\begin{align*}
& d^{2} r / d t^{2}-r(d \phi / d t)^{2}=-(k / m)(r-b)+g \cos \phi \tag{g}\\
& r\left(d^{2} \phi / d t^{2}\right)+2(d r / d t)(d \phi / d t)=-g \sin \phi \tag{h}
\end{align*}
$$

The general solution of this nonlinear and coupled system is unknown, and so we will limit ourselves to some simple and physically motivated special solutions of it.
(i) Equilibrium solution: Setting all (...)-derivatives in (g, h) equal to zero, we find $\left[\right.$ with $(\ldots)_{o} \equiv$ equilibrium value of (\ldots)]

$$
\begin{equation*}
0=-(k / m)\left(r_{o}-b\right)+g \cos \phi_{o}, \quad 0=-g \sin \phi_{o} \tag{i}
\end{equation*}
$$

and, from these algebraic equations, we readily obtain the equilibrium values

$$
\begin{equation*}
\phi_{o}=0, \quad r_{o}-b=m g / k \equiv \rho \tag{j}
\end{equation*}
$$

Thus, in terms of the new variable

$$
x \equiv r-r_{o}=r-(b+\rho)=r-[b+(m g / k)]=\text { deviation from vertical equilibrium, }
$$

and with $\omega_{r}{ }^{2} \equiv k / m$, eqs. (g, h) can be, finally, rewritten as

$$
\begin{align*}
& \ddot{x}-\left(r_{o}+x\right)(\dot{\phi})^{2}+g(1-\cos \phi)+\omega_{r}^{2} x=0 \tag{k}\\
& \left(r_{o}+x\right) \ddot{\phi}+2 \dot{x} \dot{\phi}+g \sin \phi=0 \tag{1}
\end{align*}
$$

(ii) Ordinary (or mathematical) pendulum solution; that is, $r=$ constant $\equiv R$. In this case, (g, h) become [since all forces here are impressed; and, contrary to (ex. 3.5.8: m ff .), no multipliers are involved]:

$$
\begin{gather*}
-R(\dot{\phi})^{2}=-(k / m)(R-b)+g \cos \phi, \tag{m}\\
\ddot{\phi}+\omega_{\phi}^{2} \sin \phi=0, \quad \omega_{\phi}^{2} \equiv g / R \tag{n}
\end{gather*}
$$

and, from these, we get $\phi(t)=\phi_{o}=0$ and $R=r_{o}=b+(m g / k)$; that is, the previous equilibrium case.
(iii) Linearization of equations (g, h), (k, l). We readily obtain the uncoupled system:

$$
\begin{align*}
& \ddot{r}+\omega_{r}^{2} r=(k / m) b+g \\
& \Rightarrow \ddot{x}+\omega_{r}^{2} x=0 \Rightarrow x=A \sin \left(\omega_{r} t\right)+B \cos \left(\omega_{r} t\right) \tag{o}\\
& g \sin \phi=0 \Rightarrow \phi(t)=0 \quad(A, B: \text { integration constants }) \tag{p}
\end{align*}
$$

that is, a small oscillation of frequency ω_{r} about the vertical equilibrium $r=r_{o}$, or $x=0$.
(iv) Nearly vertical oscillation; that is, ϕ small. Then $(\mathrm{g}, \mathrm{h}) /(\mathrm{k}, \mathrm{l})$ reduce to the coupled system:

$$
\begin{align*}
& \ddot{r}+\omega_{r}{ }^{2} r=(k / m) b+g \\
& \quad \Rightarrow \ddot{x}+\omega_{r}{ }^{2} x=0 \Rightarrow x=A \sin \left(\omega_{r} t\right)+B \cos \left(\omega_{r} t\right), \tag{q=o}\\
& r \ddot{\phi}+2 \dot{r} \dot{\phi}+g \phi=0 \\
& \quad \Rightarrow\left(r_{o}+x\right) \ddot{\phi}+2 \dot{x} \dot{\phi}+g \phi=0 \Rightarrow(1+\varepsilon) \ddot{\phi}+2 \dot{\varepsilon} \dot{\phi}+\omega_{\phi}{ }^{2} \phi=0, \tag{r}
\end{align*}
$$

where $\varepsilon=\varepsilon(t) \equiv x / r_{o}\left(\right.$ and $\left.\omega_{\phi}^{2} \equiv g / r_{o}\right)$.
Now, since $x=$ harmonic in time, equation (r) is a linear differential equation with harmonically varying coefficients; or, as it is generally called, a parametrically excited one [or rheo-linear $=$ rheonomic + linear $]$. As the theory of these important "Hill/

Floquet/Mathieu" equations shows, the solutions of (r) are stable; that is, $\phi=$ oscillatory and bounded, or not, depending on the values of

$$
\begin{equation*}
\omega_{\phi} / \omega_{r} \equiv \omega, \quad \text { or } \quad \omega^{2}=\left(g / r_{o}\right) /(k / m)=m g / r_{o} k=\text { gravity } / \text { elasticity } \tag{s}
\end{equation*}
$$

Specifically, it can be shown that:
(i) If $\omega \neq N / 2$, or $\omega^{2} \neq N^{2} / 4 \quad(N=1,2,3, \ldots)$, then both x and ϕ remain small as required by the linearization; but,
(ii) If $\omega \approx N / 2$, or $\omega^{2} \approx N^{2} / 4(=1 / 4,1,9 / 4, \ldots)$, then $\phi \rightarrow \infty$, in spite of the absence of external excitation; that is, then, the vertical x-oscillation, acting as internal forcing, causes ever larger (nonlinear) angular oscillations; and since the total energy of the system remains constant, this phenomenon [commonly known as parametric, or internal, resonance] comes at the expense of the x-oscillation; that is, energy flows from the vertical oscillation to the angular one, and (as shown by experiments) back. But here, contrary to constant coefficient linearized coupled systems (e.g., the earlier double pendulum), we do need to examine some nonlinear version of the problem: either the exact equations (g, h)/(k, l), or some weakly nonlinear system of them, and the linear but parametric equations (q, r).
[The case $N=1 \Rightarrow \omega_{r} \approx \omega_{\phi}$, or $m g \approx k r_{o} / 4$, is the most dangerous one, because, as the "stability chart" of equation (r) shows, that is where the instability region is at its widest; and that width is proportional to the amplitude of the "fundamental x-solution," $(\mathrm{q}=\mathrm{o})$.]

For further details, see, for example, Nayfeh (1973, pp. 185-189, 214-216, 262264; and references cited there), Nayfeh and Mook (1979, pp. 369-370, 431-432), Pfeiffer (1989, pp. 209-210); also Dysthe and Gudmestad (1975). For an extensive treatment, see Starzhinskii (1977/1980, pp. 50-55; also pp. 59-75, 79-83, 95-98, 133135).

Problem 3.5.13 Elastic Pendulum. Continuing from the preceding example, let us consider the "fundamental" solution, equations $(q=o)$

$$
\begin{align*}
& x=A \sin \left(\omega_{r} t\right)+B \cos \left(\omega_{r} t\right)=x_{o} \cos \left(\omega_{r} t+\chi\right), \\
& \varepsilon=\varepsilon(t) \equiv x / r_{o}=\varepsilon_{o} \cos \left(\omega_{r} t+\chi\right), \tag{a}
\end{align*}
$$

where $A, B, x_{o}, \chi=$ integration constants. Next, and following standard methods of perturbation theory, assume a solution of (r) in the form

$$
\begin{equation*}
\phi=\phi_{o} \cos \left(\omega_{\phi} t+\psi\right)+\Phi_{1} \equiv \Phi_{o}+\Phi_{1} \tag{b}
\end{equation*}
$$

where $\Phi_{1}=$ small relative to Φ_{o}. Then, insert these ε and ϕ solutions in (r) and, after neglecting all terms containing products of $\varepsilon, \varepsilon_{o}$ with Φ_{1}, and its $(\ldots)^{-}$-derivatives, bring it to the ordinary (i.e., constant coefficient) undamped and forced oscillation form

$$
\begin{aligned}
\ddot{\Phi}_{1}+\omega_{\phi}^{2} \Phi_{1} & =-\left[(1+\varepsilon) \ddot{\Phi}_{o}+2 \varepsilon \dot{\Phi}_{o}+\omega_{\phi}^{2} \Phi_{o}\right] \\
& =-\left[\varepsilon \ddot{\Phi}_{o}+2 \varepsilon \dot{\Phi}_{o}\right] \\
& =\cdots=f\left(t ; \omega_{r}, \omega_{f} ; \chi, \psi ; \varepsilon_{o}, \phi_{o}\right) \quad \text { [explain why] }
\end{aligned}
$$

(known function; linear superposition of two harmonic excitations of frequencies $\omega_{r}+\omega_{\phi}$ and $\omega_{r}-\omega_{\phi}$)

Find the particular solution of this equation (nonhomogeneous part), and then establish that:
(i) If $\omega_{\phi} / \omega_{r} \neq 1 / 2$, then both x and ϕ remain small; but
(ii) If $\omega_{\phi} / \omega_{r} \approx 1 / 2$, then Φ_{1} (and therefore ϕ) $\rightarrow \infty$ [as in the (nonlinear) problem of "small denominators," or "combination tones" - see, e.g., Stoker (1950, pp. 112114); also $\S 8.16$, this volume].

Problem 3.5.14 Elastic Pendulum. Continuing from the last example, let us substitute into its exact equations (k, l) [instead of the preceding problem's assumed solution (b)]

$$
\begin{equation*}
x=X+\Delta X, \quad \phi=\Phi+\Delta \Phi \tag{a}
\end{equation*}
$$

where X and Φ are its following fundamental motion/solutions,

$$
\begin{equation*}
X=X(t)=x_{o} \cos \left(\omega_{r} t+\chi\right), \quad \Phi=\Phi(t)=0 \tag{b}
\end{equation*}
$$

and $\Delta X(t), \Delta \Phi(t)$ are the small perturbations about that state, and keep only up to linear terms in this small (neighboring) motion. Show that, then, we obtain the uncoupled linear system:

$$
\begin{equation*}
(\Delta X)^{*}+\omega_{r}^{2} \Delta X=0 \quad \text { and } \quad(1+\varepsilon)(\Delta \Phi)^{\cdot}+2 \dot{\varepsilon}(\Delta \Phi)^{\cdot}+\omega_{\phi}^{2} \Delta \Phi=0 \tag{c}
\end{equation*}
$$

where $\varepsilon \equiv X / r_{o}$; or, since $|\varepsilon|=$ much smaller than 1 ,

$$
\begin{equation*}
(\Delta \Phi)^{\cdot}+2 \dot{\varepsilon}(\Delta \Phi)^{\cdot}+\omega_{\phi}^{2}(1-\varepsilon) \Delta \Phi=0 \tag{d}
\end{equation*}
$$

that is, the neighboring motion $\Delta \Phi(t)$ depends on the fundamental one through $X(t)$, or $\varepsilon(t)$. Solve the first of (c), insert its solution into (d), and then show that, since the coefficients of both $\Delta \Phi$ and $(\Delta \Phi)^{\cdot}$ have the same (parametric) frequency ω_{r}, the resulting equation (d) can be led to a standard Mathieu equation; that is,

$$
\begin{equation*}
\ddot{y}+P(t) y=0 \tag{e}
\end{equation*}
$$

where $P\left(t+2 \pi / \omega_{r}\right)=P(t), \Delta \phi \sim y \exp (-\varepsilon)$, and $P=\omega_{\phi}^{2}(1-\varepsilon)-\ddot{\varepsilon}-\dot{\varepsilon}^{2}$.
Problem 3.5.15 Lagrange's Equations: Cylindrical and Spherical Coordinates. Show that the equations of motion of, say, a free particle P in cylindrical and spherical coordinates, are (fig. 3.7) as follows:
(i) Cylindrical $\left(x=r \cos \phi, y=r \sin \phi, z=z ; v_{r}{ }^{\prime}=\dot{r}, v_{\phi}{ }^{\prime}=r \dot{\phi}, v_{z}{ }^{\prime}=\dot{z}\right)$:

$$
\begin{array}{lll}
\text { Radial: } & m\left[\ddot{r}-r(\dot{\phi})^{2}\right]=Q_{r} & \left(=F_{r} ; m a_{r}{ }^{\prime}=F_{r}\right), \\
\text { Transverse: } & m\left(r^{2} \dot{\phi}\right)^{\cdot}=Q_{\phi} & \left(=r F_{\phi} ; m a_{\phi}{ }^{\prime}=F_{\phi}\right), \\
\text { Vertical: } & m \ddot{z}=Q_{z} & \left(=F_{z} ; m a_{z}{ }^{\prime}=F_{z}\right) \tag{c}
\end{array}
$$

where

$$
\begin{align*}
\delta^{\prime} W=\left(F_{r}, F_{\phi}, F_{z}\right) \cdot(\delta r, r \delta \phi, \delta z) & =F_{r} \delta r+\left(r F_{\phi}\right) \delta \phi+F_{z} \delta z \\
& =Q_{r} \delta r+Q_{\phi} \delta \phi+Q_{z} \delta z \tag{d}
\end{align*}
$$

$\boldsymbol{F}=\left(F_{r}, F_{\phi}, F_{z}\right)=$ total force on P.

Figure 3.7 Particle in space: (a) cylindrical and (b) spherical coordinates.
(ii) Spherical $\left[x=(R \sin \theta) \cos \phi, \quad y=(R \sin \theta) \sin \phi, \quad z=R \cos \theta ; \quad v_{R}{ }^{\prime}=\dot{R}\right.$, $\left.v_{\theta}{ }^{\prime}=R \dot{\theta}, v_{\phi}{ }^{\prime}=(R \sin \theta) \dot{\phi}\right]:$

$$
\begin{array}{ll}
\text { Radial: } & m\left[\ddot{R}-R(\dot{\theta})^{2}-R \sin ^{2} \theta(\dot{\phi})^{2}\right]=Q_{R}\left(=F_{R} ; m a_{R}{ }^{\prime}=F_{R}\right),(\mathrm{e}) \tag{e}\\
\text { Transverse }\left(\theta \text {-plane): } m\left[\left(R^{2} \dot{\theta}\right)^{\cdot}-R^{2} \sin \theta \cos \theta(\dot{\phi})^{2}\right]=Q_{\theta}\left(=R F_{\theta} ; m a_{\theta}{ }^{\prime}=F_{\theta}\right),(\mathrm{f})\right. \\
\text { Normal (to } \theta \text {-plane): } m\left(R^{2} \sin ^{2} \theta \dot{\phi}\right)^{\cdot}=Q_{\phi} \quad\left(=R \sin \theta F_{\phi} ; m a_{\phi}{ }^{\prime}=F_{\phi}\right) ; \quad(\mathrm{g})
\end{array}
$$

where

$$
\begin{align*}
\delta^{\prime} W & =\left(F_{R}, F_{\theta}, F_{\phi}\right) \cdot(\delta R, R \delta \theta, R \sin \theta \delta \phi) \\
& =\left(F_{R}\right) \delta R+\left(R F_{\theta}\right) \delta \theta+\left(R \sin \theta F_{\phi}\right) \delta \phi=Q_{R} \delta R+Q_{\theta} \delta \theta+Q_{\phi} \delta \phi ; \tag{h}
\end{align*}
$$

$\boldsymbol{F}=\left(F_{R}, F_{\theta}, F_{\phi}\right)=$ total force on P.

HINT
$2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right] ; \quad \dot{x}=\cdots, \dot{y}=\cdots, \dot{z}=\cdots$, and so on.

Problem 3.5.16 Lagrange's Equations: Particle on Sphere, or Spherical Pendulum. Consider the motion of a heavy particle P of mass m on the inner part of a smooth and stationary spherical surface of radius l, under (constant) gravity (fig. 3.8).

Show that the Routh-Voss equations of this constrained system [constraint: $\left.f_{1} \equiv R-l(=0) ; q_{1}=R, q_{2}=\theta, q_{3}=\phi ; n=3, m=1\right]$, with $+O z$ taken vertically downwards, are

$$
\begin{align*}
R: & (\dot{\theta})^{2}+\sin ^{2} \theta(\dot{\phi})^{2}=-(1 / l)\left[g \cos \theta+(\lambda / m)\left(\partial f_{1} / \partial R\right)_{o}\right], \tag{a}\\
\theta: & \ddot{\theta}-\sin \theta \cos \theta(\dot{\phi})^{2}=-(g / l) \sin \theta, \tag{b}\\
\phi: & \left(\sin ^{2} \theta\right) \dot{\phi}=\text { constant } \equiv p, \tag{c}
\end{align*}
$$

$\left[\Rightarrow(l \sin \theta)^{2} \dot{\phi}=l^{2} p \equiv C\right.$; i.e., the horizontal projection of the motion follows Kepler's second law].

$$
\begin{aligned}
& x=(l \sin \theta) \cos \phi \\
& y=(l \sin \theta) \sin \phi \\
& z=l \cos \theta
\end{aligned}
$$

Figure 3.8 Geometry of spherical pendulum.

Solving (b, c) we find the motion, and then substituting the results into (a) we obtain the multiplier $\lambda=\lambda(t$; initial conditions). Show that $\lambda=-S / l$, where $S=$ sphere reaction on P (or string tension, in the pendulum case), and $(\ldots)_{o} \equiv(\ldots)_{R=l}$.

On the analytical treatment of these nonlinear equations (including the stability of special motions), there exists a large literature; see, for example (alphabetically): Hamel (1949, pp. 262-264, 285, 691-692, 710-712), Lamb (1923, pp. 305-307), Landau and Lifshitz (1960, pp. 33-34), MacMillan (1927, pp. 337-344), Müller and Prange (1923, pp. 163-184), Pöschl (1949, pp. 46-49, 141-143), Synge and Griffith (1959, pp. 335-342), Webster (1912, pp. 42-45, 48-55, 124-125); also Corben and Stehle (1960, pp. 105-107), for an application of the perturbation method.

Problem 3.5.17 Lagrange's Equations: Particle on Sphere, or Spherical Pendulum. Continuing from the preceding problem:
(i) Show that its integrals of energy and angular momentum (about the $O z$ axis) can be written, respectively, as

$$
\begin{align*}
& (1 / 2) m l^{2}\left[(\dot{\theta})^{2}+\sin ^{2} \theta(\dot{\phi})^{2}\right]-m g l \cos \theta=\text { constant } \equiv E, \tag{a}\\
& \left(\sin ^{2} \theta\right) \dot{\phi}=\text { constant } \equiv p \tag{b}
\end{align*}
$$

(ii) Show that eliminating $\dot{\phi}$ between (a, b) and then (...) -differentiating the resulting equation, and so on, we recover the θ-equation of the last problem.

Problem 3.5.18 Lagrange's Equations: Particle on Sphere, or Spherical Pendulum; Integration of the θ-Equation. Continuing from the preceding problem:
(i) Show that its θ - and ϕ-equations combine to the θ-only equation:

$$
\begin{equation*}
d^{2} \theta / d t^{2}-\left(C^{2} / l^{4}\right)\left(\cos \theta / \sin ^{3} \theta\right)+(g / l) \sin \theta=0 \tag{a}
\end{equation*}
$$

where $C=(l \sin \theta)^{2} \dot{\phi}=$ constant. What is the physical meaning of the singularity, in (a), for $\theta=0$?
(ii) By integrating (a), show that

$$
\begin{equation*}
t=\int_{\theta_{o}}^{\theta} \sin \theta\left[2 h \sin ^{2} \theta-\left(C^{2} / l^{4}\right)+2(g / l) \cos \theta \sin ^{2} \theta\right]^{-1 / 2} d \theta \tag{b}
\end{equation*}
$$

HINT
The first integral of the differential equation $\ddot{x}=f(x)$ is

$$
\begin{equation*}
(1 / 2)(d x / d t)^{2}+V(x)=\text { constant } \equiv h, \quad \text { where } \quad V(x)=-\int f(x) d x \tag{c}
\end{equation*}
$$

and from this we readily obtain

$$
\begin{equation*}
t=\int_{x_{o}=x(0)}^{x}[2 h-2 V(x)]^{-1 / 2} d x \tag{d}
\end{equation*}
$$

Here, $x=\theta$, and

$$
\begin{equation*}
f(x) \rightarrow f(\theta)=\left(C^{2} / l^{4}\right)\left(\cos \theta / \sin ^{3} \theta\right)-(g / l) \sin \theta \tag{e}
\end{equation*}
$$

so that $V(\theta)=-\int f(\theta) d \theta=\cdots$.
(iii) Setting $\cos \theta=z$, and with the abbreviations

$$
\begin{equation*}
2 h-\left(C^{2} / l^{4}\right) \equiv \alpha, \quad-2(g / l) \equiv \beta, \quad-2 h \equiv \gamma \tag{f}
\end{equation*}
$$

reduces (b) to the elliptic integral

$$
\begin{equation*}
t=-\int_{z_{o}}^{z}\left[\alpha-\beta z+\gamma z^{2}+\beta z^{3}\right]^{-1 / 2} d z \tag{g}
\end{equation*}
$$

which cannot be integrated by a combination of elementary functions. For further details, see books on the asymptotic integration of ordinary differential equations, elliptic functions, and so on.

Problem 3.5.19 Lagrange's Equations: Particle on Sphere, or Spherical Pendulum; Steady Motion. Continuing from the preceding problems, show that the particular solution $\theta=\theta_{o}$ (i.e., particle describes a horizontal circle), requires that

$$
\begin{equation*}
d \phi / d t=C / r^{2}=(g / l)^{1 / 2}\left(\cos \theta_{o}\right)^{-1 / 2}=\text { constant } \equiv \omega_{o} \tag{a}
\end{equation*}
$$

where $C^{2}=\left(g l^{3} \sin ^{4} \theta_{o}\right) / \cos \theta_{o}$; that is, for every θ_{o} there exists a particular such "steady motion" of constant angular velocity ω_{o}; and, hence, a period

$$
\begin{align*}
\tau_{o} & \equiv 2 \pi / \omega_{o}=2 \pi(l / g)^{1 / 2}\left(\cos \theta_{o}\right)^{1 / 2} \\
& \approx 2 \pi(l / g)^{1 / 2}, \text { for small } \theta_{o}(\text { as for the plane pendulum }) . \tag{b}
\end{align*}
$$

Problem 3.5.20 Lagrange's Equations: Particle on Sphere, or Spherical Pendulum; Stability of Steady Motion. Continuing from the preceding problems:
(i) By setting in the exact θ-equation of the pendulum

$$
\begin{equation*}
\theta(t)=\theta_{o}+\Delta \theta(t) \equiv \theta_{o}+x(t), \quad d \phi(t) / d t=\omega_{o}+\Delta[d \phi(t) / d t] \equiv \omega_{o}+y(t) \tag{a}
\end{equation*}
$$

expanding à la Taylor, and keeping only up to first-degree terms in x, y and their $(\ldots)^{\circ}$-derivatives (i.e., considering small disturbances), and taking into account the equations of the fundamental state θ_{o}, obtain the linear perturbation equations from that state:

$$
\begin{equation*}
d^{2} x / d t^{2}+\left\{\left[\left(1+2 \cos ^{2} \theta_{o}\right) / \sin ^{4} \theta_{o}\right]\left(C^{2} / l^{4}\right)+(g / l) \cos \theta_{o}\right\} x=0 . \tag{b}
\end{equation*}
$$

Then, taking into account the C versus θ_{o} relation for that state (see preceding problem), show that (b) simplifies to

$$
\begin{equation*}
d^{2} x / d t^{2}+k^{2} x=0, \quad \text { where } k^{2} \equiv\left[(g / l)\left(1+3 \cos ^{2} \theta_{o}\right)\right] / \sin ^{4} \theta_{o} \tag{c}
\end{equation*}
$$

that is, a harmonic oscillation around the constant value θ_{o} with a period [recall (b) of preceding problem]

$$
\begin{align*}
\tau^{\prime}=2 \pi / k & =\left[2 \pi(l / g)^{1 / 2}\left(\cos \theta_{o}\right)^{1 / 2}\right] /\left(1+3 \cos ^{2} \theta_{o}\right)^{1 / 2} \\
& \equiv \tau_{o} /\left(1+3 \cos ^{2} \theta_{o}\right)^{1 / 2} \tag{d}
\end{align*}
$$

Notice that, since $\theta_{o}=0, \pi / 2$ are excluded, we will have $\tau_{o} / 2<\tau^{\prime}<\tau_{o}$.
Such motions, where the linear perturbation equations around them are equations with constant coefficients, we call, after Routh steady (for an extensive treatment, see $\S 8.5$).
(ii) By carrying out a similar linearization of the exact ϕ-equation, $\dot{\phi}=C /(l \sin \theta)^{2}$, around θ_{o}, show that (to the first degree in x)

$$
\begin{equation*}
y=-\left[\left(2 C \cos \theta_{o}\right) /\left(l^{2} \sin ^{3} \theta_{o}\right)\right] x=-2\left[(g / l)\left(\cos \theta_{o}\right) / \sin ^{2} \theta_{o}\right]^{1 / 2} x \tag{e}
\end{equation*}
$$

that is, $\dot{\phi}$ oscillates just like x, but the presence of the minus sign shows that as θ increases $\dot{\phi}$ decreases, and vice versa.

For further details on the integration of the above equations, and the behavior of the perturbed motion, for various values of θ_{o}, see, for example, Hamel ([1922(b)] 1912, 1st ed., pp. 106-108).

Example 3.5.11 Constrained Lagrange's Equations \rightarrow Routh-Voss Equations. Let us consider the spatial, and initially unconstrained, motion of a particle of mass m in cylindrical coordinates $q_{1}=r, q_{2}=\phi, q_{3}=z$ (vertical, positive upward), under the action of (constant) gravity (fig. 3.9).

Figure 3.9 Particle on a helical path.

Here, clearly, the (double) kinetic energy and impressed forces are, respectively,

$$
\begin{align*}
2 T & =m v^{2}=m(d s / d t)^{2}=m\left[(\dot{r})^{2}+r^{2}(\dot{\phi})^{2}+(\dot{z})^{2}\right] \tag{a}\\
Q_{r} & =0, \quad Q_{\phi}=0, \quad Q_{z}=-m g \tag{b}
\end{align*}
$$

and therefore, Lagrange's equations are (recall prob. 3.5.15)

$$
\begin{align*}
E_{r} & \equiv(\partial T / \partial \dot{r})^{\cdot}-\partial T / \partial r=m\left[\ddot{r}-r(\dot{\phi})^{2}\right]=0, \tag{c}\\
E_{\phi} & \equiv(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=m\left(r^{2} \dot{\phi}\right)^{\cdot}=0, \tag{d}\\
E_{z} & \equiv(\partial T / \partial \dot{z})^{\cdot}-\partial T / \partial z=m \ddot{z}=-m g \tag{e}
\end{align*}
$$

Next, assume that the particle is constrained to move on a smooth circular helix with axis z, radius R, and pitch p. Analytically, this means that now r, ϕ, z are coupled by the two constraints (assume that for $\phi=0, z=0$):

$$
\begin{equation*}
f_{1} \equiv r-R=0, \quad f_{2} \equiv z-p \phi=0 \quad(R, p: \text { positive constants }) . \tag{f}
\end{equation*}
$$

In this case, the kinetic energy (a) assumes the constrained form

$$
\begin{equation*}
T \rightarrow T_{o}=\cdots=(m / 2)\left(R^{2}+p^{2}\right)(\dot{\phi})^{2} \equiv T_{o}(\dot{\phi})=(m / 2)\left[1+(R / p)^{2}\right](\dot{z})^{2} \equiv T_{o}(\dot{z}) \tag{g}
\end{equation*}
$$

and, from $\delta^{\prime} W=-m g \delta z=-m g \delta(p \phi)=-m g p \delta \phi$, we readily conclude that, contrary to (b),

$$
\begin{equation*}
Q_{z, o}=-m g, \quad Q_{\phi, o}=-m g p \tag{h}
\end{equation*}
$$

Therefore, the kinetic $=$ reactionless equations are either of the following:

$$
\begin{gather*}
\left(\partial T_{o} / \partial \dot{\phi}\right)^{\cdot}-\partial T_{o} / \partial \phi=Q_{\phi, o}: \quad m\left(R^{2}+p^{2}\right) \ddot{\phi}=-m g p \tag{i}\\
\Rightarrow \phi=-\left[(g p) /\left(R^{2}+p^{2}\right)\right]\left(t^{2} / 2\right)+\dot{\phi}(0) t+\phi(0) \tag{i}
\end{gather*}
$$

$$
\begin{align*}
& \left(\partial T_{o} / \partial \dot{z}\right)^{\cdot}-\partial T_{o} / \partial z=Q_{z, o}: \quad m\left[1+(R / p)^{2}\right] \ddot{z}=-m g, \tag{ii}\\
& \quad \Rightarrow z=-\left[\left(g p^{2}\right) /\left(R^{2}+p^{2}\right)\right]\left(t^{2} / 2\right)+\dot{z}(0) t+z(0) \quad(=p \phi) .
\end{align*}
$$

To calculate the constraint reactions, we use the Routh-Voss equations

$$
\begin{gather*}
E_{k}(T)=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right) \equiv Q_{k}+R_{k} \\
(k=1,2,3 \rightarrow r, \phi, z ; D=1,2 ; \text { i.e., } n=3, m=2) \tag{m}
\end{gather*}
$$

These latter here give [using (a), (b) and (f), not (g); and then enforcing (f)]
$E_{r}=\lambda_{1}\left(\partial f_{1} / \partial r\right)+\lambda_{2}\left(\partial f_{2} / \partial r\right): m\left[\ddot{r}-r(\dot{\phi})^{2}\right]=\lambda_{1}(1)+\lambda_{2}(0) \quad$ or $\quad-m R(\dot{\phi})^{2}=\lambda_{1}$,
$E_{\phi}=\lambda_{1}\left(\partial f_{1} / \partial \phi\right)+\lambda_{2}\left(\partial f_{2} / \partial \phi\right): m\left(r^{2} \dot{\phi}\right)^{\cdot}=\lambda_{1}(0)+\lambda_{2}(-p)$ or $m R^{2} \ddot{\phi}=-p \lambda_{2}$,
$E_{z}=Q_{z}+\lambda_{1}\left(\partial f_{1} / \partial z\right)+\lambda_{2}\left(\partial f_{2} / \partial z\right): m \ddot{z}=-m g+\lambda_{1}(0)+\lambda_{2}(1)$ or $m \ddot{z}=-m g+\lambda_{2}$.

If $\left(F_{r}, F_{\phi}, F_{z}\right)=$ vector of constraint reaction on particle, from wire (in polar coordinates), then from the reaction virtual work invariance

$$
\delta^{\prime} W=F_{r} \delta r+F_{\phi}(R \delta \phi)+F_{z} \delta z=R_{r} \delta r+R_{\phi} \delta \phi+R_{z} \delta z \quad(=0)
$$

we readily obtain

$$
\begin{equation*}
R_{r}=\lambda_{1}=F_{r}, \quad R_{\phi}=-p \lambda_{2}=R F_{\phi}, \quad R_{z}=\lambda_{2}=F_{z}, \tag{q}
\end{equation*}
$$

and so ($\mathrm{n}-\mathrm{p}$) transform to

$$
\begin{equation*}
m R(\dot{\phi})^{2}=-F_{r}, \quad m R^{2} \ddot{\phi}=R F_{\phi}, \quad m \ddot{z}=-m g+F_{z}, \tag{r}
\end{equation*}
$$

and, from these [since $\lambda_{2}=-(R / p) F_{\phi}=F_{z} \Rightarrow-R F_{\phi}=p F_{z}$] and the second of (f), we get

$$
\begin{equation*}
-m R^{2} \ddot{\phi}=p(m \ddot{z}+m g) \Rightarrow m\left(R^{2}+p^{2}\right) \ddot{\phi}=-m g p ; \quad \text { i.e., eq. (i). } \tag{s}
\end{equation*}
$$

Solving ($\mathrm{i}=\mathrm{s}$), we find $\phi(t)$, and then inserting it into (r) we obtain $\left(F_{r}, F_{\phi}, F_{z}\right)$ and λ_{1}, λ_{2} as functions of time and the initial conditions. The reader may wish to discuss the limiting cases:

$$
p \rightarrow 0 \text { (i.e., helix } \rightarrow \text { circle of radius } R \text {) and } p \rightarrow \infty .
$$

Problem 3.5.21 Routh-Voss Equations: Plane Rolling. Consider two right circular and rough cylinders, C and C^{\prime}, with corresponding masses M and m, radii R and r, and horizontal (mutually parallel) axes O and O^{\prime}, in plane and slippingless rolling on each other. Assume, for simplicity, that C^{\prime} is stationary (fig. 3.10; initially, P and P^{\prime} coincide). Here, the constraints are

$$
\begin{equation*}
f_{1} \equiv \rho-(R+r) \equiv \rho-b=0(\text { contact }), \quad f_{2} \equiv b \phi-r \theta=0(\text { rolling }) . \tag{a}
\end{equation*}
$$

Figure 3.10 Cylinder C in a plane rolling over the fixed cylinder C^{\prime}. [Initially, $P=P^{\prime}$; rolling condition: $\operatorname{arc}(P Q)=\operatorname{arc}\left(Q^{\prime} P^{\prime}\right) \Rightarrow R \phi=r(\theta-\phi) \Rightarrow(R+r) \phi=r \theta$.]
(i) Show that the Routh-Voss equations, in $q_{1}=\rho, q_{2}=\phi, q_{3}=\theta$, and with $\lambda_{1} \equiv \lambda, \lambda_{2} \equiv \mu$ [i.e., $n=3$ and $m=2$, as long as C and C^{\prime} are in contact], are

$$
\begin{align*}
m \ddot{\rho} & =-m g \cos \phi+m \rho(\dot{\phi})^{2}+\left.\lambda(1)\right|_{\mathrm{eqs} .(\mathrm{a})} \Rightarrow \lambda=m g \cos \phi-m b(\dot{\phi})^{2} \tag{b}\\
\left(m \rho^{2} \dot{\phi}\right)^{\cdot} & =m g \rho \sin \phi+\left.\mu(b)\right|_{\text {eqs. (a) }} \Rightarrow \mu=m g \ddot{\phi}-m g \sin \phi \tag{c}\\
\left(m r^{2} / 2\right) \ddot{\theta} & =\left.\mu(-r)\right|_{\text {eqs. (a) }} \Rightarrow \mu=-(m b / 2) \ddot{\phi}=-(m r / 2) \ddot{\theta} \tag{d}
\end{align*}
$$

(ii) Eliminating μ between (c, d), obtain the kinetic equation

$$
\begin{equation*}
\ddot{\phi}=(2 g / 3 b) \sin \phi \tag{e}
\end{equation*}
$$

(iii) Show that (a) $\lambda=N=$ normal force from C^{\prime} to $C\left[>0\right.$, for $g \cos \phi>b(\dot{\phi})^{2}$, from eq. (b); if not, then $\lambda=0$]; and (b) $\mu=-F \Rightarrow F=-\mu=$ tangential (frictional) force from C^{\prime} to $C[\mu=-(m b / 2) \ddot{\phi}=-(m g / 3) \sin \phi<0$, by (e)].
(iv) Finally, find the critical angle at which C loses contact with C^{\prime}. (See also Fetter and Walecka, 1980, pp. 74-77.)

Example 3.5.12 Invariance of the Routh-Voss Equations under Frame of Reference Transformations. Let us consider a system subject to the Pfaffian (holonomic and/or nonholonomic) constraints

$$
\begin{equation*}
f_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0 \quad[D=1, \ldots, m(<n) ; k=1, \ldots, n], \tag{a}
\end{equation*}
$$

and, hence, having the Routh-Voss equations of motion

$$
\begin{equation*}
E_{k}(L)=Q_{k}+\sum \lambda_{D} a_{D k} \equiv Q_{k}+R_{k} \tag{b}
\end{equation*}
$$

where $L \equiv T-V=$ Lagrangean of system $[=-(V-T)=-($ kinetic potential $)$ of system, in 19th century terminology], and $Q_{k}=$ nonpotential impressed forces.

Now, let us subject its Lagrangean coordinates $q \equiv\left(q_{1}, \ldots, q_{n}\right)$ to the following general explicitly time-dependent and nonsingular (i.e., uniquely invertible) point transformation:

$$
\begin{equation*}
q_{k}=q_{k}\left(t ; q_{1^{\prime}}, \ldots, q_{n^{\prime}}\right) \Leftrightarrow q_{k^{\prime}}^{\prime} \equiv q_{k^{\prime}}=q_{k^{\prime}}\left(t ; q_{1}, \ldots, q_{n}\right), \tag{c}
\end{equation*}
$$

or, compactly, $q=q\left(t, q^{\prime}\right) \Leftrightarrow q^{\prime}=q^{\prime}(t, q)$. Let us express eqs. (b) in terms of the $q_{k^{\prime}} \mathrm{s}$. From (c), we readily find

$$
\begin{equation*}
d q_{s} / d t=\sum\left(\partial q_{s} / \partial q_{s^{\prime}}\right)\left(d q_{s^{\prime}} / d t\right)+\partial q_{s} / \partial t \quad \text { and } \quad \delta q_{s}=\sum\left(\partial q_{s} / \partial q_{s^{\prime}}\right) \delta q_{s^{\prime}} \tag{d}
\end{equation*}
$$

and so the constraints (a) transform to

$$
\begin{align*}
f_{D} & \equiv \sum a_{D k}\left(\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right)\left(d q_{k^{\prime}} / d t\right)+\partial q_{k} / \partial t\right)+a_{D}=\cdots \\
& =\sum a_{D k^{\prime}}\left(d q_{k^{\prime}} / d t\right)+a_{D}^{\prime}=0 \tag{e}
\end{align*}
$$

where [recalling (2.6.6-6b)]

$$
\begin{equation*}
a_{D k^{\prime}} \equiv \sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) a_{D k}, \quad a_{D}^{\prime} \equiv \sum\left(\partial q_{s} / \partial t\right) a_{D s}+a_{D} \tag{f}
\end{equation*}
$$

Next, to the left side of (b). Applying the chain rule to $L(t, q, d q / d t)=$ $L^{\prime}\left(t, q^{\prime}, d q^{\prime} / d t\right): \quad q^{\prime}$-Lagrangean, and, with the helpful notations $d q_{k} / d t \equiv v_{k}$, $d q_{k^{\prime}} / d t \equiv v_{k^{\prime}}$, we obtain

$$
\begin{align*}
& \partial L^{\prime} / \partial v_{s^{\prime}}=\sum\left(\partial L / \partial v_{s}\right)\left(\partial v_{s} / \partial v_{s^{\prime}}\right)=\sum\left(\partial L / \partial v_{s}\right)\left(\partial q_{s} / \partial q_{s^{\prime}}\right) \tag{g1}\\
& \partial L^{\prime} / \partial q_{s^{\prime}}=\sum\left(\partial L / \partial q_{s}\right)\left(\partial q_{s} / \partial q_{s^{\prime}}\right)+\sum\left(\partial L / \partial v_{s}\right)\left(\partial v_{s} / \partial q_{s^{\prime}}\right) \tag{g2}
\end{align*}
$$

But, from (c, d), and in addition to $\partial v_{s} / \partial v_{s^{\prime}}=\partial q_{s} / \partial q_{s^{\prime}}$ [utilized in (g1)], we also have

$$
\begin{aligned}
\partial v_{s} / \partial q_{s^{\prime}} & =\left(\partial / \partial q_{s^{\prime}}\right)\left(\sum\left(\partial q_{s} / \partial q_{k^{\prime}}\right) v_{k^{\prime}}+\partial q_{s} / \partial t\right) \\
& =\sum\left(\partial^{2} q_{s} / \partial q_{s^{\prime}} \partial q_{k^{\prime}}\right) v_{k^{\prime}}+\partial^{2} q_{s} / \partial q_{s^{\prime}} \partial t=\left(\partial q_{s} / \partial q_{s^{\prime}}\right)^{\prime}
\end{aligned}
$$

that is,

$$
\begin{equation*}
E_{s^{\prime}}\left(v_{s}\right) \equiv d / d t\left(\partial v_{s} / \partial v_{s^{\prime}}\right)-\partial v_{s} / \partial q_{s^{\prime}}=0 \quad[\text { recalling }(2.5 .7-10)] \tag{h}
\end{equation*}
$$

Thanks to these identities and (g1, 2) we find, successively,

$$
\begin{align*}
\left(\partial L^{\prime} / \partial v_{s^{\prime}}\right)^{\cdot}-\partial L^{\prime} / \partial q_{s^{\prime}}= & \left(\sum\left(\partial L / \partial v_{s}\right)^{\cdot}\left(\partial q_{s} / \partial q_{s^{\prime}}\right)+\sum\left(\partial L / \partial v_{s}\right)\left(\partial q_{s} / \partial q_{s^{\prime}}\right)^{\cdot}\right) \\
& -\left(\sum\left(\partial L / \partial q_{s}\right)\left(\partial q_{s} / \partial q_{s^{\prime}}\right)+\sum\left(\partial L / \partial v_{s}\right)\left(\partial q_{s} / \partial q_{s^{\prime}}\right) \cdot\right. \\
= & \sum\left[\left(\partial L / \partial \dot{q}_{s}\right)^{\cdot}-\partial L / \partial q_{s}\right]\left(\partial q_{s} / \partial q_{s^{\prime}}\right)[\text { invoking }(\mathrm{b}, \text { a) and (f) })] \\
= & \sum\left(Q_{s}+\sum \lambda_{D} a_{D s}\right)\left(\partial q_{s} / \partial q_{s^{\prime}}\right) \equiv Q_{s^{\prime}}+\sum \lambda_{D} a_{D s^{\prime}}, \quad \text { (i) } \tag{i}
\end{align*}
$$

or, compactly,

$$
\begin{equation*}
E_{s^{\prime}}\left(L^{\prime}\right)=Q_{s^{\prime}}+\sum \lambda_{D} a_{D s^{\prime}} \equiv Q_{s^{\prime}}+R_{s^{\prime}} \tag{j}
\end{equation*}
$$

where $Q_{s^{\prime}} \equiv \sum\left(\partial q_{s} / \partial q_{s^{\prime}}\right) Q_{s}$. [The latter can also be established from the virtual work invariance: $\delta^{\prime} W \equiv \sum Q_{k} \delta q_{k}=\sum Q_{k^{\prime}} \delta q_{k^{\prime}}$ and the second of eq. (d).]

Notice that (j) amounts to $\lambda_{D^{\prime}}^{\prime} \rightarrow \lambda_{D^{\prime}}=\lambda_{D}$; that is, the multipliers are invariant, or objective, under the frame of reference transformation (c). Equations (j) express the following fundamental theorem.

THEOREM

The Routh-Voss equations transform like a covariant vector under general frame of reference transformations $q \rightarrow q^{\prime}(t, q)$; that is, these equations are form invariant not only under arbitrary Lagrangean coordinate transformations in a given frame, but also under arbitrary frame of reference transformations (whereas the Newton-Euler equations are not!).

As already stated on several occasions, this twofold form invariance of the equations of motion constitutes the major advantage of "Lagrange" over "NewtonEuler."

Example 3.5.13 Uniqueness of the Lagrangean, Introduction to Gyroscopicity, etc. Let us consider two distinct Lagrangeans, L and L^{\prime}, which, however, produce the same (Lagrangean) equations of motion; that is,

$$
\begin{equation*}
E_{k}(L)=E_{k}\left(L^{\prime}\right) \quad\left(=0, \text { or } Q_{k}, \quad \text { or } \quad Q_{k}+R_{k}\right) \tag{a}
\end{equation*}
$$

We ask the questions: By what amount can L and L^{\prime} differ at most (so that we work with the simplest of them)? or, How unique is a system Lagrangean? To answer these, we assume that

$$
\begin{equation*}
L^{\prime}-L=f(t, q, d q / d t \equiv v) \tag{b}
\end{equation*}
$$

and then try to find as much as possible about f.
Indeed, since $E_{k}(\ldots)$ is a linear operator, (a) and (b) lead to

$$
\begin{gather*}
0=E_{k}\left(L^{\prime}-L\right)=E_{k}\left(L^{\prime}\right)-E_{k}(L)=E_{k}(f) \equiv d / d t\left(\partial f / \partial v_{k}\right)-\partial f / \partial q_{k} \\
=\sum\left[\left(\partial / \partial q_{s}\right)\left(\partial f / \partial v_{k}\right)\right] v_{s}+\sum\left[\left(\partial / \partial v_{s}\right)\left(\partial f / \partial v_{k}\right)\right]\left(d v_{s} / d t\right) \\
+(\partial / \partial t)\left(\partial f / \partial v_{k}\right)-\partial f / \partial q_{k} \tag{c}
\end{gather*}
$$

However, since L and L^{\prime} must produce the same accelerations (i.e., the same $\sim d v / d t \equiv d^{2} q / d t^{2}$ terms), the corresponding coefficients in (c) must vanish: $\partial^{2} f / \partial v_{s} \partial v_{k}=0$. This leads readily to

$$
\begin{equation*}
f=\sum C_{s} v_{s}+C \tag{d}
\end{equation*}
$$

where $C_{s}=C_{s}(t, q)$ and $C=C(t, q)$ are arbitrary but sufficiently differentiable functions of the q 's and t. Substituting (d) into (c), we obtain

$$
\begin{equation*}
E_{r}(f)=\sum\left(\partial C_{r} / \partial q_{s}-\partial C_{s} / \partial q_{r}\right)\left(d q_{s} / d t\right)+\left(\partial C_{r} / \partial t-\partial C / \partial q_{r}\right)=0 \tag{e}
\end{equation*}
$$

and, since this must hold for arbitrary $(d q / d t)$'s we conclude that

$$
\begin{equation*}
\partial C_{r} / \partial q_{s}-\partial C_{s} / \partial q_{r}=0 \quad \text { and } \quad \partial C_{r} / \partial t-\partial C / \partial q_{r}=0, \quad \text { for all } r, s=1, \ldots, n \tag{f}
\end{equation*}
$$

These exactness conditions (recalling § 2.3), in turn, imply the existence of a gauge function $F(t, q)$, such that

$$
\begin{equation*}
C_{r}=\partial F / \partial q_{r} \quad \text { and } \quad C=\partial F / \partial t ; \tag{g}
\end{equation*}
$$

and so, (d) reduces to

$$
\begin{equation*}
f=\cdots=d F(t, q) / d t ; \tag{h}
\end{equation*}
$$

that is, L and $L^{\prime}=L+d F / d t$ will produce the same equations of motion.
In sum: The Lagrangean function is defined only to within the total time-derivative of an arbitrary function of the Lagrangean coordinates and time. It follows that constant terms, or terms of the form $f(t)$, can be immediately neglected from a Lagrangean with no consequences on the equations of motion.

Generalized Potential, Gyroscopic Forces

A similar argument shows that if some (or all) of the Q_{k} 's are expressible in terms of a generalized potential $V=V(t, q, \dot{q} \equiv v)$ as

$$
\begin{equation*}
Q_{k}=d / d t\left(\partial V / \partial v_{k}\right)-\partial V / \partial q_{k}, \tag{i}
\end{equation*}
$$

then the most general such V must be linear in the v 's:

$$
\begin{equation*}
V=\sum V_{s}(t, q) v_{s}+V^{(0)}(t, q) \tag{j}
\end{equation*}
$$

Indeed, by (i), $Q_{k}=\cdots=\sum\left(\partial^{2} V / \partial v_{k} \partial v_{s}\right)\left(d v_{s} / d t\right)+(t, q, v)$-terms. But, in classical mechanics, $Q_{k}=Q_{k}(t, q, v)$, and therefore $\partial^{2} V / \partial v_{k} \partial v_{s}=0$, from which (j) follows. So substituting (j) into (i), we see that such forces take the explicit form

$$
\begin{equation*}
Q_{k}=\cdots=-\partial V^{(0)} / \partial q_{k}+\sum\left(\partial V_{k} / \partial q_{l}-\partial V_{l} / \partial q_{k}\right) \dot{q}_{l}+\partial V_{k} / \partial t \tag{k}
\end{equation*}
$$

Here, we introduce a new definition.

DEFINITION

The (non-constraint) forces with vanishing power-that is, $\sum Q_{k} \dot{q}_{k} \equiv \sum Q_{k} v_{k}=0$ - are called gyroscopic. Then, since $\sum \sum\left(\partial V_{k} / \partial q_{l}-\partial V_{l} / \partial q_{k}\right) v_{l} v_{k}=0$ [due to the antisymmetry of the (...) terms in $k, l]$, it follows that if

$$
\begin{equation*}
\sum\left(\partial V_{k} / \partial t\right) v_{k}=0 \quad \text { and } \quad \sum\left(\partial V^{(0)} / \partial q_{k}\right) v_{k}=d V^{(0)} / d t-\partial V^{(0)} / \partial t=0 \tag{1}
\end{equation*}
$$

then the generalized potential forces (i, k) are gyroscopic. (Gyroscopicity is detailed in $\S 3.9 \mathrm{ff}$.)

Next, let us illustrate the theorem of the uniqueness of the Lagrangean by a few simple examples.
(i) Consider a particle P of mass m free to slide along a massless smooth and rigid $\operatorname{rod} O A$, which rotates, say clockwise, about a horizontal axis through O (i.e., on a vertical plane) with a given motion $\phi=\phi(t)=$ known function of time (fig. 3.11).

It is not hard to show that a Lagrangean for this system is

$$
\begin{equation*}
L^{\prime}=(m / 2)\left[\left(r_{o}+r\right)^{2}(\dot{\phi})^{2}+(\dot{r})^{2}\right]-\left[-m g\left(r_{o}+r\right) \sin \phi\right], \tag{m}
\end{equation*}
$$

where B is any "origin" on $O A\left[r_{o}=\right.$ constant, $\left.q=r=r(t)\right]$. By the foregoing theory, the Lagrangean $L=L^{\prime}-m g r_{o} \sin \phi(t)$ will result in the same equation of motion for $q_{1}=r$ as L^{\prime} :

$$
\begin{equation*}
E_{r}(L)=E_{r}\left(L^{\prime}\right): \quad \ddot{r}-(\dot{\phi})^{2} r=g \sin \phi+r_{o}(\dot{\phi})^{2} . \tag{n}
\end{equation*}
$$

That, however, would not be the case if $O A$ was unconstrained; then, $q_{2}=\phi$.

Figure 3.11 Particle P sliding over a rotating rod $O A$, which rotates in a prescribed way about a horizontal axis through O.

Figure 3.12 Two inertial frames in relative motion, assuming that at time $t=0$ their origins, O_{1} and O_{2}, coincide.
(ii) Consider the motion of a particle P of mass m in two inertial frames of reference, F_{1} and F_{2}, in relative motion; say, F_{1} moving with (vectorially) constant velocity $\boldsymbol{v}_{1 / 2}$ relative to F_{2} (fig. 3.12). If we assume, for simplicity, but no loss of generality, that $V=0$ and/or $Q_{k}=0$, then the Lagrangean of P in F_{2}, which is L_{2}, equals

$$
\begin{align*}
L_{2} & =(m / 2) \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{2}=(m / 2)\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{1 / 2}\right) \cdot\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{1 / 2}\right) \\
& =(m / 2) \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}+m \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1 / 2}+(m / 2) \boldsymbol{v}_{1 / 2} \cdot \boldsymbol{v}_{1 / 2} \\
& =L_{1}+d f / d t \equiv L_{1}+F, \tag{o}
\end{align*}
$$

where

$$
\begin{equation*}
L_{1}=(m / 2) \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}, \quad f=m \boldsymbol{r}_{1} \cdot \boldsymbol{v}_{1 / 2}+(m / 2)\left(\boldsymbol{v}_{1 / 2} \cdot \boldsymbol{v}_{1 / 2}\right) t \tag{o1}
\end{equation*}
$$

Clearly, both Lagrangeans produce the same (i.e., equivalent) equations of motion ("principle" of Galilean relativity):

$$
\begin{array}{ll}
\left(\partial L_{2} / \partial \boldsymbol{v}_{2}\right)^{\cdot}-\partial L_{2} / \partial \boldsymbol{r}_{2}=\mathbf{0}: & d\left(m \boldsymbol{v}_{2}\right) / d t=\mathbf{0} \\
\left(\partial L_{1} / \partial \boldsymbol{v}_{1}\right)^{\cdot}-\partial L_{1} / \partial \boldsymbol{r}_{1}=\mathbf{0}: & d\left(m \boldsymbol{v}_{1}\right) / d t=\mathbf{0} \tag{p2}
\end{array}
$$

(iii) Let us extend the preceding example to the case of general translation; that is,

$$
\begin{equation*}
\boldsymbol{v}_{1 / 2}=\boldsymbol{v}_{1 / 2}(t) \tag{q}
\end{equation*}
$$

Here, we have, successively,

$$
\begin{aligned}
L_{2}= & (m / 2) \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{2}=(m / 2)\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{1 / 2}\right) \cdot\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{1 / 2}\right) \\
= & (m / 2) \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}+m \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1 / 2}+(m / 2) \boldsymbol{v}_{1 / 2} \cdot \boldsymbol{v}_{1 / 2} \\
= & (m / 2) \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}+(m / 2) \boldsymbol{v}_{1 / 2} \cdot \boldsymbol{v}_{1 / 2}+\left[\left(m \boldsymbol{r}_{1} \cdot \boldsymbol{v}_{1 / 2}\right)^{\cdot}-m \boldsymbol{r}_{1} \cdot\left(d \boldsymbol{v}_{1 / 2} / d t\right)\right] \\
= & L_{1}+ \\
& + \text { given function of time (i.e., omittable) } \\
& + \text { total derivative of function of position and time (i.e., omittable) } \\
& -m \boldsymbol{r}_{1} \cdot\left(d \boldsymbol{v}_{1 / 2} / d t\right)
\end{aligned}
$$

and so, to within "L-important" terms,

$$
\begin{equation*}
L_{2}=L_{1}-m \boldsymbol{r}_{1} \cdot\left(d \boldsymbol{v}_{1 / 2} / d t\right) \equiv L_{1}-m \boldsymbol{r}_{1} \cdot \boldsymbol{a}_{1 / 2} . \tag{r}
\end{equation*}
$$

[In the earlier, Galilean case, clearly, $\boldsymbol{a}_{1 / 2}=\mathbf{0}$.] The corresponding Lagrangean equations are

$$
\begin{gather*}
\left(\partial L_{2} / \partial \boldsymbol{v}_{2}\right)^{*}-\partial L_{2} / \partial \boldsymbol{r}_{2}=\mathbf{0}: \quad d\left(m \boldsymbol{v}_{2}\right) / d t=\mathbf{0} \Rightarrow m \boldsymbol{a}_{2}=\mathbf{0}, \tag{s1}\\
\left(\partial L_{1} / \partial \boldsymbol{v}_{1}\right)-\partial L_{1} / \partial \boldsymbol{r}_{1}=\mathbf{0}: \quad d\left(m \boldsymbol{v}_{1}\right) / d t-\left(-m \boldsymbol{a}_{1 / 2}\right)=\mathbf{0} \\
\Rightarrow m \boldsymbol{a}_{1}=-m \boldsymbol{a}_{1 / 2}(=" \text { transport force" }) ; \tag{s2}
\end{gather*}
$$

that is, F_{2} is noninertial.

Example 3.5.14 On the Physical Significance of the Lagrangean Multipliers [May be omitted in a first reading]. Let us consider an n DOF system with kinetic and potential energies T and V, respectively, no nonpotential impressed forces, but subject to the holonomic constraints

$$
\begin{equation*}
f_{D}=f_{D}\left(q_{1}, \ldots, q_{n}\right) \equiv f_{D}(q)=0 \quad[D=1, \ldots, m(<n)] . \tag{a}
\end{equation*}
$$

Its Routh-Voss equations of motion (with $k=1, \ldots, n$)

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=-\left(\partial V / \partial q_{k}\right)+\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right) \equiv Q_{k}+R_{k} \tag{b}
\end{equation*}
$$

can, clearly, be rewritten in the multiplierless/kinetic form

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=-\left(\partial V_{T} / \partial q_{k}\right) \tag{c}
\end{equation*}
$$

where

$$
V_{T} \equiv V+V_{C}=V-\sum \lambda_{D}(t) f_{D}(q)
$$

in words:

$$
\begin{equation*}
\text { Total potential }=\text { Ordinary potential }+ \text { "Constraint potential"; } \tag{d}
\end{equation*}
$$

that is, the holonomic constraint reactions can be brought to the potential (impressed) force form

$$
\begin{equation*}
R_{k}=-\partial V_{C} / \partial q_{k}=-\left(\partial / \partial q_{k}\right)\left(-\sum \lambda_{D} f_{D}\right)=\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right)=R_{k}(t, q) \tag{e}
\end{equation*}
$$

The apparent contradiction of a conservative system [since $\partial V / \partial t=0$ and $\partial f_{D} / \partial t=0$ (more in §3.9)] containing explicitly time-dependent forces [i.e., $\left.\partial R_{k} / \partial t=\sum\left(d \lambda_{D} / d t\right)\left(\partial f_{D} / \partial q_{K}\right) \neq 0\right]$ is explained by the fact that the constraint potential $V_{C}=-\sum \lambda_{D} f_{D}$ is known only along the trajectory curve of the figurative system point, in configuration space; and not throughout the allowable domain of the q 's there, like $V(q)$. Below, elaborating the above, we interpret the constraint reactions as limiting cases of elastic (potential) forces whose stiffnesses tend to infinity, something which is in agreement with the principle of relaxation of the constraints (§3.7); and in the process we obtain an interesting physical interpretation of the Lagrangean multipliers.

Let us consider, for simplicity, but no loss of generality, the case of a single constraint (i.e., $m=1$)

$$
\begin{equation*}
f=f\left(q_{1}, \ldots, q_{n}\right) \equiv f(q)=0 \tag{f}
\end{equation*}
$$

Now, since this constraint is maintained by strong forces, during actual system motions equation (f) cannot be violated by a large amount. Therefore, the potential of the (reaction turned impressed) forces maintaining (f), $\Pi(f)$, can be written with sufficient accuracy as the following finite Taylor series around $f=0$ [with $\left.(\ldots)^{\prime} \equiv d(\ldots) / d f\right]:$

$$
\begin{equation*}
\Pi=\Pi(f)=\Pi(0)+\Pi^{\prime}(0) f+(1 / 2) \Pi^{\prime \prime}(0) f^{2} \tag{g}
\end{equation*}
$$

and since these forces can be likened, for small f, to very stiff elastic forces, we must also have

$$
\begin{equation*}
\Pi^{\prime}(0)=0 \quad \text { and } \quad \Pi^{\prime \prime}(0) \equiv 1 / \varepsilon>0 \tag{h}
\end{equation*}
$$

where $\varepsilon=$ small positive constant; so that the constraint (f) is maintained by strong forces (theoretically, $\varepsilon \rightarrow 0$). Hence, and neglecting the immaterial constant $\Pi(0)$, we have for small f 's,

$$
\begin{equation*}
\Pi(f)=f^{2} / 2 \varepsilon \tag{i}
\end{equation*}
$$

in which case the corresponding spring-like force equals

$$
\begin{equation*}
-\partial \Pi / \partial q_{k}=-(f / \varepsilon)\left(\partial f / \partial q_{k}\right) ; \tag{j}
\end{equation*}
$$

and since this must equal the Lagrangean constraint reaction (e), that is,

$$
\begin{equation*}
R_{k}=-\partial V_{C} / \partial q_{k}=-\left(\partial / \partial q_{k}\right)(-\lambda f)=\lambda\left(\partial f / \partial q_{k}\right) \tag{k}
\end{equation*}
$$

comparing (j, k), we immediately conclude that

$$
\begin{equation*}
\lambda=-f / \varepsilon \equiv \lambda(f ; \varepsilon) \tag{1}
\end{equation*}
$$

that is, λ is a measure of the (time-dependent) violation of the constraint $f=0$; and in the theoretical limit of analytical mechanics, $\varepsilon \rightarrow 0$ and $f \rightarrow 0$,

$$
\begin{equation*}
\lambda=-\lim (f / \varepsilon)=\text { force caused by a linear elastic spring of infinite stiffness }(1 / \varepsilon) . \tag{m}
\end{equation*}
$$

Application of these ideas to the plane motion of a particle of, say, unit mass under the constraint $f(x, y)=0$ (plane curve, in rectangular Cartesian coordinates x, y), and, for simplicity, no impressed forces, yields the equations

Constrained Lagrangean eqs: $\quad \ddot{x}=\lambda(\partial f / \partial x), \quad \ddot{y}=\lambda(\partial f / \partial y)$,
Unconstrained Newton-Euler eqs: $\ddot{x}=-(1 / \varepsilon)(\partial w / \partial x), \quad \ddot{y}=-(1 / \varepsilon)(\partial w / \partial y)$, (o) where (fig. 3.13)

$$
\begin{equation*}
\Pi \approx V_{C}=V_{C}(f ; \varepsilon)=w / \varepsilon=(1 / \varepsilon) f^{2}=(f / \varepsilon) f=-\lambda f \tag{p}
\end{equation*}
$$

that is, for small ε, V_{C} represents a steep potential gully whose bottom coincides with the constraint curve $f=0$.

Figure 3.13 Constraint potential as a steep potential gully whose bottom coincides with the constraint curve $f=0$.

A detailed analysis of whether and how, as $\varepsilon \rightarrow 0$ (limit of infinite stiffness), the solutions of (o) tend to those of (n), carried out by Kampen and Lodder, shows that for this to happen
[T]he applied forces [must] vary smoothly compared with the periods of the internal elastic vibrations in the rods and bodies responsible for the constraints. If that is not satisfied one cannot treat these bodies as rigid, but must include their internal vibrations as additional degrees of freedom in the description of the system. Lagrange's equations apply to a pendulum that I have set in motion with my hand, but not when I have hit it with a hammer ... or when it is set in motion by an escapement. (Kampen and Lodder, 1984, pp. 420-421, emphasis added)

For further details and insights, see, for example, Arnold (1974, §17), Kampen and Lodder (1984; and references cited therein); also Gallavotti (1983, p. 168 ff .), Lanczos (1962, chap. 24, pp. 11-12; 1970, pp. 141-145), and Park (1990, pp. 60-61).

Example 3.5.15 Maggi Equations (Holonomic Constraints). Let us formulate the kinetic and kinetostatic rotational Maggi equations for a thin homogeneous bar $A B$ [of length $|\boldsymbol{A B}|=2$, and moment of inertia about a(ny) axis through its mass center G, perpendicular to its length, I], in arbitrary spatial motion, under gravity, in terms of the direction cosines of the bar α, β, γ relative to fixed (inertial) axes $O-x y z$; or, equivalently, relative to comoving/translating but nonrotating axes $G-x y z$ (fig. 3.14) (Ramsey, 1937, p. 234).

Here, only the rotational part of the kinetic energy of the bar is needed. Choosing as Lagrangean rotational coordinates $q_{1}=\alpha, q_{2}=\beta, q_{2}=\gamma$, we readily obtain from geometry
$\alpha=\sin \theta \cos \phi, \quad \beta=\sin \theta \sin \phi, \quad \gamma=\cos \theta, \quad$ and $\quad \alpha^{2}+\beta^{2}+\gamma^{2}=1 \quad$ (constraint),
that is, $n=3, m=1$. Hence, using König's theorem, the Eulerian angle kinematics (§1.12), and with the usual notations $\left[\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\right.$ inertial angular velocity of bar, along its principal axes $G-123$ ($G-1$: along bar, $G-2,3$: perpendicular to it), and

Figure 3.14 Geometry of homogeneous bar in arbitrary spatial motion.
$I_{1,2,3}=$ principal moments of inertia there], we find for the (double) rotational kinetic energy of the bar

$$
\begin{align*}
2 T & =I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2} \\
& =(0)(\dot{\psi}+\dot{\phi} \cos \theta)^{2}+(I)(\dot{\theta})^{2}+(I)(\dot{\phi} \sin \theta)^{2}=I\left[(\dot{\theta})^{2}+\sin ^{2} \theta(\dot{\phi})^{2}\right] \tag{b}
\end{align*}
$$

To implement Maggi's equations, we need to express T in terms of α, β, γ and their (...) '-derivatives. Indeed, using (a) we find, successively,

$$
\begin{equation*}
\sin ^{2} \theta=1-\cos ^{2} \theta=1-\gamma^{2}=\alpha^{2}+\beta^{2} \tag{i}
\end{equation*}
$$

$$
(\dot{\gamma})^{2}=(-\sin \theta \dot{\theta})^{2}=\sin ^{2} \theta(\dot{\theta})^{2}=\left(\alpha^{2}+\beta^{2}\right)(\dot{\theta})^{2} ;
$$

(iii)

$$
\begin{align*}
(\alpha \dot{\beta}-\dot{\alpha} \beta)= & (\sin \theta \cos \phi)[(\cos \theta \sin \phi) \dot{\theta}+\alpha \dot{\phi}] \\
& -(\sin \theta \sin \phi)[(\cos \theta \cos \phi) \dot{\theta}-\beta \dot{\phi}] \\
= & \cdots=\left(\alpha^{2}+\beta^{2}\right) \dot{\phi} \tag{e}
\end{align*}
$$

(iv)

$$
\begin{equation*}
\chi \equiv(\alpha \dot{\beta}-\dot{\alpha} \beta)^{2}+(\alpha \dot{\alpha}+\beta \dot{\beta})^{2}=\cdots=\left(\alpha^{2}+\beta^{2}\right)\left[(\dot{\alpha})^{2}+(\dot{\beta})^{2}\right] \tag{f}
\end{equation*}
$$

but, also [invoking the fourth of eq. (a)]

$$
\begin{equation*}
\chi=(\alpha \dot{\beta}-\dot{\alpha} \beta)^{2}+\gamma^{2}(\dot{\gamma})^{2} \tag{g}
\end{equation*}
$$

and so equating the right sides of (f) and (g), adding $(\dot{\gamma})^{2}$ to both, and rearranging, we get

$$
\begin{align*}
(\alpha \dot{\beta}-\dot{\alpha} \beta)^{2}+(\dot{\gamma})^{2} & =\left(\alpha^{2}+\beta^{2}\right)\left[(\dot{\alpha})^{2}+(\dot{\beta})^{2}\right]+(\dot{\gamma})^{2}\left(1-\gamma^{2}\right) \\
& =\cdots=\left(\alpha^{2}+\beta^{2}\right)\left[(\dot{\alpha})^{2}+(\dot{\beta})^{2}+(\dot{\gamma})^{2}\right] . \tag{h}
\end{align*}
$$

As a result of the above $[(\mathrm{d}) \rightarrow(\mathrm{c}) \rightarrow(\mathrm{e}) \rightarrow(\mathrm{h})$], the kinetic energy (b) becomes, successively,

$$
\begin{align*}
2 T & =I\left\{(\dot{\gamma})^{2} /\left(\alpha^{2}+\beta^{2}\right)+\left(\alpha^{2}+\beta^{2}\right)\left[(\alpha \dot{\beta}-\dot{\alpha} \beta)^{2} /\left(\alpha^{2}+\beta^{2}\right)^{2}\right]\right\} \\
& =I\left\{\left[(\alpha \dot{\beta}-\dot{\alpha} \beta)^{2}+(\dot{\gamma})^{2}\right] /\left(\alpha^{2}+\beta^{2}\right)\right\} \\
& =I\left[(\dot{\alpha})^{2}+(\dot{\beta})^{2}+(\dot{\gamma})^{2}\right] . \tag{i}
\end{align*}
$$

Next, we introduce the new (holonomic) coordinates:

$$
\begin{equation*}
f_{1} \equiv \alpha^{2}+\beta^{2}+\gamma^{2}-1 \quad(=0), \quad f_{2} \equiv \beta \quad(\neq 0), \quad f_{3} \equiv \gamma \quad(\neq 0) \tag{j}
\end{equation*}
$$

which invert easily to (no constraint enforcement yet!)

$$
\begin{equation*}
\alpha^{2}=1+f_{1}-\left(f_{2}\right)^{2}-\left(f_{3}\right)^{2}, \quad \beta=f_{2}, \quad \gamma=f_{3} \tag{k}
\end{equation*}
$$

Now, with the useful notation $M_{k} \equiv\left[\left(\partial T / \partial \dot{q}_{k}\right)^{-}-\partial T / \partial q_{k}\right]-Q_{k} \equiv E_{k}-Q_{k}=$ $E_{k}+\partial V / \partial q_{k}$, where $V=V\left(q_{k}: \alpha, \beta, \gamma\right)=$ potential energy, Maggi's equations yield

Kinetostatic:

$$
\begin{align*}
f_{1}: & \left(\partial \alpha / \partial f_{1}\right) M_{\alpha}+\left(\partial \beta / \partial f_{1}\right) M_{\beta}+\left(\partial \gamma / \partial f_{1}\right) M_{\gamma}=\lambda_{1} \\
& \Rightarrow(1 / 2 \alpha) M_{\alpha}=\lambda_{1} \Rightarrow(1 / \alpha)(I \ddot{\alpha}+\partial V / \partial \alpha)=2 \lambda_{1} \tag{1}
\end{align*}
$$

Kinetic:

$$
\begin{align*}
f_{2}: \quad\left(\partial \alpha / \partial f_{2}\right) M_{\alpha}+\left(\partial \beta / \partial f_{2}\right) M_{\beta}+ & \left(\partial \gamma / \partial f_{2}\right) M_{\gamma}=0 \\
\Rightarrow(-\beta / \alpha) M_{\alpha}+M_{\beta}=0 \Rightarrow & (1 / \alpha)(I \ddot{\alpha}+\partial V / \partial \alpha) \\
& =(1 / \beta)(I \ddot{\beta}+\partial V / \partial \beta) ; \tag{m}
\end{align*}
$$

$$
\begin{align*}
f_{3}: \quad\left(\partial \alpha / \partial f_{3}\right) M_{\alpha}+\left(\partial \beta / \partial f_{3}\right) M_{\beta}+ & \left(\partial \gamma / \partial f_{3}\right) M_{\gamma}=0, \\
\Rightarrow(-\gamma / \alpha) M_{\alpha}+M_{\gamma}=0 \Rightarrow & (1 / \alpha)(I \ddot{\alpha}+\partial V / \partial \alpha) \\
& =(1 / \gamma)(I \ddot{\gamma}+\partial V / \partial \gamma) ; \tag{n}
\end{align*}
$$

and from these we immediately obtain the more symmetric form

$$
\begin{equation*}
(1 / \alpha)(I \ddot{\alpha}+\partial V / \partial \alpha)=(1 / \beta)(I \ddot{\beta}+\partial V / \partial \beta)=(1 / \gamma)(I \ddot{\gamma}+\partial V / \partial \gamma)=2 \lambda_{1} . \tag{o}
\end{equation*}
$$

If only the motion is sought, we combine (k, l) with the constraint (a); then, if the reaction $\lambda_{1}(t)$ is needed, it can be found from (j).

It is not hard to see that the Routh-Voss equations of this problem are

$$
\begin{equation*}
M_{\alpha}=\lambda_{1}(2 \alpha), \quad M_{\beta}=\lambda_{1}(2 \beta), \quad M_{\gamma}=\lambda_{1}(2 \gamma), \quad \text { i.e., eqs. }(\mathrm{m}) \tag{p}
\end{equation*}
$$

Other f-coordinate choices would have led to different, but equivalent, λ 's and equations of motion.

Problem 3.5.22 Maggi Equations. Formulate both kinetic and kinetostatic Maggi equations for a particle constrained to move on a smooth circular helix (ex. 3.5.11), for the following choice of coordinates:

$$
\begin{equation*}
f_{1} \equiv r-R(=0), \quad f_{2} \equiv z-p \phi(=0), \quad f_{3} \equiv z(\neq 0) \tag{a}
\end{equation*}
$$

HINT
After (...) -differentiating (a), we easily conclude that here the nonvanishing elements of $\left(a_{k l}\right)$ are $a_{11}=a_{23}=a_{33}=1, a_{22}=-p$; and, therefore, the nonvanishing elements of its inverse matrix [(i.e., the Maggi equation coefficients) $=\left(A_{k l}\right)$], are $A_{11}=A_{33}=1, A_{22}=-A_{23}=-1 / p$.

Problem 3.5.23 Maggi Equations. Repeat the preceding problem, but for the following choice of coordinates:

$$
\begin{equation*}
f_{1} \equiv r-R(=0), \quad f_{2} \equiv z-p \phi(=0), \quad f_{3} \equiv \phi(\neq 0) \tag{a}
\end{equation*}
$$

Problem 3.5.24 Euler's Equations via Lagrange's Equations. Consider, for simplicity, but no real loss in generality, the force-free motion of a rigid body B rotating about a fixed point O. With the help of the $\omega_{1,2,3} \Leftrightarrow \dot{\phi}, \dot{\theta}, \dot{\psi}$ relationships (§1.12), where $O-123$ are principal axes of B at O, show that the Lagrangean equations for ϕ, θ, ψ, lead to Euler's equations (\$1.17).

HINT
Since $2 T=I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2}=2 T\left(\omega_{1,2,3}\right)=2 T^{*}$, we find, successively,

$$
\begin{align*}
\partial T / \partial \dot{\psi} & =\left(\partial T^{*} / \partial \omega_{1}\right)\left(\partial \omega_{1} / \partial \dot{\psi}\right)+\left(\partial T^{*} / \partial \omega_{2}\right)\left(\partial \omega_{2} / \partial \dot{\psi}\right)+\left(\partial T^{*} / \partial \omega_{3}\right)\left(\partial \omega_{3} / \partial \dot{\psi}\right) \\
& =\left(I_{1} \omega_{1}\right)(0)+\left(I_{2} \omega_{2}\right)(0)+\left(I_{3} \omega_{3}\right)(1)=I_{3} \omega_{3} \tag{a}\\
\partial T / \partial \psi & =\left(\partial T^{*} / \partial \omega_{1}\right)\left(\partial \omega_{1} / \partial \psi\right)+\left(\partial T^{*} / \partial \omega_{2}\right)\left(\partial \omega_{2} / \partial \psi\right)+\left(\partial T^{*} / \partial \omega_{3}\right)\left(\partial \omega_{3} / \partial \psi\right) \\
& =\left(I_{1} \omega_{1}\right)[(s \theta c \psi) \dot{\phi}+(-s \psi) \dot{\theta}]+\left(I_{2} \omega_{2}\right)[(-s \theta s \psi) \dot{\phi}+(-c \psi) \dot{\theta}]+\left(I_{3} \omega_{3}\right)(0) \\
& =\left(I_{1} \omega_{1}\right)\left(\omega_{2}\right)+\left(I_{2} \omega_{2}\right)\left(-\omega_{1}\right) \tag{b}
\end{align*}
$$

and, therefore,

$$
\begin{equation*}
E_{\psi}(T) \equiv(\partial T / \partial \dot{\psi})^{\cdot}-\partial T / \partial \psi=I_{3}\left(d \omega_{3} / d t\right)-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}=0 \tag{c}
\end{equation*}
$$

and similarly for $E_{\theta}(T)=0$ and $E_{\phi}(T)=0$. Let the reader ponder about the possible drawbacks of this derivation of Euler's equations.

3.6 THE CENTRAL EQUATION (THE ZENTRALGLEICHUNG OF HEUN AND HAMEL)

Thus far, the transition from the particle accelerations that appear explicitly in Lagrange's principle (LP),

$$
\begin{equation*}
\delta I=\delta^{\prime} W, \quad \text { or, in extenso, } \quad \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \tag{3.6.1}
\end{equation*}
$$

to system velocities/kinetic energy derivatives, and so on, that appear in the equations of motion deriving from it, is carried out in the components of the (negative of the) system inertial "forces": for example, $E_{k} \equiv S d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\cdots=$ $\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}$, and similarly for $I_{k} \equiv S d m \boldsymbol{a} \cdot \varepsilon_{k}=\cdots$. However, a transition from particle accelerations to particle velocities (i.e., from \boldsymbol{a} 's to \boldsymbol{v} 's), and from there to system velocities, can also be effected by proceeding directly from the variational equation (3.6.1).

Indeed, in view of the purely kinematic identity

$$
\begin{equation*}
d(\boldsymbol{v} \cdot \delta \boldsymbol{r}) / d t=\boldsymbol{a} \cdot \delta \boldsymbol{r}+\delta(\boldsymbol{v} \cdot \boldsymbol{v} / 2)+\boldsymbol{v} \cdot[d(\delta \boldsymbol{r}) / d t-\delta(d \boldsymbol{r} / d t)] \tag{3.6.2}
\end{equation*}
$$

δI transforms readily to

$$
\begin{aligned}
\delta I & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r} \\
& =d / d t(\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r})-\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{v}-\boldsymbol{S} d m \boldsymbol{v} \cdot[d(\delta \boldsymbol{r}) / d t-\delta(d \boldsymbol{r} / d t)]
\end{aligned}
$$

or

$$
\begin{equation*}
\delta I \equiv d(\delta P) / d t-\delta T-\delta D \tag{3.6.3}
\end{equation*}
$$

where

$$
\begin{align*}
\delta T \equiv \delta(\boldsymbol{S}(1 / 2) d m \boldsymbol{v} \cdot \boldsymbol{v}) & =\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{v}=\boldsymbol{S} d m \boldsymbol{v} \cdot \delta(d \boldsymbol{r} / d t) \\
& =\text { First virtual variation of (inertial) kinetic energy, } \tag{3.6.3a}
\end{align*}
$$

$\delta P \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}=$ Total virtual work of (linear) momenta of system particles,

$$
\begin{align*}
\delta D \equiv & \boldsymbol{S} d m \boldsymbol{v} \cdot[d(\delta \boldsymbol{r}) / d t-\delta(d \boldsymbol{r} / d t)] \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot[(\delta \boldsymbol{r})-\delta \boldsymbol{v}] \tag{3.6.3b}\\
& =\text { Total "virtual (work of) nonholonomic deviation." } \tag{3.6.3c}
\end{align*}
$$

Hence LP, (3.6.1), takes the velocity form:

$$
\begin{equation*}
\delta T+\delta^{\prime} W+\delta D=d(\delta P) / d t \tag{3.6.4}
\end{equation*}
$$

This fundamental differential variational equation, on a par with LP, was originally obtained by Lagrange himself (in the course of the derivation of his equations from LP), but its importance was fully appreciated much later by Heun (early 1900s), who dubbed it the central equation of AM (Zentralgleichung, CE). Specifically, its importance lies in that it replaces a second-order invariant, $\delta I \equiv S d m \boldsymbol{a} \cdot \delta \boldsymbol{r}$, with its firstorder invariants $\delta T, \delta P, \delta D$.

We should, also, point out the following:
(i) Multiplying (3.6.4) with $d t$ and then integrating the result over the arbitrary time interval $\left(t_{1}, t_{2}\right)$, we obtain the following time integral variational equation:

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left(\delta T+\delta^{\prime} W+\delta D\right) d t=\{\delta P\}_{t_{1}}^{t_{2}} \equiv\{\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}\}_{t_{1}}^{t_{2}} \tag{3.6.5}
\end{equation*}
$$

commonly known as Hamilton's principle (HP - detailed in chap. 7).
(ii) It is not necessary to assume, in CE, that $(\delta \boldsymbol{r})^{\cdot}=\delta \boldsymbol{v}$, or equivalently $d(\delta \boldsymbol{r})=\delta(d \boldsymbol{r})$. As Hamel has stressed, and as will become clear below, the equations of motion derived from the above are independent of any such commutation rules. Thus, assuming in (3.6.4), (3.6.5) $(\delta \boldsymbol{r})^{\circ}=\delta \boldsymbol{v}$, that is, $\delta D=0$, reduces them, respectively, to

$$
\begin{array}{cc}
\delta T+\delta^{\prime} W=d(\delta P) / d t & (\text { ordinary } \mathrm{CE}) \\
\int_{t_{1}}^{t_{2}}\left(\delta T+\delta^{\prime} W\right) d t=\{\delta P\}_{t_{1}}^{t_{2}} \equiv\{\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}\}_{t_{1}}^{t_{2}} & \text { (ordinary } \mathrm{HP}) \tag{3.6.6a}
\end{array}
$$

[Heun called (3.6.6) the central equation; while Hamel (1949, pp. 233-235) called (3.6.4) the generalized, or general, central equation. Also, Rosenberg (1977, pp. 167168), virtually alone in the entire English language literature to handle this matter properly, chose to translate $(3.6 .4,6)$ as the central principle.]

Now, the differential variational equation (3.6.4) is expressed in particle vectors/ variables; and in that form it may be quite useful in, say, rigid-body applications. For the purposes of the general theory, however, we need to express it in general system variables. Indeed, proceeding from the invariant definitions (3.6.3a-c) we find, successively,

$$
\begin{align*}
T= & T(t, q, \dot{q})=T^{*}=T^{*}(t, q, \omega) \Rightarrow \delta T=\delta T^{*} \tag{a}\\
\delta T & =\delta T(t, q, \dot{q})=\sum\left[\left(\partial T / \partial q_{k}\right) \delta q_{k}+\left(\partial T / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right], \tag{3.6.7a}\\
\delta T^{*} & =\delta T^{*}(t, q, \omega)=\sum\left[\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}+\left(\partial T^{*} / \partial q_{k}\right) \delta q_{k}\right] \\
& =\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}+\sum\left[\left(\partial T^{*} / \partial q_{k}\right)\left(\sum A_{k l} \delta \theta_{l}\right)\right] \\
& =\cdots \equiv \sum P_{k} \delta \omega_{k}+\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k} ; \tag{3.6.7b}
\end{align*}
$$

(b)

$$
\begin{equation*}
\delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\sum Q_{k} \delta q_{k}=\sum \Theta_{k} \delta \theta_{k} \tag{3.6.7c}
\end{equation*}
$$

(c) $\quad \delta P=\cdots=\sum P_{k} \delta \theta_{k}=\sum p_{k} \delta q_{k}\left[\right.$ since $\left.\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{k} \equiv p_{k}, \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{\varepsilon}_{k} \equiv P_{k}\right]$

$$
\begin{align*}
& \Rightarrow p_{l}=\sum a_{k l} P_{k}, \quad \text { i.e., } \partial T / \partial \dot{q}_{l}=\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial \dot{q}_{l}\right), \tag{3.6.7d}\\
& P_{k}=\sum A_{l k} p_{l}, \quad \text { i.e., } \partial T^{*} / \partial \omega_{k}=\sum\left(\partial T / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) ; \tag{3.6.7e}\\
& \Rightarrow(\delta P)^{\cdot} \equiv(\boldsymbol{S} d m v \cdot \delta r) \tag{3.6.7f}\\
& =\left(\sum p_{k} \delta q_{k}\right)^{\cdot}=\sum \dot{p}_{k} \delta q_{k}+\sum p_{k}\left(\delta q_{k}\right)^{\prime} \tag{3.6.7~g}\\
& =\left(\sum P_{k} \delta \theta_{k}\right)=\sum \dot{P}_{k} \delta \theta_{k}+\sum P_{k}\left(\delta \theta_{k}\right)^{\cdot} ; \tag{3.6.7~h}
\end{align*}
$$

(d) Recalling the general particle transitivity equation (prob. 2.10.6; with Greek indices running from 1 to $n+1$), which holds independently of any $d(\delta q)-\delta(d q)$ rules,

$$
\begin{align*}
(\delta \boldsymbol{r})^{\cdot}-\delta \boldsymbol{v} & =\sum\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right] \boldsymbol{e}_{k} \\
& =\sum\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \boldsymbol{\varepsilon}_{k}-\sum\left(\sum \sum \gamma_{r \alpha}^{k} \omega_{\alpha} \delta \theta_{r}\right) \boldsymbol{\varepsilon}_{k}, \tag{3.6.7i}
\end{align*}
$$

we obtain (invoking the above definitions of p_{k}, P_{k})

$$
\begin{align*}
\delta D & \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot\left[(\delta \boldsymbol{r})^{\cdot}-\delta \boldsymbol{v}\right] \\
& =\cdots=\sum p_{k}\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]=\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum \sum \sum \gamma_{r \alpha}^{k} P_{k} \omega_{\alpha} \delta \theta_{r} . \tag{3.6.7j}
\end{align*}
$$

Next, substituting the above system expressions into the general CE, (3.6.4), rearranged à la LP as $(\delta P)^{\circ}-\delta T-\delta D=\delta^{\prime} W$, we obtain its following system forms.

1. Holonomic System Variables

$$
\begin{equation*}
\left(\sum p_{k} \delta q_{k}\right)^{\cdot}-\delta T-\sum p_{k}\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]=\sum Q_{k} \delta q_{k} \quad\left(\equiv \delta^{\prime} W\right) \tag{3.6.8}
\end{equation*}
$$

or (after expanding and collecting terms, and factoring out δq_{k})

$$
\begin{equation*}
\sum\left(d p_{k} / d t-\partial T / \partial q_{k}\right) \delta q_{k}=\sum Q_{k} \delta q_{k} \quad[\mathrm{LP} \text { in holonomic variables (3.5.11 ff.)] } \tag{3.6.8a}
\end{equation*}
$$

We notice that (3.6.8a) results always from (3.6.8), regardless of any assumptions about $\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)$. However, (3.6.8) is more general than (3.6.8a); for example, if we express some of its terms in θ-variables (see below, and ex. 3.8.1), or if we assume that $\left(\delta q_{k}\right)^{\cdot} \neq \delta\left(\dot{q}_{k}\right)$, for some $\delta q, \dot{q}$'s [see Voronets equations (3.8.14a ff.)].

2. Nonholonomic System Variables

$$
\left(\sum P_{k} \delta \theta_{k}\right)^{\cdot}-\delta T-\left\{\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum \sum \sum \gamma_{r \alpha}^{k} P_{k} \omega_{\alpha} \delta \theta_{r}\right\}=\sum \Theta_{k} \delta \theta_{k},
$$

or, after expanding and collecting terms, etc.,

$$
\begin{equation*}
\sum \dot{P}_{k} \delta \theta_{k}-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\sum \sum \sum \gamma_{r \alpha}^{k} P_{k} \omega_{\alpha} \delta \theta_{r}=\sum \Theta_{k} \delta \theta_{k} \tag{3.6.9}
\end{equation*}
$$

or (factoring out $\delta \theta_{k}$, and performing some index changes in the γ-term)

$$
\begin{equation*}
\sum\left(d P_{k} / d t-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma^{r}{ }_{k \alpha} P_{r} \omega_{\alpha}\right) \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k} \tag{3.6.9a}
\end{equation*}
$$

which is none other than LP in quasi variables (3.5.18 ff.).

3. Mixed Variable Forms

(i) With the help of $(3.6 .7 \mathrm{a}-\mathrm{j})$ [also, recalling the general system transitivity equations (2.10.6, 7)], we can rewrite (3.6.9) as follows:

$$
\begin{align*}
\sum \dot{P}_{k} \delta \theta_{k} & -\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k} \\
& +\sum P_{k}\left\{\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum a_{k l}\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]\right\}=\sum \Theta_{k} \delta \theta_{k} \tag{3.6.10}
\end{align*}
$$

From the above we readily see the following.
(ii) If we assume that $\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)=0\left[\Rightarrow d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})=\sum\left[d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)\right] \boldsymbol{e}_{k}=\right.$ $\mathbf{0} \Rightarrow \delta D=0$ (ordinary CE, (3.6.6)) - Hamel viewpoint], then (3.6.10) becomes

$$
\begin{equation*}
\sum \dot{P}_{k} \delta \theta_{k}-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]=\sum \Theta_{k} \delta \theta_{k} \tag{3.6.11}
\end{equation*}
$$

which, since in this case $\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\sum \sum \gamma_{r \alpha}^{k} \omega_{\alpha} \delta \theta_{r}$, is none other than (3.6.9). Hence, even if we had started with (3.6.6), rearranged as $(\delta P)^{\cdot}-\delta T=\delta^{\prime} W$, with δT, $\delta^{\prime} W,(\delta P)^{\cdot}$ given by $(3.6 .7 \mathrm{~b}, \mathrm{c}, \mathrm{h})$, respectively, we would still have arrived at (3.6.11). Also, recalling (3.3.12a), and comparing (3.6.11) with (3.6.9), we readily conclude that, then,

$$
\begin{equation*}
\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]=-\sum \Gamma_{k} \delta \theta_{k} . \tag{3.6.11a}
\end{equation*}
$$

(iii) However, if we assume that $\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=0$ (Suslov viewpoint), and invoke (3.6.7e), eq. (3.6.10) becomes

$$
\begin{align*}
& \sum \dot{P}_{k} \delta \theta_{k}-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}-\sum P_{k}\left\{\sum a_{k l}\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]\right\} \\
& \quad=\sum \dot{P}_{k} \delta \theta_{k}-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}-\sum p_{k}\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]=\sum \Theta_{k} \delta \theta_{k} \tag{3.6.12}
\end{align*}
$$

Equations (3.6.4, 6; $8 ; 9 ; 10,11,12$) are mutually equivalent; but, unless properly understood and applied, they may lead to (apparently) contradictory results. [These variational equations are useful in integral variational "principles": chap. 7; also ex. 3.8.1.] Hence, whenever needed, we may safely assume that $d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right)$ for all holonomic coordinates, constrained or not. Indeed, in applications to concrete problems, the CE in the form (3.6.11) seems to be the single most useful equation of analytical mechanics. Its implementation requires knowledge of $T \rightarrow T^{*}$, the Θ 's, and the $\dot{q} \leftrightarrow \omega$ transformation; the γ_{\bullet}^{k} 's, as already pointed out in $\S 2.10$, are simply read off as the coefficients of

$$
\begin{equation*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\cdots+(\ldots)_{\bullet \leftrightarrow}^{k} \omega_{\bullet} \delta \theta_{\bullet}+\cdots \tag{3.6.12a}
\end{equation*}
$$

WHICH ARE THE BEST EQUATIONS OF MOTION?

Over the past couple of decades or so, a debate has been brewing, in applied engineering (multibody) dynamics circles, as to which of all available equations of motion are the best, or "more efficient." We believe that such questions, and attempted answers, are at best counterproductive and myopic; and, at worst, selfserving and wasteful. Fortunately, for dynamics, there is no cure-all set of equations that works best under all circumstances; theoretical and applied, exact and approximate (including computational). Different equations (see also special forms in §3.8) have different uses, advantages and disadvantages, like the various tools in a mechanic's toolbox. Some are more conceptually efficient (a classification almost never heard of by applied dynamicists) and less computationally efficient, and vice versa; some are more fertile and/or beautiful (!) than others. Such a healthy pluralism testifies to the vitality and diversity of the human intellect, keeps our science alive and should be welcome, indeed treasured, by all-we learn more by solving one problem with several methods than by solving several problems with one method. We must learn them all, especially today!

It seems to us, however, that one of the best such tools is not any particular set of equations of motion, but instead, the central (variational) equation in the form (3.6.11) \Rightarrow

$$
\begin{equation*}
\sum(\ldots)_{D} \delta \theta_{D}+\sum(\ldots)_{I} \delta \theta_{I}=0 \tag{3.6.12b}
\end{equation*}
$$

The vanishing of its $(\ldots)_{D}$ terms (appropriately modified, according to the method of Lagrangean multipliers) yields the m kinetostatic equations, while the vanishing of its $(\ldots)_{I}$ terms yields the $n-m$ kinetic equations; and these, plus constraints and initial/boundary temporal conditions, constitute a mathematically determinate system. [Also, the differential variational principles (chap. 6), of which LP, eqs. (3.6.8a) and (3.6.9a), constitute the foundation, seem especially promising, for both finite and impulsive motion, and for both linear (Pfaffian) and nonlinear velocity constraints.] Such a unifying approach, acting like a conceptual centripetal force and countering the centrifugal ones of the various equations of motion, should be welcome and psychologically satisfying. After all, there is only one mechanics; although the average observer of the contemporary (tower of Babel-like) dynamics literature would not get that impression!

Example 3.6.1 Holonomic System in Nonholonomic Coordinates: Plane Motion of a Free Particle (Appell, 1925, pp. 6-7, 17-18; Lur'e, 1968, pp. 401-402). Let us consider a particle P of mass m moving along the plane curve C, on the $O-x y$ plane, under known/given forces (fig. 3.15). The instantaneous position and velocity of this two DOF system ($n=2, m=0$) can be defined in several equivalent ways. Thus, we may choose the following descriptions:
(i) Holonomic variables: a convenient such choice are the polar coordinates of P

$$
\begin{equation*}
q_{1}=r, \quad q_{2}=\phi \quad(\text { angle from } O x) \Rightarrow \quad \dot{q}_{1}=\dot{r}, \quad \dot{q}_{2}=\dot{\phi} \tag{a}
\end{equation*}
$$

(ii) Nonholonomic variables: following Appell, we choose as such: (a) $\theta_{1}=q_{1}=r$; that is, the magnitude of the position vector $\boldsymbol{r}=\boldsymbol{O} \boldsymbol{P}$, and (b) $\theta_{2}=\sigma$ (a quasi coordinate, as shown below), such that $\dot{\theta}_{2} \equiv \omega_{2}=\dot{\sigma}=r^{2} \dot{\phi}$, or $d \sigma=r^{2} d \phi=t$ wice the area of the elementary sector swept by the radius vector OP between the time instants $t(\rightarrow r)$

Figure 3.15 Plane motion of a particle under given forces ($2 d A=r^{2} d \phi \equiv d \sigma$).
and $t+d t(\rightarrow r+d r)$; that is, approximately, twice the area of a circular sector of radius r and central angle $d \phi$ - a well-known calculus result. Hence, the following transformation equations, and their inverses:

$$
\begin{array}{ll}
\omega_{1}=(1) \dot{q}_{1}+(0) \dot{q}_{2}, & \omega_{2}(0) \dot{q}_{1}+\left(r^{2}\right) \dot{q}_{2} ; \\
\dot{q}_{1}=(1) \omega_{1}+(0) \omega_{2}, & \dot{q}_{2}=(0) \omega_{1}+\left(r^{-2}\right) \omega_{2} . \tag{c}
\end{array}
$$

Transitivity Equations

From (b, c), and since this is a scleronomic system, that is, $\delta q_{1}=\delta \theta_{1}=\delta r$, $d q_{1}=d \theta_{1}=d r ; \quad \delta \theta_{2}=\delta \sigma=r^{2} \delta \phi=r^{2} \delta q_{2}, d \theta_{2}=d \sigma=r^{2} d \phi=r^{2} d q_{2}$, and so on, we find

$$
\begin{align*}
\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1} & =(\delta r)^{\cdot}-\delta(\dot{r})=0 \quad(r=\text { holonomic coordinate }), \tag{d}\\
\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2} & =\left(r^{2} \delta \phi\right)^{\cdot}-\delta\left(r^{2} \dot{\phi}\right)=\cdots=2 r \dot{r} \delta \phi-2 r \dot{\phi} \delta r \\
& =2 r \omega_{1} \delta \phi-2 r\left(\omega_{2} / r^{2}\right) \delta r=2 r \omega_{1}\left(r^{-2} \delta \theta_{2}\right)-\left(2 r^{-1} \omega_{2}\right) \delta \theta_{1} \\
& =2 r^{-1}\left(\omega_{1} \delta \theta_{2}-\omega_{2} \delta \theta_{1}\right) . \tag{e}
\end{align*}
$$

Kinetic Energy

From $x=r \cos \phi, y=r \sin \phi \Rightarrow \dot{x}=\ldots, \dot{y}=\ldots$, and the above, we find

$$
\begin{align*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right] & =\cdots=m\left[(\dot{r})^{2}+r^{2}(\dot{\phi})^{2}\right] \\
& =\cdots=m\left[\left(\omega_{1}\right)^{2}+r^{-2}\left(\omega_{2}\right)^{2}\right]=T^{*} \tag{f}
\end{align*}
$$

Appellian
From $\ddot{x}=\ldots, \ddot{y}=\ldots$, we find, successively,

$$
\begin{aligned}
2 S & =m\left[(\ddot{x})^{2}+(\ddot{y})^{2}\right]=\cdots=m\left[\left(a_{r}\right)^{2}+\left(a_{\phi}\right)^{2}\right] \quad \text { (physical components) } \\
& =m\left\{\left[\ddot{r}-r(\dot{\phi})^{2}\right]^{2}+\left[r^{-1}\left(r^{2} \dot{\phi}\right)\right]^{2}\right\} \\
& =m\left\{\left[\ddot{r}-r^{-3}(\dot{\sigma})^{2}\right]^{2}+\left(r^{-1} \ddot{\sigma}\right)^{2}\right\},
\end{aligned}
$$

or, to within "Appell-important" terms $\equiv \cdots$,

$$
\begin{align*}
2 S \rightarrow 2 S^{*} & =m\left[(\ddot{r})^{2}-2 r^{-3} \ddot{r}(\dot{\sigma})^{2}+r^{-2}(\ddot{\sigma})^{2}\right]+\cdots \\
& =m\left[\left(\dot{\omega}_{1}\right)^{2}-2 r^{-3}\left(\omega_{2}\right)^{2} \dot{\omega}_{1}+r^{-2}\left(\dot{\omega}_{2}\right)^{2}\right]+\cdots . \tag{g}
\end{align*}
$$

Virtual Works

Let the physical (polar) components of the total impressed force on P, that is, \boldsymbol{F}, be $\left(F_{r}, F_{\phi}\right)$. Then,

$$
\begin{align*}
\delta^{\prime} W & =F_{r} \delta r+F_{\phi}(r \delta \phi) \equiv Q_{r} \delta r+Q_{\phi} \delta \phi \\
& =F_{r} \delta \theta_{1}+F_{\phi}\left(r^{-1} \delta \theta_{2}\right)=\Theta_{1} \delta \theta_{1}+\Theta_{2} \delta \theta_{2}, \tag{h}
\end{align*}
$$

that is,

$$
\begin{array}{lll}
Q_{1} \equiv Q_{r}=F_{r}, & Q_{2} \equiv Q_{\phi}=r F_{\phi} & \text { (holonomic components) } \\
\Theta_{1}=F_{r}, & \Theta_{2}=r^{-1} F_{\phi} & \text { (nonholonomic components). } \tag{j}
\end{array}
$$

Equations of Motion

(i) Holonomic variables: The Lagrange and Appell equations are

$$
\begin{align*}
& q_{1} \equiv r: \quad(\partial T / \partial \dot{r})^{\cdot}-\partial T / \partial r \equiv \partial S / \partial \ddot{r}=Q_{r}: \quad m\left[\ddot{r}-r(\dot{\phi})^{2}\right]=F_{r} \tag{k}\\
& q_{2} \equiv \phi: \quad(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi \equiv \partial S / \partial \ddot{\phi}=Q_{\phi}: \quad m\left(r^{2} \dot{\phi}\right)^{\cdot}=r F_{\phi} \tag{1}
\end{align*}
$$

(ii) Nonholonomic variables: Since

$$
\begin{array}{ll}
P_{1} \equiv \partial T^{*} / \partial \omega_{1}=m \omega_{1} & (=m \dot{r}) \Rightarrow \dot{P}_{1}=m \dot{\omega}_{1} \quad(=m \ddot{r}), \\
P_{2} \equiv \partial T^{*} / \partial \omega_{2}=m r^{-2} \omega_{2} & \left(=m r^{-2} \dot{\sigma}\right) \Rightarrow \dot{P}_{2}=\left(m r^{-2} \omega_{2}\right)^{\cdot} ; \tag{n}
\end{array}
$$

(m)
and

$$
\begin{align*}
\partial T^{*} / \partial \theta_{1} \equiv \partial T^{*} / \partial r & =A_{11}\left(\partial T^{*} / \partial q_{1}\right)+A_{21}\left(\partial T^{*} / \partial q_{2}\right) \\
& =(1)\left(\partial T^{*} / \partial r\right)+(0)\left(\partial T^{*} / \partial \phi\right)=\partial T^{*} / \partial r \\
& =(m / 2)(-2)\left[r^{-3}\left(\omega_{2}\right)^{2}\right]=-m r^{-3}\left(\omega_{2}\right)^{2}, \tag{o}\\
\partial T^{*} / \partial \theta_{2} \equiv \partial T^{*} / \partial \sigma & =A_{12}\left(\partial T^{*} / \partial q_{1}\right)+A_{22}\left(\partial T^{*} / \partial q_{2}\right) \\
& =(0)\left(\partial T^{*} / \partial r\right)+\left(r^{2}\right)\left(\partial T^{*} / \partial \phi\right)=0, \tag{p}
\end{align*}
$$

the central equation (3.6.11)

$$
\begin{equation*}
\sum \dot{P}_{k} \delta \theta_{k}-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]=\sum \Theta_{k} \delta \theta_{k} \tag{q}
\end{equation*}
$$

yields

$$
\begin{align*}
\dot{P}_{1} \delta \theta_{1} & +\dot{P}_{2} \delta \theta_{2}-\left(\partial T^{*} / \partial \theta_{1}\right) \delta \theta_{1}-\left(\partial T^{*} / \partial \theta_{2}\right) \delta \theta_{2} \\
& +P_{1}\left[\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1}\right]+P_{2}\left[\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}\right]=\Theta_{1} \delta \theta_{1}+\Theta_{2} \delta \theta_{2}, \tag{r}
\end{align*}
$$

or collecting (...) $\delta \theta_{k}$ terms,

$$
\begin{equation*}
\left[\dot{P}_{1}-\partial T^{*} / \partial \theta_{1}+\left(-2 \omega_{2} / r\right) P_{2}-\Theta_{1}\right] \delta \theta_{1}+\left[\dot{P}_{2}+\left(2 \omega_{1} / r\right) P_{2}-\Theta_{2}\right] \delta \theta_{2}=0 \tag{s}
\end{equation*}
$$

from which, since $\delta \theta_{1}$ and $\delta \theta_{2}$ are unconstrained, we obtain the Hamel equations:

$$
\begin{equation*}
\theta_{1}: \quad \dot{P}_{1}-\partial T^{*} / \partial \theta_{1}-\left(2 \omega_{2} / r\right) P_{2}=\Theta_{1} \tag{tl}
\end{equation*}
$$

or

$$
m \dot{\omega}_{1}+m r^{-3}\left(\omega_{2}\right)^{2}-\left(2 r^{-1} \omega_{2}\right)\left(m r^{-2} \omega_{2}\right)=\Theta_{1},
$$

or, finally,

$$
\begin{equation*}
m\left[\ddot{r}-r^{-3}(\dot{\sigma})^{2}\right]=F_{r}, \quad \text { i.e., equation }(\mathrm{k}) ; \tag{t2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{2}: \quad \dot{P}_{2}+\left(2 \omega_{1} / r\right) P_{2}=\Theta_{2} \tag{t3}
\end{equation*}
$$

or

$$
\left(m r^{-2} \omega_{2}\right)^{\cdot}+\left(2 r^{-1} \omega_{1}\right)\left(m r^{-2} \omega_{2}\right)=\Theta_{2},
$$

or, finally,

$$
\begin{equation*}
m r^{-2} \ddot{\sigma}-r^{-3}(2 m \dot{r} \dot{\sigma})+r^{-3}(2 m \dot{r} \dot{\sigma})=\Theta_{2} \Rightarrow m \ddot{\sigma}=r F_{\phi}, \tag{t4}
\end{equation*}
$$

that is, (l); from which, if $F_{\phi}=0$, we obtain Kepler's second "law": $\dot{\sigma}=r^{2} \dot{\phi}=$ constant.

REMARKS

(i) The above Hamel equations coincide with those of Appell, but in nonholonomic variables:

$$
\begin{align*}
\partial S^{*} / \partial \ddot{r}=\Theta_{r} & {\left[\partial S^{*} / \partial \dot{\omega}_{1}=\Theta_{1}\right] } \tag{ul}\\
\partial S^{*} / \partial \ddot{\sigma}=\Theta_{\sigma} & {\left[\partial S^{*} / \partial \dot{\omega}_{2}=\Theta_{2}\right] } \tag{u2}
\end{align*}
$$

(ii) We also notice that, since

$$
\begin{array}{ll}
{\left[\left(\partial T^{*} / \partial \dot{r}\right)^{*}-\partial T^{*} / \partial r\right]-\partial S^{*} / \partial \ddot{r} \equiv \Gamma_{r}} & {\left[=\left(2 \omega_{2} / r\right) P_{2}\right] \neq 0} \\
{\left[\left(\partial T^{*} / \partial \dot{\sigma}\right)^{\cdot}-\partial T^{*} / \partial \sigma\right]-\partial S^{*} / \partial \ddot{\sigma} \equiv \Gamma_{\sigma}} & {\left[=-\left(2 \omega_{1} / r\right) P_{2}\right] \neq 0} \tag{v2}
\end{array}
$$

the Lagrange-type equations in quasi variables

$$
\begin{equation*}
E_{r}\left(T^{*}\right) \equiv\left(\partial T^{*} / \partial \dot{r}\right)^{\cdot}-\partial T^{*} / \partial r=\Theta_{r}, \quad E_{\sigma}\left(T^{*}\right) \equiv\left(\partial T^{*} / \partial \dot{\sigma}\right)^{\cdot}-\partial T^{*} / \partial \sigma=\Theta_{\sigma} \tag{v3}
\end{equation*}
$$

would have been incorrect.

3.7 THE PRINCIPLE OF RELAXATION OF THE CONSTRAINTS (THE LAGRANGE-HAMEL BEFREIUNGSPRINZIP)

We have already seen (§3.5) how to (i) eliminate the constraint reactions (kinetic equations), and (ii) how to retrieve them, if needed (kinetostatic equations). For the first task, we postulated Lagrange's principle ($L P$); while for the second, we have utilized the method of Lagrangean multipliers. This latter (recall last part of §3.2) is the mathematical expression of the principle of relaxation, or freeing, or liberation, of the constraints $(P R C)$ - the second pillar of analytical mechanics, and its logical counterpart to the Eulerian cut principle ("free-body diagram") for calculating internal forces, of the stereomechanical approach.

It was Hamel who, around 1916 (publ. 1917), recognized the cardinal importance of this principle and introduced the term Befreiungsprinzip for it. Up until then, it had not been stated explicitly anywhere. Lagrange, in his admirably informal style, had simply said about it, "Car c'est en quoi consiste l'esprit de la méthode de cette section. ... Notre méthode donne, comme l'on voit, le moyen de déterminer ces
forces et ces résistances; ce qui n'est pas un des moindres avantages de cette méthode". [Lagrange, 1965 (reprint of 4th ed.), vol. 1, p. 73, emphasis added]. Even today, it is rarely stated explicitly in the English language literature: for example, Lawden (1972, p. 54; who (seems to have) coined our term "method of relaxation of constraints"), Leipholz (1978, 1983; who calls it "relaxation principle of Lagrange"), Serrin (1959, pp. 146-147; who refers to it as "Lagrange's Freeing Principle"); and Bahar (1970-1980; who describes it, instructively, as "the rubber-band approach"). Such a method was long known and routinely applied in analytical statics; although it was not sufficiently acknowledged, explicitly. That is why its extension to kinetics, a nontrivial matter, was aptly called by Heun (early 1900s) kinetostatics $=$ the determination of internal and external reactions in moving rigid systems - an important mechanical engineering problem (see also Stäckel, 1905, pp. 667-670). Let us examine it more closely. Following Hamel (1927, p. 26; 1949, pp. 74, 173, 522):

- In addition to the constrained system, we form (mentally) a relaxed, or freed one, in which a particular, or all, constraints have been eliminated. The equations of motion remain formally the same, except that now the former reactions are impressed forces whose virtual work is

$$
\begin{equation*}
\sum \lambda_{D} \delta \theta_{D}=\sum\left(\sum \lambda_{D} a_{D k}\right) \delta q_{k} \tag{3.7.1}
\end{equation*}
$$

for a particular $\lambda_{D}=\Lambda_{D}$, the corresponding "relaxed virtual work" is

$$
\begin{equation*}
\left(\delta^{\prime} W_{R}\right)_{D} \equiv \lambda_{D} \delta \theta_{D}=\Lambda_{D} \delta \theta_{D} \tag{3.7.1a}
\end{equation*}
$$

as if the constraint $\delta \theta_{D}=0$ did not exist.

- The former reactions have now become impressed forces that depend on the previously forbidden deformation/motion, i.e., on those geometrical/kinematical variables that were not allowed to vary in the non-relaxed system (and, possibly, on other non-mechanical variables - see below).
- A word of caution: When applying this principle to cases where the freed system requires more than mechanics (M) for its description - that is, wherever the additional, relaxed, deformation/motion introduces additional, say thermodynamical (T) and/or electrodynamical (E) variables, mutually coupled - we should expect such a dependence to be reflected in the multipliers; that is, symbolically, $\lambda=\lambda(M, T, E)$. As long as we stay within pure mechanics (this book), however, no such problems seem to arise. See for instance Serrin (1959, pp. 146-147), who warns against the blind generalization of the principle from simple mechanics [e.g., the compressible perfect, or ideal, fluid viewed as a freed incompressible perfect fluid, whose stress (pressure), according to the PRC, depends on the formerly forbidden compressibility; i.e., on the density which, before, was not allowed to vary], to more physically complex cases (e.g., a gas where the pressure is a definite thermodynamical variable).

Example 3.7.1 Applications of PRC.
(i) In pure (or slippingless) rolling, the friction is a reaction force. It follows that in slipping, the friction depends on the previous constraint; that is, on the relative velocity of the two contacting surfaces, and on other material coefficients; and, hence, it has become an impressed force.
(ii) The tension in an extensible cable depends on the latter's stretch, and other material coefficients.

Figure 3.16 Principle of relaxation in statics: reactions on a simply supported beam.
(iii) Statics: Let us calculate the reaction B of the simply supported (statically determinate) beam of fig. 3.16(a). We allow, mentally, the formerly unyielding support B to move down (or up) and then calculate the virtual works of all impressed forces on the so relaxed beam, i.e., of the ever impressed P and of the former reaction B, and set it equal to zero [fig. 3.16(b)]:

$$
\begin{equation*}
\delta^{\prime} W=P \delta p-B \delta b=0 \Rightarrow B=(\delta p / \delta b) P=(a / l) P \tag{a1}
\end{equation*}
$$

(since $\delta p / \delta b=$ finite, and independent of the δp, δb magnitudes); and, similarly, $A=(b / l) P$. Because of the linearity of $\delta^{\prime} W$, we can calculate one or more reactions at a time, or even all of them simultaneously.
(iv) Dynamics: Let us calculate the string tension S in the planar mathematical pendulum of mass m and length l (fig. 3.17).
(a) Relaxed LP version. Here, we allow the inextensible string to become a rubber band, compute the virtual works of all (old and new) impressed and inertial forces (i.e., apply LP to the relaxed system), and then enforce on the result the old constraint, $r=l$:

$$
\begin{align*}
\left.\delta^{\prime} W\right|_{r=l} & =(W \cos \phi-S) \delta r-\left.(W \sin \phi)(r \delta \phi)\right|_{r=l}=(W \cos \phi-S) \delta r-(W l \sin \phi) \delta \phi \\
& =Q_{r} \delta r+Q_{\phi} \delta \phi \Rightarrow Q_{r}=W \cos \phi-S, \quad Q_{\phi}=-W l \sin \phi ; \tag{a2}
\end{align*}
$$

and similarly for $\delta I=E_{r} \delta r+E_{\phi} \delta \phi$, where the relaxed (double) kinetic energy is $2 T=m\left[(\dot{r})^{2}+r^{2}(\dot{\phi})^{2}\right]$, and therefore:

$$
\begin{align*}
& E_{r} \equiv(\partial T / \partial \dot{r})^{\cdot}-\partial T / \partial r=(m \dot{r})^{\cdot}-\left.m r(\dot{\phi})^{2}\right|_{r=l}=-m l(\dot{\phi})^{2}, \tag{b}\\
& E_{\phi} \equiv(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=\left.\left(m r^{2} \dot{\phi}\right)^{\cdot}\right|_{r=l}=m l^{2} \ddot{\phi} . \tag{c}
\end{align*}
$$

Hence, the relaxed \rightarrow constrained LP, $\left.\left(\delta I=\delta^{\prime} W\right)\right|_{r=l}$, yields

$$
\begin{equation*}
m l(\dot{\phi})^{2}=S-W \cos \phi \quad(\text { kinetostatic }), \quad m l^{2} \ddot{\phi}=-W l \sin \phi \quad \text { (kinetic). } \tag{d}
\end{equation*}
$$

First, we solve the kinetic equation, the second of (d) (plus initial conditions), and obtain the motion $\phi=\phi(t)$; and then, substituting the latter into the kinetostatic equation, the first of (d), we get the tension $S=m l(\dot{\phi})^{2}+W \cos \phi=S(t)$. Had we started with the constrained (double) kinetic energy $m l^{2}(\dot{\phi})^{2}$, we would not have been able to obtain the kinetostatic equation, just the kinetic one.

Figure 3.17 Principle of constraint relaxation applied in the calculation of the tension of the inextensible string of a planar pendulum.
(b) Lagrangean multipliers. In this version of LP/PRC, we have

$$
\begin{equation*}
Q_{r}=W \cos \phi, \quad Q_{\phi}=\left.(W r \sin \phi)\right|_{r=l}=W l \sin \phi \tag{e}
\end{equation*}
$$

since S is a reaction, while $q_{1}=r$ and $q_{2}=\phi$ are subject to the constraint

$$
\begin{equation*}
f \equiv r-l=0 \Rightarrow \delta f=(\partial f / \partial r) \delta r=(1) \delta r=0 \tag{f}
\end{equation*}
$$

that is, $n=2, m=1$. Hence, the Routh-Voss equations yield

$$
\begin{array}{ll}
E_{r}=Q_{r}+\lambda(\partial f / \partial r): & -m l(\dot{\phi})^{2}=W \cos \phi+\lambda(1), \\
E_{\phi}=Q_{\phi}+\lambda(\partial f / \partial \phi): & m l^{2} \ddot{\phi}=-W l \sin \phi \tag{g2}
\end{array}
$$

while from $\delta^{\prime} W_{R}=-S \delta r=R_{r} \delta r=\lambda(1) \delta r$, we conclude that $\lambda=-S$, thus recovering (d). Had we written the constraint as $f \equiv l-r=0 \Rightarrow(-1) \cdot \delta r=0$, we would have $R_{r}=\lambda(\partial f / \partial r)=\lambda(-1)=-\lambda$, and, accordingly, $\quad \delta^{\prime} W_{R}=-S \delta r=R_{r} \delta r=$ $\lambda(-1) \delta r \Rightarrow \lambda=S$, so that the final equations of motion would be unchanged. Also, since $\delta^{\prime} W_{R} \geq 0$ for $\delta r \leq 0(\S 3.2 .15,15 \mathrm{a})$, it follows that $S>0$, as expected.

Example 3.7.2 Relaxation of Constraints, External Reactions: Pendulum with Horizontally Moving Support (Butenin, 1971, pp. 73-74). A block A of mass M, capable of translating along the smooth horizontal axis/floor $O x$, is smoothly hinged to a massless $\operatorname{rod} A B$ of length l. The latter carries at its other end a particle B of mass m [fig. 3.18(a)]. Let us find the floor reaction on A and its motion on the $O-x y$ plane.

Equations of Motion

For the relaxed system [fig. 3.18(b)], we introduce the following equilibrium coordinates:

$$
\begin{equation*}
q_{1}=y_{A} \equiv y, \quad q_{2}=x_{A} \equiv x, \quad q_{3}=\phi \tag{a}
\end{equation*}
$$

(a) CONSTRAINED System

(b) RELAXED System

Figure 3.18 Principle of relaxation applied to a two DOF pendulum: (a) constrained, and (b) relaxed.
so that the floor constraint is simply $q_{1}=0$; that is, here $f \equiv n-m=$ $3-1=2 D O F$. Since the (inertial) coordinates of A and B are, respectively,

$$
\begin{equation*}
\left(x_{A}, y_{A}\right)=(x, y), \quad\left(x_{B}, y_{B}\right)=(x+l \sin \phi, y+l \cos \phi), \tag{b}
\end{equation*}
$$

the (double) kinetic energy of the system becomes, successively,

$$
\begin{align*}
2 T= & M\left[\left(\dot{x}_{A}\right)^{2}+\left(\dot{y}_{A}\right)^{2}\right]+m\left[\left(\dot{x}_{B}\right)^{2}+\left(\dot{y}_{B}\right)^{2}\right] \\
= & \cdots=(M+m)(\dot{x})^{2}+(M+m)(\dot{y})^{2}+\left(m l^{2}\right)(\dot{\phi})^{2} \\
& +2(m l \cos \phi) \dot{x} \dot{\phi}-2(m l \sin \phi) \dot{y} \dot{\phi}, \tag{c}
\end{align*}
$$

and so the constrained (double) kinetic energy is

$$
\begin{equation*}
\left.2 T\right|_{y=0} \equiv 2 T_{o}=(M+m)(\dot{x})^{2}+\left(m l^{2}\right)(\dot{\phi})^{2}+2(m l \cos \phi) \dot{x} \dot{\phi} \tag{d}
\end{equation*}
$$

Next, the relaxed virtual work $\delta^{\prime} W$ equals, successively,

$$
\begin{aligned}
\delta^{\prime} W & =(M g) \delta y+(m g) \delta y_{B}=(M g) \delta y+(m g) \delta(y+l \cos \phi) \\
& =[(M+m) g] \delta y+(-m g l \sin \phi) \delta \phi=Q_{x} \delta x+Q_{y} \delta y+Q_{\phi} \delta \phi,
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
Q_{x}=0, \quad Q_{y}=(M+m) g, \quad Q_{\phi}=-m g l \sin \phi \tag{e}
\end{equation*}
$$

that is, Q_{y} could not have been obtained from the constrained virtual work

$$
\begin{equation*}
\left.\delta^{\prime} W\right|_{y=0}=\left(\delta^{\prime} W\right)_{o}=(-m g l \sin \phi) \delta \phi \tag{f}
\end{equation*}
$$

Therefore, the Routh-Voss equations [which, due to the chosen special equilibrium relaxed coordinates (a), decouple] are

$$
\begin{align*}
& E_{y}(T)=Q_{y}+\left.\lambda_{y}\right|_{o}: \tag{i}\\
& \left.\quad\left[(M+m) \ddot{y}-m l \sin \phi \ddot{\phi}-m l(\dot{\phi})^{2} \cos \phi\right]\right|_{y=0}=(M+m) g+\lambda_{y}, \tag{g}
\end{align*}
$$

or, finally,

$$
\begin{equation*}
\lambda_{y} \equiv \lambda=-m l\left[\sin \phi \ddot{\phi}+\cos \phi(\dot{\phi})^{2}\right]-(M+m) g \tag{h}
\end{equation*}
$$

$$
\begin{align*}
E_{x}(T)=\left.Q_{x}\right|_{o}: & {\left.[(M+m) \dot{x}+m l \cos \phi \dot{\phi}] \cdot\right|_{y=0}=0 } \tag{ii}\\
& \Rightarrow(M+m) \dot{x}+(m l \dot{\phi}) \cos \phi=\text { constant } \tag{i}
\end{align*}
$$

(i.e., conservation of total linear momentum of system in the x-direction, since the total horizontal external force on the system vanishes).
(iii) $\quad E_{\phi}(T)=\left.Q_{\phi}\right|_{0}:\left(m l^{2} \dot{\phi}+m l \cos \phi \dot{x}\right)^{\cdot}+m l \sin \phi \dot{x} \dot{\phi}=-m g l \sin \phi$,
or, after some simple manipulations,

$$
\begin{equation*}
\ddot{\phi}+(\cos \phi / l) \ddot{x}=-(g / l) \sin \phi ; \tag{j}
\end{equation*}
$$

and for small ϕ 's, linearizing in ϕ, we obtain the forced pendulum-type equation:

$$
\begin{equation*}
\ddot{\phi}+(g / l) \phi=-(1 / l) \ddot{x} . \tag{k}
\end{equation*}
$$

SOLUTION

First, we solve the two kinetic ($=$ reactionless) equations ($\mathrm{i}, \mathrm{j} / \mathrm{k}$), plus initial conditions: $\left\{x_{o}, \phi_{o}, \dot{x}_{o}, \dot{\phi}_{o}\right\} \equiv I C$, and thus find $x=x(t, I C), \phi=\phi(t, I C)$; and then we substitute these solutions into the kinetostatic equation (h) and obtain $\lambda=\lambda(t, I C)$. Clearly, thanks to the uncoupling of the equations, all difficulty lies in the first (kinetic) part.

REMARK

Use of the initial conditions, say $\phi(0)=0, \dot{\phi}(0)=\omega_{o}, \dot{x}(0)=v_{o}$, in the constrained (i.e., actual) energy conservation equation $T_{o}+V_{o}=\left(T_{o}+V_{o}\right)_{i}(i$ for initial $)$ where, as found earlier,

$$
\begin{align*}
& 2 T_{o}=(M+m)(\dot{x})^{2}+\left(m l^{2}\right)(\dot{\phi})^{2}+2(m l \cos \phi) \dot{x} \dot{\phi} \tag{1}\\
& \Rightarrow 2 T_{o, i}=(M+m)\left(v_{o}\right)^{2}+\left(m l^{2}\right)\left(\omega_{o}\right)^{2}+2 m l v_{o} \omega_{o} \tag{m}
\end{align*}
$$

and

$$
\begin{gather*}
V_{o}=m g l(1-\cos \phi)=-m g l \cos \phi+\text { constant } \tag{n}\\
\Rightarrow V_{o, i}=-m g l+\text { constant } \tag{o}
\end{gather*}
$$

yields the additional [to (i)] integral:

$$
\begin{equation*}
T_{o}-m g l \cos \phi=T_{o, i}-m g l=(\text { another }) \text { constant. } \tag{p}
\end{equation*}
$$

(c) Partially Unconstrained

Figure 3.19 Plane motion of homogeneous ladder on smooth wall and floor: (a) constrained, and (b, c) partially constrained.

Example 3.7.3 Relaxation of Constraints, External Reactions: Ladder (Lawden, 1972, pp. 16-17, 54; also Osgood, 1937, pp. 322-325). A homogeneous bar (ladder) of length $2 l$ and mass m, with one of its ends, A, constrained to move on a smooth vertical wall and the other, B, on a smooth horizontal floor [fig. 3.19(a)], is released, say with initial conditions (IC) $\theta(0)=\theta_{o}, \dot{\theta}(0)=0$, and slides on the vertical plane $O-x y$. Let us find its equations of motion and external reactions: A from the wall and B from the floor, on the ladder. For algebraic simplicity, first, we relax only the wall and find A [fig. $3.19(\mathrm{~b})$; then, we relax only the floor and find B [fig. 3.19(c)].
(i) Wall relaxation: Assume that the wall can translate horizontally, and let $x=x(t)$ be its generic distance/coordinate from the original wall (or from another fixed wall to its right, or left). With $q_{1}=x, q_{2}=\theta$, the wall constraint is $x=0$, or $x=$ constant; that is, $f \equiv n-m=2-1=1$. Next, the (double) relaxed kinetic energy, by König's theorem ($G=$ center of mass), is

$$
\begin{align*}
2 T & =\left(m l^{2} / 3\right)(\dot{\theta})^{2}+m v_{G}^{2} \quad(\text { invoking the law of cosines }) \\
& =\left(m l^{2} / 3\right)(\dot{\theta})^{2}+m\left[(\dot{x})^{2}+l^{2}(\dot{\theta})^{2}+2 l \dot{x} \dot{\theta} \cos \theta\right] \tag{a}\\
\Rightarrow & \left.2 T\right|_{x=o} \equiv 2 T_{o}=\left(4 m l^{2} / 3\right)(\dot{\theta})^{2}=\text { constrained }(\text { double }) \text { kinetic energy } \tag{b}
\end{align*}
$$

and the total relaxed virtual work (to the first order in $\delta \theta$, and with A as an impressed force) is

$$
\begin{align*}
\delta^{\prime} W & =A \delta x+m g l[\cos \theta-\cos (\theta+\delta \theta)] \\
& =A \delta x+m g l[\cos \theta-(\cos \theta-\sin \theta \delta \theta+\cdots)] \\
& =A \delta x+(m g l \sin \theta) \delta \theta \Rightarrow Q_{x}=A, Q_{\theta}=m g l \sin \theta \tag{c}
\end{align*}
$$

Q_{θ} can also be found from the constrained system potential $V_{o}=m g l \cos \theta$:

$$
\begin{equation*}
Q_{\theta}=-\partial V_{o} / \partial \theta=-\partial(m g l \cos \theta) / \partial \theta=m g l \sin \theta \tag{d}
\end{equation*}
$$

In view of the above, the equations of motion are

$$
\begin{align*}
\left.E_{\theta}(T)\right|_{o}= & E_{\theta}\left(T_{o}\right)=\left.Q_{\theta}\right|_{o}: \tag{a}\\
& {[(4 l \ddot{\theta} / 3)+\cos \theta \ddot{x})]\left.\right|_{o}=(4 l / 3) \ddot{\theta}=g \sin \theta } \tag{e}
\end{align*}
$$

$$
\begin{align*}
& E_{x}(T)=\left.Q_{x}\right|_{o}: \tag{b}\\
& \left.\quad m\left[\ddot{x}+(l \cos \theta) \ddot{\theta}-l \sin \theta(\dot{\theta})^{2}\right]\right|_{o}=m l\left[(\cos \theta) \ddot{\theta}-\sin \theta(\dot{\theta})^{2}\right]=A . \tag{f}
\end{align*}
$$

SOLUTION

First, we solve the kinetic equation (e) for $\theta=\theta(t, I C)$, and then insert that value into the kinetostatic equation (f), thus obtaining $A=A(t, I C)$, or $A=A(\theta, I C)$. Indeed, due to the well-known energetic identity $\dot{\theta} \ddot{\theta}=(d / d t)\left[(\dot{\theta})^{2} / 2\right]$, (e) integrates to (ladder in contact with wall)

$$
\begin{equation*}
2 l(\dot{\theta})^{2} / 3=g\left(\cos \theta_{o}-\cos \theta\right) \Rightarrow \dot{\theta}=\cdots, \ddot{\theta}=\cdots \tag{g}
\end{equation*}
$$

and substituting into (f) yields the wall reaction as a function of the angle θ (and the initial condition θ_{o} as parameter):

$$
\begin{equation*}
A=3 m g\left(3 \cos \theta-2 \cos \theta_{o}\right) \sin \theta / 4 \tag{h}
\end{equation*}
$$

an expression that shows that the ladder loses contact with the wall when $\cos \theta=2 \cos \theta_{o} / 3$; that is, when the end A has descended by $2 / 3$ of its initial height above the floor.

REMARK

Equation (g) also results from energy conservation (i for initial):

$$
\begin{equation*}
T_{o}+V_{o}=\left(T_{o}+V_{o}\right)_{i} \Rightarrow 2 m l^{2}(\dot{\theta})^{2} / 3+m g l \cos \theta=0+m g l \cos \theta_{o} \tag{i}
\end{equation*}
$$

(ii) Floor relaxation [fig. 3.19(c)]: By König's theorem (and the theorem of cosines), we find

$$
\begin{align*}
2 T & =\left(m l^{2} / 3\right)(\dot{\theta})^{2}+m v_{G}^{2} \\
& =\left(m l^{2} / 3\right)(\dot{\theta})^{2}+m\left[(\dot{y})^{2}+l^{2}(\dot{\theta})^{2}-2 l \dot{y} \dot{\theta} \sin \theta\right] \\
& =\left(4 m l^{2} / 3\right)(\dot{\theta})^{2}+m(\dot{y})^{2}-(2 m l \sin \theta) \dot{y} \dot{\theta}, \tag{j}\\
\left.\Rightarrow 2 T\right|_{y=o} \equiv 2 T_{o} & =\left(4 m l^{2} / 3\right)(\dot{\theta})^{2}=\text { constrained (double) kinetic energy; } \tag{k}
\end{align*}
$$

and the total relaxed virtual work (to the first order in $\delta \theta$, and with B as an impressed force) is

$$
\begin{align*}
\delta^{\prime} W= & B \delta y-m g \delta y-m g \delta(l \cos \theta)=(B-m g) \delta y+(m g l \sin \theta) \delta \theta \\
& \Rightarrow Q_{y}=B-m g, \quad Q_{\theta}=m g l \sin \theta \tag{1}
\end{align*}
$$

Hence, the equations of motion are

$$
\begin{align*}
& \left.E_{\theta}(T)\right|_{o}=E_{\theta}\left(T_{o}\right)=\left.Q_{\theta}\right|_{o} \tag{a}\\
& \left.\left.\begin{array}{l}
{\left[\left(m l^{2} \ddot{\theta} / 3\right)\right.}
\end{array}\right)+\left(m l^{2} \dot{\theta}-m l \dot{y} \sin \theta\right)^{\cdot}+m l \dot{\theta} \dot{y} \cos \theta\right]\left.\right|_{o}=m g l \sin \theta \\
& \Rightarrow(4 l / 3) \ddot{\theta}=g \sin \theta \quad \text { (as before) } \tag{m}
\end{align*}
$$

$$
\begin{gather*}
E_{y}(T)=\left.Q_{y}\right|_{o} \quad\left[=\left.Q_{y}\right|_{o}+\lambda, \text { if we set } Q_{y}=-m g, \lambda=B\right]: \tag{b}\\
\left.\quad\left[m(\dot{y}-l \sin \theta \dot{\theta})^{\cdot}\right]\right|_{o}=B-m g \\
\quad \Rightarrow-m l\left[(\sin \theta) \ddot{\theta}+\cos \theta(\dot{\theta})^{2}\right]=B-m g \tag{n}
\end{gather*}
$$

from which [and invoking (g, m)]

$$
\begin{align*}
B & =-m l(3 g \sin \theta / 4 \lambda) \sin \theta-m l \cos \theta\left[\left(3 g \cos \theta_{o} / 2 l\right)-(3 g \cos \theta / 2 l)\right]+m g \\
& =(m g / 4)\left[-3\left(1-\cos ^{2} \theta\right)+6 \cos ^{2} \theta-6 \cos \theta \cos \theta_{o}\right]+m g \\
& =(m g / 4)\left[1-6 \cos \theta \cos \theta_{o}+9 \cos ^{2} \theta\right]=\text { function of } \theta \text { and } \theta_{o}(>0) . \tag{o}
\end{align*}
$$

For $\cos \theta=2 \cos \theta_{o} / 3$ [loss of contact with the wall, from (h)], the above yields $B=m g / 4$.

Example 3.7.4 Relaxation of Constraints, Internal Reactions: Atwood's Machine. Two particles, P_{1} and P_{2}, of respective masses m and M, are connected by a light and inextensible string of negligible mass, that passes over a light, smooth, and fixed pulley [fig. 3.20(a)]. Let us find the accelerations of P_{1} and P_{2} and the (approximately constant) string tension S.
(i) Original (constrained) system. This well-known apparatus is subject to the holonomic and stationary constraint

$$
\begin{equation*}
x+(h-X)=\text { constant } \Rightarrow x=X \pm \text { constant } \Rightarrow \dot{x}=\dot{X} \quad \text { and } \quad \delta x=\delta X \tag{a}
\end{equation*}
$$

that is, $n=1$. Choosing as Lagrangean coordinate $q_{1}=q=x$, and with the earlier notation $\left.(\ldots)_{o} \equiv(\ldots)\right|_{\text {constrained system }}$, we find

$$
\begin{align*}
& 2 T_{o}=(m+M)(\dot{x})^{2}, \\
& \delta^{\prime} W \Rightarrow\left(\delta^{\prime} W\right)_{o}=(m g) \delta x-(M g) \delta x=(m-M) g \delta x \Rightarrow Q_{x, o}=(m-M) g \\
& {[=(m g-S) \delta x-(M g-S) \delta x, \text { had we included the constraint reaction }],} \tag{b}
\end{align*}
$$

(a) CONSTRAINED System

(b) UNCONSTRAINED System

Figure 3.20 Atwood's machine: (a) original (constrained), and (b) relaxed.
and therefore Lagrange's sole (kinetic) equation is

$$
\begin{equation*}
\left(\partial T_{o} / \partial \dot{x}\right)^{\cdot}-\partial T_{o} / \partial x=Q_{x, o}: \quad(m+M) \ddot{x}=(m-M) g, \tag{c}
\end{equation*}
$$

from which [plus initial conditions $x\left(t_{o}\right)=x_{o}, \dot{x}\left(t_{o}\right)=v_{o}$] we obtain the motion $\ddot{x}=\cdots \Rightarrow x=x(t)=\cdots$. Finally, the constraint yields the P_{2} motion $X=$ $X(t)=\cdots$.
(ii) Relaxed (unconstrained) system; calculation of string tension.
(a) Rubber-band version. Since the constraint is the string's inextensibility, let us relax it by cutting it into two separate inextensible substrings [fig. 3.20(b)], in a manner reminiscent of the "free-body diagram" method ("cut principle"), so that $n=2$. Choosing as Lagrangean coordinates $q_{1}=x$ and $q_{2}=X$, we have (now with S considered an impressed force)

$$
\begin{align*}
& 2 T=m(\dot{x})^{2}+M(\dot{X})^{2} \\
& \delta^{\prime} W=(m g-S) \delta x+(S-M g) \delta X \Rightarrow Q_{x}=m g-S, \quad Q_{X}=S-M g, \tag{d}
\end{align*}
$$

and therefore Lagrange's equations are

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}: & m \ddot{x}=m g-S \\
(\partial T / \partial \dot{X})^{\cdot}-\partial T / \partial X=Q_{X}: & m \ddot{X}=S-M g . \tag{f}
\end{array}
$$

These two, plus the constraint (a) (i.e., we return to the original, constrained, system), allow us to find $x(t)=\cdots, X(t) \cdots, S(t)=\cdots$. Eliminating S between (e, f), and then enforcing the constraint (a) $\rightarrow \ddot{x}=\ddot{X}$, produces the earlier equation (c); while utilizing the solution of the latter into either (e) or (f) [or eliminating $\ddot{x}=\ddot{X}$ between (e, f)] yields the sought reaction $S=[2 m M /(m+M)] g$.
(b) Lagrange's multiplier version. Since the constraint is $f(x, X) \equiv x-X \pm$ constant $=0$, and now, with x and X treated as independent (and S no longer considered an impressed force, but a reaction!), and taking $\delta x, \delta X>0$,

$$
\begin{equation*}
\delta^{\prime} W=(m g) \delta x-(M g) \delta X \Rightarrow Q_{x}=m g, \quad Q_{X}=-M g \tag{g}
\end{equation*}
$$

the Routh-Voss equations, with multiplier λ, are

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}+\lambda(\partial f / \partial x): & m \ddot{x}=m g+\lambda(1) \\
(\partial T / \partial \dot{X})^{\cdot}-\partial T / \partial X=Q_{X}+\lambda(\partial f / \partial X): & M \ddot{X}=-M g+\lambda(-1) . \tag{i}
\end{array}
$$

From the above, clearly, $\delta^{\prime} W_{R} \equiv R_{x} \delta x+R_{X} \delta X=\lambda(\delta x-\delta X)$ ($=0$, upon enforcing the constraint $f=0$; as LP requires). But also, by direct calculation [from fig. 3.20(b)], $\delta^{\prime} W_{R}=-S \delta x+S \delta X=-S(\delta x-\delta X)$. Hence, it follows that $\lambda=-S(<0)$, and so (h, i) coincide with (e, f), respectively.

REMARKS

(a) Had we written the above constraint as $f(x, X) \equiv X-x \pm$ constant $=0$, the Routh-Voss equations would be

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}+\lambda(\partial f / \partial x): & m \ddot{x}=m g+\lambda(-1), \\
(\partial T / \partial \dot{X})^{\cdot}-\partial T / \partial X=Q_{X}+\lambda(\partial f / \partial X): & M \ddot{X}=-M g+\lambda(+1), \tag{k}
\end{array}
$$

but since, now,

$$
\delta^{\prime} W_{R} \equiv R_{x} \delta x+R_{X} \delta X=(-\lambda) \delta x+(\lambda) \delta X=-\lambda(\delta x-\delta X)=-S(\delta x-\delta X),
$$

we conclude that $\lambda=S(>0)$, and so (h, i) coincide with (j, k), respectively.
The lesson of this is that the multiplier adjusts its sign [and/or value, under mathematically different but physically equivalent forms of the constraint $f(x, X)=0$], so that the final equations of motion retain their invariant physical content; and, of course, $\delta^{\prime} W_{R}=0$.
(b) In terms of the equilibrium coordinates $q_{1}=x-X \pm$ constant and $q_{2}=$ $x\left(\Rightarrow d q_{1}=0, \dot{q}_{1}=0, \delta q_{1}=0\right.$), the constraint is simply $f \equiv q_{1}=0$ (or a constant). For such a choice, since now $x=q_{2}$ and $X=q_{2}-q_{1} \pm$ constant (no constraint enforcement yet!),

$$
\begin{gather*}
2 T=m(\dot{x})^{2}+M(\dot{X})^{2}=\cdots=M\left(\dot{q}_{1}\right)^{2}+(m+M)\left(\dot{q}_{2}\right)^{2}-2 M \dot{q}_{1} \dot{q}_{2}, \tag{1}\\
\delta^{\prime} W=(m g) \delta x-(M g) \delta X=\cdots=(M g) \delta q_{1}+(m-M) g \delta q_{2} \\
\Rightarrow Q_{1}=M g, \quad Q_{2}=(m-M) g, \tag{m}
\end{gather*}
$$

and so, in these coordinates, the Routh-Voss equations decouple naturally (upon enforcement of the constraint $q_{1}=0, \dot{q}_{1}=0, \ldots$ at the end) to a kinetostatic equation:

$$
\begin{align*}
& \left(\partial T / \partial \dot{q}_{1}\right)^{-}-\partial T / \partial q_{1}=Q_{1}+\lambda\left(\partial f / \partial q_{1}\right): \\
& -M \ddot{q}_{2}=M g+\lambda(+1), \quad \text { or } \quad M \ddot{x}=-M g-\lambda, \tag{n}
\end{align*}
$$

and a kinetic one:

$$
\begin{align*}
& \left(\partial T / \partial \dot{q}_{2}\right)^{\cdot}-\partial T / \partial q_{2}=Q_{2}+\lambda\left(\partial f / \partial q_{2}\right): \\
& (M+m) \ddot{q}_{2}=(m-M) g+\lambda(0), \quad \text { or } \quad(M+m) \ddot{x}=(m-M) g, \tag{o}
\end{align*}
$$

($R_{2}=0$, since q_{2} is unconstrained); and since

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv R_{1} \delta q_{1}+R_{2} \delta q_{2}=\lambda \delta q_{1}=-S(\delta x-\delta X) \tag{p}
\end{equation*}
$$

it follows that now $\lambda=-S$, as observed earlier; that is, (n, o) coincide with (i, c), respectively.

Finally, we notice that $E_{2}\left(T_{o}\right)=\left.E_{2}(T)\right|_{o}=(M+m) \ddot{q}_{2}=(M+m) \ddot{x}$; while by (1), $\left.2 T\right|_{o}=2 T_{o}=(m+M)\left(\dot{q}_{2}\right)^{2}$, and therefore $E_{1}\left(T_{o}\right)=0 \neq\left. E_{1}(T)\right|_{o}=-M \ddot{q}_{2}$.
(iii) Inclusion of rotary inertia of pulley. If the pulley is assumed circular and homogeneous with radius r, mass μ, and radius of gyration k about its pin C, then it is not hard to show that the earlier results modify slightly to

$$
\begin{array}{ll}
\ddot{x}=(m-M) g /\left[(m+M)+\mu(k / r)^{2}\right], & \text { Left cable }=m(g-\ddot{x}), \\
& \text { Right cable }=M(g+\ddot{x}) . \tag{q}
\end{array}
$$

Example 3.7.5 PRC and the Determinacy versus Indeterminacy of Lagrange's Equations. Let us consider a homogeneous sphere (or cylinder, or disk) of mass m and radius r, in plane motion (rolling or slipping) down a fixed inclined plane of slope with the horizontal θ (fig. 3.21). In terms of the "natural" Lagrangean coordinates of the problem $q_{1}=y$ and $q_{2}=x$ (coordinates of center of mass G)

Figure 3.21 Plane motion (rolling/slipping) of a sphere down a fixed incline to illustrate the apparent indeterminacy of the Lagrangean equations. O (rigin) chosen so that $\operatorname{arc}(A C)=O C$; that is, during rolling $O C=r \phi$.
and $q_{3}=\phi$, the constraints are

$$
\begin{array}{ll}
f_{1} \equiv y-r=0 \Rightarrow \delta f_{1}=\delta y=0 & \text { (contact), } \\
f_{2} \equiv x-r \phi=0 \Rightarrow \delta f_{2}=\delta x-r \delta \phi=0 & \text { (if the sphere rolls). } \tag{b}
\end{array}
$$

By König's theorem, the (double) relaxed kinetic energy of the sphere, rolling or slipping, is

$$
\begin{equation*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+I(\dot{\phi})^{2} \tag{c}
\end{equation*}
$$

($I=$ moment of inertia of sphere about axis through G, normal to plane of motion $=2 m r^{2} / 5$). Now, and as is well known from the undergraduate dynamics treatment of this problem, we distinguish the following two cases.
(i) The sphere rolls $[|F / N|<\mu=$ coefficient of (static) friction $]$.
(a) Relaxation of constraints; rubber-band approach. Here, $f \equiv n-m=$ $3-2=1$. The virtual work of all forces is (no constraint enforcement!)

$$
\begin{align*}
\delta^{\prime} W & =m g \sin \theta \delta x-m g \cos \theta \delta y+N \delta y-F(\delta x-r \delta \phi) \\
& =Q_{x} \delta x+Q_{y} \delta y+Q_{\phi} \delta \phi \\
\Rightarrow Q_{x} & =m g \sin \theta-F, \quad Q_{y}=N-m g \cos \theta, \quad Q_{\phi}=r F . \tag{d}
\end{align*}
$$

With eqs. (c, d) Lagrange's equations yield

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}: & m \ddot{x}=m g \sin \theta-F, \\
(\partial T / \partial \dot{y})^{\cdot}-\partial T / \partial y=Q_{y}: & m \ddot{y}=N-m g \cos \theta, \\
(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=Q_{\phi}: & I \ddot{\phi}=r F, \tag{e3}
\end{array}
$$

and along with the constraints (a, b) they constitute a determinate system of five equations in the five unknown functions of time: x, y, ϕ, N, F.
(b) Relaxation of constraints; Lagrangean multiplier approach. Here, too, $f \equiv$ $n-m=3-2=1$. Now the virtual work of all forces is [recall eqs. (a, b); the work of the reactions F and N appears indirectly as virtual work of the multipliers]

$$
\begin{align*}
\delta^{\prime} W & =m g \sin \theta \delta x-m g \cos \theta \delta y+\lambda_{1} \delta f_{1}+\lambda_{2} \delta f_{2} \\
& =\left(m g \sin \theta+\lambda_{2}\right) \delta x+\left(-m g \cos \theta+\lambda_{1}\right) \delta y+\left(-r \lambda_{2}\right) \delta \phi \\
& =\left(Q_{x}+R_{x}\right) \delta x+\left(Q_{y}+R_{y}\right) \delta y+\left(Q_{\phi}+R_{\phi}\right) \delta \phi \tag{f1}
\end{align*}
$$

$$
\begin{align*}
\Rightarrow Q_{x} & =m g \sin \theta, & & R_{x}=\lambda_{1}\left(\partial f_{1} / \partial x\right)+\lambda_{2}\left(\partial f_{2} / \partial x\right)=\lambda_{1}(0)+\lambda_{2}(1)=\lambda_{2}, \\
Q_{y} & =-m g \cos \theta, & & R_{y}=\lambda_{1}\left(\partial f_{1} / \partial y\right)+\lambda_{2}\left(\partial f_{2} / \partial y\right)=\lambda_{1}(1)+\lambda_{2}(0)=\lambda_{1}, \\
Q_{\phi} & =0, & & R_{\phi}=\lambda_{1}\left(\partial f_{1} / \partial \phi\right)+\lambda_{2}\left(\partial f_{2} / \partial \phi\right)=\lambda_{1}(0)+\lambda_{2}(-r)=-\lambda_{2} r . \tag{f2}
\end{align*}
$$

With eqs. (c, h, i) the Routh-Voss equations yield

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}+R_{x}: & m \ddot{x}=m g \sin \theta+\lambda_{2}, \\
(\partial T / \partial \dot{y})^{\cdot}-\partial T / \partial y=Q_{y}+R_{y}: & m \ddot{y}=-m g \cos \theta+\lambda_{1}, \\
(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=Q_{\phi}+R_{\phi}: & I \ddot{\phi}=-\lambda_{2} r, \tag{g3}
\end{array}
$$

and along with eqs. (a, b) they constitute a determinate system of five equations in the five unknowns: $x, y, \phi, \lambda_{1}, \lambda_{2}$. Upon calculating $\delta^{\prime} W_{R} \equiv \lambda_{1} \delta f_{1}+\lambda_{2} \delta f_{2}=$ $\lambda_{1} \delta y+\lambda_{2}(\delta x-r \delta \phi)$ and equating it with $\delta^{\prime} W_{R}=(-F) \delta x+(N) \delta y+(F r) \delta \phi$, calculated from the relaxed free-body diagram of the sphere, we immediately conclude that $\lambda_{1}=N$ and $\lambda_{2}=-F$. [Also, a "mixed" relaxation approach; i.e., part rubber band (e.g., including the virtual work of N directly) and part multiplier (e.g., including the virtual work of F via a $\lambda_{2} \delta f_{2}$ term) would have resulted in completely equivalent results.]
(c) Embedding of all constraints. Enforcing both eqs. (a, b) into T and $\delta^{\prime} W$ and keeping ϕ as the sole Lagrangean coordinate (i.e., $n=1, m=0$), we obtain

$$
\begin{equation*}
2 T_{o}=m(r \dot{\phi})^{2}+I(\dot{\phi})^{2}=I_{C}(\dot{\phi})^{2} \tag{h}
\end{equation*}
$$

$\left(I_{C} \equiv I+m r^{2}=\right.$ moment of inertia of sphere about axis through contact point C, normal to plane of motion $=7 m r^{2} / 5$),

$$
\begin{equation*}
\delta^{\prime} W_{o}=m g \sin \theta \delta x=Q_{\phi, o} \delta \phi \Rightarrow Q_{\phi, o}=m g r \sin \theta . \tag{i}
\end{equation*}
$$

With eqs. (h, i), the sole (kinetic) Lagrangean equation yields

$$
\begin{equation*}
I_{C} \ddot{\phi}=m g r \sin \theta, \quad \text { or, explicitly }, \quad \ddot{\phi}-(5 g / 7 r) \sin \theta=0, \tag{j}
\end{equation*}
$$

and with the initial conditions, say $\phi(0)=\phi_{o}$ and $\dot{\phi}(0)=\omega_{o}$, readily yields $\phi=\phi(t)$. Then, using the constraints (a, b), we obtain $x=x(t)$ and $y=y(t)$. However, to find the reactions N and F, we either have to apply relaxation [as in parts (i.a) and (i.b) of this example], or go outside Lagrangean mechanics and apply the Newton-Euler momentum principles to the sphere. If we embed only some of the constraints into
T and $\delta^{\prime} W$, say eq. (a) but not eq. (b) (i.e., $n=2, m=1$), then

$$
\begin{gather*}
2 T=m(\dot{x})^{2}+I(\dot{\phi})^{2}, \tag{k}\\
\delta^{\prime} W=(m g \sin \theta-F) \delta x+(F r) \delta \phi=Q_{x} \delta x+Q_{\phi} \delta \phi \\
\Rightarrow Q_{x}=m g \sin \theta-F, \quad Q_{\phi}=r F, \tag{1}
\end{gather*}
$$

and so Lagrange's equations yield

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}: & m \ddot{x}=m g \sin \theta-F \\
(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=Q_{\phi}: & I \ddot{\phi}=r F \tag{m2}
\end{array}
$$

and along with the constraint (b) constitute a determinate system of three equations in the three unknowns: x, ϕ, F. To find y and N we can either use relaxation, as before, or resort to the Newton-Euler momentum principles.

In sum: as long as the sphere rolls, all Lagrangean approaches (zero, partial, or complete embedding of the holonomic constraints) result in determinate systems of equations for their variables.
(ii) The sphere slips. In this case, the sole constraint is eq. (a):

$$
\begin{equation*}
f_{1} \equiv y-r=0 \Rightarrow \delta f_{1}=\delta y=0 \quad(\text { contact }) \tag{a}
\end{equation*}
$$

while eq. (b) is replaced by the constitutive equation

$$
|F / N|=\mu, \quad \text { or } \quad|F|=\mu|N| \quad[\mu=\text { coefficient of }(\text { kinetic }) \text { friction }] . \quad \text { (n) }
$$

(a) Relaxation of constraints; rubber-band approach. Here, $f \equiv n-m=3-1=2$, and so T and $\delta^{\prime} W$ are given by eqs. (c, d), respectively. Therefore, Lagrange's equations are again eqs. (e-g); and along with eqs. (a), (r) constitute a determinate system of five equations in the five unknowns: x, y, ϕ, N, F.
(b) Relaxation of constraints; Lagrange's multiplier approach. Here, too, $f \equiv n-m=3-1=2, T$ is given by eq. (c), while [in the spirit of eq. (f1), the normal reaction appears through a multiplier]

$$
\begin{align*}
\delta^{\prime} W & =m g \sin \theta \delta x-m g \cos \theta \delta y-F \delta x+(F r) \delta \phi+\lambda_{1} \delta f_{1} \\
& =(m g \sin \theta-F) \delta x+\left(\lambda_{1}-m g \cos \theta\right) \delta y+(F r) \delta \phi, \tag{ol}
\end{align*}
$$

that is,

$$
\begin{array}{ll}
Q_{x}=m g \sin \theta-F, & R_{x}=\lambda_{1}\left(\partial f_{1} / \partial x\right)=0, \\
Q_{y}=-m g \cos \theta, & R_{y}=\lambda_{1}\left(\partial f_{1} / \partial y\right)=\lambda_{1}, \\
Q_{\phi}=F r, & R_{\phi}=\lambda_{1}\left(\partial f_{1} / \partial \phi\right)=0 . \tag{o2}
\end{array}
$$

Hence, the Routh-Voss equations yield

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}+R_{x}: & m \ddot{x}=m g \sin \theta-F, \\
(\partial T / \partial \dot{y})^{\cdot}-\partial T / \partial y=Q_{y}+R_{y}: & m \ddot{y}=-m g \cos \theta+\lambda_{1}, \\
(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=Q_{\phi}+R_{\phi}: & I \ddot{\phi}=F r, \tag{p3}
\end{array}
$$

and along with eqs. (a, n) constitute a determinate system of five equations in the five unknowns: x, y, ϕ, N, F. Here too we can easily show that $\lambda_{1}=N$.
(c) Embedding of all constraints. Here, $f \equiv n-m=2-1=1$. Enforcing eq. (a) into T and $\delta^{\prime} W$ (= virtual work of all impressed forces), we have

$$
\begin{align*}
& 2 T=m(\dot{x})^{2}+I(\dot{\phi})^{2}, \tag{q}\\
& \delta^{\prime} W=(m g \sin \theta-F) \delta x+(F r) \delta \phi=Q_{x} \delta x+Q_{\phi} \delta \phi \tag{rl}\\
& \Rightarrow Q_{x}=m g \sin \theta-F, \quad Q_{\phi}=r F, \tag{r2}
\end{align*}
$$

and so Lagrange's equations yield

$$
\begin{array}{ll}
(\partial T / \partial \dot{x})^{\cdot}-\partial T / \partial x=Q_{x}: & m \ddot{x}=m g \sin \theta-F \\
(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=Q_{\phi}: & I \ddot{\phi}=r F . \tag{s2}
\end{array}
$$

But this is an indeterminate system, since we have generated two equations for our three unknowns: x, ϕ, F; and adding eq. (n) would introduce the extra unknown N.

As the handling of the previous cases has shown, such an apparent failure of the Lagrangean method to produce a "well-posed" problem is, generally, due to (i) our embedding of all (here holonomic) constraints into T and $\delta^{\prime} W$, and (ii) the existence of impressed forces that depend explicitly on (some or all of) the constraint reactions. (Similar indeterminacy will result if we embed all nonholonomic constraints into T and $\delta^{\prime} W$ via quasi variables.) To achieve determinacy, either we apply the principle of relaxation of the constraints; or we go outside of Lagrangean mechanics, usually applying the Newton-Euler principles of linear/angular momentum.

REMARK

Similar "indeterminacies" appear often in the Newton-Euler method; for example, by application of the momentum principles to an inappropriate free-body diagram. Here, determinacy is attained through the use of additional judiciously chosen sub-free-body diagrams, and subsequent application of the momentum principles to the resulting subbodies; for example, the well-known method of sections, of A. Ritter, in the statics of trusses.

Problem 3.7.1 Determinacy versus Indeterminacy of Lagrange's Equations. Consider a thin homogeneous bar $A B$ of mass m and length $2 l$, in plane motion, sliding on a fixed horizontal rough floor and a fixed vertical rough wall; in both, contacts with the same friction coefficient μ (fig. 3.22).
(i) Show that if we embed all (holonomic) constraints into T and $\delta^{\prime} W$, and keep θ as the sole positional coordinate, then

$$
\begin{align*}
& 2 T_{o}=(4 / 3) m l^{2}(\dot{\theta})^{2} \tag{a}\\
& \delta^{\prime} W_{o}=[m g l \sin \theta-2 l \sin \theta(\mu A)-2 l \cos \theta(\mu B)] \delta \theta \tag{b}
\end{align*}
$$

and therefore the (kinetic) Lagrangean equation for θ is

$$
\begin{equation*}
4 m l\left(d^{2} \theta / d t^{2}\right)=3[m g \sin \theta-2 \sin \theta(\mu A)-2 \cos \theta(\mu B)] \tag{c}
\end{equation*}
$$

Is this a determinate problem for the equations and unknowns involved?

Figure 3.22 Plane sliding of homogeneous bar on rough wall and floor.
(ii) Show that if we apply the principle of relaxation, then (with positional coordinates $x, y=$ Cartesian coordinates of bar's center of mass, and θ)

$$
\begin{align*}
2 T= & m\left[\dot{x}^{2}+\dot{y}^{2}+(1 / 3) l^{2} \dot{\theta}^{2}\right] \tag{d}\\
\delta^{\prime} W= & (A-\mu B) \delta x+(B+\mu A-m g) \delta y \\
& +l(B \sin \theta-A \cos \theta-\mu A \sin \theta-\mu B \cos \theta) \delta \theta, \tag{e}
\end{align*}
$$

and therefore Routh-Voss equations yield

$$
\begin{align*}
& m \ddot{x}=A-\mu B \tag{f}\\
& m \ddot{y}=B+\mu A-m g \tag{g}\\
& (m l / 3) \ddot{\theta}=B(\sin \theta-\mu \cos \theta)-A(\cos \theta+\mu \sin \theta) \tag{h}
\end{align*}
$$

Is this system of equations (plus constraints) determinate in its unknowns?
(iii) Show that by eliminating A and B from eq. (h), via eqs. (f, g), and the x, y, θ constraints, we obtain the kinetic θ-equation

$$
\begin{equation*}
2 l\left(\mu^{2}-2\right)\left(d^{2} \theta / d t^{2}\right)+6 \mu l(d \theta / d t)^{2}+3 g\left[\left(1-\mu^{2}\right) \sin \theta-2 \mu \cos \theta\right]=0 \tag{i}
\end{equation*}
$$

Example 3.7.6 Motion under Frictionless Unilateral Constraints. Let us consider a holonomic n DOF system under the single unilateral constraint $f(t, q) \geq 0$. Then, two types of motion are possible:
(i) $f>0$: The system escapes the constraint, and its equations of motion $E_{k}=Q_{k}(k=1, \ldots, n)$ hold until $f=0$ vanishes.
(ii) $f=0$: The system obeys the constraint, and its motion is governed by, say its Routh-Voss equations $E_{k}=Q_{k}+\lambda\left(\partial f / \partial q_{k}\right)$, to which we must also append $f(t, q)=0$. As long as $f=0$, we must also have
$d f / d t=\sum\left(\partial f / \partial q_{k}\right)\left(d q_{k} / d t\right)+\partial f / \partial t=0 \quad$ (velocity compatibility),

$$
\begin{align*}
d^{2} f / d t^{2}=\sum\left(\partial f / \partial q_{k}\right)\left(d^{2} q_{k} / d t^{2}\right) & +\sum \sum\left(\partial^{2} f / \partial q_{l} \partial q_{k}\right)\left(d q_{l} / d t\right)\left(d q_{k} / d t\right) \tag{a}\\
& +2 \sum\left(\partial^{2} f / \partial t \partial q_{k}\right)\left(d q_{k} / d t\right)+\partial^{2} f / \partial t^{2}=0 \tag{b}
\end{align*}
$$ (acceleration compatibility).

The $n+1$ equations [Routh-Voss + eq. (b)] determine, at every instant for which $f=0$, the $n\left(d^{2} q / d t^{2}\right)$'s and t. Further, in such a case, the $n \delta q$'s may satisfy (a) $\delta f=0$, or (b) $\delta f>0$. In the former case, $\delta^{\prime} W_{R} \equiv \lambda \delta f=0$; in the latter, $\delta^{\prime} W_{R}>0$ (for every δq compatible with $\delta f>0) \Rightarrow \lambda>0$ (i.e., these (normal) reactions have a definite sense; for example, when a body B contacts an obstacle, the reaction from the latter to B must be directed toward B).

In sum: an $(f=0)$-type of motion is physically meaningful as long as λ remains positive.

Finally, let us examine the following three possible cases (at a given instant):
(i) $f=0$ and $d f / d t \leq 0$: then we have impact (\rightarrow chap. 4); the velocities at the end of it will be such that $d f / d t \geq 0$.
(ii) $f=0$ and $d f / d t>0$: then f will take positive values, and we are back to the case $f>0$.
(iii) $f=0$ and $d f / d t=0$: then we have one of the following two possibilities: (a) constraint-preserving motion $(f=0)$, or (b) escaping from it $(f>0)$. In the first case, we can calculate the ($d^{2} q / d t^{2}$)'s and $\lambda(>0)$ from the Routh-Voss equations and eq. (b); while in the second, the $\left(d^{2} q / d t^{2}\right)$'s are found from $E_{k}=Q_{k}$, and then $d^{2} f / d t^{2} \equiv a \geq 0$ (f, after being zero, will become later positive). Denoting by $\Delta\left(d^{2} q / d t^{2}\right)$ the $\left(d^{2} q / d t^{2}\right)$-difference in the above two cases, and since the Q 's, q 's, and $(d q / d t)$'s are the same for both, we obtain [with kinetic energy: $2 T=\sum \sum M_{k l}\left(d q_{k} / d t\right)\left(d q_{l} / d t\right)=$ positive definite $\left.\geq 0\right]$

$$
\begin{equation*}
\sum M_{k l} \Delta\left(d^{2} q_{l} / d t^{2}\right)=\lambda\left(\partial f / \partial q_{k}\right) ; \tag{c}
\end{equation*}
$$

and similarly from eq. (b)

$$
\begin{equation*}
\sum\left(\partial f / \partial q_{k}\right) \Delta\left(d^{2} q_{k} / d t^{2}\right)=-a \tag{d}
\end{equation*}
$$

Combining the above we obtain

$$
-a \lambda=\sum \sum M_{k l} \Delta\left(d q_{k} / d t\right) \Delta\left(d q_{l} / d t\right)=\text { positive definite } \geq 0
$$

that is, since $\lambda>0$, it follows that $a \leq 0$. Hence, cases (iii.a, b) are complementary to each other, and thus only one of them will be physically acceptable. For example, in a constraint-preserving motion $(f=0)$, as long as $\lambda>0$, an escape from it is impossible; such an escape will happen if λ, in going from + to - , vanishes.

So, basically, the study of the escape from a unilateral constraint can be made equally well either (i) by looking at the sign of the multiplier λ in the constraintpreserving motion, or (ii) by examining if the escaping assumption leads to $f>0$.

The general theory of unilateral constraints has been developed by the "French school" of Appell, Delassus, Pérès, Beghin, Bouligand, et al.; see, for example, Pérès (1953, pp. 301-328); also (alphabetically): Glocker (1995), Hamel (1949, pp. 219220) for a(n implicitly applied) postulate of continuous transition from the state where a unilateral constraint holds to the one where that constraint is abandoned (moment of loss of contact, or separation), Zhuravlev et al. (1993).

3.8 EQUATIONS OF MOTION: SPECIAL FORMS

We have established the four basic types of equations of motion (§3.5); namely, the equations of
(i) Lagrange and Routh-Voss (holonomic variables, motion and reactions coupled);
(ii) Maggi (holonomic variables, motion and reactions uncoupled);
(iii) Hamel (nonholonomic variables, motion and reactions uncoupled); and
(iv) Appell (holonomic and/or nonholonomic variables, motion and reactions coupled and/or uncoupled).

Let us now see the various special forms that these equations assume, for special choices of the coordinates and forms of the constraints.

3.8.1 Holonomic Constraints

Holonomic Coordinates
If the (additional) constraints are

$$
\begin{equation*}
f_{D} \equiv f_{D}(t, q)=0 \quad(\text { in finite form }) \quad[D=1, \ldots, m(<n)], \tag{3.8.1a}
\end{equation*}
$$

or

$$
\delta f_{D} \equiv \sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k} \equiv \sum a_{D k} \delta q_{k}=0 \quad[\text { in virtual (Pfaffian) form }], \text { (3.8.1b) }
$$

then
(A) The Routh-Voss and Appell equations specialize, respectively, to

$$
\begin{align*}
& E_{k} \equiv d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right), \tag{3.8.2a}\\
& E_{k} \equiv \partial S / \partial \ddot{q}_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right) \tag{3.8.2b}
\end{align*}
$$

or, compactly, with the convenient notation

$$
\begin{gather*}
M_{k} \equiv E_{k}-Q_{k}, \tag{3.8.2c}\\
M_{k}=\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right) . \tag{3.8.2d}
\end{gather*}
$$

(B) Let us find the corresponding Maggi equations. To embed (or absorb) equations (3.8.1a) into Lagrange's principle (LP), and following Hamel's choice of quasi variables, we introduce n new "equilibrium" holonomic coordinates $e \equiv\left\{e_{k} ; k=1, \ldots, n\right\}$ by

$$
\begin{gather*}
e_{D} \equiv f_{D}(t, q)=0, \quad e_{I} \equiv f_{I}(t, q) \neq 0, \quad e_{n+1} \equiv q_{n+1}=t, \\
(D=1, \ldots, m ; I=m+1, \ldots, n), \tag{3.8.3a}
\end{gather*}
$$

where the $f_{I}(t, q)$ are arbitrary, but such that when the system (3.8.3a) is solved for the q 's in terms of the e 's, for each t (assuming this can be done uniquely), and the result is substituted back into the constraints $f_{D}(t, q)=0$, it satisfies them identically. Clearly, the $\partial e_{k} / \partial q_{l}\left(\partial q_{k} / \partial e_{l}\right)$ are the holonomic counterparts of the Pfaffian coefficients $a_{k l}\left(A_{k l}\right)$. We also notice that since

$$
\begin{align*}
q_{k}=q_{k}(t, e) \Rightarrow \dot{q}_{k} & =\sum\left(\partial q_{k} / \partial e_{l}\right) \dot{e}_{l}+\partial q_{k} / \partial t \\
\ddot{q}_{k} & =\sum\left(\partial q_{k} / \partial e_{l}\right) \ddot{e}_{l}+\text { function of } e, \dot{e}, t \tag{3.8.3b}
\end{align*}
$$

we have [as expected, recalling (2.9.35 ff.)]

$$
\begin{equation*}
\partial q_{k} / \partial e_{l}=\partial \dot{q}_{k} / \partial \dot{e}_{l}=\partial \ddot{q}_{k} / \partial \ddot{e}_{l}=\cdots \equiv A_{k l} \tag{3.8.3c}
\end{equation*}
$$

and, similarly, we can show that

$$
\begin{equation*}
\partial e_{k} / \partial q_{l}=\partial \dot{e}_{k} / \partial \dot{q}_{l}=\partial \ddot{e}_{k} / \partial \ddot{q}_{l}=\cdots \equiv a_{k l} . \tag{3.8.3d}
\end{equation*}
$$

Inverting (3.8.3a) results in $q_{k}=q_{k}(t, e)\left[\Rightarrow q_{k}\left(t, e_{I}\right)\right.$, upon enforcing $\left.e_{D}=0\right]$, from which we obtain the virtual system displacement representation [holonomic specialization of (2.11.4a ff.)]:

$$
\begin{gather*}
\delta q_{k}=\sum\left(\partial q_{k} / \partial e_{l}\right) \delta e_{l} \equiv \sum A_{k l} \delta e_{l} \\
{\left[=\sum\left(\partial q_{k} / \partial e_{I}\right) \delta e_{I} \equiv \sum A_{k I} \delta e_{I}, \text { upon enforcing } e_{D}=0 \Rightarrow \delta e_{D}=0\right]} \tag{3.8.3e}
\end{gather*}
$$

Now, combining LP, in terms of these new coordinates; that is,

$$
\begin{align*}
\sum M_{k} \delta q_{k} & =\sum M_{k}\left(\sum\left(\partial q_{k} / \partial e_{l}\right) \delta e_{l}\right)=\sum\left(\sum\left(\partial q_{k} / \partial e_{l}\right) M_{k}\right) \delta e_{l} \\
& =\sum\left(\sum\left(\partial q_{k} / \partial e_{D}\right) M_{k}\right) \delta e_{D}+\sum\left(\sum\left(\partial q_{k} / \partial e_{I}\right) M_{k}\right) \delta e_{I}=0 \tag{3.8.4a}
\end{align*}
$$

with the method of Lagrangean multipliers [in effect, rewriting the constraints $\delta e_{D}=0$ as $1 \cdot \delta e_{D}=0$ (and $1 \cdot \delta e_{n+1}=1 \cdot \delta q_{n+1}=1 \cdot \delta t=0$), and viewing the $\delta e_{I} \neq 0$ as satisfying the constraints $\left.0 \cdot \delta e_{I}=0\right]$, yields

$$
\begin{equation*}
\sum\left(\sum\left(\partial q_{k} / \partial e_{D}\right) M_{k}-\lambda_{D}\right) \delta e_{D}+\sum\left(\sum\left(\partial q_{k} / \partial e_{I}\right) M_{k}-0\right) \delta e_{I}=0 \tag{3.8.4b}
\end{equation*}
$$

from which, since now the δe_{D} and δe_{I} can be viewed as unconstrained, we obtain the following holonomic Maggi-type of equations:

$$
\begin{align*}
& \sum\left(\partial q_{k} / \partial e_{D}\right) M_{k}=\lambda_{D} \quad(m \text { kinetostatic equations }) \tag{3.8.4c}\\
& \sum\left(\partial q_{k} / \partial e_{I}\right) M_{k}=0 \quad(n-m \text { kinetic equationsno multipliers }) \tag{3.8.4d}
\end{align*}
$$

or, in extenso [recalling the notation (3.8.2c)],

$$
\begin{align*}
& \sum\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}\right]\left(\partial q_{k} / \partial e_{D}\right)=\sum\left(\partial q_{k} / \partial e_{D}\right) Q_{k}+\lambda_{D} \tag{3.8.4e}\\
& \sum\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}\right]\left(\partial q_{k} / \partial e_{I}\right)=\sum\left(\partial q_{k} / \partial e_{I}\right) Q_{k} \tag{3.8.4f}
\end{align*}
$$

The kinetic equations (3.8.4d, f) can also be obtained as follows: substituting $\delta q_{k}=\sum\left(\partial q_{k} / \partial e_{I}\right) \delta e_{I}$ (i.e., constraints enforced) into LP we obtain, successively,

$$
\sum M_{k} \delta q_{k}=\sum M_{k}\left(\sum\left(\partial q_{k} / \partial e_{I}\right) \delta e_{I}\right)=\sum\left(\sum\left(\partial q_{k} / \partial e_{I}\right) M_{k}\right) \delta e_{I}=0
$$

from which, since the δe_{I} are arbitrary, (3.8.4d, f) result.

REMARKS

(i) In forming the expressions appearing in (3.8.4c-f) we start with the unconstrained T and Q_{k} 's (i.e., as functions of both the e_{D} 's and e_{I} 's, etc.), then carry out all relevant differentiations, and then, at the end, set $e_{D}=0$ (just as in the nonholonomic variable case); otherwise the $\partial / \partial e_{D}$-differentiations would be impossible.

Also, using (3.8.3a), we can express these holonomic Maggi equations, exclusively, either in terms of q, \dot{q}, t, or in terms of e, \dot{e}, t; whichever is more helpful/ desirable.
(ii) In view of the kinematico-inertial identity $\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k} \equiv \partial S / \partial \ddot{q}_{k}$, eqs. (3.8.4c, d) can also be written, respectively, in the Appellian forms

$$
\begin{align*}
& \sum\left(\partial S / \partial \ddot{q}_{k}\right)\left(\partial q_{k} / \partial e_{D}\right)=\sum\left(\partial q_{k} / \partial e_{D}\right) Q_{k}+\lambda_{D} \tag{3.8.4~g}\\
& \sum\left(\partial S / \partial \ddot{q}_{k}\right)\left(\partial q_{k} / \partial e_{I}\right)=\sum\left(\partial q_{k} / \partial e_{I}\right) Q_{k} \tag{3.8.4h}
\end{align*}
$$

Special Case of Coordinates
An interesting special choice of e 's, in (3.8.3e), is the following:

$$
\begin{gather*}
e_{D} \equiv f_{D}(t, q)=0, \quad e_{I} \equiv q_{I} \neq 0, \quad e_{n+1} \equiv q_{n+1}=t, \\
(D=1, \ldots, m ; \quad I=m+1, \ldots, n) \tag{3.8.5a}
\end{gather*}
$$

that is, the last $n-m \dot{q}$'s are taken as the new independent Lagrangean coordinates. The above invert readily to $q_{D}=q_{D}\left(t, e_{I}\right)=q_{D}\left(t, q_{I}\right), q_{I}=q_{I}$, and hence [recalling (2.11.9) ff., with $b_{D I} \rightarrow \partial q_{D} / \partial q_{I}$; also, by (3.8.6a) ff. and (3.8.11a) ff.] (3.8.4c, d) specialize, respectively, to

$$
\begin{aligned}
\sum\left(\partial q_{k} / \partial e_{D}\right) M_{k} & =\sum\left(\partial q_{D^{\prime}} / \partial e_{D}\right) M_{D^{\prime}}+\sum\left(\partial q_{I} / \partial e_{D}\right) M_{I} \\
& =\sum\left(\delta_{D^{\prime} D}\right) M_{D^{\prime}}+\sum(0) M_{I}=\lambda_{D}
\end{aligned}
$$

or, finally,

$$
\begin{equation*}
M_{D}=\lambda_{D} \quad(m \text { kinetostatic equations }) ; \tag{3.8.5b}
\end{equation*}
$$

and

$$
\begin{aligned}
\sum\left(\partial q_{k} / \partial e_{I}\right) M_{k} & =\sum\left(\partial q_{D} / \partial e_{I}\right) M_{D}+\sum\left(\partial q_{I^{\prime}} / \partial e_{I}\right) M_{I^{\prime}} \\
& =\sum\left(\partial q_{D} / \partial q_{I}\right) M_{D}+\sum\left(\delta_{I^{\prime} I}\right) M_{I^{\prime}}=0,
\end{aligned}
$$

or, finally,

$$
\begin{equation*}
M_{I}+\sum\left(\partial q_{D} / \partial q_{I}\right) M_{D}=0 \quad(n-m \text { kinetic equations }) \tag{3.8.5c}
\end{equation*}
$$

In extenso, eqs. (3.8.5b, c) read, respectively,

$$
\begin{align*}
& E_{D} \equiv\left(\partial T / \partial \dot{q}_{D}\right)^{\cdot}-\partial T / \partial q_{D}=Q_{D}+\lambda_{D} \tag{3.8.5d}\\
& \begin{array}{l}
E_{I}+\sum\left(\partial q_{D} / \partial q_{I}\right) E_{D} \\
\quad \equiv\left[\left(\partial T / \partial \dot{q}_{I}\right)^{\cdot}-\partial T / \partial q_{I}\right]+\sum\left[\left(\partial T / \partial \dot{q}_{D}\right)^{\cdot}-\partial T / \partial q_{D}\right]\left(\partial q_{D} / \partial q_{I}\right) \\
\quad=Q_{I}+\sum\left(\partial q_{D} / \partial q_{I}\right) Q_{D} .
\end{array}
\end{align*}
$$

Appellian forms of $(3.8 .5 \mathrm{~b}, \mathrm{c})$ can be immediately written down $\left[E_{D} \equiv \partial S / \partial \ddot{q}_{D}\right.$, $\left.E_{I} \equiv \partial S / \partial \ddot{q}_{I}\right]$. We notice the following
(i) From $q_{D}=q_{D}\left(t, q_{I}\right)$, it follows that
$\dot{q}_{D}=\sum\left(\partial q_{D} / \partial q_{I}\right) \dot{q}_{I}+\partial q_{D} / \partial t, \quad \ddot{q}_{D}=\sum\left(\partial q_{D} / \partial q_{I}\right) \ddot{q}_{I}+$ function of t, q_{I}, \dot{q}_{I},
and therefore [specialization of (3.8.3c)]

$$
\begin{equation*}
\partial q_{D} / \partial q_{I}=\partial \dot{q}_{D} / \partial \dot{q}_{I}=\partial \ddot{q}_{D} / \partial \ddot{q}_{I}=\cdots \equiv b_{D I}\left(t, q_{I}\right) \tag{3.8.6b}
\end{equation*}
$$

Equations (3.8.5b-e) are the holonomic counterparts of Hadamard's equations (see below); and to obtain the latter we simply replace in the above $\partial q_{D} / \partial q_{I}$ with $\partial \dot{q}_{D} / \partial \dot{q}_{I} \equiv b_{D I}$.
(ii) As hinted earlier, equations (3.8.5b, c) also result if we view the choice (3.8.5a) as the following special case of (3.8.3a):

$$
\begin{align*}
e_{D} \equiv f_{D} & =q_{D}-q_{D}\left(t, q_{I}\right)=0, \quad e_{I} \equiv f_{I}=q_{I} \neq 0, \\
& \Rightarrow q_{D}=e_{D}+q_{D}\left(t, e_{I}\right), \quad q_{I}=e_{I} . \tag{3.8.7a}
\end{align*}
$$

Because then we have [recalling (2.11.9-12b), and with $D, D^{\prime}=1, \ldots, m ; I, I^{\prime}=$ $m+1, \ldots, n]$

$$
\begin{align*}
& \left(a_{k l}\right) \rightarrow\left(\partial e_{k} / \partial q_{l}\right) \equiv\left(\partial f_{k} / \partial q_{l}\right): \\
& a_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad a_{D I}=-\partial q_{D} / \partial q_{I}, \quad a_{I D}=0, \quad a_{I I^{\prime}}=\delta_{I I^{\prime}} ; \tag{3.8.7b}\\
& \left(A_{k l}\right) \rightarrow\left(\partial q_{k} / \partial e_{l}\right): \\
& \tag{3.8.7c}\\
& A_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad A_{D I}=\partial q_{D} / \partial q_{I}, \quad A_{I D}=0, \quad A_{I I^{\prime}}=\delta_{I I^{\prime}} ;
\end{align*}
$$

and so ($3.8 .4 \mathrm{c}, \mathrm{d}$) specialize to ($3.8 .5 \mathrm{~b}, \mathrm{c}$), as shown there. For additional derivations, see (3.8.11a) ff. (Chaplygin-Hadamard eq's, a specialization of the Routh-Voss equations).

Special Case of Constraints

If the constraints (3.8.1a), $f_{D}=0$, have the special "equilibrium" (or "adapted to the constraints") form $q_{D}=$ constant $\equiv q_{D o}$, then rewriting them as $f_{D} \equiv q_{D}-q_{D o}=0$, we readily find

$$
\begin{equation*}
a_{D k} \equiv \partial f_{D} / \partial q_{k}: \quad a_{D D^{\prime}}=\partial f_{D} / \partial q_{D^{\prime}}=\delta_{D D^{\prime}}, \quad a_{D I}=\partial f_{D} / \partial q_{I}=0 \tag{3.8.8a}
\end{equation*}
$$

and so the Routh-Voss equations $(3.8 .2 \mathrm{a}, \mathrm{b})$ readily decouple to

$$
\begin{equation*}
E_{D}=Q_{D}+\lambda_{D} \quad(\text { kinetostatic }), \quad E_{I}=Q_{I} \quad(\text { kinetic }) \tag{3.8.8b}
\end{equation*}
$$

These are also the corresponding Maggi equations: for, in this case, we have (3.8.8a) and

$$
\begin{equation*}
a_{I D}=0, \quad a_{I I^{\prime}}=\delta_{I I^{\prime}} ; \quad A_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad A_{D I}=0, \quad A_{I D}=0, \quad A_{I I^{\prime}}=\delta_{I I^{\prime}} \tag{3.8.8c}
\end{equation*}
$$

and therefore [recalling (3.3.10)]

$$
\begin{align*}
I_{D} & =\sum A_{k D} E_{k}=\sum A_{D^{\prime} D} E_{D^{\prime}}+\sum A_{I D} E_{I}=\sum \delta_{D^{\prime} D} E_{D^{\prime}}+0=E_{D}, \tag{3.8.8d}\\
I_{I} & =\sum A_{k I} E_{k}=\sum A_{D I} E_{D}+\sum A_{I^{\prime} I} E_{I^{\prime}}=0+\sum \delta_{I^{\prime} I} E_{I^{\prime}}=E_{I} \tag{3.8.8e}
\end{align*}
$$

and similarly for the impressed forces [recalling (3.4.3b ff.)].
Equations (3.8.8b) are sometimes taken as the analytical expression of the principle of relaxation of the constraints; see, for example, Butenin (1971, pp. 7071), Symon (1971, pp. 370-372).

Further, if we are not interested in calculating the reactions λ_{D}, then with

$$
\begin{aligned}
T=T(t, q, \dot{q}) & =T\left(t, q_{D}=q_{D o}, q_{I}, \dot{q}_{D}=0, \dot{q}_{I}\right) \equiv T_{o}\left(t, q_{I}, \dot{q}_{I}\right) \\
& \equiv T_{o}: \text { constrained }(\text { or reduced }) \text { kinetic energy },
\end{aligned}
$$

and since (expanding à la Taylor, and with some obvious calculus notations)

$$
\begin{equation*}
T=T_{o}+\sum\left(\partial T / \partial q_{D}\right)_{o} q_{D}+\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{D}+\cdots \tag{3.8.9a}
\end{equation*}
$$

from which

$$
\begin{array}{ll}
\left(\partial T / \partial q_{I}\right)_{o}=\partial T_{o} / \partial q_{I} & {\left[\left(\partial T / \partial q_{D}\right)_{o} \neq \partial T_{o} / \partial q_{D}=0\right],} \\
\left(\partial T / \partial \dot{q}_{I}\right)_{o}=\partial T_{o} / \partial \dot{q}_{I} & {\left[\left(\partial T / \partial \dot{q}_{D}\right)_{o} \neq \partial T_{o} / \partial \dot{q}_{D}=0\right],} \tag{3.8.9c}
\end{array}
$$

we obtain the following rule: In the case of holonomic variables and constraints, if we are only interested in the motion (kinetic problem), we may embed/enforce the constraints $q_{D}=$ constant into $T \rightarrow T_{o}$ right from the start; that is, the second of (3.8.8b) can be replaced by $E_{I}\left(T_{o}\right) \equiv\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\circ}-\partial T_{o} / \partial q_{I}=Q_{I}$; and this saves considerable labor (see also the holonomic Hamel equations below).
(C) Let us find the corresponding Hamel equations. In this case (recalling 2.92.12), $\theta_{k} \rightarrow e_{k}$ (holonomic coordinates), $\omega_{D} \equiv \dot{e}_{D} \equiv \dot{f}_{D}=0$, $\omega_{I} \equiv \dot{e}_{I} \equiv \dot{f}_{I} \neq 0$, the corresponding Hamel coefficients γ^{k}.. vanish $\left[\Rightarrow I_{k}=E_{k}{ }^{*}\left(T^{*}\right)\right]$, and so Hamel's equations (3.5.19a ff.) reduce to

$$
\begin{align*}
d / d t\left(\partial T^{*} / \partial \dot{e}_{D}\right)-\partial T^{*} / \partial e_{D} & =\sum\left(\partial q_{k} / \partial e_{D}\right) Q_{k}+\lambda_{D} \tag{3.8.10a}\\
d / d t\left(\partial T^{*} / \partial \dot{e}_{I}\right)-\partial T^{*} / \partial e_{I} & =\sum\left(\partial q_{k} / \partial e_{I}\right) Q_{k} \quad \text { (kinetostatic eqs.) }
\end{align*}
$$

where $T^{*}=T[t, q(t, e), \dot{q}(t, e, \dot{e})] \equiv T^{*}(t, e, \dot{e})$; that is, these equations are none other than Maggi's equations (3.8.4e, f), respectively, but expressed in the e-variables.

We also notice that, here, too, we can replace the $n-m$ kinetic equations (3.8.10b) with

$$
\begin{equation*}
\left.d / d t\left(\partial T^{*}{ }_{o} / \partial \dot{e}_{I}\right)-\partial T^{*}{ }_{o} / \partial e_{I}=\sum\left(\partial q_{k} / \partial e_{I}\right) Q_{k} \quad \text { (kinetic eqs. }\right) \tag{3.8.10c}
\end{equation*}
$$

or, compactly, $E_{I}\left(T^{*}{ }_{o}\right)=\Theta_{I}$, where

$$
T_{o}^{*}=T^{*}\left[t, e_{D}=0, e_{I} \neq 0, \dot{e}_{D}=0, \dot{e}_{I} \neq 0\right] \equiv T_{o_{0}\left(t, e_{I}, \dot{e}_{I}\right):}^{\text {constrained kinetic energy } T^{*} .}
$$

Thus, for the earlier special choice $q_{D}=q_{D}\left(t, q_{I}\right), q_{I}=q_{I}$, eqs. (3.8.10c) reduce to

$$
\begin{equation*}
E_{I}\left(T_{o}\right) \equiv d / d t\left(\partial T_{o} / \partial \dot{q}_{I}\right)-\partial T_{o} / \partial q_{I}=Q_{I o} \tag{3.8.10d}
\end{equation*}
$$

where
$T_{o} \equiv T\left[t, q_{D}\left(t, q_{I}\right), q_{I} ; \dot{q}_{D}\left(t, q_{I}, \dot{q}_{I}\right), \dot{q}_{I}\right] \equiv T_{o}\left(t, q_{I}, \dot{q}_{I}\right)$: constrained kinetic energy T,
$Q_{I o} \equiv Q_{I}+\sum b_{D I} Q_{D}:$ constrained impressed force
[a special case of Θ_{I} recall (3.8.6b)].
Equations (3.8.10d) are none other than the earlier equations (3.8.5e), but expressed in the q_{I} 's only.

Unfortunately, if the constraints $\dot{q}_{D}=\dot{q}_{D}\left(t, q_{I}, \dot{q}_{I}\right)$ are nonholonomic, then eqs. (3.8.10d) do not hold; that is, $E_{I}\left(T_{o}\right) \neq Q_{I o}$ (or even Q_{I}). It is shown later that, in such a case, if we use the velocity constraints to eliminate the $m \dot{q}_{D}$'s from the kinetic energy and impressed forces, and then apply these constrained, or reduced, quantities to multiplierless Lagrangean equations, like (3.8.10d), we will get incorrect equations of motion; other equations apply there (special cases of Hamel equations: equations of Chaplygin and Voronets) - equations that, if the velocity constraints are holonomic, reduce to $(3.8 .10 \mathrm{~d})$.

3.8.2 Nonholonomic Constraints

Holonomic Variables
(A) Equations of Chaplygin-Hadamard. Let us find the equations of motion corresponding to the additional, possibly nonholonomic, special Pfaffian constraints (2.11.9 ff.)

$$
\begin{equation*}
\dot{q}_{D}=\sum b_{D I} \dot{q}_{I}+b_{D} \Rightarrow \delta q_{D}=\sum b_{D I} \delta q_{I} \tag{3.8.11a}
\end{equation*}
$$

In view of the importance of this topic for the entire Lagrangean kinetics, we present four derivations.
(i) Via Lagrange's principle ($L P$). With the help of the earlier notation (3.8.2c), $M_{k} \equiv E_{k}-Q_{k}$, LP specializes, successively, to

$$
\begin{align*}
0=\sum M_{k} \delta q_{k} & =\sum M_{D} \delta q_{D}+\sum M_{I} \delta q_{I}=\sum M_{D}\left(\sum b_{D I} \delta q_{I}\right)+\sum M_{I} \delta q_{I} \\
& =\sum\left(M_{I}+\sum b_{D I} M_{D}\right) \delta q_{I}, \tag{3.8.11b}
\end{align*}
$$

from which, since the $n-m \delta q_{I}$'s are independent, we obtain the $n-m$ kinetic equations (Chaplygin, 1895, publ. 1897; Hadamard, 1895)

$$
\begin{equation*}
M_{I}+\sum b_{D I} M_{D}=0, \quad \text { or } \quad E_{I}+\sum b_{D I} E_{D}=Q_{I}+\sum b_{D I} Q_{D} \quad\left(\equiv Q_{I o}\right) \tag{3.8.11c}
\end{equation*}
$$

or, in extenso, (a) in the (more common) Lagrangean form:

$$
\begin{align*}
{\left[\left(\partial T / \partial \dot{q}_{I}\right)^{\cdot}-\partial T / \partial q_{I}\right] } & +\sum\left[\left(\partial T / \partial \dot{q}_{D}\right)^{\cdot}-\partial T / \partial q_{D}\right] b_{D I} \\
& =Q_{I}+\sum b_{D I} Q_{D} \equiv Q_{I o} \tag{3.8.11d}
\end{align*}
$$

and, in view of the kinematico-inertial identity $\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k} \equiv \partial S / \partial \ddot{q}_{k}$, (b) in the Appellian form:

$$
\begin{equation*}
\partial S / \partial \ddot{q}_{I}+\sum b_{D I}\left(\partial S / \partial \ddot{q}_{D}\right)=Q_{I}+\sum b_{D I} Q_{D} \equiv Q_{I o} \tag{3.8.11e}
\end{equation*}
$$

(ii) Via Lagrangean multipliers. Multiplying each constraint (3.8.11a), $\delta q_{D}-\sum b_{D I} \delta q_{I}=0$, with the multiplier $-\lambda_{D}$ and adding them to LP, we obtain, successively,

$$
\begin{align*}
0 & =\sum M_{k} \delta q_{k}=\sum M_{k} \delta q_{k}+\sum\left(-\lambda_{D}\right)\left(\delta q_{D}-\sum b_{D I} \delta q_{I}\right) \\
& =\cdots=\sum\left(M_{D}-\lambda_{D}\right) \delta q_{D}+\sum\left(M_{I}+\sum \lambda_{D} b_{D I}\right) \delta q_{I} \tag{3.8.11f}
\end{align*}
$$

from which, since now the δq_{D} 's and δq_{I} 's can be treated as independent, we obtain the two groups of equations

$$
\begin{align*}
& M_{D}=\lambda_{D} \quad \text { or } \quad E_{D}=Q_{D}+\lambda_{D} \tag{3.8.11~g}\\
& M_{I}=-\sum \lambda_{D} b_{D I} \quad \text { or } \quad E_{I}=Q_{I}-\sum b_{D I} \lambda_{D} \tag{3.8.11h}
\end{align*}
$$

and eliminating the $m \lambda_{D}$'s among them [solving (3.8.11g) for λ_{D} and substituting in (3.8.11h), etc.], we recover the Hadamard equations (3.8.11c). Equations (3.8.11g) can be considered as the kinetostatic complement of the kinetic equations (3.8.11c).
(iii) As a specialization of the Routh-Voss equations. We recall [(2.11.9) ff.] that the special constraint form (3.8.11a) [(2.11.9)ff.] can be viewed as a Pfaffian system with the following coefficients:

$$
\begin{equation*}
a_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad a_{D I}=\partial \omega_{D} / \partial \dot{q}_{I}=-b_{D I} \quad\left(\text { and } a_{I D}=0, a_{I I^{\prime}}=\delta_{I I^{\prime}}\right) \tag{3.8.11i}
\end{equation*}
$$

In view of these values, the general Routh-Voss equations

$$
\begin{equation*}
E_{k} \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D} a_{D k} \tag{3.8.11j}
\end{equation*}
$$

specialize to the two groups:
(a) $E_{D}=Q_{D}+\sum \lambda_{D^{\prime}} a_{D^{\prime} D}=Q_{D}+\sum \lambda_{D^{\prime}} \delta_{D D^{\prime}}=Q_{D}+\lambda_{D}$,

$$
\begin{equation*}
\Rightarrow R_{D}=\sum a_{D^{\prime} D} \lambda_{D^{\prime}}=\sum \lambda_{D^{\prime}} \delta_{D D^{\prime}}=\lambda_{D} \tag{3.8.11k}
\end{equation*}
$$

(b) $\quad E_{I}=Q_{I}+\sum \lambda_{D} a_{D I}=Q_{I}+\sum \lambda_{D}\left(-b_{D I}\right)=Q_{I}-\sum \lambda_{D} b_{D I}$ $=Q_{I}-\sum b_{D I}\left(E_{D}-Q_{D}\right)$
$\Rightarrow E_{I}+\sum b_{D I} E_{D}=Q_{I}+\sum b_{D I} Q_{D} \quad\left(\equiv Q_{I o}\right)$,
$\Rightarrow R_{I}=\sum a_{D I} \lambda_{D}=-\sum b_{D I} \lambda_{D} \quad\left[=-\sum b_{D I}\left(E_{D}-Q_{D}\right)\right]$.

Here, too, note that the multipliers and their interpretation depend on the particular form of the constraints; that is, if the constraints of a problem are written in two physically equivalent but analytically different forms, the associated multipliers (and, hence, kinetic and kinetostatic equations) will be equivalent but different; although, for theoretical purposes (and because both are components of the same constraint reaction vector, in configuration space), we may designate them both by λ_{D}. We repeat (§3.5), what holds all these descriptions together is the variational equation of Lagrange (LP), plus his method of multipliers (relaxation principle). It is these fundamental invariant tools that allow us to interrelate and compare the particular multiplier/constraint representation and equations of motion of the same problem.
(iv) As a specialization of the Maggi equations. In this case [recalling (3.8.7c)]

$$
A_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad A_{D I}=\partial \dot{q}_{D} / \partial \dot{q}_{I}=b_{D I}, \quad A_{I D}=0, \quad A_{I I^{\prime}}=\delta_{I I^{\prime}}
$$

Therefore, (a) Maggi's kinetostatic equations, $I_{D}-\Theta_{D} \equiv \sum A_{k D} M_{k}=\Lambda_{D}\left(=\lambda_{D}\right)$, specialize to

$$
\begin{equation*}
I_{D}-\Theta_{D}=\sum A_{D^{\prime} D} M_{D^{\prime}}+\sum A_{I D} M_{I}=\cdots=M_{D}+0=\lambda_{D}, \quad \text { i.e., } E_{D}=Q_{D}+\lambda_{D} \tag{3.8.11n}
\end{equation*}
$$

while (b) Maggi's kinetic equations, $I_{I}-\Theta_{I} \equiv \sum A_{k I} M_{k}=0$, specialize to

$$
\begin{aligned}
I_{I}-\Theta_{I}= & \sum A_{D I} M_{D}+\sum A_{I^{\prime} I} M_{I^{\prime}}=\sum b_{D I} M_{D}+M_{I}=0 \\
& \text { i.e., } E_{I}+\sum b_{D I} E_{D}=Q_{I}+\sum b_{D I} Q_{D}
\end{aligned}
$$

REMARKS

(i) In these equations, T and the Q 's (and S) are functions of all $n \dot{q}$'s (\dot{q} 's and \ddot{q} 's); that is, no constraints are to be enforced in them yet. That has to wait until all differentiations have been carried out. The $n-m$ equations (3.8.11o) plus the m constraints (3.8.11a) constitute a system of n equations for the $n q_{k}(t)$. Had we enforced the constraints in the Appellian

$$
\begin{gather*}
S=S\left(t, q, \dot{q}_{D}, \dot{q}_{I}, \ddot{q}_{D}, \ddot{q}_{I}\right)=S\left[t, q, \dot{q}_{D}\left(t, q, \dot{q}_{I}\right), \dot{q}_{I}, \ddot{q}_{D}\left(t, q, \dot{q}_{I}, \ddot{q}_{I}\right), \ddot{q}_{I}\right] \\
\equiv S_{o}\left(t, q, \dot{q}_{I}, \ddot{q}_{I}\right)=S_{o}: \text { constrained Appellian } \tag{3.8.12a}
\end{gather*}
$$

then LP would have given us, not (3.8.11e), but since

$$
\begin{equation*}
\delta I=\sum\left(\partial S / \partial \ddot{q}_{k}\right) \delta q_{k}=\sum\left(\partial S_{o} / \partial \ddot{q}_{I}\right) \delta q_{I} \tag{3.8.12b}
\end{equation*}
$$

even though $\partial S / \partial \ddot{q}_{I} \neq \partial S_{o} / \partial \ddot{q}_{I}$ and

$$
\begin{equation*}
\delta^{\prime} W=\sum Q_{k} \delta q_{k}=\sum\left(Q_{I}+\sum b_{D I} Q_{D}\right) \delta q_{I} \equiv \sum Q_{I o} \delta q_{I} \tag{3.8.12c}
\end{equation*}
$$

finally [and this is Appell's original form of 1899 (scleronomic case), 1900 (rheonomic case)],

$$
\begin{equation*}
\partial S_{o} / \partial \ddot{q}_{I}=Q_{I o} \tag{3.8.12d}
\end{equation*}
$$

As stressed earlier, no such simplification (and preservation of form of the equations of motion) holds for $T \rightarrow T_{o}$-based equations.
(ii) Here, too, we first solve the kinetic equations (+ constraints + initial conditions) and obtain the motion $q_{k}(t)$. Then, the kinetostatic equations immediately yield

$$
\begin{align*}
\lambda_{D} & =E_{D}(t, q, \dot{q}, \ddot{q})-Q_{D}(t, q, \dot{q}) \\
& =\cdots=\text { known function of time (and initial conditions). } \tag{3.8.12e}
\end{align*}
$$

(iii) What is important here is not so much Hadamard's equations themselves, but the $\operatorname{method}(s)$ for obtaining them. These latter can be applied even for nonholonomic variable constraints: for example,

$$
\begin{equation*}
\omega_{D}=\sum f_{D I}(t, q) \omega_{I}+f_{D}(t, q) \Rightarrow \delta \theta_{D}=\sum f_{D I}(t, q) \delta \theta_{I} \tag{3.8.12f}
\end{equation*}
$$

(i.e., $\delta \theta_{D}, \delta \theta_{I} \neq 0$), and for both Hamel- and Appell-type equations of motion.
(iv) Finally, we point out (what is probably amply clear by now) that if the constraints (3.8.11a) are holonomic ($b_{D I}=\partial q_{D} / \partial q_{I}$), then the Hadamard equations reduce to the earlier equations (3.8 .5 c , e).

Problem 3.8.1 The Korteweg Equations. Consider a system subject to the m, possibly nonholonomic, Pfaffian constraints

$$
\begin{equation*}
\sum a_{D k} \delta q_{k}=0 \quad\left[k=1, \ldots, n ; D=1, \ldots, m(<n) ; \operatorname{rank}\left(a_{D k}\right)=m\right] \tag{a}
\end{equation*}
$$

and hence, assuming, as usual, ideal constraints, that is,

$$
\begin{equation*}
\sum R_{k} \delta q_{k}=0 \tag{b}
\end{equation*}
$$

having the Routh-Voss equations of motion

$$
\begin{equation*}
M_{k} \equiv E_{k}-Q_{k} \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}-Q_{k}=\sum \lambda_{D} a_{D k} \quad\left(=R_{k}\right) \tag{c}
\end{equation*}
$$

Show that the above imply that the following $(m+1) \times(m+1)$ determinant
vanishes, identically-that is, for arbitrary $\delta q_{I} \equiv\left(\delta q_{m+1}, \ldots, \delta q_{n}\right)$; and that this, in turn, thanks to well-known determinant properties, leads to the following $n-m$ determinantal equations:

$$
\left\lvert\, \begin{array}{ccc:c}
R_{1} & \ldots & R_{m} & \vdots \tag{e}\\
a_{m+1} \\
a_{11} & \ldots & a_{1 m} & R_{1} \\
\ldots & a_{1, m+1} \\
a_{m 1} & \ldots & \ldots & a_{m m}
\end{array} \vdots\right.
$$

and, conversely, (e) lead to the vanishing of (d).

REMARKS

(i) In view of (c), eqs. (e) constitute a set of $n-m$ kinetic equations, which, along with the m constraints (a) [in velocity form; i.e., $\sum a_{D k} \dot{q}_{k}+a_{D}=0$], make up a determinate system for the $n q_{k}(t)$.
(ii) Equations (d, e) seem to be due to Korteweg (1899, pp. 135-136, eqs. (8)]; and also Quanjel (1906, pp. 268-269, eqs. (16)). See also Routh (1891, vol. I, pp. 34-35).

HINT
The $m \delta q_{D} \equiv\left(\delta q_{1}, \ldots, \delta q_{m}\right)$, obtained from (a) as functions of the $n-m$ $\delta q_{I} \equiv\left(\delta q_{m+1}, \ldots, \delta q_{n}\right)$, must satisfy (b) for arbitrary δq_{I}.

Nonholonomic variables
(A) Equations of Chaplygin (or Tschaplygine). Let us find the form that Hamel's equations assume when the, generally nonholonomic, Pfaffian constraints have the special scleronomic/stationary form

$$
\begin{equation*}
\dot{q}_{D}=\sum b_{D I} \dot{q}_{I} \Rightarrow \delta q_{D}=\sum b_{D I} \delta q_{I}, \tag{3.8.13a}
\end{equation*}
$$

where (a) $b_{D I}=b_{D I}\left(q_{m+1}, \ldots, q_{n}\right) \quad$ a specialization of (3.8.11a)], and (b) $\partial T / \partial q_{D}=0 \Rightarrow T=T\left(t, q_{I}, \dot{q}_{D}, \dot{q}_{I}\right)$; that is, the $m q_{D}$'s do not appear either in the constraint coefficients or in the original (unconstrained) kinetic energy.

Such "Chaplygin systems" can be viewed as the following special Hamel case:

$$
\begin{equation*}
\omega_{D} \equiv \dot{q}_{D}-\sum b_{D I} \dot{q}_{I}=0, \quad \omega_{I} \equiv \dot{q}_{I} \neq 0 \tag{3.8.13b}
\end{equation*}
$$

which invert immediately to

$$
\begin{equation*}
\dot{q}_{D}=\omega_{D}+\sum b_{D I} \omega_{I}, \quad \dot{q}_{I}=\omega_{I} . \tag{3.8.13c}
\end{equation*}
$$

Equations $(3.8 .13 \mathrm{~b}, \mathrm{c})$ readily show that here $\left(a_{k l}\right)$ and $\left(A_{k l}\right)$ have their earlier special forms:

$$
\begin{gather*}
a_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad a_{D I}=\partial \omega_{D} / \partial \dot{q}_{I}=-b_{D I}, \quad a_{I D}=0, \quad a_{I I^{\prime}}=\delta_{I I^{\prime}} ; \tag{3.8.13d}\\
A_{D D^{\prime}}=\delta_{D D^{\prime}}, \quad A_{D I}=\partial \dot{q}_{D} / \partial \omega_{I}=b_{D I}, \quad A_{I D}=0, \quad A_{I I^{\prime}}=\delta_{I I^{\prime}} . \tag{3.8.13e}
\end{gather*}
$$

From the above we find, successively, the following specializations for the various Hamel equation terms $\left(D, D^{\prime}, D^{\prime \prime}, \ldots=1, \ldots, m ; I, I^{\prime}, I^{\prime \prime}, \ldots=m+1, \ldots, n\right)$:
(i) $\quad \gamma^{I}{ }_{I^{\prime} I^{\prime \prime}}=0 \quad$ (notice that $\theta_{I} \equiv q_{I}$; i.e., θ_{I} is a holonomic coordinate), (3.8.13f)

$$
\begin{align*}
\gamma_{I I^{\prime}}^{D} & =\sum \sum\left(\partial a_{D k} / \partial q_{r}-\partial a_{D r} / \partial q_{k}\right) A_{k I} A_{r I^{\prime}} \tag{ii}\\
& =\sum \sum\left[\partial\left(-b_{D I^{\prime \prime}}\right) / \partial q_{I^{\prime \prime \prime}}-\partial\left(-b_{D I^{\prime \prime \prime}}\right) / \partial q_{I^{\prime \prime}}\right] \delta_{I^{\prime \prime} I} \delta_{I^{\prime \prime \prime} I^{\prime}} \\
& =\sum \sum\left(\partial b_{D I^{\prime \prime \prime}} / \partial q_{I^{\prime \prime}}-\partial b_{D I^{\prime \prime}} / \partial q_{I^{\prime \prime \prime}}\right) \delta_{I^{\prime \prime} I} \delta_{I^{\prime \prime \prime} I^{\prime}} \\
& =\sum\left(\partial b_{D I^{\prime}} / \partial q_{I^{\prime \prime}}-\partial b_{D I^{\prime \prime}} / \partial q_{I^{\prime}}\right) \delta_{I^{\prime \prime} I}=\partial b_{D I^{\prime}} / \partial q_{I}-\partial b_{D I} / \partial q_{I^{\prime}} \\
& \equiv-t_{I I^{\prime}}^{D}=t_{I^{\prime} I}^{D}: \text { Chaplygin coefficients (ex. 2.12.1, Remarks). } \tag{3.8.13~g}
\end{align*}
$$

(iii) By chain rule (and recalling that $\partial \dot{q}_{k} / \partial \omega_{r}=A_{k r}$),

$$
\begin{align*}
\partial T^{*} / \partial \omega_{D} & =\sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{D}\right)=\sum\left(\partial T / \partial \dot{q}_{k}\right) A_{k D} \\
& =\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right) A_{D^{\prime} D}+\sum\left(\partial T / \partial \dot{q}_{I}\right) A_{I D} \\
& =\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)\left(\delta_{D^{\prime} D}\right)+\sum\left(\partial T / \partial \dot{q}_{I}\right)(0) \\
& =\left.\left(\partial T / \partial \dot{q}_{D}\right)\right|_{\text {enforcing of constraints }} \equiv\left(\partial T / \partial \dot{q}_{D}\right)_{o}=\text { function of } t, q_{I}, \dot{q}_{I} . \tag{3.8.13h}
\end{align*}
$$

(iv) Substituting the above into the correction term $-\Gamma_{I}$, (3.3.12a), we find, successively,

$$
-\Gamma_{I} \equiv \sum \sum \gamma_{I \alpha}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{\alpha} \rightarrow \sum \sum \gamma_{I I^{\prime}}^{D}\left(\partial T^{*} / \partial \omega_{D}\right) \omega_{I^{\prime}}
$$

or, finally,

$$
\begin{align*}
-\Gamma_{I} \rightarrow-\Gamma_{I o} & \equiv \sum \sum t_{I^{\prime} I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}} \\
& =\sum \sum\left(\partial b_{D I^{\prime}} / \partial q_{I}-\partial b_{D I} / \partial q_{I^{\prime}}\right)\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}} \\
& \left.=\text { function of } t, q_{I}, \dot{q}_{I} \text { (quadratic in the } \dot{q}_{I}\right) . \tag{3.8.13i}
\end{align*}
$$

(v) With

$$
\begin{align*}
T & =T\left(t, q_{I}, \dot{q}_{D}, \dot{q}_{I}\right)=T\left[t, q_{I}, \dot{q}_{D}\left(t, q_{I}, \dot{q}_{I}\right), \dot{q}_{I}\right] \\
& =T_{o}\left(t, q_{I}, \dot{q}_{I}\right) \equiv T_{o}=\text { Chaplygin constrained kinetic energy } \tag{3.8.13j}
\end{align*}
$$

we have

$$
\begin{align*}
& \partial T^{*} / \partial \omega_{I} \rightarrow \partial T_{o} / \partial \dot{q}_{I} \tag{3.8.13k}\\
& \partial T^{*} / \partial \theta_{I} \equiv \sum\left(\partial T^{*} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)=\sum\left(\partial T^{*} / \partial q_{k}\right) A_{k I} \\
&=\sum\left(\partial T^{*} / \partial q_{D}\right) A_{D I}+\sum\left(\partial T^{*} / \partial q_{I^{\prime}}\right) A_{I^{\prime} I} \\
&=\sum\left(\partial T^{*} / \partial q_{D}\right) b_{D I}+\sum\left(\partial T^{*} / \partial q_{I^{\prime}}\right) \delta_{I^{\prime} I} \\
&=\sum(0) b_{D I}+\sum\left(\partial T^{*} / \partial q_{I^{\prime}}\right) \delta_{I^{\prime} I}=\partial T^{*} / \partial q_{I} \rightarrow \partial T_{o} / \partial q_{I} \tag{3.8.131}
\end{align*}
$$

(vi) Recalling (3.8.12c) and (3.8.13b)

$$
\begin{equation*}
\delta^{\prime} W=\sum \Theta_{k} \delta \theta_{k}=\sum \Theta_{I} \delta \theta_{I}=\sum Q_{I o} \delta q_{I} \tag{3.8.13m}
\end{equation*}
$$

(vii) And so,

$$
\begin{equation*}
E_{I} *\left(T^{*}\right) \rightarrow E_{I}\left(T_{o}\right) \equiv\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I} \quad\left[\neq E_{I}(T)\right] . \tag{3.8.13n}
\end{equation*}
$$

Substituting all these findings into the kinetic Hamel equations (3.5.21d) [or into the central equation (3.6 .8 ff .)], we obtain the $n-m$ (kinetic) equations of Chaplygin, in the following equivalent forms:

$$
\begin{align*}
\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot} & -\partial T_{o} / \partial q_{I}+\sum \sum\left(\partial b_{D I^{\prime}} / \partial q_{I}-\partial b_{D I} / \partial q_{I^{\prime}}\right)\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}} \\
& \equiv\left(\partial T_{o} / \partial v_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}+\sum \sum t_{I^{\prime} I}\left(\partial T / \partial v_{D}\right)_{o} v_{I^{\prime}} \\
& \equiv\left(\partial T_{o} / \partial v_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum \sum t_{I I^{\prime}}\left(\partial T / \partial v_{D}\right)_{o} v_{I^{\prime}} \\
& \equiv E_{I}\left(T_{o}\right)-\Gamma_{I o}=Q_{I}+\sum b_{D I} Q_{D} \equiv Q_{I o} . \tag{3.8.13o}
\end{align*}
$$

REMARKS

(i) Chaplygin's equations (1895, publ. 1897) are the earliest (special Hamel-type) equations of motion of nonholonomic systems in terms of T_{o} (and T) and in special nonholonomic system variables. Chaplygin obtained these equations by expressing the T-gradients appearing in his earlier Chaplygin-Hadamard equations $(3.8 .11 \mathrm{c}, \mathrm{d})$ in terms of T_{o}-gradients [by applying chain rule to (3.8.13j) -an instructive exercise in partial differentiations that the readers are urged to reproduce for themselves]. The importance of (3.8.13o) is primarily theoretical and conceptual, not so much practical: these equations, presented at a time when nonholonomic dynamics was at its infancy, clearly demonstrated that, in general, $E_{I}\left(T_{o}\right) \neq Q_{I o}$ (or even $\left.Q_{I}\right)$; that is, unless the constraints are holonomic $\left(t_{I^{\prime} I}^{D}=0\right)$, or some other special case in which $\Gamma_{I o}=0$ (for some or all $\left.I=m+1, \ldots, n\right)$, the ordinary Lagrangean equations do not hold for the constrained, or reduced, system. [To the best of our knowledge, the first proof of this basic fact, for the special case of a convex body rolling, under gravity, on a rough plane, is due to C. Neumann (1885). But Chaplygin's treatment was, simultaneously, more general and easier to follow. See also appendix 3.A1.] Failure to observe this rule led, in the 1890s, to a number of erroneous equations of motion, even by some of the better mathematicians/mechanicians of that epoch (see examples below).
(ii) By their very structure, Chaplygin's equations are only kinetic; that is, since $\partial T_{o} / \partial \dot{q}_{D}=0$, they do not allow for constraint reaction calculations. However, these $n-m$ equations, when solved, allow us to determine the $n-m$ functions $q_{I}=q_{I}(t)$ without recourse to the constraints (3.8.13a); the latter are then used to calculate the $m q_{D}=q_{D}(t)$.
(iii) Contrary to Hamel's equations, Chaplygin's equations involve both T and T_{o}, an apparent formal drawback; but, in return, they do not require a(ny) constraint matrix inversion [i.e., $\left(a_{k l}\right) \rightarrow\left(A_{k l}\right)$], just the given nonsquare matrix $\left(b_{D I}\right)$, instead of two.

For ad hoc chain-rule derivations of Chaplygin's equations, see, for example, Butenin (1971, pp. 196-212), Dobronravov (1970, pp. 87-106), Lur'e (1968, pp. 397 ff.), Neimark and Fufaev (1972, pp. 106-108, 110-112); also Kil'chevskii (1977, pp. 162-166).

Problem 3.8.2 Generalized Chaplygin Equations. Show that in terms of the general independent quasi velocities ω_{I} defined by (in terms of the helpful notation $\dot{q}_{k} \equiv v_{k}$)

$$
\begin{equation*}
v_{I}=\sum B_{I I^{\prime}} \omega_{I^{\prime}}, \quad B_{I I^{\prime}}=B_{I I^{\prime}}\left(q_{m+1}, \ldots, q_{n}\right) \equiv B_{I I^{\prime}}\left(q_{I}\right) \tag{a}
\end{equation*}
$$

Chaplygin's equations take the [slightly more general than (3.8.13o)] form

$$
\begin{array}{r}
\left(\partial T_{o}^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T_{o}^{*} / \partial \theta_{I}+\sum \sum\left(\partial B_{k I^{\prime}} / \partial \theta_{I}-\partial B_{k I} / \partial \theta_{I^{\prime}}\right)\left(\partial T / \partial \dot{q}_{k}\right)_{o} \omega_{I^{\prime}} \\
=Q^{*}{ }_{I o} \tag{b}
\end{array}
$$

where:

$$
\begin{align*}
v_{k} & =\sum l_{k I} \omega_{I}, \quad l_{k I}=l_{k I}\left(q_{m+1}, \ldots, q_{n}\right) \equiv l_{k I}\left(q_{I}\right), \tag{i}\\
v_{D} & =\sum \sum\left(b_{D I} B_{I I^{\prime}}\right) \omega_{I^{\prime}} \equiv \sum l_{D I} \omega_{I}, \quad v_{I}=\sum B_{I I^{\prime}} \omega_{I^{\prime}} \equiv \sum l_{I I^{\prime}} \omega_{I^{\prime}} \tag{c}
\end{align*}
$$

$$
\begin{equation*}
T=T\left(t, q_{I}, v_{k}\right)=T\left(t, q_{I}, v_{k}=\sum l_{k I} \omega_{I}\right) \equiv T_{o}^{*}\left(t, q_{I}, \omega_{I}\right) \equiv T_{o}^{*} \tag{ii}
\end{equation*}
$$

(iii)

$$
\begin{align*}
& \partial T_{o}^{*} / \partial \theta_{I} \equiv \sum\left(\partial T_{o}{ }_{o} / \partial q_{I^{\prime}}\right)\left(\partial v_{I^{\prime}} / \partial \omega_{I}\right)=\sum\left(\partial T^{*}{ }_{o} / \partial q_{I^{\prime}}\right) B_{I^{\prime} I}, \tag{e}\\
& \partial l_{k I^{\prime}} / \partial \theta_{I} \equiv \sum\left(\partial l_{k I^{\prime}} / \partial q_{I^{\prime \prime}}\right)\left(\partial v_{I^{\prime \prime}} / \partial \omega_{I}\right)=\sum\left(\partial l_{k I^{\prime}} / \partial q_{I^{\prime \prime}}\right) B_{I^{\prime \prime} I}
\end{align*}
$$

(iv) $\quad \delta^{\prime} W \equiv \sum Q_{k} \delta q_{k}=\cdots=\sum Q^{*}{ }_{I o} \delta \theta_{I} \quad$ (definition of $Q^{*}{ }_{\text {Io }}$);

$$
\begin{equation*}
\Rightarrow Q^{*}{ }_{I o}=\sum B_{I^{\prime} I}\left(Q_{I^{\prime}}+\sum b_{D I^{\prime}} Q_{D}\right) \equiv \sum B_{I^{\prime} I} Q_{I^{\prime} o} \tag{g}
\end{equation*}
$$

[See also Neimark and Fufaev (1972, pp. 110-112). In there, on pp. 106-108, eqs. $(3.16,17,19)$, it seems that a tilde (\sim) should be placed on the impressed force Q_{I}.]

Equations of Voronets (or Woronetz). Let us find the form that Hamel's equations assume when the, generally nonholonomic, Pfaffian constraints have the special rheonomic/nonstationary form (again, with $v_{k} \equiv \dot{q}_{k}$)

$$
\begin{equation*}
v_{D}=\sum b_{D I} v_{I}+b_{D} \Rightarrow \delta q_{D}=\sum b_{D I} \delta q_{I} \tag{3.8.14a}
\end{equation*}
$$

where $b_{D I}=b_{D I}\left(t, q_{1}, \ldots, q_{n}\right) \equiv b_{D I}(t, q), b_{D}=b_{D}\left(t, q_{1}, \ldots, q_{n}\right) \equiv b_{D}(t, q)$; or the Hamel form

$$
\begin{equation*}
\omega_{D} \equiv v_{D}-\sum b_{D I} v_{I}-b_{D}=0, \quad \omega_{I} \equiv v_{I} \neq 0 \tag{3.8.14b}
\end{equation*}
$$

with its (easy to obtain) inverse

$$
\begin{equation*}
v_{D}=\omega_{D}+\sum b_{D I} \omega_{I}+b_{D}, \quad v_{I}=\omega_{I} \tag{3.8.14c}
\end{equation*}
$$

Clearly, since (3.8.14a-c) are a generalization of the Chaplygin constraints (3.8.13ac), the associated equations of Voronets, derived below, will constitute a generalization of those of Chaplygin (3.8.13o); but a special case of those of Hamel.

Equations $(3.8 .14 \mathrm{~b}, \mathrm{c})$ readily show that, here, the transformation matrices $\left(a_{k l}\right)$ and $\left(A_{k l}\right)$ have their earlier special forms:

$$
\begin{array}{llll}
a_{D D^{\prime}}=\delta_{D D^{\prime}}, & a_{D I}=\partial \omega_{D} / \partial v_{I}=-b_{D I}, & a_{I D}=0, & a_{I I^{\prime}}=\delta_{I I^{\prime}} \\
A_{D D^{\prime}}=\delta_{D D^{\prime}}, & A_{D I}=\partial v_{D} / \partial \omega_{I}=b_{D I}, & A_{I D}=0, & A_{I I^{\prime}}=\delta_{I I^{\prime}} \tag{3.8.14e}
\end{array}
$$

From the above, and the results of ex. 2.12.1 and prob. 2.12.1 ff., we find, successively, the following specializations for the various Hamel equation terms $\left(D, D^{\prime}, D^{\prime \prime}\right.$, $\left.\ldots=1, \ldots, m ; I, I^{\prime}, I^{\prime \prime}, \ldots=m+1, \ldots, n\right)$:

$$
\begin{align*}
& \gamma_{I^{\prime} I^{\prime \prime}}^{I}= 0 \quad\left(\theta_{I} \equiv q_{I} ; \text { i.e., } \theta_{I} \text { is a holonomic coordinate! }\right) . \tag{i}\\
& \gamma^{D}{ }_{I I^{\prime}}= \sum \sum\left(\partial a_{D k} / \partial q_{r}-\partial a_{D r} / \partial q_{k}\right) A_{k I} A_{r I^{\prime}} \tag{3.8.14f}\\
&= \cdots=\left[\partial b_{D I^{\prime}} / \partial q_{I}+\sum b_{D^{\prime} I}\left(\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right)\right] \\
& \quad-\left[\partial b_{D I} / \partial q_{I^{\prime}}+\sum b_{D^{\prime} I^{\prime}}\left(\partial b_{D I} / \partial q_{D^{\prime}}\right)\right] \\
& \equiv \partial b_{D I^{\prime}} / \partial\left(q_{I}\right)-\partial b_{D I} / \partial\left(q_{I^{\prime}}\right) \\
&=t_{I^{\prime} I}+\sum\left[b_{D^{\prime} I}\left(\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right)-b_{D^{\prime} I^{\prime}}\left(\partial b_{D I} / \partial q_{D^{\prime}}\right)\right] \\
& \equiv w^{D}{ }_{I^{\prime} I}=-w^{D}{ }_{I I^{\prime}} \quad(\text { recalling ex. 2.12.1), } \tag{3.8.14~g}\\
& \gamma^{D}{ }_{I, n+1} \equiv \gamma_{I}^{D}=\cdots=\left[\partial b_{D} / \partial q_{I}+\sum b_{D^{\prime} I}\left(\partial b_{D} / \partial q_{D^{\prime}}\right)\right] \\
& \quad-\left[\partial b_{D I} / \partial t+\sum b_{D^{\prime}}\left(\partial b_{D I} / \partial q_{D^{\prime}}\right)\right] \\
& \equiv \partial b_{D} / \partial\left(q_{I}\right)-\partial b_{D I} / \partial\left(q_{n+1}\right) \\
&=-t_{I, n+1}^{D}+\sum\left[b_{D^{\prime} I}\left(\partial b_{D} / \partial q_{D^{\prime}}\right)-b_{D^{\prime}}\left(\partial b_{D I} / \partial q_{D^{\prime}}\right)\right] \\
& \equiv-w_{I, n+1}^{D} \equiv-w_{I}^{D} \quad(\text { recalling prob. 2.12.2); } \tag{3.8.14h}
\end{align*}
$$

or they can be read off from the transitivity equations below (which, incidentally, show clearly that the only surviving $\gamma^{\prime} s$ are the $\gamma^{D}{ }_{I I^{\prime}}$ and $\gamma^{D}{ }_{I}$)

$$
\begin{align*}
d\left(\delta \theta_{D}\right)-\delta\left(d \theta_{D}\right) & =\sum \sum \gamma_{I I^{\prime}}^{D} d \theta_{I^{\prime}} \delta \theta_{I}+\sum \gamma_{I}^{D} \delta \theta_{I} \\
& =-\sum \sum w_{I I^{\prime}}^{D} d q_{I^{\prime}} \delta q_{I}-\sum w_{I}^{D} \delta q_{I} . \tag{3.8.14i}
\end{align*}
$$

(iii) With

$$
\begin{aligned}
T & =T\left(t, q, v_{D}, v_{I}\right)=T\left[t, q, v_{D}\left(t, q, v_{I}\right), v_{I}\right] \\
& =T_{o}\left(t, q, v_{I}\right) \equiv T_{o}=\text { Voronets constrained kinetic energy }
\end{aligned}
$$

$$
\begin{equation*}
\text { [a generalization of Chaplygin's }(3.8 .13 \mathrm{j}) \text {, and a special case of } T^{*}(t, q, \omega) \text {], } \tag{3.8.14j}
\end{equation*}
$$

we find, successively,

$$
\begin{equation*}
\partial T^{*} / \partial \omega_{I} \rightarrow \partial T_{o} / \partial v_{I} \quad\left[\neq\left(\partial T / \partial v_{I}\right)_{o} \equiv p_{I o}=\text { function of } t, q, v_{I}\right] ; \tag{3.8.14k}
\end{equation*}
$$

$\partial T^{*} / \partial \omega_{D}=[$ repeating steps as in $(3.8 .13 \mathrm{~h})]=\left(\partial T / \partial v_{D}\right)_{o}=$ function of $t, q, v_{I} ;$

$$
\begin{align*}
\partial T^{*} / \partial \theta_{I} & \equiv \sum\left(\partial T^{*} / \partial q_{k}\right)\left(\partial v_{k} / \partial \omega_{I}\right)=\sum\left(\partial T^{*} / \partial q_{k}\right) A_{k I} \tag{3.8.141}\\
& =\sum\left(\partial T^{*} / \partial q_{D}\right) A_{D I}+\sum\left(\partial T^{*} / \partial q_{I^{\prime}}\right) A_{I^{\prime} I} \\
& =\sum\left(\partial T^{*} / \partial q_{D}\right) b_{D I}+\sum\left(\partial T^{*} / \partial q_{I^{\prime}}\right) \delta_{I^{\prime} I} \\
& =\partial T^{*} / \partial q_{I}+\sum b_{D I}\left(\partial T^{*} / \partial q_{D}\right), \tag{3.8.14~m}
\end{align*}
$$

that is,

$$
\begin{equation*}
\partial T^{*} / \partial \theta_{I} \rightarrow \partial T_{o} / \partial q_{I}+\sum b_{D I}\left(\partial T_{o} / \partial q_{D}\right) \equiv \partial T_{o} / \partial\left(q_{I}\right) \quad \text { (symbolic derivative) } \tag{3.8.14n}
\end{equation*}
$$

(iv) Substituting the above into the correction term $-\Gamma_{I}$, (3.3.12a), we find, successively,

$$
\begin{align*}
-\Gamma_{I} & \equiv \sum \sum \gamma_{I \alpha}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{\alpha} \rightarrow \sum \sum \gamma_{I I^{\prime}}^{D}\left(\partial T^{*} / \partial \omega_{D}\right) \omega_{I^{\prime}}+\sum \gamma_{I}^{D}\left(\partial T^{*} / \partial \omega_{D}\right) \\
& =\cdots=-\sum \sum w_{I I^{\prime}}^{D}\left(\partial T / \partial v_{D}\right)_{o} v_{I^{\prime}}-\sum w_{I}^{D}\left(\partial T / \partial v_{D}\right)_{o} \equiv-\Gamma_{I o} . \tag{3.8.14o}
\end{align*}
$$

(v) Proceeding as in (3.8.13m),

$$
\begin{equation*}
\delta^{\prime} W=\sum \Theta_{k} \delta \theta_{k}=\sum \Theta_{I} \delta \theta_{I}=\sum\left(Q_{I}+\sum b_{D I} Q_{D}\right) \delta q_{I} \equiv \sum Q_{I o} \delta q_{I} \tag{3.8.14p}
\end{equation*}
$$

Substituting all these findings into the kinetic Hamel equations (3.5.21d) [or into the central equation (3.6.9 or 11), with (3.8.14i); namely, the Hamel approach; or into (3.6.8 or 12), but with $d\left(\delta q_{D}\right)-\delta\left(d q_{D}\right)=\sum \sum w_{I^{\prime}}^{D} d q_{I^{\prime}} \delta q_{I}+\sum w_{I}^{D} \delta q_{I}$, $d\left(\delta q_{I}\right)-\delta\left(d q_{I}\right)=0$; namely the Suslov approach (see also ex. 3.8.1, below)], we obtain the $n-m$ (kinetic) equations of Voronets, in the following equivalent forms [recalling (3.8.13o)]:

$$
\begin{align*}
\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot} & -\partial T_{o} / \partial q_{I}-\sum b_{D I}\left(\partial T_{o} / \partial q_{D}\right) \\
& -\sum \sum w_{I I^{\prime}}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}}-\sum w^{D}{ }_{I}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \\
\equiv & \left(\partial T_{o} / \partial v_{I}\right)^{\cdot}-\partial T_{o} / \partial\left(q_{I}\right)-\sum \sum w_{I I^{\prime}} p_{D o} v_{I^{\prime}}-\sum w^{D}{ }_{I} p_{D o},\left[\text { since } v_{n+1}=1\right] \\
\equiv & E_{I}\left(T_{o}\right)-\sum b_{D I}\left(\partial T_{o} / \partial q_{D}\right)-\Gamma_{I o} \\
\equiv & E_{(I)}\left(T_{o}\right)-\Gamma_{I o}=Q_{I}+\sum b_{D I} Q_{D} \equiv Q_{I o} . \tag{3.8.14q}
\end{align*}
$$

SPECIALIZATIONS, REMARKS

(i) If the constraints are catastatic (i.e., $b_{D}=0$), then, as (3.8.14h) readily shows, the $w^{D}{ }_{I}$ reduce to $\partial b_{D I} / \partial t$; and if they are stationary, or scleronomic, they vanish.
(ii) If the Voronets constraints reduce to those of Chaplygin, then (3.8.14q) reduce to (3.8.130).
(iii) We believe that the above derivation of the Voronets equations (i.e., deductively from those of Hamel) is their clearest presentation in the entire dynamics literature in English; and one of the few anywhere.
(iv) By looking at the constraint forms (3.8.11a), (3.8.14a), we can state that the Voronets equations bear the same relation to those of Hamel that the Hadamard equations bear relative to those of Maggi [although it took about 20 years for that to be recognized: Hamel (1924)]. Schematically:

Maggi (1896, 1901, 1903) \rightarrow Hadamard (1895)
Hamel (1903, 1904) \rightarrow Voronets (1901).

Problem 3.8.3 Generalized Voronets' Equations. Formulate Voronets' equations in the general quasi velocities ω_{I} defined by

$$
\begin{equation*}
v_{I}=\sum B_{I I^{\prime}} \omega_{I^{\prime}}+B_{I}, \tag{a}
\end{equation*}
$$

where the coefficients $B_{I I^{\prime}}$ and B_{I} are assumed functions of all the q 's and t; and the ν_{k} are constrained, as in (3.8.14a):

$$
\begin{equation*}
v_{D}=\sum b_{D I} v_{I}+b_{D} . \tag{b}
\end{equation*}
$$

(2C) Equations in General Nonholonomic Variables; when the nonholonomic constraints have the general form $\left[D^{\prime}=1, \ldots, m(<n), k=1, \ldots, n\right]$:

$$
\begin{equation*}
\sum a_{D^{\prime} k} \omega_{k}+a_{D^{\prime}}=0 \Rightarrow \sum a_{D^{\prime} k} \delta \theta_{k}=0 \tag{3.8.15a}
\end{equation*}
$$

where (i) the coefficients $a_{D^{\prime} k}$ and $a_{D^{\prime}}$ are functions of all the q 's and t [and rank $\left(a_{D^{\prime} k}\right)=m$], and (ii) the $v^{\prime} s$ and ω 's are related by

$$
\begin{equation*}
\omega_{k} \equiv \sum a_{k l} v_{l}+a_{k} \neq 0 \Leftrightarrow v_{l}=\sum A_{l k} \omega_{k}+A_{l} \neq 0 \tag{3.8.15b}
\end{equation*}
$$

instead of the earlier holonomic variable forms $\omega_{D} \equiv \sum a_{D k} \nu_{k}+a_{D}=0$, etc..
Applying the general methods expounded in $\S 3.5$, we may proceed in one of the following two ways: either we
(i) Adjoin the constraints (3.8.15a) to LP in the ω variables (3.5.18),

$$
\begin{equation*}
\sum I_{k} \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k}, \tag{3.8.15c}
\end{equation*}
$$

with m Lagrangean multipliers $\lambda_{D^{\prime}}$, and thus obtain the n coupled Routh-Voss type of equations:

$$
\begin{equation*}
I_{k}=\Theta_{k}+\sum \lambda_{D^{\prime}} a_{D^{\prime} k}, \tag{3.8.15d}
\end{equation*}
$$

where the inertia terms I_{k} have one of the following basic forms:

$$
\begin{array}{rlrl}
I_{k} & =\sum\left(\partial v_{l} / \partial \omega_{k}\right) E_{l} \equiv \sum A_{l k}\left[\left(\partial T / \partial \dot{q}_{l}\right)^{\cdot}-\partial T / \partial q_{l}\right] \\
& =\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{\alpha} & & (\text { (Hamel), } \\
& =\partial S^{*} / \partial \dot{\omega}_{k} \equiv \sum A_{l k}\left(\partial S / \partial \ddot{q}_{l}\right) & & \text { (Appell); } \tag{3.8.15~g}
\end{array}
$$

and which, along with the m constraints (3.8.15a) and the n transformation equations (3.8.15b), constitute a system of $n+m+n=2 n+m$ equations for the $2 n+m$ unknown functions $q_{k}(t), \omega_{k}(t), \lambda_{D^{\prime}}(t)$; or we
(ii) Introduce new quasi variables $\theta^{\prime}, \omega^{\prime} \equiv d \theta^{\prime} / d t$ by

$$
\begin{align*}
& \omega_{D^{\prime}} \equiv \sum a_{D^{\prime} k} \omega_{k}+a_{D^{\prime}} \quad(=0) \Rightarrow \delta \theta_{D^{\prime}} \equiv \sum a_{D^{\prime} k} \delta \theta_{k} \quad(=0) \tag{3.8.15h}\\
& \omega_{I^{\prime}} \equiv \sum a_{I^{\prime} k} \omega_{k}+a_{I^{\prime}} \quad(\neq 0) \Rightarrow \delta \theta_{I^{\prime}} \equiv \sum a_{I^{\prime} k} \delta \theta_{k} \quad(\neq 0) \tag{3.8.15i}
\end{align*}
$$

and, inversely,

$$
\begin{equation*}
\omega_{k} \equiv \sum A_{k k^{\prime}} \omega_{k^{\prime}}+A_{k}=\sum A_{k I^{\prime}} \omega_{I^{\prime}}+A_{k} \Rightarrow \delta \theta_{k} \equiv \sum A_{k I^{\prime}} \delta \theta_{I^{\prime}}=0 \tag{3.8.15j}
\end{equation*}
$$

[where, as in $\S 2.11$, the $n-m \omega_{I^{\prime}} \equiv \cdots$ are arbitrary, except that when the system $(3.8 .15 \mathrm{~h}, \mathrm{i})$ is solved for the ω in terms of the ω^{\prime} (and time) and the results are inserted in (3.8.15a), they satisfy them identically], and then, with the help of these Maggi-like representations, apply LP in the ω^{\prime} variables

$$
\begin{equation*}
\sum I_{k^{\prime}} \delta \theta_{k^{\prime}}=\sum \Theta_{k^{\prime}} \delta \theta_{k^{\prime}} \Rightarrow \sum I_{I^{\prime}} \delta \theta_{I^{\prime}}=\sum \Theta_{I^{\prime}} \delta \theta_{I^{\prime}} \tag{3.8.15k}
\end{equation*}
$$

where

$$
\begin{align*}
I_{k^{\prime}} & =\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) I_{k} \equiv \sum A_{k k^{\prime}} I_{k} \\
& \Leftrightarrow I_{k}=\sum\left(\partial \omega_{k^{\prime}} / \partial \omega_{k}\right) I_{k^{\prime}} \equiv \sum a_{k^{\prime} k} I_{k^{\prime}} \tag{3.8.151}\\
\Theta_{k^{\prime}} & =\sum A_{k k^{\prime}} \Theta_{k} \Leftrightarrow \Theta_{k}=\sum a_{k^{\prime} k} \Theta_{k^{\prime}} ; \tag{3.8.15~m}
\end{align*}
$$

from which, applying the method of Lagrangean multipliers [by now, in well-understood ways; i.e., with the constraints (3.8.15a, h) written as $1 \cdot \delta \theta_{D^{\prime}}=0$, and the $\delta \theta_{I^{\prime}} \neq 0$ viewed as satisfying the constraints $0 \cdot \delta \theta_{I^{\prime}}=0$], we readily obtain the following two groups of equations:

$$
\begin{array}{ll}
I_{D^{\prime}}=\Theta_{D^{\prime}}+\lambda_{D^{\prime}} & (n-m \text { kinetostatic equations }), \\
I_{I^{\prime}}=\Theta_{I^{\prime}} & (m \text { kinetic equations }) ; \tag{3.8.15o}
\end{array}
$$

where the inertia terms $I_{k^{\prime}}$ have one of the following basic forms:

$$
\begin{array}{rlr}
I_{k^{\prime}} & =\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) I_{k} \equiv \sum A_{k k^{\prime}} I_{k} & \text { (Maggi-type) } \\
& =\left(\partial T^{*^{\prime}} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial T^{*^{\prime}} / \partial \theta_{k^{\prime}}+\sum \sum \gamma_{k^{k^{\prime} \alpha^{\prime}}}\left(\partial T^{* \prime} / \partial \omega_{b^{\prime}}\right) \omega_{\alpha^{\prime}} \\
& \left(\alpha^{\prime}=m+1, \ldots, n ; n+1\right) & \text { (Hamel-type) } \\
& =\partial S^{*^{\prime}} / \partial \dot{\omega}_{k^{\prime}} \equiv \sum A_{k k^{\prime}}\left(\partial S^{*} / \partial \dot{\omega}_{k}\right) & \text { (Appell-type) } \tag{3.8.15r}
\end{array}
$$

In these equations:
(i) $T^{* \prime} \equiv T^{*}\left(t, q, \omega_{k} \equiv \sum A_{k k^{\prime}} \omega_{k^{\prime}}+A_{k}\right) \equiv T^{*}\left(t, q, \omega_{D^{\prime}}, \omega_{I^{\prime}}\right)$; and the constraints $\omega_{D^{\prime}}=0$ are to be enforced after all differentiations, not before; otherwise we could not calculate terms like $\gamma^{D^{\prime}}{ }_{k^{\prime} \alpha^{\prime}}\left(\partial T^{*^{\prime}} / \partial \omega_{D^{\prime}}\right) \omega_{\alpha^{\prime}}$.
(ii) The $\gamma^{D^{\prime}}{ }_{k^{\prime} \alpha^{\prime}}$ can be calculated either from the transitivity equations

$$
\begin{equation*}
d\left(\delta \theta_{k^{\prime}}\right)-\delta\left(d \theta_{k^{\prime}}\right)=\sum \sum \gamma^{k_{l^{\prime} \alpha^{\prime}}^{\prime}} d \theta_{\alpha^{\prime}} \delta \theta_{l^{\prime}}=\sum \sum \gamma^{k_{l^{\prime} r^{\prime}}^{\prime}} d \theta_{r^{\prime}} \delta \theta_{l^{\prime}}+\sum \gamma_{l^{\prime}}^{k^{\prime}} \delta \theta_{l^{\prime}} \tag{3.8.15~s}
\end{equation*}
$$

(which is, usually, the easier way), or from the transformation equations (ex. 2.10.1: d)

$$
\begin{equation*}
\gamma^{k^{\prime}{ }^{\prime} r^{\prime}}=\sum \sum \sum a_{k^{\prime} k} A_{l l^{\prime}} A_{r r^{\prime}} \gamma_{l r}^{k}+\sum \sum\left(\partial a_{k^{\prime} k} / \partial \theta_{r}-\partial a_{k^{\prime} r} / \partial \theta_{k}\right) A_{k l^{\prime}} A_{r r^{\prime}} \tag{3.8.15t}
\end{equation*}
$$

where

$$
\begin{equation*}
\partial a_{k^{\prime} k} / \partial \theta_{r} \equiv \sum\left(\partial a_{k^{\prime} k} / \partial q_{b}\right)\left(\partial \dot{q}_{b} / \partial \omega_{r}\right)=\sum A_{b r}\left(\partial a_{k^{\prime} k} / \partial q_{b}\right) ; \tag{3.8.15u}
\end{equation*}
$$

and similarly for the $\gamma^{k^{\prime}}{ }_{l^{\prime}} \equiv \gamma^{k^{\prime}}{ }_{l^{\prime},(n+1)^{\prime}}$.

$$
\begin{gather*}
S^{* \prime} \equiv S^{*}\left[t, q, \omega\left(t, q, \omega^{\prime}\right), \dot{\omega}\left(t, q, \omega^{\prime}, \dot{\omega}^{\prime}\right)\right] \equiv S^{*^{\prime}}\left(t, q, \omega^{\prime}, \dot{\omega}^{\prime}\right) \text { and } \tag{iii}\\
S^{*^{\prime}}{ }_{o} \equiv S^{* \prime}\left(t, q, \omega_{D^{\prime}}=0, \omega_{I^{\prime}} \neq 0, \dot{\omega}_{D^{\prime}}=0, \dot{\omega}_{I^{\prime}}\right) \equiv S_{o}^{* \prime}\left(t, q, \omega_{I^{\prime}}, \dot{\omega}_{I^{\prime}}\right) ;
\end{gather*}
$$

and in (3.8.15r) $S^{* \prime}$ can be replaced by $S^{* \prime}{ }_{o}$ for $k^{\prime} \rightarrow I=m+1, \ldots, n$, but not for $k^{\prime} \rightarrow D=1, \ldots, m$. Let the reader adapt the above to the case where the θ / ω variables are already constrained by, say, the m_{1} constraints $\omega_{D}=0 / \delta \theta_{D}=0$ ($D=1, \ldots, m_{1}$), and then are subjected to the additional m_{2} (3.8.15a)-like constraints

$$
\begin{equation*}
\sum a_{D^{\prime} k} \omega_{k}+a_{D^{\prime}}=0 \quad\left[D^{\prime}=1, \ldots, m_{2} ; n-\left(m_{1}+m_{2}\right)>0\right] \tag{3.8.15v}
\end{equation*}
$$

Problem 3.8.4 Hadamard Form of the Hamel Equations. Let the m Pfaffian constraints have the special Voronets form

$$
\begin{equation*}
\omega_{D} \equiv \sum B_{D I} \omega_{I}+B_{D} \tag{a}
\end{equation*}
$$

with the $B_{D I}$ and B_{D} assumed known functions of all the q 's and t. By viewing (a) as the following special case of the Hamel-type constraints (3.8.15a)

$$
\begin{equation*}
\Omega_{D} \equiv \omega_{D}-\sum B_{D I} \omega_{I}-B_{D} \quad(=0), \quad \Omega_{I} \equiv \omega_{I} \quad(\neq 0) \tag{b,c}
\end{equation*}
$$

with inverse

$$
\begin{align*}
\omega_{D} & \equiv \Omega_{D}+\sum B_{D I} \Omega_{I}+B_{D} \quad\left(=\sum B_{D I} \Omega_{I}+B_{D}\right), \tag{d}\\
\omega_{I} & \equiv \Omega_{I} \tag{e}
\end{align*}
$$

and applying any one of the above methods used in the derivation of the Hadamard equations, show that, in this case, the equations of motion (in the t, q, ω variables) may take the decoupled Hadamard form as follows:

Kinetostatic: $\quad I_{D}=\Theta_{D}+\lambda_{D}$,
Kinetic:

$$
\begin{equation*}
I_{I}+\sum B_{D I} I_{D}=\Theta_{I}+\sum B_{D I} \Theta_{D} \tag{f}
\end{equation*}
$$

where, with our usual notations,

$$
\begin{align*}
I_{k} & =\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{\alpha}, \tag{h}\\
& =\partial S^{*} / \partial \dot{\omega}_{k} \quad\left(=\partial S_{o}^{*} / \partial \dot{\omega}_{I}, \quad \text { for } \quad I=m+1, \ldots, n\right) . \tag{i}
\end{align*}
$$

For an application of these equations, see Nikitina (1976).
Problem 3.8.5 Special Hamel Equations. Show that if the Pfaffian constraints have the special Hamel form [but slightly more general than Voronets' form (3.8.14a)]

$$
\begin{equation*}
\omega_{D} \equiv \sum a_{D k} v_{k}+a_{D} \quad(=0), \quad \omega_{I} \equiv v_{I} \quad(\neq 0) \tag{a}
\end{equation*}
$$

where the $a_{D k}, a_{D}$ are functions of all the q 's and t; that is,

$$
\begin{array}{ll}
a_{D k}=a_{D k}, & a_{D, n+1}=a_{D}, \quad a_{I D}=\delta_{I D}=0, \quad a_{I I^{\prime}}=\delta_{I I^{\prime}}, \quad a_{I, n+1}=0, \\
a_{n+1, k}=0, & a_{n+1, n+1}=1, \tag{b}
\end{array}
$$

and, therefore (recalling prob. 2.11.2),

$$
\begin{equation*}
\left(A_{D D^{\prime}}\right)=\left(a_{D D^{\prime}}\right)^{-1}, \quad\left(A_{D I}\right)=-\left(a_{D D^{\prime}}\right)^{-1}\left(a_{D^{\prime} I}\right), \quad A_{I D}=\delta_{I D}=0, \quad A_{I I^{\prime}}=\delta_{I I^{\prime}} \tag{c}
\end{equation*}
$$

then (i) the Maggi kinetic and kinetostatic equations specialize, respectively, to

$$
\begin{equation*}
M_{I}+\sum A_{D I} M_{D}=0, \quad \sum A_{D^{\prime} D} M_{D^{\prime}}=\lambda_{D} \tag{d}
\end{equation*}
$$

where $M_{k} \equiv E_{k}-Q_{k} \equiv\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}\right]-Q_{k}\left(\right.$ and for $A_{D I}=b_{D I}, A_{D^{\prime} D}=$ $\delta_{D^{\prime} D}$, they specialize to the corresponding Hadamard equations), and (ii) the Hamel kinetic equations specialize to

$$
\begin{equation*}
\left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T^{*} / \partial \theta_{I}+\sum \sum \gamma_{I I^{\prime}}^{D}\left(\partial T^{*} / \partial \omega_{D}\right) \omega_{I^{\prime}}+\sum \gamma_{I}^{D}\left(\partial T^{*} / \partial \omega_{D}\right)=\Theta_{I} \tag{e}
\end{equation*}
$$

where after all differentiations we set $\omega_{D}=0$ and $\omega_{I} \equiv \dot{q}_{I}$ (Schouten, 1954, pp. 196197); and similarly for the kinetostatic equations.

HINT

Since $\theta_{I} \equiv q_{I}$ (i.e., holonomic coordinates), we will have

$$
\begin{equation*}
d\left(\delta \theta_{I}\right)-\delta\left(d \theta_{I}\right)=0 \Rightarrow \gamma_{k l}^{I}, \gamma_{k, n+1}^{I} \equiv \gamma_{k}^{I}=0 \tag{f}
\end{equation*}
$$

and, of course, $\gamma^{n+1}{ }_{k l}, \gamma^{n+1}{ }_{k}=0$; and, due to (d, e), the remaining $\gamma^{D}{ }_{I I^{\prime}}, \gamma^{D}{ }_{I}$ simplify further.

Problem 3.8.6 Special Hamel Equations (continued). Show that eqs. (e) of the preceding problem can be further simplified to

$$
\begin{equation*}
\left(\partial T^{*}{ }_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T^{*}{ }_{o} / \partial \theta_{I}+\sum \sum \gamma_{I I^{\prime}}^{D}\left(\partial T^{*} / \partial \omega_{D}\right) \dot{q}_{I^{\prime}}+\sum \gamma_{I}^{D}\left(\partial T^{*} / \partial \omega_{D}\right)=\Theta_{I}, \tag{a}
\end{equation*}
$$

where $T^{*}{ }_{o}=T^{*}\left(t, q, \omega_{D}=0, \omega_{I}=\dot{q}_{I}\right) \equiv T^{*}{ }_{o}\left(t, q, \dot{q}_{I}\right)$; that is, the constraints have been enforced in T^{*} right from the start (as in the Voronets case) in the first and second terms, and after the differentiations in the third and fourth terms (sums); or, we replace $\partial T^{*} / \partial \omega_{D}$ with its equal:

$$
\sum A_{k D}\left(\partial T / \partial \dot{q}_{k}\right)=\sum A_{D^{\prime} D}\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)+\sum A_{I D}\left(\partial T / \partial \dot{q}_{I}\right)=\sum A_{D^{\prime} D}\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)
$$

REMARKS

(i) The $n-m$ equations (a), plus the m constraints $\sum a_{D k} \dot{q}_{k}+a_{D}=0$, constitute a determinate system of n equations in the n functions $q_{k}(t)$.
(ii) Clearly, if the constraints (a) of the preceding problem assume the Voronets form (3.8.14a) (i.e., $A_{D D^{\prime}}=\delta_{D D^{\prime}}, A_{I D}=\delta_{I D}=0, \gamma^{D_{I I^{\prime}}} \rightarrow-w^{D}{ }_{I I^{\prime}}$, etc.) then (a) must
reduce to the Voronets equations (3.8.14q). [See also Hamel, 1904(a), pp. 20-21; Prange, 1935, pp. 537-539; Schouten, 1954, pp. 196-197.]

Problem 3.8.7 Special Hamel Equations (continued). Write down the kineto-static Hamel equations of the preceding problem.

Example 3.8.1 A Mixed Hamel-Voronets Type of Equations [May be omitted in a first reading. Adapted from Neimark and Fufaev (1972, pp. 141-143)]. Let us consider a system subject to the Voronets-like Pfaffian constraints (with $\dot{q}_{k} \equiv v_{k}$):

$$
\begin{equation*}
v_{D} \equiv \sum b_{D I} v_{I}+b_{D} \quad[D=1, \ldots, m(<n) ; I=m+1, \ldots, n] . \tag{a}
\end{equation*}
$$

To handle these constraints, we make the following quasi-velocity choice: (i) We express the first $M(\leq m)$ of the $m v_{D}$'s à la Hamel:

$$
\begin{equation*}
\omega_{d} \equiv v_{d}-\sum b_{d I} v_{I}-b_{d} \equiv \sum a_{d I} v_{I}+a_{I} \quad(=0), \tag{b1}
\end{equation*}
$$

and also

$$
\begin{equation*}
\omega_{I} \equiv \sum a_{I I^{\prime}} v_{I^{\prime}}+a_{I} \quad(\neq 0) \tag{b2}
\end{equation*}
$$

where $d=1, \ldots, M ; I, I^{\prime}=m+1, \ldots, n$ [and the new coefficients $a_{I I^{\prime}}, a_{I}$ are such that upon inversion of (b2) and substitution of the v 's in (a), the latter is satisfied identically]; and (ii) express the remaining $m-M$ of the v_{D} 's à la Voronets:

$$
\begin{equation*}
v_{\delta} \equiv \sum b_{\delta I} v_{I}+b_{\delta} \quad[\delta=M+1, \ldots, m(<n)] . \tag{c}
\end{equation*}
$$

The range of these indices, so important to the understanding of this example, is shown below for quick reference:

and, these indices may be used to characterize either a particular v or ω of a group, or the entire group. Hence, they can be rewritten compactly as $\omega_{i} \equiv \sum a_{i i^{\prime}} v_{i^{\prime}}+a_{i}$.

Now, let us establish the transitivity equations. Recalling the results of prob. 2.12.5, we have the following:
(i) For the Hamel group, eqs. (b):

Hamel viewpoint: $\left(\delta \theta_{i}\right)^{\cdot}-\delta \omega_{i}=\sum \sum \gamma_{i^{\prime} i^{\prime \prime}}^{i} \omega_{i^{\prime \prime}} \delta \theta_{i^{\prime}}+\sum \gamma_{i^{\prime}}^{i} \delta \theta_{i^{\prime}}$,
where

$$
\begin{equation*}
\sum A_{i i^{\prime}} a_{i^{\prime} i^{\prime \prime}}=\delta_{i i^{\prime \prime}} \Rightarrow \gamma_{i^{\prime} i^{\prime \prime}}^{i} \equiv \sum \sum\left(\partial a_{i i^{\prime \prime \prime}} / \partial q_{i^{\prime \prime \prime \prime}}-\partial a_{i i^{\prime \prime \prime \prime}} / \partial q_{i^{\prime \prime \prime}}\right) A_{i^{\prime \prime \prime} i^{\prime}} A_{i^{\prime \prime \prime \prime} i^{\prime \prime}} \tag{e1}
\end{equation*}
$$

and analogously for $\gamma_{i^{\prime}}^{i} \equiv \gamma_{i^{\prime}, n+1}^{i}$; that is, the γ^{i}..'s are based on eqs. (b), and $d\left(\delta q_{i}\right)=\delta\left(d q_{i}\right)$.
(ii) For the Voronets group, eq. (c):

Suslov viewpoint: $\quad\left(\delta q_{I}\right)^{\cdot}-\delta\left(\dot{q}_{I}\right)=0$,

$$
\begin{equation*}
\left(\delta q_{\delta}\right)^{\cdot}-\delta\left(\dot{q}_{\delta}\right)=\sum \sum w_{I I^{\prime}}^{\delta} \dot{q}_{I^{\prime}} \delta q_{I}+\sum w_{I}^{\delta} \delta q_{I} \tag{f}
\end{equation*}
$$

[i.e., here, too, we may assume $d\left(\delta q_{d}\right)=\delta\left(d q_{d}\right) \Rightarrow d\left(\delta q_{i}\right)=\delta\left(d q_{i}\right)$].
In addition, to implement the central equation (CE), and thus derive the equations of motion:
(i) We invert the virtual form of eqs. (b), thus obtaining [no enforcement of constraints (b1) yet]

$$
\begin{equation*}
\delta q_{i}=\sum A_{i i^{\prime}} \delta \theta_{i^{\prime}} \quad\left[=\sum A_{i I} \delta \theta_{I} ; \text { since, by }(\mathrm{b} 1), \delta \theta_{d}=0\right] \tag{g}
\end{equation*}
$$

where $\dot{\theta}_{i} \equiv \omega_{i}$.
(ii) From the virtual form of (c), and then use of (g) for $i \rightarrow I$, we get

$$
\begin{equation*}
\delta q_{\delta}=\sum b_{\delta I} \delta q_{I}=\sum\left(\sum b_{\delta I} A_{I i}\right) \delta \theta_{i} \equiv \sum F_{\delta i} \delta \theta_{i} \quad\left[=\sum F_{\delta I} \delta \theta_{I}\right] . \tag{h}
\end{equation*}
$$

Equations (g, h) express the $n \delta q^{\prime} \mathrm{s}$ in terms of the $M+(n-m) \delta \theta_{i}{ }^{\prime} \mathrm{s}\left[\Rightarrow(n-m) \delta \theta_{I}\right.$'s] introduced by the virtual form of (b).
(iii) Finally, we employ the notation

$$
\begin{equation*}
T=T\left(t, q, \dot{q}_{i}, \dot{q}_{\delta}\right)=\cdots=T^{*}\left(t, q, \omega_{i}\right)=T^{*} \quad \text { (no constraint enforcement yet) } \tag{i}
\end{equation*}
$$

meaning that T^{*} is what becomes of T after expressing all its \dot{q} 's in terms of the ω_{i} 's [velocity forms of (g, h)]; that is, after substituting into it

$$
\dot{q}_{i}=\sum A_{i i^{\prime}} \omega_{i^{\prime}}+A_{i} \quad\left[\text { obtained after solving (b) for the } \quad \dot{q}_{i} \equiv v_{i}\right]
$$

and

$$
\begin{equation*}
\dot{q}_{\delta}=\sum b_{\delta I} \dot{q}_{I}+b_{\delta}=\sum b_{\delta I}\left(\sum A_{I i} \omega_{i}+A_{I}\right)+b_{\delta} \equiv \sum F_{\delta i} \omega_{i}+F_{\delta} . \tag{j}
\end{equation*}
$$

Next, to obtain the equations of motion, we will utilize the central equation (3.6.8 ff.)

$$
\begin{equation*}
\left(\sum p_{k} \delta \dot{q}_{k}\right)^{\cdot}-\delta T-\sum p_{k}\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]=\sum Q_{k} \delta q_{k} \quad\left(\equiv \delta^{\prime} W\right) \tag{k}
\end{equation*}
$$

Indeed, substituting into it the two expressions (f) for $(\delta q)^{\cdot}-\delta(\dot{q})$, we obtain

$$
\begin{align*}
& \left(\sum p_{k} \delta q_{k}\right)^{\cdot}-\delta T-\sum p_{\delta}\left[\left(\delta q_{\delta}\right)^{\cdot}-\delta\left(\dot{q}_{\delta}\right)\right] \\
& \quad=\left(\sum p_{k} \delta q_{k}\right)^{\cdot}-\delta T-\sum p_{\delta}\left(\sum \sum w_{I I^{\prime}}^{\delta} v_{I^{\prime}} \delta q_{I}+\sum w_{I}^{\delta} \delta q_{I}\right)=\delta^{\prime} W \tag{1}
\end{align*}
$$

Next, due to (i, j) (and this is the important step here)
$\delta P \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}=\sum p_{k} \delta q_{k}=\sum P_{k} \delta \theta_{k}=\sum P_{i} \delta \theta_{i}, \quad P_{k} \equiv \partial T^{*} / \partial \omega_{k}$, $\delta T=\delta T^{*}=\sum\left[\left(\partial T^{*} / \partial \omega_{i}\right) \delta \omega_{i}+\left(\partial T^{*} / \partial \theta_{i}\right) \delta \theta_{i}\right], \quad$ and $\quad \delta^{\prime} W=\sum \Theta_{i} \delta \theta_{i}, \quad(\mathrm{~m})$ and so, with the help of (g), the variational equation (1) can be rewritten as

$$
\begin{align*}
\left(\sum P_{i} \delta \theta_{i}\right)^{\cdot}-\delta T^{*}-\sum \sum \sum \sum w^{\delta}{ }_{I I^{\prime}} p_{\delta} v_{I^{\prime}}\left(A_{I i} \delta \theta_{i}\right)-\sum \sum \sum w^{\delta}{ }_{I} p_{\delta}\left(A_{I i} \delta \theta_{i}\right) \\
=\sum \Theta_{i} \delta \theta_{i} . \tag{n}
\end{align*}
$$

Finally, transforming the first two terms of the above via (m) [or (3.6.7a ff., with $k \rightarrow i)$], then applying the transitivity equations (e), and, finally, factoring out the common $\delta \theta_{i}$, we get

$$
\begin{equation*}
\sum\left(I_{i}-\Theta_{i}\right) \delta \theta_{i}=0 \tag{o}
\end{equation*}
$$

where

$$
\begin{align*}
I_{i} \equiv & \left(\partial T^{*} / \partial \omega_{i}\right)^{\cdot}-\partial T^{*} / \partial \theta_{i} \\
& +\left(\sum \sum \gamma_{i i^{\prime \prime}}^{i^{\prime}}\left(\partial T^{*} / \partial \omega_{i^{\prime}}\right) \omega_{i^{\prime \prime}}+\sum{\gamma^{i^{\prime}}}_{i}\left(\partial T^{*} / \partial \omega_{i^{\prime}}\right)\right) \\
& -\left(\sum \sum w_{I I^{\prime}}\left(\partial T / \partial v_{\delta}\right) v_{I^{\prime}} A_{I i}+\sum \sum w_{I}^{\delta}\left(\partial T / \partial v_{\delta}\right) A_{I i}\right) \tag{p}
\end{align*}
$$

and

$$
\begin{align*}
\partial T^{*} / \partial \theta_{i} & \equiv \sum\left(\partial T^{*} / \partial q_{k}\right)\left(\partial v_{k} / \partial \omega_{i}\right) \\
& =\sum\left(\partial T^{*} / \partial q_{i^{\prime}}\right)\left(\partial v_{i^{\prime}} / \partial \omega_{i}\right)+\sum\left(\partial T^{*} / \partial q_{\delta}\right)\left(\partial v_{\delta} / \partial \omega_{i}\right) \quad[\text { invoking }(\mathrm{j})] \\
& =\sum\left(\partial T^{*} / \partial q_{i^{\prime}}\right) A_{i^{\prime} i}+\sum \sum\left(\partial T^{*} / \partial q_{\delta}\right)\left(b_{\delta I} A_{I i}\right) \tag{q}
\end{align*}
$$

From the above we obtain, in by now well-understood ways (i.e., $\delta \theta_{d}=0 \Rightarrow$ multipliers, Λ_{d}), the two uncoupled groups of "mixed" (or "intermediate") Hamel-Voronets equations:

$$
\begin{equation*}
I_{d}=\Theta_{d}+\Lambda_{d} \text { (kinetostatic equations), } \quad I_{I}=\Theta_{I} \text { (kinetic equations). } \tag{r1,2}
\end{equation*}
$$

In particular, the kinetic equations (r2) are, in extenso,

$$
\begin{align*}
& \left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T^{*} / \partial \theta_{I}+\left(\sum \sum \gamma_{I i^{\prime}}^{i}\left(\partial T^{*} / \partial \omega_{i}\right) \omega_{i^{\prime}}+\sum \gamma_{I}^{i}\left(\partial T^{*} / \partial \omega_{i}\right)\right) \\
& -\left(\sum \sum \sum w_{I^{\prime} I^{\prime \prime}}^{\delta} A_{I^{\prime} I}\left(\partial T / \partial v_{\delta}\right) v_{I^{\prime \prime}}+\sum \sum w_{I^{\prime}}^{\delta} A_{I^{\prime} I}\left(\partial T / \partial v_{\delta}\right)\right)=\Theta_{I} . \tag{s}
\end{align*}
$$

These are, indeed, mixed Hamel-Voronets equations, because:
(i) If $M=m$ (i.e., $\delta=0$), the Voronets terms (fourth group of terms: -[...]) disappear and (s) reduce to the kinetic Hamel equations; whereas
(ii) If $M=0$ (i.e., $d=0, \delta=D$, and $i=I$), and we restrict ourselves to holonomic coordinates and the Voronets constraints $(\mathrm{a})=(\mathrm{c})$, then $A_{I I^{\prime}}=\delta_{I I^{\prime}}[=$ Kronecker delta in (g)], all the Hamel symbols $\gamma_{I i^{\prime}}^{i}, \gamma_{I}^{i}$ vanish, T^{*} becomes $T_{o}\left(t, q, v_{I}\right)$, and
(from $\left.\delta^{\prime} W=\sum \Theta_{I} \delta \theta_{I}=\sum Q_{I o} \delta q_{I}\right) \Theta_{I} \rightarrow Q_{I o}$; and, as a result, (s) reduce to the familiar Voronets equations (3.8.14q):

$$
\begin{align*}
& \left(\partial T_{o} / \partial v_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum\left(\partial T_{o} / \partial q_{D}\right) b_{D I} \\
& \quad-\left(\sum \sum w_{I I^{\prime}}^{D}\left(\partial T / \partial v_{D}\right) v_{I^{\prime}}+\sum w_{I}^{D}\left(\partial T / \partial v_{D}\right)\right)=\Theta_{I} \tag{t}
\end{align*}
$$

and for Chaplygin systems, they reduce to the Chaplygin equations (3.8.130).

Finally, if $M=0$ and we choose nonholonomic coordinates, (s) lead to the Voronets and Chaplygin equations in quasi variables. The details are left to the reader [recall probs. 3.8.2 and 3.8.3; see also Fradlin (1961)].

Example 3.8.2 Transformation of the Correction Terms $-\Gamma_{k}$ that Appear in the Hamel Equations. From the invariance of LP, under local quasi-coordinate differential/velocity transformations

$$
\delta \theta_{k^{\prime}}=\sum\left(\partial \omega_{k^{\prime}} / \partial \omega_{k}\right) \delta \theta_{k} \equiv \sum a_{k^{\prime} k} \delta \theta_{k} \Leftrightarrow \delta \theta_{k}=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \delta \theta_{k^{\prime}} \equiv A_{k k^{\prime}} \delta \theta_{k^{\prime}}
$$

that is,

$$
\begin{equation*}
\sum I_{k} \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k} \Leftrightarrow \sum I_{k^{\prime}} \delta \theta_{k^{\prime}}=\sum \Theta_{k^{\prime}} \delta \theta_{k^{\prime}} \tag{al}
\end{equation*}
$$

we readily conclude that the I_{k} and Θ_{k} transform as (covariant) vectors, that is,

$$
\begin{equation*}
I_{k^{\prime}}=\sum A_{k k^{\prime}} I_{k} \Leftrightarrow I_{k}=\sum a_{k^{\prime} k} I_{k^{\prime}}, \quad \text { etc. } \tag{a2}
\end{equation*}
$$

However, this does not imply that the constituents of $I_{k} \equiv E_{k}{ }^{*}\left(T^{*}\right)-\Gamma_{k} \equiv$ $E_{k}{ }^{*}-\Gamma_{k}$, taken individually, transform as such vectors. In fact, as shown below, neither $E_{k}{ }^{*}$ (=nonholonomic Euler-Lagrange part of inertia) nor $-\Gamma_{k}$ (or $\Gamma_{k}=$ nonholonomic deviation/correction) transform vectorially; that is, à la (a2); although their combination $E_{k}{ }^{*}-\Gamma_{k}$ does!

We begin by examining the transformation properties of the $-\Gamma_{k}$'s under $\omega_{k^{\prime}}=\sum a_{k^{\prime} k} \omega_{k}, \omega_{k}=\sum A_{k k^{\prime}} \omega_{k^{\prime}}$ (assumed stationary for algebraic simplicity, but no loss in generality); that is, relate

$$
\begin{equation*}
-\Gamma_{l^{\prime}} \equiv \sum \sum \gamma_{l^{\prime} r^{\prime}}^{k^{\prime}}\left(\partial T^{*^{\prime}} / \partial \omega_{k^{\prime}}\right) \omega_{r^{\prime}} \equiv-\Gamma_{l^{\prime}}\left(t, q, \omega^{\prime}\right) \tag{b}
\end{equation*}
$$

and $-\Gamma_{l}=-\Gamma_{l}(t, q, \omega)$. Below, we present two such derivations; one in system variables and one in terms of particle vectors.
(i) System variable derivation. Substituting the γ-transformation equations (3.8.15t)

$$
\gamma^{k^{\prime}}{ }_{l^{\prime} r^{\prime}}=\sum \sum \sum a_{k^{\prime} k} A_{l l^{\prime}} A_{r r^{\prime}} \gamma^{k}{ }_{l r}+\sum \sum\left(\partial a_{k^{\prime} k} / \partial \theta_{r}-\partial a_{k^{\prime} r} / \partial \theta_{k}\right) A_{k l^{\prime}} A_{r r^{\prime}}
$$

where

$$
\partial a_{k^{\prime} k} / \partial \theta_{r} \equiv \sum\left(\partial a_{k^{\prime} k} / \partial q_{b}\right)\left(\partial \dot{q}_{b} / \partial \omega_{r}\right) \equiv \sum A_{b r}\left(\partial a_{k^{\prime} k} / \partial q_{b}\right)
$$

into (b), we find, successively,

$$
\begin{align*}
-\Gamma_{l^{\prime}} \equiv & \sum \sum\left\{\left(\sum \sum \sum a_{k^{\prime} k} A_{l l^{\prime}} A_{r r^{\prime}} \gamma^{k}{ }_{l r}+\cdots\right)\left(\sum A_{s k^{\prime}}\left(\partial T^{*} / \partial \omega_{s}\right)\right)\left(\sum a_{r^{\prime} b} \omega_{b}\right)\right\} \\
= & \cdots= \\
& \sum \sum \sum A_{l l^{\prime}}\left(\gamma_{l b}^{s}\left(\partial T^{*} / \partial \omega_{s}\right) \omega_{b}\right) \\
= & +\sum \sum \sum \sum\left[A_{l l^{\prime}} A_{k k^{\prime}}\left(\partial a_{k^{\prime} l} / \partial \theta_{r}-\partial a_{k^{\prime} r} / \partial \theta_{l}\right) \omega_{r}\right]\left(\partial T^{*} / \partial \omega_{k}\right) \tag{c}\\
& \sum \sum \sum \sum\left[A_{l l^{\prime}} A_{k k^{\prime}}\left(\partial a_{k^{\prime} l} / \partial \theta_{r}-\partial a_{k^{\prime} r} / \partial \theta_{l}\right) \omega_{r}\right]\left(\partial T^{*} / \partial \omega_{k}\right)
\end{align*}
$$

which is the sought nonvectorial transformation equation.
(ii) Particle variable derivation. We begin with the definition of $\Gamma_{k^{\prime}}$ in terms of the transformed particle variables (3.3.12a):

$$
\begin{align*}
\Gamma_{l^{\prime}} & \equiv \boldsymbol{S} d m \boldsymbol{v}^{*^{\prime}} \cdot\left[\left(\partial \boldsymbol{v}^{*^{\prime}} / \partial \omega_{l^{\prime}}\right)^{\cdot}-\partial \boldsymbol{v}^{*^{\prime}} / \partial \theta_{l^{\prime}}\right] \\
& =\boldsymbol{S} d m \boldsymbol{v}^{*^{\prime}} \cdot\left(d \boldsymbol{\varepsilon}_{l^{\prime}} / d t-\partial \boldsymbol{v}^{*^{\prime}} / \partial \theta_{l^{\prime}}\right) \tag{d}
\end{align*}
$$

where (again, assuming, for algebraic simplicity, stationary constraints and a stationary $\omega \Leftrightarrow \omega^{\prime}$ transformation)

$$
\boldsymbol{v}=\boldsymbol{v}^{*} \equiv \sum \omega_{l} \boldsymbol{\varepsilon}_{l}=\sum\left(\partial \boldsymbol{v}^{*} / \partial \omega_{l}\right) \omega_{l}=\boldsymbol{v}^{*^{\prime}} \equiv \sum \omega_{l^{\prime}} \boldsymbol{\varepsilon}_{l^{\prime}}=\sum\left(\partial \boldsymbol{v}^{*^{\prime}} / \partial \omega_{l^{\prime}}\right) \omega_{l^{\prime}} .(\mathrm{e})
$$

From the representations (e), we readily deduce the basic $\boldsymbol{\varepsilon} \leftrightarrow \boldsymbol{\varepsilon}^{\prime}$ transformation equations

$$
\begin{equation*}
\boldsymbol{\varepsilon}_{l^{\prime}}=\sum\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right) \boldsymbol{\varepsilon}_{l} \Leftrightarrow \boldsymbol{\varepsilon}_{l}=\sum\left(\partial \omega_{l^{\prime}} / \partial \omega_{l}\right) \boldsymbol{\varepsilon}_{l^{\prime}} \quad[\text { like (a2)]. } \tag{f}
\end{equation*}
$$

From the above, and with an eye toward (d), we obtain, successively,
(a)

$$
\begin{equation*}
d \boldsymbol{\varepsilon}_{l^{\prime}} / d t=\sum\left[\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right) \cdot \varepsilon_{l}+\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right)\left(d \boldsymbol{\varepsilon}_{l} / d t\right)\right] \tag{g}
\end{equation*}
$$

(b) $\partial v^{*^{\prime}} / \partial \theta_{l^{\prime}} \equiv \sum\left(\partial v^{*^{\prime}} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{l^{\prime}}\right) \quad$ (by definition)

$$
\begin{align*}
& =\sum\left(\left(\partial \boldsymbol{v}^{*} / \partial q_{l}\right)+\sum\left(\partial \boldsymbol{v}^{*} / \partial \omega_{s}\right)\left(\partial \omega_{s} / \partial q_{l}\right)\right)\left(\partial \dot{q}_{l} / \partial \omega_{l^{\prime}}\right) \quad \text { [by chain rule on (e)] } \\
& =\sum\left(\partial \boldsymbol{v}^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{l^{\prime}}\right)+\sum\left(\partial \boldsymbol{v}^{*} / \partial \omega_{s}\right)\left(\sum\left(\partial \omega_{s} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{l^{\prime}}\right)\right) \\
& =\sum\left(\sum\left(\partial \boldsymbol{v}^{*} / \partial \theta_{s}\right)\left(\partial \omega_{s} / \partial \dot{q}_{l}\right)\right)\left(\partial \dot{q}_{l} / \partial \omega_{l^{\prime}}\right)+\sum\left(\partial \boldsymbol{v}^{*} / \partial \omega_{s}\right)\left(\partial \omega_{s} / \partial \theta_{l^{\prime}}\right) \\
& =\sum\left(\partial \boldsymbol{v}^{*} / \partial \theta_{l}\right)\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right)+\sum\left(\partial \omega_{l} / \partial \theta_{l^{\prime}}\right) \boldsymbol{\varepsilon}_{l} . \tag{h}
\end{align*}
$$

Inserting the expressions (g, h) into (d), and regrouping, we find

$$
\begin{aligned}
\Gamma_{l^{\prime}}=\cdots= & \boldsymbol{S} d m \boldsymbol{v}^{*^{\prime}} \cdot\left(\sum\left[\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right)^{\cdot}-\partial \omega_{l} / \partial \theta_{l^{\prime}} \boldsymbol{\varepsilon}_{l}\right)\right. \\
& +\sum\left(\boldsymbol{S} d m \boldsymbol{v}^{*^{\prime}} \cdot\left(d \boldsymbol{\varepsilon}_{l} / d t-\partial \boldsymbol{v}^{*} / \partial \theta_{l}\right)\right)\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right) \\
=\sum\{ & \left.\boldsymbol{S} d m \boldsymbol{v}^{*^{\prime}} \cdot\left[\partial \boldsymbol{v}^{*} / \partial \omega_{l}-\partial \boldsymbol{v}^{*} / \partial \theta_{l}\right]\right\}\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right) \\
& +\sum\left[\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right)^{\cdot}-\partial \omega_{l} / \partial \theta_{l^{\prime}}\right]\left(\boldsymbol{S} d m \boldsymbol{v}^{*^{\prime}} \cdot \boldsymbol{\varepsilon}_{l}\right)
\end{aligned}
$$

or, finally (and recalling that $\boldsymbol{v}^{* \prime}=\boldsymbol{v}^{*}=\boldsymbol{v}$),

$$
\begin{equation*}
\Gamma_{l^{\prime}}=\sum\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right) \Gamma_{l}+\sum\left[\left(\partial \omega_{l} / \partial \omega_{l^{\prime}}\right)^{\cdot}-\partial \omega_{l} / \partial \theta_{l^{\prime}}\right]\left(\partial T^{*} / \partial \omega_{l}\right)^{\prime} \tag{i}
\end{equation*}
$$

where

$$
\left.\left(\partial T^{*} / \partial \omega_{l}\right)^{\prime} \equiv\left(\partial T^{*} / \partial \omega_{l}\right)\right|_{\text {after the differentiations we insert } \omega=\omega\left(t, q, \omega^{\prime}\right)}=\text { function of } t, q, \omega^{\prime} .
$$

We leave it to the reader to show that (i) [which, actually, holds for a general (nonlinear and nonstationary) transformation $\omega=\omega\left(t, q, \omega^{\prime}\right)$ (see chap. 5)], in our linear and homogeneous case, coincides with (c).

Now, from the transformation law (a2), for the $I_{k} \equiv E_{k}{ }^{*}-\Gamma_{k}$, and (i) for the Γ_{l} [or following steps entirely similar to those taken in obtaining (g, h), but for $\left.T^{*}=T^{*}\right]$, it is not hard to see that the nonholonomic Euler-Lagrange terms $E_{k}{ }^{*}=I_{k}+\Gamma_{k}$ must transform as follows:

$$
\begin{align*}
E_{k^{\prime}} * & \equiv\left(\partial T^{* \prime} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial T^{* \prime} / \partial \theta_{k^{\prime}} \quad\left(=I_{k^{\prime}}+\Gamma_{k^{\prime}}\right) \\
& =\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) E_{k}^{*}+\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial T^{*} / \partial \omega_{k}\right)^{\prime} \tag{j}
\end{align*}
$$

indeed, subtracting (i) from (j), side by side, yields (a2).
Clearly: (i) if $\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}=0$ (in which case, ω and ω^{\prime} are referred to as "relatively holonomic"), both Γ_{k} and $E_{k}{ }^{*}$ transform as vectors; and (ii) if Γ_{k}, $\Gamma_{k^{\prime}}, \ldots=0$ (i.e., holonomic coordinates), then $E_{k}^{*}\left(\rightarrow E_{k}=\right.$ holonomic inertia) transforms as a vector.

Problem 3.8.8 Show that (assuming a linear and stationary $\dot{q} \leftrightarrow \omega$ relationship)

$$
\begin{align*}
-\Gamma_{k} & =\sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k}\right]\left(\partial T / \partial \dot{q}_{l}\right)^{*} \\
& =\sum \sum \gamma_{k s}^{b} \omega_{s}\left(\sum\left(\partial \dot{q}_{l} / \partial \omega_{b}\right)\left(\partial T / \partial \dot{q}_{l}\right)^{*}\right)=\sum \sum \gamma_{k s}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{s} \tag{a}
\end{align*}
$$

[for rheonomic systems s runs from 1 to $n+1$] and, therefore, also

where

$$
\left.\left(\partial T / \partial \dot{q}_{l}\right)^{\prime} \equiv\left(\partial T / \partial \dot{q}_{l}\right)\right|_{\text {after the differentiations we insert }} \dot{q}=\dot{q}\left(t, q, \omega^{\prime}\right)=\text { function of } t, q, \omega^{\prime} .
$$

Below, we summarize the most prevalent quasi-velocity/constraint choices in equations of motion:

Hamel (general):	$\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0$,	
Hamel (special):	$\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0$,	$\omega_{I} \equiv \dot{q}_{I} \neq 0 ;$
Voronets (special):	$\omega_{D} \equiv \dot{q}_{D}-\sum b_{D I} \dot{q}_{I}-b_{D}=0$,	$\omega_{I} \equiv \dot{q}_{I} \neq 0 ;$
Voronets (general):	$\omega_{D} \equiv \dot{q}_{D}-\sum b_{D I} \dot{q}_{I}-b_{D}=0$,	$\omega_{I}:$ arbitrary $\neq 0 ;$
Maggi:	$\dot{q}_{k}=\sum A_{k l} \omega_{l}+A_{k} \neq 0$,	$\omega_{D}=0, \quad \omega_{I}:$ arbitrary $\neq 0$.

3.9 KINETIC AND POTENTIAL ENERGIES; ENERGY RATE, OR POWER, THEOREMS

The foregoing theory has shown the importance of kinetic energy, $T \equiv S(d m \boldsymbol{v} \cdot \boldsymbol{v}) / 2$, to analytical mechanics and its equations of motion. Let us, therefore, examine in some detail the following topics.

3.9.1 Kinetic Energy in Holonomic (System) Variables

Substituting into it the particle (inertial) velocity representation in holonomic variables (§2.5)

$$
\begin{equation*}
\boldsymbol{v}=\sum \boldsymbol{e}_{k} \dot{q}_{k}+\boldsymbol{e}_{0} \quad\left(\boldsymbol{e}_{k} \equiv \partial \boldsymbol{r} / \partial q_{k}, \quad \boldsymbol{e}_{0} \equiv \boldsymbol{e}_{n+1} \equiv \partial \boldsymbol{r} / \partial q_{n+1} \equiv \partial \boldsymbol{r} / \partial t\right) \tag{3.9.1}
\end{equation*}
$$

and grouping terms, we obtain the following basic kinetic energy representation:

$$
\begin{equation*}
T=T(t, q, \dot{q})=T_{2}+T_{1}+T_{0} \tag{3.9.2}
\end{equation*}
$$

where
$T_{2}=T_{2}(t, q, \dot{q}) \equiv(1 / 2) \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}(\geqslant 0, q u a d r a t i c$ and homogeneous in the $\dot{q} s)$,

$$
\begin{equation*}
M_{k l}=M_{k l}(t, q) \equiv \boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{l}\right) \quad\left(=M_{l k}\right) \tag{3.9.2a}
\end{equation*}
$$

$T_{1}=T_{1}(t, q, \dot{q}) \equiv \sum M_{k} \dot{q}_{k} \quad$ (linear and homogeneous in the $\dot{q} \mathrm{~s}$),

$$
\begin{gather*}
M_{k}=M_{k}(t, q) \equiv \boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{0} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot(\partial \boldsymbol{r} / \partial t) \\
\left(=M_{k 0}=M_{0 k} \equiv M_{k, n+1}=M_{n+1, k}\right) \tag{3.9.2b}
\end{gather*}
$$

$$
\begin{gather*}
T_{0}=T_{0}(t, q) \equiv M_{0} / 2 \quad(\geq 0, \text { zeroth degree in the } \dot{q} s), \\
M_{0}=M_{0}(t, q) \equiv \boldsymbol{S} d m \boldsymbol{e}_{0} \cdot \boldsymbol{e}_{0} \equiv \boldsymbol{S} d m(\partial \boldsymbol{r} / \partial t) \cdot(\partial \boldsymbol{r} / \partial t) \\
\left(=M_{00} \equiv M_{n+1, n+1} \geq 0\right), \tag{3.9.2c}
\end{gather*}
$$

that is,

$$
\begin{aligned}
2 T= & M_{11} \dot{q}_{1}^{2}+2 M_{12} \dot{q}_{1} \dot{q}_{2}+M_{22} \dot{q}_{2}^{2}+\cdots+M_{n n} \dot{q}_{n}^{2} \\
& +2 M_{1} \dot{q}_{1}+\cdots+2 M_{n} \dot{q}_{n} \\
& +M_{0}
\end{aligned}
$$

or, compactly (with $\alpha, \beta=1, \ldots, n, n+1$; and noting that $\dot{q}_{n+1}=\dot{i}=1$),

$$
\begin{equation*}
2 T=\sum \sum M_{\alpha \beta} \dot{q}_{\alpha} \dot{q}_{\beta}, \quad M_{\alpha \beta}=M_{\beta \alpha} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{\alpha}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{\beta}\right) \tag{3.9.2d}
\end{equation*}
$$

Clearly, the holonomic coefficients of inertia $M_{\alpha \beta}=M_{\alpha \beta}(t, q)$ vary with the system configuration and time, and, of course, the particular q-representation (in some q 's, they might even be constant, like the particles' masses).

Some Analytical Considerations
(i) If $\boldsymbol{r}=\boldsymbol{r}(q)$ (i.e., stationary holonomic constraints in the q 's) $\Rightarrow \boldsymbol{e}_{0} \equiv$ $\partial \boldsymbol{r} / \partial t=\mathbf{0} \Rightarrow$ all the M_{k} and M_{0} vanish, and

$$
\begin{equation*}
2 T \rightarrow 2 T_{2}=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l} \quad[=2(\text { kinetic energy for "frozen constraints" })] ; \tag{3.9.2e}
\end{equation*}
$$

and the vanishing of the \boldsymbol{v} 's implies that of the \dot{q} 's and of T. Also, since, in general,

$$
2 T_{2}=\boldsymbol{S} d m\left(\boldsymbol{v}-\boldsymbol{e}_{0}\right)^{2}=\boldsymbol{S} d m\left(\sum \boldsymbol{e}_{k} \dot{q}_{k}\right)^{2}
$$

T_{2} represents the kinetic energy of the "virtual velocities" $\boldsymbol{v}-\boldsymbol{e}_{0}$ (Lur'e, 1968, pp. 10, 135).
(ii) In the general nonstationary case $(\partial \boldsymbol{r} / \partial t \neq \mathbf{0})$, it can be shown that, as long as the $3 N$ coordinates of the system's particles $\xi \equiv\left\{\xi_{*} ; *=1, \ldots, 3 N\right\}$ can be expressed in terms of n minimal positional coordinates $q \equiv\left\{q_{k} ; k=1, \ldots, n\right\}$-that is, as long as $\operatorname{rank}\left(\partial \xi_{*} / \partial q_{k}\right)=n$ [recall (2.4.8 ff.)], except possibly at a number of individual singular points where $\operatorname{rank}\left(\partial \xi_{*} / \partial q_{k}\right)<n$ (a situation we shall exclude) $-T_{2}$ is always nondegenerate, or nonsingular; that is, $\operatorname{Det}\left(M_{k l}\right) \neq 0$; and since $T_{2} \geq 0$ it follows that $T_{2}=$ positive definite in the \dot{q} 's (i.e., always nonnegative, and zero only if all \dot{q} 's $=0$).

As is well known, the necessary and sufficient conditions for this are

$$
\left|M_{11}\right|=M_{11}>0, \quad\left|\begin{array}{cc}
M_{11} & M_{12} \tag{3.9.2g}\\
M_{21} & M_{22}
\end{array}\right|>0, \quad\left|\begin{array}{ccc}
M_{11} & \cdots & M_{1 n} \\
\vdots & \cdots & \vdots \\
M_{n 1} & \cdots & M_{n n}
\end{array}\right|>0
$$

for all q 's and t in their domain of definition. The last of the above n inequalities states that the inertia matrix $\mathbf{M}=\left(M_{k l}\right)$ is nonsingular; while the one before it states the same for the corresponding matrix of the new system obtained from the given by adding to it the constraint $q_{n}=$ constant. [For proofs, see, for example, Gantmacher (1970, pp. 46-47), Lamb (1929, pp. 182-183), Langhaar (1962, pp. 308-313).]

As for the total kinetic energy T, it is clear from its definition that it is always nonnegative, but it vanishes for a single set of (not necessarily zero) values of the \dot{q} 's.
(iii) The terms T_{1} and T_{0} are called, respectively, gyroscopic and centrifugal parts of T ($\$ 3.16, \S 8.3 \mathrm{ff}$.). Clearly, $T_{0} \geq 0$; and also $\left|T_{1}\right|<T_{2}+T_{0}$, otherwise we might have $T<0$.
(iv) If $T_{1}=T_{0}=0$, the system is also called natural, eq. (3.9.2e).
(v) We notice that T can always be represented as

$$
\begin{equation*}
T=T_{2}^{\prime}+T_{0}^{\prime} \tag{3.9.2h}
\end{equation*}
$$

where $2 T_{2}^{\prime} \equiv \sum \sum M_{k l}\left(\dot{q}_{k}-x_{k}\right)\left(\dot{q}_{l}-x_{l}\right)=$ positive definite in the $\dot{q}_{k}-x_{k}$, the $x_{k}=x_{k}(t)$ have units of Lagrangean velocities; that is, \dot{q}_{k}, and $T_{0}^{\prime}=T_{0}^{\prime}(t, q)$. Clearly, if $T_{0}^{\prime}>0$, then $T>0$.

Some Useful Identities

Invoking the homogeneous function theorem of Euler [according to which, if $f=f\left(x_{1}, \ldots, x_{n}\right)=$ homogeneous of degree H in its variables x_{1}, \ldots, x_{n}, then

$$
\left.\sum\left(\partial f / \partial x_{k}\right) x_{k}=H \cdot f\right]
$$

we obtain the following useful kinematico-inertial T-identities:
(a) $\quad \sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}=\sum\left[\partial\left(T_{2}+T_{1}+T_{0}\right) / \partial \dot{q}_{k}\right] \dot{q}_{k}$

$$
\begin{align*}
= & (2) T_{2}+(1) T_{1}+(0) T_{0}=2 T_{2}+T_{1}=T+\left(T_{2}-T_{0}\right) \\
& {[=2 T, \text { if } \partial \boldsymbol{r} / \partial t=\mathbf{0}] ; } \tag{3.9.3a}
\end{align*}
$$

(b) $\quad \sum E_{k}(T) \dot{q}_{k} \equiv \sum\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}\right] \dot{q}_{k}$

$$
\begin{aligned}
& =\left(\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}\right) \cdot-\sum\left[\left(\partial T / \partial \dot{q}_{k}\right) \ddot{q}_{k}+\left(\partial T / \partial q_{k}\right) \dot{q}_{k}\right] \\
& =\left[T+\left(T_{2}-T_{0}\right)\right]^{\cdot}-(d T / d t-\partial T / \partial t),
\end{aligned}
$$

or, finally, a form that will prove useful in the energy rate theorem below [with $\left.E_{k}(T) \equiv E_{k}\right]$,

$$
\begin{equation*}
\sum E_{k} \dot{q}_{k}=\left(\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T\right)^{\cdot}+\partial T / \partial t=\left(T_{2}-T_{0}\right)^{\cdot}+\partial T / \partial t \tag{3.9.3b}
\end{equation*}
$$

3.9.2 Kinetic Energy in Nonholonomic (System) Variables

Substituting into T the particle (inertial) velocity representation in nonholonomic variables (2.9.23 ff.)

$$
\begin{equation*}
\boldsymbol{v} \rightarrow \boldsymbol{v}^{*}=\sum \varepsilon_{k} \omega_{k}+\varepsilon_{0}, \tag{3.9.4}
\end{equation*}
$$

where

$$
\begin{align*}
\boldsymbol{\varepsilon}_{k} & \equiv \partial \boldsymbol{r} / \partial \theta_{k}, \\
\boldsymbol{\varepsilon}_{0} & \equiv \boldsymbol{\varepsilon}_{n+1} \equiv \partial \boldsymbol{r} / \partial \theta_{n+1} \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{\alpha}\right)\left(\partial \dot{q}_{\alpha} / \partial \omega_{n+1}\right) \\
& =\partial \boldsymbol{r} / \partial t+\sum A_{k}\left(\partial \boldsymbol{r} / \partial q_{k}\right) \equiv \partial \boldsymbol{r} / \partial t+\partial \boldsymbol{r} / \partial(t) \equiv \boldsymbol{e}_{0}+\sum A_{k} \boldsymbol{e}_{k}, \tag{3.9.4a}
\end{align*}
$$

and grouping terms, we obtain the following basic kinetic energy representation:

$$
\begin{equation*}
T \rightarrow T^{*}=T^{*}(t, q, \omega)=T^{*}{ }_{2}+T^{*}{ }_{1}+T^{*}{ }_{0} \tag{3.9.4b}
\end{equation*}
$$

where
$2 T^{*}{ }_{2}=2 T^{*}{ }_{2}(t, q, \omega) \equiv \sum \sum M_{k l}^{*} \omega_{k} \omega_{l}$ (quadratic and homogeneous in the ω 's),

$$
\begin{equation*}
M^{*}{ }_{k l}=M^{*}{ }_{k l}(t, q) \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{k} \cdot \varepsilon_{l} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial \theta_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial \theta_{l}\right) \quad\left(=M^{*}{ }_{l k}\right) \tag{3.9.4c}
\end{equation*}
$$

$T^{*}{ }_{1}=T^{*}{ }_{1}(t, q, \omega) \equiv \sum M^{*}{ }_{k} \omega_{k} \quad$ (linear and homogeneous in the $\omega ' s$),

$$
M^{*}{ }_{k}=M_{k}{ }_{k}(t, q) \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{k} \cdot \varepsilon_{0} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial \theta_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial \theta_{n+1}\right)
$$

$$
\begin{equation*}
\left(=M_{k, n+1}^{*}=M_{n+1, k}^{*}\right), \tag{3.9.4d}
\end{equation*}
$$

$T^{*}{ }_{0}=T^{*}{ }_{0}(t, q) \equiv M^{*}{ }_{0} / 2 \quad$ (zeroth degree in the ω 's),

$$
\begin{align*}
M^{*}{ }_{0} & =M_{0}{ }_{0}(t, q) \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{n+1} \cdot \boldsymbol{\varepsilon}_{n+1} \\
& \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{0} \cdot \boldsymbol{\varepsilon}_{0} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial \theta_{n+1}\right) \cdot\left(\partial \boldsymbol{r} / \partial \theta_{n+1}\right) \quad\left(=M_{n+1, n+1} / 2\right) \tag{3.9.4e}
\end{align*}
$$

or, compactly (with $\alpha, \beta=1, \ldots, n, n+1$; and noting that $\dot{\theta}_{n+1}=\dot{t}=1$),

$$
\begin{equation*}
2 T^{*}=\sum \sum M^{*}{ }_{\alpha \beta} \omega_{\alpha} \omega_{\beta}, \quad M^{*}{ }_{\alpha \beta}=M^{*}{ }_{\beta \alpha} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial \theta_{\alpha}\right) \cdot\left(\partial \boldsymbol{r} / \partial \theta_{\beta}\right) \tag{3.9.4f}
\end{equation*}
$$

The nonholonomic coefficients of inertia $M^{*}{ }_{\alpha \beta}=M^{*}{ }_{\alpha \beta}(t, q)$ satisfy similar analytical conditions as the holonomic ones $M_{\alpha \beta}$. Let us relate them; recalling (2.9.25a ff.) we find the following:

$$
\text { (a) } \begin{align*}
M_{k l}^{*} & \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{k} \cdot \varepsilon_{l}=\boldsymbol{S} d m\left(\sum A_{r k} \boldsymbol{e}_{r}\right) \cdot\left(\sum A_{s l} \boldsymbol{e}_{s}\right) \\
& =\sum \sum A_{r k} A_{s l}\left(\boldsymbol{S} d m \boldsymbol{e}_{r} \cdot \boldsymbol{e}_{s}\right) ; \text { i.e., } M^{*}{ }_{k l}=\sum \sum A_{r k} A_{s l} M_{r s} \tag{3.9.4~g}
\end{align*}
$$

and, inversely,
(b)

$$
\begin{align*}
M_{k}^{*} & \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{k} \cdot \boldsymbol{\varepsilon}_{0}=\boldsymbol{S} d m\left(\sum A_{r k} \boldsymbol{e}_{r}\right) \cdot\left(\sum A_{s} \boldsymbol{e}_{s}+\boldsymbol{e}_{0}\right) \\
& =\sum \sum A_{r k} A_{s}\left(\boldsymbol{S} d m \boldsymbol{e}_{r} \cdot \boldsymbol{e}_{s}\right)+\sum A_{r k}\left(\boldsymbol{S} d m \boldsymbol{e}_{r} \cdot \boldsymbol{e}_{0}\right) \tag{3.9.4i}
\end{align*}
$$

that is,

$$
\begin{equation*}
M_{k}^{*}=\sum \sum A_{r k} A_{S} M_{r s}+\sum A_{r k} M_{r} \tag{3.9.4j}
\end{equation*}
$$

and, inversely,

$$
\begin{align*}
& M_{0}^{*} \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{0} \cdot \boldsymbol{\varepsilon}_{0}=\boldsymbol{S} d m\left(\sum A_{r} \boldsymbol{e}_{r}+\boldsymbol{e}_{0}\right) \cdot\left(\sum A_{s} \boldsymbol{e}_{s}+\boldsymbol{e}_{0}\right) \tag{c}\\
&= \sum \sum A_{r} A_{s}\left(\boldsymbol{S} d m \boldsymbol{e}_{r} \cdot \boldsymbol{e}_{s}\right)+\sum A_{r}\left(\boldsymbol{S} d m \boldsymbol{e}_{r} \cdot \boldsymbol{e}_{0}\right) \\
&+\sum A_{s}\left(\boldsymbol{S} d m \boldsymbol{e}_{s} \cdot \boldsymbol{e}_{0}\right)+\boldsymbol{S} d m \boldsymbol{e}_{0} \cdot \boldsymbol{e}_{0}
\end{align*}
$$

that is,

$$
\begin{equation*}
M_{0}^{*}=\sum \sum A_{r} A_{s} M_{r s}+2 \sum A_{r} M_{r}+M_{0} \tag{3.9.41}
\end{equation*}
$$

and, inversely,

$$
\begin{equation*}
M_{0}=\sum \sum a_{k} a_{l} M_{k l}^{*}+2 \sum a_{k} M_{k}^{*}+M^{*}{ }_{0} \tag{3.9.4m}
\end{equation*}
$$

The above show clearly that even if we start with a homogeneous (quadratic) T, still we may end up with a nonhomogeneous (quadratic) T^{*}, and vice versa. Also, a little reflection (and recollection of the results of $\S 2.9$) shows that ($3.9 .4 \mathrm{~g}-\mathrm{m}$) can be consolidated into the compact formulae

$$
\begin{equation*}
M^{*}{ }_{\alpha \beta}=\sum \sum A_{\gamma \alpha} A_{\delta \beta} M_{\gamma \delta} \Leftrightarrow M_{\gamma \delta}=\sum \sum a_{\alpha \gamma} a_{\beta \delta} M^{*}{ }_{\alpha \beta} . \tag{3.9.4n}
\end{equation*}
$$

[In tensor language, these are the transformation equations between the holonomic $\left(M_{\alpha \beta}\right)$ and nonholonomic $\left(M^{*}{ }_{\alpha \beta}\right)$ covariant components of the metric tensor in the system event space ($\$ 2.7$), whose arc-length element (squared) is

$$
\begin{equation*}
(d s)^{2}=2 T(d t)^{2}=\sum \sum M_{\alpha \beta} d q_{\alpha} d q_{\beta}=\sum \sum M_{\alpha \beta}^{*} d \theta_{\alpha} d \theta_{\beta} \tag{3.9.4o}
\end{equation*}
$$

and similarly in configuration space; see, for example, Lur'e (1968), Papastavridis (1998, 1999), Synge (1936).]

Some Useful Identities

Again, applying Euler's homogeneous function theorem to T^{*} we easily obtain the following identities:
(a)

$$
\begin{align*}
\sum\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{k} & =\sum\left[\partial\left(T_{2}^{*}+T_{1}^{*}+T_{0}^{*}\right) / \partial \omega_{k}\right] \omega_{k} \\
& =(2) T^{*}+(1) T_{1}^{*}+(0) T_{0}^{*}=2 T^{*}+T_{1}^{*}=T^{*}+\left(T^{*}{ }_{2}-T_{0}^{*}\right) \tag{3.9.5a}
\end{align*}
$$

(b)

$$
\begin{aligned}
\sum E_{k}^{*} \omega_{k} & \equiv \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{*}-\partial T^{*} / \partial \theta_{k}\right] \omega_{k} \\
& =\left\{\left(\sum\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{k}\right)^{\cdot}-\sum\left(\partial T^{*} / \partial \omega_{k}\right) \dot{\omega}_{k}\right\}-\sum\left(\partial T^{*} / \partial q_{l}\right)\left(\sum A_{l k} \omega_{k}\right)
\end{aligned}
$$

$$
\text { [replacing, in the last term, } \left.\sum A_{l k} \omega_{k} \text { with } \dot{q}_{l}-A_{l}\right]
$$

$$
=\left(\sum\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{k}-T^{*}\right) \cdot\left(\partial T^{*} / \partial t+\sum A_{l}\left(\partial T^{*} / \partial q_{l}\right)\right)
$$

or, finally [recalling (2.9.33 ff.) and (3.9.5a)],
$\sum E_{k}{ }^{*} \omega_{k}=\left(\sum\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{k}-T^{*}\right)^{\cdot}+\partial T^{*} / \partial \theta_{n+1}=\left(T^{*}{ }_{2}-T_{0}^{*}\right)^{\cdot}+\partial T^{*} / \partial \theta_{n+1}$,
where

$$
\begin{equation*}
\partial T^{*} / \partial \theta_{n+1} \equiv \partial T^{*} / \partial t+\sum A_{l}\left(\partial T^{*} / \partial q_{l}\right) \tag{3.9.5b}
\end{equation*}
$$

a form that will prove useful in the energy rate theorem below.

3.9.3 Potential Energy

It is frequently possible to express the virtual work of the impressed forces, $\delta^{\prime} W \equiv S d \boldsymbol{F} \cdot \delta \boldsymbol{r}$, as

$$
\begin{align*}
\delta^{\prime} W & =-\delta V+\delta^{\prime} W_{N P}=\sum\left[-\partial V / \partial q_{k}+Q_{k, N P}\right] \delta q_{k} \equiv \sum Q_{k} \delta q_{k} \\
& =\sum\left[-\partial V^{*} / \partial \theta_{k}+\Theta_{k, N P}\right] \delta \theta_{k} \equiv \sum \Theta_{k} \delta \theta_{k}, \tag{3.9.6a}
\end{align*}
$$

where

$$
\begin{gather*}
V=V(q, t)=V^{*}(q, t)=\text { potential (or potential energy), in system variables; } \tag{3.9.6b}\\
\quad \partial V^{*} / \partial \theta_{k} \equiv \sum\left(\partial V^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)=\sum A_{l k}\left(\partial V^{*} / \partial q_{l}\right) \tag{3.9.6c}
\end{gather*}
$$

$$
\begin{gather*}
\partial V^{*} / \partial q_{k} \equiv \sum\left(\partial V^{*} / \partial \theta_{l}\right)\left(\partial \omega_{l} / \partial \dot{q}_{k}\right)=\sum a_{l k}\left(\partial V^{*} / \partial \theta_{l}\right) ; \tag{3.9.6d}\\
-\partial V / \partial q_{k}=\text { holonomic potential part of } Q_{k} \tag{3.9.6e}\\
Q_{k, N P}=\text { holonomic nonpotential part of } Q_{k} \tag{3.9.6f}\\
-\partial V^{*} / \partial \theta_{k}=\text { nonholonomic potential part of } \Theta_{k} \tag{3.9.6g}\\
\Theta_{k, N P}=\text { nonholonomic nonpotential part of } \Theta_{k} \tag{3.9.6h}
\end{gather*}
$$

The connection between δV in particle and system variables is given by

$$
\begin{align*}
\delta V & =\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot \delta \boldsymbol{r}=\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot\left(\sum \boldsymbol{e}_{k} \delta q_{k}\right) \\
& =\sum\left(\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot \boldsymbol{e}_{k}\right) \delta q_{k}=\sum\left(\partial V / \partial q_{k}\right) \delta q_{k} \tag{3.9.6i}\\
& =\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot\left(\sum \boldsymbol{\varepsilon}_{k} \delta \theta_{k}\right) \\
& =\sum\left(\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot \boldsymbol{\varepsilon}_{k}\right) \delta \theta_{k}=\sum\left(\partial V^{*} / \partial \theta_{k}\right) \delta \theta_{k} . \tag{3.9.6j}
\end{align*}
$$

REMARK ON THE POTENTIAL OF CONSTRAINT REACTIONS

Since, in general,

$$
d^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot d \boldsymbol{r} \neq 0 \quad\left(\text { whereas } \quad \delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0\right)
$$

it is conceivable that $d^{\prime} W_{R}=-d V$, namely, that constraint reactions are, partly or wholly, potential. Thus, we may have

$$
\begin{equation*}
R_{0} \equiv R_{n+1} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{0}=-\partial V / \partial t=-\sum\left(\partial V / \partial c_{k}\right)\left(d c_{k} / d t\right) \tag{3.9.6k}
\end{equation*}
$$

where the $c_{k}(k=1,2,3, \ldots)$ are certain time-dependent system parameters; for example, mass, length, area, and so on. Such "parameteric reactions" appear in areas like parametric excitation (Mathieu-Floquet theory) and adiabatic invariance ($\$ 7.9$ examples/problems; §8.15).

From now on, generally, we will omit the subscripts $N P$ in the Q 's and Θ 's. If potential parts exist, they will usually be absorbed into the system's kinetic potential, or Lagrangean function $L \equiv T-V=L^{*} \equiv T^{*}-V^{*}$; explicitly,

$$
\begin{array}{ll}
L=L(t, q, \dot{q}) \equiv T(t, q, \dot{q})-V(t, q) & \text { (holonomic variables) } \\
L^{*}=L^{*}(t, q, \omega) \equiv T^{*}(t, q, \omega)-V^{*}(t, q) & \text { (nonholonomic variables). } \tag{3.9.7b}
\end{array}
$$

The only change in the earlier equations of motion is that $T\left(T^{*}\right)$ is replaced, wherever it appears, by $L\left(L^{*}\right)$; then, and unless explicitly stated to the contrary, $Q_{k}\left(\Theta_{k}\right)$ will stand for the nonpotential parts of the corresponding forces.

Generalized Potential

(Recall ex. 3.5.12.) Occasionally, the potential part of Q_{k} is given by the [slightly more general than (3.9.6e)] expression

$$
\begin{equation*}
Q_{k, \text { generalized potential }} \equiv Q_{k, G P} \equiv\left(\partial V / \partial \dot{q}_{k}\right)^{\cdot}-\partial V / \partial q_{k} \equiv E_{k}(V) \tag{3.9.8a}
\end{equation*}
$$

where

$$
V=V(t, q, \dot{q})=\text { generalized (holonomic) potential; }
$$

or, in extenso,

$$
\begin{align*}
Q_{k, G P} & =\sum\left[\left(\partial^{2} V / \partial q_{l} \partial \dot{q}_{k}\right) \dot{q}_{l}+\left(\partial^{2} V / \partial \dot{q}_{l} \partial \dot{q}_{k}\right) \ddot{q}_{l}\right]+\partial^{2} V / \partial t \partial \dot{q}_{k}-\partial V / \partial q_{k} \\
& =\sum\left(\partial^{2} V / \partial \dot{q}_{l} \partial \dot{q}_{k}\right) \ddot{q}_{l}+\text { terms not containing accelerations } \ddot{q} \tag{3.9.8b}
\end{align*}
$$

However, since in classical mechanics $\partial Q_{k} / \partial \ddot{q}_{l}=0$ (Pars, 1965, pp. 11-12), we conclude from the above that $\partial^{2} V / \partial \dot{q}_{l} \partial \dot{q}_{k}=0 \Rightarrow V$ can be, at most, linear in the \dot{q} 's; that is,

$$
\begin{equation*}
V=\sum \gamma_{k}(t, q) \dot{q}_{k}+V_{0}(t, q) \equiv V_{1}(t, q, \dot{q})+V_{0}(t, q) \tag{3.9.8c}
\end{equation*}
$$

Substituting (3.9.8c) into (3.9.8a, b), we obtain

$$
Q_{k, G P}=d \gamma_{k} / d t-\partial / \partial q_{k}\left(\sum \gamma_{l} \dot{q}_{l}+V_{0}\right)=\cdots=\sum \gamma_{k l} \dot{q}_{l}+\partial \gamma_{k} / \partial t-\partial V_{0} / \partial q_{k}
$$

where

$$
\begin{equation*}
\gamma_{k l}=\gamma_{k l}(t, q) \equiv \partial \gamma_{k} / \partial q_{l}-\partial \gamma_{l} / \partial q_{k} \quad\left(=-\gamma_{l k}\right) ; \tag{3.9.8d}
\end{equation*}
$$

that is, $\gamma_{11}=-\gamma_{11} \Rightarrow \gamma_{11}=0, \gamma_{12}=-\gamma_{21}$, and so on.

Gyroscopicity

Now we introduce the following important concept.

DEFINITION

Impressed (i.e., nonconstraint) forces Q_{k} that satisfy the "power" condition

$$
\begin{equation*}
\sum Q_{k} \dot{q}_{k}=0 \tag{3.9.8e}
\end{equation*}
$$

are called gyroscopic. In view of the antisymmetry of the gyroscopic coefficients $\gamma_{k l}$, it is not hard to see that

$$
\begin{equation*}
\sum\left(\sum \gamma_{k l} \dot{q}_{l}\right) \dot{q}_{k} \equiv \sum \sum \gamma_{k l} \dot{q}_{k} \dot{q}_{l}=\sum \sum\left[\left(\gamma_{k l}+\gamma_{l k}\right) / 2\right] \dot{q}_{k} \dot{q}_{l}=0 \tag{3.9.8f}
\end{equation*}
$$

Hence, the representation/decomposition (3.9.8d) states that a generalized potential force consists, at most, of three parts: a gyroscopic $\sum \gamma_{k l} \dot{q}_{l}$, a nonstationary $\partial \gamma_{k} / \partial t$, and a purely potential $-\partial V_{0} / \partial q_{k}$. If, further, $\sum\left(\partial \gamma_{k} / \partial t\right) \dot{q}_{k}=0$ and $\sum\left(\partial V_{0} / \partial q_{k}\right) \dot{q}_{k}=d V_{0} / d t-\partial V_{0} / \partial t=0$, then $Q_{k, G P}$ is (purely) gyroscopic.

REMARKS ON GYROSCOPIC FORCES/TERMS

(i) Typically, but not exclusively, gyroscopic forces appear in problems of relative motion/moving axes (§3.16); for example, Coriolis force [see also Gantmacher (1970, pp. 68-69), Goldstein (1980, pp. 21-23), for applications of generalized, or "velocitydependent," potentials to electrodynamics].
(ii) Let us assume that $d q_{k}=\dot{q}_{k} d t$ (actual motion). Then, due to (3.9.8e), we have

$$
\begin{equation*}
d^{\prime} W_{g} \equiv \sum\left(\sum \gamma_{k l} \dot{q}_{l}\right) d q_{k}=\left(\sum \sum \gamma_{k l} \dot{q}_{k} \dot{q}_{l}\right) d t=0 \tag{3.9.9a}
\end{equation*}
$$

but, in general,

$$
\begin{equation*}
\delta^{\prime} W_{g} \equiv \sum\left(\sum \gamma_{k l} \dot{q}_{l}\right) \delta q_{k}=\sum \sum \gamma_{k l} \dot{q}_{l} \delta q_{k} \neq 0 \tag{3.9.9b}
\end{equation*}
$$

that is, the actual elementary work of gyroscopic forces vanishes; but their virtual work, in general, does not (if it did, such forces would not have the opportunity to appear in Lagrangean equations!).
(iii) Gyroscopicity of particle variables: Let us call the force system $\{d \boldsymbol{F}\}$ gyroscopic, if it satisfies $S d \boldsymbol{F} \cdot \boldsymbol{v}=0$. Substituting into this the particle velocity representation (3.9.1), we obtain, successively,

$$
\begin{align*}
0 & =\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum \boldsymbol{e}_{k} \dot{q}_{k}+\boldsymbol{e}_{0}\right)=\sum\left(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}\right) \dot{q}_{k}+\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{0} \\
& =\sum Q_{k} \dot{q}_{k}+Q_{0} \Rightarrow \sum Q_{k} \dot{q}_{k} \neq 0 \tag{3.9.9c}
\end{align*}
$$

that is, in general, the corresponding system forces Q_{k} are not gyroscopic; and, conversely, even if the Q_{k} are gyroscopic (i.e., $\sum Q_{k} \dot{q}_{k}=0$), the $d \boldsymbol{F}$ may not be $(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{v} \neq 0)$. However, if $\boldsymbol{e}_{0} \equiv \partial \boldsymbol{r} / \partial t=\mathbf{0}$ (stationary holonomic constraints), then the Q_{k} and $d \boldsymbol{F}$ are gyroscopic simultaneously.
(iv) More generally, let us examine how gyroscopicity is affected by a general frame of reference transformation:

$$
\begin{equation*}
q \rightarrow q^{\prime}: q_{k}=q_{k}\left(t, q_{k^{\prime}}\right) \Rightarrow \dot{q}_{k}=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) \dot{q}_{k^{\prime}}+\partial q_{k} / \partial t \tag{3.9.9d}
\end{equation*}
$$

Indeed, substituting (3.9.9d) into (3.9.8e), and recalling that the q^{\prime}-frame impressed forces $Q_{k^{\prime}}$ are defined by the frame invariant virtual work relation:

$$
\begin{equation*}
\delta^{\prime} W=\sum Q_{k} \delta q_{k}=\sum Q_{k}\left(\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) \delta q_{k^{\prime}}\right) \equiv \sum Q_{k^{\prime}} \delta q_{k^{\prime}} \tag{3.9.9e}
\end{equation*}
$$

that is,

$$
\begin{equation*}
Q_{k^{\prime}}=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) Q_{k} \Leftrightarrow Q_{k}=\sum\left(\partial q_{k^{\prime}} / \partial q_{k}\right) Q_{k^{\prime}} \tag{3.9.9f}
\end{equation*}
$$

we obtain

$$
\begin{align*}
0 & =\sum Q_{k} \dot{q}_{k}=\sum Q_{k}\left(\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) \dot{q}_{k^{\prime}}\right)+\sum Q_{k}\left(\partial q_{k} / \partial t\right) \\
& =\sum Q_{k^{\prime}} \dot{q}_{k^{\prime}}+\sum Q_{k}\left(\partial q_{k} / \partial t\right) \Rightarrow \sum Q_{k^{\prime}} \dot{q}_{k^{\prime}} \neq 0 \tag{3.9.9~g}
\end{align*}
$$

that is, in general, the $Q_{k^{\prime}}$ are nongyroscopic. If, however, $\partial q_{k} / \partial t=0$ [in which case (3.9.9d) expresses a coordinate (not a frame of reference) transformation], the $Q_{k^{\prime}}$ are also gyroscopic. In sum: force gyroscopicity is a frame-dependent property.

Finally, similar results hold for the generalized potential and corresponding forces in nonholonomic coordinates; that is,

$$
\begin{align*}
V^{*} & =V^{*}(t, q, \omega)=\sum \gamma_{k}^{*}(t, q) \omega_{k}+V^{*}(t, q) \equiv V_{1}^{*}(t, q, \omega)+V_{0}^{*}(t, q) \\
& =\text { generalized (nonholonomic) potential, } \tag{3.9.9h}
\end{align*}
$$

$$
\begin{align*}
\Rightarrow \Theta_{k, \text { generalized potential }} & \equiv \Theta_{k, G P} \equiv\left(\partial V^{*} / \partial \omega_{k}\right)^{\cdot}-\partial V^{*} / \partial \theta_{k} \\
& =\cdots=\sum \gamma^{*}{ }_{k l} \omega_{l}+\partial \gamma^{*} / \partial t-\partial V^{*}{ }_{0} / \partial \theta_{k} \tag{3.9.9i}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{k l}^{*}=\gamma^{*}{ }_{k l}(t, q) \equiv \partial \gamma^{*}{ }_{k} / \partial \theta_{l}-\partial \gamma^{*}{ }_{l} / \partial \theta_{k} \quad\left(=-\gamma^{*}{ }_{l k}\right) . \tag{3.9.9j}
\end{equation*}
$$

Rayleigh's Dissipation Function

Let us consider the linear viscous friction on a particle; that is, the impressed force given by the constitutive equation

$$
\begin{equation*}
d \boldsymbol{F}=-f \boldsymbol{v}, \quad f=\text { positive constant. } \tag{3.9.10a}
\end{equation*}
$$

Recalling (3.9.1), the corresponding system force $Q_{k, D} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}=\cdots$ can be expressed as

$$
\begin{equation*}
Q_{k, D}=-\partial F / \partial \dot{q}_{k}=-\sum f_{k l} \dot{q}_{l}-f_{k} \tag{3.9.10b}
\end{equation*}
$$

where the Rayleigh dissipation function, or dissipativity (Kelvin), F, is defined by

$$
\begin{align*}
& F \equiv \boldsymbol{S}(f / 2) \boldsymbol{v} \cdot \boldsymbol{v}=\cdots=F_{2}+F_{1}+F_{0} \quad[=F(t, q, \dot{q})] \tag{3.9.10c}\\
& F_{2} \equiv(1 / 2) \sum f_{k l} \dot{q}_{k} \dot{q}_{l}(\geq 0), \quad f_{k l} \equiv \boldsymbol{S} f \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l} \quad\left(=f_{l k}\right), \tag{3.9.10d}\\
& F_{1} \equiv \sum f_{k} \dot{q}_{k}, \quad f_{k} \equiv \boldsymbol{S} f \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{0} \quad\left(=f_{k, n+1} \equiv f_{k, 0}\right), \tag{3.9.10e}\\
& F_{0} \equiv(1 / 2) \boldsymbol{S} f \boldsymbol{e}_{0} \cdot \boldsymbol{e}_{0} \quad\left(=f_{n+1, n+1} / 2 \equiv f_{0,0} / 2\right) \tag{3.9.10f}
\end{align*}
$$

and has similar analytical properties with the kinetic energy (in the latter, replace $d m$ with f).

Stationary Case
If $\boldsymbol{e}_{0} \equiv \partial \boldsymbol{r} / \partial t=\mathbf{0}$ (case dealt by Rayleigh, in 1873), then

$$
\begin{equation*}
F=F_{2}=(1 / 2) \sum f_{k l} \dot{q}_{k} \dot{q}_{l} \tag{3.9.10g}
\end{equation*}
$$

and the power of the corresponding dissipative forces, by Euler's homogeneous function theorem, equals

$$
\begin{equation*}
\sum Q_{k, D} \dot{q}_{k}=-\sum\left(\partial F / \partial \dot{q}_{k}\right) \dot{q}_{k}=-2 F_{2} \quad(=-2 F) \tag{3.9.10h}
\end{equation*}
$$

that is (as detailed below, or may be already known from general mechanics), $2 F_{2}$ measures the rate of decrease of the system's energy due to such friction. For more general forms of dissipation functions, see Lur'e (1968, pp. 227-238).

Finally, if we use the nonholonomic particle velocity representation (3.9.4) in F, (3.9.10c), we will obtain the dissipation function in quasi variables: $F \rightarrow F^{*}(t, q, \omega)=\cdots$. The details are left to the reader.

Energy Rate, or Power (or Activity) Theorems

As a rule, such theorems are obtained by, first, multiplying (dotting) the equations of motion by the corresponding velocities and then summing over the entire system (or pairs of indices), for a fixed generic time. The result is a single scalar equation whose inertia side is (roughly) the rate of change of the kinetic energy of the system, and whose force side is the rate of working, or power, of whatever forces appear in the equations of motion.

Contrary to LP, which is a single energetic but variational equation (and, as such, can generate as many independent equations of motion as the number of the system's DOF), the energy rate relation is also a single energetic but actual equation (and, as such, it cannot, in general, be used to produce correct equations of motion) - and this is a fundamental difference between energy and variational theorems/principles of mechanics! [On this "insidious fallacy," see Pars (1965, pp. 86-87), also ex. 3.9.3.]

Below we derive these theorems (better, theorem in its various forms) in both holonomic and nonholonomic variables.

Holonomic Variables

Multiplying each Routh-Voss equation (3.5.15), say, with free index k, with \dot{q}_{k} and summing over k, from 1 to n, and then invoking the earlier identity (3.9.3b) and the $m(<n)$ Pfaffian constraints $\sum a_{D k} \dot{q}_{k}+a_{D}=0$ [from which it follows that

$$
\begin{equation*}
\left.\sum\left(\sum \lambda_{D} a_{D k}\right) \dot{q}_{k}=\sum \lambda_{D}\left(\sum a_{D k} \dot{q}_{k}\right)=-\sum \lambda_{D} a_{D}\right] \tag{3.9.11a}
\end{equation*}
$$

we obtain the holonomic power equation

$$
\begin{equation*}
\left(\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T\right)^{\cdot}=\left(T_{2}-T_{0}\right)^{\cdot}=-\partial T / \partial t+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{3.9.11b}
\end{equation*}
$$

If some (or all) of the Q_{k} 's are derived partly (or wholly) from a potential function V, then (3.9.3b) is replaced by

$$
\begin{equation*}
\sum E_{k}(L) \dot{q}_{k} \equiv \sum\left[\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}\right] \dot{q}_{k}=\partial L / \partial t+d h / d t \tag{3.9.11c}
\end{equation*}
$$

and, accordingly, (3.9.11b) is replaced by the simpler looking form

$$
\begin{equation*}
d h / d t=-\partial L / \partial t+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{3.9.11d}
\end{equation*}
$$

where

$$
\begin{aligned}
& h=h(t, q, \dot{q}) \\
& \equiv L_{2}-L_{0}\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L \\
& T_{2}-\left(T_{0}-V_{0}\right):
\end{aligned}
$$

Generalized energy of the system in holonomic variables
$(=$ Hamiltonian function, when expressed in terms of t, q, and p
$\equiv \partial T / \partial \dot{q} ;$ instead of the \dot{q} 's - see chap. 8),
and

$$
\begin{equation*}
L=L_{2}+L_{1}+L_{0} ; \quad L_{2} \equiv T_{2}, \quad L_{1} \equiv T_{1}-V_{1}, \quad L_{0} \equiv T_{0}-V_{0} \tag{3.9.11f}
\end{equation*}
$$

$Q_{k}=$ nonpotential part of virtual work term (...) δq_{k}.
An additional useful form of the power theorem results if, instead of h, we use the ordinary (or classical) total energy of the system E :

$$
\begin{equation*}
E \equiv T+V_{0} \quad\left(=T+V, \quad \text { if } \quad V_{1}=0\right) \tag{3.9.11h}
\end{equation*}
$$

Then, since

$$
h=T_{2}-\left(T_{0}-V_{0}\right)=\left(T-T_{1}-T_{0}\right)-\left(T_{0}-V_{0}\right)=\left(T+V_{0}\right)-\left(T_{1}+2 T_{0}\right)
$$

or

$$
\begin{equation*}
h=E-\left(T_{1}+2 T_{0}\right) \quad \text { or } \quad E-h=T_{1}+2 T_{0}, \tag{3.9.11i}
\end{equation*}
$$

the power equations $(3.9 .11 \mathrm{~b}, \mathrm{~d})$ assume the equivalent classical energy rate form (analytical mechanics form of Leibniz's "law of vis viva")

$$
\begin{equation*}
d E / d t=-\partial L / \partial t+\left(T_{1}+2 T_{0}\right)^{\cdot}+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{3.9.11j}
\end{equation*}
$$

If, in the above, all forces are nonpotential, then E and L must be replaced by $T[\rightarrow(3.9 .11 \mathrm{~b})]$.

Problem 3.9.1 Show that in terms of the more general total energy

$$
\begin{equation*}
E^{\prime} \equiv E+V_{1}=T+V=T+\left(V_{1}+V_{0}\right) \quad\left(\Rightarrow \dot{E}=\dot{E}^{\prime}-\dot{V}_{1}\right) \tag{a}
\end{equation*}
$$

the power equation (3.9.11j) becomes

$$
\begin{equation*}
d E^{\prime} / d t=-\partial L / \partial t+\left(T_{1}+2 T_{0}\right)^{\cdot}+\dot{V}_{1}+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{b}
\end{equation*}
$$

Specializations
(i) If the (initial) holonomic constraints of the system are stationary/scleronomic, then $T_{1}, T_{0}=0, \partial T / \partial t=0 \Rightarrow T=T_{2}, h=E=T_{2}+V_{0}$, and (3.9.11d, j) reduce to

$$
\begin{equation*}
d E / d t=\partial V_{0} / \partial t+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{3.9.11k}
\end{equation*}
$$

(ii) If, further, $\partial V / \partial t=0$ and all additional Pfaffian constraints are catastaticthat is, $a_{D}=0(D=1, \ldots, m)$ - then the above simplifies to

$$
\begin{equation*}
d E / d t=\sum Q_{k} \dot{q}_{k} \tag{3.9.111}
\end{equation*}
$$

[or $d T / d t=\sum Q_{k} \dot{q}_{k}$, if all forces are nonpotential].
(iii) Finally, if all impressed forces are either potential $\left(Q_{k}=0\right)$, or gyroscopic, then (3.9.111) yields the theorem of conservation of (classical) energy:

$$
\begin{equation*}
d E / d t=0 \Rightarrow E=T+V_{0}=\text { constant } \tag{3.9.11m}
\end{equation*}
$$

Systems that satisfy all the above: namely, (a) all their constraints are stationary [slightly stronger than just catastatic - in view of (ii), condition (a) is sufficient but nonnecessary], (b) all their forces are either potential or gyroscopic, and (c) their (ordinary or generalized) potential does not depend explicitly on time; are called (classically) conservative. Hence, (3.9 .11 m) expresses the following theorem.

THEOREM

During any actual motion of a conservative system, its (classical) energy, evaluated at any point of its trajectory (or orbit), remains constant.

Equation (3.9 .11 m) is a first integral of the system's equations of motion; that is, it does not contain any accelerations; it is called the (classical) energy integral. [Equation (3.9 .11 m) is the reason for the minus sign in the potential force definitions (3.9.6a ff.). In the older literature (roughly, until the early 1900s), we frequently encounter the term "force function" for $U \equiv-V_{0}: Q_{k, \text { potential }} \equiv \partial U / \partial q_{k}$; then (3.9.11m) would read $T=U+$ constant. Some authors have, erroneously, taken this to mean some kind of a scalar function from which we can, by taking its gradients, obtain all system forces!]

A slightly more general conservation theorem than (3.9.11m) can be obtained from (3.9.11d) wherever the following conditions apply: (a) $\partial L / \partial t=0$ (which does not necessitate that T_{1}, T_{0} vanish, and/or that $\partial T / \partial t$ or $\partial V / \partial t$ vanish individually), (b) all forces are either potential or gyroscopic, and (c) $a_{D}=0$ (catastatic Pfaffian constraints). Then, (3.9.11d) yields the (holonomic) Jacobi-Painlevé generalized energy integral:

$$
\begin{equation*}
d h / d t=0 \Rightarrow h=T_{2}-\left(T_{0}-V_{0}\right)=T_{2}+\left(V_{0}-T_{0}\right)=\text { constant } \tag{3.9.11n}
\end{equation*}
$$

even though in this case, as (3.9.11i) shows, $E \neq$ constant; if, in addition, $T_{0}=0$, then $(3.9 .11 \mathrm{n})$ reduces to $(3.9 .11 \mathrm{~m})$. Of course, the preceding are sufficient conditions, i.e. other combinations of physical circumstances can nullify the right side of (3.9.11d), and thus reproduce (3.9.11n).

Nonholonomic Variables

The power equations ($3.9 .11 \mathrm{~b}, \mathrm{~d}, \mathrm{j}$), just like the equations of motion they came from, have two drawbacks: (i) they contain multipliers (reactions)-that is, they are "mixed power equations," and (ii) they cannot distinguish between nonholonomic Pfaffian constraints and holonomic ones disguised as Pfaffian. Hence the need for nonholonomic power equations. To obtain them, we begin by multiplying the kinetic

Hamel equations (3.5.19d, 20b, 21d) with $T^{*} \rightarrow L^{*} \equiv T^{*}-V^{*}$ (to include possible potential forces)

$$
\begin{align*}
I_{I} & \equiv\left(\partial L^{*} / \partial \omega_{I}\right)^{\cdot}-\partial L^{*} / \partial \theta_{I}+\sum \sum \gamma_{I I^{\prime}}^{r}\left(\partial L^{*} / \partial \omega_{r}\right) \omega_{I^{\prime}}+\sum \gamma_{I}^{r}\left(\partial L^{*} / \partial \omega_{r}\right) \\
& =\Theta_{I} \quad\left(r=1, \ldots, n ; I, I^{\prime}=m+1, \ldots, n\right), \tag{3.9.12a}
\end{align*}
$$

with ω_{I} and sum over I.
(i) Then notice that by (3.9.5b), with $T^{*} \rightarrow L^{*}$,

$$
\begin{align*}
\sum E_{I}^{*}\left(L^{*}\right) \omega_{I} \equiv \sum E^{*} \omega_{I} & \equiv \sum\left[\left(\partial L^{*} / \partial \omega_{I}\right)^{\cdot}-\partial L^{*} / \partial \theta_{I}\right] \omega_{I} \\
& =d h^{*} / d t+\partial L^{*} / \partial \theta_{n+1}, \tag{3.9.12b}
\end{align*}
$$

where

$$
\begin{align*}
& h^{*} \equiv \sum\left(\partial L^{*} / \partial \omega_{I}\right) \omega_{I}-L^{*}=L^{*}{ }_{2}-L_{0}^{*}=T^{*}+\left(V^{*}-T_{0}^{*}\right) \\
&=h^{*}(t, q, \omega): \text { generalized energy of the system, } \\
& \text { in nonholonomic variables }(\neq h, \text { in general }) \tag{3.9.12c}
\end{align*}
$$

and

$$
\begin{gather*}
L^{*}=L^{*}(t, q, \omega) \equiv L^{*_{2}}+L^{*_{1}}+L^{*}{ }_{0} \\
L^{*} \equiv_{2} \equiv T_{2}^{*_{2}}, \quad L^{*_{1}} \equiv T^{*_{1}}-V^{*}{ }_{1}, \quad L^{*}{ }_{0} \equiv T^{*_{0}}-V^{*}{ }_{0} \tag{3.9.12d}
\end{gather*}
$$

$$
\begin{equation*}
\Theta_{I}=\text { nonpotential part of virtual work term }(\ldots) \delta \theta_{I}, \tag{3.9.12e}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial L^{*} / \partial \theta_{n+1} \equiv \partial L^{*} / \partial t+\sum A_{k}\left(\partial L^{*} / \partial q_{k}\right) \tag{3.9.12f}
\end{equation*}
$$

[Note the differences between (3.9.12b) and (3.9.11c); and absence of linear $\omega(\dot{q})$ terms in $h^{*}(h)$, even though $T^{*}{ }_{1}\left(T_{1}\right)$ appear in $E^{*}{ }_{I}\left(E_{k}\right)$].
(ii) Since $\gamma_{I I^{\prime}}^{r}=-\gamma_{I^{\prime} I}^{r}$ (i.e., antisymmetry, or gyroscopicity, of Hamel's coefficients),

$$
\sum\left(\sum \sum \gamma_{I I^{\prime}}^{r}\left(\partial L^{*} / \partial \omega_{r}\right) \omega_{I^{\prime}}\right) \omega_{I}=\sum\left(\sum \sum \gamma_{I I^{\prime}}^{r} \omega_{I^{\prime}} \omega_{I}\right)\left(\partial L^{*} / \partial \omega_{r}\right)=0
$$

Collecting these results, we obtain the nonholonomic (multiplierless, or kinetic) power equation

$$
\begin{equation*}
\sum I_{I} \omega_{I}=\sum E_{I}^{*}\left(L^{*}\right) \omega_{I}+\sum\left(\sum \gamma_{I}^{r}\left(\partial L^{*} / \partial \omega_{r}\right)\right) \omega_{I}=\sum \Theta_{I} \omega_{I} \tag{3.9.12h}
\end{equation*}
$$

or, finally,

$$
\begin{equation*}
d h^{*} / d t=-\partial L^{*} / \partial \theta_{n+1}+\sum \Theta_{I} \omega_{I}-R \tag{3.9.12i}
\end{equation*}
$$

where

$$
\begin{equation*}
R \equiv \sum \sum \gamma_{I}^{r}\left(\partial L^{*} / \partial \omega_{r}\right) \omega_{I}: \text { rheonomic nonholonomic power. } \tag{3.9.12j}
\end{equation*}
$$

From this important equation, we draw the following special conclusions: by (2.10.4),

$$
\begin{equation*}
\gamma_{I}^{r}=\sum \sum\left(\partial a_{r k} / \partial q_{l}-\partial a_{r l} / \partial q_{k}\right) A_{k I} A_{l}+\sum\left(\partial a_{r k} / \partial t-\partial a_{r} / \partial q_{k}\right) A_{k I}, \tag{3.9.12k}
\end{equation*}
$$

and, therefore, if $a_{r} \equiv a_{r, n+1}=0 \Rightarrow A_{r} \equiv A_{r, n+1}=0$, then $\partial L^{*} / \partial \theta_{n+1}=\partial L^{*} / \partial t$ and

$$
\begin{equation*}
R=\cdots=\sum \sum \sum\left[\left(\partial a_{r k} / \partial t\right) A_{k I}\right]\left(\partial L^{*} / \partial \omega_{r}\right) \omega_{I}=\sum \sum\left(\partial a_{r k} / \partial t\right)\left(\partial L^{*} / \partial \omega_{r}\right) \dot{q}_{k} \tag{3.9.121}
\end{equation*}
$$

if, further, $a_{r k}=a_{r k}(q)$, then $R=0$, and (3.9.12i) reduces to

$$
\begin{equation*}
d h^{*} / d t=-\partial L^{*} / \partial t+\sum \Theta_{I} \omega_{I} \tag{3.9.12m}
\end{equation*}
$$

(R also vanishes if all Pfaffian constraints are holonomic; then $\gamma_{I}^{r}=0$); and, if, in addition, $\partial L^{*} / \partial t=0$ and $\sum \Theta_{I} \omega_{I}=\sum \Theta_{k} \omega_{k}=0$ (all impressed forces are potential; i.e., $\Theta_{I}=0$, or gyroscopic), then (3.9.12m) leads immediately to the nonholonomic Jacobi-Painlevé energy integral

$$
\begin{equation*}
d h^{*} / d t=0 \Rightarrow h^{*}=T_{2}^{*}+\left(V^{*}-T_{0} *_{0}\right)=\text { constant } . \tag{3.9.12n}
\end{equation*}
$$

[However, other combinations can create the same result-see example of rolling sphere on spinning plane (ex. 3.18.4).]

Finally, as with the Hamel-type equations of motion, the constraints $\omega_{D}=0$ should be enforced after all pertinent differentiations have been carried out; otherwise we would miss the $\sum \sum \gamma_{I}^{D}\left(\partial L^{*} / \partial \omega_{D}\right) \omega_{I}$ terms in R.

REMARKS

(i) As (3.9.12f) shows, the term $\partial L^{*} / \partial \theta_{n+1}$ derives from the nonstationarity of L^{*} [through $\partial L^{*} / \partial t$, as in the holonomic case (3.9.11d)] and also from the acatastaticity of the Pfaffian constraints [through $\sum A_{k}\left(\partial L^{*} / \partial q_{k}\right)$], whether these latter are nonholonomic or not.
(ii) The R term should be expected on analytical and physical grounds: Hamel's equations, through their γ-terms, do distinguish between genuine nonholonomic constraints and holonomic ones disguised in velocity/differential form; and this unique characteristic of theirs is carried over to the corresponding power equation (3.9.12i).
(iii) The above make clear that the nonholonomic and kinetic equation (3.9.12i) can be written down without knowledge of the solution of the equations of motion [unlike its holonomic counterpart (3.9.11d, j , which require knowledge of the multipliers].
(iv) Had we used the following definition:

$$
\begin{equation*}
d^{*} L^{*} / d t \equiv \sum\left[\left(\partial L^{*} / \partial \theta_{I}\right) \omega_{I}+\left(\partial L^{*} / \partial \omega_{I}\right) \dot{\omega}_{I}\right]+\partial L^{*} / \partial t \tag{3.9.12o}
\end{equation*}
$$

instead of the one made here [in view of $L^{*}=L^{*}(t, q, \omega)$]:

$$
\begin{equation*}
d L^{*} / d t \equiv \sum\left[\left(\partial L^{*} / \partial q_{k}\right) \dot{q}_{k}+\left(\partial L^{*} / \partial \omega_{k}\right) \dot{\omega}_{k}\right]+\partial L^{*} / \partial t \tag{3.9.12p}
\end{equation*}
$$

then

$$
\begin{align*}
d L^{*} / d t-d^{*} L^{*} / d t & =\sum\left(\partial L^{*} / \partial q_{k}\right) \dot{q}_{k}-\sum\left(\partial L^{*} / \partial \theta_{I}\right) \omega_{I} \\
& =\sum\left(\partial L^{*} / \partial q_{k}\right)\left(\sum A_{k I} \omega_{I}+A_{k}\right)-\sum\left(\partial L^{*} / \partial \theta_{I}\right) \omega_{I} \\
& =\cdots=\sum\left(\partial L^{*} / \partial q_{k}\right) A_{k}=\partial L^{*} / \partial \theta_{n+1}-\partial L^{*} / \partial t \tag{3.9.12q}
\end{align*}
$$

[and for a general function $f^{*}(t, q, \omega): d f^{*} / d t=d^{*} L^{*} / d t+\sum\left(\partial f^{*} / \partial q_{k}\right) A_{k}$]; and the power equation would be

$$
\begin{equation*}
d^{*} h^{*} / d t=-\partial L^{*} / \partial t+\sum \Theta_{I} \omega_{I}-R \tag{3.9.12r}
\end{equation*}
$$

where

$$
\begin{equation*}
d^{*} h^{*} / d t \equiv\left(\sum\left(\partial L^{*} / \partial \omega_{I}\right) \omega_{I}\right)^{\cdot}-d^{*} L^{*} / d t \tag{3.9.12s}
\end{equation*}
$$

(v) Since $\omega_{D}=0$, no power equations can result by multiplying Hamel's equations (kinetic and/or kinetostatic) with ω_{D}.
(vi) A power theorem in terms of the classical total energy, but in nonholonomic variables

$$
\begin{equation*}
E=E^{*} \equiv T^{*}+V^{*}=\cdots=h^{*}+\left(T^{*}+2 T^{*}{ }_{0}\right) \quad\left[=T^{*}+V^{*}, \quad \text { if } \quad V^{*}{ }_{1}=0\right] \tag{3.9.12t}
\end{equation*}
$$

can also be formulated. The details are left to the reader.
(vii) About the possibility of formulating power equations using the remaining two general forms of the equations of motion - namely, those by Appell and Maggi - we note the following:
(a) The equations of Appell contain accelerations explicitly, and therefore are pretty inconvenient as a starting point for power equations.
(b) Multiplying each of Maggi's kinetic equations (3.5.19a, 20b, 21a) with ω_{I} and then summing over I, we obtain, successively,

$$
\begin{equation*}
\sum\left(\sum A_{k I} E_{k}\right) \omega_{I}=\sum\left(\sum A_{k I} Q_{k}\right) \omega_{I} \tag{3.9.12u}
\end{equation*}
$$

or, since $\dot{q}_{k}=\sum A_{k I} \omega_{I}+A_{k}$,

$$
\sum E_{k}\left(\dot{q}_{k}-A_{k}\right)=\sum Q_{k}\left(\dot{q}_{k}-A_{k}\right)
$$

or, rearranging,

$$
\begin{equation*}
\sum\left(E_{k}-Q_{k}\right) A_{k}=\sum\left(E_{k}-Q_{k}\right) \dot{q}_{k} \tag{3.9.12v}
\end{equation*}
$$

It is not hard to show that, since $E_{k}-Q_{k}=\sum \lambda_{D} a_{D k}$ and [recalling the second of (2.9.3a)] $\sum a_{D k} A_{k}=-a_{D}$, both sides of the above equal $-\sum \lambda_{D} a_{D}$, and so no really new power theorem has emerged here.
(viii) The methodology of this section can be carried intact to the case of nonlinear constraints/coordinates, $\omega=\omega(t, q, \dot{q})$ - see chap. 5 .

Example 3.9.1 Energy Rate Equations in Particle Variables via LP or the Central Equation. Let us consider a stationary system; that is, one whose constraints are
all scleronomic. Then, $\delta \boldsymbol{r}$ and $d \boldsymbol{r}$ are mathematically equivalent. Hence:
(i) Substituting $d \boldsymbol{r}=\boldsymbol{v} d t$ for $\delta \boldsymbol{r}$ in LP yields

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot d \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot d \boldsymbol{r} \Rightarrow d T=d^{\prime} W \tag{a}
\end{equation*}
$$

(ii) Similarly, with $\delta \boldsymbol{r} \rightarrow d \boldsymbol{r}=\boldsymbol{v} d t$ and $\delta \boldsymbol{v} \rightarrow d \boldsymbol{v}$, the central equation (3.6.6) yields

$$
\begin{align*}
& \mathbf{S} d m \boldsymbol{v} \cdot d \boldsymbol{v}+\boldsymbol{S} d \boldsymbol{F} \cdot d \boldsymbol{r}=d / d t(\mathbf{S} d m \boldsymbol{v} \cdot d \boldsymbol{r}) \\
& \Rightarrow d T+d^{\prime} W=d(2 T) \Rightarrow d T=d^{\prime} W \tag{b}
\end{align*}
$$

that is, in both cases we obtain, as a special case, the differential form (in time) of the work-energy theorem.

Problem 3.9.2 Consider a system of N particles, under the ideal constraints

$$
\begin{array}{ll}
\phi_{H}\left(\boldsymbol{r}_{P}, t\right)=0 & (H=1, \ldots, h) \\
\sum \boldsymbol{B}_{D P}\left(\boldsymbol{r}_{P}, t\right) \cdot \boldsymbol{v}_{P}+B_{D}\left(\boldsymbol{r}_{P}, t\right)=0 & (D=1, \ldots, m), \tag{a}
\end{array}
$$

and, therefore (recall ex. 3.5.1) having Lagrangean equations of the first kind

$$
\begin{equation*}
m_{P} \boldsymbol{a}_{P}=\boldsymbol{F}_{P}+\boldsymbol{R}_{P}, \quad \boldsymbol{R}_{P}=\sum \mu_{H}\left(\partial \phi_{H} / \partial \boldsymbol{r}_{P}\right)+\sum \lambda_{D} \boldsymbol{B}_{D P} \tag{b}
\end{equation*}
$$

where $\boldsymbol{F}_{P}\left(\boldsymbol{R}_{P}\right)$: total impressed (reaction) force on a system particle $P=1, \ldots, N$ (=\# particles), and $3 N-(h+m)>0$. Show that its corresponding power equation is

$$
\begin{equation*}
d T / d t=\sum \boldsymbol{F}_{P} \cdot \boldsymbol{v}_{P}-\sum \mu_{H}\left(\partial \phi_{H} / \partial t\right)-\sum \lambda_{D} B_{D} \tag{c}
\end{equation*}
$$

and then interpret it physically.

Problem 3.9.3 Continuing from the preceding problem, show that for stationary constraints (i.e., scleronomic system) and potential impressed forces (i.e., $\left.\boldsymbol{F}_{P}=-\partial V_{0}\left(\boldsymbol{r}_{P}, t\right) / \partial \boldsymbol{r}_{P}\right)$, the power equation (c) reduces to the nonstationary energy rate equation

$$
\begin{equation*}
d E / d t=-\partial V_{0} / \partial t, \quad E \equiv T+V_{0} \tag{a}
\end{equation*}
$$

Example 3.9.2 Power Equations from Particle Variable Considerations. Dotting the Newton-Euler equation of particle motion (in continuum form) $d m \boldsymbol{a}=$ $d \boldsymbol{F}+d \boldsymbol{R}$ with the inertial particle velocity \boldsymbol{v}, and then summing over the system particles, we obtain the "D'Alembert-Lagrange form of the power theorem"

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{v}=\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{v}+\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{v} \tag{a}
\end{equation*}
$$

[That, in general, $S d \boldsymbol{R} \cdot \boldsymbol{v} \neq 0$ points to another big difference between power theorems and LP]. Next, substituting into (a) the holonomic representation (3.9.1),
$\boldsymbol{v}=\sum \boldsymbol{e}_{k} \dot{q}_{k}+\boldsymbol{e}_{0}$, we get

$$
\begin{align*}
& \sum\left(\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}\right) \dot{q}_{k}+\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{0} \\
& \quad=\sum\left(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}\right) \dot{q}_{k}+\sum\left(\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k}\right) \dot{q}_{k}+\boldsymbol{S}(d \boldsymbol{F}+d \boldsymbol{R}) \cdot \boldsymbol{e}_{0} \tag{b}
\end{align*}
$$

and, from this, we immediately obtain the two holonomic power equations:

$$
\begin{equation*}
\sum E_{k} \dot{q}_{k}=\sum Q_{k} \dot{q}_{k}+\sum R_{k} \dot{q}_{k} \tag{i}
\end{equation*}
$$

and, since $R_{k}=\sum \lambda_{D} a_{D k} \Rightarrow \sum R_{k} \dot{q}_{k}=\cdots=-\sum \lambda_{D} a_{D}$,

$$
\begin{equation*}
\sum E_{k} \dot{q}_{k}=\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{d}
\end{equation*}
$$

that is, eq. (3.9.11c, d); and the "rheonomic power equation"

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{0}=\boldsymbol{S}(d \boldsymbol{F}+d \boldsymbol{R}) \cdot \boldsymbol{e}_{0} \tag{ii}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot(\partial \boldsymbol{r} / \partial t)=\boldsymbol{S}(d \boldsymbol{F}+d \boldsymbol{R}) \cdot(\partial \boldsymbol{r} / \partial t) \tag{e}
\end{equation*}
$$

Similarly, inserting in (a) the nonholonomic representation (3.9.4), $\boldsymbol{v}^{*}=\sum \varepsilon_{I} \omega_{I}+\varepsilon_{0}$, we obtain the two power equations

$$
\begin{equation*}
\sum I_{I} \omega_{I}=\sum \Theta_{I} \omega_{I} \tag{f}
\end{equation*}
$$

that is, eq. (3.9.12h); and

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{r} / \partial \theta_{n+1}\right)=\boldsymbol{S}(d \boldsymbol{F}+d \boldsymbol{R}) \cdot\left(\partial \boldsymbol{r} / \partial \theta_{n+1}\right) \quad \text { or } \quad I_{n+1}=\Theta_{n+1}+\Lambda_{n+1} \tag{g}
\end{equation*}
$$

Example 3.9.3 On the Derivation of Lagrangean Equations of Motion from the Single Power Equation (Pars' "insidious fallacy"). It is frequently claimed [especially in engineering books on vibration, but also in more theoretical and classy expositions; e.g., Birkhoff (1927, p. 17), Corben and Stehle (1960 and 1994, pp. 78-79)] that the Lagrangean equations of motion, say for concreteness, the Routh-Voss equations

$$
\begin{equation*}
E_{k}=Q_{k}+R_{k}, \quad R_{k}=\sum \lambda_{D} a_{D k} \tag{a}
\end{equation*}
$$

can be derived, not only from Lagrange's principle (LP), which is variational, but also from a single power equation, like (c) of the preceding example:

$$
\begin{equation*}
\sum E_{k} \dot{q}_{k}=\sum Q_{k} \dot{q}_{k}+\sum R_{k} \dot{q}_{k} \tag{b}
\end{equation*}
$$

and, therefore, one does not need all those strange and annoying concepts like virtual displacements/work, LP, and so on.

Well, such claims are false for the following reasons:
(i) Clearly, the forces in eq. (a) whose power is zero will not appear in eq. (b). How, then, are such forces going to be retrieved in the reverse reasoning from (b) to (a)? Such equations of motion would be "correct to within zero power terms" [just like Lagrangean equations are "correct to within zero virtual work terms"; or contain multiplier-proportional terms, like (a)]. The most important such "zero
power forces" are the following two: (a) constraint reactions of catastatic Pfaffian constraints, and (b) (impressed) gyroscopic forces; like the γ-proportional terms of the Hamel-type equations. So the claim that if the Q_{k} are wholly potential (i.e., $\left.Q_{k}=-\partial V_{0}(q, t) / \partial t\right)$, then the equations of motion are $E_{k}(L)=Q_{k}+\sum \lambda_{D} a_{D k}$, may be correct (for a nongyroscopic system), or it may not (for a gyroscopic system). (See also Ziegler, 1968, pp. 34-35.)
(ii) But there is a more serious objection to a reasoning that "leads" from the single equation (b) to the n equations (a), even for catastatic and nongyroscopic systems. We can deduce eq. (a) from LP - that is, $\sum\left(E_{k}-Q_{k}\right) \delta q_{k}=0$, under $\sum a_{D k} \delta q_{k}=0$ - because of the arbitrariness of the δq^{\prime} s. On the other hand, eq. (b), rewritten as $\sum\left(E_{k}-Q_{k}-R_{k}\right) d q_{k}=0$, holds for $d q_{k}=\left(\dot{q}_{k}\right) d t=$ actual motion differentials/velocities.
(iii) We have seen (§3.6) that LP is equivalent to the central equation

$$
\begin{equation*}
\delta T+\delta^{\prime} W=\left(\sum\left(\partial T / \partial_{k}\right) \delta q_{k}\right) \tag{c}
\end{equation*}
$$

On the other hand, as we know from general mechanics, the power equation (b) is equivalent to

$$
\begin{equation*}
d T=d^{\prime} W \tag{d}
\end{equation*}
$$

where $d^{\prime} W$ is actual elementary work, in time, of all forces; that is, impressed plus reactions. Hence, eqs. (c) and (d) are, in general, very different equations; eq. (c) represents much more than eq. (d).

HISTORICAL REMARK

A fair number of (unsuccessful) attempts to derive all the equations of motion from a single energy equation were made in the late 1800s to early 1900s by the so-called school of "Energetics." Specifically, its followers sought to obtain the equations of motion from the energy conservation equation (3.9 .11 m)

$$
\begin{equation*}
E \equiv T+V_{0}=\text { constant }, \quad V_{0}=V_{0}(\boldsymbol{r}) \tag{e}
\end{equation*}
$$

If the system is unconstrained, then (...)-differentiating (e) we obtain

$$
\begin{equation*}
\boldsymbol{S}\left[d m \boldsymbol{a}+\left(\partial V_{0} / \partial \boldsymbol{r}\right)\right] \cdot \boldsymbol{v}=0 \tag{f}
\end{equation*}
$$

and further, if this holds for each and every value of \boldsymbol{v}, then we are led to the correct equation

$$
\begin{equation*}
d m \boldsymbol{a}+\left(\partial V_{0} / \partial \boldsymbol{r}\right)=\mathbf{0} \tag{g}
\end{equation*}
$$

If, however, the system if constrained then, as Lipschitz remarked, this argument does not apply. To circumvent this difficulty, Helm, a leading "energeticist," proposed that, instead of introducing the usual virtual considerations, give the energy "principle" the following form: the total energy change along any kinematically possible translational and/or rotational direction should vanish. But, under such an arbitrary variation [assuming $\delta(d \boldsymbol{r})=d(\delta \boldsymbol{r})$],

$$
\begin{aligned}
V_{0} & \rightarrow V_{0}+\delta V_{0}=V_{0}+\boldsymbol{S}\left(\partial V_{0} / \partial \boldsymbol{r}\right) \cdot \delta \boldsymbol{r}, \\
T+\delta T & =T+\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{v} \\
& =T+d / d t(\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r})-\boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{v}
\end{aligned}
$$

that is,

$$
\delta T=d / d t(\mathbf{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r})-\delta I \quad(\Rightarrow \delta T \neq \delta I)
$$

Combining the above with $\delta E \equiv \delta T+\delta V_{0}=0$, we obtain

$$
\delta I-\delta V_{0}=d / d t(\mathbf{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r})
$$

instead of the correct $\delta I+\delta V_{0}=0$. Hence, such a variation of the energy equation does not produce the correct equations even for a conservative system; again, the stumbling block is the difference between (c) and (d). If, on the other hand, we had defined, a priori,

$$
\delta T \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r} \quad(=\delta I)
$$

then $\delta T+\delta V_{0}=0$ would indeed lead to the correct equations of motion, but that would be an arbitrary formalism with the sole purpose to show the equivalence between the energy rate equation and $L P$. [At the time, that was a hotly debated issue among some of the best physicists of the day; and it makes us, today, appreciate better the simple and correct formulations of Heun and Hamel.] However, such ideas of invariance of a certain differential (or integral) variational energetic expression under translations/rotations proved useful later in supplying classical and nonclassical conservation theorems; for example, integral invariants (§8.12), Noetherian theory (§8.13), and so on; see also Dobronravov (1976, pp. 139-186, 209-249).

Example 3.9.4 Let us consider a homogeneous bar $A B$ of mass m and length l pinned to the vertical shaft S of negligible mass (fig. 3.23). The system is constrained to spin about S with the constant angular velocity $\boldsymbol{\Omega}$. Let us discuss its power equation.

We will present two solutions: one with $q_{1}=\theta$ as the sole unconstrained Lagrangean coordinate, and one with the two Lagrangean coordinates, $q_{1}=\phi$ (angle of precession of shaft) and $q_{2}=\theta$, but under the holonomic constraint

$$
\begin{align*}
& f_{1} \equiv \phi-\Omega t \pm \text { constant }=0 \quad(\text { finite form }) \tag{a1}\\
& \Rightarrow \delta f_{1}=\delta \phi=0 \quad(\text { virtual form, since } \delta t=0) \tag{a2}
\end{align*}
$$

Figure 3.23 Geometry and kinematics of spinning bar $A B$.
or

$$
\begin{equation*}
\dot{\phi}+(-\Omega)=0 \quad \text { (velocity form, acatastatic). } \tag{a3}
\end{equation*}
$$

(i) First solution ($n=1, m=0-$ constraints embedded, no multipliers): Here $\omega=$ inertial angular velocity of $A B=(-\Omega \cos \theta, \Omega \sin \theta, \dot{\theta})$, along the body-fixed (and principal) axes $A-x y z$, and \boldsymbol{I} is the moment of inertia tensor of $A B$ at A : $\operatorname{diagonal}\left(I_{x}=0\right.$, $\left.I_{y}=m l^{2} / 3, I_{z}=m l^{2} / 3\right)$. Hence, by König's theorem, and with $(\ldots)_{o}$ denoting constrained system quantities, we have

$$
\begin{align*}
2 T_{o} & =I_{x} \omega_{x}^{2}+I_{y} \omega_{y}^{2}+I_{z} \omega_{z}^{2} \\
& =\left(m l^{2} / 3\right)\left[\Omega^{2} \sin ^{2} \theta+(\dot{\theta})^{2}\right]=2 T_{o, 2}+2 T_{o, 1}+2 T_{o, 0}, \tag{b1}
\end{align*}
$$

where

$$
\begin{align*}
2 T_{o, 2} & =\left(m l^{2} / 3\right)(\dot{\theta})^{2}, \quad 2 T_{o, 1}=0, \quad 2 T_{o, 0}=\left(\mathrm{ml}^{2} / 3\right)\left(\sin ^{2} \theta\right) \Omega^{2} \tag{b2}\\
V_{o} & \equiv V=-(\mathrm{mgl} / 2) \cos \theta \quad(=0 \text { at horizontal level through } A) \tag{b3}
\end{align*}
$$

that is, $\partial L_{o} / \partial t \equiv \partial\left(T_{o}-V\right) / \partial t=0$; also, $Q_{\theta, \text { nonpotential }} \equiv Q_{\theta}=0, a_{D}=0$ (no constraints \Rightarrow no multipliers). As a result of the above, the power equation (3.9.11d) reduces to the Jacobi-Painlevé integral (3.9.11n):

$$
h \rightarrow h_{o} \equiv T_{o, 2}+\left(V-T_{o, 0}\right)=\text { constant }
$$

(evaluated at some initial time instant, and hence function of the initial conditions

$$
\left.\neq E_{o} \equiv T_{o}+V\right)
$$

or

$$
\begin{equation*}
l(\dot{\theta})^{2}-3 g \cos \theta-\left(l \sin ^{2} \theta\right) \Omega^{2}=\text { constant } ; \tag{c}
\end{equation*}
$$

an equation which, for given initial conditions, relates θ and $\dot{\theta}$; but, being a kinetic power equation, cannot supply the reactive couple M enforcing the constraint $\Omega=$ constant. To find the latter, either we apply the elementary "Newton-Euler" power equation to this constrained system, in which case M appears as an external moment; or we apply the generalized power equation to the relaxed system (second solution), in which case M appears either as a Lagrangean multiplier or as an impressed moment. Indeed, we have:
(ii) Elementary power equation [corresponding to (i)]: here, eq. (3.9.11j)

$$
\begin{equation*}
d E / d t=-\partial L / \partial t+\left(T_{1}+2 T_{0}\right)^{\cdot}+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{d1}
\end{equation*}
$$

reduces to

$$
\begin{equation*}
d E_{o} / d t \equiv\left(T_{o}+V\right)^{\cdot}=\left(2 T_{o, 0}\right)^{\cdot}, \tag{d2}
\end{equation*}
$$

and therefore the elementary ("Newton-Euler") power equation, $d E / d t=$ power of external forces and couples, yields

$$
\begin{equation*}
\left(2 T_{o, 0}\right)^{\cdot}=M \Omega \Rightarrow M=\left(2 T_{o, 0}\right)^{\circ} / \Omega=\left(2 m l^{2} \Omega / 3\right) \sin \theta \cos \theta \dot{\theta} ; \tag{d3}
\end{equation*}
$$

that is, $M=$ variable, even though $\Omega=$ constant .

Without the benefit of (d1, 2) [or (3.9.11i): $\left.\dot{E}_{o}-\dot{h}_{o}=\left(T_{o, 1}+2 T_{o, 0}\right)^{\cdot}=\left(2 T_{o, 0}\right)^{\cdot}\right]$, the elementary power theorem, $\left(T_{o}+V\right)^{\cdot}=M \Omega$, would have given

$$
\begin{equation*}
\left\{\left(m l^{2} / 6\right)\left[\Omega^{2} \sin ^{2} \theta+(\dot{\theta})^{2}\right]-(m g l / 2) \cos \theta\right\}^{\circ}=M \Omega \tag{d4}
\end{equation*}
$$

and this, to eliminate $\ddot{\theta}$ and thus reproduce (d3), would have to be combined with the kinetic θ-equation, or with the (...) version of (c).
(iii) Second solution ($n=2, m=1-$ constraints adjoined, multipliers): Here, we have

$$
\begin{equation*}
2 T=\left(m l^{2} / 3\right)(\dot{\theta})^{2}+\left(m l^{2} / 3\right)(\dot{\phi} \sin \theta)^{2}=2 T_{2}+2 T_{1}+2 T_{0} \tag{e1}
\end{equation*}
$$

where

$$
\begin{align*}
& 2 T_{2}=\left(m l^{2} / 3\right)\left(\sin ^{2} \theta\right)(\dot{\phi})^{2}+\left(m l^{2} / 3\right)(\dot{\theta})^{2}, \quad 2 T_{1}=0, \quad 2 T_{0}=0 \tag{e2}\\
& V=-(m g l / 2) \cos \theta \quad(=0 \text { at horizontal level through } A) \tag{e3}
\end{align*}
$$

that is, $\partial L / \partial t \equiv \partial(T-V) / \partial t=0$.
Next, and in the sense of the relaxation principle, either we take $Q_{k, \text { nonpotential }} \equiv$ $Q_{k}=0$, but [recalling (a1-3), and since now $n=2, m=1$] add the term $-\sum \lambda_{D} a_{D}=$ $-\lambda_{1} a_{1}=-\lambda_{1}(-\Omega) \equiv \lambda \Omega$; or, using the "rubber-band" approach, we take $\lambda_{D}=0$, but keep the term $\sum Q_{k} \dot{q}_{k}=Q_{\phi} \dot{\phi}$, where $\left(\delta^{\prime} W\right)_{\phi} \equiv Q_{\phi} \delta \phi=M \delta \phi$, since now M has become an impressed force (moment) and $\delta \phi \neq 0$. Following the first of these two equivalent alternatives, we obtain $\dot{h}=\lambda \Omega$, or since [recall (3.9.11i)] $h=E-\left(T_{1}+2 T_{0}\right)=E$, we find $(\dot{E})_{o}=\lambda \Omega$, that is, (d3); and similarly for the second approach.

In this problem, the first solution (constrained system) is simpler; but to find the constraint reaction, we had to go outside of Lagrangean mechanics, to the NewtonEuler power equation (3.9.11j) [\Rightarrow line following (d2)]. The second solution (relaxed system) could prove more useful in complicated situations, where the application of $(\mathrm{d} 1,2)$ might not be so simple.

Problem 3.9.4 Continuing from the preceding example, discuss the power equations if ϕ and θ are connected by the acatastatic Pfaffian constraint $\dot{\phi}+(-c) \theta=0$, $c=$ constant; that is, $\Omega \equiv \dot{\phi}=c \theta$ (variable rate of shaft spinning).

Problem 3.9.5 Consider a particle of mass m moving on a smooth circular tube of radius r (fig. 3.24).
(i) Show that if the tube is free to rotate about a vertical diameter, the Lagrangean equations of motion of the particle + tube system, for $q_{1}=\phi$ and $q_{2}=\theta$, are

$$
\begin{equation*}
E_{\phi}=\left[\left(I+m r^{2} \sin ^{2} \theta\right) \dot{\phi}\right] \cdot=Q_{\phi}, \quad E_{\theta}=m r^{2}\left[\ddot{\theta}-\sin \theta \cos \theta(\dot{\phi})^{2}\right]=Q_{\theta} \tag{a}
\end{equation*}
$$

where $I=$ moment of inertia of tube about its vertical diameter. Calculate and interpret Q_{ϕ}, Q_{θ}.
(ii) Show that if the tube is constrained to rotate with constant angular velocity, $\dot{\phi} \equiv \Omega=$ constant, then the driving moment needed to enforce this constraint, M, equals

$$
\begin{gather*}
M=2 m r^{2} \Omega \sin \theta \cos \theta \dot{\theta}=m r^{2} \Omega \sin (2 \theta) \dot{\theta}: \\
\quad \text { variable, even though } \Omega \text { is constant. } \tag{b}
\end{gather*}
$$

Relate M with Q_{ϕ}, and interpret the second of (a).

Figure 3.24 Particle moving on a smooth circular spinning tube.

HINT
$m \Omega^{2}(r \sin \theta)=$ centrifugal force on particle.
(iii) Discuss the power theorem in case (ii), and, with its help, calculate M.
[See also Greenwood (1977, pp. 74-77) for a discussion of the stability of the equilibrium of the particle relative to the tube, in case (ii).]

Problem 3.9.6 (Berezkin, 1968, vol. II, pp. 67-68). Consider a homogeneous bar $A B$ of mass m and length $2 l$, whose ends A and B are constrained to slide on the perpendicular and smooth sides of the rigid, plane, and rectangular frame abcd [fig. 3.25(a)]. The whole assembly is constrained to rotate about the vertical axis (v) with constant (inertial) angular velocity ω.
(i) Show that the kinetic Lagrangean equation of the (relative) angular motion of the bar is

$$
\begin{equation*}
\ddot{\theta}+\omega^{2} \sin \theta \cos \theta=-(3 g / 4 l) \cos \theta . \tag{a}
\end{equation*}
$$

(ii) Then show that the corresponding Jacobi-Painleve integral-that is, $\left(T_{2}-T_{0}\right)+V_{0}=$ constant - is

$$
\begin{equation*}
(2 l / 3)\left[(\dot{\theta})^{2}-\omega^{2} \cos ^{2} \theta\right]+g \sin \theta=\text { constant } \equiv h . \tag{b}
\end{equation*}
$$

(iii) By applying the principle of relaxation (§3.7), show that the kinetostatic equation that yields the normal reaction at A, N, is

$$
\begin{equation*}
m l\left[\ddot{\theta} \cos \theta-(\dot{\theta})^{2} \sin \theta\right]=-m g+N . \tag{c}
\end{equation*}
$$

HINT
Introduce the relaxed coordinate y (fig. 3.25); and, at the end, set $y=0$.
(iv) Finally, show that, substituting into (c): $\ddot{\theta}$ from the kinetic equation (a), and $(\dot{\theta})^{2}$ from the energy integral (b), we obtain

$$
\begin{align*}
N & =m g-m l\left[2 \omega^{2} \sin \theta \cos ^{2} \theta+(3 g / 4 l)\left(\cos ^{2} \theta-2 \sin ^{2} \theta\right)+(3 h / 2 m) \sin \theta\right] \\
& =\text { function of } \theta, \omega, \text { and the initial conditions (through } h) . \tag{d}
\end{align*}
$$

Figure 3.25 (a) Bar $A B$ sliding on a uniformly rotating, plane, rigid, and rectangular frame $a b c d$; (b) relaxed end A, with corresponding coordinate y and reaction N.

Example 3.9.5 Introduction to Relative Motion (for an extensive coverage see §3.16). Let us consider a particle P of mass m constrained to move on, say, the outer surface of a vertical circular and smooth cylinder of radius r (fig. 3.26). We will examine the energy equation of the particle when the cylinder is stationary, and when it spins about $O Z$ with constant angular velocity ω. Then we will examine the case when P moves relative to the cylinder-fixed axes $O-x y z$.
(i) Stationary cylinder. With $q_{1}=\Phi$ and $q_{2}=Z$ (here, $r=$ constant $\Rightarrow \dot{r}=0$) and the plane $Z=0$ for zero potential energy, we have

$$
\begin{equation*}
2 T=m\left[r^{2}(\dot{\Phi})^{2}+(\dot{Z})^{2}\right], \quad V=m g Z, \quad L=T-V, \tag{a}
\end{equation*}
$$

and, therefore,

$$
\begin{align*}
h & =(\partial L / \partial \dot{\Phi}) \dot{\Phi}+(\partial L / \partial \dot{Z}) \dot{Z}-L=\cdots=(m / 2)\left[r^{2}(\dot{\Phi})^{2}+(\dot{Z})^{2}\right]+m g Z \\
& =E \equiv T+V=\text { constant, since } Q_{k, \text { nonpotential }} \equiv Q_{k}=0, \partial L / \partial t=0, a_{D}=0 \tag{b}
\end{align*}
$$

(ii) Spinning cylinder. In terms of the noninertial coordinates $r=$ constant,ϕ such that $\dot{\phi}=\dot{\Phi}-\omega, z=Z$, we readily find

$$
\begin{align*}
& 2 T=m\left[r^{2}(\dot{\phi}+\omega)^{2}+(\dot{z})^{2}\right] \equiv 2 T_{2}+2 T_{1}+2 T_{0}, \quad V=m g z, \quad L=T-V, \\
& 2 T_{2}=m\left[r^{2}(\dot{\phi})^{2}+(\dot{z})^{2}\right], \quad T_{1}=m r^{2} \omega \dot{\phi}, \quad 2 T_{0}=m r^{2} \omega^{2}, \tag{c}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
h & =(\partial L / \partial \dot{\phi}) \dot{\phi}+(\partial L / \partial \dot{z}) \dot{z}-L \\
& =\cdots=(m / 2)\left[r^{2}(\dot{\phi})^{2}+(\dot{z})^{2}\right]-(m / 2)\left(r^{2} \omega^{2}\right)+m g z \\
& =T_{2}-T_{0}+V=\text { constant, since } Q_{k, \text { nonpotential }} \equiv Q_{k}=0, \partial L / \partial t=0, a_{D}=0 . \tag{d}
\end{align*}
$$

Clearly, $h \neq E \equiv T+V=(m / 2)\left[r^{2}(\dot{\phi}+\omega)^{2}+(\dot{z})^{2}\right]+m g z$.

Figure 3.26 Particle moving on the outer surface of (a) a fixed and (b) a moving cylinder.
(iii) (Introduction to) Relative Motion. Let us generalize the above for an arbitrary system moving relative to the uniformly rotating frame $O x y z$; that is, $r=r(t) \neq$ constant. Since, in this case,

$$
\begin{equation*}
X=r \cos (\phi+\omega t), \quad Y=r \sin (\phi+\omega t), \quad Z=z \tag{e}
\end{equation*}
$$

we obtain, successively,

$$
\begin{equation*}
2 T=S d m\left[(\dot{X})^{2}+(\dot{Y})^{2}+(\dot{Z})^{2}\right]=\cdots=2\left(T_{(2)}+\omega T_{(1)}+\omega^{2} T_{(0)}\right) \tag{f}
\end{equation*}
$$

where

$$
\begin{array}{ll}
2 T_{(2)} \equiv \boldsymbol{S} d m\left[(\dot{r})^{2}+r^{2}(\dot{\phi})^{2}+(\dot{z})^{2}\right] & \left(\equiv 2 T_{2}\right) \\
T_{(1)} \equiv \boldsymbol{S} d m r^{2} \dot{\phi} & \left(\omega T_{(1)} \equiv T_{1}\right) \\
2 T_{(0)} \equiv \boldsymbol{S} d m r^{2} & \left(\omega^{2} T_{(0)} \equiv T_{0}\right) \tag{g3}
\end{array}
$$

Now, if $r, \phi, z=$ stationary functions of n (noninertial) Lagrangean coordinates $q \equiv\left(q_{1}, \ldots, q_{n}\right)$, and the system is further unconstrained, but under a potential $V_{0}=V_{0}(q)$, then (since the Euler-Lagrange operator is linear) the Lagrangean equations of the system in the q 's become

$$
\begin{align*}
{\left[\left(\partial T_{(2)} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{(2)} / \partial q_{k}\right]+\omega\left[\left(\partial T_{(1)} / \partial \dot{q}_{k}\right)^{\cdot}\right.} & \left.-\partial T_{(1)} / \partial q_{k}\right] \\
& =-\partial V_{R} / \partial q_{k} \tag{h}
\end{align*}
$$

where

$$
\begin{equation*}
V_{R} \equiv V_{0}-\omega^{2} T_{(0)}=V_{0}-T_{0}=\text { relative potential } . \tag{i}
\end{equation*}
$$

For reasons that will become clearer in $\S 3.16$, the $\sim \omega$ (second) group of terms, in (h), are called gyroscopic. If they vanish, the relative motion of the system is the same
as if the cylinder was at rest but the system's potential energy was diminished by the "centrifugal potential" $\omega^{2} T_{(0)}$. These terms vanish if every \dot{q}_{k} vanishes; that is, if $q_{k}=$ constant (relative equilibrium). For a general rigid body in relative motion this cannot happen, unless the body translates parallelly to the $\mathrm{OZ}=\mathrm{Oz}$ axis; but it may happen for special systems of particles, or if $T_{(1)}$ is an exact differential, say

$$
\begin{equation*}
T_{(1)}=d f(q, \dot{q}) / d t, \quad \text { where } f=\text { arbitrary function of its arguments, } \tag{j}
\end{equation*}
$$

because then it is not hard to see that

$$
\begin{equation*}
\left(\partial T_{(1)} / \partial \dot{q}_{k}\right)^{\cdot}=\left(\partial \dot{f} / \partial \dot{q}_{k}\right)^{\cdot}=\left(\partial f / \partial q_{k}\right)^{\cdot}=\partial / \partial q_{k}(d f / d t)=\partial T_{(1)} / \partial q_{k} \tag{k}
\end{equation*}
$$

If $k=1$, this holds always; then $T_{(1)}=F\left(q_{1}\right) \dot{q}_{1}$, where $F\left(q_{1}\right)=$ arbitrary function of q_{1}; that is, there are no gyroscopic terms in one DOF systems! We shall return to this important topic in the examples of $\S 3.16$, where it will be shown that (h) has the generalized energy integral

$$
\begin{equation*}
h \equiv T_{(2)}+V_{R} \equiv T_{(2)}+\left(V-\omega^{2} T_{(0)}\right)=\text { constant } . \tag{1}
\end{equation*}
$$

Problem 3.9.7 Consider a particle P of mass m constrained to slide inside a smooth and straight tube of negligible mass, and also under the action of a linear spring of constant k and unstretched length r_{o} (fig. 3.27). The tube spins about a vertical axis $O Z$ with constant angular velocity ω.

With $\rho \equiv r-r_{o}$, show that the system has the following Jacobi-Painlevé integral:

$$
\begin{align*}
h & \equiv T_{2}-T_{0}+V_{0} \\
& =(m / 2)(\dot{\rho})^{2}-\left(m \omega^{2} / 2\right)\left(\rho+r_{o}\right)^{2}+(k / 2)\left(\rho^{2}\right)=\text { constant } \tag{a}
\end{align*}
$$

Example 3.9.6 Lagrangean Equations for q_{n+1}. Let us find the "temporal Lagrangean equation"; that is, (assuming the $n \delta q$'s are unconstrained)

$$
\begin{equation*}
d / d t\left(\partial T / \partial \dot{q}_{0}\right)-\partial T / \partial q_{0}=Q_{0}+R_{0} \tag{a}
\end{equation*}
$$

Figure 3.27 Particle on uniformly rotating horizontal tube.
where $q_{n+1} \equiv q_{0} \equiv t \Rightarrow \dot{q}_{0}=1$, and [recalling (3.4.4a ff.)]

$$
\begin{align*}
Q_{n+1} & \equiv Q_{0} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{0} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot(\partial \boldsymbol{r} / \partial t), \\
R_{n+1} & \equiv R_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{0} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot(\partial \boldsymbol{r} / \partial t) \quad(\neq 0, \text { in general }) \tag{b}
\end{align*}
$$

Since (recalling that $\alpha, \beta=1, \ldots, n+1$)

$$
\begin{align*}
2 T & =\sum \sum M_{\alpha \beta} \dot{q}_{\alpha} \dot{q}_{\beta} \\
& =\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M_{k, n+1} \dot{q}_{k} \dot{q}_{n+1}+M_{n+1, n+1} \dot{q}_{n+1} \dot{q}_{n+1} \\
& \equiv \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M_{k 0} \dot{q}_{k} \dot{q}_{0}+M_{00} \dot{q}_{0} \dot{q}_{0} \\
& \equiv \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M_{k} \dot{q}_{k}+M_{0}, \tag{c}
\end{align*}
$$

eq. (a) becomes

$$
\begin{equation*}
\left(\sum M_{k} \dot{q}_{k}+M_{0} q_{0}\right)^{\cdot}-\partial T / \partial q_{0}=Q_{0}+R_{0} \tag{d}
\end{equation*}
$$

or, finally,

$$
\begin{array}{r}
\left(\sum M_{k} \dot{q}_{k}+M_{0}\right)^{\cdot}-(1 / 2) \sum \sum\left(\partial M_{\alpha \beta} / \partial t\right) \dot{q}_{\alpha} \dot{q}_{\beta}=Q_{0}+R_{0} \\
{\left[\text { or, if } M_{k}=0 \text { and } M_{0}=0 ; \text { i.e., if } 2 T=\sum \sum M_{k l}(t, q) \dot{q}_{k} \dot{q}_{l},\right.} \\
\text { then } \left.-\partial T / \partial t=Q_{0}+R_{0}\right] ; \tag{e}
\end{array}
$$

which is none other than the rheonomic power identity (e) of example 3.9.2, but in system variables.

Extensions to quasi variables (i.e., the $(n+1)$ th Hamel equation) are easily obtainable. These equations, since they contain the unknown R_{0}, do not seem to offer any particular advantage and so they will not be pursued any further. [See, e.g., Mattioli (1931-1932), Pastori (1960); also Nadile (1950) for the quasi-variable case, and an alternative derivation of (3.9.12i).] However, the above considerations may prove helpful in understanding better the connection between scleronomic and rheonomic systems. Following Lamb (1910, p. 758), we may consider time as an additional $(n+1)$ th coordinate of an originally scleronomic system-that is, $q_{n+1} \equiv q_{0} \equiv t$; or, start with a scleronomic system in the $n+1$ coordinates $\left(q, q_{0}\right) \equiv\left(q_{1}, \ldots q_{n}\right.$; $\left.q_{n+1} \equiv q_{0}\right)$ and then let $q_{0}=\phi(t)=$ known function of time:

$$
\begin{align*}
2 T & =\sum \sum M_{\alpha \beta} \dot{q}_{\alpha} \dot{q}_{\beta} \quad\left[\text { where } M_{\alpha \beta}=M_{\alpha \beta}\left(q, q_{0}\right)\right] \\
& =\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M_{k 0} \dot{q}_{k} \dot{q}_{0}+M_{00} \dot{q}_{0} \dot{q}_{0} \\
& \equiv \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M_{k} \dot{q}_{k} \dot{\phi}+M_{0} \dot{\phi} \dot{\phi} \\
& \equiv \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M^{\prime}{ }_{k} \dot{q}_{k}+M_{0}^{\prime} \\
& =2 T_{2}+2 T_{1}+2 T_{0}=\text { (double) kinetic energy of an } n \text { DOF rheonomic system }, \tag{f}
\end{align*}
$$

where $M_{k l}=M_{k l}(q, t), M^{\prime}{ }_{k}=M^{\prime}{ }_{k}(q, t), M^{\prime}{ }_{0}=M^{\prime}{ }_{0}(q, t)$.

Finally, since the constraint $\dot{q}_{0}=1\left(\Rightarrow \delta q_{0}=0\right)$ - or, generally, $\Phi\left[q_{0}, \phi(t)\right]=0$ $(\Rightarrow \delta \Phi=0)$ - is holonomic it can be enforced in T right from start; that is, before any differentiations (recall remarks in $\S 3.5$); and that constraint is maintained by the force $Q_{0}+R_{0}$.

REMARK

The above and ex. 3.9.2 show that, even if we dotted the Newton-Euler particle equation of motion with $d \boldsymbol{r}=\sum \boldsymbol{e}_{k} d q_{k}+\boldsymbol{e}_{0} d t$ (instead of with $\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}$) and then summed over the system particles, (i.e., $S d m \boldsymbol{a} \cdot d \boldsymbol{r}=S d \boldsymbol{F} \cdot d \boldsymbol{r}+S d \boldsymbol{R} \cdot d \boldsymbol{r}$), and thus ended up, in system variables, with $\sum\left(E_{k}-Q_{k}-R_{k}\right) d q_{k}+$ $\left(E_{0}-Q_{0}-R_{0}\right) d t=0$, (i) we would still need an additional postulate for $\sum R_{k} d q_{k}$ (like the d'Alembert-Lagrange principle), and (ii) the (...)dt-terms would not have produced anything new; that is, no additional Lagrangean equation of motion. In sum [and contrary to what some Lagrangean derivations seem to, falsely, imply; e.g., Corben and Stehle (1960, pp. 78-79)]: there is no way getting around virtual displacements and an independent physical postulate for the constraint reactions!

Problem 3.9 .8 (i) Show that in the Voronets equations case, eqs. (3.8.14a ff.), (a) [recall (3.9.12f)]

$$
\begin{equation*}
\partial L^{*} / \partial \theta_{n+1}=\partial L^{*} / \partial t+\sum b_{D}\left(\partial L^{*} / \partial q_{D}\right) \tag{a}
\end{equation*}
$$

where (by partial differentiation):

$$
\begin{equation*}
\partial L^{*} / \partial q_{D}=\partial L / \partial q_{D}+\sum\left(\partial L / \partial \dot{q}_{D^{\prime}}\right)\left(\partial \dot{q}_{D^{\prime}} / \partial q_{D}\right) \tag{b}
\end{equation*}
$$

and (b) the rheonomic nonholonomic power term R, (3.9.12j), reduces to

$$
\begin{equation*}
R=\sum \sum w_{I}^{D}\left(\partial L / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I}, \tag{c}
\end{equation*}
$$

where [recall (3.8.14h)] $-w^{D}{ }_{I}=\partial b_{D} / \partial\left(q_{I}\right)-\partial b_{D I} / \partial\left(q_{n+1}\right)$.
(ii) Then formulate the "Voronets power equation"; and, finally, specialize the latter to the "Chaplygin power equation."

3.10 LAGRANGE'S EQUATIONS: EXPLICIT FORMS; AND LINEAR VARIATIONAL EQUATIONS (OR METHOD OF SMALL OSCILLATIONS)

Explicit Forms of Lagrange's Equations

We have already seen (§3.9) that the most general expression for T in holonomic system (Lagrangean) variables is

$$
\begin{equation*}
2 T=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M_{k} \dot{q}_{k}+M_{0} \equiv 2 T_{2}+2 T_{1}+2 T_{0} \tag{3.10.1a}
\end{equation*}
$$

Let us find the explicit forms of the corresponding (and, hence, most general) inertia, or Lagrangean acceleration, terms $E_{k} \equiv E_{k}(T) \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}$. Since $E_{k}(\ldots)$ is a linear operator, we have

$$
\begin{equation*}
E_{k}(T)=E_{k}\left(T_{2}\right)+E_{k}\left(T_{1}\right)+E_{k}\left(T_{0}\right) \tag{3.10.1b}
\end{equation*}
$$

Recalling that $M_{k l}=M_{l k}$, we obtain, successively,
(i) $\quad E_{k}\left(T_{2}\right)=\left[\left(\partial / \partial \dot{q}_{k}\right)^{\cdot}-\partial / \partial q_{k}\right]\left[(1 / 2) \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}\right]$

$$
\begin{align*}
& =\left(\sum M_{k r} \dot{q}_{r}\right) \cdot(1 / 2) \sum \sum\left(\partial M_{r s} / \partial q_{k}\right) \dot{q}_{r} \dot{q}_{s} \\
& =\sum M_{k r} \ddot{q}_{r}+\sum \sum\left[\partial M_{k r} / \partial q_{s}-(1 / 2)\left(\partial M_{r s} / \partial q_{k}\right)\right] \dot{q}_{r} \dot{q}_{s} \\
& \quad+\sum\left(\partial M_{k r} / \partial t\right) \dot{q}_{r} . \tag{3.10.1c}
\end{align*}
$$

But

$$
\sum \sum\left(\partial M_{k r} / \partial q_{s}\right) \dot{q}_{r} \dot{q}_{s}=(1 / 2) \sum \sum\left(\partial M_{k r} / \partial q_{s}+\partial M_{k s} / \partial q_{r}\right) \dot{q}_{r} \dot{q}_{s}
$$

and so the middle (double sum) term of (3.10.1c) can be rewritten as

$$
\sum \sum(1 / 2)\left(\partial M_{k r} / \partial q_{s}+\partial M_{k s} / \partial q_{r}-\partial M_{r s} / \partial q_{k}\right) \dot{q}_{r} \dot{q}_{s} \equiv \sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}
$$

where the just introduced quantities ("geometrical objects," in tensorial language)

$$
\begin{equation*}
\Gamma_{k, r s}=\Gamma_{k, s r} \equiv(1 / 2)\left(\partial M_{k r} / \partial q_{s}+\partial M_{k s} / \partial q_{r}-\partial M_{r s} / \partial q_{k}\right) \tag{3.10.1d}
\end{equation*}
$$

are the famous (holonomic) Christoffel symbols of the first kind. So, finally, (3.10.1c) becomes

$$
\text { (ii) } \begin{align*}
E_{k}\left(T_{2}\right) & =\sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}+\sum\left(\partial M_{k r} / \partial t\right) \dot{q}_{r} . \tag{3.10.1e}\\
& =\left[\left(\partial / \partial \dot{q}_{k}\right)\left(\sum M_{r} \dot{q}_{r}\right)\right]-\left(\partial / \partial q_{k}\right)\left(\sum M_{r} \dot{q}_{r}\right) \\
& =\partial M_{k} / \partial t-\sum\left(\partial M_{r} / \partial q_{k}-\partial M_{k} / \partial q_{r}\right) \dot{q}_{r} \equiv \partial M_{k} / \partial t-G_{k}, \tag{3.10.1f}
\end{align*}
$$

where

$$
\begin{equation*}
G_{k} \equiv \sum g_{k r} \dot{q}_{r}, \quad g_{k r}=-g_{r k} \equiv \partial M_{r} / \partial q_{k}-\partial M_{k} / \partial q_{r} ; \tag{3.10.1g}
\end{equation*}
$$

that is, $g_{12}=-g_{21}, g_{11}=-g_{11} \Rightarrow g_{11}=0$, and so on.
(iii) $\quad E_{k}\left(T_{0}\right)=\left(\partial T_{0} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{0} / \partial q_{k}=0-\partial T_{0} / \partial q_{k}=-(1 / 2)\left(\partial M_{0} / \partial q_{k}\right)$.

In view of (3.10.1e, f, h), the Lagrangean acceleration (3.10.1b) assumes the definitive form

$$
\begin{align*}
E_{k} \equiv E_{k}(T)=\sum M_{k r} \ddot{q}_{r} & +\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}+\sum\left(\partial M_{k r} / \partial t\right) \dot{q}_{r} \\
& +\partial M_{k} / \partial t-G_{k}-(1 / 2)\left(\partial M_{0} / \partial q_{k}\right) . \tag{3.10.1i}
\end{align*}
$$

In the theory of relative motion (§3.16) where (3.10.1i) primarily applies, it is customary to rearrange and rename the above as follows:

$$
\begin{equation*}
E_{k}=E_{k, R}+E_{k, T}+E_{k, C} \tag{3.10.2}
\end{equation*}
$$

where

$$
\begin{array}{ll}
E_{k, R} \equiv E_{k}\left(T_{2}\right) \equiv\left(\partial T_{2} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{2} / \partial q_{k}: & \text { Relative acceleration } \\
E_{k, T} \equiv \partial M_{k} / \partial t-\partial T_{0} / \partial q_{k}: & \text { Transport acceleration } \\
E_{k, C} \equiv \sum\left(\partial M_{k} / \partial q_{r}-\partial M_{r} / \partial q_{k}\right) \dot{q}_{r} \equiv-\sum g_{k r} \dot{q}_{r} \equiv-G_{k}: \\
\text { Coriolis (or gyroscopic) acceleration. } \tag{3.10.2c}
\end{array}
$$

This three-part decomposition of the Lagrangean acceleration E_{k}, and the recognition of its importance (especially of the Coriolis/gyroscopic part $E_{k, C}$), are due to Thomson and Tait (1867-1912, §319, pp. 318-327).

In view of the above kinematico-inertial identities, the Lagrangean equations of motion in the fairly general case of a holonomic n DOF system, with potential $V=V_{0}(q)$ and under nonpotential forces Q_{k} (i.e., $E_{k}=Q_{k}-\partial V_{0} / \partial q_{k}$), assume the explicit form

$$
\begin{align*}
\sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}+\sum\left(\partial M_{k r} / \partial t\right) \dot{q}_{r} \\
=Q_{k}+G_{k}-\partial\left(V_{0}-T_{0}\right) / \partial q_{k}-\partial M_{k} / \partial t \tag{3.10.3}
\end{align*}
$$

and similarly for other T-based equations.
In the common case $\partial T / \partial t=0$ ("stationary/scleronomic" kinetic energy), (3.10.3) specializes to

$$
\begin{equation*}
\sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}=Q_{k}+G_{k}-\partial\left(V_{0}-T_{0}\right) / \partial q_{k} \tag{3.10.3a}
\end{equation*}
$$

while if $\partial \boldsymbol{r} / \partial t=\mathbf{0}$ (stationary holonomic constraints), then $T \rightarrow T_{2}$ and the above reduces to

$$
\begin{equation*}
\sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}=Q_{k}-\partial V_{0} / \partial q_{k} \tag{3.10.3b}
\end{equation*}
$$

Inertial Coupling

In general, all the above equations are inertially (or dynamically) coupled; that is, each E_{k} contains all the system accelerations \ddot{q}. To decouple them, we introduce the symmetric inertial quantities $m_{k l}=m_{l k}$, "conjugate" to the $M_{k l}=M_{l k}$, via the definition

$$
\begin{equation*}
\sum m_{k l} M_{l r}=\delta_{k r} \quad(=1, \text { if } k=r ;=0, \text { if } k=r) \tag{3.10.4}
\end{equation*}
$$

Multiplying each of (3.10.3) with $m_{s k}$ and adding over k, invoking (3.10.4), and renaming some dummy indices, we obtain the inertially decoupled Lagrangean equations

$$
\begin{align*}
& \ddot{q}_{k}+\sum \sum \Gamma_{r s}^{k} \dot{q}_{r} \dot{q}_{s}+\sum \sum m_{k s}\left(\partial M_{s r} / \partial t\right) \dot{q}_{r} \\
& \quad=\sum m_{k s}\left[Q_{s}+G_{s}-\partial\left(V_{0}-T_{0}\right) / \partial q_{s}-\partial M_{s} / \partial t\right] \tag{3.10.5}
\end{align*}
$$

where we have introduced the following, similar to (3.10.1d), quantities:

$$
\begin{align*}
& \Gamma_{r s}^{k}=\Gamma_{s r}^{k} \equiv \sum m_{k l} \Gamma_{l, r s}: \\
& \text { (holonomic) Christoffel symbols of the second kind } \tag{3.10.5a}\\
& \left(\Leftrightarrow \Gamma_{l, r s}=\sum M_{l k} \Gamma_{r s}^{k}\right) \tag{3.10.5b}
\end{align*}
$$

Velocity-Proportional Terms of $(3.10 .3,5)$
In general, there are two kinds of such terms: linear $\left(\sim \dot{q}_{r}\right)$ and nonlinear $\left(\sim \dot{q}_{r} \dot{q}_{s}\right)$. Let us examine the latter first.
(i) Nonlinear terms like $\Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}$ or $\Gamma_{r s}^{k} \dot{q}_{r} \dot{q}_{s}$ occur because their coefficients, the Christoffels, are intimately related to the curvilinearity; that is, the nonlinearity, of the coordinates q. Let us see this: recalling the definitions (3.9.2a) and (3.10.1d), we have, successively,

$$
\begin{align*}
\Gamma_{k, r s}= & (1 / 2)\left(\partial M_{k r} / \partial q_{s}+\partial M_{k s} / \partial q_{r}-\partial M_{r s} / \partial q_{k}\right) \\
= & (1 / 2)\left\{\left(\partial / \partial q_{s}\right)\left[\boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{r}\right)\right]+\cdots\right\} \\
= & (1 / 2)\left\{\boldsymbol { S } d m \left[\left(\partial^{2} \boldsymbol{r} / \partial q_{s} \partial q_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{r}\right)+\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot\left(\partial^{2} \boldsymbol{r} / \partial q_{s} \partial q_{r}\right)\right.\right. \\
& +\left(\partial^{2} \boldsymbol{r} / \partial q_{r} \partial q_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{s}\right)+\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot\left(\partial^{2} \boldsymbol{r} / \partial q_{r} \partial q_{s}\right) \\
& \left.\left.-\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{r}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{s}\right)-\left(\partial \boldsymbol{r} / \partial q_{r}\right) \cdot\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{s}\right)\right]\right\} \\
= & \boldsymbol{S} d m\left(\partial^{2} \boldsymbol{r} / \partial q_{r} \partial q_{s}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right) \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{e}_{r} / \partial q_{s}\right) \cdot \boldsymbol{e}_{k} \\
= & \boldsymbol{S} d m\left(\partial \boldsymbol{e}_{s} / \partial q_{r}\right) \cdot \boldsymbol{e}_{k}=\Gamma_{k, s r} \quad[\text { recalling }(2.5 .4 \mathrm{a}, \mathrm{~b})] \tag{3.10.6}
\end{align*}
$$

from which we conclude that if $\partial \boldsymbol{e}_{r} / \partial q_{s} \equiv \partial^{2} \boldsymbol{r} / \partial q_{r} \partial q_{s}=\mathbf{0}$ (e.g., rectilinear coordinates), then $\Gamma_{k, r s}=0 \Rightarrow \Gamma_{r s}^{k}=0$. Hence, the following theorem.

THEOREM

In general, Lagrange's equations are nonlinear; this is part of the price we pay for using "generalized" (i.e., curvilinear) coordinates.
(ii) Linear terms like:
(a) $\left(\partial M_{k r} / \partial t\right) \dot{q}_{r}$ clearly result from the nonstationarity of the inertia coefficients;
(b) $g_{k r} \dot{q}_{r}$ result from the nonstationarity of the holonomic (built-in) constraints

$$
\left(\partial \boldsymbol{r} / \partial t \neq \mathbf{0} \Rightarrow T_{1} \neq 0, M_{k} \neq 0\right)
$$

(c) $\gamma_{k r} \dot{q}_{r}$ [recall generalized (holonomic) potential (3.9.8a ff.)] result from the part of the potential that is linear in the \dot{q} 's.
We notice that both forces corresponding to (b) and (c) type of terms - namely, the inertial $G_{k}=\sum g_{k r} \dot{q}_{r}$ and the potential $Q_{k, G P}-\partial \gamma_{k} / \partial t=\sum \gamma_{k r} \dot{q}_{r}$ (part of Q_{k})are gyroscopic; that is, they have zero power. And this explains the disappearance of T_{1} and V_{1} from the generalized energy integral $h \equiv T_{2}+\left(V_{0}-T_{0}\right)=$ constant .

Both forces can be combined as follows: with

$$
\begin{equation*}
L_{1} \equiv T_{1}-V_{1}=\sum\left(M_{k}-\gamma_{k}\right) \dot{q}_{k} \equiv \sum l_{k} \dot{q}_{k}, \tag{3.10.7a}
\end{equation*}
$$

[recalling (3.9.8c)] we obtain, successively,

$$
\begin{equation*}
-E_{k}\left(L_{1}\right)=\cdots=-\left(\partial M_{k} / \partial t\right)+G_{k}+Q_{k, G P}=-\left(\partial l_{k} / \partial t\right)+\sum l_{k r} \dot{q}_{r}, \tag{3.10.7b}
\end{equation*}
$$

where the gyroscopic coefficients of $L_{1}, l_{k r}$, are defined by

$$
\begin{equation*}
l_{k r} \equiv g_{k r}+\gamma_{k r} \equiv \partial\left(M_{r}-\gamma_{r}\right) / \partial q_{k}-\partial\left(M_{k}-\gamma_{k}\right) / \partial q_{r}=\partial l_{r} / \partial q_{k}-\partial l_{k} / \partial q_{r} \tag{3.10.7c}
\end{equation*}
$$

We also notice that, whenever such terms appear, since $g_{k k}=0$ and $\gamma_{k k}=0, \dot{q}_{k}$ does not appear in the (k) th Lagrangean equation, say $E_{k}=Q_{k}$. Instead, for each such term that appears as $g_{r k} \dot{q}_{r}$ in the (k) th equation $(r \neq k)$, another term, like $g_{k r} \dot{q}_{k}=-g_{r k} \dot{q}_{k}$ appears in the (r) th equation $E_{r}=Q_{r}$. For example, for $n=3$, eq. (3.10.2c), $E_{k, C}=-\sum g_{k r} \dot{q}_{r}$, yields

$$
\begin{align*}
& E_{1, C}=(0) \dot{q}_{1}+g_{21} \dot{q}_{2}+g_{31} \dot{q}_{3}, \\
& E_{2, C}=-g_{21} \dot{q}_{1}+(0) \dot{q}_{2}+g_{32} \dot{q}_{3}, \\
& E_{3, C}=-g_{31} \dot{q}_{1}-g_{32} \dot{q}_{2}+(0) \dot{q}_{3} . \tag{3.10.7d}
\end{align*}
$$

This property also appears in the theory of cyclic systems (88.4 ff .).
(d) $-f_{k r} \dot{q}_{r}$ [recall Rayleigh's dissipation function (3.9.10b ff.)] result from linear viscous friction.

A Compact Notation

Since $q_{0} \equiv t \Rightarrow \dot{q} \equiv \dot{t}=1 \Rightarrow \ddot{q}_{0} \equiv \ddot{t}=0$, and with all Greek indices running from 1 to $n+1$, we may rewrite E_{k}, (3.10.1i), as follows

$$
\begin{equation*}
E_{k}=\sum M_{k \alpha} \ddot{q}_{\alpha}+\sum \sum \Gamma_{k, \alpha \beta} \dot{q}_{\alpha} \dot{q}_{\beta}, \tag{3.10.8a}
\end{equation*}
$$

where

$$
\begin{gather*}
2 \Gamma_{k, \alpha \beta}=2 \Gamma_{k, \beta \alpha} \equiv \partial M_{k \alpha} / \partial q_{\beta}+\partial M_{k \beta} / \partial q_{\alpha}-\partial M_{\alpha \beta} / \partial q_{k} \\
{\left[=2 \boldsymbol{S} d m\left(\partial \boldsymbol{e}_{\alpha} / \partial q_{\beta}\right) \cdot \boldsymbol{e}_{k}\right]} \tag{3.10.8b}
\end{gather*}
$$

a form, most likely, due to T. Levi-Civita (1895), one of the founders of tensor calculus. If the index positioning (i.e., sub-/superscripts) appears arbitrary, it is because we have been trying to avoid tensor calculus and its associated simple and helpful conventions. [For an extensive treatment of these topics via this remarkable and beautiful geometrico-analytical tool, see, e.g., Papastavridis (1999) and references cited therein.]

Indeed, expanding the above, we obtain

$$
\begin{align*}
E_{k} & =\sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}+2 \sum \Gamma_{k, r, n+1} \dot{q}_{r}+\Gamma_{k, n+1, n+1} \\
& \equiv \sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}+2 \sum \Gamma_{k, r} \dot{q}_{r}+\Gamma_{k}, \tag{3.10.8c}
\end{align*}
$$

where
(a)

$$
\begin{align*}
2 \Gamma_{k, r, n+1} & =2 \Gamma_{k, n+1, r} \equiv 2 \Gamma_{k, r} \quad\left[=2 \boldsymbol{S} d m\left(\partial \boldsymbol{e}_{r} / \partial t\right) \cdot \boldsymbol{e}_{k}\right] \\
& \equiv \partial M_{k r} / \partial q_{n+1}+\partial M_{k, n+1} / \partial q_{r}-\partial M_{r, n+1} / \partial q_{k} \\
& =\partial M_{k r} / \partial t+\left(\partial M_{k} / \partial q_{r}-\partial M_{r} / \partial q_{k}\right) \equiv \partial M_{k r} / \partial t+g_{r k} \tag{3.10.8d}
\end{align*}
$$

so that the corresponding E_{k}-term becomes

$$
2 \sum \Gamma_{k, r} \dot{q}_{r}=\sum\left(\partial M_{k r} / \partial t\right) \dot{q}_{r}-\sum g_{k r} \dot{q}_{r}=\sum\left(\partial M_{k r} / \partial t\right) \dot{q}_{r}-G_{k}:
$$

$$
\begin{equation*}
\text { nonstationary and gyroscopic/Coriolis terms }(\sim \dot{q}) \tag{3.10.8e}
\end{equation*}
$$

and
(b) $\quad 2 \Gamma_{k, n+1, n+1} \equiv 2 \Gamma_{k} \quad\left[=2 \boldsymbol{S} d m\left(\partial \boldsymbol{e}_{n+1} / \partial q_{n+1}\right) \cdot \boldsymbol{e}_{k}=2 \boldsymbol{S} d m\left(\partial \boldsymbol{e}_{0} / \partial t\right) \cdot \boldsymbol{e}_{k}\right]$

$$
\begin{aligned}
& \equiv \partial M_{k, n+1} / \partial q_{n+1}+\partial M_{k, n+1} / \partial q_{n+1}-\partial M_{n+1, n+1} / \partial q_{k} \\
& =2\left(\partial M_{k} / \partial t\right)-\partial M_{0} / \partial q_{k} \equiv 2\left(\partial M_{k} / \partial t-\partial T_{0} / \partial q_{k}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { nonstationary and centrifugal terms (no } \dot{q} \text { 's). } \tag{3.10.8f}
\end{equation*}
$$

In this compact notation, the earlier equations (3.10.3) and (3.10.5) can be written, respectively, as

$$
\begin{equation*}
\sum M_{k r} \ddot{q}_{r}+\sum \sum \Gamma_{k, \alpha \beta} \dot{q}_{\alpha} \dot{q}_{\beta}=Q_{k}-\partial V_{0} / \partial q_{k} \tag{3.10.8~g}
\end{equation*}
$$

and

$$
\begin{align*}
\ddot{q}_{k}+\sum & \sum \Gamma_{\alpha \beta}^{k} \dot{q}_{\alpha} \dot{q}_{\beta} \\
{[} & =\ddot{q}_{k}+\sum \sum \Gamma_{r s}^{k} \dot{q}_{r} \dot{q}_{s}+2 \sum \Gamma_{r, n+1}^{k} \dot{q}_{r}+\Gamma_{n+1, n+1}^{k} \\
& \left.\equiv \ddot{q}_{k}+\sum \sum \Gamma_{r s}^{k} \dot{q}_{r} \dot{q}_{s}+2 \sum \Gamma_{r}^{k} \dot{q}_{r}+\Gamma^{k}\right] \\
\quad & \sum m_{k r}\left(Q_{r}-\partial V_{0} / \partial q_{r}\right) \tag{3.10.8h}
\end{align*}
$$

where

$$
\begin{align*}
& \Gamma_{\alpha \beta}^{k} \equiv \sum m_{k s} \Gamma_{s, \alpha \beta} \\
& \Rightarrow \Gamma_{r, n+1}^{k} \equiv \sum m_{k s} \Gamma_{s, r, n+1} \equiv \Gamma_{r 0}^{k} \equiv \Gamma_{r}^{k} \\
& \quad \Gamma_{n+1, n+1}^{k} \equiv \sum m_{k s} \Gamma_{s, n+1, n+1} \equiv \Gamma_{00}^{k} \equiv \Gamma^{k} \tag{3.10.8i}
\end{align*}
$$

We notice that $\Gamma_{n+1, n+1, n+1} \equiv \Gamma_{0,00} \equiv \Gamma_{0}=\cdots=(1 / 2)\left(\partial M_{0} / \partial t\right)=\partial T_{0} / \partial t$ does not appear in the equations of motion; but it might appear in special forms of power equations.

Explicit Forms of Hamel's Equations

Let us, next, extend the above to nonholonomic variables; that is, find the explicit form of the Hamel acceleration (and equations)

$$
\begin{equation*}
I_{k} \equiv\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k \alpha}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{\alpha} \tag{3.10.9a}
\end{equation*}
$$

where

$$
\begin{equation*}
2 T=\sum \sum M^{*}{ }_{\alpha \beta} \omega_{\alpha} \omega_{\beta} . \tag{3.10.9b}
\end{equation*}
$$

Nonholonomic Christoffel-Like Symbols

For algebraic simplicity, but no loss in generality, we restrict ourselves to the stationary case. By $\partial \ldots / \partial \theta_{k}$-differentiating the nonholonomic inertia coefficients

$$
\begin{equation*}
M_{k l}^{*}=M_{l k}^{*} \equiv \boldsymbol{S} d m \boldsymbol{\varepsilon}_{k} \cdot \varepsilon_{l} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial \theta_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial \theta_{l}\right) \tag{3.10.9c}
\end{equation*}
$$

an operation that we shall also denote here by a subscript comma [i.e., $\partial(\ldots) / \partial \theta_{k} \equiv$ $(\ldots),{ }_{k}$], we obtain

$$
\partial M_{k l}^{*} / \partial \theta_{r}=\boldsymbol{S} d m\left(\boldsymbol{\varepsilon}_{k, r} \cdot \varepsilon_{l}+\boldsymbol{\varepsilon}_{k} \cdot \boldsymbol{\varepsilon}_{l, r}\right),
$$

and, therefore, the nonholonomic Christoffel symbol-like quantities, defined in complete analogy with their holonomic counterparts (3.10.1d) as

$$
\begin{equation*}
2 \Gamma^{*}{ }_{k, r s} \equiv \partial M_{k s}^{*} / \partial \theta_{r}+\partial M_{k r}^{*} / \partial \theta_{s}-\partial M_{r s}^{*} / \partial \theta_{k} \tag{3.10.9d}
\end{equation*}
$$

transform, successively, to

$$
\begin{aligned}
2 \Gamma^{*}{ }_{k, r s} & \equiv \boldsymbol{S} d m\left[\left(\boldsymbol{\varepsilon}_{k} \cdot \boldsymbol{\varepsilon}_{s, r}+\boldsymbol{\varepsilon}_{s} \cdot \boldsymbol{\varepsilon}_{k, r}\right)+\left(\boldsymbol{\varepsilon}_{k} \cdot \boldsymbol{\varepsilon}_{r, s}+\boldsymbol{\varepsilon}_{r} \cdot \varepsilon_{k, s}\right)-\left(\boldsymbol{\varepsilon}_{r} \cdot \boldsymbol{\varepsilon}_{s, k}+\boldsymbol{\varepsilon}_{s} \cdot \boldsymbol{\varepsilon}_{r, k}\right)\right] \\
& =\boldsymbol{S} d m\left[\boldsymbol{\varepsilon}_{k} \cdot\left(\boldsymbol{\varepsilon}_{s, r}+\boldsymbol{\varepsilon}_{r, s}\right)+\boldsymbol{\varepsilon}_{r} \cdot\left(\boldsymbol{\varepsilon}_{k, s}-\boldsymbol{\varepsilon}_{s, k}\right)+\boldsymbol{\varepsilon}_{s} \cdot\left(\boldsymbol{\varepsilon}_{k, r}-\boldsymbol{\varepsilon}_{r, k}\right)\right]
\end{aligned}
$$

and recalling the fundamental noncommutativity/nonintegrability relations (2.10.23), rewritten here as

$$
\begin{align*}
\partial^{2} \boldsymbol{r} / \partial \theta_{s} \partial \theta_{k}-\partial^{2} \boldsymbol{r} / \partial \theta_{k} \partial \theta_{s} & \equiv \partial \boldsymbol{\varepsilon}_{k} / \partial \theta_{s}-\partial \boldsymbol{\varepsilon}_{s} / \partial \theta_{k} \equiv \boldsymbol{\varepsilon}_{k, s}-\boldsymbol{\varepsilon}_{s, k} \\
& =\sum \gamma_{s k}^{l}\left(\partial \boldsymbol{r} / \partial \theta_{l}\right) \equiv \sum \gamma_{s k}^{l} \boldsymbol{\varepsilon}_{l}, \tag{3.10.9e}
\end{align*}
$$

we obtain, finally,

$$
\begin{align*}
2 \Gamma_{k, r s}^{*} & =\boldsymbol{S} d m\left[\varepsilon_{k} \cdot\left(\varepsilon_{s, r}+\varepsilon_{r, s}\right)+\varepsilon_{r} \cdot\left(\sum \gamma_{s k}^{l} \varepsilon_{l}\right)+\varepsilon_{s} \cdot\left(\sum \gamma_{r k}^{l} \varepsilon_{l}\right)\right] \\
& =\boldsymbol{S} d m \varepsilon_{k} \cdot\left(\varepsilon_{s, r}+\boldsymbol{\varepsilon}_{r, s}\right)+\sum\left(\gamma_{s k}^{l} M_{r l}^{*}+\gamma_{r k}^{l} M_{s l}^{*}\right) \tag{3.10.9f}
\end{align*}
$$

Nonholonomic Euler-Lagrange Terms

Next, differentiating the stationary version of (3.10.9b)

$$
\begin{equation*}
2 T=\sum \sum M_{k l}^{*} \omega_{k} \omega_{l} \tag{3.10.9~g}
\end{equation*}
$$

we obtain $\partial T^{*} / \partial \omega_{k}=\sum M^{*}{ }_{k l} \omega_{l}$ and, therefore,

$$
\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}=\sum M_{k l}^{*} \dot{\omega}_{l}+\sum\left(d M_{k l}^{*} / d t\right) \dot{\omega}_{l}
$$

or, since

$$
\begin{aligned}
d M^{*}{ }_{k l} / d t & =\sum\left(\partial M^{*}{ }_{k l} / \partial q_{r}\right) \dot{q}_{r}=\sum\left(\partial M_{k l}^{*} / \partial q_{r}\right)\left(\sum A_{r s} \omega_{s}\right) \\
& =\sum\left(\sum A_{r s}\left(\partial M_{k l}^{*} / \partial q_{r}\right)\right) \omega_{s} \equiv \sum\left(\partial M_{k l}^{*} / \partial \theta_{s}\right) \omega_{s}
\end{aligned}
$$

we get,

$$
\begin{equation*}
\left(\partial T^{*} / \partial \omega_{k}\right)^{*}=\sum M_{k l}^{*} \dot{\omega}_{l}+\sum \sum\left(\partial M_{k l}^{*} / \partial \theta_{s}\right) \omega_{s} \omega_{l} . \tag{3.10.9h}
\end{equation*}
$$

Introducing the above into the stationary version of (3.10.9a) results in

$$
\begin{align*}
I_{k} \equiv & d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}+\sum \sum \gamma_{k l}^{r}\left(\partial T^{*} / \partial \omega_{r}\right) \omega_{l} \\
= & \sum M^{*}{ }_{k l}\left(d \omega_{l} / d t\right)+\sum \sum \sum \gamma_{k l}^{r} M^{*}{ }_{r s} \omega_{s} \omega_{l} \\
& +\sum \sum\left[\partial M_{k l}^{*} / \partial \theta_{s}-(1 / 2)\left(\partial M^{*}{ }_{s l} / \partial \theta_{k}\right)\right] \omega_{s} \omega_{l} \tag{3.10.9i}
\end{align*}
$$

or, since the third (double sum) term equals

$$
\begin{align*}
(1 / 2) \sum \sum\left(\partial M_{k s}^{*} / \partial \theta_{l}+\partial M_{k l}^{*} / \partial \theta_{s}-\right. & \left.\partial M^{*}{ }_{s l} / \partial \theta_{k}\right) \omega_{s} \omega_{l} \\
& \equiv \sum \sum \Gamma_{k, l s}^{*} \omega_{s} \omega_{l} \tag{3.10.9j}
\end{align*}
$$

we finally obtain the (3.10.3b)-like form

$$
\begin{equation*}
I_{k}=\sum M_{k l}^{*}\left(d \omega_{l} / d t\right)+\sum \sum \Lambda_{k, l s} \omega_{s} \omega_{l} \tag{3.10.9k}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{k, l s} \equiv \Gamma_{k, l s}^{*}+\sum \gamma_{k l}^{r} M_{r s}^{*}{ }_{r s} \tag{3.10.91}
\end{equation*}
$$

that is, it is the just introduced quantities $\Lambda_{k, l s}$ that deserve to be called nonholonomic Christoffel symbols of the first kind, rather than the formally similar to the holonomic ones $\Gamma^{*} k, l s$, eqs. (3.10.9d). Finally, it is not hard to see that we can replace in (3.10.9k) the $\Lambda_{k, l s}$ with their symmetric parts (1/2) $\left(\Lambda_{k, l s}+\Lambda_{k, s l}\right)$. Let the reader extend these results to the nonstationary case. [For a detailed tensorial treatment of these topics, see, for example, Papastavridis (1999, chaps. 6, 7).]

Problem 3.10.1 Explicit Form of Chaplygin's Equations [recall (3.8.13a ff.)]. Consider a Chaplygin system; that is, one with constraints:

$$
\begin{equation*}
\dot{q}_{D}=\sum b_{D I} \dot{q}_{I}, \quad\left(D, D^{\prime}, D^{\prime \prime} \ldots=1, \ldots, m ; I, I^{\prime}, I^{\prime \prime} \ldots=m+1, \ldots, n\right) \tag{a}
\end{equation*}
$$

where

$$
b_{D I}=b_{D I}\left(q_{1}, \ldots, q_{m}\right) \equiv b_{D I}\left(q_{I}\right)
$$

(i) Show that its (double) kinetic energy becomes

$$
\begin{align*}
2 T & \equiv \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l} \\
& =\cdots=\sum \sum M_{I I^{\prime} o} \dot{q}_{I} \dot{q}_{I^{\prime}}=\sum \sum m_{I I^{\prime}} \dot{q}_{I} \dot{q}_{I^{\prime}} \equiv 2 T_{o}\left(q_{I}, \dot{q}_{I}\right)=2 T_{o}, \tag{b}
\end{align*}
$$

where

$$
\begin{gather*}
M_{k l}=M_{k l}\left(q_{I}\right) \quad(k, l=1, \ldots, n), \tag{cl}\\
M_{I I^{\prime} o} \equiv M_{I I^{\prime}}+2 \sum b_{D I^{\prime}} M_{D I}+\sum b_{D I} b_{D^{\prime} I^{\prime}} M_{D D^{\prime}} \quad\left(\neq M_{I^{\prime} I o}\right), \tag{c2}\\
2 m_{I I^{\prime}}=2 m_{I^{\prime} I} \equiv M_{I I^{\prime} o}+M_{I^{\prime} I o} \quad\left(\text { functions of the } q_{I} ’ s\right) . \tag{c3}
\end{gather*}
$$

(ii) Then show, by differentiating (b), that Chaplygin's equations [recall (3.8.13o)]

$$
\begin{equation*}
\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum \sum t_{I I^{\prime}}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}}=Q_{I o} \tag{d}
\end{equation*}
$$

where

$$
\begin{gather*}
-t_{I I^{\prime}}^{D} \equiv \partial b_{D I^{\prime}} / \partial q_{I}-\partial b_{D I} / \partial q_{I^{\prime}}=\text { Chaplygin coefficients } \quad\left(=t_{I^{\prime} I}\right) \tag{d1}\\
Q_{I o} \equiv Q_{I}+\sum b_{D I} Q_{D} \tag{d2}
\end{gather*}
$$

assume the explicit, (3.10.9k)-like, form

$$
\begin{equation*}
\sum m_{I I^{\prime}} \ddot{q}_{I^{\prime}}+\sum \sum \lambda_{I, I^{\prime} I^{\prime \prime}} \dot{q}_{I^{\prime}} \dot{q}_{I^{\prime \prime}}=Q_{I o} \tag{e}
\end{equation*}
$$

where

$$
\begin{align*}
\lambda_{I, I^{\prime} I^{\prime \prime}} \equiv & \Gamma_{I, I^{\prime} I^{\prime \prime}}^{\prime}+\sum\left(M_{D I^{\prime \prime}}+\sum b_{D^{\prime} I^{\prime \prime}} M_{D D^{\prime}}\right) t_{I I^{\prime}}^{D} \quad\left(\neq \lambda_{I, I^{\prime \prime} I^{\prime}}\right), \tag{e1}\\
2 \Gamma_{I, I^{\prime} I^{\prime \prime}}^{\prime} & \equiv 2 \Gamma_{I, I^{\prime \prime} I^{\prime}}^{\prime}=\partial m_{I I^{\prime \prime}} / \partial q_{I^{\prime}}+\partial m_{I I^{\prime}} / \partial q_{I^{\prime \prime}}-\partial m_{I^{\prime} I^{\prime \prime}} / \partial q_{I} \\
& =\left(\text { double } \text { first-kind Christoffels, based on the }\left\{m_{I I^{\prime}}\right\} .\right. \tag{e2}
\end{align*}
$$

Note that: (i) in (e), the $\lambda_{I, I^{\prime} I^{\prime \prime}}$ may be replaced by their symmetric parts in their last two subscripts: $\left(\lambda_{I, I^{\prime} I^{\prime \prime}}+\lambda_{I, I^{\prime \prime} I^{\prime}}\right) / 2$; and (ii) equations (e) look like the Lagrangean equations of a scleronomic and holonomic system with $n-m$ Lagrangean coordinates q_{I}, kinetic energy given by (b), first-kind Christoffels $=$ the symmetric parts of the $\lambda_{I, I^{\prime} I^{\prime \prime}}$, and under the impressed forces $Q_{I o}$.

Linear Variational Equations; or Method of Small Oscillations (Routh, Poincaré et al.)

Let us consider, with no real loss of generality, a scleronomic and holonomic system S with equations of motion

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=Q_{k}, \quad \text { where } \quad 2 T=\sum \sum M_{k l}(q) \dot{q}_{k} \dot{q}_{l} \quad(k, l=1, \ldots, n), \tag{3.10.10}
\end{equation*}
$$

in a completely known state of motion (or equilibrium), henceforth referred to as the fundamental, or undisturbed, state I; and given by the known particular solution(s) to (3.10.10) $q_{k}=f_{k}(t)$. Below, we examine the continuous motions of S in the neighborhood of $I, I+\Delta(I) \equiv I I$, resulting from small disturbances (in some sense) applied to I. Such a study has a twofold usefulness: (i) it informs us about the stability/instability of the original state I; and/or (ii) helps us to understand, approximately, the general motion of S whenever the exact solution of (3.10.10) is beyond our reach. Since this is an approximate method, with no error analysis available, its results
should be applied with caution; for example, in the case of finite disturbances on I, described by nonlinear perturbation equations, it may lead to completely false results.

Linear Perturbation Equations

Let the solution(s) of (3.10.10) for the perturbed state II be $q_{k}=f_{k}(t)+x_{k}(t)$, where $x_{k}=x_{k}(t)$ is the small perturbation describing the temporal evolution of $I I-I \equiv \Delta(I) \approx \delta(I)$. [Generally, we use $\delta(\ldots)$ for first-order changes and $\Delta(\ldots)$ for total changes, from I.] Then, with

$$
\begin{equation*}
T(I I) \equiv T(q, \dot{q}) \equiv T(f+x, \dot{f}+\dot{x}) \equiv T, \quad T(I) \equiv T(f, \dot{f}) \equiv T_{o} \tag{3.10.10a}
\end{equation*}
$$

and all $M_{k l}$-derivatives evaluated at I, we obtain, to the second x, \dot{x}-order,

$$
\begin{align*}
2 T= & \sum \sum\left\{M_{k l}+\left(\sum\left(\partial M_{k l} / \partial q_{r}\right) x_{r}\right.\right. \\
& \left.\left.+(1 / 2) \sum \sum\left(\partial^{2} M_{k l} / \partial q_{r} \partial q_{s}\right) x_{r} x_{s}\right)\right\}\left(\dot{f}_{k}+\dot{x}_{k}\right)\left(\dot{f}_{l}+\dot{x}_{l}\right) \\
= & \cdots=2\left(T_{o}+\Delta T\right)=2\left(T_{o}+\Delta T_{1}+\Delta T_{2}\right) \tag{3.10.10b}
\end{align*}
$$

where

$$
\begin{align*}
& 2 T_{o} \equiv \sum \sum M_{k l} \dot{f}_{k} \dot{f}_{l} \tag{3.10.10c}\\
& \Delta T_{1} \equiv \sum\left(\alpha_{k} x_{k}+\beta_{k} \dot{x}_{k}\right), \tag{3.10.10d}\\
& 2 \alpha_{k} \equiv \sum \sum\left(\partial M_{r l} / \partial q_{k}\right) \dot{f}_{r} \dot{f}_{l} \equiv \sum \varepsilon_{l k} \dot{f}_{l}, \quad \beta_{k} \equiv \sum M_{k l} \dot{f}_{l} \\
& 2 \Delta T_{2} \equiv \sum \sum \mu_{k l} \dot{x}_{k} \dot{x}_{l}+2 \sum \sum \varepsilon_{k l} \dot{x}_{k} x_{l}+\sum \sum \zeta_{k l} x_{k} x_{l} \\
&\left(\equiv 2 \Delta T_{2,2}+2 \Delta T_{2,1}+2 \Delta T_{2,0}\right), \tag{3.10.10f}\\
& \mu_{k l} \equiv M_{k l} \quad\left(=\mu_{l k}\right), \tag{3.10.10.g}\\
& \varepsilon_{k l} \equiv \sum\left(\partial M_{k r} / \partial q_{l}\right) \dot{f}_{r}=\sum\left(\partial M_{r k} / \partial q_{l}\right) \dot{f}_{r} \quad\left(\neq \varepsilon_{l k}, \text { in general }\right), \tag{3.10.10h}\\
& 2 \zeta_{k l} \equiv \sum \sum\left(\partial^{2} M_{r s} / \partial q_{k} \partial q_{l}\right) \dot{f}_{r} \dot{f}_{s} \quad\left(=2 \zeta_{l k}\right) . \tag{3.10.10i}
\end{align*}
$$

Similarly, with

$$
\begin{align*}
& Q_{k}(I I) \equiv Q_{k}(t, q, \dot{q})=Q_{k}(t, f+x, \dot{f}+\dot{x}) \equiv Q_{k} \\
& Q_{k}(I) \equiv Q_{k}(t, f, \dot{f}) \equiv Q_{k, o} \tag{3.10.10j}
\end{align*}
$$

and all Q_{k}-derivatives evaluated at I, we obtain, to the first x, \dot{x}-order,

$$
\begin{gather*}
Q_{k}=Q_{k, o}+\sum\left(\eta_{k l} x_{l}+\theta_{k l} \dot{x}_{l}\right) \tag{3.10.10k}\\
\eta_{k l} \equiv \partial Q_{k} / \partial q_{l} \quad\left(\neq \eta_{l k}, \text { in general }\right), \quad \theta_{k l} \equiv \partial Q_{k} / \partial \dot{q}_{l} \quad\left(\neq \theta_{l k}, \text { in general }\right) . \tag{3.10.101}
\end{gather*}
$$

Now, since the f_{k} and \dot{f}_{k} (i.e., the fundamental state I), are known functions of time (equal to constants or zero in the case of equilibrium), T can be viewed as the (approximate) kinetic energy of a rheonomic system with hitherto unknown and uncon-
strained Lagrangean coordinates x_{k} recalling ex. 3.9.6). Therefore, the equations of motion of the adjacent state II are the Lagrangean equations for the x_{k} :

$$
\begin{equation*}
\left(\partial T / \partial \dot{x}_{k}\right)^{\cdot}-\partial T / \partial x_{k}=Q_{k} \tag{3.10.11}
\end{equation*}
$$

But, by (3.10.10a-1),

$$
\begin{align*}
& \partial T / \partial x_{k}=\alpha_{k}+\sum\left(\zeta_{k l} x_{l}+\varepsilon_{l k} \dot{x}_{l}\right), \tag{3.10.11a}\\
& \partial T / \partial \dot{x}_{k}=\beta_{k}+\sum\left(\varepsilon_{k l} x_{l}+\mu_{k l} \dot{x}_{l}\right), \tag{3.10.11b}
\end{align*}
$$

and the undisturbed state I satisfies the equations
$\left(\partial T_{o} / \partial \dot{f}_{k}\right)^{\cdot}-\partial T_{o} / \partial f_{k}=Q_{k, o}$,

$$
\begin{equation*}
\left(\sum M_{k l} \dot{f}_{l}\right)^{\cdot}-(1 / 2) \sum \sum\left(\partial M_{r l} / \partial q_{k}\right) \dot{f}_{r} \dot{f}_{l} \equiv d \beta_{k} / d t-\alpha_{k}=Q_{k, o} \tag{3.10.11c}
\end{equation*}
$$

i.e., (3.10.10) with $x=0, \dot{x}=0$. Therefore, eqs. (3.10.11), finally, assume the following form of linear (ized) and homogeneous perturbation equations:

$$
\begin{align*}
\sum\left\{\mu_{k l} \ddot{x}_{l}+\left[\left(\varepsilon_{k l}-\varepsilon_{l k}\right)+\dot{\mu}_{k l}\right] \dot{x}_{l}+\right. & \left.\left(\dot{\varepsilon}_{k l}-\zeta_{k l}\right) x_{l}\right\} \\
& =\sum\left(\eta_{k l} x_{l}+\theta_{k l} \dot{x}_{l}\right) \tag{3.10.12}
\end{align*}
$$

REMARKS

(i) These equations can also be obtained by substituting $q_{k}=f_{k}+x_{k}, \dot{q}_{k}=\dot{f}_{k}+\dot{x}_{k}$ in $\partial T / \partial \dot{q}_{k}$ and $\partial T / \partial q_{k}$, expanding à la Taylor around I, and keeping only up to linear terms in the x, \dot{x} :
(a) $\partial T / \partial \dot{q}_{k}=\sum\left(M_{k l} \dot{f}_{l}+M_{k l} \dot{x}_{l}\right)+\sum \sum\left[\left(\partial M_{k l} / \partial q_{r}\right) \dot{f}_{l}\right] x_{r}$,

$$
\Rightarrow\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}=\sum\left(M_{k l} \ddot{f}_{l}+\dot{M}_{k l} \dot{f}_{l}+M_{k l} \ddot{x}_{l}+\dot{M}_{k l} \dot{x}_{l}\right)
$$

$$
\begin{equation*}
+\sum \sum\left\{\left(\partial M_{k l} / \partial q_{r}\right) \dot{f}_{l} \dot{x}_{r}+\left[\left(\partial M_{k l} / \partial q_{r}\right) \dot{f}_{l}\right]^{\cdot} x_{r}\right\} \tag{3.10.11d}
\end{equation*}
$$

(b)

$$
\begin{align*}
\partial T / \partial q_{k}= & (1 / 2) \sum \sum\left(\partial M_{r l} / \partial q_{k}\right) \dot{f}_{r} \dot{f}_{l}+\sum \sum\left(\partial M_{r l} / \partial q_{k}\right) \dot{f}_{r} \dot{x}_{l} \\
& +(1 / 2) \sum \sum \sum\left[\left(\partial^{2} M_{r s} / \partial q_{l} \partial q_{k}\right) \dot{f}_{r} \dot{f}_{s}\right] x_{l}, \tag{3.10.11e}
\end{align*}
$$

and similarly for Q_{k} [as in (3.10.10j-1)]; and then inserting these values in (3.10.10) while noting that, since the $f_{k}(t)$ describe the fundamental state, (3.10.11c) holds:

$$
\begin{equation*}
\sum\left(M_{k l} \ddot{f}_{l}+\dot{M}_{k l} \dot{f}_{l}\right)-(1 / 2) \sum \sum\left(\partial M_{r l} / \partial q_{k}\right) \dot{f}_{r} \dot{f}_{l}=Q_{k, o} \tag{3.10.11f}
\end{equation*}
$$

Again, the result is eqs. (3.10.12).
(ii) If, during the perturbed motion $\Delta(I)$, an additional force X_{k}, not provided by the expansion (3.10.10k) occurs, then such a term should be added to the right side of (3.10.12). Here, we shall assume that $X_{k}=0$.

Since $f_{r}=f_{r}(t)=$ known function of time, so are the coefficients $\mu, \varepsilon, \zeta, \eta, \theta$ in (3.10.12). However, from the mathematical viewpoint, even such a linear but variable coefficient system is (or can be) quite complicated. Therefore, to make some headway, from now on we shall restrict ourselves to the special case where all these
coefficients are constant in time. Then, (3.10.12) reduces to the constant coefficient system:

$$
\begin{equation*}
\sum\left[\mu_{k l} \ddot{x}_{l}+\left(\varepsilon_{k l}-\varepsilon_{l k}\right) \dot{x}_{l}-\zeta_{k l} x_{l}\right]=\sum\left(\eta_{k l} x_{l}+\theta_{k l} \dot{x}_{l}\right) \tag{3.10.13}
\end{equation*}
$$

whose mathematical theory is well known (see below).

Steady Motion

A fundamental state whose linear perturbational equations have constant coefficients, like (3.10.13), is called a state of steady motion (Routh, 1877), or, sometimes (but not quite correctly), stationary motion. Common examples of such a state are (i) absolute or relative equilibrium (in which case, the f_{k} are constant or zero); (ii) cyclic systems undergoing "isocyclic" motions [i.e., certain of their coordinates (the "nonignorable" ones) and certain of their velocities (the "ignorable" ones) remain constant (§8.5)].

We begin our study of steady motion by noting that, in such a state, since the $\mu, \varepsilon, \zeta, \eta, \theta$ are constant, the perturbed motion $x_{k}(t)$ is independent of the particular instant at which the disturbance is applied to that state.

Next, let us examine closely the right (perturbed force) side of (3.10.13). Following Kelvin and Tait, we call the x-proportional terms positional forces, and the \dot{x}-proportional terms motional forces. Each of these terms can be further subdivided into its symmetric and antisymmetric parts; the latter are defined, respectively, by the following unique decompositions:

$$
\begin{equation*}
\eta_{k l}=\eta_{k l}^{\prime}+\eta_{k l}^{\prime \prime}, \quad \theta_{k l}=\theta_{k l}^{\prime}+\theta_{k l}^{\prime \prime} \tag{3.10.14}
\end{equation*}
$$

where the symmetric parts (single accents) are defined by

$$
\begin{equation*}
\eta_{k l}^{\prime}=\eta_{l k}^{\prime} \equiv(1 / 2)\left(\eta_{k l}+\eta_{l k}\right), \quad \theta_{k l}^{\prime}=\theta_{l k}^{\prime} \equiv(1 / 2)\left(\theta_{k l}+\theta_{l k}\right), \tag{3.10.14a}
\end{equation*}
$$

and the antisymmetric ones (double accents) by

$$
\begin{equation*}
\eta_{k l}^{\prime \prime}=-\eta_{l k}^{\prime \prime} \equiv(1 / 2)\left(\eta_{k l}-\eta_{l k}\right), \quad \theta_{k l}^{\prime \prime}=-\theta_{l k}^{\prime \prime} \equiv(1 / 2)\left(\theta_{k l}-\theta_{l k}\right) ; \tag{3.10.14b}
\end{equation*}
$$

that is, $\eta_{k k}^{\prime}=\eta_{k k}, \eta_{k k}^{\prime \prime}=0$ and $\theta_{k k}^{\prime}=\theta_{k k}, \theta_{k k}^{\prime \prime}=0$. The so-resulting four types of forces we classify as follows:

$$
\begin{equation*}
\sum \eta_{k l}^{\prime} x_{l} \equiv \eta_{k}^{\prime}=\text { potential positional forces } \tag{i}
\end{equation*}
$$

derivable from the potential:

$$
\begin{equation*}
V^{\prime}=-(1 / 2) \sum \sum \eta_{k l}^{\prime} x_{k} x_{l} \Rightarrow-\left(\partial V^{\prime} / \partial x_{k}\right)=\eta_{k}^{\prime} \tag{3.10.14d}
\end{equation*}
$$

and whose inertial counterparts are the $-\zeta_{k l} x_{l}$ terms in (3.10.13).
(ii) $\sum \eta_{k l}^{\prime \prime} x_{l} \equiv \eta_{k}^{\prime \prime}=$ nonpotential $(\Rightarrow$ nonconservative), or circulatory,

$$
\begin{equation*}
\text { positional forces }=(1 / 2) \sum\left(\partial \eta_{k}^{\prime \prime} / \partial x_{l}-\partial \eta_{l}^{\prime \prime} / \partial x_{k}\right) x_{l} \tag{3.10.14e}
\end{equation*}
$$

where the $\eta_{k l}^{\prime \prime}$ are referred to as vorticity coefficients. [Such forces are also called artificial (Thomson and Tait), since their work over a closed route of configurations
is nonzero; and so, upon repetition of that cycle, they can produce unbounded amounts of energy].

$$
\begin{equation*}
\sum \theta_{k l}^{\prime} \dot{x}_{l} \equiv \theta_{k}^{\prime}=\text { damping motional forces, } \tag{iii}
\end{equation*}
$$

derivable from the Rayleigh dissipation function (3.9.10a ff.; with $F \rightarrow D^{\prime}$)

$$
\begin{equation*}
D^{\prime} \equiv-(1 / 2) \sum \sum \theta_{k l}^{\prime} \dot{x}_{k} \dot{x}_{l} \Rightarrow-\left(\partial D^{\prime} / \partial \dot{x}_{k}\right)=\theta_{k}^{\prime} . \tag{3.10.14~g}
\end{equation*}
$$

If the (perturbational) power of these forces:

$$
\sum \theta_{k}^{\prime} \dot{x}_{k}=\sum \sum \theta_{k l}^{\prime} \dot{x}_{k} \dot{x}_{l}=-2 D^{\prime}
$$

is negative definite (in the \dot{x}), then damping is called complete; if it is only negative semidefinite (i.e., it may vanish for some $\dot{x} \neq 0$), then it is called pervasive. (This difference does matter in stability questions.)
(iv) $\quad \sum \theta^{\prime \prime}{ }_{k l} \dot{x}_{l} \equiv \theta^{\prime \prime}{ }_{k}=$ gyroscopic motional forces,
derivable from the gyroscopic function

$$
\begin{equation*}
\Theta^{\prime \prime}=-\sum \sum \theta_{k l}^{\prime \prime} x_{k} \dot{x}_{l} \Rightarrow-\left(\partial \Theta^{\prime \prime} / \partial x_{k}\right)=\theta_{k}^{\prime \prime} \tag{3.10.14i}
\end{equation*}
$$

and whose inertial counterparts are the $\left(\varepsilon_{k l}-\varepsilon_{l k}\right) \dot{x}_{l}$ terms in (3.10.13).
To understand these forces and their effects on the disturbance $x_{k}(t)$ better, let us form the power equation of the perturbed motion: multiplying (3.10.13) with \dot{x}_{k} and summing over k, while noting that the gyroscopic contributions from both sides vanish, we obtain

$$
\begin{equation*}
d(\Delta h) / d t=C-2 D^{\prime} \tag{3.10.15}
\end{equation*}
$$

where [recalling (3.10.10f)]

$$
\begin{align*}
2 \Delta h & \equiv \sum \sum\left(\mu_{k l} \dot{x}_{k} \dot{x}_{l}-\zeta_{k l} x_{k} x_{l}\right)+2 V^{\prime} \\
& \equiv 2\left[\Delta T_{2,2}+\left(V^{\prime}-\Delta T_{2,0}\right)\right]=2(\text { generalized }) \text { energy of disturbance }, \tag{3.10.15a}\\
C & \equiv \sum \eta_{k}^{\prime \prime} \dot{x}_{k}=\sum \sum \eta_{k l}^{\prime \prime} x_{l} \dot{x}_{k}=\text { circulatory power. } \tag{3.10.15b}
\end{align*}
$$

Hence, if $C=0$, then $2 D^{\prime}$ represents the rate of decrease of the perturbational energy Δh.

For stability investigations (see below), it is convenient to bring all terms of (3.10.13) on the same side and group them appropriately as follows (with some renaming, to conform with standard contemporary practices):

$$
\begin{equation*}
\sum\left[M_{k l} \ddot{x}_{l}+\left(D_{k l}+G_{k l}\right) \dot{x}_{l}+\left(K_{k l}+N_{k l}\right) x_{l}\right]=0 \tag{3.10.16}
\end{equation*}
$$

where

$$
\begin{align*}
M_{k l}= & M_{l k} \equiv \mu_{k l}=\text { coefficients of inertia/mass } \\
& {\left[\mathbf{M}=\left(M_{k l}\right): \text { symmetric and positive definite matrix }\right], } \tag{3.10.16a}
\end{align*}
$$

$D_{k l}=D_{l k} \equiv-\theta_{k l}^{\prime}=$ damping coefficients
$\left[\mathbf{D}=\left(D_{k l}\right)\right.$: symmetric matrix; if positive definite: complete damping, if positive semidefinite: pervasive damping],
$G_{k l}=-G_{l k} \equiv\left(\varepsilon_{k l}-\varepsilon_{l k}\right)-\theta^{\prime \prime}{ }_{k l}=$ gyroscopic coefficients
$\left[\mathbf{G}=\left(G_{k l}\right)\right.$: antisymmetric matrix, no general sign properties],
$K_{k l}=K_{l k} \equiv-\left(\zeta_{k l}+\eta^{\prime}{ }_{k l}\right)=$ conservative positional coefficients
$\left[\mathbf{K}=\left(K_{k l}\right)\right.$: symmetric matrix; if positive definite, then static stability $]$,
$N_{k l}=-N_{l k} \equiv-\eta^{\prime \prime}{ }_{k l}=$ nonconservative positional, or circulatory, coefficients

$$
\begin{equation*}
\left[\mathbf{N}=\left(N_{k l}\right): \text { antisymmetric matrix, no general sign properties }\right] . \tag{3.10.16e}
\end{equation*}
$$

Stability of Steady Motion (see also §8.6)
Substituting into (3.10.16) $x_{k}=x_{k}(t)=X_{k} \exp (\lambda t) \quad\left(X_{k}=\right.$ constant amplitude, depending on the initial conditions, and λ an exponent to be determined), and requiring nontrivial solutions, we are led in well-known ways to the system's secular or characteristic equation

$$
\begin{equation*}
\Delta(\lambda) \equiv\left|M_{k l} \lambda^{2}+\left(D_{k l}+G_{k l}\right) \lambda+\left(K_{k l}+N_{k l}\right)\right|=0 \tag{3.10.17}
\end{equation*}
$$

or, if expanded,

$$
\begin{equation*}
\Delta(\lambda) \equiv a_{0} \lambda^{m}+a_{1} \lambda^{m-1}+a_{2} \lambda^{m-2}+\cdots+a_{m-1} \lambda+a_{m}=0 \tag{3.10.18}
\end{equation*}
$$

where $m=2 n$, all coefficients are real, and (by Viète's rules, or by induction)

$$
\begin{equation*}
a_{0}=\left|M_{k l}\right|>0 \quad \text { and } \quad a_{m}=\left|K_{k l}+N_{k l}\right| . \tag{3.10.18a}
\end{equation*}
$$

Brief Detour/Summary of Relevant Fundamentals of the Theory of Stability of Motion

DEFINITION

A (fundamental) state of motion I is called stable, relative to bounded initial disturbances (i.e., initial condition changes), if the resulting perturbation from it, $\Delta(I)$, also remains bounded for all subsequent time. More precisely, let $y=y(t) \equiv(x, \dot{x})$ and $t_{\text {initial }} \equiv t_{i}$. Then, I is stable if, for any constant $\varepsilon>0$, another constant $\delta=\delta(\varepsilon)>0$ can be found such that, from $\left|y_{i} \equiv y\left(t_{i}\right)\right|<\delta$, it follows that $|y(t)|<\varepsilon$ for all $t>t_{i}$; that is, I is stable if it is possible to keep y as small as we wish by appropriately restricting its initial value y_{i}. The intuitive/popular understanding of a stable state of motion (or equilibrium) as one in which "the smaller the
initial disturbance, the smaller the subsequent perturbation from it" corresponds, clearly, to the special case where $\delta(\ldots)$ is a monotonically decreasing function of ε. (Outside of the absolute value $|\ldots|$, other "norms" $\|\ldots\|$ can be selected.) In many applications, however, such boundedness of $\Delta(I)$ is not enough; there, for stability, the disturbance must also diminish in time, and eventually die away, that is, all so perturbed motions must tend toward I as time increases indefinitely; mathematically: $|y| \rightarrow 0$, as $t \rightarrow \infty$. This, sharper, type of stability is called asymptotic stability, while the earlier one requiring only $\Delta(I)$-boundedness is referred to as stability in the sense of Lagrange. If I is stable for any size initial disturbance, then I is called totally or globally stable; while if it is stable only for "small" initial disturbances, then it is called, simply, stable (e.g., a ship safe for ocean voyages vs. a ship safe only for Mediterranean sea voyages). Clearly, in practice, only the latter type of stability is serviceable. For nonlinear systems in particular, the initial disturbances must be small enough so that the perturbed motions are still controlled by the fundamental motion I. (We should remark that, since, out of nonlinear equations of motion, qualitatively new and unexpected phenomena may emerge, no single definition of stability of motion, that is uniformly physically meaningful and technically useful, is possible or desirable - stability is a human-made condition, not an ever valid and exceptionless physical law, like the equations of motion. As the distinguished applied mathematician R. Bellman put it, "stability is a much overburdened word with an unstabilized definition." Below, only the practically important asymptotic stability is examined.)

Usually, the exact equations of a perturbation $\Delta(I)$, from I, consist of a linear part [which here is assumed to (exist and) be the constant coefficient, or autonomous, system (3.10.16)] and of a nonlinear part. Now, it is shown in the theory of stability [A. M. Lyapounov's "first approximation" (early 1890s); also H. Poincaré's "équations aux variations" (1892)] that for such a system:

1. If the real parts of all roots of its characteristic equation $(3.10 .17,18)$ are negative, then the fundamental state I is asymptotically stable, irrespectively of the nonlinear terms of $\Delta(I)$; that is, our linearized analysis suffices to establish the asymptotic stability of I.
2. If even one of the roots of $(3.10 .17,18)$ has a positive real part, then I is unstable, irrespectively of the nonlinear terms of $\Delta(I)$; again, the linearized analysis suffices.
3. Critical (or neutral, or marginally stable) case: If even one of the roots of $(3.10 .17,18)$ has zero real part while its remaining roots, if any, have negative real parts [i.e., if the linearized perturbations are stable but not asymptotically stable - provided that those zero-real-part roots are distinct, so that their contributions to the general solution of (3.10.16) have no t-proportional (secular) terms, otherwise I is unstable as in the second case], the stability of I cannot be decided from the first approximation (3.10.16), we must also examine the nonlinear part of the exact perturbation equations; the linearized analysis does not suffice! Physically, the presence of a root with zero real part indicates an exact balance among certain of the system's physical properties/parameters and associated forces. Such systems may be structurally unstable, that is, they may be such that, if their parameters and forces are subjected to small variations, the nature of their motions changes completely, for example, from oscillatory to nonoscillatory. So, in practical terms (i.e., unavoidable imperfections/irregularities/impurities, etc.), the critical case should be classified as (nonlinearly) unstable!

For these reasons, the behavior of the linearized system (3.10.16) in cases 1 and 2 is called significant (i.e., conclusive), while that in case 3 is called nonsignificant (i.e. inconclusive). Obviously: (i) If the linear part of $\Delta(I)$ is absent, the above results do not apply; while (ii) if its nonlinear part is absent, then we can safely conclude that the state I is: case 1 , asymptotically stable; case 2 , unstable; and case 3 , stable/not asymptotically stable.]

From the above it follows that, since the imaginary parts of the roots of (3.10.18) do not affect the stability of I, both ordinary and/or asymptotic, it is not necessary to actually solve (3.10.18), just check the sign of the real part of its roots. This is achieved by several (necessary and/or sufficient) criteria of various degrees of generality and ease of application. Below we describe two of the most well-known such criteria: those of Routh (1876-1877) and Hurwitz (1895) [also Clifford (1868) and Hermite (1850)].
(i) Criterion of Routh. Let us build the following array of Routh coefficients:

a_{0}	a_{2}	a_{4}
a_{1}	a_{3}	a_{5}
$b_{1} \equiv\left(a_{1} a_{2}-a_{0} a_{3}\right) / a_{1}$	$b_{2} \equiv\left(a_{1} a_{4}-a_{0} a_{5}\right) / a_{1}$	$b_{3} \equiv\left(a_{1} a_{6}-a_{0} a_{7}\right) / a_{1}$
\cdots		
$c_{1} \equiv\left(b_{1} a_{3}-a_{1} b_{2}\right) / b_{1}$	$c_{2} \equiv\left(b_{1} a_{5}-a_{1} b_{3}\right) / b_{1}$	$c_{3} \equiv\left(b_{1} a_{7}-a_{1} b_{4}\right) / b_{1}$

that is, its first (second) row consists of the even (odd) coefficients of (3.10.18); also, $a_{\bullet}=0$, for $\bullet>m$. Now, all the roots of the characteristic equation have negative real parts (\Rightarrow the fundamental state I is asymptotically stable) if and only if all the elements of the first column of the above table are positive; that is, if and only if

$$
\begin{equation*}
a_{0}>0, \quad a_{1}>0, \quad b_{1}>0, \quad c_{1}>0, \quad d_{1}>0, \ldots ; \tag{3.10.18b}
\end{equation*}
$$

or, more generally, if they have the same sign - it can be shown that the number of roots with positive real parts (\Rightarrow instability) equals the number of sign changes.
(ii) Criterion of Hurwitz. Let us build the following m Hurwitz determinants:

$$
H_{h} \equiv\left|\begin{array}{ccccc}
a_{1} & a_{3} & a_{5} & \cdots & a_{2 h-1} \tag{3.10.18c}\\
a_{0} & a_{2} & a_{4} & \cdots & a_{2 h-2} \\
0 & a_{1} & a_{3} & \cdots & a_{2 h-3} \\
0 & a_{0} & a_{2} & \cdots & a_{2 h-4} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
0 & 0 & 0 & \cdots & a_{h}
\end{array}\right| \quad(h=1,2, \ldots, m),
$$

that is, we build H_{m} and its $m-1$ principal minors, while taking $a_{\bullet}=0$ for all $\bullet>m$ or <0 :

$$
H_{1}=a_{1}, \quad H_{2}=\left|\begin{array}{ll}
a_{1} & a_{3} \tag{3.10.18d}\\
a_{0} & a_{2}
\end{array}\right|, \quad H_{3}=\left|\begin{array}{ccc}
a_{1} & a_{3} & a_{5} \\
a_{0} & a_{2} & a_{4} \\
0 & a_{1} & a_{3}
\end{array}\right|, \ldots
$$

Now, assuming that $a_{0}>0$ [if it is not, we multiply (3.10.18) with -1], all the roots of the characteristic equation have negative real parts $(\Rightarrow$ the fundamental state I is asymptotic stability) if and only if all m determinants H_{h} are positive, that is,

$$
\begin{equation*}
a_{0}>0, \quad \text { and } \quad H_{1}>0, \ldots, H_{m-1}>0, \quad H_{m}>0 \tag{3.10.18e}
\end{equation*}
$$

- Since $H_{m}=a_{m} H_{m-1}$ (verify this!), these inequalities can be replaced by

$$
\begin{equation*}
a_{0}>0, \quad \text { and } \quad H_{1}>0, \ldots, H_{m-1}>0, \quad a_{m}>0 \tag{3.10.18f}
\end{equation*}
$$

that is, there is no need to calculate H_{m}, just check the signs of the first $m-1$ Hurwitz determinants and a_{m} (and a_{0}).

- Further, it can be shown that from (3.10.18e, f) it follows that

$$
\begin{equation*}
a_{0}>0, \quad \text { and } \quad a_{1}>0, \ldots, a_{m-1}>0, \quad a_{m}>0 \tag{3.10.18~g}
\end{equation*}
$$

and therefore negativity of even one of the coefficients of (3.10.18) indicates instability.

REMARKS

(i) For detailed discussions and proofs of these two criteria, see the original works of Routh and Hurwitz; also Bellman and Kalaba (1964: collection of original papers), Chetayev (1961, chap. 4), Di Stefano et al. (1990, chap. 5), Gantmacher (1970, pp. 197-201), Leipholz (1970, §1.3, pp. 21-59), Mansour (1999, pp. R11R15), McCuskey (1959, pp. 185-187), Synge (1960, pp. 185-188).
(ii) The criteria are theoretically equivalent (as can be verified by, say, the method of induction), but Hurwitz's criterion has the slight advantage over that of Routh of avoiding the calculation of fractions; hence the common term Routh-Hurwitz criterion.
(iii) The Routh-Hurwitz criteria are most suitable if all the coefficients of (3.10.18), $a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}$ are given numbers. If, however, these coefficients contain parameters, then the implementation of the criteria becomes complicated. For this reason, throughout the 20th century, a number of alternative stability criteria have been formulated, especially criteria that are based directly on the sign properties of the coefficient matrices of (3.10.16); that is, (3.10.16a-e); and thus avoid the calculation of the coefficients of (3.10.18) and associated Routh coefficients (3.10.18b)/Hurwitz determinants (3.10.18c); e.g. criteria of Liénard-Chipart, Mikhailov et al.
(iv) On this technically important topic there exists, understandably, a large body of excellent literature; for example, (alphabetically): Bremer (1988, chap. 6), Hiller (1983, chap. 8), Hughes (1986, appendix A, pp. 480-521), Huseyin (1978), Magnus (1970), Merkin (1987), Müller (1977), Müller and Schiehlen (1976/1985), and Pfeiffer (1989).

EXAMPLE
Let us verify the Hurwitz criterion for the simple case of the linearly damped and undriven oscillator

$$
\begin{equation*}
M \ddot{x}+D \dot{x}+K x=0, \tag{3.10.19}
\end{equation*}
$$

where $M=$ mass $(>0), D=$ damping $(>0), K=$ elasticity (>0). It is not hard to see that, here $(m=2)$, the characteristic equation is

$$
\begin{equation*}
M \lambda^{2}+D \lambda+K=0 \tag{3.10.19a}
\end{equation*}
$$

and, therefore, the Hurwitz determinants are

$$
\begin{equation*}
H_{1}=a_{1}=D, \quad H_{2}=a_{1} a_{2}-a_{0} a_{3}=D K-M 0=D K \tag{3.10.19b}
\end{equation*}
$$

For asymptotic stability, we must have $H_{1}=D>0$ and $H_{2}=D K>0 \Rightarrow D$, $K>0$, and hence all solutions of (3.10.19) are asymptotically stable, as is already well known.

Next, let us see some less trivial applications of these criteria.

Example 3.10.1 Rotating Shaft; Gyroscopic versus Circulatory Forces. Here, we study a simplified version of the problem of critical speed of rotation of an originally straight shaft (axis $O Z$), of noncircular cross-section, rotating with constant (inertial) angular velocity ω about $O Z$, by examining the equilibrium or small linearized motion of a particle P of mass m, representing the concentrated mass of a disk (of negligible rotary inertia) mounted on the shaft, relative to both inertial axes $O-X Y Z$ and corotational (shaft-fixed) ones $O x y z(O Z \equiv O z)$ of angular velocity ω [fig. 3.28 (recall fig. 1.8); see also fig. 3.37].
(i) Let us begin with the moving axes $O-x y z$. The disk/particle P is subjected to the following forces (the $O Z \equiv O z$ components are omitted if not needed):
(a) centrifugal (an inertial force):

$$
\begin{equation*}
m \omega^{2}(x, y), \tag{al}
\end{equation*}
$$

(b) gyroscopic/Coriolis (an inertial force):

$$
\begin{equation*}
-2 m \omega \times \boldsymbol{v}_{\text {relative }}=-2 m(0,0, \omega) \times(\dot{x}, \dot{y}, 0)=2 m \omega(\dot{y},-\dot{x}), \tag{a2}
\end{equation*}
$$

(c) elastic (assuming the shaft has a single flexural rigidity and acts like a linear spring of known constant stiffness $k>0$; a physical positional conservative force):

$$
\begin{equation*}
-k \boldsymbol{r}=-k(x, y), \tag{a3}
\end{equation*}
$$

(d) external damping [e.g., aerodynamic forces (drag), bearing forces; a physical force]:

$$
\begin{equation*}
-\left(2 d_{e}\right) m \boldsymbol{v}_{\text {relative }}=-2 m d_{e}(\dot{x}, \dot{y}) \quad\left(d_{e}: \text { known positive constant }\right) \tag{a4}
\end{equation*}
$$

Figure 3.28 Particle model for study of stability of a rotating shaft.
(e) internal damping (due to the shaft properties; a physical force):

$$
\begin{equation*}
-\left(2 d_{i}\right) m v_{\text {relative }}=-2 m d_{i}(\dot{x}, \dot{y}) \quad\left(d_{i}: \text { known positive constant }\right) . \tag{a5}
\end{equation*}
$$

Applying the principle of linear momentum for relative motion to P ($\$ 1.7 \mathrm{ff}$.), we obtain

$$
\begin{align*}
& m \ddot{x}=-k x+m \omega^{2} x+2 m \omega \dot{y}-2 m\left(d_{e}+d_{i}\right) \dot{x}, \tag{b1}\\
& m \ddot{y}=-k y+m \omega^{2} y-2 m \omega \dot{x}-2 m\left(d_{e}+d_{i}\right) \dot{y} \tag{b2}
\end{align*}
$$

or, rearranging (and with $d \equiv d_{e}+d_{i}$),

$$
\begin{align*}
\ddot{x}+2 d \dot{x}-2 \omega \dot{y}+\left(k / m-\omega^{2}\right) x & =0, \tag{b3}\\
\ddot{y}+2 d \dot{y}+2 \omega \dot{x}+\left(k / m-\omega^{2}\right) y & =0 . \tag{b4}
\end{align*}
$$

These (relative motion) equations contain all types of terms/forces, except circulatory ones.

Power Equation

Multiplying (b3) with \dot{x} and (b4) with \dot{y}, and adding together, and then transforming à la $\S 3.9$, we obtain the noninertial power equation

$$
\begin{equation*}
d h / d t=-2 D_{r} \tag{c}
\end{equation*}
$$

where

$$
\begin{gather*}
h \equiv T_{2}+\left(V-T_{0}\right)=\text { generalized energy, } \tag{c1}\\
2 T_{2}=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right], \quad 2 T_{0}=m \omega^{2}\left(x^{2}+y^{2}\right), \quad 2 V=k\left(x^{2}+y^{2}\right), \tag{c2}\\
2 D_{r} \equiv(2 m d)\left[(\dot{x})^{2}+(\dot{y})^{2}\right]=m d\left[(\dot{x})^{2}+(\dot{y})^{2}\right]:
\end{gather*}
$$

relative dissipation (damping) function.
(ii) Now, let us examine the fixed axes $O-X Y Z$ description (see also Bahar and Kwatny, 1992). Since the constitutive equations and associated material constants are objective $=$ frame-invariant, and by a simple moving \rightarrow fixed axes transformation (§1.7):

$$
\begin{align*}
-2 m d_{i} \boldsymbol{v}_{\text {relative }} & =-2 m d_{i}\left[\boldsymbol{v}_{\text {absolute }}-(\boldsymbol{\omega} \times \boldsymbol{r})\right] \\
& =-2 m d_{i}[(\dot{X}, \dot{Y}, 0)-(0,0, \omega) \times(X, Y, 0)] \\
& =-2 m d_{i}(\dot{X}+\omega Y, \dot{Y}-\omega X, 0) \tag{d}
\end{align*}
$$

(i.e., $\dot{x}=\dot{X}+\omega Y$ and $\dot{y}=\dot{Y}-\omega X$, if $O-X Y Z$ and $O-x y z$ coincide instantaneously), the inertial equations of motion of P are

$$
\begin{align*}
& m \ddot{X}=-k X-2 m d_{e} \dot{X}-2 m d_{i}(\dot{X}+\omega Y) \tag{el}\\
& m \ddot{Y}=-k Y-2 m d_{e} \dot{Y}-2 m d_{i}(\dot{Y}-\omega X) \tag{e2}
\end{align*}
$$

or, rearranging (and with $d \equiv d_{e}+d_{i}, k / m \equiv \omega_{o}{ }^{2}$),

$$
\begin{align*}
& \ddot{X}+2 d \dot{X}+\omega_{o}^{2} X+2 d_{i} \omega Y=0 \tag{e3}\\
& \ddot{Y}+2 d \dot{Y}+\omega_{o}^{2} Y-2 d_{i} \omega X=0 \tag{e4}
\end{align*}
$$

Comparing the above with (b3, 4) we see that, here, instead of a gyroscopic force ($\sim \omega$ terms), we have a circulatory one:

$$
\begin{equation*}
N \equiv-2 m d_{i} \omega(Y,-X)=2 m d_{i} \omega(-Y, X) \tag{e5}
\end{equation*}
$$

which, clearly, is perpendicular/transverse to the position vector $\boldsymbol{O P} \equiv \boldsymbol{r}$ (i.e., $\boldsymbol{N} \cdot \boldsymbol{r}=0$) and rotates, or circulates, with it with angular velocity $\boldsymbol{\omega}$; hence its name.

REMARK

Equations (e1, 2) can also be derived in an ad hoc fashion as follows: referring to fig. 3.28, we can write

$$
\begin{align*}
& m \ddot{X}=-k X-2 m d_{e} \dot{X}+\left[-\left(2 m d_{i} \dot{x}\right) \cos \phi+\left(2 m d_{i} \dot{y}\right) \sin \phi\right] \tag{e6}\\
& m \ddot{Y}=-k Y-2 m d_{e} \dot{Y}+\left[-\left(2 m d_{i} \dot{x}\right) \sin \phi-\left(2 m d_{i} \dot{y}\right) \cos \phi\right] . \tag{e7}
\end{align*}
$$

But, as is well known from analytic geometry,

$$
x=X \cos \phi+Y \sin \phi, \quad y=-X \sin \phi+Y \cos \phi
$$

and, therefore (since $\phi=\omega t$),

$$
\begin{align*}
& \dot{x}=\dot{X} \cos \phi+\dot{Y} \sin \phi-X \omega \sin \phi+Y \omega \cos \phi \tag{e8}\\
& \dot{y}=-\dot{X} \sin \phi+\dot{Y} \cos \phi-X \omega \cos \phi-Y \omega \sin \phi . \tag{e9}
\end{align*}
$$

Substituting (e8, 9) into (e6, 7), we readily recover (e1, 2).

Power Equation

Multiplying (e3) with \dot{X} and (e4) with \dot{Y}, and adding together, and so on, we obtain the inertial power equation

$$
\begin{equation*}
d E / d t=-2 D_{a}+C \tag{f}
\end{equation*}
$$

where

$$
\begin{align*}
& E \equiv T+V=\text { total (inertial) energy } \tag{f1}\\
& 2 T=m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right], \quad 2 V=k\left(X^{2}+Y^{2}\right), \tag{f2}\\
& 2 D_{a} \equiv(2 m d)\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]: \\
& \quad \text { absolute dissipation (damping }) \text { function. } \tag{f3}\\
& C \equiv \boldsymbol{N} \cdot \boldsymbol{v}=2 m d_{i} \omega(X \dot{Y}-Y \dot{X}): \text { circulatory power }\left(\boldsymbol{v} \equiv \boldsymbol{v}_{\text {absolute }}\right) .
\end{align*}
$$

Further, since the quantity

$$
\begin{align*}
X \dot{Y}-Y \dot{X} \equiv & 2\left(d A_{Z} / d t\right) \\
= & 2(\text { areal velocity, OZ-component) swept in inertial space } \\
& \quad \text { by the radius } O P \text { in } d t, \tag{f5}
\end{align*}
$$

is a quasi velocity $\left[2 d A_{Z}=X d Y+(-Y) d X \Rightarrow \partial(-Y) / \partial Y=-1 \neq \partial(X) / \partial X=+1\right]$, it follows that

$$
\begin{equation*}
C=4 m d_{i} \omega\left(d A_{Z} / d t\right) \neq \text { total time derivative of a scalar energetic function; } \tag{f6}
\end{equation*}
$$

that is, C is a path-dependent quantity, like D_{a}. Indeed, integrating (f) between two arbitrary instants, from an "initial" t_{i} to a "final" t_{f}, we obtain

$$
\begin{equation*}
\Delta E \equiv E_{f}-E_{i}=\int_{t_{i}}^{t_{f}}\left(-2 D_{a}+C\right) d t=-\int_{t_{i}}^{t_{f}}\left(2 D_{a}\right) d t+\left(4 m d_{i} \omega\right) \Delta A_{Z} \tag{g}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta A_{Z}=\text { area swept by } O P \text { from } t_{i} \text { to } t_{f} \text {. } \tag{g1}
\end{equation*}
$$

[The total inertial power equation (f) holds unchanged even in the presence of gyroscopic forces; since these latter are normal to P's inertial velocity, we would then have an additional $\sim-\dot{Y}$ term on the right side of (e1) and a $\sim+\dot{X}$ term on that of (e2): two terms whose combined inertial power, clearly, vanishes.]

Stability Investigation
Substituting $X, Y \sim \exp (\lambda t)$ in (e3, 4) and requiring nontrivial solutions, we arrive, in well-known ways, at the corresponding characteristic equation

$$
\begin{equation*}
a_{0} \lambda^{4}+a_{1} \lambda^{3}+a_{2} \lambda^{2}+a_{3} \lambda+a_{4}=0 \tag{h}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{0} \equiv 1, \\
& a_{1} \equiv 4\left(d_{e}+d_{i}\right) \equiv 4 d, \\
& a_{2} \equiv 4\left(d_{e}+d_{i}\right)^{2}+2(k / m) \equiv 4 d^{2}+2 \omega_{o}^{2}, \\
& a_{3} \equiv 4\left(d_{e}+d_{i}\right)(k / m) \equiv 4 d \omega_{o}^{2}, \\
& a_{4} \equiv(k / m)^{2}+4 d_{i}^{2} \omega^{2} \equiv \omega_{o}^{4}+4 d_{i}^{2} \omega^{2} . \tag{h1}
\end{align*}
$$

Hence, the Routh-Hurwitz asymptotic stability conditions (here $m=4$ - not to be confused with the mass of P)

$$
a_{0}>0, \quad a_{1}>0, \quad a_{1} a_{2}-a_{0} a_{3}>0, \quad\left(a_{1} a_{2}-a_{0} a_{3}\right) a_{3}-a_{1}^{2} a_{4}>0, \quad a_{4}>0,
$$

yield

$$
\begin{equation*}
d>0, \quad d\left(4 d^{2}+\omega_{o}^{2}\right), \quad d^{2}\left(d^{2} \omega_{o}^{2}-d_{i}^{2} \omega^{2}\right)>0, \quad \omega_{o}^{4}+4 d_{i}^{2} \omega^{2}>0 \tag{h2}
\end{equation*}
$$

Clearly, since $d_{e}, d_{i}(\Rightarrow d>0)$ and $k\left(=m \omega_{o}^{2}>0\right)$ are positive, the first, second, and fourth (last) of conditions (h2) are satisfied; while the third of them furnishes the upper ω-bound:

$$
\begin{equation*}
\omega^{2}<\left[1+\left(d_{e} / d_{i}\right)\right]^{2}(k / m) \tag{h3}
\end{equation*}
$$

This shows that as $d_{i} \rightarrow 0$,

$$
\begin{equation*}
\omega_{\text {critical }} \equiv\left[1+\left(d_{e} / d_{i}\right)\right](k / m)^{1 / 2} \equiv\left[1+\left(d_{e} / d_{i}\right)\right] \omega_{o} \rightarrow \infty ; \tag{h4}
\end{equation*}
$$

and as $d_{i} \rightarrow \infty, \omega_{\text {critical }} \rightarrow 0$: that is, d_{i} has a destabilizing effect; hence, in rotor design, we should aim at more d_{e} and less d_{i}.

For further details and insights, and discussion of stability using the rotating axes equations (b3, 4), see, for example (alphabetically): Bolotin (1963, chap. 3), Dimentberg (1961, chap. 2), Ziegler (1968, pp. 94-96, 101); and for additional, more realistic, circulatory force examples, see Bremer [1988(a), pp. 144-149]. For further applications of the Routh-Hurwitz criterion to the stability of mechanical systems, see texts on linear and nonlinear vibrations and controls.

Problem 3.10.2 Show that if the fundamental state I of a scleronomic system is one of equilibrium in the q_{k} - that is, if $f_{k}=$ constant, or 0 [recall (3.10.10a ff.)]the equations of small motion around I are

$$
\begin{align*}
\sum M_{k l} \ddot{x}_{l} & =\sum\left[\left(\partial Q_{k} / \partial q_{l}\right) x_{l}+\left(\partial Q_{k} / \partial \dot{q}_{l}\right) \dot{x}_{l}\right] \tag{a}\\
{[} & \left.=-\sum\left(\partial^{2} V / \partial q_{l} \partial q_{k}\right) x_{l}, \quad \text { if } Q_{k}=-\partial V(q) / \partial q_{k}\right] \tag{b}
\end{align*}
$$

where all the $x / \dot{x} / \ddot{x}$-coefficients are evaluated on I and, therefore, are constant [something that makes the systems (a, b) always solvable].

Notice that in case (b), or in case (a) with $\partial Q_{k} / \partial \dot{q}_{l}=\partial Q_{l} / \partial \dot{q}_{k}$, no gyroscopic terms appear.

Problem 3.10.3 With the help of the following quadratic and bilinear forms:

$$
\begin{array}{ll}
2 T_{2}^{\prime} \equiv \sum \sum M_{k l} \dot{x}_{k} \dot{x}_{l} & \left(\equiv 2 \Delta T_{2,2}: \text { "contracted" kinetic energy }\right), \\
2 D \equiv \sum \sum D_{k l} \dot{x}_{k} \dot{x}_{l} & \left(\equiv-2 D^{\prime}: \text { damping function }\right) \\
G \equiv \sum \sum G_{k l} x_{k} \dot{x}_{l} & \left(\equiv-2 \Delta T_{2,1}+\Theta^{\prime \prime}: \text { gyroscopic function }\right) \\
2 V \equiv \sum \sum K_{k l} x_{k} x_{l} & \left(\equiv 2 V^{\prime}-2 \Delta T_{2,0}: \text { potential function }\right) \tag{d}
\end{array}
$$

and

$$
\begin{equation*}
N_{k} \equiv-\sum N_{k l} x_{l} \quad\left(\equiv \eta_{k}^{\prime}: \text { circulatory force }\right) \tag{e}
\end{equation*}
$$

show that the linear variational equations of small motion about a fundamental state of steady motion can be rewritten in the Lagrangean (linear vibration) form

$$
\begin{equation*}
\left(\partial T_{2}^{\prime} / \partial \dot{x}_{k}\right)^{\cdot}+\partial D / \partial \dot{x}_{k}+\partial(G+V) / \partial x_{k}=N_{k} . \tag{f}
\end{equation*}
$$

Problem 3.10.4 Show that if the fundamental state I is one of equilibrium that is, $f_{k}(t) \equiv 0$, and $\partial Q_{k} / \partial \dot{q}_{l}=\partial Q_{l} / \partial \dot{q}_{k}$ (e.g., positional forces only) there then

$$
\begin{equation*}
\varepsilon_{k l}=0, \quad \zeta_{k l}=0, \quad \theta_{k l}=0\left(\Rightarrow G_{k l}=0, \quad K_{k l}=-\eta_{k l}^{\prime}\right) \tag{a}
\end{equation*}
$$

and therefore the equations of small motion about such an I reduce to

$$
\begin{equation*}
\sum\left[M_{k l} \ddot{x}_{l}+D_{k l} \dot{x}_{l}+\left(K_{k l}+N_{k l}\right) x_{l}\right]=0 . \tag{b}
\end{equation*}
$$

We notice that the absence of gyroscopic terms is the key difference between small motion about absolute and relative equilibrium (and, of course, general motion).

Problem 3.10.5 Consider the cubic characteristic equation

$$
\begin{equation*}
\lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+A_{0}=0, \tag{a}
\end{equation*}
$$

with roots $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
(i) Show that

$$
\begin{equation*}
A_{2}=-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right), \quad A_{1}=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}, \quad A_{0}=-\left(\lambda_{1} \lambda_{2} \lambda_{3}\right) \tag{b}
\end{equation*}
$$

(ii) Since one of these roots must be real and the other two either real or complex conjugate, we write

$$
\begin{equation*}
\lambda_{1}=\rho_{1}, \quad \lambda_{2}=\rho_{2}+i \sigma_{2}, \quad \lambda_{3}=\rho_{2}-i \sigma_{2} \tag{c}
\end{equation*}
$$

where $i^{2} \equiv-1$, and $\rho_{1}, \rho_{2}, \sigma_{2}$ are real. Show that

$$
\begin{equation*}
A_{2}=-\left(\rho_{1}+2 \rho_{2}\right), \quad A_{1}=2 \rho_{1} \rho_{2}+\rho_{2}^{2}+\sigma_{2}^{2}, \quad A_{0}=-\rho_{1}\left(\rho_{2}^{2}+\sigma_{2}^{2}\right) \tag{d}
\end{equation*}
$$

Problem 3.10.6 Continuing from the preceding problem, show that the (necessary and sufficient) asymptotic stability conditions for a system with the cubic characteristic equation

$$
\begin{equation*}
\lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+A_{0}=0, \tag{a}
\end{equation*}
$$

are

$$
\begin{array}{lll}
\text { (i) } A_{2}, A_{1}, A_{0}>0 & \text { (positive coefficients), and } & \text { (ii) } A_{2} A_{1}>A_{0} \text {. } \tag{b}
\end{array}
$$

Problem 3.10.7 Consider the quartic characteristic equation

$$
\begin{equation*}
\lambda^{4}+A_{3} \lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+A_{0}=0 \tag{a}
\end{equation*}
$$

with roots

$$
\begin{equation*}
\lambda_{1}=\rho_{1}+i \sigma_{1}, \quad \lambda_{2}=\rho_{1}-i \sigma_{1}, \quad \lambda_{3}=\rho_{2}+i \sigma_{2}, \quad \lambda_{4}=\rho_{2}-i \sigma_{2} \tag{b}
\end{equation*}
$$

Show that

$$
\begin{align*}
& A_{3}=-2\left(\rho_{1}+\rho_{2}\right), \\
& A_{2}=\rho_{1}^{2}+\rho_{2}^{2}+\sigma_{1}^{2}+\sigma_{2}^{2}+4 \rho_{1} \rho_{2}, \\
& A_{1}=-2 \rho_{1}\left(\rho_{2}^{2}+\sigma_{2}^{2}\right)-2 \rho_{2}\left(\rho_{1}^{2}+\sigma_{1}^{2}\right), \\
& A_{0}=\left(\rho_{1}^{2}+\sigma_{1}^{2}\right)\left(\rho_{2}^{2}+\sigma_{2}^{2}\right) . \tag{c}
\end{align*}
$$

Problem 3.10.8 Consider again the quartic characteristic equation

$$
\begin{equation*}
\lambda^{4}+A_{3} \lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+A_{0}=0 \tag{a}
\end{equation*}
$$

Show that the Routh-Hurwitz criteria applied to (a) produce the following (necessary and sufficient) asymptotic stability conditions:

$$
\begin{equation*}
A_{3}, A_{2}, A_{1}, A_{0}>0 \quad \text { (positive coefficients), } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
A_{3} A_{2} A_{1}>A_{1}^{2}+A_{3}^{2} A_{0} \tag{b}
\end{equation*}
$$

Problem 3.10.9 Deduce the Routh-Hurwitz asymptotic stability conditions for the indicated special cases:
(i) $m=2$, i.e., $a_{0} \lambda^{2}+a_{1} \lambda+a_{2}=0$:

$$
\begin{equation*}
a_{0}, a_{1}, a_{2}>0 \tag{a}
\end{equation*}
$$

(ii) $m=3$, i.e., $\quad a_{0} \lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}=0$:

- $\quad a_{0}, a_{1}, a_{2}, a_{3}>0$,
(iii) $m=4$, i.e., $\quad a_{0} \lambda^{4}+a_{1} \lambda^{3}+a_{2} \lambda^{2}+a_{3} \lambda+a_{4}=0$:

$$
\begin{array}{ll}
- & a_{0}, a_{1}>0 \\
\text { - } & A \equiv a_{1} a_{2}-a_{0} a_{3}>0 \\
\text { - } & B \equiv a_{3} A-a_{1}^{2} a_{4}>0 \\
\text { - } & a_{4}>0 \tag{c4}
\end{array}
$$

Due to eqs. (c3, 4), condition (c2) can be replaced by the simpler $a_{3}>0$; then, it follows that $a_{2}>0$.
(iv) $m=5$, i.e., $\quad a_{0} \lambda^{5}+a_{1} \lambda^{4}+a_{2} \lambda^{3}+a_{3} \lambda^{2}+a_{4} \lambda+a_{5}=0$.

With the abbreviations $A \equiv a_{1} a_{2}-a_{0} a_{3}, C \equiv a_{1} a_{4}-a_{0} a_{5}$, and $D \equiv a_{3} a_{4}-a_{2} a_{5}$, they are

$$
\begin{array}{ll}
- & a_{0}, a_{1}, A>0, \\
- & a_{3} A-a_{1} C>0, \\
\text { - } & A D-C^{2}>0, \\
\text { - } & a_{5}>0 . \tag{d4}
\end{array}
$$

But, since $a_{1}\left(A D-C^{2}\right) \equiv C\left(a_{3} A-a_{1} C\right)-a_{5} A^{2}$, and due to (d3, 4), condition (d2) can be replaced by the simpler $C>0$; also, we must have $a_{4}>0$ and $D>0$.

Notice that, in all cases, we must have satisfaction of the essential conditions: $a_{0}=\left|M_{k l}\right|>0$ and $a_{m}=\left|K_{k l}+N_{k l}>0\right|$.

Problem 3.10.10 Consider the two-DOF undamped and gyroscopic system with perturbation equations

$$
\begin{equation*}
M_{1} \ddot{x}_{1}+G \dot{x}_{2}+K_{1} x_{1}=0, \quad M_{2} \ddot{x}_{2}-G \dot{x}_{1}+K_{2} x_{2}=0 \tag{a}
\end{equation*}
$$

where $M_{1,2}=$ inertia/mass $(>0), K_{1,2}=$ positional noncirculatory coefficients, and $G=$ gyroscopicity.
(i) Show that its characteristic equation is

$$
\begin{equation*}
a_{0} \lambda^{4}+a_{2} \lambda^{2}+a_{4}=0 \tag{b}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{0} \equiv M_{1} M_{2}(>0-\text { always, on physical grounds }), \\
& a_{2} \equiv M_{1} K_{2}+M_{2} K_{1}+G^{2}, \\
& a_{4} \equiv K_{1} K_{2} \tag{c}
\end{align*}
$$

(ii) Show that the Routh-Hurwitz criteria applied to this problem ($m=4$, and $a_{1}, a_{3}=0$) produce the three asymptotic stability conditions

$$
\begin{equation*}
a_{0}>0, \quad a_{2}>0, \quad a_{4}>0 \tag{d}
\end{equation*}
$$

(iii) Show that the second of (d) can be satisfied for sufficiently high values of the "spin term" G^{2}, no matter what the signs of K_{1} and K_{2} are. [This is a special case of the famous gyroscopic stabilization theorem of Kelvin and Tait. For a more extensive treatment, see §8.6.]

REMARK

The presence of light damping ($\sim \dot{x}$) changes this stability picture considerably. For details and technical applications, for example, see Grammel (1950, vol. 1, pp. 261262; vol. 2, pp. 230-247).

Problem 3.10.11 Consider a smooth surface S spinning with constant inertial angular velocity ω about a vertical axis $O Z$ (positive upward), where O is a surface point with horizontal tangential plane to it there. Let the equation of S in corotating (surface-fixed) coordinates $O-x y z$, where $O x, O y$ are tangent to the lines of principal curvature of S at O and $O z \equiv O Z$, be, to the second order in x, y,

$$
\begin{equation*}
2 z=x^{2} / \rho_{1}+y^{2} / \rho_{2}, \quad \rho_{1,2}=\text { principal radii of curvature of } S \text { at } O . \tag{a}
\end{equation*}
$$

In addition, consider a particle P of mass $m=1$, moving under gravity on S, in the neighborhood of O.
(i) Show that, to the second order, the (double) Lagrangean of P is

$$
\begin{equation*}
2 L=\left\{(\dot{x})^{2}+(\dot{y})^{2}+2 \omega(x \dot{y}-y \dot{x})+\left[\omega^{2}-\left(g / \rho_{1}\right)\right] x^{2}+\left[\omega^{2}-\left(g / \rho_{2}\right)\right] y^{2}\right\} \tag{b}
\end{equation*}
$$

and therefore its equations of (relative) motion in the neighborhood of O are

$$
\begin{equation*}
\ddot{x}-\gamma \dot{y}+k_{1} x=0, \quad \ddot{y}+\gamma \dot{x}+k_{2} y=0, \tag{c}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma \equiv 2 \omega, \quad k_{1} \equiv\left(g / \rho_{1}\right)-\omega^{2}, \quad k_{2} \equiv\left(g / \rho_{2}\right)-\omega^{2} \tag{d}
\end{equation*}
$$

(ii) The system (c) has the form of eqs. (a) of the preceding problem; with $x_{1}=x$, $x_{2}=y, M_{1}=M_{2}=1(>0), G=-\gamma, K_{1}=k_{1}, K_{2}=k_{2}$. Specialize the asymptotic stability conditions (d) established there to this problem.
[See also Whittaker (1937, pp. 207-208); and for the case of small ($\sim \dot{x}, \dot{y}$) friction, see Lamb (1943, pp. 253-254).]

Problem 3.10.12 Using the Routh-Hurwitz criterion, show that in an asymptotically stable (linear) system all the coefficients of the characteristic equation (3.10.18), $a_{0}, a_{1}, a_{2}, \ldots, a_{m-1}, a_{m}$, have the same sign (>0); that is, none of them vanishes. (This is a necessary, but not sufficient, condition for such stability!)

HINT

Let the roots of that equation be

$$
-\varepsilon_{1}, \ldots,-\varepsilon_{*} \quad \text { and } \quad-\rho_{1} \pm i \sigma_{1}, \ldots,-\rho_{\bullet} \pm i \sigma_{\bullet}
$$

where $*+\bullet=m$ (\# possible multiple roots being counted individually), and all ε, ρ, σ are real and positive (asymptotically stable system). Then, by well-known theorems of the theory of equations,

$$
\begin{align*}
\Delta(\lambda) & =a_{0}\left[\left(\lambda+\varepsilon_{1}\right) \cdots\left(\lambda+\varepsilon_{*}\right)\right]\left[\left(\lambda^{2}+2 \rho_{1} \lambda+\rho_{1}^{2}+\sigma_{1}^{2}\right) \cdots\left(\lambda^{2}+2 \rho_{\bullet} \lambda+\rho_{\bullet}^{2}+\sigma_{\bullet}^{2}\right)\right] \\
& =a_{0}\left(\lambda^{m}+\cdots\right)=0 . \tag{a}
\end{align*}
$$

Example 3.10.2 The Jacobi-Synge Equations. The preceding equations show that the Lagrangean equations of motion, under say, the holonomic constraints

$$
\begin{equation*}
\phi_{H}(t, q)=0 \Rightarrow \sum\left(\partial \phi_{H} / \partial q_{k}\right) \dot{q}_{k}+\partial \phi_{H} / \partial t=0 \quad(H=1, \ldots, m) \tag{a}
\end{equation*}
$$

have the general form

$$
\begin{equation*}
\sum M_{k r}(t, q) \ddot{q}_{r}=f_{k}(t, q, \dot{q})+\sum \lambda_{H}\left(\partial \phi_{H} / \partial q_{k}\right) \tag{b}
\end{equation*}
$$

where $f_{k}(t, q, \dot{q})$ is a known function of its arguments. [If the constraints are given in the general Pfaffian (possibly nonholonomic) form $\sum a_{H k} \dot{q}_{k}+a_{H}=0$, then we replace the gradients $\partial \phi_{H} / \partial q_{k}$ with the constraint coefficients $a_{H k}(t, q)$.]

It was Jacobi's idea (Jacobi, 1866, p. 55) to (...) -differentiate the velocity constraints (a) once more, thus bring them into their acceleration form (i.e., $\sim \ddot{q}$ terms), and then combine them, like additional equations of motion, with (b). [We are indebted to Dr. F. Pfister for pointing this out to us; see Pfister (1995). This idea was also carried out, independently and slightly differently, by Synge (in 1926) via general tensor calculus, in his pioneering and influential memoir (Synge, 1926-1927, pp. 53-55).] This fusion of constraints, in acceleration form, with the equations of motion in Routh-Voss (multiplier) form, something very popular among applied dynamicistes today, is carried out below in matrix form.

Indeed, first we $(\ldots)^{\circ}$-differentiate (a) once more, thus obtaining

$$
\begin{equation*}
\sum\left(\partial \phi_{H} / \partial q_{k}\right) \ddot{q}_{k}=g_{H}(t, q, \dot{q}) \quad(H=1, \ldots, m) \tag{c}
\end{equation*}
$$

where $g_{H}(t, q, \dot{q})$ is a known function of its arguments, like $f_{k}(t, q, \dot{q})$. Next we introduce some simple matrix notation:
$\mathbf{M}=\left(M_{k r}\right):$ nonsingular and positive definite, $\quad \mathbf{q}^{\mathrm{T}}=\left(q_{1}, \ldots, q_{n}\right)$,
$\boldsymbol{\Phi}_{\mathbf{q}}=\left(\partial \phi_{H} / \partial q_{k}\right):$ nonsingular,$\quad \lambda^{\mathrm{T}}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$,
$\mathbf{f}^{\mathrm{T}}=\left(f_{1}, \ldots, f_{n}\right), \quad \mathbf{g}^{\mathrm{T}}=\left(g_{1}, \ldots, g_{n}\right), \quad$ where $\quad(\ldots)^{\mathrm{T}} \equiv$ transpose of $(\ldots) ;$
so that, with its help, we can rewrite eqs. (b, c) as

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{q}}=\mathbf{f}+\boldsymbol{\Phi}_{\mathbf{q}}{ }^{\mathrm{T}} \lambda, \quad \boldsymbol{\Phi}_{\mathbf{q}} \ddot{\mathbf{q}}=\mathbf{g}, \tag{e}
\end{equation*}
$$

respectively; and finally, we combine eqs. (e) into the following matrix form:

$$
\left(\begin{array}{cc}
\mathbf{M} & \Phi_{\mathbf{q}}{ }^{\mathrm{T}} \tag{f}\\
\Phi_{\mathbf{q}} & \mathbf{0}
\end{array}\right)\binom{\ddot{\mathbf{q}}}{-\lambda}=\binom{\mathbf{f}}{\mathbf{g}}
$$

where $\mathbf{0}$ is the $m \times n$ zero matrix.
Equations (f) can be justifiably called the Jacobi form of the Routh-Voss equations; and, at any instant for which \mathbf{q} and $\dot{\mathbf{q}}$ are known, these constitute a system of $n+m$ algebraic equations that (since \mathbf{M} and $\boldsymbol{\Phi}_{\mathbf{q}}$ are nonsingular) can be solved (numerically) for their linearly appearing $n+m$ unknowns $\ddot{\mathbf{q}}$ and λ. For further details, see books on computational/multibody dynamics; for example, Nikravesh (1988), Udwadia and Kalaba (1996); while, for a tensorial derivation, see Papastavridis (1998; 1999, pp. 324-325) and Synge (1926-1927).

3.11 APPELL'S EQUATIONS: EXPLICIT FORMS

Holonomic Variables

Let us begin with holonomic variables and, for algebraic simplicity, but no loss of generality, stationary constraints. Then [recalling (2.5.2 ff.)]

$$
\begin{align*}
\boldsymbol{v}=\sum \boldsymbol{e}_{k} \dot{q}_{k} & \\
\Rightarrow \boldsymbol{a} \equiv d \boldsymbol{v} / d t & =\sum \boldsymbol{e}_{k} \ddot{q}_{k}+\sum\left(d \boldsymbol{e}_{k} / d t\right) \dot{q}_{k} \\
& =\sum \boldsymbol{e}_{k} \ddot{q}_{k}+\sum \sum\left(\partial \boldsymbol{e}_{k} / \partial q_{l}\right) \dot{q}_{l} \dot{q}_{k} \tag{3.11.1}
\end{align*}
$$

and, accordingly (and using subscript commas for partial q-derivatives), the system Appellian becomes

$$
\begin{align*}
S \equiv \boldsymbol{S}(1 / 2) d m \boldsymbol{a} \cdot \boldsymbol{a}=(1 / 2) \boldsymbol{S} d m & {\left[\left(\sum \boldsymbol{e}_{k} \ddot{q}_{k}+\sum \sum \boldsymbol{e}_{k, l} \dot{q}_{l} \dot{q}_{k}\right)\right.} \\
\cdot & \left.\left(\sum \boldsymbol{e}_{r} \ddot{q}_{r}+\sum \sum \boldsymbol{e}_{r, s} \dot{q}_{r} \dot{q}_{s}\right)\right] \tag{3.11.2}
\end{align*}
$$

or, with some dummy index changes, and recalling that $M_{k l} \equiv \boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l}$ and

$$
\begin{align*}
\Gamma_{k, l p} & =\Gamma_{k, p l} \equiv \boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l, p}=\boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{p, l} \\
& =(1 / 2)\left(\partial M_{k l} / \partial q_{p}+\partial M_{k p} / \partial q_{l}-\partial M_{l p} / \partial q_{k}\right) \tag{3.11.3}
\end{align*}
$$

(§3.9, §3.10), we finally obtain, to within Appell important terms (i.e., $\sim \ddot{q}$),

$$
\begin{equation*}
S=(1 / 2) \sum \sum M_{k l} \ddot{q}_{k} \ddot{q}_{l}+\sum \sum \sum \Gamma_{k, l p} \ddot{q}_{k} \dot{q}_{l} \dot{q}_{p} \tag{3.11.4}
\end{equation*}
$$

The above shows how to find the Appellian function for nonstationary constraints: (i) since $\ddot{q}_{n+1}=\ddot{t}=\mathrm{i}=0$, the first group of terms (double sum) remains unchanged; while (ii) in the second group of terms (triple sum), k still runs from 1 to n, but l and p must now run from 1 to $n+1$; hence, we replace them, respectively, with the Greek subscripts α and β. The result is

$$
\begin{align*}
S= & (1 / 2) \sum \sum M_{k l} \ddot{q}_{k} \ddot{q}_{l}+\sum \sum \sum \Gamma_{k, \alpha \beta} \ddot{q}_{k} \dot{q}_{\alpha} \dot{q}_{\beta} \\
= & (1 / 2) \sum \sum M_{k l} \ddot{q}_{k} \ddot{q}_{l}+\sum \sum \sum \Gamma_{k, l p} \ddot{q}_{k} \dot{q}_{l} \dot{q}_{p} \\
& +2 \sum \sum \Gamma_{k, l, n+1} \ddot{q}_{k} \dot{q}_{l}+\sum \Gamma_{k, n+1, n+1} \ddot{q}_{k} ; \tag{3.11.5}
\end{align*}
$$

where $\Gamma_{k, l, n+1}\left(\Gamma_{k, n+1, n+1}\right)$ is what results from $\Gamma_{k, l p}$ by formally replacing p (p and l) with $n+1$; that is, $q_{n+1} \rightarrow t$ [recalling (3.10.8d-f)].

Expressions (3.11.4) and (3.11.5) show clearly how to build S if we know T; that is, if we know its inertial coefficients $M_{\alpha \beta}: M_{k l}, M_{k, n+1} \equiv M_{k}, M_{n+1, n+1} \equiv M_{0}=2 T_{0}$; they also reconfirm the kinematico-inertial identity $\partial S / \partial \ddot{q}_{k}=\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}$.

Nonholonomic Variables

Next, let us repeat the above, but for quasi variables (i.e., $\left.S \rightarrow S^{*}(q, \omega, \dot{\omega}, t)=S^{*}\right)$; first, again, for the stationary case. Substituting

$$
\boldsymbol{a}=\boldsymbol{a}^{*} \equiv d \boldsymbol{v}^{*} / d t=\sum \boldsymbol{\varepsilon}_{k} \dot{\omega}_{k}+\sum\left(d \boldsymbol{\varepsilon}_{k} / d t\right) \omega_{k}
$$

(and using here subscript commas for partial θ-derivatives)

$$
\begin{equation*}
=\sum \varepsilon_{k} \dot{\omega}_{k}+\sum \sum \varepsilon_{k, l} \omega_{l} \omega_{k} \tag{3.11.6}
\end{equation*}
$$

into $S^{*} \equiv S(1 / 2) d m \boldsymbol{a}^{*} \cdot \boldsymbol{a}^{*}$, we obtain, to within Appell important terms (i.e., $\sim \dot{\omega}$)

$$
\begin{aligned}
2 S^{*}= & \sum \sum\left(\boldsymbol{S} d m \varepsilon_{k} \cdot \varepsilon_{l}\right) \dot{\omega}_{k} \dot{\omega}_{l} \\
& +\sum \sum \sum\left(\boldsymbol{S} d m \varepsilon_{k} \cdot\left(\varepsilon_{l, p}+\varepsilon_{p, l}\right)\right) \dot{\omega}_{k} \omega_{l} \omega_{p}
\end{aligned}
$$

or, since [recalling (3.10.9f)]

$$
\begin{aligned}
S d m \varepsilon_{k} \cdot\left(\varepsilon_{l, p}+\varepsilon_{p, l}\right) & =2 \Gamma_{k, l p}^{*}-\sum\left(\gamma_{l k}^{r} M_{p r}^{*}+\gamma_{p k}^{r} M^{*}{ }_{l r}\right) \\
& =2 \Gamma_{k, l p}^{*}+\sum\left(\gamma_{k l}^{r} M_{p r}^{*}+\gamma_{k p}^{r} M^{*}{ }_{l r}\right)
\end{aligned}
$$

finally,

$$
\begin{equation*}
S^{*}=(1 / 2) \sum \sum M_{k l}^{*} \dot{\omega}_{k} \dot{\omega}_{l}+\sum \sum \sum \Lambda_{k, l p} \dot{\omega}_{k} \omega_{l} \omega_{p} \tag{3.11.7}
\end{equation*}
$$

where [recalling (3.10.91)]

$$
\begin{equation*}
\Lambda_{k, l p} \equiv \Gamma_{k, l p}^{*}+\sum \gamma_{k l}^{r} M_{p r}^{*} . \tag{3.11.7a}
\end{equation*}
$$

from the above we easily see that:
(i) To find S^{*} we need not just the $M^{*}{ }_{k l}$ (like T^{*}), but also the $\gamma^{r}{ }_{k l}$ (like I_{k}); and [recall (3.10.9k)]

$$
\begin{equation*}
\partial S^{*} / \partial \dot{\omega}_{k}=\sum M_{k l}^{*} \dot{\omega}_{l}+\sum \sum \Lambda_{k, l p} \omega_{l} \omega_{p}=I_{k} . \tag{ii}
\end{equation*}
$$

Let the reader extend the above, eqs. (3.11.6-7a), to the nonstationary case.

REMARKS

(i) In general, both kinetic energy and Appellian are more simply expressed in nonholonomic rather than holonomic variables; that is, for the same problem, T^{*} and S^{*} are simpler in form than T and S, respectively. As a result, for holonomic systems in holonomic variables, Appell's equations are trivial; that is, not worth the effort. But for holonomic systems in nonholonomic variables, they may offer definite advantages: for example, the Eulerian rigid-body equations (Gibbs, 1879; see example below, and $\S 3.13 \mathrm{ff}$.); then, the resulting equations of motion are of the first order in the ω 's.
(ii) For nonholonomic systems in nonholonomic variables, the equations of Hamel and Appell, although theoretically equivalent, have the following differences:
(a) In the Hamel case, even if no reactions are sought, we still need the unconstrained (relaxed) kinetic energy T^{*}; and the coefficients $\gamma_{I I^{\prime}}^{r}, \gamma_{I, n+1}^{r}$.
(b) In the Appell case, if no reactions are sought, we may work with the constrained Appellian $S^{*}{ }_{o}$ right from the start, and thus save a considerable amount of labor; otherwise we must calculate the unconstrained Appellian S^{*}; and, in all cases, the Appellian can be calculated only to within Appell-important (i.e., acceleration-containing) terms.

Also, Appell's equations are simpler looking than Hamel's, and form-invariant in both holonomic and nonholonomic variables. But calculating the Appellian requires more labor than calculating the kinetic energy. In both cases, as in other areas of science, with constant practice we learn special short cuts, or use ready-made expressions for particular systems.

Example 3.11.1 Let us Find the Appellian of a Rigid Body Moving about a Fixed Point O. Using body-fixed principal inertia axes $O-x y z \equiv O-123$, we find

$$
\begin{equation*}
\left(M_{k l}^{*}\right)=\operatorname{diagonal}\left(I_{1}, I_{2}, I_{3}\right)=\text { constant components, } \tag{a}
\end{equation*}
$$

and therefore all Γ^{*} 's vanish. Also, we recall from ex. 2.13.9 that for such axes $\gamma_{k l}^{r}=\varepsilon_{r k l} \equiv \pm 1$, according as r, k, l are an even or odd permutation of $1,2,3$; and zero in all other cases. Accordingly, the expression (3.11.7), with (3.11.7a), and $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=$ inertial angular velocity of body, specializes to

$$
\begin{align*}
S^{*}= & (1 / 2)\left[I_{1}\left(\dot{\omega}_{1}\right)^{2}+I_{2}\left(\dot{\omega}_{2}\right)^{2}+I_{3}\left(\dot{\omega}_{3}\right)^{2}\right] \\
& +\left(I_{3}-I_{2}\right) \dot{\omega}_{1} \omega_{2} \omega_{3}+\left(I_{1}-I_{3}\right) \dot{\omega}_{2} \omega_{3} \omega_{1}+\left(I_{2}-I_{1}\right) \dot{\omega}_{3} \omega_{1} \omega_{2} \tag{b}
\end{align*}
$$

and from this we immediately obtain the well-known (body-fixed + principal axes) Eulerian expressions for the body inertia (§1.17)

$$
\partial S^{*} / \partial \dot{\omega}_{1}=I_{1} \dot{\omega}_{1}+\left(I_{3}-I_{2}\right) \omega_{2} \omega_{3}, \quad \text { etc., cyclically. }
$$

3.12 EQUATIONS OF MOTION:
 INTEGRATION AND CONSERVATION THEOREMS

Integrals of the Equations of Motion

Let us consider, without much loss in generality and understanding, a, say, potential and holonomic system S with Lagrangean equations of motion

$$
E_{k}(L) \equiv\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=0 \quad(k=1, \ldots, n),
$$

or, in extenso, since $L=L(q, \dot{q}, t)$ (and with $l=1, \ldots, n$)

$$
\sum\left(\partial^{2} L / \partial \dot{q}_{k} \partial \dot{q}_{l}\right) \ddot{q}_{l}+\sum\left(\partial^{2} L / \partial \dot{q}_{k} \partial q_{l}\right) \dot{q}_{l}+\partial^{2} L / \partial \dot{q}_{k} \partial t-\partial L / \partial q_{k}=0
$$

or (recalling $\S 3.10$), with some easily understood ad hoc notations,

$$
\sum a_{k l}(q, t) \ddot{q}_{l}+\sum \sum b_{k l m}(q, t) \dot{q}_{l} \dot{q}_{m}+\sum c_{k l}(q, t) \dot{q}_{l}+d_{k}(q, \dot{q}, t)=0
$$

This is a system of n second-order equations in the qs, linear in the lently, a system of total-order $2 n$ (= sum of orders of highest derivatives of dependent variables). As the theory of differential equations teaches, its general analytical solution (if and when known) will contain (at most) $2 n$ arbitrary constants of integration $c \equiv\left(c_{1}, \ldots, c_{2 n}\right):$

$$
q_{k}=q_{k}(t, c)=\text { general solution of (3.12.1-2a). }
$$

Next, and for the purposes of our discussion below, it is helpful to introduce the following transformation of variables $q, \dot{q} \rightarrow\left(x_{1}, \ldots, x_{2 n}\right) \equiv x$:

$$
q_{1}=x_{1}, \ldots, q_{n}=x_{n} ; \quad \dot{q}_{1}=x_{n+1}, \ldots, \dot{q}_{n}=x_{2 n} .
$$

In terms of them, eqs. (3.12.1, 2), or, equivalently [assuming nonsingular Hessian $\left.\left|\partial^{2} L / \partial \dot{q}_{k} \partial \dot{q}_{l}\right|\right]$,

$$
\ddot{q}_{l}=\cdots=Q_{l}(q, \dot{q}, t) \text { ("forces", known functions of their arguments }- \text { normal }
$$

(and, generally, any given differential system of total order $2 n$) reduce to the 2 system of equations

$$
\begin{array}{lc}
\dot{x}_{1}=x_{n+1} \equiv X_{1}(x, t), \ldots, & \dot{x}_{n}=x_{2 n} \equiv X_{n}(x, t) \\
\dot{x}_{n+1}=Q_{1}(x, t) \equiv X_{n+1}(x, t), \ldots, & \dot{x}_{2 n}=Q_{n}(x, t) \equiv X_{2 n}(x, t) ;
\end{array}
$$

or, compactly,

$$
d x_{*} / d t=X_{*}(x, t) \quad(*=1, \ldots, 2 n) .
$$

[Alternatively, in terms of the Lagrangean momenta, conjugate to the q_{k},

$$
\partial T / \partial \dot{q}_{k}=\partial L / \partial \dot{q}_{k} \equiv p_{k}=p_{k}(q, \dot{q}, t),
$$

(assuming $\partial V / \partial \dot{q}_{k}=0$), the n second-order Lagrangean equations (3.12.1-2a) can be rewritten as the $2 n$ first-order equations

$$
p_{k}=\partial L / \partial \dot{q}_{k} \equiv p_{k}(q, \dot{q}, t)
$$

and

$$
\begin{equation*}
\dot{p}_{k}=\partial L / \partial q_{k}=\dot{p}_{k}(q, \dot{q}, t)=P_{k}(q, p, t), \tag{3.12.4e}
\end{equation*}
$$

where, in the last step, we inverted (3.12.4d) to obtain $\dot{q}_{k}=\dot{q}_{k}(q, p, t)$ (see $\S 8.2$ on Hamiltonian/canonical equations of motion). Such first-order formulations are quite useful in both theoretical and numerical situations.]

Some Mathematical Background

[See also, e.g. Destouches (1948, ch. III: pp. 106-121; extensive classical discussion) and Nielsen (1935, pp. 216-232; outstanding elementary treatment).]

Consider a $(2 n)$ th $\equiv(*)$ th order differential system, in any of the following equivalent forms:

$$
\begin{gather*}
F_{*}(x, d x / d t, t)=0 \quad[\text { implicit form }] \tag{3.12.5a}\\
d x_{*} / d t=X_{*}\left(x_{\bullet}, t\right) \quad[\text { explicit/typical form }(*, \bullet=1, \ldots, 2 n)], \tag{3.12.4c}\\
d x_{1} / X_{1}=d x_{2} / X_{2}=\cdots=d x_{2 n} / X_{2 n}=d t \tag{3.12.5c}
\end{gather*}
$$

where the F_{*}, X_{*} are known functions of their arguments. A solution of ($3.12 .5 \mathrm{a}, \mathrm{b}, \mathrm{c}$), in an open time interval of interest, $\tau \equiv\left(t_{0}, t_{1}\right)$, is the set of $2 n$ (continuously differentiable) functions $x_{*}(t)$ that satisfies them. Next, we recall from the theory of ordinary differential equations, the following fundamental

THEOREM OF INITIAL CONDITIONS (UNIQUENESS OF SOLUTIONS, LIPSCHITZ CONDITIONS)

If $x\left(t_{\text {initial }} \equiv t_{o}\right)=$ given, and if, at every point of τ, all X_{*} as well as $\partial X_{*} / \partial x_{\bullet}$ are continuous, then the system ($3.12 .5 \mathrm{a}, \mathrm{b}, \mathrm{c}$) has a unique solution in τ. [These conditions are restrictive, so, in practice, we frequently find cases where they do not hold. If the existence conditions hold, but not those of uniqueness, several motions are possible (indeterminate motion). For example, the nonlinear system [plus initial conditions (IC)] $\ddot{q}=6 q^{1 / 3}, q(0), \dot{q}(0)=0$ (e.g. rectilinear motion of a particle), is analytic everywhere except in the neighborhood of $q=0$ (a singular point) - the uniqueness conditions are not satisfied there. The problem yields the following three (3) motions: $q(t)=0$ (equilibrium), $q(t)=-t^{3}$ and $q(t)=+t^{3}$ - the IC do not determine the ultimate motion uniquely. If not even the existence conditions hold, worse things may happen.]

In mechanics terms, the theorem states that: If the n positions q and n velocities $d q / d t$ are specified/prescribed at an "initial" instant t_{o}, and if the n forces Q satisfy the above Lipschitz conditions in τ, the subsequent system motion during that time interval is determined uniquely.

The first step in the integration of the system (3.12.5a, b, c) is the search for integrals.

DEFINITION

We call first integral of the system (3.12.5a, b, c) any function $f(x, t)$ that, for every one of its solutions $x_{*}=x_{*}(t)$, remains constant, for arbitrary $t: f(x, t)=$ constant $\equiv c$, where the constant may change when the particular solution (i.e. motion) changes; that is, a first integral is, in general, a function depending on time both explicitly and implicitly, through the x 's, that stays constant on account of the equations of motion, independently of initial conditions; i.e., it is an integral that depends on only one constant, a constant whose value depends (or, is determined by) the initial conditions, that is, on the particular system solution/motion and stays the same throughout it. [A system integral that depends on $p(\leqslant 2 n)$ distinct such constants leads to p first integrals - see (3.12.5f) ff.]

In mechanics terms, a numerical/scalar function $f(q, \dot{q}, t)$ is called first integral of (the equations of) motion of a system S, e.g. eqs (3.12.1, 2, 2a, 4a), if and only if it remains constant for every solution of those equations:

$$
\begin{align*}
f(q, \dot{q}, t)= & f[q(t), \dot{q}(t), t]=\text { constant during S's motion } \\
& \text { (depends on initial conditions of that particular motion), } \tag{3.12.5d}\\
\Rightarrow d f / d t= & \sum\left(\partial f / \partial x_{*}\right)\left(d x_{*} / d t\right)+\partial f / \partial t=\sum\left(\partial f / \partial x_{*}\right) X_{*}+\partial f / \partial t=0, \\
& \text { identically, for any } q(t), \dot{q}(t) \text {, and } t \text { satisfying } S \text { 's equations of motion. } \tag{3.12.5e}
\end{align*}
$$

Hence, every such integral lowers the degree of the differential system by 1 ; and therein lies their principal usefulness to mechanics. [Also, since first integrals are defined relative to the equations of motion, possible constraint equations may also be viewed as first integrals of them (e.g. §6.1)]. In particular, we may show the following

THEOREM

Under broad analytical conditions, we can replace one, or more, of S 's equations of motion, say of (3.12.4a), with an equal number of first integrals of them, i.e. with (3.12.5d, 6a)-like equations (e.g. an energy integral). [However, for certain values of the initial conditions, such a replacement may introduce "parasitic" (i.e. extraneous to our problem) solutions.]

Classification of first integrals: (i) First integrals explicitly independent of time; that is, $\partial f / \partial t=0 \Rightarrow f(x)=f(q, d q / d t)=$ constant. (ii) First integrals depending explicitly on time; that is, $f(x, t)=f(q, d q / d t, t)=$ constant. [In certain areas of physics (e.g., statistical mechanics), other first integral classifications are important.]

Distinct (or Independent) first integrals. If $f=a$ (constant) is a first integral, so is $F(f)=b$ (another constant), where $F(f)$ is an arbitrary function of f. More generally, let $f_{1}=a_{1}, \ldots, f_{p}=a_{p}$ be $p(\leqslant 2 n)$ distinct first integrals, that is, none of them is expressible as a(- n algebraic) function of the other $p-1$, i.e. as

$$
\begin{equation*}
f_{i}=\phi\left(f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{p}\right), \tag{3.12.5f}
\end{equation*}
$$

then $F\left(f_{1}, \ldots, f_{p}\right)=b$ is also an integral $\left(\Rightarrow \dot{F}=\sum\left(\partial F / \partial f_{\alpha}\right) \dot{f}_{\alpha}=0, \alpha=1, \ldots, p\right)$, though not a distinct one.

Now, it is shown in the theory of ordinary differential equations that the complete, or general, analytical solution of the ($2 n$)th order system (3.12.4a, c-d, 5a-c) contains, or depends on, at most $2 n$ independent, or distinct, constants of integration; and, conversely, a $2 n$-order system is considered completely integrated (i.e. its motion completely known) if $2 n$ distinct first integrals of it are known (non-distinct integrals do not lower, further, the system order, hence they are of no interest to mechanics). One way of expressing such a solution is in the form of $2 n$ distinct first integrals:

$$
\begin{equation*}
f_{*}(x, t)=c_{*}=\text { arbitrary constants (of integration) } \quad(*=1, \ldots 2 n) . \tag{3.12.5~g}
\end{equation*}
$$

A second way is obtained, in principle by solving $(3.12 .5 \mathrm{~g})$ for the x :

$$
\begin{equation*}
x_{*}=\phi_{*}\left(t ; c_{1}, \ldots, c_{2 n}\right) \equiv \phi_{*}(t ; c), \tag{3.12.5h}
\end{equation*}
$$

or, simply,

$$
\begin{equation*}
x_{*}=x_{*}\left(t ; c_{1}, \ldots, c_{2 n}\right) \equiv x_{*}(t ; c) . \tag{3.12.5i}
\end{equation*}
$$

The constants are usually evaluated by applying the initial conditions to $(3.12 .5 \mathrm{~g})$ or (3.12.5h, i). Indeed, applying them to the latter yields $x_{* o}=\phi_{*}\left(t_{o} ; c_{1}, \ldots, c_{2 n}\right)$, from which, solving for the c_{*}, we get

$$
\begin{equation*}
c_{*}=c_{*}\left(t_{o} ; x_{1 o}, \ldots, x_{2 n, o}\right), \tag{3.12.5j}
\end{equation*}
$$

and, inserting these expressions back into (3.12.5h), we obtain the particular solution

$$
\begin{equation*}
x_{*}=\phi_{*}\left(t ; t_{o}, x_{1 o}, \ldots, x_{2 n, o}\right) \equiv \phi_{*}\left(t ; t_{o}, x_{o}\right) . \tag{3.12.5k}
\end{equation*}
$$

Finally, evaluating this for $t=t_{o}$, or swapping the roles of t, t_{o} and x, x_{o}, readily leads to

$$
\begin{equation*}
x_{* o}=\phi_{*}\left(t_{o}, t ; x_{1}, \ldots, x_{2 n}\right) \equiv \phi_{*}\left(t_{o}, t ; x\right) \quad\left[\text { solution of }(3.12 .5 \mathrm{k}) \text { for the } x_{o}\right] ; \tag{3.12.51}
\end{equation*}
$$

that is, the (3.12 .5 k) are $2 n$ first integrals, whose values are the initial values of the dependent variables.

Back to Mechanics

In terms of the variables of Lagrangean mechanics q and \dot{q}, eq's (3.12.5g) translate to the $2 n$ independent first integrals of the equations of motion, or simply constants of the motion (each one depending on only one constant):

$$
\begin{gather*}
\qquad f_{*}(q, \dot{q}, t)=c_{*} \quad(*=1, \ldots, 2 n), \tag{3.12.6a}\\
{\left[\text { or, in Hamiltonian variables }(\mathrm{ch} .8), \psi_{*}(q, p, t)=c_{*}\right]} \tag{3.12.6b}
\end{gather*}
$$

which is a system of total order $2 n$.
The energy integral, whenever it exists [usually, not an explicit function of time, and not always equal to the sum of the system's kinetic and potential energies (\equiv total energy of system)] is one such (first) integral (details in $\S 3.9$). Similarly, (3.12.5h, i) translate to the customary mechanics form (motion):

$$
\begin{equation*}
q_{k}=q_{k}\left(t ; c_{1}, \ldots, c_{2 n}\right) \equiv q_{k}(t ; c), \quad \dot{q}_{k}=\dot{q}_{k}\left(t ; c_{1}, \ldots, c_{2 n}\right) \equiv \dot{q}_{k}(t ; c) \tag{3.12.6c}
\end{equation*}
$$

$$
\text { [compatible with } \dot{q}_{k}=\partial q_{k}(t ; c) / \partial t=\cdots \text {] }
$$

Each choice of constants c constitutes a different $q_{k} \leftrightarrow t$ relation and, therefore, a particular solution/motion. And, conversely, inverting (3.12.6c) [assuming that their Jacobian $|\partial(q, \dot{q}) / \partial c| \neq 0$], we obtain the earlier $2 n$ distinct integrals

$$
\begin{equation*}
c_{*}=f_{*}(q, \dot{q}, t) \quad(*=1, \ldots, 2 n) \tag{3.12.6d}
\end{equation*}
$$

Each c_{*} is a constant of the motion [and, therefore, along the latter each $f_{*}(q, \dot{q}, t)$ is conserved] but its value depends on the particular $q_{k} \leftrightarrow t$; that is, on the particular motion. Further, due to (3.12.6c, d), an integral of motion $F=F(q, \dot{q}, t)=$ constant becomes

$$
\begin{equation*}
F(q, \dot{q}, t)=F[q(t, c), \dot{q}(t, c), t] \equiv F^{\prime}(t, c) . \tag{3.12.6e}
\end{equation*}
$$

But $0=\dot{F}=d F^{\prime} / d t=\partial F / \partial t$, and therefore F^{\prime} does not depend explicitly on time; that is, finally,

$$
\begin{equation*}
F(q, \dot{q}, t)=F^{\prime}(c)=\text { function of the independent } c \text { 's; } \tag{3.12.6f}
\end{equation*}
$$

and every other constant of the motion depends on them.
Example: The second order differential equation/system $\ddot{q}+q=0$ (linear oscillator) has the two distinct first integrals $f_{1}(q, \dot{q})=q^{2}+\dot{q}^{2}=c_{1}, f_{2}(q, \dot{q}, t)=\tan ^{-1}(q / \dot{q})-t=c_{2}$, which, when solved for q, \dot{q} yield $q\left(t ; c_{1}, c_{2}\right)=c_{1}^{1 / 2} \sin \left(t+c_{2}\right), \dot{q}\left(t ; c_{1}, c_{2}\right)=c_{1}^{1 / 2} \cos \left(t+c_{2}\right)[=\partial q / \partial t]$; the $c_{1,2}$ are evaluated from the initial conditions $q(0) \equiv q_{o}=c_{1}^{1 / 2} \sin c_{2}, \dot{q}(0) \equiv \dot{q}_{o}=c_{1}^{1 / 2} \cos c_{2}$ (see below).

Usually, we apply (3.12.6d) for some "initial" time t_{o}, say $t_{o}=0$, and thus express the c 's for all time in terms of the initial values of the $q \mathrm{~s}$ and $\dot{q} \mathrm{~s}$ (or, in terms of the initial state of the system) $q_{k}(0)=q_{k, o}$ and $\dot{q}_{k}(0)=\dot{q}_{k, o}$; i.e., compactly

$$
\begin{equation*}
c_{*}=c_{*}\left(q_{o}, \dot{q}_{o}\right) \quad\left[=f_{*}\left(q_{o}, \dot{q}_{o}, 0\right)\right] . \tag{3.12.7a}
\end{equation*}
$$

Then, $(3.12 .6 \mathrm{c})$ can be rewritten, respectively, à la (3.12.5k), as

$$
\begin{equation*}
q_{k}=q_{k}\left(t ; q_{o}, \dot{q}_{o}\right), \quad \dot{q}_{k}=\dot{q}_{k}\left(t ; q_{o}, \dot{q}_{o}\right) ; \tag{3.12.7b}
\end{equation*}
$$

a fact that shows that the number of arbitrarily prescribable conditions (data) at our disposal is $2 n$.

In sum:

- The determination of the most general motion of an n DOF (holonomic and potential) mechanical system is mathematically equivalent to the determination of the $2 n$ distinct/independent integrals, or constants of motion, of its n second-order Lagrangean equations. [Clearly, the more independent integrals we know-up to the (very rarely achievable) theoretical maximum/full set $2 n$-the better we understand/characterize the system's motion; hence the keen interest in finding the greatest possible number of such integrals. However, as Landau and Lifshitz (1960, p. 13) point out, not all such integrals are equally important to mechanics. The most significant ones derive from "the fundamental homogeneity and isotropy of space and time"; and the physical quantities represented by them are said to be conserved. Further, such integrals of motion are additive; that is, for systems with negligible mutual interaction of their parts (see closed/open systems, below), their values for the whole system equal the sum of their values for its individual parts; and therein lies their importance to mechanics; see ex. 3.12.3, below.]
- An initial state of a system - that is, a particular choice of the $2 n q_{o} \mathrm{~s}$ (positions) and $\dot{q}_{o} \mathrm{~s}$ (velocities) - determines a particular motion; and every constant of motion is determined by that initial state, via (3.12.7a, b). [For a detailed discussion of the geometrical interpretation of the above in generalized spaces, and more, see, for example, Prange (1935, pp. 547-564).]

These fundamental results allow us to express, in principle, the solution of any dynamical problem as the following time power series around $t=0$:

$$
\begin{align*}
q_{k}(t) & =q_{k}(0)+\dot{q}_{k}(0) t+(1 / 2) \ddot{q}_{k}(0) t^{2}+\cdots \\
& \equiv q_{k, o}+\dot{q}_{k, o} t+(1 / 2) \ddot{q}_{k, o} t^{2}+\cdots \tag{3.12.8}
\end{align*}
$$

To calculate $\ddot{q}_{k}(0) \equiv \ddot{q}_{k, o}$ we evaluate (3.12.1, 2) at $t=0$, use the given $q_{k, o}$ and $\dot{q}_{k, o}$, and then solve it for $\ddot{q}_{k, o}$. To calculate $\dddot{q}_{k}(0) \equiv \dddot{q}_{k, o}$ we (... $)^{\circ}$-differentiate (3.12.1, 2), evaluate it at $t=0$, and then solve for $\dddot{q}_{k, o}$ while using $q_{k, o}, \dot{q}_{k, o}, \ddot{q}_{k, o}$ in it. Continuing this well-known process, we can determine all (...) -derivatives of the q_{k} at $t=0$ in terms of the $2 n q_{o}, \dot{q}_{o}$. It can be shown that, for a large number of useful mechanics problems, the conditions of convergence of the series (3.12.8) are satisfied, for some time after $t=0$, and therefore that representation is meaningful. [Also, such series are quite useful in problems of initial motions; see, e.g., Whittaker, 1937, pp. 45-46.]

Determinism

The preceding constitute a quantitative version of the doctrine of classical determinism (advanced, especially in connection with problems of celestial mechanics, by Laplace
et al.). According to this doctrine, if we knew the present state of the universe - that is, the positions and velocities of all its particles, and the forces acting on them, and were able to solve its equations of motion (and exclude internal collisions)then, we would be able to predict its entire future (and past!) uniquely. However, such strict causality $=$ determinism is illusory for the following theoretical and practical reasons:
(i) In general, the equations of motion cannot be solved via finite combinations of the known elementary functions (see elementary vs. advanced problems below), and the errors of approximate solutions, due either to truncations of series or to iterations, do not remain small (bounded) for long time intervals.
(ii) The initial state of a system can never be known with infinite accuracy/precision. Therefore, the long-term predictions of systems that are sensitive to such initial conditions, due to the cumulative effect of the unavoidable errors in these latter, will be quite erroneous; for example, chaotic behavior of nonlinear (deterministic) systems. As McCauley puts it: "Because of errors that were made by the computer's roundoff/truncation algorithm, he (E. Lorenz, 1963) discovered what is now called sensitivity with respect to small changes in initial conditions: big changes in trajectory patterns occurred at later times owing to shifts in the last digits of the starting conditions" (1993, p. 3, last emphasis added). [The literature on chaotic, or stochastic, motion/dynamics is enormous and growing ... regularly; we recommend Lichtenberg and Lieberman (1992), Tabor (1989).]
(iii) Clearly, our classical (i.e., nonrelativistic, nonquantum, nonprobabilistic, etc.) mathematical model neglects certain factors, or causes, that may prove quite significant in the long (and, sometimes, even short) run; for example, very high speeds and electromagnetic fields (relativity) and/or very small spatial regions (atomic phenomena: Heisenberg's indeterminacy principle, and Born's probabilistic/statistical interpretation of quantum mechanics).

Hence, since, even within classical mechanics, long-term predictions are practically unreliable, and depending on the system at hand and the accuracy sought, we must update our exact or approximate solutions at the end of an(y) appropriate time interval, using data obtained experimentally at that time.

Elementary versus Advanced Problems

On the basis of the principles used for their integration, we divide mechanical problems into two kinds: elementary and advanced; not a clear-cut and/or uniform terminology, by any means.

- Elementary are those problems soluble completely by quadratures; namely, those whose solutions are expressible either in terms of known elementary functions (solution in "closed form"), or as indefinite integrals of such functions.
- Advanced are those problems that cannot be solved by quadratures.

Unfortunately, as one might have anticipated, most mechanics problems are not elementary; and, whenever they are, it is always because their Lagrangeans possess some special (symmetry) properties. Below we summarize some of these special properties that are frequently associated with the elementary problems and account for their solvability via quadratures. This ability to predict properties of the solution(s) of a problem by examining its Lagrangean-that is, without acutally solving its equations of motion - is one of the key advantages of the Lagrangean (and Hamiltonian) method
over that of Newton-Euler. [For a general treatment of the relation between Lagrangean properties and conservation theorems, see, for example, §8.13 and McCauley (1997, pp. 63-72), Saletan and Cromer (1971, chap. 3); while, for a discussion of integrability in Hamiltonian/canonical systems see $\S 8.10$, §8.14.]

Closed Systems

We begin with an isolated, or closed, system; that is, a finite system S consisting of a number of rigid bodies and/or particles that interact only with each other; and as such, one without time-varying parameters; namely, a system uninfluenced by sources outside itself. If S is also conservative, or reversible, and can be described by a Lagrangean, then the latter must have the general (inertial) form

$$
\begin{equation*}
L \equiv T-V=(1 / 2) \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}-V(\boldsymbol{r}) \tag{3.12.9}
\end{equation*}
$$

where $\boldsymbol{r} / \boldsymbol{v}=$ inertial position/velocity of a generic particle of S. The "force function" $-V(\boldsymbol{r})$ represents the contribution of the mutual interaction (forces) to the Lagrangean; if the bodies/particles of S are noninteracting, then $V=0$.

That V depends only on the \boldsymbol{r} 's means that a change in the position of any of the particles of S affects instantaneously all its other particles; otherwise, if interactions spread with finite velocity, then, due to the law of velocity addition among any two Galilean frames ($=$ inertial frames in relative accelerationless translation), that velocity of propagation would be different in any two such frames. As a result, the equations of motion of these interacting particles in two inertial frames would be different; in clear violation of the classical principle of Galilean relativity, which requires form invariance of the equations of motion among inertial frames [recalling §1.4-1.6; see also Landau and Lifshitz (1960, p. 8)].

Now, the equations of motion of a typical particle of S are

$$
\begin{equation*}
(\partial L / \partial \boldsymbol{v})^{\cdot}-\partial L / \partial \boldsymbol{r}=\mathbf{0}: \quad d m(d \boldsymbol{v} / d t)=-\partial V / \partial \boldsymbol{r} \tag{3.12.9a}
\end{equation*}
$$

From the above, and since $d \boldsymbol{v} / d t \equiv d^{2} \boldsymbol{r} / d t^{2} \equiv \boldsymbol{a}$, both L and the equations of motion remain unchanged (invariant) under a $t \rightarrow-t$ transformation; and, hence, also under $d t \rightarrow-d t$. This expresses the reversibility of motion of such systems, and the isotropy of time (i.e., identical properties in both future and past "directions"), in addition to its homogeneity.

In terms of (inertial) Lagrangean coordinates $q=\left(q_{1}, \ldots, q_{n}\right)$, equations (3.12.9) and (3.12.9a) assume, respectively, the system forms

$$
\begin{equation*}
L \equiv T-V=\sum \sum(1 / 2) M_{k l}(q) \dot{q}_{k} \dot{q}_{l}-V(q), \quad\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=0 \tag{3.12.9b}
\end{equation*}
$$

Open Systems

Next, let us consider a system S_{1} that is not closed, and interacts with another system S_{2} that has a given motion; that is, it is unaffected by its interaction with S_{1}. Then we say that S_{1} is open, or that it moves in the given external field of S_{2}. If we know the Lagrangean of the combined system $S_{1}+S_{2} \equiv S, L$, then we can find the Lagrangean of S_{1}, L_{1}, by replacing in L the coordinates and velocities of $S_{2}, q_{(2)}$ and $\dot{q}_{(2)}$ by their given functions of time. In particular, if S is closed, then, since in
this case [with $q_{(1)}$ and $\dot{q}_{(1)}=$ coordinates and velocities of S_{1}, and corresponding notations for its kinetic and potential energies]

$$
\begin{equation*}
L=T_{(1)}\left[q_{(1)}, \dot{q}_{(1)}\right]+T_{(2)}\left[q_{(2)}, \dot{q}_{(2)}\right]-V\left[q_{(1)}, q_{(2)}\right], \tag{3.12.10a}
\end{equation*}
$$

from which (recalling ex. 3.5.13)

$$
\begin{equation*}
T_{(2)}\left[q_{(2)}(t), \dot{q}_{(2)}(t)\right]=\text { given function of time, and hence omittable from } L, \tag{3.12.10b}
\end{equation*}
$$

we finally obtain

$$
\begin{align*}
L_{1} & =T_{(1)}\left[q_{(1)}, \dot{q}_{(1)}\right]-V\left[q_{(1)}, q_{(2)}(t)\right] \\
& \equiv T_{(1)}\left[q_{(1)}, \dot{q}_{(1)}\right]-V\left[q_{(1)}, t\right] \Rightarrow \partial L_{1} / \partial t=-\partial V / \partial t \neq 0 . \tag{3.12.10c}
\end{align*}
$$

Integrals of Closed Systems

Here, we prove that a closed mechanical system with n positional coordinates has $2 n-1$ independent integrals. Indeed, since [as the second of eqs. (3.12.9b) shows] the equations of motion for such a system do not contain the time explicitly, the time origin is completely arbitrary and we can take as one of the $2 n$ arbitrary constants of integration of the general solution $q_{k}\left(t ; c_{1}, \ldots, c_{n}\right)$ the additive time constant τ. Eliminating $t+\tau$ from the $2 n$ functions $q_{k}=q_{k}\left(t+\tau ; c_{1}, \ldots, c_{2 n-1}\right)$ and $\dot{q}_{k}=$ $\dot{q}_{k}\left(t+\tau ; c_{1}, \ldots, c_{2 n-1}\right)$, we can express the remaining $2 n-1$ constants $c_{1}, \ldots, c_{2 n-1}$ in terms of the $2 n q$'s and \dot{q} 's:

$$
\begin{equation*}
c_{l}=c_{l}(q, \dot{q}), \quad(l=1, \ldots, n-1) \tag{3.12.11}
\end{equation*}
$$

that is, our system has $2 n-1$ independent integrals, Q.E.D.

Ignorable Coordinates and Momentum Conservation

We have seen the power theorem and Jacobi-Painlevé generalized energy integral (§3.9). Let us now see some generalized, or Lagrangean, momentum integrals. We consider, again, a system with Lagrangean $L=L(t, q, \dot{q})$ and equations of motion

$$
\begin{equation*}
\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=0 \quad(k=1, \ldots, n) \tag{3.12.12a}
\end{equation*}
$$

If some of the system coordinates, say $q_{1}, \ldots, q_{M}(M \leq n)$, do not appear explicitly in L (although the corresponding velocities $\dot{q}_{1}, \ldots, \dot{q}_{M}$ do) - that is, if

$$
\begin{equation*}
L=L\left(t ; q_{M+1}, \ldots, q_{n} ; \dot{q}_{1}, \ldots, \dot{q}_{n}\right) \tag{3.12.12b}
\end{equation*}
$$

then, as (3.12.12a) immediately show, the corresponding (holonomic) Lagrangean momenta $p_{i} \equiv \partial L / \partial \dot{q}_{i}(i=1, \ldots, M)$ are conserved:

$$
\begin{equation*}
\left(\partial L / \partial \dot{q}_{i}\right)^{\cdot}=0 \Rightarrow \partial L / \partial \dot{q}_{i} \equiv p_{i}=\text { constant } \equiv c_{i} \tag{3.12.12c}
\end{equation*}
$$

where the constants of integration c_{i} are to be evaluated from the initial conditions. Coordinates like q_{1}, \ldots, q_{M} are called ignorable, or cyclic (after Thomson and Tait, Helmholtz, Routh et al.-see $\S 8.3,4)$; whereas the rest of the q 's that do appear in L, and hence satisfy eqs. (3.12.12a) but with $k=M+1, \ldots, n$, are called palpable. The presence (or, rather, absence!) of ignorable coordinates is one of the most
common reasons for the solubility of problems by quadratures. We show in $\S 8.3,4$ how to utilize the M "cyclic integrals" (3.12.12c) to reduce the number of Lagrangean equations (3.12.12a) by the number of ignorable coordinates present in L (method of "ignoration of coordinates" of Routh and Helmholtz).

Example 3.12.1 Consider a system with Lagrangean

$$
\begin{equation*}
L=(m / 2)\left[(\dot{r})^{2}+r^{2}(\dot{\phi})^{2}\right]-V(r), \tag{a}
\end{equation*}
$$

[particle of mass m in plane motion ($r, \phi=$ polar coordinates) in potential field $V=V(r)]$. Here, clearly, $\partial L / \partial \phi=0$; that is, ϕ is ignorable. Therefore, the system possesses the cyclic integral

$$
\begin{equation*}
p_{\phi} \equiv \partial L / \partial \dot{\phi}=m r^{2} \dot{\phi}=\text { constant } \tag{b}
\end{equation*}
$$

which expresses the conservation of the component of the angular momentum of the particle, about the origin, along an axis perpendicular to the plane of the motion.

Example 3.12.2 First-Order Form of the Routh-Voss Equations. Let us find the first-order forms of a system subject to the m Pfaffian constraints

$$
\begin{equation*}
\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0 \quad[k=1, \ldots, n ; D=1, \ldots, m(<n)] \tag{a}
\end{equation*}
$$

and, hence, having the Routh-Voss equations of motion

$$
\begin{equation*}
E_{k}(L)=Q_{k}+\sum \lambda_{D} a_{D k} \quad\left[Q_{k}=\text { nonpotential part of }(\ldots) \delta q_{k} \text { in } \delta^{\prime} W\right] \tag{b}
\end{equation*}
$$

With the variable change (3.12.4)

$$
\begin{equation*}
q_{1}=x_{1}, \ldots, q_{n}=x_{n} ; \quad \dot{q}_{1}=x_{n+1}=\dot{x}_{1}, \ldots, \dot{q}_{n}=x_{2 n}=\dot{x}_{n} \tag{c}
\end{equation*}
$$

L becomes $L\left(t ; x_{1}, \ldots, x_{n} ; x_{n+1}, \ldots, x_{2 n}\right)$ and therefore the m first-order equations (a) and n second-order equations (b) in the q 's transform, respectively, to the m finite equations

$$
\begin{equation*}
\sum a_{D k} x_{n+k}+a_{D}=0 \tag{d}
\end{equation*}
$$

and the n first-order equations

$$
\begin{equation*}
\left(\partial L / \partial x_{n+k}\right)^{\cdot}-\partial L / \partial x_{k}=Q_{k}+\sum \lambda_{D} a_{D k}, \tag{e}
\end{equation*}
$$

since $\partial L / \partial x_{n+k}=$ linear in the $x_{n+k}(k=1, \ldots, n)$. Equations (d, e) and the second half of (c) constitute a system of $2 n+m$ first-order equations for the $2 n x$'s and m λ_{D} 's.

Example 3.12.3 Integrals of a Closed System. Let us find the integrals of a closed system with (inertial) Lagrangean

$$
\begin{equation*}
L=(1 / 2) \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}-V(\boldsymbol{r})=T(q, \dot{q})-V(q) \tag{a}
\end{equation*}
$$

or, of a closed system in a constant (time-independent) external field.
(i) Energy integral. Here, $\partial L / \partial t=0, Q_{k, \text { nonpotential }}=0$, and $a_{D}=0$. Hence, the holonomic power equation (3.9.11d ff.) immediately yields

$$
\begin{equation*}
h \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L=(2 T)-(T-V)=T(q, \dot{q})+V(q) \equiv E=\text { constant } . \tag{b}
\end{equation*}
$$

The condition $\partial L / \partial t=0$ is a consequence of the homogeneity of time for closed systems. The energy integral (b) is additive: the energy of a closed system consisting of several closed subsystems with negligible mutual interaction equals the sum of the individual subenergies of these subsystems. This also results from the linearity of $h=E$ in L in (b).
[Whittaker (in 1900) has shown how to use the energy equation (b) to reduce a closed n - $D O F$ system into another with $(n-1) D O F$ (and a quadrature); see, for example, Whittaker (1937, pp. 64-67); also Butenin (1971, pp. 103-110), MacMillan (1936, pp. 320-322).]
(ii) Linear momentum integral. The homogeneity of space for such systems leads to the requirement that the first-order change of their Lagrangeans under $\boldsymbol{r} \rightarrow \boldsymbol{r}+\Delta \boldsymbol{r}$, where $\Delta \boldsymbol{r}=$ arbitrary elementary rigid translation, i.e. common to all system particles, and $\boldsymbol{v} \rightarrow \boldsymbol{v}$ (i.e., no velocity change), should vanish.

Since, here, $L=L(\boldsymbol{r}, \boldsymbol{v})$, the condition $\Delta L=0$, under such changes, translates to

$$
\begin{equation*}
\Delta L=\boldsymbol{S}(\partial L / \partial \boldsymbol{r}) \cdot \Delta \boldsymbol{r}=\Delta \boldsymbol{r} \cdot \boldsymbol{S}(\partial L / \partial \boldsymbol{r})=0 \Rightarrow \partial L / \partial \boldsymbol{r}=\mathbf{0} \tag{c}
\end{equation*}
$$

As a result, Lagrange's equations reduce to

$$
\begin{equation*}
\boldsymbol{S} d / d t(\partial L / \partial \boldsymbol{v})=d / d t(\boldsymbol{S} \partial L / \partial \boldsymbol{v})=\mathbf{0} \tag{d}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{p} \equiv \boldsymbol{S} \partial L / \partial \boldsymbol{v}=\boldsymbol{S} d m \boldsymbol{v} \equiv \boldsymbol{S} d \boldsymbol{p}: \text { system linear momentum }=\text { constant. } \tag{e}
\end{equation*}
$$

Clearly, \boldsymbol{p} is additive even for nonnegligible interactions of the constituent subsystems.

Next, the linear momentum $\boldsymbol{p} /($ (total) energy $E /$ Lagrangean L of a system in an inertial frame F are related to those in another frame F^{\prime}, translating relative to F with velocity $\boldsymbol{v}_{o}=d \boldsymbol{r}_{o} / d t$ (fig. 3.29), $\boldsymbol{p}^{\prime} / E^{\prime} / L^{\prime}$, respectively, as follows: since $\boldsymbol{v}=\boldsymbol{v}_{o}+\boldsymbol{v}^{\prime}\left(\boldsymbol{v}^{\prime}=\right.$ particle velocities relative to $\left.F^{\prime}\right)$, we find, successively,
(a) $\quad \boldsymbol{p}=\boldsymbol{S} d m \boldsymbol{v}=\boldsymbol{S} d m\left(\boldsymbol{v}_{o}+\boldsymbol{v}^{\prime}\right)=\boldsymbol{v}_{o}(\boldsymbol{S} d m)+\boldsymbol{S} d m \boldsymbol{v}^{\prime} \equiv \boldsymbol{p}^{\prime}+m \boldsymbol{v}_{o}$.

If $\boldsymbol{p}^{\prime}=\mathbf{0}$ (i.e., if the system is at rest relative to F^{\prime}), then (f) yields the velocity of the system as a whole relative to F, or velocity of its mass center G relative to F :

$$
\begin{align*}
& \boldsymbol{v}_{o}=\boldsymbol{p} / m=\boldsymbol{S} d m \boldsymbol{v} / \boldsymbol{S} d m \\
& \Rightarrow \boldsymbol{S} d m \boldsymbol{r}-\boldsymbol{p} t=m \boldsymbol{r}_{G o} \Rightarrow \boldsymbol{r}_{G}=\boldsymbol{r}_{G o}+(\boldsymbol{p} / m) t \tag{g}
\end{align*}
$$

Figure 3.29 Frames F and F^{\prime} in mutual translation.
that is, the center of mass of a closed system moves uniformly in a straight line.
(b)

$$
\begin{align*}
E & \equiv(1 / 2) \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}+V \\
& =(1 / 2) \boldsymbol{S} d m\left[\left(\boldsymbol{v}_{o}+\boldsymbol{v}^{\prime}\right) \cdot\left(\boldsymbol{v}_{o}+\boldsymbol{v}^{\prime}\right)\right]+V \\
& =E^{\prime}+\boldsymbol{p}^{\prime} \cdot \boldsymbol{v}_{o}+(1 / 2) m v_{o}^{2}, \tag{h1}
\end{align*}
$$

where

$$
\begin{equation*}
E^{\prime} \equiv(1 / 2) \boldsymbol{S} d m \boldsymbol{v}^{\prime} \cdot \boldsymbol{v}^{\prime}+V \tag{h2}
\end{equation*}
$$

If $\boldsymbol{p}^{\prime}=\mathbf{0}$, as earlier (i.e., if G is at rest in F^{\prime}), then (h1) and (h2) reduce, respectively, to

$$
\begin{equation*}
E=(1 / 2) m v_{o}^{2}+E_{\text {internal }}, \tag{h3}
\end{equation*}
$$

and

$$
E^{\prime}=E_{\text {internal }}=\text { internal energy of system }
$$

$=$ kinetic energy of motion of system particles relative to mass center, plus potential energy of their mutual interactions
$=$ energy of system when at rest as a whole.
(c)

$$
\begin{align*}
L & \equiv(1 / 2) \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}-V \\
& =(1 / 2) \boldsymbol{S} d m\left[\left(\boldsymbol{v}_{o}+\boldsymbol{v}^{\prime}\right) \cdot\left(\boldsymbol{v}_{o}+\boldsymbol{v}^{\prime}\right)\right]-V \\
& =L^{\prime}+\boldsymbol{p}^{\prime} \cdot \boldsymbol{v}_{o}+(1 / 2) m v_{o}^{2} \tag{i1}
\end{align*}
$$

where

$$
\begin{equation*}
L^{\prime} \equiv T^{\prime}-V=(1 / 2) \boldsymbol{S} d m \boldsymbol{v}^{\prime} \cdot \boldsymbol{v}^{\prime}-V \tag{i2}
\end{equation*}
$$

Finally, integrating the above from an "initial" time up to a generic one, t, we obtain (to within inessential constants) the law of transformation of the Hamiltonian action of the system (chaps. 7 and 8) between the frames $F\left(A_{H}\right)$ and $F^{\prime}\left(A_{H^{\prime}}\right)$:

$$
\begin{equation*}
A_{H} \equiv \int L d t=\cdots=A_{H^{\prime}}+m \boldsymbol{v}_{o} \cdot \boldsymbol{r}_{G^{\prime}}+(1 / 2) m v_{o}^{2} t \tag{i3}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{H^{\prime}} \equiv \int L^{\prime} d t, \quad r_{G^{\prime}}=\text { position vector of } G \text { in } F^{\prime} \tag{i4}
\end{equation*}
$$

(iii) Angular momentum integral. The isotropy of space for such systems leads to the requirement that the first-order change of their Lagrangeans under

$$
\begin{equation*}
r \rightarrow r+\Delta r=r+\Delta \theta \times r, \quad v \rightarrow v+\Delta v=v+\Delta \theta \times v \tag{j1,2}
\end{equation*}
$$

where $\Delta \boldsymbol{\theta}=$ arbitrary elementary rigid rotation (i.e. common to all system particles), should vanish.

Since, by Lagrange's equations $\partial L / \partial \boldsymbol{r}=d / d t(\partial L / \partial \boldsymbol{v})=d / d t(d \boldsymbol{p})$, the condition $\Delta L=0$ under ($\mathrm{j} 1,2$), yields, successively,

$$
\begin{align*}
\Delta L & =\boldsymbol{S}[(\partial L / \partial \boldsymbol{r}) \cdot \Delta \boldsymbol{r}+(\partial L / \partial \boldsymbol{v}) \cdot \Delta \boldsymbol{v}] \\
& =\boldsymbol{S}\left[(d \boldsymbol{p})^{\cdot} \cdot(\Delta \boldsymbol{\theta} \times \boldsymbol{r})+d \boldsymbol{p} \cdot(\Delta \boldsymbol{\theta} \times \boldsymbol{v})\right] \\
& =\Delta \boldsymbol{\theta} \cdot \boldsymbol{S}\left[\boldsymbol{r} \times(d \boldsymbol{p})^{\cdot}+\boldsymbol{v} \times d \boldsymbol{p}\right] \\
& =\Delta \boldsymbol{\theta} \cdot(\boldsymbol{S} \boldsymbol{r} \times d \boldsymbol{p})^{\cdot}=0, \tag{j3}
\end{align*}
$$

from which, since $\Delta \boldsymbol{\theta}$ is arbitrary, we obtain the principle of conservation of angular momentum

$$
\begin{align*}
\boldsymbol{H}_{O} \equiv & \underset{\boldsymbol{S}}{\boldsymbol{r}} \times d \boldsymbol{p} \equiv \mathbf{S} \boldsymbol{r} \times(d m \boldsymbol{v}): \\
\quad & \quad \text { (inertial) absolute angular momentum (or moment of momentum) about an } \\
& \quad \text {-fixed point } O \\
= & \text { constant. } \tag{j4}
\end{align*}
$$

Clearly, \boldsymbol{H}_{O}, like \boldsymbol{p}, is additive even for nonnegligible interactions.
Thus, a closed system has ten additive (scalar) integrals:

- Homogeneity of time: conservation of energy (one),
- Homogeneity of space: conservation of linear momentum (three),
- Center of mass moves with constant velocity (three), and
- Isotropy of space: conservation of angular momentum (three).

Finally, let us relate the absolute angular momenta of the system in the two earlier frames $F\left(\boldsymbol{H}_{O}\right)$ and $F^{\prime}\left(\boldsymbol{H}_{O^{\prime}}\right)$. With $\boldsymbol{r}_{o}=$ position of origin O^{\prime} of F^{\prime} relative to origin O of F, and $\boldsymbol{r}^{\prime}=$ position of typical system particle relative to O^{\prime}, we have

$$
\begin{align*}
\boldsymbol{H}_{O} & \equiv \boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{v})=\boldsymbol{S}\left[\left(\boldsymbol{r}_{o}+\boldsymbol{r}^{\prime}\right) \times d m\left(\boldsymbol{v}_{o}+\boldsymbol{v}^{\prime}\right)\right] \\
& =\boldsymbol{r}_{o} \times\left(m \boldsymbol{v}_{o}\right)+\boldsymbol{r}_{o} \times\left(m \boldsymbol{v}_{G}^{\prime}\right)+m \boldsymbol{r}_{G}^{\prime} \times \boldsymbol{v}_{o}+\boldsymbol{H}_{O^{\prime}} \tag{j5}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{H}_{O^{\prime}} \equiv \boldsymbol{S} \boldsymbol{r}^{\prime} \times\left(d m \boldsymbol{v}^{\prime}\right)=\text { absolute angular momentum about } O^{\prime} \tag{j6}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{r}_{G}^{\prime}\left(\boldsymbol{v}_{G}^{\prime}\right)=\text { position }(\text { velocity }) \text { of system mass center, } G \text {, relative to } O^{\prime} . \tag{j7}
\end{equation*}
$$

In particular, if the origins of F and F^{\prime} instantaneously coincide $\left(\boldsymbol{r}_{o}=\mathbf{0} \Rightarrow\right.$ $\left.\boldsymbol{r}_{G}^{\prime}=\boldsymbol{r}_{G}\right)$, and the system is at rest in F^{\prime} as a whole ($\left.\boldsymbol{v}_{o}=\boldsymbol{v}_{G} \Rightarrow m \boldsymbol{v}_{o}=m \boldsymbol{v}_{G}=\boldsymbol{p}\right)$, then ($\mathrm{j} 5,6$) reduce, respectively, to

$$
\begin{align*}
& \boldsymbol{H}_{O}=\boldsymbol{H}_{O, \text { intrinsic }}+\boldsymbol{r}_{G} \times \boldsymbol{p} \tag{j8}\\
& \boldsymbol{H}_{O^{\prime}}=\boldsymbol{H}_{O, \text { intrinsic }} \equiv \boldsymbol{S} \times\left(d m \boldsymbol{v}^{\prime}\right): \tag{j9}
\end{align*}
$$

intrinsic angular momentum of system in F^{\prime} about O^{\prime},
$\boldsymbol{r}_{G} \times \boldsymbol{p}=$ angular momentum of system due to its motion as a whole.
For additional special cases see, for example, Landau and Lifshitz (1960, pp. 20-22); also Whittaker (1937, pp. 59-62), and our ex. 8.13.1.

Example 3.12.4 Separable Systems of Liouville, Stäckel et al. (see also §8.10). As eqs. $(3.12 .1,2)$ readily show, Lagrange's equations are coupled in the q 's; that is, in general, the (k) th such equation $(1 \leq k \leq n)$ contains $q_{k}, \dot{q}_{k}, \ddot{q}_{k}$, and all the other q 's and \dot{q} 's. Below we examine some special systems in which each of their equations of motion contains only one such variable and its (...) -derivatives. Such uncoupled, or separable, systems can be solved by quadratures.
(i) Let us consider a system completely describable by

$$
\begin{align*}
& 2 T=v_{1}\left(q_{1}\right)\left(\dot{q}_{1}\right)^{2}+\cdots+v_{n}\left(q_{n}\right)\left(\dot{q}_{n}\right)^{2}, \tag{al}\\
& V=w_{1}\left(q_{1}\right)+\cdots+w_{n}\left(q_{n}\right), \tag{a2}
\end{align*}
$$

where each $v_{k}(\ldots)(>0$, assumed $)$ and $w_{k}(\ldots)$ is an arbitrary function of q_{k} only. Its Lagrangean equations [with $(\ldots)^{\prime} \equiv d(\ldots) / d q_{k} ; k=1, \ldots, n$]

$$
d\left[v_{k}\left(q_{k}\right) \dot{q}_{k}\right] / d t-(1 / 2) v_{k}^{\prime}\left(q_{k}\right)\left(\dot{q}_{k}\right)^{2}=-w_{k}^{\prime}\left(q_{k}\right),
$$

or

$$
\begin{equation*}
v_{k}\left(q_{k}\right) \ddot{q}_{k}+(1 / 2) v_{k}^{\prime}\left(q_{k}\right)\left(\dot{q}_{k}\right)^{2}=-w_{k}^{\prime}\left(q_{k}\right), \tag{b}
\end{equation*}
$$

are clearly uncoupled. Integrating (b) once, we readily obtain the energy integrals

$$
\begin{equation*}
(1 / 2) v_{k}\left(q_{k}\right)\left(\dot{q}_{k}\right)^{2}+w_{k}\left(q_{k}\right)=c_{k} \quad\left(c_{k}: \text { constants of integration }\right), \tag{c}
\end{equation*}
$$

and integrating this once more, since q_{k} and t are separable, we finally obtain the quadrature
$t=\int\left\{v_{k}\left(q_{k}\right) /\left[2 c_{k}-2 w_{k}\left(q_{k}\right)\right]\right\}^{1 / 2} d q_{k}+\beta_{k} \quad\left(\beta_{k}:\right.$ new integration constants $)$.
(ii) Let us consider the Liouville systems (1849)

$$
\begin{align*}
2 T & =u\left[v_{1}\left(q_{1}\right)\left(\dot{q}_{1}\right)^{2}+\cdots+v_{n}\left(q_{n}\right)\left(\dot{q}_{n}\right)^{2}\right], \tag{el}\\
V & =\left[w_{1}\left(q_{1}\right)+\cdots+w_{n}\left(q_{n}\right)\right] / u, \tag{e2}
\end{align*}
$$

where $u \equiv u_{1}\left(q_{1}\right)+\cdots+u_{n}\left(q_{n}\right)(>0)$. Below we show that systems that are, or can be put, in this form can be solved by quadratures, like (d).

Indeed, with the help of the (assumed invertible) transformation of variables $q_{k} \rightarrow x_{k}:$

$$
\begin{equation*}
x_{k}=\int\left[v_{k}\left(q_{k}\right)\right]^{1 / 2} d q_{k} \Rightarrow d x_{k}=\left[v_{k}\left(q_{k}\right)\right]^{1 / 2} d q_{k} \tag{f}
\end{equation*}
$$

we can reduce T (to within u) to a sum of squares in the new velocities:

$$
\begin{align*}
& 2 T=u\left[\left(\dot{x}_{1}\right)^{2}+\cdots+\left(\dot{x}_{n}\right)^{2}\right] \tag{g1}\\
& u \equiv u_{1}\left[q_{1}\left(x_{1}\right)\right]+\cdots+u_{n}\left[q_{n}\left(x_{n}\right)\right]=u_{1}\left(x_{1}\right)+\cdots+u_{n}\left(x_{n}\right) \tag{g2}
\end{align*}
$$

similarly V, (e2), transforms to

$$
\begin{equation*}
V=\left\{w_{1}\left[q_{1}\left(x_{1}\right)\right]+\cdots+w_{n}\left[q_{n}\left(x_{n}\right)\right]\right\} / u \equiv\left[w_{1}\left(x_{1}\right)+\cdots+w_{n}\left(x_{n}\right)\right] / u . \tag{g3}
\end{equation*}
$$

Hence, renaming the x 's as q 's, we can rewrite $(\mathrm{g} 1,3)$ as

$$
\begin{align*}
& 2 T=u\left[\left(\dot{q}_{1}\right)^{2}+\cdots+\left(\dot{q}_{n}\right)^{2}\right] \tag{h1}\\
& V=\left[w_{1}\left(q_{1}\right)+\cdots+w_{n}\left(q_{n}\right)\right] / u \tag{h2}
\end{align*}
$$

Now, the typical Lagrangean equation of the above system is

$$
\begin{equation*}
\left(u \dot{q}_{k}\right)^{\cdot}-(1 / 2)\left(\partial u / \partial q_{k}\right)\left[\left(\dot{q}_{1}\right)^{2}+\cdots+\left(\dot{q}_{n}\right)^{2}\right]=-\partial V / \partial q_{k} . \tag{i1}
\end{equation*}
$$

To find the corresponding energy equation, we multiply (i1) by $2 u \dot{q}_{k}$, and notice that

$$
\begin{aligned}
{\left[u^{2}\left(\dot{q}_{k}\right)^{2}\right]^{\cdot}=2 u \dot{u}\left(\dot{q}_{k}\right)^{2}+u^{2}\left(2 \dot{q}_{k} \ddot{q}_{k}\right) } & =2 u \dot{q}_{k}\left(\dot{u} \dot{q}_{k}+u \ddot{q}_{k}\right) \\
& =2 u \dot{q}_{k}\left(u \dot{q}_{k}\right) .
\end{aligned}
$$

The result is

$$
\begin{equation*}
\left[u^{2}\left(\dot{q}_{k}\right)^{2}\right]^{]}-u \dot{q}_{k}\left(\partial u / \partial q_{k}\right)\left[\left(\dot{q}_{1}\right)^{2}+\cdots+\left(\dot{q}_{n}\right)^{2}\right]=-2 u \dot{q}_{k}\left(\partial V / \partial q_{k}\right) . \tag{i2}
\end{equation*}
$$

But from the energy integral (of this conservative system), we have

$$
\begin{equation*}
T+V \equiv E=h=\text { constant } \Rightarrow u\left[\left(\dot{q}_{1}\right)^{2}+\cdots+\left(\dot{q}_{n}\right)^{2}\right]=2(h-V), \tag{j1}
\end{equation*}
$$

and so (i2) can be rewritten, successively, as

$$
\begin{align*}
{\left[u^{2}\left(\dot{q}_{k}\right)^{2}\right] } & =2(h-V) \dot{q}_{k}\left(\partial u / \partial q_{k}\right)-2 u \dot{q}_{k}\left(\partial V / \partial q_{k}\right) \\
& =2 \dot{q}_{k}\left\{\partial / \partial q_{k}[u(h-V)]\right\} \\
& =2 \dot{q}_{k}\left\{\partial / \partial q_{k}\left(h u-\left[w_{1}\left(q_{1}\right)+\cdots+w_{n}\left(q_{n}\right)\right]\right)\right\} \\
& =2 \dot{q}_{k}\left\{d / d q_{k}\left[h u_{k}\left(q_{k}\right)-w_{k}\left(q_{k}\right)\right]\right\} \\
& =2\left[h u_{k}\left(q_{k}\right)-w_{k}\left(q_{k}\right)\right] . \tag{j2}
\end{align*}
$$

Integrating (j2), we immediately obtain

$$
\begin{equation*}
(1 / 2) u^{2}\left(\dot{q}_{k}\right)^{2}=h u_{k}\left(q_{k}\right)-w_{k}\left(q_{k}\right)+\gamma_{k}\left(\gamma_{k}: \text { integration constants }\right) . \tag{j3}
\end{equation*}
$$

But the $n \gamma_{k}$ are not independent: summing the n integrals (j 3) over all k, and then dividing by u, we obtain

$$
\begin{gathered}
(1 / 2) u\left[\left(\dot{q}_{1}\right)^{2}+\cdots+\left(\dot{q}_{n}\right)^{2}\right]+\left[w_{1}\left(q_{1}\right)+\cdots+w_{n}\left(q_{n}\right)\right] / u \\
=h+\left(\gamma_{1}+\cdots+\gamma_{n}\right) / u
\end{gathered}
$$

and comparing this with the energy equation (j 1), we easily conclude that

$$
\begin{equation*}
\gamma_{1}+\cdots+\gamma_{n}=0 \tag{j4}
\end{equation*}
$$

Hence, the first integration of our system, (j 3), has produced n constants, say $\gamma_{1}, \ldots, \gamma_{n-1}, h$; not $n+1$.

Finally, from (j3), we readily obtain the n (separable variable) equations

$$
\begin{align*}
{\left[h u_{1}\left(q_{1}\right)-w_{1}\left(q_{1}\right)+\gamma_{1}\right]^{-1 / 2} d q_{1}=\cdots } & =\left[h u_{n}\left(q_{n}\right)-w_{n}\left(q_{n}\right)+\gamma_{n}\right]^{-1 / 2} d q_{n} \\
& =(2)^{1 / 2} d t / u \tag{j5}
\end{align*}
$$

and from these, with the notation $2\left[h u_{k}\left(q_{k}\right)-w_{k}\left(q_{k}\right)+\gamma_{k}\right] \equiv f_{k}\left(q_{k}\right)$, we conclude that
(a)

$$
\sum u_{k}\left(d q_{k} /\left[f_{k}\left(q_{k}\right)^{1 / 2}\right]\right)=\left(\sum u_{k}\right) d t / u=d t
$$

or, integrating,

$$
\begin{equation*}
\sum \int \frac{u_{k} d q_{k}}{\sqrt{f_{k}\left(q_{k}\right)}}=t+\eta_{1} \quad\left(\eta_{1}: \text { integration constant }\right) \tag{k1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int \frac{d q_{1}}{\sqrt{f_{1}\left(q_{1}\right)}}-\int \frac{d q_{l}}{\sqrt{f_{l}\left(q_{l}\right)}}=\eta_{l} \quad(l=2, \ldots, n) \tag{b}
\end{equation*}
$$

Equation (k1) and the $n-1$ equations (k2) supply the n independent constants of integration $\eta_{1}, \ldots, \eta_{n}$, which along with the earlier $n-1$ independent γ 's and the energy constant h (i.e., $\gamma_{1}, \ldots, \gamma_{n-1}, h$), constitute the $2 n$ expected independent constants of integration of the system (h1, 2) [we also note that, by (j 5), and since $u>0$, it follows that in $(\mathrm{k} 1,2) f_{k}\left(q_{k}\right)^{1 / 2}$ has the same sign as $d q_{k}$; a fact that becomes important whenever one or more of the q 's oscillates between fixed limits (librationsee §8.14)]. Lastly, the original variables of $(\mathrm{e} 1,2)$ can be recovered from (f) with another integration. For extensive discussions of these systems, including HamiltonJacobi methods, see, e.g., Hamel (1949, pp. 302-303, 358-361, 669-688), Lur'e (1968, pp. 538-548), Pars (1965, pp. 291-348); also Whittaker (1937, p. 60, and references therein).

3.13 THE RIGID BODY: LAGRANGEAN-EULERIAN KINEMATICO-INERTIAL IDENTITIES

Kinematical Preliminaries

As we have seen in $\S 1.7 \mathrm{ff}$. (fig. 3.30), the inertial velocity of a typical body point P equals

$$
\begin{align*}
\boldsymbol{v} \equiv d \boldsymbol{r} / d t & \equiv d \boldsymbol{r}_{\star} / d t+d\left(\boldsymbol{r}-\boldsymbol{r}_{\star}\right) / d t \equiv d \boldsymbol{r}_{\star} / d t+d \boldsymbol{r}_{\bullet \bullet} / d t \\
& \equiv \boldsymbol{v}_{\star}+\boldsymbol{v}_{/}=\boldsymbol{v}_{\star}+\boldsymbol{\omega} \times \boldsymbol{r}_{\bullet} \tag{3.13.1}
\end{align*}
$$

or, in components, with some easily understood notation,
(a) Along the space-fixed (inertial) axes/basis $O-X Y Z / I J K$:

$$
\begin{equation*}
\boldsymbol{r}=X \boldsymbol{I}+Y \boldsymbol{J}+Z \boldsymbol{K}, \quad \boldsymbol{r}_{\boldsymbol{\bullet}}=\left(X-X_{\bullet}\right) \boldsymbol{I}+\left(Y-Y_{\bullet}\right) \boldsymbol{J}+\left(Z-Z_{\bullet}\right) \boldsymbol{K}, \tag{3.13.1a}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
v_{X}=v_{\star, X}+\omega_{Y}\left(Z-Z_{\star}\right)-\omega_{Z}\left(Y-Y_{\star}\right), \quad \text { etc., cyclically; } \tag{3.13.1b}
\end{equation*}
$$

(b) Along the body-fixed (noninertial) axes/basis $-x y z / \mathbf{i j k}$:

$$
\begin{equation*}
\boldsymbol{r}_{/ \bullet}=x_{/ \bullet} \boldsymbol{i}+y_{/ \bullet} \boldsymbol{j}+z_{\bullet} \boldsymbol{k}, \tag{3.13.1c}
\end{equation*}
$$

Figure 3.30 Basic notation for general rigid-body motion:
O-XYZ = space-fixed (inertial) axes; $\mathbf{O}-\boldsymbol{I J K}=$ associated basis;

- -xyz = body-fixed (noninertial) axes; - -ijk = associated basis;
$G=$ center of mass of body B;
$\boldsymbol{r}_{/}=$position of representative body particle P relative to arbitrary body point \leqslant;
$\boldsymbol{r}_{/ G}=$ position of representative body particle P relative to G;
$\omega=$ inertial angular velocity of body B.
and therefore,

$$
\begin{equation*}
v_{x}=v_{\star, x}+\omega_{y} z / \leftrightarrow-\omega_{z} y_{*}, \quad \text { etc., cyclically. } \tag{3.13.1d}
\end{equation*}
$$

We point out that since $\psi_{*}, X=\dot{X}$, etc., cyclically, the inertial components v_{*}, X, Y, Z are holonomic; whereas, since

$$
\begin{equation*}
v_{\star, x}=\cos (x, X) \dot{X}+\cos (x, Y) \dot{Y}+\cos (x, Z) \dot{Z}, \quad \text { etc., cyclically, } \tag{3.13.1e}
\end{equation*}
$$

the noninertial components $v_{\star ; x, y, z}$ are nonholonomic, or quasi velocities; and so are the $\omega_{x, y, z}$.

Kinetic Energy

Substituting (3.13.1) into $2 T \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}$, we obtain, successively,

$$
\begin{align*}
2 T & \equiv \boldsymbol{S} d m\left(\boldsymbol{v}_{*}+\omega \times \boldsymbol{r}_{*}\right) \cdot\left(\boldsymbol{v}_{*}+\omega \times \boldsymbol{r}_{*}\right) \\
& =\cdots=2 T_{\text {translation }}+2 T_{\text {rotation }}+2 T_{\text {coupling }} \tag{3.13.2}
\end{align*}
$$

where

$$
\begin{align*}
& 2 T_{\text {translation }} \equiv 2 T_{T} \equiv S d m v_{*} \cdot v_{*}=m v_{*} \cdot v_{*}=m v_{*}^{2} \\
& =m\left(v_{\bullet}, X^{2}+v_{\bullet}, Y^{2}+v_{\bullet}, Z^{2}\right)=m\left(v_{\star}, x^{2}+v_{\star}{ }^{2}+v_{\star}{ }^{2}\right) \\
& =2(\text { kinetic energy of translation }) \text {, } \tag{3.13.2a}\\
& 2 T_{\text {rotation }} \equiv 2 T_{R} \equiv \boldsymbol{S} d m(\boldsymbol{\omega} \times \boldsymbol{r} / \boldsymbol{*}) \cdot(\boldsymbol{\omega} \times \boldsymbol{r} / \boldsymbol{*}) \\
& =\cdots=\boldsymbol{S} d m \omega \cdot\left[\boldsymbol{r} / \bullet \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{\bullet \bullet}\right)\right] \equiv \boldsymbol{\omega} \cdot \boldsymbol{h}_{\star} \\
& =2(\text { kinetic energy of rotation }) \text {, } \tag{3.13.2b}
\end{align*}
$$

$\boldsymbol{h}_{\star} \equiv \boldsymbol{S} d m[\boldsymbol{r} / \star \times(\boldsymbol{\omega} \times \boldsymbol{r} / \star)]$
$=($ inertial $)$ relative angular momentum of the body B about \leqslant; a system vector,

$$
\begin{align*}
& T_{\text {coupling }} \equiv T_{C} \equiv \boldsymbol{S} d m\left[\boldsymbol{v}_{\star} \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right)\right]=\omega \cdot \boldsymbol{S} d m\left(\boldsymbol{r} / \bullet \times \boldsymbol{v}_{\star}\right) \tag{3.13.2c}\\
& =\omega \cdot\left[\left(S d m \boldsymbol{r}_{*}\right) \times \mathbf{v}_{*}\right]=\omega \cdot\left(m \boldsymbol{r}_{G / *} \times \boldsymbol{v}_{*}\right) \\
& =m \boldsymbol{v}_{\star} \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / *}\right) \equiv m \boldsymbol{v}_{\star} \cdot \boldsymbol{v}_{G / \star} \\
& =\text { kinetic energy of coupling (of translation of with rotation of } B \text {). } \tag{3.13.2d}
\end{align*}
$$

[Clearly,

$$
\left.\boldsymbol{S} d m \boldsymbol{r}_{\bullet \bullet}=\boldsymbol{S} d m\left(\boldsymbol{r}_{G / \bullet}+\boldsymbol{r}_{/ G}\right)=\boldsymbol{S} d m \boldsymbol{r}_{G / \bullet}+\boldsymbol{S} d m \boldsymbol{r}_{/ G}=m \boldsymbol{r}_{G / \bullet}+\mathbf{0} .\right]
$$

Further, since (using simple vector algebra identities; recalling $\$ 1.16 \mathrm{ff}$.)

$$
\begin{equation*}
h_{\bullet} \equiv \boldsymbol{S} d m\left[\left(\boldsymbol{r}_{/ \bullet} \cdot \boldsymbol{r}_{/ \bullet}\right) \omega-\left(\omega \cdot \boldsymbol{r}_{/ \bullet}\right) \boldsymbol{r}_{/ \bullet}\right] \equiv I_{\star} \cdot \omega \tag{3.13.3}
\end{equation*}
$$

where $I \bullet=$ inertia tensor of B at \leqslant; or, in components along, say, $\uparrow-x y z$,

$$
\begin{equation*}
h_{\star, x}=I_{\star}, x x \omega_{x}+I_{\star, x y} \omega_{y}+I_{\star}, x z \omega_{z}, \quad \text { etc., cyclically, } \tag{3.13.3a}
\end{equation*}
$$

the expression (3.13.2b) assumes the form

$$
\left.\begin{array}{rl}
2 T_{R}=\omega \cdot I_{\star} \cdot \omega= & I_{\star}, x x \\
& \omega_{x}^{2}+I_{\bullet}, y y \tag{3.13.3b}\\
& \omega_{y}^{2}+I_{\star, z z} \omega_{z}^{2} \\
& +2\left(I_{\bullet}, x y\right. \\
\omega_{x} & \omega_{y}+I_{\star, x z} \omega_{x} \omega_{z}+I_{\star}, y z
\end{array} \omega_{y} \omega_{z}\right) .
$$

Hence, finally [and with $\omega_{x}=\omega l_{x}$, etc., where $\boldsymbol{l}=\left(l_{x}, l_{y}, l_{z}\right)=$ unit vector along ω], $2 T$ becomes

$$
\begin{align*}
2 T & =m v_{\star}^{2}+I_{\star}, l \omega^{2}+2 \boldsymbol{\omega} \cdot\left(m \boldsymbol{r}_{G / \star} \times \boldsymbol{v}_{\star}\right) \\
& =m v_{\star}^{2}+I_{\star}, l \omega^{2}+2 m \boldsymbol{v}_{\star} \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right) \\
& \equiv m v_{\star}^{2}+I_{\star}, l \omega^{2}+2 m \boldsymbol{v}_{\star} \cdot \boldsymbol{v}_{G / \star}, \tag{3.13.3c}
\end{align*}
$$

(= function of the six quasi velocities: $v_{\star ; x, y, z}$ and $\omega_{x, y, z}$, if body-fixed axes are used), where

$$
\begin{align*}
I_{\bullet, l} & \equiv l_{x}^{2} I_{\bullet}, x x \\
& =\cdots+2 l_{x} l_{y} I_{\bullet}, x y \tag{3.13.3d}\\
& =\text { moment of inertia of } B \text { about axis of instantaneous rotation through }
\end{align*} .
$$

Special Cases of (3.13.3c)

- If we choose our body-fixed axes to be also principal axes: $-x y z \rightarrow-123$, then, with some obvious notations,

$$
\begin{align*}
& I_{\bullet}, l=l_{x}{ }^{2} I_{\bullet}, x \\
&+l_{y}{ }^{2} I_{\bullet}, y+l_{z}{ }^{2} I_{\bullet}, z \tag{3.13.4a}\\
& \equiv l_{1}{ }^{2} I_{\bullet}, 1 \\
&+l_{2}{ }^{2} I_{\bullet, 2}+l_{3}{ }^{2} I_{\bullet}, 3 \quad\left(\equiv l_{1}{ }^{2} A+l_{2}{ }^{2} B+l_{3}{ }^{2} C\right),
\end{align*}
$$

and so the rotational kinetic energy (3.13.3b) reduces to

$$
\begin{equation*}
2 T_{R}=I_{\bullet}, 1 \omega_{1}^{2}+I_{\bullet, 2} \omega_{2}^{2}+I_{\bullet, 3} \omega_{3}^{3} . \tag{3.13.4b}
\end{equation*}
$$

- If, further, $=G$ then, clearly, $T_{C}=0$ and (3.13.3c) assumes the (König) form

$$
\begin{equation*}
2 T=m v_{G}^{2}+I_{G, l} \omega^{2}=m v_{G}^{2}+\left(I_{G, 1} \omega_{1}^{2}+I_{G, 2} \omega_{2}^{2}+I_{G, 3} \omega_{3}^{2}\right) ; \tag{3.13.4c}
\end{equation*}
$$

in words: the kinetic energy of a moving rigid body consists of two independent (uncoupled) parts: one depending on the motion of the body's center of mass (G) and another equal to the kinetic energy of motion relative to that center. [This is the kinetic energy analog of the familiar Newton-Euler (momentum) proposition that: (i) the motion of G is indistinguishable from that of a fictitious particle of equal mass placed there and acted on by a force equal to the total external force on the body, through G; and (ii) the motion (rotation) of the body about G is the same as if G were fixed and the body is acted on by the same forces (and/or couples) as in the actual case. These results, clearly, also hold for impulsive motion (chap. 4).]

It is also possible to express T in terms of holonomic (instead of quasi-) coordinates: specifically, with $\boldsymbol{r}_{G}=X_{G} \boldsymbol{I}+Y_{G} \boldsymbol{J}+Z_{G} \boldsymbol{K}$ and $\phi, \theta, \psi=$ Eulerian angles of $G-x y z$ relative to $O-X Y Z$ (or $G-X Y Z$), the (double) kinetic energy transforms to

$$
\begin{align*}
2 T & =m v_{G}^{2}+\boldsymbol{\omega} \cdot \boldsymbol{S} d m\left[\boldsymbol{r}_{/ G} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ G}\right)\right] \\
& =m\left[\left(\dot{X}_{G}\right)^{2}+\left(\dot{Y}_{G}\right)^{2}+\left(\dot{Z}_{G}\right)^{2}\right]+2 T_{R}(\phi, \theta, \psi ; \dot{\phi}, \dot{\theta}, \dot{\psi}), \tag{3.13.4d}
\end{align*}
$$

[where, since the $\boldsymbol{r}_{/ G}$, in the second term of (3.13.4d), depend only on the Eulerian angles, and (recalling results of §1.12): $\omega=\boldsymbol{u}_{\phi}(\phi, \theta, \psi) \dot{\phi}+\boldsymbol{u}_{\theta}(\phi, \theta, \psi) \dot{\theta}+\boldsymbol{u}_{\psi}(\phi, \theta, \psi) \dot{\psi}$; $\boldsymbol{u}_{\phi, \theta, \psi}\left(\equiv \boldsymbol{K} \boldsymbol{i}^{\prime} \boldsymbol{k}^{\prime \prime}\right)$: nonorthogonal unit vectors, that term, $2 T_{R}$, becomes a quadratic homogeneous function of the Eulerian rates $\dot{\phi}, \dot{\theta}$, $\dot{\psi}$, with coefficients functions of the Eulerian angles $\phi, \theta, \psi]$ and, accordingly, the Lagrangean inertial forces (or system accelerations) corresponding to the so-chosen Lagrangean coordinates $q_{1}=$ $X_{G}, \ldots, q_{6}=\psi$ are

Motion of $G: \quad E_{1} \equiv E_{X}=m \ddot{X}_{G}, \quad E_{2} \equiv E_{Y}=m \ddot{Y}_{G}, \quad E_{3} \equiv E_{Z}=m \ddot{Z}_{G}$,
Motion around $G: \quad E_{4} \equiv E_{\phi}=\left(\partial T_{R} / \partial \dot{\phi}\right)^{\cdot}-\partial T_{R} / \partial \phi$,

$$
E_{5} \equiv E_{\theta}=\left(\partial T_{R} / \partial \dot{\theta}\right)^{\cdot}-\partial T_{R} / \partial \theta
$$

$$
\begin{equation*}
E_{6} \equiv E_{\psi}=\left(\partial T_{R} / \partial \dot{\psi}\right)^{\cdot}-\partial T_{R} / \partial \psi \tag{3.13.4f}
\end{equation*}
$$

However, upon explicit calculation, eqs. (3.13.4f) turn out to be less simple than their quasi-variable counterparts based on eqs. (3.13.2a-4c).

- If B is a body of revolution about, say, the $-z$ axis, then, since $-x y z$ are principal axes and $I_{\star, x}=I_{\star, y}=$ perpendicular (or transverse, or equatorial) moment of inertia, then

$$
\begin{align*}
2 T_{R} & =I_{\star}, x \omega_{x}^{2}+I_{\star}, y \omega_{y}^{2}+I_{\star, z} \omega_{z}^{2}=I_{\star}, x\left(\omega_{x}^{2}+\omega_{y}^{2}\right)+I_{\star} \omega_{z}{ }^{2} \\
& =I_{\star}, x\left(\omega^{2}-\omega_{z}^{2}\right)+I_{\star}, z \omega_{z}^{2}=I_{\star}, x \omega^{2}+\left(I_{\star}, z-I_{\star}, x\right) \omega_{z}{ }^{2}, \tag{3.13.4~g}
\end{align*}
$$

or, generally, with the helpful notations $I_{\star}, x \equiv I_{\star}$,transverse $\equiv I_{\star}, T, I_{\star, z} \equiv I_{\star}$,axial \equiv I_{\star}, A, and $\boldsymbol{k} \equiv \boldsymbol{u}:$ unit vector along axis of revolution,

$$
\begin{equation*}
2 T_{R}=I_{\star, T} \omega^{2}+\left(I_{\star, A}-I_{\star}, T\right)(\boldsymbol{\omega} \cdot \boldsymbol{u})^{2} . \tag{3.13.4h}
\end{equation*}
$$

The System Momentum Vectors

[We begin by pointing out that, by (1.10.29a)ff., if $\boldsymbol{n}=$ constant (fixed axis), then $\boldsymbol{\omega} d t=$ $d(\chi \boldsymbol{n}) \equiv d \boldsymbol{\chi}=d$ (ordinary/holonomic vector); while, if $\boldsymbol{n}=$ variable (mobile axis), then $\boldsymbol{\omega} d t=d$ (quasi-vector $) \equiv d \boldsymbol{\theta}$.] Now, since the rigid body is an internally scleronomic system, $\delta \boldsymbol{r}=\delta \boldsymbol{r}_{\bullet}+\delta \boldsymbol{\theta} \times \boldsymbol{r}_{/}$, and, as a result, the total (inertial and first-order) virtual "work" of its linear momenta, δP [recalling (3.6.3b)], specializes to

$$
\begin{align*}
\delta P & \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d m \boldsymbol{v} \cdot\left(\delta \boldsymbol{r} \bullet+\delta \boldsymbol{\theta} \times \boldsymbol{r}_{/ \bullet}\right) \\
& =\cdots=\boldsymbol{p} \cdot \delta \boldsymbol{r} \bullet+\boldsymbol{H} \bullet \delta \boldsymbol{\theta}, \tag{3.13.5}
\end{align*}
$$

where
$\boldsymbol{p} \equiv \boldsymbol{S} d m \boldsymbol{v}=m \boldsymbol{v}_{G}=($ inertial $)$ linear momentum of body B,
$\boldsymbol{H}_{\star} \equiv \boldsymbol{S} \boldsymbol{r} \bullet \times(d m \boldsymbol{v})=($ inertial $)$ absolute angular momentum of B about \star.

These two momenta are the fundamental system vectors of Eulerian rigid-body mechanics. They transform, further, as follows:

$$
\begin{align*}
& \boldsymbol{p} \equiv \boldsymbol{S} d m\left(\boldsymbol{v}_{\star}+\boldsymbol{\omega} \times \boldsymbol{r}_{\bullet}\right)=m \boldsymbol{v}_{\star}+\boldsymbol{\omega} \times\left(m \boldsymbol{r}_{G / \star}\right) \tag{3.13.5c}\\
& \boldsymbol{H}_{\star} \equiv \boldsymbol{S} d m \boldsymbol{r}_{\bullet} \times\left(\boldsymbol{v}_{\star}+\boldsymbol{\omega} \times \boldsymbol{r}_{\bullet}\right)=\boldsymbol{h}_{\star}+m\left(\boldsymbol{r}_{G / \star} \times \boldsymbol{v}_{\star}\right) \tag{3.13.5d}
\end{align*}
$$

\bullet If $\bullet=G$, then $\boldsymbol{r}_{G / \bullet}=\mathbf{0}$, and $(3.13 .5 \mathrm{c}, \mathrm{d})$ reduce, respectively, to

$$
\begin{equation*}
\boldsymbol{p}=m \boldsymbol{v}_{G} \quad \text { and } \quad \boldsymbol{H}_{G}=\boldsymbol{h}_{G}=\boldsymbol{S} d m \boldsymbol{r} \bullet \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/}\right) \tag{3.13.5e}
\end{equation*}
$$

Next, let us relate the above to the (inertial) absolute angular momentum of B about the origin O, \boldsymbol{H}_{O} (recalling §1.6). Since $\boldsymbol{r}=\boldsymbol{r} \boldsymbol{+} \boldsymbol{r} / \boldsymbol{*}$, we find, successively,

$$
\begin{align*}
\boldsymbol{H}_{O} & \equiv \boldsymbol{S} \boldsymbol{r} \times(d m \boldsymbol{v})=\boldsymbol{S} d m\left(\boldsymbol{r}_{\star} \times \boldsymbol{v}\right)+\boldsymbol{S} d m\left(\boldsymbol{r}_{\star} \times \boldsymbol{v}\right) \\
& =\boldsymbol{r}_{\star} \times(\boldsymbol{S} d m \boldsymbol{v})+\boldsymbol{H}_{\star}=\boldsymbol{r}_{\star} \times \boldsymbol{p}+\left[\boldsymbol{h}_{\star}+m\left(\boldsymbol{r}_{G / \star} \times \boldsymbol{v}_{\star}\right)\right] \quad[\text { recalling }(3.13 .5 \mathrm{~d})] \\
& =\boldsymbol{I}_{\star} \cdot \boldsymbol{\omega}+m\left(\boldsymbol{r}_{G / \star} \times \boldsymbol{v}_{\star}\right)+\boldsymbol{r} \bullet \times \boldsymbol{p} ; \tag{3.13.6}
\end{align*}
$$

and, therefore

- If $\bullet=G$, then

$$
\begin{equation*}
\boldsymbol{H}_{O}=\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}+\boldsymbol{r}_{G} \times \boldsymbol{p}=\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}+\boldsymbol{r}_{G} \times\left(m \boldsymbol{v}_{G}\right) ; \tag{3.13.6a}
\end{equation*}
$$

- If $\bullet=O$ (i.e., motion about a fixed point-rotation), then $r_{\bullet}=\mathbf{0}, \boldsymbol{v}_{\star}=\mathbf{0}$, and the above reduce to

$$
\begin{equation*}
\boldsymbol{p}=m \boldsymbol{v}_{G}=m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G}\right) \quad \text { and } \quad \boldsymbol{H}_{O}=\boldsymbol{h}_{O}=\boldsymbol{I}_{O} \cdot \boldsymbol{\omega} . \tag{3.13.6b}
\end{equation*}
$$

More general $\boldsymbol{H} / \boldsymbol{h} / \boldsymbol{p}$ definitions appear in $\S 3.16$, in connection with the problem of relative motion; that is, when \leqslant is not a body point but has its own (known or unknown) motion relative to both $O-X Y Z$ and the body.

Kinetic Energy via Momentum Vectors

Now we are ready to relate the system quantities $T / \boldsymbol{p} / \boldsymbol{H}_{\boldsymbol{*}}$. Indeed, since the free (i.e. externally unconstrained) rigid body is (an internally) scleronomic system, we can replace in (3.13.5) $\delta \boldsymbol{r} / \delta \boldsymbol{r}_{\star} / \delta \boldsymbol{\theta}$ with $d \boldsymbol{r}=\boldsymbol{v} d t / d \boldsymbol{r} \boldsymbol{=} \boldsymbol{v} \bullet d t / d \boldsymbol{\theta}=\boldsymbol{\omega} d t$, respectively, and then divide by $d t$; thus resulting in

$$
\begin{equation*}
2 T=p \cdot v_{\star}+H_{\star} \cdot \omega \tag{3.13.7}
\end{equation*}
$$

Let us examine T more closely. From the earlier representations-that is,

$$
2 T=m v_{\star} \cdot v_{\star}+\omega \cdot\left\{\boldsymbol{S} d m\left[\boldsymbol{r}_{\star} \times\left(\omega \times \boldsymbol{r}_{\bullet}\right)\right]\right\}+\omega \cdot\left(m \boldsymbol{r}_{G / \star} \times v_{\star}\right),
$$

we realize that
$2 T=2 T\left(v_{*}, \omega\right)=$ function of the velocity variables, or velocity state, of the body,
and, therefore, differentiating T with respect to these variables, we obtain

$$
\begin{align*}
d T= & m \boldsymbol{v}_{\star} \cdot d \boldsymbol{v}_{\star}+(1 / 2)\left\{d \boldsymbol{\omega} \cdot \boldsymbol{h}_{\star}+\boldsymbol{\omega} \cdot \boldsymbol{S} d m\left[\boldsymbol{r}_{\star} \times\left(d \boldsymbol{\omega} \times \boldsymbol{r}_{\star}\right)\right]\right\} \\
& +\boldsymbol{\omega} \cdot\left(m \boldsymbol{r}_{G / \star} \times d \boldsymbol{v}_{\star}\right)+d \boldsymbol{\omega} \cdot\left(m \boldsymbol{r}_{G / \star} \times \boldsymbol{v}_{\star}\right) ; \tag{3.13.7b}
\end{align*}
$$

or, since $\omega \cdot[\boldsymbol{r} / \bullet \times(d \omega \times \boldsymbol{r} / \bullet)]=\left(\boldsymbol{r}_{\bullet}\right)^{2}(\boldsymbol{\omega} \cdot d \boldsymbol{\omega})-(\boldsymbol{r} / \bullet \cdot d \boldsymbol{\omega})(\boldsymbol{r} / \bullet \cdot \omega)$, from which

$$
\begin{align*}
\omega \cdot \boldsymbol{S} d m[\boldsymbol{r} * *(d \boldsymbol{\omega} \times \boldsymbol{r} / \bullet)] & =d \boldsymbol{\omega} \cdot \boldsymbol{S} d m\left[(\boldsymbol{r} / *)^{2} \omega-(\boldsymbol{r} / * \cdot \omega) \boldsymbol{r} / \star\right] \\
& =d \omega \cdot \boldsymbol{h}_{\star} \tag{3.13.7c}
\end{align*}
$$

we finally establish that

$$
\begin{equation*}
d T=\left[m \boldsymbol{v}_{\star}+m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \star}\right)\right] \cdot d \boldsymbol{v}_{\star}+\left[\boldsymbol{h}_{\star}+m\left(\boldsymbol{r}_{G / \star} \times \boldsymbol{v}_{\star}\right)\right] \cdot d \boldsymbol{\omega} \tag{3.13.7d}
\end{equation*}
$$

But from (3.13.7a) and the invariant differential definition, we must also have

$$
\begin{equation*}
d T=\left(\partial T / \partial v_{\star}\right) \cdot d v_{\star}+(\partial T / \partial \omega) \cdot d \omega . \tag{3.13.7e}
\end{equation*}
$$

The representations (3.13.7d) and (3.13.7e), since the $d v$, and $d \omega$ are independent, immediately lead to the following basic kinematico-inertial identities:

$$
\begin{align*}
& \boldsymbol{p}=\partial T / \partial \boldsymbol{v}_{\star} \quad\left[=m\left(\boldsymbol{v}_{\star}+\boldsymbol{\omega} \times \boldsymbol{r}_{G / \star}\right)=m \boldsymbol{v}_{G}\right], \tag{3.13.7f}\\
& \boldsymbol{H}_{\star}=\partial T / \partial \boldsymbol{\omega} \quad\left[=\boldsymbol{h}_{\star}+\left(m \boldsymbol{r}_{G / \star} \times \boldsymbol{v}_{\star}\right)\right] . \tag{3.13.7~g}
\end{align*}
$$

[We notice that $\partial T\left(\boldsymbol{v}_{\boldsymbol{*}}, \boldsymbol{\omega}\right) / \partial \boldsymbol{v}_{\boldsymbol{*}}=\partial T\left(\boldsymbol{v}_{G}, \boldsymbol{\omega}\right) / \partial \boldsymbol{v}_{G}=\boldsymbol{p}$.] The above translate readily to the following six scalar/component equations:

- Along the body-fixed axes $-x y z$:

$$
\begin{gather*}
p_{x}=m\left(v_{\bullet, x}+\omega_{y} z_{G / \bullet}-\omega_{z} y_{G / \bullet}\right)=\partial T / \partial v_{\star}, x, \quad \text { etc., cyclically, } \tag{3.13.7h}\\
H_{\bullet}=h_{\star}, x+m\left(y_{G / \bullet} v_{\bullet, z}-z_{G / \bullet} v_{\bullet}\right)=\partial T / \partial \omega_{x}, \quad \text { etc., cyclically, } \tag{3.13.7i}
\end{gather*}
$$

where

$$
\begin{equation*}
h_{\star, x}=I_{\star, x x} \omega_{x}+I_{\star, x y} \omega_{y}+I_{\star, x z} \omega_{z}=\partial T_{R} / \partial \omega_{x}, \quad \text { etc., cyclically, } \tag{3.13.7j}
\end{equation*}
$$

- Along the space-fixed axes $-X Y Z$:

$$
\begin{align*}
& p_{X}=m\left[v_{\bullet}, X+\omega_{Y}\left(Z_{G}-Z_{\bullet}\right)-\omega_{Z}\left(Y_{G}-Y_{\bullet}\right)\right] \\
& \equiv m\left(v_{\bullet, X}+\omega_{Y} Z_{G / \bullet}-\omega_{Z} Y_{G / \bullet}\right)=\partial T / \partial v_{\bullet, X}, \quad \text { etc., cyclically, } \tag{3.13.7k}\\
& H_{\bullet, X}=h_{\bullet, X}+m\left(Y_{G / \bullet} v_{\bullet}, Z-Z_{G / \bullet} v_{\bullet}\right)=\partial T / \partial \omega_{X}, \quad \text { etc., cyclically, } \tag{3.13.71}
\end{align*}
$$

where the $h_{\bullet} ; X, Y, Z$ can be found from the vector transformations $h_{\bullet, X}=\cos (X, x) h_{\bullet, x}+\cos (X, y) h_{\bullet, y}+\cos (X, z) h_{\bullet, z}, \quad$ etc., cyclically. (3.13.7m)

Acceleration Vectors

Let us now calculate the total (inertial and first-order) virtual "work" of the inertial forces of the particles of the body [recall (3.2.9, 3.3.2 ff.)]. We find, successively,

$$
\begin{align*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r} & =\boldsymbol{S} d m \boldsymbol{a} \cdot(\delta \boldsymbol{r} \bullet+\delta \boldsymbol{\theta} \times \boldsymbol{r} / \bullet) \\
& =\cdots=\boldsymbol{I} \cdot \delta \boldsymbol{r} \bullet \boldsymbol{A} \bullet \delta \boldsymbol{\theta} \tag{3.13.8}
\end{align*}
$$

where
$\boldsymbol{I} \equiv \boldsymbol{S} d m \boldsymbol{a}=m \boldsymbol{a}_{G}=($ inertial $)$ linear inertia of body B,
$A_{\star} \equiv \boldsymbol{S r}_{\bullet} \times(d m \boldsymbol{a})=($ inertial $)$ relative angular inertia of B about \uparrow.
Our next task is to relate these two Eulerian system vectors to their momentum counterparts, \boldsymbol{p} and $\boldsymbol{H}_{\boldsymbol{*}}$:
(i) Clearly,

$$
\begin{equation*}
\boldsymbol{I}=d \boldsymbol{p} / d t \tag{3.13.8c}
\end{equation*}
$$

(ii) By (...) -differentiating \boldsymbol{H}, we obtain, successively,

$$
\begin{align*}
d \boldsymbol{H}_{\star} / d t & =d / d t\left[\boldsymbol{S} \boldsymbol{r}_{\star} \times(d m \boldsymbol{v})\right]=\boldsymbol{S} d m(\boldsymbol{v} / \star \cdot \boldsymbol{v})+\boldsymbol{S} d m\left(\boldsymbol{r}_{\star} \times \boldsymbol{a}\right) \\
& =\boldsymbol{S} d m\left(\boldsymbol{v}-\boldsymbol{v}_{\star}\right) \times \boldsymbol{v}+\boldsymbol{S} d m\left(\boldsymbol{r}_{\star} \times \boldsymbol{a}\right) \\
& =-\boldsymbol{S} d m\left(\boldsymbol{v}_{\star} \times \boldsymbol{v}\right)+\boldsymbol{S} d m\left(\boldsymbol{r}_{\star} \times \boldsymbol{a}\right), \tag{3.13.8d}
\end{align*}
$$

or, finally,

$$
\begin{equation*}
A_{\star}=d \boldsymbol{H}_{\star} / d t+v_{\star} \times p \tag{3.13.8e}
\end{equation*}
$$

For $\quad=G$ the above specialize, respectively, to

$$
\begin{equation*}
\boldsymbol{I}=m \boldsymbol{a}_{G} \quad \text { and } \quad \boldsymbol{A}_{G}=d \boldsymbol{H}_{G} / d t=d \boldsymbol{h}_{G} / d t \tag{3.13.8f1}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{H}_{G} \equiv \boldsymbol{S} \boldsymbol{r}_{/ \bullet} \times(d m \boldsymbol{v})=\boldsymbol{h}_{G} \equiv \boldsymbol{S} \boldsymbol{r}_{/ G} \times\left(d m \boldsymbol{v}_{/ G}\right) \tag{3.13.8f2}
\end{equation*}
$$

REMARK

It is not hard to show that (3.13.8e) also holds with \bullet replaced by any other (not necessarily body-) point \bullet moving with arbitrary inertial velocity $\boldsymbol{v}_{\mathbf{0}} \equiv \boldsymbol{v}_{\mathbf{0}} / \mathrm{o}$. Indeed, with

$$
\boldsymbol{H}_{\bullet} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet} \times(d m \boldsymbol{v})
$$

we readily find

$$
\begin{align*}
d \boldsymbol{H}_{\mathbf{\bullet}} / d t & =\boldsymbol{S} \boldsymbol{\boldsymbol { v } _ { \bullet }} \times(d m \boldsymbol{v})+\boldsymbol{S} \boldsymbol{r}_{\mathbf{\bullet}} \times(d m \boldsymbol{a}) \\
& =\mathbf{S}\left(\boldsymbol{v}-\boldsymbol{v}_{\mathbf{0}}\right) \times(d m \boldsymbol{v})+\boldsymbol{S} \boldsymbol{r}_{\mathbf{\bullet}} \times(d m \boldsymbol{a}) \\
& =-\boldsymbol{S} \boldsymbol{v}_{\mathbf{0}} \times(d m \boldsymbol{v})+\boldsymbol{S} \boldsymbol{r}_{\mathbf{\bullet}} \times(d m \boldsymbol{a}), \tag{3.13.8~g}
\end{align*}
$$

or, finally,
$A_{\boldsymbol{\bullet}}=d \boldsymbol{H}_{\boldsymbol{\bullet}} / d t+\boldsymbol{v}_{\boldsymbol{\bullet}} \times \boldsymbol{p}, \quad$ Q.E.D. (see also §1.6, and appendix 3.A2). (3.13.8h)

Moving Axes

To express the above inertia vectors in terms of the more useful rates relative to (noninertial) axes, either body-fixed or intermediate (neither body- nor space-fixedchosen so that the inertia tensor components along them remain constant), we simply replace in the right sides of their representations, such as (3.13.8c, e, f), $d(\ldots) / d t$ with $\partial(\ldots) / \partial t+\Omega \times(\ldots)$, where $\partial(\ldots) / \partial t=$ rate of change of vector ... relative to axes that are rotating with (inertial) angular velocity $\boldsymbol{\Omega}$ (recalling $\S 1.7 \mathrm{ff}$.). Thus, expressions ($3.13 .8 \mathrm{c}, \mathrm{h}$) become, respectively,

$$
\begin{equation*}
\boldsymbol{I}=\partial \boldsymbol{p} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{p} \quad \text { and } \quad \boldsymbol{A}_{\bullet}=\partial \boldsymbol{H}_{\bullet} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{H}_{\bullet}+\boldsymbol{v}_{\bullet} \times \boldsymbol{p} . \tag{3.13.9}
\end{equation*}
$$

Special Cases
\bullet If $\bullet=G$, then $\boldsymbol{v}_{\boldsymbol{\bullet}}=\boldsymbol{v}_{G}$ (or, if $\boldsymbol{v}_{\boldsymbol{\bullet}}=\mathbf{0}$), and so (3.13.9) specialize to

$$
\begin{equation*}
\boldsymbol{I}=\partial \boldsymbol{p} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{p} \quad \text { and } \quad \boldsymbol{A}_{G}=\partial \boldsymbol{H}_{G} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{H}_{G} \quad\left(\text { with } \boldsymbol{H}_{G}=\boldsymbol{h}_{G}\right) . \tag{3.13.9a}
\end{equation*}
$$

- If $\boldsymbol{\Omega}=\omega$ and $\bullet=$ (i.e., for body-fixed axes $\bullet-x y z$), then $\partial \boldsymbol{r}_{G / \bullet} / \partial t=\mathbf{0}$ and $\partial \omega / \partial t=d \omega / d t \equiv \boldsymbol{\alpha}=$ inertial angular acceleration of B, and so (3.13.9), with (3.13.7f, g), reduce to

$$
\begin{align*}
\boldsymbol{I} & =\partial \boldsymbol{p} / \partial t+\boldsymbol{\omega} \times \boldsymbol{p} \\
& =m\left[\partial \boldsymbol{v}_{\bullet} / \partial t+\omega \times \boldsymbol{v}_{\bullet}+\omega \times\left(\omega \times \boldsymbol{r}_{G} / \bullet\right)+\boldsymbol{\alpha} \times \boldsymbol{r}_{G / \bullet}\right], \tag{3.13.9b}\\
\boldsymbol{A}_{\bullet} & =\partial \boldsymbol{H}_{\bullet} / \partial t+\omega \times \boldsymbol{H} \bullet+\boldsymbol{v}_{\bullet} \times \boldsymbol{p} \\
& =\partial \boldsymbol{h}_{\bullet} / \partial t+\omega \times \boldsymbol{h}_{\bullet}+m \boldsymbol{r}_{G / \bullet} \times\left[\partial \boldsymbol{v}_{\bullet} / \partial t+\left(\omega \times \boldsymbol{v}_{\bullet}\right)\right] . \tag{3.13.9c}
\end{align*}
$$

- If $\boldsymbol{\Omega}=\boldsymbol{\omega}$ and $\bullet==G$, the last two terms in (3.13.9b) and the last two (of the four) terms of (3.13.9c) vanish, and so these equations reduce, respectively, to

$$
\begin{equation*}
\boldsymbol{I}=m\left(\partial \boldsymbol{v}_{G} / \partial t+\boldsymbol{\omega} \times \boldsymbol{v}_{G}\right), \quad \boldsymbol{A}_{G}=\partial \boldsymbol{h}_{G} / \partial t+\boldsymbol{\omega} \times \boldsymbol{h}_{G} . \tag{3.13.9d}
\end{equation*}
$$

The above show clearly the decoupling of the two motions: the translatory $\left(\boldsymbol{v}_{G}\right)$ from the rotatory (ω) in the system inertia vectors: for the rotatory motion, G can be viewed as stationary (Euler, 1749). Indeed, if $\boldsymbol{v}_{G}=\mathbf{0}$, we are left with the sole system vector

$$
\begin{equation*}
\boldsymbol{A}_{G}=\partial \boldsymbol{h}_{G} / \partial t+\boldsymbol{\omega} \times \boldsymbol{h}_{G}=\partial / \partial t\left(\partial T_{R} / \partial \omega\right)+\omega \times\left(\partial T_{R} / \partial \omega\right) . \tag{3.13.9e}
\end{equation*}
$$

Component Representations

A better understanding of the (difficulties involved in the) preceding equations may be achieved if we express them in components. Thus, along body-fixed axes $-x y z$,
eqs. (3.13.9b, c) translate to the following system of six coupled expressions for the six quasi velocities $v_{\bullet ; x, y, z}$ and $\omega_{x, y, z}$:

$$
\begin{align*}
I_{x}= & m\left\{\dot{v}_{\star, x}+\left(\omega_{y} v_{\bullet}-\omega_{z} v_{\bullet}\right)\right. \\
& +\left[\omega_{y}\left(\omega_{x} y_{G / \bullet}-\omega_{y} x_{G / \star}\right)-\omega_{z}\left(\omega_{z} x_{G / \star}-\omega_{x} z_{G / \star}\right)\right] \\
& \left.+\left(\dot{\omega}_{y} z_{G / \star}-\dot{\omega}_{z} y_{G / \bullet}\right)\right\}, \quad \text { etc., cyclically }, \tag{3.13.10a}
\end{align*}
$$

$$
\begin{align*}
& A_{\star}, x=I_{\star}, x x \dot{\omega}_{x}+I_{\star, x y} \dot{\omega}_{y}+I_{\star, x z} \dot{\omega}_{z} \\
& +\left[-\left(I_{\bullet}, y y-I_{\star}, z z\right) \omega_{y} \omega_{z}+I_{\star}, x y \omega_{x} \omega_{z}+I_{\star}, x z \omega_{x} \omega_{y}+I_{\star}, y z\left(\omega_{y}{ }^{2}+\omega_{z}{ }^{2}\right)\right] \\
& +m\left\{\left(y_{G / \bullet} \dot{v}_{\star, z}-z_{G / \bullet} \dot{v}_{\star}, y\right)\right. \\
& \left.+\left[y_{G / \star}\left(\omega_{x} v_{\bullet}, y-\omega_{y} v_{\bullet}, x\right)-z_{G / \bullet}\left(\omega_{y} v_{\bullet, z}-\omega_{z} v_{\bullet}\right)\right]\right\}, \quad \text { etc., cyclically; } \tag{3.13.10b}
\end{align*}
$$

while (3.13.9d), if the corresponding body-axes $G-x y z$ are also principal, $G-123$, take the well-known (decoupled!) Eulerian form as follows:

$$
\begin{align*}
I_{x} & =m\left[\dot{v}_{G, x}+\left(\omega_{y} v_{G, z}-\omega_{z} v_{G, y}\right)\right] \\
& \equiv m\left[\dot{v}_{G, 1}+\left(\omega_{2} v_{G, 3}-\omega_{3} v_{G, 2}\right)\right]=I_{1}, \quad \text { etc., cyclically } \tag{3.13.10c}\\
A_{\bullet, x} & =I_{\bullet, x} \dot{\omega}_{x}-\left(I_{\bullet, y}-I_{\star, z}\right) \omega_{y} \omega_{z} \\
& \equiv I_{\bullet, 1} \dot{\omega}_{1}-\left(I_{\bullet, 2}-I_{\bullet, 3}\right) \omega_{2} \omega_{3}=A_{\star, 1}, \quad \text { etc., cyclically. } \tag{3.13.10d}
\end{align*}
$$

As (3.13.9c) shows, the expressions (3.13.10d) also hold with G replaced by any bodyand space-fixed point; if one exists.

Lagrangean Forms

Let us now see the connection of the above with analytical mechanics. In terms of the T-gradients (3.13.7f, g), eqs. (3.13.9 ff.) take the following Lagrangean forms:
(i) $\quad \boldsymbol{I}=\partial / \partial t\left(\partial T / \partial \boldsymbol{v}_{*}\right)+\boldsymbol{\Omega} \times\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right)$
[recalling that $\left.\partial T\left(\boldsymbol{v}_{\star}, \omega\right) / \partial \boldsymbol{v}_{\star}=\partial T\left(\boldsymbol{v}_{G}, \boldsymbol{\omega}\right) / \partial \boldsymbol{v}_{G}=\boldsymbol{p}\right]$,

$$
\begin{equation*}
\boldsymbol{A}_{\bullet}=\partial / \partial t(\partial T / \partial \omega)+\boldsymbol{\Omega} \times(\partial T / \partial \omega)+\boldsymbol{v}_{\bullet} \times\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right), \tag{3.13.11b}
\end{equation*}
$$

and, in components (intermediate axes),

$$
\left.\begin{array}{rl}
I_{x}=\left(\partial T / \partial v_{\bullet}, x\right.
\end{array}\right)^{\cdot}+\Omega_{y}\left(\partial T / \partial v_{\bullet, z}\right)-\Omega_{z}\left(\partial T / \partial v_{\bullet}\right) \quad \text { etc., cyclically, }, ~ \begin{aligned}
A_{\bullet}=\left(\partial T / \partial \omega_{x}\right)^{\cdot} & +\Omega_{y}\left(\partial T / \partial \omega_{z}\right)-\Omega_{z}\left(\partial T / \partial \omega_{y}\right) \\
& +v_{\bullet, y}\left(\partial T / \partial v_{\bullet, z}\right)-v_{\bullet, z}\left(\partial T / \partial v_{\bullet}\right), \quad \text { etc., cyclically; }
\end{aligned}
$$

(ii)

$$
\begin{align*}
\boldsymbol{I} & =\partial / \partial t\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right)+\boldsymbol{\omega} \times\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right), \tag{3.13.11e}\\
\boldsymbol{A}_{\bullet} & =\partial / \partial t(\partial T / \partial \omega)+\omega \times(\partial T / \partial \omega)+\boldsymbol{v}_{\bullet} \times\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right), \tag{3.13.11f}
\end{align*}
$$

and, in components (body-fixed axes),

$$
\left.\begin{array}{rl}
I_{x}=\left(\partial T / \partial v_{\bullet} x\right.
\end{array}\right)^{*}+\omega_{y}\left(\partial T / \partial v_{\bullet, z}\right)-\omega_{z}\left(\partial T / \partial v_{\bullet, y}\right), \quad \text { etc., cyclically, }, ~ \begin{aligned}
A_{\bullet, x}=\left(\partial T / \partial \omega_{x}\right)^{\cdot} & +\omega_{y}\left(\partial T / \partial \omega_{z}\right)-\omega_{z}\left(\partial T / \partial \omega_{y}\right) \\
& +v_{\bullet, y}\left(\partial T / \partial v_{\bullet, z}\right)-v_{\bullet, z}\left(\partial T / \partial v_{\bullet}\right), \quad \text { etc., cyclically; }
\end{aligned}
$$

(iii)

$$
\begin{align*}
\boldsymbol{I} & =\partial / \partial t\left(\partial T / \partial \boldsymbol{v}_{G}\right)+\boldsymbol{\Omega} \times\left(\partial T / \partial \boldsymbol{v}_{G}\right), \tag{3.13.11i}\\
\boldsymbol{A}_{G} & =\partial / \partial t(\partial T / \partial \omega)+\boldsymbol{\Omega} \times(\partial T / \partial \omega) \tag{3.13.11j}
\end{align*}
$$

and, in components (intermediate axes),

$$
\begin{align*}
& I_{x}=\left(\partial T / \partial v_{G, x}\right)^{\cdot}+\Omega_{y}\left(\partial T / \partial v_{G, z}\right)-\Omega_{z}\left(\partial T / \partial v_{G, y}\right), \quad \text { etc., cyclically, } \tag{3.13.11k}\\
& A_{G, x}=\left(\partial T / \partial \omega_{x}\right)^{\cdot}+\Omega_{y}\left(\partial T / \partial \omega_{z}\right)-\Omega_{z}\left(\partial T / \partial \omega_{y}\right), \quad \text { etc., cyclically. } \tag{3.13.111}
\end{align*}
$$

For additional forms, see, for example, Heun (1906, pp. 269-271; 1913, pp. 397401), Suslov (1946, pp. 490-521), Winkelmann and Grammel [1927, pp. 446-449, via the (not very popular) motor calculus of R. von Mises (1924)], Winkelmann [1929(b), pp. 14-27]; also Hölder (1939), and §3.16, this volume.

Example 3.13.1 Kinetic Energy of a Rigid Body. A thin homogeneous disk D, of mass m and radius r, with fixed center O, rolls without slipping on a fixed rough plane P; its plane thus makes a constant angle (of nutation) θ with P. Let us calculate its kinetic energy if the disk/plane contact point C rotates with a constant angular velocity ω_{o} on the circular projection of D on P (fig. 3.31).

Since $\boldsymbol{v}_{C}=\mathbf{0}$ and $\boldsymbol{v}_{O}=\mathbf{0}$, the basic velocity equation $\boldsymbol{v}_{C}=\boldsymbol{v}_{O}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / O}$ yields $\boldsymbol{\omega}$: parallel to the diameter COA ; alternatively, since the velocities of two of its points, C and O, vanish, the disk can only turn about the axis $C O$. As fig. 3.31(b) shows, $\omega=\omega_{o} \sin \theta$. [Or, we consider a point B along the disk axis, at distance l from O. During the motion: (i) B traces a circle of radius $l \sin \theta$ (on a plane parallel to P) with angular velocity ω_{0}, and hence velocity $v_{B}=\omega_{o}(l \sin \theta)$; and, simultaneously, (ii) as part of the rotating disk, B turns (instantaneously) about $C A$ with angular velocity

Figure 3.31 (a) Circular disk D rolling at an angle θ (nutation) on a fixed plane P; (b) details of decomposition of ω_{o} along axes 123.
ω, and therefore has velocity $v_{B}=\omega l$, Q.E.D.] By König's theorem, and principal central axes $O-123$ [i.e., $\omega=(0,0, \omega)$], we readily find

$$
\begin{align*}
2 T & =I_{O, 1} \omega_{1}^{2}+I_{O, 2} \omega_{2}^{2}+I_{O, 3} \omega_{3}^{2} \\
& =\left(m r^{2} / 2\right)(0)+\left(m r^{2} / 4\right)(0)+\left(m r^{2} / 4\right)\left(\omega_{o} \sin \theta\right)^{2} \\
& =\left(m r^{2} \sin ^{2} \theta / 4\right) \omega_{o}^{2}=I_{C O A} \omega^{2} . \tag{a}
\end{align*}
$$

Example 3.13.2 Kinetic Energy of a Rigid Body. Let us calculate the kinetic energy of a homogeneous and right circular cone, of radius r, height h, and half angle θ, rolling without slipping on a fixed rough plane P (fig. 3.32), with $\boldsymbol{v}_{O}=\mathbf{0}$.

Reasoning as in the preceding example-that is, since $\boldsymbol{v}_{O}=\mathbf{0}$ and $\boldsymbol{v}_{B}=\mathbf{0}$-we conclude that ω is parallel to the cone generator $O B$. If the angular velocity of turning of $O B$ around the perpendicular to the plane is ω_{o}, then, as fig. 3.32(b) shows,

$$
\begin{equation*}
(r \cos \theta) \omega=(h \sin \theta) \omega=(h \cos \theta) \omega_{o} \Rightarrow \omega=\omega_{o} \cot \theta \tag{a}
\end{equation*}
$$

and so along the (intermediate) principal axes $O-123$,

$$
\begin{equation*}
\omega=(-\omega \cos \theta, \omega \sin \theta, 0)=\left[-\left(\omega_{o} \cot \theta\right) \cos \theta,\left(\omega_{o} \cot \theta\right) \sin \theta, 0\right] ; \tag{b}
\end{equation*}
$$

also, from tables,

$$
I_{O, 1}=(3 / 10) m r^{2}, \quad I_{O, 2}=I_{O, 3}=(3 m / 5)\left[h^{2}+\left(r^{2} / 4\right)\right]
$$

Therefore, König's theorem yields (dropping the subscript O from the I 's)

$$
\begin{align*}
2 T= & I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2} \\
= & {\left[(3 / 10) m r^{2}\right]\left(-\omega_{o} \cos ^{2} \theta / \sin \theta\right)^{2} } \\
& +\left\{(3 m / 5)\left[h^{2}+\left(r^{2} / 4\right)\right]\right\}\left(\omega_{o} \cos \theta\right)^{2}+\left\{(3 m / 5)\left[h^{2}+\left(r^{2} / 4\right)\right]\right\}(0) \\
= & \left\{\left[(3 m / 20)\left(r^{2}+6 h^{2}\right)\right] \cos ^{2} \theta\right\} \omega_{o}^{2} \\
= & \left\{\left[(3 m / 20)\left(r^{2}+6 h^{2}\right)\right] \sin ^{2} \theta\right\} \omega^{2} \\
= & I_{1}(-\omega \cos \theta)^{2}+I_{2}(\omega \sin \theta)^{2}=\left(I_{1} \cos ^{2} \theta+I_{2} \sin ^{2} \theta\right) \omega^{2}=I_{O B} \omega^{2} . \tag{c}
\end{align*}
$$

(a)

(b)

Figure 3.32 (a) Rolling of a right and circular cone with one point fixed, on a rough and fixed plane P; (b) decompositions of ω along ω_{0} and 1 , and along 1 and 2.

Figure 3.33 (a) Gyrostat spinning inside a housing; (b) details of decomposition of $\boldsymbol{\Omega}$ along 123.

Example 3.13.3 Kinetic Energy of a Rigid Body. We consider here a homogeneous rigid body of revolution with central principal moments of inertia $I_{1} \equiv$ $A, I_{2}=I_{3} \equiv B$ (fig. 3.33; $G=$ center of mass), spinning about its axis of symmetry $G 1$ with angular velocity ω_{o}. This axis is fixed at a constant angle χ in a housing, as shown, and this latter turns about a fixed vertical axis with angular velocity $\boldsymbol{\Omega}$.

Let us calculate the kinetic energy of this body (gyrostat). Here, clearly,

$$
\begin{equation*}
\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\left(\omega_{o}+\Omega \sin \chi, \Omega \cos \chi, 0\right) \tag{a}
\end{equation*}
$$

and, therefore, by König's theorem $\left(\boldsymbol{v}_{C}=\mathbf{0}\right)$

$$
\begin{equation*}
2 T=I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2}=A\left(\omega_{o}+\Omega \sin \chi\right)^{2}+B(\Omega \cos \chi)^{2}+B(0)^{2} \tag{b}
\end{equation*}
$$

Example 3.13.4 Rigid Body: System Force and Kinematico-Inertial Identities. We consider here a rigid body B in general spatial motion. Let us calculate the components of its Lagrangean (holonomic) forces $\boldsymbol{Q}=\left\{Q_{k} ; k=1, \ldots, 6\right\}$ in terms of the corresponding elementary vectorial quantities.

With reference to fig. 3.34, and recalling the results of §3.4, we find, successively,

$$
\begin{aligned}
Q_{k} & \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right) \\
& =\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial / \partial \dot{q}_{k}\right)\left(\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{/ G}\right)
\end{aligned}
$$

[but $\left(\partial / \partial \dot{q}_{k}\right)\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ G}\right)=\left(\partial \omega / \partial \dot{q}_{k}\right) \times \boldsymbol{r}_{/ G}+\omega \times\left(\partial \boldsymbol{r}_{/ G} / \partial \dot{q}_{k}\right)=\left(\partial \omega / \partial \dot{q}_{k}\right) \times \boldsymbol{r}_{/ G} \quad$ (explain)]

$$
\begin{align*}
& =\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)+\boldsymbol{S} d \boldsymbol{F} \cdot\left[\left(\partial \boldsymbol{\omega} / \partial \dot{q}_{k}\right) \times \boldsymbol{r}_{/ G}\right] \\
& =\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right) \cdot \boldsymbol{S} d \boldsymbol{F}+\left(\partial \boldsymbol{\omega} / \partial \dot{q}_{k}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r}_{/ G} \times d \boldsymbol{F}\right) \\
& \equiv \boldsymbol{F} \cdot\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)+\boldsymbol{M}_{G} \cdot\left(\partial \boldsymbol{\omega} / \partial \dot{q}_{k}\right), \tag{a}
\end{align*}
$$

where $\boldsymbol{F}\left(\boldsymbol{M}_{G}\right)=$ resultant force (moment) of all $d \boldsymbol{F}$, acting at G (about G). Actually, this identity holds for any other chosen body-fixed point (pole)

Figure 3.34 Impressed force $d \boldsymbol{F}$ applied to a typical particle P of a rigid body B.

Further, if the body is unconstrained, then, by Euler's principles, $\boldsymbol{F}=m \boldsymbol{a}_{G} \equiv$ $d \boldsymbol{p} / d t$ and $\boldsymbol{M}_{G}=d \boldsymbol{H}_{G} / d t$, where $\boldsymbol{H}_{G}=\boldsymbol{S} \boldsymbol{r}_{/ G} \times(d m \boldsymbol{v})[(16.5 \mathrm{a} \mathrm{ff})$.$] , and so we can$ rewrite (a) in the kinetic form

$$
\begin{equation*}
Q_{k}=\left(m \boldsymbol{a}_{G}\right) \cdot\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)+\left(d \boldsymbol{H}_{G} / d t\right) \cdot\left(\partial \boldsymbol{\omega} / \partial \dot{q}_{k}\right) . \tag{b}
\end{equation*}
$$

[We can also replace in the above $\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}$ with $\partial \boldsymbol{a}_{G} / \partial \ddot{q}_{k}$. Then,

$$
\begin{equation*}
\left.2\left[m \boldsymbol{a}_{G} \cdot\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)\right]=\partial\left(m \boldsymbol{a}_{G} \cdot \boldsymbol{a}_{G}\right) / \partial \ddot{q}_{k}, \text { etc. (à la Appell) }\right] \tag{c}
\end{equation*}
$$

Hence, we finally obtain (rather effortlessly!) the following important kinematicoinertial identities:

$$
\begin{equation*}
E_{k} \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=(d \boldsymbol{p} / d t) \cdot\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)+\left(d \boldsymbol{H}_{G} / d t\right) \cdot\left(\partial \omega / \partial \dot{q}_{k}\right) ; \tag{d}
\end{equation*}
$$

which hold even under additional constraints, as long as the q 's are holonomic coordinates.

Example 3.13.5 Rigid Body: System Force and Kinematico-Inertial Identities. Let us prove eq. (d) of the preceding example directly, from general Lagrangean identities. We have, successively,

$$
\begin{aligned}
E_{k} & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right) \\
& =\boldsymbol{S} d m \boldsymbol{a} \cdot\left[\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)+\left(\partial \boldsymbol{\omega} / \partial \dot{q}_{k}\right) \times \boldsymbol{r}_{/ G}\right] \\
& =\cdots=m \boldsymbol{a}_{G} \cdot\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)+\left[\boldsymbol{S} \boldsymbol{r}_{/ G} \times(d m \boldsymbol{a})\right] \cdot\left(\partial \boldsymbol{\omega} / \partial \dot{q}_{k}\right)
\end{aligned}
$$

$$
\text { [but } \begin{aligned}
d \boldsymbol{H}_{G} / d t & =\left[\boldsymbol{S} \boldsymbol{r}_{/ G} \times(d m \boldsymbol{v})\right]=\boldsymbol{S}\left[\boldsymbol{v}_{/ G} \times(d m \boldsymbol{v})+\boldsymbol{r}_{/ G} \times(d m \boldsymbol{a})\right] \\
& =\boldsymbol{S}\left(\boldsymbol{v}-\boldsymbol{v}_{G}\right) \times(d m \boldsymbol{v})+\boldsymbol{S} \boldsymbol{r}_{/ G} \times(d m \boldsymbol{a}) \\
& \left.=\mathbf{0}+\boldsymbol{S} \boldsymbol{r}_{/ G} \times(d m \boldsymbol{a}) \quad \text { (explain) }\right]
\end{aligned}
$$

and so, finally,

$$
\begin{equation*}
E_{k}=(d \boldsymbol{p} / d t) \cdot\left(\partial \boldsymbol{v}_{G} / \partial \dot{q}_{k}\right)+\left(d \boldsymbol{H}_{G} / d t\right) \cdot\left(\partial \omega / \partial \dot{q}_{k}\right), \quad \text { Q.E.D. } \tag{a}
\end{equation*}
$$

3.14 THE RIGID BODY: APPELLIAN KINEMATICO-INERTIAL IDENTITIES

Here, we develop explicit expressions for the Appellian $S \equiv S(1 / 2) d m \boldsymbol{a} \cdot \boldsymbol{a}$ of a single rigid body. (The Appellian of a system of rigid bodies is the sum of the Appellians of its parts; just like the mass and kinetic energy.)

Fixed-Point Rotation

We begin with a rigid body B moving (rotating) about a fixed point \uparrow. Since, then, the inertial acceleration of a typical body particle is

$$
\begin{equation*}
\boldsymbol{a}=d \boldsymbol{v} / d t=d \boldsymbol{v} / \bullet / d t=d / d t\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right)=\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right), \tag{3.14.1a}
\end{equation*}
$$

the Appellian of B, to within acceleration terms \equiv Appell-important terms, becomes

$$
\begin{equation*}
S=\boldsymbol{S}(1 / 2) d m\left[\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right)\right]+\boldsymbol{S} d m\left\{\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot\left[\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right)\right]\right\} \tag{3.14.1b}
\end{equation*}
$$

Now: (i) The first integral in (3.14.1b) equals T_{R}, eq. (3.13.2b), but with ω replaced with α. Therefore, reasoning as there, we find

$$
\begin{equation*}
\boldsymbol{S}(1 / 2) d m\left[\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right)\right]=(1 / 2) \boldsymbol{\alpha} \cdot I_{\star} \cdot \boldsymbol{\alpha} \tag{3.14.1c}
\end{equation*}
$$

(ii) The second integral, in view of the transformations [recalling the identities: $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b})$ and $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$, holding for any three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$]:

$$
\begin{align*}
\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot & {\left[\omega \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right)\right]=\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot\left[\left(\boldsymbol{\omega} \cdot \boldsymbol{r}_{/ \bullet}\right) \omega-\omega^{2} \boldsymbol{r}_{/ \bullet}\right] } \\
= & (\boldsymbol{\omega} \times \boldsymbol{\alpha}) \cdot\left[\left(\omega \cdot \boldsymbol{r}_{/ \bullet}\right) \boldsymbol{r}_{/ \bullet}\right] \\
& \quad\left[\text { since }\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot \boldsymbol{r}_{/ \bullet}=0 \text { and }\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot \omega=(\boldsymbol{\omega} \times \boldsymbol{\alpha}) \cdot \boldsymbol{r}_{/ \bullet}\right] \\
= & (\boldsymbol{\alpha} \times \omega) \cdot\left[\boldsymbol{r} / \bullet \times\left(\omega \times \boldsymbol{r}_{/ \bullet}\right)\right] \\
& \quad[\text { since } \quad(\boldsymbol{\omega} \times \boldsymbol{\alpha}) \cdot \boldsymbol{\omega}=0], \tag{3.14.1d}
\end{align*}
$$

reduces to [recalling the definition of $\boldsymbol{h}_{\boldsymbol{*}}$, (3.13.2c)]

$$
\begin{equation*}
(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot \boldsymbol{S} d m\left[\boldsymbol{r} / \bullet \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right)\right]=(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot \boldsymbol{h}_{\boldsymbol{*}} \tag{3.14.1e}
\end{equation*}
$$

The above results allow us to rewrite (3.14.1b) in the following equivalent forms:

$$
\begin{align*}
S & =(1 / 2) \boldsymbol{\alpha} \cdot I_{\bullet} \cdot \boldsymbol{\alpha}+\boldsymbol{\alpha} \cdot(\boldsymbol{\omega} \times \boldsymbol{h} \boldsymbol{)} \\
& =(1 / 2) \boldsymbol{\alpha} \cdot I_{\bullet} \cdot \boldsymbol{\alpha}+\boldsymbol{\alpha} \cdot[\boldsymbol{\omega} \times(\boldsymbol{I} \bullet \boldsymbol{\omega})] \\
& =(1 / 2) \boldsymbol{\alpha} \cdot I_{\bullet} \cdot \boldsymbol{\alpha}+(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot(\boldsymbol{I} \bullet \boldsymbol{\omega}) ; \tag{3.14.1f}
\end{align*}
$$

the second term/sum being a bilinear form in the components of $\boldsymbol{\alpha} \times \omega$ and ω, with coefficients the components of the inertia tensor I_{\bullet}.

Component Forms

It is not hard to see that in terms of the components of $\omega, \boldsymbol{\alpha}, \boldsymbol{I}$, along body-fixed axes, - xyz ($\Rightarrow \alpha_{x}=\dot{\omega}_{x}$, etc.), the expression (3.14.1f) assumes the explicit form

$$
\begin{align*}
& S=(1 / 2)\left(I_{\bullet}, x x \alpha_{x}{ }^{2}+I_{\bullet}, y y{ }^{\prime} \alpha_{y}{ }^{2}+I_{\bullet}, z z{ }_{z}{ }^{2}\right. \\
& \left.+2 I_{\star}, x y \alpha_{x} \alpha_{y}+2 I_{\star}, x z \alpha_{x} \alpha_{z}+2 I_{\bullet}, y z{ }_{y} \alpha_{y} \alpha_{z}\right) \\
& +\left[\left(\alpha_{y} \omega_{z}-\alpha_{z} \omega_{y}\right)\left(I_{\star}, x x \omega_{x}+I_{\star}, x y \omega_{y}+I_{\star}, x z \omega_{z}\right)\right. \\
& +\left(\alpha_{z} \omega_{x}-\alpha_{x} \omega_{z}\right)\left(I_{\bullet}, y x \omega_{x}+I_{\bullet}, y y \omega_{y}+I_{\bullet}, y z \omega_{z}\right) \\
& \left.+\left(\alpha_{x} \omega_{y}-\alpha_{y} \omega_{x}\right)\left(I_{\star}, z x \omega_{x}+I_{\star}, z y \omega_{y}+I_{\star}, z z=\omega_{z}\right)\right] ; \tag{3.14.2a}
\end{align*}
$$

or, if $\uparrow-x y z$ are also principal axes [i.e., $I_{\bullet}=\operatorname{diagonal}\left(I_{\bullet, x}, I_{\bullet}, y, I_{\bullet}, z\right)$,

$$
\begin{align*}
S= & (1 / 2)\left(I_{\bullet, x} \alpha_{x}^{2}+I_{\bullet, y} \alpha_{y}^{2}+I_{\bullet, z} \alpha_{z}^{2}\right) \\
& +\left[\left(\alpha_{y} \omega_{z}-\alpha_{z} \omega_{y}\right)\left(I_{\bullet}, x \omega_{x}\right)+\left(\alpha_{z} \omega_{x}-\alpha_{x} \omega_{z}\right)\left(I_{\bullet}, y \omega_{y}\right)\right. \\
& \left.+\left(\alpha_{x} \omega_{y}-\alpha_{y} \omega_{x}\right)\left(I_{\bullet} \omega_{z}\right)\right] \\
= & (1 / 2)\left(I_{\bullet, x} \alpha_{x}^{2}+I_{\bullet, y} \alpha_{y}^{2}+I_{\bullet, z} \alpha_{z}^{2}\right) \\
& -\alpha_{x}\left[\left(I_{\bullet}, y-I_{\bullet}\right) \omega_{y} \omega_{z}\right]-\alpha_{y}\left[\left(I_{\bullet, z}-I_{\bullet, x}\right) \omega_{z} \omega_{x}\right] \\
& \left.-\alpha_{z}\left[\left(I_{\bullet, x}-I_{\bullet}\right]\right) \omega_{x} \omega_{y}\right] . \tag{3.14.2b}
\end{align*}
$$

From the latter we immediately obtain the well-known Eulerian angular inertia components (Gibbs, 1879)

$$
\begin{align*}
& A_{x}=\partial S / \partial \alpha_{x}=I_{\star} \alpha_{x}-\left(I_{\star}-y-I_{\star, z}\right) \omega_{y} \omega_{z} \\
& {[}=I_{\star}, x \tag{3.14.2c}\\
&\left.\dot{\omega}_{x}-\left(I_{\star, y}-I_{\star, z}\right) \omega_{y} \omega_{z}=\partial S / \partial \dot{\omega}_{x}\right], \quad \text { etc., cyclically. }
\end{align*}
$$

REMARKS

(i) If the axes $-x y z$ are still principal but non-body-fixed, rotating with inertial angular velocity $\boldsymbol{\Omega}=\left(\Omega_{x}, \Omega_{y}, \Omega_{z}\right)$, then $\boldsymbol{\alpha}=\partial \omega / \partial t+\boldsymbol{\Omega} \times \boldsymbol{\omega}$, or, in components,

$$
\alpha_{x}=\dot{\omega}_{x}+\left(\Omega_{y} \omega_{z}-\Omega_{z} \omega_{y}\right), \quad \text { etc., cyclically },
$$

and so (3.14.2b) is replaced by

$$
\begin{align*}
S= & (1 / 2)\left[I_{\bullet}\left(\dot{\omega}_{x}\right)^{2}+I_{\bullet, y}\left(\dot{\omega}_{y}\right)^{2}+I_{\bullet, z}\left(\dot{\omega}_{z}\right)^{2}\right] \\
& -\dot{\omega}_{x}\left[\left(I_{\bullet, y}-I_{\bullet, z}\right) \omega_{y} \omega_{z}+I_{\bullet, x}\left(\omega_{y} \Omega_{z}-\omega_{z} \Omega_{y}\right)\right]-\dot{\omega}_{y}[\ldots]-\dot{\omega}_{z}[\ldots] . \tag{3.14.2d}
\end{align*}
$$

(ii) If the axes $-x y z$ are nonprincipal and non-body-fixed, then it can be shown (verify it!) that we must add the following terms to the right side of (3.14.2d):

$$
\begin{align*}
-I_{\star, y z}\{ & -\dot{\omega}_{y} \dot{\omega}_{z}-\dot{\omega}_{x}\left(\omega_{y}{ }^{2}-\omega_{z}^{2}\right)+\dot{\omega}_{y}\left[\omega_{y}\left(\omega_{x}-\Omega_{x}\right)+\omega_{x} \Omega_{y}\right] \\
& \left.-\dot{\omega}_{z}\left[\omega_{z}\left(\omega_{x}-\Omega_{x}\right)+\omega_{x} \Omega_{z}\right]\right\}-I_{\bullet}, z x\{\ldots\}-I_{\star, x y}\{\ldots\} . \tag{3.14.2e}
\end{align*}
$$

For detailed scalar derivations of the above see, for example, Appell [1900(a), (b)].

General Motion

In this case, the inertial acceleration of a typical body particle is

$$
\begin{equation*}
\boldsymbol{a}=d \boldsymbol{v} / d t=a_{\star}+a_{/ \star}=a_{\star}+\alpha \times r_{/ \star}+\omega \times\left(\omega \times r_{/ \star}\right) . \tag{3.14.3a}
\end{equation*}
$$

Now, to avoid long calculations, we make the following observations:
(i) The difference between the corresponding velocity formula and the first two terms in (3.14.3a) is that, there, \boldsymbol{a}_{\star} and $\boldsymbol{\alpha}$ are replaced, respectively, by \boldsymbol{v}_{\star} and $\boldsymbol{\omega}$. Therefore, we will obtain the corresponding terms in S if, in the earlier T-expressions (3.13.2 ff.); that is,

$$
\begin{equation*}
2 T=m v_{\star}^{2}+2 m\left(v_{\star} \times \omega\right) \cdot r_{\|}+\omega \cdot I_{\star} \cdot \omega, \tag{3.14.3b}
\end{equation*}
$$

we replace \boldsymbol{v}_{\star} and ω with \boldsymbol{a}_{\star} and $\boldsymbol{\alpha}$, respectively.
(ii) But the product $\boldsymbol{a} \cdot \boldsymbol{a}$ results in two additional Appell-important terms in S [the square of $\omega \times\left(\omega \times \boldsymbol{r}_{/ \bullet}\right)$ does not produce any $(d \omega / d t)$-proportional terms]:

- One from ($\left.\boldsymbol{\alpha} \times \boldsymbol{r}_{/ \bullet}\right) \cdot\left[\omega \times\left(\omega \times \boldsymbol{r}_{/ \bullet}\right)\right]$, and hence given by (3.14.1d, e) [also (3.14.1f)]; and
- Another that transforms, successively, as follows:

$$
\begin{align*}
\boldsymbol{S} d m \boldsymbol{a}_{\bullet} \cdot\left[\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{\bullet \bullet}\right)\right] & =m \boldsymbol{a}_{\bullet} \cdot\left[\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right)\right] \\
& =m(\boldsymbol{a} \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right) . \tag{3.14.3c}
\end{align*}
$$

Collecting all these results, we conclude that in the case of general motion, and to within $\sim \boldsymbol{\alpha}$ terms,

$$
\begin{align*}
2 S= & m a \stackrel{ }{2}^{2}+2 m(\boldsymbol{a} \times \boldsymbol{\alpha}) \cdot \boldsymbol{r}_{G / \star}+2 m(\boldsymbol{a} \bullet \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right) \\
& +\boldsymbol{\alpha} \cdot I_{\star} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \omega) \cdot(\boldsymbol{I} \bullet \boldsymbol{\omega}) . \tag{3.14.3d}
\end{align*}
$$

Specializations
(i) If $\quad=G$, the second and third terms in the above vanish, and so (3.14.3d) reduces to the Appellian counterpart of the well-known König's theorem (for T, with $\bullet=G$)

$$
\begin{align*}
2 S= & m a_{G}^{2}+\boldsymbol{\alpha} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}\right) \\
= & 2(\text { Appellian of translation of } G+\text { rotation about } G \\
& + \text { coupling of } \boldsymbol{\omega} \text { and } \boldsymbol{\alpha}) . \tag{3.14.4a}
\end{align*}
$$

However, there is no T-counterpart to the last term of (3.14.4a).
(ii) If $\bullet-x y z(G-x y z)$ are body-fixed [in which case, $\Omega=\omega \Rightarrow \alpha_{x, y, z}=\dot{\omega}_{x, y, z}$], the expressions (3.14.3d), (3.14.4a) can be simplified further. Since, in this case,

$$
\begin{equation*}
a \star \equiv d v_{\bullet} / d t=\partial v_{\bullet} / \partial t+\omega \times v_{\star}, \tag{3.14.4b}
\end{equation*}
$$

to within Appell-important terms, $a_{\bullet}{ }^{2}$ can be replaced by

$$
\begin{equation*}
\left(\partial v_{\bullet} / \partial t\right)^{2}+2\left(\partial v_{\bullet} / \partial t\right) \cdot\left(\omega \times v_{\bullet}\right), \tag{3.14.4c}
\end{equation*}
$$

and $\boldsymbol{a} \bullet \times \omega$ by $\left(\partial v_{\bullet} / \partial t\right) \times \omega$ [where, we recall, $\left.\left(\partial v_{\bullet} / \partial t\right)_{x, y, z}=\left(\dot{v}_{\bullet ; x, y, z}\right)\right]$, and so, to within $\sim\left(\partial v_{\bullet} / \partial t\right)\left[\left(\partial v_{G} / \partial t\right)\right]$ and $\sim \boldsymbol{\alpha}$ terms, and after some simple vectorial rearrangement, (3.14.3d) and (3.14.4a) read, respectively,

$$
\begin{align*}
2 S= & m\left(\partial v_{\bullet} / \partial t\right)^{2}+2 m\left(\partial v_{\bullet} / \partial t+\omega \times v_{\bullet}\right) \cdot\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{G / \bullet}\right) \\
& \left.+2 m\left[\left(\partial v_{\bullet} / \partial t\right) \times \omega\right] \cdot\left(v_{\bullet}\right)+\omega \times \boldsymbol{r}_{G / \bullet}\right) \\
& +\boldsymbol{\alpha} \cdot I_{\bullet} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \omega) \cdot\left(I_{\bullet} \cdot \boldsymbol{\omega}\right) ; \tag{3.14.4d}
\end{align*}
$$

and

$$
\begin{equation*}
2 S=m\left(\partial \boldsymbol{v}_{G} / \partial t\right)^{2}+2 m\left[\left(\partial \boldsymbol{v}_{G} / \partial t\right) \times \omega\right] \cdot \boldsymbol{v}_{G}+\boldsymbol{\alpha} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \omega) \cdot\left(\boldsymbol{I}_{G} \cdot \omega\right) \tag{3.14.4e}
\end{equation*}
$$

Problem 3.14.1 Appellian Counterpart of the "British Theorem." Show that, to within "Appell-important terms," the Appellian of a uniform $\operatorname{rod} A B$, of mass m, equals

$$
\begin{equation*}
S=(m / 6)\left(\boldsymbol{a}_{A}^{2}+\boldsymbol{a}_{A} \cdot \boldsymbol{a}_{B}+\boldsymbol{a}_{B}^{2}\right), \tag{a}
\end{equation*}
$$

where \boldsymbol{a}_{A} and \boldsymbol{a}_{B} are the accelerations of the endpoints A and B (see also Bahar, 1994, pp. 1685-1686).

3.15 THE RIGID BODY: VIRTUAL WORK OF FORCES

Introduction, General Results

In the last two sections, we discussed the explicit forms of the virtual work of the inertia forces, δI, for a rigid body B, in both Lagrangean and Appellian variables. Here, we present the corresponding forms of the [total (first-order) and inertial] virtual work of the impressed forces,

$$
\begin{equation*}
\delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \tag{3.15.1a}
\end{equation*}
$$

[recall (3.2.8 ff.) and §3.4], and thus complete the specialization of Lagrange's principle, $\delta I=\delta^{\prime} W$, to the rigid body.

Using the notations, and so on, of the preceding sections, we obtain, successively,

$$
\begin{equation*}
\delta^{\prime} W=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\delta \boldsymbol{r}+\delta \boldsymbol{\theta} \times \boldsymbol{r}_{/ \bullet}\right)=\cdots=\boldsymbol{F} \cdot \delta \boldsymbol{r}+\boldsymbol{M} \bullet \delta \boldsymbol{\theta} \tag{3.15.1b}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{F}=\boldsymbol{S} d \boldsymbol{F}=\text { total impressed force on } B(\text { acting through } \bullet), \\
& \boldsymbol{M} \bullet \boldsymbol{S} \boldsymbol{r}_{\bullet} \times d \boldsymbol{F}=\text { total impressed moment on } B \text { about } \tag{3.15.1c}
\end{align*} .
$$

Component Representations

Let us, next, express (3.15.1b) in terms of the components of its vectors along the following useful axes/coordinates:
(i) If the coordinates/components of \leqslant relative to the fixed axes/basis $O-X Y Z / I J K$ are $X_{*}, Y_{\star}, Z_{\star}$, and the Eulerian angles of a body-fixed axes/basis $\bullet-x y z / i \boldsymbol{i j k}$ relative to the cotranslating (nonrotating) axes/basis $-X Y Z / \boldsymbol{I J K}$ are ϕ, θ, ψ [recalling §1.12] - that is, if the Lagrangean coordinates of B are $q_{1,2,3}=$ X_{*}, Y_{*}, Z_{*}, and $q_{4,5,6}=\phi, \theta, \psi$ - then

$$
\begin{equation*}
\delta \boldsymbol{r}_{\bullet}=\delta X_{\bullet} \boldsymbol{I}+\delta Y_{\bullet} \boldsymbol{J}+\delta Z_{\bullet} \boldsymbol{K}, \quad \delta \boldsymbol{\theta}=\delta \phi \boldsymbol{K}+\delta \theta \boldsymbol{u}_{n}+\delta \psi \boldsymbol{k} \tag{3.15.1d}
\end{equation*}
$$

[\boldsymbol{u}_{n} : unit vector along nodal line] and, substituting them into (3.15.1b), we obtain

$$
\begin{equation*}
\delta^{\prime} W=Q_{X} \delta X_{\bullet}+Q_{Y} \delta Y_{\bullet}+Q_{Z} \delta Z_{\bullet}+M_{\bullet, \phi} \delta \phi+M_{\bullet, \theta} \delta \theta+M_{\bullet, \psi} \delta \psi, \tag{3.15.1e}
\end{equation*}
$$

where

$$
\begin{array}{ll}
Q_{X} \equiv \boldsymbol{F} \cdot \boldsymbol{I} & \left(\equiv Q_{1}\right), \quad \text { etc., cyclically } \\
M_{\bullet}, \phi \\
M_{\bullet} \equiv \boldsymbol{M} \cdot \boldsymbol{K} & \left(\equiv Q_{4} \equiv Q_{\phi}\right) \\
M_{\bullet} \cdot \boldsymbol{u}_{n} \equiv \boldsymbol{M}_{\bullet} \cdot \boldsymbol{k} & \left(\equiv Q_{5} \equiv Q_{\theta}\right) \tag{3.15.1f}\\
\left(\equiv Q_{6} \equiv Q_{\psi}\right)
\end{array}
$$

that is, $\boldsymbol{M}_{\bullet ; \phi, \theta, \psi}$ are the components of \boldsymbol{M}_{\bullet} along this "natural" unit but nonorthogonal axes/basis $\bullet-Z n z / K \boldsymbol{u}_{n} \boldsymbol{k}$.
(ii) Similarly, using body-fixed axes/basis, -xyz/ijk, we can write

$$
\begin{equation*}
\delta^{\prime} W=Q_{x} \delta x_{\bullet}+Q_{y} \delta y_{\bullet}+Q_{z} \delta z_{\bullet}+M_{\bullet} \delta \delta \theta_{x}+M_{\bullet} \delta \theta_{y}+M_{\bullet, z} \delta \theta_{z}, \tag{3.15.1~g}
\end{equation*}
$$

but, here, both the $\left(\delta x_{\bullet}, \delta y_{*}, \delta z_{\bullet}\right)$ and $\left(\delta \theta_{x}, \delta \theta_{y}, \delta \theta_{z}\right)$ are virtual variations of quasi coordinates [whose (...)-derivatives are the earlier quasi velocities $v_{\bullet ; x, y, z}$ and $\omega_{x, y, z}$, respectively; i.e., $d x_{\bullet}=v_{\bullet, x} d t, d \theta_{x}=\omega_{x} d t$, etc.].
(iii) Finally, using cotranslating axes/basis, -XYZ/IJK, we have

$$
\begin{equation*}
\delta^{\prime} W=Q_{X} \delta X_{\bullet}+Q_{Y} \delta Y_{\bullet}+Q_{Z} \delta Z \bullet+M_{\bullet} \delta \theta_{X}+M_{\bullet} \delta \theta_{Y}+M_{\bullet} \delta \theta_{Z}, \tag{3.15.1h}
\end{equation*}
$$

where the $\left(X_{\bullet}, Y_{\bullet}, Z_{\bullet}\right)$ are genuine (holonomic) coordinates, but the $\left(\theta_{X}, \theta_{Y}, \theta_{Z}\right)$ are quasi coordinates [i.e., $d X_{\bullet}=\left(d X_{\bullet} / d t\right) d t \equiv v_{\bullet, X} d t, d \theta_{X} \equiv \omega_{X} d t$, etc.].

Component Transformations

To relate these various \boldsymbol{M}, components with each other we shall use (i) basis vector transformations and, equivalently, (ii) the $\delta^{\prime} W$ invariance.
(i) Basis Vector Transformations
(a) Eulerian versus Inertial Components. With reference to fig. 3.35, we find, successively,

$$
\begin{align*}
& M_{\bullet}, \phi\left(\equiv M_{\bullet}, Z\right) \equiv M_{\bullet} \cdot \boldsymbol{K} \quad\left[=(0) M_{\bullet, X}+(0) M_{\bullet}, Y+(1) M \bullet Z\right], \tag{3.15.2a}\\
& M_{\star, \theta}\left(\equiv M_{\bullet, n}\right) \equiv \boldsymbol{M}_{\bullet} \cdot \boldsymbol{u}_{n} \\
& =\left(M_{\bullet, X} \boldsymbol{I}+M_{\bullet, Y} \boldsymbol{J}+M_{\bullet, Z} \boldsymbol{K}\right) \cdot(\cos \phi \boldsymbol{I}+\sin \phi \boldsymbol{J}) \\
& =(\cos \phi) M_{\bullet, X}+(\sin \phi) M_{\bullet, Y}+(0) M_{\bullet, Z}, \tag{3.15.2b}
\end{align*}
$$

$$
\begin{align*}
& M_{\star, \psi}\left(\equiv M_{\star, z}\right) \equiv \boldsymbol{M}_{\bullet} \cdot \boldsymbol{k}=\boldsymbol{M}_{\bullet} \cdot\left(-\sin \theta \boldsymbol{u}_{N}+\cos \theta \boldsymbol{K}\right) \\
& =\boldsymbol{M} \bullet \cdot[-\sin \theta(-\sin \phi \boldsymbol{I}+\cos \phi \boldsymbol{J})+\cos \theta \boldsymbol{K}] \\
& =\left(M_{\bullet, X} \boldsymbol{I}+M_{\bullet, Y} \boldsymbol{J}+M_{\bullet, Z} \boldsymbol{K}\right) \cdot(\sin \phi \sin \theta \boldsymbol{I}-\cos \phi \sin \theta \boldsymbol{J}+\cos \theta \boldsymbol{K}) \\
& =(\sin \phi \sin \theta) M_{\bullet, X}+(-\cos \phi \sin \theta) M_{\bullet, Y}+(\cos \theta) M_{\bullet, Z} . \tag{3.15.2c}
\end{align*}
$$

Inverting the above, we obtain, after some simple algebra,

$$
\begin{align*}
& M_{\bullet, X}=(-\cot \theta \sin \phi) M_{\bullet, \phi}+(\cos \phi) M_{\bullet, \theta}+(\sin \phi / \sin \theta) M_{\bullet, \psi}, \tag{3.15.2d}\\
& M_{\bullet, Y}=(\cot \theta \cos \phi) M_{\bullet, \phi}+(\sin \phi) M_{\bullet, \theta}+(-\cos \phi / \sin \theta) M_{\bullet, \psi}, \tag{3.15.2e}\\
& M_{\bullet, Z}=(1) M_{\bullet, \phi}+(0) M_{\bullet, \theta}+(0) M_{\bullet, \psi} . \tag{3.15.2f}
\end{align*}
$$

Figure 3.35 Geometrical demonstration of difference between orthogonal projections (in nonorthogonal axes) ($M_{\phi, \theta, \psi}$) and parallel ($\left.M_{\phi, \theta, \psi}^{\prime}\right)$ projections (components); $\boldsymbol{M}_{\mathbf{~}} \equiv \boldsymbol{M}$.
(b) Eulerian versus Body-Fixed Components. Again, with reference to fig. 3.35, we find, successively,

$$
\begin{align*}
M_{\bullet, \phi}(& \left.\equiv M_{\bullet}, z\right) \equiv M_{\bullet} \cdot \boldsymbol{K}=\boldsymbol{M}_{\bullet} \cdot\left(\sin \theta \boldsymbol{j}^{\prime}+\cos \theta \boldsymbol{k}\right) \\
& =M_{\bullet} \cdot[\sin \theta(\sin \psi \boldsymbol{i}+\cos \psi \boldsymbol{j})+\cos \theta \boldsymbol{k}] \\
& =\left(M_{\bullet}, x\right. \\
& \left.\boldsymbol{i}+M_{\bullet}, y+M_{\bullet, z} \boldsymbol{k}\right) \cdot(\sin \theta \sin \psi \boldsymbol{i}+\sin \theta \cos \psi \boldsymbol{j}+\cos \theta \boldsymbol{k}) \tag{3.15.2~g}\\
& =(\sin \theta \sin \psi) M_{\bullet}+(\sin \theta \cos \psi) M_{\bullet, y}+(\cos \theta) M_{\bullet z,} \\
M_{\bullet, \theta} & \left.\equiv M_{\bullet, n}\right) \equiv M_{\bullet} \cdot \boldsymbol{u}_{n}=M_{\bullet} \cdot(\cos \psi \boldsymbol{i}-\sin \psi \boldsymbol{j}) \tag{3.15.2h}\\
& =(\cos \psi) M_{\bullet, x}+(-\sin \psi) M_{\bullet, y}+(0) M_{\bullet, z}, \tag{3.15.2i}\\
M_{\bullet, \psi} & \left.\equiv M_{\bullet, z}\right) \equiv M_{\bullet} \cdot \boldsymbol{k}=(0) M_{\bullet}+(0) M_{\bullet, y}+(1) M_{\bullet, z} .
\end{align*}
$$

Inverting the above, we obtain

$$
\begin{align*}
M_{\bullet, x} & =(\sin \psi / \sin \theta) M_{\star, \phi}+(\cos \psi) M_{\bullet, \theta}+(-\cot \theta \sin \psi) M_{\star, \psi}, \tag{3.15.2j}\\
M_{\bullet, y} & =(\cos \psi / \sin \theta) M_{\star, \phi}+(\sin \psi) M_{\bullet, \theta}+(-\cot \theta \cos \psi) M_{\bullet, \psi}, \tag{3.15.2k}\\
M_{\star, z} & =(0) M_{\bullet, \phi}+(0) M_{\star, \theta}+(1) M_{\bullet, \psi} . \tag{3.15.21}
\end{align*}
$$

Similarly, we can relate the Eulerian axes/basis components with, say, those along the semimobile axes/basis $-x^{\prime} y^{\prime} z^{\prime} / \boldsymbol{i}^{\prime} \boldsymbol{j}^{\prime} \boldsymbol{k}^{\prime} \equiv-n n^{\prime} z / \boldsymbol{u}_{n} \boldsymbol{j}^{\prime} \boldsymbol{k}$, or the semifixed $\bullet-x^{\prime} N Z / \boldsymbol{i}^{\prime} \boldsymbol{u}_{N} \boldsymbol{K} \equiv-n N Z / \boldsymbol{u}_{n} \boldsymbol{u}_{N} \boldsymbol{K}$ ones; and, from (3.15.2a-c) and (3.15.2g-i), we can relate the $M_{\bullet ; x, y, Z}$ with the $M_{\bullet ; X, Y, Z}$. The details are left to the reader.
(ii) $\delta^{\prime} W$ Invariance

Such derivations are based on the following earlier found kinematic relations (§1.12):

- Eulerian versus inertial axes:

$$
\begin{align*}
\delta \theta_{X} & =(0) \delta \phi+(\cos \phi) \delta \theta+(\sin \phi \sin \theta) \delta \psi \\
\delta \theta_{Y} & =(0) \delta \phi+(\sin \phi) \delta \theta+(-\cos \phi \sin \theta) \delta \psi \\
\delta \theta_{Z} & =(1) \delta \phi+(0) \delta \theta+(\cos \theta) \delta \psi ; \tag{3.15.3a}\\
\delta \phi & =(-\cot \theta \sin \phi) \delta \theta_{X}+(\cot \theta \cos \phi) \delta \theta_{Y}+(1) \delta \theta_{Z}, \\
\delta \theta & =(\cos \phi) \delta \theta_{X}+(\sin \phi) \delta \theta_{Y}+(0) \delta \theta_{Z}, \\
\delta \psi & =(\sin \phi / \sin \theta) \delta \theta_{X}+(-\cos \phi / \sin \theta) \delta \theta_{Y}+(0) \delta \theta_{Z} \tag{3.15.3b}
\end{align*}
$$

- Eulerian versus body-fixed axes:

$$
\begin{align*}
\delta \theta_{x} & =(\sin \psi \sin \theta) \delta \phi+(\cos \psi) \delta \theta+(0) \delta \psi, \\
\delta \theta_{y} & =(\cos \psi \sin \theta) \delta \phi+(-\sin \psi) \delta \theta+(0) \delta \psi, \\
\delta \theta_{z} & =(\cos \theta) \delta \phi+(0) \delta \theta+(1) \delta \psi ; \tag{3.15.3c}\\
\delta \phi & =(\sin \psi / \sin \theta) \delta \theta_{x}+(\cos \psi / \sin \theta) \delta \theta_{y}+(0) \delta \theta_{z}, \\
\delta \theta & =(\cos \psi) \delta \theta_{x}+(-\sin \psi) \delta \theta_{y}+(0) \delta \theta_{z}, \\
\delta \psi & =(-\cot \theta \sin \phi) \delta \theta_{x}+(-\cot \theta \cos \psi) \delta \theta_{y}+(1) \delta \theta_{z} . \tag{3.15.3d}
\end{align*}
$$

From the above, we can also find the relations $\delta \theta_{x, y, z}=(\ldots) \delta \theta_{X, Y, Z}$ and its inverse $\delta \theta_{X, Y, Z}=(\ldots) \delta \theta_{x, y, z}$.

For obvious reasons, we need consider only the "moment part" of $\delta^{\prime} W$; that is,

$$
\delta^{\prime} W_{M} \equiv M_{\bullet, \phi} \delta \phi+M_{\bullet, \theta} \delta \theta+M_{\bullet, \psi} \delta \psi
$$

(a) Eulerian versus Inertial Components. With the help of (3.15.3b), we find, successively,

$$
\begin{align*}
\delta^{\prime} W_{M}= & M_{\bullet, \phi}\left[(-\cot \theta \sin \phi) \delta \theta_{X}+(\cot \theta \cos \phi) \delta \theta_{Y}+(1) \delta \theta_{Z}\right] \\
& +M_{\bullet, \theta}\left[(\cos \phi) \delta \theta_{X}+(\sin \phi) \delta \theta_{Y}+(0) \delta \theta_{Z}\right] \\
& +M_{\bullet, \psi}\left[(\sin \phi / \sin \theta) \delta \theta_{X}+(-\cos \phi / \sin \theta) \delta \theta_{Y}+(0) \delta \theta_{Z}\right] \\
= & {\left[(-\cot \theta \sin \phi) M_{\bullet, \phi}+(\cos \phi) M_{\bullet, \theta}+(\sin \phi / \sin \theta) M_{\bullet, \psi}\right] \delta \theta_{X} } \\
& +\left[(\cot \theta \cos \phi) M_{\bullet, \phi}+(\sin \phi) M_{\bullet, \theta}+(-\cos \phi / \sin \theta) M_{\bullet, \psi}\right] \delta \theta_{Y} \\
& +\left[(1) M_{\bullet, \phi}+(0) M_{\bullet, \theta}+(0) M_{\bullet \psi}\right] \delta \theta_{Z} \\
= & M_{\bullet, X} \delta \theta_{X}+M_{\bullet, Y} \delta \theta_{Y}+M_{\bullet, Z} \delta \theta_{Z} ; \quad \text { that is, eqs. (3.15.2d-f). } \tag{3.15.4a}
\end{align*}
$$

(b) Eulerian versus Body-Fixed Components. With the help of (3.15.3c) we find, successively,

$$
\begin{align*}
\delta^{\prime} W_{M}= & M_{\bullet, K}[(0) \delta \phi+(\cos \phi) \delta \theta+(\sin \phi \sin \theta) \delta \psi] \\
& +M_{\bullet, Y}[(0) \delta \phi+(\sin \phi) \delta \theta+(-\cos \phi \sin \theta) \delta \psi] \\
& +M_{\bullet, Z}[(1) \delta \phi+(0) \delta \theta+(\cos \phi) \delta \psi] \\
= & {\left[(0) M_{\bullet, X}+(0) M_{\bullet, Y}+(1) M_{\bullet, Z}\right] \delta \phi } \\
& +\left[(\cos \phi) M_{\bullet, X}+(\sin \phi) M_{\bullet, Y}+(0) M_{\bullet, Z}\right] \delta \theta \\
& +\left[(\sin \phi \sin \theta) M_{\bullet, X}+(-\cos \phi \sin \theta) M_{\bullet, Y}+(\cos \theta) M_{\bullet, Z}\right] \delta \psi \\
= & M_{\bullet, \phi} \delta \phi+M_{\bullet, \theta} \delta \theta+M_{\bullet, \psi} \delta \psi ; \tag{3.15.4b}
\end{align*}
$$

that is, eqs. (3.15.2a-c), without inverting eqs. (3.15.2d-f).
Similarly, using the transformations (3.15.3c, d), we can recover the earlier equations ($3.15 .2 \mathrm{~g}-1$).

We hope that the above have demonstrated the simplicity and superiority of the " δ ' W invariance" approach. It, clearly, allows us to find the Lagrangean forces in any other "new" system of holonomic/nonholonomic variables-if we know them in an "old" one-plus the differential geometrical equations relating these two systems.

Example 3.15.1 Eulerian Components versus Projections [recall (1.2.7a ff.)]. As already known, the Eulerian axes/basis $-\boldsymbol{Z n z} / \boldsymbol{K} \boldsymbol{u}_{n} \boldsymbol{k}$ is nonorthogonal. Therefore (and omitting all subscripts for simplicity),

$$
\begin{equation*}
\boldsymbol{M} \neq M_{\phi} \boldsymbol{K}+M_{\theta} \boldsymbol{u}_{n}+M_{\psi} \boldsymbol{k}, \tag{a}
\end{equation*}
$$

even though, as (3.15.1f) remind us,

$$
\begin{equation*}
M_{\phi}=\boldsymbol{M} \cdot \boldsymbol{K}, \quad M_{\theta}=\boldsymbol{M} \cdot \boldsymbol{u}_{n}, \quad M_{\psi}=\boldsymbol{M} \cdot \boldsymbol{k} \tag{b}
\end{equation*}
$$

(components entering virtual work, just like the system momenta $p_{\phi, \theta, \psi}$); that is, in the case of nonorthogonal axes, the (orthogonal) projections of (a vector) $\boldsymbol{M}, M_{\phi, \theta, \psi}$, are not equal to its components (i.e., parallel projections), say $M_{\phi, \theta, \psi}^{\prime}$ (fig. 3.35).

To find these latter (referred in tensor calculus as contravariant components), we set

$$
\begin{equation*}
\boldsymbol{M}=M_{\phi}^{\prime} \boldsymbol{K}^{\prime}+M_{\theta}^{\prime} \boldsymbol{u}_{n}+M_{\psi}^{\prime} \boldsymbol{k}, \tag{c}
\end{equation*}
$$

dot it in succession with $\boldsymbol{K}, \boldsymbol{u}_{n}, \boldsymbol{k}$, and then invoke (b) and fig. 3.35.
The results are

$$
\begin{align*}
M_{\phi} & =M_{\phi}^{\prime}(\boldsymbol{K} \cdot \boldsymbol{K})+M_{\theta}^{\prime}\left(\boldsymbol{u}_{n} \cdot \boldsymbol{K}\right)+M^{\prime}{ }_{\psi}(\boldsymbol{k} \cdot \boldsymbol{K}) \\
& =M_{\phi}^{\prime}(1)+M_{\theta}^{\prime}(0)+M^{\prime}(\cos \theta)=M^{\prime}{ }_{\phi}+(\cos \theta) M^{\prime}{ }_{\psi}, \tag{d}\\
M_{\theta} & =M_{\phi}^{\prime}\left(\boldsymbol{K} \cdot \boldsymbol{u}_{n}\right)+M_{\theta}^{\prime}\left(\boldsymbol{u}_{n} \cdot \boldsymbol{u}_{n}\right)+M^{\prime}\left(\boldsymbol{k} \cdot \boldsymbol{u}_{n}\right) \\
& =M_{\phi}^{\prime}(0)+M_{\theta}^{\prime}(1)+M^{\prime}(0)=M^{\prime}{ }_{\theta}, \tag{e}\\
M_{\psi} & =M_{\phi}^{\prime}(\boldsymbol{K} \cdot \boldsymbol{k})+M_{\theta}^{\prime}\left(\boldsymbol{u}_{n} \cdot \boldsymbol{k}\right)+M^{\prime}{ }_{\psi}(\boldsymbol{k} \cdot \boldsymbol{k}) \\
& =M_{\phi}^{\prime}(\cos \theta)+M_{\theta}^{\prime}(0)+M^{\prime}{ }_{\psi}(1)=(\cos \theta) M^{\prime}{ }_{\phi}+M^{\prime}{ }_{\psi} . \tag{f}
\end{align*}
$$

Inverting the above, we easily obtain (see also fig. 3.35)

$$
\begin{align*}
& M_{\phi}^{\prime}=\left(1 / \sin ^{2} \theta\right)\left(M_{\phi}-\cos \theta M_{\psi}\right), \tag{g}\\
& M_{\theta}^{\prime}=M_{\theta}, \tag{h}\\
& M_{\psi}^{\prime}=\left(1 / \sin ^{2} \theta\right)\left(M_{\psi}-\cos \theta M_{\phi}\right) . \tag{i}
\end{align*}
$$

Example 3.15.2 Equilibrium Conditions; and Accelerationless Rigid-Body Motion.
(i) Equilibrium conditions of forces via virtual work. Let us consider these forces as acting on the various material particles of a rigid body/system, and let us calculate the corresponding (total, first-order, and inertial) virtual work. Reasoning as in (3.15.1b, c), we obtain

$$
\begin{align*}
\delta^{\prime} W_{\text {all forces }} & \equiv \delta^{\prime} W_{f} \equiv \boldsymbol{S} d \boldsymbol{f} \cdot \delta \boldsymbol{r} \\
& =\boldsymbol{S} d \boldsymbol{f} \cdot\left(\delta \boldsymbol{r} \bullet \delta \boldsymbol{\theta} \times \boldsymbol{r}_{/ \bullet}\right)=\cdots=\boldsymbol{f} \cdot \delta \boldsymbol{r}+M_{\bullet} \cdot \delta \boldsymbol{\theta} \tag{a}
\end{align*}
$$

where

$$
\begin{align*}
& \boldsymbol{f}=\boldsymbol{S} d \boldsymbol{f}=\text { total force on } B(\text { acting through } \diamond), \\
& \boldsymbol{M}_{\bullet}=\boldsymbol{S}_{\boldsymbol{r}} \bullet \times d \boldsymbol{f}=\text { total moment on B about } \bullet . \tag{b}
\end{align*}
$$

Since the virtual displacements $\delta \boldsymbol{r}_{\star}, \delta \boldsymbol{\theta}$ are independent/arbitrary, the condition $\delta^{\prime} W_{f}=0$ leads to the well-known force equilibrium equations

$$
\begin{equation*}
\boldsymbol{f}=\mathbf{0} \quad \text { and } \quad \boldsymbol{M}_{\star}=\mathbf{0} . \tag{c}
\end{equation*}
$$

In sum: if $\delta^{\prime} W_{f}=0$, for every rigid virtual displacement, the forces are in equilibrium; and, conversely, if the forces are in equilibrium in the sense of (c), then $\delta^{\prime} W_{f}=0$.

Finally, if we invoke the action-reaction principle for the internal forces (§ 1.6), eqs. (c) can be replaced by

$$
\begin{equation*}
\boldsymbol{f}_{\text {external }}=\mathbf{0} \quad \text { and } \quad \boldsymbol{M}_{\bullet, \text { external }}=\mathbf{0} . \tag{d}
\end{equation*}
$$

[See also Marcolongo, 1911, pp. 266-269; and Heun, 1902(b)].
If $\delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\delta \boldsymbol{r} \bullet+\delta \boldsymbol{\theta} \times \boldsymbol{r}_{\boldsymbol{\bullet}}\right)=0$, then we are led to the following.
(ii) Accelerationless motion of a rigid body. The latter is defined as that for which

$$
\begin{equation*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=0, \quad \text { for } \text { every } \quad \delta \boldsymbol{r}=\delta \boldsymbol{r} \bullet+\delta \boldsymbol{\theta} \times \boldsymbol{r} / \stackrel{\rightharpoonup}{*} \tag{e}
\end{equation*}
$$

Then, since [recall (3.13.8 ff.)]

$$
\begin{equation*}
\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot\left(\delta \boldsymbol{r} \bullet+\delta \boldsymbol{\theta} \times \boldsymbol{r}_{\bullet}\right)=\cdots=\boldsymbol{I} \cdot \delta \boldsymbol{r}_{\bullet}+\boldsymbol{A} \bullet \delta \boldsymbol{\theta} \tag{f}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{I} \equiv \boldsymbol{S} d m \boldsymbol{a}=m \boldsymbol{a}_{G}=(\text { inertial }) \text { linear inertia of body } B, \tag{g}\\
& A_{\star} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet} \times(d m \boldsymbol{a})=(\text { inertial }) \text { relative angular inertia of } B \text { about } \tag{h}
\end{align*}
$$

it follows that

$$
\begin{equation*}
\boldsymbol{I}=\mathbf{0} \quad \text { and } \quad A_{\diamond}=\mathbf{0} \tag{i}
\end{equation*}
$$

and, therefore, that [choosing in (f) $\delta \boldsymbol{r} \rightarrow \boldsymbol{v}=\boldsymbol{v}_{\star}+\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}$]

$$
\begin{align*}
\delta I \rightarrow d T / d t & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{v}=\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\boldsymbol{v}_{\star}+\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right) \\
& =\cdots=\boldsymbol{I} \cdot \boldsymbol{v}_{\star}+\boldsymbol{A}_{\star} \cdot \boldsymbol{\omega}=0 \Rightarrow T=\text { constant }, \tag{j}
\end{align*}
$$

that is, if the body was initially at (inertial) rest, it remains at rest (equilibrium).
Clearly, the choice of has no effect on such a motion. In particular, if we select $\bullet=G$, the equations of motion yield

$$
\begin{equation*}
m\left(d \boldsymbol{v}_{G} / d t\right)=\mathbf{0} \Rightarrow \boldsymbol{v}_{G}=\text { constant } \quad \text { and } \quad d \boldsymbol{h}_{G} / d t=\mathbf{0} \Rightarrow \boldsymbol{h}_{G}=\text { constant } \tag{k}
\end{equation*}
$$

from which, since \boldsymbol{v}_{G} and \boldsymbol{h}_{G} are mutually independent, we conclude that G can be taken as still.

Example 3.15.3 Analytical Statics: Equilibrium Conditions via Virtual Work. With the help of the concept of virtual work, and so on, we can summarize statics into the following results/propositions:

THEOREM

Two equivalent force (and/or couple) systems acting on a rigid body produce equal virtual works.

THEOREM

In every reversible rigid virtual displacement, the total virtual work of the constraint reactions vanishes (statical principle of Lagrange).

On Irreversible, or Unilateral, Constraints. Consider a particle P and a stationary rigid surface S with equation $f(x, y, z)=0$. If P moves on S, then its coordinates satisfy the equation $f=0$. The function f is positive on one side of S and negative on the other. Therefore, if P moves on the positive side of S, and cannot penetrate it or move except on that side, then its constraint is $f \geq 0$. In such cases, we distinguish: (i) ordinary positions of P, if $f>0$, and (ii) limiting, or boundary, positions, if $f=0$. Now we can state the general principle of virtual work, as follows.

LEMMA

The total virtual work of the (ideal) constraint reactions of a system in equilibrium (or motion), in every unilateral virtual displacement, is either positive or zero:

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r} \geq 0 \tag{a}
\end{equation*}
$$

PRINCIPLE OF VIRTUAL WORK

For equilibrium at a boundary configuration of a scleronomic and originally motionless system, it is necessary and sufficient that the total impressed virtual work, $\delta^{\prime} W \equiv S d \boldsymbol{F} \cdot \delta \boldsymbol{r}$, be zero for all reversible virtual displacements; and zero or negative for all nonreversible virtual displacements (Fourier, 1798).

Problem 3.15.1 Virtual Work-Like Characterization of Astatic Equilibrium. Show that the vanishing of the (total, first-order, and inertial) vector virtual work of all forces

$$
\begin{equation*}
\delta^{\prime} \boldsymbol{W}_{V} \equiv \boldsymbol{S} d \boldsymbol{f} \times \delta \boldsymbol{r} \tag{a}
\end{equation*}
$$

for every $\delta \boldsymbol{r}=\delta \boldsymbol{r},+\delta \boldsymbol{\theta} \times \boldsymbol{r}_{\bullet}$, leads to the astaticity conditions for these forces (recalling the tensor product definition, §1.1)

$$
\begin{equation*}
\boldsymbol{f}=\boldsymbol{S} d \boldsymbol{f}=\mathbf{0} \quad(\text { vector }), \quad \mathbf{S} \boldsymbol{r} \otimes d \boldsymbol{f}=\mathbf{0} \quad \text { (tensor) } \tag{b}
\end{equation*}
$$

and, conversely, if (the twelve scalar conditions) (b) hold, then $\delta^{\prime} \boldsymbol{W}_{V}=\mathbf{0}$.
[This result seems to be due to Heun, 1902(a), p. 69; see also Biezeno, 1927, pp. 253-254.]

Example 3.15.4 Eulerian Equations of Motion of a Rigid Body B Moving about a Fixed Point via the Central Equation (recall §3.6):

$$
\begin{equation*}
\delta T+\delta^{\prime} W=d / d t(\delta P) \tag{a}
\end{equation*}
$$

For this special system (with $O=\star$; i.e., $\boldsymbol{r}_{/ \bullet}=\boldsymbol{r}$, and using body-fixed axes at \bullet), we have

$$
\begin{equation*}
\delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot(\delta \boldsymbol{\theta} \times \boldsymbol{r})=\boldsymbol{M} \cdot \delta \boldsymbol{\theta} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{M} \equiv \boldsymbol{M} \bullet \equiv \boldsymbol{S} \times d \boldsymbol{F}=\text { total impressed moment on } B, \text { about origin } \tag{c}
\end{equation*}
$$

$$
\begin{align*}
2 T & =\boldsymbol{S} d m \boldsymbol{v}^{2}=\boldsymbol{S} d m(\boldsymbol{\omega} \times \boldsymbol{r})^{2}=\boldsymbol{S} d m\{[\boldsymbol{r} \times(\boldsymbol{\omega} \times \boldsymbol{r})] \cdot \boldsymbol{\omega}\} \tag{ii}\\
& =\boldsymbol{H} \cdot \boldsymbol{\omega}=\sum H_{k} \omega_{k}=(\partial T / \partial \boldsymbol{\omega}) \cdot \boldsymbol{\omega}=\sum\left(\partial T / \partial \omega_{k}\right) \omega_{k} \tag{d}
\end{align*}
$$

where

$$
\begin{align*}
\boldsymbol{H} & \equiv \boldsymbol{H} \bullet \equiv \mathbf{S} d m[\boldsymbol{r} \times(\boldsymbol{\omega} \times \boldsymbol{r})]=\mathbf{S} \boldsymbol{r} \times(d m \boldsymbol{v})=\partial T / \partial \omega \\
& =\left(H_{x}, H_{y}, H_{z}\right)=\left(\partial T / \partial \omega_{x}, \partial T / \partial \omega_{y}, \partial T / \partial \omega_{z}\right) \\
& =(\text { inertial }) \text { absolute angular momentum of } B \text { about } \leqslant \tag{e}
\end{align*}
$$

and $k=1,2,3 \equiv x, y, z$. From the above, and since, here, the independent kinematical variable is ω, we obtain

$$
\begin{align*}
\delta T & =\boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{v}=\boldsymbol{S} d m(\boldsymbol{\omega} \times \boldsymbol{r}) \cdot(\delta \boldsymbol{\omega} \times \boldsymbol{r}) \\
& =\{\boldsymbol{S} d m[\boldsymbol{r} \times(\boldsymbol{\omega} \times \boldsymbol{r})]\} \cdot \delta \boldsymbol{\omega} \\
& =\boldsymbol{H} \cdot \delta \boldsymbol{\omega}=(\partial T / \partial \boldsymbol{\omega}) \cdot \delta \boldsymbol{\omega}=\sum H_{k} \delta \omega_{k}=\sum\left(\partial T / \partial \omega_{k}\right) \delta \omega_{k} \\
& =\boldsymbol{H} \cdot \delta_{\text {rel }} \boldsymbol{\omega} \quad\left[\delta_{\text {rel }}(\cdots)=\text { virtual variation of }(\cdots) \text { relative to }-x y z\right] . \tag{f}
\end{align*}
$$

(iii)

$$
\begin{align*}
d / d t(\delta P) & =d / d t(\mathbf{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r})=d / d t[\mathbf{S} d m \boldsymbol{v} \cdot(\delta \boldsymbol{\theta} \times \boldsymbol{r})] \\
& =d / d t(\boldsymbol{H} \cdot \delta \boldsymbol{\theta})=d / d t\left(\sum H_{k} \delta \theta_{k}\right)=(\partial / \partial t)(\boldsymbol{H} \cdot \delta \boldsymbol{\theta}) \\
& =(\partial \boldsymbol{H} / \partial t) \cdot \delta \boldsymbol{\theta}+\boldsymbol{H} \cdot[\partial(\delta \boldsymbol{\theta}) / \partial t] \quad\left[\text { where } \partial \boldsymbol{H} / \partial t=\left(d H_{k} / d t\right)\right] \\
& =(\partial \boldsymbol{H} / \partial t) \cdot \delta \boldsymbol{\theta}+\boldsymbol{H} \cdot\left(\delta_{\text {rel }} \omega+\delta \boldsymbol{\theta} \times \boldsymbol{\omega}\right) \quad[\text { recalling ex.2.3.11: (g) }] \\
& =(\partial \boldsymbol{H} / \partial t+\boldsymbol{\omega} \times \boldsymbol{H}) \cdot \delta \boldsymbol{\theta}+\boldsymbol{H} \cdot \delta_{\text {rel }} \boldsymbol{\omega} . \tag{g}
\end{align*}
$$

In view of (b-g), the central equation (a) reduces to

$$
\begin{equation*}
(\partial \boldsymbol{H} / \partial t+\boldsymbol{\omega} \times \boldsymbol{H}) \cdot \delta \boldsymbol{\theta}=\boldsymbol{M} \cdot \delta \boldsymbol{\theta} \tag{h}
\end{equation*}
$$

that is, $\delta I=\delta^{\prime} W$. Now: (a) If $\delta \boldsymbol{\theta}$ is unconstrained, the variational equation (h) leads immediately to the equation of motion

$$
\begin{equation*}
\partial \boldsymbol{H} / \partial t+\boldsymbol{\omega} \times \boldsymbol{H}=\boldsymbol{M} \tag{i}
\end{equation*}
$$

(b) If, on the other hand, $\delta \boldsymbol{\theta}$ is constrained, say by the Pfaffian equation $\boldsymbol{B} \cdot \delta \boldsymbol{\theta}=0$ [where $\boldsymbol{B}=\boldsymbol{B}(t, \boldsymbol{r})$], then the multiplier rule applied to (i) yields the "Routh-Vosstype" equation [with $\lambda=\lambda(t)=$ multiplier]:

$$
\begin{equation*}
\partial \boldsymbol{H} / \partial t+\boldsymbol{\omega} \times \boldsymbol{H}=\boldsymbol{M}+\lambda \boldsymbol{B} . \tag{j}
\end{equation*}
$$

Clearly, the reaction moment $\lambda \boldsymbol{B}$ has zero virtual work: $(\lambda \boldsymbol{B}) \cdot \delta \boldsymbol{\theta}=0$.
If the body-fixed axes -xyz are also principal, then $H_{k}=I_{k} \omega_{k} \quad\left(I_{k}=\right.$ principal moments of inertia at \bullet), and equations (i) readily reduce to the famous Eulerian rotational equations. [The more general forms (i, j) seem to be due to Lagrange. See also Heun (1906, pp. 276-280), and Papastavridis (1992) for alternative derivations and additional insights.]

Problem 3.15.2 Consider a rigid body moving about a fixed point \uparrow. Relate its Lagrangean and Eulerian momentum and inertia/acceleration vectors.

HINT
With $-x y z$ principal axes at \downarrow, and Lagrangean coordinates their Eulerian angles relative to fixed axes (ϕ, θ, ψ), we have
$\delta P \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}=p_{\phi} \delta \phi+p_{\theta} \delta \theta+p_{\psi} \delta \psi \quad$ (Lagrangean momenta),
$\delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=A_{\phi} \delta \phi+A_{\theta} \delta \theta+A_{\psi} \delta \psi \quad$ (Lagrangean inertia/accelerations),
$2 T=2 T^{*}=I_{x} \omega_{x}{ }^{2}+I_{y} \omega_{y}{ }^{2}+I_{z} \omega_{z}{ }^{2}$,
where

$$
\begin{equation*}
A_{\phi} \equiv I_{\phi} \equiv(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=d p_{\phi} / d t-\partial T / \partial \phi, \quad \text { etc. } \tag{b}
\end{equation*}
$$

But also, using some of the earlier kinematics [eqs. (3.15.3d)],

$$
\begin{align*}
\delta P & =p_{\phi}\left[(\ldots) \delta \theta_{x}+(\ldots) \delta \theta_{y}+(\ldots) \delta \theta_{z}\right]+\cdots \\
& \equiv H_{x} \delta \theta_{x}+\cdots \quad \text { (Eulerian momenta) } \tag{c}
\end{align*}
$$

from which

$$
\begin{array}{lc}
H_{x}=(\ldots) p_{\phi}+(\ldots) p_{\theta}+(\ldots) p_{\psi}, \quad H_{y}=\cdots, \quad H_{z}=\cdots ; \\
p_{\phi}=(\ldots) H_{x}+(\ldots) H_{y}+(\ldots) H_{z}, \quad p_{\theta}=\cdots, p_{\psi}=\cdots ; \tag{d}
\end{array}
$$

and by chain rule

$$
\begin{align*}
\partial T / \partial \phi & =\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial \phi\right)=\sum\left(I_{k} \omega_{k}\right)\left(\partial \omega_{k} / \partial \phi\right)=\sum H_{k}\left(\partial \omega_{k} / \partial \phi\right) \\
& =\cdots, \partial T / \partial \theta=\cdots, \partial T / \partial \psi=\cdots, \text { etc. } \tag{e}
\end{align*}
$$

Hence, using the above, we obtain the sought relations

$$
\begin{align*}
& A_{\phi}=d p_{\phi} / d t-\partial T / \partial \phi=\cdots=(\ldots) A_{x}+(\ldots) A_{y}+(\ldots) A_{z}, \quad \text { etc. } \\
& A_{x}=(\ldots) A_{\phi}+(\ldots) A_{\theta}+(\ldots) A_{\psi}=d H_{x} / d t+\omega_{y} H_{z}-\omega_{z} H_{y}, \quad \text { etc. } \tag{f}
\end{align*}
$$

(Eulerian inertia/accelerations).

3.16 RELATIVE MOTION (OR MOVING AXES/FRAMES) VIA LAGRANGE'S METHOD

In this section, following the rare and masterful treatment of Lur'e (1968, chap. 9, pp. 423-493), we derive the Lagrangean type of equations of motion of a system S relative to a noninertial frame of reference (with associated moving axes $O-x y z$), in general known or unknown rigid motion relative to an inertial frame (with associated fixed axes $I-X Y Z$), or relative to its comoving nonrotating frame (with associated translating axes $O-X Y Z)$ - see fig. 3.36, depicting a convenient twodimensional such case.

Figure 3.36 Two-dimensional case of system S in general motion relative to the arbitrarily moving axes $O-x y z$.

Here, we shall use the following terminology and notation:
O-xyz: carrying (or supporting, or transporting, or intermediate, or housing) body, or frame; e.g., an airplane. Its origin O is referred to as moving pole, or basis. $\boldsymbol{\Omega}=$ (inertial) angular velocity vector of $O-x y z$; i.e., relative to $I-X Y Z / O-X Y Z$; $d \boldsymbol{\Omega} / d t \equiv \boldsymbol{A}=$ corresponding angular acceleration vector.
$d(\ldots) / d t=$ inertial rate of change of (\ldots); i.e., relative to $I-X Y Z / O-X Y Z$;
$\partial(\ldots) / \partial t=$ noninertial rate of change of (\ldots); i.e., relative to $O-x y z$.
As shown in $\S 1.1$ and $\S 1.7$:
For an arbitrary vector \boldsymbol{b},

$$
\begin{equation*}
d \boldsymbol{b} / d t=\partial \boldsymbol{b} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{b} \tag{3.16.1a}
\end{equation*}
$$

For an arbitrary second-order tensor \boldsymbol{T},

$$
\begin{equation*}
d \boldsymbol{T} / d t=\partial \boldsymbol{T} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{T}-\boldsymbol{T} \times \boldsymbol{\Omega} \tag{3.16.1b}
\end{equation*}
$$

Also, as shown there (or, most easily, using Cartesian components), for any two vectors \boldsymbol{a} and \boldsymbol{b},

$$
\begin{equation*}
(\boldsymbol{a} \times \boldsymbol{T}) \cdot \boldsymbol{b}=\boldsymbol{a} \times(\boldsymbol{T} \cdot \boldsymbol{b}) \quad \text { and } \quad(\boldsymbol{T} \times \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{T} \cdot(\boldsymbol{a} \times \boldsymbol{b}) . \tag{3.16.1c}
\end{equation*}
$$

S : carried body/system; e.g., a spinning gyroscope inside the (earlier) carrying airplane.

Geometry

We begin with the obvious geometrical relations:

$$
\begin{equation*}
\boldsymbol{r}_{/ I}=\boldsymbol{r}_{O / I}+\boldsymbol{r}_{/ O} \quad \text { or, simply, } \quad \boldsymbol{\Re}=\boldsymbol{r}_{O}+\boldsymbol{r} \tag{3.16.2a}
\end{equation*}
$$

Now: (i) Let

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}\left(q_{1}, \ldots, q_{n}\right) \equiv \boldsymbol{r}(q), \tag{3.16.2b}
\end{equation*}
$$

where $n \equiv 3 N-h, N=$ number of particles of S (if we choose to adopt the particle model for it), $h \equiv$ number of holonomic constraints on S. The $q \equiv\left(q_{1}, \ldots, q_{n}\right)$ are noninertial Lagrangean coordinates; that is, they specify the configurations of the carried body S relative to the carrying one $O-x y z$; and, as explained in $\S 2.4$, they guarantee the satisfaction of the above holonomic constraints.
(ii) If the motion of $O-x y z$ is known, or prescribed, and hence unaffected by the motion of S, then $\boldsymbol{r}_{O}=\boldsymbol{r}_{O}(t) ; S$ is rheonomic.
(iii) If, on the other hand, the motion of $O-x y z$ is unknown [e.g., if the motion of the earlier gyroscope (S) does affect the motion of the airplane $(O-x y z)$!], then $\boldsymbol{r}_{O}=\boldsymbol{r}_{O}$ (inertial coordinates of pole O), and hence, not an explicit function of $t ; S$ is scleronomic.

Kinematics \rightarrow Kinetic Energy

Since the inertial velocity of a typical S-particle is (recalling $\S 1.7$)

$$
\begin{align*}
\boldsymbol{v} & \equiv d \Re / d t=d \boldsymbol{r}_{O} / d t+d \boldsymbol{r} / d t=\boldsymbol{v}_{O}+(\partial \boldsymbol{r} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{r}) \\
& \equiv \boldsymbol{v}_{O}+\boldsymbol{v}_{\mathrm{rel}}+\boldsymbol{\Omega} \times \boldsymbol{r}, \tag{3.16.3a}
\end{align*}
$$

where

$$
\begin{align*}
\boldsymbol{v}_{O} & =d \boldsymbol{r}_{O} / d t=\text { inertial velocity of pole } O, \tag{3.16.3b}\\
\boldsymbol{v}_{\text {rel }} & =\partial \boldsymbol{r} / \partial t=\text { relative velocity of typical } S \text {-particle } \\
& =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(d q_{k} / d t\right) \equiv \sum \boldsymbol{e}_{k} \dot{q}_{k} \quad[\mathrm{by}(3.16 .2 \mathrm{~b})], \tag{3.16.3c}
\end{align*}
$$

the (inertial) kinetic energy of $S, T \equiv(1 / 2) \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}$, becomes

$$
\begin{equation*}
T=T_{\text {trnspt }}+T_{\mathrm{rel}}+T_{\mathrm{cpl}}, \tag{3.16.3d}
\end{equation*}
$$

where

$$
\begin{align*}
2 T_{\text {trnspt }} & \equiv m v_{O}^{2}+\boldsymbol{S} d m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2}+2 m \boldsymbol{v}_{O} \cdot\left(\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right) \\
& =m v_{O}^{2}+2 m \boldsymbol{v}_{O} \cdot\left(\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right)+\boldsymbol{\Omega} \cdot \boldsymbol{I}_{O} \cdot \boldsymbol{\Omega} \\
& =2(\text { kinetic energy of transport }), \tag{3.16.3e}
\end{align*}
$$

[recall, $T_{\text {rotation }} \equiv T_{R}$, expressions (3.13.2b, 3b), and see fig. 3.36],

$$
\begin{aligned}
2 T_{\mathrm{rel}} & \equiv \boldsymbol{S} d m \boldsymbol{v}_{\mathrm{rel}}^{2}=\boldsymbol{S} d m(\partial \boldsymbol{r} / \partial t)^{2} \\
& =\boldsymbol{S} d m\left[\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \dot{q}_{k}\right] \cdot\left[\sum\left(\partial \boldsymbol{r} / \partial q_{l}\right) \dot{q}_{l}\right] \\
& =\sum \sum\left[\boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{l}\right)\right] \dot{q}_{k} \dot{q}_{l} \equiv \sum \sum\left(\boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l}\right) \dot{q}_{k} \dot{q}_{l}
\end{aligned}
$$

$$
\begin{equation*}
=2 \text { (relative kinetic energy), } \tag{3.16.3f}
\end{equation*}
$$

$$
\begin{align*}
& T_{\mathrm{cpl}} \equiv \boldsymbol{p}_{\mathrm{rel}} \cdot \boldsymbol{v}_{O}+\boldsymbol{H}_{O, \text { rel }} \cdot \boldsymbol{\Omega} \\
& =\text { kinetic energy of coupling (of carrying and carried motions; } \\
& \text { or "Coriolis kinetic energy"), } \tag{3.16.3g}\\
& \begin{aligned}
\boldsymbol{p}_{\mathrm{rel}} & \equiv \boldsymbol{S} d m \boldsymbol{v}_{\mathrm{rel}}=\boldsymbol{S} d m(\partial \boldsymbol{r} / \partial t)=m \boldsymbol{v}_{G, \text { rel }} \equiv m\left(\partial \boldsymbol{r}_{G} / \partial t\right) \\
& =\boldsymbol{S} d m\left[\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \dot{q}_{k}\right]=\sum\left[\boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right] \dot{q}_{k} \\
& =(\text { noninertial }) \text { linear momentum of body } S, \\
\boldsymbol{H}_{O, \text { rel }} & \equiv \boldsymbol{S} \boldsymbol{r} \times\left(d m \boldsymbol{v}_{\mathrm{rel}}\right)=\boldsymbol{S} \boldsymbol{r} \times[d m(\partial \boldsymbol{r} / \partial t)] \\
& =\cdots=\sum\left[\boldsymbol{S} d m \boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right] \dot{q}_{k} \\
& =\text { noninertial (absolute) angular momentum of } S \text { about } O .
\end{aligned}
\end{align*}
$$

Before applying the Lagrangean formalism to the above, let us reduce them further to system forms, in the sense of $\S 3.9$:
(a) $T_{\text {trnspt }}$ is independent of the \dot{q} 's. It would be the kinetic energy of S if the latter was frozen relative to $O-x y z$; that is, if these axes were fixed in S. In accordance with $(3.9 .2,2 \mathrm{c})$, we shall rename it $T_{0}\left[\sim(\dot{q})^{0}\right]$.
(b) With the notations

$$
\begin{align*}
M_{k} & \equiv \boldsymbol{v}_{O} \cdot\left[\boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right]+\boldsymbol{\Omega} \cdot\left[\boldsymbol{S} d m \boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right] \\
& =\boldsymbol{v}_{O} \cdot\left(\boldsymbol{S} d m \boldsymbol{e}_{k}\right)+\boldsymbol{\Omega} \cdot\left[\boldsymbol{S}\left(d m \boldsymbol{r} \times \boldsymbol{e}_{k}\right)\right], \tag{3.16.4a}\\
M_{k l} & \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{l}\right)=\boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l}, \tag{3.16.4b}
\end{align*}
$$

and recalling (3.9.2a, b), we can rewrite $T_{\text {cpl }}$ and $T_{\text {rel }}$ as

$$
\begin{align*}
& T_{\mathrm{cpl}}=\sum M_{k} \dot{q}_{k} \equiv T_{1} \quad(\sim \dot{q}), \\
& 2 T_{\mathrm{rel}}=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l} \equiv 2 T_{2} \quad\left[\sim(\dot{q})^{2}\right] . \tag{3.16.4c}
\end{align*}
$$

So, finally, the total kinetic energy, (3.16.3d), assumes the following general Lagrangean notation:

$$
\begin{equation*}
T=T_{\text {rel }}+T_{\text {cpl }}+T_{\text {trnspt }} \equiv T_{2}+T_{1}+T_{0} . \tag{3.16.4d}
\end{equation*}
$$

Now, as the above expressions show, T depends on the following:
(a) The six carrying quasi velocities $\boldsymbol{v}_{O}=\left(v_{o, x, y, z}\right)$ and $\boldsymbol{\Omega}=\left(\Omega_{x, y, z}\right)$, along $O-x y z$ [Along $I-X Y Z / O-X Y Z$, we would have $r_{O}=\left(X_{O}, Y_{O}, Z_{O}\right)$, and, therefore, $v_{O}=\left(v_{O ; X, Y, Z}\right) \equiv\left(\dot{X}_{O}, \dot{Y}_{O}, \dot{Z}_{O}\right)=$ holonomic components]; and
(b) The n carried holonomic velocities $\dot{q} \equiv\left(\dot{q}_{1}, \ldots, \dot{q}_{n}\right)$.

Therefore, in the general case, we will obtain two groups of equations:
(a) six Hamel-type (or Lagrange-Euler) equations for the quasi velocities, coupled with
(b) n Lagrange-type equations for the q / \dot{q} 's.

The right, or force, sides of these equations will contain the corresponding six nonholonomic and n holonomic forces (and/or moments). Indeed, recalling (3.16.2a), we have

$$
\begin{align*}
\delta \Re & =\delta \boldsymbol{r}_{O}+\delta \boldsymbol{r}=\delta \boldsymbol{r}_{O}+\left(\delta_{\mathrm{rel}} \boldsymbol{r}+\delta \boldsymbol{\Theta} \times \boldsymbol{r}\right) \quad[\text { where } d \boldsymbol{\Theta} / d t \equiv \boldsymbol{\Omega}] \\
& =\delta \boldsymbol{r}_{O}+\delta \boldsymbol{\Theta} \times \boldsymbol{r}+\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k} ; \tag{3.16.5a}
\end{align*}
$$

if $\boldsymbol{r}_{O}=\boldsymbol{r}_{O}(t)$ then, clearly, $\delta \boldsymbol{r}_{O}=\mathbf{0}$. Hence, in general, the total (inertial and firstorder) impressed virtual work equals

$$
\begin{equation*}
\delta^{\prime} W=\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{\Re}=\cdots=\boldsymbol{F} \cdot \delta \boldsymbol{r}_{O}+\boldsymbol{M}_{O} \cdot \delta \boldsymbol{\Theta}+\sum Q_{k} \delta q_{k} \tag{3.16.5b}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{F} \equiv \boldsymbol{S} d \boldsymbol{F}=\text { total impressed force }(\text { acting at } O), \tag{3.16.5c}\\
& \boldsymbol{M}_{O} \equiv \boldsymbol{S} \boldsymbol{r} \times d \boldsymbol{F}=\text { total impressed moment about } O \tag{3.16.5d}
\end{align*}
$$

Let us now find the $6+n$ equations of motion.

Hamel-Type (or Lagrange-Euler) Carrying Body Equations

(A review of $\S 3.13$ is highly recommended.) Since $T_{\text {rel }}=T_{2}$ is independent of the quasi velocities $v_{O ; x, y, z}$ and $\Omega_{x, y, z}$, we can write

$$
\begin{equation*}
\partial T / \partial v_{O, k}=\partial T_{0} / \partial v_{O, k}+\partial T_{1} / \partial v_{O, k}, \quad \partial T / \partial \Omega_{k}=\partial T_{0} / \partial \Omega_{k}+\partial T_{1} / \partial \Omega_{k} \tag{3.16.5e}
\end{equation*}
$$

where $k=x, y, z$. Now, recalling the expressions for $T, \partial T / \partial v_{\star}, \partial T / \partial \omega$ from $\S 3.13$ (and setting in those formulae $T \rightarrow T_{O}, \rightarrow O, \omega \rightarrow \boldsymbol{\Omega}$, we readily conclude that $\partial T_{0} / \partial v_{O, x}=m\left(v_{O, x}+\Omega_{y} z_{G}-\Omega_{z} y_{G}\right), \quad$ etc., cyclically,
$\partial T_{0} / \partial \Omega_{x}=m\left(y_{G} v_{O, z}-z_{G} v_{O, y}\right)+\left(I_{O, x x} \Omega_{x}+I_{O, x y} \Omega_{y}+I_{O, x z} \Omega_{z}\right), \quad$ etc., cyclically,
where $\left(I_{O, k l} ; k, l=x, y, z\right)$ are the components of the inertia tensor of the system S about O, along $O-x y z$; and

$$
\begin{align*}
& \partial T_{1} / \partial v_{O, x}=m\left(d x_{G} / d t\right)=\left(\boldsymbol{p}_{\text {rel }}\right)_{x}, \quad \text { etc., cyclically, } \tag{3.16.5h}\\
& \partial T_{1} / \partial \Omega_{x}=\left(\boldsymbol{H}_{O, \text { rel }}\right)_{x}, \quad \text { etc., cyclically. } \tag{3.16.5i}
\end{align*}
$$

A moment's reflection will show that the left (inertia/acceleration) sides of the equations for \boldsymbol{v}_{O} and $\boldsymbol{\Omega}$ are none other than the former expressions (3.13.11a, b) with $\bullet, \bullet O$. Hence, for an unconstrained rigid body, we have [since all (symbolic) partial derivatives of T relative to the quasi coordinates vanish]

$$
\begin{equation*}
\boldsymbol{I}=d / d t\left(\partial T / \partial \boldsymbol{v}_{O}\right) \equiv \partial / \partial t\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right)+\boldsymbol{\Omega} \times\left(\partial T / \partial \boldsymbol{v}_{\bullet}\right)=\boldsymbol{F} \tag{3.16.6a}
\end{equation*}
$$

or, in components,
$I_{x}=\left(\partial T / \partial v_{O, x}\right)^{\cdot}+\Omega_{y}\left(\partial T / \partial v_{O, z}\right)-\Omega_{z}\left(\partial T / \partial v_{O, y}\right)=F_{x}$, etc., cyclically,
and

$$
\begin{align*}
\boldsymbol{A}_{O} & =d / d t(\partial T / \partial \boldsymbol{\Omega})+\boldsymbol{v}_{O} \times\left(\partial T / \partial \boldsymbol{v}_{O}\right) \\
& \equiv \partial / \partial t(\partial T / \partial \boldsymbol{\Omega})+\boldsymbol{\Omega} \times(\partial T / \partial \boldsymbol{\Omega})+\boldsymbol{v}_{O} \times\left(\partial T / \partial \boldsymbol{v}_{O}\right)=\boldsymbol{M}_{O} \tag{3.16.6c}
\end{align*}
$$

or, in components,

$$
\begin{align*}
A_{O, x}= & \left(\partial T / \partial \Omega_{x}\right)^{2}+\Omega_{y}\left(\partial T / \partial \Omega_{z}\right)-\Omega_{z}\left(\partial T / \partial \Omega_{y}\right) \\
& +v_{O, y}\left(\partial T / \partial v_{O, z}\right)-v_{O, z}\left(\partial T / \partial v_{O, y}\right)=M_{O, x}, \quad \text { etc., cyclically. } \tag{3.16.6d}
\end{align*}
$$

To obtain explicit Euler-type equations from the above, we introduce in (3.16.6a-d) the earlier found expressions for T. In this way:
(i) Equations (3.16.6b) yield

$$
\begin{align*}
m\left\{\dot{v}_{O, x}\right. & +\left(\dot{\Omega}_{y} z_{G}-\dot{\Omega}_{z} y_{G}\right)+\left(\Omega_{y} \dot{z}_{G}-\Omega_{z} \dot{y}_{G}\right)+\left(\Omega_{y} v_{O, z}-\Omega_{z} v_{O, y}\right) \\
& +\left[\Omega_{y}\left(\Omega_{x} y_{G}-\Omega_{y} x_{G}\right)-\Omega_{z}\left(\Omega_{z} x_{G}-\Omega_{x} z_{G}\right)\right] \\
& \left.+\left(\ddot{x}_{G}+\Omega_{y} \dot{z}_{G}-\Omega_{z} \dot{y}_{G}\right)\right\}=F_{x}, \quad \text { etc., cyclically; } \tag{3.16.6e}
\end{align*}
$$

or, in vector form (appropriately grouped),

$$
\begin{align*}
& \left.m\left[\partial \boldsymbol{v}_{O} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{v}_{O}\right)+(d \boldsymbol{\Omega} / d t) \times \boldsymbol{r}_{G}+\boldsymbol{\Omega} \times\left(\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right)+2 \boldsymbol{\Omega} \times\left(\partial \boldsymbol{r}_{G} / \partial t\right)+\partial^{2} \boldsymbol{r}_{G} / \partial t^{2}\right] \\
& \quad \equiv m\left\{\left[\boldsymbol{a}_{O}+(d \boldsymbol{\Omega} / d t) \times \boldsymbol{r}_{G}+\boldsymbol{\Omega} \times\left(\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right)\right]+2 \boldsymbol{\Omega} \times \boldsymbol{v}_{G, \text { rel }}+\boldsymbol{a}_{G, \text { rel }}\right\} \\
& \quad \equiv m\left(\boldsymbol{a}_{G, \text { transport }}+\boldsymbol{a}_{G, \text { Coriolis }}+\boldsymbol{a}_{G, \text { relative }}\right) \equiv m \boldsymbol{a}_{G, \text { inertial }} \equiv m \boldsymbol{a}_{G}=\boldsymbol{F} ; \tag{3.16.6f}
\end{align*}
$$

which is the well-known equation of motion of the "inertial center" of the carried system G.
[Also, the above equations and the earlier kinematic relations

$$
\begin{align*}
& \boldsymbol{v}_{G, \text { rel }}=\partial \boldsymbol{r}_{G} / \partial t=\sum\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) \dot{q}_{k}, \\
& \boldsymbol{a}_{G, \text { rel }}=\partial \boldsymbol{v}_{G} / \partial t=\sum\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) \ddot{q}_{k}+\sum \sum\left(\partial^{2} \boldsymbol{r}_{G} / \partial q_{k} \partial q_{l}\right) \dot{q}_{k} \dot{q}_{l}, \tag{3.16.6~g}
\end{align*}
$$

demonstrate clearly the coupling of the holonomic velocities \dot{q} with the nonholonomic ones $v_{O ; x, y, z}$ and $\Omega_{x, y, z}$.]
(ii) Equations (3.16.6d) yield

$$
\begin{align*}
m\left(y_{G} \dot{v}_{O, z}-\right. & \left.z_{G} \dot{v}_{O, y}\right)+\left(I_{O, x x} \dot{\Omega}_{x}+I_{O, y y} \dot{\Omega}_{y}+I_{O, z z} \dot{\Omega}_{z}\right. \\
& \left.+\dot{I}_{O, x x} \Omega_{x}+\dot{I}_{O, x y} \Omega_{y}+\dot{I}_{O, x z} \Omega_{z}\right) \\
& +\left(\boldsymbol{H}_{O, \text { rel }}\right)_{x} \cdot m\left[\Omega_{y}\left(v_{O, y} x_{G}-v_{O, x} y_{G}\right)-\Omega_{z}\left(v_{O, x} z_{G}-v_{O, z} x_{G}\right)\right] \\
& +\Omega_{y}\left(I_{O, z x} \Omega_{x}+I_{O, z y} \Omega_{y}+I_{O, z z} \Omega_{z}\right)-\Omega_{z}\left(I_{O, y x} \Omega_{x}+I_{O, y y} \Omega_{y}+I_{O, y z} \Omega_{z}\right) \\
& +\Omega_{y}\left(\boldsymbol{H}_{O, \text { rel }}\right)_{z}-\Omega_{z}\left(\boldsymbol{H}_{O, \text { rel }}\right)_{y} \\
& +m\left[v_{O, y}\left(\Omega_{x} y_{G}-\Omega_{y} x_{G}\right)-v_{O, z}\left(\Omega_{z} x_{G}-\Omega_{x} z_{G}\right)\right]=M_{O, x}, \text { etc., cyclically; } \tag{3.16.6h}
\end{align*}
$$

or, vectorially,

$$
\begin{align*}
\boldsymbol{I}_{O} \cdot(d \boldsymbol{\Omega} / d t) & +\left(\partial \boldsymbol{I}_{O} / \partial t\right) \cdot \boldsymbol{\Omega}+\boldsymbol{\Omega} \times\left(\boldsymbol{I}_{O} \cdot \boldsymbol{\Omega}\right) \\
& +\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{H}_{O, \text { eel }}\right)+m r_{G} \times \boldsymbol{a}_{O}=\boldsymbol{M}_{O} . \tag{3.16.6i}
\end{align*}
$$

This equation can be transformed further. Recalling the inertia tensor definition [§1.15, and with $1=\left(\delta_{k l}\right)=3 \times 3$ unit (Cartesian) tensor, where $k, l=x, y, z$; and $\otimes=$ tensor product $(\S 1.1)], \boldsymbol{I}_{O}=S d m[(\boldsymbol{r} \cdot \boldsymbol{r}) \boldsymbol{I}-\boldsymbol{r} \otimes \boldsymbol{r}]$, we obtain

$$
\begin{align*}
& \partial \boldsymbol{I}_{O} / \partial t \\
& \quad=2 \sum\left\{\boldsymbol{S} d m\left[\left\{\boldsymbol{r} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right\} \boldsymbol{1}-(1 / 2) \boldsymbol{r} \otimes\left(\partial \boldsymbol{r} / \partial q_{k}\right)-(1 / 2)\left(\partial \boldsymbol{r} / \partial q_{k}\right) \otimes \boldsymbol{r}\right]\right\} \dot{q}_{k}, \tag{3.16.7a}
\end{align*}
$$

and, therefore, we find, successively,

$$
\begin{aligned}
& \left(\partial \boldsymbol{I}_{O} / \partial t\right) \cdot \boldsymbol{\Omega}+\boldsymbol{\Omega} \times \boldsymbol{H}_{O, \text { rel }} \\
& =2 \sum\left\{\boldsymbol { S } d m \left[\left\{\boldsymbol{r} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right\} \boldsymbol{\Omega}-(1 / 2)\left\{\left(\partial \boldsymbol{r} / \partial q_{k}\right) \otimes \boldsymbol{r}\right\} \cdot \boldsymbol{\Omega}-(1 / 2)\left\{\boldsymbol{r} \otimes\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right\} \cdot \boldsymbol{\Omega}\right.\right. \\
& \left.\left.\quad+(1 / 2) \boldsymbol{\Omega} \times\left\{\boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right]\right\}\right\} \dot{q}_{k} \\
& =2 \sum\left\{\boldsymbol{S} d m \boldsymbol{r} \times\left[\boldsymbol{\Omega} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right]\right\} \dot{q}_{k} \\
& =2 \boldsymbol{S} d m \boldsymbol{r} \times\left(\boldsymbol{\Omega} \times \boldsymbol{v}_{\text {rel }}\right)=\boldsymbol{S} \boldsymbol{r} \times\left(2 d m \boldsymbol{\Omega} \times \boldsymbol{v}_{\text {rel }}\right):
\end{aligned}
$$

- (Total moment of Coriolis forces, on the carrying body, about O,

$$
\begin{equation*}
\text { due to the motion of the carried body relative to it }) \equiv-\boldsymbol{M}_{O, \text { Coriolis }} \text {. } \tag{3.16.7b}
\end{equation*}
$$

In view of this result, and using (3.16.6f) to eliminate \boldsymbol{a}_{O}, we can rewrite (3.16.6h) (after some judicious regrouping) in the following Euler-like form:

$$
\begin{equation*}
\boldsymbol{I}_{G} \cdot(d \boldsymbol{\Omega} / d t)+\boldsymbol{\Omega} \times\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\Omega}\right)=\boldsymbol{M}_{G}+\boldsymbol{M}_{G, \text { Coriolis }}-\partial \boldsymbol{H}_{G, \text { rel }} / \partial t, \tag{3.16.7c}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{I}_{G}=\boldsymbol{I}_{O}-m\left[\left(\boldsymbol{r}_{G} \cdot \boldsymbol{r}_{G}\right) \boldsymbol{1}-r_{G} \otimes \boldsymbol{r}_{G}\right]: \text { Moment of inertia of } S \text { about } G \tag{3.16.7d}
\end{equation*}
$$

(direct tensorial form of parallel axis theorem; recall §1.15),
$\boldsymbol{H}_{G, \text { rel }}=\boldsymbol{H}_{O, \text { rel }}-m \boldsymbol{r}_{G} \times\left(\partial \boldsymbol{r}_{G} / \partial t\right)$,
$\boldsymbol{M}_{G, \text { Coriolis }} \equiv-\left[\left(\partial \boldsymbol{I}_{G} / \partial t\right) \cdot \boldsymbol{\Omega}+\boldsymbol{\Omega} \times \boldsymbol{H}_{G, \text { rel }}\right]$

$$
\begin{equation*}
\left.=\boldsymbol{M}_{O, \text { Coriolis }}-\boldsymbol{r}_{G} \times\left(2 m \boldsymbol{\Omega} \times \boldsymbol{v}_{G, \text { rel }}\right) \quad \text { [i.e., same as (3.16.7b), but about } G\right] \text {, } \tag{3.16.7f}
\end{equation*}
$$

$\boldsymbol{M}_{G}=\boldsymbol{M}_{O}-\boldsymbol{r}_{G} \times \boldsymbol{F} \quad[$ with \boldsymbol{F} assumed applied at $O]$.
(i) Equations (3.16.7c) result immediately from (3.16.6h) with the choice $O \rightarrow G$.
(ii) If S is a rigid body and the $O-x y z$ are body-fixed axes on it, then the relative rates $\partial(\ldots) / \partial t$ vanish, $\Omega \rightarrow \boldsymbol{\omega}, d \boldsymbol{\Omega} / d t \rightarrow \boldsymbol{\alpha}$, and (3.16.6f, e) reduce,

$$
\begin{align*}
& m\left[\left(\partial \boldsymbol{v}_{O} / \partial t+\boldsymbol{\omega} \times \boldsymbol{v}_{O}\right)+\boldsymbol{\alpha} \times \boldsymbol{r}_{G}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G}\right)\right]=\boldsymbol{F} \tag{3.16.8a}\\
& m\left\{\left(\dot{v}_{O, x}+\omega_{y} v_{O, z}-\omega_{z} v_{O, y}\right)+\left(\dot{\omega}_{y} z_{G}-\dot{\omega}_{z} y_{G}\right)\right. \\
& \left.-\left[\left(\omega_{y}^{2}+\omega_{z}^{2}\right) x_{G}-\omega_{x}\left(\omega_{y} y_{G}+\omega_{z} z_{G}\right)\right]\right\}=F_{x}, \quad \text { etc., cyclically; } \tag{3.16.8b}
\end{align*}
$$

and, of course, (its left side) coincides with (3.13.10a), with $\rightarrow O$.
If, further, we choose, for algebraic simplicity, (body-fixed) principal axes of S at O, eqs. $(3.16 .6 \mathrm{~h}-7 \mathrm{~b})$ reduce to

$$
\begin{align*}
& \boldsymbol{I}_{O} \cdot \boldsymbol{\alpha}+\boldsymbol{\omega} \times\left(\boldsymbol{I}_{O} \cdot \boldsymbol{\omega}\right)+m \boldsymbol{r}_{G} \times \boldsymbol{a}_{O}=\boldsymbol{M}_{O} \tag{3.16.8c}\\
& I_{O, x x} \dot{\omega}_{x}+\left(I_{O, z z}-I_{O, y y}\right) \omega_{y} \omega_{z} \\
& +m\left[y_{G}\left(\dot{v}_{O, z}+\omega_{z} v_{O, y}-\omega_{y} v_{O, z}\right)\right. \\
& \left.-z_{G}\left(\dot{v}_{O, y}+\omega_{z} v_{O, x}-\omega_{x} v_{O, z}\right)\right]=M_{O, x}, \quad \text { etc., cyclically. } \tag{3.16.8d}
\end{align*}
$$

If, finally, $O \rightarrow G$ then (3.16.8a, c) reduce, respectively, to the well-known

$$
\begin{equation*}
m\left(\partial \boldsymbol{v}_{G} / \partial t+\boldsymbol{\omega} \times \boldsymbol{v}_{G}\right)=\boldsymbol{F} \quad \text { and } \quad \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}+\boldsymbol{\omega} \times\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}\right)=\boldsymbol{M}_{O} \tag{3.16.8e}
\end{equation*}
$$

All these equations express the Eulerian principles of linear and angular momentum, for the rigid body S about various points, O, G, and so on.
(iii) We hope that the above lengthy and tedious calculations (especially those in components) have begun to convince the reader that, in this case at least, the Lagrangean approach (L) is superior to the Eulerian approach (E); even though both are, roughly, theoretically equivalent. As Lur'e (1968, pp. 412-413) points out: In E , in order to derive rotational equations we begin with the principle of angular momentum about a fixed point in $I-X Y Z$ and then transfer both angular momenta and moments of forces to an arbitrary, say, body-fixed point; and in the process we utilize certain kinematico-inertial results. In L, on the other hand, the calculations (of the various partial and total derivatives of the kinetic energy) are almost automatic (... mechanical!); although their final results need "translating" back to the more geometrical Newtonian-Eulerian language. However, as already stressed (Introduction and this chapter), a far more important advantage of L over E, for theoretical work anyway, is that, even in complex problems, the former (L) preserves the structure|form of the equations of motion, whereas in the latter (E) these equations appear structureless/formless ("a bunch of terms"), and hence hard to remember, understand, and interpret.
(iv) The preceding equations of motion can, of course, be derived via Appell's method. Indeed, from equation (3.14.4d), with $\rightarrow O$ and slight rearrangement, we obtain

$$
\begin{align*}
2 S= & m\left[\left(\dot{v}_{O, x}\right)^{2}+\left(\dot{v}_{O, y}\right)^{2}+\left(\dot{v}_{O, Z}\right)^{2}\right] \\
& +2\left(\partial \boldsymbol{v}_{O} / \partial t\right) \cdot\left[\omega \times m\left(\boldsymbol{v}_{O}+\omega \times \boldsymbol{r}_{G}\right)\right] \\
& +2 m \boldsymbol{\alpha} \cdot\left[\boldsymbol{r}_{G} \times\left(\partial \boldsymbol{v}_{O} / \partial t+\omega \times \boldsymbol{v}_{O}\right)\right] \\
& +\boldsymbol{\alpha} \cdot \boldsymbol{I}_{O} \cdot \boldsymbol{\alpha}+2 \boldsymbol{\alpha} \cdot\left[\omega \times\left(\boldsymbol{\boldsymbol { I } _ { O }} \cdot \boldsymbol{\omega}\right)\right] ; \tag{3.16.9a}
\end{align*}
$$

and from this, using the following simple identities ($\boldsymbol{a}, \boldsymbol{b}$: arbitrary vectors, and $k=x, y, z$):

$$
\begin{equation*}
\partial(\boldsymbol{a} \cdot \boldsymbol{b}) / \partial a_{k}=b_{k}, \quad \partial(\boldsymbol{a} \cdot \boldsymbol{b}) / \partial b_{k}=a_{k} \tag{3.16.9b}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial(\boldsymbol{a} \times \boldsymbol{b}) / \partial a_{x}=\boldsymbol{i} \times \boldsymbol{b}=\boldsymbol{k} b_{y}-\boldsymbol{j} b_{z}, \quad \text { etc. }, \text { cyclically, } \tag{3.16.9c}
\end{equation*}
$$

we find

$$
\begin{align*}
& \partial S / \partial \dot{\boldsymbol{v}}_{O, k}=m\left\{\dot{v}_{O, k}+\left(\boldsymbol{\omega} \times \boldsymbol{v}_{O}\right)_{k}+\left(\boldsymbol{\alpha} \times \boldsymbol{r}_{G}\right)_{k}+\left[\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G}\right)\right]_{k}\right\}=F_{k}, \tag{3.16.10a}\\
& \partial S / \partial \dot{\omega}_{k}=m\left[\boldsymbol{r}_{G} \times\left(\partial \boldsymbol{v}_{O} / \partial t+\boldsymbol{\omega} \times \boldsymbol{v}_{O}\right)\right]_{k}+\left[\boldsymbol{I}_{O} \cdot \boldsymbol{\alpha}+\boldsymbol{\omega} \times\left(\boldsymbol{I}_{O} \cdot \boldsymbol{\omega}\right)\right]_{k}=M_{O, k}, \tag{3.16.10b}
\end{align*}
$$

that is, equations (3.16.8a, c), respectively. This completes the discussion of the quasi-velocity equations of the carrying body. Let us now turn to the q-equations of the carried system S.

Lagrange-Type Carried System Equations

(This is an application of $\S 3.10$, and so we recommend a rereading of that section.) First, we notice that, in view of the linearity of the holonomic Euler-Lagrange operator,

$$
\begin{equation*}
E_{k}(T)=E_{k}\left(T_{0}\right)+E_{k}\left(T_{1}\right)+E_{k}\left(T_{2}\right) \tag{3.16.11a}
\end{equation*}
$$

Next, invoking the earlier $T_{0,1,2}$ expressions (3.16.3d-4c), we find, successively,
(i) $E_{k}\left(T_{0}\right)=\cdots=-\partial T_{0} / \partial q_{k}$

$$
\begin{equation*}
=-m\left(\boldsymbol{v}_{O} \times \boldsymbol{\Omega}\right) \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right)-(1 / 2) \boldsymbol{\Omega} \cdot\left(\partial \boldsymbol{I}_{O} / \partial q_{k}\right) \cdot \boldsymbol{\Omega} \tag{3.16.11b}
\end{equation*}
$$

(ii) $E_{k}\left(T_{1}\right)=E_{k}\left(\boldsymbol{v}_{O} \cdot \boldsymbol{p}_{\text {rel }}\right)+E_{k}\left(\boldsymbol{\Omega} \cdot \boldsymbol{H}_{O, \text { rel }}\right)$.

But:

$$
\text { (a) } \begin{align*}
E_{k}\left(\boldsymbol{v}_{O} \cdot \boldsymbol{p}_{\text {rel }}\right) & =\left(d \boldsymbol{v}_{O} / d t\right) \cdot\left(\partial \boldsymbol{p}_{\text {rel }} / \partial \dot{q}_{k}\right)+\boldsymbol{v}_{O} \cdot E_{k}\left(\boldsymbol{p}_{\text {rel }}\right) \\
& =m\left(d \boldsymbol{v}_{O} / d t\right) \cdot\left[\partial / \partial \dot{q}_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right)\right]+m \boldsymbol{v}_{O} \cdot E_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right) \tag{3.16.11d}
\end{align*}
$$

or, in view of the kinematical identities,

$$
\begin{align*}
\partial / \partial \dot{q}_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right) & =\partial \boldsymbol{r}_{G} / \partial q_{k} \tag{3.16.11e}\\
d / d t\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) & =\partial / \partial q_{k}\left(d \boldsymbol{r}_{G} / d t\right)=\partial / \partial q_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right)+\partial / \partial q_{k}\left(\boldsymbol{\Omega} \times \boldsymbol{r}_{G}\right) \\
& =\partial / \partial q_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right)+\boldsymbol{\Omega} \times\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) \tag{3.16.11f}
\end{align*}
$$

from which

$$
\begin{align*}
E_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right) & \equiv\left[\partial / \partial \dot{q}_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right)\right]-\partial / \partial q_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right) \\
& =d / d t\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right)-\partial / \partial q_{k}\left(\partial \boldsymbol{r}_{G} / \partial t\right)=\boldsymbol{\Omega} \times\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) \tag{3.16.11g}
\end{align*}
$$

so that (3.16.11d) becomes

$$
\begin{aligned}
E_{k}\left(\boldsymbol{v}_{O} \cdot \boldsymbol{p}_{\mathrm{rel}}\right) & =m \boldsymbol{a}_{O} \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right)+m\left(\boldsymbol{v}_{O} \times \boldsymbol{\Omega}\right) \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) \\
& =m\left[\left(\partial \boldsymbol{v}_{O} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{v}_{O}\right)+\boldsymbol{v}_{O} \times \boldsymbol{\Omega}\right] \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right)
\end{aligned}
$$

that is, finally,

$$
\begin{equation*}
E_{k}\left(\boldsymbol{v}_{O} \cdot \boldsymbol{p}_{\text {rel }}\right)=m\left(\partial \boldsymbol{v}_{O} / \partial t\right) \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) . \tag{3.16.11h}
\end{equation*}
$$

$$
\text { (b) } \begin{aligned}
E_{k}\left(\boldsymbol{\Omega} \cdot \boldsymbol{H}_{O, \text { rel }}\right)= & (d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)+\boldsymbol{\Omega} \cdot E_{k}\left(\boldsymbol{H}_{O, \text { rel }}\right) \\
\equiv & (d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)+\boldsymbol{\Omega} \cdot\left[\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)-\partial \boldsymbol{H}_{O, \text { rel }} / \partial q_{k}\right] \\
= & (d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right) \\
& +\boldsymbol{\Omega} \cdot\left[\partial / \partial t\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)+\boldsymbol{\Omega} \times\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)-\partial \boldsymbol{H}_{O, \text { rel }} / \partial q_{k}\right] ;
\end{aligned}
$$

that is, finally,

$$
\begin{align*}
E_{k}\left(\boldsymbol{\Omega} \cdot \boldsymbol{H}_{O, \text { rel }}\right) & =(d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)+\boldsymbol{\Omega} \cdot\left[\partial / \partial t\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)-\partial \boldsymbol{H}_{O, \text { rel }} / \partial q_{k}\right] \\
& \equiv(d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)+\boldsymbol{\Omega} \cdot E_{k, \text { rel }}\left(\boldsymbol{H}_{O, \text { rel }}\right), \tag{3.16.11i}
\end{align*}
$$

where
$E_{k, \text { rel }}(\ldots) \equiv \partial / \partial t\left(\partial \ldots / \partial \dot{q}_{k}\right)-\partial \ldots / \partial q_{k}:$
Relative Euler-Lagrange operator (for the carrying body).
Introducing all these partial results into the Lagrangean equations of motion, say $E_{k}(T)=Q_{k}$, or

$$
\begin{equation*}
E_{k}\left(T_{2}\right)=Q_{k}-E_{k}\left(T_{1}\right)-E_{k}\left(T_{0}\right) \tag{3.16.12a}
\end{equation*}
$$

we obtain the equations of relative motion for the q 's:

$$
\begin{align*}
E_{k}\left(T_{2}\right)=Q_{k}-m\left(\partial \boldsymbol{v}_{O} / \partial t\right. & \left.+\boldsymbol{\Omega} \times \boldsymbol{v}_{O}\right) \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right)+(1 / 2) \boldsymbol{\Omega} \cdot\left(\partial \boldsymbol{I}_{O} / \partial q_{k}\right) \cdot \boldsymbol{\Omega} \\
& -(d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)-\boldsymbol{\Omega} \cdot E_{k, \text { rel }}\left(\boldsymbol{H}_{O, \text { rel }}\right) . \tag{3.16.12b}
\end{align*}
$$

However, the inertial, or fictitious ($=$ frame dependent) "forces" on the right side of (3.16.12b) can be further transformed as follows:

$$
\begin{align*}
Q_{k, \text { translation }} & \equiv Q_{k, T} \equiv-m\left(\partial \boldsymbol{v}_{O} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{v}_{O}\right) \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right) \tag{i}\\
& =-m \boldsymbol{a}_{O} \cdot\left(\partial \boldsymbol{r}_{G} / \partial q_{k}\right)=-\partial V_{T} / \partial q_{k}: \tag{3.16.12c}
\end{align*}
$$

Lagrangean inertial force of translation,
where the corresponding potential of the homogeneous field of these "forces" is defined by

$$
\begin{align*}
V_{T} \equiv m \boldsymbol{a}_{O} \cdot \boldsymbol{r}_{G} & =\boldsymbol{S} \boldsymbol{a}_{O} \cdot(d m \boldsymbol{r})=\boldsymbol{S} d m\left(\partial \boldsymbol{v}_{O} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{v}_{O}\right) \cdot \boldsymbol{r} \\
& =\boldsymbol{S} d m\left[\left(\partial \boldsymbol{v}_{O} / \partial t\right) \cdot \boldsymbol{r}+\boldsymbol{r} \cdot\left(\boldsymbol{\Omega} \times \boldsymbol{v}_{O}\right)\right] . \tag{3.16.12d}
\end{align*}
$$

$$
\begin{align*}
Q_{k, \text { centrifugal }} & \equiv Q_{k, C F} \equiv(1 / 2)\left[\boldsymbol{\Omega} \cdot\left(\partial \boldsymbol{I}_{O} / \partial q_{k}\right) \cdot \boldsymbol{\Omega}\right] \tag{ii}\\
& =\boldsymbol{S} d m(\boldsymbol{\Omega} \times \boldsymbol{r}) \cdot\left[\boldsymbol{\Omega} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right]=-\partial V_{C F} / \partial q_{k}: \tag{3.16.12e}
\end{align*}
$$

Lagrangean centrifugal inertial force,
where the corresponding centrifugal potential of these "forces" is defined by

$$
\begin{equation*}
V_{C F} \equiv-(1 / 2) \boldsymbol{\Omega} \cdot \boldsymbol{I}_{O} \cdot \boldsymbol{\Omega}=-(1 / 2) \boldsymbol{S} d m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2} \tag{3.16.12f}
\end{equation*}
$$

(iii) Since

$$
\begin{equation*}
\boldsymbol{H}_{O, \text { rel }} \equiv \boldsymbol{S} \boldsymbol{r} \times d m\left(\partial \boldsymbol{v}_{O} / \partial t\right)=\sum\left(\boldsymbol{S} d m \boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right) \dot{q}_{k} \tag{3.16.12~g}
\end{equation*}
$$

we have

$$
\begin{align*}
(d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right) & =(d \boldsymbol{\Omega} / d t) \cdot\left(\boldsymbol{S} d m \boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right) \\
& =\boldsymbol{S} d m((d \boldsymbol{\Omega} / d t) \times \boldsymbol{r}) \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right) \tag{3.16.12h}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
Q_{k, \text { rotation }} & \equiv Q_{k, R} \equiv-(d \boldsymbol{\Omega} / d t) \cdot\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right) \\
& =-\boldsymbol{S}[(d \boldsymbol{\Omega} / d t) \times(d m \boldsymbol{r})] \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right)=\boldsymbol{S} d m(d \boldsymbol{\Omega} / d t) \cdot\left[\left(\partial \boldsymbol{r} / \partial q_{k}\right) \times \boldsymbol{r}\right] \\
& \equiv \boldsymbol{S} d \boldsymbol{I}_{R} \cdot \boldsymbol{e}_{k}: \text { Lagrangean rotational inertial force; } \tag{3.16.12i}
\end{align*}
$$

where
$d \boldsymbol{I}_{\text {rotation }} \equiv d \boldsymbol{I}_{R} \equiv-d m((d \boldsymbol{\Omega} / d t) \times \boldsymbol{r}):$ Rotational inertial force, on a typical particle.
(iv) Finally, from (3.16.12g) we obtain

$$
\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}=\boldsymbol{S} d m \boldsymbol{r} \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)
$$

and from this, further,

$$
\partial / \partial t\left(\partial \boldsymbol{H}_{O, \text { rel }} / \partial \dot{q}_{k}\right)=\sum\left\{\boldsymbol{S} d m\left[\left(\partial \boldsymbol{r} / \partial q_{l}\right) \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)+\boldsymbol{r} \times\left(\partial^{2} / \partial q_{l} \partial q_{k}\right)\right]\right\} \dot{q}_{l}
$$

and

$$
\partial \boldsymbol{H}_{O, \text { rel }} / \partial q_{k}=\sum\left\{\boldsymbol{S} d m\left[\left(\partial \boldsymbol{r} / \partial q_{k}\right) \times\left(\partial \boldsymbol{r} / \partial q_{l}\right)+\boldsymbol{r} \times\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right)\right]\right\} \dot{q}_{l} .
$$

Therefore, recalling (3.16.11j), we find, successively,

$$
\begin{align*}
-\boldsymbol{\Omega} \cdot E_{k, \text { rel }}\left(\boldsymbol{H}_{O, \text { rel }}\right) & =-2 \boldsymbol{\Omega} \cdot\left(\sum\left\{\boldsymbol{S} d m\left[\left(\partial \boldsymbol{r} / \partial q_{l}\right) \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right]\right\}\right) \dot{q}_{l} \\
& =-2 \boldsymbol{\Omega} \cdot \boldsymbol{S} d m\left[(\partial \boldsymbol{r} / \partial t) \times\left(\partial \boldsymbol{r} / \partial q_{k}\right)\right] \quad[\text { recalling }(3.16 .3 \mathrm{c})] \\
& =-\boldsymbol{S}\left[2\left(\boldsymbol{\Omega} \times d m \boldsymbol{v}_{\mathrm{rel}}\right)\right] \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right) \\
& \equiv \sum\left(\boldsymbol{\Omega} \cdot \boldsymbol{G}_{k l}\right) \dot{q}_{l} \equiv \sum g_{k l} \dot{q}_{l}, \tag{3.16.12k}
\end{align*}
$$

where

$$
\begin{align*}
& \boldsymbol{G}_{k l} \equiv 2 \boldsymbol{S} d m\left[\left(\partial \boldsymbol{r} / \partial q_{k}\right) \times\left(\partial \boldsymbol{r} / \partial q_{l}\right)\right] \equiv 2 \boldsymbol{S} d m\left(\boldsymbol{e}_{k} \times \boldsymbol{e}_{l}\right) \quad\left(=-\boldsymbol{G}_{l k}\right), \tag{3.16.121}\\
& g_{k l} \equiv \boldsymbol{\Omega} \cdot \boldsymbol{G}_{k l}=2 \boldsymbol{S} d m\left[\boldsymbol{\Omega} \cdot\left(\boldsymbol{e}_{k} \times \boldsymbol{e}_{l}\right)\right]: \text { Gyroscopic coefficients } \quad\left(=-g_{l k}\right)
\end{align*}
$$

or, finally [recalling (3.10.1f, g)],

$$
\begin{align*}
-\boldsymbol{\Omega} \cdot E_{k, \text { rel }}\left(\boldsymbol{H}_{O, \text { rel }}\right) & =\sum g_{k l} \dot{q}_{l} \\
& \equiv Q_{k, \text { gyroscopic }} \equiv Q_{k, \text { Coriolis }} \equiv-E_{k, C} \equiv G_{k} \tag{3.16.12n}
\end{align*}
$$

[Also, recall mathematically similar terms arising out of the coefficients of the $\sim \dot{q}$ terms of the generalized potential, equations (3.9.8a ff.).]

In view of all these partial results, eqs. (3.16.12c-n), and recalling that $T_{\text {relative }} \equiv T_{\text {rel }} \equiv T_{2}$, we can rewrite (3.16.12b) as

$$
\begin{equation*}
E_{k}\left(T_{\mathrm{rel}}\right)=Q_{k}+Q_{k, R}+G_{k}-\partial\left(V_{C F}+V_{T}\right) / \partial q_{k} \equiv Q_{k}+Q_{k, \text { inertial }} . \tag{3.16.13}
\end{equation*}
$$

This completes the discussion of the Lagrange-type carried system equations.

REMARKS

The left side of (3.16.13) clearly depends only on quantities describing the configuration and motions of the carried body (bodies) relative to the carrying one; the four parts of $Q_{k, \text { inertial }}$ are "correction terms," since $O-x y z$ is noninertial. Hence:
(i) If the motion of $O-x y z$ is known, or prescribed, only eqs. (3.16.13) need be considered; not the earlier Hamel-type carrying equations. Actually, since we have indeed proved that, in the case of relative motion, LP, for the carried system, takes the form

$$
\begin{equation*}
\sum\left[E_{k}\left(T_{\mathrm{rel}}\right)-Q_{k}-Q_{k, \text { inertial }}\right] \delta q_{k}=0 \tag{3.16.14}
\end{equation*}
$$

any other set of Lagrangean, or Appellian, equations can be employed with the replacements:

$$
\begin{equation*}
T \rightarrow T_{\mathrm{rel}} \quad \text { and } \quad Q_{k} \rightarrow Q_{k}+Q_{k, \text { inertial }} ; \tag{3.16.14a}
\end{equation*}
$$

for example, it is not hard to see that $E_{k}\left(T_{\text {rel }}\right) \equiv \partial S_{\text {rel }} / \partial \ddot{q}_{k}$, where $S_{\text {rel }}=$ part of S that depends solely on t, q, \dot{q}, \ddot{q}.

Additional Pfaffian constraints and/or nonholonomic coordinates can be easily handled using the methods described in §3.2-3.8.
(ii) If, on the other hand, the motion of $O-x y z$ is not known, then these equations should be solved together with the earlier ones of the carrying body. Then, we would have a system of $n+6$ coupled equations of the second order in the $n q$'s and of the first order in the $6 v_{O ; x, y, z}$ and $\omega_{x, y, z}$. To these we should also add the (linear and homogeneous) relations between the holonomic velocity components of $O-x y z$ relative to $I-X Y Z$, say $\dot{q}_{1, \ldots, 6}$ (not the q 's of S relative to $O-x y z$), and their nonholonomic counterparts $\omega_{1, \ldots, 6} \equiv v_{O ; x, y, z} / \omega_{x, y, z}$.
(iii) Finally, if we had chosen inertial (I) Lagrangean coordinates, say $q_{I}=$ $q_{I}\left(q_{N I}, t\right)$, where the noninertial (NI) coordinates are the earlier q 's, then eqs. (3.16.2a) would become

$$
\begin{equation*}
\mathfrak{R}=\boldsymbol{r}_{O}+\boldsymbol{r}\left(q_{N I}\right)=\boldsymbol{r}_{O}+\boldsymbol{r}\left(t, q_{I}\right) \tag{3.16.14b}
\end{equation*}
$$

that is, r would be nonstationary! In this case, the relative motion equations (3.16.13) would still hold, but with $T_{\text {rel }} \equiv T_{2}$ replaced by $T_{2,2}+T_{2,1}+T_{2,0}$, where

$$
\begin{align*}
2 T_{2,2} & \equiv \sum \sum M_{2, k l} \dot{q}_{k} \dot{q}_{l}, \quad T_{2,1} \equiv \sum M_{2, k} \dot{q}_{k}, \quad 2 T_{2,0} \equiv M_{2,0}, \tag{3.16.14c}\\
M_{2, k l} & \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot\left(\partial \boldsymbol{r} / \partial q_{l}\right), \quad M_{2, k} \equiv \boldsymbol{S} d m\left(\partial \boldsymbol{r} / \partial q_{k}\right) \cdot(\partial \boldsymbol{r} / \partial t) \\
M_{2,0} & \equiv \boldsymbol{S} d m(\partial \boldsymbol{r} / \partial t) \cdot(\partial \boldsymbol{r} / \partial t) . \tag{3.16.14d}
\end{align*}
$$

Example 3.16.1 Direct Derivation of the Lagrangean Equations of the Carried Body via LP. Let us assume, for concreteness, that $O-x y z$ has a prescribed motion. Now, the Newton-Euler equation of motion of a typical particle P, of the carried system S, of mass $d m$ and acted upon by a total impressed (reaction) force $d \boldsymbol{F}(d \boldsymbol{R})$ is (recalling §1.7)

$$
\begin{equation*}
d m \boldsymbol{a}_{\mathrm{rel}}=(d \boldsymbol{F}+d \boldsymbol{R})+\left(d \boldsymbol{f}_{O}+d \boldsymbol{f}_{T}+d \boldsymbol{f}_{C}\right), \tag{a}
\end{equation*}
$$

where
$d \boldsymbol{f}=d \boldsymbol{F}+d \boldsymbol{R}$: Real (i.e., non-frame-dependent) force,
$d \boldsymbol{f}_{O} \equiv-d m \boldsymbol{a}_{O}$: Transport translational "force",
(due to the inertial acceleration of the pole O),

$$
\begin{aligned}
d \boldsymbol{f}_{T} & \equiv-d m[(d \boldsymbol{\Omega} / d t) \times \boldsymbol{r}+\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \boldsymbol{r})] \\
& =-d m((d \boldsymbol{\Omega} / d t) \times \boldsymbol{r})-d m\left[(\boldsymbol{\Omega} \cdot \boldsymbol{r}) \boldsymbol{\Omega}-\Omega^{2} \boldsymbol{r}\right]:
\end{aligned}
$$

Transport rotational + centrifugal "force" $(=$ purely centrifugal, if $\boldsymbol{\Omega}=$ constant; due to the inertial angular motion of $O-x y z$),
$d \boldsymbol{f}_{C}=-2 d m\left(\boldsymbol{\Omega} \times \boldsymbol{v}_{\text {rel }}\right):$
Coriolis "force" (due to the coupling of the relative motion of S with the inertial angular motion of $O-x y z$).
[Incidentally, the above show that, in the most general case of motion,

$$
\left.d m\left(\partial^{2} \boldsymbol{r} / \partial t^{2}\right)=d \boldsymbol{f}+\left(d \boldsymbol{f}_{O}+d \boldsymbol{f}_{T}+d \boldsymbol{f}_{C}\right)=\text { function of } t, \boldsymbol{r}, \boldsymbol{v}_{\text {rel }} \equiv \partial \boldsymbol{r} / \partial t .\right]
$$

Dotting (a) with $\delta \Re=\delta \boldsymbol{r}_{O}(t)+\delta \boldsymbol{r}=\delta \boldsymbol{r}$, and then summing over the system particles, yields LP for the carried body:

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a}_{\mathrm{rel}} \cdot \delta \boldsymbol{r}=\boldsymbol{S}(d \boldsymbol{F}+d \boldsymbol{R}) \cdot \delta \boldsymbol{r}+\boldsymbol{S}\left(d \boldsymbol{f}_{O}+d \boldsymbol{f}_{T}+d \boldsymbol{f}_{C}\right) \cdot \delta \boldsymbol{r} \tag{c}
\end{equation*}
$$

Now:
(i) Since $\boldsymbol{a}_{\mathrm{rel}}=\partial \boldsymbol{v}_{\mathrm{rel}} / \partial t=\partial / \partial t(\partial \boldsymbol{r} / \partial t)$, and during the above virtual variations the axes $O-x y z$ are held fixed-that is, $\delta \boldsymbol{r}=\delta_{\text {rel }} \boldsymbol{r}=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k}$-and the q_{k} are noninertial coordinates of S relative to $O-x y z$, reasoning as in (3.3.3 ff.), we readily conclude that

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a}_{\mathrm{rel}} \cdot \delta \boldsymbol{r}=\sum E_{k}\left(T_{\mathrm{rel}}\right) \delta q_{k} \equiv \sum\left[\left(\partial T_{\mathrm{rel}} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{\mathrm{rel}} / \partial q_{k}\right] \delta q_{k}, \tag{d}
\end{equation*}
$$

where

$$
\begin{equation*}
2 T_{\mathrm{rel}}=2 T_{\mathrm{rel}}(q, \dot{q})=\boldsymbol{S} d m \boldsymbol{v}_{\mathrm{rel}} \cdot \boldsymbol{v}_{\mathrm{rel}} \tag{e}
\end{equation*}
$$

(ii) The Q_{k} are defined, as usual, by (recalling §3.4)

$$
\begin{equation*}
\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\sum Q_{k} \delta q_{k} \tag{f}
\end{equation*}
$$

(iii) The (relative $=$ inertial) virtual work of the constraint reactions vanishes:

$$
\begin{equation*}
\boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{R} \cdot \delta_{\mathrm{rel}} \boldsymbol{r}=\sum R_{k} \delta q_{k}=0 \tag{g}
\end{equation*}
$$

(iv) We define the following fictitious Lagrangean forces:

$$
\begin{align*}
\boldsymbol{S} d \boldsymbol{f}_{O} \cdot \delta \boldsymbol{r} & \equiv-\boldsymbol{S} d m \boldsymbol{a}_{O} \cdot \delta \boldsymbol{r} \\
& \equiv \sum Q_{k, \text { translational transport }} \delta q_{k} \equiv \sum Q_{k, T} \delta q_{k}, \tag{h}\\
\boldsymbol{S} d \boldsymbol{f}_{T} \cdot \delta \boldsymbol{r} & \equiv-\boldsymbol{S} d m((d \boldsymbol{\Omega} / d t) \times \boldsymbol{r}) \cdot \delta \boldsymbol{r}-\boldsymbol{\Omega} \cdot(\boldsymbol{S} d m(\boldsymbol{\Omega} \cdot \boldsymbol{r}) \delta \boldsymbol{r})+\Omega^{2}(\boldsymbol{S} d m \boldsymbol{r} \cdot \delta \boldsymbol{r}) \\
& \equiv \sum Q_{k, \text { rotational }+ \text { centrifugal transport }} \delta q_{k} \equiv \sum\left(Q_{k, R}+Q_{k, C F}\right) \delta q_{k}, \tag{i}\\
\boldsymbol{S} d \boldsymbol{f}_{C} \cdot \delta \boldsymbol{r} & \equiv-2 \boldsymbol{S} d m\left(\boldsymbol{\Omega} \times \boldsymbol{v}_{\text {rel }}\right) \cdot \delta \boldsymbol{r} \\
& \equiv \sum Q_{k, \text { Coriolis/gyroscopic }} \delta q_{k} \equiv \sum Q_{k, C} \delta q_{k} . \tag{j}
\end{align*}
$$

Now, since the motion of $O-x y z$ is prescribed, $\boldsymbol{a}_{O}, \boldsymbol{\Omega}$, and $d \boldsymbol{\Omega} / d t$ are given functions of time, and, therefore, the "forces" $Q_{k ; T, R, C F}$ will be functions of t and the q 's, while the $Q_{k, C}$ will be functions of t, q 's, and \dot{q} 's. If the δq 's are independent - that is, if S is unconstrained relative to (the constrained) $O-x y z$ —then (c), with (d-j), yield the earlier equations (3.16.13):

$$
\begin{equation*}
E_{k}\left(T_{\mathrm{rel}}\right)=Q_{k}+Q_{k, T}+Q_{k, R}+Q_{k, C F}+Q_{k, C}, \tag{k}
\end{equation*}
$$

where $Q_{k, T}=-\partial V_{T} / \partial q_{k}, Q_{k, C F}=-\partial V_{C F} / \partial q_{k}, Q_{k, C}=G_{k}$.
If the δq are constrained, then we proceed in, by now, well-known ways; that is, either we adjoin the constraints to (c ff.) via multipliers, or embed them via relative quasi variables. Let the reader work out the details of this direct approach if the motion of $O-x y z$ is also unknown.

Example 3.16.2 Cartesian Tensor Derivation of the Lagrangean Equations of the Carried Body. Let us consider, without much loss in generality, two frames/axes with common origin: an inertial/fixed $O-x_{k^{\prime}}$, and a noninertial/moving (rotating) $O-x_{k}\left(k=1,2,3 ; k^{\prime}=1^{\prime}, 2^{\prime}, 3^{\prime}\right)$. As is well known (§1.1), these two sets of axes are related by the following orthogonal transformation:

$$
\begin{equation*}
x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k} \Leftrightarrow x_{k}=\sum A_{k k^{\prime}} x_{k^{\prime}} \tag{a}
\end{equation*}
$$

where $\left\{A_{k^{\prime} k} \equiv \cos \left(x_{k^{\prime}}, x_{k}\right)=\cos \left(x_{k}, x_{k^{\prime}}\right) \equiv A_{k k^{\prime}}=\right.$ pure function of time $\}$ is a proper orthogonal tensor/matrix. The inertial Lagrangean function and corresponding equations of motion of a particle P of unit mass (i.e., $m=1$, for analytical simplicity) and under
ordinary potential forces only (here we are interested in kinematical/frame of reference effects - nonpotential forces can always be added later) are, respectively,

$$
\begin{align*}
& L=(1 / 2)\left(\sum \dot{x}_{k^{\prime}} \dot{x}_{k^{\prime}}\right)-V\left(x_{k^{\prime}}, t\right)=L\left(t, x_{k^{\prime}}, \dot{x}_{k^{\prime}}\right), \tag{b}\\
& \left(\partial L / \partial \dot{x}_{k^{\prime}}\right)^{\cdot}-\partial L / \partial x_{k^{\prime}}=0: \quad\left(\dot{x}_{k^{\prime}}\right)^{+}+\partial V / \partial x_{k^{\prime}}=0 . \tag{c}
\end{align*}
$$

Next, using (a), we will express L in terms of $\left\{t, x_{k}, \dot{x}_{k}, A_{k^{\prime} k}, \dot{A}_{k^{\prime} k}\right\}$ and then, using the frame invariance of the Lagrangean operator/equations in these new variables, we will obtain the equations of relative motion of $P:\left(\partial L / \partial \dot{x}_{k}\right)^{\cdot}-\partial L / \partial x_{k}=0$. Indeed, (...)'-differentiating (a), we obtain

$$
\begin{equation*}
\dot{x}_{k^{\prime}}=\sum\left(\dot{A}_{k^{\prime} k} x_{k}+A_{k^{\prime} k} \dot{x}_{k}\right) \tag{d}
\end{equation*}
$$

and, therefore, successively,

$$
\begin{align*}
\sum \dot{x}_{k^{\prime}} \dot{x}_{k^{\prime}} & =\sum\left(\sum\left(\dot{A}_{k^{\prime} k} x_{k}+A_{k^{\prime} k} \dot{x}_{k}\right)\right)\left(\sum\left(\dot{A}_{k^{\prime} l} x_{l}+A_{k^{\prime} l} \dot{x}_{l}\right)\right) \\
& =\sum \sum \sum\left(A_{k^{\prime} k} A_{k^{\prime} l} \dot{x}_{k} \dot{x}_{l}+\dot{A}_{k^{\prime} k} \dot{A}_{k^{\prime} l} x_{k} x_{l}+2 \dot{A}_{k^{\prime} k} A_{k^{\prime} l} x_{k} \dot{x}_{l}\right) \tag{e}
\end{align*}
$$

or, since [(1.7.22a ff.)], $\sum A_{k^{\prime} k} A_{k^{\prime} l}=\delta_{k l}$ and $\dot{A}_{k^{\prime} k}=\sum A_{k^{\prime} l} \Omega_{l k}$, where
$\sum \dot{A}_{k^{\prime} k} A_{k^{\prime} l}=\sum \dot{A}_{k k^{\prime}} A_{l k^{\prime}} \equiv \Omega_{l k}=-\Omega_{k l}:$
(inertial) angular velocity tensor of moving axes relative to fixed axes, but resolved along the moving axes,
equation (e) transforms further to

$$
\begin{align*}
\sum \dot{x}_{k^{\prime}} \dot{x}_{k^{\prime}}=\sum \sum \delta_{k l} \dot{x}_{k} \dot{x}_{l}+\sum \sum \sum(& \left.\sum A_{k^{\prime} r} \Omega_{r k}\right)\left(\sum A_{k^{\prime} s} \Omega_{s l}\right) x_{k} x_{l} \\
& +2 \sum \sum \Omega_{l k} \dot{x}_{l} x_{k} \tag{g}
\end{align*}
$$

and so, finally, the moving axes Lagrangean becomes

$$
\begin{equation*}
L=\sum(1 / 2) \dot{x}_{k} \dot{x}_{k}+\sum \sum \sum(1 / 2) \Omega_{s k} \Omega_{s l} x_{k} x_{l}+\sum \sum \Omega_{l k} \dot{x}_{l} x_{k}-V\left(t, x_{k}\right) \tag{h}
\end{equation*}
$$

Now:

- The first term $\sum(1 / 2) \dot{x}_{k} \dot{x}_{k}$, will give rise to the relative acceleration;
- The second term $\sum \sum \sum(1 / 2) \Omega_{s k} \Omega_{s l} x_{k} x_{l}$: centrifugal potential, will give rise to the acceleration of transport; and
- The third term $\sum \sum \Omega_{l k} \dot{x}_{l} x_{k}$: Schering potential, will give rise to the Coriolis acceleration.

Indeed, from (h) we obtain

$$
\begin{align*}
& \partial L / \partial \dot{x}_{k}=\dot{x}_{k}+\sum \sum \Omega_{l r} \delta_{l k} x_{r}=\dot{x}_{k}+\sum \Omega_{k r} x_{r} \tag{i}\\
& \Rightarrow\left(\partial L / \partial \dot{x}_{k}\right)=\ddot{x}_{k}+\sum\left(\dot{\Omega}_{k r} x_{r}+\Omega_{k r} \dot{x}_{r}\right) \tag{j}\\
& \begin{aligned}
\partial L / \partial x_{k} & =\sum \sum \Omega_{s k} \Omega_{s l} x_{l}+\sum \Omega_{r k} \dot{x}_{r}-\partial V / \partial x_{k} \\
\quad & =\sum \sum \Omega_{s k} \Omega_{s l} x_{l}-\sum \Omega_{k r} \dot{x}_{r}-\partial V / \partial x_{k}
\end{aligned}
\end{align*}
$$

and, therefore, the Lagrangean equations of relative motion, $\left(\partial L / \partial \dot{x}_{k}\right)^{\cdot}-\partial L / \partial x_{k}=0$, become

$$
\begin{equation*}
\ddot{x}_{k}-\sum \sum \Omega_{s k} \Omega_{s l} x_{l}+\sum \dot{\Omega}_{k l} x_{l}+2 \sum \Omega_{k l} \dot{x}_{l}=-\partial V / \partial x_{k} . \tag{l}
\end{equation*}
$$

Let the reader show that (1) is none other than [with $\omega=\left(\omega_{k}\right), \boldsymbol{\alpha}=\left(\dot{\omega}_{k}\right)$, $\left.\boldsymbol{r}=\left(x_{k}\right), \boldsymbol{v}_{\text {rel }}=\left(\dot{x}_{k}\right)\right]$

$$
\begin{equation*}
\ddot{x}_{k}+[\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})]_{k}+(\boldsymbol{\alpha} \times \boldsymbol{r})_{k}+\left(2 \boldsymbol{\omega} \times \boldsymbol{v}_{\mathrm{rel}}\right)_{k}=-\partial V / \partial x_{k} . \tag{m}
\end{equation*}
$$

HINT
Recall that (1.1.16a ff.) $(\boldsymbol{\Omega} \cdot \boldsymbol{r})_{k}=(\boldsymbol{\omega} \times \boldsymbol{r})_{k}: \sum \Omega_{k l} x_{l}=\sum \sum \varepsilon_{k s l} \omega_{s} x_{l}$; that is, $\Omega=\left(\Omega_{k l}=-\Omega_{l k}=\sum \varepsilon_{k s l} \omega_{s}\right)$. See also Morgenstern and Szabó (1961, pp. 7-9).

Problem 3.16.1 Extend the tensorial method of the preceding example to the most general case of relative motion (i.e., no common origin of relatively moving frames):

$$
\begin{equation*}
x_{k^{\prime}}=\sum A_{k^{\prime} k} x_{k}+b_{k^{\prime}} \Leftrightarrow x_{k}=\sum A_{k k^{\prime}} x_{k^{\prime}}+b_{k}, \tag{a}
\end{equation*}
$$

where $b_{k^{\prime}}=-\sum A_{k^{\prime} k} b_{k}=$ components of position vector of moving origin O relative to fixed origin, along the fixed axes; $b_{k}=-\sum A_{k k^{\prime}} b_{k^{\prime}}$; and $\left\{A_{k^{\prime} k}, b_{k^{\prime}}, b_{k}\right\}=$ pure functions of time. This will give rise to "forces" due to the inertial motion ("transport") of the origin O.

Example 3.16.3 Direct Lagrangean Treatment of Gyroscopic Couple. Let us consider an axisymmetric (carried) body, spinning with angular velocity ω_{o} about its axis of symmetry. The latter is fixed relative to the body's "housing" (carrying body). It is shown in gyrodynamics that ω_{o} gives rise to an additional moment, or "gyroscopic couple," on the housing + fixed (nonspinning) gyro system equal to $\left(C \omega_{o}\right) \times \boldsymbol{\Omega}$, where $C=$ moment of inertia of carried body about its spinning axis, and $\Omega=$ vector of inertial angular velocity of housing. Let us find the Lagrangean expression of that couple.

Here

$$
\begin{equation*}
\boldsymbol{\Omega}=\sum\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{k}\right) \dot{q}_{k}+\partial \boldsymbol{\Omega} / \partial t \Rightarrow \delta \boldsymbol{\Theta}=\sum\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{k}\right) \delta q_{k} \tag{a}
\end{equation*}
$$

where $d \boldsymbol{\Theta} / d t \equiv \Omega$. Therefore, the virtual work of the gyro-couple equals, successively,

$$
\begin{align*}
\delta^{\prime} W_{G} & \equiv\left[\left(C \boldsymbol{\omega}_{o}\right) \times \boldsymbol{\Omega}\right] \cdot \delta \boldsymbol{\Theta} \\
& =\left\{\left(C \boldsymbol{\omega}_{o}\right) \times\left(\sum\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{l}\right) \dot{q}_{l}+\partial \boldsymbol{\Omega} / \partial t\right)\right\} \cdot\left(\sum\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{k}\right) \delta q_{k}\right) \\
& \equiv \sum\left(\sum g_{k l} \dot{q}_{l}+g_{k}\right) \delta q_{k} \equiv \sum\left(G_{k}+g_{k}\right) \delta q_{k}, \tag{b}
\end{align*}
$$

where

$$
\begin{align*}
g_{k l} & \equiv\left[\left(C \boldsymbol{\omega}_{o}\right) \times\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{l}\right)\right] \cdot\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{k}\right) \\
& =\left(C \boldsymbol{\omega}_{o}\right) \cdot\left[\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{l}\right) \times\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{k}\right)\right] \equiv\left(C \boldsymbol{\omega}_{o}\right) \cdot \boldsymbol{G}_{k l}=-g_{l k}, \tag{c}\\
g_{k} & \equiv\left[\left(C \boldsymbol{\omega}_{o}\right) \times(\partial \boldsymbol{\Omega} / \partial t)\right] \cdot\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{k}\right) \\
& =\left(C \boldsymbol{\omega}_{o}\right) \cdot\left[(\partial \boldsymbol{\Omega} / \partial t) \times\left(\partial \boldsymbol{\Omega} / \partial \dot{q}_{k}\right)\right] \equiv\left(C \boldsymbol{\omega}_{o}\right) \cdot \boldsymbol{G}_{k} \quad\left(\equiv g_{k, n+1} \equiv g_{k, t}\right) . \tag{d}
\end{align*}
$$

Clearly, $\sum G_{k} \dot{q}_{k}=\sum \sum g_{k l} \dot{q}_{l} \dot{q}_{k}=0$; that is, the G_{k} are gyroscopic. From the above, it follows that, if there are no further constraints, the equations of motion of the system housing + gyro are

$$
\begin{equation*}
\left(\partial T_{A} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{A} / \partial q_{k}=Q_{k}+G_{k}+g_{k}, \tag{e}
\end{equation*}
$$

where $T_{A}=($ inertial $)$ kinetic energy of system housing + gyro if $\omega_{o}=\mathbf{0}$ (i.e., with the gyro held fixed in its housing $) \equiv$ apparent kinetic energy. The above can be easily extended to a system consisting of several housings and gyros. [See Cabannes, 1965, pp. 201-203, 274-277; Roseau, 1987, pp. 49-53; also §8.4 ff., and Papastavridis (Elementary Mechanics (under production), examples on gyrodynamics).]

Example 3.16.4 Rotating Frames: The Free Particle. Here, using Lagrangean methods, we derive the equations of plane motion of a particle P of mass m on a frame $O-x y z$ rotating with (inertial) angular velocity $\boldsymbol{\Omega}=(0,0, \Omega)$ relative to an inertial one $O-X Y Z$; and such that $O Z \equiv O z$ (fig. 3.37). By (...)-differentiating the well-known transformation equations between these two frames

$$
\begin{equation*}
X=x \cos \phi-y \sin \phi, \quad Y=x \sin \phi+y \cos \phi, \tag{a}
\end{equation*}
$$

and recalling that $\Omega=\dot{\phi}$, we obtain

$$
\begin{align*}
\dot{X} & =(\dot{x} \cos \phi-\dot{y} \sin \phi)-(x \sin \phi+y \cos \phi) \Omega, \\
\dot{Y} & =(\dot{x} \sin \phi+\dot{y} \cos \phi)+(x \cos \phi-y \sin \phi) \Omega . \tag{b}
\end{align*}
$$

Figure 3.37 Particle P moving on a rotating frame $O-x y(z)$.

To understand better the meaning of (b), we consider the special instant at which the axes of these two frames coincide; that is, for $\phi=0$. Then, (b) yields

$$
\begin{equation*}
\dot{X}=\dot{x}-y \Omega, \quad \dot{Y}=\dot{y}+x \Omega \tag{c}
\end{equation*}
$$

that is, $\dot{X} \neq \dot{x}$ and $\dot{Y} \neq \dot{y}$, even though, then, $X=x$ and $Y=y$; eq. (c) is the $O-x y / X Y$ component form of the well-known vector equation (§1.7)

$$
\begin{equation*}
d \boldsymbol{r} / d t=\partial \boldsymbol{r} / \partial t+\boldsymbol{\Omega} \times \boldsymbol{r}, \quad \text { where } \boldsymbol{r}=(x, y, 0), \boldsymbol{\Omega}=(0,0, \Omega) . \tag{d}
\end{equation*}
$$

Thanks to (c), the inertial (double) kinetic energy of P becomes

$$
\begin{equation*}
2 T=m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right] \equiv 2\left(T_{2}+T_{1}+T_{0}\right) \tag{e}
\end{equation*}
$$

where

$$
\begin{align*}
& 2 T_{2} \equiv m\left[(\dot{x})^{2}+(\dot{y})^{2}\right] \\
& T_{1} \equiv m(x \dot{y}-\dot{x} y) \Omega \\
& 2 T_{0} \equiv m\left(x^{2}+y^{2}\right) \Omega^{2}=m\left(X^{2}+Y^{2}\right) \Omega^{2}=m r^{2} \Omega^{2} \tag{f}
\end{align*}
$$

and, therefore, if $\delta^{\prime} W=Q_{x} \delta x+Q_{y} \delta y$, Lagrange's equations here are

$$
\begin{align*}
& {[m(\dot{x}-y \Omega)]^{-}-m(\dot{y}+x \Omega) \Omega=m\left(\ddot{x}-2 \dot{y} \Omega-x \Omega^{2}-y \dot{\Omega}\right)=Q_{x},} \tag{g}\\
& {[m(\dot{y}+x \Omega)]^{-}-m(\dot{x}-y \Omega) \Omega=m\left(\ddot{y}+2 \dot{x} \Omega-y \Omega^{2}+x \dot{\Omega}\right)=Q_{y} ;} \tag{h}
\end{align*}
$$

and, from these, the following Newton-Euler ($O-x y$-centric) forms result:

$$
\begin{align*}
& m \ddot{x}=Q_{x}-m\left(-x \Omega^{2}-y \dot{\Omega}\right)-(-2 m \dot{y} \Omega) \tag{i}\\
& m \ddot{y}=Q_{y}-m\left(-y \Omega^{2}+x \dot{\Omega}\right)-(+2 m \dot{x} \Omega) \tag{j}
\end{align*}
$$

where (in two dimensions)
$\boldsymbol{a}_{T}=\left(-x \Omega^{2}-y \dot{\Omega},-y \Omega^{2}+x \dot{\Omega}\right)=$ Transport acceleration (normal + tangent $)$,
$\boldsymbol{a}_{C}=(-2 \dot{y} \Omega,+2 \dot{x} \Omega)=$ Coriolis acceleration.
Since \boldsymbol{a}_{C} is perpendicular to $\boldsymbol{v}_{\text {rel }}=(\dot{x}, \dot{y})$, if (i) $\dot{\Omega}=0$ and (ii) $\delta^{\prime} W=-\delta V(x, y)$, eqs. $(\mathrm{g}, \mathrm{h} / \mathrm{i}, \mathrm{j})$ readily combine to produce the relative power equation

$$
\begin{equation*}
m(\dot{x} \ddot{x}+\dot{y} \ddot{y})-m(x \dot{x}+y \dot{y}) \Omega^{2}=-\dot{V} \tag{m}
\end{equation*}
$$

and the latter integrates easily to the generalized energy (Jacobi-Painlevé) integral [recalling (3.9.11n)]

$$
\begin{equation*}
T_{2}+\left(V-T_{0}\right) \equiv h=\text { constant }(\neq E \equiv T+V) \tag{n}
\end{equation*}
$$

Example 3.16.5 Rotating Frames: General System. Here, we extend the preceding example to a general system. (Although the general theory of such systems in moving axes has already been studied in this section, nevertheless, we think that the ad hoc treatment of this special but important case, presented below, is
quite instructive.) Summing (e, f) over the entire system, we readily find

$$
\begin{align*}
2 T & =\boldsymbol{S}\left[(\dot{X})^{2}+(\dot{Y})^{2}\right] d m \equiv 2\left(T_{2}+T_{1}+T_{0}\right) \\
& \equiv 2\left[T_{\mathrm{rel}}+\Omega H_{O, \text { rel }}+(1 / 2) \Omega^{2} I_{O}\right]=2\left[T_{\mathrm{rel}}+\Omega H_{O}-(1 / 2) \Omega^{2} I_{O}\right] \tag{a}
\end{align*}
$$

where

$$
\begin{align*}
& 2 T_{2} \equiv 2 T_{\text {rel }} \equiv \boldsymbol{S}\left[(\dot{x})^{2}+(\dot{y})^{2}\right] d m \\
& =2(\text { kinetic energy relative to rotating frame }) \quad \text { (i.e., } T \text { for } \Omega=0) \text {, } \tag{b}\\
& T_{1} \equiv \Omega S(x \dot{y}-y \dot{x}) d m \equiv \Omega H_{O, \text { rel }}, \tag{c}\\
& 2 T_{0} \equiv \Omega^{2} \boldsymbol{S}\left(x^{2}+y^{2}\right) d m=\Omega^{2} \boldsymbol{S}\left(X^{2}+Y^{2}\right) d m=\Omega^{2} I_{O} \\
& =2(\text { centrifugal energy }) ; \tag{d}\\
& H_{O, \text { rel }} \equiv S(x \dot{y}-y \dot{x}) d m=\text { angular momentum about } O Z \equiv O z \text { and } \\
& \text { relative to the rotating frame, } \tag{e}\\
& H_{O} \equiv \boldsymbol{S}(X \dot{Y}-Y \dot{X}) d m=\boldsymbol{S}[x(\dot{y}+x \Omega)-y(\dot{x}-y \Omega)] d m \\
& =\cdots=H_{O, \text { rel }}+\Omega I_{O}=\text { angular momentum about } O Z \equiv O z \text { and } \\
& \text { relative to the fixed frame, } \tag{f}\\
& I_{O} \equiv \boldsymbol{S}\left(X^{2}+Y^{2}\right) d m=\boldsymbol{S}\left(x^{2}+y^{2}\right) d m=\boldsymbol{S} r^{2} d m \\
& =\text { moment of inertia about } O Z \equiv O z \text { (frame independent); } \tag{g}\\
& \left(\Rightarrow \Omega H_{O}=\Omega H_{O, \text { rel }}+\Omega^{2} I_{O}=T_{1}+2 T_{0}\right) \text {. }
\end{align*}
$$

[In the general three-dimensional case, since $\dot{Z}=\dot{z}$, a $(1 / 2)(\dot{z})^{2} d m$ term must be added to the integrand of T and $T_{\text {rel }}$.]

Now, if the system is completely describable, relative to the rotating frame, by n Lagrangean coordinates $q=\left(q_{1}, \ldots, q_{n}\right)$ [i.e., if $x=x(q), y=y(q), z=z(q)$], then $T_{\text {rel }}=$ quadratic and homogeneous in the \dot{q} 's, with coefficients functions of the q 's. If, further, $T=T(q, \dot{\phi} \equiv \Omega)$ - that is, $q_{n+1}=\phi=$ additional "azimuthal" cyclic coordinate (§8.4), for the complete inertial description of the system - and $Q_{k}=-\partial V / \partial q_{k}$, $Q_{n+1} \equiv M_{O}=$ total impressed moment about $O Z \equiv O z$, and no further constraints are present, then the $n+1$ Lagrangean equations for these q 's are

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=-\partial V / \partial q_{k} \tag{h}
\end{equation*}
$$

and [by (a), and noting that, equivalently,

$$
\begin{gather*}
\left.\partial T / \partial \Omega=H_{O, \text { rel }}+\Omega I_{O}=H_{O}+\Omega\left(\partial H_{O} / \partial \Omega\right)-\Omega I_{O}=H_{O}+\Omega\left(I_{O}\right)-\Omega I_{O}=H_{O}\right] \\
(\partial T / \partial \Omega)^{\cdot}-\partial T / \partial \phi=\dot{H}_{O}=M_{O} \tag{i}
\end{gather*}
$$

If $M_{O}=0$ (free rotating system), then by eq. (i), $H_{O}=0$ and $\Omega \neq$ constant; whereas if $\Omega=$ constant (constrained rotation), then $M_{O}=$ constraint reaction (a Lagrangean multiplier $) \neq 0$, and therefore $H_{O} \neq$ constant.

Special Case

If $\Omega=$ constant (e.g., $O-x y z \rightarrow$ Earth), substituting eq. (a ff.) into eq. (h), we obtain

$$
\begin{align*}
\left(\partial T_{\mathrm{rel}} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{\mathrm{rel}} / \partial q_{k} & +\Omega\left[\left(\partial H_{O, \text { rel }} / \partial \dot{q}_{k}\right)^{\cdot}-\partial H_{O, \text { rel }} / \partial q_{k}\right] \\
& -(1 / 2) \Omega^{2}\left(\partial I_{O} / \partial q_{k}\right)=-\partial V / \partial q_{k} . \tag{j}
\end{align*}
$$

But, since $\partial \dot{x} / \partial \dot{q}_{k}=\partial x / \partial q_{k}$ and $\partial \dot{x} / \partial q_{k}=\left(\partial x / \partial q_{k}\right)^{\cdot}\left[\right.$ i.e., $E_{k}(\dot{x})=0$, etc.], we have
(i) $\partial H_{O, \text { rel }} / \partial \dot{q}_{k}=\boldsymbol{S}\left[x\left(\partial \dot{y} / \partial \dot{q}_{k}\right)-y\left(\partial \dot{x} / \partial \dot{q}_{k}\right)\right] d m=\boldsymbol{S}\left[x\left(\partial y / \partial q_{k}\right)-y\left(\partial x / \partial q_{k}\right)\right] d m$, and, from this,

$$
\left(\partial H_{O, \text { rel }} / \partial \dot{q}_{k}\right)^{\cdot}=\boldsymbol{S}\left[\dot{x}\left(\partial y / \partial q_{k}\right)-\dot{y}\left(\partial x / \partial q_{k}\right)\right] d m+\boldsymbol{S}\left[x\left(\partial \dot{y} / \partial q_{k}\right)-y\left(\partial \dot{x} / \partial q_{k}\right)\right] d m ;
$$

(ii) $\partial H_{O, \text { rel }} / \partial q_{k}=\boldsymbol{S}\left[\dot{y}\left(\partial x / \partial q_{k}\right)-\dot{x}\left(\partial y / \partial q_{k}\right)\right] d m+\boldsymbol{S}\left[x\left(\partial \dot{y} / \partial q_{k}\right)-y\left(\partial \dot{x} / \partial q_{k}\right)\right] d m$.

Therefore, subtracting these two expressions side by side, we find

$$
\begin{align*}
& \left(\partial H_{O, \text { rel }} / \partial \dot{q}_{k}\right)^{\cdot}-\partial H_{O, \text { rel }} / \partial q_{k} \\
& \quad=2 \boldsymbol{S}\left[\dot{x}\left(\partial y / \partial q_{k}\right)-\dot{y}\left(\partial x / \partial q_{k}\right)\right] d m \\
& \quad=2 \boldsymbol{S}\left\{\left(\sum\left(\partial x / \partial q_{l}\right) \dot{q}_{l}\right)\left(\partial y / \partial q_{k}\right)-\left(\sum\left(\partial y / \partial q_{l}\right) \dot{q}_{l}\right)\left(\partial x / \partial q_{k}\right)\right\} d m \\
& \quad \equiv \sum G_{l k} \dot{q}_{l} \tag{k}
\end{align*}
$$

where

$$
\begin{align*}
G_{l k} & \equiv 2 \boldsymbol{S}\left[\left(\partial x / \partial q_{l}\right)\left(\partial y / \partial q_{k}\right)-\left(\partial x / \partial q_{k}\right)\left(\partial y / \partial q_{l}\right)\right] d m \\
& \equiv 2 \boldsymbol{S}\left[\left(\partial(x, y) / \partial\left(q_{l}, \partial q_{k}\right)\right] d m=-G_{k l}\right. \tag{1}
\end{align*}
$$

(analytically known, once the q 's are chosen).
In view of ($k, 1$), eq. (j) can be rewritten in the definitive form

$$
\begin{equation*}
E_{k}\left(T_{\mathrm{rel}}\right)+\Omega \sum G_{l k} \dot{q}_{l}=-\partial V_{\mathrm{rel}} / \partial q_{k} \tag{m}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{\text {rel }} \equiv V-(1 / 2) \Omega^{2} I_{O}=\text { total relative potential } \quad\left(=V-T_{0}\right) \tag{m1}
\end{equation*}
$$

Other possible nonpotential and noninertial forces, such as friction and/or constraints, can be added to the right side of (m) as Q's and/or multiplier-proportional terms.

The Lagrangean form (m) brings out clearly the differences between uniformly rotating axes $(\Omega=$ constant $\neq 0)$ and inertial ones $(\Omega=0)$. These are:

- The additional centrifugal potential $V_{C F}=-\Omega^{2} I_{O} / 2$ [recalling (3.16.12f)], which gives rise to the centrifugal "force" $-\partial V_{C F} / \partial q_{k}=(1 / 2) \Omega^{2}\left(\partial I_{O} / \partial q_{k}\right)$; and
- The additional gyroscopic (or compounded centrifugal, or Coriolis), and generally nonpotential, "forces" $-\Omega \sum G_{l k} \dot{q}_{l}=\Omega \sum G_{k l} \dot{q}_{l}$.

It is not hard to see that, in the absence of nonpotential forces, the equations of motion of the particle in ex. 3.16.4, eqs. (i, j), can be rewritten, respectively, in the (m)-like form

$$
\begin{equation*}
m \ddot{x}=-\partial V_{\mathrm{rel}} / \partial x+2 m \Omega \dot{y}, \quad m \ddot{y}=-\partial V_{\mathrm{rel}} / \partial y-2 m \Omega \dot{x}, \tag{n}
\end{equation*}
$$

(also $\left.m \ddot{z}=-\partial V_{\text {rel }} / \partial z\right), \quad V_{\text {rel }} \equiv V-(1 / 2) m \Omega^{2}\left(x^{2}+y^{2}\right)$; or, vectorially (2 dimensions),

$$
\begin{equation*}
m\left(\partial^{2} \boldsymbol{r} / \partial t^{2}\right)=-\boldsymbol{\operatorname { g r a d }} V_{\mathrm{rel}}+2 m(\partial \boldsymbol{r} / \partial t) \times \boldsymbol{\Omega} . \tag{n1}
\end{equation*}
$$

Equations (n, n1) are useful in atmospheric physics ($\Omega=$ rotation of Earth).]

Relative Equilibrium
This is defined as the special motion for which

$$
\begin{equation*}
T_{\text {rel }}=0 \quad \text { and all } \quad \dot{q}_{k}=0 . \tag{o}
\end{equation*}
$$

Then, eqs. (m) yield the following conditions for relative equilibrium:

$$
\begin{equation*}
\partial V_{\mathrm{rel}} / \partial q_{k} \equiv \partial\left(V-\frac{1}{2} \Omega^{2} I_{O}\right) / \partial q_{k}=0 ; \tag{p}
\end{equation*}
$$

namely, that $V_{\text {rel }}$ be stationary.
For further discussion, especially the case of (small) motion around such equilibria, and their stability, and applications, see, for example (alphabetically): Appell (vol. 4, 1932, 1937), Duhem (1911, pp. 422-499), Lamb (1932, pp. 195-199, 307-310, 427-428, 713-714; 1943, pp. 244-255), Ledoux (1958, pp. 616-620), Lyttleton (1953, pp. 19-30); also $\S 8.6$ in this volume.

Problem 3.16.2 Rotating Frames. Continuing from the preceding example, show that:
(i) In terms of corotating (i.e., noninertial) polar coordinates (r, θ), for each particle,
(ii)

$$
\begin{align*}
2 T & =\boldsymbol{S}\left[(\dot{r})^{2}+r^{2}(\Omega+\dot{\theta})^{2}\right] d m \\
& =\boldsymbol{S}\left[(\dot{r})^{2}+r^{2}(\dot{\theta})^{2}\right] d m+2 \Omega\left(\boldsymbol{S}^{2} \dot{\theta} d m\right)+\Omega^{2}\left(\boldsymbol{S} r^{2} d m\right) \tag{a}
\end{align*}
$$

$$
\begin{equation*}
H_{O, \mathrm{rel}} \equiv \boldsymbol{S}(x \dot{y}-y \dot{x}) d m=\boldsymbol{S}\left(r^{2} \dot{\theta}\right) d m=\cdots=\sum \beta_{k} \dot{q}_{k} \tag{b}
\end{equation*}
$$

where

$$
\beta_{k} \equiv \boldsymbol{S}\left[x\left(\partial y / \partial q_{k}\right)-y\left(\partial x / \partial q_{k}\right)\right] d m=\beta_{k}(q)
$$

then show that

$$
\begin{equation*}
G_{l k} \equiv \partial \beta_{k} / \partial q_{l}-\partial \beta_{l} / \partial q_{k}=-G_{k l} \quad(k, l=1, \ldots, n) \tag{c}
\end{equation*}
$$

Problem 3.16.3 Rotating Frames: Special Cases. Continuing from the preceding problem, show that (i) if $\dot{\theta}=0$, or (ii) if $n=1$ (i.e., if the system is described on the uniformly rotating frame by only one coordinate q), then the ω / \dot{q}-proportional
(gyroscopic) terms, in the corresponding equations of motion, vanish; that is, then, the effect of the rotation Ω there is only the centrifugal force $(1 / 2) \Omega^{2}\left(\partial I_{O} / \partial q\right)$.

HINT
In (ii) $H_{O, \text { rel }}=($ some function of $q) \dot{q}$; then $E\left(H_{O, \text { rel }}\right)=\cdots$.

Problem 3.16.4 Rotating Frames: A Special Power Equation. Continuing from the preceding example, and employing its notations, show that the power equation of a system moving on a uniformly rotating frame is

$$
\begin{equation*}
d / d t\left(T_{\text {rel }}+V-\Omega^{2} I_{O} / 2\right) \equiv\left(T_{\text {rel }}+V_{\text {rel }}\right)^{\cdot}=\sum Q_{k} \dot{q}_{k}, \tag{a}
\end{equation*}
$$

where $Q_{k}=$ nonpotential and noninertial forces; and, therefore, if all $Q_{k}=0$, eq. (a) leads to the Jacobi-Painlevé integral

$$
\begin{equation*}
T_{\mathrm{rel}}+V-\Omega^{2} I_{O} / 2=0 \tag{b}
\end{equation*}
$$

HINTS
We have

$$
d T / d t=\left(T_{2}+T_{0}\right)^{\cdot}+\Omega[\mathbf{S}(x \ddot{y}-y \ddot{x}) d m]
$$

[by the results of ex. 3.16.4 and ex. 3.16.5]

$$
=\left(T_{2}-T_{0}\right)^{\cdot}+\Omega\left[\mathbf{S}\left(x d F_{y}-y d F_{x}\right)\right]
$$

[by eqs. (g, h/i, j) of ex. 3.16.4, summed over the entire system, with $\Omega=$ constant and $\left(Q_{x}, Q_{y}\right) \rightarrow d \boldsymbol{F}=\left(d F_{x}, d F_{y}\right)=$ total impressed force on particle of mass $d m$].

But, also, by the "elementary" power theorem (since, here, impressed forces $=$ external forces), $d T / d t=$ Total externally supplied power

$$
\begin{equation*}
=\Omega\left[\boldsymbol{S}\left(x d F_{y}-y d F_{x}\right)\right]+\sum Q_{k} \dot{q}_{k} . \tag{d}
\end{equation*}
$$

Problem 3.16.5 Rotating Frames: A Special Power Equation (continued). Continuing from the preceding example, and employing its notations, show that:
(i) If $M_{O}=0$, then $H_{O}=$ constant; and
(ii) If, further, we choose Ω so that (always) $H_{O, \text { rel }}=0$, then

$$
\begin{equation*}
H_{O}=\Omega I_{O} \quad \text { and } \quad T=\cdots=T_{\text {rel }}+H_{O}^{2} / 2 I_{O} \tag{a}
\end{equation*}
$$

and thus deduce that if all the (nonpotential) Q_{k} 's vanish, the (inertial) energy equation $E \equiv T+V=$ constant specializes to

$$
\begin{equation*}
T_{\text {rel }}+V+H_{O}^{2} / 2 I_{O}=\text { constant } ; \tag{b}
\end{equation*}
$$

that is, eq. (b) of the preceding problem but with $\Omega \rightarrow H_{O}$ and $-\Omega^{2} I_{O} / 2 \rightarrow$ $H_{O}{ }^{2} / 2 I_{O}$.

Figure 3.38 Uniformly rotating plane pendulum.

Problem 3.16.6 Rotating Pendulum. Consider a mathematical pendulum, of length l and mass m, whose plane of oscillation is constrained to rotate with constant inertial angular velocity Ω about its vertical axis (fig. 3.38).
(i) Show that its equations of (relative angular) motion and energy are, respectively,

$$
\begin{gather*}
\ddot{\theta}+(g / l) \sin \theta-(1 / 2) \Omega^{2} \sin (2 \theta)=0 \tag{a}\\
\left(m l^{2} / 2\right)\left[(\dot{\theta})^{2}-2(g / l) \cos \theta-\Omega^{2} \sin ^{2} \theta\right] \equiv h=\text { constant } . \tag{b}
\end{gather*}
$$

Explain the absence of gyroscopic terms in both (a) and (b).
(ii) Linearize (a) in θ and then show that if $\Omega^{2}<g / l$, the pendulum performs harmonic oscillations about the vertical with period $\tau=2 \pi\left[(g / l)-\Omega^{2}\right]^{-1 / 2}$; that is, the configuration of relative equilibrium $\theta=0$ is stable; whereas, if $\Omega^{2} \geq g / l$, it is unstable (i.e., we need the nonlinear equation).
(iii) Next, add $\dot{\theta}$-proportional (small) friction $-f \dot{\theta}$ ($f=$ constant friction coefficient). Does this affect the stability/instability of $\theta=0$? Explain.

For an alternative discussion, see Kauderer (1958, pp. 239-242); and for discussions of the stability of the equilibrium configurations of (a), based on (b), and more see e.g. (alphabetically): Babakov (1968, pp. 463-467), Greenwood (1977, pp. 62, 7477), Pars (1965, pp. 85-86).

Problem 3.16.7 Rotating Frames: Carrying Body Effect. Consider a particle P of mass m in unconstrained motion relative to a carrying rigid body B. The latter can spin freely about the fixed vertical axis $O z$.
(i) Show that the inertial kinetic energy of the entire system " $B+P$," expressed in terms of components along B-fixed axes $O-x y z$, is

$$
\begin{align*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right]+ & 2 m(x \dot{y}-y \dot{x}) \dot{\phi} \\
& +\left[I+m\left(x^{2}+y^{2}\right)\right](\dot{\phi})^{2} \tag{a}
\end{align*}
$$

where $I=$ moment of inertia of B about $O z, \phi=$ inertial angular coordinate of B; and, therefore, its four Lagrangean equations of motion are (with some obvious notations)

$$
\begin{array}{ll}
x: & m\left[\ddot{x}-2 \dot{\phi} \dot{y}-x(\dot{\phi})^{2}-y \ddot{\phi}\right]=Q_{x}, \\
y: & m\left[\ddot{y}+2 \dot{\phi} \dot{x}-y(\dot{\phi})^{2}+x \ddot{\phi}\right]=Q_{y}, \\
z: & m \ddot{z}=Q_{z}, \\
\phi: & \left\{\left[I+m\left(x^{2}+y^{2}\right)\right] \dot{\phi}+m(x \dot{y}-y \dot{x})\right\}=\Phi . \tag{e}
\end{array}
$$

(ii) Specialize the above to the case where B spins at a constant rate: $\dot{\phi}=$ constant; that is, adjust the torque Φ so as to maintain $\ddot{\phi}=0$, or $\delta \phi=0$; or, equivalently, assume that $I \rightarrow \infty$.
(iii) Show that the above special case equations result by application of Lagrange's method to

$$
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right]+2 m \Omega(x \dot{y}-y \dot{x})+m \Omega^{2}\left(x^{2}+y^{2}\right)
$$

$=$ inertial (double) kinetic energy of Preferred to axes spinning with constant inertial angular velocity $\dot{\phi}=\Omega$.

Problem 3.16.8 Rotating Frames: 3-D Case. Extend the results of the preceding examples and problems to the general case of two frames with common origin: (i) a fixed $O-X Y Z$ (inertial), and (ii) a moving $O-x y z$ (noninertial) rotating relative to the first with constant angular velocity Ω (fig. 3.39).

Specifically, show that the (inertial) kinetic energy of a particle P of mass m equals

$$
\begin{equation*}
T=T_{2}+T_{1}+T_{0} \tag{a}
\end{equation*}
$$

where

$$
\begin{align*}
& 2 T_{2}=m\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right] \tag{b}\\
& T_{1}=m\left[\dot{x}\left(z \omega_{y}-y \omega_{z}\right)+\dot{y}\left(x \omega_{z}-z \omega_{x}\right)+\dot{z}\left(y \omega_{x}-x \omega_{y}\right)\right] \tag{c}\\
& 2 T_{0}=m\left[\left(z \omega_{y}-y \omega_{z}\right)^{2}+\left(x \omega_{z}-z \omega_{x}\right)^{2}+\left(y \omega_{x}-x \omega_{y}\right)^{2}\right] \tag{d}
\end{align*}
$$

(a) (b)

Figure 3.39 (a) Particle P in general relative motion in a rotating frame $O-x y z$; (b) details of centrifugal "force" $\boldsymbol{f}_{\mathrm{CF}}$.
and, therefore, by the method of Lagrange, the equations of (unconstrained) motion of P in $O-x y z$, under a total impressed force $\boldsymbol{F}=\left(F_{x}, F_{y}, F_{z}\right)$, are

$$
\begin{equation*}
m\left(\partial^{2} \boldsymbol{r} / \partial t^{2}\right)=\boldsymbol{F}+\partial T_{0} / \partial \boldsymbol{r}+\boldsymbol{f}_{C}, \tag{e}
\end{equation*}
$$

where

$$
\begin{align*}
\boldsymbol{f}_{C}= & -2 m \boldsymbol{\Omega} \times\left(\begin{array}{rr}
\boldsymbol{r} & t
\end{array}\right)=-2 m \boldsymbol{\Omega} \times \boldsymbol{v}_{\mathrm{rel}} \equiv-2 m \boldsymbol{\Omega} \cdot \boldsymbol{v}_{\text {rel }} \\
& {[\text { definition of antisymmetric angular velocity tensor } \boldsymbol{\Omega}(\S 1.1, \S 1.7)] } \\
= & \text { Gyroscopic }(\text { Coriolis) "force" } \\
= & -2 m\left(\Omega_{x}, \Omega_{y}, \Omega_{z}\right) \times(\dot{x}, \dot{y}, \dot{z}) \\
= & \left(2 m \Omega_{z} \dot{y}-2 m \Omega_{y} \dot{z}, 2 m \Omega_{x} \dot{z}-2 m \Omega_{z} \dot{x}, 2 m \Omega_{y} \dot{x}-2 m \Omega_{x} \dot{y}\right), \tag{f}
\end{align*}
$$

and

$$
\boldsymbol{\Omega}=\left(\begin{array}{lll}
\Omega_{x x}=0 & \Omega_{x y}=-\Omega_{z} & \Omega_{x z}=\Omega_{y} \tag{g}\\
\Omega_{y x}=\Omega_{z} & \Omega_{y y}=0 & \Omega_{y z}=-\Omega_{x} \\
\Omega_{z x}=-\Omega_{y} & \Omega_{z y}=\Omega_{x} & \Omega_{z z}=0
\end{array}\right)
$$

Problem 3.16.9 Rotating Frames: 3-D Case (continued). Continuing from the preceding problem, show that

$$
\begin{equation*}
\partial T_{0} / \partial x=\cdots=m\left[\Omega^{2} x-(\boldsymbol{\Omega} \cdot \boldsymbol{r}) \Omega_{x}\right], \quad \text { etc., cyclically, } \tag{a}
\end{equation*}
$$

and, further, with $\boldsymbol{\Omega}=\Omega \boldsymbol{e}[$ fig. 3.39(b)], that

$$
\begin{align*}
\boldsymbol{f}_{C F} & =\boldsymbol{g r a d} T_{0} \equiv \partial T_{0} / \partial \boldsymbol{r}=\cdots=m \Omega^{2}[\boldsymbol{r}-(\boldsymbol{e} \cdot \boldsymbol{r}) \boldsymbol{e}] \\
& =m \Omega^{2}(\boldsymbol{r}-\boldsymbol{O} \boldsymbol{N})=\left(m \Omega^{2}\right) \boldsymbol{N} \boldsymbol{P} \\
& \left.=\text { Centrifugal "force", (i.e., }\left|\boldsymbol{f}_{C F}\right|=m \Omega^{2} \rho\right) . \tag{b}
\end{align*}
$$

Problem 3.16.10 Lagrangean of a Particle in General Relative Motion. Consider a particle P of mass m in unconstrained motion relative to a noninertial frame $O-x y z$ that has given motion, under a total force $\boldsymbol{f}=-\partial V(\boldsymbol{r}) / \partial \boldsymbol{r}, \quad V(\boldsymbol{r})=$ potential. Show that:
(i) To within terms equal to the total time derivative of a given function of the coordinates and time (i.e., to within "Lagrange-important" terms), the (double) Lagrangean of P is

$$
\begin{equation*}
2 L=m \boldsymbol{v}_{\mathrm{rel}} \cdot \boldsymbol{v}_{\mathrm{rel}}+2 m \boldsymbol{v}_{\mathrm{rel}}(\boldsymbol{\Omega} \times \boldsymbol{r})+m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2}-2 m\left(\boldsymbol{a}_{O} \cdot \boldsymbol{r}\right)-2 V(\boldsymbol{r}) . \tag{a}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& \partial L / \partial \boldsymbol{v}_{\mathrm{rel}}=m\left(\boldsymbol{v}_{\mathrm{rel}}+\boldsymbol{\Omega} \times \boldsymbol{r}\right) \equiv \boldsymbol{p}_{\mathrm{rel}}+m(\boldsymbol{\Omega} \times \boldsymbol{r})=m \boldsymbol{v} \equiv \boldsymbol{p} \\
& (\boldsymbol{v}=\text { inertial velocity of } P \text { relative to the moving axes origin } O), \tag{b}
\end{align*}
$$

$$
\begin{equation*}
\partial L / \partial \boldsymbol{r}=m\left(\boldsymbol{v}_{\mathrm{rel}} \times \boldsymbol{\Omega}\right)+m(\boldsymbol{\Omega} \times \boldsymbol{r}) \times \boldsymbol{\Omega}-m \boldsymbol{a}_{O}-\partial V / \partial \boldsymbol{r} \tag{c}
\end{equation*}
$$

Hence, obtain the Lagrangean equations of $P:\left(\partial L / \partial \boldsymbol{v}_{\text {rel }}\right)^{\cdot}-\partial L / \partial \boldsymbol{r}=\mathbf{0}$.

Notice that in the Lagrangean formalism, the equations of motion have the same form in both inertial and noninertial axes; but the corresponding Lagrangeans are different.

Problem 3.16.11 Energetics of a Particle in Relative Motion. Specialize the results of the preceding problem to the case where $O-x y z$ rotates uniformly about a fixed axis through O.
(i) Show that, in this case, the generalized energy of a particle,

$$
\begin{equation*}
h \equiv h_{\mathrm{rel}} \equiv\left(\partial L / \partial \boldsymbol{v}_{\mathrm{rel}}\right) \cdot \boldsymbol{v}_{\mathrm{rel}}-L \equiv \boldsymbol{p} \cdot \boldsymbol{v}_{\mathrm{rel}}-L, \tag{a}
\end{equation*}
$$

reduces to (notice absence of terms linear in $\boldsymbol{v}_{\text {rel }}$)

$$
\begin{equation*}
h=(1 / 2) m v_{\mathrm{rel}}{ }^{2}+\left[V-(1 / 2) m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2}\right] . \tag{b}
\end{equation*}
$$

(ii) Interpret the centrifugal potential

$$
V_{C F} \equiv-(1 / 2) m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2}=(m / 2)\left[(\boldsymbol{\Omega} \cdot \boldsymbol{r})^{2}-\Omega^{2} r^{2}\right] .
$$

[Alternatively, we can show that the corresponding centrifugal "force"

$$
\begin{equation*}
\boldsymbol{f}_{C F} \equiv-m \boldsymbol{a}_{C F}=-m[\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \boldsymbol{r})] \tag{c}
\end{equation*}
$$

is irrotational; that is, show that $\operatorname{curl} \boldsymbol{f}_{C F}=-m \operatorname{curl}[\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \boldsymbol{r})]=\mathbf{0} \Rightarrow \boldsymbol{f}_{C F}=$ $-\operatorname{grad} V_{C F}$.]

Problem 3.16.12 Energetics of a Particle in Relative Motion (continued). Continuing from the preceding problem (of uniform fixed-axis rotation), show that the generalized energy h can be expressed as

$$
\begin{equation*}
h_{\mathrm{rel}} \equiv h=h_{\text {inertial }}-\boldsymbol{H}_{O} \cdot \boldsymbol{\Omega}, \tag{a}
\end{equation*}
$$

where

$$
\begin{gather*}
h_{\text {inertial }} \equiv(1 / 2) m v^{2}+V=T+V \quad(\equiv E), \tag{b}\\
v^{2}=\boldsymbol{v} \cdot \boldsymbol{v}=\text { inertial velocity of } P, \quad \boldsymbol{H}_{O} \equiv \boldsymbol{r} \times(m \boldsymbol{v})=\boldsymbol{r} \times\left(\partial L / \partial \boldsymbol{v}_{\mathrm{rel}}\right) . \tag{c}
\end{gather*}
$$

Equation (a) expresses the law of transformation of (generalized) energy between an inertial frame and a uniformly rotating/nontranslating one. However, both linear and angular momentum of P in the noninertial frame $O-x y z$ are equal to their inertial counterparts in the inertial $O-X Y Z$:
$\boldsymbol{p} \equiv \partial L / \partial \boldsymbol{v}_{\text {rel }}=m \boldsymbol{v} \equiv \boldsymbol{p}_{\text {inertial }}$ and $\boldsymbol{H}_{O} \equiv \boldsymbol{r} \times\left(\partial L / \partial \boldsymbol{v}_{\text {rel }}\right)=\boldsymbol{r} \times \boldsymbol{p}=\boldsymbol{r} \times \boldsymbol{p}_{\text {inertial }} \equiv \boldsymbol{H}_{O, \text { rel }}$.
For a scalar derivation, see also Born (1927, p. 23).

Example 3.16.6 Motion of a Particle Near the Surface of Earth. Let us obtain the equations of motion of a particle P of mass m near the surface of Earth (fig. 3.40). Referring to fig. 3.40 , and employing the usual notations, we readily find

$$
\begin{equation*}
\boldsymbol{\Omega}=\left(\Omega_{x}, \Omega_{y}, \Omega_{z}\right)=(-\Omega \cos \theta, 0, \Omega \sin \theta) \tag{a}
\end{equation*}
$$

Figure 3.40 Motion of a particle P near Earth's surface, using Earth-bound axes $O-x y z$. $\boldsymbol{r}_{O} \rightarrow \boldsymbol{R}, R=$ radius of the Earth; $\theta=$ latitude.

$$
\begin{align*}
\boldsymbol{v}_{P} \equiv \boldsymbol{v} & =\boldsymbol{v}_{O}+\boldsymbol{v}_{P / O}=\boldsymbol{\Omega} \times \boldsymbol{R}+\left(\boldsymbol{v}_{P, \text { rel }}+\boldsymbol{\Omega} \times \boldsymbol{r}\right)=\boldsymbol{v}_{P, \text { rel }}+\boldsymbol{\Omega} \times(\boldsymbol{R}+\boldsymbol{r})\left\{\text { with } \boldsymbol{r}_{o} \rightarrow \boldsymbol{R}=R \boldsymbol{k}\right\} \\
& =(\dot{x}, \dot{y}, \dot{z})+(-\Omega \cos \theta, 0, \Omega \sin \theta) \times(x, y, R+z) \\
& =(\dot{x}-\Omega y \sin \theta, \dot{y}+\Omega x \sin \theta+\Omega(R+z) \cos \theta, \dot{z}-\Omega y \cos \theta), \tag{b}
\end{align*}
$$

and, therefore,

$$
\begin{equation*}
2 T=m v^{2}=\left[(\dot{x}-\Omega y \sin \theta)^{2}+(\dot{y}+\Omega x \sin \theta+\Omega(R+z) \cos \theta)^{2}+(\dot{z}-\Omega y \cos \theta)^{2}\right] \tag{c}
\end{equation*}
$$

also, in the neighborhood of Earth's surface, $V=m g z$.
From the above, it follows that Lagrange's equations for x, y, z are

$$
\begin{align*}
& \ddot{x}=2 \Omega \dot{y} \sin \theta+\Omega^{2}[\sin \theta(x \sin \theta+z \cos \theta)+R \sin \theta \cos \theta], \tag{d}\\
& \ddot{y}=-2 \Omega \dot{x} \sin \theta-2 \Omega \dot{z} \cos \theta+\Omega^{2} y, \tag{e}\\
& \ddot{z}=2 \Omega \dot{y} \cos \theta+\Omega^{2}\left[\cos \theta(x \sin \theta+z \cos \theta)+R \cos ^{2} \theta\right]-g . \tag{f}
\end{align*}
$$

The terms proportional to Ω are the components of the Coriolis (gyroscopic) "force" per unit mass, and those proportional to Ω^{2} are those of the centrifugal "force."

APPROXIMATE SOLUTION

Since $\Omega=2 \pi /(24)(60)(60) \approx 7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s}$, to a first Ω-approximation, we may neglect in (d-f) the Ω^{2}-terms, and rewrite the rest so that we can easily identify the gyroscopic terms $(\sim \Omega)$ in there more easily:

$$
\begin{align*}
& \ddot{x}=(0) \dot{x}+(2 \Omega \sin \theta) \dot{y}+(0) \dot{z} \tag{g}\\
& \ddot{y}=(-2 \Omega \sin \theta) \dot{x}+(0) \dot{y}+(-2 \Omega \cos \theta) \dot{z} \tag{h}\\
& \ddot{z}=(0) \dot{x}+(2 \Omega \cos \theta) \dot{y}+(0) \dot{z}-g . \tag{i}
\end{align*}
$$

To solve the linear system ($\mathrm{g}-\mathrm{i}$) we choose, for algebraic simplicity, the free-fall initial conditions at $t=0$:

$$
\begin{equation*}
x=0, \quad y=0, \quad z=H(>0) ; \quad \dot{x}=0, \quad \dot{y}=0, \quad \dot{z}=0 . \tag{j}
\end{equation*}
$$

Then (we recall that, here, $\theta=$ constant), eqs. (g) and (i) integrate once, respectively, to

$$
\begin{equation*}
\dot{x}=(2 \Omega \sin \theta) y, \quad \dot{z}=(2 \Omega \cos \theta) y-g t \tag{k}
\end{equation*}
$$

Substituting (k) into (h), neglecting $\sim \Omega^{2}$ terms, for consistency, and integrating the resulting equation while enforcing (j), we obtain

$$
\begin{equation*}
\ddot{y}=-4 \Omega^{2} y+(2 \Omega g \cos \theta) t \approx(2 \Omega g \cos \theta) t \Rightarrow y=(\Omega g \cos \theta / 3) t^{3}(>0) \tag{1}
\end{equation*}
$$

that is, in both the north $(0 \leq \theta \leq \pi / 2)$ and south $(-\pi / 2 \leq \theta \leq 0)$ hemispheres, the particle deviates eastwards. Thanks to (1), and (j), and to within $\sim \Omega$ terms, eqs. (k) finally integrate, respectively, to

$$
\begin{equation*}
x=0 \quad \text { and } \quad z=H-(1 / 2) g t^{2} . \tag{m}
\end{equation*}
$$

Clearly, for $t=(2 \mathrm{H} / \mathrm{g})^{1 / 2} \Rightarrow z=0$; that is, P hits the ground. Then, its eastward deviation is

$$
\begin{equation*}
y_{\text {eastward }}=(2 \Omega H / 3)(2 H / g)^{1 / 2} \cos \theta \tag{n}
\end{equation*}
$$

The above derivation of the equations of motion (d-f) clearly shows the superiority and simplicity of the Lagrangean method over that of Newton-Euler.

For an alternative solution of (g-i) see, for example, Spiegel (1967, pp. 152-154); and, for an instructive treatment of the effect of the $\sim \Omega^{2}$ terms, see, for example, Bahar (1991).

Problem 3.16.13 Consider the gyroscope shown in fig. 3.41. With the usual notations [and $A / C=$ transverse/axial (principal) moments of inertia at G], show that:

$$
\begin{equation*}
2 T=A(\dot{\theta})^{2}+A(\dot{\phi} \sin \theta)^{2}+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2} \tag{i}
\end{equation*}
$$

Figure 3.41 A gyroscope (and its Eulerian angles), supported in a light housing.
(ii) The equations of motion are

$$
\begin{align*}
\theta: & A \ddot{\theta}-A(\dot{\phi})^{2} \sin \theta \cos \theta+C(\dot{\psi}+\dot{\phi} \cos \theta) \dot{\phi} \sin \theta=Q_{\theta}, \tag{b}\\
\phi: & A \ddot{\phi} \sin ^{2} \theta+2 A \dot{\phi} \dot{\theta} \sin \theta \cos \theta-C(\dot{\psi}+\dot{\phi} \cos \theta) \dot{\theta} \sin \theta \\
& +C \cos \theta(\dot{\psi}+\dot{\phi} \cos \theta)^{\cdot}=Q_{\phi} \tag{c}\\
\psi: & C(\dot{\psi}+\dot{\phi} \cos \theta)^{\circ}=Q_{\psi} . \tag{d}
\end{align*}
$$

(iii) If $Q_{\psi}=0$, then $\dot{\psi}+\dot{\phi} \cos \theta \equiv$ total spin $=$ constant $\equiv n$, and the ϕ, θ equations become

$$
\begin{array}{ll}
\theta: & A \ddot{\theta}-A(\dot{\phi})^{2} \sin \theta \cos \theta+(C n \sin \theta) \dot{\phi}=Q_{\theta}, \\
\phi: & A \ddot{\phi} \sin ^{2} \theta+2 A \dot{\phi} \dot{\theta} \sin \theta \cos \theta-(C n \sin \theta) \dot{\theta}=Q_{\phi} . \tag{f}
\end{array}
$$

Identify the gyroscopic terms in the above equations of motion.

Problem 3.16.14 Gyroscopic Effects in a Pendulum of Varying Length. A block B, of mass M, translates along the smooth horizontal floor/axis $O x$. Block B is also connected to a linear spring of stiffness k whose other end is joined to the vertical wall $O y$. A massless rod $B P$ of variable length $l=l(t)=l_{o}+v t$ $\left[l_{o}=\right.$ constant $($ initial) length, $v=$ constant rate of change of $l]$ carries at its end P a particle P of mass m (fig. 3.42).

Choosing axes $O-x y$ so that $(C O)=$ stress-free length of spring, show that, with the usual notations, the Lagrangean equations of motion of this system can be written as

$$
\begin{align*}
& \left(\partial T_{2} / \partial \dot{x}\right)^{\cdot}-\partial T_{2} / \partial x=-k x-m v \cos \phi \dot{\phi} \tag{a}\\
& \left(\partial T_{2} / \partial \dot{\phi}\right)^{\cdot}-\partial T_{2} / \partial \phi=-m g l \sin \phi+m v \cos \phi \dot{x} \tag{b}
\end{align*}
$$

Identify the gyroscopic (Coriolis) forces in the above equations, and indicate their directions on fig. 3.42. What happens if $l=$ constant.

Figure 3.42 Pendulum of uniformly varying length and horizontally moving support.

Example 3.16.7 An Additional Power Theorem for Relative Motion. (Thomson and Tait, 1867-1912, §319, p. 319; see also Winkelmann and Grammel, 1927, pp. 463-465). Let us consider, with no loss of generality, a system with Lagrangean equations of motion

$$
\begin{equation*}
E_{k}=Q_{k}, \tag{a}
\end{equation*}
$$

where [recalling (3.10.1a ff.)] the left side decomposes into the following three parts:

$$
\begin{align*}
E_{k}= & E_{k, R}+E_{k, T}+E_{k, C} & & \tag{b}\\
& E_{k, R} \equiv E_{k}\left(T_{2}\right) \equiv\left(\partial T_{2} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{2} / \partial q_{k} & & (\text { relative inertia) } \tag{c}\\
& E_{k, T} \equiv \partial M_{k} / \partial t-\partial T_{0} / \partial q_{k} & & \text { (transport inertia) } \tag{d}\\
& E_{k, C} \equiv \sum\left(\partial M_{k} / \partial q_{r}-\partial M_{r} / \partial q_{k}\right) \dot{q}_{r} & & \text { (Coriolis inertia) } . \tag{e}
\end{align*}
$$

From (a), we immediately obtain the power equation

$$
\begin{equation*}
\sum E_{k} \dot{q}_{k}=\sum Q_{k} \dot{q}_{k} \equiv P(\text {-ower of impressed forces }) \tag{f}
\end{equation*}
$$

Let us transform the left side of (f). We find successively [recalling (3.9.3b) with $\left.T_{0}=0, T_{1}=0, T_{2}=T\right]$
(i) $\quad \sum E_{k, R} \dot{q}_{k} \equiv \sum\left[\left(\partial T_{2} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{2} / \partial q_{k}\right] \dot{q}_{k}=d T_{2} / d t+\partial T_{2} / \partial t$;
(ii) $\sum E_{k, T} \dot{q}_{k} \equiv \sum\left(\partial M_{k} / \partial t\right) \dot{q}_{k}-\sum\left(\partial T_{0} / \partial q_{k}\right) \dot{q}_{k} \equiv \partial T_{1} / \partial t-d_{q} T_{0} / d t$,
where

$$
\begin{equation*}
d_{q}(\ldots) / d t \equiv \sum\left[\partial(\ldots) / \partial q_{k}\right] \dot{q}_{k} \quad \text { (i.e., } t \text { and the } \dot{q} \text { 's remain fixed) } \tag{i}
\end{equation*}
$$

(iii) $\sum E_{k, C} \dot{q}_{k} \equiv \sum\left(\sum\left(\partial M_{k} / \partial q_{r}-\partial M_{r} / \partial q_{k}\right) \dot{q}_{r}\right) \dot{q}_{k}$

$$
\begin{equation*}
\equiv \sum\left(-\sum g_{k r} \dot{q}_{r}\right) \dot{q}_{k}=0 \tag{j}
\end{equation*}
$$

[Incidentally, eq. (j) shows the error committed when one tries to obtain Lagrange's equations for gyroscopic systems, eqs. (a), from a single power equation like (f), instead of a single but virtual work equation, like LP.]

In view of ($\mathrm{g}-\mathrm{j}$), we can rewrite (f) as

$$
\begin{equation*}
d T_{2} / d t=P+d_{q} T_{0} / d t-\partial\left(T_{2}+T_{1}\right) / \partial t \tag{k}
\end{equation*}
$$

But, further, we have

$$
\begin{equation*}
d T_{0} / d t=\partial T_{0} / \partial t+\sum\left(\partial T_{0} / \partial q_{k}\right) \dot{q}_{k}=\partial T_{0} / \partial t+d_{q} T_{0} / d t \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
d T_{1} / d t & =\partial T_{1} / \partial t+\sum\left[\left(\partial T_{1} / \partial q_{k}\right) \dot{q}_{k}+\left(\partial T_{1} / \partial \dot{q}_{k}\right) \ddot{q}_{k}\right] \\
& =\partial T_{1} / \partial t+d_{q} T_{1} / d t+\sum M_{k} \ddot{q}_{k} ; \tag{m}
\end{align*}
$$

and, therefore, the power equation (k) is finally transformed to

$$
\begin{align*}
d T / d t & =\left(T_{2}+T_{1}+T_{0}\right) \\
& =P+d T_{0} / d t+d_{q}\left(T_{0}+T_{1}\right) / d t-\partial T_{2} / \partial t+\sum M_{k} \ddot{q}_{k} . \tag{n}
\end{align*}
$$

The last four terms on (the right side of) the above represent the rate of supply of kinetic energy to the carried system from the carrying body (i.e., from its "tracks").

3.17 SERVO (OR CONTROL) CONSTRAINTS

The constraints examined so far, both holonomic and nonholonomic, are realized through mechanical contact of the system parts with foreign objects or obstacles (directly or indirectly, through auxiliary massless bodies; e.g., light inextensible cables). These latter are either at rest, or, generally, they move in ways known in advance; and, hence, they are unaffected by the motion and forces of the system. The associated reactions are passive; that is, without the aforementioned contacts, they cease to exist; and, for bilateral constraints, are assumed to satisfy LP (§3.2):

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=\sum R_{k} \delta q_{k}=0 \tag{3.17.1}
\end{equation*}
$$

Such constraints are the simplest ones to be found in mechanical systems; and analytical mechanics (AM) has, since its inception, been preoccupied with their study to such an extent that, in the minds of many, the subject is almost synonymous with their study. However, such constraints/reactions (C / R) are only one out of many logical and physical possibilities. Just as in continuum mechanics, not all parts of the total stress need obey Hooke's law, or even be elastic, so in AM, there exist constrained systems whose total reactions do not satisfy LP (3.17.1). Here, we summarize the basics of that particular and technically important nonLP type of C/R known as servo(motoric), or control, or control systems, or C/Rs of the second kind: $(\mathrm{C} / \mathrm{R})_{2}$; with the designation C / Rs of the first kind, $(\mathrm{C} / \mathrm{R})_{1}$, reserved for the earlier passive ones.

The $(\mathrm{C} / \mathrm{R})_{2} \mathrm{~s}$ are realized through auxiliary sources of energy that go into action automatically, and are automatically adjusted (or turned off) so that, at every moment, a particular such constraint is realized, that is, at least one of the obstacles that interacts physically with our system, either through direct contact or via action at a distance (e.g. electromagnetic forces), regulates its motion so that certain holonomic and/or nonholonomic constraints, specified ahead of time, are enforced continuously. Therefore, the motion of the controlling object(s) is not known in advance as a function of time [as in the $(\mathrm{C} / \mathrm{R})_{1}$ cases], but as the system moves, it continuously adjusts itself so as to satisfy all prescribed constraints.

The associated servoreactions are not known in advance but are calculated after the motion of the system has been determined; that is, as with $(C / R)_{1}$, first we solve the kinetic problem, and then the kinetostatic one.

HISTORICAL

These servoconstraints were introduced and examined in the early 1920s by P. Appell and his distinguished student H. Beghin ("Liaisons comportant un Asservissement," since the term control did not exist then), in their investigations of the SperryAnschütz gyrocompass and related navigation devices. Non-(C/R) cases were
also studied earlier (≈ 1910-1916) by the Russian-Ukrainian J. I. Grdina (18711931) in his studies of the dynamics of living organisms; but we have not been able to access them; see, for example, Fradlin, B. N., J. Appl. Mechanics (Ukrainian), 8 (6), 581-591, 1962 (in Russian); also, Arczewski and Pietrucha (1993, pp. 74-75).

Here, too, our treatment is based on a judicious modification of LP, with guiding goal to make the servoproblem determinate; that is, generate as many equations as the unknowns introduced by that model, say coordinates and multipliers (reactions). We begin with the Newton-Euler equation of motion of a generic system particle P of mass $d m$, which, in this case, has the following form:

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{F}+d \boldsymbol{R}+d \boldsymbol{R}^{\prime} \tag{3.17.2}
\end{equation*}
$$

where

$$
\begin{align*}
& d \boldsymbol{F}=\text { total impressed force on } P \tag{3.17.2a}\\
& d \boldsymbol{R}=\text { total passive reaction force }(1 \text { st kind }) \text { on } P, \tag{3.17.2b}\\
& d \boldsymbol{R}^{\prime}=\text { total servoreaction force }(2 \text { nd kind }) \text { on } P . \tag{3.17.2c}
\end{align*}
$$

From (3.17.2), carrying out some obvious mathematical operations, we obtain

$$
\begin{align*}
0 & =\boldsymbol{S}\left(d m \boldsymbol{a}-d \boldsymbol{F}-d \boldsymbol{R}-d \boldsymbol{R}^{\prime}\right) \cdot \delta \boldsymbol{r} \\
& =\boldsymbol{S}\left(d m \boldsymbol{a}-d \boldsymbol{F}-d \boldsymbol{R}^{\prime}\right) \cdot \delta \boldsymbol{r}+\boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r} \tag{3.17.3}
\end{align*}
$$

and, invoking (3.17.1), we finally obtain

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{R}^{\prime} \cdot \delta \boldsymbol{r} \neq 0 \tag{3.17.4}
\end{equation*}
$$

From the above, it follows that to obtain completely reactionless equations in both the $\{d \boldsymbol{R}\}$ and $\left\{d \boldsymbol{R}^{\prime}\right\}$, we must modify the $\{\delta \boldsymbol{r}\}$ (and δq 's), if possible, by imposing on them additional restrictions (constraints in virtual form) so that not only $\delta^{\prime} W_{R}=0$, but also

$$
\begin{equation*}
\delta^{\prime} W_{R^{\prime}} \equiv \boldsymbol{S} d \boldsymbol{R}^{\prime} \cdot \delta \boldsymbol{r}=0 \quad[\Rightarrow \boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{r}=0] \tag{3.17.5}
\end{equation*}
$$

This is the "Servo-Lagrange (D 'Alembert) principle" (SLP). In words: among the virtual displacements nullifying the virtual work of whatever ordinary contact/ passive reactions are present, we seek if there may exist a narrower class that, simultaneously, nullifies the virtual work of the additional servo/control constraint reactions. That narrower class of δq 's, if it exists, is determined by eq. (3.17.5), which, accordingly, becomes the key constitutive, namely, physical, tool for the Lagrangean solution of servoproblems. Indeed, we show below that such problems are determinate if the number of servoconstraints equals the number of additional restrictive virtual conditions ($=$ number of servoreactions) generated by (3.17.5).

An Example: The Servopendulum

Before we express these ideas in general system variables, let us discuss in some detail the following simple but instructive example: the (vertical) plane motion of a mathematical pendulum of mass m and variable (controlled) length l (fig. 3.43). Let us choose here $q_{1}=l$ and $q_{2}=\phi$, and study the case where an external agency, say, an

Figure 3.43 Geometry and physics of plane servopendulum.
agile hand, pulls the pendulum at O so that at every instant the following holonomic servoconstraint holds:

$$
\begin{equation*}
f(l, \phi)=0 \Rightarrow l=l(\phi)=\text { known functional relation. } \tag{3.17.6}
\end{equation*}
$$

Since (3.17.6) is maintained by the hand at O, the virtual work of the corresponding servoreaction vanishes, à la (3.17.5), if

$$
\begin{equation*}
\delta l=0 \tag{3.17.7}
\end{equation*}
$$

In general, and this is important, the holonomic servoconstraint (3.17.6) and the corresponding virtual servoconstraint (3.17.7) are unrelated to each other; that is, the latter does not follow from the former by differentiation (variation).

Rewriting (3.17.7) as (1) $\delta l=0$, or as (1) $\delta l+(0) \delta \phi=0$, and combining it via Lagrangean multipliers to LP:

$$
\begin{equation*}
M_{l} \delta l+M_{\phi} \delta \phi=0 \tag{3.17.8}
\end{equation*}
$$

where

$$
\begin{align*}
M_{l} & \equiv E_{l}-Q_{l} \equiv\left[(\partial T / \partial \dot{l})^{\cdot}-\partial T / \partial l\right]-Q_{l} \tag{3.17.8a}\\
M_{\phi} & \equiv E_{\phi}-Q_{\phi} \equiv\left[(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi\right]-Q_{\phi} \tag{3.17.8b}\\
2 T & =m\left[(\dot{l})^{2}+l^{2}(\dot{\phi})^{2}\right] \tag{3.17.8c}\\
V & =-m g l \cos \phi \\
& \Rightarrow Q_{l}=-\partial V / \partial l=+m g \cos \phi, \quad Q_{\phi}=-\partial V / \partial \phi=-m g l \sin \phi \tag{3.17.8d}
\end{align*}
$$

we immediately obtain the two Routh-Voss type equations of servomotion ($\lambda=$ multiplier)

$$
\begin{align*}
& (\partial T / \partial \dot{l})^{\cdot}-\partial T / \partial l=Q_{l}+\lambda(1): \quad(m \dot{l})^{\cdot}-m l(\dot{\phi})^{2}=m g \cos \phi+\lambda \tag{3.17.9a}\\
& (\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=Q_{\phi}+\lambda(0): \quad\left(m l^{2} \dot{\phi}\right)^{\cdot}=-m g l \sin \phi \tag{3.17.9b}
\end{align*}
$$

which, along with the servoconstraint (3.17.6), constitute a determinate system for $l(t), \phi(t), \lambda(t)$. Indeed, substituting (3.17.6) into the reactionless equation (3.17.9b), and since $d l / d t=(d l / d \phi) \dot{\phi}$, results in [assuming $l(t) \neq 0$]

$$
\begin{equation*}
d^{2} \phi / d t^{2}+A(\phi)(d \phi / d t)^{2}+B(\phi) \sin \phi=0 \tag{3.17.10}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\phi) \equiv 2[d l(\phi) / d \phi] / l(\phi), \quad B(\phi) \equiv g / l(\phi): \quad \text { known functions of } \phi . \tag{3.17.10a}
\end{equation*}
$$

Next, solving the nonlinear ϕ-equation (3.17.10) (plus initial conditions), we obtain $\phi=\phi(t)$; then (3.17.6) yields $l=l[\phi(t)]=l(t)$; and, finally, substituting the so-found $\phi(t)$ and $l(t)$ into the multiplier-containing equation (3.17.9a) we get the servoreaction $\lambda=\lambda(t)$. In sum:

$$
\delta^{\prime} W_{R^{\prime}}=0 \Rightarrow \delta l=0 \Rightarrow M_{\phi}=0 \Rightarrow \phi(t) \Rightarrow l=l[\phi(t)]=l(t) \Rightarrow \lambda(t)
$$

To understand this servoconstraint problem better, let us also discuss the following related nonservo versions of it:
(i) If the constraint (3.17.6) was an ordinary (i.e., passive) one, even though of the exact same finite form as in the servo case, then we would have,

$$
\begin{align*}
& \delta f=(\partial f / \partial l) \delta l+(\partial f / \partial \phi) \delta \phi=0 \\
& \Rightarrow \delta l=-[(\partial f / \partial \phi) /(\partial f / \partial l)] \delta \phi \equiv[d l(\phi) / d \phi] \delta \phi \tag{3.17.11}
\end{align*}
$$

instead of (3.17.7); that is, in general, $\delta l \neq 0$ and $\delta \phi \neq 0$; and this combined with LP, eq. (3.17.8), would have produced the two Routh-Voss-type equations

$$
\begin{equation*}
M_{l}=\lambda(\partial f / \partial l) \quad \text { and } \quad M_{\phi}=\lambda(\partial f / \partial \phi) ; \tag{3.17.12}
\end{equation*}
$$

or, equivalently, the kinetic (Hadamard-type) equation

$$
\begin{equation*}
(\partial f / \partial l) M_{\phi}-(\partial f / \partial \phi) M_{l}=0 \Rightarrow M_{\phi}+[d l(\phi) / d \phi] M_{l}=0, \tag{3.17.13}
\end{equation*}
$$

resulting by eliminating λ between eqs. (3.17.12). These latter plus the (now assumed) passive constraint (3.17.6) would constitute a determinate system for $l(t), \phi(t), \lambda(t)$.
(ii) Next, if, unlike the servo case, the temporal variation of l was known in advance, that is, if $l=l(t)=$ known (i.e., prescribed) function of time (e.g., parametric excitation), but no constraint $f(l, \phi)=0$ existed, then we would have $\delta l=0$ but $\delta \phi \neq 0$, i.e., (1) $\delta l+(0) \delta \phi=0$, and so the equations of motion would be

$$
\begin{equation*}
M_{l}=\lambda(1) \quad \text { and } \quad M_{\phi}=\lambda(0)=0 \tag{3.17.14}
\end{equation*}
$$

as in the servo case; but without (3.17.6) to connect them. Clearly, this case is also determinate.
(iii) Finally, if l and ϕ were completely unrelated, and neither of the two was known in advance, then

$$
\begin{equation*}
\delta l \neq 0 \quad \text { and } \quad \delta \phi \neq 0 ; \quad \text { i.e., }(0) \delta l+(0) \delta \phi=0, \tag{3.17.15a}
\end{equation*}
$$

and this combined with (3.17.8) would produce the two equations

$$
\begin{equation*}
M_{l}=\lambda(0)=0 \quad \text { and } \quad M_{\phi}=\lambda(0)=0 \tag{3.17.15b}
\end{equation*}
$$

from which $l(t)$ and $\phi(t)$ could be determined.

The above cases are summarized below [with accents (subscripts) denoting ordinary (partial) derivatives]:

Finite constraints Virtual constraints Equations of motion
0. $f(l, \phi)=0 \Rightarrow l=l(\phi)$ (servo) But: $\delta l=0, \delta \phi \neq 0 \quad M_{l}=\lambda, \quad M_{\phi}=0$

1. $f(l, \phi)=0$ (passive)
2. No $f(l, \phi)=0$
$\Rightarrow \delta f=0: \delta l=l^{\prime}(\phi) \delta \phi \neq 0$,
$M_{l}=\lambda f_{l}, \quad M_{\phi}=\lambda f_{\phi}$
$\delta \phi \neq 0$
but $l=l(t) \quad$ (prescribed)
3. No $f(l, \phi)=0$
$\delta l=0, \delta \phi \neq 0$
$M_{l}=\lambda, \quad M_{\phi}=0$
$\delta l \neq 0, \delta \phi \neq 0$
$M_{l}=0, \quad M_{\phi}=0$
This simple but sort of prototypical example helps us understand some of the fundamental features of constrained system mechanics:

- Even though, in both cases 0 (servo) and 1 (passive), the constraint has the same finite form, yet the virtual displacement restrictions in each case are not the same, but depend on exactly how the corresponding constraint is realized, that is, on how the controls are applied. And these differences in virtual displacements lead, in turn, to different equations of motion, and, of course, different equations of power. Indeed, for these four cases, we have, respectively:

$$
\begin{align*}
M_{l} \dot{l}+M_{\phi} \dot{\phi} & =(\lambda)(\dot{i})+(0)(\dot{\phi})=\lambda \dot{l} \neq 0 & & {[\text { servo problem }] } \\
& =\left(\lambda f_{l}\right)(\dot{l})+\left(\lambda f_{\phi}\right)(\dot{\phi})=\lambda \dot{f}=0 & & {[\text { passive problem }] } \\
& =(\lambda)(\dot{l})+(0)(\dot{\phi})=\lambda \dot{l} \neq 0 & & {[l(t) \text { prescribed, } n o f(l, \phi)=0] } \\
& =(0)(\dot{l})+(0)(\dot{\phi})=0 & & {[\text { l and } \phi \text { independent, no } f(l, \phi)=0] ; } \tag{3.17.16}
\end{align*}
$$

even though, in all cases, $\delta I-\delta^{\prime} W=M_{l} \delta l+M_{\phi} \delta \phi=0$.

- Conversely, cases 0 and 2 may have the same virtual constraints $(\Rightarrow$ same form of equations of motion), but since they are physically different (\Rightarrow different finite constraints) they will have different ultimate solutions $l=l(t$; initial conditions), $\phi=$ $\phi(t$; initial conditions).
The example also demonstrates that servoproblems can be treated competently and clearly by Lagrangean mechanics; that is, contrary to certain authors' claims (that, somehow, Lagrange's method is restricted to "ideal" constraints), these problems do not fall outside the classical methods, and, hence, do not need new "principles" for their solution. However, they do need a proper understanding of the underlying physics, and subsequent correct application of the dynamical principle of virtual work, but viewed as a constitutive postulate, like (3.17.1) and (3.17.5), and not as some mysterious "law of nature." This is far safer than manipulating the equations of motion, even the Lagrangean ones.

General Considerations

One Holonomic Servoconstraint
Now, let us resume our general considerations in system variables. For simplicity, but no real loss of generality, we begin our discussion with an n - $D O F$ system under holonomic servoconstraints. We introduce the following basic definition.

DEFINITION

The holonomic equation

$$
\begin{equation*}
f\left(t, q_{1}, \ldots, q_{n}\right) \equiv f(t, q)=0 \tag{3.17.17}
\end{equation*}
$$

represents a servoconstraint, say, relative to q_{1}, if after substituting into it $q_{2}=q_{2}(t), \ldots, q_{n}=q_{n}(t)$, which are not known in advance, it takes the form

$$
\begin{equation*}
q_{1}=q_{1}\left(t, q_{2}, \ldots, q_{n}\right)=q_{1}\left[t, q_{2}=q_{2}(t), \ldots, q_{n}=q_{n}(t)\right] \equiv q_{1 o}(t) \tag{3.17.17a}
\end{equation*}
$$

Now, the virtual variations of the system - that is, the virtual form of $(3.17 .17,17 \mathrm{a})$, follow from the constitutive requirement of the vanishing of the total virtual work of the corresponding servoreactions; that is, from the constitutive variational equation (3.17.5). The latter yields

$$
\begin{equation*}
\delta q_{1}=\left(\partial q_{1 o} / \partial t\right) \delta t=0, \quad \delta q_{2} \neq 0, \ldots, \delta q_{n} \neq 0 \tag{3.17.17b}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\text { (1) } \delta q_{1}+(0) \delta q_{2}+\cdots+(0) \delta q_{n}=0 \tag{3.17.17c}
\end{equation*}
$$

and when this is combined with ("adjoined" to) SLP, eq. (3.17.4), it leads to the following "servo-Routh-Voss" equations [with $E_{k}-Q_{k} \equiv M_{k}(k=1, \ldots, n)$, $\left.\lambda_{1} \equiv \lambda\right]:$

$$
\begin{array}{ll}
\text { Kinetostatic: } & M_{1}=\lambda(1) \quad \text { or } \quad M_{1}=\lambda, \\
\text { Kinetic: } & M_{2}=\cdots=M_{n}=\lambda(0)=0 . \tag{3.17.17e}
\end{array}
$$

Here, too, the finite holonomic control constraint (3.17.17) is, generally, unrelated to the virtual control constraints $\left(3.17 .17 \mathrm{~b}\right.$, c) resulting from $\delta^{\prime} W_{R^{\prime}}=0$. Next, solving the n equations (3.17.17e) and (3.17.17), or (3.17.17a), with $d q_{1} / d t=$ $\sum\left(\partial q_{1} / \partial q_{\bullet}\right)\left(d q_{\bullet} / d t\right)+\partial q_{1} / \partial t(\bullet=2, \ldots, n)$, we obtain $q_{2}=q_{2}(t), \ldots, q_{n}=q_{n}(t) ;$ and then, substituting these time functions in (3.17.17d), we find $\lambda=M_{1}(t)=\lambda(t)$.

If the constraint $(3.17 .17,17$ a) was passive, we would have

$$
\begin{equation*}
q_{1}=q_{1}\left(t, q_{2}, \ldots, q_{n}\right) \Rightarrow \delta q_{1}=\sum\left(\partial q_{1} / \partial q_{\bullet}\right) \delta q_{\bullet} \neq 0 \quad(\bullet=2, \ldots, n) \tag{3.17.18a}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\text { (1) } \delta q_{1}+\left(-\partial q_{1} / \partial q_{2}\right) \delta q_{2}+\cdots+\left(-\partial q_{1} / \partial q_{n}\right) \delta q_{n}=0 \tag{3.17.18b}
\end{equation*}
$$

instead of ($3.17 .17 \mathrm{~b}, \mathrm{c}$), and so the corresponding equations of motion would be, in the Routh-Voss form

$$
\begin{equation*}
M_{1}=\lambda(1) ; \quad M_{2}=\lambda\left(-\partial q_{1} / \partial q_{2}\right), \ldots, M_{n}=\lambda\left(-\partial q_{1} / \partial q_{n}\right) \tag{3.17.18c}
\end{equation*}
$$

or, in the Hadamard form,
Kinetostatic: $\quad M_{1}=\lambda$;
Kinetic:

$$
\begin{equation*}
M_{2}+\left(\partial q_{1} / \partial q_{2}\right) M_{1}=0, \ldots, M_{n}+\left(\partial q_{1} / \partial q_{n}\right) M_{1}=0 \tag{3.17.18d}
\end{equation*}
$$

and since the constraint (3.17.17) is holonomic, we can enforce it directly into the kinetic energy; that is,

$$
\begin{align*}
T & =T\left[t, q_{1}\left(t, q_{2}, \ldots, q_{n}\right), \dot{q}_{1}\left(t, q_{2}, \ldots, q_{n}\right), q_{2}, \ldots, q_{n}, \dot{q}_{2}, \ldots, \dot{q}_{n}\right] \\
& \equiv T_{o}\left(t, q_{\bullet}, \dot{q}_{\bullet}\right) \equiv T_{o} \tag{3.17.18f}
\end{align*}
$$

and $E_{\bullet}+\left(\partial q_{1} / \partial q_{\bullet}\right) E_{1}=\left(\partial T_{o} / \partial \dot{q}_{\bullet}\right)^{\cdot}-\partial T_{o} / \partial q_{\bullet} \equiv E_{\bullet}\left(T_{o}\right)$, so that (3.17.18e) can be rewritten as

$$
\begin{equation*}
E_{\bullet}\left(T_{o}\right)=Q_{\bullet}+\left(\partial q_{1} / \partial q_{\bullet}\right) Q_{1} \quad\left(\equiv Q_{\bullet, o}\right) . \tag{3.17.18g}
\end{equation*}
$$

Two Holonomic Servoconstraints

Next, if we have two servoconstraints relative to q_{1} and q_{2} :

$$
\begin{equation*}
f_{1}\left(t, q_{1}, \ldots, q_{n}\right) \equiv f_{1}(t, q)=0 \quad \text { and } \quad f_{2}\left(t, q_{1}, \ldots, q_{n}\right) \equiv f_{2}(t, q)=0 \tag{3.17.19a}
\end{equation*}
$$

or, equivalently,

$$
\begin{align*}
& q_{1}=q_{1}\left(t, q_{3}, \ldots, q_{n}\right) \Rightarrow q_{1}\left[t, q_{3}=q_{3}(t), \ldots, q_{n}=q_{n}(t)\right] \equiv q_{1 o}(t), \\
& q_{2}=q_{2}\left(t, q_{3}, \ldots, q_{n}\right) \Rightarrow q_{2}\left[t, q_{3}=q_{3}(t), \ldots, q_{n}=q_{n}(t)\right] \equiv q_{2 o}(t) \tag{3.17.19b}
\end{align*}
$$

then, by repeating the earlier reasoning, we deduce that, for the fundamental equation (3.17.5) to hold, the virtual variations of the system must satisfy

$$
\begin{equation*}
\delta q_{1}=0, \quad \delta q_{2}=0 ; \quad \delta q_{3} \neq 0, \ldots, \delta q_{n} \neq 0 \tag{3.17.19c}
\end{equation*}
$$

or, equivalently,
(1) $\delta q_{1}+(0) \delta q_{2}+\cdots+(0) \delta q_{n}=0$,
(0) $\delta q_{1}+(1) \delta q_{2}+\cdots+(0) \delta q_{n}=0 ;$
and when these expressions are combined with LP,

$$
\begin{equation*}
M_{1} \delta q_{1}+M_{2} \delta q_{2}+M_{3} \delta q_{3}+\cdots+M_{n} \delta q_{n}=0 \tag{3.17.19e}
\end{equation*}
$$

via the multipliers λ_{1} and λ_{2}, they produce the following two groups of equations of servomotion:

Kinetostatic: $\quad M_{1}=\lambda_{1}(1)+\lambda_{2}(0)=\lambda_{1}, \quad M_{2}=\lambda_{1}(0)+\lambda_{2}(1)=\lambda_{2} ;$

Kinetic: $\quad M_{3}=\lambda_{1}(0)+\lambda_{2}(0)=0, \ldots, M_{n}=\lambda_{1}(0)+\lambda_{2}(0)=0$.
Solving the n equations $(3.17 .19 \mathrm{~g})$ and (3.17.19a, b) yields $q_{1}(t), \ldots, q_{n}(t)$; and then substituting these time functions in (3.17.19f) gives the two servoreactions

$$
\begin{equation*}
\lambda_{1}=M_{1}(t)=\lambda_{1}(t) \quad \text { and } \quad \lambda_{2}=M_{2}(t)=\lambda_{2}(t) \tag{3.17.19h}
\end{equation*}
$$

General Case: Holonomic and/or Pfaffian
Servoconstraints
The extension to $m^{\prime}(<n)$ holonomic servoconstraints relative to $q_{1}, \ldots, q_{m^{\prime}}$ is obvious. However, in all cases:

- In order to have a determinate problem, the number of nonvirtual servoconstraints [like (3.17.17), (3.17.19a)], m^{\prime}, must equal the number of virtual servoconstraints resulting from (3.17.5): $\delta^{\prime} W_{R^{\prime}}=0$ [like (3.17.17b, c), (3.17.19c, d)], say s; since this also equals the number of unknown servoreactions/multipliers); that is, we must have

$$
\begin{aligned}
\boldsymbol{m}^{\prime} & (\equiv \text { number of nonvirtual servoconstraints }) \\
& =\boldsymbol{s}(\equiv \text { number of virtual servoconstraints } \equiv \text { number of servoreactions }) .
\end{aligned}
$$

- If $\boldsymbol{m}^{\prime}>\boldsymbol{s}$ [i.e., more (nonvirtual) servoconstraints than servoreactions], the problem is, in general, impossible (overdeterminate)—we cannot have more servoconstraints than the number of virtual conditions on the Lagrangean coordinates resulting from the nullification of the virtual work of the associated servoreactions; that is, $\delta^{\prime} W_{R^{\prime}}=0$; while
- If $\boldsymbol{m}^{\prime}<\boldsymbol{s}$ [i.e., fewer (nonvirtual) servoconstraints than servoreactions], the problem is indeterminate, unless we are given additional physical facts (constitutive equations) about the behavior of these servoreactions.

The above methodology is extended intact to the case where some (or all) of the m^{\prime} servoconstraints are holonomic and the rest (or all) are Pfaffian, holonomic or not. Specifically, let our system be subject to the following additional constraints:
(i) m passive (1st kind) (with no loss in generality) Pfaffian constraints

$$
\begin{equation*}
\sum a_{d k} \dot{q}_{k}+a_{d}=0 \quad(d=1, \ldots, m) \tag{3.17.20a}
\end{equation*}
$$

whose virtual form is, therefore [recalling (2.9.11)],

$$
\begin{equation*}
\sum a_{d k} \delta q_{k}=0 \tag{3.17.20b}
\end{equation*}
$$

and
(ii) m^{\prime} servo (2nd kind) (again, with no loss in generality) Pfaffian constraints

$$
\begin{equation*}
\sum a_{d^{\prime} k}^{\prime} \dot{q}_{k}+a_{d^{\prime}}^{\prime}=0 \quad\left(d^{\prime}=1, \ldots, m^{\prime}\right) \tag{3.17.20c}
\end{equation*}
$$

with virtual form

$$
\begin{equation*}
\sum A_{D k} \delta q_{k}=0 \quad(D=1, \ldots, s) \tag{3.17.20d}
\end{equation*}
$$

where, as already stressed, the (coefficients of the) "servovirtual" forms (3.17.20d) follow from the vanishing of the virtual work of the servoreactions, eq. (3.17.5); that is, they are unrelated to (the coefficients of) their velocity "counterparts" (3.17.20c), and so are, in general, their numbers m^{\prime} and s [unlike the coefficients/number of (3.17.20b), which are directly related with those of (3.17.20a), as detailed in $\S 2.9$]. Combination of the virtual forms (3.17.20b) and (3.17.20d) with LP readily yields the n Routh-Voss-type equations of motion

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{d} a_{d k}+\sum \lambda_{D}^{\prime} A_{D k} \tag{3.17.20e}
\end{equation*}
$$

where the λ 's ($\lambda^{\prime \prime}$ s) are the $m(s)$ passive (servo) reactions; and along with (3.17.20a) and $(3.17 .20 \mathrm{c})$ constitute a system of $n+m+m^{\prime}$ equations for the $n+m+s$ unknowns (created by these "narrower" δq 's): $\left\{q_{1}(t), \ldots, q_{n}(t) ; \lambda_{1}(t), \ldots, \lambda_{m}(t)\right.$; $\left.\lambda_{1}^{\prime}(t), \ldots, \lambda_{s}^{\prime}(t)\right\}$; hence the requirement $m^{\prime}=s$, for determinacy. [For a Maggilike approach, the number of independent $\delta q^{\prime} s=$ number of independent equations, equals $n-(m+s)$.]

This is an area in rapid evolution, and one with great potential for significant additional theoretical and practical results; for example, formulation in terms of quasi variables, application of differential and integral variational principles (chaps. 6, 7), extension to varying mass, impulsive motion of servocontrolled systems (chap. 4).

So far, all the relevant work in English seems to consist of translations of French and Soviet/Russian works. Among these, we recommend for complementary reading
(alphabetically): Appell (1953, pp. 402-416), Apykhtin and Iakovlev (1980), Azizov (1986), Beghin (1967, pp. 440-443, 523-525), Cabannes (1965, pp. 188-191; summary of Appell/Beghin's work), Castoldi (1949), Kirgetov [1964(a),(b); 1967], LeviCivita and Amaldi (1927, pp. 377-380, Mei (1987, pp. 243-248; excellent summary), Rumiantsev (1976, and references cited therein).

Problem 3.17.1 Consider a circular homogeneous disk D of negligible mass and radius R, free to rotate about a fixed horizontal axis through its center (pin) O (fig. 3.44). A plate P, of mass m and mass center G, is smoothly pin-joined on D at a point A. A motor acting on the disk D (or, perhaps, being located at A) at every instant realizes the servoconstraint

$$
\begin{equation*}
\operatorname{angle}(O A, A G) \equiv \phi-\theta=\pi / 2 \tag{a}
\end{equation*}
$$

(i) Show that the (double) kinetic and potential energies of P are, respectively,

$$
\begin{align*}
& 2 T=m\left[R^{2}(\dot{\phi})^{2}+\left(l^{2}+k_{G}^{2}\right)(\dot{\theta})^{2}+2 R l \cos (\phi-\theta) \dot{\phi} \dot{\theta}\right], \tag{b}\\
& \left(k_{G}=\text { radius of gyration of } P \text { about } G\right) \\
& V=-m g(R \cos \phi+l \cos \theta), \\
& \Rightarrow \delta^{\prime} W=-m g(R \sin \phi \delta \phi+l \sin \theta \delta \theta)=\text { virtual work of weight. } \tag{c}
\end{align*}
$$

An additional term $(1 / 2) I_{O}(\dot{\phi})^{2}$, in T, would have accounted for the inertia of D ($I_{O}=$ moment of inertia of disk about O).
(ii) Show that, here, the condition $\delta^{\prime} W_{R^{\prime}}=0$ (recall that the servomotor is acting on D) leads to

$$
\begin{equation*}
\delta \phi=0 \quad \text { or } \quad(1) \delta \phi+(0) \delta \theta=0 \tag{d}
\end{equation*}
$$

and, hence, to the equations of motion

$$
\begin{equation*}
M_{\phi}=\lambda \quad \text { and } \quad M_{\theta}=0, \tag{e}
\end{equation*}
$$

Figure 3.44 "Double" pendulum under the servoconstraint $\phi-\theta=\pi / 2$ on disk $D ; O A=R, A G=I$.
where

$$
\begin{align*}
& M_{\phi} \equiv E_{\phi}-Q_{\phi} \equiv\left[(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi\right]-(-m g R \sin \phi)=\cdots \tag{f}\\
& M_{\theta} \equiv E_{\theta}-Q_{\theta} \equiv\left[(\partial T / \partial \dot{\theta})^{\cdot}-\partial T / \partial \theta\right]-(-m g l \sin \theta)=\cdots \tag{g}
\end{align*}
$$

(iii) Show that (e, f, g), in extenso, after taking into account the servoconstraint (a) and with $k_{A}{ }^{2} \equiv k_{G}{ }^{2}+l^{2}$, are

$$
\begin{equation*}
m\left[R^{2} \ddot{\phi}+R l(\dot{\theta})^{2}+g R \sin \phi\right]=\lambda \tag{h}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda(t)=m\left[R^{2} \ddot{\theta}+R l(\dot{\theta})^{2}+g R \cos \theta\right] \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{A}^{2} \ddot{\theta}-R l(\dot{\theta})^{2}+g l \sin \theta=0 . \tag{j}
\end{equation*}
$$

[Hence solving the kinetic equation (j), we obtain $\theta(t)$, and then substituting that function of time into the kinetostatic equation (i), we obtain the servoreaction $\lambda(t)$.]
(iv) Extend the above to include the inertia of the disk D.

For additional details and insights, see Appell (1953, pp. 411-412), Cabannes (1968, pp. 189-191), Kirgetov (1967, pp. 473-474).

Problem 3.17.2 Continuing from the preceding problem, show that if the constraint (a), $\phi-\theta=\pi / 2$, is an ordinary passive one, say by contact between D and $P[\Rightarrow \delta \phi=\delta \theta \neq 0$, or $(1) \delta \phi+(-1) \delta \theta=0]$, then the corresponding equations of motion are

$$
\begin{equation*}
M_{\phi}=\lambda \quad \text { and } \quad M_{\theta}=-\lambda . \tag{a}
\end{equation*}
$$

Then show that combination of (a) $\left(\Rightarrow M_{\phi}+M_{\theta}=0\right)$ with the above constraint results in the physical pendulum-like kinetic equation

$$
\begin{equation*}
\left(R^{2}+k_{A}^{2}\right) \ddot{\theta}+g(R \cos \theta+l \sin \theta)=0 \tag{b}
\end{equation*}
$$

from which $\theta(t)$ [and $\phi=\pi / 2+\theta(t) \equiv \phi(t)]$ can be determined.
[The multiplier (passive reaction) can then be easily found from either of the (now algebraic) equations (a): $\lambda=M_{\phi}[\phi(t), \theta(t)]=M_{\phi}(t)=-M_{\theta}[\phi(t), \theta(t)]=$ $-M_{\theta}(t)=\lambda(t)$.]

Finally, extend these results to include the inertia of the disk D.

Problem 3.17.3 Continuing from the preceding problems, show that if $\phi=$ $\phi(t)=$ prescribed, but no $f(\phi, \theta)=0$ exists [i.e., $\delta \phi=0$ but $\delta \theta \neq 0$], then the equations of motion are

$$
\begin{equation*}
M_{\phi}=\lambda \quad \text { and } \quad M_{\theta}=0 ; \tag{a}
\end{equation*}
$$

and constitute a determinate system for $\theta=\theta(t), \lambda=\lambda(t)$.
What happens if ϕ and θ and their virtual variations are completely independent [i.e., no $f(\phi, \theta)=0$, and $\delta \phi=0, \delta \theta=0$]?

Finally, extend these results to include the inertia of the disk D.

Figure 3.45 Spherical mathematical pendulum under a servoconstraint at O. Spherical coordinates: $x=(I \sin \theta) \cos \phi ; y=(I \sin \theta) \sin \phi ; z=I \cos \theta$.

Problem 3.17.4 (Castoldi, 1949). Consider the motion of the spherical (mathematical) pendulum P, of mass m and length l (fig. 3.45).
(i) Show that under the servoconstraint at O,

$$
\begin{equation*}
f(l, \theta)=0 \Rightarrow l=l(\theta)\{=\cdots=l[\theta(t)] ; \quad \delta l=0, \delta \phi \neq 0, \delta \theta \neq 0\} \tag{a}
\end{equation*}
$$

its ϕ and θ equations of motion are

$$
\begin{align*}
E_{\phi}=Q_{\phi}: & \left(l^{2} \sin ^{2} \theta\right) \ddot{\phi}+2\left[l \sin ^{2} \theta(d l / d \theta)+l^{2} \sin \theta \cos \theta\right] \dot{\phi} \dot{\theta}=0 \tag{b}\\
E_{\theta}=Q_{\theta}: & l^{2} \ddot{\theta}+2 l(d l / d \theta)(\dot{\theta})^{2}-\left(l^{2} \sin \theta \cos \theta\right)(\dot{\phi})^{2}=-g l \sin \theta \tag{c}
\end{align*}
$$

[Three equations for $l(t), \phi(t), \theta(t)$.]
(ii) Show that if eq. (a) represents an ordinary passive constraint $[\Rightarrow \delta l=(d l / d \theta) \delta \theta \neq 0, \delta \phi \neq 0, \delta \theta \neq 0$], then the reactionless (Hadamard-type) equations for ϕ and θ are

$$
\begin{align*}
E_{\phi}=Q_{\phi}: & \left(l^{2} \sin ^{2} \theta\right) \ddot{\phi}+2\left[l \sin ^{2} \theta(d l / d \theta)+l^{2} \sin \theta \cos \theta\right] \dot{\phi} \dot{\theta}=0 \tag{d}\\
E_{\theta}+(d l / d \theta) E_{l} & =Q_{\theta}+(d l / d \theta) Q_{l}: \\
& {\left[(d l / d \theta)^{2}+l^{2}\right] \ddot{\theta}+(d l / d \theta)\left[\left(d^{2} l / d \theta^{2}\right)+l\right](\dot{\theta})^{2} } \\
& -l[l \cos \theta+(d l / d \theta) \sin \theta] \sin \theta(\dot{\phi})^{2}=g l\left[(d l / d \theta) l^{-1} \cos \theta-\sin \theta\right] \tag{e}
\end{align*}
$$

[Again three equations for $l(t), \phi(t), \theta(t)$.]
(iii) Show that (e) can be rewritten as

$$
\begin{equation*}
\left(\partial T_{o} / \partial \dot{\theta}\right)^{\cdot}-\partial T_{o} / \partial \theta=Q_{\theta}+(d l / d \theta) Q_{l} \quad\left(\equiv Q_{\theta o}\right) \tag{f}
\end{equation*}
$$

where

$$
\begin{align*}
2 T_{o} & =m\left[(d l / d \theta)^{2}(\dot{\theta})^{2}+l^{2}(\dot{\theta})^{2}+l^{2} \sin ^{2} \theta(\dot{\phi})^{2}\right] \\
Q_{\phi} & =0, \quad Q_{\theta}=-m g l \sin \theta, \quad Q_{l}=m g \cos \theta \tag{g}
\end{align*}
$$

(iv) Find the general functional expressions for the reaction $\lambda=\lambda(t)$ in cases (i) and (ii).

Figure 3.46 Servoconstraints on a Cardan-suspended gyro [$\phi=$ angle of rotation of $C_{0} ; \theta=$ angle of planes of C_{i} and $C_{o} ; \psi=$ angle of rotation of B about "articulation axis" $a-a$, fixed in C_{i} (spin axis)].

Example 3.17.1 Let us consider a gyro B (axisymmetric body of revolution), supported by two Cardan-like massless circular rings $C_{i(\text { inner })}$ and $C_{o(\text { outer })}$, with its center of mass G at the intersection of the three axes $a-a, a^{\prime}-a^{\prime}, a^{\prime \prime}-a^{\prime \prime}$ (fig. 3.46).
(i) Now, let us assume that a motor, acting on C_{o}, realizes, at every instant, the servoconstraint

$$
\begin{equation*}
\phi=\theta . \tag{a}
\end{equation*}
$$

To nullify the virtual work of the corresponding reactions, from the motor to C_{o}, we choose the restricted virtual displacement

$$
\begin{equation*}
\delta \phi=0 \tag{b}
\end{equation*}
$$

which, we notice, does not coincide with the formal mathematical virtual version of (a): $\delta \phi=\delta \theta$. Equation (b) can be rewritten, equivalently, as

$$
\begin{equation*}
(1) \delta \phi+(0) \delta \theta+(0) \delta \psi=0 \tag{c}
\end{equation*}
$$

and, therefore, combined with the principle of Lagrange

$$
\begin{equation*}
M_{\phi} \delta \phi+M_{\theta} \delta \theta+M_{\psi} \delta \psi=0 \tag{d}
\end{equation*}
$$

leads, with the help of the multiplier λ to the Routh-Voss equations

$$
\begin{align*}
& M_{\phi}=\lambda(1): \quad E_{\phi}=Q_{\phi}+\lambda \tag{e}\\
& M_{\theta}=\lambda(0): \quad E_{\theta}=Q_{\theta} \\
& \left(\text { e.g., } Q_{\theta}=-k \theta, k=\text { torsional spring constant }\right), \tag{f}\\
& M_{\psi}=\lambda(0): \quad E_{\psi}=Q_{\psi} \tag{g}
\end{align*}
$$

where [applying, by now, well-known steps, and with $A / C=$ transverse/axial principal moments of inertia of B at G]

$$
\begin{equation*}
2 T=A\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2} \tag{h}
\end{equation*}
$$

The solution of this servoproblem proceeds as follows: solving (f,g) and (a), we obtain $\phi(t), \theta(t), \psi(t)$; and then substituting these time expressions into (e), we get the servoreaction $\lambda(t)$.
(ii) If (a) was an ordinary passive constraint, then (b, c) would be replaced by

$$
\begin{equation*}
\delta \phi=\delta \theta, \quad \delta \psi \neq 0 \Rightarrow(1) \delta \phi+(-1) \delta \theta+(0) \delta \psi=0, \tag{i}
\end{equation*}
$$

and the equations of motion (e-g) by

$$
\begin{equation*}
M_{\phi}=\lambda(1)=\lambda, \quad M_{\theta}=\lambda(-1)=-\lambda, \quad M_{\psi}=\lambda(0)=0 \tag{j}
\end{equation*}
$$

and, along with (a), would constitute a determinate system for $\phi(t), \theta(t), \psi(t), \lambda(t)$.
Here, too, we notice that analytically identical constraints, (a), depending on how and where they are applied, lead to different equations of motion and reactions. In the case of gyrocompasses, such servoconstraints allow us to increase or diminish the resulting oscillations; that is, to control them.

Example 3.17.2 A plane P translates sliding over another fixed horizontal plane $O-X Y$. A homogeneous sphere Σ, of radius R and mass m, rolls on P with inertial angular velocity ω. The motion of P is regulated automatically so that the center of mass G of Σ rotates uniformly around $O Z$ with constant inertial angular velocity $\boldsymbol{\Omega}$ (fig. 3.47). Let us study the motion of the sphere. Here we have the following two constraints:
(i) rolling of Σ on P (ordinary passive kind),

$$
\begin{equation*}
\boldsymbol{v}_{C}(\Sigma)=\boldsymbol{v}_{C}(P) \Rightarrow \boldsymbol{v}_{G}+\omega \times \boldsymbol{r}_{C / G}=\boldsymbol{v}_{C}(P)=\boldsymbol{v}_{A}(P), \tag{a}
\end{equation*}
$$

where $A=$ arbitrary plane point $=(u, \nu, 0)$, or, in components,

$$
\begin{equation*}
(\dot{\xi}, \dot{\eta}, \dot{R}=0)+\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right) \times(0,0,-R)=(\dot{u}, \dot{v}, 0) \tag{b}
\end{equation*}
$$

from which we readily obtain the two rolling constraints

$$
\begin{equation*}
\dot{\xi}-\omega_{Y} R=\dot{u} \quad \text { and } \quad \dot{\eta}+\omega_{X} R=\dot{v} ; \tag{c1,2}
\end{equation*}
$$

and (ii) uniform rotation of G around $O Z$ (servoconstraint),

$$
\begin{equation*}
\boldsymbol{v}_{G}=\boldsymbol{\Omega} \times \boldsymbol{r}_{G / O}=\boldsymbol{\Omega} \times \boldsymbol{r}_{G / O^{\prime}}, \tag{d}
\end{equation*}
$$

Figure 3.47 Controlled rolling of a sphere on a translating plane.
or, in components,

$$
\begin{equation*}
(\dot{\xi}, \dot{\eta}, 0)=(0,0, \Omega) \times(\xi, \eta, 0) \tag{e}
\end{equation*}
$$

from which we readily obtain the two Pfaffian servoconstraints

$$
\begin{equation*}
\dot{\xi}+\Omega \eta=0 \quad \text { and } \quad \dot{\eta}-\Omega \xi=0 \tag{f}
\end{equation*}
$$

The servoconstraint on the sphere is expressed by the dependence of (c) on the

Now, the servoreactions are the reaction forces from the plane to the sphere. Therefore, their virtual work $\delta^{\prime} W_{R^{\prime}}=(\ldots) \delta u+(\ldots) \delta v$ vanishes for the virtual displacements

$$
\begin{equation*}
\delta u=0 \quad \text { and } \quad \delta v=0 \tag{g}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\text { (1) } \delta u+(0) \delta v=0 \quad \text { and } \quad(0) \delta u+(1) \delta v=0 \tag{h}
\end{equation*}
$$

which bear no formal mathematical relation to (f).
Next, to the equations of motion. To be able to enforce the nonholonomic Pfaffian constraints (c) right from the start, it is best not to use the kinetic energy (\rightarrow Hamel equations), but the Appellian. Indeed, to within "Appell-important" terms (§3.14), the (double) Appellian of the sphere equals

$$
\begin{align*}
2 S= & m\left[(\ddot{\xi})^{2}+(\ddot{\eta})^{2}\right]+\left(2 m R^{2} / 5\right)\left[\left(\dot{\omega}_{X}\right)^{2}+\left(\dot{\omega}_{Y}\right)^{2}+\left(\dot{\omega}_{Z}\right)^{2}\right] \\
& {\left[\text { or, eliminating } \dot{\omega}_{X} \text { and } \dot{\omega}_{Y} \text { via the passive constraints }(\mathrm{c}):\right.} \\
& \left.\omega_{Y}=R^{-1}(\dot{\xi}-\dot{u}) \text { and } \omega_{X}=R^{-1}(\dot{v}-\dot{\eta}) \Rightarrow \dot{\omega}_{X}=\cdots, \dot{\omega}_{Y}=\cdots\right] \\
= & m\left[(\ddot{\xi})^{2}+(\ddot{\eta})^{2}\right]+(2 m / 5)\left[(\ddot{v}-\ddot{\eta})^{2}+(\ddot{\xi}-\ddot{u})^{2}+R^{2}\left(\dot{\omega}_{Z}\right)^{2}\right] \\
\equiv & 2 S\left(\ddot{\xi}, \ddot{\eta} ; \ddot{u}, \ddot{v}, \dot{\omega}_{Z}\right), \tag{i}
\end{align*}
$$

and, therefore, combining the principle of virtual work [with $d \theta_{X} \equiv \omega_{X} d t$, and noticing that the virtual work of all impressed forces (here, gravity) vanishes]

$$
\begin{equation*}
(\partial S / \partial \ddot{\xi}) \delta \xi+(\partial S / \partial \ddot{\eta}) \delta \eta+(\partial S / \partial \ddot{u}) \delta u+(\partial S / \partial \ddot{v}) \delta v+\left(\partial S / \partial \dot{\omega}_{Z}\right) \delta \theta_{Z}=0 \tag{j}
\end{equation*}
$$

with the two virtual servoconstraints (g, h) via the two multipliers (servoreactions) λ and μ, yields the following Routh-Voss equations (in Appellian form):

Kinetic:

$$
\begin{array}{ll}
\partial S / \partial \ddot{\xi}=0: & \ddot{\xi}-(2 / 7) \ddot{u}=0 \\
\partial S / \partial \ddot{\eta}=0: & \ddot{\eta}-(2 / 7) \ddot{v}=0 \\
\partial S / \partial \dot{\omega}_{Z}=0: & \dot{\omega}_{Z}=0 \Rightarrow \omega_{Z} \equiv \dot{\theta}_{Z}=\text { constant } ;
\end{array}
$$

Kinetostatic: $\quad \partial S / \partial \ddot{u}=\lambda(1)+\mu(0): \quad(2 m / 5)(\ddot{u}-\ddot{\xi})=\lambda$,

$$
\begin{equation*}
\text { or, invoking (c1), } 2 m R \dot{\omega}_{Y}+5 \lambda=0 \tag{n}
\end{equation*}
$$

$$
\partial S / \partial \ddot{v}=\lambda(0)+\mu(1): \quad(2 m / 5)(\ddot{v}-\ddot{\eta})=\mu
$$

$$
\begin{equation*}
\text { or, invoking (c2), } \quad 2 m R \dot{\omega}_{X}-5 \mu=0 . \tag{o}
\end{equation*}
$$

These five equations plus the two servo equations (f) constitute a determinate system for the seven unknowns: $\xi(t), \eta(t), \omega_{Z}(t), u(t), v(t), \lambda(t), \mu(t)$; then, $\omega_{X}(t)$ and $\omega_{Y}(t)$ can be found from (c). For additional details and insights, see, for example, Appell (1953, pp. 415-416), Beghin (1967, pp. 523-525), Kirgetov (1967, pp. 475476).

Problem 3.17.5 Continuing from the preceding example,
(i) Show that the servoconstraints (f) integrate to

$$
\begin{equation*}
\xi=a \cos (\Omega t) \quad \text { and } \quad \eta=a \sin (\Omega t) \quad(a=\text { constant }) \tag{a}
\end{equation*}
$$

and, therefore, equations (k, l) yield, for a(ny) typical point A or C of the translating plane, the "cycloidal" translatory motion

$$
\begin{equation*}
u=(7 / 2) a \cos (\Omega t)+c_{1} t+c_{2}, \quad v=(7 / 2) a \sin (\Omega t)+c_{3} t+c_{4} \tag{b}
\end{equation*}
$$

where the $c_{1,2,3,4}$ are integration constants.
(ii) After calculating $\omega_{X}(t), \omega_{Y}(t), \omega_{Z}(t)$ [via equations (c), (m) and the above], show that $\omega=\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right)$, emanating from G, describes an oblique cone of circular horizontal base, of radius $(5 / 2)(a / R) \Omega$, and is traversed at the uniform rate $\boldsymbol{\Omega}$.

3.18 GENERAL EXAMPLES AND PROBLEMS

Example 3.18.1 Dynamics of a Sled (or Knife, or Scissors, etc.) Let us determine the forces and equations of motion of the sled shown in fig. 3.48.

The sled kinematics have already been discussed in ex. 2.13.1 and ex. 2.13.2. We recall that $q_{1}=x, q_{2}=y, q_{3}=\phi$, and that the nonholonomic (scleronomic) constraint is

$$
\begin{equation*}
v_{C, y} / v_{C, x}=\dot{y} / \dot{x}=d y / d x=\tan \phi \Rightarrow d y=(\tan \phi) d x \tag{a}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { (1) } d x+(-1 / \tan \phi) d y+(0) d \phi=0 \text {. } \tag{b}
\end{equation*}
$$

Figure 3.48 Sled in plane motion (on a fixed plane);
geometry and forces. $G=$ mass center; $C=$ contact point; $I \equiv I_{C} \equiv m k_{C}{ }^{2}=$ moment of inertia about $C=I_{G}+m b^{2}\left(k_{c}=\right.$ radius of gyration about $\left.C\right)$.

Kinetic Energy

Applying König's theorem about C, we find (no constraint enforcement yet!), in holonomic variables,

$$
\begin{align*}
2 T & =m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+2 m \dot{\phi}\left[\dot{y}\left(x_{G}-x\right)-\dot{x}\left(y_{G}-y\right)\right]+I_{C}(\dot{\phi})^{2} \\
& =m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+2 m b \dot{\phi}(\dot{y} \cos \phi-\dot{x} \sin \phi)+I_{C}(\dot{\phi})^{2}, \tag{c}
\end{align*}
$$

and since [recalling (ex. 2.13.2: a-c)]
$(\dot{x})^{2}+(\dot{y})^{2}=\left(-\omega_{1} \sin \phi+\omega_{2} \cos \phi\right)^{2}+\left(\omega_{1} \cos \phi+\omega_{2} \sin \phi\right)^{2}=\cdots=\omega_{1}^{2}+\omega_{2}^{2}$,
$(\cos \phi) \dot{x}+(\sin \phi) \dot{y} \equiv v \equiv \omega_{2}=$ velocity of contact point along sled $\quad(\neq 0)$
$\dot{y} \cos \phi-\dot{x} \sin \phi=\omega_{1} \quad(=0$, to be enforced later $) \quad$ and $\quad \dot{\phi}=\omega_{3}$,
in nonholonomic variables:

$$
\begin{equation*}
2 T=2 T^{*}=m\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+2 m b \omega_{1} \omega_{2}+I_{C} \omega_{3}^{2} . \tag{e}
\end{equation*}
$$

We point out that the quadratic term $m \omega_{1}{ }^{2}$ can be safely omitted from $2 T^{*}$ right at this stage; but not the term $2 m b \omega_{1} \omega_{2}$ (why?). From (c) and (e), and the constraint, we readily conclude that the corresponding constrained (double) kinetic energies are

$$
2 T \rightarrow 2 T_{o o}=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+I_{C}(\dot{\phi})^{2}
$$

("partially constrained," i.e., still a function of $\dot{x}, \dot{y}, \dot{\phi}$),

$$
\begin{equation*}
2 T^{*} \rightarrow 2 T^{*}{ }_{o}=m \omega_{2}^{2}+I_{C} \omega_{3}^{2} . \tag{f}
\end{equation*}
$$

Appellian
Applying the Appellian counterpart of König's theorem (recalling §3.14); that is,

$$
\begin{align*}
& S=S_{G}+S_{/ G} \tag{h}\\
& 2 S_{G} \equiv m \boldsymbol{a}_{G} \cdot \boldsymbol{a}_{G}=m a_{G}^{2}=2 \text { (Appellian of translation of mass center) } \tag{i}\\
& \begin{aligned}
2 S_{/ G} & \equiv \boldsymbol{S} d m \boldsymbol{a}_{/ G} \cdot \boldsymbol{a}_{/ G}=\boldsymbol{S} d m a_{/ G}^{2} \\
& =2[\text { Appellian of motion (rotation) about the mass center }]
\end{aligned}
\end{align*}
$$

for the relaxed (unconstrained) system and in holonomic variables, we find

$$
\begin{align*}
a_{G}^{2}= & \left(\ddot{x}_{G}\right)^{2}+\left(\ddot{y}_{G}\right)^{2}=\left[(x+b \cos \phi)^{\cdot}\right]^{2}+\left[(y+b \sin \phi)^{\cdot}\right]^{2} \\
= & {\left[\ddot{x}-b \ddot{\phi} \sin \phi-b(\dot{\phi})^{2} \cos \phi\right]^{2}+\left[\ddot{y}+b \ddot{\phi} \cos \phi-b(\dot{\phi})^{2} \sin \phi\right]^{2} } \\
= & (\ddot{x})^{2}+(\ddot{y})^{2}+b^{2}(\ddot{\phi})^{2}+2 b \ddot{\phi}(\ddot{y} \cos \phi-\ddot{x} \sin \phi) \\
& -2 b(\dot{\phi})^{2}(\ddot{x} \cos \phi+\ddot{y} \sin \phi)+\text { terms not containing } \ddot{x}, \ddot{y}, \ddot{\phi}, \tag{k}
\end{align*}
$$

and (with $r=$ distance of a typical sled particle, of mass $d m$, from G)

$$
\begin{equation*}
2 S_{/ G} \equiv \boldsymbol{S} d m\left[(r \ddot{\phi})^{2}+\left(r \dot{\phi}^{2}\right)^{2}\right]=I_{G}(\ddot{\phi})^{2}+I_{G}(\dot{\phi})^{4} \tag{1}
\end{equation*}
$$

or, to within "Appell-important terms,"

$$
\begin{align*}
2 S= & m\left[(\ddot{x})^{2}+(\ddot{y})^{2}+b^{2}(\ddot{\phi})^{2}+2 b \ddot{\phi}(\ddot{y} \cos \phi-\ddot{x} \sin \phi)\right. \\
& \left.-2 b(\dot{\phi})^{2}(\ddot{x} \cos \phi+\ddot{y} \sin \phi)\right]+I_{G}(\ddot{\phi})^{2} \\
= & 2 S(\phi, \dot{\phi}, \ddot{x}, \ddot{y}, \ddot{\phi}) . \tag{m}
\end{align*}
$$

To express S in the $\dot{\omega}$ variables-that is, $S \rightarrow S^{*}(t, q, \omega, \dot{\omega}) \equiv S^{*}$ - we need the \ddot{q} 's; that is, $\ddot{x}, \ddot{y}, \ddot{\phi}$, in terms of $t, q, \omega, \dot{\omega}$. Indeed, (...) -differentiating $\dot{q}_{k}=\sum A_{k l} \omega_{l}$, we find

$$
\begin{align*}
& \ddot{q}_{1} \equiv \ddot{x}=(-\sin \phi) \dot{\omega}_{1}+(\cos \phi) \dot{\omega}_{2}+(-\cos \phi) \omega_{1} \omega_{3}+(-\sin \phi) \omega_{2} \omega_{3}, \tag{n1}\\
& \ddot{q}_{2} \equiv \ddot{y}=(\cos \phi) \dot{\omega}_{1}+(\sin \phi) \dot{\omega}_{2}+(-\sin \phi) \omega_{1} \omega_{3}+(\cos \phi) \omega_{2} \omega_{3}, \tag{n2}\\
& \ddot{q}_{3} \equiv \ddot{\phi}=(1) \dot{\omega}_{3} . \tag{n3}
\end{align*}
$$

However, and this is a very useful and labor-saving remark, since only $\partial S^{*} / \partial \dot{\omega}_{k}(k=1,2,3)$ enter the equations of motion, and because of the analytical identities:

$$
S(t, q, \dot{q}, \ddot{q})=S^{*}(t, q, \omega, \dot{\omega}) \quad \text { and } \quad \partial \ddot{q}_{k} / \partial \dot{\omega}_{l}=\partial \dot{q}_{k} / \partial \omega_{l} \equiv A_{k l}(t, q)
$$

($k=1,2,3$ - although, obviously, this is a general result), from which, by chain rule,

$$
\begin{equation*}
\partial S^{*} / \partial \dot{\omega}_{k}=\sum\left(\partial S / \partial \ddot{q}_{l}\right)\left(\partial \ddot{q}_{l} / \partial \dot{\omega}_{k}\right)=\cdots=\sum A_{l k}\left(\partial S / \partial \ddot{q}_{l}\right) \tag{m1}
\end{equation*}
$$

it follows that it is not necessary to square the \ddot{q} 's and then insert them into (m); that is, there is no need to calculate $S^{*}(\ldots, \dot{\omega})$; but, as (m1) shows, we do need to use the linear $\ddot{q} \Leftrightarrow \dot{\omega}$ relations (n1-3). From (m1) it also follows that

$$
\begin{equation*}
\left(\partial S^{*} / \partial \dot{\omega}_{k}\right)_{o}=\sum A_{l k}\left(\partial S / \partial \ddot{q}_{l}\right)_{o} \tag{m2}
\end{equation*}
$$

where $\left(\partial S / \partial \ddot{q}_{l}\right)_{o}$ means that after we differentiate S of (m) in the \ddot{q} 's, we insert there the contrained $\ddot{q} \rightarrow(\ddot{q})_{o} \equiv \ddot{q}_{o} \Leftrightarrow \omega$ relations and not the relaxed (n1-3); that is,

$$
\begin{align*}
& \ddot{q}_{1 o} \equiv \ddot{x}=(\cos \phi) \dot{\omega}_{2}+(-\sin \phi) \omega_{2} \omega_{3}, \tag{n4}\\
& \ddot{q}_{2 o} \equiv \ddot{y}=(\sin \phi) \dot{\omega}_{2}+(\cos \phi) \omega_{2} \omega_{3}, \tag{n5}\\
& \ddot{q}_{3 o} \equiv \ddot{\phi}=(1) \dot{\omega}_{3} . \tag{n6}
\end{align*}
$$

The above can also be found by (...)'-differentiation of the "natural" (constrained) variables $\dot{x}=v \cos \phi, \dot{y}=v \sin \phi$, where $v=$ velocity in sled's direction. The result is

$$
\begin{equation*}
\ddot{x}=\dot{v} \cos \phi-v \dot{\phi} \sin \phi, \quad \ddot{y}=\dot{v} \sin \phi+v \dot{\phi} \cos \phi \tag{n7}
\end{equation*}
$$

and inverts readily to

$$
\begin{array}{ll}
\dot{v}=\ddot{x} \cos \phi+\ddot{y} \sin \phi & (=\text { acceleration along sled }) \\
v \dot{\phi}=\ddot{y} \cos \phi-\ddot{x} \sin \phi & (=\text { acceleration normal to sled }) \tag{n9}
\end{array}
$$

[from which it also follows that $(\ddot{x})^{2}+(\ddot{y})^{2}=(\dot{v})^{2}+v^{2}(\dot{\phi})^{2}$]. Clearly, (n7) and (n4-6) are identical. As a result of (n7-9), the Appellian expression (m) transforms to

$$
2 S_{o}=m\left[(\dot{v})^{2}+v^{2}(\dot{\phi})^{2}+b^{2}(\ddot{\phi})^{2}+2 b v \dot{\phi} \ddot{\phi}-2 b(\dot{\phi})^{2} \dot{v}\right]+I_{G}(\ddot{\phi})^{2},
$$

or

$$
\begin{equation*}
2 S_{o}^{*}=m\left[\left(\dot{\omega}_{2}\right)^{2}+\omega_{2}^{2} \omega_{3}^{2}+b^{2}\left(\dot{\omega}_{3}\right)^{2}+2 b \omega_{2} \omega_{3} \dot{\omega}_{3}-2 b \omega_{3}^{2} \dot{\omega}_{2}\right]+I_{G}\left(\dot{\omega}_{3}\right)^{2} \tag{m3}
\end{equation*}
$$

or, finally, to within "Appell-important" terms (and recalling that, by the parallel axis theorem, $I_{C}=I_{G}+m b^{2}$)

$$
\begin{equation*}
2 S_{o}^{*}=m\left[\left(\dot{\omega}_{2}\right)^{2}+2 b \omega_{3}\left(\omega_{2} \dot{\omega}_{3}-\omega_{3} \dot{\omega}_{2}\right]+I_{C}\left(\dot{\omega}_{3}\right)^{2} .\right. \tag{m4}
\end{equation*}
$$

Virtual Work

With reference to fig. 3.49 and $\S 3.4$ and $\S 3.15$, we find, successively,

$$
\begin{align*}
\delta^{\prime} W & =X \delta x+Y \delta y+M_{C} \delta \phi=Q_{1} \delta q_{1}+Q_{2} \delta q_{2}+Q_{3} \delta q_{3} \\
& \Rightarrow Q_{1}=X, \quad Q_{2}=Y, \quad Q_{3}=M_{C} \quad \text { (holonomic components) } \tag{n10}
\end{align*}
$$

and (from the invariance of $\delta^{\prime} W$)

$$
\begin{align*}
\delta^{\prime} W & =\sum Q_{k} \delta q_{k}=\sum Q_{k}\left(\sum A_{k l} \delta \theta_{l}\right)=\sum \Theta_{l} \delta \theta_{l} \\
& \Rightarrow \Theta_{l}=\sum A_{k l} Q_{k} \quad(\text { holonomic components }), \text { and, inversely, } Q_{k}=\sum a_{l k} \Theta_{l} \tag{n11}
\end{align*}
$$

and, therefore, here [recalling (ex. 2.13.2: a, c)],
$\Theta_{1}=-X \cos \phi+Y \sin \phi \equiv N=$ impressed system force perpendicular to sled,
$\Theta_{2}=X \cos \phi+Y \sin \phi \equiv K=$ impressed system force along sled,
$\Theta_{3}=M_{C} \equiv M=$ impressed system moment about C (perpendicular to $O-X Y$);

Figure 3.49 Holonomic and nonholonomic components of impressed forces and reactions on sled. Impressed forces on sled: holonomic: $\mathrm{Q}_{1} \equiv X, \mathrm{Q}_{2} \equiv Y, \mathrm{Q}_{3} \equiv \mathrm{M}$; nonholonomic: $\Theta_{1} \equiv N, \Theta_{2} \equiv K, \Theta_{3} \equiv M$.
and similarly for the reactions (here, only $\Lambda_{1} \neq 0$)

$$
\begin{gather*}
\delta^{\prime} W_{R}=\lambda_{1} \delta \theta_{1}=\Lambda_{1} \delta \theta_{1}=\sum R_{k} \delta q_{k} \quad\left(\lambda_{1}=\text { Lagrangean multiplier }\right) \\
\Rightarrow \lambda_{1}=\Lambda_{1}=\sum A_{k 1} R_{k}, \text { and, inversely, } R_{k}=a_{1 k} \Lambda_{1}=a_{1 k} \lambda_{1} \tag{n15}
\end{gather*}
$$

The Routh-Voss Equations
Invoking the above results, we find, successively,

$$
\begin{align*}
& E_{1}(T)=Q_{1}+\lambda_{1} a_{11}: \quad(m \dot{x}-m b \dot{\phi} \sin \phi)^{\cdot}=X+\lambda(-\sin \phi), \\
& \tag{ol}\\
& \quad \text { or } \quad m\left[\ddot{x}-b \ddot{\phi} \sin \phi-b(\dot{\phi})^{2} \cos \phi\right]=X-\lambda \sin \phi ; \\
& E_{2}(T)=Q_{2}+\lambda_{1} a_{12}: \quad(m \dot{y}+m b \dot{\phi} \cos \phi)^{\cdot}=Y+\lambda(\cos \phi), \tag{o2}\\
& \\
& \text { or } \quad m\left[\ddot{y}+b \ddot{\phi} \cos \phi-b(\dot{\phi})^{2} \sin \phi\right]=Y+\lambda \cos \phi ; \\
& E_{3}(T)=Q_{3}+\lambda_{1} a_{13}: \tag{o3}\\
& \quad\left[I_{C} \dot{\phi}+m b(-\dot{x} \sin \phi+\dot{y} \cos \phi)\right]+m b \dot{\phi}(\dot{x} \cos \phi+\dot{y} \sin \phi)=M+\lambda(0), \\
& \text { or } \quad I_{C} \ddot{\phi}+m b(\ddot{y} \cos \phi-\ddot{x} \sin \phi)=M .
\end{align*}
$$

These three coupled equations, plus the constraint (a, b), constitute a system of four equations for the four functions: $x(t), y(t), \phi(t), \lambda(t)$.

- Clearly, equations $(01,2)$ express the principle of linear momentum for the sled along $O-X Y$, respectively; while (o3) expresses that of angular momentum about C.
- The derivation of the ϕ-equation, (o3), shows clearly why we should not enforce the constraint (a, b) in T. Had we done so - that is, $T \rightarrow T_{o o}$ [eq. (f)], since that constraint is nonholonomic - we would have obtained the incorrect Routh-Voss equations

$$
\begin{array}{ll}
E_{1}\left(T_{o o}\right)=Q_{1}+\lambda_{1} a_{11}: & (m \dot{x})^{\cdot}=X-\lambda \sin \phi, \\
E_{2}\left(T_{o o}\right)=Q_{2}+\lambda_{1} a_{12}: & (m \dot{y})^{\cdot}=Y+\lambda \cos \phi, \\
E_{3}\left(T_{o o}\right)=Q_{3}+\lambda_{1} a_{13}: & I_{C}(\dot{\phi})^{\circ}=M . \tag{o6}
\end{array}
$$

Elimination of the Reaction λ among Equations (n7-9)
Multiplying (o1) with $\cos \phi$ and (o2) with $\sin \phi$, and adding side by side, yields

$$
\cos \phi(m \dot{x}-m b \dot{\phi} \sin \phi)^{\cdot}+\sin \phi(m \dot{y}+m b \dot{\phi} \cos \phi)^{\cdot}=X \cos \phi+Y \sin \phi
$$

or, simplifying, and so on,

$$
\begin{equation*}
m\left[\ddot{x} \cos \phi+\ddot{y} \sin \phi-b(\dot{\phi})^{2}\right]=K \tag{o7}
\end{equation*}
$$

Equations (o7) and (o3) are, essentially, the (kinetic) Maggi-Hadamard equations of our problem (see below) and, along with the constraint (a), they constitute a determinate system for $x(t), y(t), \phi(t)$. Once this has been accomplished, then, to isolate λ, we multiply (o1) with $-\sin \phi$ and (o2) with $\cos \phi$, and add, and thus
obtain (the kinetostatic Maggi equation)
$\lambda=m(-\ddot{x} \sin \phi+\ddot{y} \cos \phi+b \ddot{\phi})-(-X \sin \phi+Y \cos \phi)$
$=$ inertia "force" perpendicular to sled - impressed force perpendicular to sled
$\equiv m a_{G, n}-N \quad(=$ constraint reaction perpendicular to sled $)$.
In terms of the "natural" (or "intrinsic") variables v and ϕ, defined by $\dot{x}=v \cos \phi \quad$ and $\quad \dot{y}=v \sin \phi, \quad$ where $\quad v=$ velocity in direction of sled,
the kinetic equations (o7) and (o3) assume, respectively, the simpler Hamel forms (see below)

$$
\begin{equation*}
m\left[\dot{v}-b(\dot{\phi})^{2}\right]=K \quad \text { and } \quad I_{C} \ddot{\phi}+m b \dot{\phi} v=M \tag{p1,2}
\end{equation*}
$$

while the kinetostatic (o8) becomes

$$
\begin{equation*}
m(b \ddot{\phi}+v \dot{\phi})=N+\lambda \tag{p3}
\end{equation*}
$$

If $K, M=0$ (force-free case), eqs. (p1,2) reduce to

$$
\begin{equation*}
m\left[\dot{v}-b(\dot{\phi})^{2}\right]=0 \quad \text { and } \quad I_{C} \ddot{\phi}+m b \dot{\phi} v=0 \tag{p4,5}
\end{equation*}
$$

and yield, readily, the (first) integral of energy:

$$
2 T=m v^{2}+2 m b \dot{\phi}(-\dot{x} \sin \phi+\dot{y} \cos \phi)+I_{C}(\dot{\phi})^{2}=\text { constant } \equiv 2 h
$$

or, after enforcing the constraint (a),

$$
\begin{equation*}
m v^{2}+I_{C}(\dot{\phi})^{2}=2 h . \tag{p6}
\end{equation*}
$$

(See also Carathéodory, 1933; and Hamel, 1949, pp. 467-470.)

The Maggi Equations

With $M_{k} \equiv E_{k}(T)-Q_{k}(k=1,2,3 \rightarrow x, y, \phi)$, and $\left(A_{k l}\right)$ from (n1-3), Maggi's equations become

$$
\begin{array}{ll}
A_{x x} M_{x}+A_{y x} M_{y}+A_{\phi x} M_{\phi}=\lambda: & (-\sin \phi) M_{x}+(\cos \phi) M_{y}+(0) M_{\phi}=\lambda, \\
A_{x y} M_{x}+A_{y y} M_{y}+A_{\phi y} M_{\phi}=0: & (\cos \phi) M_{x}+(\sin \phi) M_{y}+(0) M_{\phi}=0 \\
A_{x \phi} M_{x}+A_{y \phi} M_{y}+A_{\phi \phi} M_{\phi}=0: & (0) M_{x}+(0) M_{y}+(1) M_{\phi}=0 \tag{q3}
\end{array}
$$

or, explicitly,

$$
\begin{align*}
& m(\ddot{y} \cos \phi-\ddot{x} \sin \phi)+m b \ddot{\phi}=(\cos \phi Y-\sin \phi X)+\lambda, \tag{q4}\\
& m(\ddot{x} \cos \phi+\ddot{y} \sin \phi)-m b(\dot{\phi})^{2}=\cos \phi X+\sin \phi Y \tag{q5}\\
& m b(\ddot{y} \cos \phi-\ddot{x} \sin \phi)+I_{C} \ddot{\phi}=M \tag{q6}
\end{align*}
$$

and coincide, respectively, with the earlier-found equations (o8), (o7), and (o3); that is, the Maggi approach constitutes a systematization of the earlier uncoupling of the Routh-Voss equations into kinetic and kinetostatic.

- Clearly, equations (q1,2/4,5) express, respectively, the principle of linear momentum normally and along the sled; while (q3/6) expresses that of angular momentum about C.
- If we express (any) one of the holonomic velocities, say \dot{x}, in terms of the other two via the constraint (a) [i.e., $\dot{x}=\dot{x}(\dot{y}, \dot{\phi} ; \phi)]$, and use this to eliminate \dot{x} and \ddot{x} from the kinetic Maggi equations (q2,3), these two new (kinetic) equations in $\dot{y}, \ddot{y}, \dot{\phi}, \ddot{\phi}, \phi$ would be the Chaplygin-Voronets equations of our problem; equivalently, these would be our Lagrangean equations of motion based on the kinetic energy expressed in terms of the two independent velocities \dot{y} and $\dot{\phi}: T \rightarrow T[\dot{x}(\dot{y}, \dot{\phi}), \dot{y}, \dot{\phi} ; \phi]=T_{o}(\dot{y}, \dot{\phi}) \equiv$ $T_{o}=$ completely constrained kinetic energy [recall (3.8.13a ff.)]. The details, for any of the three possible choices of dependent velocity, are left to the reader. See also Dobronravov (1970, pp. 92-104).

The Appell Equations

(i) Holonomic variables: Due to the kinematico-inertial identities $\partial S / \partial \ddot{q}_{k}=$ $\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}$, the holonomic variable Appellian equations are

$$
\begin{equation*}
\partial S / \partial \ddot{q}_{k}=Q_{k}+\sum \lambda_{D} a_{D k} \quad(k=1,2,3=x, y, \phi ; D=1) \tag{r}
\end{equation*}
$$

and, of course, they coincide completely with the earlier Routh-Voss equations (o3).
(ii) Nonholonomic variables: With the help of the earlier results [(n1) ff.], we readily find

$$
\begin{aligned}
\partial S^{*} / \partial \dot{\omega}_{k}= & \left(m \ddot{q}_{1}\right)\left(\partial \dot{q}_{1} / \partial \omega_{k}\right)+\left(m \ddot{q}_{2}\right)\left(\partial \dot{q}_{2} / \partial \omega_{k}\right)+\left(m b^{2} \ddot{q}_{3}\right)\left(\partial \dot{q}_{3} / \partial \omega_{k}\right) \\
& +m b\left(\partial \dot{q}_{3} / \partial \omega_{k}\right)\left(\ddot{q}_{2} \cos \phi-\ddot{q}_{1} \sin \phi\right) \\
& +m b \ddot{q}_{3}\left[\left(\partial \dot{q}_{2} / \partial \omega_{k}\right) \cos \phi-\left(\partial \dot{q}_{1} / \partial \omega_{k}\right) \sin \phi\right] \\
& -m b\left(\dot{q}_{3}\right)^{2}\left[\left(\partial \dot{q}_{1} / \partial \omega_{k}\right) \cos \phi+\left(\partial \dot{q}_{2} / \partial \omega_{k}\right) \sin \phi\right]+I_{G} \ddot{q}_{3}\left(\partial \dot{q}_{3} / \partial \omega_{k}\right) \\
= & \left(m \ddot{q}_{1}\right) A_{1 k}+\left(m \ddot{q}_{2}\right) A_{2 k}+\cdots,
\end{aligned}
$$

or, explicitly (recalling that $I_{C}=I_{G}+m b^{2}$),
$\partial S^{*} / \partial \dot{\omega}_{1}=m \dot{\omega}_{1}+m b \dot{\omega}_{3}+m \omega_{2} \omega_{3} \Rightarrow\left(\partial S^{*} / \partial \dot{\omega}_{1}\right)_{o}=m\left(b \dot{\omega}_{3}+\omega_{2} \omega_{3}\right)$,
$\partial S^{*} / \partial \dot{\omega}_{2}=m \dot{\omega}_{2}-m \omega_{1} \omega_{3}-m b \omega_{3}^{2} \Rightarrow\left(\partial S^{*} / \partial \dot{\omega}_{2}\right)_{o}=m\left(\dot{\omega}_{2}-b \omega_{3}^{2}\right)$,
$\partial S^{*} / \partial \dot{\omega}_{3}=I_{C} \dot{\omega}_{3}+m b \dot{\omega}_{1}+m b \omega_{2} \omega_{3} \Rightarrow\left(\partial S^{*} / \partial \dot{\omega}_{3}\right)_{o}=I_{C} \dot{\omega}_{3}+m b \omega_{2} \omega_{3}$.
From the above and (n12-15), we see that the nonholonomic Appellian equations of our problem are

$$
\begin{array}{ll}
\left(\partial S^{*} / \partial \dot{\omega}_{1}\right)_{o}=\Theta_{1}+\lambda_{1}: & m\left(b \dot{\omega}_{3}+\omega_{2} \omega_{3}\right)=N+\lambda, \\
\left(\partial S^{*} / \partial \dot{\omega}_{2}\right)_{o}=\Theta_{2}: & m\left(\dot{\omega}_{2}-b \omega_{3}^{2}\right)=K, \\
\left(\partial S^{*} / \partial \dot{\omega}_{3}\right)_{o}=\Theta_{3}: & I_{C} \dot{\omega}_{3}+m b \omega_{2} \omega_{3}=M . \tag{s6}
\end{array}
$$

Upon recalling the definitions of $\omega_{1,2,3}$, we immediately see that the above are nothing but ($\mathrm{p} 3,1,2$) in that order. Clearly, the above constitute a (determinate) system of three equations in $\omega_{2}(t), \omega_{3}(t), \lambda(t)$: first, we solve $(\mathrm{s} 5,6)$ for ω_{2}, ω_{3}, and, substituting the results into (s4) (which then becomes algebraic), we obtain λ.

If we were not interested in finding the reaction $\Lambda_{1}=\lambda_{1}=\lambda$ (perpendicular to the sled at C, and due to the constraint $\omega_{1} / d \theta_{1} / \delta \theta_{1}=0$), we would only need to evaluate all relevant quantities for $\omega_{1}=0, \dot{\omega}_{1}=0$, and denote them by $(\ldots)_{o}$; that is, instead of the relaxed holonomic accelerations ($\mathrm{n} 1-3$), we would only need their constrained values ($\mathrm{n} 4-6$) and corresponding constrained Appellian (m1,2). Then, the two kinetic Appellian equations would read

$$
\begin{align*}
& \partial S_{o}^{*} / \partial \dot{\omega}_{2}=\left(\partial S^{*} / \partial \dot{\omega}_{2}\right)_{o}=m\left(\dot{\omega}_{2}-b \omega_{3}^{2}\right)=\Theta_{2} \tag{s7}\\
& \partial S_{o}^{*} / \partial \dot{\omega}_{3}=\left(\partial S^{*} / \partial \dot{\omega}_{3}\right)_{o}=I_{C} \dot{\omega}_{3}+m b \omega_{2} \omega_{3}=\Theta_{3} \tag{s8}
\end{align*}
$$

as before.
It is such "constrained" Appellian derivations, based on $\partial S^{*}{ }_{o} / \partial \dot{\omega}_{I}=$ $\left(\partial S^{*} / \partial \dot{\omega}_{I}\right)_{o}(I=2,3)$, that one usually finds in the literature.

The Hamel Equations

Invoking the earlier equations (e, g), we easily find

$$
\begin{align*}
& P_{1}=\left(\partial T^{*} / \partial \omega_{1}\right)_{o}=m b \omega_{3} \tag{t1}\\
& P_{2}=\left(\partial T^{*} / \partial \omega_{2}\right)_{o}=m \omega_{2} \tag{t2}\\
& P_{3}=\left(\partial T^{*} / \partial \omega_{3}\right)_{o}=\left(m b \omega_{1}+I_{C} \omega_{3}\right)_{o}=I_{C} \omega_{3} \tag{t3}
\end{align*}
$$

and therefore the master variational equation (3.6.12)

$$
\sum \dot{P}_{k} \delta \theta_{k}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum\left(\sum A_{l k}\left(\partial T^{*} / \partial q_{l}\right)\right) \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k}
$$

with the help of the transitivity equations (ex. 2.13.2: d-i), yields
$\dot{P}_{1} \delta \theta_{1}+\dot{P}_{2} \delta \theta_{2}+\dot{P}_{3} \delta \theta_{3}$
$+P_{1}\left(-\omega_{3} \delta \theta_{2}+\omega_{2} \delta \theta_{3}\right)+P_{2}\left(\omega_{3} \delta \theta_{1}-\omega_{1} \delta \theta_{3}\right)+P_{3}(0)=\Theta_{1} \delta \theta_{1}+\Theta_{2} \delta \theta_{2}+\Theta_{3} \delta \theta_{3}$,
or, collecting (...) $\delta \theta_{k}$ terms:

$$
\begin{equation*}
\left(\dot{P}_{1}+P_{2} \omega_{3}-\Theta_{1}\right) \delta \theta_{1}+\left(\dot{P}_{2}-P_{1} \omega_{3}-\Theta_{2}\right) \delta \theta_{2}+\left(\dot{P}_{3}+P_{1} \omega_{2}-\Theta_{3}\right) \delta \theta_{3}=0 \tag{t5}
\end{equation*}
$$

Finally, adjoining to this variational equation the constraint

$$
\begin{equation*}
\delta \theta_{1}=0, \quad \text { or } \quad(1) \delta \theta_{1}+(0) \delta \theta_{2}+(0) \delta \theta_{3}=0, \tag{t6}
\end{equation*}
$$

via the method of Lagrangean multipliers yields the three earlier equations (s4-6):

$$
\begin{array}{ll}
\dot{P}_{1}+P_{2} \omega_{3}=\Theta_{1}+\lambda_{1}: & m\left(b \dot{\omega}_{3}+\omega_{2} \omega_{3}\right)=N+\lambda, \\
\dot{P}_{2}-P_{1} \omega_{3}=\Theta_{2}: & m\left(\dot{\omega}_{2}-b \omega_{3}^{2}\right)=K, \\
\dot{P}_{3}+P_{1} \omega_{2}=\Theta_{3}: & I_{C} \dot{\omega}_{3}+m b \omega_{2} \omega_{3}=M . \tag{t9}
\end{array}
$$

The above clearly demonstrate the usefulness of the nonholonomic form of LP $(\mathrm{t} 4,5)$ over any particular set of equations.

Figure 3.50 Geometry of sled on a uniformly spinning turntable. Inertial coordinates: $q_{1}=X, q_{2}=Y, q_{3}=\psi \equiv \phi+\theta, \phi=\omega t$; rotating coordinates: $q_{1}=x, q_{2}=y, q_{3}=\theta$.

Problem 3.18.1 Formulate the constraint of a sled in plane motion on a turntable spinning with constant (inertial) angular velocity Ω, in both inertial and rotating coordinates (fig. 3.50).

HINT
Formulate the constraint in the (moving) $O-x y$ axes, and then use the transformation equations: $x=X \cos \phi-Y \sin \phi, y=X \sin \phi+Y \cos \phi$, and their $(\ldots)^{-}$-derivatives for the (fixed) $O-X Y$ axes.

Problem 3.18.2 Continuing from the preceding problem, write down its transitivity equations and calculate (read off) their Hamel coefficients. Then obtain its equations of motion in both holonomic and nonholonomic variables.

Example 3.18.2 Dynamics of a Rolling Sphere on a Fixed Plane. Let us determine the forces and equations of motion of a homogeneous sphere S, of mass m and radius r, rolling on a rough horizontal fixed plane P (fig. 3.51).

The relevant kinematics has already been discussed in exs. 2.13.4-2.13.6. We recall that $q_{1}=X_{G} \equiv X, q_{2}=Y_{G}=Y ; q_{3}=\phi, q_{4}=\theta, q_{5}=\psi$ (coordinates of center of mass G and Eulerian angles of sphere-fixed axes $G-x y z$ relative to translating/nonrotating axes $G-X Y Z$), and that the constraints are

$$
\begin{equation*}
\dot{X}-(r \sin \phi) \dot{\theta}+(r \sin \theta \cos \phi) \dot{\psi}=0, \dot{Y}+(r \cos \phi) \dot{\theta}+(r \sin \theta \sin \phi) \dot{\psi}=0 \tag{a}
\end{equation*}
$$

that is, here, $n=5, m=2 \Rightarrow f \equiv n-m=3$ (\# local) DOF.

The Routh-Voss Equations
By König's theorem and the results of $\S 1.17$, the (double) kinetic energy of S is

$$
2 T=m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+\left(I_{X}^{2} \omega_{X}^{2}+I_{Y}^{2} \omega_{Y}^{2}+I_{Z}^{2} \omega_{Z}^{2}\right)
$$

Figure 3.51 Geometry of sphere rolling on a fixed horizontal plane.
Axes: $O-X Y Z$: inertial (fixed); $G-X Y Z$: translating (nonrotating); $G-x y z$: body-fixed.
(the second term can be expressed in either body or space axes at G;

$$
\begin{align*}
& \left.I_{X}=I_{Y}=I_{Z} \equiv I=2 m r^{2} / 5\right) \\
& =m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+I\left[(\dot{\phi})^{2}+(\dot{\theta})^{2}+(\dot{\psi})^{2}+2 \dot{\phi} \dot{\psi} \cos \theta\right] \tag{b}
\end{align*}
$$

and, therefore, the corresponding five Routh-Voss equations,

$$
E_{k}(T)=Q_{k}+\sum \lambda_{D} a_{D k}(k=1, \ldots, 5 \equiv X, Y, \phi, \theta, \psi ; D=1,2)
$$

with $\lambda_{1} \rightarrow \lambda$ and $\lambda_{2} \rightarrow \mu$, are

$$
\begin{align*}
& m \ddot{X}=Q_{X}+\lambda \quad\left(\text { i.e., } R_{X}=\lambda\right) \tag{b1}\\
& m \ddot{Y}=Q_{Y}+\mu \quad\left(\text { i.e., } R_{Y}=\mu\right) ; \tag{b2}\\
& I(\ddot{\phi}+\ddot{\psi} \cos \theta-\dot{\theta} \dot{\psi} \sin \theta)=Q_{\phi} \quad\left(\text { i.e., } R_{\phi}=0\right), \tag{b3}\\
& I(\ddot{\theta}+\dot{\phi} \dot{\psi} \sin \theta)=Q_{\theta}-r(\lambda \sin \phi-\mu \cos \phi) \quad\left(\equiv Q_{\theta}+R_{\theta}\right), \tag{b4}\\
& I(\ddot{\psi}+\ddot{\phi} \cos \theta-\dot{\phi} \dot{\theta} \sin \theta)=Q_{\psi}+r \sin \theta(\lambda \cos \phi+\mu \sin \phi) \quad\left(\equiv Q_{\psi}+R_{\psi}\right) . \tag{b5}
\end{align*}
$$

Equation (b3) shows that if $Q_{\phi}=0$, then $\dot{\omega}_{Z}=\ddot{\phi}+\ddot{\psi} \cos \theta-\dot{\theta} \dot{\psi} \sin \theta=$ $0 \Rightarrow \omega_{Z}=\dot{\phi}+\cos \theta \dot{\psi}(=$ total vertical spin $)=$ constant, as expected. [See also Bahar (1970-1980, pp. 446-450) and Roy (1965, vol. I, pp. 380-385) for additional insights and special cases.]

Next:

- Eliminating λ and μ among (b1-5) [e.g., solving (b1) for λ and (b2) for μ and inserting these values into (b4,5)], we obtain the following three coupled kinetic

Maggi-like equations:

$$
\begin{align*}
& I(\ddot{\phi}+\ddot{\psi} \cos \theta-\dot{\theta} \dot{\psi} \sin \theta)=Q_{\phi} \tag{b6}\\
& I(\ddot{\theta}+\dot{\phi} \dot{\psi} \sin \theta)+m r(\ddot{X} \sin \phi-\ddot{Y} \cos \phi)=Q_{\theta}+r\left(Q_{X} \sin \phi-Q_{Y} \cos \phi\right) \tag{b7}\\
& I(\ddot{\psi}+\ddot{\phi} \cos \theta-\dot{\phi} \dot{\theta} \sin \theta)-m r(\ddot{X} \cos \phi+\ddot{Y} \sin \phi) \\
& \quad=Q_{\psi}-r \sin \theta\left(Q_{X} \cos \phi+Q_{Y} \sin \phi\right) \tag{b8}
\end{align*}
$$

which, along with the two constraints (a) constitute a determinate system of five equations in the five Lagrangean coordinates: $X(t), Y(t) ; \phi(t), \theta(t), \psi(t)$. After these latter have been found, we can easily determine the multipliers/reactions $\lambda(t), \mu(t)$ from (b1, 2), respectively.

- If, further, with the help of the constraints (a) we eliminate $\dot{X} \rightarrow \ddot{X}=$ $\ddot{X}(\phi, \theta ; \dot{\phi}, \dot{\theta}, \dot{\psi} ; \ddot{\theta}, \ddot{\psi})$ and $\dot{Y} \rightarrow \ddot{Y}=\ddot{Y}(\phi, \theta ; \dot{\phi}, \dot{\theta}, \dot{\psi} ; \ddot{\theta}, \ddot{\psi})$, or any other two out of the five \dot{q} 's, among (b6-8), we will obtain the three (kinetic) Chaplygin-Voronets equations of the problem, coupled in $\dot{\phi}, \dot{\theta}, \dot{\psi}$ and their ($\ldots)^{\dot{\circ}}$-derivatives-see below.
- Equations (b1-5) can, of course, also be obtained by adjoining to $L P$:

$$
\begin{equation*}
\sum\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}\right] \delta q_{k}=\sum Q_{k} \delta q_{k} \tag{b9}
\end{equation*}
$$

the constraints (a) in virtual form [i.e., with $(\ldots)^{\cdot}$ replaced, in them, by $\delta(\ldots)$], via multipliers λ and μ, and then setting of the coefficients of the (now) free δq 's equal to zero.

The Hamel Equations

Recalling (ex. 2.13.6: a ff., with $\Omega=0$):

$$
\begin{align*}
& \omega_{1}=\dot{X}-r \omega_{Y}=\dot{X}-r \omega_{4}(=0) \Rightarrow \dot{X}=\omega_{1}+r \omega_{4}, \tag{c1}\\
& \omega_{2}=\dot{Y}+r \omega_{X}=\dot{Y}+r \omega_{3}(=0) \Rightarrow \dot{Y}=\omega_{2}-r \omega_{3}, \tag{c2}\\
& \omega_{3}=\omega_{X} \Rightarrow \omega_{X}=\omega_{3}, \tag{c3}\\
& \omega_{4}=\omega_{Y} \Rightarrow \omega_{Y}=\omega_{4}, \tag{c4}\\
& \omega_{5}=\omega_{Z} \Rightarrow \omega_{Z}=\omega_{5}, \tag{c5}
\end{align*}
$$

we readily find (no constraint enforcement yet)

$$
\begin{aligned}
& (\dot{X})^{2}+(\dot{Y})^{2}=\cdots=\omega_{1}^{2}+\omega_{2}^{2}+r^{2}\left(\omega_{3}^{2}+\omega_{4}^{2}\right)+2 r\left(\omega_{1} \omega_{4}-\omega_{2} \omega_{3}\right), \\
& r^{2}\left(\omega_{X}^{2}+\omega_{Y}^{2}+\omega_{Z}^{2}\right)=r^{2}\left(\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)
\end{aligned}
$$

and, therefore, (b) becomes

$$
\begin{align*}
2 T \rightarrow 2 T(\omega) \equiv 2 T^{*}=\cdots= & m\left[\omega_{1}^{2}+\omega_{2}^{2}+\left(7 r^{2} / 5\right)\left(\omega_{3}^{2}+\omega_{4}^{2}\right)\right. \\
& \left.+\left(2 r^{2} / 5\right) \omega_{5}^{2}+2 r\left(\omega_{1} \omega_{4}-\omega_{2} \omega_{3}\right)\right] \tag{c6}
\end{align*}
$$

or, to within "Hamel-important terms" [i.e., dropping the quadratic terms in $\omega_{1}(=0)$ and $\omega_{2}(=0)$, but not the linear ones]:

$$
\begin{equation*}
2 T^{*}=m\left[\left(7 r^{2} / 5\right)\left(\omega_{3}^{2}+\omega_{4}^{2}\right)+\left(2 r^{2} / 5\right) \omega_{5}^{2}+2 r\left(\omega_{1} \omega_{4}-\omega_{2} \omega_{3}\right)\right] \tag{c7}
\end{equation*}
$$

From this, we readily find [with the notation $(\ldots)_{o} \equiv(\ldots)$ evaluated for $\omega_{1,2}=0$]

$$
\begin{align*}
& P_{1} \equiv\left(\partial T^{*} / \partial \omega_{1}\right)_{o}=m r \omega_{4}, \tag{c8}\\
& P_{2} \equiv\left(\partial T^{*} / \partial \omega_{2}\right)_{o}=-3 m r \omega_{3}, \tag{c9}\\
& P_{3} \equiv\left(\partial T^{*} / \partial \omega_{3}\right)_{o}=\left(7 m r^{2} / 5\right) \omega_{3}, \tag{c10}\\
& P_{4} \equiv\left(\partial T^{*} / \partial \omega_{4}\right)_{o}=\left(7 m r^{2} / 5\right) \omega_{4}, \tag{c11}\\
& P_{5} \equiv\left(\partial T^{*} / \partial \omega_{5}\right)_{o}=\left(2 m r^{2} / 5\right) \omega_{5}=I \omega_{5} . \tag{c12}
\end{align*}
$$

Next, to the virtual work of the impressed forces. Recalling (ex. 2.13.6: i1-6), we obtain, successively,

$$
\begin{align*}
\delta^{\prime} W= & Q_{X} \delta X+Q_{Y} \delta Y+Q_{\phi} \delta \phi+Q_{\theta} \delta \theta+Q_{\psi} \delta \psi \\
= & Q_{X}\left(\delta \theta_{1}+r \delta \theta_{4}\right)+Q_{Y}\left(\delta \theta_{2}-r \delta \theta_{3}\right) \\
& +Q_{\phi}\left(-\cot \theta \sin \phi \delta \theta_{3}+\cot \theta \cos \phi \delta \theta_{4}+\delta \theta_{5}\right) \\
& +Q_{\theta}\left(\cos \phi \delta \theta_{3}+\sin \phi \delta \theta_{4}\right)+Q_{\psi}\left[(\sin \phi / \sin \theta) \delta \theta_{3}-(\cos \phi / \sin \theta) \delta \theta_{4}\right] \\
= & \left(Q_{X}\right) \delta \theta_{1}+\left(Q_{Y}\right) \delta \theta_{2}+\left[-r Q_{Y}-\cot \theta \sin \phi Q_{\phi}+\cos \phi Q_{\theta}+(\sin \phi / \sin \theta) Q_{\psi}\right] \delta \theta_{3} \\
& +\left[r Q_{X}+\cot \theta \cos \phi Q_{\phi}+\sin \phi Q_{\theta}-(\cos \phi / \sin \theta) Q_{\psi}\right] \delta \theta_{4}+Q_{\phi} \delta \theta_{5}, \quad(\mathrm{cl3}) \tag{c13}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
& \Theta_{1}=Q_{X}, \quad \Theta_{2}=Q_{Y}, \tag{c14,15}\\
& \Theta_{3}=-r Q_{Y}-\cot \theta \sin \phi Q_{\phi}+\cos \phi Q_{\theta}+(\sin \phi / \sin \theta) Q_{\psi}, \tag{c16}\\
& \Theta_{4}=r Q_{X}+\cot \theta \cos \phi Q_{\phi}+\sin \phi Q_{\theta}-(\cos \phi / \sin \theta) Q_{\psi}, \tag{c17}\\
& \Theta_{5}=Q_{\phi} . \tag{c18}
\end{align*}
$$

[If no reactions are sought, we only need $\Theta_{3,4,5}$. Then we can enforce the constraints in $\delta^{\prime} W=\Theta_{3} \delta \theta_{3}+\Theta_{4} \delta \theta_{4}+\Theta_{5} \delta \theta_{5}$.]

In view of the above, noting that, here, $\partial T^{*} / \partial q_{k}=0$ and $\gamma_{I, n+1}^{r}=0$, and recalling (ex. 2.13.6: $11-\mathrm{m}$, with $\Omega=0$), the kinetic Hamel equations $\dot{P}_{I}+\sum \sum \gamma_{I I^{\prime}}^{r} P_{r} \omega_{I^{\prime}} \equiv \dot{P}_{I}-\Gamma_{I}=\Theta_{I}\left(I, I^{\prime}=3,4,5 ; r=1, \ldots, 5\right)$ yield
$I=3: \quad\left(7 m r^{2} / 5\right) \dot{\omega}_{3}-\Gamma_{3}$

$$
\begin{gathered}
=\left(7 m r^{2} / 5\right) \dot{\omega}_{3}+\gamma_{34}^{1} P_{1} \omega_{4}+\gamma_{35}^{1} P_{1} \omega_{5}+\gamma_{34}^{2} P_{2} \omega_{4}+\gamma_{35}^{2} P_{2} \omega_{5} \\
\\
+\gamma_{35}^{4} P_{4} \omega_{5}+\gamma_{34}^{5} P_{5} \omega_{4}
\end{gathered}
$$

(only the first, third, sixth, and seventh terms survive)

$$
\begin{align*}
& =\left(7 m r^{2} / 5\right) \dot{\omega}_{3}-P_{5} \omega_{4}+\left(P_{4}-r P_{1}\right) \omega_{5} \\
& =\left(7 m r^{2} / 5\right) \dot{\omega}_{3}-\left(I \omega_{5}\right) \omega_{4}+\left[\left(7 m r^{2} / 5\right) \omega_{4}-r\left(m r \omega_{4}\right)\right] \omega_{5} \\
& \left.=\left(7 m r^{2} / 5\right) \dot{\omega}_{3}+0 \quad \text { (recalling that } I=2 m r^{2} / 5\right) ; \tag{c19}
\end{align*}
$$

and similarly for $I=4,5$. The final results are (recalling §3.15)

$$
I=3: \quad\left(7 m r^{2} / 5\right) \dot{\omega}_{3}=\Theta_{3},
$$

or

$$
\begin{equation*}
\left(7 m r^{2} / 5\right) \dot{\omega}_{X}=-r Q_{Y}-\cot \theta \sin \phi Q_{\phi}+\cos \phi Q_{\theta}+(\sin \phi / \sin \theta) Q_{\psi}=M_{X}-r Q_{Y} \tag{c20}
\end{equation*}
$$

$I=4: \quad\left(7 m r^{2} / 5\right) \dot{\omega}_{4}=\Theta_{4}$,
or
$\left(7 m r^{2} / 5\right) \dot{\omega}_{Y}=r Q_{X}+\cot \theta \cos \phi Q_{\phi}+\sin \phi Q_{\theta}-(\cos \phi / \sin \theta) Q_{\psi}=M_{Y}+r Q_{X} ;$
$I=5: \quad\left(2 m r^{2} / 5\right) \dot{\omega}_{5}=\Theta_{5}$,
or

$$
\begin{equation*}
\left(2 m r^{2} / 5\right) \dot{\omega}_{Z}=Q_{\phi} . \tag{c22}
\end{equation*}
$$

These three (first-order) equations, plus the three kinematic relations $\omega_{X, Y, Z} \Leftrightarrow \dot{\phi}, \dot{\theta}, \dot{\psi}(\S 1.12)$ and the two constraints (a), constitute a determinate system in the eight functions: $X(t), Y(t) ; \phi(t), \theta(t), \psi(t) ; \omega_{X, Y, Z}(t)$.

Instead of the space-fixed ω-components $\omega_{X, Y, Z}$, we could just as well have used its body-fixed components $\omega_{x, y, z}$; or, we can always invoke the $\omega_{X, Y, Z} \Leftrightarrow \omega_{x, y, z}$ relations. However, because of the complete symmetry of this problem, the spacefixed axes seems the best choice.

The Appell Equations
Since

$$
\begin{align*}
a_{G}^{2} & =(\ddot{X})^{2}+(\ddot{Y})^{2}=\left[\left(\omega_{1}+r \omega_{4}\right)^{\cdot}\right]^{2}+\left[\left(\omega_{2}-r \omega_{3}\right)^{\cdot}\right]^{2} \\
& =\left(\dot{\omega}_{1}\right)^{2}+\left(\dot{\omega}_{2}\right)^{2}+r^{2}\left[\left(\dot{\omega}_{3}\right)^{2}+\left(\dot{\omega}_{4}\right)^{2}\right]+2 r\left(\dot{\omega}_{1} \dot{\omega}_{4}-\dot{\omega}_{2} \dot{\omega}_{3}\right), \tag{d1}
\end{align*}
$$

and, as in the preceding example (à la König),

$$
\begin{equation*}
S=S_{G}+S_{/ G}, \quad 2 S_{G}=m a_{G}^{2}, \quad 2 S_{/ G} \equiv \boldsymbol{S} d m \boldsymbol{a}_{/ G} \cdot \boldsymbol{a}_{/ G}=\boldsymbol{S} d m a_{/ G}^{2} \tag{d2}
\end{equation*}
$$

it is not too hard to see that S^{*} equals the earlier T^{*}, but with the ω 's replaced by the corresponding $\dot{\omega}$'s; that is,

$$
\begin{align*}
2 S^{*}=2 T^{*}(\dot{\omega})= & m\left\{\left(\dot{\omega}_{1}\right)^{2}+\left(\dot{\omega}_{2}\right)^{2}+\left(7 r^{2} / 5\right)\left[\left(\dot{\omega}_{3}\right)^{2}+\left(\dot{\omega}_{4}\right)^{2}\right]\right. \\
& \left.+\left(2 r^{2} / 5\right)\left(\dot{\omega}_{5}\right)^{2}+2 r\left(\dot{\omega}_{1} \dot{\omega}_{4}-\dot{\omega}_{2} \dot{\omega}_{3}\right)\right\} \tag{d3}
\end{align*}
$$

Also, as the theory shows (3.5 .25 a ff .), if we are not interested in finding the constraint reactions, we can enforce the constraints $\omega_{1,2}=0 \Rightarrow \dot{\omega}_{1,2}=0$ in S^{*} right
from the start; that is, we can neglect from it not just the quadratic terms in $\dot{\omega}_{1,2}$ but also the linear ones. Thus, we can take $2 S^{*}\left(\dot{\omega}_{1,2}=0\right) \equiv 2 S^{*}{ }_{o}$:

$$
\begin{equation*}
2 S_{o}^{*}=m\left\{\left(7 r^{2} / 5\right)\left[\left(\dot{\omega}_{3}\right)^{2}+\left(\dot{\omega}_{4}\right)^{2}\right]+\left(2 r^{2} / 5\right)\left(\dot{\omega}_{5}\right)^{2}\right\} \tag{d4}
\end{equation*}
$$

and therefore the kinetic Appellian equations are

$$
\begin{align*}
& \partial S_{o}^{*} / \partial \dot{\omega}_{3}=\left(7 r^{2} / 5\right) \dot{\omega}_{3}=\Theta_{3}, \tag{d5}\\
& \partial S^{*}{ }_{o} / \partial \dot{\omega}_{4}=\left(7 r^{2} / 5\right) \dot{\omega}_{4}=\Theta_{4}, \tag{d6}\\
& \partial S_{o}^{*} / \partial \dot{\omega}_{5}=\left(2 r^{2} / 5\right) \dot{\omega}_{5}=\Theta_{5} ; \tag{d7}
\end{align*}
$$

and, of course, these coincide with the earlier kinetic Hamel equations.

The Chaplygin Equations (3.8.13a ff.)
We recall that here the (double) kinetic energy equals

$$
\begin{equation*}
2 T=m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+I\left[(\dot{\phi})^{2}+(\dot{\theta})^{2}+(\dot{\psi})^{2}+2 \dot{\phi} \dot{\psi} \cos \theta\right] \tag{e1}
\end{equation*}
$$

while the constraints (a), rewritten in the Chaplygin form - that is,

$$
\dot{q}_{D}=\sum b_{D I} \dot{q}_{I}, \quad \text { where } \quad q_{D}=X, Y ; q_{I}=\phi, \theta, \psi,
$$

are

$$
\begin{equation*}
\dot{X}=(r \sin \phi) \dot{\theta}-(r \cos \phi \sin \theta) \dot{\psi} \quad \text { and } \quad \dot{Y}=-(r \cos \phi) \dot{\theta}-(r \sin \phi \sin \theta) \dot{\psi} \tag{e2}
\end{equation*}
$$

Therefore, in this problem, the "Chaplygin coefficients" are (with some easily understood ad hoc notation)

$$
\begin{align*}
b_{13} \equiv b_{X \phi}=0, & b_{14} \equiv b_{X \theta}=r \sin \phi, & b_{15} \equiv b_{X \psi}=-r \cos \phi \sin \theta \\
b_{23} \equiv b_{Y \phi}=0, & b_{24} \equiv b_{Y \theta}=-r \cos \phi, & b_{25} \equiv b_{Y \psi}=-r \sin \phi \sin \theta . \tag{e3}
\end{align*}
$$

Clearly, since (α) the constraints $(\mathrm{e} 2,3)$ are stationary, and (β) the chosen "dependent" coordinates X, Y do not appear either in the constraint coefficients $b_{D I}$ or in T (i.e., $\partial T / \partial X=0, \partial T / \partial Y=0$), this is a Chaplygin system, and, therefore, Chaplygin's equations hold; and, for this problem, they coincide with Voronets' equations. Let us find them.
(i) Eliminating \dot{X} and \dot{Y} from T with the help of the constraints (e2), we obtain the "Chaplygin constrained kinetic energy"

$$
\begin{align*}
2 T & =2 T[\theta, \dot{X}(\phi, \theta ; \dot{\theta}, \dot{\psi}), \dot{Y}(\phi, \theta ; \dot{\theta}, \dot{\psi}), \dot{\phi}, \dot{\theta}, \dot{\psi}] \\
& \left.=\cdots=\left(m r^{2}\right)\left[(2 / 5)(\dot{\phi})^{2}+(7 / 5)(\dot{\theta})^{2}+\left((2 / 5)+\sin ^{2} \theta\right)\right)(\dot{\psi})^{2}+(4 \cos \theta / 5) \dot{\phi} \dot{\psi}\right] \\
& =2 T_{o}(\phi, \theta ; \dot{\phi}, \dot{\theta}, \dot{\psi}) \equiv 2 T_{o}, \tag{e4}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
E_{3}\left(T_{o}\right) \equiv & E_{\phi}\left(T_{o}\right) \equiv\left(\partial T_{o} / \partial \dot{\phi}\right)^{\cdot}-\partial T_{o} / \partial \phi=\left(2 m r^{2} / 5\right)(\ddot{\phi}+\ddot{\psi} \cos \theta-\dot{\theta} \dot{\psi} \sin \theta) \\
E_{4}\left(T_{o}\right) \equiv & E_{\theta}\left(T_{o}\right) \equiv\left(\partial T_{o} / \partial \dot{\theta}\right)^{\cdot}-\partial T_{o} / \partial \theta \\
= & \left(m r^{2}\right)\left[(7 / 5) \ddot{\theta}-(\dot{\psi})^{2} \sin \theta \cos \theta+(2 / 5) \dot{\phi} \dot{\psi} \sin \theta\right], \\
E_{5}\left(T_{o}\right) \equiv & E_{\psi}\left(T_{o}\right) \equiv\left(\partial T_{o} / \partial \dot{\psi}\right)^{\cdot}-\partial T_{o} / \partial \psi \\
= & \left(m r^{2}\right)\left\{(2 / 5) \ddot{\phi} \cos \theta+\left[(2 / 5)+\sin ^{2} \theta\right] \ddot{\psi}+2 \dot{\theta} \dot{\psi} \sin \theta \cos \theta\right. \\
& -(2 / 5) \dot{\phi} \dot{\theta} \sin \theta\} . \tag{e5,6,7}
\end{align*}
$$

(ii) Next, let us calculate the corresponding "Chaplygin corrective terms"

$$
\begin{align*}
-\Gamma_{I o} & \equiv \sum \sum\left(\partial b_{D I^{\prime}} / \partial q_{I}-\partial b_{D I} / \partial q_{I^{\prime}}\right)\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}} \\
& \equiv \sum \sum t_{I^{\prime} I}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \dot{q}_{I^{\prime}} \equiv \sum \sum t_{I^{\prime} I}^{D} p_{D o} \dot{q}_{I^{\prime}} \tag{e8}
\end{align*}
$$

Using commas for partial derivatives relative to the q_{I}, we obtain, successively,

$$
\begin{aligned}
-\Gamma_{3 o} \equiv-\Gamma_{\phi o} \equiv & \sum \sum t_{I 3}^{D} p_{D o} \dot{q}_{I}=\sum\left(\sum t_{I 3}^{D} \dot{q}_{I}\right) p_{D o} \\
= & {\left[\left(b_{13,3}-b_{13,3}\right) \dot{q}_{3}+\left(b_{14,3}-b_{13,4}\right) \dot{q}_{4}+\left(b_{15,3}-b_{13,5}\right) \dot{q}_{5}\right] p_{1 o} } \\
& +\left[\left(b_{23,3}-b_{23,3}\right) \dot{q}_{3}+\left(b_{24,3}-b_{23,4}\right) \dot{q}_{4}+\left(b_{25,3}-b_{23,5}\right) \dot{q}_{5}\right] p_{2 o} \\
= & {\left[\left(b_{X \theta, \phi}-b_{X \phi, \theta}\right) \dot{\theta}+\left(b_{X \psi, \phi}-b_{X \phi, \psi}\right) \dot{\psi}\right] p_{X o} } \\
& +\left[\left(b_{Y \theta, \phi}-b_{Y \phi, \theta}\right) \dot{\theta}+\left(b_{Y \psi, \phi}-b_{Y \phi, \psi}\right) \dot{\psi}\right] p_{Y o},
\end{aligned}
$$

or, since,

$$
\begin{aligned}
& p_{1 o} \equiv p_{X o} \equiv(\partial T / \partial \dot{X})_{o}=(m \dot{X})_{o}=m r(\dot{\theta} \sin \phi-\dot{\psi} \cos \phi \sin \theta) \\
& p_{2 o} \equiv p_{Y o} \equiv(\partial T / \partial \dot{Y})_{o}=(m \dot{Y})_{o}=-m r(\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \sin \theta)
\end{aligned}
$$

finally,

$$
\begin{align*}
-\Gamma_{3 o} \equiv & -\Gamma_{\phi o} \\
= & {[(r \cos \phi-0) \dot{\theta}+(r \sin \phi \sin \theta-0) \dot{\psi}](m r)(\dot{\theta} \sin \phi-\dot{\psi} \cos \phi \sin \theta) } \\
& +[(r \sin \phi-0) \dot{\theta}+(-r \cos \phi \sin \theta-0) \dot{\psi}](-m r)(\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \sin \theta) \\
= & \cdots=0 \tag{e9}
\end{align*}
$$

and similarly, after some careful algebra,

$$
\begin{align*}
& -\Gamma_{4 o} \equiv-\Gamma_{\theta o}=\sum\left(\sum t_{I 4}^{D} \dot{q}_{I}\right) p_{D o}=\cdots=m r^{2}(\dot{\phi}+\dot{\psi} \cos \theta)(\dot{\psi} \sin \theta) \tag{e10}\\
& -\Gamma_{5 o} \equiv-\Gamma_{\psi o}=\sum\left(\sum t^{D}{ }_{I 5} \dot{q}_{I}\right) p_{D o}=\cdots=-m r^{2}(\dot{\phi}+\dot{\psi} \cos \theta)(\dot{\theta} \sin \theta) \tag{e11}
\end{align*}
$$

The above show that the nonvanishing Chaplygin coefficients are

$$
\begin{align*}
& t_{43}^{1} \equiv t^{X}{ }_{\theta \phi}=r \cos \phi \quad\left(=-t_{34}^{1} \equiv-t^{X}{ }_{\phi \theta}\right), \tag{e12}\\
& t_{53}^{1} \equiv t^{X}{ }_{\psi \phi}=r \sin \phi \sin \theta \quad\left(=-t_{35}^{1} \equiv-t^{X}{ }_{\phi \psi}\right), \tag{e13}\\
& t^{1}{ }_{54} \equiv t^{X}{ }_{\psi \theta}=-r \cos \phi \cos \theta \quad\left(=-t^{1}{ }_{45} \equiv-t^{X}{ }_{\theta \psi}\right) ; \tag{e14}\\
& t_{43}^{2} \equiv t^{Y}{ }_{\theta \phi}=r \sin \phi \quad\left(=-t^{2}{ }_{34} \equiv-t^{Y}{ }_{\phi \theta}\right), \tag{e15}\\
& t_{53}^{2} \equiv t^{Y}{ }_{\psi \phi}=-r \cos \phi \sin \theta \quad\left(=-t_{35}^{2} \equiv-t^{Y}{ }_{\phi \psi}\right), \tag{e16}\\
& t_{54}^{2} \equiv t^{Y}{ }_{\psi \theta \theta}=-r \sin \phi \cos \theta \quad\left(=-t^{2}{ }_{45} \equiv-t^{Y}{ }_{\theta \psi}\right) . \tag{e17}
\end{align*}
$$

(iii) Finally, let us calculate the "Chaplygin impressed forces" $Q_{I o} \equiv$ $Q_{I}+\sum b_{D I} Q_{D}$. With some obvious ad hoc notation, we find

$$
\begin{align*}
Q_{3 o} \equiv Q_{\phi o}=Q_{3}+b_{13} Q_{1}+b_{23} Q_{2} & =Q_{3} \equiv Q_{\phi} \tag{e18}\\
Q_{4 o} \equiv Q_{\theta o}=Q_{4}+b_{14} Q_{1}+b_{24} Q_{2} & =Q_{4}+(r \sin \phi) Q_{1}+(-r \cos \phi) Q_{2} \\
& =Q_{\theta}+r\left(Q_{X} \sin \phi-Q_{Y} \cos \phi\right) \tag{e19}
\end{align*}
$$

$$
Q_{5 o} \equiv Q_{\psi o}=Q_{5}+b_{15} Q_{1}+b_{25} Q_{2}=Q_{5}+(-r \cos \phi \sin \theta) Q_{1}+(-r \sin \phi \sin \theta) Q_{2}
$$

$$
\begin{equation*}
=Q_{\psi}-r \sin \theta\left(Q_{X} \cos \phi+Q_{Y} \sin \phi\right) \tag{e20}
\end{equation*}
$$

Inserting now all the above partial results into Chaplygin's equations (3.8.13o):

$$
\begin{equation*}
\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\Gamma_{I o}=Q_{I o} \tag{e21}
\end{equation*}
$$

(with $I: 3 \rightarrow \phi, 4 \rightarrow \theta, 5 \rightarrow \psi$), and, simplifying a little, we obtain the following three kinetic equations:

$$
\begin{array}{ll}
\phi: & \left(2 m r^{2} / 5\right)(\ddot{\phi}+\ddot{\psi} \cos \theta-\dot{\theta} \dot{\psi} \sin \theta)=Q_{\phi}, \\
\theta: & \left(7 m r^{2} / 5\right)(\ddot{\theta}+\dot{\phi} \dot{\psi} \sin \theta)=Q_{\theta}+r\left(Q_{X} \sin \phi-Q_{Y} \cos \phi\right), \\
\psi: & \left(m r^{2}\right)\left[(2 / 5) \ddot{\phi} \cos \theta+(2 / 5) \ddot{\psi}+\ddot{\psi} \sin ^{2} \theta-(7 / 5) \dot{\phi} \dot{\theta} \sin \theta\right. \\
& +\dot{\theta} \dot{\psi} \sin \theta \cos \theta]=Q_{\psi}-r \sin \theta\left(Q_{X} \cos \phi+Q_{Y} \sin \phi\right) . \tag{e24}
\end{array}
$$

These latter, of course, coincide (i) with the earlier-found kinetic Maggi equations (b6-8), after we eliminate in them \ddot{X} and \ddot{Y} using the (...) -differentiated constraints (a); and (ii) with the earlier kinetic Hamel equations (c20-22), after we express $\dot{\phi}, \ldots, \ddot{\phi}, \ldots$, in terms of $\omega_{3,4,5}$ and $\dot{\omega}_{3,4,5}$, and $Q_{\phi, \theta, \psi ; o}$ in terms of $\Theta_{3,4,5}$; and similarly with the Appell equations (d5-7). The details are left to the reader.

REMARK

(May be omitted in a first reading.) A safer way to calculate the $-\Gamma_{I o}$ - and, in fact, the entire set of Chaplygin's equations - is by direct application of the Chaplygin form of the master variational equation [specialization of the corresponding equation of Hamel (§3.6.12)]

$$
\begin{equation*}
\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot} \delta q_{I}-\sum\left(\partial T_{o} / \partial q_{I}\right) \delta q_{I}-\sum \Gamma_{I o} \delta q_{I}=\sum Q_{I o} \delta q_{I} \tag{e25}
\end{equation*}
$$

where

$$
\begin{align*}
-\sum \Gamma_{I o} \delta q_{I} & =\sum\left(\sum \sum t_{I^{\prime} I}^{D} p_{D o} \dot{q}_{I^{\prime}}\right) \delta q_{I} \\
& =\sum\left(\sum \sum t_{I^{\prime} I}^{D} \dot{q}_{I^{\prime}} \delta q_{I}\right) p_{D o}=-\sum p_{D o}\left[\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)\right] \tag{e26}
\end{align*}
$$

The reason for this is that here we have, in effect, adopted the Suslov viewpoint according to which

$$
\begin{equation*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=0 \quad \text { and } \quad\left(\delta q_{I}\right)^{\cdot}-\delta\left(\dot{q}_{I}\right)=0 \tag{e27}
\end{equation*}
$$

but, successively,

$$
\begin{align*}
\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right) & =\left(\sum b_{D I} \delta q_{I}\right)^{\cdot}-\delta\left(\sum b_{D I^{\prime}} \dot{q}_{I^{\prime}}\right) \\
& =\sum \sum\left(b_{D I, I^{\prime}} \dot{q}_{I^{\prime}} \delta q_{I}-b_{D I^{\prime}, I} \dot{q}_{I^{\prime}} \delta q_{I}\right) \\
& =\sum \sum\left(b_{D I, I^{\prime}}-b_{D I^{\prime}, I}\right) \dot{q}_{I^{\prime}} \delta q_{I} \\
& \equiv \sum \sum t_{I I^{\prime}} \dot{q}_{I^{\prime}} \delta q_{I}=-\sum \sum t_{I^{\prime} I} \dot{q}_{I^{\prime}} \delta q_{I} \tag{e28}
\end{align*}
$$

whereas in the customary, and more general, viewpoint of Hamel (§ 2.12): $\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)=0,(k=1, \ldots, n)$, but

$$
\begin{equation*}
\left(\delta \theta_{D}\right)^{\cdot}-\delta \omega_{D}=\sum \sum \gamma_{I \alpha}^{D} \omega_{\alpha} \delta \theta_{I} \Rightarrow \sum \sum t_{I^{\prime} I}^{D} \dot{q}_{I^{\prime}} \delta q_{I} \neq 0 \tag{e29}
\end{equation*}
$$

and, accordingly, the term corresponding to $-\sum \Gamma_{I o} \delta q_{I}$ is [recalling (§3.6.11)]

$$
\begin{align*}
& \sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \rightarrow \sum p_{D o}\left[\left(\delta \theta_{D}\right)^{\cdot}-\delta \omega_{D}\right] \\
& \quad=\sum p_{D o}\left(\sum \sum t_{I^{\prime} I} \dot{q}_{I^{\prime}} \delta q_{I}\right)=\sum\left(\sum \sum t_{I^{\prime} I}^{D} p_{D o} \dot{q}_{I^{\prime}}\right) \delta q_{I} \tag{e30}
\end{align*}
$$

that is, the two interpretations may be different, but, if utilized consistently, both lead to the same equations of motion [and similarly for the case of Voronets (3.8.14a ff.)].

In our problem, adopting the Suslov viewpoint, we obtain, successively [recalling (e2), etc.],

$$
\begin{align*}
& -\sum p_{D o}\left[\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)\right]=-p_{X o}\left[(\delta X)^{\cdot}-\delta(\dot{X})\right]-p_{Y o}\left[(\delta Y)^{\cdot}-\delta(\dot{Y})\right] \\
& =-[m r(\dot{\theta} \sin \phi-\dot{\psi} \cos \phi \sin \theta)]\{[(r \sin \phi) \delta \theta-(r \cos \phi \sin \theta) \delta \psi] \\
& \\
& \quad-\delta[(r \sin \phi) \dot{\theta}-(r \cos \phi \sin \theta) \dot{\psi}]\} \\
& -[-m r(\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \sin \theta)]\{[(-r \cos \phi) \delta \theta+(-r \sin \phi \sin \theta) \delta \psi] \\
& \quad-\delta[(-r \cos \phi) \dot{\theta}+(-r \sin \phi \sin \theta) \dot{\psi}]\} \\
& =\cdots=(0) \delta \phi+\left[m r^{2}(\dot{\psi} \sin \theta)(\dot{\phi}+\dot{\psi} \cos \theta)\right] \delta \theta \\
& \quad+\left[\left(-m r^{2}\right)(\dot{\theta} \sin \theta)(\dot{\phi}+\dot{\psi} \cos \theta)\right] \delta \psi \tag{e31}
\end{align*}
$$

as (e26) requires; and, of course, in agreement with the earlier (e9-11).

The above make clear that the methods of Chaplygin, and Voronets, are rather complicated and error prone, even in this relatively simple problem; and the only reason for working it out completely was [just like Chaplygin's original effort (1895/ 1897)] to demonstrate concretely that, in general,

$$
\begin{equation*}
E_{I}\left(T_{o}\right) \equiv\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I} \neq Q_{I o} \tag{e32}
\end{equation*}
$$

although, in this case, the equality does hold for $q_{I}=\phi$ [see also Beghin, 1967, I, pp. 436-438), and "a famous error" in our rolling coin example 3.18 .5 (below)].

The Hadamard Equations

$E_{I}(T)+\sum b_{D I} E_{D}(T)=Q_{I}+\sum b_{D I} Q_{D}\left(\equiv Q_{I o}\right)$. The $E_{k}(T)(k=1, \ldots, 5), b_{D I}$, and $Q_{I o}$ have already been calculated. It is not hard to show that the final result would be the earlier kinetic Maggi equations (b6-8); while for $D=1,2$ we would simply have [recalling (3.8.11a ff.)]

$$
\begin{equation*}
E_{D}(T)=Q_{D}+\lambda_{D}=Q_{D}+R_{D} \tag{f}
\end{equation*}
$$

Constraint Reactions
In view of the above, we obtain, successively,

$$
\begin{equation*}
R_{1} \equiv R_{X}=m \ddot{X}-Q_{X} \quad \text { and } \quad R_{2} \equiv R_{Y}=m \ddot{Y}-Q_{Y} \tag{g1}
\end{equation*}
$$

and [recalling (3.8.111)] $R_{I}=\sum \lambda_{D} a_{D I}=\sum \lambda_{D}\left(-b_{D I}\right)=-\sum b_{D I}\left[E_{D}(T)-Q_{D}\right]$:

$$
\begin{align*}
R_{3}=R_{\phi} & =-b_{13}\left[E_{1}(T)-Q_{1}\right]-b_{23}\left[E_{2}(T)-Q_{2}\right]=-(0)(\ldots)-(0)(\ldots)=0, \\
R_{4}=R_{\theta} & =-b_{14}\left[E_{1}(T)-Q_{1}\right]-b_{24}\left[E_{2}(T)-Q_{2}\right] \\
& =-r \sin \phi\left(m \ddot{X}-Q_{X}\right)-(-r \cos \phi)\left(m \ddot{Y}-Q_{Y}\right) \\
& =r\left[-m(\ddot{X} \sin \phi-\ddot{Y} \cos \phi)+\left(Q_{X} \sin \phi-Q_{Y} \cos \phi\right)\right] \\
R_{5}=R_{\psi} & =-b_{15}\left[E_{1}(T)-Q_{1}\right]-b_{25}\left[E_{2}(T)-Q_{2}\right] \\
& =-(-r \cos \phi \sin \theta)\left(m \ddot{X}-Q_{X}\right)-(-r \sin \phi \sin \theta)\left(m \ddot{Y}-Q_{Y}\right) \\
& =r\left[m(\ddot{X} \cos \phi+\ddot{Y} \sin \phi)-\left(Q_{X} \cos \phi+Q_{Y} \sin \phi\right)\right] \tag{g2,3,4}
\end{align*}
$$

so that once the motion has been found, the reactions can be readily determined.

Example 3.18.3 Dynamics of a Sphere Rolling on a Uniformly Spinning Plane.

Introduction: Hamel's Equations

Continuing from the preceding example, let us find the motion of that sphere if the plane P is revolving about the fixed (vertical) axis $O Z$ with constant angular velocity Ω. The relevant kinematics has already been discussed in ex. 2.13 .5 and ex. 2.13.6. It was shown there that the rolling constraints are (note additional acatastatic terms)

$$
\begin{align*}
\dot{X}-(r \sin \phi) \dot{\theta}+(r \cos \phi \sin \theta) \dot{\psi}+\Omega Y & =0 \\
\dot{Y}+(r \cos \phi) \dot{\theta}+(r \sin \phi \sin \theta) \dot{\psi}-\Omega X & =0 \tag{al}
\end{align*}
$$

Since the catastatic coefficients $\left[a_{D k} ; D=1,2 ; k=1, \ldots, 5\right]$ and kinetic energy have the same form as in the previous catastatic case, the equations of motion of RouthVoss and Maggi-Hadamard are the same in form as before; their solutions, however, will be different because these equations must now be joined with the different constraints (a1).

Similarly, LP and the virtual form of the constraints (a) remain the same. But since T in quasi variables, T^{*}, is not the same as before, Hamel's equations (which incorporate the new constraints) will be different; and so will be those of Appell. Indeed, and remembering not to enforce the constraints $\omega_{1,2}=0$ until the final stage, we find
$2 T \rightarrow 2 T^{*}=m\left[\left(\omega_{1}+r \omega_{4}-\Omega Y\right)^{2}+\left(\omega_{2}-r \omega_{3}+\Omega X\right)^{2}\right]+I\left(\omega_{3}{ }^{2}+\omega_{4}{ }^{2}+\omega_{5}^{2}\right)$.
The γ 's have already been calculated in (ex. 2.13.6: 11-m); we have also found that

$$
\begin{equation*}
A_{13}=0, \quad A_{14}=r, \quad A_{15}=0 ; \quad A_{23}=-r, \quad A_{24}=0, \quad A_{25}=0 \tag{a3}
\end{equation*}
$$

Therefore, Hamel's kinetic equations

$$
\begin{align*}
\left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\sum A_{D I}\left(\partial T^{*} / \partial q_{D}\right) & +\sum \sum \gamma_{I I^{\prime}}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{I^{\prime}} \\
& +\sum \gamma_{I}^{k}\left(\partial T^{*} / \partial \omega_{k}\right)=\Theta_{I} \tag{a4}
\end{align*}
$$

yield, after some straightforward and careful algebra,

$$
\begin{align*}
& \dot{P}_{3}-\partial T^{*} / \partial \theta_{3}+P_{4} \omega_{5}-P_{5} \omega_{4}+P_{1} r\left(\Omega-\omega_{5}\right)=\Theta_{3}, \tag{a5}\\
& \dot{P}_{4}-\partial T^{*} / \partial \theta_{4}+P_{5} \omega_{3}-P_{3} \omega_{5}+P_{2} r\left(\Omega-\omega_{5}\right)=\Theta_{4}, \tag{a6}\\
& \dot{P}_{5}-\partial T^{*} / \partial \theta_{5}+P_{3} \omega_{4}-P_{4} \omega_{3}+P_{1} r \omega_{3}+P_{2} r \omega_{4}=\Theta_{5} ; \tag{a7}
\end{align*}
$$

or, explicitly,

$$
\begin{align*}
& \left(7 m r^{2} / 5\right) \dot{\omega}_{X}-m r \Omega\left(r \omega_{Y}-\Omega Y\right)=\Theta_{X}, \tag{a8}\\
& \left(7 m r^{2} / 5\right) \dot{\omega}_{Y}+m r \Omega\left(r \omega_{X}-\Omega X\right)=\Theta_{Y}, \tag{a9}\\
& \left(2 m r^{2} / 5\right) \dot{\omega}_{Z}=\Theta_{Z} ; \tag{a10}
\end{align*}
$$

we notice the Ω-proportional terms [in addition to those of eqs. (c20-22) of the preceding example]. The extension to the general case $\Omega=\Omega(t)$ involves only some algebraic complications; in particular, eqs. (a5-7) still hold.

Hamel's Equations via the Master Variational Equation

$$
\begin{equation*}
\sum \dot{P}_{k} \delta \theta_{k}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum\left[\sum A_{l k}\left(\partial T^{*} / \partial q_{l}\right)\right] \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k} . \tag{b1}
\end{equation*}
$$

The direct application of (b1), for the derivation of Hamel equations of motion, is recommended in order to minimize the probability of errors. Its main advantage lies
in the calculation of the second (noncommutative) term. Let us carry this out explicitly: Recalling the transitivity relations (ex. 2.13.6: j ff.), we find, successively,

$$
\begin{align*}
P_{1}[(-\Omega) & \left.\delta \theta_{2}+r\left(\Omega-\omega_{5}\right) \delta \theta_{3}+\left(r \omega_{3}\right) \delta \theta_{5}\right] \\
& +P_{2}\left[(\Omega) \delta \theta_{1}+r\left(\Omega-\omega_{5}\right) \delta \theta_{4}+\left(r \omega_{4}\right) \delta \theta_{5}\right] \\
& +P_{3}\left[\left(\omega_{4}\right) \delta \theta_{5}+\left(-\omega_{5}\right) \delta \theta_{4}\right] \\
& +P_{4}\left[\left(\omega_{5}\right) \delta \theta_{3}+\left(-\omega_{3}\right) \delta \theta_{5}\right] \\
& +P_{5}\left[\left(\omega_{3}\right) \delta \theta_{4}+\left(-\omega_{4}\right) \delta \theta_{3}\right] \\
= & \left(P_{2} \Omega\right) \delta \theta_{1}+\left(-P_{1} \Omega\right) \delta \theta_{2}+\left[P_{4} \omega_{5}-P_{5} \omega_{4}+P_{1} r\left(\Omega-\omega_{5}\right)\right] \delta \theta_{3} \\
& +\left[P_{5} \omega_{3}-P_{3} \omega_{5}+P_{2} r\left(\Omega-\omega_{5}\right)\right] \delta \theta_{4} \\
& +\left[P_{3} \omega_{4}-P_{4} \omega_{3}+r\left(P_{1} \omega_{3}+P_{2} \omega_{4}\right)\right] \delta \theta_{5} . \tag{b2}
\end{align*}
$$

In the above, we notice that (a) the first and second terms, are needed in the kinetostatic equations ($\delta \theta_{1,2}=0$); while the rest are needed in the kinetic equations $\left(\delta \theta_{3,4,5}=0\right)$; and (b) the constraints have been enforced in the velocity form $\omega_{1,2}=0$, but not in the virtual form $\delta \theta_{1,2}=0$ (unless we are not interested in the reactions).

Let the reader verify that by collecting (...) $\delta \theta_{k}$ terms, and so on, and applying the method of multipliers, eqs. (b1,2) lead to the following full set of equations of motion:

Kinetostatic equations:

$$
\begin{array}{ll}
\delta \theta_{1}: & \dot{P}_{1}-A_{11} P_{1}-A_{21} P_{2}+\Omega P_{2}=\Theta_{1}+\Lambda_{1} \\
\delta \theta_{2}: & \dot{P}_{2}-A_{12} P_{1}-A_{22} P_{2}-\Omega P_{1}=\Theta_{2}+\Lambda_{2} \tag{b4}
\end{array}
$$

Kinetic equations:

$$
\begin{array}{ll}
\delta \theta_{3}: & \dot{P}_{3}-A_{13} P_{1}-A_{23} P_{2}+P_{4} \omega_{5}-P_{5} \omega_{4}+P_{1} r\left(\Omega-\omega_{5}\right)=\Theta_{3}, \\
\delta \theta_{4}: & \dot{P}_{4}-A_{14} P_{1}-A_{24} P_{2}+P_{5} \omega_{3}-P_{3} \omega_{5}+P_{2} r\left(\Omega-\omega_{5}\right)=\Theta_{4}, \\
\delta \theta_{5}: & \dot{P}_{5}-A_{15} P_{1}-A_{25} P_{2}+P_{3} \omega_{4}-P_{4} \omega_{3}+r\left(P_{1} \omega_{3}+P_{2} \omega_{4}\right)=\Theta_{5} ; \tag{b7}
\end{array}
$$

the last three in complete agreement with the earlier-found equations (a5-7).

The Appell Equations (Kinetic Equations Only)

Using the customary notations, we find

$$
\begin{equation*}
2 S^{*}=m a_{G}^{2}+2 S_{/ G}^{*}, \tag{c1}
\end{equation*}
$$

where

$$
\begin{align*}
2 S^{*} / G= & I\left[\left(\dot{\omega}_{X}\right)^{2}+\left(\dot{\omega}_{Y}\right)^{2}+\left(\dot{\omega}_{Z}\right)^{2}\right]=I\left[\left(\dot{\omega}_{3}\right)^{2}+\left(\dot{\omega}_{4}\right)^{2}+\left(\dot{\omega}_{5}\right)^{2}\right], \tag{c2}\\
a_{G}^{2}= & (\ddot{X})^{2}+(\ddot{Y})^{2}=\left[\left(r \omega_{4}-\Omega Y+\omega_{1}\right)\right]^{2}+\left[\left(-r \omega_{3}+\Omega X+\omega_{2}\right)^{\cdot}\right]^{2} \\
= & {\left[r \dot{\omega}_{4}+\Omega\left(r \omega_{3}-\Omega X\right)\right]^{2}+\left[-r \dot{\omega}_{3}+\Omega\left(r \omega_{4}-\Omega Y\right)\right]^{2} } \\
= & r^{2}\left[\left(\dot{\omega}_{3}\right)^{2}+\left(\dot{\omega}_{4}\right)^{2}\right]+2 r \Omega\left[\left(r \omega_{3}-\Omega X\right) \dot{\omega}_{4}-\left(r \omega_{4}-\Omega Y\right) \dot{\omega}_{3}\right] \\
& + \text { non-Appell-important terms. } \tag{c3}
\end{align*}
$$

Therefore, to within Appell-important terms, and since $I=2 m r^{2} / 5$, the constrained (double) Appellian of the sphere equals

$$
\begin{align*}
2 S^{*} \rightarrow 2 S_{o}^{*}= & m\left\{\left(7 r^{2} / 5\right)\left[\left(\dot{\omega}_{3}\right)^{2}+\left(\dot{\omega}_{4}\right)^{2}\right]+\left(2 r^{2} / 5\right)\left(\dot{\omega}_{5}\right)^{2}\right\} \\
& +2 m r \Omega\left[\left(r \omega_{3}-\Omega X\right) \dot{\omega}_{4}-\left(r \omega_{4}-\Omega Y\right) \dot{\omega}_{3}\right], \tag{c4}
\end{align*}
$$

where the second, Ω-proportional, group of terms is due to the rotation of the plane. Differentiating this Appellian relative to $\dot{\omega}_{3,4,5}$ yields the left sides of the earlier kinetic equations (a5-7, b5-7).

Example 3.18.4 Power Equations/Energetics of Rolling Sphere on Uniformly Spinning Plane. Let us begin by collecting all needed analytical results; already calculated in exs. 2.13.5 and 2.13.6, and the preceding examples 3.18.2 and 3.18.3. [Here, too, the case $\Omega=$ constant was chosen for its algebraic simplicity; the general case $\Omega=$ given function of time would not have offered any theoretical difficulties. We have (with $I \equiv 2 m r^{2} / 5$)

$$
\begin{align*}
2 T & =m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+\left(I_{X}^{2} \omega_{X}^{2}+I_{Y}^{2} \omega_{Y}^{2}+I_{Z}^{2} \omega_{Z}^{2}\right) \tag{i}\\
& =m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+I\left[(\dot{\phi})^{2}+(\dot{\theta})^{2}+(\dot{\psi})^{2}+2 \dot{\phi} \dot{\psi} \cos \theta\right] \tag{a1}
\end{align*}
$$

That here $T_{1}=T_{0}=0 \Rightarrow T=T_{2}$, should come as no surprise. The holonomic coordinates chosen here - namely, X, Y, ϕ, θ, ψ - are inertial.

$$
\begin{align*}
2 T^{*}= & m\left[\left(\omega_{1}+r \omega_{4}-\Omega Y\right)^{2}+\left(\omega_{2}-r \omega_{3}+\Omega X\right)^{2}\right]+I\left(\omega_{3}^{2}+\omega_{4}{ }^{2}+\omega_{5}{ }^{2}\right) \tag{ii}\\
= & (\text { expanding and grouping appropriately })=2 T^{*}{ }_{2}+2 T^{*}{ }_{1}+2 T^{*}{ }_{0}, \\
2 T^{*}= & m\left[\omega_{1}^{2}+\omega_{2}^{2}+r^{2}\left(\omega_{3}^{2}+\omega_{4}^{2}\right)+2 r\left(\omega_{1} \omega_{4}-\omega_{2} \omega_{3}\right)\right] \\
& +I\left(\omega_{3}^{2}+\omega_{4}{ }^{2}+\omega_{5}^{2}\right) \\
& =(\text { double }) \text { kinetic energy of motion of sphere relative to plane, (a3) } \\
T^{*}{ }_{1}= & m\left[(-Y \Omega) \omega_{1}+(-r Y \Omega) \omega_{4}+(X \Omega) \omega_{2}+(-r X \Omega) \omega_{3}\right] \\
= & \text { kinetic energy of "coupling" of motion of plane and sphere/plane, } \\
2 T_{0}^{*}= & m \Omega^{2}\left(X^{2}+Y^{2}\right) \\
= & (\text { double }) \text { kinetic energy of sphere when at rest relative the plane; (a5) }
\end{align*}
$$

and no constraints have been enforced yet.
(iii) Since the only impressed force here is gravity (i.e., $\Theta_{I}=0$), the corresponding potential energy is constant; say, $V=V^{*}=m g r$, and, therefore,

$$
\begin{equation*}
\partial V / \partial q_{k}=0 \Rightarrow \partial V^{*} / \partial \theta_{k} \equiv \sum A_{l k}\left(\partial V / \partial q_{l}\right)=0 \tag{b1}
\end{equation*}
$$

and [recalling (2.9.34 ff.) and (3.9.12f)]

$$
\begin{equation*}
\partial V^{*} / \partial \theta_{n+1} \equiv \partial V^{*} / \partial t+\sum A_{k}\left(\partial V^{*} / \partial q_{k}\right)=0+\sum A_{k}(0)=0 \tag{b2}
\end{equation*}
$$

(iv) The nonvanishing Hamel coefficients are [recalling ex. 2.13.6: ($11-\mathrm{m}$)]

$$
\begin{array}{ll}
\gamma_{35}^{1}=-\gamma^{1}{ }_{53}=-r, & \gamma_{36}^{1}=-\gamma_{63}^{1} \equiv \gamma_{3}^{1}=r \Omega, \quad \gamma_{26}^{1}=-\gamma_{62}^{1} \equiv \gamma_{2}^{1}=-\Omega ; \\
\gamma_{45}^{2}=-\gamma_{54}^{2}=-r, & \gamma_{46}^{2}=-\gamma_{64}^{2} \equiv \gamma_{4}^{2}=r \Omega, \quad \gamma_{16}^{2}=-\gamma_{61}^{2} \equiv \gamma_{1}^{2}=\Omega ; \\
\gamma_{54}^{3}=-\gamma^{3}{ }_{45}=1, \quad \gamma_{35}^{4}=-\gamma_{53}^{4}=1, \quad \gamma_{43}^{5}=-\gamma_{34}^{5}=1 ; \tag{c}
\end{array}
$$

and from these only $\gamma_{3}^{1}=r \Omega$ and $\gamma_{4}^{2}=r \Omega$ will be needed in the power equation below.

Nonholonomic Power Equation

From the above, and with an eye toward (3.9.12h ff.), we find, successively,

$$
\begin{align*}
\partial L^{*} / \partial \theta_{n+1}= & \partial T^{*} / \partial \theta_{n+1} \equiv \partial T^{*} / \partial t+\sum A_{k}\left(\partial T^{*} / \partial q_{k}\right) \tag{i}\\
= & m\left[\Omega\left(X^{2}+Y^{2}\right)-r\left(X \omega_{X}+Y \omega_{Y}\right)\right] \dot{\Omega}+A_{1}\left(\partial T^{*} / \partial X\right) \\
& \quad+A_{2}\left(\partial T^{*} / \partial Y\right), \\
= & (-\Omega Y)\left[(m \Omega)\left(\Omega X-r \omega_{3}\right)\right]+(\Omega X)\left[(m \Omega)\left(\Omega Y-r \omega_{4}\right)\right] \\
= & \cdots=m r \Omega^{2}\left(Y \omega_{X}-X \omega_{Y}\right) ; \tag{d1}
\end{align*}
$$

(ii) $\quad R \equiv \sum \sum \gamma_{I}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{I} \quad$ [and with $(\ldots)_{o} \equiv(\ldots)$ evaluated at $\left.\omega_{1,2}=0\right]$

$$
=\gamma_{3}^{1}\left(\partial T^{*} / \partial \omega_{1}\right)_{o} \omega_{3}+\gamma_{4}^{2}\left(\partial T^{*} / \partial \omega_{2}\right)_{o} \omega_{4}
$$

$$
=(r \Omega)\left[m\left(r \omega_{Y}-\Omega Y\right)\right] \omega_{X}+(r \Omega)\left[m\left(-r \omega_{X}+\Omega X\right)\right] \omega_{Y}
$$

$$
\begin{equation*}
=m r \Omega^{2}\left(X \omega_{Y}-Y \omega_{X}\right) \tag{d2}
\end{equation*}
$$

In view of these partial results (in particular, the mutual canceling of the rheonomic effects of the nonholonomic constraints $\partial L^{*} / \partial \theta_{n+1}+R=0$), the general nonholonomic power equation (3.9.12i)

$$
\begin{equation*}
d h^{*} / d t=-\partial L^{*} / \partial \theta_{n+1}+\sum \Theta_{I} \omega_{I}-R \tag{el}
\end{equation*}
$$

where $h^{*} \equiv \sum\left(\partial L^{*} / \partial \omega_{I}\right) \omega_{I}-L^{*}=T_{2}+\left(V^{*}-T^{*}{ }_{0}\right)$, reduces to the nonholonomic Jacobi-Painlevé integral (3.9.12n)

$$
\begin{equation*}
h^{*}=T_{2}^{*}-T_{0}^{*}=\text { constant } \tag{e2}
\end{equation*}
$$

or, further, since [upon enforcing the constraints $\omega_{1,2}=0$ in (a3-5)]

$$
\begin{align*}
2 T_{2}^{*} & =m r^{2}\left(\omega_{3}^{2}+\omega_{4}^{2}\right)+I\left(\omega_{3}^{2}+\omega_{4}^{2}+\omega_{5}^{2}\right) \\
& =\cdots=\left(m r^{2} / 5\right)\left[7\left(\omega_{X}^{2}+\omega_{Y}^{2}\right)+2 \omega_{Z}^{2}\right], \tag{e3}\\
T_{1}^{*} & =-m r \Omega\left(Y \omega_{4}+X \omega_{3}\right)=-m r \Omega\left(X \omega_{X}+Y \omega_{Y}\right), \tag{e4}\\
2 T_{0}^{*} & =m \Omega^{2}\left(X^{2}+Y^{2}\right), \tag{e5}
\end{align*}
$$

that integral assumes the final form

$$
\begin{equation*}
7\left(\omega_{X}^{2}+\omega_{Y}^{2}\right)+2 \omega_{Z}^{2}=5\left(\Omega^{2} / r^{2}\right)\left(X^{2}+Y^{2}\right)+\text { constant } \tag{e6}
\end{equation*}
$$

[by the z-equation, (a10), $I \dot{\omega}_{Z}=\Theta_{Z}=0 \Rightarrow \omega_{Z}=$ constant]. We notice that, due to (e2),

$$
\begin{align*}
E^{*} & \equiv T^{*}+V^{*}=T_{2}^{*}+T_{1}^{*}+T^{*}+V^{*}=T^{*}+T_{1}^{*}+T^{*}+\text { constant } \\
& =2 T^{*}{ }_{2}+T_{1}^{*}+\text { constant }=T_{1}^{*}+2 T^{*}+\text { constant } \neq \text { constant } \tag{e7}
\end{align*}
$$

that is, the generalized energy h^{*} is conserved, but the classical one $E\left(=E^{*}\right)$ is not.
Next, eq. (e6) was obtained without recourse to the equations of motion. It is instructive to rederive it, or its equivalent $\dot{T}^{*}{ }_{2}=\dot{T}^{*}{ }_{0}$, directly from expressions (a3-5, e3-5) and the kinetic equations of motion and constraints [see preceding example, eqs. (a8-10) and (a1), respectively]:

$$
\begin{align*}
& \dot{\omega}_{X}=(5 / 7)(\Omega / r)\left(r \omega_{Y}-\Omega Y\right), \tag{fl}\\
& \dot{\omega}_{Y}=-(5 / 7)(\Omega / r)\left(r \omega_{X}-\Omega X\right), \tag{f2}\\
& \dot{\omega}_{Z}=0 ; \tag{f3}\\
& \dot{X}=r \omega_{Y}-\Omega Y, \quad \dot{Y}=-r \omega_{X}+\Omega X . \tag{f4}
\end{align*}
$$

Indeed, $(\ldots)^{-}$-differentiating $T^{*}{ }_{2}$ and T^{*}, eqs. (a3, 5), and then utilizing (f1-4) yields

$$
\begin{align*}
\dot{T}_{2}^{*} & =\left(m r^{2} / 5\right)\left[7\left(\omega_{X} \dot{\omega}_{X}+\omega_{Y} \dot{\omega}_{Y}\right)+2 \omega_{Z} \dot{\omega}_{Z}\right] \\
& =\cdots=m r \Omega^{2}\left(X \omega_{Y}-Y \omega_{X}\right) ; \tag{f5}\\
\dot{T}_{0}^{*} & =m \Omega\left(X^{2}+Y^{2}\right) \dot{\Omega}+m \Omega^{2}(X \dot{X}+Y \dot{Y}) \\
& =\cdots=m r \Omega^{2}\left(X \omega_{Y}-Y \omega_{X}\right), \quad \text { Q.E.D. } \tag{f6}
\end{align*}
$$

Holonomic Power Equation

For a more complete understanding of the energetics of this problem, let us also formulate its power equation in holonomic variables, eq. (3.9.11d ff.):

$$
\begin{equation*}
d h / d t=-\partial L / \partial t+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{g1}
\end{equation*}
$$

where $h \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L=T_{2}+\left(V-T_{0}\right)$. Here, $T=T_{2}$ is given by (a1), $V=$ constant, $Q_{k}=0$ (i.e., no impressed nonpotential forces), and, from the constraints (ex. 3.18.3: a1), $a_{1} \rightarrow a_{X}=\Omega Y, a_{2} \rightarrow a_{Y}=-\Omega X$; while $\lambda_{1}=\Lambda_{1} \rightarrow \lambda_{X}$ and $\lambda_{2}=\Lambda_{2} \rightarrow \lambda_{Y}$ are, respectively, the $O X$ and $O Y$ components of the rolling
constraint reaction, from the plane to the sphere, at its contact point $C(X, Y, 0)$. In view of these partial results, eq. (g1) becomes

$$
\begin{align*}
d h / d t=d T_{2} / d t=-a_{1} \lambda_{1}-a_{2} \lambda_{2} & =-(\Omega Y) \lambda_{X}-(-\Omega X) \lambda_{Y} \\
& =\Omega\left(X \lambda_{Y}-Y \lambda_{X}\right) \equiv M_{O} \Omega, \tag{g2}
\end{align*}
$$

where $M_{O}=X \lambda_{Y}-Y \lambda_{X}=$ moment of (tangential) rolling reactions at C about OZ; and, of course, agrees with what would have resulted by "elementary" (NewtonEuler) considerations: the sphere is an "open" system, and, therefore, the rate of change of its total classical (inertial) energy $E \equiv T+V(=h)$ must equal the (inertial) power of all external forces on it. Since this latter is none other than the rolling reaction (and, clearly, the power of its component normal to $O-X Y$ vanishes), we obtain
$d E / d t=M_{O} \Omega(=$ externally supplied power, needed to keep the plane spinning at the constant rate Ω).

Finally, invoking the principle of linear momentum for the sphere, we find

$$
\begin{equation*}
M_{O}=X \lambda_{Y}-Y \lambda_{X}=X(m \ddot{Y})-Y(m \ddot{X})=d H_{O} / d t \tag{g4}
\end{equation*}
$$

where
$H_{O} \equiv[m(X \dot{Y}-Y \dot{X})]=X(m \dot{Y})-Y(m \dot{X})$
$=$ inertial angular momentum of particle of mass m, located at the sphere center,
and this, combined with (g3) and the constancy of Ω, readily yields the integral

$$
\begin{equation*}
E-H_{O} \Omega=\text { constant }, \quad \text { or } \quad T-H_{O} \Omega=\text { constant } . \tag{g6}
\end{equation*}
$$

It is not hard to show the equivalence of (e2) and (g6). Indeed, from the latter, recalling (3.9.12t), we obtain, successively,

$$
\begin{align*}
H_{O} \Omega & =E-\text { constant }=E^{*}-\text { constant }=\left(h^{*}+2 T^{*}{ }_{0}+T^{*}{ }_{1}\right)-\text { constant } \\
& =2 T^{*}{ }_{0}+T^{*}+\left(h^{*}-\text { constant }\right) \tag{g7}
\end{align*}
$$

On the other hand, by direct calculation [invoking the constraints (f4) in the definition (g5)], we find

$$
\begin{aligned}
H_{O} & =X\left[m\left(-r \omega_{X}+\Omega X\right)\right]-Y\left[m\left(r \omega_{Y}-\Omega Y\right)\right] \\
& =m \Omega\left(X^{2}+Y^{2}\right)-m r\left(X \omega_{X}+Y \omega_{Y}\right),
\end{aligned}
$$

and, therefore,

$$
\begin{equation*}
H_{O} \Omega=m \Omega^{2}\left(X^{2}+Y^{2}\right)+\left[-m \Omega r\left(X \omega_{X}+Y \omega_{Y}\right)\right]=2 T^{*}{ }_{0}+T^{*}{ }_{1} . \tag{g8}
\end{equation*}
$$

From (g7, 8), the integral (e2) follows immediately.

Concluding Remarks

That the holonomic power equation does not produce a conservation theorem of the same form as the nonholonomic power equation should not come as a surprise. It is intimately connected with our choice of holonomic coordinates: if the q 's were noninertial, the rolling constraint would be

$$
\begin{equation*}
\boldsymbol{v}_{C, \text { relative to plane-fixed axes } O-x y z}=\mathbf{0} \tag{h}
\end{equation*}
$$

instead of the earlier $\boldsymbol{v}_{C \text {, of sphere }}=\boldsymbol{v}_{C \text {, of plane }}$, and it would produce homogeneous (i.e., catastatic) Pfaffian equations in these noninertial Lagrangean velocities, that is, $a_{1,2}=0$. Then, $T=T_{2}+T_{1}+T_{0}$, and the holonomic power equation would reduce to the holonomic Jacobi-Painlevé integral [recalling (3.9.11n)] $h=T_{2}-T_{0}=$ constant. A convenient set of such noninertial coordinates are the two (horizontal) coordinates of the center of the sphere relative to plane-fixed rectangular Cartesian axes, say $O-x^{\prime} y^{\prime} z^{\prime}$, and the three Eulerian angles between them and the earlier sphere-fixed axes $G-x y z$; and Ω would not appear in the constraints, but it would appear in T.

In sum: (a) Only T must be calculated relative to inertial axes, here $O-X Y Z$; the constraints can be expressed relative to any convenient axes, in terms of any convenient system coordinates; and since during virtual work the time is assumed frozen, the forces involved are frame independent.
(b) Energy conservation depends on both the system and the frame of reference.

Problem 3.18.3 Derive the power equations of a sled moving on a uniformly rotating, horizontal, and rough turntable (probs. 3.18 .1 and 3.18.2), in both holonomic and nonholonomic variables, and in both inertial and turntable-fixed coordinates. Proceed either from the general energetic theory (§3.9), or from their equations of motion (i.e., multiply each of them with the corresponding velocity, then add together, etc.). Compare with the elementary method.

Problem 3.18.4 Formulate the constraints of a sphere rolling on a uniformly rotating, horizontal, and rough plane in terms of plane-fixed (noninertial) system coordinates. Then (i) write down the corresponding transitivity equations, and read off the Hamel coefficients; (ii) obtain its corresponding Hamel equations; and (iii) derive its power equations in both holonomic and nonholonomic variables.

Problem 3.18.5 Consider the problem of rolling and pivoting of a homogeneous sphere on a fixed, horizontal, and rough plane. Formulate its constraints, transitivity equations and read off its Hamel coefficients; obtain its kinetic and kinetostatic equations of motion of Routh-Voss, Maggi, Hamel, and Appell; and, finally, derive its power equations, in both holonomic and nonholonomic variables.

Problem 3.18.6 Extend the preceding problem to the case where the plane, on which the rolling and pivoting sphere moves, rotates with a constant angular velocity Ω.

Problem 3.18.7 Consider a sphere S with eccentric center of mass G, in slippingless rolling on a fixed, horizontal, and rough plane P (fig. 3.52).

Figure 3.52 Eccentric (nonhomogeneous) sphere rolling on fixed plane.
O-XYZ/IJK: plane-fixed (inertial) axes/basis;
G : eccentric center of mass of sphere, $\mathbf{O G}=\boldsymbol{r}_{G}=\left(X_{G}, Y_{G}, Z_{G}\right)$;
\star : geometrical center of sphere, $O \bullet=\left(X_{\star}, Y_{\star}, Z_{\star}\right) \equiv(X, Y, R)$;
C : contact point between sphere and plane, $\mathbf{O C}=(X, Y, 0)$;

- -xyz/ijk: sphere-fixed (noninertial) axes/basis, chosen so that $\bullet \mathbf{G} \equiv \boldsymbol{r}_{G /} \equiv(x, y, z)=(0,0, b)$.

Here, using standard notations, we have the following:
(a) Velocity of a generic sphere point:

$$
\begin{equation*}
\boldsymbol{v}=v_{\star}+\omega \times \boldsymbol{r}_{/}=(\dot{X}, \dot{Y}, 0)+\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right) \times\left(X_{/}, Y_{/}, Z_{/ \bullet}\right) ; \tag{a1}
\end{equation*}
$$

(b) Velocity of contact point C :

$$
\begin{align*}
\boldsymbol{v}_{C} & =v_{*}+\omega \times \boldsymbol{r}_{/}=(\dot{X}, \dot{Y}, 0)+\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right) \times(0,0,-R) \\
& =\left(\dot{X}-R \omega_{Y}, \dot{Y}+R \omega_{X}, 0\right) \tag{a2}
\end{align*}
$$

(c) Relation of $\left(\omega_{X}, \omega_{Y}, \omega_{Z}\right)$ with the time rates of the Eulerian angles between $O-X Y Z$ and $-x y z, \phi, \theta, \psi$ (recalling results from §1.12):

$$
\begin{align*}
\omega_{X} & =(\cos \phi) \dot{\theta}+(\sin \phi \sin \theta) \dot{\psi} \\
\omega_{Y} & =(\sin \phi) \dot{\theta}+(-\cos \phi \sin \theta) \dot{\psi}, \quad \omega_{Z}=\dot{\phi}+(\cos \theta) \dot{\psi} \tag{a3}
\end{align*}
$$

We also have the related coordinate transformation relations [81.12, with $\sin (\ldots) \equiv s(\ldots)$, etc.]:

$$
\begin{align*}
X_{G / \star} & \equiv X_{G}-X \bullet X_{G}-X \\
& =(c \phi c \psi-s \phi c \theta s \psi) x+(-c \phi s \psi-s \phi c \theta c \psi) y+(s \phi s \theta) z \tag{a4}\\
Y_{G /} & \equiv Y_{G}-Y \bullet \equiv Y_{G}-Y \\
& =(s \phi c \psi+c \phi c \theta s \psi) x+(-s \phi s \psi+c \phi c \theta c \psi) y+(-c \phi s \theta) z, \tag{a5}\\
Z_{G /} & \equiv Z_{G}-Z_{\bullet} \equiv Z_{G}-R \\
& =(s \theta s \psi) x+(s \theta c \psi) y+(c \theta) z, \tag{a6}
\end{align*}
$$

from which, since here $(x, y, z)=(0,0, b)$, we obtain

$$
\begin{equation*}
\boldsymbol{r}_{G / \star}=\left(X_{G / \star}, Y_{G / \bullet}, Z_{G / \bullet}\right)-((s \phi s \theta) b,-(c \phi s \theta) b,(c \theta) b) \tag{a7}
\end{equation*}
$$

(d) In view of $(\mathrm{a} 2,3)$, the rolling constraint $\boldsymbol{v}_{C}=\mathbf{0}$ assumes the Pfaffian forms

$$
\begin{align*}
\dot{X}-R \omega_{Y} & =\dot{X}-R[(\sin \phi) \dot{\theta}+(-\cos \phi \sin \theta) \dot{\psi}]=0 \tag{b1}\\
\dot{Y}+R \omega_{X} & =\dot{Y}+R[(\cos \phi) \dot{\theta}+(\sin \phi \sin \theta) \dot{\psi}]=0 \tag{b2}
\end{align*}
$$

(i) With the help of the above, show that the (double) kinetic energy of the sphere equals

$$
\begin{align*}
2 T= & \boldsymbol{S} d m \boldsymbol{v}^{2}=\cdots=m \boldsymbol{v}_{\bullet}^{2}+2 m \boldsymbol{v}_{\bullet} \cdot\left(\boldsymbol{\omega} \times \boldsymbol{r}_{G / \bullet}\right)+\boldsymbol{S} d m\left(\boldsymbol{\omega} \times \boldsymbol{r}_{/ \bullet}\right)^{2} \\
= & \cdots=m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right] \\
& +2 m b\{\dot{X}[(s \phi c \theta) \dot{\theta}+(c \phi s \theta) \dot{\phi}]+\dot{Y}[(-c \phi c \theta) \dot{\theta}+(s \phi s \theta) \dot{\phi}]\} \\
& +A\left[(\dot{\theta})^{2}+\sin ^{2} \theta(\dot{\phi})^{2}\right]+C[(\cos \theta) \dot{\phi}+\dot{\psi}]^{2} \\
= & 2 T(\dot{X}, \dot{Y}, \dot{\phi}, \dot{\theta}, \dot{\psi}) \tag{c}
\end{align*}
$$

where A and $C=$ moments of inertia of sphere about $\bullet x($ or \forall) and \forall, respectively.
(ii) Using the expression (c), the constraints (b1,2), and noting that the only impressed force (gravity) has potential equal to

$$
\begin{equation*}
V=m g Z_{G}=m g\left(Z \bullet Z_{G / \bullet}\right)=m g(R+b \cos \theta)=m g b \cos \theta+\text { constant } \tag{d}
\end{equation*}
$$

verify that the Routh-Voss equations of motion of the sphere are (with $\lambda_{X} \equiv \lambda$ and $\left.\lambda_{Y} \equiv \mu\right)$:

$$
\begin{align*}
X: & m\{\dot{X}+b[(\sin \phi \cos \theta) \dot{\theta}+(\cos \phi \sin \theta) \dot{\phi}]\}=\lambda, \tag{el}\\
Y: & m\{\dot{Y}+b[(-\cos \phi \cos \theta) \dot{\theta}+(\sin \phi \sin \theta) \dot{\phi}]\}=\mu, \tag{e2}\\
\phi: & {\left[A \dot{\phi} \sin ^{2} \theta+C(\cos \theta \dot{\phi}+\dot{\psi}) \cos \theta-m b R \sin ^{2} \theta \dot{\psi}\right] } \\
& \quad+m b R \dot{\theta} \dot{\psi} \sin \theta \cos \theta+m b R \dot{\phi} \dot{\theta} \sin \theta=0, \tag{e3}
\end{align*}
$$

: $\quad(A \dot{\theta}+m b R \cos \theta \dot{\theta})^{\cdot}-A(\dot{\phi})^{2} \sin \theta \cos \theta+C(\cos \theta \dot{\phi}+\dot{\psi}) \dot{\phi} \sin \theta$ $+m b R(\dot{\theta})^{2} \sin \theta+m b R \dot{\phi} \dot{\psi} \cos \theta \sin \theta$

$$
\begin{equation*}
=\lambda(-R \sin \phi)+\mu(R \cos \phi)+m g b \sin \theta \tag{e4}
\end{equation*}
$$

$$
\begin{equation*}
\psi: \quad[C(\cos \theta \dot{\phi}+\dot{\psi})]^{\cdot}=\lambda(R \cos \phi \sin \theta)+\mu(R \sin \phi \sin \theta) \tag{e5}
\end{equation*}
$$

(iii) Verify that by solving (e1,2) for λ and μ, respectively, and substituting the results into (e3-5), we obtain the (kinetic Maggi) equations:
ϕ : remains unchanged, since it did not contain any multipliers,
: $\quad(A \dot{\theta}+m b R \cos \theta \dot{\theta})^{\cdot}-A(\dot{\phi})^{2} \sin \theta \cos \theta+C(\dot{\phi} \cos \theta+\dot{\psi}) \dot{\phi} \sin \theta$

$$
+m b R(\dot{\theta})^{2} \sin \theta+m b R \dot{\phi} \dot{\psi} \cos \theta \sin \theta
$$

$$
+m R \sin \phi[\dot{X}+b(\dot{\theta} \sin \phi \cos \theta+\dot{\phi} \cos \phi \sin \theta)]
$$

$$
-m R \sin \phi[\dot{Y}+b(-\dot{\theta} \cos \phi \cos \theta+\dot{\phi} \sin \phi \sin \theta)]
$$

$$
\begin{equation*}
=m g b \sin \theta \tag{f2}
\end{equation*}
$$

$\psi: \quad[C(\dot{\phi} \cos \theta+\dot{\psi})]^{]}-m R \cos \phi \sin \theta[\dot{X}+b(\dot{\theta} \sin \phi \cos \theta+\dot{\phi} \cos \phi \sin \theta)]$.

$$
\begin{equation*}
-m R \sin \phi \sin \theta[\dot{Y}+b(-\dot{\theta} \cos \phi \cos \theta+\dot{\phi} \sin \phi \sin \theta)]^{\circ}=0 \tag{f3}
\end{equation*}
$$

Problem 3.18.8 Continuing from the preceding problem, verify that by eliminating the (chosen as) dependent velocities \dot{X} and \dot{Y} from its eqs. (f2, 3), using the constraints (b1, 2), we eventually obtain the following Chaplygin-Voronets equations of the problem:

$$
\begin{array}{ll}
\phi: \quad\left[A \dot{\phi} \sin ^{2} \theta+C(\dot{\phi} \cos \theta+\dot{\psi}) \cos \theta-m b R \sin ^{2} \theta \dot{\psi}\right] \\
& \quad+m b R \dot{\theta} \sin \theta(\dot{\psi} \cos \theta+\dot{\phi})=0, \\
\theta: \quad[(A) & \left.\left.+2 m b R \cos \theta+m R^{2}\right) \dot{\theta}\right] \cdot m b R \sin \theta\left[(\dot{\theta})^{2}+\dot{\phi} \dot{\psi} \cos \theta-(\dot{\phi})^{2}\right] \\
& +m R^{2} \dot{\phi} \dot{\psi} \sin \theta-A(\dot{\phi})^{2} \sin \theta \cos \theta+C(\dot{\phi} \cos \theta+\dot{\psi}) \dot{\phi} \sin \theta \\
& \quad-m g b \sin \theta=0, \\
\psi: \quad\left[C(\dot{\phi} \cos \theta+\dot{\psi})+m R^{2} \dot{\psi} \sin ^{2} \theta-m b R \dot{\phi} \sin ^{2} \psi\right] \\
& \quad-m R^{2} \dot{\theta} \sin \theta(\dot{\psi} \cos \theta+\dot{\phi})=0 . \tag{a3}
\end{array}
$$

HINTS

In the Maggi equations (f1-3), the terms deriving from λ and μ can be combined with the remaining terms to produce equations of the form $[\ldots]^{\circ}+\cdots=0$, like (a13), first, by application of the familiar differentiation rule: $f \dot{g}=(f g)^{\cdot}-f \dot{g}$ (where $f, g=$ arbitrary functions); and then by use of the constraints (b1,2), but rewritten in the equivalent forms

$$
\begin{equation*}
\dot{X} \sin \phi-\dot{Y} \cos \phi=R \dot{\theta}, \quad \dot{X} \cos \phi+\dot{Y} \sin \phi=-R \dot{\psi} \sin \theta \tag{b}
\end{equation*}
$$

Problem 3.18.9 Continuing from the preceding problem, show that its eqs. (a1) and (a3) combine to produce the (linear) integral

$$
\begin{equation*}
A R \dot{\phi} \sin ^{2} \theta+C(b+R \cos \theta)(\dot{\phi} \cos \theta+\dot{\psi})-m b^{2} R \dot{\phi} \sin ^{2} \theta=\text { constant } \tag{a}
\end{equation*}
$$

HINT

Multiply (a1) by R and (a3) by b, then combine, simplify, and, finally, integrate.

Problem 3.18.10 Continuing from the preceding problems, show that the Chaplygin-Voronets equations (a1-3) of prob. 3.18.8, possess the (quadratic) energy integral

$$
\begin{align*}
& m R^{2}\left[(\dot{\theta})^{2}+(\dot{\psi})^{2} \sin ^{2} \theta\right]+2 m b R\left[(\dot{\theta})^{2} \cos \theta-\dot{\phi} \dot{\psi} \sin ^{2} \theta\right] \\
& \quad+A\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C(\dot{\phi} \cos \theta+\dot{\psi})^{2}+2 m g b \cos \theta=2 h ; \tag{a}
\end{align*}
$$

in addition to (a) of prob. 3.18.9.

REMARKS

(i) Since the five equations (prob. 3.18.8: a1-3), (prob. 3.18.9: a), and (prob. 3.18.10: a) do not contain explicitly either ϕ or ψ, we can, for example, solve the last two of them for $\dot{\phi}$ and $\dot{\psi}$ in terms of θ and $\dot{\theta}$; that is, $\dot{\phi}=\dot{\phi}(\theta, \dot{\theta})$ and $\dot{\psi}=\dot{\psi}(\theta, \dot{\theta})$, and then insert these expressions into any one of the first three equations (of motion), say the simplest of them. The result would be a single second-order differential equation for θ; and since the time does not appear explicitly, this can be further reduced to a first-order problem.
(ii) If, next, our sphere shrinks to a particle of mass m, then $A=m b^{2}$ and $C=0$, and the linear integral (prob. 3.18.9: a) degenerates to the trivial equality $0=$ constant $(=0)$; that is, one of our equations disappears! For a detailed discussion and explanation of this interesting mathematical "paradox," see the masterful treatment of Hamel (1949, pp. 760-766).

Problem 3.18.11 Continuing from the above problems of the eccentric sphere:
(i) Introduce the following convenient quasi velocities:

$$
\begin{align*}
& \omega_{1} \equiv \dot{X}-R \omega_{Y}=\dot{X}-(R \sin \phi) \dot{\theta}+(R \cos \phi \sin \theta) \dot{\psi} \quad(=0), \tag{al}\\
& \omega_{2} \equiv \dot{Y}+R \omega_{X}=\dot{Y}+(R \cos \phi) \dot{\theta}+(R \sin \phi \sin \theta) \dot{\psi} \quad(=0) ; \tag{a2}\\
& \omega_{3} \equiv \dot{\theta}, \tag{a3}\\
& \omega_{4} \equiv \dot{\phi}, \tag{a4}\\
& \omega_{5} \equiv \dot{\psi} ; \tag{a5}
\end{align*}
$$

which invert easily (no constraint enforcement yet), as follows:

$$
\begin{align*}
& \dot{X}=\omega_{1}+R \sin \phi \omega_{3}-R \cos \phi \sin \theta \omega_{5}, \tag{b1}\\
& \dot{Y}=\omega_{2}-R \cos \phi \omega_{3}-R \sin \phi \sin \theta \omega_{5}, \tag{b2}\\
& \dot{\theta}=\omega_{3}, \tag{b3}\\
& \dot{\phi}=\omega_{4}, \tag{b4}\\
& \dot{\psi}=\omega_{5} . \tag{b5}
\end{align*}
$$

(ii) Using (a1-b5), verify the transitivity equations (no constraint enforcement yet)

$$
\begin{align*}
\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1}= & R \cos \phi\left(\omega_{3} \delta \theta_{4}-\omega_{4} \delta \theta_{3}\right)-R \sin \phi \sin \theta\left(\omega_{4} \delta \theta_{5}-\omega_{5} \delta \theta_{4}\right) \\
& +R \cos \phi \cos \theta\left(\omega_{3} \delta \theta_{5}-\omega_{5} \delta \theta_{3}\right) ; \tag{cl}\\
\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}= & R \sin \phi\left(\omega_{3} \delta \theta_{4}-\omega_{4} \delta \theta_{3}\right)+R \cos \phi \sin \theta\left(\omega_{4} \delta \theta_{5}-\omega_{5} \delta \theta_{4}\right) \\
& +R \sin \phi \cos \theta\left(\omega_{3} \delta \theta_{5}-\omega_{5} \delta \theta_{3}\right) ; \tag{c2}\\
\left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}= & 0, \quad\left(\delta \theta_{4}\right)^{\cdot}-\delta \omega_{4}=0, \quad\left(\delta \theta_{5}\right)^{\cdot}-\delta \omega_{5}=0 \tag{c3}
\end{align*}
$$

since $\theta_{3,4,5}$ are holonomic coordinates. From the above, we read off the (nonvanishing) Hamel coefficients:

$$
\begin{align*}
& \gamma_{43}^{1}=-\gamma^{1}{ }_{34}=R \cos \phi, \quad \gamma_{54}^{1}=-\gamma_{45}^{1}=-R \sin \phi \sin \theta, \\
& \gamma_{53}^{1}=-\gamma_{35}^{1}=R \cos \phi \cos \theta ; \tag{d1}\\
& \gamma_{43}^{2}=-\gamma_{34}^{2}=R \sin \phi, \quad \gamma_{54}^{2}=-\gamma_{45}^{2}=R \cos \phi \sin \theta, \\
& \gamma_{53}^{2}=-\gamma_{35}^{2}=R \sin \phi \cos \theta ; \tag{d2}\\
& \gamma^{3} . .=0, \quad \gamma^{4} . .=0, \quad \gamma^{5} . .=0 . \tag{d3}
\end{align*}
$$

(iii) Using (b1-5), show that the kinetic energy expression (prob. 3.18.7: c), or, equivalently,

$$
\begin{align*}
2 T & =m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right] \\
& +2 m b\{\dot{\theta} \cos \theta(\dot{X} \sin \phi-\dot{Y} \cos \phi)+\dot{\phi} \sin \theta(\dot{X} \cos \phi+\dot{Y} \sin \phi)\} \\
& +A\left[(\dot{\theta})^{2}+\sin ^{2} \theta(\dot{\phi})^{2}\right]+C[(\cos \theta) \dot{\phi}+\dot{\psi}]^{2}, \tag{e1}
\end{align*}
$$

becomes, in the chosen quasi velocities (no constraint enforcement yet),

$$
\begin{align*}
2 T^{*}=m\left[\omega_{1}^{2}\right. & +\omega_{2}^{2}+R^{2} \omega_{3}^{2}+R^{2} \sin ^{2} \theta \omega_{5}^{2}+2 R \sin \phi \omega_{1} \omega_{3} \\
& \left.-2 R \cos \phi \omega_{2} \omega_{3}-2 R \cos \phi \sin \theta \omega_{1} \omega_{5}-2 R \sin \phi \sin \theta \omega_{2} \omega_{5}\right] \\
& +2 m b\left[\omega_{3} \cos \theta\left(\omega_{1} \sin \phi-\omega_{2} \cos \phi+R \omega_{3}\right)\right. \\
& \left.+\omega_{4} \sin \theta\left(\omega_{1} \cos \phi+\omega_{2} \sin \phi-R \sin \theta \omega_{5}\right)\right] \\
& +A\left[\omega_{3}^{2}+\left(\sin ^{2} \theta\right) \omega_{4}^{2}\right]+C\left[(\cos \theta) \omega_{4}+\omega_{5}\right]^{2} . \tag{e2}
\end{align*}
$$

[Quadratic terms in the constrained, or dependent, quasi velocities $\omega_{1,2}$ can be omitted from (e2) at this stage, without affecting the equations of motion; but linear terms in them cannot - explain].
(iv) Using the above results and noting that (after enforcing the constraints $\omega_{1,2}=0$)

$$
\begin{array}{ll}
\partial T^{*} / \partial \theta_{1,2,4,5}=0, & \partial T^{*} / \partial \theta_{3}=\partial T^{*} / \partial \theta=\cdots \\
\partial V^{*} / \partial \theta_{1,2,4,5}=0, & \partial V^{*} / \partial \theta_{3}=\partial V^{*} / \partial \theta=-m g b \sin \theta \tag{e3}
\end{array}
$$

show that the Hamel equations of this problem are (with $P_{k} \equiv \partial T^{*} / \partial \omega_{k}$, $k=1, \ldots, 5)$.

Kinetic equations:

$$
\begin{align*}
& \dot{P}_{3}-\partial T^{*} / \partial \theta_{3}+\gamma_{34}^{1} P_{1} \omega_{4}+\gamma_{35}^{1} P_{1} \omega_{5}+\gamma_{34}^{2} P_{2} \omega_{4}+\gamma_{35}^{2} P_{2} \omega_{5}=-\left(\partial V^{*} / \partial \theta_{3}\right), \\
& \dot{P}_{4}+\gamma^{1}{ }_{43} P_{1} \omega_{3}+\gamma_{45}^{1} P_{1} \omega_{5}+\gamma_{43}^{2} P_{2} \omega_{3}+\gamma^{2}{ }_{45} P_{2} \omega_{5}=0, \\
& \dot{P}_{5}+\gamma_{53}^{1} P_{1} \omega_{3}+\gamma_{54}^{1} P_{1} \omega_{4}+\gamma_{53}^{2} P_{2} \omega_{3}+\gamma^{2}{ }_{54} P_{2} \omega_{4}=0 ; \tag{f1,2,3}
\end{align*}
$$

or, explicitly, respectively,

$$
\left.\left.\begin{array}{l}
{\left[\omega_{3}\left(A+2 m b R \cos \theta+m R^{2}\right)\right]^{\cdot}+m R^{2} \sin \theta \omega_{4} \omega_{5}} \\
\quad+m b R \sin \theta\left(-\omega_{4}^{2}+\cos \theta \omega_{4} \omega_{5}+\omega_{3}^{2}\right) \\
\quad-A \sin \theta \cos \theta \omega_{4}^{2}+C\left(\cos \theta \omega_{4}+\omega_{5}\right) \sin \theta=m g b \sin \theta \\
{\left[A \sin ^{2} \theta \omega_{4}\right.}
\end{array} \quad+C\left(\cos \theta \omega_{4}+\omega_{5}\right) \cos \theta-m b R \sin ^{2} \theta \omega_{5}\right]^{\circ}\right]\left[\begin{array}{l}
\quad \\
\quad m b R \sin \theta \omega_{3}\left(\omega_{4}+\cos \theta \omega_{5}\right)=0 \\
{\left[m R^{2} \sin ^{2} \theta \omega_{5}-m b R \sin ^{2} \theta \omega_{4}+C\left(\cos \theta \omega_{4}+\omega_{5}\right)\right]} \\
\quad-m R^{2} \sin \theta \cos \theta \omega_{3} \omega_{5}-m R^{2} \sin \theta \omega_{3} \omega_{4}=0 \tag{f6}
\end{array}\right.
$$

and, as can be verified easily, these equations coincide with the earlier (prob. 3.18.8: a1-3), respectively; but, unlike them, they have been derived without elimination of the dependent velocities;

Kinetostatic equations:

$$
\begin{equation*}
\dot{P}_{1}=\Lambda_{1}\left(\equiv \lambda_{1}\right), \quad \dot{P}_{2}=\Lambda_{2}\left(\equiv \lambda_{2}\right) \tag{f7,8}
\end{equation*}
$$

[since, as (d1-3) show, all the $\gamma_{1 I}^{k}$ and $\gamma_{2 I}^{k}(k=1, \ldots, 5 ; I=3,4,5)$ vanish] or, explicitly, respectively,

$$
\begin{align*}
& {\left[m R \sin \phi \omega_{3}-m R \cos \phi \sin \theta \omega_{5}+m b\left(\omega_{3} \sin \phi \cos \theta+\omega_{4} \cos \phi \sin \theta\right)\right]^{\circ}=\Lambda_{1},} \\
& {\left[-m R \cos \phi \omega_{3}-m R \sin \phi \sin \theta \omega_{5}+m b\left(-\omega_{3} \cos \phi \cos \theta+\omega_{4} \sin \phi \sin \theta\right)\right]^{\cdot}=\Lambda_{2}} \tag{f9,10}
\end{align*}
$$

Example 3.18.5 Dynamics of a Rolling Hoop (or Disk, or Coin). Let us determine the forces and equations of motion of a thin homogeneous hoop H, of mass m and radius r, rolling on a rough, horizontal, and fixed plane P (fig. 3.53).

The relevant kinematics has already been detailed in ex. 2.13.7. We recall that

$$
\begin{equation*}
q_{1} \equiv X_{G} \equiv X, \quad q_{2} \equiv Y_{G} \equiv Y ; \quad q_{3} \equiv \phi, \quad q_{4} \equiv \theta, \quad q_{5} \equiv \psi ; \tag{al}
\end{equation*}
$$

Figure 3.53 Geometry of a homogeneous hoop rolling on rough, horizontal, and fixed plane. G: geometrical center and center of mass of hoop, C: contact point between hoop and plane. Axes/bases:

O-XYZ/IJK: plane-fixed (inertial) axes/basis;
$G-x^{\prime} y^{\prime} z^{\prime} / \mathbf{i}^{\prime} \boldsymbol{j}^{\prime} \mathbf{k}^{\prime} \equiv G-n n^{\prime} z^{\prime} / \mathbf{u}_{n} \boldsymbol{u}_{n^{\prime}} \mathbf{k}^{\prime}$: semimobile (noninertial) axes/basis;
$G-x^{\prime} N Z / \mathbf{i}^{\prime} \mathbf{u}_{N} \boldsymbol{K} \equiv G-n N Z / \boldsymbol{u}_{n} \mathbf{u}_{N} \boldsymbol{K}$: semifixed (noninertial) axes/basis;
G-xyz/ijk: disk-fixed (noninertial) axes/basis;
ϕ, θ, ψ : Eulerian angles between $0-X Y Z / \boldsymbol{J} \boldsymbol{K}$ (or $\mathcal{G}-X Y Z / \boldsymbol{I J K}$) and $G-x y z / \mathbf{i j k}$.
since $Z_{G} \equiv Z=r \sin \theta, Z$ is not independent (i.e., here, $f \equiv n-m=5-2=3-$ see below)

$$
\begin{array}{rlrl}
\boldsymbol{\omega} & =\left(\omega_{x^{\prime}}, \omega_{y^{\prime}}, \omega_{z^{\prime}}\right)=(\dot{\theta}, \dot{\phi} \sin \theta, \dot{\psi}+\dot{\phi} \cos \theta) & & (\text { semimobile components }) \\
& =\left(\omega_{x^{\prime}}, \omega_{N}, \omega_{Z}\right)=(\dot{\theta},-\dot{\psi} \sin \theta, \dot{\phi}+\dot{\psi} \cos \theta) & & \text { (semifixed components) } \\
\boldsymbol{G C} & =(0,-r \cos \theta,-r \sin \theta) & & \text { (semifixed components) } \\
& \Rightarrow \boldsymbol{\omega} \times \boldsymbol{G} \boldsymbol{C}=(r(\dot{\psi}+\dot{\phi} \cos \theta),-r \dot{\theta} \sin \theta,-r \dot{\theta} \cos \theta) \tag{a4}
\end{array}
$$

and therefore the rolling constraint $\boldsymbol{v}_{C}=\mathbf{0}$ translates to the two Pfaffian conditions

$$
\begin{align*}
& \left(\boldsymbol{v}_{C}\right)_{x^{\prime}}=\dot{X} \cos \phi+\dot{Y} \sin \phi+r(\dot{\psi}+\dot{\phi} \cos \theta)=0 \tag{a5}\\
& \left(\boldsymbol{v}_{C}\right)_{N}=-\dot{X} \sin \phi+\dot{Y} \cos \phi+r \dot{\theta} \sin \theta=0 \tag{a6}
\end{align*}
$$

The Routh-Voss Equations

Since, by König's theorem and the above geometry/kinematics,

$$
\begin{align*}
2 T= & m\left[(\dot{X})^{2}+(\dot{Y})^{2}+(\dot{Z})^{2}\right]+\left(I_{x^{\prime}} \omega_{x^{\prime}}{ }^{2}+I_{y^{\prime}} \omega_{y^{\prime}}{ }^{2}+I_{z^{\prime}} \omega_{z^{\prime}}{ }^{2}\right) \\
= & m\left[(\dot{X})^{2}+(\dot{Y})^{2}+r^{2}(\dot{\theta})^{2} \cos ^{2} \theta\right]+\left(m r^{2} / 2\right)(\dot{\theta})^{2}+\left(m r^{2} / 2\right)(\dot{\phi})^{2} \sin ^{2} \theta \\
& +\left(m r^{2}\right)(\dot{\psi}+\dot{\phi} \cos \theta)^{2}, \tag{b1}
\end{align*}
$$

and $V=m g Z=m g r \sin \theta$ (and with $\lambda_{1} \equiv \lambda, \lambda_{2} \equiv \mu$), the Routh-Voss equations of the hoop are

$$
\begin{array}{ll}
X: & m \ddot{X}=\lambda \cos \phi-\mu \sin \phi, \\
Y: & m \ddot{Y}=\lambda \sin \phi+\mu \cos \phi ; \\
\phi: & {\left[\left(m r^{2} / 2\right)\left(\dot{\phi} \sin ^{2} \theta\right)\right]^{\cdot}+\left[\left(m r^{2}\right) \cos \theta(\dot{\phi} \cos \theta+\dot{\psi})\right]^{\cdot}=\lambda r \cos \theta,} \\
\theta: & {\left[\left(m r^{2}\right)\left(\dot{\theta} \cos ^{2} \theta\right)\right]^{\cdot}+\left(m r^{2} / 2\right) \ddot{\theta}+\left(m r^{2}\right)(\dot{\theta})^{2} \sin \theta \cos \theta} \\
& -\left(m r^{2} / 2\right)(\dot{\phi})^{2} \sin \theta \cos \theta+\left(m r^{2}\right) \dot{\phi}(\dot{\phi} \cos \theta+\dot{\psi}) \sin \theta \\
& =\mu r \sin \theta-m g r \cos \theta, \\
\psi: & {\left[\left(m r^{2}\right)(\dot{\psi}+\dot{\phi} \cos \theta)\right]=\lambda r .} \tag{b6}
\end{array}
$$

Equations (b2,3) express the principle of linear momentum along the axes X and Y, respectively; while eqs. (b4-6) express that of angular momentum about G, and the corresponding (nonorthogonal!) axes of rotation through it.

Determination of the Reactions; and the Equations of Maggi and Chaplygin-Voronets
To determine and/or eliminate the multipliers (reactions) we, first, solve (b2,3) for them:

$$
\begin{equation*}
\lambda=m(\ddot{X} \cos \phi+\ddot{Y} \sin \phi), \quad \mu=m(\ddot{Y} \cos \phi-\ddot{X} \sin \phi) . \tag{c1}
\end{equation*}
$$

Then, (...)-differentiating the constraints (a5, 6), to generate \ddot{X} and \ddot{Y}, we find

$$
\begin{gather*}
\ddot{X} \cos \phi+\ddot{Y} \sin \phi+\dot{\phi}(\dot{Y} \cos \phi-\dot{X} \sin \phi)+r(\dot{\phi} \cos \theta+\dot{\psi})^{\cdot}=0, \tag{c2}\\
-\ddot{X} \sin \phi+\ddot{Y} \cos \phi-\dot{\phi}(\dot{X} \cos \phi+\dot{Y} \sin \phi)+r(\dot{\theta} \sin \theta)^{\cdot}=0 \tag{c3}
\end{gather*}
$$

or, invoking (c1),

$$
\begin{align*}
& (\lambda / m)+\dot{\phi}(\dot{Y} \cos \phi-\dot{X} \sin \phi)+r(\dot{\phi} \cos \theta+\dot{\psi})^{\cdot}=0 \tag{c4}\\
& (\mu / m)-\dot{\phi}(\dot{X} \cos \phi+\dot{Y} \sin \phi)+r(\dot{\theta} \sin \theta)^{\cdot}=0 \tag{c5}
\end{align*}
$$

and, finally, eliminating the second sum/term in each of them via the constraints $(a 5,6)$ and then solving for the multipliers, we obtain these latter in terms of ϕ, θ, ψ and their rates of change:

$$
\begin{align*}
& \lambda=m r\left[\dot{\phi} \dot{\theta} \sin \theta-(\dot{\phi} \cos \theta+\dot{\psi})^{\cdot}\right] \tag{c6}\\
& \mu=-m r\left[\dot{\phi}(\dot{\phi} \cos \theta+\dot{\psi})+(\dot{\theta} \sin \theta)^{\cdot}\right] \tag{c7}
\end{align*}
$$

Now:
(a) Inserting (c1) into (b4-6) results in the three kinetic Maggi equations of our problem, which, along with the two constraints (a5, 6), constitutes a determinate system for $X(t), Y(t), \phi(t), \theta(t), \psi(t)$; then $\lambda(t)$ and $\mu(t)$ can be immediately found from (c1); whereas
(b) Inserting (c6, 7) into (b4-6) results in its three (kinetic only) ChaplyginVoronets equations for $\phi(t), \theta(t), \psi(t)$:

$$
\begin{array}{ll}
\phi: \quad & {\left[\left(m r^{2} / 2\right)\left(\dot{\phi} \sin ^{2} \theta\right)\right]^{\cdot}+\left[\left(m r^{2}\right) \cos \theta(\dot{\phi} \cos \theta+\dot{\psi})\right]^{\cdot}} \\
& =m r^{2} \cos \theta\left[\dot{\phi} \dot{\theta} \sin \theta-(\dot{\phi} \cos \theta+\dot{\psi})^{\cdot}\right] \\
\theta: \quad & {\left[\left(m r^{2}\right)\left(\dot{\theta} \cos ^{2} \theta\right)\right]^{\cdot}+\left(m r^{2} / 2\right) \ddot{\theta}+\left(m r^{2}\right)(\dot{\theta})^{2} \sin \theta \cos \theta} \\
& -\left(m r^{2} / 2\right)(\dot{\phi})^{2} \sin \theta \cos \theta+\left(m r^{2}\right) \dot{\phi}(\dot{\phi} \cos \theta+\dot{\psi}) \sin \theta+m g r \cos \theta \\
& =-m r^{2} \sin \theta\left[\dot{\phi}(\dot{\phi} \cos \theta+\dot{\psi})+(\dot{\theta} \sin \theta)^{\cdot}\right] \\
& \tag{c10}\\
\psi: \quad & {\left[\left(m r^{2}\right)(\dot{\psi}+\dot{\phi} \cos \theta)\right]=m r^{2}\left[\dot{\phi} \dot{\theta} \sin \theta-(\dot{\phi} \cos \theta+\dot{\psi})^{\cdot}\right] .}
\end{array}
$$

Once $\phi(t), \theta(t), \psi(t)$ have been found from the above, then $\lambda(t)$ and $\mu(t)$ can be immediately calculated from (c6, 7).
(c) As shown a little later, eqs. (c8-10), when expressed in terms of the semimobile angular velocity components, eq. (a2), are none other than the corresponding kinetic Hamel equations (with $\omega_{x^{\prime}, y^{\prime}, z^{\prime}} \rightarrow \omega_{3,4,5}$).

A Famous and Instructive Error

The rolling hoop offers a good opportunity to demonstrate concretely that, in general, $E_{I}\left(T_{o}\right) \neq Q_{I o}$. Indeed, eliminating the two dependent velocities \dot{X} and $\dot{Y}(n=5, m=2 \Rightarrow f \equiv 5-2=3)$ from (b1) with the help of the constraints (a5, 6), while noting that, then, $(\dot{X})^{2}+(\dot{Y})^{2}=r^{2}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}+r^{2}(\dot{\theta})^{2} \sin ^{2} \theta$, we bring the (double) kinetic energy to the constrained (or nonlegitimate) form,

$$
\begin{align*}
2 T \rightarrow 2 T_{o} & \equiv 2 T_{o}(\theta ; \dot{\phi}, \dot{\theta}, \dot{\psi}) \\
& =\left(3 m r^{2} / 2\right)(\dot{\theta})^{2}+\left(m r^{2} / 2\right)(\dot{\phi})^{2} \sin ^{2} \theta+\left(2 m r^{2}\right)(\dot{\psi}+\dot{\phi} \cos \theta)^{2} \tag{d1}
\end{align*}
$$

Therefore, and since here, too, $V=V_{o}=m g Z=m g r \sin \theta \Rightarrow Q_{I o}=-\partial V_{o} / \partial q_{I}$, the incorrect Lagrangean equations - that is, $\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}=-\partial V_{o} / \partial q_{I}$ $\left(q_{I}=\phi, \theta, \psi\right)$-are

$$
\begin{align*}
& d / d t\left[\left(m r^{2} / 2\right)(\dot{\phi})^{2} \sin ^{2} \theta+\left(2 m r^{2}\right) \cos \theta(\dot{\psi}+\dot{\phi} \cos \theta)\right]=0 \tag{d2}\\
& \begin{aligned}
&\left(3 m r^{2} / 2\right) \ddot{\theta}-\left(m r^{2} / 2\right)(\dot{\phi})^{2} \sin \theta \cos \theta+\left(2 m r^{2}\right) \dot{\phi} \sin \theta(\dot{\psi}+\dot{\phi} \cos \theta) \\
&=-m g r \cos \theta
\end{aligned}
\end{align*}
$$

$$
\begin{equation*}
d / d t(\dot{\psi}+\dot{\phi} \cos \theta)=0 \tag{d4}
\end{equation*}
$$

On the history of this error (committed by some distinguished scientists in the 1890s), see, for example, Stäckel (1905, pp. 596-597); also Campbell (1971, pp. 102-108).

The Hamel Equations

We recall that (ex. 2.13.7)

$$
\begin{align*}
& \omega_{1} \equiv \dot{X} \cos \phi+\dot{Y} \sin \phi+r(\dot{\psi}+\dot{\phi} \cos \theta) \quad(=0) \tag{el}\\
& \omega_{2} \equiv-\dot{X} \sin \phi+\dot{Y} \cos \phi+r \dot{\theta} \sin \theta \quad(=0) \tag{e2}\\
& \omega_{3} \equiv \omega_{x^{\prime}}=\dot{\theta}, \quad \omega_{4} \equiv \omega_{y^{\prime}}=\dot{\phi} \sin \theta, \quad \omega_{5} \equiv \omega_{z^{\prime}}=\dot{\psi}+\dot{\phi} \cos \theta \tag{e3-5}
\end{align*}
$$

and
$\left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1}=\left(\omega_{4} / \sin \theta\right) \delta \theta_{2}+\left(-\omega_{2} / \sin \theta\right) \delta \theta_{4}$,
$\left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=\left(-\omega_{4} / \sin \theta\right) \delta \theta_{1}+\left[\left(\omega_{1} / \sin \theta\right)-\left(r \omega_{5} / \sin \theta\right)\right] \delta \theta_{4}+\left(r \omega_{4} / \sin \theta\right) \delta \theta_{5}$,
$\left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}=0 \quad(\theta:$ holonomic coordinate $)$,
$\left(\delta \theta_{4}\right)^{\cdot}-\delta \omega_{4}=\left(\omega_{3} \cot \theta\right) \delta \theta_{4}+\left(-\omega_{4} \cot \theta\right) \delta \theta_{3}$,
$\left(\delta \theta_{5}\right)^{\cdot}-\delta \omega_{5}=\left(\omega_{4}\right) \delta \theta_{3}+\left(-\omega_{3}\right) \delta \theta_{4}$.

Therefore, and since here $\boldsymbol{I}_{G}=\operatorname{diagonal}\left(A=m r^{2} / 2, B=A=m r^{2} / 2, C=m r^{2}\right)$,
(a) $\quad 2 T=2 T^{*}=m v_{G}{ }^{2}+\omega \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\omega} \quad$ (no constraint enforcement yet!)

$$
\begin{align*}
=m\left[\left(\omega_{1}-r \omega_{5}\right)^{2}\right. & \left.+\left(\omega_{2}-r \omega_{3} \sin \theta\right)^{2}+r^{2} \omega_{3}^{2} \cos ^{2} \theta\right] \\
& +\left(m r^{2}\right)\left[\left(\omega_{3}^{2} / 2\right)+\left(\omega_{4}^{2} / 2\right)+\omega_{5}^{2}\right] \\
=m\left\{r ^ { 2 } \left[\left(3 \omega_{3}^{2} / 2\right)\right.\right. & \left.+\left(\omega_{4}^{2} / 2\right)+2 \omega_{5}^{2}\right]-2 r \omega_{1} \omega_{5}-2 r \omega_{2} \omega_{3} \sin \theta \\
& \left.+\omega_{1}^{2}+\omega_{2}^{2}\right\} \tag{e11}
\end{align*}
$$

(the last two terms can be safely neglected at this stage - why?) and from this we readily obtain
(b) $\quad P_{1}=\left(\partial T^{*} / \partial \omega_{1}\right)_{o}=\left(-m r \omega_{5}+m \omega_{1}\right)_{o}=-m r \omega_{5} \Rightarrow \dot{P}_{1}=-m r \dot{\omega}_{5}$,

$$
\begin{equation*}
P_{2}=\left(\partial T^{*} / \partial \omega_{2}\right)_{o}=-m r \omega_{3} \sin \theta \Rightarrow \dot{P}_{2}=-m r\left(\dot{\omega}_{3} \sin \theta+\omega_{3}^{2} \cos \theta\right), \tag{e12}
\end{equation*}
$$

$$
\begin{equation*}
P_{3}=\cdots=m\left[-r \omega_{2} \sin \theta+\left(3 r^{2} \omega_{3} / 2\right)\right]_{o}=\left(3 m r^{2} / 2\right) \omega_{3} \Rightarrow \dot{P}_{3}=\left(3 m r^{2} / 2\right) \dot{\omega}_{3}, \tag{e13}
\end{equation*}
$$

$$
\begin{align*}
& P_{4}=\cdots=\left(m r^{2} / 2\right) \omega_{4} \Rightarrow \dot{P}_{4}=\left(m r^{2} / 2\right) \dot{\omega}_{4}, \tag{e15}\\
& P_{5}=\cdots=2 m r^{2} \omega_{5} \Rightarrow \dot{P}_{5}=2 m r^{2} \dot{\omega}_{5} ;
\end{align*}
$$

also (check it!),
(c) $\quad \partial T^{*} / \partial \theta_{k} \equiv \sum A_{l k}\left(\partial T^{*} / \partial q_{l}\right)=\left[A_{4 k}\left(\partial T^{*} / \partial \theta\right)\right]_{o}=0 \quad(k=1, \ldots, 5) ;$
while the fundamental noncommutative term $\Gamma \equiv \sum P_{k}\left[\left(\delta \theta_{k}\right)^{-}-\delta \omega_{k}\right]$ becomes
(d) $\quad \Gamma=P_{1}\left[\left(\omega_{4} / \sin \theta\right) \delta \theta_{2}-\left(\omega_{2} / \sin \theta\right) \delta \theta_{4}\right]+\cdots$
(we can enforce the constraints $\omega_{1,2}=0$;
but not $\delta \theta_{1,2}=0$, if we want to calculate the constraint reactions)

$$
\begin{align*}
= & -P_{2}\left(\omega_{4} / \sin \theta\right) \delta \theta_{1}+P_{1}\left(\omega_{4} / \sin \theta\right) \delta \theta_{2}+\left(P_{5} \omega_{4}-P_{4} \omega_{4} \cot \theta\right) \delta \theta_{3} \\
& +\left[P_{4} \omega_{3} \cot \theta-P_{2} r\left(\omega_{5} / \sin \theta\right)-P_{5} \omega_{3}\right] \delta \theta_{4}+P_{2} r\left(\omega_{4} / \sin \theta\right) \delta \theta_{5} . \tag{e18}
\end{align*}
$$

Collecting all these results into the master variational equation

$$
\sum\left(\dot{P}_{k}-\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\Gamma=\sum \Theta_{k} \delta \theta_{k}
$$

and applying to it the method of Lagrangean multipliers, we obtain the two kinetostatic equations

$$
\begin{array}{ll}
k=1: & \dot{P}_{1}-\left(\omega_{4} / \sin \theta\right) P_{2}=\Theta_{1}+\lambda_{1}, \quad \text { or } \quad m r\left(-\dot{\omega}_{5}+\omega_{3} \omega_{4}\right)=\Theta_{1}+\lambda_{1}, \\
k=2: & \dot{P}_{2}+\left(\omega_{4} / \sin \theta\right) P_{1}=\Theta_{2}+\lambda_{2}, \\
& \text { or } \quad-m r\left[\dot{\omega}_{3} \sin \theta+\omega_{3}^{2} \cos \theta+\left(\omega_{4} \omega_{5} / \sin \theta\right)\right]=\Theta_{2}+\lambda_{2}, \tag{e20}
\end{array}
$$

and the three kinetic equations

$$
\begin{array}{ll}
k=3: & \dot{P}_{3}-\omega_{4} \cot \theta P_{4}+\omega_{4} P_{5}=\Theta_{3}, \\
& \text { or } \quad\left(3 m r^{2} / 2\right) \dot{\omega}_{3}-\left(m r^{2} / 2\right) \cot \theta \omega_{4}^{2}+\left(2 m r^{2}\right) \omega_{4} \omega_{5}=\Theta_{3}, \\
& \text { or, further, } \quad m r^{2}\left[(3 / 2) \dot{\omega}_{3}+2 \omega_{4} \omega_{5}-(1 / 2) \cot \theta \omega_{4}^{2}\right]=\Theta_{3}, \\
k=4: & \dot{P}_{4}-\left(r \omega_{5} / \sin \theta\right) P_{2}+\omega_{3} \cot \theta P_{4}-\omega_{3} P_{5}=\Theta_{4}, \\
& \text { or } \quad m r^{2}\left[(1 / 2) \dot{\omega}_{4}+(1 / 2) \cot \theta \omega_{3} \omega_{4}-\omega_{3} \omega_{5}\right]=\Theta_{4}, \\
k=5: & \dot{P}_{5}+\left(r \omega_{4} / \sin \theta\right) P_{2}=\Theta_{5}, \\
& \text { or } \quad m r^{2}\left(2 \dot{\omega}_{5}-\omega_{3} \omega_{4}\right)=\Theta_{5} . \tag{e23}
\end{array}
$$

If the only impressed force is gravity (sole case to be examined here), then $V=V^{*}=m g Z=m g r \sin \theta_{3} \Rightarrow \Theta_{1,2,4,5}=0 \quad$ and $\quad \Theta_{3}=-\partial V^{*} / \partial \theta_{3}=-m g r \cos \theta$, and therefore the three kinetic equations (e21-23) reduce, respectively, to

$$
\begin{align*}
& (3 / 2)\left(d \omega_{3} / d t\right)+2 \omega_{4} \omega_{5}-(1 / 2) \cot \theta \omega_{4}^{2}=-(g / r) \cos \theta \tag{e24}\\
& (1 / 2)\left(d \omega_{4} / d t\right)+(1 / 2) \cot \theta \omega_{3} \omega_{4}-\omega_{3} \omega_{5}=0 \tag{e25}\\
& 2\left(d \omega_{5} / d t\right)-\omega_{3} \omega_{4}=0 \tag{e26}
\end{align*}
$$

We leave it to the reader to show, with the help of the above, that the corresponding equations in terms of the components of ω along the body-fixed axes $G-x y z, \omega_{x, y, z}$, are

$$
\begin{align*}
& 3\left(d \omega_{x} / d t\right)+\omega_{y}\left(4 \omega_{z}-\omega_{y} \cot \theta\right)=-2(g / r) \cos \theta, \tag{e27}\\
& d \omega_{y} / d t+\omega_{x}\left(\omega_{y} \cot \theta-2 \omega_{z}\right)=0, \tag{e28}\\
& 2\left(d \omega_{x} / d t\right)-\omega_{x} \omega_{y}=0 . \tag{e29}
\end{align*}
$$

HINT
Use the $\omega_{x^{\prime}, y^{\prime}, z^{\prime}} \Leftrightarrow \omega_{x, y, z}$ transformation equations (§1.12) in eqs. (e24-26).

The Appell Equations (No Reactions, only motion)
Here, all the difficulty lies in calculating the (constrained) Appellian in terms of the q 's; $\omega_{3,4,5} ; \dot{\omega}_{3,4,5}$; and t; that is, $S \rightarrow S^{*} \rightarrow S^{*}{ }_{o}$. To this end, we will utilize the Appellian counterpart of König's theorem (3.14.3a ff.),

$$
S^{*}=S^{*}{ }_{G}+S^{*} / G,
$$

where

$$
\begin{align*}
& 2 S_{G}^{*} \equiv m\left(\boldsymbol{a}_{G} \cdot \boldsymbol{a}_{G}\right), \\
& 2 S_{/ G}^{*} \equiv \boldsymbol{S} d m\left(\boldsymbol{a}_{/ G} \cdot \boldsymbol{a}_{/ G}\right)=\boldsymbol{\alpha} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}\right) . \tag{fl}
\end{align*}
$$

Let us calculate these parts of S^{*} separately, as follows.
(a) Using the convenient semifixed axes/basis $G-x^{\prime} N Z / i^{\prime} \boldsymbol{u}_{N} \boldsymbol{K} \equiv G-n N Z / \boldsymbol{u}_{n} \boldsymbol{u}_{N} \boldsymbol{K}$, and invoking the $\omega \Leftrightarrow \dot{q}$ relations (and then enforcing the constraints $\omega_{1,2}=0$ there) yields, successively,

$$
\begin{align*}
\boldsymbol{v}_{G} & =\dot{X} \boldsymbol{I}+\dot{Y} \boldsymbol{J}+\dot{Z} \boldsymbol{K} \\
& =\dot{X}\left(\cos \phi \boldsymbol{u}_{n}-\sin \phi \boldsymbol{u}_{N}\right)+\dot{Y}\left(\sin \phi \boldsymbol{u}_{n}+\cos \phi \boldsymbol{u}_{N}\right)+\dot{Z} \boldsymbol{K} \\
& =(\dot{X} \cos \phi+\dot{Y} \sin \phi) \boldsymbol{u}_{n}+(-\dot{X} \sin \phi+\dot{Y} \cos \phi) \boldsymbol{u}_{N}+\dot{Z} \boldsymbol{K} \\
& =-r(\dot{\psi}+\dot{\phi} \cos \theta) \boldsymbol{u}_{n}+(-r \dot{\theta} \sin \theta) \boldsymbol{u}_{N}+(r \dot{\theta} \cos \theta) \boldsymbol{K} \\
& =\left(\omega_{1}-r \omega_{5}\right) \boldsymbol{u}_{n}+\left(\omega_{2}-r \sin \theta \omega_{3}\right) \boldsymbol{u}_{N}+\left(r \cos \theta \omega_{3}\right) \boldsymbol{K} \\
& =\left(-r \omega_{5}\right) \boldsymbol{u}_{n}+\left(-r \sin \theta \omega_{3}\right) \boldsymbol{u}_{N}+\left(r \cos \theta \omega_{3}\right) \boldsymbol{K}, \tag{f2}
\end{align*}
$$

and since $\omega_{\text {semifixed }} \equiv \omega_{S F}=(0) \boldsymbol{u}_{n}+(0) \boldsymbol{u}_{N}+(\dot{\phi}) \boldsymbol{K}$, from which it follows that

$$
\begin{align*}
& d \boldsymbol{u}_{n} / d t=\omega_{S F} \times \boldsymbol{u}_{n}=(0,0, \dot{\phi}) \times(1,0,0)=\dot{\phi} \boldsymbol{u}_{N}=\left(\omega_{4} / \sin \theta\right) \boldsymbol{u}_{N}, \tag{f3}\\
& d \boldsymbol{u}_{N} / d t=\boldsymbol{\omega}_{S F} \times \boldsymbol{u}_{N}=(0,0, \dot{\phi}) \times(0,1,0)=-\dot{\phi} \boldsymbol{u}_{n}=\left(-\omega_{4} / \sin \theta\right) \boldsymbol{u}_{n}, \tag{f4}\\
& d \boldsymbol{K} / d t=\omega_{S F} \times \boldsymbol{K}=(0,0, \dot{\phi}) \times(0,0,1)=\mathbf{0} \tag{f5}
\end{align*}
$$

we, therefore, obtain (with some easily understood moving axes notations)

$$
\begin{align*}
\boldsymbol{a}_{G}= & d \boldsymbol{v}_{G} / d t=\left(d \boldsymbol{v}_{G} / d t\right)_{S F}+\omega_{S F} \times \boldsymbol{v}_{G} \\
= & \cdots=-r\left[\left(\dot{\omega}_{5}-\omega_{3} \omega_{4}\right) \boldsymbol{u}_{n}+\left(\dot{\omega}_{3} \sin \theta+\omega_{3}^{2} \cos \theta+\omega_{4} \omega_{5} / \sin \theta\right) \boldsymbol{u}_{N}\right. \\
& \left.-\left(\dot{\omega}_{3} \cos \theta-\omega_{3}^{2} \sin \theta\right) \boldsymbol{K}\right] \tag{f6}
\end{align*}
$$

and so, to within Appell-important terms (i.e., those containing $\dot{\omega}$'s),

$$
\begin{equation*}
a_{G}^{2} \equiv \boldsymbol{a}_{G} \cdot \boldsymbol{a}_{G}=r^{2}\left[\left(\dot{\omega}_{3}\right)^{2}+\left(\dot{\omega}_{4}\right)^{2}\right]+2 r^{2} \omega_{4}\left(\dot{\omega}_{3} \omega_{5}-\omega_{3} \dot{\omega}_{5}\right) . \tag{f7}
\end{equation*}
$$

(b) To calculate the relative Appellian $S^{*}{ }_{/ G}$ we need $\boldsymbol{\alpha}$. Here, it is more convenient to work with the semimobile axes/basis $G-x^{\prime} y^{\prime} z^{\prime} / \boldsymbol{i}^{\prime} \boldsymbol{j}^{\prime} \boldsymbol{k}^{\prime} \equiv G-n n^{\prime} z^{\prime} / \boldsymbol{u}_{n} \boldsymbol{u}_{n^{\prime}} \boldsymbol{k}^{\prime}$. Since

$$
\begin{equation*}
\boldsymbol{\omega}=(\dot{\theta}) \boldsymbol{i}^{\prime}+(\dot{\phi} \sin \theta) \boldsymbol{j}^{\prime}+(\dot{\psi}+\dot{\phi} \cos \theta) \boldsymbol{k}^{\prime}=\omega_{3} \boldsymbol{i}^{\prime}+\omega_{4} \dot{\boldsymbol{j}}^{\prime}+\omega_{5} \boldsymbol{k}^{\prime} \tag{f8}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{\text {semimobile }} \equiv \omega_{S M}=(\dot{\theta}) \boldsymbol{i}^{\prime}+(\dot{\phi} \sin \theta) \dot{\boldsymbol{j}}^{\prime}+(\dot{\phi} \cos \theta) \boldsymbol{k}^{\prime} \tag{f9}
\end{equation*}
$$

from which

$$
\begin{align*}
d \boldsymbol{i}^{\prime} / d t & =\omega_{S M} \times \boldsymbol{i}^{\prime}=(\dot{\theta}, \dot{\phi} \sin \theta, \dot{\phi} \cos \theta) \times(1,0,0) \\
& =\dot{\phi}\left(\cos \theta \dot{\boldsymbol{j}}^{\prime}-\sin \theta \boldsymbol{k}^{\prime}\right)=\omega_{4}\left(\cot \theta \dot{\boldsymbol{j}}^{\prime}-\boldsymbol{k}^{\prime}\right), \tag{f10}\\
d \dot{j}^{\prime} / d t & =\omega_{S M} \times \dot{\boldsymbol{j}}^{\prime}=(\dot{\theta}, \dot{\phi} \sin \theta, \dot{\phi} \cos \theta) \times(0,1,0) \\
& =-\dot{\phi} \cos \theta \dot{\boldsymbol{i}}^{\prime}+\dot{\theta} \boldsymbol{k}^{\prime}=-\omega_{4} \cot \theta \boldsymbol{i}^{\prime}+\omega_{3} \boldsymbol{k}^{\prime}, \tag{f11}\\
d \boldsymbol{k}^{\prime} / d t & =\omega_{S M} \times \boldsymbol{k}^{\prime}=(\dot{\theta}, \dot{\phi} \sin \theta, \dot{\phi} \cos \theta) \times(0,0,1) \\
& =\dot{\phi} \sin \theta \boldsymbol{i}^{\prime}-\dot{\theta} \boldsymbol{j}^{\prime}=\omega_{4} \boldsymbol{i}^{\prime}-\omega_{3} \boldsymbol{j}^{\prime} ; \tag{f12}
\end{align*}
$$

we, therefore, find

$$
\begin{align*}
\boldsymbol{\alpha} \equiv d \boldsymbol{\omega} / d t= & (d \boldsymbol{\omega} / d t)_{S M}+\omega_{S M} \times \omega=(d \omega / d t)_{S M}+\omega_{S M} \times\left(\omega_{S M}+\dot{\psi} \boldsymbol{k}^{\prime}\right) \\
=\cdots= & {\left[\dot{\omega}_{3}+\omega_{4}\left(\omega_{5}-\omega_{4} \cot \theta\right)\right] \boldsymbol{i}^{\prime} } \\
& +\left[\dot{\omega}_{4}-\omega_{3}\left(\omega_{5}-\omega_{4} \cot \theta\right)\right] \boldsymbol{j}^{\prime}+\dot{\omega}_{5} \boldsymbol{k}^{\prime} \tag{f13}
\end{align*}
$$

and so, to within Appell-important terms,

$$
\begin{gather*}
\boldsymbol{\alpha} \times \boldsymbol{\omega}=\cdots=\left(\dot{\omega}_{4} \omega_{5}-\omega_{4} \dot{\omega}_{5}\right) \boldsymbol{i}^{\prime}+\left(\dot{\omega}_{5} \omega_{3}-\omega_{5} \dot{\omega}_{3}\right) \boldsymbol{j}^{\prime} \\
 \tag{f14}\\
+\left(\dot{\omega}_{3} \omega_{4}-\omega_{3} \dot{\omega}_{4}\right) \boldsymbol{k}^{\prime} \tag{f15}\\
\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}=\left(m r^{2} / 2\right)\left(\omega_{3} \boldsymbol{i}^{\prime}+\omega_{4} \dot{j}^{\prime}+2 \omega_{4} \boldsymbol{k}^{\prime}\right)
\end{gather*}
$$

and, accordingly,

$$
\begin{equation*}
(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}\right)=\left(m r^{2} / 2\right) \omega_{5}\left(\dot{\omega}_{3} \omega_{4}-\omega_{3} \dot{\omega}_{4}\right) . \tag{f16}
\end{equation*}
$$

Next, with the help of the decomposition (again, in semimobile components)

$$
\begin{align*}
\boldsymbol{\alpha}= & \boldsymbol{\alpha}^{\prime}+\boldsymbol{\alpha}^{\prime \prime} \\
& \boldsymbol{\alpha}^{\prime} \equiv\left(\dot{\omega}_{3}, \dot{\omega}_{4}, \dot{\omega}_{5}\right), \\
& \boldsymbol{\alpha}^{\prime \prime} \equiv\left(\omega_{4}\left(\omega_{5}-\omega_{4} \cot \theta\right),-\omega_{3}\left(\omega_{5}-\omega_{4} \cot \theta\right), 0\right), \tag{f17}
\end{align*}
$$

we find that, to within Appell-important terms,

$$
\begin{align*}
& \boldsymbol{\alpha} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}= \boldsymbol{\alpha}^{\prime} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}^{\prime}+2\left(\boldsymbol{\alpha}^{\prime \prime} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}^{\prime}\right) \\
&= \cdots= \\
& m r^{2}\left\{\left[\left(\dot{\omega}_{3} / 2\right)^{2}+\left(\dot{\omega}_{4} / 2\right)^{2}+\left(\dot{\omega}_{5}\right)^{2}\right]\right. \tag{f18}\\
&\left.+\left(\dot{\omega}_{3} \omega_{4}-\omega_{3} \dot{\omega}_{4}\right)\left(\omega_{5}-\omega_{4} \cot \theta\right)\right\} .
\end{align*}
$$

Finally, utilizing all the above results in (f1) we deduce that

$$
\begin{align*}
2 S_{o}^{*}= & m a_{G}^{2}+\boldsymbol{\alpha} \cdot \boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}+2(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}\right) \\
= & m r^{2}\left[3\left(\dot{\omega}_{3}\right)^{2} / 2+\left(\dot{\omega}_{4}\right)^{2} / 2+2\left(\dot{\omega}_{5}\right)^{2}\right. \\
& +2 \omega_{4}\left(\dot{\omega}_{3} \omega_{5}-\omega_{3} \dot{\omega}_{5}\right)+2 \omega_{5}\left(\dot{\omega}_{3} \omega_{4}-\omega_{3} \dot{\omega}_{4}\right) \\
& \left.-\omega_{4}\left(\dot{\omega}_{3} \omega_{4}-\omega_{3} \dot{\omega}_{4}\right) \cot \theta\right] . \tag{f19}
\end{align*}
$$

(c) Hence, the three kinetic Appell equations are

$$
\begin{align*}
& \partial S_{o}^{*} / \partial \dot{\omega}_{3}=m r^{2}\left[(3 / 2) \dot{\omega}_{3}+2 \omega_{4} \omega_{5}-(1 / 2) \cot \theta \omega_{4}^{2}\right]=\Theta_{3} \tag{f20}\\
& \partial S_{o}^{*_{o}} / \partial \dot{\omega}_{4}=m r^{2}\left[(1 / 2) \dot{\omega}_{4}+(1 / 2) \cot \theta \omega_{3} \omega_{4}-\omega_{3} \omega_{5}\right]=\Theta_{4}, \tag{f21}\\
& \partial S_{o}^{*} / \partial \dot{\omega}_{5}=m r^{2}\left(2 \dot{\omega}_{5}-\omega_{3} \omega_{4}\right)=\Theta_{5} \tag{f22}
\end{align*}
$$

and, of course, these coincide with the earlier (e21-23).

- To find the reactions, we need the relaxed Appellian $S^{*}=S^{*}\left(t ; q_{1, \ldots, 5} ; \omega_{1, \ldots, 5} ; \dot{\omega}_{1, \ldots, 5}\right)$; then, $\left(\partial S^{*} / \partial \dot{\omega}_{1}\right)_{o}=\Theta_{1}+\lambda_{1},\left(\partial S^{*} / \partial \dot{\omega}_{2}\right)_{o}=\Theta_{2}+\lambda_{2}$, and these equations would, of course, coincide with the earlier (e19-20). The details are left to the reader.
- In view of the kinematico-inertial identity (3.5.25c): $\left(\partial S^{*} / \partial \dot{\omega}_{3,4,5}\right)_{o}=\partial S^{*}{ }_{o} / \partial \dot{\omega}_{3,4,5}$, if no reactions are sought there is no need to calculate $S^{*} ; S^{*}{ }_{o}$ will suffice.
- The above, hopefully, show the advantages of the (essentially Lagrangean) method of Hamel over that of Appell. The explicit calculation of accelerations is a rather expensive step! For alternative Appellian derivations of this problem, see also (alphabetically): Neimark and Fufaev (1972, pp. 149-156), Pérès (1953, pp. 224-226), Routh [1905(a), pp. 352-353].

Brief Analytical Discussion of the Kinetic Hoop Equations (e24-26)
The solution of these equations is facilitated by the introduction of the nutation angle θ as the independent variable, instead of the time t. Then, since $\dot{\theta}=\omega_{3}$, and with the notation $d(\ldots) / d \theta \equiv(\ldots)^{\prime}$, we have

$$
\begin{equation*}
d \omega_{I} / d t=\left(d \omega_{I} / d \theta\right)(d \theta / d t), \quad \text { or } \quad \dot{\omega}_{I}=\omega_{3} \omega_{I}^{\prime} \quad(I=3,4,5), \tag{g1}
\end{equation*}
$$

and so the last two kinetic equations $(e 25,26)$ transform, respectively, to

$$
\begin{equation*}
\omega_{4}^{\prime}+(\cot \theta) \omega_{4}-2 \omega_{5}=0, \quad 2 \omega_{5}^{\prime}-\omega_{4}=0 \tag{g2}
\end{equation*}
$$

and eliminating ω_{4} between them yields the single θ-equation

$$
\begin{equation*}
\omega_{5}^{\prime \prime}+(\cot \theta) \omega_{5}^{\prime}-\omega_{5}=0 . \tag{g3}
\end{equation*}
$$

With the initial conditions

$$
t=0: \quad \theta=\theta_{o}, \quad \omega_{3}=\omega_{3 o}, \quad \omega_{4}=\omega_{4 o}=2 \omega_{5 o}^{\prime}, \quad \omega_{5}=\omega_{5 o}
$$

the general solution of this linear and homogeneous but variable coefficient equation, to be obtained via hypergeometric series, will have the form

$$
\begin{equation*}
\omega_{5}=\omega_{5}\left(\theta ; \theta_{o}, \omega_{5 o}, \omega_{5 o}{ }^{\prime}\right)=\omega_{5}\left(\theta ; \theta_{o}, \omega_{5 o}, \omega_{4 o} / 2\right) \equiv \omega_{5}\left(\theta ; \theta_{o}, \omega_{4 o}, \omega_{5 o}\right) . \tag{g4}
\end{equation*}
$$

Then, ω_{4} can be found by θ-differentiation; and since

$$
\begin{align*}
d\left(\omega_{3}^{2}\right) / d \theta & =2 \omega_{3}\left(d \omega_{3} / d \theta\right) \\
& =2 \omega_{3}\left(d \omega_{3} / d t\right)(d t / d \theta)=2\left[\omega_{3}(1 / \dot{\theta})\right]\left(d \omega_{3} / d t\right)=2 \dot{\omega}_{3} \tag{g5}
\end{align*}
$$

the first kinetic equation (e24) reduces to
$d\left(3 \omega_{3}^{2} / 4\right) / d \theta=-(g / r) \cos \theta+(\cot \theta / 2) \omega_{4}^{2}-2 \omega_{4} \omega_{5}=$ known function of θ,
from which $\omega_{3}(\theta)$ may be found by a quadrature. Then, a final integration of $\dot{\theta}=\omega_{3}$ yields $\theta(t)$.

For full analytical treatments of these interesting equations, see, for example (alphabetically): Appell (1953, pp. 253-258, 386-388), Grammel (1950, pp. 235245), MacMillan (1936, pp. 276-282), Neimark and Fufaev (1972, pp. 55-60, 155156), Pars (1965, pp. 120-122), Webster (1912, pp. 307-316), Winkelmann and Grammel (1927, pp. 434-437).

Finally, for derivations of the equations of motion of this problem, in terms of the coordinates of the contact point of the hoop with the plane (instead of those of its mass center), and ϕ, θ, ψ, see, for example, Hamel [1949, pp. 470-471 (Routh-Voss equations), 448-479, 489-492, 778-781 (Hamel equations, stability of motion, etc.)], Rosenberg (1977, pp. 265-268, 338-340).

Brief Discussion of the Kinetostatic Hoop Equations (e19, 20)
Substituting into eqs. (e19, 20) $\dot{\omega}_{3}$ and $\dot{\omega}_{5}$ from the first and last of the kinetic equations, respectively, and recalling that $\Theta_{1,2}=0$, we obtain the constraint reactions on the hoop, at its contact point C (figure 3.53):

Along $C x^{\prime}: \quad \Lambda_{1}=\lambda_{1} \equiv \lambda=(m r / 2) \omega_{3} \omega_{4}$,
Along $C N$: $\quad \Lambda_{2}=\lambda_{2} \equiv \mu=-m r\left\{\cos \theta\left(\omega_{3}{ }^{2}+\omega_{4}{ }^{2} / 3\right)\right.$

$$
\begin{equation*}
\left.+[(1 / \sin \theta)-(4 \sin \theta / 3)] \omega_{4} \omega_{5}-(2 g / 3 r) \sin \theta \cos \theta\right\} . \tag{h2}
\end{equation*}
$$

Once the (rotational) motion has been determined from the kinetic equations - that is, once $\omega_{3,4,5}$ and θ have been found as functions of t and the initial conditions then ($\mathrm{h} 1,2$) immediately yield the reactions as functions of the same variables. Of course, these forces can also be calculated by direct application of the Newton-Euler principle of linear momentum to the hoop, along the semifixed axes $G-x^{\prime} N Z \equiv G-n N Z-$ see, for example, Lur'e (1968, pp. 409-410).

Problem 3.18.12 Continuing from the preceding example, show that (under gravity only) the power, or energy rate, theorem yields the first-order integral

$$
\begin{equation*}
m r^{2}\left(\omega_{3}^{2}+\omega_{5}^{2}\right)+A\left(\omega_{3}^{2}+\omega_{4}^{2}\right)+C \omega_{5}^{2}=-2 m g r \sin \theta+\text { constant }, \tag{a}
\end{equation*}
$$

or, since here $A=m r^{2} / 2$ and $C=m r^{2}$,

$$
\begin{equation*}
3 \omega_{3}^{2}+\omega_{4}^{2}+4 \omega_{5}^{2}+4(g / r) \sin \theta=\text { constant } . \tag{b}
\end{equation*}
$$

Problem 3.18.13 Continuing from the preceding example, assume that, in addition to rolling, the hoop is constrained to remain vertical; that is, $\theta(t)=\pi / 2$.
(i) Find its constraints and its Routh-Voss equations of motion.
(ii) For the special (constraint-satisfying) initial conditions

$$
\begin{array}{llr}
\phi(0)=0, & \dot{\phi}(0)=\dot{\phi}_{o} ; & \psi(0)=0, \\
x(0)=0, & \dot{x}(0)=-r \dot{\psi}_{o} ; & y(0)=r, \tag{a}\\
\dot{\psi}_{o}
\end{array}
$$

show that:

- The Lagrangean multiplier associated with the tangential direction $C x^{\prime}$ vanishes; while
- The multiplier associated with the normal direction $C N$ equals $m r \dot{\phi}_{o} \dot{\psi}_{o} / 3=$ constant; and
- The hoop center G traces a circle of radius $r\left(\dot{\psi}_{o} / \dot{\phi}_{o}\right)$, with constant speed $(\dot{X})^{2}+(\dot{Y})^{2}=r^{2}\left(\dot{\psi}_{o}\right)^{2}$, and normal acceleration of magnitude $r \dot{\phi}_{o} \dot{\psi}_{o}$.

Problem 3.18.14 Continuing from the preceding example, consider its key kinetic equation (g3):

$$
\begin{equation*}
d^{2} \omega_{5} / d \theta^{2}+(\cot \theta)\left(d \omega_{5} / d \theta\right)-\omega_{5}=0, \quad \text { where } \omega_{5} \equiv \dot{\psi}+\dot{\phi} \cos \theta=\omega_{z^{\prime}} \tag{a}
\end{equation*}
$$

Show that the independent variable change $\theta \rightarrow \zeta=\cos ^{2} \theta$ transforms the above to the hypergeometric equation

$$
\begin{equation*}
2 \zeta(1-\zeta)\left(d^{2} \omega_{5} / d \zeta^{2}\right)+(1-3 \zeta)\left(d \omega_{5} / d \zeta\right)-(1 / 2) \omega_{5}=0 \tag{b}
\end{equation*}
$$

Then, show that a particular infinite series solution of this famous equation is

$$
\begin{equation*}
\omega_{5}=\sum a_{k} \zeta^{k}=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots \tag{c}
\end{equation*}
$$

where

$$
a_{k} / a_{k-1}=\left(4 k^{2}-6 k+3\right) / 2 k(2 k-1) \quad(k=1,2, \ldots)
$$

Problem 3.18.15 Consider again the hoop, but now rolling on a plane P, which translates with given (inertial) velocity (fig. 3.54)

$$
\begin{equation*}
\boldsymbol{v}_{\text {plane }} \equiv \boldsymbol{v}_{P}=\boldsymbol{v}_{C}=\left(v_{X}(t), v_{Y}(t), v_{X}(t)\right) \tag{a}
\end{equation*}
$$

Also, assume for algebraic simplicity, but no loss in generality, that P is (and remains) horizontal.
(i) If $X, Y, Z=$ inertial coordinates of the hoop center G [i.e., $Z=h(t)+r \sin \theta$, $\left.v_{\mathrm{Z}}(t)=d h(t) / d t\right]$, show that the rolling constraints are (recall prob. 2.13.3)

$$
\begin{align*}
& {\left[\dot{X}-v_{X}(t)\right] \cos \phi+\left[\dot{Y}-v_{Y}(t)\right] \sin \phi+r \dot{\phi} \cos \theta+r \dot{\psi}=0,} \tag{b}\\
& -\left[\dot{X}-v_{X}(t)\right] \sin \phi+\left[\dot{Y}-v_{Y}(t)\right] \cos \phi+r \dot{\theta} \sin \theta=0 \tag{c}
\end{align*}
$$

(ii) Show that the (inertial) potential and kinetic energies of the hoop are, respectively,

$$
\begin{align*}
V= & -m g[h(t)+r \sin \theta] \tag{d}\\
2 T= & m\left\{(\dot{X})^{2}+(\dot{Y})^{2}+[\dot{h}(t)+r \cos \theta \dot{\theta}]^{2}\right\} \\
& +A\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2} \quad\left(C=2 A=2 B=m r^{2}\right) ; \tag{e}
\end{align*}
$$

and, therefore, verify that the corresponding Routh-Voss equations are (with $\lambda_{1,2}=$ multipliers)

$$
\begin{align*}
& m \ddot{X}=\lambda_{1} \cos \phi-\lambda_{2} \sin \phi \tag{f}\\
& m \ddot{Y}=\lambda_{1} \sin \phi+\lambda_{2} \cos \phi \tag{g}\\
& {\left[A \dot{\phi} \sin ^{2} \theta+C(\dot{\psi}+\dot{\phi} \cos \theta) \cos \theta\right]=\lambda_{1} r \cos \theta} \tag{h}
\end{align*}
$$

Figure 3.54 Hoop rolling on a translating horizontal plane.

$$
\begin{align*}
& m r \cos \theta\left[\ddot{h}+r(\sin \theta)^{\bullet}\right]+A\left[\ddot{\theta}-(\dot{\phi})^{2} \sin \theta \cos \theta\right] \\
& \quad+C(\dot{\psi}+\dot{\phi} \cos \theta) \dot{\phi} \sin \theta=-m g r \cos \theta+\lambda_{2} r \sin \theta \tag{i}\\
& C(\dot{\psi}+\dot{\phi} \cos \theta)^{\cdot}=\lambda_{1} r . \tag{j}
\end{align*}
$$

(iii) Eliminating $\lambda_{1,2}$ from the above Routh-Voss equations (f -j), and then \ddot{X}, \ddot{Y} via the [once $(\ldots)^{\text {- }}$-differentiated] constraints (b, c), verify that the three (kinetic) Chaplygin-Voronets equations of this problem are

$$
\begin{align*}
& A \ddot{\phi} \sin \theta-C \dot{\theta} \dot{\psi}=0 \tag{k}\\
& \begin{array}{l}
\left(C+m r^{2}\right)(\dot{\phi} \cos \theta+\dot{\psi})^{\cdot}-m r^{2} \dot{\phi} \dot{\theta} \sin \theta \\
\quad=m r\left[\dot{v}_{X}(t) \cos \phi+\dot{v}_{Y}(t) \sin \phi\right] \\
\left(A+m r^{2}\right) \ddot{\theta}-A(\dot{\phi})^{2} \sin \theta \cos \theta+\left(C+m r^{2}\right) \sin \theta \dot{\phi}(\dot{\phi} \cos \theta+\dot{\psi}) \\
\quad=-m g r \cos \theta-m r\left[\dot{v}_{X}(t) \sin \phi \sin \theta-\dot{v}_{Y}(t) \cos \phi \sin \theta+\dot{v}_{Z}(t) \cos \theta\right] ;
\end{array}
\end{align*}
$$

and that along, with the constraints (b, c), they constitute a determinate system for $X(t), Y(t), \phi(t), \theta(t), \psi(t)$. Then, in both (ii) and here, $Z(t)=h(t)+r \sin \theta(t)$. Notice that (a) the terms due to the translation of the plane appear as additional "forces" on the right sides of (l) and (m), and equal, respectively, $m r \boldsymbol{a}_{P}(t) \cdot \boldsymbol{i}^{\prime}$ and $-m r \boldsymbol{a}_{P}(t) \cdot \boldsymbol{k}^{\prime}$, where $\boldsymbol{a}_{P}(t) \equiv d \boldsymbol{v}_{P}(t) / d t=\left(\dot{v}_{X}(t), \dot{v}_{Y}(t), \quad \dot{v}_{Z}(t)\right), \quad \boldsymbol{i}^{\prime} \equiv \boldsymbol{u}_{n}=(\cos \phi, \sin \phi, 0), \boldsymbol{k}^{\prime}=$ ($\sin \phi \sin \theta,-\cos \phi \sin \theta, \cos \theta$); and that (b) here, too, the Lagrangean method shows its superiority over the momentum method of Newton-Euler.

Problem 3.18.16 Continuing from the preceding problem, examine the special motion where P remains fixed [or, equivalently, translates uniformly: $d v_{X, Y, Z}(t) / d t=0 \Rightarrow v_{X, Y, Z}(t)=$ constant $\left.\equiv c_{X, Y, Z}\right]$, and the hoop rolls at a constant nutation angle $\theta(t)=$ constant $\equiv \theta_{0}$.
(i) After verifying that such a motion is possible, show that, then, the first two Chaplygin-Voronets equations, $(k, 1)$, yield

$$
\begin{equation*}
\dot{\phi}=\text { constant } \equiv \dot{\phi}_{o}, \quad \dot{\psi}=\text { constant } \equiv \dot{\psi}_{o} \tag{a}
\end{equation*}
$$

while the third of them, (m), reduces to

$$
\begin{equation*}
-A\left(\dot{\phi}_{o}\right)^{2} \sin \theta_{o} \cos \theta_{o}+\left(C+m r^{2}\right) \sin \theta_{o} \dot{\phi}_{o}\left(\dot{\phi}_{o} \cos \theta_{o}+\dot{\psi}_{o}\right)=-m g r \cos \theta_{o} \tag{b}
\end{equation*}
$$

(ii) Then, using the constraints, eqs. (b, c) of the preceding problem, show that

$$
\begin{equation*}
\dot{X}-c_{X}=-r\left(\dot{\phi}_{o} \cos \theta_{o}+\dot{\psi}_{o}\right) \cos \left(\dot{\phi}_{o} t\right), \quad \dot{Y}-c_{Y}=-r\left(\dot{\phi}_{o} \cos \theta_{o}+\dot{\psi}_{o}\right) \sin \left(\dot{\phi}_{o} t\right) \tag{c}
\end{equation*}
$$

Discuss particular cases of this special motion; for example, $\theta_{o}=\pi / 2$ $\left(\Rightarrow, \dot{\phi}_{o}, \dot{\psi}_{o}=\cdots\right), \theta_{o} \neq \pi / 2\left(\Rightarrow \dot{\phi}_{o}, \dot{\psi}_{o}=\cdots\right)$.

Problem 3.18.17 Examine the problem of a hoop rolling on a uniformly rotating horizontal and rough platform; that is, formulate its constraints in any convenient set of coordinates, write down its transitivity equations, and then obtain its RouthVoss, Hamel, and Appell equations, with or without reactions.

Problem 3.18.18 Examine the earlier problems of the (sliding) sled and (rolling) sphere, but on a translating platform; that is, obtain their constraints, transitivity equations, and various equations of motion.

Example 3.18.6 Dynamics of Pair of Rolling Wheels on an Axle. Let us determine the motion and reactions of a system consisting of two identical homogeneous wheels, mounted on a light axle, and each capable of turning freely about it, and rolling on a fixed, horizontal, and rough plane (fig. 3.55).

The kinematics of this system has already been discussed in ex. 2.13.8. It was found there that $q_{1, \ldots, 5}=X, Y, \phi, \psi^{\prime}, \psi^{\prime \prime}$, and that the rolling constraints are

$$
\begin{align*}
& \dot{X} \cos \phi+\dot{Y} \sin \phi=0 \tag{al}\\
& -\dot{X} \sin \phi+\dot{Y} \cos \phi+b \dot{\phi}+r \dot{\psi}^{\prime}=0 \tag{a2}\\
& -\dot{X} \sin \phi+\dot{Y} \cos \phi-b \dot{\phi}+r \dot{\psi}^{\prime \prime}=0 \tag{a3}
\end{align*}
$$

or, since the last two of them yield the integrable combination (with $c=$ integration constant, depending on the initial values of $\phi, \psi^{\prime}, \psi^{\prime \prime}$)

$$
\begin{equation*}
2 b \dot{\phi}+r\left(\dot{\psi}^{\prime}-\dot{\psi}^{\prime \prime}\right)=0 \Rightarrow 2 b \phi=c-r\left(\psi^{\prime}-\psi^{\prime \prime}\right) \tag{a4}
\end{equation*}
$$

we may take, as the two independent Pfaffian constraints,

$$
\begin{align*}
& \dot{X} \cos \phi+\dot{Y} \sin \phi=0, \tag{bl}\\
& -\dot{X} \sin \phi+\dot{Y} \cos \phi+(r / 2)\left(\dot{\psi}^{\prime}+\dot{\psi}^{\prime \prime}\right)=0 . \tag{b2}
\end{align*}
$$

For the purposes of the Routh-Voss equations (see below), a further simplification of these constraints is possible: (a) multiplying the first of them by $\sin \phi$ and the second by $\cos \phi$ and adding together yields

$$
\begin{equation*}
\dot{Y}+(r / 2)\left(\dot{\psi}^{\prime}+\dot{\psi}^{\prime \prime}\right) \cos \phi=0 \tag{b3}
\end{equation*}
$$

Figure 3.55 (a) Rolling of two wheels on an axle, on a fixed plane; (b) acceleration components needed for calculation of Appellian.
while (b) multiplying the first of them by $\cos \phi$ and the second by $-\sin \phi$ and adding together yields

$$
\begin{equation*}
\dot{X}-(r / 2)\left(\dot{\psi}^{\prime}+\dot{\psi}^{\prime \prime}\right) \sin \phi=0 ; \tag{b4}
\end{equation*}
$$

and then (c) eliminating $\dot{\psi}^{\prime \prime}$ from these two with the help of the integrable relation (a4, for $b=r): 2 b \dot{\phi}+r\left(\dot{\psi}^{\prime}-\dot{\psi}^{\prime \prime}\right)=0 \Rightarrow \dot{\psi}^{\prime \prime}=2 \dot{\phi}+\dot{\psi}^{\prime}$, finally results in the two new Pfaffian constraints

$$
\begin{equation*}
\dot{X}-r\left(\dot{\psi}^{\prime}+\dot{\phi}\right) \sin \phi=0, \quad \dot{Y}+r\left(\dot{\psi}^{\prime}+\dot{\phi}\right) \cos \phi=0 . \tag{b5}
\end{equation*}
$$

In view of the above, we introduce the following quasi velocities:

$$
\begin{array}{rlr}
\omega_{1} \equiv \dot{\theta}_{1} \equiv \dot{X} \cos \phi+\dot{Y} \sin \phi & (=0), \\
\omega_{2} \equiv \dot{\theta}_{2} \equiv-\dot{X} \sin \phi+\dot{Y} \cos \phi & (\neq 0), \\
\omega_{3} \equiv \dot{\theta}_{3} \equiv \dot{\phi} & (\neq 0), \\
\omega_{4} \equiv \dot{\theta}_{4} \equiv r\left(\dot{\psi}+\dot{\psi}^{\prime \prime}\right)+2(-\dot{X} \sin \phi+\dot{Y} \cos \phi) \\
& =r\left(\dot{\psi}^{\prime}+\dot{\psi}^{\prime \prime}\right)+2 \omega_{2} & (=0), \\
\omega_{5} \equiv \dot{\theta}_{5} \equiv 2 b \dot{\phi}+r\left(\dot{\psi}^{\prime}-\dot{\psi}^{\prime \prime}\right) & (=0) . \tag{c5}
\end{array}
$$

The above invert easily to

$$
\begin{align*}
& \dot{X}=(\cos \phi) \omega_{1}+(-\sin \phi) \omega_{2}, \tag{c6}\\
& \dot{Y}=(\sin \phi) \omega_{1}+(\cos \phi) \omega_{2}, \tag{c7}\\
& \dot{\phi}=(0) \omega_{1}+(0) \omega_{2}+(1) \omega_{3} \tag{c8}\\
& \dot{\psi}^{\prime}=(1 / 2 r)\left(-2 \omega_{2}-2 r \omega_{3}+\omega_{4}-\omega_{5}\right), \tag{c9i}\\
& \dot{\psi}^{\prime \prime}=(1 / 2 r)\left(-2 \omega_{2}+2 r \omega_{3}+\omega_{4}-\omega_{5}\right) . \tag{c9ii}
\end{align*}
$$

From (c1-9i), we readily obtain the following transitivity equations:

$$
\begin{align*}
& \left(\delta \theta_{1}\right)^{\cdot}-\delta \omega_{1}=\left(\omega_{3}\right) \delta \theta_{2}+\left(-\omega_{2}\right) \delta \theta_{3}, \tag{d1}\\
& \left(\delta \theta_{2}\right)^{\cdot}-\delta \omega_{2}=\left(-\omega_{3}\right) \delta \theta_{1}+\left(\omega_{1}\right) \delta \theta_{3}, \tag{d2}\\
& \left(\delta \theta_{3}\right)^{\cdot}-\delta \omega_{3}=0, \tag{d3}\\
& \left(\delta \theta_{4}\right)^{\cdot}-\delta \omega_{4}=\left(-2 \omega_{3}\right) \delta \theta_{1}+\left(2 \omega_{1}\right) \delta \theta_{3}, \tag{d4}\\
& \left(\delta \theta_{5}\right)^{\cdot}-\delta \omega_{5}=0 . \tag{d5}
\end{align*}
$$

The Routh-Voss Equations
Applying König's theorem (plus parallel axis theorem for moments of inertia), we obtain

$$
\begin{align*}
2 T= & \left(m_{1}+2 m_{2}\right)\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+\left(m_{1} b^{2} / 3\right)(\dot{\phi})^{2} \\
& +2\left[\left(m_{2} r^{2} / 4\right)+m_{2} b^{2}\right](\dot{\phi})^{2}+\left(m_{2} r^{2} / 2\right)\left[\left(\dot{\psi}^{\prime}\right)^{2}+\left(\dot{\psi}^{\prime \prime}\right)^{2}\right], \tag{e1}
\end{align*}
$$

or, for the special case, to be examined here for algebraic simplicity, $m_{1}=0, m_{2} \equiv m$ (= mass of each wheel), $b=r$:

$$
\begin{equation*}
T=m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+\left(m r^{2} / 4\right)\left[\left(\dot{\psi}^{\prime}\right)^{2}+\left(\dot{\psi}^{\prime \prime}\right)^{2}+5(\dot{\phi})^{2}\right] . \tag{e2}
\end{equation*}
$$

Hence, the five Routh-Voss equations corresponding to (el) and (b5) are (with multipliers $\lambda_{1} \equiv \lambda$ and $\lambda_{2} \equiv \mu$; and with impressed force components to be calculated from the invariant differential $\delta^{\prime} W=Q_{X} \delta X+Q_{Y} \delta Y+Q_{\phi} \delta \phi+$ $Q_{\psi^{\prime}} \delta \psi^{\prime}+Q_{\psi^{\prime \prime}} \delta \psi^{\prime \prime}$, as if the δq^{\prime} s were unconstrained)

$$
\begin{array}{ll}
X: & (2 m) \ddot{X}=Q_{X}+\lambda, \\
Y: & (2 m) \ddot{Y}=Q_{Y}+\mu, \\
\phi: & \left(5 m r^{2} / 2\right) \ddot{\phi}=Q_{\phi}+r(-\lambda \sin \phi+\mu \cos \phi), \\
\psi^{\prime}: & \left(m r^{2} / 2\right) \ddot{\psi}^{\prime}=Q_{\psi^{\prime}}+r(-\lambda \sin \phi+\mu \cos \phi), \\
\psi^{\prime \prime}: & \left(m r^{2} / 2\right) \ddot{\psi}^{\prime \prime}=Q_{\psi^{\prime \prime}} . \tag{e7}
\end{array}
$$

If all Q 's vanish (free motion), the above yield the two obvious integrals

$$
\begin{align*}
& \dot{\psi}^{\prime \prime}=\text { constant }, \\
& \left(5 m r^{2} / 2\right) \dot{\phi}-\left(m r^{2} / 2\right) \dot{\psi}^{\prime}=\text { constant } \Rightarrow 5 \dot{\phi}-\dot{\psi}^{\prime}=\text { constant } . \tag{e8}
\end{align*}
$$

A third integral results as follows: first, we rewrite the two Pfaffian constraints as

$$
\begin{align*}
\dot{X} \cos \phi+\dot{Y} \sin \phi & =0 \tag{e9}\\
\dot{X} \sin \phi-\dot{Y} \cos \phi & =r\left(\dot{\phi}+\dot{\psi}^{\prime}\right) \tag{e10}
\end{align*}
$$

then we $(\ldots)^{\circ}$-differentiate the first of them and take into account the second. The result is

$$
\begin{aligned}
& \ddot{X} \sin \phi-\ddot{Y} \cos \phi=r\left(\ddot{\phi}+\ddot{\psi}^{\prime}\right) \\
& \quad=(1 / 2 m)(\lambda \sin \phi-\mu \cos \phi)=-[m r / 2(2 m)] \ddot{\psi}^{\prime}=-(r / 4) \ddot{\psi}^{\prime} ;
\end{aligned}
$$

and from this, by rearrangement and integration, it follows that

$$
(4 m) \dot{\phi}+(5 m) \dot{\psi}^{\prime}=\text { constant } \Rightarrow 4 \dot{\phi}+5 \dot{\psi}^{\prime}=\text { constant } .
$$

These integrals show that the angles $\phi, \psi^{\prime}, \psi^{\prime \prime}$ vary linearly in time; in which case, the constraints integrate easily to

$$
\begin{align*}
\dot{X} & =r(\text { constant }) \sin \phi=(\text { constant }) Y \tag{e11}\\
\dot{Y} & =-r(\text { constant }) \cos \phi=-(\text { constant }) X \tag{e12}
\end{align*}
$$

that is, the path of G is a circle, parallel to the plane $Z=0$, of radius $R=r\left|\left(\dot{\phi}_{o}+\dot{\psi}_{o}{ }^{\prime}\right) / \dot{\phi}_{o}\right|$, described at the uniform rate $\dot{\phi}_{o}$. Indeed, we have

$$
v_{G}^{2}=(\dot{X})^{2}+(\dot{Y})^{2}=\left(R \dot{\phi}_{o}\right)^{2} \Rightarrow\left(\dot{\phi}_{o}+\dot{\psi}_{o}{ }^{\prime}\right)^{2} r^{2}=\left(\dot{\phi}_{o}\right)^{2} R^{2}, \quad \text { Q.E.D. }
$$

[The third integral also results, more simply, from the constancy of T (by energy conservation; and since, here, λ and μ are workless), if in there [eq. (e2)] using the constraints (b5), we replace $(\dot{X})^{2}+(\dot{Y})^{2}$ with $r^{2}\left(\dot{\phi}+\dot{\psi}^{\prime}\right)^{2}$. Then, we obtain a constant coefficient relation between $(\dot{\phi})^{2}$ and $\left(\dot{\psi}^{\prime}\right)^{2}$, from which it follows that $\dot{\phi}$ and $\dot{\psi}^{\prime}$ are constants, like $\dot{\psi}^{\prime \prime}$. The earlier argument, however, may apply to more general problems.]

Finally, inserting \dot{X} and \dot{Y} from (e11,12) into the first two equations of motion, (e3,4), yields the two constraint reactions λ and μ. For additional insights, see, for example, Pérès (1953, pp. 213-214), Rosenberg (1977, pp. 340-345).

The Hamel Equations

From the $\dot{q} \leftrightarrow \omega$ relations (c6-9), we easily find

$$
\begin{align*}
& (\dot{X})^{2}+(\dot{Y})^{2}=\omega_{1}^{2}+\omega_{2}^{2} \tag{f1}\\
& \left(\dot{\psi}^{\prime}\right)^{2}+\left(\dot{\psi}^{\prime \prime}\right)^{2}=\left(1 / 2 r^{2}\right)\left[\left(\omega_{4}-2 \omega_{2}\right)^{2}+\left(\omega_{5}-2 r \omega_{3}\right)^{2}\right] \tag{f2}\\
& (\dot{\phi})^{2}=\omega_{3}^{2} \tag{f3}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
T \rightarrow T^{*}=\cdots= & (m) \omega_{1}^{2}+(3 m / 2) \omega_{2}^{2}+\left(7 m r^{2} / 4\right) \omega_{3}^{2}+(m / 8)\left(\omega_{4}^{2}+\omega_{5}^{2}\right) \\
& +(-m / 2) \omega_{2} \omega_{4}+(-m r / 2) \omega_{3} \omega_{5} \tag{f4}
\end{align*}
$$

with no constraint enforcement yet. However, in view of the constraints $\omega_{1,4,5}=0$, the (quadratic) first and fourth terms/summands in (f4) can be safely neglected at this stage; that is, finally, to within Hamel-important terms,

$$
\begin{equation*}
T^{*}=(3 m / 2) \omega_{2}^{2}+\left(7 m r^{2} / 4\right) \omega_{3}^{2}+(-m / 2) \omega_{2} \omega_{4}+(-m r / 2) \omega_{3} \omega_{5} . \tag{f5}
\end{equation*}
$$

Next:
(a) The nonholonomic momenta $P_{k} \equiv\left(\partial T^{*} / \partial \omega_{k}\right)_{o} \quad(k=1, \ldots, 5)$ and their (...)-derivatives are

$$
\begin{align*}
& P_{1}=0 \Rightarrow \dot{P}_{1}=0, \tag{f6}\\
& P_{2}=(3 m) \omega_{2} \Rightarrow \dot{P}_{2}=(3 m) \dot{\omega}_{2}, \tag{f7}\\
& P_{3}=\left(7 m r^{2} / 2\right) \omega_{3} \Rightarrow \dot{P}_{3}=\left(7 m r^{2} / 2\right) \dot{\omega}_{3}, \tag{f8}\\
& P_{4}=(-m / 2) \omega_{2} \Rightarrow \dot{P}_{4}=(-m / 2) \dot{\omega}_{2}, \tag{f9}\\
& P_{5}=(-m r / 2) \omega_{3} \Rightarrow \dot{P}_{5}=(-m r / 2) \dot{\omega}_{3} . \tag{f10}
\end{align*}
$$

(b) Since $\left(\partial T^{*} / \partial q_{k}\right)_{o}=0(k=1, \ldots, 5)$, we will have

$$
\begin{equation*}
\partial T^{*} / \partial \theta_{l} \equiv \sum A_{k l}\left(\partial T^{*} / \partial q_{k}\right)=0 \quad(l=1, \ldots, 5) \tag{f11}
\end{equation*}
$$

(c) In view of (d1-5) and (f6-10), the fundamental noncommutativity term $\Gamma \equiv \sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]$, upon enforcing the constraints $\omega_{1,4,5}=0$ (but not $\delta \theta_{1,4,5}=0$, since we want reactions too) becomes

$$
\begin{align*}
\Gamma= & P_{1}\left(\omega_{3} \delta \theta_{2}-\omega_{2} \delta \theta_{3}\right)+P_{2}\left(-\omega_{3} \delta \theta_{1}+\omega_{1} \delta \theta_{3}\right)+P_{3}(0) \\
& +P_{4}\left(-2 \omega_{3} \delta \theta_{1}+2 \omega_{1} \delta \theta_{3}\right)+P_{5}(0) \\
= & -\left(P_{2}+2 P_{4}\right) \omega_{3} \delta \theta_{1} \tag{f12}
\end{align*}
$$

(d) The nonholonomic impressed force components, Θ_{k}, are obtained as follows [with use of virtual form of (c6-9), and calculated as if the constraints $\delta \theta_{1,4,5}=0 \mathrm{did}$ not exist]:

$$
\begin{align*}
\delta^{\prime} W= & Q_{X} \delta X+Q_{Y} \delta Y+Q_{\phi} \delta \phi+Q_{\psi^{\prime}} \delta \psi^{\prime}+Q_{\psi^{\prime \prime}} \delta \psi^{\prime \prime} \\
= & Q_{X}\left(\cos \phi \delta \theta_{1}-\sin \phi \delta \theta_{2}\right)+Q_{Y}\left(\sin \phi \delta \theta_{1}+\cos \phi \delta \theta_{2}\right)+Q_{\phi} \delta \theta_{3} \\
& +Q_{\psi^{\prime}}(1 / 2 r)\left(-2 \delta \theta_{2}-2 r \delta \theta_{3}+\delta \theta_{4}+\delta \theta_{5}\right) \\
& +Q_{\psi^{\prime \prime}}(1 / 2 r)\left(-2 \delta \theta_{2}+2 r \delta \theta_{3}+\delta \theta_{4}-\delta \theta_{5}\right) \\
= & \left(Q_{X} \cos \phi+Q_{Y} \sin \phi\right) \delta \theta_{1}+\left[-Q_{X} \sin \phi+Q_{Y} \cos \phi-r^{-1}\left(Q_{\psi^{\prime}}+Q_{\psi^{\prime \prime}}\right)\right] \delta \theta_{2} \\
& +\left[Q_{\phi}-\left(Q_{\psi^{\prime}}-Q_{\psi^{\prime \prime}}\right)\right] \delta \theta_{3}+(2 r)^{-1}\left(Q_{\psi^{\prime}}+Q_{\psi^{\prime \prime}}\right) \delta \theta_{4} \\
& +(2 r)^{-1}\left(Q_{\psi^{\prime}}-Q_{\psi^{\prime \prime}}\right) \delta \theta_{5} \\
\equiv & \Theta_{1} \delta \theta_{1}+\Theta_{2} \delta \theta_{2}+\Theta_{3} \delta \theta_{3}+\Theta_{4} \delta \theta_{4}+\Theta_{5} \delta \theta_{5} . \tag{f13}
\end{align*}
$$

Substituting all these results into the, by now, well-known nonholonomic version of LP, and applying to it the method of Lagrangean multipliers for (...) $\delta \theta_{1,4,5}$, we eventually obtain the Hamel equations (nonholonomic variables), and, next to them, the Maggi equations (holonomic variables):
$\theta_{1}: \quad-\left(P_{2}+2 P_{4}\right) \omega_{3}=\Theta_{1}+\lambda_{1} \Rightarrow-2 m \omega_{2} \omega_{3}=-2 m(-\dot{X} \sin \phi+\dot{Y} \cos \phi) \dot{\phi}=\Theta_{1}+\lambda_{1}$,
$\theta_{2}: \quad \dot{P}_{2}+P_{1} \omega_{3}=\Theta_{2} \Rightarrow 3 m \dot{\omega}_{2}=3 m(-\dot{X} \sin \phi+\dot{Y} \cos \phi)^{\cdot}=\Theta_{2}$,
$\theta_{3}: \quad \dot{P}_{3}-P_{1} \omega_{2}=\Theta_{3} \Rightarrow\left(7 m r^{2} / 2\right) \dot{\omega}_{3}=\left(7 m r^{2} / 2\right) \ddot{\phi}=\Theta_{3}$,
$\theta_{4}: \quad \dot{P}_{4}=\Theta_{4}+\lambda_{4} \Rightarrow(-m / 2) \dot{\omega}_{2}=(-m / 2)(-\dot{X} \sin \phi+\dot{Y} \cos \phi)^{\circ}=\Theta_{4}+\lambda_{4}$,
$\theta_{5}: \quad \dot{P}_{5}=\Theta_{5}+\lambda_{5} \Rightarrow(-m r / 2) \dot{\omega}_{3}=(-m r / 2) \ddot{\phi}=\Theta_{5}+\lambda_{5}$.
Again, for the force-free motion (i.e., all Θ_{k} 's $=0$), and recalling the constraints (a2): $-\dot{X} \sin \phi+\dot{Y} \cos \phi+r\left(\dot{\phi}+\dot{\psi}^{\prime}\right)=0$, and (a4): $2 \dot{\phi}+\left(\dot{\psi}^{\prime}-\dot{\psi}^{\prime \prime}\right)=0$, we conclude from the $\theta_{2,3}$-equations that $\dot{\phi}+\dot{\psi}^{\prime}=$ constant, $\dot{\phi}=$ constant $\Rightarrow \dot{\psi}^{\prime}=$ constant, $\left(\psi^{\prime \prime}\right)^{\cdot}=$ constant. Further, it follows that, here, θ_{5}-equation: $\lambda_{5}=0 ; \theta_{4}$-equation: $\lambda_{4}=0 ; \theta_{1}$-equation: $\lambda_{1}=$ constant .

For the related problem of the two-wheeled street vendor's cart (where only the algebra is slightly more complicated than here), see, for example, Hamel (1949, pp. 471-472, 479, 484-485).

The Appell Equations

(No reactions, only motion; i.e., equations for $k \rightarrow I=2,3$; not $k \rightarrow D=1,4,5$.)
(i) Elementary nonvectorial solution. Here, with $\left(X_{G^{\prime \prime}}, Y_{G^{\prime \prime}}\right)=$ (inertial) coordinates of $G^{\prime \prime}$ and $\left(X_{G^{\prime}}, Y_{G^{\prime}}\right)=$ (inertial) coordinates of G^{\prime}, we have [fig. 3.55(a) and (b)]

$$
\begin{gather*}
X_{G^{\prime \prime}}=X-r \cos \phi \Rightarrow\left(X_{G^{\prime \prime}}\right)^{\cdot}=\ddot{X}+r \cos \phi(\dot{\phi})^{2}+r \sin \phi \ddot{\phi}, \tag{g1}\\
Y_{G^{\prime \prime}}=Y-r \sin \phi \Rightarrow\left(Y_{G^{\prime \prime}}\right)^{\cdot \cdot}=\ddot{Y}+r \sin \phi(\dot{\phi})^{2}-r \cos \phi \ddot{\phi}, \tag{g2}\\
X_{G^{\prime}}=X+r \cos \phi \Rightarrow\left(X_{G^{\prime}}\right)^{\cdot}=\ddot{X}-r \cos \phi(\dot{\phi})^{2}-r \sin \phi \ddot{\phi}, \tag{g3}\\
Y_{G^{\prime}}=Y+r \sin \phi \Rightarrow\left(Y_{G^{\prime}}\right)^{\cdot}=\ddot{Y}-r \sin \phi(\dot{\phi})^{2}+r \cos \phi \ddot{\phi}, \tag{g4}
\end{gather*}
$$

and, therefore, using the Appellian version of König's theorem, we find the Appellians

$$
\begin{array}{ll}
G^{\prime \prime} \text { wheel: } & 2 S_{G^{\prime \prime}}=m\left[\left(\ddot{X}_{G^{\prime \prime}}\right)^{2}+\left(\ddot{Y}_{G^{\prime \prime}}\right)^{2}\right]+\left\{\left(m r^{2} / 2\right)\left(\ddot{\psi}^{\prime \prime}\right)^{2}+\left(m r^{2} / 4\right)(\ddot{\phi})^{2}\right\}, \\
G^{\prime} \text { wheel: } & 2 S_{G^{\prime}}=m\left[\left(\ddot{X}_{G^{\prime}}\right)^{2}+\left(\ddot{Y}_{G^{\prime}}\right)^{2}\right]+\left\{\left(m r^{2} / 2\right)\left(\ddot{\psi}^{\prime}\right)^{2}+\left(m r^{2} / 4\right)(\ddot{\phi})^{2}\right\} .
\end{array}
$$

From the above, it follows that, to within Appell-important terms and with constraints enforced,

$$
\begin{align*}
2 S_{\text {entire system }}= & 2 S_{G^{\prime \prime}} \\
= & 2 S_{G^{\prime}} \\
=\cdots= & m\left[(\ddot{X})^{2}+(\ddot{Y})^{2}+r^{2}(\ddot{\phi})^{2}+2 r \ddot{\phi}(\ddot{X} \cos \phi+\ddot{Y} \sin \phi)\right. \\
& +2 r \ddot{\phi}(\ddot{X} \sin \phi-\ddot{Y} \cos \phi)] \\
& +\left(m r^{2} / 2\right)\left\{\left(\ddot{\psi}^{\prime \prime}\right)^{2}+(1 / 2)(\ddot{\phi})^{2}\right\} \\
& +m\left[(\ddot{X})^{2}+(\ddot{Y})^{2}+r^{2}(\ddot{\phi})^{2}+2 r \ddot{\phi}(-\ddot{X} \cos \phi+\ddot{Y} \sin \phi)\right. \\
& -2 r \ddot{\phi}(\ddot{X} \cos \phi+\ddot{Y} \sin \phi)] \\
& +\left(m r^{2} / 2\right)\left[\left(\ddot{\psi}^{\prime}\right)^{2}+(1 / 2)(\ddot{\phi})^{2}\right] \\
= & 2 m\left[(\ddot{X})^{2}+(\ddot{Y})^{2}\right] \tag{g5}\\
& +2\left(m r^{2} / 4\right)\left[\left(\ddot{\psi}^{\prime \prime}\right)^{2}+\left(\ddot{\psi}^{\prime}\right)^{2}+5(\ddot{\phi})^{2}\right] ;
\end{align*}
$$

that is, $2 T$, eq. (e2), but with the \dot{q} 's replaced by the corresponding \ddot{q} 's (=homogeneous quadratic in the \ddot{q} 's). Next, since $\partial \ddot{q} / \partial \dot{\omega}=\partial \dot{q} / \partial \omega$, and recalling the $\dot{q} \Leftrightarrow \omega$ relations (c6-9), we find

$$
\begin{align*}
\partial S^{*} / \partial \dot{\omega}_{2}= & (\partial S / \partial \ddot{X})\left(\partial \dot{X} / \partial \omega_{2}\right)+(\partial S / \partial \ddot{Y})\left(\partial \dot{Y} / \partial \omega_{2}\right)+(\partial S / \partial \ddot{\phi})\left(\partial \dot{\phi} / \partial \omega_{2}\right) \\
& +\left(\partial S / \partial \ddot{\psi}^{\prime \prime}\right)\left(\partial \dot{\psi}^{\prime \prime} / \partial \omega_{2}\right)+\left(\partial S / \partial \ddot{\psi}^{\prime}\right)\left(\partial \dot{\psi}^{\prime} / \partial \omega_{2}\right) \\
= & (2 m \ddot{X})(-\sin \phi)+(2 m \ddot{Y})(\cos \phi)+\left(5 m r^{2} \ddot{\phi} / 2\right)(0) \\
& +\left(m r^{2} \ddot{\psi}^{\prime \prime} / 2\right)\left(-r^{-1}\right)+\left(m r^{2} \ddot{\psi}^{\prime} / 2\right)\left(-r^{-1}\right) \\
= & 2 m(-\ddot{X} \sin \phi+\ddot{Y} \cos \phi)-(m r / 2)\left(\ddot{\psi}^{\prime \prime}+\ddot{\psi}^{\prime}\right) \\
= & 2 m\left(-r \ddot{\phi}-r \ddot{\psi}^{\prime}\right)-(m r / 2)\left(\ddot{\psi}^{\prime \prime}+\ddot{\psi}^{\prime}\right) \\
= & -2 m r\left[\left(\ddot{\psi}^{\prime \prime}-\ddot{\psi}^{\prime}\right) / 2\right]-2 m r \ddot{\psi}^{\prime}-(m r / 2) \ddot{\psi}^{\prime}-(m r / 2) \ddot{\psi}^{\prime \prime} \\
= & -(3 m r / 2)\left(\ddot{\psi}^{\prime \prime}+\dot{\psi}^{\prime}\right) \\
= & -(3 m r / 2)\left[\left(-r^{-1} \dot{\omega}_{2}-\dot{\omega}_{3}\right)+\left(-r^{-1} \dot{\omega}_{2}+\dot{\omega}_{3}\right)\right] \\
= & -(3 m r / 2)\left(-2 r^{-1} \dot{\omega}_{2}\right)=3 m \dot{\omega}_{2}, \tag{g6}
\end{align*}
$$

and, similarly,

$$
\begin{align*}
\partial S^{*} / \partial \dot{\omega}_{3}= & (2 m \ddot{X})(0)+(2 m \ddot{Y})(0) \\
& +\left(5 m r^{2} \ddot{\phi} / 2\right)(1)+\left(m r^{2} \ddot{\psi}^{\prime \prime} / 2\right)(-1)+\left(m r^{2} \ddot{\psi}^{\prime} / 2\right)(1) \\
= & \left(m r^{2} / 2\right)\left(\ddot{\psi}^{\prime \prime}-\ddot{\psi}^{\prime}+5 \ddot{\phi}\right) \\
= & \left(m r^{2} / 2\right)(2 \ddot{\phi}+5 \ddot{\phi})=\left(7 m r^{2} / 2\right) \ddot{\phi}=\left(7 m r^{2} / 2\right) \dot{\omega}_{3} ; \tag{g7}
\end{align*}
$$

and these are precisely the left (i.e., inertia) sides of the earlier second and third equations of Hamel. To derive the first, fourth, and fifth Appellian equations, we use again S, apply the chain rule

$$
\begin{equation*}
\partial S^{*} / \partial \dot{\omega}_{k}=\sum\left(\partial S / \partial \ddot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \quad(l=1, \ldots, 5) \tag{g8}
\end{equation*}
$$

and then impose the constraints $\omega_{1,4,5}=0$; that is, after the differentiations-not before them! The details are left to the reader.
(ii) Vectorial solution. For each wheel, we shall have [recalling (3.14.4a ff.)]:

$$
\begin{equation*}
2 S=m a_{G}^{2}+\boldsymbol{\alpha} \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}\right)+(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}\right) \tag{g9}
\end{equation*}
$$

But here (using the notation of the first Appellian solution):

$$
\begin{equation*}
a_{G}^{2}=\left(\ddot{X}_{G^{\prime \prime}}\right)^{2}+\left(\ddot{Y}_{G^{\prime \prime}}\right)^{2}, \quad \text { or } \quad\left(\ddot{X}_{G^{\prime}}\right)^{2}+\left(\ddot{Y}_{G^{\prime}}\right)^{2}, \tag{g10}
\end{equation*}
$$

and along the intermediate but principal axes $G-123$ (fig. 3.55b), which have inertial angular velocity $(0,0, \dot{\phi})$, we easily find

$$
\begin{align*}
& \omega=(\dot{\psi}, 0, \dot{\phi}) \\
& \Rightarrow \boldsymbol{\alpha}=d \boldsymbol{\omega} / d t=(\ddot{\psi}, 0, \ddot{\phi})+(0,0, \dot{\phi}) \times(\dot{\psi}, 0, \dot{\phi})=(\ddot{\psi},-\dot{\psi} \dot{\phi}, \ddot{\phi}), \\
& \boldsymbol{I}_{G}=\operatorname{diagonal}\left(m r^{2} / 2, m r^{2} / 4, m r^{2} / 4\right) \tag{g11}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
(\boldsymbol{\alpha} \times \boldsymbol{\omega}) \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\omega}\right) & =[(\ddot{\psi},-\dot{\psi} \dot{\phi}, \ddot{\phi}) \times(\dot{\psi}, 0, \dot{\phi})] \cdot\left(m r^{2} \dot{\psi} / 2,0, m r^{2} \dot{\phi} / 4\right) \\
& =\cdots=-\left(m r^{2} / 2\right)(\dot{\psi})^{2}(\dot{\phi})^{2}=\text { non-Appell-important term } \tag{g12}
\end{align*}
$$

and

$$
\begin{align*}
\boldsymbol{\alpha} \cdot\left(\boldsymbol{I}_{G} \cdot \boldsymbol{\alpha}\right) & =\left[(\ddot{\psi},-\dot{\psi} \dot{\phi}, \ddot{\phi}) \cdot\left(m r^{2} \ddot{\psi} / 2,-m r^{2} \dot{\psi} \dot{\phi} / 4, m r^{2} \ddot{\phi} / 4\right)\right. \\
& =m r^{2}(\ddot{\psi})^{2} / 2+m r^{2}(\dot{\psi})^{2}(\dot{\phi})^{2} / 4+m r^{2}(\ddot{\phi})^{2} / 4 \\
& =\left(m r^{2} / 2\right)\left[(\ddot{\psi})^{2}+(1 / 2)(\ddot{\phi})^{2}\right]+\text { non-Appell-important term } ; \tag{g13}
\end{align*}
$$

that is, for each wheel, and to within Appell-important terms,

$$
\begin{equation*}
2 S=m a_{G}^{2}+\left(m r^{2} / 2\right)\left[(\ddot{\psi})^{2}+(1 / 2)(\ddot{\phi})^{2}\right] \tag{g14}
\end{equation*}
$$

and, adding these partial results, we re-establish the earlier entire system Appellian.

Example 3.18.7 Dynamics of Pair of Rolling Wheels on an Inclined Plane. Continuing from the preceding example, let us specialize it to the case where $m_{\text {wheel }}=0$ but $m_{\text {axle }} \equiv m \neq 0$; and, in addition, the whole system rolls on a plane inclined by an angle χ to the horizontal (fig. 3.56).

We saw in the previous example that the constraints are

$$
\begin{align*}
& \dot{X} \cos \phi+\dot{Y} \sin \phi=0 \tag{a1}\\
& -\dot{X} \sin \phi+\dot{Y} \cos \phi+b \dot{\phi}+r \dot{\psi}^{\prime}=0 \tag{a2}\\
& -\dot{X} \sin \phi+\dot{Y} \cos \phi-b \dot{\phi}+r \dot{\psi}^{\prime \prime}=0 \tag{a3}
\end{align*}
$$

It is not hard to see that, in this case,

$$
\begin{equation*}
2 T=m\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]+\left(m b^{2} / 3\right)(\dot{\phi})^{2} \tag{b}
\end{equation*}
$$

and, therefore, to within Appell-important terms,

$$
\begin{equation*}
2 S=m\left[(\ddot{X})^{2}+(\ddot{Y})^{2}\right]+\left(m b^{2} / 3\right)(\ddot{\phi})^{2} \tag{c}
\end{equation*}
$$

Figure 3.56 Rolling wheels on an axle, on an inclined plane.
and

$$
\begin{equation*}
\delta^{\prime} W=m g(\delta X \sin \chi) \equiv Q_{X} \delta X \Rightarrow Q_{X}=m g \sin \chi \tag{d}
\end{equation*}
$$

Let us use the constraints to eliminate, say \ddot{Y}, from $S:(\ldots)^{\circ}$-differentiating (a1) we obtain

$$
\begin{equation*}
\dot{Y}=-\dot{X}(\cos \phi / \sin \phi) \Rightarrow \ddot{Y}=-\ddot{X}(\cos \phi / \sin \phi)+\dot{X} \dot{\phi}\left(1 / \sin ^{2} \phi\right) \tag{e}
\end{equation*}
$$

Substituting (e) into (c), we obtain $S=S_{o}(\ddot{X}, \ddot{\phi}) \equiv S_{o}=\cdots$. We remark that in building Appell's equations, there is no need to square \ddot{Y} of (e). Indeed, since $S=S[\ddot{X}, \ddot{Y}(\ddot{X}, \ldots), \ddot{\phi} ; \ldots]=S_{o}$, the chain rule yields

$$
\begin{align*}
\partial S_{o} / \partial \ddot{X} & =\partial S / \partial \ddot{X}+(\partial S / \partial \ddot{Y})(\partial \ddot{Y} / \partial \ddot{X})=\partial S / \partial \ddot{X}+(\partial S / \partial \ddot{Y})(\partial \dot{Y} / \partial \dot{X}) \\
& =(m \ddot{X})+(m \ddot{Y})(-\cos \phi / \sin \phi) \quad(=m g \sin \chi), \tag{f}\\
\partial S_{o} / \partial \ddot{\phi} & =\partial S / \partial \ddot{\phi}+(\partial S / \partial \ddot{Y})(\partial \ddot{Y} / \partial \ddot{\phi})=\partial S / \partial \ddot{\phi}+(\partial S / \partial \ddot{Y})(\partial \dot{Y} / \partial \dot{\phi}) \\
& =\left(m b^{2} / 3\right) \ddot{\phi}+(m \ddot{Y})(0) \quad(=0) . \tag{g}
\end{align*}
$$

From (g), and with $\omega_{o} / \phi_{o}=$ initial angular velocity/angle of bar $G^{\prime \prime} G^{\prime}$, we immediately find

$$
\begin{equation*}
\dot{\phi}=\omega_{o} \Rightarrow \phi=\omega_{o} t+\phi_{o} . \tag{h}
\end{equation*}
$$

Then, with the choice $\phi_{o}=0$, (f) reduces to

$$
\begin{equation*}
\ddot{X} \sin \left(\omega_{o} t\right)-\ddot{Y} \cos \left(\omega_{o} t\right)=g \sin \chi \sin \left(\omega_{o} t\right) ; \tag{i}
\end{equation*}
$$

and along with (e) they constitute a system for $X(t)$ and $Y(t)$. Indeed, eliminating \ddot{Y} between (i) and (e) yields

$$
\begin{equation*}
\ddot{X}\left\{\sin \left(\omega_{o} t\right)+\left[\cos ^{2}\left(\omega_{o} t\right) / \sin \left(\omega_{o} t\right)\right]\right\}-\dot{X} \omega_{o}\left[\cos \left(\omega_{o} t\right) / \sin ^{2}\left(\omega_{o} t\right)\right]=g \sin \chi \sin \left(\omega_{o} t\right) \tag{j}
\end{equation*}
$$

Integrating (j) twice $\left\{\right.$ while noticing that its left side equals $\left[\dot{X} / \sin \left(\omega_{o} t\right)\right]$] , we obtain, after some elementary integrations (and with $c_{1,2}=$ integration constants),

$$
\begin{equation*}
X=\left(g \sin \chi / 4 \omega_{o}^{2}\right) \cos \left(2 \omega_{o} t\right)-\left(c_{1} / \omega_{o}\right) \cos \left(\omega_{o} t\right)+c_{2} \tag{k}
\end{equation*}
$$

Then, substituting from (k) into (a1) and integrating, we finally get (with $c_{3}=$ integration constant)

$$
\begin{equation*}
Y=\left(g \sin \chi / 4 \omega_{o}^{2}\right)\left[\sin \left(2 \omega_{o} t\right)+2 \omega_{o} t\right]-\left(c_{1} / \omega_{o}\right) \sin \left(\omega_{o} t\right)+c_{3} \tag{l}
\end{equation*}
$$

that is, G traces a curve parallel to a cycloid with base(line) parallel to $O Y$.
For additional insights, see Delassus [(1913(b), pp. 406-409), which investigates the above system but with an additional particle of mass m placed at G, and then of the limit as $m_{\text {wheels }}, m_{\text {bar }} \rightarrow 0$], Pérès (1953, p. 214); also Bahar (1998).

APPENDIX 3.A1

REMARKS ON THE HISTORY OF THE HAMEL-TYPE EQUATIONS OF ANALYTICAL MECHANICS

Below, and continuing from the Introduction and the early sections of this chapter, we discuss the historical evolution of the Hamel-type equations; that is, of T-based equations of nonholonomically constrained systems in nonholonomic variables.

We begin with the following, highly selective but adequate for our purposes, summaries of the main theoretical developments of Lagrangean mechanics; see tables 3.A1.1-3.A1.3.

Table 3.A1.1 Global Picture

Newton (2nd half of 17th cent.)	Physical foundations of mechanics (fundamental law); particle
Euler (18th cent.)	Physical and mathematical foundations of mechanics (momentum mechanics); rigid body, rotation
Lagrange (2nd half of 18th cent.)	Mathematical deepening of mechanics (energetic mechanics); constraints, Lagrangean equations
Cauchy (1st half of 19th cent.)	Continuum mechanics; deformation (strain), stress
Hamilton (1830's)	Canonical formalism; Hamilton's equations
Jacobi (1840's)	Integration theory of dynamics
Kelvin/Helmholtz/Routh (2nd half of 19th cent.)	Ignorable (cyclic) coordinates; gyroscopic systems
Appell (late 19th-early 20th cent.)	Nonholonomic systems; Appell's equations (acceleration-based equations)
Heun (early 20th cent.)	Theoretical engineering dynamics
Hamel (1st half of 20th cent.)	Nonholonomic systems, axiomatics of classical (discrete + continuum) mechanics; Hamel's equations (kinetic energy-based equations)

Table 3.A1.2 Prehistory of Lagrangean Mechanics

Mersenne (1646)
Huygens (1673)
Jacob Bernoulli (1686-1703)
D'Alembert (1743)

Find the period of a mathematical pendulum with several masses Center of oscillation ("Horologium oscillatorium")
Physical pendulum; earliest form of d'Alembert's principle Earliest monograph on constrained system dynamics

Table 3.A1.3 Historical Synthesis (mid-to-late 18th Century)

From the Prehistory of the Hamel-Type Equations

Let us now discuss, in "our" notation, some additional special forms of Hamel-type equations of motion (early 1870s to the early 1900s). It is through the acquaintance with such historical curiosities that we deepen our understanding of contemporary Lagrangean mechanics, both holonomic and nonholonomic; and appreciate better the importance of the fundamental contributions of Heun and Hamel (1901-1914) to our subject.
(i) Equations of Ferrers (early 1870s, publ. 1873)

Let us assume for algebraic simplicity, but no loss in generality, a scleronomic system with Chaplygin-type constraints (3.8.13a)

$$
\begin{equation*}
\dot{q}_{D}=\sum b_{D I}\left(q_{m+1}, \ldots, q_{n}\right) \dot{q}_{I}=\sum b_{D I} \dot{q}_{I} \quad(I=m+1, \ldots, n) \tag{3.A1.1}
\end{equation*}
$$

Then, Ferrers' equations are

$$
\begin{equation*}
I_{I o} \equiv d / d t\left(\partial T_{o} / \partial \dot{q}_{I}\right)-\boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(d \boldsymbol{\beta}_{I} / d t\right)=Q_{I o} \tag{3.A1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{v}=\sum \boldsymbol{e}_{k} \dot{q}_{k}=\cdots \equiv \sum \boldsymbol{\beta}_{I} \dot{q}_{I} \equiv \sum\left(\partial \boldsymbol{v}_{o} / \partial \dot{q}_{I}\right) \dot{q}_{I} \equiv \boldsymbol{v}_{o}\left(q, \dot{q}_{I}\right) \equiv \boldsymbol{v}_{o} . \tag{3.A1.2a}
\end{equation*}
$$

We recall [(2.9.37), also prob. 2.11.1] that since, in general, the $\boldsymbol{\beta}_{I}$ are nongradient

$$
\begin{equation*}
E_{I}\left(\boldsymbol{v}_{o}\right) \equiv d / d t\left(\partial \boldsymbol{v}_{o} / \partial \dot{q}_{I}\right)-\partial \boldsymbol{v}_{o} / \partial q_{I} \equiv d \boldsymbol{\beta}_{I} / d t-\partial \boldsymbol{v}_{o} / \partial q_{I} \neq \mathbf{0} \tag{3.A1.3a}
\end{equation*}
$$

even though (2.5.10)

$$
\begin{equation*}
E_{I}(\boldsymbol{v}) \equiv d / d t\left(\partial \boldsymbol{v} / \partial \dot{q}_{I}\right)-\partial \boldsymbol{v} / \partial q_{I}=\mathbf{0} \tag{3.A1.3b}
\end{equation*}
$$

Indeed, in view of the above, we obtain, successively (with $I, I^{\prime}=m+1, \ldots, n$),

$$
\begin{align*}
E_{I}\left(\boldsymbol{v}_{o}\right) & =d \boldsymbol{\beta}_{I} / d t-\partial \boldsymbol{v}_{o} / \partial q_{I} \\
& =\sum\left(\partial \boldsymbol{\beta}_{I} / \partial q_{I^{\prime}}\right)\left(d q_{I^{\prime}} / d t\right)-\sum\left(\partial \boldsymbol{\beta}_{I^{\prime}} / \partial q_{I}\right)\left(d q_{I^{\prime}} / d t\right) \\
& \left.=\sum\left(\partial \boldsymbol{\beta}_{I} / \partial q_{I^{\prime}}-\partial \boldsymbol{\beta}_{I^{\prime}} / \partial q_{I}\right) \dot{q}_{I^{\prime}} \neq \mathbf{0} \quad \text { (in general }\right) \tag{3.A1.3c}
\end{align*}
$$

and, therefore, in the nonholonomic case,

$$
\begin{equation*}
R_{I} \equiv \boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(\partial \boldsymbol{v}_{o} / \partial \dot{q}_{I}\right)^{\cdot} \equiv \boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(d \boldsymbol{\beta}_{I} / d t\right) \neq \boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(\partial \boldsymbol{v}_{o} / \partial q_{I}\right)=\partial T_{o} / \partial q_{I} \tag{3.A1.3d}
\end{equation*}
$$

Also, Carvallo (1900-1901), in his classic studies of the mono- and bi-cycle, and most likely independently of Ferrers, introduced essentially equivalent equations of motion. Clearly, the method of Ferrers can be extended to the most general rheonomic nonholonomic constraints; even nonlinear ones (chap. 5).

REMARKS

(a) Such an extension of (3.A1.2) has been given (independently) by Greenwood [1994, p. 83 ff., eqs. (3.98)]. With (our notation): $\dot{q}_{k}=\sum A_{k I} \omega_{I}+A_{k}, \boldsymbol{v}=\cdots=$ $v^{*}{ }_{o}\left(t, q, \omega_{I}\right) \Rightarrow T^{*}=T^{*}{ }_{o}\left(t, q, \omega_{I}\right)$, or

$$
T\left[t, q, \dot{q}_{I}, \dot{q}_{D}\left(t, q, \dot{q}_{I}\right)\right]=T_{o}\left(t, q, \dot{q}_{I}\right)=T_{o}\left[t, q, \dot{q}_{I}\left(t, q, \omega_{I}\right)\right]=T_{o}^{*}\left(t, q, \omega_{I}\right)
$$

and with $\delta^{\prime} W=\sum Q_{k} \delta q_{k}=\sum \Theta_{I} \delta \theta_{I}$, we obtain the Greenwood equations:

$$
\begin{equation*}
\left(\partial T_{o}^{*} / \partial \dot{\omega}_{I}\right)^{\cdot}-\boldsymbol{S} d m \boldsymbol{v}_{o}^{*} \cdot\left(\partial v_{o}^{*} / \partial \omega_{I}\right)=\Theta_{I} \tag{3.A1.3e}
\end{equation*}
$$

Actually, (3.A1.3e) also holds for nonlinear nonholonomic transformations: $\dot{q}_{I}=\dot{q}_{I}\left(t, q, \omega_{I}\right)$.
(b) A certain unclear historical statement by Whittaker (1937, p. 215, footnote) seems to have caused a number of other (less famous) authors to call, erroneously, Ferrers equations the Routh-Voss (multiplier) equations; for example, Fox (1967, p. 351), Hand and Finch (1998, p. 62, footnote), Rose (1938, p. 16). The record is corrected in Routh 1905(a), p. 348, footnote.
(c) For complementary expositions on the Ferrers equations, and so on, see, for example (alphabetically): Auerbach (1908, p. 327, eq. (68)), Gray (1918, pp. 411418), Marcolongo (1912, pp. 104-105), Voss (1901/1908, pp. 82-83).
(ii) T-Equations of Appell (1899) and Boltzmann (1902)

These result from further transformations of the key R_{I} term, (3.A1.3d). Indeed, we obtain, successively [recalling (3.3.11a ff.)],

$$
\begin{align*}
R_{I} & \equiv \boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(d \boldsymbol{\beta}_{I} / d t\right)=\boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left[d / d t\left(\partial \boldsymbol{v}_{o} / \partial \dot{q}_{I}\right)\right] \\
& =\boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left[d / d t\left(\partial \boldsymbol{v}_{o} / \partial \dot{q}_{I}\right)-\partial \boldsymbol{v}_{o} / \partial q_{I}\right]+\boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(\partial \boldsymbol{v}_{o} / \partial q_{I}\right) \\
& =\boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(\sum\left(\partial \boldsymbol{\beta}_{I} / \partial q_{I^{\prime}}\right)\left(d q_{I^{\prime}} / d t\right)-\sum\left(\partial \boldsymbol{\beta}_{I^{\prime}} / \partial q_{I}\right)\left(d q_{I^{\prime}} / d t\right)\right)+\partial T_{o} / \partial q_{I} \\
& =\Gamma_{I o}+\partial T_{o} / \partial q_{I} \quad\left(\Rightarrow R_{I}-\partial T_{o} / \partial q_{I}=\Gamma_{I o}\right), \tag{3.A1.4}
\end{align*}
$$

where

$$
\begin{align*}
\Gamma_{I o} & \equiv \boldsymbol{S} d m \boldsymbol{v}_{o} \cdot E_{I}\left(\boldsymbol{v}_{o}\right) \\
& =\sum\left\{\boldsymbol{S} d m \boldsymbol{v}_{o} \cdot\left(\partial \boldsymbol{\beta}_{I} / \partial q_{I^{\prime}}-\partial \boldsymbol{\beta}_{I^{\prime}} / \partial q_{I}\right)\right\} \dot{q}_{I^{\prime}} \tag{3.A1.4a}
\end{align*}
$$

an expression that shows clearly the gyroscopicity of this nonholonomic "correction term." Hence, Ferrers' equations take the Appell form

$$
\begin{equation*}
E_{I}\left(T_{o}\right)-\Gamma_{I o} \equiv d / d t\left(\partial T_{o} / \partial \dot{q}_{I}\right)-\partial T_{o} / \partial q_{I}-\Gamma_{I o}=Q_{I o} \tag{3.A1.5}
\end{equation*}
$$

When the fundamental term $\Gamma_{I o}$ is expressed exclusively in system variables, say $\Gamma_{I o}=\sum c_{I I^{\prime}} \dot{I}_{I^{\prime}}=$ quadratic in the \dot{q}_{I} (where $c_{I I^{\prime}}=-c_{I^{\prime} I}$), eqs. (3.A1.5) are none other than the Chaplygin equations (3.8.13a ff.); which, as we have seen, are a special case of the Hamel equations.

From the above, we conclude, with Appell, that for Lagrange's equations to apply for a particular q_{I} [i.e., $\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}=Q_{I o}$], it is necessary and sufficient
that $\Gamma_{I o}=0$, identically in t, q_{I} 's, \dot{q}_{I} 's. In holonomic systems this holds for all $I=m+1, \ldots, n$; but in nonholonomic ones, it may hold for some of them; e.g., in the rolling coin problem it does hold for the nutation angle θ [ex. 3.18.5, and Ferrers (1873, pp. 3-4)]. Appell calls the number of nonvanishing $\Gamma_{I o}$'s the "order of nonholonomicity" of the system; and also, he points out the errors resulting from the indiscriminate use of Lagrange's equations $E_{I}\left(T_{o}\right)=Q_{I o}$.

However, Appell (1899) did not pursue the transformation of R_{I} and Γ_{I} any further, and thus missed arriving at the equations of Chaplygin (1895, publ. 1897) and Voronets (1901). Instead, seeing an apparent dead-end in the direction of Lagrange-type equations, like (3.A1.5) with (3.A1.4a), he turned his energies to the development of his other, now famous, acceleration-based S-equations (1899, 1900):

$$
\begin{equation*}
\partial S_{o} / \partial \ddot{q}_{I}=Q_{I o} \tag{3.A1.6}
\end{equation*}
$$

Comparing (3.A1.5) and (3.A1.6), we immediately deduce the following basic kine-matico-inertial identity:

$$
\begin{align*}
\Gamma_{I o} & =\left[\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}\right]-\partial S_{o} / \partial \ddot{q}_{I} \equiv E_{I}\left(T_{o}\right)-\partial S_{o} / \partial \ddot{q}_{I} \\
& \left.\equiv[(\text { constrained }) \text { Euler-Lagrange }]_{I}-[(\text { constrained }) \text { Appell }]_{I} \neq 0 \quad \text { (in general }\right) ; \tag{3.A1.7}
\end{align*}
$$

see, for example, Appell [1899(a), pp. 39-45; 1925, pp. 12-17; 1953, pp. 383-388].
The form (3.A1.5), but for general rheonomic nonholonomic systems [i.e., a form that when brought to system variables would be none other than the Voronets equations (1901) - (3.8.14a ff.)] was also arrived at, independently, by Boltzmann (1902; 1904, pp. 104-105), who, among mechanicians, gave the first geometrical interpretation of the ("Ricci-Boltzmann-Hamel") rotation coefficients: $\partial \boldsymbol{\beta}_{I} / \partial q_{I^{\prime}}-\partial \boldsymbol{\beta}_{I^{\prime}} / \partial q_{I}$. An additional, related, derivation of the Boltzmann equations, based on Hertz's "principle of the straightest path" (§6.7), was given a little later by Boltzmann’s famous student Ehrenfest [1904]. See also, Krutkov (1928: vectorial/dyadic treatment of Boltzmann's equations), MacMillan (1936, pp. 332-341: clear derivation of Boltzmann's equations; unique and virtually unknown/unnoticed in the English literature); and Klein (1970, pp. 53-74: critical summary of Ehrenfest's dissertation). [See also Mei (1984; 1985, pp. 108-114) for an extension of the MacMillan equations to nonlinear nonholonomic constraints.]

To summarize: the main drawback of these equations of Ferrers-Appell-Boltzmann-MacMillan is that they are mixed; that is, some of their terms $\left[E_{I}\left(T_{o}\right), Q_{I o}\right]$ are expressed in system variables, and some $\left(\Gamma_{I o}\right)$ in particle variables. Perhaps this explains why they have not been used much in concrete problems, let alone theoretical arguments. The equations that result by expressing the nonholonomic term $\Gamma_{I o}$ too in system variables (a qualitatively higher step in the evolution of Lagrangean-type equations!) are the equations of Chaplygin and Voronets; schematically:

- Equations of Ferrers (1873)/Appell (1899) $\xrightarrow[\substack{\text { s.antabes }}]{\substack{\text { s.as }}}$ Equations of Chaplygin (1895-1897),

Last, a special case of the Chaplygin-Voronets equations (rolling of convex body on rough plane) was first given by Neumann (1885).
(iii) Boltzmann versus Hamel

In the light of this historical record, the widely used term "Boltzmann-Hamel equations" (probably originated by readers of Whittaker (1904, §30), and parroted by the rest, except Hamel and his school) is inaccurate. There is a very big difference between these two sets of equations, although they appeared only about a year apart from each other (Boltzmann: 1902; Hamel: 1903, 1904).

(iv) Volterra versus Hamel

The only other Lagrange-type equations of motion that can stand next to Hamel's are those by Volterra (1898; corrections: 1899). However, even Volterra never discussed constraints, just equations of motion in terms of nonholonomic variables (what he called "parameters," or "motion characteristics"); and, more importantly, Hamel's treatment is far more comprehensive and deep.

(v) Gibbs versus Appell

The S-equations of Appell under Pfaffian constraints are sometimes called "GibbsAppell equations"; for example, Pars (1965). However, a careful study of the original memoirs of these two masters reveals that Appell's contributions (several weighty papers, a monograph exclusively devoted to these equations, plus extensive parts of his famous treatise) completely overshadow by several orders of magnitude those of Gibbs (two pages at the end of his single paper on theoretical dynamics). The main difference between the two is that: Appell dealt with both nonholonomic coordinates and constraints, whereas Gibbs dealt only with nonholonomic coordinates. Also, their approaches are distinctly different: Gibbs derives his equations from the differential form of the (lesser known) Gauss' principle, whereas Appell obtains his from (the simpler) Lagrange's principle.

For these objective and incontrovertible reasons, we have decided to call them Appell's equations. In this practice, we are accompanied by the overwhelming majority of the best mechanicians of the 20th century; for example, (in approximate chronological order of appearance of their works on this subject): Voss, Heun, Routh, Whittaker, Gray, Hamel, Nordheim, Johnsen, Prange, Ames and Murnaghan, Levi-Civita and Amaldi, MacMillan, Rose, Lanczos, Beghin, Pérès, Synge, Lur'e, Gantmacher, Novoselov, Dobronravov, Neimark and Fufaev, Mei et al.

In view of the above, the situation in (iv) and (v) can be fairly summed up as follows: Volterra's equations stand relative to Hamel's the same way that Gibbs' equations stand relative to Appell's (S-equations), and vice versa. In both cases, the relevant contributions of Hamel and Appell exceed by several quantitative and qualitative orders of magnitude those of Volterra and Gibbs, respectively. This is shown schematically in table 3.A1.4.

The foregoing history helps us to build the following summaries and table of the equations of motion of analytical dynamics:

Table 3.A1.4 Volterra vs. Hamel, and Gibbs vs. Appell

	Nonholonomic Coordinates		
	No Constraints	Constraints	
T-equations:	Volterra (1898)	$<$	Hamel (1903, 1904)
S-equations:	Gibbs (1879)	$<$	Appell $(1899,1900)$

Lagrange's Principle (LP)

$$
\begin{array}{ll}
\text { Particle/vector variables: } & \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \\
\text { Holonomic system variables: } & \sum E_{k}(T) \delta q_{k}=\sum Q_{k} \delta q_{k} \\
\text { Nonholonomic system variables: } & \sum\left[E_{k}^{*}\left(T^{*}\right)-\Gamma_{k}\right] \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k} .
\end{array}
$$

General Remarks

Additional Pfaffian constraints (holonomic and/or nonholonomic) are either (a) adjoined to LP via multipliers, in which case the resulting equations are, in general, coupled in the motion and reactions. However, under finite (geometrical) constraints, the equations of motion can always be uncoupled by special choices of "equilibrium" coordinates; or they are (b) embedded to LP (or eliminated) via quasi coordinates, in which case the resulting equations of motion can always be uncoupled by special choices of such quasi variables into kinetic (reactionless, motion only) and kinetostatic (reaction-containing).

Table 3.A1.5 summarizes the equations of constrained dynamics.

Table 3.A1.5 Global (Panoramic) Map of the Equations of Constrained Dynamics

	T-Based Equations (velocities)
Multipliers:	Routh (1879)/Voss (1884-1885)—holonomic variables
Projection:	$\begin{array}{l}\text { Maggi (1896, 1901)—holonomic variables } \\ \text { Special cases: Hadamard (1895, 1899), Korteweg (1899) } \\ \downarrow\end{array}$
Quasi variables:	Hamel (1903-1904)—nonholonomic variables

S-Based Equations (accelerations)

In view of the kinematico-inertial identities:
Holonomic variables: $\quad \partial S / \partial \ddot{q}_{k}=\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}$
Nonholonomic variables: $\quad \partial S^{*} / \partial \dot{\omega}_{k}=\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\Gamma_{k}$
there exist Appellian counterparts to all the above equations. Here, in general, both T and S are unconstrained; if the additional Pfaffian constraints are holonomic, they can be constrained.
(For the less common ($d T / d t$)-based equations, see $\S 6.3 \mathrm{ff}$.)

APPENDIX 3.A2

CRITICAL COMMENTS ON VIRTUAL DISPLACEMENTS/WORK; AND LAGRANGE'S PRINCIPLE

Some Common Misunderstandings Regarding d'Alembert's Principle (d'AP)

As pointed out in $\S 3.2$ and elsewhere, d'AP is, in spite of its simplicity, one of the most misunderstood principles in the history of physics. Although the whole matter was finally and fully clarified, qualitatively and quantitatively, in the early years of the 20th century by such mechanics greats as Heun and Hamel, considerable confusion and misunderstanding still persists even today, especially among English language texts and, more specifically, those written by physicists. (The most likely culprits for such a tradition of error must be the very influential Victorian treatises of Thomson/Tait, Routh, Whittaker, Lamb, et al.; which, in spite of their overall greatness, are pretty incomplete on this fundamental topic.) Let us try to identify and dispel the most common of these intellectual malignancies.
(i) A frequent misrepresentation of d'AP runs as follows: one starts with the Newton-Euler law:

$$
\begin{equation*}
d \boldsymbol{f}=d m \boldsymbol{a} \tag{3.A2.1}
\end{equation*}
$$

then one moves the inertia term $d m \boldsymbol{a}$ to the left/force side of the equation, and calls the trivial result: $d \boldsymbol{f}+(-d m \boldsymbol{a})=\mathbf{0}$, d'AP. In words: during the motion, the sum of all forces, real $(d \boldsymbol{f})$ and "reversed effective" ($-d \boldsymbol{m} \boldsymbol{a}$) are in dynamic (?!) equilibrium; see, for example, (alphabetically): Halfman (1962, p. 62), Housner and Hudson (1959, pp. 253-254), Meriam and Kraige (1986, p. 223), to name a few contemporary (otherwise quite decent and worthwhile) expositions. Many more examples of this physically vacuous formulation appear in other areas of engineering dynamics; for example, vibrations, fluid mechanics, and so on.
(ii) Some authors talk about d'AP in so many places and (in, mostly, qualitative) forms, including the correct one, that the reader ends up confused as to the true meaning of the principle and unable to apply it to new and nontrivial circumstances. Others confuse d'AP with the Newton-Euler principle (better, constitutive postulate) of action-reaction for the internal forces, while limiting themselves to rigid bodies/ systems; for example, Marris and Stoneking (1967, pp. 95-96). But if d'AP simply meant equilibrium of all internal forces, in the Newton-Euler sense, that is,

$$
\begin{equation*}
S d f_{\text {internal }}=0 \quad \text { and } \quad S r \times d f_{\text {internal }}=0, \tag{3.A2.2}
\end{equation*}
$$

then how would one apply the principle to constrained systems that do not possess such forces? [As we have already seen (§3.2), in general, $d \boldsymbol{f}_{\text {internal }} \neq d \boldsymbol{R}$ ($=$ total constraint reaction); $d \boldsymbol{f}_{\text {internal }}=d \boldsymbol{R}_{\text {internal }}$, in a rigid body, and $d \boldsymbol{f}_{\text {internal }}=d \boldsymbol{R}$, in a free (i.e., externally unconstrained) rigid body.] For example, in the following simple systems the constraint reactions are neither internal nor do they satisfy (3.A2.2): (a) particle on, say a smooth, surface; (b) mathematical pendulum. Indeed, here we have

Newton-Euler principles: $\boldsymbol{S} d \boldsymbol{R} \neq \mathbf{0}$ and $\quad \boldsymbol{S}(\boldsymbol{r} \times d \boldsymbol{R}) \neq \mathbf{0} \quad$ (for a general $\boldsymbol{r})$;
but
D'Alembert-Lagrange principle: $\quad \mathbf{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0$;
that is, it is not the constraint reactions that must vanish [individually or in the sense of (3.A2.2), although that may happen in some problems], but the sum of their projections in certain directions. In other words, to say that d'AP requires that the constraint reactions be "in equilibrium," or constitute a "null system" of forces, is correct provided that equilibrium is understood in the generalized total virtual work sense of (3.A2.3b), not (3.A2.3a). Then, it is meaningful even for a single reaction, external or internal. Let us clarify this.

Following Hamel (1927; 1949, p. 217): we call two force (and/or couple) systems, acting separately on the same mechanical system, equivalent if, and only if, starting from the same initial kinematical state (i.e., time, positions, and velocities) they communicate to it the same acceleration. In particular: a system of forces is said to be in equilibrium (or be a null system) if the accelerations communicated by it to a mechanical system are the same as those that would occur if no impressed forces acted on it.

In this light it becomes clear why the earlier-mentioned pendulum tension is in equilibrium; it may not vanish, but it does not affect the acceleration of the pendulum's bob; that is done by gravity, an impressed force.
(iii) A related misconception is to confuse d'AP with the spatial integral forms of the Newton-Euler principles of linear/angular momentum. Thus, we read that "the sum of the forces and the sum of the moments of the forces [including those of the 'inertia forces' - dma] about any point vanish" and "d'Alembert's principle leaves one free to take moments about any point, whereas the angular momentum principle restricts one in this regard" (Kane and Levinson, 1980, pp. 102-103). In our notation, the above read simply

$$
\begin{equation*}
\boldsymbol{S}(d \boldsymbol{f}-d m \boldsymbol{a})=\mathbf{0} \quad \text { and } \quad \boldsymbol{S}^{\boldsymbol{r}} \cdot \times(d \boldsymbol{f}-d m \boldsymbol{a})=\mathbf{0} \tag{3.A2.4}
\end{equation*}
$$

where $\boldsymbol{r}_{/ \bullet}=$ position vector of generic system particle relative to the completely arbitrary (fixed or moving, not necessarily body-) point \bullet.

But eqs. (3.A2.4) follow immediately from the local Newton-Euler principle (3.A2.1) by the simple mathematical operations indicated above. Generally, starting with (3.A2.1), we can perform to it any kind of mathematically meaningful operation; for example, dot it or cross it with an arbitrary scalar/vector/tensor, and so on, differentiate/integrate it in space/time, and so on. Nothing physically new will result from such analytical (logical) rearrangements. One does not need any special permission from Newton-Euler (i.e., a new postulate) to go from (3.A2.1) to (3.A2.4); and the latter is not d'AL, anyway, but a trivial rearrangement of the Newton-Euler principle. Let us elaborate on this matter.

Detour on Angular Momentum

As already described in $\S 1.6$, to obtain an angular momentum principle we cross (3.A2.1) with $\boldsymbol{r} /$. and then integrate/sum it, for a fixed time, over the material system:

$$
\begin{equation*}
M_{\bullet} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d \boldsymbol{f}=\boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{a} . \tag{3.A2.5}
\end{equation*}
$$

However, the right (inertia) side of (3.A2.5) can be transformed further either as

$$
\begin{align*}
\boldsymbol{S} \boldsymbol{r}_{/ \bullet} \times d m \boldsymbol{a} & =\left(\boldsymbol{S} \boldsymbol{r}_{\boldsymbol{\bullet}} \times d m \boldsymbol{v}\right)^{\cdot}-\boldsymbol{S} \boldsymbol{v} / \bullet \times d m \boldsymbol{v} \tag{a}\\
& =\left(\boldsymbol{S} \boldsymbol{r}_{/ \bullet} \times d m \boldsymbol{v}\right) \cdot \mathbf{S}\left(\boldsymbol{v}-\boldsymbol{v}_{\bullet}\right) \times d m \boldsymbol{v} \\
& =d \boldsymbol{H}_{\bullet} / d t+\boldsymbol{v}_{\bullet} \times m \boldsymbol{v}_{G} \tag{3.A2.5a}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{H}_{\bullet, \text { absolute }} \equiv \boldsymbol{H}_{\bullet} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet} \times d m \boldsymbol{v}=\text { Absolute angular momentum about } \bullet \tag{3.A2.5b}
\end{equation*}
$$

and $G=$ center of mass of the system; that is, in general, the sum of the moments of the rate of linear momenta about $\bullet[$ left side of (3.A2.5a)] is not equal to the rate of change of the sum of moments of the linear momenta about • [first term in right side of (3.A2.5a)]; or, in terms of \bullet - relative quantities as
(b) $\boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{a}=\left(\boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{v}\right)^{\cdot}+\boldsymbol{v}_{\bullet} \times m \boldsymbol{v}_{G}$

$$
=\left\{\boldsymbol{S}\left[\boldsymbol{r}_{\bullet} \times d m\left(\boldsymbol{v}_{\bullet}+\boldsymbol{v}_{\bullet}\right)\right]\right\}+\boldsymbol{v}_{\bullet} \times m \boldsymbol{v}_{G}
$$

$$
=\left[\boldsymbol{S}\left(\boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{v}_{\bullet}\right)\right] \cdot\left[\boldsymbol{S}\left(\boldsymbol{r}_{\bullet} \times d m \boldsymbol{v}_{/ \bullet}\right)\right]+\boldsymbol{v}_{\bullet} \times m \boldsymbol{v}_{G}
$$

$$
=\boldsymbol{S}\left(\boldsymbol{v}_{\bullet \bullet} \times d m \boldsymbol{v}_{\bullet}\right)+\boldsymbol{S}\left(\boldsymbol{r}_{/ \bullet} \times d m \boldsymbol{a}_{\bullet}\right)+\left[\boldsymbol{S}\left(\boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{v} / \bullet\right)\right]
$$

$$
+v_{\bullet} \times m v_{G}
$$

$$
=\boldsymbol{v}_{G / \bullet} \times m \boldsymbol{v}_{\bullet}+\boldsymbol{r}_{G / \bullet} \times m \boldsymbol{a}_{\bullet}+\left[\mathbf{S}\left(\boldsymbol{r}_{\boldsymbol{\bullet}} \times d m \boldsymbol{v} / \bullet\right)\right]+\boldsymbol{v}_{\bullet} \times m \boldsymbol{v}_{G}
$$

[since $\boldsymbol{v}_{G / \bullet} \equiv \boldsymbol{v}_{G}-\boldsymbol{v}_{\bullet}$, the first and last terms, in the above, add up to zero]

$$
\begin{equation*}
=d \boldsymbol{h}_{\mathbf{\bullet}} / d t+\boldsymbol{r}_{G / \bullet} \times m \boldsymbol{a}_{\bullet}, \tag{3.A2.5c}
\end{equation*}
$$

where
$\boldsymbol{H}_{\bullet, \text { relative }} \equiv \boldsymbol{h}_{\bullet} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{v}_{\bullet \bullet}=$ Relative angular momentum about \bullet

$$
\begin{equation*}
=\boldsymbol{S}\left[\boldsymbol{r}_{\bullet} \times d m\left(\boldsymbol{v}-\boldsymbol{v}_{\bullet}\right)\right]=\cdots=\boldsymbol{H}_{\bullet}-m \boldsymbol{r}_{G / \bullet} \times \boldsymbol{v}_{\bullet} \tag{3.A2.5d}
\end{equation*}
$$

From eqs. (3.A2.5a-d) it clearly follows that
(a) If $\bullet=$ fixed point, say $O\left(\Rightarrow \boldsymbol{v}_{\boldsymbol{\bullet}}=\mathbf{0}\right)$, or $\boldsymbol{v}_{G}=\mathbf{0}$, or if $\boldsymbol{v}_{\boldsymbol{\bullet}}$ parallel to \boldsymbol{v}_{G}, then

$$
\begin{equation*}
\mathbf{S}_{/ \bullet} \times d m \boldsymbol{a}=d \boldsymbol{H}_{\bullet} / d t \tag{3.A2.5e}
\end{equation*}
$$

(b) If $\bullet=$ fixed point, say $O\left(\Rightarrow \boldsymbol{a}_{\mathbf{\bullet}}=\mathbf{0}\right)$, or $\bullet=G$, or $\boldsymbol{r}_{G / \bullet}$ is parallel to $\boldsymbol{a}_{\mathbf{\bullet}}$, then

$$
\begin{equation*}
\boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{a}=d \boldsymbol{h}_{\bullet} / d t \tag{3.A2.5f}
\end{equation*}
$$

In sum, and since, generally,

$$
\begin{align*}
\boldsymbol{H}_{O} & \equiv \boldsymbol{S}\left[\left(\boldsymbol{r}_{\bullet}+\boldsymbol{r}_{/ \bullet}\right) \times d m \boldsymbol{v}\right] \\
& =\cdots=\boldsymbol{H}_{\bullet}+\boldsymbol{r}_{\bullet} \times m \boldsymbol{v}_{G}=\left(\boldsymbol{h}_{\bullet}+m \boldsymbol{r}_{G / \bullet} \times \boldsymbol{v}_{\bullet}\right)+\boldsymbol{r}_{\bullet} \times m \boldsymbol{v}_{G}, \tag{3.A2.5g}
\end{align*}
$$

we will have the following two, most useful (and memorable!) expressions of the principle of angular momentum:

$$
\begin{align*}
& \boldsymbol{S} \boldsymbol{r} \times d m \boldsymbol{a}=(\boldsymbol{S} \boldsymbol{r} \times d m \boldsymbol{v})^{\cdot}=d \boldsymbol{H}_{O} / d t=d \boldsymbol{h}_{O} / d t \quad\left(=\boldsymbol{M}_{O}\right), \tag{3.A2.5h}\\
& \boldsymbol{S} \boldsymbol{r}_{/ G} \times d m \boldsymbol{a}=\left(\boldsymbol{S} \boldsymbol{r}_{/ G} \times d m \boldsymbol{v}\right) \cdot d \boldsymbol{H}_{G} / d t=d \boldsymbol{h}_{G} / d t \quad\left(=\boldsymbol{M}_{G}\right) . \tag{3.A2.5i}
\end{align*}
$$

Back to d'AP. But all these, kinematico-inertial identities and corresponding mutually equivalent forms of the principle of angular momentum (and many more presented in §1.6) are only half the story; the other half is the forces and their moments. Without the additional constitutive postulate of action-reaction for the internal forces $\left\{d \boldsymbol{f}_{i}\right\}$, where $d \boldsymbol{f}=d \boldsymbol{f}_{\text {external }}+d \boldsymbol{f}_{\text {internal }} \equiv d \boldsymbol{f}_{e}+d \boldsymbol{f}_{i}$, in either local or integral form, the moment side of (3.A2.5,5h,5i) would still contain the moments of the (generally unknown) $d \boldsymbol{f}_{i}$; and thus the solution of problems via these principles would, in general, be indeterminate (i.e., \# unknowns $>$ \# equations). Adopting that postulate, as we will do, amounts to replacing in the above \boldsymbol{M}_{\ldots}.. with $\boldsymbol{M}_{\text {...,external }} \equiv \boldsymbol{M}_{\text {...,e }}$:

$$
\begin{align*}
& \boldsymbol{M}_{\bullet, e} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d \boldsymbol{f}_{e}=\boldsymbol{S} \boldsymbol{r}_{\bullet \bullet} \times d m \boldsymbol{a} \tag{3.A2.6a}\\
& \boldsymbol{M}_{O, e} \equiv \boldsymbol{S} \boldsymbol{r} \times d \boldsymbol{f}_{e}=d \boldsymbol{H}_{O} / d t=d \boldsymbol{h}_{O} / d t, \tag{3.A2.6b}\\
& \boldsymbol{M}_{G, e} \equiv \boldsymbol{S} \boldsymbol{r}_{/ G} \times d \boldsymbol{f}_{e}=d \boldsymbol{H}_{G} / d t=d \boldsymbol{h}_{G} / d t \tag{3.A2.6c}
\end{align*}
$$

because now $\boldsymbol{M}_{\bullet \text {, internal }} \equiv \boldsymbol{S} \boldsymbol{r}_{\bullet} \times d \boldsymbol{f}_{i}=\mathbf{0}$ (and $\boldsymbol{f}_{i} \equiv \boldsymbol{S} d \boldsymbol{f}_{i}=\mathbf{0}$). [If the $\left\{d \boldsymbol{f}_{e}\right\}$ contain unknown constraint reactions, then the problem is still indeterminate; i.e., we need a new postulate to supply the additional independent equations.] Other forms of the above result from the purely geometrical (statical) relation: $\boldsymbol{M}_{\bullet}=\boldsymbol{M}_{O}+\boldsymbol{r}_{O / \bullet} \times \boldsymbol{f}$, $f=S d f$ (acting through O), and then use of linear momentum:

$$
\boldsymbol{f}=m \boldsymbol{a}_{G}, \text { and action-reaction: } \boldsymbol{f}=\boldsymbol{S}\left(d \boldsymbol{f}_{e}+d \boldsymbol{f}_{i}\right)=\boldsymbol{S} d \boldsymbol{f}_{e} \equiv \boldsymbol{f}_{e} .
$$

Now, the principle of d'Alembert (d'AP) \rightarrow Lagrange (LP), and its associated "bothersome" virtual concepts, play a similar role with action-reaction but for the constraint reactions. By postulating the new and nontrivial constitutive (i.e., physical) postulate (3.A2.3b) for these forces, where

$$
\begin{align*}
\delta \boldsymbol{r} & =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k} \equiv \sum \boldsymbol{e}_{k} \delta q_{k} & & \text { (holonomic coordinates) } \\
& =\sum\left(\partial \boldsymbol{r} / \partial \theta_{k}\right) \delta \theta_{k} \equiv \sum \boldsymbol{\varepsilon}_{k} \delta \theta_{k} & & \text { (nonholonomic coordinates) } \tag{3.A2.6d}
\end{align*}
$$

Lagrangean mechanics succeeds in generating as many equations as needed to render its problem determinate. That the virtual variations of the system coordinates $\left\{\delta q_{k}, \delta \theta_{k}\right\}$ are arbitrary (unless they, later, become constrained) is not a weakness or vagueness of the Lagrangean method, as some ignoramuses claim, but, on the contrary, its strength: it allows us to obtain as many independent reactionless
equations as there are independent $\delta q^{\prime} \mathrm{s} / \delta \theta$'s $(=\# D O F)$, contrary to actual power equations that produce only one dependent equation. It is the fundamental particle and system vectors $\left\{\boldsymbol{e}_{k}, \boldsymbol{\varepsilon}_{k}\right\}$ that enter the equations of motion; for example, if the δq 's are independent, LP yields

$$
\begin{array}{ll}
\text { Particle/vector variables: } & \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}, \\
\text { Holonomic system variables: } & E_{k}(T)=Q_{k} . \tag{3.A2.6f}
\end{array}
$$

To further clarify the meaning of virtualness, and thus quell the irrational fears of all those uncomfortable with "very small quantities," and so on (residues of a precalculus mindset?!), we add the following passage from a Victorian master's text on introductory statics:

> This [LP or Virtual Work] is an equation between infinitesimals, and it is to be understood on the ordinary conventions of the Differential Calculus $\ldots \delta^{\prime} W$ vanishes [in Statics, or $\delta^{\prime} W=\delta I$ in Kinetics], not because the quantities δq [or $\left.\delta r\right]$ themselves tend to the limit zero, but in virtue of the ratios which these quantities bear to one another. The equation $\left[\delta^{\prime} W_{R}=0\right]$ therefore holds if the resolved displacements δq are replaced by any finite quantities having to one another the ratios in question. (Lamb, 1928, p. 113)

A related theme advanced by some antivirtual authors goes as follows: well, if you stretch the definitions and concepts of virtual displacement long enough, "when $\delta \boldsymbol{r}$ [our notation] are chosen properly," then you will arrive at "their" equations. However, as the fundamental definitions (3.A2.6d), or

$$
\begin{equation*}
\delta \boldsymbol{r} \equiv \text { linear and homogeneous }(\text { in } \delta q) \text { part of } \boldsymbol{r}(q+\delta q, t)-\boldsymbol{r}(q, t), \tag{3.A2.6g}
\end{equation*}
$$

and LP show, such a coincidence is hardly some accidental ad hoc result out of the blue; but, instead, the only kind of equations flowing directly, logically, and uniquely, out of the application of LP to Pfaffianly constrained systems. A true principle leads, it does not follow; that is, it is not a conceptual rubber-band that stretches ("chosen properly") to fit the facts of the moment, after the latter have occurred!

In sum: it is the force side of the equations of motion that compels us to introduce $L P$. Equation (3.A2.3b) is a practical and theoretical necessity forced (!) upon us by the particular decomposition of the total force into impressed and reaction-a fact that is peculiar to Lagrangean mechanics; it is not an alternative to action-reaction. The famous kinematico-inertial identity of Lagrange:

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right) \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k} \equiv E_{k}(T) \tag{3.A2.6h}
\end{equation*}
$$

(that holds always, independently of subsequent constraints and constitutive postulates, as long as the q 's are holonomic coordinates), is a most welcome and useful but secondary result.

The preoccupation with (3.A2.6h), at the expense of the forces, $Q_{k} \equiv S d \boldsymbol{F} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right) \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}, \quad R_{k} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot\left(\partial \boldsymbol{r} / \partial q_{k}\right) \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k}[=0, \quad$ in (3.A2.6e, f)], is perhaps best reflected in the seemingly innocuous but revealing fact that, although in "elementary" (Newton-Euler) mechanics most of us are taught to write force $=($ mass $) \times($ acceleration $)$-that is, place the force on the left side of the equation-as soon as we graduate to advanced dynamics (d'AlembertLagrange), we suddenly switch to the form (mass) $\times($ acceleration $)=$ force-that is, place the force on the right side of the equation! Thus, many beginners in

Lagrangean mechanics get the superficial impression that the latter is just an exercise in differentiation of scalar energetic functions; the price one must pay for the transition from rectangular to curvilinear, or "generalized" coordinates (a pretty primitive term, in view of differential geometry and tensors). Even classics like Routh (1905(a), pp. 45-48) or Whittaker (1937, pp. 34-37) reinforce this misrepresentation.
(iv) Finally, there are those who, failing to understand the fundamental, simple, and natural kinematical representation (3.A2.6d), and in a complete breach with rational discourse, furiously and ignorantly trivialize and/or dismiss everything virtual (displacements, work, etc.) as "ill-defined," "nebulous," and "hence objectionable"; or complain "But it can hardly be gainsaid that maximum clarity is guaranteed by defining $\delta \boldsymbol{r}$ [our notation] mathematically in terms of more fundamental quantities" and "Consequently, for the formulation of equations of motion, the use of principles represented by LP [our term] is contraindicated, at least for systems possessing a finite number of degrees of freedom" [Kane and Levinson (1983, p. 1077), and rebuttal to Desloge (1986)]; and [virtual concepts are] "the closest thing in dynamics to black magic," "If you can construct a good virtual displacement vector, you can do good business with it,.... The difficulty is constructing it in the first place. It's like catching a bird by sprinkling salt on its tail. Virtual displacement is the salt on the bird's tail" (Radetsky, 1986, pp. 55-56); and "It should be acknowledged at this point that the traditional concepts of virtual displacement and virtual work are not necessary to the derivation of [our 3.A2.6e, f, h)]. It is quite sufficient (and more straightforward) simply to dot multiply $d \boldsymbol{f}=d m \boldsymbol{a}$ by [our] $\partial \boldsymbol{v} / \partial \dot{q}_{j}$ and add these equations together, accomplishing this for each of these n values of j " (Likins, 1973, pp. 297-298). The falsehood and misleadingness of these criticisms should be clear in the light of the above, and chapters 2 and 3. But we also point out the following, in favor of virtualness:
(a) As (3.A2.6d) shows, $\delta \boldsymbol{r}$ is invariant under $\delta q \leftrightarrow \delta \theta$ transformations, whereas the $\left\{\boldsymbol{e}_{k}, \boldsymbol{\varepsilon}_{k}\right\}$ are not; and similarly for $\delta^{\prime} W, \delta^{\prime} W_{R}, \delta I$, and so on.
(b) The $\delta \boldsymbol{r}$ admits of a far simpler and direct geometrical visualization than the $\partial \boldsymbol{v} / \partial \dot{q}_{j} \equiv \boldsymbol{e}_{j}$ (and $\partial \boldsymbol{v}^{*} / \partial \omega_{j} \equiv \boldsymbol{\varepsilon}_{j}$). In general, differentials are far easier to visualize than derivatives, and this explains their dominant presence in most figures of free-body diagrams, control volumes, and so on, even though the final equations do not contain lone differentials but derivatives.
(c) What is the motivation for dotting $d \boldsymbol{f}-d m \boldsymbol{a}$ with $\partial \boldsymbol{v} / \partial \dot{q}_{j}$? Why not dot it with its equal but simpler $\partial \boldsymbol{r} / \partial q_{j}$? Or, why not, say, cross it with them, or with $\partial \boldsymbol{v} / \partial q_{j}$, and so on? Or, why does not $\partial \boldsymbol{r} / \partial t \equiv \boldsymbol{e}_{n+1} \equiv \boldsymbol{e}_{0}$ appear in the equations of motion, although it appears in both \boldsymbol{v} and \boldsymbol{a} ?
(d) We would like to see such (supposedly) virtual-less authors try to:

- Extend their ad hoc techniques, rigorously, to nonlinear nonholonomic velocity constraints, without virtual displacements, or something mathematically equivalent (chap. 5). Fortunately for them, their constraints are linear in the velocities; that is, they are Pfaffian.
- Teach (even discrete) analytical statics (S) to students with no knowledge of dynamics (D), without virtual displacements/work! What does one do with their $\partial \boldsymbol{v} / \partial \dot{q}_{j}$ there? On the other hand, the definitions presented here are uniformly valid for both D and S alike.
(e) And if the use of differential variational principles, such as LP, is "contraindicated," how is one going to make the transition to the rest of the differential variational principles of Jourdain, Gauss et al. (chap. 6), and the integral variational
principles of Hamilton, Voronets, Hamel, et al. (chap. 7), with their increasingly important role for approximate (analytical and numerical) solutions (chap. 7), as well as invariance/conservation theorems (e.g., Noether's theorem, §8.13)? Why such scientific provincialism and short-sightedness? [On the numerical advantages of some of these principles, see, e.g., Schiehlen (1981); for Gauss' principle, in particular, see, for example, Udwadia and Kalaba (1996)].

Such antivirtual attitudes artificially distance themselves from the tried and true mainstream dynamics, built over several centuries by some of the greatest names in mathematics and mechanics; such antihistorical and antitraditional attitudes contribute to a dynamical tower of Babel!

So, to recapitulate, we think that the whole problem with the earlier "antivirtual crowd" begins with their failure to acknowledge that in mechanics the crux of the matter is the force; that Newton-Euler splits forces into internal and external ("apples"), whereas d'Alembert-Lagrange splits them into impressed and reactions ("oranges"); and that the basic goal of AL is to uncouple the equations of motion into kinetic (motion only, no reactions) and kinetostatic (reactions). This failure also hampers the extension of their dynamics to new types of constraints and associated forces (e.g., servoconstraints, §3.17), let alone the application of its methodology to other areas of engineering and physics (such as electromechanical analogies and nonholonomic rotating electrical machinery; see, for example, Arczewski and Pietrucha (1993), Maißer (1981), Neimark and Fufaev (1972).

Appell versus Kane

In our notation, the so-called "Kane's equations" (1961, 1965, 1985) read simply (with $I=m+1, \ldots, n$):

$$
\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{I}\right)+\boldsymbol{S}\left(-d m \boldsymbol{a}^{*}\right) \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{I}\right)=0
$$

or

$$
\begin{equation*}
(\text { Generalized active force })_{I}+(\text { Generalized inertial "force" })_{I}=0 \tag{3.A2.7}
\end{equation*}
$$

But in view of the fundamental kinematical identities (2.9.35 ff.)

$$
\begin{equation*}
\partial \boldsymbol{r}^{*} / \partial \theta_{I}=\partial \boldsymbol{v}^{*} / \partial \omega_{I}=\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{I}=\partial \dot{\boldsymbol{a}}^{*} / \partial \ddot{\omega}_{I}=\cdots \equiv \boldsymbol{\varepsilon}_{I} \tag{3.A2.7a}
\end{equation*}
$$

eqs. (3.A2.7) can be immediately rewritten as

$$
\begin{equation*}
\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{I}\right)+\boldsymbol{S}\left(-d m \boldsymbol{a}^{*}\right) \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{I}\right)=0 \tag{3.A2.7b}
\end{equation*}
$$

or, finally, after some very simple rearrangements,

$$
\begin{equation*}
\partial / \partial \dot{\omega}_{I}\left(\boldsymbol{S}(1 / 2) d m \boldsymbol{a}^{*} \cdot \boldsymbol{a}^{*}\right)=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{I}\right) \tag{3.A2.7c}
\end{equation*}
$$

which are none other than Appell's equations! Here is a partial (alphabetical) list of readable textbooks/treatises/encyclopedias, and so on, on eqs. (3.A2.7-7c) [all of them from before 1961 (year of first Kane paper), and several from before Kane was born!]:

[^5]Coe [1938, pp. 386-390, eqs. (7). Earliest vectorial treatment in U.S. literature]

Hamel (1927, pp. 30-32; especially equations on 17th line from top of p. 32. Force-free case)
Hamel (1949, pp. 361-363; especially equations on 7th line from top of p. 362. Best concise presentation)

Lur'e [1961/1968, pp. 389-395. Equations (8.5.18) and (8.6.10) are, respectively, Kane's equations of 1961 and 1965]
MacMillan [1936, pp. 341-343, eqs. (3). Earliest (component) appearance in a U.S. treatise] Marcolongo (1912, pp. 104-105; especially equations on 3rd line from bottom of p. 104) Neimark and Fufaev [1967/1972, pp. 147-149, eqs. (8.3). Based completely on virtual concepts]
Pérès [1953, pp. 219-222. Excellent concise (vectorial) treatment including Kane's equations of both 1961 and 1965]

Platrier (1954, pp. 170-173, 323-324, 343-344)
Routh [1905(a), pp. 348-353, eqs. (5). Earliest appearance in English]
Schaefer [1919, p. 74, eq. (212)], similar treatment to Routh's and MacMillan's; well known in the German-speaking world.

Schaefer [1951, eqs. (12). Earliest nonlinear generalization of "Kane's equations" of 1965. Incidentally, in 1962 (in discussion of Kane (1961)) Schaefer warned Kane, in vain, that any further improvement on the methods/equations of the classical masters of dynamics (Appell, Heun, Hamel, Prange, Johnsen et al.) "is not imaginable."
Voss (1901-1908, pp. 82-83; and connection with Ferrers' equations)
(i) To make matters worse, Kane uses the following arcane terminology/notation:
(a) Our ω 's he calls "generalized speeds," despite the fact that these are the (contravariant) nonholonomic components of the system velocity vector, in configuration/event space; a vector whose holonomic components are none other than the \dot{q} 's (what most reasonable authors call "generalized velocities," but Kane leaves nameless!). In other words, the \dot{q} 's and ω 's are components of the same (system) vector, but along different types of bases: one gradient, one nongradient. However, and this is the essence of the method of quasi coordinates in constrained dynamics, a proper choice of ω 's uncouples the equations of motion into kinetic and kinetostatic; and, roughly, the n q's embed the (original) holonomic constraints, while the $n-m$'s embed the (additional) Pfaffian constraints.

But there is another problem with "generalized speeds." According to timehonored and standard mechanics practices, speed is the magnitude (or length) of the velocity vector, and, as such, a nonnegative scalar, whereas the \dot{q} 's and ω 's, being components, may have any sign-in automobiles, speedometers never show negative speeds! (Actually, the speed is an invariant under coordinate transformations; in tensor language: an absolute tensor of rank zero.) Therefore, from the viewpoint of tensors/differential geometry, and the traditions and practices of dynamics, the term "generalized speeds" is archaic, erroneous, and confusing.
(b) Kane's term 'partial velocities," for our \boldsymbol{e}_{k} and ε_{k}, is entirely capricious and hides more than it reveals. In view of the identity (3.A2.7a), and a similar one for holonomic coordinates, we could just as well have called them "partial positions," or "partial accelerations," or even . . "partial jerks," and so on. A better term, though a long one, would be "accompanying (particle and system) vectors," that is the begleitvektoren of Heun; but we would welcome a more concise terminology.
(ii) To avoid virtual displacements, and so on, Kane (1961; 1968, p. 52) talks about instantaneous constraints, or about dividing $\delta \boldsymbol{r}$ with δt, the latter understood as "... any quantity having the dimensions of time." But since $\delta t=0$ \{in order to eliminate reactions, i.e. so that $[S d \boldsymbol{R} \cdot(\partial \boldsymbol{r} / \partial t)] \delta t \equiv R_{0} \delta t=0$, even though $\left.R_{0} \neq 0\right\}$, such statements are likely to cause more confusion (division by a zero!), plus they are irrelevant to the final result - that is, the equations of motion. Why not use the simpler and rigorous definition (3.A2.6d, g).
(iii) In his frantic attempts to artificially distance himself from Appell, Kane (1986) states that the Appellian S is "a quantity of no interest in its own right." Well, most concepts of mechanics and physics derive their importance not "in their own right," but from their relation to the current edifice of those sciences; like a stone in relation to a building it belongs. Such narrow, positivistic (?), undialectical, objections can be raised against the Lagrangean, the Hamiltonian, the entropy, and so on. When was the last time anyone saw a stress, or a strain or even an acceleration?! During the 17th century, similar short-sighted complaints were raised against Leibniz's "vis viva" (= twice the kinetic energy). Tomorrow, perhaps, some other quantity, involving still higher derivatives (again "of no interest in its own right") might be introduced, in order to combine many new and old phenomena under one simple conceptual roof.
(iv) An alleged advantage (of the bean-counting type) of Kane over Appell is that in applying the latter one needs to square the accelerations \boldsymbol{a} (or \boldsymbol{a}^{*}), then build the Appellian $S\left(S^{*}\right)$, and then differentiate it with respect to the quasi accelerations $\dot{\omega}_{k}$, whereas Kane's approach dispenses with all that - compare (3.A2.7) with (3.A2.7c).

However, as Professor L.Y. Bahar has pointed out, the calculation of \boldsymbol{a}^{*} and $\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}$ and subsequent formation of their dot product, in (3.A2.7b), is standard procedure in engineering science whenever a quadratic form has to be partially differentiated. For example, to calculate the static deflection p of a thin linearly elastic Euler/Bernoulli beam, of length l, flexural rigidity $E I$, and bending moment M, under a concentrated load P, we can use Castigliano's well-known theorem:

$$
\begin{equation*}
p=\partial V / \partial P=\partial / \partial P\left(\int_{0}^{l} M^{2} d x / 2 E I\right) \tag{3.A2.8a}
\end{equation*}
$$

where V is the strain energy of the beam (see any book on structural analysis). It is well known that, in practice, we never compute the integrand explicitly, then integrate it, and then differentiate the resulting function of P; but, instead, we first carry out the differentiation under the integral, and then integrate the result:

$$
\begin{equation*}
p=\partial V / \partial P=\int_{0}^{l}[M(\partial M / \partial P) / E I] d x \tag{3.A2.8b}
\end{equation*}
$$

that is, the step from (3.A2.8a) to (3.A2.8b) is conceptual rather than practical. Here, clearly, we have the correspondences $\boldsymbol{a}^{*} \rightarrow M, \partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k} \rightarrow \partial M / \partial P$. As with everything else, practice with Appell's equations helps one develop shortcuts and other special labor-saving skills. Finally, why use $\partial \boldsymbol{v}^{*} / \partial \omega_{k}$ or $\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}$, and not their equal but simpler expression (2.9.27)

$$
\partial \boldsymbol{r}^{*} / \partial \theta_{k} \equiv \sum A_{l k}\left(\partial \boldsymbol{r} / \partial q_{l}\right)
$$

and analogously for holonomic variables. Such flexibilities are absent from Kane's scheme.

In sum, Kane's equations are just a special implementation (or "raw" form) of Appell's kinetic equations, along the way from LP; one that completely ignores the long-term and big picture aspects of mechanics: namely, our understanding of its underlying mathematical structure and physical ideas, and their interconnections with other areas of natural science, which are the hallmarks of genuine education. Moreover, the whole Kaneian approach is conceptually unmotivated, isolating and primitive, historically ignorant and flat, intellectually stifling and wasteful. Indeed, it is a degraded and sterile type of mechanics that soon leads its practitioners down a dynamical dead-end. Ultimately, and this applies to most of the contemporary multibody dynamics expositions, such schemes discourage active learning, with its new and unpredictable turns, diversity and change. Like the currently promoted antipluralistic "expert systems," they assume that there is "a" best way to do dynamics, which is best determined by whomever designs the relevant books/computer programs. This is not normal human learning; it is not a presentation based on a continuous historical evolution; namely, one that respects and expands the dynamics traditions and practices. The brains of the readers (or users) are treated as pieces of equipment (hardware), where one inserts abruptly a set of computer instructions and commands (software). As a result, the majority of users of such "dynamics" will never be able to raise that edifice even by one inch; they will have been transformed from thinking engineers to (highly expendable) filing clerks! [We are indebted to B. Garson's The Electronic Workshop: How Computers are Transforming the Office of the Future into the Factory of the Past (Simon and Schuster, 1988, p. 126) for some of these insights.]

Impulsive Motion

4.1 INTRODUCTION

In this chapter, we present the Lagrangean principles and equations of impulsive, or discontinuous, motion of constrained systems. The relevant "elementary" NewtonEuler definitions and equations are summarized in §4.2. Then we cover, in sequence: the impulsive version of Lagrange's principle (§4.3); the Appellian classification of impulsive constraints and corresponding equations of impulsive motion (§4.4); the formulation of kinetic and kinetostatic impulsive equations, in both holonomic and nonholonomic variables ($\S 4.5$; impulsive counterparts of the equations of Maggi, Hamel, and Appell); and, finally, the various impulsive energetic/extremum theorems of Carnot, Kelvin, Bertrand, Robin et al. (§4.6). As in the rest of the book, the discussion is complemented with a number of examples and problems.

Impulsive motion is a topic of intense and rapidly expanding research. Hence, a number of its aspects (e.g., role of friction, deformation), since they cannot be dealt with definitively here, are omitted.

For complementary reading on this engineeringly important subject, we recommend (alphabetically): Bouligand (1954, pp. 129-157, 444-483), Brach (1991), Easthope (1964, pp. 268-306), Goldsmith (1960), Hamel (1949, pp. 395-402), Kilmister and Reeve (1966, pp. 178-195, 217-221, 235-242, and Exercises), Kilmister (1967, pp. 98-108), Lainé (1946, pp. 185-201, 259-278), Loitsianskii and Lur'e (1983, pp. 131-143, 237-245, 276-280), Panovko (1977), Pöschl (1928), Routh (1905(a), pp. 136-164, 254-268, 302-313, 323-327), Smart (1951, vol. 2, pp. 376390), Suslov (1946, pp. 607-645); also Bahar (1994), for instructive applications of Jourdain's variational principle (§6.3) to impact.

4.2 BRIEF OVERVIEW OF THE NEWTON-EULER IMPULSIVE THEORY

Below, we summarize a few basic definitions and concepts. [Some of our differentials will be in time and some in space; we hope that their differences will be clear from the context, and no confusion will arise.]

Integrating the fundamental equation of motion of a particle P of mass $d m$ (§1.4 ff.):

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{f}, \quad \text { or } \quad d m(d \boldsymbol{v} / d t)=d \boldsymbol{f} \tag{4.2.1}
\end{equation*}
$$

from an arbitrary time t^{\prime} to an arbitrary time $t^{\prime \prime}\left(>t^{\prime}\right)$ yields

$$
\begin{equation*}
\Delta(d m \boldsymbol{v}) \equiv \Delta(d \boldsymbol{p})=\int^{\prime \prime} d \boldsymbol{f} d t \tag{4.2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta(\ldots)=(\ldots)_{t^{\prime \prime}}-(\ldots)_{t^{\prime}}, \quad \int^{\prime \prime}, \ldots d t \equiv \int_{t^{\prime}}^{t^{\prime \prime}} \ldots d t \tag{4.2.2a}
\end{equation*}
$$

Equation (4.2.2) states that the change of the linear momentum $d \boldsymbol{p}=d m \boldsymbol{v}$ of a (system) particle P during an arbitrary time interval $t^{\prime \prime}-t^{\prime} \equiv \tau$ equals the impulse of the total force $d \boldsymbol{f}$ acting on P, during that interval. Now, if τ is finite, the above is just the first time-integral of the Newton-Euler equation of motion; and, therefore, represents nothing new. If, however, τ is very small, or infinitesimal, then an independent and rather interesting chapter of dynamics, known as impulsive motion (IM; or impact, or shock), emerges. More specifically, IM occurs whenever a very large (or infinite, or delta function-like) force acts on P for a very short time; i.e., for $\tau \rightarrow 0$. As a result of this, at the end of τ : (i) the particle's momentum has changed by a finite instantaneous, that is, discontinuous, jump $\Delta(d \boldsymbol{p}) \equiv(d \boldsymbol{p})^{+}-(d \boldsymbol{p})^{-} \neq \mathbf{0}$, where $(\ldots)^{+} /(\ldots)^{-}$: values of (...) just after/before the shock, respectively, or right/left limits of (\ldots); or, since $d m=$ constant ,

$$
\begin{equation*}
\Delta v \equiv v^{+}-v^{-} \neq \mathbf{0} \tag{4.2.3}
\end{equation*}
$$

while (ii) the particle's position \boldsymbol{r} has remained essentially unchanged; that is,

$$
\begin{equation*}
\Delta \boldsymbol{r}=\mathbf{0} . \tag{4.2.4}
\end{equation*}
$$

Symbolically, in the IM case, eq. (4.2.2) reads

$$
\begin{equation*}
\Delta(d m \boldsymbol{v})=\widehat{d \boldsymbol{f}} \tag{4.2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{(\ldots)} \equiv \lim _{\tau \rightarrow 0} \int_{t^{\prime}}^{t^{\prime}+\tau}(\ldots) d t \quad \text { ("hat" notation). } \tag{4.2.5a}
\end{equation*}
$$

REMARKS

(i) The "hat" notation should not be confused with that notation occasionally employed for unit vectors.
(ii) We point out that, here, and contrary to the finite force case, as $\tau \rightarrow 0$,

$$
\begin{equation*}
\lim \int(\ldots) \mathrm{d} t \neq \int \lim (\ldots) d t, \quad \text { in general. } \tag{4.2.5b}
\end{equation*}
$$

Clearly, impulsive "forces" (or percussions, or blows) $\widehat{d f}$ are not defined as ordinary (or finite) forces at every instant of time, but, instead, only through the instantaneous and finite jump, or discontinuity, $\Delta(d \boldsymbol{p})=\Delta(d m \boldsymbol{v})=d m \Delta \boldsymbol{v}$ that they produce; for finite forces, such as gravity, the limit (4.2.5a) is, clearly, zero [and for an arbitrary continuous function $f=f(t, q): \Delta f=0$ and $\hat{f}=0]$. The result of these approximations [i.e., $\Delta($ positions $)=0, \Delta($ velocities $) \neq 0$, see ex. 2.4.1, below] is an impulsive theory of, admittedly, reduced practical value, but one of conceptual clarity and simplicity.

Application of this same idea to the Newton-Euler principles of linear and angular momentum, for a general system [i.e., multiplication of its, generally, differential equations of (finite) motion by $d t$, integration over τ, and then taking of the limit as $\tau \rightarrow 0$; while assuming that not all acting forces are finite, and that the "principle of action-reaction" for the internal loads holds for IM too], leads to the impulsive forms of these two principles, at time t, that are algebraic (finite difference; i.e., nondifferential!) equations.

As in finite motion, here, too, two possibilities arise: (i) either our theory generates enough such algebraic equations to determine the system's postimpact state; that is, the $\Delta \boldsymbol{v}$'s or the \boldsymbol{v}^{+}'s, and therefore the problem is impulsively determinate; or (ii) we have more unknowns than available equations, and thus the problem is impulsively indeterminate, in which case we need (in addition to the already utilized kinematical and kinetical equations) special physical, or constitutive, equations/postulates, as in continuum mechanics (e.g., Hooke's law in elasticity, Navier-Stokes law in fluid dynamics, etc.) - see §4.4.

Work-Energy in Impulsive Motion

Integrating the (rate of) work-(kinetic) energy equation, $d T / d t=\boldsymbol{S} d \boldsymbol{f} \cdot \boldsymbol{v}$, between t^{\prime} and $t^{\prime \prime}\left(>t^{\prime}\right)$ yields the familiar integral form

$$
\begin{equation*}
\Delta T \equiv T^{\prime \prime}-T^{\prime} \equiv T^{+}-T^{-}=\int^{\prime \prime}(\mathbf{S} d \boldsymbol{f} \cdot \boldsymbol{v}) d t \tag{4.2.6}
\end{equation*}
$$

from which, passing to the impulsive limit $\left(t^{\prime \prime} \rightarrow t^{\prime}\right)$ and invoking the mean value theorem of integral calculus, we obtain

$$
\begin{equation*}
\Delta T=\boldsymbol{S} \widehat{d \boldsymbol{f}} \cdot\langle\boldsymbol{v}\rangle \equiv \text { Impulsive "work." } \tag{4.2.7}
\end{equation*}
$$

where
$\langle\boldsymbol{v}\rangle$: mean/average value of (generally unknown) impact velocity.
However, since impact involves friction and deformation-that is, phenomena accompanied by conversion of mechanical energy into heat - and since the latter lies outside pure mechanics, we should not view (4.2.7) as an ordinary work-energy theorem; impulsive "work" is not connected with increase in energy; and so, unlike momentum relations, in the case of energy there is no simple mathematical transition from ordinary (continuous, or finite, motion) to impulsive dynamics. [For some energetic aspects of impact, see, e.g., Roy (1965, pp. 176-179).]

Example 4.2.1 Proof that Under Impulsive Forces:

$$
\Delta(\text { positions })=0, \quad \text { but } \quad \Delta(\text { velocities }) \neq 0
$$

Let us consider the motion of a particle P of mass m, along the axis $O x$, with initial conditions (at, say, $t_{o}=0$): $x(0)=0$ and $\dot{x}(0)=0$, under the 2τ - periodic total force:

$$
\begin{array}{lrl}
X=X_{o} \sin (\pi t / \tau), & 0 \leq t \leq \tau \\
X & =0, & \tau<t<\infty \tag{a}
\end{array}
$$

Figure 4.1 On the concept of impulsive force.
where $X_{o}=$ force amplitude, a constant; and $\tau=$ duration of action of X (fig. 4.1). Integrating the equation of motion of P :

$$
\begin{equation*}
m \ddot{x}=X_{o} \sin (\pi t / \tau), \tag{b}
\end{equation*}
$$

twice, while choosing the integration constants to satisfy the given initial conditions, we obtain

$$
\begin{align*}
& \dot{x} \equiv v=\left(X_{o} \tau / \pi m\right)[1-\cos (\pi t / \tau)] \tag{c}\\
& x=\left(X_{o} \tau / \pi m\right) t-\left(X_{o} \tau^{2} / \pi^{2} m\right) \sin (\pi t / \tau) \tag{d}
\end{align*}
$$

Hence,

$$
\begin{align*}
& \Delta x \equiv x(\tau)-x(0)=\left(X_{o} \tau^{2}\right) /(\pi m)=\left(X_{o} \tau\right) \tau / \pi m=(\langle X\rangle \tau / 2 m) \tau, \tag{e}\\
& \Delta(\dot{x}) \equiv \Delta v=\dot{x}(\tau)-\dot{x}(0)=2\left(X_{o} \tau\right) /(\pi m)=(\langle X\rangle \tau) / m, \tag{f}
\end{align*}
$$

where

$$
\begin{equation*}
\langle X\rangle \equiv(1 / \tau) \int_{0}^{\tau} X(t) d t=(1 / \tau) \int_{0}^{\tau} X_{o} \sin (\pi t / \tau) d t=2 X_{o} / \pi: \tag{g}
\end{equation*}
$$

Mean value of force in τ.
The above show that as long as the product $\langle X\rangle \tau=\int_{0}^{\tau} X(t) d t$ remains fixed (even though τ, and hence $\langle X\rangle$, may vary) so does Δv. Hence, in the particular, "impact limit": $X_{o} \rightarrow \infty$ (and generally as $\left.\left|X_{o}\right| \rightarrow \infty\right) \Rightarrow\langle X\rangle \rightarrow \infty$, and $\tau \rightarrow 0$, so that $\langle X\rangle \tau=$ fixed nonzero value $\equiv C$, eqs. (e, f) yield

$$
\begin{equation*}
\Delta x=0 \quad \text { and } \quad \Delta v=C / m \Rightarrow \Delta(m v)=C \tag{h}
\end{equation*}
$$

that is, in the limiting case of a very large ("infinite") force acting for a very short ("infinitesimal") time, the momentum changes ("instantaneously/discontinuously") by the finite amount C, while the position does not!

4.3 THE LAGRANGEAN IMPULSIVE THEORY; NAMELY, CONSTRAINED DISCONTINUOUS MOTION

Let us now examine impulsive motion from the viewpoint of analytical mechanics. Summing eqs. $(4.2 .2,5)$ over all the material particles of the system, $S(\ldots)$, yields
the impulsive linear momentum principle:

$$
\begin{equation*}
\boldsymbol{S} \Delta(d m \boldsymbol{v})=\Delta(\boldsymbol{S} d m \boldsymbol{v})=\boldsymbol{S} \widehat{d \boldsymbol{f}}=\widehat{\boldsymbol{S} d \boldsymbol{f}}=\hat{\boldsymbol{f}} \tag{4.3.1}
\end{equation*}
$$

since, clearly, $S(\ldots)$ and $\Delta(\ldots)$ can be interchanged; and, recalling the d'Alembert decomposition (§3.2): $d \boldsymbol{f}=d \boldsymbol{F}+d \boldsymbol{R}$, we can rewrite (4.3.1), with some easily understood notations, as

$$
\begin{equation*}
\Delta(\boldsymbol{S} d m \boldsymbol{v})=\hat{\boldsymbol{F}}+\hat{\boldsymbol{R}} \tag{4.3.2}
\end{equation*}
$$

This is the constrained impulsive linear momentum "principle." A similar constrained impulsive equation/theorem results if we cross both members of the Newton-Euler law of motion for a typical particle, under d'Alembert's decomposition, with its position vector (relative to some fixed origin, or some other position vector), sum the resulting angular momentum equations over the entire system, multiply the result with $d t$, integrate it over τ, and then, as before, take its limit as $\tau \rightarrow 0$. The result would be the constrained impulsive angular momentum principle, featuring on its right side the sums of the moments of the impressed impulsive forces $\{\widehat{d \boldsymbol{F}}\}$, and impulsive constraint reactions $\{\widehat{d \boldsymbol{R}}\}$ [i.e., "forces" caused either by the $\widehat{d \boldsymbol{F}}$'s, or by the sudden introduction of constraints (in addition to the already existing ones, which are called permanent, or primitive), cause discontinuous changes (jumps) to the system holonomic and/or nonholonomic velocities - these are detailed below].

Now, the objective of Lagrangean impulsive theory - namely, the impulsive theory of constrained mechanical systems - is to develop system impulsive equations with or without the $\widehat{d \boldsymbol{R}}$'s. To this end, we proceed as in the case of finite motion (chap. 3): dotting the constrained impulsive linear momentum equation for a typical system particle P,

$$
\begin{equation*}
\Delta(d m \boldsymbol{v})=\widehat{d \boldsymbol{F}}+\widehat{d \boldsymbol{R}} \tag{4.3.3}
\end{equation*}
$$

with its virtual displacement $\delta \boldsymbol{r}$ (at the shock instant $t=t^{\prime}$), and then summing over the system particles, yields

$$
\begin{equation*}
\boldsymbol{S}[\Delta(d m \boldsymbol{v})-\widehat{d \boldsymbol{F}}] \cdot \delta \boldsymbol{r}=\boldsymbol{S} \widehat{(-d \boldsymbol{R})} \cdot \delta \boldsymbol{r} \tag{4.3.3a}
\end{equation*}
$$

and, next, assuming that for bilateral "ideal" constraints the $\widehat{d \boldsymbol{R}}$'s satisfy the constitutive postulate/definition (while assuming that $\widehat{\delta \boldsymbol{r}}=\mathbf{0}$; e.g., by choosing timeindependent/constant virtual displacements, for $t^{\prime} \leq t \leq t^{\prime \prime}$)

$$
\begin{equation*}
\widehat{-\delta^{\prime} W_{R}} \equiv \widehat{\boldsymbol{S}(-d \boldsymbol{R}) \cdot \delta \boldsymbol{r}}=\boldsymbol{S} \widehat{(-d \boldsymbol{R})} \cdot \delta \boldsymbol{r}=0 \tag{4.3.3b}
\end{equation*}
$$

we readily obtain the fundamental impulsive variational equation (impulsive principle of Lagrange - LIP)

$$
\begin{equation*}
\widehat{\delta I}=\widehat{\delta^{\prime} W} \tag{4.3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\delta I} \equiv \widehat{S_{\operatorname{dma} a \cdot} \cdot \delta r}=S_{\Delta(d m v) \cdot \delta r:} \tag{4.3.4a}
\end{equation*}
$$

(first-order) virtual work of impulsive momenta,

$$
\begin{equation*}
\widehat{\delta^{\prime} W} \equiv \widehat{\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta \boldsymbol{r} \tag{4.3.4b}
\end{equation*}
$$

(first-order) virtual work of impressed "forces."
From (4.3.3-4b), we can obtain all kinds of special impulsive equations: with/without impulsive reactions (i.e., kinetostatic/kinetic/mixed impulsive equations), in particle/system form, in holonomic/nonholonomic variables, and so on.

We begin by substituting into $(4.3 .3 \mathrm{~b}, 4)$ the holonomic variable representation ($\$ 2.5 \mathrm{ff}$.): $\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}(k=1, \ldots, n)$. Since [in complete analogy with the finite motion case ($\$ 3.2 \mathrm{ff}$.), and assuming that $\hat{\boldsymbol{e}}_{k}=\mathbf{0}, \widehat{\delta q_{k}}=0 \Rightarrow \widehat{\delta \boldsymbol{r}}=\mathbf{0}$]

$$
\begin{align*}
& {\widehat{\delta}{ }^{\prime}{ }_{R}}=\boldsymbol{S} \widehat{d \boldsymbol{d}} \cdot \delta \boldsymbol{r}=\sum\left(\boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \equiv \sum \widehat{R_{k}} \delta q_{k} \tag{4.3.5a}\\
& \widehat{\delta^{\prime} W}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta \boldsymbol{r}=\sum\left(\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \equiv \sum \widehat{Q_{k}} \delta q_{k} \tag{4.3.5b}\\
& \widehat{\delta I}=\boldsymbol{S} \Delta(d m \boldsymbol{v}) \cdot \delta \boldsymbol{r}=\sum\left(\boldsymbol{S} d m \Delta \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \\
& \quad=\sum \Delta\left(\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \equiv \sum \Delta p_{k} \delta q_{k}, \tag{4.3.5c}
\end{align*}
$$

and
$p_{k} \equiv \boldsymbol{S}\left(d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right) \equiv \partial T / \partial \dot{q}_{k}$
$\Rightarrow \Delta p_{k}=\Delta\left(\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{k}\right)=\boldsymbol{S} \Delta(d m \boldsymbol{v}) \cdot \boldsymbol{e}_{k}:$
[holonomic (k) th component of] impulsive system momentum change, (4.3.6a)
$\widehat{Q_{k}} \equiv \widehat{\boldsymbol{S} \boldsymbol{F} \cdot \boldsymbol{e}_{k}}=\boldsymbol{S} \widehat{d \boldsymbol{F} \cdot \boldsymbol{e}_{k}}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{e}_{k}$:
[holonomic (k)th component of] impulsive system impressed force;
or, simply, impressed system impulse,
$\widehat{R}_{k} \equiv \widehat{\boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{k}}=\boldsymbol{S} \widehat{d \boldsymbol{R} \cdot \boldsymbol{e}_{k}}=\boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \boldsymbol{e}_{k}$:
[holonomic (k) th component of] impulsive system constraint reaction force,
we finally obtain LIP, eqs. (4.3.3b, 4), in holonomic system variables:

$$
\begin{equation*}
\sum \widehat{R_{k}} \delta q_{k}=0, \quad \sum \Delta\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}=\sum \widehat{Q_{k}} \delta q_{k} \tag{4.3.7}
\end{equation*}
$$

and similarly for quasi variables (§4.5).
These are the fundamental (differential) variational equations of Lagrangean impulsive theory. All equations of impulsive motion, compatible with our finite-number-of-degrees-of-freedom model (i.e., impulsive counterparts of the equations
of Routh-Voss, Maggi, Hamel, etc.), flow from (4.3.7) by appropriate specializations of the virtual displacements; and these latter depend on the nature of the imposed constraints. This process is detailed in the following sections.

Example 4.3.1 "Work-energy" theorem in Constrained Impulsive Motion; or, Impressed Impulsive Forces Applied to a Moving System. Let us begin with the LIP, eqs. (4.3.4-4b):

$$
\begin{equation*}
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \delta \boldsymbol{r}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta \boldsymbol{r} \tag{a}
\end{equation*}
$$

Choosing in there, first $\delta \boldsymbol{r} \rightarrow \boldsymbol{v}^{-}$and then $\delta \boldsymbol{r} \rightarrow \boldsymbol{v}^{+}$(since, here, time is considered fixed), we obtain, respectively,

$$
\begin{align*}
& \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}^{-}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}^{-} \tag{b}\\
& \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}^{+}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}^{+} \tag{c}
\end{align*}
$$

Adding (b) and (c) side by side, and then dividing by 2, we obtain the sought energetic theorem

$$
\begin{equation*}
\Delta T \equiv T^{+}-T^{-}=W_{-/+}, \tag{d}
\end{equation*}
$$

where

$$
\begin{equation*}
2 T^{+} \equiv \boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}, \quad 2 T^{-} \equiv \boldsymbol{S} d m \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-} \tag{e}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{-/+} \equiv \boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}^{+}+\boldsymbol{v}^{-}\right) / 2 \equiv \boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\langle\boldsymbol{v}\rangle \tag{f}
\end{equation*}
$$

In words: The sudden change of the kinetic energy of a moving system, due to arbitrary impressed impulses, equals the sum of the dot products of these impulses with the mean (average) velocities of their material points of application, immediately before and after their action.

4.4 THE APPELLIAN CLASSIFICATION OF IMPULSIVE CONSTRAINTS, AND CORRESPONDING EQUATIONS OF IMPULSIVE MOTION

As mentioned earlier, to proceed further from the impulsive variational equation (§4.3.7), we must specify the $n \delta q$'s; that is, specify the (variational form of the) impulsive constraints of the particular problem. And this brings us to Appell's fundamental classification of impulsive constraints. [See Appell (1896, p. 6 ff.; 1953, pp. 505-544); also (alphabetically): Bouligand (1954, pp. 129-157) and Roy (1965, p. 171 ff .). For a related classification, but with different terminology, see Pars (1965, pp. 228-248) and Rosenberg (1977, pp. 391-411). Also, all impulsive constraints dealt with here are assumed ideal; that is, $\widehat{\delta}^{\prime} W_{R}=0$].

According to his approach, which we follow here, the most general way of viewing a shock or percussion is as follows: at a given initial instant t^{\prime} new constraints are suddenly introduced into the system and/or some old constraints are removed, or suppressed. As a result, percussions are generated, which, in the very short time interval
$\tau \equiv t^{\prime \prime}-t^{\prime}$, over which they are supposed to act and during which the shock lasts, produce finite velocity changes, but, according to our "first" approximation negligible position changes; that is, for $\tau \rightarrow 0: \Delta q=0, \Delta(d q / d t) \equiv \Delta v \neq 0$ (ex. 4.2.1).

Now, the constraints existing at the shock moment are either persistent or nonpersistent. By persistent, we mean constraints that, existing at the shock "moment," exist also after it, so that the actual postimpact displacements are incompatible with them; whereas by nonpersistent we mean constraints that, existing at the shock moment, do not exist after it, so that the actual postimpact displacements are incompatible with them.

As a result of this, impulsive constraints can be classified into the following four distinct kinds or types:

1. Constraints existing before, during, and after the shock; that is, the latter neither introduces new constraints, nor does it change the old ones; the system, however, is acted on by impulsive forces. An example of such a constraint is the striking of a physical pendulum with a nonsticking (or, nonplastic) hammer at one of its points, and resulting communication to it of a specified impressed impulsive force; while the impulsive reactions, generated at the pendulum support, satisfy (4.3.3b) and first of (4.3.7).
2. Constraints existing during and after the shock, but not before it; that is, the latter introduces suddenly new constraints to the system. Examples: (a) A rigid bar falling freely, until the two inextensible slack strings connecting its endpoints to a fixed ceiling get taut (during) and do not break (after); (b) The inelastic central collision of two solid spheres ("coefficient of restitution" $\equiv e=0$-see (4.4.1)); (c) In a ballistic pendulum (see prob. 4.4.9) the pendulum is constrained to rotate about a fixed axis; which is a constraint existing before, during and after the percussion of the pendulum with a projectile (i.e., first-type constraint). The projectile, however, originally independent of the pendulum, strikes it and becomes embedded into it; which is a case of a new constraint whose sudden realization produces the shock, and which exists during and after the shock but not before it (i.e., second-type constraint).
3. Constraints existing before and during the shock, but not after it. For example, let us imagine a system consisting of two particles connected by a light and inextensible bar, or thread, thrown up into the air. Then, let us assume that one of these particles is suddenly seized (persistent constraint introduced abruptly; i.e., second type) and, at the same time, the bar breaks (constraint existing before the shock does not exist after it; i.e., third type).
4. Constraints existing only during the shock, but neither before nor after it. For example, when two solids collide, since their bounding surfaces come into contact, a constraint is abruptly introduced into this two body system. If these bodies are elastic ($e=1-$ see coefficient of restitution, below), they separate after the collision; which is a case of a constraint existing during the percussion but neither before nor after it (i.e., fourth type); while if they are plastic $(e=0)$ they do not separate (projectile and pendulum, above; i.e., second type). (If $0<e<1$, the bodies separate; i.e., we have a fourth-kind constraint.)

This classification is summarized in table 4.1; clearly, the first two types contain the persistent constraints, while the last two contain the nonpersistent ones.

REMARKS

(i) Types 1, 2, 3, 4 are also referred to, respectively, as permanent, persistent, preexisting, and instantaneous (direct shock). Also, for obvious reasons, type 1 is referred to as continuous; and types 2, 3, and 4, as discontinuous.

Table 4.1 Appellian Classification of Impulsive Constraints

	Preshock (before)	Shock (during)	Postshock (after)
1 (persistent)			
2 (persistent)			
3 (nonpersistent)			
4 (nonpersistent)			

(ii) These concepts are of paramount importance because, as shown below, in an impulsive problem, the excess of the number of unknowns (postimpact velocities and constraint reactions) over that of the available equations [those obtained from Lagrange's impulsive principle; plus preimpact velocities, impressed impulsive forces, constraints, and sometimes knowledge of the postimpact state (second type; e.g., $e=0$)] - that is, the degree of its indeterminacy - equals the number of its constraints that, having existed before or during the shock, cease to do so at the end of it; that is,

$$
\text { Degree of indeterminacy }=\text { Number of nonpersistent constraints; }
$$

hence, the persistent types 1 and 2 are determinate, while the nonpersistent ones 3 and 4 are indeterminate.
(iii) Generally, problems of collision among solid bodies are indeterminate. For example, in the collision of two smooth solids, A and B, with respective mass centers G_{A} and G_{B}, we have thirteen unknowns: $3+3=6$ from the postimpact velocities of G_{A} and $G_{B}, 3+3=6$ from the postimpact angular velocities of A and B, and 1 from the magnitude of the mutual normal impact force; and only twelve equations: $6+6=12$ from the theorems of impulsive linear/angular momenta. (For nonsmooth solids, things get more complicated.) To make the problem determinate, we introduce Newton's coefficient of restitution, e. This latter is defined by

$$
\begin{equation*}
e=-\frac{\left(\boldsymbol{v}_{2 / 1} \cdot \boldsymbol{n}\right)^{+}}{\left(\boldsymbol{v}_{2 / 1} \cdot \boldsymbol{n}\right)^{-}} \equiv-\frac{\nu_{2 / 1, n}{ }^{+}}{\nu_{2 / 1, n}{ }^{-}}=-\frac{\text { Relative velocity of separation }}{\text { Relative velocity of approach }} \tag{4.4.1}
\end{equation*}
$$

where 1 and 2 are the two points of A and B that come into contact during the collision, and \boldsymbol{n} is the unit vector along the common normal to their bounding surfaces there, say from A to B (see also exs. 4.4.1 and 4.4.2 below). The coefficient ranges from 0 (plastic impact, no separation) to 1 (elastic impact, no energy loss); that is, $0 \leq e \leq 1$.
(iv) The case of the removal of a constraint (e.g., the sudden snapping of one or more of the taut strings supporting an originally motionless bar from a ceiling), is not an impulsive motion problem (of the third kind) but one of initial motion; that is,

$$
\Delta(\text { positions })=0, \quad \Delta(\text { velocities })=0, \quad \text { but } \Delta(\text { accelerations }) \neq 0
$$

However, if the rupture is the result of an impulsive force (a blow), the problem falls under type 3 (see comments on rupture later in this section).

Analytical Expression of the Appellian Classification; Persistency versus Determinacy

Let us express analytically all these types of constraints. We begin with a discussion of this issue in terms of elementary dynamics. Let us consider a system consisting of
N solids, in contact with each other at K points, out of which C are of the nonpersistent type, and/or with a number of foreign solid obstacles that are either fixed or have known motions. Assuming frictionless collisions, we will have a total of $6 N+K$ unknowns ($6 N$ postshock velocities, plus K percussions at the smooth contacts, along the common normals); and $6 N+K-C$ equations ($6 N$ impulsive momentum equations, plus $K-C$ persistent-type constraints); and therefore the degree of indeterminacy equals the number of nonpersistent contacts C (i.e., the kind that disappear after the shock). Hence: (i) a free (i.e., unconstrained) solid subjected to given percussions, and/or (ii) a system subjected only to persistent constraints are impulsively determinate.

Let us now discuss the problem from the Lagrangean viewpoint. We recall ($\$ 2.4 \mathrm{ff}$.) that a number of holonomic constraints, imposed on a system originally defined by n Lagrangean coordinates, can always be put in the equilibrium form:

$$
\begin{equation*}
q_{1}=0, q_{2}=0, \ldots, q_{m}=0 \quad(m: \text { number of such constraints }<n) \tag{4.4.1a}
\end{equation*}
$$

REMARKS

(i) It is shown later in this section, that, within our impulsive approximations, even Pfaffian constraints (including nonholonomic ones) can be brought to the holonomic form; that is, in impulsive motion all constraints behave as holonomic! However, as elaborated in the next section, quasi variables can be used to advantage in impulsive problems.
(ii) Briefly, if the system is, originally, described by the Lagrangean coordinates $q \equiv\left(q_{1}, \ldots, q_{n}\right)$, and if the $m(<n)$ new constraints are expressed by

$$
\begin{equation*}
\phi_{1}(t, q)=0, \ldots, \phi_{m}(t, q)=0 \tag{4.4.1b}
\end{equation*}
$$

then, by replacing q_{1}, \ldots, q_{m} with the new Lagrangean coordinates,

$$
\begin{equation*}
\chi_{1} \equiv \phi_{1}(t, q), \ldots, \chi_{m} \equiv \phi_{m}(t, q) ; \quad \chi_{m+1}=q_{m+1}, \ldots, \chi_{n}=q_{n} \tag{4.4.1c}
\end{equation*}
$$

we can express the new constraints (b) by the "equilibrium" equations:

$$
\begin{equation*}
\chi_{1}=0, \ldots, \chi_{m}=0 . \tag{4.4.1d}
\end{equation*}
$$

Assuming, henceforth, such a choice of Lagrangean coordinates for all our impulsive constraints (and, for convenience, redenoting these new equilibrium coordinates by $\left.q_{1}, \ldots, q_{m} ; \ldots, q_{n}\right)$, we can quantify the four Appellian types of impulsive constraints as follows:

- First-type constraints (existing before, during, and after the shock). As a result of these constraints, let the system configurations depend on n, hitherto independent, Lagrangean parameters: $q \equiv\left(q_{1}, \ldots, q_{n}\right)$. During the shock interval $\left(t^{\prime}, t^{\prime \prime}\right)$, the corresponding velocities $\dot{q} \equiv\left(\dot{q}_{1}, \ldots, \dot{q}_{n}\right)$, pass suddenly from the known values $(\dot{q})^{-}$, at t^{\prime}, to other values $(\dot{q})^{+}$, while the q 's remain practically unchanged; that is, here we have

$$
\begin{align*}
& \left(q_{k}\right)_{\text {before }}=0, \quad\left(q_{k}\right)_{\text {during }}=0, \quad\left(q_{k}\right)_{\text {after }}=0 ; \tag{4.4.2a}\\
& \Delta \dot{q}_{k} \equiv\left(\dot{q}_{k}\right)^{+}-\left(\dot{q}_{k}\right)^{-} \neq 0 \quad\left[\left(\dot{q}_{k}\right)^{+}: \text {unknown, }\left(\dot{q}_{k}\right)^{-}: \text {known }\right] . \tag{4.4.2b}
\end{align*}
$$

- Second-type constraints (additional constraints, existing during and after the shock, but not before $i t)$. Here, with $q_{D^{\prime \prime}} \equiv\left(q_{1}, \ldots, q_{m^{\prime \prime}}\right)$, where $m^{\prime \prime}<n$, we have

$$
\begin{align*}
& \left(q_{D^{\prime \prime}}\right)_{\text {before }} \neq 0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {during }}=0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {after }}=0 \tag{4.4.3a}\\
& \left(\dot{q}_{D^{\prime \prime}}\right)^{-} \neq 0, \quad\left(\dot{q}_{D^{\prime \prime}}\right)^{+}=0 \Rightarrow \Delta\left(\dot{q}_{D^{\prime \prime}}\right)=-\left(\dot{q}_{D^{\prime \prime}}\right)^{-} \neq 0 \tag{4.4.3b}
\end{align*}
$$

[Equations like $q_{\text {after }}-q_{\text {before }} \neq 0$ i.e., (4.4.3a, 4a) in no way contradict our earlier assumption (first approximation): Δ (configuration) $\equiv \Delta q \equiv q^{+}-q^{-}=0$. As with the finite motion case (chap. 2), any new holonomic constraints must be consistent with the system configuration.]

- Third-type constraints (additional constraints existing before and during, but not after the shock). Here, with $q_{D^{\prime \prime}} \equiv\left(q_{m^{\prime \prime}+1}, \ldots, q_{m^{\prime \prime}}\right)$, where $m^{\prime \prime \prime}<n$, we have

$$
\begin{align*}
& \left(q_{D^{\prime \prime}}\right)_{\text {before }}=0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {during }}=0, \quad\left(q_{D^{\prime \prime}}\right)_{\text {after }} \neq 0 \tag{4.4.4a}\\
& \left(\dot{q}_{D^{\prime \prime}}\right)^{-}=0, \quad\left(\dot{q}_{D^{\prime \prime}}\right)^{+} \neq 0 \Rightarrow \Delta\left(\dot{q}_{D^{\prime \prime}}\right)=\left(\dot{q}_{D^{\prime \prime}}\right)^{+} \neq 0 \tag{4.4.4b}
\end{align*}
$$

- Fourth-type constraints (additional constraints existing only during, but neither before nor after the shock). Here, with $q_{D^{\prime \prime \prime}} \equiv\left(q_{m^{\prime \prime \prime}+1}, \ldots, q_{m^{\prime \prime \prime}}\right)$, where $m^{\prime \prime \prime \prime}<n$, we have

$$
\begin{align*}
& \left(q_{D^{\prime \prime \prime}}\right)_{\text {before }} \neq 0, \quad\left(q_{D^{\prime \prime \prime}}\right)_{\text {during }}=0, \quad\left(q_{D^{\prime \prime \prime}}\right)_{\text {after }} \neq 0 ; \tag{4.4.5a}\\
& \left(\dot{q}_{D^{\prime \prime \prime}}\right) \neq 0, \quad\left(\dot{q}_{D^{\prime \prime \prime}}\right)^{-} \neq 0 \Rightarrow \Delta\left(\dot{q}_{D^{\prime \prime \prime}}\right)=\left(\dot{q}_{D^{\prime \prime \prime}}\right)^{+}-\left(\dot{q}_{D^{\prime \prime \prime}}\right)^{-} \neq 0 . \tag{4.4.5b}
\end{align*}
$$

Hence, if no fourth-type constraints exist, $m^{\prime \prime \prime}=m^{\prime \prime \prime \prime}$; and if no third-type constraints exist, $m^{\prime \prime}=m^{\prime \prime \prime}$; and so on. Now, arguing as in the case of continuous motion (chap. 3), during the shock interval, we may view the constraints of the second, third, and fourth types as absent, provided that, in the spirit of the impulsive principle of relaxation [see also discussion below, after (4.4.16b)], we add to the system the corresponding constraint reactions. All relevant equations of motion are contained in the LIP (second of 4.3.7),

$$
\begin{equation*}
\sum \Delta\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}=\sum \hat{Q}_{k} \delta q_{k} \quad(k=1, \ldots, n) \tag{4.4.6}
\end{equation*}
$$

If the virtual displacements $\delta q \equiv\left(\delta q_{1}, \ldots, \delta q_{n}\right)$ are arbitrary, the right side of the above contains the impulsive virtual works of the reactions stemming from the second, third, and fourth-type constraints, and operating during the shock interval $\left[t^{\prime}, t^{\prime \prime}\right]$. Therefore, to eliminate these "forces," and thus produce $n-m^{\prime \prime \prime \prime}$ reactionless, or kinetic, impulsive equations, we choose δq 's that are compatible with all constraints holding at the shock moment; that is, we take

$$
\begin{align*}
& \delta q_{1}, \ldots, \delta q_{m^{\prime \prime}} ; \quad \delta q_{m^{\prime \prime}+1}, \ldots, \delta q_{m^{\prime \prime \prime}} ; \quad \delta q_{m^{\prime \prime \prime}+1}, \ldots, \delta q_{m^{\prime \prime \prime \prime}}=0 \tag{4.4.6a}\\
& \delta q_{m^{\prime \prime \prime \prime}+1}, \ldots, \delta q_{n} \neq 0 \tag{4.4.6b}
\end{align*}
$$

Applying the method of Lagrangean multipliers to the variational equation (4.4.6), under the virtual constraints (4.4.6a, b), we readily obtain the two (uncoupled) sets of equations:

Impulsive kinetostatic: $\quad \Delta\left(\partial T / \partial \dot{q}_{D}\right)=\hat{Q}_{D}+\hat{\lambda}_{D} \quad\left(D=1, \ldots, m^{\prime \prime \prime \prime}\right)$,
Impulsive kinetic:

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{I}\right)=\hat{Q}_{I} \quad\left(I=m^{\prime \prime \prime \prime}+1, \ldots, n\right) \tag{4.4.7a}
\end{equation*}
$$

Further, since the velocity jumps $\Delta \dot{q}$ are produced only by the very large impulsive constraint reactions, operating during the very small interval $t^{\prime \prime}-t^{\prime}$, within our approximations, the \hat{Q}_{I} [since they derive only from ordinary (i.e., finite, nonimpulsive) forces, like gravity] vanish: $\hat{Q}_{I}=0$; and so (4.4.7b) reduce to Appell's rule:

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{I}\right)=0 \Rightarrow\left(\partial T / \partial \dot{q}_{I}\right)^{+}=\left(\partial T / \partial \dot{q}_{I}\right)^{-} \tag{4.4.8}
\end{equation*}
$$

In words: The partial derivatives of the kinetic energy relative to the velocities of those system coordinates q 's that are not forced to vanish at the shock instant (i.e., $q_{\text {during }} \neq 0$) have the same values before and after the impact; or these $n-m^{\prime \prime \prime \prime}$ unconstrained momenta, $p_{I} \equiv \partial T / \partial \dot{q}_{I}$, are conserved.

Now, since T is quadratic in the \dot{q} 's, eqs. (4.4.8) are linear and (as explained below, under "Frame of Reference Effects on Impulsive Motion") homogeneous in the $n \Delta \dot{q}$'s. In there:
(i) The q_{1}, \ldots, q_{n}, have their constant shock instant values; that is,

$$
\begin{equation*}
q_{D}: q_{D^{\prime \prime}}, q_{D^{\prime \prime \prime}}, q_{D^{\prime \prime \prime \prime}}=0 ; \quad \text { while } \quad q_{I}: q_{m^{\prime \prime \prime \prime}+1}, \ldots, q_{n}=\text { known; } \tag{4.4.9a}
\end{equation*}
$$

(ii) The $\left(\dot{q}_{1}\right)^{-}, \ldots,\left(\dot{q}_{n}\right)^{-}$are known; in particular, $\left(\dot{q}_{D^{\prime \prime}}\right)^{-}=0$;
(iii) The $\left(\dot{q}_{1}\right)^{+}, \ldots,\left(\dot{q}_{n}\right)^{+}$are the unknowns of the problem; except that, since the constraints $\left(q_{D^{\prime \prime}}\right)_{\text {after }}=0$ are persistent,

$$
\begin{equation*}
\left(\dot{q}_{D^{\prime \prime}}\right)^{+}=0 . \tag{4.4.9c}
\end{equation*}
$$

Hence, we have $n-m^{\prime \prime \prime \prime}$ linear equations (4.4.8) for the $n-m^{\prime \prime}$ unknowns: $\left(\dot{q}_{m^{\prime \prime}+1}\right)^{+}, \ldots,\left(\dot{q}_{n}\right)^{+}$; and therefore the degree of indeterminacy of the impulsive problem equals

$$
\begin{align*}
& \left(n-m^{\prime \prime}\right)-\left(n-m^{\prime \prime \prime \prime}\right)=m^{\prime \prime \prime \prime}-m^{\prime \prime} \quad(>0, \text { assumed }) \\
& \quad=\text { number of nonpersistent constraints (= number of 3rd and 4th types). } \tag{4.4.9d}
\end{align*}
$$

In sum: the impulsive problem (4.4.8) is, in general, indeterminate [unlike its ordinary motion counterpart which is determinate ($\S 3.5, \S 3.8)]$: the $m^{\prime \prime \prime \prime}$ kinetostatic equations (4.4.7a) introduce the $m^{\prime \prime \prime \prime}$ additional unknown $\hat{\lambda}_{D}$'s. If, however, only persistent constraints are present $\left(m^{\prime \prime \prime \prime}=m^{\prime \prime}\right)$, the impulsive problem (4.4.8) is determinate.

To make the problem determinate, in the presence of nonpersistent type constraints, we must make particular constitutive (i.e., physical) hypotheses; for example, elasticity assumptions about the postshock state. For example, in the well-known problem of central (or direct) collision of two solid spheres that separate after the shock (fourth-type constraint), Newton-Euler mechanics provides only one equation for the two postimpact velocities of the spheres' centers: $\Delta v_{\text {center of mass of system }}=0$. A second equation is furnished by constitutive assumptions; for example, for perfect elasticity, $\Delta T=0$. The most common constitutive equations for such third and/or fourth type $(\dot{q})^{+}$s are

$$
\begin{equation*}
\left(\dot{q}_{D^{\prime \prime \prime}, D^{\prime \prime \prime}}\right)^{+}=-e\left(\dot{q}_{D^{\prime \prime \prime}, D^{\prime \prime \prime \prime}}\right)^{-}\left(D^{\prime \prime \prime}=m^{\prime \prime}+1, \ldots, m^{\prime \prime \prime} ; D^{\prime \prime \prime \prime}=m^{\prime \prime \prime}+1, \ldots, m^{\prime \prime \prime \prime}\right) ; \tag{4.4.10a}
\end{equation*}
$$

where e is the earlier coefficient of restitution. Then, the corresponding velocity jumps equal

$$
\begin{equation*}
\Delta\left(\dot{q}_{D^{\prime \prime \prime}, D^{\prime \prime \prime \prime}}\right) \equiv\left(\dot{q}_{D^{\prime \prime \prime}, D^{\prime \prime \prime \prime}}\right)^{+}-\left(\dot{q}_{D^{\prime \prime \prime}, D^{\prime \prime \prime}}\right)^{-}=-(1+e)\left(\dot{q}_{D^{\prime \prime \prime}, D^{\prime \prime \prime}}\right)^{-} . \tag{4.4.10b}
\end{equation*}
$$

REMARKS

(i) If the constraints have the general (nonequilibrium) form

$$
\begin{equation*}
\phi_{D}(t, q)=0 \Rightarrow \delta \phi_{D}=\sum\left(\partial \phi_{D} / \partial q_{k}\right) \delta q_{k}=0 \quad[D=1, \ldots, m(<n)] \tag{4.4.11a}
\end{equation*}
$$

then combination ("adjoining") of the above with (4.4.6), via impulsive Lagrangean multipliers $\hat{\lambda}_{D}$ yields the n impulsive Routh-Voss equations

$$
\begin{equation*}
\Delta p_{k}=\hat{Q}_{k}+\hat{R}_{k}, \quad \text { with } \quad \hat{R}_{k}=\sum \hat{\lambda}_{D}\left(\partial \phi_{D} / \partial q_{k}\right) . \tag{4.4.11b}
\end{equation*}
$$

As in the finite motion case (§3.8), these equations are coupled in the $(\dot{q})^{+}$'s and $\hat{\lambda}$'s, because the q 's employed are coupled; i.e., eqs. (4.4.11a); whereas the earlier eqs. (4.4.7a, $\mathrm{b} ; 8$), corresponding to the uncoupled (equilibrium) coordinates (4.4.1a-d) are uncoupled.

In first-type problems, the above equations along with the m postshock forms of (4.4.11a),

$$
\begin{equation*}
\phi_{D}=0 \Rightarrow \dot{\phi}_{D}=\sum\left(\partial \phi_{D} / \partial q_{k}\right) \dot{q}_{k}+\partial \phi_{D} / \partial t=0 \tag{4.4.11c}
\end{equation*}
$$

with the partial derivatives of the ϕ 's evaluated at the shock configuration and instant, constitute a set of $n+m$ algebraic equations for the n postshock velocities $(\dot{q})^{+}$and the m impulsive multipliers $\hat{\lambda}$. And since such constraints also hold, in form, for the preshock velocities $(\dot{q})^{-}$, only $n-m$ of the latter need be known.

In second-type problems, eqs. (4.4.11b) also hold, and the impulsive constraints (4.4.11a) are imposed at the beginning of the shock and continue to hold during and after, but not before, it. Therefore, we can apply (4.4.11c) for the $(\dot{q})^{+}$'s.
(ii) Equations (4.4.11b) can, of course, result directly by integration of the finite Routh-Voss equations of the system (§3.5) in time, then taking the limit as $\tau \equiv t^{\prime \prime}-t^{\prime} \rightarrow 0$, and noticing that since $\partial T / \partial q_{k}=$ finite during $\tau\left(\Delta q_{k}=0\right.$ and $\dot{q}_{k}=$ finite, hence $\Delta \dot{q}_{k}=$ finite $)$,

$$
\begin{equation*}
\widehat{\left(\partial T / \partial q_{k}\right)}=0 \tag{4.4.12}
\end{equation*}
$$

and the partial ϕ-derivatives, within our approximations, remain constant.
(iii) If the third- and fourth-type constraints have the general form (4.4.11a), then (4.4.10a, b) must be replaced by

$$
\begin{equation*}
(\dot{\phi})^{+}=-e(\dot{\phi})^{-} \Rightarrow \Delta \dot{\phi} \equiv(\dot{\phi})^{+}-(\dot{\phi})^{-}=-(1+e)(\dot{\phi})^{-} \tag{4.4.10c,d}
\end{equation*}
$$

Further, due to the compatibility of velocities with the constraint, $\dot{\phi} \sim v_{2 / 1} \cdot \boldsymbol{n}=$ $\left(v_{2 / 1}\right)_{n}$, and so

$$
\begin{array}{lll}
\text { at } t^{\prime}: & (\dot{\phi})^{-}<0 & \text { (beginning of "approach" period), } \\
\text { at } t^{\prime \prime}: & (\dot{\phi})^{+}>0 & \text { (ending of "restitution" period). } \tag{4.4.10e}
\end{array}
$$

In sum: the $n(\dot{q})^{+}$s can be determined from the $n-m^{\prime \prime \prime \prime}$ kinetic equations (4.4.8), the $m^{\prime \prime}$ kinematical equations (4.4.3b), and the $m^{\prime \prime \prime \prime}-m^{\prime \prime}$ constitutive equations (4.4.10a, b); that is, a total of $\left(n-m^{\prime \prime \prime \prime}\right)+\left(m^{\prime \prime}\right)+\left(m^{\prime \prime \prime \prime}-m^{\prime \prime}\right)=n$ equations. Once all the $(\dot{q})^{+}$'s have been found, the $m^{\prime \prime \prime \prime}$ kinetostatic equations (4.4.7a) immediately yield the $m^{\prime \prime \prime \prime}$ impulsive reactions $\hat{\lambda}_{D}$.

For instance, in an impact problem with the three constraints $q_{1}=q_{2}=q_{3}=0$ (i.e., $m^{\prime \prime \prime \prime}=3$), the impulsive multipliers will appear only in the first three equations:

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{D}\right)=\hat{Q}_{D}+\hat{\lambda}_{D} \quad(D=1,2,3) \tag{4.4.10f}
\end{equation*}
$$

while, by Appell's rule, the remaining kinetic equations will be

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{I}\right)=0 \quad(I=4,5, \ldots, n) \tag{4.4.10g}
\end{equation*}
$$

If we are only interested in the $(\dot{q})^{+}$'s and not the $\hat{\lambda}$'s, then we must add to the $n-3$ equations $(4.4 .10 \mathrm{~g})$ the three postimpact conditions for $\left(\dot{q}_{1,2,3}\right)^{+}$. For example, if the first and second constraints hold after the shock (persistent) while the third one does not (nonpersistent), then these conditions are

$$
\begin{equation*}
\left(\dot{q}_{1}\right)^{+}=\left(\dot{q}_{2}\right)^{+}=0, \quad\left(\dot{q}_{3}\right)^{+}=-e\left(\dot{q}_{3}\right)^{-} \tag{4.4.10h}
\end{equation*}
$$

and along with $(4.4 .10 \mathrm{~g})$ these constitute a determinate system for the $n(\dot{q})^{+}$.
(iv) In applying impulsive equations, like (4.4.7a, b; 8; 11b), or any other form involving $\partial T / \partial \dot{q}_{k}$, there is no need to start with the general (configuration and velocity) expression for T, then $(\partial \ldots / \partial \dot{q})$-differentiate it, and finally evaluate the results for the shock configuration(s) and time, as in the finite motion case. It is simpler, and leads to the same final results, if we calculate T only at the shock configuration and time and proceed from there to calculate the momenta, and so on. [Why? Explain using a Taylor expansion of T around the shock configuration, and then taking the partial q-derivatives of both sides. See, for example, Beghin (1967, pp. 472-473).]
(v) Frame of reference effects on impulsive motion. We begin by pointing out that the impulsive theorems of linear and angular momentum are independent of the frame of reference used; that is, they hold unchanged in form even in noninertial frames (moving axes), provided that the latter's inertial motions remain continuous and involve only finite accelerations. Then, the "inertial," or "fictitious" forces on a typical particle - that is, the "force" of transport (due to the translational and rotational inertial accelerations of the noninertial frame), and the complementary, or Coriolis, "force" (due to the coupling of the relative velocity of the particle with the inertial angular velocity of the frame - recalling §1.7) - remain finite and therefore give zero impulses. [This also follows from the fact that the impulsive momentum equations involve only velocity jumps $\Delta \boldsymbol{v}$; and these latter are frame-independent, as long as, during the shock, the transport velocities of the noninertial frames do not undergo finite jumps; it is like adding and subtracting the same frame velocity (after and before the shock, respectively) to all system particles! (Explain, quantitatively, using the frame transformation equations for velocities.) Question: During a shock, does the velocity of body-fixed axes, say at G, undergo finite changes (i.e., velocity discontinuities)? If it does, then the above reasoning does not apply to these axes.] The above are easy to see from the viewpoint of analytical mechanics: in all pertinent impulsive derivations, we may consider only the quadratic and homogeneous part of T (§3.9), $T_{2}=1 / 2 \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}$; under our impulsive approximations, its linear and homogeneous part, $T_{1}=\sum M_{k} \dot{q}_{k}$ (which, we recall, arises from the nonstationary/
noninertial contributions $\partial \boldsymbol{r} / \partial t$), makes a zero contribution to Δp_{k} :

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{k}\right)=\Delta\left(\partial T_{2} / \partial \dot{q}_{k}\right)=0 . \tag{4.4.13}
\end{equation*}
$$

In sum: In impulsive (not finite) motion problems we can always replace the inertial kinetic energy with the relative one; that is, take $T \approx T_{2}$, and then proceed as in the inertial case. Clearly, this results in considerable algebraic simplification.
(vi) Holonomic versus nonholonomic constraints in impulsive motion. We saw earlier, eqs. (4.4.1a-d), that any set of $m(<n)$ holonomic constraints,

$$
\begin{equation*}
\phi_{D}(t, q)=0 \quad(D=1, \ldots, m) \tag{4.4.14a}
\end{equation*}
$$

can be brought to the equilibrium form

$$
\begin{equation*}
\chi_{D} \equiv \phi_{D}(t, q)=0 \quad(D=1, \ldots, m) \tag{4.4.14b}
\end{equation*}
$$

and $\chi_{I} \equiv q_{I}(\neq 0)$. It follows that the associated generalized velocities and virtual variations, from 1 to m, will satisfy, respectively (with $k=1, \ldots, n$),

$$
\begin{equation*}
\dot{\chi}_{D}=\sum\left(\partial \phi_{D} / \partial q_{k}\right) \dot{q}_{k}+\partial \phi_{D} / \partial t=0 \quad \text { and } \quad \delta \chi_{D}=\sum\left(\partial \phi_{D} / \partial q_{k}\right) \delta q_{k}=0 \tag{4.4.14c}
\end{equation*}
$$

Now, since we assume that during the shock the coordinates and time remain essentially constant, we can replace in there the Pfaffian constraints (first of 4.4.14c) with their approximate time integral

$$
\begin{equation*}
\psi_{D} \equiv \sum \Phi_{D k} q_{k}+\Phi_{D} t-C_{D}=0 \tag{4.4.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{D k} \equiv \partial \phi_{D} / \partial q_{k}, \Phi_{D} \equiv \partial \phi_{D} / \partial t, C_{D}: \text { constants, for } t^{\prime} \leq t \leq t^{\prime \prime} \tag{4.4.15a}
\end{equation*}
$$

and thus replace q_{1}, \ldots, q_{m} with the equilibrium coordinates $\psi_{D}(=0)$. The same reasoning applied to the holonomic and/or nonholonomic Pfaffian impulsive constraints,

$$
\begin{equation*}
\sum a_{D k} \dot{q}_{k}+a_{D}=0 \tag{4.4.16a}
\end{equation*}
$$

allows us to approximate them, in $\left[t^{\prime}, t^{\prime \prime}\right]$, with

$$
\begin{equation*}
\beta_{D} \equiv \sum a_{D k} q_{k}+a_{D} t-\alpha_{D}=0, \quad \alpha_{D}=\text { integration constants } \tag{4.4.16b}
\end{equation*}
$$

that is, replace q_{1}, \ldots, q_{m} with the new equilibrium variables $\beta_{D}(=0)$.
In sum: In impulsive problems, we may disregard the holonomic versus nonholonomic difference - during the shock, all constraints are approximately holonomic - and to solve them, either we use impulsive multipliers, or avoid them by choosing the above equilibrium coordinates, or use quasi variables (see $\S 4.5$).

Impulsive Principle of Relaxation (RIP)

To calculate impulsive reactions due to pre-existing constraints, say in a first-type constraint problem (e.g., determine the impulsive bending moment at a certain point of a physical pendulum caused by a given blow at another point of it), either we use the impulsive forms of linear and angular momentum, after solving the Lagrangean impulsive equations of the given (unrelaxed) system, say (4.4.7a, b), and so on; or, in the spirit
of an impulsive principle of relaxation of the constraints, we may endow the system with an additional n^{\prime} Lagrangean coordinates $q_{k^{\prime}}\left(k^{\prime}=1, \ldots, n^{\prime}\right)$, equal in number to that of the sought reactions and satisfying the persistent equilibrium constraints

$$
\begin{equation*}
q_{k^{\prime}}=\text { constant } ; \text { say }=0, \tag{4.4.17a}
\end{equation*}
$$

then calculate the "relaxed" kinetic energy

$$
\begin{equation*}
T=T\left(t, q_{1^{\prime}}, \ldots, q_{n^{\prime}} ; q_{1}, \ldots, q_{n} ; \dot{q}_{1^{\prime}}, \ldots, \dot{q}_{n^{\prime}} ; \dot{q}_{1}, \ldots, \dot{q}_{n}\right), \tag{4.4.17b}
\end{equation*}
$$

from that calculate $\partial T / \partial \dot{q}_{k^{\prime}}$ and $\partial T / \partial \dot{q}_{k}$, and so on, and reasoning as before for the new relaxed problem, arrive at the uncoupled system

Kinetostatic equations: $\quad\left(\Delta p_{k^{\prime}}\right)_{o}=\left(\hat{Q}_{k^{\prime}}\right)_{o}+\hat{\lambda}_{k^{\prime}} \quad\left(k^{\prime}=1, \ldots, n^{\prime}\right)$,
Kinetic equations: $\quad\left(\Delta p_{k}\right)_{o}=\left(\hat{Q}_{k}\right)_{o} \quad(k=1, \ldots, n)$;
where $(\ldots)_{o} \equiv(\ldots)$ evaluated for $q_{k^{\prime}}=$ constant (e.g., for 0) and $\dot{q}_{k^{\prime}}=0$. We can easily show that the relaxed T, (4.4.17b), is needed only for the kinetostatic (4.4.17c); for the kinetic ones, (4.4.17d), we can use the original (unrelaxed, or constrained) kinetic energy T_{o} (why?). Finally, the whole method of RIP can be applied without theoretical complications to second|third|fourth-types of impulsive problems.

Sudden Rupture of Constraints

As mentioned earlier, this is not an impulsive problem but one of initial (finite) motion; the jumps appear in the \ddot{q} 's. If, after the rupture, the system has n Lagrangean coordinates, its postrupture equations of motion are (with the usual notations)

$$
\begin{equation*}
E_{k}(T)=Q_{k} \quad(k=1, \ldots, n), \tag{4.4.18a}
\end{equation*}
$$

and, if the suppressed (broken) constraints are

$$
\begin{equation*}
\sum a_{D k} \delta q_{k}=0 \quad[D=1, \ldots, m(<n)], \tag{4.4.18b}
\end{equation*}
$$

then the prerupture equations are

$$
\begin{equation*}
E_{k}(T)=Q_{k}+\sum \lambda_{D} a_{D k} \quad(k=1, \ldots, n) \tag{4.4.18c}
\end{equation*}
$$

Solving these sets of equations (e.g., subtracting them side by side, etc.), we can calculate the acceleration jumps: $\Delta \ddot{q} \equiv(\ddot{q})^{+}-(\ddot{q})^{-}$.

Example 4.4.1 Elementary (Newton-Euler) Theory of Rigid-Body Collisions. Let us consider two rigid bodies, B_{1} and B_{2}, with respective masses m_{1} and m_{2}, mass centers G_{1} and G_{2}, colliding at a certain instant t^{-}at the contact point C (fig. 4.2). Then, by the impulsive principles of linear and angular momentum, applied to B_{1} and B_{2} separately, we obtain

$$
\begin{array}{ll}
m_{1}\left(\boldsymbol{v}_{1}^{+}-\boldsymbol{v}_{1}^{-}\right)=-\hat{\boldsymbol{f}}, & \boldsymbol{H}_{1}^{+}-\boldsymbol{H}_{1}^{-}=\boldsymbol{r}_{1} \times(-\hat{\boldsymbol{f}})=-\boldsymbol{r}_{1} \times \hat{\boldsymbol{f}}, \\
m_{2}\left(\boldsymbol{v}_{2}^{+}-\boldsymbol{v}_{2}^{-}\right)=\hat{\boldsymbol{f}}, & \boldsymbol{H}_{2}^{+}-\boldsymbol{H}_{2}^{-}=\boldsymbol{r}_{2} \times \hat{\boldsymbol{f}} \tag{a3,4}
\end{array}
$$

where $\hat{\boldsymbol{f}}=$ impulsive force, at C, say from B_{1} to B_{2}, and $\boldsymbol{H}_{1,2}=$ angular momenta of $B_{1,2}$ about $G_{1,2}$, respectively. Now, since the precollision velocities are assumed

Figure 4.2 Collision of two rigid bodies. \boldsymbol{n} : Common unit normal (from B_{1} to B_{2}); $\boldsymbol{H}_{G_{1}} \equiv \boldsymbol{H}_{1}, \boldsymbol{H}_{G_{2}} \equiv \boldsymbol{H}_{2}$.
known, the above constitutes a system of 4×3 scalar equations for the 5×3 unknown components of $\boldsymbol{v}_{1}{ }^{+}, \boldsymbol{v}_{2}{ }^{+} ; \boldsymbol{H}_{1}{ }^{+}, \boldsymbol{H}_{2}{ }^{+} ; \hat{\boldsymbol{f}}\left[\mathrm{from} \boldsymbol{H}_{1}{ }^{+}, \boldsymbol{H}_{2}{ }^{+}\right.$we can determine the postcollision angular velocities $\omega_{1}{ }^{+}$and $\omega_{2}{ }^{+}$via inversion of $\boldsymbol{H}=\mathbf{I} \cdot \boldsymbol{\omega}$, $\mathbf{I}=$ inertia tensor at G (known), for each body].

Hence, the principles of mechanics alone do not suffice to solve the impact problem; we need additional physical hypotheses to remove the (15-12=) 3-fold indeterminacy.

REMARK

The indeterminacy is due to our simple/idealized model of the impact problem; that is, to the rigid bodies and impulsive forces; a model that has also led to indeterminacy in ordinary/finite motion, for example, statical indeterminacy. As there, determinacy is here attained by adoption of the more realistic (and more "expensive") model of the deformable body. Then, the contact point C becomes a contact surface $C=C(t)$; while the impulsive force $\hat{\boldsymbol{f}}$ is replaced by the following resultant of a complicated distribution of surface tractions $\boldsymbol{t}_{(n)}$ over $C: \hat{\boldsymbol{f}}=\int d t\left(\int_{C} \boldsymbol{t}_{(n)} d C\right)$. For details, see works on dynamic elasticity, and so on.

Here, we remove the indeterminacy with the following two empirical hypotheses:
(i) B_{1} and B_{2} are smooth, so that $\hat{\boldsymbol{f}}=\hat{f} \boldsymbol{n}$, where $\hat{f}>0$ and $\boldsymbol{n}=$ unit vector at C, along the common normal, say from B_{1} to B_{2}; a hypothesis that reduces the number of unknowns to 13: $\boldsymbol{v}_{1}^{+}, \boldsymbol{v}_{2}{ }^{+} ; \boldsymbol{H}_{1}^{+}, \boldsymbol{H}_{2}^{+} ; \hat{f}$, and
(ii) Conservation of (kinetic) energy: $\Delta T \equiv T^{+}-T^{-}=0$; which, since T^{-}is known and T^{+}can be expressed in terms of $\boldsymbol{v}_{1}{ }^{+}, \boldsymbol{v}_{2}{ }^{+} ; \boldsymbol{H}_{1}{ }^{+}, \boldsymbol{H}_{2}{ }^{+}$, reduces the number of unknowns to 12 , and thus makes the problem determinate.

Speed of Compression; Coefficient of Restitution

Let us generalize a bit. If the velocities of the two particles of B_{1} and B_{2} in contact at C are \boldsymbol{u}_{1} and \boldsymbol{u}_{2}, so that before, during, and after the collision, $\boldsymbol{u}_{1}=\boldsymbol{v}_{1}+\boldsymbol{\omega}_{1} \times \boldsymbol{r}_{1}$ and
$\boldsymbol{u}_{2}=\boldsymbol{v}_{2}+\omega_{2} \times \boldsymbol{r}_{2}$, then the speed of compression c is defined as

$$
\begin{equation*}
c \equiv\left(\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right) \cdot \boldsymbol{n}=\text { normal component of relative velocity at } C \tag{b}
\end{equation*}
$$

(initially positive, since B_{1} and B_{2} tend to overlap).
Now, with the help of c, the collision process is decomposed into the following two stages:
(i) a period of compression (approaching of B_{1} and B_{2}): $c>0$;
(ii) a period of restitution (separation of B_{1} and B_{2}): $c<0$;
since, at the end of the compression period, the impact forces $-\hat{\boldsymbol{f}} \rightarrow-\hat{I} \boldsymbol{n}$ and $\hat{\boldsymbol{f}} \rightarrow \hat{\boldsymbol{I}} \boldsymbol{n}$ reduce c to zero. If $(\ldots)^{*} \equiv(\ldots)$ at the end of the compression period, then applying again linear and angular momentum on B_{1} and B_{2}, between the beginning and the end of the compression period, we obtain

$$
\begin{array}{ll}
m_{1}\left(\boldsymbol{v}_{1}^{*}-\boldsymbol{v}_{1}^{-}\right)=-\hat{I} \boldsymbol{n}, & \boldsymbol{H}_{1}^{*}-\boldsymbol{H}_{1}^{-}=\boldsymbol{r}_{1} \times(-\hat{I} \boldsymbol{n})=-\boldsymbol{r}_{1} \times \hat{I} \boldsymbol{n} \\
m_{2}\left(\boldsymbol{v}_{2}^{*}-\boldsymbol{v}_{2}^{-}\right)=\hat{I} \boldsymbol{n}, & \boldsymbol{H}_{2}^{*}-\boldsymbol{H}_{2}^{-}=\boldsymbol{r}_{2} \times \hat{I} \boldsymbol{n} \\
c^{*} \equiv\left(\boldsymbol{u}_{1}^{*}-\boldsymbol{u}_{2}^{*}\right) \cdot \boldsymbol{n}=0 & \tag{e}
\end{array}
$$

which constitutes a determinate system of $(4 \times 3)+1=13$ scalar equations for the 13 scalar unknowns of the end of the compression period: $\boldsymbol{v}_{1}{ }^{*}, \boldsymbol{v}_{2}{ }^{*} ; \boldsymbol{H}_{1}{ }^{*}, \boldsymbol{H}_{2}{ }^{*} ; \hat{I}$. Having found \hat{I}, and assuming that the impulsive forces during the restitution period are proportional to those forces during the compression period, the factor of that proportionality called coefficient of restitution, e, we can then write in (a1-4),

$$
\begin{equation*}
\hat{\boldsymbol{f}}=(1+e) \hat{I} \boldsymbol{n} \tag{f}
\end{equation*}
$$

and thus reduce its number of scalar unknowns to $13: \boldsymbol{v}_{1}{ }^{+}, \boldsymbol{v}_{2}{ }^{+} ; \boldsymbol{H}_{1}{ }^{+}, \boldsymbol{H}_{2}{ }^{+} ; e$. Therefore, the problem becomes determinate by specifying the value of e. We have the following three cases: $e=0$: inelastic collision; $e=1$: elastic collision; $0<e<1$: semielastic collision. It can be shown that the elastic case, $e=1$, implies the conservation condition $T^{+}=T^{-}$.

Example 4.4.2 Specialization of the Above to the Case of the Collision of Two, Originally Nonrotating, Smooth and Homogeneous Spheres. Here, since $-\boldsymbol{r}_{1} \times \hat{\boldsymbol{f}}=\mathbf{0}$ and $\boldsymbol{r}_{2} \times \hat{\boldsymbol{f}}=\mathbf{0}$, eqs. (cl-e) of the preceding example reduce to

$$
\begin{equation*}
m_{1}\left(\boldsymbol{v}_{1}^{*}-\boldsymbol{v}_{1}^{-}\right)=-\hat{I} \boldsymbol{n}, \quad m_{2}\left(\boldsymbol{v}_{2}^{*}-\boldsymbol{v}_{2}^{-}\right)=\hat{I} \boldsymbol{n}, \quad\left(\boldsymbol{u}_{1}^{*}-\boldsymbol{u}_{2}^{*}\right) \cdot \boldsymbol{n}=0 \tag{a}
\end{equation*}
$$

and $\boldsymbol{H}_{1}{ }^{*}-\boldsymbol{H}_{1}{ }^{-}=\mathbf{0}, \boldsymbol{H}_{2}{ }^{*}-\boldsymbol{H}_{2}{ }^{-}=\mathbf{0}$ (since $\boldsymbol{\omega}_{1}{ }^{-}=\mathbf{0}$ and $\boldsymbol{\omega}_{2}{ }^{-}=\mathbf{0}$, and, hence, also $\boldsymbol{u}_{1}{ }^{*}=\boldsymbol{v}_{1}{ }^{*}$ and $\boldsymbol{u}_{2}{ }^{*}=\boldsymbol{v}_{2}{ }^{*}$; and $\omega_{1}{ }^{+}=\mathbf{0}$ and $\boldsymbol{\omega}_{2}^{+}=\mathbf{0}$). Solving the system (a) we obtain

$$
\begin{equation*}
\hat{I}=\left[m_{1} m_{2} /\left(m_{1}+m_{2}\right)\right]\left[\left(\boldsymbol{v}_{1}^{-}-\boldsymbol{v}_{2}^{-}\right) \cdot \boldsymbol{n}\right]=\left(m_{1} m_{2} c\right) /\left(m_{1}+m_{2}\right) \tag{b1}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\hat{\boldsymbol{f}}=\left[m_{1} m_{2} c(1+e) /\left(m_{1}+m_{2}\right)\right] \boldsymbol{n} \tag{b2}
\end{equation*}
$$

where $c=$ known initial (preimpact) value of compression speed (>0). As a result, eqs. (a1-4,f) of the preceding example yield

$$
\begin{equation*}
m_{1}\left(\boldsymbol{v}_{1}^{+}-\boldsymbol{v}_{1}^{-}\right)=-(1+e) \hat{I} \boldsymbol{n}, \quad m_{2}\left(\boldsymbol{v}_{2}^{+}-\boldsymbol{v}_{2}^{-}\right)=(1+e) \hat{I} \boldsymbol{n}, \tag{c}
\end{equation*}
$$

and from these we readily obtain the postimpact velocities

$$
\begin{align*}
& \boldsymbol{v}_{1}^{+}=\boldsymbol{v}_{1}^{-}-\left\{c /\left[1+\left(m_{2} / m_{1}\right)\right]\right\}(1+e) \boldsymbol{n}, \tag{d1}\\
& \boldsymbol{v}_{2}^{+}=\boldsymbol{v}_{2}^{-}+\left\{c /\left[1+\left(m_{2} / m_{1}\right)\right]\right\}(1+e) \boldsymbol{n} . \tag{d2}
\end{align*}
$$

We leave it to the reader to show that the kinetic energy change equals

$$
\begin{equation*}
\Delta T \equiv T^{+}-T^{-}=-\left[m_{1} m_{2} c^{2} / 2\left(m_{1}+m_{2}\right)\right]\left(1-e^{2}\right) \leq 0 \tag{e}
\end{equation*}
$$

that is, $T^{+} \leq T^{-}$, in general (since $0 \leq e \leq 1$) an energy loss! Special cases are:
(i) $e=1$ (elastic impact): $\Delta T=0$: energy of compression $=$ energy of restitution;
(ii) $e=0$ (inelastic impact): $\Delta T=-\left(m_{1} m_{2} c^{2}\right) / 2\left(m_{1}+m_{2}\right)$.

For an elementary, but instructive and rare, treatment of the role of friction in impact, see, for example, Hamel ([1922(a)] 1912, pp. 447-450).

Example 4.4.3 A thin, straight, and homogeneous bar $A B$, of mass m and length $2 b$, moves on a fixed, horizontal, and smooth plane p. At a certain moment, the bar strikes a fixed peg O located a distance c from the center of mass of the bar G. Let us calculate the postimpact velocities in the following two cases: (i) the point of the bar that strikes O stays fixed relative to the latter, and (ii) the bar remains in contact with O and slides without friction on it (fig. 4.3) (Lainé, 1946, pp. 188-191).

On p, let us choose axes $O-x y$ such that $x=c, y=0, \phi=0$. Now, by König's theorem, the (double) kinetic energy of the bar is

$$
\begin{equation*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+\left(m b^{2} / 3\right)(\dot{\phi})^{2} \tag{a}
\end{equation*}
$$

and since, obviously, $\widehat{\delta^{\prime} W}=0$, the impulsive Lagrangean principle (LIP) yields

$$
\begin{align*}
& \Delta(\partial T / \partial \dot{x}) \delta x+\Delta(\partial T / \partial \dot{y}) \delta y+\Delta(\partial T / \partial \dot{\phi}) \delta \phi=0 \\
& \quad \Rightarrow(\Delta \dot{x}) \delta x+(\Delta \dot{y}) \delta y+\left(b^{2} \Delta \dot{\phi} / 3\right) \delta \phi=0 . \tag{b}
\end{align*}
$$

Figure 4.3 Geometry of bar $A B$ moving on a fixed, horizontal, and smooth plane p, and striking a fixed peg O. $|A B|=2 b, O G=(x, y) \Rightarrow|O G|=c$, and angle $(A B, O x) \equiv \phi \rightarrow 0$.

Let us find the restrictions among $\delta x, \delta y, \delta \phi$.
(i) When the bar point sticks to O, the constraints are

$$
\begin{align*}
& x=c \cos \phi \Rightarrow \delta x=-\left.c \sin \phi \delta \phi\right|_{\phi=0}=0 \tag{c1}\\
& y=c \sin \phi \Rightarrow \delta y=\left.c \cos \phi \delta \phi\right|_{\phi=0}=c \delta \phi \tag{c2}
\end{align*}
$$

and, therefore, LIP, eq. (b), reduces to

$$
\begin{equation*}
(\Delta \dot{y})(c \delta \phi)+\left(b^{2} / 3\right) \Delta \dot{\phi} \delta \phi=0 \Rightarrow c \Delta \dot{y}+\left(b^{2} / 3\right) \Delta \dot{\phi}=0 \tag{d1}
\end{equation*}
$$

or, explicitly [with $(\dot{\phi})^{+} \equiv \omega$],

$$
\begin{equation*}
c\left[(\dot{y})^{+}-(\dot{y})^{-}\right]+\left(b^{2} / 3\right)\left(\omega-\omega^{-}\right)=0 . \tag{d2}
\end{equation*}
$$

However, from the velocity form of the constraints, evaluated at the impact configuration, we find the following postimpact velocities $\left[\right.$ with $\left.(\dot{x})^{+} \equiv \dot{x},(\dot{y})^{+} \equiv \dot{y}\right]$:

$$
\begin{equation*}
\dot{x}=-\left.c \sin \phi \dot{\phi}\right|_{\phi=0}=0, \quad \dot{y}=\left.c \cos \phi \dot{\phi}\right|_{\phi=0}=c \omega ; \tag{e}
\end{equation*}
$$

and so (d2) yields

$$
\begin{align*}
& c\left[c \omega-(\dot{y})^{-}\right]+\left(b^{2} / 3\right)\left(\omega-\omega^{-}\right)=0 \\
& \Rightarrow \omega=\left[c(\dot{y})^{-}+\left(b^{2} / 3\right) \omega^{-}\right] /\left[c^{2}+\left(b^{2} / 3\right)\right] \tag{f}
\end{align*}
$$

[Elementary solution: applying angular momentum conservation about O we get

$$
\left.H_{O}^{-}=H_{O}^{+}:\left(m b^{2} / 3\right) \omega^{-}+m c(\dot{y})^{-}=m\left[\left(b^{2} / 3\right)+c^{2}\right] \omega^{-} \Rightarrow \omega^{-}=\ldots, \text { eq. (f). }\right]
$$

(ii) When the bar is obliged to slide on O, the component of $\boldsymbol{v}_{O^{\prime}}=\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{O^{\prime} / G}$ (O^{\prime} : bar point, instantaneously adjacent to peg O) normal to $O x$ must vanish:

$$
\begin{align*}
\boldsymbol{v}_{O^{\prime}} \cdot \boldsymbol{j} & =\boldsymbol{v}_{G} \cdot \boldsymbol{j}+\left(\boldsymbol{\omega} \times \boldsymbol{r}_{O^{\prime} / G}\right) \cdot \boldsymbol{j} \\
& =(\dot{x}, \dot{y}, 0) \cdot(0,1,0)+[(0,0, \dot{\phi}) \times(-c, 0,0)] \cdot(0,1,0) \\
& =(\dot{y}-c \dot{\phi}, 0,0)=(0,0,0) \quad[\text { since at the impact moment: } x=c], \tag{g1}
\end{align*}
$$

that is,

$$
\begin{equation*}
\dot{y}-c \dot{\phi}=0 \Rightarrow \delta y-c \delta \phi=0 \quad[\text { since this constraint is scleronomic }] ; \tag{g2}
\end{equation*}
$$

which, we notice, is the same as (c2).
Hence, in this case, we have the following two variational equations:

$$
\begin{align*}
& (\Delta \dot{x}) \delta x+(\Delta \dot{y}) \delta y+\left(b^{2} \Delta \dot{\phi} / 3\right) \delta \phi=0 \tag{h1}\\
& (0) \delta x+(1) \delta y+(-c) \delta \phi=0 \tag{h2}
\end{align*}
$$

from which we obtain immediately

$$
\begin{align*}
& \Delta \dot{x}=0 \Rightarrow \dot{x}=(\dot{x})^{-} \quad[\text { different from first of }(\mathrm{e}), \text { since here } \delta x \neq 0], \tag{i1}\\
& c \Delta \dot{y}+\left(b^{2} / 3\right) \Delta \dot{\phi}=0 \Rightarrow c\left[\dot{y}-(\dot{y})^{-}\right]+\left(b^{2} / 3\right)\left[\dot{\phi}-(\dot{\phi})^{-}\right]=0, \tag{i2}
\end{align*}
$$

from which, since $\dot{y}=c \dot{\phi} \equiv c \omega$, finally,

$$
\begin{equation*}
\omega=\left[c(\dot{y})^{-}+\left(b^{2} / 3\right) \omega^{-}\right] /\left[c^{2}+\left(b^{2} / 3\right)\right] \quad[\text { same as in the preceding case, eq. (f) }] . \tag{i3}
\end{equation*}
$$

Problem 4.4.1 Consider a two-DOF holonomic system with (double) kinetic energy:

$$
\begin{equation*}
2 T=A(\dot{x})^{2}+2 B \dot{x} \dot{y}+C(\dot{y})^{2} \tag{a}
\end{equation*}
$$

where $x, y=$ Lagrangean coordinates; $A, B, C=$ inertia coefficients (functions of $x, y)$. Show that its postimpact kinetic energy, from a motionless preimpact state defined by $x, y=0 ;(\dot{x})^{-},(\dot{y})^{-}=0 ; A, B, C \rightarrow A_{o}, B_{o}, C_{o}$, under the Lagrangean impulsive forces X and Y, equals

$$
\begin{equation*}
2 T^{+}=\left(C_{o} X^{2}-2 B_{o} X Y+A_{o} Y^{2}\right) /\left(A_{o} C_{o}-B_{o}{ }^{2}\right) \tag{b}
\end{equation*}
$$

HINT

Solve the impulsive Lagrangean equations $(\partial T / \partial \dot{x})^{+}-(\partial T / \partial \dot{x})^{-}=X$, and so on, for $(\dot{x})^{+},(\dot{y})^{+}$in terms of $X, Y ; A_{o}, B_{o}, C_{o}$.

Problem 4.4.2 Apply the result (b) of the preceding problem to the impact of a double pendulum (fig. 4.4) consisting of two equal and homogeneous rods, $A B$ and $B C$, each of mass m and length l, smoothly hinged at A to a fixed object (a ceiling) and to each other at B, initially in vertical equilibrium and struck at C by a horizontal blow of magnitude $\hat{\boldsymbol{P}}$.

Figure 4.4 Impact at tip of a double pendulum.

HINT
The postimpact kinetic energy equals [omitting the (... $)^{+}$for convenience]

$$
2 T=m\left(v_{1}^{2}+v_{2}^{2}\right)+I\left[\left(\dot{\phi}_{1}\right)^{2}+\left(\dot{\phi}_{2}\right)^{2}\right]
$$

where: $I=m l^{2} / 12, v_{1}=(l / 2) \dot{\phi}_{1}, v_{2}=l \dot{\phi}_{1}+(l / 2) \dot{\phi}_{2}, v_{1,2}=$ velocities of centers of mass of $A B$ and $B C$, respectively, in vertical configuration. (See, e.g., Lamb, 1923, pp. 321-322.)

Problem 4.4.3 Assuming that the δq 's are independent, show that the Lagrangean system momenta equal the corresponding Lagrangean system impulses that would, instantaneously, create the motion from rest.

Problem 4.4.4 (Lainé, 1946, pp. 196-200). An articulated rhombus $R, A B C D$, formed of four identical thin and homogeneous rigid bars, each of length $2 b$ and mass m (fig. 4.5), falls freely translating so that its diagonal $A C$ is vertical; also, let angle $(B A D) \equiv 2 \phi(0<\phi<\pi / 2)$. At the instant of impact of A with the smooth horizontal ground, its translational velocity (including that of its mass center G) is v_{o}, vertically and downwards. Finally, let e be the coefficient of restitution, and assume that the impulse at A is distributed symmetrically between $A B$ and $A D$.

For convenience, but no loss in generality, take axes $O-x y$ ($O x$: vertical, $O y$: horizontal) such that, at the impact moment; $A=O ; R$ is also shown in an arbitrary configuration $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ [fig. 4.5(b)]. The latter can, clearly, be specified by the following four Lagrangean coordinates: (x, y) for G, angle $\left(A x, A^{\prime} C^{\prime}\right) \equiv \theta$, and angle $\left(A^{\prime} C^{\prime}, A^{\prime} D^{\prime}\right) \equiv \phi$.
(i) Show that the (double) kinetic energy of R equals

$$
\begin{equation*}
2 T=4 m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+\left(16 m b^{2} / 3\right)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2}\right] . \tag{a}
\end{equation*}
$$

Figure 4.5 (a) Geometry of rhombus $R, A B C D$, falling freely translating with velocity v_{0}, so that $A C$ is vertical, and then hitting the smooth ground at $A ;(\mathrm{b})$ rhombus in arbitrary configuration.

HINTS
Let 1, 2, 3, 4 be, respectively, the centers of mass (midpoints) of the bars $A^{\prime} B^{\prime}, A^{\prime} D^{\prime}$, $B^{\prime} C^{\prime}, D^{\prime} C^{\prime}$. Next, notice (or prove) that (a) 1 describes a circle of center G and radius b, with angular velocity $\dot{\theta}+\dot{\phi}$, while (b) the bar $A^{\prime} B^{\prime}$ rotates about 1 with angular velocity $\dot{\theta}-\dot{\phi}$. Hence, its (double) kinetic energy relative to G is

$$
\begin{equation*}
2 T_{A^{\prime} B^{\prime}, \text { relative }}=m b^{2}(\dot{\theta}+\dot{\phi})^{2}+\left(m b^{2} / 3\right)(\dot{\theta}-\dot{\phi})^{2} \tag{al}
\end{equation*}
$$

and this clearly equals the kinetic energy of $D^{\prime} C^{\prime}$; that is, $2 T_{C^{\prime} D^{\prime}, \text { relative }}=$ $2 T_{A^{\prime} B^{\prime}, \text { relative }}$; while reasoning analogously for the bars $A^{\prime} D^{\prime}, B^{\prime} C^{\prime}$ one finds

$$
\begin{equation*}
2 T_{A^{\prime} D^{\prime}, \text { relative }}=2 T_{B^{\prime} C^{\prime}, \text { relative }}=m b^{2}(\dot{\theta}-\dot{\phi})^{2}+\left(m b^{2} / 3\right)(\dot{\theta}+\dot{\phi})^{2} \tag{a2}
\end{equation*}
$$

Finally, applying König's theorem to this nonrigid system (i.e., $T=T_{\text {of } G}+$ $T_{\text {relative to } G}$) yields (a).
(ii) Since the constraints are (with some easily understood notations)

$$
\begin{align*}
& \boldsymbol{v}_{A^{\prime}}= \boldsymbol{v}_{1}+\omega_{A^{\prime} B^{\prime}} \times \boldsymbol{r}_{A^{\prime} / 1}=\left(\boldsymbol{v}_{G^{\prime}}+\boldsymbol{v}_{1 / G^{\prime}}\right)+\omega_{A^{\prime} B^{\prime}} \times \boldsymbol{r}_{A^{\prime} / 1} \\
& \quad\left[\text { notice that } \boldsymbol{v}_{1 / G^{\prime}}=\left(d x_{1 / G^{\prime}} / d t, d y_{1 / G^{\prime}} / d t\right)(\text { only } x \text { and } y \text { components shown })\right. \\
& \quad\text { where } \left.x_{1 / G^{\prime}} \equiv x_{1}-x_{G^{\prime}}=-b \cos (\theta+\phi), y_{1 / G^{\prime}} \equiv y_{1}-y_{G^{\prime}}=-b \sin (\theta+\phi)\right] \\
&=(\dot{x}, \dot{y})+(b(\dot{\theta}+\dot{\phi}) \sin (\theta+\phi),-b(\dot{\theta}+\dot{\phi}) \cos (\theta+\phi)) \\
&+[(\dot{\theta}-\dot{\phi}) \boldsymbol{k}] \times(-b \cos (\theta-\phi), b \sin (\theta-\phi)) \\
&=(\dot{x}+b(\dot{\theta}+\dot{\phi}) \sin (\theta+\phi)+b(\dot{\theta}-\dot{\phi}) \sin (\theta-\phi), \\
&\dot{y}-b(\dot{\theta}+\dot{\phi}) \cos (\theta+\phi)-b(\dot{\theta}-\dot{\phi}) \cos (\theta-\phi)) \\
&=(\dot{x}+2 b \dot{\theta} \cos \phi \sin \theta+2 b \dot{\phi} \sin \phi \cos \theta, \\
&\dot{y}-2 b \dot{\theta} \cos \phi \cos \theta+2 b \dot{\phi} \sin \phi \sin \theta) \\
& \quad[\text { evaluated at } \theta=0, \dot{\theta}=0] \\
&=(\dot{x}+2 b \dot{\phi} \sin \phi, \dot{y})=v_{A x} \boldsymbol{i}+v_{A y} \boldsymbol{j}, \tag{b}\\
& \Rightarrow \text { vertical virtual displacement of A should vanish: } \delta x+(2 b \sin \phi) \delta \phi=0, \tag{c}
\end{align*}
$$

(although, in general, $v_{A x}=$ nonzero constant), and since $\widehat{\delta^{\prime} W}=0$, verify that the impulsive Lagrangean principle, under (c), yields the following equations of motion:

$$
\begin{array}{ll}
y: & \Delta(\partial T / \partial \dot{y})=0 \Rightarrow(\dot{y})^{+} \equiv \dot{y}=(\dot{y})^{-}=0, \\
\theta: & \Delta(\partial T / \partial \dot{\theta})=0 \Rightarrow(\dot{\theta})^{+} \equiv \dot{\theta}=(\dot{\theta})^{-}=0 \tag{c2}
\end{array}
$$

$x, \phi: \hat{\lambda}=-\Delta(\partial T / \partial \dot{x})=-(2 b \sin \phi)^{-1} \Delta(\partial T / \partial \dot{\phi}) \quad(\hat{\lambda}:$ impulsive multiplier \quad (c3)

$$
\begin{equation*}
\Rightarrow \Delta \dot{x}=(2 b / 3 \sin \phi) \Delta \dot{\phi} \Rightarrow 3\left(\dot{x}+v_{o}\right) \sin \phi=2 b \dot{\phi} \tag{c4}
\end{equation*}
$$

[Since $\Delta \dot{x} \equiv(\dot{x})^{+}-(\dot{x})^{-} \equiv \dot{x}-(\dot{x})^{-}=\dot{x}-\left(-v_{o}\right)=\dot{x}+v_{o}$,

$$
\left.\Delta \dot{\phi} \equiv(\dot{\phi})^{+}-(\dot{\phi})^{-} \equiv \dot{\phi}-(\dot{\phi})^{-}=\dot{\phi}-0=\dot{\phi}\right]
$$

(iii) Verify that (c4) and the constitutive relation $\dot{x}+2 b \dot{\phi} \sin \phi=-e\left(-v_{o}\right)$ yield the values

$$
\begin{align*}
& \dot{x}=\left[\left(e-3 \sin ^{2} \phi\right) /\left(1+3 \sin ^{2} \phi\right)\right] v_{o}, \tag{d1}\\
& \dot{\phi}=\left[3(1+e) \sin \phi / 2 b\left(1+3 \sin ^{2} \phi\right)\right] v_{o} \tag{d2}
\end{align*}
$$

and from these, and (c3), that

$$
\begin{equation*}
\hat{\lambda}=-4 m\left[\dot{x}-(\dot{x})^{-}\right]=-4 m\left(\dot{x}+v_{o}\right)=\cdots . \tag{d3}
\end{equation*}
$$

Since $(\dot{\theta})^{-}=0$, then, by symmetry, we may set $\dot{\theta}=0, \theta=0, \dot{y}=0, y=0$, for all t.

REMARK

The inelastic case $e=0$ can be treated like a problem with a new constraint. Here, too, $\delta x+(2 b \sin \phi) \delta \phi=0$, but now (taking the limit of the above values as $e \rightarrow 0$)

$$
\begin{align*}
& \dot{x}=\left[-3 \sin ^{2} \phi /\left(1+3 \sin ^{2} \phi\right)\right] v_{o}, \quad \dot{y}=0, \quad \dot{\theta}=0, \tag{el}\\
& \dot{\phi}=\left[3 \sin \phi / 2 b\left(1+3 \sin ^{2} \phi\right)\right] v_{0}, \quad \hat{\lambda}=-\left[4 m /\left(1+3 \sin ^{2} \phi\right)\right] v_{o} . \tag{e2}
\end{align*}
$$

Similarly, for the elastic case $e=1: \dot{x}+2 b \dot{\phi} \sin \phi=v_{o}$.
For a solution based on the theorem of Carnot (§4.6), see Lainé (1946, p. 201).
Problem 4.4.5 (Lainé, 1946, pp. 193-194). A particle P of mass m is forced to slide on a smooth moving circle (i.e., a circular, rigid, and light wire) C of center O and radius r (fig. 4.6). The axis of C (perpendicular to the plane of the circle) coincides

Figure 4.6 Geometry of two-particle system, P and Q, connected by a light and inextensible cord, which at some point in time gets suddenly taut. P can slide on a uniformly translating circle, while Q, before the impact, moves freely in space.
continuously with a fixed line L, on which O is forced to move with constant translational velocity v. A second particle Q of mass M moves freely in space. The two particles are connected by an inextensible and massless cord whose length l, in the beginning, is longer than the distance $P Q$; that is, the cord is slack. At a certain moment, during the motion, the distance $P Q$ becomes equal to the length of the cord, which thus finds itself suddenly taut. Assume that, at that moment, the positions and (preimpact) velocities of P and Q are known, and that Q is on L.

For convenience, but no loss in generality, choose axes $O-x y z$ such that, at the impact moment, O coincides with the center of $C, O z$ with L and along the circle velocity v, and $O x$ with $O P(=+r)$. In these axes, the generic preimpact coordinates of P are

$$
x=r \cos \phi, \quad y=r \sin \phi, \quad z=v t \quad[(r, \phi): \text { plane polar coordinates of } P], \quad(\text { a) }
$$

and, therefore, its corresponding velocity components are

$$
\begin{equation*}
\dot{x}=-r \sin \phi \dot{\phi}, \quad \dot{y}=r \cos \phi \dot{\phi}, \quad \dot{z}=v \tag{b}
\end{equation*}
$$

Hence, just before the impact $(t=0, \phi=0)$,

$$
\begin{equation*}
x^{-}=r, \quad y^{-}=0, \quad z^{-}=0 ; \quad(\dot{x})^{-}=0, \quad(\dot{y})^{-}=r(\dot{\phi})^{-}, \quad \dot{z}=v \tag{cl}
\end{equation*}
$$

Similarly, let the preimpact position and velocity of Q be, respectively,

$$
\begin{equation*}
X^{-}, \quad Y^{-}, \quad Z^{-} ; \quad(\dot{X})^{-}, \quad(\dot{Y})^{-}, \quad(\dot{Z})^{-} \tag{c2}
\end{equation*}
$$

From the above it follows that, before the shock, the Lagrangean coordinates of the system are $q_{1, \ldots, 4}=\phi, X, Y, Z$.
(i) Show that its (double) kinetic energy equals

$$
\begin{equation*}
2 T=m\left[(r \dot{\phi})^{2}+v^{2}\right]+M\left(\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}\right), \tag{d}
\end{equation*}
$$

while its impressed impulsive virtual work vanishes: $\widehat{\delta^{\prime} W}=0$; and so the impulsive Lagrangean principle becomes (dropping, for convenience, all superscript minuses from $q_{1, \ldots, 4}$)

$$
\begin{equation*}
\Delta(\partial T / \partial \dot{X}) \delta X+\Delta(\partial T / \partial \dot{Y}) \delta Y+\Delta(\partial T / \partial \dot{Z}) \delta Z+\Delta(\partial T / \partial \phi) \delta \phi=0 \tag{e}
\end{equation*}
$$

Now, the tightening of the cord is equivalent to the sudden introduction of the constraint $|\boldsymbol{P Q}|=l$ (constant), or, in terms of $q_{1, \ldots, 4}$,

$$
\begin{equation*}
(X-r \cos \phi)^{2}+(Y-r \sin \phi)^{2}+(Z-v t)^{2}=l^{2} \tag{f1}
\end{equation*}
$$

or, rearranging,

$$
\begin{equation*}
\left(X^{2}+Y^{2}+Z^{2}\right)-2 r(X \cos \phi+Y \sin \phi)-2 Z(v t)+(v t)^{2}=l^{2}-r^{2} \tag{f2}
\end{equation*}
$$

and $\delta(\ldots)$-varying this (while recalling to set $\delta t=0$, and $\delta v=0$), we obtain the virtual form of the constraint:

$$
\begin{align*}
& X \delta X+Y \delta Y+Z \delta Z \\
& \quad-r(\cos \phi \delta X+\sin \phi \delta Y)-r(-X \sin \phi+Y \cos \phi) \delta \phi-(v t) \delta Z=0 \tag{f3}
\end{align*}
$$

Therefore, at the impact moment (i.e., $t=0, \phi=0$), the $\delta q_{1, \ldots, 4}$ satisfy

$$
\begin{equation*}
(X-r) \delta X+Y \delta Y+Z \delta Z-r Y \delta \phi=0 \tag{f4}
\end{equation*}
$$

(ii) Show that the variational equation (e), under (f4), produces [with the help of the multiplier $\hat{\lambda}$ (proportional to the impulsive cord reaction)] the following four equations:

$$
\begin{align*}
& M \Delta \dot{X}=\hat{\lambda}(X-r), \quad M \Delta \dot{Y}=\hat{\lambda} Y, \quad M \Delta \dot{Z}=\hat{\lambda} Z \\
& \left(m r^{2}\right) \Delta \dot{\phi}=-\hat{\lambda} r Y ; \tag{g}
\end{align*}
$$

and these, along with the (...)-form of the constraint (f1, 2) (evaluated at $t=0$, $\phi=0$; and, for convenience, without the superscript pluses in the postimpact $\dot{q}_{1, \ldots, 4}$)

$$
\begin{align*}
(X-r \cos \phi) \dot{X} & +(Y-r \sin \phi) \dot{Y}+(Z-v t) \dot{Z} \\
& \quad-r(-X \sin \phi+Y \cos \phi) \dot{\phi}-v Z+v^{2} t=0 \tag{h1}\\
\Rightarrow(X-r) \dot{X}+ & (Y) \dot{Y}+(Z) \dot{Z}-(r Y) \dot{\phi}-v Z=0 \tag{h2}
\end{align*}
$$

yield a system of five equations for $\dot{X}, \dot{Y}, \dot{Z}, \dot{\phi} ; \hat{\lambda}$.
For example, if at $t=0, Q$ is on L (i.e., $X, Y=0$), verify that eqs. (g) and (h2) reduce, respectively, to

$$
\begin{align*}
& \dot{X}=(\dot{X})^{-}-\hat{\lambda}(r / M), \quad \dot{Y}=(\dot{Y})^{-}, \quad \dot{Z}=(\dot{Z})^{-}+\hat{\lambda}(Z / M), \quad \dot{\phi}=(\dot{\phi})^{-} \tag{i1}\\
& (-r) \dot{X}+(Z) \dot{Z}-v Z=0 \tag{i2}
\end{align*}
$$

and, upon elimination of $\hat{\lambda}$, yield the postimpact velocities

$$
\begin{array}{lr}
\dot{X}=Z\left\{Z(\dot{X})^{-}+r\left[(\dot{Z})^{-}-v\right]\right\} /\left(r^{2}+Z^{2}\right), & \dot{Y}=(\dot{Y})^{-}, \\
\dot{Z}=\left\{r^{2}(\dot{Z})^{-}+Z\left[r(\dot{X})^{-}+v Z\right]\right\} /\left(r^{2}+Z^{2}\right), & \dot{\phi}=(\dot{\phi})^{-} ; \tag{i3}
\end{array}
$$

and when these results are substituted back into the first or third of (i1), they supply $\hat{\lambda}$. The details are left to the reader.

Problem 4.4.6 Consider a regular hexagon consisting of six identical and homogeneous bars $A B C D E F$ (fig. 4.7), each of mass m and length $2 b$, smoothly joined at their mutual hinges A, B, C, D, E, F, and originally resting on a smooth horizontal table. The system is struck by an impulse \hat{I}, normal to $A F$ at its midpoint, which communicates to it a postimpact velocity \dot{x}. Show that the postimpact velocity of the opposite bar $C D, \dot{y}$, equals $\dot{x} / 10$.

HINTS
In this configuration $\phi=\pi / 6=30^{\circ}$, and, therefore,

$$
\begin{aligned}
2 T & =m\left[6(\dot{x})^{2}-12 b \dot{x} \dot{\phi}+(40 / 3) b^{2}(\dot{\phi})^{2}\right], \widehat{\delta^{\prime} W}=\hat{I} \delta x \Rightarrow \partial T / \partial \dot{\phi}=0: \\
\dot{x} & =\cdots=(20 / 9) b \dot{\phi} ;
\end{aligned}
$$

Figure 4.7 Smoothly hinged regular hexagon under a normal impulse $\hat{\boldsymbol{I}}$ at the midpoint of its bar $F A$.
and so

$$
\dot{y}=[x+2(2 b \cos \phi)]^{\cdot}=\left.(\dot{x}-4 b \sin \phi \dot{\phi})\right|_{\phi=\pi / 6}=\cdots=(2 / 9) b \dot{\phi} .
$$

Example 4.4.4 Consider a circular homogeneous disk D, of mass m and radius r, moving in the vertical plane $O-x y$. At a certain instant, D strikes the fixed axis (ground) $O x$ and is ready to begin rolling on it (fig. 4.8). Let us determine the postimpact velocities.

Before the shock, the system positions depend on the following three parameters: (x, y) : coordinates of D 's center/center of mass G, angle of rotation ϕ (from $O y$ toward $O x$ - negative sense). At the shock moment, the following two (obviously) persistent constraints are introduced:
(i) $y=r$ (contact of D with axis $O x$),
(ii) $x=r \phi$ (rolling of D on $O x$; with proper origin choice);
or, in terms of the new, convenient equilibrium coordinates

$$
\begin{equation*}
q_{1} \equiv y-r, \quad q_{2} \equiv x-r \phi, \quad q_{3} \equiv x \tag{c}
\end{equation*}
$$

simply

$$
\begin{equation*}
q_{1}=0, \quad q_{2}=0 \quad\left(\text { while } q_{3} \neq 0\right) \tag{d}
\end{equation*}
$$

Next, by König's theorem, the (unconstrained) kinetic energy of D (doubled; with $m k^{2} \equiv I=$ moment of inertia of D about its mass center G) is

$$
\begin{align*}
2 T & =m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+I(\dot{\phi})^{2}=m\left[(\dot{x})^{2}+(\dot{y})^{2}+k^{2}(\dot{\phi})^{2}\right] \\
& =m\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{3}\right)^{2}+(k / r)^{2}\left(\dot{q}_{3}-\dot{q}_{2}\right)^{2}\right] \tag{e}
\end{align*}
$$

Figure 4.8 Impact of circular disk on horizontal fixed axis.

Now, since q_{3} is the only unconstrained coordinate, Appell's rule, (4.4.8), yields

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{3}\right)^{+}=\left(\partial T / \partial \dot{q}_{3}\right)^{-}: \quad \Delta \dot{q}_{3}+(k / r)^{2}\left(\Delta \dot{q}_{3}-\Delta \dot{q}_{2}\right)=0 \tag{f}
\end{equation*}
$$

from which, since $q_{2}=0 \Rightarrow\left(\dot{q}_{2}\right)^{+}=0$ (second-type constraint) $\Rightarrow(\dot{x})^{+}=r(\dot{\phi})^{+}$, we obtain, successively,

$$
\left[(\dot{x})^{+}-(\dot{x})^{-}\right]+(k / r)^{2}\left\{\left[(\dot{x})^{+}-(\dot{x})^{-}\right]-\left[\left[(\dot{x})^{+}-r(\dot{\phi})^{+}\right]-\left[(\dot{x})^{-}-r(\dot{\phi})^{-}\right]\right]\right\}=0
$$

or, simplifying,

$$
\begin{align*}
& {\left[(\dot{x})^{+}-(\dot{x})^{-}\right]+(k / r)^{2}\left[(\dot{x})^{+}-r(\dot{\phi})^{-}\right]=0} \\
& \Rightarrow(\dot{x})^{+}=\left[r^{2}(\dot{x})^{-}+k^{2} r(\dot{\phi})^{-}\right] /\left(r^{2}+k^{2}\right) ; \tag{g}
\end{align*}
$$

an equation that expresses conservation of angular momentum about the contact point C.

The above shows that if $r(\dot{x})^{-}+k^{2}(\dot{\phi})^{-}=0$, then $(\dot{x})^{+}=0$; that is, the sudden impact stops the disk! It is left to the reader to obtain the impulsive equations for q_{1} and q_{2}, and thus calculate the impulsive multipliers corresponding to the two constraints (d).

Problem 4.4.7 Continuing from the preceding example, show that under the coordinate choice $q_{1}=x, q_{2}=y, q_{3}=\phi$, the impulsive Routh-Voss equations, (4.4.11b), yield

$$
\begin{equation*}
\Delta(m \dot{x})=\hat{\lambda}_{2}, \quad \Delta(m \dot{y})=\hat{\lambda}_{1}, \quad \Delta(I \dot{\phi})=\hat{\lambda}_{2}(-r) \tag{a}
\end{equation*}
$$

where $\hat{\lambda}_{1}$ and $\hat{\lambda}_{2}$ are impulsive multipliers corresponding to the two constraints (d) of that example, but, here, in these new q 's; that is, $q_{2}-r=0$ and $q_{1}-r q_{3}=0$.

Then, solving this new system, show that $\hat{\lambda}_{1}=-m(\dot{y})^{-}$, and $\hat{\lambda}_{2}=$ $m\left[(\dot{x})^{+}-(\dot{x})^{-}\right]=-\left(m k^{2} / r\right)\left[(\dot{\phi})^{+}-(\dot{\phi})^{-}\right]$; and, further, by eliminating $(\dot{\phi})^{+}$, obtain (g) of the preceding example.

Problem 4.4.8 Central (or Direct) Collision of Two Spheres. Consider two homogeneous spheres, S_{1} and S_{2}, both translating along the fixed axis $O x$. Let their
respective centers of mass/masses/radii/center of mass coordinates be $G_{1} / m_{1} / r_{1} / x_{1}$ and $G_{2} / m_{2} / r_{2} / x_{2}$.
(i) Show that if S_{1} and S_{2} collide, the sole equation furnished by the Appellian theory is

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{1}\right)=0: \quad m_{1} \Delta \dot{q}_{1}+m_{2}\left(\Delta \dot{q}_{1}+\Delta \dot{q}_{2}\right)=0 \tag{a}
\end{equation*}
$$

where $q_{1} \equiv x_{1}$ and $q_{2} \equiv x_{2}-x_{1}-\left(r_{1}+r_{2}\right)(=0$, constraint introduced at the shock moment); and this expresses the conservation of total linear momentum along $O x$.
(ii) Show that if we assume that $\left(q_{2}\right)_{\text {after shock }}=0$ (plastic spheres) $\Rightarrow\left(\dot{q}_{2}\right)^{+}=0$ (second-type constraint; i.e., plastic impact) then

$$
\left(\dot{x}_{1}\right)^{+}=\left[m_{1}\left(\dot{x}_{1}\right)^{-}+m_{2}\left(\dot{x}_{2}\right)^{-}\right] /\left(m_{1}+m_{2}\right) .
$$

Problem 4.4.9 Ballistic Pendulum. Consider a projectile (e.g., bullet) B of mass m (fig. 4.9), in rectilinear translation in a vertical plane, and a physical (ballistic) pendulum P, of mass m and center of mass G, capable of rotating about a fixed axis perpendicular to that plane through an origin O. Let the polar coordinates of B be $(r=O B, \phi=\operatorname{angle}(O$-vertical, $O B)$) and $\theta=\operatorname{angle}(O$-vertical, $O G)$; that is, before the shock, the system positions depend on the three parameters r, ϕ, θ. At a certain instant, B strikes P and becomes embedded into it, and from then on both move as one body [i.e., plastic impact: $r \rightarrow$ constant $\equiv r_{o}$ and $\phi \rightarrow \theta$ (\pm constant) assume zero]. Show that, if $(\dot{\theta})^{-}=0$ and I is the moment of inertia of P about O, then

$$
\begin{equation*}
(\dot{\theta})^{+}=\left[m r_{o}^{2} /\left(I+m r_{o}^{2}\right)\right](\dot{\phi})^{-} \tag{a}
\end{equation*}
$$

$\left[r_{o}(\dot{\phi})^{-}\right.$: (known) component of velocity of B along perpendicular to $O B$, at shock moment].

Figure 4.9 Impact in ballistic pendulum.

HINT

Introduce the new equilibrium parameters: $q_{1} \equiv r-r_{o}, q_{2} \equiv \theta-\phi, q_{3} \equiv \theta$. Then the suddenly introduced persistent constraints are simply $q_{1}=0, q_{2}=0 \Rightarrow\left(\dot{q}_{1}\right)^{+}=0$, $\left(\dot{q}_{2}\right)^{+}=0$ (second type); also $\left(\dot{q}_{3}\right)^{-} \equiv(\dot{\theta})^{-}=0$; and by Appell's rule, for q_{3}, $\Delta\left(\partial T / \partial \dot{q}_{3}\right)=0$.

Example 4.4.5 Impact of a Rigid Body B on a Fixed Obstacle, at a Common Contact Point C.

Taking axes $C-x y z$, where $C z$ is along the common normal of the impacting surfaces, and, say, toward B, and with

$$
\begin{array}{ll}
(u, v, w): & \text { components of velocity of contact point of } B \text { at } C, \boldsymbol{v}_{C} \\
\left(\omega_{x}, \omega_{y}, \omega_{z}\right): & \text { components of angular velocity of } B, \omega \\
(x, y, z): & \text { coordinates of mass center of } B, G \tag{a3}
\end{array}
$$

and since

$$
\begin{equation*}
\boldsymbol{v}_{G}=\boldsymbol{v}_{C}+\omega \times \boldsymbol{r}_{G / C} \tag{b}
\end{equation*}
$$

applying König's theorem, we find (with $I_{k l}$: moments/products of inertia of B at G)

$$
\begin{align*}
2 T= & m\left[\left(u+\omega_{y} z-\omega_{z} y\right)^{2}+\left(v+\omega_{z} x-\omega_{x} z\right)^{2}+\left(w+\omega_{x} y-\omega_{y} x\right)^{2}\right] \\
& +\left(I_{x} \omega_{x}^{2}+I_{y} \omega_{y}^{2}+I_{z} \omega_{z}^{2}+2 I_{x y} \omega_{x} \omega_{y}+2 I_{x z} \omega_{x} \omega_{z}+2 I_{y z} \omega_{y} \omega_{z}\right) \\
= & m\left(u^{2}+v^{2}+w^{2}\right)+2 m\left[\omega_{x}(y w-z v)+\omega_{y}(z u-x w)+\omega_{z}(x v-y u)\right] \\
& +\left(I_{x} \omega_{x}^{2}+I_{y} \omega_{y}^{2}+I_{z} \omega_{z}^{2}+2 I_{x y} \omega_{x} \omega_{y}+2 I_{x z} \omega_{x} \omega_{z}+2 I_{y z} \omega_{y} \omega_{z}\right) \tag{c}
\end{align*}
$$

We also have the constitutive equation

$$
\begin{equation*}
w^{+}=-e w^{-} \Rightarrow \Delta w=-(1+e) w^{-} \quad\left(>0, \text { since } w^{-}<0\right) . \tag{d}
\end{equation*}
$$

Now, we consider the following two cases:
(i) Smooth obstacle: Then the sole constraint is $w=0$ (during the impact), and so only the w-equation of motion contains a multiplier. The postimpact state will be determined from (d) and the remaining (kinetic) equations

$$
\begin{array}{ll}
\Delta(\partial T / \partial u)=0, & \Delta(\partial T / \partial v)=0 \\
\Delta\left(\partial T / \partial \omega_{x}\right)=0, & \Delta\left(\partial T / \partial \omega_{y}\right)=0, \tag{e2}
\end{array} \quad \Delta\left(\partial T / \partial \omega_{z}\right)=0 .
$$

(ii) Rough surfaces: In this case, the constraints are $u=0, v=0, w=0$ (during the impact), and, therefore [assuming that a (d)-like relation still holds],

$$
\begin{equation*}
u^{+}=0 \Rightarrow \Delta u=-u^{-}, \quad v^{+}=0 \Rightarrow \Delta v=-v^{-}, \quad \Delta w=-(1+e) u^{-} . \tag{f}
\end{equation*}
$$

The values $\Delta \omega_{x, y, z}$ will be determined from the three (kinetic) equations

$$
\begin{array}{ll}
\Delta\left(\partial T / \partial \omega_{x}\right)=0: & I_{x} \Delta \omega_{x}+I_{x y} \Delta \omega_{y}+I_{x z} \Delta \omega_{z}+m(y \Delta w-z \Delta v)=0 \\
\Delta\left(\partial T / \partial \omega_{y}\right)=0: & I_{y x} \Delta \omega_{x}+I_{y} \Delta \omega_{y}+I_{y z} \Delta \omega_{z}+m(z \Delta u-x \Delta w)=0 \\
\Delta\left(\partial T / \partial \omega_{z}\right)=0: & I_{z x} \Delta \omega_{x}+I_{z y} \Delta \omega_{y}+I_{z} \Delta \omega_{z}+m(x \Delta v-y \Delta u)=0 \tag{g3}
\end{array}
$$

If the axes $G-x y z$ are principal, the above simplify somewhat; that is, the products of inertia vanish.

Problem 4.4.10 A heavy rigid body of revolution (axis $O z$) moves in space about the fixed point O. At time t_{o} its nutation angle θ equals θ_{o}, and its Eulerian angle rates are $\dot{\phi}_{o}, \dot{\theta}_{o}, \dot{\psi}_{o}$. At that moment, the axis $O z$ hits a fixed obstacle, thus introducing the nonpersistent constraint ϕ (precession) $=$ constant. Show that

$$
\begin{align*}
& \Delta \dot{\theta}=0 \Rightarrow(\dot{\theta})^{+}=(\dot{\theta})^{-} \tag{a}\\
& \Delta(\dot{\psi}+\dot{\phi} \cos \theta)=0 \Rightarrow(\dot{\psi})^{+}=(\dot{\psi})^{-}+(1+e)(\dot{\phi})^{-} \cos \theta_{o} \tag{b}\\
& \Delta\left[\left(A \sin ^{2} \theta\right) \dot{\phi}+C(\dot{\psi}+\dot{\phi} \cos \theta) \cos \theta\right]=R_{\phi} \tag{c}
\end{align*}
$$

HINTS

Here (recalling $\S 1.15 \mathrm{ff}.):$

$$
\begin{equation*}
2 T=A\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2} \tag{i}
\end{equation*}
$$

where

$$
\begin{equation*}
A / C: \text { transverse/axial moments of inertia of body at } O ; \tag{e}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
(\dot{\phi})^{+}=-e(\dot{\phi})^{-} \tag{f}
\end{equation*}
$$

$$
\begin{equation*}
\hat{Q}_{\phi, \theta, \psi}=0 ; \tag{ii}
\end{equation*}
$$

and, therefore,
(iv) $\quad \Delta(\partial T / \partial \dot{\theta})=0$,

$$
\begin{align*}
& \Delta(\partial T / \partial \dot{\psi})=0 \Rightarrow \Delta \dot{\psi}=-\Delta(\dot{\phi} \cos \theta) \Rightarrow(\dot{\psi})^{+}=(\dot{\psi})^{-}+\cdots \\
& \Delta(\partial T / \partial \dot{\phi})=R_{\phi} \text { (impulsive multiplier). } \tag{h}
\end{align*}
$$

Example 4.4.6 A homogeneous sphere S, of center and center of mass G, mass M and radius R, rests on a rough fixed horizontal plane p. Then, a given impulse $\hat{\boldsymbol{F}}$ is applied at a specified S-point A. Let us find its postimpact velocities.

Relative to space-fixed axes $O-x y z$ (coinciding with sphere-fixed axes $G-\xi \eta \zeta$ at the impact instant; and such that $O-x y$: parallel to plane $p, O z=$ perpendicular to p,
positive upwards), let
Coordinates of $G:(\xi, \eta, \zeta)_{\text {at impact instant }}=(0,0,0)$,
Coordinates of $A:(x, y, z)$,
Coordinates of contact point $C:\left(x_{C}, y_{C}, z_{C}\right)_{\text {at impact instant }}=(0,0,-R)$,
Components of angular velocity of $S:\left(\omega_{x, y, z}\right)$,
Components of $\hat{\boldsymbol{F}}:(X, Y, Z)$.
[Instead of the $\left(\omega_{x, y, z}\right)$ we could have chosen the rates of the $3 \rightarrow 1 \rightarrow 3$ Eulerian angles of $G-\xi \eta \zeta$ relative to $O-x y z:(\dot{\phi}, \dot{\theta}, \dot{\psi})$; even though $(\phi, \theta, \psi)_{\text {impact instant }}=(0,0,0)$.] Then, by König's theorem (and with the constraint $\dot{\zeta}=v_{G, z}=0$ enforced in it),

$$
\begin{equation*}
2 T=M\left[(\dot{\xi})^{2}+(\dot{\eta})^{2}\right]+M k^{2}\left(\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}\right) \tag{b}
\end{equation*}
$$

where $k^{2} \equiv 2 R^{2} / 5$; also, and since $\boldsymbol{v}_{A}=\boldsymbol{v}_{G}+\omega \times \boldsymbol{r}_{A / G} \Rightarrow \delta \boldsymbol{r}_{A}=\delta \boldsymbol{r}_{G}+\delta \boldsymbol{\chi} \times \boldsymbol{r}_{A / G}$, or, in components,

$$
\begin{equation*}
\dot{x}=\dot{\xi}+z \omega_{y}-y \omega_{z}, \quad \dot{y}=\dot{\eta}+x \omega_{z}-z \omega_{x}, \quad \dot{z}=\dot{\zeta}+y \omega_{x}-x \omega_{y}, \tag{c}
\end{equation*}
$$

the percussive virtual work is (with $\boldsymbol{O A} \equiv \boldsymbol{r}_{A}$)

$$
\begin{align*}
& \widehat{\delta^{\prime} W}=\hat{\boldsymbol{F}} \cdot \delta \boldsymbol{r}_{A}=X \delta x+Y \delta y+Z \delta z \\
&= X\left(\delta \xi+z \delta \theta_{y}-y \delta \theta_{z}\right)+Y\left(\delta \eta+x \delta \theta_{z}-z \delta \theta_{x}\right)+Z\left(0+y \delta \theta_{x}-x \delta \theta_{y}\right) \\
&=(X) \delta \xi+(Y) \delta \eta+(Z) 0 \\
& \quad+(y Z-z Y) \delta \theta_{x}+(z X-x Z) \delta \theta_{y}+(x Y-y X) \delta \theta_{z}, \tag{d}
\end{align*}
$$

where $\omega_{x, y, z} \equiv \dot{\theta}_{x, y, z}$; and, since at the end of the impact

$$
\boldsymbol{v}_{\text {contact of } S \text { with } p} \equiv \boldsymbol{v}_{C}=\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}=\mathbf{0},
$$

or, in components,

$$
\begin{gather*}
\left(\dot{x}_{C}, \dot{y}_{C}, \dot{z}_{C}\right)_{\text {at impact instant }}=(\dot{\xi}, \dot{\eta}, \dot{\zeta})+\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \times(0,0,-R)=(0,0,0): \\
\quad \Rightarrow \dot{\xi}-R \omega_{y}=0, \quad \dot{\eta}+R \omega_{x}=0, \\
\text { and } \quad \dot{\zeta}=0 \Rightarrow \zeta=\text { constant }=0 \text { (as expected) } \tag{e}
\end{gather*}
$$

we will have (with $\hat{\lambda}$ and $\hat{\mu}$ as impulsive multipliers along x_{C} and y_{C}, respectively)

$$
\begin{equation*}
\widehat{\delta^{\prime} W_{R}}=\hat{\lambda} \delta x_{C}+\hat{\mu} \delta y_{C}=\hat{\lambda}\left(\delta \xi-R \delta \theta_{y}\right)+\hat{\mu}\left(\delta \eta+R \delta \theta_{x}\right)=0 \tag{f}
\end{equation*}
$$

Utilizing the above in the impulsive principle of Lagrange \{plus method of multipliers (i.e., adjoining $\delta[$ first/second of eqs. (e)] to it via $\hat{\lambda}, \hat{\mu}$); or, equivalently, and in the spirit of impulsive relaxation, adding (f) to $\left.\widehat{\delta^{\prime} W}\right\}$, we readily obtain the following
five equations of impulsive motion:

$$
\begin{array}{ll}
\Delta(\partial T / \partial \dot{\xi})=X+\hat{\lambda}(1)+\hat{\mu}(0): & \Delta(M \dot{\xi})=X+\hat{\lambda} \\
\Delta(\partial T / \partial \dot{\eta})=Y+\hat{\lambda}(0)+\hat{\mu}(1): & \Delta(M \dot{\eta})=Y+\hat{\mu} ; \\
\Delta\left(\partial T / \partial \omega_{x}\right)=y Z-z Y+\hat{\lambda}(0)+\hat{\mu}(R): & \Delta\left(M k^{2} \omega_{x}\right)=y Z-z Y+\hat{\mu} R, \\
\Delta\left(\partial T / \partial \omega_{y}\right)=z X-x Z+\hat{\lambda}(-R)+\hat{\mu}(0): & \Delta\left(M k^{2} \omega_{y}\right)=z X-x Z-\hat{\lambda} R, \\
\Delta\left(\partial T / \partial \omega_{z}\right)=x Y-y X+\hat{\lambda}(0)+\hat{\mu}(0): & \Delta\left(M k^{2} \omega_{z}\right)=x Y-y X \tag{g5}
\end{array}
$$

which, along with the two constraints (e) constitute a determinate system of seven algebraic equations for $\Delta \dot{\xi}, \Delta \dot{\eta}, \Delta \omega_{x, y, z}, \hat{\lambda}, \hat{\mu}$. Finally, application of the NewtonEuler impulsive linear momentum theorem in the vertical direction yields the vertical impulsive reaction at C, if needed [instead of using relaxation in T, eq. (b), and an extra multiplier].

An Introduction to Kinetic Impulsive Equations

To obtain multiplierless (i.e., kinetic impulsive) equations we may proceed as follows:
(i) Eliminate $\hat{\lambda}$ and $\hat{\mu}$ from (g3-5), with the help of (g1,2); that is,

$$
\begin{equation*}
\hat{\lambda}=M \Delta \dot{\xi}-X, \quad \hat{\mu}=M \Delta \dot{\eta}-Y \tag{h}
\end{equation*}
$$

thus obtaining the following three kinetic impulsive Maggi equations:

$$
\begin{align*}
& -(M R) \Delta \dot{\eta}+\left(M k^{2}\right) \Delta \omega_{x}=y Z-(z+R) Y \tag{i1}\\
& (M R) \Delta \dot{\xi}+\left(M k^{2}\right) \Delta \omega_{y}=-x Z+(z+R) X \tag{i2}\\
& \left(M k^{2}\right) \Delta \omega_{z}=x Y-y X \quad \text { (unchanged) } \tag{i3}
\end{align*}
$$

which, along with the two constraints (e), constitute a determinate system of five algebraic equations for $\Delta \dot{\xi}, \Delta \dot{\eta}, \Delta \omega_{x, y, z} ;$ then $\hat{\lambda}, \hat{\mu}$ follow immediately from (h). [Equations (i1-3) also result by applying the principle of impulsive angular momentum about C.]

Further, using (e) to eliminate, say $\Delta \dot{\xi}$ and $\Delta \dot{\eta}$, from (i1-3) would result in the three kinetic impulsive Chaplygin-Voronets equations in $\Delta \omega_{x, y, z}$ (see $\S 4.5$).
(ii) Or, introduce the following "equilibrium" (quasi) velocities:

$$
\begin{array}{ll}
\omega_{1} \equiv \dot{\theta}_{1} \equiv \dot{\xi}-R \omega_{y}(=0) \Rightarrow \dot{\xi}=\dot{\theta}_{1}+R \omega_{y}, & \delta \xi=\delta \theta_{1}+R \delta \theta_{y} \\
\omega_{2} \equiv \dot{\theta}_{2} \equiv \dot{\eta}+R \omega_{x}(=0) \Rightarrow \dot{\eta}=\dot{\theta}_{2}-R \omega_{x}, & \delta \eta=\delta \theta_{2}-R \delta \theta_{x} \tag{j2}
\end{array}
$$

in terms of which the expressions (b), (d), and (f) become, respectively,

$$
\begin{align*}
& 2 T \rightarrow 2 T^{*}=M\left[\left(\omega_{1}+R \omega_{y}\right)^{2}+\left(\omega_{2}-R \omega_{x}\right)^{2}\right] \\
& \tag{k1}\\
& +\left(M k^{2}\right)\left(\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}\right) \\
& \widehat{\delta^{\prime} W} \rightarrow \widehat{\left(\delta^{\prime} W\right)^{*}}=\cdots=X \delta \theta_{1}+Y \delta \theta_{2} \\
& +[Z y-(R+z) Y] \delta \theta_{x} \tag{k2}\\
& \tag{k3}\\
& +[X(R+z)-Z x] \delta \theta_{y}+[Y x-X y] \delta \theta_{z} \\
& \equiv \hat{\boldsymbol{\Theta}}_{1} \delta \theta_{1}+\hat{\boldsymbol{\Theta}}_{2} \delta \theta_{2}+\hat{\boldsymbol{\Theta}}_{x} \delta \theta_{x}+\hat{\boldsymbol{\Theta}}_{y} \delta \theta_{y}+\hat{\boldsymbol{\Theta}}_{z} \delta \theta_{z} \\
& \widehat{\delta^{\prime} W_{R} \rightarrow \widehat{\left(\delta^{\prime} W_{R}\right)^{*}}=\hat{\lambda} \delta \theta_{1}+\hat{\mu} \delta \theta_{2} \equiv \hat{\Lambda}_{1} \delta \theta_{1}+\hat{\Lambda}_{2} \delta \theta_{2}=0}
\end{align*}
$$

and then, using the above in the impulsive principle of Lagrange, obtain the following five Hamel equations of impulsive motion:

Kinetostatic: $\quad \Delta\left(\partial T^{*} / \partial \omega_{k}\right)=\hat{\boldsymbol{\Theta}}_{k}+\hat{\Lambda}_{k} \quad(k=1,2)$,
Kinetic: $\quad \Delta\left(\partial T^{*} / \partial \omega_{k}\right)=\hat{\boldsymbol{\Theta}}_{k} \quad(k=x, y, z)$.
The details are left to the reader; and the entire process of elimination of impulsive multipliers is treated in full generality in $\S 4.5$.

4.5 IMPULSIVE MOTION VIA QUASI VARIABLES

Here the previous results are extended to nonholonomic "coordinates" and velocities, and in the process show that, contrary to the finite motion case (§3.5), the Lagrangean impulsive equations retain the same form in both holonomic and nonholonomic variables.

Let us assume, with no loss of generality, that our system is subjected to m Pfaffian (holonomic and/or nonholonomic) constraints:

$$
\begin{array}{ll}
\sum a_{D k} d q_{k}+a_{D} d t=0 & \text { (kinematically admissible form) } \\
\sum a_{D k} \delta q_{k}=0 & (\text { virtual form })[D=1, \ldots, m(<n) ; k=1, \ldots, n] \tag{4.5.1b}
\end{array}
$$

Introducing the n quasi coordinates θ (as detailed in $\S 2.9 \mathrm{ff}$.) via

$$
\begin{array}{ll}
d \theta_{D} \equiv \sum a_{D k} d q_{k}+a_{D} d t \quad(=0), & d \theta_{I} \equiv \sum a_{I k} d q_{k}+a_{I} d t \quad(\neq 0) \\
\delta \theta_{D} \equiv \sum a_{D k} \delta q_{k} \quad(=0), & \delta \theta_{I} \equiv \sum a_{I k} \delta q_{k} \quad(\neq 0) ; \\
d \theta_{n+1} \equiv d q_{n+1} \equiv d t ; \quad \delta \theta_{n+1} \equiv \delta q_{n+1} \equiv \delta t=0 \quad(I=m+1, \ldots, n) ; \tag{4.5.2c}
\end{array}
$$

and their n quasi velocities ω via

$$
\begin{equation*}
\omega_{D} \equiv d \theta_{D} / d t \quad(=0), \quad \omega_{I} \equiv d \theta_{I} / d t \quad(\neq 0), \quad \omega_{n+1} \equiv d \theta_{n+1} / d t=\dot{t}=1 \tag{4.5.2d}
\end{equation*}
$$

we can write for the virtual displacement of a typical particle:

$$
\begin{equation*}
\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k} \equiv \sum \boldsymbol{\varepsilon}_{I} \delta \theta_{I} \tag{4.5.3}
\end{equation*}
$$

The Impulsive Hamel Equations

Substituting the second of (4.5.3) into the LIP, eqs. (4.3.3b-4b), and since the $n-m \delta \theta_{I}$ are unconstrained, and $\Delta(\ldots)$ and (...) commute with $S(\ldots)$ [assuming, of course, that $\hat{\boldsymbol{\varepsilon}}_{I}=\Delta \varepsilon_{I}=\mathbf{0}$], we easily obtain, respectively,
$\hat{\Lambda}_{I} \equiv \boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \varepsilon_{I} \equiv(I)$ th nonholonomic component of system constraint reaction

$$
\begin{equation*}
=0 \tag{4.5.4a}
\end{equation*}
$$

and the $n-m$ nonholonomic kinetic impulsive equations:

$$
\begin{equation*}
\boldsymbol{S} \Delta(d m \boldsymbol{v}) \cdot \varepsilon_{I}=\Delta\left(\mathbf{S} d m \boldsymbol{v} \cdot \varepsilon_{I}\right)=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \varepsilon_{I} \tag{4.5.4b}
\end{equation*}
$$

or, in system variables, and with $P_{I} \equiv S d m v \cdot \varepsilon_{I}=P_{I}(t, q, \omega)=\partial T^{*} / \partial \omega_{I}=(I)$ th nonholonomic component of system momentum,

$$
\begin{equation*}
\Delta P_{I}=\hat{\Theta}_{I} \quad(I=m+1, \ldots, n) \tag{4.5.5a}
\end{equation*}
$$

It is not hard to show (e.g., invoking the relaxation principle/Lagrangean multipliers; in a completely analogous way with the finite motion case - recall §3.5), that the corresponding m impulsive nonholonomic kinetostatic equations are

$$
\begin{equation*}
\Delta P_{D}=\hat{\Theta}_{D}+\hat{\Lambda}_{D}, \quad \hat{\Lambda}_{D} \equiv \hat{\lambda}_{D} \quad(\neq 0) \quad(D=1, \ldots, m) \tag{4.5.5b}
\end{equation*}
$$

These uncoupled algebraic equations are the impulsive counterparts of Hamel's equations (§3.3 ff.).

The Impulsive Maggi Equations

Multiplying the impulsive Routh-Voss equations corresponding to (4.5.1a, b),

$$
\begin{equation*}
\Delta p_{k}=\hat{Q}_{k}+\sum \hat{\lambda}_{D} a_{D k} \quad(D=1, \ldots, m) \tag{4.5.6}
\end{equation*}
$$

with $A_{k l}=A_{k l}(q, t)$, where $\left(A_{k l}\right)$ is the inverse of the (augmented) $n \times n$ matrix $\left(a_{k l}\right)$, as in chapters 2 and 3 , and summing over k from 1 to n, we find, successively,

$$
\begin{aligned}
\Delta\left(\sum A_{k l} p_{k}\right) & =\sum A_{k l} \hat{Q}_{k}+\sum\left[A_{k l}\left(\sum \hat{\lambda}_{D} a_{D k}\right)\right] \\
& =\sum A_{k l} \hat{Q}_{k}+\sum\left[\hat{\lambda}_{D}\left(\sum a_{D k} A_{k l}\right)\right] \\
& =\sum A_{k l} \hat{Q}_{k}+\sum \hat{\lambda}_{D} \delta_{D l}
\end{aligned}
$$

or, finally, since $\Delta A_{k l}=0$, the above split into the following two groups:

$$
\begin{align*}
\sum A_{k D} \Delta p_{k} & =\sum A_{k D} \hat{Q}_{k}+\hat{\lambda}_{D} & & \left(\equiv \hat{\Theta}_{D}+\hat{\Lambda}_{D}\right) \tag{4.5.6a}
\end{align*} \quad(D=1, \ldots, m), ~(I=m+1, \ldots, n) ;
$$

since $\hat{\lambda}_{I} \equiv \hat{\Lambda}_{I}=0$. Equations (4.5.6a) and (4.5.6b) are, respectively, the impulsive kinetostatic and kinetic Maggi's equations.

REMARKS

(i) The kinetic impulsive equations (4.5.5a) can also be obtained by integration of the corresponding kinetic equations of ordinary continuous motion (§3.5) in time, and then taking the impulsive limit $\tau \rightarrow 0$, while noting that [as in (4.4.12)]:

$$
\begin{equation*}
\widehat{\partial T^{*} / \partial \theta_{I}} \equiv \sum A_{k I}\left(\overparen{\partial T^{*} / \partial q_{k}}\right)=0 \quad \text { and } \quad-\widehat{\Gamma_{I}} \equiv \sum \sum \gamma_{I I^{\prime}}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{I^{\prime}}=0 \tag{4.5.7}
\end{equation*}
$$

and similarly for the kinetostatic equations (4.5.5b). The above allow us to rewrite (4.5.5a) as

$$
\begin{equation*}
\Delta\left(\partial T^{*}{ }_{o} / \partial \omega_{I}\right)=\hat{\boldsymbol{\Theta}}_{I}, \quad(I=m+1, \ldots, n), \tag{4.5.8}
\end{equation*}
$$

where, as usual,

$$
\begin{align*}
T^{*} & \equiv T^{*}\left(q ; \omega_{1}=0, \ldots, \omega_{m}=0 ; \omega_{m+1}, \ldots, \omega_{n} ; t\right) \\
& =T^{*}\left(q ; \omega_{m+1}, \ldots, \omega_{n} ; t\right) \equiv T^{*}{ }_{o}\left(q, \omega_{I}, t\right): \text { constrained } T^{*} \tag{4.5.8a}
\end{align*}
$$

that is, here, and contrary to the Hamel equations for ordinary motion (§3.5), if no impulsive reactions are sought, we can enforce the m nonholonomic constraints $\omega_{D}=0$ in T^{*} (and Θ_{I}) before the partial differentiations; and this simplifies the calculations somewhat. [Justification: expanding $T^{*}=T^{*}\left(\omega_{I}, \omega_{D}\right)$ à la Taylor around $\omega_{D}=0$, we obtain (with some easily understood calculus notations)

$$
\begin{aligned}
T^{*}\left(\omega_{I}, \omega_{D}\right)=T^{*}\left(\omega_{I}, 0\right) & +\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \omega_{D}+O_{2}\left(\omega_{D}\right) \\
\Rightarrow\left[\partial T^{*}\left(\omega_{I}, \omega_{D}\right) / \partial \omega_{I}\right]_{o} & =\partial T^{*}\left(\omega_{I}, 0\right) / \partial \omega_{I}+\left\{\partial / \partial \omega_{I}\left[\left(\partial T^{*} / \partial \omega_{D}\right)_{o}\right] \omega_{D}+O_{2}\left(\omega_{D}\right)\right\}_{o} \\
& =\partial T^{*}\left(\omega_{I}, 0\right) / \partial \omega_{I}+0
\end{aligned}
$$

that is, simply,

$$
\left.\left(\partial T^{*} / \partial \omega_{I}\right)_{o}=\partial T^{*}{ }_{o} / \partial \omega_{I} .\right]
$$

However, for problems with second-type constraints, where, clearly [recalling (§4.4.3b)],

$$
\begin{equation*}
\omega_{D}^{+}=0 \quad \text { but } \quad \omega_{D}^{-} \neq 0 \tag{4.5.8b}
\end{equation*}
$$

eqs. (4.5.8) do not hold: even if no impulsive reactions are sought, still, we must express $T \rightarrow T^{*}$ as function of all the ω 's, carry out all differentiations, and then enforce the m constraints, first of ($8 \mathbf{b}$), on the postimpact momenta; the preimpact momenta will be calculated using the known ω^{-}. In sum, for second-type constraint problems, $(4.5 .5 \mathrm{~b} / 8,5 \mathrm{c})$ will be replaced, respectively, by

$$
\begin{array}{ll}
\left(\partial T^{*} / \partial \omega_{I}\right)^{+}-\left(\partial T^{*} / \partial \omega_{I}\right)^{-}=\hat{\Theta}_{I} & (I=m+1, \ldots, n), \\
\left(\partial T^{*} / \partial \omega_{D}\right)^{+}-\left(\partial T^{*} / \partial \omega_{D}\right)^{-}=\hat{\Theta}_{D}+\hat{\Lambda}_{D} & (D=1, \ldots, m) \tag{4.5.9b}
\end{array}
$$

although for the independent postimpact momenta we still have $\left(\partial T^{*} / \partial \omega_{I}\right)^{+}=$ $\left(\partial T^{*}{ }_{o} / \partial \omega_{I}\right)^{-}$.
(ii) The special independent quasi-velocity choice $\omega_{I}=\dot{q}_{I}$, in (4.5.8), produces what might be called the impulsive Chaplygin-Voronets (kinetic) equations:

$$
\begin{equation*}
\Delta\left(\partial T_{o} / \partial \dot{q}_{I}\right)=\hat{Q}_{I o} \tag{4.5.10}
\end{equation*}
$$

where $T \equiv T^{*}{ }_{o}\left(q ; \dot{q}_{m+1}, \ldots, \dot{q}_{n} ; t\right) \equiv T^{*}{ }_{o}\left(q ; \dot{q}_{I} ; t\right) \equiv T_{o}\left(q, \dot{q}_{I} ; t\right)$; in which case, $\partial T^{*} / \partial \omega_{I}$ becomes $\partial T_{o} / \partial \dot{q}_{I}=\partial T / \partial \dot{q}_{I}+\sum b_{D I}\left(\partial T / \partial \dot{q}_{D}\right)$, a specialization of $P_{I}=\sum A_{k I} p_{k}$; and the $(n-m) \hat{Q}_{I o}$ are defined from

$$
\begin{equation*}
\widehat{\delta^{\prime} W} \equiv \sum \hat{Q}_{k} \delta q_{k}=\sum\left(\hat{Q}_{I}+\sum b_{D I} \hat{Q}_{D}\right) \delta q_{I} \equiv \sum \hat{Q}_{I o} \delta q_{I} \tag{4.5.10a}
\end{equation*}
$$

a specialization of $\hat{\Theta}_{I}=\sum A_{k I} \hat{Q}_{k}$ [see also (4.5.12b, c)].
Equations (4.5.10) show that Lagrange's impulsive equations in holonomic variables hold unchanged in form, even for nonholonomically constrained systems, provided we use, in there, the constrained quantities T_{o} and $\hat{Q}_{I o}$, instead of their unconstrained (relaxed) counterparts T and \hat{Q}_{k}; and, by comparing them with eqs. (4.5.5a, 8) we conclude that, due to (4.5.7), the Lagrangean impulsive equations have the same form in both holonomic and nonholonomic variables. Of course, (4.5.10) can also be obtained by direct application of the impulsive limiting process to the Chaplygin-Voronets equations (§3.8), with invocation of (4.5.7)-like results. [We recall (§3.8) that here too, just like with eqs. (4.5.8), the situation is in sharp contrast to its ordinary motion counterpart; that is, if the special Pfaffian constraints (4.5.1a) are nonholonomic, then $E_{I}\left(T_{o}\right) \neq Q_{I o}$.] In view of the earlier remark (i), these equations do not hold (without appropriate modifications) for second-type constraint problems; and, obviously, cannot be used to calculate impulsive reactions.

Historical: equations (4.5.10) seem to be due to Beghin and Rousseau (1903), who obtained them using the impulsive counterpart of the method of their teacher P. Appell (1899, 1900); that is, independently of any Chaplygin-Voronets equation considerations. In the past, they have been used by various authors [e.g., Beer (1963)], but without the proper theoretical justification given here, or in the Beghin/Rousseau paper.
(iii) Due to the vectorial transformations $P_{l}=\sum A_{k l} p_{k}$, and $\hat{\Theta}_{l}=\sum A_{k l} \hat{Q}_{k}$ (via chain rule), the impulsive Maggi equations (4.5.6a, b) are identical to the impulsive Hamel equations ($4.5 .5 \mathrm{c}, \mathrm{b}$), respectively; but the former are in holonomic variables while the latter are in nonholonomic variables. Also, Maggi's equations can result directly from the LIP, eqs. (second of 4.3.7), by inserting in it the inverse of (4.5.2a-c):

$$
\begin{equation*}
\delta q_{k}=\sum A_{k D}\left(1 \cdot \delta \theta_{D}\right)+\sum A_{k I} \delta \theta_{I} \quad\left(=\sum A_{k I} \delta \theta_{I}\right) \tag{4.5.11}
\end{equation*}
$$

the details can be easily carried out by the reader.
(iv) In case the constraints (4.5.1a, b) have the special form (recalling results from §2.11)

$$
\begin{equation*}
d q_{D}=\sum b_{D I} d q_{I}+b_{D} d t, \quad \delta q_{D}=\sum b_{D I} \delta q_{I} \tag{4.5.12a}
\end{equation*}
$$

the Maggi equations (4.5.6a, b) specialize, respectively, to

$$
\begin{equation*}
\Delta p_{D}=\hat{Q}_{D}+\hat{\lambda}_{D} \quad \text { and } \quad \Delta p_{I}=\hat{Q}_{I}-\sum b_{D I} \hat{\lambda}_{D} \tag{4.5.12b}
\end{equation*}
$$

and by eliminating the $m \lambda$'s between these two sets of equations, we obtain the $n-m$ impulsive kinetic Hadamard equations

$$
\Delta p_{I}+\sum b_{D I} \Delta p_{D}=\hat{Q}_{I}+\sum b_{D I} \hat{Q}_{D} \equiv \hat{Q}_{I o}
$$

which, along with the n constraints (first of 4.5.12a) (evaluated at the postimpact instant-assuming, of course, that they hold there), constitute a determinate set of $(n-m)+m=n$ equations for the $n(\dot{q})^{+}$; the $m \hat{\lambda}_{D}$ can then be found from (first of 4.5 .12 b). [We notice the similarity between the first of (4.5.12b) and the earlier equations (4.4.7a).]

With the notation $\hat{M}_{k} \equiv \Delta p_{k}-\hat{Q}_{k}$, eqs. (4.5.12b, c) can be rewritten, respectively, as

$$
\begin{equation*}
\text { Kinetostatic: } \quad \hat{M}_{D}=\hat{\lambda}_{D} \quad \text { and } \quad \text { Kinetic: } \quad \hat{M}_{I}+\sum b_{D I} \hat{M}_{D}=0 . \tag{4.5.12d}
\end{equation*}
$$

For second-type constraint problems, clearly, the above impulsive equations of Routh-Voss, Maggi, and Hadamard still hold; and the $n(\dot{q})^{-}$have known values, unrelated to the constraints (4.5.1a).

Appell's Equations and Impulsive Motion

Since these equations contain the accelerations explicitly, in general, they are not very useful in impulsive problems. Nevertheless, an Appell-like form of impulsive equations can be formulated. To this end, first, we define the kinetic energy of the velocity jumps, or impulsive Appellian function:

$$
\begin{equation*}
\hat{S} \equiv \boldsymbol{S} d m \Delta v \cdot \Delta v / 2 \quad\left[\neq \Delta T \equiv \boldsymbol{S} d m\left(\boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}-\boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-}\right) / 2\right] \tag{4.5.13a}
\end{equation*}
$$

[in exception to the earlier hat notation, eqs. (4.2.5a)!)] and then notice that, since $\Delta \varepsilon_{I}=\mathbf{0}$ and $\Delta \varepsilon_{n+1}=\mathbf{0}$, we have

$$
\begin{equation*}
\Delta \boldsymbol{v}=\sum \varepsilon_{I} \Delta \omega_{I} \Rightarrow \partial(\Delta \boldsymbol{v}) / \partial\left(\Delta \omega_{I}\right)=\varepsilon_{I} \tag{4.5.13b}
\end{equation*}
$$

and therefore, successively,

$$
\begin{aligned}
\partial \hat{\boldsymbol{S}} / \partial\left(\Delta \omega_{I}\right) & =\boldsymbol{S}(d m / 2) 2 \Delta \boldsymbol{v} \cdot\left[\partial(\Delta \boldsymbol{v}) / \partial\left(\Delta \omega_{I}\right)\right] \\
& =\boldsymbol{S} d m \Delta \boldsymbol{v} \cdot \varepsilon_{I}=\Delta\left(\boldsymbol{S} d m \boldsymbol{v} \cdot \varepsilon_{I}\right) \equiv \Delta P_{I}
\end{aligned}
$$

that is, finally, the kinetic equations of impulsive motion take the "Appellian" form

$$
\begin{equation*}
\partial \hat{S} / \partial\left(\Delta \omega_{I}\right)=\Delta\left(\partial T^{*} / \partial \omega_{I}\right)=\hat{\Theta}_{I} \quad(I=m+1, \ldots, n) \tag{4.5.13c}
\end{equation*}
$$

due to Arrighi (1939); see also Pars (1965, pp. 238-242). It is not hard to see, by invoking the impulsive principle of relaxation and a relaxed S, that the corresponding kinetostatic equations are

$$
\begin{equation*}
\left[\partial \hat{S} / \partial\left(\Delta \omega_{D}\right)\right]_{o}=\hat{\boldsymbol{\Theta}}_{D}+\hat{\Lambda}_{D} \quad(D=1, \ldots, m) \tag{4.5.13d}
\end{equation*}
$$

Example 4.5.1 One extremity of the major axis (point P) and one extremity of the minor axis (point Q) of a thin homogeneous elliptical disk of (principal) semiaxes,

Figure 4.10 Elliptical disk, initially at rest, is given the velocities u and v at the endpoints of its axes, perpendicular to its plane. Semiaxes of the ellipse: $a=|O P|, b=|O Q|$.
a, b, and mass m, initially at rest, are imparted prescribed velocities, u (at P) and ν (at Q), perpendicular to the plane of the disk (fig. 4.10). Let us find its postimpact linear and angular velocities.

By König's theorem, the (double) kinetic energy of the disk is

$$
\begin{equation*}
2 T \rightarrow 2 T^{*}=m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)+\left(A \omega_{x}^{2}+B \omega_{y}^{2}+C \omega_{z}^{2}\right), \tag{a}
\end{equation*}
$$

where

$$
\begin{aligned}
& \boldsymbol{v}_{G}=\left(v_{x}, v_{y}, v_{z}\right): \text { velocity of mass center of disk, } G, \\
& \omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right): \text { angular velocity of disk, }
\end{aligned}
$$

$\left(I_{x}, I_{y}, I_{z}\right)=\left(m b^{2} / 4, m a^{2} / 4, m\left(a^{2}+b^{2}\right) / 4\right)$: principal moments of inertia of disk at G.

From rigid-body kinematics, we have

$$
\begin{equation*}
\boldsymbol{v}_{P}=\boldsymbol{v}_{G}+\omega \times \boldsymbol{r}_{P / G}, \quad \boldsymbol{v}_{Q}=\boldsymbol{v}_{G}+\omega \times \boldsymbol{r}_{Q / G} ; \tag{c}
\end{equation*}
$$

or, in components,

$$
\begin{align*}
& u \boldsymbol{k}=\left(v_{x}, v_{y}, v_{z}\right)+\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \times(a, 0,0), \tag{cl}\\
& v \boldsymbol{k}=\left(v_{x}, v_{y}, v_{z}\right)+\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \times(0, b, 0) ; \tag{c2}
\end{align*}
$$

respectively, from which, equating, we obtain the velocity compatibility conditions

$$
\begin{array}{ll}
v_{x}=0(\text { also }, \text { by symmetry }), \quad v_{y}+a \omega_{z}=0, & v_{z}-a \omega_{y}=u, \\
v_{x}-b \omega_{z}=0, \quad v_{y}=0(\text { also, by symmetry }), & v_{z}+b \omega_{x}=v \tag{c4}
\end{array}
$$

In view of the above, we choose the following convenient set of six quasi velocities:

$$
\begin{align*}
& \omega_{1} \equiv v_{x}=0, \tag{c5}\\
& \omega_{2} \equiv v_{y}=0, \tag{c6}\\
& \omega_{3} \equiv \omega_{z}=0, \tag{c7}\\
& \omega_{4} \equiv v_{z}-a \omega_{y}-u=0, \tag{c8}\\
& \omega_{5} \equiv v_{z}+b \omega_{x}-v=0, \tag{c9}\\
& \omega_{6} \equiv v_{z} \neq 0 \tag{c10}
\end{align*}
$$

(we could have chosen as ω_{6} either ω_{x} or ω_{y}, or any linear combination of $\omega_{x, y, z}$); which invert readily to

$$
\begin{align*}
& v_{x}=\omega_{1}=0, \tag{c11}\\
& v_{y}=\omega_{2}=0, \tag{c12}\\
& v_{z}=\omega_{6} \neq 0, \tag{c13}\\
& \omega_{x}=(1 / b)\left(\omega_{5}-v_{z}+v\right)=(1 / b)\left(0-\omega_{6}+v\right)=(1 / b)\left(v-\omega_{6}\right) \neq 0, \tag{c14}\\
& \omega_{y}=(1 / a)\left(v_{z}-u-\omega_{4}\right)=(1 / a)\left(\omega_{6}-u-0\right)=(1 / a)\left(\omega_{6}-u\right) \neq 0, \tag{c15}\\
& \omega_{z}=\omega_{3}=0 . \tag{c16}
\end{align*}
$$

Hence the kinetic energy, (a) [with (b)], becomes, successively,

$$
\begin{align*}
2 T^{*} \rightarrow 2 T^{* *} & =m v_{z}^{2}+A\left[(v / b)-\left(v_{z} / b\right)\right]^{2}+B\left[\left(v_{z} / a\right)-(u / a)\right]^{2} \\
& =\cdots=(m / 2)\left[3 v_{z}^{2}-(u+v) v_{z}+\left(u^{2}+v^{2}\right) / 2\right] . \tag{c17}
\end{align*}
$$

Since the preimpact state is one of rest, the v_{z}-impulsive equation becomes

$$
\begin{gather*}
\Delta\left(\partial T^{* *} / \partial v_{z}\right)=\left(\partial T^{* *} / \partial v_{z}\right)^{+} \equiv \partial T^{* *} / \partial v_{z}=\hat{\Theta}_{z}(=0, \text { explain }): \\
(m / 4)\left[6 v_{z}-(u+v)\right]=0 \Rightarrow v_{z}=(u+v) / 6 \tag{d1}
\end{gather*}
$$

and combined with $(\mathrm{c} 3,4)$ yields the following postimpact angular velocities:

$$
\begin{equation*}
\omega_{x}=\left(v-v_{z}\right) / b=(5 v-u) / 6 b, \quad \omega_{y}=\left(v_{z}-u\right) / a=(v-5 u) / 6 a . \tag{d2}
\end{equation*}
$$

See also Bahar [1987, via Jourdain's impulsive principle (see example below)] and Byerly [1916, pp. 72-75, via Kelvin's theorem ($\$ 4.6$ and next problem)].

Problem 4.5.1 Continuing from the preceding example, by (c3, 4):

$$
\begin{equation*}
\omega_{x}=\left(v-v_{z}\right) / b, \quad \omega_{y}=\left(v_{z}-u\right) / a, \tag{a}
\end{equation*}
$$

so that the (constrained) kinetic energy [eq. (a) of ex. 4.5.1], becomes

$$
\begin{equation*}
T=(1 / 2) m v_{z}^{2}+\left(m b^{2} / 8\right)\left[\left(v-v_{z}\right) / b\right]^{2}+\left(m a^{2} / 8\right)\left[\left(v_{z}-u\right) / a\right]^{2}=T\left(v_{z} ; u, v\right) . \tag{b}
\end{equation*}
$$

Then show that the earlier equation (d1) results from

$$
\begin{equation*}
\partial T / \partial v_{z}=0 \tag{c}
\end{equation*}
$$

REMARK

This also constitutes an application of Kelvin's theorem (§4.6).

Problem 4.5.2 Continuing from the preceding example and problem, show by any means that the impulses at P and Q (i.e., the ones communicating to the disk the above velocities), \hat{I}_{P} and \hat{I}_{Q}, respectively, equal

$$
\begin{equation*}
\hat{I}_{P}=(m / 24)(5 u-v), \quad \hat{I}_{Q}=(m / 24)(5 v-u) ; \tag{a}
\end{equation*}
$$

also,

$$
\begin{equation*}
v_{z}=\left(\hat{I}_{P}+\hat{I}_{Q}\right) / m, \quad \omega_{x}=4 \hat{I}_{Q} / m b, \quad \omega_{y}=-4 \hat{I}_{P} / m a \tag{b}
\end{equation*}
$$

Example 4.5.2 A homogeneous sphere of center and center of mass G, mass m, and radius r, rotating with angular velocity $\omega^{-}=\left(\omega_{x}^{-}, \omega_{y}^{-}, \omega_{z}^{-}\right)$is suddenly placed on a perfectly rough horizontal plane (fig. 4.11). Let us find its postimpact velocities

$$
\boldsymbol{\omega}^{+} \equiv \boldsymbol{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \quad \text { and } \quad \boldsymbol{v}_{G}^{+} \equiv \boldsymbol{v}=\left(v_{x}, v_{y}, v_{z}\right)
$$

By kinematics we have

$$
\begin{equation*}
\boldsymbol{v}_{\text {contact point }} \equiv \boldsymbol{v}_{C}=\boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}=\mathbf{0}, \tag{a}
\end{equation*}
$$

or, in components,

$$
\begin{equation*}
(0,0,0)=\left(v_{x}, v_{y}, v_{z}\right)+\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \times(0,0,-r), \tag{b}
\end{equation*}
$$

and from this we obtain the three Pfaffian constraints

$$
\begin{equation*}
v_{x}-r \omega_{y}=0, \quad v_{y}+r \omega_{x}=0, \quad v_{z}=0 \tag{c}
\end{equation*}
$$

Figure 4.11 Sphere placed suddenly in contact with a rough plane.

Hence, introducing the six quasi velocities ω_{k} :

$$
\begin{align*}
& \omega_{1} \equiv v_{x}-r \omega_{y}=0, \tag{d1}\\
& \omega_{2} \equiv v_{y}+r \omega_{x}=0, \tag{d2}\\
& \omega_{3} \equiv v_{z}=0, \tag{d3}\\
& \omega_{4} \equiv \omega_{x} \neq 0, \tag{d4}\\
& \omega_{5} \equiv \omega_{y} \neq 0, \tag{d5}\\
& \omega_{6} \equiv \omega_{z} \neq 0 \tag{d6}
\end{align*}
$$

(or any other linear and invertible combination of $v_{x}, v_{y}, v_{z}, \omega_{x, y, z}$); and their inverses,

$$
\begin{align*}
& v_{x}=\omega_{1}+r \omega_{y}=\omega_{1}+r \omega_{5}=r \omega_{5}, \tag{d7}\\
& v_{y}=\omega_{2}-r \omega_{x}=\omega_{2}-r \omega_{4}=-r \omega_{4}, \tag{d8}\\
& v_{z}=\omega_{3}=0, \tag{d9}\\
& \omega_{x}=\omega_{4} \neq 0, \tag{d10}\\
& \omega_{y}=\omega_{5} \neq 0, \tag{d11}\\
& \omega_{z}=\omega_{6} \neq 0, \tag{d12}
\end{align*}
$$

we can express the (double) kinetic energy of the sphere as follows:

$$
\begin{aligned}
2 T & =m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)+m k^{2}\left(\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}\right) \\
& =m\left[\left(\omega_{1}+r \omega_{5}\right)^{2}+\left(\omega_{2}-r \omega_{4}\right)^{2}+\omega_{3}^{2}+k^{2}\left(\omega_{4}^{2}+\omega_{5}^{2}+\omega_{6}^{2}\right)\right] \quad\left(=2 T^{*}\right)
\end{aligned}
$$

[where $k^{2} \equiv(2 / 5) r^{2}$: (squared) radius of gyration of sphere about G] or

$$
\begin{align*}
2 T^{*}=m\left[\left(r^{2}+k^{2}\right) \omega_{4}^{2}\right. & +\left(r^{2}+k^{2}\right) \omega_{5}^{2}+k^{2} \omega_{6}^{2} \\
& \left.+\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}+2 r \omega_{1} \omega_{5}-2 r \omega_{2} \omega_{4}\right] \tag{e}
\end{align*}
$$

where the last five terms represent the "relaxed (i.e., unconstrained)" contributions to T^{*}. As a result of the above, the postimpact nonholonomic momenta $\left(\partial T^{*} / \partial \omega_{k}\right)^{+}$are found to be [with the notation $\left.(\ldots)\right|^{+}=(\ldots)_{\text {postimpact constraints enforced after differentiations }}$]

$$
\begin{align*}
& \text { 1: }\left.m\left(\omega_{1}+r \omega_{5}\right)\right|^{+}=m r \omega_{5}, \tag{f1}\\
& 2: \tag{f2}\\
& \left.m\left(\omega_{2}-r \omega_{4}\right)\right|^{+}=-m r \omega_{4}, \tag{f3}\\
& \text { 3: }\left.m \omega_{3}\right|^{+}=m \omega_{3}, \tag{f4}\\
& \text { 4: }\left.m\left[\left(r^{2}+k^{2}\right) \omega_{4}-r \omega_{2}\right]\right|^{+}=m\left(r^{2}+k^{2}\right) \omega_{4}, \tag{f5}\\
& \text { 5: }\left.m\left[\left(r^{2}+k^{2}\right) \omega_{5}+r \omega_{1}\right]\right|^{+}=m\left(r^{2}+k^{2}\right) \omega_{5}, \tag{f6}\\
& 6:\left.\quad m k^{2} \omega_{6}\right|^{+}=m k^{2} \omega_{6} ;
\end{align*}
$$

and similarly for the preimpact nonholonomic momenta $\left(\partial T^{*} / \partial \omega_{k}\right)^{-}$:
1: 0,
2: 0 ,
3: 0 ,
4: $m k^{2} \omega_{4}{ }^{-}$,
5: $m k^{2} \omega_{5}{ }^{-}$,
6: $m k^{2} \omega_{6}{ }^{-}$.

Next, let us calculate the nonholonomic impulsive forces, $\hat{\boldsymbol{\Theta}}_{k}$ (impressed) and $\hat{\Lambda}_{D}$ (reactions) [where, in view of (d1-6), $k=1, \ldots, 6 ; D=1,2,3$] and their relations with their holonomic counterparts $\hat{Q}_{x, y, z ; \ldots}$ and $\hat{R}_{x, y, z}, \hat{M}_{x, y, z}$. With $d \theta_{k} / d t \equiv \omega_{k}$, we obtain

$$
\begin{align*}
\widehat{\delta^{\prime} W} & =\sum \hat{\boldsymbol{\Theta}}_{k} \delta \theta_{k}=0, \quad \hat{\Theta}_{k}=0 \Rightarrow \hat{Q}_{x, y, z ; \ldots}=0 \tag{g1}\\
\widehat{\delta^{\prime} W_{R}} & =\sum \hat{\Lambda}_{k} \delta \theta_{k}=\sum \hat{\Lambda}_{D} \delta \theta_{D} \\
& =\hat{\Lambda}_{1} \delta \theta_{1}+\hat{\Lambda}_{2} \delta \theta_{2}+\hat{\Lambda}_{3} \delta \theta_{3} \\
& =\hat{\Lambda}_{1}\left(\delta x-r \delta \theta_{y}\right)+\hat{\Lambda}_{2}\left(\delta y+r \delta \theta_{x}\right)+\hat{\Lambda}_{3} \delta z \\
& =\hat{\Lambda}_{1} \delta x+\hat{\Lambda}_{2} \delta y+\hat{\Lambda}_{3} \delta z+\left(\hat{\Lambda}_{2} r\right) \delta \theta_{x}+\left(-\hat{\Lambda}_{1} r\right) \delta \theta_{y}+(0) \delta \theta_{z} \tag{g2}\\
& \equiv \hat{R}_{x} \delta x+\hat{R}_{y} \delta y+\hat{R}_{z} \delta z+\hat{M}_{x} \delta \theta_{x}+\hat{M}_{y} \delta \theta_{y}+\hat{M}_{z} \delta \theta_{z} \tag{g3}\\
& \Rightarrow \hat{R}_{x}=\hat{\Lambda}_{1}, \quad \hat{R}_{y}=\hat{\Lambda}_{2}, \quad \hat{R}_{z}=\hat{\Lambda}_{3} ; \hat{M}_{x}=r \hat{\Lambda}_{2}, \hat{M}_{y}=-r \hat{\Lambda}_{1}, \hat{M}_{x}=0 . \tag{g4}
\end{align*}
$$

With the help of the above results, and the notational $\Delta P_{k} \equiv\left(\partial T^{*} / \partial \omega_{k}\right)^{+}-\left(\partial T^{*} / \partial \omega_{k}\right)^{-}$: impulsive jumps of the nonholonomic momenta, the Hamel equations of impulsive motion become

1: $\quad \Delta P_{1}=\hat{\Theta}_{1}+\hat{\Lambda}_{1}: \quad m r \omega_{5}=m r \omega_{y}=\hat{\Lambda}_{1}$,
or, due to the $k=5$ equation (see below),

$$
\begin{array}{ll}
& m r\left[k^{2} /\left(r^{2}+k^{2}\right)\right] \omega_{y}^{-}=\hat{\Lambda}_{1} ; \\
2: \quad \Delta P_{2}=\hat{\boldsymbol{\Theta}}_{2}+\hat{\Lambda}_{2}: \quad & -m r \omega_{4}=-m r \omega_{x}=\hat{\Lambda}_{2}, \tag{h3}
\end{array}
$$

or, due to the $k=4$ equation (see below),

$$
\begin{equation*}
-m r\left[k^{2} /\left(r^{2}+k^{2}\right)\right] \omega_{x}^{-}=\hat{\Lambda}_{2} \tag{h4}
\end{equation*}
$$

3: $\Delta P_{3}=\hat{\Theta}_{3}+\hat{\Lambda}_{3}: \quad m \omega_{3}=m v_{z}=\hat{\Lambda}_{3}=0 ;$
4: $\quad \Delta P_{4}=\hat{\Theta}_{4}: \quad m\left(r^{2}+k^{2}\right) \omega_{4}-m k^{2} \omega_{4}^{-}=0$,
or

$$
\begin{equation*}
\omega_{x}=\left[k^{2} /\left(r^{2}+k^{2}\right)\right] \omega_{x}^{-}, \quad \text { and then } \quad v_{y}=-r \omega_{x}=\cdots ; \tag{h7}
\end{equation*}
$$

5:

$$
\begin{equation*}
\Delta P_{5}=\hat{\Theta}_{5}: \quad m\left(r^{2}+k^{2}\right) \omega_{5}-m k^{2} \omega_{5}^{-}=0 \tag{h8}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega_{y}=\left[k^{2} /\left(r^{2}+k^{2}\right)\right] \omega_{y}^{-}, \quad \text { and then } \quad v_{x}=r \omega_{y}=\cdots \tag{h9}
\end{equation*}
$$

6:

$$
\begin{equation*}
\Delta P_{6}=\hat{\Theta}_{6}: \quad m k^{2} \omega_{6}-m k^{2} \omega_{6}^{-}=0 \tag{h10}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega_{6}=\omega_{6}^{-} \Rightarrow \omega_{z}=\omega_{z}^{-} \tag{h11}
\end{equation*}
$$

Finally, let us compare the above with the "elementary" Newton-Euler impulsive theory. With $\boldsymbol{v}_{G}{ }^{-}=\left(v_{x}^{-}, v_{y}{ }^{-}, v_{z}^{-}\right)=\mathbf{0}$, and recalling (g4), we readily find
$m v_{x}=\hat{R}_{x}\left(=\hat{\Lambda}_{1}\right) \Rightarrow \hat{R}_{x}=m r \omega_{y}=m r\left[k^{2} /\left(r^{2}+k^{2}\right)\right] \omega_{y}{ }^{-}$,
$m v_{y}=\hat{R}_{y}\left(=\hat{\Lambda}_{2}\right) \Rightarrow \hat{R}_{y}=-m r \omega_{x}=-m r\left[k^{2} /\left(r^{2}+k^{2}\right)\right] \omega_{x}{ }^{-}$,
$m v_{z}=\hat{R}_{z}\left(=\hat{\Lambda}_{3}\right) \Rightarrow \hat{R}_{z}=0 ;$
$\hat{M}_{x}=r \hat{R}_{y}=\cdots, \quad \hat{M}_{y}=-r \hat{R}_{x}=\cdots, \quad \hat{M}_{z}=0 \quad$ (angular momentum about G).
[To obtain reactionless equations we could apply the impulsive angular momentum principle (here, conservation) about the contact point C.]

Finally, it is not hard to show that if $\left(v_{x}{ }^{-}, v_{y}{ }^{-}, v_{z}^{-}\right) \neq \mathbf{0},(\mathrm{h} 7,9)$ would be replaced, respectively, by

$$
\begin{equation*}
\omega_{x}=\left(k^{2} \omega_{x}^{-}+r v_{y}^{-}\right) /\left(r^{2}+k^{2}\right) \quad \text { and } \quad \omega_{y}=\left(k^{2} \omega_{y}^{-}+r v_{x}^{-}\right) /\left(r^{2}+k^{2}\right) \tag{j}
\end{equation*}
$$

See also Bahar [1987, via Jourdain's impulsive principle (see example below)] and Byerly [1916, pp. 72-75, via Kelvin's theorem (§4.6)].

Example 4.5.3 A homogeneous straight rigid bar $A B$ of length $l=2 b$ and mass m falls freely in the vertical plane $O-x y$ and strikes a smooth and inelastic floor at A (fig. 4.12). Find the postimpact velocities and forces.

We choose as Lagrangean coordinates $q_{1,2,3}$ (i) the coordinates of the mass center of the bar $G: x$ and y, and (ii) the bar angle with the vertical (positive upward): θ. Clearly, this is a second-kind problem; that is, one of suddenly applied and persistent constraints. The preimpact velocities are

$$
(\dot{x})^{-}=0, \quad(\dot{y})^{-}=-v, \quad(\dot{\theta})^{-}=\omega, \quad \text { all given; }
$$

(b)

Figure 4.12 (a) Impact of bar $A B$ (length $2 b$, mass m) on smooth, inelastic floor; (b) components of floor reaction.
while the unknowns of the problem are the postimpact velocities:

$$
\begin{equation*}
(\dot{x})^{+} \equiv \dot{x}=0 \quad(\text { by inspection-see below }), \quad(\dot{y})^{+}=\dot{y}, \quad(\dot{\theta})^{+}=\dot{\theta} \tag{b}
\end{equation*}
$$

and the impulsive ground reaction \hat{R}. Below we present two solutions.

1. First Solution: Holonomic Coordinates

We have (double) kinetic energy (with $I \equiv m b^{2} / 3$: moment of inertia of bar about G):

$$
\begin{equation*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+I(\dot{\theta})^{2} \tag{c}
\end{equation*}
$$

constraint:

$$
\begin{align*}
\boldsymbol{v}_{A}=\boldsymbol{v}_{G}+\omega \times \boldsymbol{r}_{A / G} & =(\dot{x}, \dot{y}, 0)+(-\dot{\theta} \boldsymbol{k}) \times(-b \sin \theta, b \cos \theta, 0) \\
& =(\dot{x}-b \dot{\theta} \cos \theta, \dot{y}+b \dot{\theta} \sin \theta, 0) \\
& =\left(v_{A x}, v_{A y}, 0\right) \tag{d}
\end{align*}
$$

and, since the floor is inelastic,

$$
\begin{equation*}
\left.v_{A y}=\dot{y}+b \dot{\theta} \sin \theta=0 \quad \text { (i.e., } n-m=3-1=2\right) \tag{e1}
\end{equation*}
$$

and, in virtual form (with $v_{A y} \equiv \dot{y}_{A}$),
$\delta y_{A}=\delta y+b \sin \theta \delta \theta=0 \quad$ (i.e., the vertical virtual displacement of A vanishes);
an equation that holds whether the inelastic floor is stationary (case discussed here), or moves with a prescribed motion [generalization of (e1)].
Impulsive Lagrange's principle:

$$
\begin{equation*}
\Delta(\partial T / \partial \dot{x}) \delta x+\Delta(\partial T / \partial \dot{y}) \delta y+\Delta(\partial T / \partial \dot{\theta}) \delta \theta=0 \tag{f1}
\end{equation*}
$$

under the constraint eq. (e2), rewritten as

$$
\begin{equation*}
(0) \delta x+(1) \delta y+(b \sin \theta) \delta \theta=0 \tag{f2}
\end{equation*}
$$

Since δx is unconstrained, (f1) gives

$$
\begin{equation*}
\Delta(\partial T / \partial \dot{x})=\Delta(m \dot{x})=m \dot{x}-m(\dot{x})^{-}=0 \Rightarrow \dot{x}=0 . \tag{g1}
\end{equation*}
$$

Then (f1, 2) reduce, respectively, to

$$
\begin{align*}
& \Delta(\partial T / \partial \dot{y}) \delta y+\Delta(\partial T / \partial \dot{\theta}) \delta \theta=\Delta(m \dot{y}) \delta y+\Delta(I \dot{\theta}) \delta \theta=0, \tag{g2}\\
& \text { (1) } \delta y+(b \sin \theta) \delta \theta=0 \tag{g3}
\end{align*}
$$

and, via an impulsive multiplier $-\hat{\lambda}$, combine, in well-known ways, to the single unconstrained variational equation

$$
\begin{equation*}
[\Delta(m \dot{y})-\hat{\lambda}(1)] \delta y+[\Delta(I \dot{\theta})-\hat{\lambda}(b \sin \theta)] \delta \theta=0 \tag{g4}
\end{equation*}
$$

This yields, immediately, the two Routh-Voss impulsive equations

$$
\begin{equation*}
\Delta(m \dot{y})=\hat{\lambda}, \quad \Delta(I \dot{\theta})=\hat{\lambda}(b \sin \theta) \tag{h1}
\end{equation*}
$$

or, invoking the preimpact velocities (a),

$$
\begin{equation*}
m(\dot{y}+v)=\hat{\lambda}, \quad I(\dot{\theta}-\omega)=\hat{\lambda} b \sin \theta \tag{h2}
\end{equation*}
$$

which, along with the constraint equation (e1) (evaluated at the postimpact instant) constitute a system of three equations for $\dot{y}, \dot{\theta}, \hat{\lambda}$. Solving them, we find

$$
\begin{align*}
& \dot{\theta}=(b \omega+3 v \sin \theta) / b\left(1+3 \sin ^{2} \theta\right) \tag{i1}\\
& \dot{y}=-\sin \theta(b \omega+3 v \sin \theta) /\left(1+3 \sin ^{2} \theta\right) . \tag{i2}
\end{align*}
$$

Then, from the first of (h2),

$$
\begin{equation*}
\hat{\lambda}=m(\dot{y}+v)=m(v-b \omega \sin \theta) /\left(1+3 \sin ^{2} \theta\right) ; \tag{i3}
\end{equation*}
$$

and [fig. 4.12(b)]

$$
\begin{align*}
{\widehat{\delta^{\prime} W_{R}}}^{=} \hat{R} \delta y_{A}=\hat{R}(\delta y+b \sin \theta \delta \theta) & =\hat{R} \delta y+(\hat{R} b \sin \theta) \delta \theta \\
& \equiv \hat{R}_{y} \delta y+\hat{R}_{\theta} \delta \theta \quad(=0), \tag{j1}
\end{align*}
$$

that is,

$$
\begin{equation*}
\hat{R}_{y}=\hat{R}=\hat{\lambda}, \quad \hat{R}_{\theta}=\hat{R} b \sin \theta=\hat{\lambda} b \sin \theta, \quad \hat{R}_{x}=0 . \tag{j2}
\end{equation*}
$$

The (two) kinetic impulsive Maggi equations of this problem are (g1) and the equation obtained by eliminating $\hat{\lambda}$ between (h2):

$$
\begin{equation*}
I(\dot{\theta}-\omega)-b \sin \theta[m(\dot{y}+v)]=0 \tag{k1}
\end{equation*}
$$

or, simplifying,

$$
\begin{equation*}
3 \sin \theta(\dot{y}+v)-b(\dot{\theta}-\omega)=0 . \tag{k2}
\end{equation*}
$$

Solving (g1), (k2), and (e1) for $\dot{x}, \dot{y}, \dot{\theta}$, we recover the second of (g1) and (i1, 2). These results are rederived more systematically below.

2. Second Solution: Nonholonomic Coordinates

Due to the constraints (e1,2), we introduce the following set of quasi velocities:

$$
\begin{equation*}
\omega_{1} \equiv \dot{y}+(b \sin \theta) \dot{\theta} \quad(=0), \quad \omega_{2} \equiv \dot{y}, \quad \omega_{3} \equiv \dot{x} \tag{11}
\end{equation*}
$$

Their inverse is readily found to be

$$
\begin{equation*}
\dot{x}=\omega_{3}, \quad \dot{y}=\omega_{2}, \quad \dot{\theta}=\left(\omega_{1}-\omega_{2}\right) / b \sin \theta ; \tag{12}
\end{equation*}
$$

that is, the corresponding transformation matrices are

$$
\begin{align*}
& \left(a_{k l}\right)=\left(\begin{array}{ccc}
0 & 1 & b \sin \theta \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \\
& \left(A_{k l}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
(b \cos \theta)^{-1} & -(b \cos \theta)^{-1} & 0
\end{array}\right) . \tag{13}
\end{align*}
$$

Then:
(i) Maggi's kinetic equations: $\sum A_{k I} \Delta p_{k}=\sum A_{k I} \hat{Q}_{k}(k=1,2,3 ; I=2,3)$, with some (hopefully obvious) ad hoc notations, become
$I=2: \quad A_{x 2}\left(\Delta p_{x}-\hat{Q}_{x}\right)+A_{y 2}\left(\Delta p_{y}-\hat{Q}_{y}\right)+A_{\theta 2}\left(\Delta p_{\theta}-\hat{Q}_{\theta}\right)=0$,
or $\quad(0)\left(\Delta p_{x}-0\right)+(1)\left(\Delta p_{y}-0\right)+(-1 / b \sin \theta)\left(\Delta p_{\theta}-0\right)=0$,
or, finally, $\quad \Delta p_{\theta}=(b \sin \theta) \Delta p_{y}$.
$I=3:$

$$
\begin{align*}
& \quad A_{x 3}\left(\Delta p_{x}-\hat{Q}_{x}\right)+A_{y 3}\left(\Delta p_{y}-\hat{Q}_{y}\right)+A_{\theta 3}\left(\Delta p_{\theta}-\hat{Q}_{\theta}\right)=0, \tag{m1}\\
& \text { or } \quad(1)\left(\Delta p_{x}-0\right)+(0)\left(\Delta p_{y}-0\right)+(0)\left(\Delta p_{\theta}-0\right)=0, \\
& \text { or, finally, } \quad \Delta p_{x}=0 ; \tag{m2}
\end{align*}
$$

(ii) Maggi's kinetostatic equations: $\sum A_{k D} \Delta p_{k}=\sum A_{k D} \hat{Q}_{k}(k=1,2,3 ; D=1$; i.e., here only one such equation) become

$$
\begin{align*}
& D=1: \quad A_{x 1}\left(\Delta p_{x}-\hat{Q}_{x}\right)+A_{y 1}\left(\Delta p_{y}-\hat{Q}_{y}\right)+A_{\theta 1}\left(\Delta p_{\theta}-\hat{Q}_{\theta}\right)=\hat{\lambda}_{1} \equiv \hat{\lambda}, \\
& \\
& \text { or } \quad(0)\left(\Delta p_{x}-0\right)+(0)\left(\Delta p_{y}-0\right)+(1 / b \sin \theta)\left(\Delta p_{\theta}-0\right)=\hat{\lambda}, \tag{m3}\\
& \\
& \text { or, finally, } \quad \Delta p_{\theta}=(b \sin \theta) \hat{\lambda} .
\end{align*}
$$

Equations (m1-3), naturally, coincide with the earlier equations (k2), (g1), (second of h2), respectively.
(iii) Next, let us formulate the impulsive Hamel equations. In terms of the above ω 's, the preimpact state is

$$
\begin{array}{ll}
\omega_{1}^{-}=-v+\omega b \sin \theta & \left(\neq 0, \text { but } \omega_{1}^{+} \equiv \omega=0\right), \\
\omega_{2}^{-}=(\dot{y})^{-}=-v, & \omega_{3}^{-}=(\dot{x})^{-}=0 ; \tag{n1}
\end{array}
$$

and, further,
$2 T \rightarrow 2 T^{*}=m\left(\omega_{2}{ }^{2}+\omega_{3}^{2}\right)+\left(m / 3 \sin ^{2} \theta\right)\left(\omega_{1}-\omega_{2}\right)^{2} \quad[$ substituting (12) into (c) $]$,
$\Rightarrow 2 T^{*}{ }_{o}=m\left(\omega_{2}{ }^{2}+\omega_{3}{ }^{2}\right)+\left(m / 3 \sin ^{2} \theta\right) \omega_{2}{ }^{2} \quad\left(\right.$ constrained $\left.2 T^{*}\right) ;$

$$
\begin{align*}
& \widehat{\delta^{\prime} W} \rightarrow \widehat{\left(\delta^{\prime} W\right)^{*}}=\hat{\Theta}_{1} \delta \theta_{1}+\hat{\Theta}_{2} \delta \theta_{2}+\hat{\Theta}_{3} \delta \theta_{3}=0 \\
& {\left[\text { where } \omega_{1,2,3} \equiv d \theta_{1,2,3} / d t ; \text { since } \hat{Q}_{x, y, \theta}=0 \Rightarrow \hat{\Theta}_{1,2,3}=0\right] ; } \tag{n4}\\
&{\widehat{\delta^{\prime} W_{R}}} \rightarrow \widehat{\left(\delta^{\prime} W_{R}\right)^{*}}=\hat{\Lambda}_{1} \delta \theta_{1}+\hat{\Lambda}_{2} \delta \theta_{2}+\hat{\Lambda}_{3} \delta \theta_{3} \\
&=\hat{\Lambda}_{1}(\delta y+b \sin \theta \delta \theta)+\hat{\Lambda}_{2} \delta y+\hat{\Lambda}_{3} \delta x \\
&=\hat{\Lambda}_{3} \delta x+\left(\hat{\Lambda}_{1}+\hat{\Lambda}_{2}\right) \delta y+\left(\hat{\Lambda}_{1} b \sin \theta\right) \delta \theta \quad(=0), \tag{n5}
\end{align*}
$$

from which [and (j 2)] it follows that
$\hat{R}_{x}=\hat{\Lambda}_{3}=0, \quad \hat{R}_{y}=\hat{\Lambda}_{1}+\hat{\Lambda}_{2}=\hat{\lambda} \Rightarrow \hat{\Lambda}_{2}=0 \quad$ (by next equation),
$\hat{R}_{\theta}=\hat{\Lambda}_{1} b \sin \theta=\hat{\lambda} b \sin \theta \Rightarrow \hat{\Lambda}_{1}=\hat{\lambda}=\hat{R} ; \quad$ i.e., $\hat{\Lambda}_{1} \neq 0, \quad \hat{\Lambda}_{2}=0, \quad \hat{\Lambda}_{3}=0$.
In view of the above, the Hamel impulsive equations are (we recall to set, after the differentiations, $\omega_{1}=0$)

$$
\begin{align*}
\omega_{3}: \quad & \Delta\left(\partial T^{*} / \partial \omega_{3}\right)=\hat{\Lambda}_{3}: \quad m \omega_{3}-0=0 \Rightarrow \omega_{3} \equiv \dot{x}=0, \tag{ol}\\
\omega_{2}: \quad & \Delta\left(\partial T^{*} / \partial \omega_{2}\right)=\hat{\Lambda}_{2}: \\
& {\left[m \omega_{2}+\left(m / 3 \sin ^{2} \theta\right)\left(\omega_{2}-\omega_{1}\right)\right] } \\
& \quad-\left[m(-v)+\left(m / 3 \sin ^{2} \theta\right)(-v-b \omega \sin \theta+v)\right], \\
\Rightarrow & m\left(\omega_{2}+v\right)+(m / 3 \sin \theta)\left[\left(\omega_{2} / \sin \theta\right)+b\right]=0 \\
\Rightarrow & \omega_{2} \equiv \dot{y}=-\sin \theta(b \omega+3 v \sin \theta) /\left(1+3 \sin ^{2} \theta\right), \tag{o2}\\
\omega_{1}: \quad & \Delta\left(\partial T^{*} / \partial \omega_{1}\right)=\hat{\Lambda}_{1}: \\
& \quad\left[m\left(\omega_{1}-\omega_{2}\right) / 3 \sin ^{2} \theta\right]_{o}-\left[m(b \omega \sin \theta-v+v) / 3 \sin ^{2} \theta\right]_{o} \\
& =\left(-m \omega_{2} / 3 \sin ^{2} \theta\right)-(m b \omega / 3 \sin \theta)=\hat{\Lambda}_{1}=\hat{\lambda}, \\
\Rightarrow & -(m / 3 \sin \theta)\left[\left(\omega_{2} / \sin \theta\right)+b \omega\right]=\hat{\lambda}, \\
\Rightarrow & \hat{\Lambda}_{1}=m(v-b \omega \sin \theta) /\left(1+3 \sin ^{2} \theta\right) \quad[\text { invoking }(\mathrm{o} 2)] ; \tag{o3}
\end{align*}
$$

and, finally, from (12)

$$
\begin{equation*}
\dot{\theta}=-\omega_{2} / b \sin \theta=-\dot{y} / b \sin \theta=(b \omega+3 v \sin \theta) / b\left(1+3 \sin ^{2} \theta\right), \tag{o4}
\end{equation*}
$$

as before.

CLOSING REMARKS

(i) This is a problem of the second kind; that is, suddenly introduced persistent constraints. Due to $\omega_{1}^{-} \neq 0$, in expressions like $\left(\partial T^{*} / \partial \omega_{D}\right)^{+}$and $\left(\partial T^{*} / \partial \omega_{D}\right)^{-}$, we must keep all the ω^{\prime} 's in $T^{+}: T^{*}=T^{*}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, and enforce the constraint $\omega_{1}^{+} \equiv \omega_{1}=0$ only after all differentiations have been carried out. However, the reader may easily verify that

$$
\left(\partial T^{*} / \partial \omega_{I}\right)^{+}=\left(\partial T^{*}{ }_{o} / \partial \omega_{I}\right)^{+} .
$$

(ii) This problem is treated in Timoshenko and Young (1948, p. 226). Their solution is, however, conceptually incorrect, since they treat \hat{R} as an impressed impulsive force; even though, clearly, all Q 's vanish. Their final results, however, are correct. The same error is repeated in several other (mostly British) texts: for example, Ramsey (1937, pp. 220-221), Smart (1951, pp. 262-263). Other authors do not commit such errors only because they restrict their treatments to first-kind problems.

Problem 4.5.3 (D. T. Greenwood, private communication, 1997). Continuing from the preceding example, and in order to avoid calculating undesired impulsive constraint reactions, choose as velocity variables $\dot{x}_{A} \equiv v_{A x}, \dot{y}_{A} \equiv v_{A y}, \dot{\theta} \equiv \Omega$ (i.e., $\left.\omega_{1} \equiv v_{A y}, \omega_{2} \equiv v_{A x}, \omega_{3} \equiv \dot{\theta}\right)$. Then the initial conditions are

$$
\begin{equation*}
v_{A x}{ }^{-}=-b \omega \cos \theta, \quad v_{A y}{ }^{-}=b \omega \sin \theta-\nu, \quad \Omega^{-}=\omega \tag{a}
\end{equation*}
$$

while after the impact with the floor,

$$
\begin{equation*}
v_{A y}=0, \quad v_{A x}, \Omega: \quad \text { independent } \quad \text { (i.e., } \omega_{1}=0, \quad \omega_{2}, \omega_{3}: \text { independent). } \tag{b}
\end{equation*}
$$

(i) Show that the unconstrained kinetic energy of the bar is

$$
\begin{equation*}
T=(m / 2)\left(v_{A x}^{2}+v_{A y}^{2}\right)+\left(2 m b^{2} / 3\right) \Omega^{2}+m b \Omega\left(v_{A x} \cos \theta-v_{A y} \sin \theta\right) \quad\left(=T^{*}\right) \tag{c}
\end{equation*}
$$

(ii) Verify that Appell's rule (i.e., conservation of system momenta corresponding to $v_{A x}, \Omega$) gives
$\Delta\left(\partial T / \partial v_{A x}\right)=\Delta\left(\partial T^{*} / \partial \omega_{2}\right)=0: \quad m v_{A x}+m b \Omega \cos \theta=$ constant $\quad(=0)$,
$\Delta(\partial T / \partial \Omega)=\Delta\left(\partial T^{*} / \partial \omega_{3}\right)=0:$
$(4 / 3) m b^{2} \Omega+m b\left(v_{A x} \cos \theta-v_{A y} \sin \theta\right)=$ constant $\quad\left[=(4 / 3) m b^{2} \omega-m b^{2} \omega+m b v \sin \theta\right]$;
from which, eliminating $v_{A x}$, while recalling the first of (b), we obtain Ω [ex. 4.5.3: (i1)].
(iii) Show that the vertical constraint impulse $\hat{\lambda}=\hat{R}_{y}$ is found from the impulsive Routh-Voss equation

$$
\begin{align*}
& \Delta\left(\partial T / \partial v_{A y}\right)=\hat{R}_{y}: \\
& \Delta\left(m v_{A y}-m b \Omega \sin \theta\right)=-m \sin \theta\left[(b \omega+3 v \sin \theta) /\left(1+3 \sin ^{2} \theta\right)\right]+m v=\hat{R}_{y} \tag{e}
\end{align*}
$$

in agreement with the earlier expressions (i3) and (o3) of ex. 4.5.3.

Example 4.5.4 A homogeneous straight rigid bar $A B$ of length L and mass M can rotate freely about a fixed pin at A. A particle of mass m strikes the bar and then slides along it. The entire figure lies on a smooth horizontal plane $O-x y$ (fig. 4.13). Find the postimpact velocities and forces (reactions) if the bar is initially at rest; the particle strikes at a distance $\alpha L(0<\alpha<1)$, when the bar makes an angle $\theta=\theta_{o}$ with the positive x-axis, with preimpact velocity components $(\dot{x})^{-}=0,(\dot{y})^{-}=v_{o} \equiv v$ (Bahar, 1970-1980; Greenwood, 1977, p. 118).

Figure 4.13 (a) Particle impacting on a straight rigid bar $A B$, at a distance αL from A; (b) corresponding constraint reaction, and its components. $\alpha L=x \sec \theta ; \hat{\lambda} \sec \theta \equiv \hat{F}, \hat{\lambda} \tan \theta=\hat{R}_{x}$.

By König's theorem,

$$
\begin{align*}
2 T & =M(L \dot{\theta} / 2)^{2}+\left(M L^{2} / 12\right)(\dot{\theta})^{2}+m\left[(\dot{x})^{2}+(\dot{y})^{2}\right] \\
& =M\left[L^{2}(\dot{\theta})^{2} / 3\right]+m\left[(\dot{x})^{2}+(\dot{y})^{2}\right] \tag{a1}
\end{align*}
$$

also,

$$
\begin{equation*}
\widehat{\delta^{\prime} W}=0, \quad \hat{Q}_{x, y, \theta}=0 \tag{a2}
\end{equation*}
$$

1. First Solution: Holonomic Coordinates

By (...) -differentiating the holonomic and stationary constraint $y=x \tan \theta$ [fig. 4.13(a)], we find

$$
\begin{equation*}
\dot{y}=\dot{x} \tan \theta+x \dot{\theta} \sec ^{2} \theta \Rightarrow(\tan \theta) \dot{x}+(-1) \dot{y}+\left(x \sec ^{2} \theta\right) \dot{\theta}=0, \tag{b1}
\end{equation*}
$$

and, since this system is scleronomic,

$$
\begin{equation*}
(\tan \theta) \delta x+(-1) \delta y+\left(x \sec ^{2} \theta\right) \delta \theta=0 \tag{b2}
\end{equation*}
$$

Further, we have

$$
\begin{equation*}
\text { Particle configuration: } \quad x=(\alpha L) \cos \theta, \quad y=(\alpha L) \sin \theta, \tag{b3}
\end{equation*}
$$

$$
\text { Preimpact velocities: } \quad(\dot{x})^{-}=0, \quad(\dot{y})^{-}=v, \quad(\dot{\theta})^{-}=0,
$$

Postimpact velocities: $\quad(\tan \theta) \dot{x}+(-1) \dot{y}+\left(x \sec ^{2} \theta\right) \dot{\theta}=0$.
Therefore, the impulsive principle of Lagrange yields

$$
\begin{align*}
0 & =\Delta(\partial T / \partial \dot{x}) \delta x+\Delta(\partial T / \partial \dot{y}) \delta y+\Delta(\partial T / \partial \dot{\theta}) \delta \theta \\
& =\left[m \dot{x}-m(\dot{x})^{-}\right] \delta x+\left[m \dot{y}-m(\dot{y})^{-}\right] \delta y+\left(M L^{2} / 3\right)\left[\dot{\theta}-(\dot{\theta})^{-}\right] \delta \theta \\
& =(m \dot{x}) \delta x+m(\dot{y}-v) \delta y+\left(M L^{2} / 3\right) \dot{\theta} \delta \theta, \tag{c}
\end{align*}
$$

under (b2). Applying the multiplier rule to (c), with (b2), we readily obtain

$$
\begin{equation*}
m \dot{x}=\hat{\lambda} \tan \theta, \quad m(\dot{y}-v)=-\hat{\lambda}, \quad\left(M L^{2} / 3\right) \dot{\theta}=\hat{\lambda}\left(x \sec ^{2} \theta\right) \tag{d1,2,3}
\end{equation*}
$$

which along with (b1) [or (b5)] constitutes an algebraic system of four equations for $\dot{x}, \dot{y}, \dot{\theta}, \hat{\lambda}$. Solving it, we find (with $\beta \equiv m / M$)

$$
\begin{align*}
& \dot{x}=\left(\sin \theta \cos \theta / 3 \alpha^{2} \beta\right) v, \tag{e1}\\
& \dot{y}=\left[\left(\sin ^{2} \theta+3 \alpha^{2} \beta\right) /\left(1+3 \alpha^{2} \beta\right)\right] v, \tag{e2}\\
& \begin{aligned}
L \dot{\theta} & =\left[(3 \alpha \cos \theta) /\left(\beta^{-1}+3 \alpha^{2}\right)\right] v \\
\hat{\lambda} & =m(v-\dot{y})=\left[\cos ^{2} \theta /\left(1+3 \alpha^{2} \beta\right)\right] m v \\
& =\left[\cos ^{2} \theta /\left(\beta^{-1}+3 \alpha^{2}\right)\right] M v
\end{aligned} \tag{e3}
\end{align*}
$$

From the above, and figure 4.13(b), we find that the holonomic components of the impulsive constraint reactions equal

$$
\begin{align*}
& \hat{R}_{x}=\hat{\lambda} \tan \theta=\hat{F} \sin \theta=(\sin \theta / \alpha L) \hat{R}_{\theta} \tag{f1}\\
& \hat{R}_{y}=-\hat{\lambda}=-(\cos \theta / \alpha L) \hat{R}_{\theta} \tag{f2}\\
& \hat{R}_{\theta}=\widehat{\left(\delta^{\prime} W_{R}\right)_{o}} / \delta \theta=[(\hat{\lambda} \sec \theta)(x \sec \theta) \delta \theta] / \delta \theta=\hat{\lambda} x \sec ^{2} \theta \tag{f3}
\end{align*}
$$

2. Second Solution: Nonholonomic Coordinates

In view of the constraint (b1), and recalling (b3), we introduce the following quasi velocities:

$$
\begin{equation*}
\omega_{1} \equiv(\tan \theta) \dot{x}+(-1) \dot{y}+(\alpha L / \cos \theta) \dot{\theta} \quad(=0), \quad \omega_{2} \equiv \dot{x}, \quad \omega_{3} \equiv \dot{y} ; \tag{g1}
\end{equation*}
$$

with inverses (unconstrained, since we want to calculate the impulsive reactions)

$$
\dot{x}=\omega_{2}, \quad \dot{y}=\omega_{3}, \quad \dot{\theta}=(\cos \theta / \alpha L) \omega_{1}+(\cos \theta / \alpha L) \omega_{3}+(-\sin \theta / \alpha L) \omega_{2} . \quad(\mathrm{g} 2)
$$

Then:
(i) The, also unconstrained, (double) kinetic energy is

$$
\begin{equation*}
2 T \rightarrow 2 T^{*}=\left(M / 3 \alpha^{2}\right)\left[\left(\omega_{1}+\omega_{3}\right) \cos \theta-\omega_{2} \sin \theta\right]^{2}+m\left(\omega_{2}^{2}+\omega_{3}^{2}\right) \tag{h}
\end{equation*}
$$

(ii) The preimpact velocities are

$$
(\dot{\theta})^{-}=0, \quad(\dot{x})^{-}=0, \quad(\dot{y})^{-}=v \Rightarrow \quad \omega_{1}^{-}=-v, \quad \omega_{2}^{-}=0, \quad \omega_{3}^{-}=v,(\mathrm{i})
$$

$$
\begin{equation*}
\omega_{1} \equiv \omega_{1}^{+}(=0) \neq \omega_{1}^{-} \quad(\text { sudden } \rightarrow \text { persistent constraints; i.e., second-type problem }) ; \tag{j}
\end{equation*}
$$

(iii) The (unconstrained) impulsive virtual works are

$$
\begin{align*}
& \widehat{\left(\delta^{\prime} W\right)^{*} \equiv \hat{\Theta}_{1} \delta \theta_{1}+\hat{\Theta}_{2} \delta \theta_{2}+\hat{\Theta}_{3} \delta \theta_{3}=0 \Rightarrow \hat{\Theta}_{1,2,3}=0,} \tag{k1}\\
& 0=\widehat{\left(\delta^{\prime} W_{R}\right)^{*}} \equiv \hat{\Lambda}_{1} \delta \theta_{1}+\hat{\Lambda}_{2} \delta \theta_{2}+\hat{\Lambda}_{3} \delta \theta_{3} \quad[\text { invoking the virtual form of }(\mathrm{g} 2)] \\
& =\hat{\Lambda}_{1}[(\tan \theta) \delta x-\delta y+(\alpha L / \cos \theta) \delta \theta]+\hat{\Lambda}_{2} \delta x+\hat{\Lambda}_{3} \delta y \\
& =\cdots=\hat{R}_{x} \delta x+\hat{R}_{y} \delta y+\hat{R}_{\theta} \delta \theta \equiv \widehat{\delta^{\prime} W_{R}}, \tag{k2}\\
& \Rightarrow \hat{R}_{x}=(\tan \theta) \hat{\Lambda}_{1}+\hat{\Lambda}_{2}=(\tan \theta) \hat{\Lambda}_{1} \quad\left[=(\sin \theta / \alpha L) \hat{R}_{\theta}\right] \quad\left(\text { since } \hat{\Lambda}_{2}=0\right), \tag{k3}\\
& \tag{k4}\\
& \hat{R}_{y}=(-1) \hat{\Lambda}_{1}+\hat{\Lambda}_{3}=-\hat{\Lambda}_{1} \quad\left[=-(\cos \theta / \alpha L) \hat{R}_{\theta}\right] \quad\left(\text { since } \hat{\Lambda}_{3}=0\right), \tag{k5}\\
& \\
& \hat{R}_{\theta}=(\alpha L / \cos \theta) \hat{\Lambda}_{1} \quad\left(\text { where } \hat{\Lambda}_{1}=\hat{\lambda}\right) .
\end{align*}
$$

Therefore, the Hamel impulsive equations are (we recall to set $\omega_{1}^{+} \equiv \omega_{1}=0$, after the differentiations)

$$
\begin{array}{lc}
\omega_{1}: & \Delta\left(\partial T^{*} / \partial \omega_{1}\right)=\hat{\Lambda}_{1}: \\
& \left(M / 3 \alpha^{2}\right)\left(\omega_{3} \cos ^{2} \theta-\omega_{2} \sin \theta \cos \theta\right)=\hat{\Lambda}_{1} \\
\omega_{2}: & \Delta\left(\partial T^{*} / \partial \omega_{2}\right)=0: \\
& \left(M / 3 \alpha^{2}\right)\left(\omega_{2} \sin ^{2} \theta-\omega_{3} \sin \theta \cos \theta\right)+m \omega_{2}=0 \\
\omega_{3}: & \Delta\left(\partial T^{*} / \partial \omega_{3}\right)=0: \\
& \tag{13}\\
& \left(M / 3 \alpha^{2}\right)\left(\omega_{3} \cos ^{2} \theta-\omega_{2} \sin \theta \cos \theta\right)+m\left(\omega_{3}-v\right)=0
\end{array}
$$

Solving this algebraic system for $\omega_{2,3}$ and $\hat{\Lambda}_{1}$ we find

$$
\begin{align*}
& \omega_{2}=\dot{x}=[\varepsilon \sin \theta \cos \theta /(1+\varepsilon)] v, \tag{m1}\\
& \omega_{3}=\dot{y}=\left[\left(1+\varepsilon \sin ^{2} \theta\right) /(1+\varepsilon)\right] v, \tag{m2}\\
& \hat{\Lambda}_{1}=\hat{\lambda}=\left(M / 3 \alpha^{2}\right)\left[\cos ^{2} \theta /(1+\varepsilon)\right] v \tag{m3}
\end{align*}
$$

where

$$
\begin{align*}
\varepsilon & \equiv M / 3 m \alpha^{2}=(M / m)\left(1 / 3 \alpha^{2}\right)=1 / 3 \alpha^{2} \beta \tag{m4}\\
& \Rightarrow \dot{\theta}=(\cos \theta / \alpha L) \omega_{3}-(\sin \theta / \alpha L) \omega_{2}=[\cos \theta / \alpha L(1+\varepsilon)] v \tag{m5}
\end{align*}
$$

which, naturally, coincide with the earlier values.

CLOSING REMARKS

If the problem was one of the first kind (i.e., only impressed impulsive forces, no change of constraints), then $\Delta \omega_{1} \equiv \omega_{1}{ }^{+}-\omega_{1}{ }^{-}=0-0$, and since always $\left(\partial T^{*} / \partial \omega_{I}\right)_{o}=\partial T^{*}{ }_{o} / \partial \omega_{I}$, the kinetic impulsive equations can be written as $\Delta\left(\partial T^{*}{ }_{o} / \partial \omega_{I}\right)=\hat{\Theta}_{I}(I=2,3)$. But in second kind problems, like this one, since $\omega_{1}^{-} \neq 0$, the notation $(\ldots)_{o}$ can only mean setting $\omega_{1}{ }^{+}=0$, after all differentiations; that is, we must start with T^{*}, even if we do not seek the impulsive reactions. Then,

$$
\left(\partial T^{*} / \partial \omega_{I}\right)^{+}=\left(\partial T_{o}^{*} / \partial \omega_{I}\right)^{+} \quad \text { but } \quad\left(\partial T^{*} / \partial \omega_{I}\right)^{-} \neq\left(\partial T_{o}^{*} / \partial \omega_{I}\right)^{-}, \quad(\mathrm{n} 1,2)
$$

and the kinetic (reactionless) impulsive equations can be written as $\left(\partial T^{*}{ }_{o} / \partial \omega_{I}\right)^{+}-\left(\partial T^{*} / \partial \omega_{I}\right)^{-}=\hat{\boldsymbol{\Theta}}_{I}$. Clearly, these are general results.

Let us verify them for our problem. Equation (h) yields

$$
\begin{align*}
& 2 T^{*} \rightarrow 2 T_{o}^{*}=\left(M / 3 \alpha^{2}\right)\left(\omega_{3} \cos \theta-\omega_{2} \sin \theta\right)^{2}+m\left(\omega_{2}^{2}+\omega_{3}^{2}\right), \tag{o}\\
& \Rightarrow \partial T_{o}^{*} / \partial \omega_{2}=\left(M / 3 \alpha^{2}\right)\left(\omega_{3} \cos \theta-\omega_{2} \sin \theta\right)(-\sin \theta)+m \omega_{2} \tag{p1}\\
& \quad\left(\partial T_{o}^{*} / \partial \omega_{2}\right)^{-}=\left(M / 3 \alpha^{2}\right)(v \cos \theta)(-\sin \theta) \tag{p2}
\end{align*}
$$

but

$$
\begin{equation*}
\left(\partial T^{*} / \partial \omega_{2}\right)^{-}=\left(M / 3 \alpha^{2}\right)[(-v+v) \cos \theta-0](-\sin \theta)+0=0 \tag{p3}
\end{equation*}
$$

that is,

$$
\left(\partial T^{*} / \partial \omega_{2}\right)^{-} \neq\left(\partial T^{*}{ }_{o} / \partial \omega_{2}\right)^{-} ;
$$

and

$$
\begin{align*}
& \left(\partial T^{*}{ }_{o} / \partial \omega_{2}\right)^{+}=\left(M / 3 \alpha^{2}\right)\left(\omega_{3} \cos \theta-\omega_{2} \sin \theta\right)(-\sin \theta)+m \omega_{2}, \tag{p4}\\
& \left(\partial T^{*} / \partial \omega_{2}\right)^{+}=\left(M / 3 \alpha^{2}\right)\left(\omega_{3} \cos \theta-\omega_{2} \sin \theta\right)(-\sin \theta)+m \omega_{2} ; \tag{p5}
\end{align*}
$$

that is,

$$
\left(\partial T^{*}{ }_{o} / \partial \omega_{2}\right)^{+}=\left(\partial T^{*} / \partial \omega_{2}\right)^{+}, \text {and similarly for } \omega_{3}
$$

In sum: the replacement of T^{*} with $T^{*}{ }_{o}$ in the kinetic impulsive equations is allowed only when the constraints $\omega_{D}=0$ hold.

Example 4.5.5 Three slender homogeneous bars, $A B, B C, C D$, each of mass m and length $2 b$, are pinned together at B and C, and pivoted at A to a fixed horizontal table. The end D receives an impulse \hat{P} [fig. 4.14a]. Let us find the translational and rotational (angular) velocities of the mass center of each rod (Bahar, 1987; Chorlton, 1983, pp. 227-229; also Beghin, 1967, pp. 472-473).
(a)

(b)

Figure 4.14 (a) System consisting of three homogeneous bars $A B, B C, C D$, impacted at D; (b) quasi velocities chosen to describe its velocities. "British theorem": the kinetic energy of a thin homogeneous bar $A B$, of mass m, equals $T=(m / 6)\left(v_{A}{ }^{2}+v_{B}{ }^{2}+v_{A} \cdot v_{B}\right)$.

1. Kinetic Equations

Although, clearly, this is a holonomic system, we choose to describe it by the quasi velocities shown in fig. 4.14(a, b), compatible with plane and rigid kinematics. Using the "British theorem" [(1.17.8)] and some easily understood ad hoc notation, we find that the kinetic energy of the system, at the impact configuration, is

$$
\begin{align*}
T & =T_{A B}+T_{B C}+T_{C D} \\
& =(m / 6)\left(0+v^{2}\right)+(m / 6)\left(v^{2}+u^{2}+v^{2}+v^{2}\right)+(m / 6)\left(u^{2}+v^{2}+u^{2}+w^{2}+u^{2}+w v\right) \\
& =(m / 6)\left(5 v^{2}+4 u^{2}+w^{2}+w v\right) . \tag{a}
\end{align*}
$$

[For comparison purposes, we point out that the König theorem-based calculation would have given

$$
\begin{align*}
2 T_{A B} & =m(v / 2)^{2}+\left(m b^{2} / 3\right)(v / 2 b)^{2}=m v^{2} / 3, \tag{a1}\\
2 T_{B C} & =m\left[v^{2}+\left(u^{2} / 4\right)\right]+\left(m b^{2} / 3\right)(u / 2 b)^{2}=m v^{2}+m u^{2} / 3, \tag{a2}\\
2 T_{C D} & =m\left\{u^{2}+[(w+v) / 2]^{2}\right\}+\left(m b^{2} / 3\right)[(w-v) / 2 b]^{2} \\
& \left.=(m / 3)\left(3 u^{2}+v^{2}+w^{2}+w v\right), \quad \text { etc. }\right] \tag{a3}
\end{align*}
$$

The impressed impulsive forces are calculated from the corresponding virtual work expression (as if u, v, w were quasi coordinates):

$$
\begin{equation*}
\widehat{\delta^{\prime} W}=\hat{\Theta}_{u} \delta u+\hat{\Theta}_{v} \delta v+\hat{\Theta}_{w} \delta w=\hat{P} \delta w \Rightarrow \hat{\Theta}_{u}=0, \hat{\Theta}_{v}=0, \hat{\Theta}_{w}=\hat{P} . \tag{b}
\end{equation*}
$$

In view of the above, the Hamel equations of motion are (with T instead of the customary T^{*}, and $\omega^{+} \equiv \omega$ for all postimpact velocities)

$$
\begin{align*}
& \Delta(\partial T / \partial u)=0 \Rightarrow(m / 6)(8 u)=0, \tag{cl}\\
& \Delta(\partial T / \partial v)=0 \Rightarrow(m / 6)(10 v+w)=0, \tag{c2}\\
& \Delta(\partial T / \partial w)=\hat{P} \Rightarrow(m / 6)(v+2 w)=\hat{P} \tag{c3}
\end{align*}
$$

and their solution is easily found to be

$$
\begin{equation*}
u=0, \quad v=-(6 / 19)(\hat{P} / m), \quad w=(60 / 19)(\hat{P} / m) . \tag{d}
\end{equation*}
$$

Then, by simple kinematics,

$$
\begin{align*}
& \omega_{A B}=v / 2 b=-(3 / 19)(\hat{P} / m b) \quad(\text { clockwise }), \quad \omega_{B C}=0, \\
& \omega_{D C}=(w-v) / 2 b=(33 / 19)(\hat{P} / m b) \quad(\text { clockwise }) ; \tag{e1}
\end{align*}
$$

and

$$
\begin{array}{ll}
\boldsymbol{v}_{\text {center of mass of } A B}=v / 2=-(3 / 19)(\hat{P} / m) & \text { (downwards), } \\
\boldsymbol{v}_{\text {center of mass of } B C}=v=-(6 / 19)(\hat{P} / m) & \text { (downwards), } \\
\boldsymbol{v}_{\text {center of mass of } D C}=(v+w) / 2=(27 / 19)(\hat{P} / m) & \text { (upwards). } \tag{e2}
\end{array}
$$

Figure 4.15 Geometry of impact problem of fig. 4.14, but for a generic configuration, defined by the bar angles $q_{1,2,3}: \phi, \theta, \psi$ (see Beghin, 1967, pp. 472-473; Chorlton, 1983, pp. 227-229).

Note the simplicity of the quasi-velocity approach, as compared with Lagrangean (holonomic) coordinates in connection with the calculation of T for a general configuration (fig. 4.15).

2. Kinetostatic Equations

Next, let us use the impulsive relaxation principle to calculate the (external) impulsive reaction at A. Since that "force" has components in both directions, we must allow A to move both up/down and left/right (fig. 4.16).

We notice the additional horizontal velocity component x at B, due to another x at A; and a vertical one y at A; and two "force" components at A that go along with $x, y: X, Y$. The relaxed kinetic energy is

$$
\begin{align*}
T_{\text {relaxed }} \equiv T_{r x}= & (m / 6)\left(w^{2}+u^{2}+u^{2}+v^{2}+u^{2}+w v+u^{2}+v^{2}+v^{2}\right. \\
& \left.+x^{2}+v^{2}+u x+x^{2}+y^{2}+x^{2}+v^{2}+x^{2}+y v\right) \\
= & (m / 6)\left(w^{2}+4 u^{2}+5 v^{2}+4 x^{2}+y^{2}+w v+u x+y v\right) \tag{f}
\end{align*}
$$

and so the equations of motion are

$$
\begin{equation*}
\Delta\left[\left(\partial T_{r x} / \partial \omega_{k}\right)_{o}\right]=\hat{\boldsymbol{\Theta}}_{k}+\hat{\Lambda}_{k} \tag{g1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{\omega_{k}: u, v, w ; x=0, y=0\right\}, \quad\left\{\hat{\boldsymbol{\Theta}}_{k}: 0,0, \hat{P} ; 0,0\right\}, \quad\left\{\hat{\Lambda}_{k}: 0,0,0 ; X, Y\right\} ; \tag{g2}
\end{equation*}
$$

and $(\ldots)_{o}$ means enforcement of the constraints $x=0, y=0$, in (..). Thus, and

Figure 4.16 Velocities and external impulsive forces of impact problem of fig. 4.14.
dropping the subscript $r x$ from T, for simplicity, we find

$$
\begin{array}{ll}
(\partial T / \partial u)_{o}=0: & (m / 6)(8 u+x)_{o}=(m / 6)(8 u)=0 \\
(\partial T / \partial v)_{o}=0: & (m / 6)(10 v+w+y)_{o}=(m / 6)(10 v+w)=0 \\
(\partial T / \partial w)_{o}=\hat{P}: & (m / 6)(2 w+v)_{o}=(m / 6)(2 w+v)=\hat{P} \\
(\partial T / \partial x)_{o}=X: & (m / 6)(8 x+u)_{o}=(m / 6)(u)=X \\
(\partial T / \partial y)_{o}=Y: & (m / 6)(2 y+v)_{o}=(m / 6)(v)=Y \tag{h5}
\end{array}
$$

from which, since $u=0$, we obtain

$$
\begin{align*}
& X=m u / 6=0 \\
& Y=m v / 6=(m / 6)(-6 / 19)(\hat{P} / m)=(-1 / 19) \hat{P} \quad \text { (i.e., downward, at } A) . \tag{i}
\end{align*}
$$

These results can be easily confirmed via the elementary (Newton-Euler) methods: by linear momentum for the entire system, in the + vertical direction, we get

$$
\begin{equation*}
\hat{P}+Y=m[(v / 2)+v+(w+v) / 2]=m[2 v+(w / 2)], \tag{j}
\end{equation*}
$$

from which, and the earlier values (d) [obtained by use of the kinetic equations (c1-3)], we find $Y=\cdots=(-1 / 19) \hat{P}$; and similarly for the horizontal direction, we find $X=0$.

Problem 4.5.4 (Smart, 1951, pp. 264-265). Four equal straight homogeneous rods, $A B, B C, C D$, and $D E$, each of length l and mass m, are smoothly joined together at B, C, D, and rest on a smooth horizontal table so that consecutive rods are perpendicular to each other (fig. 4.17). The midpoints of all rods are collinear, and the end E is fixed. Then, the end A is struck by a blow \hat{P} parallel to the line joining the midpoints of the rods (i.e., along $A C E$).
(a)

(b)

Figure 4.17 System of four, originally motionless, straight and mutually perpendicular rods, $A B, B C, C D$, and $D E,(B, C, D$: hinged; E : fixed) struck by a blow \hat{P} at its end A, along $A C E$.
(a) General view of problem; (b) free-body diagram of each rod; (c) detail of application of blow \hat{P}, at A; (d) detail of impulsive reaction, at E.
(i) Using the kinematically compatible (postimpact) quasi velocities u, v, w, z (fig. 4.17), and the earlier "British theorem," show that the (double) kinetic energy and (impressed) impulsive virtual work, at the impact configuration, equal, respectively,

$$
\begin{align*}
2 T & =(m / 3)\left(u^{2}+4 v^{2}+5 w^{2}+5 z^{2}+u w+z v\right), \tag{a}\\
\widehat{\delta^{\prime} W} & =\hat{\Theta}_{u} \delta u+\hat{\boldsymbol{\Theta}}_{v} \delta v+\hat{\Theta}_{w} \delta w \\
& =(\hat{P} / \sqrt{2}) \delta u+(\hat{P} / \sqrt{2}) \delta v+(0) \delta w+(0) \delta z \tag{b}
\end{align*}
$$

(as if u, v, w, z were quasi coordinates).
(ii) Since the preimpact state is one of rest - that is, $\Delta(\partial T / \partial \omega)=\partial T / \partial \omega$ ($\omega: u, v, w, z$) - show that the equations of impulsive motion are

$$
\begin{array}{llll}
u: & (m / 6)(2 u+w)=\hat{P} / \sqrt{2}, & v: & (m / 6)(8 v+z)=\hat{P} / \sqrt{2}, \\
w: & (\mathrm{c} 1,2) \\
w: & 10 w+u=0, & z: & 10 z+v=0 ; \tag{c3,4}
\end{array}
$$

with solutions

$$
\begin{align*}
u & =(30 \sqrt{2} / 19)(\hat{P} / m), & v=(30 \sqrt{2} / 79)(\hat{P} / m) \tag{c5,6}\\
w & =-(3 \sqrt{2} / 19)(\hat{P} / m), & z=-(3 \sqrt{2} / 79)(\hat{P} / m) . \tag{c7,8}
\end{align*}
$$

(iii) Show that A begins to move in a direction making an angle $\tan ^{-1}(30 / 49)$ with that of the blow, and find the angle between the impulsive external reaction at E and the blow \hat{P}.

HINTS

(i) If the angle between \hat{P} and \boldsymbol{v}_{A} is β, then $\tan \beta=(u-v) /(u+v)=\cdots=30 / 49$.
[From trigonometry: \tan (angle between u and $\left.\boldsymbol{v}_{A}\right) \equiv \tan \gamma=v / u$, and

$$
\left.\tan (\beta+\gamma)=\tan 45^{\circ}=1=(\tan \beta+\tan \gamma) /(1-\tan \beta \tan \gamma) \Rightarrow \tan \beta=\cdots .\right]
$$

(ii) The components of the reaction at E, X (perpendicular to $D E$), and Y (along $D E)$ can be found, either from the impulsive principle of relaxation (see next problem), or from the principle of linear momentum applied to the entire (nonrigid) system, in these two directions:

$$
\begin{array}{ll}
\text { Along } D E: & Y+(\hat{P} / \sqrt{2})=m[(w / 2)+w+((u+w) / 2)] \\
\text { Perpendicular to } D E: & X+(\hat{P} / \sqrt{2})=m[(z / 2)+z+((z+v) / 2)+v] . \tag{d2}
\end{array}
$$

Verify that the above, with the help of (c1-4), yield

$$
\begin{equation*}
X=\hat{P} \sqrt{2}[-(1 / 2)+(39 / 79)], \quad Y=\hat{P} \sqrt{2}[-(1 / 2)+(9 / 19)], \tag{d3}
\end{equation*}
$$

and, therefore,
$\tan ($ angle between reaction at E and horizontal $)=(Y-X) /(Y+X)=30 / 49$
$\quad=\tan \left(\right.$ angle between \boldsymbol{v}_{A} and horizontal $) \equiv \tan \beta, \quad$ Q.E.D.

Problem 4.5.5 Continuing from the preceding problem, calculate the external reaction components X, Y via the impulsive principle of relaxation; allow E to move with corresponding velocities x (perpendicular to $D E$; i.e., parallel to X) and y (along $D E$; i.e., parallel to Y). Formulate the equations of the relaxed system, and then set, at the end, $x=0, y=0$ [fig. 4.17(b)].

HINTS

Show that the (double) kinetic energy of the so-relaxed system is

$$
\begin{equation*}
2 T_{\text {relaxed }}=(m / 3)\left(u^{2}+4 v^{2}+5 w^{2}+5 z^{2}+u w+4 y^{2}+z v+x^{2}+w y+x z\right), \tag{a}
\end{equation*}
$$

and, therefore, (a) the kinetic equations remain the same as in the preceding (constrained) case; while (b) the additional kinetostatic equations are

$$
\begin{equation*}
(m w / 6)=Y \Rightarrow Y=\cdots=-(\sqrt{2} / 38) \hat{P}, \quad(m z / 6)=X \Rightarrow X=\cdots=-(\sqrt{2} / 158) \hat{P} \tag{b}
\end{equation*}
$$

in agreement with the values found in the previous problem.

Problem 4.5.6 (Synge and Griffith, 1959, pp. 429-430). Two uniform rods, $A B$ and $B C$, each of mass m and length $2 b$, are smoothly hinged at B and, initially, rest on a smooth horizontal table, so that A, B, C are collinear. Then, a horizontal blow \hat{P} is struck at C in a direction perpendicular to $B C$ (fig. 4.18).
(i) Holonomic coordinates. Show that, in terms of the Lagrangean coordinates, (x, y) : coordinates of B (positive to the right and upward, respectively) and $\left(\theta_{1}, \theta_{2}\right)$: angles of $A B, B C$, respectively, with horizontal (both positive counterclockwise), and with $k^{2} \equiv b^{2} / 3$, the postimpact (double) kinetic energy and (impressed) impulsive virtual work, at the impact configuration (i.e., $x, y ; \theta_{1}, \theta_{2}=0$), equal, respectively

Figure 4.18 System of two, originally motionless, straight rods, $A B, B C(C$: hinged; A, B, C : collinear) struck by a blow \hat{P} at its end C, at a right angle to $A B C$.
(with $\dot{\theta}_{1} \equiv \omega_{1}, \dot{\theta}_{2} \equiv \omega_{2}$),

$$
\begin{align*}
2 T= & m\left[(\dot{x})^{2}+\left(\dot{y}-b \omega_{1}\right)^{2}+k^{2} \omega_{1}^{2}\right] \\
& +m\left[(\dot{x})^{2}+\left(\dot{y}+b \omega_{2}\right)^{2}+k^{2} \omega_{2}^{2}\right], \tag{a}\\
\widehat{\delta^{\prime} W}= & \hat{X} \delta x+\hat{Y} \delta y+\hat{\Theta}_{1} \delta \theta_{1}+\hat{\Theta}_{2} \delta \theta_{2}=\hat{P}\left(\delta y+2 b \delta \theta_{2}\right) \tag{b}\\
& {\left[\text { i.e. } \hat{X}=0, \quad \hat{Y}=\hat{P}, \quad \hat{\Theta}_{1}=0, \quad \hat{\Theta}_{2}=2 b \hat{P}\right] }
\end{align*}
$$

and, therefore, verify that the equations of impulsive motion are,

$$
\begin{array}{ll}
x: & 2 m \dot{x}=0, \\
y: & m\left(\dot{y}-b \omega_{1}\right)+m\left(\dot{y}+b \omega_{2}\right)=\hat{P}, \\
\theta_{1}: & -m b\left(\dot{y}-b \omega_{1}\right)+\left(m k^{2}\right) \omega_{1}=0, \\
\theta_{2}: & m b\left(\dot{y}+b \omega_{2}\right)+\left(m k^{2}\right) \omega_{2}=2 b \hat{P} ; \tag{c4}
\end{array}
$$

with solutions
$\dot{x}=0, \quad \dot{y}=-(\hat{P} / m) \quad$ (i.e., initially, B moves downward only),
$\omega_{1}=-(3 / 4)(\hat{P} / m b) \quad$ (i.e., clockwise), $\omega_{2}=(9 / 4)(\hat{P} / m b)$ (i.e., counterclockwise).
(ii) Nonholonomic coordinates. Show that in terms of the kinematically compatible quasi velocities u, v, w, z (fig. 4.18), again at the impact configuration,

$$
\begin{align*}
& 2 T=(m / 3)\left(u^{2}+6 v^{2}+2 w^{2}+z^{2}+u w+z w\right), \tag{d}\\
& \widehat{\delta^{\prime} W}=\hat{P} \delta \theta \quad(\text { where } \dot{\theta} \equiv u), \tag{e}
\end{align*}
$$

and, therefore, verify that the equations of impulsive motion are

$$
\begin{equation*}
(m / 6)(2 u+w)=\hat{P}, \quad(m / 6)(12 v)=0, \quad(m / 6)(u+4 w+z)=0, \quad(m / 6)(w+2 z)=0 \tag{f}
\end{equation*}
$$

with solutions

$$
\begin{equation*}
u=(7 / 2)(\hat{P} / m), \quad v=0, \quad w=-(\hat{P} / m), \quad z=(1 / 2)(\hat{P} / m) \tag{g}
\end{equation*}
$$

(iii) Show that as the number of bars goes to infinity (to the left of C, B, A), $u=2 \sqrt{3}(\hat{P} / m)$.

Problem 4.5.7 Continuing from the preceding problem (figs. 4.18, 4.19), calculate the internal reaction components at $B: \hat{X}$ (assumed upward on the left bar, downward on the right) and \hat{Y} (assumed leftward on the left bar, rightward on the right bar), via the impulsive principle of relaxation: allow $B_{\text {left bar }}$ to move with corresponding velocities x (upward) and y (leftward), and $B_{\text {right bar }}$ to move with corresponding velocities w (upward) and v (leftward). Formulate the equations of the relaxed system, and then set, at the end, $x=w, y=v$.

HINTS
Show that for the so-relaxed system,

$$
\begin{align*}
& 2 T_{\text {relaxed }}=(m / 3)\left(u^{2}+3 v^{2}+w^{2}+x^{2}+3 y^{2}+z^{2}+u w+x z\right), \tag{a}\\
& \widehat{\delta^{\prime} W}=\hat{P} \delta v-\hat{Y} \delta \varpi-\hat{X} \delta \omega+\hat{X} \delta \xi+\hat{Y} \delta \zeta, \tag{b}
\end{align*}
$$

where

$$
\begin{equation*}
\dot{v} \equiv u, \quad \dot{\varpi} \equiv v, \quad \dot{\omega} \equiv w, \quad \dot{\xi} \equiv x, \quad \dot{\zeta} \equiv y ; \tag{b1}
\end{equation*}
$$

and, hence, verify that $\left[\right.$ with the notations: $T_{\text {relaxed }} \equiv T$ and $(\ldots)_{o} \equiv$ $(\ldots)_{\text {constraints }}$ enforced $]$ the equations of motion are

$$
\begin{array}{ll}
u: & (\partial T / \partial u)_{o}=\hat{P} \Rightarrow 2 u+w=6 \hat{P} / m ; \\
v: & (\partial T / \partial v)_{o}=-\hat{Y} \Rightarrow v=-(\hat{Y} / m) \\
w: & (\partial T / \partial w)_{o}=-\hat{X} \Rightarrow 2 w+u=-(6 \hat{X} / m) ; \\
x: & (\partial T / \partial x)_{o}=\hat{X} \Rightarrow 2 w+z=6 \hat{X} / m ; \\
y: & (\partial T / \partial y)_{o}=\hat{Y} \Rightarrow v=\hat{Y} / m ; \\
z: & (\partial T / \partial z)_{o}=0 \Rightarrow 2 z+w=0 \tag{c6}
\end{array}
$$

Figure 4.19 System of two, originally motionless straight rods, $A B, B C(C$: hinged; A, B, C : collinear) struck by a blow \hat{P} at its end C, at a right angle to $A B C$, specially relaxed at B in order to calculate the internal reactions there.
with solutions
$u=(7 / 2)(\hat{P} / m), \quad v=0, \quad w=-(\hat{P} / m), \quad z=(1 / 2)(\hat{P} / m), \quad \hat{X}=-(\hat{P} / 4), \quad \hat{Y}=0$,
in agreement with the values found (for the postimpact velocities) in the preceding problem.

REMARK

Note that $(\partial T / \partial w)_{o}+(\partial T / \partial x)_{o}=0,(\partial T / \partial v)_{o}+(\partial T / \partial y)_{o}=0$; that is, the sum of the internal reactions vanishes, like a Lagrangean form of impulsive actionreaction.

For additional aspects of this problem, see Kilmister and Reeve (1966, pp. 220221, 229, 235-250).

Problem 4.5.8 (Beer, 1963; Kane, 1962; Raher, 1954, 1955). Two identical, homogeneous, circular, and thin (sharp-edged) wheels, W^{\prime} and $W^{\prime \prime}$ (fig. 4.20), each of radius r and mass m, are capable of rotating freely about the ends of a common axle A, of mass M and length $2 b$, so that the entire assembly can roll on a fixed, perfectly rough, and horizontal plane P. The system is struck (set in motion) by an impulse \hat{I}, acting for the very short time interval $\left[t^{\prime}, t^{\prime \prime}\right]$, at the axle point S located a distance $i(<2 b)$ from the center of W^{\prime} (with no loss in generality), perpendicularly to A and parallel to P.

The kinematics of this problem has been discussed in ex. 2.13.8; while the kinetics of its ordinary (continuous) motion has been detailed in ex. 3.18.6. It was found there that, with the Lagrangean coordinates,
(x, y) : coordinates of axle midpoint, G;
ϕ : angle (of precession) of line joining the contact points of W^{\prime} and $W^{\prime \prime}, C^{\prime}$ and $C^{\prime \prime}$, respectively, with the $+x$-axis; and $\left(\psi^{\prime}, \psi^{\prime \prime}\right)$: angles of rolling (or, of proper rotation) of W^{\prime} and $W^{\prime \prime}$,

Figure 4.20 Geometry of a system of two identical, homogeneous, circular, and thin wheels, rotating freely at the ends of an axle, and rolling on a fixed, rough, and horizontal plane, struck by an impulse \hat{l} at the axle point S.
the three constraint equations are (i.e., here $n=5, m=2$)

$$
\begin{align*}
v_{C^{\prime}, n} & =v_{C^{\prime \prime}, n}=\dot{x} \cos \phi+\dot{y} \sin \phi=0 \tag{al}\\
v_{C^{\prime}, t} & =-\dot{x} \sin \phi+\dot{y} \cos \phi+b \dot{\phi}+r \dot{\psi}^{\prime}=0 \tag{a2}\\
v_{C^{\prime \prime}, t} & =-\dot{x} \sin \phi+\dot{y} \cos \phi-b \dot{\phi}+r \dot{\psi}^{\prime \prime}=0 \tag{a3}\\
\{\Rightarrow \dot{x} & \left.=\left(b \dot{\phi}+r \dot{\psi}^{\prime}\right) \sin \phi, \dot{y}=\left(b \dot{\phi}+r \dot{\psi}^{\prime}\right) \cos \phi\right\} \tag{a4}
\end{align*}
$$

or, since $(\mathrm{a} 2,3)$ yield the integrable combination (with $c=$ integration constant, depending on the initial values of $\phi, \psi^{\prime}, \psi^{\prime \prime}$),

$$
\begin{equation*}
2 b \dot{\phi}+r\left(\dot{\psi}^{\prime}-\dot{\psi}^{\prime \prime}\right)=0 \Rightarrow 2 b \phi=c-r\left(\psi^{\prime}-\psi^{\prime \prime}\right) ; \tag{b}
\end{equation*}
$$

we may take as independent Lagrangean coordinates: $x, y ; \psi^{\prime}, \psi^{\prime \prime}$ (i.e., actually, $n=4, m=2$) under (al-3), of which only two are independent. Finally, since this is an impact problem, we can choose, with no loss in generality, the $+x$-axis so that $\phi=0($ or $\phi=\pi / 2)$; in which case, eqs. (a1-2) $\Rightarrow(a 4)$ and (a3) simplify, respectively, to

$$
\begin{equation*}
\dot{x}=0, \quad \dot{y}+b \dot{\phi}+r \dot{\psi}^{\prime}=0, \quad \dot{y}-b \dot{\phi}+r \dot{\psi}^{\prime \prime}=0 \tag{c}
\end{equation*}
$$

or, adding the last two,

$$
\begin{equation*}
\dot{x}=0, \quad 2 \dot{y}+r\left(\dot{\psi}^{\prime}+\dot{\psi}^{\prime \prime}\right)=0 \tag{d}
\end{equation*}
$$

(i) Show that the (double) kinetic energy of the entire system is

$$
\begin{align*}
2 T= & (M+2 m)\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+\left(M b^{2} / 3\right)(\dot{\phi})^{2} \\
& \left.+\left(m r^{2} / 2\right)\left\{\left[\dot{\psi}^{\prime}\right)^{2}+\left(\dot{\psi}^{\prime \prime}\right)^{2}\right]+\left[1+4(b / r)^{2}\right](\dot{\phi})^{2}\right\}, \tag{e}
\end{align*}
$$

and, therefore, for the special case where $b=r$ and $M \approx 0$,

$$
\begin{equation*}
2 T=2 m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+\left(m r^{2} / 2\right)\left[\left(\dot{\psi}^{\prime}\right)^{2}+\left(\dot{\psi}^{\prime \prime}\right)^{2}+5(\dot{\phi})^{2}\right] \tag{f}
\end{equation*}
$$

or, thanks to (c), $T=T\left(\dot{x}, \dot{y} ; \dot{\phi}, \dot{\psi}^{\prime}, \dot{\psi}^{\prime \prime}\right) \Rightarrow T_{o}\left(\dot{\phi}, \dot{\psi}^{\prime}\right)=T_{o}$,

$$
\begin{equation*}
2 T \Rightarrow 2 T_{o}=\left(m r^{2} / 2\right)\left[13(\dot{\phi})^{2}+6\left(\dot{\psi}^{\prime}\right)^{2}+12 \dot{\phi} \dot{\psi}^{\prime}\right] \tag{g}
\end{equation*}
$$

while the impressed impulsive virtual work is

$$
\begin{equation*}
\widehat{\delta^{\prime} W}=(-i \hat{I}) \delta \phi+(-r \hat{I}) \delta \psi^{\prime} \Rightarrow \hat{Q}_{\phi}=-i \hat{I}, \hat{Q}_{\psi^{\prime}}=-i \hat{I} \tag{h}
\end{equation*}
$$

(ii) With the help of the above, deduce that, under the initial conditions (i.e., at $t=t^{\prime}$)

$$
\begin{equation*}
(\dot{\phi})^{-}=0, \quad\left(\dot{\psi}^{\prime}\right)^{-}=0 \tag{i}
\end{equation*}
$$

the (Hamel \Rightarrow) Chaplygin-Voronets impulsive equations of this first-type problem:

$$
\begin{equation*}
\Delta\left(\partial T_{o} / \partial \dot{\phi}\right)=\hat{Q}_{\phi}, \quad \Delta\left(\partial T_{o} / \partial \dot{\psi}^{\prime}\right)=\hat{Q}_{\psi^{\prime}} \tag{j}
\end{equation*}
$$

yield the postimpact velocities (i.e., at $t=t^{\prime \prime}$)

$$
\begin{equation*}
(\dot{\phi})^{+}=(2 / 7)\left(\hat{I} / m r^{2}\right)(r-i), \quad\left(\dot{\psi}^{\prime}\right)^{+}=(2 / 7)\left(\hat{I} / m r^{2}\right)[i-(13 / 6) r] \tag{k}
\end{equation*}
$$

Combining these results with those of the ordinary motion case, ex. 3.18.6, we readily see that after the impact (i.e., $t \geq t^{\prime \prime}$), the system rolls with

$$
\begin{equation*}
\dot{\phi}=(\dot{\phi})^{+}=\text {constant } \equiv \Omega, \quad \dot{\psi}^{\prime}=\left(\dot{\psi}^{\prime}\right)^{+}=\text {constant } \equiv \omega^{\prime} ; \tag{1}
\end{equation*}
$$

in which case, the general constraints (a4) (with $b=r$) can be integrated to yield

$$
\begin{equation*}
x=R\left[\cos (\Omega t)-\cos \left(\Omega t^{\prime \prime}\right)\right], \quad y=R\left[\sin (\Omega t)-\sin \left(\Omega t^{\prime \prime}\right)\right] \tag{m}
\end{equation*}
$$

where

$$
\begin{equation*}
R=-r\left[1+\left(\omega^{\prime} / \Omega\right)\right] \Rightarrow|R|=(7 / 6) r^{2}|r-i|^{-1} \quad[\text { invoking }(\mathrm{k})] \tag{n}
\end{equation*}
$$

Finally, eliminating the time between eqs. (m), we easily obtain

$$
\begin{equation*}
\left[x+R \cos \left(\Omega t^{\prime \prime}\right)\right]^{2}+\left[y+R \sin \left(\Omega t^{\prime \prime}\right)\right]^{2}=R^{2} \tag{o}
\end{equation*}
$$

that is, the postimpact path of the axle midpoint G is a circle of radius $|R|$; as predicted in ex. 3.18.6.

Problem 4.5.9 Continuing from the preceding problem:
(i) Show that under the choice of $\dot{\psi}^{\prime}$ and $\dot{\psi}^{\prime \prime}$ as independent (quasi) velocities, since in that case $\dot{\psi}^{\prime \prime}=\dot{\psi}^{\prime}+2 \dot{\phi}$,

$$
\begin{align*}
& T=T\left(\dot{x}, \dot{y} ; \dot{\phi}, \dot{\psi}^{\prime}, \dot{\psi}^{\prime \prime}\right) \Rightarrow T_{o}\left(\dot{\psi}^{\prime}, \dot{\psi}^{\prime \prime}\right)=T_{o}: \\
& 2 T_{o}=\left(m r^{2} / 2\right)\left[(13 / 4)\left(d \psi^{\prime} / d t\right)^{2}+(13 / 4)\left(d \psi^{\prime \prime} / d t\right)^{2}-(1 / 2)\left(d \psi^{\prime} / d t\right)\left(d \psi^{\prime \prime} / d t\right)\right] ; \text { (a) } \tag{a}\\
& \widehat{\delta^{\prime} W}=\hat{Q}_{\phi} \delta \phi+\hat{Q}_{\psi^{\prime}} \delta \psi^{\prime}=\hat{Q}_{\psi^{\prime}} \delta \psi^{\prime}+\hat{Q}_{\psi^{\prime \prime}} \delta \psi^{\prime \prime} \\
& \quad \Rightarrow \hat{Q}_{\phi} \delta \phi=\hat{Q}_{\psi^{\prime \prime}} \delta \psi^{\prime \prime} \Rightarrow \hat{Q}_{\phi}=\left(\partial \dot{\psi}^{\prime \prime} / \partial \dot{\phi}\right) \hat{Q}_{\psi^{\prime \prime}} \Rightarrow \hat{Q}_{\psi^{\prime \prime}}=(-i / 2) \hat{I} \tag{b}
\end{align*}
$$

(ii) The corresponding impulsive Chaplygin-Voronets equations are

$$
\begin{equation*}
\Delta\left(\partial T_{o} / \partial \dot{\psi}^{\prime}\right)=\hat{Q}_{\psi^{\prime}}, \quad \Delta\left(\partial T_{o} / \partial \dot{\psi}^{\prime \prime}\right)=\hat{Q}_{\psi^{\prime \prime}} \tag{c}
\end{equation*}
$$

where

$$
\begin{align*}
\partial T_{o} / \partial \dot{\psi}^{\prime} & =\left(m r^{2} / 8\right)\left(13 \dot{\psi}^{\prime}-\dot{\psi}^{\prime \prime}\right) \tag{d1}\\
\partial T_{o} / \partial \dot{\psi}^{\prime \prime} & =\left(m r^{2} / 8\right)\left(13 \dot{\psi}^{\prime \prime}-\dot{\psi}^{\prime}\right) \tag{d2}
\end{align*}
$$

REMARKS

(i) This and the previous problem illustrate the earlier-made observation that, in first-kind problems, like this one, and in sharp contrast to the case of ordinary motion (§3.8), we can enforce the Pfaffian constraints in T, that is, $T \rightarrow T_{o}$ right from the start, and then form the $n-m$ multiplierless (kinetic) impulsive Hamel-like equations; that is, in such impulsive problems, the equations of Hamel and Lagrange have similar forms.
(ii) Additional convenient choices of quasi velocities (of which only two are independent) would have been the following:

$$
\begin{align*}
& \omega_{1} \equiv \dot{x}=0, \quad \omega_{2} \equiv \dot{y}+b \dot{\phi}+r \dot{\psi}^{\prime}=0 \tag{a}\\
& \omega_{3} \equiv \dot{y}-b \dot{\phi}+r \dot{\psi}^{\prime \prime}=0, \quad \omega_{4}=\dot{\psi}^{\prime} \neq 0, \quad \omega_{5}=\dot{\phi} \neq 0 \tag{e}
\end{align*}
$$

with inverses

$$
\begin{align*}
& \dot{x}=\omega_{1}=0, \quad \dot{y}=\left.\left(\omega_{2}-r \omega_{4}-b \omega_{5}\right)\right|_{b=r}=-r\left(\omega_{4}+\omega_{5}\right) ; \quad \dot{\phi}=\omega_{5}, \\
& \dot{\psi}^{\prime}=\omega_{4}, \quad \dot{\psi}^{\prime \prime}=\left.(1 / r)\left(-\omega_{2}+\omega_{3}+r \omega_{4}+2 b \omega_{5}\right)\right|_{b=r}=\omega_{4}+2 \omega_{5} ; \tag{f}
\end{align*}
$$

and

$$
\begin{align*}
& \omega_{1} \equiv \dot{x}=0, \quad \omega_{2} \equiv \dot{y}+r \dot{\phi}+r \dot{\psi}^{\prime}=0, \tag{b}\\
& \omega_{3} \equiv \dot{\psi}^{\prime} \neq 0, \quad \omega_{4} \equiv \dot{\phi} \neq 0 \tag{g}
\end{align*}
$$

with inverses

$$
\begin{equation*}
\dot{x}=\omega_{1}=0, \quad \dot{y}=\cdots=-r\left(\omega_{3}+\omega_{4}\right) ; \quad \dot{\psi}^{\prime}=\omega_{3}, \quad \dot{\phi}=\omega_{4} . \tag{h}
\end{equation*}
$$

Problem 4.5.10 Continuing from the preceding two problems:
(i) Show that under the choice of $v_{G} \equiv v \equiv d s / d t$ [parallel to the impulse \hat{I}; i.e., $\dot{x}=-v \sin \phi, \dot{y}=v \cos \phi$ (for a general angle ϕ), s : quasi coordinate] and $\dot{\phi} \equiv \omega$ as independent (quasi) velocities, since then

$$
\begin{equation*}
\dot{\psi}^{\prime} \equiv \omega_{1}=-(1 / r)(v+b \omega), \quad \dot{\psi}^{\prime \prime} \equiv \omega_{2}=-(1 / r)(v-b \omega), \tag{a}
\end{equation*}
$$

the (double) kinetic energy and impulsive impressed virtual work are, respectively,

$$
\begin{align*}
2 T & =(M+2 m) v^{2}+\left[\left(M b^{2} / 3\right)+2 m b^{2}+\left(m r^{2} / 2\right)\right] \omega^{2}+\left[\left(m r^{2} / 2\right)\left(\omega_{1}^{2}+\omega_{2}^{2}\right)\right] \\
& =\cdots=(M+3 m) v^{2}+\left[\left(M b^{2} / 3\right)+3 m b^{2}+\left(m r^{2} / 2\right)\right] \omega^{2}=T_{o}(v, \omega)=T_{o}, \tag{b}\\
\widehat{\delta^{\prime} W} & =\hat{Q}_{s} \delta s+\hat{Q}_{\phi} \delta \phi=\hat{I} \delta s+(\hat{I} i) \delta \phi \Rightarrow \hat{Q}_{s}=\hat{I}, \hat{Q}_{\phi}=i \hat{I} . \tag{c}
\end{align*}
$$

(ii) Verify that the corresponding Chaplygin-Voronets impulsive equations are

$$
\begin{array}{ll}
\partial T_{o} / \partial v=\hat{Q}_{s}: & (M+3 m) v=\hat{I} \Rightarrow v=\cdots, \\
\partial T_{o} / \partial \omega=\hat{Q}_{\phi}: & {\left[\left(M b^{2} / 3\right)+3 m b^{2}+\left(m r^{2} / 2\right)\right] \omega=i \hat{I} \Rightarrow \omega=\cdots} \tag{d2}
\end{array}
$$

Example 4.5.6 Jourdain's Principle in Impulsive Motion (to be read after §6.3). We begin with the general "raw" (i.e., particle variable) form of Jourdain's principle for ordinary, continuous motion (6.2.4) and (6.3.15):

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime} \boldsymbol{v}=0 \tag{a}
\end{equation*}
$$

where $\left.\delta^{\prime} \boldsymbol{v} \equiv \delta \boldsymbol{v}\right|_{\text {with } \delta t=0 \text { and } \delta r=0}$ is the Jourdain variation of \boldsymbol{v} (6.3.5). Next, integrating (a) between t and $t+\tau$, and then taking the limit as $\tau \rightarrow 0$ (or, integrating "between" t^{-}and t^{+}), and using the notations introduced in $\S 4.2$, we obtain the "raw" form of the impulsive Jourdain principle:

$$
\begin{equation*}
\boldsymbol{S}(d m \Delta \boldsymbol{v}-\widehat{d \boldsymbol{F}}) \cdot \delta^{\prime} \boldsymbol{v}=0 \quad\left[\Delta \boldsymbol{v} \equiv \boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right] \tag{b}
\end{equation*}
$$

Now, substituting into (b) the basic representation of $\delta^{\prime} \boldsymbol{v}$,

$$
\begin{equation*}
\delta^{\prime} \boldsymbol{v}=\delta^{\prime}\left(\sum \omega_{I} \boldsymbol{\varepsilon}_{I}+\boldsymbol{\varepsilon}_{n+1}\right)=\sum \varepsilon_{I} \delta \omega_{I}=\sum\left(\partial \boldsymbol{v} / \partial \omega_{I}\right) \delta \omega_{I} \tag{c}
\end{equation*}
$$

[recalling § 2.9ff.; and that, since the $\boldsymbol{\varepsilon}_{I}, \boldsymbol{\varepsilon}_{n+1}(I=m+1, \ldots, n)$ are functions of t and q, their Jourdain variations vanish: $\delta^{\prime}\left(\boldsymbol{\varepsilon}_{I}, \boldsymbol{\varepsilon}_{n+1}\right)=\mathbf{0}$], we obtain, successively,

$$
\begin{align*}
0 & =\boldsymbol{S}(d m \Delta \boldsymbol{v}-\widehat{d \boldsymbol{F}}) \cdot\left(\sum \varepsilon_{I} \delta \omega_{I}\right) \\
& =\sum\left(\boldsymbol{S}(d m \Delta \boldsymbol{v}-\widehat{d \boldsymbol{F}}) \cdot \varepsilon_{I}\right) \delta \omega_{I} \\
& =\sum\left\{\boldsymbol{S}\left[d m\left(\partial \boldsymbol{v} / \partial \omega_{I}\right) \cdot \Delta \boldsymbol{v}-\widehat{d \boldsymbol{F}} \cdot \boldsymbol{\varepsilon}_{I}\right]\right\} \delta \omega_{I} \\
& =\sum\left\{\Delta\left(\boldsymbol{S} d m\left(\partial \boldsymbol{v} / \partial \omega_{I}\right) \cdot \boldsymbol{v}\right)-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \varepsilon_{I}\right\} \delta \omega_{I} \quad\left(\text { since } \Delta \varepsilon_{I}=\mathbf{0}\right) \\
& =\sum\left[\Delta\left(\partial T^{*} / \partial \omega_{I}\right)-\hat{\Theta}_{I}\right] \delta \omega_{I} \quad\left(\text { since } 2 T^{*} \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}, \text { etc. }\right) \tag{d}
\end{align*}
$$

from which, since the $n-m \delta \omega_{I}$'s are independent, we immediately obtain the earlier $n-m$ impulsive kinetic Hamel equations,

$$
\begin{equation*}
\Delta\left(\partial T^{*} / \partial \omega_{I}\right)=\hat{\Theta}_{I} \tag{e}
\end{equation*}
$$

For instructive applications of (c) and (e) to impulsive problems, see Bahar (1994).

Example 4.5.7 A Direct Method for the Determination of the Impulsive Reactions (may be omitted in a first reading). Let us consider the earlier (§4.4) "Routh-Voss impulsive equations" of a system subjected to the single Pfaffian constraint

$$
\begin{equation*}
\sum a_{k}(t, q) \dot{q}_{k}+a_{0}(t, q)=0 \tag{a}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{k}\right)=\hat{Q}_{k}+\hat{\lambda} a_{k} \tag{b}
\end{equation*}
$$

Since [with the usual notations (§3.9)]

$$
\begin{equation*}
2 T=2\left(T_{2}+T_{1}+T_{0}\right)=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+\sum 2 M_{k} \dot{q}_{k}+M_{0} \tag{c}
\end{equation*}
$$

and the $M_{k l}, M_{k}$ are functions of $t, q: \Delta\left(M_{k l}, M_{k}\right)=0$, and, therefore,

$$
\begin{equation*}
\Delta\left(\partial T / \partial \dot{q}_{k}\right)=\Delta\left(\sum M_{k l} \dot{q}_{l}+M_{k}\right)=\sum M_{k l} \Delta \dot{q}_{l} \quad\left(=\Delta p_{k}\right) \tag{d}
\end{equation*}
$$

eqs. (b) assume the explicit form

$$
\begin{equation*}
\sum M_{k l} \Delta \dot{q}_{l}=\hat{Q}_{k}+\hat{\lambda} a_{k} \tag{e}
\end{equation*}
$$

Let us isolate (uncouple) the $\Delta \dot{q}_{l}$: multiplying (e) with $m_{r k}=m_{k r}$, where

$$
\begin{equation*}
\sum M_{k l} m_{k r}=\delta_{l r} \tag{f}
\end{equation*}
$$

and summing over k yields the general $\Delta \dot{q}_{r}$-expressions

$$
\begin{equation*}
\Delta \dot{q}_{r}=\sum m_{r k} \hat{Q}_{k}+\hat{\lambda}\left(\sum m_{r k} a_{k}\right) \tag{g}
\end{equation*}
$$

[In tensor calculus, the $m_{r k}$ are called conjugate to the $M_{k l}$ (and vice versa); and are denoted by $M^{r k}$. See, for example, Papastavridis (1999, chap. 2), Sokolnikoff (1964, p. 76 ff.), Synge and Schild (1949, p. 29 ff.).]

Next, multiplying (g) with a_{r} and summing over r, we get

$$
\begin{equation*}
\sum a_{r} \Delta \dot{q}_{r}=\sum \sum m_{r k} a_{r} \hat{Q}_{k}+\hat{\lambda} a^{2} \tag{h}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum \sum m_{r k} a_{r} a_{k} \equiv a^{2} \quad\left[\text { magnitude (squared) of vector }\left(a_{r}\right)\right] \tag{i}
\end{equation*}
$$

and solving for $\hat{\lambda}$,

$$
\begin{equation*}
\hat{\lambda}=\left(\sum a_{r} \Delta \dot{q}_{r}-\sum \sum m_{r k} a_{r} \hat{Q}_{k}\right) / a^{2} . \tag{j}
\end{equation*}
$$

Now:
(i) For first-kind impulsive problems (i.e., constraints holding before, during, and after the shock), eq. (a) yields

$$
\begin{equation*}
\Delta\left(\sum a_{k} \dot{q}_{k}+a_{0}\right)=\sum a_{k} \Delta \dot{q}_{k}=0 \tag{k}
\end{equation*}
$$

and so (j) reduces to

$$
\begin{equation*}
\hat{\lambda}=-\sum \sum m_{r k} a_{r} \hat{Q}_{k} / a^{2} \tag{1}
\end{equation*}
$$

Then, substituting (1) into (g) and solving for $\left(\dot{q}_{r}\right)^{+}$, we obtain (with some dummyindex changes)

$$
\begin{equation*}
\left(\dot{q}_{r}\right)^{+}=\left(\dot{q}_{r}\right)^{-}+\sum m_{r k} \hat{Q}_{k}-\left(\sum m_{l k} a_{l} \hat{Q}_{k} / a^{2}\right)\left(\sum m_{r s} a_{s}\right) . \tag{m}
\end{equation*}
$$

(ii) For second-kind impulsive problems (i.e., constraints suddenly introduced at the impact moment), the $\left(\dot{q}_{r}\right)^{-}$do not obey (a). Then, invoking the latter, we get

$$
\begin{equation*}
\sum a_{r} \Delta \dot{q}_{r}=\sum a_{r}\left(\dot{q}_{r}\right)^{+}-\sum a_{r}\left(\dot{q}_{r}\right)^{-}=-a_{0}-\sum a_{r}\left(\dot{q}_{r}\right)^{-} \quad(\neq 0) \tag{n}
\end{equation*}
$$

and so (j) reduces to

$$
\begin{equation*}
\hat{\lambda}=-\left[a_{0}+\sum a_{r}\left(\dot{q}_{r}\right)^{-}+\sum \sum m_{r k} a_{r} \hat{Q}_{k}\right] / a^{2} . \tag{o}
\end{equation*}
$$

Once $\hat{\lambda}$ is found, then (g) yield immediately (with some dummy-index changes)

$$
\begin{align*}
& \Delta \dot{q}_{r} \equiv\left(\dot{q}_{r}\right)^{+}-\left(\dot{q}_{r}\right)^{-} \\
& =\sum m_{r k} \hat{Q}_{k}-\left\{\left[a_{0}+\sum a_{k}\left(\dot{q}_{k}\right)^{-}+\sum \sum m_{l k} a_{l} \hat{Q}_{k}\right] / a^{2}\right\}\left(\sum m_{r s} a_{s}\right), \tag{p}\\
& \Rightarrow\left(\dot{q}_{r}\right)^{+}=\ldots
\end{align*}
$$

Equations (l) and (o) yield $\hat{\lambda}$ in terms of initially known quantities; that is, a_{0}, a_{r}, $M_{k l} \rightarrow m_{k l}$, and \hat{Q}_{k} (unlike the earlier impulsive kinetostatic equations of Maggi, Hamel, Appell, et al.).

The n equations (m) and n equations (p) might be called the impulsive JacobiSynge equations of the corresponding problem (unlike the earlier $n-m$ kinetostatic and m kinetic impulsive equations of Maggi, Hamel, Appell, et al.; recall ex. 3.10.2).

We leave it to the reader to extend this method to the case of $m(<n)$ Pfaffian constraints.

Application of the above to Example 4.5.3
We recall that in this, second-kind, problem,

$$
\begin{equation*}
q_{1,2,3}: x, y, \theta ; \quad a_{1}=0, \quad a_{2}=1, \quad a_{3}=b \sin \theta, \quad a_{0}=0 ; \quad \hat{Q}_{k}=0 \tag{q1}
\end{equation*}
$$

and the nonvanishing inertia coefficients of T are

$$
\begin{equation*}
M_{k l}: M_{11}=M_{22}=m ; \quad M_{33}=I \Rightarrow m_{k l}: m_{11}=m_{22}=m^{-1} ; m_{33}=I^{-1} \tag{q2}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \sum m_{1 s} a_{s}=m_{11} a_{1}+m_{12} a_{2}+m_{13} a_{3}=\left(m^{-1}\right)(0)+(0)(1)+(0)(b \sin \theta)=0 \\
& \sum m_{2 s} a_{s}=m_{21} a_{1}+m_{22} a_{2}+m_{23} a_{3}=(0)(0)+\left(m^{-1}\right)(1)+(0)(b \sin \theta)=m^{-1} \\
& \sum m_{3 s} a_{s}=m_{31} a_{1}+m_{32} a_{2}+m_{33} a_{3}=(0)(0)+(0)(1)+\left(I^{-1}\right)(b \sin \theta)=I^{-1} b \sin \theta \\
& \Rightarrow a^{2} \equiv \sum\left(\sum m_{r s} a_{s}\right) a_{r}=(0)(0)+\left(m^{-1}\right)(1)+\left(I^{-1} b \sin \theta\right)(b \sin \theta) \\
& =m^{-1}+\left[\left(m b^{2} / 3\right)^{-1}(b \sin \theta)\right](b \sin \theta)=m^{-1}\left(1+3 \sin ^{2} \theta\right) \tag{q3}\\
& \sum \sum\left(\sum m_{r k} \hat{Q}_{k}\right) a_{r}=\cdots=0 \tag{q4}
\end{align*}
$$

and so, finally, eq. (o) yields

$$
\begin{align*}
\hat{\lambda} & =-\left[a_{1}(\dot{x})^{-}+a_{2}(\dot{y})^{-}+a_{3}(\dot{\theta})^{-}\right] / a^{2} \\
& =-[(0)(0)+(1)(-v)+(b \sin \theta)(\omega)] /\left[m^{-1}\left(1+3 \sin ^{2} \theta\right)\right] \\
& =m(v-b \omega \sin \theta) /\left(1+3 \sin ^{2} \theta\right) \tag{r}
\end{align*}
$$

that is, (i3) of ex. 4.5.3. Similarly for $\left(\dot{q}_{r}\right)^{+}$via eq. (p); the details are left to the reader.

4.6 EXTREMUM THEOREMS OF IMPULSIVE MOTION (OF CARNOT, KELVIN, BERTRAND, ROBIN, ET AL.)

Since the impulsive equations are algebraic equations in the shock velocities - that is, of the first order - no proper integral variational principles exist for them. However, by appropriate specializations of the differential variational principles (chap. 6), a host of interesting and useful extremum propositions (i.e., maxima/minima in the sense of ordinary mathematical analysis) of sufficient generality can be obtained. These theorems, summarized below, constitute impulsive counterparts of the energetic theorems of ordinary (i.e., continuous) motion. [Carnot's theorems (see below) are included here, although they are neither variational nor extremum, but simply energetic; that is, just like their ordinary motion counterparts, they deal with actual
motions (velocities), and yield only one equation. For proofs of these theorems in general system variables, see ex. 4.6.7.]

For complementary reading, we recommend the following older British texts (alphabetically): Chirgwin and Plumpton (1966, pp. 329-343), Easthope (1964, pp. 285-304), Kilmister and Reeve (1966, pp. 247-248), Milne (1948, pp. 370378), Ramsey (1937, pp. 185-195), Smart (1951, pp. 376-390).

4.6.1 Theorem of Carnot (1803)

1. First Part (Collisions)

In the absence of impressed impulses, the sudden introduction of (ideal) stationary and persistent constraints that change some velocity reduces the kinetic energy; hence, by the collision of inelastic bodies, some kinetic energy is always lost.

2. Second Part (Explosions)

The sudden removal of (ideal and) stationary constraints that break bonds of rigidity (e.g., explosion of a shell, or breaking of the rope in a tug-of-war contest) increases the kinetic energy.

Their proofs utilize the following auxiliary and purely kinematico-inertial identity: Let $\left\{\boldsymbol{v}_{1}\right\}$ and $\left\{\boldsymbol{v}_{2}\right\}$ be any two possible sets of velocities, with corresponding kinetic energies T_{1} and T_{2}; that is, $2 T_{1} \equiv S d m \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}, 2 T_{2} \equiv S d m \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{2}$. Then, by simple algebra,

$$
\begin{equation*}
2 v_{2} \cdot\left(v_{2}-v_{1}\right)=v_{2}^{2}-v_{1}^{2}+\left(v_{2}-v_{1}\right)^{2} \Rightarrow 2 K_{12}=T_{1}+T_{2}-T_{12} \tag{4.6.1a1}
\end{equation*}
$$

also,

$$
\begin{equation*}
2 v_{1} \cdot\left(v_{1}-v_{2}\right)=v_{1}^{2}-v_{2}^{2}+\left(v_{1}-v_{2}\right)^{2} \Rightarrow 2 K_{12}=T_{1}+T_{2}-T_{12} \tag{4.6.1a2}
\end{equation*}
$$

where

$$
\begin{align*}
& 2 K_{12}=2 K_{21} \equiv \boldsymbol{S} d m \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2} \tag{4.6.1b1}\\
& 2 T_{12}=2 T_{21} \equiv \boldsymbol{S} d m\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}\right) \cdot\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}\right) \tag{4.6.1b2}
\end{align*}
$$

Kinetic energy of relative motion ≥ 0.
(a) To prove the first part, we begin with LIP, eqs. (4.3.4) ff.), or

$$
\begin{equation*}
{\widehat{\delta^{\prime} W_{R}}}=0 \Rightarrow \widehat{\delta I}=\widehat{\delta^{\prime} W} \tag{4.6.1c}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\delta}^{\prime} \widehat{W}_{R} \equiv \boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \delta \boldsymbol{r}, \quad \widehat{\delta I} \equiv \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \delta \boldsymbol{r}, \quad \widehat{\delta^{\prime} W} \equiv \boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta \boldsymbol{r} \tag{4.6.1d}
\end{equation*}
$$

and in there we make the identifications $\boldsymbol{v}^{-}=\boldsymbol{v}_{1}, \boldsymbol{v}^{+}=\boldsymbol{v}_{2}$ (i.e., velocities just before and after additional workless constraints), and [since the new constraints are stationary and the $\delta \boldsymbol{r}$ are compatible with both primitive (i.e., existing) and additional constraints] we choose $\delta \boldsymbol{r} \rightarrow d \boldsymbol{r}=\boldsymbol{v}^{+} d t \sim \boldsymbol{v}^{+}=\boldsymbol{v}_{2}$, and notice that, here, $\widehat{\delta^{\prime} W} \rightarrow S \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}^{+} \equiv S \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}_{2}=0$. Thus, we obtain

$$
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}^{+}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}^{+}=0
$$

or

$$
\begin{align*}
& \boldsymbol{S} d m\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}\right) \cdot \boldsymbol{v}_{2}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}_{2}=0, \\
& \Rightarrow \boldsymbol{S} d m \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{2}=\boldsymbol{S} d m \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{1} ; \quad \text { i.e., } T_{2}=K_{12}, \tag{4.6.1e}
\end{align*}
$$

and so (4.6.1a) becomes

$$
\begin{gather*}
2 T_{2}=T_{1}+T_{2}-T_{12} \Rightarrow T_{2}-T_{1}=-T_{12}<0 ; \text { i.e. } \\
T_{2}<T_{1} \tag{4.6.1f}
\end{gather*}
$$

[we exclude the case(s) where the introduction of new constraint(s) does not change the kinetic energy] or, reverting to our standard notation,

$$
\begin{aligned}
\Delta T \equiv T^{+}-T^{-} & \equiv \boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}-\boldsymbol{S}(d m / 2) \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-} \\
& =-\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \\
& \equiv-\boldsymbol{S}(d m / 2) \Delta \boldsymbol{v} \cdot \Delta \boldsymbol{v} \\
& \equiv-T_{\text {jump }}:-[\text { Kinetic energy of jump (or of lost) motion }]<0,
\end{aligned}
$$

or

$$
\begin{equation*}
T^{-}-T^{+}=T_{\mathrm{jump}}>0, \quad \text { Q.E.D. } \tag{4.6.1g}
\end{equation*}
$$

[Recalling (4.5.13a), we see that, here, $\hat{S}=-\Delta T$.]
(b) To prove the second part, similarly, we identify $\boldsymbol{v}^{-}=\boldsymbol{v}_{1}, \boldsymbol{v}^{+}=\boldsymbol{v}_{2}$, choose $\delta \boldsymbol{r} \rightarrow d \boldsymbol{r}=\boldsymbol{v}^{-} d t \sim \boldsymbol{v}^{-}=\boldsymbol{v}_{1}$, and notice that, here, $S \widehat{d \boldsymbol{d}} \cdot \boldsymbol{v}^{-} \equiv S \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}_{1}=0$. The result is

$$
\begin{align*}
& \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}^{-}=\boldsymbol{S} d m\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}\right) \cdot \boldsymbol{v}_{1}=0 \\
& \Rightarrow \boldsymbol{S} d m \boldsymbol{v}_{2} \cdot \boldsymbol{v}_{1}=\boldsymbol{S} d m \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1} ; \quad \text { i.e., } T_{1}=K_{12} \tag{4.6.1h}
\end{align*}
$$

and so (4.6.1a) yields

$$
\begin{gather*}
2 T_{1}=T_{1}+T_{2}-T_{12} \Rightarrow T_{1}-T_{2}=-T_{12}<0 ; \text { i.e. } \\
T_{1}<T_{2} \tag{4.6.1i}
\end{gather*}
$$

or, in terms of our standard notation,

$$
\begin{align*}
\Delta T \equiv T^{+}-T^{-} & \equiv \boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}-\boldsymbol{S}(d m / 2) \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-} \\
& =\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \\
& \equiv \boldsymbol{S}(d m / 2) \Delta \boldsymbol{v} \cdot \Delta \boldsymbol{v} \equiv T_{\mathrm{jump}}>0, \quad \text { Q.E.D. } \tag{4.6.1j}
\end{align*}
$$

REMARKS

(i) The above can also be easily obtained by combining the identities

$$
\begin{equation*}
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}^{+}=\Delta T+T_{\mathrm{jump}}, \quad \mathbf{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}^{-}=\Delta T-T_{\mathrm{jump}} \tag{4.6.1k}
\end{equation*}
$$

[which follow at once from (4.6.1a, b) with the earlier identifications] with LIP, (4.6.1c, d). Thus, the first of (4.6.1k) yields $\Delta T+T_{\text {jump }}=0$ (first theorem, while the second of (4.6 .1 k) yields $\Delta T-T_{\mathrm{jump}}=0$ (second theorem).
(ii) For Carnot's first theorem under nonpersistent constraints, see Appell (1896, p. 15 ff .).
(iii) If the bodies in question are elastic, then their collision consists of (a) a period of compression (as if the bodies were inelastic), and (b) a period of explosion-like restitution. Since the corresponding forces are equal and opposite, the kinetic energy lost in compression balances exactly the kinetic energy gained in restitution. This is sometimes called the third theorem of Carnot.

4.6.2 Theorem of Kelvin (1863)

If an originally motionless system is suddenly set in motion by (unknown) impressed impulses acting at specified points of it and communicating to them prescribed (i.e., given) velocities, then the resulting (or actual) postimpact kinetic energy is less than that of any other kinematically possible (or comparison, or hypothetical) motion; that is, one in which the specified points have the same prescribed velocities as in the actual motion, and all other external and/or internal system constraints are respected (which is why this theorem is occasionally referred to as a "principle of laziness"); that is, with some obvious notations:

$$
\begin{equation*}
T\left(\boldsymbol{v}_{\text {postimpact comparison }}\right)>T\left(\boldsymbol{v}_{\text {postimpact actual }}\right) . \tag{4.6.2a}
\end{equation*}
$$

Hence, this result allows us to find the actual postimpact velocities in terms of the prescribed velocities.

To prove it, and since such comparison motions may differ from each other infinitesimally, we let \boldsymbol{v}^{+}actual $\equiv \boldsymbol{v}^{+}$and $\boldsymbol{v}_{\text {comparison }}^{+} \equiv \boldsymbol{v}^{+}+\delta \boldsymbol{v}^{+} \equiv \boldsymbol{v}^{+}+\delta_{K} \boldsymbol{v} \equiv \boldsymbol{v}$; where, of course, both \boldsymbol{v}^{+}and \boldsymbol{v} are kinematically admissible, and, at the specified points, $\delta_{K} \boldsymbol{v}=\mathbf{0}$. Then, with $\delta \boldsymbol{r} \sim \delta_{K} \boldsymbol{v}$, and since, at these points, $\delta_{K} \boldsymbol{v}=\mathbf{0}$, while for the rest of them $\widehat{d \boldsymbol{F}}=\mathbf{0}$,

$$
\begin{equation*}
\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta_{K} \boldsymbol{v}=0 \quad \text { and } \quad \boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \delta_{K} \boldsymbol{v}=0 \tag{4.6.2b}
\end{equation*}
$$

- Stationarity: Next, setting $\boldsymbol{v}^{-}=\mathbf{0}$ (since the system is initially at rest) and the rest of the above specializations into the master equations (4.6.1c, d) yields the stationarity condition

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \delta_{K} \boldsymbol{v}=0, \quad \text { or } \quad \boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \boldsymbol{v}=\boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+} \tag{4.6.2c}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\delta_{K}\left(\boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}\right) \equiv \delta_{K} T\left(\boldsymbol{v}^{+}\right)=0 \tag{4.6.2d}
\end{equation*}
$$

that is, the actual postimpact motion makes the kinetic energy stationary.

- Minimality: As a result of the above we have, successively,

$$
\begin{align*}
\Delta T & \equiv T(\boldsymbol{v})-T\left(\boldsymbol{v}^{+}\right) \equiv T\left(\boldsymbol{v}^{+}+\delta_{K} \boldsymbol{v}\right)-T\left(\boldsymbol{v}^{+}\right) \\
& \equiv \boldsymbol{S}(d m / 2) \boldsymbol{v} \cdot \boldsymbol{v}-\boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+} \\
& =\boldsymbol{S}(d m / 2)\left[\left(\boldsymbol{v}^{+}+\delta_{K} \boldsymbol{v}\right) \cdot\left(\boldsymbol{v}^{+}+\delta_{K} \boldsymbol{v}\right)-\boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}\right] \quad[\text { invoking }(4.6 .2 \mathrm{c}, \mathrm{~d})] \\
& =\boldsymbol{S}(d m / 2) \delta_{K} \boldsymbol{v} \cdot \delta_{K} \boldsymbol{v} \equiv \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right) \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right) \\
\equiv & =(1 / 2) \delta^{2}{ }_{K} T\left(\boldsymbol{v}^{+}\right) \geq 0 \quad\left(\text { with the equality holding for } \delta_{K} \boldsymbol{v}=\mathbf{0}\right) \\
& \Rightarrow T\left(\boldsymbol{v}^{+}\right)=\text {minimum, } \quad \text { Q.E.D. } \tag{4.6.2e}
\end{align*}
$$

However, in concrete problems, it is the stationarity rather than the minimality that is invoked.

REMARKS

(i) Equation (4.6.2c) also results, most simply, by setting in the master equations (4.6.1c, d): (a) $\boldsymbol{v}^{-}=\mathbf{0}$ and (b) first, $\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}$, and, second, $\delta \boldsymbol{r} \sim \boldsymbol{v} \equiv \boldsymbol{v}^{+}+\delta_{K} \boldsymbol{v}$, and then noting that

$$
0=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta_{K} \boldsymbol{v} \Rightarrow \boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v}^{+}
$$

(ii) For proofs utilizing (4.6.1a1, 1a2), see ex. 4.6.7; also Chirgwin and Plumpton (1966, p. 330 ff.).
(iii) For applications of Kelvin's theorem to hydrodynamics, and so on, see, for example, Byerly (1916, pp. 76-80), and, of course, Thomson and Tait (1912, §312317, pp. 286-301).

4.6.3 Theorem of Bertrand (1853) and Delaunay (1840)

Consider a system in motion acted upon by prescribed impressed impulses applied to it: (a) with its existing (i.e., original) ideal constraints and, separately, (b) with additional (also ideal) constraints. Then, the actual postimpact kinetic energy under the existing constraints is greater than that under the additional constraints, where, in both cases, the impulses, as well as the initial motion of the system, are the same; or, these additional constraints reduce the kinetic energy; that is,

$$
\begin{equation*}
T\left(v_{\text {postimpact existing constraints }}\right)>T\left(\boldsymbol{v}_{\text {postimpact additional constraints }}\right) . \tag{4.6.3a}
\end{equation*}
$$

REMARKS

(i) Originally established by Lagrange; generalized by Sturm (1841) and Bertrand [in his notes to the 3rd ed. of Lagrange's Mécanique Analytique (1853-1855)]. The maximum property is due to Delaunay (1840).
(ii) We notice the similarities with Carnot's first theorem: in there, the system is acted upon by given impulses, and then ideal impulsive constraints are imposed; while in the Bertrand-Delaunay theorem, in the competing motion both impulses and constraints are applied simultaneously. (On the latter, see also "Remarks" following the theorem of Robin, below.)

To prove it, we let \boldsymbol{v}^{+}and \boldsymbol{v} be, respectively, the existing and additionally constrained postimpact velocities, and \boldsymbol{v}^{-}be the common preimpact velocity. If the corresponding impulsive reactions are $\left\{\widehat{d \boldsymbol{R}^{+}}\right\}$and $\{\widehat{d \boldsymbol{R}}\}$, then, by the first parts of (4.6.1c, d) with $\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}$,

$$
\begin{equation*}
\boldsymbol{S} \widehat{d \boldsymbol{R}^{+}} \cdot \boldsymbol{v}^{+}=0 \quad \text { and } \quad \boldsymbol{S} \widehat{d \boldsymbol{R}} \cdot \boldsymbol{v}^{+}=0 \tag{4.6.3b}
\end{equation*}
$$

and so the second parts of $(4.6 .1 \mathrm{c}, \mathrm{d})$, with $\{\widehat{d \boldsymbol{F}}\}$ the common impressed forces and, again, $\delta \boldsymbol{r} \sim \boldsymbol{v}$, and $\boldsymbol{v}^{+} \rightarrow \boldsymbol{v}^{+}, \boldsymbol{v}$, yield
and

$$
\begin{equation*}
\boldsymbol{S} d m\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v} \tag{4.6.3c}
\end{equation*}
$$

from which, subtracting side by side, we obtain

$$
\begin{equation*}
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}\right) \cdot \boldsymbol{v}=0 \tag{4.6.3d}
\end{equation*}
$$

and from this it follows readily [as in the corresponding steps of the previous theorems of Carnot and Kelvin, eqs. (4.6.1g-1j, 2e)]:

$$
\begin{align*}
T^{+}-T & \equiv \boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}-\boldsymbol{S}(d m / 2) \boldsymbol{v} \cdot \boldsymbol{v} \\
& =\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}^{+}-\boldsymbol{v}\right) \cdot\left(\boldsymbol{v}^{+}-\boldsymbol{v}\right)>0 ; \quad \text { i.e., } T^{+}>T, \quad \text { Q.E.D. } \tag{4.6.3e}
\end{align*}
$$

- Continuous case, variational formulation. If, further, the additionally constrained (postimpact) motion depends continuously on its deviation from the (postimpact) motion under existing constraints, then setting in the above $\boldsymbol{v}-\boldsymbol{v}^{+}=\delta \boldsymbol{v}^{+} \equiv \delta_{B / D} \boldsymbol{v}$, we obtain [as in Kelvin's theorem, (4.6.2d)], the stationarity equation

$$
\begin{equation*}
\delta_{B / D} T^{+} \equiv \delta_{B / D} T\left(\boldsymbol{v}^{+}\right) \equiv \delta_{B / D}\left(\boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}\right)=\boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \delta_{B / D} \boldsymbol{v}=0 \tag{4.6.3f}
\end{equation*}
$$

that is, for constrained variations, the actual motion makes the kinetic energy stationary; and the maximality inequality (with the equality holding for $\delta_{B / D} \boldsymbol{v}=\mathbf{0}$)

$$
\begin{align*}
\Delta_{B / D} T\left(\boldsymbol{v}^{+}\right) \equiv T-T^{+} & =\cdots \\
& =-(1 / 2) \delta_{B / D}^{2} T^{+}=-\boldsymbol{S}(d m / 2) \delta_{B / D} \boldsymbol{v} \cdot \delta_{B / D} \boldsymbol{v} \leq 0 \tag{4.6.3g}
\end{align*}
$$

Since, here, the impressed impulses are assumed to be the same for all kinematically possible (comparison) postimpact velocities, Bertrand's theorem can be reformulated as follows: The postimpact velocities of the existing constraints (actual problem) \boldsymbol{v}^{+} make either $T=\boldsymbol{S}(d m / 2) \boldsymbol{v} \cdot \boldsymbol{v}$, or $T=T^{-}+\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}+\boldsymbol{v}^{-}\right) / 2$ [resulting from the impulsive work-energy theorem," ex. 4.3.1, eqs. (d-f), with $\left.\boldsymbol{v}^{+} \rightarrow \boldsymbol{v}\right]$ stationary (a maximum, since T is positive definite), under the constraint (expressing the sameness of the impulses for all comparison motions)

$$
\begin{equation*}
2\left(T-T^{-}\right)-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}+\boldsymbol{v}^{-}\right)=0 \tag{4.6.3h}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{S} d m \boldsymbol{v} \cdot \boldsymbol{v}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}+\boldsymbol{v}^{-}\right)-2 T^{-}=0 \tag{4.6.3i}
\end{equation*}
$$

The Bertrand-Delaunay theorem, in spite of its conceptual elegance, has two serious drawbacks:
(i) The earlier continuity requirement significantly limits its usefulness; and
(ii) As one might expect, its practical implementation is, usually, mathematically laborious. [Convenient alternatives, for the determination of the motion of constrained systems resulting from the sudden imposition of impulses, are the stationarity/ extremum theorems of Robin and Gauss, presented below.]

Relationship Between the Theorems of Kelvin and Bertrand-Delaunay, Theorem of Taylor (1922)

Let us consider a straight rigid rod $A B$, initially at rest on a horizontal smooth table, and then set in motion by a given impulse \hat{I}_{B} applied perpendicularly to it at its end B; and, hence, communicating to it a specified velocity v_{B}, also perpendicular to the rod at B. Then, we repeat the experiment with a point of the rod C permanently fixed/hinged; something that forces it to rotate about C. Now: (a) If the impulse at B is the same in both experiments, then the hinge decreases the kinetic energy (Bertrand-Delaunay); in fact, since the value of \hat{I}_{B} remains fixed, as C approaches B the angular velocity of the rod decreases (and for $C \rightarrow B \Rightarrow \omega \rightarrow 0$), and so does its kinetic energy; whereas (b) If the velocity of B is the same in both experiments, then the hinge increases the kinetic energy (Kelvin); in fact, since the value of v_{B} remains fixed, as C approaches B the angular velocity of the rod increases indefinitely, and so does its kinetic energy!

The relationship between the kinetic energy increase of Kelvin's theorem, and the kinetic energy decrease of the Bertrand-Delaunay theorem is answered by the following interesting theorem.

THEOREM OF TAYLOR

Let us consider an originally motionless system S and then apply to its points impulses $\widehat{d \boldsymbol{F}}$, which produce velocities \boldsymbol{v}^{+}, and result in a reference kinetic energy T^{+}. Next, we introduce to S given constraints. To this new, motionless, system, S_{c}, we:
(a) First, apply the earlier $\widehat{d \boldsymbol{F}}$ at the same points, which results in a kinetic energy T^{+}, impulses. . By the theorem of Bertrand-Delaunay, $T^{+}{ }_{c, \text { impulses }}<T^{+}$.
(b) Second, we apply the earlier velocities at the same points, which results in a kinetic energy $T^{+}{ }_{c, v e l o c i t i e s . ~ B y ~ K e l v i n ' s ~ t h e o r e m: ~} T^{+}$, velocities $>T^{+}$.

Now, Taylor's theorem states that

$$
\begin{equation*}
\left|T_{c, \text { velocities }}^{+}-T^{+}\right|>\left|T_{c, \text { impulses }}^{+}-T^{+}\right| \tag{4.6.3j}
\end{equation*}
$$

or

$$
\begin{gathered}
\Delta T_{K}>\left|\Delta T_{B / D}\right| \\
\Delta T_{K} \equiv T\left(\boldsymbol{v}_{\text {postimpact comparison }}\right)-T\left(\boldsymbol{v}_{\text {postimpact actual })} \quad(>0),\right.
\end{gathered}
$$

$$
\begin{equation*}
\Delta T_{B / D} \equiv T\left(\boldsymbol{v}_{\text {postimpact additional constraints }}\right)-T\left(\boldsymbol{v}_{\text {postimpact existing constraints }}\right) \quad(<0) \tag{4.6.3k}
\end{equation*}
$$

where

$$
T\left(\boldsymbol{v}_{\text {postimpact actual }}\right)=T\left(\boldsymbol{v}_{\text {postimpact existing constraints }}\right)=T^{+} .
$$

In words: the increase in energy due to the imposition of constraints in the Kelvin case is greater than the (absolute value of the) reduction in energy due to the imposition of the same constraints in the Bertrand-Delaunay case.
[For proofs and applications, see, for example, Kilmister (1967, pp. 105-107), Milne (1948, pp. 374-378), Pars (1965, p. 238), Ramsey (1937, pp. 216-219), Rosenberg (1977, p. 408). Also, for a combined formulation of the theorems of Kelvin and Bertrand-Delaunay, due to Gray (1901), see Stäckel (1905, p. 517).]

4.6.4 Theorem of Robin (1887)

The actual postimpact velocities $\left\{\boldsymbol{v}^{+}\right\}$of a moving system subjected simultaneously to given impressed impulses $\{\widehat{d \boldsymbol{F}}\}$, and to sudden ideal impulsive constraints make the following expression:

$$
\begin{equation*}
P=P\left(\boldsymbol{v} ; \boldsymbol{v}^{-}, \widehat{d \boldsymbol{F}}\right) \equiv \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)^{2}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right) \tag{4.6.4a}
\end{equation*}
$$

(stationary and) a minimum, among $\{\boldsymbol{v}\}$: kinematically possible (or comparison) postimpact velocities; that is,

$$
\begin{gather*}
P\left(\boldsymbol{v} ; \boldsymbol{v}^{-}, \widehat{d \boldsymbol{F}}\right) \geq P\left(\boldsymbol{v}^{+} ; \boldsymbol{v}^{-}, \widehat{d \boldsymbol{F}}\right) \equiv P_{\min } \\
P_{\min }=\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right)^{2}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \tag{4.6.4b}
\end{gather*}
$$

Indeed, setting in the master equations (4.6.1c, d) $\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}$and $\delta \boldsymbol{r} \sim \boldsymbol{v}$ (to distinguish them from the \boldsymbol{v}^{+}of Bertrand's theorem) yields

$$
\begin{align*}
& \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}^{+}=\boldsymbol{S} \widehat{d \widehat{\boldsymbol{F}} \cdot \boldsymbol{v}^{+}} \\
& \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \boldsymbol{v} \quad\left[=\boldsymbol{S} d m\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right) \cdot \boldsymbol{v}\right] \tag{4.6.4c}
\end{align*}
$$

the last equation holding because, if we denote by $\widehat{d \boldsymbol{R}}$ and $\widehat{d \boldsymbol{R}^{\prime}}$ the constraint reactions of \boldsymbol{v}^{+}and \boldsymbol{v}, respectively and since the \boldsymbol{v} are compatible with both $\widehat{d \boldsymbol{R}}$ and $\widehat{d \boldsymbol{R}^{\prime}}$ (i.e., with all constraints - since the \boldsymbol{v}^{+}are a subset of the \boldsymbol{v}, they must also be compatible with both the $\widehat{d \boldsymbol{R}}$ and $\widehat{d \boldsymbol{R}^{\prime}}$), we shall have $S \widehat{d \boldsymbol{R}} \cdot \boldsymbol{v}=S \widehat{d \boldsymbol{R}^{\prime}} \cdot \boldsymbol{v}=0$. Next, subtracting eqs. (4.6.4c) side by side readily results in

$$
\begin{equation*}
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right)=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right) \tag{4.6.4d}
\end{equation*}
$$

or, since kinematically admissible postimpact velocities may differ infinitesimally from each other, setting (as in Kelvin's theorem) $\boldsymbol{v}-\boldsymbol{v}^{+}=\delta \boldsymbol{v}^{+} \equiv \delta_{R} \boldsymbol{v}$, we can rewrite (4d) as

$$
\begin{equation*}
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \delta_{R} \boldsymbol{v}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta_{R} \boldsymbol{v} \tag{4.6.4e}
\end{equation*}
$$

which is none other than the stationarity condition (since $\delta_{R} \boldsymbol{v}^{-}=\mathbf{0}$)

$$
\begin{equation*}
\delta_{R} P=\delta_{R}\left(\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)^{2}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)\right)=0 \tag{4.6.4f}
\end{equation*}
$$

Next, to the minimality condition. We obtain, successively, using the above results,

$$
\begin{align*}
P(\boldsymbol{v} ; \ldots) & -P\left(\boldsymbol{v}^{+} ; \ldots\right) \equiv P-P_{\min } \\
& =\boldsymbol{S}(d m / 2)\left[\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)^{2}-\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right)^{2}\right]-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right) \\
& =\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right) \cdot\left(\boldsymbol{v}+\boldsymbol{v}^{+}-2 \boldsymbol{v}^{-}\right)-\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right) \\
& =\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{+}\right)^{2} \\
& =\boldsymbol{S}(d m / 2)\left(\delta_{R} \boldsymbol{v}\right)^{2}=(1 / 2) \delta_{R}^{2} P \geq 0, \quad \text { Q.E.D. } \tag{4.6.4g}
\end{align*}
$$

REMARKS

The final (i.e., postimpact) velocities of a system under sudden prescribed impressed impulses (or velocities), followed immediately by additional constraints, are the same as if the system had the constraints imposed first, followed immediately by the impressed impulses (or velocities); that is, the order of application of impressed impulses (or velocities) and constraints is immaterial to the postimpact motion, as long as it all occurs within an infinitesimal time interval. [However, the order of equally sudden imposition of impressed impulses (or velocities) and removal of constraints, clearly, does make a difference!] And, wherever that order of application is immaterial, the total impulse at various system points, impressed and constraint (reaction), must be the same for either order; hence, then, impressed impulses (or velocities) and additional constraints can be thought of as acting simultaneously, in the sense of Robin's theorem. [These remarks are due to Professor D. T. Greenwood (private communication).]

Special (Extreme) Cases

(a) Only the $\{\widehat{\boldsymbol{d} \boldsymbol{F}}\}$ are imposed, but no additional constraints. Then the $\left\{\boldsymbol{v}^{+}\right\}$ make P, (4.6.4a), a minimum.
(b) Only the additional constraints are imposed, but no $\{\widehat{d \boldsymbol{F}}\}$. Then the $\left\{\boldsymbol{v}^{+}\right\}$ make the "comparison relative kinetic energy" P a minimum:

$$
\begin{equation*}
P \rightarrow \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)^{2} \rightarrow \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right)^{2}=P_{\min } \tag{4.6.4h}
\end{equation*}
$$

Further, in this case, we obtain, successively,

$$
\begin{aligned}
\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)^{2} & =\boldsymbol{S}(d m / 2) \boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{S}(d m / 2) \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-}-\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}^{-} \\
& =\boldsymbol{S}(d m / 2) \boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{S}(d m / 2) \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-}-\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}
\end{aligned}
$$

[the third (last) sum transformed with the help of (4.6.4c)]

$$
=\boldsymbol{S}(d m / 2) \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-}-\boldsymbol{S}(d m / 2) \boldsymbol{v} \cdot \boldsymbol{v}>0
$$

and, therefore, for $\boldsymbol{v}=\boldsymbol{v}^{+}$,

$$
\begin{align*}
P_{\min } & =\boldsymbol{S}(d m / 2)\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right)^{2}=\boldsymbol{S}(d m / 2) \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-}-\boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+} \\
& =T^{-}-T^{+} \equiv-\Delta T>0 \quad(=\text { kinetic energy loss }) \tag{4.6.4i}
\end{align*}
$$

In words: the postshock velocities of a system subjected to sudden ideal impulsive constraints minimize its relative kinetic energy; and that minimum value equals the lost kinetic energy (i.e., first part of Carnot's theorem!).
(c) The preimpact state is one of rest. Then we simply set in (4.6.4a, b) $\boldsymbol{v}^{-}=\mathbf{0}$.

4.6.5 Theorem of Gauss

[Impulsive Counterpart of Differential Variational Principle of Gauss (§6.4, §6.6).] The actual postimpact velocities $\left\{\boldsymbol{v}^{+}\right\}$minimize the "impulsive compulsion":

$$
\begin{align*}
& \hat{Z}=\hat{Z}(\boldsymbol{v}) \equiv \boldsymbol{S}(d m / 2)\left[\boldsymbol{v}-\boldsymbol{v}^{-}-(\widehat{d \boldsymbol{F}} / d m)\right]^{2} \tag{4.6.5a}\\
&\left(=\cdots=P+\boldsymbol{S}(\widehat{d \boldsymbol{F}})^{2} / 2 d m\right)
\end{align*}
$$

relative to all kinematically admissible postimpact velocities $\left\{\boldsymbol{v} \equiv \boldsymbol{v}^{+}+\delta_{G} \boldsymbol{v}\right\}$; that is, $\min \hat{Z}=\hat{Z}\left(\boldsymbol{v}^{+}\right)$. Indeed, from (4.6.5a) we readily obtain

$$
\begin{align*}
\Delta_{G} \hat{Z} & \equiv \hat{Z}(\boldsymbol{v})-\hat{Z}\left(\boldsymbol{v}^{+}\right) \\
& =\boldsymbol{S}(d m / 2)\left[\left(\boldsymbol{v}^{+}+\delta_{G} \boldsymbol{v}-\boldsymbol{v}^{-}-\widehat{d \boldsymbol{F}} / d m\right)^{2}-\left(\boldsymbol{v}^{+}-\widehat{d \boldsymbol{F}} / d m\right)^{2}\right] \\
& \equiv \delta_{G} \hat{\boldsymbol{Z}}+(1 / 2) \delta_{G}^{2} \hat{\boldsymbol{Z}} \tag{4.6.5b}
\end{align*}
$$

where

$$
\begin{align*}
\delta_{G} \hat{Z} \equiv & \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}-\widehat{d \boldsymbol{F}} / d m\right) \cdot \delta_{G} \boldsymbol{v} \quad\left(=\delta_{R} P\right)=0 \\
& {\left[\text { by setting in }(4.6 .1 \mathrm{c}, \mathrm{~d}) \delta \boldsymbol{r} \rightarrow \delta_{G} \boldsymbol{v}\right] } \tag{4.6.5c}\\
\delta_{G}^{2} \hat{Z} \equiv & \equiv \boldsymbol{S} d m\left(\delta_{G} \boldsymbol{v}\right)^{2} \quad\left(=\delta_{R}^{2} P\right) \\
\equiv & \text { Relative kinetic energy (as in Kelvin's theorem })>0 \tag{4.6.5d}
\end{align*}
$$

that is, $\left.\Delta_{G} \hat{Z}=(1 / 2) \delta_{G}^{2} \hat{Z}\left[=\Delta_{R} P=(1 / 2) \delta_{R}^{2} P\right)\right]>0$, Q.E.D. The above clearly show the equivalence of the theorems of Gauss and Robin.

Table 4.2 Extremum Theorems of Impulsive Motion

Master equation (impulsive Lagrange's principle):

$$
S d m\left(\boldsymbol{v}^{+}-v^{-}\right) \cdot \delta r=S \widehat{d \widehat{F}} \cdot \delta r
$$

- Carnot (first part—collisions):

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}, \quad \widehat{d \boldsymbol{F}}=\mathbf{0} \Rightarrow T^{+}-T^{-}<0 .
$$

Carnot (second part—explosions):

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{-}, \quad \widehat{d \boldsymbol{F}}=\mathbf{0} \Rightarrow T^{+}-T^{-}>0 .
$$

- Kelvin (prescribed velocities):

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}, \quad \delta \boldsymbol{r} \sim \boldsymbol{v}^{+}+\delta_{K} \boldsymbol{v}, \boldsymbol{v}^{-}=\mathbf{0} \Rightarrow T(\boldsymbol{v})-T\left(\boldsymbol{v}^{+}\right)>0, \quad \delta_{K} T^{+}=0 .
$$

- Bertrand-Delaunay (prescribed impulses):

$$
\delta \boldsymbol{r} \sim \boldsymbol{v}^{+}, \delta \boldsymbol{r} \sim \boldsymbol{v}^{+}+\delta_{B / D} \boldsymbol{v}=\boldsymbol{v} \Rightarrow T(\boldsymbol{v})-T\left(\boldsymbol{v}^{+}\right)<0, \delta_{B / D} T^{+}=0 .
$$

[Taylor: $T_{\text {Kelvin }}(\boldsymbol{v})-T\left(\boldsymbol{v}^{+}\right)>T\left(\boldsymbol{v}^{+}\right)-T(\boldsymbol{v})_{\text {Bertrand-Delaunay }}$]

- Robin (prescribed impulses and constraints):

$$
\begin{aligned}
& \delta \boldsymbol{r} \sim \boldsymbol{v}^{+}, \quad \delta \boldsymbol{r} \sim \boldsymbol{v}^{+}+\delta_{R} \boldsymbol{v}=\boldsymbol{v} \\
& \\
& P \equiv \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right)^{2}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}-\boldsymbol{v}^{-}\right): \quad \text { stationary and minimum. }
\end{aligned}
$$

- Gauss (impulsive compulsion):
$\hat{Z} \equiv \boldsymbol{S}(d m / 2)\left(\boldsymbol{v}-\boldsymbol{v}^{-}-\widehat{d \boldsymbol{F}} / d m\right)^{2}=P+\boldsymbol{S}(\widehat{d \boldsymbol{F}})^{2} / 2 d m$: stationary and minimum.

Alternatively, the stationarity condition (4.6.5c), with $\delta_{G} \boldsymbol{\nu}^{+}=\boldsymbol{v}-\boldsymbol{v}^{+}$, applied to

$$
\begin{aligned}
& \hat{Z} \equiv \boldsymbol{S}(d m / 2)\left[\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right)-\widehat{d \boldsymbol{F}} / d m\right]^{2} \\
&=\boldsymbol{S}(d m / 2) \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{+}+\boldsymbol{S}(d m / 2) \boldsymbol{v}^{-} \cdot \boldsymbol{v}^{-}+\boldsymbol{S}(\widehat{d \boldsymbol{F}})^{2} / 2 d m \\
&-\boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \boldsymbol{v}^{-}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right),
\end{aligned}
$$

yields

$$
\begin{align*}
\delta_{G} \hat{\boldsymbol{Z}} & =\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}-\widehat{d \boldsymbol{F}} / d m\right) \cdot \delta_{G}\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}-\widehat{d \boldsymbol{F}} / d m\right) \\
& =\boldsymbol{S} d m \boldsymbol{v}^{+} \cdot \delta_{G} \boldsymbol{v}-\boldsymbol{S} d m \boldsymbol{v}^{-} \cdot \delta_{G} \boldsymbol{v}-\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta_{G} \boldsymbol{v}=0 \tag{4.6.5e}
\end{align*}
$$

or, rearranging,

$$
\begin{equation*}
\boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot \delta_{G} \boldsymbol{v}=\boldsymbol{S} \widehat{d \boldsymbol{F}} \cdot \delta_{G} \boldsymbol{v} \tag{4.6.5f}
\end{equation*}
$$

that is, the master equations (4.6.1c, d) with $\delta \boldsymbol{r} \rightarrow \delta_{G} \boldsymbol{v}$. Also, eq. (4.6.5f) constitutes the impulsive counterpart of Jourdain's differential variational principle (\$6.3). This latter, in holonomic system variables, reads $\sum\left(\Delta p_{k}-\hat{Q}_{k}\right) \delta \dot{q}_{k}=0$, under $\delta t=0$, $\delta q_{k}=0$. For a detailed and lucid treatment of its application to impulsive problems, see, for example, Bahar (1994); also ex. 4.5.6.

To facilitate the understanding of all these - admittedly, similarly sounding and hence hard to differentiate and remember - theorems, we summarize them in table 4.2.

Example 4.6.1 (D. T. Greenwood, 1997, private communication). On Input Inertia and Impulse Response. Let us consider a finite and discrete system, and an impulse $\hat{\boldsymbol{f}}_{P}$, acting at its point P and causing to it a velocity jump $\Delta \boldsymbol{v}_{P} \equiv \boldsymbol{v}_{P}{ }^{+}-\boldsymbol{v}_{P}{ }^{-}$. Now, the input inertia coefficient or driving-point mass at P, μ_{P}, is defined by

$$
\begin{equation*}
\mu_{P} \equiv \hat{f}_{P} / \Delta v_{P, t} \quad(P=1,2, \ldots) \tag{a}
\end{equation*}
$$

where \hat{f}_{P} is the magnitude of $\hat{\boldsymbol{f}}_{P}$ and $\Delta v_{P, t}$ is the component of $\Delta \boldsymbol{v}_{P}$ in the direction of $\hat{\boldsymbol{f}}_{P}$. It is not hard to see that $\mu_{P}>0$, always (explain!); and, for a given system point P, it is a function of the configuration and the direction of $\hat{\boldsymbol{f}}_{P}$, but not of the system's state of motion. From the above, it follows that if μ_{P} is also finite, $\Delta \boldsymbol{v}_{P}$ has always a component in the direction of $\hat{\boldsymbol{f}}_{P}$. Now, and recalling the results of ex. 4.3.1 on the impulsive "work-energy" theorem, the work (or, better, power) done by $\hat{\boldsymbol{f}}_{P}, \hat{W}_{P}$, equals its dot product with the average velocity of $\boldsymbol{v}_{P}{ }^{+}$and $\boldsymbol{v}_{P}{ }^{-}$:

$$
\begin{equation*}
\hat{W}_{P} \equiv \hat{\boldsymbol{f}}_{P} \cdot\left[\left(\boldsymbol{v}_{P}^{-}+\boldsymbol{v}_{P}^{+}\right) / 2\right]=\hat{\boldsymbol{f}}_{P} \cdot\left[\boldsymbol{v}_{P}^{-}+\left(\Delta \boldsymbol{v}_{P}^{+} / 2\right)\right] ; \tag{b}
\end{equation*}
$$

and by that theorem, the corresponding kinetic energy change, ΔT_{P}, is

$$
\begin{equation*}
\Delta T_{P} \equiv T_{P}^{+}-T_{P}^{-}=\hat{W}_{P}=\hat{\boldsymbol{f}}_{P} \cdot \boldsymbol{v}_{P}^{-}+\left(\hat{f}_{P}^{2} / 2 \mu_{P}\right) \tag{c}
\end{equation*}
$$

From this, we conclude that ΔT_{P} can be positive or negative, depending on the preimpact state of motion (i.e., the value of $\hat{\boldsymbol{f}}_{P} \cdot \boldsymbol{v}_{P}^{-}$). But, an originally motionless system (i.e., $\boldsymbol{v}_{P}{ }^{-}=\mathbf{0}$) will always exhibit an increase in its kinetic energy, inversely proportional to its μ_{P} 's.

Next, let us assume that additional stationary impulsive constraints are suddenly imposed on a moving system. If some particle velocity is changed, and the impact is inelastic, the resulting impulsive constraint reactions will do negative work on the system as a whole, and thus reduce its kinetic energy (Carnot's first theorem). This and (c) imply that additional constraints result in an increase in the system's input masses, μ_{P} 's; a fact confirming our intuitive feeling that each constraint tends to increase the resistance to velocity changes due to $\hat{\boldsymbol{f}}_{P}$, at P.

Appendix: Calculation of $\Delta \boldsymbol{v}_{P, t}$ for a single impressed impulse $\hat{\boldsymbol{f}}_{P}$
Recalling the results of $\S 4.5$ [eqs. $4.5 .4 \mathrm{a}-5 \mathrm{~b})$], let the constraints and kinetic equations of impulsive motion be, respectively,

$$
\begin{gather*}
\omega_{D} \equiv \sum A_{D k} \dot{q}_{k} \equiv \sum A_{D k} v_{k}=0 \\
\sum M^{*}{ }_{I I^{\prime}} \Delta \omega_{I^{\prime}}=\Theta_{I} \Rightarrow \Delta \omega_{I}=\sum Y_{I I^{\prime}} \Theta_{I^{\prime}} \quad\left[\left(Y_{I I^{\prime}}\right): \text { inverse of }\left(M_{I I^{\prime}}^{*}\right)\right] \tag{d}
\end{gather*}
$$

where

$$
\begin{array}{cc}
\omega_{I} \equiv \sum A_{I k} \dot{q}_{k} \equiv \sum A_{I k} v_{k} \neq 0, & M^{*}{ }_{I I^{\prime}} \equiv \partial^{2} T^{*}{ }_{o} / \partial \omega_{I} \partial \omega_{I^{\prime}}, \\
T_{o}^{*}=T^{*}\left(t, q, \omega_{D}=0, \omega_{I}\right)=T_{o}^{*}\left(t, q, \omega_{I}\right) & \left(D=1, \ldots, m ; I, I^{\prime}=m+1, \ldots, n\right) . \tag{d1}
\end{array}
$$

Now, with the earlier notations/definitions, suppose that

$$
\begin{equation*}
\Delta v_{P, t}=\sum C_{P I} \Delta \omega_{I} \quad(P=1,2, \ldots, \# \text { particles under impressed impulses }) . \tag{e1}
\end{equation*}
$$

Hence, for a single such impulse $\hat{\boldsymbol{f}}_{P}$, by equating impulsive virtual works, we find

$$
\begin{equation*}
\hat{\Theta}_{I}=\left[\partial\left(\Delta v_{P, t}\right) / \partial\left(\Delta \omega_{I}\right)\right] \hat{f_{P}}=C_{P I} \hat{f_{P}} \tag{e2}
\end{equation*}
$$

Substituting (e2) into the second of (d), and the result into (e1), we obtain the sought formula

$$
\begin{equation*}
\Delta v_{P, t}=\sum C_{P I}\left(\sum Y_{I I^{\prime}}\left(C_{P I^{\prime}} \hat{f}_{P}\right)\right)=\left(\sum \sum C_{P I} Y_{I I^{\prime}} C_{P I^{\prime}}\right) \hat{f}_{P} \tag{f1}
\end{equation*}
$$

From (f1), it also follows at once that the corresponding input mass equals

$$
\begin{equation*}
\mu_{P} \equiv \hat{f}_{P} / \Delta v_{P, t}=\left(\sum \sum C_{P I} Y_{I I^{\prime}} C_{P I^{\prime}}\right)^{-1} \tag{f2}
\end{equation*}
$$

The extension of the above to include impulsive constraint reactions is straightforward, and is left to the reader. These formulae may find useful applications to structural dynamics.

Example 4.6.2 Let us consider two circular homogeneous wheels, W_{1} and W_{2} (fig. 4.21), of respective radii r_{1} and r_{2}, rotating with constant and, initially unrelated, angular velocities about their frictionless parallel axes through their respective fixed (geometrical and mass) centers O_{1} and O_{2}. On these wheels, we drop an initially slack, inextensible and massless cable that sticks to them and, then, at a certain instant, becomes taut and thus exerts an impulsive moment on the wheels. Let us calculate their postimpact angular velocities $\omega_{1}{ }^{+}$and $\omega_{2}{ }^{+}$, respectively.

Since the addition of the cable amounts to the sudden introduction of a constraint, Carnot's first theorem, (4.6.1e), yields immediately (with I_{1} and I_{2} denoting, respectively, the moments of inertia of W_{1} and W_{2} about O_{1} and O_{2})

$$
\begin{align*}
2\left(T^{+}-T^{-}\right) & =\left[I_{1}\left(\omega_{1}^{+}\right)^{2}+I_{2}\left(\omega_{2}^{+}\right)^{2}\right]-\left[I_{1}\left(\omega_{1}^{-}\right)^{2}+I_{2}\left(\omega_{2}^{-}\right)^{2}\right] \\
& =-\left[I_{1}\left(\omega_{1}^{+}-\omega_{1}^{-}\right)^{2}+I_{2}\left(\omega_{2}^{+}-\omega_{2}^{-}\right)^{2}\right]<0, \tag{a}
\end{align*}
$$

Figure 4.21 Sudden imposition of constraint in a two-wheel system.
or, rearranging and simplifying,

$$
\begin{align*}
& I_{1}\left[\left(\omega_{1}^{-}\right)^{2}-\left(\omega_{1}^{+}\right)^{2}\right]+I_{2}\left[\left(\omega_{2}^{-}\right)^{2}-\left(\omega_{2}^{+}\right)^{2}\right] \\
& \quad=I_{1}\left(\omega_{1}^{-}-\omega_{1}^{+}\right)^{2}+I_{2}\left(\omega_{2}^{-}-\omega_{2}^{+}\right)^{2}>0 \tag{b}
\end{align*}
$$

From kinematics we have, also,

$$
\begin{equation*}
\omega_{1}^{+} r_{1}=\omega_{2}^{+} r_{2} \tag{c}
\end{equation*}
$$

Solving the system (b, c), we obtain the sought postimpact angular velocities

$$
\begin{equation*}
\omega_{1}^{+} / r_{2}=\omega_{2}^{+} / r_{1}=\left(I_{1} r_{2} \omega_{1}^{-}+I_{2} r_{1} \omega_{2}^{-}\right) /\left(I_{1} r_{2}^{2}+I_{2} r_{1}^{2}\right) \tag{d}
\end{equation*}
$$

Then, combining these results with the theorem of impulsive angular momentum, about O_{1} and O_{2}, we obtain the impulsive cable tension \hat{S},

$$
\begin{align*}
& \hat{S} r_{1}=I_{1}\left(\omega_{1}^{+}-\omega_{1}^{-}\right), \quad-\hat{S} r_{2}=I_{2}\left(\omega_{2}^{+}-\omega_{2}^{-}\right) \tag{e}\\
& \Rightarrow \hat{S}=I_{1}\left(\omega_{1}^{+}-\omega_{1}^{-}\right) / r_{1}=-I_{2}\left(\omega_{2}^{+}-\omega_{2}^{-}\right) / r_{2} \\
& \tag{f}\\
& =\left[\left(r_{2} \omega_{2}^{-}-r_{1} \omega_{1}^{-}\right) /\left(I_{1} r_{2}^{2}+I_{2} r_{1}^{2}\right)\right] I_{1} I_{2}
\end{align*}
$$

Problem 4.6.1 (Bouligand, 1954, pp. 139-142). Consider a thin straight homogeneous $\operatorname{rod} A B$, of mass m and length $2 l$, originally suspended in horizontal equilibrium from a fixed ceiling by two vertical identical taut strings, s and s^{\prime}, attached to the bar at points other than its endpoints A and B [fig. 4.22(a)]. A third string $s^{\prime \prime}$ connects A with the ceiling point O, directly above A. The length of $s^{\prime \prime}$ is $2 h$, and that is double the distance $O A$ (i.e., originally, s, s^{\prime} are taut, but $s^{\prime \prime}$ is slack). Then, the strings s and s^{\prime} break simultaneously (or, someone burns them). Calculate the velocity state of $A B$ immediately after the shock produced by the sudden tensioning of $s^{\prime \prime}$.

Let $[f i g 4.22(\mathrm{~b})] O A=r$, $\operatorname{angle}(O x, O A)=\theta$, $\operatorname{angle}(O x, A B)=\phi$. Now, the post s, s^{\prime}-snap configurations of $A B$ are determined by three Lagrangean coordinates; say, r, θ, ϕ; while the shock amounts to the sudden introduction of the persistent constraint $r=$ constant $=2 h$.

Figure 4.22 Geometry of rod $A B$, of mass m and length $2 l$, originally suspended from a fixed ceiling by the two equal and parallel strings s and s^{\prime}, of length h. A third string $s^{\prime \prime}$, of length $2 h$, connects A with the fixed ceiling point (origin) O. Then s and s^{\prime} snap, $A B$ falls freely until $s^{\prime \prime}$ gets taut and provokes a shock to $A B$.
(a) Equilibrium, (b) generic postshock configuration.
(i) Show that the (double) kinetic energy of $A B$, for a generic configuration, is

$$
\begin{equation*}
2 T=m\left\{r^{2}(\dot{\theta})^{2}+(\dot{r})^{2}+(4 / 3)(l \dot{\phi})^{2}+2 l[r \dot{\theta} \dot{\phi} \cos (\theta-\phi)+\dot{r} \dot{\phi} \sin (\theta-\phi)]\right\} \tag{a}
\end{equation*}
$$

HINT

Let the coordinates of the rod's center and center of mass G be x, y. From geometry,

$$
\begin{align*}
x=r \cos \theta+l \cos \phi, & y=r \sin \theta+l \sin \phi \\
\Rightarrow \dot{x}=-r \dot{\theta} \sin \theta+\dot{r} \cos \theta-l \dot{\phi} \sin \phi, & \dot{y}=r \dot{\theta} \cos \theta+\dot{r} \sin \theta+l \dot{\phi} \cos \phi \tag{b}
\end{align*}
$$

Then use König's theorem: $2 T=2 T_{\text {with all mass concentrated at } G}+2 T_{\text {relative, about } G}$.
(ii) By applying the fundamental Lagrangean impulsive virtual work equation $\Delta(\partial T / \partial \dot{r}) \delta r+\Delta(\partial T / \partial \dot{\theta}) \delta \theta+\Delta(\partial T / \partial \dot{\phi}) \delta \phi=0$, for $\quad \delta r=0, \delta \theta, \delta \phi$: arbitrary (c) (since here $\widehat{\delta^{\prime} W}=0$), obtain the kinetic impulsive equations:

$$
\begin{array}{ll}
\Delta[r \dot{\theta}+l \dot{\phi} \cos (\theta-\phi)]=0 & \Rightarrow r \Delta \dot{\theta}=0 \\
\Delta\left[(4 / 3) l \dot{\phi}-l \dot{\phi} \cos ^{2}(\theta-\phi)+\dot{r} \sin (\theta-\phi)\right]=0 & \Rightarrow(4 / 3) l \Delta \dot{\phi}-\Delta \dot{r}=0 \tag{d2}
\end{array}
$$

(iii) Verify that, since the preshock conditions are (invoking energy conservation) $\theta^{-}=0, \quad \phi^{-}=\pi / 2, \quad r=2 l ; \quad(\dot{\theta})^{-}=0, \quad(\dot{\phi})^{-}=0, \quad(\dot{r})^{-}=(2 g h)^{1 / 2} \quad($ free fall), (e1) while, after the shock: $(\dot{r})^{+}=0 \Rightarrow \Delta \dot{r}=-(2 g h)^{1 / 2}$, the above yield the postshock values

$$
\begin{equation*}
(\dot{\theta})^{+}=0, \quad(\dot{\phi})^{+}=-3(2 g h)^{1 / 2} / 4 l . \tag{e2}
\end{equation*}
$$

(iv) Verify that the kinetostatic impulsive equation is $\Delta(\partial T / \partial \dot{r})=\hat{\lambda}$ [impulsive multiplier, to adjoin the constraint (1) $\delta r=0$ to (c), and equal to the tension of $\left.s^{\prime \prime}\right]$. Show that

$$
4 \hat{\lambda}=(2 g h)^{1 / 2}
$$

(v) Show that if we choose as Lagrangean coordinates, x, y, and ϕ, the (double) kinetic energy and impulsive virtual work equation are, respectively,

$$
\begin{gather*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+\left(m l^{2} / 3\right)(\dot{\phi})^{2} \tag{f1}\\
\Delta(\partial T / \partial \dot{x}) \delta x+\Delta(\partial T / \partial \dot{y}) \delta y+\Delta(\partial T / \partial \dot{\phi}) \delta \phi=0, \tag{f2}
\end{gather*}
$$

for all $\delta x, \delta y, \delta \phi$ constrained by
$\left.\delta f\right|_{\text {evaluated at } \theta=0, \phi=\pi / 2}=0, \quad$ where $f \equiv(x-l \cos \phi)^{2}+(y-l \sin \phi)^{2}=r^{2}$ (constant); that is,

$$
\begin{equation*}
\delta x+l \delta \phi=0 \tag{f3}
\end{equation*}
$$

Verify that the variational equations (f2) and (f3) lead to the kinetic impulsive equations

$$
\begin{equation*}
\Delta \dot{x}-(l / 3) \Delta \dot{\phi}=0 \quad \text { and } \quad \Delta \dot{y}=0 . \tag{f4}
\end{equation*}
$$

Then [from (b) evaluated at $\theta=0, \phi=\pi / 2, r=2 l$], since the preshock velocities are $(\dot{x})^{-}=2(g h)^{1 / 2},(\dot{y})^{-}=0,(\dot{\phi})^{-}=0$, confirm that the postshock velocities will be

$$
\begin{equation*}
(\dot{x})^{+}=(2 g h)^{1 / 2}+\Delta \dot{x}=(3 / 4)(2 g h)^{1 / 2}, \quad(\dot{y})^{+}=\Delta \dot{y}=0, \quad(\dot{\phi})^{+}=\Delta \dot{\phi}, \tag{f5}
\end{equation*}
$$

[while $(\dot{y})^{-}=(\dot{y})^{+}=0$], and they will be connected by

$$
\begin{equation*}
(d f / d t)^{+}=0 \Rightarrow(\dot{x})^{+}+l(\dot{\phi})^{+}=0: \quad(2 g h)^{1 / 2}+\Delta \dot{x}+l \Delta \dot{\phi}=0 \tag{f6}
\end{equation*}
$$

Finally, confirm that combination of (f4) with (f6) yields a $\Delta \dot{\phi}$ value in agreement with (e2); also that the impulsive multiplier needed for adjoining (f3) to (f2) equals $l \Delta \dot{\phi} / 3$.
(vi) Show that

$$
\begin{align*}
& 2 T^{-}=2 m g h, \quad 2 T^{+}=m\left[r^{2}(\dot{\theta})^{2}+(4 / 3) l^{2}(\dot{\phi})^{2}\right] \tag{g1}\\
& 2 T_{\text {jump }} \equiv \boldsymbol{S} d m\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \cdot\left(\boldsymbol{v}^{+}-\boldsymbol{v}^{-}\right) \quad \text { (kinetic energy of jump motion) } \\
& =m\left[(\Delta \dot{x})^{2}+(\Delta \dot{y})^{2}\right]+\left(m l^{2} / 3\right)(\Delta \dot{\phi})^{2} \\
& =m\left\{\left[(\dot{x})^{+}-(2 g h)^{1 / 2}\right]^{2}+\left[(\dot{y})^{+}\right]^{2}+\left(l^{2} / 3\right)\left[(\dot{\phi})^{+}\right]^{2}\right\} \\
& =m\left\{\left[l(\dot{\phi})^{+}+(2 g h)^{1 / 2}\right]^{2}+4 h^{2}\left[(\dot{\theta})^{+}\right]^{2}+\left(l^{2} / 3\right)\left[(\dot{\phi})^{+}\right]^{2}\right\} . \tag{g2}
\end{align*}
$$

(vii) Show that the first theorem of Carnot - that is, $T^{-}-T^{+}=T_{\mathrm{jump}}$ - applied to the above yields

$$
\begin{equation*}
4 h^{2}\left[(\dot{\theta})^{+}\right]^{2}+(4 / 3) l^{2}\left[(\dot{\phi})^{+}\right]^{2}+l(\dot{\phi})^{+}(2 g h)^{1 / 2}=0 \tag{h1}
\end{equation*}
$$

A second equation connecting $(\dot{\theta})^{+}$and $(\dot{\phi})^{+}$is obtained by applying impulsive angular momentum conservation about O (i.e., $O z$-notice that, in our axes, clockwise is negative):

$$
\begin{align*}
& H_{O}^{-}=H_{O}^{+}: \quad-m l(2 g h)^{1 / 2}=I_{G} \omega^{+}+\left[\boldsymbol{r}_{G / O} \times\left(m \boldsymbol{v}_{G}\right)\right]_{z} \\
&=\left(m l^{2} / 3\right)(\dot{\phi})^{+}+\left[-m(\dot{x})^{+} l+m(\dot{y})^{+}(2 h)\right] \quad[\text { using }(\mathrm{b})] \\
&=\left(m l^{2} / 3\right)(\dot{\phi})^{+}+\left\{-m\left[-l(\dot{\phi})^{+}\right] l+m\left[2 h(\dot{\theta})^{+}\right](2 h)\right\} \\
&=(4 / 3)\left(m l^{2}\right)(\dot{\phi})^{+}+m(2 h)^{2}(\dot{\theta})^{+} \\
& \Rightarrow 4 h^{2}(\dot{\theta})^{+}(4 / 3) l^{2}(\dot{\phi})^{+}+l(2 g h)^{1 / 2}=0 . \tag{h2}
\end{align*}
$$

Verify that the solution of (h1) and (h2) gives the earlier postshock values.
[The fact that (h1) is a single nonvariational equation in the two unknownsnamely, $(\dot{\theta})^{+},(\dot{\phi})^{+}$(and also that it is quadratic in them, thus yielding a parasitic solution, in addition to the actual one-a drawback of all nonvariational/extremum energetic theorems) - severely limits the practical usefulness of Carnot's theorem(s).]

Example 4.6.3 Let us consider a rigid lamina P, of mass m, originally at rest on a smooth table, one point of which, say A, is suddenly communicated a prescribed velocity (u, v), on the plane of P (fig. 4.23). We will calculate its actual postshock angular velocity, ω^{+}, via elementary (i.e., Newton-Euler) means, and by Kelvin's

Figure 4.23 Kelvin's theorem for a rigid lamina in plane motion.
theorem; namely, that for ω^{+}the kinematically possible postimpact kinetic energy of P becomes both stationary and minimum.
(i) Via Newton-Euler. Let (a, b) be the coordinates of A relative to the mass center of P, G. Then, by plane kinematics, the velocity of G has x, y-components: $u+b \omega$, $v-a \omega$; and so, by impulsive angular momentum about A (with $m k^{2}$: moment of inertia of P about G),

$$
\begin{equation*}
0=\left(m k^{2}\right) \omega^{+}+\left\{\left[m\left(u+b \omega^{+}\right) b\right]-\left[m\left(v-a \omega^{+}\right)\right] a\right\} \tag{a}
\end{equation*}
$$

(= angular momentum of P about $G+$ moment of linear momentum of P about A), and solving this for ω^{+}, we readily obtain

$$
\begin{equation*}
\omega^{+}=(a v-b u) /\left(k^{2}+a^{2}+b^{2}\right) ; \tag{b}
\end{equation*}
$$

or, by applying the principle about the body-fixed point A, and corresponding moment of inertia

$$
\begin{align*}
I_{A} & =I_{G}+m\left(a^{2}+b^{2}\right)=m\left(k^{2}+a^{2}+b^{2}\right): \\
0 & =\Delta\left[I_{A} \omega-\left(\boldsymbol{r}_{A / G} \times m \boldsymbol{v}_{A}\right)_{z}\right]: 0=I_{A} \omega^{+}-[(m v) a-(m u) b] \Rightarrow \text { eq. (b). } \tag{c}
\end{align*}
$$

(ii) Via Kelvin's theorem. Now, by König's theorem, the postimpact kinetic energy of P for an arbitrary kinematically possible postimpact angular velocity ω, equals

$$
\begin{equation*}
2 T=m\left[(u+b \omega)^{2}+(v-a \omega)^{2}\right]+\left(m k^{2}\right) \omega^{2}=2 T(\omega ; u, v) . \tag{d}
\end{equation*}
$$

Let the reader show that, by Kelvin's theorem, $T \rightarrow$ stationary; that is, setting $d T / d \omega=0$ yields $\omega=\omega^{+}$, eq. (b), and further, that there $d^{2} T / d \omega^{2}>0$.

Example 4.6.4 Let us consider an initially motionless rigid and homogeneous rod $A B$, of mass m and length l (fig. 4.24), set in motion by causing its right end B to

Figure 4.24 Rod under a prescribed velocity u at its end B.
move normally to $A B$ with a specified postimpact velocity u. Let us calculate its postimpact angular velocity ω^{+}.

Here, by König's theorem, the kinematically possible postimpact kinetic energy of the rod [with v : velocity of rod's center of mass $G ; I$: moment of inertia of rod about $G\left(=m l^{2} / 12\right)$; and ω : angular velocity of rod] equals

$$
\begin{equation*}
2 T=m v^{2}+I \omega^{2} \tag{a}
\end{equation*}
$$

and, by simple kinematics,

$$
\begin{equation*}
\boldsymbol{v}_{B}=\boldsymbol{v}_{G}+\omega \times \boldsymbol{r}_{B / G}=(0, v, 0)+(0,0, \omega) \times(l / 2,0,0)=(0, v+\omega l / 2,0), \tag{b}
\end{equation*}
$$

that is, $u=v+\omega l / 2 \Rightarrow v=u-\omega l / 2$ (which expresses the kinematic possibility), and, therefore,

$$
\begin{equation*}
2 T=m(u-\omega l / 2)^{2}+I \omega^{2} \equiv T(\omega ; u) \tag{c}
\end{equation*}
$$

Now, according to Kelvin's theorem, of all the kinematically possible postimpact motions (i.e., velocities) of the rod with $\left(v_{B}\right)^{+} \equiv u=$ prescribed, and hence for any set of values of v and ω satisfying eq. (b), the actual, or kinetic, one will make T stationary/minimum; that is, it will be such that

$$
\begin{array}{ll}
\partial T / \partial \omega=-m(l / 2)[u-\omega(l / 2)]+I \omega=0 & {\left[\text { with } \omega \rightarrow \omega^{+}\right]} \\
\Rightarrow(l / 2) \omega^{+}=\left\{m(l / 2)^{2} /\left[I+m(l / 2)^{2}\right]\right\} u ; & \text { or, finally }, \omega^{+}=3 u / 2 l . \tag{d}
\end{array}
$$

Problem 4.6.2 By applying Kelvin's theorem, show that the actual postimpact angular velocities of two identical and homogeneous rods $A B$ and $B C$ (fig. 4.25), ω^{+}and Ω^{+}, each of length l and mass m, smoothly hinged at B and originally at rest so that A, B, C are collinear, and after A is suddenly imparted a specified velocity ν, normal to $A B$, equal

$$
\begin{equation*}
\omega^{+}=9 v / 7 l \quad \text { (i.e., clockwise), } \quad \Omega^{+}=-(3 v / 7 l) \quad \text { (i.e., counterclockwise). } \tag{a}
\end{equation*}
$$

HINT
By König's theorem, the postimpact kinetic energy, for any kinematically admissible angular velocities ω and Ω, equals

$$
\begin{align*}
T \equiv T(\omega, \Omega ; v)= & {\left[(m / 2)(v-l \omega / 2)^{2}+(1 / 2)\left(m l^{2} / 12\right) \omega^{2}\right] } \\
& +\left\{(m / 2)[v-2(l / 2) \omega-(l / 2) \Omega]^{2}+(1 / 2)\left(m l^{2} / 12\right) \Omega^{2}\right\} \tag{b}
\end{align*}
$$

Then set $\partial T / \partial \omega=0, \partial T / \partial \Omega=0$.

Figure 4.25 Two-rod system set in motion by a normal velocity at one of its endpoints. $v_{A}=v, v_{G_{1}}=v-(I / 2) \omega, v_{B}=v-2(I / 2) \omega, v_{G_{2}}=v-2(I / 2) \omega-(I / 2) \Omega$.

Example 4.6.5 (D. T. Greenwood, private communication, 1997).
(i) Let us consider an initially motionless rigid and homogeneous rod $A B$, of mass m and length l (and, hence, center of mass at the rod midpoint G-fig. 4.26), set in motion by a given transverse impulse \hat{I} at B. Using impulsive principles of linear and angular momentum (about G), we readily find the following postimpact velocities (omitting superscript pluses):

$$
\begin{equation*}
v_{G}=\hat{I} / m, \quad \omega=\hat{I}(l / 2) /\left(m l^{2} / 12\right)=6 \hat{I} / m l \tag{a1}
\end{equation*}
$$

and, therefore, the (also transverse) velocity of B is

$$
\begin{equation*}
\boldsymbol{v}_{B}=\boldsymbol{v}_{G}+\omega \times \boldsymbol{r}_{B / G} \Rightarrow v_{B}=v_{G}+\omega(l / 2)=4 \hat{I} / m \tag{a2}
\end{equation*}
$$

Hence, by König's theorem, the corresponding kinetic energy equals

$$
\begin{align*}
T & =(1 / 2) m v_{G}^{2}+(1 / 2)\left(m l^{2} / 12\right) \omega^{2}=\cdots=2 \hat{I}^{2} / m \\
& =(1 / 2)\left(\hat{I}^{2} / \mu_{B}\right)=(1 / 2) \mu_{B} v_{B}^{2}=(1 / 2) \hat{I} v_{B}, \tag{b1}
\end{align*}
$$

where (recalling the results/definitions of ex. 4.6.1)

$$
\begin{equation*}
\mu_{B} \equiv \hat{I} / v_{B}=m / 4: \text { input inertia coefficient (or, driving-point mass at } B \text {). } \tag{b2}
\end{equation*}
$$

(ii) Next, suppose we introduce the constraint $v_{A}=0$ (e.g., we hinge A) before the initially motionless rod is struck by the same transverse impulse \hat{I} at B. Now we have

$$
\begin{align*}
& \omega=\hat{I} l /\left(m l^{2} / 3\right)=3 \hat{I} / m l \Rightarrow v_{B}=\omega l=3 \hat{I} / m \\
& \Rightarrow T=(1 / 2)\left(m l^{2} / 3\right) \omega^{2}=\cdots=3 \hat{I}^{2} / 2 m \tag{c}\\
& \quad=(1 / 2)\left(\hat{I}^{2} / \mu_{B}\right)=(1 / 2) \mu_{B} v_{B}^{2}=(1 / 2) \hat{I} v_{B} \tag{d1}
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{B} \equiv \hat{I} / v_{B}=m / 3 . \tag{d2}
\end{equation*}
$$

(iii) Comparing the above, we see that the introduction of a constraint (α) has increased the value of the input inertia coefficient μ_{B}, and, since $2 T=\hat{I}^{2} / \mu_{B},(\beta)$ has reduced the postimpact kinetic energy, in accordance with the Bertrand-Delaunay theorem.

(b)

Figure 4.26 Rod under a given transverse impulse \hat{l} at its end B : (a) unconstrained case; (b) constrained case.

If, on the other hand, we had prescribed the velocity v_{B}, rather than the impulse \hat{I}, and kept everything else the same, since also $2 T=\mu_{B} v_{B}{ }^{2}$, the postimpact kinetic energy would have been increased, in accordance with the Kelvin theorem.
(iv) Finally, let the values of the input inertia coefficient before the application of the constraint and after it be denoted (for more precision), respectively, as μ_{B} and $\mu_{B, c}$. Then we can write

$$
\begin{equation*}
\mu_{B, c} \equiv \mu_{B}+\Delta \mu_{B}=\mu_{B}+\varepsilon \mu_{B}=(1+\varepsilon) \mu_{B} \tag{el}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon \equiv\left(\mu_{B, c}-\mu_{B}\right) / \mu_{B}>0: \text { Fractional increase of } \mu_{B} \text { due to the constraint } \tag{e2}
\end{equation*}
$$

(in the above example: $\varepsilon \equiv(m / 3-m / 4) /(m / 4)=1 / 3$).
Now, (α) comparing the kinetic energies before and after the constraint, but for the same v_{B} (i.e., à la Kelvin) we see that (with some easily understood ad hoc notations)

$$
\begin{align*}
&\left(T_{c}-T\right)_{K} \equiv(1 / 2) \mu_{B, c} v_{B}^{2}-(1 / 2) \mu_{B} v_{B}^{2} \\
&=(1 / 2) \mu_{B} v_{B}^{2}\left(\mu_{B, c}-\mu_{B}\right)=(1 / 2) \mu_{B} v_{B}^{2} \varepsilon \\
& \Rightarrow\left[\left(T_{c}-T\right) / T\right]_{K}: \text { Fractional increase of } T \text { due to the constraint } \\
& \quad \text { (à la Kelvin) }=\varepsilon>0 . \tag{e3}
\end{align*}
$$

while (β) comparing the kinetic energies before and after the constraint, but for the same \hat{I} (i.e., à la Bertrand-Delaunay) we see that

$$
\begin{align*}
&\left(T-T_{c}\right)_{B / D} \equiv(1 / 2)\left(\hat{I}^{2} / \mu_{B}\right)-(1 / 2)\left(\hat{I}^{2} / \mu_{B, c}\right) \\
&=(1 / 2) \hat{I}^{2}\left[\left(1 / \mu_{B}\right)-\left(1 / \mu_{B, c}\right)\right]=(1 / 2)\left(\hat{I}^{2} / \mu_{B}\right)[\varepsilon /(1+\varepsilon)] \\
& \Rightarrow\left[\left(T-T_{c}\right) / T\right]_{B / D}>0: \text { Fractional reduction of } T \text { due to the } \\
& \quad \text { constraint (à la Bertrand-Delaunay) } \\
&=\varepsilon /(1+\varepsilon)<\varepsilon ; \tag{e4}
\end{align*}
$$

that is, comparing (e3) and (e4), we immediately conclude that the T-increase à la Kelvin is greater than the T-decrease à la Bertrand-Delaunay \{by an amount equal to $\varepsilon-[\varepsilon /(1+\varepsilon)](=1 / 12$, in the above example) $\}$, in accordance with Taylor's theorem.

Figure 4.27 Rod $A B$ struck at its right end B by a given nontransverse impulse \hat{I}. $[\mathbf{i}, \boldsymbol{j}$: unit vectors along the positive axes x (parallel to $A B$), y (perpendicular to $A B$).]

Problem 4.6.3 (D. T. Greenwood, private communication, 1997). Continuing from the preceding example, consider the response of the unconstrained (and originally motionless) rod $A B$ to an impulse $\hat{\boldsymbol{I}}$ applied to its end B and making an angle θ with the perpendicular to the rod there (fig. 4.27). Let the component of the resulting postimpact velocity at B, \boldsymbol{v}_{B}, along $\hat{\boldsymbol{I}}$ be $v_{B t}$ (i.e., \boldsymbol{v}_{B} is neither in the same direction as $\hat{\boldsymbol{I}}$, nor is it perpendicular to the rod at B, as before).
(i) By applying the impulsive principles of linear and angular momentum (about G) show that

$$
\begin{align*}
\boldsymbol{v}_{G} & =(\hat{I} / m)(-\sin \theta \boldsymbol{i}+\cos \theta \boldsymbol{j}), \quad \omega=6 \hat{I} \cos \theta / m l, \tag{a1}\\
\boldsymbol{v}_{B} & =\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{B / G}=\cdots=(\hat{I} / m)(-\sin \theta \boldsymbol{i}+4 \cos \theta \boldsymbol{j}) \tag{a2}\\
& \Rightarrow v_{B t} \equiv \boldsymbol{v}_{B} \cdot(\hat{\boldsymbol{I}} / \hat{I})=\cdots=(\hat{I} / m)\left(1+3 \cos ^{2} \theta\right) . \tag{a3}
\end{align*}
$$

(ii) Show that the imparted kinetic energy is

$$
\begin{equation*}
T=\left(\hat{I}^{2} / 2 m\right)\left(1+3 \cos ^{2} \theta\right) . \tag{b1}
\end{equation*}
$$

(iii) Verify that T can also be put in the following general forms:

$$
\begin{equation*}
T=\hat{I}^{2} / 2 \mu_{B}=(1 / 2) \hat{I} v_{B t}=(1 / 2) \mu_{B} v_{B t}^{2} \tag{b2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{B} \equiv \hat{I} / v_{B t}=m /\left(1+3 \cos ^{2} \theta\right): \text { input mass at } B . \tag{b3}
\end{equation*}
$$

Problem 4.6.4 Consider an originally motionless and vertical double pendulum consisting of two identical and homogeneous rigid rods, $A B$ and $B C$ (fig. 4.28), each of mass m and length l, smoothly hinged at B and at the fixed support A, and struck by a given horizontal blow \hat{I} at C.
(i) Show that the comparison postimpact kinetic energy of the system equals

$$
\begin{equation*}
T=(m / 6)\left(2 u^{2}+u v+v^{2}\right)=(1 / 2) \hat{I} v, \tag{a}
\end{equation*}
$$

Figure 4.28 Vertical double pendulum struck by a given horizontal impulse.
where u and v are, respectively, the comparison (kinematically admissible) postimpact velocities of B and C, both perpendicular to the pendulum.
(ii) Next, show that application of the Bertrand-Delaunay theorem leads to the (constrained stationarity) conditions $\partial F / \partial u=\partial F / \partial v=0$, where

$$
\begin{aligned}
F & \equiv T+\lambda(2 T-\hat{I} v) \\
& =(1 / 2) \hat{I} v+\lambda\left[(m / 3)\left(2 u^{2}+u v+v^{2}\right)-\hat{I} v\right]=F(u, v ; \lambda)
\end{aligned}
$$

$$
\begin{equation*}
\text { constraint: } \quad 2 T-\hat{I} v=(m / 3)\left(2 u^{2}+u v+v^{2}\right)-\hat{I} v=0 ; \text { multiplier: } \lambda . \tag{b}
\end{equation*}
$$

(iii) Show that the above equations lead to the following actual postimpact velocities:

$$
\begin{equation*}
u^{+}=-(6 / 7) \hat{I} / m, \quad v^{+}=(24 / 7) \hat{I} / m \Rightarrow T^{+}=(1 / 2) \hat{I} v=(12 / 7) \hat{I}^{2} / m \tag{c}
\end{equation*}
$$

See also Lamb (1923, p. 321).

Problem 4.6.5 Consider an originally motionless square $A B C D$ consisting of four identical and homogeneous rigid bars (fig. 4.29), each of length $2 l$ and mass m, mutually joined by smooth hinges and with corner A fixed, resting on a smooth horizontal table. Then, a given impressed impulse \hat{I} acts on the square at B, along $B D$. Show that the postimpact angular velocities of $A B$ and $A D$ are, respectively,

$$
\begin{equation*}
\omega_{A B}^{+} \equiv \omega_{1}=3 \hat{I} / 10 \sqrt{2} m l, \quad \omega_{A D}^{+} \equiv \omega_{2}=0 \quad \text { (i.e., } A D \text { stationary). } \tag{a}
\end{equation*}
$$

Figure 4.29 Square $A B C D$ under given impulse \hat{l} along its diagonal $B D$.

HINT

Apply the Bertrand-Delaunay theorem to the square's postimpact kinetic energy; that is,

$$
\begin{equation*}
T=\cdots=\left[(10 / 3) m l^{2}\right]\left(\omega_{1}^{2}+\omega_{2}^{2}\right)=T\left(\omega_{1}, \omega_{2}\right) \rightarrow \text { maximum }, \tag{b}
\end{equation*}
$$

under the constraint (expressing the impulsive principle of angular momentum about A-explain)

$$
\begin{equation*}
\hat{I}(l / \sqrt{2})=\cdots=\left[(20 / 3) m l^{2}\right]\left(\omega_{1}+\omega_{2}\right)=(\text { specified }) \text { constant, } \tag{c}
\end{equation*}
$$

that is, $T^{+}=\cdots=(3 / 20)\left(\hat{I}^{2} / m\right)$.

Problem 4.6.6 Continuing from the preceding problem, show that the postimpact kinetic energy of the given (hinged square) is twice as much as the postimpact kinetic energy produced by the same impulse \hat{I}, but acting on a rigid square, as stipulated by the Bertrand-Delaunay theorem.

HINT

In this case, $\omega_{1}=\omega_{2} \neq 0$ and $T^{+}=\cdots=(3 / 40)\left(\hat{I}^{2} / m\right)$.
[We remark that the preceding problem may also be viewed as a superposition of (a) a rigid square ($\omega_{1}=\omega_{2}$) under codirectional impulses $\hat{I} / 2$ applied at B and D, and
(b) a hinged square with A fixed but C able to slide along $A D$ (i.e., $\omega_{1}=-\omega_{2}$) under an impulse $\hat{I} / 2$ applied at B [as in case (a)] and an opposite impulse $-\hat{I} / 2$ applied at D.

Problem 4.6.7 Consider a rhombus $A B C D$ formed by four identical and homogeneous bars, $A B, B C, C D, D A$ (fig. 4.30), each of mass $m / 4$, length $2 b$, radius of gyration about its own mass center k, and such that angle $(A B C)=2 \phi$, smoothly hinged at A, B, C, D, and originally resting on a frictionless horizontal table. The

Figure 4.30 Rhombus $A B C D$ struck by an impulse \hat{l} along its diagonal $A C$.
rhombus is struck by a blow of intensity \hat{I} at A, along $A C$. If x is the horizontal coordinate of its mass center G, from some fixed origin along $A C$, show that:
(i) The (double) kinetic energy of the system, at a generic impact configuration, is

$$
\begin{equation*}
2 T=m(\dot{x})^{2}+m\left(k^{2}+b^{2}\right)(\dot{\phi})^{2} \tag{a}
\end{equation*}
$$

(ii) The postimpact velocity of A equals

$$
\begin{equation*}
(x-2 b \sin \phi)^{\cdot}=\left\{1+\left[4 b^{2} \cos ^{2} \phi /\left(k^{2}+b^{2}\right)\right]\right\}(\hat{I} / m) \equiv \beta(\hat{I} / m) \tag{b}
\end{equation*}
$$

(iii) The (double) postimpact kinetic energy generated by \hat{I} is $2 T=\beta\left(\hat{I}^{2} / m\right) \equiv$ $\left(2 T^{+}\right)_{\text {hinged }}$; and, therefore, the ratio of the actual postimpact kinetic energy to that if the rhombus were rigid-that is, under the additional constraint $\phi=$ constant $\left(T_{\text {hinged }} / T_{\text {rigid }}\right)_{\text {postimpact }}$, equals $\beta(>1)$; as stipulated by the Bertrand-Delaunay theorem.

Example 4.6.6 Let us calculate the postimpact state of a system having kinetic energy

$$
\begin{equation*}
2 T=A u^{2}+B v^{2}+C w^{2} \tag{a}
\end{equation*}
$$

(where u, v, w : Lagrangean velocities), originally moving with velocities $u^{-} \equiv u_{o}$, $v^{-} \equiv v_{o}, w^{-} \equiv w_{o}$, after the sudden imposition on it of the constraint

$$
\begin{equation*}
a u+b v+c w=0 \tag{b}
\end{equation*}
$$

where both triplets of coefficients A, B, C, and a, b, c have their (approximately) constant impact values.

According to the Gauss-Robin theorem, the solution makes the impulsive compulsion,

$$
\begin{equation*}
\hat{Z}=A\left(u-u_{o}\right)^{2}+B\left(v-v_{o}\right)^{2}+C\left(w-w_{o}\right)^{2} \equiv \hat{Z}(u, v, w) \tag{c}
\end{equation*}
$$

a minimum, subject to the constraint (b). By differential calculus, we must have

$$
\begin{equation*}
d \hat{\mathbf{Z}}=0 \Rightarrow A\left(u-u_{o}\right) d u+B\left(v-v_{0}\right) d v+C\left(w-w_{o}\right) d w=0 \tag{d}
\end{equation*}
$$

and

$$
\begin{equation*}
d[\text { equation }(b)]=0 \Rightarrow a d u+b d v+c d w=0 \tag{e}
\end{equation*}
$$

from which (using simple analytic geometry arguments in $u / v / w$ space, and fraction properties; thus avoiding Lagrangean multipliers) we obtain successively,

$$
\begin{align*}
\left(u-u_{0}\right) /(a / A) & =\left(v-v_{o}\right) /(b / B)=\left(w-w_{o}\right) /(c / C) \\
& =\left[a\left(u-u_{o}\right)+b\left(v-v_{o}\right)+c\left(w-w_{o}\right)\right] /\left[\left(a^{2} / A\right)+\left(b^{2} / B\right)+\left(c^{2} / C\right)\right] \\
& =-\left(a u_{o}+b v_{o}+c w_{o}\right) /\left[\left(a^{2} / A\right)+\left(b^{2} / B\right)+\left(c^{2} / C\right)\right] \\
& \equiv-\Lambda \quad[\operatorname{invoking}(b)], \tag{f}
\end{align*}
$$

and from this the postimpact velocities follow:

$$
\begin{equation*}
u-u_{o}=-(a / A) \Lambda, \quad v-v_{0}=-(b / B) \Lambda, \quad w-w_{o}=-(c / C) \Lambda \tag{g}
\end{equation*}
$$

As a result of the above, the kinetic energy loss (as Carnot's first theorem reminds us) transforms, successively, as follows:

$$
\begin{align*}
2\left(T^{-}-T^{+}\right) & \equiv-2 \Delta T \quad(\geq 0) \equiv A\left(u_{o}{ }^{2}-u^{2}\right)+B\left(v_{o}{ }^{2}-v^{2}\right)+C\left(w_{o}{ }^{2}-w^{2}\right) \\
& =A\left(u_{o}+u\right)(a / A) \Lambda+B\left(v_{o}+v\right)(b / B) \Lambda+C\left(w_{o}+w\right)(c / C) \Lambda \\
& =\left(a u_{o}+b v_{o}+c w_{o}\right) \Lambda \quad[\operatorname{invoking}(\mathrm{b})] \\
& =\left(a u_{o}+b v_{o}+c w_{o}\right)^{2} /\left[\left(a^{2} / A\right)+\left(b^{2} / B\right)+\left(c^{2} / C\right)\right] \geq 0, \tag{h}
\end{align*}
$$

invoking the Λ-definition (f). The above apply intact, even if u, v, w are quasi velocities.

Example 4.6.7 Let us express some of the earlier extremum theorems in general Lagrangean coordinates.
(i) First, to enhance our understanding, we introduce the following ad hoc (not quite rigorous, but simplifying and convenient) notations and corresponding definitions:
$d q_{k} / d t \equiv v_{k} \quad$ (and similarly for any other value of the Lagrangean velocities)

$$
\begin{equation*}
p_{k} \equiv \sum M_{k l} v_{l} \quad(\text { system momentum }) ; \text { or, symbolically, } p=M v \tag{a}
\end{equation*}
$$

$2 T \equiv \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l} \equiv \sum \sum M_{k l} v_{k} v_{l} \equiv M v v \equiv p v:$
Initial, or preimpact, 2 (kinetic energy),
$2 T^{\prime} \equiv \sum \sum M_{k l} v_{k}{ }^{\prime} v_{l}{ }^{\prime} \equiv M v^{\prime} v^{\prime} \equiv p^{\prime} v^{\prime}:$
Actual postimpact 2 (kinetic energy),

$$
2 T^{\prime \prime} \equiv \sum \sum M_{k l} v_{k}{ }^{\prime \prime} v_{l}^{\prime \prime} \equiv M v^{\prime \prime} v^{\prime \prime} \equiv p^{\prime \prime} v^{\prime \prime}:
$$

Comparison, or kinematically admissible, postimpact 2 (kinetic energy);

$$
\begin{align*}
2 T_{01} & =2 T_{10} \equiv \sum \sum M_{k l}\left(v_{k}^{\prime}-v_{k}\right)\left(v_{l}{ }^{\prime}-v_{l}\right) \tag{b3}\\
& \equiv M\left(v^{\prime}-v\right)\left(v^{\prime}-v\right) \equiv\left(p^{\prime}-p\right)\left(v^{\prime}-v\right): \tag{b4}
\end{align*}
$$

2(kinetic energy) of relative (or jump) motion $v^{\prime}-v$,

$$
\begin{align*}
2 T_{02} & =2 T_{20} \equiv \sum \sum M_{k l}\left(v_{k}^{\prime \prime}-v_{k}\right)\left(v_{l}^{\prime \prime}-v_{l}\right) \\
& \equiv M\left(v^{\prime \prime}-v\right)\left(v^{\prime \prime}-v\right) \equiv\left(p^{\prime \prime}-p\right)\left(v^{\prime \prime}-v\right): \tag{b5}
\end{align*}
$$

2 (kinetic energy) of relative motion $v^{\prime \prime}-v$,

$$
\begin{align*}
2 T_{12} & =2 T_{21} \equiv \sum \sum M_{k l}\left(v_{k}^{\prime \prime}-v_{k}^{\prime}\right)\left(v_{l}^{\prime \prime}-v_{l}^{\prime}\right) \\
& \equiv M\left(v^{\prime \prime}-v^{\prime}\right)\left(v^{\prime \prime}-v^{\prime}\right) \equiv\left(p^{\prime \prime}-p^{\prime}\right)\left(v^{\prime \prime}-v^{\prime}\right): \tag{b6}
\end{align*}
$$

2 (kinetic) energy of relative motion $v^{\prime \prime}-v^{\prime}$;
$2 K_{01}=2 K_{10} \equiv \sum \sum M_{k l} v_{k} v_{l}{ }^{\prime} \equiv M v v^{\prime} \equiv p v^{\prime} \equiv p^{\prime} v:$
Impulsive power of the momenta corresponding to the v, times the v^{\prime}; and vice versa.
$2 K_{12}=2 K_{21} \equiv \sum \sum M_{k l} v_{k}{ }^{\prime} v_{l}{ }^{\prime \prime} \equiv M v^{\prime} v^{\prime \prime} \equiv p^{\prime} v^{\prime \prime} \equiv p^{\prime \prime} v^{\prime}:$
Impulsive power of the momenta corresponding to the v^{\prime}, times the $v^{\prime \prime}$; and vice versa.
(ii) Then, recalling the symmetry of the inertia coefficients (i.e., $M_{k l}=M_{l k}$), we readily find that the above are related by

$$
\begin{gather*}
2 T_{01} \equiv M\left(v^{\prime}-v\right)\left(v^{\prime}-v\right)=\cdots=2 T^{\prime}+2 T-2 K_{01}-2 K_{01} \\
\Rightarrow 2 K_{01}=T+T^{\prime}-T_{01} \tag{d1}
\end{gather*}
$$

and similarly we derive

$$
\begin{align*}
& 2 K_{02} \equiv M v v^{\prime \prime}=T+T^{\prime \prime}-T_{02} \tag{d2}\\
& 2 K_{12} \equiv M v^{\prime} v^{\prime \prime}=T^{\prime}+T^{\prime \prime}-T_{12} \tag{d3}
\end{align*}
$$

(iii) Next, setting in the LIP, (4.3.7), in succession, $\delta q \rightarrow v, v^{\prime}, v^{\prime \prime}$, we obtain the following formal "impulsive power" expressions:

$$
\begin{array}{lll}
\sum \sum M_{k l}\left(v_{l}^{\prime}-v_{l}\right) v_{k}=\sum \hat{Q}_{k} v_{k} ; & \text { or } & M\left(v^{\prime}-v\right) v=\hat{Q} v, \\
\sum \sum M_{k l}\left(v_{l}^{\prime}-v_{l}\right) v_{k}^{\prime}=\sum \hat{Q}_{k} v_{k}^{\prime} ; & \text { or } & M\left(v^{\prime}-v\right) v^{\prime}=\hat{Q} v^{\prime}, \\
\sum \sum M_{k l}\left(v_{l}^{\prime}-v_{l}\right) v_{k}^{\prime \prime}=\sum \hat{Q}_{k} v_{k}^{\prime \prime} ; & \text { or } & M\left(v^{\prime}-v\right) v^{\prime \prime}=\hat{Q} v^{\prime \prime} ; \tag{e3}
\end{array}
$$

which, thanks to (d1-3), can be rewritten, respectively, as

$$
\begin{align*}
& T^{\prime}-T-T_{01}=\hat{Q} v \tag{f1}\\
& T^{\prime}-T+T_{01}=\hat{Q} v^{\prime} \tag{f2}\\
& T^{\prime}-T-T_{12}+T_{02}=\hat{Q} v^{\prime \prime} \tag{f3}
\end{align*}
$$

(iv) With the help of the above, we now revisit the earlier extremum theorems:
(iv.a) Adding (f1) and (f2) side by side yields (the system form of ex. 4.3.1

$$
\begin{equation*}
2\left(T^{\prime}-T\right)=\hat{Q}\left(v+v^{\prime}\right) \tag{g1}
\end{equation*}
$$

that is, the change in the kinetic energy of a moving system, due to impressed impulses, equals the power of these impulses on the averaged velocities before and after their application.
(iv.b) Subtracting (f1) from (f2) yields

$$
\begin{equation*}
2 T_{01}=\hat{Q}\left(v^{\prime}-v\right) ; \tag{g2}
\end{equation*}
$$

that is, the relative kinetic energy of a moving system, due to impressed impulses, equals the power of these impulses on half the velocity jumps due to them.
(iv.c) If the power of the impressed impulses on the actual postimpact velocities vanishes - that is, if $\hat{Q} v^{\prime}=0$ (e.g., sudden introduction of ideal impulsive constraints) - then (f2) leads to

$$
\begin{equation*}
T^{\prime}-T+T_{01}=0 \Rightarrow T^{\prime}-T=-T_{01}<0 \Rightarrow T^{\prime}<T: \tag{g3}
\end{equation*}
$$

that is, the introduction of ideal constraints reduces the kinetic energy by an amount equal to the relative (jump) kinetic energy T_{01} [Carnot's first theorem, eq. (4.6.1e)].
(iv.d) If the power of the impressed impulses on the preimpact velocities vanishes - that is, if $\hat{Q} v=0$ (e.g., if an explosion occurs in any part of the moving system) - then (f1) leads to

$$
\begin{equation*}
T^{\prime}-T-T_{01}=0 \Rightarrow T^{\prime}-T=T_{01}>0 \Rightarrow T^{\prime}>T \tag{g4}
\end{equation*}
$$

that is, in cases of explosion, kinetic energy is always gained by an amount equal to the relative (jump) kinetic energy T_{01} [Carnot's second theorem, eq. (4.6.1h)].
(iv.e) Assume, next, that certain points of the moving system are suddenly seized and, under unknown impressed impulses acting there, are given prescribed velocities; like given constraints. Here, since the velocities of the points of application of the impressed impulses are prescribed:

$$
\begin{equation*}
\hat{Q} v^{\prime}=\hat{Q} v^{\prime \prime} \tag{g5}
\end{equation*}
$$

and so the identities (f2, 3), and (b4, 6), immediately yield

$$
\begin{equation*}
T_{01}+T_{12}=T_{02} \Rightarrow T_{01}<T_{02} \tag{g6}
\end{equation*}
$$

that is, in the case of impressed impulses acting on a moving system, and imparting to their points of application prescribed velocities, the "actual relative (jump) kinetic energy" $\left(T_{01}\right)$ is smaller than any other "competing relative kinetic energy" $\left(T_{02}\right)$; in Routh's words: "the actual motion is such that the vis viva [=2(kinetic energy)] of the relative motion, before and after, is less than if the system took any other course."

In particular, if the preimpact velocities vanish - that is, $v=0$ (initially motionless system) - then $T_{01} \rightarrow T^{\prime}$ and $T_{02} \rightarrow T^{\prime \prime}$, and thus (g6) reduces to the theorem of Kelvin:

$$
\begin{equation*}
T^{\prime}<T^{\prime \prime} \tag{g7}
\end{equation*}
$$

that is, in a system initially at rest, and then set in motion by impressed impulses acting at given material points and producing prescribed velocities there, the kinetic energy of the actual velocities $\left(T^{\prime}\right)$ is less than that of any other competing motion in which these points have the prescribed velocities $\left(T^{\prime \prime}\right)$. So (g6) constitutes a generalization of Kelvin's theorem to initially generally moving systems.
(iv.f) Finally, assume that given impulses act at specified points, the postimpact velocities of which are, however, unknown. Then, since the impulsive constraint reactions of the so-competing motions $v^{\prime \prime}$ are also ideal,

$$
\begin{equation*}
M\left(v^{\prime}-v\right) v^{\prime \prime}=\hat{Q} v^{\prime \prime} \quad \text { and } \quad M\left(v^{\prime \prime}-v\right) v^{\prime \prime}=\hat{Q} v^{\prime \prime} \tag{h1}
\end{equation*}
$$

or, recalling their forms (e1-f3), and with $v^{\prime} \rightarrow v^{\prime \prime}$ in (e2) and (f2),

$$
\begin{align*}
& T^{\prime}-T-T_{12}+T_{02}=T^{\prime \prime}-T+T_{02} \quad\left(=\hat{Q} v^{\prime \prime}\right) \\
& \quad \Rightarrow T^{\prime \prime}+T_{12}=T^{\prime} \Rightarrow T^{\prime}>T^{\prime \prime} \tag{h2}
\end{align*}
$$

that is, theorem of Bertrand-Delaunay: in a moving system acted on by given impressed impulses, the actual postimpact kinetic energy is greater than that of any other additionally constrained competing motion, but under the same impulses.
In sum:

- If the postimpact velocities of the points of application of the impressed impulses are given, the actual postimpact velocities are found by making the kinetic energy a minimum (Kelvin); and
- If the impressed impulses are given, the actual postimpact velocities are found by introducing some constraints and then making the kinetic energy a maximum (Bertrand-Delaunay).

For complementary derivations, via the so-called reciprocity theorems of dynamics, and so on, see, for example, (alphabetically): Kilmister and Reeve (1966, pp. 247-248), Lamb (1929, pp. 184-187, 206, 216-217), Pars (1965, pp. 242-243), Ramsey (1937, pp. 216-218), Rayleigh (1884, p. 91 ff.), Smart (1951, pp. 383-385); also ex. 4.6.8.

Example 4.6.8 Two Degree of Freedom System: Lagrangean Derivation of Theorems of Kelvin, Bertrand-Delaunay, and of Reciprocity; as an illustration of the effect of constraints on the kinetic energy of a mechanical system set in motion in different ways. We consider a two-Lagrangean coordinate system with (double) kinetic energy

$$
\begin{align*}
2 T= & a v_{x}^{2}+2 c v_{x} v_{y}+b v_{y}^{2} \\
& \text { positive definite in the Lagrangean velocities } v_{x}, v_{y} \tag{a}
\end{align*}
$$

and a, b, c : inertial coefficients. Hence, its Lagrangean momenta will be

$$
\begin{equation*}
p_{x} \equiv \partial T / \partial v_{x}=a v_{x}+c v_{y}, \quad p_{y} \equiv \partial T / \partial v_{y}=c v_{x}+b v_{y} \tag{b}
\end{equation*}
$$

Next, solving the second of (b) for v_{y} in terms of v_{x} and p_{y}, and substituting the result into (a), we obtain the mixed T-expression

$$
\begin{equation*}
2 T=\left[\left(a b-c^{2}\right) / b\right] v_{x}^{2}+(1 / b) p_{y}^{2} \tag{c}
\end{equation*}
$$

where $\left(a b-c^{2}\right) / b>0 \Rightarrow a b-c^{2}>0$ (positive definiteness of T).
Now, with the help of the above, let us revisit our extremum theorems.
(i) Theorem of Bertrand-Delaunay. For the actual postimpact state, we have

$$
\begin{equation*}
p_{x}=X=\text { given }, \quad p_{y}=0 ; \quad \text { and, therefore }, v_{x} \neq 0, \quad v_{y} \neq 0 \tag{d1}
\end{equation*}
$$

while for the comparison postimpact state (and denoting the corresponding values of all quantities there with an accent),

$$
\begin{equation*}
p_{x}^{\prime}=p_{x}=X, \quad p_{y}^{\prime} \neq 0 ; \quad v_{x}^{\prime} \neq 0, \quad v_{y}^{\prime}=0 \tag{d2}
\end{equation*}
$$

Then, the corresponding kinetic energies become

$$
\begin{equation*}
2 T=\left[\left(a b-c^{2}\right) / b\right] v_{x}^{2} \quad \text { and } \quad 2 T^{\prime}=a\left(v_{x}^{\prime}\right)^{2} \tag{e}
\end{equation*}
$$

But from (d2), with (b), and then the second of (d1), we find, successively,

$$
\begin{aligned}
& a v_{x}+c v_{y}=a v_{x}^{\prime}+c v_{y}^{\prime}=a v_{x}^{\prime} \\
& \quad \Rightarrow v_{x}^{\prime}=v_{x}+(c / a) v_{y}=v_{x}+(c / a)\left[(-c / b) v_{x}\right]=\left[1-\left(c^{2} / a b\right)\right] v_{x}
\end{aligned}
$$

and therefore $2 T^{\prime}$ becomes

$$
\begin{equation*}
2 T^{\prime}=a\left(v_{x}^{\prime}\right)^{2}=a\left[1-\left(c^{2} / a b\right)\right]^{2} v_{x}^{2}=\cdots=\left[1-\left(c^{2} / a b\right)\right] 2 T<2 T \tag{f}
\end{equation*}
$$

that is, the kinetic energy due to a given impulse $\left(p_{x} \neq 0\right)$ acting alone $\left(p_{y}=0\right)$ is greater than if the other coordinate (y), under the action of a constraining impulse $\left(p_{y}{ }^{\prime} \neq 0\right.$, but $p_{x}{ }^{\prime}=p_{x} \neq 0$), had been prevented from varying $\left(v_{y}{ }^{\prime}=0\right)$.
(ii) Theorem of Kelvin. For the actual postimpact state, we have

$$
\begin{equation*}
p_{x} \neq 0, \quad p_{y}=0 ; \quad \text { and } \quad v_{x}=\text { prescribed } \equiv u, \quad v_{y} \neq 0 \tag{g1}
\end{equation*}
$$

while for the comparison postimpact state (accented quantities again),

$$
\begin{equation*}
p_{x}{ }^{\prime} \neq 0, \quad p_{y}{ }^{\prime} \neq 0 \quad \text { (constraining impulse) } ; \quad v_{x}{ }^{\prime}=v_{x}=u, \quad v_{y}{ }^{\prime}=0 \tag{g2}
\end{equation*}
$$

Then, the corresponding kinetic energies become

$$
\begin{equation*}
2 T=\left[\left(a b-c^{2}\right) / b\right] v_{x}^{2}=\left[a-\left(c^{2} / b\right)\right] v_{x}^{2} \quad \text { and } \quad 2 T^{\prime}=a\left(v_{x}^{\prime}\right)^{2}=a v_{x}^{2} \tag{h1}
\end{equation*}
$$

and from these we easily conclude that

$$
\begin{equation*}
2 T^{\prime}>2 T \tag{h2}
\end{equation*}
$$

that is, the kinetic energy started by a prescribed velocity $\left(v_{x}\right)$, generated by the corresponding impulse acting alone ($p_{x} \neq 0, p_{y}=0$), is less than if the other impulse $p_{y}{ }^{\prime}(\neq 0)$ had acted, constraining its associated coordinate (i.e., $v_{y}{ }^{\prime}=0$, but $v_{x}{ }^{\prime}=v_{x}$).

As Lamb sums it up: Bertrand-Delaunay theorem: "A system started from rest by given impulses acquires greater energy than if it had been constrained in any way"; Kelvin theorem: "A system started with given velocities has less energy than if it had
been constrained" (1923, p. 324). And as remarked by the great British physicist (acoustician, etc.) Rayleigh: "Both theorems are included in the statement that the [moment of] inertia is increased by the introduction of a constraint"; or, "the effect of a constraint is to increase the apparent inertia of the system" (Rayleigh, 1894, p. 100; publ. 1886).
(iii) Appendix: A theorem of reciprocity. Let

$$
\begin{align*}
& 2 T=a v_{x}^{2}+2 c v_{x} v_{y}+b v_{y}^{2} \\
& \Rightarrow p_{x} \equiv \partial T / \partial v_{x}=a v_{x}+c v_{y}, \quad p_{y} \equiv \partial T / \partial v_{y}=c v_{x}+b v_{y} \tag{j}
\end{align*}
$$

as in (a, b). Now, let us consider another state of motion, through the same configuration, $(\ldots)^{\prime}: v_{x}{ }^{\prime}, v_{y}{ }^{\prime}, p_{x}{ }^{\prime}, p_{y}{ }^{\prime}$. Then, it is not hard to see that we will have

$$
\begin{align*}
p_{x} v_{x}^{\prime}+p_{y} v_{y}^{\prime} & =p_{x}^{\prime} v_{x}+p_{y}^{\prime} v_{y} \\
& =a v_{x} v_{x}^{\prime}+c\left(v_{x}^{\prime} v_{y}+v_{x} v_{y}^{\prime}\right)+b v_{y} v_{y}^{\prime} \tag{k}
\end{align*}
$$

Therefore, if we set $p_{x}{ }^{\prime}=0, p_{y}=0$, we find $p_{x} v_{x}{ }^{\prime}=p_{y}{ }^{\prime} v_{y} \Rightarrow v_{y} / p_{x}=v_{x}{ }^{\prime} / p_{y}{ }^{\prime}$; in words: if an impulse p_{x} in the x-coordinate produces a velocity v_{y} in the y-coordinate, then an equal impulse $p_{y}{ }^{\prime}$ in the y-coordinate will produce the same velocity $v_{x}{ }^{\prime}$ in the x-coordinate. Clearly, such reciprocity relations (a) result from the symmetry of the inertia coefficients (inertia tensor, etc.), for any independent set of velocities; and (b) can be easily extended to systems with n Lagrangean coordinates.

EXAMPLE

As an illustration of their use in impulsive motion, let us show the following theorem: If an impulsive couple $\boldsymbol{C}_{1}=C \boldsymbol{u}_{1}=C\left(u_{1 x}, u_{1 y}, u_{1 z}\right), \quad\left(\boldsymbol{u}_{1}\right.$: unit vector $)$, applied to an originally motionless and unconstrained rigid body generates an angular velocity $\omega_{2}=\omega_{2} \boldsymbol{u}_{2}=\omega_{2}\left(u_{2 x}, u_{2 y}, u_{2 z}\right),\left(\boldsymbol{u}_{2}:\right.$ another unit vector $)$, then the same couple (magnitude-wise) but applied about \boldsymbol{u}_{2} (i.e., $\boldsymbol{C}_{2}=C \boldsymbol{u}_{2}$) will produce an angular velocity about $\boldsymbol{u}_{1}, \omega_{1}$, magnitude-wise equal to ω_{2} (i.e., $\omega_{1}=\omega_{1} \boldsymbol{u}_{1}=\omega_{2} \boldsymbol{u}_{1}, \omega_{1}=\omega_{2}$); or, the angular velocity ω_{2} about axis 2 due to an angular impulse C about axis 1 is equal to the angular velocity ω_{1} about axis 1 due to an angular impulse C about axis 2.

PROOF

Choosing (just for algebraic simplicity, no loss of generality) principal axes at the body's mass center G, with corresponding (principal) moments of inertia $I_{x, y, z}$, we will have (using, for example, the impulsive form of the Eulerian equations, §1.17)

$$
\begin{gather*}
\omega_{2}=\left(C u_{1 x} / I_{x}, C u_{1 y} / I_{y}, C u_{1 z} / I_{z}\right) \equiv\left(\omega_{2 x}, \omega_{2 y}, \omega_{2 z}\right), \tag{11}\\
\omega_{1}=\left(C u_{2 x} / I_{x}, C u_{2 y} / I_{y}, C u_{2 z} / I_{z}\right) \equiv\left(\omega_{1 x}, \omega_{1 y}, \omega_{1 z}\right), \tag{12}\\
\Rightarrow \omega_{2}=\omega_{2} \cdot \boldsymbol{u}_{2}=\omega_{1}=\omega_{1} \cdot \boldsymbol{u}_{1} \\
=C\left(u_{1 x} u_{2 x} / I_{x}+u_{1 y} u_{2 y} / I_{y}+u_{1 z} u_{2 z} / I_{z}\right) ; \tag{13}
\end{gather*}
$$

the symmetry of which in $u_{1 x, 1 y, 1 z ; 2 x, 2 y, 2 z}$ proves our proposition. For a treatment based on the Bertrand-Delaunay theorem, see Pöschl (1928, p. 510) and Smart (1951, p. 382). Similar theorems exist in other areas of physics. For further applications and insights, see, for example, Lamb (1929, pp. 276-281) and references cited therein.

Example 4.6.9 Let us consider a system of impulses acting on various points of an arbitrarily moving set of bodies, in such a way that each impulse is perpendicular to the (preimpact) velocity of its point of application. We will show that, as a result, the kinetic energy is increased [Routh, 1905(a), pp. 308-309]. Indeed, because of the above perpendicularity, the power of the impulses on the preimpact velocities vanishes: $T^{\prime}-T-T_{01}=\hat{Q} v=0$, and so eq. (f1) of ex. 4.6.7 immediately yields

$$
T^{\prime}-T=T_{01}>0 \Rightarrow T^{\prime}>T, \quad \text { Q.E.D. }
$$

Example 4.6.10 Let us consider an initially motionless system. If acted on by two different sets of impulses, say A and B, it will take two different postimpact motions. We will show that the power of the impulses A on the velocities B equals the power of the impulses B on the velocities A [Routh, 1905(a), p. 309, example 6].

Indeed, since $T=0$, we will have $T^{\prime}=T_{01}$ and $T^{\prime \prime}=T_{02}$. Then, the earlier

$$
\begin{equation*}
T^{\prime}-T-T_{12}+T_{02}=\hat{Q} v^{\prime \prime} \equiv \hat{Q}^{\prime} v^{\prime \prime} \tag{a}
\end{equation*}
$$

and a completely analogous one with T^{\prime} replaced by $T^{\prime \prime}$, and so on; that is,

$$
\begin{equation*}
T^{\prime \prime}-T-T_{12}+T_{01}=\hat{Q}^{\prime \prime} v^{\prime} \tag{b}
\end{equation*}
$$

immediately yield $\hat{Q}^{\prime} v^{\prime \prime}=\hat{Q}^{\prime \prime} v$, Q.E.D. (a result analogous to a well-known reciprocal work proposition in linear elasticity).

Example 4.6.11 Let us, next, extend the above results to the collisions of inelastic (but smooth, i.e. frictionless) systems. Here, we introduce the following convenient notation (slightly different from that of ex. 4.6.7):
v: preimpact velocities,
v^{\prime} : velocities at instant of maximum compression/contact,
$v^{\prime \prime}$: postimpact velocities (i.e., just after the conclusion of the period of restitution);
and let the corresponding kinetic energies be denoted by $T, T^{\prime}, T^{\prime \prime}$; and the relative kinetic energies at any two of these instances (with some easily understood notation) be denoted by T_{01}, T_{12}, T_{02}. Because of the smoothness of the colliding surfaces, reasoning à la Carnot (first theorem), we have

$$
\begin{equation*}
M\left(v^{\prime}-v\right) v^{\prime}=\hat{Q} v^{\prime}=0 \quad \text { and } \quad M\left(v^{\prime \prime}-v\right) v^{\prime}=\hat{Q} v^{\prime}=0 \tag{a,b}
\end{equation*}
$$

and since the ratio of the total impulse to the impulse until the instant of maximum compression equals $(1+e) / 1$ (where $e \equiv$ coefficient of restitution), taking the powers of these impulses over the same velocities (first the preimpact v, and then the postimpact $v^{\prime \prime}$); that is, reasoning as in (e1-3) of ex. 4.6.7, we can write

$$
\begin{align*}
& M\left(v^{\prime \prime}-v\right) v=(1+e) M\left(v^{\prime}-v\right) v \tag{c}\\
& M\left(v^{\prime \prime}-v\right) v^{\prime \prime}=(1+e) M\left(v^{\prime}-v\right) v^{\prime \prime} \tag{d}
\end{align*}
$$

In terms of the relative kinetic energies, T_{01}, T_{12}, T_{02}, (a-d) can be rewritten, respectively, as

$$
\begin{align*}
& T^{\prime}-T=-T_{01}, \quad T^{\prime \prime}-T^{\prime}=T_{12} \tag{e,f}\\
& T^{\prime \prime}-T^{\prime}(1+e)+e T=T_{02}-(1+e) T_{01} \tag{g}\\
& T^{\prime \prime}-T^{\prime}(1+e)+e T=e T_{02}-(1+e) T_{12} \tag{h}
\end{align*}
$$

Now:
(i) Eliminating the three relative kinetic energies, we obtain

$$
\begin{equation*}
T^{\prime \prime}-T^{\prime}=-e^{2}\left(T^{\prime}-T\right) \tag{i}
\end{equation*}
$$

that is, the kinetic energy increase due to the restitution (or explosion) is e^{2} times the kinetic energy decrease due to the compression.
(ii) Eliminating the three T^{\prime} 's, we obtain

$$
\begin{equation*}
T_{01}=T_{02} /(1+e)^{2}=T_{12} / e^{2} . \tag{j}
\end{equation*}
$$

(iii) Finally, eliminating T^{\prime}, T_{01}, and T_{12}, we obtain

$$
\begin{equation*}
T^{\prime \prime}-T^{\prime}=-[(1-e) /(1+e)] T_{02} \tag{k}
\end{equation*}
$$

thus extending Carnot's "third" theorem to inelastic (but frictionless) systems [discussion after (4.6.1j)]. See also Whittaker (1937, pp. 234-235), for alternative derivations.

For an extension of the above theorems to the collision of inelastic and rough solids (i.e., case where, throughout the impact, the contacting surfaces slide on each other and the accompanying friction preserves its direction/sense), see, for example, Routh 1905(a), p. 310).

Example 4.6.12 Gauss' Principle of Least Impulsive Compulsion (or Constraint). To examine the relation of Gauss' impulsive principle, (4.6.5a-f) with the above, let

T: actual preimpact kinetic energy,
T^{\prime} : actual postimpact kinetic energy, under the existing constraints and given impulses,
$T^{\prime \prime}$: comparison postimpact kinetic energy, under additional constraints and given impulses,
$T^{\prime \prime \prime}$: postimpact kinetic energy under zero constraints (i.e., free motion) and given impulses.

Now, by Bertrand's theorem: (i) since the $T^{\prime \prime \prime}$-motion is less constrained than both the T^{\prime}-motion and $T^{\prime \prime}$-motion, we will have (with some easily understood notations)

$$
\begin{equation*}
T^{\prime \prime \prime}=T^{\prime}+T_{13}\left(\Rightarrow T^{\prime \prime \prime}>T^{\prime}\right) \quad \text { and } \quad T^{\prime \prime \prime}=T^{\prime \prime}+T_{23}\left(\Rightarrow T^{\prime \prime \prime}>T^{\prime \prime}\right) \tag{a}
\end{equation*}
$$

and (ii) since the T^{\prime}-motion is less constrained than the $T^{\prime \prime}$-motion, we will have (fig. 4.31)

$$
\begin{equation*}
T^{\prime}=T^{\prime \prime}+T_{12} \Rightarrow T^{\prime}>T^{\prime \prime} \tag{b}
\end{equation*}
$$

Figure 4.31 Geometrical construction toward the understanding of the impulsive Gauss theorem via the Bertrand-Delaunay theorem.

From (a-b) it follows at once that

$$
\begin{equation*}
T_{23}=T_{13}+T_{12} \Rightarrow T_{23}>T_{13}, \quad \text { i.e., } \min \left(T_{23}\right)=T_{13} ; \tag{c}
\end{equation*}
$$

and this, since

$$
\begin{align*}
& 2 T_{13}=M\left(v^{\prime \prime \prime}-v^{\prime}\right)\left(v^{\prime \prime \prime}-v^{\prime}\right)=M\left(v^{\prime}-v^{\prime \prime \prime}\right)\left(v^{\prime}-v^{\prime \prime \prime}\right), \tag{d}\\
& \Rightarrow \hat{Z}=T_{13}-\hat{Q} v^{\prime}+\cdots \Rightarrow \Delta \hat{Z}=\Delta T_{13}>0, \tag{e}
\end{align*}
$$

(where... "Gauss constant" terms) constitutes the impulsive Gauss(/Hertz) theorem: Make $2 T_{13}$ minimum for all variations of the v^{\prime}; the additional constraints are taken into account by attaching their Pfaffian forms to (d) via Lagrangean multipliers, as is well known from the finite motion case (chaps. 3, 5, 6) (see also Pars, 1965, pp. 239-241).

5

Nonlinear Nonholonomic Constraints

Abstract

If I have had any success in mathematical physics, it is, I think, because I have been able to dodge mathematical difficulties. (J. W. Gibbs, 1870s)

Experiment never responds with a "yes" to theory. At best, it says "maybe" and, most frequently, simply "no." When it agrees with theory, this means "maybe" and, if it does not, the verdict is "no."

Einstein

Nowadays people who for their equations and other statements about nature claim exact and eternal verity are usually dismissed as cranks or lunatics. Nevertheless we lose something in this surrender to lawless uncertainty: Now we must tolerate the youth who blurts out the first, untutored, and uncritical thoughts that come into his head, calls them "my model" of something, and supports them by five or ten pounds of paper he calls "my results," gotten by applying his model to some numerical instances which he has elaborated by use of the largest machine he could get hold of, and if you say to him, "Your model violates NEWTON's laws," he replies "Oh, I don't care about that, I tackle the physics directly, by computer."
(Truesdell, 1987, p. 74)

Here, as in other important areas of analytical mechanics, English language references are far and few. For concurrent reading, we recommend:
(i) The masterful expositions of Hamel (1938; 1949, pp. 495-507, 524, 782-789);
(ii) The original articles of Johnsen (1936, 1937(a), (b), 1938, 1939, 1941);
(iii) The excellent textbooks/monographs/treatises of Mei (1985; 1987), Mei and Liu (1987), and Mei et al. (1991);
(iv) The compact and clear treatments of Novoselov (1966; 1979);
(v) Also, the fundamental monograph of Neimark and Fufaev (1967 and 1972, pp. 212-237), for a detailed treatment of the controversy over the realizability of nonlinear nonholonomic constraints (NNHC), and the validity of some related limiting processes. On this thorny issue, we, further, recommend the rare and very instructive paper of Bahar (1998);
(vi) Journal of Applied Mathematics and Mechanics (PMM, Soviet \rightarrow Russian);
(vii) Journal of Applied Mathematics and Mechanics (Chinese).

5.1 INTRODUCTION

In what follows, we extend Lagrangean kinematics (chap. 2) and kinetics (chap. 3) to mechanical systems originally described by n Lagrangean coordinates $q \equiv\left(q_{1}, q_{2}, \ldots, q_{n}\right)$, and subsequently subjected to $m(<n)$ independent nonlinear and, generally, nonintegrable \equiv nonholonomic constraints of the form

$$
\begin{equation*}
f_{D}(t, q, \dot{q}, \ddot{q}, \dddot{q}, \ldots)=0 \quad[D=1, \ldots, m(<n)] . \tag{5.1.1}
\end{equation*}
$$

[Here, as in the preceding chapters and the rest of the book, and unless specified otherwise, Latin indices range from 1 to n (= number of original Lagrangean/global positional coordinates); D (dependent) $, D^{\prime}, D^{\prime \prime}, \ldots$ range from 1 to m (= number of additional constraints, of any kind); I (independent), $I^{\prime}, I^{\prime \prime}, \ldots$ range from $m+1$ to $n ; f \equiv n-m$ (= number of independent δq 's $=$ number of independent kinetic equations).]

In this chapter we concentrate, almost exclusively, on nonlinear nonholonomic velocity constraints

$$
\begin{align*}
f_{D}(t, q, \dot{q}) & =0 \\
\operatorname{rank}\left(\partial f_{D} / \partial \dot{q}_{k}\right) & =m, \quad \text { in some domain of } t, q, \dot{q} ; \tag{5.1.2}
\end{align*}
$$

while the more general case (5.1.1) is described briefly later, and is treated more fully in chapter 6 . But, once one understands the mechanics of the first-order case (5.1.2), the higher order case (5.1.1) follows without much additional difficulty.

A certain controversy has existed since the early 1910s regarding the mechanical realizability of constraints like (5.1.2), let alone (5.1.1), since all known velocity constraints, resulting out of the passive rolling among rigid bodies, are linear/ Pfaffian in the \dot{q} 's (or the quasi velocities ω). However, there are important physical and analytical reasons for studying such nonlinear nonholonomic constraints (NNHC).

- Physically, we can view them as kinematico-physical conditions arising out of nonrolling sources; for example, servoconstraints (§3.17). Consider, for instance, a planar multiple pendulum consisting of n particles connected to a fixed point (say, a ceiling) and to each other via n identical and massless rods, oscillating under gravity; that is, a generalization of the well-known planar double pendulum (ex. 3.5.7). No ordinary springs and/or dampers are attached to the n pendulum joints, but the angles of the first m rods with the vertical, ϕ_{D}, satisfy the n control constraints $\phi_{D}=\phi_{D}\left(\dot{\phi}_{m+1}, \ldots, \dot{\phi}_{n}\right)$, where $\phi_{D}(\ldots)=$ nonlinear functions of their arguments; for example, $\phi_{1} \sim\left(\dot{\phi}_{2}\right)^{3}$, in a double pendulum. These NNHC can be realized either by internal means at the relevant pendulum joints, or by external noncontact means (e.g., electromagnetic action).
- Analytically, as pointed out by Johnsen and Hamel (late 1930s-early 1940s), the general NNHC formalism can help simplify the solution of the equations of motion; that is, even if the constraints are ultimately Pfaffian (nonholonomic or holonomic), they may be analytically easier to handle when in nonlinear form.

REMARK

Some authors view first integrals of the equations of motion, known in advance, as NNHC-like constraints; for example, the integral of energy [either $T+V=$ constant, or $h \equiv T_{2}+\left(V_{0}-T_{0}\right)=$ constant (§3.9)], or of linear and angular momen-
tum, or (5.1.2)-like combinations of them [and, conversely, consider (5.1.2)-like constraints as first integrals, not calculated but observed]; and use the formalism of this chapter to reduce the number of the kinetic equations of motion. However, there are important qualitative differences between, say, energy constraints and independent (5.1.2)-like constraints: (i) If energy conservation holds, then it is implicitly contained in the equations of motion, and therefore does not need to be imposed separately; whereas, clearly, if those independent constraints are not imposed, the motion will be markedly different. (ii) Energy conservation, being an integral of motion, represents a surface in velocity space, with the coordinates as parameters. Further, since that integral will be quadratic but, generally, nonhomogeneous in the velocities, the shape of the energy constraint surface will be an "ellipsoid" (threedimensional or generalized), which, again, is different from the shape of, say, holonomic constraint surfaces. For example, for a single particle, the energy constraint surface is a sphere centered at the origin; and hence the particle velocity is codirectional to the sphere normal; while ($\$ 2.7$), for a holonomic scleronomic constraint applied to that particle, the velocity vector is perpendicular to the constraint surface normal vector. (iii) Last, if a certain set of velocities satisfies a homogeneous holonomic constraint, so will their multiples by an arbitrary scalar constant; something that, clearly, does not happen with energy conservation constraints. [These remarks are due to Professor D. T. Greenwood (private communication, 1996).]

Be that as it may, we believe that, from a practical viewpoint, familiarity with the general NNHC formalism helps us to understand better the underlying mathematical structure of the various kinematical and kinetic equations of the linear/Pfaffian theory, chapters 2 and 3; that is, their similarities, differences, special cases, and so on. The reader may find such a nonutilitarian viewpoint quite beneficial.

5.2 KINEMATICS; THE NONLINEAR TRANSITIVITY EQUATIONS

System Kinematics

Equations (5.1.2) imply that out of the $n \dot{q}$'s, only $n-m$ are independent; or, equivalently, the $n \dot{q}$'s can be expressed in terms of $n-m$ independent (i.e., unconstrained) velocity parameters, or nonlinear quasi velocities $\omega_{I} \equiv\left(\omega_{m+1}, \ldots, \omega_{n}\right)$:

$$
\begin{equation*}
\dot{q}_{k}=F_{k}\left(t, q, \omega_{I}\right) \equiv \dot{q}_{k}\left(t, q, \omega_{I}\right) . \tag{5.2.1}
\end{equation*}
$$

In complete analogy with the linear/Pfaffian case (§ 2.9), we select the following natural, or "equilibrium," set of ω 's (choice of Johnsen and Hamel, 1930s):

$$
\begin{array}{ll}
\omega_{D} \equiv f_{D}(t, q, \dot{q})=0 & {[D=1, \ldots, m(<n)]} \\
\omega_{I} \equiv f_{I}(t, q, \dot{q}) \neq 0 & {[I=m+1, \ldots, n]} \\
\omega_{n+1} \equiv \omega_{0} \equiv \dot{q}_{n+1} \equiv \dot{q}_{0}=d t / d t=1 \tag{5.2.2c}
\end{array}
$$

The $n-m$ functions $f_{I}(\ldots)$ are arbitrary, except that when the equations of the system $(5.2 .2 \mathrm{a}, \mathrm{b})$ are solved for the $n \dot{q}$'s in terms of the $n \omega$'s $\rightarrow n-m \omega_{I}$'s, as in (5.2.1) [assuming, of course, that the Jacobian determinant of the matrix $\left(\partial f_{k} / \partial \dot{q}_{l}\right) \equiv\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)$ does not vanish] and these values are inserted back into
(5.1.2), they satisfy them identically. Analytically, this translates to the compatibility conditions

$$
\begin{align*}
& \partial \omega_{k} / \partial q_{l}+\sum\left(\partial \omega_{k} / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial q_{l}\right)=0, \tag{5.2.3a}\\
& \partial \dot{q}_{k} / \partial q_{l}+\sum\left(\partial \dot{q}_{k} / \partial \omega_{r}\right)\left(\partial \omega_{r} / \partial q_{l}\right)=0 \tag{5.2.3b}
\end{align*}
$$

and

$$
\begin{align*}
& \sum\left(\partial f_{k} / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial \omega_{l}\right) \equiv \sum\left(\partial \omega_{k} / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial \omega_{l}\right)=\partial \omega_{k} / \partial \omega_{l}=\delta_{k l} \tag{5.2.4a}\\
& \sum\left(\partial F_{k} / \partial \omega_{r}\right)\left(\partial \omega_{r} / \partial \dot{q}_{l}\right) \equiv \sum\left(\partial \dot{q}_{k} / \partial \omega_{r}\right)\left(\partial \omega_{r} / \partial \dot{q}_{l}\right)=\partial \dot{q}_{k} / \partial \dot{q}_{l}=\delta_{k l} \tag{5.2.4b}
\end{align*}
$$

Now, in order to be able to either adjoin or embed (build in) the constraints (5.2.2a) into Lagrange's principle (LP, $\S 3.2$), which involves δq_{k} 's and/or the virtual variations of quasi coordinates, or virtual displacement parameters, $\delta \theta_{k}$, where $d \theta_{k} / d t \equiv \omega_{k}$, we must define these $\delta \theta$'s anew and relate them to the δq 's via linear and homogeneous transformations:

$$
\begin{equation*}
\delta q_{k}=\sum M_{k I} \delta \theta_{I}, \quad M_{k I}=M_{k I}(t, q, \omega) ; \tag{5.2.5}
\end{equation*}
$$

which would be the virtual counterpart of (5.2.1). But what are the coefficients $M_{k I}$? To conclude, from (5.2.1) and (5.2.2), that in the nonlinear case

$$
\begin{equation*}
\delta q_{k}=F_{k}(t, q, \delta \theta) \quad \text { and } \quad \delta \theta_{k}=f_{k}(t, q, \delta q) \tag{5.2.6}
\end{equation*}
$$

would be meaningless, and unhelpful. So far, the sole requirement is, by (5.2.4a), as in the Pfaffian case,

$$
\begin{equation*}
\sum\left(\partial f_{D} / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial \omega_{I}\right) \equiv \partial f_{D}^{*} / \partial \omega_{I}=\delta_{D I}=0 \tag{5.2.7}
\end{equation*}
$$

where, and this is a general notation,

$$
\begin{equation*}
f_{D}=f_{D}(t, q, \dot{q})=f_{D}[t, q, \dot{q}(t, q, \omega)] \equiv f_{D}^{*}(t, q, \omega) \equiv f_{D}^{*} \tag{5.2.8}
\end{equation*}
$$

It is shown in the next chapter (on "Differential Variational Principles") that the physical requirement of compatibility between the principles of Lagrange and Gauss, since there is only one mechanics, leads to the m (nontrivial and nonobvious)

$$
\begin{align*}
& \text { "Maurer-Appell-Chetaev-Johnsen-Hamel conditions": } \\
& \qquad \sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 \tag{5.2.9}
\end{align*}
$$

among the $n \delta q$'s; instead of the mathematically correct (from the viewpoint of variational calculus), but physically inconsistent, result

$$
\begin{equation*}
\delta f_{D}=\sum\left[\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right]=0 \tag{5.2.10}
\end{equation*}
$$

To guarantee the identical satisfaction of (5.2.9), under (5.2.7), we introduce $n-m$ independent virtual displacement parameters $\delta \theta_{I} \equiv\left(\delta \theta_{m+1}, \ldots, \delta \theta_{n}\right)$, and set

$$
\begin{equation*}
\delta q_{k}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \delta \theta_{I} . \tag{5.2.11}
\end{equation*}
$$

Indeed, inserting (5.2.11) into (5.2.9), we obtain

$$
\begin{align*}
0 & =\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right)\left(\sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \delta \theta_{I}\right) \\
& =\sum\left(\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)\right) \delta \theta_{I}=\sum\left(\partial f^{*}{ }_{D} / \partial \omega_{I}\right) \delta \theta_{I} \tag{5.2.12}
\end{align*}
$$

from which, since the $\delta \theta_{I}$ are independent, eqs. (5.2.7) follow. Then, the virtual form of the constraints (5.1.2), or (5.2.2a), is simply

$$
\begin{equation*}
\delta \theta_{k}=\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \delta q_{l}: \quad \delta \theta_{D}=0, \quad \delta \theta_{I} \neq 0 \tag{5.2.13}
\end{equation*}
$$

The Maggi-like representation (5.2.11) and its inverse (5.2.13) are fundamental to all subsequent NNHC developments; for Pfaffian constraints, clearly, they reduce to the forms given in chapter 2. The constraints (5.2.2a, b) establish, in configuration space, a one-to-one correspondence between the ω 's and the kinematically admissible \dot{q} 's; while $(5.2 .11,13)$ do the same thing for the virtual displacements δq and $\delta \theta$. [The nonvanishing Jacobian of (5.2.2a, b) is the nonvanishing determinant of (5.2.13): $\left.\left|\partial \omega_{k} / \partial \dot{q}_{l}\right| \cdot\right]$

From the preceding, we readily conclude that (to be used shortly):

$$
\begin{align*}
& \delta \dot{q}_{k}=\delta F_{k}=\sum\left[\left(\partial F_{k} / \partial q_{l}\right) \delta q_{l}+\left(\partial F_{k} / \partial \omega_{l}\right) \delta \omega_{l}\right], \tag{5.2.14a}\\
& \delta \dot{\theta}_{k} \equiv \delta \omega_{k}=\delta f_{k}=\sum\left[\left(\partial f_{k} / \partial q_{l}\right) \delta q_{l}+\left(\partial f_{k} / \partial \dot{q}_{l}\right) \delta \dot{q}_{l}\right] . \tag{5.2.14b}
\end{align*}
$$

In what follows, for algebraic convenience, we shall allow the $\delta \theta$ and ω indices to run from 1 to n (like those of the δq 's and \dot{q} 's). The satisfaction of the constraints $\delta \theta_{D}=0, \omega_{D}=0$ (and corresponding restrictions on those indices to run only over the independent range $m+1, \ldots, n$) can be done at any time after all differentiations have been carried out. In that case, we may also use the helpful notation $(\ldots)_{o} \equiv\left(\ldots, \omega_{D}=0, \ldots\right)$.

Particle Kinematics

So far we have involved system variables. Let us now express the above results in particle/elementary vector variables.

The (inertial) virtual displacement, velocity, and acceleration of a typical system particle, whose (inertial) position is expressed as $\boldsymbol{r}=\boldsymbol{r}(t, q)$, are, respectively,

$$
\begin{align*}
\delta \boldsymbol{r} & =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k}=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \delta \theta_{l}\right) \tag{i}\\
& =\sum\left(\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{l}\right)\right) \delta \theta_{l} \\
& \equiv \sum\left(\partial \boldsymbol{r}^{*} / \partial \theta_{l}\right) \delta \theta_{l} \equiv \sum \varepsilon_{l} \delta \theta_{l} \equiv \delta \boldsymbol{r}^{*}, \tag{5.2.15}
\end{align*}
$$

where

$$
\begin{align*}
\boldsymbol{\varepsilon}_{l} & =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \equiv \sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \boldsymbol{e}_{k}, \tag{5.2.16a}\\
\boldsymbol{e}_{k} & =\sum\left(\partial \boldsymbol{r}^{*} / \partial \theta_{l}\right)\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \equiv \sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \boldsymbol{\varepsilon}_{l} \tag{5.2.16b}
\end{align*}
$$

that is,

$$
\begin{align*}
& \partial(\ldots) / \partial \theta_{l} \equiv \sum\left[\partial(\ldots) / \partial q_{k}\right]\left(\partial \dot{q}_{k} / \partial \omega_{l}\right), \tag{5.2.16c}\\
& \partial(\ldots) / \partial q_{k} \equiv \sum\left[\partial(\ldots) / \partial \theta_{l}\right]\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \tag{5.2.16d}
\end{align*}
$$

[nonlinear symbolic (i.e., nonvectorial/tensorial) quasi chain rules],
(ii)

$$
\begin{align*}
\boldsymbol{v} & =\boldsymbol{v}(t, q, \dot{q})=d \boldsymbol{r} / d t=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \dot{q}_{k}+\partial \boldsymbol{r} / \partial t \\
& \equiv \sum \dot{q}_{k}(t, q, \omega) \boldsymbol{e}_{k}+\boldsymbol{e}_{0} \quad\left[t \equiv q_{n+1}\right], \tag{5.2.17a}\\
& =\sum \omega_{k}(t, q, \dot{q}) \boldsymbol{\varepsilon}_{k}+\boldsymbol{\varepsilon}_{0} \equiv \boldsymbol{v}^{*}(t, q, \omega) \equiv \boldsymbol{v}^{*}, \tag{5.2.17b}
\end{align*}
$$

where ε_{0} is defined either by (5.2.17b) or, equivalently, extending (5.2.16a-d) for $q_{k} \rightarrow q_{n+1} \equiv t$,

$$
\begin{align*}
\boldsymbol{\varepsilon}_{0} & \equiv \boldsymbol{\varepsilon}_{n+1} \equiv \partial \boldsymbol{r} / \partial \theta_{n+1} \equiv \sum\left(\partial \boldsymbol{r} / \partial q_{\alpha}\right)\left(\partial \dot{q}_{\alpha} / \partial \omega_{n+1}\right) \quad[\alpha=1, \ldots, n+1] \\
& =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{n+1}\right)+(\partial \boldsymbol{r} / \partial t)\left(\partial \dot{q}_{n+1} / \partial \omega_{n+1}\right) \\
& =\sum\left(\partial \dot{q}_{k} / \partial \omega_{n+1}\right) \boldsymbol{e}_{k}+\boldsymbol{e}_{0} \\
& =\sum\left(\dot{q}_{k} \boldsymbol{e}_{k}-\omega_{k} \boldsymbol{\varepsilon}_{k}\right)+\boldsymbol{e}_{0} \quad[\text { by }(5.2 .17 \mathrm{a}, \mathrm{~b})] \\
& =\boldsymbol{e}_{0}+\sum \dot{q}_{k} \boldsymbol{e}_{k}-\sum \omega_{k}\left(\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \boldsymbol{e}_{l}\right) \\
& =\boldsymbol{e}_{0}+\sum\left(\dot{q}_{k}-\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \omega_{l}\right) \boldsymbol{e}_{k} \tag{5.2.17c}
\end{align*}
$$

and, inversely,

$$
\begin{align*}
\boldsymbol{e}_{0} & \equiv \boldsymbol{e}_{n+1} \equiv \partial \boldsymbol{r} / \partial t \equiv \sum\left(\partial \boldsymbol{r} / \partial \theta_{\alpha}\right)\left(\partial \omega_{\alpha} / \partial \dot{q}_{n+1}\right) \quad[\alpha=1, \ldots, n+1] \\
& =\sum\left(\partial \boldsymbol{r} / \partial \theta_{k}\right)\left(\partial \omega_{k} / \partial \dot{q}_{n+1}\right)+\left(\partial \boldsymbol{r} / \partial \theta_{n+1}\right)\left(\partial \omega_{n+1} / \partial \dot{q}_{n+1}\right) \\
& =\sum\left(\partial \omega_{k} / \partial \dot{q}_{n+1}\right) \boldsymbol{\varepsilon}_{k}+\boldsymbol{\varepsilon}_{0} \\
& =\sum\left(\omega_{k} \boldsymbol{\varepsilon}_{k}-\dot{q}_{k} \boldsymbol{e}_{k}\right)+\boldsymbol{\varepsilon}_{0} \quad[\mathrm{by}(5.2 .17 \mathrm{a}, \mathrm{~b})] \\
& =\boldsymbol{\varepsilon}_{0}+\sum \omega_{k} \boldsymbol{\varepsilon}_{k}-\sum \dot{q}_{k}\left(\sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \boldsymbol{\varepsilon}_{l}\right) \\
& =\boldsymbol{\varepsilon}_{0}+\sum\left(\omega_{k}-\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \dot{q}_{l}\right) \boldsymbol{\varepsilon}_{k} . \tag{5.2.17d}
\end{align*}
$$

The above suggest the following definitions, for any function $f^{*}=f^{*}(t, q, \omega)$ [in addition to $(5.2 .16 \mathrm{c}, \mathrm{d})$],

$$
\begin{equation*}
\partial f^{*} / \partial \theta_{n+1} \equiv \sum\left(\partial f^{*} / \partial q_{k}\right)\left(\dot{q}_{k}-\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \omega_{l}\right)+\partial f^{*} / \partial t ; \tag{5.2.18a}
\end{equation*}
$$

which, in the Pfaffian case, reduces to (2.9.32 ff.)

$$
\begin{equation*}
\partial f^{*} / \partial \theta_{n+1}=\sum\left(\partial f^{*} / \partial q_{k}\right) A_{k}+\partial f^{*} / \partial t \equiv \partial f^{*} / \partial(t)+\partial f^{*} / \partial t \tag{5.2.18b}
\end{equation*}
$$

In particular, for $f^{*}=q_{r}$ we find

$$
\begin{align*}
& \partial q_{r} / \partial \theta_{s}=\partial \dot{q}_{r} / \partial \omega_{s} \tag{5.2.18c}\\
& \partial q_{r} / \partial \theta_{n+1}=\partial \dot{q}_{r} / \partial \omega_{n+1}=\dot{q}_{r}-\sum\left(\partial \dot{q}_{r} / \partial \omega_{l}\right) \omega_{l} \\
& {\left[=\dot{q}_{r}-\sum A_{r l} \omega_{l}=A_{r}, \quad \text { in the Pfaffian case }\right]} \tag{5.2.18d}
\end{align*}
$$

and, inversely,

$$
\begin{equation*}
\partial \omega_{k} / \partial \dot{q}_{n+1}=\partial \theta_{k} / \partial t=\omega_{k}-\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \dot{q}_{l} . \tag{5.2.18e}
\end{equation*}
$$

(iii)

$$
\begin{align*}
& \boldsymbol{a} \equiv d \boldsymbol{v} / d t= \sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right) \ddot{q}_{k}+\cdots \\
& {[\cdots \equiv \text { Terms containing neither } \ddot{q} \text { nor } \dot{\omega}] } \\
&= \sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right)\left(\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \dot{\omega}_{l}+\cdots\right)+\cdots \\
&= \sum\left(\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{l}\right)\right) \dot{\omega}_{l}+\cdots \\
& \equiv \sum\left(\partial \boldsymbol{v}^{*} / \partial \omega_{l}\right) \dot{\omega}_{l}+\cdots \\
&= \sum \boldsymbol{\varepsilon}_{l} \dot{\omega}_{l}+\cdots=\sum\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{l}\right) \dot{\omega}_{l}+\cdots \\
& \equiv \boldsymbol{a}^{*}(t, q, \omega, \dot{\omega}) \equiv \boldsymbol{a}^{*} \tag{5.2.19a}
\end{align*}
$$

where, since $\boldsymbol{v}(t, q, \dot{q})=\boldsymbol{v}^{*}(t, q, \omega)$,

$$
\begin{equation*}
\partial \boldsymbol{v}^{*} / \partial \omega_{l}=\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{l}\right), \quad \text { i.e., }(5.2 .16 \mathrm{a}, \mathrm{~b}) \quad \boldsymbol{\varepsilon}_{l}=\sum \boldsymbol{e}_{k}\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \tag{5.2.19b}
\end{equation*}
$$

which is a vectorial transformation equation, and not some chain rule, like (5.2.16c, d).

The preceding results readily lead to the fundamental, and purely kinematical, particle-system identities

Holonomic variables: $\quad \partial \boldsymbol{r} / \partial q_{k}=\partial \boldsymbol{v} / \partial \dot{q}_{k}=\partial \boldsymbol{a} / \partial \ddot{q}_{k}=\cdots=\boldsymbol{e}_{k}$,
Nonholonomic variables: $\partial \boldsymbol{r}^{*} / \partial \theta_{k} \equiv \partial \boldsymbol{v}^{*} / \partial \omega_{k}=\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}=\cdots=\boldsymbol{\varepsilon}_{k}$;
and their system counterparts

$$
\begin{align*}
& \partial q_{k} / \partial \theta_{l} \equiv \partial \dot{q}_{k} / \partial \omega_{l}=\partial \ddot{q}_{k} / \partial \dot{\omega}_{l}=\cdots, \tag{5.2.20c}\\
& \partial \theta_{l} / \partial q_{k} \equiv \partial \omega_{l} / \partial \dot{q}_{k}=\partial \dot{\omega}_{l} / \partial \ddot{q}_{k}=\cdots . \tag{5.2.20d}
\end{align*}
$$

With the help of the above, next, we obtain the following basic kinematical result: applying symbolic and real chain rule to $\boldsymbol{v}=\boldsymbol{v}(t, q, \dot{q})=\boldsymbol{v}^{*}(t, q, \omega)=\boldsymbol{v}^{*}$, we find,
successively,
(a)

$$
\begin{align*}
\partial v^{*} / \partial \theta_{k} & =\sum\left(\partial \boldsymbol{v}^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& =\sum\left[\partial \boldsymbol{v} / \partial q_{l}+\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial q_{l}\right)\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& =\sum\left(\partial \boldsymbol{v} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)+\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \theta_{k}\right), \tag{5.2.21a}
\end{align*}
$$

(b) $\quad d / d t\left(\partial \boldsymbol{r}^{*} / \partial \theta_{k}\right)=d / d t\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)=d / d t\left(\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\right)$

$$
\begin{equation*}
=\sum\left[d / d t\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right)\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)+\sum\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right)\left[d / d t\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\right] . \tag{5.2.21b}
\end{equation*}
$$

Therefore, subtracting (5.2.21a, b) side by side, while recalling (5.2.19b), we get

$$
\begin{align*}
\gamma_{k} \equiv & E_{k}^{*}\left(\boldsymbol{v}^{*}\right) \equiv d / d t\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \equiv d \boldsymbol{\varepsilon}_{k} / d t-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \\
= & \sum\left[d / d t\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right)-\partial \boldsymbol{v} / \partial q_{l}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& \quad+\sum\left[d / d t\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)-\partial \dot{q}_{l} / \partial \theta_{k}\right]\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right) \\
= & \sum E_{l}(\boldsymbol{v})\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)+\sum E_{k}{ }^{*}\left(\dot{q}_{l}\right)\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right) \\
= & \mathbf{0}+\sum E_{k}{ }^{*}\left(\dot{q}_{l}\right)\left(\partial \boldsymbol{v} / \partial \dot{q}_{l}\right) \\
& {\left[E_{l}(\boldsymbol{v})=\mathbf{0}, \text { since the } q^{\prime} \text { s are holonomic coordinates }(\S 2.9)\right] } \\
= & \sum E_{k}^{*}\left(\dot{q}_{l}\right) \boldsymbol{e}_{l}=\sum E_{k}^{*}\left(\dot{q}_{l}\right)\left(\sum\left(\partial \omega_{s} / \partial \dot{q}_{l}\right) \boldsymbol{\varepsilon}_{s}\right) \tag{5.2.21c}
\end{align*}
$$

or finally, and compactly (and in anticipation of later results),

$$
\begin{align*}
\gamma_{k} & \equiv E_{k}^{*}\left(v^{*}\right)=\sum V_{k}^{l} \boldsymbol{e}_{l}=\sum \sum\left[\left(\partial \omega_{s} / \partial \dot{q}_{l}\right) V_{k}^{l}\right] \boldsymbol{\varepsilon}_{s} \\
& =-\sum \sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{s}\right) H_{k}^{s}\right] \boldsymbol{e}_{l}=-\sum H_{k}^{s} \boldsymbol{\varepsilon}_{s}: \tag{5.2.21d}
\end{align*}
$$

Nonholonomic deviation;
where

$$
\begin{equation*}
V_{k}^{l} \equiv d / d t\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)-\partial \dot{q}_{l} / \partial \theta_{k} \equiv E_{k} *\left(\dot{q}_{l}\right): \tag{5.2.21e}
\end{equation*}
$$

Nonlinear Voronets-Chaplygin coefficients,

$$
\begin{equation*}
H_{k}^{s} \equiv-\sum\left(\partial \omega_{s} / \partial \dot{q}_{l}\right) V_{k}^{l}: \tag{5.2.21f}
\end{equation*}
$$

Nonlinear Hamel coefficients,

$$
\begin{equation*}
\left\{\Leftrightarrow V_{k}^{l}=-\sum\left(\partial \dot{q}_{l} / \partial \omega_{s}\right) H_{k}^{s} \quad[\operatorname{using}(5.2 .4 \mathrm{a}, \mathrm{~b})]\right\} ; \tag{5.2.21~g}
\end{equation*}
$$

also (see prob. 5.2.1, below),

$$
\begin{equation*}
H_{s}^{k} \equiv \sum\left(\partial \dot{q}_{l} / \partial \omega_{s}\right)\left[\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)^{\cdot}-\partial \omega_{k} / \partial q_{l}\right] \equiv \sum\left(\partial \dot{q}_{l} / \partial \omega_{s}\right) E_{l}\left(\omega_{k}\right) \tag{5.2.21h}
\end{equation*}
$$

[Clearly, since $\left|\partial \omega_{k} / \partial \dot{q}_{l}\right| \neq 0$, if the H_{k}^{s} vanish, so do the V_{k}^{s}; and vice versa.]

These nonintegrability relations [actually due to Johnsen and Hamel (in the late 1930s)] result from the nonholonomicity of the "coordinates" θ, and have nothing to do with constraints. Further, as these definitions show, in V_{k}^{l}, l is holonomic, and k is nonholonomic; while, in H_{k}^{l}, both l and k are nonholonomic; that is, V_{k}^{l} is mixed, while H_{k}^{l} is purely nonholonomic.

The Nonlinear Transitivity Equations

By $d / d t(\ldots)$-differentiating (5.2.13), $\delta(\ldots)$-varying (5.2.2a-c) [i.e., (5.2.14b)], and then subtracting side by side, we find, successively,

$$
\begin{aligned}
& d / d t\left(\delta \theta_{k}\right)-\delta\left(d \theta_{k} / d t\right) \equiv\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k} \\
&= d / d t\left(\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \delta q_{l}\right)-\delta \omega_{k}(t, q, \dot{q}) \\
&= \sum\left[\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)^{\cdot} \delta q_{l}+\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left(\delta q_{l}\right)^{\cdot}\right] \\
&-\sum\left[\left(\partial \omega_{k} / \partial q_{l}\right) \delta q_{l}+\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \delta\left(\dot{q}_{l}\right)\right] \\
&= \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right] \\
&+\sum\left[\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)^{\cdot}-\partial \omega_{k} / \partial q_{l}\right] \delta q_{l} ;
\end{aligned}
$$

that is, [recalling (5.2.11) and invoking (5.2.21e-h)]

$$
\begin{align*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right] \\
& +\sum \sum\left[\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)^{\cdot}-\partial \omega_{k} / \partial q_{l}\right]\left(\partial \dot{q}_{l} / \partial \omega_{r}\right) \delta \theta_{r} \\
= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right] \\
& -\sum \sum\left[\left(\partial \dot{q}_{s} / \partial \omega_{r}\right)^{\cdot}-\partial \dot{q}_{s} / \partial \theta_{r}\right]\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) \delta \theta_{r} \\
= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right] \\
& -\sum \sum \sum\left[\left(\partial \dot{q}_{s} / \partial \omega_{r}\right)^{-}-\partial \dot{q}_{s} / \partial \theta_{r}\right]\left(\partial \omega_{k} / \partial \dot{q}_{s}\right)\left(\partial \omega_{r} / \partial \dot{q}_{l}\right) \delta q_{l} \tag{5.2.22a}
\end{align*}
$$

or, compactly,

$$
\begin{align*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]+\sum E_{l}\left(\omega_{k}\right) \delta q_{l} \\
= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]+\sum H_{r}^{k} \delta \theta_{r} \\
= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]+\sum \sum H_{r}^{k}\left(\partial \omega_{r} / \partial \dot{q}_{l}\right) \delta q_{l} \\
= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]-\sum \sum E_{r}^{*}\left(\dot{q}_{l}\right)\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \delta \theta_{r} \\
= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]-\sum \sum V_{r}^{l}\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \delta \theta_{r} \\
= & \sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right] \\
& -\sum \sum \sum\left(\partial \omega_{k} / \partial \dot{q}_{s}\right)\left(\partial \omega_{r} / \partial \dot{q}_{l}\right) V_{r}^{s} \delta q_{l} . \tag{5.2.22b}
\end{align*}
$$

[Under the m constraints $\delta \theta_{D}=0, \delta \theta_{r} \rightarrow \delta \theta_{I}(r \rightarrow I=m+1, \ldots, n)$.]

Similarly, $d / d t(\ldots)$-differentiating (5.2.11), $\delta(\ldots)$-varying (5.2.1) [i.e., (5.2.14a)], with $I \rightarrow r=1, \ldots, n$, and then subtracting side by side, we find, successively,

$$
\begin{aligned}
d / d t\left(\delta q_{l}\right)-\delta\left(d q_{l} / d t\right) \equiv & \left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right) \\
= & d / d t\left(\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \delta \theta_{k}\right)-\delta \dot{q}_{l}(t, q, \omega) \\
= & \sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot} \delta \theta_{k}+\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(\delta \theta_{k}\right)^{\cdot}\right] \\
& -\sum\left[\left(\partial \dot{q}_{l} / \partial q_{k}\right) \delta q_{k}+\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
= & \sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot} \delta \theta_{k}+\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(\delta \theta_{k}\right)^{\cdot}\right] \\
& -\sum\left[\left(\partial \dot{q}_{l} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \\
& +\sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k}\right] \delta \theta_{k} ;
\end{aligned}
$$

that is, [recalling (5.2.13) and invoking (5.2.21e-h)]

$$
\begin{align*}
\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \\
& +\sum \sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k}\right]\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) \delta q_{s} \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \\
& -\sum \sum\left[\left(\partial \omega_{k} / \partial \dot{q}_{s}\right)^{\cdot}-\partial \omega_{k} / \partial q_{s}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \delta q_{s} \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \\
& -\sum \sum \sum\left[\left(\partial \omega_{k} / \partial \dot{q}_{s}\right)^{\cdot}-\partial \omega_{k} / \partial q_{s}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(\partial \dot{q}_{s} / \partial \omega_{r}\right) \delta \theta_{r} \tag{5.2.23a}
\end{align*}
$$

or, compactly (with some dummy-index changes),

$$
\begin{align*}
\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum E_{k}^{*}\left(\dot{q}_{l}\right) \delta \theta_{k} \\
\equiv & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum V_{k}^{l} \delta \theta_{k} \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum \sum E_{k}^{*}\left(\dot{q}_{l}\right)\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) \delta q_{s} \\
\equiv & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum \sum V_{k}^{l}\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) \delta q_{s} \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \\
& -\sum \sum \sum\left(\partial \dot{q}_{l} / \partial \omega_{r}\right)\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) H_{k}^{r} \delta q_{s} \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum \sum\left(\partial \dot{q}_{l} / \partial \omega_{r}\right) H_{k}^{r} \delta \theta_{k} . \tag{5.2.23b}
\end{align*}
$$

[Under the m constraints $\delta \theta_{D}=0, \delta \theta_{k} \rightarrow \delta \theta_{I}(k \rightarrow I=m+1, \ldots, n)$.]
As the above show, and since $\left|\partial \omega_{k} / \partial \dot{q}_{l}\right| \neq 0$, if the H_{k}^{r} vanish, so do the $V^{r}{ }_{k}$; and vice versa. The relations between the V_{k}^{l} and H_{k}^{l} can also be found from the equivalence of the transitivity equations (5.2.22) and (5.2.23). Indeed, substituting
$\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)$ from (5.2.23a, b) into (5.2.22a, b), simplifying, and invoking (5.2.4a), we get

$$
\begin{equation*}
\sum\left(\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) V_{r}^{l}+H_{r}^{k}\right) \delta \theta_{r}=0 \tag{5.2.24}
\end{equation*}
$$

from which we obtain the earlier (5.2.21f,g).
Example 5.2.1 Alternative Derivation of the Nonintegrability Relations (5.2.21c,d). We have, successively,

$$
\begin{aligned}
\gamma_{k} \equiv & E_{k}^{*}\left(\boldsymbol{v}^{*}\right) \equiv d / d t\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \equiv d \boldsymbol{\varepsilon}_{k} / d t-\partial \boldsymbol{v}^{*} / \partial \theta_{k} \\
= & d / d t\left(\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \boldsymbol{e}_{l}\right)-\sum\left(\partial \boldsymbol{v}^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\prime} \boldsymbol{e}_{l}+\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(d \boldsymbol{e}_{l} / d t\right) \\
& -\sum\left[\left(\partial / \partial q_{l}\right)\left(\sum \dot{q}_{r} \boldsymbol{e}_{r}+\boldsymbol{e}_{0}\right)\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \quad\left[\text { since } \boldsymbol{v}^{*}=\boldsymbol{v}\right] \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot} \boldsymbol{e}_{l}+\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(d \boldsymbol{e}_{l} / d t\right) \\
& -\sum\left\{\sum\left[\left(\partial \dot{q}_{r} / \partial q_{l}\right) \boldsymbol{e}_{r}+\dot{q}_{r}\left(\partial \boldsymbol{e}_{r} / \partial q_{l}\right)\right]+\partial \boldsymbol{e}_{0} / \partial q_{l}\right\}\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\prime} \boldsymbol{e}_{l}+\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(d \boldsymbol{e}_{l} / d t\right) \\
& -\sum \sum\left(\partial \dot{q}_{r} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \boldsymbol{e}_{r}-\sum \sum \dot{q}_{r}\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(\partial \boldsymbol{e}_{r} / \partial q_{l}\right) \\
& -\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(\partial \boldsymbol{e}_{0} / \partial q_{l}\right) \\
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot} \boldsymbol{e}_{l}+\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(d \boldsymbol{e}_{l} / d t\right) \\
& -\sum\left(\sum \dot{q}_{r}\left(\partial \boldsymbol{e}_{l} / \partial q_{r}\right)+\left(\partial \boldsymbol{e}_{l} / \partial t\right)\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& -\sum\left(\partial \dot{q}_{r} / \partial \theta_{k}\right) \boldsymbol{e}_{r}
\end{aligned}
$$

[since the q 's are holonomic: $\partial \boldsymbol{e}_{r} / \partial q_{l}=\partial \boldsymbol{e}_{l} / \partial q_{r}, \partial \boldsymbol{e}_{0} / \partial q_{l}=\partial \boldsymbol{e}_{l} / \partial t$]

$$
\begin{aligned}
= & \sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot} \boldsymbol{e}_{l}+\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(d \boldsymbol{e}_{l} / d t\right) \\
& -\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(d \boldsymbol{e}_{l} / d t\right)-\sum\left(\partial \dot{q}_{r} / \partial \theta_{k}\right) \boldsymbol{e}_{r}
\end{aligned}
$$

[the second and third sums cancel; and we replace r with l in the last term]

$$
\begin{equation*}
=\sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k}\right] \boldsymbol{e}_{l} \tag{a}
\end{equation*}
$$

that is, eqs. $(5.2 .21 \mathrm{c}, \mathrm{d})$, as before.

Problem 5.2.1 Show, with the help of (5.2.4a, b), that (5.2.21f, g)

$$
\begin{equation*}
H_{r}^{k}=-\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) V_{r}^{l} \Leftrightarrow V_{r}^{l}=-\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) H_{r}^{k} \tag{a}
\end{equation*}
$$

lead to the following useful kinematical identities:

$$
\begin{gather*}
E_{l}\left(\omega_{k}\right)=-\sum \sum\left(\partial \omega_{r} / \partial \dot{q}_{l}\right)\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) E_{r}^{*}\left(\dot{q}_{s}\right), \tag{b}\\
E_{r}^{*}\left(\dot{q}_{s}\right)=-\sum \sum\left(\partial \dot{q}_{l} / \partial \omega_{r}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right) E_{l}\left(\omega_{k}\right) \\
{\left[\text { i.e., } V_{r}^{s}=-\sum\left(\partial \dot{q}_{s} / \partial \omega_{k}\right) H_{r}^{k}\right] .} \tag{c}
\end{gather*}
$$

Problem 5.2.2 Show that in the Pfaffian case (§2.9) - that is, when $\omega_{l} \equiv \sum a_{l d} \dot{q}_{d}+a_{l}$-the nonlinear Hamel coefficients

$$
\begin{equation*}
H_{s}^{l} \equiv \sum\left[\left(\partial \omega_{l} / \partial \dot{q}_{d}\right)^{\cdot}-\partial \omega_{l} / \partial q_{d}\right]\left(\partial \dot{q}_{d} / \partial \omega_{s}\right) \equiv \sum\left(\partial \dot{q}_{d} / \partial \omega_{s}\right) E_{d}\left(\omega_{l}\right) \tag{a}
\end{equation*}
$$

reduce to their Pfaffian counterparts (with $\alpha=1, \ldots, n+1$; and the rest of the notations of §2.10):

$$
\begin{equation*}
h_{s}^{l}=\sum \gamma_{s \alpha}^{l} \omega_{\alpha}=\sum \gamma_{s r}^{l} \omega_{r}+\gamma_{s, n+1}^{l} \tag{b}
\end{equation*}
$$

Problem 5.2.3 Show that, for a general function $f^{*}=f^{*}(t, q, \omega)$, the following noncommutativity relations hold:

$$
\begin{align*}
\partial / \partial \theta_{l}\left(\partial f^{*} / \partial \theta_{k}\right)- & \partial / \partial \theta_{k}\left(\partial f * / \partial \theta_{l}\right) \\
=\sum \sum \sum & {\left[\left(\partial^{2} \dot{q}_{d} / \partial q_{s} \partial \omega_{k}\right)\left(\partial \dot{q}_{s} / \partial \omega_{l}\right)\right.} \\
& \left.-\left(\partial^{2} \dot{q}_{d} / \partial q_{s} \partial \omega_{l}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right)\right]\left(\partial \omega_{p} / \partial \dot{q}_{d}\right)\left(\partial f * / \partial \theta_{p}\right) \tag{a}
\end{align*}
$$

Then show that in the Pfaffian case (\$2.9); that is,

$$
\begin{equation*}
\omega_{s} \equiv \sum a_{s d} \dot{q}_{d}+a_{s}, \quad \dot{q}_{d}=\sum A_{d s} \omega_{s}+A_{d} \tag{b}
\end{equation*}
$$

eq. (a) reduces to the noncommutativity equation (2.10.20).

Problem 5.2.4 (i) Show that in the Pfaffian case (§2.9), the nonlinear coefficients

$$
\begin{equation*}
E_{l}\left(\omega_{k}\right) \equiv\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)^{\cdot}-\partial \omega_{k} / \partial q_{l} \tag{a}
\end{equation*}
$$

reduce to

$$
\begin{equation*}
\sum\left(\partial a_{k l} / \partial q_{r}-\partial a_{k r} / \partial q_{l}\right) \dot{q}_{r}+\left(\partial a_{k l} / \partial t-\partial a_{k} / \partial q_{l}\right) \tag{b}
\end{equation*}
$$

(ii) Hence show that, in such a case, $E_{l}\left(\omega_{k}\right) \equiv 0$ translates to the exactness conditions:

$$
\begin{equation*}
\partial a_{k l} / \partial q_{r}=\partial a_{k r} / \partial q_{l} \quad \text { and } \quad \partial a_{k l} / \partial t=\partial a_{k} / \partial q_{l} \tag{c}
\end{equation*}
$$

(iii) Similarly, show that in the Pfaffian case - that is, $\dot{q}_{l}=\sum A_{l k} \omega_{k}+A_{l}$ - the conditions

$$
\begin{equation*}
V_{k}^{l} \equiv E_{k}^{*}\left(\dot{q}_{l}\right) \equiv\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k} \equiv 0 \tag{d}
\end{equation*}
$$

become

$$
\begin{equation*}
\partial A_{l k} / \partial q_{r}=\partial A_{l r} / \partial q_{k} \quad \text { and } \quad \partial A_{l k} / \partial t=\partial A_{l} / \partial q_{k} . \tag{e}
\end{equation*}
$$

Example 5.2.2 Special Choices of the Quasi Velocities, and Forms of the Constraints. Frequently we choose, as in the Pfaffian case, the last $n-m \dot{q}$'s as the independent quasi velocities. Then (5.2.2a, b) specialize to

$$
\begin{align*}
& \omega_{D} \equiv f_{D}(t, q, \dot{q})=0 \tag{a}\\
& \omega_{I} \equiv f_{I}(t, q, \dot{q})=\dot{q}_{I} \neq 0 . \tag{b}
\end{align*}
$$

Solving (a) for the first m (dependent) \dot{q} 's \dot{q}_{D} in terms of the remaining $n-m$ (independent) \dot{q} s $\rightarrow \dot{q}_{I}$, assuming that $\partial\left(f_{1}, \ldots, f_{m}\right) / \partial\left(\dot{q}_{1}, \ldots, \dot{q}_{m}\right) \neq 0$, we obtain

$$
\begin{equation*}
\dot{q}_{D}=\dot{q}_{D}\left(t, q, \dot{q}_{I}\right) \equiv \phi_{D}\left(t, q, \dot{q}_{I}\right) . \tag{c}
\end{equation*}
$$

System Quantities
In view of the above, the system virtual displacement equation (5.2.11) specializes to

$$
\begin{align*}
\delta q_{k}: \quad \delta q_{D} & =\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I} \tag{d}\\
\delta q_{I} & =\sum\left(\partial \dot{q}_{I} / \partial \dot{q}_{I^{\prime}}\right) \delta q_{I^{\prime}}=\sum\left(\delta \delta_{I I^{\prime}}\right) \delta q_{I^{\prime}}=\delta q_{I} \tag{e}
\end{align*}
$$

while the corresponding constraint conditions (5.2.9) become

$$
\begin{align*}
0 & =\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=\sum\left[\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right) \delta q_{D^{\prime}}+\left(\partial f_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right] \\
& =\sum\left\{\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right)\left(\sum\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \delta q_{I}\right)+\left(\partial f_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right\} \\
& =\sum\left[\partial f_{D} / \partial \dot{q}_{I}+\sum\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right] \delta q_{I} \\
& \equiv \sum\left[\partial f_{D} / \partial\left(\dot{q}_{I}\right)\right] \delta q_{I} . \tag{f}
\end{align*}
$$

Particle Quantities

The particle virtual displacement equation (5.2.15) reduces to

$$
\begin{align*}
\delta \boldsymbol{r} & =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k}=\sum\left(\partial \boldsymbol{r} / \partial q_{D}\right) \delta q_{D}+\sum\left(\partial \boldsymbol{r} / \partial q_{I}\right) \delta q_{I} \\
& =\sum\left(\partial \boldsymbol{r} / \partial q_{D}\right)\left(\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right)+\sum\left(\partial \boldsymbol{r} / \partial q_{I}\right) \delta q_{I} \\
& \equiv \sum\left[\partial \boldsymbol{r} / \partial\left(q_{I}\right)\right] \delta q_{I} \equiv \sum \boldsymbol{B}_{I} \delta q_{I}, \tag{g}
\end{align*}
$$

where

$$
\begin{aligned}
\boldsymbol{B}_{I} & \equiv \partial \boldsymbol{r} / \partial\left(q_{I}\right) \equiv \partial \boldsymbol{r} / \partial q_{I}+\sum\left(\partial \boldsymbol{r} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \\
& \equiv \boldsymbol{e}_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \boldsymbol{e}_{D}
\end{aligned}
$$

and, in general,

$$
\begin{equation*}
\partial \boldsymbol{B}_{I} / \partial q_{I^{\prime}} \neq \partial \boldsymbol{B}_{I^{\prime}} / \partial q_{I} \quad \text { (i.e., the } \boldsymbol{B}_{I} \text { are nongradient vectors); } \tag{h}
\end{equation*}
$$

which is a specialization of the quasi chain rule (5.2.16c) for $\ldots \rightarrow \boldsymbol{r}$ and $\theta_{I} \rightarrow\left(q_{I}\right)$.
Similarly, we can show that

$$
\begin{align*}
\boldsymbol{v} \rightarrow \boldsymbol{v}_{o} & =\sum \boldsymbol{B}_{I} \dot{q}_{I}+\text { No other } \dot{q} \text { terms }, \tag{i}\\
\boldsymbol{a} \rightarrow \boldsymbol{a}_{o} & =\sum \boldsymbol{B}_{I} \ddot{q}_{I}+\text { No other } \ddot{q} \text { terms } ; \tag{j}
\end{align*}
$$

and hence

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial\left(q_{I}\right) \equiv \partial \boldsymbol{v}_{o} / \partial \dot{q}_{I} \equiv \partial \boldsymbol{a}_{o} / \partial \ddot{q}_{I} \equiv \cdots \equiv \boldsymbol{B}_{I} \tag{k}
\end{equation*}
$$

which is a specialization of (5.2.20b).

Example 5.2.3 Special Forms of the Nonlinear Transitivity Equations. Let us find the form of the transitivity relations for the special quasi-velocity choice of the preceding example. There we saw that [eqs. (c, d)]

$$
\begin{equation*}
\delta q_{D}=\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I} \quad \text { and } \quad \dot{q}_{D}=\dot{q}_{D}\left(t, q, \dot{q}_{I}\right) \equiv \phi_{D}\left(t, q, \dot{q}_{I}\right) \tag{a}
\end{equation*}
$$

By $(\ldots)^{2}$-differentiating the first of them, and $\delta(\ldots)$-varying the second, and then subtracting side by side, we obtain, successively,

$$
\begin{align*}
\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)= & \sum\left[\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot} \delta q_{I}+\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\delta q_{I}\right)^{\cdot}\right] \\
& -\sum\left[\partial \phi_{D} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right] \delta q_{I} \\
& -\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right) \\
= & \sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left[\left(\delta q_{I}\right)^{\cdot}-\delta\left(\dot{q}_{I}\right)\right] \\
& +\sum\left[\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial\left(q_{I}\right)\right] \delta q_{I} \tag{b}
\end{align*}
$$

where

$$
\begin{equation*}
\partial \phi_{D} / \partial\left(q_{I}\right) \equiv \partial \phi_{D} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \tag{c}
\end{equation*}
$$

Alternatively, applying (5.2.16c), we find, successively,

$$
\begin{align*}
\partial \dot{q}_{D} / \partial \theta_{I} & \equiv \sum\left(\partial \dot{q}_{D} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \\
& =\left(\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \dot{q}_{D^{\prime}} / \partial \omega_{I}\right)+\sum\left(\partial \phi_{D} / \partial q_{I^{\prime}}\right)\left(\partial \dot{q}_{I^{\prime}} / \partial \omega_{I}\right)\right)_{\omega=\dot{q}} \\
& =\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \dot{q}_{D^{\prime}} / \partial \dot{q}_{I}\right)+\sum\left(\partial \phi_{D} / \partial q_{I^{\prime}}\right)\left(\partial \dot{q}_{I^{\prime}} / \partial \dot{q}_{I}\right) \\
& =\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)+\sum\left(\partial \phi_{D} / \partial q_{I^{\prime}}\right)\left(\delta_{I^{\prime} I}\right) \\
& =\partial \phi_{D} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \\
& \equiv \partial \phi_{D} / \partial\left(q_{I}\right) \quad[\text { by }(\mathrm{c})] ; \tag{d}
\end{align*}
$$

that is,

$$
\partial \dot{q}_{D} / \partial \omega_{I}=\partial \phi_{D} / \partial \dot{q}_{I}
$$

$\Rightarrow \omega_{I}$ can be identified with \dot{q}_{I};
$\partial \dot{q}_{D} / \partial \theta_{I}=\partial \phi_{D} / \partial\left(q_{I}\right) \neq \partial \phi_{D} / \partial q_{I}$
$\Rightarrow \theta_{I}$ is not to be identified with q_{I}; hence, the new notation $\left(q_{I}\right)$.
In sum: for this special quasi-variable choice, we can replace in the general expressions

$$
\partial(\ldots) / \partial \omega_{I} \quad \text { with } \quad \partial(\ldots) / \partial \dot{q}_{I}
$$

and

$$
\begin{equation*}
\partial(\ldots) / \partial \theta_{I} \quad \text { with } \quad \partial(\ldots) / \partial\left(q_{I}\right) \equiv \partial(\ldots) / \partial q_{I}+\sum\left[\partial(\ldots) / \partial q_{D}\right]\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \tag{f}
\end{equation*}
$$

If we now adopt the so-called Suslov viewpoint - that is, $\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right) \neq 0$, $\left(\delta q_{I}\right)^{\cdot}-\delta\left(\dot{q}_{I}\right)=0$ [prob. 2.12.5; 3.8.14a ff.] - then (b) leads immediately to the following nonlinear Suslov transitivity relations:

$$
\begin{align*}
\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right): \quad & \left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)=\sum W_{I}^{D} \delta q_{I} \tag{g}\\
& \left.\left(\delta q_{I}\right)^{\cdot}-\delta\left(\dot{q}_{I}\right)=0 \quad \text { (i.e., } W_{I}^{I^{\prime}}=0\right) \tag{h}
\end{align*}
$$

where

$$
\begin{align*}
W_{I}^{D} & \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I}-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \\
& \equiv E_{I}\left(\phi_{D}\right)-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \\
& \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial\left(q_{I}\right) \\
& \equiv E_{(I)}\left(\phi_{D}\right): \tag{i}
\end{align*}
$$

Special nonlinear Voronets coefficients [specialization of (5.2.21e)].
If the second of equations (a) have the special form

$$
\begin{equation*}
\dot{q}_{D}=\dot{q}_{D}\left(q_{I}, \dot{q}_{I}\right) \equiv \phi_{D}\left(q_{I}, \dot{q}_{I}\right): \quad \text { nonlinear Chaplygin system } \tag{j}
\end{equation*}
$$

then $\partial \phi_{D} / \partial q_{D^{\prime}}=0$, and so (h) reduces to the nonlinear Chaplygin (or Tsaplygin) coefficients

$$
\begin{equation*}
W_{I}^{D} \rightarrow T_{I}^{D} \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I} \equiv E_{I}\left(\phi_{D}\right) \tag{k}
\end{equation*}
$$

5.3 KINETICS: VARIATIONAL EQUATIONS/PRINCIPLES; GENERAL AND SPECIAL EQUATIONS OF MOTION (OF JOHNSEN, HAMEL, ET AL.)

To derive Lagrangean-type equations, we will use both the central equation (§3.6) in system variables, and Lagrange's principle (§3.2) in both particle and system variables.

The NNHC Central Equation

As discussed in $\S 3.6$, the latter is, with the usual notations and assuming that $d(\delta \boldsymbol{r}) / d t-\delta(d \boldsymbol{r} / d t) \equiv(\delta \boldsymbol{r})^{\cdot}-\delta \boldsymbol{v}=\mathbf{0} \Rightarrow\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)=0$ (for all holonomic variables, constrained or not),

$$
\begin{equation*}
d / d t(\delta P)-\delta T=\delta^{\prime} W \tag{5.3.1}
\end{equation*}
$$

where

$$
\begin{gather*}
\delta P \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \delta \boldsymbol{r}=\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k} \equiv \sum p_{k} \delta q_{k} \\
=\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k} \equiv \sum P_{k} \delta \theta_{k}, \tag{5.3.1a}\\
\\
{\left[\Rightarrow p_{k}=\sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) P_{l} \Leftrightarrow P_{l}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) p_{k}\right.} \\
\quad \text { i.e., } \partial T / \partial \dot{q}_{k}=\sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right)\left(\partial T^{*} / \partial \omega_{l}\right) \tag{5.3.1b}\\
\\
\left.\Leftrightarrow \partial T^{*} / \partial \omega_{l}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right)\left(\partial T / \partial \dot{q}_{k}\right)\right] \tag{5.3.1c}\\
\delta T \equiv \delta(\boldsymbol{S}(1 / 2) d m \boldsymbol{v} \cdot \boldsymbol{v}) \tag{5.3.1d}\\
=\sum\left[\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
T=T(t, q, \dot{q})=T[t, q, \dot{q}(t, q, \omega)] \equiv T^{*}(t, q, \omega) \equiv T^{*} ; \tag{5.3.1e}\\
\delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\sum Q_{k} \delta q_{k} \equiv \sum \Theta_{k} \delta \theta_{k} \\
\\
\\
{\left[\Rightarrow Q_{k}=\sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \Theta_{l} \Leftrightarrow \Theta_{l}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) Q_{k}\right] .}
\end{gather*}
$$

Substituting (5.3.1a-e) into (5.3.1), and regrouping appropriately, we obtain the
Central equation in $N N H$ variables:

$$
\begin{array}{r}
\sum\left(d P_{k} / d t\right) \delta \theta_{k}-\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right] \\
=\sum \Theta_{k} \delta \theta_{k} \tag{5.3.2}
\end{array}
$$

and from this, invoking the transitivity equations (5.2.22a, b) [under the Hamel viewpoint; i.e., $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$ for all holonomic variables, constrained or not], we finally obtain

Lagrange's principle in NNH variables:

$$
\begin{equation*}
\sum\left(d P_{k} / d t-\partial T^{*} / \partial \theta_{k}+\sum H_{k}^{s} P_{s}-\Theta_{k}\right) \delta \theta_{k}=0 \tag{5.3.3}
\end{equation*}
$$

These variational equations are fundamental to all subsequent kinetic considerations.

REMARK

As in the Pfaffian case (§3.6), eq. (5.3.3) (and, hence, the equations of motion resulting from it) is independent of any assumptions regarding $d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})$ or
$d\left(\delta q_{k}\right)-\delta\left(d q_{k}\right)$. To confirm this, we begin with the most general central equation (3.6.4)

$$
\begin{equation*}
d / d t(\delta P)-\delta T-\delta D=\delta^{\prime} W \tag{5.3.4}
\end{equation*}
$$

instead of (5.3.1); where, successively,

$$
\begin{align*}
\delta D \equiv & \boldsymbol{S} d m \boldsymbol{v} \cdot\left[(\delta \boldsymbol{r})^{\cdot}-\delta \boldsymbol{v}\right]=\boldsymbol{S} d m \boldsymbol{v} \cdot\left\{\sum\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right] \boldsymbol{e}_{k}\right\} \\
= & \sum p_{k}\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right] \\
= & \sum \sum p_{k}\left(\partial \dot{q}_{k} / \partial \omega_{l}\right)\left[\left(\delta \theta_{l}\right)^{\cdot}-\delta \omega_{l}\right] \\
& -\sum \sum \sum p_{k}\left(\partial \dot{q}_{k} / \partial \omega_{s}\right) H_{l}^{s} \delta \theta_{l} \\
= & {[\mathrm{by}(5.2 .23 \mathrm{~b})] } \tag{5.3.4a}\\
P_{l}\left[\left(\delta \theta_{l}\right)^{\cdot}-\delta \omega_{l}\right]-\sum \sum H_{l}^{s} P_{s} \delta \theta_{l} & {[\mathrm{by}(5.3 .1 \mathrm{~b})] . }
\end{align*}
$$

As a result of (5.3.4a) and (5.3.1a-e), eq. (5.3.4) becomes

$$
\begin{align*}
& \sum\left[\left(d P_{k} / d t\right) \delta \theta_{k}+P_{k}\left(\delta \theta_{k}\right)^{\cdot}\right]-\sum\left[\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
& \quad-\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum \sum H_{k}^{s} P_{s} \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k} \tag{5.3.4b}
\end{align*}
$$

which, when simplified, as the reader can easily confirm, is none other than (5.3.3).

Equations of Motion

In the presence of $m(<n)$ constraints, in the virtual form (5.2.13): $\delta \theta_{D}=0$, application of the method of Lagrangean multipliers to (5.3.3), in exactly the same fashion as in $\S 3.5-3.7$, readily produces the following two groups of equations of motion:

Kinetostatic: $\quad d P_{D} / d t-\partial T^{*} / \partial \theta_{D}+\sum H_{D}^{k} P_{k}=\Theta_{D}+\lambda_{D} \quad(D=1, \ldots, m)$,

Kinetic: $\quad d P_{I} / d t-\partial T^{*} / \partial \theta_{I}+\sum H_{I}^{k} P_{k}=\Theta_{I} \quad(I=m+1, \ldots, n)$.

Equations (5.3.5b) are due to Johnsen and Hamel (1936-1941).
In extenso, the kinetic group (5.3.5b) reads

$$
\begin{align*}
& \left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T^{*} / \partial \theta_{I} \\
& \quad+\sum \sum\left[\left(\partial \omega_{l} / \partial \dot{q}_{s}\right)^{*}-\partial \omega_{l} / \partial q_{s}\right]\left(\partial \dot{q}_{s} / \partial \omega_{I}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I} \tag{5.3.5c}
\end{align*}
$$

or

$$
\begin{equation*}
E_{I}\left(T^{*}\right)+\sum \sum E_{s}\left(\omega_{l}\right)\left(\partial \dot{q}_{s} / \partial \omega_{I}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I} \tag{5.3.5d}
\end{equation*}
$$

and similarly for the kinetostatic group (5.3.5a). Equations (5.3.5b-d) constitute the legitimate generalization of the original Hamel equations (1903-1904, §3.5) to the nonlinear nonholonomic variable and constraint case.

- Using (5.2.21f, h), we easily obtain a second form of these equations. Indeed, the kinetic such group is

$$
\begin{equation*}
d P_{I} / d t-\partial T^{*} / \partial \theta_{I}-\sum \sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) V_{I}^{k} P_{l}=\Theta_{I} \tag{5.3.6a}
\end{equation*}
$$

or, in extenso,
$\left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T^{*} / \partial \theta_{I}-\sum \sum\left[\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)^{*}-\partial \dot{q}_{k} / \partial \theta_{I}\right]\left(\partial \omega_{l} / \partial \dot{q}_{k}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I}$,
or, in operator form,

$$
\begin{equation*}
E_{I}^{*}\left(T^{*}\right)-\sum \sum E_{I}^{*}\left(\dot{q}_{k}\right)\left(\partial \omega_{l} / \partial \dot{q}_{k}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I} \tag{5.3.6c}
\end{equation*}
$$

- Also, since

$$
\begin{align*}
\sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) P_{l} & =p_{k}=p_{k}(t, q, \dot{q})=p_{k}[t, q, \dot{q}(t, q, \omega)] \\
& \equiv p_{k}^{*} \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{*} \tag{5.3.7}
\end{align*}
$$

we can rewrite equations (5.3.6a-c) in the following mixed form (i.e., containing both T and T^{*}):

$$
\begin{align*}
& d P_{I} / d t-\partial T^{*} / \partial \theta_{I}-\sum V_{I}^{k} p_{k}^{*}=\Theta_{I} \tag{5.3.8a}\\
& \left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T^{*} / \partial \theta_{I}-\sum\left[\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)^{\cdot}-\partial \dot{q}_{k} / \partial \theta_{I}\right]\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} \tag{5.3.8b}
\end{align*}
$$

or, further, with $\left.T^{*}\right|_{\text {constraints enforced }} \equiv T_{o}^{*}$,

$$
\begin{equation*}
\left(\partial T_{o}^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T_{o}^{*} / \partial \theta_{I}-\sum V_{I}^{k}\left(\partial T / \partial \dot{q}_{k}\right)_{o}^{*}=\Theta_{I} \tag{5.3.8c}
\end{equation*}
$$

Similarly, $(5.3 .5 b-d)$ can be replaced by their "constrained" form:

$$
\begin{equation*}
\left(\partial T_{o}^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T_{o}^{*} / \partial \theta_{I}+\sum H_{I}^{k}\left(\partial T^{*} / \partial \omega_{k}\right)_{o}=\Theta_{I} \tag{5.3.8~d}
\end{equation*}
$$

REMARKS

Equations ($5.3 .5 \mathrm{~b}-\mathrm{d}, 8 \mathrm{~d}$) and ($5.3 .8 \mathrm{a}-\mathrm{c}$) constitute the legitimate nonlinear generalizations of the original "Pfaffian equations" of Hamel (§3.5) and ChaplyginVoronets (§3.8), respectively. [Although Hamel (1938, p. 48) seems to view (5.3.6a-c), rather than $(5.3 .5 \mathrm{~b}-\mathrm{d})$, as the genuine nonlinear generalization of his equations of 1903-1904.] Comparing these two basic kinds of equations we notice the following: The Hamel forms ($5.3 .5 \mathrm{~b}-\mathrm{d}$), as well as (5.3.6a-c), contain both $\partial \omega / \partial \dot{q}$ and $\partial \dot{q} / \partial \omega$ derivatives; and ($5.3 .5 \mathrm{~b}-\mathrm{d}$) contain both \ddot{q} and $\dot{\omega}$-proportional terms; whereas $(5.3 .8 \mathrm{a}-\mathrm{c})$ involve only $\partial \dot{q} / \partial \omega$ derivatives. On the other hand, the former involve only T^{*}, while the latter involve both T and T^{*}. But these differences are superficial: in view of (i) the nonlinear transformation equations $\dot{q} \Leftrightarrow \omega$, (ii) the fact that the matrices $(\partial \dot{q} / \partial \omega)$ and $(\partial \omega / \partial \dot{q})$ are mutually inverse [i.e., by Cramer's rule applied to the "inverseness relations" (5.2.4a, b), the coefficients $\partial \omega_{l} / \partial \dot{q}_{k}$ appearing in $(5.3 .6 \mathrm{a}-\mathrm{c})$ equal the minors of the determinant of the matrix $(\partial \dot{q} / \partial \omega)$ divided by $\operatorname{Det}(\partial \dot{q} / \partial \omega)$, and can, therefore, be also expressed as functions of t, q, ω without further use of the equations $\dot{q} \Leftrightarrow \omega$; and similarly for expressing the $\partial \dot{q}_{k} / \partial \omega_{l}$ appearing in (5.3.8a-c) in terms of $t, q, \dot{q}]$ and that, in analogy to (5.3.7), (iii) $P_{l} \equiv \partial T^{*} / \partial \omega_{l}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right)\left(\partial T / \partial \dot{q}_{k}\right)=\cdots=P_{l}(t, q, \dot{q})$, we can express all
terms of these two kinds of equations (including the symbols V_{k}^{l} and H_{k}^{l}) in terms of either t, q, \dot{q}, \ddot{q} or $t, q, \omega, \dot{\omega}$, although, in particular problems, such a choice is conditioned by practical considerations (e.g., amount of labor involved). Finally, reasoning as in $\S 3.4$, we see that the Lagrangean multipliers λ_{D}, in the kinetostatic of the above equations, equal the (covariant) nonholonomic components of the system constraint reactions: $\Lambda_{D} \equiv S d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{D}$, where (§3.2) $d m \boldsymbol{a}=d \boldsymbol{F}+d \boldsymbol{R}$. Indeed, assuming that Lagrange's principle (LP) also holds for the reactions enforcing our nonlinear constraints (5.2.2a), we have

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=\sum R_{k} \delta q_{k}=\sum \Lambda_{k} \delta \theta_{k} \quad(=0) \tag{5.3.9a}
\end{equation*}
$$

from which we immediately obtain the transformation equations

$$
\begin{align*}
\Lambda_{k} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \varepsilon_{k} & =\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) R_{l}: \\
\Lambda_{D} & \neq 0 \quad\left(\delta \theta_{D}=0\right) \quad \text { and } \quad \Lambda_{I}=0 \quad\left(\delta \theta_{I} \neq 0\right) \tag{5.3.9b}\\
R_{l} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{e}_{l} & =\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \Lambda_{k} \\
& =\sum\left(\partial \omega_{D} / \partial \dot{q}_{l}\right) \Lambda_{D}=\sum\left(\partial \phi_{D} / \partial \dot{q}_{l}\right) \Lambda_{D} \tag{5.3.9c}
\end{align*}
$$

and comparing with the constitutive equation $R_{l}=\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{l}\right)$, obtained via application of the method of multipliers to LP, we conclude that $\Lambda_{D}=\lambda_{D}$.

Lagrange's Principle (LP)

As detailed in §3.2-3.5, LP postulates that

$$
\begin{equation*}
\delta I=\delta^{\prime} W \tag{5.3.10}
\end{equation*}
$$

where

$$
\begin{align*}
& \delta I \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\sum E_{k} \delta q_{k}=\sum I_{k} \delta \theta_{k}, \tag{5.3.10a}\\
& E_{k} \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=E_{k}(T), \tag{5.3.10b}\\
& I_{k} \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{\varepsilon}_{k}=E_{k} *\left(T^{*}\right)+\sum H_{k}^{l} P_{l}, \tag{5.3.10c}\\
& \delta^{\prime} W \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r}=\sum Q_{k} \delta q_{k}=\sum \Theta_{k} \delta \theta_{k}, \tag{5.3.10d}\\
& Q_{k} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}, \quad \Theta_{k} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{k} . \tag{5.3.10e}
\end{align*}
$$

Holonomic Coordinates
Applying the method of Lagrangean multipliers to (5.3.10) in holonomic system variables:

$$
\begin{equation*}
\sum E_{k} \delta q_{k}=\sum Q_{k} \delta q_{k} \tag{5.3.11a}
\end{equation*}
$$

under the m constraints (5.1.2; 5.2.2a), in the virtual form (5.2.9)

$$
\begin{equation*}
\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 \tag{5.3.11b}
\end{equation*}
$$

we immediately obtain the nonlinear (generalization of the) Routh-Voss equations:

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right), \tag{5.3.11c}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
E_{k}(T)=Q_{k}+R_{k}, \tag{5.3.11d}
\end{equation*}
$$

which, along with the m constraints $f_{D}=0$ constitute a determinate system of $n+m$ equations for the $n+m$ unknown functions $\lambda_{D}(t), q_{k}(t)$. [Equations (5.3.11c) are due to Routh (1877, 3rd ed. of the Elementary part of his classic Rigid Dynamics). However, he never applied them to any NNHC problem. It seems certain that he chose that form as a memorable way of writing the equations of motion under Pfaffian [or (5.3.13a)-like] constraints (3.5.15) rather than with the full understanding that equations (5.3.11c) hold for the most general nonlinear first-order (possibly nonholonomic) constraints.]

- In view of the purely kinematico-inertial identity $E_{k}(T)=\partial S / \partial \ddot{q}_{k}$, where $S=S(t, q, \dot{q}, \ddot{q})$ is the (unconstrained) Appellian of the system [(3.3.16a)], we will also have the Appellian form of the nonlinear Routh-Voss equations:

$$
\begin{equation*}
\partial S / \partial \ddot{q}_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \tag{5.3.12}
\end{equation*}
$$

- If the constraints have the (holonomic) form $g_{D} \equiv g_{D}(t, q)=0$ - that is, if they do not contain the \dot{q} 's - it does not mean that, since $\partial g_{D} / \partial \dot{q}_{k}=0$, we will have $R_{k}=0$. It means, instead, that to apply (5.3.11c) correctly we have to create a \dot{q}-containing constraint from $g_{D}=0$. Indeed, $(\ldots)^{-}$-differentiating $g_{D}(t, q)=0$, we obtain

$$
\begin{equation*}
0=d g_{D} / d t=\partial g_{D} / \partial t+\sum\left(\partial g_{D} / \partial q_{k}\right) \dot{q}_{k} \equiv f_{D}(t, q, \dot{q}) \equiv f_{D} \tag{5.3.13a}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\partial f_{D} / \partial \dot{q}_{k}=\partial g_{D} / \partial q_{k} \tag{5.3.13b}
\end{equation*}
$$

so that (5.3.11c) become

$$
\begin{equation*}
E_{k}(T)=Q_{k}+\sum \lambda_{D}\left(\partial g_{D} / \partial q_{k}\right) \tag{5.3.13c}
\end{equation*}
$$

in complete agreement with earlier results; for example, ex. 3.5.14.

Nonholonomic Coordinates

Applying Lagrangean multipliers to LP, (5.3.10), in nonholonomic variables:

$$
\begin{equation*}
\sum I_{k} \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k} \tag{5.3.14a}
\end{equation*}
$$

under the m constraints $\delta \theta_{D}=1 \cdot \delta \theta_{D}=0$ (and $0 \cdot \delta \theta_{I}=0$ for the rest), we immediately obtain the following two groups of equations:

Kinetostatic: $\quad I_{D}=\Theta_{D}+\lambda_{D} \quad[D=1, \ldots, m(<n)]$,
Kinetic: $\quad I_{I}=\Theta_{I} \quad[I=m+1, \ldots, n]$.

With the I_{k} 's, Θ_{k} 's, λ_{D} 's defined by (5.3.10c, e, 9 b), respectively, the above constitute the so-called "raw" forms of the equations of motion. As in the Pfaffian case ($\S 3.5$, §3.8), special choices of the fundamental nonholonomic "accompanying vectors" ε_{k} in them, as in (5.2.20b) and ex. 5.2.2, yield special forms of the nonlinear equations of motion (Maggi, Schaefer, Hamel, Appell, et al.). Let us examine them in detail, in order of increasing difficulty.
(i) The choice $\boldsymbol{\varepsilon}_{k}=\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}$ in (5.3.10c) yields, successively,

$$
\begin{equation*}
I_{k}=\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{k}\right)=\partial S^{*} / \partial \dot{\omega}_{k} \tag{5.3.15a}
\end{equation*}
$$

where

$$
\begin{equation*}
S^{*} \equiv \boldsymbol{S}(1 / 2) d m \boldsymbol{a}^{*} \cdot \boldsymbol{a}^{*}=S^{*}(t, q, \omega, \dot{\omega}): \quad \text { Nonlinear Appellian } \tag{5.3.15b}
\end{equation*}
$$

and so $(5.3 .14 \mathrm{~b}, \mathrm{c})$ assume the form of the nonlinear Appell equations

$$
\begin{equation*}
\partial S^{*} / \partial \dot{\omega}_{D}=\Theta_{D}+\lambda_{D}, \quad \partial S^{*} / \partial \dot{\omega}_{I}=\Theta_{I} \tag{5.3.15c}
\end{equation*}
$$

respectively. If we are not interested in the constraint forces, then, as already explained for the Pfaffian case ($\$ 3.5$), we can replace in the kinetic equations (second of 5.3 .15 c), the unconstrained Appellian S^{*} with the constrained one:

$$
\begin{equation*}
S_{o}^{*} \equiv S^{*}\left(t, q, \omega_{D}=0, \omega_{I}, \dot{\omega}_{D}=0, \dot{\omega}_{I}\right) \equiv S_{o}^{*}\left(t, q, \omega_{I}, \dot{\omega}_{I}\right) \tag{5.3.15d}
\end{equation*}
$$

and similarly for the Θ_{I} (although we shall still denote them as Θ_{I}),

$$
\begin{equation*}
\partial S_{o}^{*} / \partial \dot{\omega}_{I}=\Theta_{I} . \tag{5.3.15e}
\end{equation*}
$$

Also, in concrete problems we do not have to first compute S^{*} and then find $\partial S^{*} / \partial \dot{\omega}_{I} \rightarrow$ $\left(\partial S^{*} / \partial \dot{\omega}_{I}\right)_{o}=\partial S_{o}^{*} / \partial \dot{\omega}_{I}$ but, instead, we can use I_{k} in the form of (5.3.15a).
(ii) The choice $\boldsymbol{\varepsilon}_{k}=\partial \boldsymbol{r}^{*} / \partial \theta_{k} \equiv \partial \boldsymbol{r} / \partial \theta_{k}$ (symbolic gradient) in (5.3.10c) yields, successively,

$$
\begin{align*}
I_{k} & =\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\partial \boldsymbol{r}^{*} / \partial \theta_{k}\right)=\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \boldsymbol{e}_{l}\right) \\
& =\sum\left(\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{e}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& =\sum\left[\left(\partial T / \partial \dot{q}_{l}\right)^{\cdot}-\partial T / \partial q_{l}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \quad \text { [by Lagrange’s identity (§3.3)] } \\
& \equiv \sum E_{l}(T)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \equiv \sum E_{l}\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) ; \tag{5.3.16a}
\end{align*}
$$

and so $(5.3 .14 \mathrm{~b}, \mathrm{c})$ yield the nonlinear Maggi equations

$$
\begin{align*}
& \sum\left(\partial \dot{q}_{k} / \partial \omega_{D}\right) E_{k}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{D}\right) Q_{k}+\lambda_{D} \tag{5.3.16b}\\
& \sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) E_{k}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) Q_{k} \tag{5.3.16c}
\end{align*}
$$

[Equations (5.3.16c) are due to Hamel (1938, p. 45); see also Przeborski (1933) for a particle and component form.] Also, since $E_{k}=\partial S / \partial \ddot{q}_{k}$, we can replace in both (5.3.16b, c) E_{k} with $\partial S / \partial \ddot{q}_{k}$, and thus obtain the Appellian form of the nonlinear Maggi equations.
(iii) The choice $\varepsilon_{k}=\partial \boldsymbol{v}^{*} / \partial \omega_{k} \rightarrow \partial v^{*} / \partial \omega_{I}$ in (5.3.10c) yields immediately the Schaefer equations (1951):

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{I}\right)=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{I}\right) \tag{5.3.17}
\end{equation*}
$$

which, as we show immediately below, constitute a raw form of the earlier nonlinear Johnsen-Hamel equations (5.3.5a ff.). Indeed, I_{k} transforms, successively, as follows:
$I_{k} \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{\varepsilon}_{k}=\boldsymbol{S} d m\left(d \boldsymbol{v}^{*} / d t\right) \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)$

$$
=d / d t\left(\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)\right)-\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)
$$

$\left[\right.$ adding and subtracting $\left.S d m v^{*} \cdot\left(\partial v^{*} / \partial \theta_{k}\right)\right]$
$=d / d t\left(\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial v^{*} / \partial \omega_{k}\right)\right)-\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial v^{*} / \partial \theta_{k}\right)$

$$
-\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left[\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)^{\cdot}-\partial \boldsymbol{v}^{*} / \partial \theta_{k}\right]
$$

[if the θ were holonomic coordinates, the last (third) sum would vanish!]

$$
\begin{aligned}
=d / d t\left[\partial / \partial \omega_{k}\left(\boldsymbol{S}(1 / 2) d m \boldsymbol{v}^{*} \cdot \boldsymbol{v}^{*}\right)\right] & -\left[\partial / \partial \theta_{k}\left(\mathbf{S}(1 / 2) d m \boldsymbol{v}^{*} \cdot \boldsymbol{v}^{*}\right)\right] \\
& -\mathbf{S} d m \boldsymbol{v}^{*} \cdot E_{k}^{*}\left(\boldsymbol{v}^{*}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\Gamma_{k}, \tag{5.3.18a}
\end{equation*}
$$

where

$$
\begin{align*}
T & =T(t, q, \dot{q})=T[t, q, \dot{q}(t, q, \omega)] \\
& \equiv T^{*}(t, q, \omega)=T^{*} \equiv \boldsymbol{S}(1 / 2) d m \boldsymbol{v}^{*} \cdot \boldsymbol{v}^{*}, \tag{5.3.18b}\\
\Gamma_{k} & \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left[\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)^{\cdot}-\partial \boldsymbol{v}^{*} / \partial \theta_{k}\right] \\
& =\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left[d / d t\left(\partial \boldsymbol{r}^{*} / \partial \theta_{k}\right)-\partial / \partial \theta_{k}\left(d \boldsymbol{r}^{*} / d t\right)\right] \quad(\neq 0) \\
& \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot E_{k}^{*}\left(\boldsymbol{v}^{*}\right): \tag{5.3.18c}
\end{align*}
$$

Nonlinear nonholonomic correction (or supplementary) term.
Further, recalling the earlier ($5.2 .21 \mathrm{c}-\mathrm{h}$) and the definitions

$$
p_{l} \equiv \partial T / \partial \dot{q}_{l} \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{e}_{l}, \quad P_{l} \equiv \partial T^{*} / \partial \omega_{l} \equiv \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot \boldsymbol{\varepsilon}_{l},
$$

we obtain the following mutually equivalent forms in system variables:

$$
\begin{align*}
\Gamma_{k}= & \boldsymbol{S} d m v^{*} \cdot\left(\sum E_{k}^{*}\left(\dot{q}_{l}\right) \boldsymbol{e}_{l}\right) \\
= & \boldsymbol{S} d m v^{*} \cdot\left(\sum V_{k}^{l} \boldsymbol{e}_{l}\right)=-\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\sum \sum H_{k}^{s}\left(\partial \dot{q}_{l} / \partial \omega_{s}\right) \boldsymbol{e}_{l}\right) \\
= & \sum V_{k}^{l} p_{l} \\
& \left\{\equiv \sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k}\right]\left(\partial T / \partial \dot{q}_{l}\right)^{*}\right\} \\
= & -\sum \sum\left(\partial \dot{q}_{l} / \partial \omega_{s}\right) H_{k}^{s} p_{l} \\
& \left\{\equiv-\sum \sum \sum\left[\left(\partial \omega_{s} / \partial \dot{q}_{b}\right)^{\cdot}-\partial \omega_{s} / \partial q_{b}\right]\left(\partial \dot{q}_{b} / \partial \omega_{k}\right)\left(\partial \dot{q}_{l} / \partial \omega_{s}\right)\left(\partial T / \partial \dot{q}_{l}\right)^{*}\right. \\
= & \left.-\sum \sum\left[\left(\partial \omega_{s} / \partial \dot{q}_{b}\right)^{\cdot}-\partial \omega_{s} / \partial q_{b}\right]\left(\partial \dot{q}_{b} / \partial \omega_{k}\right)\left(\partial T^{*} / \partial \omega_{s}\right)\right\} \tag{5.3.18d}
\end{align*}
$$

and

$$
\begin{align*}
\Gamma_{k}= & \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\sum \sum E_{k}^{*}\left(\dot{q}_{l}\right)\left(\partial \omega_{s} / \partial \dot{q}_{l}\right) \boldsymbol{\varepsilon}_{s}\right) \\
= & \boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\sum \sum\left(\partial \omega_{s} / \partial \dot{q}_{l}\right) V_{k}^{l} \boldsymbol{\varepsilon}_{s}\right)=-\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\sum H_{k}^{s} \boldsymbol{\varepsilon}_{s}\right) \\
= & \sum \sum\left(\partial \omega_{s} / \partial \dot{q}_{l}\right) V_{k}^{l} P_{s} \\
& \left\{\equiv \sum \sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k}\right]\left(\partial \omega_{s} / \partial \dot{q}_{l}\right)\left(\partial T^{*} / \partial \omega_{s}\right)\right\} \\
= & -\sum H_{k}^{s} P_{s} \\
& \left\{\equiv-\sum \sum\left[\left(\partial \omega_{s} / \partial \dot{q}_{l}\right)^{\cdot}-\partial \omega_{s} / \partial q_{l}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\left(\partial T^{*} / \partial \omega_{s}\right)\right\} ; \tag{5.3.18e}
\end{align*}
$$

where
$p_{l}=p_{l}(t, q, \dot{q})=p_{l}[t, q, \dot{q}(t, q, \omega)]=p_{l}{ }^{*}(t, q, \omega) \equiv\left(\partial T / \partial \dot{q}_{l}\right)^{*}:$
holonomic (l) th component of system momentum, but expressed in nonholonomic variables [also note that $p_{l}{ }^{*} \neq P_{l}$, while $\partial T^{*} / \partial \dot{q}$ is undefined].

In view of the above, the Schaefer equations (5.3.17) assume the earlier found Lagrangean form of Johnsen-Hamel (5.3.5b ff.):

$$
\begin{equation*}
\left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T^{*} / \partial \theta_{I}-\Gamma_{I}=\Theta_{I} \tag{5.3.19}
\end{equation*}
$$

Below we summarize, for convenience, the various available general particle and system representations of the nonlinear nonholonomic inertia "force" I_{k}, in operator forms:

$$
\begin{align*}
& I_{k} \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{\varepsilon}_{k} \quad \quad \text { (Definition; raw or particle form) } \\
&= \partial S^{*} / \partial \dot{\omega}_{k} \quad\left[=\sum\left(\partial S / \partial \ddot{q}_{l}\right)\left(\partial \ddot{q}_{l} / \partial \dot{\omega}_{k}\right)=\sum\left(\partial S / \partial \ddot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right),\right. \\
&\text { where } \left.2 S^{*} \equiv \boldsymbol{S} d m \boldsymbol{a}^{*} \cdot \boldsymbol{a}^{*}=\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{a} \equiv 2 S \quad \text { (Appell form) }\right] \\
&= \quad \text { (Maggi form) } \\
&=\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) E_{l}(T) \quad\left(T^{*}\right)+\sum \sum E_{s}\left(\omega_{r}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right)\left(\partial T^{*} / \partial \omega_{r}\right) \\
&= E_{k}^{*}\left(T^{*}\right)+\sum \sum \sum E_{s}\left(\omega_{r}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right)\left(\partial \dot{q}_{l} / \partial \omega_{r}\right)\left(\partial T / \partial \dot{q}_{l}\right)^{*} \\
&= E_{k}^{*}\left(T^{*}\right)-\sum \sum E_{k}^{*}\left(\dot{q}_{l}\right)\left(\partial \omega_{r} / \partial \dot{q}_{l}\right)\left(\partial T^{*} / \partial \omega_{r}\right) \\
&= E_{k} *\left(T^{*}\right)-\sum E_{k}^{*}\left(\dot{q}_{l}\right)\left(\partial T / \partial \dot{q}_{l}\right)^{*} \quad \quad(\text { Johnsen-Hamel forms). } \tag{5.3.20}
\end{align*}
$$

Also, recalling (5.3.10a), we have the transformation equations between the holonomic and nonholonomic components of the inertia "force":

$$
\begin{equation*}
I_{k}=\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) E_{l} \Leftrightarrow E_{l}=\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) I_{k} \tag{5.3.21a}
\end{equation*}
$$

and, of course, the identity:

$$
\begin{equation*}
E_{l} \equiv E_{l}(T) \equiv \partial S / \partial \ddot{q}_{l} . \tag{5.3.21b}
\end{equation*}
$$

The above show that, as in the Pfaffian case ($\S 3.2 \mathrm{ff}$.), $E_{k}{ }^{*}\left(T^{*}\right)$ does not transform as a (covariant) vector under transformations $\delta q \Leftrightarrow \delta \theta$; it is $I_{k} \equiv E_{k} *(T)-\Gamma_{k}$ that does!

REMARKS

(i) Maggi's equations (5.3.16b, c) can also be deduced from the nonlinear Routh-Voss equations ($5.3 .11 \mathrm{c}, \mathrm{d}$):

$$
E_{k}(T)=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)=Q_{k}+\sum \lambda_{D}\left(\partial \omega_{D} / \partial \dot{q}_{k}\right),
$$

through multiplication with $\partial \dot{q}_{k} / \partial \omega_{l}$, summation over k, and subsequent utilization of (5.2.4a):

$$
\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) E_{k}(T)=\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) Q_{k}+A_{l}
$$

where

$$
\begin{align*}
A_{l} & \equiv \sum \sum \lambda_{D}\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{l}\right)=\sum \lambda_{D} \delta_{D l}=\lambda_{l} \\
& =\lambda_{D}, \quad \text { if } l \rightarrow D=1, \ldots, m ; \\
& =\lambda_{I}=0, \quad \text { if } l \rightarrow I=m+1, \ldots, n ; \quad \text { Q.E.D. } \tag{5.3.22}
\end{align*}
$$

(ii) The preceding show clearly under what conditions $\Gamma_{k} \rightarrow 0$; then $I_{k}=E_{k}{ }^{*}\left(T^{*}\right)$ (nonlinear counterpart of pp .421 ff .).

Example 5.3.1 Holonomic and Nonholonomic Inertial Forces and their Transformation Properties. Let us find by direct differentiations the relations between the holonomic and nonholonomic inertia "forces" $E_{k}=E_{k}(T)$ and $I_{k}=E_{k}{ }^{*}\left(T^{*}\right)-\Gamma_{k}$, respectively.
(i) Applying chain rule to

$$
\begin{equation*}
T=T(t, q, \dot{q})=T^{*}(t, q, \omega) \equiv T^{*} \tag{a}
\end{equation*}
$$

we find

$$
\begin{align*}
& \partial T^{*} / \partial q_{l}=\partial T / \partial q_{l}+\sum\left(\partial T / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial q_{l}\right) \\
& \Rightarrow \partial T / \partial q_{l}=\partial T^{*} / \partial q_{l}-\sum\left(\partial T / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial q_{l}\right) \tag{b}
\end{align*}
$$

and, therefore [recalling the symbolic quasi chain rule (5.2.16c)],

$$
\begin{align*}
\sum\left(\partial T / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)= & \sum\left(\partial T^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& -\sum \sum\left(\partial T / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
= & \partial T^{*} / \partial \theta_{k}-\sum\left(\partial T / \partial \dot{q}_{r}\right)\left(\partial \dot{q}_{r} / \partial \theta_{k}\right) ; \tag{c}
\end{align*}
$$

and (ii) By (...) -differentiation of the momentum transformation

$$
\begin{equation*}
\partial T^{*} / \partial \omega_{k}=\sum\left(\partial T / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right), \tag{d}
\end{equation*}
$$

we obtain

$$
\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}=\sum\left[\left(\partial T / \partial \dot{q}_{l}\right)^{\cdot}\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)+\left(\partial T / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}\right]
$$

from which, rearranging,

$$
\begin{equation*}
\sum\left[\left(\partial T / \partial \dot{q}_{l}\right)^{\cdot}\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)\right]=\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\sum\left[\left(\partial T / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}\right] \tag{e}
\end{equation*}
$$

Subtracting (c) from (e) side by side, we obtain the following fundamental kinema-tico-inertial identity:

$$
\begin{aligned}
\sum & {\left[\left(\partial T / \partial \dot{q}_{l}\right)^{\cdot}-\partial T / \partial q_{l}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) } \\
& =\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\sum\left[\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)^{\cdot}-\partial \dot{q}_{l} / \partial \theta_{k}\right]\left(\partial T / \partial \dot{q}_{l}\right)
\end{aligned}
$$

or, compactly, while recalling (5.3.18d),

$$
\begin{equation*}
\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) E_{l}(T)=E_{k}^{*}\left(T^{*}\right)-\Gamma_{k} \quad\left(=I_{k}\right) \tag{f}
\end{equation*}
$$

an equation that, as mentioned earlier, shows that although, individually, neither $E_{k}{ }^{*}\left(T^{*}\right)$ nor Γ_{k} transform as (covariant) vectors under $\delta q \Leftrightarrow \delta \theta$, taken together as $I_{k} \equiv E_{k}{ }^{*}\left(T^{*}\right)-\Gamma_{k}$ they do; that is, $I_{k}=\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) E_{l} \Leftrightarrow E_{l}=\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) I_{k}$.

The above allow us to find the transformation properties of Γ_{k} under a local quasi-velocity change:

$$
\begin{equation*}
\omega=\omega\left(t, q, \omega^{\prime}\right) \Leftrightarrow \omega^{\prime}=\omega^{\prime}(t, q, \omega) . \tag{g}
\end{equation*}
$$

We begin with the invariant virtual work of the inertia "forces":

$$
\begin{equation*}
\delta I=\sum I_{k} \delta \theta_{k}=\sum I_{k^{\prime}} \delta \theta_{k^{\prime}}, \tag{h}
\end{equation*}
$$

where

$$
\begin{gather*}
\delta \theta_{k}=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \delta \theta_{k^{\prime}} \Leftrightarrow \delta \theta_{k^{\prime}}=\sum\left(\partial \omega_{k^{\prime}} / \partial \omega_{k}\right) \delta \theta_{k} \tag{i}\\
\omega_{k} \equiv d \theta_{k} / d t \quad \text { and } \quad \omega_{k^{\prime}} \equiv d \theta_{k^{\prime}} / d t \tag{j}\\
I_{k}=\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\Gamma_{k} \equiv E_{k}^{*}\left(T^{*}\right)-\Gamma_{k} \equiv E_{k}^{*}-\Gamma_{k} \tag{k}\\
I_{k^{\prime}}=\left(\partial T^{*} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k^{\prime}}-\Gamma_{k^{\prime}} \equiv E_{k^{\prime}} *\left(T^{*^{\prime}}\right)-\Gamma_{k^{\prime}} \equiv E_{k^{\prime}} *^{\prime}-\Gamma_{k^{\prime}}, \tag{1}\\
T^{*}=T^{*}(t, q, \omega), \quad T^{* \prime}=T^{*}\left(t, q, \omega^{\prime}\right) . \tag{m}
\end{gather*}
$$

From the above, we readily obtain the (covariant) vector transformation equations

$$
\begin{equation*}
I_{k^{\prime}}=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) I_{k} \Leftrightarrow I_{k}=\sum\left(\partial \omega_{k^{\prime}} / \partial \omega_{k}\right) I_{k^{\prime}} \tag{n}
\end{equation*}
$$

Let us find how the constituents of $I_{k}, E_{k}{ }^{*}$, and Γ_{k}, transform individually; that is, how they relate to their accented counterparts.
(a) First, the $E_{k}{ }^{*}$'s. Applying chain rule to

$$
\begin{equation*}
T^{*}=T^{*}(t, q, \omega)=T^{*}\left[t, q, \omega\left(t, q, \omega^{\prime}\right)\right]=T^{*^{\prime}}\left(t, q, \omega^{\prime}\right) \equiv T^{*^{\prime}} \tag{o}
\end{equation*}
$$

we find

$$
\begin{align*}
& \partial T^{*^{\prime}} / \partial \omega_{k^{\prime}}=\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \tag{i}\\
& \Rightarrow\left(\partial T^{*^{\prime}} / \partial \omega_{k^{\prime}}\right)^{\cdot}=\sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)\right. \\
& \left.+\left(\partial T^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}\right] \tag{p}
\end{align*}
$$

(ii)

$$
\begin{align*}
\partial T^{* \prime} / \partial \theta_{k^{\prime}}= & \sum\left(\partial T^{*^{\prime}} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right) \\
= & \sum\left[\partial T^{*} / \partial q_{l}+\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial q_{l}\right)\right]\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right) \\
= & \sum\left(\sum\left(\partial T^{*} / \partial \theta_{k}\right)\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\right)\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right) \\
& +\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left(\sum\left(\partial \omega_{k} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right)\right) \\
= & \sum\left[\left(\partial T^{*} / \partial \theta_{k}\right)\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)+\left(\partial T^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial \theta_{k^{\prime}}\right)\right] \tag{q}
\end{align*}
$$

Subtracting (q) from (p) side by side, we finally obtain

$$
\begin{aligned}
\left(\partial T^{* \prime} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial T^{*^{\prime}} / \partial \theta_{k^{\prime}}= & \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}\right]\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \\
& +\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial T^{*} / \partial \omega_{k}\right)
\end{aligned}
$$

or, compactly,

$$
\begin{equation*}
E_{k^{\prime}}{ }^{*}\left(T^{* \prime}\right)=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) E_{k} *\left(T^{*}\right)+\sum\left(\partial T^{*} / \partial \omega_{k}\right) E_{k^{\prime}} *\left(\omega_{k}\right) \tag{r}
\end{equation*}
$$

which is the general law of transformation of the nonholonomic Euler-Lagrange operator applied to the corresponding kinetic energy (or any other function of $t, q, \omega)$.

In particular, if

$$
\begin{equation*}
E_{k^{\prime}} *\left(\omega_{k}\right) \equiv\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}=0 \tag{s}
\end{equation*}
$$

(in which case, ω and ω^{\prime} are called relatively holonomic), $E_{k}{ }^{*}\left(T^{*}\right)$ transforms as a vector.
(b) Next, to the Γ_{k} 's (see also next example). In view of ($\mathrm{k}, 1, \mathrm{n}$), we have

$$
\begin{equation*}
E_{k^{\prime}} *-\Gamma_{k^{\prime}}=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)\left(E_{k}^{*}-\Gamma_{k}\right) \tag{t}
\end{equation*}
$$

or rearranging, and then using (r),

$$
\begin{aligned}
\Gamma_{k^{\prime}} & =\left[E_{k^{\prime}}{ }^{*}-\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) E_{k^{*}}^{*}\right]+\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \Gamma_{k} \\
& =\sum\left(\partial T^{*} / \partial \omega_{k}\right) E_{k^{\prime}} *\left(\omega_{k}\right)+\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \Gamma_{k},
\end{aligned}
$$

or, in extenso,

$$
\begin{equation*}
\Gamma_{k^{\prime}}=\sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \Gamma_{k}+\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial T^{*} / \partial \omega_{k}\right) \tag{u}
\end{equation*}
$$

As the above shows, if ω and ω^{\prime} are relatively holonomic, Γ_{k} transforms as a (covariant) vector. [In tensor calculus, nonvectorial (nontensorial) quantities like
$E_{k}{ }^{*}$ and Γ_{k} are called geometrical objects. Other such examples are the Christoffel symbols (§3.10).] In particular, if $\omega_{k}=\dot{q}_{k}$-that is, if the ω are holonomic velocities - then $T^{*} \rightarrow T, E_{k}{ }^{*}\left(T^{*}\right) \rightarrow E_{k}(T)$, and $\Gamma_{k} \rightarrow 0$, and so (u) reduces to

$$
\begin{equation*}
\Gamma_{k^{\prime}}=\sum\left[\left(\partial \dot{q}_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \dot{q}_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial T / \partial \dot{q}_{k}\right)^{\prime} \equiv \sum V_{k^{\prime} p_{k}}^{k} \tag{v}
\end{equation*}
$$

where $V_{k^{\prime}}^{k}=$ nonlinear Voronets coefficients for $\dot{q}=\dot{q}\left(t, q, \omega^{\prime}\right) \Leftrightarrow \omega^{\prime}=\omega^{\prime}(t, q, \dot{q})$, and $\partial T / \partial \dot{q}_{k} \equiv p_{k} \equiv p_{k}(t, q, \dot{q})=p_{k}\left[t, q, \dot{q}\left(t, q, \omega^{\prime}\right)\right]=p_{k}^{\prime}\left(t, q, \omega^{\prime}\right) \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\prime}$.

Example 5.3.2 Alternative, Particle Vector-Based Derivation of the Transformation Formula (u). Additional Constraints. By definition (recalling (5.3.18c)

$$
\begin{equation*}
\Gamma_{k^{\prime}} \equiv \boldsymbol{S} d m v^{*^{\prime}} \cdot\left[\left(\partial v^{*^{\prime}} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial v^{*^{\prime}} / \partial \theta_{k^{\prime}}\right] \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{v}=\boldsymbol{v}(t, q, \dot{q})=\boldsymbol{v}^{*}(t, q, \omega)=\boldsymbol{v}^{*}\left[t, q, \omega\left(t, q, \omega^{\prime}\right)\right]=\boldsymbol{v}^{* \prime}\left(t, q, \omega^{\prime}\right) \equiv \boldsymbol{v}^{* \prime} \tag{b}
\end{equation*}
$$

But:

$$
\begin{align*}
& \boldsymbol{\varepsilon}_{k^{\prime}} \equiv \partial \boldsymbol{v}^{*^{\prime}} / \partial \omega_{k^{\prime}}=\sum\left(\partial \boldsymbol{v}^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \equiv \sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \boldsymbol{\varepsilon}_{k} \tag{i}\\
& \Rightarrow\left(\partial \boldsymbol{v}^{*^{\prime}} / \partial \omega_{k^{\prime}}\right)^{\cdot} \equiv d \boldsymbol{\varepsilon}_{k^{\prime}} / d t \\
&=\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) \cdot \boldsymbol{\varepsilon}_{k}+\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)\left(d \boldsymbol{\varepsilon}_{k} / d t\right)\right] \tag{c}
\end{align*}
$$

and
(ii)

$$
\begin{align*}
\partial v^{*^{\prime}} / \partial \theta_{k^{\prime}} \equiv & \sum\left(\partial v^{*^{\prime}} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right) \\
\equiv & \sum\left[\partial v^{*} / \partial q_{l}+\sum\left(\partial v^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial q_{l}\right)\right]\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right) \\
= & \sum\left(\partial v^{*} / \partial \theta_{k}\right)\left(\sum\left(\partial \omega_{k} / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right)\right) \\
& +\sum\left(\partial v^{*} / \partial \omega_{k}\right)\left[\left(\partial \omega_{k} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k^{\prime}}\right)\right] \\
\equiv & \sum\left(\partial v^{*} / \partial \theta_{k}\right)\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)+\sum\left(\partial v^{*} / \partial \omega_{k}\right)\left(\partial \omega_{k} / \partial \theta_{k^{\prime}}\right) \tag{d}
\end{align*}
$$

Inserting the expressions (c, d) in (a), we obtain, successively [recalling that $\boldsymbol{v}^{* \prime}=\boldsymbol{v}^{*}, \boldsymbol{\varepsilon}_{k}=\partial \boldsymbol{v}^{*} / \partial \omega_{k}$, and the definitions of Γ_{k} and $\left.\partial T^{*} / \partial \omega_{k}\right]$,

$$
\begin{aligned}
\Gamma_{k^{\prime}}= & \sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)\left\{\boldsymbol{S} d m v^{*} \cdot\left[\left(\partial v^{*} / \partial \omega_{k}\right)^{\cdot}-\partial v^{*} / \partial \theta_{k}\right]\right\} \\
& +\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\boldsymbol{S} d m \boldsymbol{v}^{*} \cdot\left(\partial v^{*} / \partial \omega_{k}\right)\right)
\end{aligned}
$$

which is none other than eq. (u) of the preceding example.

Additional Constraints
These transformation equations may prove useful if the hitherto independent $n-m$ quasi velocities $\omega_{I} \equiv\left(\omega_{m+1}, \ldots, \omega_{n}\right)$ are, later, subjected to the $m^{\prime}(<n-m)$ new
constraints

$$
\begin{equation*}
c_{d}\left(t, q, \omega_{I}\right)=0 \quad\left(d=1, \ldots, m^{\prime}\right) . \tag{e}
\end{equation*}
$$

Then, to incorporate (e) to our description, and following the earlier Johnsen-Hamel approach, we may introduce $n-m$ new quasi velocities $\omega^{\prime} \equiv\left(\omega_{1}^{\prime}, \ldots, \omega_{n-m}^{\prime}\right)$:

$$
\begin{align*}
\omega_{d}^{\prime} & \equiv c_{d}\left(t, q, \omega_{I}\right)=0 \tag{f1}\\
\omega_{i}^{\prime} & \equiv c_{i}\left(t, q, \omega_{I}\right) \neq 0 \quad\left(i=m^{\prime}+1, \ldots, n-m\right) \tag{f2}
\end{align*}
$$

where, as in the Pfaffian case (§3.11) the $(n-m)-m^{\prime} c_{i}(\ldots)$ are arbitrary, except that when the system ($\mathrm{f} 1,2$) is solved for the $\omega_{I}, \omega_{I}=\omega_{I}\left(t, q, \omega^{\prime}\right)$, and these expressions are inserted back into (e), they satisfy them identically in the ω^{\prime}. In this case, Lagrange's principle yields

$$
\begin{equation*}
\sum\left[\left(\partial T^{*} / \partial \omega_{I}\right)^{*}-\partial T^{*} / \partial \theta_{I}-\Gamma_{I}-\Theta_{I}\right] \delta \theta_{I}=0 \tag{g}
\end{equation*}
$$

where the $n-m \delta \theta_{I} \equiv\left(\delta \theta_{m+1}, \ldots, \delta \theta_{n}\right)$ are subjected to the virtual form of the constraints (e, f1):

$$
\begin{equation*}
\delta \theta_{d}{ }^{\prime} \equiv \sum\left(\partial c_{d} / \partial \omega_{I}\right) \delta \theta_{I}=0 \tag{h}
\end{equation*}
$$

From here on, we proceed in well-known ways; that is, either we adjoin (h) to (g) via new Lagrangean multipliers (\rightarrow Routh-Voss equations in T^{*}, ω_{I}), or we embed them via the quasi variables $\delta \theta^{\prime} / \omega^{\prime}\left(\rightarrow\right.$ Maggi equations in $T^{*}, \omega_{I}, \partial \omega_{I} / \partial \omega^{\prime}$; or Hamel equations in $T^{*^{\prime}}=T^{* \prime}\left(t, q, \omega^{\prime}\right), \omega^{\prime}, \Gamma^{\prime}$, etc.).

Finally, under $\omega \leftrightarrow \omega^{\prime}$, Appell's equations (say, under no constraints) become

$$
\begin{equation*}
\sum\left(\partial S^{*} / \partial \dot{\omega}_{k}\right)\left(\partial \dot{\omega}_{k} / \partial \dot{\omega}_{k^{\prime}}\right)=\sum\left(\partial \dot{\omega}_{k} / \partial \dot{\omega}_{k^{\prime}}\right) \Theta_{k} \tag{i}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\partial S^{*^{\prime}} / \partial \dot{\omega}_{k^{\prime}}=\Theta_{k^{\prime}} \tag{j}
\end{equation*}
$$

where

$$
\begin{align*}
S^{*}=S^{*}(t, q, \omega, \dot{\omega}) & =S^{*}\left[t, q, \omega\left(t, q, \omega^{\prime}\right), \dot{\omega}\left(t, q, \omega^{\prime}, \dot{\omega}^{\prime}\right)\right] \\
& =S^{*^{\prime}}\left(t, q, \omega^{\prime}, \dot{\omega}^{\prime}\right)=S^{* \prime} \tag{k}
\end{align*}
$$

also,

$$
\partial \dot{\omega}_{k} / \partial \dot{\omega}_{k^{\prime}}=\partial \omega_{k} / \partial \omega_{k^{\prime}}, \quad \partial \dot{\omega}_{k^{\prime}} / \partial \dot{\omega}_{k}=\partial \omega_{k^{\prime}} / \partial \omega_{k} .
$$

Example 5.3.3 Special Forms of the Equations of Motion: Nonlinear Equations of Hadamard. Let us specialize the nonlinear Maggi equations to the following quasivariable choice (recall ex. 5.2.2):

$$
\begin{align*}
\omega_{D} & \equiv f_{D}(t, q, \dot{q})=\dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)=0 \tag{a}\\
\omega_{I} & \equiv f_{I}(t, q, \dot{q})=\dot{q}_{I} \neq 0 \tag{b}
\end{align*}
$$

and its inverse

$$
\begin{align*}
\dot{q}_{D} & =\omega_{D}+\phi_{D}\left(t, q, \dot{q}_{I}\right)=\omega_{D}+\phi_{D}\left(t, q, \omega_{I}\right), \tag{c}\\
\dot{q}_{I} & =\omega_{I} \tag{d}
\end{align*}
$$

With the notation $E_{k}(T)-Q_{k} \equiv E_{k}-Q_{k}=\partial S / \partial \ddot{q}_{k}-Q_{k} \equiv M_{k}$, and (c, d), we obtain, successively,

$$
\begin{align*}
\sum\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) M_{l} & =\sum\left(\partial \dot{q}_{D} / \partial \omega_{k}\right) M_{D}+\sum\left(\partial \dot{q}_{I} / \partial \omega_{k}\right) M_{I} \\
& =\sum\left(\partial \dot{q}_{D} / \partial \omega_{D^{\prime}}\right) M_{D}+\sum\left(\partial \dot{q}_{I} / \partial \omega_{D^{\prime}}\right) M_{I} \\
& =\sum\left(\delta_{D D^{\prime}}\right) M_{D}+\sum(0) M_{I}=M_{D^{\prime}} \quad\left(D^{\prime}=1, \ldots, m\right) \tag{el}\\
& =\sum\left(\partial \dot{q}_{D} / \partial \omega_{I}\right) M_{D}+\sum\left(\partial \dot{q}_{I} / \partial \omega_{I^{\prime}}\right) M_{I} \\
& =\sum\left(\partial \phi_{D} / \partial \omega_{I}\right) M_{D}+\sum\left(\delta_{I I^{\prime}}\right) M_{I} \\
& =M_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) M_{D} \quad(I=m+1, \ldots, n) \tag{e2}
\end{align*}
$$

As a result of the above, Maggi's equations $(5.3 .16 \mathrm{~b}, \mathrm{c})$ reduce to the nonlinear Hadamard equations.

Kinetostatic:

$$
\begin{align*}
E_{D}(T) & \equiv\left[\left(\partial T / \partial \dot{q}_{D}\right)^{\cdot}-\partial T / \partial q_{D}\right]=\partial S / \partial \ddot{q}_{D} \\
& =Q_{D}+\lambda_{D} \tag{f1}
\end{align*}
$$

Kinetic:

$$
\begin{align*}
E_{I}(T) & +\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) E_{D}(T) \\
& \equiv\left[\left(\partial T / \partial \dot{q}_{I}\right)^{\cdot}-\partial T / \partial q_{I}\right]+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left[\left(\partial T / \partial \dot{q}_{D}\right)^{\cdot}-\partial T / \partial q_{D}\right] \\
& =\partial S / \partial \ddot{q}_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial S / \partial \ddot{q}_{D}\right) \\
& =Q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) Q_{D} . \tag{f2}
\end{align*}
$$

Equations (f2), plus the constraints (a), yield the motion; then (f1) give the constraint reactions. [In terms of the constrained Appellian S_{o}, eqs. (f2) state simply that

$$
\begin{equation*}
\partial S_{o} / \partial \ddot{q}_{I}=Q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) Q_{D} \quad\left(\equiv Q_{I, o} \equiv Q_{I o}\right), \tag{g}
\end{equation*}
$$

where

$$
\left.S=S(t, q, \dot{q}, \ddot{q})=\cdots=S_{o}(t, q, \dot{q}, \ddot{q})=S_{o} .\right]
$$

Example 5.3.4 Special Forms of the Equations of Motion: Nonlinear Equations of Chaplygin and Voronets. Continuing from the preceding example, let us derive the specialization of the Johnsen-Hamel equations under (a-d) from that example.

First Method

Here, and recalling the notations and results of $\S 3.8$, and ex. 5.2.2 and ex. 5.2.3, we have

$$
\omega_{I} \rightarrow \dot{q}_{I}, \quad \theta_{I} \rightarrow\left(q_{I}\right), \quad T^{*} \rightarrow T_{o}=T_{o}\left(t, q, \dot{q}_{I}\right)
$$

(i.e., no kinetostatic equations, only kinetic);
and

$$
\begin{align*}
& \partial T^{*} / \partial \omega_{I} \rightarrow \partial T_{o} / \partial \dot{q}_{I}, \tag{a}\\
& \partial T^{*} / \partial \theta_{I} \rightarrow \partial T_{o} / \partial\left(q_{I}\right) \equiv \partial T_{o} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial T_{o} / \partial q_{D}\right) ; \tag{b}\\
& V^{I^{\prime}}{ }_{I} \rightarrow V_{I, o}^{I^{\prime}} \equiv W^{I^{\prime}}{ }_{I}=0 \quad \text { (Suslov viewpoint), } \tag{c}\\
& V^{D}{ }_{I} \rightarrow V^{D}{ }_{I, o} \equiv W^{D}{ }_{I}=\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I}-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \\
& \equiv E_{I}\left(\phi_{D}\right)-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \\
& \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial\left(q_{I}\right) \\
& \equiv E_{(I)}\left(\phi_{D}\right), \tag{d}\\
& \Gamma_{I} \rightarrow \Gamma_{I, o} \equiv W_{I}=\sum W_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \equiv \sum W_{I}^{D} p_{D, o}, \tag{e}\\
& \delta^{\prime} W \rightarrow\left(\delta^{\prime} W\right)_{o}=\left(\sum Q_{k} \delta q_{k}\right)_{o} \\
& =\cdots=\sum\left(Q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) Q_{D}\right) \delta q_{I} \equiv \sum Q_{I o} \delta q_{I} . \tag{f}
\end{align*}
$$

$\left\{\right.$ For a general function $f=f(t, q, \dot{q})=f\left[t, q, \dot{q}_{D}=\phi_{D}\left(t, q, \dot{q}_{I}\right), \dot{q}_{I}\right]=f_{o}\left(t, q, \dot{q}_{I}\right)=f_{o}$, we notice the difference between the ordinary chain rule:

$$
\partial f_{o} / \partial q_{k}=\partial f / \partial q_{k}+\sum\left(\partial f / \partial \dot{q}_{D}\right)\left(\partial \phi_{D} / \partial q_{k}\right)
$$

and the quasi chain rule specialization (i.e., notation - recall (2.11.15a ff.)):

$$
\left.\partial f_{o} / \partial\left(q_{I}\right) \equiv \partial f_{o} / \partial q_{I}+\sum\left(\partial f_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \cdot\right\}
$$

As a result of the above, eqs. (5.3.18a-20) yield what should, legitimately, be called the nonlinear Voronets equations:

$$
\begin{align*}
& \left\{\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\left[\partial T_{o} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial T_{o} / \partial q_{D}\right)\right]\right\}-\sum W_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \\
& \quad \equiv\left[\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial\left(q_{I}\right)\right]-\sum W_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \\
& \quad \equiv E_{I}\left(T_{o}\right)-\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial T_{o} / \partial q_{D}\right)-W_{I} \\
& \quad \equiv E_{(I)}\left(T_{o}\right)-W_{I} \\
& \quad=Q_{I o} \tag{g}
\end{align*}
$$

In the Chaplygin case, $\dot{q}_{D}=\dot{q}_{D}\left(q_{I}, \dot{q}_{I}\right) \equiv \phi_{D}\left(q_{I}, \dot{q}_{I}\right)$ and $T_{o}=T_{o}\left(q_{I}, \dot{q}_{I}\right)$, and so

$$
\begin{align*}
& \partial \phi_{D} / \partial q_{D^{\prime}}=0, \quad \partial T_{o} / \partial q_{D}=0, \\
& \quad \Rightarrow \partial \phi_{D} / \partial\left(q_{I}\right)=\partial \phi_{D} / \partial q_{I}, \\
& \quad \Rightarrow W_{I}^{D} \equiv E_{(I)}\left(\phi_{D}\right) \rightarrow E_{I}\left(\phi_{D}\right) \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I} \equiv T_{I}^{D}, \\
& \quad \Rightarrow \Gamma_{I, o} \equiv W_{I} \rightarrow T_{I} \equiv \sum T_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o}, \tag{h}
\end{align*}
$$

and, accordingly, (g) reduces to what we will be calling the nonlinear Chaplygin equations:

$$
\begin{gather*}
\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum T_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o} \\
\equiv\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-T_{I}=Q_{I o} . \tag{i}
\end{gather*}
$$

It is not hard to see that in the Pfaffian case, eqs. (g) and (i) reduce, respectively, to the original Voronets and Chaplygin forms (§3.8).

Second Method (By Direct Differentiation)
Here, we have

$$
\begin{align*}
& \partial T^{*} / \partial \omega_{I}=\sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \\
& =\sum\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial \dot{q}_{D} / \partial \omega_{I}\right)+\sum\left(\partial T / \partial \dot{q}_{I^{\prime}}\right)\left(\partial \dot{q}_{I^{\prime}} / \partial \omega_{I}\right) \\
& =\sum\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial \dot{q}_{D} / \partial \dot{q}_{I}\right)+\sum\left(\partial T / \partial \dot{q}_{I^{\prime}}\right)\left(\delta_{I^{\prime} I}\right) \\
& =\partial T / \partial \dot{q}_{I}+\sum\left(\partial \dot{q}_{D} / \partial \dot{q}_{I}\right)\left(\partial T / \partial \dot{q}_{D}\right)=\partial T_{o} / \partial \dot{q}_{I}, \tag{j}\\
& \partial T^{*} / \partial \omega_{D} \equiv \sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{D}\right) \\
& =\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)\left(\partial \dot{q}_{D^{\prime}} / \partial \omega_{D}\right)+\sum\left(\partial T / \partial \dot{q}_{I}\right)\left(\partial \dot{q}_{I} / \partial \omega_{D}\right) \\
& =\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)\left(\delta_{D^{\prime} D}\right)+\sum\left(\partial T / \partial \dot{q}_{I}\right)(0) \\
& =\partial T / \partial \dot{q}_{D} \rightarrow\left(\partial T / \partial \dot{q}_{D}\right)^{*} \rightarrow\left(\partial T / \partial \dot{q}_{D}\right)_{o}, \tag{k}\\
& \partial T^{*} / \partial \theta_{I} \equiv \sum\left(\partial T^{*} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \\
& =\sum\left(\partial T^{*} / \partial q_{D}\right)\left(\partial \dot{q}_{D} / \partial \omega_{I}\right)+\sum\left(\partial T^{*} / \partial q_{I^{\prime}}\right)\left(\partial \dot{q}_{I^{\prime}} / \partial \omega_{I}\right) \\
& =\sum\left(\partial T^{*} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \omega_{I}\right)+\sum\left(\partial T^{*} / \partial q_{I^{\prime}}\right)\left(\delta_{I^{\prime} I}\right) \\
& =\sum\left(\partial T_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)+\partial T_{o} / \partial q_{I} \\
& \equiv \partial T_{o} / \partial\left(q_{I}\right), \tag{1}\\
& H^{D}{ }_{I}=\sum\left[\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)^{\cdot}-\partial \omega_{D} / \partial q_{k}\right]\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \quad[\operatorname{by}(5.2 .21 \mathrm{~h})] \\
& =\sum\left[\left(\partial \omega_{D} / \partial \dot{q}_{D^{\prime}}\right)^{\cdot}-\partial \omega_{D} / \partial q_{D^{\prime}}\right]\left(\partial \dot{q}_{D^{\prime}} / \partial \omega_{I}\right) \\
& +\sum\left[\left(\partial \omega_{D} / \partial \dot{q}_{I^{\prime}}\right)^{\cdot}-\partial \omega_{D} / \partial q_{I^{\prime}}\right]\left(\partial \dot{q}_{I^{\prime}} / \partial \omega_{I}\right) \\
& =\sum\left[\left(\delta_{D D^{\prime}}\right)^{\cdot}-\left(-\partial \phi_{D} / \partial q_{D^{\prime}}\right)\right]\left(\partial \phi_{D^{\prime}} / \partial \omega_{I}\right) \\
& +\sum\left[\left(-\partial \phi_{D} / \partial \dot{q}_{I^{\prime}}\right)^{\cdot}-\left(-\partial \phi_{D} / \partial q_{I^{\prime}}\right)\right]\left(\delta_{I^{\prime} I}\right) \\
& =-\left\{\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\left[\partial \phi_{D} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial \phi_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right]\right\} \\
& =-\left[\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial\left(q_{I}\right)\right] \\
& \equiv-E_{(I)}\left(\dot{q}_{D}\right)=-W_{I}^{D}, \tag{m}\\
& V_{I}^{k}=\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)^{\cdot}-\sum\left(\partial \dot{q}_{k} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{I}\right) \quad[\mathrm{by}(5.2 .21 \mathrm{e})] ; \tag{n}
\end{align*}
$$

or, proceeding directly from (5.2.21f),

$$
\begin{align*}
H_{I}^{D} & =-\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) V_{I}^{k} \\
& =-\sum\left(\partial \omega_{D} / \partial \dot{q}_{D^{\prime}}\right) V^{D^{\prime}}{ }_{I}-\sum\left(\partial \omega_{D} / \partial \dot{q}_{I^{\prime}}\right) V^{I^{\prime}}{ }_{I} \\
& =-\sum\left(\delta_{D D^{\prime}}\right) V^{D^{\prime}}{ }_{I}-\sum\left(-\partial \phi_{D} / \partial \dot{q}_{I^{\prime}}\right)(0) \\
& =-V_{I}^{D} \longrightarrow-W_{I}^{D} \tag{o}
\end{align*}
$$

[Either from the Suslov viewpoint, or by direct application of (5.2.21f) to our special case, we easily find $V^{I^{\prime}} \rightarrow W^{I^{\prime}}=0$, and, therefore,

$$
\begin{align*}
{H^{I^{\prime}}}_{I} & \left.=-\sum\left(\partial \omega_{I^{\prime}} / \partial \dot{q}_{k}\right) V_{I}^{k}=\cdots=0\right], \\
\Theta_{I} & =\sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) Q_{k} \\
& =\sum\left(\partial \dot{q}_{D} / \partial \omega_{I}\right) Q_{D}+\sum\left(\partial \dot{q}_{I^{\prime}} / \partial \omega_{I}\right) Q_{I^{\prime}} \\
& =\sum\left(\partial \phi_{D} / \partial \omega_{I}\right) Q_{D}+\sum\left(\delta_{I^{\prime} I}\right) Q_{I^{\prime}} \\
& =Q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) Q_{D} \equiv Q_{I o} . \tag{p}
\end{align*}
$$

Substituting all these special results into (5.3.19), we recover (g), as expected.

Problem 5.3.1 (i) Using the definitions $\Gamma_{k}=\sum V_{k}^{l} p_{l}=-\sum H_{k}^{b} P_{b}$, and (5.2.21eg) in the Γ transformation equation (exs. 5.3.1 and 5.3.2), show that under $\omega\left(t, q, \omega^{\prime}\right) \Leftrightarrow \omega^{\prime}(t, q, \omega)$ the nonlinear Voronets and Hamel coefficients V_{k}^{l} and $H^{b}{ }_{k}$ transform as

$$
\begin{align*}
V_{k^{\prime}}^{l}= & \sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right) V_{k}^{l} \\
& +\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \tag{a}\\
H_{k^{\prime}}^{b^{\prime}}= & \sum\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)\left(\partial \omega_{b^{\prime}} / \partial \omega_{b}\right) H_{k}^{b} \\
& -\sum\left[\left(\partial \omega_{k} / \partial \omega_{k^{\prime}}\right)^{\cdot}-\partial \omega_{k} / \partial \theta_{k^{\prime}}\right]\left(\partial \omega_{b^{\prime}} / \partial \omega_{k}\right) \tag{b}
\end{align*}
$$

that is, in general, neither V_{k}^{l} nor $H^{b}{ }_{k}$ transform as vectors, tensors.
(ii) Then show that the new (transformed) Voronets and Hamel symbols are related to each other as are the old ones; that is,

$$
\begin{equation*}
H^{b_{k^{\prime}}^{\prime}}=-\sum\left(\partial \omega_{b^{\prime}} / \partial \dot{q}_{l}\right) V_{k^{\prime}}^{l} \Leftrightarrow V_{k^{\prime}}^{l}=-\sum\left(\partial \dot{q}_{l} / \partial \omega_{b^{\prime}}\right) H_{k^{\prime}}^{b^{\prime}}, \tag{c}
\end{equation*}
$$

where $\omega_{r^{\prime}}=\omega_{r^{\prime}}(t, q, \dot{q}) \Leftrightarrow \dot{q}_{l}=\dot{q}_{l}\left(t, q, \omega^{\prime}\right)$.
For alternative, equivalent, expressions to (a, b), see Novoselov (1979, pp. 120121).

Example 5.3.5 (Mei, 1985, pp. 89-90). Let us obtain the Routh-Voss equations of motion of a particle P of mass m moving under the constraint

$$
\begin{equation*}
\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}=\text { constant } \equiv c^{2} ; \tag{a}
\end{equation*}
$$

that is, square of velocity \boldsymbol{v} of $P=$ constant, where $q_{1,2,3}=x, y, z$: rectangular Cartesian coordinates of P. Here, with the usual notations,

$$
\begin{align*}
& 2 T=m\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right] \tag{b}\\
& f \equiv\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}-c^{2}=0 \\
& \Rightarrow \partial f / \partial \dot{q}_{k}=2 \dot{q}_{k} \quad(k=1,2,3) ; \tag{c}
\end{align*}
$$

and, therefore, the nonlinear Routh-Voss equations, under impressed forces Q_{k}, are

$$
\begin{equation*}
m \ddot{q}_{k}=Q_{k}+2 \lambda \dot{q}_{k}, \tag{d}
\end{equation*}
$$

and along with (a) they constitute a determinate system for the $q_{k}(t)$ and $\lambda(t)$.
To eliminate the multiplier λ, we multiply each of (d) by its \dot{q}_{k} and add them together, thus obtaining the power equation

$$
\begin{align*}
& m\left(\dot{q}_{1} \ddot{q}_{1}+\dot{q}_{2} \ddot{q}_{2}+\dot{q}_{3} \ddot{q}_{3}\right) \\
& \quad=Q_{1} \dot{q}_{1}+Q_{2} \dot{q}_{2}+Q_{3} \dot{q}_{3}+2 \lambda\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right] \\
& \quad=Q_{1} \dot{q}_{1}+Q_{2} \dot{q}_{2}+Q_{3} \dot{q}_{3}+2 \lambda c^{2} \tag{e}
\end{align*}
$$

from which, invoking the constraint (c) $f=0$ and its (...) -derivative

$$
\dot{f}=2\left(\dot{q}_{1} \ddot{q}_{1}+\dot{q}_{2} \ddot{q}_{2}+\dot{q}_{3} \ddot{q}_{3}\right)=0
$$

we readily get the multiplier

$$
\begin{equation*}
\lambda=-\left(Q_{1} \dot{q}_{1}+Q_{2} \dot{q}_{2}+Q_{3} \dot{q}_{3}\right) / 2 c^{2} \tag{f}
\end{equation*}
$$

Finally, substituting λ from (f) back into (d), we obtain the purely kinetic ("Jacobi-Synge" type of) equations

$$
\begin{equation*}
m \ddot{q}_{k}=Q_{k}-\left[\left(Q_{1} \dot{q}_{1}+Q_{2} \dot{q}_{2}+Q_{3} \dot{q}_{3}\right) / c^{2}\right] \dot{q}_{k} . \tag{g}
\end{equation*}
$$

[Recall examples 3.2.6, 3.5.5, and 3.10.2. The general methodology for obtaining such reactionless equations seems to have originated with Jacobi [1842-1843, publ. 1866; p. 51 ff. (esp. p. 55) and p. 132 ff.]; while a more general, tensor calculus-based approach is due to Synge (1926-1927, pp. 53-55).]

Let us examine this problem from the elementary Newton-Euler viewpoint. In view of (a), v=c, and so the intrinsic equations of motion of P (§1.2):

$$
\begin{equation*}
m v^{2} / \rho=F_{n}+R_{n}, \quad m \dot{v}=F_{t}+R_{t} \tag{h}
\end{equation*}
$$

(ρ : radius of curvature of trajectory of $P, F_{n, t} / R_{n, t}:$ normal and tangential components of total impressed/reaction force on P), reduce to

$$
\begin{align*}
& m c^{2} / \rho=F_{n}+R_{n}, \\
& \quad 0=F_{t}+R_{t} \\
& \Rightarrow R_{t}=-F_{t}=-\boldsymbol{F} \cdot(\boldsymbol{v} / v)=-(\boldsymbol{F} \cdot \boldsymbol{v}) / c \\
& =-\left(\sum Q_{k} \dot{q}_{k}\right) / c=2 c \lambda . \tag{i}
\end{align*}
$$

For additional details, see Hamel (1949, pp. 709-710).

Example 5.3.6 (Mei, 1985, pp. 91-93). Let us obtain the Routh-Voss equations of motion of a particle P of mass m moving in a uniform gravitational field and subject to the Appell-Hamel constraint

$$
\begin{equation*}
(\dot{x})^{2}+(\dot{y})^{2}=(a / b)^{2}(\dot{z})^{2} \quad(a, b \text { : given; say, positive constants }) \tag{a}
\end{equation*}
$$

where, x, y, z : rectangular Cartesian coordinates of P.
Since here

$$
\begin{align*}
2 T & =m\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right] \\
Q_{x} & =0, \quad Q_{y}=0, \quad Q_{z}=-m g \quad(\text { with }+z \text { vertically upward) } \tag{b}
\end{align*}
$$

and with

$$
\begin{equation*}
f \equiv(\dot{x})^{2}+(\dot{y})^{2}-(a / b)^{2}(\dot{z})^{2}=0 \tag{c}
\end{equation*}
$$

the Routh-Voss equations are

$$
\begin{equation*}
m \ddot{x}=2 \lambda \dot{x}, \quad m \ddot{y}=2 \lambda \dot{y}, \quad m \ddot{z}=-m g-2 \lambda(a / b)^{2} \dot{z} \tag{d}
\end{equation*}
$$

and with (a) they constitute a determinate system for $x(t), y(t), z(t), \lambda(t)$. To obtain reactionless "Jacobi-Synge" equations [like (g) of the preceding example], we (...)'-differentiate the constraint (a):

$$
\begin{equation*}
\ddot{z}=(b / a)^{2}[(\dot{x} \ddot{x}+\dot{y} \ddot{y}) / \dot{z}], \tag{e}
\end{equation*}
$$

and then substitute it into the third of (d), while using (a) rewritten as

$$
\begin{equation*}
\dot{z}=(b / a)\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2} \quad[\dot{z}, a, b>0], \tag{f}
\end{equation*}
$$

that is, the ratio of vertical velocity to horizontal velocity equals b / a. The result is

$$
\begin{align*}
2 \lambda= & -m(b / a)^{2}(\dot{x} \ddot{x}+\dot{y} \ddot{y}) /\left[(\dot{x})^{2}+(\dot{y})^{2}\right] \\
& -m g(b / a) /\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2}, \tag{g}
\end{align*}
$$

and when this is substituted back into the first two of (d), it yields the reactionless equations

$$
\begin{gather*}
\ddot{x}+(b / a)^{2}(\dot{x} \ddot{x}+\dot{y} \ddot{y}) \dot{x} /\left[(\dot{x})^{2}+(\dot{y})^{2}\right] \\
=-g(b / a) \dot{x} /\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2} \tag{h}\\
\ddot{y}+(b / a)^{2}(\dot{x} \ddot{x}+\dot{y} \ddot{y}) \dot{y} /\left[(\dot{x})^{2}+(\dot{y})^{2}\right] \\
=-g(b / a) \dot{y} /\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2} \tag{i}
\end{gather*}
$$

From these two equations, we readily obtain the equivalent, but simpler, system

$$
\begin{align*}
& \dot{y} \ddot{x}-\dot{x} \ddot{y}=0, \\
& \dot{x} \ddot{x}+\dot{y} \ddot{y}=-(g a b)\left(a^{2}+b^{2}\right)^{-1}\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2} \tag{j}
\end{align*}
$$

The first of the above, assuming $\dot{y} \neq 0$, can be rewritten as $(\dot{x} / \dot{y})^{\cdot}=0$, and integrates immediately to $\dot{y}=c \dot{x}$ (c : integration constant), or further to

$$
\begin{equation*}
y-y_{o}=c\left(x-x_{o}\right) \quad\left[x_{o}=x(0), y_{o}=y(0)\right] ; \tag{k}
\end{equation*}
$$

while the second, with the help of the auxiliary variable, $v^{2}=(\dot{x})^{2}+(\dot{y})^{2}$, can be rewritten as $\dot{v}=-(g a b)\left(a^{2}+b^{2}\right)^{-1}$, and integrates readily to

$$
\begin{equation*}
v-v_{o}=-\left[(g a b)\left(a^{2}+b^{2}\right)^{-1}\right] t \quad\left[v_{o}=v(0)\right] . \tag{1}
\end{equation*}
$$

In view of this result, the constraint (f) becomes (assuming $\dot{z}>0$)

$$
\dot{z}=(b / a) v=(b / a) v_{o}-\left[\left(g b^{2}\right)\left(a^{2}+b^{2}\right)^{-1}\right] t,
$$

and, upon integrating, yields

$$
\begin{equation*}
z=z_{o}+(b / a) v_{o} t-\left[\left(g b^{2}\right) / 2\left(a^{2}+b^{2}\right)\right] t^{2} \tag{m}
\end{equation*}
$$

Finally, with the help of the earlier integral $\dot{y}=c \dot{x}, v$ becomes

$$
\begin{equation*}
v=\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2}=\dot{x}\left(1+c^{2}\right)^{1 / 2}=(\dot{y} / c)\left(1+c^{2}\right)^{1 / 2} \tag{n}
\end{equation*}
$$

and so (1) transforms to the following equivalent x, y-equations:

$$
\begin{align*}
& \left(1+c^{2}\right)^{1 / 2} \dot{x}=v_{o}-\left[(g a b) /\left(a^{2}+b^{2}\right)\right] t, \tag{o}\\
& \left(1+c^{2}\right)^{1 / 2}(\dot{y} / c)=v_{o}-\left[(g a b) /\left(a^{2}+b^{2}\right)\right] t, \tag{p}
\end{align*}
$$

from which, integrating, we get

$$
\begin{align*}
& \left(1+c^{2}\right)^{1 / 2}\left(x-x_{o}\right)=v_{o} t-\left[(g a b) / 2\left(a^{2}+b^{2}\right)\right] t^{2} \tag{q}\\
& c^{-1}\left(1+c^{2}\right)^{1 / 2}\left(y-y_{o}\right)=v_{o} t-\left[(g a b) / 2\left(a^{2}+b^{2}\right)\right] t^{2} . \tag{r}
\end{align*}
$$

Comparing the above with (m), we see that we can rewrite all three of them as

$$
\begin{equation*}
\left(1+c^{2}\right)^{1 / 2}\left(x-x_{o}\right)=c^{-1}\left(1+c^{2}\right)^{1 / 2}\left(y-y_{o}\right)=(a / b)\left(z-z_{o}\right) \tag{s}
\end{equation*}
$$

where c can be found from $c=\dot{y}_{o} / \dot{x}_{o}$.
Substituting from the above into (g), we can find the constraint reaction $\lambda=\lambda\left(t ; v_{o}, m, g, a, b\right)$, if needed.

Example 5.3.7 (Mei, 1985, pp. 245-246). Let us obtain the kinetic Appellian equations of a particle P of mass m moving under the action of impressed forces $Q_{k}(k=1,2,3)$ and subject to the Appell-Hamel constraint

$$
\begin{equation*}
\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}=\left(\dot{q}_{3}\right)^{2} \quad\left(q_{1,2,3}: \text { rectangular Cartesian coordinates of } P\right) ; \tag{a}
\end{equation*}
$$

that is, vertical velocity equals (\pm) of horizontal velocity.

In view of the constraint (a), we introduce the following quasi velocities:

$$
\begin{align*}
& 2 \omega_{1} \equiv\left[\left(\dot{q}_{3}\right)^{2}-\left(\dot{q}_{1}\right)^{2}-\left(\dot{q}_{2}\right)^{2}\right]=0, \tag{b}\\
& \omega_{2} \equiv \arctan \left(\dot{q}_{2} / \dot{q}_{1}\right) \neq 0, \tag{c}\\
& 2 \omega_{3} \equiv\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right] \quad(=2 T / m \neq 0) \tag{d}
\end{align*}
$$

Adding and subtracting (b) and (d) side by side we obtain, respectively,

$$
\begin{align*}
& \left(\dot{q}_{3}\right)^{2}=\omega_{1}+\omega_{3} \Rightarrow \dot{q}_{3}=\left(\omega_{1}+\omega_{3}\right)^{1 / 2}, \tag{e}\\
& \left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}=\omega_{3}-\omega_{1} \tag{f}
\end{align*}
$$

and from these and (c), we are readily led to the inverse of (b-d):

$$
\begin{align*}
& \dot{q}_{1}=\left(\omega_{3}-\omega_{1}\right)^{1 / 2} \cos \omega_{3}, \quad \dot{q}_{2}=\left(\omega_{3}-\omega_{1}\right)^{1 / 2} \sin \omega_{3}, \\
& \dot{q}_{3}=\left(\omega_{1}+\omega_{3}\right)^{1 / 2} \tag{g}
\end{align*}
$$

Now, since we are interested only in the kinetic Appellian equations, we can enforce the constraint (b) right at this point; that is, we can work with (g) and its $(\ldots)^{\circ}$-derivatives evaluated at $\omega_{1}=0$; that is (skipping special notations, such as $(\ldots)_{o}$, for simplicity),

$$
\begin{align*}
& \dot{q}_{1}=\left(\omega_{3}\right)^{1 / 2} \cos \omega_{2}, \quad \dot{q}_{2}=\left(\omega_{3}\right)^{1 / 2} \sin \omega_{2}, \quad \dot{q}_{3}=\left(\omega_{3}\right)^{1 / 2} \tag{h}\\
& \ddot{q}_{1}=\left[\dot{\omega}_{3} / 2\left(\omega_{3}\right)^{1 / 2}\right] \cos \omega_{2}-\left(\omega_{3}\right)^{1 / 2} \dot{\omega}_{2} \sin \omega_{2}, \\
& \ddot{q}_{2}=\left[\dot{\omega}_{3} / 2\left(\omega_{3}\right)^{1 / 2}\right] \sin \omega_{2}+\left(\omega_{3}\right)^{1 / 2} \dot{\omega}_{2} \cos \omega_{2}, \\
& \ddot{q}_{3}=\dot{\omega}_{3} / 2\left(\omega_{3}\right)^{1 / 2} \tag{i}
\end{align*}
$$

Hence, the constrained Appellian, S^{*} for $\omega_{1}=0, \dot{\omega}_{1}=0$ [denoted for convenience by S^{*}, instead of a more precise notation, such as $S^{*}{ }_{o}$] equals:

$$
\begin{align*}
2 S / m & =\left[\left(\ddot{q}_{1}\right)^{2}+\left(\ddot{q}_{2}\right)^{2}+\left(\ddot{q}_{3}\right)^{2}\right] \\
& =\cdots=\left(\dot{\omega}_{3}\right)^{2} / 2 \omega_{3}+\omega_{3}\left(\dot{\omega}_{2}\right)^{2}=S^{*}\left(\omega_{3}, \dot{\omega}_{2}, \dot{\omega}_{3}\right) \tag{j}
\end{align*}
$$

and therefore the (constrained) nonholonomic kinetic inertia "forces" are

$$
\begin{equation*}
I_{2} \equiv \partial S^{*} / \partial \dot{\omega}_{2}=m \omega_{3} \dot{\omega}_{2}, \quad I_{3} \equiv \partial S^{*} / \partial \dot{\omega}_{3}=m \dot{\omega}_{3} / 2 \omega_{3} . \tag{k}
\end{equation*}
$$

REMARK

However, as the above and the chain rule show, we could have stopped at the first line of (j) and not completed the squares. Indeed, we have

$$
\begin{align*}
\partial S^{*} / \partial \dot{\omega}_{2}= & \left(\partial S / \partial \ddot{q}_{1}\right)\left(\partial \ddot{q}_{1} / \partial \dot{\omega}_{2}\right)+\left(\partial S / \partial \ddot{q}_{2}\right)\left(\partial \ddot{q}_{2} / \partial \dot{\omega}_{2}\right) \\
& +\left(\partial S / \partial \ddot{q}_{3}\right)\left(\partial \ddot{q}_{3} / \partial \dot{\omega}_{2}\right) \\
= & \left(\partial S / \partial \ddot{q}_{1}\right)\left(\partial \dot{q}_{1} / \partial \omega_{2}\right)+\left(\partial S / \partial \ddot{q}_{2}\right)\left(\partial \dot{q}_{2} / \partial \omega_{2}\right) \\
& +\left(\partial S / \partial \ddot{q}_{3}\right)\left(\partial \dot{q}_{3} / \partial \omega_{2}\right) \\
= & \left(m \ddot{q}_{1}\right)\left[-\left(\omega_{3}\right)^{1 / 2} \sin \omega_{2}\right]+\left(m \ddot{q}_{2}\right)\left[\left(\omega_{3}\right)^{1 / 2} \cos \omega_{2}\right] \\
& +\left(m \ddot{q}_{3}\right)(0) \\
= & \cdots=m \omega_{3} \dot{\omega}_{2} \quad[\text { using }(\mathrm{i})], \tag{1}\\
\partial S^{*} / \partial \dot{\omega}_{3}= & \left(\partial S / \partial \ddot{q}_{1}\right)\left(\partial \dot{q}_{1} / \partial \omega_{3}\right)+\left(\partial S / \partial \ddot{q}_{2}\right)\left(\partial \dot{q}_{2} / \partial \omega_{3}\right) \\
& +\left(\partial S / \partial \ddot{q}_{3}\right)\left(\partial \dot{q}_{3} / \partial \omega_{3}\right) \\
= & \left(m \ddot{q}_{1}\right)\left[\cos \omega_{2} / 2\left(\omega_{3}\right)^{1 / 2}\right]+\left(m \ddot{q}_{2}\right)\left[\sin \omega_{2} / 2\left(\omega_{3}\right)^{1 / 2}\right] \\
& +\left(m \ddot{q}_{3}\right)\left[1 / 2\left(\omega_{3}\right)^{1 / 2}\right] \\
= & \cdots=m \dot{\omega}_{3} / 2 \omega_{3}, \tag{m}
\end{align*}
$$

as before.
From the above, it follows that the kinetic Appellian equations are

$$
\begin{equation*}
I_{2}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{2}\right) Q_{k} \quad\left(=\Theta_{2}\right), \quad I_{3}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{3}\right) Q_{k} \quad\left(=\Theta_{3}\right) ; \tag{n}
\end{equation*}
$$

or, explicitly,

$$
\begin{equation*}
m \omega_{3} \dot{\omega}_{2}=\left[-\left(\omega_{3}\right)^{1 / 2} \sin \omega_{2}\right] Q_{1}+\left[\left(\omega_{3}\right)^{1 / 2} \cos \omega_{2}\right] Q_{2} \tag{o}
\end{equation*}
$$

and

$$
\begin{equation*}
m \dot{\omega}_{3} / 2 \omega_{3}=\left[\cos \omega_{2} / 2\left(\omega_{3}\right)^{1 / 2}\right] Q_{1}+\left[\sin \omega_{2} / 2\left(\omega_{3}\right)^{1 / 2}\right] Q_{2}+\left[1 / 2\left(\omega_{3}\right)^{1 / 2}\right] Q_{3} \tag{p}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
2 m\left(\sqrt{\omega_{3}}\right)^{\cdot}=\left(\cos \omega_{2}\right) Q_{1}+\left(\sin \omega_{2}\right) Q_{2}+Q_{3} . \tag{q}
\end{equation*}
$$

In the special case of a uniform gravitational field - that is,

$$
\begin{equation*}
Q_{1}=0, \quad Q_{2}=0, \quad Q_{3}=-m g, \tag{r}
\end{equation*}
$$

eqs. (o) and (q) specialize, respectively, to

$$
\begin{equation*}
m \omega_{3} \dot{\omega}_{2}=0 \quad \text { and } \quad 2 m\left(\sqrt{\omega_{3}}\right)^{\cdot}=-m g \tag{s}
\end{equation*}
$$

and have the obvious integrals

$$
\begin{equation*}
\omega_{2}=\omega_{2 o} \quad \text { and } \quad \sqrt{\omega_{3}}=\sqrt{\omega_{3 o}}-g t / 2 \quad\left[\omega_{2 o}=\omega_{2}(0), \quad \omega_{3 o}=\omega_{3}(0)\right] \tag{t}
\end{equation*}
$$

In the q-variables, the above become [recalling (h)]

$$
\begin{align*}
& \dot{q}_{1}=\left(-g t / 2+\sqrt{\omega_{3 o}}\right) \cos \omega_{2 o}, \quad \dot{q}_{2}=\left(-g t / 2+\sqrt{\omega_{3 o}}\right) \sin \omega_{2 o}, \\
& \dot{q}_{3}=-g t / 2+\sqrt{\omega_{3 o}}, \tag{u}
\end{align*}
$$

and integrate readily to

$$
\begin{align*}
& q_{1}-q_{1 o}=\left(-g t^{2} / 4+\sqrt{\omega_{3 o}} t\right) \cos \omega_{2 o}, \quad q_{2}-q_{2 o}=\left(-g t^{2} / 4+\sqrt{\omega_{3 o}} t\right) \sin \omega_{2 o}, \\
& q_{3}-q_{3 o}=-g t^{2} / 4+\sqrt{\omega_{3 o}} t \quad\left[q_{k o}=q_{k}(0), \quad k=1,2,3\right] . \tag{v}
\end{align*}
$$

Example 5.3.8 (Hamel, 1938, pp. 49-50; 1949, pp. 499-501; Mei, 1985, pp. $178-$ 181). Let us derive the kinetic Johnsen-Hamel equations of the preceding example. We saw there that (no constraint enforcement yet!)

$$
\begin{align*}
& 2 \omega_{1} \equiv\left[\left(\dot{q}_{3}\right)^{2}-\left(\dot{q}_{1}\right)^{2}-\left(\dot{q}_{2}\right)^{2}\right]=0, \tag{a}\\
& \omega_{2} \equiv \arctan \left(\dot{q}_{2} / \dot{q}_{1}\right) \neq 0, \tag{b}\\
& 2 \omega_{3} \equiv\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right] \quad(=2 T / m \neq 0) \tag{c}\\
& \dot{q}_{1}=\left(\omega_{3}-\omega_{1}\right)^{1 / 2} \cos \omega_{3}, \tag{d}\\
& \dot{q}_{2}=\left(\omega_{3}-\omega_{1}\right)^{1 / 2} \sin \omega_{3}, \tag{e}\\
& \dot{q}_{3}=\left(\omega_{1}+\omega_{3}\right)^{1 / 2} \tag{f}
\end{align*}
$$

With the help of the above, we readily find

$$
\begin{equation*}
2 T=m\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right] \Rightarrow T^{*}=m \omega_{3} \tag{g}
\end{equation*}
$$

and, therefore,

$$
\begin{align*}
& P_{1} \equiv \partial T^{*} / \partial \omega_{1}=0, \quad P_{2} \equiv \partial T^{*} / \partial \omega_{2}=0, \\
& P_{3} \equiv \partial T^{*} / \partial \omega_{3}=m \Rightarrow \dot{P}_{3}=0, \\
& \partial T^{*} / \partial q_{k}=0 \Rightarrow \partial T^{*} / \partial \theta_{I}=0 \quad[k=1,2,3 ; I=2,3], \tag{h}
\end{align*}
$$

and so, as eqs. (5.3.5b) show, we only need to calculate H^{3} and H_{3}^{3}.
Indeed, invoking (5.2 .21 h) and remembering to set $\omega_{1}=0$ after all differentiations have been carried out, we find

$$
\begin{gather*}
H_{2}^{3} \equiv \sum\left[\left(\partial \omega_{3} / \partial \dot{q}_{k}\right)^{\cdot}-\partial \omega_{3} / \partial q_{k}\right]\left(\partial \dot{q}_{k} / \partial \omega_{2}\right) \\
=\left[\left(\partial \omega_{3} / \partial \dot{q}_{1}\right)^{\cdot}-0\right]\left(\partial \dot{q}_{1} / \partial \omega_{2}\right)+\left[\left(\partial \omega_{3} / \partial \dot{q}_{2}\right)^{\cdot}-0\right]\left(\partial \dot{q}_{2} / \partial \omega_{2}\right) \\
=\cdots=-\sqrt{\omega_{3}}\left[\left(\sin \omega_{2}\right)\left(\sqrt{\omega_{3}} \cos \omega_{2}\right)^{\cdot}-\left(\cos \omega_{2}\right)\left(\sqrt{\omega_{3}} \sin \omega_{2}\right)^{\cdot}\right] \tag{i}\\
H_{3}^{3} \equiv \sum\left[\left(\partial \omega_{3} / \partial \dot{q}_{k}\right)^{\cdot}-\partial \omega_{3} / \partial q_{k}\right]\left(\partial \dot{q}_{k} / \partial \omega_{3}\right) \\
=\left[\left(\partial \omega_{3} / \partial \dot{q}_{1}\right)^{\cdot}-0\right]\left(\partial \dot{q}_{1} / \partial \omega_{3}\right)+\left[\left(\partial \omega_{3} / \partial \dot{q}_{2}\right)^{\cdot}-0\right]\left(\partial \dot{q}_{2} / \partial \omega_{3}\right) \\
+\left[\left(\partial \omega_{3} / \partial \dot{q}_{3}\right)^{\cdot}-0\right]\left(\partial \dot{q}_{3} / \partial \omega_{3}\right) \\
=\cdots=\left(1 / 2 \sqrt{\omega_{3}}\right)\left[\left(\cos \omega_{2}\right)\left(\sqrt{\omega_{3}} \cos \omega_{2}\right)^{\cdot}+\left(\sin \omega_{2}\right)\left(\sqrt{\omega_{3}} \sin \omega_{2}\right)^{\cdot}+\left(\sqrt{\omega_{3}}\right)^{\cdot}\right] ; \tag{j}
\end{gather*}
$$

and [recalling the right sides of eqs. (o, p) of the preceding example]

$$
\begin{align*}
& \Theta_{2}=\left(-\sqrt{\omega_{3}} \sin \omega_{2}\right) Q_{1}+\left(\sqrt{\omega_{3}} \cos \omega_{2}\right) Q_{2}, \tag{k}\\
& \Theta_{3}=\left(\cos \omega_{2} / 2 \sqrt{\omega_{3}}\right) Q_{1}+\left(\sin \omega_{2} / 2 \sqrt{\omega_{3}}\right) Q_{2}+\left(1 / 2 \sqrt{\omega_{3}}\right) Q_{3} . \tag{1}
\end{align*}
$$

Let the reader verify that by inserting all these expressions into (5.3.5b) we obtain, after some simple manipulations, eqs. (o) and $(\mathrm{p})=(\mathrm{q})$ of the preceding example; as we should.

REMARK

As pointed out earlier in this section, the Jacobian gradients $\partial \dot{q} / \partial \omega[\partial \omega / \partial \dot{q}]$ can also be found via Cramer's rule from the compatibility conditions (5.2.4a, b), once the $\partial \omega / \partial \dot{q}[\partial \dot{q} / \partial \omega]$ have been calculated from (a-c) $[(\mathrm{d}-\mathrm{f})]$; that is, it is not necessary to invert the nonlinear $(\mathrm{a}-\mathrm{c})[(\mathrm{d}-\mathrm{f})]$ to obtain $(\mathrm{d}-\mathrm{f})[(\mathrm{a}-\mathrm{c})]$.

Example 5.3.9 (Dobronravov, 1970, pp. 250-253; Mei, 1985, pp. 241-242; San, 1973, pp. 332-333). Let us derive the kinetic Appellian equations of a particle P of mass m moving in the central Newtonian gravitational field of another (much larger) origin O of mass M; and also subject to the constraint

$$
\begin{equation*}
2 f \equiv(\dot{r})^{2}+\left(r^{2} \cos ^{2} \theta\right)(\dot{\phi})^{2}+r^{2}(\dot{\theta})^{2}=\text { constant } \equiv c^{2} \tag{a}
\end{equation*}
$$

that is, square of velocity of $P=c$; where r, ϕ, θ : (inertial) spherical coordinates of P relative to O (with θ measured from the plane $O-x y$ toward $O z$).

The (unconstrained) Appellian of the system is

$$
\begin{equation*}
2 S=m\left(a_{r}^{2}+a_{\phi}^{2}+a_{\theta}^{2}\right), \tag{b}
\end{equation*}
$$

where $a_{r, \phi, \theta}$ are the (physical) components of the acceleration of P in spherical coordinates (e.g., recalling §1.2, or prob. 3.5.15, with $\theta \rightarrow \pi / 2-\theta$):

$$
\begin{align*}
a_{r} & =\ddot{r}-r\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \cos ^{2} \theta\right], \tag{c}\\
a_{\phi} & =r \ddot{\phi} \cos \theta+2 \dot{r} \dot{\phi} \cos \theta-2 r \dot{\phi} \dot{\theta} \sin \theta \tag{d}\\
a_{\theta} & =r \ddot{\theta}+2 \dot{r} \dot{\theta}+r(\dot{\phi})^{2} \sin \theta \cos \theta \tag{e}
\end{align*}
$$

In view of (a), we choose as independent q 's: $q_{2}=r$ and $q_{3}=\theta$, and use that constraint to express the dependent $q_{1}=\phi$ in terms of r, θ, and so on.

Indeed, solving (a) for $\dot{\phi}$, we obtain

$$
\begin{gather*}
(\dot{\phi})^{2}=\left[c^{2}-(\dot{r})^{2}-r^{2}(\dot{\theta})^{2}\right] / r^{2} \cos ^{2} \theta \tag{f}\\
\Rightarrow \ddot{\phi}=-\left(\dot{r} \ddot{r}+r^{2} \ddot{\theta} \ddot{\theta}\right) / r^{2} \dot{\phi} \cos ^{2} \theta \quad(+ \text { Appell-nonimportant terms }) \tag{g}
\end{gather*}
$$

and, therefore,

$$
\begin{align*}
& \partial \dot{\phi} / \partial \dot{r}=\partial \ddot{\phi} / \partial \ddot{r}=-\dot{r} / r^{2} \dot{\phi} \cos ^{2} \theta \tag{h}\\
& \partial \dot{\phi} / \partial \dot{\theta}=\partial \ddot{\phi} / \partial \ddot{\theta}=-\dot{\theta} / \dot{\phi} \cos ^{2} \theta \tag{i}
\end{align*}
$$

Applying chain rule to

$$
\begin{align*}
S & =S\left(a_{r}, a_{\phi}, a_{\theta}\right)=S\left[a_{r}(\ddot{r}, \ddot{\phi}, \ddot{\theta}, \ldots), \ldots\right] \\
& \equiv S^{\prime}(\ddot{r}, \ddot{\phi}, \ddot{\theta}, \ldots)=S^{\prime}[\ddot{r}, \ddot{\phi}(\ddot{r}, \ddot{\theta}, \ldots), \ddot{\theta}, \ldots] \\
& \equiv S_{o}(\ddot{(}, \ddot{\theta}, \ldots) \equiv S_{o} \quad[\text { where } \ldots \equiv \text { no } \ddot{r}, \ddot{\phi}, \ddot{\theta} \text { terms }], \tag{j}
\end{align*}
$$

we easily find [no need to complete the squares in (b-e)]

$$
\begin{align*}
& \partial S_{o} / \partial \ddot{r}= {\left[\left(\partial S / \partial a_{r}\right)\left(\partial a_{r} / \partial \ddot{r}\right)+\left(\partial S / \partial a_{\phi}\right)\left(\partial a_{\phi} / \partial \ddot{r}\right)\right.} \\
&\left.+\left(\partial S / \partial a_{\theta}\right)\left(\partial a_{\theta} / \partial \ddot{r}\right)\right](\partial \ddot{r} / \partial \ddot{r}) \\
&+ {\left[\left(\partial S / \partial a_{r}\right)\left(\partial a_{r} / \partial \ddot{\phi}\right)+\left(\partial S / \partial a_{\phi}\right)\left(\partial a_{\phi} / \partial \ddot{\phi}\right)\right.} \\
&\left.+\left(\partial S / \partial a_{\theta}\right)\left(\partial a_{\theta} / \partial \ddot{\phi}\right)\right](\partial \ddot{\phi} / \partial \ddot{r}) \\
&+ {\left[\left(\partial S / \partial a_{r}\right)\left(\partial a_{r} / \partial \ddot{\theta}\right)+\left(\partial S / \partial a_{\phi}\right)\left(\partial a_{\phi} / \partial \ddot{\theta}\right)\right.} \\
&\left.+\left(\partial S / \partial a_{\theta}\right)\left(\partial a_{\theta} / \partial \ddot{\theta}\right)\right](\partial \ddot{\theta} / \partial \ddot{r}) \\
& {\left[=\partial S^{\prime} / \partial \ddot{r}+\left(\partial S^{\prime} / \partial \ddot{\phi}\right)(\partial \ddot{\phi} / \partial \ddot{r})+\left(\partial S^{\prime} / \partial \ddot{\theta}\right)(\partial \ddot{\theta} / \partial \ddot{r})\right] } \\
&= \cdots=m\left[\ddot{r}-r(\dot{\theta})^{2}-r(\dot{\phi})^{2} \cos ^{2} \theta-(\dot{r} / \dot{\phi}) \ddot{\phi}\right. \\
&\left.\quad-2(\dot{r})^{2} / r+2 \dot{r} \dot{\theta} \tan \theta\right] \tag{k}
\end{align*}
$$

$$
\partial S_{o} / \partial \ddot{\theta}=\left[\left(\partial S / \partial a_{r}\right)\left(\partial a_{r} / \partial \ddot{r}\right)+\left(\partial S / \partial a_{\phi}\right)\left(\partial a_{\phi} / \partial \ddot{r}\right)\right.
$$

$$
\left.+\left(\partial S / \partial a_{\theta}\right)\left(\partial a_{\theta} / \partial \ddot{r}\right)\right](\partial \ddot{r} / \partial \ddot{\theta})
$$

$$
+\left[\left(\partial S / \partial a_{r}\right)\left(\partial a_{r} / \partial \ddot{\phi}\right)+\left(\partial S / \partial a_{\phi}\right)\left(\partial a_{\phi} / \partial \ddot{\phi}\right)\right.
$$

$$
\left.+\left(\partial S / \partial a_{\theta}\right)\left(\partial a_{\theta} / \partial \ddot{\phi}\right)\right](\partial \ddot{\phi} / \partial \ddot{\theta})
$$

$$
+\left[\left(\partial S / \partial a_{r}\right)\left(\partial a_{r} / \partial \ddot{\theta}\right)+\left(\partial S / \partial a_{\phi}\right)\left(\partial a_{\phi} / \partial \ddot{\theta}\right)\right.
$$

$$
\left.+\left(\partial S / \partial a_{\theta}\right)\left(\partial a_{\theta} / \partial \ddot{\theta}\right)\right](\partial \ddot{\theta} / \partial \ddot{\theta})
$$

$$
\left[=\left(\partial S^{\prime} / \partial \ddot{r}\right)(\partial \ddot{r} / \partial \ddot{\theta})+\left(\partial S^{\prime} / \partial \ddot{\phi}\right)(\partial \ddot{\phi} / \partial \ddot{\theta})+\partial S^{\prime} / \partial \ddot{\theta}\right]
$$

$$
=\cdots=m\left[r^{2} \ddot{\theta}+r^{2}(\dot{\phi})^{2} \sin \theta \cos \theta\right.
$$

$$
\begin{equation*}
\left.-r^{2}(\dot{\theta} / \dot{\phi}) \ddot{\phi}+2 r^{2}(\dot{\theta})^{2} \tan \theta\right] . \tag{1}
\end{equation*}
$$

Next, here (with G denoting the well-known gravitational constant)

$$
\begin{equation*}
Q_{r}=-m M G / r^{2}, \quad Q_{\phi}=0, \quad Q_{\theta}=0 \tag{m}
\end{equation*}
$$

and therefore the independent impressed forces, $Q_{I o}$, are

$$
\begin{equation*}
Q_{r o}=Q_{r}+(\partial \dot{\phi} / \partial \dot{r}) Q_{\phi}=-m M G / r^{2}, \quad Q_{\theta o}=Q_{\theta}+(\partial \dot{\phi} / \partial \dot{\theta}) Q_{\phi}=0 \tag{n}
\end{equation*}
$$

As a result of the above, the kinetic Appellian equations are

$$
\begin{align*}
\partial S_{o} / \partial \ddot{r} & =Q_{r o}: \\
\ddot{r} & -r(\dot{\theta})^{2}-r(\dot{\phi})^{2} \cos ^{2} \theta-(\dot{r} / \dot{\phi}) \ddot{\phi} \\
& -2(\dot{r})^{2} / r+2 \dot{r} \dot{\theta} \tan \theta=-M G / r^{2} \tag{o}\\
\partial S_{o} / \partial \ddot{\theta} & =Q_{\theta o}: \\
r^{2} \ddot{\theta} & +r^{2}(\dot{\phi})^{2} \sin \theta \cos \theta-r^{2}(\dot{\theta} / \dot{\phi}) \ddot{\phi}+2 r^{2}(\dot{\theta})^{2} \tan \theta=0 \tag{p}
\end{align*}
$$

and along with the constraint (a) these constitute a determinate system for $r(t), \phi(t), \theta(t)$.

Example 5.3.10 (Mei, 1985, pp. 155-156). Let us derive the general kinetic Voronets equations (5.3.8a, b) of the preceding example. We introduce the following quasi velocities:

$$
\begin{align*}
& \omega_{1} \equiv f-c^{2} / 2 \equiv\left\{\left[(\dot{r})^{2}+\left(r^{2} \cos ^{2} \theta\right)(\dot{\phi})^{2}+r^{2}(\dot{\theta})^{2}\right]-c^{2}\right\} / 2 \quad(=0) \tag{a}\\
& \omega_{2} \equiv \dot{r}(\neq 0) \tag{b}\\
& \omega_{3} \equiv r \dot{\theta}(\neq 0) \tag{c}
\end{align*}
$$

and their inverses (with $q_{1,2,3}: r, \phi, \theta$):

$$
\begin{align*}
& \dot{r}=\omega_{2}, \tag{d}\\
& \begin{aligned}
(\dot{\phi})^{2} & =\left[\left(2 \omega_{1}+c^{2}\right)-(\dot{r})^{2}-r^{2}(\dot{\theta})^{2}\right] / r^{2} \cos ^{2} \theta \\
& =\left[\left(2 \omega_{1}+c^{2}\right)-\omega_{2}^{2}-\omega_{3}^{2}\right] / r^{2} \cos ^{2} \theta,
\end{aligned} \\
& \dot{\theta}=\omega_{3} / r . \tag{e}
\end{align*}
$$

Hence, the general Voronets symbols needed, $V^{k}{ }_{I}$, eqs. (5.2.21e; with $k=1,2,3$; $I=2,3$) specialize to

$$
\begin{align*}
V_{2}^{1} & \equiv\left(\partial \dot{r} / \partial \omega_{2}\right)^{\cdot}-\partial \dot{r} / \partial \theta_{2} \equiv\left(\partial \dot{r} / \partial \omega_{2}\right)^{\cdot}-\sum\left(\partial \dot{r} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{2}\right) \\
& =(1)^{\cdot}-0=0, \tag{g}\\
V_{2}^{2} & \equiv\left(\partial \dot{\phi} / \partial \omega_{2}\right)^{\cdot}-\partial \dot{\phi} / \partial \theta_{2} \equiv\left(\partial \dot{\phi} / \partial \omega_{2}\right)^{\cdot}-\sum\left(\partial \dot{\phi} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{2}\right) \\
& =\left(-\dot{r} / r^{2} \dot{\phi} \cos ^{2} \theta\right)^{\cdot}-(-\dot{\phi} / r)(1), \tag{h}\\
V_{2}^{3} & \equiv\left(\partial \dot{\theta} / \partial \omega_{2}\right)^{\cdot}-\partial \dot{\theta} / \partial \theta_{2} \equiv\left(\partial \dot{\theta} / \partial \omega_{2}\right)^{\cdot}-\sum\left(\partial \dot{\theta} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{2}\right) \\
& =(0)^{\cdot}-(-\dot{\theta} / r)(1)=\dot{\theta} / r ; \tag{i}\\
V_{3}^{1} & \equiv\left(\partial \dot{r} / \partial \omega_{3}\right)^{\cdot}-\partial \dot{r} / \partial \theta_{3} \equiv\left(\partial \dot{r} / \partial \omega_{3}\right)^{\cdot}-\sum\left(\partial \dot{r} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{3}\right) \\
& =(0)^{\cdot}-0=0, \tag{j}\\
V_{3}^{2} & \equiv\left(\partial \dot{\phi} / \partial \omega_{3}\right)^{\cdot}-\partial \dot{\phi} / \partial \theta_{3} \equiv\left(\partial \dot{\phi} / \partial \omega_{3}\right)^{\cdot}-\sum\left(\partial \dot{\phi} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{3}\right) \\
& =\left(-\dot{\theta} / r \dot{\phi} \cos ^{2} \theta\right)^{\cdot}-(\dot{\phi} \tan \theta)\left(r^{-1}\right), \tag{k}
\end{align*}
$$

$$
\begin{align*}
V_{3}^{3} & \equiv\left(\partial \dot{\theta} / \partial \omega_{3}\right)^{\cdot}-\partial \dot{\theta} / \partial \theta_{3} \equiv\left(\partial \dot{\theta} / \partial \omega_{3}\right)^{\cdot}-\sum\left(\partial \dot{\theta} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{3}\right) \\
& =\left(r^{-1}\right)^{\cdot}-(-\dot{\theta} / r)(0)=-\dot{r} / r^{2} ; \tag{1}
\end{align*}
$$

while the (unconstrained) kinetic energy, in holonomic variables, becomes

$$
\begin{align*}
& 2 T=m\left[(\dot{r})^{2}+\left(r^{2} \cos ^{2} \theta\right)(\dot{\phi})^{2}+r^{2}(\dot{\theta})^{2}\right] \\
& \quad\left(=m c^{2}, \text { constrained kinetic energy }\right) \tag{m}\\
& \Rightarrow \partial T / \partial \dot{r}=m \dot{r}, \quad \partial T / \partial \dot{\phi}=m r^{2} \cos ^{2} \theta \dot{\phi}, \quad \partial T / \partial \dot{\theta}=m r^{2} \dot{\theta} \tag{n}
\end{align*}
$$

and, in nonholonomic variables,

$$
\begin{align*}
& 2 T^{*}=m\left(2 \omega_{1}+c^{2}\right) \tag{o}\\
& \Rightarrow \partial T^{*} / \partial \omega_{2}=0, \quad \partial T^{*} / \partial \omega_{3}=0 \\
& \partial T^{*} / \partial \theta_{2} \equiv \sum\left(\partial T^{*} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{2}\right)=0, \quad \partial T^{*} / \partial \theta_{3}=0 \tag{p}
\end{align*}
$$

and, finally, the corresponding nonholonomic impressed forces are

$$
\begin{equation*}
\Theta_{2} \equiv \sum\left(\partial \dot{q}_{k} / \partial \omega_{2}\right) Q_{k}=\cdots=-m M G / r^{2}, \quad \Theta_{3}=\cdots=0 \tag{q}
\end{equation*}
$$

Substituting all these special results into eqs. (5.3.8a, b) yields

$$
\begin{array}{ll}
\omega_{2}: & 0-\left[V_{2}^{2}(\partial T / \partial \dot{\phi})+V_{2}^{3}(\partial T / \partial \dot{\theta})\right]=\Theta_{2} \\
\omega_{3}: & 0-\left[V_{3}^{2}(\partial T / \partial \dot{\phi})+V_{3}^{3}(\partial T / \partial \dot{\theta})\right]=\Theta_{3} \tag{s}
\end{array}
$$

and if these two equations are written out, in extenso, they, naturally, coincide with the Appellian equations (o, p) of the preceding example.

Last, by substituting in the above $\dot{r}, \dot{\phi}, \dot{\theta}$ in terms of $\omega_{1}(=0), \omega_{2}, \omega_{3}$, including $\partial T / \partial \dot{q}_{k} \rightarrow\left(\partial T / \partial \dot{q}_{k}\right)^{*}$, via (d-f), we may, if needed, express (r, s) in terms of these quasi variables, à la Hamel.

Example 5.3.11 Let us derive the special (kinetic) Chaplygin-Voronets equations (ex. 5.3.4: g, i) for the system of ex. 5.3.5. Here, $n=3$ and $m=1$, and so with the choice $\dot{q}_{D}: \dot{q}_{1}$ and $\dot{q}_{I}: \dot{q}_{2,3}$, the constraint

$$
\begin{equation*}
\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}=\text { constant } \equiv c^{2} \tag{a}
\end{equation*}
$$

yields

$$
\begin{equation*}
\dot{q}_{D} \rightarrow \dot{q}_{1}=\left[c^{2}-\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right]^{1 / 2} \equiv \phi_{1}\left(\dot{q}_{I}\right) . \tag{b}
\end{equation*}
$$

Therefore, the kinetic energy becomes

$$
\begin{align*}
2 T & =m\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right] \\
& =m\left\{\left[c^{2}-\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right]+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right\} \\
& =m c^{2}=T_{o}\left(\dot{q}_{I}\right) \equiv T_{o} \quad(\text { constrained kinetic energy }) \tag{c}
\end{align*}
$$

$$
\begin{align*}
\Rightarrow & \partial T / \partial \dot{q}_{D}: \partial T / \partial \dot{q}_{1}=m \dot{q}_{1} \\
& \partial T_{o} / \partial \dot{q}_{I}=0 \\
& \partial T_{o} / \partial\left(q_{I}\right) \equiv \partial T_{o} / \partial q_{I}+\sum\left(\partial T_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)=\partial T_{o} / \partial q_{I} \tag{d}
\end{align*}
$$

the relevant nonlinear Voronets-Chaplygin coefficients $V^{D}{ }_{I} \rightarrow W^{D}{ }_{I}$ reduce to the following nonlinear Chaplygin coefficients $T^{D}{ }_{I}$:

$$
\begin{align*}
& T_{2}^{1} \equiv\left(\partial \phi_{1} / \partial \dot{q}_{2}\right)^{\cdot}-\partial \phi_{1} / \partial q_{2}=\left(-\dot{q}_{2} / \dot{q}_{1}\right)^{\cdot}-0, \tag{e}\\
& T_{3}^{1} \equiv\left(\partial \phi_{1} / \partial \dot{q}_{3}\right)^{\cdot}-\partial \phi_{1} / \partial q_{3}=\left(-\dot{q}_{3} / \dot{q}_{1}\right)^{\cdot}-0 ; \tag{f}
\end{align*}
$$

and the constrained impressed forces $Q_{I o}$ become

$$
\begin{align*}
& Q_{2 o}=Q_{2}+\left(\partial \phi_{1} / \partial \dot{q}_{2}\right) Q_{1}=Q_{2}-\left(\dot{q}_{2} / \dot{q}_{1}\right) Q_{1} \tag{g}\\
& Q_{3 o}=Q_{3}+\left(\partial \phi_{1} / \partial \dot{q}_{3}\right) Q_{1}=Q_{3}-\left(\dot{q}_{3} / \dot{q}_{1}\right) Q_{1} \tag{h}
\end{align*}
$$

Substituting all these special results into the nonlinear Voronets \rightarrow Chaplygin equations

$$
\begin{equation*}
\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum T_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o}=Q_{I o} \tag{i}
\end{equation*}
$$

we find

$$
\begin{align*}
-T_{2}^{1}\left(\partial T / \partial \dot{q}_{1}\right)= & Q_{20}: \\
& -\left(-\dot{q}_{2} / \dot{q}_{1}\right)^{\circ}\left(m \dot{q}_{1}\right)=Q_{2}-\left(\dot{q}_{2} / \dot{q}_{1}\right) Q_{1} \tag{j}\\
-T_{3}^{1}\left(\partial T / \partial \dot{q}_{1}\right)= & Q_{30}: \\
& -\left(-\dot{q}_{3} / \dot{q}_{1}\right)^{\circ}\left(m \dot{q}_{1}\right)=Q_{3}-\left(\dot{q}_{3} / \dot{q}_{1}\right) Q_{1} ; \tag{k}
\end{align*}
$$

or, simplifying,

$$
\begin{align*}
& m \ddot{q}_{2}=Q_{2}+\left(\dot{q}_{2} / \dot{q}_{1}\right)\left(m \ddot{q}_{1}-Q_{1}\right), \tag{1}\\
& m \ddot{q}_{3}=Q_{3}+\left(\dot{q}_{3} / \dot{q}_{1}\right)\left(m \ddot{q}_{1}-Q_{1}\right), \tag{m}
\end{align*}
$$

respectively.
To show the equivalence of the above with (g) of ex. 5.3.5, we (...) -differentiate (a),

$$
\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}=c^{2} \Rightarrow \dot{q}_{1} \ddot{q}_{1}+\dot{q}_{2} \ddot{q}_{2}+\dot{q}_{3} \ddot{q}_{3}=0
$$

solve the result for \ddot{q}_{1}, and then, invoking ($k, 1$) in it, we obtain, successively,

$$
\begin{aligned}
m \ddot{q}_{1}= & -\left(\dot{q}_{2} / \dot{q}_{1}\right)\left(m \ddot{q}_{2}\right)-\left(\dot{q}_{3} / \dot{q}_{1}\right)\left(m \ddot{q}_{3}\right) \\
= & -\left(\dot{q}_{2} / \dot{q}_{1}\right)\left[Q_{2}+\left(\dot{q}_{2} / \dot{q}_{1}\right)\left(m \ddot{q}_{1}-Q_{1}\right)\right] \\
& -\left(\dot{q}_{3} / \dot{q}_{1}\right)\left[Q_{3}+\left(\dot{q}_{3} / \dot{q}_{1}\right)\left(m \ddot{q}_{1}-Q_{1}\right)\right],
\end{aligned}
$$

or, reducing further and using (a),

$$
\begin{equation*}
m \ddot{q}_{1}=Q_{1}-\left[\left(Q_{1} \dot{q}_{1}+Q_{2} \dot{q}_{2}+Q_{3} \dot{q}_{3}\right) / c^{2}\right] \dot{q}_{1}, \tag{n}
\end{equation*}
$$

and when this is inserted back into ($1, \mathrm{~m}$) it produces equations (ex. 5.3.5: g); as expected, due to the symmetry of the problem in $q_{1,2,3}$.

Problem 5.3.2 In ex. 5.3.9, we saw that

$$
\begin{equation*}
(\dot{\phi})^{2}=\left[c^{2}-(\dot{r})^{2}-r^{2}(\dot{\theta})^{2}\right] / r^{2} \cos ^{2} \theta, \quad \text { i.e., } \dot{q}_{D}=\phi_{D}\left(\dot{q}_{I}, \ldots\right) \tag{a}
\end{equation*}
$$

Substituting this into $T(\dot{r}, \dot{\phi}, \dot{\theta}, \ldots)$, obtain $T_{o}(\dot{r}, \dot{\theta}, \ldots)$, and then find the corresponding special (kinetic) Voronets equations (ex. 5.3.4: g). Show that they coincide with the special (kinetic) Appellian equations of ex. 5.3.9, and the general Voronets equations of ex. 5.3.10.

Problem 5.3.3 Continuing from the system of exs. 5.3.9, and 5.3.10, (... $)^{\circ}$-differentiate its constraint (a):

$$
\begin{equation*}
\dot{f}=\dot{r} \ddot{r}+\left(r^{2} \cos ^{2} \theta\right) \dot{\phi} \ddot{\phi}+r^{2} \dot{\theta} \ddot{\theta}+\text { no other } \ddot{r}, \ddot{\phi}, \ddot{\theta} \text {-terms } \tag{a}
\end{equation*}
$$

and introduce the quasi accelerations

$$
\begin{equation*}
\dot{\omega}_{1} \equiv \dot{f} \quad(=0), \quad \dot{\omega}_{2} \equiv r^{2} \dot{\theta} \ddot{\theta} \quad(\neq 0), \quad \dot{\omega}_{3} \equiv \dot{r} \ddot{r} \quad(\neq 0) . \tag{b}
\end{equation*}
$$

Show that the corresponding general (kinetic) Appellian equations

$$
\begin{equation*}
\partial S_{o}^{*} / \partial \dot{\omega}_{2}=\Theta_{2} \quad \text { and } \quad \partial S_{o}^{*} / \partial \dot{\omega}_{3}=\Theta_{3}, \tag{c}
\end{equation*}
$$

where

$$
\begin{align*}
S & =S(\ddot{r}, \ddot{\phi}, \ddot{\theta}, \ldots)=\cdots=S^{*}\left(\dot{\omega}_{1}=0, \dot{\omega}_{2}, \dot{\omega}_{3}, \ldots\right) \\
& =S_{o}^{*}\left(\dot{\omega}_{2}, \dot{\omega}_{3}, \ldots\right) \equiv S_{o}^{*}(\text { constrained } \text { general Appellian }) \tag{d}
\end{align*}
$$

coincide with the special (kinetic) Appellian equations of ex. 5.3.9.

Problem 5.3.4 Consider the system of ex. 5.3.7; that is, a particle of mass m under impressed forces Q_{k}, and constrained by $\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}=\left(\dot{q}_{3}\right)^{2}$.

Obtain its special Voronets equations; and show that they coincide with those found in ex. 5.3.7 (general Appell) and ex. 5.3.8 (Johnsen-Hamel).

Example 5.3.12 Tetherball (Kitzka, 1986; Fufaev, 1990; also Kuypers, 1993, pp. 66, 388-394). Let us consider a heavy particle P of mass m fastened at the end of a massless (i.e., light) inextensible thread, the other end of which is fixed at a point on the surface of a circular and vertical cylinder C of radius R. As P moves, the thread can be wound up without slipping on the surface of C [fig. 5.1 (a)]. [This is an idealization of a toy known as tetherball - itself an idealization of Huygens' pendulum, self-regulating its free (i.e., unwound) length.]
(a)

(b) TOP VIEW:

Figure 5.1 (a) Particle P on a thread, wound up on a cylinder C; (b) geometrical details (top view).

Let
$\boldsymbol{r}=(x, y, z)$: position vector of P at a generic time,
$\boldsymbol{r}_{o}=\left(x_{o}, y_{o}, z_{o}\right):$ position vector of point of separation of thread from the cylinder surface P_{o}, at a generic time,
ρ : length of projection of $P_{o} P$ on plane $O-x y \quad$ [fig. 5.1(b)].
The constraints are:
(i) The constancy of the total thread length, as long as its unwound part is taut and its wound part does not slip on C :

$$
\begin{equation*}
\int_{0}^{t}\left|\boldsymbol{v}_{o}\right| d t+\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|=\text { constant } \equiv l_{o} \tag{b}
\end{equation*}
$$

that is, wound length + unwound length $(l)=l_{o}$.
(ii) Continuity of thread slope at P_{o} [fig. 5.1(b)]:

$$
\begin{equation*}
\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right) /\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|=\boldsymbol{v}_{o} /\left|\boldsymbol{v}_{o}\right| \equiv \boldsymbol{v}_{o} / v_{o} \tag{c}
\end{equation*}
$$

that is, unit vector along $P_{o} P=$ unit vector along velocity of P_{o}.
Also, from geometry, we have

$$
\begin{align*}
& x=x_{o}-\rho \sin \phi=R \cos \phi-\rho \sin \phi, \tag{d1}\\
& y=y_{o}+\rho \cos \phi=R \sin \phi+\rho \cos \phi . \tag{d2}
\end{align*}
$$

Let us translate (b, c) into equivalent scalar forms:
(i) By (...)'-differentiating (b), to get rid of the integral, we obtain

$$
\begin{equation*}
\left|\boldsymbol{v}_{o}\right|+\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|^{\cdot}=0 \Rightarrow v_{o}=-\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|^{\cdot} \equiv-d l / d t, \tag{b1}
\end{equation*}
$$

and so the (...)-derivative of (c), rearranged as

$$
\begin{equation*}
\boldsymbol{r}-\boldsymbol{r}_{o}=\left[\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right| / v_{o}\right] \boldsymbol{v}_{o} \Rightarrow \boldsymbol{r}=\boldsymbol{r}_{o}+\left(l / v_{o}\right) \boldsymbol{v}_{o}, \tag{c1}
\end{equation*}
$$

becomes, successively (with $\boldsymbol{v} \equiv \dot{\boldsymbol{r}}, \boldsymbol{a}_{o} \equiv \dot{\boldsymbol{v}}_{o}$),

$$
\begin{align*}
\boldsymbol{v}= & \boldsymbol{v}_{o}+\left(l / v_{o}\right) \boldsymbol{a}_{o}+\left[(d l / d t) / v_{o}\right] \boldsymbol{v}_{o}-\left[l\left(d v_{o} / d t\right) / v_{o}^{2}\right] \boldsymbol{v}_{o} \\
& {[\text { by (b1), the first and third terms cancel }] } \\
= & \left\{\boldsymbol{a}_{o}-\left[\left(d v_{o} / d t\right) / v_{o}\right] \boldsymbol{v}_{o}\right\}\left(l / v_{o}\right), \tag{c2}
\end{align*}
$$

and dotting this with \boldsymbol{v}_{o}, we get

$$
\begin{equation*}
\boldsymbol{v} \cdot \boldsymbol{v}_{o}=\left[\boldsymbol{v}_{o} \cdot \boldsymbol{a}_{o}-\left(\dot{v}_{o} / v_{o}\right) v_{o}^{2}\right]\left(l / v_{o}\right)=0 \tag{c3}
\end{equation*}
$$

since $\left(\boldsymbol{v}_{o} \cdot \boldsymbol{v}_{o}\right)^{\cdot}=\left(v_{o}{ }^{2}\right)^{\cdot} \Rightarrow 2 \boldsymbol{v}_{o} \cdot \boldsymbol{a}_{o}=2 v_{o} \dot{v}_{o}$. With the help of the $(\ldots)^{\circ}$-derivatives of ($\mathrm{d} 1,2$), the above assumes the form

$$
\begin{equation*}
v \cdot v_{o}=R \dot{\phi}(\dot{\rho}+R \dot{\phi})+\dot{z} \dot{z}_{o}=0 \tag{e1}
\end{equation*}
$$

(ii) Dotting (c) with \boldsymbol{v} and invoking (c3,4) and (d1,2), we easily obtain

$$
\begin{equation*}
\boldsymbol{v} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)=\rho(\dot{\rho}+R \dot{\phi})+\dot{z}\left(z-z_{o}\right)=0 . \tag{e2}
\end{equation*}
$$

Instead of the two constraints (e1,2) for the four Lagrangean coordinates ϕ, ρ, z, z_{o}, we can eliminate z_{o} (and \dot{z}_{o}) between them by $(\ldots)^{\circ}$-differentiating (e2), multiplying the outcome with \dot{z}, and then using (e1,2). The result is the single nonlinear secondorder (but linear in its second derivatives) constraint

$$
\begin{align*}
f_{o} \equiv & \rho(\dot{\rho}+R \dot{\phi}) \ddot{z}-\rho(\ddot{\rho}+R \ddot{\phi}) \dot{z} \\
& -\left[(\dot{\rho}+R \dot{\phi})^{2}+(\dot{z})^{2}\right] \dot{z}=0, \tag{f}
\end{align*}
$$

for the three coordinates ϕ, ρ, z.
At this point, we could form either (i) the two kinetic Appellian equations (here, $n=3, m=1$),

$$
\begin{equation*}
\partial S_{o} / \partial \ddot{\phi}=Q_{\phi o} \quad \text { and } \quad \partial S_{o} / \partial \ddot{\rho}=Q_{\rho o} \tag{g}
\end{equation*}
$$

where, using (f) (and the notation $\ldots \equiv$ no $\ddot{\phi}, \ddot{\rho}, \ddot{z}$ terms),

$$
\begin{align*}
S=S(\ddot{\phi}, \ddot{\rho}, \ddot{z}, \ldots) & =S[\ddot{\phi}, \ddot{\rho}, \ddot{z}(\ddot{\phi}, \ddot{\rho}, \ldots), \ldots] \\
& \equiv S_{o}(\ddot{\phi}, \ddot{\rho}, \ldots) \equiv S_{o} \tag{g1}
\end{align*}
$$

and

$$
\begin{equation*}
\delta^{\prime} W=Q_{\phi} \delta \phi+Q_{\rho} \delta \rho+Q_{z} \delta z=\cdots=Q_{\phi o} \delta \phi+Q_{\rho o} \delta \rho ; \tag{g2}
\end{equation*}
$$

or (ii) the Appellian form of the three mixed (coupled) nonlinear Routh-Voss equations,

$$
\begin{equation*}
\partial S / \partial \ddot{q}_{k}=Q_{k}+\lambda\left(\partial f_{o} / \partial \ddot{q}_{k}\right) ; \quad q_{k}=\phi, \rho, z \tag{h}
\end{equation*}
$$

However, a simpler form of equations of motion results if, following Kitzka (1986), we introduce the following quasi velocities:

$$
\begin{align*}
& \omega_{1} \equiv R \dot{\phi} \tag{i1}\\
& \omega_{2} \equiv(\dot{\rho}+R \dot{\phi}) / \dot{z}=-\dot{z}_{o} / R \dot{\phi}=\left(z_{o}-z\right) / \rho \quad[\mathrm{by}(\mathrm{e} 1,2)] \tag{i2}\\
& \omega_{3} \equiv \dot{z} \tag{i3}
\end{align*}
$$

which invert readily to

$$
\begin{align*}
& \dot{q}_{1} \equiv \dot{\phi}=\omega_{1} / R, \tag{j1}\\
& \dot{q}_{2} \equiv \dot{\rho}=\omega_{2} \omega_{3}-\omega_{1}, \tag{j2}\\
& \dot{q}_{3} \equiv \dot{z}=\omega_{3} . \tag{j3}
\end{align*}
$$

Eliminating z_{o} from (i2) by (... $)^{\dot{*}}$-differentiating it: $\dot{z}_{o}-\dot{z}=\left(\rho \omega_{2}\right)^{\cdot}=\dot{\rho} \omega_{2}+\rho \dot{\omega}_{2}$, and then using (i1,2) and (j2) in it, we finally obtain the nonlinear (but linear in its second derivative) constraint for $\omega_{1,2,3}$:

$$
\begin{equation*}
f \equiv \rho \dot{\omega}_{2}+\left(1+\omega_{2}^{2}\right) \omega_{3}=0 \tag{k}
\end{equation*}
$$

Now, let us form the corresponding kinetic Appellian equations

$$
\begin{equation*}
\partial S_{o}^{*} / \partial \dot{\omega}_{1}=\Theta_{1} \quad \text { and } \quad \partial S_{o}^{*} / \partial \dot{\omega}_{3}=\Theta_{3}, \tag{1}
\end{equation*}
$$

where (with the notation $\ldots \equiv$ no $\dot{\omega}_{1,2,3}$ terms)

$$
\begin{align*}
S^{*}=S^{*}\left(\dot{\omega}_{1}, \dot{\omega}_{2}, \dot{\omega}_{3}, \ldots\right) & =S^{*}\left[\dot{\omega}_{1}, \dot{\omega}_{2}\left(\dot{\omega}_{1}, \dot{\omega}_{3}, \ldots\right), \dot{\omega}_{3}, \ldots\right] \\
& \equiv S_{o}^{*}\left(\dot{\omega}_{1}, \dot{\omega}_{3}, \ldots\right) \equiv S_{o}^{*} \tag{11}
\end{align*}
$$

Indeed, using (k) to eliminate $\dot{\omega}_{2}$ from $\boldsymbol{a} \equiv \dot{\boldsymbol{v}} \equiv \ddot{\boldsymbol{r}}=(\ddot{x}, \ddot{\boldsymbol{y}}, \ddot{\boldsymbol{z}})[(\mathrm{d} 1,2)$ with ($\left.\mathrm{j} 1-3)\right]$ we obtain, after some algebra,

$$
\begin{align*}
\ddot{x}= & -\left[\omega_{2} \dot{\omega}_{3}-\omega_{3}^{2}\left(1+\omega_{2}^{2}\right) / \rho-\rho \omega_{1}^{2} / R^{2}\right] \sin \phi \\
& +(1 / R)\left[\omega_{1}\left(\omega_{1}-2 \omega_{2} \omega_{3}\right)-\rho \dot{\omega}_{1}\right] \cos \phi, \tag{12}\\
\ddot{y}= & {\left[\omega_{2} \dot{\omega}_{3}-\omega_{3}^{2}\left(1+\omega_{2}^{2}\right) / \rho-\rho \omega_{1}^{2} / R^{2}\right] \cos \phi } \\
& +(1 / R)\left[\omega_{1}\left(\omega_{1}-2 \omega_{2} \omega_{3}\right)-\rho \dot{\omega}_{1}\right] \sin \phi, \tag{13}\\
\ddot{z}= & \dot{\omega}_{3}, \tag{14}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
S=(m / 2) & {\left[(\ddot{x})^{2}+(\ddot{y})^{2}+(\ddot{z})^{2}\right] } \\
=\cdots= & (m / 2)\left\{\left(1+\omega_{2}^{2}\right)\left(\dot{\omega}_{3}\right)^{2}-2 \omega_{2} \dot{\omega}_{3}\left[\omega_{3}\left(1+\omega_{2}^{2}\right) / \rho+\rho \omega_{1}^{2} / R^{2}\right]\right. \\
& \left.+\left(\rho / R^{2}\right)\left[\rho\left(\dot{\omega}_{1}\right)^{2}-2 \omega_{1} \dot{\omega}_{1}\left(\omega_{1}-2 \omega_{2} \omega_{3}\right)\right]\right\} \\
& + \text { function of } \omega_{1,2,3} ; \rho(\text { "Appell constant" terms })=S_{o}^{*} ; \tag{15}
\end{align*}
$$

also, by (12-4),

$$
\begin{align*}
& \Theta_{1} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{1}\right)=(-m g)\left(\partial \ddot{z} / \partial \dot{\omega}_{1}\right)=0 \tag{16}\\
& \Theta_{3} \equiv \boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{a}^{*} / \partial \dot{\omega}_{3}\right)=(-m g)\left(\partial \ddot{z} / \partial \dot{\omega}_{3}\right)=-m g . \tag{17}
\end{align*}
$$

As a result of the above, Appell's equations (1) become

$$
\begin{array}{ll}
\omega_{1}: & \rho \dot{\omega}_{1}-\omega_{1}\left(\omega_{1}-2 \omega_{2} \omega_{3}\right)=0, \\
\omega_{3}: & \left(1+\omega_{2}^{2}\right) \dot{\omega}_{3}-\omega_{2}\left[\left(1+\omega_{2}^{2}\right) \omega_{3}^{2} / \rho+\left(\rho / R^{2}\right) \omega_{1}^{2}\right]+g=0, \tag{m2}
\end{array}
$$

and along with eqs. ($\mathrm{j} 1-3, \mathrm{k}$) they constitute a determinate system for the six functions of time: $\omega_{1,2,3} ; \phi, \rho, z$.

Clearly, our system possesses the energy integral

$$
\begin{align*}
E & \equiv T+V=(m / 2)\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right]+m g z \quad[\text { using }(\mathrm{d} 1,2) \text { and }(\mathrm{j} 1-3)] \\
& =(m / 2)\left[\left(1+\omega_{2}^{2}\right) \omega_{3}^{3}+(\rho / R)^{2} \omega_{1}^{2}\right]+m g z \\
& \equiv T^{*}+V=\text { constant } \equiv E_{o} \tag{n}
\end{align*}
$$

which constitutes an indirect proof of the physical correctness of (m1, 2).

REMARKS

(i) Since

$$
\begin{align*}
\partial S^{*} / \partial \dot{\omega}_{1}= & (\partial S / \partial \ddot{x})\left(\partial \ddot{x} / \partial \dot{\omega}_{1}\right)+(\partial S / \partial \ddot{y})\left(\partial \ddot{y} / \partial \dot{\omega}_{1}\right) \\
& +(\partial S / \partial \ddot{z})\left(\partial \ddot{z} / \partial \dot{\omega}_{1}\right) \\
= & (\partial S / \partial \ddot{x})\left(\partial \dot{x} / \partial \omega_{1}\right)+(\partial S / \partial \ddot{y})\left(\partial \dot{y} / \partial \omega_{1}\right) \\
& +(\partial S / \partial \ddot{z})\left(\partial \dot{z} / \partial \omega_{1}\right) \\
= & (m \ddot{x})\left(\partial \dot{x} / \partial \omega_{1}\right)+(m \ddot{y})\left(\partial \dot{y} / \partial \omega_{1}\right)+(m \ddot{z})\left(\partial \dot{z} / \partial \omega_{1}\right) \\
= & m[\ddot{x}(-\rho \cos \phi / R)+\ddot{y}(-\rho \sin \phi / R)+\ddot{z}(0)] \\
= & \cdots=m \rho\left[\rho \dot{\omega}_{1}-\omega_{1}\left(\omega_{1}-2 \omega_{2} \omega_{3}\right)\right], \tag{o1}\\
\partial S^{*} / \partial \dot{\omega}_{3}= & \cdots=(m \ddot{x})\left(\partial \ddot{x} / \partial \dot{\omega}_{1}\right)+\cdots \\
= & m\left[\ddot{x}\left(-\omega_{2} \sin \phi\right)+\ddot{y}\left(\omega_{2} \cos \phi\right)+\ddot{z}(1)\right] \\
= & m\left\{\left(1+\omega_{2}^{2}\right) \dot{\omega}_{3}-\omega_{2}\left[\omega_{3}\left(1+\omega_{2}^{2}\right) / \rho+\left(\rho / R^{2}\right) \omega_{1}^{2}\right]\right\}, \tag{o2}
\end{align*}
$$

and

$$
\begin{equation*}
\partial S^{*} / \partial \dot{\omega}_{1}=\partial S_{o}^{*} / \partial \dot{\omega}_{1}, \quad \partial S^{*} / \partial \dot{\omega}_{3}=\partial S_{o}^{*} / \partial \dot{\omega}_{3} \tag{o3}
\end{equation*}
$$

there is no need to find $S^{*}\left(\dot{\omega}_{1,2,3}, \ldots\right)$ or $S^{*}{ }_{o}\left(\dot{\omega}_{1}, \dot{\omega}_{3}, \ldots\right)$ by expanding the squares of $\ddot{x}, \ddot{y}, \ddot{z}$ in (15); we can leave it as $S(\ddot{x}, \ddot{y}, \ddot{z})$.
(ii) In terms of the alternative, convenient, quasi accelerations

$$
\begin{align*}
& \dot{\Omega}_{1} \equiv \rho \dot{\omega}_{2}+\left(1+\omega_{2}^{2}\right) \omega_{3}=0, \tag{p1}\\
& \dot{\Omega}_{2} \equiv \dot{\omega}_{1} \neq 0, \tag{p2}\\
& \dot{\Omega}_{3} \equiv \dot{\omega}_{3} \neq 0, \tag{p3}
\end{align*}
$$

and the corresponding Appellian

$$
\begin{equation*}
S^{*} \rightarrow S^{* *}=S^{* *}\left(\dot{\Omega}_{1}, \dot{\Omega}_{2}, \dot{\Omega}_{3}, \ldots\right) \rightarrow S^{* *}=S_{o}^{* *_{o}}\left(\dot{\Omega}_{2}, \dot{\Omega}_{3}, \ldots\right) \tag{p4}
\end{equation*}
$$

and impressed forces $\Theta_{2} \rightarrow \Theta_{2}{ }^{*}, \Theta_{3} \rightarrow \Theta_{3}{ }^{*}$, the kinetic Appellian equations would be

$$
\begin{equation*}
\partial S^{* *} / \partial \dot{\Omega}_{1}=\Theta_{2}^{*}, \quad \partial S^{* *}{ }_{o} / \partial \dot{\Omega}_{3}=\Theta_{3}{ }^{*} \tag{p5}
\end{equation*}
$$

(iii) By looking at the constraints (f) and/or (k), one might conclude that they are nonlinear. However, as Fufaev (1990) has pointed out, this is not the case. Indeed, solving (e2) for \dot{z} :

$$
\begin{equation*}
\dot{z}=\rho(\dot{\rho}+R \dot{\phi})\left(z_{o}-z\right)^{-1} \tag{q1}
\end{equation*}
$$

and substituting this value in (el), we obtain

$$
\begin{equation*}
(\dot{\rho}+R \dot{\phi})\left[R \dot{\phi}+\rho\left(z_{o}-z\right)^{-1} \dot{z}_{o}\right]=0 \tag{q2}
\end{equation*}
$$

from which, since, in general, $\dot{\rho}+R \dot{\phi} \neq 0$, it follows that (e1) is replaced by its equivalent,

$$
\begin{equation*}
R \dot{\phi}+\rho\left(z_{o}-z\right)^{-1} \dot{z}_{o}=0 \tag{q3}
\end{equation*}
$$

which, just like (e2), is linear (Pfaffian) in the Lagrangean velocities $\dot{\phi}$ and \dot{z}_{o}. Hence, the earlier nonlinearity is not of intrinsic/physical but analytical nature: it resulted from the elimination of z_{o} and \dot{z}_{o} between (e1,2) and associated (...)-differentiations of the first-order constraint (e2).

This justifies our attitude toward the subject of nonlinear nonholonomic constraints ($\S 5.1$): let us learn them; even if they do not exist in any physically meaningful way, we may have to use them for analytical convenience.

For additional physical and numerical aspects, see the earlier given references Kitzka (1986) and Kuypers (1993).

Problem 5.3.5 (Fufaev, 1990; Kitzka, 1986). Continuing from the preceding example of the tetherball, we saw there that its two nonlinear constraints, in the four Lagrangean coordinates $q_{1,2,3,4}=\phi, \rho, z, z_{o}$, are

$$
\begin{align*}
& \rho(\dot{\rho}+R \dot{\phi})+\left(z-z_{o}\right) \dot{z}=0, \tag{al}\\
& R \dot{\phi}(\dot{\rho}+R \dot{\phi})+\dot{z} \dot{z}_{o}=0, \tag{a2}
\end{align*}
$$

or, equivalently [solving (a1) for $\dot{z}: \dot{z}=\rho(\dot{\rho}+R \dot{\phi})\left(z_{o}-z\right)^{-1}$ and substituting the result in (a2)], the two Pfaffian constraints are

$$
\begin{align*}
& (\rho R) \dot{\phi}+(\rho) \dot{\rho}+\left(z-z_{o}\right) \dot{z}=0, \tag{b1}\\
& R\left(z_{o}-z\right) \dot{\phi}+\rho \dot{z}_{o}=0, \tag{b2}
\end{align*}
$$

and, therefore, in virtual form:

$$
\begin{align*}
& (\rho R) \delta \phi+(\rho) \delta \rho+\left(z-z_{o}\right) \delta z=0 \tag{cl}\\
& {\left[R\left(z_{o}-z\right)\right] \delta \phi+(\rho) \delta z_{o}=0} \tag{c2}
\end{align*}
$$

Setting $m=1$, for convenience, but no loss in generality,
(i) Show that

$$
\begin{equation*}
L \equiv T-V=(1 / 2)\left[\rho^{2}(\dot{\phi})^{2}+(\dot{\rho}+R \dot{\phi})^{2}+(\dot{z})^{2}\right]-g z \tag{d1}
\end{equation*}
$$

and therefore the corresponding Routh-Voss equations,

$$
\begin{equation*}
E_{k}(L)=\lambda_{1} a_{1 k}+\lambda_{2} a_{2 k} \quad(k=1, \ldots, 4) \tag{d2}
\end{equation*}
$$

are

$$
\begin{array}{ll}
\phi: & R \ddot{\rho}+\left(R^{2}+\rho^{2}\right) \ddot{\phi}-2 \rho \dot{\rho} \dot{\phi}=(R \rho) \lambda_{1}+\left[R\left(z_{o}-z\right)\right] \lambda_{2}, \\
\rho: & \ddot{\rho}+R \ddot{\phi}-\rho(\dot{\phi})^{2}=(\rho) \lambda_{1}, \\
z: & \ddot{z}+g=\left(z-z_{o}\right) \lambda_{1}, \\
z_{o}: & 0=(\rho) \lambda_{2} \Rightarrow \lambda_{2}=0 \quad[\text { since , in general, } \rho \neq 0] . \tag{d6}
\end{array}
$$

(ii) By eliminating $\lambda_{1,2}$ among (d3-6), show that we obtain the two kinetic Maggi equations:

$$
\begin{gather*}
\rho \ddot{\phi}+2 \dot{\rho} \dot{\phi}+R(\dot{\phi})^{2}=0 \tag{el}\\
\left(z_{o}-z\right)\left[\ddot{\rho}+R \ddot{\phi}-\rho(\dot{\phi})^{2}\right]+\rho(\ddot{z}+g)=0 \tag{e2}
\end{gather*}
$$

which, along with ($\mathrm{b} 1,2$), constitute a determinate system for the four functions ϕ, ρ, z, z_{o}.
(iii) Show that for the quasi-velocity choice of the preceding example, eqs. (i1-3), (j1-3),

$$
\begin{align*}
\omega_{1} & \equiv R \dot{\phi} \tag{f1}\\
\omega_{2} & \equiv(\dot{\rho}+R \dot{\phi}) / \dot{z}=-\dot{z}_{o} / R \dot{\phi}=\left(z_{o}-z\right) / \rho \tag{f2}\\
\omega_{3} & \equiv \dot{z} \tag{f3}\\
\dot{q}_{1} & \equiv \dot{\phi}=\omega_{1} / R \tag{f4}\\
\dot{q}_{2} & \equiv \dot{\rho}=\omega_{2} \omega_{3}-\omega_{1} \tag{f5}\\
\dot{q}_{3} & \equiv \dot{z}=\omega_{3} \tag{f6}\\
& \left(\Rightarrow \dot{z}_{o}=-\omega_{1} \omega_{2}\right) \tag{f7}
\end{align*}
$$

the above equations (el,2) coincide with the Appellian equations (m1,2) found there.

Problem 5.3.6 Continuing from the preceding example of the tetherball, let us consider its single nonlinear second-order constraint in the three Lagrangean coordinates $q_{1,2,3}=\phi, \rho, z$, eq. (f):

$$
\begin{align*}
f_{o} \equiv & \rho(\dot{\rho}+R \dot{\phi}) \ddot{z}-\rho(\ddot{\rho}+R \ddot{\phi}) \dot{z} \\
& -\left[(\dot{\rho}+R \dot{\phi})^{2}+(\dot{z})^{2}\right] \dot{z}=0, \tag{a}
\end{align*}
$$

or, rearranged to show the second derivatives more clearly,

$$
\begin{align*}
-(R \rho \dot{z}) \ddot{\phi} & -(\rho \dot{z}) \ddot{\rho}+\rho(\dot{\rho}+R \dot{\phi}) \ddot{z} \\
& -\left[(\dot{\rho}+R \dot{\phi})^{2}+(\dot{z})^{2}\right] \dot{z}=0 \tag{b}
\end{align*}
$$

(i) Show that the corresponding Routh-Voss equations,

$$
\begin{equation*}
E_{k}(L)=\lambda\left(\partial f_{o} / \partial \ddot{q}_{k}\right) \quad(k=1, \ldots, 3), \tag{c}
\end{equation*}
$$

are (again with $m=1$)

$$
\begin{array}{ll}
\phi: & \ddot{\rho}+R \ddot{\phi}+\left(\rho^{2} / R\right) \ddot{\phi}+2(\rho / R) \dot{\rho} \dot{\phi}=-(\rho \dot{z}) \lambda, \\
\rho: & \ddot{\rho}+R \ddot{\phi}-\rho(\dot{\phi})^{2}=-(\rho \dot{z}) \lambda, \\
z: & \ddot{z}+g=\rho(\dot{\rho}+R \dot{\phi}) \lambda ; \tag{d3}
\end{array}
$$

and along with (b) they constitute a determinate system for the four functions ϕ, ρ, z, λ.
(ii) From (b, d1-3), deduce that

$$
\begin{align*}
\lambda & =\frac{g \rho(\dot{\rho}+R \dot{\phi})+\dot{z}\left[(\dot{\rho}+R \dot{\phi})^{2}+\rho^{2}(\dot{\phi})^{2}+(\dot{z})^{2}\right]}{(\dot{\rho})^{2}\left[(\dot{\rho}+R \dot{\phi})^{2}+(\dot{z})^{2}\right]} \\
& =\left(g \rho \omega_{2}+2 E_{o}-2 g z\right) / \omega_{3} \rho^{2}\left(1+\omega_{2}^{2}\right), \tag{e}
\end{align*}
$$

where $E_{o} \equiv T+V$ is the constant total energy [recall eq. (n) of ex. 5.3.12].
(iii) With the help of (e), show that the (physical) constraint force equals

$$
\begin{align*}
\boldsymbol{R} & =\lambda[\partial f(t, \boldsymbol{r}, \boldsymbol{v}, \boldsymbol{a}) / \partial \boldsymbol{a}]=\sum \lambda\left[\partial f_{o}(t, q, \dot{q}, \ddot{q}) / \partial \ddot{q}_{k}\right]\left(\partial \ddot{q}_{k} / \partial \boldsymbol{a}\right) \\
& =\cdots=-\left[(1 / l)\left(v^{2}+g \rho \omega_{2}\right)\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)\right] /\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right| \\
& =-\left[(1 / l)\left(v^{2}+g \rho \omega_{2}\right) / l^{2}\right]\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right), \tag{f}
\end{align*}
$$

where $l^{2}=\rho^{2}+\left(z_{o}-z\right)^{2}=\rho^{2}\left(1+\omega_{2}{ }^{2}\right)$ is the instantaneous length (squared) of the unwound part of the thread.
(iv) By eliminating λ among (d1-3), obtain the two kinetic Maggi equations of the system; which, along with (a) or (b), will constitute a determinate system for ϕ, ρ, z.

Problem 5.3.7 (Fufaev, 1990). Continuing from the preceding example of the tetherball:
(i) Show that if the cylinder surface is smooth, the system has the sole holonomic constraint

$$
\begin{equation*}
(\rho+R \phi)^{2}+z^{2}=l_{o}^{2} \quad\left(l_{o}: \text { thread length }\right) \tag{a}
\end{equation*}
$$

or, in virtual form,

$$
\begin{equation*}
[(\rho+R \phi) R] \delta \phi+(\rho+R \phi) \delta \rho+z \delta z=0 \tag{b}
\end{equation*}
$$

that is, it has only three Lagrangean coordinates (instead of the four of the roughsurface case), but still $n-m=3-1=2$.
(ii) Show that, in this case, the Routh-Voss equations for $q_{1,2,3}=\phi, \rho, z$ are

$$
\begin{equation*}
E_{\phi}(L)=\lambda R(\rho+R \phi), \quad E_{\rho}(L)=\lambda(\rho+R \phi), \quad E_{z}(L)=\lambda z \tag{c}
\end{equation*}
$$

where $E_{\phi,,, z}(L)$ can be found via prob. 5.3.5: (d1); and along with (a) these constitute a determinate system for ϕ, ρ, z, λ.
(iii) By eliminating λ among (c), show that we obtain the following two kinetic (holonomic) Maggi equations:

$$
\begin{gather*}
\rho \ddot{\phi}+2 \dot{\rho} \dot{\phi}+R(\dot{\phi})^{2}=0 \tag{d}\\
z\left[\ddot{\rho}+R \ddot{\phi}-\rho(\dot{\phi})^{2}\right]-(\rho+R \phi)(\ddot{z}+g)=0, \tag{e}
\end{gather*}
$$

which, along with (a), constitute a determinate system for ϕ, ρ, z.
(iv) Compare eqs. (d, e), of this smooth case, with the corresponding Maggi equations of the rough case of the preceding problems.

Example 5.3.13 Reduced, or Routh-like Form of the Equations of Motion of a Nonholonomic and Cyclic/Ignorable System (Semenova, 1965). (To be studied in connection with §8.4.) Let us consider a scleronomic system under the $m(<n)$ stationary Pfaffian constraints

$$
\begin{equation*}
\sum a_{D k} \dot{q}_{k}=0, \quad \text { where } \quad \partial a_{D k} / \partial t=0 \quad[D=1, \ldots, m ; k=1, \ldots, n] \tag{a}
\end{equation*}
$$

and, therefore, having the following Routh-Voss equations of motion:

$$
\begin{equation*}
E_{k}(L) \equiv\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=Q_{k}+R_{k}, \quad R_{k}=\sum \lambda_{D} a_{D k} \tag{b}
\end{equation*}
$$

In addition, let us assume that the first $M(<n)$ coordinates are cyclic or ignorable; that is,

$$
\begin{equation*}
\left(q_{1}, \ldots, q_{M}\right) \equiv\left(q_{i}\right) \equiv\left(\psi_{i}\right): \partial L / \partial q_{i} \equiv \partial L / \partial \psi_{i}=0 \quad[i=1, \ldots, M] \tag{c}
\end{equation*}
$$

and the corresponding impressed and reaction forces vanish:

$$
\begin{equation*}
Q_{i}=0 \quad \text { and } \quad R_{i}=0 \quad\left[\text { e.g., if } a_{D i}=0\right] . \tag{d}
\end{equation*}
$$

Let us find the Routhian equations of the system; that is, Lagrange-type equations involving only the remaining $n-M$ noncyclic or palpable or positional coordinates $\left(q_{M+1}, \ldots, q_{n}\right) \equiv\left(q_{p}\right)$ and corresponding velocities $\left(\dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \equiv\left(\dot{q}_{p}\right)$, instead of all the \dot{q} 's.

Due to (c, d), eqs. (b) yield

$$
\begin{equation*}
p_{i} \equiv \partial L / \partial \dot{q}_{i} \equiv \partial L / \partial \dot{\psi}_{i}=\text { constant } \equiv C_{i} ; \quad \text { i.e., } C_{i}=C_{i}\left(q_{p}, \dot{\psi}_{i}, \dot{q}_{p}\right) \tag{e}
\end{equation*}
$$

Solving these M equations for the M ignorable (but, generally, variable) velocities $\dot{q}_{i} \equiv \dot{\psi}_{i}$, in terms of the $n-M$ palpable variables q_{p} and \dot{q}_{p}, we obtain

$$
\begin{equation*}
\dot{\psi}_{i}=\dot{\psi}_{i}\left(q_{p}, \dot{q}_{p} ; C_{i}\right) ; \tag{f}
\end{equation*}
$$

which is essentially a Chaplygin-like form of the additional constraints (e).

REMARK

Since T is, at most, quadratic in the \dot{q}, eqs. (e) are essentially linear in the \dot{q}, and therefore eqs. (f) are linear in the \dot{q}_{p} say,

$$
\begin{equation*}
p_{i}=C_{i}=\sum e_{i k} \dot{q}_{k}+e_{i}, \quad e_{i k}, e_{i}: \text { functions of the } q_{p}, \tag{g1}
\end{equation*}
$$

from which we find $(i=1, \ldots, M ; p=M+1, \ldots, n)$
$\dot{q}_{i} \equiv \dot{\psi}_{i}=\sum E_{i p} \dot{q}_{p}+E_{i}, \quad E_{i p}$: functions of the q_{p}, E_{i} : functions of the q_{p} and C_{i}. (g2)
However, here we shall treat both (e) and (f) as additional linear and/or nonlinear constraints, because then we can see more clearly the formal structure of the resulting equations.

Let L_{o} be the Lagrangean resulting from the elimination of the $\dot{\psi}_{i}$ from L via (f); that is, by enforcing in it the constraints (e):

$$
\begin{align*}
L=L(q, \dot{q}) & =L\left(q_{p}, \dot{q}_{i}, \dot{q}_{p}\right) \\
& =L\left[q_{p}, \dot{\psi}_{i}\left(q_{p}, \dot{q}_{p} ; C_{i}\right), \dot{q}_{p}\right] \equiv L_{o}\left(q_{p}, \dot{q}_{p} ; C_{i}\right) \tag{h}
\end{align*}
$$

Applying chain rule to the above, we obtain

$$
\begin{align*}
\partial L_{o} / \partial q_{p} & =\partial L / \partial q_{p}+\sum\left(\partial L / \partial \dot{\psi}_{i}\right)\left(\partial \dot{\psi}_{i} / \partial q_{p}\right)=\partial L / \partial q_{p}+\sum\left(\partial \dot{\psi}_{i} / \partial q_{p}\right) C_{i} \tag{i}\\
& \Rightarrow \partial L / \partial q_{p}=\partial L_{o} / \partial q_{p}-\sum\left(\partial \dot{\psi}_{i} / \partial q_{p}\right) C_{i} \tag{i1}
\end{align*}
$$

$$
\begin{align*}
\partial L_{o} / \partial \dot{q}_{p} & =\partial L / \partial \dot{q}_{p}+\sum\left(\partial L / \partial \dot{\psi}_{i}\right)\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right) \tag{ii}\\
& =\partial L / \partial \dot{q}_{p}+\sum\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right) C_{i} \\
& \Rightarrow \partial L / \partial \dot{q}_{p}=\partial L_{o} / \partial \dot{q}_{p}-\sum\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right) C_{i} \tag{i2}
\end{align*}
$$

and, therefore, since $\dot{C}_{i}=0$,

$$
\begin{equation*}
\left(\partial L / \partial \dot{q}_{p}\right)^{\cdot}=\left(\partial L_{o} / \partial \dot{q}_{p}\right)^{\cdot}-\sum C_{i}\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right)^{\cdot} \tag{i3}
\end{equation*}
$$

In view of (i1-3), the equations of motion (b) for the q_{p}, \dot{q}_{p} can be written in the Chaplygin-like form

$$
\begin{equation*}
\left(\partial L_{o} / \partial \dot{q}_{p}\right)^{\cdot}-\partial L_{o} / \partial q_{p}-\sum C_{i}\left[\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right)^{\cdot}-\partial \dot{\psi}_{i} / \partial q_{p}\right]=\sum \lambda_{D} a_{D p} \tag{j1}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
E_{p}\left(L_{o}\right)-\sum C_{i} E_{p}\left(\dot{\psi}_{i}\right)=\sum \lambda_{D} a_{D p} \equiv R_{p} \tag{j2}
\end{equation*}
$$

and along with the constraints (a):

$$
\begin{align*}
& \sum a_{D i} \dot{q}_{i}+\sum a_{D p} \dot{q}_{p}=0 \\
& \quad \Rightarrow \sum(\ldots)_{D p} \dot{q}_{p}=\text { known function of the } q_{p} \text { and } C_{i} \tag{j3}
\end{align*}
$$

they constitute a determinate system of $(n-M)+m$ equations for the $n-M q_{p}$ and the $m \lambda_{D}$. Equations (j 1) are coupled in the q_{p} and λ_{D}. To uncouple them into kinetic and kinetostatic equations (assuming that $m<n-M$), we may view them as the Routh-Voss equations of a nonholonomic system under the constraints (j3), and then proceed to derive its uncoupled equations à la Maggi, Hamel, or Appell, as elaborated in chapter 3 and $\S 5.3$. The details are left to the reader.

Problem 5.3.8 (Semenova, 1965). Multiplying each of eqs. (j2) of the preceding example:

$$
\begin{equation*}
E_{p}\left(L_{o}\right)-\sum C_{i} E_{p}\left(\dot{\psi}_{i}\right)=R_{p} \quad[i=1, \ldots, M ; p=M+1, \ldots, n] \tag{a}
\end{equation*}
$$

by \dot{q}_{p} and summing over p, obtain the "noncyclic Jacobi integral"

$$
\begin{equation*}
H_{o} \equiv\left(\sum\left(\partial L_{o} / \partial \dot{q}_{p}\right) \dot{q}_{p}-L_{o}\right)-\sum C_{i}\left(\sum\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right) \dot{q}_{p}-\dot{\psi}_{i}\right): \tag{b}
\end{equation*}
$$

Noncyclic generalized energy $=$ constant .

Problem 5.3.9 Nonlinear and Nonholonomic Power Equation.
(i) Starting with the kinetic Johnsen-Hamel equations of motion (5.3.5b or 5.3.19), show that the corresponding power equation is

$$
\begin{align*}
& d / d t\left(\sum\left(\partial T^{*} / \partial \omega_{I}\right) \omega_{I}-T^{*}\right) \\
& \quad=-\partial T^{*} / \partial t+\sum \Theta_{I} \omega_{I}-\sum \sum H_{I}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{I} \tag{a}
\end{align*}
$$

where (symbolically)

$$
\begin{align*}
& d T^{*} / d t \equiv \sum\left[\left(\partial T^{*} / \partial \omega_{I}\right) \dot{\omega}_{I}+\left(\partial T^{*} / \partial \theta_{I}\right) \omega_{I}\right]+\partial T^{*} / \partial t \tag{b}\\
& \sum\left(\partial T^{*} / \partial \theta_{I}\right) \omega_{I} \equiv \sum \sum\left(\partial T^{*} / \partial q_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \omega_{I} \tag{c}
\end{align*}
$$

instead of the more "orthodox"

$$
\begin{equation*}
d T^{*} / d t=\sum\left(\partial T^{*} / \partial \omega_{I}\right) \dot{\omega}_{I}+\sum\left(\partial T^{*} / \partial q_{k}\right) \dot{q}_{k}+\partial T^{*} / \partial t . \tag{d}
\end{equation*}
$$

From these results conclude that:
(ii) If $\dot{q} \Leftrightarrow \omega$ is linear and homogeneous in these velocities (e.g., catastatic case), the definitions (b) and (d) coincide; and
(iii) Unless $-\sum \sum H^{k}{ }_{I}\left(\partial T^{*} / \partial \omega_{k}\right) \omega_{I}=0$ (e.g., by sign properties of $H^{k}{ }_{I}$, and since the $\partial T^{*} / \partial \omega_{k}$ are linear and homogeneous in the ω 's), the system will be nonconservative, even if all the Θ_{I} 's are potential and all constraints are stationary.

5.4 SECOND- AND HIGHER-ORDER CONSTRAINTS

The foregoing theory can be easily extended to the following case of second-order, generally nonholonomic, constraints:

$$
\begin{equation*}
f_{D}(t, q, \dot{q}, \ddot{q})=0 \quad[D=1, \ldots, m(<n)] . \tag{5.4.1}
\end{equation*}
$$

Here, compatibility among the various differential variational principles (chap. 6) requires that the virtual displacements corresponding to (5.4.1) be constrained by

$$
\begin{equation*}
\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta q_{k}=0 \tag{5.4.2}
\end{equation*}
$$

instead of (5.2.9). Hence, the virtual form of the constraints

$$
\begin{array}{ll}
\dot{\omega}_{D} \equiv f_{D}(t, q, \dot{q}, \ddot{q})=0 & {[D=1, \ldots, m(<n)]} \\
\dot{\omega}_{I} \equiv f_{I}(t, q, \dot{q}, \ddot{q}) \neq 0 & {[I=m+1, \ldots, n]} \tag{5.4.3b}
\end{array}
$$

is

$$
\begin{equation*}
\delta \theta_{D} \equiv \sum\left(\partial \dot{\omega}_{D} / \partial \ddot{q}_{k}\right) \delta q_{k}=0, \quad \delta \theta_{I} \equiv \sum\left(\partial \dot{\omega}_{I} / \partial \ddot{q}_{k}\right) \delta q_{k} \neq 0 \tag{5.4.4}
\end{equation*}
$$

It follows that all the previous results hold in this case, too, but with $\partial \dot{q} / \partial \omega(\partial \omega / \partial \dot{q})$ replaced with $\partial \ddot{q} / \partial \dot{\omega}(\partial \dot{\omega} / \partial \ddot{q})$. For example, the second-order counterparts of the, say, kinetic Maggi and Hadamard equations will be

Maggi:

$$
\begin{array}{rlr}
\sum\left(\partial \ddot{q}_{k} / \partial \dot{\omega}_{I}\right) E_{k}(T)=\sum\left(\partial \ddot{q}_{k} / \partial \dot{\omega}_{I}\right) Q_{k} & \text { (Lagrangean form), } \\
\begin{array}{rlr}
\partial S^{*} / \partial \dot{\omega}_{I} & =\sum\left(\partial \ddot{q}_{k} / \partial \dot{\omega}_{I}\right)\left(\partial S / \partial \ddot{q}_{k}\right) & \\
& =\sum\left(\partial \ddot{q}_{k} / \partial \dot{\omega}_{I}\right) Q_{k} & \text { (Appellian form), }
\end{array}
\end{array}
$$

Hadamard:

$$
\begin{array}{rlr}
E_{I}(T)+ & \sum\left(\partial \Phi_{D} / \partial \ddot{q}_{I}\right) E_{D}(T) \\
& =Q_{I}+\sum\left(\partial \Phi_{D} / \partial \ddot{q}_{I}\right) Q_{D} \quad \text { (Lagrangean form) } \\
\partial S_{o} / \partial \ddot{q}_{I} & =\partial S / \partial \ddot{q}_{I}+\sum\left(\partial \Phi_{D} / \partial \ddot{q}_{I}\right)\left(\partial S / \partial \ddot{q}_{D}\right) \\
& =Q_{I}+\sum\left(\partial \Phi_{D} / \partial \ddot{q}_{I}\right) Q_{D} \quad \text { (Appellian form) } \tag{5.4.6b}
\end{array}
$$

where

$$
\begin{align*}
& \text { eqs. }(5.4 .1) \rightarrow \ddot{q}_{D}=\ddot{q}_{D}\left(t, q, \dot{q}, \ddot{q}_{I}\right) \equiv \Phi_{D}\left(t, q, \dot{q}, \ddot{q}_{I}\right) \tag{5.4.7a}\\
& S(t, q, \dot{q}, \ddot{q})=\cdots=S^{*}(t, q, \omega, \dot{\omega})=\cdots=S_{o}\left(t, q, \dot{q}, \ddot{q}_{I}\right) \tag{5.4.7b}
\end{align*}
$$

Similarly, for the higher-order constraints:

$$
\begin{align*}
& f_{D}(t, q, \dot{q}, \ddot{q}, \dddot{q}, \ldots, \stackrel{(s)}{q})=0 \\
& {[D=1, \ldots, m(<n) ; s=1,2,3, \ldots]} \tag{5.4.8}
\end{align*}
$$

eqs. (5.4.2-4) are replaced, respectively, by

$$
\begin{align*}
& \sum\left(\partial f_{D} / \stackrel{(s)}{q_{k}}\right) \delta q_{k}=0, \tag{5.4.9}\\
& \stackrel{(s-1)}{\omega_{D}} \equiv f_{D}(t, q, \dot{q}, \ddot{q}, \dddot{q}, \ldots, \stackrel{(s)}{q})=0, \tag{5.4.10a}\\
& { }_{(s-1)}^{\omega_{I}} \equiv f_{I}(t, q, \dot{q}, \ddot{q}, \dddot{q}, \ldots, \stackrel{(s)}{q}) \neq 0, \tag{5.4.10b}\\
& \delta \theta_{D} \equiv \sum\left(\partial \omega_{D}^{(s-1)} / \partial q_{k}^{(s)}\right) \delta q_{k}=0, \tag{5.4.10c}\\
& \delta \theta_{I} \equiv \sum\left(\partial \hat{\omega}_{I}^{(s-1)} / \partial \partial_{q_{k}}^{(s)}\right) \delta q_{k} \neq 0 . \tag{5.4.10d}
\end{align*}
$$

In general, starting with $\dot{q}_{D}=\dot{q}_{D}\left(t, q, \dot{q}_{I}\right)$ we can easily verify that

$$
\begin{equation*}
\partial \dot{q}_{D} / \partial \dot{q}_{I}=\partial \ddot{q}_{D} / \partial \ddot{q}_{I}=\partial \dddot{q}_{D} / \partial \ddot{q}_{I}=\cdots ; \tag{5.4.11}
\end{equation*}
$$

and similalry for identities involving $\partial \omega_{D}^{(s-1)} / \partial q_{k}$.
These topics are examined in detail in chapter 6.
Example 5.4.1 (Mei, 1987, pp. 273-274). Let us derive the equations of motion of a rigid body moving (rotating) about a fixed point and subject to the acceleration (second-order) constraint

$$
\begin{equation*}
\left(\omega_{x} \dot{\omega}_{y}-\omega_{y} \dot{\omega}_{x}\right)+\left(\omega_{x}^{2}+\omega_{y}^{2}\right) \omega_{z}-c\left(\omega_{x}^{2}+\omega_{y}^{2}\right)^{3 / 2}=0, \tag{a}
\end{equation*}
$$

where $\omega_{x, y, z}$ are body-fixed components of (inertial) angular velocity of the body and c is a constant. If ϕ, θ, ψ are the Eulerian angles between space-fixed and body-fixed axes, then [recalling results from $\S 1.12$, and with $s(\ldots) \equiv \sin (\ldots), c(\ldots) \equiv \cos (\ldots)$]

$$
\begin{equation*}
\omega_{x}=(s \theta s \psi) \dot{\phi}+(c \psi) \dot{\theta}, \quad \omega_{y}=(s \theta c \psi) \dot{\phi}+(-s \psi) \dot{\theta}, \quad \omega_{z}=(c \theta) \dot{\phi}+(1) \psi \tag{b}
\end{equation*}
$$

and their inverses,

$$
\begin{gather*}
\dot{\phi}=(1 / \sin \theta)\left[(s \psi) \omega_{x}+(c \psi) \omega_{y}\right], \quad \dot{\theta}=(c \psi) \omega_{x}-(s \psi) \omega_{y}, \\
\dot{\psi}=\omega_{z}-\left[(s \psi) \omega_{x}+(c \psi) \omega_{y}\right] \cot \theta . \tag{c}
\end{gather*}
$$

In view of (a), we choose the following quasi accelerations:

$$
\begin{align*}
& \alpha_{1} \equiv\left(\omega_{x} \dot{\omega}_{y}-\omega_{y} \dot{\omega}_{x}\right)+\left(\omega_{x}^{2}+\omega_{y}^{2}\right) \omega_{z}-c\left(\omega_{x}^{2}+\omega_{y}^{2}\right)^{3 / 2}=0, \tag{d1}\\
& \alpha_{2} \equiv\left(\dot{\omega}_{x} c \psi-\dot{\omega}_{y} s \psi\right) /\left(\omega_{x} c \psi-\omega_{y} s \psi\right) \neq 0, \tag{d2}\\
& \alpha_{3} \equiv \dot{\omega}_{z} \neq 0 \tag{d3}
\end{align*}
$$

which, upon inverting and enforcing the constraint (d1) yield

$$
\begin{align*}
\dot{\omega}_{x} & =\left(\omega_{x}\right) \alpha_{2}+\text { no } \alpha \text {-terms }, \tag{el}\\
\dot{\omega}_{y} & =\left(\omega_{y}\right) \alpha_{2}+\text { no } \alpha \text {-terms }, \tag{e2}\\
\dot{\omega}_{z} & =(1) \alpha_{3}+\text { no } \alpha \text {-terms } . \tag{e3}
\end{align*}
$$

The Appellian of the body is (recalling the results of $\S 3.14$; and with A, B, C : principal moments of inertia of body at fixed point)

$$
\begin{align*}
2 S^{*}= & A\left(\dot{\omega}_{x}\right)^{2}+B\left(\dot{\omega}_{y}\right)^{2}+C\left(\dot{\omega}_{z}\right)^{2}+2(C-B) \omega_{y} \omega_{z} \dot{\omega}_{x} \\
& +2(A-C) \omega_{x} \omega_{z} \dot{\omega}_{y}+2(B-A) \omega_{x} \omega_{y} \dot{\omega}_{z}+\text { no other } \dot{\omega} \text { terms } \tag{f}
\end{align*}
$$

and, therefore, substituting into it (e1-3), we obtain the constrained Appellian:

$$
\begin{align*}
2 S^{*} \Rightarrow & 2 S_{o}^{*} \\
= & A \omega_{x}^{2} \alpha_{2}^{2}+B \omega_{y}^{2} \alpha_{2}^{2}+C \alpha_{3}^{2} \\
& +2(C-B) \omega_{x} \omega_{y} \omega_{z} \alpha_{2}+2(A-C) \omega_{x} \omega_{y} \omega_{z} \alpha_{2}+2(B-A) \omega_{x} \omega_{y} \alpha_{3} \\
& + \text { no other } \alpha \text { terms, } \tag{g}
\end{align*}
$$

and from this we get the corresponding constrained inertial "forces":

$$
\begin{align*}
\partial S_{o}^{*} / \partial \alpha_{2} & =A \omega_{x}^{2} \alpha_{2}+B \omega_{y}^{2} \alpha_{2}+(C-B) \omega_{x} \omega_{y} \omega_{z}+(A-C) \omega_{x} \omega_{y} \omega_{z} \\
& =A \omega_{x} \dot{\omega}_{x}+B \omega_{y} \dot{\omega}_{y}+(A-B) \omega_{x} \omega_{y} \omega_{z} \quad[\text { with (d2)] } \tag{h1}\\
\partial S_{o}^{*} / \partial \alpha_{3} & =C \alpha_{3}+(B-A) \omega_{x} \omega_{y} \\
& =C\left(\dot{\omega}_{z}\right)+(B-A) \omega_{x} \omega_{y} \quad[\text { with (d3)]. } \tag{h2}
\end{align*}
$$

Further, with $Q_{\phi, \theta, \psi}$: unconstrained holonomic components of impressed force, and using (b), (c), and (e1-3), we obtain its constrained nonholonomic components:

$$
\begin{align*}
\Theta_{2}= & Q_{\phi}\left[\left(\partial \dot{\phi} / \partial \omega_{x}\right)\left(\partial \dot{\omega}_{x} / \partial \alpha_{2}\right)+\left(\partial \dot{\phi} / \partial \omega_{y}\right)\left(\partial \dot{\omega}_{y} / \partial \alpha_{2}\right)+\left(\partial \dot{\phi} / \partial \omega_{z}\right)\left(\partial \dot{\omega}_{z} / \partial \alpha_{2}\right)\right] \\
& +Q_{\theta}\left[\left(\partial \dot{\theta} / \partial \omega_{x}\right)\left(\partial \dot{\omega}_{x} / \partial \alpha_{2}\right)+\left(\partial \dot{\theta} / \partial \omega_{y}\right)\left(\partial \dot{\omega}_{y} / \partial \alpha_{2}\right)+\left(\partial \dot{\theta} / \partial \omega_{z}\right)\left(\partial \dot{\omega}_{z} / \partial \alpha_{2}\right)\right] \\
& +Q_{\psi}\left[\left(\partial \dot{\psi} / \partial \omega_{x}\right)\left(\partial \dot{\omega}_{x} / \partial \alpha_{2}\right)+\left(\partial \dot{\psi} / \partial \omega_{y}\right)\left(\partial \dot{\omega}_{y} / \partial \alpha_{2}\right)+\left(\partial \dot{\psi} / \partial \omega_{z}\right)\left(\partial \dot{\omega}_{z} / \partial \alpha_{2}\right)\right] \\
= & \left(Q_{\phi} / \sin \theta\right)\left(\omega_{x} s \psi+\omega_{y} c \psi\right)+Q_{\theta}\left(\omega_{x} c \psi+\omega_{y} s \psi\right)-Q_{\psi}\left(\omega_{x} s \psi+\omega_{y} c \psi\right) \cot \theta \\
= & \dot{\phi} Q_{\phi}+\dot{\theta} Q_{\theta}-\dot{\phi} Q_{\psi} c \theta \tag{i1}\\
\Theta_{3}= & Q_{\phi}(\ldots)+Q_{\theta}(\ldots)+Q_{\psi}(\ldots)=\cdots=Q_{\psi} . \tag{i2}
\end{align*}
$$

As a result of (h1, 2), and (i1, 2), Appell's kinetic equations $\partial S^{*}{ }_{o} / \partial \alpha_{I}=\Theta_{I}(I=2,3)$ become

$$
\begin{array}{ll}
\text { 2: } & A \omega_{x} \dot{\omega}_{x}+B \omega_{y} \dot{\omega}_{y}+(A-B) \omega_{x} \omega_{y} \omega_{z}=\dot{\phi} Q_{\phi}+\dot{\theta} Q_{\theta}-\dot{\phi} Q_{\psi} c \theta, \\
\text { 3: } & C \dot{\omega}_{z}+(B-A) \omega_{x} \omega_{y}=Q_{\psi} ; \tag{j2}
\end{array}
$$

and along with (b) they constitute a determinate set of five equations for $\dot{\phi}, \dot{\theta}, \dot{\psi} ; \omega_{x}, \omega_{y}, \omega_{z}$.

The remaining kinetostatic equation corresponding to α_{1}, and based on the relaxed Appellian, is

$$
\begin{equation*}
\left(\partial S^{*} / \partial \alpha_{1}\right)_{o}=\Theta_{1}+\Lambda_{1} \tag{k}
\end{equation*}
$$

and, once the motion has been determined from ($\mathrm{j} 1,2$), this yields the reaction Λ_{1} necessary to maintain the constraint (a). The details of (k) are left to the reader.

Finally, we remark that the above Appellian equations are simpler than those based on $\dot{\omega}_{x}, \dot{\omega}_{y}, \dot{\omega}_{z}$; that is, $\partial S^{*} / \partial \dot{\omega}_{x}$, and so on. See, for example, San (1973).

Differential Variational Principles

and Associated Generalized Equations of Motion of Nielsen, Tsenov, et al.

Abstract

The incautious observer might then be tempted to remark: if all mechanics problems can be solved by Newtonian mechanics, is it really economical to introduce a flock of differently stated principles which, after all, can accomplish no more? To this we make a three-fold rejoinder. In the first place, the ease of solving a given problem generally depends on the way in which it is stated, and a method which solves it when it is stated one way may be vastly simpler than that which handles it when the statement is made in another form. In the second place, we can fairly say that every restatement of the fundamental principles deepens our appreciation of, and feeling for, the whole subject: two methods of solving the same problem mean more in our understanding than the solution of two problems by the same method. More important in many respects than these answers is, however, the third: it is, by no means, sure that the Newtonian principles are actually competent to describe all phenomena in which motion occurs It seems plausible that alternative points of view may, themselves, suggest fundamental modifications in mechanical principles which will lead to successful attacks on the new problems. (Lindsay and Margenau, 1936, p. 103, emphasis added)

6.1 INTRODUCTION

This chapter treats (i) the differential variational principles of constrained system dynamics (of Lagrange, Jourdain, Gauss, Hertz, Mangeron-Deleanu, et al.) from a simple and unified viewpoint, and (ii) the associated kinematico-inertial identities and corresponding generalized equations of motion (of Nielsen, Tsenov, Dolaptschiew, et al.).

These topics, until recently viewed by many as academic curiosities, have reemerged as powerful and versatile tools for the theoretical and numerical handling of problems of nonlinear nonholonomic constraints in the velocities, accelerations, and so on; and also, in impulsive motion and multibody dynamics.

For parallel reading we recommend the following: Mei (1985, 1987), Mei et al. (1991) and references cited therein; and the (Soviet \rightarrow) Russian and Chinese journals of Applied Mathematics and Mechanics.

6.2 THE GENERAL THEORY

The differential variational principles of mechanics (DVP) are statements to the effect that certain differential expressions, linear and homogeneous in the appropriate kinematical variations from a kinetic state (or first variations of certain scalar energetic functions from it), vanish. The principle of Lagrange (LP) is the simplest and most fundamental of them: as shown below, excluding singular configurations of the system, all other DVP derive from it. Here, as with most of the rest of the book, the discussion is limited to bilateral and ideal constraints; that is, we assume that (recalling $\S 3.2$ and the notations employed there)

$$
\begin{equation*}
\boldsymbol{S} d \boldsymbol{R} \cdot \delta \boldsymbol{r}=0 \Rightarrow \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \tag{6.2.1}
\end{equation*}
$$

where, as detailed earlier (§2.5),

$$
\begin{align*}
& \delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}=\sum \varepsilon_{k} \delta \theta_{k} \\
&\left(=\sum \varepsilon_{I} \delta \theta_{I}, I=m+1, \ldots, n ; m: \text { number of additional Pfaffian constraints }\right) \tag{6.2.1a}
\end{align*}
$$

Now, (...)-differentiating (6.2.1) once, and recalling that $S \ldots$ and (...) commute, we obtain

$$
\begin{equation*}
\boldsymbol{S}\left[(d m \boldsymbol{a}-d \boldsymbol{F})^{\cdot} \cdot \delta \boldsymbol{r}\right]+\boldsymbol{S}\left[(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot(\delta \boldsymbol{r})^{\cdot}\right]=0 \tag{6.2.2}
\end{equation*}
$$

From this, we readily conclude that the equations of motion of the system can be derived from the variational equation

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot(\delta \boldsymbol{r})^{\cdot}=0 \tag{6.2.3}
\end{equation*}
$$

where the $\delta \boldsymbol{r}$ satisfy not only the familiar $\delta t=0$, but also $\delta \boldsymbol{r}=\mathbf{0}$; and since, as we have already seen ($\S 4.6$; also, ex. 6.2.1 below), we can always take $(\delta \boldsymbol{r})^{\cdot}=\delta(\dot{\boldsymbol{r}}) \equiv \delta \boldsymbol{v}$, LP can be replaced by the following DVP:

$$
\begin{gather*}
\mathbf{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{v}=0, \quad \text { with } \quad \delta t=0 \quad \text { and } \quad \delta \boldsymbol{r}=\mathbf{0} . \tag{6.2.4}\\
(\text { constraints on } \delta \boldsymbol{v} \neq \mathbf{0}) .
\end{gather*}
$$

Next, (...) ${ }^{\text {-differentiating (6.2.4) once yields }}$

$$
\begin{equation*}
\boldsymbol{S}\left[(d m \boldsymbol{a}-d \boldsymbol{F})^{\cdot} \cdot \delta \boldsymbol{v}\right]+\boldsymbol{S}\left[(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot(\delta \boldsymbol{v})^{\cdot}\right]=0 \tag{6.2.5}
\end{equation*}
$$

and reasoning as earlier, and with $(\delta \boldsymbol{v})^{\cdot}=\delta(\dot{\boldsymbol{v}}) \equiv \delta \boldsymbol{a}$, we see that the equations of motion of the system can be obtained from the variational equation

$$
\begin{equation*}
\mathbf{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \boldsymbol{a}=0, \quad \text { with } \delta t=0, \quad \delta \boldsymbol{r}=\mathbf{0}, \quad \text { and } \quad \delta \boldsymbol{v}=\mathbf{0} \tag{6.2.6}
\end{equation*}
$$

(constraints on $\delta \boldsymbol{a} \neq \mathbf{0}$).
Continuing this process, inductively, we can easily generalize to the following DVP: The equations of motion of an ideally constrained mechanical system derive from

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta \stackrel{(s)}{\boldsymbol{r}})=0 \quad(s=0,1,2, \ldots) \tag{6.2.7}
\end{equation*}
$$

where the variations satisfy

$$
\begin{array}{cl}
\delta t=0 \quad \text { and } \quad \delta \boldsymbol{r}=\mathbf{0}, \quad \delta(\dot{\boldsymbol{r}})=\mathbf{0}, \quad \delta(\dot{\boldsymbol{r}})=\mathbf{0}, \ldots, \quad \delta\binom{(s-1)}{\boldsymbol{r}}=\mathbf{0} \quad(s-1 \geq 0) \tag{6.2.7a}\\
& \left(\text { constraints on } \delta \stackrel{(s)}{\boldsymbol{r}} \equiv \delta\left(d^{s} \boldsymbol{r} / d t^{s}\right) \neq \mathbf{0}\right)
\end{array}
$$

The DVP corresponding to $s=0,1,2$ are called, respectively, principles of Lagrange [eq. (6.2.1)] Jourdain [eq. (6.2.4)], and Gauss (Gibbs) [eq. (6.2.6)]; while the case corresponding to a general s, in (6.2.7), is referred to as the principle of Mangeron-Deleanu [eqs. (6.2.7, 7a)]; that is, roughly, Jourdain's principle (JP) is Lagrange's principle (LP) with $\delta \boldsymbol{r} \rightarrow \delta \boldsymbol{v}$, and Gauss' principle (GP) is LP with $\delta \boldsymbol{r} \rightarrow \delta \boldsymbol{a}$, and so on.
[According to Nordheim (1927, pp. 68-69), this unified and simple approach to DVP (which, however, holds only under differentiable conditions!) seems to be due to Leitinger (1913) and other members of the "Austrian school" (ca. 1910).]

REMARKS

(i) The equations associated with these variations are an instantaneous representation of the system. Otherwise, if, in JP, $\delta \boldsymbol{r}(t)=\mathbf{0}$ continuously, one might conclude, incorrectly, that $(\delta \boldsymbol{r})^{\cdot}=\delta(d \boldsymbol{r} / d t)=\mathbf{0}$. Rather, at each succeeding instant, $\delta \boldsymbol{r}$ is reset equal to zero, in accordance with the instantaneous viewpoint. Clearly, this viewpoint does not apply to equations involving time integrals; similarly for GP, and so on.
(ii) In the same spirit, we avoid the occasionally used term virtual power for $S d \boldsymbol{F} \cdot \delta \boldsymbol{v}$ and the consequent term principle of virtual power for JP. Power means work per unit time; that is, $(S d \boldsymbol{F} \cdot \delta \boldsymbol{r}) / \delta t$, but since, here, $\delta t=0$, such a term could be confusing.

The next step is to transform these DVP to system variables, and then to obtain the corresponding equations of motion. By now, LP is well known (chap. 3), and so we begin with the principle of Jourdain.

Example 6.2.1 The Significance of the Commutation Rule in Jourdain's Principle $(J P)$. During the formulation of JP, $(6.2 .3,4)$, we invoked the commutation rule:

$$
\begin{equation*}
d(\delta \boldsymbol{r})=\delta(d \boldsymbol{r}) \quad \text { or } \quad(\delta \boldsymbol{r})^{-}=(\delta \dot{\boldsymbol{r}}) \equiv \delta \boldsymbol{v} \tag{a}
\end{equation*}
$$

However, since the derivation of the equations of motion [either from LP or from the central equation ($\$ 3.5, \S 3.6$ and $\S 5.3$)] is independent of any particular assumptions about $d(\delta \boldsymbol{r})-\delta(d \boldsymbol{r})$, and since the ultimate purpose and usefulness of JP - in fact, of all DVP - is to produce correct equations of motion, it follows that $J P$, too, should be independent of (a). Let us see in detail why this is so.

We begin with the most general expression for $\delta \boldsymbol{r}$ (recalling the relevant theory and notations of §2.4-2.9):

$$
\begin{equation*}
\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}=\sum \varepsilon_{k} \delta \theta_{k}=\sum \varepsilon_{I} \delta \theta_{I} \quad\left(\text { since } \delta \theta_{D}=0\right) \tag{b}
\end{equation*}
$$

Since the $n-m$ vectors $\boldsymbol{\varepsilon}_{I}$ are independent, the Jourdain requirement $\delta \boldsymbol{r}=\mathbf{0}$ applied to (b) yields $\delta \theta_{I}=0$; that is, in sum, here we have

$$
\begin{equation*}
\delta \theta_{k}=0 \quad(k=1,2,3, \ldots, n) \tag{c}
\end{equation*}
$$

Next, (...)'-differentiating (a) and then enforcing (c), we find

$$
\begin{align*}
(\delta \boldsymbol{r})^{\cdot} & =\sum\left[\left(d \boldsymbol{\varepsilon}_{I} / d t\right) \delta \theta_{I}+\boldsymbol{\varepsilon}_{I}\left(\delta \theta_{I}\right)^{\cdot}\right] \\
& =\sum \boldsymbol{\varepsilon}_{I}\left(\delta \theta_{I}\right)^{\cdot}=\sum\left(\partial \boldsymbol{v} / \partial \omega_{I}\right)\left(\delta \theta_{I}\right)^{.} . \tag{d}
\end{align*}
$$

Now, let us calculate $\delta \boldsymbol{v} \Rightarrow(\delta \boldsymbol{v})_{\text {Jourdain variation }} \equiv \delta^{\prime} \boldsymbol{v}$ [see also (6.3.5) below]. Assuming for simplicity, but no loss of generality, a scleronomic system, we have (omitting superstars on \boldsymbol{v} etc., for simplicity)

$$
\begin{equation*}
\boldsymbol{v}=\sum \varepsilon_{I} \omega_{I} \tag{e}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\delta \boldsymbol{v}=\sum\left(\delta \boldsymbol{\varepsilon}_{I} \omega_{I}+\boldsymbol{\varepsilon}_{I} \delta \omega_{I}\right) \Rightarrow \delta^{\prime} \boldsymbol{v}=\sum \varepsilon_{I} \delta \omega_{I} \tag{f}
\end{equation*}
$$

since, at least for Pfaffian constraints, $\varepsilon_{I}=\boldsymbol{\varepsilon}_{I}(q) \Rightarrow \delta^{\prime} \varepsilon_{I}=\mathbf{0}$ [see "Remarks" (i) below].

Subtracting (d) and (f) side by side, we obtain the following transitivity equation in the sense of Jourdain:

$$
\begin{align*}
& (\delta \boldsymbol{r})^{\cdot}-\delta^{\prime} \boldsymbol{v}=\sum \boldsymbol{\varepsilon}_{I}\left[\left(\delta \theta_{I}\right)^{\cdot}-\delta \omega_{I}\right] \\
& \Rightarrow(\delta \boldsymbol{r})^{\cdot}=\delta^{\prime} \boldsymbol{v}+\sum \boldsymbol{\varepsilon}_{I}\left[\left(\delta \theta_{I}\right)^{\cdot}-\delta \omega_{I}\right] \tag{g}
\end{align*}
$$

Next, inserting (f) into the $(\ldots)^{-}$-derivative of LP under $\delta \boldsymbol{r}=\mathbf{0}$; that is (6.2.3),

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot(\delta \boldsymbol{r})^{\cdot}=0 \tag{h}
\end{equation*}
$$

we get

$$
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime} \boldsymbol{v}+\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \sum \varepsilon_{I}\left[\left(\delta \theta_{I}\right)^{\cdot}-\delta \omega_{I}\right]=0
$$

or, rearranging,

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime} \boldsymbol{v}+\sum\left(\mathbf{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \boldsymbol{\varepsilon}_{I}\right)\left[\left(\delta \theta_{I}\right)^{\cdot}-\delta \omega_{I}\right]=0 \tag{i}
\end{equation*}
$$

from which, and this is the key step in the entire discussion, since

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \varepsilon_{I}=0 \quad[\text { "raw" form of LP in quasi variables; also (6.3.26)], } \tag{j}
\end{equation*}
$$

we finally obtain the original ("Jourdainian") form of JP (1909):

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime} \boldsymbol{v}=0, \quad \text { under } \delta t=0 \quad \text { and } \quad \delta \boldsymbol{r}=\mathbf{0} \quad\left[\text { but }(\delta \boldsymbol{r})^{\cdot} \neq \mathbf{0}\right] . \tag{k}
\end{equation*}
$$

In short, the transitivity condition $(\delta \boldsymbol{r})^{\cdot}=\delta \boldsymbol{v}$ is sufficient but not necessary for the derivation of $J P$ from $L P$. Finally, substituting (f) into (k), and since the $n-m \delta \omega_{I}$ are independent, reproduces (j).

REMARKS

(i) Equation (g) can also result from the general transitivity equation (§2.10):

$$
\begin{equation*}
\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}=\sum a_{k l}\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right]+\sum \sum \gamma_{r s}^{k} \omega_{s} \delta \theta_{r}, \tag{11}
\end{equation*}
$$

and its inverse

$$
\begin{equation*}
\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)=\sum A_{l k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum \sum \sum A_{l k} \gamma_{r s}^{k} \omega_{s} \delta \theta_{r} . \tag{12}
\end{equation*}
$$

We have, successively,

$$
\begin{align*}
(\delta \boldsymbol{r})^{\cdot}-\delta \boldsymbol{v} & =\sum \boldsymbol{e}_{l}\left[\left(\delta q_{l}\right)^{\cdot}-\delta\left(\dot{q}_{l}\right)\right] \\
& =\sum\left(\sum A_{l k} \boldsymbol{e}_{l}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum \sum \sum\left(\sum A_{l k} \boldsymbol{e}_{l}\right) \gamma_{r s}^{k} \omega_{s} \delta \theta_{r} \\
& =\sum \boldsymbol{\varepsilon}_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]-\sum \sum \sum \boldsymbol{\varepsilon}_{k} \gamma_{r s}^{k} \omega_{s} \delta \theta_{r}, \tag{m}
\end{align*}
$$

from which, due to (c) and since now $\delta \boldsymbol{v} \Rightarrow \delta^{\prime} \boldsymbol{v}$, we recover (g). Clearly, this derivation is not limited to Pfaffian constraints, and so it avoids the earlier restriction $\varepsilon_{I}=\varepsilon_{I}(q)$.
(ii) If we had assumed $(\delta \boldsymbol{r})^{\circ}=\delta \boldsymbol{v}$, then (g) and (12) would have led us to $\left(\delta \theta_{k}\right)^{\cdot}=\delta \omega_{k}$ and also to $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, and vice versa. As $(11,2)$ readily show, without the Jourdain constraints, either $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$ or $\left(\delta \theta_{k}\right)^{\cdot}=\delta \omega_{k}$, but not both.
(iii) The above reasoning extends readily to higher-order constraints. For additional insights see also Bremer (1993).

6.3 PRINCIPLE OF JOURDAIN, AND EQUATIONS OF NIELSEN

As detailed in chapters 2 and 5, starting with the general position vector in the Lagrangean variables q,

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}(t, q) \tag{6.3.1}
\end{equation*}
$$

we readily find

$$
\begin{equation*}
\boldsymbol{v}=d \boldsymbol{r} / d t=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \dot{q}_{k}+\partial \boldsymbol{r} / \partial t \tag{6.3.2}
\end{equation*}
$$

from which

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial q_{k}=\partial \boldsymbol{v} / \partial \dot{q}_{k} \equiv \partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k} \equiv \boldsymbol{e}_{k} \quad(k=1,2, \ldots, n) ; \tag{6.3.3}
\end{equation*}
$$

and

$$
\begin{align*}
\delta \boldsymbol{v} \equiv \delta(\dot{\boldsymbol{r}}) & =\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta\left(\dot{q}_{k}\right)+\sum \delta\left(\partial \boldsymbol{r} / \partial q_{k}\right) \dot{q}_{k}+\delta(\partial \boldsymbol{r} / \partial t) \\
& =\sum\left(\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)+\text { no other } \delta \dot{q} \text { terms } \\
& \equiv \sum \boldsymbol{e}_{k} \delta\left(\dot{q}_{k}\right)+\text { no other } \delta \dot{q} \text { terms } \\
& \equiv \delta^{\prime} \boldsymbol{v}+\text { no other } \delta \dot{q} \text { terms }, \tag{6.3.4}
\end{align*}
$$

where

$$
\begin{align*}
\delta^{\prime}(\ldots) \equiv & \sum\left[\partial(\ldots) / \partial \dot{q}_{k}\right] \delta\left(\dot{q}_{k}\right): \\
& \text { Jourdain variation of }(\ldots) \quad\left[\text { i.e., } \delta(\ldots) \text { with } \delta t=0 \text { and } \delta q_{k}=0\right] . \tag{6.3.5}
\end{align*}
$$

Next, from (6.3.2), we easily obtain

$$
\begin{equation*}
\partial \dot{\boldsymbol{r}} / \partial q_{k}=\sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \dot{q}_{l}+\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t \tag{6.3.6a}
\end{equation*}
$$

and

$$
\begin{aligned}
\boldsymbol{a}= & d \boldsymbol{v} / d t=\ddot{\boldsymbol{r}} \\
= & \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \ddot{q}_{k}+\sum \sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \dot{q}_{k} \dot{q}_{l}+2 \sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right) \dot{q}_{k} \\
& +\partial^{2} \boldsymbol{r} / \partial t^{2},
\end{aligned} \quad \begin{aligned}
\Rightarrow & \partial \boldsymbol{a} / \partial \dot{q}_{k} \equiv \partial \ddot{\boldsymbol{r}} / \partial \dot{q}_{k}=2\left(\sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \dot{q}_{l}+\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right),
\end{aligned}
$$

and, comparing with (6.3.6a), we deduce the following kinematical identity:

$$
\begin{equation*}
\partial \ddot{\boldsymbol{r}} / \partial \dot{q}_{k}=2\left(\partial \dot{\boldsymbol{r}} / \partial q_{k}\right), \quad \text { or } \quad \partial \boldsymbol{a} / \partial \dot{q}_{k}=2\left(\partial \boldsymbol{v} / \partial q_{k}\right) . \tag{6.3.7}
\end{equation*}
$$

The above also reconfirm the already known basic result, extension of (6.3.3),

$$
\boldsymbol{e}_{k} \equiv \partial \boldsymbol{r} / \partial q_{k}=\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}=\partial \ddot{\boldsymbol{r}} / \partial \ddot{q}_{k}=\cdots
$$

or

$$
\begin{equation*}
\partial \boldsymbol{r} / \partial q_{k}=\partial \boldsymbol{v} / \partial \dot{q}_{k}=\partial \boldsymbol{a} / \partial \ddot{q}_{k}=\cdots \quad(k=1,2, \ldots, n) . \tag{6.3.8}
\end{equation*}
$$

Next, (...) -differentiating the kinetic energy

$$
\begin{equation*}
2 T=\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}=\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}} \tag{6.3.9}
\end{equation*}
$$

we readily obtain

$$
\begin{equation*}
d T / d t=\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{a}=\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot \ddot{\boldsymbol{r}} \tag{6.3.10}
\end{equation*}
$$

and, therefore, invoking (6.3.7) and (6.3.8), and since $\partial T / \partial q_{k}=\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \dot{\boldsymbol{r}} / \partial q_{k}\right)$,

$$
\begin{align*}
& \partial \dot{T} / \partial \dot{q}_{k}=\boldsymbol{S} d m\left(\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}\right) \cdot \ddot{\boldsymbol{r}}+\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \ddot{\boldsymbol{r}} / \partial \dot{q}_{k}\right) \\
&=\boldsymbol{S} d m\left(\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}\right) \cdot \ddot{\boldsymbol{r}}+2 \boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \dot{\boldsymbol{r}} / \partial q_{k}\right) \\
&=\boldsymbol{S} d m\left(\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}\right) \cdot \ddot{\boldsymbol{r}}+2\left(\partial T / \partial q_{k}\right), \tag{6.3.11}\\
& \Rightarrow \boldsymbol{S} d m \ddot{\boldsymbol{r}} \cdot\left(\partial \dot{\boldsymbol{r}} / \partial \dot{q}_{k}\right)=\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\partial \dot{\boldsymbol{T}} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right) ; \tag{6.3.12}
\end{align*}
$$

and combining this with the, by now well-known, Lagrangean identity (§3.3)

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}=\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k} \equiv E_{k}(T) \tag{6.3.13}
\end{equation*}
$$

we immediately obtain the Nielsen identity:

$$
\begin{equation*}
d / d t\left(\partial T / \partial \dot{q}_{k}\right)=\partial \dot{T} / \partial \dot{q}_{k}-\partial T / \partial q_{k} . \tag{6.3.14}
\end{equation*}
$$

With its help, and (6.3.4,5), and since $\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k} \equiv Q_{k}$ (§3.4), Jourdain's principle (6.2.4), or

$$
\begin{equation*}
\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime} \boldsymbol{v}=0, \quad \text { under } \quad \delta^{\prime} t=0 \quad \text { and } \quad \delta^{\prime} \boldsymbol{r}=\mathbf{0} \tag{6.3.15}
\end{equation*}
$$

assumes the following form in general holonomic system variables:

$$
\begin{equation*}
\sum\left[E_{k}(T)-Q_{k}\right] \delta\left(\dot{q}_{k}\right)=\sum\left[N_{k}(T)-Q_{k}\right] \delta\left(\dot{q}_{k}\right)=0 \tag{6.3.16}
\end{equation*}
$$

where the Nielsen operator $N_{k}(\ldots)$, in holonomic coordinates (constrained or not), is defined by

$$
\begin{equation*}
N_{k}(T) \equiv \partial \dot{T} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right)=\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k} \equiv E_{k}(T) \tag{6.3.17}
\end{equation*}
$$

It is shown below that $N_{k}(f)=E_{k}(f)$, for any sufficiently smooth function $f=f(t, q, \dot{q})$. In particular, if the $\delta \dot{q}$'s are independent (e.g., holonomic system with n DOF) then (6.3.16) leads immediately to the Nielsen form of Lagrange's equations (of the second kind) (Nielsen, 1935, pp. 345-354):

$$
\begin{equation*}
\partial \dot{T} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right)=Q_{k} . \tag{6.3.18}
\end{equation*}
$$

Here, too, as in the Lagrangean case (3.4 and $\S 3.9$), if part of Q_{k} derives from a potential $V=V(q)$, then (6.3.18) still holds, but with T replaced with $L \equiv T-V$, and Q_{k} : nonpotential part of that force.

If, on the other hand, the δq 's are constrained by, say, the m Pfaffian (possibly nonholonomic) constraints

$$
\begin{equation*}
\sum a_{D k} \delta q_{k}=0 \quad(D=1, \ldots, m<n), \tag{6.3.19}
\end{equation*}
$$

or, $(\ldots)^{\circ}$-differentiating and then $\delta^{\prime}(\ldots)$-varying them, to bring them to the Jourdain form:

$$
\begin{align*}
\sum \dot{a}_{D k} \delta q_{k} & +\sum a_{D k}\left(\delta q_{k}\right)^{\cdot}=\sum \dot{a}_{D k} \delta q_{k}+\sum a_{D k} \delta\left(\dot{q}_{k}\right)=0 \\
& \Rightarrow \sum a_{D k} \delta^{\prime}\left(\dot{q}_{k}\right)=\sum a_{D k} \delta\left(\dot{q}_{k}\right)=0 \tag{6.3.20}
\end{align*}
$$

then combining ("adjoining") (6.3.20) to (6.3.16) via the m Lagrangean multipliers λ_{D}, we obtain

$$
\begin{equation*}
N_{k}(T)=Q_{k}+\sum \lambda_{D} a_{D k} \tag{6.3.21}
\end{equation*}
$$

Hence, the general rule: in any set of constrained system equations, in holonomic variables - for example, equations of Maggi, Hadamard-Appell, Appell-we can replace $E_{k}(T)$ (or its identically equal $\partial S / \partial \ddot{q}_{k}, S$: Appellian) with $N_{k}(T)$. Thus, it is not hard to see that
(i) If eqs. (6.3.19) have the Hadamard form (§3.8)

$$
\begin{equation*}
\delta q_{D}=\sum b_{D I} \delta q_{I} \quad(I=m+1, \ldots, n) \tag{6.3.22}
\end{equation*}
$$

then the "Nielsen form of the corresponding (kinetic) Hadamard equations" is

$$
\partial \dot{T} / \partial \dot{q}_{I}-2\left(\partial T / \partial q_{I}\right)+\sum b_{D I}\left[\partial \dot{T} / \partial \dot{q}_{D}-2\left(\partial T / \partial q_{D}\right)\right]=Q_{I}+\sum b_{D I} Q_{D}
$$

or, compactly,

$$
\begin{equation*}
\left[N_{I}(T)-Q_{I}\right]+\sum b_{D I}\left[N_{D}(T)-Q_{D}\right]=0 \tag{6.3.23}
\end{equation*}
$$

and
(ii) In terms of the general quasi velocities $\omega=\omega(t, q, \dot{q}) \Leftrightarrow \dot{q}=\dot{q}(t, q, \omega)$, discussed in $\S 5.1$ and $\S 5.2$, the "Nielsen form of the corresponding kinetic Maggi equations" is

$$
\sum\left[\partial \dot{T} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right)\right]\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)=\sum Q_{k}\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)
$$

or, compactly,

$$
\begin{equation*}
\sum\left[N_{k}(T)-Q_{k}\right]\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)=0 \tag{6.3.24}
\end{equation*}
$$

and similarly for the kinetostatic Maggi equations.

An Application of Jourdain's Principle in Quasi Variables

For such variables, the Jourdain variation requirements result in $\delta \theta_{k}=$ $0 \Rightarrow\left(\delta \theta_{k}\right)^{\cdot}-\delta\left(\dot{\theta}_{k}\right)=0 \Rightarrow\left(\delta \theta_{k}\right)^{\cdot}=\delta \omega_{k} \quad$ [by the transitivity equations ($\$ 2.10$, $\S 5.2)]$, and so eq. (6.3.4) yields the fundamental representation (omitting superstars on \boldsymbol{v} etc., for simplicity)

$$
\begin{equation*}
\delta^{\prime} \boldsymbol{v}=\sum\left(\partial \boldsymbol{v} / \partial \omega_{I}\right)\left(\delta \theta_{I}\right)^{\cdot}=\sum\left(\partial \boldsymbol{v} / \partial \omega_{I}\right) \delta \omega_{I} \tag{6.3.25}
\end{equation*}
$$

Substituting the above into Jourdain's principle, eq. (6.3.15), we immediately obtain the $n-m$ kinetic Schaefer equations:

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \boldsymbol{v} / \partial \omega_{I}\right)=\boldsymbol{S} d \boldsymbol{F} \cdot\left(\partial \boldsymbol{v} / \partial \omega_{I}\right) \tag{6.3.26}
\end{equation*}
$$

[These equations were given for the first time by the noted German engineering scientist H. Schaefer, in 1951, for general nonlinear, possibly nonholonomic, velocity constraints, in a very insightful and lucid manner via LP (§5.3, recall (5.3.17 ff.)). Fifteen years later, they were reformulated for linear (i.e., Pfaffian) velocity constraints by Kane and Wang (1965), and without reference to the correct forms of the principles of mechanics.]

Example 6.3.1 The Schieldrop-Nielsen Rule. The following is a systematization of observations aiming at expediting the building of $N_{k}(T)$. Let us take, for convenience, but no loss of generality, a scleronomic system. By (...) -differentiating its kinetic energy

$$
\begin{equation*}
2 T=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}, \quad M_{k l}=M_{k l}(q): \text { inertia coefficients } \tag{a}
\end{equation*}
$$

we get

$$
\begin{equation*}
\dot{T}=\sum \sum M_{k l} \ddot{q}_{k} \dot{q}_{l}+\sum \sum \sum(1 / 2)\left(\partial M_{k l} / \partial q_{r}\right) \dot{q}_{r} \dot{q}_{k} \dot{q}_{l} . \tag{b}
\end{equation*}
$$

Now, the \dot{q} 's appearing in this \dot{T} are divided in two groups: (i) those that were already in T, and (ii) those created by the (...)-operation on the $M_{k l}(q)$. The latter \dot{q} shall, henceforth, be denoted by an underline: $\underline{\dot{q}}$.

Next, let us build $N_{k}(T) \equiv \partial \dot{T} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right)$. We readily find

$$
\begin{equation*}
2\left(\partial T / \partial q_{p}\right)=\sum \sum\left(\partial M_{k l} / \partial q_{p}\right) \dot{q}_{k} \dot{q}_{l} \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
\partial \dot{T} / \partial \dot{q}_{p}=\sum M_{p k} \ddot{q}_{k}+\sum \sum\left[\partial M_{p k} / \partial q_{l}+(1 / 2)\left(\partial M_{k l} / \partial q_{p}\right)\right] \dot{q}_{k} \dot{q}_{l} . \tag{d}
\end{equation*}
$$

But due to the symmetry of the inertia coefficients, $M_{k l}=M_{l k}$,

$$
\begin{align*}
\sum \sum\left(\partial M_{p k} / \partial q_{l}\right) \dot{q}_{k} \dot{q}_{l} & =\sum \sum\left(\partial M_{p l} / \partial q_{k}\right) \dot{q}_{k} \dot{q}_{l} \\
& =\sum \sum(1 / 2)\left(\partial M_{p k} / \partial q_{l}+\partial M_{p l} / \partial q_{k}\right) \dot{q}_{k} \dot{q}_{l} \tag{e}
\end{align*}
$$

and, therefore,

$$
\begin{align*}
\partial \dot{T} / \partial \dot{q}_{p}= & \sum M_{p k} \ddot{q}_{k} \\
& +\sum \sum(1 / 2)\left(\partial M_{p k} / \partial q_{l}+\partial M_{p l} / \partial q_{k}+\partial M_{k l} / \partial q_{p}\right) \dot{q}_{k} \dot{q}_{l} . \tag{f}
\end{align*}
$$

Hence, subtracting (c) from (f) side by side,

$$
\begin{align*}
N_{p}(T) & \equiv \partial \dot{T} / \partial \dot{q}_{p}-2\left(\partial T / \partial q_{p}\right) \\
& =\sum M_{p k} \ddot{q}_{k}+\sum \sum(1 / 2)\left(\partial M_{p k} / \partial q_{l}+\partial M_{p l} / \partial q_{k}-\partial M_{k l} / \partial q_{p}\right) \dot{q}_{k} \dot{q}_{l} \\
{[} & \left.=E_{k}(T)\right] . \tag{g}
\end{align*}
$$

These are standard steps in the derivation of explicit forms for $E_{k}(T)$ (§3.10). From the viewpoint of Nielsen's operator, however, they allow us to make the following observations:
(i) $\partial \dot{T} / \partial \dot{q}_{k}$ derives from \dot{T} when every term of it is multiplied by the number (or power) of the \dot{q}_{p} terms in it, and then the factor \dot{q}_{p} is omitted from that term;
(ii) $2\left(\partial T / \partial q_{p}\right) \dot{q}_{p}$ is twice of that \dot{T} term which contains the \dot{q}_{p} generated by the $(\ldots)^{\text {. }}$ differentiation.

So we have the following rule [due to E. B. Schieldrop (Nielsen, 1935, pp. 352-354)]:
First, we build \dot{T}. Then, to obtain $N_{p}(T)$ for a particular $p=1,2,3, \ldots$, we multiply each term of \dot{T} either with an integer $k=0,1,2,3, \ldots$, or with $k-2=-2,-1,0,1, \ldots$, depending on whether, from the k factors \dot{q}_{p} in that term, none or one, respectively, were created by the \dot{T}-differentiations - the underlined \dot{q} 's in \dot{T} help us to keep track of that. Finally, in each term of the expression obtained thus far, we omit a term \dot{q}_{p} or divide it by \dot{q}_{p}; which thus results in $N_{p}(T)$. In other words:
(i) The parts of \dot{T} that are linear in \dot{q} need no underlining and no sign change;
(ii) the parts of \dot{T} that are cubic in the \dot{q} 's do contain an underlined \dot{q}; and so:
(a) If \dot{q}_{p} does not appear as a factor in that term, the latter makes no contribution to $N_{p}(T)$;
(b) If \dot{q}_{p} appears once, that term appears with changed or unchanged sign, according as \dot{q}_{p} is underlined or not;
(c) If \dot{q}_{p} appears twice in a \dot{T}-factor, that term is multiplied by $k-2$ when none of the \dot{q}_{p} is underlined, or is multiplied by $k-2=2-2=0$ when one of the \dot{q}_{p} is underlined; then, there is no contribution from that \dot{T}-term;
(d) If \dot{q}_{p} appears thrice in a \dot{T}-factor, then one of them must be underlined, and so that term is multiplied by $k-2=3-2=1$; and its sign remains unchanged.

Table 6.1

\dot{T}-terms:	$N_{r}(T)$	$N_{\phi}(T)$
1. $m \dot{r} \ddot{r}$	$\begin{aligned} & k=1 \Rightarrow(1)(\ldots) \\ & (1)(m \dot{r} \ddot{r}) / \dot{r}=m \ddot{r} \end{aligned}$	$\begin{aligned} & k=0 \Rightarrow(0)(\ldots) \\ & 0 \end{aligned}$
2. $m r^{2} \dot{\phi} \ddot{\phi}$	$\begin{aligned} & k=0 \Rightarrow(0)(\ldots) \\ & 0 \end{aligned}$	$\begin{aligned} & k=1 \Rightarrow(1)(\ldots) \\ & (1) m r^{2} \dot{\phi} \ddot{\phi} / \dddot{\phi}=m r^{2} \ddot{\phi} \end{aligned}$
3. $m r \underline{\underline{\dot{r}}}(\dot{\phi})^{2}$	$\begin{aligned} & k=1 \Rightarrow k-2=-1 \Rightarrow(-1)(\ldots) \\ & (-1)\left[m r \dot{r}(\dot{\phi})^{2}\right] / \dot{r}=-m r(\dot{\phi})^{2} \end{aligned}$	$\begin{aligned} & k=2 \Rightarrow(2)(\ldots) \\ & \text { (2) }\left[m r \dot{r}(\dot{\phi})^{2}\right] / \dot{\phi}=2 m r \dot{r} \dot{\phi} \end{aligned}$
Totals	$N_{r}(T)=m \ddot{r}-m r(\dot{\phi})^{2}$	$N_{\phi}(T)=m r^{2} \ddot{\phi}+2 m r \dot{r} \dot{\phi}$

Example 6.3.2 Let us consider the plane motion of a particle of mass m, using polar coordinates $q_{1}=r, q_{2}=\phi$. Here,

$$
\begin{equation*}
2 T=m\left[(\dot{r})^{2}+r^{2}(\dot{\phi})^{2}\right], \tag{h1}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\dot{T}=m\left[\dot{r} \ddot{r}+r^{2} \dot{\phi} \ddot{\phi}+r \underline{\dot{r}}(\dot{\phi})^{2}\right] ; \tag{h2}
\end{equation*}
$$

note the underlined \dot{r} in the last term.
Then, applying the Schieldrop-Nielsen rule, we calculate $N_{r}(T)=E_{r}(T)$ and $N_{\phi}(T)=E_{\phi}(T)$. The details are shown in table 6.1.

No claims of universal calculational superiority of this clever rule are made here. We do think, however, that this is something potentially useful, and, hence, worth knowing. Perhaps, with proper systematization (symbolic programming), it could be used to advantage in more complicated systems. An additional example of its use is given in ex. 6.5.2.

6.4 INTRODUCTION TO THE PRINCIPLE OF GAUSS AND THE EQUATIONS OF TSENOV

(Gauss' principle, due to its fundamental importance, is given an independent extensive treatment in §6.6.)

By (...)'-differentiating (6.3.6b), we obtain the jerk vector [(1.7.19e)]:

$$
\begin{align*}
\boldsymbol{j} \equiv & d \boldsymbol{a} / d t \equiv \dddot{\boldsymbol{r}} \\
= & \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \ddot{q}_{k} \\
& +\sum \sum\left[\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \ddot{q}_{k} \dot{q}_{l}+\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \dot{q}_{k} \ddot{q}_{l}+\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \dot{q}_{k} \ddot{q}_{l}\right] \\
& +\sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right) \ddot{q}_{k}+2 \sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right) \ddot{q}_{k}+\text { no other } \ddot{q}, \ddot{q} \text { terms } ; \tag{6.4.1a}
\end{align*}
$$

that is,

$$
\begin{aligned}
\ddot{\boldsymbol{r}}= & \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \ddot{q}_{k} \\
& +3 \sum\left(\sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \ddot{q}_{k} \dot{q}_{l}+\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right) \ddot{q}_{k}\right)
\end{aligned}
$$

$$
\begin{equation*}
+ \text { no other } \ddot{q}, \dddot{q} \text { terms } \tag{6.4.1b}
\end{equation*}
$$

from which we easily deduce

$$
\begin{equation*}
\partial \dddot{\boldsymbol{r}} / \partial \dddot{q}_{k}=\partial \ddot{\boldsymbol{r}} / \partial \ddot{q}_{k}=\partial \boldsymbol{r} / \partial q_{k}=\boldsymbol{e}_{k}, \tag{6.4.2}
\end{equation*}
$$

which is an extension of (6.3.8).
Further, and in complete analogy with (6.3.4, 5), we have

$$
\begin{align*}
\delta \boldsymbol{a} \equiv \delta \ddot{\boldsymbol{r}}=\cdots & =\sum \boldsymbol{e}_{k} \delta\left(\ddot{q}_{k}\right)+\text { no other } \delta \ddot{q} \text { terms } \\
& \equiv \delta^{\prime \prime} \boldsymbol{a}+\text { no other } \delta \ddot{q} \text { terms }, \tag{6.4.3}
\end{align*}
$$

where

$$
\begin{equation*}
\delta^{\prime \prime}(\ldots) \equiv \sum\left[\partial(\ldots) / \partial \ddot{q}_{k}\right] \delta\left(\ddot{q}_{k}\right): \tag{6.4.4}
\end{equation*}
$$

Gaussian variation of (...) [i.e., $\delta(\ldots)$ with $\delta t=0, \delta q=0$ and $\left.\delta\left(\dot{q}_{k}\right)=0\right]$.
Next, (...) ${ }^{-}$-differentiating \dot{T}, we find

$$
\begin{align*}
& \ddot{T}=\boldsymbol{S} d m \ddot{\boldsymbol{r}} \cdot \ddot{\boldsymbol{r}}+\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot \ddot{\boldsymbol{r}} \\
& \tag{6.4.5}\\
& {[=\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{a}+\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{j}=2 S+\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{j} \quad(S: \text { Appellian })]}
\end{align*}
$$

from which we readily obtain

$$
\partial \ddot{T} / \partial \ddot{q}_{k}=2 \boldsymbol{S} d m \ddot{\boldsymbol{r}} \cdot\left(\partial \ddot{\boldsymbol{r}} / \partial \ddot{q}_{k}\right)+\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \ddot{\boldsymbol{r}} / \partial \ddot{q}_{k}\right)
$$

or, due to (6.4.2) and

$$
\begin{align*}
\partial \dddot{\boldsymbol{r}} / \partial \ddot{q}_{k} & =3 \sum\left(\sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \dot{q}_{l}+\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right) \\
& =3\left(\partial \dot{\boldsymbol{r}} / \partial q_{k}\right)=3\left(\partial \boldsymbol{v} / \partial q_{k}\right), \tag{6.4.6}
\end{align*}
$$

equivalently,

$$
\begin{align*}
\partial \ddot{T} / \partial \ddot{q}_{k} & =2 \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}+3 \boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial q_{k}\right) \\
& =2 E_{k}(T)+3\left(\partial T / \partial q_{k}\right) \tag{6.4.7}
\end{align*}
$$

and rearranging this we finally get the kinematico-inertial identity:

$$
\begin{equation*}
E_{k}(T)=(1 / 2)\left[\partial \ddot{T} / \partial \ddot{q}_{k}-3\left(\partial T / \partial q_{k}\right)\right] \equiv C_{k}^{(2)}(T), \tag{6.4.8}
\end{equation*}
$$

where
$C_{k}{ }^{(2)}(\ldots) \equiv(1 / 2)\left\{\partial(\ldots)^{\cdot} / \partial \ddot{q}_{k}-3\left[\partial(\ldots) / \partial q_{k}\right]\right\}:$
Tsenov (or Tzénoff, or Tzenov, or Cenov) operator of the second kind, in holonomic variables.

With the help of the above, Gauss principle reads

$$
\begin{equation*}
\sum\left[C_{k}^{(2)}(T)-Q_{k}\right] \delta \ddot{q}_{k}=0 \tag{6.4.10}
\end{equation*}
$$

and, as earlier, if the δq 's and hence also the $\delta \ddot{q}$'s are independent, the above leads to Tsenov's equations of the second kind, in holonomic variables:

$$
\begin{equation*}
C_{k}{ }^{(2)}(T)=Q_{k} ; \tag{6.4.11}
\end{equation*}
$$

[developed by the Bulgarian mechanician I. Tsenov (1885-1967), originally (in a slightly different form) in 1924, and more systematically in the 1950s and later (1953, 1962)] while, if the $\delta \ddot{q}$ are constrained by the $m(<n)$ Pfaffian constraints

$$
\begin{equation*}
\sum a_{D k} \delta q_{k}=0 \tag{6.4.12a}
\end{equation*}
$$

then, we first bring them to the Gaussian form:

$$
\begin{equation*}
\sum a_{D k} \delta \ddot{q}_{k}=0 \tag{6.4.12b}
\end{equation*}
$$

[by (...)"-differentiation and then application of (6.4.4)] and subsequently adjoin (6.4.12b) to (6.4.10) via Lagrangean multipliers, thus obtaining the Tsenov form of the Routh-Voss equations of motion:

$$
\begin{equation*}
C_{k}^{(2)}(T)=Q_{k}+\sum \lambda_{D} a_{D k} \tag{6.4.12c}
\end{equation*}
$$

Proceeding similarly to the next step - that is, to $\dddot{T}, \stackrel{(4)}{r} \equiv(\underset{\boldsymbol{r}}{ })^{\dot{\prime}}$, and since, in this case,

$$
\begin{equation*}
\partial \ddot{T} / \partial \ddot{q}_{k}=\cdots=3 E_{k}(T)+4\left(\partial T / \partial q_{k}\right), \tag{6.4.13a}
\end{equation*}
$$

we easily obtain, for independent δq 's and hence also $\delta \dddot{q}$'s, Tsenov's equations of the third kind, in holonomic variables:

$$
\begin{equation*}
E_{k}(T) \equiv C_{k}^{(3)}(T) \equiv(1 / 3)\left[\partial \ddot{T} / \partial \ddot{q}_{k}-4\left(\partial T / \partial q_{k}\right)\right]=Q_{k} \tag{6.4.13b}
\end{equation*}
$$

Proceeding inductively, from the above, we can easily show that the earlier Mangeron-Deleanu principle (6.2.7, 7a), where, in analogy with (6.4.4),
becomes, in holonomic system variables,
where

$$
\begin{align*}
C_{k}^{(s)}(T) & \equiv E_{k}(T) \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k} \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot\left(\partial \stackrel{(s)}{\boldsymbol{r}} / \partial \stackrel{(s)}{q}_{k}\right) \\
& \equiv(1 / s)\left[\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q_{k}}-(s+1)\left(\partial T / \partial q_{k}\right)\right] \tag{6.4.14c}
\end{align*}
$$

is the general Mangeron-Deleanu operator (in holonomic variables) applied to T, and, in analogy with the Nielsen identity (6.3.14),

$$
\begin{equation*}
d / d t\left(\partial T / \partial \dot{q}_{k}\right)=(1 / s)\left[\partial \stackrel{(s)}{T} / \partial{\left.\stackrel{(s)}{q_{k}}-\partial T / \partial q_{k}\right]}\right. \tag{6.4.14d}
\end{equation*}
$$

Again, for unconstrained δq 's, eq. (6.4.14b) yields the Tsenov-type equations of Mangeron-Deleanu (1962) and Dolaptschiew (1966):

$$
\begin{gather*}
(1 / s)\left[\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q}-(s+1)\left(\partial T / \partial q_{k}\right)\right]=Q_{k} \tag{6.4.14e}\\
(k=1, \ldots, n ; s=1,2,3, \ldots)
\end{gather*}
$$

and analogously if the δq 's are constrained.

In sum: in all equations of motion in holonomic variables, and whether the δq 's are constrained or not, we can replace $E_{k}(T) \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}$ (Lagrange) \equiv $\partial S / \partial \ddot{q}_{k}$ (Appell) with any one of its equals:

$$
\begin{equation*}
\left.N_{k}(T) \equiv \partial \dot{T} / \partial \dot{q}_{k}-2\left(\partial T / \partial q_{k}\right) \quad \text { (Nielsen }\right) \tag{6.4.15a}
\end{equation*}
$$

or

$$
\begin{align*}
& C_{k}^{(2)}(T) \equiv(1 / 2)\left[\partial \ddot{T} / \partial \ddot{q}_{k}-3\left(\partial T / \partial q_{k}\right)\right] \\
& C_{k}^{(3)}(T) \equiv(1 / 3)\left[\partial \ddot{T} / \partial \ddot{q}_{k}-4\left(\partial T / \partial q_{k}\right)\right] \quad \text { (Tsenov) }, \tag{6.4.15b}
\end{align*}
$$

or

$$
\begin{gather*}
C_{k}^{(s)}(T) \equiv(1 / s)\left[\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q}_{k}-(s+1)\left(\partial T / \partial q_{k}\right)\right] \\
(\text { Mangeron-Deleanu-Dolaptschiew }) \tag{6.4.15c}
\end{gather*}
$$

[i.e., $C_{k}{ }^{(1)}(T)=N_{k}(T)$].

Summary

(i) Analytical Results

Since all the earlier variational principles are equivalent, we can utilize any of them with any of the above kinematico-inertial expressions; although, historically, $E_{k}(T)$ and $N_{k}(T)$ have been associated with Lagrange's principle, and $\partial S / \partial \ddot{q}_{k}$ with Gauss' principle. In practice, however, which variational principle and operator will be used in a particular problem depends on the given form of the constraints; some are more natural than others. Thus:
(a) If the constraints have the form $f_{D}(t, q)=0[D=1, \ldots, m(<n)]$, then, since

$$
\begin{equation*}
\delta f_{D}=\sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}=0 \tag{6.4.16a}
\end{equation*}
$$

Lagrange's principle, with $E_{k}(T)$ or $N_{k}(T)$, is preferred.
(b) If the constraints have the form $f_{D}(t, q, \dot{q})=0$, then, since

$$
\begin{equation*}
\delta^{\prime} f_{D}=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta \dot{q}_{k}=0 \tag{6.4.16b}
\end{equation*}
$$

Jourdain's principle, with $E_{k}(T)$ or $N_{k}(T)$, is recommended. The formal (i.e., mathematical) $\delta(\ldots)$-variation of f_{D},

$$
\begin{equation*}
\delta f_{D}=\sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)=0 \tag{6.4.16c}
\end{equation*}
$$

(as also explained in $\S 5.2 \mathrm{ff}$.) cannot be combined with Lagrange's principle,

$$
\sum\left[E_{k}(T)-Q_{k}\right] \delta q_{k}=0
$$

to produce the correct equations of motion; that is,

$$
\begin{equation*}
E_{k}(T)=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) . \tag{6.4.16d}
\end{equation*}
$$

Since $\delta^{\prime \prime} f_{D}=\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}=0$, Gauss' principle, say with $E_{k}(T)$:

$$
\begin{equation*}
\sum\left[E_{k}(T)-Q_{k}\right] \delta \ddot{q}_{k}=0 \tag{6.4.16e}
\end{equation*}
$$

cannot be utilized either. But it can be applied to $d f_{D} / d t=0$; indeed, since

$$
\begin{array}{r}
d f_{D} / d t=\partial f_{D} / \partial t+\sum\left(\partial f_{D} / \partial q_{k}\right) \dot{q}_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \ddot{q}_{k} \\
{\left[\equiv g_{D}(t, q, \dot{q}, \ddot{q})\right]=0}
\end{array}
$$

we have

$$
\begin{array}{r}
\delta^{\prime \prime}\left(d f_{D} / d t\right)=\sum\left(\partial \dot{f}_{D} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta \ddot{q}_{k} \tag{6.4.16f}\\
{\left[\equiv \delta^{\prime \prime} g_{D}=\sum\left(\partial g_{D} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}\right]=0,}
\end{array}
$$

and this combined with Gauss' principle yields the correct equations; that is, (6.4.16d).
(c) Similarly, we can show that for constraints of the form $f_{D}(t, q, \dot{q}, \ddot{q})=0$, to insure compatibility among the principles of Lagrange, Jourdain and Gauss, we must set

$$
\begin{align*}
& \delta f_{D}=\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta q_{k}=0 \tag{6.4.16g}\\
& \delta^{\prime} f_{D}=\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta \dot{q}_{k}=0 \tag{6.4.16h}\\
& \delta^{\prime \prime} f_{D}=\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}=0 \tag{6.4.16i}
\end{align*}
$$

in which case, the correct equations of motion are

$$
\begin{equation*}
E_{k}(T)=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \tag{6.4.16j}
\end{equation*}
$$

(ii) Geometrical Interpretation

If we think of the constraints $f_{D}(t, q, \dot{q})=0$ as hypersurfaces in velocity space, with t and the q 's as parameters (since the velocities can change instantaneously, but the configuration and time cannot), (6.4.16b) states that the virtual velocity change $\delta \dot{q}$ lies in the local tangent plane, just like the δq 's lie in the local tangent plane of the surface $f_{D}(t, q)=0$ (holonomic constraints) in configuration space. Analogously for $f_{D}(t, q, \dot{q}, \ddot{q})=0$, (6.4.16i) states the conditions. The above show that $J P$ is a natural for velocity constraints, while GP is a natural for acceleration constraints.

These results are summarized in tables 6.2 and 6.3.
Table 6.2 Virtual Displacements Needed to Produce the Correct Equations of Motion

Constraints	Lagrange	Jourdain	Gauss
$f(t, q)=0: \partial f / \partial q$	$\delta f=(\partial f / \partial q) \delta q$	$\delta^{\prime} f=0$	$\delta^{\prime \prime} f=0$,
		$\delta^{\prime} \dot{f}=(\partial f / \partial q) \delta \dot{q}$	$\delta^{\prime \prime} \dot{f}=0$
$f(t, q, \dot{q})=0: \partial f / \partial \dot{q}$	-	$\delta^{\prime} f=(\partial f / \partial \dot{q}) \delta \dot{q}$	$\delta^{\prime \prime} \ddot{f}=(\partial f / \partial q) \delta \ddot{q}$
			$\delta^{\prime \prime} \dot{f}=0$
$f(t, q, \dot{q}, \ddot{q})=0: \partial f / \partial \ddot{q} / \partial \dot{q}) \delta \ddot{q}$			

Table 6.3 Correct Equations of Motion

$$
\begin{aligned}
{\left[\text { Notation: } M_{k} \equiv E_{k}(T)-Q_{k} \equiv N_{k}(T)-Q_{k}\right.} & \equiv \partial S / \partial \ddot{q}_{k}-Q_{k} ; \\
\text { Mechanical principle: } \sum M_{k} \delta x_{k}=0, \quad \delta x_{k} & \left.=\delta q_{k}, \delta \dot{q}_{k}, \delta \ddot{q}_{k}, \ldots\right]
\end{aligned}
$$

Constraints	Virtual Displacements	Equations of Motion
$f_{D}(t, q)=0$	$\delta f_{D}=\sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}$	$M_{k}=\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right)$
$f_{D}(t, q, \dot{q})=0$	$\delta^{\prime} f_{D}=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta \dot{q}_{k}$	$M_{k}=\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)$
$f_{D}(t, q, \dot{q}, \ddot{q})=0$	$\delta^{\prime \prime} f_{D}=\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}$	$M_{k}=\sum \lambda_{D}\left(\partial f_{D} / \partial \ddot{q}_{k}\right)$

And analogously for higher-order constraints.
For the quasivariable versions of the preceding, see problem 6.5.6.
Example 6.4.1 Let us derive the impressed force-free equations of motion of a sled (or narrow boat, or skate, or knife, or stiff razor blade, etc.; recalling ex. 2.13.2, ex. 3.18.1, and their notations; also exs. 7.3 .2 and 7.3.3) of mass m, whose mass center G coincides with its contact point C, on a smooth horizontal plane P, via the various DVP.
(i) Via Jourdain's principle. With Lagrangean coordinates $q_{1,2,3}=x, y, \phi$, and since here $V=0, Q_{k, n p}=0$, so that

$$
\begin{equation*}
2 L=2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+I(\dot{\phi})^{2} \tag{a}
\end{equation*}
$$

and the constraint is (with \boldsymbol{n} : unit vector perpendicular to sled, on P)

$$
\begin{equation*}
\boldsymbol{v} \cdot \boldsymbol{n}=(\sin \phi) \dot{x}+(-\cos \phi) \dot{y}=0 \Rightarrow(\sin \phi) \delta x+(-\cos \phi) \delta y=0 \tag{b}
\end{equation*}
$$

that is, $n=3, m=1$, JP yields the variational equation:

$$
\begin{equation*}
\sum E_{k}(L) \delta \dot{q}_{k}=0: \quad(m \ddot{x}) \delta \dot{x}+(m \ddot{y}) \delta \dot{y}+(I \ddot{\phi}) \delta \dot{\phi}=0 \tag{c}
\end{equation*}
$$

under the constraint (b), but brought to Jourdain form; that is,

$$
\begin{align*}
& f(t, q, \dot{q})=0 \Rightarrow \delta^{\prime} f=(\partial f / \partial \dot{q}) \delta \dot{q} \tag{d}\\
& \delta^{\prime}[(\sin \phi) \dot{x}+(-\cos \phi) \dot{y}] \\
& =\left.\delta[(\sin \phi) \dot{x}+(-\cos \phi) \dot{y}]\right|_{\delta x, \delta y, \delta \phi=0} \\
& =[(\sin \phi) \delta \dot{x}+(-\cos \phi) \delta \dot{y} \\
& \quad+(\dot{x} \cos \phi) \delta \phi+(\dot{y} \sin \phi) \delta \phi]\left.\right|_{\delta x, \delta y, \delta \phi=0}=0 \tag{e}
\end{align*}
$$

or, carrying out the variations and enforcing the Jourdainian constraints $\delta q_{k}=0$,

$$
\begin{equation*}
(\sin \phi) \delta \dot{x}+(-\cos \phi) \delta \dot{y}=0 \tag{f}
\end{equation*}
$$

Eliminating, say, $\delta \dot{y}$ between (c) and (f), we obtain the unconstrained variational equation

$$
\begin{equation*}
(m \ddot{x} \cos \phi+m \ddot{y} \sin \phi) \delta \dot{x}+(I \ddot{\phi} \cos \phi) \delta \dot{\phi}=0 \tag{g}
\end{equation*}
$$

from which, since $\delta \dot{x}$ and $\delta \dot{\phi}$ are now independent, we get the two reactionless equations of motion

$$
\begin{equation*}
\ddot{x} \cos \phi+\ddot{y} \sin \phi=0, \quad \ddot{\phi}=0 \tag{h,i}
\end{equation*}
$$

The first of them expresses the absence of force in the tangential direction, while the second expresses the absence of moment, about $C=G$, in the direction perpendicular to P.
(ii) Via Gauss' principle. Here, the variational equation is

$$
\begin{equation*}
\sum E_{k}(L) \delta\left(\ddot{q}_{k}\right)=0: \quad(m \ddot{x}) \delta \ddot{x}+(m \ddot{y}) \delta \ddot{y}+(I \ddot{\phi}) \delta \ddot{\phi}=0 \tag{j}
\end{equation*}
$$

under the constraint (b), but brought to Gaussian form; that is,

$$
\begin{equation*}
f(t, q, \dot{q})=0 \Rightarrow \delta^{\prime \prime}(d f / d t)=(\partial f / \partial \dot{q}) \delta \ddot{q}, \tag{k}
\end{equation*}
$$

$$
\begin{align*}
\delta^{\prime \prime}\{d / d t[& (\sin \phi) \dot{x}+(-\cos \phi) \dot{y}]\} \\
\equiv & \delta[(\sin \phi) \ddot{x}+(-\cos \phi) \ddot{y} \\
& \quad+(\dot{x} \cos \phi) \dot{\phi}+(\dot{y} \sin \phi) \dot{\phi}]\left.\right|_{\delta x, \delta y, \delta \phi=0 ; \delta \dot{x}, \delta \dot{y}, \delta \dot{\phi}=0}=0 \tag{1}
\end{align*}
$$

or, carrying out the variations

$$
\begin{align*}
\{(\sin \phi) \delta \ddot{x} & +(-\cos \phi) \delta \ddot{y} \\
& +(\delta \dot{x} \cos \phi-\dot{x} \sin \phi \delta \phi+\delta \dot{y} \sin \phi+\dot{y} \cos \phi \delta \phi) \dot{\phi} \\
& +(\dot{x} \cos \phi+\dot{y} \sin \phi) \delta \dot{\phi}\}\left.\right|_{\delta x, \delta y, \delta \phi=0 ; \delta \dot{x}, \delta \dot{y}, \delta \dot{\delta}=0}=0 \tag{m}
\end{align*}
$$

and then enforcing the Gaussian constraints $\delta q_{k}=0, \delta \dot{q}_{k}=0$,

$$
\begin{equation*}
(\sin \phi) \delta \ddot{x}+(-\cos \phi) \delta \ddot{y}=0 . \tag{n}
\end{equation*}
$$

Similarly, eliminating $\delta \ddot{y}$ between (j) and (n), we find again eqs. (h, i).
For a Gaussian treatment of the related problem of Prytz's planimeter, see Brill (1909, pp. 30-33).

Problem 6.4.1 (i) Show that (where, as usual, $k, l=1,2, \ldots, n$; and $s=1,2, \ldots$)

$$
\begin{align*}
d^{s} \boldsymbol{r} / d t^{s} \equiv \stackrel{(s)}{\boldsymbol{r}}= & \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \stackrel{(s)}{q_{k}} \\
& +s\left(\sum \sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \stackrel{(s-1)}{q_{k}} \dot{q}_{l}+\sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right) \stackrel{(s-1)}{q_{k}}\right) \\
& + \text { no other } \stackrel{(s-1)}{q}, \stackrel{(s)}{q} \text { terms } ; \\
= & \sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \stackrel{(s)}{q_{k}}+\text { no other } \stackrel{(s)}{q} \text { terms } ; \tag{a}
\end{align*}
$$

and, therefore,

(iii)

$$
\begin{align*}
\partial \stackrel{(s)}{\boldsymbol{r}} / \partial \partial^{(s-1)} q_{k} & =s\left(\sum\left(\partial^{2} \boldsymbol{r} / \partial q_{k} \partial q_{l}\right) \dot{q}_{l}+\partial^{2} \boldsymbol{r} / \partial q_{k} \partial t\right) \tag{iv}\\
& =s\left(\partial \dot{\boldsymbol{r}} / \partial q_{k}\right)=s\left(\partial \boldsymbol{v} / \partial q_{k}\right) \tag{d}\\
& \Rightarrow \partial \stackrel{(s)}{\boldsymbol{v}} / \partial \stackrel{(s)}{q_{k}}=(s+1)\left(\partial \boldsymbol{v} / \partial q_{k}\right) \tag{e}
\end{align*}
$$

$$
\begin{equation*}
\stackrel{(s)}{\boldsymbol{v}}=(s+1) \sum\left(\partial \boldsymbol{v} / \partial q_{k}\right) \stackrel{(s)}{q}_{q_{k}}^{(s)} \text { no other } \stackrel{(s)}{q} \text { terms. } \tag{v}
\end{equation*}
$$

Problem 6.4.2 (i) Starting with $2 T \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}$, show that

$$
\begin{align*}
& =\boldsymbol{S} d m \stackrel{(1)}{\boldsymbol{r}} \cdot \stackrel{(s+1)}{\boldsymbol{r}}^{(1)} \boldsymbol{S} \boldsymbol{S} d m \stackrel{(2)}{\boldsymbol{r}} \cdot \stackrel{(s)}{\boldsymbol{r}}+\text { no other } \stackrel{(s)}{\boldsymbol{r}},{ }_{\boldsymbol{r}}^{(s+1)} \text { terms; } \tag{a}
\end{align*}
$$

and from this deduce the following kinematico-inertial identities:
(a)

$$
\begin{align*}
\partial T / \partial q_{k}=\boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \dot{\boldsymbol{r}} / \partial q_{k}\right) & =(1 / s) \boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \stackrel{(s)}{\boldsymbol{r}} / \partial \stackrel{(s-1)}{q_{k}}\right) \\
& \equiv(1 / s) \boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \stackrel{(s)}{\boldsymbol{r}} / \partial \stackrel{(s-1)}{q_{k}}\right) \tag{b}
\end{align*}
$$

and, generally,

$$
\begin{align*}
\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q} k^{s)} & \boldsymbol{S} d m \dot{\boldsymbol{r}} \cdot\left(\partial \stackrel{(s+1)}{\boldsymbol{r}} / \partial{\stackrel{(s)}{q_{k}}}_{)}\right)+s \boldsymbol{S} d m \ddot{\boldsymbol{r}} \cdot\left(\partial \stackrel{(s)}{\boldsymbol{r}} / \partial \stackrel{(s)}{q_{k}}\right) \tag{b}\\
& =(s+1) \boldsymbol{S} d m \boldsymbol{v} \cdot\left(\partial \boldsymbol{v} / \partial q_{k}\right)+s \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k} \\
& =(s+1)\left(\partial T / \partial q_{k}\right)+s E_{k}(T), \tag{c}
\end{align*}
$$

from which, rearranging, we obtain the earlier Mangeron-Deleanu identity:

$$
\begin{equation*}
E_{k}(T)=(1 / s)\left[\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q}_{k}-(s+1)\left(\partial T / \partial q_{k}\right)\right] . \tag{d}
\end{equation*}
$$

($s=1$: Nielsen eqs., $s=2$: Tsenov eqs., etc.)
(ii) Prove the Mangeron-Deleanu recursive identity:

$$
\begin{gather*}
(1 / s)\left[\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q_{k}}\right]-(1 / r)\left[\partial \stackrel{(r)}{T} / \partial \stackrel{(r}{q}_{q_{k}}\right]+[(s-r) /(s r)]\left(\partial T / \partial q_{k}\right)=0 \\
(s, r=1,2, \ldots ; k=1,2, \ldots ; n) \tag{e}
\end{gather*}
$$

and with its help, and the rest, deduce the following identities:
(a)

$$
\begin{gather*}
{[1 /(s-r)]\left[(r + 1) \left(\partial \stackrel{(s)}{T} / \partial{\left.\left.\stackrel{(s)}{q_{k}}\right)-(s+1)\left(\partial \stackrel{(r)}{T} / \partial \stackrel{(r)}{q}_{k}\right)\right]=E_{k}(T)}_{[s, r=1,2, \ldots, \text { BUT (this form) } s \neq r ; k=1,2, \ldots, n]} .\right.\right.}
\end{gather*}
$$

$$
\begin{equation*}
\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q_{k}}-\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s-1)}{q_{k}}=\partial T / \partial q_{k}+E_{k}(T) \tag{b}
\end{equation*}
$$

$$
\begin{align*}
\delta \stackrel{(s)}{\delta I} & \equiv \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \stackrel{(s)}{\boldsymbol{r}} \tag{c}\\
& =\sum\left[\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q_{k}}-\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s-1)}{q_{k}}-\partial T / \partial q_{k}\right] \delta \stackrel{(s)}{q_{k}} \tag{i}
\end{align*}
$$

sometimes referred to as the Mićević Dušan-Rusov Lazar form of Lagrange's identity (\Rightarrow principle, 1984); and for unconstrained $\delta_{q_{k}}^{(s)}$, seasily resulting in the equations of motion:

$$
\begin{equation*}
\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q}_{k}-\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s-1)}{q_{k}}-\partial T / \partial q_{k}=Q_{k} \tag{j}
\end{equation*}
$$

For further related results, see, for example, Shen and Mei (1987).

Example 6.4.2 Let us show, by direct differentiations, that for any sufficiently differentiable function $f(t, q, \dot{q}): E_{k}(f)=N_{k}(f)$, or, in extenso,

$$
\begin{equation*}
\left(\partial f / \partial \dot{q}_{k}\right)^{\cdot}-\partial f / \partial q_{k}=\partial \dot{f} / \partial \dot{q}_{k}-2\left(\partial f / \partial q_{k}\right) \tag{a}
\end{equation*}
$$

We have, successively,

$$
\left.\begin{array}{rl}
N_{k}(f) \equiv \partial \dot{f} / \partial \dot{q}_{k}-2\left(\partial f / \partial q_{k}\right) \\
= & \partial / \partial \dot{q}_{k}[\partial f / \partial t
\end{array}+\sum\left(\partial f / \partial q_{l}\right) \dot{q}_{l}+\sum\left(\partial f / \partial \dot{q}_{l}\right) \ddot{q}_{l}\right]-2\left(\partial f / \partial q_{k}\right) ~=\partial / \partial t\left(\partial f / \partial \dot{q}_{k}\right)+\sum\left[\partial / \partial q_{l}\left(\partial f / \partial \dot{q}_{k}\right)\right] \dot{q}_{l}+\sum\left(\partial f / \partial q_{l}\right) \delta_{l k} .
$$

But (i) the first, second, and fourth terms combine to $\left(\partial f / \partial \dot{q}_{k}\right)^{\circ}$; while (ii) the third reduces to $\partial f / \partial q_{k}$, and combines with the last term to $-\partial f / \partial q_{k}$; that is, finally,

$$
\begin{equation*}
N_{k}(f)=\left(\partial f / \partial \dot{q}_{k}\right)^{\cdot}-\partial f / \partial q_{k} \equiv E_{k}(f), \quad \text { Q.E.D. } \tag{b}
\end{equation*}
$$

Example 6.4.3 Let us extend the result of the preceding example to nonholonomic variables; namely, let us show that

$$
\begin{equation*}
E_{k}^{*}\left(f^{*}\right) \equiv\left(\partial f^{*} / \partial \omega_{k}\right)^{*}-\partial f^{*} / \partial \theta_{k}=\partial \dot{f} * / \partial \omega_{k}-2\left(\partial f^{*} / \partial \theta_{k}\right) \equiv N_{k}^{*}\left(f^{*}\right) \tag{a}
\end{equation*}
$$

where (recalling the notations of chaps. 2-5)

$$
\begin{equation*}
\partial \ldots / \partial \theta_{k} \equiv \sum\left(\partial \ldots / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \Leftrightarrow \partial \ldots / \partial q_{l}=\sum\left(\partial \ldots / \partial \theta_{k}\right)\left(\partial \omega_{k} / \partial \dot{q}_{l}\right) \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
f=f(t, q, \dot{q})=f[t, q, \dot{q}(t, q, \omega)] \equiv f^{*}(t, q, \omega) \equiv f^{*} \tag{c}
\end{equation*}
$$

Since $\dot{f}^{*} \equiv d f^{*} / d t$ is a function of $t, q, \omega ; \dot{q}(t, q, \omega), \ddot{q}(t, q, \omega, \dot{\omega})$, we find, successively,

$$
\begin{aligned}
& N_{k}{ }^{*}\left(f^{*}\right) \equiv \partial \dot{f}^{*} / \partial \omega_{k}-2\left(\partial f^{*} / \partial \theta_{k}\right) \\
& =\partial / \partial \omega_{k}\left[\partial f^{*} / \partial t+\sum\left(\partial f^{*} / \partial q_{l}\right) \dot{q}_{l}+\sum\left(\partial f^{*} / \partial \omega_{l}\right) \dot{\omega}_{l}\right] \\
& -2 \sum\left(\partial f^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& =\partial / \partial t\left(\partial f^{*} / \partial \omega_{k}\right)+\sum\left[\partial / \partial q_{l}\left(\partial f^{*} / \partial \omega_{k}\right)\right] \dot{q}_{l}+\sum\left(\partial f^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right) \\
& +\sum\left[\partial / \partial \omega_{l}\left(\partial f^{*} / \partial \omega_{k}\right)\right] \dot{\omega}_{l}-2 \sum\left(\partial f^{*} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)
\end{aligned}
$$

[the first, second, and fourth terms combine to $\left(\partial f^{*} / \partial \omega_{k}\right)^{*}$;
while, recalling (b), the third and last add up to $-\partial f * / \partial \theta_{k}$]

$$
\begin{equation*}
=\left(\partial f^{*} / \partial \omega_{k}\right)^{\cdot}-\partial f^{*} / \partial \theta_{k} \equiv E_{k} *\left(f^{*}\right), \quad \text { Q.E.D. } \tag{d}
\end{equation*}
$$

For an alternative proof, see Mei (1983, pp. 630-631).

Example 6.4.4 Using the kinematico-inertial identities of the preceding examples, let us find the Nielsen forms of the two general (say, kinetic) nonlinear nonholonomic equations of Johnsen-Hamel (§5.3):

$$
\begin{equation*}
\left(\partial T^{*} / \partial \omega_{I}\right)^{*}-\partial T^{*} / \partial \theta_{I}-\sum\left[\left(\partial \dot{q}_{k} / \partial \dot{\omega}_{I}\right)^{*}-\partial \dot{q}_{k} / \partial \theta_{I}\right]\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\sum\left(\partial T^{*} / \partial \omega_{l}\right)\left(\partial \omega_{l} / \partial \dot{q}_{k}\right), \quad \text { i.e., } \quad p_{k}=p_{k}(t, q, \dot{q})=p_{k}^{*}(t, q, \omega),(\mathrm{b} \tag{b}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
E_{I}^{*}\left(T^{*}\right)-\sum E_{I}^{*}\left(\dot{q}_{k}\right)\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\partial T^{*} / \partial \omega_{I}\right)^{\cdot}-\partial T^{*} / \partial \theta_{I}+\sum \sum\left[\left(\partial \omega_{l} / \partial \dot{q}_{r}\right)^{\cdot}-\partial \omega_{l} / \partial q_{r}\right]\left(\partial \dot{q}_{r} / \partial \omega_{I}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I} \tag{d}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
E_{I}\left(T^{*}\right)+\sum \sum E_{r}\left(\omega_{l}\right)\left(\partial \dot{q}_{r} / \partial \omega_{I}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I} \tag{e}
\end{equation*}
$$

(i) Substituting $N_{I}{ }^{*}\left(T^{*}\right)=E_{I}{ }^{*}\left(T^{*}\right)$ and $N_{I}{ }^{*}\left(\dot{q}_{k}\right)=E_{I} *\left(\dot{q}_{k}\right)$ in (a, c), we readily obtain their Nielsen forms:

$$
\begin{equation*}
\partial \dot{T}^{*} / \partial \omega_{I}-2\left(\partial T^{*} / \partial \theta_{I}\right)-\sum\left[\partial \ddot{q}_{k} / \partial \omega_{I}-2\left(\partial \dot{q}_{k} / \partial \theta_{I}\right)\right]\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} \tag{f}
\end{equation*}
$$

or, compactly,

$$
\begin{equation*}
N_{I}^{*}\left(T^{*}\right)-\sum N_{I}^{*}\left(\dot{q}_{k}\right)\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} \tag{g}
\end{equation*}
$$

(ii) Substituting $N_{I}{ }^{*}\left(T^{*}\right)=E_{I}{ }^{*}\left(T^{*}\right)$ and $N_{r}\left(\omega_{l}\right)=E_{r}\left(\omega_{l}\right)$ in (d, e), we readily obtain their Nielsen forms:
$\partial \dot{T}^{*} / \partial \omega_{I}-2\left(\partial T^{*} / \partial \theta_{I}\right)+\sum \sum\left[\left(\partial \dot{\omega}_{l} / \partial \dot{q}_{r}\right)-2\left(\partial \omega_{l} / \partial q_{r}\right)\right]\left(\partial \dot{q}_{r} / \partial \omega_{I}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I}$,
or, compactly,

$$
\begin{equation*}
N_{I}^{*}\left(T^{*}\right)+\sum \sum N_{r}\left(\omega_{l}\right)\left(\partial \dot{q}_{r} / \partial \omega_{I}\right)\left(\partial T^{*} / \partial \omega_{l}\right)=\Theta_{I} \tag{i}
\end{equation*}
$$

And similarly for the kinetostatic equations.
Here, too, as in chapter 5, we remark that the importance of these equations lies not so much in their ability to solve concrete nonholonomic problems more easily, but in that they help us to understand better the formal kinematico-inertial structure of analytical mechanics; also, they might prove useful in handling higher-order constraints.

Problem 6.4.3 Show that in the Pfaffian case

$$
\begin{equation*}
\dot{q}_{k}=\sum A_{k l}(t, q) \omega_{l}+A_{k}(t, q)=\sum A_{k I}(t, q) \omega_{I}+A_{k}(t, q) \tag{a}
\end{equation*}
$$

eqs. (f) of the preceding example reduce to the Nielsen form of the general nonlinear Voronets equations:

$$
\begin{align*}
\partial \dot{T}^{*} / \partial \omega_{I} & -2\left(\partial T^{*} / \partial \theta_{I}\right) \\
+\sum\left(\partial T / \partial \dot{q}_{k}\right) * & \left(\sum\left(\partial A_{k I^{\prime}} / \partial \theta_{I}-\partial A_{k I} / \partial \theta_{I^{\prime}}\right) \omega_{I^{\prime}}+\partial A_{k} / \partial \theta_{I}\right. \\
& \left.-\sum\left(\partial A_{k I} / \partial q_{l}\right) A_{l}-\partial A_{k I} / \partial t\right)=\Theta_{I} \tag{b}
\end{align*}
$$

Equivalent forms can be obtained from (h) of the preceding example, if, instead of (a), we use

$$
\begin{equation*}
\omega_{l}=\sum a_{l k}(t, q) \dot{q}_{k}+a_{l}(t, q) \tag{c}
\end{equation*}
$$

Problem 6.4.4 (Mei, 1985, pp. 203-207, 211-214). Continuing from the preceding problem, show that if (a) of that problem are stationary (or scleronomic); that is, if

$$
\begin{equation*}
\dot{q}_{k}=\sum A_{k l}(q) \omega_{l}=\sum A_{k I}(q) \omega_{I} \tag{a}
\end{equation*}
$$

then (b) of that problem reduce to the Nielsen form of the general nonlinear Chaplygin equations:

$$
\begin{equation*}
\partial \dot{T}^{*} / \partial \omega_{I}-2\left(\partial T^{*} / \partial \theta_{I}\right)+\sum \sum\left(\partial T / \partial \dot{q}_{k}\right)^{*}\left[\left(\partial A_{k I^{\prime}} / \partial \theta_{I}-\partial A_{k I} / \partial \theta_{I^{\prime}}\right) \omega_{I^{\prime}}\right]=\Theta_{I} \tag{b}
\end{equation*}
$$

6.5 ADDITIONAL FORMS OF THE EQUATIONS OF NIELSEN AND TSENOV

(i) Following Tsenov, we introduce the function

$$
\begin{equation*}
R_{(1)} \equiv \dot{T}-2 \dot{T}_{(o)} \tag{6.5.1}
\end{equation*}
$$

where $T_{(o)}$ is what results from T if we regard it as function of t and the q 's, but not the \dot{q} 's; that is, for fixed, or frozen, velocities,

$$
\begin{equation*}
T_{(o)}=T_{(o)}(t, q)=T(t, q, \dot{q}=\text { constant }) \tag{6.5.2}
\end{equation*}
$$

From the above it follows that

$$
\begin{equation*}
\dot{T}_{(o)}=\sum\left(\partial T / \partial q_{k}\right) \dot{q}_{k}+\partial T / \partial t+\text { no other } \dot{q} \text { terms } \tag{6.5.3}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\partial \dot{T}_{(o)} / \partial \dot{q}_{k}=\partial T / \partial q_{k} . \tag{6.5.4}
\end{equation*}
$$

Then, Nielsen's equations, say (6.3.18), can be written in the Appellian form

$$
\begin{equation*}
\partial R_{(1)} / \partial \dot{q}_{k}=Q_{k}, \tag{6.5.5}
\end{equation*}
$$

which is slightly simpler than the corresponding Appell's equations $\partial S / \partial \ddot{q}_{k}=Q_{k}$. Finally, introducing the new "Tsenov function"

$$
\begin{equation*}
K_{(1)} \equiv R_{(1)}-\sum Q_{k} \dot{q}_{k}, \tag{6.5.6}
\end{equation*}
$$

we can express (6.5.5) in the equilibrium form:

$$
\begin{equation*}
\partial K_{(1)} / \partial \dot{q}_{k}=0, \quad \text { under the conditions } \partial Q_{l} / \partial \dot{q}_{k}=0 \tag{6.5.7}
\end{equation*}
$$

in words: the equations of motion result from the stationarity of the function $K_{(1)}=K_{(1)}(\dot{q})$. Similarly, for constrained systems: for example, if the constraints are

$$
\begin{align*}
& \dot{q}_{D}=\sum b_{D I} \dot{q}_{I}+b_{D}, \quad b_{D I}=b_{D I}(t, q), \quad b_{D}=b_{D}(t, q) \\
& \Rightarrow \delta q_{D}=\sum b_{D I} \delta q_{I}, \tag{6.5.8a}
\end{align*}
$$

then it is not hard to see that the Nielsen-Tsenov equations of the system take the "Hadamard form":

$$
\begin{gather*}
\partial K_{(1)} / \partial \dot{q}_{I}+\sum b_{D I}\left(\partial K_{(1)} / \partial \dot{q}_{D}\right)=0 \\
(D=1,2, \ldots, m ; I=m+1, \ldots, n) \tag{6.5.8b}
\end{gather*}
$$

or, with $K_{(1)}=K_{(1)}\left[t, q, \dot{q}_{D}\left(t, q, \dot{q}_{I}\right), \dot{q}_{I}\right] \equiv K_{(1) o}\left(t, q, \dot{q}_{I}\right)=K_{(1) o}$ ("constrained Tsenov function")

$$
\begin{align*}
\Rightarrow \partial K_{(1) o} / \partial \dot{q}_{I} & =\partial K_{(1)} / \partial \dot{q}_{I}+\sum\left(\partial K_{(1)} / \partial \dot{q}_{D}\right)\left(\partial \dot{q}_{D} / \partial \dot{q}_{I}\right) \\
& =\partial K_{(1)} / \partial \dot{q}_{I}+\sum b_{D I}\left(\partial K_{(1)} / \partial \dot{q}_{D}\right), \tag{6.5.8c}
\end{align*}
$$

simply,

$$
\begin{equation*}
\partial K_{(1) o} / \partial \dot{q}_{I}=0 . \tag{6.5.8d}
\end{equation*}
$$

Other "Maggi-like" forms are also possible.
(ii) Again, following Tsenov, introducing the functions

$$
\begin{equation*}
R_{(2)} \equiv(1 / 2)\left(\ddot{T}-3 \ddot{T}_{(o)}\right) \quad \text { and } \quad K_{(2)} \equiv R_{(2)}-\sum Q_{k} \ddot{q}_{k} \tag{6.5.9a}
\end{equation*}
$$

and then noting the kinematic identities

$$
\begin{align*}
\dot{T}_{(o)}=\sum\left(\partial T / \partial q_{k}\right) \dot{q}_{k}+\text { no other } \dot{q} \text { terms } & \Rightarrow \ddot{T}_{(o)}=\sum\left(\partial T / \partial q_{k}\right) \ddot{q}_{k}+\text { no } \ddot{q} \text { terms } \\
& \Rightarrow \partial \ddot{T}_{(o)} / \partial \ddot{q}_{k}=\partial T / \partial q_{k} \tag{6.5.9b}
\end{align*}
$$

we can rewrite (6.4.11) in the following Appell-like and "equilibrium forms":

$$
\begin{align*}
& \partial R_{(2)} / \partial \ddot{q}_{k}=Q_{k}, \tag{6.5.9c}\\
& \partial K_{(2)} / \partial \ddot{q}_{k}=0, \quad \text { under the conditions } \partial Q_{l} / \partial \ddot{q}_{k}=0, \tag{6.5.9d}
\end{align*}
$$

respectively.
The above are particularly useful for constraints of the acceleration form:

$$
\begin{equation*}
f_{D}(t, q, \dot{q}, \ddot{q})=0 . \tag{6.5.10a}
\end{equation*}
$$

Then, Gauss' principle yields

$$
\begin{equation*}
\sum\left(\partial K_{(2)} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}=\sum\left(\partial K_{(2)} / \partial \ddot{q}_{D}\right) \delta \ddot{q}_{D}+\sum\left(\partial K_{(2)} / \partial \ddot{q}_{I}\right) \delta \ddot{q}_{I}=0 \tag{6.5.10b}
\end{equation*}
$$

under the conditions (in Gaussian variation form)

$$
\begin{align*}
& \delta^{\prime \prime} f_{D}=\sum\left(\partial f_{D} / \partial \ddot{q}_{D}\right) \delta \ddot{q}_{D}+\sum\left(\partial f_{I} / \partial \ddot{q}_{I}\right) \delta \ddot{q}_{I}=0 \\
& \Rightarrow \delta \ddot{q}_{D}=\sum\left(\partial \ddot{q}_{D} / \partial \ddot{q}_{I}\right) \delta \ddot{q}_{I} \equiv \sum b_{D I} \delta \ddot{q}_{I} . \tag{6.5.10c}
\end{align*}
$$

Combining (6.5.10c) with (6.5.10b), in by now well-known ways, and since the $n-m$ $\delta \ddot{q}_{I}$ can now be taken as independent, we immediately obtain the Hadamard form of the second-kind Tsenov equations:

$$
\begin{equation*}
\partial K_{(2)} / \partial \ddot{q}_{I}+\sum b_{D I}\left(\partial K_{(2)} / \partial \ddot{q}_{D}\right)=0 \tag{6.5.10d}
\end{equation*}
$$

A (6.5.8d)-like form is also readily available.
(iii) Finally, in the general case of a system subjected to the $m(s)$ th order constraints

$$
\begin{equation*}
f_{D}(t, q, \dot{q}, \ddot{q}, \ddot{q}, \ldots, \stackrel{(s)}{q})=0 \tag{6.5.11a}
\end{equation*}
$$

we can easily show that the Hadamard form of its Mangeron-Deleanu equations is

$$
\begin{equation*}
\partial K_{(s)} / \partial \stackrel{(s)}{q_{I}}+\sum b_{D I}\left(\partial K_{(s)} / \partial \stackrel{(s)}{q_{D}}\right)=0 \tag{6.5.11b}
\end{equation*}
$$

where

$$
\begin{equation*}
\stackrel{(s)}{q_{D}}=\sum b_{D I} \stackrel{(s)}{q_{I}}+\text { no other } \stackrel{(s)}{q} \text { terms } \Rightarrow \delta \stackrel{(s)}{q}_{D}=\sum b_{D I} \delta \stackrel{(s)}{q_{I}}, \tag{6.5.11c}
\end{equation*}
$$

and

$$
\begin{align*}
K_{(s)} & \left.\equiv R_{(s)}-\sum Q_{k} \stackrel{(s)}{q_{k}}, \quad \text { under } \quad \partial Q_{l} / \partial \stackrel{(s)}{q} k^{(}\right) 0, \\
R_{(s)} & \equiv(1 / s)\left[\stackrel{(s)}{T}-(s+1) \sum\left(\partial T / \partial q_{k}\right) \stackrel{(s)}{q_{k}}\right]+\text { no other } \stackrel{(s)}{q} \text { terms } \\
& =(1 / s)\left[\stackrel{(s)}{T}-(s+1) \stackrel{(s)}{(o)}_{(s)}\right]+\text { no other } \stackrel{(s)}{q} \text { terms }, \tag{6.5.11d}
\end{align*}
$$

due to

$$
\begin{equation*}
\stackrel{(s)}{T_{(o)}}=\sum\left(\partial T / \partial q_{k}\right) \stackrel{(s)}{q_{k}}+\text { no other } \stackrel{(s)}{q} \text { terms } \Rightarrow \partial \stackrel{(s)}{T}_{(o)} / \partial \stackrel{(s)}{q}_{k}=\partial T / \partial q_{k} . \tag{6.5.11e}
\end{equation*}
$$

These higher-order Tsenov equations were presented, in a series of papers, by the Romanian mechanicians D. Mangeron and S. Deleanu in the early 1960s. Finally, (a) in terms of the constrained $R_{(s) o}$ and corresponding impressed forces $Q_{I o}$, the equations of motion take the Appellian form

$$
\begin{equation*}
\partial R_{(s) o} / \partial \stackrel{(s)}{q} I^{(s)}=Q_{I o} \tag{6.5.11f}
\end{equation*}
$$

while (b) in terms of the constrained $K_{(s) o}$, they assume the equilibrium form

$$
\begin{equation*}
\partial K_{(s) o} / \partial \stackrel{q}{q}_{I}^{(s)}=0 \tag{6.5.11~g}
\end{equation*}
$$

GENERAL REMARKS

(i) The relation between all these equations and the Lagrangean ones rests on the key kinematico-inertial identity:
(ii) The usefulness of these $\stackrel{(s)}{T}$-based equations lies in their ability to handle constraints of corresponding order in s. Symbolically,

$$
\begin{array}{ll}
f(t, q, \dot{q})=0 \Rightarrow \dot{T} & (\text { Nielsen) }, \\
f(t, q, \dot{q}, \ddot{q})=0 \Rightarrow \ddot{T} & (\text { Tsenov 2nd kind) }, \\
f(t, q, \dot{q}, \ddot{q}, \ddot{q})=0 \Rightarrow \ddot{T} & (\text { Tsenov 3rd kind) }, \\
\ldots \\
f(t, q, \dot{q}, \ddot{q}, \ldots, \stackrel{(s)}{q})=0 \Rightarrow \stackrel{(s)}{T} & (\text { Mangeron-Deleanu). }
\end{array}
$$

For unconstrained systems (i.e., independent δq 's), these types of equations (as well as those by Appell) do not seem to offer any particular advantage over the ordinary Lagrangean equations.
(iii) By comparing the preceding $\stackrel{(s)}{T}$-equations with those by Appell, say for unconstrained systems, we readily conclude that

$$
\begin{equation*}
\partial R_{(s)} / \partial \stackrel{(s)}{q_{k}}=\partial \stackrel{(s)}{S} / \partial \stackrel{(s+2)}{q_{k}} \quad(s=1,2,3, \ldots) \tag{6.5.13}
\end{equation*}
$$

(iv) It is not hard to show that, for Pfaffian constraints

$$
\begin{equation*}
\sum a_{D k} \dot{q}_{k}+a_{D}=0 \Rightarrow \sum a_{D k} \delta q_{k}=0 \tag{6.5.14a}
\end{equation*}
$$

some of the earlier principles can be extended so that they hold for finite variations, and not just $\delta(\ldots)$:
(a) If both \dot{q}_{k} and $\dot{q}_{k}+\Delta \dot{q}_{k}$ are sets of kinematically admissible velocities, at the same configuration and time; that is, if they both satisfy (6.5.14a):

$$
\begin{equation*}
\sum a_{D k} \dot{q}_{k}+a_{D}=0, \quad \sum a_{D k}\left(\dot{q}_{k}+\Delta \dot{q}_{k}\right)+a_{D}=0 \tag{6.5.14b}
\end{equation*}
$$

then subtracting them side by side yields

$$
\begin{equation*}
\sum a_{D k} \Delta \dot{q}_{k}=0 \tag{6.5.14c}
\end{equation*}
$$

for Jourdain-like variations satisfying $\Delta t=0$ and $\Delta q=0$. This states that, in the constraints (6.5.14a), we can replace the virtual δq_{k} 's with the finite-velocity Jourdain jumps $\Delta \dot{q}_{k}$.
(b) By (...) -differentiating (6.5.14a), we obtain
$\sum\left(\dot{a}_{D k} \dot{q}_{k}+a_{D k} \ddot{q}_{k}\right)+\dot{a}_{D}=\sum a_{D k} \ddot{q}_{k}+$ no other \ddot{q} terms $=0$,
and, therefore, if we consider the two admissible acceleration states \ddot{q} and $\ddot{q}+\Delta \ddot{q}$, under the Gaussian restrictions $\Delta t=0, \Delta q=0, \Delta \dot{q}=0$, substitute them into (6.5.15a), and subtract the resulting equations side by side, we obtain

$$
\begin{equation*}
\sum a_{D k} \Delta \ddot{q}_{k}=0 \tag{6.5.15b}
\end{equation*}
$$

that is, in (6.5.14a), we can replace the δq_{k} 's with the finite acceleration Gauss jumps $\Delta \ddot{q}_{k}$. The extension to higher-order constraints should be obvious.
(v) Let the impressed forces Q_{k} be derivable, wholly or partly, from a generalized potential $V=V(t, q, \dot{q})$ [§3.9]; that is,

$$
V=V(t, q, \dot{q})=V_{0}(t, q)+\sum \gamma_{k}(t, q) \dot{q}_{k}
$$

and

$$
\begin{align*}
Q_{k, \text { potential part }} & =E_{k}(V) \equiv\left(\partial V / \partial \dot{q}_{k}\right)^{\cdot}-\partial V / \partial q_{k} \\
& =-\partial V_{0} / \partial q_{k}+\sum\left(\partial \gamma_{k} / \partial q_{l}-\partial \gamma_{l} / \partial q_{k}\right) \dot{q}_{l}+\partial \gamma_{k} / \partial t \tag{6.5.16a}
\end{align*}
$$

Then, it can be easily shown that V satisfies the "Dolaptschiew identities":

$$
\begin{equation*}
\left(\partial V / \partial \dot{q}_{k}\right)^{\cdot}=(1 / s)\left(\partial \stackrel{(s)}{V} / \partial \stackrel{(s)}{q_{k}}-\partial V / \partial q_{k}\right) \tag{6.5.16b}
\end{equation*}
$$

and, therefore, with $L \equiv T-V$, the equations of motion, of, say, an unconstrained system, can be rewritten as

$$
\begin{gather*}
(1 / s)\left[\partial \stackrel{(s)}{L} / \partial \stackrel{(s)}{q_{k}}-(s+1)\left(\partial L / \partial q_{k}\right)\right]=Q_{k, n p} \tag{6.5.16c}\\
Q_{k, n p}: \text { nonpotential part of } Q_{k} \tag{6.5.16d}
\end{gather*}
$$

Further, introducing $L_{(o)} \equiv L(t, q, \dot{q}=$ constant $)$, and since $\partial L_{(o)}^{(s)} / \partial{ }_{q}^{(s)} q_{k}=\partial L / \partial q_{k}$, the equations of motion assume the following two equivalent forms:

Appell-like: $\quad \partial l_{(s)} / \partial \stackrel{(s)}{q}_{k}=Q_{k, n p}, \quad$ where $\quad l_{(s)} \equiv(1 / s)\left[\stackrel{(s)}{L}-(s+1){ }_{L}^{(s)} L_{(o)}\right], \quad(6.5 .16 \mathrm{e})$
Equilibrium: $\quad \partial k_{(s)} / \partial{\stackrel{(s)}{q_{k}}=0, \quad \text { where } \quad k_{(s)} \equiv l_{(s)}-\sum Q_{k, n p} \stackrel{(s)}{q_{k}} .}^{(s)}$
And analogously for constrained systems. For example, the equations of motion of a system constrained by

$$
\begin{equation*}
\stackrel{(s)}{q_{D}}=\sum b_{D I} \stackrel{(s)}{q_{I}}+\text { no other } \stackrel{(s)}{q} \text { terms } \Rightarrow \delta \stackrel{(s)}{q}_{(s)}=\sum b_{D I} \delta_{q_{I}}^{(s)}, \tag{6.5.17a}
\end{equation*}
$$

are
where $l_{(s) o}, k_{(s) o}$ are, respectively, $l_{(s)}, k_{(s)}$ from which the dependent rates $q_{D}^{(s)}$ have been eliminated by means of the first of (6.5.17a), and $\left(Q_{I, n p}\right)_{o} \equiv Q_{I, n p}+\sum b_{D I} Q_{D, n p}$.

Problem 6.5.1 Higher Forms of Appell's Equations $[S=S(t, q, \dot{q}, \ddot{q})$: Appellian function]. Let

$$
\begin{equation*}
\stackrel{(s)}{U} \equiv \stackrel{(s)}{S}-\sum Q_{k} \stackrel{(s)}{q}_{k}+f(t, q, \dot{q}, \ldots, \stackrel{(s-1)}{q}) \tag{a}
\end{equation*}
$$

Show that
(i) Under the $m(<n)$ constraints

$$
\begin{equation*}
f_{D}(t, q, \dot{q}, \ldots, \stackrel{(s+2)}{q})=0 \tag{b}
\end{equation*}
$$

the equations of motion may be expressed in the "Routh-Voss" form:

$$
\begin{equation*}
\partial \stackrel{(s)}{S} / \partial \stackrel{(s+2)}{q_{k}}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \stackrel{(s+2)}{q_{k}}\right) \tag{c}
\end{equation*}
$$

(ii) Under the $m(<n)$ constraints

$$
\begin{equation*}
\stackrel{(s+2)}{q_{D}}=\sum b_{D I} \stackrel{(s+2)}{q_{I}}+\text { no other } \stackrel{(s+2)}{q_{k}} \text { terms } \tag{d}
\end{equation*}
$$

they may be expressed in the "Hadamard" form:

$$
\begin{equation*}
\partial \stackrel{(s)}{S} / \partial \stackrel{(s+2)}{q_{I}}+\sum b_{D I}\left(\partial \stackrel{(s)}{S} / \partial \stackrel{(s+2)}{q_{D}}\right)=Q_{I}+\sum b_{D I} Q_{D} \tag{e}
\end{equation*}
$$

and
(iii) Under the $m(<n)$ constraints

$$
\begin{equation*}
\stackrel{(s+2)}{q_{D}}=\stackrel{(s+2)}{q_{D}}(t, q, \dot{q}, \ldots, \stackrel{(s+1)}{q}, \stackrel{(s+2)}{\theta}) \tag{f}
\end{equation*}
$$

they may be expressed in the "Maggi" form:

$$
\begin{equation*}
\sum\left(\partial S / \partial \ddot{q}_{k}\right)\left[\partial \stackrel{(s+2)}{q_{k}} / \partial{ }^{(s+2)} \theta_{I}\right]=\sum Q_{k}\left[\partial \stackrel{(s+2)}{q_{k}} / \partial \stackrel{(s+2)}{\theta_{I}}\right]=\Theta_{I} \tag{g}
\end{equation*}
$$

In all these cases, it is assumed that the constraint forces satisfy the "ideal reactions" postulate ($\$ 3.2 \mathrm{ff}$.):

$$
\begin{equation*}
\Lambda_{I} \equiv \boldsymbol{S} d \boldsymbol{R} \cdot \boldsymbol{\varepsilon}_{I}=\boldsymbol{S} d \boldsymbol{R} \cdot\left(\partial \stackrel{(s)}{\boldsymbol{a}} / \partial \stackrel{(s+2)}{\theta_{I}}\right)=0 . \tag{h}
\end{equation*}
$$

Example 6.5.1 A charged particle moves in a homogeneous electromagnetic field of intensities \boldsymbol{E} (electric) and \boldsymbol{H} (magnetic). It is shown in electrodynamics [see any advanced book on the subject; e.g., Landau and Lifshitz (1971, §8, §16)] that its Lagrangean is

$$
\begin{equation*}
L \equiv T-V=(1 / 2) m v^{2}-e \Phi+(e / c)(\boldsymbol{A} \cdot \boldsymbol{v}) \tag{a}
\end{equation*}
$$

where $e=$ electric charge, $c=$ speed of light in vacuum,

$$
\begin{align*}
& \Phi=-\boldsymbol{E} \cdot \boldsymbol{r} \text { is the scalar potential of the (electric) field, and } \tag{b1}\\
& \boldsymbol{A}=(\boldsymbol{H} \times \boldsymbol{r}) / 2 \text { is the vector potential of the (magnetic) field. } \tag{b2}
\end{align*}
$$

Let us choose axes $O-x y z$ so that both fields lie on the $O-y z$ plane, and \boldsymbol{H} is directed along the $+O z$ axis; that is, $\boldsymbol{E}=\left(0, E_{y}, E_{z}\right)$ and $\boldsymbol{H}=\left(0,0, H_{z} \equiv H\right)$. Then L assumes the form:

$$
\begin{equation*}
L=(m / 2)\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right]+e\left(y E_{y}+z E_{z}\right)+(e H / 2 c)(x \dot{y}-y \dot{x}) ; \tag{cl}
\end{equation*}
$$

and thus, following Tsenov's concept,

$$
\begin{equation*}
L \Rightarrow L_{(o)}=e\left(y E_{y}+z E_{z}\right)+(e H / 2 c)(x \dot{y}-y \dot{x})+\text { constant }, \tag{c2}
\end{equation*}
$$

where \dot{x}, \dot{y} are viewed as fixed, or frozen, quantities.
Let us apply the Tsenov/Mangeron-Deleanu equations for $s=1$. Here,

$$
\begin{align*}
Q_{k, n p}= & 0, \\
R_{(1)}= & K_{(1)}=\dot{L}-2 \dot{L}_{(o)} \\
= & m(\dot{x} \ddot{x}+\dot{y} \ddot{y}+\dot{z} \ddot{z})-e\left(E_{y} \dot{y}+E_{z} \dot{z}\right) \\
& -(e H / 2 c)(x \dot{y}-y \dot{x})+\text { function of } x, y, \ddot{x}, \ddot{y}, \tag{d}
\end{align*}
$$

and, therefore, the equations of motion (6.5.16) are

$$
\begin{align*}
& \partial K_{(1)} / \partial \dot{x}=m \ddot{x}-(e H / c) \dot{y}=0, \tag{e}\\
& \partial K_{(1)} / \partial \dot{y}=m \ddot{y}-e E_{y}+(e H / c) \dot{x}=0, \tag{f}\\
& \partial K_{(1)} / \partial \dot{z}=m \ddot{z}-e E_{z}=0 \tag{g}
\end{align*}
$$

and, of course, these coincide with the equations obtained by other means.

Example 6.5.2 (Dolaptschiew, 1969, pp. 181-182). Let us derive the Tsenov, Nielsen, et al. equations of motion of a heavy homogeneous sphere (fig. 6.1), of mass m and radius r, rolling on the rough inner wall of a fixed vertical circular cylinder of radius $R(\geq r)$.

Kinematics, Constraints

Let us introduce the following five Lagrangean coordinates:

$$
\begin{equation*}
q_{1}=\gamma, \quad q_{2}=z ; \quad q_{3}=\phi, \quad q_{4}=\theta, \quad q_{5}=\psi \quad \text { (Eulerian angles). } \tag{a}
\end{equation*}
$$

Figure 6.1 Geometry of rolling of a sphere on the rough inner wall of a fixed vertical cylinder (top view).
G : center of mass and centroid of sphere, O : vertical projection of center of typical normal section of cylinder, C: point of contact of sphere with cylinder; $I=(2 / 5) m r^{2}=m k^{2}$: moment of inertia of sphere about any axis through G;
O-xyz: fixed axes at ground level, with Oz pointing towards the reader;
(x, y, z) : coordinates of C;
Mobile (intermediate) ortho-normal-dextral basis O- $\boldsymbol{u}_{1,2,3}$:
\boldsymbol{u}_{1} : radially outwards (i.e., toward C), making an angle γ with $O x$, \boldsymbol{u}_{2} : perpendicular to \boldsymbol{u}_{1}, in positive γ-sense (counterclockwise), \boldsymbol{u}_{3} : so that $\boldsymbol{u}_{1,2,3}$ constitutes a dextral basis (points toward the reader).

From fig. 6.1 and $\S 1.12$, we see that the components of the angular velocity of the sphere, $\boldsymbol{\omega}$, along the fixed axes $\left(\omega_{x, y, z}\right)$, and along the intermediate axes $\left(\omega_{1,2,3}\right)$, are related by

$$
\begin{align*}
& \omega_{x}=\dot{\psi} s \theta s \phi+\dot{\theta} c \phi=\omega_{1} c \gamma-\omega_{2} s \gamma \tag{b1}\\
& \omega_{y}=-\dot{\psi} s \theta c \phi+\dot{\theta} s \phi=\omega_{1} s \gamma+\omega_{2} c \gamma \tag{b2}\\
& \omega_{z}=\dot{\phi}+\dot{\psi} c \theta=\omega_{3} \tag{b3}
\end{align*}
$$

$[$ where, as usual, $s(\ldots) \equiv \sin (\ldots), c(\ldots) \equiv \cos (\ldots)$] and so, inverting, we obtain

$$
\begin{align*}
& \omega_{1}=\dot{\theta} c(\phi-\gamma)+\dot{\psi} s \theta s(\phi-\gamma), \tag{c1}\\
& \omega_{2}=\dot{\theta} s(\phi-\gamma)-\dot{\psi} s \theta c(\phi-\gamma), \tag{c2}\\
& \omega_{3}=\dot{\phi}+\dot{\psi} c \theta . \tag{c3}
\end{align*}
$$

Clearly, $\omega_{1,2,3}$ are quasi velocities; like $\omega_{x, y, z}$.
The rolling constraint at C is

$$
\begin{equation*}
\boldsymbol{v}_{C}=\boldsymbol{v}_{G}+\boldsymbol{\omega} \times \boldsymbol{r}_{C / G}=\mathbf{0}, \tag{d}
\end{equation*}
$$

or, along $\boldsymbol{u}_{1,2,3}$, and with the notation $R-r \equiv \rho$,

$$
\begin{aligned}
\boldsymbol{v}_{C} & =d / d t\left(z \boldsymbol{u}_{3}+\rho \boldsymbol{u}_{1}\right)+\boldsymbol{\omega} \times\left(r \boldsymbol{u}_{1}\right) \\
& =\left[\dot{z} \boldsymbol{u}_{3}+\rho\left(d \boldsymbol{u}_{1} / d t\right)\right]+\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \times(r, 0,0) \\
& =\dot{z} \boldsymbol{u}_{3}+\rho\left(\dot{\gamma} \boldsymbol{u}_{2}\right)+\left(0, r \omega_{3},-r \omega_{2}\right) \\
& =\left(\rho \dot{\gamma}+r \omega_{3}\right) \boldsymbol{u}_{2}+\left(\dot{z}-r \omega_{2}\right) \boldsymbol{u}_{3}=\mathbf{0},
\end{aligned}
$$

from which we obtain the two scalar constraints

$$
\begin{equation*}
\rho \dot{\gamma}+r \omega_{3}=0, \quad \dot{z}-r \omega_{2}=0 \tag{e}
\end{equation*}
$$

or, thanks to (c2, 3), exclusively in holonomic variables,

$$
\begin{align*}
& v_{C, \text { tangential direction }} \equiv \rho \dot{\gamma}+r \dot{\phi}+r \dot{\psi} c \theta=0 \tag{f1}\\
& v_{C, \text { axial (vertical) direction }} \equiv \dot{z}-r \dot{\theta} s(\phi-\gamma)-r \dot{\psi} s \theta c(\phi-\gamma)=0 \tag{f2}
\end{align*}
$$

Next, let us calculate the kinetic and potential energies:
(i) By König's theorem, we have

$$
\begin{align*}
2 T & =m v_{G}^{2}+\left(I_{x} \omega_{x}^{2}+I_{y} \omega_{y}^{2}+I_{z} \omega_{z}^{2}\right) \\
& =m\left[(\dot{z})^{2}+\rho^{2}(\dot{\gamma})^{2}\right]+\left(m k^{2}\right)\left(\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}\right) \\
& \left.=m\left[(\dot{z})^{2}+\rho^{2}(\dot{\gamma})^{2}\right]+\left(m k^{2}\right)\left[(\dot{\phi})^{2}+(\dot{\theta})^{2}+(\dot{\psi})^{2}+2 \dot{\phi} \dot{\psi} \cos \theta\right)\right] \tag{g1}
\end{align*}
$$

[thanks to (b1-3), and recalling that $I_{x}=I_{y}=I_{z}=m k^{2}$]; and
(ii) $\quad V=m g z \Rightarrow Q_{z}=-(\partial V / \partial z)=-m g$ (sole nonvanishing impressed force).

Tsenov Equations

Now we are ready to obtain the Tsenov equations of motion:
(i) Tsenov's function is

$$
\begin{align*}
& T \Rightarrow T_{(o)}=\left(m k^{2}\right) \dot{\phi} \dot{\psi} c \theta+\text { constant }=T_{(o)}(\theta) \\
& \text { [underlined velocities behave as constants], } \tag{h1}
\end{align*}
$$

and so

$$
\begin{equation*}
\dot{T}_{(o)}=-\left(m k^{2}\right) \underline{\dot{\phi}} \dot{\underline{\psi}} \dot{\theta} s \theta \tag{h2}
\end{equation*}
$$

(ii) $\mathrm{By}(\mathrm{g} 1)$,

$$
\begin{align*}
\dot{T}= & m \dot{z} \ddot{z}+m \rho^{2} \dot{\gamma} \ddot{\gamma}+m k^{2}[\dot{\phi} \ddot{\phi}+\dot{\theta} \ddot{\theta}+\dot{\psi} \ddot{\psi} \\
& +(\dot{\phi} \ddot{\psi}+\dot{\psi} \ddot{\phi}) c \theta-\dot{\phi} \dot{\theta} \dot{\psi} s \theta] \tag{h3}
\end{align*}
$$

Therefore, choosing $\dot{\phi}, \dot{\theta}, \dot{\psi}$ as the independent velocities, in which case (f1, 2) yield for the dependent ones:

$$
\begin{align*}
& \dot{z}=r[\dot{\theta} s(\phi-\gamma)+\dot{\psi} s \theta c(\phi-\gamma)]=\dot{z}(\dot{\theta}, \dot{\psi} ; \phi, \theta, \gamma) \tag{i1}\\
& \dot{\gamma}=-(r / \rho)(\dot{\phi}+\dot{\psi} c \theta)=\dot{\gamma}(\dot{\phi}, \dot{\psi} ; \theta) \tag{i2}
\end{align*}
$$

and with the familiar notation $(\ldots)_{o} \equiv$ constrained (...) we find

$$
\begin{align*}
K_{(1) o} \equiv & \left(\dot{T}-2 \dot{T}_{(o)}\right)_{o}-Q_{z} \dot{z} \\
= & m\left(\dot{z} \ddot{z}+\rho^{2} \dot{\gamma} \ddot{\gamma}\right) \\
& +m k^{2}[\dot{\phi} \ddot{\phi}+\dot{\theta} \ddot{\theta}+\dot{\psi} \ddot{\psi}+(\dot{\phi} \ddot{\psi}+\dot{\psi} \ddot{\phi})-\dot{\phi} \dot{\theta} \dot{\psi} s \theta] \\
& +2\left(m k^{2}\right) \dot{\phi} \dot{\psi} \dot{\theta} s \theta+m g \dot{z} \\
= & K_{(1) o}[\dot{\gamma}(\dot{\phi}, \dot{\psi} ; \theta), \dot{z}(\dot{\theta}, \dot{\psi} ; \gamma, \phi, \theta), \dot{\phi}, \dot{\theta}, \dot{\psi} ; \gamma, \theta] \\
= & K_{(1) o}(\dot{\phi}, \dot{\theta}, \dot{\psi} ; \gamma, \phi, \theta) \quad \text { (i.e., constrained } \text { Tsenov function). } \tag{i3}
\end{align*}
$$

Hence, the three kinetic Tsenov equations are

$$
\begin{align*}
\partial K_{(1) o} / \partial \dot{\phi}= & m \rho^{2} \ddot{\gamma}(\partial \dot{\gamma} / \partial \dot{\phi})+m k^{2}(\ddot{\phi}+\ddot{\psi} c \theta-\dot{\theta} \dot{\psi} s \theta)=0 \tag{j1}\\
\partial K_{(1) o} / \partial \dot{\theta}= & m(\ddot{z}+g)(\partial \dot{z} / \partial \dot{\theta})+m k^{2}(\ddot{\theta}-\dot{\phi} \dot{\psi} s \theta+2 \underline{\dot{\phi}} \dot{\psi} s \theta)=0 \tag{j2}\\
\partial K_{(1) o} / \partial \dot{\psi}= & m(\ddot{z}+g)(\partial \dot{z} / \partial \dot{\psi})+m \rho^{2} \ddot{\gamma}(\partial \dot{\gamma} / \partial \dot{\phi}) \\
& +m k^{2}(\ddot{\psi}+\ddot{\phi} c \theta-\underline{\dot{\phi}} \underline{\dot{\theta}} s \theta)=0 \tag{j3}
\end{align*}
$$

or, since [by (i1, 2)]

$$
\begin{array}{ll}
\partial \dot{\gamma} / \partial \dot{\phi}=-(r / \rho), & \partial \dot{\gamma} / \partial \dot{\psi}=-(r / \rho) c \theta \\
\partial \dot{z} / \partial \dot{\theta}=r s(\phi-\gamma), & \partial \dot{z} / \partial \dot{\psi}=r s \theta c(\phi-\gamma) \tag{k2}
\end{array}
$$

finally (and dropping the underlines),

$$
\begin{align*}
& \quad-r \rho \ddot{\gamma}+k^{2}(\ddot{\phi}+\ddot{\psi} c \theta-\dot{\theta} \dot{\psi} s \theta)=0 \tag{11}\\
& k^{2}(\ddot{\theta}+\dot{\phi} \dot{\psi} s \theta)+r(\ddot{z}+g) s(\phi-\gamma)=0 \tag{12}\\
& k^{2}(\ddot{\psi}+\ddot{\phi} c \theta-\dot{\phi} \dot{\theta} s \theta)-r \rho \ddot{\gamma} c \theta+r(\ddot{z}+g) s \theta c(\phi-\gamma)=0 \tag{13}
\end{align*}
$$

which, along with (f1, 2) [or (i1, 2)], constitute a determinate system for $\gamma, z, \phi, \theta, \psi$. For its solution, and so on, see, for example, Neimark and Fufaev (1972, pp. 95-98) and Ramsey (1937, pp. 157-158). It is not hard to realize that eqs. (11-3) are none other than the Chaplygin-Voronets equations of the problem.

Had we not enforced the constraints (f1, 2) or (i1, 2) in the Tsenov function, the equations of motion would have the "Hadamard form":

$$
\begin{gather*}
\partial K_{(1)} / \partial \dot{q}_{I}+\sum b_{D I}\left(\partial K_{(1)} / \partial \dot{q}_{I}\right)=0 \tag{m1}\\
\dot{q}_{D}=\sum b_{D I} \dot{q}_{I}+b_{D} \quad[\text { eqs. (i1, 2)] } \tag{m2}
\end{gather*}
$$

where $\quad K_{(1)}=K_{(1)}(\dot{\gamma}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi} ; \gamma, z, \phi, \theta, \psi)$: unconstrained Tsenov function, instead of ($\mathrm{j} 1-3$).

Nielsen Equations

Next, let us derive the Routh-Voss form of the Nielsen equations:

$$
\begin{equation*}
N_{k}(T)=Q_{k}+\sum \lambda_{D} a_{D k} \quad(D=1,2 ; k=1, \ldots, 5) \tag{m3}
\end{equation*}
$$

[We recall (a), (g2), and read off the coefficients $a_{D k}$ from (f1, 2)].
To calculate $N_{k}(T)$, we apply the earlier Schieldrop-Nielsen rule [(ex. 6.3.1)]. We have already seen [eq. (h3)] that

$$
\begin{align*}
\dot{T}=m \dot{z} \ddot{z} & +m \rho^{2} \dot{\gamma} \ddot{\gamma}+m k^{2} \dot{\phi} \ddot{\phi}+m k^{2} \dot{\theta} \ddot{\theta}+m k^{2} \dot{\psi} \ddot{\psi} \\
& +m k^{2} \dot{\phi} \ddot{\psi} c \theta+m k^{2} \dot{\psi} \ddot{\phi} c \theta-m k^{2} \dot{\phi} \dot{\psi} \underline{\theta} s \theta \tag{n}
\end{align*}
$$

that is, only the last term is underlined.
From this, we build table 6.4. Hence, the $N_{\ldots}(T)$ totals are

$$
\begin{align*}
N_{\gamma}(T) & =m \rho^{2} \ddot{\gamma} \tag{ol}\\
N_{z}(T) & =m \ddot{z} \Rightarrow N_{z}(L) \equiv N_{z}(T-V)=N_{z}(T-m g z)=m(\ddot{z}+g) \tag{o2}\\
N_{\phi}(T) & =m k^{2} \ddot{\phi}+m k^{2} \ddot{\psi} c \theta-m k^{2} \dot{\theta} \dot{\psi} s \theta \\
& =m k^{2}(\dot{\phi}+\dot{\psi} c \theta)^{\circ} \tag{o3}\\
N_{\theta}(T) & =m k^{2} \ddot{\theta}+m k^{2} \dot{\phi} \dot{\psi} s \theta=m k^{2}(\ddot{\theta}+\dot{\phi} \dot{\psi} s \theta), \tag{o4}\\
N_{\psi}(T) & =m k^{2} \ddot{\psi}+m k^{2} \ddot{\phi} c \theta-m k^{2} \dot{\phi} \dot{\theta} s \theta \\
& =m k^{2}(\dot{\psi}+\dot{\phi} c \theta)^{\circ} \tag{o5}
\end{align*}
$$

Table 6.4

$\dot{\bar{T} \text {-terms }}$	$N_{\gamma}(T)$	$N_{z}(T)$	$N_{\phi}(T)$	$N_{\theta}(T)$	$N_{\psi}(T)$
$m \dot{z} z ̈$	$k=0$	$k=1$	$k=0$		
	0	$m \ddot{z}$	0	0	0
$m \rho^{2} \dot{\gamma} \ddot{\gamma}$	$k=1$	$k=0$	$k=0$		
	$m \rho^{2} \ddot{\gamma}$	0	0	0	0
$m k^{2} \dot{\phi} \ddot{\phi}$	$k=0$	$k=0$	$k=1$		
	0	0	$m k^{2} \ddot{\phi}$	0	0
$m k^{2} \dot{\theta} \ddot{\theta}$	$k=0$	$k=0$	$k=0$		
	0	0	0	$m k^{2} \ddot{\theta}$	0
$m k^{2} \dot{\psi} \ddot{\psi}$	$k=0$	$k=0$	$k=0$		
	0	0	0	0	$m k^{2} \ddot{\psi}$
$m k^{2} \dot{\phi} \ddot{\psi} c \theta$	$k=0$	$k=0$	$k=1$		
	0	0	$m k^{2} \ddot{\psi} c \theta$	0	0
$m k^{2} \dot{\psi} \ddot{\phi} c \theta$	$k=0$	$k=0$	$k=0$		
	0	0		0	$m k^{2} \ddot{\phi} c \theta$
$-m k^{2} \dot{\phi} \dot{\psi} \underline{\underline{\theta}} s \theta$	$k=0$	$k=0$	$k=1$	$1-2=-1$	
	0	0	$-m k^{2} \dot{\psi} \dot{\theta} s \theta$	$m k^{2} \dot{\phi} \dot{\psi} s \theta$	$-m k^{2} \dot{\phi} \dot{\theta} s \theta$

and, therefore, equations (m3) become

$$
\begin{align*}
& N_{\gamma}(L)=N_{\gamma}(T)=\rho \lambda_{1}, \tag{p1}\\
& N_{z}(L)=N_{z}(T)+m g=\lambda_{2}, \tag{p2}\\
& N_{\phi}(L)=N_{\phi}(T)=r \lambda_{1}, \tag{p3}\\
& N_{\theta}(L)=N_{\theta}(T)=-r \lambda_{2} s(\phi-\gamma), \tag{p4}\\
& N_{\psi}(L)=N_{\psi}(T)=(r c \theta) \lambda_{1}-[r s \theta c(\phi-\gamma)] \lambda_{2} . \tag{p5}
\end{align*}
$$

Recalling the constraints (f1,2), we see that the multipliers λ_{D} are proportional to the components of the force of rolling friction: along the tangential direction $\boldsymbol{u}_{2}\left(\lambda_{1}\right)$, and along the vertical direction $\boldsymbol{u}_{3}\left(\lambda_{2}\right)$.

Eliminating $\lambda_{1,2}$ among (p1-5), we obtain the following three kinetic equations (what might be called "Maggi form of the Nielsen equations," or "Nielsen form of the Maggi equations"):

$$
\begin{align*}
& r N_{\gamma}(T)-\rho N_{\phi}(T)=0, \tag{q1}\\
& N_{\theta}(T)+r N_{z}(L) \sin (\phi-\gamma)=0, \tag{q2}\\
& \rho N_{\psi}(T)-r N_{\gamma}(T) \cos \theta+r \rho \sin \theta \cos (\phi-\gamma) N_{z}(L)=0 . \tag{q3}
\end{align*}
$$

Finally, if we use the constraints (f1, 2), or (i1, 2), to eliminate $\dot{z}, \dot{\gamma}$ (and hence also $\ddot{z}, \ddot{\gamma}$) from the above, we should get the earlier equations (11-3).

Example 6.5.3 Let us verify the identity $\left(T_{o}\right)^{\cdot}=(\dot{T})_{o}$, for a system with

$$
\begin{equation*}
2 T=(\dot{x})^{2}+(\dot{y})^{2}, \quad y=y(x) \tag{a}
\end{equation*}
$$

that is, $q_{1}=y, q_{2}=x ; n=2, m=1$.

With the customary notations $(\ldots)^{\cdot} \equiv d(\ldots) / d t,(\ldots)^{\prime} \equiv d(\ldots) / d x$, we have, successively,

$$
\begin{align*}
& \dot{T}=\dot{x} \ddot{x}+\dot{y} \ddot{y} \tag{i}\\
& \Rightarrow(\dot{T})_{o}=\dot{x} \ddot{x}+\left(y^{\prime} \dot{x}\right)\left[y^{\prime \prime}(\dot{x})^{2}+y^{\prime} \ddot{x}\right] \\
& \tag{b}\\
& =\dot{x} \ddot{x}+y^{\prime} y^{\prime \prime}(\dot{x})^{3}+\left(y^{\prime}\right)^{2} \dot{x} \ddot{x}
\end{align*}
$$

(ii)

$$
\begin{align*}
& T_{o}=(1 / 2)\left[(\dot{x})^{2}+\left(y^{\prime} \dot{x}\right)^{2}\right]=(1 / 2)\left[(\dot{x})^{2}+\left(y^{\prime}\right)^{2}(\dot{x})^{2}\right] \\
& \\
& \begin{aligned}
\Rightarrow\left(T_{o}\right)^{n} & =\dot{x} \ddot{x}+y^{\prime}\left(y^{\prime}\right) \cdot(\dot{x})^{2}+\left(y^{\prime}\right)^{2} \dot{x} \ddot{x} \\
& =\dot{x} \ddot{x}+y^{\prime}\left(y^{\prime \prime} \dot{x}\right)(\dot{x})^{2}+\left(y^{\prime}\right)^{2} \dot{x} \ddot{x}=(\dot{T})_{o}, \quad \text { Q.E.D. }
\end{aligned} \tag{c}
\end{align*}
$$

Problem 6.5.2 (Mei, 1983, pp. 628-630). Consider a system under constraints of the form

$$
\begin{equation*}
\dot{q}_{D}=\phi_{D}\left(t, q, \dot{q}_{\mathrm{I}}\right) \quad(D=1, \ldots, m ; I=m+1, \ldots, n) \tag{a}
\end{equation*}
$$

and let, for any sufficiently smooth function f,

$$
\begin{equation*}
f=f(t, q, \dot{q})=f\left[t, q, \phi_{D}\left(t, q, \dot{q}_{I}\right), \dot{q}_{I}\right]=f_{o}\left(t, q, \dot{q}_{I}\right) \equiv f_{o} . \tag{b}
\end{equation*}
$$

Show that

$$
\begin{align*}
\partial / \partial \dot{q}_{I}\left(d f_{o} / d t\right)-2 & \left(\partial f_{o} / \partial q_{I}\right) \\
& =d / d t\left(\partial f_{o} / \partial \dot{q}_{I}\right)-\partial f_{o} / \partial q_{I}+\sum\left(\partial f_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \tag{c}
\end{align*}
$$

or, compactly,

$$
\begin{equation*}
N_{I}\left(f_{o}\right)=E_{I}\left(f_{o}\right)+\sum\left(\partial f_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \tag{d}
\end{equation*}
$$

The above can be considered as an application of the earlier identity $N_{k}{ }^{*}\left(f^{*}\right)=E_{k}{ }^{*}\left(f^{*}\right)$ to the special form of the constraints:

$$
\begin{equation*}
\omega_{D} \equiv \dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)=0, \quad \omega_{I} \equiv \dot{q}_{I} \tag{e}
\end{equation*}
$$

Problem 6.5.3 (Mei, 1983, pp. 632-633; 1985, pp. 208-211). Using the kine-matico-inertial identity (c, d) of the preceding problem, show that the Nielsen form of the special nonlinear Voronets equations

$$
\begin{align*}
\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot} & -\partial T_{o} / \partial q_{I} \\
& -\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial T_{o} / \partial q_{D}\right)-\sum W_{I}^{D}\left(\partial T / \partial \dot{q}_{D}\right)_{o}=Q_{I o} \tag{a}
\end{align*}
$$

where

$$
\begin{align*}
Q_{I o} & \equiv Q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) Q_{D} \tag{a1}\\
W_{I}^{D} & \equiv\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I}-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \\
& \equiv E_{I}\left(\phi_{D}\right)-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \tag{a2}
\end{align*}
$$

is

$$
\begin{align*}
\partial \dot{T}_{o} / \partial \dot{q}_{I}-2\left(\partial T_{o} / \partial q_{I}\right) & -\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\partial \ddot{q}_{D} / \partial \dot{q}_{I}-2\left(\partial \dot{q}_{D} / \partial q_{I}\right)\right] \\
& -2 \sum\left(\partial T / \partial q_{D}\right)_{o}\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)=Q_{I o}, \tag{b}
\end{align*}
$$

or, compactly,

$$
\begin{equation*}
N_{I}\left(T_{o}\right)-\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} N_{I}\left(\dot{q}_{D}\right)-2 \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)=Q_{I o} \tag{c}
\end{equation*}
$$

[If $\partial T / \partial q_{D}=0$, then (b) reduces to what may be termed the Nielsen form of the special nonlinear Chaplygin equations:

$$
\begin{align*}
\partial \dot{T}_{o} / \partial \dot{q}_{I} & -2\left(\partial T_{o} / \partial q_{I}\right) \\
& \left.-\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\partial \ddot{q}_{D} / \partial \dot{q}_{I}-2\left(\partial \dot{q}_{D} / \partial q_{I}\right)\right]=Q_{I}\right] \tag{d}
\end{align*}
$$

HINTS

By the kinematico-inertial identity of the preceding problem:

$$
\begin{align*}
& N_{I}\left(T_{o}\right)=E_{I}\left(T_{o}\right)+\sum\left(\partial T_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right), \tag{e}\\
& N_{I}\left(\dot{q}_{D}\right)=E_{I}\left(\dot{q}_{D}\right)+\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \tag{f}
\end{align*}
$$

Problem 6.5.4 (Mei, 1985, pp. 196-203; 1987, pp. 397-402). Continuing from the preceding problem, show that:
(i) If the constraints have the special Pfaffian form

$$
\begin{equation*}
\dot{q}_{D}=\sum b_{D I}(t, q) \dot{q}_{I}+b_{D}(t, q) \tag{a}
\end{equation*}
$$

then the preceding Nielsen form of the special Voronets equations, eqs. (b, c), reduces to

$$
\begin{align*}
\partial \dot{T}_{o} / \partial \dot{q}_{I} & -2\left(\partial T_{o} / \partial q_{I}\right) \\
& -\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left\{\sum\left[b_{I I^{\prime}}^{D}-2\left(\partial b_{D I^{\prime}} / \partial q_{I}\right)\right] \dot{q}_{I^{\prime}}+\left[b_{I}^{D}-2\left(\partial b_{D} / \partial q_{I}\right)\right]\right\} \\
& -2 \sum\left(\partial T / \partial q_{D}\right)_{o} b_{D I}=Q_{I o}, \tag{b}
\end{align*}
$$

where

$$
\begin{align*}
b_{I I^{\prime}}^{D} & \equiv \sum\left[\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I^{\prime}}+\left(\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}\right]+\left(\partial b_{D I} / \partial q_{I^{\prime}}+\partial b_{D I^{\prime}} / \partial q_{I}\right) \tag{c1}\\
b_{I}^{D} & \equiv \sum\left[\left(\partial b_{D} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}+\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime}}\right]+\left(\partial b_{D I} / \partial t+\partial b_{D} / \partial q_{I}\right) \tag{c2}
\end{align*}
$$

and, therefore,
(ii) If the constraints (a) have the Chaplygin form

$$
\begin{equation*}
\dot{q}_{D}=\sum b_{D I}\left(q_{I}\right) \dot{q}_{I} \tag{d}
\end{equation*}
$$

and $\partial T / \partial q_{D}=0$ (recall discussion in $\S 3.8$), then (b) reduces to the Nielsen form of the linear (i.e., Pfaffian) Chaplygin equations:

$$
\begin{align*}
\partial \dot{T}_{o} / \partial \dot{q}_{I} & -2\left(\partial T_{o} / \partial q_{I}\right) \\
& -\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left(\partial b_{D I} / \partial q_{I^{\prime}}-\partial b_{D I^{\prime}} / \partial q_{I}\right) \dot{q}_{I^{\prime}}=Q_{I o} \tag{e}
\end{align*}
$$

since in this case

$$
\begin{equation*}
b_{D}=0, \quad b_{I}^{D}=0, \quad b_{I I^{\prime}}^{D}=\partial b_{D I} / \partial q_{I^{\prime}}+\partial b_{D I^{\prime}} / \partial q_{I} \tag{f}
\end{equation*}
$$

Problem 6.5.5 Show that, for $s=1,2,3, \ldots$,

$$
\begin{align*}
& d / d t\left[\partial{\left.\stackrel{(s-1)}{T_{o}} / \partial{\stackrel{(s)}{q_{I}}}^{s}\right]-\partial T / \partial q_{I}}^{\quad=d / d t\left(\partial T / \partial \dot{q}_{I}\right)-\partial T / \partial q_{I}+\sum d / d t\left[\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial \partial_{D}^{(s)} / \partial \stackrel{q}{q}_{I}\right)\right]}\right.
\end{align*}
$$

HINTS
Recall that $(\stackrel{(s-1)}{T})_{o}=\left(T_{o}\right)^{(s-1)}$, and show that

$$
\begin{equation*}
\partial \stackrel{(s-1)}{T_{o}} / \partial q_{q_{I}}^{(s)}=\partial \stackrel{(s-1)}{T} / \partial q_{q_{I}}^{(s)}+\sum\left(\partial \stackrel{(s-1)}{T} / \partial q_{D}^{(s)}\right)\left(\partial q_{D}^{(s)} / \partial q^{(s)}\right) \tag{b}
\end{equation*}
$$

Problem 6.5.6 Higher-Order Equations of Nielsen et al. in Holonomic and Quasi Variables; and their Relation with the Equations of Lagrange, Hamel, et al.
(i) Let us define the (s) th-order holonomic operators of Nielsen:

$$
\begin{equation*}
N_{k}{ }^{(s)}(\ldots) \equiv \partial(\stackrel{(s)}{\cdots}) / \partial \stackrel{(s)}{q_{k}}-2\left[\partial(\stackrel{(s-1)}{\cdots}) / \partial \stackrel{(s-1)}{q_{k}}\right] \tag{a}
\end{equation*}
$$

and Euler-Lagrange:

Show that, for any sufficiently differentiable function $f=f(t, q, \dot{q})$, and any $k=1,2, \ldots, n ; s=1,2,3, \ldots$,

$$
\begin{equation*}
N_{k}{ }^{(s)}(f)=E_{k}^{(s)}(f) \tag{c}
\end{equation*}
$$

(ii) Let us define the (s) th-order nonholonomic operators of Nielsen:

$$
\begin{equation*}
N_{k}^{*(s)}(\ldots) \equiv \partial(\stackrel{(s)}{\cdots}) / \partial \stackrel{(s)}{\theta_{k}}-2\left[\partial(\stackrel{(s-1)}{\cdots}) / \partial \partial^{(s-1)} \theta_{k}\right] \tag{d}
\end{equation*}
$$

and Euler-Lagrange:

$$
\begin{equation*}
E_{k}^{*}{ }^{(s)}(\ldots) \equiv d / d t\left[\partial(\stackrel{(s-1)}{\cdots}) / \partial \stackrel{(s)}{\theta}_{k}\right]-\left[\partial(\stackrel{(s-1)}{\cdots}) / \partial \stackrel{(s-1)}{\theta_{k}}\right], \tag{e}
\end{equation*}
$$

where
[(s)th-order quasi chain rule].
Show that, for any sufficiently differentiable function $f^{*}=f^{*}(t, q, \omega)$, and any $k=1,2, \ldots, n ; s=1,2,3, \ldots$,

$$
N_{k} *\left[\begin{array}{l}
(s) \tag{f}\\
f
\end{array}\right]=E_{k} *\left[\begin{array}{l}
(s) \\
f
\end{array}\right],
$$

where

$$
\begin{align*}
& f(t, q, \dot{q}) \Rightarrow \dot{f} \Rightarrow \cdots \stackrel{(s-1)}{f} \Rightarrow \stackrel{(s)}{f}, \tag{g}\\
& \stackrel{(s-1)}{f}{ }^{*}=\stackrel{(s-1)}{f}[t, q, \dot{q} \equiv \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q} ; \stackrel{(s)}{q}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta})] \\
& \tag{h}\\
& =\stackrel{(s-1)}{f}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}),^{f}
\end{align*}
$$

$$
\begin{align*}
f^{(s)} * & \stackrel{(s)}{f}[t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q} ; \\
& \stackrel{(s)}{q}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}), \stackrel{(s+1)}{q}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}, \stackrel{(s+1)}{\theta})] \\
= & \stackrel{(s)}{f}(t, q, \stackrel{(1)}{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta}, \stackrel{(s+1)}{\theta}) . \tag{i}
\end{align*}
$$

Applications: Mei (1985, several places, esp. pp. 299-315; 1987, several places, esp. pp. 60 ff., 126 ff.).
(a) Consider the earlier, say unconstrained, equations of Mangeron et al. (6.4.14e):

$$
\begin{gather*}
(1 / s)\left[\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q}_{k}-(s+1)\left(\partial T / \partial q_{k}\right)\right]=Q_{k} \\
(k=1, \ldots, n ; s=1,2,3, \ldots) \tag{j}
\end{gather*}
$$

Substituting into it $s-1$ for s yields

$$
\begin{equation*}
\partial T / \partial q_{k}=(1 / s)\left(\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s-1)}{q_{k}}\right)-[(s-1) / s] Q_{k} \tag{k}
\end{equation*}
$$

and then reinserting this expression into (j) results in the Nielsen form:

$$
\begin{equation*}
s\left(\partial \stackrel{(s)}{T} / \partial \stackrel{(s)}{q}_{k}\right)-(s+1)(\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s-1)}{q})=Q_{k} \tag{1}
\end{equation*}
$$

and, by (c): $N_{k}{ }^{(s)}(T)=E_{k}{ }^{(s)}(T)$, also in the Lagrange form:

$$
\begin{equation*}
(s)(\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s)}{q}) \cdot \partial \stackrel{(s-1)}{T} / \partial \stackrel{(s-1)}{q_{k}}=Q_{k} . \tag{m}
\end{equation*}
$$

(b) Next, if the system is subject to the $m(<n)$ constraints
$\stackrel{(s)}{\theta_{D}} \equiv \stackrel{(s-1)}{\omega_{D}} \equiv f_{D}(t, q, \dot{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{q})=0 \quad(D=1, \ldots, m)$
$\left[\begin{array}{l}(s) \\ \theta_{I} \\ \equiv\end{array} \stackrel{(s-1)}{\omega_{I}}=\stackrel{(s-1)}{\omega_{I}}(t, q, \dot{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{q}) \neq 0 \quad(I=m+1, \ldots, n)\right]$
$\Rightarrow \stackrel{(s)}{q_{k}}=\stackrel{(s)}{q_{k}}(t, q, \dot{q}, \ldots, \stackrel{(s-1)}{q}, \stackrel{(s)}{\theta} \equiv \stackrel{(s-1)}{\omega}) \quad[k, l$ (below) $=1, \ldots, n ; s=1,2, \ldots]$
$\left[\Rightarrow \partial \stackrel{(s)}{q}_{k} / \partial \stackrel{(s-1)}{\omega_{l}}=\partial \stackrel{(s+1)}{q_{k}} / \partial \stackrel{(s)}{\stackrel{\omega}{w}_{l}}=\cdots, \partial \stackrel{(s-1)}{\omega_{l}} / \partial \stackrel{(s)}{q_{k}}=\partial \stackrel{(s)}{\omega_{l}} / \partial \stackrel{(s+1)}{q_{k}}=\cdots\right]$
(for any given system (n1-n3))

$$
\begin{equation*}
\Rightarrow \delta \stackrel{(s)}{q_{k}}=\sum\left(\partial \stackrel{(s)}{q_{k}} / \partial \stackrel{(s-1)}{\omega_{l}}\right) \delta \stackrel{(s-1)}{\omega_{l}} \Leftrightarrow \delta \stackrel{(s)}{\theta_{l}} \equiv \delta \stackrel{(s-1)}{\omega_{l}}=\sum\left(\partial \stackrel{(s-1)}{\omega_{l}} / \partial \stackrel{(s)}{q_{k}}\right) \delta \stackrel{(s)}{q_{k}} \tag{p}
\end{equation*}
$$

[i.e., recalling $(5.2 .20 \mathrm{c}, \mathrm{d})$ and Tables 6.2, 6.3], then we either (i) add to the right ("force") side of the preceding equations of motion the constraint reaction term $\sum \lambda_{D}\left(\partial f_{D} / \partial \stackrel{(s)}{q_{k}}\right)$, or (ii) utilize the above introduced quasivariables, in which case we readily obtain the following, say kinetic, equations of motion $(l \rightarrow I)$:

Hamel-type:

$$
\begin{align*}
& (s) d / d t\left[\partial \stackrel{(s-1)}{T} * / \partial \stackrel{(s)}{\theta_{I}}\right]-\left[\partial \stackrel{(s-1)}{T} * / \partial \stackrel{(s-1)}{\theta_{I}}\right] \\
& -\sum\left[s\left(\partial \stackrel{(s)}{q_{k}} / \partial \partial_{\theta_{I}}^{(s)}\right) \cdot \partial \stackrel{(s)}{q_{k}} / \partial \partial^{(s-1)} \theta_{I}\right]\left(\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s)}{q_{k}}\right)^{*} \\
& =\sum\left(\partial \stackrel{(s)}{q_{k}} / \partial \stackrel{(s)}{\theta}_{I}\right) Q_{k} \equiv \Theta_{I}, \tag{q}
\end{align*}
$$

and
Nielsen-type :

$$
\begin{align*}
& (s)\left(\partial \stackrel{(s)}{T} * / \partial \stackrel{(s)}{\theta}_{I}\right)-(s+1)\left(\partial \stackrel{(s-1)}{T} * / \partial \stackrel{(s-1)}{\theta_{I}}\right) \\
& -\sum\left[s\left(\partial \stackrel{(s+1)}{q_{k}} / \partial \stackrel{(s)}{\theta}_{I}\right)-(s+1)\left(\partial \stackrel{(s)}{q_{k}} / \partial \stackrel{s-1)}{\theta_{I}}\right)\right]\left(\partial \stackrel{(s-1)}{T} / \partial \stackrel{(s)}{q_{k}}\right)^{*} \\
& =\Theta_{I} . \tag{r}
\end{align*}
$$

For $s=1$, the above yield, respectively,

$$
\begin{align*}
\left(\partial T^{*} / \partial \dot{\theta}_{I}\right)^{\cdot} & -\partial T^{*} / \partial \theta_{I} \\
& -\sum\left[\left(\partial \dot{q}_{k} / \partial \dot{\theta}_{I}\right)^{\cdot}-\partial \dot{q}_{k} / \partial \theta_{I}\right]\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} \tag{q1}\\
\partial \dot{T}^{*} / \partial \dot{\theta}_{I} & -2\left(\partial T^{*} / \partial \theta_{I}\right) \\
& -\sum\left[\partial \ddot{q}_{k} / \partial \dot{\theta}_{I}-2\left(\partial \dot{q}_{k} / \partial \theta_{I}\right)\right]\left(\partial T / \partial \dot{q}_{k}\right)^{*}=\Theta_{I} \tag{r1}
\end{align*}
$$

and, for $s=2$,

$$
\begin{align*}
2\left[\partial \dot{T}^{*} / \partial \ddot{\theta}_{I}\right]^{\cdot} & -\partial \dot{T}^{*} / \partial \dot{\theta}_{I} \\
& -\sum\left[2\left(\partial \ddot{q}_{k} / \partial \ddot{\theta}_{I}\right)^{*}-\partial \ddot{q}_{k} / \partial \dot{\theta}_{I}\right]\left(\partial \dot{T} / \partial \ddot{q}_{k}\right)^{*}=\Theta_{I} \tag{q2}\\
2\left(\partial \ddot{T}^{*} / \partial \ddot{\theta}_{I}\right) & -3\left(\partial \dot{T}^{*} / \partial \dot{\theta}_{I}\right) \\
& -\sum\left[2\left(\partial \ddot{q}_{k} / \partial \ddot{\theta}_{I}\right)-3\left(\partial \ddot{q}_{k} / \partial \dot{\theta}_{I}\right)\right]\left(\partial \dot{T} / \partial \ddot{q}_{k}\right)^{*}=\Theta_{I} . \tag{r2}
\end{align*}
$$

6.6 THE PRINCIPLE OF GAUSS (EXTENSIVE TREATMENT)

It is quite remarkable that Nature modifies free motions incompatible with the necessary constraints in the same way in which the calculating mathematician uses least squares to bring into agreement results which are based on quantities connected to each other by necessary relations.
(C. F. Gauss, 1829, On a New General Fundamental Principle of Mechanics)

Gauss was not only a very eminent mathematician, but also an astronomer and geodesist, and as such, a passionate calculator of numerical results. It was he who founded the method of least squares, which he evolved with successively greater depth in three extensive treatises. If, as happened now and then, he was asked (against his will) to deliver a lecture at the University of Göttingen, his preferred topic was always the method of least squares.
[A. Sommerfeld, 1964 (1940s), §48]
For complementary reading on Gauss' principle, see (alphabetically): Brill (1909, pp. 45-51), Coe (1938, pp. 421-423), Dugas (1955, pp. 367-369), Lanczos (1970, pp. 106-108), Lindsay and Margenau (1936, pp. 112-115), Mach (1960, pp. 440-443), MacMillan (1927, pp. 419-421), Volkmann (1900, pp. 355-357).

The Fundamental Theory

As was realized early in the 20th century, by Appell, Chetaev, Hamel, et al., the equations of motion of systems subject to the m nonlinear first-order constraints

$$
\begin{equation*}
f_{D}(t, \boldsymbol{r}, \boldsymbol{v})=0 \quad(\text { particle form }) \quad \text { or } \quad f_{D}(t, q, \dot{q})=0 \quad(\text { system form }) \tag{6.6.1}
\end{equation*}
$$

let alone higher-order such constraints, cannot be derived from Lagrange's principle (LP); the reason being that (6.6.1) cannot be attached, or adjoined, to LP-we need its virtual form, and it is not clear how that should be done, so as to get the correct equations of motion. For this, we need either the principle of Jourdain or Gauss' principle of least constraint, or least compulsion, or least constriction. The compulsion
Z (from the German Zwang) of a generally constrained mechanical system, in actual or kinematically possible motion, is defined as

$$
\begin{align*}
Z & \equiv(1 / 2) \boldsymbol{S} d m[\boldsymbol{a}-(d \boldsymbol{F} / d m)]^{2} \equiv(1 / 2) \boldsymbol{S}(1 / d m)(d m \boldsymbol{a}-d \boldsymbol{F})^{2} \\
& \equiv(1 / 2) \boldsymbol{S}(d \boldsymbol{R})^{2} / d m=(1 / 2) \boldsymbol{S}(-d \boldsymbol{R})^{2} / d m \tag{6.6.2}
\end{align*}
$$

where, as usual (§3.2), for the actual motion

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{F}+d \boldsymbol{R} \quad(d \boldsymbol{F}: \text { impressed force, } d \boldsymbol{R}: \text { constraint reaction }) . \tag{6.6.2a}
\end{equation*}
$$

The above show clearly that $Z \geq 0$; with the equal sign holding for unconstrained motion; that is, $d \boldsymbol{R}=\mathbf{0}$. Further, expanding (6.6.2), we readily find

$$
\begin{align*}
Z & =(1 / 2) \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{a}-\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{a}+(1 / 2) \boldsymbol{S} d m(d \boldsymbol{F} / d m)^{2} \\
& =S-\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{a}+\cdots, \tag{6.6.3}
\end{align*}
$$

where

$$
\begin{equation*}
S=(1 / 2) \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{a}: \text { Appellian function }(\S 3.3 \mathrm{ff} .) \tag{6.6.3a}
\end{equation*}
$$

and $\ldots \equiv$ terms not containing accelerations, like $\boldsymbol{a}, \ddot{q}, \dot{\omega}$; that is, a function of t, q, \dot{q} or ω. Obviously, the factor $1 / 2$ in (6.6.2) is unimportant, and is frequently omitted in the literature; but, as (6.6.3) shows, it makes the connection between Z and S clearer.

Now, the principle of Gauss (GP) states that the (first) Gaussian variation of Z, $\delta^{\prime \prime} Z$, to be (re)defined below, vanishes, that is,

$$
\begin{equation*}
\delta^{\prime \prime} Z=0 \tag{6.6.4}
\end{equation*}
$$

for all variations of the accelerations from the actual motion, $\delta \boldsymbol{a} \equiv \delta^{\prime \prime} \boldsymbol{a}$, that are compatible with all the constraints, at a given time and with given positions and velocities (and impressed forces); that is, for

$$
\begin{equation*}
\delta^{\prime \prime} t=0, \quad \delta^{\prime \prime} \boldsymbol{r}=\mathbf{0}, \quad \delta^{\prime \prime} \boldsymbol{v}=\mathbf{0}, \quad \delta^{\prime \prime}(d \boldsymbol{F})=\mathbf{0}, \quad \text { but } \quad \delta^{\prime \prime} \boldsymbol{a} \neq \mathbf{0} . \tag{6.6.5}
\end{equation*}
$$

Since in classical mechanics $d \boldsymbol{F}=d \boldsymbol{F}(t, \boldsymbol{r}, \boldsymbol{v})$ (see, for example, Pars, 1965, pp. 1112), we will have
$\delta^{\prime \prime}(d \boldsymbol{F})=\mathbf{0} \quad$ (particle force variation) and $\quad \delta^{\prime \prime} Q_{k}=0$ (system force variation),
and so GP reads

$$
\begin{align*}
\delta^{\prime \prime} Z & =(1 / 2) \boldsymbol{S} d m(2)[\boldsymbol{a}-(d \boldsymbol{F} / d m)] \cdot \delta^{\prime \prime} \boldsymbol{a} \\
& =\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime \prime} \boldsymbol{a}=0, \tag{6.6.7}
\end{align*}
$$

or, in terms of the reactions,

$$
\begin{align*}
\delta^{\prime \prime} Z & =\boldsymbol{S}(d \boldsymbol{R} / d m) \cdot \delta^{\prime \prime}(d \boldsymbol{R})=\boldsymbol{S}(d \boldsymbol{R} / d m) \cdot \delta^{\prime \prime}(d m \boldsymbol{a}-d \boldsymbol{F}) \\
& =\boldsymbol{S}(d \boldsymbol{R} / d m) \cdot d m \delta^{\prime \prime} \boldsymbol{a}=\boldsymbol{S} d \boldsymbol{R} \cdot \delta^{\prime \prime} \boldsymbol{a}=0 . \tag{6.6.8}
\end{align*}
$$

Principle of Gauss (GP) versus Principle of Lagrange (LP)

The relation between

$$
\begin{equation*}
\text { LP : } \quad \boldsymbol{S} d m \boldsymbol{a} \cdot \delta \boldsymbol{r}=\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{r} \tag{6.6.9a}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { GP : } \quad \boldsymbol{S} d m \boldsymbol{a} \cdot \delta^{\prime \prime} \boldsymbol{a}=\boldsymbol{S} d \boldsymbol{F} \cdot \delta^{\prime \prime} \boldsymbol{a} \tag{6.6.9b}
\end{equation*}
$$

that is, the question of their mutual consistency and equivalence, is of cardinal importance to constrained system mechanics. Since there is only one mechanics, both $L P$ and GP must produce the same equations of motion. Therefore, let us begin by examining the derivation of such equations from these principles.

LP: substituting into (6.6.9a) the representation

$$
\begin{equation*}
\delta \boldsymbol{r}=\sum \boldsymbol{e}_{k} \delta q_{k}=\sum \varepsilon_{I} \delta \theta_{I}, \tag{6.6.10a}
\end{equation*}
$$

and recalling the arguments expounded in chapters 3 and 5, we find the raw form of the kinetic equations:

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot \varepsilon_{I}=\boldsymbol{S} d \boldsymbol{F} \cdot \varepsilon_{I} \tag{6.6.10b}
\end{equation*}
$$

GP: We need $\delta^{\prime \prime} \boldsymbol{a}$. We have successively

$$
\begin{aligned}
\boldsymbol{v} & =d \boldsymbol{r} / d t=\sum \boldsymbol{e}_{k} \dot{q}_{k}+\text { no } \dot{q} \text { terms }=\sum \varepsilon_{I} \omega_{I}+\text { no } \omega \text { terms }, \\
& \Rightarrow \boldsymbol{a}=d \boldsymbol{v} / d t=\sum \boldsymbol{e}_{k} \ddot{q}_{k}+\text { no } \ddot{q} \text { terms }=\sum \varepsilon_{I} \dot{\omega}_{I}+\text { no } \dot{\omega} \text { terms }, \\
& \Rightarrow \delta^{\prime \prime} \boldsymbol{a}=\sum \boldsymbol{e}_{k} \delta \ddot{q}_{k}=\sum \varepsilon_{I} \delta \dot{\omega}_{I} \quad[\text { Gaussian counterpart of (6.6.10a)], (6.6.11) }
\end{aligned}
$$

and, substituting this into (6.6.9b), we reobtain (6.6.10b).
Next, let us move to general system quasi variables. As seen in §5.2, for nonlinear (possibly nonholonomic) velocity constraints

$$
\begin{align*}
& \omega_{D} \equiv f_{D}(t, q, \dot{q})=0, \quad \omega_{I} \equiv f_{I}(t, q, \dot{q}) \neq 0 ; \tag{6.6.12a}\\
& \dot{q}_{k}=\dot{q}_{k}(t, q, \omega)=\dot{q}_{k}\left(t, q, \omega_{I}\right) \equiv F_{k}\left(t, q, \omega_{I}\right), \tag{6.6.12b}
\end{align*}
$$

we must define $\delta \theta_{k}$; to replace in (6.6.12a, b) ω with $\delta \theta$ and \dot{q} with δq [i.e., $\delta \theta=f(t, q, \delta q)$ and $\delta q=F(t, q, \delta \theta)]$ would be meaningless (useless). Instead, we are seeking a definition in which:
(i) The nonholonomic system virtual displacements, $\delta \theta$, are linear and homogeneous combinations of their holonomic counterparts, δq; and vice versa:

$$
\begin{equation*}
\delta \theta_{l}=\sum(\ldots)_{l k} \delta q_{k} \Leftrightarrow \delta q_{k}=\sum(\ldots)_{k l} \delta \theta_{l} \tag{6.6.13}
\end{equation*}
$$

so that we can attach (or adjoin) the constraints to LP; and
(ii) In the linear (Pfaffian) case, it reduces to the earlier results (chap. 2). This is accomplished by requiring compatibility between LP and GP.
(a) Indeed substituting (6.6.11) into (6.6.9b), we obtain the Gaussian form:

$$
\begin{equation*}
\sum\left(\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \boldsymbol{e}_{k}\right) \delta \ddot{q}_{k}=0 \tag{6.6.14a}
\end{equation*}
$$

or, since $\left[(\ldots)^{\circ}\right.$-differentiating (6.6.12b) and then varying it à la Gauss, and setting $\left.\delta \dot{\omega}_{D}=0\right]$

$$
\begin{align*}
\delta^{\prime \prime}\left(\ddot{q}_{k}\right) & =\delta^{\prime \prime}\left(\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \dot{\omega}_{l}+\text { no } \dot{\omega} \text { terms }\right) \\
& =\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \delta \dot{\omega}_{l}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \delta \dot{\omega}_{I}, \tag{6.6.14b}
\end{align*}
$$

finally,

$$
\begin{gather*}
\sum \sum\left\{\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot\left[\boldsymbol{e}_{k}\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)\right]\right\} \delta \dot{\omega}_{I} \tag{6.6.14c}\\
=\sum\left(\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \boldsymbol{\varepsilon}_{I}\right) \delta \dot{\omega}_{I}=0
\end{gather*}
$$

(b) On the other hand, substituting (6.6.10a) into (6.6.9a), we obtain the Lagrangean form:

$$
\begin{align*}
& \sum\left(\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \boldsymbol{e}_{k}\right) \delta q_{k} \\
& \quad=\sum\left(\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \boldsymbol{\varepsilon}_{I}\right) \delta \theta_{I}=0 \tag{6.6.15}
\end{align*}
$$

Now, the Gaussian variational equation (6.6.14c) can be brought into agreement with the Lagrangean (6.6.15) via the following fundamental definition:

$$
\begin{equation*}
\delta q_{k} \equiv \sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \delta \theta_{l} \tag{6.6.16}
\end{equation*}
$$

from which, inverting, we find

$$
\begin{align*}
& \delta \theta_{l} \equiv \sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \delta q_{k} \tag{6.6.17}\\
& \Rightarrow \delta \theta_{D} \equiv \sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta q_{k} \equiv \sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 \tag{6.6.17a}\\
& \quad \delta \theta_{I} \equiv \sum\left(\partial \omega_{I} / \partial \dot{q}_{k}\right) \delta q_{k} \equiv \sum\left(\partial f_{I} / \partial \dot{q}_{k}\right) \delta q_{k} \neq 0 \tag{6.6.17b}
\end{align*}
$$

Then (recalling p. 825ff.)

$$
\begin{gather*}
\left(\delta \theta_{D}\right)=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right)\left(\delta q_{k}\right) \tag{6.6.18a}\\
\delta \omega_{D} \equiv \delta\left(\dot{\theta}_{D}\right)=\delta f_{D}=\sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right) \text { etc. } \tag{6.6.18b}
\end{gather*}
$$

Principle of Jourdain (JP) versus Principle of Lagrange (LP)
The same conclusion - namely, (6.6.17a) - can also be reached by requiring compatibility between LP and JP:

$$
\begin{equation*}
\mathbf{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime} \boldsymbol{v}=0, \quad \text { under } \quad \delta t=0 \quad \text { and } \quad \delta \boldsymbol{r}=\mathbf{0} \tag{6.6.19}
\end{equation*}
$$

Successively,

$$
\begin{align*}
\delta^{\prime} \boldsymbol{v} & =\delta^{\prime}\left(\sum \boldsymbol{e}_{k} \dot{q}_{k}+n o \dot{q} \text { terms }\right) \\
& =\sum \boldsymbol{e}_{k} \delta^{\prime} \dot{q}_{k} \\
& =\sum \boldsymbol{e}_{k}\left(\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \delta \omega_{l}\right) \\
& =\sum \sum \boldsymbol{e}_{k}\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \delta \omega_{I}, \tag{6.6.19a}
\end{align*}
$$

since (by $\S 6.2, ~ \S 6.3$):

$$
\begin{align*}
\delta \dot{q}_{k} \rightarrow \delta^{\prime} \dot{q}_{k} & =\sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) \delta \omega_{l}, \tag{6.6.19b}\\
\delta \omega_{l} \rightarrow \delta^{\prime} \omega_{l} & =\sum\left(\partial \omega_{l} / \partial \dot{q}_{k}\right) \delta \dot{q}_{k} \tag{6.6.19c}
\end{align*}
$$

and, inserting this into (6.6.19), we find

$$
\begin{equation*}
\sum \sum\left(\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \boldsymbol{e}_{k}\left(\partial \dot{q}_{k} / \partial \omega_{I}\right)\right) \delta \omega_{I}=0 \tag{6.6.19d}
\end{equation*}
$$

Again, this can be brought to the Lagrangean form (6.6.15) with the definitions (6.6.16-17b).

Equations of Motion

We already have GP in its raw form; that is, eq. (6.6.9b). To obtain its system form, we must transform (6.6.14a). Indeed, recalling standard kinematico-inertial identities (chap. 3), we find

$$
\begin{align*}
\delta^{\prime \prime} \boldsymbol{Z} & =\sum\left(\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \boldsymbol{e}_{k}\right) \delta \ddot{q}_{k} \\
& =\sum\left(\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{e}_{k}-\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{e}_{k}\right) \delta \ddot{q}_{k} \\
& =\sum\left[E_{k}(T)-Q_{k}\right] \delta \ddot{q}_{k}=0 . \tag{6.6.20}
\end{align*}
$$

Next, to bring velocity constraints like (6.6.1) to Gaussian form-that is, to make them exhibit accelerations explicitly-first we (...) -differentiate them and then we vary them à la Gauss: $\delta^{\prime \prime}\left[(\ldots)^{\circ}\right]$. Thus, (6.6.1) yields

Particle form: $\quad \delta^{\prime \prime}\left(\dot{f}_{D}\right)=\delta^{\prime \prime}\left\{\partial f_{D} / \partial t+\boldsymbol{S}\left[\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v}+\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \boldsymbol{a}\right]\right\}$

$$
\begin{equation*}
=\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{v}\right) \cdot \delta \boldsymbol{a}=0 \tag{6.6.21a}
\end{equation*}
$$

System form: $\quad \delta^{\prime \prime}\left(\dot{f}_{D}\right)=\delta^{\prime \prime}\left\{\partial f_{D} / \partial t+\sum\left[\left(\partial f_{D} / \partial q_{k}\right) \dot{q}_{k}+\left(\partial f_{D} / \partial \dot{q}_{k}\right) \ddot{q}_{k}\right]\right\}$

$$
\begin{equation*}
=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta \ddot{q}_{k}=0, \tag{6.6.21b}
\end{equation*}
$$

$$
\left[\text { also },\left(\delta^{\prime \prime} f_{D}\right)^{\cdot}=\left(\sum\left(\partial f_{D} / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}\right)^{\cdot}=\left(\sum(0) \delta \ddot{q}_{k}\right)^{\cdot}=0\right] ;
$$

and, finally, adjoining the above to (6.6.9b) or to its system counterpart (6.6.20), via Lagrangean multipliers, we obtain the general variational equation (unconstrained variations):

$$
\begin{equation*}
\delta^{\prime \prime} Z+\sum \lambda_{D} \delta^{\prime \prime}\left(\dot{f}_{D}\right)=0 \tag{6.6.22}
\end{equation*}
$$

From the above, all kinds of equations of motion, in holonomic variables flow; while for kinetic equations in nonholonomic variables, they follow from (6.6.7) or (6.6.9b) in connection with (6.6.11) (and similarly for kinetostatic equations). For example:
(i) Combining $(6.6 .7,9 b)$ with $(6.6 .21 a)$, we get Lagrange's equations of the first kind:

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{F}+\sum \lambda_{D}\left(\partial f_{D} / \partial \boldsymbol{v}\right) \tag{6.6.23}
\end{equation*}
$$

(ii) While, combining (6.6.20) with (6.6.21b), we obtain Lagrange's equations of the second kind (Routh-Voss equations):

$$
\begin{equation*}
E_{k}(T) \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \tag{6.6.24a}
\end{equation*}
$$

or, since $E_{k}(T)=\partial S / \partial \ddot{q}_{k}$, in their Appellian form:

$$
\begin{equation*}
\partial S / \partial \ddot{q}_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \tag{6.6.24b}
\end{equation*}
$$

REMARK

If the constraints have the form $f_{D}(t, \boldsymbol{r})=0\left[f_{D}(t, q)=0\right]$, it does not mean that we should set, in the right side of (6.6.23) [(6.6.24a, b)] $\partial f_{D} / \partial \boldsymbol{v}=\mathbf{0}\left[\partial f_{D} / \partial \dot{q}_{k}=0\right]$. It means that, first, we bring these constraints to Gaussian form and then we $\delta^{\prime \prime}(\ldots)$-vary them; that is, for $f_{D}(t, \boldsymbol{r})$, we have, successively,

$$
\begin{align*}
f_{D}=0 & \Rightarrow d f_{D} / d t=\partial f_{D} / \partial t+\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{v} \\
& \Rightarrow d^{2} f_{D} / d t^{2}=\left(\partial f_{D} / \partial t\right)^{\cdot}+\boldsymbol{S}\left[\left(\partial f_{D} / \partial \boldsymbol{r}\right)^{\cdot} \cdot \boldsymbol{v}+\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \boldsymbol{a}\right] \\
& \Rightarrow \delta^{\prime \prime}\left(\ddot{f}_{D}\right)=\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \delta^{\prime \prime} \boldsymbol{a}=0 \tag{6.6.25}
\end{align*}
$$

and similarly for $f_{D}(t, q)=0: \delta^{\prime \prime}\left(\ddot{f}_{D}\right)=\sum\left(\partial f_{D} / \partial q_{k}\right) \delta^{\prime \prime} \ddot{q}_{k}=0$. Also, it is worth noting that, since this constraint is holonomic, the right side of (6.6.25) would have resulted even if we had reversed the order of differentiations:

$$
\begin{aligned}
\delta f_{D} & =\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \delta \boldsymbol{r}=0 \\
& \Rightarrow\left(\delta f_{D}\right)^{\cdot}=\boldsymbol{S}\left[\left(\partial f_{D} / \partial \boldsymbol{r}\right)^{\cdot} \cdot \delta \boldsymbol{r}+\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot(\delta \boldsymbol{r})^{\cdot}\right]=0, \\
& \Rightarrow\left(\delta f_{D}\right)^{\cdot}=\boldsymbol{S}\left[\left(\partial f_{D} / \partial \boldsymbol{r}\right)^{\cdot} \cdot \delta \boldsymbol{r}+2\left(\partial f_{D} / \partial \boldsymbol{r}\right)^{\cdot} \cdot(\delta \boldsymbol{r})^{\cdot}+\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot(\delta \boldsymbol{r})^{\cdot}\right]=0,
\end{aligned}
$$

or, [invoking commutativity $\delta(\dot{\boldsymbol{r}})=(\delta \boldsymbol{r})^{\circ}$, etc.]

$$
\begin{gather*}
\left(\delta f_{D}\right)^{\cdot}=\boldsymbol{S}\left[\left(\partial f_{D} / \partial \boldsymbol{r}\right)^{*} \cdot \delta \boldsymbol{r}+2\left(\partial f_{D} / \partial \boldsymbol{r}\right)^{\cdot} \cdot \delta \boldsymbol{v}+\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \delta \boldsymbol{a}\right]=0, \tag{6.6.25a}\\
\delta(\ldots) \Rightarrow \delta^{\prime \prime}(\ldots): \quad\left(\delta^{\prime \prime} f_{D}\right)^{\cdots}=\boldsymbol{S}\left(\partial f_{D} / \partial \boldsymbol{r}\right) \cdot \delta \boldsymbol{a}=0 . \tag{6.6.25b}
\end{gather*}
$$

As a result of the above, equations $(6.6 .23,24 \mathrm{a}, \mathrm{b})$ are replaced, respectively, by the familiar (§3.5)

$$
\begin{gather*}
d m \boldsymbol{a}=d \boldsymbol{F}+\sum \lambda_{D}\left(\partial f_{D} / \partial \boldsymbol{r}\right) \tag{6.6.26a}\\
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=\partial S / \partial \ddot{q}_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial q_{k}\right) \tag{6.6.26b}
\end{gather*}
$$

(iii) Appell's equations in quasi variables via Gauss' principle. By $\delta^{\prime \prime}(\ldots)$-varying (6.6.3), we obtain

$$
\begin{equation*}
\delta^{\prime \prime} Z=\delta^{\prime \prime} S-\boldsymbol{S} d \boldsymbol{F} \cdot \delta^{\prime \prime} \boldsymbol{a}=0 \tag{6.6.27a}
\end{equation*}
$$

But, successively,

$$
\begin{align*}
\delta^{\prime \prime} S & =\delta^{\prime \prime}\left(\boldsymbol{S}(1 / 2) d m \boldsymbol{a}^{2}\right) \\
& =\boldsymbol{S} d m \boldsymbol{a} \cdot \delta^{\prime \prime} \boldsymbol{a} \\
& =\boldsymbol{S} d m \boldsymbol{a} \cdot\left(\sum \boldsymbol{\varepsilon}_{k} \delta \dot{\omega}_{k}\right) \\
& =\sum\left(\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{\varepsilon}_{k}\right) \delta \dot{\omega}_{k} \\
& =\sum\left(\partial S^{*} / \partial \dot{\omega}_{k}\right) \delta \dot{\omega}_{k}, \tag{6.6.27b}
\end{align*}
$$

and

$$
\begin{aligned}
\boldsymbol{S} d \boldsymbol{F} \cdot \delta^{\prime \prime} \boldsymbol{a} & =\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum \varepsilon_{k} \delta \dot{\omega}_{k}\right) \\
& =\sum\left(\boldsymbol{S} d \boldsymbol{F} \cdot \boldsymbol{\varepsilon}_{k}\right) \delta \dot{\omega}_{k} \\
& =\sum \Theta_{k} \delta \dot{\omega}_{k} \quad(\text { Gaussian form of Appellian virtual work }) ;(6.6 .27 \mathrm{c})
\end{aligned}
$$

and so (6.6.27a) yields

$$
\begin{equation*}
\delta^{\prime \prime} Z=\sum\left(\partial S^{*} / \partial \dot{\omega}_{k}-\Theta_{k}\right) \delta \dot{\omega}_{k}=0 \tag{6.6.27d}
\end{equation*}
$$

that is, among kinematically admissible accelerations, the actual (kinetic) ones make the Gaussian compulsion Z:

$$
\begin{equation*}
Z=S-\sum \Theta_{k} \dot{\omega}_{k}+\text { no } \dot{\omega} \text {-terms }=Z(\dot{\omega}) \tag{6.6.28}
\end{equation*}
$$

stationary (actually a minimum - see below).
Next, if the variations $\delta \dot{\omega}$ are independent, then (6.6.27d) yields the familiar Appellian equations

$$
\begin{equation*}
\partial S^{*} / \partial \dot{\omega}_{k}=\Theta_{k} \tag{6.6.29}
\end{equation*}
$$

Similarly, in holonomic variables: there, eqs. $(6.6 .28,27 \mathrm{~d}, 29)$ read, respectively,

$$
\begin{gather*}
Z=S-\sum Q_{k} \ddot{q}_{k}+\text { no } \ddot{\text { q}} \text {-terms }=Z(\ddot{q}), \tag{6.6.30a}\\
\delta^{\prime \prime} Z=\sum\left(\partial S / \partial \ddot{q}_{k}-Q_{k}\right) \delta \ddot{q}_{k}=0, \tag{6.6.30b}\\
\partial S / \partial \ddot{q}_{k}=Q_{k} . \tag{6.6.30c}
\end{gather*}
$$

If, on the other hand, the variations $\delta \ddot{q}, \delta \dot{\omega}$ are not independent, then either we adjoin the constraints (in the proper form) via Lagrangean multipliers, or we embed them via quasi variables (see below).

Constraint Reactions (Kinetostatic Equations)

To calculate these reactions, we apply the relaxation principle (§3.7) to Z, just as in the Appellian and Lagrangean cases; that is, we calculate the relaxed compulsion Z as function of all $n \dot{\omega}$'s, then differentiate it appropriately, and, finally, enforce in it the constraints $\dot{\omega}_{D}=0$ (and, of course, $\omega_{D}=0$). We note that here, too,

$$
\begin{equation*}
\left(\partial Z / \partial \dot{\omega}_{I}\right)_{o}=\partial Z_{o} / \partial \dot{\omega}_{I} \quad(=0 ; I=m+1, \ldots, n) \tag{6.6.31a}
\end{equation*}
$$

where

$$
\begin{equation*}
Z=Z\left(\dot{\omega}_{D}, \dot{\omega}_{I}\right): \quad \text { relaxed compulsion, } \quad Z_{o}=Z\left(0, \dot{\omega}_{I}\right): \quad \text { constrained compulsion } \tag{6.6.31b}
\end{equation*}
$$

and, as usual, $(\ldots)_{o} \equiv(\ldots)$ evaluated for $\dot{\omega}_{D}=0$. Hence, with the usual notations (chaps. 3 and 5), the equations of motion are

Kinetostatic: $\quad\left(\partial Z / \partial \dot{\omega}_{D}\right)_{o}=\left(\partial S^{*} / \partial \dot{\omega}_{D}\right)_{o}-\Theta_{D}=\Lambda_{D}$,

Kinetic: $\quad\left(\partial Z / \partial \dot{\omega}_{I}\right)_{o}=\partial Z_{o} / \partial \dot{\omega}_{I}$

$$
\begin{equation*}
=\left(\partial S^{*} / \partial \dot{\omega}_{I}\right)_{o}-\Theta_{I}=\partial S_{o}^{*} / \partial \dot{\omega}_{I}-\Theta_{I}=0 \tag{6.6.32b}
\end{equation*}
$$

and, in view of (6.6.31a), if no reactions are sought, we can enforce the constraints into Z right from the start, just like with S^{*}.

The Minimality of the Compulsion

Here, we show that for the actual constrained motion, Z is not just stationary but actually an extremum; specifically a minimum. (This can also be foreseen easily from the mathematical structure of Z : a sum of essentially positive terms must have at least one minimum, somewhere.)

From (6.6.2), we find

$$
\begin{align*}
\Delta^{\prime \prime} Z & \equiv Z\left(\boldsymbol{a}+\delta^{\prime \prime} \boldsymbol{a}\right)-Z(\boldsymbol{a}) \\
& =(1 / 2) \boldsymbol{S} d m\left[\left(\boldsymbol{a}+\delta^{\prime \prime} \boldsymbol{a}\right)-(d \boldsymbol{F} / d m)\right]^{2}-(1 / 2) \boldsymbol{S} d m[\boldsymbol{a}-(d \boldsymbol{F} / d m)]^{2} \\
& =\delta^{\prime \prime} Z+(1 / 2) \delta^{\prime \prime 2} Z \geq 0, \tag{6.6.33}
\end{align*}
$$

where

$$
\begin{align*}
& \delta^{\prime \prime} Z=\boldsymbol{S}(d m \boldsymbol{a}-d \boldsymbol{F}) \cdot \delta^{\prime \prime} \boldsymbol{a} \quad(=0) \tag{6.6.33a}\\
& \delta^{\prime \prime 2} Z=\boldsymbol{S}\left(d m \delta^{\prime \prime} \boldsymbol{a} \cdot \delta^{\prime \prime} \boldsymbol{a}\right) \quad(\geq 0) \tag{6.6.33b}
\end{align*}
$$

No particular physical significance is to be attached to this second-order property of Z (as with other energetic functions of mechanics); it simply flows out of its mathematical structure.

Least Compulsion and Theory of Errors

Equation (6.6.2) can be rewritten as

$$
\begin{equation*}
Z=\boldsymbol{S}(-d \boldsymbol{R})^{2} / 2 d m=\boldsymbol{S}(\text { Lost force })^{2} / 2 d m \tag{6.6.34}
\end{equation*}
$$

In the theory of errors (also founded by Gauss), the dm's are the "weights" of the observations, and the lost forces are their "errors."

On this matter, let us quote in detail the well-known expert Lanczos:
Gauss was much attached to this principle because it represented a perfect physical analogy to the "method of least squares" (discovered by him and independently by Legendre), in the adjustment of errors. If a functional relation involves certain parameters which have to be determined by observations, the calculation is straightforward so long as the number of observations agrees with the number of unknown parameters. But if the number of observations exceeds the number of parameters, the equations become contradictory on account of the errors of observation. The hypothetical value of the function minus the observed value is the "error". The sum of the squares of all the individual errors is now formed, and the parameters of the problem are determined by the principle that this sum shall be a minimum. The principle of minimizing the quantity Z is completely analogous to the procedure sketched above. The 3 N terms of the sum [the discretized (and rearranged but equivalent) version of our (6.6.2)]

$$
Z=\sum\left(m_{k} / 2\right)\left(\boldsymbol{a}_{k}-\boldsymbol{F}_{k} / m_{k}\right)^{2}=\sum\left(1 / 2 m_{k}\right)\left(m_{k} \boldsymbol{a}_{k}-\boldsymbol{F}_{k}\right)^{2} \quad(k=1, \ldots, N),
$$

correspond to $3 N$ observations. This number is in excess of the number of unknowns \ddot{q} on account of the m given kinematical conditions. The "error" is represented by the deviation of the impressed force \boldsymbol{F}_{k} from the (negative of the) force of inertia "mass times acceleration". Even the factor $1 / m_{k}$ in the expression for Z can be interpreted as a "weight factor", in analogy with the case of observations of different quality which are weighted according to their estimated reliability. (1970, p. 108) [A similar property holds for the center of mass G of N particles of masses m_{k} with Cartesian coordinates $\left(x_{k}, y_{k}, z_{k}\right)$: the coordinates of $G(x, y, z)$ minimize the expression

$$
\left.\sum m_{k}\left[\left(x_{k}-x\right)^{2}+\left(y_{k}-y\right)^{2}+\left(z_{k}-z\right)^{2}\right] .\right]
$$

Motivation for and Geometrical-Physical Meaning of Gauss' Principle

(i) Unconstrained versus Actual Constrained Motion

Let us consider a particle P of mass $d m$, possibly part of a larger system S, in actual constrained motion along a curve c, under a total impressed force $d \boldsymbol{F}$ and a total constraint reaction $d \boldsymbol{R}$. Let P, at the generic neighboring instants t and $t+\tau$, be at the neighboring c-points M and C, respectively (fig. 6.2). Then, by Taylor's theorem, to the second τ-order,

$$
\begin{align*}
\Delta \boldsymbol{r} & \equiv \boldsymbol{O C}-\boldsymbol{O M}=(\boldsymbol{O M}+\boldsymbol{M} \boldsymbol{A}+\boldsymbol{A C})-\boldsymbol{O M}=\boldsymbol{M C} \\
& =\boldsymbol{r}(t+\tau)-\boldsymbol{r}(t)=\boldsymbol{v} \tau+(1 / 2) \boldsymbol{a} \tau^{2} . \tag{6.6.35a}
\end{align*}
$$

Figure 6.2 Geometrical interpretation of Gauss' constraint-compulsion:

$$
\begin{aligned}
& \boldsymbol{M} \boldsymbol{A}=\boldsymbol{v} \tau, \quad \boldsymbol{M C}=\boldsymbol{v} \tau+(1 / 2) \boldsymbol{a} \tau^{2}, \quad \boldsymbol{M B}=\boldsymbol{v} \tau+(1 / 2)(d \boldsymbol{F} / d m) \tau^{2} \\
& \Rightarrow \boldsymbol{B C}=\boldsymbol{M} \mathbf{C}-\boldsymbol{M} \boldsymbol{B}=(1 / 2)[\boldsymbol{a}-(d \boldsymbol{F} / d m)] \tau^{2}=(1 / 2)[(d \boldsymbol{R} / d m)] \tau^{2} .
\end{aligned}
$$

On the other hand, if P was unconstrained or free-that is, if $d \boldsymbol{R}=\mathbf{0}$ - then, even if it started with the same initial conditions at M as in the actual constrained motionthat is, $\boldsymbol{r}(t)=\boldsymbol{r}$ and $\dot{\boldsymbol{r}}(t)=\boldsymbol{v}$ - since, then, $\boldsymbol{a}=d \boldsymbol{F} / d m$, at time $t+\tau$ the particle would end up somewhere outside c, say at B, where

$$
\begin{equation*}
\boldsymbol{O B}=\boldsymbol{O} \boldsymbol{M}+\boldsymbol{M} \boldsymbol{A}+\boldsymbol{A} \boldsymbol{B}=\boldsymbol{r}+\boldsymbol{v} \tau+(1 / 2)(d \boldsymbol{F} / d m) \tau^{2} \tag{6.6.35b}
\end{equation*}
$$

Therefore, the deviation vector, between the unconstrained and constrained motions, during τ, is

$$
\begin{align*}
O \boldsymbol{C}-\boldsymbol{O B} & =\boldsymbol{M C}-\boldsymbol{M} \boldsymbol{B}=\boldsymbol{A} \boldsymbol{C}-\boldsymbol{A} \boldsymbol{B}=\boldsymbol{B} \boldsymbol{C} \\
& =(1 / 2)[\boldsymbol{a}-(d \boldsymbol{F} / d m)] \tau^{2}=(1 / 2)(d \boldsymbol{R} / d m) \tau^{2} \tag{6.6.35c}
\end{align*}
$$

and so [recalling (6.6.2)], the (elementary) compulsion of $P, d Z$, is

$$
\begin{equation*}
d Z \equiv(d m / 2)[\boldsymbol{a}-(d \boldsymbol{F} / d m)]^{2}=(d m / 2)(d \boldsymbol{R} / d m)^{2}=\left(2 d m / \tau^{4}\right)(\boldsymbol{B C})^{2} \tag{6.6.35d}
\end{equation*}
$$

and from this it follows that the (total) compulsion of S, Z, is

$$
\begin{align*}
Z & =\boldsymbol{S} d \boldsymbol{Z} \\
& =\boldsymbol{S}(d m / 2)[\boldsymbol{a}-(d \boldsymbol{F} / d m)]^{2}=\boldsymbol{S}(d m / 2)(d \boldsymbol{R} / d m)^{2} \\
& =\left(2 / \tau^{4}\right) \boldsymbol{S} d m(\boldsymbol{B} \boldsymbol{C})^{2} \tag{6.6.35e}
\end{align*}
$$

[$=$ Sum of (mass) weighted deviations between unconstrained and constrained motions (to within an unimportant, "Gaussianly constant," factor)].

Why up to the second order, in (6.6.35d, e)? To the first order, clearly, $A=C=B$; that is, the deviation vanishes; while higher than second τ-orders would have introduced variations in the forces $d \boldsymbol{F}$ and $d \boldsymbol{R}$ - something undesirable in the derivation of equations of motion at t, M.
(ii) Kinematically Admissible Constrained versus Actual

Constrained Motion
Under a Gaussianly kinematically admissible acceleration $\boldsymbol{a}+\Delta^{\prime \prime} \boldsymbol{a}=\boldsymbol{a}+\delta^{\prime \prime} \boldsymbol{a} \equiv \boldsymbol{a}^{\prime}$, the particle P, starting again from A [with the same initial conditions $\boldsymbol{r}(t)=\boldsymbol{r}$ and $\dot{\boldsymbol{r}}(t)=\boldsymbol{v}$], would have ended at $t+\tau$, say at C^{\prime} (fig. 6.3).
Gauss' principle states that, for the kinetically correct acceleration, $C^{\prime} \rightarrow C$. Let us examine the geometry of the "compulsion triangle" $B C C^{\prime}$. From fig. 6.3, we readily obtain

$$
\begin{align*}
& \boldsymbol{B} \boldsymbol{C}^{\prime}=\boldsymbol{B C}+\boldsymbol{C} \boldsymbol{C}^{\prime} \\
& \Rightarrow\left(\boldsymbol{B} \boldsymbol{C}^{\prime}\right)^{2}=(\boldsymbol{B C})^{2}+\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{2}+2 \boldsymbol{B C} \cdot \boldsymbol{C} \boldsymbol{C}^{\prime} \tag{6.6.36a}
\end{align*}
$$

$\left(2 \boldsymbol{B C} \cdot \boldsymbol{C C ^ { \prime }}=2|\boldsymbol{B C}|\left|\boldsymbol{C} \boldsymbol{C}^{\prime}\right| \cos \left(\boldsymbol{B C}, \boldsymbol{C C ^ { \prime }}\right)=-2|\boldsymbol{B C}|\left|\boldsymbol{C C ^ { \prime }}\right| \cos \theta\right)$ and, therefore, recalling the interpretations ($6.6 .35 \mathrm{~d}, \mathrm{e}$),

$$
\begin{align*}
& Z^{\prime} \equiv \equiv \boldsymbol{S}(d m / 2)\left[\boldsymbol{a}^{\prime}-(d \boldsymbol{F} / d m)\right]^{2} \quad\left\{=\boldsymbol{S}(d m / 2)\left[\left(\boldsymbol{a}+\delta^{\prime \prime} \boldsymbol{a}\right)-(d \boldsymbol{F} / d m)\right]^{2}\right\} \\
&=\left(2 / \tau^{4}\right) \boldsymbol{S} d m\left(\boldsymbol{B} \boldsymbol{C}^{\prime}\right)^{2} \\
&=\left(2 / \tau^{4}\right) \boldsymbol{S} d m\left[(\boldsymbol{B C})^{2}+\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{2}+2 \boldsymbol{B C} \cdot \boldsymbol{C} \boldsymbol{C}^{\prime}\right] \\
&=\left(2 / \tau^{4}\right) \boldsymbol{S} d m\left\{\left[\left(\tau^{2} / 2\right)(\boldsymbol{a}-d \boldsymbol{F} / d m)\right]^{2}+\left[\left(\tau^{2} / 2\right) \delta^{\prime \prime} \boldsymbol{a}\right]^{2}\right. \\
&\left.\quad+2\left[\left(\tau^{2} / 2\right)(\boldsymbol{a}-d \boldsymbol{F} / d m)\right] \cdot\left[\left(\tau^{2} / 2\right) \delta^{\prime \prime} \boldsymbol{a}\right]\right\} \\
&= \boldsymbol{S}(d m / 2)(\boldsymbol{a}-d \boldsymbol{F} / d m)^{2}+\boldsymbol{S} d m(\boldsymbol{a}-d \boldsymbol{F} / d m) \cdot \delta^{\prime \prime} \boldsymbol{a} \\
& \quad+\boldsymbol{S}(d m / 2)\left(\delta^{\prime \prime} \boldsymbol{a}\right)^{2} \\
&= Z+\Delta Z \\
&=Z+\delta^{\prime \prime} Z+(1 / 2) \delta^{\prime \prime 2} Z=Z+0+(1 / 2) \delta^{\prime \prime 2} Z, \tag{6.6.36b}
\end{align*}
$$

Figure 6.3 Constrained compulsion: kinematically admissible (C^{\prime}) versus actual (C); and detail of "compulsion triangle" $B C C$ '.
from which, since

$$
\Delta Z \equiv Z^{\prime}-Z=(1 / 2) \delta^{\prime \prime 2} Z=(1 / 2) \boldsymbol{S} d m\left(\delta^{\prime \prime} \boldsymbol{a}\right)^{2} \geq 0 \quad\left[=0, \text { for } \delta^{\prime \prime} \boldsymbol{a}=\mathbf{0}\right]
$$

we conclude that

$$
\begin{equation*}
Z^{\prime} \sim \boldsymbol{S} d m\left(\boldsymbol{B} \boldsymbol{C}^{\prime}\right)^{2}>Z \sim \boldsymbol{S} d m(\boldsymbol{B C})^{2} \tag{6.6.36c}
\end{equation*}
$$

that is, the actual acceleration minimizes the compulsion.
An additional, "minimum norm" interpretation of the above is known in the largely self-explanatory fig. 6.4 [see texts on applied/numerical linear algebra: least squares fitting of data; also, least squares derivation of Fourier series coefficients].

On the Uniqueness of the GP Solutions

The question of the uniqueness, or lack thereof, of the equations of motion obtained from the minimization, or stationarization, of Z is, obviously, of practical and physical importance. This is answered by the following considerations: as long as rank $\left(\partial f_{D} / \partial \dot{q}_{k}\right)=m$ (regular case), eliminating the m dependent \ddot{q}_{D} 's via the constraints, we will be able to express the particle accelerations \boldsymbol{a} as linear combinations of the $n-m$ independent \ddot{q}_{I} 's or $\dot{\omega}_{I}$'s; and therefore Z will be a quadratic function in these variables. Hence, differentiating Z with respect to the independent system accelerations will result in a system of $n-m$ linear equations in them, and that system will have a unique solution. The dependent accelerations can then be determined uniquely from the constraint conditions, properly differentiated.

Figure 6.4 Minimum norm interpretation of minimality of Gaussian compulsion.
$d m \boldsymbol{a}=d \boldsymbol{F}+d \boldsymbol{R}$,
$A(t, \boldsymbol{r}, \boldsymbol{v})$: initial state, à la Gauss; $\boldsymbol{A B}=d \boldsymbol{F}$ (i.e., B: given);
Locus of C^{\prime} : virtual plane through $A(t, \boldsymbol{r}, \boldsymbol{v})$;
$\boldsymbol{A} \mathbf{C}^{\prime}=d m\left(\boldsymbol{a}+\delta^{\prime \prime} \boldsymbol{a}\right) \equiv d m \boldsymbol{a}^{\prime}$: kinematically admissible accelerations à la Gauss;
$\mathbf{C}^{\prime} \boldsymbol{B}=d \boldsymbol{F}-d m \boldsymbol{a}^{\prime} \equiv-d \boldsymbol{R}^{\prime}$ (C^{\prime} : admissible position);
$\mathbf{C B}=-d \boldsymbol{R}=d \boldsymbol{F}-d m \boldsymbol{a}$ (C: actual position)
$\Rightarrow \mathbf{C C}^{\prime}=d m \delta^{\prime \prime} \boldsymbol{a}, \boldsymbol{A C}=d m \boldsymbol{a}$;
$\left|\mathbf{C}^{\prime} \boldsymbol{B}\right|=\left|-d \boldsymbol{R}^{\prime}\right|$: absolute value (norm) of admissible constraint reaction;
Gauss' principle: $\left|\boldsymbol{B} \mathbf{C}^{\prime}\right|=\left|d \boldsymbol{R}^{\prime}\right|=$ minimum $\Rightarrow C^{\prime}=C$ (BC normal to virtual plane).

In sum, excluding singular cases, the positive definite function Z will have a minimum at only one "point."
[The singular case, with its important consequence, seems to have been noticed first by the distinguished German mathematician P. Stäckel (in 1919). As he put it: in singular configurations, it is not possible to deduce the principle of Gauss from that of d'Alembert. Rather, for singular configurations one must postulate Gauss' principle. Then, the argument presented in (6.2.2 ff.) no longer holds! For examples of the violation of this uniqueness of the minimum of Z in singular cases - that is, where LP and Lagrange's equations fail to determine the accelerations uniquely, but GP does - see, for example, Nordheim (1927, pp. 65-66, and references therein), Golomb (1961, pp. 69-72); and, for a comprehensive contemporary treatment, Pfister (1995).]

On the History of GP

Gauss himself never gave a precise mathematical formulation of his principle; that is, our equations (6.6.2-9). Instead, he stated it as follows:

> The motion of a system of material points, connected with each other in an arbitrary way and subjected to arbitrary influences takes place at every instant, in the most perfect accordance possible with the motion that they would have if they became completely free, that is to say, with the smallest possible constraint, taking as measure of the constraint [that the system goes through] during an infinitesimally small instant, the sum of the products of the mass of each point with the square of the quantity by which it deviates from the position that it would have taken, if it had been free.. [J. für Mathematik (Crelle), 1829, vol. 4, p. 232]

Perhaps this lack of quantitative formulation of the principle may explain its relative obscurity, compared with LP, throughout the 19th century and a fair part of the early 20th-one imagines the fate of the original, highly qualitative and primitive, principle of d'Alembert (of 1743) without Lagrange's formulation (of 1764). The first analytical expression for Z, in rectangular Cartesian coordinates, seems to have been given by Jacobi [1847-1848, lecture notes on Analytical Mechanics (publ. 1996, pp. 96-100); see also Appell, 1953, pp. 497-498] and Scheffler (in 1858). They wrote (with some obvious notations and without the factor 1/2)

$$
\begin{equation*}
Z=\sum m_{k}\left[\left(\ddot{x}_{k}-X_{k} / m_{k}\right)^{2}+\left(\ddot{y}_{k}-Y_{k} / m_{k}\right)^{2}+\left(\ddot{z}_{k}-Z_{k} / m_{k}\right)^{2}\right] . \tag{6.6.37}
\end{equation*}
$$

However, the first precise formulation of GP as a minimum condition, with Z expressed in general system coordinates q_{k}, and with the explicit realization that for this to happen only the accelerations should be varied, while the positions, velocities, and time must be treated as constant, is due to Lipschitz (Crelle's J., 1877, vol. 82, p. 323); and, over the next 35 years or so (1877-1913), he and a few other distinguished mechanicians/physicists/mathematicians (including Schering, Gibbs, Mayer, Hertz, Voss, Brell, Schenk1, Wassmuth, Brill, and Mach) did for GP what Lagrange did for d'Alembert's principle. In particular, Gibbs (1879) extended the principle to inequality (or unilateral) constraints:

$$
\begin{equation*}
\delta\left(\boldsymbol{S} d m \boldsymbol{a}^{2} / 2\right)-\boldsymbol{S} d \boldsymbol{F} \cdot \delta \boldsymbol{a} \geq 0 \quad \text { or } \quad \delta^{\prime \prime} Z \geq 0 \tag{6.6.38}
\end{equation*}
$$

while Appell (in the late 1890s) applied it successfully to the formulation of his nonholonomic system equations. In most of the 20th century English language literature, GP has been barely tolerated as a clever but essentially useless academic curiosity, when it was mentioned at all. The only applications of it have appeared in problems of impulsive motion (with accelerations replaced by velocities), in British texts (§4.6).

However, this short-sighted situation seems to be changing for the better: in recent decades, GP has been experiencing a vigorous revival, in connection with analytical/computational approximate methods in such diverse areas of mechanics as nonlinear oscillations, multibody dynamics, heat transfer, structural analysis, elastic/plastic buckling, shell theory, and so on. [See, for example, Girtler (1928), Lilov and Lorer (1982), Lilov (1984), Vujanovic and Jones (1989, chap 7; this also contains a "complementary" formulation of GP where the accelerations are kept fixed and the impressed forces are varied), and Udwadia and Kalaba (1996). For the continuum formulation of GP, see, for example, Brill (1909), Hellinger (1914, pp. 633-635), and Truesdell and Toupin (1960, pp. 605-606).] Along with other DVP, GP has the big advantage over time-integral variational principles that - for discrete systems, at least - its application involves only ordinary differential calculus on a quadratic function of the acceleration components, and not variational calculus.

Example 6.6.1 An ad hoc but Instructive Derivation of GP from LP (Nonsingular Cases). Applying LP for $t+d t \equiv t+\tau$, where τ is an arbitrarily small time interval, we have

$$
\begin{equation*}
\mathbf{S} d m \boldsymbol{a}(t+\tau) \cdot \delta \boldsymbol{r}(t+\tau)=\boldsymbol{S} d \boldsymbol{F}(t+\tau) \cdot \delta \boldsymbol{r}(t+\tau) \tag{a}
\end{equation*}
$$

Then, substituting into (a) the special variation (neglecting higher than τ^{2}-order terms), we get

$$
\begin{align*}
\delta \boldsymbol{r}(t+\tau) & =\delta^{\prime \prime} \boldsymbol{r}(t+\tau) \\
& =\delta^{\prime \prime}\left[\boldsymbol{r}(t)+\boldsymbol{v}(t) \tau+\left(\tau^{2} / 2\right) \boldsymbol{a}(t)+\cdots\right]=\left(\tau^{2} / 2\right) \delta^{\prime \prime} \boldsymbol{a}(t) \tag{b}
\end{align*}
$$

and simplifying, and renaming $\delta^{\prime \prime} \boldsymbol{a}(t)=\delta \boldsymbol{a}(t)$, we obtain (the differential form of) GP:

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a}(t) \cdot \delta \boldsymbol{a}(t)=\boldsymbol{S} d \boldsymbol{F}(t) \cdot \delta \boldsymbol{a}(t), \quad \text { Q.E.D. } \tag{c}
\end{equation*}
$$

Example 6.6.2 Using Gauss' principle, let us obtain the equations of motion of the system shown in fig. 6.5. (All pulleys and cables are assumed massless.)

Here, $n=3, m=1: q_{1,2,3}=x_{A}, x_{B}, x_{C}$; and, clearly, the sole constraint among them is

$$
\begin{equation*}
2 x_{A}+x_{B}+x_{C}=\text { constant } \tag{a}
\end{equation*}
$$

or, in Gaussian form,

$$
\begin{equation*}
[e q .(a)]^{.}=0: \quad 2 \ddot{x}_{A}+\ddot{x}_{B}+\ddot{x}_{C}=0 \tag{b}
\end{equation*}
$$

Gauss' principle requires that we minimize the system compulsion (with easily understood notations, and $k=1,2,3 \Rightarrow A, B, C$; i.e. $\left.Q_{k} \rightarrow Q_{1,2,3}=3 W, 2 W, W\right)$:

$$
\begin{equation*}
Z=\sum\left(1 / 2 m_{k}\right)\left(X_{k}-m_{k} \ddot{x}_{k}\right)^{2}, \quad \text { under } \quad(a)^{.}=(b)=0 \tag{c}
\end{equation*}
$$

Figure 6.5 Motion of a system of three constrained particles A, B, C in a vertical plane [gravity: g (downward)].

This leads us readily to the constrained Gaussian variational equation

$$
\begin{align*}
\delta Z=0: \quad\left[3 W-(3 W / g) \ddot{x}_{A}\right] \delta \ddot{x}_{A} & +\left[2 W-(2 W / g) \ddot{x}_{B}\right] \delta \ddot{x}_{B} \\
& +\left[W-(W / g) \ddot{x}_{C}\right] \delta \ddot{x}_{C}=0 \tag{d}
\end{align*}
$$

under

$$
\begin{equation*}
\delta^{\prime \prime}\left[e q .(a){ }^{*}\right]=\delta^{\prime \prime}[\text { eq. }(b)]=\delta[e q .(b)]: \quad 2 \delta \ddot{x}_{A}+\delta \ddot{x}_{B}+\delta \ddot{x}_{C}=0 \tag{e}
\end{equation*}
$$

Application of the multiplier rule to the above leads at once to the three Routh-Voss equations of motion

$$
\begin{align*}
& (3 W / g) \ddot{x}_{A}=3 W-2 \lambda, \tag{f1}\\
& (2 W / g) \ddot{x}_{B}=2 W-\lambda, \tag{f2}\\
& (3 W / g) \ddot{x}_{C}=W-\lambda \tag{f3}
\end{align*}
$$

which, along with (a) constitute a determinate system for the four unknowns $x_{A, B, C}(t), \lambda(t)$. [Since $-S_{A} \delta x_{A}=-2 \lambda \delta x_{A}$, and $-S_{B} \delta x_{B}=-\lambda \delta x_{B},-S_{C} \delta x_{C}=$ $-\lambda \delta x_{C}, \lambda$ equals either of the cable tensions S_{B} or S_{C}.]

Indeed, solving (f1-3) for $\ddot{x}_{A, B, C}$ in terms of λ and substituting the results into [eq. (a) $]^{"}=e q$. (b), we readily find $\lambda=(24 / 17) W$. Then, (f1-3) yield immediately

$$
\begin{equation*}
\ddot{x}_{A}=(1 / 17) g, \quad \ddot{x}_{B}=(5 / 17) g, \quad \ddot{x}_{C}=(7 / 17) g . \tag{g}
\end{equation*}
$$

The solution of this problem via Jourdain's principle should be obvious.

Example 6.6.3 Using Gauss' principle and the method of relaxation of the constraints (§3.7), let us find the motion and reaction of a (plane) mathematical pendulum, of mass m and length l.

In polar coordinates r, ϕ (angle of pendulum's thread with vertical), the (physical) components of the acceleration of the pendulum's bob P are

$$
\begin{equation*}
\text { radial: } \quad a_{r}=\ddot{r}-r(\dot{\phi})^{2}, \quad \text { tangential: } \quad a_{\phi}=2 \dot{r} \dot{\phi}+r \ddot{\phi} \tag{a}
\end{equation*}
$$

Therefore (and since these are orthogonal curvilinear coordinates), the relaxed system compulsion is [recalling (6.6.3), with $S=$ Appellian function and $T=$ thread tension]

$$
\begin{aligned}
Z= & S-\left[\left(Q_{r}+R_{r}\right) a_{r}+\left(Q_{\phi}+R_{\phi}\right) a_{\phi}\right] \\
= & (m / 2)\left\{\left[\ddot{r}-r(\dot{\phi})^{2}\right]^{2}+(2 \dot{r} \dot{\phi}+r \ddot{\phi})^{2}\right\} \\
& -\left\{(m g \cos \phi-T)\left[\ddot{r}-r(\dot{\phi})^{2}\right]+(-m g r \sin \phi+0)(2 \dot{r} \dot{\phi}+r \ddot{\phi})\right\},
\end{aligned}
$$

and so, to within Gauss-important terms,

$$
\begin{align*}
Z= & Z(\ddot{r}, \ddot{\phi}) \\
= & (m / 2)\left[(\ddot{r})^{2}-2 r(\dot{\phi})^{2} \ddot{r}+r^{2}(\ddot{\phi})^{2}+4 r \dot{r} \dot{\phi} \ddot{\phi}\right] \\
& -m g \cos \phi \ddot{r}+m g r \sin \phi \ddot{\phi}+T \ddot{r} . \tag{b}
\end{align*}
$$

Hence, the equations of motion are
Kinetostatic: $\quad(\partial Z / \partial \ddot{r})_{r=l}=0: \quad\left[m \ddot{r}-m r(\dot{\phi})^{2}-m g \cos \phi\right]_{r=l}=-T$,

$$
\begin{equation*}
\Rightarrow m l(\dot{\phi})^{2}=-m g \cos \phi+T \tag{c1}
\end{equation*}
$$

Kinetic: $\quad(\partial Z / \partial \ddot{\phi})_{r=l}=0: \quad\left(m r^{2} \ddot{\phi}+2 m r \dot{r} \dot{\phi}+m g r \sin \phi\right)_{r=l}=0$,

$$
\begin{equation*}
\Rightarrow \ddot{\phi}+(g / l) \sin \phi=0 \tag{c2}
\end{equation*}
$$

We notice that (c2) can also be obtained from

$$
\begin{equation*}
\partial Z_{o} / \partial \ddot{\phi}=0 \tag{d}
\end{equation*}
$$

where Z_{o} is the constrained system compulsion:

$$
\begin{equation*}
Z_{o}=\left.Z\right|_{r=l}=\left(m l^{2} / 2\right)(\ddot{\phi})^{2}+m g r \sin \phi \ddot{\phi} \tag{e}
\end{equation*}
$$

Example 6.6.4 (Hamel, 1949, pp. 787-789). Using Gauss' principle (GP), let us find the equations of motion of a rigid body that rotates about a fixed point O, under a total impressed moment \boldsymbol{M}_{O} and, also, constrained by

$$
\begin{equation*}
f(t, \omega, \boldsymbol{\alpha})=0 ; \quad \omega, \boldsymbol{\alpha}: \text { angular velocity and acceleration of the body. } \tag{a}
\end{equation*}
$$

Substituting into GP, (6.6.9b), the well-known kinematical relation (§1.7)

$$
\begin{equation*}
\boldsymbol{a}=d \boldsymbol{v} / d t=d / d t(\boldsymbol{\omega} \times \boldsymbol{r})=\boldsymbol{\alpha} \times \boldsymbol{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}), \tag{b}
\end{equation*}
$$

and its Gaussian variation

$$
\begin{equation*}
\delta^{\prime \prime} \boldsymbol{a}=\delta \boldsymbol{a} \times \boldsymbol{r} \tag{c}
\end{equation*}
$$

we get

$$
\begin{equation*}
\boldsymbol{S} d m \boldsymbol{a} \cdot(\delta \boldsymbol{\alpha} \times \boldsymbol{r})=\boldsymbol{S} d \boldsymbol{F} \cdot(\delta \boldsymbol{\alpha} \times \boldsymbol{r}) \tag{d}
\end{equation*}
$$

or, rearranging,

$$
\begin{equation*}
(\boldsymbol{S} \boldsymbol{r} \times d m \boldsymbol{a}) \cdot \delta \boldsymbol{\alpha}=(\boldsymbol{S} \boldsymbol{r} \times d \boldsymbol{F}) \cdot \delta \boldsymbol{\alpha} \tag{e}
\end{equation*}
$$

or, finally (with the usual notations),

$$
\begin{equation*}
\left(d \boldsymbol{H}_{O} / d t\right) \cdot \delta \boldsymbol{\alpha}=\boldsymbol{M}_{O} \cdot \delta \boldsymbol{\alpha} \tag{f}
\end{equation*}
$$

The above must hold for any variation $\delta \boldsymbol{\alpha}$ satisfying (a):

$$
\begin{equation*}
\delta^{\prime \prime} f=0: \quad(\partial f / \partial \boldsymbol{\alpha}) \cdot \delta \boldsymbol{\alpha}=0 \tag{g}
\end{equation*}
$$

Adjoining (g) to (f) via the Lagrangean multiplier λ and then setting the (total) coefficient of $\delta \boldsymbol{\alpha}$ equal to zero, we find

$$
\begin{equation*}
d \boldsymbol{H}_{O} / d t=\boldsymbol{M}_{O}+\lambda(\partial f / \partial \boldsymbol{\alpha}) . \tag{h}
\end{equation*}
$$

For example, if

$$
\begin{equation*}
f=\boldsymbol{\alpha} \cdot\left(\boldsymbol{\omega} \times \boldsymbol{H}_{O}\right)=0 \quad \text { (i.e., if } \boldsymbol{\alpha}, \boldsymbol{\omega}, \text { and } \boldsymbol{H}_{O} \text { are coplanar) } \tag{i}
\end{equation*}
$$

then (h) yields

$$
\begin{equation*}
d \boldsymbol{H}_{O} / d t=\boldsymbol{M}_{O}+\lambda\left(\boldsymbol{\omega} \times \boldsymbol{H}_{O}\right) \tag{j}
\end{equation*}
$$

or, in components along body-fixed principal axes at O [with $d \boldsymbol{H}_{O} / d t=$ $d^{\prime} \boldsymbol{H}_{O} / d t+\boldsymbol{\omega} \times \boldsymbol{H}_{O}$, and easily understood notations (§1.17)],

$$
\begin{align*}
& A\left(d \omega_{x} / d t\right)+(C-B)(1-\lambda) \omega_{y} \omega_{z}=M_{O, x} \tag{k1}\\
& B\left(d \omega_{y} / d t\right)+(A-C)(1-\lambda) \omega_{x} \omega_{z}=M_{O, y} \tag{k2}\\
& C\left(d \omega_{z} / d t\right)+(B-A)(1-\lambda) \omega_{x} \omega_{y}=M_{O, z} \tag{k3}
\end{align*}
$$

while the constraint reads, since then $\boldsymbol{H}_{O}=\left(A \omega_{x}, B \omega_{y}, C \omega_{z}\right)$,

$$
\left|\begin{array}{ccc}
d \omega_{x} / d t & d \omega_{y} / d t & d \omega_{z} / d t \tag{1}\\
\omega_{x} & \omega_{y} & \omega_{z} \\
A \omega_{x} & B \omega_{y} & C \omega_{z}
\end{array}\right|=0
$$

or, in extenso,

$$
\begin{equation*}
\left(d \omega_{x} / d t\right)(C-B) \omega_{y} \omega_{z}+\left(d \omega_{y} / d t\right)(A-C) \omega_{z} \omega_{x}+\left(d \omega_{z} / d t\right)(B-A) \omega_{x} \omega_{y}=0 \tag{m}
\end{equation*}
$$

Equations ($\mathrm{k} 1-3$) and (1 or m) constitute a system of four equations for $\omega_{x, y, z}(t), \lambda(t)$.

For additional details on special cases, see Hamel (1949, pp. 788-789).
Example 6.6.5 Förster's Principle (Förster, 1903; Whittaker, 1937, p. 262). Let T and V denote the kinetic and potential energies of a dynamical system. Show that

$$
\begin{equation*}
2(\ddot{V}+S) \equiv 2 \ddot{V}+\boldsymbol{S} d m\left[(\ddot{x})^{2}+(\ddot{y})^{2}+(\ddot{z})^{2}\right] \tag{a}
\end{equation*}
$$

differs from

$$
\begin{equation*}
\mathbf{S}(1 / d m)\left[(d m \ddot{x}+\partial V / \partial x)^{2}+(d m \ddot{y}+\partial V / \partial y)^{2}+(d m \ddot{z}+\partial V / \partial z)^{2}\right] \tag{b}
\end{equation*}
$$

by a quantity that does not involve accelerations. Hence, deduce that

$$
\begin{align*}
\Theta & \equiv \ddot{T}-S \\
& \equiv \ddot{T}-S(d m / 2)\left[(\ddot{x})^{2}+(\ddot{y})^{2}+(\ddot{z})^{2}\right] \tag{c}
\end{align*}
$$

is a maximum when the accelerations have the values corresponding to the actual motion, as compared with all motions that are consistent with the constraints and satisfy the same integral of energy, and that have the same values of the coordinates and velocities at the instant considered, provided the constraints do no work.

Let us show that

$$
\begin{equation*}
2 Z-(2 \ddot{V}+2 S)=2(Z-S-\ddot{V}) \equiv \phi(t, q, \dot{q}) \tag{d}
\end{equation*}
$$

This follows immediately from (6.6.3), if we note that, since $V=V(q)$,

$$
\begin{gather*}
\dot{V}=\sum\left(\partial V / \partial q_{k}\right) \dot{q}_{k}=-\sum Q_{k} \dot{q}_{k} \\
\Rightarrow \ddot{V}=-\sum \dot{Q}_{k} \dot{q}_{k}-\sum Q_{k} \ddot{q}_{k} \\
=-\sum Q_{k} \ddot{q}_{k}+\text { no } \ddot{q} \text { terms } \tag{e}\\
{\left[Q_{k}=Q_{k}(q) \Rightarrow \dot{Q}_{k}=\dot{Q}_{k}(q, \dot{q})\right] .}
\end{gather*}
$$

Next, let us show that Θ is a maximum, under the above-stated (Gaussian) restrictions. By (...)-differentiating the energy conservation equation: $T+V=$ constant, yields $\ddot{T}=-\ddot{V}$, and therefore $\Theta=-\ddot{V}-S$, or explicitly, since $V=V(\boldsymbol{r})$,

$$
\begin{align*}
-\Theta & =\boldsymbol{S}[(\partial V / \partial \boldsymbol{r}) \cdot \boldsymbol{a}+\text { no } \boldsymbol{a} \text {-terms }]+\boldsymbol{S}(1 / 2) d m \boldsymbol{a} \cdot \boldsymbol{a} \\
& =\boldsymbol{S}(1 / 2 \mathrm{dm})[d m \boldsymbol{a}+\partial V / \partial \boldsymbol{r}]^{2}+\text { no } \boldsymbol{a} \text {-terms } \\
& =\boldsymbol{S}(d m / 2)[\boldsymbol{a}+(\partial V / \partial \boldsymbol{r}) / d m]^{2}+\text { no } \boldsymbol{a} \text {-terms } \\
& =Z+\text { no } \boldsymbol{a} \text {-terms }, \tag{f}
\end{align*}
$$

and, therefore, since Z is a minimum [eqs. (6.6.33-33b)], Θ will be a maximum, Q.E.D.

If, in Förster's terminology, we call \ddot{T} acceleration of kinetic energy, and S kinetic energy of accelerations, then we can formulate his principle as follows: among all
motions that (i) are admissible in a Gaussian sense and (ii) preserve the total energy of the system, the actual one maximizes the function "acceleration of the kinetic energy minus kinetic energy of the accelerations."

HISTORICAL REMARK

This "principle" was formulated in 1903, in order to reduce to mechanical principles (e.g., that of Gauss) another qualitative and ad hoc "principle" by the famous physical chemist W. Ostwald. As such, Förster's result, although today it may appear as an academic curiosity, at its time represented another victory of the molecular/atomistic viewpoint (of Boltzmann) over the phenomenological/energetic viewpoint of Ostwald, Helm, Mach, et al.

Example 6.6.6 Explicit Form of the Gaussian Compulsion of a Scleronomic System, in Lagrangean Coordinates. (This example requires some familiarity with general tensors.) Substituting into (6.6.3) the acceleration expression

$$
\begin{align*}
\boldsymbol{a} & \equiv d \boldsymbol{v} / d t=d / d t\left(\sum \dot{q}_{k} \boldsymbol{e}_{k}\right) \\
& =\sum\left(\ddot{q}_{k}+\sum \sum c_{r s}^{k} \dot{q}_{r} \dot{q}_{s}\right) \boldsymbol{e}_{k} \equiv \sum a_{k} \boldsymbol{e}_{k} \tag{a}
\end{align*}
$$

where
$\left[\partial \boldsymbol{e}_{r} / \partial q_{s}=\partial \boldsymbol{e}_{s} / \partial q_{r} \equiv \sum c^{k}{ }_{r s} \boldsymbol{e}_{k}=\sum c^{k}{ }_{s r} \boldsymbol{e}_{k} \Rightarrow(\right.$ and here is where tensors are needed $\left.)\right]:$
$\left(\partial \boldsymbol{e}_{r} / \partial q_{s}\right) \cdot \boldsymbol{e}_{k} \equiv c_{k, r s}=c_{k, s r}$: particle Christoffel symbols of the 1 st kind,
and recalling that (§3.10)

$$
\begin{equation*}
\boldsymbol{S} d m\left(\partial \boldsymbol{e}_{r} / \partial q_{s}\right) \cdot \boldsymbol{e}_{k} \equiv \boldsymbol{S} d m c_{k, r s}=\Gamma_{k, r s}=\Gamma_{k, s r} \quad \text { and } \quad \Gamma_{l, r s} \equiv \sum M_{l k} \Gamma_{r s}^{k} \tag{b}
\end{equation*}
$$

we find, successively (recall derivation in §3.11),

$$
\begin{align*}
& Z=(1 / 2) \boldsymbol{S} d m\left(\sum a_{k} \boldsymbol{e}_{k}\right) \cdot\left(\sum a_{l} \boldsymbol{e}_{l}\right)-\boldsymbol{S} d \boldsymbol{F} \cdot\left(\sum a_{k} \boldsymbol{e}_{k}\right) \\
&+(1 / 2) \boldsymbol{S} d m(d \boldsymbol{F} / d m)^{2} \\
&= \cdots= \\
&(1 / 2) \sum \sum M_{k l} \ddot{q}_{k} \ddot{q}_{l} \tag{c}\\
&+\sum \sum \sum \Gamma_{k, r s} \ddot{q}_{k} \dot{q}_{r} \dot{q}_{s}-\sum Q_{k} \ddot{q}_{k}+n o \ddot{q} \text { terms }
\end{align*}
$$

[the second (triple) sum can also be written as

$$
\begin{aligned}
& (1 / 2) \sum \sum \sum\left(\Gamma_{k, r s} \ddot{q}_{k}+\Gamma_{l, r s} \ddot{q}_{l}\right) \dot{q}_{r} \dot{q}_{s} \\
& \left.=(1 / 2) \sum \sum \sum \sum M_{k l}\left(\Gamma_{r s}^{l} \ddot{q}_{k}+\Gamma_{r s}^{k} \ddot{q}_{l}\right) \dot{q}_{r} \dot{q}_{s}\right]
\end{aligned}
$$

and, therefore, varying this expression à la Gauss, we obtain

$$
\begin{equation*}
\delta^{\prime \prime} Z=\sum\left(\partial Z / \partial \ddot{q}_{k}\right) \delta \ddot{q}_{k}=\sum\left[E_{k}(T)-Q_{k}\right] \delta \ddot{q}_{k}=0 \tag{d}
\end{equation*}
$$

where

$$
\begin{align*}
E_{k}(T) & =\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=\sum M_{k l} \ddot{q}_{l}+\sum \sum \sum M_{k l} \Gamma_{r s}^{l} \dot{q}_{r} \dot{q}_{s} \\
& =\sum M_{k l}\left(\ddot{q}_{l}+\sum \sum \Gamma_{r s}^{l} \dot{q}_{r} \dot{q}_{s}\right) \\
& =\sum M_{k l} \ddot{q}_{l}+\sum \sum \Gamma_{k, r s} \dot{q}_{r} \dot{q}_{s}, \tag{e}
\end{align*}
$$

as expected.

REMARKS

(i) With the help of the definitions

$$
\begin{equation*}
\mu_{r s} \equiv \sum \sum M_{k l} \Gamma_{r s}^{(k l)} \tag{f1}
\end{equation*}
$$

$$
\begin{equation*}
2 \Gamma_{r s}^{(k l)} \equiv \Gamma_{r s}^{l} \ddot{q}_{k}+\Gamma_{r s}^{k} \ddot{q}_{l}: 2\left(\text { symmetric part of } \Gamma_{r s}^{k} \ddot{q}_{l}\right) \tag{f2}
\end{equation*}
$$

we can rewrite Z as follows:

$$
Z=(1 / 2) \sum \sum M_{k l} \ddot{q}_{k} \ddot{q}_{l}+\sum \sum \mu_{k l} \dot{q}_{k} \dot{q}_{l}-\sum Q_{k} \ddot{q}_{k}+\text { no } \ddot{q} \text { terms }
$$

$$
\begin{equation*}
[\text { quadratic in } \ddot{q}+\text { linear in } \ddot{q}+\text { constant in } \ddot{q}] . \tag{g}
\end{equation*}
$$

(ii) For a rheonomic system, the summations over the repeated Latin indices run from 1 to $n+1$ (with $q_{n+1} \equiv t \Rightarrow \dot{q}_{n+1}=1 \Rightarrow \ddot{q}_{n+1}=0$).
(iii) With the help of the above, the quantity Θ of the preceding example becomes

$$
\begin{equation*}
\Theta=\ddot{T}-(1 / 2) \sum \sum m_{k l} E_{k}(T) E_{l}(T) \tag{h}
\end{equation*}
$$

where the $m_{k l}$ ["conjugate" of $M_{k l}$ (3.10.4); and denoted in tensor calculus as $M^{k l}$] are defined by

$$
\begin{equation*}
\sum m_{k l} M_{l r}=\delta_{k r} \tag{i}
\end{equation*}
$$

6.7 THE PRINCIPLE OF HERTZ

If the impressed forces, though not necessarily the constraint reactions, vanish-that is, in forceless but constrained motion, GP becomes Hertz's principle (HZP) of the straightest path, or least curvature:

$$
\begin{equation*}
Z \Rightarrow S=(1 / 2) \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{a} \rightarrow \text { minimum } ; \tag{6.7.1}
\end{equation*}
$$

which is an actual minimum, since here $Z=S$ is a positive definite quadratic form. Let us see the consequences of this; in particular, its connection with the concept of curvature.

We consider a scleronomic system, moving in a (Riemannian) configuration space with the following kinetic energy-based metric [i.e., arc element formula - recall (3.9.4o)] formulae

$$
\begin{gather*}
d s \equiv\left(\sum \sum M_{k l} d q_{k} d q_{l}\right)^{1 / 2}=(2 T)^{1 / 2} d t, \quad M_{k l} \equiv \boldsymbol{S} d m \boldsymbol{e}_{k} \cdot \boldsymbol{e}_{l} \tag{6.7.2a}\\
\Rightarrow 2 T \equiv \boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l} \equiv(d s / d t)^{2} \tag{6.7.2b}
\end{gather*}
$$

[Other equivalent choices of system arc-parameter and metric are possible - see "Remarks" (i) below]. Then, since

$$
\begin{gather*}
\boldsymbol{v} \equiv d \boldsymbol{r} / d t=(d \boldsymbol{r} / d s)(d s / d t) \tag{6.7.3a}\\
\boldsymbol{a} \equiv d \boldsymbol{v} / d t=\left(d^{2} \boldsymbol{r} / d s^{2}\right)(d s / d t)^{2}+(d \boldsymbol{r} / d s)\left(d^{2} s / d t^{2}\right) \tag{6.7.3b}
\end{gather*}
$$

the compulsion \Rightarrow Appellian becomes

$$
\begin{align*}
S= & (1 / 2) \boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{a} \\
= & (1 / 2)(d s / d t)^{4} \boldsymbol{S} d m\left(d^{2} \boldsymbol{r} / d s^{2}\right)^{2}+(1 / 2)\left(d^{2} s / d t^{2}\right)^{2} \boldsymbol{S} d m(d \boldsymbol{r} / d s)^{2} \\
& +\left(d^{2} s / d t^{2}\right)(d s / d t)^{2} \boldsymbol{S} d m(d \boldsymbol{r} / d s) \cdot\left(d^{2} \boldsymbol{r} / d s^{2}\right) . \tag{6.7.4}
\end{align*}
$$

But since then (6.7.2b) becomes

$$
\begin{align*}
T & =(1 / 2)(d s / d t)^{2}=\boldsymbol{S}(d m / 2)(d \boldsymbol{r} / d t)^{2}=\boldsymbol{S}(d m / 2)[(d s / d t)(d \boldsymbol{r} / d s)]^{2} \\
& =(1 / 2)(d s / d t)^{2} \boldsymbol{S} d m(d \boldsymbol{r} / d s)^{2}, \tag{6.7.5}
\end{align*}
$$

it follows that, for this particular parametrization,

$$
\begin{equation*}
\boldsymbol{S} d m(d \boldsymbol{r} / d s)^{2}=1 \tag{6.7.6a}
\end{equation*}
$$

and from the latter, by $d(\ldots) / d s$-differentiation,

$$
\begin{equation*}
\boldsymbol{S} d m(d \boldsymbol{r} / d s) \cdot\left(d^{2} \boldsymbol{r} / d s^{2}\right)=0 \tag{6.7.6b}
\end{equation*}
$$

so that S, eq. (6.7.4), reduces to a sum of two positive terms:

$$
\begin{equation*}
S=(1 / 2)(d s / d t)^{4} \boldsymbol{S} d m\left(d^{2} \boldsymbol{r} / d s^{2}\right)^{2}+(1 / 2)\left(d^{2} s / d t^{2}\right)^{2} \tag{6.7.7}
\end{equation*}
$$

Finally, with the help of the following definition of the system curvature K [guided by the Frenet-Serret formulae (§1.2): At a generic point \boldsymbol{r} of a curve with arc-length s, we have $d^{2} \boldsymbol{r} / d s^{2}=\boldsymbol{n} / \rho$, where $\boldsymbol{n}=$ (first) local unit normal, and $\rho=$ (first) local radius of curvature]:

$$
\begin{equation*}
\boldsymbol{S} d m\left(d^{2} \boldsymbol{r} / d s^{2}\right)^{2} \equiv 1 / R^{2} \equiv K^{2} \tag{6.7.8a}
\end{equation*}
$$

($R=$ system radius of curvature), the Appellian (6.7.7), assumes the form

$$
\begin{equation*}
S=(1 / 2)\left[\left(d^{2} s / d t^{2}\right)^{2}+(d s / d t)^{4} / R^{2}\right]=(1 / 2)\left[\left(d^{2} s / d t^{2}\right)^{2}+K^{2}(d s / d t)^{4}\right] . \tag{6.7.8b}
\end{equation*}
$$

[We remark that, since both s and K depend only on the system trajectories, and not on the time needed to traverse them, the above expression exhibits a decoupling of the spatial and temporal aspects of the motion.]

In view of (6.7.8b), HZP, eq. (6.7.1), becomes: In the impressed force-free motion of a scleronomic $(\Rightarrow$ conservative) system, with momentarily given positions and velocities, the acceleration is such that the system Appellian is a minimum; or, equivalently, since then

$$
\begin{align*}
T & =(1 / 2)(d s / d t)^{2}=\text { constant } \\
& \Rightarrow d s / d t=\text { constant } \Rightarrow d^{2} s / d t^{2}=0 \\
& \Rightarrow S=(1 / 2) K^{2}(d s / d t)^{4}, \quad \text { i.e., } S \sim K^{2} \tag{6.7.9}
\end{align*}
$$

the system curvature is a minimum:

$$
\begin{equation*}
K^{2} \equiv \boldsymbol{S} d m\left(d^{2} \boldsymbol{r} / d s^{2}\right)^{2} \rightarrow \text { minimum } \tag{6.7.10}
\end{equation*}
$$

[Simply, S being the sum of two squares, it will be a minimum when each of these terms becomes least; which, since $d s / d t$ is a given constant, leads to $d^{2} s / d t^{2}=0$ and $K \rightarrow$ minimum.]

In words: The inertial path of a system in configuration space is the "straightest" curve compatible with the given holonomic and/or nonholonomic, but stationary, constraints; and it is traced at a uniform rate.

For example, in the case of a particle constrained to move on a smooth surface, under no impressed forces, HZP states that its path curvature is the least among all surface curvatures. We notice that HZP, like GP, holds for holonomic and nonholonomic systems alike [unlike the integral variational principles (in both their time or geodesic forms, like Jacobi's) which, for nonholonomic systems, do not hold without modifications ($\$ 7.7 \mathrm{ff}$.)].

REMARKS

(i) Had we defined the system arc-length s by

$$
\begin{gather*}
2 T=m(d s / d t)^{2}, \quad m \equiv \mathbf{S} d m \tag{6.7.11}\\
\Rightarrow m(d s)^{2}=\boldsymbol{S} d m(d \boldsymbol{r} \cdot d \boldsymbol{r})=\boldsymbol{S}(\sqrt{d m} d \boldsymbol{r}) \cdot(\sqrt{d m} d \boldsymbol{r}) \equiv \boldsymbol{S} d \boldsymbol{r}^{\prime} \cdot d \boldsymbol{r}^{\prime} \\
\Rightarrow(d s)^{2}=\boldsymbol{S}\left(d \boldsymbol{r}^{\prime} / \sqrt{d m}\right) \cdot\left(d \boldsymbol{r}^{\prime} / \sqrt{d m}\right) \equiv \boldsymbol{S} d \boldsymbol{r}^{\prime \prime} \cdot d \boldsymbol{r}^{\prime \prime} \tag{6.7.11a}\\
d \boldsymbol{r}^{\prime \prime} \equiv d \boldsymbol{r}^{\prime} / \sqrt{d m} \equiv(d m / m)^{1 / 2} d \boldsymbol{r} \tag{6.7.11b}
\end{gather*}
$$

it is not hard to see that, then, we would have

$$
\begin{equation*}
\boldsymbol{S} d m(d \boldsymbol{r} / d s)^{2}=m, \quad \boldsymbol{S}\left(d \boldsymbol{r}^{\prime \prime} / d s\right)^{2}=1 \tag{6.7.12}
\end{equation*}
$$

and with the new definition [instead of (6.7.8a)]

$$
\begin{equation*}
\boldsymbol{S} d m\left(d^{2} \boldsymbol{r} / d s^{2}\right)^{2}=\boldsymbol{S}\left(d^{2} \boldsymbol{r}^{\prime} / d s^{2}\right)^{2}=m / R^{2} \equiv m K^{2} \tag{6.7.13}
\end{equation*}
$$

S would reduce to [instead of (6.7.8b)]

$$
\begin{equation*}
S=(m / 2)\left[\left(d^{2} s / d t^{2}\right)^{2}+(d s / d t)^{4} / R^{2}\right]=(m / 2)\left[\left(d^{2} s / d t^{2}\right)^{2}+K^{2}(d s / d t)^{4}\right] ; \tag{6.7.14}
\end{equation*}
$$

and, further [instead of (6.7.9)]

$$
\begin{gather*}
T=\text { constant } \Rightarrow(d s / d t)^{2}=2 T / m=\text { constant } \tag{6.7.15a}\\
2 S / m(d s / d t)^{4}=K^{2}=\mathbf{S}\left(d^{2} \boldsymbol{r}^{\prime \prime} / d s^{2}\right)^{2} \tag{6.7.15b}
\end{gather*}
$$

(ii) It is worth pointing out the formal similarity between HZP and the principle of minimum strain energy of a thin linearly elastic, unloaded but constrained, beam in plane bending.

HISTORICAL REMARKS

Hertz's principle represents one of the highest, and admittedly quite elegant, prerelativistic (late 19th century) efforts to formulate a forceless/geometrical description of motion, within classical mechanics; similar to the earlier attempts, by Kelvin et al. to explain forces by the motion of concealed built-in spinning bodies [gyrostats ($\$ 8.4$ ff.)]. As is well known, the solution to that problem of geometrization of mechanics came about 20 years later with Einstein's general theory of relativity (mid-1910s).

The restriction of HZP to vanishing impressed forces (though not to holonomic constraints), makes it practically useless for applications; and this is in very sharp contrast to GP, which seems to be free of any kind of limitations.

The best single reference on HZP is, probably, Brill (1909, pp. 5-55); also, Heun [1902(c)], the thesis of Boltzmann's famous student Ehrenfest (1904), and the modern historical study by Lützen [1995(a), (b)]; and, of course, Hertz (1894, in German; 1899, English transl.; 1956, English transl., paperback edition).

7

Time-Integral
 Theorems and Variational Principles

Abstract

As long as physical science exists, the highest goal to which it aspires is the solution of the problem of embracing all natural phenomena, observed and still to be observed, in one simple principle which will allow all past and, especially, future occurrences to be calculated. It follows from the nature of things, that this object neither has been, nor ever will be, completely attained. It is, however, possible to approach it nearer and nearer, and the history of theoretical physics shows that already an extensive series of important results can be obtained, which indicates clearly that the ideal problem is not purely Utopian, but that it is eminently practicable. Therefore, from a practical point of view, the ultimate object of research must be borne in mind. (Planck, 1960, p. 69; also, in German, in Wiechert, 1925, p. 772)

The variational principles of mechanics are firmly rooted in the soil of that great century of Liberalism which starts with Descartes and ends with the French Revolution and which has witnessed the lives of Leibniz, Spinoza, Goethe, and Johann Sebastian Bach. It is the only period of cosmic thinking in the entire history of Europe since the time of the Greeks.
(Lanczos, 1970, p. x; emphasis added)

The germ of the idea of a minimum principle, coming when it did, found a congenial environment. Both Euler and Lagrange were infected with the virus early in life, and though they both sloughed it in later years its effect can be seen on Gauss, through to Hamilton and right down to Willard Gibbs and Castigliano. Thus we find Euler saying (in Latin), "Since the plan of the universe is the most perfect possible and the work of the wisest possible creator, nothing happens which has not some maximal or minimal property." Nowadays this mental attitude is démodé and we think more of the "uncertainty principle," according to which (if the quantum theorists are to be believed) Nature cannot make up her mind which it is that is going to do what.
(Kilmister, 1964, pp. 50-51)

7.1 INTRODUCTION

Time-integral theorems and the integral variational principles (IVP) derived from them, as well as those of weighted residuals, occupy a central position in analytical mechanics (AM), and applied mechanics in general. This is not only due to the fact that they provide powerful analytical tools (for the derivation of global energetic results, existence and uniqueness theorems, upper and lower bound estimates for system eigenvalues and/or solutions, etc.) but also, primarily, because they constitute the foundation of the so-called direct variational methods. These latter bypass the equations of motion and proceed directly to the construction of approximate solutions of the problem; whether initial and/or boundary value, linear or nonlinear, conservative or not, holonomic or not.

The first part of this chapter (§7.2-5) derives all the important time-integral propositions of AM; variational, energetic, and virial-like, for linearly and/or nonlinearly constrained holonomic and/or nonholonomic systems, in both holonomic and nonholonomic coordinates, all from a simple unifying viewpoint: a general time-integral identity based on a few straightforward algebraic manipulations of the corresponding equations of motion. This unambiguous "from first principles (i.e., equations of motion) approach" will, hopefully, contribute to a more rational, or perhaps demythologized, attitude toward IVP, because, historically (since mid-18th century) these "principles" have been surrounded with superstition, mysticism, and ignorance (of the fine points of variational calculus and mechanics).
[We remark that in continuum mechanics, where even the simplest kinetic variational problem leads to a partial differential equation (e.g., string: one-dimensional wave equation), IVP have the additional and unique advantage that they supply both the equations of motion of the problem and its boundary conditions. Also, such infinite number of DOF systems may be discretized; that is, be approximated by systems with a finite number of DOF; and then, some of the (single) integral principles of this chapter may be applied to these systems to find their temporal evolution.]

The second, larger, part of this chapter (\$7.6-9, Appendices) examines these IVP in some detail, especially in view of the fundamental (and yet frequently overlooked and/or misunderstood) differences between the mathematically correct and (generally different from it) mechanically correct variational formulations for nonholonomic systems.

Finally, most IVP are first-order/stationarity requirements, that is, of the kind that supplies only the equations of motion (the "laws of nature"). For certain systems, however, second-order/extremality conditions (not laws of nature) may be established, which constitute alternative tests for the stability/instability of certain of their motions. A summary of the relevant sufficiency variational theory and some applications is contained in an appendix, at the end of the chapter.

For complementary reading, we recommend the following general references (alphabetically): Boltzmann (1904a, vol. 2, chaps. 1, 3, 4), Finzi (1949), Gelfand and Fomin (1963), Lanczos (1970), Langhaar (1962), Logan (1977), Lovelock and Rund (1975), Lur'e (1968, chap. 12), Neimark and Fufaev (1972, chap. 3, section 10), Novoselov (1966; 1967), Papastavridis [1987(b)], Pars (1965, chaps. 26, 27), Polak (1959; 1960 - a unique and delightful reference), Prange (1935), Rund (1966), Tabarrok and Rimrott (1994, chap. 3, app. A), Vujanovic and Jones (1989, chaps. 1-6).

Chapter notations (see also Introduction, $\S 4$, and chap. 8):

- IVP: Time-integral variational principles;
- All Latin indices run from 1 to n (= number of "original" positional coordinates); except
$D, D^{\prime}, D^{\prime \prime}, \ldots$, (dependent) which run from 1 to m ($=$ number of additional constraints, holonomic or not),
and $I, I^{\prime}, I^{\prime \prime}, \ldots$, (independent) which run from $m+1$ to n.
- $\int \equiv \int_{t_{1}}^{t_{2}}$: The integration extends from t_{1} to $t_{2} \quad\left(t_{1,2}\right.$: arbitrary time instants), unless specified otherwise.
- $\{\ldots\}_{1}^{2} \equiv\{\ldots\}_{t_{1}}^{t_{2}} \equiv\{\ldots\}_{t_{2}}-\{\ldots\}_{t_{1}} \equiv B T \quad$ (1,2 stand for $t_{1,2}$, respectively): Boundary terms, where $\ldots=$ integrated out part(s).

Time-Integral Theorems

7.2 TIME-INTEGRAL THEOREMS: PFAFFIAN CONSTRAINTS, HOLONOMIC VARIABLES

Here, the starting point is the fundamental Routh-Voss equations (§3.5)

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D} a_{D k} \quad[T=T(t, q, \dot{q}): \text { unconstrained }] . \tag{7.2.1}
\end{equation*}
$$

Multiplying each of (7.2.1) with z_{k}, where the $\left\{z_{k}=z_{k}(t) ; k=1, \ldots, n\right\}$ are arbitrary functions but as well behaved as needed, and summing them over k, we obtain

$$
\sum\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot} z_{k}-\left(\partial T / \partial q_{k}\right) z_{k}\right]=\sum\left(Q_{k}+\sum \lambda_{D} a_{D k}\right) z_{k}
$$

or, rearranging with the help of the chain rule, and then integrating between the two arbitrary time instants t_{1} and t_{2}, we obtain the following generalized holonomic timeintegral (or virial-like) identity:

$$
\begin{align*}
\int\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{z}_{k}+\sum\left(\partial T / \partial q_{k}+Q_{k}+\sum\right.\right. & \left.\left.\lambda_{D} a_{D k}\right) z_{k}\right] d t \\
& =\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) z_{k}\right\}_{1}^{2} \tag{7.2.2}
\end{align*}
$$

As shown below, special choices of the z_{k} 's in (7.2.2) yield all the important time integral theorems and variational "principles" of mechanics.

Let us examine them in detail:
(i) $z_{k} \rightarrow \delta q_{k}$: Virtual displacement of q_{k} (fig. 7.1). Then,

$$
\begin{equation*}
\sum \sum \lambda_{D} a_{D k} z_{k} \rightarrow \sum \lambda_{D}\left(\sum a_{D k} \delta q_{k}\right)=0 \tag{7.2.3a}
\end{equation*}
$$

Figure 7.1 Variations of q in ($n+1$)-dimensional extended configuration space: vertical (δq) and skew (Δq).

Difference in velocity space (slope) between D and $A: \quad \delta(\dot{q})=(q+\delta q)^{\cdot}-\dot{q}=(\delta q)^{\dot{q}}$.
Point coordinates: $\quad A(t, q), B(t+\Delta t, q+\dot{q} \Delta t), C(t+\Delta t, q+\Delta q), D(t, q+\delta q)$.
Mappings: $\quad A \rightarrow A+\delta A=D$ (vertical); $A \rightarrow A+\Delta A=C$ (skew); $t \rightarrow t^{\prime}(t)=t+\Delta t(t) \Rightarrow d t^{\prime} / d t=1+(\Delta t)^{\circ}$.
by the virtual form of the Pfaffian constraints, and so (7.2.2) yields Hamilton's law of vertically (virtually) varying action:

$$
\begin{equation*}
\int\left(\delta T+\delta^{\prime} W\right) d t=\left\{\sum p_{k} \delta q_{k}\right\}_{1}^{2}, \tag{7.2.3b}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta T=\sum\left[\left(\partial T / \partial \dot{q}_{k}\right) \delta \dot{q}_{k}+\left(\partial T / \partial q_{k}\right) \delta q_{k}\right], \quad p_{k} \equiv \partial T / \partial \dot{q}_{k} \tag{7.2.3c}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \dot{q}_{k} \equiv \delta\left(\dot{q}_{k}\right)=\left(\delta q_{k}\right)^{\circ} . \tag{7.2.3d}
\end{equation*}
$$

As will be detailed in the second part ($\S 7.6 \mathrm{ff}$.): (a) in general, no stationarity of a functional is implied by the integral equation (7.2.3b); and (b) the commutation rule (7.2.3d) is a key assumption, or choice, without which it would have been impossible to go from (7.2.2) to (7.2.3b).
(ii) $z_{k} \rightarrow \Delta q_{k}=\delta q_{k}+\dot{q}_{k} \Delta t$: Noncontemporaneous, or skew, or oblique, variation of q_{k} (fig. 7.1). Then,

$$
\begin{align*}
0=\sum a_{D k} \delta q_{k} & =\sum a_{D k}\left(\Delta q_{k}-\dot{q}_{k} \Delta t\right)=\sum a_{D k} \Delta q_{k}-\left(\sum a_{D k} \dot{q}_{k}\right) \Delta t \\
& =\sum a_{D k} \Delta q_{k}-\left(-a_{D}\right) \Delta t \Rightarrow \sum a_{D k} \Delta q_{k}+a_{D} \Delta t=0 \tag{7.2.4a}
\end{align*}
$$

that is, the Δq_{k} and Δt are kinematically admissible; and so (7.2.2) yields Hamilton's law of skew-varying action:

$$
\begin{align*}
\int\left[\sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\Delta q_{k}\right)^{\cdot}+\sum\left(\partial T / \partial q_{k}+Q_{k}\right) \Delta q_{k}\right. & \left.-\sum \lambda_{D} a_{D} \Delta t\right] d t \\
& =\left\{\sum p_{k} \Delta q_{k}\right\}_{1}^{2} \tag{7.2.4b}
\end{align*}
$$

For $a_{D}=0$ (i.e., catastatic constraints), the left sides of (7.2.3b) and (7.2.4b) look similar, although in the latter $\Delta t \neq 0$. We also notice that, again assuming (7.2.3d), since

$$
\begin{align*}
\left(\Delta q_{k}\right)^{\cdot} & =\left(\delta q_{k}+\dot{q}_{k} \Delta t\right)^{\cdot}=\left(\delta q_{k}\right)^{\cdot}+\ddot{q}_{k} \Delta t+\dot{q}_{k}(\Delta t)^{\cdot} \tag{7.2.4c}\\
\Delta\left(\dot{q}_{k}\right) & =\delta\left(\dot{q}_{k}\right)+\left(\dot{q}_{k}\right)^{\cdot} \Delta t=\delta \dot{q}_{k}+\ddot{q}_{k} \Delta t \tag{7.2.4d}\\
& \Rightarrow\left(\Delta q_{k}\right)^{\cdot}-\Delta\left(\dot{q}_{k}\right)=\dot{q}_{k}(\Delta t)^{\cdot} \tag{7.2.4e}
\end{align*}
$$

[i.e., $\Delta(\ldots)$ and (...) do not commute, even when $\delta(\ldots)$ and (...) do!], we can replace in (7.2.4b) $\left(\Delta q_{k}\right)^{\cdot}$ with $\Delta\left(\dot{q}_{k}\right)+\dot{q}_{k}(\Delta t)^{\cdot}$. (Integral equations/principles based on such noncontemporaneous variations are detailed in §7.9.)
(iii) $z_{k} \rightarrow q_{k}$: Actual system coordinate. Then (7.2.2) yields the nonvariational/ actual virial theorem [of Clausius, Szily, et al. (mid- to late 19th century)]:

$$
\begin{equation*}
\int\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}+\sum\left(\partial T / \partial q_{k}+Q_{k}+\sum \lambda_{D} a_{D k}\right) q_{k}\right] d t=\left\{\sum p_{k} q_{k}\right\}_{1}^{2} \tag{7.2.5}
\end{equation*}
$$

Specialization

If, in the above, $\left\{\sum p_{k} q_{k}\right\}_{1}^{2}=0$, for example, as a result of periodicity $\left(t_{2}=t_{1}+\tau, \tau\right.$: period of oscillatory motion); $\partial T / \partial q_{k}=0$, for instance, in rectilinear coordinates; and the "original" holonomic constraints are stationary, in which case

$$
\begin{equation*}
\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}=2 T \quad[\text { by the homogeneous function theorem }] ; \tag{7.2.5a}
\end{equation*}
$$

then (7.2.5) specializes to the time-integral energetic theorem:

$$
\begin{equation*}
\int 2 T d t=-\int\left[\sum\left(Q_{k}+\sum \lambda_{D} a_{D k}\right) q_{k}\right] d t \tag{7.2.5b}
\end{equation*}
$$

where the integrals extend from t_{1} to $t_{2}=t_{1}+\tau$.
Additional special theorems result if, in (7.2.5b), $Q_{k}=-\partial V(t, q) / \partial q_{k}, V(t, q)$: potential function $=$ sum of homogeneous functions of the q 's of various degrees.
(iv) $z_{k} \rightarrow \dot{q}_{k}:$ Actual system velocity. Then, since

$$
\begin{equation*}
\sum\left(\sum \lambda_{D} a_{D k}\right) \dot{q}_{k}=\sum\left(\sum a_{D k} \dot{q}_{k}\right) \lambda_{D}=\sum\left(-a_{D}\right) \lambda_{D} \tag{7.2.6a}
\end{equation*}
$$

eq. (7.2.2) transforms to

$$
\begin{equation*}
\int\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \ddot{q}_{k}+\sum\left(\partial T / \partial q_{k}+Q_{k}\right) \dot{q}_{k}-\sum a_{D} \lambda_{D}\right] d t=\left\{\sum p_{k} \dot{q}_{k}\right\}_{1}^{2} \tag{7.2.6b}
\end{equation*}
$$

or, further, to

$$
\int\left[(d T / d t-\partial T / \partial t)+\sum Q_{k} \dot{q}_{k}-\sum a_{D} \lambda_{D}\right] d t=\int\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}\right]^{\cdot} d t, \text { (7.2.6c) }
$$

or, finally, to
$\int\left\{\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T\right]^{\cdot}-\left(-\partial T / \partial t+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D}\right)\right\} d t=0$,
from which, since the limits t_{1} and t_{2} are arbitrary, we conclude that the integrand must vanish identically; that is

$$
\begin{equation*}
d / d t\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T\right]=-\partial T / \partial t+\sum Q_{k} \dot{q}_{k}-\sum \lambda_{D} a_{D} \tag{7.2.6e}
\end{equation*}
$$

and this is nothing but the earlier-found (§3.9) most general (nonpotential) form of the generalized power theorem, for systems under Pfaffian constraints and in holonomic variables.

Specialization

If, in (7.2.6e), some of the forces, or part of each Q_{k}, derive from a potential function $V=V(t, q)$, then we simply replace in there T with $L \equiv T-V$: Lagrangean of the system; and now Q_{k} stands for all the nonpotential forces or parts of them. If, further, $\partial L / \partial t=0$ (e.g., stationary original constraints) and $a_{D}=0$ (i.e., additional Pfaffian constraints catastatic), then, since $\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right]^{\cdot}=[2 T-(T-V)]^{\cdot}=$ $(T+V)^{\circ}$, and so eq. (7.2.6e) reduces to the more familiar (multiplierless) power equation

$$
\begin{equation*}
(T+V)^{\cdot} \equiv \dot{E}=\sum Q_{k} \dot{q}_{k} \tag{7.2.6f}
\end{equation*}
$$

We should point out that $\partial T / \partial t$ can vanish even for rheonomic holonomic constraints; that is, even if the position vectors of the system particles depend explicitly on time.

Example 7.2.1 The Virial Theorem [of Clausius (1870) et al.]. Let us consider a holonomic and conservative system with kinetic and potential energies $T(q, \dot{q})$ and $V(q)$, respectively. We are going to relate their time averages for various system motions; using both particle and system variables.

Let us define the (moment of inertia reminiscent) "second moment of the system"

$$
\begin{equation*}
\Phi \equiv \boldsymbol{S}(1 / 2) d m \boldsymbol{r} \cdot \boldsymbol{r}=\boldsymbol{S}(1 / 2) r^{2} d m \tag{a}
\end{equation*}
$$

By $(\ldots)^{\circ}$-differentiating Φ twice, while noting that, by the Newton-Euler law of motion (with the usual notations, chap. 1),

$$
\begin{equation*}
d m \boldsymbol{a}=d \boldsymbol{f}=-\partial V / \partial \boldsymbol{r} \equiv-\boldsymbol{g r a d} V \tag{b}
\end{equation*}
$$

we find

$$
\begin{align*}
d \Phi / d t & =\cdots=\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{r} \equiv \Psi \tag{c}\\
d^{2} \Phi / d t^{2} & =\cdots=\boldsymbol{S} d m \boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{S} d m \boldsymbol{a} \cdot \boldsymbol{r} \\
& =2 T+\boldsymbol{S} d \boldsymbol{f} \cdot \boldsymbol{r}=2 T-\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot \boldsymbol{r}=d \Psi / d t \tag{d}
\end{align*}
$$

$[=2 T+V$, if V : homogeneous function of degree -1 in the components/coordinates of \boldsymbol{r} (case of gravitational attraction)].

Equation (d) is known in celestial mechanics as Lagrange's identity.
Now, let us average the above; with the customary notation

$$
\begin{equation*}
\langle f\rangle \equiv(1 / \tau) \int_{0}^{\tau} f(t) d t: \tag{e}
\end{equation*}
$$

Time average of a function $f(t)$, between $t_{1}=0$ and $t_{2}=\tau$,
and noting that

$$
\begin{equation*}
\langle d \Psi / d t\rangle=(1 / \tau) \int_{0}^{\tau}[d \Psi(t) / d t] d t=(1 / \tau)[\Psi(\tau)-\Psi(0)] \tag{f}
\end{equation*}
$$

the averaged eq. (d) becomes

$$
(1 / \tau)[\dot{\Phi}(\tau)-\dot{\Phi}(0)]=2\langle T\rangle-\langle\boldsymbol{S} d \boldsymbol{f} \cdot \boldsymbol{r}\rangle
$$

or

$$
\begin{equation*}
(1 / \tau)[\Psi(\tau)-\Psi(0)]=2\langle T\rangle+\langle\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot \boldsymbol{r}\rangle \tag{g}
\end{equation*}
$$

Specializations

(i) If the system is periodic with period τ, then $\Psi(\tau)=\Psi(0)$, and (g) results in

$$
\begin{align*}
2\langle T\rangle & =\langle\boldsymbol{S}(\partial V / \partial \boldsymbol{r}) \cdot \boldsymbol{r}\rangle \\
\quad[& =-\langle\boldsymbol{S} d \boldsymbol{f} \cdot \boldsymbol{r}\rangle: \text { General definition of virial of a system }] . \tag{h}
\end{align*}
$$

(ii) If the system is nonperiodic, but moves in a finite spatial region with finite velocities, then, as (c) shows, there is an upper bound to $d \Phi / d t \equiv \Psi$, and eq. (h) still holds, provided the averages are taken over a very long time (i.e., $\tau \rightarrow \infty$); or, by choosing τ sufficiently large, we can make $\langle d \Psi / d t\rangle$ as small as possible:

$$
\begin{align*}
\langle d \Psi / d t\rangle & =\lim \left\{(1 / \tau) \int_{0}^{\tau}[d \Psi(t) / d t] d t\right\}_{\tau \rightarrow \infty} \\
& =\lim \{(1 / \tau)[\Psi(\tau)-\Psi(0)]\}_{\tau \rightarrow \infty}=0 \tag{i}
\end{align*}
$$

If, further, $V=$ homogeneous of degree f in the \boldsymbol{r} 's, then (by Euler's theorem) eq. (h) yields

$$
\begin{equation*}
2\langle T\rangle=f\langle V\rangle \tag{j}
\end{equation*}
$$

or, since $\langle T+V\rangle=\langle T\rangle+\langle V\rangle=\langle E\rangle=E$,

$$
\begin{equation*}
\langle T\rangle=f E /(f+2), \quad\langle V\rangle=2 E(f+2) \tag{k}
\end{equation*}
$$

In particular, if $f=2$ - that is, V is quadratic (linear vibrations) - then (j, k) yield the equipartition theorem:

$$
\begin{equation*}
\langle T\rangle=\langle V\rangle=E / 2 \tag{1}
\end{equation*}
$$

Let the reader verify that in a central force field with $V \sim r^{\varepsilon}(r=$ distance of $d m$ from attracting origin) - that is, $f \rightarrow \varepsilon$ - the virial theorem results in

$$
\begin{equation*}
2\langle T\rangle=\varepsilon\langle V\rangle ; \tag{m}
\end{equation*}
$$

from which it follows that in the gravitational case - that is, $\varepsilon=-1$, then,

$$
\begin{equation*}
\langle T\rangle=-E(>0), \quad\langle V\rangle=2 E(<0) \Rightarrow 2\langle T\rangle=-\langle V\rangle \tag{n}
\end{equation*}
$$

which is in agreement with the general result that in such a Newtonian interaction "the motion takes place in a finite region of space only if the total energy is negative."

These and other similar virial theorems have interesting applications in the mechanics of the very small (classical statistical mechanics) and of the very large (astronomy). For example, with their help, we can derive the well-known gas law: $p v=n k \theta$ ($p, v, n, k, \theta:$ pressure, volume, number of molecules, Boltzmann's constant, absolute temperature, respectively).
[For further details and applications, see, for example: Corben and Stehle (1960, pp. 164-166), Goldstein (1980, pp. 82-85, 96-97, 121, 477), Kurth (1960, pp. 64-74, 149-153), Pollard (1976, pp. 60-71); and books on the kinetic theory of gases; also, for the Newtonian interaction/gravitational case, see Landau and Lifshitz (1960, pp. 35-39). For engineering applications (nonlinear oscillations and their stability), see, for example, Papastavridis [1986(a)] and problems and example below.]

Problem 7.2.1 Virial Theorem (Jacobi "Instability Criterion"). Consider a system of N mutually attracted (gravitating) particles. As is well known, its potential energy is a negative and homogeneous function of degree -1 in the $3 N$ rectangular Cartesian coordinates of the position vectors of these particles. By applying the virial theorem for the case where the total energy $E \equiv T+V$ is a positive constant, show that

$$
\begin{equation*}
d^{2} \Phi / d t^{2}=E+T=2 E-V \quad \text { (Theorem of Lagrange-Jacobi). } \tag{a}
\end{equation*}
$$

[Recalling the definition of Φ from the preceding example: $2 \Phi \equiv S d m \boldsymbol{r} \cdot \boldsymbol{r}=$ $S r^{2} d m$, where \boldsymbol{r} is the position vector of a typical particle relative to the system's (uniformly moving) mass center.]

Then deduce that

$$
\begin{equation*}
\Phi>(1 / 2) E t^{2}+(d \Phi / d t)_{o} t+\Phi_{o} \tag{b}
\end{equation*}
$$

where $(d \Phi / d t)_{o}, \Phi_{o}: d \Phi / d t, \Phi$ evaluated at some initial instant $t=0$; and from this, in turn, since $E>0, \Phi$ becomes infinite, as $t \rightarrow \infty$.
[A word of caution: from the above, however, it does not necessarily follow that at least one of the nonnegative functions $r^{2} d m$, making up the sum Φ,
becomes infinite; although it does follow that not every such term remains bounded, otherwise Φ would stay bounded. For example, consider the function $q(t)=t \cos ^{2} t+$ $t \sin ^{2} t=t$ (sum of nonnegative functions, for $t \geq 0$). As $t \rightarrow \infty$, the sum q becomes infinite, but neither of its "components" $t \cos ^{2} t, t \sin ^{2} t$ does; instead, they become large and small; that is, they become unbounded but do not tend to infinity! Hence, the commonly stated conclusion: "if the total energy is positive, at least one particle must escape from the system (i.e., if $E>0$, then $r \rightarrow \infty$ for at least one particle; and, hence, the system is unstable)" is mathematically unproved; although, physically, such reasoning may look like academic hair-splitting.]

For a generalization of (a, b) and applications to stellar systems, see Kurth (1957, pp. 63-69).

Problem 7.2.2 Virial Theorem (Linear Undamped Oscillator). Consider the linear (or harmonic), free (or unforced, or undriven), and undamped oscillator with equation of motion: $\ddot{q}+\omega_{o}{ }^{2} q=0$, where $\omega_{o}{ }^{2} \equiv$ linear elasticity/mass $\equiv k / m$ and, therefore, solution $q=a \cos \left(\omega_{o} t+\phi\right)$, where a is a constant amplitude and ϕ is the initial phase.
(i) Show that

$$
\begin{equation*}
\langle T\rangle=\langle V\rangle \quad \text { or } \quad m \omega_{o}^{2} a^{2} / 4=k a^{2} / 4 \tag{a}
\end{equation*}
$$

where $\langle\ldots\rangle$ is time average of (\ldots) over a period $\tau=2 \pi / \omega_{o}$; and, consequently,

$$
\begin{equation*}
E=\langle E\rangle=\langle T+V\rangle=\langle T\rangle+\langle V\rangle=m \omega_{0}^{2} a^{2} / 2 . \tag{b}
\end{equation*}
$$

(ii) Let the variance of a periodic function $f(t)$, of period $\tau, \Delta f$, be defined by $(\Delta f)^{2} \equiv\left\langle(f-\langle f\rangle)^{2}\right\rangle$ (measure of mean deviation of f from its average). It is not too hard to see that $(\Delta f)^{2} \equiv\left\langle f^{2}\right\rangle-\langle f\rangle^{2}$. Show that, for the harmonic oscillator discussed here,

$$
\begin{equation*}
(\Delta q)^{2}=\left\langle q^{2}\right\rangle \quad[\Delta(d q / d t)]^{2}=\left\langle(d q / d t)^{2}\right\rangle \tag{c}
\end{equation*}
$$

Then, verify that $(\Delta q)(\Delta p)=E / \omega_{o}$, where $p \equiv m(d q / d t)$ is the linear momentum of the oscillator. (This constitutes a "constraint" between the root mean square deviations of a pair of measurable quantities, q and p, from their average values; and that is why it is called an uncertainty relation. Such conditions are important in quantum mechanics.)
(iii) Show that $\langle T\rangle=\langle V\rangle$ over any time interval τ^{*} that is large relative to τ; that is, even if τ^{*} is not an integral multiple of τ.

HINTS
With $\psi \equiv \omega_{o} t, \psi_{1} \equiv \omega_{1} t, \psi_{2} \equiv \omega_{2} t$, show that
(i) $\left(1 / \tau^{*}\right) \int_{0}^{\tau^{*}} \sin ^{2} \psi d t=1 / 2+\left(1 / 4 \tau^{*} \omega_{o}\right)\left[1-\sin \left(2 \omega_{o} \tau^{*}\right)\right] \quad\left[\rightarrow 1 / 2\right.$, as $\left.\tau^{*} \rightarrow \infty\right]$,
and the same for the integral of $\cos ^{2} \psi$;

$$
\begin{align*}
\left(1 / \tau^{*}\right) \int_{0}^{\tau^{*}}\left(\sin \psi_{1}\right)\left(\cos \psi_{2}\right) d t= & \left\{1-\cos \left[\left(\omega_{1}-\omega_{2}\right) \tau^{*}\right]\right\} / 2\left(\omega_{1}-\omega_{2}\right) \tau^{*} \tag{ii}\\
& +\left\{1-\cos \left[\left(\omega_{1}+\omega_{2}\right) \tau^{*}\right]\right\} / 2\left(\omega_{1}+\omega_{2}\right) \tau^{*} \\
& {\left[\rightarrow 0, \text { as } \tau^{*} \rightarrow \infty\right] } \tag{e}
\end{align*}
$$

(iii)

$$
\begin{equation*}
(1 / \tau) \int_{0}^{\tau} \sin ^{2}\left(\omega_{o} t+\phi\right) d t=1 / 2 \tag{f}
\end{equation*}
$$

and the same for the integral of $\cos ^{2}\left(\omega_{o} t+\phi\right)$;

$$
\begin{equation*}
(1 / \tau) \int_{0}^{\tau} \sin \left(\omega_{o} t+\phi\right) \cos \left(\omega_{o} t+\phi\right) d t=0 \tag{iv}
\end{equation*}
$$

Problem 7.2.3 Virial Theorem (Linear and Damped Oscillator). Consider the linear, free, and damped oscillator with equation of motion (with the usual notations)

$$
\begin{equation*}
m \ddot{q}+f \dot{q}+k q=0 \quad \text { or } \quad \ddot{q}+(1 / r) \dot{q}+\omega_{o}^{2} q=0 \tag{a}
\end{equation*}
$$

where $1 / r \equiv f / m$ [with dimensions (time) $)^{-1}$; and occasionally referred to as (relaxation time ${ }^{-1}$].
(i) Show that for small damping, the latter defined precisely by

$$
\begin{equation*}
\omega_{o} r \gg 1 \quad\left[\Rightarrow \omega_{o} \gg f / m ; \text { i.e., roughly, elasticity } \gg \text { friction }\right], \tag{b}
\end{equation*}
$$

an approximate solution of (a) is

$$
\begin{equation*}
q_{o}=a_{o} \exp (-t / 2 r) \sin \left(\omega_{o} t\right), \quad \text { where } a_{o} \sim \text { initial velocity (a constant). } \tag{c}
\end{equation*}
$$

(ii) Then, show that in this case

$$
\begin{align*}
& \langle T\rangle \approx(m / 4)\left[\omega_{o}^{2}+(f / 2 m)^{2}\right] a_{o}^{2} \exp (-t / r) \approx(m / 4) \omega_{o}{ }^{2} a_{o}{ }^{2} \exp (-t / r), \tag{d}\\
& \langle V\rangle \approx(m / 4) \omega_{o}{ }^{2} a_{o}{ }^{2} \exp (-t / r) \tag{e}
\end{align*}
$$

(iii) If $\langle D\rangle$ is the average rate of dissipation of the oscillation - that is, of $(f \dot{q}) \dot{q}$ over a single (undamped) period $\tau_{o}=2 \pi / \omega_{o}$, then show that (again for small damping)

$$
\begin{align*}
-\langle D\rangle & =d\langle E\rangle / d t=d\langle T\rangle / d t+d\langle V\rangle / d t \\
& \approx-(1 / r)\left[(m / 2) \omega_{o}^{2} a_{o}^{2} \exp (-t / r)\right]=-E(t) / r \tag{f}
\end{align*}
$$

HINT
If $\omega_{o} r \gg 1$, then, to a good approximation, we can take the factor $\exp (-t / r)$ outside the averaging integrals; that is, our energetic averages are to be understood as taken over a period (or cycle) τ_{o} at, approximately, t (in the sense of the averaging method - see examples/problems of §7.9); and that is why they are functions of t.

Problem 7.2.4 Virial Theorem (Linear, Damped, and Forced Oscillator). Consider the linear, damped, and harmonically forced oscillator with equation of motion

$$
\begin{equation*}
m \ddot{q}+f \dot{q}+k q=Q_{o} \cos (\omega t) \tag{a}
\end{equation*}
$$

where Q_{o}, ω : forcing amplitude and frequency (both specified constants).
(i) Show that the time average of the rate of energy dissipation by the oscillator (i.e., of $(f \dot{q}) \dot{q})$, over a long period of time $\tau^{*}(\gg 2 \pi / \omega)$ equals

$$
\begin{equation*}
\langle D\rangle=\left(Q_{o}{ }^{2} / 2 f\right) \cos ^{2} \psi \quad \cos \psi \equiv f\left[f^{2}+(m \omega-k / \omega)^{2}\right]^{-1 / 2} \tag{b}
\end{equation*}
$$

HINT
Use the steady-state (particular, periodic) solution: $q=a_{o} \cos (\omega t-\phi)$, where a_{o} is a function of $Q_{o}, \omega, \omega_{o}, f, m ; \tan \phi=\omega f /\left(k-m \omega^{2}\right), \phi$: phase difference between force and displacement; and $\phi-\psi=\pi / 2$, where ψ : phase difference between force and velocity.
(ii) Then, conclude that
(a) If $\psi=0$ (resonance), then $\langle D\rangle \rightarrow\langle D\rangle_{\text {maximum }}=Q_{o}{ }^{2} / 2 f$; and
(b) If force and displacement are either in phase or differ by π (i.e., $\phi=0 \Rightarrow \psi=-\pi / 2$, or $\phi=\pi \Rightarrow \psi=\pi / 2)$, then $\langle D\rangle=0$.
(iii) Show that, in steady-state motion, the time average of the rate of working (power) of the driving force, that is, of $\left[Q_{o} \cos (\omega t)\right](d q / d t)_{\text {steady-state }},\langle W\rangle$, equals $\langle D\rangle$.

In words: Mean energy externally supplied to system, per unit time = Mean energy absorbed or dissipated by system (friction), per unit time; and, hence, in such a forced motion, the energy of the system remains unchanged.
(iv) From (ii) and (iii) conclude that at resonance (with the external force), both $\langle W\rangle$ and its equal $\langle D\rangle$ are maxima.

Problem 7.2.5 Virial Theorem (Linear Damped and Forced Oscillator). Continuing from the preceding problem,
(i) Show that

$$
\begin{equation*}
\langle W\rangle \equiv P(x ; f)=Q_{o}{ }^{2} f / 2\left(f^{2}+m^{2} \omega_{o}^{2} x^{2}\right), \tag{a}
\end{equation*}
$$

where $x \equiv\left(\omega / \omega_{o}\right)-\left(\omega_{o} / \omega\right)$: roughly, deviation of ω from ω_{o}; and, therefore, if $x=0$ (i.e., $\omega=\omega_{o}$), then $P(0 ; f)=$ maximum. (It is not hard to see that the graph of $\langle W\rangle$ vs. x, with f as parameter, looks like a resonance curve; i.e., $\left|a_{o}\right|$ vs. w.)
(ii) Show that

$$
\begin{equation*}
\partial P / \partial x=-Q_{o}^{2} f m^{2} \omega_{o}^{2} x /\left(f^{2}+m^{2} \omega_{o}^{2} x^{2}\right)^{2} \tag{b}
\end{equation*}
$$

and, therefore:
(a) If $x>0$ (i.e., $\omega>\omega_{o}$), then $\partial P / \partial x<0$, and the smaller the f the larger $|\partial P / \partial x|$; and similarly for $x<0$; whereas
(b) If $x=0$ (i.e., $\omega=\omega_{o}$) and f is small, then P is large.

In words: the smaller (larger) the damping, the higher (lower) and sharper or peaked (flatter) the resonance maximum: $P(0 ; f)=(1 / 2)\left(Q_{o}{ }^{2} / f\right)$ (say, like a Dirac delta function).

For further details on such dispersion relations (very important in several areas of physics), see, for example, Falk (1966, pp. 37-43); also Landau and Lifshitz (1960, p. 79).

Problem 7.2.6 Virial Theorem (Linear, Damped, and Forced Oscillator). Continuing from the last two problems:
(i) Calculate and compare $\langle T\rangle$ and $\langle V\rangle$; and
(ii) Find the forcing frequencies at which each of them becomes maximum. Explain why these two maxima occur at different frequencies.

Example 7.2.2 Nonlinear Oscillations via the Virial Theorem.

1. Duffing oscillator. Let us find the amplitude versus frequency ("resonance curve") of the steady-state response of

$$
\begin{equation*}
m \ddot{q}+k q+h q^{3}=Q_{o} \sin \chi, \quad \chi \equiv \omega t \tag{a}
\end{equation*}
$$

where m is the mass of the oscillator $(>0), k$ is its linear stiffness $(>0), \omega$ is the forcing frequency (given), Q_{o} is the forcing amplitude (given), and h is the nonlinearity constant.

Here, clearly,

$$
\begin{equation*}
2 T=m(\dot{q})^{2} ; \quad V=V_{2}+V_{4}, \quad 2 V_{2} \equiv k q^{2}, \quad 4 V_{4} \equiv h q^{4} ; \quad Q=Q_{o} \sin \chi \tag{b}
\end{equation*}
$$

and therefore for the trial steady-state solution of (a)

$$
\begin{equation*}
q=a \sin \chi, \quad \text { where } a=a(\omega)(\text { to be determined }), \tag{c}
\end{equation*}
$$

the virial equation (7.2.5), for this holonomic one-DOF system, with

$$
\begin{equation*}
\partial T / \partial q=0, \quad a_{D k}=0, \quad \text { and } \quad\left\{\sum p_{k} q_{k}\right\}_{1}^{2} \rightarrow\{(\partial T / \partial \dot{q}) q\}_{0}^{2 \pi / \omega} \tag{d}
\end{equation*}
$$

(and application of the homogeneous function theorem) gives

$$
\begin{align*}
\int_{0}^{2 \pi / \omega} & {[2 T-(\partial V / \partial q) q+Q q] d t=\int_{0}^{2 \pi / \omega}\left[2 T-\left(2 V_{2}+4 V_{4}\right)+Q q\right] d t } \\
& =\int_{0}^{2 \pi / \omega}\left(m a^{2} \omega^{2} \cos ^{2} \chi-k a^{2} \sin ^{2} \chi-h a^{4} \sin ^{4} \chi+Q_{o} a \sin ^{2} \chi\right) d t \\
& =(\pi / \omega)\left(m a^{2} \omega^{2}-k a^{2}-3 h a^{4} / 4+Q_{o} a\right)=0 \tag{e}
\end{align*}
$$

from which we obtain the well-known resonance equation (with $\omega_{o}{ }^{2} \equiv k / m$)

$$
\begin{equation*}
\omega^{2}=\omega_{o}^{2}+(3 / 4)(h / m) a^{2}-\left(Q_{o} / m\right) a^{-1} \tag{f}
\end{equation*}
$$

[For stability considerations of (a), via frequency derivatives of the virial equation, see Papastavridis (1986(b)).]
2. Van der Pol oscillator. Let us find the asymptotic ("limit cycle") amplitude of

$$
\begin{equation*}
\ddot{q}+\varepsilon\left(q^{2}-1\right) \dot{q}+q=0, \tag{g}
\end{equation*}
$$

where $\varepsilon(>0)$ is such that the nonlinear damping term $\varepsilon\left(q^{2}-1\right) \dot{q}$ remains absolutely small relative to both inertia (\ddot{q}) and linear elasticity (q); that is, ε is a very small positive constant.

In the linear case - that is, for $\varepsilon=0$ - the solution of (g) is harmonic with frequency $\omega=1$ and amplitude and phase depending on the initial conditions. Therefore, for $\varepsilon \neq 0$, we try the (asymptotically) harmonic solution

$$
\begin{equation*}
q=a \sin \chi, \quad \chi=\omega t \tag{h}
\end{equation*}
$$

but with both frequency ω and amplitude a unknown. Here,

$$
\begin{equation*}
2 T=(\dot{q})^{2}, \quad 2 V=q^{2}, \quad Q=Q(q, \dot{q})=-\varepsilon\left(q^{2}-1\right) \dot{q} \tag{i}
\end{equation*}
$$

and so the earlier virial equation yields

$$
\begin{align*}
\int_{0}^{2 \pi / \omega} & {[2 T-(\partial V / \partial q) q+Q q] d t } \\
& =\int_{0}^{2 \pi / \omega}\left[(\dot{q})^{2}-q^{2}-\varepsilon\left(q^{2}-1\right) q \dot{q}\right] d t \\
& =\cdots=(\pi / \omega) a^{2}\left(\omega^{2}-1\right)=0 \Rightarrow \omega=1 \tag{j}
\end{align*}
$$

that is, if we insist on a harmonic solution, then the latter must have the undamped frequency.

Problem 7.2.7 Virial Theorem (Nonlinear Oscillator) (Killingbeck, 1970). Consider the unforced and undamped nonlinear (generalized Duffing) oscillator with Lagrangean

$$
\begin{equation*}
L=(1 / 2)(d q / d t)^{2}-(1 / 2) \omega_{o}^{2} q^{2}-\varepsilon q^{k} \quad[k: \text { even integer }] \tag{a}
\end{equation*}
$$

and, accordingly, equation of motion

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q+\varepsilon k q^{k-1}=0 . \tag{b}
\end{equation*}
$$

For small amplitudes q (to ensure stability; i.e., $|\varepsilon| \ll 1$) the solution will be a symmetric anharmonic oscillation about the equilibrium position $q=0$. By applying the virial theorem, and with $\langle\ldots\rangle \equiv$ time average of (...) over the (unknown) period $\tau=2 \pi / \omega$, show that

$$
\begin{equation*}
2\langle T\rangle=2\left\langle\omega_{o}^{2} q^{2} / 2\right\rangle+\varepsilon k\left\langle q^{k}\right\rangle . \tag{c}
\end{equation*}
$$

Then show that, for the trial solution $q_{o}(t)=a \sin (\omega t)\left[q_{o}(0)=q_{o}(2 \pi / \omega)=0\right.$, $\left.\dot{q}_{o}(0)=a \omega\right]$, the above yields the approximate frequency

$$
\begin{equation*}
\omega^{2}=\omega_{o}^{2}+2 \varepsilon k a^{k-2}\left\langle\sin ^{k} q\right\rangle \tag{d}
\end{equation*}
$$

where the average of the last term is over 2π.

Problem 7.2.8 Virial Theorem (Nonlinear Oscillator) (Killingbeck, 1970). Continuing from the preceding problem, and applying energy conservation to it, show that the period of that oscillator has the following ε-power representation:

$$
\begin{align*}
\tau & =2 \int_{-a}^{+a}\left[\omega_{o}^{2}\left(a^{2}-q^{2}\right)+2 \varepsilon\left(a^{k}-q^{k}\right)\right]^{-1 / 2} d q \quad[\text { exact expression }] \\
& =2 \pi / \omega_{o}-\left(2 \varepsilon a^{k-2} / \omega_{o}^{3}\right) I+O\left(\varepsilon^{2}\right) \tag{a}
\end{align*}
$$

where k is an even integer, and

$$
\begin{align*}
I & \equiv \int_{-1}^{+1}\left(1-y^{2}\right)^{-3 / 2}\left(1-y^{k}\right) d y \tag{b1}\\
& =\int_{0}^{\pi}\left(1-\cos ^{k} x\right)\left(1-\cos ^{2} x\right)^{-1} d x \tag{b2}\\
& =\int_{0}^{\pi}\left(1+\cos ^{2} x+\cdots+\cos ^{k-2} x\right) d x \tag{b3}\\
& =\pi k\left\langle\sin ^{k} x\right\rangle \quad[\text { average over } 2 \pi] \tag{b4}
\end{align*}
$$

Problem 7.2.9 Virial Theorem (Nonlinear Oscillator)(Killingbeck, 1970). Referring to the exact expression for τ of the preceding problem, eq. (a), show that

$$
\begin{equation*}
\partial \tau / \partial \varepsilon<0 \quad \text { and } \quad \partial^{2} \tau / \partial \varepsilon^{2}>0 \tag{a}
\end{equation*}
$$

from which it follows that, for large ε, the virially obtained value of ω, to within $O(\varepsilon)$ terms, overestimates ω, and therefore underestimates τ.

Problem 7.2.10 Variational and Virial Theorems for Linear Gyroscopic Systems. Consider the linear, free, and undamped motions of a gyroscopic system (or the small such motions of a general system about steady motion or relative equilibrium). They are governed by the following equations ($\S 3.10, \S 3.16$):

$$
\begin{equation*}
E_{k} \equiv E_{k}\left(L_{G}\right) \equiv\left(\partial L_{G} / \partial \dot{q}_{k}\right)^{\cdot}-\partial L_{G} / \partial q_{k}=\sum\left(M_{k r} \ddot{q}_{r}+G_{k r} \dot{q}_{r}+V_{k r} q_{r}\right)=0 \tag{a}
\end{equation*}
$$

where

$$
\begin{array}{ll}
2 T & =\sum \sum M_{k r} \dot{q}_{k} \dot{q}_{r} \\
2 V=\sum \sum V_{k r} q_{k} q_{r} & \text { (assumed positive definite) }, \quad M_{k r}=M_{r k}: \text { constant }, \\
2 G=\sum \sum G_{k r} q_{k} \dot{q}_{r} & \text { (no sign properties), } \quad G_{k r}=-G_{r k}: \text { constant } \tag{b3}
\end{array}
$$

and

$$
\begin{equation*}
L_{G} \equiv T-V-G: \text { gyroscopic Lagrangean. } \tag{b4}
\end{equation*}
$$

It can be shown that eqs. (a) can be brought to the partially decoupled form, in terms of the following "quasi-principal" (or "normal") coordinates x_{r} :

$$
\begin{equation*}
E_{r} \rightarrow m_{r} \ddot{x}_{r}+\sum g_{r s} \dot{x}_{s}+k_{r} x_{r}=0 \tag{c}
\end{equation*}
$$

where

$$
\begin{array}{ll}
2 T=\sum m_{r}\left(\dot{x}_{r}\right)^{2} & \text { (positive definite and diagonal), } \\
2 V=\sum k_{r} x_{r}{ }^{2} & \text { (positive definite and diagonal), } \\
2 G=\sum \sum g_{r s} x_{r} \dot{x}_{s} & \text { (no sign properties), } \quad g_{r s}=-g_{r s} \text { (constant). } \tag{d3}
\end{array}
$$

(i) With the help of the "gyroscopic action" $A_{G} \equiv \int L_{G} d t$, show that the above equations of motion can be derived from the following Hamilton-type variational principle:

$$
\begin{equation*}
\delta A_{G}=\text { Boundary Terms } \quad\left[=0 \text {, if, e.g., } \delta q\left(t_{1}\right)=\delta q\left(t_{2}\right)=0\right] . \tag{e}
\end{equation*}
$$

(ii) Choosing in eq. (e) $\delta q=q$ (or $\delta x=x$), show that the following virial gyroscopic theorem results:

$$
\begin{equation*}
A_{G} \equiv \int L_{G} d t \equiv \int(T-V-G) d t=\left\{(1 / 2) \sum\left(\partial T / \partial \dot{q}_{r}\right) q_{r}\right\}_{1}^{2} . \tag{f}
\end{equation*}
$$

(iii) Assuming the periodic free mode

$$
\begin{equation*}
x_{r}=a_{r} \cos (\omega t)+b_{r} \sin (\omega t) \tag{g}
\end{equation*}
$$

and choosing $t_{2}-t_{1}=\tau \equiv 2 \pi / \omega$: period, show that (f) yields the gyroscopic generalization of the (virial \rightarrow) equipartition theorem:

$$
\begin{equation*}
J \equiv \omega^{2} T_{x}+\omega G_{x}-V_{x}=0 \quad(\Rightarrow \omega=\cdots), \tag{h}
\end{equation*}
$$

where

$$
\begin{equation*}
2 T_{x} \equiv \sum m_{r}\left(a_{r}^{2}+b_{r}^{2}\right), \quad 2 V_{x} \equiv \sum k_{r}\left(a_{r}^{2}+b_{r}^{2}\right), \quad G_{x} \equiv \sum \sum g_{r s} a_{r} b_{s} \tag{h1}
\end{equation*}
$$

(iv) Assuming the mode (g) in (e), show that, for fixed-frequency variations,

$$
\begin{equation*}
\delta J \equiv \omega^{2} \delta T_{x}+\omega \delta G_{x}-\delta V_{x}=0 \tag{i}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta x_{r}=\delta a_{r} \cos (\omega t)+\delta b_{r} \sin (\omega t) \tag{i1}
\end{equation*}
$$

(v) In eq. (h), assume that the a_{r} and b_{r} are functions of ω, then form

$$
\begin{equation*}
\Delta J=\sum\left[(\ldots) \delta a_{r}+(\ldots) \delta b_{r}\right]+(\ldots) \delta \omega=0, \tag{j}
\end{equation*}
$$

and, combining it with (i), conclude that for that mode $\delta \omega=0$.
For applications of this interesting "gyroscopic Rayleigh-like theorem," see, for example, Lamb (1932, pp. 313-315, 328-330, 337-338).

7.3 TIME-INTEGRAL THEOREMS: PFAFFIAN CONSTRAINTS, LINEAR NONHOLONOMIC VARIABLES

Here, the starting point is Hamel's equations (§3.5)

$$
\begin{equation*}
d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}-\Gamma_{k}=\Theta_{k}+\Lambda_{k}, \tag{7.3.1}
\end{equation*}
$$

where, we are reminded,

$$
\begin{align*}
& T^{*}= T[t, q, \dot{q}(t, q, \omega)] \equiv T^{*}(t, q, \omega) \tag{7.3.1a}\\
& \partial \ldots / \partial \theta_{k} \equiv \sum\left(\partial \ldots / \partial q_{r}\right)\left(\partial \dot{q}_{r} / \partial \omega_{k}\right)=\sum A_{r k}\left(\partial \ldots / \partial q_{r}\right) \tag{7.3.1b}\\
&-\Gamma_{k} \equiv \sum \sum \gamma_{k s}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{s}+\sum \gamma_{k, n+1}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{n+1} \\
& \equiv \sum \sum \gamma_{k s}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{s}+\sum \gamma_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \\
& \equiv \sum \sum \gamma_{k s}^{b} P_{b} \omega_{s}+\sum \gamma_{k}^{b} P_{b} \equiv \sum h_{k}^{b} P_{b} \tag{7.3.1c}
\end{align*}
$$

the Hamel coefficients $\gamma_{k s}^{b}, \gamma_{k, n+1}^{b} \equiv \gamma_{k}^{b}, h_{k}^{b}$ are defined by the transitivity relations [$£ 2.10$; and, again, assuming that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$]

$$
\begin{align*}
\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b} & =\sum \sum \gamma_{k s}^{b} \omega_{s} \delta \theta_{k}+\sum \gamma_{k}^{b} \delta \theta_{k} \\
& =\sum\left(\sum \gamma^{b}{ }_{k s} \omega_{s}+\gamma_{k}^{b}\right) \delta \theta_{k} \equiv \sum h_{k}^{b} \delta \theta_{k}, \tag{7.3.1d}
\end{align*}
$$

and the $\Theta_{k}\left(\Lambda_{k}\right)$ are the nonholonomic impressed forces and constraint reactions; and, of course, $\Lambda_{D} \neq 0, \Lambda_{I}=0$. Multiplying each of (7.3.1) with the earlier arbitrary z_{k} 's, and then summing over k, invoking chain rule, rearranging, and finally integrating between t_{1} and t_{2}, we obtain the generalized nonholonomic time-integral (or viriallike) identity:

$$
\begin{align*}
\int\left[\sum\left(\partial T^{*} / \partial \omega_{k}\right) \dot{z}_{k}\right. & +\sum\left(\partial T^{*} / \partial \theta_{k}\right) z_{k}-\sum \sum h_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) z_{k} \\
& \left.+\sum\left(\Theta_{k}+\Lambda_{k}\right) z_{k}\right] d t=\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) z_{k}\right\}_{1}^{2} \tag{7.3.2}
\end{align*}
$$

Again, let us examine the following special z_{k}-choices:
(i) $z_{k} \rightarrow \delta \theta_{k}$ [recalling that now the constraints are simply $\delta \theta_{D}=0$ (and $\delta \theta_{n+1} \equiv \delta t=0$); while $\left.\delta \theta_{I} \neq 0\right]$. Then (7.3.2) gives

$$
\begin{align*}
\int\left[\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left(\delta \theta_{k}\right)^{*}\right. & +\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}-\sum \sum h_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \delta \theta_{k} \\
& \left.+\sum\left(\Theta_{k}+\Lambda_{k}\right) \delta \theta_{k}\right] d t=\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right\}_{1}^{2} \tag{7.3.3}
\end{align*}
$$

However, due to the transitivity equations (7.3.1d), the first and third integrand terms combine to yield

$$
\begin{align*}
\sum\left[\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}+\sum h_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \delta \theta_{k}\right] & -\sum \sum h_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \delta \theta_{k} \\
& =\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k} \tag{7.3.3a}
\end{align*}
$$

and, successively,

$$
\begin{align*}
\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k} & =\sum\left(\sum A_{s k}\left(\partial T^{*} / \partial q_{s}\right)\right)\left(\sum a_{k b} \delta q_{b}\right) \\
& =\sum \sum\left(\partial T^{*} / \partial q_{s}\right)\left(\delta_{s b}\right) \delta q_{b}=\sum\left(\partial T^{*} / \partial q_{s}\right) \delta q_{s} \tag{7.3.3b}
\end{align*}
$$

[recalling that, since $\left(a_{k r}\right)$ and $\left(A_{s k}\right)$ are inverse matrices, $\sum A_{s k} a_{k b}=\delta_{s b}$: Kronecker delta], while, due to Lagrange's principle (§3.2),

$$
\begin{equation*}
\sum\left(\Theta_{k}+\Lambda_{k}\right) \delta \theta_{k}=\sum \Theta_{k} \delta \theta_{k}=\sum \Theta_{I} \delta \theta_{I} \equiv \delta^{\prime} W^{*} \tag{7.3.3c}
\end{equation*}
$$

and so, finally, (7.3.3) reduces to Hamilton's law of virtual and nonholonomic action:

$$
\begin{equation*}
\int\left(\delta T^{*}+\sum \Theta_{I} \delta \theta_{I}\right) d t=\left\{\sum P_{I} \delta \theta_{I}\right\}_{I}^{2}, \tag{7.3.4}
\end{equation*}
$$

where

$$
\begin{align*}
\delta T^{*}=\delta T^{*}(t, q, \omega) & =\sum\left[\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}+\left(\partial T^{*} / \partial q_{k}\right) \delta q_{k}\right] \\
& =\sum\left[\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}+\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}\right] . \tag{7.3.4a}
\end{align*}
$$

Clearly, since (7.3.4) involves only the independent $\delta \theta_{I}$'s it can supply only the $n-m$ kinetic equations of motion. If we want all n equations-that is, $n-m$ kinetic $+m$ kinetostatic - then can we replace (7.3.4) with one or the other of the following two equivalent formulations: either

$$
\begin{equation*}
\int\left(\delta T^{*}+\sum \Theta_{D} \delta \theta_{D}+\sum \Theta_{I} \delta \theta_{I}\right) d t=\left\{\sum P_{I} \delta \theta_{I}\right\}_{1}^{2} \tag{7.3.5}
\end{equation*}
$$

under the constraints

$$
\begin{equation*}
1 \delta \theta_{1}=1 \delta \theta_{2}=\cdots=1 \delta \theta_{m}=0 \quad\left(\text { and } \quad 0 \delta \theta_{m+1}=0 \delta \theta_{m+2}=\cdots=0 \delta \theta_{n}=0\right), \tag{7.3.5a}
\end{equation*}
$$

or

$$
\begin{equation*}
\int\left[\delta T^{*}+\sum\left(\Theta_{D}+\Lambda_{D}\right) \delta \theta_{D}+\sum \Theta_{I} \delta \theta_{I}\right] d t=\left\{\sum P_{I} \delta \theta_{I}\right\}_{1}^{2} \tag{7.3.6}
\end{equation*}
$$

under the constraints

$$
\begin{equation*}
0 \delta \theta_{1}=0 \delta \theta_{2}=\cdots=0 \delta \theta_{n}=0 \quad \text { (i.e., with all } \delta \theta_{k} \text { unconstrained). } \tag{7.3.6a}
\end{equation*}
$$

(ii) $z_{k} \rightarrow \dot{\theta}_{k} \equiv \omega_{k}$ (recalling that now the constraints are simply $\omega_{D}=0$). Then (7.3.2) gives

$$
\begin{array}{r}
\int\left[\sum\left(\partial T^{*} / \partial \omega_{I}\right) \dot{\omega}_{I}+\sum\left(\partial T^{*} / \partial \theta_{I}\right) \omega_{I}-\sum \sum h_{I}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \omega_{I}+\sum \Theta_{I} \omega_{I}\right] d t \\
=\left\{\sum\left(\partial T^{*} / \partial \omega_{I}\right) \omega_{I}\right\}_{1}^{2} . \tag{7.3.7}
\end{array}
$$

However:
(a) recalling the $\partial \ldots / \partial \theta_{k}$ definition (7.3.1b) and that $\dot{q}_{k}=\sum A_{k I} \omega_{I}+A_{k}$, we see that the second integrand sum equals $\sum\left(\partial T^{*} / \partial q_{k}\right)\left(\dot{q}_{k}-A_{k}\right)$;
(b) recalling the h-definition (7.3.1d) and the antisymmetry of the γ 's in their subscripts - that is, $\gamma_{k l}^{b}=-\gamma_{l k}^{b}$ [and (3.9.12 ff.)]-we see that the third integrand (double) sum reduces to

$$
\begin{equation*}
-\sum \sum \gamma_{I}^{b} P_{b} \omega_{I}, \tag{7.3.7a}
\end{equation*}
$$

and
(c) rewriting the right-hand side as $\int\left[\sum\left(\partial T^{*} / \partial \omega_{I}\right) \omega_{I}\right]^{\cdot} d t$, all these partial results allow us to convert (7.3.7) to

$$
\begin{align*}
& \int\left\{\left[\sum\left(\partial T^{*} / \partial \omega_{I}\right) \omega_{I}-T\right]^{\cdot}\right. \\
& \left.\quad-\left[-\partial T^{*} / \partial t-\sum\left(\partial T^{*} / \partial q_{k}\right) A_{k}-\sum \sum \gamma_{I}^{b} P_{b} \omega_{I}+\sum \Theta_{I} \omega_{I}\right]\right\} d t=0 \tag{7.3.7b}
\end{align*}
$$

from which, since the limits t_{1} and t_{2} are arbitrary, we finally obtain the most general (nonpotential) form of the generalized power theorem, for systems under Pfaffian constraints and in nonholonomic variables:

$$
\begin{align*}
{\left[\sum\right.} & \left.\left(\partial T^{*} / \partial \omega_{I}\right) \omega_{I}-T\right] \\
& =-\partial T^{*} / \partial t-\sum\left(\partial T^{*} / \partial q_{k}\right) A_{k}-\sum \sum \gamma_{I}^{b} P_{b} \omega_{I}+\sum \Theta_{I} \omega_{I} \\
& \equiv-\partial T^{*} / \partial \theta_{n+1}+R+\sum \Theta_{I} \omega_{I} \tag{7.3.7c}
\end{align*}
$$

where, in the last line, we invoked the earlier helpful notations (3.9.12f ff.)

$$
\begin{equation*}
\partial T^{*} / \partial \theta_{n+1} \equiv \partial T^{*} / \partial t+\sum\left(\partial T^{*} / \partial q_{k}\right) A_{k}, \quad R \equiv-\sum \sum \gamma_{I}^{b} P_{b} \omega_{I} \tag{7.3.7d}
\end{equation*}
$$

(iii) $z_{k} \rightarrow \theta_{k}$: This case is meaningless because there is no such thing as θ_{k}.
(iv) $z_{k} \rightarrow \omega_{k}$: This choice does not seem to lead to any recognizably useful result.
(v) $z_{k} \rightarrow \Delta \theta_{k}$: Here, we must define $\Delta \theta_{k}$. We have, successively,

$$
\begin{align*}
\Delta q_{k} & =\delta q_{k}+\dot{q}_{k} \Delta t=\sum A_{k b} \delta \theta_{b}+\left(\sum A_{k b} \omega_{b}+A_{k}\right) \Delta t \\
& =\sum A_{k b}\left(\delta \theta_{b}+\omega_{b} \Delta t\right)+A_{k} \Delta t \equiv \sum A_{k b} \Delta \theta_{b}+A_{k} \Delta t \tag{7.3.8a}
\end{align*}
$$

that is, we can define consistently

$$
\begin{equation*}
\Delta \theta_{b} \equiv \delta \theta_{b}+\dot{\theta}_{b} \Delta t \equiv \delta \theta_{b}+\omega_{b} \Delta t \tag{7.3.8b}
\end{equation*}
$$

Inverting (7.3.8a), we find

$$
\begin{equation*}
\Delta \theta_{b}=\sum a_{b k} \Delta q_{k}+a_{b} \Delta t ; \quad \Delta \theta_{D}=0, \quad \Delta \theta_{I} \neq 0 \tag{7.3.8c}
\end{equation*}
$$

We also need commutation relations between $(\Delta \theta)^{\circ}$ and $\Delta(\dot{\theta})$; that is, the nonholonomic counterpart of (7.2.4e). Indeed, (...) -differentiating (7.3.8b) leads to

$$
\begin{equation*}
\left(\Delta \theta_{b}\right)^{\cdot} \equiv\left(\delta \theta_{b}\right)^{\cdot}+\dot{\omega}_{b} \Delta t+\omega_{b}(\Delta t)^{\cdot} \tag{7.3.8d}
\end{equation*}
$$

while applying the definition (7.3.8d) to $\dot{\theta}_{k} \equiv \omega_{k}$ yields

$$
\begin{equation*}
\Delta\left(\dot{\theta}_{b}\right)=\delta\left(\dot{\theta}_{b}\right)+\ddot{\theta}_{b} \Delta t, \quad \text { or } \quad \Delta \omega_{b}=\delta \omega_{b}+\dot{\omega}_{b} \Delta t \tag{7.3.8e}
\end{equation*}
$$

Therefore, subtracting (7.3.8e) from (7.3.8d) side by side, while invoking the transitivity relations (7.3.1d), we find

$$
\begin{equation*}
\left(\Delta \theta_{b}\right)^{\cdot}-\Delta \omega_{b}=\left(\delta \theta_{b}\right)^{\cdot}-\delta\left(\dot{\theta}_{b}\right)+\omega_{b}(\Delta t)^{\cdot}=\sum h_{k}^{b} \delta \theta_{k}+\omega_{b}(\Delta t)^{\cdot} \tag{7.3.8f}
\end{equation*}
$$

Now, under $z_{k} \rightarrow \Delta \theta_{k}$ eq. (7.3.2) becomes

$$
\begin{align*}
\int\left[\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left(\Delta \theta_{k}\right)^{\cdot}\right. & +\sum\left(\partial T^{*} / \partial \theta_{k}\right) \Delta \theta_{k}-\sum \sum h_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \Delta \theta_{k} \\
& \left.\left.+\sum\left(\Theta_{k}+\Lambda_{k}\right) \Delta \theta_{k}\right)\right] d t=\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \Delta \theta_{k}\right\}_{1}^{2} \tag{7.3.9a}
\end{align*}
$$

or, invoking (7.3.8f) for the first integrand sum, recalling that $\gamma_{k l}^{b}=-\gamma^{b}{ }_{l k}$, and renaming some dummy indices, we finally obtain Hamilton's law of skew-varying action in nonholonomic variables:

$$
\begin{align*}
& \int\left\{\sum\left(\partial T^{*} / \partial \theta_{k}\right) \Delta \theta_{k}+\sum\left(\partial T^{*} / \partial \omega_{k}\right) \Delta \omega_{k}\right. \\
&+\sum\left(\partial T^{*} / \partial \omega_{k}\right)\left[\omega_{k}(\Delta t)^{*}-\sum \gamma_{b}^{k} \omega_{b} \Delta t\right]\left.+\sum\left(\Theta_{k}+\Lambda_{k}\right) \Delta \theta_{k}\right\} d t \\
&=\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \Delta \theta_{k}\right\}_{1}^{2} \tag{7.3.9b}
\end{align*}
$$

Here, too, we remember to set $\omega_{D}=0, \omega_{k} \rightarrow \omega_{I}$; and, regarding the works $\sum\left(\Theta_{k}+\Lambda_{k}\right) \Delta \theta_{k}$, recalling the arguments leading to (7.3.4-6a):
(a) If we need only the kinetic equations from (7.3.9b), then we set in there

$$
\begin{align*}
\Delta^{\prime} W^{*} & \equiv \sum \Theta_{k} \Delta \theta_{k} \equiv \sum \Theta_{k} \delta \theta_{k}+\left(\sum \Theta_{k} \omega_{k}\right) \Delta t \\
& =\sum \Theta_{I} \delta \theta_{I}+\left(\sum \Theta_{I} \omega_{I}\right) \Delta t=\sum \Theta_{I} \Delta \theta_{I} \tag{7.3.9c}\\
\Delta^{\prime} W_{R}{ }^{*} & \equiv \sum \Lambda_{k} \Delta \theta_{k}=\cdots=0 \tag{7.3.9d}
\end{align*}
$$

whereas
(b) If we want to obtain both the kinetic and kinetostatic equations from (7.3.9b), then, either we set

$$
\begin{equation*}
\Delta^{\prime} W^{*}=\sum \Theta_{D} \Delta \theta_{D}+\sum \Theta_{I} \Delta \theta_{I} \quad \text { and } \quad \Delta^{\prime} W_{R}^{*}=0 \tag{7.3.9e}
\end{equation*}
$$

under the constraints

$$
\begin{equation*}
1 \delta \theta_{D}=0, \quad 1 \omega_{D}=0 \Rightarrow 1 \Delta \theta_{D}=0 \tag{7.3.9f}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta^{\prime} W^{*}=\sum \Theta_{D} \Delta \theta_{D}+\sum \Theta_{I} \Delta \theta_{I} \quad \text { and } \quad \Delta^{\prime} W_{R}^{*}=\sum \Lambda_{D} \Delta \theta_{D} \tag{7.3.9g}
\end{equation*}
$$

with all $\delta \theta_{k}$ unconstrained. The details are left to the reader.
Finally, we notice that if we set in $(7.3 .9 \mathrm{a}, \mathrm{b}) \Delta t=0$, we recover the virtual equations (7.3.3) \rightarrow (7.3.4), as expected.

This completes the discussion of time-integral theorems and variational principles under Pfaffian constraints. In the next section, §7.4, these results are extended to nonlinear (holonomic and/or nonholonomic) velocity constraints (chap. 5):

$$
\begin{equation*}
f_{D}(t, q, \dot{q})=0 \quad[D=1, \ldots, m(<n)] . \tag{7.3.10}
\end{equation*}
$$

Example 7.3.1 The Maggi \rightarrow Chaplygin-Hadamard Form of Hamilton's Principle; that is, Hamilton's principle for systems subject to the special Pfaffian constraints (in virtual form)

$$
\begin{equation*}
\delta q_{D}=\sum b_{D I} \delta q_{I}, \quad b_{D I}=b_{D I}(t, q) \tag{a}
\end{equation*}
$$

with nonlinear counterpart $b_{D I} \rightarrow \partial \phi_{D}\left(t, q, \dot{q}_{I}\right) / \partial \dot{q}_{I}$ (see also §7.8).
Adopting the Hölder-Voronets-Hamel viewpoint - that is, $\delta\left(\dot{q}_{k}\right)=\left(\delta q_{k}\right)^{\cdot}$ for all holonomic coordinates - with the convenient notation $\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} \equiv$ $B_{\text {Boundary, }} T_{\text {Terms }} \equiv B T$, and (a), we find, successively,

$$
\begin{align*}
\int \delta T d t & =\int \sum\left[\left(\partial T / \partial q_{k}\right) \delta q_{k}+\left(\partial T / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right] d t \\
& =\cdots=B T-\int \sum E_{k}(T) \delta q_{k} d t \\
& =B T-\int\left[\sum E_{D}(T) \delta q_{D}+\sum E_{I}(T) \delta q_{I}\right] d t \\
& =B T-\int \sum\left[E_{I}(T)+\sum b_{D I} E_{D}(T)\right] \delta q_{I} d t \tag{b}
\end{align*}
$$

and, similarly,

$$
\begin{align*}
\int \delta^{\prime} W d t \equiv \int \sum Q_{k} \delta q_{k}=\cdots & =\int \sum\left(Q_{I}+\sum b_{D I} Q_{D}\right) \delta q_{I} d t \\
& \equiv \int\left(\sum Q_{I o} \delta q_{I}\right) d t \equiv \int \delta^{\prime} W_{o} d t \tag{c}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\int\left(\delta T+\delta^{\prime} W\right) d t=B T-\int \sum\left[E_{I}(T)+\sum b_{D I} E_{D}(T)-Q_{I o}\right] \delta q_{I} d t \tag{d}
\end{equation*}
$$

from which, since the δq_{I} are unconstrained, we obtain the $n-m$ kinetic (multiplierless) Chaplygin-Hadamard equations (not to be confused with the nonholonomic Chaplygin equations)

$$
\begin{equation*}
E_{I}(T)+\sum b_{D I} E_{D}(T)=Q_{I}+\sum b_{D I} Q_{D} \tag{e}
\end{equation*}
$$

As already explained in $\S 3.8$, here all constraint enforcement occurs at the final level; that is, in (e), not in T.

If we had used in (b, c) the general representations (§2.6)

$$
\begin{equation*}
\delta q_{k}=\sum A_{k I} \delta \theta_{I} ; \quad \delta \theta_{D}=\sum a_{D k} \delta q_{k}=0, \quad \delta \theta_{I}=0 \tag{f}
\end{equation*}
$$

where the $\left(a_{k l}\right)$ and $\left(A_{k l}\right)$ are inverse matrices, then Hamilton's principle would have led us to

$$
\begin{align*}
\int\left(\delta T+\delta^{\prime} W\right) d t=B T & -\int\left\{\sum \sum\left[E_{k}(T)-Q_{k}\right] A_{k D} \delta \theta_{D}\right\} d t \\
- & \int\left\{\sum \sum\left[E_{k}(T)-Q_{k}\right] A_{k I} \delta \theta_{I}\right\} d t \tag{g}
\end{align*}
$$

and this, with the help of the m multipliers λ_{D}, would have led us to the familiar Maggi equations (§3.5)

$$
\begin{array}{ll}
\text { Kinetostatic: } & \sum E_{k}(T) A_{k D}=\sum Q_{k} A_{k D}+\lambda_{D}, \\
\text { Kinetic: } & \sum E_{k}(T) A_{k I}=\sum Q_{k} A_{k I} .
\end{array}
$$

Example 7.3.2 The Torque-Free Case of the Sled Problem, via the preceding Hamiltonian formulation of the Chaplygin-Hadamard Equations. (Recalling exs. 2.13.1, 2.13.2, and 3.18.1; also see Hamel, 1949, pp. 614-615.) We have seen there that the constraint is

$$
\begin{equation*}
\dot{x} \sin \phi-\dot{y} \cos \phi=0 \Rightarrow \delta y=(\tan \phi) \delta x \tag{a}
\end{equation*}
$$

(i.e., $\delta q_{D} \equiv \delta y, \delta q_{I} \equiv \delta x, \delta \phi ; n=3, m=1$), while the unconstrained kinetic energy of the sled is [with $I_{\text {Contact point }} \equiv I_{C} \equiv I$]

$$
\begin{align*}
2 T & =m\left[\left(\dot{x}_{G}\right)^{2}+\left(\dot{y}_{G}\right)^{2}\right]+I(\dot{\phi})^{2} \\
& =m\left[(\dot{x}-b \dot{\phi} \sin \phi)^{2}+(\dot{y}+b \dot{\phi} \cos \phi)^{2}\right]+I(\dot{\phi})^{2} \\
& =m\left[(\dot{x})^{2}+(\dot{y})^{2}\right]+I(\dot{\phi})^{2}+2 m b \dot{\phi}(\dot{y} \cos \phi-\dot{x} \sin \phi) . \tag{b}
\end{align*}
$$

Applying Hamilton's principle directly, with all impressed forces zero (i.e., $\delta^{\prime} W^{*}=0$), and the δq^{\prime} s chosen so that $B T \rightarrow 0$, we obtain

$$
\begin{aligned}
0= & \int \delta T d t=\int[(\partial T / \partial \dot{x}) \delta(\dot{x})+(\partial T / \partial \dot{y}) \delta(\dot{y})+(\partial T / \partial \phi) \delta \phi+(\partial T / \partial \dot{\phi}) \delta(\dot{\phi})] d t \\
= & \{(\partial T / \partial \dot{x}) \delta x+(\partial T / \partial \dot{y}) \delta y+(\partial T / \partial \dot{\phi}) \delta \phi\}_{1}^{2} \\
& -\int\left\{(\partial T / \partial \dot{x})^{\cdot} \delta x+(\partial T / \partial \dot{y})^{\cdot} \delta y+\left[(\partial T / \partial \dot{\phi})^{\cdot}-(\partial T / \partial \phi] \delta \phi\right\} d t\right.
\end{aligned}
$$

[and enforcing the second constraint of (a) on the integrand variations, not on T]

$$
\begin{equation*}
\left.=-\int\left\{(\partial T / \partial \dot{x})^{\cdot}+\tan \phi(\partial T / \partial \dot{y})^{\cdot}\right] \delta x+\left[(\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi\right] \delta \phi\right\} d t \tag{c}
\end{equation*}
$$

from which, since δx and $\delta \phi$ can now be viewed as unconstrained, we obtain the two kinetic Chaplygin-Hadamard equations

$$
\begin{equation*}
(\partial T / \partial \dot{x})^{\cdot}+\tan \phi(\partial T / \partial \dot{y})^{\cdot}=0: \quad(\dot{x}-b \dot{\phi} \sin \phi)^{\cdot}+\tan \phi(\dot{y}+b \dot{\phi} \cos \phi)^{\cdot}=0 \tag{d}
\end{equation*}
$$

and

$$
\begin{align*}
& (\partial T / \partial \dot{\phi})^{\cdot}-\partial T / \partial \phi=0: \\
& {[I \dot{\phi}+m b(\dot{y} \cos \phi-\dot{x} \sin \phi)]^{\cdot}+m b \dot{\phi}(\dot{x} \cos \phi+\dot{y} \sin \phi)=0} \tag{e}
\end{align*}
$$

Since $\dot{y}=\dot{x} \tan \phi \equiv v \sin \phi, \dot{x}=v \cos \phi(v$: velocity of $C)$, eqs. (d, e) can be rewritten, respectively, in the quasi-velocity (Hamel) form:

$$
\begin{align*}
(v \cos \phi-b \dot{\phi} \sin \phi)^{\cdot}+ & \tan \phi(v \sin \phi+b \dot{\phi} \cos \phi)^{\cdot}=0 \Rightarrow \dot{v}-b(\dot{\phi})^{2}=0 \tag{f}\\
& \ddot{\phi}+m b \dot{\phi} v=0 \tag{g}
\end{align*}
$$

Let the reader repeat this procedure with the constraints in the form $\delta x=(\cot \phi) \delta y$; that is, with $\delta q_{D}=\delta x, \delta q_{I}=\delta y, \delta \phi$.

Example 7.3.3 The Sled via Hamel's Form of Hamilton's Principle. We have already established the following kinematical results (recall ex. 2.13.2):

$$
\begin{align*}
& q_{1,2,3}= x, y, \phi ; \tag{a}\\
& \omega_{I} \equiv(-\sin \phi) \dot{x}+(\cos \phi) \dot{y}+(0) \dot{\phi} \\
&(=\text { velocity of contact point } C \text { normal to sled }=0), \tag{bl}\\
& \omega_{2} \equiv(\cos \phi) \dot{x}+(\sin \phi) \dot{y}+(0) \dot{\phi} \\
&(=\text { velocity of } C \text { along sled }=v \neq 0), \tag{b2}\\
& \omega_{3} \equiv(0) \dot{x}+(0) \dot{y}+(1) \dot{\phi}=\dot{\phi} \quad(\neq 0) ; \tag{b3}\\
& \dot{q}_{1} \equiv \dot{x}=(-\sin \phi) \omega_{1}+(\cos \phi) \omega_{2}+(0) \omega_{3}, \tag{c1}\\
& \dot{q}_{2} \equiv \dot{y}=(\cos \phi) \omega_{1}+(\sin \phi) \omega_{2}+(0) \omega_{3}, \tag{c2}\\
& \dot{q}_{3} \equiv \dot{\phi}=(0) \omega_{1}+(0) \omega_{2}+(1) \omega_{3} ; \tag{c3}\\
& \delta \omega_{1}=\left(\delta \theta_{1}\right)^{\cdot}+(0) \delta \theta_{1}+\left(\omega_{3}\right) \delta \theta_{2}+\left(-\omega_{2}\right) \delta \theta_{3}, \tag{d1}\\
& \delta \omega_{2}=\left(\delta \theta_{2}\right)^{\cdot}+\left(-\omega_{3}\right) \delta \theta_{1}+(0) \delta \theta_{2}+\left(\omega_{1}\right) \delta \theta_{3}, \tag{d2}\\
& \delta \omega_{3}=\left(\delta \theta_{3}\right)^{\cdot}+(0) \delta \theta_{1}+(0) \delta \theta_{2}+(0) \delta \theta_{3} ; \tag{d3}
\end{align*}
$$

and so, recalling the results of the preceding example, the unconstrained kinetic energy of the sled becomes

$$
\begin{equation*}
2 T \rightarrow 2 T^{*}=m \omega_{2}^{2}+I \omega_{2}^{3}+m b \omega_{1} \omega_{3} . \tag{e}
\end{equation*}
$$

Hence, varying the above and then enforcing the constraint $\omega_{1}=0$ (but not $\delta \theta_{1}=0$), we find

$$
\begin{align*}
\delta T^{*}= & \sum\left(\partial T^{*} / \partial \omega_{k}\right)_{o} \delta \omega_{k} \equiv \sum P_{k o} \delta \omega_{k} \quad\left[\text { invoking }(\mathrm{d} 1-3) \text { with } \omega_{1}=0\right] \\
= & P_{1}\left(\delta \theta_{1}\right)^{\cdot}+\left(-P_{2} \omega_{3}\right) \delta \theta_{1} \\
& +P_{2}\left(\delta \theta_{2}\right)^{\cdot}+\left(P_{1} \omega_{3}\right) \delta \theta_{2} \\
& +P_{3}\left(\delta \theta_{3}\right)^{\cdot}+\left(-P_{1} \omega_{2}\right) \delta \theta_{3} \quad\left[\neq \delta\left(T^{*}{ }_{o}\right), \text { see also } \S 7.7\right], \tag{f}
\end{align*}
$$

where

$$
\begin{equation*}
P_{1}=m b \omega_{3}, \quad P_{2}=m \omega_{2}, \quad P_{3}=\left(m b \omega_{1}+I \omega_{3}\right)_{o}=I \omega_{3} ; \tag{g}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{\prime} W^{*} \equiv \sum \Theta_{k} \delta \theta_{k} \quad\left(\equiv \delta^{\prime} W\right) \tag{h}
\end{equation*}
$$

Applying now Hamilton's principle directly [integrating by parts, grouping terms appropriately, and choosing the $\delta \theta$'s so that $B T \rightarrow 0$ (something that does no affect the equations of motion)], we obtain

$$
\left.\begin{array}{rl}
0=\int\left(\delta T^{*}+\delta^{\prime} W^{*}\right) d t \\
= & \cdots=-\int\left[\left(\dot{P}_{1}+P_{2} \omega_{3}-\Theta_{1}\right) \delta \theta_{1}\right.
\end{array}\right)\left(\begin{array}{l}
\left.\dot{P}_{2}-P_{1} \omega_{3}-\Theta_{2}\right) \delta \theta_{2} \\
 \tag{i}\\
\end{array}\right.
$$

and from this, invoking the familiar multiplier arguments $\left[\delta \theta_{1}=(1) \delta \theta_{1}=0, \delta \theta_{2,3}\right.$: unconstrained], we finally get all three Hamel equations of the problem (recall ex. 3.18.1):

Kinetostatic:

$$
\begin{equation*}
\dot{P}_{1}+P_{2} \omega_{3}=\Theta_{1}+\lambda_{1}: \quad m\left(b \dot{\omega}_{3}+\omega_{2} \omega_{3}\right)=\Theta_{1}+\lambda_{1} \tag{j1}
\end{equation*}
$$

Kinetic:

$$
\begin{array}{ll}
\dot{P}_{2}-P_{1} \omega_{3}=\Theta_{2}: & m\left(\dot{\omega}_{2}-b \omega_{3}^{2}\right)=\Theta_{2} \\
\dot{P}_{3}+P_{1} \omega_{2}=\Theta_{3}: & I \dot{\omega}_{3}+m b \omega_{2} \omega_{3}=\Theta_{3} \tag{j3}
\end{array}
$$

where
$\Theta_{1}=-X \sin \phi+Y \cos \phi$: total impressed force perpendicular to sled,
$\Theta_{2}=X \cos \phi+Y \sin \phi$: total impressed force along sled,
$\Theta_{3}=M$: total impressed couple along z-axis;
(X, Y) : rectangular Cartesian coordinates of total impressed force on sled;
obtained from the invariant equation (as if no constraint $\delta \theta_{1}=0$ existed):

$$
\begin{align*}
\delta^{\prime} W & \equiv X \delta x+Y \delta y+M \delta \phi \\
& =X\left(-\sin \phi \delta \theta_{1}+\cos \phi \delta \theta_{2}\right)+Y\left(\cos \phi \delta \theta_{1}+\sin \phi \delta \theta_{2}\right)+M \delta \theta_{3} \\
& =\Theta_{1} \delta \theta_{1}+\Theta_{2} \delta \theta_{2}+\Theta_{3} \delta \theta_{3} \equiv \delta^{\prime} W^{*} . \tag{k5}
\end{align*}
$$

Finally, since here all constraints are scleronomic, the power equation is

$$
\begin{array}{ll}
\text { Holonomic variables: } & d T / d t=X \dot{x}+Y \dot{y}+M \dot{\phi}, \\
\text { Nonholonomic variables: } & d T^{*} / d t=\Theta_{2} \omega_{2}+\Theta_{3} \omega_{3} \tag{12}
\end{array}
$$

from which we conclude that if $\Theta_{2,3}=0$, then $T^{*}=$ constant

$$
\begin{equation*}
\Rightarrow\left(2 T^{*}\right)_{o}=m \omega_{2}^{2}+I \omega_{3}^{2}=m v^{2}+I(\dot{\phi})^{2}=\text { constant } \tag{13}
\end{equation*}
$$

7.4 TIME-INTEGRAL THEOREMS: NONLINEAR VELOCITY CONSTRAINTS, HOLONOMIC VARIABLES

We recall ($\S 5.1, \S 5.2$) that the virtual displacements compatible with the constraints (§7.3.10) must satisfy, not the formal $\delta(\ldots)$-variation of $f_{D}(t, q, \dot{q})=0$ - that is,

$$
\begin{equation*}
\sum\left[\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right]=0 \tag{7.4.1a}
\end{equation*}
$$

but, instead, the Maurer-Appell-Chetaev-Johnson-Hamel conditions

$$
\begin{equation*}
\delta \theta_{D} \equiv \sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 ; \tag{7.4.1b}
\end{equation*}
$$

and, again,

$$
\begin{equation*}
d\left(\delta q_{k}\right)=\delta\left(d q_{k}\right) \tag{7.4.1c}
\end{equation*}
$$

Here, the starting point is the nonlinear Routh-Voss equations (5.3.11c)

$$
\begin{equation*}
E_{k}(T) \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}=Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \tag{7.4.2}
\end{equation*}
$$

that is, equations (7.2.1) with $a_{D k}$ replaced by $\partial f_{D} / \partial \dot{q}_{k}$.
Performing similar operations on (7.4.2) as on (7.2.1), we readily find the following generalized nonlinear holonomic time integral (or virial-like) identity:

$$
\begin{align*}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{z}_{k}+\sum\left[\partial T / \partial q_{k}+Q_{k}+\right.\right. & \left.\left.\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)\right] z_{k}\right\} d t \\
= & \left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) z_{k}\right\}_{1}^{2} \tag{7.4.3}
\end{align*}
$$

Next, from (7.4.3) we obtain the following group of special integral formulae:
(i) The choice $z_{k} \rightarrow q_{k}$ yields the virial theorem

$$
\begin{align*}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}+\sum\left[\partial T / \partial q_{k}+Q_{k}+\right.\right. & \left.\left.\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)\right] q_{k}\right\} d t \\
& =\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) q_{k}\right\}_{1}^{2} \tag{7.4.4}
\end{align*}
$$

If $\partial T / \partial q_{k}=0$ and $\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}=2 T$, and the q-motion is periodic with period τ, then (7.4.4) reduces to:

$$
\begin{equation*}
\int 2 T d t=-\int \sum\left[Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)\right] q_{k} d t \tag{7.4.4a}
\end{equation*}
$$

where the integrals extend from t_{1} to $t_{2}=t_{1}+\tau$.
(ii) The choice $z_{k} \rightarrow \dot{q}_{k}$ yields

$$
\begin{align*}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \ddot{q}_{k}\right. & \left.+\sum\left[\partial T / \partial q_{k}+Q_{k}+\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)\right] \dot{q}_{k}\right\} d t \\
& =\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}\right\}_{1}^{2}=\int \sum\left[\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}\right]^{\cdot} d t \tag{7.4.5a}
\end{align*}
$$

from which, using earlier described arguments, we obtain the nonlinear (nonpotential) generalized power equation:

$$
\begin{equation*}
\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T\right]^{\cdot}=-\partial T / \partial t+\sum Q_{k} \dot{q}_{k}+\sum \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \dot{q}_{k} \tag{7.4.5b}
\end{equation*}
$$

Specialization
If $\partial T / \partial t=0$ and $\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}=2 T$, the above reduces to

$$
\begin{equation*}
d T / d t=\sum Q_{k} \dot{q}_{k}+\sum \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \dot{q}_{k} \tag{7.4.5c}
\end{equation*}
$$

a "kinetostatic" form which shows that, even if $Q_{k}=-\partial V(q) / \partial q_{k}$ and $\partial f_{D} / \partial t=0$, in general, nonlinear velocity constraints are nonconservative. However, it is not hard to see that, if the constraints $f_{D}=0$ are homogeneous (of any degree) in the \dot{q} 's, and the Q_{k} 's derive from a potential $V(q)$, then the system is conservative.
(iii) The choice $z_{k} \rightarrow \delta q_{k}$ yields again Hamilton's law of varying action (7.2.3b): by (7.4.1b) we will have

$$
\begin{equation*}
\delta^{\prime} W_{R} \equiv \sum \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 \quad \text { (Lagrange's principle). } \tag{7.4.6}
\end{equation*}
$$

(iv) The choice $z_{k} \rightarrow \Delta q_{k}=\delta q_{k}+\dot{q}_{k} \Delta t$, thanks to (7.4.6), yields Hamilton's law of skew-varying action:

$$
\begin{align*}
\int\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\Delta q_{k}\right)^{\cdot}+\sum\left(\partial T / \partial q_{k}+Q_{k}\right) \Delta q_{k}\right. & \left.+\left[\sum \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \dot{q}_{k}\right] \Delta t\right\} d t \\
& =\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \Delta q_{k}\right\}_{1}^{2} \tag{7.4.7}
\end{align*}
$$

Here, too, if the constraints are homogeneous in the \dot{q} 's, then the last integrand (double) sum vanishes; also, we may replace $(\Delta q)^{\circ}$ with $\Delta(\dot{q})+\dot{q}(\Delta t)^{\circ}$.

7.5 TIME-INTEGRAL THEOREMS: NONLINEAR VELOCITY CONSTRAINTS, NONLINEAR NONHOLONOMIC VARIABLES

Here, the starting point is the Johnsen-Hamel equations of motion (§5.3)

$$
\begin{equation*}
d / d t\left(\partial T^{*} / \partial \omega_{k}\right)-\partial T^{*} / \partial \theta_{k}-\Gamma_{k}=\Theta_{k}+\Lambda_{k} \tag{7.5.1}
\end{equation*}
$$

where, we are reminded (§5.2),

$$
\begin{equation*}
\Gamma_{k}=-\sum H_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right)=\sum V_{k}^{b}\left(\partial T / \partial \dot{q}_{b}\right)^{*} \tag{7.5.1a}
\end{equation*}
$$

and the nonlinear coefficients $H^{b}{ }_{k}$ (Hamel) and $V^{b}{ }_{k}$ (Voronets) can be defined by [assuming again that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$]

$$
\begin{align*}
\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b} & =\sum E_{s}\left(\omega_{b}\right) \delta q_{s}=\sum \sum E_{s}\left(\omega_{b}\right)\left(\partial \dot{q}_{s} / \partial \omega_{k}\right) \delta \theta_{k} \equiv \sum H_{k}^{b} \delta \theta_{k} \\
& =-\sum \sum E_{k}^{*}\left(\dot{q}_{l}\right)\left(\partial \omega_{b} / \partial \dot{q}_{l}\right) \delta \theta_{k} \equiv-\sum \sum V_{k}^{l}\left(\partial \omega_{b} / \partial \dot{q}_{l}\right) \delta \theta_{k} \tag{7.5.1b}
\end{align*}
$$

also, the virtual variations are related by

$$
\begin{equation*}
\delta q_{s}=\sum\left(\partial \dot{q}_{s} / \partial \omega_{k}\right) \delta \theta_{k} \Leftrightarrow \delta \theta_{k}=\sum\left(\partial \omega_{k} / \partial \dot{q}_{s}\right) \delta q_{s} \tag{7.5.1c}
\end{equation*}
$$

and, of course, $\Lambda_{D} \neq 0, \Lambda_{I}=0$.
Now, to build corresponding integral theorems, and so on, we, again, multiply (7.5.1) with the arbitrary set of functions $z_{k}(t)$, sum over k, apply chain rule, and so on, and, finally, integrate between t_{1} and t_{2}. Below we show the details only for the important case $z_{k} \rightarrow \delta \theta_{k}$; that is; for Hamilton's principle of vertically varying action; those of the other cases are left to the reader (see also §7.6-7.9). Invoking the transitivity equations (7.5.1b) we find, successively,

$$
\begin{align*}
\delta T^{*}= & \sum\left[\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
= & \sum\left\{\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\sum H_{b}^{k} \delta \theta_{b}\right]\right\} \\
= & {\left[\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right]^{\cdot}-\sum\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot} \delta \theta_{k} } \\
& -\sum \sum H_{b}^{k}\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{b}+\sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k} \tag{7.5.2a}
\end{align*}
$$

and, therefore, integrating, we obtain the general kinematico-inertial transformation

$$
\begin{align*}
\int \delta T^{*} d t=-\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{*}-\partial T^{*} / \partial \theta_{k}\right. & \left.+\sum H_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right)\right] \delta \theta_{k} d t \\
& +\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right\}_{1}^{2} \tag{7.5.2b}
\end{align*}
$$

a result that shows the equivalence between the equations of motion (7.5.1, 1a) [plus boundary conditions $\delta \theta\left(t_{1,2}\right)$] and the nonlinear counterpart of equations (7.3.4-6):

$$
\begin{equation*}
\int\left(\delta T^{*}+\delta^{\prime} W^{*}\right) d t=\left\{\sum P_{k} \delta \theta_{k}\right\}_{1}^{2} \tag{7.5.2c}
\end{equation*}
$$

that is, the Hamiltonian variational equation has the same form for both Pfaffian and nonlinear constraints.

Let us now proceed to a detailed study of these variational "principles."

Time-Integral Variational Principles (IVP)

7.6 HAMILTON'S PRINCIPLE VERSUS CALCULUS OF VARIATIONS

(i) Mechanical Variational Problem

Let us take, without loss in generality for our purposes here, a system described completely by the Lagrangean function $L=L(t, q, \dot{q}) \equiv T-V$, and subjected to the nonlinear and possibly nonholonomic constraints (7.3.10)

$$
\begin{array}{ll}
\omega_{D} \equiv f_{D}(t, q, \dot{q})=0 & (\text { velocity form }) \\
\delta \theta_{D} \equiv \sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 & (\text { virtual form }) \tag{7.6.1b}
\end{array}
$$

Its equations of motion, (7.4.2),

$$
\begin{equation*}
E_{k}(L)=\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \quad\left[=\sum \lambda_{D} a_{D k}, \text { in the Pfaffian case }\right] \tag{7.6.2}
\end{equation*}
$$

are obtained by combining Lagrange's differential variational principle (LP): $\sum E_{k}(L) \delta q_{k}=0$, with (7.6.1b), in, by now, well-understood ways; and, along with the m constraints $f_{D} \equiv \omega_{D}=0$, they form a determinate system of $n+m$ equations for the functions $q_{k}(t)$ and $\lambda_{D}(t)$. Next, assuming that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, we are readily led (applying chain rule to LP, etc.) to the central equation:

$$
\begin{equation*}
\delta L \equiv \sum\left[\left(\partial L / \partial q_{k}\right) \delta q_{k}+\left(\partial L / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right]=d / d t\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \delta q_{k}\right] \tag{7.6.3a}
\end{equation*}
$$

then, integrating the above in time between $t_{1,2}$, while assuming that

$$
\begin{equation*}
B T \equiv\left\{\sum\left(\partial L / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}=0 \quad \text { (of no effect on the equations of motion), } \tag{7.6.3b}
\end{equation*}
$$

we obtain the constrained integral variational equation

$$
\begin{equation*}
\int \delta L d t=0 \tag{7.6.3c}
\end{equation*}
$$

and, finally, attaching (or adjoining) (7.6.1b) to (7.6.3c) via the m Lagrangean multipliers λ_{D}, we obtain the following unconstrained integral variational equation:

$$
\begin{equation*}
\int\left[\delta L+\sum \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}\right] d t=0 \tag{7.6.4}
\end{equation*}
$$

Conversely, integrating (7.6.4) by parts [and then using (7.6.3b)], we are easily led back to (7.6.2); that is, (7.6.2) and (7.6.4) are completely equivalent. Equation (7.6.3c) under (7.6.1b), or (7.6.4), constitute the mechanical variational problem for our system. Next, let us see the corresponding mathematical variational problem, for the same system, and its relation with the above.

(ii) Mathematical Variational Problem

According to variational calculus [see any good text on this subject; for example, Fox (1950/1987, pp. 94-102), Funk (1962, p. 253 ff.), Gelfand and Fomin (1963, chap. 2)]
this would be

$$
\begin{equation*}
\int L d t=\text { stationary }, \quad \text { under (7.6.1a), } \tag{7.6.5a}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\delta \int L d t=0, \quad \text { under }(7.6 .1 \mathrm{a}) \rightarrow \delta f_{D}=0 \tag{7.6.5b}
\end{equation*}
$$

Applying again the multiplier rule, but with the m Lagrangean multipliers μ_{D} (since here $f_{D} \equiv \omega_{D}=0$; and $\delta \omega_{D}=0$) we are led, in well-known ways, to the unconstrained variational equation

$$
\begin{align*}
0 & =\delta \int\left(L+\sum \mu_{D} f_{D}\right) d t=\int \delta\left(L+\sum \mu_{D} f_{D}\right) d t \quad \text { (for fixed time-endpoints) } \\
& =\int\left[\delta L+\sum\left(\delta \mu_{D} f_{D}+\mu_{D} \delta f_{D}\right)\right] d t=\int\left(\delta L+\sum \mu_{D} \delta f_{D}\right) d t \\
& =\ldots=-\int \sum E_{k}\left(L+\sum \mu_{D} f_{D}\right) \delta q_{k} d t+\left\{\sum \sum \mu_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}, \tag{7.6.5c}
\end{align*}
$$

which, since now the δq 's can be viewed as unconstrained, with (7.6.3b), immediately yields the following n Euler-Lagrange equations [observing that $E_{k}(\ldots)$ is a linear operator]:

$$
\begin{equation*}
E_{k}\left(L+\sum \mu_{D} f_{D}\right)=E_{k}(L)+E_{k}\left(\sum \mu_{D} f_{D}\right)=0 \tag{7.6.5d}
\end{equation*}
$$

or, in extenso,

$$
\begin{equation*}
\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=-\sum \mu_{D}\left[\left(\partial f_{D} / \partial \dot{q}_{k}\right)^{\cdot}-\partial f_{D} / \partial q_{k}\right]-\sum\left(d \mu_{D} / d t\right)\left(\partial f_{D} / \partial \dot{q}_{k}\right) \tag{7.6.5e}
\end{equation*}
$$

or, again in operator form (recalling that $f_{D} \equiv \omega_{D}$),

$$
\begin{equation*}
E_{k}(L)=-\sum \mu_{D} E_{k}\left(\omega_{D}\right)-\sum\left(d \mu_{D} / d t\right)\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \tag{7.6.5f}
\end{equation*}
$$

Now, comparing (7.6.2) and (7.6.5d-f) we immediately see that, even if we identify the λ_{D} with the $-\left(d \mu_{D} / d t\right)$, since, in general, $E_{k}\left(\omega_{D}\right) \equiv E_{k}\left(f_{D}\right) \neq 0$ (nonholonomic constraints), still these two sets of equations are different; that is, equations (5d-f) are mechanically/physically incorrect! However, for holonomic problems that is, $E_{k}\left(f_{D}\right)=0$ - these equations, and, hence, corresponding integral variational problems, are completely equivalent.

REMARKS

(i) As clarified below, this should not come as a surprise: The basic principle of mechanics is not the integral principle/rule (7.6.5a, b), but the differential principle of Lagrange (LP).
(ii) Note that, in the variational calculus literature, $(7.6 .5 \mathrm{a}, \mathrm{b})$ is also called Lagrange's problem!

Source and Meaning of the Discrepancy

We begin with a fundamental actual path of the system, or simply an orbit, in the physical or in configuration space. That is a dynamically or kinetically possible path from an initial configuration $P_{1} \equiv P\left(t_{1}\right)$ to a final one $P_{2} \equiv P\left(t_{2}\right)$, where $P_{1,2}$ and $t_{1,2}$ are fixed, or given (see next section for slight changes in these boundary data); that is, an orbit satisfies (a) the equations of motion (of Lagrange, Routh-Voss, etc.) and (b) the boundary conditions. Thus, for a holonomic system with no additional Pfaffian constraints (i.e., $m=0$), the orbit is a curve

$$
\begin{equation*}
q_{k}=q_{k}(t) ; \quad t_{1} \leq t \leq t_{2} \tag{7.6.6a}
\end{equation*}
$$

of class C_{2} (i.e., with continuous derivatives of up to the second order, in that t-region) satisfying Lagrange's equations

$$
\begin{equation*}
E_{k}(L) \equiv\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=0 \tag{7.6.6b}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
q_{k}\left(t_{1}\right)=q_{k 1}, \quad q_{k}\left(t_{2}\right)=q_{k 2} ; \quad q_{k ; 1,2}: \text { given numbers. } \tag{7.6.6c}
\end{equation*}
$$

Let us see what happens under the additional (possibly nonholonomic) constraints (7.6.1a, b).
(i) In the mechanical problem, (7.6.3c, 1b), we build, in accordance with Lagrange's principle, varied, or comparison, paths by adding to each point of the fundamental orbit $I,\left[t, q_{k}(t)\right]$, the contemporaneous (or vertical) and constraint compatible - that is, virtual, displacement $\delta q_{k}=\delta q_{k}(t)$, of class C_{2} - that vanishes at $t_{1,2}$. In short, the mechanical variations consist of kinematically admissible (or possible) displacements; that is, δq 's that satisfy (7.6.1b): $\delta \theta_{D}=0$.
(ii) In the mathematical problem, (7.6.5a, 1a), on the other hand, we consider, in accordance with the multiplier rule of variational calculus, the family, or class, of all constraint compatible paths K that are of class C_{2} and coincide with I at $t_{1,2}$ (i.e., I belongs to K). In short, the mathematical variations consist of kinematically admissible (or possible) neighboring paths; that is, paths that satisfy (7.6.1a): $\omega_{D}=0$.

We express these differences, compactly, by

$$
\begin{align*}
\int \delta L d t & {\left[\text { under } \delta \theta_{D} \equiv \sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0-\text { mechanics }\right] } \\
\neq \delta \int L d t & {\left[\text { under } \omega_{D} \equiv f_{D}(t, q, \dot{q})=0-\text { mathematics }\right] } \tag{7.6.7}
\end{align*}
$$

with the equality sign holding for holonomic systems.
\{As Capon puts it: "Whereas in the generally accepted method of the calculus of variations [i.e., mathematics] the comparison paths are required to satisfy the conditional equations [our $\omega_{D}=0$], the displacements being free, in Hölder's treatment [i.e., mechanics] this is reversed: the displacements [our δq_{k}] are to satisfy the conditional equations [our $\delta \theta_{D}=0$], and it follows from the theory of Pfaff equations [i.e., Frobenius' theorem (§2.12)] that the comparison paths do not satisfy them]" (1952, p. 473, emphasis added).

As shown below (§7.7), this means that from $\delta \theta_{D}(t)=0$ (admissible displace-ments-mechanics), it does not follow that $\delta \omega_{D}(t)=0$ (admissible paths-mathematics), and vice versa, unless the constraints are holonomic.

For these reasons, certain authors have modified the integrand of the mechanical variational principle so as to produce a mathematical variational principle that yields the correct equations of motion: for example, Borri (1994).\}

Sufficiency of Hamilton's Principle (HP)

Before discussing the quantitative consequences of the above, let us examine the following important point: so far, both $(7.6 .3 \mathrm{c}, 5 \mathrm{~b})$ and $(7.6 .5 \mathrm{a}, 1 \mathrm{a})$ have been shown to be necessary conditions for an orbit. But the practical usefulness of HP (and the other IVP, and of variational methods in general) lies largely in their sufficiency: the solution(s) of these variational equations should be the orbit(s) of the problem. Let us examine the nonholonomic case in more detail: clearly, the numbers n and m (and, therefore, also $f \equiv n-m: \# D O F$) are system invariants; that is, independent of the q 's chosen. Further, as shown below, starting from a given point P_{1}, of the configuration space V_{n}, the points P accessible from it by kinematically admissible paths lie on an n-dimensional manifold M_{n}; that is, any point P in V_{n} is kinematically accessible. However, the points accessible from P_{1} by kinematically admissible paths (i.e., orbits through it) lie on an $(n-m)$-dimensional submanifold M_{n-m} ($=$ a subspace of V_{n}). Hence, the sufficient part of the mathematical variational problem cannot hold for nonholonomic systems: if both P_{1} and P_{2} are given, then P_{2} may not lie on M_{n-m}; eqs. $(7.6 .5 \mathrm{a}, 1 \mathrm{a})$ will yield a path through P_{1} and P_{2}, but that path will not be a mechanically correct motion, it will not be an orbit. Still worse, even if P_{2} were kinematically accessible from P_{1}, the orbit would exist but it would not satisfy (7.6.5a, 1a); that is, it would not render $\int L d t$ stationary among K-curves. In sum: whether P_{2} lies on M_{n-m} or not, the variational equation $\delta \int L d t=0$ under the multiplier rule does not produce the orbit through P_{1} and P_{2}; and, conversely, that orbit does not make $\int L d t$ stationary among kinematically admissible paths - the mathematical variational principle is not valid for nonholonomic systems, and therefore it cannot be used as a foundation of (even conservative) analytical mechanics!

If one still wants such a "principle" (better, integral energetic equation), uniformly valid for both holonomic and nonholonomic systems, that can be done, but it must be based on some time integral of Lagrange's principle or the central equation; that is, on mechanical principles (as detailed below §7.6, §7.7); then its application will produce the orbits of the system.

Differential Equation Considerations

These differences can also be seen from the viewpoint of differential equations.
(i) Mechanical Problem

The general solution of the latter depends on $2 n-m$ arbitrary constants, not on $2 n$. Here is why: due to the constraint equations, we can express the $m \lambda_{D}$'s as $\lambda=\lambda(t, q, \dot{q})$ [no $d \lambda / d t$ occur in (7.6.2)] and then substitute them back into (7.6.2) [recalling the "equations of Jacobi-Synge": exs. 3.2.6, 3.5.5, 3.10.2, 5.3.5, and 5.3.6]; that is, we can replace the latter by n multiplierless (kinetic) second-order equations in the q 's; a system whose general solution will depend on $2 n$ constants. Finally, since these q 's should also satisfy the m constraints (7.6.1a), the general solution of (7.6.2) would depend on $2 n-m$ arbitrary constants; that is, the "path multiplicity" is
$\infty^{2 n-m}$. [Or, we could argue on the following mechanical grounds: the kinetic (reactionless) equations of the system - e.g., those of Maggi, Hamel, etc. - constitute a system of $n-m$ second-order equations for the q 's and, therefore, they generate $2(n-m)$ constants. On the other hand, the system of the m first-order constraints generates m such constants. So the total number of arbitrary integration constants will be $2(n-m)+m=2 n-m$.]

These constants can be expressed, for example, in terms of the $2 n-m$ initial conditions (say, for $t_{1}=0$):

$$
\begin{equation*}
q_{k}(0)=q_{k o}: \text { given }(n \text { conditions }), \quad \dot{q}_{I}(0)=\dot{q}_{I o}: \text { given }(n-m \text { conditions }), \tag{7.6.8}
\end{equation*}
$$

while the remaining m such conditions, $\dot{q}_{D}(0)=\dot{q}_{D o}$: given, can be found from (7.6.8) and the m constraints $f_{D}=0$ evaluated at $t_{1}=0$; that is, even though the q_{o} can be specified arbitrarily, the \dot{q}_{o} require consideration of the constraints.

In short: Orbits through a given point must be along constraint-compatible directions. If, further, the system is holonomic, these directions define an $(n-m)$ dimensional submanifold, inside the original n-dimensional manifold of the q 's. Hence, in such systems, an orbit cannot pass through two arbitrarily specified points P_{1} (initial) and P_{2} (final) in configuration space; if we fix P_{1}, then, for the $\operatorname{arc} P_{1} P_{2}$ to be an orbit, P_{2} cannot be specified arbitrarily, but must lie on an $(n-m)$-dimensional manifold through P_{1}.

(ii) Mathematical Problem

The system (7.6.5d-f) is of the second order in the q 's and first order in the μ 's, and therefore (since the $f_{D}=0$ are nonholonomic $\Rightarrow E_{k}\left(f_{D}\right) \neq 0$) its general solution depends on $2 n$ arbitrary constants; whereas that of the mechanical system (7.6.2), as explained above, depends on only $2 n-m$ such constants. [This can also be seen as follows: since the $n q$'s appear up to the second order and the $m \mu$'s up to the first order, we have a maximum of $2 n+m$ arbitrary constants; that is, initial conditions for the q 's and μ 's. But the q 's and \dot{q} 's must also satisfy the constraints $f_{D}(t, q, \dot{q})=0$, and so the maximum number of such constants of the mathematical problem (the "multiplicity of its solutions") is $(2 n+m)-m=2 n$.]

In conclusion:

- Through any given pair of points P_{1} and P_{2}, these $2 n$ constants define a path uniquely;
- Through any point P_{1}, and in any constraint-compatible direction, there is an ∞^{m} multiplicity of paths; the position and (compatible) direction absorb $2 n-m$ of the constants, leaving m of them disposable $[(2 n-m)+m=2 n]$.
[It has been shown by Capon (1952, p. 476), that: (a) In the mechanical problem, if the m constraints have $r(<m)$ integrals, then the maximum multiplicity of the mechanical paths is $\infty^{(2 n-m)-r}=\infty^{2 n-(m+r)}$; and if, in addition, there are M ignorable/cyclic coordinates-that is, $\partial L / \partial q=0$ ($\S 8.4 \mathrm{ff}$.)-then the multiplicity is $\infty^{(2 n-m)-(r+M)}=\infty^{2 n-(m+r+M)}$. (b) In the mathematical problem, if there are integrals of the constraints then for each such integral the number of independent constants is reduced by 2 ; that is, the corresponding multiplicities are, respectively, $\infty^{2(n-r)}$ and $\infty^{2(n-r)-M}$.

In other words, there are many paths in the mathematical problem that are not mechanical paths; or, all mathematical solutions satisfy the stationarity condition; while, in general, the mechanical paths (orbits) do not.]

Conditions under which the Mechanical and Mathematical Problems Coincide

This means where the general or some particular solution(s) of these problems coincide, for the same initial conditions. By comparing (7.6.2) and (7.6.5f), we see that for this to happen we must have

$$
\begin{equation*}
\sum\left[\lambda_{D}+\left(d \mu_{D} / d t\right)\right]\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)=-\sum \mu_{D}\left[\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)^{\cdot}-\partial \omega_{D} / \partial q_{k}\right] \tag{7.6.9a}
\end{equation*}
$$

Multiplying each of these n equations by δq_{k} and summing over k, while observing the constraints $\delta \theta_{D}=0$, we find the alternative, virtual work form, of the necessary condition:

$$
\begin{equation*}
\delta^{\prime} W_{R^{\prime}} \equiv-\sum \sum \mu_{D}\left[\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)^{\cdot}-\partial \omega_{D} / \partial q_{k}\right] \delta q_{k} \equiv-\sum \sum \mu_{D} E_{k}\left(\omega_{D}\right) \delta q_{k}=0 \tag{7.6.9b}
\end{equation*}
$$

The above is also sufficient: assuming that some solution of the mathematical problem satisfies (7.6.9b) for δq 's restricted by $\delta \theta_{D}=0$, then multiplying (7.6.9a) with δq_{k}, and $\delta \theta_{D}$ with λ_{D}, and summing, respectively, over k and D, while observing (7.6.9b) and (7.6.5f), we find

$$
\begin{equation*}
\sum\left[E_{k}(L)-\sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right)\right] \delta q_{k}=0 \tag{7.6.9c}
\end{equation*}
$$

that is, that solution satisfies the mechanical problem and its constraints.
In terms of the following constraint reactions:

$$
\begin{align*}
R_{k} & \equiv \sum \lambda_{D}\left(\partial f_{D} / \partial \dot{q}_{k}\right), \tag{7.6.9d}\\
R_{k}^{\prime} & \equiv-\sum \mu_{D} E_{k}\left(\omega_{D}\right), \quad R_{k}^{\prime \prime} \equiv-\sum\left(d \mu_{D} / d t\right)\left(\partial f_{D} / \partial \dot{q}_{k}\right), \tag{7.6.9e}
\end{align*}
$$

the "coincidence conditions" (7.6.9a, b) can be rewritten, respectively, as

$$
\begin{align*}
& R_{k}=R_{k}{ }^{\prime}+R_{k}{ }^{\prime \prime} \tag{7.6.9f}\\
& \sum R_{k} \delta q_{k}=\sum R_{k}{ }^{\prime} \delta q_{k}+\sum R_{k}{ }^{\prime \prime} \delta q_{k}: \quad 0=0+0 \tag{7.6.9g}
\end{align*}
$$

Additional forms of these coincidence conditions will be given later (§7.8).
We can summarize the developments of this section as follows: The differences between the time-integral variational "principles" of analytical mechanics and variational calculus result from different assumptions about variations; that is, comparison motions: in mechanics we assume admissible instantaneous displacements $\left(\delta \theta_{D}=0\right)$, while in mathematics we assume admissible paths, as a whole $\left(\delta \omega_{D}=0\right)$. And since these assumptions result in different forms of the transitivity equations, we must examine the precise effect of the latter both on the principles of mechanics (i.e., Lagrange's principle, or his central equation - which are variational but differential) and on the corresponding Hamiltonian principles (which are also variational but integral). This is detailed in the next section.

7.7 INTEGRAL VARIATIONAL EQUATIONS OF MECHANICS

Mechanical Admissibility

The constraints (7.6.1a, b) must hold for a generic instant t, as well as for its adjacent $t+d t$; that is,

$$
\begin{equation*}
\omega_{D}(t)=0 \quad \text { and } \quad \omega_{D}(t+d t)=0, \quad \text { or } \quad \delta \theta_{D}(t)=0 \quad \text { and } \quad \delta \theta_{D}(t+d t)=0 \tag{7.7.1}
\end{equation*}
$$

Expanding the second and fourth of the above à la Taylor, and invoking the first and third, we get, to the first order (omitting, for simplicity, the explicit time dependence), the following requirements for the mechanical realizability of adjacent motions:

$$
\omega_{D}+d \omega_{D}=0 \quad \Rightarrow \quad d \omega_{D}=0
$$

or

$$
\delta \theta_{D}+d\left(\delta \theta_{D}\right)=0 \quad \Rightarrow \quad d\left(\delta \theta_{D}\right)=0
$$

or

$$
\begin{equation*}
\left(\delta \theta_{D}\right)^{\cdot}=0 \quad \text { (evolution of displacement admissibility in time) } \tag{7.7.2}
\end{equation*}
$$

Then, the earlier general transitivity equations [§5.2, or (7.5.1b), but without the special assumption $\left.\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)\right]$ yield

$$
\begin{align*}
-\delta \omega_{D} & =\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]+\sum H_{I}^{D} \delta \theta_{I} \\
& =\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)\left[\left(\delta \dot{q}_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]-\sum \sum V_{I}^{k}\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta \theta_{I} \tag{7.7.3}\\
& {\left[=\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]\right.} \\
& \left.+\sum \sum\left(\gamma_{I I^{\prime}}^{D} \omega_{I^{\prime}}\right) \delta \theta_{I}, \quad \text { in stationary Pfaffian case }\right] \neq 0, \text { in general. } \tag{7.7.3a}
\end{align*}
$$

From the above we conclude the following:

- We cannot assume that both $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$ and $\delta\left(d \theta_{D}\right)=0$, or $\delta \omega_{D}=0$, hold; it is either one or the other.
- If we assume that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, then $\delta\left(d \theta_{D}\right), \delta \omega_{D} \neq 0$; unless $H^{D}{ }_{I}=0$ [which, in the stationary Pfaffian case (chosen here just for algebraic simplicity), reduces to the Frobenius integrability conditions: $\gamma_{I^{\prime}}^{D}=0$. Hence, by analogy, $H^{D}{ }_{I}=0$ become the "Frobenius (necessary and sufficient) conditions" for the holonomicity of the first-order nonlinear system $\omega_{D} \equiv f_{D}(t, q, \dot{q})=0$].

These results, under $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, are depicted in fig. 7.2(a).

Mathematical Admissibility

Here, the constraints (7.6.1a) hold for both the fundamental orbit, or arc, I, as well as for its kinematically admissible adjacent arc $I I=I+\delta I$; that is,

$$
\begin{equation*}
\omega_{D}(I)=0 \quad \text { and } \quad \omega_{D}(I I)=\omega_{D}(I+\delta I)=0 \tag{7.7.4a}
\end{equation*}
$$

(a) MECHAN/CAL ADMISSIBILITY

Adjarent Path: mathematically inadmissible as a whole.

(b) MA THEMATICAL ADMISSIBILITY

Adjacent Path: mechanically non-virwal at each point.

Figure 7.2 On the differences between (a) mechanical and (b) mathematical variations.
or

$$
\begin{equation*}
d \theta_{D}(I)=0 \quad \text { and } \quad d \theta_{D}(I I)=d \theta_{D}(I+\delta I)=0 \tag{7.7.4b}
\end{equation*}
$$

from which, expanding as before, and so on, we obtain the following requirements for the mathematical realizability of adjacent motions:

$$
\omega_{D}+\delta \omega_{D}=0 \Rightarrow \delta \omega_{D}=0
$$

or

$$
\begin{equation*}
\left.d \theta_{D}+\delta\left(d \theta_{D}\right)=0 \quad \Rightarrow \quad \delta\left(d \theta_{D}\right)=0 \quad \text { (virtual variation of path admissibility }\right) \tag{7.7.4c}
\end{equation*}
$$

Then, the transitivity equations [again under $\left(\delta q_{k}\right)^{\cdot} \neq \delta\left(\dot{q}_{k}\right)$] yield

$$
\begin{align*}
\left(\delta \theta_{D}\right)^{\cdot} & =\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)\left[\left(\delta \dot{q}_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]+\sum H_{I}^{D} \delta \theta_{I} \\
& =\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)\left[\left(\delta \dot{q}_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]-\sum \sum V_{I}^{k}\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta \theta_{I} ; \tag{7.7.5}\\
& {\left[=\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right)\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]\right.} \\
& \left.+\sum \sum\left(\gamma_{I I^{\prime}}^{D} \omega_{I^{\prime}}\right) \delta \theta_{I}, \quad \text { in stationary Pfaffian case }\right] \neq 0, \text { in general. }(7.7 .5 \mathrm{a})
\end{align*}
$$

From the above we conclude the following:

- We cannot assume that both $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$ and $d\left(\delta \theta_{D}\right)=0$, or $\left(\delta \theta_{D}\right)^{\cdot}=0$, hold; it is either one or the other.
- If we assume that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, then $d\left(\delta \theta_{D}\right),\left(\delta \theta_{D}\right)^{\cdot} \neq 0$; unless $H^{D}{ }_{I}=0$. These results, under $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, are depicted in fig. 7.2(b).

In sum: even assuming that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, due to the purely analytical transitivity equations:

- We cannot assume that both $\delta\left(d \theta_{D}\right)=0\left(\right.$ or $\left.\delta \omega_{D}=0\right)$ and $d\left(\delta \theta_{D}\right)=0\left[\right.$ or $\left.\left(\delta \theta_{D}\right)^{\circ}=0\right]$.
- In mechanics $[d(\ldots)]$, assuming $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, we have

$$
\begin{equation*}
d\left(\delta \theta_{D}\right)=0 \quad \text { or } \quad\left(\delta \theta_{D}\right)^{\prime}=0 \quad\left(\text { and } d \omega_{D}=0\right) \tag{7.7.6}
\end{equation*}
$$

but $\delta\left(d \theta_{D}\right) \neq 0$ (or $\delta \omega_{D} \neq 0$), even though $d \theta_{D}=0$ (or $\omega_{D}=0$); in fact,

$$
\begin{aligned}
\delta \omega_{D} & =-\sum H_{I}^{D} \delta \theta_{I}=\sum \sum V_{I}^{k}\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta \theta_{I} \\
& =-\sum E_{k}\left(\omega_{D}\right) \delta q_{k} \equiv-\sum E_{k}\left(f_{D}\right) \delta q_{k} \equiv \delta f_{D} \quad[\text { by }(5.2 .22 \mathrm{a}, \mathrm{~b})] \\
& \neq 0, \text { for nonholonomic constraints, } \\
& =0, \text { for holonomic constraints. }
\end{aligned}
$$

\{The reader may verify without much difficulty that in the Pfaffian case

$$
\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0,
$$

the above specialize to

$$
\begin{align*}
\delta \omega_{D} & \equiv \delta f_{D} \equiv \delta\left(\sum a_{D k} \dot{q}_{k}+a_{D}\right) \\
& =\cdots=-\sum\left[\sum\left(\partial a_{D k} / \partial q_{b}-\partial a_{D b} / \partial q_{k}\right) \dot{q}_{b}+\left(\partial a_{D k} / \partial t-\partial a_{D} / \partial q_{k}\right)\right] \delta q_{k} \\
& {\left.\left[=-\sum \sum\left(\gamma^{I_{I}} \omega_{I^{\prime}}\right) \delta \theta_{I}, \quad \text { in stationary Pfaffian case }\right]\right\} . } \tag{7.7.7a}
\end{align*}
$$

Similarly, we obtain the corresponding independent transitivity equations:

$$
\begin{align*}
\delta \omega_{I} & =\left(\delta \theta_{I}\right)^{\cdot}-\sum H_{I^{\prime}}^{I} \delta \theta_{I^{\prime}}=\left(\delta \theta_{I}\right)^{\cdot}+\sum \sum V_{I^{\prime}}^{k}\left(\partial \omega_{I} / \partial \dot{q}_{k}\right) \delta \theta_{I^{\prime}} \tag{7.7.8}\\
& {\left[=\left(\delta \theta_{I}\right)^{\cdot}-\sum \sum\left(\gamma_{I^{\prime} I^{\prime \prime}}^{I} \omega_{I^{\prime \prime}}\right) \delta \theta_{I^{\prime}}, \quad \text { in stationary Pfaffian case }\right] . } \tag{7.7.8a}
\end{align*}
$$

[What happens in mechanics if we assume that $\left(\delta q_{k}\right)^{\cdot} \neq \delta\left(\dot{q}_{k}\right)$, for some or all values of k, is examined in $\S 7.8$. (Recall conclusions of prob. 2.12.5.)]

- In mathematics $[\delta(\ldots)]$, assuming $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, we have

$$
\delta\left(d \theta_{D}\right)=0 \quad \text { or } \quad \delta \omega_{D}=0,
$$

but $d\left(\delta \theta_{D}\right) \neq 0\left(\right.$ or $\left.\left(\delta \theta_{D}\right)^{\prime} \neq 0\right)$ and $d \omega_{D} \neq 0$, even though $\delta \theta_{D}=0$ (or $\omega_{D}=0$).
In words: adjacent paths obtained by adding mechanically admissible variations to every point of an orbit $\left[d\left[\delta \theta_{D}(t)\right]=0\right]$ are, in general, mathematically inadmissible $\left[\delta\left[d \theta_{D}(t)\right] \neq 0\right]$.

Next, to the various integral formulae of mechanics.

The Central Equation, its Integral Forms, and Corresponding Equations of Motion
(i) Holonomic Variables

Let us now extend the above to the IVPs of the most general systems [nonpotential, rheonomic, nonlinearly nonholonomic (chap. 5)] under vertical variations (i.e., $\Delta t=0$); we consider a system with kinetic energy $T=T(t, q, \dot{q})$, impressed forces
$Q_{k}=Q_{k}(t, q, \dot{q})$ [some of which, or all, may be partially or completely potential; i.e., $\left.Q_{k}=-\partial V(t, q) / \partial q_{k}\right]$, subject to the $m(<n)$ independent and generally nonholonomic velocity constraints

$$
\begin{equation*}
f_{D}(t, q, \dot{q})=0, \quad \operatorname{rank}\left(\partial f_{D} / \partial \dot{q}_{k}\right)=m \quad[D=1, \ldots, m ; I=m+1, \ldots, n] \tag{7.7.9a}
\end{equation*}
$$

or, equivalently, solving for the $m \dot{q}_{D}$ in terms of the $n-m \dot{q}_{I}$:

$$
\begin{equation*}
\dot{q}_{D}=\phi_{D}\left(t, q, \dot{q}_{I}\right) \quad\left[\Rightarrow f_{D} \equiv \dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)=0\right] ; \tag{7.7.9b}
\end{equation*}
$$

and whose virtual forms are, respectively,

$$
\begin{align*}
& \delta \theta_{D} \equiv \sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}(=0), \quad \text { where } \dot{\theta}_{D} \equiv \omega_{D} \equiv f_{D}=0 \tag{7.7.9c}\\
& \delta q_{D} \equiv \sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}(\neq 0) \tag{7.7.9d}
\end{align*}
$$

Here our discussion is based not on the equations of motion (§7.2-7.5), but on their equivalent principle of Lagrange (LP, §3.2):

$$
\begin{equation*}
\sum\left\{\left[\left(\partial T / \partial \dot{q}_{k}\right)^{\cdot}-\partial T / \partial q_{k}\right]-Q_{k}\right\} \delta q_{k} \equiv \sum\left[E_{k}(T)-Q_{k}\right] \delta q_{k}=0 \tag{7.7.10}
\end{equation*}
$$

where the $n \delta q$'s are restricted by the m conditions (7.7.9c).
Integrating (7.7.10) between the arbitrary times t_{1} and t_{2}, then integrating by parts, and so on, and using the familiar notation $\delta^{\prime} W \equiv \sum Q_{k} \delta q_{k}$, we obtain

$$
\begin{equation*}
\int\left\{\sum\left[\left(\partial T / \partial q_{k}\right) \delta q_{k}+\left(\partial T / \partial \dot{q}_{k}\right)\left(\delta q_{k}\right)^{\cdot}\right]+\delta^{\prime} W\right\} d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} \tag{7.7.11}
\end{equation*}
$$

or, further, since by standard δ-differential calculus,

$$
\begin{equation*}
\delta T=\sum\left[\left(\partial T / \partial q_{k}\right) \delta q_{k}+\left(\partial T / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right] \tag{7.7.11a}
\end{equation*}
$$

adding and subtracting to the integrand of (7.7.11) $\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)$ (in order to create δT there), we finally transform it to
$\int\left\{\delta T+\delta^{\prime} W+\sum\left(\partial T / \partial \dot{q}_{k}\right)\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]\right\} d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}$.
\{Equation (7.7.12) can also result, most simply, by integration of the general central equation, in holonomic variables, (3.6.8):

$$
\begin{equation*}
\left.\delta T+\delta^{\prime} W+\sum\left(\partial T / \partial \dot{q}_{k}\right)\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]=d / d t\left[\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right]\right\} . \tag{7.7.13}
\end{equation*}
$$

This general integral equation is fundamental to all subsequent IVP considerations.
Now, and this is the crux of the matter, (7.7.12) makes clear that we must relate the (δq) 's, with the $\delta(\dot{q})$'s; that is, we must invoke some kind of transitivity equations. This can also be seen as follows: since the $\delta q(t)$'s are well-defined functions of time, so are the $(\delta q)^{\prime}$'s; but the $\delta(\dot{q})^{\prime}$'s need defining, something which, again, is equivalent to a choice of transitivity equations. There is no unique way to do this, but, since there is only one mechanics, we should always end up with the same (correct) equations of motion. As the virtual constraints (7.7.9c, d) show, since not all δq 's are specified
uniquely, there is a certain freedom in defining $\delta(\dot{q}) \equiv \delta \dot{q}$; and this, historically, has given rise to various seemingly contradictory IVPs. We shall return to this topic in §7.8.

(ii) Nonholonomic Variables

To obtain the nonholonomic variable equivalent of this most general integral formula, we substitute into it the most general transitivity equations (5.2.23a ff.):

$$
\begin{align*}
\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right) & =\sum\left(\partial \dot{q}_{k} / \partial \omega_{b}\right)\left[\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b}\right]+\sum V_{b}^{k} \delta \theta_{b} \tag{7.7.14a}\\
& =\sum\left(\partial \dot{q}_{k} / \partial \omega_{b}\right)\left[\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b}\right]-\sum \sum\left(\partial \dot{q}_{k} / \partial \omega_{l}\right) H_{b}^{l} \delta \theta_{b} \tag{7.7.14b}
\end{align*}
$$

while recalling that, since $T=T(t, q, \dot{q})=T[t, q, \dot{q}(t, q, \omega)] \equiv T^{*}(t, q, \omega) \equiv T^{*}$,

$$
\begin{align*}
\delta T=\delta T^{*} & =\sum\left[\left(\partial T^{*} / \partial q_{k}\right) \delta q_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
& =\sum\left[\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] ; \tag{7.7.14c}
\end{align*}
$$

also

$$
\begin{equation*}
P_{b} \equiv \partial T^{*} / \partial \omega_{b}=\sum\left(\partial T / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \omega_{b}\right)=\sum\left(\partial \dot{q}_{k} / \partial \omega_{b}\right) p_{k} \tag{7.7.14d}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{\prime} W=\delta^{\prime} W^{*} \equiv \sum \Theta_{k} \delta \theta_{k} \quad\left(\text { definition of } \Theta_{k} ’ \mathrm{~s}\right) \tag{7.7.14e}
\end{equation*}
$$

Thus, we transform (7.7.12) into its nonholonomic counterparts (no constraint enforcement yet!):

$$
\begin{align*}
& \int\left\{\delta T^{*}+\delta^{\prime} W^{*}+\right.\left.\sum P_{k}\left[\left(\delta \theta_{k}\right)^{*}-\delta \omega_{k}\right]+\sum \sum V_{b}^{k} p_{k} \delta \theta_{b}\right\} d t \\
&=\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right\}_{1}^{2}\left[=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}\right] \tag{7.7.15a}\\
& \begin{aligned}
\int\left\{\delta T^{*}+\delta^{\prime} W^{*}+\right. & \left.\sum P_{k}\left[\left(\delta \theta_{k}\right)^{*}-\delta \omega_{k}\right]-\sum \sum H_{b}^{k} P_{k} \delta \theta_{b}\right\} d t \\
& =\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right\}_{1}^{2}
\end{aligned}
\end{align*}
$$

As with (7.7.12), this can also be achieved (a) either by transforming (7.7.13) into quasi variables, via (7.7.14a-d), and then integrating, or (b) by integrating the earlier-found general central equation in quasi variables (3.6.9).

Next, to go from (7.7.15a, b) to the general nonlinear T^{*}-based equations of motion ($\$ 5.3$), and thus establish the complete equivalence of the former with the latter, we employ the following general kinematico-inertial transformation of integral variational mechanics [obtained most easily by use of (7.7.14c, d) and
integration by parts, and so on; also, recalling (7.5.2b)]:

$$
\begin{align*}
& \int\left\{\delta T^{*}+\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]\right\} d t \\
& \quad=\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)\left(\delta \theta_{k}\right)^{\cdot}+\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}\right] d t \\
& \quad=\cdots=\left\{\sum P_{k} \delta \theta_{k}\right\}_{1}^{2}-\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{*}-\partial T^{*} / \partial \theta_{k}\right] \delta \theta_{k} d t \tag{7.7.15c}
\end{align*}
$$

As a result of this, $(7.7 .15 \mathrm{a}, \mathrm{b})$ are immediately transformed to the following timeintegral forms of the nonlinear Johnsen-Hamel nonholonomic equations of motion (5.3.5a, b; 8a, b):

$$
\begin{aligned}
& -\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}-\sum \sum\left(\partial T / \partial \dot{q}_{b}\right)^{*} V_{k}^{b}-\Theta_{k}\right] \delta \theta_{k} d t=0, \text { (7.7.16a) } \\
& -\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}+\sum \sum\left(\partial T^{*} / \partial \omega_{b}\right) H_{k}^{b}-\Theta_{k}\right] \delta \theta_{k} d t=0 ;(7.7 .16 \mathrm{~b})
\end{aligned}
$$

from which (and the method of Lagrangean multipliers) both kinetic and kinetostatic equations of mechanics follow at once.

REMARKS

(i) Had we assumed in $\left(7.7 .12,13\right.$; 14a, b) that $\left(\delta q_{k}\right)^{\circ}=\delta\left(\dot{q}_{k}\right)$, whether the δq_{k} are further constrained or not [what we shall, henceforth, call the viewpoint of Hölder (1896)-Voronets (1901)-Hamel (1904)], then eqs. (7.7.12; 15a, b) would have led us to the earlier form,

$$
\begin{equation*}
\int\left(\delta T+\delta^{\prime} W\right) d t=\int\left(\delta T^{*}+\delta^{\prime} W^{*}\right) d t=\left\{\sum\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right\}_{1}^{2}, \tag{7.7.17}
\end{equation*}
$$

where now

$$
\begin{align*}
\delta T^{*}= & \sum\left[\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] \quad[\text { invoking (7.7.7-7.7.8a)] } \\
= & \sum\left\{\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\left(\partial T^{*} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\sum H_{b}^{k} \delta \theta_{b}\right]\right\} \\
= & \sum\left(\partial T^{*} / \partial \theta_{k}\right) \delta \theta_{k}+\sum\left\{\left[\left(\partial T^{*} / \partial \omega_{k}\right) \delta \theta_{k}\right]-\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot} \delta \theta_{k}\right]\right\} \\
& \quad-\sum \sum H_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right) \delta \theta_{k} \tag{7.7.17a}
\end{align*}
$$

so that, upon time integration, and so on,

$$
\begin{array}{r}
\int \delta T^{*} d t=-\int \sum\left[\left(\partial T^{*} / \partial \omega_{k}\right)^{\cdot}-\partial T^{*} / \partial \theta_{k}+\sum H_{k}^{b}\left(\partial T^{*} / \partial \omega_{b}\right)\right] \delta \theta_{k} d t \\
+\left\{\sum P_{k} \delta \theta_{k}\right\}_{1}^{2} \tag{7.7.17b}
\end{array}
$$

[which is none other than (7.5.2b)], and similarly in terms of the V_{k}^{b}; and these results would have, obviously, transformed (7.7.17) into the earlier (7.7.16a, b); that is, whether we assume that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$ or not, if we are internally consistent
we will end up with the same equations of motion, just like in the derivation of the equation of motion from the central equation ($\S 3.6, \S 5.3$).

In sum: To obtain the correct equations of motion of nonholonomic systems via a Hamiltonian IVP, we must stick with mechanics (i.e., Lagrange's principle) and sacrifice mathematics (i.e., calculus of variations)!
(ii) The earliest explicit realization of this fact - that is, that mechanical variational principles do not have to coincide with mathematical variational principles, and that in all cases of discrepancy the former override the latter, seems to be due to Voss (1885, second footnote, p. 266): "Aber das Hamilton'sche Princip [i.e., our mathematical variational principle] ist überhaupt kein eigentliches Princip der Mechanik, sondern hat-wenigstens zunächst-für dieselbe nur den Charakter einer analytischen Regel, welche auch die Differentialgleichungen der Bewegung liefert." Freely translated as "Hamilton's principle [as originally and commonly understood; i.e., as a mathematical variational principle] is not, generally, a proper principle of mechanics [i.e., like LP], but-at least for the moment-only a mathematical rule that also yields the equations of motion." See also Maurer (1905).

This point cannot be emphasized enough. Most mechanics texts we are aware of, including almost all contemporary ones in English, promote the false notion that the basic principle of (at least) potential but possibly nonholonomic systems is Hamilton's mathematical variational principle, eqs. (7.6.5a, b), or some variant of it (§7.9)! But even the few classy exceptions to this broad indictment, e.g., Rosenberg (1977, pp. x, 171 ff .) do not pinpoint to the source of the discrepancy, which is the transitivity equations (a topic absent from practically all English language texts on mechanics!).

Constrained Forms of the Integral "Principles"

Let us find the forms that (7.7.15a, b) (and hence, ultimately, the resulting equations of motion) assume if, in there, we enforce both $\delta \theta_{D}=0$ (admissible displacements) and $\omega_{D}=0$ (admissible paths); that is, let us express their integrands in terms of the constrained kinetic energy

$$
\begin{equation*}
T^{*}=T^{*}\left(t, q, \omega_{D}, \omega_{I}\right) \rightarrow T^{*}\left(t, q, \omega_{D}=0, \omega_{I}\right)=T_{o}^{*}\left(t, q, \omega_{I}\right)=T_{o}^{*} \tag{7.7.18}
\end{equation*}
$$

and its variations, and so on. Then, since $\left(\partial T^{*} / \partial \omega_{I}\right)_{o}=\partial T^{*}{ }_{o} / \partial \omega_{I}$ [recalling (3.5.24a ff.)], $\left(\partial T^{*} / \partial q_{k}\right)_{o}=\partial T^{*}{ }_{o} / \partial q_{k} \Rightarrow\left(\partial T^{*} / \partial \theta_{k}\right)_{o}=\partial T^{*}{ }_{o} / \partial \theta_{k}$, and invoking (7.7.7) and (7.7.7a), we find, successively,

$$
\begin{align*}
\delta T^{*} & =\sum\left[\left(\partial T^{*} / \partial q_{k}\right) \delta q_{k}+\left(\partial T^{*} / \partial \omega_{k}\right) \delta \omega_{k}\right] \\
& =\left[\sum\left(\partial T^{*} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial T^{*} / \partial \omega_{I}\right) \delta \omega_{I}\right]+\sum\left(\partial T^{*} / \partial \omega_{D}\right) \delta \omega_{D} \\
& \equiv \delta T_{o}{ }_{o}+\sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \delta \omega_{D} \tag{7.7.18a}\\
& =\delta T_{o}{ }_{o}+\sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o}\left(-\sum H_{I}^{D} \delta \theta_{I}\right) \tag{7.7.18b}\\
& =\delta T^{*}{ }_{o}+\sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o}\left[\sum \sum V_{I}^{k}\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta \theta_{I}\right] \\
& =\delta T^{*}{ }_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{k}\right)_{o} V_{I}^{k} \delta \theta_{I} \tag{7.7.18c}
\end{align*}
$$

$$
\begin{align*}
& =\delta T_{o}^{*}+\sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o}\left[-\sum E_{k}\left(\omega_{D}\right) \delta q_{k}\right] \tag{7.7.18d}\\
\{ & =\delta T_{o}^{*}+\sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o}\left[-\sum \sum\left(\gamma_{I I^{\prime}}^{D} \omega_{I^{\prime}}\right) \delta \theta_{I}\right]
\end{align*}
$$

$$
\begin{equation*}
\text { for stationary Pfaffian constraints }\} \text {, } \tag{7.7.18e}
\end{equation*}
$$

where, invoking (7.7.8) and (7.7.8a),

$$
\begin{align*}
\delta T_{o}^{*} & \equiv \delta\left(T_{o}^{*}\right) \equiv \sum\left(\partial T_{o}^{*} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial T_{o}^{*} / \partial \omega_{I}\right) \delta \omega_{I} \\
& \equiv \sum\left(\partial T_{o}^{*} / \partial \theta_{I}\right) \delta \theta_{I}+\sum\left(\partial T_{o}^{*} / \partial \omega_{I}\right) \delta \omega_{I} \tag{7.7.18f}\\
& =\sum\left(\partial T_{o}^{*} / \partial \theta_{I}\right) \delta \theta_{I}+\sum\left(\partial T_{o}^{*} / \partial \omega_{I}\right)\left[\left(\delta \theta_{I}\right)^{-}-\sum H_{I^{\prime}}^{I} \delta \theta_{I^{\prime}}\right] \tag{7.7.18g}\\
& =\sum\left(\partial T_{o}^{*} / \partial \theta_{I}\right) \delta \theta_{I}+\sum\left(\partial T_{o}^{*} / \partial \omega_{I}\right)\left[\left(\delta \theta_{I}\right)^{-}+\sum \sum V_{I^{\prime}}^{k}\left(\partial \omega_{I} / \partial \dot{q}_{k}\right) \delta \theta_{I^{\prime}}\right] \\
\{ & =\sum\left(\partial T_{o}^{*} / \partial \theta_{I}\right) \delta \theta_{I}+\sum\left(\partial T_{o}^{*} / \partial \omega_{I}\right)\left[\left(\delta \theta_{I}\right)^{-}-\sum \sum\left(\gamma_{I^{\prime} I^{\prime \prime}}^{I} \omega_{I^{\prime \prime}}\right) \delta \theta_{I^{\prime}}\right],
\end{align*}
$$

and so, inserting (7.7.18c) into (7.7.15a) and (7.7.18b, d) into (7.7.15b), we obtain, respectively, the following general nonlinear/Pfaffian and constrained form of the Hamilton-type "principles":

$$
\begin{equation*}
\int\left[\delta T_{o}^{*}+\sum \sum\left(\partial T / \partial \dot{q}_{k}\right)_{o}^{*_{o}} V_{I}^{k} \delta \theta_{I}+\delta^{\prime} W_{o}^{*}\right] d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} ; \tag{7.7.19a}
\end{equation*}
$$

$\int\left[\delta T^{*}{ }_{o}-\sum \sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o} H^{D}{ }_{I} \delta \theta_{I}+\delta^{\prime} W^{*}{ }_{o}\right] d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} ;$
$\int\left[\delta T^{*}{ }_{o}-\sum \sum\left(\partial T^{*} / \partial \omega_{D}\right)_{o} \gamma^{D}{ }_{I I^{\prime}} \omega_{I^{\prime}} \delta \theta_{I}+\delta^{\prime} W^{*}{ }_{o}\right] d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} ;$
where

$$
\delta^{\prime} W=\delta^{\prime} W^{*}=\sum \Theta_{k} \delta \theta_{k}=\sum \Theta_{I} \delta \theta_{I} \equiv \delta^{\prime} W_{o}^{*} .
$$

Let the reader verify that inserting $(7.7 .18 \mathrm{~g}, \mathrm{~h})$ into $(7.7 .19 \mathrm{~b}, \mathrm{a})$ leads readily to the $n-m$ kinetic equations of motion (5.3.8d, 8c), respectively; and similarly for the Pfaffian case [(3.5.24a ff.)].

REMARKS

(i) Equation (7.7.19c) is due to Hamel (1949, pp. 494-495; and references cited therein).
(ii) The form (7.7.19b) can also be obtained directly from (7.7.15b) if, following Hamel (1949, p. 494 - Pfaffian case], we choose, in the latter,
(a) $\quad \delta \theta_{D}=0, \quad d\left(\delta \theta_{D}\right)=0 \quad \Rightarrow \quad\left(\delta \theta_{D}\right)^{\cdot}=0, \quad$ and $\quad\left(\delta \theta_{I}\right)^{\cdot}=\delta \omega_{I}$,
something that does not restrict the $\delta \theta_{I}$ but constitutes a suitable/permissible definition of the $\delta \omega_{I}$ (like a Suslov et al. second transitivity choice but in nonholonomic variables - see next section). Indeed, then we have, successively,

$$
\begin{align*}
\delta T^{*} & +\sum P_{k}\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]=\delta T^{*}+\sum P_{D}\left[\left(\delta \theta_{D}\right)^{\cdot}-\delta \omega_{D}\right] \tag{b}\\
& =\delta T^{*}+\sum P_{D}\left[0-\delta \omega_{D}\right] \quad[\operatorname{invoking}(7.7 .18 \mathrm{a})] \\
& \equiv \delta T_{o}^{*}+\sum P_{D} \delta \omega_{D}+\left(-\sum P_{D} \delta \omega_{D}\right)=\delta T_{o}^{*} \tag{7.7.20b}
\end{align*}
$$

and [recalling (7.7.8)]

$$
\begin{equation*}
-\sum \sum H^{I^{\prime}}{ }_{I} P_{I^{\prime}} \delta \theta_{I}=-\sum P_{I}\left[\left(\delta \theta_{I}\right)^{\cdot}-\delta \omega_{I}\right]=0 \tag{c}
\end{equation*}
$$

As a result of the above, (7.7.15b) (with $b \rightarrow I, k \rightarrow D$), clearly, becomes (7.7.19b), Q.E.D. And, similarly, for the reduction of (7.7.15a) to (7.7.19a).

7.8 SPECIAL INTEGRAL VARIATIONAL PRINCIPLES (OF SUSLOV, VORONETS, et al.)

Occasionally, the constraints are given in the form

$$
\begin{equation*}
\dot{q}_{D} \equiv \phi_{D}\left(t, q, \dot{q}_{I}\right) \tag{7.8.1}
\end{equation*}
$$

But this, as explained in $\S 5.2$, can be viewed as the following special case of (7.6.1a, b):

$$
\begin{align*}
\omega_{D} & \equiv f_{D}(t, q, \dot{q}) \equiv \dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)=0, \quad \omega_{I} \equiv f_{D}(t, q, \dot{q}) \equiv \dot{q}_{I} \neq 0 ; \tag{7.8.1a}\\
& {\left[\Rightarrow \dot{q}_{D}=\omega_{D}+\phi_{D}\left[t, q, \dot{q}_{I}\left(t, q, \omega_{I}\right)\right]=\omega_{D}+\phi_{D}\left(t, q, \omega_{I}\right)\right] } \tag{7.8.1b}\\
\delta \theta_{D} & =\sum\left(\partial \omega_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=\cdots=\delta q_{D}-\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}=0, \tag{7.8.1c}\\
\delta \theta_{I} & =\sum\left(\partial \omega_{I} / \partial \dot{q}_{k}\right) \delta q_{k}=\cdots=\delta q_{I} \neq 0 ; \tag{7.8.1d}
\end{align*}
$$

and, therefore,

$$
\begin{equation*}
\delta \omega_{D} \equiv \delta\left[\dot{q}_{D}-\phi_{D}(t, q, \dot{q})\right]=? \tag{7.8.2}
\end{equation*}
$$

The above shows that to make further progress (and as mentioned at the end of §7.6), we must define the $\delta\left(\dot{q}_{D}\right)$. From the many conceivable such transitivity choices, the following two have dominated the literature:
(i) First transitivity choice of Hölder (1896)-Voronets (1901)-Hamel (1904). As already seen, this is

$$
\begin{equation*}
\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right), \quad \text { for all } \delta q^{\prime} \text { s, constrained or not; } \tag{7.8.3a}
\end{equation*}
$$

(ii) Second transitivity choice of Suslov (1901)-Levi-Civita/Amaldi (1920s)Rumiantsev (1970s)-Greenwood (1990s). (See also Suslov, 1946, pp. 596-600; and Rumiantsev, 1978, 1979.) This stipulates that

$$
\begin{equation*}
\left(\delta q_{I}\right)^{\cdot}=\delta\left(\dot{q}_{I}\right), \quad \text { but } \quad\left(\delta q_{D}\right)^{\cdot} \neq \delta\left(\dot{q}_{D}\right) \tag{7.8.3b}
\end{equation*}
$$

Let us find the corresponding transitivity equations and integral variational "principles."

First Transitivity Choice

With its help, and (7.8.1c), (7.8.2) yields, successively,

$$
\begin{align*}
& 0 \neq \delta \omega_{D} \equiv \delta\left(\dot{q}_{D}\right)-\delta \phi_{D}=\left(\delta q_{D}\right)^{\cdot}-\delta \phi_{D} \\
&= {\left[\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right]^{\cdot}-\left[\sum\left(\partial \phi_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)\right] } \\
&= \sum\left[\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot} \delta q_{I}+\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\delta q_{I}\right)^{\cdot}\right] \\
& \quad-\left[\sum\left(\partial \phi_{D} / \partial q_{I}\right) \delta q_{I}+\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right) \delta q_{D^{\prime}}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)\right] \\
&= \sum\left[\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial q_{I}-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right] \delta q_{I} \\
& \equiv \sum\left[\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)^{\cdot}-\partial \phi_{D} / \partial\left(q_{I}\right)\right] \delta q_{I} \\
& \equiv \sum\left[E_{I}\left(\phi_{D}\right)-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right] \delta q_{I} \\
& \equiv \sum E_{(I)}\left(\phi_{D}\right) \delta q_{I} \quad[\text { recalling the special notations of ex. 5.2.3) } \\
& \equiv \sum W_{I}^{D} \delta q_{I} \tag{7.8.4a}\\
& {[}\left.=\sum W_{I}^{D} \delta \theta_{I}, \quad W_{I}^{D}: \text { specialization of the } V_{I}^{D}, \text { for }(7.8 .1 \mathrm{a})\right] \tag{7.8.4b}\\
& \Rightarrow \delta\left(\dot{q}_{D}\right)=\left(\delta \dot{q}_{D}\right)=\delta \phi_{D}+\sum E_{(I)}\left(\phi_{D}\right) \delta q_{I} \equiv \delta \phi_{D}+\sum W_{I}^{D} \delta q_{I} . \tag{7.8.4c}
\end{align*}
$$

[In the Pfaffian specialization of (7.8.1):

$$
\begin{equation*}
\dot{q}_{D}=\sum b_{D I}(t, q) \dot{q}_{I}+b_{D}(t, q) \equiv \phi_{D}\left(t, q, \dot{q}_{I}\right) \tag{7.8.4d}
\end{equation*}
$$

the $E_{(I)}\left(\phi_{D}\right) \equiv W^{D}{ }_{I}$ reduce to [ex. 2.12.1, probs. 2.12.2, 2.12.5; (3.8.14g, 14h)]

$$
\begin{aligned}
v_{I}^{D} & \equiv \sum w^{D}{ }_{I I^{\prime}} \dot{q}_{I^{\prime}}+w_{I}^{D} \\
\equiv & \sum\left\{\left(\partial b_{D I} / \partial q_{I^{\prime}}-\partial b_{D I^{\prime}} / \partial q_{I}\right)+\sum\left[\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I^{\prime}}-\left(\partial b_{D I^{\prime}} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}\right]\right\} \dot{q}_{I^{\prime}} \\
& +\left\{\left(\partial b_{D I} / \partial t-\partial b_{D} / \partial q_{I}\right)+\sum\left[\left(\partial b_{D I} / \partial q_{D^{\prime}}\right) b_{D^{\prime}}-\left(\partial b_{D} / \partial q_{D^{\prime}}\right) b_{D^{\prime} I}\right]\right\},(7.8 .4 \mathrm{e})
\end{aligned}
$$

where the $w^{D}{ }_{I I^{\prime}}, w^{D}{ }_{I}$ are the Pfaffian (linear) Voronets coefficients.]
We remark that (i) these are none other than the earlier transitivity equations (5.2.22a, b) (also, recall results of ex. 5.2.3); and (ii) as shown in prob. 2.12.5, the first
choice implies that

$$
\begin{equation*}
0=\left(\delta \theta_{D}\right)^{\cdot} \neq \delta \omega_{D}(\neq 0), \quad \text { but } \quad\left(\delta \theta_{I}\right)^{\cdot}=\delta \omega_{I} \tag{7.8.4f}
\end{equation*}
$$

Let the reader verify that, as a result of the second of (7.8.4f), we can replace in the earlier integral equations ($7.7 .19 \mathrm{~b}, \mathrm{c}$), the index D (and corresponding summation from 1 to m) with k (with summation from 1 to n). [Hint: Invoke (7.7.8); also, recall remark (ii) at end of §7.7.]

Integral Variational Principle Corresponding to the First Transitivity Choice
In this case, (7.7.12) reduces to the familiar (unconstrained) Hamiltonian form:

$$
\begin{equation*}
\int\left(\delta T+\delta^{\prime} W\right) d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} . \tag{7.8.5}
\end{equation*}
$$

Let us find the constrained form of (7.8.5). Applying the chain rule to

$$
\begin{equation*}
T=T(t, q, \dot{q})=T\left[t, q, \dot{q}_{I}, \phi_{D}\left(t, q, \dot{q}_{I}\right)\right] \equiv T_{o}\left(t, q, \dot{q}_{I}\right) \equiv T_{o} \tag{7.8.5a}
\end{equation*}
$$

we readily get

$$
\begin{align*}
& \partial T_{o} / \partial q_{k}=\partial T / \partial q_{k}+\sum\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial \phi_{D} / \partial q_{k}\right), \tag{7.8.5b}\\
& \partial T_{o} / \partial \dot{q}_{I}=\partial T / \partial \dot{q}_{I}+\sum\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right), \tag{7.8.5c}
\end{align*}
$$

and so we find, successively,

$$
\begin{array}{rlr}
\delta T= & \sum\left[\left(\partial T / \partial q_{k}\right) \delta q_{k}+\left(\partial T / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right)\right] \\
= & \sum\left[\partial T_{o} / \partial q_{k}-\sum\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial \phi_{D} / \partial q_{k}\right)\right] \delta q_{k} \\
& +\sum\left[\partial T_{o} / \partial \dot{q}_{I}-\sum\left(\partial T / \partial \dot{q}_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\right] \delta\left(\dot{q}_{I}\right)+\sum\left(\partial T / \partial \dot{q}_{D}\right) \delta\left(\dot{q}_{D}\right) \\
= & \sum\left(\partial T_{o} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right) \\
& +\sum\left(\partial T / \partial \dot{q}_{D}\right)\left\{\delta\left(\dot{q}_{D}\right)-\left[\sum\left(\partial \phi_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)\right]\right\} \\
\equiv & \delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right)\left[\delta\left(\dot{q}_{D}\right)-\delta \phi_{D}\right] & {\left[\text { where } \delta T_{o} \equiv \delta\left(T_{o}\right)\right]} \\
= & \delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right) \delta\left(\dot{q}_{D}-\phi_{D}\right) & {[\text { invoking }(7.8 .4 \mathrm{a})]} \\
= & \delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right) \delta \omega_{D} & \\
= & \delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I}, & \tag{7.8.5d}
\end{array}
$$

and, similarly,

$$
\begin{equation*}
\delta^{\prime} W \equiv \sum Q_{k} \delta q_{k}=\cdots=\sum\left[Q_{I}+\sum\left(\partial \dot{q}_{D} / \partial \dot{q}_{I}\right) Q_{D}\right] \delta q_{I} \equiv \sum Q_{I o} \delta q_{I} \equiv \delta^{\prime} W_{o} \tag{7.8.5e}
\end{equation*}
$$

and, therefore, substituting these expressions into Hamilton's principle (7.8.5), we obtain Voronets' (constrained form of Hamilton's) principle [1901, for the special Pfaffian constraints (7.8.4d)]:

$$
\begin{align*}
& \int\left\{\delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\delta\left(\dot{q}_{D}\right)-\delta \phi_{D}\right]+\delta^{\prime} W_{o}\right\} d t \\
& =\int\left\{\delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I}+\delta^{\prime} W_{o}\right\} d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} \tag{7.8.6}
\end{align*}
$$

that is, the middle term in the integrand equals the correction term:
$\delta T_{\text {unconstrained }}-\delta T_{\text {constrained }} \equiv \delta T-\delta T_{o}$:

$$
\int \delta T d t=\int \delta T_{o} d t+\int\left(\delta T-\delta T_{o}\right) d t=\cdots
$$

Let the reader verify that (7.8.6) also results as the (7.8.1a-2)-based specialization of the earlier general nonholonomic variational equations (7.7.19a, b).

Second Transitivity Choice

In this case, (7.8.2) becomes

$$
\begin{equation*}
\delta \omega_{D}=\delta\left(\dot{q}_{D}\right)-\delta \phi_{D}=0 \Rightarrow \delta\left(\dot{q}_{D}\right)=\delta \phi_{D} \quad\left[\text { definition of } \delta\left(\dot{q}_{D}\right)\right] \tag{7.8.7a}
\end{equation*}
$$

and so we obtain, successively,

$$
\begin{align*}
\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right) & =\left[\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right]^{.}-\delta \phi_{D} \quad\left[\begin{array}{c}
\text { as in }(7.8 .4 \mathrm{a}), \text { and with } \\
\\
\\
\end{array}\right)=\cdots=\sum W_{I}^{D} \delta q_{I} \quad(\neq 0, \text { in general of }(7.8 .3 \mathrm{~b})]
\end{align*}
$$

that is,

$$
\begin{equation*}
\left(\delta q_{D}\right)^{\cdot}=\delta\left(\dot{q}_{D}\right)+\sum W_{I}^{D} \delta q_{I}=\delta \phi_{D}+\sum W_{I}^{D} \delta q_{I} \tag{7.8.7c}
\end{equation*}
$$

Again: (a) these are none other than the earlier transitivity equations (5.2.22a, b) [also, recall results of ex. 5.2.3]; and (b) as shown in prob. 2.12.5, the second choice implies that

$$
\begin{equation*}
\left(\delta \theta_{k}\right)^{\cdot}=\delta \omega_{k}(=0) ; \tag{7.8.7d}
\end{equation*}
$$

that is, both mechanical admissibility $\left[\left(\delta \theta_{D}\right)^{\circ}=0\right]$ and mathematical admissibility $\left[\delta \omega_{D}=0\right]$.

Alternative Derivations of (7.8.7b)
(i) Enforcing the constraints $\delta \theta_{D}=0$ into the general transitivity equations (7.7.14a):

$$
\begin{equation*}
\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)=\sum\left(\partial \dot{q}_{k} / \partial \omega_{b}\right)\left[\left(\delta \theta_{b}\right)^{\cdot}-\delta \omega_{b}\right]+\sum V_{b}^{k} \delta \theta_{b}, \tag{7.8.7e}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right) & =\sum\left(\partial \dot{q}_{D} / \partial \omega_{k}\right)\left[\left(\delta \theta_{k}\right)^{\cdot}-\delta \omega_{k}\right]+\sum V_{I}^{D} \delta \theta_{I} \quad[\text { invoking }(7.8 .7 \mathrm{~d})] \\
& =\sum V_{I}^{D} \delta \theta_{I}=\sum W_{I}^{D} \delta q_{I} \quad[\text { recalling }(7.8 .1 \mathrm{~d}) ; \text { i.e., }(7.8 .7 . \mathrm{b})] . \tag{7.8.7f}
\end{align*}
$$

(ii) Varying $\omega_{D} \equiv f_{D}(t, q, \dot{q})=0$ formally, we obtain

$$
\begin{aligned}
\delta f_{D}= & \sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta\left(\dot{q}_{k}\right) \\
= & \sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)+\sum\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right) \delta\left(\dot{q}_{D^{\prime}}\right) \\
= & \sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{I}\right)\left(\delta q_{I}\right)^{\cdot}+\sum\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right)\left[\left(\delta q_{D^{\prime}}\right)^{\cdot}+S_{D^{\prime}}\right] \\
& \quad\left[\text { where } \delta\left(\dot{q}_{D}\right)-\left(\delta q_{D}\right)^{\cdot} \equiv S_{D} \quad(\text { Suslov term }) \neq 0\right] \\
= & \sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right)\left(\delta q_{k}\right)^{\cdot}+\sum\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right) S_{D^{\prime}} \\
= & \sum\left(\partial f_{D} / \partial q_{k}\right) \delta q_{k}+\left\{\sum\left[\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}\right]^{\cdot}-\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right)^{\cdot} \delta q_{k}\right\} \\
& +\sum\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right) S_{D^{\prime}} \quad[\text { by first of }(7.8 .1 \mathrm{c}),(7.8 .7 \mathrm{~d}), \text { the second sum vanishes }],
\end{aligned}
$$

or

$$
0=\delta \omega_{D} \equiv \delta f_{D}=-\sum\left[\left(\partial f_{D} / \partial \dot{q}_{k}\right)^{\cdot}-\partial f_{D} / \partial q_{k}\right] \delta q_{k}+\sum\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right) S_{D^{\prime}} ;
$$

that is, finally,

$$
\begin{equation*}
\sum\left(\partial f_{D} / \partial \dot{q}_{D^{\prime}}\right)\left[\delta\left(\dot{q}_{D^{\prime}}\right)-\left(\delta q_{D^{\prime}}\right)^{\cdot}\right]=\sum E_{k}\left(f_{D}\right) \delta q_{k} \tag{7.8.7~g}
\end{equation*}
$$

But, here, $f_{D} \equiv \dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)$, and so the left side of (7.8.7g) specializes to

$$
\begin{equation*}
\sum\left(\delta_{D D^{\prime}}\right)\left[\delta\left(\dot{q}_{D^{\prime}}\right)-\left(\delta q_{D^{\prime}}\right)^{\cdot}\right]=\delta\left(\dot{q}_{D}\right)-\left(\delta q_{D}\right)^{\prime} \tag{7.8.7h}
\end{equation*}
$$

while its right side reduces, successively, to (independently of any transitivity assumptions)

$$
\begin{align*}
\sum E_{k}\left(f_{D}\right) \delta q_{k} & =\sum E_{I}\left(f_{D}\right) \delta q_{I}+\sum E_{D^{\prime}}\left(f_{D}\right) \delta q_{D^{\prime}} \\
& =\sum E_{I}\left(f_{D}\right) \delta q_{I}+\sum E_{D^{\prime}}\left(f_{D}\right)\left[\sum\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \delta q_{I}\right] \\
& =\sum\left[E_{I}\left(f_{D}\right)+\sum E_{D^{\prime}}\left(f_{D}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right] \delta q_{I} \\
& =\sum\left[-E_{I}\left(\phi_{D}\right)-\sum\left(\partial \phi_{D} / \partial q_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right] \delta q_{I} \\
& \equiv-\sum E_{(I)}\left(\phi_{D}\right) \delta q_{I} \equiv-\sum W_{I}^{D} \delta q_{I} \tag{7.8.7i}
\end{align*}
$$

recalling ex. 5.2 .3 ; that is, eq. $(7.8 .7 \mathrm{~g})$ specializes to

$$
\begin{equation*}
\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)=\sum E_{(I)}\left(\phi_{D}\right) \delta q_{I} \equiv \sum W_{I}^{D} \delta q_{I} ; \quad \text { i.e. }(7.8 .7 \mathrm{~b}) \tag{7.8.7j}
\end{equation*}
$$

Integral Variational Principle Corresponding to the Second Transitivity Choice

In this case, due to the preceding results, (7.7.12) reduces to Suslov's (unconstrained form of Hamilton's) principle [1901, for the special Pfaffian constraints (7.8.4d)]:

$$
\begin{align*}
& \int\left\{\delta T+\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)\right]+\delta^{\prime} W\right\} d t \\
& =\int\left\{\delta T+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I}+\delta^{\prime} W\right\} d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2} \tag{7.8.8}
\end{align*}
$$

[Suslov called the above "the modification of the d'Alembert principle"; and added, correctly, that our eq. (7.8.8) "in no way represents Hamilton's principle" (i.e., a principle of stationary action, à la variational calculus).]

Let us find the constrained form of (7.8.8); the "Suslovian counterpart of the Voronetsian (7.8.6)." Invoking again (7.8.5a, b, c) and the second of (7.8.7a), consequence of the second transitivity choice, we find, successively,

$$
\begin{aligned}
\delta T= & \sum\left(\partial T / \partial q_{I}\right) \delta q_{I}+\sum\left(\partial T / \partial q_{D}\right) \delta q_{D}+\sum\left(\partial T / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)+\sum\left(\partial T / \partial \dot{q}_{D}\right) \delta\left(\dot{q}_{D}\right) \\
= & \sum\left[\partial T_{o} / \partial q_{I}-\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial q_{I}\right)\right] \delta q_{I} \\
& +\sum\left[\partial T_{o} / \partial q_{D}-\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial q_{D}\right)\right] \delta q_{D} \\
& +\sum\left[\partial T_{o} / \partial \dot{q}_{I}-\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right)\right] \delta\left(\dot{q}_{I}\right) \\
& +\sum\left(\partial T / \partial \dot{q}_{D}\right) \delta\left(\dot{q}_{D}\right) \\
= & \sum\left(\partial T_{o} / \partial q_{I}\right) \delta q_{I}+\sum\left(\partial T_{o} / \partial q_{D}\right) \delta q_{D} \\
& +\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)+\sum\left(\partial T / \partial \dot{q}_{D}\right) \delta\left(\dot{q}_{D}\right) \\
& -\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right)\left[\sum\left(\partial \phi_{D^{\prime}} / \partial q_{I}\right) \delta q_{I}+\sum\left(\partial \phi_{D^{\prime}} / \partial q_{D}\right) \delta q_{D}\right. \\
& \left.+\sum\left(\partial \phi_{D^{\prime}} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)\right]
\end{aligned}
$$

[by (7.8.7a), the fourth and last sum, which equals
$-\sum\left(\partial T / \partial \dot{q}_{D^{\prime}}\right) \delta \phi_{D^{\prime}}$, cancel with each other]
$=\sum\left(\partial T_{o} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)$ $=\delta T_{o}$
[notice carefully the slightly different steps taken between the above and (7.8.5d), of the Voronetsian case]. As a result of (7.8.9), and (7.8.5e), and so on, again, Suslov's principle (7.8.8) can be rewritten, in the definitive constrained form:

$$
\begin{align*}
& \int\left\{\delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)\right]+\delta^{\prime} W_{o}\right\} d t \\
& =\int\left\{\delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I}+\delta^{\prime} W_{o}\right\} d t=\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right)_{o} \delta q_{k}\right\}_{1}^{2}, \tag{7.8.10}
\end{align*}
$$

which coincides with (7.8.6), as it should.

REMARKS

(i) Thanks to (7.8.1c), δT_{o} can be transformed further as follows:

$$
\begin{align*}
\delta T_{o} & =\sum\left\{\left[\partial T_{o} / \partial q_{I}+\sum\left(\partial T_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\right] \delta q_{I}+\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)\right\} \\
& {\left[\equiv \sum\left(\partial T_{o} / \partial q_{(I)}\right) \delta q_{I}+\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)\right] } \\
& =\left[\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right) \delta q_{I}\right]^{\cdot}-\sum\left[\left(\partial T_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial T_{o} / \partial q_{I}-\sum\left(\partial T_{o} / \partial q_{D}\right)\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\right] \delta q_{I} \\
& \equiv\left[\sum\left(\partial T_{o} / \partial \dot{q}_{I}\right) \delta q_{I}\right]^{\cdot}-\sum E_{(I)}\left(T_{o}\right) \delta q_{I}, \tag{7.8.11}
\end{align*}
$$

and, substituting this expression in (7.8.10) or (7.8.6), we obtain at once the nonlinear equations of Voronets and Chaplygin (ex. 5.3.4).
(ii) The Suslov form (7.8.10) can also be derived directly from the fundamental form (7.7.11) as follows. Invoking (7.8.7b) we find, successively,

$$
\begin{align*}
& \sum\left[\left(\partial T / \partial q_{k}\right) \delta q_{k}+\left(\partial T / \partial \dot{q}_{k}\right)\left(\delta q_{k}\right)^{\cdot}\right] \\
& =\sum\left(\partial T / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial T / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right) \\
& +\sum\left(\partial T / \partial \dot{q}_{D}\right)\left[\delta\left(\dot{q}_{D}\right)+\sum W^{D}{ }_{I} \delta q_{I}\right] \\
& =\sum\left(\partial T / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial T / \partial \dot{q}_{I}\right) \delta\left(\dot{q}_{I}\right)+\sum\left(\partial T / \partial \dot{q}_{D}\right) \delta\left(\dot{q}_{D}\right) \\
& +\sum \sum\left(\partial T / \partial \dot{q}_{D}\right) W^{D}{ }_{I} \delta q_{I} \\
& =\delta T+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I} \quad \text { [then invoking (7.8.9)] } \\
& =\delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D}{ }_{I} \delta q_{I}, \quad \text { Q.E.D.; } \tag{7.8.12}
\end{align*}
$$

and analogously for the Voronets case (7.8.6).
(iii) In both the Voronets and Suslov principles,

$$
\begin{aligned}
& T \rightarrow T_{o}\left(t, q, \dot{q}_{I}\right) \rightarrow \delta T_{o} \\
& \partial T / \partial \dot{q}_{D} \rightarrow\left(\partial T / \partial \dot{q}_{D}\right)_{o}=p_{D}\left[t, q, \dot{q}_{I}, \phi_{D}\left(t, q, \dot{q}_{I}\right)\right] \equiv p_{D, o}\left(t, q, \dot{q}_{I}\right) \equiv p_{D o},
\end{aligned}
$$

and so the boundary term assumes the constrained form

$$
\left\{\sum\left(\partial T / \partial \dot{q}_{k}\right) \delta q_{k}\right\}_{1}^{2}=\cdots=\left\{\sum(\ldots)_{I} \delta q_{I}\right\}_{1}^{2}
$$

(iv) The result of the indicated operations in these integral formulae (integrations by parts, etc.) will have the form

$$
\begin{equation*}
\int\left\{(\ldots) \delta q_{m+1}+\cdots+(\ldots) \delta q_{n}\right\} d t=\left\{\sum(\ldots)_{I} \delta q_{I}\right\}_{1}^{2} \equiv B T \tag{7.8.13}
\end{equation*}
$$

and setting each $(\ldots)_{I}$ term of its integrand equal to zero will yield the $n-m$ kinetic equations of Voronets-Chaplygin.
(v) From the special nonholonomic form (7.8.8), we can easily go to the general nonholonomic forms (7.7.15a $\Rightarrow 7.7 .19 \mathrm{a}$) by inserting into the former the following
substitutions/transformations:

$$
\begin{align*}
& \dot{q}_{k}=\dot{q}_{k}(t, q, \omega), \quad \delta q_{k}=\sum\left(\partial \dot{q}_{k} / \partial \omega_{I}\right) \delta \theta_{I}, \\
& \Rightarrow\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)=\sum W_{I}^{D} \delta q_{I}=\sum \sum W_{I^{\prime}}^{D}\left(\partial \dot{q}_{I^{\prime}} / \partial \omega_{I}\right) \delta \theta_{I} \\
& \equiv \sum B_{I}^{D} \delta \theta_{I} \quad \text { (definition of special nonlinear Voronets } \\
&\left.\quad \text { coefficients } B_{I}^{D}\right) ; \tag{7.8.14}
\end{align*}
$$

noticing that $\delta T=\delta T^{*}$, and so on. (Remember the similar generalization in the Pfaffian case: probs. 3.8.2 and 3.8.3.)

Summary

In nonholonomic systems, Hamilton's variational equation is never $\int\left(\delta T_{o}+\delta^{\prime} W_{o}\right)$ $d t=B T$, but it is $\int\left[\delta T_{o}+\delta^{\prime} W_{o}+\right.$ correction term involving $\left.(\delta q)^{\cdot}-\delta(\dot{q})\right] d t=B T$; and similarly in quasi variables, otherwise we lose the term $-\Gamma_{I}$ in the kinetic equations of motion.

To transform the unavoidable expression [holonomic variable counterpart of (7.7.15c)]

$$
\begin{equation*}
\int\left\{\delta T+\sum\left(\partial T / \partial \dot{q}_{k}\right)_{o}\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]\right\} d t \tag{7.8.15a}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta T=\delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} \delta \omega_{D}=\delta T_{o}+\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} \delta\left(\dot{q}_{D}-\phi_{D}\right), \tag{7.8.15b}
\end{equation*}
$$

which appears in the basic integral variational formula (7.7.12), and thus derive the correct equations of motion in the variables involved there, we have the following two viewpoints:
(i) Voronets, Hölder, Hamel, et al.

$$
\begin{gathered}
\delta T=\delta T_{o}+\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I} \quad\left[\Rightarrow(\delta T)_{o} \neq \delta T_{o}\right], \\
\sum\left(\partial T / \partial \dot{q}_{k}\right)\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]=0,
\end{gathered}
$$

that is,

$$
\left.\begin{array}{rl}
0 & \neq \delta \omega_{D}=\delta\left(\dot{q}_{D}-\phi_{D}\right)=\delta\left(\dot{q}_{D}\right)-\delta \phi_{D} \quad\left[\text { assumption: } \delta\left(\dot{q}_{D}\right)=\left(\delta q_{D}\right)^{\cdot}\right] \\
& =\left(\delta q_{D}\right)^{\cdot}-\delta \phi_{D}=\left[\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right] \tag{7.8.16a}
\end{array}\right]-\delta \phi_{D}=\cdots=\sum W_{I}^{D} \delta q_{I} ;
$$

(ii) Suslov (also Levi-Civita/Amaldi, Rumiantsev, Greenwood, et al.)

$$
\begin{aligned}
& \delta T=\delta T_{o} \quad\left[\Rightarrow(\delta T)_{o}=\delta T_{o}\right] \\
& \sum\left(\partial T / \partial \dot{q}_{k}\right)_{o}\left[\left(\delta q_{k}\right)^{\cdot}-\delta\left(\dot{q}_{k}\right)\right]=\sum\left(\partial T / \partial \dot{q}_{D}\right)_{o}\left[\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)\right] \\
&=\sum \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I},
\end{aligned}
$$

where

$$
\begin{align*}
0 & \left.=\delta \omega_{D}=\delta\left[\dot{q}_{D}-\phi_{D}\left(t, q, \dot{q}_{I}\right)\right] \quad \text { [i.e., assumption: } \delta\left(\dot{q}_{D}\right)=\delta \phi_{D}\right] \\
& \Rightarrow\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)=\left[\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right) \delta q_{I}\right]^{\cdot}-\delta \phi_{D}=\cdots=\sum W_{I}^{D} \delta q_{I} . \tag{7.8.16b}
\end{align*}
$$

Both these viewpoints are internally consistent, and completely equivalent to each other; that is, if applied correctly they yield the same equations of motion.

Resuming, next, our discussion from the last part of $\S 7.6$, let us present some additional forms.

Additional Forms of the Coincidence Conditions

(i) First Transitivity Assumption (Hölder-Voronets-Hamel)

Comparing the integral forms (7.6.4) and (7.6.5c), we see that they coincide, provided that

$$
\begin{equation*}
\int \sum \mu_{D} \delta f_{D} d t=\int \sum \lambda_{D} \delta \theta_{D} d t=0 \tag{7.8.17a}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \theta_{D}=\sum\left(\partial f_{D} / \partial \dot{q}_{k}\right) \delta q_{k}=0 \quad \text { (virtual variations) } \tag{7.8.17b}
\end{equation*}
$$

Since here $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$, and, therefore [recalling (7.7.7)],

$$
\begin{gather*}
\delta f_{D}=-\sum E_{k}\left(f_{D}\right) \delta q_{k} \equiv-\sum E_{k}\left(\omega_{D}\right) \delta q_{k}=\delta\left(\dot{\theta}_{D}\right) \equiv \delta \omega_{D} \neq 0 \\
\text { (mathematically nonadmissible variations), } \tag{7.8.17c}
\end{gather*}
$$

sufficient conditions for (7.8.17a) to hold are $\delta f_{D}=0$; that is, the system be holonomic.
\{Condition (7.8.17a) [which, in view of (7.8.17c), is the same as (7.6.9b)], seems to be due to Jeffreys [1954, eqs. $(10,11)]$.\}
(ii) Second Transitivity Assumption
(Suslov-Levi-Civita-Rumiantsev-Greenwood)
In this case, as $(7.8 .6,10)$ with $\delta^{\prime} W=\delta^{\prime} W_{o}=0$ readily show, the coincidence condition becomes

$$
\begin{equation*}
\int\left[\sum \sum\left(\partial L / \partial \dot{q}_{D}\right)_{o} W_{I}^{D} \delta q_{I}\right] d t=0 \Rightarrow \sum\left(\partial L / \partial \dot{q}_{D}\right)_{o} W_{I}^{D}=0 \tag{7.8.17d}
\end{equation*}
$$

[Further, if the constraints have the special form (7.8.1), then, invoking (7.8.4a), (7.8.7i), (7.8.17c) we deduce from $(7.6 .9 \mathrm{~b}) \Rightarrow$ (7.8.17a) the following (multipliercontaining) conditions:

$$
\begin{equation*}
\sum\left(\sum \mu_{D} W_{I}^{D}\right) \delta q_{I}=0 \Rightarrow \sum \mu_{D} W_{I}^{D}=0 \tag{7.8.17e}
\end{equation*}
$$

Conditions (7.8.17d) and (7.8.17e) seem to be due to Rumiantsev [1978, eqs. (3.5.6)]. Clearly, (7.8.7d), are easier to apply, since they do not involve (generally unknown) multipliers.]
Then, the nonlinear Voronets equations (ex. 5.3.4) reduce to the "holonomic form":

$$
\begin{align*}
E_{(I)}\left(L_{o}\right) & \equiv\left(\partial L_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\left[\partial L_{o} / \partial q_{I}+\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial L_{o} / \partial q_{D}\right)\right] \\
& \equiv\left(\partial L_{o} / \partial \dot{q}_{I}\right)^{\cdot}-\partial L_{o} / \partial\left(q_{I}\right) \\
& \equiv E_{I}\left(L_{o}\right)-\sum\left(\partial \phi_{D} / \partial \dot{q}_{I}\right)\left(\partial L_{o} / \partial q_{D}\right)=0 . \tag{7.8.17f}
\end{align*}
$$

As expected, the "potentialness" conditions (7.6.9b) and (7.8.17d, e) are very rarely satisfied, even for Pfaffian nonholonomic constraints. For the particular (or classes of) motions where that happens, Hamilton's principle becomes a stationarity principle.

In closing, we urge the reader to ponder carefully over the similarities, differences, internal consistency, and ultimate equivalence of these, and conceivably many more (admittedly slippery and sometimes confusing), IVPs.

Example 7.8.1 Motion of a Particle of Mass $m=1$, on a Fixed Plane O-xy in a Potential Field $V=V(x, y)$ and Under the Pfaffian Constraint

$$
\begin{equation*}
t \dot{x}-\dot{y}=0 \Rightarrow t \delta x-\delta y=0, \tag{a}
\end{equation*}
$$

under the Suslov and Hölder-Voronets-Hamel Variational Principles (Mei, 1985, pp. 70-72; also Rosenberg, 1977, pp. 172-173).
(i) Suslov approach. With the choice $q_{I(\text { Independent })}=q_{1}=x$ and $q_{D(\text { Dependent })}=$ $q_{2}=y$, we shall have

$$
\begin{equation*}
\dot{q}_{D}=\phi_{D}\left(t, q, \dot{q}_{I}\right): \quad \dot{y}=\phi(t, \dot{x})=t \dot{x}, \tag{b}
\end{equation*}
$$

and

$$
\begin{align*}
& (\delta x)^{\cdot}-\delta(\dot{x})=0 \tag{cl}\\
& (\delta y)^{\cdot}-\delta(\dot{y})=(t \delta x)^{\cdot}-\delta(t \dot{x})=\delta x+t(\delta x)^{\cdot}-t \delta(\dot{x})=\delta x \tag{c2}
\end{align*}
$$

that is,

$$
\begin{equation*}
W_{I}^{D} \rightarrow W_{x}^{y}\left(\equiv v_{x}^{y}\right)=1 ; \tag{c3}
\end{equation*}
$$

or, applying the general theory,

$$
\begin{align*}
\delta(\dot{y}) & =(\delta y)^{\cdot}-\left[(\partial \phi / \partial \dot{x})^{\cdot}-\partial \phi / \partial x-(\partial \phi / \partial y)(\partial \phi / \partial \dot{x})\right] \delta x \\
& =(t \delta x)^{\cdot}-\left[(t)^{\cdot}-0-0\right] \delta x=t \delta(\dot{x}) \equiv t(\delta x)^{\cdot} . \tag{c4}
\end{align*}
$$

Therefore, the Suslov variation of the unconstrained Lagrangean of the system

$$
\begin{equation*}
L=(1 / 2)\left[(\dot{x})^{2}+(\dot{y})^{2}\right]-V(x, y), \tag{d1}
\end{equation*}
$$

is, successively,

$$
\begin{align*}
\delta L=\dot{x} \delta(\dot{x}) & +\dot{y} \delta(\dot{y})-(\partial V / \partial x) \delta x-(\partial V / \partial y) \delta y \quad[\text { then enforcing }(\mathrm{a}, \mathrm{~b}, \mathrm{c} 1-4)] \\
\delta L \rightarrow(\delta L)_{o} & =\dot{x} \delta(\dot{x})+(t \dot{x}) \delta(t \dot{x})-[\partial V / \partial x+t(\partial V / \partial y)] \delta x \\
& =\left(1+t^{2}\right) \dot{x} \delta(\dot{x})-[\partial V / \partial x+t(\partial V / \partial y)] \delta x \\
& =\left(1+t^{2}\right) \dot{x}(\delta x)^{\cdot}-[\partial V / \partial x+t(\partial V / \partial y)] \delta x, \tag{d2}
\end{align*}
$$

and so the unconstrained Suslov principle (7.8.8), with

$$
(\partial L / \partial \dot{y})_{o}\left[(\delta y)^{\cdot}-\delta(\dot{y})\right]=(t \dot{x}) \delta x, \quad \text { Boundary terms } \equiv B T \rightarrow 0, \text { and } \delta^{\prime} W_{n p}=0
$$ yields

$$
\begin{align*}
0 & =\int\left\{(\delta L)_{o}+(\partial L / \partial \dot{y})_{o}\left[(\delta y)^{\cdot}-\delta(\dot{y})\right]\right\} d t \\
& =\int\left\{\left(1+t^{2}\right) \dot{x}(\delta x)^{\cdot}-[-(t \dot{x})+\partial V / \partial x+t(\partial V / \partial y)]\right\} d t \tag{d3}
\end{align*}
$$

Had we enforced the constraint (a) into L right from the start [i.e., before $\delta(\ldots)$-varying], then

$$
\begin{equation*}
L \rightarrow L_{o}=(1 / 2)\left[(\dot{x})^{2}+(t \dot{x})^{2}\right]-V(x, y) \tag{el}
\end{equation*}
$$

and, accordingly,

$$
\begin{align*}
\delta L_{o} & =\dot{x} \delta(\dot{x})+t^{2} \dot{x} \delta(\dot{x})-(\partial V / \partial x) \delta x-(\partial V / \partial y)(\delta y)_{o} \\
& =\left(1+t^{2}\right) \dot{x} \delta(\dot{x})-[\partial V / \partial x+t(\partial V / \partial y)] \delta x ; \tag{e2}
\end{align*}
$$

that is, $\delta L=\delta L_{o}$, as expected by (7.8.9); and, hence, (d3) is the same as that obtained by applying (7.8.10). Integrating (d3) by parts, and so on, we readily find

$$
\begin{equation*}
0=\int\left\{-\left[\left(1+t^{2}\right) \dot{x}\right]^{\cdot}-[-t \dot{x}+(\partial V / \partial x+t(\partial V / \partial y))]\right\} \delta x d t \tag{f1}
\end{equation*}
$$

and from this we get the following single (kinetic) Chaplygin-Voronets equation:

$$
\begin{equation*}
\left[\left(1+t^{2}\right) \dot{x}\right]^{\cdot}+t \dot{x}=-[\partial V / \partial x+t(\partial V / \partial y)] ; \tag{f2}
\end{equation*}
$$

which, along with the constraint (a), constitute a determinate system for $x(t)$ and $y(t)$.
(ii) Hölder-Voronets-Hamel approach. Here

$$
\begin{equation*}
\delta(\dot{x})=(\delta x)^{\cdot} \quad \text { and } \quad \delta(\dot{y})=(\delta y)^{\circ} \tag{g1}
\end{equation*}
$$

or, due to (a),

$$
\begin{align*}
& (\delta y)^{\cdot}=(t \delta x)^{\cdot}=\delta x+t(\delta x)^{\cdot}=\delta x+t \delta(\dot{x})=\delta(\dot{y}) \quad(=\delta x+\delta \phi, \quad \phi=t \dot{x}) \\
& \Rightarrow \delta(\dot{y})-\delta \phi=\delta x \tag{g2}
\end{align*}
$$

Therefore, varying L accordingly we find

$$
\begin{align*}
\delta L=\dot{x} \delta(\dot{x}) & +\dot{y} \delta(\dot{y})-\delta V \quad[t h e n ~ e n f o r c i n g ~(a, ~ b, ~ \mathrm{~g} 1-2)] \\
\delta L \rightarrow(\delta L)_{o} & =\dot{x} \delta(\dot{x})+(t \dot{x})[\delta x+t \delta(\dot{x})]-(\partial V / \partial x) \delta x-(\partial V / \partial y) \delta y \\
& =\left(1+t^{2}\right) \dot{x} \delta(\dot{x})-[\partial V / \partial x+t(\partial V / \partial y)] \delta x+(t \dot{x}) \delta x \\
& =\left(1+t^{2}\right) \dot{x}(\delta x)^{-}-[-(t \dot{x})+\partial V / \partial x+t(\partial V / \partial y)] \delta x \\
& =\delta L_{o}+(t \dot{x}) \delta x \\
\left\{=\delta L_{o}\right. & +(\partial L / \partial \dot{y})_{o}[\delta(\dot{y})-\delta \phi], \quad \text { in accordance with }(7.8 .5 \mathrm{~d}) \\
\neq \delta L_{o} & \left.=\left(1+t^{2}\right) \dot{x} \delta(\dot{x})-\delta V ; \text { we notice difference from (d2, e2) }\right\}, \tag{h1}
\end{align*}
$$

and so the Hölder-Voronets principle (7.8.6), with $B T \rightarrow 0$ and $\delta^{\prime} W_{n p}=0$, yields

$$
\begin{align*}
0 & \left.=\int \delta L d t=\int(\delta L)_{o} d t=\int\left\{\delta L_{o}+(\partial L / \partial \dot{y})_{o}[\delta(\dot{y})-\delta \phi)\right]\right\} d t \\
& =\int\left\{\left(1+t^{2}\right) \dot{x}(\delta x)^{\cdot}+[t \dot{x}-\partial V / \partial x-t(\partial V / \partial y)] \delta x\right\} d t, \tag{h2}
\end{align*}
$$

which, as an integration by parts of the first integrand term shows, coincides with the Suslov results (f1, 2).

Generally, we have:

- Suslov-Rumiantsev-Greenwood approach:

$$
\begin{gather*}
\left(\delta q_{D}\right)^{\cdot}-\delta\left(\dot{q}_{D}\right)=\left(\sum b_{D I} \delta q_{I}\right)^{\cdot}-\delta\left(\sum b_{D I} \dot{q}_{I}+b_{D}\right)=\cdots \equiv \sum W_{I}^{D} \delta q_{I} \\
\Rightarrow \delta\left(\dot{q}_{D}\right)=\left(\delta q_{D}\right)^{\cdot}-\sum W_{I}^{D} \delta q_{I} . \tag{i1}
\end{gather*}
$$

- Hölder-Voronets-Hamel approach:

$$
\left.\left.\begin{array}{rl}
\delta f_{D} & =\delta\left(\dot{q}_{D}\right)-\delta \phi_{D}=\left(\delta q_{D}\right)^{\cdot}-\delta \phi_{D} \\
=\left(\sum b_{D I} \delta q_{I}\right.
\end{array}\right)-\delta\left(\sum b_{D I} \dot{q}_{I}+b_{D}\right)=\cdots \equiv \sum W_{I}^{D} \delta q_{I} \neq 0\right)
$$

Appendix: elementary solution. The Newton-Euler equation in the tangential direction is

$$
\begin{align*}
d v / d t & =-\partial V / \partial s=-[(\partial V / \partial x)(d x / d s)+(\partial V / \partial y)(d y / d s)] \quad(\text { where } v \equiv d s / d t) \\
& =-[(\partial V / \partial x)(d x / d s)+(\partial V / \partial y)(d y / d x)(d x / d s)] \\
& =-(d x / d s)[(\partial V / \partial x)+(\partial V / \partial y)(d y / d x)] \tag{j}
\end{align*}
$$

and, since (with ϕ : angle between $O x$ and path tangent),

$$
\begin{array}{ll}
d x / d s=\cos \phi, & \cos ^{2} \phi=\left(1+\tan ^{2} \phi\right)^{-1} \\
& \tan \phi=\dot{y} / \dot{x}=t \Rightarrow d x / d s=\left(1+t^{2}\right)^{-1 / 2}
\end{array}
$$

and

$$
d s=d x / \cos \phi \Rightarrow v=\dot{x}\left(1+t^{2}\right)^{1 / 2}
$$

(j) is easily seen to coincide with the earlier (f2).

Example 7.8.2 Rolling Disk via the Suslov and Voronets Principles. Let us describe the application of the Suslov and Voronets forms of Hamilton's principle to the derivation of the equations of the rolling of a thin homogeneous circular disk of mass m and radius r on a rough horizontal and fixed plane $O-X Y$.

The kinematics and kinetics of this well-known problem have already been detailed in §1.17, eqs. (1.17.17a) ff. (Eulerian treatment), ex. 2.13.7 (Lagrangean kinematics), and ex. 3.18.5 (Lagrangean kinetics). It was found there that the constraints are [in terms of the coordinates of its contact point $C(X, Y, Z=0)$ along space-fixed axes $O-X Y Z$ and with $q_{D} \equiv q_{1,2}: X, Y$, and $q_{I} \equiv q_{3,4,5}: \phi, \theta, \psi:$ Eulerian angles of body-fixed axes at G relative to $O-X Y Z]$

$$
\begin{equation*}
\boldsymbol{v}_{C, \text { tangent }} \equiv f_{1}=\dot{X}+(r \cos \phi) \dot{\psi}=0, \quad \boldsymbol{v}_{C, \text { normal }} \equiv f_{2}=\dot{Y}+(r \sin \phi) \dot{\psi}=0 \tag{a}
\end{equation*}
$$

The unconstrained Lagrangean of the system (under gravity) is

$$
\begin{align*}
L \equiv & T-V \\
= & (m / 2)\left\{\left[(X-r \cos \theta \sin \phi)^{\circ}\right]^{2}+\left[(Y+r \cos \theta \cos \phi)^{\circ}\right]^{2}+\left[(r \sin \theta)^{\cdot}\right]^{2}\right\} \\
& +(1 / 2)\left[I_{x}(\dot{\theta})^{2}+I_{y}(\dot{\phi} \sin \theta)^{2}+I_{z}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}\right]-m g r \sin \theta \tag{b}
\end{align*}
$$

and the principal moments of inertia of the disk at G are $I_{x, y}=m r^{2} / 4, I_{z}=m r^{2} / 2$.
(i) Hölder-Voronets-Hamel approach. From (a) we find, successively,

$$
\begin{align*}
\delta f_{1} \equiv \delta \omega_{1} & =\delta(\dot{X})+(-r \sin \phi \delta \phi) \dot{\psi}+r \cos \phi \delta(\dot{\psi}) \\
& =(\delta X)^{\cdot}-r \dot{\psi} \sin \phi \delta \phi+r \cos \phi(\delta \psi)^{\cdot} \\
& =(-r \cos \phi \delta \psi)^{\cdot}-r \dot{\psi} \sin \phi \delta \phi+r \cos \phi(\delta \psi)^{\cdot} \quad[\text { by first of }(\mathrm{a})] \\
& =\cdots=(-r \sin \phi \dot{\psi}) \delta \phi+(r \sin \phi \dot{\phi}) \delta \psi \neq 0 \tag{cl}\\
\delta f_{2} \equiv \delta \omega_{2} & =\cdots=(r \cos \phi \dot{\psi}) \delta \phi+(-r \cos \phi \dot{\phi}) \delta \psi \neq 0 \tag{c2}
\end{align*}
$$

that is,

$$
\begin{align*}
& W_{\phi}^{Z}=-r \sin \phi \dot{\psi}, \quad W_{\theta}^{Z}=0, \quad W_{\psi}^{Z}=r \sin \phi \dot{\phi}, \tag{c3}\\
& W^{Y}{ }_{\phi}=r \cos \phi \dot{\psi}, \quad W_{\theta}^{Y}=0, \quad W^{Y}{ }_{\psi}=-r \cos \phi \dot{\phi} ; \tag{c4}
\end{align*}
$$

and, accordingly [with $\dot{X}=\phi_{X}(\dot{\phi}, \dot{\theta}, \dot{\psi} ; \phi, \theta, \psi), \dot{Y}=\phi_{Y}(\dot{\phi}, \dot{\theta}, \dot{\psi} ; \phi, \theta, \psi)$, from (a)],

$$
\delta(\dot{X})=(\delta X)^{\cdot}=\delta \phi_{X}+W_{\phi}^{X} \delta \phi+W_{\theta}^{X} \delta \theta+W_{\psi}^{X} \delta \psi
$$

that is,

$$
\begin{align*}
& (-r \cos \phi \delta \psi)^{\cdot}=\delta(-r \cos \phi \dot{\psi})+(-r \sin \phi \dot{\psi}) \delta \phi+(0) \delta \theta+(r \sin \phi \dot{\phi}) \delta \psi \\
& \Rightarrow \delta(\dot{X})=(r \dot{\phi} \sin \phi) \delta \psi+(-r \cos \phi) \delta(\dot{\psi}) \tag{c5}\\
& \delta(\dot{Y})=(\delta Y)^{\cdot}=\delta \phi_{Y}+W_{\phi}^{Y} \delta \phi+W_{\theta}^{Y} \delta \theta+W_{\psi}^{Z} \delta \psi
\end{align*}
$$

that is,

$$
\begin{align*}
& (-r \sin \phi \delta \psi)^{\cdot}=\delta(-r \sin \phi \dot{\psi})+(r \cos \phi \dot{\psi}) \delta \phi+(0) \delta \theta+(-r \cos \phi \dot{\phi}) \delta \psi \\
& \Rightarrow \delta(\dot{Y})=(-r \dot{\phi} \cos \phi) \delta \psi+(-r \sin \phi) \delta(\dot{\psi}) \tag{c6}
\end{align*}
$$

Then, Voronets' principle yields

$$
\begin{aligned}
0=\int \delta L d t= & \int[(\partial L / \partial \dot{X}) \delta(\dot{X})+(\partial L / \partial \dot{Y}) \delta(\dot{Y}) \\
& +(\partial L / \partial \dot{\phi}) \delta(\dot{\phi})+(\partial L / \partial \dot{\theta}) \delta(\dot{\theta})+(\partial L / \partial \dot{\psi}) \delta(\dot{\psi}) \\
& +(\partial L / \partial \phi) \delta \phi+(\partial L / \partial \theta) \delta \theta] d t
\end{aligned}
$$

[integrating by parts, and using (b), and (c5, 6) for $\delta(\dot{X}), \delta(\dot{Y})$]

$$
\begin{equation*}
=\int[(\ldots) \delta \phi+(\ldots) \delta \theta+(\ldots) \delta \psi] d t \tag{c7}
\end{equation*}
$$

and the corresponding equations of motion will result by setting the coefficients of $\delta \phi / \delta \theta / \delta \psi$, in the above, equal to zero. These will be the kinetic equations of Maggi \Rightarrow Voronets of the problem [the latter resulting by eliminating \dot{X}, \dot{Y}, from L via (a)]. The details are left to the reader.
(ii) Suslov approach. In this case,

$$
\begin{equation*}
\delta f_{1}=0, \delta f_{2}=0 ; \quad(\delta \phi)^{\cdot}=\delta(\dot{\phi}), \quad(\delta \theta)^{\circ}=\delta(\dot{\theta}), \quad(\delta \psi)^{\cdot}=\delta(\dot{\psi}) \tag{d1}
\end{equation*}
$$

and therefore, invoking (c3, 4),

$$
\begin{align*}
(\delta X)^{\cdot}-\delta(\dot{X}) & =(-r \cos \phi \delta \psi)^{\cdot}-\delta(-r \cos \phi \dot{\psi}) \\
& =W_{\phi}^{X} \delta \phi+W_{\theta}^{X} \delta \theta+W_{\psi}^{X} \delta \psi \\
& =(-r \sin \phi \dot{\psi}) \delta \phi+(0) \delta \theta+(r \sin \phi \dot{\phi}) \delta \psi \\
\Rightarrow \delta(\dot{X}) & =(\delta X)^{\cdot}-\left(W^{X}{ }_{\phi} \delta \phi+W_{\theta}^{X} \delta \theta+W_{\psi}^{X} \delta \psi\right) \\
& =(r \sin \phi \dot{\psi}) \delta \phi-r \cos \phi \delta(\dot{\psi}) \quad \text { [compare with }(\mathrm{c} 5)] ; \tag{d2}\\
(\delta Y)^{\cdot}-\delta(\dot{Y}) & =(-r \sin \phi \delta \psi)^{\cdot}-\delta(-r \sin \phi \dot{\psi}) \\
& =W_{\phi}^{Y} \delta \phi+W_{\theta}^{Y} \delta \theta+W_{\psi}^{Y} \delta \psi \\
& =(r \cos \phi \dot{\psi}) \delta \phi+(0) \delta \theta+(-r \cos \phi \dot{\phi}) \delta \psi \\
\Rightarrow \delta(\dot{Y}) & =(\delta Y)^{\cdot}-\left(W_{\phi}^{Y} \delta \phi+W_{\theta}^{Y} \delta \theta+W_{\psi}^{Y} \delta \psi\right) \\
& =(-r \cos \phi \dot{\psi}) \delta \phi+(-r \sin \phi) \delta(\dot{\psi}) \quad[\text { compare with }(\mathrm{c} 6)] . \tag{d3}
\end{align*}
$$

Then, the constrained Suslov principle (7.8.10) yields

$$
\begin{align*}
0 & =\int\left\{\delta L_{o}+(\partial T / \partial \dot{X})_{o}\left[(\delta X)^{\cdot}-\delta(\dot{X})\right]+(\partial T / \partial \dot{Y})_{o}\left[(\delta Y)^{\cdot}-\delta(\dot{Y})\right]\right\} d t \\
& =\cdots=\int[(\ldots) \delta \phi+(\ldots) \delta \theta+(\ldots) \delta \psi] d t, \tag{d4}
\end{align*}
$$

which results in Voronets-type equations, as explained earlier.
(iii) Stationarity (or coincidence) conditions. Let us, finally, examine whether the above Hamilton-like variational expressions of Voronets and Suslov are genuine stationarity conditions. Invoking the constraints (a) and (b) provides the constrained momenta

$$
\begin{align*}
(\partial L / \partial \dot{X})_{o} & =(\partial T / \partial \dot{X})_{o} \\
& =m(\dot{X}+r \dot{\theta} \sin \phi \sin \theta-r \dot{\phi} \cos \phi \cos \theta)_{o} \\
& =m[(-r \cos \phi \cos \theta) \dot{\phi}+(r \sin \phi \sin \theta) \dot{\theta}+(-r \cos \phi) \dot{\psi}], \tag{el}\\
(\partial L / \partial \dot{Y})_{o} & =(\partial T / \partial \dot{Y})_{o} \\
& =m(\dot{Y}-r \dot{\theta} \cos \phi \sin \theta-r \dot{\phi} \sin \phi \cos \theta)_{o} \\
& =m[(-r \sin \phi \cos \theta) \dot{\phi}+(-r \cos \phi \sin \theta) \dot{\theta}+(-r \sin \phi) \dot{\psi}] ; \tag{e2}
\end{align*}
$$

and so, invoking (c3, 4), the coincidence conditions (7.8.17d) give

$$
\begin{array}{ll}
\phi: & (\partial L / \partial \dot{X})_{o} W_{\phi}^{X}+(\partial L / \partial \dot{Y})_{o} W_{\phi}^{Y}=\cdots=-m r^{2} \dot{\theta} \dot{\psi} \sin \theta=0 \\
\theta: & (\partial L / \partial \dot{X})_{o} W_{\theta}^{X}+(\partial L / \partial \dot{Y})_{o} W_{\theta}^{Y}=m(\ldots)(0)+m(\ldots)(0)=0, \\
\psi: & (\partial L / \partial \dot{X})_{o} W_{\psi}^{X}+(\partial L / \partial \dot{Y})_{o} W_{\psi}^{Y}=\cdots=m r^{2} \dot{\phi} \dot{\theta} \sin \theta=0 . \tag{e5}
\end{array}
$$

Since, on physically nontrivial grounds $\sin \theta \neq 0$, eqs. (e3-5) are satisfied either when $\quad \dot{\theta}=0 \Rightarrow \theta=$ constant $(\neq 0)$, or when $\dot{\phi}=0 \Rightarrow \phi=$ constant and $\dot{\psi}=0 \Rightarrow \psi=$ constant. The first possibility indicates rolling of the disk at a constant nutation angle (to the vertical $G Z$ or $O Z$); while the second indicates absence of proper spin, in which case (a) yields $\dot{X}=0, \dot{Y}=0$; that is, a motion of no further physical interest. See also Capon (1952) and Rumiantsev (1978).

Example 7.8.3 Rolling Sphere via the Suslov Principle. Using Suslov's principle, let us derive the equations of motion of a homogeneous sphere of mass m and radius r rolling on a rough horizontal and fixed plane $O-X Y$.

The kinematics and kinetics of this classical problem have already been discussed in exs. 2.13.5 and 2.13.6 (Lagrangean kinematics) and exs. 3.18.2 and 3.18.3 (Lagrangean kinetics). It was found there that the constraints are (in terms of $q_{D} \equiv q_{1,2,3}: X, Y, Z$: inertial coordinates of center/center-of-mass of sphere G, and $q_{I} \equiv q_{4,5,6}: \phi, \theta, \psi$: Eulerian angles of body-fixed axes at G relative to fixed axes $O-x y z$)

$$
\begin{align*}
& \dot{X}-r \omega_{Y}=0, \quad \dot{Y}+r \omega_{X}=0 \quad \text { (nonholonomic constraints), } \tag{a1}\\
& \Rightarrow \delta X-r \delta \theta_{Y}=0, \quad \delta Y+r \delta \theta_{X}=0, \tag{a2}\\
& Z=r \Rightarrow \dot{Z}=0 \quad \text { (holonomic constraint) } \Rightarrow \delta Z=0 ; \tag{a3}
\end{align*}
$$

where (§1.12) (with $d \theta_{X, Y, Z} \equiv \omega_{X, Y, Z} d t$)

$$
\begin{align*}
& \omega_{X}=(\cos \phi) \dot{\theta}+(\sin \phi \sin \theta) \dot{\psi} \Rightarrow \delta \theta_{X}=(\cos \phi) \delta \theta+(\sin \phi \sin \theta) \delta \psi \tag{b1}\\
& \omega_{Y}=(\sin \phi) \dot{\theta}+(-\cos \phi \sin \theta) \dot{\psi} \Rightarrow \delta \theta_{Y}=(\sin \phi) \delta \theta+(-\cos \phi \sin \theta) \delta \psi \tag{b2}\\
& \omega_{Z}=\dot{\phi}+(\cos \theta) \dot{\psi} \Rightarrow \delta \theta_{Z}=\delta \phi+(\cos \theta) \delta \psi \tag{b3}
\end{align*}
$$

with corresponding transitivity equations

$$
\begin{align*}
& \left(\delta \theta_{X}\right)^{\cdot}-\delta \omega_{X}=\omega_{Y} \delta \theta_{Z}-\omega_{Z} \delta \theta_{Y} \tag{cl}\\
& \left(\delta \theta_{Y}\right)^{\cdot}-\delta \omega_{Y}=\omega_{Z} \delta \theta_{X}-\omega_{X} \delta \theta_{Z} \tag{c2}\\
& \left(\delta \theta_{Z}\right)^{\cdot}-\delta \omega_{Z}=\omega_{X} \delta \theta_{Y}-\omega_{Y} \delta \theta_{X} \tag{c3}
\end{align*}
$$

Hence, following the Suslov viewpoint, we find

$$
\begin{align*}
\delta s_{X} & \equiv(\delta X)^{\cdot}-\delta(\dot{X})=\left(r \delta \theta_{Y}\right)^{\cdot}-\delta\left(r \dot{\theta}_{Y}\right)=\cdots=r\left(\omega_{Z} \delta \theta_{X}-\omega_{X} \delta \theta_{Z}\right), \tag{d1}\\
\delta s_{Y} & \equiv(\delta Y)^{\cdot}-\delta(\dot{Y})=\left(-r \delta \theta_{X}\right)^{\cdot}-\delta\left(-r \dot{\theta}_{X}\right)=\cdots=-r\left(\omega_{Y} \delta \theta_{Z}-\omega_{Z} \delta \theta_{Y}\right), \tag{d2}\\
\delta s_{Z} & \equiv(\delta Z)^{\cdot}-\delta(\dot{Z})=0 . \tag{d3}
\end{align*}
$$

The kinetic energy of the sphere is [with $I_{G ; X, Y, Z}=2 m r^{2} / 5 \equiv I$]

$$
\begin{align*}
& T=(m / 2)\left[(\dot{X})^{2}+(\dot{Y})^{2}+(\dot{Z})^{2}\right]+(I / 2)\left(\omega_{X}^{2}+\omega_{Y}^{2}+\omega_{Z}^{2}\right) \tag{e1}\\
& \Rightarrow T_{o}=(m / 2)\left[\left(r \omega_{Y}\right)^{2}+\left(-r \omega_{X}\right)^{2}+(0)^{2}\right]+(1 / 2)\left(2 m r^{2} / 5\right)\left(\omega_{X}^{2}+\omega_{Y}^{2}+\omega_{Z}^{2}\right) \\
& \quad=(1 / 2)\left(7 m r^{2} / 5\right)\left(\omega_{X}^{2}+\omega_{Y}^{2}\right)+(1 / 2)\left(2 m r^{2} / 5\right)\left(\omega_{Z}^{2}\right), \tag{e2}
\end{align*}
$$

and so its Suslovian variation equals

$$
\begin{equation*}
\delta T_{o}=\left(7 m r^{2} / 5\right)\left(\omega_{X} \delta \omega_{X}+\omega_{Y} \delta \omega_{Y}\right)+\left(2 m r^{2} / 5\right)\left(\omega_{Z} \delta \omega_{Z}\right) \tag{e3}
\end{equation*}
$$

Therefore, invoking the transitivity relations (c1-3) and integrating by parts, and so on, we obtain

$$
\begin{align*}
\int \omega_{X} \delta \omega_{X} d t & =\int \omega_{X}\left[\left(\delta \theta_{X}\right)^{\cdot}+\left(\omega_{Z} \delta \theta_{Y}-\omega_{Y} \delta \theta_{Z}\right)\right] d t \\
& =\int\left[\left(-\dot{\omega}_{X}\right) \delta \theta_{X}+\omega_{X}\left(\omega_{Z} \delta \theta_{Y}-\omega_{Y} \delta \theta_{Z}\right)\right] d t \tag{fl}
\end{align*}
$$

and, similarly,

$$
\begin{align*}
& \int \omega_{Y} \delta \omega_{Y} d t=\int\left[\left(-\dot{\omega}_{Y}\right) \delta \theta_{Y}+\omega_{Y}\left(\omega_{X} \delta \theta_{Z}-\omega_{Z} \delta \theta_{X}\right)\right] d t, \tag{f2}\\
& \int \omega_{Z} \delta \omega_{Z} d t=\int\left[\left(-\dot{\omega}_{Z}\right) \delta \theta_{Z}+\omega_{Z}\left(\omega_{Y} \delta \theta_{X}-\omega_{X} \delta \theta_{Y}\right)\right] d t \tag{f3}
\end{align*}
$$

Next, with the help of (a, d, e), the Suslov integrand term $s \equiv \sum\left(\partial T / \partial \dot{q}_{D}\right)_{o} \delta s_{D}$ becomes

$$
\begin{align*}
s & \equiv(\partial T / \partial \dot{X})_{o} \delta s_{X}+(\partial T / \partial \dot{Y})_{o} \delta s_{Y}+(\partial T / \partial \dot{Z})_{o} \delta s_{Z} \\
& =(m \dot{X})_{o}\left[r\left(\omega_{Z} \delta \theta_{X}-\omega_{X} \delta \theta_{Z}\right)\right]+(m \dot{Y})_{o}\left[r\left(\omega_{Z} \delta \theta_{Y}-\omega_{Y} \delta \theta_{Z}\right)\right]+0 \\
& =\cdots=\left(m r^{2} \omega_{Y} \omega_{Z}\right) \delta \theta_{X}+\left(-m r^{2} \omega_{X} \omega_{Z}\right) \delta \theta_{Y} ; \tag{g1}
\end{align*}
$$

while the total impressed virtual work is [with $Q_{X, Y, Z ; \phi, \theta, \psi} \equiv Q_{X}, Q_{Y}, Q_{Z}$; $\left.Q_{\phi}, Q_{\theta}, Q_{\psi}\right]$

$$
\delta^{\prime} W=Q_{X} \delta X+Q_{Y} \delta Y+Q_{Z} \delta Z+Q_{\phi} \delta \phi+Q_{\theta} \delta \theta+Q_{\psi} \delta \psi
$$

[by (a2) and the inverse of (b1-3) see §1.12]

$$
\begin{equation*}
=\cdots \equiv M_{X} \delta \theta_{X}+M_{Y} \delta \theta_{Y}+M_{Z} \delta \theta_{Z} \quad\left(=\delta^{\prime} W_{o}^{*}\right) \tag{g2}
\end{equation*}
$$

where [recalling (3.15.2a ff.)]

$$
\begin{align*}
& M_{X}=(-r) Q_{Y}+(-\cot \theta \sin \phi) Q_{\phi}+(\cos \phi) Q_{\theta}+(\sin \phi / \sin \theta) Q_{\psi} \tag{g3}\\
& M_{Y}=(r) Q_{X}+(-\cot \theta \cos \phi) Q_{\phi}+(\sin \phi) Q_{\theta}+(-\cos \phi / \sin \theta) Q_{\psi}, \tag{g4}\\
& M_{Z}=Q_{\phi} . \tag{g5}
\end{align*}
$$

Substituting all these results into Suslov's variational formula (7.8.10), we obtain

$$
\begin{align*}
\int\left\{\left[-\left(7 m r^{2} / 5\right) \dot{\omega}_{X}+M_{X}\right] \delta \theta_{X}\right. & +\left[-\left(7 m r^{2} / 5\right) \dot{\omega}_{Y}+M_{Y}\right] \delta \theta_{Y} \\
& \left.+\left[-\left(2 m r^{2} / 5\right) \dot{\omega}_{Z}+M_{Z}\right] \delta \theta_{Z}\right\} d t=0, \tag{h1}
\end{align*}
$$

and this, since the $\delta \theta_{X, Y, Z}$ are independent (free), leads immediately to the following three kinetic equations:

$$
\begin{equation*}
\left(7 m r^{2} / 5\right) \dot{\omega}_{X}=M_{X}, \quad\left(7 m r^{2} / 5\right) \dot{\omega}_{Y}=M_{Y}, \quad\left(2 m r^{2} / 5\right) \dot{\omega}_{Z}=M_{Z} \tag{h2}
\end{equation*}
$$

which, along with the two constraints (a1) and the three kinematical relations (bl-3), constitute a determinate system for $X(t), Y(t) ; \phi(t), \theta(t), \psi(t) ; \omega_{X}(t)$, $\omega_{Y}(t), \omega_{Z}(t)$.

Let the reader formulate this problem via Voronets' principle (7.8.6); or even via those of § 7.7.

7.9 NONCONTEMPORANEOUS VARIATIONS; ADDITIONAL IVP FORMS

The General Formulae

We begin with the following slightly modified version of the fundamental integral variational equation (7.2.3b):

$$
\begin{equation*}
\int\left(\delta L+\delta^{\prime} W_{n p}\right) d t=\left\{\sum p_{k} \delta q_{k}\right\}_{1}^{2}, \tag{7.9.1}
\end{equation*}
$$

where
$L=L(t, q, \dot{q}) \equiv T(t, q, \dot{q})-V(t, q)$: Lagrangean of the system,
$\delta^{\prime} W_{n p} \equiv \delta^{\prime} W-(-\delta V)$: Total (first-order) virtual work of nonpotential impressed forces,
$p_{k} \equiv \partial T / \partial \dot{q}_{k}=\partial L / \partial \dot{q}_{k}:$ Holonomic system ("generalized") momentum.
Now, if in (7.9.1), $\delta^{\prime} W_{n p}=0$, the q 's and δq 's are chosen so that $\left\{\sum p_{k} \delta q_{k}\right\}_{1}^{2} \equiv$ $B T=0$ [e.g., by taking $\delta q\left(t_{1}\right)=\delta q\left(t_{2}\right)=0$], and if no additional constraints are imposed on the system (unless explicitly specified otherwise), then (7.9.1) yields the customary form of Hamilton's principle of stationarity:

$$
\begin{equation*}
\delta A_{H}=0 \tag{7.9.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{H} \equiv \int(T-V) d t \equiv \int L d t: \text { Hamiltonian action (functional). } \tag{7.9.2a}
\end{equation*}
$$

Let us express the above in terms of the earlier-introduced noncontemporaneous, or skew, or oblique, or asynchronous, or nontautochronous, or nonsimultaneous variations (§7.2, fig.7.1):

$$
\begin{equation*}
\Delta q_{k}=\delta q_{k}+\dot{q}_{k} \Delta t \tag{7.9.3}
\end{equation*}
$$

where, generally,

$$
\begin{equation*}
\Delta(\ldots) \equiv \delta(\ldots)+[d(\ldots) / d t] \Delta t: \text { noncontemporaneous variation operator } \tag{7.9.3a}
\end{equation*}
$$

for example, $\Delta t=\delta t+(d t / d t) \Delta t=0+(1) \Delta t=\Delta t$.
Our discussion is based on the following fundamental, purely analytical and interrelated, formulae, obtained by applying $\Delta(\ldots)$ to $\int(\ldots) d t$ and its integrand (which is nothing but an application of the well-known theorem of differentiation of a definite integral with respect to a general parameter that may appear in both its limits of integration $t_{1,2}$ and in its integrand, or "Leibniz' rule"):

- $\Delta \int(\ldots) d t=\int \delta(\ldots) d t+\{(\ldots) \Delta t\}_{1}^{2}$

$$
=\int\{\Delta(\ldots)+(\ldots)[d(\Delta t) / d t]\} d t
$$

$$
\begin{equation*}
=\int[\Delta(\ldots) d t+(\ldots) d(\Delta t)] \tag{7.9.3b}
\end{equation*}
$$

$$
\begin{align*}
\int \Delta(\ldots) d t & =\int\{\delta(\ldots)-(\ldots)[d(\Delta t) / d t]\} d t+\{(\ldots) \Delta t\}_{1}^{2} \\
& =\int[\delta(\ldots) d t-(\ldots) d(\Delta t)]+\{(\ldots) \Delta t\}_{1}^{2} \tag{7.9.3c}
\end{align*}
$$

from which the (intuitively "obvious") $\Delta-\int$ noncommutativity formula results:

- $\Delta \int(\ldots) d t-\int \Delta(\ldots) d t=\int(\ldots) d(\Delta t)=\int\{(\ldots)[d(\Delta t) / d t]\} d t$.

With the help of the above, Hamilton's principle (7.9.1-2a) can be easily brought to its following two equivalent noncontemporaneous forms:

- $\Delta \int T d t+\int \delta^{\prime} W d t=\left\{\sum p_{k} \Delta q_{k}+\left(T-\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{1}^{2}$

$$
\begin{equation*}
=\left\{\sum p_{k} \delta q_{k}+T \Delta t\right\}_{1}^{2} \tag{7.9.4a}
\end{equation*}
$$

- $\Delta A_{H}+\int \delta^{\prime} W_{n p} d t=\left\{\sum p_{k} \Delta q_{k}-h \Delta t\right\}_{1}^{2}=\left\{\sum p_{k} \delta q_{k}+L \Delta t\right\}_{1}^{2}$,
where (recalling §3.9)

$$
\begin{align*}
& h \equiv \sum p_{k} \dot{q}_{k}-L=h(t, q, \dot{q}): \text { Generalized energy } \\
& [\text { or Hamiltonian, when expressed in terms of } t, q, p \text { (chap. } 8)] \tag{7.9.4c}
\end{align*}
$$

Further, with the definitions

$$
\begin{align*}
A_{L} & \equiv \int 2 T d t: \text { Lagrangean action (functional) } \tag{7.9.4d}\\
E & \equiv T+V: \text { Total energy of the system } \tag{7.9.4e}
\end{align*}
$$

it is not hard to see that we can rewrite $(7.9 .4 \mathrm{a}, \mathrm{b})$ as the following general principle of noncontemporaneously varying, or varied, Lagrangean action:

- $\Delta A_{L}-\int\left(\delta E-\delta^{\prime} W_{n p}\right) d t=\left\{\sum p_{k} \Delta q_{k}-\left(\sum p_{k} \dot{q}_{k}-2 T\right) \Delta t\right\}_{1}^{2}$

$$
\begin{equation*}
=\left\{\sum p_{k} \delta q_{k}+2 T \Delta t\right\}_{1}^{2} \tag{7.9.4f}
\end{equation*}
$$

and, finally, adding and subtracting (7.9.4a, b) with the purely mathematical equation

$$
\begin{equation*}
\Delta \int E d t=\int \delta E d t+\{E \Delta t\}_{1}^{2} \tag{7.9.4g}
\end{equation*}
$$

side by side, produces the additional "symmetrical principles":

- $\Delta \int 2 T d t=\int\left(\delta E-\delta^{\prime} W_{n p}\right) d t+\left\{\sum p_{k} \Delta q_{k}+\left(2 T-\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{1}^{2}$,
- $\Delta \int 2 V d t=\int\left(\delta E+\delta^{\prime} W_{n p}\right) d t+\left\{-\sum p_{k} \Delta q_{k}+\left(2 V+\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{1}^{2}$.

An additional IVP can be obtained if we express the integrands of the above in terms of $\Delta(\ldots)$-variations: adding side by side (i) eqs. (7.9.4a, b), but with

$$
\begin{equation*}
\Delta \int T d t \quad \text { replaced by } \quad \int\left[\Delta T+T(\Delta t)^{\cdot}\right] d t \quad[\operatorname{applying}(7.9 .3 \mathrm{~b})] \tag{7.9.5a}
\end{equation*}
$$

and (ii) the obvious identity

$$
\begin{equation*}
\{T \Delta t\}_{1}^{2}=\int(T \Delta t)^{\cdot} d t=\int\left[T(\Delta t)^{\cdot}+\dot{T} \Delta t\right] d t \tag{7.9.5b}
\end{equation*}
$$

produces the alternative forms:

$$
\begin{align*}
\int[\Delta T & \left.+2 T(\Delta t)^{\cdot}+\dot{T} \Delta t\right] d t+\int \delta^{\prime} W d t \\
& =\int\left[\Delta T d t+2 T d(\Delta t)+d T \Delta t+\delta^{\prime} W d t\right] \\
& =\left\{\sum p_{k} \delta q_{k}+(2 T) \Delta t\right\}_{1}^{2} \\
& =\left\{\sum p_{k} \Delta q_{k}-\left(\sum p_{k} \dot{q}_{k}-2 T\right) \Delta t\right\}_{1}^{2} \tag{7.9.5c}
\end{align*}
$$

The above are usually associated with the names of O. Hölder, Voss, et al., and a time when the differences between $\Delta(\ldots)$ and $\delta(\ldots)$ were not clearly understood (late 19th to early 20th century). Unless one distinguishes carefully between these two kinds of variation, notices the resulting integral noncommutativity formula (7.9.3d), and states carefully the system properties and boundary conditions, the results are very likely to be erroneous and extremely difficult to compare with those of other authors. This is a tricky area (like $\S 7.8$) that has caused considerable confusion and frustration; see, for example, Papastavridis [1987(d)].

Specializations

(i) If the following hold:
the (holonomic) constraints are stationary, in which case $\sum p_{k} \dot{q}_{k}=2 T$,

$$
\begin{aligned}
& \delta^{\prime} W_{n p}=0, \\
& \Delta q_{k}\left(t_{1}\right)=\Delta q_{k}\left(t_{2}\right)=0,
\end{aligned}
$$

and

$$
\begin{equation*}
\delta E=\delta h=0, \tag{7.9.6a}
\end{equation*}
$$

then (7.9.4f) reduces to the original principle of "least" action of Maupertuis \rightarrow Euler \rightarrow Lagrange (MEL):

$$
\begin{equation*}
\Delta A_{L} \equiv \Delta \int 2 T d t=\Delta \int\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}\right) d t=0 \tag{7.9.6b}
\end{equation*}
$$

Of course, other combinations of boundary conditions and system assumptions may produce the same result. [An alternative derivation of (7.9.6b) is given below.]
(ii) For stationary constraints, the power equation (7.2.6e,f) reduces to $d T / d t=\sum Q_{k} \dot{q}_{k}$ (where Q_{k} is the total impressed force), so that

$$
\dot{T} \Delta t+\delta^{\prime} W=\left(\sum Q_{k} \dot{q}_{k}\right) \Delta t+\sum Q_{k} \delta q_{k}=\sum Q_{k} \Delta q_{k} \equiv \Delta^{\prime} W
$$

and therefore the left side of $(7.9 .5 \mathrm{c})$ simplifies to

$$
\begin{equation*}
\int\left[\Delta T+2 T(\Delta t)^{\cdot}+\Delta^{\prime} W\right] d t=\int\left[\Delta T d t+2 T d(\Delta t)+\Delta^{\prime} W d t\right] \tag{7.9.7a}
\end{equation*}
$$

whereas the right reduces to

$$
\begin{equation*}
\left\{\sum p_{k} \Delta q_{k}\right\}_{1}^{2}=\left\{\sum p_{k} \delta q_{k}+(2 T) \Delta t\right\}_{1}^{2} \tag{7.9.7b}
\end{equation*}
$$

REMARKS ON MEL'S ACTION

(i) The A_{L}-definition (7.9.4d) is not arbitrary. It constitutes the earliest of all such action definitions (early 1740s); that is, of energetic functions/functionals of dimensions

$$
(\text { energy }) \times(\text { time })=(\text { momentum }) \times(\text { length }) .
$$

(Originally, it was given by Euler for a special case, then generalized by Lagrange for arbitrary holonomic and scleronomic systems, and fully justified later by modern variational calculus.)

For a single, say unconstrained, particle of mass m, moving along a path of arc length s with velocity $\boldsymbol{v}=d \boldsymbol{r} / d t[\Rightarrow$ velocity component along path tangent $\equiv v=$ $d s / d t]$, (7.9.4d) gives

$$
\begin{equation*}
A_{L}=\int m v^{2} d t=\int(m \boldsymbol{v}) \cdot \boldsymbol{v} d t=\int(m \boldsymbol{v}) \cdot d \boldsymbol{r}=\int m v d s \tag{7.9.8a}
\end{equation*}
$$

$$
\begin{aligned}
& {[=\text { sum of elementary "works of the (linear) momentum" along the particle's }} \\
& \text { path]; }
\end{aligned}
$$

and, for a material system (with the usual notations):

$$
\begin{equation*}
A_{L}=\int[\boldsymbol{S}(d m \boldsymbol{v}) \cdot d \boldsymbol{r}]=\int \sum p_{k} d q_{k} \tag{7.9.8b}
\end{equation*}
$$

(ii) It is frequently claimed, in the variational mechanics literature, that starting with (7.9.2,2a) and substituting in there the energy conservation relation $\delta E=0 \Rightarrow \delta T=-\delta V$, between the orbit(s) and other kinematically admissible paths, one obtains the (contemporaneous variation \Rightarrow fixed time-endpoints) MEL principle (7.9.6b):

$$
\begin{equation*}
0=\int[\delta T-(-\delta T)] d t=\int \delta(2 T) d t=\delta \int(2 T) d t ; \quad \text { i.e., } \delta A_{L}=0 \tag{7.9.9}
\end{equation*}
$$

However, such a reasoning would be incorrect for the following reasons: eq. (7.9.2) yields the n Lagrangean equations $E_{k}(L)=0$, the general solution of which contains $2 n$ integration constants, to be determined from $2 n$ boundary conditions such as $q_{k}\left(t_{1,2}\right)=$ given, where $t_{1,2}$ are also given. Hence, it will be impossible for the resulting particular solution(s) to satisfy the additional energy constraint: $T(q, \dot{q})+V(q)=E=$ given constant (the same for all competing trajectories).

That the reasoning leading to (7.9.9) is incorrect can also be seen as follows: The last condition implies that $\delta E=0$ (virtual form of constraint), and this, for given q 's and δq 's, imposes restrictions on the corresponding velocities; that is, on the $\delta(\dot{q})$'s; and this, in particular, makes it impossible for the system to go from an initial
position to a final one along the actual (kinetic) path and along a typical comparison (adjacent) path, with the same energy and in the same time for both paths; hence, in MEL's principle, the energy constraint necessitates noncontemporaneous variations (i.e., $\delta q \rightarrow \Delta q, \delta t=0 \rightarrow \Delta q \neq 0$, and results in variable time limits). This can be illustrated with the following simple example of a free particle in rectilinear motion. Here (with q : rectilinear coordinate, and other notations standard),

$$
\begin{equation*}
V=0, \quad 2 T=m v^{2} \equiv m(d q / d t)^{2}=2 E=\text { constant } \quad(>0) \tag{7.9.10a}
\end{equation*}
$$

and, therefore, along its orbit

$$
\begin{equation*}
v \equiv \dot{q}=(2 E / m)^{1 / 2} \Rightarrow \delta[\dot{q}(t)]=\delta\left[(2 E / m)^{1 / 2}\right]=0 \quad(\text { since } \delta E=0) \tag{7.9.10b}
\end{equation*}
$$

from which, integrating and using the convenient initial conditions $q_{1}=q\left(t_{1}\right) \equiv$ $q(0)=0$, we get

$$
\begin{equation*}
q(t)=(2 E / m)^{1 / 2} t \tag{7.9.10c}
\end{equation*}
$$

a straight line in rectangular Cartesian q versus t axes; and, therefore, any other continuous comparison path with the same spatio-temporal endpoints as the orbit (7.9.10c), $\left(t_{1}=0, q_{1}=0\right)$ and $\left[t_{2}, q_{2}=q\left(t_{2}\right)\right]$, so that $\delta q_{1}=\delta q_{2}=0$ [as required by (7.9.9)], would have to be nonrectilinear somewhere between t_{1}, t_{2}; that is, in there, $\delta[\dot{q}(t)] \neq 0$, in clear contradiction to (7.9.10b); or, trivially, the actual path and its comparison paths coincide. Hence, it is impossible to reach, by a (smooth) neighboring path of the same constant energy as the orbit, the endpoint $q_{2}=q\left(t_{2}\right)$, as demanded by the boundary condition, in the same time $t_{2}-t_{1}=t_{2}-0=t_{2}$; or, if we insist on isoenergeticity, $\Delta E=\delta E+\dot{E} \Delta t=\delta E=0$, we cannot have $\delta q_{2}=0$ (and vice versa), but we can have $\Delta q_{2}=\delta q_{2}+\dot{q}\left(t_{2}\right) \Delta t_{2}=0 \Rightarrow \delta q_{2}=-\dot{q}\left(t_{2}\right) \Delta t_{2} \neq 0$ $\Rightarrow \Delta t_{2} \neq 0$, since (here, and in general) $\dot{q}\left(t_{2}\right) \neq 0$. (As a way out of these difficulties, some have suggested using virtual paths with discontinuous velocity reversals-that is, $\dot{q} \rightarrow-\dot{q}$-but this seems artificial and impractical.)

The preceding discussion leads us to the following correct formulation of MEL's principle: Among all sufficiently smooth kinematically admissible trajectories $q(t)$, in configuration space, passing through the given initial point $P_{1}\left[q_{k}\left(t_{1}\right)=q_{k 1}\right.$: given; t_{1} : given $]$ and given final point $P_{2}\left[q_{k}\left(t_{2}\right)=q_{k 2}\right.$: given; but t_{2} : unknown, to be determined from the stationarity condition] and satisfying the total energy constraint $T+V=E$: given constant, the actual (kinetic) motion(s), or orbit(s), satisfies (satisfy) (7.9.6b); that is, contrary to the fixed time-endpoints Hamilton's principle (7.9.2), MEL's principle (7.9.6b) is a variable upper time endpoint variational problem: $\Delta t_{1}=0$ but $\Delta t_{2} \neq 0$, and as such is fundamentally different from it; although, in both principles, the total number of given data is $(n+1)+(n+1)=2 n+2$.

General Kinematico-Inertial Identities

The preceding results (7.9.1a, $2 ; 4 \mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{h}, \mathrm{i} ; 6 \mathrm{~b}$, etc.) hold for variations $\Delta(\ldots)$, $\delta(\ldots)$ from an orbit; in fact, they were obtained from the equations of motion, or LP, or the central equation. Let us now see the converse; that is, derive those IVP by direct variations of, say, A_{H} from a kinematically admissible path, and then specialize to an orbit.

Invoking (7.2.4c, d) and (7.9.3, 3b-d), and with the already familiar notations

$$
\begin{align*}
E_{k}(\ldots) & \equiv\left[\partial(\ldots) / \partial \dot{q}_{k}\right]-\partial(\ldots) / \partial q_{k}: \text { Euler-Lagrange operator }, \tag{7.9.11a}\\
h(\ldots) & \equiv \sum\left[\partial(\ldots) / \partial \dot{q}_{k}\right] \dot{q}_{k}-(\ldots): \text { Generalized energy operator } \tag{7.9.11b}\\
\Delta(\ldots) & \equiv \sum\left\{\left[\partial(\ldots) / \partial q_{k}\right] \Delta q_{k}+\left[\partial(\ldots) / \partial \dot{q}_{k}\right] \Delta\left(\dot{q}_{k}\right)\right\}+[\partial(\ldots) / \partial t] \Delta t: \tag{7.9.11c}
\end{align*}
$$

Noncontemporaneous (first-order) variation operator,
we find, successively (recalling fig. 7.1),

$$
\begin{align*}
& \Delta A_{H} \equiv \Delta \int L d t \equiv \int L\left[I I ; \operatorname{arc}\left(C_{1} C_{2}\right)\right] d t-\int L\left[I ; \operatorname{arc}\left(A_{1} A_{2}\right)\right] d t \\
& =\int L[t+\Delta t, q+\Delta q, \dot{q}+\Delta(\dot{q})] d(t+\Delta t)-\int L(t, q, \dot{q}) d t \\
& \approx \int[L d t+L d(\Delta t)+\Delta L d t+\Delta L d(\Delta t)-L d t] \\
& \approx \int[\Delta L d t+L d(\Delta t)] \quad[\text { to the first order, and with } L(t, q, \dot{q}) \equiv L] \\
& =\int\left[\Delta L+L(\Delta t)^{\cdot}\right] d t \\
& =\int\left\{\sum\left[\left(\partial L / \partial q_{k}\right) \Delta q_{k}+\left(\partial L / \partial \dot{q}_{k}\right) \Delta\left(\dot{q}_{k}\right)\right]+(\partial L / \partial t) \Delta t+L(\Delta t)^{\cdot}\right\} d t \\
& \text { [replacing } \left.\Delta(\dot{q}) \text { with }(\Delta q)^{\cdot}-\dot{q}(\Delta t)^{\cdot}\right] \\
& =\int\left\{\sum\left[\left(\partial L / \partial q_{k}\right) \Delta q_{k}+\left(\partial L / \partial \dot{q}_{k}\right)\left(\Delta q_{k}\right)^{\cdot}\right]+(\partial L / \partial t) \Delta t\right. \\
& \left.-\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right](\Delta t)^{\cdot}\right\} d t \\
& =-\int \sum E_{k}(L) \Delta q_{k} d t \\
& +\int\left\{(\partial L / \partial t) \Delta t-\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right](\Delta t)^{\cdot}\right\} d t \\
& +\int d / d t\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \Delta q_{k}\right] d t \\
& =\cdots=-\int \sum E_{k}(L) \Delta q_{k} d t+\int\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \Delta q_{k}-h(L) \Delta t\right]{ }^{\circ} d t \\
& +\int[d h(L) / d t+\partial L / \partial t] \Delta t d t ; \tag{7.9.11d}
\end{align*}
$$

that is,

$$
\begin{aligned}
& \Delta A_{H}+\int \delta^{\prime} W_{n p} d t= \\
& \quad-\int \sum\left[E_{k}(L)-Q_{k}\right] \Delta q_{k} d t+\int\left[d h(L) / d t+\partial L / \partial t-\sum Q_{k} \dot{q}_{k}\right] \Delta t d t \\
& \quad+\left\{\sum p_{k} \Delta q_{k}-h(L) \Delta t\right\}_{1}^{2}
\end{aligned}
$$

$$
\begin{align*}
= & -\int \sum\left[E_{k}(L)-Q_{k}\right] \delta q_{k} d t-\int\left(\sum E_{k}(L) \dot{q}_{k}-d h(L) / d t-\partial L / \partial t\right) \Delta t d t \\
& +\left\{\sum p_{k} \Delta q_{k}-h(L) \Delta t\right\}_{1}^{2} \tag{7.9.11e}
\end{align*}
$$

or, due to the analytical identity (3.9.3b; with T replaced by L),

$$
\begin{equation*}
d h(L) / d t+\partial L / \partial t=\sum E_{k}(L) \dot{q}_{k} \tag{7.9.11f}
\end{equation*}
$$

finally [with $h(L)$ renamed simply h],

$$
\begin{align*}
\Delta \int L d t= & -\int\left[\sum E_{k}(L)\left(\Delta q_{k}-\dot{q}_{k} \Delta t\right)\right] d t \\
& +\left\{\sum\left(\partial L / \partial \dot{q}_{k}\right) \Delta q_{k}-h \Delta t\right\}_{1}^{2} \tag{7.9.11g}
\end{align*}
$$

that is,

$$
\begin{equation*}
\Delta A_{H}=-\int \sum E_{k}(L) \delta q_{k} d t+\left\{\sum p_{k} \Delta q_{k}-h \Delta t\right\}_{1}^{2} \tag{7.9.11h}
\end{equation*}
$$

Kinetic Specializations

(i) For variations from an orbit, $\sum E_{k}(L) \delta q_{k}=\delta^{\prime} W_{n p}$, by LP, and so (7.9.11h) reduces to (7.9.4a, b).
(ii) If, further, we assume that $\delta^{\prime} W_{n p}=0$, and choose "cotermini variations" in space and time:

$$
\begin{equation*}
\Delta q_{k}\left(t_{1}\right)=\Delta q_{k}\left(t_{2}\right)=0 \quad \text { and } \quad \Delta t\left(t_{1}\right)=\Delta t\left(t_{2}\right)=0 \tag{7.9.12a}
\end{equation*}
$$

then (7.9.11h) yields "Voss' principle," $\Delta A_{H}=0$.
(iii) If, again for variations from an orbit and $Q_{k, n p}=0 \Rightarrow \delta^{\prime} W_{n p}=0$,

$$
\begin{equation*}
L=L(q, \dot{q}) \Rightarrow \partial L / \partial t=0 \Rightarrow h \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L=\text { constant } \tag{7.9.12b}
\end{equation*}
$$

we choose spatially cotermini variations:

$$
\begin{equation*}
\Delta q_{k}\left(t_{1}\right)=\Delta q_{k}\left(t_{2}\right)=0 \quad \text { but } \quad \Delta t\left(t_{1}\right)=\Delta t\left(t_{2}\right) \neq 0 \tag{7.9.12c}
\end{equation*}
$$

then (7.9.11h) also yields $\Delta A_{H}=0$.
If, instead of (7.9.12c), $\Delta t\left(t_{1}\right)=0$, but $\Delta t\left(t_{2}\right) \equiv \Delta t$, then (7.9.11h) reduces to

$$
\begin{equation*}
\Delta A_{H}+h \Delta t=0 \tag{7.9.12d}
\end{equation*}
$$

a form that has applications in nonlinear oscillations (ex. 7.9.13; see also §8.11).
(iv) Again, for variations from an orbit and $Q_{k, n p}=0 \Rightarrow \delta^{\prime} W_{n p}=0$, and $L=L(q, \dot{q}) \Rightarrow h=$ constant, we find, successively,

$$
\begin{align*}
\Delta \int & {\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}\right] d t \quad\left[=\Delta \int 2 T d t \equiv \Delta A_{L}\right]^{4} } \\
& \equiv \int\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}\right]_{I I} d t-\int\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}\right]_{I} d t \\
& =\Delta \int(L+h) d t \\
& =\Delta \int L d t+\Delta\left[h\left(t_{2}-t_{1}\right)\right] \\
& =\Delta A_{H}+\Delta\left[h\left(t_{2}-t_{1}\right)\right] \\
& =\cdots=\left\{\sum p_{k} \Delta q_{k}\right\}_{1}^{2}+\Delta h\left(t_{2}-t_{1}\right) \quad[\operatorname{invoking}(7.9 .11 \mathrm{~h})] \\
& =\left\{\sum p_{k} \Delta q_{k}+(t) \Delta h\right\}_{1}^{2} \tag{7.9.12e}
\end{align*}
$$

[we notice that, here, $\Delta h \equiv \delta h+\dot{h} \Delta t=\delta h(=\delta E$, for stationary constraints)], and so, if in addition, we choose the spatially cotermini and isoenergetic variations

$$
\begin{equation*}
\Delta q_{k}\left(t_{1}\right)=\Delta q_{k}\left(t_{2}\right)=0 \quad \text { and } \quad \Delta h=0 \tag{7.9.12f}
\end{equation*}
$$

(7.9.12d) yields

$$
\begin{equation*}
\Delta \int\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}\right] d t \rightarrow \Delta A_{L}=0 \tag{7.9.12g}
\end{equation*}
$$

which coincides with the earlier MEL principle (7.9.6b).
ANALYTICAL REMARK
(See also ex. 7.9.1 and prob. 7.9.1.) Clearly, (7.9.11d) is a general result holding for any (well-behaved) function $F=F(t, q, \dot{q})$; that is,

$$
\begin{align*}
\Delta \int F d t=\cdots= & -\int \sum E_{k}(F) \Delta q_{k} d t \\
& +\int\left\{(\partial F / \partial t) \Delta t-\left[\sum\left(\partial F / \partial \dot{q}_{k}\right) \dot{q}_{k}-F\right](\Delta t)^{\cdot}\right\} d t \\
& +\int d / d t\left[\sum\left(\partial F / \partial \dot{q}_{k}\right) \Delta q_{k}\right] d t \\
= & \cdots=-\int \sum E_{k}(F) \Delta q_{k} d t+\int[d h(F) / d t+\partial F / \partial t] \Delta t d t \\
& +\left\{\sum\left(\partial F / \partial \dot{q}_{k}\right) \Delta q_{k}-h(F) \Delta t\right\}_{1}^{2} \\
= & \cdots=-\int \sum E_{k}(F) \delta q_{k} d t+\left\{\sum\left(\partial F / \partial \dot{q}_{k}\right) \Delta q_{k}-h(F) \Delta t\right\}_{1}^{2} \\
= & -\int \sum E_{k}(F) \delta q_{k} d t+\left\{\sum\left(\partial F / \partial \dot{q}_{k}\right) \delta q_{k}+F \Delta t\right\}_{1}^{2} \tag{7.9.12h}
\end{align*}
$$

A Generalization of MEL's Principle; Jacobi's Form

Let us consider a conservative system; that is, recalling (7.2.6e) and $\S 3.9$, one in which $\partial L / \partial t=0$, all forces are either potential (included in L) or gyroscopic, and all additional Pfaffian constraints are, at most, catastatic. Then, the power equation reduces to the Jacobi-Painlevé integral

$$
\begin{equation*}
h=L_{2}-L_{0} \equiv T_{2}+\left(V-T_{0}\right)=\text { constant } \Rightarrow\left(L_{2}\right)^{1 / 2}=\left(L_{0}+h\right)^{1 / 2} \tag{7.9.13a}
\end{equation*}
$$

It is then possible to replace the variable time-endpoint principle $(7.9 .6 \mathrm{~b}, 12 \mathrm{e})$ with a simpler one with fixed time-endpoints. To this end, we first define the Jacobi actionlike functional:

$$
\begin{align*}
A_{J}^{\prime} & \equiv \int L d t-\int\left[\left(L_{2}\right)^{1 / 2}-\left(L_{0}+h\right)^{1 / 2}\right]^{2} d t \\
& \equiv A_{H}-\int[\cdots]^{2} d t \\
& {\left[=\cdots=\int\left\{2\left[L_{2}\left(L_{0}+h\right)\right]^{1 / 2}+L_{1}-h\right\} d t\right] } \tag{7.9.13b}
\end{align*}
$$

For general contemporaneous variations around an admissible path, clearly, we will have

$$
\begin{equation*}
\delta A_{J}^{\prime}=\delta A_{H}-\int 2[\ldots] \delta[\ldots] d t \tag{7.9.13c}
\end{equation*}
$$

and, therefore, for variations from an orbit - that is, an actual motion satisfying (7.9.13a) (with the same h-value for both $A_{J}{ }^{\prime}$ and A_{H}) - we shall have

$$
\begin{equation*}
\delta A_{J}^{\prime}=\delta A_{H} \quad(\rightarrow 0, \text { for vanishing endpoint variations }) ; \tag{7.9.13d}
\end{equation*}
$$

or, neglecting the constant last h-term in (7.9.13b), $A_{J}{ }^{\prime} \rightarrow A_{J}$:

$$
\begin{equation*}
A_{J} \equiv \int\left\{2\left[L_{2}\left(L_{0}+h\right)\right]^{1 / 2}+L_{1}\right\} d t \equiv \int J(q, \dot{q}) d t \tag{7.9.13e}
\end{equation*}
$$

we arrive at the "least action"-like (better, stationarity) condition

$$
\begin{equation*}
\delta A_{J}=0 \tag{7.9.13f}
\end{equation*}
$$

Since the integrand of the above, $J=J(q, \dot{q})$, is positively homogeneous of the first degree in the \dot{q} 's (which means that, for any positive number $\lambda, \lambda J(q, \dot{q})=J(q, \lambda \dot{q})$; i.e., J is not really a function of time t), we can write

$$
\begin{equation*}
A_{J}=\int J(q, \dot{q}) d t=\int J(q, d q)=\int J\left(q, q^{\prime}\right) d \sigma \tag{7.9.13g}
\end{equation*}
$$

where $t=t(\sigma) \Leftrightarrow \sigma=\sigma(t)$ are arbitrary (increasing) functions (and, therefore, the integration limits are changed accordingly) and

$$
\begin{equation*}
(\ldots)^{\cdot} \equiv d(\ldots) / d t=[d(\ldots) / d \sigma] \dot{\sigma} \equiv(\ldots)^{\prime} \dot{\sigma}, \quad(\ldots)^{\prime} \equiv d(\ldots) / d \sigma \tag{7.9.13h}
\end{equation*}
$$

for example, $\dot{q}_{k} \equiv q_{k}{ }^{\prime} \dot{\sigma}$. Then, the stationarity condition (7.9.13e) leads to the following n Euler-Lagrange equations:

$$
\begin{equation*}
\left(\partial J / \partial q_{k}{ }^{\prime}\right)^{\prime}-\partial J / \partial q_{k}=0 ; \tag{7.9.13i}
\end{equation*}
$$

and, conversely, the parameter t can be chosen so that

$$
\begin{align*}
& {\left[L_{2}(q, \dot{q})\right]^{1 / 2}=\left[L_{0}(q)+h\right]^{1 / 2}} \\
& \Rightarrow t=\int\left\{L_{2}(q, \dot{q}) /\left[L_{0}(q)+h\right]\right\}^{1 / 2} d \sigma \tag{7.9.13j}
\end{align*}
$$

where the $q(\sigma)$'s verify (7.9.13i). Then, from $\delta A_{J}=0$, it also follows that $\delta A_{H}=0$.
Next, from (7.9.13i), and since $J=\sum\left(\partial J / \partial q_{k}{ }^{\prime}\right) q_{k}{ }^{\prime}$, we readily find the additional equation,

$$
\begin{align*}
\sum & {\left[\left(\partial J / \partial q_{k}{ }^{\prime}\right)^{\prime}-\partial J / \partial q_{k}\right] q_{k}{ }^{\prime} } \\
& =\left[\sum\left(\partial J / \partial q_{k}{ }^{\prime}\right) q_{k}{ }^{\prime}\right]^{\prime}-\sum\left[\left(\partial J / \partial q_{k}{ }^{\prime}\right) q_{k}{ }^{\prime \prime}+\left(\partial J / \partial q_{k}\right) q_{k}{ }^{\prime}\right] \\
& =J^{\prime}-J^{\prime}=0 \tag{7.9.13k}
\end{align*}
$$

that is, only $n-1$ of the n equations (7.9.13i) are independent (something to be expected, due to the σ arbitrariness). Hence if, following Jacobi, we choose as σ one of the q 's, say, q_{1}, the orbit(s) of the system will be given by the following $n-1$ Lagrangean equations in $q_{2}\left(q_{1}\right), \ldots, q_{n}\left(q_{1}\right)$:

$$
\begin{equation*}
d / d q_{1}\left[\partial J / \partial\left(d q_{k} / d q_{1}\right)\right]-\partial J / \partial q_{k}=0 \quad(k=2, \ldots, n) \tag{7.9.131}
\end{equation*}
$$

whose general solution will depend on $2(n-1)+1=2 n-1$ integration constants [one of them could be the h constant in (7.9.13a)].

Jacobi's Form (early 1840s)

If, in addition to being conservative and holonomic, our system is also scleronomic (and these restrictions severely limit the usefulness of the principle to engineering dynamics problems) then, since in this case

$$
\begin{align*}
& L_{2}=T_{2}=T=\sum \sum(1 / 2) M_{k l} \dot{q}_{k} \dot{q}_{l}, \quad M_{k l}=M_{k l}(q), \tag{7.9.14a}\\
& L_{1}=T_{1}=0, \quad L_{0}=T_{0}-V=-V, \quad V=V(q), \tag{7.9.14b}\\
& h=T+V=E \quad \text { (a positive constant) }, \tag{7.9.14c}
\end{align*}
$$

the action A_{J}, (7.9.13f), reduces to

$$
\begin{equation*}
A_{J}=\int 2[T(E-V)]^{1 / 2} d t \tag{7.9.14d}
\end{equation*}
$$

But, recalling (3.9.4o) or (6.7.2a), we have

$$
\begin{equation*}
2 T(d t)^{2}=\sum \sum M_{k l} d q_{k} d q_{l}=2(E-V)(d t)^{2} \equiv d s^{2} \tag{7.9.14e}
\end{equation*}
$$

$d s$: elementary arc-length along orbit of figurative particle
and therefore we can rewrite (7.9.14d) as

$$
\begin{align*}
A_{J} & =\int[2(E-V)]^{1 / 2}\left[2 T(d t)^{2}\right]^{1 / 2} \\
& =\int\left[2(E-V)\left(\sum \sum M_{k l} d q_{k} d q_{l}\right)\right]^{1 / 2} \\
& =\int[2(E-V)]^{1 / 2} d s, \tag{7.9.14g}
\end{align*}
$$

or, in terms of the new function R (and the earlier parameter σ) defined by

$$
\begin{align*}
& 2(E-V)\left(\sum \sum M_{k l} d q_{k} d q_{l}\right) \equiv R(d \sigma)^{2} \\
& \Rightarrow R=R\left(q, q^{\prime}\right)=2(E-V)\left(\sum \sum M_{k l} q_{k}^{\prime} q_{l}^{\prime}\right) \tag{7.9.14h}
\end{align*}
$$

or, equivalently,

$$
\begin{equation*}
2 T d t=\sqrt{R} d \sigma=J\left(q, q^{\prime}\right) d \sigma \tag{7.9.14i}
\end{equation*}
$$

we can, finally, bring A_{J} to the Jacobi form (fixed time-endpoints):

$$
\begin{equation*}
A_{J}=\int \sqrt{R} d \sigma \quad\left[=A_{L} \equiv \int 2 T d t\right] \tag{7.9.14j}
\end{equation*}
$$

with limits σ_{1} and σ_{2} corresponding to the initial and final system positions, respectively.

Again, with the choice $\sigma=q_{1}$ (and since $M_{k l}=M_{l k}$), and with upper-case subscripts running from 2 to n, we find, successively,

$$
\begin{aligned}
d s^{2} & \equiv \sum \sum M_{k l} d q_{k} d q_{l}=\sum \sum M_{k l}\left(d q_{k} / d q_{1}\right)\left(d q_{l} / d q_{1}\right)\left(d q_{1}\right)^{2} \\
= & {\left[M_{11}+\sum M_{K 1}\left(d q_{K} / d q_{1}\right)\right.} \\
& \left.+\sum M_{1 L}\left(d q_{L} / d q_{1}\right)+\sum \sum M_{K L}\left(d q_{K} / d q_{1}\right)\left(d q_{L} / d q_{1}\right)\right]\left(d q_{1}\right)^{2} \\
= & {\left[M_{11}+2 \sum M_{K 1}\left(d q_{K} / d q_{1}\right)+\sum \sum M_{K L}\left(d q_{K} / d q_{1}\right)\left(d q_{L} / d q_{1}\right)\right]\left(d q_{1}\right)^{2}, }
\end{aligned}
$$

and, therefore,

$$
\begin{equation*}
R=\cdots=2(E-V)\left(M_{11}+2 \sum M_{1 L} q_{L}^{\prime}+\sum \sum M_{K L} q_{K}^{\prime} q_{L}^{\prime}\right) \tag{7.9.14k}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{J}=A_{L}=\int \sqrt{R} d q_{1} \tag{7.9.141}
\end{equation*}
$$

and, of course, the orbits are defined by the Euler-Lagrange equations of $\delta A_{J}=0$ [(7.9.131) with $J \rightarrow \sqrt{R}]:$

$$
\begin{equation*}
d / d q_{1}\left(\partial \sqrt{R} / \partial q_{K}^{\prime}\right)-\partial \sqrt{R} / \partial q_{K}=0 \quad(K=2, \ldots, n) . \tag{7.9.14m}
\end{equation*}
$$

Also, since by (7.9.14e, f) and (7.9.14h)

$$
\begin{equation*}
d t=\left(\sum \sum M_{k l} d q_{k} d q_{l} / 2(E-V)\right)^{1 / 2}=[\sqrt{R} / 2(E-V)] d \sigma, \tag{7.9.14n}
\end{equation*}
$$

we can find time by the quadrature:

$$
\begin{equation*}
t-t_{1}=\int[\sqrt{R} / 2(E-V)] d q_{1} \tag{7.9.14o}
\end{equation*}
$$

Here, the general solution involves a total of $2 n$ constants: $2(n-1)$ from the integration of the $n-1$ equations (7.9 .14 m), plus E and t_{1}.

In closing, we should point out that if the initial and final orbit points, P_{1} and P_{2} respectively, are close to each other, then that orbit is unique; and, further, for that orbit, A_{L} is a minimum or least; in Hertz's terminology, $\operatorname{arc}\left(P_{1} P_{2}\right)=$ shortest or straightest path, in configuration space (and, for holonomic systems, coincides with the geodesic through these points). The quantification of these ideas constitutes the extremum theory of variational calculus, and is summarized in this chapter's appendix.

Example 7.9.1 Alternative Derivations of $\Delta \int L d t$ [recall (7.9.3b ff.)]. To avoid variable time-endpoints variations, we may introduce the "arc parameter" σ via $t=t(\sigma)$ [similar to that of the Jacobi form of MEL's principle (7.9.13g ff.)] for both the fundamental (kinetic) path and its Δ-variation, so that

$$
\begin{equation*}
t\left(\sigma_{1}\right)=t_{1}, \quad t\left(\sigma_{2}\right)=t_{2}, \quad \text { and } \quad d t=(d t / d \sigma) d \sigma \equiv t^{\prime} d \sigma \quad\left[(\ldots)^{\prime} \equiv d(\ldots) / d \sigma\right] \tag{a}
\end{equation*}
$$

Then, and since $\dot{q}_{k} \equiv d q_{k} / d t=\left(d q_{k} / d \sigma\right)(d \sigma / d t)=q_{k}{ }^{\prime} / t^{\prime}$,

$$
\begin{align*}
A_{H} & \equiv \int L d t=\int L_{\sigma} d \sigma \tag{b1}\\
L_{\sigma} & \equiv L(d t / d \sigma)=L(t, q, \dot{q}) t^{\prime}=L\left(t, q, q^{\prime} / t^{\prime}\right) t^{\prime} \equiv L_{\sigma}\left(t, t^{\prime}, q, q^{\prime}\right) \tag{b2}
\end{align*}
$$

[function of the $2 n+2$ functions of $\sigma: t, q, t^{\prime}, q^{\prime}$].

By Δ-varying A_{H}, we obtain, successively (since now $\Delta \sigma=0$),

$$
\begin{aligned}
\Delta A_{H} & =\int \Delta L_{\sigma} d \sigma \\
& =\int\left\{\sum\left[\left(\partial L_{\sigma} / \partial q_{k}\right) \Delta q_{k}+\left(\partial L_{\sigma} / \partial q_{k}{ }^{\prime}\right) \Delta\left(q_{k}{ }^{\prime}\right)\right]+\left(\partial L_{\sigma} / \partial t\right) \Delta t+\left(\partial L_{\sigma} / \partial t^{\prime}\right) \Delta t^{\prime}\right\} d \sigma
\end{aligned}
$$

[integrating the Δq^{\prime} and Δt^{\prime}-proportional terms by parts, while noting that, since $\Delta \sigma=0$, the path points $P(t, q)$ and $P+\Delta P(t+\Delta t, q+\Delta q)$ correspond to the same value of σ, and, therefore, $\Delta[d(\ldots) / d \sigma]=d \Delta(\ldots) / d \sigma$ - see Remark below.]

$$
\begin{align*}
= & -\int \sum\left[d / d \sigma\left(\partial L_{\sigma} / \partial q_{k}^{\prime}\right)-\left(\partial L_{\sigma} / \partial q_{k}\right)\right] \Delta q_{k} d \sigma \\
& -\int\left[d / d \sigma\left(\partial L_{\sigma} / \partial t^{\prime}\right)-\left(\partial L_{\sigma} / \partial t\right)\right] \Delta t d \sigma \\
& +\left\{\sum\left(\partial L_{\sigma} / \partial q_{k}{ }^{\prime}\right) \Delta q_{k}\right\}_{1}^{2}+\left\{\left(\partial L_{\sigma} / \partial t^{\prime}\right) \Delta t\right\}_{1}^{2} . \tag{c}
\end{align*}
$$

But, by chain rule:
(i) $\partial L_{\sigma} / \partial q_{k}{ }^{\prime}=t^{\prime}\left[\left(\partial L / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial q_{k}{ }^{\prime}\right)\right]$

$$
\begin{align*}
& =t^{\prime}\left(\partial L / \partial \dot{q}_{k}\right)\left[\left(\partial\left(q_{k}{ }^{\prime} / t^{\prime}\right) / \partial q_{k}{ }^{\prime}\right)\right] \\
& =t^{\prime}\left(\partial L / \partial \dot{q}_{k}\right)\left(1 / t^{\prime}\right)=\partial L / \partial \dot{q}_{k} \equiv p_{k} \tag{c1}
\end{align*}
$$

(ii) $\partial L_{\sigma} / \partial t^{\prime}=L+t^{\prime}\left[\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial t^{\prime}\right)\right]$

$$
\begin{align*}
& =L+t^{\prime}\left\{\sum\left(\partial L / \partial \dot{q}_{k}\right)\left[\partial\left(q_{k}^{\prime} / t^{\prime}\right) / \partial t^{\prime}\right]\right\} \\
& =L+t^{\prime}\left\{\sum\left(\partial L / \partial \dot{q}_{k}\right)\left[\left(-q_{k}{ }^{\prime}\right)\left(t^{\prime}\right)^{-2}\right]\right\} \\
& =L-\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(q_{k}{ }^{\prime} / t^{\prime}\right) \\
& =L-\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}=-h \text { (generalized energy/Hamiltonian) } \tag{c2}
\end{align*}
$$

and so (c) reduces to

$$
\begin{align*}
\Delta A_{H}=-\int & \left\{\sum\left[d / d \sigma\left(\partial L_{\sigma} / \partial q_{k}{ }^{\prime}\right)-\partial L_{\sigma} / \partial q_{k}\right] \Delta q_{k}\right. \\
& \left.+\left[d / d \sigma\left(\partial L_{\sigma} / \partial t^{\prime}\right)-\partial L_{\sigma} / \partial t\right] \Delta t\right\} d \sigma \\
& +\left\{\sum p_{k} \Delta q_{k}-h \Delta t\right\}_{1}^{2} \tag{d}
\end{align*}
$$

If, at σ_{1}, σ_{2}, the Δq_{k} and Δt vanish (generally, if the boundary term vanishes, say, by periodicity), then the single variational equation $\Delta A_{H}=0$ leads to the following $n+1$ differential equations:

$$
\begin{align*}
& d / d \sigma\left(\partial L_{\sigma} / \partial q_{k}{ }^{\prime}\right)-\partial L_{\sigma} / \partial q_{k}=0 \quad(k=1, \ldots, n) \tag{d1}\\
& d / d \sigma\left(\partial L_{\sigma} / \partial t^{\prime}\right)-\partial L_{\sigma} / \partial t=0 \tag{d2}
\end{align*}
$$

Let us find the power (energy rate) equation associated with eqs. (d1): multiplying each one of them with $q_{k}{ }^{\prime}$ and summing over k yields, successively,

$$
\begin{aligned}
0 & =\sum\left[\left(q_{k}{ }^{\prime}\right) d / d \sigma\left(\partial L_{\sigma} / \partial q_{k}{ }^{\prime}\right)-\left(\partial L_{\sigma} / \partial q_{k}\right) q_{k}{ }^{\prime}\right] \\
& =d / d \sigma\left[\sum\left(\partial L / \partial q_{k}{ }^{\prime}\right) q_{k}{ }^{\prime}\right]-\sum\left[\left(\partial L_{\sigma} / \partial q_{k}{ }^{\prime}\right) q_{k}{ }^{\prime \prime}+\left(\partial L_{\sigma} / \partial q_{k}\right) q_{k}{ }^{\prime}\right] \\
& =d / d \sigma\left[\sum\left(\partial L_{\sigma} / \partial q_{k}{ }^{\prime}\right) q_{k}{ }^{\prime}\right]-\left[d L_{\sigma} / d \sigma-\left(\partial L_{\sigma} / \partial t^{\prime}\right) t^{\prime \prime}-\left(\partial L_{\sigma} / \partial t\right) t^{\prime}\right]
\end{aligned}
$$

from which, rearranging, and invoking (b2, c2), we obtain the "parametric power equation":

$$
\begin{equation*}
d h_{\sigma} / d \sigma=-\left(\partial L_{\sigma} / \partial t^{\prime}\right) t^{\prime \prime}-\left(\partial L_{\sigma} / \partial t\right) t^{\prime}=h t^{\prime \prime}-(\partial L / \partial t)\left(t^{\prime}\right)^{2} \tag{e}
\end{equation*}
$$

where the parametric generalized energy h_{σ} is defined as

$$
\begin{align*}
h_{\sigma} & \equiv \sum\left(\partial L_{\sigma} / \partial q_{k}^{\prime}\right) q_{k}^{\prime}-L_{\sigma} \\
& =\sum p_{k}\left(\dot{q}_{k} t^{\prime}\right)-\left(L t^{\prime}\right)=\left(\sum p_{k} \dot{q}_{k}-L\right) t^{\prime}=h t^{\prime} \tag{el}
\end{align*}
$$

On the other hand, by (b2, c2) again, eq. (d2) is rewritten as

$$
\begin{align*}
& -d h / d \sigma-t^{\prime}(\partial L / \partial t)=0 \\
& \Rightarrow d h / d \sigma=(d h / d t) t^{\prime}=-t^{\prime}(\partial L / \partial t) \Rightarrow d h / d t=-\partial L / \partial t \tag{e2}
\end{align*}
$$

as expected; and, hence, $d(\ldots) / d \sigma$-differentiating (e1), we obtain

$$
\begin{equation*}
d h_{\sigma} / d \sigma=(d h / d \sigma) t^{\prime}+h t^{\prime \prime}=-(\partial L / \partial t)\left(t^{\prime}\right)^{2}+h t^{\prime \prime} \tag{e3}
\end{equation*}
$$

that is, eq. (e).
In sum: eq. (d2) is not independent from eqs. (d1), but results from them as their power equation. [For further related results, see Frank (1927, pp. 13-16, 23-24) and Nevzgliadov (1959, pp. 371-375).]

REMARK

In view of the earlier " σ-commutativity": $\Delta[d(\ldots) / d \sigma]=d \Delta(\ldots) / d \sigma$, the former noncommutativity relation (7.2.4e) for a typical coordinate $q_{k}(t)$, or simply $q(t)$, generalizes as follows:

$$
\begin{align*}
\Delta(\dot{q})=\Delta[(d q / d \sigma) /(d t / d \sigma)] & =\frac{(d t / d \sigma) \Delta(d q / d \sigma)-(d q / d \sigma) \Delta(d t / d \sigma)}{(d t / d \sigma)^{2}} \\
& =\frac{(d t / d \sigma)[d(\Delta q) / d \sigma]-(d q / d \sigma)[d(\Delta t) / d \sigma]}{(d t / d \sigma)^{2}} \\
& =(\Delta q)^{\prime} / t^{\prime}-\dot{q}\left[(\Delta t)^{\prime} / t^{\prime}\right] \quad\left[\text { since } q^{\prime} / t^{\prime}=\dot{q}\right] \\
& =(\Delta q)^{\cdot}-\dot{q}(\Delta t)^{.} . \tag{f}
\end{align*}
$$

The above can be viewed as a general definition of $\Delta(d q / d t)$.

Problem 7.9.1 Continuing from the preceding example, show that for an arbitrary (but as well behaved as needed) function $F=F(t, q, \dot{q})$:

$$
\begin{equation*}
F \rightarrow F_{\sigma} \equiv F(d t / d \sigma)=F(t, q, \dot{q}) t^{\prime}=F\left(t, q, q^{\prime} / t^{\prime}\right) t^{\prime} \equiv F_{\sigma}\left(t, t^{\prime}, q, q^{\prime}\right) \tag{a}
\end{equation*}
$$

the following integral variational identities hold:

$$
\begin{align*}
& \Delta \int F d t=\int \Delta F_{\sigma} d \sigma \\
&= \int\left\{\sum\left[\left(\partial F_{\sigma} / \partial q_{k}\right) \Delta q_{k}+\left(\partial F_{\sigma} / \partial q_{k}^{\prime}\right) \Delta\left(q_{k}^{\prime}\right)\right]+\left(\partial F_{\sigma} / \partial t\right) \Delta t+\left(\partial F_{\sigma} / \partial t^{\prime}\right) \Delta t^{\prime}\right\} d \sigma \\
&= \int\left\{\sum\left[\left(\partial F / \partial q_{k}\right) \Delta q_{k}+\left(\partial F / \partial \dot{q}_{k}\right)\left(\partial\left(q_{k}^{\prime} / t^{\prime}\right) / \partial q_{k}^{\prime}\right)\left(\Delta q_{k}\right)^{\cdot} t^{\prime}\right] t^{\prime}\right. \\
&\left.+(\partial F / \partial t) t^{\prime} \Delta t+\sum\left[\left(\partial F / \partial \dot{q}_{k}\right)\left(\partial\left(q_{k}^{\prime} / t^{\prime}\right) / \partial t^{\prime}\right) t^{\prime}+F\right](\Delta t)^{\cdot} t^{\prime}\right\} d \sigma \\
&= \int\left\{\sum\left[\left(\partial F / \partial q_{k}\right) \Delta q_{k}+\left(\partial F / \partial \dot{q}_{k}\right)\left(\Delta q_{k}\right)^{\cdot}\right]\right. \\
&\left.\quad+(\partial F / \partial t) \Delta t-\sum\left(\partial F / \partial \dot{q}_{k}\right) \dot{q}_{k}(\Delta t)^{\cdot}+F(\Delta t)^{\cdot}\right\} t^{\prime} d \sigma \\
&= \int\left\{\sum\left[\left(\partial F / \partial q_{k}\right) \Delta q_{k}+\left(\partial F / \partial \dot{q}_{k}\right)\left(\left(\Delta q_{k}\right)^{\cdot}-\dot{q}_{k}(\Delta t)^{\cdot}\right)\right]\right. \\
&\left.+(\partial F / \partial t) \Delta t+F(\Delta t)^{\cdot}\right\} d t ; \tag{b}
\end{align*}
$$

that is,

$$
\begin{equation*}
\Delta \int F d t=\int \Delta F_{\sigma} d \sigma=\int\left[\Delta F+F(\Delta t)^{\cdot}\right] d t \tag{c}
\end{equation*}
$$

Problem 7.9.2 Consider the following four possible definitions of the total noncontemporaneous variation of the Hamiltonian action $A_{H} \equiv A$:

$$
\begin{align*}
& \Delta^{T} A \equiv \int_{t_{1}+\Delta t_{1}}^{t_{2}+\Delta t_{2}}(L+\delta L) d t-\int_{t_{1}}^{t_{2}} L d t, \tag{a}\\
& \Delta^{T} A \equiv \int_{t_{1}}^{t_{2}}(L+\Delta L) d(t+\Delta t)-\int_{t_{1}}^{t_{2}} L d t, \tag{b}\\
& \Delta^{T} A \equiv \int_{t_{1}+\Delta t_{1}}^{t_{2}+\Delta t_{2}}(L+\Delta L) d(t+\Delta t)-\int_{t_{1}}^{t_{2}} L d t, \tag{c}\\
& \Delta^{T} A \equiv \int_{t_{1}+\Delta t_{1}}^{t_{2}+\Delta t_{2}}(L+\delta L) d(t+\Delta t)-\int_{t_{1}}^{t_{2}} L d t . \tag{d}
\end{align*}
$$

Examine them carefully, and determine which ones of them, to the first order (i.e., $\Delta^{1} A \equiv \Delta A$), lead to the correct expression; that is,

$$
\begin{align*}
\Delta A & =\Delta \int L d t=\int \delta L d t+\{L \Delta t\}_{1}^{2} \\
& =\int\{\Delta L+L[d(\Delta t) / d t]\} d t=\int[\Delta(\ldots) d t+(\ldots) d(\Delta t)] \tag{e}
\end{align*}
$$

HINT
Consult any good text on variational calculus; for example, Elsgolts (1970, pp. 341364), Fox (1950-1963/1987), Gelfand and Fomin (1963, pp. 54-66).

ANSWERS

Yes: a, b; No: c, d.

Problem 7.9.3 O. Hölder and Voss forms of the action principle (may be omitted in a first reading).
(i) By invoking the noncommutativity equation (7.2.4e): $\left(\Delta q_{k}\right)^{\cdot}-\Delta\left(\dot{q}_{k}\right)=\dot{q}_{k}(\Delta t)^{\text {. }}$, show that

$$
\begin{align*}
\int \Delta L d t & =\int\left[(\partial L / \partial t) \Delta t+\sum\left(\partial L / \partial q_{k}\right) \Delta q_{k}+\sum\left(\partial L / \partial \dot{q}_{k}\right) \Delta\left(\dot{q}_{k}\right)\right] d t \\
=\int\left\{(\partial L / \partial t) \Delta t-\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}\right](\Delta t)^{\cdot}\right\} d t & -\int \sum E_{k}(L) \Delta q_{k} d t \\
& +\left\{\sum\left(\partial L / \partial \dot{q}_{k}\right) \Delta q_{k}\right\}_{1}^{2} . \tag{a}
\end{align*}
$$

Next, consider the special case where Δq, although still noncontemporaneous (i.e., $\Delta t \neq 0$), equals numerically the virtual displacement at time $t, \delta q$ [fig. 7.3(a)]:

$$
\begin{equation*}
\Delta q(t+\Delta t)=\delta q(t) \tag{b}
\end{equation*}
$$

Figure 7.3 On the meaning of the Hölder and Voss variations.
and, accordingly, the point (t, q) of the fundamental path \rightarrow orbit I is mapped to the neighboring point $(t+\Delta t, q+\Delta q=q+\delta q)$, and the totality of the latter constitutes the varied path in the sense of O. Hölder $I I_{H}=I+\Delta_{H} I$ (symbolically). It follows that, in this case, Δt is not necessarily zero at the path endpoints $t_{1,2}$, even if the δq are.

Then, and assuming $\delta^{\prime} W_{\text {nonpotential }}=0$, the second integral vanishes, and so (a) reduces to O. Hölder's variational "principle" (1896):

$$
\begin{gather*}
\int\left\{\Delta L+\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}\right)(\Delta t)^{\cdot}-(\partial L / \partial t) \Delta t\right\} d t \\
=\left\{\sum\left(\partial L / \partial \dot{q}_{k}\right) \Delta q_{k}\right\}_{1}^{2} \\
{\left[=0 ; \quad \text { e.g., if } \Delta q_{k}\left(t_{1,2}\right)=0\right] .} \tag{c}
\end{gather*}
$$

(ii) For nonholonomic systems, the so-varied path will not satisfy the constraints; that is, the Hölder-varied path is not kinematically possible, unless the constraints are holonomic. For this reason, Voss (in 1990) chose:
$q+\Delta q$: kinematically possible at $t+\Delta t, \quad \dot{q}$: kinematically possible at t

$$
\begin{equation*}
\Rightarrow \Delta q-\dot{q} \Delta t=\delta q \quad(\text { virtual; recalling } \S 2.5 \mathrm{ff} .) ; \tag{d}
\end{equation*}
$$

that is, the I-point (t, q) is mapped to the neighboring point $(t+\Delta t, q+\Delta q=$ $q+\delta q+\dot{q} \Delta t$), and the totality of the latter constitutes the varied path in the sense of Voss $I I_{V}=I+\Delta_{V} I$ [symbolically, fig. 7.3(b)]. This is how the variation $\Delta(\ldots)=\delta(\ldots)+(\ldots) \Delta t$ was created; and, of course, it yields the integral Δ-theorems already detailed in §7.9.
[See also Pars, 1965, p. 533 ff.; with a slightly different (confusion-prone) notation; and Lützen, 1995(b), p. 55 ff., for the history of these variations, etc.]

Example 7.9.2 Least Action as a Constrained Variational Problem. Let us formulate MEL's principle (7.9.6b) as a variable (second) endpoint variational problem under the energy constraint

$$
\begin{equation*}
E \equiv T(q, \dot{q})+V(q)=h=\text { constant } \equiv C, \tag{a}
\end{equation*}
$$

and then deduce from it the correct Lagrangean equations of motion; that is, $E_{k}(L)=0$.

We recall that, for a holonomic, scleronomic, and potential system, MEL's principle of "least" action (or Lagrange's problem of variational calculus) states that $A_{L} \equiv \int 2 T d t$ is stationary for the orbit in the class of admissible paths that satisfy (i) the constraint (a), where C is a given constant along the orbit; the same for all admissible paths (i.e., $\Delta h=\delta h+\dot{h} \Delta t=0+0=0$), and (ii) the $2 n+1$ boundary conditions: $t_{1}, q_{k}\left(t_{1}\right)=q_{k 1}, q_{k}\left(t_{2}\right)=q_{k 2}$, given; but t_{2} not given. Due to constraint (a), we will not work with A_{L}, but with the unconstrained variation functional

$$
\begin{equation*}
F=\int f d t, \quad \text { where } f=f(t, q, \dot{q} ; \lambda) \equiv 2 T+\lambda(T+V-C) \tag{b}
\end{equation*}
$$

Then, by (7.9.12g) applied to (b), we see that the stationarity condition

$$
\begin{align*}
0 & =\Delta F=\Delta \int f d t \\
& =-\int \sum E_{k}(f) \delta q_{k} d t+\left\{\sum\left(\partial f / \partial \dot{q}_{k}\right) \Delta q_{k}-h(f) \Delta t\right\}_{1}^{2} \tag{c}
\end{align*}
$$

leads to: (i) the differential equations

$$
\begin{align*}
& E_{k}(f)=0 \\
& \Rightarrow(2+\lambda)\left[d / d t\left(\partial T / \partial \dot{q}_{k}\right)-\partial(T-V) / \partial q_{k}\right] \\
& \quad-2(1+\lambda)\left(\partial V / \partial q_{k}\right)+(d \lambda / d t)\left(\partial T / \partial \dot{q}_{k}\right)=0, \tag{d}
\end{align*}
$$

and (ii) the boundary or transversality condition

$$
\begin{equation*}
\left\{\sum\left(\partial f / \partial \dot{q}_{k}\right) \Delta q_{k}-h(f) \Delta t\right\}_{1}^{2}=0 \tag{e}
\end{equation*}
$$

from which, since $t_{1}, q_{k}\left(t_{1}\right), q_{k}\left(t_{2}\right)$ are given, we conclude that

$$
\begin{align*}
\Delta t_{1} & =0, \quad \Delta q_{k}\left(t_{1}\right)=\delta q_{k}\left(t_{1}\right)=0, \\
\Delta q_{k}\left(t_{2}\right) & =\delta q_{k}\left(t_{2}\right)+\dot{q}_{k}\left(t_{2}\right) \Delta t_{2}=0 \Rightarrow \delta q_{k}\left(t_{2}\right)=-\dot{q}_{k}\left(t_{2}\right) \Delta t_{2} \neq 0, \tag{el}
\end{align*}
$$

and, since $\Delta t_{2} \neq 0$,

$$
\begin{align*}
h\left(f, \text { evaluated at } t_{2}\right) & \equiv\left\{\sum\left(\partial f / \partial \dot{q}_{k}\right) \dot{q}_{k}-f\right\}_{2} \equiv h\left(f_{2}\right)=0 \tag{e2}\\
& \Rightarrow\{2 T(1+\lambda)\}_{2}=0 \Rightarrow \lambda\left(t_{2}\right) \equiv \lambda_{2}=-1 . \tag{e3}
\end{align*}
$$

On the other hand, applying the purely analytical result (7.9.11f, with L replaced by f) to (b), while recalling (a), we find

$$
\begin{align*}
& d h(f) / d t+\partial f / \partial t=\sum E_{k}(f) \dot{q}_{k}=0 \quad[\mathrm{by}(\mathrm{~d})] \tag{f1}\\
& \Rightarrow d h(f) / d t=-\partial f / \partial t=-(d \lambda / d t)(T+V-C)=0 \\
& \Rightarrow h(f)=2 T(1+\lambda)=\text { constant along the orbit, } \tag{f2}
\end{align*}
$$

and, combining this with (e3), we conclude that

$$
\begin{equation*}
\lambda=\lambda(t)=-1, \text { everywhere on the orbit. } \tag{g}
\end{equation*}
$$

Then, (b) yields

$$
\begin{equation*}
f=2 T-(T+V-C)=L+C \Rightarrow E_{k}(f)=E_{k}(L)=0 . \tag{h}
\end{equation*}
$$

In sum: the stationarity condition $\Delta F=0$ yields the correct Lagrangean equations of motion. The unknown (not necessarily unique) t_{2}, corresponding to the given data of our orbit, is determined from the $n+1$ equations

$$
\begin{align*}
& q_{k}\left(t_{1} ; c_{1}, \ldots, c_{2 n}\right)=q_{k 1}, \quad q_{k}\left(t_{2} ; c_{1}, \ldots, c_{2 n}\right)=q_{k 2}, \tag{i1}\\
& T(q, \dot{q})+V(q)=C \tag{i2}
\end{align*}
$$

where $q_{k}=q_{k}\left(t ; c_{1}, \ldots, c_{2 n}\right)$ is the general solution of (h).

See also Papastavridis [1986(c)], which also contains a study of the extremality of F via the study of its second variation $\Delta^{2} F$.

Example 7.9.3 Whittaker's Variational Principle: "Show that the principle of Least Action can be extended to systems for which the integral of energy does not exist, in the following form. Let the expression $\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L$ be denoted by h; then the integral [our terminology]

$$
\begin{equation*}
A_{\text {Whittaker }} \equiv A_{W} \equiv \int\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}+t(d h / d t)\right) d t \tag{a}
\end{equation*}
$$

has a stationary value for any part of an actual trajectory (i.e., an orbit) as compared with other paths between the same terminal points for which h has the same terminal values" (Whittaker, 1937, p. 248).

This constitutes the extension of MEL's "least action," (7.9.6b), to potential but nonconservative systems (i.e., $\partial L / \partial t \neq 0$), where, as a result, no Jacobi-Painlevé integral exists. The most general such Lagrangean is

$$
\begin{equation*}
L(t, q, \dot{q})=L_{1}(t, q, \dot{q})+\sum Q_{k}(t) q_{k} \tag{b}
\end{equation*}
$$

(e.g., forced autonomous vibrations), in which case the power theorem reduces to

$$
\begin{equation*}
d h / d t=-\partial L / \partial t=-\partial L_{1} / \partial t-\sum\left(d Q_{k} / d t\right) q_{k} \neq 0 . \tag{c}
\end{equation*}
$$

Whittaker's theorem states that

$$
\begin{equation*}
\Delta A_{W}=0 \tag{d}
\end{equation*}
$$

under

$$
\begin{equation*}
\Delta q_{k}\left(t_{1}\right)=\Delta q_{k}\left(t_{2}\right)=0 \quad \text { and } \quad \Delta h\left(t_{1}\right)=\Delta h\left(t_{2}\right)=0 \tag{d1}
\end{equation*}
$$

To prove (d, d1), first, invoking the h-definition, we transform A_{W} to

$$
\begin{align*}
A_{W} & =\int[L+h+t(d h / d t)] d t \\
& =\int L d t+\{t h\}_{1}^{2} \\
& \left.=A_{H}+\{t h\}_{1}^{2}: \text { Hamilton's characteristic function (see also } \S 8.11\right) . \tag{e}
\end{align*}
$$

Then, operating on (e) with $\Delta(\ldots)$, while recalling ($7.9 .3 \mathrm{~b}, \mathrm{c} ; 11 \mathrm{f}, \mathrm{g}$, h), we obtain

$$
\begin{align*}
\Delta A_{W} & =\Delta A_{H}+\Delta\{t h\}_{1}^{2} \\
& =-\int \sum E_{k}(L) \delta q_{k} d t+\left\{\sum p_{k} \Delta q_{k}-h \Delta t\right\}_{1}^{2}+\Delta\{t h\}_{1}^{2} \\
& =-\int \sum E_{k}(L) \delta q_{k} d t+\left\{\sum p_{k} \Delta q_{k}+t \Delta h\right\}_{1}^{2}=0, \tag{f}
\end{align*}
$$

by (d1) and LP for the orbit, Q.E.D. Of course, other boundary conditions (e.g., periodic ones) could have nullified the boundary term. For an investigation of the extremality of A_{W} via the study of the sign of $\Delta^{2} A_{W}$, see Papastavridis [1985(b)].

Example 7.9.4 Projectile Motion via Jacobi's Form of Least Action. Let us study the motion of a particle of mass m in the vertical plane under constant gravity, and neglecting air resistance, via the geodesic form of Jacobi's principle, (7.9.14a ff.).

Here, with $q_{1}=x$ (horizontal), $q_{2}=y$ (positive upward; $y=0$: ground), and

$$
\begin{equation*}
2 T=m\left(\dot{x}^{2}+\dot{y}^{2}\right), \quad V=m g y, \tag{a}
\end{equation*}
$$

the energy equation is

$$
\begin{equation*}
(m / 2)\left(\dot{x}^{2}+\dot{y}^{2}\right)+m g y=E: \text { total energy, a positive constant. } \tag{b}
\end{equation*}
$$

As a result, the integrand of the Jacobi functional, (7.9.14h), becomes

$$
\begin{align*}
R & =2(E-m g y)\left[m+0+m(d y / d x)^{2}\right] \\
& =2 m(E-m g y)\left[1+\left(y^{\prime}\right)^{2}\right]=R\left(y, y^{\prime}\right), \tag{c}
\end{align*}
$$

from which we obtain

$$
\begin{align*}
& \partial \sqrt{R} / \partial y^{\prime}=[2 m(E-m g y)]^{1 / 2}\left[1+\left(y^{\prime}\right)^{2}\right]^{-1 / 2} y^{\prime}, \tag{d1}\\
& \partial \sqrt{R} / \partial y=-\left\{m^{2} g\left[1+\left(y^{\prime}\right)^{2}\right]\right\}\left\{2 m(E-m g y)\left[1+\left(y^{\prime}\right)^{2}\right]\right\}^{-1 / 2}, \tag{d2}
\end{align*}
$$

and so the Euler-Lagrange equations of the Jacobi functional A_{J}, eqs. $(7.9 .14 \mathrm{~m})$, are

$$
\begin{equation*}
E_{y}(\sqrt{R})=0: \quad 2(E-m g y) y^{\prime \prime}+m g\left[1+\left(y^{\prime}\right)^{2}\right]=0 \tag{d3}
\end{equation*}
$$

To integrate (d3), we (...)'-differentiate it once more, thus obtaining

$$
\begin{equation*}
2(E-m g y) y^{\prime \prime \prime}=0, \tag{e1}
\end{equation*}
$$

from which, since $E \neq m g y$, it follows that

$$
\begin{equation*}
y^{\prime \prime \prime}=0 \Rightarrow y=c_{1} x^{2}+c_{2} x+c_{3} \quad\left(c_{1,2,3}: \text { constants of integration }\right) . \tag{e2}
\end{equation*}
$$

To find the three constants of this parabolic orbit, we apply the two boundary conditions

$$
\begin{equation*}
y\left(x_{1}\right)=y_{1}(\text { given }) \quad \text { and } \quad y\left(x_{2}\right)=y_{2}(\text { given }), \tag{f1}
\end{equation*}
$$

and the equation of motion (d3). Choosing, for simplicity, $x(0)=x_{1}=0$ and $y(0)=y_{1}=0$, we immediately find $c_{3}=0$. Then, substituting the resulting $y=c_{1} x^{2}+c_{2} x$ into (d3) and setting $x=0$, we obtain, after some simple algebra,

$$
\begin{equation*}
c_{1}=-m g\left(1+c_{2}^{2}\right) / 4 E<0 \tag{f2}
\end{equation*}
$$

that is, the parabolic orbit opens downward. Finally, substituting (f2) into the second of (f1): $y_{2}=c_{1} x_{2}{ }^{2}+c_{2} x_{2}$, yields the second-degree equation for c_{2} :

$$
\begin{equation*}
c_{2}^{2}-\left(4 E / m g x_{2}\right) c_{2}+\left[\left(4 E y_{2} / m g x_{2}{ }^{2}\right)+1\right]=0 . \tag{f3}
\end{equation*}
$$

Since, on physical grounds, c_{2} must be real, the discriminant of (f3) must be nonnegative; and this leads directly to the condition $4 E\left(E-m g y_{2}\right) \geq\left(m g x_{2}\right)^{2}(>0)$, from which we get the upper bound:

$$
\begin{equation*}
y_{2}<E / m g, \quad \text { or } \quad E>m g y_{2}=V\left(P_{2}\right) . \tag{f4}
\end{equation*}
$$

The two (real) values of c_{2} obtained from (f3) yield the two parabolic orbits reaching $P_{2}\left(x_{2}, y_{2}\right)$ from $P_{1}(=O$: origin of coordinates); one high and one low.

REMARK

Between P_{1} and P_{2}, both these orbits satisfy the same equations of motion and boundary conditions; that is, both satisfy the first-order (stationarity) condition $\delta A_{J}=0$: namely, Jacobi's principle. Their differences appear in the second-order (extremality) conditions: the sign of $\delta^{2} A_{J}$. It can be shown that, for motion between P_{1} and P_{2}, only the low orbit minimizes $A_{J}: \delta^{2} A_{J}>0$, whereas the high orbit does not; and for motion beyond P_{2}, even the low orbit does not minimize A_{J}. [For further details, see (alphabetically): Koschmieder (1962, pp. 45-46), Lur'e (1968, pp. 752-754), Papastavridis [1986(a)], Peisakh (1966, and references cited therein).]

GENERALIZATION

We leave it to the reader to show, using again $\delta A_{J}=0 \Rightarrow E_{y}(\sqrt{R})=0$, that if our particle moves freely in a plane $O-x y$ under a general potential $V=V(x, y)$, its orbits are given by

$$
\begin{equation*}
2(E-V) y^{\prime \prime}+\left[1+\left(y^{\prime}\right)^{2}\right]\left(V_{y}-y^{\prime} V_{x}\right)=0 \tag{g}
\end{equation*}
$$

where subscripts denote partial derivatives. (See, e.g., Kauderer, 1958, p. 599 ff.)

Example 7.9.5 Uniqueness of a Lagrangean. Let us examine the variations of the Hamiltonian action functionals of two (holonomic) systems, A_{H} and $A_{H}{ }^{\prime}$, whose corresponding Lagrangeans, L and L^{\prime}, differ by the total time derivative of an arbitrary "gauge" function of the coordinates and time $F=F(t, q)$; that is,

$$
\begin{equation*}
L^{\prime}(t, q, \dot{q})-L(t, q, \dot{q})=d F(t, q) / d t \tag{a}
\end{equation*}
$$

Since $\delta(\dot{F})=(\delta F)^{\circ}$, we find, successively,

$$
\begin{align*}
\delta A_{H}^{\prime} & =\delta \int L^{\prime} d t=\int \delta L^{\prime} d t=\int[\delta L+\delta(\dot{F})] d t \\
& =\delta A_{H}+\left\{\sum\left(\partial F / \partial q_{k}\right) \delta q_{k}\right\}_{1}^{2} \tag{b}
\end{align*}
$$

and, therefore, if $\delta q_{k}\left(t_{1}\right)=\delta q_{k}\left(t_{2}\right)=0$, the conditions $\delta A_{H}{ }^{\prime}=0$ and $\delta A_{H}=0$ are equivalent; that is, both yield the same equations of motion:

$$
\begin{equation*}
\delta A_{H}=0 \Rightarrow E_{k}(L)=0, \quad \delta A_{H}^{\prime}=0 \Rightarrow E_{k}\left(L^{\prime}\right)=E_{k}(L)=0 \tag{c}
\end{equation*}
$$

This simple variational argument shows that L is nonunique; it is defined only to within the total time derivative of an arbitrary function of the coordinates and time, at most. Accordingly, constant terms, or pure functions of time terms, may be safely
omitted from a Lagrangean. Finally, we point out that we always have

$$
\begin{equation*}
E_{k}\left(L^{\prime}\right)=E_{k}(L+F)=E_{k}(L)+E_{k}(F)=E_{k}(L), \tag{d}
\end{equation*}
$$

even if $\left\{\sum\left(\partial F / \partial q_{k}\right) \delta q_{k}\right\}_{1}^{2}=\{\delta F\}_{1}^{2} \neq 0$ (recalling ex. 3.5.13); but then the arrows in (c) cannot be reversed.

Example 7.9.6 Routh's Problem I: "If the period of complete recurrence of a dynamical system is not altered by the addition of energy, prove that this additional energy is equally distributed into potential and kinetic energies" [Routh, 1905(b), p. 315; also Papastavridis, 1985(a)].

Choosing in the fundamental equations (7.9.4h,i): $t_{1}=0, \Delta t_{1}=0, t_{2}=\tau($ period of "complete recurrence"), $\Delta q_{k}\left(t_{1}\right)=\Delta q_{k}\left(t_{2}\right)$ (say, 0) and assuming that the system is potential $\left(\delta^{\prime} W_{n p}=0\right)$ and scleronomic $\left(\sum p_{k} \dot{q}_{k}=2 T\right)$, we get, respectively,

$$
\begin{align*}
& \Delta \int_{0}^{\tau} 2 T d t=\int_{0}^{\tau} \delta E d t \tag{a}\\
& \Delta \int_{0}^{\tau} 2 V d t=\int_{0}^{\tau} \delta E d t+2 E(\tau) \Delta \tau \tag{b}
\end{align*}
$$

If, further, the addition of energy δE does not alter the period of oscillation (i.e., if $\Delta \tau=0$), the above yield immediately the equipartition theorem:

$$
\begin{equation*}
\Delta \int_{0}^{\tau} T d t=\Delta \int_{0}^{\tau} V d t=\int_{0}^{\tau}(\delta E / 2) d t, \quad \text { Q.E.D. } \tag{c}
\end{equation*}
$$

Example 7.9.7 Routh's Problem II: "A dynamical system passes freely from one configuration to another in time i [our τ] with constant energy E; with energy $E+\delta E$ its time of free passage between the same configurations is $i+\delta i$, verify that on a time average the increment of the mean kinetic energy T_{m} [our $\langle T\rangle$] of the system throughout its path is less than half of δE by the amount $T_{m}(\delta i / i)$. Show that in case there are two adjacent paths that take the same time, their mean potential and kinetic energies differ by equal amounts" [Routh, 1905(b), p. 315; also Papastavridis, 1985(a)].

Here, as in the preceding example, let us choose $t_{1}=0, \Delta t_{1}=0, t_{2}=\tau \equiv i$ (period of oscillation), $\Delta t_{2}=\Delta \tau \equiv \Delta i$, and assume that the system is potential $\left[\left\langle\delta^{\prime} W_{n p}\right\rangle=0\right]$ and scleronomic [$\left.\sum p_{k} \dot{q}_{k}=2 T\right]$. Then, since

$$
\begin{align*}
& \Delta \int_{0}^{\tau} T d t=\Delta(\langle T\rangle \tau)=(\Delta\langle T\rangle) \tau+\langle T\rangle \Delta \tau \tag{a1}\\
& \Delta \int_{0}^{\tau} V d t=\Delta(\langle V\rangle \tau)=(\Delta\langle V\rangle) \tau+\langle V\rangle \Delta \tau \tag{a2}
\end{align*}
$$

eqs. (7.9.4h, i) specialize to

$$
\begin{align*}
& \Delta\langle T\rangle=\delta E / 2-\langle T\rangle(\Delta \tau / \tau) \tag{b1}\\
& \Delta\langle V\rangle=\delta E / 2-[\langle V\rangle-E](\Delta \tau / \tau)=\delta E / 2+\langle T\rangle(\Delta \tau / \tau), \quad \text { Q.E.D. } \tag{b2}
\end{align*}
$$

Theorems like this and the one of the preceding example arose during the late 19th century in connection with the (partially successful) attempts of Clausius, Szily, Boltzmann, et al. to supply analytical mechanics-based explanations of thermomechanical phenomena; see, for example, the papers by Bierhalter [1981(a), (b), 1982, 1983, 1992], and the monograph and original papers by Polak (1959, 1960)].

Problem 7.9.4 Time Integral Theorems for Periodic Systems (Williamson and Tarleton, 1900, pp. 457-458). For the system described in the preceding examples, show that "When the entire state of a moving system recurs at the end of equal intervals of time whose common magnitude is τ, if the total energy E receive a small change, the corresponding variation of the mean Lagrangean function, L_{m} [our $\langle L\rangle$], is given by the equation

$$
\begin{equation*}
\Delta L_{m}=-2 T_{m}(\Delta \tau / \tau) . " \tag{a}
\end{equation*}
$$

Problem 7.9.5 Time Integral Theorems for Periodic Systems (continued) [Routh, 1905(b), pp. 314-315; Williamson and Tarleton, 1900, p. 458]. Continuing from the preceding examples and problem, show that "If the total energy of a recurring system, ..., receive a series of variations at intervals of time which are large compared with the period of recurrence of the system, and if finally the system return to its original state, show that $\int\left(d E / T_{m}\right)$ taken from the beginning to the end of the cycle is zero."

HINT
$E+L=2 T \Rightarrow d E+d L_{m}=2 d T_{m} \Rightarrow d E / T_{m}=$ perfect (or exact) differential (by the preceding problem).

These two problems are important in connection with the (late 19th century) attempts at a mechanical explanation of the second law of thermodynamics (entropy).

Example 7.9.8 Pendulum of Slowly Varying Length; Adiabatic Invariance. We consider a mathematical pendulum, consisting of a bob (particle) of mass m and a constraining light thread of length l, performing small (linear), free and undamped oscillations under gravity (fig. 7.4). If ϕ is the instantaneous inclination of the thread to the vertical, then

$$
\begin{align*}
& 2 T=m l^{2}(\dot{\phi})^{2}, \quad V=-m g l \cos \phi+C \approx(1 / 2) m g l \phi^{2}+C^{\prime} \\
& \quad \text { (for small angular motions; } C, C^{\prime}: \text { constants) } \tag{a}\\
& L \equiv T-V=(1 / 2) m l^{2}(\dot{\phi})^{2}+m g l \cos \phi-C \\
& \tag{b}\\
& \approx(1 / 2) m l^{2}(\dot{\phi})^{2}-(1 / 2) m g l \phi^{2}-C^{\prime} \quad \text { ("small Lagrangean"), }
\end{align*}
$$

and, accordingly, Lagrangean equation of (small) motion:

$$
\begin{align*}
& E_{\phi}(L) \equiv(\partial L / \partial \dot{\phi})^{\cdot}-\partial L / \partial \phi=0 \\
& \ddot{\phi}+(g / l) \sin \phi=0 \Rightarrow \ddot{\phi}+(g / l) \phi=0 \tag{c}
\end{align*}
$$

Figure 7.4 Adiabatic pendulum, of length $/$ and mass m.
Thread tension: $S=m l(\dot{\phi})^{2}+m g \cos \phi \approx m l(\dot{\phi})^{2}-\left(\frac{1}{2}\right) m g \phi^{2}+m g$.
and total energy

$$
\begin{align*}
E & \equiv T+V=h \equiv(\partial L / \partial \dot{\phi}) \dot{\phi}-L:(1 / 2) m l^{2}(\dot{\phi})^{2}-m g l \cos \phi=\text { constant }, \\
& \Rightarrow(1 / 2) m l^{2}(\dot{\phi})^{2}+(1 / 2) m g l \phi^{2}=\text { constant } \quad \text { ("small energy equation"). } \tag{d}
\end{align*}
$$

Equation (d) shows that as long as the pendulum parameters, m and l, remain constant in time so does $E=h$. Now, let us assume that some external (energysupplying) agency acts to change these parameters, say, the length l; for example, we can imagine the thread held between the fingers of one hand and shortened/ lengthened by drawing it up/down with the fingers of the other; or, the bob picks up dust and, thus, its mass changes. Then, the power equation yields

$$
\begin{equation*}
d E / d t=d h / d t=-\partial L / \partial t=-(\partial L / \partial l)(d l / d t) \neq 0 \tag{e}
\end{equation*}
$$

that is, the system is no longer conservative.
Let us now examine the special case where the above length change, from l to $l+d l$, is spread over several (to and fro) oscillations; that is, let us assume that $d l$ takes a very large number of periods, and, therefore, within any one of them, l can be considered constant. Since the pendulum still oscillates under these very slow, or adiabatic, variations, henceforth denoted by δl (like the virtual variations), both its new frequency and period,

$$
\begin{equation*}
\omega+\delta \omega \quad \text { and } \quad \tau+\delta \tau=(2 \pi / \omega)+\left(-2 \pi / \omega^{2}\right) \delta \omega, \tag{f}
\end{equation*}
$$

will be functions of δl. Mathematically, we are dealing here with a differential equation, (c), whose coefficients (parameters) are explicit functions, not of the ordinary
(or "fast") time t, but of an adiabatic (or "slow") time $t^{\prime} \equiv \varepsilon t, \varepsilon$: small number; that is, $l=l\left(t^{\prime}\right)$.

Now we ask the following fundamental question: Are there any energetic quantities that, in spite of these adiabatic (nonconservative) changes of l, remain constant, not in t but in t^{\prime}; that is, to the first ε-order?

As we explain below, one such constant, or adiabatic invariant, is the time average of twice the kinetic energy of the system, divided by its frequency, $2\langle T\rangle / \omega$; which, to within a constant factor, equals the Lagrangean action A_{L}. If, further, V is homogeneous quadratic in the coordinates (i.e., linear oscillations) then, since by the virial theorem (ex. 7.2.1 ff.) $\langle T\rangle=\langle V\rangle$, that invariant becomes $2\langle T\rangle / \omega=E / \omega$. [This is a famous problem: It was posed at the Solvay Congress (Brussels, 1911) by the great physicist H. A. Lorentz, and was answered (for the small motion case) by the ... greater physicist A. Einstein!] Other special variations of the system parameters produce other special invariants ("integrals"); see, for example, Kronauer and Musa (1966), Kronauer (1983), Papastavridis [1982(b)].

Let us establish this adiabatic invariant directly, by elementary considerations. As (c) shows, the small motion frequency (squared) equals $\omega^{2}=g / l$, and so, for small variations,

$$
\begin{equation*}
(2 \omega \delta \omega) l+\omega^{2} \delta l=0 \Rightarrow(\delta \omega / \omega)=-(\delta l / 2 l) \tag{g}
\end{equation*}
$$

Next, by kinetics (equation of motion of bob along the thread direction), the tension of the thread S equals

$$
\begin{align*}
S & =m l(\dot{\phi})^{2}+m g \cos \phi \\
& \approx m g+m l(\dot{\phi})^{2}-m g \phi^{2} / 2 \quad \text { (for small motions) } \tag{h}
\end{align*}
$$

where, as (c) shows [under the initial conditions, say, $\phi(0)=\phi_{o}$ and $\dot{\phi}(0)=0$], $\phi(t)=\phi_{o} \cos (\omega t)$. Therefore, the elementary work of S during a δl change, $\delta^{\prime} W_{\text {external }} \equiv \delta^{\prime} W$, averaged over several oscillation periods, will be

$$
\begin{align*}
\left\langle\delta^{\prime} W\right\rangle & =-\langle S \delta l\rangle=-\delta l\left[\langle m g\rangle+\left\langle m l(\dot{\phi})^{2}\right\rangle-\left\langle m g \phi^{2} / 2\right\rangle\right] \\
& =-\delta l\left[\langle m g\rangle+\left\langle m l \phi_{o}{ }^{2} \omega^{2} \sin ^{2}(\omega t)\right\rangle-\left\langle m g \phi_{o}{ }^{2} \cos ^{2}(\omega t) / 2\right\rangle\right] \\
& =\cdots=-\delta l\left[m g+m l \phi_{o}{ }^{2} \omega^{2}(1 / 2)-m g \phi_{o}{ }^{2}(1 / 4)\right] \\
& =-m g\left(1+\phi_{o}{ }^{2} / 4\right) \delta l=-\langle S\rangle \delta l \quad\left[\text { since } \omega^{2} l=g\right] . \tag{i}
\end{align*}
$$

Further, recalling (a),

$$
\begin{align*}
\langle T\rangle & =\left\langle(1 / 2) m l^{2}(\dot{\phi})^{2}\right\rangle=\left\langle(1 / 2) m l^{2} \omega^{2} \phi_{o}^{2} \sin ^{2}(\omega t)\right\rangle \\
& =(1 / 4) m l^{2} \omega^{2} \phi_{o}^{2}=m g l \phi_{o}^{2} / 4, \tag{j}\\
\langle V\rangle & =\left\langle C-m g l\left[1-\left(\phi^{2} / 2\right)\right]\right\rangle \\
& =C-m g l\left[1-\left(\phi_{o}^{2} / 2\right)\left\langle\cos ^{2}(\omega t)\right\rangle\right] \\
& =C-m g l\left(1-\phi_{o}^{2} / 4\right) . \tag{k}
\end{align*}
$$

With the help of the above results, the averaged energy equation

$$
\begin{equation*}
\left\langle\delta^{\prime} W\right\rangle=\langle\delta E\rangle=\delta\langle E\rangle=\delta(\langle T+V\rangle)=\delta\langle T\rangle+\delta\langle V\rangle \tag{1}
\end{equation*}
$$

yields

$$
\begin{align*}
-m g\left(1+\phi_{o}^{2} / 4\right) \delta l & =\delta\left(m g l \phi_{o}{ }^{2} / 4\right)+\delta\left[C-m g l\left(1-\phi_{o}^{2} / 4\right)\right] \\
& \Rightarrow 3 \phi_{o} \delta l+4 l \delta \phi_{o}=0, \tag{m}
\end{align*}
$$

from which, integrating adiabatically, we find

$$
\begin{equation*}
l^{3} \phi_{o}{ }^{4}=\text { constant } \quad \text { or } \quad l \sqrt{l} \phi_{o}{ }^{2}=\text { constant } . \tag{n}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
2\langle T\rangle / \omega=\left(m g l \phi_{o}{ }^{2} / 2\right) /(g / l)^{1 / 2}=(m \sqrt{g} / 2)\left(l \sqrt{l} \phi_{o}{ }^{2}\right)=\text { constant }, \tag{o}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{L} \equiv \int_{0}^{\tau} 2 T d t=2\langle T\rangle \tau=2 \pi(2\langle T\rangle / \omega)=\text { constant, } \quad \text { Q.E.D. } \tag{p}
\end{equation*}
$$

For further details see Papastavridis [1985(a)] and $\S 8.15$.

Problem 7.9.6 Adiabatic Invariance (Linear Pendulum). In connection with the adiabatic pendulum of the preceding example, ex. 7.9 .8 (i.e., particle P of mass m, suspended by a light and inextensible thread of slowly and randomly varying length l, and instantaneous tension S) under gravity, show that

$$
\begin{equation*}
S=\partial L / \partial l \quad\left[=m l(\dot{\phi})^{2}+m g \cos \phi, \text { exactly }\right] ; \tag{a}
\end{equation*}
$$

and therefore its averaged energy equation is

$$
\begin{align*}
\left\langle\delta^{\prime} W\right\rangle=\delta\langle h\rangle & =-\langle S\rangle \delta l=-\langle\partial L / \partial l\rangle \delta l \\
& \equiv-(\omega / 2 \pi) \int_{0}^{2 \pi / \omega}(\partial L / \partial l) \delta l d t \\
& =\cdots=-m g\left(1+\phi_{o}{ }^{2} / 4\right) \delta l \quad \text { (linear pendulum case). } \tag{b}
\end{align*}
$$

[Equation (b) is, essentially, the adiabatic and averaged version of the holonomic and potential power equation: $d h / d t=-\partial L / \partial t$.]

Problem 7.9.7 Adiabatic Invariance (The Rayleigh Pendulum). Continuing from the preceding problem of the adiabatic mathematical pendulum under gravity, let us examine the case where, at the suspension point, there is a small ring R constrained to slide up and down the smooth, vertical, and fixed line $A B$ (otherwise the pendulum would be a nonconservative system).
(i) Show that if R is kept fixed, in which case $R P$ is an ordinary (i.e., constant parameter) pendulum, the vertical force tending to push R upward, F, equals

$$
\begin{equation*}
F=S(1-\cos \phi) \approx m g \cos \phi(1-\cos \phi): \text { :"vibration pressure" } \tag{a}
\end{equation*}
$$

(disregarding an unessential centripetal force contribution to S-explain); and since $V=m g l(1-\cos \phi)$, deduce that, for small vibrations (recall virial theorem),

$$
\begin{equation*}
2 F \approx m g \phi^{2} \Rightarrow\langle F\rangle=\langle V / l\rangle=\cdots=(1 / 2)(E / l) \tag{b}
\end{equation*}
$$

where E is the total energy of the pendulum (a constant); that is, the average force on the ring is proportional to the pendulum's energy density (=energy per unit length) [a result which, as Rayleigh has pointed out (1902), has a close analog in electromagnetism (vibration pressure \rightarrow "radiation pressure"]. Also, verify that the horizontal force on R is $S \sin \phi=m g \cos \phi \sin \phi$, and its average vanishes.
(ii) Next, assume that while P oscillates with frequency $\omega=(g / l)^{1 / 2}, R$ is let slide adiabatically upward; that is, $\delta l>0$. Then, clearly, the (positive) work done on R by F comes at the expense of the oscillatory energy of the pendulum. Show that, in such a case,

$$
\begin{equation*}
\delta E=-\langle F\rangle \delta l=-(E / 2)(\delta l / l) \tag{c}
\end{equation*}
$$

from which, by "adiabatic integration," it follows that

$$
\begin{equation*}
E \sqrt{l}=\text { constant } \tag{d}
\end{equation*}
$$

and from this we conclude that as $l \rightarrow \infty, E \rightarrow 0$; that is, the entire energy of P is then expended as work done on R.

Problem 7.9.8 Adiabatic Invariance (The Rayleigh Pendulum). Continuing from the preceding problem,
(i) By averaging Lagrange's equation of motion for a typical positional coordinate l :

$$
\begin{equation*}
Q_{l}=(\partial T / \partial \dot{l})^{\cdot}-\partial T / \partial l+\partial V / \partial l, \tag{a}
\end{equation*}
$$

over a very long time interval τ, show that, since $p_{l} \equiv \partial T / \partial \dot{l}$ is finite,

$$
\begin{align*}
\left\langle Q_{l}\right\rangle & \equiv(l / \tau) \int_{0}^{\tau} Q_{l} d t=(1 / \tau) \int_{0}^{\tau}(\partial V / \partial l-\partial T / \partial l) d t \\
& =-(1 / \tau) \int_{0}^{\tau}(\partial L / \partial l) d t \equiv-\langle\partial L / \partial l\rangle \tag{b}
\end{align*}
$$

(ii) Show that, in the case of our ringed pendulum (i.e., $\dot{l}=0$),

$$
\begin{equation*}
\partial V / \partial l=m g(1-\cos \phi)=V / l, \quad \partial T / \partial l=m l(\dot{\phi})^{2}=2 T / l, \tag{c}
\end{equation*}
$$

and, therefore, since $\langle V\rangle=\langle T\rangle=E / 2$ (by the virial theorem, for small vibrations), eq. (b) yields

$$
\begin{equation*}
\left\langle Q_{l}\right\rangle=(1 / \tau) \int_{0}^{\tau}[(V-2 T) / l] d t=\cdots=-(1 / 2)(E / l)=-\langle F\rangle \tag{d}
\end{equation*}
$$

that is, the average force necessary to hold the ring must be directed downward (so as to tend to diminish l).

This "ringed pendulum" problem seems to be the earliest simple and concrete example of adiabatic invariance. For additional examples and insights, see Rayleigh
(1902); also Bakay and Stepanovskii (1981, pp. 100-107), Tomonaga (1962, pp. 290 294), and Thomson (1888, chaps. 4, 9).

Example 7.9.9 Rayleigh's Principle via the Principle of Least Action. Let us consider a holonomic and scleronomic system with n DOF undergoing small (linear) free and undamped vibrations about a configuration of stable equilibrium defined by $q_{k}=0$. Then, to within our approximations, its kinetic and potential energies are, respectively,

$$
\begin{equation*}
2 T=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}, \quad 2 V=\sum \sum V_{k l} q_{k} q_{l}, \tag{a}
\end{equation*}
$$

where $\left(M_{k l}\right)$ and $\left(V_{k l}\right)$ are constant, symmetric, and positive definite matrices of inertia (mass) and total potential (stiffness), respectively, and the q 's give the small motion from equilibrium. Next, let us assume that the system oscillates in its (M) th mode $(M=1, \ldots, n)$; that is, each q_{k} varies as

$$
\begin{equation*}
q_{k}{ }^{(M)} \equiv q_{k, M} \equiv A_{k M}\left(C_{M} \sin \psi_{M}\right), \quad \psi_{M} \equiv \omega_{M} t+\phi_{M}, \tag{b}
\end{equation*}
$$

where C_{M}, ϕ_{M}, and ω_{M} are, respectively, the amplitude, phase, and frequency of that mode (the first two to be determined from the initial conditions of that mode); and the $A_{k M}$ are the "normal mode coefficients" or "direction cosines" of the modal vector $C_{M} \sin \psi_{M}$, in q-space, and depend on $M_{k l}, V_{k l}$, and $\omega_{M}{ }^{2}$ [they are the minors of the characteristic or secular determinant $\left|V_{k l}-\omega_{M}{ }^{2} M_{k l}\right|$; assuming that all ω_{M} 's are different. The practically much rarer case of multiple or degenerate frequencies introduces some very minor modifications; see, e.g., Greenwood (1988, pp. 497-498), Lamb (1929, pp. 230-232).]

From (b) we immediately find

$$
\begin{equation*}
d q_{k, M} / d t=A_{k M} C_{M} \omega_{M} \cos \psi_{M}, \tag{c}
\end{equation*}
$$

and so the (double) kinetic and potential energies of that mode are, respectively,

$$
\begin{equation*}
2 T_{M}=\left(C_{M} \omega_{M} \cos \psi_{M}\right)^{2} K_{M}, \quad 2 V_{M}=\left(C_{M} \sin \psi_{M}\right)^{2} \Pi_{M} \tag{d}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{M} \equiv \sum \sum M_{k l} A_{k M} A_{l M}, \quad \Pi_{M} \equiv \sum \sum V_{k l} A_{k M} A_{l M} \tag{d1}
\end{equation*}
$$

[Had we included $C_{M}{ }^{2} / 2$ in K_{M}, Π_{M}, the latter would be, respectively, the maximum kinetic and potential energies of the system, at the (M)th mode.]

Below, using the general "least" action equation (7.9.4f), we derive Rayleigh's principle; that is,

$$
\begin{equation*}
\omega_{M}^{2} \delta K_{M}-\delta \Pi_{M}=0 \quad \text { or } \quad \delta\left(\Pi_{M} / K_{M}\right)=0 \tag{e}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta K_{M} \equiv 2 \sum \sum M_{k l} A_{k M} \delta A_{l M}, \quad \delta \Pi_{M} \equiv 2 \sum \sum V_{k l} A_{k M} \delta A_{l M} \tag{el}
\end{equation*}
$$

and the $\delta A_{k M}$ are small variations about the (M) th mode. The qualitative and physical interpretation of (e) is given later.

By $\delta(\ldots)$-varying the $q_{k, M}$, eqs. (b), around the (M) th mode, we find

$$
\begin{align*}
& \delta q_{k, M}=\left(C_{M} \sin \psi_{M}\right) \delta A_{M}+\left(A_{k M} \sin \psi_{M}\right) \delta C_{M}+\left(A_{k M} C_{M} \cos \psi_{M}\right) \delta \psi_{M}, \tag{f1}\\
& \delta \psi_{M}=t \delta \omega_{M}+\delta \phi_{M}, \tag{f2}
\end{align*}
$$

and so the corresponding boundary terms of (7.9.4f) become

$$
\begin{align*}
&\left\{\sum p_{k M} \delta q_{k M}\right\}_{1}^{2}=\left\{\sum \sum M_{k l}\left(d q_{l M} / d t\right) \delta q_{k M}\right\}_{1}^{2} \\
&=\left\{\left[\left(C_{M}^{2} \omega_{M} / 2\right) \delta K_{M}+\left(C_{M} \omega_{M} K_{M}\right) \delta C_{M}\right] \sin \psi_{M} \cos \psi_{M}\right. \\
&\left.+\left(C_{M}^{2} \omega_{M} K_{M}\right) \cos ^{2} \psi_{M} \delta \psi_{M}\right\}_{1}^{2} \tag{g1}\\
&\left\{2 T_{M} \Delta t_{M}\right\}_{1}^{2}=\left\{\left(C_{M}^{2} \omega_{M} K_{M}\right) \cos ^{2} \psi_{M} \Delta t_{M}\right\}_{1}^{2} \tag{g2}
\end{align*}
$$

To eliminate both (g1) and (g2) we make the following (clearly nonunique) choices:

$$
\begin{align*}
& \left(\psi_{M}\right)_{1}=\pi / 2 \Rightarrow \omega_{M} t_{1}+\phi_{M}=\pi / 2 \\
& \left(\psi_{M}\right)_{2}=\left(\psi_{M}\right)_{1}+2 \pi \Rightarrow \omega_{M} t_{2}+\phi_{M}=5 \pi / 2 \\
& \Rightarrow \tau_{M}=t_{2}-t_{1}=2 \pi / \omega_{M}:(M) \text { th principal period } . \tag{g3}
\end{align*}
$$

With these time limits, and since here $\delta^{\prime} W_{n p}=0$, equation (7.9.4f) reduces to

$$
\begin{equation*}
\Delta A_{L, M}-\int \delta E_{M} d t=\Delta \int 2 T_{M} d t-\int\left(\delta T_{M}+\delta V_{M}\right) d t=0 \tag{h}
\end{equation*}
$$

Let us implement (h): a series of straightforward trigonometric integrations, with use of ($\mathrm{a}-\mathrm{d}, \mathrm{f} 1,2$) and $t_{2}=t_{1}+\tau_{M}$, yields

$$
\begin{align*}
A_{L, M} \equiv & \int 2 T_{M} d t \\
= & \int\left(C_{M}^{2} \omega_{M}^{2} K_{M}\right) \cos ^{2} \psi_{M} d t=\left(\pi / \omega_{M}\right)\left(C_{M}^{2} \omega_{M}^{2} K_{M}\right), \tag{i1}\\
\Rightarrow \Delta A_{L, M}= & \left(\pi / \omega_{M}\right)\left[\left(2 C_{M} \omega_{M}^{2} K_{M}\right) \delta C_{M}+\left(C_{M}^{2} \omega_{M} K_{M}\right) \delta \omega_{M}+\left(C_{M}^{2} \omega_{M}^{2}\right) \delta K_{M}\right],(\mathrm{i} 2) \tag{i2}\\
\int \delta T_{M} d t= & \int\left[\left(C_{M} \omega_{M}^{2} K_{M} \delta C_{M}\right) \cos ^{2} \psi_{M}+\left(C_{M}^{2} \omega_{M} K_{M} \delta \omega_{M}\right) \cos ^{2} \psi_{M}\right. \\
& \left.-\left(C_{M}^{2} \omega_{M}^{2} K_{M} \delta \psi_{M}\right) \sin \psi_{M} \cos \psi_{M}+\left(C_{M}^{2} \omega_{M}^{2} \delta K_{M} / 2\right) \cos ^{2} \psi_{M}\right] d t,(\mathrm{i} 3) \\
\int \delta V_{M} d t= & \int\left[\left(C_{M} \Pi_{M} \delta C_{M}\right) \sin ^{2} \psi_{M}+\left(C_{M}^{2} \Pi_{M} \delta \psi_{M}\right) \sin \psi_{M} \cos \psi_{M}\right. \\
& \left.+\left(C_{M}^{2} \delta \Pi_{M} / 2\right) \sin ^{2} \psi_{M}\right] d t, \tag{i4}\\
\Rightarrow & \int\left(\delta T_{M}+\delta V_{M}\right) d t=\int \delta E_{M} d t \\
= & \cdots=\left(\pi / \omega_{M}\right)\left[\left(\omega_{M}^{2} K_{M}+\Pi_{M}\right) C_{M} \delta C_{M}\right. \\
& +\left(C_{M}^{2} \omega_{M} K_{M}\right) \delta \omega_{M} \\
& \left.+(1 / 2)\left(\omega_{M}^{2} \delta K_{M}+\delta \Pi_{M}\right) C_{M}^{2}\right] . \tag{i5}
\end{align*}
$$

Hence, substituting (i2) and (i5) into (h), while noting that due to the linearity of the system (in the equations of motion), we have equipartition of its kinetic and potential energies over τ_{M}; that is,

$$
\begin{equation*}
\int T_{M} d t=\int V_{M} d t \tag{j}
\end{equation*}
$$

or, since

$$
\begin{align*}
\int T_{M} d t & =\left(\pi / \omega_{M}\right) \omega_{M}^{2}\left[\sum \sum(1 / 2) M_{k l}\left(A_{k M} C_{M}\right)\left(A_{l M} C_{M}\right)\right] \\
& =\left(\pi / \omega_{M}\right) \omega_{M}^{2} C_{M}^{2} K_{M} / 2 \equiv\left(\pi / \omega_{M}\right) \omega_{M}^{2} T_{M, \max }, \tag{j1}\\
\int V_{M} d t & =\left(\pi / \omega_{M}\right)\left[\sum \sum(1 / 2) V_{k l}\left(A_{k M} C_{M}\right)\left(A_{l M} C_{M}\right)\right] \\
& =\left(\pi / \omega_{M}\right) C_{M}^{2} \Pi_{M} / 2 \equiv\left(\pi / \omega_{M}\right) V_{M, \max }, \tag{j2}
\end{align*}
$$

Equation $(\mathrm{j}) \Rightarrow \omega_{M}{ }^{2}=\Pi_{M} / K_{M}=V_{M, \text { max }} / T_{M, \text { max }}$
[and this is a key step in the proof of Rayleigh's theorem, which shows why (j 3) and the theorem do not hold for nonlinear oscillations], we finally find

$$
\begin{align*}
& \left(\pi / \omega_{M}\right)(1 / 2)\left(C_{M}^{2} \omega_{M}^{2} \delta K_{M}-C_{M}^{2} \delta \Pi_{M}\right)=0 \\
& \Rightarrow \omega_{M}^{2} \delta K_{M}-\delta \Pi_{M}=0 \Rightarrow \omega_{M}^{2}=\delta \Pi_{M} / \delta K_{M}=\delta V_{M, \max } / \delta T_{M, \max }, \text { Q.E.D. } \tag{k}
\end{align*}
$$

This can also be written as

$$
\begin{equation*}
\delta R_{M}=0, \quad \text { where } \quad R_{M} \equiv \omega_{M}^{2} T_{M, \text { max }}-V_{M, \text { max }} \quad\left(\text { or } V_{M, \max }-\omega_{M}^{2} T_{M, \max }\right), \tag{k1}
\end{equation*}
$$

and that variation does not affect ω_{M}; or, due to (j 3), as

$$
\begin{align*}
0 & =\delta \omega_{M}^{2}=\delta\left(V_{M, \max } / T_{M, \max }\right) \\
& =\left(1 / T_{M, \max }{ }^{2}\right)\left(T_{M, \max } \delta V_{M, \max }-V_{M, \max } \delta T_{M, \max }\right) \\
& =\left(1 / T_{M, \max }\right)\left[\delta V_{M, \max }-\left(V_{M, \max } / T_{M, \max }\right) \delta T_{M, \max }\right] \\
& =\left(1 / T_{M, \max }\right)\left(\delta V_{M, \max }-\omega_{M}^{2} \delta T_{M, \max }\right) . \tag{k2}
\end{align*}
$$

REMARKS

(i) A Hamilton principle-based derivation of ($\mathrm{k}-\mathrm{k} 3$) would utilize expressions (i35) with $\delta \omega_{M}=0$ [i.e., fixed endpoints, since

$$
\begin{equation*}
\left.\delta \omega_{M}=\delta\left(2 \pi / \tau_{M}\right)=-\left(2 \pi / \tau_{M}^{2}\right) \delta \tau_{M}=-\left(2 \pi / \tau_{M}^{2}\right) \Delta\left(t_{2}-t_{1}\right)\right] . \tag{1}
\end{equation*}
$$

Then,

$$
\begin{align*}
0 & =\delta \int\left(T_{M}-V_{M}\right) d t=\int\left(\delta T_{M}-\delta V_{M}\right) d t \\
& =\left(\pi / \omega_{M}\right)\left[\left(\omega_{M}^{2} K_{M}-\Pi_{M}\right) C_{M} \delta C_{M}+(1 / 2)\left(\omega_{M}^{2} \delta K_{M}-\delta \Pi_{M}\right) C_{M}^{2}\right], \tag{m}
\end{align*}
$$

from which, again thanks to (j3), eq. (k) follows.

Such a derivation does not exactly coincide with those found in the literature; there, one sets

$$
\begin{equation*}
q_{k, M}=B_{k M} \sin \psi_{M}, \quad B_{k M} \equiv A_{k M} C_{M} \tag{m1}
\end{equation*}
$$

from which

$$
\begin{equation*}
\delta q_{k, M}=\delta B_{k M} \sin \psi_{M} \tag{m2}
\end{equation*}
$$

and so Hamilton's principle yields

$$
\begin{align*}
0 & =\delta \int\left(T_{M}-V_{M}\right) d t=\delta\left[\left(\pi / \omega_{M}\right)\left(\omega_{M}^{2} T_{M, \max }-V_{M, \max }\right)\right] \\
& =\left(\pi / \omega_{M}\right) \delta\left(\omega_{M}^{2} T_{M, \max }-V_{M, \max }\right)=\left(\pi / \omega_{M}\right)\left(\omega_{M}^{2} \delta T_{M, \max }-\delta V_{M, \max }\right) \tag{m3}
\end{align*}
$$

because, here, $\delta(\ldots)$ implies $\omega_{M}=$ constant. Again, we notice the indispensability of (j3).
(ii) As eqs. (h) and (i5) show, even if $\delta A_{L, M}=0$ and $\delta \omega_{M}=0$, still

$$
\begin{equation*}
\int \delta E_{M} d t \neq 0 \tag{n}
\end{equation*}
$$

whereas the customary formulation of "least" action, eq. (7.9.6b), requires that $\delta E_{M}=0$ for the admissible varied paths.

For a derivation of Rayleigh's principle based on the Hamiltonian action, eq. (7.9.4b), see Lur'e (1968, pp. 689-694).

More on Rayleigh's Principle (RP)

The stationary property (k) had already been noticed by Lagrange; and is indeed referred to by some authors as Lagrange's theorem. But Rayleigh (1870s) revealed the following, additional, extremum property: If we imagine the system reduced to one with a single degree of freedom, say, by the imposition of $n-1$ frictionless (ideal) constraints so that the ratios $q_{1}: q_{2}: \ldots: q_{n}$ have any given values, then the (square of the) frequency of the so-constrained system ω^{2} will lie between the (squares of the) least and greatest natural frequencies of the unconstrained system:

$$
\begin{equation*}
\omega_{\min }^{2} \equiv \omega_{1}^{2} \leq \omega^{2} \leq \omega_{\max }^{2} \equiv \omega_{n}^{2} \tag{o}
\end{equation*}
$$

To understand these results better we need some "normal mode theory". [See any good vibrations text; or Gantmacher (1970, pp. 202-222), Synge and Griffith (1959, pp. 483-505).]

As shown there, the most general q_{k}-variation is a superposition of n simple harmonic, or principal, independent oscillations,

$$
\begin{equation*}
x_{M}=C_{M} \sin \psi_{M}: \quad(M) \text { th principal mode }, \quad \psi_{M}=\omega_{M} t+\phi_{M} \tag{p1}
\end{equation*}
$$

where the amplitudes C_{M} and phases ϕ_{M} are to be determined from the $2 n$ initial conditions $x_{M}(0)$ and $d x_{M}(0) / d t$ [or from the $q_{k}(0)$ and $d q_{k}(0) / d t$], each of which contributes to q_{k} proportionately to the coefficient $A_{k M}$; that is, recalling (b),

$$
\begin{equation*}
q_{k}=\sum q_{k, M}=\sum A_{k M} x_{M}=\sum A_{k M} C_{M} \sin \psi_{M} \tag{p2}
\end{equation*}
$$

This expresses D. Bernoulli's principle of the superposition of linear vibrations (1753). The great advantage of such Lagrangean coordinates is that in them the equations of motion decouple to the n independent equations

$$
\begin{equation*}
d^{2} x_{M} / d t^{2}+\omega_{M}^{2} x_{M}=0 \Rightarrow \text { eq. (p1). } \tag{p3}
\end{equation*}
$$

Next, it is physically (though not mathematically) clear, that

$$
\begin{equation*}
T=\sum T_{M}=\sum(1 / 2) m_{M}\left(d x_{M} / d t\right)^{2}, \quad V=\sum V_{M}=\sum(1 / 2) k_{M} x_{M}^{2}, \tag{p4}
\end{equation*}
$$

m_{M} : principal coefficients of inertia $\quad(>0)$,
k_{M} : principal coefficients of stability $\quad(>0$; since $V>0)$;
that is, in such coordinates, T and V can be expressed in sum of squares, or diagonal, forms; and, when comparing them with (p3), we easily conclude that

$$
\begin{equation*}
\omega_{M}^{2}=k_{M} / m_{M} \quad(>0) . \tag{p6}
\end{equation*}
$$

[Some authors define normal (ized) coordinates, as opposed to principal coordinates, so that the inertia matrix $\left(M_{k l}\right)$ is the unit matrix, while the stiffness \rightarrow stability matrix $\left(V_{k l}\right)$ is the diagonal matrix of the $\omega_{M}{ }^{2}$; that is, such coordinates are principal and inertially normalized.]

In terms of these principal coordinates, any $n-1$ geometrical constraints imposed on our system, (which in effect reduce it to a one-DOF system) will be given by the linear relations

$$
\begin{equation*}
x_{1}=X_{1} \xi, \quad x_{2}=X_{2} \xi, \ldots, \quad x_{n}=X_{n} \xi \tag{q1}
\end{equation*}
$$

where the $X_{1, \ldots, n}$ are constants and $\xi=\xi(t)$ is any of the x_{M} 's or q_{k} 's. Then T and V, eqs. $(p 4,5)$ take the constrained values

$$
\begin{align*}
& T_{\xi}=(1 / 2)\left(m_{1} X_{1}^{2}+\cdots+m_{n} X_{n}^{2}\right)(d \xi / d t)^{2} \equiv T_{\xi, o}(d \xi / d t)^{2}, \tag{q2}\\
& V_{\xi}=(1 / 2)\left(k_{1} X_{1}^{2}+\cdots+k_{n} X_{n}^{2}\right) \xi^{2} \equiv V_{\xi, o} \xi^{2} \tag{q3}
\end{align*}
$$

and, due to equipartition over the period of $\xi, \tau_{\xi}=2 \pi / \omega_{\xi}$ - that is,

$$
\begin{equation*}
\int\left(T_{\xi}-V_{\xi}\right) d t=0 \Rightarrow\left(\pi / \omega_{\xi}\right)\left(\omega_{\xi}^{2} T_{\xi, \max }-V_{\xi, \max }\right)=0 \tag{q4}
\end{equation*}
$$

we find that the so-constrained frequency is given by Rayleigh's quotient:

$$
\begin{align*}
\omega_{\xi}^{2} & =V_{\xi, \max } / T_{\xi, \max } \\
& =\left(k_{1} X_{1}^{2}+\cdots+k_{n} X_{n}^{2}\right) /\left(m_{1} X_{1}^{2}+\cdots+m_{n} X_{n}{ }^{2}\right)=V_{\xi, o} / T_{\xi, o} \tag{q5}
\end{align*}
$$

and since we have numbered our frequencies so that

$$
\begin{equation*}
\min \left(k_{M} / m_{M}\right)=k_{1} / m_{1} \equiv \omega_{1}^{2} \quad \text { and } \quad \max \left(k_{M} / m_{M}\right)=k_{n} / m_{n} \equiv \omega_{n}^{2} \tag{q6}
\end{equation*}
$$

the (extremal) RP states that
in words: the approximate (constrained) value of Rayleigh's quotient is never lower than the actual ω_{1}^{2}, and thus furnishes an upper bound for it.
[For an algebraic derivation of RP, based on the solutions of the corresponding (constrained) Routh-Voss equations, see, for example, Chirgwin and Plumpton (1966, pp. 376-379), Ramsey (1937, pp. 267-269), Smart (1951, pp. 399-401); while for extensions to the higher frequencies, see any good book on linear algebra (eigenvalue problem), or Gantmacher (1970, pp. 216-222).]

As for the earlier-proved stationary property of Rayleigh's quotient (Lagrange's theorem), the above results allow us to reformulate it as follows: If $n-1$ of the X 's, eqs. (q1), are very small (of the first order) relative to any particular X_{M} - that is, if the constraints (q1) force the system to oscillate very closely to the (M) th mode - then $\omega_{\xi} \approx \omega_{M}$ (to the second order); or, if all X 's, except X_{M}, become very small (first order), then $\omega_{\xi}{ }^{2}$ will differ from ω_{M}^{2} by second-order quantities; and, of course, if all X 's, except X_{M}, vanish, then $\omega_{\xi}{ }^{2}=\omega_{M}{ }^{2}$.

In sum: The frequency (squared) of the constrained system is stationary for those constraints that make the oscillation a normal one of the natural (i.e., unconstrained) system; and these stationary values are the (squares of the) system's natural frequencies.

Finally, we point out that in concrete applications of RP there is no need to employ normal coordinates; if there was, in view of the work needed to find the latter, RP would be practically useless. Both stationarity and extremality of Rayleigh's quotient are intrinsic system properties, and, as such, are independent of any particular q 's used. Thus, if, in general coordinates, the constraints are $q_{k}=B_{k} \xi(t)$, or $q_{k}=B_{k} \sin \left(\omega_{\xi} t\right)$, where the B_{k} 's are constants and ξ is any one of the q_{k} 's or x_{M} 's, then (r) is replaced by

$$
\omega_{1}^{2} \leq \omega_{\xi}^{2}=\sum V_{k l} B_{k} B_{l} / \sum M_{k l} B_{k} B_{l} \leq \omega_{n}^{2}
$$

$$
\begin{equation*}
\text { for an arbitrary set of real numbers } B_{1, \ldots, n} \text {. } \tag{s}
\end{equation*}
$$

In particular, for a two-DOF system, equations ($\mathrm{q} 5, \mathrm{~s}$) yield, respectively [fig. 7.5(a, b)],

$$
\omega_{\xi}^{2}=\left(k_{1} X_{1}^{2}+k_{2} X_{2}^{2}\right) /\left(m_{1} X_{1}^{2}+m_{2} X_{2}^{2}\right),
$$

or

$$
\begin{equation*}
\omega^{2}(\lambda)=\left(k_{1}+k_{2} \lambda^{2}\right) /\left(m_{1}+m_{2} \lambda^{2}\right), \tag{s1}
\end{equation*}
$$

where

$$
\begin{gather*}
\lambda \equiv X_{2} / X_{1} \tag{s2}\\
\omega_{\xi}^{2}=\left(V_{11} B_{1}^{2}+2 V_{12} B_{1} B_{2}+V_{22} B_{2}^{2}\right) /\left(M_{11} B_{1}^{2}+2 M_{12} B_{1} B_{2}+M_{22} B_{2}^{2}\right)
\end{gather*}
$$

or

$$
\begin{equation*}
\omega^{2}(\mu)=\left(V_{11}+2 V_{12} \mu+V_{22} \mu^{2}\right) /\left(M_{11}+2 M_{12} \mu+M_{22} \mu^{2}\right) \tag{s3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu \equiv B_{2} / B_{1} . \tag{s4}
\end{equation*}
$$

(a) Graph of $\omega^{2}(\lambda) ; \lambda=X_{2} / X_{1}$ (normal/uncoupled cordinates), $\omega_{2}^{2}=k_{2} / m_{2}>\omega_{1}{ }^{2}=k_{1} / m_{1}$

(b) Graph of $\alpha^{2}(\mu) ; \mu \equiv B_{2} / B_{i}$ (general/coupled cordinates);

Leff: $\omega_{2, n}{ }^{2} \equiv V_{22} / M_{22}>\omega_{1,0}{ }^{2}=V_{H} / M_{H}$

Right: $\omega_{1.0}{ }^{2}=V_{11} / M_{11}>\omega_{2,0}{ }^{2}=V_{22} / M_{22}$

Figure 7.5 Rayleigh quotient for a two-DOF system.

An Illustration

Let us consider three particles of equal masses m attached at equal intervals l to a light and flexible string fixed at its ends, and stretched with a tension S (practically unaffected by the small deflections of the particles) (fig. 7.6). Here, to within quadratic terms in the q 's,

$$
\begin{align*}
2 T & =m\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right] \tag{t1}\\
V & =S\left[\left(l_{1}-l\right)^{2}+\left(l_{2}-l\right)^{2}+\left(l_{3}-l\right)^{2}+\left(l_{4}-l\right)^{2}\right] \equiv S\left(\Delta l_{1}+\Delta l_{2}+\Delta l_{3}+\Delta l_{4}\right)
\end{align*}
$$

[no factor $1 / 2$ needed, due to the assumed constancy of S]

$$
\begin{align*}
& \approx(S / 2 l)\left[q_{1}^{2}+\left(q_{2}-q_{1}\right)^{2}+\left(q_{3}-q_{2}\right)^{2}+q_{3}^{2}\right] \\
& =(S / l)\left[q_{1}^{2}+q_{2}^{2}+q_{3}^{2}-q_{1} q_{2}-q_{2} q_{3}\right] . \tag{t2}
\end{align*}
$$

Let us now assume the $3-1=2$ symmetric mode constraints: $q_{1}=q_{2}=\mu q_{3}$. Then,

$$
\begin{equation*}
2 T=m\left(2 \mu^{2}+1\right)\left(\dot{q}_{2}\right)^{2}, \quad 2 V=(S / l)\left(4 \mu^{2}-4 \mu+2\right) q_{2}^{2} \tag{u1}
\end{equation*}
$$

and so [with $q_{2} \sim \sin (\omega t)$, or $\sim \cos (\omega t)$] Rayleigh's quotient becomes

$$
\begin{equation*}
\omega^{2}=\omega^{2}(\mu)=\sigma\left[\left(4 \mu^{2}-4 \mu+2\right) /\left(2 \mu^{2}+1\right)\right], \quad \text { where } \sigma \equiv S / m l . \tag{u2}
\end{equation*}
$$

(a) SLOWEST (Symmetric) Mode: $\omega_{1}^{2}=(2-\sqrt{2}) \sigma$ (minimum) - no node

(b) FASTEST (Symmetric) Mode: $\omega_{3}^{2}=(2+\sqrt{2})$ (maxinum) -two nodes

(c) INTERMEDIATE (Antiswnmetric) Mode: $\omega_{2}^{2}=2 \sigma$ (intermediale) - one node

Figure 7.6 Symmetric and antisymmetric modes of three equal masses on a taut string.
(a) $\Delta l_{1} \equiv I_{1}-I=\left(q_{1}{ }^{2}+I^{2}\right)^{1 / 2}-I=I\left\{\left[1+\left(q_{1} / I\right)^{2}\right]^{1 / 2}-1\right\} \approx(1 / 2 I) q_{1}{ }^{2}$,
$\Delta I_{2} \equiv I_{2}-I \approx(1 / 2 I)\left(q_{2}-q_{1}\right)^{2}, \quad \Delta I_{3} \equiv I_{3}-I \approx(1 / 2 I)\left(q_{2}-q_{3}\right)^{2}, \quad \Delta I_{4} \equiv I_{4}-I \approx(1 / 2 I) q_{3}{ }^{2}$.

By the stationarity part of RP, the roots of $d \omega^{2} / d \mu=0$, for μ to produce a principal symmetric mode, are $\mu_{1}=-1 / \sqrt{ } 2$, and $\mu_{3}=+1 / \sqrt{ } 2$, and the corresponding (exact) values of the frequencies squared are [fig. 7.6(a, b)]
$\omega_{1}^{2} \equiv \omega_{\min }^{2}=(2-\sqrt{ } 2) \sigma \approx 0.5858 \sigma \quad\left(\right.$ signs of q_{1}, q_{2}, q_{3} the same $)$,
$\omega_{3}^{2} \equiv \omega_{\max }^{2}=(2+\sqrt{ } 2) \sigma \approx 3.4142 \sigma \quad\left(\operatorname{sign}\right.$ of q_{2} opposite to those of $\left.q_{1}, q_{3}\right)$;
while by the extremality part of RP

$$
\begin{equation*}
\omega_{\min }^{2} \approx 0.5858 \sigma \leq \omega^{2} \leq \omega_{\max }^{2} \approx 3.4142 \sigma ; \tag{v1}
\end{equation*}
$$

for example, assuming $q_{1}=q_{3}=(3 / 4) q_{2}$ (parabolic shape), we find

$$
\begin{equation*}
\omega^{2}=0.5882 \sigma>0.5858 \sigma=\omega_{\min }^{2} \tag{v2}
\end{equation*}
$$

and assuming $q_{1}=q_{3}=(\sqrt{ } 2 / 2) q_{2}$ (sine curve of "period" $8 l$), we find

$$
\begin{equation*}
\omega^{2}=0.5970 \sigma>0.5858 \sigma=\omega_{\min }^{2} . \tag{v3}
\end{equation*}
$$

Let the reader show that the antisymmetric mode $q_{1}=-q_{3}, q_{2}=0$, or $q_{1}=-q_{3}=\mu q_{2}$, has the (intermediate) frequency: $\omega_{2}^{2}=2 \sigma$; that is, $\mu \rightarrow \mu_{2}=0$.

Problem 7.9.9 Rayleigh's Principle. By using the stationarity property of Rayleigh's quotient, find (exactly) the two natural frequencies and corresponding mode ratios of the small (linear) oscillations of a double pendulum, consisting of two identical homogeneous bars, $A B$ and $B C$, each of mass m and length l, under gravity [A : hinge of $A B$ with fixed point ("ceiling"), B : hinge connecting $A B$ and $B C$].

ANSWER

$\omega^{2}=(3 g / l)(1 \pm 2 / \sqrt{ } 7)$. With θ : angle of $A B$ (upper bar) with vertical, and ϕ : angle of $B C$ (lower bar) with vertical, we have $\phi / \theta=(1 / 3)(-1 \pm \sqrt{ } 28)$:

$$
\text { for } \omega_{-}^{2}:(\phi / \theta)_{+} \approx+1.43 \text { (lower mode); for } \omega_{+}^{2}:(\phi / \theta)_{-} \approx-2.10 \text { (higher mode). }
$$

Problem 7.9.10 Rayleigh's Principle. Consider a system consisting of a small bead B of mass m sliding on a smooth circular hoop H, also of mass m, and radius r. The hoop can turn freely about a fixed point O in its circumference, on a vertical plane. By using the stationarity property of Rayleigh's quotient, find (exactly) the two natural frequencies and corresponding mode ratios of its small oscillations, under gravity.

ANSWER

Let C be the center of the hoop. With θ : angle of $O C$ with vertical, and ϕ : angle of $C B$ with vertical, we have

Lower mode: $\omega_{\min }{ }^{2}=(1 / 2)(g / r), \phi / \theta=+1$; Higher mode: $\omega_{\max }{ }^{2}=2(g / r), \phi / \theta=-2$.

Problem 7.9.11 Lagrangean Action. Show that the Lagrangean action functional A_{L} [(7.9.4d)] can also be expressed as

$$
\begin{equation*}
\int\left(\sum p_{k} \dot{q}_{k}-h+E\right) d t \tag{a}
\end{equation*}
$$

where, as usual, $p_{k} \equiv \partial L / \partial \dot{q}_{k}, h \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L$.

Example 7.9.10 Hamiltonian Action in Nonlinear Oscillations; Van der Pol and Rayleigh Oscillators. Here, the starting point is the general Hamiltonian variational equation (7.9.4b)

$$
\begin{equation*}
\Delta \int L d t+\int \delta^{\prime} W_{n p} d t=\left\{\sum p_{k} \delta q_{k}+L \Delta t\right\}_{1}^{2} . \tag{a}
\end{equation*}
$$

We will specialize (a) to periodic motions: choosing $\delta q_{k}\left(t_{1}\right)=\delta q_{k}\left(t_{2}\right)$ (not necessarily zero), where $t_{2}-t_{1}=\tau$ (common) period of oscillation, and since, in such a case,

$$
\begin{equation*}
\left\{\sum p_{k} \delta q_{k}\right\}_{1}^{2}=0, \quad L\left(t_{1}\right)=L\left(t_{2}\right) \equiv L_{o} \tag{b}
\end{equation*}
$$

and $\Delta t=\Delta \tau=\Delta(2 \pi / \omega)=-\left(2 \pi / \omega^{2}\right) \delta \omega$, eq. (a) reduces to

$$
\begin{equation*}
\Delta \int_{0}^{2 \pi / \omega} L d t+\int_{0}^{2 \pi / \omega} \delta^{\prime} W_{n p} d t+\left(2 \pi / \omega^{2}\right) L_{o} \delta \omega=0 \tag{c}
\end{equation*}
$$

1. Van der Pol Oscillator

Let us apply (c) to [recalling ex. 7.2.2: (g) ff.]

$$
\begin{equation*}
\ddot{q}+\varepsilon\left(q^{2}-1\right) \dot{q}+q=0 . \tag{d}
\end{equation*}
$$

For the reasons given earlier, we try the (asymptotically) harmonic "limit cycle" solution:

$$
\begin{equation*}
q=a \sin \chi, \quad \chi=\omega t \tag{e}
\end{equation*}
$$

Varying both a and ω (since they are both unknown), we obtain

$$
\begin{equation*}
\delta q=\delta a \sin \chi+(a t) \cos \chi \delta \omega \tag{f}
\end{equation*}
$$

and so the periodicity condition

$$
\{p \delta q\}_{1}^{2}=\{\dot{q} \delta q\}_{1}^{2}=\left\{(a \delta a) \sin \chi \cos \chi+\left(a^{2} \delta \omega\right) t \cos ^{2} \chi\right\}_{1}^{2}=0
$$

supplies the time endpoints $t_{1}=\pi / 2 \omega, t_{2}=3 \pi / 2 \omega$ or $5 \pi / 2 \omega \Rightarrow \tau=2 \pi / \omega$ or π / ω; which, in turn, yield

$$
\begin{align*}
& \delta q(\pi / 2 \omega)=\delta q(5 \pi / 2 \omega)=\delta a \quad(\neq 0) \\
& L(\pi / 2 \omega)=L(5 \pi / 2 \omega) \equiv L_{o}=-\left(a^{2} / 2\right) \tag{g}
\end{align*}
$$

From the above, we find, successively,

$$
\begin{gather*}
A_{H}=\int(T-V) d t=\int(1 / 2)\left[(\dot{q})^{2}-q^{2}\right] d t \\
=\int\left[(1 / 2) a^{2} \omega^{2} \cos ^{2} \chi-(1 / 2) a^{2} \sin ^{2} \chi\right] d t \\
=(\pi / \omega)\left[a^{2}\left(\omega^{2}-1\right) / 2\right]=A_{H}(a, \omega), \tag{h1}\\
\Rightarrow \Delta A_{H}=\left(\partial A_{H} / \partial a\right) \delta a+\left(\partial A_{H} / \partial \omega\right) \delta \omega \\
=(\pi / \omega)\left[a\left(\omega^{2}-1\right) \delta a+\left(a^{2} / 2\right)\left(\omega+\omega^{-1}\right) \delta \omega\right] ; \tag{h2}\\
L\left(t_{1}\right) \Delta\left(t_{2}-t_{1}\right)=L_{o} \Delta(2 \pi / \omega)=-\left(a^{2} / 2\right)\left[-\left(2 \pi / \omega^{2}\right) \delta \omega\right]=\left(\pi / \omega^{2}\right) a^{2} \delta \omega ; \tag{h3}\\
\int \delta^{\prime} W_{n p} d t=\int Q \delta q d t=-\int \varepsilon\left(q^{2}-1\right) \dot{q} \delta q d t \\
=\int\left(-\varepsilon a^{3} \omega \sin ^{2} \chi \cos \chi+\varepsilon a \omega \cos \chi\right)[\delta a \sin \chi+(a t) \cos \chi \delta \omega] d t \\
=\cdots=(\pi / \omega)^{2}\left(3 \varepsilon a^{2} \omega / 2\right)\left(1-a^{2} / 4\right) . \tag{h4}
\end{gather*}
$$

Substituting (h2-4) into (c), and simplifying, yields

$$
\begin{equation*}
\left[a\left(\omega^{2}-1\right)\right] \delta a+\left[\left(a^{2} / 2\right)\left(\omega+\omega^{-1}\right)-\left(a^{2} / \omega\right)+(3 \pi / 2) \varepsilon a^{2}\left(1-a^{2} / 4\right)\right] \delta \omega=0 \tag{i}
\end{equation*}
$$

from which, since δa and $\delta \omega$ are independent, we find $\omega^{2}=1$, and thanks to it, $1-a^{2} / 4=0 \Rightarrow|a|=2$; values that agree with those found by other means in the oscillations literature; for example, Kauderer (1958, p. 343 ff .).

Also, we note that for $|a|=2$, eq. (h4) yields

$$
\begin{equation*}
\int \delta^{\prime} W_{n p} d t=\int Q \delta q d t: \text { virtual nonpotential work }(\text { damping })=0 . \tag{j}
\end{equation*}
$$

For better approximations to (d), than (e), see Papastavridis [1986(b)].

2. Generalizations

Let us now extend the above to the periodic solutions of the general quasi-linear equation

$$
\begin{equation*}
\ddot{q}+q=\varepsilon f(q, \dot{q}), \tag{k}
\end{equation*}
$$

where, again, $f(\ldots)$: nonlinear in q, \dot{q}, and $\varepsilon f(q, \dot{q})$ is very small compared with \ddot{q} and q (all taken absolutely).

With the periodic solution (e) [viewed as the first term of the Fourier series representation of the assumed periodic solution of (k)], eqs. (h2, 3), and the notation

$$
\begin{equation*}
f(a \sin \chi, a \omega \cos \chi) \equiv F(a, \chi) \equiv F \tag{1}
\end{equation*}
$$

we find

$$
\begin{align*}
\int_{0}^{2 \pi / \omega} \delta^{\prime} W_{n p} d t & =\int_{0}^{2 \pi / \omega} Q \delta q d t=\varepsilon \int_{0}^{2 \pi / \omega} F(a, \chi) \delta q d t \\
& =\varepsilon\left[\delta a \int_{0}^{2 \pi / \omega} F \sin \chi d t+(a \delta \omega) \int_{0}^{2 \pi / \omega} F t \cos \chi d t\right] \tag{m}
\end{align*}
$$

Substituting (h2, 3, m) into (c) yields

$$
\begin{align*}
{\left[(\pi / \omega)\left(\omega^{2}-1\right) a\right.} & \left.+\varepsilon \int_{0}^{2 \pi / \omega} F \sin \chi d t\right] \delta a \\
& +a\left[(\pi / 2)\left(1-\omega^{-2}\right) a+\varepsilon \int_{0}^{2 \pi / \omega} F t \cos \chi d t\right] \delta \omega=0, \tag{n}
\end{align*}
$$

from which, since δa and $\delta \omega$ are independent, we obtain the following system for a and ω :

$$
\begin{align*}
& (\pi / \omega)\left(\omega^{2}-1\right) a+\varepsilon \int_{0}^{2 \pi / \omega} F(a, \chi) \sin \chi d t=0, \tag{o1}\\
& (\pi / 2)\left(1-\omega^{-2}\right) a+\varepsilon \int_{0}^{2 \pi / \omega} F(a, \chi) t \cos \chi d t=0 . \tag{o2}
\end{align*}
$$

The earlier Van der Pol case (d) corresponds to $f=-\left(q^{2}-1\right) \dot{q}$. Then, since

$$
\int_{0}^{2 \pi / \omega} F \sin \chi d t=\left(-a^{3} \omega\right) \int_{0}^{2 \pi / \omega} \sin ^{3} \chi \cos \chi d t+(a \omega) \int_{0}^{2 \pi / \omega} \sin \chi \cos \chi d t=0
$$

eq. (o1) yields $\omega^{2}=1$ and this, in turn, simplifies (o2) to

$$
\begin{align*}
& \int_{0}^{2 \pi / \omega} F(a, \chi) t \cos \chi d t=0 \\
& \Rightarrow a^{2}=\left(\int_{0}^{2 \pi / \omega} t \cos ^{2} \chi d t\right) /\left(\int_{0}^{2 \pi / \omega} t \sin ^{2} \chi \cos ^{2} \chi d t\right) \\
& \quad=\left[(3 / 2)(\pi / \omega)^{2}\right] /\left[(3 / 8)(\pi / \omega)^{2}\right]=4, \tag{p2}
\end{align*}
$$

as before.
Next, let us consider the Rayleigh equation

$$
\begin{equation*}
\ddot{q}+q=\varepsilon\left[\dot{q}-(\dot{q})^{3}\right], \quad \varepsilon: \text { very small positive constant. } \tag{q}
\end{equation*}
$$

With $q, \delta q, \tau$ as before, and $F=a \omega \cos \chi-a^{3} \omega^{3} \cos ^{3} \chi$, we find (with $t_{1}=\pi / 2 \omega$, $\left.t_{2}=5 \pi / 2 \omega\right)$

$$
\begin{gather*}
\varepsilon \int F \sin \chi d t=\varepsilon \int\left[(a \omega) \sin \chi \cos \chi-\left(a^{3} \omega^{3}\right) \cos ^{3} \chi \sin \chi\right] d t=0 \\
\Rightarrow \omega^{2}=1 \quad[\mathrm{by}(\mathrm{ol})] \tag{q1}
\end{gather*}
$$

and so (o2) reduces to

$$
\begin{gather*}
\varepsilon \int F t \cos \chi d t=\varepsilon \int\left[(a \omega) t \cos ^{2} \chi-\left(a^{3} \omega^{3}\right) t \cos ^{4} \chi\right] d t=0 \\
\Rightarrow\left(3 \pi^{2} \varepsilon a / 2\right)\left(1-3 a^{2} \omega^{2} / 4\right)=0 \Rightarrow|a|=2 / \sqrt{3} \tag{q2}
\end{gather*}
$$

Pars (1965, pp. 388-389) shows that by an appropriate change of variables, (q) can be transformed back to the Van der Pol equation (d); see also Panovko (1971, pp. 209-213) for a small-parameter (perturbation) treatment.

Also, the above extend to the case where

$$
f(\ldots)=f(t, q, \dot{q})=f(\Omega t, q, \dot{q}):(2 \pi / \Omega) \text {-periodic in time, } \Omega \text { : given. }
$$

Finally, on the connection between the above results, $\int Q \delta q d t=0$ and eqs. (ol, 2), and the method of slowly varying parameters, see ex. 7.9.14 and Bogoliubov and Mitropolskii (1974, §21).

Example 7.9.11 Lagrangean "least" action in Nonlinear Oscillations; Nonlinear Pendulum and Van der Pol Oscillators. Here, the basic variational equation (7.9.4a, or 4 h)

$$
\begin{equation*}
\Delta \int 2 T d t=\int\left(\delta T+\delta V-\delta^{\prime} W_{n p}\right) d t+B T \tag{a}
\end{equation*}
$$

where

$$
\begin{align*}
B T & \equiv\left\{\sum p_{k} \Delta q_{k}+\left(2 T-\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{1}^{2} \\
& =\left\{\sum p_{k} \Delta q_{k}+\left(T_{1}+2 T_{o}\right) \Delta t\right\}_{1}^{2} \\
& =\left\{\sum p_{k} \delta q_{k}+2 T \Delta t\right\}_{1}^{2} \\
& {\left[=\left\{\sum p_{k} \Delta q_{k}\right\}_{1}^{2} \equiv(B T)_{s c l}, \text { for scleronomic systems }\right], } \tag{b}
\end{align*}
$$

will be applied to the approximate solution of one-DOF (hence, holonomic) nonlinear and/or nonconservative oscillations.

For periodic motions and variations, with period $\tau=t_{2}-t_{1}=2 \pi / \omega$:
(i) If periodicity means $\delta q_{k}\left(t_{1}\right)=\delta q_{k}\left(t_{2}\right), p_{k}\left(t_{1}\right)=p_{k}\left(t_{2}\right)$, then

$$
\begin{equation*}
B T=2 T\left(t_{1}\right) \Delta(2 \pi / \omega)=-2 T\left(t_{1}\right)\left(2 \pi / \omega^{2}\right) \delta \omega ; \tag{c1}
\end{equation*}
$$

whereas (ii) If periodicity means $\Delta q_{k}\left(t_{1}\right)=\Delta q_{k}\left(t_{2}\right), p_{k}\left(t_{1}\right)=p_{k}\left(t_{2}\right)$, then

$$
\begin{equation*}
(B T)_{s c l}=0 \tag{c2}
\end{equation*}
$$

In sum: whenever $B T=0$, the fundamental equation (a) becomes

$$
\begin{equation*}
\Delta \int 2 T d t-\int\left(\delta T+\delta V-\delta^{\prime} W_{n p}\right) d t=0 \tag{d}
\end{equation*}
$$

The single but variational equation (d) [or (a), if needed] can produce as many independent algebraic equations as the number of the unknown parameters (amplitudes and/or frequencies) entering the assumed trial solution(s).

Illustrations

1. Free and Undamped Nonlinear (Plane) Pendulum Oscillations

Here, to within a constant factor and with dimensionless time $(g / l)^{1 / 2} t$ substituted for t (g : constant acceleration of gravity, l : length of pendulum), the kinetic and potential energies and Lagrangean equation of its (free and undamped) motion are, respectively,

$$
\begin{align*}
& 2 T=(\dot{\phi})^{2}, \quad V=1-\cos \phi \approx \phi^{2} / 2-\phi^{4} / 24, \tag{e1}\\
& E_{\phi}(T-V)=0: \quad \ddot{\phi}+\phi-\phi^{3} / 6=0, \tag{e2}
\end{align*}
$$

where ϕ is the angle of the pendulum with the vertical. [Equation (e2) is referred to as a soft Duffing oscillator, because its frequency decreases when the amplitude increases (absolutely).] Following Lur'e (1968, pp. 702-703), we will calculate the approximate oscillatory solution of (e2) for the initial conditions

$$
\begin{equation*}
\phi(0)=\phi_{o}(\text { given }), \quad \dot{\phi}(0)=0 \tag{f1}
\end{equation*}
$$

and trial solution

$$
\begin{equation*}
\phi=\phi(t)=\left(\phi_{o}+\alpha\right) \cos \chi-\alpha \cos (3 \chi), \quad \chi=\omega t \tag{f2}
\end{equation*}
$$

where α and ω are unknown. We notice that (f2) satisfies (f1), just like the solution of the linearized version of (e2): $\phi=\phi_{o} \cos t$ (i.e. $\alpha=0, \omega=1$).

Varying (f2) in its unknowns gives

$$
\begin{align*}
\delta \phi & =(\partial \phi / \partial \alpha) \delta \alpha+(\partial \phi / \partial \omega) \delta \omega \\
& =[\cos \chi-\cos (3 \chi)] \delta \alpha+t\left[-\left(\phi_{o}+\alpha\right) \sin \chi+3 \alpha \sin (3 \chi)\right] \delta \omega \tag{g1}
\end{align*}
$$

also

$$
\begin{equation*}
\dot{\phi}=p_{\phi} \equiv \partial T / \partial \dot{\phi}=-\omega\left(\phi_{o}+\alpha\right) \sin \chi+3 \omega \alpha \sin (3 \chi) . \tag{g2}
\end{equation*}
$$

Then, the periodicity condition $\left\{p_{\phi} \delta \phi\right\}_{1}^{2}=0$ yields $t_{1}=0, t_{2}=\pi / \omega=\tau / 2$. With this choice, $T\left(t_{1}\right)=T\left(t_{2}\right)=0$, and so $\{2 T \Delta t\}_{0}^{2 \pi / \omega}=0$.

From the above, we readily find

$$
\begin{align*}
& A_{L} \equiv \int_{0}^{\pi / \omega} 2 T d t=\int_{0}^{\pi / \omega}(\dot{\phi})^{2} d t=(\pi / 2) \omega\left(\phi_{o}{ }^{2}+2 \phi_{o} \alpha+10 \alpha^{2}\right), \tag{h1}\\
& \Rightarrow \Delta A_{L}=\left(\partial A_{L} / \partial \alpha\right) \delta \alpha+\left(\partial A_{L} / \partial \omega\right) \delta \omega \\
& \quad=(\pi / 2)\left[2 \omega\left(\phi_{o}+10 \alpha\right) \delta \alpha+\left(\phi_{o}{ }^{2}+2 \phi_{o} \alpha+10 \alpha^{2}\right) \delta \omega\right], \tag{h2}\\
& E \equiv T+V=(\dot{\phi})^{2} / 2+\phi^{2} / 2-\phi^{4} / 24, \tag{h3}\\
& \delta E=\dot{\phi} \delta(\dot{\phi})+\phi \delta \phi-\left(\phi^{3} / 6\right) \delta \phi ; \tag{h4}
\end{align*}
$$

and, therefore, after several straightforward integrations [and noting that $\left.\delta(\dot{\phi})=(\delta \phi)^{\cdot}\right]$

$$
\begin{align*}
\int_{0}^{\pi / \omega} \delta E d t= & (\pi / 4)\left\{2 \omega\left(\phi_{o}+10 \alpha\right)+\omega^{-1}\left[\left(2 \phi_{o}-\phi_{o}{ }^{3} / 6\right)+\left(4-3 \phi_{o}{ }^{2} / 4\right) \alpha-3 \phi_{o} \alpha^{2} / 2\right]\right\} \delta \alpha \\
& +(\pi / 4)\left\{\left(\phi_{o}{ }^{2}+2 \phi_{o} \alpha+10 \alpha^{2}\right)+\omega^{-2}\left[\left(\phi_{o}{ }^{2}-5 \phi_{o}{ }^{4} / 48\right)\right.\right. \\
& \left.\left.+\left(-2 \phi_{o}+\phi_{o}{ }^{3} / 6\right) \alpha+\left(-2+3 \phi_{o}{ }^{2} / 8\right) \alpha^{2}\right]\right\} \delta \omega . \tag{h5}
\end{align*}
$$

Substituting (h2) and (h5) into (d) [with $\int \delta^{\prime} W_{n p} d t=0$], and regrouping terms, we obtain

$$
\begin{equation*}
I \delta \alpha+I I \delta \omega=0 \tag{i}
\end{equation*}
$$

where

$$
\begin{align*}
I \equiv & (\pi / 4)\left\{2 \omega\left(\phi_{o}+10 \alpha\right)\right. \\
& \left.-\omega^{-1}\left[2 \phi_{o}+4 \alpha-\phi_{o}{ }^{3} / 6-3 \phi_{o}{ }^{2} \alpha / 4-3 \phi_{o} \alpha^{2} / 2\right]\right\} \tag{i1}\\
I I \equiv & (\pi / 4)\left\{\left(\phi_{o}{ }^{2}+2 \phi_{o} \alpha+10 \alpha^{2}\right)\right. \\
& \left.-\omega^{-2}\left[\phi_{o}{ }^{2}-2 \phi_{o} \alpha-5 \phi_{o}{ }^{4} / 48+\phi_{o}{ }^{3} \alpha / 6+\left(-2+3 \phi_{0}{ }^{2} / 8\right) \alpha^{2}\right]\right\} . \tag{i2}
\end{align*}
$$

Setting I and $I I$ equal to zero, since $\delta \alpha$ and $\delta \omega$ are independent, and neglecting terms proportional to α^{2} and $\alpha \phi_{o}{ }^{2}$ (last two terms in I, and third and last three terms in $I I$) yields the following two algebraic equations:

$$
\begin{align*}
& \phi_{o}+10 \alpha-\omega^{-2}\left(\phi_{o}+2 \alpha-\phi_{o}^{3} / 12\right)=0, \tag{j1}\\
& \phi_{o}{ }^{2}+2 \phi_{o} \alpha-\omega^{-2}\left(\phi_{o}{ }^{2}-2 \phi_{o} \alpha-5 \phi_{o}^{4} / 48\right)=0 . \tag{j2}
\end{align*}
$$

To the required degree of approximation, the above give

$$
\begin{equation*}
\alpha=\phi_{o}^{3} / 192, \quad \omega=1-\phi_{o}^{2} / 16, \tag{k}
\end{equation*}
$$

which agree with the values of Lur'e.

2. Free van der Pol Oscillator with Nonlinear Elastic Term

 (i.e., van der $\mathrm{Pol}+$ Duffing). Here, the equation of motion is$$
\begin{equation*}
\ddot{q}+\varepsilon\left(q^{2}-1\right) \dot{q}+q+\varepsilon \kappa q^{3}=0, \tag{1}
\end{equation*}
$$

where $\varepsilon \kappa$ is the nonlinear stiffness constant [like h / m in ex. 7.2.2: (a)]; and from it we easily deduce that

$$
\begin{equation*}
2 T=(\dot{q})^{2}, \quad 2 V=q^{2}+\varepsilon \kappa q^{4} / 2, \quad Q=\varepsilon\left(1-q^{2}\right) \dot{q} . \tag{11}
\end{equation*}
$$

Guided by our knowledge of the "linear elasticity Van der Pol equation", that is, (l) with $\kappa=0$ [ex. 7.2.2: (g) ff.; ex. 7.9.10: (d) ff.] we assume the following trial function, independent of the initial conditions (see, e.g., Kauderer, 1958, pp. 343-347),

$$
q=2 \sin \chi+\varepsilon[\alpha \cos (3 \chi)+\beta \kappa \sin (3 \chi)], \quad \chi \equiv \omega t, \quad \omega=1+\gamma(\varepsilon \kappa), \quad(\mathrm{m})
$$

where α, β, γ are first-order correction constants, to be determined.
From (m) we readily find

$$
\begin{align*}
\dot{q}=p & =2 \omega \cos \chi+\varepsilon[-3 \alpha \omega \sin (3 \chi)+3 \beta \kappa \omega \cos (3 \chi)], \tag{n1}\\
\delta q= & {[\varepsilon \cos (3 \chi)] \delta \alpha+[\varepsilon \kappa \sin (3 \chi)] \delta \beta } \\
& +[2 \cos \chi-3 \alpha \varepsilon \sin (3 \chi)+3 \beta \varepsilon \kappa \cos (3 \chi)] t \delta \omega, \tag{n2}\\
\delta \omega= & (\varepsilon \kappa) \delta \gamma ; \tag{n3}
\end{align*}
$$

and so

$$
\begin{aligned}
p \delta q & =\dot{q} \delta q=\cdots=(\ldots) \delta \alpha+(\ldots) \delta \beta+(\ldots) \delta \gamma, \\
& \Rightarrow\{p \delta q\}_{0}^{\pi / \omega}=(2+3 \beta \varepsilon \kappa)^{2} \pi \delta \omega,
\end{aligned}
$$

and since

$$
\begin{gathered}
T\left(t_{1}=0\right)=T\left(t_{2}=\pi / \omega\right) \equiv T_{0} \\
\Rightarrow\{2 T \Delta t\}_{0}^{\pi / \omega}=-2 T_{0}\left(\pi / \omega^{2}\right) \delta \omega=-(2+3 \beta \varepsilon \kappa)^{2} \pi \delta \omega,
\end{gathered}
$$

finally,

$$
\begin{equation*}
\{p \delta q\}_{0}^{\pi / \omega}+\{2 T \Delta t\}_{0}^{\pi / \omega}=\{p \Delta q\}_{0}^{\pi / \omega}=0 . \tag{n4}
\end{equation*}
$$

With the help of the above we find, after a long series of elementary integrations,

$$
A_{L} \equiv \int_{0}^{\pi / \omega} 2 T d t=\cdots=(\pi / 2) \omega\left(4+9 \alpha^{2} \varepsilon^{2}+9 \beta^{2} \varepsilon^{2} \kappa^{2}\right)
$$

from which we obtain, by variation,

$$
\begin{align*}
\Delta A_{L}= & \pi\left[\left(9 \alpha \varepsilon^{2} \omega\right) \delta \alpha+\left(9 \beta \varepsilon^{2} \kappa^{2} \omega\right) \delta \beta\right. \\
& \left.+\left(2+9 \alpha^{2} \varepsilon^{2} / 2+9 \beta^{2} \varepsilon^{2} \kappa^{2} \omega / 2\right) \delta \omega\right], \tag{ol}
\end{align*}
$$

and, upon neglecting all terms proportional to $\alpha^{2}, \beta^{2}, \alpha \beta$,

$$
\begin{align*}
\int_{0}^{\pi / \omega} \delta T d t= & \int_{0}^{\pi / \omega} \dot{q} \delta(\dot{q}) d t \\
= & \left(9 \pi \alpha \varepsilon^{2} \omega / 2\right) \delta \alpha+\left(9 \pi \beta \varepsilon^{2} \kappa^{2} \omega / 2\right) \delta \beta+(3 \pi+6 \pi \beta \varepsilon \kappa) \delta \omega \tag{o2}\\
\int_{0}^{\pi / \omega} \delta V d t= & \int_{0}^{\pi / \omega}\left(q+\varepsilon \kappa q^{3}\right) \delta q d t \\
= & \pi\left(\varepsilon^{2} / 2+3 \varepsilon^{3} \kappa\right) \alpha \omega^{-1} \delta \alpha \\
& +\pi(\beta / 2-1+3 \beta \varepsilon \kappa) \varepsilon^{2} \kappa^{2} \omega^{-1} \delta \beta \\
& +\pi\left(-1-3 \varepsilon \kappa / 2+\beta \varepsilon^{2} \kappa^{2}\right) \omega^{-2} \delta \omega \tag{o3}\\
\int_{0}^{\pi / \omega} Q \delta q d t= & \varepsilon \int_{0}^{\pi / \omega}\left(1-q^{2}\right) \dot{q} \delta q d t \\
= & \pi(1-3 \beta \varepsilon \kappa / 2) \varepsilon^{2} \delta \alpha+\pi\left(3 \alpha \varepsilon^{3} \kappa / 2\right) \delta \beta \\
& +\pi(5 \alpha / 6+2 \pi \beta \kappa) \omega^{-1} \varepsilon^{2} \delta \omega . \tag{o4}
\end{align*}
$$

Inserting all these results into eq. (d) and regrouping terms [while recalling (n3)], yields

$$
\begin{equation*}
A \delta \alpha+B \delta \beta+\Gamma \delta \gamma=0 \tag{p}
\end{equation*}
$$

where

$$
\begin{align*}
A \equiv & \pi\left[9 \alpha \varepsilon^{2} \omega-9 \alpha \varepsilon^{2} \omega / 2-\left(\varepsilon^{2} / 2+3 \varepsilon^{3} \kappa\right) \alpha \omega^{-1}+\varepsilon^{2}(1-3 \beta \varepsilon \kappa / 2)\right] \tag{p1}\\
B \equiv & \pi\left[9 \beta \varepsilon^{2} \kappa^{2} \omega-9 \beta \varepsilon^{2} \kappa^{2} \omega / 2-(\beta / 2-1+3 \beta \varepsilon \kappa) \varepsilon^{2} \kappa^{2} \omega^{-1}+3 \alpha \varepsilon^{3} \kappa / 2\right], \tag{p2}\\
\Gamma \equiv & \pi\left[2+9 \alpha^{2} \varepsilon^{2} / 2+9 \beta^{2} \varepsilon^{2} \kappa^{2} / 2-(3+6 \beta \varepsilon \kappa)\right. \\
& \left.-\left(-1-3 \varepsilon \kappa / 2+\beta \varepsilon^{2} \kappa^{2}\right) \omega^{-2}+(5 \alpha / 6+2 \pi \beta \kappa) \omega^{-1} \varepsilon^{2}\right] . \tag{p3}
\end{align*}
$$

To the lowest order, the three independent equations $A, B, \Gamma=0$ yield, successively:
(i) $A=0: 9 \alpha \omega / 2-(1 / 2+3 \varepsilon \kappa) \alpha \omega^{-1}+1-3 \beta \varepsilon \kappa / 2=0$, or, substituting into it the third of $(\mathrm{m}), \omega=1+\gamma \varepsilon \kappa$, and omitting all higher order terms in ε, we obtain

$$
\begin{equation*}
9 \alpha / 2-\alpha / 2+1=0 \Rightarrow \alpha=-1 / 4 \tag{q1}
\end{equation*}
$$

(ii) $B=0$: $9 \beta \omega / 2-\beta \omega^{-1} / 2+\omega^{-1}=0$, or, setting $\omega=1+\gamma \varepsilon \kappa$, and so on,

$$
\begin{equation*}
9 \beta / 2-\beta / 2+1=0 \Rightarrow \beta=-1 / 4 ; \tag{q2}
\end{equation*}
$$

(iii) $\Gamma=0$: with $\omega^{-2} \approx 1-2 \gamma \varepsilon \kappa$, we find

$$
\begin{align*}
& -1-6 \beta \varepsilon \kappa+(1-2 \gamma \varepsilon \kappa)(1+3 \varepsilon \kappa / 2)=0 \\
& \quad \Rightarrow-6 \beta \varepsilon \kappa-2 \gamma \varepsilon \kappa+3 \varepsilon \kappa / 2=0 \Rightarrow \gamma=3 / 2 . \tag{q3}
\end{align*}
$$

Hence, the trial solution (m), correct to the first order in κ (and in agreement with Kauderer) is

$$
\begin{equation*}
q=2 \sin \chi-(\varepsilon / 4)[\cos (3 \chi)+\kappa \sin (3 \chi)], \quad \chi \equiv \omega t, \quad \omega=1+3 \varepsilon \kappa / 2 . \tag{r}
\end{equation*}
$$

For additional related examples, see Papastavridis and Chen (1986).

Example 7.9.12 The "Direct" Variational Methods of Galerkin and Ritz in Nonlinear Oscillations.

1. Galerkin (1915)

Let us consider a one-DOF (hence, holonomic) system described by the, generally, nonlinear differential equation of motion

$$
\begin{equation*}
E=E(t, q, \dot{q}, \ddot{q}) \equiv E(t, q) \equiv \ddot{q}-F(t, q, \dot{q})=0 . \tag{a}
\end{equation*}
$$

Here, of particular interest is the case where $F(\ldots)$ is a periodic function of given period $\tau \equiv 2 \pi / \omega$ ($\omega=$ frequency). Suppose then that we are seeking periodic solutions to (a), of period τ, that satisfy the initial conditions

$$
\begin{equation*}
q\left(t_{1}\right)=q\left(t_{1}+\tau\right), \quad \dot{q}\left(t_{1}\right)=\dot{q}\left(t_{1}+\tau\right), \quad \text { for any } t_{1} . \tag{b}
\end{equation*}
$$

Let us assume the approximate solution to $q(t)$:

$$
\begin{equation*}
q(t) \approx q_{o}(t)=\sum a_{k} \psi_{k}(t) \quad[k=1, \ldots, N ; \text { or, sometimes, } k=0, \ldots, N] \tag{c}
\end{equation*}
$$

where the a_{k} are unknown constant parameters (to be determined by a "Galerkin criterion" - see below), and the $\psi_{k}(t)$ are known and preferably orthogonal (or, better, orthonormal) "coordinate functions" that satisfy (b):

$$
\begin{equation*}
\psi\left(t_{1}\right)=\psi\left(t_{1}+\tau\right), \quad \dot{\psi}\left(t_{1}\right)=\dot{\psi}\left(t_{1}+\tau\right), \quad \text { for } \text { any } t_{1} \tag{cl}
\end{equation*}
$$

For example, we may choose as q_{o} a Fourier series defined in the interval $\left(t_{1}, t_{1}+\tau\right)$ and having period τ outside it:

$$
\begin{equation*}
q_{o}=a_{0} / 2+\sum\left[a_{k} \cos (2 \pi k t / \tau)+b_{k} \sin (2 \pi k t / \tau)\right] \quad(k=1, \ldots, n), \tag{d1}
\end{equation*}
$$

where, as is (hopefully) well known,

$$
\begin{gather*}
a_{k}=(2 / \tau) \int_{t_{1}}^{t_{1}+\tau} q_{o}(t) \cos (2 \pi k t / \tau) d t, \quad b_{k}=(2 / \tau) \int_{t_{1}}^{t_{1}+\tau} q_{o}(t) \sin (2 \pi k t / \tau) d t, \tag{d2}\\
\left(k=0, \ldots, N ; \text { frequently } t_{1}=0 \text { or }-\tau / 2\right) .
\end{gather*}
$$

Then the a_{k} are selected so that $E_{o} \equiv E\left(t, q_{o}\right)=0$ holds, if not identically, at least, in a weighted average over a period, sense; that is,

$$
\begin{equation*}
\int_{t_{1}}^{t_{1}+\tau} E_{o} w(t) d t=0, \quad \text { where } w(t) \text { is some weighting function. } \tag{e}
\end{equation*}
$$

If we choose N different such functions, $w_{1}(t), \ldots, w_{N}(t)$, then we can obtain from (e) N algebraic equations for the $N a_{k}$'s, contained in E_{o}. As such, we usually pick the $\psi_{k}(t)$'s appearing in (c); then (e) yields the N weighted residual or Galerkin equations:

$$
\begin{equation*}
\int_{t_{1}}^{t_{1}+\tau} E\left[t, \sum a_{s} \psi_{s}(t)\right] \psi_{k}(t) d t=0 \quad[k, s=1, \ldots, N] . \tag{f}
\end{equation*}
$$

If $F(\ldots)$ is non-periodic, we may choose as q_{o} the following power series

$$
\begin{equation*}
q_{o}=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{N} t^{N} \tag{d3}
\end{equation*}
$$

Interpretations of Equations (e, f)

(i) In the theory of ordinary differential equations, (f) appear as the conditions for the vanishing of the coefficients of the generalized Fourier series expansion of $E\left(t, q_{o}\right)=0$. (ii) With $w \rightarrow \delta q_{o}=\sum \delta a_{k} \psi_{k}(t)$, eq. (e) and then eq. (f), essentially, constitute the time integral of Lagrange's principle; and thus can be viewed as requiring that the error, or "residual force," $e \equiv E_{o}-E=E_{o}(\neq 0)$ do zero virtual work on $w \rightarrow \delta q_{o}$ over τ. Other "error residual" versions of (e) exist in the literature.

In view of these interpretations, it should be clear that Galerkin's method holds for any mechanical system; that is, with several DOF, or continuous (such as beams, plates, shells) undergoing any type of motion and not just a periodic one; although for periodic motions the algebra is manageable.

2. Ritz $(1908,1909)$

Let us consider a one-DOF (hence, holonomic) system, that is completely described by Hamilton's principle; that is, with $L=L(t, q, \dot{q})$ and $\delta q\left(t_{1}\right)=\delta q\left(t_{2}\right)=0$,

$$
\begin{equation*}
\delta A_{H}=\delta \int L d t=\cdots=-\int E \delta q d t=0, \quad E=E(L) \equiv(\partial L / \partial \dot{q})^{\cdot}-\partial L / \partial q=0 \tag{g}
\end{equation*}
$$

where the last (Lagrangean) equation coincides with the earlier equation (a), whenever both refer to the same problem.

In view of the approximation (c), we will have

$$
\begin{equation*}
A_{H}=A_{H}[q(t)] \Rightarrow A_{H}\left[q_{o}(t)\right]=A_{H}\left(a_{1}, \ldots, a_{N}\right) \equiv A_{H, o} \tag{h}
\end{equation*}
$$

and so the variational equation (g) is replaced by one of ordinary differential calculus:

$$
\begin{equation*}
\delta A_{H, o}=\sum\left(\partial A_{H, o} / \partial a_{k}\right) \delta a_{k}=0 \tag{i}
\end{equation*}
$$

from which, since the $N a_{k}$ are independent (otherwise we introduce Lagrangean multipliers), we obtain the N Ritz equations:

$$
\begin{equation*}
\partial A_{H, o} / \partial a_{k}=0 \quad[k=1, \ldots, N] . \tag{j}
\end{equation*}
$$

In the presence of nonpotential forces $Q=Q(t, q, \dot{q})$, in which case the second equation of (g) is replaced by $E(L)=Q$, eqs. (j) are replaced by

$$
\begin{equation*}
P_{k}\left(a_{1}, \ldots, a_{N}\right) \equiv \partial A_{H, o} / \partial a_{k}+\int_{t_{1}}^{t_{1}+\tau} Q\left(\partial q_{o} / \partial a_{k}\right) d t=0 . \tag{k}
\end{equation*}
$$

In particular, if Q is very small, and the exact solution of the unperturbed problem that is, of $E(L)=0$ - is $q_{(o)}\left(t ; a_{1}, \ldots, a_{N}\right)$, we may reasonably assume that $q_{o}=q_{(o)}$. Then,

$$
\partial A_{H, o} / \partial a_{k}=0, \text { independently, and (k) reduces to } \int_{t_{1}}^{t_{1}+\tau} Q\left(\partial q_{(o)} / \partial a_{k}\right) d t=0
$$

Let us calculate (j) explicitly: recalling (b, c), and since now $L(t, q, \dot{q}) \rightarrow$ $L\left(t, q_{o}, \dot{q}_{o}\right)$, we find

$$
\begin{align*}
\partial A_{H, o} / \partial a_{k} & =\int_{t_{1}}^{t_{1}+\tau}\left[\left(\partial L / \partial \dot{q}_{o}\right)\left(\partial \dot{q}_{o} / \partial a_{k}\right)+\left(\partial L / \partial q_{o}\right)\left(\partial q_{o} / \partial a_{k}\right)\right] d t \\
& =\int_{t_{1}}^{t_{1}+\tau}\left[\left(\partial L / \partial \dot{q}_{o}\right) \dot{\psi}_{k}+\left(\partial L / \partial q_{o}\right) \psi_{k}\right] d t \\
& =-\int_{t_{1}}^{t_{1}+\tau} E_{o} \psi_{k} d t+\psi_{k}\left(t_{1}\right)\left[\left(\partial L / \partial \dot{q}_{o}\right)_{t_{1}+\tau}-\left(\partial L / \partial \dot{q}_{o}\right)_{t_{1}}\right]=0, \tag{1}
\end{align*}
$$

where

$$
\begin{align*}
E(t, q, \dot{q}) \rightarrow E\left(t, q_{o}, \dot{q}_{o}\right) & =E\left[t, \sum a_{s} \psi_{s}(t)\right] \\
& \equiv\left(\partial L / \partial \dot{q}_{o}\right)^{\cdot}-\partial L / \partial q_{o} \equiv E_{o} . \tag{11}
\end{align*}
$$

If the integrated out (boundary) term in (l) vanishes - for example, if $\partial L / \partial \dot{q}$ is periodic with period τ-(1) reduces to the first, or minimizing, Ritz $(\rightarrow$ Galerkin) equation:

$$
\begin{equation*}
\partial A_{H, o} / \partial a_{k}=-\int_{t_{1}}^{t_{1}+\tau} E_{o} \psi_{k} d t=0 \tag{ml}
\end{equation*}
$$

However, if the ψ_{k} are not periodic, then (j) leads to the second, or minimizing, Ritz $\left(\rightarrow\right.$ Galerkin) equation (t_{1}, t_{2} : arbitrary time limits):

$$
\begin{equation*}
\partial A_{H, o} / \partial a_{k}=-\int_{t_{1}}^{t_{2}} E_{o} \psi_{k} d t+\left\{\left(\partial L / \partial \dot{q}_{o}\right) \psi_{k}\right\}_{1}^{2}=0 \tag{m2}
\end{equation*}
$$

and if, instead of (c), we use the more general trial function

$$
\begin{equation*}
q_{o}(t)=\sum q_{k}\left(a_{k 1}, \ldots, a_{k N} ; t\right) \tag{m3}
\end{equation*}
$$

then (m2) are replaced by the $N \times N$ equations:

$$
\begin{equation*}
-\int_{t_{1}}^{t_{2}} E_{o}\left(\partial q_{o} / \partial a_{k s}\right) d t+\left\{\left(\partial L / \partial \dot{q}_{o}\right)\left(\partial q_{o} / \partial a_{k s}\right)\right\}_{1}^{2}=0 \quad(k, s=1, \ldots, N) \tag{m4}
\end{equation*}
$$

3. Galerkin versus Ritz

Let us, next, compare the methods of Galerkin and Ritz. These two, although theoretically equivalent for periodic systems-that is eq. (f) = eqs. (m1)-differ in fundamental ways; and the principles of analytical mechanics help us to understand that:
(i) Not every problem's equations of motion derive from a Lagrangean and therefore from a stationarity variational principle (in the sense of variational calculus); and even if they happen to do that, finding the corresponding Lagrangean may be quite a mathematical task in itself. Thus, Galerkin's method, since it does not depend on Lagrangeans, is more general than Ritz's. [On how to find the Lagrangean of a given equation of motion (which is known as the inverse problem of variational calculus), there exists an extensive literature; see, for example, Santilli $(1978,1980)$.]
(ii) On the other hand, wherever both methods apply, the method of Ritz requires less accuracy in the trial function q_{0}-that is, the $\psi_{k}(t)$-than that of Galerkin. The reason for this is that Ritz's method involves energetic functions that entail lowerorder derivatives than the force/acceleration functions of Galerkin's method.
(iii) Finally, in both methods, the accuracy of the solution depends on the number of terms taken in eq. (c) and the judicious choice of the ψ_{k} 's.

Sometimes, advance qualitative knowledge of the behavior of the solution can restrict q_{o} to a single term and still provide a good approximation.

For nonperiodic initial value problems, eqs. (m2,4), with nonhomogeneous conditions [e.g., $q\left(t_{1}\right)=q_{1}$ (given), $q\left(t_{2}\right)=q_{2}$ (given), with at least one of them nonzero], we can choose the following trial function:

$$
\begin{equation*}
q_{o}=\psi_{0}(t)+\sum a_{k} \psi_{k}(t) \tag{n1}
\end{equation*}
$$

where $\psi_{0}\left(t_{1}\right)=q_{1}, \psi_{0}\left(t_{2}\right)=q_{2}$, and $\psi_{k}\left(t_{1}\right)=0, \psi_{k}\left(t_{2}\right)=0$; for example, for ψ_{0} we can try the linear function

$$
\begin{equation*}
\psi_{0}(t)=\left[\left(q_{2}-q_{1}\right) /\left(t_{2}-t_{1}\right)\right]\left(t-t_{1}\right)+q_{1} . \tag{n2}
\end{equation*}
$$

4. An Illustration

Let us apply these methods to the earlier-discussed (ex. 7.2.2), undamped but periodically forced, Duffing's oscillator:

$$
\begin{equation*}
m \ddot{q}+k q+h q^{3}-Q_{o} \sin \chi=0, \quad \chi \equiv \omega t, \tag{o}
\end{equation*}
$$

or, with $\omega_{0}{ }^{2} \equiv k / m$: natural frequency of corresponding linear oscillator
[i.e., (o) for $h=0$],
$\varepsilon \equiv h / m$: measure of elastic nonlinearity
(if >0 : hard or overlinear spring; if <0 : soft or underlinear spring),
ω : given forcing frequency,
$f_{o} \equiv Q_{o} / m$: forcing amplitude per unit mass,

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q+\varepsilon q^{3}-f_{o} \sin \chi=0, \quad \chi \equiv \omega t . \tag{o4}
\end{equation*}
$$

Let us investigate the forced response of (p) of the same frequency ω. Since eqs. (o, p) are "symmetric" about $t=0$, we try the single parameter solution

$$
\begin{equation*}
q_{o}=a \sin \chi, \quad a=a(\omega) . \tag{p1}
\end{equation*}
$$

Then, Galerkin's equation (f) yields

$$
\begin{equation*}
\int_{0}^{2 \pi / \omega}\left(\ddot{q}_{o}+\omega_{o}^{2} q_{o}+\varepsilon q_{o}^{3}-f_{o} \sin \chi\right) \sin \chi d t=0 \tag{p2}
\end{equation*}
$$

and from this, after some simple integrations, we obtain the earlier equation [ex. 7.2.2: (f)]

$$
\begin{align*}
& (3 \varepsilon / 4) a^{3}+\left(\omega_{o}^{2}-\omega^{2}\right) a-f_{o}=0 \\
& \Rightarrow \omega^{2}=\omega^{2}\left(a, f_{o}\right)=\omega_{o}^{2}+3 \varepsilon a^{2} / 4-f_{o} / a . \tag{p3}
\end{align*}
$$

This equation constitutes the resonance curve; that is, it gives the response amplitude $|a|$ as function of ω and the specified system parameters h and f_{o} (fig. 7.7). For $f_{o}=0$ (free vibration) (p3) reduces to

$$
\begin{equation*}
\omega^{2}=\omega_{o}^{2}+(3 / 4) \varepsilon a^{2} \Rightarrow \omega=\omega_{o}\left(1+3 \varepsilon a^{2} / 4 \omega_{o}^{2}\right)^{1 / 2} . \tag{p4}
\end{equation*}
$$

As for the Ritz method, since here

$$
\begin{equation*}
2 T=m(\dot{q})^{2} ; \quad V=V_{2}+V_{4}, \quad 2 V_{2} \equiv k q^{2}, \quad 4 V_{4} \equiv h q^{4} ; \quad Q=Q_{o} \sin \chi \tag{q1}
\end{equation*}
$$

and $q_{o}=a \sin \chi \Rightarrow \delta q_{o}=\delta a \sin \chi$, eqs. (g, j$)$ give, with $t_{1}=0$ and $t_{2}=2 \pi / \omega$,

$$
\begin{align*}
\delta A_{H} & =\delta \int_{0}^{2 \pi / \omega}\left[(m / 2)\left(d q_{o} / d t\right)^{2}-\left(k q_{o}^{2} / 2+h q_{o}^{4} / 4\right)+Q(t) q_{o}\right] d t \\
& =\left\{\left(m \dot{q}_{o}\right) \delta q_{o}\right\}_{0}^{2 \pi / \omega}-\int_{0}^{2 \pi / \omega}\left[\left(m\left(d^{2} q_{o} / d t^{2}\right)+k q_{o}+h q_{o}^{3}-Q(t)\right] \delta q_{o} d t\right. \\
& =0-\left[\left(-m a \omega^{2}+k a-Q_{o}\right) \int_{0}^{2 \pi / \omega} \sin ^{2} \chi d t+\left(h a^{3}\right) \int_{0}^{2 \pi / \omega} \sin ^{4} \chi d t\right] \delta a \\
& =(\pi / \omega)\left(-m a \omega^{2}+k a+3 h a^{3} / 4-Q_{o}\right) \delta a, \tag{q2}
\end{align*}
$$

from which (p3) follows.

LINEAR Oscillator $(\varepsilon=0)$

NONLINEAR Oscillator

($|a|$: always bounded)

- Hard Spring $(\varepsilon>0)$: Below (ω / ω_{o})* only one amplitude is possible

- Soft Spring ($\varepsilon<0$): Beyond (ω / ω_{o})* only one amplitude is possible

Figure 7.7 Resonance curves; that is, $a=a(\omega)$, for linear and (cubically) nonlinear oscillators.
[For a treatment of the stability of this oscillator via the second variation of A_{H}, $\delta^{2} A_{H} \equiv \delta\left(\delta A_{H}\right)$, see Papastavridis [1983(a)].

5. A Generalization of Galerkin's Method

(See Chen, 1987.) The conventional Galerkin's method, presented above, assumes that the frequency ω is given, and so there is no need to vary it. Indeed, as already
pointed out, with

$$
\begin{equation*}
\delta q_{o}=\sum\left(\partial q_{o} / \partial a_{k}\right) \delta a_{k}=\sum \psi_{k}(t) \delta a_{k}, \tag{rl}
\end{equation*}
$$

the variational equation $\int E_{o} \delta q_{o} d t=0$ (time integral of Lagrange's principle) leads to the Galerkin equations (f). However, in some problems, ω is unknown and also unrelated to the amplitude; for example, limit cycle oscillations (van der Pol equation); then δq_{o} must be augmented by $\delta \omega$-proportional terms. Indeed, let the trial solution be (only periodic solutions are of interest here)

$$
\begin{equation*}
q_{o}=\sum a_{k} \psi_{k}(t, \omega)=\sum a_{k} \psi_{k}(\omega t), \psi_{k}(\omega t+2 \pi)=\psi_{k}(\omega t), \tag{r2}
\end{equation*}
$$

and its variation

$$
\begin{equation*}
\delta q_{o}=\sum\left(\partial q_{o} / \partial a_{k}\right) \delta a_{k}+\left(\partial q_{o} / \partial \omega\right) \delta \omega=\sum \psi_{k} \delta a_{k}+\Omega \delta \omega, \tag{r3}
\end{equation*}
$$

where

$$
\begin{align*}
\Omega \equiv \Omega\left(t, \omega t, a_{k}\right) & \equiv \partial q_{o} / \partial \omega=\sum a_{k}\left(\partial \psi_{k} / \partial \omega\right) \\
& =\sum a_{k} t\left[d \psi_{k} / d(\omega t)\right]: \text { secular coordinate function } . \tag{r4}
\end{align*}
$$

Substituting (r2-4) into $\int E_{o} \delta q_{o} d t=0$ (with $t_{1}=0, t_{2}=t_{1}+2 \pi / \omega=2 \pi / \omega$, or $\left.t_{1}+\pi / \omega=\pi / \omega\right)$ and setting, in the resulting variational equation, the coefficients of both δa_{k} and $\delta \omega$ equal to zero, we obtain the $N+1$ generalized Galerkin equations, for the $N+1$ unknowns a_{k}, ω :

$$
\begin{align*}
\int E_{o}\left(\partial q_{o} / \partial a_{k}\right) d t & =\int E_{o} \psi_{k} d t=0 \quad(k=1, \ldots, N) \tag{r5}\\
\int E_{o}\left(\partial q_{o} / \partial \omega\right) d t & =\int E_{o} \Omega d t=0 \tag{r6}
\end{align*}
$$

[Equation (r6) is the Galerkin equivalent of secular term suppression of, say, the perturbation method.]

An Illustration

Let us apply the above to determine both the (limit cycle) amplitude and frequency of the earlier van der Pol equation (exs. 7.2.2, 7.9.10, and 7.9.11):

$$
\begin{equation*}
E=E(q, \dot{q}, \ddot{q})=\ddot{q}+\varepsilon\left(q^{2}-1\right) \dot{q}+q=0 . \tag{s1}
\end{equation*}
$$

With the trial solution

$$
\begin{equation*}
q_{o}=a \cos \chi, \quad \chi \equiv \omega t \tag{s2}
\end{equation*}
$$

we find

$$
\begin{equation*}
\delta q_{o}=(\cos \chi) \delta a+(-a t \sin \chi) \delta \omega \tag{s3}
\end{equation*}
$$

and

$$
\begin{equation*}
E \rightarrow E_{o}=\left(1-\omega^{2}\right) a \cos \chi+a \varepsilon \omega\left(1-a^{2} \cos ^{2} \chi\right) \sin \chi \neq 0, \tag{s4}
\end{equation*}
$$

and therefore $(r 5,6)$ yield the two Galerkin equations

$$
\begin{align*}
& \int_{0}^{2 \pi / \omega} \quad E_{o}\left(\partial q_{o} / \partial a\right) d t=\int_{0}^{2 \pi / \omega} E_{o} \cos \chi d t=0 \\
& \quad a\left(1-\omega^{2}\right)(\pi / 2 \omega)=0 \Rightarrow \omega=1 \tag{s5}\\
& \int_{0}^{2 \pi / \omega} E_{o}\left(\partial q_{o} / \partial \omega\right) d t=\int_{0}^{2 \pi / \omega} E_{o}(-a t \sin \chi) d t=0 \\
& \quad a\left(1-\omega^{2}\right)\left(-\pi / 4 \omega^{2}\right)+a \varepsilon \omega\left(\pi^{2} / 4 \omega^{2}\right)-a^{3} \varepsilon \omega\left(\pi^{2} / 16 \omega^{2}\right)=0 \\
& \quad \Rightarrow a^{2}=4 \Rightarrow|a|=2 \tag{s6}
\end{align*}
$$

in agreement with the values found by the earlier methods.
In a several-DOF system, eqs. (r2-6) are replaced, respectively, by

$$
\begin{align*}
& q_{k, o}=\sum a_{k k^{\prime}} \psi_{k^{\prime}}(\omega t) \\
& \Rightarrow \delta q_{k, o}=\sum \psi_{k^{\prime}} \delta a_{k k^{\prime}}+\Omega_{k} \delta \omega, \quad \Omega_{k} \equiv \sum a_{k k^{\prime}} t\left[d \psi_{k^{\prime}} / d(\omega t)\right] \tag{t1,2}\\
& \int E_{k, o} \psi_{k^{\prime}} d t=0 \quad(n \times N \text { eqs. }), \quad \int\left(\sum E_{k, o} \Omega_{k}\right) d t=0 \quad(1 \mathrm{eq} .) \tag{t3}
\end{align*}
$$

where
$k=1, \ldots, n$ is the number of independent coordinates; $k^{\prime}=1, \ldots, N$ is the number of independent coordinate functions, and coefficients; ω is the assumed common frequency to all q 's.

If each q_{k} is known to have a frequency ω_{k}, then the first of (t 3) are replaced by the $n \times N$ equations

$$
\begin{equation*}
\int_{0}^{2 \pi / \omega_{k}} E_{k, o} \psi_{k^{\prime}} d t=0 \tag{t5}
\end{equation*}
$$

where $\psi_{k^{\prime}}\left(t+2 \pi / \omega_{k}\right)=\psi_{k^{\prime}}(t)$.
For further insights and examples, see, for example, Chen (1987), Fischer and Stephan [1972, pp. 150-151; good compact discussion of one and several DOF systems, both "autonomous" (no explicit time dependence) and "heteronomous" (explicit time dependence; e.g., forced vibrations); pp. 217-229: fully solved example; also 1984, pp. 267-268], Kosenko (1995).

Problem 7.9.12 Lagrange-Ritz Method (General Considerations). Consider a one-DOF conservative oscillatory system of period τ. Let q_{o} be an approximate periodic trial solution to its exact motion $q: q \approx q_{o}=q_{o}\left(t ; \omega \equiv 2 \pi / \tau, a_{1}, \ldots a_{N}\right)$, where both its frequency ω and "amplitude parameters" a_{k} are unknown.

Show that the latter can be determined from the following $N+1$ "LagrangeRitz" stationarity (of A_{L}) equations:

$$
\begin{equation*}
\partial A_{L, o} / \partial a_{k}=0, \quad \partial A_{L, o} / \partial \omega=0 \quad(k=1, \ldots, N) \tag{a}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{L}(q)=\int 2 T d t=\int(L+E) d t \rightarrow A_{L}\left(q_{o}\right) \equiv A_{L, o}, \tag{b}\\
& L=L(q, \dot{q}) \rightarrow L_{o}: \text { Lagrangean, } \quad E \equiv T+V \rightarrow E_{o}: \text { total energy. } \tag{c}
\end{align*}
$$

HINT
Set $\omega t \equiv x$. Then, $q_{o}=q_{o}(\omega t)=q_{o}(x)$, and with $(\ldots)^{\prime} \equiv d(\ldots) / d x$,

$$
\begin{equation*}
A_{L, o}=\omega^{-1} \int_{0}^{2 \pi}\left\{L\left[q_{o}(x), \omega q_{o}{ }^{\prime}(x)\right]+E_{o}\right\} d t \tag{d}
\end{equation*}
$$

Problem 7.9.13 Lagrange-Ritz Method. Continuing from the preceding problem, show that if V is an even function of $q=q(\omega t)$ (symmetric potential), and $q(0)=0$, then the most general harmonic trial function q_{o} becomes a linear combination of sines with arguments odd multiples of ωt; that is,

$$
\begin{equation*}
q_{o}=a_{1} \sin (\omega t)+a_{3} \sin (3 \omega t)+\cdots=\sum a_{k} \sin (k \omega t) \quad(k=1,3,5, \ldots) . \tag{a}
\end{equation*}
$$

HINT
Here, $\dot{q}(\omega t=\pi / 2)=0$.

Problem 7.9.14 Lagrange-Ritz Method (A Theoretical Result). Continuing from the preceding two problems, show that for a trial function

$$
\begin{equation*}
q_{o}=q_{o}\left(\omega t ; a_{1}, \ldots, a_{N}\right), \tag{a}
\end{equation*}
$$

the following stationarity condition results:

$$
\begin{equation*}
d A_{L, o} / d E=\cdots=\partial A_{L, o} / \partial E=\cdots=2 \pi / \omega=\tau \tag{b}
\end{equation*}
$$

where $A_{L} \rightarrow A_{L, o}\left(a_{1}, \ldots, a_{N} ; \omega, E\right)$.

Problem 7.9.15 Lagrange-Ritz Method. Consider the harmonic oscillator with equation of motion $\ddot{q}+q=0$ (i.e., of unit mass and frequency), and corresponding (double) Lagrangean $2 L=(\dot{q})^{2}-q^{2}$, and assume the trial solution $q_{o}=a \sin (\omega t)$. Show that, then,

$$
\begin{equation*}
A_{L, o}=(\pi / 2) a^{2}\left(\omega-\omega^{-1}\right)+2 \pi E / \omega, \tag{a}
\end{equation*}
$$

and thus the earlier stationarity conditions yield

$$
\begin{equation*}
\partial A_{L, o} / \partial a=0 \Rightarrow \omega=1, \quad \partial A_{L, o} / \partial \omega=0 \Rightarrow E=a^{2} / 2 \tag{b}
\end{equation*}
$$

Problem 7.9.16 Lagrange-Ritz Method (Linear Oscillator). In the oscillator of the preceding problem, assume the quadratic trial function

$$
\begin{equation*}
q_{o}=a\left(x-x^{2} / \pi\right), \quad x \equiv \omega t . \tag{a}
\end{equation*}
$$

Show that, then,

$$
\begin{equation*}
A_{L, o}=\pi \omega a^{2} / 3+2 \pi E / \omega-\pi^{3} a^{2} / 30 \omega \tag{b}
\end{equation*}
$$

and thus the earlier stationarity conditions yield

$$
\begin{align*}
& \partial A_{L, o} / \partial a=0 \Rightarrow \omega^{2}=\pi^{2} / 10 \approx 0.987 \\
& \partial A_{L, o} / \partial \omega=0 \Rightarrow E=\left(\pi^{2} / 30\right) a^{2} \approx 0.33 a^{2} . \tag{c}
\end{align*}
$$

Problem 7.9.17 Lagrange-Ritz Method. Consider the nonlinear Duffing oscillator with equation of motion $\ddot{q}+\omega_{o}{ }^{2} q+2 c q^{3}=0\left(\omega_{o}{ }^{2}, c>0 ; c\right.$: small) and corresponding (double) Lagrangean $2 L=(\dot{q})^{2}-\left(\omega_{0}^{2} q^{2}+c q^{4}\right)$. Show that for the trial solution $q_{o}=a \sin (\omega t)$,

$$
\begin{equation*}
A_{L, o}=\pi \omega a^{2} / 2+2 \pi E / \omega-\pi \omega_{o}^{2} a^{2} / 2 \omega-3 \pi c a^{4} / 16 \omega . \tag{a}
\end{equation*}
$$

Then, set $\partial A_{L, o} / \partial a=0$ and $\partial A_{L, o} / \partial \omega=0$, and find the relations among ω, a, E.

ANSWER

$$
\begin{equation*}
\omega^{2}=\left(\omega_{o}^{2} / 3\right)\left\{1+2\left[1+\left(9 c E / \omega_{o}^{2}\right)\right]^{1 / 2}\right\} . \tag{b}
\end{equation*}
$$

Problem 7.9.18 Lagrange-Ritz Method. Consider a mathematical pendulum of mass $m=1$ and length l in general plane motion, under gravity. Here, with the usual notations,

$$
\begin{equation*}
2 T=l(\dot{\phi})^{2} \quad \text { and } \quad V=g l(1-\cos \phi) \tag{a}
\end{equation*}
$$

Show that
(i) In the new variable $x \equiv \sin (\phi / 2)$, the Lagrangean of the pendulum becomes

$$
\begin{equation*}
L=\left[2 l^{2} /\left(1-x^{2}\right)\right](d x / d t)^{2}-2 g l x^{2}=L(x, \dot{x}) \tag{b}
\end{equation*}
$$

and then
(ii) The trial solution $x_{o}=a \sin (\omega t)$ yields

$$
\begin{equation*}
A_{L, o}=2 \pi E / \omega+4 \pi \omega l^{2}\left[1-\left(1-a^{2}\right)^{1 / 2}\right]-2 \pi g l a^{2} / \omega . \tag{c}
\end{equation*}
$$

Then, set $\partial A_{L, o} / \partial a=0$ and $\partial A_{L, o} / \partial \omega=0$, and find the relations among ω, a, E.
For further details, see Luttinger and Thomas (1960); and for a generalization to systems with Lagrangeans $L=L(t, q, \dot{q})$, see Buch and Denman (1976).

Problem 7.9.19 Hamilton-Ritz Method. Consider the earlier Duffing oscillator with equation of motion $\ddot{q}+\omega_{o}{ }^{2} q+c q^{3}=0$, and boundary conditions $q(0)=q(\pi / \omega)=0$. Show that the method of "Hamilton-Ritz," applied here for the trial solution $q_{o}=a \sin (\omega t)$, yields either $a=0$ or $\omega^{2}=\omega_{o}{ }^{2}+(3 / 4) a^{2} c$; that is, given a we find ω, and vice versa; while applied for the trial solution
$q_{o}=a \sin (\omega t)+b \sin (3 \omega t)$, the method yields

$$
\begin{align*}
& a^{2}-a b+2 b^{2}-(4 / 3)\left(\omega^{2}-\omega_{o}^{2}\right) / c=0, \tag{a}\\
& 3 b^{3}-a^{3}+6 a^{2} b+4 b\left(\omega_{o}^{2}-9 \omega^{2}\right) / c=0 ; \tag{b}
\end{align*}
$$

that is, given a (or b) we find b (or a), and ω.
Further, with the help of the dimensionless quantities $x \equiv b / a, y \equiv a^{2} c / \omega_{o}$, and $z \equiv\left(\omega / \omega_{o}\right)^{2}-1$, eqs. (a, b) can be rewritten, respectively, as

$$
\begin{equation*}
y\left(6 x^{2}-3 x+3\right)-4 z=0, \quad y\left(3 x^{3}+6 x-1\right)-x(36 z+32)=0 \tag{c}
\end{equation*}
$$

and, finally, eliminating z between them, we obtain

$$
\begin{equation*}
y=-32 x\left(51 x^{3}-27 x^{2}+21 x+1\right)^{-1} . \tag{d}
\end{equation*}
$$

Plot and discuss this curve [i.e., given a we find y and, via (d), we find x].
For a two-DOF example, see Schräpel (1988).

Problem 7.9.20 Galerkin Method. Consider the forced and nonlinearly damped oscillator

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q+f_{1} \dot{q}+f_{3}(\dot{q})^{3}=Q_{o} \sin (\omega t) \tag{a}
\end{equation*}
$$

where $\omega_{o}{ }^{2}, f_{1}, f_{3}, Q_{o}, \omega$ are specified positive constants (with the usual and/or easily understood meanings). Show that the Galerkin method applied to (a) for the trial steady-state solution

$$
\begin{equation*}
q=a \sin (\omega t)+b \cos (\omega t) \tag{b}
\end{equation*}
$$

yields the following algebraic system for the unknown amplitudes a, b :

$$
\begin{align*}
& a\left(\omega_{o}^{2}-\omega^{2}\right)-b f_{1} \omega-(3 / 4) f_{3} \omega^{3} b\left(a^{2}+b^{2}\right)-Q_{o}=0 \tag{c}\\
& a f_{1} \omega+b\left(\omega_{o}^{2}-\omega^{2}\right)+(3 / 4) f_{3} \omega^{3} a\left(a^{2}+b^{2}\right)=0 \tag{d}
\end{align*}
$$

Discuss these results for various limiting cases.

Example 7.9.13 The Variational Principles of Gray-Karl-Novikov (GKN, 1996). Quite generally, we obviously have

$$
\int(T-V) d t=\int(2 T) d t-\int(T+V) d t ;
$$

or, recalling earlier definitions (§7.9), and with the still general but convenient timeintegration limits $t_{1}=0, t_{2}=t \Rightarrow t_{2}-t_{1}=t$,

$$
\begin{equation*}
A_{H}=A_{L}-A_{E} \equiv A_{L}-t\langle E\rangle, \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{E} \equiv \int_{0}^{t}(T+V) d t \equiv \int_{0}^{t}(E) d t \equiv t\langle E\rangle . \tag{a1}
\end{equation*}
$$

Therefore, Δ-varying the above, we obtain the following basic relation:

$$
\begin{equation*}
\Delta A_{H}=\Delta A_{L}-\Delta t\langle E\rangle-t \Delta\langle E\rangle \Rightarrow \Delta A_{H}+\langle E\rangle \Delta t=\Delta A_{L}-t \Delta\langle E\rangle \tag{b}
\end{equation*}
$$

Now, and recalling, again, the general results of (3.9.11b ff.; 7.2.6e, f; and 7.9.4a ff.), let us see how (b) specializes for a holonomic, scleronomic, and potential system; that is, one completely describable by the Lagrangean: $L=L(q, \dot{q}) \Rightarrow \partial L / \partial t=0 \Rightarrow$ $d h / d t=-\partial L / \partial t=0 \Rightarrow h \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L=2 T-(T-V)=T+V \equiv E$ (i.e., generalized energy $=$ ordinary energy $)=$ constant $\Rightarrow h\left(t_{2}\right)=h\left(t_{1}\right)=\langle h\rangle=\langle E\rangle$ [recalling (7.9.12b)], and for fixed endpoint variations (i.e., $\Delta q_{1,2}=0$, and with no loss in generality, $\Delta t_{1}=0, \Delta t_{2}=\Delta t$) from an actual trajectory (orbit; i.e., $\left.E_{k}(L)=0\right)$. We easily see that, then, $(7.9 .4 \mathrm{~b}, 11 \mathrm{~h})$ reduce to (7.9.12d):

$$
\begin{align*}
\Delta A_{H}=-\{h \Delta t\}_{1}^{2}=-h \Delta t=-\langle E\rangle \Delta t & \Rightarrow \Delta A_{H}+\langle E\rangle \Delta t=0 & & \text { (Hamiltonian) } \tag{cl}\\
& \Rightarrow \Delta A_{L}-t \Delta\langle E\rangle=0 & & \text { (Lagrangean) } \tag{c2}
\end{align*}
$$

that is, for such systems and variations, both the left and right sides of (b) vanish independently.

Next, a little reflection (with invocation of the reasoning of the theory of constrained stationarity conditions and method of Lagrangean multipliers) will convince us that the two unconstrained variational equations (c) lead to the following four constrained GKN variational principles:

$$
\begin{equation*}
\left(\Delta A_{H}\right)_{t=\text { constant }}=0 \quad(\text { Hamilton }) \tag{i}
\end{equation*}
$$

$$
\begin{array}{ll}
(\Delta t)_{\text {Hamiltonian action=constant }}=0 & (\text { ("Reciprocal Hamilton") }, \\
\left(\Delta A_{L}\right)_{\langle E\rangle=\text { constant }}=0 & (\text { ("Reformulated MEL"), }
\end{array}
$$

$$
\begin{equation*}
(\Delta\langle E\rangle)_{\text {Lagrangean action=constant }}=0 \quad \text { ("Reciprocal MEL") } \tag{d3}
\end{equation*}
$$

[We notice that (a) eq. (d1) is a specialization of the method presented in the earlier probs. 7.9.12 and 7.9.13; and that (b) eq. (d3), with $\langle E\rangle=$ constant, is slightly more general than the ordinary MEL principle ($E=$ constant $)$.] The following applications to simple problems of nonlinear oscillations illustrate the use of the above, especially (d3) and (d4) [one of the main contributions of GKN (1996)]:
(i) One-dimensional quartic oscillator, with $2 T=m(\dot{q})^{2}$ (m : mass), $4 V=c q^{4}(c$: positive constant). With trial trajectory solution, $q=a \sin (\omega t) \Rightarrow \dot{q}=a \omega \cos (\omega t)$, where ω (frequency, and $\tau \equiv 2 \pi / \omega$: period) and a (amplitude) are the hitherto unknown parameters to be determined by the above variational principles, and with the simpler notation $A_{L} \equiv W$ (from the German Wirkung $=$ action), and integration limits $t_{1}=0, t_{2}=2 \pi / \omega$, we find

$$
\begin{align*}
W & \equiv \int_{0}^{\tau} 2 T d t=\int_{0}^{2 \pi / \omega}\left[m(\dot{q})^{2}\right] d t=\int_{0}^{2 \pi / \omega}\left[m a^{2} \omega^{2} \cos ^{2}(\omega t)\right] d t=m a^{2} \pi \omega, \tag{el}\\
& \Rightarrow a^{2}=W / m \pi \omega ; \tag{e2}\\
\langle E\rangle & \equiv(1 / \tau) \int_{0}^{\tau}(T+V) d t=(1 / \tau) \int_{0}^{2 \pi / \omega}\left[(1 / 2) m(\dot{q})^{2}+(1 / 4) c q^{4}\right] d t \\
& =\cdots[\text { and utilizing }(\mathrm{e} 2)]=W \omega / 4 \pi+(3 / 32)\left(c W^{2} / \pi^{2} m^{2} \omega^{2}\right) . \tag{e3}
\end{align*}
$$

Then, applying (d4) [which, in view of the above results, is the easiest among (d1-4) to implement], we obtain the frequency that makes (e3) stationary (and, here, a minimum):

$$
\begin{align*}
0 & =(\partial\langle E\rangle / \partial \omega)_{W=\text { constant }}=(W / 4 \pi)\left[1-(3 / 4)\left(c W / \pi m^{2} \omega^{3}\right)\right] \tag{e4}\\
& \Rightarrow \omega=\left(3 c W / 4 \pi m^{2}\right)^{1 / 3} \tag{e5}\\
& \Rightarrow\langle E\rangle=(1 / 2)\left(c / m^{2}\right)^{1 / 3}\left(3 A_{L} / 4 \pi\right)^{4 / 3}=(1 / 2)\left(m^{2} / c\right) \omega^{4}, \tag{e6}\\
& \Rightarrow \tau=2 \pi / \omega=2 \pi\left(m^{2} / 2 c\langle E\rangle\right)^{1 / 4} . \tag{e7}
\end{align*}
$$

Since the exact value of τ is \{see Gray et al. [1996(a)], or books on nonlinear oscillations\}:

$$
\begin{gather*}
\tau_{\text {exact }}=[\Gamma(1 / 2) \Gamma(1 / 4) / \Gamma(3 / 4)]\left(m^{2} / c\langle E\rangle\right)^{1 / 4} \quad[\Gamma(\ldots): \text { Gamma function }], \tag{e8}\\
\Rightarrow \tau / \tau_{\text {exact }}=\left(2 \pi / 2^{1 / 4}\right)[\Gamma(3 / 4) / \Gamma(1 / 2) \Gamma(1 / 4)]=1.0075 \tag{e9}
\end{gather*}
$$

the error committed is less than 1%.
The reader is urged to verify that these results can also be obtained by applying (d1)—in which case, the constraint $t=$ constant implies $\tau=$ constant $\Rightarrow \omega=$ constant, in our trial solution; that is, $A_{H}=A_{H}(a ; \omega)$, and so (d1) translates to $d A_{H} / d a=0$. (Compare with the more general method discussed in probs. 7.9.12 and 7.9.13.)
(ii) Anharmonic oscillator, with $2 T=m(\dot{q})^{2}, \quad V=(1 / 2) m \omega_{o}{ }^{2} q^{2}+(1 / 4) \lambda q^{4}$ [which can be viewed as the quartic approximation to the potential energy of a plane mathematical pendulum, $V_{\text {exact }}=m l^{2} \omega_{o}{ }^{2}(1-\cos \theta)$, where, as usual, m, l, θ are the mass, length, and angle with vertical, of the pendulum; $\omega_{o} \equiv(g / l)^{1 / 2}$ (frequency in quadratic approximation of $\cos \theta$ to $\left.V_{\text {exact }}\right), q \equiv l \theta$, and $\left.\lambda \equiv-m \omega_{o}{ }^{2} / 6 l^{2}\right]$. Again, with trial solution, $q=a \sin (\omega t) \Rightarrow \dot{q}=a \omega \cos (\omega t)$, where ω (frequency) and a (amplitude) are the hitherto unknown parameters to be determined by the GKN variational principles, and integration limits $t_{1}=0, t_{2}=2 \pi / \omega$, we find

$$
\begin{align*}
W & =\int_{0}^{2 \pi / \omega}\left[m(\dot{q})^{2}\right] d t=\int_{0}^{2 \pi / \omega}\left[m a^{2} \omega^{2} \cos ^{2}(\omega t)\right] d t=m a^{2} \pi \omega \tag{f1}\\
& \Rightarrow a^{2}=W / m \pi \omega \tag{f2}\\
\langle E\rangle & \equiv(1 / \tau) \int_{0}^{\tau}(T+V) d t \\
& =(1 / \tau) \int_{0}^{2 \pi / \omega}\left[(1 / 2) m(\dot{q})^{2}+(1 / 2) m \omega_{o}^{2} q^{2}+(1 / 4) \lambda q^{4}\right] d t \\
& =\cdots[\text { and utilizing }(\mathrm{f} 2)]=\left(A_{L} / 4 \pi\right)\left[\omega+\omega_{0}^{2} / \omega+\left(3 \lambda W / 8 \pi m^{2} \omega^{2}\right)\right] . \tag{f3}
\end{align*}
$$

Here, too, applying (d4) with ω as variational parameter, we get

$$
\begin{gather*}
0=(\partial\langle E\rangle / \partial \omega)_{W=\text { constant }} \\
\Rightarrow \omega^{2}=\omega_{o}^{2}+\left(3 \lambda W / 4 \pi m^{2} \omega\right)=\omega_{o}{ }^{2}+(3 \lambda / 4 m) a^{2}, \tag{f4}
\end{gather*}
$$

which agrees with earlier-found approximate values (exs. 7.9.11, probs. 7.9.17 and 7.9.18; also exs. 8.16. and 8.16.2). For the pendulum, (f4), with $\lambda \equiv-m \omega_{o}{ }^{2} / 6 l^{2}$ and $a / l \equiv \theta_{\max }$, gives

$$
\begin{equation*}
\omega=\omega_{o}\left(1-\theta_{\max }^{2} / 8\right)^{1 / 2}=\omega_{o}\left(1-\theta_{\max }^{2} / 16-\theta_{\max }^{4} / 512+\cdots\right) \tag{f5}
\end{equation*}
$$

and, hence, corresponding period $\tau\left(\theta_{\max }\right) \equiv \tau$ (with $\left.\tau_{o} \equiv 2 \pi / \omega_{o}\right)$:

$$
\begin{equation*}
\tau=2 \pi / \omega=\tau_{o}\left(1-\theta_{\max }^{2} / 8\right)^{-1 / 2}=\tau_{o}\left(1+\theta_{\max }^{2} / 16+3 \theta_{\max }^{4} / 512+\cdots\right) \tag{f6}
\end{equation*}
$$

which is correct to $\theta_{\max }^{2}$ (since the trial solution is correct to the zeroth order in λ, and our variational principle makes sure that first-order such errors vanish). A better approximation to the exact expansion (the latter obtained through integration of the well-known nonlinear equation of motion, via an elliptic integral)

$$
\begin{equation*}
\tau_{\text {exact }}=\tau_{o}\left[1+\theta_{\max }^{2} / 16+(11 / 18)\left(3 \theta_{\max }^{4} / 512\right)+\cdots\right], \tag{f7}
\end{equation*}
$$

is obtained by keeping the $\theta^{6} / 6$! term in the $\cos \theta$ expansion, in $V_{\text {exact }} \rightarrow V$; also by adding to the trial solution higher harmonics: for example, $b \sin (3 \omega t)$ (b : corresponding amplitude) (recall ex. 7.9.11, prob. 7.9.19). For further examples and insights, see Gray et al. [1996(a),(b)].

Example 7.9.14 Method of Slowly Varying Parameters (Amplitude and Phase) in Weakly Nonlinear (Quasi-linear) Oscillators. Let us consider the general equation [recalling ex. 7.9.10: k ff.)]

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q=\varepsilon f(q, \dot{q}) \tag{a}
\end{equation*}
$$

where
ω_{o} : natural (constant) frequency of (a) when $\varepsilon f(q, \dot{q})=0$;
$f(\ldots)$: arbitrary nonlinear (but integrable) function of its arguments; and
ε : very small positive constant, so that (a) differs by very little from a linear equation (hence the name quasilinear).

Due to the presence of damping - namely, \dot{q}-proportional terms - the solutions of (a) are, in general, no longer periodic and, accordingly, the earlier-described methods of Hamilton/least action and Ritz/Galerkin do not apply, except asymptotically, as in the limit cycle case (e.g., van der Pol oscillator) - that is, they need modification to account for the generally nonvanishing boundary terms (see also the remarks at end of this example).

Below, we describe an approximate averaging method for the solution of (a), originated by van der Pol (in the early 1920s) and thoroughly extended and perfected by a host of distinguished Soviet scientists: Krylov, Bogoliubov, Mitropolskii, Andronov, Vitt, Mandelstam, Papaleksi, Malkin et al. (between the two World Wars), in connection with problems of electrical and mechanical engineering. In fact, this area of asymptotic methods in nonlinear oscillations was fairly considered as a Soviet $(\rightarrow$ Russian $)$ specialty.
[That eq. (a) may, under certain conditions, have some periodic solutions (e.g., limit cycles) is far from obvious - in fact, it took a giant of mathematics, H. J.

Poincare (late 19th century), to show that. A small change in the form of a (linear or nonlinear) differential equation may change radically the qualitative nature of its solutions; for example, the equation $\ddot{q}+\omega_{o}{ }^{2} q=0$ possesses only periodic solutions, but the equation $\ddot{q}+\mu \dot{q}+\omega_{o}{ }^{2} q=0$ does not possess any such solutions, no matter how small (but nonzero) the friction/damping coefficient μ is!]

As is well known, the solution of the undamped problem - that is, (a) with $\varepsilon=0$ - is

$$
\begin{equation*}
q=a \cos \chi, \quad \chi \equiv \omega_{o} t+\phi \tag{b}
\end{equation*}
$$

where, a is the constant amplitude, ϕ is the constant phase, (both determined from the initial conditions), ω_{o} is the natural linear frequency (a given constant), and χ is the total phase.

For the damped nonlinear equation (a), we apply the Lagrangean method of variation of constants or parameters (for a general discussion of this, in terms of both Lagrangean and Hamiltonian variables, see §8.7): we try a solution of the same form as the "generating solution" (b) but with a and ϕ replaced by unknown functions of time; that is,

$$
\begin{equation*}
q=a(t) \cos \chi(t), \quad \chi(t)=\omega_{o} t+\phi(t) . \tag{c}
\end{equation*}
$$

By (...)'-differentiating eqs. (b) and (c) we find, respectively,

$$
\begin{array}{ll}
\text { (b) })^{\cdot}: & \dot{q}=-a \omega_{o} \sin \chi, \\
(\mathrm{c})^{\cdot}: & \dot{q}=-a \omega_{o} \sin \chi+(\dot{a} \cos \chi-a \dot{\phi} \sin \chi) . \tag{e}
\end{array}
$$

Now, to determine $a(t)$ and $\phi(t)$, we impose the first ("arbitrary") requirement: the "nonlinear" velocity \dot{q}, eq. (e), should have the same form as the "linear" velocity, eq. (d); that is,

$$
\begin{equation*}
\dot{a} \cos \chi-a \dot{\phi} \sin \chi=0, \quad \chi(t)=\omega_{o} t+\phi(t) \tag{f}
\end{equation*}
$$

The second equation for $a(t), \phi(t)$ is obtained by inserting (c) and (e) [under (f)] back into (a): since

$$
\text { (e) } \begin{aligned}
\cdot: \quad \ddot{q} & =-\dot{a} \omega_{o} \sin \chi-a \omega_{o}{ }^{2} \cos \chi-a \omega_{o} \dot{\phi} \sin \chi \\
& =-\dot{a} \omega_{o} \sin \chi-a \omega_{o}{ }^{2} \cos \chi-\dot{a} \omega_{o} \cos \chi \quad[\text { by the first of (f)] }
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\dot{a} \sin \chi+a \dot{\phi} \cos \chi=-\left(\varepsilon / \omega_{o}\right) f\left(a \cos \chi,-a \omega_{o} \sin \chi\right) \equiv-\left(\varepsilon / \omega_{o}\right) F(a, \chi) . \tag{g}
\end{equation*}
$$

Solving the system of the first of (f) and (g) for \dot{a} and $\dot{\phi}$ yields the first-order coupled nonlinear equations

$$
\begin{equation*}
\dot{a}=-\left(\varepsilon / \omega_{0}\right) F(a, \chi) \sin \chi, \quad \dot{\phi}=-\left(\varepsilon / a \omega_{o}\right) F(a, \chi) \cos \chi \quad\left(=\dot{\chi}-\omega_{o}\right) . \tag{h}
\end{equation*}
$$

So far, no approximations have been involved: the exact solution of the system (h), if available, would be the exact solution of its equivalent original equation (a) for any value of ε; conditions (f) and (g) may be arbitrary but they are consistent.
[A geometrical interpretation: In terms of the "canonical" variables q and $p \equiv \dot{q}$, the original equation (a) becomes the first-order system

$$
\begin{align*}
\dot{p} & =-\omega_{o}{ }^{2} q+\varepsilon f(q, p) \equiv P(q, p) & & \text { (equation of motion) } \tag{h1}\\
\dot{q} & =p \equiv Q(q, p) & & \text { (kinematical equation). } \tag{h2}
\end{align*}
$$

Then, eqs. (c) are simply a transformation among dependent variables - from the old q, p to the new a, ϕ or a, χ - and (h1, 2) transforms to (h). Geometrically, if (q, p) are viewed as the rectangular Cartesian coordinates of a point in a (fixed) q, p-plane (called "phase space"; see chap. 8) then, as eqs. (c) show, for $\omega_{o}=1$ (which can always be accomplished by an independent variable change) (a, χ) become its polar coordinates in that plane, and (a, ϕ) become its polar coordinates in the (rotating) "van der Pol plane."]

Equations (h) are, usually, quite complicated and cannot be solved exactly. To make some headway toward their solution we now introduce the smallness assumption: if the nonlinear term $\varepsilon f(\ldots)$ remains small, absolutely, relative to both \ddot{q} (inertia) and $\omega_{o}{ }^{2} q$ (linear elasticity), then \dot{a} and $\dot{\phi}$ are also small; that is, a and ϕ change very slowly during a (linear) period $\tau_{o}=2 \pi / \omega_{o} ; \chi$ will increase, approximately, by 2π. Mathematically, we assume that ε is small enough that

$$
\begin{align*}
& |d a / d t| \ll|a| / \tau_{o} \Rightarrow\left(2 \pi / \omega_{o}\right)|\dot{a} / a| \ll 1, \tag{i1}\\
& |d \phi / d t| \ll 2 \pi / \tau_{o} \Rightarrow|\dot{\phi}| / \omega_{o} \ll 1 \tag{i2}
\end{align*}
$$

and analogously for the higher derivatives:

$$
\begin{align*}
& \left|d^{2} a / d t^{2}\right| \ll|\dot{a}| / \tau_{o} \equiv|\dot{a}|\left(\omega_{o} / 2 \pi\right) \\
& \Rightarrow\left|d^{2} a / d t^{2}\right| \ll|a|\left(\omega_{o} / 2 \pi\right)^{2} \tag{i3}
\end{align*}
$$

This key assumption allows us to proceed from (h) as follows:
(i) First, and since the nonlinear right sides of (h) are periodic in χ with period 2π, we expand them into Fourier series in χ :

$$
\begin{align*}
& F(a, \chi) \sin \chi=A_{o}(a)+\sum\left[A_{k}(a) \cos (k \chi)+B_{k}(a) \sin (k \chi)\right] \tag{j1}\\
& F(a, \chi) \cos \chi=\Phi_{o}(a)+\sum\left[\Phi_{k}(a) \cos (k \chi)+\Psi_{k}(a) \sin (k \chi)\right] \tag{j2}
\end{align*}
$$

where $k=1,2,3, \ldots$, and the expansion coefficients ("amplitudes") $A_{o}, \Phi_{o} ; A_{k}, B_{k}$; Φ_{k}, Ψ_{k} are determined in well-known ways [recall ex. 7.9.12: (d2), (d3)]. In particular, it is known that the first terms (constant in χ) equal the average (mean value) of the corresponding expanded functions, over 2π :

$$
\begin{equation*}
A_{o}(a)=(1 / 2 \pi) \int_{0}^{2 \pi} F(a, \chi) \sin \chi d \chi, \quad \Phi_{o}(a)=(1 / 2 \pi) \int_{0}^{2 \pi} F(a, \chi) \cos \chi d \chi \tag{j3}
\end{equation*}
$$

(ii) Next, substituting the series ($\mathrm{j} 1,2$) back into (h) and integrating both sides between 0 and 2π, while invoking (j 3) and noting that all integrals containing
trigonometric terms vanish, we obtain the (still exact) system

$$
\begin{equation*}
\int_{0}^{2 \pi} \dot{a} d \chi=-\left(\varepsilon / \omega_{o}\right) 2 \pi A_{o}(a), \quad \int_{0}^{2 \pi} \dot{\phi} d \chi=-\left(\varepsilon / a \omega_{o}\right) 2 \pi \Phi_{o}(a) . \tag{j4}
\end{equation*}
$$

(iii) Last, we use the smallness (slowness) assumption to transform the left sides of (j4). We have, successively (since $2 \pi=\omega_{o} \tau_{o}=\omega \tau \Rightarrow d \chi=\omega d t=(2 \pi / \tau) d t$, $\left.\omega \equiv \dot{\chi}=\omega_{o}+\dot{\phi}\right)$,

$$
\begin{align*}
\int_{0}^{2 \pi} \dot{a} d \chi=(2 \pi / \tau) \int_{0}^{\tau} \dot{a} d t & =2 \pi\{[a(t+\tau)-a(t)] / \tau\} \\
& =2 \pi\left\{\left[a\left(t+\tau_{o}\right)-a(t)\right] / \tau_{o}\right\} \tag{j5}
\end{align*}
$$

and similarly for the integral of $\dot{\phi}$. But, since a and ϕ do not change appreciably during τ or $\tau_{o}, \Delta a \equiv a(t+\tau)-a(t)$ and $\Delta \phi \equiv \phi(t+\tau)-\phi(t)$ are small, and also τ and τ_{o} are small relative to the total process duration, which involves several periods (i.e., $\tau \rightarrow \Delta \tau$), and so ($\mathrm{j} 4,5$) are replaced by the (finite difference) equations

$$
\begin{equation*}
\Delta a / \Delta \tau=-\left(\varepsilon / \omega_{o}\right) A_{o}(a), \quad \Delta \phi / \Delta \tau=-\left(\varepsilon / a \omega_{o}\right) \Phi_{o}(a), \tag{j6}
\end{equation*}
$$

which, in the limit, produce the first approximation (differential) equations

$$
\begin{equation*}
d a / d t=-\left(\varepsilon / \omega_{o}\right) A_{o}(a), \quad d \phi / d t=-\left(\varepsilon / a \omega_{o}\right) \Phi_{o}(a) . \tag{j7}
\end{equation*}
$$

Comparing the above with the exact equations (h), we see that the former result from the latter by averaging over a period, and while doing that regard a as a constant; that is, eqs. $(\mathrm{j} 6,7)$ do not describe the instantaneous physical behavior of the system, but, rather, its evolution over the several cycles of the duration of the process; what the distinguished nonlinear mechanics expert N. Minorsky calls "the behavior of the envelope of modulation."

Substituting (j 3) into (j 7), we finally obtain the famous van der Pol/Krylov/ Bogoliubov equations, or slowly varying equations (SVE):

$$
\begin{align*}
& d a / d t=-\left(\varepsilon / 2 \pi \omega_{o}\right) \int_{0}^{2 \pi} F(a, \chi) \sin \chi d \chi \equiv \varepsilon A(a) \tag{k1}\\
& d \phi / d t=-\left(\varepsilon / 2 \pi a \omega_{o}\right) \int_{0}^{2 \pi} F(a, \chi) \cos \chi d \chi \equiv \varepsilon \Phi(a) \tag{k2}
\end{align*}
$$

The first of these equations gives the variation of a in time [also, the solutions of $\dot{a}=0 \Rightarrow A(a)=0$ yield the stationary amplitude oscillations (possible limit cycles)]; while the second of them yields the corresponding frequency correction: then,

$$
\begin{align*}
& \chi=\omega_{o} t+\phi(t): \text { total phase angle } \\
& \Rightarrow \dot{\chi} \equiv \omega=\omega_{o}+\dot{\phi}: \text { instantaneous frequency. } \tag{k3}
\end{align*}
$$

Finally, and this is quite useful, we note that if $f(q, \dot{q})=f_{1}(q)+f_{2}(\dot{q})$ [nonlinear in their corresponding arguments; e.g., f_{1} contains powers of q like q^{2}, q^{3}, \ldots, and f_{2} contains powers of \dot{q} like $(\dot{q})^{2},(\dot{q})^{3}, \ldots$], then, due to the identities

$$
\begin{equation*}
\int_{0}^{2 \pi} f_{1}(a \cos \chi) \sin \chi d \chi=0, \quad \int_{0}^{2 \pi} f_{2}\left(-a \omega_{o} \sin \chi\right) \cos \chi d \chi=0 \tag{k4}
\end{equation*}
$$

- $d a / d t$ is unaffected by the nonlinear additions to the linear elastic force, $f_{1}(q)$, but $d \phi / d t$ is affected:
- $d \phi / d t$ is unaffected by the nonlinear additions to the linear damping force, $f_{2}(\dot{q})$, but $d a / d t$ is affected. For example, if $f_{1}=0$, then $\dot{\phi}=0 \Rightarrow \dot{\chi} \equiv \omega=\omega_{o}$ for any small but nonzero nonlinear damping $f_{2}(\dot{q})$.

In sum, for small ε (first approximation), nonlinear restoring (spring) terms affect the frequency but not the amplitude; while nonlinear damping terms affect the amplitude but not the frequency. [For larger ε, however, this is no longer true: either type of terms affects both amplitude and frequency.]

REMARK

The above-described method constitutes the first approximation of a general asymptotic scheme due to Bogoliubov and Mitropolsky. For extensions to periodically forced oscillators [i.e., $\varepsilon f(\ldots)=\varepsilon f(t, q, \dot{q})=\varepsilon f(\Omega t, q, \dot{q})=(2 \pi / \Omega)$-periodic function of time, Ω : specified] and to several degrees of freedom, see Bogoliubov and Mitropolsky (1974), which is the undisputable "bible" on the subject; also Fischer and Stephan (1972, pp. 144-150, 217-229). For combinations of the method of slowly varying parameters, and averaging in general, (a) with the method of Galerkin, see, for example, Chen and Hsieh (1981), and (b) with the various 4 forms of Hamilton's principle (this section), as well as the methods of perturbations, strained coordinates, and multiple time scales, see Rajan and Junkins (1983). The combinations among these methods seem endless, but as Rajan and Junkins aptly remark "On the average, it appears algebraic misery may be conserved; we do not claim that the above processes (for a given problem) will result in less algebraic effort. On the other hand, the developments offer numerous insights and exceptional latitude in solution procedures (through the infinity of possible choices for the generators of the variations)" (1983, p. 350). See also "Closing General Remarks," below.

Illustrations

1. Nonlinearly Damped Duffing Oscillator

Let us solve, approximately,

$$
\begin{equation*}
\ddot{q}+\varepsilon \nu \dot{q}|\dot{q}|+\omega_{o}^{2} q+\varepsilon \kappa q^{3}=0, \tag{11}
\end{equation*}
$$

where $-\nu \dot{q}|\dot{q}|$ is a small damping force, proportional to the square of \dot{q}, and oppositely directed to \dot{q} (hence the use of $|\dot{q}|$); and ν is a damping coefficient; this is frequently called "turbulence damping." Here,

$$
\begin{align*}
& f(q, \dot{q})=-\kappa q^{3}-\nu \dot{q}|\dot{q}| \\
& \Rightarrow F(a, \chi)=-\kappa a^{3} \cos ^{3} \chi+\nu a^{2} \omega_{o}^{2} \sin \chi|\sin \chi| \tag{12}
\end{align*}
$$

and so ($\mathrm{k} 1,2$) yield the averaged system
$d a / d t=-(4 / 3 \pi) \varepsilon \nu \omega_{o} a^{2} \quad$ (i.e., $d a / d t$ is affected by the nonlinear damping), (m1) $d \phi / d t=(3 / 8) \varepsilon \kappa\left(a^{2} / \omega_{o}\right) \quad$ (i.e., $d \phi / d t$ is affected by the nonlinear elasticity). (m2)

The first of these equations integrates readily to

$$
\begin{equation*}
a=a_{o}\left\{1+\left[(4 \varepsilon \nu / 3 \pi) \omega_{o} a_{o}\right] t\right\}^{-1}, \quad a_{0}: \text { initial displacement } \tag{m3}
\end{equation*}
$$

and so the second becomes (to the first ε-order)

$$
\begin{equation*}
d \phi / d t=(3 / 8) \varepsilon \kappa\left(a_{o}^{2} / \omega_{o}\right), \tag{m4}
\end{equation*}
$$

and integrates easily to

$$
\begin{equation*}
\phi=\left[(3 / 8) \varepsilon \kappa\left(a_{o}^{2} / \omega_{o}\right)\right] t+\phi_{o}, \quad \phi_{0}: \text { initial phase; } \tag{m5}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
q(0)=a(0) \cos \phi(0)=a_{o} \cos \phi_{o}=a_{o} \Rightarrow \phi_{o}=0 . \tag{m6}
\end{equation*}
$$

The above show that the bigger the a_{o}, the faster the amplitude decreases; also, for $\quad \nu=0$ (undamped oscillator), $a=a_{o} \quad$ and $\omega^{2}=(\dot{\chi})^{2}=\left(\omega_{o}+\dot{\phi}\right)^{2}=$ $\omega_{o}{ }^{2}+(3 / 4) \varepsilon \kappa a^{2}+(\dot{\phi})^{2}$, or, to the first ε-order, $\omega^{2} \approx \omega_{o}{ }^{2}+(3 / 4) \varepsilon \kappa a^{2}$.

For a generalization of (11) that includes linear and cubic damping (problem of rolling of a ship equipped with a gyrostabilizer), see, for example, McLachlan (1956/ 1958, pp. 92-94).

2. Van der Pol Equation

Here, the equation of motion is

$$
\begin{equation*}
\ddot{q}+\varepsilon\left(q^{2}-1\right) \dot{q}+\omega_{o}^{2} q=0, \tag{n1}
\end{equation*}
$$

that is,

$$
\begin{align*}
& f(q, \dot{q})=\left(1-q^{2}\right) \dot{q} \\
& \Rightarrow F(a, \chi)=-a \omega_{o} \sin \chi-\left(-a \omega_{o} \sin \chi\right)\left(a^{2} \cos ^{2} \chi\right) \\
& =\left(1-a^{2} \cos ^{2} \chi\right)\left(-a \omega_{o} \sin \chi\right), \tag{n2}
\end{align*}
$$

and so eqs. (k1, 2) yield

$$
\begin{align*}
d a / d t & =-\left(\varepsilon / 2 \pi \omega_{o}\right) \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \chi\right)\left(-a \omega_{o} \sin \chi\right) \sin \chi d \chi \\
& =(\varepsilon a / 2)\left(1-a^{2} / 4\right) \tag{o1}\\
d \phi / d t & =-\left(\varepsilon / 2 \pi a \omega_{o}\right) \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \chi\right)\left(-a \omega_{o} \sin \chi\right) \cos \chi d \chi=0 \\
& \Rightarrow \chi=\omega_{o} t+\phi_{o} ; \tag{o2}
\end{align*}
$$

that is, to the first ε-order, the nonlinearity does not change the frequency: $\omega=\omega_{0}$.
With the arbitrary initial conditions $a(0)=a_{o}, \phi(0)=\phi_{o}=\chi(0)$, and the wellknown "energy identity" $2 a \dot{a}=d\left(a^{2}\right) / d t$, eq. (ol) transforms to

$$
\begin{equation*}
d\left(a^{2}\right) / d t=\varepsilon a^{2}\left(1-a^{2} / 4\right) \quad\left[\text { i.e., } \dot{b}=\varepsilon b(1-b / 4), \text { with } b \equiv a^{2}\right] \tag{o3}
\end{equation*}
$$

and integrates readily to

$$
\begin{align*}
& a=a_{o} \exp (\varepsilon t / 2)\left\{1+\left(a_{o}^{2} / 4\right)[\exp (\varepsilon t)-1]\right\}^{-1 / 2} \\
& \Rightarrow q(t)=a(t) \cos \left(\omega_{o} t+\phi_{o}\right) \tag{p}
\end{align*}
$$

The stationary, or steady-state, amplitude solutions of the problem, obtained from (ol) for $\dot{a}=0$, are (i) $a=0$ (equilibrium), and (ii) $a=2$ (limit cycle).

This can also be seen from the transient amplitude equation (p): by rewriting it as

$$
\begin{equation*}
a=a(t)=2\left[1-\exp (-\varepsilon t)\left(1-4 / a_{o}^{2}\right)\right]^{-1 / 2} \tag{q}
\end{equation*}
$$

we can readily see that for $t \rightarrow \infty, a \rightarrow 2$ always; that is, this is so, no matter how small (but nonzero) or large a_{o} may be, even if $a_{o}>2$. If $a_{o}=0$, then $a(t)=0$ (no oscillation) - the oscillation must be initiated by external means. [For additional examples and questions on (limit cycle) stability, see standard texts on nonlinear mechanics, for example, Kauderer (1958, pp. 295-304), Stoker (1950); also Butenin et al. (1985, pp. 485-491).]

Problem 7.9.21 Method of Slowly Varying Parameters (SVP). By applying SVP to the linear damped oscillator:

$$
\begin{equation*}
\ddot{q}+2 f \dot{q}+\omega_{o}^{2} q=0 \quad(f: \text { small friction constant }) \tag{a}
\end{equation*}
$$

with initial conditions $q(0)=A, \dot{q}(0)=0$, show that the "slowly varying equations" (SVE) [ex. 7.9.14: (k1), (k2)], yield

$$
\begin{equation*}
\dot{a}=-f a \Rightarrow a=a_{o} \exp (-f t), \quad \dot{\phi}=0 \Rightarrow \phi=\text { constant } ; \tag{b}
\end{equation*}
$$

from which, and the small friction requirement $f / \omega_{o} \ll 1$, we find

$$
\begin{equation*}
q=A \exp (-f t) \cos \left(\omega_{o} t-f / \omega_{o}\right) \tag{c}
\end{equation*}
$$

that is, here, damping causes a change in the amplitude, not in the frequency.
Then show that, here, the smallness requirement [ex. 7.9.14: (i1)], $|\dot{a} / a|$ $\left(2 \pi / \omega_{o}\right) \ll 1$, leads to the sharper restriction

$$
\begin{equation*}
2 f \ll \omega_{o} / \pi=2 / \tau_{o} \quad \text { (physical meaning and dimensions of "small friction"). } \tag{d}
\end{equation*}
$$

Finally, compare the approximate solution (c) with the well-known exact solution of this problem,

$$
\begin{equation*}
q=\left[A \omega_{o} /\left(\omega_{o}^{2}-f^{2}\right)^{1 / 2}\right] \exp (-f t) \cos \left[\left(\omega_{o}^{2}-f^{2}\right)^{1 / 2} t-\tan ^{-1}\left(f / \omega_{o}\right)\right] \tag{e}
\end{equation*}
$$

and show that under $f / \omega_{o} \ll 1$ the above solution reduces to the approximate one.

Problem 7.9.22 Method of Slowly Varying Parameters. By applying SVP to the quadratically damped and unforced oscillator

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q+2 f(\dot{q})^{2}=0 \tag{a}
\end{equation*}
$$

with (the usual notations, and) initial conditions $q(0)=A, \dot{q}(0)=0$, show that the SVE yield

$$
\begin{align*}
& d a / d t=-(8 / 3) f \omega_{o} a^{2} \Rightarrow a=a_{o}\left[1+(8 / 3) f \omega_{o} a_{o} t\right]^{-1}, \quad a(0)=a_{o}=A, \tag{b}\\
& d \phi / d t=0 \Rightarrow \phi=\text { constant } \tag{c}
\end{align*}
$$

Compare this result with the preceding case of linear damping: $2 f \dot{q}$.

Problem 7.9.23 Method of Slowly Varying Parameters. By applying SVP to the undamped and unforced Duffing oscillator

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q+c q^{3}=0, \tag{a}
\end{equation*}
$$

with initial conditions $q(0)=A, \dot{q}(0)=0$, show that the SVE yield

$$
\begin{gather*}
d a / d t=0 \Rightarrow a=\text { constant } \equiv a_{o}=A \tag{b}\\
d \phi / d t=3 c a^{2} / 8 \omega_{o} \Rightarrow \phi=\left(3 c a^{2} / 8 \omega_{o}\right) t+\text { constant } \Rightarrow \omega=\omega_{o}+\dot{\phi} . \tag{c}
\end{gather*}
$$

Then show that, here, the smallness requirement $|\dot{\phi}| \ll \omega_{o}$ leads to $c \ll 8 \omega_{o}{ }^{2} / 3 a_{o}{ }^{2}$.

Problem 7.9.24 Method of Slowly Varying Parameters. By applying SVP to the nonlinearly damped and unforced Rayleigh oscillator (e.g., electrically driven tuning fork)

$$
\begin{equation*}
\ddot{q}-2 f \dot{q}+g(\dot{q})^{3}+\omega_{o}^{2} q=0, \tag{a}
\end{equation*}
$$

where f, g are small positive constants, and $-2 f \dot{q}$ is effective negative damping (equivalent to a driving force), show that the SVE yield

$$
\begin{equation*}
d a / d t=a\left[f-(3 / 8) g \omega_{o}^{2} a^{2}\right], \quad d \phi / d t=0 \tag{b}
\end{equation*}
$$

and, therefore, (i) for a stationary (or steady-state) amplitude,

$$
\begin{equation*}
d a / d t=0 \Rightarrow a=\left(2 / \omega_{o}\right)(2 f / 3 g)^{1 / 2} \equiv a_{s t}, \tag{c}
\end{equation*}
$$

while (ii) for a transient one,

$$
\begin{equation*}
a(t)=a_{o} \exp (f t)\left\{1+R^{2} a_{o}^{2}[\exp (2 f t)-1]\right\}^{-1 / 2} \tag{d}
\end{equation*}
$$

where $R^{2} \equiv 3 g \omega_{o}^{2} / 8 f, \quad a(0)=a_{o}$.
Hence, if $a_{o}=0$, then $a(t)=0$; and if $a_{o} \neq 0$, then $a \rightarrow a_{s t}$, as $t \rightarrow \infty$. Compare with the van der Pol oscillator. For further details, see, for example, McLachlan (1956/1958, pp. 90-91).

Problem 7.9.25 Method of Slowly Varying Parameters. By applying SVP to the linearly damped Duffing oscillator (with the usual notations and smallness assumptions, and $\omega_{o}^{2}>f^{2}$)

$$
\begin{equation*}
\ddot{q}+2 f \dot{q}+\omega_{o}^{2} q+c q^{3}=0, \tag{a}
\end{equation*}
$$

with initial conditions $q(0)=A, \dot{q}(0)=0$, show that the SVE yield

$$
\begin{equation*}
d a / d t=-f a, \quad d \phi / d t=3 c a^{2} / 8 \omega_{o} \tag{b}
\end{equation*}
$$

Integrate these equations and discuss their results.

Closing General Remarks on Time-Integral and Variational Methods in Nonlinear Oscillations

1. All these methods assume that the degree of the nonlinearity is not too large.
2. The accuracy (error) of the so-obtained approximate solutions is, often, difficult to assess.
3. As mentioned earlier, the method of "Hamilton-Ritz" works best for periodic solutions; for example, steady states in forced systems - otherwise, we must include the boundary terms, and this increases the computational difficulty of the problem. The method of Galerkin, in general, does not have that drawback, but both methods (i.e., Ritz and Galerkin) require a good knowledge of the physical meaning of the equations and the qualitative behavior of their solutions so as to make a successful ("optimal") choice in the trial functions.
4. For slowly varying (nonperiodic) solutions - for example, transients in self-excited or damped systems, and limit cycles/points (if they exist) - the methods of van der Pol, Bogoliubov and Mitropolskii, work best. However, as the reader will have noticed, their mathematical operations are less simple than those of Ritz and Galerkin (and, worse, for higher-order approximations, these methods are, in general, cost-ineffective; that is, additional small corrections require disproportionately long and arduous calculations).

The moral of the above is that, as in most other areas of science, no single approach is uniformly best: in view of the (unknown) approximations involved, it is wiser, in dealing with a particular equation, to use several complementary strategies/techniques: those described here and the many more available in the enormous nonlinear mechanics literature, such as perturbations, harmonic balance (or equivalent linearization), and so on. For comprehensive and readable overviews of these classical methods, we refer the reader to (alphabetically): Blekhman (1979), Bogoliubov and Mitropolskii (1974), Klotter (1955), Magnus (1957).

APPENDIX 7.A

EXTREMAL PROPERTIES OF THE HAMILTONIAN ACTION

(IS THE ACTION REALLY A MINIMUM; NAMELY, LEAST?)

7.A1 Introduction

The following is restricted to holonomic systems that can be completely described by a Lagrangean $L=L(t, q, \dot{q})$. Therefore, the discussion can be safely limited, for
algebraic simplicity, to a one-DOF system S. Let

$$
\begin{align*}
A_{H} & =A_{H}(q)=A_{H}(I) \\
& \equiv \int L d t: \quad \begin{array}{l}
\text { Hamiltonian action of } S, \text { evaluated along an orbit } I, \\
q(t)\left(\text { from } t_{1} \text { to } t_{2}\right) .
\end{array}
\end{align*}
$$

Then, as we have seen in this chapter, Hamilton's principle states that A_{H} is stationary (or critical) for small (or first-order) variations around $I, \delta q=\delta q(t)$, that nullify the boundary terms; that is, with $p \equiv \partial T / \partial \dot{q}=\partial L / \partial \dot{q}$ and boundary conditions, say, $\delta q_{1} \equiv \delta q\left(t_{1}\right)=0$ and $\delta q_{2} \equiv \delta q\left(t_{2}\right)=0$, this "principle" states that

$$
\begin{align*}
\delta A_{H} & =\int \delta L d t=\cdots=\{p \delta q\}_{1}^{2}-\int E(L) \delta q d t \\
& =0-\int E(L) \delta q d t=0 \tag{7.A1.2}
\end{align*}
$$

from which we find

$$
\begin{align*}
E(L) & \equiv(\partial L / \partial \dot{q})^{\cdot}-\partial L / \partial q \\
& =\left(\partial^{2} L / \partial \dot{q}^{2}\right) \ddot{q}+\left(\partial^{2} L / \partial q \partial \dot{q}\right) \dot{q}+\partial^{2} L / \partial t \partial \dot{q}-\partial L / \partial q=0 . \tag{7.A1.3}
\end{align*}
$$

As in the ordinary calculus (of functions), the first-order equation $\delta A_{H}=0$, in δq and $\delta(\dot{q})=(\delta q)^{\circ}$, is only a stationarity condition - not an extremality one. That is, it does not tell us whether $A_{H}(q)$ is a maximum: $A_{H}(q+\delta q)>A_{H}(q)$, or a minimum: $A_{H}(q+\delta q)<A_{H}(q)$, or neither. Again, as in calculus, the answer to that comes (usually) from the study of the second variation of $A_{H}, \delta^{2} A_{H} \equiv \delta\left(\delta A_{H}\right)$: quadratic and homogeneous functional in δq and $\delta(\dot{q})=(\delta q)^{\cdot}$ (defined precisely below).

Now, the study of $\delta^{2} A_{H}$, and corresponding extremal - namely, maximum/minimum - properties of A_{H}, has received little attention in the literature (it is conspicuously absent from most texts on advanced dynamics), primarily for the following reason: the laws of nature for S - namely, its ever valid equations of motion (7.A1.3) - result from (7.A1.2), or from the vanishing of some other equivalent first-order functional equation. On the other hand, the (possible) extremum properties of its A_{H} are not laws of mechanics, but only particular conditions that may hold for some orbits of S and not for others, or hold only along a certain part(s) of an orbit and not for all of it. Such second (and possibly higher)-order properties of A_{H} have been associated with kinetic stability/instability of S in some sense; that is, both stable and unstable orbits satisfy $\delta A_{H}=0$, but the stable ones among them, if such exist, give $\delta^{2} A_{H}$ one sign, and the unstable ones the opposite - pretty much like the theorems of the minimum of the total potential energy in static stability/buckling, and so on [Dirichlet $(1846) \rightarrow$ Bryan (1890s) \rightarrow Trefftz $(1930 s) \rightarrow$ Koiter (1940s)].

For detailed and readable treatments of the relevant sufficiency variational theory, see, for example (alphabetically): Elsgolts (1970), Fox (1950/1963), Funk (1962), Gelfand and Fomin (1963); also Hussein et al. (1980), Levit and Smilansky (1977); and for the connection with kinetic stability (stability of motion), see the works of some of the older masters of mechanics, for example, Joukovsky (1937, pp. 110-208), Thomson and Tait (1912, pp. 416-439), Routh (1877, pp. 103-108); also Lur'e (1968,
pp. 651-667, 749-754), Routh [1898, pp. 399-405; 1905(b), pp. 308-310], Watson and Burbury (1879, pp. 72-99), Whittaker (1937, pp. 250-253).

For the second variation of A_{H} of nonholonomic systems, see Novoselov (1966, pp. 26-49, and references cited therein).

7.A2 The Fundamental Minimum Theory (of Jacobi and A. Mayer)

Let us summarize the problem of the extremality, say, minimality of A_{H}. The necessary conditions for this are eqs. (7.A1.1) and (7.A1.2). The sufficient conditions come from the study of the sign of $\delta^{2} A_{H}$. The latter is defined, equivalently, either as:
(i) The quadratic and homogeneous part in δq and $\delta(\dot{q})$ in the Taylor-like expansion of the total contemporaneous variation of A_{H} around $I, \delta^{T} A_{H}$,

$$
\begin{equation*}
\delta^{T} A_{H} \equiv A_{H}(q+\delta q)-A_{H}(q)=\delta A_{H}+(1 / 2) \delta^{2} A_{H}+\cdots, \tag{7.A2.1a}
\end{equation*}
$$

i.e., $\delta^{2} A_{H}$; or by
(ii) The δ-variation of δA_{H} :

$$
\begin{align*}
\delta^{2} A_{H} & \equiv \delta\left(\delta A_{H}\right)=\int \delta^{2} L d t \\
& =\cdots=-\int J(\delta q) \delta q d t+\{\delta p \delta q\}_{1}^{2} \tag{7.A2.1b}
\end{align*}
$$

where

$$
\begin{aligned}
\delta^{2} L & \equiv \delta(\delta L)=[(\partial / \partial q) \delta q+(\partial / \partial \dot{q}) \delta(\dot{q})]^{2} L \\
& =\cdots=\left(\partial^{2} L / \partial \dot{q}^{2}\right)(\delta \dot{q})^{2}+2\left(\partial^{2} L / \partial q \partial \dot{q}\right) \delta q \delta(\dot{q})+\left(\partial^{2} L / \partial q^{2}\right)(\delta q)^{2}:
\end{aligned}
$$

Second variation of the Lagrangean,
and [invoking $\left.\delta(\dot{q})=(\delta q)^{\circ}\right]$

$$
\begin{aligned}
J(\delta q) & =\{d / d t[\partial \ldots / \partial(\delta \dot{q})]-[\partial \ldots / \partial(\delta q)]\}(1 / 2) \delta^{2} L \\
& =\left(\partial^{2} L / \partial \dot{q}^{2}\right) \delta(\ddot{q})+\left(\partial^{2} L / \partial \dot{q}^{2}\right)^{\cdot} \delta(\dot{q})+\left[\left(\partial^{2} L / \partial q \partial \dot{q}\right)^{\cdot}-\left(\partial^{2} L / \partial q^{2}\right)\right] \delta q=0:
\end{aligned}
$$

Jacobi's variational equation (a linear and homogeneous but, generally, variable coefficient differential equation).

REMARKS

(i) $\delta^{T} A_{H}$ is frequently denoted as ΔA_{H}; but here ($\left.\S 7.9\right) \Delta(\ldots)$ has been reserved for the first noncontemporaneous variation. For the total such variation, we could use $\Delta^{T}(\ldots)$; that is,

$$
\begin{equation*}
\Delta^{T} A_{H}=\Delta A_{H}+(1 / 2) \Delta^{2} A_{H}+\cdots, \tag{7.A2.2}
\end{equation*}
$$

in variable time-endpoints problems (see, e.g., Santilli, 1978, pp. 41-43).
(ii) $J(\delta q)$ equals the first-order virtual variation of $E(L)=E[L(t, q, \dot{q})]$; or, $J(\delta q)=0$ is the Euler-Lagrange equation for δq of $\delta^{2} A_{H}$:

$$
\begin{align*}
& E[L(t, q+\delta q, \dot{q}+\delta(\dot{q}))]-E[L(t, q, \dot{q})] \\
& \\
& \quad \approx \delta E(q, \delta q, \delta(\dot{q})) \quad[\text { to first order in } \delta(\ldots)] \tag{7.A2.3a}\\
& \quad=J(\delta q ; q) \equiv J(\delta q),
\end{align*}
$$

where, successively,

$$
\begin{aligned}
J(\delta q)= & \delta\left[(\partial L / \partial \dot{q})^{\cdot}-\partial L / \partial q\right] \\
= & {[\delta(\partial L / \partial \dot{q})] \cdot \delta(\partial L / \partial q) } \\
= & {\left[\left(\partial^{2} L / \partial q \partial \dot{q}\right) \delta q+\left(\partial^{2} L / \partial \dot{q}^{2}\right) \delta(\dot{q})\right] } \\
& -\left[\left(\partial^{2} L / \partial q^{2}\right) \delta q+\left(\partial^{2} L / \partial q \partial \dot{q}\right) \delta(\dot{q})\right] \\
& \quad\left[\text { invoking } \delta(\dot{q})=(\delta q)^{\cdot}\right] \\
= & \left(\partial^{2} L / \partial \dot{q}^{2}\right)(\delta q)^{\cdot}+\left(\partial^{2} L / \partial \dot{q}^{2}\right)^{\cdot}(\delta q)^{\cdot} \\
& +\left[\left(\partial^{2} L / \partial q \partial \dot{q}\right)^{\cdot}-\left(\partial^{2} L / \partial q^{2}\right)\right] \delta q \\
= & {\left[\left(\partial^{2} L / \partial \dot{q}^{2}\right)(\delta q)^{\cdot} \cdot \cdot-\left[\left(\partial^{2} L / \partial q^{2}\right)-\left(\partial^{2} L / \partial q \partial \dot{q}\right)^{\cdot}\right] \delta q\right.}
\end{aligned}
$$

(Sturm-Liouville form),
and all partial derivatives are evaluated along the solution(s) of (7.A1.2, 3), Q.E.D.
Now, the relevant extremum results are contained in the following fundamental theorem.

THEOREM

For the action functional A_{H} to attain a minimum in the class of piecewise smooth functions $q(t)$ that join the points $\left[t_{1}, q\left(t_{1}\right) \equiv q_{1}\right]$ and $\left[t_{2}, q\left(t_{2}\right) \equiv q_{2}\right]$, and for nearby variations such that both $|\delta q|$ and $|\delta(\dot{q})|=\left|(\delta q)^{\circ}\right|$ are small (i.e., for a relative and strong minimum), it is sufficient that:
(i) $q(t)$ satisfies the Euler-Lagrange equations (7.A1.3), $\delta A_{H}=0 \Rightarrow E(q)=0$; that is, $q(t)$ be an orbit, say I;
(ii) The strengthened Legendre-Weierstrass condition holds: along I, for $t_{1} \leq t \leq t_{2}$ and for any \dot{q} in its neighborhood:

$$
\begin{equation*}
\partial^{2} L / \partial \dot{q}^{2}>0 ; \tag{7.A2.4b}
\end{equation*}
$$

(iii) The strengthened Jacobi condition holds: let t_{1} * be the first root, to the right of t_{1}, of the solution $\delta q=\delta q(t)$ to the following initial-value problem:

$$
\begin{equation*}
J(\delta q)=0 ; \quad \delta q\left(t_{1}\right)=0, \quad \delta \dot{q}\left(t_{1} *\right)=\text { arbitrary nonzero constant } \equiv \alpha ; \tag{7.A2.4c}
\end{equation*}
$$

that is, $\delta q\left(t_{1}\right)=0$ and $\delta q\left(t_{1} *\right)=0, t_{1}{ }^{*}>t_{1}$. The root $t_{1} *$ is called conjugate to t_{1}; and q_{1} and $q\left(t_{1}{ }^{*}\right) \equiv q_{1}{ }^{*}$, along I, are known [after Thomson and Tait (1860s)] as mutually conjugate kinetic foci. Jacobi's criterion states that, for a minimum of A_{H},

$$
\begin{equation*}
t_{1}^{*}>t_{2} \quad \text { or } \quad \Delta t \equiv t_{2}-t_{1}<t_{1} *-t_{1} \equiv \Delta t^{*} \tag{7.A2.4d}
\end{equation*}
$$

that is, the interval $\left(t_{1}, t_{2}\right)$ should not contain any roots conjugate to t_{1}. [For a maximum, the inequality signs in (7.A2.4d) must be reversed.]

It can be shown that $t_{1} *$ is independent of the value of α, eq. (4c), but does depend on the partial derivatives/coefficients of the δq 's in $J(\delta q)$, eqs. (7.A2.1d, 3b); that is, on the orbit I.

If $t_{1}{ }^{*}=t_{2}$, then $\delta^{2} A_{H}$ is positive semidefinite - that is, it may vanish for a $\delta q(t) \neq 0$ - in which case, we have to resort to higher-order variations. If $t_{1}{ }^{*}<t_{2}$, then $\delta^{2} A_{H}$ is sign-indefinite - that is, it is negative for one class of variations and positive for another - $A_{H}(q)$ has a minimax (or saddle-point); that is, there is no extremum.

REMARKS

(i) The Euler-Lagrange test supplies the orbit equation; its solution(s) require(s) integration of the equation of motion and then utilization of the given boundary conditions.
(ii) The Legendre-Weierstrass test means that locally - that is, for very small $t_{2}-t_{1}-A_{H}$ is always a minimum; that is, for any potential force field.

Let us show this for stationary constraints. Since $\delta q\left(t_{1}\right)=0$, we have

$$
\begin{equation*}
|\delta q(t)|=\left|\int_{t_{1}}^{t} \delta(\dot{q}) d t\right| \leq \varepsilon\left(t-t_{1}\right) \tag{7.A2.5a}
\end{equation*}
$$

where $\varepsilon \equiv \max |\delta(\dot{q})|$ in $\left(t_{1}, t_{2}\right)$; and, therefore, for very small $t_{2}-t_{1}$, the $\delta(\dot{q})$-terms always dominate over the δq-terms. Hence, for such constraints,

$$
\begin{align*}
\delta^{2} L & =(1 / 2)\left(\partial^{2} L / \partial q^{2}\right)(\delta q)^{2}+\left(\partial^{2} T / \partial q \partial \dot{q}\right) \delta q \delta(\dot{q})+(1 / 2)\left(\partial^{2} T / \partial \dot{q}^{2}\right)(\delta(\dot{q}))^{2} \\
& =(1 / 2)\left(\partial^{2} L / \partial q^{2}\right)(\delta q)^{2}+\left(\partial^{2} T / \partial q \partial \dot{q}\right) \delta q \delta(\dot{q})+T[\delta(\dot{q})] \\
& \approx T[\delta(\dot{q})]>0 \tag{7.A2.5b}
\end{align*}
$$

[where $T(\delta \dot{q})$ signifies what becomes of $T(\dot{q})$, which is positive definite in \dot{q}, if we replace in it \dot{q} with $\delta(\dot{q})$], and, accordingly,

$$
\begin{equation*}
\delta^{2} A_{H}=\int \delta^{2} L d t \approx \int T[\delta(\dot{q})] d t>0 \Rightarrow A_{H}(q): \text { minimum, Q.E.D. } \tag{7.A2.5c}
\end{equation*}
$$

(iii) The Jacobi test imposes a limit on the length of the orbit; that is, on the $t_{2}-t_{1}$ range (as long as $t_{1}{ }^{*}$ is finite). [The sum of two minimal orbits will be a minimal orbit if the "sum orbit" does not exceed its Jacobi limit.]

Ideally, and very rarely, the conjugate $\operatorname{root}(\mathrm{s})$ to t_{1} are found as follows: the general solution of the second-order Lagrangean equation $E(q)=0$ has the form:

$$
\begin{equation*}
q=q\left(t ; c_{1}, c_{2}\right), \quad c_{1}, c_{2}: \text { integration constants. } \tag{7.A2.6a}
\end{equation*}
$$

Now, the orbit I corresponds to fixed values of c_{1} and c_{2} [to be determined from the boundary conditions: $q\left(t_{1} ; c_{1}, c_{2}\right)=q_{1}$ (given), $q\left(t_{2} ; c_{1}, c_{2}\right)=q_{2}$ (given)], whereas typical neighboring paths $I I=I+\delta I$ correspond to the values $c_{1}+\delta c_{1}$ and $c_{2}+\delta c_{2}$. On such adjacent paths,

$$
\begin{equation*}
\delta q=\left(\partial q / \partial c_{1}\right) \delta c_{1}+\left(\partial q / \partial c_{2}\right) \delta c_{2} \tag{7.A2.6b}
\end{equation*}
$$

and therefore the boundary conditions for $t_{1}, t_{1} *$ become [with the notation $(\ldots)_{*} \equiv$ (...) evaluated at *]

$$
\begin{align*}
& \delta q\left(t_{1}\right)=\left(\partial q / \partial c_{1}\right)_{1} \delta c_{1}+\left(\partial q / \partial c_{2}\right)_{1} \delta c_{2}=0 \tag{7.A2.6c}\\
& \delta q\left(t_{1} *\right)=\left(\partial q / \partial c_{1}\right)_{*} \delta c_{1}+\left(\partial q / \partial c_{2}\right)_{*} \delta c_{2}=0 . \tag{7.A2.6d}
\end{align*}
$$

This linear and homogeneous system, in the δq 's, expresses the fact that the slightly differing paths I and II cross at t_{1} and then again at $t_{1}{ }^{*}$; or, they are traversed in the same time $t_{1}{ }^{*}-t_{1} ; q_{1}$ and $q_{1 *}$ are (mutually) conjugate kinetic foci on I.

For nontrivial solutions (i.e., $\delta c_{1}, \delta c_{2} \neq 0$), the system of equations (7.A2.6c, d) leads, in well-known ways, to the determinantal equation

$$
\Delta\left(t_{1}, t_{1}^{*}\right) \equiv\left|\begin{array}{l}
\left(\partial q / \partial c_{1}\right)_{1}\left(\partial q / \partial c_{2}\right)_{1} \tag{7.A2.7}\\
\left(\partial q / \partial c_{1}\right)_{*}\left(\partial q / \partial c_{2}\right)_{*}
\end{array}\right|=0 .
$$

The first, or smallest, of its (real) roots to the right of t_{1} is what enters the Jacobi condition (7.A2.4d).

Example 7.A2.1 As an illustration, let us consider the linear harmonic oscillator:

$$
\begin{equation*}
m \ddot{q}+k q=0 \Rightarrow \ddot{q}+\omega^{2} q=0, \omega \equiv(k / m)^{1 / 2}: \text { frequency (a positive constant). } \tag{a}
\end{equation*}
$$

Here, as is well known,

$$
\begin{align*}
& 2 T=m(\dot{q})^{2} \quad(m: \text { mass }), \quad 2 V=k q^{2} \quad(k: \text { positive constant }) \tag{b}\\
& \Rightarrow Q=-d V / d q=-k q \Rightarrow d Q / d q=-d^{2} V / d q^{2}=-k<0 \tag{c}
\end{align*}
$$

and so the general solution of (a) and its variation are, respectively,

$$
\begin{equation*}
q=c_{1} \sin (\omega t)+c_{2} \cos (\omega t), \quad \delta q=[\sin (\omega t)] \delta c_{1}+[\cos (\omega t)] \delta c_{2} \tag{d}
\end{equation*}
$$

Therefore, with $t_{1}=0$, eq. (7.A2.7) gives

$$
\Delta\left(0, t_{1}^{*}\right) \equiv\left|\begin{array}{cc}
0 & 1 \tag{e}\\
\sin \left(\omega t_{1}^{*}\right) & \cos \left(\omega t_{1}^{*}\right)
\end{array}\right|=-\sin \left(\omega t_{1}^{*}\right)=0
$$

and, clearly, its first root to the right of $t_{1}=0$ is

$$
\begin{equation*}
t_{1} *=\pi / \omega=\tau / 2: \text { half period of oscillation. } \tag{f}
\end{equation*}
$$

Since $\partial^{2} L / \partial \dot{q}^{2}=\partial^{2} T / \partial \dot{q}^{2}=m>0$, always, the corresponding action

$$
\begin{equation*}
A_{H}=\int_{0}^{t_{2}}(1 / 2)\left[m(\dot{q})^{2}-k q^{2}\right] d t \tag{g}
\end{equation*}
$$

is a minimum as long as $t_{2}<\tau / 2$ (generally, for $t_{2}-t_{1}<\tau / 2$).
For an n DOF linear oscillatory system (expressing its T and V in principal coordinates, and noting that its n characteristic frequencies $\omega_{1} \leq \omega_{2} \leq \cdots \leq \omega_{n}$ are intrinsic system properties), it is not hard to show that the corresponding Jacobi
minimum action condition is

$$
\begin{equation*}
t_{2}<t_{1}^{*}=\tau_{\min } / 2=\tau_{n} / 2 \equiv \pi / \omega_{n}: \text { smallest half period of oscillation. } \tag{h}
\end{equation*}
$$

(See also Aizerman, 1974, pp. 276-279.) From the above, we conclude that:
(i) For $n \rightarrow \infty$ (i.e., continuum; e.g., oscillating string), $\omega_{n} \rightarrow \infty$ and, therefore, $t_{1}{ }^{*} \rightarrow 0, A_{H}$ is never a minimum.
(ii) Under constant or repulsive (nonoscillatory) forces - that is, $d Q / d q=$ $-d^{2} V / d q^{2} \geq 0, t_{1}{ }^{*} \rightarrow \infty$ - such forces always minimize A_{H}.
n DOF
Finally, the entire argument for the determination of kinetic foci, namely eqs. (7.A2.6a-7), carries over to the n DOF case. There, eqs. (7.A2.6a, b) are replaced, respectively, by

$$
\begin{gather*}
q_{k}=q_{k}\left(t ; c_{1}, \ldots, c_{2 n}\right) \Rightarrow \delta q_{k}=\sum\left(\partial q_{k} / \partial c_{\alpha}\right) \delta c_{\alpha} \\
(k=1, \ldots, n ; \quad \alpha=1, \ldots, 2 n) \tag{7.A2.8a}
\end{gather*}
$$

and eqs. (7.A2.6c, d) and (7.A2.7) by

$$
\begin{equation*}
\sum\left(\partial q_{k} / \partial c_{\alpha}\right)_{1} \delta c_{\alpha}=0, \quad \sum\left(\partial q_{k} / \partial c_{\alpha}\right)_{*} \delta c_{\alpha}=0 \tag{7.A2.8b}
\end{equation*}
$$

and the $2 n \times 2 n$ determinantal equation

$$
\Delta\left(t_{1}, t_{1}^{*}\right)=\left|\begin{array}{ccc}
\left(\partial q_{1} / \partial c_{1}\right)_{1} & \ldots & \left(\partial q_{1} / \partial c_{2 n}\right)_{1} \tag{7.A2.8c}\\
\cdots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots \\
\left(\partial q_{n} / \partial c_{1}\right)_{1} & \ldots & \left(\partial q_{n} / \partial c_{2 n}\right)_{1} \\
\hline\left(\partial q_{1} / \partial c_{1}\right)_{*} & \ldots & \left(\partial q_{1} / \partial c_{2 n}\right)_{*} \\
\ldots \ldots \ldots \ldots \ldots . & \ldots \ldots \ldots \ldots . \\
\left(\partial q_{n} / \partial c_{1}\right)_{*} & \ldots & \left(\partial q_{n} / \partial c_{2 n}\right)_{*}
\end{array}\right|=0
$$

Here too, the smallest root of (7.A2.8c) to the right of $t_{1}, t_{1}{ }^{*}$, is what enters Jacobi's minimum condition: $t_{2}<t_{1}$.
[This argument and equations are due to the noted German mathematician A. Mayer (1866 and subsequently); one of the founders of the sufficiency variational theory, for both fixed and variable endpoint problems.]

The problem of the extremum of the Hamiltonian action can be summarized as follows:

- A_{H}, along an orbit I, is never a maximum; it is either a minimum (from an initial configuration C_{1} up to any other configuration C_{2} located before the first kinetic focus of $C_{1}, C_{1}{ }^{*}$; all on I), or a minimax (saddle-point) (from C_{1} to a C_{2} beyond $C_{1}{ }^{*}$).
- Limiting cases: If $C_{1}{ }^{*} \rightarrow C_{1}$, then A_{H} is a minimax for any $t_{2}>t_{1}=t_{1}{ }^{*}$; if $C_{1}{ }^{*} \rightarrow \infty$, then A_{H} is a minimum for any t_{2}.

Such tests have also been obtained for the Lagrangean action A_{L}; see Papastavridis [1985(b), 1986(a), 1986(c): general variable endpoints form], Peisakh [1966: Jacobi's geodesic (fixed endpoints) form].

7.A3 Averaged Action

As we have just seen, the stationary (or critical) "points" of A_{H} are, in general (i.e., for extended periods of time), saddle-points. Therefore, if we are to develop reliable A_{H}-based extremum criteria, similar to those of static stability, we must introduce some other energetic functions or functionals. Following the valuable lessons of the method of averaging of nonlinear oscillations (ex. 7.9.7), we choose as such function the time average of the system's Lagrangean. Indeed, with $t_{2}-t_{1} \equiv \tau$, we have, for a general motion,

$$
\begin{equation*}
\langle L\rangle \equiv \lim \left[A_{H}(\tau) / \tau\right]_{\tau \rightarrow \infty}=\lim \left[(1 / \tau) \int L d t\right]_{\tau \rightarrow \infty} \tag{7.A3.1}
\end{equation*}
$$

(for periodic motions, no limiting process is needed). $\langle L\rangle$ is no longer a function of time, and its stationarity/extremality becomes a problem of ordinary differential calculus. For example, and again guided by nonlinear oscillations, we may try in A_{H} the Fourier series expansion of the trial solution (say, in complex form, for compactness; see also §8.14):

$$
\begin{gather*}
q(t) \approx q_{o}(t)=\sum c_{s} \exp \left(i \omega_{s} t\right), \quad c_{s}=(1 / \tau) \int_{-\tau / 2}^{+\tau / 2} q_{o}(t) \exp \left(-i \omega_{s} t\right) d t \tag{7.A3.2}\\
s=-\infty, \ldots,+\infty ; \quad \omega_{s} \equiv s \omega=(2 \pi / \tau) s \tag{7.A3.2a}
\end{gather*}
$$

Then $\langle L\rangle$ becomes a function of the Fourier coefficients (amplitudes), and "Hamilton's averaged principle" takes the discrete form

$$
\begin{equation*}
\delta\langle L\rangle=0 \Rightarrow \partial\langle L\rangle / \partial c_{s}=0 \quad(s=0, \pm 1, \pm 2, \ldots) ; \tag{7.A3.3}
\end{equation*}
$$

while the type of the stationarity of $\langle L\rangle$ is determined from the study of the sign properties of its "Hessian matrix" $\left(\partial^{2}\langle L\rangle / \partial c_{r} \partial c_{s}\right)$, every element of which is an algebraic function of the Fourier coefficients. For the use of $\langle L\rangle$ in general nonlinear dynamics, see the earlier-mentioned (ex. 7.9.13) highly readable and informative papers by Gray et al. [1996(a), (b); and references cited therein]; also Helleman (1978); and for applications to the stability of nonlinear oscillations, see Baumgarte (1987).

Problem 7.A3.1 Show that the averaged Lagrangean of the undamped and forced linear oscillator $\ddot{q}+\omega_{o}{ }^{2} q=Q_{o} \cos (\omega t)$, where Q_{o}, ω are, respectively, the forcing amplitude and frequency, and

$$
\begin{equation*}
A_{H}(\tau)=\int_{0}^{\tau}\left[(1 / 2)(\dot{q})^{2}-(1 / 2) \omega_{o}^{2} q^{2}+Q_{o} \cos (\omega t) q\right] d t \tag{a}
\end{equation*}
$$

has a minimum for $\omega_{o}<\omega$, and a maximum for $\omega_{o}>\omega$ (both for all time).

7.A4 The Integral Stability Criterion [of Blekhman-Lavrov and Valeev-Ganiev (1960s)]

To dispel any possible impressions that the extrema of the averaged Lagrangean are somehow only of "academic" interest, we sketch below their application to the
theory of synchronization of oscillating mechanical objects. For a complete treatment of this theoretically and practically important subject (that is conspicuously absent from almost all Western references), see the fundamental and extensive works of its key exponent, Blekhman (1971, 1979, 1981/1988; and Blekhman and Malakhova, 1990).

Following Valeev and Ganiev (1969), we consider the oscillations of an n DOF weakly nonlinear, or quasi-linear, potential system with Lagrangean [say, in the principal coordinates of the corresponding linear (i.e., unperturbed), constant coefficient system; that is, for $\varepsilon=0]$:

$$
\begin{align*}
L & =L(\omega t, q, \dot{q} ; \varepsilon) \equiv T-V \\
& =\sum(1 / 2)\left[\left(\dot{q}_{k}\right)^{2}-\omega_{k}^{2} q_{k}^{2}\right]+\varepsilon L_{1}(\omega t, q, \dot{q} ; \varepsilon) \tag{7.A4.1}
\end{align*}
$$

where ω_{k} are the natural frequencies of the system (given constants), $0<\varepsilon \ll 1$ (hence the name quasi-linear), and $L_{1}(\ldots)$ is periodic in the forcing (external) frequency ω; that is,

$$
\begin{equation*}
L_{1}(\omega t+2 \pi, q, \dot{q} ; \varepsilon)=L_{1}(\omega t, q, \dot{q} ; \varepsilon) \tag{7.A4.1a}
\end{equation*}
$$

Below we examine the case where ω is, approximately, in rational ratios to the ω_{k} 's (frequently referred to as near-resonance case):

$$
\begin{equation*}
\omega_{k} / \omega \approx i_{k} / N \quad \text { or } \quad i_{k} \omega \approx \omega_{k} N, \quad \text { and } \quad \nu_{k} / \omega=i_{k} / N \quad \text { or } \quad i_{k} \omega=\nu_{k} N, \tag{7.A4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{k}^{2}-\nu_{k}^{2}=O(\varepsilon), \tag{7.A4.2a}
\end{equation*}
$$

i_{k} : nonnegative integer, $\quad N$: sufficiently large positive integer,
[and $O(\ldots) \equiv$ Of order (\ldots. has its usual meaning: $f(\varepsilon)=O[g(\varepsilon)]$, for two general functions $f(\ldots)$ and $g(\ldots)$, means that for $\varepsilon \rightarrow 0: \lim |f(\varepsilon) / g(\varepsilon)|<\infty$; e.g., $\left.\sin (6 \varepsilon)=O(\varepsilon), \cos (3 \varepsilon)=O\left(\varepsilon^{0}\right)=O(1)\right]$. Then (7.A4.1) can be re-expressed as

$$
\begin{align*}
L= & \sum(1 / 2)\left[\left(\dot{q}_{k}\right)^{2}-\nu_{k}^{2} q_{k}^{2}\right] \\
& +\varepsilon\left[L_{1}(\omega t, q, \dot{q} ; \varepsilon)+(1 / \varepsilon) \sum\left(q_{k}^{2} / 2\right)\left(\nu_{k}^{2}-\omega_{k}^{2}\right)\right] \\
\equiv & \sum(1 / 2)\left[\left(\dot{q}_{k}\right)^{2}-\nu_{k}^{2} q_{k}^{2}\right]+\varepsilon L^{(1)}(\omega t, q, \dot{q} ; \varepsilon) . \tag{7.A4.3}
\end{align*}
$$

The above show that the unperturbed system [i.e., (7.A4.3) for $\varepsilon=0: q_{k} \rightarrow q_{k o}$: generating function $]$ has equations of motion $d^{2} q_{k o} / d t^{2}+\nu_{k}^{2} q_{k o}=0$, and, therefore, general solutions

$$
\begin{align*}
& q_{k o}=q_{k o}(t)=a_{k} \cos \left(\nu_{k} t\right)+\left(b_{k} / \nu_{k}\right) \sin \left(\nu_{k} t\right) \\
& a_{k}=q_{k o}(0) \quad \text { and } \quad b_{k}=\dot{q}_{k o}(0): \text { initial conditions. } \tag{7.A4.4}
\end{align*}
$$

We notice that since the ν_{k} are rationally commensurate to ω - that is, $\nu_{k}=\left(i_{k} / N\right) \omega$ - the $q_{k o}$ have the common period

$$
\begin{equation*}
\tau \equiv(2 \pi / \omega) N=2 \pi(N / \omega)=2 \pi\left(i_{k} / \nu_{k}\right)=\left(2 \pi / \nu_{k}\right) i_{k} \equiv \tau_{k} i_{k} \tag{7.A4.5}
\end{equation*}
$$

Let us now examine the perturbed system $(\varepsilon \neq 0)$. Its equations of motion are

$$
\begin{gather*}
E_{k}(L) \equiv\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=0: \\
\ddot{q}_{k}+\nu_{k}^{2} q_{k}=-\varepsilon\left[\left(\partial L^{(1)} / \partial \dot{q}_{k}\right)^{\cdot}-\partial L^{(1)} / \partial q_{k}\right] \equiv \varepsilon F_{k}(\omega t, q, \dot{q} ; \varepsilon), \tag{7.A4.6}
\end{gather*}
$$

where $F_{k}(\omega t, q, \dot{q} ; \varepsilon)=F_{k}(2 \pi+\omega t, q, \dot{q} ; \varepsilon)$.
Applying, next, the well-known method of variation of constants (ex. 7.9.14 and §8.7) to these perturbed (nonhomogeneous) equations, based on the general solutions of the corresponding unperturbed (homogeneous) equations (7.A4.4), we find

$$
\begin{align*}
q_{k}(t)=q_{k o}(t)+\left(\varepsilon / \nu_{k}\right) & {\left[\sin \left(\nu_{k} t\right) \int_{0}^{t} F_{k}\left(\omega x, q_{k o}, \dot{q}_{k o} ; 0\right) \cos \left(\nu_{k} x\right) d x\right.} \\
& \left.-\cos \left(\nu_{k} t\right) \int_{0}^{t} F_{k}\left(\omega x, q_{k o}, \dot{q}_{k o} ; 0\right) \sin \left(\nu_{k} x\right) d x\right]+O\left(\varepsilon^{2}\right) \tag{7.A4.7}
\end{align*}
$$

(a result reminiscent of the well-known "Duhamel's superposition integral" formula of forced linear vibrations); or, further, with some standard manipulations and recalling eqs. (7.A4.4-6),

$$
\begin{align*}
q_{k}(t)= & a_{k} \cos \left(\nu_{k} t\right)+\left(b_{k} / \nu_{k}\right) \sin \left(\nu_{k} t\right) \\
& -\left(\varepsilon / \nu_{k}\right)\left\{\int_{0}^{t}\left[\left(\partial L^{(1)} / \partial \dot{q}_{k}\right)^{\cdot}-\partial L^{(1)} / \partial q_{k}\right]_{o} \sin \left[\nu_{k}(t-x)\right] d x\right\}+O\left(\varepsilon^{2}\right),\left({ }^{(}\right. \tag{7.A4.8}
\end{align*}
$$

where $[\ldots]_{o} \equiv[\ldots]$ evaluated for the generating solution $q_{k o}(x)$, where x is a dummy variable of integration. This allows us to calculate the new initial values $a_{k 1}$ and $b_{k 1}$ after the period τ : from (7.A4.8) [or, more easily, (7.A4.7)] with $t \rightarrow \tau$, we find

$$
\begin{equation*}
q_{k}(\tau)=q_{k o}(\tau)+\left(\varepsilon / \nu_{k}\right) \int_{0}^{\tau}[\cdots]_{o} \sin \left(\nu_{k} x\right) d x+O\left(\varepsilon^{2}\right) \quad\left(\text { with } t_{1}=0, t_{2}=\tau\right) \tag{7.A4.9}
\end{equation*}
$$

or

$$
\begin{gather*}
a_{k 1}=a_{k}+\varepsilon \tau P_{k}+O\left(\varepsilon^{2}\right) \tag{7.A4.9a}\\
P_{k}=P_{k}\left(a_{l}, b_{l}\right) \equiv\left(1 / \nu_{k} \tau\right) \int_{0}^{\tau}\left[\left(\partial L^{(1)} / \partial \dot{q}_{k}\right)^{\cdot}-\partial L^{(1)} / \partial q_{k}\right]_{o} \sin \left(\nu_{k} x\right) d x . \tag{7.A4.9b}
\end{gather*}
$$

Similarly, (...)-differentiating (7.A4.8), or (7.A4.7), and so on, we find

$$
\begin{equation*}
\dot{q}_{k}(\tau)=\dot{q}_{k o}(\tau)-\varepsilon \int_{0}^{\tau}[\cdots]_{o} \cos \left(\nu_{k} x\right) d x+O\left(\varepsilon^{2}\right) \tag{7.A4.10}
\end{equation*}
$$

or

$$
\begin{gather*}
b_{k 1}=b_{k}+\varepsilon \tau Q_{k}+O\left(\varepsilon^{2}\right) \tag{7.A4.10a}\\
Q_{k}=Q_{k}\left(a_{l}, b_{l}\right) \equiv-(1 / \tau) \int_{0}^{\tau}\left[\left(\partial L^{(1)} / \partial \dot{q}_{k}\right)^{\cdot}-\partial L^{(1)} / \partial q_{k}\right]_{o} \cos \left(\nu_{k} x\right) d x \tag{7.A4.10b}
\end{gather*}
$$

Next, integrating the $d / d x(\ldots)$-term of the integrand of both P_{k} and Q_{k} by parts, and noting that the integrated-out terms vanish (due to periodicity), we find

$$
\begin{align*}
P_{k} & =-(1 / \tau) \int_{0}^{\tau}\left\{\left(\partial L^{(1)} / \partial \dot{q}_{k}\right) \cos \left(\nu_{k} x\right)+\left(\partial L^{(1)} / \partial q_{k}\right)\left[\sin \left(\nu_{k} x\right) / \nu_{k}\right]\right\}_{o} d x \\
& =-(1 / \tau) \int_{0}^{\tau}\left(\partial L^{(1)} / \partial b_{k}\right)_{o} d x \tag{7.A4.11a}\\
Q_{k} & =-(1 / \tau) \int_{0}^{\tau}\left\{\left(\partial L^{(1)} / \partial \dot{q}_{k}\right)\left[\nu_{k} \sin \left(\nu_{k} x\right)\right]+\left(\partial L^{(1)} / \partial q_{k}\right) \cos \left(\nu_{k} x\right)\right\}_{o} d x \\
& =(1 / \tau) \int_{0}^{\tau}\left(\partial L^{(1)} / \partial a_{k}\right)_{o} d x . \tag{7.A4.11b}
\end{align*}
$$

A final simplification of the above occurs with the help of the following function:

$$
\Lambda=\Lambda\left(a_{k}, b_{k}\right) \equiv(1 / \tau) \int_{0}^{\tau} L\left[\omega x, q_{k o}(x), d q_{k o}(x) / d x ; \varepsilon\right] d x
$$

Average of perturbed Lagrangean, but evaluated along the (known) unperturbed solution $(\neq\langle L\rangle)$,
or, recalling (7.A4.3), and noting that due to (7.A4.4)

$$
\begin{equation*}
\int_{0}^{\tau}(1 / 2)\left\{\left[d q_{k o}(x) / d x\right]^{2}-\nu_{k}^{2} q_{k o}(x)^{2}\right\} d x=0 \quad\left(\text { Virial theorem for } q_{k o}\right) \tag{7.A4.12a}
\end{equation*}
$$

finally,

$$
\begin{equation*}
\Lambda=(\varepsilon / \tau) \int_{0}^{\tau}\left[L^{(1)}\right]_{o} d x=O(\varepsilon) \tag{7.A4.12b}
\end{equation*}
$$

Then, and recalling (7.A4.11a, b), eqs. (7.A4.9a, 10a) reduce, respectively, to

$$
\begin{align*}
\Delta a_{k} \equiv a_{k 1}-a_{k} & =-\tau\left(\partial \Lambda / \partial b_{k}\right)+O\left(\varepsilon^{2}\right) \\
& =-\varepsilon\left\{\partial / \partial b_{k} \int_{0}^{\tau}\left[L^{(1)}\right]_{o} d x\right\}+O\left(\varepsilon^{2}\right), \tag{7.A4.13a}\\
\Delta b_{k} \equiv b_{k 1}-b_{k} & =+\tau\left(\partial \Lambda / \partial a_{k}\right)+O\left(\varepsilon^{2}\right) \\
& =+\varepsilon\left\{\partial / \partial a_{k} \int_{0}^{\tau}\left[L^{(1)}\right]_{o} d x\right\}+O\left(\varepsilon^{2}\right) . \tag{7.A4.13b}
\end{align*}
$$

Now Valeev and Ganiev (1969), reasoning as in the method of slowly varying parameters, have demonstrated that this finite difference system can be replaced by the following Hamiltonian, or canonical, differential system (§8.2):

$$
\begin{equation*}
d a_{k} / d t=-\partial \Lambda / \partial b_{k}+O\left(\varepsilon^{2}\right), \quad d b_{k} / d t=+\partial \Lambda / \partial a_{k}+O\left(\varepsilon^{2}\right) \tag{7.A4.14}
\end{equation*}
$$

These equations readily show that the periodic solutions of (7.A4.3, 6) - that is, $\Delta a_{k}=0, \Delta b_{k}=0$, or $d a_{k} / d t=0, d b_{k} / d t=0$ - to the first ε-order, are determined from the following $2 n$ conditions of stationarity, or "equilibrium," of Λ :

$$
\begin{equation*}
\partial \Lambda / \partial a_{k}=0, \quad \partial \Lambda / \partial b_{k}=0 \quad(k=1, \ldots, n) ; \tag{7.A4.15}
\end{equation*}
$$

and also provide the "energy" integral

$$
\begin{align*}
d \Lambda / d t & =\sum\left[\left(\partial \Lambda / \partial a_{k}\right) \dot{a}_{k}+\left(\partial \Lambda / \partial b_{k}\right) \dot{b}_{k}\right]=O\left(\varepsilon^{2}\right), \\
& \Rightarrow \Lambda\left(a_{k}, b_{k}\right)=\text { constant }+O\left(\varepsilon^{2}\right) . \tag{7.A4.16}
\end{align*}
$$

Next, let $\left(a_{k o}, b_{k o}\right)$ be a solution of (7.A4.15); that is, a stationary point of Λ. To examine its stability in the first ε-approximation, we expand eqs. (7.A4.14) around that equilibrium solution, and linearize them in the deviations from it, $A_{k} \equiv a_{k}-a_{k o}$ and $B_{k} \equiv b_{k}-b_{k o}$, while invoking (7.A4.15). In this way, we obtain the following linear variational equations (Poincaré's "équations aux variations"):

$$
\begin{align*}
d A_{k} / d t & =-\sum\left[\left(\partial^{2} \Lambda / \partial b_{k} \partial a_{l}\right) A_{l}+\left(\partial^{2} \Lambda / \partial b_{k} \partial b_{l}\right) B_{l}\right] \tag{7.A4.17a}\\
d B_{k} / d t & =+\sum\left[\left(\partial^{2} \Lambda / \partial a_{k} \partial a_{l}\right) A_{l}+\left(\partial^{2} \Lambda / \partial a_{k} \partial b_{l}\right) B_{l}\right] \tag{7.A4.17b}
\end{align*}
$$

where all partial derivatives are calculated at $\left(a_{k o}, b_{k o}\right)$.
Assuming, as usual, time-exponential solutions for A_{k} and B_{k} [i.e., $\left.\sim \exp (\lambda t)\right]$, and substituting them into the (7.A4.17a, b), we are readily led at the following $2 n$-degree characteristic equation for λ :

$$
\Delta=\Delta(\lambda) \equiv\left|\begin{array}{cc}
-\left(\partial^{2} \Lambda / \partial b_{k} \partial a_{l}\right)-\lambda \delta_{k l} & -\left(\partial^{2} \Lambda / \partial b_{k} \partial b_{l}\right) \tag{7.A4.18}\\
\partial^{2} \Lambda / \partial a_{k} \partial a_{l} & \left(\partial^{2} \Lambda / \partial a_{k} \partial b_{l}\right)-\lambda \delta_{k l}
\end{array}\right|=0 .
$$

For (asymptotic) stability of the point $\left(a_{k o}, b_{k o}\right)$: All λ-roots of $\Delta=0$ must have negative real parts ($\S 3.10$); if the real part of even one such root is positive, that point is unstable; while if it is zero, that point is stable in the first ε-approximation.

Therefore, the conditions for a "coarse" extremum of $\Lambda\left(a_{k}, b_{k}\right)$ [i.e., a strict extremum detected by analysis of the second-order terms in the expansion $\Lambda\left(a_{k o}+A_{k}, b_{k o}+B_{k}\right)-\Lambda\left(a_{k o}, b_{k o}\right)$ - the term is due to Blekhman] at $\left(a_{k o}, b_{k o}\right)$ also represent the sufficient conditions for a stable periodic solution, to the first ε-order; and for $\varepsilon=0$ reducing to the generating solution (7.A4.4). Hence, Λ plays the role that the total potential energy plays, in the static stability analysis of potential systems. Let us examine (7.A4.17a, b, 18) further. With the help of the notations

$$
\begin{align*}
& \partial^{2} \Lambda / \partial a_{k} \partial a_{l} \equiv \alpha_{k l}=\alpha_{l k}, \quad \partial^{2} \Lambda / \partial b_{k} \partial b_{l} \equiv \beta_{k l}=\beta_{l k} \\
& \partial^{2} \Lambda / \partial b_{k} \partial a_{l}=\partial^{2} \Lambda / \partial a_{l} \partial b_{k} \equiv \gamma_{k l} \neq \gamma_{l k} \equiv \partial^{2} \Lambda / \partial b_{l} \partial a_{k}=\partial^{2} \Lambda / \partial a_{k} \partial b_{l}, \tag{7.A4.19}
\end{align*}
$$

equations (7.A4.17a, b) can be written, respectively,

$$
\begin{align*}
& d A_{k} / d t=-\sum\left(\beta_{k l} B_{l}+\gamma_{k l} A_{l}\right), \tag{7.A4.20a}\\
& d B_{k} / d t=+\sum\left(\gamma_{l k} B_{l}+\alpha_{k l} A_{l}\right) \tag{7.A4.20b}
\end{align*}
$$

while in terms of the Lagrange-like function K [see also (8.3.12 ff.)]

$$
\begin{equation*}
2 K=\sum \sum\left(\beta_{k l} B_{k} B_{l}+2 \gamma_{k l} B_{k} A_{l}+\alpha_{k l} A_{k} A_{l}\right), \tag{7.A4.21}
\end{equation*}
$$

they can be brought to the Hamiltonian form (§8.2)

$$
\begin{equation*}
d A_{k} / d t=-\partial K / \partial B_{k}, \quad d B_{k} / d t=+\partial K / \partial A_{k} . \tag{7.A4.22}
\end{equation*}
$$

In view of the above, the characteristic equation (7.A4.18) can also be rewritten, successively, as follows (partitioned in subdeterminants):

$$
\begin{aligned}
\Delta(\lambda) & =\left|\begin{array}{cc}
\left|\gamma_{l k}-\lambda \delta_{l k}\right| & \left|\alpha_{k l}\right| \\
\left|-\beta_{k l}\right| & \left|-\gamma_{k l}-\lambda \delta_{k l}\right|
\end{array}\right| \\
& =(-1)^{n}\left|\begin{array}{cc}
\left|\gamma_{l k}-\lambda \delta_{l k}\right| & \left|\alpha_{k l}\right| \\
\left|\beta_{k l}\right| & \left|\gamma_{k l}+\lambda \delta_{k l}\right|
\end{array}\right| \\
& =(-1)^{n}\left|\begin{array}{cc}
\left|\beta_{k l}\right| & \left|\gamma_{k l}+\lambda \delta_{k l}\right| \\
\left|\gamma_{l k}-\lambda \delta_{l k}\right| & \left|\alpha_{k l}\right|
\end{array}\right|
\end{aligned}
$$

[after swapping the first n rows with the last n rows]

$$
=(-1)^{n}\left|\begin{array}{cc}
\left|\gamma_{k l}+\lambda \delta_{k l}\right| & \left|\beta_{k l}\right| \\
\left|\alpha_{k l}\right| & \left|\gamma_{l k}-\lambda \delta_{l k}\right|
\end{array}\right|
$$

[after swapping the first n columns with the last n columns]

$$
=(-1)^{n}\left|\begin{array}{cc}
\left|\gamma_{k l}+\lambda \delta_{k l}\right| & \left|\alpha_{k l}\right| \\
\left|\beta_{k l}\right| & \left|\gamma_{l k}-\lambda \delta_{l k}\right|
\end{array}\right|
$$

[after transposing the determinant about its main diagonal],
and comparing the second and last of these forms of $\Delta(\lambda)$, we readily see that

$$
\begin{equation*}
\Delta(\lambda)=\Delta(-\lambda) \tag{7.A4.24}
\end{equation*}
$$

In words: if λ is a root of the characteristic equation (and hence an eigenvalue of the variational equations), then so is $-\lambda$; that is, $\Delta(\lambda)=0$ can contain only even powers of λ. Therefore, if such a root is complex with negative real part, or a negative real number (\Rightarrow asymptotic stability), its negative will also be a root with positive real part, or a positive real number (\Rightarrow exponential, or flutteral, instability). Hence (and since asymptotic stability cannot occur in our conservative system), for stability, all λ 's must be purely imaginary, and then they appear in mutually conjugate pairs: $\pm i a$ (a : real). In this case [recall discussion following eq. (3.10.18a)] we say that the system possesses critical or nonsignificant behavior, i.e., its stability cannot be safely concluded from its linear perturbation equations (7.A4.17a, b; 20a, b); in such cases, we must consider the nonlinear A and B terms of $O\left(\varepsilon^{2}\right)$. However, if no such higherorder terms are present, which is the quasi-linear (first ε-approximation) case discussed here, then purely imaginary roots of $\Delta(\lambda)=0$ do signify stability.
[For detailed discussions of this very important problem of the stability of motion, including the fundamental contributions of Liapunov on it, see, for example (alphabetically): Chetayev (1955), Hughes (1986, pp. 480-521), Kuzmin (1973), Meirovitch (1970, chap. 6), Pars (1965, chap. 23), Pollard (1976, pp. 117-131).]

Our discussion of the integral stability criterion can be summarized as follows: Let Λ be the time average of the Lagrangean of the original quasi-linearly perturbed system, eqs. (7.A4.6), but calculated along the periodic solutions of the unperturbed linear system, eqs. (7.A4.4), as a function of the initial values of the generating solution $\left(a_{k}, b_{k}\right)$. Next, consider the stationary points of $\Lambda,\left(a_{k o}, b_{k o}\right)$: if these points are also extrema (maxima or minima) of Λ, then, to the first ε-approximation, they constitute stable (periodic) solutions of the original system. Nonextremum stationary points require special consideration.

Example 7.A4.1 Let us consider a system with (exact) Lagrangean

$$
\begin{equation*}
L=(\dot{q})^{2} / 2-q^{2} / 2+\varepsilon\left[-\kappa q^{2}+q \dot{q} \sin (2 t)\right] \quad(0<\varepsilon \ll 1), \tag{a}
\end{equation*}
$$

and, therefore, equation of motion, the linear Mathieu equation

$$
\ddot{q}+q=-\varepsilon[\kappa+2 \cos (2 t)] q,
$$

or

$$
\begin{equation*}
\ddot{q}+[1+\varepsilon \kappa+2 \varepsilon \cos (2 t)] q=0 . \tag{b}
\end{equation*}
$$

Here, clearly, $n=1, \nu_{k}=1, \omega=2 \Rightarrow \tau=\pi N, \tau_{k}=2 \pi$, and the unperturbed system $(\varepsilon=0): \ddot{q}+q=0$ has generating solution

$$
\begin{equation*}
q_{o}=q_{o}(t)=a \cos t+b \sin t \quad\left(a, b: \text { initial values of } q_{o}, \dot{q}_{o}\right) \tag{c}
\end{equation*}
$$

The average of L evaluated along (c) (i.e., between $t_{1}=0$ and $t_{2}=2 \pi$) equals, after (7.A4.12, 12b),

$$
\begin{align*}
\Lambda & =(1 / 2 \pi) \int_{0}^{2 \pi} L\left[q_{o}(x), d q_{o}(x) / d x, x\right] d x \\
& =\cdots=-(\varepsilon / 4)\left[(\kappa+1) a^{2}+(\kappa-1) b^{2}\right] \equiv \Lambda(a, b) . \tag{d}
\end{align*}
$$

Using subscripts to denote partial derivatives relative to a, b, we readily see that the sole root of $\Lambda_{a}=0, \Lambda_{b}=0$ is ($a_{o}=0, b_{o}=0$); that is, the equilibrium state $q_{o}(t)=0$. At that point, since

$$
\begin{align*}
& \Lambda_{a a}=-(\varepsilon / 2)(\kappa+1): \quad>0 \text { for } \kappa<-1 \text {, } \\
& <0 \text { for } \kappa>-1 \text {, } \tag{e1}\\
& \Lambda_{b b}=-(\varepsilon / 2)(\kappa-1): \quad>0 \text { for } \kappa<1 \text {, } \\
& <0 \quad \text { for } \kappa>1 \text {, } \tag{e2}\\
& \Lambda_{a b}=\Lambda_{b a}=0, \tag{e3}\\
& \Rightarrow D \equiv \Lambda_{a a} \Lambda_{b b}-\Lambda_{a b}=\varepsilon^{2}\left(\kappa^{2}-1\right) / 4: \\
& >0, \quad \text { for } \kappa>1 \text { or } \kappa<-1 \text {, i.e., for }|\kappa|>1 \text {, } \\
& <0, \quad \text { for }-1<\kappa<1, \quad \text { i.e., for }|\kappa|<1 \tag{e4}
\end{align*}
$$

(using ordinary theory of extrema of a function of two variables), we easily conclude that

$$
\begin{array}{llll}
D>0 & \text { and } & \Lambda_{a a}\left(\text { or } \Lambda_{b b}\right)>0: & \kappa<-1 \Rightarrow \Lambda: \text { minimum } \\
D>0 & \text { and } \quad \Lambda_{a a}\left(\text { or } \Lambda_{b b}\right)<0: & \kappa>1 \Rightarrow \Lambda: \text { maximum } \\
D<0: & |\kappa|<1 \Rightarrow \Lambda: \text { min } / \max (\text { saddle-point }) \tag{e5}
\end{array}
$$

Therefore, the equilibrium solution of (b) is stable for $|\kappa|>1$, and unstable for $|\kappa|<1$; while for $\kappa= \pm 1 \Rightarrow D=0$, the equilibrium point is defined ambiguously, and this implies the existence of periodic solutions - we are exactly on top of the famous stability/instability boundaries of Mathieu's equation, which emanate from the (usually) horizontal axis of the "Strutt chart" at 1 ; that is, for $\varepsilon=0$. These results coincide with those found by other methods; see, for example, Cunningham (1958, pp. 270-273), Papastavridis [1981, 1982(b)].

Finally, let us examine the equivalence between the above, extremum of Λ-based approach, with that based on the study of the eigenvalues of the variational equations (7.A4.17a, b; 20a, b). We have

$$
\begin{align*}
& \dot{a}=-\Lambda_{b} \Rightarrow \dot{A}=-\Lambda_{b a} A-\Lambda_{b b} B \tag{f1}\\
& \dot{b}=\Lambda_{b} \Rightarrow \dot{B}=\Lambda_{a a} A+\Lambda_{a b} B \tag{f2}
\end{align*}
$$

and so the corresponding characteristic equation is

$$
\Delta(\lambda)=\left|\begin{array}{cc}
-\left(\Lambda_{a b}+\lambda\right) & -\Lambda_{b b} \tag{g1}\\
\Lambda_{a a} & \Lambda_{a b}-\lambda
\end{array}\right|=0
$$

from which we readily get

$$
\begin{equation*}
\lambda^{2}=\Lambda_{a b}^{2}-\Lambda_{a a} \Lambda_{b b} \Rightarrow \lambda^{2}=-D . \tag{g2}
\end{equation*}
$$

For stability, clearly, $\lambda^{2}<0 \Rightarrow D>0$; as in the first two of eqs. (e5). Then λ is purely imaginary, and therefore, A, B are harmonically oscillatory.

If $\lambda^{2}>0 \Rightarrow D<0$, as in the third of eqs. (e5), then λ is real, and therefore, A, B increase exponentially; that is, instability. If $\lambda^{2}=-D=0$, the linear stability criterion fails.

Thus, we have affirmed the equivalence between the extremum of (d) and the stability of (f1, 2).

8

Introduction

to

Hamiltonian/Canonical Methods

Equations of Hamilton and Routh; Canonical Formalism

This is the celebrated "canonical form" of the equations of motion of a system, though why it has been so called it would be hard to say.
(Thomson and Tait, 1912, no. 319, p. 307)
We recognize two purposes in the study of general methods in dynamics. First, the practical purpose, to increase our power in solving specific problems by developing standard techniques with a wide range of applicability. Secondly, the intellectual purpose, to understand the mathematical structure of dynamics. ... Historically [general dynamical theory] has been suggested by, and developed in terms of, the Newtonian dynamics of particles and rigid bodies. But we feel an urgent need to give it a wider scope, presenting it as a consistent mathematical theory applicable to any physical system the behaviour of which can be expressed in Lagrangian or Hamiltonian form.
(Synge, 1960, pp. 99-100)
Hamiltonian mechanics is the description of a mechanical system in terms of generalized coordinates q_{i} and generalized momenta p_{i}, \ldots the Hamiltonian formulation ... is far better suited for the formulation of quantum mechanics, statistical mechanics, and perturbation theory. In particular, the use of Hamiltonian phase space provides the ideal framework for a discussion of the concepts of integrability and nonintegrability and the description of the chaotic phenomena that can be exhibited by nonintegrable systems.
(Tabor, 1989, p. 48)

8.1 INTRODUCTION

The independent variables of Lagrangean mechanics (holonomic and/or nonholonomic) are t, q, and \dot{q} (or ω). In this chapter, we introduce the reader to a very important alternative formulation of analytical mechanics, known as Hamiltonian mechanics (HM), where the independent dynamical variables are t, q, and
$p \equiv \partial T / \partial \dot{q}=$ system (or generalized) momenta (or, sometimes, $\quad p \equiv \partial L / \partial \dot{q})$. Hamiltonian mechanics and its associated equations of motion constitute a powerful and fertile version of theoretical mechanics. It represents the last and most abstract/ mathematical stage of classical mechanics, and is the one that played a crucial role in the latter's eventual replacement by quantum mechanics (1920s) as a fundamental physical theory. Although, historically, of primary interest to physicists and astronomers/celestial mechanicians, over the past few decades HM has been becoming increasingly relevant, if not indispensable, to engineers; for example, in optimization, robotics, and, most importantly, for the understanding of modern nonlinear dynamics [which includes prominently (deterministic) chaos].

HISTORICAL

Hamiltonian mechanics was originated by Lagrange himself (1810-1811), and also Poisson (1809), in connection with perturbation methods for celestial mechanics problems; was duly noted and generally formulated by Cauchy (1819); but was brought to prominence by Hamilton (1834-1835); and was extended to nonstationary constraints by Ostrogradskii (1848-1850), and Donkin (1854).

Briefly, in HM, the n system positions q and associated n system momenta p become the system coordinates in a $2 n$-dimensional phase, or state, space; and the corresponding n Lagrangean equations of motion of the system (in the q 's) are replaced by $2 n$ first-order symmetrical, or canonical, Hamiltonian equations of motion (in the q 's and p 's).

That a $\dot{q} \Leftrightarrow p$ transformation is "always" possible, is easily seen as follows: by $(\partial / \partial \dot{q})$-differentiating the kinetic energy (recalling expressions in §3.9),

$$
\begin{align*}
2 T & =\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+2 \sum M_{k} \dot{q}_{k}+M_{0} \\
& =2 T(t, q, \dot{q}) \quad\left(=2 T_{2}+2 T_{1}+2 T_{0}\right) \tag{8.1.1}
\end{align*}
$$

$$
\begin{equation*}
\left(M_{k l}, M_{k}, M_{0}: \text { functions of the } q \text { 's and } t ; k, l=1, \ldots, n\right), \tag{8.1.1a}
\end{equation*}
$$

we obtain the p 's as linear and independent functions in the \dot{q} 's (and t, q 's):

$$
\begin{equation*}
p_{k} \equiv \partial T / \partial \dot{q}_{k}=\sum M_{k l} \dot{q}_{l}+M_{k} \equiv p_{k}(t, q, \dot{q}) ; \tag{8.1.2}
\end{equation*}
$$

while inverting (8.1.2) [assuming that $\operatorname{Det}\left(M_{k l}\right) \equiv \operatorname{Det}\left(\partial^{2} T / \partial \dot{q}_{k} \partial \dot{q}_{l}\right) \neq 0$; that is, assuming that the Hessian of T (or L) does not vanish identically; and viewing t and the q 's as parameters; see also MacMillan (1936, pp. 358-360)], we obtain the \dot{q} 's as linear functions of the p 's:

$$
\begin{equation*}
\dot{q}_{l}=\sum M_{l k}^{\prime} p_{k}+M_{l}^{\prime} \equiv \dot{q}_{l}(t, q, p) ; \tag{8.1.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(M_{l k}^{\prime}, M_{l}^{\prime} \text { : functions of the } q \text { 's and } t ; k, l=1, \ldots, n\right) \tag{8.1.3a}
\end{equation*}
$$

Thus, Lagrange's equations, say,

$$
\begin{equation*}
\left(\partial T / \partial \dot{q}_{l}\right)^{\cdot}-\partial T / \partial q_{l}=Q_{l}, \tag{8.1.4}
\end{equation*}
$$

(§3.5) have been transformed into the completely equivalent system of $2 n$ first-order equations:

$$
\begin{align*}
d p_{l} / d t & =\left.\left(\partial T / \partial q_{l}\right)\right|_{\dot{q}=\dot{q}(t, q, p)}+Q_{l}(t, q) \equiv d p_{l}(t, q, p) / d t \tag{8.1.5}\\
d q_{l} / d t & \left.=\sum M_{l k}^{\prime} p_{k}+M_{l}^{\prime} \equiv d q_{l}(t, q, p) / d t \quad \text { (linear in the } p ’ s\right) ; \tag{8.1.5a}
\end{align*}
$$

and this is the essence of the Hamiltonian formalism.
In general, any function of the Lagrangean variables $f=f(t, q, \dot{q})$, becomes, upon substitution of (8.1.5a) in it, a certain "associated" function of the Hamiltonian variables:

$$
\begin{equation*}
f=f(t, q, \dot{q}) \equiv f_{(q \dot{q})}=f[t, q, \dot{q}(t, q, p)] \equiv f(t, q, p) \equiv f_{(q p)} \tag{8.1.6}
\end{equation*}
$$

and conversely, any $f(t, q, p)$ becomes, upon substitution of (8.1.2) in it, an associated $f(t, q, \dot{q})$. [The elaborate notations $f_{(q \dot{q})}$ and $f_{(q p)}$ will be used only in potentially ambiguous situations.] A detailed treatment of HM, comparable to that of Lagrangean mechanics presented so far, is beyond the scope and limits of this book. Instead, in this chapter, we concentrate on topics of more or less engineering significance; for example, (i) equations of Routh [a mixed formulation that uses as independent variables some of the p 's and the remaining \dot{q} 's (and, of course, t and the q 's); and as such is "halfway" between the methods of Lagrange and Hamilton], and their application to the study of steady motion and its stability; and (ii) applications of the canonical formalism to the approximate analytical solution of the equations of motion (canonical perturbation theory).

The literature on Hamiltonian mechanics is, expectedly, very extensive and varied. For concurrent (and further) reading we recommend (alphabetically):

Born (1927): Masterful and readable exposition by a very famous and wise theoretical physicist.
Chertkov (1960): Applications of Jacobi's method to rigid-body dynamics.
Frank (1935, pp. 59-65, 72-136, 191-239): Encyclopedic classical treatment.
Fues (1927, pp. 131-177): Classical Hamiltonian perturbation theory.
Gantmacher (1970, pp. 71-87, 98-165, 242-258): Compact classical treatment; excellent. Hagihara (1970): Advanced and comprehensive treatise, primarily for celestial mechanicians.
Hamel (1949, pp. 281-312, 317-361, 653-709): Insightful and masterful presentation, as usual.
Lanczos (1970, pp. 125-130, 161-290): Extensive classical coverage; highly recommended. Lichtenberg and Lieberman (1992): Warmly recommended for further study of nonlinear/chaotic dynamics.
McCauley (1997): Modern, mature, insightful treatment; most highly recommended.
Nordheim and Fues (1927, pp. 91-130): General and compact encyclopedic treatment.
Prange (1935, pp. 570-785): Extensive and authoritative classical coverage; highly recommended.
Tabor (1989): One of the most readable modern accounts of nonlinear dynamics; very highly recommended for further study.
Whittaker (1937, pp. 54-57, 193-208, 263-338): Mature and insightful classical treatment.
Winkelmann and Grammel (1927, pp. 469-483): Outstanding engineering reference.
Additional special references will be given in later sections.

8.2 THE HAMILTONIAN, OR CANONICAL, CENTRAL EQUATION AND HAMILTON'S CANONICAL EQUATIONS OF MOTION

To obtain equations in the canonical variables t, q, p, we proceed, as in the Lagrangean case, from the invariant differential principle of Lagrange (LP), but in the central equation form (§3.6):

$$
\begin{equation*}
\delta I=\delta^{\prime} W: \quad\left(\sum p_{k} \delta q_{k}\right)^{\cdot}-\delta T=\sum Q_{k} \delta q_{k} \tag{8.2.1}
\end{equation*}
$$

or, after carrying out the differentiations indicated [and assuming that, as in (8.2.1), $\left.(\delta q)^{\cdot}=\delta(\dot{q})\right]$,

$$
\begin{equation*}
\sum\left(d p_{k} / d t\right) \delta q_{k}+\sum p_{k} \delta\left(\dot{q}_{k}\right)-\delta T=\delta^{\prime} W \tag{8.2.1a}
\end{equation*}
$$

Now, combining the second and third terms of the left side of the above, so as to create a total $\delta(\ldots)$-variation:

$$
\begin{equation*}
\sum p_{k} \delta\left(\dot{q}_{k}\right)-\delta T=\delta\left(\sum p_{k} \dot{q}_{k}-T\right)-\sum \dot{q}_{k} \delta p_{k} \tag{8.2.1b}
\end{equation*}
$$

and introducing the new function (and this is the key step!)

$$
\begin{align*}
& T^{\prime} \equiv\left(\sum p_{k} \dot{q}_{k}-T\right)_{\dot{q}=\dot{q}(t, q, p)} \\
&=\sum p_{k} \dot{q}_{k}(t, q, p)-T[t, q, \dot{q}(t, q, p)] \equiv \sum p_{k} \dot{q}_{k}(t, q, p)-T_{(q p)} \\
&\left.\equiv T^{\prime}(t, q, p) \text { : Conjugate (to } T\right) \text { kinetic energy } \\
& {[}=\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}-T=\left(2 T_{2}+T_{1}\right)-\left(T_{2}+T_{1}+T_{0}\right)=T_{2}-T_{0} \\
&\text { i.e., if } \left.T=T_{2} \text { (e.g., stationary "initial" constraints), then } T^{\prime}=T\right], \tag{8.2.2}
\end{align*}
$$

we can rewrite (8.2.1a) as

$$
\sum\left(d p_{k} / d t\right) \delta q_{k}+\sum\left[\left(\partial T^{\prime} / \partial q_{k}\right) \delta q_{k}+\left(\partial T^{\prime} / \partial p_{k}\right) \delta p_{k}\right]-\sum\left(d q_{k} / d t\right) \delta p_{k}=\delta^{\prime} W
$$

or, collecting (...) δq and (...) δp terms, finally,

$$
\begin{equation*}
\sum\left(d p_{k} / d t+\partial T^{\prime} / \partial q_{k}-Q_{k}\right) \delta q_{k}+\sum\left(-d q_{k} / d t+\partial T^{\prime} / \partial p_{k}\right) \delta p_{k}=0 \tag{8.2.3}
\end{equation*}
$$

This (differential) variational equation, holding for all virtual δq 's and δp 's-that is, constrained or not-and known (after Winkelmann, 1909, 1930, p. 39 ff .; also Hamel, 1949, p. 286 ff .) as the canonical, or Hamiltonian, central equation, is fundamental to all subsequent considerations.

1. δq and δp Unconstrained

Now, if the δq and δp are unconstrained, then (8.2.3) leads immediately to the famous canonical, or Hamiltonian, equations of motion:

$$
\begin{align*}
& d p_{k} / d t=-\partial T^{\prime} / \partial q_{k}+Q_{k} \tag{8.2.4}\\
& d q_{k} / d t=\partial T^{\prime} / \partial p_{k} \quad[=\text { linear in the } p \text { 's; recall (8.2.2)]. } \tag{8.2.4a}
\end{align*}
$$

- Clearly, the second set, eqs. (8.2.4a), must coincide with the earlier, purely kinematico-inertial equations (8.1.5a); it is the canonical counterpart of the Lagrangean $p_{k}=\partial T / \partial \dot{q}_{k}$.
- It is the first set, eqs. (8.2.4), that expresses the equations of motion, in a manner almost identical to that of the Lagrangean method; but, unlike the latter, eqs. (8.2.4, 4a) are already expressed directly and linearly in the (...) -derivatives of the $2 n$ "coordinates" q and p involved.

The $2 n$ first-order equations $(8.2 .4,4 a)$ allow us to determine the values of the q 's and p 's at any time, once their values at some initial time are known. They constitute the equations of motion of the representative system "particle" in the (symbolical/ mathematical) $2 n$-dimensional phase space of q 's and p 's; and, through each (admissible) point of that space, there passes only one such mechanical trajectory (orbit), if the system is scleronomic; or more if the system is rheonomic. In extended phase space (t, q, p), however, only one orbit can pass through a point. Comparing the Hamiltonian equations (8.2.4) with their Lagrangean counterparts: $d p_{k} / d t=\partial T / \partial q_{k}+Q_{k}$, we readily obtain the additional kinematico-inertial result

$$
\begin{equation*}
\partial T / \partial q_{k}=-\partial T^{\prime} / \partial q_{k} \tag{8.2.5}
\end{equation*}
$$

If $Q_{k}=-\partial V(t, q) / \partial q_{k}$, then $(8.2 .4,4 \mathrm{a})$ assume the purely antisymmetrical form

$$
\begin{equation*}
d p_{k} / d t=-\partial H / \partial q_{k}, \quad d q_{k} / d t=\partial H / \partial p_{k} \tag{8.2.6}
\end{equation*}
$$

where

$$
\begin{align*}
H \equiv T^{\prime}+V & =\left(\sum p_{k} \dot{q}_{k}-T+V\right)_{\dot{q}=\dot{q}(t, q, p)} \\
& =\sum p_{k} \dot{q}_{k}(t, q, p)-\left(T_{(q p)}-V\right) \\
& =\left(\sum p_{k} \dot{q}_{k}-L\right)_{\dot{q}=\dot{q}(t, q, p)} \\
& =\sum p_{k} \dot{q}_{k}(t, q, p)-L[t, q, \dot{q}(t, q, p)] \equiv \sum p_{k} \dot{q}_{k}(t, q, p)-L_{(q p)} \\
& =\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right)_{\dot{q}=\dot{q}(t, q, p)} \\
& \equiv H(t, q, p) \quad \text { (function of } 2 n+1 \text { arguments) }, \tag{8.2.7}
\end{align*}
$$

is the Hamiltonian function of the system, or, simply, its Hamiltonian; and, similarly,

$$
\begin{align*}
L(t, q, \dot{q}) & =\sum p_{k}(t, q, \dot{q}) \dot{q}_{k}-H[t, q, p(t, q, \dot{q})] \\
& \equiv \sum p_{k}(t, q, \dot{q}) \dot{q}_{k}-H_{(q \dot{q})} \\
& =\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-H\right)_{p=p(t, q, \dot{q})} . \tag{8.2.7a}
\end{align*}
$$

- If both potential and nonpotential forces $\left(Q_{k}\right)$ are present, eqs. (8.2.6) are replaced by

$$
\begin{equation*}
d p_{k} / d t=-\partial H / \partial q_{k}+Q_{k}, \quad d q_{k} / d t=\partial H / \partial p_{k} \tag{8.2.8}
\end{equation*}
$$

while (8.2.5) becomes

$$
\begin{equation*}
\partial H / \partial q_{k}=-\partial L / \partial q_{k} . \tag{8.2.9}
\end{equation*}
$$

- Also if we view time t, and/or any other number of system parameters $\left(c_{1}, \ldots, c_{n^{\prime}}\right)$, on which T, T^{\prime} and L, H might depend, as additional system coordinates (i.e., $q_{n+1} \equiv t, q_{n+2} \equiv c_{1}, \ldots, q_{n+n^{\prime}} \equiv c_{n^{\prime}}$), then from the above we easily deduce the following two sets of kinematico-inertial identities (with $*=n+1, \ldots, n^{\prime}$):

$$
\begin{equation*}
\partial T / \partial t=-\partial T^{\prime} / \partial t, \quad \partial T / \partial c_{*}=-\partial T^{\prime} / \partial c_{*} \tag{8.2.10a}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial L / \partial t=-\partial H / \partial t, \quad \partial L / \partial c_{*}=-\partial H / \partial c_{*} \tag{8.2.10b}
\end{equation*}
$$

(See also Landau and Lifshitz, 1960, pp. 132-133.)

- In the presence of a generalized potential (3.9.8c)

$$
\begin{equation*}
V=V(t, q, \dot{q})=V_{1}(t, q, \dot{q})+V_{0}(t, q)=\sum \gamma_{k}(t, q) \dot{q}_{k}+V_{0}(t, q) \tag{8.2.11}
\end{equation*}
$$

the momenta p_{k} are redefined by the [slightly more general than (8.1.2)] relation

$$
\begin{equation*}
p_{k} \equiv \partial L / \partial \dot{q}_{k}=\partial(T-V) / \partial \dot{q}_{k}=\partial T / \partial \dot{q}_{k}-\gamma_{k}=\sum \sum M_{k l} \dot{q}_{l}+\left(M_{k}-\gamma_{k}\right) \tag{8.2.11a}
\end{equation*}
$$

and the Hamiltonian takes the explicit form (recalling that $L=L_{2}+L_{1}+L_{0}$),

$$
\begin{align*}
H & =\left(\sum p_{k} \dot{q}_{k}-L\right)_{\dot{q}=\dot{q}(t, q, p)} \quad\left(\equiv L^{\prime}\right) \\
& =\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right)_{\dot{q}=\dot{q}(t, q, p)} \\
& =\left[\left(2 L_{2}+L_{1}\right)-\left(L_{2}+L_{1}+L_{0}\right)\right]_{\dot{q}=\dot{q}(t, q, p)}=\left(L_{2}-L_{0}\right)_{\dot{q}=\dot{q}(t, q, p)} \\
& =\left[T_{2}+\left(V_{0}-T_{0}\right)\right]_{\dot{q}=\dot{q}(t, q, p)} \\
& =T^{\prime}+V_{0} \quad[=h(t, q, \dot{q}), \text { when expressed in Lagrangean variables }] \tag{8.2.11b}
\end{align*}
$$

that is, just like (8.2.7), but with $V=V_{0}$; while the canonical equations of motion retain their forms (8.2.6, 8). For stationary (holonomic) constraints, clearly, $T=T_{2}\left(\Rightarrow T_{0}=0\right)$ and so the above reduces to
$H=T(t, q, p)+V_{0}(t, q) \equiv E(t, q, p)=$ total energy, in Hamiltonian variables.

Henceforth, only ordinary potentials $V=V(t, q)$ will be considered; then $p_{k}=\partial L / \partial \dot{q}_{k}=\partial T / \partial \dot{q}_{k}$. In sum, in all cases, the following kinematico-inertial identities hold:

$$
\begin{equation*}
\partial T^{\prime} / \partial t=-\partial T / \partial t, \quad \partial T^{\prime} / \partial q_{k}=-\partial T / \partial q_{k}, \quad \partial T^{\prime} / \partial p_{k}=d q_{k} / d t \tag{8.2.12a}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial H / \partial t=-\partial L / \partial t, \quad \partial H / \partial q_{k}=-\partial L / \partial q_{k}, \quad \partial H / \partial p_{k}=d q_{k} / d t \tag{8.2.12b}
\end{equation*}
$$

In both (8.2.12a, b):
(i) The last (third) group is essentially the Hamiltonian counterpart of the Lagrangean definition $\partial T / \partial \dot{q}_{k}=p_{k}$.
(ii) The first two groups are mathematically equivalent, if we think of time as an $(n+1)$ th system coordinate (i.e., $q_{n+1} \equiv t$), but the first group is useful in energy rate/power theorems (see below); it states that if L does not involve the time explicitly, neither does H.
(iii) The key group is the second: combining it with a(ny) Lagrangean kinetic equation(s), we obtain the corresponding Hamiltonian equation(s) of motion; for example, combining it with the Lagrangean equation $\left(\partial T / \partial \dot{q}_{k}\right)^{\circ}-\partial T / \partial q_{k}=Q_{k}$, we obtain the Hamiltonian equation $d p_{k} / d t=-\partial T^{\prime} / \partial q_{k}+Q_{k}$.

- Finally, the common derivations of the canonical equations found in the literature are based on Legendre's transformation (see below) and Donkin's theorem (see, e.g., Crandall et al., 1968, pp. 13-22, 402-406; Gantmacher, 1970, pp. 73-76; Rosenberg, 1977, pp. 279-285). However, the central equation-based derivation presented here, due to Winkelmann and Hamel, is far simpler and motivated; it clearly separates the kinematico-inertial from the kinetical aspects of the Lagrangean \rightarrow Hamiltonian transition, and thus makes its extensions to more general coordinates and/or constraints easier; some expositions falsely imply that the canonical formalism applies only to potential systems!

Legendre's Transformation (LT)

In general, a LT transforms a function $Y(y ; x)$ (assumed convex; i.e., $\partial^{2} Y / \partial y^{2}>0$, like T in the \dot{q} 's) into its "conjugate" function

$$
\begin{gathered}
Z(z ; x): Z+Y=y z \\
\Rightarrow y=\partial Z / \partial z=y(z ; x), \quad z=\partial Y / \partial y=z(y ; x)
\end{gathered}
$$

that is, $Z(z ; x) \equiv z y-Y(y ; x)=z y(z ; x)-Y[y(z ; x) ; x]$, and similarly for $Y(y ; x)$ [(fig. 8.1)].

Here, in dynamics, we have the following identifications:

$$
\begin{gather*}
x \rightarrow q, t, \quad y \rightarrow \dot{q}, \quad z \rightarrow p, \quad Y(\ldots) \rightarrow L, \quad Z(\ldots) \rightarrow H \tag{8.2.13a}\\
z=\partial Y / \partial y \rightarrow p=\partial L / \partial \dot{q}, \quad y=\partial Z / \partial z \rightarrow \dot{q}=\partial H / \partial p \tag{8.2.13b}
\end{gather*}
$$

Figure 8.1 Geometrical interpretation of the Legendre transformation.

REMARKS ON LT

(i) For an alternative geometrical interpretation, see Tabor (1989, pp. 79-80).
(ii) Such transformations also appear in other areas of engineering/physics; for instance,

$$
\begin{array}{ll}
\text { Thermodynamics: } & (Y, Z) \rightarrow(\text { energy, free energy }), \\
\text { Elasticity: } & (Y, Z) \rightarrow(\text { strain energy, complementary energy }) ;
\end{array}
$$

see, for example, Langhaar (1962, pp. 119-121, 133-136, 244-245); also Hamel (1949, pp. 368-375).

To understand the connection of H to the power theorems of $\S 3.9$, let us calculate $d H / d t$ and then invoke the earlier canonical equations. Thus, we obtain, successively,

$$
\begin{align*}
d H / d t & =\sum\left[\left(\partial H / \partial q_{k}\right)\left(d q_{k} / d t\right)+\left(\partial H / \partial p_{k}\right)\left(d p_{k} / d t\right)\right]+\partial H / \partial t \\
& =\sum\left[\left(\partial H / \partial q_{k}\right)\left(\partial H / \partial p_{k}\right)+\left(\partial H / \partial p_{k}\right)\left(Q_{k}-\partial H / \partial q_{k}\right)\right]+\partial H / \partial t \\
& =\sum\left(\partial H / \partial p_{k}\right) Q_{k}+\partial H / \partial t=\partial H / \partial t+\sum Q_{k} \dot{q}_{k} \tag{8.2.14}
\end{align*}
$$

and, therefore, if $\partial H / \partial t=0$ (e.g., stationary constraints) and $Q_{k}=0$ (e.g., wholly potential forces), then the Hamiltonian energy of the system is conserved:

$$
\begin{equation*}
H=H(q, p)=\text { constant } \tag{8.2.14a}
\end{equation*}
$$

2. δq Constrained, δp Unconstrained

If the δq 's are restricted by the (additional) m Pfaffian constraints

$$
\begin{equation*}
\delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 \quad\left[\operatorname{rank}\left(a_{D k}\right)=m ; D=1, \ldots, m(<n)\right] \tag{8.2.15a}
\end{equation*}
$$

while, in spite of $(8.1 .2,3,5 \mathrm{a})$, the δp 's are still viewed as free, then application of the method of Lagrangean multipliers to the canonical central equation (8.2.3) readily yields the $2 n$ canonical Routh-Voss equations:

$$
\begin{align*}
d p_{k} / d t & =-\partial T^{\prime} / \partial q_{k}+Q_{k}+\sum \lambda_{D} a_{D k} \quad\left(\text { where } Q_{k}=\right.\text { total impressed force) } \\
& =-\partial H / \partial q_{k}+Q_{k}+\sum \lambda_{D} a_{D k} \quad\left(\text { where } Q_{k}=\text { nonpotential impressed force }\right) \tag{8.2.15b}
\end{align*}
$$

$d q_{k} / d t=\partial T^{\prime} / \partial p_{k} \quad\left(=\partial H / \partial p_{k}\right) ;$
which, along with the m constraints (8.2.15a) (in velocity form)

$$
\begin{equation*}
\omega_{D} \equiv \sum a_{D k} \dot{q}_{k}+a_{D}=0 \tag{8.2.15d}
\end{equation*}
$$

constitute a determinate system for the $2 n+m$ functions $\left\{q_{k}(t), p_{k}(t), \lambda_{D}(t)\right\}$.

To uncouple the first set of (8.2.15b) into kinetic and kinetostatic equations, we proceed as in the Lagrangean variable case (§4.5); that is, we introduce the $n-m$ additional ω_{I} 's by
$\omega_{I} \equiv \sum a_{I k} \dot{q}_{k}+a_{I}(\neq 0$, velocity form $) \quad$ or $\delta \theta_{I} \equiv \sum a_{I k} \delta q_{k}(\neq 0$, virtual form $)$,
then invert the system (8.2.15d, e), thus obtaining
$\dot{q}_{k}=\sum A_{k I} \omega_{I}+A_{k} \quad$ (velocity form) \quad or $\quad \delta q_{k} \equiv \sum A_{k I} \delta \theta_{I} \quad$ (virtual form);
and inserting this δq-representation into the central equation (8.2.3), we finally obtain the canonical Maggi equations:

Kinetostatic equations: $\quad \sum A_{k D}\left(d p_{k} / d t+\partial T^{\prime} / \partial q_{k}\right)=\sum A_{k D} Q_{k}+\lambda_{D}$,

Kinetic equations: $\quad \sum A_{k I}\left(d p_{k} / d t+\partial T^{\prime} / \partial q_{k}\right)=\sum A_{k I} Q_{k}$;
while (8.2.15c) remain unchanged.
Similarly, if the Pfaffian constraints have the special form

$$
\begin{equation*}
\delta q_{D}=\sum b_{D I} \delta q_{I}, \tag{8.2.15i}
\end{equation*}
$$

then (8.2.3) easily yields the canonical Hadamard equations [special case of $(8.2 .15 \mathrm{~g}$, h)]:

Kinetostatic equations: $\quad d p_{D} / d t+\partial T^{\prime} / \partial q_{D}=Q_{D}+\lambda_{D}$,
Kinetic equations: $\quad d p_{I} / d t+\partial T^{\prime} / \partial q_{I}+\sum b_{D I}\left(d p_{D} / d t+\partial T^{\prime} / \partial q_{D}\right)$ $=Q_{I}+\sum b_{D I} Q_{D}$.
[The multipliers in (8.2.15b) and (8.2.15g) are the same, but they are different in value from those in (8.2.15j).]

3. Nonholonomic Variables

The canonical formalism can be easily extended to quasi variables. We set

$$
P_{k} \equiv \partial T^{*} / \partial \omega_{k}=\text { Nonholonomic system momentum, }
$$

where

$$
\begin{equation*}
T^{*}=T^{*}(t, q, \omega) \equiv T^{*}{ }_{(q \omega)}=T^{*}[t, q, \omega(t, q, P)]=T^{*}(t, q, P) \equiv T^{*}{ }_{(q P)}, \tag{8.2.16a}
\end{equation*}
$$

and build the nonholonomic counterpart of T^{\prime} :

$$
\begin{equation*}
T^{*^{\prime}} \equiv \sum P_{k} \omega_{k}(t, q, P)-T^{*}(t, q, P) \equiv T^{*^{\prime}}(t, q, P): \tag{8.2.16b}
\end{equation*}
$$

Nonholonomic conjugate to T^{*} kinetic energy.
It is not hard to show that:
(i) the nonholonomic counterparts of the Legendre-Donkin identities are

$$
\begin{equation*}
\partial T^{* \prime} / \partial \theta_{k} \equiv \sum\left(\partial T^{* \prime} / \partial q_{l}\right)\left(\partial \dot{q}_{l} / \partial \omega_{k}\right)=\sum A_{l k}\left(\partial T^{* \prime} / \partial q_{l}\right)=-\partial T^{*} / \partial \theta_{k} \tag{8.2.16c}
\end{equation*}
$$

$\partial T^{*} / \partial P_{k}=\omega_{k} \quad$ (canonical counterpart of the Lagrange-Hamel: $\left.\partial T^{*} / \partial \omega_{k}=P_{k}\right)$,
and with

$$
\begin{align*}
H^{*} & \equiv T^{* \prime}+V(t, q)=\sum P_{k} \omega_{k}(t, q, P)-L^{*}(t, q, P) \\
& \equiv H^{*}(t, q, P) \equiv H^{*}{ }_{(q P)}=\text { Nonholonomic Hamiltonian } . \tag{8.2.16e}
\end{align*}
$$

(ii) The nonholonomic canonical equations (most likely due to Pösch1, 1913) are [assuming no further constraints; and for algebraic simplicity stationary $\omega \Leftrightarrow \dot{q}$ relationships: $\left.d q_{l} / d t=\sum A_{l k} \omega_{k}=\sum A_{l k}\left(\partial H^{*} / \partial P_{k}\right)\right]$

$$
\begin{align*}
d P_{k} / d t= & -\partial T^{*^{\prime}} / \partial \theta_{k}-\sum \sum \gamma_{k l}^{s} P_{s}\left(\partial T^{*^{\prime}} / \partial P_{l}\right)+\Theta_{k} \\
& \text { (where } \Theta_{k}=\text { total impressed force) } \tag{8.2.16f}\\
= & \partial H^{*} / \partial \theta_{k}-\sum \sum \gamma_{k l}^{s} P_{s}\left(\partial H^{*} / \partial P_{l}\right)+\Theta_{k} \tag{8.2.16~g}
\end{align*}
$$

(where $\Theta_{k}=$ nonpotential impressed force).
In the case of m Pfaffian constraints $\omega_{D}=0$, the indices in (8.2.16f, g), for the kinetic equations, are $s, k=m+1, \ldots, n ; l=m+1, \ldots, n, n+1$; and analogously for the kinetostatic equations. These equations will not be pursued any further here. For additional details, see, for example, Chetaev (1989, pp. 340-341), Corben and Stehle (1960, pp. 256-257); and for a multibody dynamics application, see Maißer (1982).

Example 8.2.1 Direct Derivation of the Hamiltonian Kinematico-inertial Identities. By $d(\ldots)$-differentiating $T^{\prime} \equiv \sum p_{k} \dot{q}_{k}-T(t, q, \dot{q})$, and with $p_{k} \equiv \partial T / \partial \dot{q}_{k}$, we find

$$
d T^{\prime}=\sum\left[p_{k} d\left(\dot{q}_{k}\right)+\dot{q}_{k} d p_{k}\right]-\left\{(\partial T / \partial t) d t+\sum\left[\left(\partial T / \partial q_{k}\right) d q_{k}+\left(\partial T / \partial \dot{q}_{k}\right) d\left(\dot{q}_{k}\right)\right]\right\}
$$

[the first and last (fourth) sums cancel each other]

$$
\begin{equation*}
=-(\partial T / \partial t) d t-\sum\left(\partial T / \partial q_{k}\right) d q_{k}+\sum \dot{q}_{k} d p_{k} . \tag{a}
\end{equation*}
$$

But also, since $T^{\prime}=T^{\prime}(t, q, p)$, we have

$$
\begin{equation*}
d T^{\prime}=\left(\partial T^{\prime} / \partial t\right) d t+\sum\left[\left(\partial T^{\prime} / \partial q_{k}\right) d q_{k}+\left(\partial T^{\prime} / \partial p_{k}\right) d p_{k}\right] \tag{b}
\end{equation*}
$$

Equating these two general $d T^{\prime}$ expressions, (a) and (b), we immediately obtain the $1+n+n=1+2 n$ Hamiltonian kinematico-inertial identities (8.2.12a):

$$
\begin{equation*}
\partial T^{\prime} / \partial t=-\partial T / \partial t, \quad \partial T^{\prime} / \partial q_{k}=-\partial T / \partial q_{k}, \quad \partial T^{\prime} / \partial p_{k}=d q_{k} / d t \tag{c}
\end{equation*}
$$

[This is another opportunity to show the advantages of (total) differentials over derivatives!] Repeating the above argument for $H \equiv \sum p_{k} \dot{q}_{k}-L(t, q, \dot{q})$, and with $p_{k} \equiv \partial L / \partial \dot{q}_{k}$, we obtain the earlier identities (8.2.12b):

$$
\begin{equation*}
\partial H / \partial t=-\partial L / \partial t, \quad \partial H / \partial q_{k}=-\partial L / \partial q_{k}, \quad \partial H / \partial p_{k}=d q_{k} / d t \tag{d}
\end{equation*}
$$

Example 8.2.2 Another Direct Derivation of the Hamiltonian Kinematico-inertial Identities.
(i) Applying chain rule to $H \equiv \sum p_{k} \dot{q}_{k}-L(t, q, \dot{q})$, we find

$$
\begin{aligned}
\partial H / \partial p_{k} & =d q_{k} / d t+\sum p_{l}\left(\partial \dot{q}_{l} / \partial p_{k}\right)-\sum\left(\partial L / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial p_{k}\right) \\
& =d q_{k} / d t+\sum\left(p_{l}-\partial L / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial p_{k}\right)=d q_{k} / d t+0=d q_{k} / d t
\end{aligned}
$$

Hence, we obtained the "reciprocal" relationships

$$
\begin{equation*}
\partial L / \partial \dot{q}_{k}=p_{k} \quad \text { and } \quad \partial H / \partial p_{k}=d q_{k} / d t . \tag{a}
\end{equation*}
$$

(ii) By $d(\ldots)$-varying $L+H-\sum p_{k} \dot{q}_{k}=0$ (=function of t, q, \dot{q}, p), we find

$$
\begin{aligned}
0=d L+d H-\sum d\left(p_{k} \dot{q}_{k}\right)=\sum & {\left[\left(\partial L / \partial q_{k}+\partial H / \partial q_{k}\right) d q_{k}+\left(\partial L / \partial \dot{q}_{k}-p_{k}\right) d\left(\dot{q}_{k}\right)\right.} \\
& \left.+\left(\partial H / \partial p_{k}-d q_{k} / d t\right) d p_{k}\right]+(\partial L / \partial t+\partial H / \partial t) d t
\end{aligned}
$$

and from this, due to (a) and the arbitrariness of the $d q$'s and $d t$, we obtain the remaining Hamiltonian identities:

$$
\begin{equation*}
\partial L / \partial q_{k}=-\partial H / \partial q_{k} \quad \text { and } \quad \partial L / \partial t=-\partial H / \partial t \tag{b}
\end{equation*}
$$

Example 8.2.3 Still Another Direct Derivation of Hamilton's Equations. By $\left(\partial / \partial q_{k}\right)$ - and $\left(\partial / \partial p_{k}\right)$-differentiating the invariant equation

$$
\begin{equation*}
L_{(q p)} \equiv L(t, q, p)=L(t, q, \dot{q}) \equiv L_{(q \dot{q})} \tag{a}
\end{equation*}
$$

we obtain, respectively,

$$
\begin{align*}
\partial L_{(q p)} / \partial q_{k} & =\partial L_{(q \dot{q})} / \partial q_{k}+\sum\left(\partial L_{(q \dot{q})} / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial q_{k}\right) \\
& =\partial L_{(q \dot{q})} / \partial q_{k}+\sum p_{l}\left(\partial \dot{q}_{l} / \partial q_{k}\right)=\partial L_{(q \dot{q})} / \partial q_{k}+\partial / \partial q_{k}\left(\sum p_{l} \dot{q}_{l}\right) \tag{b}
\end{align*}
$$

(since q and p are treated as independent)

$$
\begin{align*}
\partial L_{(q p)} / \partial p_{k} & =\sum\left(\partial L_{(q \dot{q})} / \partial \dot{q}_{l}\right)\left(\partial \dot{q}_{l} / \partial p_{k}\right)=\sum p_{l}\left(\partial \dot{q}_{l} / \partial p_{k}\right) \\
& =\partial / \partial p_{k}\left(\sum p_{l} \dot{q}_{l}\right)-\dot{q}_{k}, \tag{c}
\end{align*}
$$

from which, rearranging (collecting the q, p functions on the left sides and the rest on the right), we obtain the kinematico-inertial identities:

$$
\begin{align*}
& \partial / \partial q_{k}\left(L_{(q p)}-\sum p_{l} \dot{q}_{l}\right)=\partial L_{(q \dot{q})} / \partial q_{k} \tag{d}\\
& \partial / \partial p_{k}\left(L_{(q p)}-\sum p_{l} \dot{q}_{l}\right)=-d q_{k} / d t \tag{e}
\end{align*}
$$

Finally, (i) introducing the Hamiltonian $H(t, q, p) \equiv \sum p_{l} \dot{q}_{l}(t, q, p)-L(t, q, p)$, and (ii) expressing in (d) $\partial L_{(q \dot{q})} / \partial q_{k}$ via Lagrange's equations, say $d p_{k} / d t=\partial L_{(q \dot{q})} / \partial q_{k}$, we readily obtain the corresponding canonical equations: $d p_{k} / d t=-\partial H / \partial q_{k}$ and $d q_{k} / d t=\partial H / \partial p_{k}$.

Example 8.2.4 A Lagrangean Derivation of Hamilton's Equations. We consider an additional (fictitious) system with $2 n$ Lagrangean coordinates: $q \equiv\left(q_{1}, \ldots, q_{n}\right)$ and $p \equiv\left(p_{1}, \ldots, p_{n}\right)$, and Lagrangean function

$$
\begin{equation*}
L(t, q, p ; \dot{q}, \dot{p}) \equiv \sum p_{k} \dot{q}_{k}-H(t, q, p) \tag{a}
\end{equation*}
$$

that is, we solve the Hamiltonian definition for the Lagrangean. Now:
(i) The Lagrangean equations for the n coordinates q are, say,

$$
\begin{equation*}
0=\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=d p_{k} / d t-\left(-\partial H / \partial q_{k}\right), \quad \text { or } \quad d p_{k} / d t=-\partial H / \partial q_{k} \tag{b}
\end{equation*}
$$

while
(ii) The Lagrangean equations for the n "coordinates" p are
$0=\left(\partial L / \partial \dot{p}_{k}\right)^{\cdot}-\partial L / \partial p_{k}=(0)^{\cdot}-\left(d q_{k} / d t-\partial H / \partial p_{k}\right), \quad$ or $\quad d q_{k} / d t=\partial H / \partial p_{k}$.

And similarly for systems with more general Lagrangean equations.

Problem 8.2.1 Let $2 T=\sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}(=$ homogeneous quadratic in the $n \dot{q})$, in which case

$$
\begin{equation*}
p_{k} \equiv \partial T / \partial \dot{q}_{k}=\sum M_{k l} \dot{q}_{l} \quad\left[\text { assume that: } M_{n} \equiv \operatorname{Det}\left(M_{k l}\right) \neq 0\right] \tag{a}
\end{equation*}
$$

and, therefore, by inversion,
$\dot{q}_{l}=\sum M_{l k}^{\prime} p_{k}(=$ velocities due to given impulses applied to system, when at rest in a given configuration; hence the name coefficients of mobility for the $M_{l k}^{\prime}$),
where

$$
\begin{align*}
M_{l k}^{\prime} & \equiv\left(\text { minor of element } M_{k l} \text { in determinant } M_{n}\right) / M_{n} \\
& =\left(1 / M_{n}\right)\left(\partial M_{n} / \partial M_{k l}\right) \tag{b}
\end{align*}
$$

Show that, then,

$$
\begin{gather*}
2 T^{\prime}=\sum p_{k} \dot{q}_{k}=\sum \sum M_{k l}^{\prime} p_{k} p_{l}=\sum \sum\left[\left(1 / M_{n}\right)\left(\partial M_{n} / \partial M_{l k}\right)\right] p_{k} p_{l} \\
{\left[=\sum\left(\partial T / \partial \dot{q}_{k}\right) \dot{q}_{k}=2 T \Rightarrow T^{\prime}+T=\sum p_{k} \dot{q}_{k},\right.} \\
\text { i.e., } \left.T \text { in the } \dot{q}^{\prime} s=T^{\prime} \text { in the } p^{\prime} \text { s: } T(t, q, \dot{q})=T^{\prime}(t, q, p)\right] \tag{c}
\end{gather*}
$$

and, conjugately to (a),

$$
\begin{equation*}
d q_{k} / d t=\partial T^{\prime} / \partial p_{k} \tag{d}
\end{equation*}
$$

Also, show that:

$$
\begin{equation*}
\partial p_{k} / \partial \dot{q}_{l}=\partial p_{l} / \partial \dot{q}_{k}=\cdots \quad \text { and } \quad \partial \dot{q}_{k} / \partial p_{l}=\partial \dot{q}_{l} / \partial p_{k}=\cdots \tag{i}
\end{equation*}
$$

$$
M_{n} M_{n}^{\prime}=1, \quad \text { where } \quad M_{n}^{\prime} \equiv \operatorname{Det}\left(M_{k l}^{\prime}\right) \quad(\neq 0)
$$

Problem 8.2.2 Continuing from prob. 8.2.1, let

$$
\begin{equation*}
2 T=M_{11}\left(\dot{q}_{1}\right)^{2}+2 M_{12} \dot{q}_{1} \dot{q}_{2}+M_{22}\left(\dot{q}_{2}\right)^{2} ; \tag{a}
\end{equation*}
$$

that is, $n=2$. Show that, then,

$$
\begin{equation*}
2 T^{\prime}=M_{11}^{\prime} p_{1}^{2}+2 M_{12}^{\prime} p_{1} p_{2}+M_{22}^{\prime} p_{2}^{2}, \tag{b}
\end{equation*}
$$

where

$$
\begin{gather*}
M_{11}^{\prime}=M_{22} / M, \quad M_{22}^{\prime}=M_{11} / M, \quad M_{12}^{\prime}=-M_{12} / M, \\
M \equiv M_{2} \equiv \operatorname{Det}\left(M_{k l}\right)=M_{11} M_{22}-M_{12}^{2} ; \tag{c}
\end{gather*}
$$

and thus verify directly the Hamiltonian identities

$$
d q_{1} / d t=\partial T^{\prime} / \partial p_{1}, \quad d q_{2} / d t=\partial T^{\prime} / \partial p_{2}
$$

and

$$
\begin{equation*}
\partial T / \partial q_{1}=-\partial T^{\prime} / \partial q_{1}, \quad \partial T / \partial q_{2}=-\partial T^{\prime} / \partial q_{2} \tag{d}
\end{equation*}
$$

Problem 8.2.3 Reciprocal Theorem. Consider the following two states of motion of a scleronomic mechanical system through the same configuration:

$$
\begin{equation*}
\text { State } 1\left(q_{k}\right): \dot{q}_{k}, p_{k}=\sum M_{k l} \dot{q}_{l}, \quad \text { State } 2\left(q_{k}\right): \dot{q}_{k}^{\prime}, p_{k}^{\prime}=\sum M_{k l} \dot{q}_{l}^{\prime} . \tag{a}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\sum p_{k} \dot{q}_{k}^{\prime}=\sum p_{k}^{\prime} \dot{q}_{k} . \tag{b}
\end{equation*}
$$

For further details and applications to impulsive motion, see, for example, Lamb (1929, pp. 184-187, 206); also, the discussion in ex. 4.6.8, and Rayleigh (1894, pp. 91 ff.).

Example 8.2.5 Let us derive the Hamiltonian equations of a spherical pendulum, of mass m and length l. With the $+O z$ axis taken vertically downward (recall prob. 3.5.16, fig. 3.8), and since $x=(l \sin \theta) \cos \phi, y=(l \sin \theta) \sin \phi, z=l \cos \theta$, we readily find

$$
\begin{gather*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right]=\cdots=m l^{2}\left[(\dot{\theta})^{2}+\sin ^{2} \theta(\dot{\phi})^{2}\right] \quad\left(=2 T_{2}\right), \tag{a}\\
V=-m g l \cos \theta \quad\left(=V_{0}, V=0 \text { on plane } z=0\right) \tag{b}
\end{gather*}
$$

and, therefore,

$$
\begin{aligned}
p_{\phi} & \equiv \partial T / \partial \dot{\phi}=\left(\mathrm{ml}^{2} \sin ^{2} \theta\right) \dot{\phi} \\
& (=\text { angular momentum about the vertical axis through the origin }), \\
p_{\theta} & \equiv \partial T / \partial \dot{\theta}=\left(\mathrm{ml} l^{2}\right) \dot{\theta}
\end{aligned}
$$

($=$ angular momentum about horizontal, and perpendicular to instantaneous meridian plane axis through the origin).

Inverting (c) we immediately obtain the second set of the canonical equations:

$$
\begin{equation*}
d \phi / d t=p_{\phi} / m l^{2} \sin ^{2} \theta \quad\left(=\partial H / \partial p_{\phi}\right), \quad d \theta / d t=p_{\theta} / m l^{2} \quad\left(=\partial H / \partial p_{\theta}\right) \tag{d}
\end{equation*}
$$

Hence, the Hamiltonian of the system is

$$
\begin{align*}
H & =p_{\phi} \dot{\phi}+p_{\theta} \dot{\theta}-(T-V)=2 T-(T-V)=T+V=T(t, q, p)+V \\
& =\left(1 / 2 m l^{2}\right)\left[\left(p_{\phi}^{2} / \sin ^{2} \theta\right)+p_{\theta}^{2}\right]-m g l \cos \theta=H\left(\phi, \theta, p_{\phi}, p_{\theta}\right) \tag{e}
\end{align*}
$$

and accordingly the first set of its canonical equations (of motion) are

$$
\begin{equation*}
d p_{\phi} / d t=-\partial H / \partial \phi: \quad d p_{\phi} / d t=0 \Rightarrow p_{\phi}=\text { constant } \equiv c, \tag{f}
\end{equation*}
$$

or, thanks to the first of (d),

$$
\begin{gather*}
d \phi / d t=c / m l^{2} \sin ^{2} \theta \tag{g}\\
d p_{\theta} / d t=-\partial H / \partial \theta: d p_{\theta} / d t=\left(\cos \theta / m l^{2} \sin ^{3} \theta\right) p_{\phi}^{2}-m g l \sin \theta \tag{h}
\end{gather*}
$$

or, thanks to (f, g),

$$
\begin{equation*}
d p_{\theta} / d t=\cos \theta c^{2} / m l^{2} \sin ^{3} \theta-m g l \sin \theta \quad\left[=\left(m l^{2}\right) \ddot{\theta}\right] . \tag{i}
\end{equation*}
$$

To integrate (i), we multiply both its sides with $p_{\theta} / \dot{\theta}=(d t / d \theta) p_{\theta}=(d t / d \theta)\left(m l^{2} \dot{\theta}\right)=$ $m l^{2}$:

$$
p_{\theta}\left(d p_{\theta} / d \theta\right)=\left(\cos \theta / \sin ^{3} \theta\right) c^{2}-m^{2} g l^{3} \sin \theta
$$

and from this, by a θ-integration, we obtain the energy integral $[H=T(t, q, p)+V=$ constant $]$:

$$
\begin{equation*}
p_{\theta}^{2} / 2=\left(-1 / \sin ^{2} \theta\right)\left(c^{2} / 2\right)+m^{2} g l^{3} \cos \theta+\text { constant } . \tag{j}
\end{equation*}
$$

Of course, since here $Q_{\phi, \theta}=0$ and $\partial H / \partial t=0$, by (8.2.14, 14a) the integral (j) could have been written down immediately.

Problem 8.2.4 Show that the conjugate kinetic energy T^{\prime} of a particle of mass m moving in space equals

$$
\begin{align*}
2 m T^{\prime} & =p_{x}{ }^{2}+p_{y}{ }^{2}+p_{z}{ }^{2} & & \text { (rectangular Cartesian co } \tag{a}\\
& =p_{r}{ }^{2}+\left(p_{\phi} / r\right)^{2}+p_{z}{ }^{2} & & \text { (cylindrical coordinates) } \tag{b}\\
& =p_{r}{ }^{2}+\left(p_{\theta} / r\right)^{2}+\left(p_{\phi} / r \sin \theta\right)^{2} & & \text { (spherical coordinates). } \tag{c}
\end{align*}
$$

HINT
Recall that (prob. 3.5.15)

$$
\begin{array}{r}
2 T / m=(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}=(\dot{r})^{2}+(r \dot{\phi})^{2}+(\dot{z})^{2}=(\dot{r})^{2}+(r \dot{\theta})^{2}+(r \sin \theta \dot{\phi})^{2} . \\
\text { [Caution: } r_{\text {cylindrical coordinates }}(2 n d \text { expression }) \neq r_{\text {spherical coordinates }}(3 r d \text { expression).] }
\end{array}
$$

Problem 8.2.5 Show that the Hamiltonian of a particle of mass m moving on a uniformly rotating frame of reference (of constant inertial angular velocity $\boldsymbol{\Omega}$ is, with the usual notations,

$$
\begin{align*}
H & =p^{2} / 2 m-\boldsymbol{p} \cdot(\boldsymbol{\Omega} \times \boldsymbol{r})+V(\boldsymbol{r})=H(t, \boldsymbol{r}, \boldsymbol{p}) \\
& =v_{\text {relative }} / 2 m-m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2} / 2+V(\boldsymbol{r})=H\left(t, \boldsymbol{r}, \boldsymbol{v}_{\text {relative }}\right) . \tag{a}
\end{align*}
$$

HINT

$$
\begin{gather*}
L=v_{\text {relative }}^{2} / 2 m+m \boldsymbol{v}_{\text {relative }} \cdot(\boldsymbol{\Omega} \times \boldsymbol{r})+m(\boldsymbol{\Omega} \times \boldsymbol{r})^{2} / 2-V(\boldsymbol{r}), \tag{b}\\
H \equiv\left(\partial L / \partial \boldsymbol{v}_{\text {relative }}\right) \cdot \boldsymbol{v}_{\text {relative }}-L=\cdots, \quad \boldsymbol{p}=\partial L / \partial \boldsymbol{v}_{\text {relative }} \Rightarrow \boldsymbol{v}_{\text {relative }}=\cdots .
\end{gather*}
$$

[Recall problems of Lagrangean treatment of particles in uniformly rotating turntables (§3.16).]

Problem 8.2.6 Unified Treatment of Auxiliary Forms of Lagrange's Inertia Terms. Let

$$
\begin{align*}
2 T & =\sum \sum M_{k l}(q) \dot{q}_{k} \dot{q}_{l}=2 T(q, \dot{q}) \equiv 2 T_{\dot{q} \dot{q}} \\
& =\sum p_{k} \dot{q}_{k}=2 T(\dot{q}, p) \equiv 2 T_{\dot{q} p} \equiv 2 T_{p \dot{q}} \\
& =\sum \sum M_{k l}^{\prime}(q) p_{k} p_{l}=2 T(q, p) \equiv 2 T_{p p} \quad\left(=2 T_{(q p)} \equiv 2 T^{\prime}\right), \tag{a}
\end{align*}
$$

with all Latin indices ranging from 1 to n, and where, as we have seen,

$$
\begin{equation*}
p_{k}=\partial T_{\dot{q} \dot{q}} / \partial \dot{q}_{k} \quad \text { and } \quad \dot{q}_{k}=\partial T_{p p} / \partial p_{k} . \tag{b}
\end{equation*}
$$

Show that:

$$
\begin{align*}
2 T_{\dot{q} \dot{q}} & =\sum\left(\partial T_{\dot{q} \dot{q}} / \partial \dot{q}_{k}\right) \dot{q}_{k}, \tag{i}\\
2 T_{p \dot{q}} & =\sum\left(\partial T_{\dot{q} \dot{q}} / \partial \dot{q}_{k}\right)\left(\partial T_{p p} / \partial p_{k}\right), \tag{d}\\
2 T_{p p} & =\sum\left(\partial T_{p p} / \partial p_{k}\right) p_{k} ;
\end{align*}
$$

and

$$
\begin{align*}
& \partial T_{p p} / \partial q_{k}=-\partial T_{\dot{q} \dot{q}} / \partial q_{k} \tag{ii}\\
& \partial T_{\dot{q} p} / \partial \dot{q}_{k}=(1 / 2)\left(\partial T_{\dot{q} \dot{q}} / \partial \dot{q}_{k}\right)=(1 / 2) p_{k} \tag{g}\\
& \partial T_{\dot{q} p} / \partial p_{k}=(1 / 2)\left(\partial T_{p p} / \partial p_{k}\right)=(1 / 2) \dot{q}_{k}
\end{align*}
$$

and, therefore,

$$
\begin{array}{rlr}
E_{k}(T) & \equiv\left(\partial T / \partial \dot{q}_{k}\right)^{-}-\partial T / \partial q_{k} \equiv\left(\partial T_{\dot{q} \dot{q}} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{\dot{q} \dot{q}} / \partial q_{k} \\
& \equiv d p_{k} / d t-\partial T_{\dot{q} \dot{q}} / \partial q_{k} & \\
& =\left(\partial T_{\dot{q} \dot{q}} / \partial \dot{q}_{k}\right)^{\cdot}+\partial T_{p p} / \partial q_{k} \equiv d p_{k} / d t+\partial T_{p p} / \partial q_{k} \\
& =2\left(\partial T_{\dot{q} p} / \partial \dot{q}_{k}\right)^{\cdot}-\partial T_{\dot{q} \dot{q}} / \partial q_{k} \\
& =2\left(\partial T_{\dot{q} p} / \partial \dot{q}_{k}\right)^{\cdot}+\partial T_{p p} / \partial q_{k} & \text { (Hamilton) } \tag{i}
\end{array}
$$

HINT
First, using (a-e), verify that

$$
\begin{equation*}
T_{p p}=-T_{\dot{q} \dot{q}}+2 T_{\dot{q} p}=-T_{\dot{q} \dot{q}}+\sum p_{k} \dot{q}_{k} \Rightarrow T_{p p}+T_{\dot{q} \dot{q}}-2 T_{\dot{q} p}=0 \tag{j}
\end{equation*}
$$

then differentiate the above totally, and then equate the coefficients of its differentials to zero.
[See Weinstein (1901, pp. 95-97, 186-189) (earliest publication: 1882); also Budde (1890, Vol. 1, pp. 397-401), and Watson and Burbury (1879, pp. 14-22). Such "mixed" equations have been used by Maxwell et al. in electromechanical investigations; see, for example, Maxwell (1877 and 1920, pp. 127-136, 158-161).]

Problem 8.2.7 As a simple application of the preceding problem, consider a particle of mass m described by spherical polar coordinates. In this case, and with the usual notations,

$$
\begin{equation*}
2 T=m\left[(\dot{r})^{2}+(r \dot{\theta})^{2}+(r \sin \theta \dot{\phi})^{2}\right]=2 T_{\dot{q} \dot{q}} \tag{a}
\end{equation*}
$$

Show that:

$$
\begin{equation*}
p_{r}=m \dot{r}, \quad p_{\theta}=m r^{2} \dot{\theta}, \quad p_{\phi}=m r^{2} \sin ^{2} \theta \dot{\phi} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
2 T_{\dot{q} p}=\dot{r} p_{r}+\dot{\theta} p_{\theta}+\dot{\phi} p_{\phi} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
2 T_{p p}=(1 / m)\left[p_{r}^{2}+\left(p_{\theta} / r\right)^{2}+\left(p_{\phi} / r \sin \theta\right)^{2}\right] . \tag{ii}
\end{equation*}
$$

Hence, verify that, for example,

$$
\begin{align*}
& \partial T_{\dot{q} \dot{q}} / \partial \dot{\theta}=2\left(\partial T_{\dot{q} p} / \partial \dot{\theta}\right)=\cdots, \tag{e}\\
& \partial T_{\dot{q} \dot{q}} / \partial \theta=-\partial T_{p p} / \partial \theta=\cdots, \tag{f}\\
& \partial T_{p p} / \partial p_{\theta}=2\left(\partial T_{\dot{q} p} / \partial p_{\theta}\right)=\cdots . \tag{g}
\end{align*}
$$

Problem 8.2.8 Let the general solution of Hamilton's equations be

$$
\begin{equation*}
q_{k}=q_{k}\left(t ; c_{1}, \ldots, c_{2 n}\right) \equiv q_{k}(t ; c), \quad p_{k}=p_{k}\left(t ; c_{1}, \ldots, c_{2 n}\right) \equiv p_{k}(t ; c), \tag{a}
\end{equation*}
$$

where $c \equiv\left(c_{1}, \ldots, c_{2 n}\right)=2 n$ constants of integration; and we assume that the Jacobian of the q 's and p 's relative to the c 's nowhere vanishes. Then,

$$
\begin{equation*}
H=H(t, q, p)=H[t, q(t ; c), p(t ; c)] \equiv H(t, c) \tag{b}
\end{equation*}
$$

(i) Show that

$$
\begin{equation*}
\partial H / \partial c_{\alpha}=d / d t\left[\sum\left(\partial p_{k} / \partial c_{\alpha}\right) q_{k}\right]-\partial / \partial c_{\alpha}\left(\sum \dot{p}_{k} q_{k}\right) \quad(\alpha=1, \ldots, 2 n) \tag{c}
\end{equation*}
$$

(ii) Show that eqs. (c) are equivalent to the Hamiltonian equations:

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k} \tag{d}
\end{equation*}
$$

that is, if (d) hold, so do (c); and vice versa.

HINT

Note the identity

$$
d / d t\left[\sum\left(\partial p_{k} / \partial c_{\alpha}\right) q_{k}\right]-\partial / \partial c_{\alpha}\left(\sum \dot{p}_{k} q_{k}\right)=\sum\left[\left(\partial p_{k} / \partial c_{\alpha}\right) \dot{q}_{k}-\left(\partial q_{k} / \partial c_{\alpha}\right) \dot{p}_{k}\right]
$$

Problem 8.2.9 Consider the linear differential form (Pfaffian form) in the variables $x=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{equation*}
d f \equiv \sum X_{k}(x) d x_{k} . \tag{a}
\end{equation*}
$$

By definition, its bilinear covariant is (recall §2.8)

$$
\begin{align*}
d_{2}\left(d_{1} f\right)-d_{1}\left(d_{2} f\right) & \equiv \sum\left(d_{2} X_{k} d_{1} x_{k}-d_{1} X_{k} d_{2} x_{k}\right) \\
& =\cdots=\sum \sum\left(\partial X_{k} / \partial x_{l}-\partial X_{l} / \partial x_{k}\right) d_{2} x_{l} d_{1} x_{k} \tag{b}
\end{align*}
$$

Show that Hamilton's equations, as well as the power theorem (for $Q_{k}=0$), result from the vanishing of the bilinear covariant of

$$
\begin{align*}
& d A \equiv \sum p_{k} d q_{k}-H d t \\
& \quad\left[=\sum p_{\alpha} d q_{\alpha} \quad(\alpha=1, \ldots, n+1) ; \text { with } p_{n+1} \equiv-H \text { and } q_{n+1} \equiv t\right] \tag{c}
\end{align*}
$$

under arbitrary variations $d_{1}(\ldots)$ and $d_{2}(\ldots)$; that is, from

$$
\begin{align*}
0 & =d_{2}\left(d_{1} A\right)-d_{1}\left(d_{2} A\right) \\
& =d_{2}\left(\sum p_{k} d_{1} q_{k}-H d_{1} t\right)-d_{1}\left(\sum p_{k} d_{2} q_{k}-H d_{2} t\right) \\
& =\sum\left(d_{2} p_{k} d_{1} q_{k}-d_{1} p_{k} d_{2} q_{k}\right)-\left(d_{2} H d_{1} t-d_{1} H d_{2} t\right) . \tag{d}
\end{align*}
$$

Problem 8.2.10 Consider a potential (but possibly rheonomic) system described by n Lagrangean coordinates.
(i) Define the Hamiltonian-like function

$$
\begin{equation*}
H^{\prime} \equiv \sum\left(p_{k} q_{k}\right)^{\cdot}-L=\cdots=\sum \dot{p}_{k} q_{k}+H=H^{\prime}(t, p, \dot{p}) \tag{a}
\end{equation*}
$$

Show that the corresponding equations of motion are

$$
\begin{equation*}
q_{k}=\partial H^{\prime} / \partial \dot{p}_{k} \quad \text { and } \quad d q_{k} / d t=\partial H^{\prime} / \partial p_{k} \quad\left[\Rightarrow\left(\partial H^{\prime} / \partial \dot{p}_{k}\right)^{\cdot}-\partial H^{\prime} / \partial p_{k}=0\right] \tag{b}
\end{equation*}
$$

(ii) Similarly, define the Hamiltonian-like function

$$
\begin{equation*}
H^{\prime \prime} \equiv \sum \dot{p}_{k} q_{k}-L=\cdots=\sum\left(\dot{p}_{k} q_{k}-p_{k} \dot{q}_{k}\right)+H=H^{\prime \prime}(t, \dot{q}, \dot{p}) \tag{c}
\end{equation*}
$$

Show that the corresponding equations of motion are

$$
\begin{equation*}
q_{k}=\partial H^{\prime \prime} / \partial \dot{p}_{k} \quad \text { and } \quad p_{k}=-\partial H^{\prime \prime} / \partial \dot{q}_{k} \tag{d}
\end{equation*}
$$

(iii) Discuss possible theoretical and practical advantages/disadvantages of (b) and (d) over the equations of Hamilton; and verify that $L+H-H^{\prime}+H^{\prime \prime}=0$.
Problem 8.2.11 Show, by means of general considerations and/or concrete examples, that the $2 n$ first-order Hamiltonian equations of a problem, in general, do not coincide with the first-order equations (or state-space) version of its n secondorder Lagrangean equations.

REMARK

This has important consequences in nonlinear dynamics (including chaos): The Hamiltonian first-order version of a Lagrangean (second-order) problem may be divergenceless \Rightarrow "volume/area preserving" or incompressible (by analogy with continuum fluid mechanics), in the phase space (p, q), i.e. for a one degree-of-freedom system for simplicity,

$$
\begin{equation*}
\operatorname{div}(\dot{q}, \dot{p})=\partial \dot{q} / \partial q+\partial \dot{p} / \partial p=\partial / \partial q(\partial H / \partial p)+\partial / \partial p(-\partial H / \partial q)=0 \tag{a}
\end{equation*}
$$

a fundamental property of conservative/non-dissipative Hamiltonian systems, known as Liouville's theorem ($\S 8.9$, p. 1183; $\S 8.12$, p. 1236); BUT, the first-order version of the same problem in the "Lagrangean phase/state space" ($q, d q / d t \equiv v$) [$\{3.12]$, may not be, i.e. (with some simple self-explanatory notations):

$$
\begin{equation*}
\operatorname{div}(\dot{q}, \dot{v}) \equiv \partial \dot{q} / \partial q+\partial \dot{v} / \partial v=\cdots \neq 0, \quad v \equiv \dot{q} \tag{b}
\end{equation*}
$$

in general. See e.g. Tabor (1989, pp. 49-52); also, McCauley (1993, pp. 9-12).

8.3 THE ROUTHIAN CENTRAL EQUATION AND ROUTH'S EQUATIONS OF MOTION

The method of Routh (1877) constitutes an ingenious combination of the methods of Hamilton and Lagrange that results in two sets of equations of motion:
(i) One Hamiltonian-like for t and, say the first $M q$'s and corresponding p 's, to be henceforth denoted for notational clarity by ψ 's and Ψ 's, respectively; that is,

$$
\begin{equation*}
\left(q_{1}, \ldots, q_{M}\right) \equiv\left(\psi_{1}, \ldots, \psi_{M}\right) \equiv\left(\psi_{i}\right) \equiv \psi \tag{8.3.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p_{1}, \ldots, p_{M}\right) \equiv\left(\Psi_{1}, \ldots, \Psi_{M}\right) \equiv\left(\Psi_{i}\right) \equiv \Psi \tag{8.3.1b}
\end{equation*}
$$

and
(ii) One Lagrange-like for t and the remaining $n-M q$'s and corresponding \dot{q} 's, to be henceforth denoted by q 's and \dot{q} 's, respectively; that is,

$$
\begin{equation*}
\left(q_{M+1}, \ldots, q_{n}\right) \equiv\left(q_{p}\right) \equiv q \quad \text { and } \quad\left(\dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \equiv\left(\dot{q}_{p}\right) \equiv \dot{q}, \tag{8.3.2a,b}
\end{equation*}
$$

where the subscripts \boldsymbol{i} and \boldsymbol{p} stand for ignorable (or cyclic) and palpable (or positional, or essential), respectively. Such a mixed approach combines the best of both Hamilton and Lagrange, and proves particularly useful in problems of latent (or cyclic) and steady motions. (All these terms/concepts are detailed in the following sections.) With this idea in mind, we begin by rewriting the most general Lagrangean expression for the kinetic energy of a system as follows:

$$
\begin{align*}
T & =T\left(t, q_{1}, \ldots, q_{n} ; \dot{q}_{1}, \ldots, \dot{q}_{n}\right) \\
& =T\left(t ; q_{1}, \ldots, q_{M} ; q_{M+1}, \ldots, q_{n} ; \dot{q}_{1}, \ldots, \dot{q}_{M} ; \dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \\
& \equiv T\left(t ; \psi_{1}, \ldots, \psi_{M} ; q_{M+1}, \ldots, q_{n} ; \dot{\psi}_{1}, \ldots, \dot{\psi}_{M} ; \dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \\
& \equiv T(t, \psi, q ; \dot{\psi}, \dot{q}) \tag{8.3.3a}
\end{align*}
$$

and, in there, replace $\dot{\psi} \equiv\left(\dot{\psi}_{1}, \ldots, \dot{\psi}_{M}\right)$ in terms of their momenta $\Psi \equiv\left(\Psi_{1}, \ldots, \Psi_{M}\right)$, and so on, à la Hamilton; that is, $\dot{\psi}_{i}=\dot{\psi}_{i}(t, \psi, q ; \Psi, \dot{q})$. The result is

$$
\begin{align*}
T & =T[t, \psi, q ; \dot{\psi}(t, \psi, q ; \Psi, \dot{q}), \dot{q}] \\
& =T\left(t ; \psi_{1}, \ldots, \psi_{M} ; q_{M+1}, \ldots, q_{n} ; \Psi_{1}, \ldots, \Psi_{M} ; \dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \\
& =T(t, \psi, q ; \Psi, \dot{q}) \equiv T_{\psi \Psi} . \tag{8.3.3b}
\end{align*}
$$

Next, with the help of the new (conjugate-like, to within a minus sign) function

$$
\begin{align*}
T^{\prime \prime} & \equiv T-\sum \Psi_{i} \dot{\psi}_{i}=\left(T-\sum \Psi_{i} \dot{\psi}_{i}\right)_{\dot{\psi}=\dot{\psi}(t ; \psi, q ; \Psi, \dot{q})} \\
& =T^{\prime \prime}(t, \psi, q ; \Psi, \dot{q}), \tag{8.3.3c}
\end{align*}
$$

we transform the fundamental central equation (8.2.1; with $k=1, \ldots, n$)

$$
\begin{equation*}
\delta I=\delta^{\prime} W: \quad d / d t\left(\sum p_{k} \delta q_{k}\right)-\delta T=\sum Q_{k} \delta q_{k}, \tag{8.3.4a}
\end{equation*}
$$

or, [assuming that $\left(\delta q_{k}\right)^{\cdot}=\delta\left(\dot{q}_{k}\right)$]

$$
\begin{equation*}
\sum\left[\dot{p}_{k} \delta q_{k}+p_{k} \delta\left(\dot{q}_{k}\right)\right]-\delta T=\sum Q_{k} \delta q_{k} \tag{8.3.4b}
\end{equation*}
$$

and since $\delta T=\delta T_{\psi \Psi}$, to

$$
\begin{equation*}
\sum\left[\dot{p}_{k} \delta q_{k}+p_{k} \delta\left(\dot{q}_{k}\right)\right]-\delta T^{\prime \prime}-\sum\left[\delta \Psi_{i} \dot{\psi}_{i}+\Psi_{i} \delta\left(\dot{\psi}_{i}\right)\right]=\sum Q_{k} \delta q_{k} \tag{8.3.4c}
\end{equation*}
$$

or, carrying out the $\delta T^{\prime \prime}$-variation (with $i=1, \ldots, M ; p=M+1, \ldots, n$):

$$
\begin{align*}
& \sum\left[\dot{p}_{k} \delta q_{k}+p_{k} \delta\left(\dot{q}_{k}\right)\right]-\sum\left[\left(\partial T^{\prime \prime} / \partial \psi_{i}\right) \delta \psi_{i}+\left(\partial T^{\prime \prime} / \partial \Psi_{i}\right) \delta \Psi_{i}\right] \\
& \quad-\sum\left[\left(\partial T^{\prime \prime} / \partial q_{p}\right) \delta q_{p}+\left(\partial T^{\prime \prime} / \partial \dot{q}_{p}\right) \delta\left(\dot{q}_{p}\right)\right]-\sum\left[\dot{\psi}_{i} \delta \Psi_{i}+\Psi_{i} \delta\left(\dot{\psi}_{i}\right)\right]=\sum Q_{k} \delta q_{k}, \tag{8.3.4d}
\end{align*}
$$

or, collecting $\delta q, \delta \psi, \delta(\dot{q})$, and $\delta \Psi$-proportional terms [while recalling that $q_{i} \equiv \psi_{i} \Rightarrow \delta q_{i} \equiv \delta \psi_{i}, \delta\left(\dot{q}_{i}\right) \equiv \delta\left(\dot{\psi}_{i}\right)$, and $\left.p_{i} \equiv \Psi_{i}\right]$, we finally obtain the Routhian central equation:

$$
\begin{align*}
\sum\left(d p_{k} / d t-\partial T^{\prime \prime} / \partial q_{k}-Q_{k}\right) \delta q_{k} & +\sum\left(p_{p}-\partial T^{\prime \prime} / \partial \dot{q}_{p}\right) \delta\left(\dot{q}_{p}\right) \\
& -\sum\left(d \psi_{i} / d t+\partial T^{\prime \prime} / \partial \Psi_{i}\right) \delta \Psi_{i}=0 \tag{8.3.4e}
\end{align*}
$$

which holds for all $\delta q_{k}, \delta\left(\dot{q}_{p}\right)$, and $\delta \Psi_{i}$ (again, with $k=1, \ldots, n ; p=M+1, \ldots, n$; $i=1, \ldots, M)$ and, as expected, is fundamental to all subsequent developments.

Now, as with (8.2.3):

1. If the $\delta q_{k}, \delta\left(\dot{q}_{p}\right)$, and $\delta \Psi_{i}$ are mutually independent, then (8.3.4e) leads immediately to the equations of Routh [1877 — not to be confused with the earlier RouthVoss equations (§3.5)!]:
(i) $d p_{k} / d t=\partial T^{\prime \prime} / \partial q_{k}+Q_{k}: \quad d \Psi_{i} / d t=\partial T^{\prime \prime} / \partial \psi_{i}+Q_{i} \quad(i=1, \ldots, M)$,

$$
\begin{equation*}
d p_{p} / d t=\partial T^{\prime \prime} / \partial q_{p}+Q_{p} \quad(p=M+1, \ldots, n) \tag{8.3.5a}
\end{equation*}
$$

$$
\begin{equation*}
d \psi_{i} / d t=-\partial T^{\prime \prime} / \partial \Psi_{i} \quad(i=1, \ldots, M) \tag{ii}
\end{equation*}
$$

Of these equations, $(8.3 .5 \mathrm{a}, \mathrm{b})$ are kinetic (i.e., equations of motion), whereas (8.3.5c, d) are kinematico-inertial identities. The Hamilton-like equations (8.3.5a, c) (with $-T^{\prime \prime}$ playing the role of our earlier T^{\prime}), are Routh's equations for ψ and Ψ; while the Lagrange-like equations (8.3.5b, d) (with $T^{\prime \prime}$ playing the role of T) are Routh's equations for q and \dot{q}; that is, rearranging:
Hamilton-like Routh equations:

$$
\begin{equation*}
d \Psi_{i} / d t=-\partial\left(-T^{\prime \prime}\right) / \partial \psi_{i}+Q_{i}, \quad d \psi_{i} / d t=\partial\left(-T^{\prime \prime}\right) / \partial \Psi_{i} \tag{8.3.6a}
\end{equation*}
$$

Lagrange-like Routh equations:

$$
\begin{gather*}
d p_{p} / d t=\partial T^{\prime \prime} / \partial q_{p}+Q_{p}, \quad p_{p}=\partial T^{\prime \prime} / \partial \dot{q}_{p} \quad\left(=\partial T / \partial \dot{q}_{p}\right) \\
\Rightarrow\left(\partial T^{\prime \prime} / \partial \dot{q}_{p}\right)^{\cdot}-\partial T^{\prime \prime} / \partial q_{p}=Q_{p} . \tag{8.3.6b}
\end{gather*}
$$

- If $M=0$ - that is, if no velocities $\dot{\psi}_{i}$ are eliminated through $\dot{\psi}_{i}(t, \psi, q ; \Psi, \dot{q})$ - then the group of equations (8.3.6a) drops; while the group (8.3.6b) coincide with Lagrange's equations for T (since then $T^{\prime \prime}=T$).
- If, on the other hand, $M=n$-that is, if all $\dot{\psi}_{i}$ are eliminated through $\dot{\psi}_{i}(t, \psi, q ; \Psi, \dot{q})$ - then the situation is reversed: group (8.3.6b) drops (since then $T^{\prime \prime}=-T^{\prime}$), while group (8.3.6a) coincides with Hamilton's equations. Schematically,

$$
\text { M: } \quad 0(\text { Lagrange }) \leftarrow \cdots-\cdots \rightarrow n(\text { Hamilton }) .
$$

Finally, comparing the above with the corresponding Lagrangean equations $d p_{k} / d t=\partial T / \partial q_{k}+Q_{k}$, we immediately obtain the additional Routhian kinema-tico-inertial identities

$$
\begin{array}{ll}
\partial T / \partial q_{k}=\partial T^{\prime \prime} / \partial q_{k}: \quad & \partial T / \partial \psi_{i}=\partial T^{\prime \prime} / \partial \psi_{i} \quad(i=1, \ldots, M) \\
& \partial T / \partial q_{p}=\partial T^{\prime \prime} / \partial q_{p} \quad(p=M+1, \ldots, n) \tag{8.3.7b}
\end{array}
$$

which can be utilized in any set of Hamiltonian- or Lagrangean-type equations of motion.

In sum, we have the following two groups of such kinematico-inertial identities:

$$
\begin{array}{lll}
\partial T^{\prime \prime} / \partial \psi_{i}=\partial T / \partial \psi_{i} & \text { and } & \partial T^{\prime \prime} / \partial \Psi_{i}=-d \psi_{i} / d t ; \\
\partial T^{\prime \prime} / \partial q_{p}=\partial T / \partial q_{p} & \text { and } & \partial T^{\prime \prime} / \partial \dot{q}_{p}=\partial T / \partial \dot{q}_{p} \quad\left(=p_{p}\right) ; \tag{8.3.8b}
\end{array}
$$

see also examples on direct derivations, below.
If $p_{k} \equiv \partial L / \partial \dot{q}_{k}$, then $(8.3 .6 \mathrm{a}, \mathrm{b})$ are replaced, respectively, by the Routhian equations:

Hamilton-like Routh equations:

$$
\begin{equation*}
d \Psi_{i} / d t=\partial R / \partial \psi_{i}+Q_{i}, \quad d \psi_{i} / d t=-\partial R / \partial \Psi_{i} \tag{8.3.9a}
\end{equation*}
$$

Lagrange-like Routh equations:

$$
\begin{align*}
d p_{p} / d t & =\partial R / \partial q_{p}+Q_{p}, \quad p_{p}=\partial R / \partial \dot{q}_{p} \quad\left(=\partial L / \partial \dot{q}_{p}\right) \\
& \Rightarrow E_{p}(R) \equiv\left(\partial R / \partial \dot{q}_{p}\right)^{\cdot}-\partial R / \partial q_{p}=Q_{p} ; \tag{8.3.9b}
\end{align*}
$$

where

$$
\begin{equation*}
R \equiv\left(L-\sum \Psi_{i} \dot{\psi}_{i}\right)_{\dot{\psi}=\dot{\psi}(t ; ; \psi, q ; \Psi, \dot{q})}=R(t ; \psi, q ; \Psi, \dot{q}): \tag{8.3.9c}
\end{equation*}
$$

Routhian function, or Modified Lagrangean,
and

$$
\begin{equation*}
L=L(t ; \psi, q ; \Psi, \dot{q}) \equiv T_{\psi \Psi}-V \equiv L_{\psi \Psi} \tag{8.3.9d}
\end{equation*}
$$

Lagrangean expressed in Routhian variables;
and the nonpotential forces Q_{k} have also been expressed in the Routhian variables $t, \psi, q, \Psi, \dot{q}$; while (8.3.7a, b) and (8.3.8a, b) are replaced, respectively, by

$$
\begin{equation*}
\partial L / \partial \psi_{i}=\partial R / \partial \psi_{i} \quad \text { and } \quad \partial L / \partial q_{p}=\partial R / \partial q_{p} \tag{8.3.9e}
\end{equation*}
$$

and

$$
\begin{align*}
& \partial R / \partial \psi_{i}=\partial L / \partial \psi_{i} \quad \text { and } \quad \partial R / \partial \Psi_{i}=-d \psi_{i} / d t ; \tag{8.3.9f}\\
& \partial R / \partial q_{p}=\partial L / \partial q_{p} \quad \text { and } \quad \partial R / \partial \dot{q}_{p}=\partial L / \partial \dot{q}_{p} \quad\left(=p_{p}\right) ; \tag{8.3.9g}
\end{align*}
$$

that is, the Routhian is a Hamiltonian [times (-1)] for the ψ_{i}, and a Lagrangean for the q_{p}.

HISTORICAL

The Routhian was also introduced, independently, by Helmholtz (in 1884), who called it "new kinetic potential"; that is, (negative of) new Lagrangean $=$ (negative of) Routhian. See, for example, Helmholtz [1898, pp. 361-369, eq. (200a)], Webster (1912, pp. 176-179).

To find the relation between the Routhian and the Hamiltonian (or generalized energy), we proceed as follows:

$$
\begin{array}{rlrl}
H & \equiv \sum p_{k} \dot{q}_{k}-L & \\
& =\sum \dot{\psi}_{i}\left(\partial L / \partial \dot{\psi}_{i}\right)+\sum \dot{q}_{p}\left(\partial L / \partial \dot{q}_{p}\right)-L & & {[\text { invoking }(8.3 .9 \mathrm{~g})]} \\
& =\sum \dot{q}_{p}\left(\partial R / \partial \dot{q}_{p}\right)-\left(L-\sum \dot{\psi}_{i} \Psi_{i}\right) & & {[\text { invoking }(8.3 .9 \mathrm{c})]} \\
& =\sum \dot{q}_{p}\left(\partial R / \partial \dot{q}_{p}\right)-R & &
\end{array}
$$

from which we immediately conclude that

$$
\begin{align*}
& R=\sum \dot{q}_{p}\left(\partial R / \partial \dot{q}_{p}\right)-H=\sum p_{p} \dot{q}_{p}-H \\
& \quad\left[-\left(H-\sum p_{p} \dot{q}_{p}\right)=L-\sum \Psi_{i} \dot{\psi}_{i}: \text { equivalent definitions of the Routhian }\right] . \tag{8.3.10}
\end{align*}
$$

REMARK

Some authors define the Routhian as the negative of ours; that is, as

$$
R \equiv \sum \dot{\psi}_{i}\left(\partial L / \partial \dot{\psi}_{i}\right)-L \equiv \sum \Psi_{i} \dot{\psi}_{i}-L
$$

In such a case, all the above results hold intact, but with R replaced with $-R$; then (8.3.9a) look exactly like Hamiltonian equations for the ψ 's, Ψ 's. That definition would be "Hamiltonian" in spirit-that is, Routhian $=$ Hamiltonian $-\sum p_{p} \dot{q}_{p}$; ours, being closer to engineering, is "Lagrangean" - that is, Routhian $=$ Lagrangean $-\sum \Psi_{i} \dot{\psi}_{i}$.
2. If the $n \delta q_{k}$ are restricted by the m Pfaffian constraints

$$
\begin{equation*}
\delta \theta_{D} \equiv \sum a_{D k} \delta q_{k}=0 \quad\left[\operatorname{rank}\left(a_{D k}\right)=m ; D=1, \ldots, m(<n)\right], \tag{8.3.11a}
\end{equation*}
$$

while the $n-M \delta\left(\dot{q}_{p}\right)$ and $M \delta \Psi_{i}$ are still viewed as independent, then application of the method of Lagrangean multipliers to the Routhian central equation (8.3.4e) readily yields the constrained Routhian equations:

$$
d p_{k} / d t=\partial T^{\prime \prime} / \partial q_{k}+Q_{k}+\sum \lambda_{D} a_{D k},
$$

or, split in two groups (assuming that $m<M$ and $m<n-M$):

$$
\begin{equation*}
d \Psi_{i} / d t=\partial T^{\prime \prime} / \partial \psi_{i}+Q_{i}+\sum \lambda_{D} a_{D i}, \quad d p_{p} / d t=\partial T^{\prime \prime} / \partial q_{p}+Q_{p}+\sum \lambda_{D} a_{D p} \tag{8.3.11b}
\end{equation*}
$$

and the earlier kinematico-inertial identities

$$
\begin{equation*}
d \psi_{i} / d t=-\partial T^{\prime \prime} / \partial \Psi_{i}, \quad p_{p}=\partial T^{\prime \prime} / \partial \dot{q}_{p} \tag{8.3.11c}
\end{equation*}
$$

The formulation of the above in terms of the Routhian, whenever the impressed forces are partly or wholly potential, does not offer any difficulties and will be left to the reader.
3. For an extension of these results to quasi variables, see, for example, Chetaev (1989, pp. 339-346).

Example 8.3.1 Direct Derivation of the Routhian Kinematico-inertial Identities. By $d(\ldots)$-differentiating $T^{\prime \prime} \equiv\left(T-\sum \Psi_{i} \dot{\psi}_{i}\right)=T^{\prime \prime}(t, \psi, q ; \Psi, \dot{q})$, we find

$$
\begin{align*}
d T^{\prime \prime}= & (\partial T / \partial t) d t+\sum\left[\left(\partial T / \partial q_{k}\right) d q_{k}+\left(\partial T / \partial \dot{q}_{k}\right) d \dot{q}_{k}\right] \\
& -\sum\left[d \Psi_{i} \dot{\psi}_{i}+\Psi_{i} d \dot{\psi}_{i}\right] \\
= & \cdots=(\partial T / \partial t) d t+\sum\left[\left(\partial T / \partial \psi_{i}\right) d \psi_{i}-\dot{\psi}_{i} d \Psi_{i}\right] \\
& +\sum\left[\left(\partial T / \partial q_{p}\right) d q_{p}+\left(\partial T / \partial \dot{q}_{p}\right) d \dot{q}_{p}\right] . \tag{a}
\end{align*}
$$

But also, since $T^{\prime \prime}=T^{\prime \prime}(t, \psi, q ; \Psi, \dot{q})$, we will have

$$
\begin{align*}
d T^{\prime \prime}=\left(\partial T^{\prime \prime} / \partial t\right) d t & +\sum\left[\left(\partial T^{\prime \prime} / \partial \psi_{i}\right) d \psi_{i}+\left(\partial T^{\prime \prime} / \partial \Psi_{i}\right) d \Psi_{i}\right] \\
& +\sum\left[\left(\partial T^{\prime \prime} / \partial q_{p}\right) d q_{p}+\left(\partial T^{\prime \prime} / \partial \dot{q}_{p}\right) d \dot{q}_{p}\right] . \tag{b}
\end{align*}
$$

Therefore, equating the coefficients of these two general $d T^{\prime \prime}$ expressions, (a) and (b), since the differentials involved are arbitrary, we immediately obtain the following $1+2 M+2(n-M)=2 n+1$ Routhian kinematico-inertial identities:

$$
\begin{align*}
& \partial T^{\prime \prime} / \partial t=\partial T / \partial t, \tag{c}\\
& \partial T^{\prime \prime} / \partial \psi_{i}=\partial T / \partial \psi_{i}, \tag{d}\\
& \partial T^{\prime \prime} / \partial q_{p}=\partial T / \partial q_{p}, \tag{e}
\end{align*} \quad \partial T^{\prime \prime} / \partial T_{i}=-\dot{\psi}_{i} ; \partial \dot{q}_{p}=\partial T / \partial \dot{q}_{p} \quad\left(=p_{p}\right) .
$$

Let us resummarize our findings:
(i) Equations (c), first of (d), and first of (e) are fundamentally equivalent, if we think of time as the $(n+1)$ th Lagrangean coordinate: $q_{n+1} \equiv t$;
(ii) The first of eqs. (d) are, essentially, Hamiltonian in nature, while the first of eqs. (e) are Lagrangean; and both sets are used in the corresponding kinetic equations;
(iii) The second of eqs. (d) are the Hamiltonian counterpart of the Lagrangean identity $\partial T / \partial \dot{\psi}_{i}=\Psi_{i}$ (with $T^{\prime \prime}$ replaced with $-T^{\prime \prime}$); while
(iv) The second of eqs. (e) are purely Lagrangean.

Repeating this procedure for the Routhian $R=L-\sum \Psi_{i} \dot{\psi}_{i}$, with $p_{k}=\partial L / \partial \dot{q}_{k}$, we similarly obtain the following identities:

$$
\begin{array}{ll}
\partial R / \partial t=\partial L / \partial t \\
\partial R / \partial \psi_{i}=\partial L / \partial \psi_{i}, & \partial R / \partial \Psi_{i}=-d \psi_{i} / d t \\
\partial R / \partial q_{p}=\partial L / \partial q_{p}, & \partial R / \partial \dot{q}_{p}=\partial L / \partial \dot{q}_{p} \quad\left(=p_{p}\right) \tag{h}
\end{array}
$$

or, compactly,

$$
\begin{array}{ll}
\partial R / \partial q_{k}=\partial L / \partial q_{k} & (k=1, \ldots, n \text { and } n+1), \\
\partial R / \partial \dot{q}_{p}=\partial L / \partial \dot{q}_{p} & (p=M+1, \ldots, n), \\
\partial R / \partial \Psi_{i}=-d \psi_{i} / d t & (i=1, \ldots, M) . \tag{k}
\end{array}
$$

Last, since by (8.2.10b), $\partial H / \partial t=-\partial L / \partial t$, eq. (f) shows that if a Lagrangean is explicitly independent of time, then so are the corresponding Routhian and Hamiltonian; and for potential systems [since, then, $d H / d t=\partial H / \partial t$, by (8.2.14)], the latter is also a constant.

Example 8.3.2 Another Direct Derivation of the Routhian Kinematico-inertial Identities. Applying chain rule, carefully, to the Routhian definition $R=$ $L-\sum \Psi_{i} \dot{\psi}_{i}$, where

$$
R=R(t, \psi, q ; \Psi, \dot{q}), \quad L=L(t, \psi, q ; \dot{\psi}, \dot{q}), \quad \text { and } \quad \dot{\psi}_{i}=\dot{\psi}_{i}(t, \psi, q ; \Psi, \dot{q}), \quad \text { a) }
$$

we obtain (with $i, j=1, \ldots, M ; p=M+1, \ldots, n$):
(i) $\quad \partial R / \partial t=\left[\partial L / \partial t+\sum\left(\partial L / \partial \dot{\psi}_{i}\right)\left(\partial \dot{\psi}_{i} / \partial t\right)\right]-\sum \Psi_{i}\left(\partial \dot{\psi}_{i} / \partial t\right)=\partial L / \partial t$;
(ii) $\partial R / \partial q_{p}=\left[\partial L / \partial q_{p}+\sum\left(\partial L / \partial \dot{\psi}_{i}\right)\left(\partial \dot{\psi}_{i} / \partial q_{p}\right)\right]-\sum \Psi_{i}\left(\partial \dot{\psi}_{i} / \partial q_{p}\right)=\partial L / \partial q_{p}$;
(iii) $\partial R / \partial \dot{q}_{p}=\left[\partial L / \partial \dot{q}_{p}+\sum\left(\partial L / \partial \dot{\psi}_{i}\right)\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right)\right]-\sum \Psi_{i}\left(\partial \dot{\psi}_{i} / \partial \dot{q}_{p}\right)=\partial L / \partial \dot{q}_{p} ;$
(iv) $\partial R / \partial \psi_{i}=\left[\partial L / \partial \psi_{i}+\sum\left(\partial L / \partial \dot{\psi}_{j}\right)\left(\partial \dot{\psi}_{j} / \partial \psi_{i}\right)\right]-\sum \Psi_{j}\left(\partial \dot{\psi}_{j} / \partial \psi_{i}\right)=\partial L / \partial \psi_{i} ;$
(v) $\partial R / \partial \Psi_{i}=\sum\left(\partial L / \partial \dot{\psi}_{j}\right)\left(\partial \dot{\psi}_{j} / \partial \Psi_{i}\right)-\left[\dot{\psi}_{i}+\sum \Psi_{j}\left(\partial \dot{\psi}_{j} / \partial \Psi_{i}\right)\right]=-\dot{\psi}_{i} ;$
which are indeed the earlier Routhian identities.
Clearly, the method of the preceding example (total differentials) seems simpler and safer than this one (derivatives), as in the earlier derivations of the Hamiltonian equations (exs. 8.2.1-3).

Analytical Structure of the Routhian

Let us consider (with no loss of generality, just algebraic simplicity) a scleronomic system whose kinetic energy T is, therefore, a homogeneous quadratic function in its chosen n Lagrangean velocities \dot{q}_{k} 's $(k=1, \ldots, n)$. First, we decompose T into the following three parts:

$$
\begin{equation*}
T=T_{\dot{q} \dot{q}}+T_{\dot{q} \dot{\psi}}+T_{\dot{\psi} \dot{\psi}}=T(\psi, q ; \dot{\psi}, \dot{q}) \tag{8.3.12}
\end{equation*}
$$

where

$$
2 T_{\dot{q} \dot{q}} \equiv \sum \sum a_{p q} \dot{q}_{p} \dot{q}_{q}=\begin{array}{r}
\text { homogeneous quadratic in the } \dot{q} \text { s } \\
\left(a_{p q}=a_{q p} ; \text { positive definite }\right)
\end{array}
$$

$$
\begin{align*}
& T_{\dot{q} \dot{\psi}} \equiv \sum \sum b_{p i} \dot{q}_{p} \dot{\psi}_{i}=\text { homogeneous bilinear in the } \dot{q} \text { 's and } \dot{\psi} \text { 's } \\
& \text { (in general, } b_{p i} \neq b_{i p} \text {; sign indefinite), } \tag{8.3.12b}
\end{align*}
$$

$2 T_{\dot{\psi} \dot{\psi}} \equiv \sum \sum c_{i j} \dot{\psi}_{i} \dot{\psi}_{j}=$ homogeneous quadratic in the $\dot{\psi}$'s
$c_{i j}=c_{j i} ;$ positive definite, otherwise the cyclic kinetic energy $T_{\psi \dot{\psi}}$ would not be positive definite); (8.3.12c)
with $i, j=1, \ldots, M ; p, q=M+1, \ldots, n$; and the coefficients are functions of all n q_{k} 's. [It is not hard to see that, in the most general case, $T_{\dot{\psi} \dot{\psi}}, T_{\dot{q} \dot{\psi}}$, and $T_{\dot{q} \dot{q}}$ contain, respectively (with $g \equiv n-m$), $M+\left(\frac{1}{2}\right) M(M-1), M g$, and $g+\left(\frac{1}{2}\right) g(g-1)$ terms; that is, a total of $\left(\frac{1}{2}\right)(M+g)(M+g+1)=\left(\frac{1}{2}\right) n(n+1)$ terms, as expected.]

Now, solving the linear system

$$
\begin{equation*}
\Psi_{i} \equiv \partial T / \partial \dot{\psi}_{i}=\sum c_{j i} \dot{\psi}_{j}+\sum b_{p i} \dot{q}_{p} \Rightarrow \sum c_{j i} \dot{\psi}_{j}=\Psi_{i}-\sum b_{p i} \dot{q}_{p} \tag{8.3.12d}
\end{equation*}
$$

for the $\dot{\psi}_{j}$, via Cramer's rule [i.e., inverting (8.3.12d), which, since $\left(c_{j i}\right)$ is nonsingular, is possible], we obtain

$$
\begin{equation*}
\dot{\psi}_{j}=\sum C_{j i}\left(\Psi_{i}-\sum b_{p i} \dot{q}_{p}\right), \tag{8.3.12e}
\end{equation*}
$$

where

$$
\begin{gathered}
C_{j i}=\left[\text { cofactor of element } c_{j i} \text { in } \operatorname{Det}\left(c_{j i}\right)\right] / \operatorname{Det}\left(c_{j i}\right)=C_{i j} \\
(=\text { known function of the } q ' s \text { and } \psi ' s) ;
\end{gathered}
$$

and then substituting these expressions for the $\dot{\psi}_{j}$ into (8.3.12-8.3.12c), and using well-known properties of inverse matrices, we obtain

$$
\begin{equation*}
T=T_{2,0}+T_{0,2}=T(\psi, q ; \Psi, \dot{q}) \quad\left(\equiv T_{\dot{q} \Psi}\right), \tag{8.3.12f}
\end{equation*}
$$

where

$$
\begin{align*}
& 2 T_{2,0} \equiv \sum \sum\left(a_{p q}-\sum \sum C_{j i} b_{p j} b_{q i}\right) \dot{q}_{p} \dot{q}_{q}, \tag{8.3.12g}\\
& 2 T_{0,2} \equiv \sum \sum C_{j i} \Psi_{j} \Psi_{i} ; \tag{8.3.12h}
\end{align*}
$$

that is, $T=T(\psi, q ; \Psi, \dot{q})$ does not contain any bilinear terms in the \dot{q} 's and Ψ 's!
With the help of the above, the modified kinetic energy $T^{\prime \prime}$ becomes, successively,

$$
\begin{align*}
T^{\prime \prime} & \equiv T-\sum \Psi_{i} \dot{\psi}_{i}=T-\sum \Psi_{i}\left[\sum C_{i j}\left(\Psi_{j}-\sum b_{p j} \dot{q}_{p}\right)\right] \\
& =T_{2,0}+T_{1,1}^{\prime \prime}-T_{0,2} \equiv T_{2,0}^{\prime \prime}+T_{1,1}^{\prime \prime}+T^{\prime \prime}{ }_{0,2} \\
& =T^{\prime \prime}(\psi, q ; \Psi, \dot{q}), \tag{8.3.12i}
\end{align*}
$$

where

$$
\begin{align*}
2 T_{2,0}^{\prime \prime} & \equiv \sum \sum\left(a_{p q}-\sum \sum C_{j i} b_{p j} b_{q i}\right) \dot{q}_{p} \dot{q}_{q} \equiv \sum \sum r_{p q}(q) \dot{q}_{p} \dot{q}_{q} \\
& =2 T_{2,0} \quad(=\text { positive definite in the } \dot{q} \text { 's }) \tag{8.3.12j}
\end{align*}
$$

$$
T_{1,1}^{\prime \prime} \equiv \sum \sum\left(\sum C_{j i} b_{p i}\right) \Psi_{j} \dot{q}_{p} \equiv \sum r_{p}(q, \Psi) \dot{q}_{p}
$$

[No counterpart in $T=T(\psi, q ; \Psi, \dot{q}) ;$ i.e., $T_{1,1}=0 ;$ sign indefinite], (8.3.12k)

$$
\begin{align*}
2 T^{\prime \prime}{ }_{0,2} & \equiv-\sum \sum C_{j i} \Psi_{j} \Psi_{i}=2 T^{\prime \prime}{ }_{0,2}(q, \Psi) \\
& =-2 T_{0,2} \quad(=\text { negative definite in the } \Psi ’ \mathrm{~s}) . \tag{8.3.121}
\end{align*}
$$

Conversely, if $T^{\prime \prime}=T^{\prime \prime}{ }_{2,0}+T^{\prime \prime}{ }_{1,1}+T^{\prime \prime}{ }_{0,2}$, then (by Routh's identities and the homogeneous function theorem),

$$
\begin{align*}
T & \equiv T^{\prime \prime}+\sum \Psi_{i} \dot{\psi}_{i}=T^{\prime \prime}-\sum \Psi_{i}\left(\partial T^{\prime \prime} / \partial \Psi_{i}\right) \\
& =\left(T^{\prime \prime}{ }_{2,0}+T^{\prime \prime}{ }_{1,1}+T_{0,2}{ }_{0,2}-\left(T^{\prime \prime}{ }_{1,1}+2 T^{\prime \prime}{ }_{0,2}\right)\right. \\
& =T^{\prime \prime}{ }_{2,0}-T_{0,2}^{\prime \prime}=T(\psi, q ; \Psi, \dot{q}) \quad[\text { Compare this with (8.3.12f) and (8.3.12)]. } \tag{8.3.12~m}
\end{align*}
$$

In view of these results, the Lagrangean and Routhian assume, respectively, the following forms:

$$
\begin{align*}
L & =T-V=\left(T_{2,0}+T_{0,2}\right)-V=T_{2,0}-\left(V-T_{0,2}\right) \\
& =\left(T^{\prime \prime}{ }_{2,0}-T_{0,2}^{\prime}\right)-V=T^{\prime \prime}{ }_{2,0}-\left(V+T_{0,2}^{\prime \prime}\right)=L(\psi, q ; \Psi, \dot{q}), \tag{8.3.13}\\
R & =L-\sum \Psi_{i} \dot{\psi}_{i}=L+\sum\left(\partial T^{\prime \prime} / \partial \Psi_{i}\right) \Psi_{i} \\
& =\left(T^{\prime \prime}{ }_{2,0}-T^{\prime \prime}{ }_{0,2}-V\right)+\left(2 T^{\prime \prime}{ }_{0,2}+T_{1,1}^{\prime \prime}\right) \\
& \equiv R_{2}+R_{1}+R_{0}=R(\psi, q ; \Psi, \dot{q}), \tag{8.3.14}
\end{align*}
$$

where

$$
\begin{equation*}
R_{2} \equiv T_{2,0}^{\prime \prime}=T_{2,0}, \quad R_{1} \equiv T_{1,1}^{\prime \prime}, \quad R_{0} \equiv T_{0,2}^{\prime \prime}-V=-T_{0,2}-V \tag{8.3.14a}
\end{equation*}
$$

These remarkable identities seem to be due to Routh (also, Kelvin and Helmholtz), and are very useful in the theory of cyclic systems (§8.4).
[For additional explicit expressions of the Routhian, and so on, see, for example: Gantmacher [1970, pp. 242-252 (§48)], Lur'e [1968, pp. 340-351 (§7.15-7.17); also contains the decomposition into Routhian variables in the general nonstationary/ rheonomic T case], Merkin (1974, pp. 24-36), Routh [1877 and 1975, pp. 63-64, 9394; 1905(b), pp. 341-342], Winkelmann and Grammel (1927, pp. 470-474); also Easthope (1964, pp. 382-383), Grammel (1950, Vol. 1, pp. 255-258), Heun (1914, pp. 454-457).]

Problem 8.3.1 Continuing from the above, let

$$
\begin{equation*}
T=T_{\dot{q} \dot{q}}+T_{\dot{q} \dot{\psi}}+T_{\dot{\psi} \dot{\psi}}=T(\psi, q ; \dot{\psi}, \dot{q}) . \tag{a}
\end{equation*}
$$

Using the homogeneous function theorem, show that its modified kinetic energy

$$
\begin{equation*}
T^{\prime \prime}=T-\sum \Psi_{i} \dot{\psi}_{i}=T-\sum\left(\partial T / \partial \dot{\psi}_{i}\right) \dot{\psi}_{i} \tag{b}
\end{equation*}
$$

equals

$$
\begin{equation*}
T^{\prime \prime}=T_{\dot{q} \dot{q}}-T_{\dot{\psi} \dot{\psi}}=T^{\prime \prime}(\psi, q ; \dot{\psi}, \dot{q}) ; \tag{c}
\end{equation*}
$$

that is, $T^{\prime \prime}=T^{\prime \prime}(\psi, q ; \dot{\psi}, \dot{q})$ does not contain any bilinear terms in the variables \dot{q} and $\dot{\psi}$!

Problem 8.3.2 Continuing from the above, show that Routh's nonkinetic equations (i.e., his kinematico-inertial identities) transform further to

$$
\begin{equation*}
d \psi_{i} / d t=-\partial T^{\prime \prime} / \partial \Psi_{i}=\cdots=\partial T_{0,2} / \partial \Psi_{i}-\partial K_{2,2} / \partial \pi_{i}, \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
2 T_{0,2}=-2 T_{0,2}^{\prime \prime} \equiv \sum \sum C_{j i} \Psi_{j} \Psi_{i} \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
2 K_{2,2} \equiv \sum \sum C_{j i}\left(\sum b_{p j} \dot{q}_{p}\right)\left(\sum b_{q i} \dot{q}_{q}\right) \equiv \sum \sum C_{j i} \pi_{j} \pi_{i} . \tag{c}
\end{equation*}
$$

Example 8.3.3 (May be omitted in a first reading). Here, we carry out a matrix derivation of the above results on the structure of the Routhian, for the benefit of those more comfortable with that currently popular notation.

With the notations $(\ldots)^{\mathrm{T}} \equiv$ transpose of matrix $(\ldots),(\ldots)^{-1} \equiv$ inverse of matrix (...), and

$$
\begin{gather*}
\dot{\mathbf{q}}^{\mathrm{T}}=\left(\dot{q}_{M+1}, \ldots, \dot{q}_{n}\right), \quad \dot{\boldsymbol{\psi}}^{\mathrm{T}}=\left(\dot{\psi}_{1}, \ldots, \dot{\psi}_{M}\right), \quad \boldsymbol{\Psi}^{\mathrm{T}}=\left(\Psi_{1}, \ldots, \Psi_{M}\right), \tag{a}\\
\mathbf{a}=\left(a_{p q}\right)=\left(a_{q p}\right)=\mathbf{a}^{\mathrm{T}}, \quad \mathbf{b}=\left(b_{i p}\right) \neq\left(b_{p i}\right)=\mathbf{b}^{\mathrm{T}}, \quad \mathbf{c}=\left(c_{i j}\right)=\left(c_{j i}\right)=\mathbf{c}^{\mathrm{T}},
\end{gather*}
$$

we have the following correspondences with the earlier indicial equations:
(8.3.12-8.3.12c): $\quad 2 T=\dot{\mathbf{q}}^{\mathrm{T}} \mathbf{a} \dot{\mathbf{q}}+2 \dot{\boldsymbol{\psi}}^{\mathrm{T}} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}+\dot{\psi}^{\mathrm{T}} \mathbf{c} \dot{\psi}$,
(8.3.12d):

$$
\begin{equation*}
\partial T / \partial \dot{\boldsymbol{\psi}}=\mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}+\mathbf{c} \dot{\boldsymbol{\psi}}=\boldsymbol{\Psi} \tag{d}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\boldsymbol{\psi}}=\mathbf{c}^{-1}\left(\boldsymbol{\Psi}-\mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}\right) \equiv \mathbf{C}\left(\boldsymbol{\Psi}-\mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}\right) \Rightarrow \dot{\boldsymbol{\psi}}^{\mathrm{T}}=\left(\boldsymbol{\Psi}^{\mathrm{T}}-\dot{\mathbf{q}}^{\mathrm{T}} \mathbf{b}\right) \mathbf{C}, \tag{8.3.12e}
\end{equation*}
$$

[since \mathbf{c} is symmetric, so is its inverse $\left.\mathbf{C} \equiv\left(C_{j i}\right): \mathbf{C} \equiv \mathbf{c}^{-1}=\left(\mathbf{c}^{-1}\right)^{\mathrm{T}} \equiv \mathbf{C}^{\mathrm{T}}\right]$
(8.3.12f-h):

$$
\begin{align*}
T= & {\left[\text { since } \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}=\dot{\mathbf{q}}^{\mathrm{T}} \mathbf{b} \mathbf{C} \boldsymbol{\Psi}\right.} \\
& (\text { easily proved by indicial notation })] \\
= & (1 / 2) \dot{\mathbf{q}}^{\mathrm{T}}\left(\mathbf{a}-\mathbf{b} \mathbf{C} \mathbf{b}^{\mathrm{T}}\right) \dot{\mathbf{q}}+(1 / 2) \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi} \\
\equiv & T_{2,0}+T_{0,2}=T^{\prime \prime}{ }_{2,0}-T^{\prime \prime}{ }_{0,2}, \tag{f}
\end{align*}
$$

(8.3.12i-8.3.14a): $\quad \boldsymbol{\Psi}^{\mathrm{T}} \dot{\boldsymbol{\psi}}=\cdots=\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi}-\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C b}^{\mathrm{T}} \dot{\mathbf{q}}=-2 T^{\prime \prime}{ }_{0,2}-\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}}$,

$$
\begin{equation*}
R=(T-V)-\boldsymbol{\Psi}^{\mathrm{T}} \dot{\boldsymbol{\psi}}=\cdots=R_{2}+R_{1}+R_{0} \tag{h}
\end{equation*}
$$

$$
\begin{align*}
& R_{2} \equiv T^{\prime \prime}{ }_{2,0}=T_{2,0}=(1 / 2) \dot{\mathbf{q}}^{\mathrm{T}}\left(\mathbf{a}-\mathbf{b} \mathbf{C} \mathbf{b}^{\mathrm{T}}\right) \dot{\mathbf{q}}, \tag{h1}\\
& R_{1} \equiv T^{\prime \prime}{ }_{1,1}=\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \mathbf{b}^{\mathrm{T}} \dot{\mathbf{q}} \tag{h2}\\
& R_{0} \equiv T^{\prime \prime}{ }_{0,2}-V=-\left(V+T_{0,2}\right)=-(1 / 2) \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi}-V . \tag{h3}
\end{align*}
$$

If $\mathbf{b}=\mathbf{0}$ - that is, if the \dot{q} 's and $\dot{\psi}$'s are uncoupled in the original T, eq. (c) - then R reduces to

$$
\begin{equation*}
R=(1 / 2) \dot{\mathbf{q}}^{\mathrm{T}} \mathbf{a} \dot{\mathbf{q}}-(1 / 2) \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\Psi}-V \tag{h4}
\end{equation*}
$$

For an extension of the above to general nonstationary systems, see, for example, Otterbein (1981, pp. 31-35).

8.4 CYCLIC SYSTEMS; EQUATIONS OF KELVIN-TAIT

Let us begin with the holonomic, possibly rheonomic, system whose configurations are determined by the n Lagrangean coordinates q_{1}, \ldots, q_{n}. The system will be called cyclic, or gyrostatic, if the following conditions apply:
(i) A number of these coordinates, say (as in §8.3) the first $M(\leq n)$:

$$
\begin{equation*}
\left(q_{1}, \ldots, q_{M}\right) \equiv\left(\psi_{1}, \ldots, \psi_{M}\right) \equiv\left(\psi_{i}\right) \equiv \psi, \tag{8.4.1a}
\end{equation*}
$$

do not appear explicitly in either its kinetic energy or its impressed forces; only the corresponding Lagrangean velocities

$$
\begin{equation*}
\left(\dot{q}_{1}, \ldots, \dot{q}_{M}\right) \equiv\left(\dot{\psi}_{1}, \ldots, \dot{\psi}_{M}\right) \equiv\left(\dot{\psi}_{i}\right) \equiv \dot{\psi} \tag{8.4.1b}
\end{equation*}
$$

appear there, and, of course time t and the remaining coordinates and/or velocities

$$
\begin{equation*}
\left(q_{M+1}, \ldots, q_{n}\right) \equiv\left(q_{p}\right) \equiv q \quad \text { and } \quad\left(\dot{q}_{M+1}, \ldots, \dot{q}_{n}\right) \equiv\left(\dot{q}_{p}\right) \equiv \dot{q} \tag{8.4.1c}
\end{equation*}
$$

respectively; that is,

$$
\begin{equation*}
\partial T / \partial \psi_{i}=0 \quad \text { but, in general, } \quad \partial T / \partial \dot{\psi}_{i} \neq 0 \Rightarrow T=T(t ; q, \dot{\psi}, \dot{q}) . \tag{8.4.2a}
\end{equation*}
$$

(ii) The corresponding impressed forces vanish; that is,

$$
\begin{equation*}
Q_{i}=0, \quad \text { but } \quad Q_{p}=Q_{p}(q) \neq 0 . \tag{8.4.2b}
\end{equation*}
$$

If all impressed forces are wholly potential, then the above requirements are replaced, respectively by

$$
\begin{equation*}
\partial L / \partial \psi_{i}=0 \quad \text { and } \quad \partial L / \partial \dot{\psi}_{i} \neq 0 \Rightarrow L=L(t ; q, \dot{\psi}, \dot{q}) \tag{8.4.2c}
\end{equation*}
$$

[\Rightarrow the ψ do not appear explicitly in the corresponding Lagrangean equations of motion $E_{q}(L)=0, E_{\psi}(L)=0\left(\Rightarrow \partial L / \partial \dot{\psi}_{i}=\right.$ constant - recall (3.12.12c) and see below $\left.)\right]$
The coordinates ψ, and corresponding velocities $\dot{\psi}$, are called cyclic (Helmholtz), or absent (Routh), or kinosthenic, or speed (J. J. Thomson), or ignorable (Whittaker); for example, the angular coordinates of flywheels of frictionless gyrostats, included in a system of bodies ("housings"), relative to their housings, are such cyclic coordinates. [The term ignorable seems, in general, more appropriate since such coordinates may occur in nonspinning systems; e.g., the kinetic energy of a translating rigid body contains only the (...)-derivatives of the coordinates of its center of mass, but not these coordinates themselves.]

The remaining coordinates q, and corresponding velocities \dot{q}, are called palpable, or positional, since in many problems they are the only ones directly visible, or manifest; for example, the angle of nutation of a spinning gyroscope.

Below, we apply Routh's method and relations (§8.3) to obtain equations of motion for such cyclic systems, in terms of their positional coordinates alone. Thanks to (8.4.2a-b), the Lagrangean equations corresponding to the cyclic coordinates/variables, become

$$
\begin{equation*}
\left(\partial T / \partial \dot{\psi}_{i}\right)^{\cdot}-\partial T / \partial \psi_{i}=Q_{i}: \quad\left(\partial T / \partial \dot{\psi}_{i}\right)^{\cdot}=0 \Rightarrow \partial T / \partial \dot{\psi}_{i} \equiv \Psi_{i}=\text { constant } \equiv C_{i} ; \tag{8.4.3}
\end{equation*}
$$

that is, the momenta Ψ_{i} corresponding to the cyclic coordinates ψ_{i} are constants of the motion. [Conversely, however, if $\partial T / \partial \dot{\psi}_{i}=0$, then $\partial T / \partial \psi_{i}=0$, and as a result $T=T(t ; q, \dot{q})$; that is, the evolution of the ψ 's does not affect that of the q 's at all!] Therefore, by $\S 8.3$, the Routhian of a cyclic system is a function of t, q, \dot{q} and $\Psi \equiv\left(\Psi_{i}\right)$; indeed, by (8.3.9c) and with $C \equiv\left(C_{i}\right)$,

$$
R \equiv\left(L-\sum \Psi_{i} \dot{\psi}_{i}\right)_{\dot{\psi}=\dot{\psi}(t ; q ; \dot{q} ; C)}
$$

[after solving the linear equations (8.4.3) for the $\dot{\psi}$ in terms of $t, q, \dot{q}, C]$

$$
\begin{align*}
& =L[t, q, \dot{q}, \dot{\psi}(t ; q, \dot{q} ; C) ; C]-\sum \Psi_{i} \dot{\psi}_{i}(t ; q, \dot{q} ; C) \\
& =R(t ; q, \dot{q} ; C) \\
& {\left[\Rightarrow L=\sum C_{i} \dot{\psi}_{i}(t ; q, \dot{q} ; C)+R(t ; q, \dot{q} ; C)\right]} \tag{8.4.4}
\end{align*}
$$

which shows that, since the ψ have been completely eliminated (or ignored), our system has been reduced to one with only $n-M$ Lagrangean coordinates, new reduced Lagrangean R, and therefore, Lagrange-type Routhian equations for the positional coordinates (8.3.9b):

$$
\begin{equation*}
\left(\partial R / \partial \dot{q}_{p}\right)^{\cdot}-\partial R / \partial q_{p}=Q_{p}, \tag{8.4.5}
\end{equation*}
$$

where the Q_{p} are nonpotential impressed positional forces. [As Kilmister and Reeve aptly put it (our notation): "we may in R put $\Psi_{i}=C_{i}$ before differentiation and thus consider the motion of the subsystem $\left(q_{p}\right)$ conjugate to the ignorable system $\left(\psi_{i}\right)$ " (1966, p. 294).]

Solving these equations, we obtain the palpable motion $q_{p}(t)$. Then, as (8.4.4) shows,

$$
\begin{align*}
R & =\text { known function of time } \\
& \Rightarrow \partial R / \partial C_{i}=\text { known function of time } \equiv-f_{i}(t ; C), \tag{8.4.6}
\end{align*}
$$

from which, since $d \psi_{i} / d t=-\left(\partial R / \partial \Psi_{i}\right)$,

$$
\begin{align*}
\psi_{i} & =-\int\left(\partial R / \partial \Psi_{i}\right) d t+\text { constant }=\int f_{i}(t ; C) d t+\text { constant } \\
& =\psi_{i}(t, C)+\text { constant } \tag{8.4.6a}
\end{align*}
$$

that is, the problem has been reduced to the $n-M$ equations (8.4.5) and the M quadratures (8.4.6a); or, equivalently [since every ignorable coordinate generates
two integrals (§3.12)], the order of the system has been reduced by $2 M$. [Since $d \psi_{i} / d t=\partial H / \partial \Psi_{i}$, similar results hold in terms of the Hamiltonian of cyclic systems; see, for example, McCuskey (1959, p. 208 ff .).]

REMARK

Kilmister (1964, pp. 43, 46) and others have suggested an alternative handling of cyclic systems via Hamel's method of quasi variables and equations (chaps. 2 and 3). According to this method, we choose the following quasi velocities:

$$
\begin{array}{ll}
\omega_{i} \equiv \partial L / \partial \dot{\psi}_{i}-C_{i} & (=0) \quad(i=1, \ldots, M) \\
\omega_{p} \equiv \dot{q}_{p} \quad(\neq 0) & (p=M+1, \ldots, n) \tag{8.4.7b}
\end{array}
$$

The resulting $n-M$ kinetic equations (Hamel \rightarrow noncyclic Routhian) plus the M "cyclicity" constraints (8.4.7a) constitute a determinate system of n equations for the n velocities $\left(\dot{\psi}_{i}, \dot{q}_{p}\right)$. After solving these equations, we can then proceed to the M kinetostatic equations (Hamel \rightarrow cyclic Routhian) and determine the reaction forces associated with these constraints. For a rare implementation of these ideas, see, for example, Vujanovic (1970); also, ex. 8.4.2, below.

Example 8.4.1 Routhian Method in Problem of Central Motion. Let us consider a particle P, of mass m, in plane motion under a radial force. Here,

$$
\begin{gather*}
2 T=m\left[(\dot{r})^{2}+(r \dot{\phi})^{2}\right] \quad(r, \phi: \text { inertial plane polar coordinates }) \tag{a}\\
Q_{r}=Q_{r}(r) \quad \text { and } \quad Q_{\phi}=0 \tag{b}
\end{gather*}
$$

From the obvious ignorability of ϕ, we obtain the (area) integral

$$
\begin{align*}
p_{\phi} & \equiv \partial T / \partial \dot{\phi}=m r^{2} \dot{\phi} \equiv \Psi_{\phi}=\text { constant } \equiv m C \\
& \Rightarrow \dot{\phi}=C / r^{2} \quad(\neq \text { constant }) \tag{c}
\end{align*}
$$

Hence, the modified kinetic energy equals

$$
\begin{align*}
T^{\prime \prime} & =[T-\dot{\phi}(\partial T / \partial \dot{\phi})]_{\dot{\phi}=\dot{\phi}(r ; C)}=(m / 2)\left[(\dot{r})^{2}+C^{2} / r^{2}\right]-m\left(C^{2} / r^{2}\right) \\
& =(m / 2)\left[(\dot{r})^{2}-C^{2} / r^{2}\right]=T^{\prime \prime}(r, \dot{r} ; C), \tag{d}
\end{align*}
$$

and so the Lagrangean equation of motion of the nonignorable coordinate r is

$$
\begin{equation*}
\left(\partial T^{\prime \prime} / \partial \dot{r}\right)^{\cdot}-\partial T^{\prime \prime} / \partial r=Q_{r}: \quad m\left(\ddot{r}-C^{2} / r^{3}\right)=Q_{r} \tag{e}
\end{equation*}
$$

Multiplying (e) with \dot{r}, and then integrating, we easily obtain the energy integral

$$
\begin{equation*}
(m / 2)\left[(\dot{r})^{2}+C^{2} / r^{2}\right]=\int Q_{r} d r+\text { constant } \tag{f}
\end{equation*}
$$

Example 8.4.2 Direct Elimination of Ignorable Coordinates from the Lagrangean Equations of Motion; and Some General Theoretical Conclusions. Let us consider, with no loss of generality, a holonomic, scleronomic, and potential system with M ignorable coordinates $\psi \equiv\left(\psi_{1}, \ldots, \psi_{M}\right)$, and $n-M$ nonignorable, or positional, coordinates $q \equiv\left(q_{M+1}, \ldots, q_{n}\right)$, so that $L=L(q, \dot{q}, \dot{\psi})$. Below, we show, quite
generally and with no recourse to Routh's method, that the ψ 's can be eliminated from the $n-M$ Lagrangean equations for the q 's. For concreteness, let us take two ignorable coordinates, ψ_{1}, ψ_{2}, and two positional coordinates, q_{3}, q_{4}; that is, $M=2, n-M=4-2=2$. Then we will have, with the usual notations,

$$
\begin{align*}
T= & (1 / 2)\left(M_{33} \dot{q}_{3} \dot{q}_{3}+M_{44} \dot{q}_{4} \dot{q}_{4}+2 M_{34} \dot{q}_{3} \dot{q}_{4}\right) \\
& +\left(M_{13} \dot{q}_{3}+M_{14} \dot{q}_{4}\right) \dot{\psi}_{1}+\left(M_{23} \dot{q}_{3}+M_{24} \dot{q}_{4}\right) \dot{\psi}_{2} \\
& +(1 / 2)\left(M_{11} \dot{\psi}_{1} \dot{\psi}_{1}+M_{22} \dot{\psi}_{2} \dot{\psi}_{2}+2 M_{12} \dot{\psi}_{1} \dot{\psi}_{2}\right), \tag{a}
\end{align*}
$$

where the inertia coefficients $M_{k l}=M_{l k}(k, l=1, \ldots, 4)$ and the potential energy V are functions of $q_{3,4}$ only. From the above it follows easily that:
(i) Lagrange's equations for the q 's are (with $p=3,4$):

$$
\begin{align*}
\left(M_{p 3} \ddot{q}_{3}\right. & \left.+M_{p 4} \ddot{q}_{4}+M_{p 1} \ddot{\psi}_{1}+M_{p 2} \ddot{\psi}_{2}\right) \\
& +\left[\left(\partial M_{p 3} / \partial q_{3}\right) \dot{q}_{3}+\left(\partial M_{p 3} / \partial q_{4}\right) \dot{q}_{4}\right] \dot{q}_{3} \\
& +\left[\left(\partial M_{p 4} / \partial q_{3}\right) \dot{q}_{3}+\left(\partial M_{p 4} / \partial q_{4}\right) \dot{q}_{4}\right] \dot{q}_{4} \\
& +\left[\left(\partial M_{p 1} / \partial q_{3}\right) \dot{q}_{3}+\left(\partial M_{p 1} / \partial q_{4}\right) \dot{q}_{4}\right] \dot{\psi}_{1} \\
& +\left[\left(\partial M_{p 2} / \partial q_{3}\right) \dot{q}_{3}+\left(\partial M_{p 2} / \partial q_{4}\right) \dot{q}_{4}\right] \dot{\psi}_{2}=-\partial V / \partial q_{p} \tag{b}
\end{align*}
$$

(ii) Lagrange's equations for the ψ 's are (with $i=1,2$)

$$
\begin{equation*}
\left(\partial L / \partial \dot{\psi}_{i}\right)^{\cdot}=0 \Rightarrow \Psi_{i} \equiv \partial L / \partial \dot{\psi}_{i}=\text { constant } \equiv C_{i}, \tag{c}
\end{equation*}
$$

or, using (a) and rearranging,

$$
\begin{align*}
& M_{11} \dot{\psi}_{1}+M_{12} \dot{\psi}_{2}=C_{1}-\left(M_{13} \dot{q}_{3}+M_{14} \dot{q}_{4}\right), \tag{cl}\\
& M_{21} \dot{\psi}_{1}+M_{22} \dot{\psi}_{2}=C_{2}-\left(M_{23} \dot{q}_{3}+M_{24} \dot{q}_{4}\right) . \tag{c2}
\end{align*}
$$

Now, solving the system (c1, 2), we obtain $\dot{\psi}_{1}$ and $\dot{\psi}_{2}$ in terms of $C_{1}, C_{2} ; q_{3}, q_{4} ; \dot{q}_{3}, \dot{q}_{4}$; and, then, (...) -differentiating these expressions we obtain $\ddot{\psi}_{1}$ and $\ddot{\psi}_{2}$ in terms of the same variables and their $(\ldots)^{\circ}$-derivatives. [Here, $\dot{C}_{i}=0$, but this procedure applies, in principle, to noncyclic systems too.]

Next, substituting the so-found expressions for $\dot{\psi}_{1}, \dot{\psi}_{2} ; \ddot{\psi}_{1}, \ddot{\psi}_{2}$ into eqs. (b), we obtain, finally, two Lagrangean equations containing only q_{3} and q_{4} and their (...) derivatives; that is, as far as the equations of motion are concerned, ψ_{1} and ψ_{2} have been "ignored"-the system has been reduced to one with only $n-M=2$ Lagrangean coordinates. Solving these two nonignorable equations, we find the palpable motion $q_{3}(t)$ and $q_{4}(t)$; and, then, substituting these solutions back into (c1, 2), and integrating, we obtain the cyclic motion $\psi_{1}(t)$ and $\psi_{2}(t)$. As one might expect, finding $q_{3,4}(t)$ is, in general, considerably harder than finding $\psi_{1,2}(t)$.

General Conclusions

(i) The difference between this approach and the earlier general Routhian methodology is that here we eliminated the $\dot{\psi}$ and $\ddot{\psi}$ from each of the q-equations of motion; whereas there ($\S 8.3$) this elimination was done in one step, right at the beginning that is, by replacing the Lagrangean with the Routhian. For few-degree-of-freedom systems, the two approaches are practically equivalent, but for larger systems, as well
as for theoretical arguments and insights, the general Routhian approach is much preferable.

This is analytically identical with the difference between the following:
(a) Enforcing Pfaffian (and generally nonholonomic) constraints, like (c, c1, 2), not in L but in each Lagrangean equation of motion; and
(b) Enforcing such constraints directly in L; that is, replacing the "relaxed" Lagrangean L with the "constrained" one L_{o} or L^{*} (chap. 3), and then applying it to "modified" equations of motion.

Actually, Routh's method modifies the Lagrangean (replaces it with the Routhian, which incorporates the constraints), and then applies it to ordinary Lagrangean equations of motion. In sum, in such approaches: Either we still operate with the Lagrangean $\left(L \rightarrow L_{o}\right.$ or $\left.L^{*}\right)$, and modify the form of the equations of motion (Lagrange \rightarrow Voronets or Hamel); or we modify the Lagrangean $(\rightarrow$ Routhian), and leave the form of the equations of motion unchanged.
(ii) The simple example below shows why if we enforce (c)-like constraints into the Lagrangean, then, in general, the ordinary Lagrangean equations for the independent coordinates (here the q 's), do not hold. Let us consider, for algebraic simplicity, a potential system with the single ignorable coordinate ψ (i.e., $M=1$) and, hence, Lagrangean $L=L(t, q, \dot{q}, \dot{\psi})$. Enforcing the Pfaffian cyclicity constraint

$$
\begin{equation*}
\partial L / \partial \dot{\psi}=\text { constant } \equiv C \Rightarrow \dot{\psi}=\dot{\psi}(t, q, \dot{q} ; C) \equiv f(t, q, \dot{q} ; C) \tag{d}
\end{equation*}
$$

into L, we obtain the "constrained" Lagrangean L_{o} :

$$
\begin{equation*}
L=L(t, q, \dot{q}, \dot{\psi})=L[t, q, \dot{q}, \dot{\psi}(t, q, \dot{q} ; C)] \equiv L_{o}(t, q, \dot{q} ; C)=L_{o} \tag{e}
\end{equation*}
$$

Applying chain rule to this equality, carefully, we find (with $p=2, \ldots, n$)

$$
\begin{align*}
& \partial L_{o} / \partial q_{p}=\partial L / \partial q_{p}+(\partial L / \partial \dot{\psi})\left(\partial f / \partial q_{p}\right)=\partial L / \partial q_{p}+C\left(\partial f / \partial q_{p}\right) \tag{f1}\\
& \partial L_{o} / \partial \dot{q}_{p}=\partial L / \partial \dot{q}_{p}+(\partial L / \partial \dot{\psi})\left(\partial f / \partial \dot{q}_{p}\right)=\partial L / \partial \dot{q}_{p}+C\left(\partial f / \partial \dot{q}_{p}\right) \tag{f2}
\end{align*}
$$

and therefore the Lagrangean expression for L_{o} becomes

$$
\begin{align*}
\left(\partial L_{o} / \partial \dot{q}_{p}\right)^{\cdot}-\partial L_{o} / \partial q_{p} & =\left[\left(\partial L / \partial \dot{q}_{p}\right)^{\cdot}-\partial L / \partial q_{p}\right]+C\left[\left(\partial f / \partial \dot{q}_{p}\right)^{\cdot}-\partial f / \partial q_{p}\right] \\
& =0+C E_{p}(f) \neq 0 ; \tag{g}
\end{align*}
$$

that is, in general, $E_{p}\left(L_{o}\right) \neq 0$, even though $E_{p}(L)=0$! However, using the above results, it is not hard to verify that

$$
\begin{equation*}
\left[\partial\left(L_{o}-C \dot{\psi}\right) / \partial \dot{q}_{p}\right]^{\cdot}-\partial\left(L_{o}-C \dot{\psi}\right) / \partial q_{p}=0 \tag{h}
\end{equation*}
$$

or $E_{p}\left(L_{o}-C \dot{\psi}\right) \equiv E_{p}(R)=0$; that is, if we want to keep the form of the Lagrangean equations of motion (for the independent coordinates) unchanged, we must take as new Lagrangean not the constrained Lagrangean L_{o}, but the modified Lagrangean $L_{o}-C \dot{\psi} \equiv R($ outhian $)$.

Example 8.4.3 Routhian of a Three-DOF Cyclic System; Effects of Cyclicity on the Visible Motions. Let us examine a scleronomic and cyclic system with one ignorable coordinate, $q_{1} \equiv \psi_{1}$, and two positional coordinates, q_{2}, q_{3}; that is,
$M=1, n-M=3-1=2$. This is the simplest system that shows clearly the gyroscopic, and other, effects of ignorable coordinates. Its kinetic energy is

$$
\begin{align*}
2 T=M_{11}\left(\dot{\psi}_{1}\right)^{2} & +M_{22}\left(\dot{q}_{2}\right)^{2}+M_{33}\left(\dot{q}_{3}\right)^{2} \\
& +2\left(M_{12} \dot{\psi}_{1} \dot{q}_{2}+M_{13} \dot{\psi}_{1} \dot{q}_{3}+M_{23} \dot{q}_{2} \dot{q}_{3}\right) \tag{a}
\end{align*}
$$

where all the inertia coefficients $M_{k l}(k, l=1,2,3)$ are independent of ψ_{1}, and $Q_{1} \equiv Q_{\psi}=0$. Then, the cyclicity constraint is

$$
\begin{equation*}
p_{1} \equiv \Psi_{1} \equiv \partial T / \partial \dot{\psi}_{1}=M_{11} \dot{\psi}_{1}+M_{12} \dot{q}_{2}+M_{13} \dot{q}_{3}=\text { constant } \equiv C_{1} . \tag{b}
\end{equation*}
$$

Solving it, we obtain

$$
\begin{align*}
\dot{\psi}_{1} & =\left(C_{1}-M_{12} \dot{q}_{2}-M_{13} \dot{q}_{3}\right) / M_{11} \quad(\neq \text { constant }) \tag{c}\\
{[} & \left.=\text { function of } q, \dot{q}, C_{1}, \text { and the coupling inertia coefficients } M_{12}, M_{13}\right]
\end{align*}
$$

and, inserting this expression back into (a), we obtain

$$
T=T_{2,0}^{\prime \prime}-T_{0,2}^{\prime \prime}=T\left(q, \dot{q}, C_{1}\right)
$$

where

$$
\left.\begin{array}{rl}
2 T_{2,0}^{\prime \prime}= & {\left[\left(M_{11} M_{22}-M_{12}^{2}\right) / M_{11}\right]\left(\dot{q}_{2}\right)^{2}} \\
& +\left[\left(M_{11} M_{33}-M_{13}^{2}\right) / M_{11}\right]\left(\dot{q}_{3}\right)^{2} \\
& +2\left[\left(M_{11} M_{23}-M_{12} M_{13}\right) / M_{11}\right] \dot{q}_{2} \dot{q}_{3}
\end{array}\right] \begin{array}{ll}
\equiv & M_{22}^{\prime \prime}\left(\dot{q}_{2}\right)^{2}+M_{33}^{\prime \prime}\left(\dot{q}_{3}\right)^{2}+2 M_{23}^{\prime \prime} \dot{q}_{2} \dot{q}_{3} \\
& \text { (positive definite in the } \dot{q} ’ \mathrm{~s} \text {) }, \\
-2 T_{0,2}^{\prime \prime}=C_{1}^{2} / M_{11} & \text { (positive definite in } \left.C_{1}\right) ; \tag{d2}
\end{array}
$$

the bilinear terms in the \dot{q} 's and C_{1} having canceled, as expected by the general theory $[(8.3 .12 \mathrm{~m})]$. As a result of the above, the modified kinetic energy $T^{\prime \prime}$ (to be used as kinetic energy in the Routhian-Lagrangean equations for the q 's), becomes

$$
\begin{equation*}
T^{\prime \prime} \equiv T-\dot{\psi}_{1} C_{1}=\cdots=T_{2,0}^{\prime \prime}+T_{1,1}^{\prime \prime}+T_{0,2}^{\prime \prime}=T^{\prime \prime}\left(q, \dot{q}, C_{1}\right) \tag{e}
\end{equation*}
$$

where

$$
\begin{align*}
T_{2,0}^{\prime \prime} & =T_{2,0}^{\prime \prime}(q, \dot{q}): \quad \tag{el}\\
T_{0,2}^{\prime \prime} & =T_{0,2}^{\prime \prime}\left(q, C_{1}\right): \quad \text { given by }(\mathrm{d} 1), \tag{e2}\\
T_{1,1}^{\prime \prime} & =\left(C_{1} M_{12} / M_{11}\right) \dot{q}_{2}+\left(C_{1} M_{13} / M_{11}\right) \dot{q}_{3} \\
& =r_{2} \dot{q}_{2}+r_{3} \dot{q}_{3}=T_{1,1}^{\prime \prime}\left(q, \dot{q} ; C_{1}\right), \tag{e3}
\end{align*}
$$

and

$$
\begin{equation*}
r_{2} \equiv\left(M_{12} / M_{11}\right) C_{1} \equiv \rho_{21} C_{1}, \quad r_{3} \equiv\left(M_{13} / M_{11}\right) C_{1} \equiv \rho_{31} C_{1} . \tag{e4}
\end{equation*}
$$

The equations of motion for the q 's (i.e., the equations of the reduced, or apparent, or visible, or palpable system) are

$$
\begin{equation*}
\left(\partial T^{\prime \prime} / \partial \dot{q}_{p}\right)^{\cdot}-\partial T^{\prime \prime} / \partial q_{p}=Q_{p} \quad(p=2,3) . \tag{f}
\end{equation*}
$$

Upon carrying out the operations indicated in (f), with the expressions (e-e4), we notice that the cyclic coordinate(s) ψ_{1} (through its constant momentum C_{1}), and the coupling coefficients M_{12} and M_{13}, have the following triple effect on the palpable motion:
(i) $\quad T^{\prime \prime}{ }_{2,0}$: The original coefficients of inertia $M_{k l}$ have been replaced by the "reduced coefficients of inertia" $M^{\prime \prime}{ }_{k l}$, unless M_{12} and M_{13} vanish.
(ii) $\quad T_{1,1}^{\prime \prime}$: The effect of C_{1} and M_{12}, M_{13}, appears in the coefficients of \dot{q}_{2} and \dot{q}_{3}; and their contribution to (f) is

$$
\begin{align*}
& \left(\partial T_{1,1}^{\prime \prime} / \partial \dot{q}_{2}\right)^{\cdot}-\partial T_{1,1}^{\prime \prime} / \partial q_{2}=C_{1}\left[\partial / \partial q_{3}\left(M_{12} / M_{11}\right)-\partial / \partial q_{2}\left(M_{13} / M_{11}\right)\right] \dot{q}_{3} \tag{g1}\\
& \left(\partial T_{1,1}^{\prime \prime} / \partial \dot{q}_{2}\right)^{\cdot}-\partial T_{1,1}^{\prime \prime} / \partial q_{2}=C_{1}\left[\partial / \partial q_{2}\left(M_{13} / M_{11}\right)-\partial / \partial q_{3}\left(M_{12} / M_{11}\right)\right] \dot{q}_{2} \tag{g2}
\end{align*}
$$

that is, a coupling of the nonignorable (visible) motions, generated by the ignorable (invisible) ones, through C_{1} and M_{12}, M_{13}.
(iii) $T_{0,2}^{\prime \prime}=-C_{1}^{2} / 2 M_{11}=T^{\prime \prime}{ }_{0,2}\left(q, C_{1}\right)$: this term behaves like an additional negative potential energy; and since

$$
E_{p}\left(T_{0,2}^{\prime \prime}\right) \equiv\left(\partial T_{0,2}^{\prime \prime} / \partial \dot{q}_{p}\right)^{\cdot}-\partial T_{0,2}^{\prime \prime} / \partial q_{p}=0-(1 / 2)\left(C_{1} / M_{11}\right)^{2}\left(\partial M_{11} / \partial q_{p}\right)
$$

it gives rise to an additional inertial "force"

$$
\begin{equation*}
-E_{p}\left(T_{0,2}^{\prime \prime}\right)=\partial T_{0,2}^{\prime \prime} / \partial q_{p}=\left(C_{1}^{2} / 2 M_{11}^{2}\right)\left(\partial M_{11} / \partial q_{p}\right) \tag{h}
\end{equation*}
$$

which is indistinguishable, in its mechanical effects, from the ordinary potential force $-\partial V / \partial q_{p}$. [During the late 19 th century, this remarkable situation prompted several famous scientists (notably Hertz), to try to do the reverse; that is, explain V as a $T_{0,2}^{\prime \prime}$-like term of some concealed, or latent, motions! Such a "forceless" approach did not go very far in classical mechanics, but its conceptual implications proved helpful, a little later (in the 1910s), in the development of the (also forceless) general theory of relativity.]

These results are systematized and extended to the general case below, which may also include, with slight modifications, systems with no ignorable coordinates.

The Kelvin-Tait Equations

(Thomson and Tait, 1912, art. 319, ex. G.) Continuing from the preceding example, let us now find the explicit form of Routh's equations for the palpable motion of a general holonomic, scleronomic (no real loss in generality), and cyclic system with M ignorable coordinates $\psi \equiv\left(\psi_{i} ; i=1, \ldots, M\right)$ and $n-M$ nonignorable coordinates $q \equiv\left(\dot{q}_{p} ; q=M+1, \ldots, n\right)$-what is referred to as the Kelvin-Tait equations. Here,

$$
\begin{equation*}
T=T(q, \dot{q}, \dot{\psi})=\text { homogeneous quadratic in the } \dot{\psi} \text { 's and } \dot{q} \text { 's, } \tag{8.4.8}
\end{equation*}
$$

and, therefore, as shown in (8.3.12 ff.) and the preceding example, the Routhian will equal

$$
\begin{equation*}
R=R_{2}+R_{1}+R_{0} \tag{8.4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{2} \equiv T_{2,0}^{\prime \prime}=(1 / 2) \sum \sum r_{p q}(q) \dot{q}_{p} \dot{q}_{q} \quad\left(=T_{2,0}\right)=R_{2}(q, \dot{q}): \tag{8.4.9a}
\end{equation*}
$$

homogeneous quadratic in the nonignorable velocities \dot{q},

$$
R_{1} \equiv T_{1,1}^{\prime \prime}=\sum r_{p}(q, C) \dot{q}_{p}=R_{1}(q, \dot{q}, C):
$$

homogeneous linear in the nonignorable velocities \dot{q},
with $\quad r_{p}=\sum \rho_{p i} C_{i} \quad\left[\rho_{p i} \equiv \sum C_{i j} b_{p j}=\rho_{p i}(q)\right.$, by (8.3.12k) $]$,

$$
R_{0} \equiv T_{0,2}^{\prime \prime}-V=-\left(V-T_{0,2}^{\prime \prime}\right) \equiv-(1 / 2) \sum \sum C_{j i} C_{j} C_{i}-V \quad\left[=-\left(V+T_{0,2}\right)\right]
$$

$=R_{0}(q ; C)$: homogeneous quadratic in the constant ignorable momenta $\Psi=C$.

The above indicate that even in an originally scleronomic system, the Routhian elimination of the ignorable velocities, in favor of their constant momenta, produces an additional apparent potential energy $T_{0,2}^{\prime \prime}=-T_{0,2}(<0)$, and (possibly) an additional apparent kinetic energy $T_{1,1}^{\prime \prime}$; and, therefore, the situation is mathematically identical to that of relative motion (§3.16). Hence, utilizing the expressions (8.4.9-9c) in the Lagrangean equation of the palpable motion (8.4.5):

$$
\begin{equation*}
\left(\partial R / \partial \dot{q}_{p}\right)^{\cdot}-\partial R / \partial q_{p}=Q_{p} \tag{8.4.5}
\end{equation*}
$$

where $Q_{p}=$ nonpotential impressed positional forces, and proceeding as in $\S 3.16$, we obtain the Kelvin-Tait equations (with $p, p^{\prime}=M+1, \ldots, n$):

$$
E_{p}(R) \equiv E_{p}\left(R_{2}+R_{1}+R_{0}\right)=E_{p}\left(R_{2}\right)+E_{p}\left(R_{1}\right)+E_{p}\left(R_{0}\right)=Q_{p}
$$

or

$$
E_{p}\left(R_{2}\right)=Q_{p}-E_{p}\left(R_{1}\right)-E_{p}\left(R_{0}\right)
$$

or

$$
\begin{align*}
\left(\partial R_{2} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{2} / \partial q_{p} & =Q_{p}+\partial R_{0} / \partial q_{p}-\left[\left(\partial R_{1} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{1} / \partial q_{p}\right] \\
& =Q_{p}-\partial\left(V-T_{0,2}^{\prime \prime} / \partial q_{p}+\sum\left(\partial r_{p^{\prime}} / \partial q_{p}-\partial r_{p} / \partial q_{p^{\prime}}\right) \dot{q}_{p^{\prime}}\right. \\
& =Q_{p}-\partial\left(V-T_{0,2}^{\prime \prime}\right) / \partial q_{p}+G_{p} \tag{8.4.10}
\end{align*}
$$

where

$$
\begin{align*}
G_{p} & \equiv \sum\left(\partial r_{p^{\prime}} / \partial q_{p}-\partial r_{p} / \partial q_{p^{\prime}}\right) \dot{q}_{p^{\prime}} \equiv \sum G_{p p^{\prime}} \dot{q}_{p^{\prime}}: \\
& \text { Gyroscopic Routhian "force," since } G_{p p^{\prime}}=-G_{p^{\prime} p}\left[=G_{p p^{\prime}}(q ; C)\right] . \tag{8.4.10a}
\end{align*}
$$

These are the equations of motion of a fictitious scleronomic system (sometimes referred to as "conjugate" to the original system, or reduced system) with $n-M$ positional coordinates q, and subject, in addition to the impressed forces Q_{p} (nonpotential) and $-\partial V / \partial q_{p}$ (potential), to two special constraint forces: a centrifugallike one, $\partial T^{\prime \prime}{ }_{0,2} / \partial q_{p}$, and a gyroscopic one, G_{p}. Once the palpable motion $q_{p}(t)$ has
been determined by solving (8.4.10), then substituting it into the Routhian equations for the ignorable motion, eqs. (8.3.6a, 9a):

$$
\begin{equation*}
d \psi_{i} / d t=-\partial R / \partial C_{i}=-\partial R_{1} / \partial C_{i}-\partial R_{0} / \partial C_{i}=-\partial T_{0,2}^{\prime \prime} / \partial C_{i}-\sum \rho_{p i} \dot{q}_{p} \tag{8.4.11}
\end{equation*}
$$

and carrying out a quadrature, we find the $\psi_{i}(t)$.

Gyroscopic Uncoupling

If all the $G_{p p}$'s vanish, then the gyroscopic forces disappear, and so the equations of the reduced system take the gyroscopically uncoupled form:

$$
\begin{equation*}
E_{p}\left(R_{2}\right) \equiv\left(\partial R_{2} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{2} / \partial q_{p}=Q_{p}+\partial R_{0} / \partial q_{p} \tag{8.4.12}
\end{equation*}
$$

that is, the centrifugal forces express the entire effect of cyclicity on that system.
Since $G_{p} \equiv-\left[\left(\partial R_{1} / \partial \dot{q}_{p}\right)^{-}-\partial R_{1} / \partial q_{p}\right]$, and reasoning as in the case of integrability of Pfaffian constraints (chap. 2, also chap. 5), we may state with Pars (1965, p. 172) that: a system is gyroscopically uncoupled if, and only if,

$$
R_{1} d t \equiv \sum r_{p}(q ; C) d q_{p}
$$

is an exact, or total, differential. Obviously, this holds always if there is only one nonignorable coordinate [recall (prob. 3.16.3)]. A similar uncoupling occurs, of course, if all C_{i} 's vanish $\left[\Rightarrow r_{p}=0 \Rightarrow R_{1}=0\right.$; and $\left.R_{0}=-V(q)\right]$.

REMARKS

(i) It should be pointed out that the nonignorable coordinates do not fix the position of every system particle: in general, to one set of values of the q 's there correspond more than one set of values of the ψ 's; or, if the system, by suitable forces, is brought back to its original q 's, after an arbitrary type of motion, its cyclic ψ will not, in general, return to their original values.
(ii) Also, the gyroscopic $\left(\sim \dot{q}_{p}\right)$ terms in (8.4.10) are irreversible (i.e., they change sign under $d t \rightarrow-d t$); while in the absence of friction (i.e., only configuration-dependent forces), the other terms are not. This means that in order to reverse the motion of a cyclic system, we must reverse both the \dot{q} 's and the $\dot{\psi}$'s; reversing only the \dot{q} 's will not suffice! For example, the precessional motion of a top (gyroscope) is not reversed unless we also reverse its (cyclic) intrinsic spin $\dot{\psi}$.

A Cyclic Power Theorem

Multiplying each of (8.4.10) with \dot{q}_{p} and then adding them together, while noting that $\sum r_{p p^{\prime}} \dot{q}_{p^{\prime}} \dot{q}_{p}=0$ (gyroscopicity), we readily obtain the cyclic energy rate/power theorem:

$$
\begin{equation*}
d h_{R} / d t=\sum Q_{p} \dot{q}_{p} \tag{8.4.13}
\end{equation*}
$$

where [recalling (8.3.13-14a)]

$$
\begin{align*}
h_{R} & \equiv R_{2}-R_{0}=T_{2,0}^{\prime \prime}+\left(V-T_{0,2}^{\prime \prime}\right) \\
& =T_{2,0}+\left(V+T_{0,2}\right) \equiv h_{R}(q, \dot{q}, C) \\
& =\text { modified (or cyclic) generalized energy; } \tag{8.4.13a}
\end{align*}
$$

from which, if $\sum Q_{p} \dot{q}_{p}=0$, we are immediately led to the (Routhian counterpart of the Jacobi-Painlevé) conservation theorem:

$$
\begin{equation*}
h_{R} \equiv T_{2,0}^{\prime \prime}+\left(V-T_{0,2}^{\prime \prime}\right)=\text { constant } . \tag{8.4.14}
\end{equation*}
$$

Alternatively, we may transform the energy equation of the original system as follows:

$$
\begin{align*}
H & \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L \quad\left(=\text { constant }, \text { if } Q_{p}=0 \text { and } \partial L / \partial t=\partial R / \partial t=0\right) \\
& =-R+\sum\left(\partial R / \partial \dot{q}_{p}\right) \dot{q}_{p} \quad[\text { recalling }(8.3 .10)] \\
& =-\left(R_{2}+R_{1}+R_{0}\right)+\left(2 R_{2}+R_{1}\right) \\
& =R_{2}-R_{0}=h_{R}(q, \dot{q}, C) . \tag{8.4.13b}
\end{align*}
$$

Extensions of the above to rheonomic cyclic systems - that is, to the case where

$$
\begin{align*}
& L=L(t, q, \dot{q}, C) \\
& \Rightarrow R=L(t, q, \dot{q}, C)-\sum C_{i} \dot{\psi}_{i}(t, q, \dot{q}, C)=R(t, q, \dot{q}, C), \tag{8.4.14a}
\end{align*}
$$

can be easily obtained; see, for example, Kil'chevskii (1977, pp. 350-352), Merkin (1974, chap. 1).

Example 8.4.4 Energetics of a Simple Cyclic System. Let us consider a potential system with Lagrangean

$$
\begin{equation*}
L=(1 / 2)\left(a \dot{\psi}^{2}+2 e \dot{\psi} \dot{q}+b \dot{q}^{2}\right)-V(q), \tag{a}
\end{equation*}
$$

where $a, e, b=$ constant inertial coefficients; $\psi / q=$ ignorable/nonignorable coordinates (i.e., $n=2, M=1$); and initial conditions at $t=0: \psi=q=1, \dot{\psi}=\dot{q}=0$. Since ψ is ignorable,

$$
\begin{equation*}
\partial L / \partial \dot{\psi}=a \dot{\psi}+e \dot{q}=\text { constant } \equiv C \tag{b}
\end{equation*}
$$

from which, applying the initial conditions, we find $e=C$. Hence, solving (b) for $\dot{\psi}$, we obtain $\dot{\psi}=(C-e \dot{q}) / a=(e / a)(1-\dot{q})$, and so the Routhian becomes

$$
\begin{align*}
R & =L(q, \dot{q}, C=e, a, b)-C \dot{\psi}=\cdots \\
& =(1 / 2)\left[b-\left(e^{2} / a\right)\right](\dot{q})^{2}+\left(e^{2} / a\right) \dot{q}-\left(e^{2} / 2 a\right)-V(q) \\
& =R_{2}(\dot{q}, a, b, e)+R_{1}(\dot{q}, a, e)+R_{0}(q, a, e) . \tag{c}
\end{align*}
$$

This yields the following Routhian equation of motion for q :

$$
\begin{equation*}
(\partial R / \partial \dot{q})^{\cdot}-\partial R / \partial q=0: \quad\left\{\left(e^{2} / a\right)+\left[b-\left(e^{2} / a\right)\right] \dot{q}\right\}+d V / d q=0 \tag{d}
\end{equation*}
$$

or, solved for \ddot{q} :

$$
\begin{equation*}
\ddot{q}=-\left[a /\left(b a-e^{2}\right)\right](d V / d q) . \tag{e}
\end{equation*}
$$

Clearly, if $e=0$, the motions of ψ and q decouple.
Now, if $V(q)=$ known, then (e) supplies $q(t)$; its two integration constants are determined from the earlier initial conditions for q.

On the other hand, the Routhian form of the energy theorem for this system is [by (8.4.13b)]

$$
\begin{align*}
h_{R} & =H=R_{2}-R_{0}=(1 / 2)\left[b-\left(e^{2} / a\right)\right](\dot{q})^{2}+\left(e^{2} / 2 a\right)+V(q) \\
& =H(\dot{q}, a, b, e)=\text { constant } \equiv h . \tag{f}
\end{align*}
$$

Solving (f) for \dot{q}, we get

$$
\begin{equation*}
\dot{q}=[A-B V(q)]^{1 / 2} \tag{g1}
\end{equation*}
$$

where

$$
\begin{equation*}
A \equiv\left(2 h a-e^{2}\right) /\left(b a-e^{2}\right), \quad B \equiv 2 a /\left(b a-e^{2}\right) \tag{g2}
\end{equation*}
$$

and then separating variables and integrating, while using the initial conditions for q, we finally obtain $q(t)$:

$$
\begin{equation*}
t=\int[A-B V(q)]^{-1 / 2} d q \tag{g3}
\end{equation*}
$$

where the integral extends from 1 to q. Then, $\psi(t)$ can be found by the following quadrature:

$$
\begin{equation*}
\psi=\int-(\partial R / \partial C) d t+1=1+\int(e / a)(1-\dot{q}) d t \tag{h}
\end{equation*}
$$

where both integrals extend from 0 to t.

Example 8.4.5 Hamiltonian and Routhian Treatments of the Top. Let us consider a top (i.e., an axially symmetrical, or uniaxial, body) moving about a fixed point of its axis O under gravity (fig. 8.2). Using intermediate axes $O-x y z$, we find (with principal inertias there: $I_{x}=I_{y} \equiv A, I_{z} \equiv C$)

$$
\begin{align*}
& \omega=(\dot{\theta}, \dot{\phi} \sin \theta, \dot{\psi}+\dot{\phi} \cos \theta)=\text { inertial angular velocity of top }, \tag{a1}\\
& L=T-V \\
& 2 T=I_{x} \omega_{x}^{2}+I_{y} \omega_{y}^{2}+I_{z} \omega_{z}^{2}=A\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2}, \\
& V=m g l \cos \theta \quad(l \equiv O G, G=\text { center of mass of top }), \tag{a2}
\end{align*}
$$

and, therefore, the system momenta are

$$
\begin{aligned}
p_{\phi} & \equiv \partial T / \partial \dot{\phi}=\partial L / \partial \dot{\phi}=A \dot{\phi} \sin ^{2} \theta+C(\dot{\psi}+\dot{\phi} \cos \theta) \cos \theta \\
& \equiv A \dot{\phi} \sin ^{2} \theta+C n \cos \theta=\text { constant } \equiv C_{\phi}
\end{aligned}
$$

[since, clearly, ϕ is an ignorable coordinate]
$=$ component of angular momentum of top about the vertical axis through O

$$
\begin{equation*}
\text { (i.e., } O Z \text {), } \tag{b1}
\end{equation*}
$$

Figure 8.2 Geometry and kinematics of a top moving about a fixed point O.

$$
p_{\theta} \equiv \partial T / \partial \dot{\theta}=\partial L / \partial \dot{\theta}=A \dot{\theta}
$$

$=$ component of angular momentum of top about axis through O perpendicular to plane of θ,

$$
\begin{equation*}
p_{\psi} \equiv \partial T / \partial \dot{\psi}=\partial L / \partial \dot{\psi}=C(\dot{\psi}+\dot{\phi} \cos \theta) \equiv C n=\text { constant } \equiv C_{\psi} \tag{b2}
\end{equation*}
$$

[since, clearly, ψ is an ignorable coordinate]
$=$ component of angular momentum of top about the symmetry axis Oz (i.e., the fixed line with which the top axis instantaneously coincides).
(i) From the above, it follows easily that the Lagrangean equations of the top are
$(\partial L / \partial \dot{\phi})^{\cdot}-\partial L / \partial \phi=0: \quad\left[A \dot{\phi} \sin ^{2} \theta+C(\dot{\psi}+\dot{\phi} \cos \theta) \cos \theta\right]=0$,
$(\partial L / \partial \dot{\theta})^{\cdot}-\partial L / \partial \theta=0:$

$$
\begin{align*}
(A \dot{\theta})^{\cdot} & -\left[A(\dot{\phi})^{2} \sin \theta \cos \theta\right. \tag{c1}\\
& -C(\dot{\psi}+\dot{\phi} \cos \theta) \dot{\phi} \sin \theta+m g l \sin \theta]=0 \tag{c2}
\end{align*}
$$

$(\partial L / \partial \dot{\psi})^{\cdot}-\partial L / \partial \psi=0: \quad[C(\dot{\psi}+\dot{\phi} \cos \theta)]^{\cdot}=0$.
The first and last of these equations express the constancy of p_{ϕ} and p_{ψ}, respectively; and so we can rewrite the first and second, as follows:

$$
\begin{align*}
\phi: & A \dot{\phi} \sin ^{2} \theta+C_{\psi} \cos \theta=C_{\phi}, \tag{d1}\\
\theta: & A \ddot{\theta}-A(\dot{\phi})^{2} \sin \theta \cos \theta+C_{\psi} \dot{\phi} \sin \theta=m g l \sin \theta . \tag{d2}
\end{align*}
$$

These two equations allow us, among other things, to study the small (linearized) motion of the top about its vertical axis $O Z$ - that is, $\theta=0$ - and its stability/ instability. Indeed, setting in (d1, 2), approximately, $\sin \theta \approx \theta$ and $\cos \theta \approx$ $1-\theta^{2} / 2$, we obtain

$$
\begin{align*}
\phi: & \theta^{2} \dot{\zeta}=\text { constant }, \tag{e1}\\
\theta: & \ddot{\theta}-(\dot{\zeta})^{2} \theta=-\left[\left(C_{\psi}-4 A m g l\right) / 4 A^{2}\right] \theta \tag{e2}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta \equiv \phi-\left(C_{\psi} / 2 A\right) t \Rightarrow \dot{\zeta}=\dot{\phi}-\left(C_{\psi} / 2 A\right) \tag{e3}
\end{equation*}
$$

Now, due to the form of equations $(\mathrm{e} 1,2)$ we may view θ and ζ as the polar coordinates of the horizontal projection of a point on the top axis $O z$, relative to a line that revolves around $O Z$ with (constant) angular velocity $\dot{\phi}-\dot{\zeta}=C_{\psi} / 2 A$. It follows that the relative motion of such a point will be elliptic harmonic with period $4 \pi A\left(C_{\psi}{ }^{2}-4 A m g l\right)^{-1 / 2}$, as long as $C_{\psi}{ }^{2}>4 A m g l$ (stability condition; see also stability of sleeping top, ex. 8.4.6 below).
(ii) Hamiltonian equations. Solving (b1-3) for the velocities in terms of the momenta, we get

$$
\begin{align*}
\dot{\phi} & =\left(p_{\phi}-p_{\psi} \cos \theta\right) / A \sin ^{2} \theta \tag{f1}\\
\dot{\theta} & =p_{\theta} / A \tag{f2}\\
\dot{\psi} & =p_{\psi} / C-\left(p_{\phi}-p_{\psi} \cos \theta\right) \cos \theta / A \sin ^{2} \theta \tag{f3}
\end{align*}
$$

Accordingly, the Hamiltonian becomes

$$
\begin{align*}
H & =(1 / 2)\left(p_{\phi} \dot{\phi}+p_{\theta} \dot{\theta}+p_{\psi} \dot{\psi}\right)+V \\
& =(1 / 2 A)\left[p_{\theta}^{2}+\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2} / \sin ^{2} \theta\right]+(1 / 2 C) p_{\psi}{ }^{2}+m g l \cos \theta \tag{g}
\end{align*}
$$

and leads easily to the following pairs of Hamilton's equations:

$$
\begin{array}{ll}
\phi: & \dot{p}_{\phi}=-\partial H / \partial \phi=0 \quad(\phi=\text { ignorable coordinate }) \\
& \dot{\phi}=\partial H / \partial p_{\phi}=\left(p_{\phi}-p_{\psi} \cos \theta\right) / A \sin ^{2} \theta \\
\theta: & \dot{p}_{\theta}=-\partial H / \partial \theta=-\left(p_{\phi}-p_{\psi} \cos \theta\right)\left(p_{\psi}-p_{\phi} \cos \theta\right) / A \sin ^{3} \theta+m g l \sin \theta \\
& \dot{\theta}=\partial H / \partial p_{\theta}=p_{\theta} / A, \\
\psi: & \dot{p}_{\psi}=-\partial H / \partial \psi=0 \quad(\psi=\text { ignorable coordinate }) \\
& \dot{\psi}=\partial H / \partial p_{\psi}=-\left(p_{\phi}-p_{\psi} \cos \theta\right) \cos \theta / A \sin ^{2} \theta+p_{\psi} / C \tag{h6}
\end{array}
$$

Equations (h2, 4, 6) are kinematico-inertial, and coincide with the earlier (f1-3); while (h1, 3, 5) are the kinetic equations.
(iii) Routhian equations. Since, here, the ignorable coordinates are $\psi_{1}=\phi$ and $\psi_{2}=\psi$, and corresponding constant momenta $\Psi_{1}=p_{\phi}=C_{\phi}$ and $\Psi_{2}=p_{\psi}=C_{\psi}$ (i.e., $n=3, M=2$), the Routhian is

$$
\begin{equation*}
R=L-p_{\phi} \dot{\phi}-p_{\psi} \dot{\psi}=\cdots=R_{2}+R_{1}+R_{0} \tag{i}
\end{equation*}
$$

where

$$
\begin{align*}
R_{2} & =T^{\prime \prime}{ }_{2,0}=(1 / 2) A(\dot{\theta})^{2}, \tag{i1}\\
R_{1} & =0 \quad(\text { we need at least two nonignorable } q \text { 's to have gyroscopicity!), } \tag{i2}\\
R_{0} & =T^{\prime \prime}{ }_{0,2}-V \\
& =-\left[\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2} / 2 A \sin ^{2} \theta+(1 / 2 C) C_{\psi}{ }^{2}\right]-m g l \cos \theta, \tag{i3}
\end{align*}
$$

and therefore Routh's equation for the nonignorable coordinate θ is

$$
\begin{equation*}
A\left(d^{2} \theta / d t^{2}\right)+\left[\left(C_{\phi}-C_{\psi} \cos \theta\right)\left(C_{\psi}-C_{\phi} \cos \theta\right)\right] / A \sin ^{3} \theta=m g l \sin \theta . \tag{j}
\end{equation*}
$$

The second left-side (centrifugal-like) terms, equal to $E_{\theta}\left(T^{\prime \prime}{ }_{0,2}\right)=-\partial T^{\prime \prime}{ }_{0,2} / \partial \theta$, represents the contribution of the apparent potential energy $T^{\prime \prime}{ }_{0,2}(<0)$; there are no gyroscopic terms.

Equation (j) can also be rewritten as

$$
\begin{equation*}
A\left(d^{2} \theta / d t^{2}\right)+(1 / 2 A) d / d \theta\left[\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2} / \sin ^{2} \theta\right]=m g l \sin \theta ; \tag{j1}
\end{equation*}
$$

The nonlinear equations ($\mathrm{j}, \mathrm{j} 1$) can be used, just like the earlier Lagrangean equations ($\mathrm{d} 1,2$), to study the small motion of the top about a given precessional motion, say one with constant nutation $\theta(t)=\theta_{o}$ [i.e., set in, say $(\mathrm{j}), \theta=\theta_{o}+\Delta \theta(t)$, keep $u p$ to linear terms in $\Delta \theta$ and its (...)-derivatives; and then find conditions so that the resulting linear second-order $\Delta \theta$ equation has harmonic solutions. The details are left to the reader.]

Finally, either from the general theory, or directly from (j1) (i.e., multiply it with $2 \dot{\theta}$, etc.), we can easily show that the system has the following cyclic generalized integral:

$$
\begin{align*}
& R_{2}-R_{0} \equiv T^{\prime \prime}{ }_{2,0}-\left(T^{\prime \prime}{ }_{0,2}-V\right)=\text { constant }: \\
&(1 / 2) A(\dot{\theta})^{2}+\left[\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2} / 2 A \sin ^{2} \theta+(1 / 2 C) C_{\psi}{ }^{2}\right] \\
&+m g l \cos \theta=\text { constant }, \tag{k1}
\end{align*}
$$

or

$$
\begin{equation*}
A(\dot{\theta})^{2}+\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2} / A \sin ^{2} \theta+2 m g l \cos \theta=\text { constant } \equiv h ; \tag{k2}
\end{equation*}
$$

or, setting $x \equiv \cos \theta \Rightarrow \dot{x}=-\dot{\theta} \sin \theta \Rightarrow(\dot{x})^{2}=\left(1-x^{2}\right)(\dot{\theta})^{2}$, finally,

$$
\begin{equation*}
A(d x / d t)^{2}+\left(C_{\phi}-C_{\psi} x\right)^{2} / A+(2 m g l x-h)\left(1-x^{2}\right)=0, \tag{k3}
\end{equation*}
$$

which has the form $(\dot{x})^{2}=$ known function of $x \equiv f(x) \Rightarrow d x /[f(x)]^{1 / 2}=d t$, and upon integration yields $x \equiv \cos \theta$ as an elliptic function of t. The cyclic motions $\phi(t)$ and $\psi(t)$ can then be found from the corresponding Routhian equations (8.4.11), or (b1, 3), by quadratures.

A Generalization
If $Q_{\phi} \neq 0$, then only ψ is cyclic. Solving (b3) for $\dot{\psi}$, we obtain

$$
\begin{equation*}
\dot{\psi}=p_{\psi} / C-\dot{\phi} \cos \theta \equiv n-\dot{\phi} \cos \theta, \tag{1}
\end{equation*}
$$

and so, in this case, the Lagrangean and Routhian of the top become, respectively,

$$
\begin{align*}
L \equiv T-V & =(A / 2)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+(C / 2)[(n-\dot{\phi} \cos \theta)+\dot{\phi} \cos \theta]^{2}-m g l \cos \theta \\
& =(A / 2)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+(C / 2) n^{2}-m g l \cos \theta \\
& =T^{\prime \prime}{ }_{2,0}-T^{\prime \prime}{ }_{0,2}-V=L\left(\theta ; \dot{\phi}, \dot{\theta} ; C_{\psi}=C n\right), \tag{ml}\\
R=L-p_{\psi} \dot{\psi} & =\left(T-p_{\psi} \dot{\psi}\right)-V=R_{2}+R_{1}+R_{0}, \tag{m2}
\end{align*}
$$

where

$$
R_{2}=T_{2,0}^{\prime \prime}=(A / 2)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]:
$$

Kinetic energy of a thin homogeneous bar, of transverse moment of inertia A about O, moving about that point,

$$
\begin{align*}
& R_{1}=T^{\prime \prime}{ }_{1,1}=(C n \cos \theta) \dot{\phi} \tag{m3}\\
& \quad\left[\equiv r_{\phi} \dot{\phi} \equiv\left(\rho_{\phi \psi} C_{\psi}\right) \dot{\phi} \Rightarrow r_{\phi}=(\cos \theta) C n, \rho_{\phi \psi}=\cos \theta\right] \tag{m4}
\end{align*}
$$

$R_{0}=T^{\prime \prime}{ }_{0,2}-V=-\left[(C / 2) n^{2}+m g l \cos \theta\right]$
[the constant term $T^{\prime \prime}{ }_{0,2}=-(C / 2) n^{2}$ does not enter the Routhian equations of motion; but it does enter the corresponding energy rate equation];
and therefore Routh's equations for the nonignorable coordinates ϕ and θ are

$$
\begin{aligned}
(\partial R / \partial \dot{\phi})^{\cdot} & -\partial R / \partial \phi=Q_{\phi}: \\
& \left(\partial R_{2} / \partial \dot{\phi}\right)^{\cdot}-\partial R_{2} / \partial \phi=Q_{\phi}-\left[\left(\partial R_{1} / \partial \dot{\phi}\right)^{\cdot}-\partial R_{1} / \partial \phi\right]
\end{aligned}
$$

or

$$
\begin{equation*}
A \ddot{\phi} \sin ^{2} \theta+2 A \dot{\phi} \dot{\theta} \sin \theta \cos \theta=Q_{\phi}+(C n \sin \theta) \dot{\theta} \tag{n1}
\end{equation*}
$$

$$
\begin{aligned}
& (\partial R / \partial \dot{\theta})^{\cdot}-\partial R / \partial \theta=Q_{\theta}: \\
& \quad\left(\partial R_{2} / \partial \dot{\theta}\right)^{\cdot}-\partial R_{2} / \partial \theta=-\left(-\partial R_{0} / \partial \theta\right)+Q_{\theta}-\left[\left(\partial R_{1} / \partial \dot{\theta}\right)^{\cdot}-\partial R_{1} / \partial \theta\right]
\end{aligned}
$$

or

$$
\begin{equation*}
A \ddot{\theta}-A(\dot{\phi})^{2} \sin \theta \cos \theta=m g l \sin \theta+Q_{\theta}-(C n \sin \theta) \dot{\phi} . \tag{n2}
\end{equation*}
$$

Notice that (i) the impressed forces Q_{ϕ}, Q_{θ} do not include gravity; (ii) the terms $\pm(C n \sin \theta) \dot{\phi}$ are the gyroscopic "forces"; and (iii) these are the Lagrangean equations of the earlier-mentioned fictitious bar rotating about O under the action of (a) gravity, (b) Q_{ϕ}, Q_{θ}, and (c) the gyroscopic couple $\boldsymbol{M}_{G}^{\prime} \equiv \boldsymbol{M}_{G} \sin \theta$, where (with some standard notations)

$$
\begin{align*}
\boldsymbol{M}_{G} & =-d / d t(\text { angular momentum about Oz }) \\
& =-d / d t(C n \boldsymbol{k})=-C n\left(\omega_{O-x y z} \times \boldsymbol{k}\right) \quad[=-C n(\boldsymbol{\omega} \times \boldsymbol{k})] \\
& =-C n[(\dot{\phi} \boldsymbol{K}+\dot{\theta} \boldsymbol{i}) \times \boldsymbol{k}]=-C n[\dot{\phi}(+\boldsymbol{i})+\dot{\theta}(-\boldsymbol{j})] \\
& =(-C n \dot{\phi}) \boldsymbol{i}+(C n \dot{\theta}) \boldsymbol{j}=\left(M_{G, x}, M_{G, y}\right) . \tag{n3}
\end{align*}
$$

Finally, if $Q_{\phi}, Q_{\theta}=0$, the system has the modified generalized energy integral

$$
\begin{aligned}
h_{R} & \equiv R_{2}-R_{0} \equiv T_{2,0}^{\prime \prime}+\left(V-T_{2,0}^{\prime \prime}\right) \\
& =(A / 2)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+\left[(C / 2) n^{2}+m g l \cos \theta\right]=\text { constant },
\end{aligned}
$$

or, simply,

$$
\begin{equation*}
(A / 2)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+m g l \cos \theta=\text { constant } . \tag{n4}
\end{equation*}
$$

Example 8.4.6 Sleeping Top. Continuing from the preceding example, let us study the motion (and linear stability) of the top under gravity, when its spin axis $O G$ is nearly vertical; that is, in the vicinity of $O Z$ [fig. 8.3(a)]. The inertial coordinates X, Y of the projection of G on the horizontal plane $O-X Y$ are [fig. 8.3(b)]

$$
\begin{equation*}
X=(l \sin \theta) \sin \phi \quad \text { and } \quad Y=-(l \sin \theta) \cos \phi . \tag{a}
\end{equation*}
$$

Below, using these coordinate transformations, we express the Lagrangean and Routhian of the top in terms of X, Y and their $(\ldots)^{-}$-derivatives (instead of the earlier ϕ, θ), and keep only up to quadratic terms in these variables, so that the corresponding equations of motion be linear in them; which is the mathematical meaning of near verticalness, or "sleepingness" of the top. Then, we study the stability/instability of these small motions.

Indeed, (...)-differentiating (a), and then solving for $\dot{\phi}$ and $\dot{\theta}$, while noting that $X^{2}+Y^{2}=l^{2} \sin ^{2} \theta$, we obtain

$$
\begin{equation*}
\dot{\phi}=(\dot{X} \cos \phi+\dot{Y} \sin \phi) / l \sin \theta, \quad \dot{\theta}=(\dot{X} \sin \phi-\dot{Y} \cos \phi) / l \cos \theta ; \tag{b}
\end{equation*}
$$

Figure 8.3 (a) Geometry and kinematics of sleeping on top (see also fig. 8.2). (b) Motion of projection of center of mass G of (sleeping) top, G^{\prime}, on horizontal plane $O-X Y$.
and so, to the second order,

$$
\begin{align*}
& (\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta=\left[(\dot{X})^{2}+(\dot{Y})^{2}\right] / l^{2} \\
& \dot{\phi} \cos \theta=(X \dot{Y}-Y \dot{X})\left[\left(X^{2}+Y^{2}\right)^{-1}-\left(2 l^{2}\right)^{-1}\right]=(X \dot{Y}-Y \dot{X}) / 2 l^{2} \\
& \cos \theta=1-\left(X^{2}+Y^{2}\right) / 2 l^{2} \tag{c}
\end{align*}
$$

Hence, recalling the relevant expressions of the preceding example [and that $C(\dot{\psi}+\dot{\phi} \cos \theta) \equiv C n=$ constant $\left.\equiv C_{\psi}\right]$, we find

$$
\begin{align*}
& L=(A / 2)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+(C / 2)(\dot{\psi}+\dot{\phi} \cos \theta)^{2}-m g l \cos \theta \\
&=(1 / 2)\left\{A\left[(\dot{X})^{2}+(\dot{Y})^{2}\right] / l^{2}+C_{\psi}(X \dot{Y}-Y \dot{X})\left[\left(X^{2}+Y^{2}\right)^{-1}-\left(2 l^{2}\right)^{-1}\right]+C_{\psi} \dot{\psi}\right\} \\
&-m g l\left[1-\left(X^{2}+Y^{2}\right) / 2 l^{2}\right]=L\left(X, Y, \dot{X}, \dot{Y}, \dot{\psi} ; C_{\psi}\right), \tag{d1}
\end{align*}
$$

and (since we are seeking the X, Y equations, we will ignore only ψ; not both ϕ and $\psi!$)

$$
\begin{align*}
R= & L-p_{\psi} \dot{\psi}=R_{2}+R_{1}+R_{0} \\
= & (A / 2)\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C_{\psi} \dot{\phi} \cos \theta-\left[\left(C_{\psi}{ }^{2} / 2 C\right)+m g l \cos \theta\right] \\
= & A\left[(\dot{X})^{2}+(\dot{Y})^{2}\right] / 2 l^{2}-\left(C_{\psi} / 2 l^{2}\right)(X \dot{Y}-Y \dot{X}) \\
& \quad+\left(m g l / 2 l^{2}\right)\left(X^{2}+Y^{2}\right)+\text { constant terms } \\
= & R\left(X, Y, \dot{X}, \dot{Y} ; C_{\psi}\right) . \tag{d2}
\end{align*}
$$

From these expressions, we obtain the following Routhian equations:

$$
\begin{array}{ll}
(\partial R / \partial \dot{X})^{\cdot}-\partial R / \partial X=0: & \ddot{X}=k^{2} X-\gamma \dot{Y}, \\
(\partial R / \partial \dot{Y})^{\cdot}-\partial R / \partial Y=0: & \ddot{Y}=k^{2} Y+\gamma \dot{X}, \tag{e2}
\end{array}
$$

where

$$
\begin{equation*}
k^{2} \equiv m g l / A, \quad \gamma \equiv C_{\psi} / A \equiv(C / A) n \tag{e3}
\end{equation*}
$$

These coupled equations are the equations of motion of a fictitious particle of unit mass moving on the inertial plane $O-X Y$ under (i) a (centrifugal-like) radial repulsive force $\boldsymbol{F}=k^{2}(X, Y)$ (i.e., along $O P$, from O toward P, proportional to the distance from the origin); and (ii) a gyroscopic (Coriolis-like) force $\boldsymbol{G}=\gamma(-\dot{Y}, \dot{X})$ [fig. 8.3(b)].

Energy Integral

Multiplying (e1) by \dot{X} and (e2) by \dot{Y}, and then adding them together, while noting that $\boldsymbol{G} \cdot \boldsymbol{v}=\gamma(-\dot{Y} \dot{X}+\dot{X} \dot{Y})=0$, we readily obtain the generalized energy integral:

$$
\begin{equation*}
(1 / 2)\left[(\dot{X})^{2}+(\dot{Y})^{2}\right]-\left(k^{2} / 2\right)\left(X^{2}+Y^{2}\right)=\text { constant }, \tag{f}
\end{equation*}
$$

as also expected from the general theory.

Stability

Equations (e) describe the evolution of small deviations (and their rates) of the axis of the top $O G$ from a fundamental state of vertical spinning $(\theta=0)$. They show that the projection of G, G^{\prime}, on the one hand tends to get away from $O\left[\sim k^{2}\right.$ terms (gravity)], and on the other turns around the origin $[\sim \gamma$ terms (spinning)], clockwise or counterclockwise, depending on the sign of γ.

As an introduction to $\S 8.6$, let us examine the stability of that motion; that is, investigate whether $G^{\prime}(O G)$ remains in the neighborhood of $O(O Z)$, under arbitrary initial conditions of disturbance from these fundamental states. To this end, we set in (e) (since it is a constant coefficient system)

$$
\begin{equation*}
X=X_{o} \exp (\lambda t) \quad \text { and } \quad Y=Y_{o} \exp (\lambda t) \tag{g1}
\end{equation*}
$$

where $X_{o}, Y_{o}=$ constant amplitudes and $-\lambda^{2}=\omega^{2}=$ square of frequency of motion (if stable), and thus obtain the following homogeneous system for these amplitudes:

$$
\begin{equation*}
\left(\lambda^{2}-k^{2}\right) X_{o}+(\lambda \gamma) Y_{o}=0, \quad(-\lambda \gamma) X_{o}+\left(\lambda^{2}-k^{2}\right) Y_{o}=0 . \tag{g2}
\end{equation*}
$$

The requirement for nontrivial solutions of the above leads us, in well-known ways, to the determinantal (or secular) equation

$$
\Delta(\lambda)=\left|\begin{array}{cc}
\lambda^{2}-k^{2} & \lambda \gamma \tag{g3}\\
-\lambda \gamma & \lambda^{2}-k^{2}
\end{array}\right|=0,
$$

whose solutions are readily found to be

$$
\begin{equation*}
\lambda= \pm(1 / 2)\left[i \gamma \pm\left(4 k^{2}-\gamma^{2}\right)^{1 / 2}\right] . \tag{g4}
\end{equation*}
$$

From this, we conclude that:
(i) If

$$
\begin{equation*}
\left.\gamma^{2}>4 k^{2} \quad \text { i.e., recalling }(\mathrm{e} 1) \text {, if } n^{2}>4 \mathrm{Amgl} / \mathrm{C}^{2}\right] \text {, } \tag{g5}
\end{equation*}
$$

then λ will be purely imaginary, and therefore X, Y will be harmonic (bounded); that is, the vertically spinning state will be stable; but
(ii) If

$$
\begin{equation*}
\gamma^{2}<4 k^{2} \quad\left[\text { i.e., if } n^{2}<4 \mathrm{Amgl} / \mathrm{C}^{2}\right] \tag{g6}
\end{equation*}
$$

then there will be two pairs of conjugate complex roots, one with positive real part, and one with negative. As a result, in general, a part of X, Y will be exponentially unbounded; that is, the vertically spinning state will be unstable. [Since for small θ and very high $\dot{\psi}$:

$$
n^{2}=(\dot{\psi}+\dot{\phi} \cos \theta)^{2}=(\dot{\psi})^{2}+(\dot{\phi} \cos \theta)^{2}+2 \dot{\phi} \dot{\psi} \cos \theta \approx(\dot{\psi})^{2},
$$

the condition (g5) can then be replaced by $(\dot{\psi})^{2}>\left(4 A / C^{2}\right) m g l$; and analogously for (g6).]

For additional details of the stable case, see, for example, McCuskey (1959, p. 181); also Routh (1877, pp. 64-66, 94-96), Smart (1951, vol. 2, pp. 409-412), and Whittaker (1937, pp. 206-207). For a general discussion of the sleeping top, including a method for the uncoupling of (e) and associated conservation laws/integrals, see Bahar (1992).

Problem 8.4.1 Show that the linearized equations of the sleeping top, in terms of the angular variables ϕ and θ, are:

$$
\begin{equation*}
A\left(\ddot{\theta}-\dot{\phi}^{2} \theta\right)+C n \theta \dot{\phi}=m g l \theta, \quad A(\theta \ddot{\phi}+2 \dot{\theta} \dot{\phi})-C n \dot{\theta}=0 . \tag{a}
\end{equation*}
$$

Then show that (a) also lead to the earlier stability condition $\dot{\psi}^{2}>\left(4 A / C^{2}\right) m g l$.
HINT
Assume steady precession around the vertical, i.e., $\theta=$ constant $(\neq 0)$. Then require that the resulting quadratic equation in $\dot{\phi}(=$ constant) have real roots. (This argument also works for stability of steady precession about any nutation angle.)

REMARK

Since for small θ the angles ϕ and ψ are not necessarily small (and for $\theta=0, \dot{\phi}, \dot{\psi}$ become indeterminate, §1.12), other angles, free of this drawback, have been used; e.g., the Eulerian sequence $1 \rightarrow 2 \rightarrow 3$. For a treatment of the sleeping top via such singularity-free parameters, see e.g., Beghin (1967, pp. 503-504) and Berezkin (1968, pp. 261-262).

8.5 STEADY MOTION (OF CYCLIC SYSTEMS)

Continuing from §3.10, we define as steady motion of a general (not necessarily cyclic) system, relative to a given set of Lagrangean coordinates, $\left(q_{k}\right)$, one in which all corresponding velocities are constant; that is, $\left(\dot{q}_{k}\right)=$ constant. Hence, if that system is also cyclic, relative to a particular set of ignorable coordinates, saying that it is in a state of steady (or isocyclic) motion means that, during the latter, the velocities corresponding to both its ignorable and nonignorable coordinates remain constant; that is, and in the notation of $\S 8.3$ and $\S 8.4$ (with $i=1, \ldots, M ; p=M+1, \ldots, n$), a motion of that system is steady if during it

$$
\begin{equation*}
\dot{\psi}_{i}=\text { constant } \equiv c_{i} \quad\left(\text { in addition to } \Psi_{i}=\text { constant } \equiv C_{i}\right), \tag{8.5.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{p}=\text { constant } \equiv s_{p} \quad\left(\Rightarrow \dot{q}_{p}=0\right) \tag{8.5.1b}
\end{equation*}
$$

that is, all system velocities are constant (and, hence, all corresponding accelerations vanish); and, for scleronomic such systems, the Lagrangean has the form $L=L\left(c_{i}, s_{p}\right)$. Conditions (8.5.1b) state that (these special motions of the original system called) steady motions relative to the ignorable coordinates $\left(\psi_{i}\right)$ are equilibrium states of the conjugate subsystem $\left(q_{p}\right)$. [Recall "bracketed comment" following (8.4.5).]

Clearly, steadiness is a coordinate-dependent property, like cyclicity; and outside of uniform translation and rotation about a fixed axis, constitutes one of the simplest kinds of motion. Thus, the spinning top of the preceding examples is in a state of steady motion if its ignorable velocities $\dot{\phi}$ (precession rate) and $\dot{\psi}$ (intrinsic, or proper, spin), and its nonignorable coordinate θ (nutation) remain constant.

To find the conditions for such a state of motion, of, say, a scleronomic and holonomic system (extensions to more general systems, even quasi variables and
noncyclic systems, do not offer any theoretical difficulties), we take the earlier Kelvin-Tait equations (8.4.10; with $p, p^{\prime}=M+1, \ldots, n$):

$$
\begin{align*}
\left(\partial R_{2} / \partial \dot{q}_{p}\right)^{\cdot}-\partial R_{2} / \partial q_{p} & =Q_{p}+\partial R_{0} / \partial q_{p}+G_{p} \\
& =Q_{p}+\left(\partial T_{0,2}^{\prime \prime} / \partial q_{p}-\partial V / \partial q_{p}\right)+G_{p} \tag{8.5.2}
\end{align*}
$$

where

$$
\begin{gather*}
G_{p} \equiv \sum\left(\partial r_{p^{\prime}} / \partial q_{p}-\partial r_{p} / \partial q_{p^{\prime}}\right) \dot{q}_{p^{\prime}} \equiv \sum G_{p p^{\prime}} \dot{q}_{p^{\prime}} \tag{8.5.2a}\\
R_{1} \equiv T_{1,1}^{\prime \prime}=\sum r_{p} \dot{q}_{p} \tag{8.5.2b}
\end{gather*}
$$

and in there apply the (equilibrium-like) equations (8.5.1a, b). We, thus, obtain the following conditions of steady motion:

$$
\begin{equation*}
Q_{p}+\partial R_{0} / \partial q_{p} \equiv Q_{p}+\left(\partial T_{0,2}^{\prime \prime} / \partial q_{p}-\partial V / \partial q_{p}\right)=0 \tag{8.5.3a}
\end{equation*}
$$

or, if the system is wholly potential,

$$
\begin{equation*}
\partial R_{0} / \partial q_{p}=0, \quad \text { or } \quad \partial T_{0,2}^{\prime \prime} / \partial q_{p}=\partial V / \partial q_{p} \tag{8.5.3b}
\end{equation*}
$$

Equivalently, since [recalling (8.3.12 ff.)]
$R=R_{2}$ (homogeneous quadratic in the \dot{q} 's $)+R_{1}$ (homogeneous bilinear in the Ψ 's and \dot{q} 's) $+R_{0}$ (homogeneous quadratic in the Ψ 's),
and by Routh's kinematico-inertial identities

$$
\begin{equation*}
\partial R / \partial q_{p}=\partial L / \partial q_{p} \tag{8.5.3d}
\end{equation*}
$$

the above "equilibrium" conditions can be rewritten as

$$
\begin{equation*}
\left(\partial R / \partial q_{p}\right)_{o}=\left(\partial L / \partial q_{p}\right)_{o}=0 \quad\left[(\ldots)_{o} \equiv(\ldots)_{\dot{\psi}=c, q=s, \dot{q}=0}\right] . \tag{8.5.3e}
\end{equation*}
$$

These $n-M$ equations, expressing the hitherto unknown q 's $\equiv s$'s in terms of the arbitrarily chosen $\Psi ' s \equiv C$'s, are the necessary and sufficient conditions for the steady motion of the original system; or, equivalently, for the equilibrium of the reduced system. The ψ 's can then be found from the second (Hamiltonian) group of Routh's equations:

$$
\begin{align*}
d \psi_{i} / d t= & -\left(\partial R / \partial \Psi_{i}\right)_{o}=-\left(\partial R_{0} / \partial \Psi_{i}\right)_{o}=-\left(\partial T_{0,2}^{\prime \prime} / \partial \Psi_{i}\right)_{o} \\
= & \sum C_{i j} C_{j}=\text { constant } \equiv c_{i} \quad\left[\mathrm{by}(8.3 .12 \mathrm{~d}, \mathrm{e}), \text { with } \dot{q}_{p}=0\right] \\
= & \text { Function of the } s \text { 's [roots of }(8.5 .3 \mathrm{~b}),(8.5 .3 \mathrm{e})] \text { and the (arbitrarily } \\
& \text { chosen) } C_{j} \text { 's [as (8.3.121) show, once }(8.5 .3 \mathrm{a}, \mathrm{~b}) \text { have been solved, the } \\
& C_{j i} \text { change, from known functions of the } q \text { 's, to known functions } \\
& \text { of the } \Psi \text { 's }], \tag{8.5.4a}
\end{align*}
$$

which, upon integration, yields the ψ 's:

$$
\begin{equation*}
\psi_{i}(t)=-c_{i}\left(t-t_{\text {initial }}\right)+\psi_{i, \text { initial }}: \tag{8.5.4b}
\end{equation*}
$$

Function of the s 's and the (now) arbitrarily chosen c_{i} 's and $\psi_{\text {initial }}$'s;
that is, in steady motion, the cyclic coordinates vary linearly with time.
As stated above, if we initially choose arbitrarily the Ψ 's, then eqs. (8.5.3b) relate them to the q 's. If, on the other hand, we initially choose arbitrarily the $\dot{\psi}$'s $\equiv c$'s, then, to relate them directly to the q 's, we must modify (8.5.3b) somewhat. To this end, we take, first, $T^{\prime \prime}{ }_{0,2}$, which is homogeneous quadratic in the Ψ 's, and, using $\Psi_{i}=\sum c_{j i} \dot{\psi}_{j}$, we change it to a homogeneous quadratic function in the $\dot{\psi}$'s. Indeed, we have, successively (with $i, j, j^{\prime}, j^{\prime \prime}: 1, \ldots, M$),

$$
\begin{align*}
2 T_{0,2}^{\prime \prime} & \equiv 2 T^{\prime \prime}{ }_{\Psi \Psi} \equiv-\sum \sum C_{j i} \Psi_{j} \Psi_{i} & & {[\text { recalling (8.3.121)] }} \\
& =-\sum \sum C_{j i}\left(\sum c_{j^{\prime} j} \dot{\psi}_{j^{\prime}}\right)\left(\sum c_{j^{\prime \prime} i} \dot{\psi}_{j^{\prime \prime}}\right) & & {\left[\text { recalling that } \sum C_{j i} c_{j^{\prime} j}=\delta_{i j^{\prime}}, \text { etc. }\right] } \\
& =\cdots=-\sum \sum c_{i j} \dot{\psi}_{i} \dot{\psi}_{j} \equiv 2 T^{\prime \prime}{ }_{\psi \dot{\psi}}=-2 T_{\dot{\psi} \dot{\psi}} & & {[\text { recalling (8.3.12c, } 1)] . } \tag{8.5.5a}
\end{align*}
$$

Next, applying the results of (probs. 8.2.1 and 8.2.6) to the conjugate functions $T^{\prime \prime}{ }_{\Psi \Psi}$ and $T_{\psi \psi}^{\prime \prime}$, we find that

$$
\begin{equation*}
\partial T_{\Psi \Psi}^{\prime \prime} / \partial q_{p}=-\partial T_{\psi \psi}^{\prime \prime} / \partial q_{p}=\partial T_{\psi \dot{\psi}} / \partial q_{p} \tag{8.5.5b}
\end{equation*}
$$

and so, finally, we can replace the steady motion conditions (8.5.3b) by

$$
\begin{equation*}
-\partial T^{\prime \prime}{ }_{\psi \dot{\psi}} / \partial q_{p}=\partial V / \partial q_{p} \quad \text { or } \quad \partial T_{\dot{\psi} \psi} / \partial q_{p}=\partial V / \partial q_{p} \tag{8.5.5c}
\end{equation*}
$$

which relate the unknown q 's to the arbitrarily chosen $\dot{\psi}$'s; and using $\Psi_{i}=\sum c_{j i} \dot{\psi}_{j}$ we can relate both sets to the Ψ 's.

Example 8.5.1 Let us apply eqs. (8.5.5b, c) to the spinning top described earlier. Here, $\Psi_{1} \equiv C_{\phi}$ and $\Psi_{2} \equiv C_{\psi}$, and

$$
\begin{align*}
2 T & =A\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2}, \quad V=m g l \cos \theta \tag{a1}\\
R_{2} & \equiv T_{2,0}^{\prime \prime}=(1 / 2) A(\dot{\theta})^{2} \tag{a2}\\
R_{1} & \equiv T_{1,1}^{\prime \prime}=0 \tag{a3}\\
R_{0} & \equiv T_{0,2}^{\prime \prime}-V \equiv T_{\Psi \Psi}^{\prime \prime}-V \\
& =-\left[\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2} / 2 A \sin ^{2} \theta+(1 / 2 C) C_{\psi}^{2}\right]-m g l \cos \theta \tag{a4}
\end{align*}
$$

Therefore, (8.5.4a) yield

$$
\begin{align*}
& \dot{\phi}=-\left(\partial T^{\prime \prime}{ }_{\Psi \Psi} / \partial C_{\phi}\right)_{o}=\left(C_{\phi}-C_{\psi} \cos \theta\right) / A \sin ^{2} \theta, \tag{b1}\\
& \dot{\psi}=-\left(\partial T^{\prime \prime}{ }_{\Psi \Psi} / \partial C_{\psi}\right)_{o}=-\left(C_{\phi}-C_{\psi} \cos \theta\right) \cos \theta / A \sin ^{2} \theta+C_{\psi} / C . \tag{b2}
\end{align*}
$$

Solving these two equations for C_{ϕ} and C_{ψ}, we obtain

$$
\begin{align*}
C_{\phi} & =\left(A \sin ^{2} \theta+C \cos ^{2} \theta\right) \dot{\phi}+(C \cos \theta) \dot{\psi}=\text { constant }, \tag{cl}\\
C_{\psi} & =(C \cos \theta) \dot{\phi}+(C) \dot{\psi}=\text { constant } \tag{c2}
\end{align*}
$$

and, inserting these representations in $T^{\prime \prime} \Psi \Psi$, (a4), we find

$$
\begin{equation*}
-2 T_{\psi \dot{\psi}}^{\prime \prime}=2 T_{\psi \dot{\psi}}=A(\dot{\phi})^{2} \sin ^{2} \theta+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2}, \tag{c3}
\end{equation*}
$$

something that could have also been written down immediately from (a1) and the general result (8.5.5a)! With these expressions, we readily confirm that

$$
\begin{align*}
\partial T^{\prime \prime}{ }_{\Psi \Psi} / \partial \theta & =-\left(\partial T_{\psi \dot{\psi}}^{\prime \prime} / \partial \theta\right)=\partial T_{\dot{\psi} \dot{\psi}} / \partial \theta \\
& =A(\dot{\phi})^{2} \sin \theta \cos \theta-C(\dot{\psi}+\dot{\phi} \cos \theta) \dot{\phi} \sin \theta \tag{c4}
\end{align*}
$$

and so the condition of steady motion (here, steady precession) (8.5.5c) becomes [assuming that $\sin \theta \neq 0$ and recalling that $C(\dot{\psi}+\dot{\phi} \cos \theta) \equiv C_{\psi}$]

$$
\begin{equation*}
\partial T^{\prime \prime}{ }_{\psi \dot{\psi}} / \partial \theta \equiv-\left(\partial T_{\psi \dot{\psi} \dot{\psi}} / \partial \theta\right)=-(\partial V / \partial \theta): \quad A(\dot{\phi})^{2} \cos \theta-C_{\psi} \dot{\phi}+m g l=0, \tag{d1}
\end{equation*}
$$

which is an equation relating the noncyclic coordinate θ with the cyclic velocities $\dot{\phi}$ and $\dot{\theta}$, at that state. Solving this quadratic algebraic equation for $\dot{\phi}$, we find

$$
\begin{equation*}
d \phi / d t=\left[C_{\psi} \pm\left(C_{\psi}^{2}-4 A m g l \cos \theta\right)^{1 / 2}\right] / 2 A \cos \theta \tag{d2}
\end{equation*}
$$

from which it follows that if $C_{\psi}{ }^{2}>4 A m g l \cos \theta$, there will be two distinct values of $\dot{\phi}$ for which $\theta=$ constant. (The reader can compare this approach with those of the preceding examples.) Of course, the same equations and conditions would result by implementation of (8.5.3b), (8.5.3e); their details are left to the reader.

Problem 8.5.1 Consider the steady precession of the spinning top; that is, the special motion where $\dot{\phi}=$ constant, $\dot{\psi}=$ constant, and $\theta=$ constant. Using the results of ex. 8.4.5:
(i) Show that, in this case,

$$
\begin{align*}
m g l \sin \theta & =\left[\left(C_{\phi}-C_{\psi} \cos \theta\right) / A \sin \theta\right]\left\{\left[C_{\psi} \sin ^{2} \theta-\left(C_{\phi}-C_{\psi} \cos \theta\right) \cos \theta\right] / \sin ^{2} \theta\right\} \\
& =(1 / A)(A \dot{\phi} \sin \theta)\left(C_{\psi}-A \dot{\phi} \cos \theta\right) \tag{a}
\end{align*}
$$

(ii) Further, and since $C_{\psi}=C n \equiv C(\dot{\psi}+\dot{\phi} \cos \theta)$, show that

$$
\begin{equation*}
m g l=\dot{\phi}(C n-A \dot{\phi} \cos \theta), \tag{b}
\end{equation*}
$$

which is a functional relation of the form
$F[\theta($ nutation $), n($ total spin $), \dot{\phi}($ rate of precession $)]=0 \Rightarrow \theta=\theta(n, \dot{\phi})$.
(iii) Finally, show that for high total spins condition (b) can be approximated by

$$
\begin{equation*}
m g l=C \dot{\phi} n \tag{c}
\end{equation*}
$$

that is, roughly, in the case of "equilibrium" known as steady precession, the destabilizing effect of gravity is balanced by the stabilizing (= restoring) effect of spinning.

Problem 8.5.2 Consider the cyclic system of our general theory; that is, $\partial L / \partial \psi_{i}=0$.
(i) Show that under the (local and time-independent) coordinate transformation

$$
\begin{equation*}
\psi \rightarrow \psi^{\prime}=\psi \quad \text { and } \quad q \rightarrow q^{\prime}=f(q) \tag{a}
\end{equation*}
$$

the ψ^{\prime} remain ignorable.
(ii) Show that the steady motion conditions remain invariant under (a); that is,
if $\dot{\psi}=$ constant and $q=$ constant, then also $\dot{\psi}^{\prime}=$ constant and $q^{\prime}=$ constant .

HINT
Apply chain rule to $L(\dot{\psi} ; q, \dot{q})=L\left(\dot{\psi}^{\prime} ; q^{\prime}, \dot{q}^{\prime}\right)$.

Example 8.5.2 Let us examine the total energy of our original (holonomic, stationary, potential, and cyclic) system at steady motions. Varying $H=T+V=$ $H(q, p)$ around such a state, we find, successively [with $\Delta(\ldots)$ denoting generic variations of (...)],

$$
\begin{array}{rlrl}
\Delta H & =\sum\left[\left(\partial H / \partial q_{k}\right) \Delta q_{k}+\left(\partial H / \partial p_{k}\right) \Delta p_{k}\right] & & \text { [invoking the Hamiltonian identities] } \\
& =\sum\left[\left(-\partial L / \partial q_{k}\right) \Delta q_{k}+\left(\dot{q}_{k}\right) \Delta\left(\partial L / \partial \dot{q}_{k}\right)\right] & \text { [recalling that } \left.\partial L / \partial \psi_{i}=0\right] \\
& =\sum\left[\left(-\partial L / \partial q_{p}\right) \Delta q_{p}+\left(\dot{q}_{p}\right) \Delta\left(\partial L / \partial \dot{q}_{p}\right)\right]+\sum \dot{\psi}_{i} \Delta \Psi_{i} \\
& =\sum\left[(0) \Delta q_{p}+(0) \Delta\left(\partial L / \partial \dot{q}_{p}\right)\right]+\sum \dot{\psi}_{i} \Delta \Psi_{i} \\
& =0, \quad \text { if } \Delta \Psi_{i}=0 .
\end{array}
$$

Hence, the following theorem.

THEOREM

At a state of steady motion, the energy of the original system is stationary, for vanishing variations of the cyclic momenta around that state.

Since, here, the Δq 's and Δp 's are viewed as independent, it is not hard to show that the converse is also true; that is, if $\Delta H=0$, for $\Delta \Psi_{i}=0$, then the state considered is one of steady motion - namely, there, $\dot{q}_{p}=0$ and $\partial L / \partial q_{p}=0$.
[This theorem is important in the Hamiltonian treatment of the stability of steady motion, along lines similar to the study of the stability of equilibrium via the stationarity/extremality of the total potential energy; see §8.6.]

8.6 STABILITY OF STEADY MOTION (OF CYCLIC SYSTEMS)

Continuing from the preceding section, we consider, again, a holonomic, scleronomic (no real loss in generality), potential, and cyclic system S in a so-called
fundamental state of steady motion I, described by
$\dot{\psi}_{i}=$ constant $\equiv c_{i} \quad$ and $\quad q_{p}=$ constant $\equiv s_{p}$
$\Rightarrow \Psi_{i}=$ constant $\equiv C_{i} \quad$ and $\quad p_{p} \equiv \partial T / \partial \dot{q}_{p}=$ constant $\equiv S_{p}$.
$[i=1, \ldots, M$ (number of ignorable coordinates), $p=M+1, \ldots, n$
($n-M=g$: number of nonignorable coordinates)].

Next, we also consider S in an adjacent state of (generally, nonsteady) motion $I I=I+\Delta(I)$, caused by arbitrary disturbances, and, hence, specified by the following general variations:

$$
\begin{align*}
q_{p} & \rightarrow q_{p}+\Delta q_{p} \equiv s_{p}+\Delta s_{p} \equiv s_{p}+z_{p}(t)\left(z_{p}:\right. \text { relative coordinates) } \\
& \quad\left[\Rightarrow p_{p} \rightarrow p_{p}+\Delta p_{p} \equiv S_{p}+\Delta S_{p} \equiv S_{p}+Z_{p}(t)\right], \\
\Psi_{i} & \rightarrow \Psi_{i}+\Delta \Psi_{i} \equiv C_{i}+\Delta C_{i}=\text { constant }(\text { since } S \text { is cyclic in both } I \text { and } I I) \\
& {\left[\Rightarrow \dot{\psi}_{i} \rightarrow \dot{\psi}_{i}+\Delta \dot{\psi}_{i} \equiv c_{i}+\Delta c_{i}(t) \equiv c_{i}+\eta_{i}(t)\right] . } \tag{8.6.2}
\end{align*}
$$

Here is why: since our system S remains cyclic, the kinematico-inertial equations (8.3.12d, e; 8.5.4a)

$$
\dot{\psi}_{i}=\sum C_{i j}(q)\left[\Psi_{j}-\sum b_{p j}(q) \dot{q}_{p}\right]
$$

will hold in both states I and $I I$. Therefore,
$I: \quad c_{i}=\sum C_{i j}(s)\left[C_{j}-\sum b_{p j}(s) \dot{s}_{p}\right]=\sum C_{i j}(s) C_{j} \equiv \sum C_{i j} C_{j}$
(since s_{p} : constant);

II: $\quad c_{i}+\eta_{i}(t)=\sum C_{i j}[s+z(t)]\left\{\left(C_{j}+\Delta C_{j}\right)-\sum b_{p j}[s+z(t)] \dot{z}_{p}\right\}$

$$
\equiv \sum\left[C_{i j}(s)+\Delta C_{i j}(z ; s)\right]\left\{\left(C_{j}+\Delta C_{j}\right)-\sum\left[b_{p j}(s)+\Delta b_{p j}(z ; s)\right] \dot{z}_{p}\right\}
$$

$$
\equiv \sum\left(C_{i j}+\Delta C_{i j}\right)\left[\left(C_{j}+\Delta C_{j}\right)-\sum\left(b_{p j}+\Delta b_{p j}\right) \dot{z}_{p}\right]
$$

$$
\begin{equation*}
\approx \sum C_{i j} C_{j}+\sum\left[C_{i j} \Delta C_{j}+\Delta C_{i j} C_{j}-\sum\left(C_{i j} b_{p j}\right) \dot{z}_{p}\right] \tag{8.6.2a}
\end{equation*}
$$

[to the first order in the $\Delta(I)$-deviations: $z_{p}, \dot{z}_{p}, \Delta C_{i} ; \Delta C_{j i} \approx \sum\left(\partial C_{j i} / \partial q_{p}\right)_{I} z_{p}$]

$$
\begin{equation*}
\Rightarrow \eta_{i}(t)=\sum\left[C_{i j} \Delta C_{j}+C_{j} \Delta C_{i j}(t)-\sum C_{i j} b_{p j} \dot{z}_{p}(t)\right] ; \tag{8.6.2b}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\Delta \dot{\psi}(t)=\text { Function of } \Delta \Psi, \Delta q(t) ; \Psi, q . \tag{8.6.2c}
\end{equation*}
$$

From the above, it follows that: (a) The specification of $\Delta(I)$, or $I I$, requires n quantities: $M \Delta \Psi_{i}$'s, and $n-M \Delta q_{p}(t)$'s.
(b) $\Delta \dot{\psi}_{i} \equiv \eta_{i}(t) \neq 0$, even if we assume that $\Delta \Psi_{j} \equiv \Delta C_{j}=0$.
(c) After finding the palpable/noncyclic perturbations $z_{p}(t) \rightarrow \dot{z}_{p}(t) \rightarrow \Delta C_{i j}(t)$, we can calculate those of the cyclic velocities $\eta_{i}(t)$, from (8.6.2b), without any difficulty.

Important Clarifications

(i) Usually, but not always, we consider perturbations $\Delta(I)$ that preserve the values of the ignorable momenta; that is, $\Delta \Psi_{i} \equiv \Psi_{i}(I I)-\Psi_{i}(I)=\Delta C_{i}=0$. [As shown in ex. 8.5.2, such equimomental deviations are also isoenergetic; that is, the total energy is also preserved: $H(I)=H(I I)$.]
(ii) By adjacent state, we mean one that can be adequately described by linear(ized) equations in the above nonignorable deviations $q_{p}(t)$ [and $p_{p}(t)$] and their (...)-derivatives.

Now, if, as $t \rightarrow \infty$, these perturbations remain bounded-for example, if they vary harmonically about the steady state I, or if they approach it asymptotically then we say that I is stable; if not, then it is unstable. [As (8.5.4a) and (8.5.2b) show, a small change in the I-values $q(I), p(I), \Psi(I)$ produces a small change in the $\dot{\psi}(I)$'s: $\dot{\psi}_{i} \rightarrow \dot{\psi}_{i}+\Delta \dot{\psi}_{i}(t)$. But in view of the linear variation of the ignorable coordinates with time, eq. (8.5.4b), a small change in the $\dot{\psi}(I)$'s produces, after sufficient time, an arbitrarily large change in the $\psi(I)$'s. Therefore, steady motions cannot be stable relative to their ignorable coordinates.]

To study such perturbed motions, either:

- We substitute $q_{p} \rightarrow s_{p}+\Delta s_{p} \equiv s_{p}+z_{p}(t)\left[\right.$ and $\left.\dot{\psi}_{i} \rightarrow c_{i}+\Delta c_{i}(t) \equiv c_{i}+\dot{\psi}_{i}(t)\right]$ in the Lagrangean equations of motion of the original system, or (8.6.2) (with $\Psi_{i} \rightarrow C_{i}+\Delta C_{i} \equiv C_{i}$, since we assumed that $\Delta C_{i}=0$) in the Routhian equations of motion [i.e., the Lagrangean equations of the reduced, or conjugate, (sub)system]; and then keep only up to first-order/linear terms in the $\Delta s_{p} \equiv z_{p}(t), \Delta c_{i} \equiv \eta_{i}(t)$ and their $(\ldots)^{\circ}$-derivatives. Since the fundamental state is assumed steady, the so-resulting linear perturbation equations will have coefficients that will be known functions of the (assumed known) constant I-values C_{i}, s_{p} (or c_{i}, s_{p}), and so will be themselves known constants; or
- We substitute (2) in the exact Routhian $R\left(q_{p}, \dot{q}_{p} ; \Psi_{i}\right)$ expand it à la Taylor around I [i.e., in powers of the $\Delta q_{p}(t) \equiv z_{p}(t)$ and their (...)-derivatives], keep only up to second-order/quadratic terms in them, while evaluating all derivatives at I, and then form Routh's equations for the nonignorable perturbations $z_{p}(t)$. Indeed, with $p, p^{\prime}=M+1, \ldots, n$ and $(\ldots)_{o} \equiv(\ldots)_{\text {evaluated at } I}$ (to be used now and then for extra clarity), we obtain, successively,

$$
R \equiv R(I I) \equiv R[I+\Delta(I)] \equiv R(I)+\Delta R
$$

or

$$
\begin{align*}
R(q, \dot{q} ; \Psi) & =R[s+z(t), \dot{s}+\dot{z}(t) ; C+\Delta C]=R[s+z(t), \dot{z}(t) ; C] \\
& \equiv R_{(0)}+R_{(1)}+R_{(2)} \tag{8.6.3}
\end{align*}
$$

where

$$
\begin{align*}
R_{(0)} & \equiv R(I)=R(s ; C)=\text { constant }, \tag{8.6.3a}\\
R_{(1)} & \equiv \sum\left[\left(\partial R / \partial q_{p}\right)_{o} z_{p}+\left(\partial R / \partial \dot{q}_{p}\right)_{o} \dot{z}_{p}\right]: \text { linear homogeneous in } z, \dot{z} \\
& =\sum\left[(0) z_{p}+\left(\partial R / \partial \dot{q}_{p}\right)_{o} \dot{z}_{p}\right] \quad[\text { invoking }(8.5 .3 \mathrm{e})] \tag{8.6.3b}
\end{align*}
$$

$$
\begin{align*}
2 R_{(2)} \equiv \sum \sum\left[\left(\partial^{2} R / \partial q_{p} \partial q_{p^{\prime}}\right)_{o} z_{p} z_{p^{\prime}}\right. & +2\left(\partial^{2} R / \partial q_{p} \partial \dot{q}_{p^{\prime}}\right)_{o} z_{p} \dot{z}_{p^{\prime}} \\
& \left.+\left(\partial^{2} R / \partial \dot{q}_{p} \partial \dot{q}_{p^{\prime}}\right)_{o} \dot{z}_{p} \dot{z}_{p^{\prime}}\right]: \\
& \text { quadratic homogeneous in } z, \dot{z}, \tag{8.6.3c}
\end{align*}
$$

and, therefore \{assuming $Q_{p}(I)=Q_{p}(I I)=0$, and since $\left(\partial R / \partial \dot{q}_{p}\right)_{o}=$ constant \Rightarrow $\left.\left[\left(\partial R / \partial \dot{q}_{p}\right)^{\cdot}\right]_{o}=0\right\}$, the linearized equations of state II

$$
\begin{equation*}
\left(\partial(\Delta R) / \partial \dot{z}_{p}\right)^{\cdot}-\partial(\Delta R) / \partial z_{p}=\left(\partial R_{(2)} / \partial \dot{z}_{p}\right)^{\cdot}-\partial R_{(2)} / \partial z_{p}=0 \tag{8.6.3d}
\end{equation*}
$$

become

$$
\begin{equation*}
\sum\left(\mu_{p p^{\prime}} \ddot{z}_{p^{\prime}}+\gamma_{p p^{\prime}} \dot{z}_{p^{\prime}}+\kappa_{p p^{\prime}} z_{p^{\prime}}\right)=0 \tag{8.6.4}
\end{equation*}
$$

where the constant coefficients μ, γ, κ are

$$
\begin{array}{rlr}
\mu_{p p^{\prime}} \equiv\left(\partial^{2} R / \partial \dot{q}_{p} \partial \dot{q}_{p^{\prime}}\right)_{o} & (& \left.=\mu_{p^{\prime} p}: \text { positive definite }\right), \\
\kappa_{p p^{\prime}} \equiv-\left(\partial^{2} R / \partial q_{p} \partial q_{p^{\prime}}\right)_{o} & (& \left.=\kappa_{p^{\prime} p}, \text { note minus sign }\right), \\
\gamma_{p p^{\prime}} \equiv\left(\partial^{2} R / \partial q_{p^{\prime}} \partial \dot{q}_{p}-\partial^{2} R / \partial q_{p} \partial \dot{q}_{p^{\prime}}\right)_{o} & =\left[\partial / \partial \dot{q}_{p}\left(\partial R / \partial q_{p^{\prime}}\right)-\partial / \partial \dot{q}_{p^{\prime}}\left(\partial R / \partial q_{p}\right)\right]_{o} \\
& \left(=-\gamma_{p^{\prime} p}: \text { sign indefinite }\right) . \tag{8.6.4c}
\end{array}
$$

REMARKS

(i) The μ - and κ-terms represent, respectively, inertia and "elasticity," as in ordinary linear vibration theory; the γ-terms, however, do not represent dissipation, but gyroscopicity; that is, they are powerless (§3.9):

$$
\begin{equation*}
\sum\left(\sum \gamma_{p p^{\prime}} \dot{z}_{p^{\prime}}\right) \dot{z}_{p}=0 \tag{8.6.4d}
\end{equation*}
$$

For example, for $n-M=2$ ($=$ minimum number of nonignorable coordinates for appearance of gyroscopicity; then $p, p^{\prime}=1,2$), eqs. (8.6.4) read, in extenso,

$$
\begin{align*}
& \mu_{11} \ddot{z}_{1}+\mu_{12} \ddot{z}_{2}+\gamma_{12} \dot{z}_{2}+\kappa_{11} z_{1}+\kappa_{12} z_{2}=0, \tag{8.6.4e}\\
& \mu_{21} \ddot{z}_{1}+\mu_{22} \ddot{z}_{2}+\gamma_{21} \dot{z}_{1}+\kappa_{21} z_{1}+\kappa_{22} z_{2}=0 ; \tag{8.6.4f}
\end{align*}
$$

that is, they involve seven distinct coefficients [three inertial $\left(\mu_{11}, \mu_{12}=\mu_{21}, \mu_{22}\right)+$ one gyroscopic $\left(\gamma_{12}=-\gamma_{21}\right)+$ three elastic $\left.\left(\kappa_{11}, \kappa_{12}=\kappa_{21}, \kappa_{22}\right)\right]$.
(ii) Neither $R_{(0)}$ nor $R_{(1)}$ enter the equations of adjacent motion [recall mathematically similar situation in derivation of (3.10.12)].
(iii) The constancy of all coefficients in the expansions (8.6.3-8.6.3c), and therefore also in the perturbation equations (8.6.4-8.6.4c), has been used by Routh as the mathematical definition of steady motion. The physical characteristic of such a motion is, in his words, "that ... the same oscillations follow from the same disturbance of the same [nonignorable] coordinate at whatever instant the disturbance may be applied to the motion" [Routh (1905(b), p. 77].

To study the nature of the solutions of (8.6.4) with an eye toward their stability, and so on, and guided by the linear and unforced vibration case (i.e., linear homogeneous systems with constant coefficients), we substitute in (8.6.4)

$$
\begin{equation*}
z_{p}=z_{p o} \exp (\lambda t), \quad z_{p o}=\text { constant amplitude }, \tag{8.6.5a}
\end{equation*}
$$

and, proceeding in well-known ways, we find that, for nontrivial $z_{p o}$'s, the (constant) λ 's must be roots of the following determinantal (or secular, or characteristic) equation:
$=2 g$-degree polynomial in $\lambda(g \equiv n-M=\#$ nonignorable coordinates $)$.

The complete (or general) solution of (8.6.4) will equal the linear superposition of the $2 g$ (8.6.5a)-like solutions; one for each of the $2 g$ roots of (8.6.5b).

The stability/instability of the fundamental state I is determined by the nature (and/or sign) of these roots; which, in turn, are determined by the coefficients μ, γ, κ, whose values depend on that state. In general (recall summary in §3.10), roots that are:

- real and positive, or complex with positive real parts signal instability (i.e., solutions increase exponentially with time);
- real and negative, or complex with negative real parts signal (asymptotic) stability (i.e., solutions decrease exponentially with time);
- purely imaginary signal stability (i.e., constant amplitude oscillations. This case is called critical: actually, our linearized stability analysis is inconclusive; we need nonlinear perturbation equations for $\Delta(I)$ to safely ascertain the stability/instability of I).

Hence, to test stability: either
(i) We find all roots of (8.6.5b) and then check to see if their real parts are negative; or
(ii) We apply any one of a number of existing criteria that does not actually find the roots, but checks the sign of their real parts; for example, Routh-Hurwitz test (§3.10, Method of Small Oscillations).

As in ordinary linear vibration theory, the reason that (8.6.5b) is not so easy to study is because equations (8.6.4) are coupled. An important simplification occurs if we choose new $\Delta(I)$-coordinates $z_{p} \rightarrow x \equiv\left(x_{1}, \ldots, x_{g}\right)$, via an ever-existing linear, real, and nonsingular transformation that diagonalizes (i.e., uncouples) simultaneously both matrices ($\mu_{p p^{\prime}}$: positive definite) and $\left(\kappa_{p p^{\prime}}\right)$, and thus reduces the "perturbation kinetic and potential energies"

$$
\begin{align*}
& 2 R_{(2) T} \equiv \sum \sum\left(\partial^{2} R / \partial \dot{q}_{p} \partial \dot{q}_{p^{\prime}}\right)_{o} \dot{z}_{p} \dot{z}_{p^{\prime}} \equiv \sum \sum \mu_{p p^{\prime}} \dot{z}_{p} \dot{z}_{p^{\prime}}, \tag{8.6.6a}\\
& 2 R_{(2) V} \equiv-\sum \sum\left(\partial^{2} R / \partial q_{p} \partial q_{p^{\prime}}\right)_{o} z_{p} z_{p^{\prime}} \equiv \sum \sum \kappa_{p p^{\prime}} z_{p} z_{p^{\prime}}, \tag{8.6.6b}
\end{align*}
$$

respectively, to sums of squares:

$$
\begin{equation*}
2 R_{(2) T}=\sum \mu_{p}\left(\dot{x}_{p}\right)^{2} \quad \text { and } \quad 2 R_{(2) V}=\sum \kappa_{p} x_{p}^{2} . \tag{8.6.6c}
\end{equation*}
$$

[Note minus sign in $R_{(2) V}$, to give $R_{(2)}$ the form of a Lagrangean; see also (8.6.10b).] However, then, the "gyroscopic energy"

$$
\begin{equation*}
R_{(2) G} \equiv \sum \sum\left(\partial^{2} R / \partial q_{p} \partial \dot{q}_{p^{\prime}}\right)_{o} z_{p} \dot{z}_{p^{\prime}} \equiv \sum \sum E_{p^{\prime} p} z_{p} \dot{z}_{p^{\prime}} \quad\left(E_{p^{\prime} p} \neq E_{p p^{\prime}}\right) \tag{8.6.6d}
\end{equation*}
$$

(which does not exist in linear, unforced, and undamped vibrations about equilibrium) transforms, in general, to another nondiagonal form,

$$
\begin{equation*}
R_{(2) G}=\sum \sum \varepsilon_{p^{\prime} p} x_{p} \dot{x}_{p^{\prime}} \quad\left[\equiv \sum\left(\sum \varepsilon_{p^{\prime} p} x_{p}\right) \dot{x}_{p^{\prime}}\right] . \tag{8.6.6e}
\end{equation*}
$$

As mentioned above, since $R_{(2) T}$ (but not necessarily $R_{(2) V}$) is positive definite, such a partially decoupling transformation is always possible; but it must be borne in mind that because the "elastic" coefficients $\kappa_{p p^{\prime}}$, in general, depend on the $\dot{\psi}, \Psi$'s, [or, in the mathematically equivalent case of small motion around relative equilibrium (recall $\S 3.16$), they depend on the constant angular velocity of the rotating frame] the x 's may also depend on them as parameters. [The x 's are sometimes called principal coordinates, just like the (completely decoupling) principal/normal coordinates of ordinary (i.e., nongyroscopic) vibration theory.]

In these coordinates, the Lagrange-type equations of perturbed motion

$$
\begin{equation*}
\left(\partial R_{(2)} / \partial \dot{x}_{p}\right)^{\cdot}-\partial R_{(2)} / \partial x_{p}=0 \tag{8.6.7a}
\end{equation*}
$$

where $R_{(2)}=R_{(2) T}+R_{(2) G}-R_{(2) V}$, assume the simpler form

$$
\begin{equation*}
\mu_{p} \ddot{x}_{p}+\sum g_{p p^{\prime}} \dot{x}_{p^{\prime}}+\kappa_{p} x_{p}=0 \tag{8.6.7b}
\end{equation*}
$$

where $g_{p p^{\prime}} \equiv \varepsilon_{p p^{\prime}}-\varepsilon_{p^{\prime} p}=-g_{p^{\prime} p}$; and upon substituting $x_{p}=x_{p o} \exp (\lambda t)$ into them, and so on, we are led to the simpler characteristic equation

$$
\Delta(\lambda) \equiv\left|\begin{array}{llll}
\mu_{1} \lambda^{2}+\kappa_{1} & g_{12} \lambda & \cdots & g_{1 g} \lambda \tag{8.6.8}\\
g_{21} \lambda & \mu_{2} \lambda^{2}+\kappa_{2} & \cdots & g_{2 g} \lambda \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
g_{g 1} \lambda & g_{g 2} \lambda & \cdots & \mu_{g} \lambda^{2}+\kappa_{g}
\end{array}\right|=0 .
$$

Now, the determinant $\Delta(\lambda)$ is nonsymmetric [unlike the corresponding determinant of the nongyroscopic case (undamped vibration around absolute equilibrium) which, as is well known, is symmetric], but its off-diagonal elements are antisymmetric: $g_{p p^{\prime}}=-g_{p^{\prime} p}$. Hence, reversing the sign of λ in $\Delta(\lambda)$ simply interchanges its rows and columns [or, the rows (columns) of $\Delta(\lambda)$ equal the columns (rows) of $\Delta(-\lambda)]$ and so, by determinant theory,

$$
\begin{equation*}
\Delta(\lambda)=\Delta(-\lambda) \tag{8.6.8a}
\end{equation*}
$$

in words, eq. (8.6.8) [as well as its completely uncoupled version (8.6.5b), and the nongyroscopic case] is independent of the sign of λ. Therefore all odd λ-powers are absent from it:

$$
\begin{equation*}
0=\Delta(\lambda) \equiv A_{g}\left(\lambda^{2}\right)^{g}+A_{g-1}\left(\lambda^{2}\right)^{g-1}+\cdots+A_{1}\left(\lambda^{2}\right)+A_{0} \tag{8.6.8b}
\end{equation*}
$$

$\left[(g)\right.$ th degree polynomial in $\left.\lambda^{2}\right]$.

Next, as algebra teaches, since the coefficients μ, κ, g are real, the $g \lambda^{2}$-roots of (8.6.8b) will, in general, be either real or complex conjugate pairs, like

$$
\begin{equation*}
\lambda^{2}=\alpha \pm i \beta \quad(\alpha, \beta \text { : real } \Rightarrow \lambda= \pm(\varepsilon \pm i \sigma) \quad(\varepsilon, \sigma: \text { real }) . \tag{8.6.8c}
\end{equation*}
$$

and such λ 's will produce x 's of the following general (real) form:

$$
\begin{equation*}
C \exp (\varepsilon t) \cos (\sigma t+c)+D \exp (-\varepsilon t) \cos (\sigma t+d) \tag{8.6.8d}
\end{equation*}
$$

where $C, c ; D, d$ are real constants, and, therefore, unless $\varepsilon=0$, the amplitudes $C \exp (\varepsilon t), D \exp (-\varepsilon t)$ will increase indefinitely, that is, the state I will be unstable. Hence the rule.

RULE

For the fundamental state of steady motion I to be stable, in the above sense, all λ^{2}-roots of the characteristic equation (8.6.8-8.6.8b) must be real and negative, that is,

$$
\begin{equation*}
\lambda^{2} \text {-roots }=-\lambda_{p}{ }^{2} \Rightarrow \lambda \text {-roots }= \pm i \lambda_{p} \quad\left(\lambda_{p}: \text { real, } p=1, \ldots, g\right) \tag{8.6.8e}
\end{equation*}
$$

Algebraic Detour

The theory of algebraic (polynomial) equations allows us to relate the roots of (8.6.8b) with its coefficients $A_{g}, A_{g-1}, \ldots, A_{1}, A_{0}$. According to the fundamental theorem of algebra (see books on algebra, or handbooks of engineering, mathematics, etc.), if $\Lambda_{1}, \ldots, \Lambda_{2 g}$ are the $2 g$ roots of (8.6.8b) (i.e., $\Lambda_{1}=+i \lambda_{1}, \Lambda_{2}=-i \lambda_{1}$, etc.), then

$$
\begin{equation*}
\Delta(\lambda)=A_{g}\left(\lambda-\Lambda_{1}\right)\left(\lambda-\Lambda_{2}\right) \cdots\left(\lambda-\Lambda_{2 g}\right) \quad \text { (always); } \tag{8.6.9a}
\end{equation*}
$$

and, therefore,

$$
\begin{align*}
\Delta(0) & =A_{g}(-1)^{2 g} \Lambda_{1} \Lambda_{2} \cdots \Lambda_{2 g}=+A_{g} \Lambda_{1} \Lambda_{2} \cdots \Lambda_{2 g} \\
& =\kappa_{1} \kappa_{2} \cdots \kappa_{g}=A_{0} \quad[\text { by (8.6.8) }], \quad \text { (always) } \tag{8.6.9b}
\end{align*}
$$

and

$$
\begin{equation*}
[\lim \Delta(\lambda)]_{\lambda \rightarrow \infty} \equiv \Delta(\infty)>0 \quad \text { (always) } \tag{8.6.9c}
\end{equation*}
$$

Hence in the case of stability - namely (8.6.8e) — and since then to each stable pair of λ-roots, $\pm i \lambda_{p}$, there corresponds in $\Delta(\lambda)$ a factor $\left[\lambda-\left(+i \lambda_{p}\right)\right]\left[\lambda-\left(-i \lambda_{p}\right)\right]=$ $\lambda^{2}-\left(-\lambda_{p}{ }^{2}\right)=\lambda^{2}+\lambda_{p}{ }^{2}$, eq. (8.6.9a) must have the following form ($A_{g}>0$, with no loss in generality):

$$
\begin{equation*}
\Delta(\lambda)=A_{g}\left(\lambda^{2}+\lambda_{1}^{2}\right) \ldots\left(\lambda^{2}+\lambda_{g}{ }^{2}\right) \quad \text { (stability case) } \tag{8.6.9d}
\end{equation*}
$$

that is, be a polynomial with all its coefficients positive; and so in this case

$$
\begin{equation*}
\Delta(0)=A_{g}\left(\lambda_{1}{ }^{2} \lambda_{2}{ }^{2} \ldots \lambda_{g}{ }^{2}\right)>0 \quad \text { (stability case). } \tag{8.6.9e}
\end{equation*}
$$

Further, according to Viète's rules (and counting k-ple roots k times),

$$
\begin{equation*}
\Lambda \equiv \Lambda_{1} \Lambda_{2} \cdots \Lambda_{2 g}=(-1)^{2 g}\left(A_{0} / A_{g}\right)=A_{0} / A_{g} \quad \text { (always) } \tag{8.6.9f}
\end{equation*}
$$

and so in the case of stability we must have

$$
\begin{align*}
& \Lambda=\left[\left(-i \lambda_{1}\right)\left(+i \lambda_{1}\right)\right] \ldots\left[\left(-i \lambda_{g}\right)\left(+i \lambda_{g}\right)\right]=\lambda_{1}{ }^{2} \lambda_{2}{ }^{2} \ldots \lambda_{g}{ }^{2} \\
& \text { [also: } \left.\left(-\lambda_{1}{ }^{2}\right)\left(-\lambda_{2}{ }^{2}\right) \ldots\left(-\lambda_{g}{ }^{2}\right)=(-1)^{g}\left(\lambda_{1}{ }^{2} \lambda_{2}{ }^{2} \ldots \lambda_{g}{ }^{2}\right)=(-1)^{g}\left(A_{0} / A_{g}\right)\right] \\
& \quad \Rightarrow \lambda_{1}{ }^{2} \lambda_{2}{ }^{2} \ldots \lambda_{g}{ }^{2}=A_{0} / A_{g}>0 \quad \text { (stability case). } \tag{8.6.9g}
\end{align*}
$$

Last, to express this necessary condition for gyroscopic stability in terms of the nongyroscopic parameters of our system in state I (i.e., in terms of the κ_{p} 's and the μ_{p} 's), we expand the determinant (8.6.8) and compare it with (8.6.8b) [or use mathematical induction, i.e., confirm it for $g \rightarrow 2$, then assume it holds for $g \rightarrow g$, and finally prove it for $g \rightarrow g+1]$. Thus we get
$A_{0} \equiv \kappa_{1} \kappa_{2} \ldots \kappa_{g}=\operatorname{Det}\left(\kappa_{p p^{\prime}}\right)=\operatorname{Det}\left(\kappa_{p}\right) \quad\left[\neq 0\right.$, if all $\left.\kappa_{p} \neq 0\right]:$
Product of coefficients of (nongyroscopic, or irrotational) stability of $R_{(2) V}$,
(always),
$A_{g} \equiv \mu_{1} \mu_{2} \ldots \mu_{g}=\operatorname{Det}\left(\mu_{p p^{\prime}}\right)=\operatorname{Det}\left(\mu_{p}\right) \neq 0:$
Product of coefficients of inertia (\sim masses) of positive definite $R_{(2) T}$,
(always).

In view of the above, the essential stability condition $(8.6 .9 \mathrm{~g})$ translates to

$$
\begin{equation*}
\lambda_{1}^{2} \lambda_{2}^{2} \ldots \lambda_{g}^{2}=\left(\kappa_{1} \kappa_{2} \ldots \kappa_{g}\right) /\left(\mu_{1} \mu_{2} \ldots \mu_{g}\right)>0 \quad \text { (stability case) } ; \tag{8.6.9j}
\end{equation*}
$$

or, equivalent, since $A_{g} \equiv \mu_{1} \mu_{2} \ldots \mu_{g}>0$, to

$$
\begin{equation*}
\Delta(0)=A_{0}=\kappa_{1} \kappa_{2} \ldots \kappa_{g}>0 \quad \text { (stability case) } \tag{8.6.9k}
\end{equation*}
$$

These results lead us to the following stability criteria [Kelvin and Tait (1860s)]:

Criteria of Gyroscopic Stabilization

Consider a fundamental state of steady motion (ignored coordinates) I, of a cyclic system [or a state of relative equilibrium (rheonomic constraints - §3.16) of a general system], and let (8.6 .7 b) be the equations of linearized perturbations from I (i.e., no friction taken into account). Then

- If all κ_{p} 's are positive $\left[\Rightarrow R_{(2) V}\right.$: positive definite $\Rightarrow R_{(2) V}(I)$: minimum, and all λ^{2}-roots are negative $\left.=-\lambda_{p}{ }^{2}<0\right]$, then I is stable, both nongyroscopically (i.e., with all $g_{p p}$'s absent) and gyroscopically (i.e., with at least one pair of $g_{p p}$'s present). If even one κ_{p} vanishes while the rest remain positive [$R_{(2) V}$: positive semidefinite], then I is unstable both nongyroscopically and gyroscopically. [For alternative proofs including the well-known stability arguments of Dirichlet and Kelvin, see, e.g., Lamb (1943, pp. 245-248; 1932, pp. 310-313), also discussion following (8.6.10).]
- If all κ_{p} 's are negative $\left[\Rightarrow R_{(2) V}\right.$: negative definite $\Rightarrow R_{(2) V}(I)$: maximum], then I is nongyroscopically unstable. However, if the number of these negative κ_{p} 's is even [$\Rightarrow \Delta(0)=A_{0}>0$ and $\Delta(\infty)>0$], then I can always be stabilized gyroscopically at least temporarily (see destabilizing effect of ever-present friction, below); but if their number is odd $\left[\Rightarrow \Delta(0)=A_{0}<0\right.$ and $\Delta(\infty)>0$, i.e., at least one λ-root is positive], then gyroscopic stabilization of I is impossible - in this case, gyroscopic
effects cannot save I from instability. If even one κ_{p} vanishes while the rest remain negative [$\Rightarrow R_{(2) V}$: negative semidefinite], then I is unstable both nongyroscopically and gyroscopically.
- If some κ_{p} 's are positive, some are negative, and some are zero $\left[\Rightarrow R_{(2) V}\right.$: indefinite $\Rightarrow R_{(2) V}(I):$ min/max ("saddle point")], then state I can, sometimes, be stabilized gyroscopically; specifically, if no vanishing κ_{p} 's are present, and if the number of negative κ_{p} 's is even.
[The case of equal, or multiple, roots in $\Delta(\lambda)=0$, as in the nongyroscopic case, is due to accidental properties of the system's physical and geometrical parameters, and, therefore, does not create any real complications; see, e.g., Routh (1905(b), p. 82); also Frank (1935, pp. 136-138).] These conclusions can, of course, also be reached by application of the Routh-Hurwitz theorem to (8.6.8b); see references given in §3.10, and Bellet (1988, pp. 311-327), Grammel (1950, vol. 1, pp. 258262), Winkelmann and Grammel (1927, pp. 481-483), Merkin (1987, pp. 168-184).

In sum:

- Gyroscopic effects cannot destabilize a state of steady motion, but sometimes they can stabilize it.
- If the number of nonignorable freedoms is even (and no κ_{p} vanishes), then either I is stable or it can always be stabilized; or, if g is even, gyroscopic stabilization is always possible.

In view of these results, it has become necessary to distinguish stability/instability, in the context of cyclic systems and relative equilibrium, into one based on the $\lambda_{p}{ }^{2}{ }^{\prime}$ s and one based only on the κ_{p} 's [equivalently, on the extremum-min/max properties of $R_{(2) V}$. We have just seen that (a) if $R_{(2) V}$ is positive definite, then I is stable, both nongyroscopically and gyroscopically; (b) if it is nonpositive definite, then I is nongyroscopically unstable; and (c) if it is semidefinite, whether positive or negative (e.g., $\left.R_{(2) V} \equiv 0\right)$, then I is gyroscopically unstabilizable.] Let us elaborate on these concepts.

- Stability ascertained on the basis of the above-presented method of small oscillations (i.e., of conditions for the roots of the associated characteristic equation, which includes gyroscopic effects, to be either purely imaginary or have negative real parts) is called ordinary, or temporary (due to the eventual destabilization by damping - see below), or dynamical (since it is based on equations of motion), and is associated with Lagrange and Routh.
- A second stability method, for holonomic and potential systems, called practical, or permanent, or secular (due to its application to problems of celestial mechanics; e.g., stability of rotating liquid masses), and associated with the names of Kelvin, Poincaré, et al., is based on the extremum properties of the system's total potential energy at the fundamental state I, here the negative of R_{0}; that is,

$$
\begin{align*}
-R_{0} & \equiv-\left(T_{0,2}^{\prime \prime}-V\right)=V-T_{0,2}^{\prime \prime}=V+T_{0,2} \\
& \equiv\left[(1 / 2) \sum \sum C_{j i}(q) \Psi_{j} \Psi_{i}+V(q)\right]_{I} \equiv \text { reduced (total) potential }, \tag{8.6.10}
\end{align*}
$$

and this, in turn, is based on the earlier (Jacobi-Painlevé) energy integral (8.4.13a, b, 14):

$$
\begin{equation*}
h_{R} \equiv R_{2}-R_{0}=T_{2,0}^{\prime \prime}+\left(V-T_{0,2}^{\prime \prime}\right)=\text { constant } \quad\left(R_{2}=\text { positive definite }\right), \tag{8.6.10a}
\end{equation*}
$$

(i.e., it takes into account the rotation (κ) but not its gyroscopic effects (g) !) and a reasoning identical to that used in the stability of ordinary (i.e., inertial) equilibrium via the well-known equation $T+V \equiv E=$ constant [what is, generally, referred to as theorem of Dirichlet (1846); see e.g., Lamb (1943, pp. 214-215)]. Equivalently, since the earlier linear perturbation equations (8.6.3d, 4) can be rewritten, with the help of the general quadratic/bilinear forms (8.6.6a-d), as

$$
\begin{aligned}
{\left[\left(\partial R_{(2) T} / \partial \dot{z}_{p}\right)^{\cdot}-\partial R_{(2) T} / \partial z_{p}\right] } & +\left[\left(\partial R_{(2) G} / \partial \dot{z}_{p}\right)^{\cdot}-\partial R_{(2) G} / \partial z_{p}\right] \\
& -\left[\left(\partial R_{(2) V} / \partial \dot{z}_{p}\right)^{-}-\partial R_{(2) V} / \partial z_{p}\right]=0,
\end{aligned}
$$

or

$$
\begin{equation*}
\left(\partial R_{(2) T} / \partial \dot{z}_{p}\right)^{\cdot}+\left[\left(\partial R_{(2) G} / \partial \dot{z}_{p}\right)^{\cdot}-\partial R_{(2) G} / \partial z_{p}\right]+\partial R_{(2) V} / \partial z_{p}=0, \tag{8.6.10b}
\end{equation*}
$$

and [by multiplication of each with \dot{z}_{p}, summation over $p=M+1, \ldots, n$, and then invocation of (8.6.4)] readily yield the perturbational energy integral:

$$
R_{(2) T}+R_{(2) V}=\text { constant }
$$

$$
\begin{equation*}
\left(R_{(2) T}=\text { positive definite } ; \text { no } R_{(2) G} \text { present, as in relative motion }\right), \tag{8.6.10c}
\end{equation*}
$$

for these reasons, we may, in our practical stability investigation, replace $-R_{0}$ with its quadratic approximation $R_{(2) V}$:

$$
\begin{equation*}
2 R_{(2) V} \equiv-\sum \sum\left(\partial^{2} R / \partial q_{p} \partial q_{p^{\prime}}\right)_{o} z_{p} z_{p^{\prime}} \equiv \sum \sum \kappa_{p p^{\prime}} z_{p} z_{p^{\prime}}=\sum \kappa_{p} x_{p}^{2} . \tag{8.6.10d}
\end{equation*}
$$

According to this criterion, the fundamental state I is called practically stable if

$$
\begin{equation*}
-R_{0}>0 \Rightarrow R_{0}<0, \quad \text { or } \quad R_{(2) V}>0 \tag{8.6.10e}
\end{equation*}
$$

Since, by (8.5.3b), $\left(\partial R_{0} / \partial q_{p}\right)_{o}=0$, or $\left(\partial R_{(2)} / \partial q_{p}\right)_{o}=-\left(\partial R_{(2) V} / \partial z_{p}\right)_{o}=0$, the above mean that I is stable, in that sense, if $R_{0}\left(R_{(2) V}\right)$ is a strict maximum (minimum) there.

For then, arguing à la Dirichlet, the integral (8.6.10c) will yield

$$
\begin{equation*}
R_{(2) T}+(1 / 2) \sum \kappa_{p} x_{p}^{2}=\text { small positive constant } \equiv c, \tag{8.6.11a}
\end{equation*}
$$

from which, since $R_{(2) T}$ is positive definite, we conclude that no x_{p} can ever exceed a certain small value; for example, $\left|x_{1}\right| \leq\left(2 c / \kappa_{1}\right)^{1 / 2}$. Hence, in the absence of friction, the system oscillates around I, as in stability about ordinary equilibrium. This is the sufficiency part of the theorem. The necessity part is most easily established by taking into account the always present friction during every motion from I. Then (8.6.10c, 11a) are replaced by the power equation

$$
\begin{equation*}
d / d t\left(R_{(2) T}+R_{(2) V}\right)=\text { negative quantity, } \tag{8.6.11b}
\end{equation*}
$$

which implies that, as long as even one \dot{x}_{p} is nonzero, the perturbational energy $R_{(2) T}+R_{(2) V}$ decreases monotonically until, eventually, both $R_{(2) T}$ and $R_{(2) V}$ vanish; that is, all x 's and \dot{x} 's vanish simultaneously. [It can be shown that this stability criterion also holds if we vary the cyclic momenta; that is, even for $\Psi_{i}(I) \equiv C_{i}$, $\Psi_{i}(I I) \equiv C_{i}+\Delta C_{i}$; see, for example, Gantmacher (1970, pp. 255-256).]

Since the criteria of practical stability (being energetic and not involving the gyroscopic terms) are easier to apply than those of ordinary stability (which are algebraic and do involve the gyroscopic terms), it is important to know when these two approaches are completely equivalent.

The foregoing discussion allows us to summarize this comparison in the following complementary statements:
(i) If state I is practically stable (PS; i.e., all $\kappa_{p}>0 \Rightarrow R_{(2) V}=$ positive definite), it is also ordinarily stable (OS; i.e., all λ^{2} roots real and negative); that is, a nongyroscopically stable state remains stable upon addition of gyroscopic effects to it. Accordingly, if I is ordinarily unstable, it is also practically unstable.
(ii) If state I is practically unstable (say, at least one $\kappa_{p}<0 \Rightarrow R_{(2) V} \neq$ positive definite), it may or may not be ordinarily unstable, depending on whether the number of negative κ_{p} 's is odd (instability) or even (stability); that is, a nongyroscopically unstable state may become stable upon addition of gyroscopic effects to it (Kelvin's stabilization theorem); and if it is OS, it may or may not be PS, depending on whether no κ_{p} is negative or zero (stable) or at least one of them is (unstable). In sum: PS is sufficient but not necessary for OS. [For additional details, see, for example (alphabetically): Greenwood (1977, pp. 125-128), Lamb (1943, chap. 11), Langhaar (1962, chap. 1), Thomson and Tait (1912), Ziegler (1968, chaps. 1, 2, 4); for Hamiltonian treatments, see, for example, Gantmacher (1970, pp. 252-256), Frank (1935, pp. 129-133), Synge (1960, pp. 191-195).]

Finally, let us examine the effect of (light) damping on the nature of these instabilities. We will restrict ourselves to the common case where, say, the Rayleigh dissipation function of the system, in the $n-M \equiv g$ nonignored coordinate perturbations z or x, is positive definite [i.e, if $z, x \neq 0$, then $\left(R_{(2) T}+R_{(2) V}\right)^{\cdot}<0$, also known as complete damping - to be distinguished from the, more general, pervasive damping where Rayleigh's dissipation function is positive but semidefinite in $z, x]$; while the M ignored coordinates ψ will be assumed to remain undamped.
(i) Let state I be ordinarily stable but practically unstable. In the absence of friction, as already stated, any small disturbance will simply result in oscillations about I. In the presence of friction, on the other hand, due to (8.6.11b), and since then $R_{(2) T}(I)=0$ while $R_{(2) V}(I)=$ maximum, we will have, initially,

$$
\begin{equation*}
R_{(2) T}+R_{(2) V}=-(\text { small positive constant }) \equiv-c, \tag{8.6.12a}
\end{equation*}
$$

and so, later, either $R_{(2) T}$ or $R_{(2) V}$, or both, will be nonzero; that is, the system will move away from I, regardless of any gyroscopic effects. But then $R_{(2) T}+R_{(2) V}$ will decrease further, so that, after a short time t,

$$
\begin{equation*}
R_{(2) T}+R_{(2) V}=-c-k t \quad(k>0) ; \tag{8.6.12b}
\end{equation*}
$$

which means that, since $R_{(2) T}$ is positive definite, $R_{(2) V}$ will keep decreasing further. As a result, the system will move further away from I; that is, the deviation amplitude(s) will increase indefinitely with time, but at a rate depending on the friction present: the larger the friction, the faster the deviation, and vice versa. Such unavoidable destabilization can be slowed down either by decreasing friction or by countering its effect with some other, external, influences.

For example, a spinning gyroscope stabilized against gravity by its spinning, but destabilized by the friction at its support (vertex) and aerodynamic forces, slows down (i.e., its nutation angle gets larger and larger, and its spin decreases) and eventually hits the ground and comes to rest.
(ii) Let state I be ordinarily unstable; that is,

$$
\begin{equation*}
x \sim \exp (\pm \varepsilon t), \quad \varepsilon=\text { real } . \tag{8.6.13}
\end{equation*}
$$

In the absence of friction, the system moves quickly away from I. In the presence of friction, the system still moves away from I, but less quickly, until it reaches another state of steady motion or relative equilibrium. In sum: (complete) damping changes stability $\left(R_{(2) V}\right.$: positive definite) to the slightly stronger asymptotic stability, but it does not change instability $\left(R_{(2) V}\right.$: nonpositive definite); that is, such damping does not alter the nature of a state of motion in any significant/critical way. Last, we should always remember that our perturbation equations (8.6.4), (8.6.7b) only show the nature of the initial motion away from I; to find other such states we need the exact, and generally nonlinear, perturbation equations. (See, e.g., articles in Mikhailov and Parton, 1990, and references cited therein.)

In the light of the above, the practical conclusions of Kelvin's theorem can be summed up as follows:
(i) Only systems with an even number of unstable nonignorable coordinates can be stabilized gyroscopically.
(ii) In the absence of friction, such a stabilization can always be achieved via appropriately oriented and sufficiently fast-spinning gyroscopes (one fixed point, relative to the housing) and/or gyrostats (two fixed points, relative to the housing) built into the system.
(iii) In the presence of damped nonignorable coordinates, to counter the destabilizing frictional losses and thus stabilize our system, we must supply it with external energy.

For extensive and authoritative treatments of the effects of friction on gyroscopic systems, see the earlier-mentioned texts of Merkin (1987) and Ziegler (1968); also Klotter (1960/1981, pp. 186-199, 241-253).

Example 8.6.1 Let us consider a system with kinetic and potential energies

$$
\begin{equation*}
2 T=A \dot{x}^{2}+2 \Gamma \dot{x} \dot{y}+B \dot{y}^{2}, \quad V=V(x), \tag{a}
\end{equation*}
$$

where A, B, Γ are functions of x only (and such that T remains positive definite); and examine the possible existence of steady motions: $x=$ constant $\equiv s$, $\dot{y}=$ constant $\equiv c_{y} \equiv c$, and their stability.
(i) Steady motion: since y is ignorable, we will have

$$
\begin{align*}
& \partial T / \partial \dot{y}=\Gamma \dot{x}+B \dot{y}=\text { constant } \equiv C_{y} \equiv C \\
& \Rightarrow \dot{y}=(C-\Gamma \dot{x}) / B, \text { and so, for a steady motion, } c=C / B, \tag{b}
\end{align*}
$$

and therefore the Routhian function becomes, successively,

$$
\begin{align*}
R= & (T-V)-(\partial T / \partial \dot{y}) \dot{y} \\
= & (A / 2)(\dot{x})^{2}+\Gamma \dot{x}[(C-\Gamma \dot{x}) / B]+(B / 2)[(C-\Gamma \dot{x}) / B]^{2} \\
& \quad-C[(C-\Gamma \dot{x}) / B]-V(x) \\
= & \cdots=T^{\prime \prime}{ }_{2,0}+T_{1,1}^{\prime \prime}+T_{0,2}^{\prime \prime}-V(x)=R(x, \dot{x} ; C), \tag{c}
\end{align*}
$$

where

$$
\begin{align*}
& T^{\prime \prime} \\
& T^{\prime \prime}=(1 / 2)\left\{\left[A-\left(\Gamma^{2} / B\right)\right]\right\}(\dot{x})^{2}, \\
& T_{1,1}=(\Gamma / B) C \dot{x}, \tag{c1}\\
& T_{0,2}^{\prime \prime}=-(1 / 2 B) C^{2} .
\end{align*}
$$

For steady motion, and with the notation $(\ldots)_{o} \equiv(\ldots)_{x=s, \dot{y}=c}$, the above yield

$$
(\partial R / \partial x)_{o}=\left[\partial\left(T_{0,2}^{\prime \prime}-V\right) / \partial x\right]_{o}=\left[\left(C^{2} / 2 B^{2}\right)(d B / d x)-(d V / d x)\right]_{o}=0
$$

or, due to (b),

$$
\begin{equation*}
\left(c^{2} / 2\right)(d B / d x)_{o}=(d V / d x)_{o} \tag{d}
\end{equation*}
$$

This algebraic (equilibrium-like) equation connects the values of the palpable coordinate (s) and ignorable velocity (c) at steady motion(s), and allows us to find one in terms of the other.
(ii) Stability. Substituting into $R: x=s+z(t)$, expanding à la Taylor, and keeping only up to quadratic q-powers, since we are seeking linear perturbation equations, we obtain

$$
\begin{align*}
R=(1 / 2)\{ & \left\{A-\left(\Gamma^{2} / B\right)\right]_{o}(\dot{z})^{2}+2 C(\Gamma / B)_{o} \dot{z}-C^{2} / B_{o} \\
& \left.+C^{2}\left[B^{-2}(d B / d x)\right]_{o} z+\left(C^{2} / 2\right)\left[d / d x\left(B^{-2}(d B / d x)\right)\right]_{o} z^{2}\right\} \\
& -\left[V_{o}+(d V / d x)_{o} z+(1 / 2)\left(d^{2} V / d x^{2}\right)_{o} z^{2}\right] \\
=R(z, \dot{z} ; & C, s) \quad[\text { by (d), the }(\ldots) z \text {-terms cancel each other }], \tag{e}
\end{align*}
$$

and therefore the z-equation of motion $(\partial R / \partial \dot{z})^{\cdot}-\partial R / \partial z=0$ becomes

$$
\begin{equation*}
\left[A-\left(\Gamma^{2} / B\right)\right]_{o} \ddot{z}+\left\{\left(d^{2} V / d x^{2}\right)_{o}-\left(C^{2} / 2\right)\left[d / d x\left(B^{-2}(d B / d x)\right)\right]_{o}\right\} z=0 \tag{f}
\end{equation*}
$$

Since, here, $n-M=2-1=1$, no $\sim \dot{z}$ (gyroscopic) terms appear in (f). Clearly, the z-motion is harmonic (\Rightarrow stable) if

$$
\begin{equation*}
\left\{\left(d^{2} V / d x^{2}\right)_{o}-\left(C^{2} / 2\right)\left[d / d x\left(B^{-2}(d B / d x)\right)\right]_{o}\right\} /\left[A-\left(\Gamma^{2} / B\right)\right]_{o}>0 \tag{g}
\end{equation*}
$$

or, equivalently, since $A-\left(\Gamma^{2} / B\right)>0$ (due to the positive definiteness of T in \dot{x}, \dot{y}) and by (b) $c B=C$,

$$
\begin{equation*}
B\left(d^{2} V / d x^{2}\right)_{o}+c^{2}\left[(d B / d x)_{o}\right]^{2}-\left(c^{2} / 2\right)\left[B\left(d^{2} B / d x^{2}\right)\right]_{o}>0 \tag{h}
\end{equation*}
$$

Problem 8.6.1 Continuing with the system described by (a) of the preceding example, but with $\Gamma=0$, consider its fundamental steady state $I: x=s$ and $\dot{y}=c$, and the adjacent to it $I+\Delta(I): x=s+z(t)$ and $\dot{y}=c+\eta(t)$.
(i) Show that the (linearized) equations of $\Delta(I)$ are

$$
\begin{gather*}
A_{o} \ddot{z}-\left(c^{2} / 2\right)\left(d^{2} B / d x^{2}\right)_{o} z-c(d B / d x)_{o} \eta+\left(d^{2} V / d x^{2}\right)_{o} z=0, \tag{a}\\
B_{o} \dot{\eta}+c(d B / d x)_{o} \dot{z}=0 . \tag{b}
\end{gather*}
$$

(ii) Verify that by eliminating η between (a, b) we recover (f), with $\Gamma=0$.
(iii) Show that state I of that system (e.g., rotation at the rate c), is stable if

$$
\begin{equation*}
\left\{\left(d^{2} V / d x^{2}\right) /(d V / d x)\right\}_{o}>\left\{\left[B\left(d^{2} B / d x^{2}\right)-2(d B / d x)^{2}\right] /[B(d B / d x)]\right\}_{o} . \tag{c}
\end{equation*}
$$

Example 8.6.2 General Solution of the Frictionless Gyroscopic Equations. Assuming $x_{p}=x_{p o} \exp (\lambda t)$ for the solutions of the characteristic equation (8.6.8), $\Delta(\lambda)=0$, then, for a particular root $\lambda_{*}(*=1, \ldots, 2 g)$, we will have

$$
\begin{equation*}
x_{1 o}^{*} / \Delta_{1}^{*}=\cdots=x_{g_{o}}^{*} / \Delta_{g}^{*}=\text { constant } \equiv C_{*} \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{p}^{*}=\text { minors of any row of } \Delta\left(\lambda_{*}\right)=M_{p}^{*}+i N_{p}^{*}, \tag{al}
\end{equation*}
$$

since, in general, these minors contain both odd and even powers of λ_{*}. Therefore, the $(*)$ th "natural mode" of oscillation, around the fundamental state I, can be written as

$$
\begin{equation*}
x_{p}^{*}=x_{p o}^{*} \exp \left(\lambda_{*} t\right)=C_{*}\left(M_{p}^{*}+i N_{p}^{*}\right) \exp \left(\lambda_{*} t\right), \tag{b}
\end{equation*}
$$

or, setting $C_{*}=X * \exp \left(i \delta_{*}\right)$, where $X_{*}, \delta_{*}=$ real constants, and taking real parts,

$$
\begin{equation*}
x_{p}^{*}=X *\left[M_{p}^{*} \cos \left(\omega_{*} t+\delta *\right)-N_{p}^{*} \sin (\omega * t+\delta *)\right] . \tag{b1}
\end{equation*}
$$

Hence, in the stable case, the oscillations corresponding to a particular (negative) $\lambda_{*}{ }^{2}$ have the same frequency but do not move in phase; that is, the latter varies with the coordinates. Such a natural mode is referred to as "elliptic harmonic" to distinguish it from the "circular harmonic" of the nongyroscopic oscillations.

In the case of distinct roots, the general solution is found by superposition of the various modes:

$$
\begin{equation*}
x_{p}=\sum x_{p}^{*}=\sum \Delta_{p}^{*}[C * \exp (\lambda * t)] \quad(p=1, \ldots, g ; *=1, \ldots, 2 g) \tag{c}
\end{equation*}
$$

where the $2 g$ (real or complex conjugate) C_{*} are determined from the $2 g$ initial conditions.

Example 8.6.3 Ordinary versus Practical Stability for a Two-DOF System—No Friction. For such a system (i.e., $p, p^{\prime}=1,2$), the fundamental perturbational equations (8.6.7b) become

$$
\begin{equation*}
\mu_{1} \ddot{x}_{1}-\gamma \dot{x}_{2}+\kappa_{1} x_{1}=0, \quad \mu_{2} \ddot{x}_{2}+\gamma \dot{x}_{1}+\kappa_{2} x_{2}=0 \tag{a1,2}
\end{equation*}
$$

where

$$
g_{12}=-g_{21} \equiv-\gamma, \quad \text { and } \quad \mu_{1}, \mu_{2}>0 .
$$

Setting in there

$$
\begin{equation*}
x_{1}=x_{1 o} \exp (\lambda t), \quad x_{2}=x_{2 o} \exp (\lambda t), \tag{b}
\end{equation*}
$$

and eliminating the amplitude ratio $x_{1 o} / x_{20}$, we are readily led to the characteristic equation

$$
\begin{equation*}
\left(\mu_{1} \mu_{2}\right) \lambda^{4}+\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}+\gamma^{2}\right) \lambda^{2}+\kappa_{1} \kappa_{2}=0 . \tag{c}
\end{equation*}
$$

By elementary algebra, the two λ^{2}-roots of (c) will be real if

$$
\begin{equation*}
\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}+\gamma^{2}\right)^{2}-4\left(\mu_{1} \mu_{2}\right)\left(\kappa_{1} \kappa_{2}\right)>0, \tag{d}
\end{equation*}
$$

or, expanding and rearranging in γ-powers,

$$
\begin{equation*}
\gamma^{4}+2\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}\right) \gamma^{2}+\left(\mu_{2} \kappa_{1}-\mu_{1} \kappa_{2}\right)^{2}>0 \tag{d1}
\end{equation*}
$$

Now we have to consider the following three cases:
(i) κ_{1} and κ_{2} are both positive. Then, clearly, (d1), all three of its left-side terms being positive, is fulfilled for any γ; and since, from algebra,

$$
\begin{gather*}
\lambda_{1}^{2} \lambda_{2}^{2}=(-1)^{2}\left(\kappa_{1} \kappa_{2}\right) /\left(\mu_{1} \mu_{2}\right) \Rightarrow \lambda_{1}^{2} \lambda_{2}^{2}>0 \tag{el}\\
\lambda_{1}^{2}+\lambda_{2}^{2}=-\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}+\gamma^{2}\right) /\left(\mu_{1} \mu_{2}\right) \Rightarrow \lambda_{1}^{2}+\lambda_{2}^{2}<0 \tag{e2}
\end{gather*}
$$

we conclude that, then, both $\lambda_{1}{ }^{2}$ and $\lambda_{2}{ }^{2}$ are negative; that is,

$$
\begin{equation*}
\lambda_{1}= \pm i \sigma_{1} \quad \text { and } \quad \lambda_{2}= \pm i \sigma_{2} \tag{e3}
\end{equation*}
$$

where $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$ are the roots of

$$
\begin{equation*}
\left(\mu_{1} \mu_{2}\right) \sigma^{4}-\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}+\gamma^{2}\right) \sigma^{2}+\kappa_{1} \kappa_{2}=0 \tag{e4}
\end{equation*}
$$

In this case, the solutions of $(\mathrm{a}, 2)$ are simple harmonic oscillations, and so the fundamental state I is stable, both ordinarily (negative λ^{2}-roots) and practically $\left(\kappa_{1}, \kappa_{2}>0\right)$.
(ii) κ_{1} and κ_{2} have opposite signs. Then, clearly, (d), both its left-side terms being positive, still holds for any γ; but, by the first part of (e1), the roots $\lambda_{1}{ }^{2}, \lambda_{2}{ }^{2}$ now have opposite signs; that is,

$$
\begin{equation*}
\lambda_{1}^{2} \lambda_{2}^{2}<0 \tag{f}
\end{equation*}
$$

and the positive of them leads to $\exp (\pm \varepsilon t)$-proportional factors in the perturbations $x_{p}(t)$, and hence ordinary instability (and, of course, practical instability).
(iii) κ_{1} and κ_{2} are both negative. If $\lambda_{1}{ }^{2}$ and $\lambda_{2}{ }^{2}$ are real, which, by (d), can happen if γ^{2} is large enough; that is, if, successively,

$$
\begin{gather*}
\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}+\gamma^{2} \geq\left[4\left(\mu_{1} \mu_{2}\right)\left(\kappa_{1} \kappa_{2}\right)\right]^{1 / 2} \quad(=\text { positive }) \\
\Rightarrow \gamma^{2} \geq-\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}\right)+2\left[\left(\mu_{1} \mu_{2}\right)\left(\kappa_{1} \kappa_{2}\right)\right]^{1 / 2} \\
=\left[\left(-\mu_{1} \kappa_{2}\right)^{1 / 2}+\left(-\mu_{2} \kappa_{1}\right)^{1 / 2}\right]^{2} \\
\Rightarrow \gamma \geq\left(-\mu_{1} \kappa_{2}\right)^{1 / 2}+\left(-\mu_{2} \kappa_{1}\right)^{1 / 2} \tag{g1}
\end{gather*}
$$

then, as in (e1, 2),

$$
\begin{gather*}
\lambda_{1}^{2} \lambda_{2}^{2}=(-1)^{2}\left(\kappa_{1} \kappa_{2}\right) /\left(\mu_{1} \mu_{2}\right) \Rightarrow \lambda_{1}^{2} \lambda_{2}^{2}>0 \tag{g2}\\
\lambda_{1}^{2}+\lambda_{2}^{2}=-\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}+\gamma^{2}\right) /\left(\mu_{1} \mu_{2}\right) \Rightarrow \lambda_{1}^{2}+\lambda_{2}^{2}<0 ; \tag{g3}
\end{gather*}
$$

that is, as in (i), both $\lambda_{1}{ }^{2}$ and $\lambda_{2}{ }^{2}$ are negative, and hence the system is ordinarily stable, although practically unstable $\left(R_{(2) V}=\right.$ negative definite \Rightarrow maximum, or
$R_{0}=$ minimum)! But, as explained earlier, such a gyroscopic stabilization is gradually lost due to friction. (See next example; also Thomson and Tait, 1912, pp. 395-396, Gray, 1918, pp. 439-440.)

Example 8.6.4 Ordinary versus Practical Stability for a Two-DOF SystemFriction. Continuing from the preceding example, let us now examine the effect of small \dot{x}-proportional friction terms in case (iii) (i.e., both κ_{1} and κ_{2} negative \Rightarrow ordinary stability but practical instability). Here, the perturbation equations are

$$
\begin{align*}
& \mu_{1} \ddot{x}_{1}+f_{11} \dot{x}_{1}+\left(f_{12}-\gamma\right) \dot{x}_{2}+\kappa_{1} x_{1}=0, \tag{a1}\\
& \mu_{2} \ddot{x}_{2}+f_{22} \dot{x}_{2}+\left(f_{21}+\gamma\right) \dot{x}_{1}+\kappa_{2} x_{2}=0, \tag{a2}
\end{align*}
$$

where
$f_{11}, f_{12}=f_{21}, f_{22}$ are the small constant coefficients of the dissipation function (§3.9)
$2 F=f_{11}\left(\dot{x}_{1}\right)^{2}+2 f_{12} \dot{x}_{1} \dot{x}_{2}+f_{22}\left(\dot{x}_{2}\right)^{2}$
[assumed positive definite; i.e., during every motion from I, F does negative
work and hence reduces the perturbational energy $\left.R_{(2) T}+R_{(2) V}\right]$,

$$
\begin{equation*}
\Rightarrow \quad f_{11}>0, \quad f_{22}>0, \quad \operatorname{Det}\left(f_{p p^{\prime}}\right)=f_{11} f_{22}-f_{12}^{2}>0 \tag{b1}
\end{equation*}
$$

In this case, the characteristic equation, the counterpart of (c) of the preceding example, becomes

$$
\begin{align*}
\left(\mu_{1} \mu_{2}\right) \lambda^{4}+\left(\mu_{2} f_{11}+\mu_{1} f_{22}\right) \lambda^{3} & +\left(\mu_{1} \kappa_{2}+\mu_{2} \kappa_{1}+\gamma^{2}+f_{11} f_{22}-f_{12}^{2}\right) \lambda^{2} \\
& +\left(\kappa_{2} f_{11}+\kappa_{1} f_{22}\right) \lambda+\kappa_{1} \kappa_{2}=0 . \tag{c}
\end{align*}
$$

Assuming that the roots of the previous frictionless case are $\pm i \sigma_{1}$ and $\pm i \sigma_{2}$ (ordinary stability; from which, as explained earlier, it follows that κ_{1} and κ_{2} have the same sign), we try for the roots of (c) the modified forms

$$
\begin{equation*}
\lambda_{1,2}=\varepsilon_{1} \pm i \sigma_{1} \quad \text { and } \quad \lambda_{3,4}=\varepsilon_{2} \pm i \sigma_{2} \tag{c1}
\end{equation*}
$$

where $\varepsilon_{1}, \varepsilon_{2}$ are first-order (i.e., $\sim f_{p p^{\prime}}$) corrections to σ_{1}, σ_{2}; and the latter are, of course, determined from (e4) of ex. 8.6.3. Now, from algebra (see texts on algebra, or handbooks of mathematics, etc.) we know that

- $\quad \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=-\left(\mu_{2} f_{11}+\mu_{1} f_{22}\right) /\left(\mu_{1} \mu_{2}\right)<0$,
and this, thanks to (c1), yields, to the first order,

$$
\begin{equation*}
2\left(\varepsilon_{1}+\varepsilon_{2}\right)=-\left[\left(f_{11} / \mu_{1}\right)+\left(f_{22} / \mu_{2}\right)\right]<0 \tag{c3}
\end{equation*}
$$

- $\quad \lambda_{1}{ }^{-1}+\lambda_{2}^{-1}+\lambda_{3}{ }^{-1}+\lambda_{4}{ }^{-1}$

$$
=\left(\lambda_{2} \lambda_{3} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{2} \lambda_{3}\right) /\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)
$$

$$
\begin{equation*}
=-\left(\kappa_{2} f_{11}+\kappa_{1} f_{22}\right) /(-1)^{4}\left(\kappa_{1} \kappa_{2}\right) \tag{c4}
\end{equation*}
$$

from which, and (c1), and noting further that

$$
\begin{align*}
\lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}+\lambda_{4}^{-1} & =\left(\lambda_{1}^{-1}+\lambda_{2}^{-1}\right)+\left(\lambda_{3}^{-1}+\lambda_{4}^{-1}\right) \\
& =2\left[\varepsilon_{1}\left(\varepsilon_{1}^{2}+\sigma_{1}^{2}\right)^{-1}+\varepsilon_{2}\left(\varepsilon_{2}^{2}+\sigma_{2}^{2}\right)^{-1}\right] \tag{c5}
\end{align*}
$$

we obtain, again to the first order,

$$
\begin{equation*}
2\left[\left(\varepsilon_{1} / \sigma_{1}^{2}\right)+\left(\varepsilon_{2} / \sigma_{2}^{2}\right)\right]=-\left[\left(f_{11} / \kappa_{1}\right)+\left(f_{22} / \kappa_{2}\right)\right] \tag{c6}
\end{equation*}
$$

Hence:
(i) If both κ_{1} and κ_{2} are positive (practical stability), then both ε_{1} and ε_{2} are negative $\Rightarrow \exp (\varepsilon t)$-terms; that is, we also have ordinary damped stability.
(ii) If both κ_{1} and κ_{2} are negative (practical instability), then ε_{1} and ε_{2} must have opposite signs; which means that, then, one of the two oscillations dies away, while the other increases exponentially at an $f_{p p^{\prime}}$-proportional rate; that is, we have ordinary damped instability. To find what happens where, we solve (c3, 6) for, say ε_{1}, and thus obtain

$$
\begin{gather*}
\varepsilon_{1}\left(\sigma_{2}^{-2}-\sigma_{1}^{-2}\right)=-\left(1 / 2 \sigma_{2}^{2}\right)\left[\left(f_{11} / \mu_{1}\right)+\left(f_{22} / \mu_{2}\right)\right]+(1 / 2)\left[\left(f_{11} / \kappa_{1}\right)+\left(f_{22} / \kappa_{2}\right)\right]<0, \\
\Rightarrow \varepsilon_{1}\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right)<0, \tag{c7}
\end{gather*}
$$

from which we conclude that if $\sigma_{1}<\sigma_{2}$, then $\varepsilon_{1}>0$; and, of course, $\varepsilon_{2}<0$; and analogously if $\sigma_{1}>\sigma_{2}$. In words: the exponentially increasing oscillation (say $\varepsilon_{1}>0$) corresponds to the smaller of the two frictionless frequencies (here, $\left.\sigma_{1}\right) \Rightarrow$ longer period; while the damped oscillation (here, $\varepsilon_{2}<0$) corresponds to the larger frequency (here, $\left.\sigma_{2}\right) \Rightarrow$ smaller period.

Example 8.6.5 The Monorail. Let us consider a car (or wagon) K of mass M supported by one (or more, but aligned) wheels W rolling on a single fixed horizontal rail $O Y$ (+away from the reader-fig. 8.4). Inside K there is a gimbal G^{\prime} of negligible mass that can rotate freely about a K-fixed axis $G_{1}{ }^{\prime} G_{2}{ }^{\prime}$; and inside G^{\prime} there is a heavy gyroscope G of mass m that can rotate about a G^{\prime}-fixed axis $G_{1} G_{2}$-that is, on the car's plane of symmetry $O-y z(O y \equiv O Y)$, at a constant rate ω_{0}. In addition, G^{\prime} carries at its top, above and around G_{1}, a heavy particle P of mass μ, so that (in accordance with Kelvin's theorem of stabilization of an even number of nongyroscopically unstable freedoms) both such freedoms θ and χ (see below) are unstable; or, equivalently, we may skip P but make sure that the center of mass of G, C^{\prime} is above the axis $G_{1}{ }^{\prime} O^{\prime} G_{2}{ }^{\prime}$. The rotation of G^{\prime} about its housing K (axis $G_{1}{ }^{\prime} G_{2}{ }^{\prime}$) is measured by the "precession" angle χ between the gyro axis $G_{1} G_{2}$ and $O z(O-y z=$ plane of symmetry of $K)$, while the rotation ("nutation") of the entire K about $O Y \equiv O y$ is measured by the angle θ between $O-y z$ and the vertical $O Z$. All other kinematico-inertial parameters of the system are shown in the figure, and will be identified below as needed. Let us find the equations of small motion of this two-DOF system around the "normal attitude" $\chi, \theta=0$, when K travels at a uniform rate along $O Y$; and examine their stability.

Let $T_{K} / V_{K}, T_{G} / V_{G}$, and T_{P} / V_{P}, be the (inertial) kinetic/potential energies of the $\operatorname{car}(K)$, gyro (G), and particle (P), respectively. Then, to the second order in θ and χ and their rates (since we are only interested in linear equations of motion in them),

FRONT VIEW
(in normal attiude)

SIDE VIEW

Figure 8.4 Kinematico-inertial parameters of the monorail. $C, C^{\prime} \equiv O^{\prime}$: centers of mass of K and G, respectively; both along Oz. [In some treatments, C^{\prime} is above O^{\prime}; e.g., Cabannes (1968, pp. 276-277). Here, we achieve the same result with P]; $h_{2}=G_{1} O, h_{1}=O^{\prime} O, h=C O ; O-x y z$: car-fixed axes, $O-y z$: car plane of symmetry, $O-X Y Z$: inertial axes with which $O-x y z$ coincide in the normal attitude configuration.
and to within inconsequential constant terms, we have
(i) $\quad T_{K}=(1 / 2) I(\dot{\theta})^{2} \quad(I=$ moment of inertia of K about $O y \equiv O Y)$,

$$
\begin{equation*}
V_{K}=M g h \cos \theta \approx-M g h \theta^{2} / 2+\text { constant } ; \tag{a1}
\end{equation*}
$$

(ii)

$$
\begin{align*}
T_{G}= & (1 / 2) m v_{G}^{2}+(1 / 2)\left[A\left(\omega_{\xi}^{2}+\omega_{\eta}^{2}\right)+C \omega_{\zeta}^{2}\right] \tag{a2}\\
& {\left[O^{\prime}-\xi \eta \zeta: G^{\prime}\right. \text {-fixed axes; }} \\
& \left.A / C: \text { transverse/axial principal moments of inertia of } G \text { at } O^{\prime}\right] \\
= & (1 / 2) m\left(h_{1} \dot{\theta}\right)^{2}+(1 / 2)\left\{A\left[(\dot{\chi})^{2}+(\dot{\theta} \cos \chi)^{2}\right]+C\left(\omega_{o}-\dot{\theta} \sin \chi\right)^{2}\right\} \\
\approx & (1 / 2) m h_{1}^{2}(\dot{\theta})^{2}+(1 / 2)\left\{A\left[(\dot{\chi})^{2}+(\dot{\theta})^{2}\right]+C\left(\omega_{o}-\dot{\theta} \chi\right)^{2}\right\} \\
\approx & (1 / 2) m h_{1}^{2}(\dot{\theta})^{2}+(1 / 2)\left\{A\left[(\dot{\theta})^{2}+(\dot{\chi})^{2}\right]+C\left(\omega_{o}^{2}-2 \omega_{0} \chi \dot{\theta}\right)\right\}, \\
V_{G}= & m g h_{1} \cos \theta \approx-M g h_{1} \theta^{2} / 2+\text { constant. } \tag{a3,4}
\end{align*}
$$

(iii) The inertial coordinates and velocities of $P\left(X_{P}, Y_{P}, Z_{P}\right)$ equal

$$
\begin{align*}
X_{P} & =\left(h_{1}+h_{2} \cos \chi\right) \sin \theta \approx\left(h_{1}+h_{2}\right) \theta \Rightarrow \dot{X}_{P} \approx\left(h_{1}+h_{2}\right) \dot{\theta}, \tag{a5}\\
Y_{P} & =-h_{2} \sin \chi \approx-h_{2} \chi \Rightarrow \dot{Y}_{P} \approx-h_{2} \dot{\chi}, \tag{a6}\\
Z_{P} & =\left(h_{1}+h_{2} \cos \chi\right) \cos \theta \approx(-1 / 2)\left[\left(h_{1}+h_{2}\right) \theta^{2}+h_{2} \chi^{2}\right] \\
& \Rightarrow \dot{Z}_{P} \approx-\left(h_{1}+h_{2}\right) \theta \dot{\theta}+h_{2} \chi \dot{\chi} \Rightarrow\left(\dot{Z}_{P}\right)^{2} \approx 0 \tag{a7}
\end{align*}
$$

and therefore, to the second order,

$$
\begin{align*}
& 2 T_{P}=\mu\left[\left(\dot{X}_{P}\right)^{2}+\left(\dot{Y}_{P}\right)^{2}+\left(\dot{Z}_{P}\right)^{2}\right]=\cdots \approx \mu\left[\left(h_{1}+h_{2}\right)^{2}(\dot{\theta})^{2}+h_{2}^{2}(\dot{\chi})^{2}\right] \tag{a8}\\
& V_{P}=\mu g Z_{P} \approx-(\mu g / 2)\left[\left(h_{1}+h_{2}\right) \theta^{2}+h_{2} \chi^{2}\right]+\text { constant } \tag{a9}
\end{align*}
$$

In view of the above results, the "quadratisized" system Lagrangean equals

$$
\begin{equation*}
L=\left(T_{K}+T_{G}+T_{P}\right)-\left(V_{K}+V_{G}+V_{P}\right) \equiv L_{2}+L_{1}+L_{0} \tag{b1}
\end{equation*}
$$

where

$$
\begin{align*}
2 L_{2} \equiv & M_{11}(\dot{\theta})^{2}+M_{22}(\dot{\chi})^{2} \quad(\text { Inertial part }), \\
& M_{11} \equiv I+m h_{1}^{2}+A+\mu\left(h_{1}+h_{2}\right)^{2}, \quad M_{22} \equiv A+\mu h_{2}^{2} ; \tag{b2}\\
L_{1} \equiv & M_{1} \chi \dot{\theta} \quad(\text { Gyroscopic part }) \\
& M_{1} \equiv C \omega_{o} ; \tag{b3}\\
2 L_{0} \equiv & k_{11} \theta^{2}+k_{22} \chi^{2} \quad(\text { Potential part }), \\
& k_{11}=M h+m h_{1}+\mu\left(h_{1}+h_{2}\right) \quad(>0), \quad k_{22}=\mu h_{2} \quad(>0) ; \tag{b4}
\end{align*}
$$

or, in the new normalized Lagrangean coordinates $x_{1} \equiv\left(M_{11}\right)^{1 / 2} \theta$ and $x_{2} \equiv\left(M_{22}\right)^{1 / 2} \chi$:

$$
2 L=\left[\left(\dot{x}_{1}\right)^{2}+\left(\dot{x}_{2}\right)^{2}\right]-2 \gamma x_{2} \dot{x}_{1}-\left(\kappa_{1} x_{1}^{2}+\kappa_{2} x_{2}^{2}\right),
$$

where

$$
\begin{align*}
& \kappa_{1} \equiv-\left(k_{11} / M_{11}\right) \quad(<0), \quad \kappa_{2} \equiv-\left(k_{22} / M_{22}\right) \quad(<0) \\
& \gamma \equiv M_{1} /\left(M_{11} M_{22}\right)^{1 / 2} \equiv C \omega_{o} /\left(M_{11} M_{22}\right)^{1 / 2} \tag{c}
\end{align*}
$$

Hence, the linear(ized) Lagrangean equations of motion for $x_{1}(\theta)$ and $x_{2}(\chi)$ are

$$
\begin{equation*}
\ddot{x}_{1}-\gamma \dot{x}_{2}+\kappa_{1} x_{1}=0, \quad \ddot{x}_{2}+\gamma \dot{x}_{1}+\kappa_{2} x_{2}=0 ; \tag{d}
\end{equation*}
$$

and, by (ex. 8.6.3: g1), for ordinary (= asymptotic) stability their coefficients must satisfy

$$
\begin{equation*}
\gamma \geq\left(-\kappa_{1}\right)^{1 / 2}+\left(-\kappa_{2}\right)^{1 / 2} \tag{e}
\end{equation*}
$$

that is, recalling (c), the spin ω_{o} must be sufficiently high to counter the destabilizing effect of gravity.

Problem 8.6.2 Continuing from the preceding example, in the presence of small \dot{x}-proportional damping, the normalized monorail equations of motion (ex. 8.6.5: d) are, generally, replaced by (recall ex. 8.6.4):

$$
\begin{align*}
& \ddot{x}_{1}+f_{11} \dot{x}_{1}+\left(f_{12}-\gamma\right) \dot{x}_{2}+\kappa_{1} x_{1}=0 \tag{a1}\\
& \ddot{x}_{2}+f_{22} \dot{x}_{2}+\left(f_{21}+\gamma\right) \dot{x}_{1}+\kappa_{2} x_{2}=0 . \tag{a2}
\end{align*}
$$

(i) Show that the characteristic equation of this system is

$$
\begin{equation*}
\Delta(\lambda)=\lambda^{4}+a_{1} \lambda^{3}+a_{2} \lambda^{2}+a_{3} \lambda+a_{4}=0 \quad\left(a_{0}=1\right) \tag{a3}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{1} \equiv f_{11}+f_{22} \tag{a4}\\
& a_{2} \equiv \kappa_{1}+\kappa_{2}+\gamma^{2}+f_{11} f_{22}-f_{12}^{2} \tag{a5}\\
& a_{3} \equiv \kappa_{1} f_{22}+\kappa_{2} f_{11} \tag{a6}\\
& a_{4} \equiv \kappa_{1} \kappa_{2} \tag{a7}
\end{align*}
$$

(ii) By applying the Routh-Hurwitz stability criterion (§3.10, and its examples/ problems), investigate the possibility/impossibility of gyroscopic stabilization of the damped monorail. [For practical insights, see, e.g., Grammel (1950, Vol. 2, pp. 230247); also Merkin (1987, pp. 182-184; 1974, pp. 232-234).]

Problem 8.6.3 Consider a cyclic system with one nonignorable coordinate, q, whose Routhian equation of motion is

$$
\begin{equation*}
(\partial R / \partial \dot{q})^{\cdot}-\partial R / \partial q=0 \tag{a}
\end{equation*}
$$

or, explicitly, since $R=R(q, \dot{q}$; constant cyclic momenta $\equiv C)$,

$$
\begin{equation*}
\left(\partial^{2} R / \partial \dot{q}^{2}\right) \ddot{q}+\left(\partial^{2} R / \partial q \partial \dot{q}\right) \dot{q}-\partial R / \partial q=0 . \tag{b}
\end{equation*}
$$

Let the small motion of the system around a steady state $I: q=$ constant $\equiv s$, be $s+z(t)$. By expanding (b) à la Taylor around I, and keeping up to linear terms in the perturbation $z(t)$ and its $(\ldots)^{-}$-derivatives, show that the latter satisfies the following equation:

$$
\begin{equation*}
\left(\partial^{2} R / \partial \dot{q}^{2}\right)_{o} \ddot{x}-\left(\partial^{2} R / \partial q^{2}\right)_{o} x=0, \tag{c}
\end{equation*}
$$

where $(\ldots)_{o} \equiv(\ldots)$ evaluated at I; and hence for stability of that state [i.e., harmonic $z(t)]$, and since $\left(\partial^{2} R / \partial \dot{q}^{2}\right)_{o}>0$, we must have

$$
\begin{equation*}
\left(\partial^{2} R / \partial q^{2}\right)_{o}<0 . \tag{d}
\end{equation*}
$$

HINT
The value(s) of state I satisfy the equation $(\partial R / \partial q)_{o}=0$; and hence, by (d), $R_{0}=$ maximum.

Problem 8.6.4 Consider a particle P of mass m that can slide on a smooth circular hoop H of radius r and moment of inertia about any diameter I (fig. 8.5). H spins about a fixed vertical axis with constant angular velocity $\omega \equiv \dot{\phi}$.
(i) Show that, since ϕ is ignorable $\left[\Rightarrow p_{\phi} \equiv \partial T / \partial \dot{\phi}=\left(I+m r^{2} \sin ^{2} \theta\right) \dot{\phi}=\right.$ constant $\equiv C$, with solution(s) $\theta=\theta^{\prime}$], the Routhian equals

$$
\begin{equation*}
R \equiv L-p_{\phi} \dot{\phi}=L-C \omega=R_{2}+R_{1}+R_{0}=R(\theta, \dot{\theta} ; C), \tag{a}
\end{equation*}
$$

Figure 8.5 Particle moving on a smooth and uniformly spinning circular ring.
where

$$
\begin{align*}
& R_{2}=\left(m r^{2} / 2\right)(\dot{\theta})^{2} \quad\left(\equiv T_{2,0}^{\prime \prime}\right), \tag{b}\\
& R_{1}=0 \quad\left(\equiv T_{1,1}^{\prime \prime}\right), \tag{c}\\
& R_{0}=m g r \cos \theta-\left[C^{2} / 2\left(I+m r^{2} \sin ^{2} \theta\right)\right] \quad\left(\equiv-V+T_{2,0}^{\prime \prime}\right) . \tag{d}
\end{align*}
$$

(ii) Show that the steady motion condition:

$$
\begin{equation*}
\partial R_{0} / \partial \theta=-m g r \sin \theta+\left(C^{2} m r^{2} \sin \theta \cos \theta\right)\left(I+m r^{2} \sin ^{2} \theta\right)^{-2}=0 \tag{e}
\end{equation*}
$$

leads, further, to the following two algebraic equations (with corresponding roots θ^{\prime} and $\left.\theta^{\prime \prime}\right)$:

$$
\begin{equation*}
-m g r\left(I+m r^{2} \sin ^{2} \theta^{\prime}\right)^{2}+C^{2} m r^{2} \cos \theta^{\prime}=0, \quad \sin \theta^{\prime \prime}=0\left(\Rightarrow \theta^{\prime \prime}=0, \text { etc. }\right) . \tag{e1,2}
\end{equation*}
$$

(iii) Show that

$$
\begin{align*}
\left.\left(\partial^{2} R_{0} / \partial \theta^{2}\right)\right|_{\theta=\theta^{\prime}} & =-m g r \cos \theta^{\prime}+m r^{2} \omega^{2}\left[\cos \left(2 \theta^{\prime}\right)-m r^{2}\left(I+m r^{2} \sin ^{2} \theta^{\prime}\right)^{-1} \sin ^{2}\left(2 \theta^{\prime}\right)\right] \\
& =\cdots=-\left[\left(m r^{2} \omega^{2} \sin ^{2} \theta^{\prime}\right) /\left(I+m r^{2} \sin ^{2} \theta^{\prime}\right)\right]\left[I+m r^{2}\left(1+3 \cos ^{2} \theta^{\prime}\right)\right]<0 \tag{f}
\end{align*}
$$

namely, θ^{\prime} is stable: and that

$$
\begin{align*}
\left.\left(\partial^{2} R_{0} / \partial \theta^{2}\right)\right|_{\theta=\theta^{\prime \prime}=0}= & \left.m g r\left[\left(C^{2} r / I^{2} g\right)-1\right] \quad \text { or, eliminating } C \text { via the first of (e) }\right] \\
= & m g r\left\{\left[\left(\omega^{2} r / g\right)-1\right]\right. \\
& \left.+\left(\omega^{2} r / I^{2} g\right)\left(2 m r^{2} I \sin ^{2} \theta^{\prime}+m^{2} r^{4} \sin ^{4} \theta^{\prime}\right)\right\}>0, \tag{g}
\end{align*}
$$

since $\omega^{2} r>g$ (explain); namely, $\theta^{\prime \prime}=0$ is unstable.

HINT
Since $\left(I+m r^{2} \sin ^{2} \theta\right) \omega \equiv C \neq 0$, the first of (e) yields

$$
\begin{equation*}
-m g r+m r^{2} \omega^{2} \cos \theta^{\prime}=0 \quad\left(\Rightarrow \cos \theta^{\prime}=g / \omega^{2} r<1\right) . \tag{h}
\end{equation*}
$$

Problem 8.6.5 Continuing from the preceding problem, show that the equation of small (linearized) oscillations of P around the steady state θ^{\prime}-that is, $\theta=\theta^{\prime}+z(t)$ - is

$$
\begin{equation*}
\ddot{z}+\Omega z=0, \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega \equiv \omega \sin \theta^{\prime}\left\{\left[I+m r^{2}\left(1+3 \cos ^{2} \theta^{\prime}\right)\right] /\left(I+m r^{2} \sin ^{2} \theta^{\prime}\right)\right\}^{1 / 2} \tag{b}
\end{equation*}
$$

Show that the stability condition obtained from (a, b) coincides with prob. 8.6.4: (f).
Problem 8.6.6 Stability of Steady Precession of Top. Method of Perturbations. As seen in exs. 8.4.5 and 8.5.1, in this case the exact Routhian of the top equals

$$
\begin{align*}
R & =R_{2}+R_{1}+R_{0}=R\left(\theta, \dot{\theta} ; C_{\phi}, C_{\psi}\right) \tag{a}\\
R_{2} & \equiv T^{\prime \prime}{ }_{2,0}=(1 / 2) A(\dot{\theta})^{2}, \tag{al}\\
R_{1} & \equiv T^{\prime \prime}{ }_{1,1}=0 \tag{a2}\\
R_{0} & \equiv T^{\prime \prime}{ }_{0,2}-V \\
& =-\left\{\left[\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2} / 2 A \sin ^{2} \theta\right]+(1 / 2 C) C_{\psi}{ }^{2}\right\}-m g l \cos \theta . \tag{a3}
\end{align*}
$$

Therefore, the Routhian equation for the sole nonignorable coordinate θ becomes

$$
\begin{align*}
& (\partial R / \partial \dot{\theta})^{\cdot}-\partial R / \partial \theta=0 \\
& \quad A \ddot{\theta}+\left[\left(C_{\phi}-C_{\psi} \cos \theta\right)\left(C_{\psi}-C_{\phi} \cos \theta\right) / A \sin ^{3} \theta\right]=m g l \sin \theta \tag{b}
\end{align*}
$$

(i) Setting in (b) $\theta=\theta_{o}+z(t)$, where θ_{o} is the (constant) root(s) of the steady motion condition $(\partial R / \partial \theta)_{o}=0$, expanding in powers of z and its $(\ldots)^{\circ}$-derivatives, and keeping only up to linear such terms, show that we eventually [after using ex. 8.5.1: (d1), or (c) of prob. 8.6 .7 to eliminate C_{ϕ} and C_{ψ}] obtain the perturbation equation,

$$
\begin{equation*}
\ddot{z}+\Omega z=0 \tag{c}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega \equiv c_{\phi}^{2}+\left(m g l / A c_{\phi}\right)^{2}-2 m g l \cos \theta_{o} \tag{d}
\end{equation*}
$$

This equation determines $z(t)$ (a harmonic oscillation, if $\Omega>0$) in terms of the steady-state values θ_{o} and $\dot{\phi}=$ constant $\equiv c_{\phi}$; or, equivalently, θ_{o} and C_{ϕ}, C_{ψ}.
(ii) Show that the same equation results if we set into the Routhian (a-a3) $\theta=\theta_{o}+z(t)$, expand it in powers of z and its $(\ldots)^{\text {- }}$-derivatives, keep only up to quadratic such terms, and then write down the equation for z :

$$
(\partial R / \partial \dot{z})^{\cdot}-\partial R / \partial z=0 .
$$

Problem 8.6.7 Stability of Steady Precession of Top. Method of Extremum of Reduced Potential Energy. Continuing from the preceding problem, we saw there that

$$
\begin{align*}
-R_{0} & \equiv V-T_{0,2}^{\prime \prime}=\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2} / 2 A \sin ^{2} \theta+(1 / 2 C) C_{\psi}^{2}+m g l \cos \theta \\
& \equiv f\left(\theta ; C_{\phi}, C_{\psi}\right) \equiv-(\text { Routhian, or reduced, potential }) \tag{a}
\end{align*}
$$

where [recall results of (ex. 8.5.1)]

$$
\begin{align*}
C_{\phi} & =\left(A \sin ^{2} \theta+C \cos ^{2} \theta\right) \dot{\phi}+(C \cos \theta) \dot{\psi} \\
& \equiv A \sin ^{2} \theta \dot{\phi}+C n \cos \theta \equiv \text { constant } \tag{a1}\\
C_{\psi} & =(C \cos \theta) \dot{\phi}+(C) \dot{\psi} \equiv C n=\text { constant } ; \tag{a2}
\end{align*}
$$

and, therefore, inversely,

$$
\begin{align*}
& \dot{\phi}=\left(C_{\phi}-C_{\psi} \cos \theta\right) / A \sin ^{2} \theta \quad\left(=\text { constant } \equiv c_{\phi}, \text { in steady precession }\right), \tag{b1}\\
& \dot{\psi}=-\left[\left(C_{\phi}-C_{\psi} \cos \theta\right) \cos \theta / A \sin ^{2} \theta\right]+\left(C_{\psi} / C\right) \\
&\left(=\text { constant } \equiv c_{\psi}, \text { in steady precession }\right) . \tag{b2}
\end{align*}
$$

Setting $d f(\theta) / d \theta=0$, and assuming $\theta \neq 0$, we obtain the steady motion condition [(ex. 8.5.1: d1), with $\dot{\phi}=$ constant $\equiv c_{\phi}$]:

$$
A c_{\phi}^{2} \cos \theta_{o}-C_{\psi} c_{\phi}+m g l=0
$$

or

$$
\begin{equation*}
A c_{\phi}^{2} \cos \theta_{o}+m g l=C\left(c_{\phi} \cos \theta_{o}+c_{\psi}\right) c_{\phi} \tag{c}
\end{equation*}
$$

(i) Calculate $d^{2} f(\theta) / d \theta^{2}$ and show that the condition for the minimum of $-R_{0}$, or the maximum of R_{0}, for small changes of the nonignorable coordinate θ from the steady state (c): $\theta_{o}, c_{\phi}, C_{\psi}$, is

$$
\begin{equation*}
\left[C_{\psi}\left(C_{\psi}-C_{\phi} \cos \theta_{o}\right)+C_{\phi}\left(C_{\phi}-C_{\psi} \cos \theta_{o}\right)\right] / A \sin ^{2} \theta_{o}>4 m g l \cos \theta_{o} \tag{d}
\end{equation*}
$$

(ii) For $\theta_{o}=0$, the cyclicity conditions (a1, 2) reduce to $C_{\phi}=C_{\psi}=C n=$ $C\left(c_{\phi}+c_{\psi}\right) \equiv$ constant $\equiv D$. Show that for small θ_{o}, the stability condition (d) approximates to

$$
\begin{equation*}
2 D^{2}\left(1-\cos \theta_{o}\right) / \sin ^{2} \theta_{o}>4 A m g l \cos \theta_{o} \tag{e}
\end{equation*}
$$

or, in the limit of vanishingly small θ_{o} 's,

$$
\begin{equation*}
D^{2}>4 A m g l \quad \text { ("sleeping top" stability). } \tag{f}
\end{equation*}
$$

These results have been obtained earlier by other means. For additional examples and details, see, for example, Merkin (1987, pp. 88-95; 1974, pp. 318-321, 323-324), Gantmacher (1970, pp. 256-258).

Problem 8.6.8 Stability of Steady Precession of Top. Relations among the Perturbations. Continuing from the preceding problem, show that the three (time-dependent!) perturbations

$$
\begin{equation*}
\theta=\theta_{o}+z(t), \quad \dot{\phi}=c_{\phi}+\eta(t), \quad \dot{\psi}=c_{\psi}+\xi(t) \tag{a}
\end{equation*}
$$

are related by

$$
\begin{align*}
& \left(A \sin \theta_{o}\right) \eta=\left[C\left(c_{\phi} \cos \theta_{o}+c_{\psi}\right)-2 A c_{\phi} \cos \theta_{o}\right] z, \tag{b}\\
& \left(\cos \theta_{o}\right) \eta+\xi=\left(c_{\phi} \sin \theta_{o}\right) z . \tag{c}
\end{align*}
$$

These equations, assuming $\sin \theta_{o} \neq 0$ (i.e., no sleeping top), yield the hitherto unknown functions η and ξ in terms of z and the steady precession values; that is, in terms of quantities already determined in previous problems:

$$
\begin{equation*}
\eta=\eta\left[z(t) ; \theta_{o}, c_{\phi}, c_{\psi}, C_{\phi}, C_{\psi}\right], \quad \xi=\xi\left[z(t) ; \theta_{o}, c_{\phi}, c_{\psi}, C_{\phi}, C_{\psi}\right] . \tag{d}
\end{equation*}
$$

A final integration of these known functions of time, right-sides of (d), yields the time behavior of ϕ and ψ, if desired.

Problem 8.6.9 Stability of Steady Precession of Top. Relations among the Perturbations (continued). Continuing from the preceding problem, show that $\eta(t)$ and $\xi(t)$ can be obtained by inserting (a) in the earlier steady precession relations (prob. 8.6.7: b1, 2)

$$
\begin{align*}
& \dot{\phi}=\left(C_{\phi}-C_{\psi} \cos \theta\right) / A \sin ^{2} \theta, \tag{al}\\
& \dot{\psi}=-\left[\left(C_{\phi}-C_{\psi} \cos \theta\right) \cos \theta / A \sin ^{2} \theta\right]+\left(C_{\psi} / C\right), \tag{a2}
\end{align*}
$$

(which hold for both the fundamental state and the disturbed one), expanding à la Taylor, and keeping up to linear terms in the (equimomental) perturbations.

REMARKS

(i) Also, one could calculate the Routhian, expand and keep up to quadratic terms, and then apply Routh's "Hamiltonian" equations $\partial R / \partial \Psi_{i}=-d \psi_{i} / d t$.
(ii) As pointed out in the explanatory remarks following (8.6.2), the above are special cases of application of the general kinematico-inertial relations (8.3.12d, e):

$$
\begin{equation*}
\Psi_{i} \equiv \partial T / \partial \dot{\psi}_{i}=\sum c_{j i} \dot{\psi}_{j}+\sum b_{p i} \dot{q}_{p} \Leftrightarrow \dot{\psi}_{j}=\sum C_{j i}\left(\Psi_{i}-\sum b_{p i} \dot{q}_{p}\right) \tag{b}
\end{equation*}
$$

to both states I and $I I=I+\Delta(I)$, with subsequent expansion and equation of their first-order terms in $\Delta \dot{\psi}, \Delta q, \Delta \dot{q}, \Delta \Psi, \Delta C_{j i} \approx \sum(\ldots)_{j i p} \Delta q_{p}$. For given Ψ 's and $\dot{q}(t)$'s it supplies the $\dot{\psi}(t)$'s.

Problem 8.6.10 Stability of Steady Precession of Top. Relations among the Perturbations (continued). Show that the results of the preceding problems can be obtained by substituting (prob. 8.6.6:a) in the Lagrangean equations of the top, then linearizing, and so on.

For additional similar problems, see, for example, Chirgwin and Plumpton (1966, pp. 282-305) and Wells (1967, pp. 239-255).

This concludes the treatment of Routh's method of the "modified Lagrangean." The rest of this chapter deals with the applications and ramifications of the method of Hamilton.

8.7 VARIATION OF CONSTANTS (OR PARAMETERS)

In order to solve the exact problem approximately, we first solve an approximate problem exactly.
(T. E. Sterne, quoted in Garfinkel, 1966, p. 67)

Since the equations of motion, in either Lagrangean or Hamiltonian variables, are intrinsically nonlinear (§3.10), general methods for obtaining their exact solutions are out of the question, and being able to solve exactly the equations of an actual physical system is the rare exception rather than the rule (§3.12). For these reasons, some kind of approximation (analytical, numerical/computational, graphical, or combination thereof) is needed. In this section we develop one of the most important, general and systematic such approximation methods (originated by Lagrange himself in connection with problems of celestial mechanics, which, although unconstrained, lead to complicated equations of motion), known as the method of variation of "constants", and associated calculus of perturbations. Either Lagrangean (q, \dot{q}) or Hamiltonian (q, p) variables can be used; but the latter, since they lead to first-order equations, are the preferred ones.

Theorem of Lagrange-Poisson

Let us consider a general system S, in Hamiltonian variables, with equations of motion

$$
\begin{equation*}
d p_{k} / d t=f_{k}(t, q, p) \quad \text { and } \quad d q_{k} / d t=g_{k}(t, q, p) ; \tag{8.7.1}
\end{equation*}
$$

and corresponding general solution

$$
\begin{equation*}
p_{k}=p_{k}(t ; c) \quad \text { and } \quad q_{k}=q_{k}(t ; c), \tag{8.7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c \equiv\left(c_{1}, \ldots, c_{2 n}\right) \equiv\left(c_{\nu} ; \nu=1, \ldots, 2 n\right): \text { constants of integration } ; \tag{8.7.3}
\end{equation*}
$$

and, unless specified otherwise Greek (Latin) indices run from 1 to $2 n(n)$. Each particular set of c_{ν} 's defines a particular dynamical trajectory, or orbit, say I, in phase space. Therefore, varying these constants slightly - that is, $c \rightarrow c+\delta c$ we obtain an adjacent such trajectory, say $I I=I+\delta(I)$, given by the first-order (virtual-like; i.e., contemporaneous) changes of (8.7.2):

$$
\begin{equation*}
\delta p_{k}=\sum\left(\partial p_{k} / \partial c_{\nu}\right) \delta c_{\nu} \quad \text { and } \quad \delta q_{k}=\sum\left(\partial q_{k} / \partial c_{\nu}\right) \delta c_{\nu} \tag{8.7.4}
\end{equation*}
$$

where the derivatives are evaluated at I. As a result, $I I$ is governed by the following linear variational, or perturbational, equatons:

$$
\begin{align*}
& \left(\delta p_{k}\right)^{\cdot}=\delta\left(\dot{p}_{k}\right)=\sum\left[\left(\partial f_{k} / \partial p_{l}\right) \delta p_{l}+\left(\partial f_{k} / \partial q_{l}\right) \delta q_{l}\right] \tag{8.7.5a}\\
& \left(\delta q_{k}\right) \cdot=\delta\left(\dot{q}_{k}\right)=\sum\left[\left(\partial g_{k} / \partial p_{l}\right) \delta p_{l}+\left(\partial g_{k} / \partial q_{l}\right) \delta q_{l}\right] \tag{8.7.5b}
\end{align*}
$$

Now, let us carry out two distinct c-variations from $I, \delta_{1} c$ and $\delta_{2} c$:

$$
\begin{align*}
& c \rightarrow c+\delta_{1} c, \text { resulting in the adjacent orbit } I_{1}=I+\delta_{1}(I), \tag{8.7.6a}\\
& c \rightarrow c+\delta_{2} c, \text { resulting in the adjacent orbit } I_{2}=I+\delta_{2}(I) . \tag{8.7.6b}
\end{align*}
$$

Then, in view of the above, we obtain, successively,

$$
\begin{aligned}
\left(\delta_{1} p_{k}\right. & \left.\delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)^{\cdot}=\left(\delta_{1} p_{k}\right)^{\cdot} \delta_{2} q_{k}-\left(\delta_{2} p_{k}\right)^{\cdot} \delta_{1} q_{k}+\delta_{1} p_{k}\left(\delta_{2} q_{k}\right)^{\cdot}-\delta_{2} p_{k}\left(\delta_{1} q_{k}\right)^{\cdot} \\
= & \sum\left[\left(\partial f_{k} / \partial p_{l}\right) \delta_{1} p_{l}+\left(\partial f_{k} / \partial q_{l}\right) \delta_{1} q_{l}\right] \delta_{2} q_{k} \\
& -\sum\left[\left(\partial f_{k} / \partial p_{l}\right) \delta_{2} p_{l}+\left(\partial f_{k} / \partial q_{l}\right) \delta_{2} q_{l}\right] \delta_{1} q_{k} \\
& +\sum\left[\left(\partial g_{k} / \partial p_{l}\right) \delta_{2} p_{l}+\left(\partial g_{k} / \partial q_{l}\right) \delta_{2} q_{l}\right] \delta_{1} p_{k} \\
& -\sum\left[\left(\partial g_{k} / \partial p_{l}\right) \delta_{1} p_{l}+\left(\partial g_{k} / \partial q_{l}\right) \delta_{1} q_{l}\right] \delta_{2} p_{k} \\
= & \sum\left(\partial f_{k} / \partial p_{l}\right)\left(\delta_{1} p_{l} \delta_{2} q_{k}-\delta_{2} p_{l} \delta_{1} q_{k}\right)+\sum\left(\partial f_{k} / \partial q_{l}\right)\left(\delta_{1} q_{l} \delta_{2} q_{k}-\delta_{2} q_{l} \delta_{1} q_{k}\right) \\
& +\sum\left(\partial g_{k} / \partial p_{l}\right)\left(\delta_{1} p_{k} \delta_{2} p_{l}-\delta_{1} p_{l} \delta_{2} p_{k}\right)+\sum\left(\partial g_{k} / \partial q_{l}\right)\left(\delta_{1} p_{k} \delta_{2} q_{l}-\delta_{1} q_{l} \delta_{2} p_{k}\right)
\end{aligned}
$$

and, therefore, summing these (...) -derivatives of bilinear covariants over k, and ofter some "dummy"-index changes, we finally obtain the fundamental result:

$$
\begin{align*}
d / d t[& \left.\sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)\right] \\
= & \sum \sum\left(\partial f_{k} / \partial p_{l}+\partial g_{l} / \partial q_{k}\right)\left(\delta_{1} p_{l} \delta_{2} q_{k}-\delta_{2} p_{l} \delta_{1} q_{k}\right) \\
& +(1 / 2) \sum \sum\left(\partial f_{k} / \partial q_{l}-\partial f_{l} / \partial q_{k}\right)\left(\delta_{1} q_{l} \delta_{2} q_{k}-\delta_{2} q_{l} \delta_{1} q_{k}\right) \\
& +(1 / 2) \sum \sum\left(\partial g_{k} / \partial p_{l}-\partial g_{l} / \partial p_{k}\right)\left(\delta_{1} p_{k} \delta_{2} p_{l}-\delta_{2} p_{k} \delta_{1} p_{l}\right) \tag{8.7.7}
\end{align*}
$$

Specializations

(i) If the original equations (8.7.1) are Hamilton's canonical equations - that is, if (§8.2)

$$
\begin{equation*}
f_{k}=-\partial H / \partial q_{k}+Q_{k} \quad \text { and } \quad g_{k}=\partial H / \partial p_{k}, \tag{8.7.8}
\end{equation*}
$$

then, since,
(a) $\partial f_{k} / \partial p_{l}+\partial g_{l} / \partial q_{k}=\left(-\partial^{2} H / \partial p_{l} \partial q_{k}+\partial Q_{k} / \partial p_{l}\right)+\left(-\partial^{2} H / \partial q_{k} \partial p_{l}\right)$

$$
\begin{equation*}
=\partial Q_{k} / \partial p_{l} \quad\left[=0, \text { assuming } \quad Q_{k}=Q_{k}(t, q)\right], \tag{8.7.8a}
\end{equation*}
$$

(b) $\partial f_{k} / \partial q_{l}-\partial f_{l} / \partial q_{k}=\left(-\partial^{2} H / \partial q_{l} \partial q_{k}+\partial Q_{k} / \partial q_{l}\right)$

$$
\begin{align*}
& -\left(-\partial^{2} H / \partial q_{k} \partial q_{l}+\partial Q_{l} / \partial q_{k}\right) \\
= & \partial Q_{k} / \partial q_{l}-\partial Q_{l} / \partial q_{k} \quad(\neq 0, \text { in general }), \tag{8.7.8b}
\end{align*}
$$

(c) $\partial g_{k} / \partial p_{l}-\partial g_{l} / \partial p_{k}=\partial^{2} H / \partial p_{l} \partial p_{k}-\partial^{2} H / \partial p_{k} \partial p_{l}=0$,
equation (8.7.7) reduces to

$$
\begin{align*}
d / d t & {\left[\sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)\right] } \\
& =(1 / 2) \sum \sum\left(\partial Q_{k} / \partial q_{l}-\partial Q_{l} / \partial q_{k}\right)\left(\delta_{1} q_{l} \delta_{2} q_{k}-\delta_{2} q_{l} \delta_{1} q_{k}\right) \\
& =\sum\left(\delta_{1} Q_{k} \delta_{2} q_{k}-\delta_{2} Q_{k} \delta_{1} q_{k}\right) \tag{8.7.9}
\end{align*}
$$

where

$$
\delta_{*} Q_{k}=\sum\left(\partial Q_{k} / \partial q_{l}\right) \delta_{*} q_{l} \quad(*=1,2)
$$

(ii) If all forces are potential - that is, if $Q_{k}=0$, or $\partial Q_{k} / \partial q_{l}=\partial Q_{l} / \partial q_{k}$, for all k, $l=1, \ldots, n$ - then (8.7.9) immediately yields the Theorem of Lagrange-Poisson: in a holonomic and potential (but possibly rheonomic) system, the expression

$$
\begin{equation*}
I \equiv \sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right) \tag{8.7.10}
\end{equation*}
$$

is time-independent; that is, it is a constant of the motion.
[For applications of (8.7.10) to the "reciprocal theorems" of mechanics and optics, see, for example, Lamb (1910, p. 763; 1943, pp. 227-281).]

Lagrange Brackets

With the help of (8.7.4), this important quantity can be rewritten as follows:

$$
\begin{align*}
& I=\sum\{ {\left[\sum\left(\partial p_{k} / \partial c_{\mu}\right) \delta_{1} c_{\mu}\right]\left[\sum\left(\partial q_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}\right] } \\
&\left.-\left[\sum\left(\partial p_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}\right]\left[\sum\left(\partial q_{k} / \partial c_{\mu}\right) \delta_{1} c_{\mu}\right]\right\} \\
&=\sum \sum\left\{\sum\left[\left(\partial p_{k} / \partial c_{\mu}\right)\left(\partial q_{k} / \partial c_{\nu}\right)-\left(\partial p_{k} / \partial c_{\nu}\right)\left(\partial q_{k} / \partial c_{\mu}\right)\right]\right\} \delta_{1} c_{\mu} \delta_{2} c_{\nu} \tag{8.7.11}
\end{align*}
$$

or, finally,

$$
\begin{equation*}
I=\sum \sum\left[c_{\mu}, c_{\nu}\right] \delta_{1} c_{\mu} \delta_{2} c_{\nu}, \tag{8.7.12}
\end{equation*}
$$

where

$$
\begin{align*}
{\left[c_{\mu}, c_{\nu}\right] } & \equiv \sum\left[\left(\partial p_{k} / \partial c_{\mu}\right)\left(\partial q_{k} / \partial c_{\nu}\right)-\left(\partial p_{k} / \partial c_{\nu}\right)\left(\partial q_{k} / \partial c_{\mu}\right)\right]: \\
& =-\left[c_{\nu}, c_{\mu}\right] \text { (prob. 8.7.1, below): } \tag{8.7.13}
\end{align*}
$$

Lagrange bracket of c_{μ}, c_{ν} (1808).
The above show that if $I=$ constant, for all $\delta_{1} c$ and $\delta_{2} c$, then all Lagrange brackets must be constant. (For an alternative proof, see ex. 8.11.3.)

Example 8.7.1 Second, Lagrangean, Proof of the Lagrange-Poisson Theorem. By $\delta_{1}(\ldots)$-varying (i) the definition $p_{k}=\partial L / \partial \dot{q}_{k}$ and then (ii) Lagrange's equations,
say $d p_{k} / d t=\partial L / \partial q_{k}+Q_{k}$, we get

$$
\begin{align*}
\delta_{1} p_{k} & =\delta_{1}\left(\partial L / \partial \dot{q}_{k}\right)=\sum\left[\left(\partial^{2} L / \partial q_{l} \partial \dot{q}_{k}\right) \delta_{1} q_{l}+\left(\partial^{2} L / \partial \dot{q}_{l} \partial \dot{q}_{k}\right) \delta_{1}\left(\dot{q}_{l}\right)\right], \tag{a}\\
\delta_{1}\left(\dot{p}_{k}\right) & =\left(\delta_{1} p_{k}\right)^{\cdot}=\delta_{1}\left(\partial L / \partial q_{k}+Q_{k}\right) \\
& =\sum\left[\left(\partial^{2} L / \partial q_{l} \partial q_{k}\right) \delta_{1} q_{l}+\left(\partial^{2} L / \partial \dot{q}_{l} \partial q_{k}\right) \delta_{1}\left(\dot{q}_{l}\right)\right]+\delta_{1} Q_{k}, \tag{b}
\end{align*}
$$

respectively, and therefore [assuming $\delta[d(\ldots)]=d[\delta(\ldots)]$ for both q 's and p 's], we obtain, successively,

$$
\begin{aligned}
\sum(& \left.\delta_{1} p_{k} \delta_{2} q_{k}\right)^{\cdot} \\
= & \sum\left(\delta_{1} p_{k}\right)^{\cdot} \delta_{2} q_{k}+\sum \delta_{1} p_{k}\left(\delta_{2} q_{k}\right)^{\cdot} \\
= & \sum \sum\left[\left(\partial^{2} L / \partial q_{l} \partial q_{k}\right) \delta_{1} q_{l} \delta_{2} q_{k}+\left(\partial^{2} L / \partial \dot{q}_{l} \partial q_{k}\right) \delta_{1}\left(\dot{q}_{l}\right) \delta_{2} q_{k}\right]+\sum \delta_{1} Q_{k} \delta_{2} q_{k} \\
& +\sum \sum\left[\left(\partial^{2} L / \partial q_{l} \partial \dot{q}_{k}\right) \delta_{1} q_{l} \delta_{2}\left(\dot{q}_{k}\right)+\left(\partial^{2} L / \partial \dot{q}_{l} \partial \dot{q}_{k}\right) \delta_{1}\left(\dot{q}_{l}\right) \delta_{2}\left(\dot{q}_{k}\right)\right] .(\mathrm{c})
\end{aligned}
$$

Now, in (c), we interchange the variation subscripts 1 and 2, thus creating $\sum\left(\delta_{2} p_{k} \delta_{1} q_{k}\right)^{\cdot}=\cdots$, and then subtract it from (c), while renaming some summation ("dummy") indices. It is not hard to see that, then,

$$
\begin{equation*}
d / d t\left(\sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)\right)=\sum\left(\delta_{1} Q_{k} \delta_{2} q_{k}-\delta_{2} Q_{k} \delta_{1} q_{k}\right), \quad \text { Q.E.D. } \tag{d}
\end{equation*}
$$

More general Lagrangean equations lead, naturally, to more general forms of (d).

Example 8.7.2 Third, Hamiltonian, Proof of the Lagrange-Poisson Theorem. Since $H=H(t, q, p)$, we have

$$
\begin{align*}
\delta_{1} H & =\sum\left[\left(\partial H / \partial q_{k}\right) \delta_{1} q_{k}+\left(\partial H / \partial p_{k}\right) \delta_{1} p_{k}\right] \\
& =\sum\left[\left(-\dot{p}_{k}+Q_{k}\right) \delta_{1} q_{k}+\left(\dot{q}_{k}\right) \delta_{1} p_{k}\right] \quad \text { [by Hamilton's equations] } \\
& =\sum\left[\left(\dot{q}_{k}\right) \delta_{1} p_{k}-\left(\dot{p}_{k}-Q_{k}\right) \delta_{1} q_{k}\right] \tag{a}
\end{align*}
$$

and, therefore, $\delta_{2}(\ldots)$-varying the above, we obtain

$$
\begin{align*}
\delta_{2}\left(\delta_{1} H\right)= & \sum\left\{\delta_{2}\left(\dot{q}_{k}\right) \delta_{1} p_{k}-\left[\delta_{2}\left(\dot{p}_{k}\right)-\delta_{2} Q_{k}\right] \delta_{1} q_{k}\right\} \\
& +\sum\left[\dot{q}_{k} \delta_{2}\left(\delta_{1} p_{k}\right)-\left(\dot{p}_{k}-Q_{k}\right) \delta_{2}\left(\delta_{1} q_{k}\right)\right] . \tag{b}
\end{align*}
$$

Similarly, reversing the order of $\delta_{1}(\ldots)$ and $\delta_{2}(\ldots)$, we obtain

$$
\begin{align*}
\delta_{1}\left(\delta_{2} H\right)= & \sum\left\{\delta_{1}\left(\dot{q}_{k}\right) \delta_{2} p_{k}-\left[\delta_{1}\left(\dot{p}_{k}\right)-\delta_{1} Q_{k}\right] \delta_{2} q_{k}\right\} \\
& +\sum\left[\dot{q}_{k} \delta_{1}\left(\delta_{2} p_{k}\right)-\left(\dot{p}_{k}-Q_{k}\right) \delta_{1}\left(\delta_{2} q_{k}\right)\right] \tag{c}
\end{align*}
$$

Subtracting (c) from (b), while noting that for all genuine functions/variables (...), $\delta_{1}\left[\delta_{2}(\ldots)\right]=\delta_{2}\left[\delta_{1}(\ldots)\right]$, we obtain

$$
\begin{align*}
0 & =\delta_{2}\left(\delta_{1} H\right)-\delta_{1}\left(\delta_{2} H\right) \\
& =\sum\left\{\left[\delta_{2}\left(\dot{q}_{k}\right) \delta_{1} p_{k}-\delta_{1}\left(\dot{q}_{k}\right) \delta_{2} p_{k}\right]-\left[\delta_{2}\left(\dot{p}_{k}\right)-\delta_{2} Q_{k}\right] \delta_{1} q_{k}+\left[\delta_{1}\left(\dot{p}_{k}\right)-\delta_{1} Q_{k}\right] \delta_{2} q_{k}\right\} \\
& =\left[\sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)\right]-\sum\left(\delta_{1} Q_{k} \delta_{2} q_{k}-\delta_{2} Q_{k} \delta_{1} q_{k}\right), \quad \text { Q.E.D. } \tag{d}
\end{align*}
$$

Here, too, more general Hamiltonian equations lead to more general forms of (d).
Example 8.7.3 Let us consider a system with Hamiltonian

$$
\begin{equation*}
H=(1 / 2)\left(p^{2}+\lambda^{2} q^{2}\right) \tag{a}
\end{equation*}
$$

and general solution of its equations of motion, as can be easily verified by the reader,

$$
\begin{equation*}
q=c_{1} \cos (\lambda t)+\left(c_{2} / \lambda\right) \sin (\lambda t), \quad p=-c_{1} \lambda \sin (\lambda t)+c_{2} \cos (\lambda t) \tag{b}
\end{equation*}
$$

(i.e., free vibration of a linear harmonic and undamped oscillator of unit mass and frequency equal to λ). Hence, the (sole) Lagrange bracket of the system equals

$$
\begin{align*}
{\left[c_{1}, c_{2}\right]=-\left[c_{2}, c_{1}\right] } & =\left(\partial p / \partial c_{1}\right)\left(\partial q / \partial c_{2}\right)-\left(\partial p / \partial c_{2}\right)\left(\partial q / \partial c_{1}\right) \\
& =[-\lambda \sin (\lambda t)]\left[\lambda^{-1} \sin (\lambda t)\right]-[\cos (\lambda t)][\cos (\lambda t)] \\
& =-\left[\sin ^{2}(\lambda t)+\cos ^{2}(\lambda t)\right]=-1, \quad \text { a constant } ; \tag{c}
\end{align*}
$$

which, in the language of $\S 8.9$, means that (b) is a canonical transformation.
Problem 8.7.1 Show that Lagrange's brackets satisfy the following identities:

$$
\begin{equation*}
\left[c_{\mu}, c_{\mu}\right]=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left[c_{\mu}, c_{\nu}\right]=-\left[c_{\nu}, c_{\mu}\right] ; \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\partial\left[c_{\mu}, c_{\nu}\right] / \partial c_{\lambda}+\partial\left[c_{\nu}, c_{\lambda}\right] / \partial c_{\mu}+\partial\left[c_{\lambda}, c_{\mu}\right] / \partial c_{\nu}=0 \tag{ii}
\end{equation*}
$$

HINT
[For (iii)]: Notice that

$$
\begin{equation*}
\left[c_{\mu}, c_{\nu}\right]=\partial / \partial c_{\nu}\left[\sum q_{k}\left(\partial p_{k} / \partial c_{\mu}\right)\right]-\partial / \partial c_{\mu}\left[\sum q_{k}\left(\partial p_{k} / \partial c_{\nu}\right)\right] \tag{d}
\end{equation*}
$$

Perturbation Equations

Next, we apply the above formalism to the theory of perturbations. Let the canonical equations and corresponding general solution of the unperturbed problem be

$$
\begin{array}{lll}
d p_{k} / d t=-\partial H / \partial q_{k} & \text { and } & d q_{k} / d t=\partial H / \partial p_{k}, \\
p_{k}=p_{k}(t ; c) & \text { and } \quad q_{k}=q_{k}(t ; c), \tag{8.7.14b}
\end{array}
$$

respectively, and let the equations of the slightly perturbed problem be

$$
\begin{equation*}
d p_{k} / d t=-\partial H / \partial q_{k}+X_{k} \quad \text { and } \quad d q_{k} / d t=\partial H / \partial p_{k} \tag{8.7.15a}
\end{equation*}
$$

where
$X_{k}=X_{k}(t, q, p)=$ given function of its arguments
$\approx X_{k}{ }^{(1)}(t ; c) \quad$ [first-order approximation, upon substitution of unperturbed solution (8.7.14b) in it].

Let us solve (8.7.15a) by treating the c 's as variable; that is, $c_{\mu}=c_{\mu}(t)$. Indeed, (...)'-differentiating (8.7.14b), we obtain

$$
\begin{align*}
& d p_{k} / d t=\partial p_{k} / \partial t+\sum\left(\partial p_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right) \\
& d q_{k} / d t=\partial q_{k} / \partial t+\sum\left(\partial q_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right) \tag{8.7.16a}
\end{align*}
$$

But since $\partial q_{k} / \partial t\left(\partial p_{k} / \partial t\right)=$ unperturbed velocities (accelerations), while $\dot{q}_{k}\left(\dot{p}_{k}\right)=$ perturbed velocities (accelerations), we can rewrite (8.7.14a) and (8.7.15a) as follows:

$$
\begin{array}{lll}
\partial p_{k} / \partial t=-\partial H / \partial q_{k} & \text { and } & \partial q_{k} / \partial t=\partial H / \partial p_{k} \\
d p_{k} / d t=-\partial H / \partial q_{k}+X_{k} & \text { and } & d q_{k} / d t=\partial H / \partial p_{k} \tag{8.7.16c}
\end{array}
$$

and, comparing these with (8.7.16a), we are readily led to the $2 n$ first-order differential equations for the $c_{\mu}(t)$:

$$
\begin{equation*}
\sum\left(\partial p_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=X_{k}^{(1)}, \quad \sum\left(\partial q_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=0 . \tag{8.7.17}
\end{equation*}
$$

To understand the motivation behind these key arguments, let us pause to examine briefly the physical problem that led Lagrange et al. to the method of variation of constants: finding the orbit of Earth (E) around the Sun (S). As is well known: in this case, the solution to the unperturbed, or two-body, problem (i.e., when only the gravitational pull of S on E is included, whereas the small such influences of the other solar system planets on the orbit of E are neglected) are Keplerian elliptical orbits, I, with S at one of their foci, defined at every generic instant by the constants, or "orbit elements" c_{μ}. Here, the perturbed problem consists in calculating the small time-dependent deviations of E's orbit from ellipticity; that is, the $d c_{\mu} / d t$, due to the gravitational pull of the other planets. Our conditions (8.7.17) amount to stating that, at every instant, E has the same coordinates and velocity (\rightarrow momentum) in both the unperturbed (two-body) and perturbed (many-body) orbits (fig. 8.6).

As the famous Victorian mechanician Tait puts it (see also Lagrange's summary in ex. 8.7.4):
[T]he disturbing forces are, at any instant, small in comparison with the forces regulating the motion; so that, during any brief period, the motion is practically the same as if no disturbing cause had been at work. But in time, the effects of the disturbance may become so great as entirely to change the dimensions and form of the orbit described. The character of the path is not, at any particular instant, affected by the disturbance; but its form and dimensions are in a state of slow, and usually progressive change. Hence, as the first depends upon the form of the equations which represent it, while the latter depend upon the actual and relative magnitudes of the constants involved in the

Figure 8.6 Geometry of unperturbed and perturbed orbits of Earth around the Sun.
integrals, we settle, once for all, the form of the equation as if no disturbing cause had acted. But we are thus entitled to assume that the constants which the solution involves are quantities which vary with the time in consequence of the slight, but persistent, effects of the disturbance. And, ..., if at any moment the disturbance were to cease, the motion would forthwith go on for ever in the orbit then being described, it follows that in the expressions for the components of the velocity no terms occur depending on the rate of alteration of the values of the constants. (1895, p. 174)

The above help us to understand the differences between partial and total time derivatives:

- Partial derivatives refer to the unperturbed (or osculating) orbit; that is, constant orbit elements.
- Total derivatives refer to the perturbed (or true) orbit; that is, variable orbit elements.

Two additional forms of the perturbation equations are obtained as follows:
(i) Multiplying the first of (8.7.17) with $\delta_{2} q_{k}=\sum\left(\partial q_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}$ and summing over k, and multiplying the second of (8.7.17) with $\delta_{2} p_{k}=\sum\left(\partial p_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}$ and summing over k, and then subtracting the so-resulting expressions, we obtain

$$
\begin{align*}
\sum \sum \sum & {\left[\left(\partial p_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)\right]\left[\left(\partial q_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}\right] } \\
& -\sum \sum \sum\left[\left(\partial q_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)\right]\left[\left(\partial p_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}\right] \\
= & \sum \sum X_{k}^{(1)}\left[\left(\partial q_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}\right] \tag{8.7.18a}
\end{align*}
$$

or, recalling the Lagrange bracket definition (8.7.13),

$$
\begin{equation*}
\sum \sum\left[c_{\mu}, c_{\nu}\right]\left(d c_{\mu} / d t\right) \delta_{2} c_{\nu}=\sum \sum X_{k}^{(1)}\left[\left(\partial q_{k} / \partial c_{\nu}\right) \delta_{2} c_{\nu}\right] \tag{8.7.18b}
\end{equation*}
$$

and from this, since the $\delta_{2} c_{\nu}$ are arbitrary, we finally obtain the Lagrangean form of the perturbation equations:

$$
\begin{equation*}
\sum\left[c_{\nu}, c_{\mu}\right]\left(d c_{\nu} / d t\right)=\sum X_{k}^{(1)}\left(\partial q_{k} / \partial c_{\mu}\right) \tag{8.7.19}
\end{equation*}
$$

In particular, if the perturbations are potential - that is, if $X_{k}=-\partial \Omega / \partial q_{k}$ - then, since $q_{k}=q_{k}(t ; c)$, (8.7.19) specializes to

$$
\begin{equation*}
\sum\left[c_{\nu}, c_{\mu}\right]\left(d c_{\nu} / d t\right)=-\partial \Omega / \partial c_{\mu} \tag{8.7.20}
\end{equation*}
$$

Also, since, here, the fundamental state I is time-independent, the brackets depend only on the c 's.
(ii) Inverting the general solution (8.7.2), or (8.7.14b), we obtain

$$
\begin{equation*}
c_{\mu}=h_{\mu}(t, q, p)=\text { first integral (constant) of the unperturbed problem, } \tag{8.7.21a}
\end{equation*}
$$

and, therefore, treating them as variable, we get

$$
\begin{equation*}
d c_{\mu} / d t=\partial h_{\mu} / \partial t+\sum\left[\left(\partial h_{\mu} / \partial q_{k}\right)\left(d q_{k} / d t\right)+\left(\partial h_{\mu} / \partial p_{k}\right)\left(d p_{k} / d t\right)\right] \tag{8.7.21b}
\end{equation*}
$$

But invoking the perturbation conditions (8.7.17), we find

$$
\begin{align*}
& d p_{k} / d t=\partial p_{k} / \partial t+\sum\left(\partial p_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=\partial p_{k} / \partial t+X_{k}^{(1)} \tag{8.7.21c}\\
& d q_{k} / d t=\partial q_{k} / \partial t+\sum\left(\partial q_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=\partial q_{k} / \partial t \tag{8.7.21d}
\end{align*}
$$

and so, inserting these expressions back into (8.7.21b), we have

$$
\begin{aligned}
d c_{\mu} / d t=\partial h_{\mu} / \partial t+\sum\left[\left(\partial h_{\mu} / \partial q_{k}\right)\left(\partial q_{k} / \partial t\right)\right. & \left.+\left(\partial h_{\mu} / \partial p_{k}\right)\left(\partial p_{k} / \partial t\right)\right] \\
& +\sum\left(\partial h_{\mu} / \partial p_{k}\right) X_{k}
\end{aligned}
$$

or, since the first two summands vanish, because they represent the (... $)^{\text {-derivative }}$ of the unperturbed constant c_{μ}, we obtain, finally,

$$
\begin{equation*}
d c_{\mu} / d t=\sum\left(\partial h_{\mu} / \partial p_{k}\right) X_{k}=\sum\left(\partial c_{\mu} / \partial p_{k}\right) X_{k}^{(1)} . \tag{8.7.22}
\end{equation*}
$$

Poisson Brackets

In particular, if the perturbations are potential - that is, if

$$
\begin{equation*}
X_{k}=-\partial \Omega / \partial q_{k}=-\sum\left(\partial \Omega / \partial c_{\nu}\right)\left(\partial c_{\nu} / \partial q_{k}\right) \tag{8.7.22a}
\end{equation*}
$$

(8.7.22) becomes

$$
\begin{equation*}
d c_{\mu} / d t=-\sum\left[\sum\left(\partial \Omega / \partial c_{\nu}\right)\left(\partial c_{\nu} / \partial q_{k}\right)\right]\left(\partial c_{\mu} / \partial p_{k}\right) \tag{8.7.22b}
\end{equation*}
$$

or, if (as is commonly the case)

$$
\begin{align*}
& 0=\partial \Omega / \partial p_{k}=\sum\left(\partial \Omega / \partial c_{\nu}\right)\left(\partial c_{\nu} / \partial p_{k}\right) \\
& \Rightarrow \sum\left(\sum\left(\partial \Omega / \partial c_{\nu}\right)\left(\partial c_{\nu} / \partial p_{k}\right)\right)\left(\partial c_{\mu} / \partial q_{k}\right)=0 \tag{8.7.22c}
\end{align*}
$$

adding a zero [i.e., (8.7.22c)] to the right side of (8.7.22b) we finally obtain the potential perturbation equations in the following convenient form:

$$
\begin{equation*}
d c_{\mu} / d t=-\sum\left(\partial \Omega / \partial c_{\nu}\right)\left(c_{\mu}, c_{\nu}\right) \tag{8.7.23}
\end{equation*}
$$

where

$$
\begin{align*}
&\left(c_{\mu}, c_{\nu}\right) \equiv \sum\left[\left(\partial c_{\mu} / \partial p_{k}\right)\left(\partial c_{\nu} / \partial q_{k}\right)-\left(\partial c_{\mu} / \partial q_{k}\right)\left(\partial c_{\nu} / \partial p_{k}\right)\right]: \\
& \text { Poisson bracket of } c_{\mu}, c_{\nu} \quad\left[=-\left(c_{\nu}, c_{\mu}\right)\right] \tag{8.7.24}
\end{align*}
$$

[See also §8.9. On the history of Poisson's brackets, and so on, see Dugas (1955, p. 384 ff .)].

Equations (8.7.23) have the advantage over (8.7.20) that they are already solved for the $d c / d t$; but, in return, eqs. (8.7.20) contain Lagrange's brackets, which do not require solving the p 's and q 's for the c 's, as Poisson's brackets do.

Now, since these two perturbation forms, (8.7.20) and (8.7.23), are equivalent, the brackets of Lagrange and Poisson must satisfy certain consistency requirements. Indeed, substituting $d c_{\mu} / d t \rightarrow d c_{\nu} / d t$ from (8.7.23) into (8.7.20), we get

$$
\sum \sum\left[c_{\nu}, c_{\mu}\right]\left(c_{\nu}, c_{\lambda}\right)\left(\partial \Omega / \partial c_{\lambda}\right)=-\partial \Omega / \partial c_{\mu}
$$

from which, since the $\partial \Omega / \partial c_{\lambda}$ are arbitrary, we obtain the inverse matrix-like relations:

$$
\begin{gather*}
\sum\left[c_{\nu}, c_{\mu}\right]\left(c_{\nu}, c_{\lambda}\right)=\delta_{\mu \lambda}=\delta_{\lambda \mu}: \text { Kronecker delta } \\
{[=1 \text { or } 0, \text { according as } \mu=\lambda \text { or } \mu \neq \lambda] .} \tag{8.7.25}
\end{gather*}
$$

These compatibility conditions readily show that:

- If Lagrange's brackets are constant, then so are Poisson's brackets, and vice versa.
- If we know Lagrange's brackets, then using (8.7.25) we can find Poisson's brackets, and vice versa; that is, these two behave as if they were elements of two inverse $2 n \times 2 n$ matrices.

REMARK

Equations (8.7.23) are exact, but they are expressed in terms of perturbed quantities. Let us formulate them in terms of the known unperturbed quantities and their firstorder corrections. Setting in (8.7.23): $c_{\mu}=c_{\mu o}+c_{\mu 1}$, where $c_{\mu o}=$ unperturbed values and $c_{\mu 1}=$ corresponding first-order corrections, we readily find that the differential equations of the latter are

$$
\begin{equation*}
d c_{\mu 1} / d t=-\sum\left(\partial \Omega_{o} / \partial c_{\nu o}\right)\left(c_{\mu o}, c_{\nu o}\right), \quad \text { where } \quad \Omega_{o} \equiv \Omega\left(c_{o}\right) . \tag{8.7.23a}
\end{equation*}
$$

Example 8.7.4 Canonical Form of Lagrange's Perturbation Equations [1810; see Lagrange, 1965, Vol. 1, pp. 299-320].

HISTORICAL

In the second edition of his Mécanique Analytique, Lagrange summarizes the gist of his method as follows:

Dans les problèmes de Mécanique qu'on ne peut résoudre que par approximation, on trouve ordinairement la première solution en n'ayant égard qu'aux forces principales qui agissent sur les corps; et pour étendre cette solution aux autres forces qu'on peut appeler perturbatrices, ce qu'il y a de plus simple, c'est de conserver la forme de la
première solution, mais en rendant variables les constantes arbitraires qu'elle renferme; car, si les quantités qu'on avait négligées, et dont on veut tenir compte, sont très-petites, les nouvelles variables seront à peu près constantes, et l'on pourra y appliquer les méthodes ordinaires d'approximation. Ainsi la difficulté se reduit à trouver les équations entre ces variables. [1965, p. 299]

Let $q_{k}=q_{k}(t)$ and $p_{k}=p_{k}(t)$ be represented by the following power series in time t :

$$
\begin{equation*}
q_{k}=q_{k 0}+q_{k 1} t+q_{k 2} t^{2}+\cdots, \quad p_{k}=p_{k 0}+p_{k 1} t+p_{k 2} t^{2}+\cdots \tag{a}
\end{equation*}
$$

Let us find the form of the Lagrangean perturbational equations, say the potential case (8.7.20), when we choose as constants the initial conditions; that is,

$$
\begin{equation*}
c_{k}=q_{k 0} \quad \text { and } \quad c_{n+s}=p_{s 0} \quad(k, s=1, \ldots, n) \tag{b}
\end{equation*}
$$

Then, since

$$
\begin{equation*}
\left[c_{\mu}, c_{\nu}\right]=\left[c_{\mu}, c_{\nu}\right]_{t=0}=\text { constant } \tag{c}
\end{equation*}
$$

we obtain:
(i) For $\mu, \nu=1, \ldots, n$:

$$
\begin{align*}
{\left[c_{\mu}, c_{\nu}\right] } & =\sum\left[\left(\partial p_{k 0} / \partial c_{\mu}\right)\left(\partial q_{k 0} / \partial c_{\nu}\right)-\left(\partial p_{k 0} / \partial c_{\nu}\right)\left(\partial q_{k 0} / \partial c_{\mu}\right)\right] \\
& =\sum\left[(0)\left(\delta_{k \nu}\right)-(0)\left(\delta_{k \mu}\right)\right]=0 \tag{d}
\end{align*}
$$

(ii) For $\mu \rightarrow n+s, s=1, \ldots, n ; \nu=1, \ldots, n$:

$$
\begin{align*}
{\left[c_{n+s}, c_{\nu}\right] } & =\sum\left[\left(\partial p_{k 0} / \partial c_{n+s}\right)\left(\partial q_{k 0} / \partial c_{\nu}\right)-\left(\partial p_{k 0} / \partial c_{\nu}\right)\left(\partial q_{k 0} / \partial c_{n+s}\right)\right] \\
& =\sum\left[\left(\delta_{k s}\right)\left(\delta_{k \nu}\right)-(0)(0)\right]=\sum\left(\delta_{k s}\right)\left(\delta_{k \nu}\right)=\delta_{s \nu} \tag{e}
\end{align*}
$$

from which we also get

$$
\begin{equation*}
\left[c_{\nu}, c_{n+s}\right]=-\left[c_{n+s}, c_{\nu}\right]=-\delta_{s \nu}=-\delta_{\nu s} \tag{f}
\end{equation*}
$$

(iii) For $\mu \rightarrow n+r, \nu \rightarrow n+b ; r, b=1, \ldots, n$:

$$
\begin{align*}
{\left[c_{n+r}, c_{n+b}\right] } & =\sum\left[\left(\partial p_{k 0} / \partial c_{n+r}\right)\left(\partial q_{k 0} / \partial c_{n+b}\right)-\left(\partial p_{k 0} / \partial c_{n+b}\right)\left(\partial q_{k 0} / \partial c_{n+r}\right)\right] \\
& =\sum\left[\left(\delta_{k r}\right)(0)-\left(\delta_{k b}\right)(0)\right]=0 \tag{g}
\end{align*}
$$

Therefore, the perturbation equations (8.7.20):

$$
\begin{equation*}
\sum\left[c_{\nu}, c_{\mu}\right]\left(d c_{\nu} / d t\right)=-\partial \Omega / \partial c_{\mu} \tag{h}
\end{equation*}
$$

become
(i) $\mu=1, \ldots, n$:

$$
\begin{equation*}
\sum\left[c_{n+s}, c_{\mu}\right]\left(d c_{n+s} / d t\right)=\sum \delta_{s \mu}\left(d c_{n+s} / d t\right)=-\partial \Omega / \partial c_{\mu} \tag{i}
\end{equation*}
$$

or (renaming μ as k)

$$
\begin{equation*}
d c_{n+k} / d t=-\partial \Omega / \partial c_{k} \quad(k=1, \ldots, n) \tag{j}
\end{equation*}
$$

(ii) $\mu=n+1, \ldots, 2 n$; or $\mu=n+s, s=1, \ldots, n$:

$$
\begin{equation*}
\sum\left[c_{k}, c_{n+s}\right]\left(d c_{k} / d t\right)=\sum\left(-\delta_{s k}\right)\left(d c_{k} / d t\right)=-\partial \Omega / \partial c_{k} \tag{k}
\end{equation*}
$$

or (renaming s to k)

$$
\begin{equation*}
d c_{k} / d t=\partial \Omega / \partial c_{n+k} \quad(k=1, \ldots, n) \tag{1}
\end{equation*}
$$

Hence Lagrange's result: If we choose as our constants the initial values of q and p, then (provided the perturbative forces are potential) the perturbation equations are canonical; with Ω as the perturbation Hamiltonian (see also §8.10).

Example 8.7.5 Variation of Constants: The Forced Linear Oscillator. Let us consider a system with Lagrangean equation of motion

$$
\begin{equation*}
\ddot{q}+\omega^{2} q=f(t) ; \tag{a}
\end{equation*}
$$

that is, a linear and undamped oscillator of (constant) natural frequency ω acted upon by the disturbing external force $f(t)$. As is well known, the general solution of the unperturbed problem [i.e., (a) with $f(t)=0$] is

$$
\begin{equation*}
q=c_{1} \sin (\omega t)+c_{2} \cos (\omega t) ; \quad c_{1}, c_{2}=\text { arbitrary constants. } \tag{b}
\end{equation*}
$$

Elementary Method

To solve the perturbed problem (a), and following the well-known method of variation of constants (see any text on ordinary differential equations), we try a solution of the same form as (b) but with c_{1} and c_{2} unknown functions of time:

$$
\begin{equation*}
q=c_{1}(t) \sin (\omega t)+c_{2}(t) \cos (\omega t) \tag{c}
\end{equation*}
$$

where $c_{1}(t)$ and $c_{2}(t)$ are the coefficients of the instantaneous simple harmonic motion (i.e., the arbitrary constants of the motion that would result, at a generic instant, if $f(t)$ suddenly vanished) and they will be determined by the following two requirements:
(i) Both unperturbed and perturbed velocities \dot{q}, obtained by (...) -differentiation of (b) and (c), respectively, will have the same form;
(ii) The so-perturbed motion (c) will satisfy the perturbed equation (a).

Indeed:
(i) By (...) -differentiating (c), we obtain

$$
\begin{equation*}
\dot{q}=\dot{c}_{1} \sin (\omega t)+\dot{c}_{2} \cos (\omega t)+\omega\left[c_{1} \cos (\omega t)-c_{2} \sin (\omega t)\right] \tag{d}
\end{equation*}
$$

and so the first requirement leads to the condition

$$
\begin{equation*}
\dot{c}_{1} \sin (\omega t)+\dot{c}_{2} \cos (\omega t)=0 \tag{e}
\end{equation*}
$$

and
(ii) $\mathrm{By}(\ldots)^{\circ}$-differentiating (d), invoking (e), and then inserting the result in (a), we find the second condition:

$$
\begin{equation*}
\ddot{q}+\omega^{2} q=\cdots=\omega\left[\dot{c}_{1} \cos (\omega t)-\dot{c}_{2} \sin (\omega t)\right]=f(t) \tag{f}
\end{equation*}
$$

Solving the system (e, f) for \dot{c}_{1}, \dot{c}_{2}, we readily obtain

$$
\begin{equation*}
\dot{c}_{1}=\omega^{-1} f(t) \cos (\omega t), \quad \dot{c}_{2}=-\omega^{-1} f(t) \sin (\omega t) \tag{g}
\end{equation*}
$$

Integrating (g) for a given $f(t)$, we obtain a particular solution of (a). The reader should compare this method with that of the slowly varying parameters, in (weakly) nonlinear oscillations (see next example, and also examples in §7.9).

Generalization. In the variable coefficient case

$$
\begin{equation*}
\ddot{q}+a(t) \dot{q}+b(t) q=f(t) \quad[a(t), b(t)=\text { known functions of time }], \tag{h}
\end{equation*}
$$

(b) and (c) are replaced, respectively, by

$$
\begin{align*}
& q=c_{1} q_{1}(t)+c_{2} q_{2}(t): \quad \text { general solution of }(\mathrm{h}) \text { when } f(t)=0 \tag{i1}\\
& q=c_{1}(t) q_{1}(t)+c_{2}(t) q_{2}(t), \quad q_{1}(t)=\sin (\omega t), q_{2}(t)=\cos (\omega t) \tag{i2}
\end{align*}
$$

while the conditions (e, f) are replaced, respectively, by

$$
\begin{align*}
& \dot{c}_{1} q_{1}(t)+\dot{c}_{2} q_{2}(t)=0, \tag{j1}\\
& \dot{c}_{1} \dot{q}_{1}(t)+\dot{c}_{2} \dot{q}_{2}(t)=f(t) . \tag{j2}
\end{align*}
$$

Solving ($\mathrm{j} 1,2$) for \dot{c}_{1}, \dot{c}_{2}, we obtain the generalization of (g) :

$$
\begin{equation*}
\dot{c}_{1}=-\left[f(t) q_{2}(t)\right] / W \quad \text { and } \quad \dot{c}_{2}=\left[f(t) q_{1}(t)\right] / W \tag{k}
\end{equation*}
$$

where

$$
\begin{align*}
& W=W\left[q_{1}(t), q_{2}(t)\right] \equiv\left[q_{1}(t) \dot{q}_{2}(t)-q_{2}(t) \dot{q}_{1}(t)\right] \equiv W(t): \\
& \quad \text { Wronskian determinant of } q_{1}(t), q_{2}(t) \\
& \quad\left[\neq 0, \text { since } q_{1}(t), q_{2}(t) \text { are linearly independent; i.e., }\left(q_{2} / q_{1}\right)^{\cdot} \neq 0\right] ; \tag{k1}
\end{align*}
$$

and, integrating the above and inserting the result in (c)/(i2), we obtain a particular solution of (h).

Via Lagrange's Brackets
We begin with (c):

$$
\begin{equation*}
q=c_{1}(t) \sin (\omega t)+c_{2}(t) \cos (\omega t)=q\left[t ; c_{1}, c_{2}\right] . \tag{1}
\end{equation*}
$$

Equations (d, e) can be rewritten, respectively, as

$$
\begin{align*}
& d q / d t=\left[c_{1} \omega \cos (\omega t)-c_{2} \omega \sin (\omega t)\right]+\left[\sin (\omega t) \dot{c}_{1}+\cos (\omega t) \dot{c}_{2}\right] \\
& \quad=\partial q / \partial t+\left[\left(\partial q / \partial c_{1}\right) \dot{c}_{1}+\left(\partial q / \partial c_{2}\right) \dot{c}_{2}\right] \tag{m1}\\
& \sum\left(\partial q / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=[\sin (\omega t)] \dot{c}_{1}+[\cos (\omega t)] \dot{c}_{2}=0 \tag{m2}
\end{align*}
$$

while, since

$$
\begin{align*}
d^{2} q / d t^{2} & =\left[-c_{1} \omega^{2} \sin (\omega t)-c_{2} \omega^{2} \cos (\omega t)\right]+\left[\dot{c}_{1} \omega \cos (\omega t)-\dot{c}_{2} \omega \sin (\omega t)\right] \\
& =\partial^{2} q / \partial t^{2}+\left[\left(\partial^{2} q / \partial t \partial c_{1}\right) \dot{c}_{1}+\left(\partial^{2} q / \partial t \partial c_{2}\right) \dot{c}_{2}\right], \tag{m3}
\end{align*}
$$

condition (f) becomes

$$
\begin{equation*}
\left(\partial^{2} q / \partial t \partial c_{1}\right) \dot{c}_{1}+\left(\partial^{2} q / \partial t \partial c_{2}\right) \dot{c}_{2}=f(t) \tag{m4}
\end{equation*}
$$

But, and this is a general result,

$$
\begin{align*}
& \partial / \partial c_{1}(\partial q / \partial t)=\partial / \partial c_{1}(\dot{q})=\omega \cos (\omega t)=\partial / \partial t\left(\partial q / \partial c_{1}\right)=\partial / \partial t[\sin (\omega t)] \tag{n1}\\
& \partial / \partial c_{2}(\partial q / \partial t)=\partial / \partial c_{2}(\dot{q})=-\omega \sin (\omega t)=\partial / \partial t\left(\partial q / \partial c_{2}\right)=\partial / \partial t[\cos (\omega t)] \tag{n2}
\end{align*}
$$

and, therefore, the system (e, f) can be rewritten as

$$
\begin{equation*}
\left(\partial p / \partial c_{1}\right) \dot{c}_{1}+\left(\partial q / \partial c_{2}\right) \dot{c}_{2}=0, \quad\left(\partial \dot{q} / \partial c_{1}\right) \dot{c}_{1}+\left(\partial q / \partial c_{2}\right) \dot{c}_{2}=f(t) \tag{o1,2}
\end{equation*}
$$

To solve this system for \dot{c}_{1}, \dot{c}_{2}, we multiply (o2) with $\partial q / \partial c_{\mu}$ (where $\mu=1,2$) and (o1) with $\partial \dot{q} / \partial c_{\mu}$, and then subtract from each other, thus obtaining

$$
\begin{aligned}
& {\left[\left(\partial q / \partial c_{\mu}\right)\left(\partial \dot{q} / \partial c_{1}\right)-\left(\partial q / \partial c_{1}\right)\left(\partial \dot{q} / \partial c_{\mu}\right)\right] \dot{c}_{1}} \\
& \quad+\left[\left(\partial q / \partial c_{\mu}\right)\left(\partial \dot{q} / \partial c_{2}\right)-\left(\partial q / \partial c_{2}\right)\left(\partial \dot{q} / \partial c_{\mu}\right)\right] \dot{c}_{2}=\left(\partial q / \partial c_{\mu}\right) f(t)
\end{aligned}
$$

that is, in the Lagrangean form (8.7.19) (recalling that here $p=\dot{q}$):

$$
\begin{equation*}
\left[c_{1}, c_{\mu}\right] \dot{c}_{1}+\left[c_{2}, c_{\mu}\right] \dot{c}_{2}=\left(\partial q / \partial c_{\mu}\right) f(t) \tag{p}
\end{equation*}
$$

from which, due to the antisymmetry of the Lagrangean brackets (problem 8.7.1) that is,

$$
\begin{equation*}
\left[c_{1}, c_{1}\right]=\left[c_{2}, c_{2}\right]=0, \quad\left[c_{1}, c_{2}\right]=\omega \Rightarrow\left[c_{2}, c_{1}\right]=-\omega \tag{q}
\end{equation*}
$$

we finally obtain (g) in the following general form:

$$
\begin{equation*}
d c_{1} / d t=\left(\left(\partial q / \partial c_{2}\right) f(t)\right) /\left[c_{1}, c_{2}\right] \quad d c_{2} / d t=\left(\left(\partial q / \partial c_{1}\right) f(t)\right) /\left[c_{2}, c_{1}\right] \tag{r}
\end{equation*}
$$

Comparing (g, k) with (r) we immediately conclude that

$$
\begin{equation*}
\left[c_{2}, c_{1}\right]=(f W)\left(\left(\partial q / \partial c_{1}\right) / W_{2}\right), \quad\left[c_{1}, c_{2}\right]=(f W)\left(\left(\partial q / \partial c_{2}\right) / W_{1}\right) \tag{r1,2}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{1} \equiv-f q_{2}, \quad W_{2} \equiv f q_{1} \tag{r3}
\end{equation*}
$$

Let the reader express the solution of the more general equation (h) via Lagrangean brackets.

This completes the fundamentals of classical canonical perturbation theory. We shall return to such approximation methods in $\S 8.14$. Now, using the insights gained in Hamiltonian variables, let us make a small detour to discuss the following.

Perturbation Equations in Lagrangean Variables

The most general Lagrangean-type perturbed equations of motion in these variables have the form ($\$ 3.10$ and $\S 3.11$):

$$
\begin{equation*}
\sum M_{k k} \ddot{q}_{l}+f_{k}(t, q, \dot{q})=Q_{k}+X_{k} \tag{8.7.26}
\end{equation*}
$$

where
$f_{k}(t, q, \dot{q}): \quad$ known function of its arguments,
$X_{k}=X_{k}(t, q, \dot{q}): \quad$ small (total impressed) perturbative force.

Let the general solution of the corresponding unperturbed problem be

$$
\begin{equation*}
q_{k}=q_{k}(t ; c) . \tag{8.7.27a}
\end{equation*}
$$

We have seen earlier (8.7.16a, 21d) that by demanding equality between the unperturbed and perturbed velocities, $\partial q_{k} / \partial t$ and

$$
d q_{k} / d t=\partial q_{k} / \partial t+\sum\left(\partial q_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)
$$

respectively, we arrive at the n conditions (8.7.17) for the $d c / d t$'s:

$$
\begin{equation*}
\sum\left(\partial q_{k} / \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=0 \tag{8.7.27b}
\end{equation*}
$$

The additional n conditions will result by substituting the perturbed accelerations

$$
\begin{equation*}
d^{2} q_{k} / d t^{2}=\partial^{2} q_{k} / \partial t^{2}+\sum\left(\partial^{2} q_{k} / \partial t \partial c_{\mu}\right)\left(d c_{\mu} / d t\right) \quad[\text { after invoking }(8.7 .27 \mathrm{~b})] \tag{8.7.27c}
\end{equation*}
$$

in (8.7.26), and then subtracting from it the unperturbed equation; that is, eq. (8.7.26) with $X_{k}=0$ and $d^{2} q_{k} / d t^{2}=\partial^{2} q_{k} / \partial t^{2}$: unperturbed accelerations. Thus, we obtain the following Lagrangean perturbational equations of motion:

$$
\begin{equation*}
\sum \sum M_{k l}\left(\partial^{2} q_{l} / \partial t \partial c_{\mu}\right)\left(d c_{\mu} / d t\right)=X_{k}^{(1)}, \tag{8.7.28}
\end{equation*}
$$

or, in extenso,

$$
\begin{equation*}
\sum\left[M_{k 1}\left(\partial^{2} q_{1} / \partial t \partial c_{\mu}\right)+\cdots+M_{k n}\left(\partial^{2} q_{n} / \partial t \partial c_{\mu}\right)\right]\left(d c_{\mu} / d t\right)=X_{k}^{(1)} \tag{8.7.28a}
\end{equation*}
$$

These are the Lagrangean counterpart of the first of (8.7.17), and together with (8.7.27b) they constitute a system of $2 n$ linear equations for the $2 n d c / d t$'s. Indeed, with the abbreviations

$$
\begin{equation*}
\Lambda_{k \mu} \equiv \sum M_{k l}\left(\partial^{2} q_{l} / \partial t \partial c_{\mu}\right)=\sum M_{k l}\left(\partial^{2} q_{l} / \partial c_{\mu} \partial t\right), \quad \Pi_{k \mu} \equiv \partial q_{k} / \partial c_{\mu} \tag{8.7.29a}
\end{equation*}
$$

the system $(8.7 .27 \mathrm{~b}, 28)$ can be rewritten as

$$
\begin{equation*}
\sum \Lambda_{k \mu} \dot{c}_{\mu}=X_{k}^{(1)}, \quad \sum \Pi_{k \mu} \dot{c}_{\mu}=0 \tag{8.7.29b}
\end{equation*}
$$

and, by Cramer's rule, its solution is

$$
\begin{equation*}
\left.\dot{c}_{\mu}=\sum(-1)^{k+\mu} \Delta_{k \mu} X_{k}^{(1)} / \Delta \quad \text { (summation on } k=1, \ldots, n\right), \tag{8.7.29c}
\end{equation*}
$$

$$
\Delta \equiv\left|\begin{array}{ccc}
\Lambda_{11} & \ldots & \Lambda_{1,2 n} \tag{8.7.29d}\\
\ldots & \cdots & \cdots
\end{array}\right| \cdots \cdots, \left.~ \begin{array}{ccc}
\Lambda_{n 1} & \ldots & \Lambda_{n, 2 n} \\
\Pi_{11} & \ldots & \Pi_{1,2 n} \\
\ldots \ldots & \ldots & \cdots \\
\Pi_{n 1} & \ldots & \Pi_{n, 2 n}
\end{array} \right\rvert\, \equiv \operatorname{Det}\left(\Lambda_{k \mu}, \Pi_{l \nu}\right) \quad(\neq 0, \text { assumed })
$$

and $(-1)^{k+\mu} \Delta_{k \mu}=$ cofactor (i.e., signed minor) of $\Lambda_{k \mu}$ in Δ. Integrating (8.7.29c), we obtain the $2 n c_{\mu}(t)$, and afterwards the perturbed solution $q_{k}=q_{k}[t ; c(t)]$.

Example 8.7.6 Variation of Constants: Quasi-Linear Oscillator. Let us consider a system with equation of motion

$$
\begin{equation*}
m \ddot{q}+k q=\varepsilon f(q, \dot{q}) \tag{a}
\end{equation*}
$$

where the generally nonlinear force $\varepsilon f(q, \dot{q})$ [ε : constant, such that $\varepsilon f(\ldots)$ has the dimensions of force] is assumed small compared with inertia ($m \ddot{q} ; m$: constant mass) and elasticity ($-k \dot{q} ; k$: constant modulus); this is the meaning of the adjective quasilinear.

Lagrangean Variables
Here,

$$
\begin{equation*}
2 T=m(\dot{q})^{2} \Rightarrow M_{11}=m \tag{b}
\end{equation*}
$$

The general solution of the unperturbed equation [i.e., (a) with $\varepsilon f(q, \dot{q})=0$] is

$$
\begin{equation*}
q=c_{1} \sin \left(\omega_{o} t\right)+c_{2} \cos \left(\omega_{o} t\right), \quad \omega_{o}^{2} \equiv k / m \tag{c}
\end{equation*}
$$

Therefore, since $n=1 \Rightarrow \nu=1,2$, we obtain, successively,

$$
\begin{align*}
& \Pi_{11} \equiv \partial q / \partial c_{1}=\sin \left(\omega_{o} t\right), \quad \Pi_{12} \equiv \partial q / \partial c_{2}=\cos \left(\omega_{o} t\right), \\
& \Lambda_{11}=M_{11}\left(\partial^{2} q / \partial t \partial c_{1}\right)=m\left[\omega_{o} \cos \left(\omega_{o} t\right)\right] \\
& \Lambda_{12}=M_{11}\left(\partial^{2} q / \partial t \partial c_{2}\right)=m\left[-\omega_{o} \sin \left(\omega_{o} t\right)\right] \\
& \Delta=\Lambda_{11} \Pi_{12}-\Lambda_{12} \Pi_{11}=\cdots=m \omega_{o}\left[\cos ^{2}\left(\omega_{o} t\right)+\sin ^{2}\left(\omega_{o} t\right)\right]=m \omega_{o} ; \tag{d}\\
& \dot{c}_{1}=(-1)^{1+1} \Delta_{11} X_{1} / \Delta=\Pi_{12} X_{1} / \Delta=\left(m \omega_{o}\right)^{-1} \varepsilon f(q, \dot{q}) \cos \left(\omega_{o} t\right), \tag{el}\\
& \dot{c}_{2}=(-1)^{1+2} \Delta_{12} X_{1} / \Delta=\Pi_{11} X_{1} / \Delta=-\left(m \omega_{o}\right)^{-1} \varepsilon f(q, \dot{q}) \sin \left(\omega_{o} t\right) \tag{e2}
\end{align*}
$$

In the theory of nonlinear oscillations, it is customary and convenient to work, not with c_{1} and c_{2}, but with the following variables:

$$
\begin{equation*}
c_{1}=q_{o} \sin \phi \quad \text { and } \quad c_{2}=q_{o} \cos \phi \tag{f}
\end{equation*}
$$

By (...) -differentiating the above, we obtain

$$
\begin{align*}
& \dot{c}_{1}=\dot{q}_{o} \sin \phi+q_{o} \dot{\phi} \cos \phi \quad \text { and } \quad \dot{c}_{2}=\dot{q}_{o} \cos \phi-q_{o} \dot{\phi} \sin \phi, \tag{g}\\
& \\
& \qquad \begin{array}{l}
\left.\Rightarrow f(q, \dot{q})\right|_{\text {unperturbed } q, \dot{q}} \\
\\
\\
=f\left[c_{1} \sin \left(\omega_{o} t\right)+c_{2} \cos \left(\omega_{o} t\right), c_{1} \omega_{o} \cos \left(\omega_{o} t\right)-c_{2} \omega_{o} \sin \left(\omega_{o} t\right)\right] \\
\\
\\
=f\left[q_{o} \cos \left(\omega_{o} t-\phi\right),-q_{o} \omega_{o} \sin \left(\omega_{o} t-\phi\right)\right] \equiv f[\ldots, \ldots],
\end{array}
\end{align*}
$$

and so (e1, e2) translate, respectively, to

$$
\begin{align*}
\dot{q}_{o} \sin \phi+q_{o} \dot{\phi} \cos \phi & =\left(\varepsilon / m \omega_{o}\right) f[\ldots, \ldots] \cos \left(\omega_{o} t\right), \tag{i1}\\
\dot{q}_{o} \cos \phi-q_{o} \dot{\phi} \sin \phi & =-\left(\varepsilon / m \omega_{o}\right) f[\ldots, \ldots] \sin \left(\omega_{o} t\right) . \tag{i2}
\end{align*}
$$

Solving this system for \dot{q}_{o} and $q_{o} \dot{\phi}$, we get

$$
\begin{equation*}
\dot{q}_{o}=-\left(\varepsilon / m \omega_{o}\right) f[\ldots, \ldots] \sin \chi, \quad q_{o} \dot{\phi}=\left(\varepsilon / m \omega_{o}\right) f[\ldots, \ldots] \cos \chi, \tag{i3}
\end{equation*}
$$

where $\chi \equiv \omega_{o} t-\phi(t) \equiv \chi(t)$.
These equations for q_{o} and ϕ are exact; but since they are still nonlinear, they are not very useful. They become useful when q_{o} and ϕ change very little during the unperturbed period $\tau_{o} \equiv 2 \pi / \omega_{o}$. Then, we can replace the exact equations (i3) with a new set whose right sides are the averages of the right sides of (i3) over τ_{0} :

$$
\begin{align*}
d q_{o} / d t= & -(\varepsilon / 2 \pi m) \int f[\ldots, \ldots] \sin \chi d t \\
= & -\left(\varepsilon / 2 \pi \omega_{o} m\right) \int f\left[q_{o} \cos \chi,-q_{o} \omega_{o} \sin \chi\right] \sin \chi d \chi \tag{j1}\\
q_{o}(d \phi / d t) & =(\varepsilon / 2 \pi m) \int f[\ldots, \ldots] \cos \chi d t \\
& =+\left(\varepsilon / 2 \pi \omega_{o} m\right) \int f\left(q_{o} \cos \chi,-q_{o} \omega_{o} \sin \chi\right) \cos \chi d \chi \tag{j2}
\end{align*}
$$

where the $d t$-integrals extend from 0 to $2 \pi / \omega_{o}$, while the $d \chi$-integrals extend from 0 to 2π.

For a general and masterful treatment of such averaging techniques, see, for example, Bogoliubov and Mitropolskii (1974, chap. 5, pp. 355-429); also ex. 7.9.14 ff.

Hamiltonian Variables
Here,

$$
\begin{align*}
& p=\partial T / \partial \dot{q}=m \dot{q} \Rightarrow \dot{q}=p / m, \tag{k1}\\
& \Rightarrow H=p \dot{q}-(T-V)=p(p / m)-(m / 2)(p / m)^{2}+(k / 2) p^{2} \\
&=p^{2} / 2 m+k q^{2} / 2=H(q, p): \text { unperturbed Hamiltonian. } \tag{k2}
\end{align*}
$$

(a) The unperturbed canonical equations and their general solution are, respectively,

$$
\begin{array}{rlrl}
\dot{p} & =-\partial H / \partial q: & & \dot{p}=-k q, \\
\dot{q} & =\partial H / \partial p: & & \dot{q}=p / m ; \\
p & =p(t, c)=m \omega_{o}\left[c_{1} \cos \left(\omega_{o} t\right)-c_{2} \sin \left(\omega_{o} t\right)\right], \\
q & =q(t, c)=c_{1} \sin \left(\omega_{o} t\right)+c_{2} \cos \left(\omega_{o} t\right) . \tag{m2}
\end{array}
$$

(b) The perturbed canonical equations are

$$
\begin{align*}
\dot{p} & =-\partial H / \partial q+X=-k q+X \\
& =-k q+\varepsilon f(q, p / m) \equiv-k q+\varepsilon F(q, p), \tag{n1}\\
\dot{q} & =\partial H / \partial p: \quad \dot{q}=p / m . \tag{n2}
\end{align*}
$$

(i) Let us, first, apply the Lagrangean form (8.7.19):

$$
\begin{equation*}
\sum\left[c_{\nu}, c_{\mu}\right]\left(d c_{\nu} / d t\right)=X\left(\partial q / \partial c_{\mu}\right) \quad(\mu=1,2) \tag{o1}
\end{equation*}
$$

We have

$$
\begin{equation*}
\partial q / \partial c_{1}=\sin \left(\omega_{o} t\right), \quad \partial q / \partial c_{2}=\cos \left(\omega_{o} t\right) \tag{o2}
\end{equation*}
$$

$$
\begin{align*}
{\left[c_{1}, c_{1}\right] } & =0, \quad\left[c_{2}, c_{2}\right]=0 \quad \text { (since these brackets are antisymmetric) }, \\
{\left[c_{1}, c_{2}\right] } & =\left(\partial p / \partial c_{1}\right)\left(\partial q / \partial c_{2}\right)-\left(\partial p / \partial c_{2}\right)\left(\partial q / \partial c_{1}\right) \\
& =\left[m \omega_{o} \cos \left(\omega_{0} t\right)\right]\left[\cos \left(\omega_{o} t\right)\right]-\left[-m \omega_{o} \sin \left(\omega_{o} t\right)\right]\left[\sin \left(\omega_{o} t\right)\right]=m \omega_{o}, \\
{\left[c_{2}, c_{1}\right] } & =-\left[c_{1}, c_{2}\right]=-m \omega_{o} ; \tag{o3}
\end{align*}
$$

and hence (o1) reduce to

$$
\begin{align*}
{\left[c_{2}, c_{1}\right] \dot{c}_{2}=X\left(\partial q / \partial c_{1}\right): } & \left(-m \omega_{o}\right) \dot{c}_{2}=\varepsilon F(q, p) \sin \left(\omega_{0} t\right), \tag{o4}\\
{\left[c_{1}, c_{2}\right] \dot{c}_{1}=X\left(\partial q / \partial c_{2}\right): } & \left(m \omega_{o}\right) \dot{c}_{1}=\varepsilon F(q, p) \cos \left(\omega_{o} t\right) \tag{o5}
\end{align*}
$$

that is, the earlier (e1), (e2).
(ii) Finally, let us apply the form (8.7.22):

$$
\begin{equation*}
d c_{\mu} / d t=\sum\left(\partial c_{\mu} / \partial p\right) X \tag{p1}
\end{equation*}
$$

Solving (m1), (m2) for c_{1} and c_{2}, we obtain

$$
\begin{align*}
& c_{1}=\left[\sin \left(\omega_{o} t\right)\right] q+\left[\cos \left(\omega_{o} t\right) / m \omega_{o}\right] p, \tag{p2}\\
& c_{2}=\left[\cos \left(\omega_{o} t\right)\right] q+\left[-\sin \left(\omega_{o} t\right) / m \omega_{o}\right] p, \tag{p3}
\end{align*}
$$

and so (p 1) yield

$$
\begin{align*}
d c_{1} / d t & =\left(\partial c_{1} / \partial p\right) X=\left[\cos \left(\omega_{o} t\right) / m \omega_{o}\right] \varepsilon F(q, p) ; & & \text { i.e., }(\mathrm{e} 1) /(\mathrm{o} 5) ; \\
d c_{2} / d t & =\left(\partial c_{2} / \partial p\right) X=\left[-\sin \left(\omega_{o} t\right) / m \omega_{o}\right] \varepsilon F(q, p) ; & & \text { i.e., }(\mathrm{e} 2) /(\mathrm{o} 4) . \tag{p5}
\end{align*}
$$

Example 8.7.7 Variation of Constants: Effect of Small Air Resistance (Drag) on Projectiles. Let us consider a particle P of mass m in free motion on a fixed
vertical plane $O-x y$ ($O x$: horizontal, $+O y$: upward) under the action of constant gravity g and small air resistance (perturbation) equal to

$$
\begin{equation*}
\boldsymbol{D}=-\varepsilon(\boldsymbol{v} / v) f(v), \tag{a}
\end{equation*}
$$

where $\boldsymbol{v}=$ velocity of $P=(\dot{x}, \dot{y}), \varepsilon=$ small parameter $(>0), f(v)=$ experimentally determined function of $|\boldsymbol{v}| \equiv v=\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2}(>0)$. Here, $n=2$, and so, with $q_{1}=x$ and $q_{2}=y$, we have

$$
\begin{gather*}
2 T=m\left[(\dot{x})^{2}+(\dot{y})^{2}\right], \quad V=m g y+\text { constant }, \quad Q_{k}=0, \tag{b}\\
X_{1} \equiv X=\boldsymbol{D} \cdot \boldsymbol{i}=-\varepsilon(\dot{x} / v) f(v), \quad X_{2} \equiv Y=\boldsymbol{D} \cdot \boldsymbol{j}=-\varepsilon(\dot{y} / v) f(v), \tag{c}
\end{gather*}
$$

and so the perturbed equations of motion are

$$
\begin{array}{ll}
\text { Horizontal: } & m \ddot{x}=-\varepsilon(\dot{x} / v) f(v), \\
\text { Vertical: } & m \ddot{y}=-m g-\varepsilon(\dot{y} / v) f(v) . \tag{d2}
\end{array}
$$

Since the general solution of the unperturbed problem [i.e., (d1, d2) with $\varepsilon=0$] is

$$
\begin{equation*}
x=c_{1} t+c_{2}, \quad y=-(g / 2) t^{2}+c_{3} t+c_{4} \tag{e1,2}
\end{equation*}
$$

we readily find

$$
\begin{align*}
& \Pi_{11}=\partial x / \partial c_{1}=t, \quad \Pi_{12}=\partial x / \partial c_{2}=1, \quad \Pi_{13}=\partial x / \partial c_{3}=0, \quad \Pi_{14}=\partial x / \partial c_{4}=0, \\
& \partial^{2} x / \partial t \partial c_{1}=1, \quad \partial^{2} x / \partial t \partial c_{2}=0, \quad \partial^{2} x / \partial t \partial c_{3}=0, \quad \partial^{2} x / \partial t \partial c_{4}=0 ; \tag{f1}\\
& \Pi_{21}=\partial y / \partial c_{1}=0, \quad \Pi_{22}=\partial y / \partial c_{2}=0, \quad \Pi_{23}=\partial y / \partial c_{3}=t, \quad \Pi_{24}=\partial y / \partial c_{4}=1, \\
& \partial^{2} y / \partial t \partial c_{1}=0, \quad \partial^{2} y / \partial t \partial c_{2}=0, \quad \partial^{2} y / \partial t \partial c_{3}=1, \quad \partial^{2} y / \partial t \partial c_{4}=0 ; \tag{f2}\\
& \Lambda_{11}=M_{11}\left(\partial^{2} x / \partial t \partial c_{1}\right)+M_{12}\left(\partial^{2} y / \partial t \partial c_{1}\right)=(m)(1)+(0)(0)=m \\
& \Lambda_{12}=M_{11}\left(\partial^{2} x / \partial t \partial c_{2}\right)+M_{12}\left(\partial^{2} y / \partial t \partial c_{2}\right)=(m)(0)+(0)(0)=0, \\
& \Lambda_{13}=M_{11}\left(\partial^{2} x / \partial t \partial c_{3}\right)+M_{12}\left(\partial^{2} y / \partial t \partial c_{3}\right)=(m)(0)+(0)(1)=0, \\
& \Lambda_{14}=M_{11}\left(\partial^{2} x / \partial t \partial c_{4}\right)+M_{12}\left(\partial^{2} y / \partial t \partial c_{4}\right)=(m)(0)+(0)(0)=0 ; \tag{g1}\\
& \Lambda_{21}=M_{21}\left(\partial^{2} x / \partial t \partial c_{1}\right)+M_{22}\left(\partial^{2} y / \partial t \partial c_{1}\right)=(0)(1)+(m)(0)=0, \\
& \Lambda_{22}=M_{21}\left(\partial^{2} x / \partial t \partial c_{2}\right)+M_{22}\left(\partial^{2} y / \partial t \partial c_{2}\right)=(0)(0)+(m)(0)=0, \\
& \Lambda_{23}=M_{21}\left(\partial^{2} x / \partial t \partial c_{3}\right)+M_{22}\left(\partial^{2} y / \partial t \partial c_{3}\right)=(0)(0)+(m)(1)=m, \\
& \Lambda_{24}=M_{21}\left(\partial^{2} x / \partial t \partial c_{4}\right)+M_{22}\left(\partial^{2} y / \partial t \partial c_{4}\right)=(0)(0)+(m)(0)=0 ; \tag{g2}\\
& \quad(\mathrm{g} 2) \\
& \equiv \operatorname{Det}\left(\Lambda_{k \mu} / \Pi_{l \nu}\right)=\cdots=-m^{2} \quad(k, l=1,2 ; \mu, \nu=1,2,3,4), \\
& \Delta_{11}=-m, \quad \Delta_{12}=-m t, \quad \Delta_{13}=0, \quad \Delta_{14}=0 ; \tag{g3}\\
& \Delta_{21}=0, \quad \Delta_{22}=0, \quad \Delta_{23}=m, \quad \Delta_{24}=m t .
\end{align*}
$$

Hence, the perturbation equations (8.7.29c) yield

$$
\begin{align*}
d c_{1} / d t & =\sum(-1)^{k+1} \Delta_{k 1} X_{k}^{(1)} / \Delta \quad(k=1,2) \\
& =\left[(-1)^{1+1} \Delta_{11} X_{1}^{(1)}+(-1)^{2+1} \Delta_{21} X_{2}^{(1)}\right] / \Delta \\
& =\left[(-1)^{2} \Delta_{11} X^{(1)}+(-1)^{3} \Delta_{21} Y^{(1)}\right] / \Delta \\
& =\left\{(-1)^{2}(-m)[-\varepsilon(\dot{x} / v) f(v)]+(-1)^{3}(0)[-\varepsilon(\dot{y} / v) f(v)]\right\} /\left(-m^{2}\right) \\
& =-\left.(\varepsilon / m)(\dot{x} / v) f(v)\right|_{\text {unperturbed }} \\
& =-(\varepsilon / m)\left(c_{1} / v_{\text {unperturbed }}\right) f\left(v_{\text {unperturbed }}\right) \equiv-(\varepsilon / m)\left(c_{1} / v_{o}\right) f\left(v_{o}\right), \\
d c_{2} / d t & =\cdots=(\varepsilon / m)\left(c_{1} / v_{o}\right) f\left(v_{o}\right) t \\
d c_{3} / d t & =\cdots=-(\varepsilon / m)\left[\left(c_{3}-g t\right) / v_{o}\right] f\left(v_{o}\right), \\
d c_{4} / d t & =\cdots=(\varepsilon / m)\left[\left(c_{3}-g t\right) / v_{o}\right] f\left(v_{o}\right) t \tag{h}
\end{align*}
$$

where

$$
\begin{equation*}
v_{\text {unperturbed }}=\left.\left[(\dot{x})^{2}+(\dot{y})^{2}\right]^{1 / 2}\right|_{\text {unperturbed }}=\left[\left(c_{1}\right)^{2}+\left(c_{3}-g t\right)^{2}\right]^{1 / 2} \equiv v_{o} \tag{h1}
\end{equation*}
$$

Integrating the four expressions (h), while (since the drag is small) replacing in their right sides $c_{1,2,3,4}$ with the corresponding integration constants $c_{10,20,30,40}$ using $*$ as (dummy) variable of integration, and the notation $f\left(v_{\text {unperturbed }}\right) \equiv f\left(v_{o}\right) \equiv f_{o}$, we obtain, finally,

$$
\begin{align*}
& c_{1}=c_{1 o}-(\varepsilon / m) \int_{0}^{t}\left(c_{1} / v_{o}\right) f_{o} d * \approx c_{1 o}-(\varepsilon / m) c_{1 o} \int_{0}^{t}\left(f_{o} / v_{o}\right) d *, \tag{i1,2,3,4}\\
& c_{2}=c_{2 o}+(\varepsilon / m) \int_{0}^{t}\left(c_{1} / v_{o}\right) f_{o} * d * \approx c_{2 o}+(\varepsilon / m) c_{1 o} \int_{0}^{t}\left(f_{o} / v_{o}\right) * d *, \\
& c_{3}=c_{3 o}-(\varepsilon / m) \int_{0}^{t}\left[\left(c_{3}-g *\right) / v_{o}\right] f_{o} d * \approx c_{3 o}-(\varepsilon / m) \int_{0}^{t}\left(c_{3 o}-g *\right)\left(f_{o} / v_{o}\right) d *, \\
& c_{4}=c_{4 o}+(\varepsilon / m) \int_{0}^{t}\left[\left(c_{3}-g *\right) / v_{o}\right] f_{o} * d * \approx c_{4 o}+(\varepsilon / m) \int_{0}^{t}\left(c_{3 o}-g *\right)\left(f_{o} / v_{o}\right) * d *,
\end{align*}
$$

where $v_{o} \approx\left[\left(c_{1 o}\right)^{2}+\left(c_{3 o}-g *\right)^{2}\right]^{1 / 2} \Rightarrow f_{o}$: known function of $*, c_{1 o}, c_{30}$.
Last, substituting (il-4) into (e1, 2), we obtain a particular solution of the perturbed problem ($\mathrm{d} 1,2$) in terms of t and $c_{10,20,30,4 o}$, correct to the first-order in ε.

For the Hamiltonian perturbation treatment - that is, via (8.7.19) or (8.7.22), including special $f(v)$ cases, see, for example, Hamel (1949, pp. 309-311; and pp. 689-691 for the plane linear elastic and isotropic oscillator under small air resistance); also Lur'e (1968, pp. 569-571).

8.8 CANONICAL TRANSFORMATIONS (CT)

We have already seen (ex. 3.5.11) that a key advantage of the Lagrangean-type equations, say

$$
\begin{equation*}
E_{k} \equiv E_{k}(L) \equiv\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=Q_{k} \tag{8.8.1}
\end{equation*}
$$

over those of Newton-Euler, is their form invariance under the group of frame-ofreference transformations, or point transformations, defined by

$$
\begin{align*}
G: \quad & q_{k}=q_{k}\left(t, q_{k^{\prime}}\right) \leftrightarrow q_{k^{\prime}}=q_{k^{\prime}}\left(t, q_{k}\right) \quad\left(k, k^{\prime}=1, \ldots, n\right), \tag{8.8.2}\\
& q_{k}(\ldots): \text { twice differentiable, } \quad \text { and } \quad J \equiv\left|\partial q / \partial q^{\prime}\right| \neq 0 \tag{8.8.2a}
\end{align*}
$$

that is, under G,

$$
\begin{equation*}
E_{k} \rightarrow E_{k^{\prime}}\left(L^{\prime}\right) \equiv\left(\partial L^{\prime} / \partial \dot{q}_{k^{\prime}}\right)^{\cdot}-\partial L^{\prime} / \partial q_{k^{\prime}}=Q_{k^{\prime}} \tag{8.8.3}
\end{equation*}
$$

where

$$
\begin{align*}
& L \rightarrow L\left[t, q\left(t, q^{\prime}\right), \dot{q}\left(t, q, \dot{q}^{\prime}\right)\right] \equiv L^{\prime}\left(t, q^{\prime}, \dot{q}^{\prime}\right)=L^{\prime} \tag{8.8.3a}\\
& E_{k^{\prime}}=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) E_{k} \Leftrightarrow E_{k}=\sum\left(\partial q_{k^{\prime}} / \partial q_{k}\right) E_{k^{\prime}} \tag{8.8.3b}\\
& Q_{k^{\prime}}=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) Q_{k} \Leftrightarrow Q_{k}=\sum\left(\partial q_{k^{\prime}} / \partial q_{k}\right) Q_{k^{\prime}} \tag{8.8.3c}
\end{align*}
$$

When it comes to Hamiltonian type of equations, since they are mathematically equivalent to the Lagrangean ones, we expect similar form invariance under G. However, if we define

$$
\begin{align*}
p_{k^{\prime}} \equiv \partial L^{\prime} / \partial \dot{q}_{k^{\prime}} & =\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\partial \dot{q}_{k} / \partial \dot{q}_{k^{\prime}}\right)=\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\partial q_{k} / \partial q_{k^{\prime}}\right) \\
& =\sum\left(\partial \dot{q}_{k} / \partial \dot{q}_{k^{\prime}}\right) p_{k}=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) p_{k} \\
& =p_{k^{\prime}}\left(t, q^{\prime}, p\right)=p_{k^{\prime}}\left[t, q^{\prime}(t, q), p\right]=p_{k^{\prime}}(t, q, p) \tag{8.8.4}
\end{align*}
$$

(i.e., the new momenta depend on both the old momenta and the old coordinates and time), and the Hamiltonian equations corresponding to (8.8.1)

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k}+Q_{k} \tag{8.8.5}
\end{equation*}
$$

are transformed to

$$
\begin{equation*}
d q_{k^{\prime}} / d t=\partial H^{\prime} / \partial p_{k^{\prime}}, \quad d p_{k^{\prime}} / d t=-\partial H^{\prime} / \partial q_{k^{\prime}}+Q_{k^{\prime}} \tag{8.8.6}
\end{equation*}
$$

the new Hamiltonian $H^{\prime}=H^{\prime}\left(t, q^{\prime}, p^{\prime}\right)$, unlike $L=L^{\prime}$, may no longer equal the old one H; that is, in general,

$$
\begin{equation*}
H^{\prime}=H^{\prime}\left(t, q^{\prime}, p^{\prime}\right) \neq H(t, q, p)=H . \tag{8.8.6a}
\end{equation*}
$$

Indeed, assuming (8.8.5) to hold, we have, successively,

$$
\begin{align*}
H^{\prime} & \equiv \sum p_{k^{\prime}} \dot{q}_{k^{\prime}}-L^{\prime} \\
& =\sum p_{k^{\prime}} \dot{q}_{k^{\prime}}-L=\sum p_{k^{\prime}} \dot{q}_{k^{\prime}}-\left(\sum p_{k} \dot{q}_{k}-H\right) \\
& =\sum\left(\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) p_{k}\right) \dot{q}_{k^{\prime}}-\left(\sum p_{k} \dot{q}_{k}-H\right) \\
& =\sum\left(\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) \dot{q}_{k^{\prime}}-\dot{q}_{k}\right) p_{k}+H \\
& =-\sum\left(\partial q_{k} / \partial t\right) p_{k}+H \tag{8.8.7}
\end{align*}
$$

that is, in general, H^{\prime} defined as above, or equivalently by

$$
\begin{equation*}
L=L^{\prime}: \quad \sum p_{k^{\prime}} \dot{q}_{k^{\prime}}-H^{\prime}=\sum p_{k} \dot{q}_{k}-H \tag{8.8.7a}
\end{equation*}
$$

does not equal H (recalling probs. 3.16.11 and 3.16.12); but it does if $\partial q_{k} / \partial t=0$, that is whenever (8.8.2) specializes to the geometrical (non-frame-of-reference transformations)

$$
\begin{equation*}
q_{k}=q_{k}\left(q_{k^{\prime}}\right) \Leftrightarrow q_{k^{\prime}}=q_{k^{\prime}}\left(q_{k}\right) . \tag{8.8.7b}
\end{equation*}
$$

Hence, in the Hamiltonian case, it is necessary to widen the meaning of invariance. Specifically, and since here the independent variables are the q 's and p 's, we are seeking the most general transformations in (the phase space of) these variables; that is,

$$
\begin{align*}
& q=q\left(t, q^{\prime}, p^{\prime}\right) \Leftrightarrow q^{\prime}=q^{\prime}(t, q, p) \tag{8.8.8a}\\
& p=p\left(t, q^{\prime}, p^{\prime}\right) \Leftrightarrow p^{\prime}=p^{\prime}(t, q, p) \tag{8.8.8b}
\end{align*}
$$

[with nonvanishing Jacobian $\left.\left|\partial\left(q^{\prime}, p^{\prime}\right) / \partial(q, p)\right|\right]$ that leave Hamilton's equations form invariant, as in (8.8.5). Such transformations are called canonical.

REMARK ON NOTATION

A number of authors denote our $\left(q_{k^{\prime}}, p_{k^{\prime}}\right)$ as $\left(Q_{k}, P_{k}\right)$. Our notation was chosen to avoid confusion with the holonomic components of Lagrangean impressed forces and nonholonomic momenta, respectively (chap. 3); also, it is in line with the more precise tensorial notations.

Problem 8.8.1 Show that under point transformations:

$$
\begin{equation*}
\partial H^{\prime} / \partial p_{k^{\prime}}-d q_{k^{\prime}} / d t=\sum\left(\partial p_{k} / \partial p_{k^{\prime}}\right)\left(\partial H / \partial p_{k}-d q_{k} / d t\right) \quad(=0) \tag{i}
\end{equation*}
$$

$$
\partial H^{\prime} / \partial q_{k^{\prime}}+d p_{k^{\prime}} / d t=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right)\left(\partial H / \partial q_{k}+d p_{k} / d t\right) \quad(=0)
$$

Problem 8.8.2 Show that

$$
\begin{equation*}
\partial p_{k} / \partial p_{k^{\prime}}=\partial q_{k} / \partial q_{k^{\prime}}, \quad \partial p_{k^{\prime}} / \partial p_{k}=\partial q_{k^{\prime}} / \partial q_{k} \tag{a}
\end{equation*}
$$

Whence the Significance of Canonical Transformations (CT)

The reason that such transformations are important in theoretical mechanics is their ability to transform an original set of Hamiltonian equations, in (unprimed) q 's and p 's, into a simpler set of Hamiltonian equations in the new (primed) variables $q^{\prime \prime}$ s and $p^{\prime \prime}$ s.

In particular, we are seeking transformations in which one or more (or even all) of the coordinates are ignorable. In such $q^{\prime \prime} s \rightarrow \psi^{\prime \prime}$ s (and with $L^{\prime} / R^{\prime} / H^{\prime} \equiv$ New Lagrangean/Routhian/Hamiltonian)

$$
\begin{equation*}
\partial L^{\prime} / \partial \psi_{i^{\prime}}=\partial R^{\prime} / \partial \psi_{i^{\prime}}=-\partial H^{\prime} / \partial \psi_{i^{\prime}}=0 \quad\left(i^{\prime}=1, \ldots, M \leq n\right) \tag{8.8.9a}
\end{equation*}
$$

that is, these three mutually equal partial derivatives vanish simultaneously (which is the definition of these coordinates, $\S 8.2-8.4$); and, as a result, assuming, as in $\S 8.4 \mathrm{ff}$., that $Q_{i^{\prime}}=0$,

$$
\begin{align*}
d \Psi_{i^{\prime}} / d t=\partial L^{\prime} / \partial \psi_{i^{\prime}}=-\partial H^{\prime} / \partial \psi_{i^{\prime}}=0 & \Rightarrow \Psi_{i^{\prime}}=\text { constant } \equiv C_{i^{\prime}} \tag{8.8.9b}\\
& \Rightarrow H^{\prime}=H^{\prime}\left(t, q^{\prime}, p^{\prime} ; C\right) \tag{8.8.9c}
\end{align*}
$$

where the $2(n-M) q^{\prime \prime}$ s and $p^{\prime \prime}$ s are the remaining nonignorable coordinates and momenta. \{In order to benefit from the new ignorable coordinates [as in $\S 8.4$ and §8.10 (Hamilton-Jacobi's method)], a number of authors set $Q_{k}=0$ from the outset. Then, clearly, $Q_{k^{\prime}}=0$.\}

Solving the Hamiltonian equations of such a system - that is,

$$
\begin{equation*}
d q_{p^{\prime}} / d t=\partial H^{\prime} / \partial p_{p^{\prime}}, \quad d p_{p^{\prime}} / d t=-\partial H^{\prime} / \partial q_{p^{\prime}} \quad\left(p^{\prime}=M+1, \ldots, n\right) \tag{8.8.9d}
\end{equation*}
$$

we find

$$
\begin{align*}
& q_{p^{\prime}}=q_{p^{\prime}}\left(t ; C_{i^{\prime}}, \alpha_{p^{\prime}}, \beta_{p^{\prime}}\right), \quad p_{p^{\prime}}=p_{p^{\prime}}\left(t ; C_{i^{\prime}}, \alpha_{p^{\prime}}, \beta_{p^{\prime}}\right. \\
& \left(\alpha_{p^{\prime}}, \beta_{p^{\prime}}\right)=2(n-M): \quad \text { constants of integration of }(8.8 .9 \mathrm{~d}) \tag{8.8.9e}
\end{align*}
$$

then, substituting (8.8.9e) into (8.8.9c), we obtain

$$
\begin{equation*}
H^{\prime}=H^{\prime}\left(t ; C_{i^{\prime}}, \alpha_{p^{\prime}}, \beta_{p^{\prime}}\right) \tag{8.8.9f}
\end{equation*}
$$

and so, finally, we can calculate the ψ^{\prime} 's from their equations of motion via a quadrature:

$$
\begin{equation*}
d \psi_{i^{\prime}} / d t=\partial H^{\prime} / \partial C_{i^{\prime}} \Rightarrow \psi_{i^{\prime}}=\int\left(\partial H^{\prime} / \partial C_{i^{\prime}}\right) d t+\psi_{i^{\prime}, o} \tag{8.8.9g}
\end{equation*}
$$

where $\psi_{i^{\prime}, o}=$ integration constants, to be determined from the initial conditions, as in the Routhian case ($\S 8.3,8.4$). In particular, if all new coordinates are ignorable, and $\partial H^{\prime} / \partial t=0$, then

$$
\begin{equation*}
H^{\prime}=H^{\prime}\left(C_{k^{\prime}} ; \alpha_{l^{\prime}}, \beta_{m^{\prime}}\right) \Rightarrow d \psi_{i^{\prime}} / d t=\partial H^{\prime} / \partial C_{i^{\prime}}=\text { constant } \equiv c_{i^{\prime}}, \text { etc. } \tag{8.8.9h}
\end{equation*}
$$

Hence, CT can simplify the equations of motion considerably, and supply integrals of motion, as in (8.8.9b). Of course, other, noncanonical transformations may achieve additional simplifications.

Definition of, and Conditions for, Canonicity; Generating Function

In view of (8.8.3a) and the fact that a Lagrangean is defined only to within the total derivative of an arbitrary function of the coordinates and time (ex. 3.5.13) that is, two such Lagrangeans yield the same equations of motion - we, following (the eminent Norwegian mathematician) S. Lie, introduce the following general definition: an (8.8.8a, b)-like transformation $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ is called
canonical (CT) if

$$
\begin{align*}
L d t & =L^{\prime} d t+d F \\
& \Rightarrow \sum p_{k} d q_{k}-H d t=\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t+d F \tag{8.8.10}\\
& \Rightarrow \sum p_{k} d q_{k}-\sum p_{k^{\prime}} d q_{k^{\prime}}=\left(H-H^{\prime}\right) d t+d F \tag{8.8.11}
\end{align*}
$$

where F called (after Jacobi) the generating, or substitution, function of the transformation, is an arbitrary differentiable function of the coordinates, momenta, and time; and H^{\prime} satisfies the Hamiltonian equations in the new variables. Equivalently, we may call an (8.8.8a, b)-like transformation canonical if

$$
\begin{align*}
& \left(\sum p_{k} d q_{k}-H d t\right)-\left(\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t\right) \\
& =\left(\sum p_{k} d q_{k}-\sum p_{k^{\prime}} d q_{k^{\prime}}\right)-\left(H-H^{\prime}\right) d t=d F \quad \text { (i.e., integrable) } \tag{8.8.11a}
\end{align*}
$$

even though $\sum p_{k} d q_{k}$: nonintegrable, and $\sum p_{k^{\prime}} d q_{k^{\prime}}$: nonintegrable. For $d t \rightarrow \delta t=0$ and $d q, d p \rightarrow \delta q, \delta p$, the above yield the virtual form of a canonical transformation:

$$
\begin{equation*}
\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}}=\delta F \tag{8.8.12}
\end{equation*}
$$

a form that is, sometimes, taken as the primitive CT definition.
In view of its so-revealed importance, F deserves a detailed examination. Although, due to (8.8.8a, b), $F=F(t, q, p)=F\left(t, q^{\prime}, p^{\prime}\right)$, yet it turns out that the resulting equations are simpler if F (and the corresponding phase space points) is expressed as a combination of old (q, p) and new $\left(q^{\prime}, p^{\prime}\right)$ "coordinates"; that is, if F has one of the following four forms:

$$
\begin{equation*}
F_{1}\left(t, q, q^{\prime}\right), \quad F_{2}\left(t, q, p^{\prime}\right), \quad F_{3}\left(t, p, q^{\prime}\right), \quad F_{4}\left(t, p, p^{\prime}\right) \tag{8.8.13}
\end{equation*}
$$

depending on the problem at hand, and our choice of which $2 n(+$ time $)$ of these $4 n(+$ time $)$ variables to consider as independent. Let us examine the consequences of these four choices:
(i) If $F=F\left(t, q, q^{\prime}\right) \equiv F_{1}$, then

$$
\begin{equation*}
d F_{1} / d t=\partial F_{1} / \partial t+\sum\left(\partial F_{1} / \partial q_{k}\right)\left(d q_{k} / d t\right)+\sum\left(\partial F_{1} / \partial q_{k^{\prime}}\right)\left(d q_{k^{\prime}} / d t\right) \tag{8.8.14}
\end{equation*}
$$

Substituting (8.8.14) in (8.8.10) and equating the coefficients of the $2 n+1$ independent $d q / d q^{\prime} / d t$, we obtain

$$
\begin{equation*}
p_{k}=\partial F_{1} / \partial q_{k}, \quad p_{k^{\prime}}=-\partial F_{1} / \partial q_{k^{\prime}}, \quad H^{\prime}=H+\partial F_{1} / \partial t \tag{8.8.15}
\end{equation*}
$$

from which it follows that if $\partial F_{1} / \partial t=0$, then $H=H^{\prime}$. Solving the first of (8.8.15) for the q 's we obtain

$$
\begin{equation*}
q_{k^{\prime}}=q_{k^{\prime}}(t, q, p) \tag{8.8.15a}
\end{equation*}
$$

and substituting this into the second of (8.8.15) we get

$$
\begin{equation*}
p_{k^{\prime}}=p_{k^{\prime}}(t, q, p) \tag{8.8.15b}
\end{equation*}
$$

Equations $(8.8 .15 \mathrm{a}, \mathrm{b})$ express the transformations among the old and new canonical variables. These operations require that $\left|\partial^{2} F_{1} / \partial q_{k} \partial q_{k^{\prime}}\right| \neq 0$, and so we will henceforth assume this to hold; and similarly for the corresponding Hessian determinants of F_{2}, F_{3}, F_{4}.
(ii) Let $F=F\left(t, q, p^{\prime}\right) \equiv F_{2}$. Here, as well as in the cases of F_{3}, F_{4} (see below), we cannot proceed as in the case of F_{1} [i.e., via $(8.8 .10,11)$], because we do not have \dot{q}_{k} and $\dot{q}_{k^{\prime}}$. However, in view of the second of (8.8.15), the transition from the (t, q, q^{\prime}) of F_{1} to the $\left(t, q, p^{\prime}\right)$ of F_{2} can be effected by the following Hamilton (Legendre)type of transformation (§8.2):

$$
\begin{equation*}
F_{2}\left(\ldots p^{\prime} \ldots\right)=\sum p_{k^{\prime}} q_{k^{\prime}}-\left[-F_{1}\left(\ldots q^{\prime} \ldots\right)\right] \tag{8.8.16}
\end{equation*}
$$

where $F_{2}, p_{k^{\prime}}, q_{k^{\prime}},-F_{1}$ play, respectively, the roles of Hamiltonian, momenta, "velocities," and Lagrangean. Substituting from (8.8.16)

$$
\begin{equation*}
F_{1}\left(t, q, q^{\prime}\right)=F_{2}\left(t, q, p^{\prime}\right)-\sum p_{k^{\prime}} q_{k^{\prime}} \tag{8.8.16a}
\end{equation*}
$$

into (8.8.10), we find

$$
\begin{aligned}
\sum p_{k} d q_{k}- & H d t \\
& =\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t+d F_{1} \\
& =\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t+d F_{2}\left(t, q, p^{\prime}\right)-d\left(\sum p_{k^{\prime}} q_{k^{\prime}}\right) \\
& =-\sum q_{k^{\prime}} d p_{k^{\prime}}-H^{\prime} d t+d F_{2}\left(t, q, p^{\prime}\right) \\
& =\left(-H^{\prime}+\partial F_{2} / \partial t\right) d t+\sum\left(\partial F_{2} / \partial q_{k}\right) d q_{k}+\sum\left(\partial F_{2} / \partial p_{k^{\prime}}-q_{k^{\prime}}\right) d q_{k^{\prime}}
\end{aligned}
$$

and, comparing coefficients, we immediately conclude that

$$
\begin{equation*}
p_{k}=\partial F_{2} / \partial q_{k}, \quad q_{k^{\prime}}=\partial F_{2} / \partial p_{k^{\prime}}, \quad H^{\prime}=H+\partial F_{2} / \partial t . \tag{8.8.17}
\end{equation*}
$$

To obtain the old/new variable transformation equations, we solve the first of (8.8.17) for the p^{\prime}, thus obtaining

$$
\begin{equation*}
p_{k^{\prime}}=p_{k^{\prime}}(t, q, p), \tag{8.8.17a}
\end{equation*}
$$

and then substitute the result in the second of (8.8.17), thus getting

$$
\begin{equation*}
q_{k^{\prime}}=q_{k^{\prime}}(t, q, p) . \tag{8.8.17b}
\end{equation*}
$$

(iii) Let $F=F\left(t, p, q^{\prime}\right) \equiv F_{3}$. In view of the first of (8.8.15), or $-p_{k}=\partial\left(-F_{1}\right) / \partial q_{k}$, the transition from the $\left(t, q, q^{\prime}\right)$ of F_{1} to the $\left(t, p, q^{\prime}\right)$ of F_{3} can be effected by the following Hamilton-type transformation:

$$
\begin{equation*}
F_{3}(\ldots-p \ldots)=\sum\left(-p_{k}\right)\left(q_{k}\right)-\left[-F_{1}(\ldots q \ldots)\right] \tag{8.8.18}
\end{equation*}
$$

where $F_{3},-p_{k}, q_{k},-F_{1}$ play, respectively, the roles of Hamiltonian, momenta, "velocities," and Lagrangean. Substituting from (8.8.18)

$$
\begin{equation*}
F_{1}\left(t, q, q^{\prime}\right)=F_{3}\left(t, p, q^{\prime}\right)+\sum p_{k} q_{k} \tag{8.8.18a}
\end{equation*}
$$

into (8.8.10), we find

$$
\begin{aligned}
\sum p_{k} d q_{k}-H d t & =\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t+d F_{1} \\
& =\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t+d F_{3}\left(t, p, q^{\prime}\right)+d\left(\sum p_{k} q_{k}\right)
\end{aligned}
$$

or

$$
-\sum q_{k} d p_{k}-H d t=\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t+d F_{3}\left(t, p, q^{\prime}\right)
$$

or, expanding $d F_{3}$ and collecting $d t / d p / d p^{\prime}$ terms,

$$
\left(-H^{\prime}+H+\partial F_{3} / \partial t\right) d t+\sum\left(\partial F_{3} / \partial p_{k}+q_{k}\right) d p_{k}+\sum\left(\partial F_{3} / \partial q_{k^{\prime}}+p_{k^{\prime}}\right) d q_{k^{\prime}}=0
$$

and setting the differential coefficients equal to zero, we immediately obtain

$$
\begin{equation*}
q_{k}=-\partial F_{3} / \partial p_{k}, \quad p_{k^{\prime}}=-\partial F_{3} / \partial q_{k^{\prime}}, \quad H^{\prime}=H+\partial F_{3} / \partial t \tag{8.8.19}
\end{equation*}
$$

To obtain the old/new variable transformation equations, we solve the first of (8.8.19) for the q^{\prime}, thus obtaining

$$
\begin{equation*}
q_{k^{\prime}}=q_{k^{\prime}}(t, q, p) \tag{8.8.19a}
\end{equation*}
$$

and then substitute the results in the second of (8.8.19), thus getting

$$
\begin{equation*}
p_{k^{\prime}}=p_{k^{\prime}}(t, q, p) . \tag{8.8.19b}
\end{equation*}
$$

(iv) Finally, let $F=F\left(t, p, p^{\prime}\right) \equiv F_{4}$. By repeating the above arguments $t w i c e$, we can show that the transition from the $\left(t, q, q^{\prime}\right)$ of F_{1} to the $\left(t, p, p^{\prime}\right)$ of F_{4} can be effected by the following double Hamilton-type transformation:

$$
\begin{equation*}
F_{4}\left(\ldots-p, p^{\prime} \ldots\right)=\sum\left(-p_{k}\right)\left(q_{k}\right)+\sum p_{k^{\prime}} q_{k^{\prime}}-\left[-F_{1}\left(\ldots q, q^{\prime} \ldots\right)\right] \tag{8.8.20}
\end{equation*}
$$

where $F_{4},-p_{k}, p_{k^{\prime}}, q_{k}, q_{k^{\prime}},-F_{1}$ play, respectively, the roles of Hamiltonian, old momenta, new momenta, old "velocities," new "velocities," and Lagrangean. Repeating similar steps as in the previous cases [i.e., from (8.8.20) to (8.8.10) etc.] and setting the coefficients of $d t / d p / d p^{\prime}$ equal to zero, we find

$$
\begin{equation*}
q_{k}=-\partial F_{4} / \partial p_{k}, \quad q_{k^{\prime}}=\partial F_{4} / \partial p_{k^{\prime}}, \quad H^{\prime}=H+\partial F_{4} / \partial t . \tag{8.8.21}
\end{equation*}
$$

Finally, to obtain the old/new variable transformation equations, we solve the first of (8.8.21) for the $p^{\prime \prime}$ s, and thus acquire

$$
\begin{equation*}
p_{k^{\prime}}=p_{k^{\prime}}(t, q, p), \tag{8.8.21a}
\end{equation*}
$$

and then substitute (8.8.21a) into the second of (8.8.21), thus getting

$$
\begin{equation*}
q_{k^{\prime}}=q_{k^{\prime}}(t, q, p) . \tag{8.8.21b}
\end{equation*}
$$

All these interrelated formulae are summarized, for convenience, in table 8.1.

In Sum

A canonical transformation can be created from a generating function. As such, we can choose any differentiable function of half of the old variables (either the q_{k} 's or

Table 8.1 Types of Generating Functions

$F=F_{1}\left(t, q, q^{\prime}\right):$	$p_{k}=\partial F_{1} / \partial q_{k}$,	$p_{k^{\prime}}=-\partial F_{1} / \partial q_{k^{\prime}} ;$	$H^{\prime}=H+\partial F_{1} / \partial t$
$F=F_{2}\left(t, q, p^{\prime}\right):$	$p_{k}=\partial F_{2} / \partial q_{k}$	$q_{k^{\prime}}=\partial F_{2} / \partial p_{k^{\prime}} ;$	$H^{\prime}=H+\partial F_{2} / \partial t$
$F=F_{3}\left(t, p, q^{\prime}\right):$	$q_{k}=-\partial F_{3} / \partial p_{k \prime}$	$p_{k^{\prime}}=-\partial F_{3} / \partial q_{k^{\prime}} ;$	$H^{\prime}=H+\partial F_{3} / \partial t$
$F=F_{4}\left(t, p, p^{\prime}\right):$	$q_{k}=-\partial F_{4} / \partial p_{k \prime}$	$q_{k^{\prime}}=\partial F_{4} / \partial p_{k^{\prime}} ;$	$H^{\prime}=H+\partial F_{4} / \partial t$

$F_{2}=F_{1}+\sum p_{k^{\prime}} q_{k^{\prime}}$,
$F_{3}=F_{1}-\sum p_{k} q_{k}$,
$F_{4}=F_{1}+\sum p_{k^{\prime}} q_{k^{\prime}}-\sum p_{k} q_{k}=F_{2}-\sum p_{k} q_{k}=F_{3}+\sum p_{k^{\prime}} q_{k^{\prime}}$
the $p_{k}{ }^{\prime} \mathrm{s}$) and half of the new (either the $q_{k^{\prime}}$'s or the $p_{k^{\prime}}$'s), and time; a total of $2 n+1$ independent variables. Once a generating function has been selected, table 8.1 gives the transformation relations between the (remaining half of the chosen) old and new variables.

REMARKS

(i) In all four cases, we have $H^{\prime}-H=\partial F / \partial t$; and therefore if $\partial F / \partial t=0$, the new Hamiltonian results by simply substituting, in the old Hamiltonian, the old variables in terms of the new variables:

$$
H=H(t, q, p)=H\left[t, q\left(t, q^{\prime}, p^{\prime}\right), p\left(t, q^{\prime}, p^{\prime}\right)\right]=H^{\prime}\left(t, q^{\prime}, p^{\prime}\right)=H^{\prime}
$$

(ii) From the above derivations and results we are gradually led to the realization that, in the rarified atmosphere of Hamiltonian mechanics, the terms coordinate (q) and momentum (p) have lost a lot of their original physical meaning; as (8.8.8a, b) show, each q^{\prime} and each p^{\prime} may relate to all the q^{\prime} s and the p 's. In view of this blurring of the nomenclature (in both Hamiltonian mechanics and, especially, in its famous heir quantum mechanics) we call the q 's and p 's canonically conjugate variables. For example, the CT: $q_{k}=-p_{k^{\prime}}$ and $p_{k}=q_{k^{\prime}}$, with generating functions $F=q_{1} q_{1^{\prime}}+\cdots+q_{n} q_{n^{\prime}}=F_{1}$ (or $F=p_{1} p_{1^{\prime}}+\cdots+p_{n} p_{n^{\prime}}=F_{4}$) swaps coordinates and momenta, to within a sign. (Strictly speaking, these should have been written as $q_{k}=-\sum \delta_{k k^{\prime}} p_{k}$ and $p_{k}=\sum \delta_{k k^{\prime}} q_{k^{\prime}}$, respectively.)

Example 8.8.1 Let us show that all point transformations (8.8.2)

$$
\begin{equation*}
q_{k}=q_{k}\left(t, q_{k^{\prime}}\right) \Leftrightarrow q_{k^{\prime}}=q_{k^{\prime}}\left(t, q_{k}\right) \quad\left(k, k^{\prime}=1, \ldots, n\right) \tag{a}
\end{equation*}
$$

are canonical.
Choosing as generating function

$$
\begin{equation*}
F=\sum q_{k^{\prime}} p_{k^{\prime}}=\sum q_{k^{\prime}}(t, q) p_{k^{\prime}}=F\left(t, q, p^{\prime}\right) \equiv F_{2} \tag{b}
\end{equation*}
$$

and, therefore, applying (8.8.17), we obtain

$$
\begin{aligned}
p_{k} & =\partial F_{2} / \partial q_{k}=\sum\left(\partial q_{k^{\prime}} / \partial q_{k}\right) p_{k^{\prime}} \quad\left[\text { i.e., (8.8.4) with } k \text { and } k^{\prime} \text { swapped }\right] \\
q_{k^{\prime}} & \left.=\partial F_{2} / \partial p_{k^{\prime}}=q_{k^{\prime}}(t, q) \quad[\text { i.e., (c) } 8.8 .2)\right], \\
H^{\prime} & =H+\partial F_{2} / \partial t=H+\sum\left(\partial q_{k^{\prime}} / \partial t\right) p_{k^{\prime}} \\
& =-\sum\left(\partial q_{k} / \partial t\right) p_{k}+H \quad \text { [i.e., }(8.8 .7) ; \text { prove the last step], Q.E.D. }
\end{aligned}
$$

For example, if $F_{2}=\sum q_{k^{\prime}}(q) p_{k^{\prime}}+f(q)=$ linear in the p^{\prime}, the above reduce to the general point transformation

$$
\begin{equation*}
p_{k}=\sum\left(\partial q_{k^{\prime}} / \partial q_{k}\right) p_{k^{\prime}}+\partial f / \partial q_{k}, \quad q_{k^{\prime}}=q_{k^{\prime}}(q) \tag{f}
\end{equation*}
$$

Similarly, choosing

$$
\begin{equation*}
F=-\sum p_{k} q_{k}\left(t, q^{\prime}\right)=F\left(t, p, q^{\prime}\right) \equiv F_{3} \tag{g}
\end{equation*}
$$

and, therefore, applying (8.8.19), we obtain

$$
\begin{align*}
& q_{k}=-\partial F_{3} / \partial p_{k}=q_{k}\left(t, q^{\prime}\right) \tag{h}\\
& p_{k^{\prime}}=-\partial F_{3} / \partial q_{k^{\prime}}=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) p_{k} \tag{i}\\
& H^{\prime}=H+\partial F_{3} / \partial t=H-\sum\left(\partial q_{k} / \partial t\right) p_{k}, \quad \text { Q.E.D. } \tag{j}
\end{align*}
$$

In particular, if, in $(\mathrm{g}), q_{k}\left(t, q^{\prime}\right)=q_{k^{\prime}}$, we obtain the identity transformation.

Example 8.8.2 Let us check the following transformations for canonicity:

$$
\begin{equation*}
q^{\prime}=-p, \quad p^{\prime}=q \tag{i}
\end{equation*}
$$

We have, successively,

$$
\begin{equation*}
p \delta q-p^{\prime} \delta q^{\prime}=p \delta q-(q)(-\delta p)=\delta(p q)=\delta F \tag{b}
\end{equation*}
$$

and, therefore, by (8.8.12), (a) is canonical. Similarly, we can show that

$$
\begin{equation*}
q_{k^{\prime}}=-p_{k}, \quad p_{k^{\prime}}=q_{k} \quad \text { and } \quad q_{k^{\prime}}=p_{k}, \quad p_{k^{\prime}}=-q_{k} \tag{c}
\end{equation*}
$$

are canonical. This example makes clear that the Hamiltonian form of the equations of motion is unaffected even if we take as new coordinates the old momenta, and vice versa!
(ii) $\quad q^{\prime}=(q)^{1 / 2} \cos (2 p), \quad p^{\prime}=(q)^{1 / 2} \sin (2 p) \quad$ (due to H. Poincaré).

Inverting (d), we find

$$
\begin{equation*}
q=\left(q^{\prime}\right)^{2}+\left(p^{\prime}\right)^{2}, \quad \tan (2 p)=p^{\prime} / q^{\prime} \tag{e}
\end{equation*}
$$

and, therefore, successively,

$$
\begin{align*}
p \delta q-p^{\prime} \delta q^{\prime}= & p \delta q \\
& -\left[(q)^{1 / 2} \sin (2 p)\right]\left\{\left[\cos (2 p) / 2(q)^{1 / 2}\right] \delta q-\left[2(q)^{1 / 2} \sin (2 p)\right] \delta p\right\} \\
= & {[p-(\sin (2 p) \cos (2 p) / 2)] \delta q+\left[2 q \sin ^{2}(2 p)\right] \delta p } \\
= & \delta\{q[p-(\sin (4 p) / 4)]\}=\delta F \tag{f}
\end{align*}
$$

that is, by $(8.8 .12),(d)$ is canonical.

$$
\begin{equation*}
q^{\prime}=\ln [\sin (p) / q], \quad p^{\prime}=q \cot (p) \tag{iii}
\end{equation*}
$$

We have, successively,

$$
\begin{equation*}
q^{\prime}=-\ln (q)+\ln [\sin (p)] \Rightarrow \delta q^{\prime}=-(\delta q / q)+[\cot (p)] \delta p \tag{h}
\end{equation*}
$$

and, therefore,

$$
\begin{align*}
p \delta q-p^{\prime} \delta q^{\prime} & =p \delta q-[q \cot (p)]\{-(\delta q / q)+[\cot (p)] \delta p\} \\
& =[p+\cot (p)] \delta q-\left[q \cot ^{2}(p)\right] \delta p \equiv Q \delta q+P \delta p \tag{i}
\end{align*}
$$

The necessary and sufficient conditions for the integrability (i.e., canonicity) of (i) are $\partial Q / \partial p=\partial P / \partial q$:

$$
\begin{aligned}
& \partial / \partial p[p+\cot (p)]=1-\left[1 / \sin ^{2}(p)\right]=-\cot ^{2}(p) \\
& \partial / \partial q\left[-q \cot ^{2}(p)\right]=-\cot ^{2}(p)
\end{aligned}
$$

that is, (g) is indeed canonical.

Example 8.8.3 Let us determine the values of α and β so that the transformation

$$
\begin{equation*}
q^{\prime}=q^{\alpha} \cos (\beta p), \quad p^{\prime}=q^{\alpha} \sin (\beta p) \tag{a}
\end{equation*}
$$

is canonical. From the first of them, we obtain

$$
\begin{equation*}
\delta q^{\prime}=\left[-\beta q^{\alpha} \sin (\beta p)\right] \delta p+\left[\alpha q^{\alpha-1} \cos (\beta p)\right] \delta q \tag{b}
\end{equation*}
$$

and, therefore,

$$
p \delta q-p^{\prime} \delta q^{\prime}=\left[p-(1 / 2) \alpha q^{2 \alpha-1} \sin (2 \beta p)\right] \delta q+\left[\beta q^{2 \alpha} \sin ^{2}(\beta p)\right] \delta p \equiv Q \delta q+P \delta p
$$

Again, for integrability, we must have $\partial Q / \partial p=\partial P / \partial q$:

$$
\begin{equation*}
\partial / \partial p\left[p-(1 / 2) \alpha q^{2 \alpha-1} \sin (2 \beta p)\right]=\partial / \partial q\left[\beta q^{2 \alpha} \sin ^{2}(\beta p)\right] \tag{c}
\end{equation*}
$$

from which we obtain the condition

$$
\begin{equation*}
\alpha \beta q^{2 \alpha-1}=1 \tag{d}
\end{equation*}
$$

and since this equation must hold for all values of q, we are led to the system

$$
\begin{equation*}
2 \alpha-1=0 \quad \text { and } \quad \alpha \beta=1 \tag{e}
\end{equation*}
$$

whose roots are $\alpha=1 / 2$ and $\beta=2$. Hence, (a) becomes

$$
\begin{equation*}
q^{\prime}=(q)^{1 / 2} \cos (2 p), \quad p^{\prime}=(q)^{1 / 2} \sin (2 p) ; \tag{f}
\end{equation*}
$$

that is, the Poincare transformation of the preceding example.

Example 8.8.4 Canonicity via the Central Equation:

$$
\begin{equation*}
\delta T+\delta^{\prime} W=\left(\sum p_{k} \delta q_{k}\right)^{\cdot} \Rightarrow\left(\sum p_{k} \delta q_{k}\right)^{\cdot}-\delta T=\delta^{\prime} W . \tag{a}
\end{equation*}
$$

If the impressed forces are wholly potential forces-that is, $\delta^{\prime} W=$ $-\delta V \Rightarrow \delta(T-V)=\delta L$ - then, in view of the fundamental definition (8.8.12), we can transform (a) to

$$
\begin{equation*}
\left(\sum p_{k^{\prime}} \delta q_{k^{\prime}}\right)^{\cdot}-\left[\delta L-(\delta F)^{\cdot}\right]=0 \tag{b}
\end{equation*}
$$

But since $(\delta F)^{\cdot}=\delta(\dot{F})$, this new central equation has the old form (a) if we define as new Lagrangean:

$$
\begin{equation*}
L^{\prime}=L-d F / d t, \quad L^{\prime}=L^{\prime}\left(q^{\prime}, p^{\prime}\right) \tag{c}
\end{equation*}
$$

Then, standard transformations, as in the old variables (§8.2) lead us to the new Hamiltonian equations:

$$
\begin{equation*}
d q_{k^{\prime}} / d t=\partial H^{\prime} / \partial p_{k^{\prime}}, \quad d p_{k^{\prime}} / d t=-\partial H^{\prime} / \partial q_{k^{\prime}} \tag{d}
\end{equation*}
$$

where

$$
\begin{align*}
H^{\prime} & \equiv \sum p_{k^{\prime}} \dot{q}_{k^{\prime}}-L^{\prime} \quad[\operatorname{invoking}(8.8 .12)] \\
& =\left[\sum p_{k} \dot{q}_{k}-(d F / d t-\partial F / \partial t)\right]-(L-d F / d t) \\
& =\left(\sum p_{k} \dot{q}_{k}-L\right)+\partial F / \partial t=H+\partial F / \partial t \tag{e}
\end{align*}
$$

as before. Hence, the fundamental result: under a canonical transformation, the canonical equations preserve their form.

Example 8.8.5 Canonical Transformation: The Harmonic Oscillator. Let us consider a linear harmonic oscillator of mass m and stiffness constant k, and, therefore,

Lagrangean: $\quad L=(1 / 2)\left[m(\dot{q})^{2}-k q^{2}\right] \Rightarrow p \equiv \partial L / \partial \dot{q}=m \dot{q} \Rightarrow \dot{q}=p / m$,
Hamiltonian: $\quad H=p \dot{q}-L=\cdots=p^{2} / 2 m+k q^{2} / 2$;
and, therefore, Hamiltonian equations of (free and undamped) motion:

$$
\begin{equation*}
\dot{q}=\partial H / \partial p=p / m, \quad \dot{p}=-\partial H / \partial q=-k q, \tag{c}
\end{equation*}
$$

whose solution is well known [eliminating p between (c) we obtain the Lagrangean equation $m \ddot{q}+k q=0]$. Instead, let us here consider the canonical transformation with generating function

$$
\begin{equation*}
F=F_{1}\left(q, q^{\prime}\right)=c q^{2} \cot \left(q^{\prime}\right) \quad(c=\mathrm{a} \text { constant }) \tag{d}
\end{equation*}
$$

and, therefore, by (8.8.15), transformation equations

$$
\begin{align*}
& p=\partial F_{1} / \partial q=2 c q \cot \left(q^{\prime}\right), \quad p^{\prime}=-\partial F_{1} / \partial q^{\prime}=c q^{2} \operatorname{cosec}^{2}\left(q^{\prime}\right) \\
& H^{\prime}=H+\partial F_{1} / \partial t=H \tag{e}
\end{align*}
$$

or, solving them for the old variables in terms of the new variables,

$$
\begin{align*}
& p=\left(4 c p^{\prime}\right)^{1 / 2} \cos \left(q^{\prime}\right), \quad q=\left(p^{\prime} / c\right)^{1 / 2} \sin \left(q^{\prime}\right), \tag{f}\\
& H^{\prime}=(1 / 2)\left(p^{2} / m+k q^{2}\right)=\cdots=(1 / 2)\left[\left(4 c p^{\prime} / m\right) \cos ^{2}\left(q^{\prime}\right)+\left(k p^{\prime} / c\right) \sin ^{2}\left(q^{\prime}\right)\right] \\
&=\left(k p^{\prime} / 2 c\right)\left[\sin ^{2}\left(q^{\prime}\right)+\left(4 c^{2} / m k\right) \cos ^{2}\left(q^{\prime}\right)\right] \quad\left[\text { choosing } 4 c^{2}=m k\right] \\
&=k p^{\prime} / 2 c=(k / m)^{1 / 2} p^{\prime} \equiv \omega p^{\prime} \quad\left[\omega^{2} \equiv k / m: \text { oscillation frequency }\right] . \tag{g}
\end{align*}
$$

Hence, the Hamiltonian equations in these new variables are
$d p^{\prime} / d t=-\partial H^{\prime} / \partial q^{\prime}=0 \Rightarrow p^{\prime}=$ constant $\equiv c^{\prime} \quad\left(q^{\prime}\right.$ is ignorable $)$,
$d q^{\prime} / d t=+\partial H^{\prime} / \partial p^{\prime}=\omega \Rightarrow q^{\prime}=\omega t+c^{\prime \prime} \quad\left(c^{\prime \prime}:\right.$ integration constant $)$.
Substituting (h, i) back in (f) we, naturally, obtain the (well-known) old variable solution.

Geometrical Interpretation of these Solutions in Phase Space
(i) in the old variables (q, p) the representative point describes an ellipse whose dimensions and sense of traverse are determined by the system constants and initial conditions (\Rightarrow energy $\equiv E=H=\omega p^{\prime}=$ constant; fig. 8.7).
(ii) In the new variables $\left(q^{\prime}, p^{\prime}\right)$ the corresponding system point moves on the straight line

$$
\begin{equation*}
p^{\prime}=E / \omega=\text { constant } . \tag{j}
\end{equation*}
$$

The ellipse points $(1,2,3,4)$ are mapped into the straight line points $\left(1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right)$.

Phase Space in NEW Variables

$$
\begin{aligned}
& q=\left(p^{\prime} / c\right)^{1 / 2} \sin q^{\prime} \\
& p=\left(4 c p^{\prime} / / 2 \cos q^{\prime}\right.
\end{aligned}
$$

$q^{\prime}=\omega t+c^{\prime \prime}$
$p^{\prime}=\mathrm{constant} \equiv c^{\prime}=E / \omega$
$4 c^{2}=m k ; c^{\prime}, c^{\prime \prime}=$ integration constants
Figure 8.7 Paths of harmonic oscillator in phase space, in old and new variables.

This procedure - that is, the search for new canonical variables in which one or more (or all!) of the coordinates are ignorable - is systematized in $\S 8.10$. These investigations show that every holonomic, scleronomic, and potential system with n DOF can be transformed by a canonical transformation into one with Hamiltonian
 $q_{k^{\prime}}=\Psi_{k^{\prime}} t+$ constant; a fundamental result that is behind such important concepts as action-angle variables and complete separability/integrability (§8.14).

Example 8.8.6

(i) Generalized Canonical Transformations (GCT) are CT that, in addition to the fundamental definition (8.8.12):

$$
\begin{equation*}
\delta F=\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}}, \tag{a}
\end{equation*}
$$

also satisfy, say, holonomic constraints like

$$
\begin{equation*}
C_{D}\left(q, q^{\prime}\right)=0 \quad[D=1, \ldots, m: \text { rank of corresponding Jacobian }=m(\leq n)] \tag{b}
\end{equation*}
$$

or, in virtual form,

$$
\begin{equation*}
\delta C_{D}=\sum\left(\partial C_{D} / \partial q_{k}\right) \delta q_{k}+\sum\left(\partial C_{D} / \partial q_{k^{\prime}}\right) \delta q_{k^{\prime}}=0 \tag{c}
\end{equation*}
$$

Applying the Lagrangean multiplier method, we readily see that, in this case, ($F \rightarrow F_{1}$), eqs. (8.8.15) must now be replaced by

$$
\begin{equation*}
p_{k}=\partial F_{1} / \partial q_{k}+\sum \lambda_{D}\left(\partial C_{D} / \partial q_{k}\right), \quad p_{k^{\prime}}=-\partial F_{1} / \partial q_{k^{\prime}}-\sum \lambda_{D}\left(\partial C_{D} / \partial q_{k^{\prime}}\right) \tag{d}
\end{equation*}
$$

which, along with (b), constitute a system of $2 n+m$ equations for the $2 n+m q$'s, p 's, λ 's (multipliers), in terms of the q 's, p 's.
(ii) For the point transformation, for which [recalling (8.8.2) and (8.8.4)]

$$
\begin{equation*}
q_{k}=q_{k}\left(q_{k^{\prime}}\right), \quad p_{k^{\prime}}=\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) p_{k} \tag{e}
\end{equation*}
$$

the definition (8.8.12), (a) gives

$$
\begin{align*}
& \sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}} \\
& \quad=\sum p_{k}\left(\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) \delta q_{k^{\prime}}\right)-\sum p_{k^{\prime}} \delta q_{k^{\prime}} \\
& \quad=\sum\left[\sum\left(\partial q_{k} / \partial q_{k^{\prime}}\right) p_{k}-p_{k^{\prime}}\right] \delta q_{k^{\prime}}=0 \tag{f}
\end{align*}
$$

that is, for such a transformation, $F \rightarrow F_{1}\left(q, q^{\prime}\right) \equiv 0$ (however, $F \rightarrow F_{2}, F_{3}, \ldots \neq 0$). Such transformations can be viewed as the following choices of the earlier GCT case (b):

$$
\begin{equation*}
C_{D} \equiv q_{D}-\phi_{D}\left(q_{k^{\prime}}\right)=0, \quad \lambda_{D}=p_{D} \tag{g}
\end{equation*}
$$

For additional related results, see, for example, Whittaker (1937, pp. 294-296), Hamel (1949, pp. 292, 666).

Example 8.8.7 Time Transformation. The general transformation $(t, q, p) \rightarrow$ $\left(t^{\prime}, q^{\prime}, p^{\prime}\right)$:

$$
\begin{equation*}
q_{k}=q_{k}\left(t^{\prime}, q^{\prime}, p^{\prime}\right), \quad p_{k}=p_{k}\left(t^{\prime}, q^{\prime}, p^{\prime}\right), \quad t=t\left(t^{\prime}, q^{\prime}, p^{\prime}\right) \tag{a}
\end{equation*}
$$

is called canonical if:
(i) Jacobian: $\partial(t, q, p) / \partial\left(t^{\prime}, q^{\prime}, p^{\prime}\right) \neq 0$, and
(ii) There exist three functions $H(t, q, p), H^{\prime}\left(t^{\prime}, q^{\prime}, p^{\prime}\right), F^{\prime}(t, q, p)$, such that

$$
\begin{equation*}
\sum p_{k} d q_{k}-H d t=\sum p_{k^{\prime}} d q_{k^{\prime}}-H^{\prime} d t^{\prime}+d F^{\prime} \tag{b}
\end{equation*}
$$

identically, upon utilization of (a) in it.
It is not hard to show that such a generalized CT also leaves the form of the Hamiltonian equations unaltered. Here, we have treated only the special case $t^{\prime}=t$; for a fuller discussion, see books on partial differential equations, for example, Carathéodory (1935).

Problem 8.8.3 Point Transformation: Polar Cylindrical Coordinates. With the help of (8.8.4), show that under a (point) transformation from rectangular Cartesian coordinates $q_{k}:(x, y, z)$ to polar cylindrical ones $q_{k^{\prime}}:(r, \phi, z)$, the corresponding momenta transform from the rectangular Cartesian $p_{k}: p_{x, y, z}$ to the following polar $p_{k^{\prime}}: p_{r, \phi, z}$:

$$
\begin{align*}
p_{r} & =\left[x /\left(x^{2}+y^{2}\right)^{1 / 2}\right] p_{x}+\left[y /\left(x^{2}+y^{2}\right)^{1 / 2}\right] p_{y}, \tag{a}\\
p_{\phi} & =(-y) p_{x}+(x) p_{y} \tag{b}\\
p_{z} & =p_{z} . \tag{c}
\end{align*}
$$

Problem 8.8.4 Show that the transformation

$$
\begin{equation*}
q=p^{\prime} \sin \left(q^{\prime}\right), \quad p=p^{\prime} \cos \left(q^{\prime}\right) \tag{a}
\end{equation*}
$$

is not canonical, but that the following, is:

$$
\begin{equation*}
q=\left(2 p^{\prime}\right)^{1 / 2} \sin \left(q^{\prime}\right), \quad p=\left(2 p^{\prime}\right)^{1 / 2} \cos \left(q^{\prime}\right) \tag{b}
\end{equation*}
$$

Problem 8.8.5 Show that the following generating functions produce the canonical transformations indicated:

$$
\begin{array}{lll}
F=\sum q_{k} q_{k^{\prime}}: & p_{k}=q_{k^{\prime}}, & p_{k^{\prime}}=-q_{k} \\
F=\sum q_{k} p_{k^{\prime}}: & p_{k}=p_{k^{\prime}}, & q_{k^{\prime}}=q_{k} \tag{a}
\end{array}
$$

[This identity transformation can also be achieved with $F=-\sum p_{k} q_{k^{\prime}}$.]

$$
\begin{equation*}
F=\sum p_{k} q_{k^{\prime}}: \quad \quad q_{k}=-q_{k^{\prime}}, \quad p_{k^{\prime}}=-p_{k} \tag{iii}
\end{equation*}
$$

[This spatial inversion, or reflection, transformation can also be achieved with $\left.F=-\sum q_{k} p_{k^{\prime}}.\right]$

$$
\begin{equation*}
F=\sum p_{k} p_{k^{\prime}}: \quad q_{k}=-p_{k^{\prime}}, \quad q_{k^{\prime}}=p_{k} \tag{iv}
\end{equation*}
$$

HINTS

(i) All these F 's have the form $\sum x_{k} y_{k^{\prime}}$, where $x_{k}, y_{k^{\prime}}$ are any of the four possible pairs of $\left(q, p ; q^{\prime}, p^{\prime}\right)$. (ii) The first and fourth cases coincide. (iii) In all cases, $H^{\prime}=H$.

Problem 8.8.6 We have already seen (ex. 3.5.11) that the two Lagrangeans

$$
\begin{equation*}
L \quad \text { and } \quad L^{\prime}=L+d f(t, q) / d t \tag{a}
\end{equation*}
$$

[where $f(t, q)=$ arbitrary differentiable function] produce the same Lagrangean equations of motion, that is, $E_{k}(L)=E_{k}\left(L^{\prime}\right)$. Show that under such a "gauge" transformation, the corresponding Hamiltonians

$$
\begin{equation*}
H \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L \quad \text { and } \quad H^{\prime} \equiv \sum\left(\partial L^{\prime} / \partial \dot{q}_{k}\right) \dot{q}_{k}-L^{\prime} \tag{b}
\end{equation*}
$$

are related by

$$
\begin{equation*}
H^{\prime}=H-\partial f / \partial t \tag{c}
\end{equation*}
$$

Problem 8.8.7 (Butenin, 1971, pp. 149-150). Consider a particle P of mass m whose kinetic and potential energies, in polar cylindrical coordinates $r, \phi, z=q_{1,2,3}$, are, respectively,

$$
2 T=m\left[\left(\dot{q}_{1}\right)^{2}+q_{1}^{2}\left(\dot{q}_{2}\right)^{2}+\left(\dot{q}_{3}\right)^{2}\right], \quad V=m g q_{3} \quad(g=\text { gravitational constant })
$$

Show that:
(i) Its Hamiltonian in these variables (i.e., q 's, plus corresponding momenta p 's) is

$$
\begin{equation*}
H=H(q, p)=(1 / 2 m)\left[p_{1}^{2}+\left(1 / q_{1}^{2}\right) p_{2}^{2}+p_{3}^{2}\right]+m g q_{3} . \tag{b}
\end{equation*}
$$

(ii) Under a canonical transformation with generating function

$$
\begin{equation*}
F=p_{1^{\prime}} q_{1} \cos \left(q_{2}\right)+p_{2^{\prime}} q_{1} \sin \left(q_{2}\right)+p_{3^{\prime}} q_{3}=F\left(q, p^{\prime}\right) \equiv F_{2}, \tag{c}
\end{equation*}
$$

the new Hamiltonian $H^{\prime}(=H)$ is

$$
\begin{equation*}
H^{\prime}=H^{\prime}\left(q^{\prime}, p^{\prime}\right)=(1 / 2 m)\left[\left(p_{1^{\prime}}\right)^{2}+\left(p_{2^{\prime}}\right)^{2}+\left(p_{3^{\prime}}\right)^{2}\right]+m g q_{3^{\prime}} . \tag{d}
\end{equation*}
$$

Interpret the q 's and p 's geometrically.

Problem 8.8.8 We have already seen that the transformation

$$
\begin{equation*}
q_{k^{\prime}}=q_{k^{\prime}}(q, p), \quad p_{k^{\prime}}=p_{k^{\prime}}(q, p) \tag{a}
\end{equation*}
$$

is canonical if, and only if, the differential form

$$
\begin{equation*}
\delta F_{1}=\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}} \tag{b}
\end{equation*}
$$

after replacement of p_{k} and δq_{k} from (the inverse of) (a), is exact in the q^{\prime} and p^{\prime}; or similarly, if, after replacement of p^{\prime} and δq^{\prime} from (a), it is exact in the q, p.

Show that, instead of δF_{1}, we may choose - to test for exactness - any of the following three interrelated differential forms:

$$
\begin{array}{ll}
\delta F_{2}=\sum p_{k} \delta q_{k}+\sum q_{k^{\prime}} \delta p_{k^{\prime}} & {\left[=\delta F_{1}+\delta\left(\sum p_{k^{\prime}} q_{k^{\prime}}\right)\right]} \\
\delta F_{3}=-\sum q_{k} \delta p_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}} & {\left[=\delta F_{1}-\delta\left(\sum p_{k} q_{k}\right)\right]} \\
\delta F_{4}=-\sum q_{k} \delta p_{k}+\sum q_{k^{\prime}} \delta p_{k^{\prime}} & {\left[=\delta F_{1}-\delta\left(\sum p_{k} q_{k}-\sum p_{k^{\prime}} q_{k^{\prime}}\right)\right]} \tag{e}
\end{array}
$$

that is, (a) is canonical if, and only if, any one of (b-e) is exact in the new (old) variables after replacement of the old (new) variables and their variations, from (a), in terms of the new (old) variables and their variations.

HINT

Recall table 8.1.

8.9 CANONICITY CONDITIONS VIA POISSON'S BRACKETS (PB)

Here, we show that these brackets, already introduced in $\S 8.7$ in connection with the method of variations of constants, appear naturally in the formulation of alternative conditions for canonicity. Let us, therefore, summarize their relevant theory.

Poisson Brackets; Theorem of Poisson-Jacobi

Let $f=f(t, q, p)$ be an arbitrary differentiable dynamical quantity. Then, we have, successively,

$$
\begin{align*}
d f / d t= & \partial f / \partial t+\sum\left[\left(\partial f / \partial q_{k}\right)\left(d q_{k} / d t\right)+\left(\partial f / \partial p_{k}\right)\left(d p_{k} / d t\right)\right] \\
& \quad[\text { invoking Hamilton's equations }] \\
= & \partial f / \partial t+\sum\left[\left(\partial f / \partial q_{k}\right)\left(\partial H / \partial p_{k}\right)+\left(\partial f / \partial p_{k}\right)\left(-\partial H / \partial q_{k}+Q_{k}\right)\right] \\
= & \partial f / \partial t+(H, f)+\sum\left(\partial f / \partial p_{k}\right) Q_{k}, \tag{8.9.1}
\end{align*}
$$

where

$$
\begin{gather*}
(H, f) \equiv \sum\left[\left(\partial H / \partial p_{k}\right)\left(\partial f / \partial q_{k}\right)-\left(\partial H / \partial q_{k}\right)\left(\partial f / \partial p_{k}\right)\right]: \\
\text { Poisson bracket of } H \text { and } f . \tag{8.9.2}
\end{gather*}
$$

Hence, for f to be an integral of the motion (i.e., $d f / d t=0$), we must have

$$
\partial f / \partial t+\sum\left(\partial f / \partial p_{k}\right) Q_{k}+(H, f)=0
$$

or, assuming that $f=f(q, p)$ and $Q_{k}=0$,

$$
\begin{equation*}
(H, f)=0 ; \tag{8.9.3}
\end{equation*}
$$

that is, its PB with the Hamiltonian of its variables must be zero (in this case, $d f / d t$ can be expressed without explicit reference to time).

The PB of any two variables, f and g, defined in complete analogy to (8.9.2) by

$$
\begin{align*}
(f, g) & \equiv \sum\left[\left(\partial f / \partial p_{k}\right)\left(\partial g / \partial q_{k}\right)-\left(\partial f / \partial q_{k}\right)\left(\partial g / \partial p_{k}\right)\right] \\
& \equiv \sum\left[\partial(f, g) / \partial\left(p_{k}, q_{k}\right)\right] \tag{8.9.4}
\end{align*}
$$

has the following, easily verifiable, properties:

- $(f, g)=-(g, f)=(-g, f) \quad$ (antisymmetry),

$$
\begin{equation*}
\Rightarrow(f, f)=0, \tag{8.9.5a}
\end{equation*}
$$

- $(f, c)=0 \quad(c=\mathrm{a}$ constant $),(8.9 .5 \mathrm{c})$
- $\left(f_{1}+f_{2}, g\right)=\left(f_{1}, g\right)+\left(f_{2}, g\right) \quad$ (distributivity),
- $\quad\left(f_{1} f_{2}, g\right)=f_{1}\left(f_{2}, g\right)+f_{2}\left(f_{1}, g\right)$
$\Rightarrow(c f, g)=c(f, g) \quad(c=$ a constant $)$,
\Rightarrow if $f=\sum c_{k} f_{k}$, then $(f, g)=\sum c_{k}\left(f_{k}, g\right) \quad\left(c_{k}=\right.$ constants $)$,
- $\partial / \partial t(f, g)=(\partial f / \partial t, g)+(f, \partial g / \partial t) \quad$ ("Leibniz rule").
[Actually, $\partial / \partial x(f, g)=(\partial f / \partial x, g)+(f, \partial g / \partial x), x=$ any variable.]

REMARKS ON NOTATION

(i) Unfortunately, here too, no uniformity of notation for these brackets exists. A number of famous authors, such as (alphabetically): Appell, Gantmacher, Hagihara, Lanczos, Lur'e, Synge, Whittaker, et al. define PB as the opposite of ours, that is, as

$$
\begin{equation*}
(f, g) \equiv \sum\left[\left(\partial f / \partial q_{k}\right)\left(\partial g / \partial p_{k}\right)-\left(\partial f / \partial p_{k}\right)\left(\partial g / \partial q_{k}\right)\right] \tag{8.9.6}
\end{equation*}
$$

Our choice (8.9.4) follows the practices of such (equally famous) authors as: S. Flügge, Hamel, Landau/Lifshitz, Lindsay/Margenau, Prange, Schaefer/Päsler, Routh, Scheck, Spiegel, Tabor, et al., including Poisson himself (1809)! Therefore, a certain caution should be exercised when comparing various references.
(ii) Also, certain authors (especially those in quantum mechanics; e.g., Dirac) denote our Lagrangean brackets, [...], by $\{\ldots\}$; and our Poisson brackets, (...), by [...].

With the help of the above properties, we can easily prove the following useful theorems (by taking as f / g one of the coordinates/momenta):

- $\quad\left(f, q_{k}\right)=\partial f / \partial p_{k}$,
- $\left(f, p_{k}\right)=-\partial f / \partial q_{k}$,
- $\left(q_{k}, q_{l}\right)=0$,
- $\quad\left(p_{k}, p_{l}\right)=0$,
- $\quad\left(p_{k}, q_{l}\right)=\delta_{k l} \quad(=$ Kronecker delta $)$.

The last three types of brackets are called fundamental, or basic, PB.

Identity of Poisson-Jacobi

Below we prove that, for any three variables f, g, h (at least twice continuously differentiable), the following important identity holds:

$$
\begin{equation*}
(f,(g, h))+(g,(h, f))+(h,(f, g))=0 ; \tag{8.9.8a}
\end{equation*}
$$

or, equivalently [invoking (8.9.5a)],

$$
\begin{equation*}
((f, g), h)+((g, h), f)+((h, f), g)=0 . \tag{8.9.8b}
\end{equation*}
$$

(i) First Proof

Using the earlier definitions, we have, successively (with $k, l=1, \ldots, n$),

$$
\begin{align*}
&((f, g), h)=\sum\left[\left(\partial(f, g) / \partial p_{k}\right)\left(\partial h / \partial q_{k}\right)-\left(\partial(f, g) / \partial q_{k}\right)\left(\partial h / \partial p_{k}\right)\right] \\
&=\sum \sum\left\{\partial / \partial p_{k}\left[\left(\partial f / \partial p_{l}\right)\left(\partial g / \partial q_{l}\right)-\left(\partial f / \partial q_{l}\right)\left(\partial g / \partial p_{l}\right)\right]\left(\partial h / \partial q_{k}\right)\right. \\
&\left.-\partial / \partial q_{k}\left[\left(\partial f / \partial p_{l}\right)\left(\partial g / \partial q_{l}\right)-\left(\partial f / \partial q_{l}\right)\left(\partial g / \partial p_{l}\right)\right]\left(\partial h / \partial p_{k}\right)\right\} \\
&=\sum \sum {\left[\left(\partial^{2} f / \partial q_{k} \partial q_{l}\right)\left(\partial g / \partial p_{l}\right)\left(\partial h / \partial p_{k}\right)+\left(\partial f / \partial q_{l}\right)\left(\partial^{2} g / \partial q_{k} \partial p_{l}\right)\left(\partial h / \partial p_{k}\right)\right.} \\
&-\left(\partial^{2} f / \partial q_{k} \partial p_{l}\right)\left(\partial g / \partial q_{l}\right)\left(\partial h / \partial p_{k}\right)-\left(\partial f / \partial p_{l}\right)\left(\partial^{2} g / \partial q_{k} \partial q_{l}\right)\left(\partial h / \partial p_{k}\right) \\
&-\left(\partial^{2} f / \partial p_{k} \partial q_{l}\right)\left(\partial g / \partial p_{l}\right)\left(\partial h / \partial q_{k}\right)-\left(\partial f / \partial q_{l}\right)\left(\partial^{2} g / \partial p_{k} \partial p_{l}\right)\left(\partial h / \partial q_{k}\right) \\
&\left.+\left(\partial^{2} f / \partial p_{k} \partial p_{l}\right)\left(\partial g / \partial q_{l}\right)\left(\partial h / \partial q_{k}\right)+\left(\partial f / \partial p_{l}\right)\left(\partial^{2} g / \partial p_{k} \partial q_{l}\right)\left(\partial h / \partial q_{k}\right)\right] ; \tag{8.9.8c}
\end{align*}
$$

and cyclically for the other 2×8 terms of $((g, h), f)$ and $((h, f), g)$. Then, it is not hard to see that all 24 terms cancel in pairs. This is a straightforward proof, but since it is long and visually tedious, we present below a shorter alternative.
(ii) Second Proof

We have, successively,

$$
\begin{aligned}
(f,(g, h)) & -(g,(f, h)) \\
= & \left(f, \sum\left[\left(\partial g / \partial p_{k}\right)\left(\partial h / \partial q_{k}\right)-\left(\partial g / \partial q_{k}\right)\left(\partial h / \partial p_{k}\right)\right]\right) \\
& -\left(g, \sum\left[\left(\partial f / \partial p_{k}\right)\left(\partial h / \partial q_{k}\right)-\left(\partial f / \partial q_{k}\right)\left(\partial h / \partial p_{k}\right)\right]\right)
\end{aligned}
$$

[invoking properties (8.9.5) and then regrouping terms]

$$
\begin{align*}
=\sum & \left\{-\left(\partial h / \partial p_{k}\right)\left[\left(\partial f / \partial q_{k}, g\right)+\left(f, \partial g / \partial q_{k}\right)\right]\right. \\
& \left.+\left(\partial h / \partial q_{k}\right)\left[\left(\partial f / \partial p_{k}, g\right)+\left(f, \partial g / \partial p_{k}\right)\right]\right\} \\
& +\sum\left[\left(\partial g / \partial p_{k}\right)\left(f, \partial h / \partial q_{k}\right)-\left(\partial g / \partial q_{k}\right)\left(f, \partial h / \partial p_{k}\right)\right. \\
& \left.-\left(\partial f / \partial p_{k}\right)\left(g, \partial h / \partial q_{k}\right)+\left(\partial f / \partial q_{k}\right)\left(g, \partial h / \partial p_{k}\right)\right] . \tag{8.9.8d}
\end{align*}
$$

Now: (a) by $(8.9 .5 \mathrm{~g})$ the first sum transforms to

$$
\sum\left[-\left(\partial h / \partial p_{k}\right) \partial / \partial q_{k}(f, g)+\left(\partial h / \partial q_{k}\right) \partial / \partial p_{k}(f, g)\right]=-(h,(f, g)),
$$

while (b) the second sum can be shown (by direct expansion) to vanish. Therefore,

$$
(f,(g, h))-(g,(f, h))=-(h,(f, g))
$$

or, rearranging, while using (8.9.5a, c, e),

$$
\begin{equation*}
(f,(g, h))+(g,(h, f))+(h,(f, g))=0, \quad \text { Q.E.D. } \tag{8.9.8e}
\end{equation*}
$$

[For alternative, indirect proofs, see, for example, Appell (1953, pp. 445-447; and references cited therein), Landau and Lifshitz (1960, pp. 136-137).]

The above Poisson-Jacobi identity allows us to prove the following fundamental theorem.

Theorem of Poisson-Jacobi

If f and g are any two integrals of the motion, so is their PB ; that is, if $f=c_{1}$ and $g=c_{2}$, then $(f, g)=c_{3}\left(c_{1,2,3}=\right.$ constants $)$.

We distinguish two cases:
(i) $\partial f / \partial t=0$ and $\partial g / \partial t=0$. Then, by (8.9.1-3),

$$
\begin{equation*}
(f, H)=0, \quad(g, H)=0 \quad \text { (identically) } \tag{8.9.9a}
\end{equation*}
$$

and, therefore, also

$$
\begin{equation*}
((f, H), h)=0, \quad((g, H), f)=0 \quad \text { (identically) } \tag{8.9.9b}
\end{equation*}
$$

and substituting the above in the Poisson-Jacobi identity (8.9.8b), with $h \rightarrow H$, we immediately obtain

$$
((f, g), H)=0 \Rightarrow(f, g)=\text { constant } \quad[\text { invoking (8.9.5c)], Q.E.D. } \quad \text { (8.9.9c })
$$

(ii) $\partial f / \partial t \neq 0$ and $\partial g / \partial t \neq 0$. Then, by (8.9.1),

$$
\begin{equation*}
d f / d t=\partial f / \partial t+(H, f) \equiv 0, \quad d g / d t=\partial g / \partial t+(H, g) \equiv 0 \tag{8.9.9d}
\end{equation*}
$$

and as a result the Poisson-Jacobi identity (8.9.8a), with $h \rightarrow H$, yields, successively,

$$
\begin{align*}
0 & =(H,(f, g))+(f,(g, H))+(g,(H, f)) \\
& =(H,(f, g))+(f, \partial g / \partial t)-(g, \partial f / \partial t) \\
& =(H,(f, g))+(f, \partial g / \partial t)+(\partial f / \partial t, g) \\
& =(H,(f, g))+\partial / \partial t(f, g), \tag{8.9.9e}
\end{align*}
$$

that is, by (8.9.3), (f, g) is also an integral. This presents us with two possibilities: (a) either $(f, g)=$ function of $f=c_{1}$ and $g=c_{2}$, and therefore does not constitute a new integral; or (b) $(f, g)=$ new function, not depending on c_{1} and c_{2}, and does constitute a new, third, integral.

However, frequently, such new integrals are trivial; for example, using $f, g=$ constant, $p_{k}, p_{l}=$ constant, we simply obtain $0=$ constant. As MacMillan
puts it: "Notwithstanding the fact that Poisson's theorem gives an interesting relation among integrals, it cannot be said that it has led to integrals that were not already known. As a matter of fact it has been singularly sterile" (1936, p. 383).

COROLLARY

Let $\partial H / \partial t=0$, then $H=c_{1}$ (energy integral). If $f(t, q, p)=c_{2}$ is a second integral, then, by the Poisson-Jacobi theorem, $(f, H)=c_{3}$ is also an integral. But, in this case,

$$
\begin{equation*}
d f / d t=\partial f / \partial t+(H, f) \Rightarrow d c_{2} / d t=\partial f / \partial t-c_{3}=0 \tag{8.9.9f}
\end{equation*}
$$

that is, if $f=c_{2}$ is a time-containing integral, so is $\partial f / \partial t=c_{3}$; and, similarly, $\partial^{2} f / \partial t^{2}=c_{4}$, and so on; however, if $\partial f / \partial t=0$, then $c_{3}=0$ and $(f, H)=0$.

For group-theoretic aspects of this theorem (Lie) and its relation to the famous Theorema Gravissimum of Jacobi (1842-1843, publ. 1866), see, for example, Hamel (1949, pp. 297-299, 301-302); also Frank (1935, p. 61 ff.).

Poisson Brackets (PB) and Canonical Transformations (CT)

Here, with the help of PB , we (i) show that these brackets are invariant under $C T$, and then (ii) obtain conditions for the transformation (8.8.8a,b) to be canonical [alternative to (8.8.10-12)].
(i) Let us prove that

$$
\begin{equation*}
(f, g)_{q, p}=(f, g)_{q^{\prime}, p^{\prime}}=\cdots, \tag{8.9.10}
\end{equation*}
$$

where f and g keep their value but not necessarily their form in the various canonical coordinates involved.

We begin by proving it for the fundamental PB (8.9.7e):

$$
\begin{equation*}
\left(p_{k^{\prime}}, q_{l^{\prime}}\right)_{q, p}=\left(p_{k^{\prime}}, q_{l^{\prime}}\right)_{q^{\prime}, p^{\prime}}=\cdots=\delta_{k^{\prime} l^{\prime}} . \tag{8.9.10a}
\end{equation*}
$$

Using the generating function $F=F_{1}=F_{1}\left(t, q, q^{\prime}\right)$ and corresponding equations (8.8.15), we readily find

$$
\begin{equation*}
\partial p_{k} / \partial q_{k^{\prime}}=\partial / \partial q_{k^{\prime}}\left(\partial F_{1} / \partial q_{k}\right)=\partial / \partial q_{k}\left(\partial F_{1} / \partial q_{k^{\prime}}\right)=-\partial p_{k^{\prime}} / \partial q_{k} \tag{8.9.10b}
\end{equation*}
$$

and, similarly, using F_{2}, F_{3}, F_{4} and $(8.8 .17,19,21)$, we obtain

$$
\begin{equation*}
\partial q_{k} / \partial q_{k^{\prime}}=\partial p_{k^{\prime}} / \partial p_{k}, \quad \partial q_{k} / \partial p_{k^{\prime}}=-\partial q_{k^{\prime}} / \partial p_{k}, \quad \partial p_{k} / \partial p_{k^{\prime}}=\partial q_{k^{\prime}} / \partial q_{k} \tag{8.9.10c}
\end{equation*}
$$

With the help of these results, we find

$$
\begin{align*}
\left(p_{k^{\prime}}, q_{l^{\prime}}\right)_{q, p} & \equiv \sum\left[\left(\partial p_{k^{\prime}} / \partial q_{k}\right)\left(\partial q_{l^{\prime}} / \partial q_{k}\right)-\left(\partial p_{k^{\prime}} / \partial q_{k}\right)\left(\partial q_{l^{\prime}} / \partial p_{k}\right)\right] \\
& =\sum\left[\left(\partial p_{k^{\prime}} / \partial p_{k}\right)\left(\partial p_{k} / \partial p_{l^{\prime}}\right)-\left(\partial p_{k^{\prime}} / \partial q_{k}\right)\left(-\partial q_{k} / \partial p_{l^{\prime}}\right)\right] \\
& =\partial p_{k^{\prime}} / \partial p_{l^{\prime}}=\delta_{k^{\prime} l^{\prime}} \tag{8.9.10d}
\end{align*}
$$

and

$$
\begin{align*}
\left(p_{k^{\prime}}, q_{l^{\prime}}\right)_{q^{\prime}, p^{\prime}} & \equiv \sum\left[\left(\partial p_{k^{\prime}} / \partial p_{r^{\prime}}\right)\left(\partial q_{l^{\prime}} / \partial q_{r^{\prime}}\right)-\left(\partial p_{k^{\prime}} / \partial q_{r^{\prime}}\right)\left(\partial q_{l^{\prime}} / \partial p_{r^{\prime}}\right)\right] \\
& =\sum\left[\left(\delta_{k^{\prime} r^{\prime}}\right)\left(\delta_{l^{\prime} r^{\prime}}\right)-(0)(0)\right]=\delta_{k^{\prime} l^{\prime}} ; \quad \text { Q.E.D. } \tag{8.9.10e}
\end{align*}
$$

Similarly, we show that

$$
\begin{align*}
& \left(q_{k^{\prime}}, q_{l^{\prime}}\right)_{q, p}=\left(q_{k^{\prime}}, q_{l^{\prime}}\right)_{q^{\prime}, p^{\prime}}=0, \tag{8.9.10f}\\
& \left(p_{k^{\prime}}, p_{l^{\prime}}\right)_{q, p}=\left(p_{k^{\prime}}, p_{l^{\prime}}\right)_{q^{\prime}, p^{\prime}}=0 .
\end{align*}
$$

Now to the demonstration of (8.9.10). We have, successively,

$$
\begin{align*}
(f, g)_{q^{\prime}, p^{\prime}} \equiv & \sum\left[\left(\partial f / \partial p_{r^{\prime}}\right)\left(\partial g / \partial q_{r^{\prime}}\right)-\left(\partial f / \partial q_{r^{\prime}}\right)\left(\partial g / \partial p_{r^{\prime}}\right)\right] \\
= & \sum \sum\left\{\left(\partial f / \partial p_{r^{\prime}}\right)\left[\left(\partial g / \partial q_{r}\right)\left(\partial q_{r} / \partial q_{r^{\prime}}\right)+\left(\partial g / \partial p_{r}\right)\left(\partial p_{r} / \partial q_{r^{\prime}}\right)\right]\right. \\
& \left.\quad-\left(\partial f / \partial q_{r^{\prime}}\right)\left[\left(\partial g / \partial q_{r}\right)\left(\partial q_{r} / \partial p_{r^{\prime}}\right)+\left(\partial g / \partial p_{r}\right)\left(\partial p_{r} / \partial q_{r^{\prime}}\right)\right]\right\} \\
= & \sum\left[\left(\partial g / \partial q_{r}\right)\left(f, q_{r}\right)_{q^{\prime}, p^{\prime}}+\left(\partial g / \partial p_{r}\right)\left(f, p_{r}\right)_{q^{\prime}, p^{\prime}}\right] . \tag{8.9.10h}
\end{align*}
$$

Applying the above, first for $f \rightarrow q_{r}$ and $g \rightarrow f$, and then for $f \rightarrow q_{r}$ and $g \rightarrow f$, while invoking (8.9.10e-g), we get, respectively,

$$
\begin{align*}
\left(q_{r}, f\right)_{q^{\prime}, p^{\prime}} & =\sum\left[\left(\partial f / \partial q_{l}\right)\left(q_{r}, q_{l}\right)_{q^{\prime}, p^{\prime}}+\left(\partial f / \partial p_{l}\right)\left(q_{r}, p_{l}\right)_{q^{\prime}, p^{\prime}}\right] \\
& =\sum\left[\left(\partial f / \partial q_{l}\right)(0)+\left(\partial f / \partial p_{l}\right)\left(-\delta_{l r}\right)\right]=-\left(\partial f / \partial p_{r}\right), \tag{8.9.10i}\\
\left(p_{r}, f\right)_{q^{\prime}, p^{\prime}} & =\sum\left[\left(\partial f / \partial q_{l}\right)\left(p_{r}, q_{l}\right)_{q^{\prime}, p^{\prime}}+\left(\partial f / \partial p_{l}\right)\left(p_{r}, p_{l}\right)_{q^{\prime}, p^{\prime}}\right] \\
& =\sum\left[\left(\partial f / \partial q_{l}\right)\left(\delta_{r l}\right)+\left(\partial f / \partial p_{l}\right)(0)\right]=\partial f / \partial q_{r} . \tag{8.9.10j}
\end{align*}
$$

Finally, substituting (8.9.10i, j) back in (8.9.10h), while invoking the antisymmetry of PB, we find

$$
\begin{equation*}
(f, g)_{q^{\prime}, p^{\prime}}=\sum\left[\left(\partial f / \partial p_{r}\right)\left(\partial g / \partial q_{r}\right)-\left(\partial f / \partial q_{r}\right)\left(\partial g / \partial p_{r}\right)\right] \equiv(f, g)_{q, p} \quad \text { Q.E.D. } \tag{8.9.10k}
\end{equation*}
$$

[For an alternative derivation, see also Landau and Lifshitz (1960, p. 145); and ex. 8.9.1 below, with direct proof.]

In view of this fundamental theorem, the PB subscripts become unnecessary, and will, henceforth, be omitted.
(ii) Let us now express the conditions for the canonicity of the transformations (8.8.8a, b)

$$
\begin{equation*}
q^{\prime}=q^{\prime}(t, q, p), \quad p^{\prime}=p(t, q, p) \tag{8.9.11a}
\end{equation*}
$$

via PB. The fundamental relevant definition/requirement (8.8.12) yields, successively,

$$
\begin{align*}
\sum & p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}} \\
& =\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}}\left\{\sum\left[\left(\partial q_{k^{\prime}} / \partial q_{k}\right) \delta q_{k}+\left(\partial q_{k^{\prime}} / \partial p_{k}\right) \delta p_{k}\right]\right\} \\
& =\sum\left\{\left[p_{k}-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial q_{k}\right)\right] \delta q_{k}-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial p_{k}\right) \delta p_{k}\right\} \\
& =\sum\left[(\ldots)_{k} \delta q_{k}+(\ldots)_{k} \delta p_{k}\right] . \tag{8.9.11b}
\end{align*}
$$

As is well-known ($\$ 2.3 \mathrm{ff}$.), for this differential expression to be an exact (virtual) differential, the following three groups of necessary and sufficient conditions must hold [identically, and for all values of their free (= unsummed) indices]:
(a) δp^{\prime} s: $\quad \partial / \partial p_{l}\left[-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial p_{k}\right)\right]=\partial / \partial p_{k}\left[-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial p_{l}\right)\right]$,
or, carrying out the differentiations and recalling the earlier definitions of Lagrangean brackets (8.7.13),

$$
\begin{equation*}
\sum\left[\left(\partial p_{k^{\prime}} / \partial p_{l}\right)\left(\partial q_{k^{\prime}} / \partial p_{k}\right)-\left(\partial p_{k^{\prime}} / \partial p_{k}\right)\left(\partial q_{k^{\prime}} / \partial p_{l}\right)\right] \equiv\left[p_{l}, p_{k}\right]=0 \tag{8.9.11d}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { (b) } \delta q^{\prime} \text { s: } \partial / \partial q_{l}\left[p_{k}-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial q_{k}\right)\right]=\partial / \partial q_{k}\left[p_{l}-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial q_{l}\right)\right] \tag{8.9.11e}
\end{equation*}
$$

or, carrying out the differentiations and noting that the q 's and p 's are mutually independent,

$$
\begin{equation*}
\sum\left[\left(\partial p_{k^{\prime}} / \partial q_{l}\right)\left(\partial q_{k^{\prime}} / \partial q_{k}\right)-\left(\partial p_{k^{\prime}} / \partial q_{k}\right)\left(\partial q_{k^{\prime}} / \partial q_{l}\right)\right] \equiv\left[q_{l}, q_{k}\right]=0 \tag{8.9.11f}
\end{equation*}
$$

and
(c) δq^{\prime} s and δp^{\prime} s: $\quad \partial / \partial q_{l}\left[-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial p_{k}\right)\right]=\partial / \partial p_{k}\left[p_{l}-\sum p_{k^{\prime}}\left(\partial q_{k^{\prime}} / \partial q_{l}\right)\right]$,
or

$$
\begin{gather*}
\sum\left[\left(\partial p_{k^{\prime}} / \partial q_{l}\right)\left(\partial q_{k^{\prime}} / \partial p_{k}\right)-\left(\partial p_{k^{\prime}} / \partial p_{k}\right)\left(\partial q_{k^{\prime}} / \partial q_{l}\right)\right]=\left[q_{l}, p_{k}\right]=-\left(\partial p_{l} / \partial p_{k}\right)=-\delta_{k l} \\
\Rightarrow\left[p_{k}, q_{l}\right]=\delta_{k l} . \tag{8.9.11h}
\end{gather*}
$$

Similarly, the exactness conditions of

$$
\begin{equation*}
\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}}=\sum\left[(\ldots)_{k^{\prime}} \delta q_{k^{\prime}}+(\ldots)_{k^{\prime}} \delta p_{k^{\prime}}\right] \tag{8.9.11i}
\end{equation*}
$$

lead to

$$
\begin{equation*}
\left[p_{l^{\prime}}, p_{k^{\prime}}\right]=0, \quad\left[q_{l^{\prime}}, q_{k^{\prime}}\right]=0, \quad\left[p_{l^{\prime}}, q_{k^{\prime}}\right]=\delta_{l^{\prime} k^{\prime}} \tag{8.9.11j}
\end{equation*}
$$

Although these canonicity conditions are in terms of the Lagrangean brackets, yet noting that in there the roles of q 's, p 's and $q^{\prime \prime} s, p^{\prime \prime} s$ can be exchanged, and that [due
to (8.9.10) and (8.7.25)] both Poisson and Lagrange brackets are canonically invariant, we easily deduce the earlier PB conditions (8.9.10a, f, g):

$$
\begin{equation*}
\left(p_{l^{\prime}}, p_{k^{\prime}}\right)=0, \quad\left(q_{l^{\prime}}, q_{k^{\prime}}\right)=0, \quad\left(p_{l^{\prime}}, q_{k^{\prime}}\right)=\delta_{l^{\prime} k^{\prime}} \tag{8.9.11k}
\end{equation*}
$$

Equations $(8.9 .11 \mathrm{j}, \mathrm{k})$ have the following interesting geometrical interpretation. Let us consider, for simplicity, a one-DOF system. Under the canonical transformation $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$, the region of allowable values of q and p - namely, R - is transformed into a region R^{\prime} for the corresponding values of q^{\prime} and p^{\prime}. If all these coordinates are assumed rectangular Cartesian, the areas of R and R^{\prime} are, respectively (for a fixed time, if the transformation is explicitly time-dependent),

$$
\begin{equation*}
A_{R} \equiv A=\iint d q d p \quad \text { and } \quad A_{R^{\prime}} \equiv A^{\prime}=\iint d q^{\prime} d p^{\prime} \tag{8.9.12a}
\end{equation*}
$$

But, by well-known theorems of advanced (or vector) calculus, we have, successively,

$$
\begin{align*}
A^{\prime} & =\iint d q^{\prime} d p^{\prime}=\iint\left[\partial\left(q^{\prime}, p^{\prime}\right) / \partial(q, p)\right] d q d p \\
& =\iint\left[\left(\partial q^{\prime} / \partial q\right)\left(\partial p^{\prime} / \partial p\right)-\left(\partial q^{\prime} / \partial p\right)\left(\partial p^{\prime} / \partial q\right)\right] d q d p \\
& =\iint\left(p^{\prime}, q^{\prime}\right)_{q, p} d q d p=\iint(1) d q d p \quad\left(\text { since } \delta_{11}=1\right) \\
& =\iint[p, q] d q d p=\iint(1) d q d p=A \tag{8.9.12b}
\end{align*}
$$

and, similarly,

$$
\begin{align*}
A & =\iint d q d p=\iint\left[\partial(q, p) / \partial\left(q^{\prime}, p^{\prime}\right)\right] d q^{\prime} d p^{\prime} \\
& =\iint(p, q)_{q^{\prime}, p^{\prime}} d q^{\prime} d p^{\prime}=\iint(1) d q^{\prime} d p^{\prime} \\
& =\iint\left[p^{\prime}, q^{\prime}\right] d q^{\prime} d p^{\prime}=\iint(1) d q^{\prime} d p^{\prime}=A^{\prime} \tag{8.9.12c}
\end{align*}
$$

In words: canonical transformations are area-preserving, among their various representations. Similarly, for the n-DOF case, but with areas replaced by volumes (Liouville's theorem); see also "Integral Invariants" (§8.12).

Example 8.9.1 Direct Proof of the Canonical Invariance of PB. Under a canonical transformation $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$, an arbitrary (differentiable) function $f=f(q, p)$ becomes another function of q^{\prime}, p^{\prime} :

$$
\begin{equation*}
f=f(q, p)=f\left[q\left(q^{\prime}, p^{\prime}\right), p\left(q^{\prime}, p^{\prime}\right)\right] \equiv f^{\prime}\left(q^{\prime}, p^{\prime}\right)=f^{\prime} \tag{a}
\end{equation*}
$$

and similarly for the function $g=g(q, p)=\cdots=g^{\prime}$. Hence, by chain rule we find, successively,

$$
\begin{aligned}
&(f, g)_{q, p}=\sum\left[\left(\partial f / \partial p_{r}\right)\left(\partial g / \partial q_{r}\right)-\left(\partial f / \partial q_{r}\right)\left(\partial g / \partial p_{r}\right)\right] \\
&=\sum \sum \sum\{ {\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial p_{k^{\prime}} / \partial p_{r}\right)+\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial q_{k^{\prime}} / \partial p_{r}\right)\right]\left[\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\left(\partial p_{l^{\prime}} / \partial q_{r}\right)\right.} \\
&\left.+\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)\left(\partial q_{l^{\prime}} / \partial q_{r}\right)\right] \\
&-\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial p_{k^{\prime}} / \partial q_{r}\right)+\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial q_{k^{\prime}} / \partial q_{r}\right)\right]\left[\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\left(\partial p_{l^{\prime}} / \partial p_{r}\right)\right. \\
&\left.\left.+\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)\left(\partial q_{l^{\prime}} / \partial p_{r}\right)\right]\right\} \\
&=\sum \sum \sum\{ \left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\left[\left(\partial p_{k^{\prime}} / \partial p_{r}\right)\left(\partial p_{l^{\prime}} / \partial q_{r}\right)-\left(\partial p_{k^{\prime}} / \partial q_{r}\right)\left(\partial p_{l^{\prime}} / \partial p_{r}\right)\right] \\
&+\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)\left[\left(\partial q_{k^{\prime}} / \partial p_{r}\right)\left(\partial q_{l^{\prime}} / \partial q_{r}\right)-\left(\partial q_{k^{\prime}} / \partial q_{r}\right)\left(\partial q_{l^{\prime}} / \partial p_{r}\right)\right] \\
&+\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)\left[\left(\partial p_{k^{\prime}} / \partial p_{r}\right)\left(\partial q_{l^{\prime}} / \partial q_{r}\right)-\left(\partial p_{k^{\prime}} / \partial q_{r}\right)\left(\partial q_{l^{\prime}} / \partial p_{r}\right)\right] \\
&\left.+\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\left[\left(\partial q_{k^{\prime}} / \partial p_{r}\right)\left(\partial p_{l^{\prime}} / \partial q_{r}\right)-\left(\partial q_{k^{\prime}} / \partial q_{r}\right)\left(\partial p_{l^{\prime}} / \partial p_{r}\right)\right]\right\}
\end{aligned}
$$

[recalling the PB definition, $(\ldots)_{q, p}$, and then invoking (8.9.10af, g$) /(8.9 .11 \mathrm{k})$]

$$
\begin{align*}
&=\sum \sum\{ {\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\right]\left(p_{k^{\prime}}, p_{l^{\prime}}\right)+\left[\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)\right]\left(q_{k^{\prime}}, q_{l^{\prime}}\right) } \\
&\left.+\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)-\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\right]\left(p_{k^{\prime}}, q_{l^{\prime}}\right)\right\} \\
&=\sum \sum\left\{\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\right](0)+\left[\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)\right](0)\right. \\
&\left.+\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)-\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\right]\left(\delta_{k^{\prime} l^{\prime}}\right)\right\} \\
&=\sum \sum\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{l^{\prime}}\right)-\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{l^{\prime}}\right)\right]\left(\delta_{k^{\prime} l^{\prime}}\right) \\
&= \sum\left[\left(\partial f^{\prime} / \partial p_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial q_{k^{\prime}}\right)-\left(\partial f^{\prime} / \partial q_{k^{\prime}}\right)\left(\partial g^{\prime} / \partial p_{k^{\prime}}\right)\right] \equiv(f, g)_{q^{\prime}, p^{\prime}}, \quad \text { Q.E.D. } \tag{b}
\end{align*}
$$

Example 8.9.2 Relations among the Fundamental Brackets of Poisson and Lagrange. Let the transformation

$$
\begin{equation*}
q_{k^{\prime}}=q_{k^{\prime}}(t, q, p), \quad p_{k^{\prime}}=p_{k^{\prime}}(t, q, p) \tag{a}
\end{equation*}
$$

be canonical. Then,

$$
\begin{equation*}
\left[p_{k^{\prime}}, p_{l^{\prime}}\right]=0, \quad\left[q_{k^{\prime}}, q_{l^{\prime}}\right]=0, \quad\left[p_{k^{\prime}}, q_{l^{\prime}}\right]=\delta_{k^{\prime} l^{\prime}} \tag{b}
\end{equation*}
$$

Now, if in the earlier-found compatibility conditions (8.7.25, with $\mu \rightarrow k^{\prime}, \lambda \rightarrow l^{\prime}$)

$$
\begin{equation*}
\sum\left[c_{\nu}, c_{k^{\prime}}\right]\left(c_{\nu}, c_{l^{\prime}}\right)=\delta_{k^{\prime} l^{\prime}} \quad(\nu=1, \ldots, 2 n) \tag{c}
\end{equation*}
$$

we substitute $c_{k^{\prime}} \rightarrow p_{k^{\prime}}, c_{l^{\prime}} \rightarrow p_{l^{\prime}} ; c_{1}=p_{1^{\prime}}, \ldots, c_{n}=p_{n^{\prime}} ; c_{n+1}=q_{1^{\prime}}, \ldots, c_{2 n}=q_{n^{\prime}}$, we obtain

$$
\sum\left[p_{r^{\prime}}, p_{k^{\prime}}\right]\left(p_{r^{\prime}}, p_{l^{\prime}}\right)+\sum\left[q_{r^{\prime}}, p_{k^{\prime}}\right]\left(q_{r^{\prime}}, p_{l^{\prime}}\right)=\delta_{k^{\prime} l^{\prime}}
$$

or, due to (b),

$$
\begin{equation*}
\sum(0)\left(p_{r^{\prime}}, p_{l^{\prime}}\right)+\sum\left(-\delta_{r^{\prime} k^{\prime}}\right)\left(q_{r^{\prime}}, p_{l^{\prime}}\right)=\delta_{k^{\prime} l^{\prime}} \Rightarrow-\left(q_{r^{\prime}}, p_{l^{\prime}}\right)=\delta_{k^{\prime} l^{\prime}} \tag{d1}
\end{equation*}
$$

Similarly:
(i) Substituting $c_{k^{\prime}} \rightarrow p_{k^{\prime}}, c_{l^{\prime}} \rightarrow q_{l^{\prime}}$ we obtain

$$
\begin{equation*}
\left(q_{k^{\prime}}, q_{l^{\prime}}\right)=0 \tag{d2}
\end{equation*}
$$

(ii) Substituting $c_{k^{\prime}} \rightarrow q_{k^{\prime}}, c_{l^{\prime}} \rightarrow p_{l^{\prime}}$ we obtain

$$
\begin{equation*}
\left(p_{k^{\prime}}, p_{l^{\prime}}\right)=0 ; \tag{d3}
\end{equation*}
$$

(iii) Substituting $c_{k^{\prime}} \rightarrow q_{k^{\prime}}, c_{l^{\prime}} \rightarrow q_{l^{\prime}}$ we obtain

$$
\begin{equation*}
\left(p_{k^{\prime}}, q_{l^{\prime}}\right)=\delta_{k^{\prime} l^{\prime}} \tag{d4}
\end{equation*}
$$

Hence, starting with (b), and using (c), we proved (d1-4). Let the reader verify the converse; that is, use (c) to show that if (d1-4) hold, so do (b).

Example 8.9.3 Area Preservation in Phase Space under Canonical Transformations. Under the two distinct virtual variations $\delta_{1}(\ldots)$ and $\delta_{2}(\ldots)$, the fundamental canonical transformation definition (8.8.12),

$$
\delta F=\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}}
$$

yields

$$
\begin{equation*}
\delta_{1} F=\sum p_{k} \delta_{1} q_{k}-\sum p_{k^{\prime}} \delta_{1} q_{k^{\prime}}, \quad \delta_{2} F=\sum p_{k} \delta_{2} q_{k}-\sum p_{k^{\prime}} \delta_{2} q_{k^{\prime}} \tag{a}
\end{equation*}
$$

Now, $\delta_{2}(\ldots)$-varying $\delta_{1} F$ and $\delta_{1}(\ldots)$-varying $\delta_{2} F$, and then subtracting side by side, while noting that $\delta_{2}\left(\delta_{1} q_{k}\right)=\delta_{1}\left(\delta_{2} q_{k}\right)$ and $\delta_{2}\left(\delta_{1} q_{k^{\prime}}\right)=\delta_{1}\left(\delta_{2} q_{k^{\prime}}\right)$, we obtain

$$
\begin{align*}
0 & =\delta_{1}\left(\delta_{2} F\right)-\delta_{2}\left(\delta_{1} F\right) \\
& =\sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)-\sum\left(\delta_{1} p_{k^{\prime}} \delta_{2} q_{k^{\prime}}-\delta_{2} p_{k^{\prime}} \delta_{1} q_{k^{\prime}}\right) \tag{b}
\end{align*}
$$

that is,

$$
\begin{equation*}
I \equiv \sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)=\sum\left(\delta_{1} p_{k^{\prime}} \delta_{2} q_{k^{\prime}}-\delta_{2} p_{k^{\prime}} \delta_{1} q_{k^{\prime}}\right) \equiv I^{\prime} \tag{c}
\end{equation*}
$$

[recall (8.7.10)]. Geometrically, and for a one-DOF system, the Lagrangean invariant (bilinear covariant) I, a generalization of the Wronskian determinant, equals the area of the elementary parallelepiped with (rectangular Cartesian) sides $\delta \boldsymbol{s}_{1}=\left(\delta_{1} q, \delta_{1} p\right)$ and $\delta \boldsymbol{s}_{2}=\left(\delta_{2} q, \delta_{2} p\right)$, emanating from (q, p) in phase space:

$$
\begin{equation*}
\text { Area }=\left(\delta \boldsymbol{s}_{2} \times \delta \boldsymbol{s}_{1}\right)_{z}=\delta_{1} p \delta_{2} q-\delta_{2} p \delta_{1} q=\delta_{1} p^{\prime} \delta_{2} q^{\prime}-\delta_{2} p^{\prime} \delta_{1} q^{\prime}=\text { constant } \tag{d}
\end{equation*}
$$

Example 8.9.4 Angular Momentum and Poisson's Brackets.

(i) The components of the angular momentum of a particle P of mass m relative to the origin of rectangular Cartesian axes $O-x y z \equiv O-123$ are (with $p_{x} \equiv m \dot{x} \rightarrow p_{1}=m \dot{x}_{1}$, etc.)

$$
\begin{align*}
& h_{x}=y p_{z}-z p_{y} \rightarrow h_{1}=x_{2} p_{3}-x_{3} p_{2}, \\
& h_{y}=z p_{x}-x p_{z} \\
& \rightarrow h_{2}=x_{3} p_{1}-x_{1} p_{3}, \tag{a}\\
& h_{z}=x p_{y}-y p_{x} \rightarrow h_{3}=x_{1} p_{2}-x_{2} p_{1} .
\end{align*}
$$

Hence, their PB are

$$
\begin{align*}
\left(h_{1}, h_{2}\right) & \equiv \sum\left[\left(\partial h_{1} / \partial p_{r}\right)\left(\partial h_{2} / \partial x_{r}\right)-\left(\partial h_{1} / \partial x_{r}\right)\left(\partial h_{2} / \partial p_{r}\right)\right] \\
& =\cdots=-\left(x_{1} p_{2}-x_{2} p_{1}\right)=-h_{3}, \tag{b}
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
\left(h_{1}, h_{3}\right)=h_{2}, \quad\left(h_{2}, h_{3}\right)=-h_{1} ; \tag{c}
\end{equation*}
$$

or, compactly, with the help of the well-known Levi-Civita permutation symbol $\varepsilon_{k r s}[=+1 /-1 / 0$, according as k, r, s are an even/odd/no permutation of $1,2,3$ (§1.1)]:

$$
\begin{equation*}
\left(h_{k}, h_{l}\right)=-\sum \varepsilon_{k l r} h_{r}=\sum \varepsilon_{k r l} h_{r} . \tag{d}
\end{equation*}
$$

(ii) With the help of the above [and (8.9.5d) $\rightarrow(8.9 .5 \mathrm{e}) \rightarrow(8.95 \mathrm{a})$], we find, successively (with $h \equiv|\boldsymbol{h}|$),

$$
\begin{align*}
\left(h_{k}, h^{2}\right) & =\left(h_{k}, \sum h_{r}^{2}\right) \\
& =\sum\left(h_{k}, h_{r}^{2}\right) \\
& =\sum\left[h_{r}\left(h_{k}, h_{r}\right)+h_{r}\left(h_{k}, h_{r}\right)\right]=\sum 2 h_{r}\left(h_{k}, h_{r}\right) \\
& =\sum 2 h_{r}\left(-\sum \varepsilon_{k r l} h_{l}\right)=-2 \sum \sum \varepsilon_{k r l} h_{r} h_{l}=0 \tag{e}
\end{align*}
$$

since $\varepsilon_{k r l}=-\varepsilon_{k l r}$ (as in the case of gyroscopicity!).
These results are important in the extension of the Hamiltonian formalism to quantum mechanics.

Example 8.9.5 Canonicity via Symplectic (or Simplicial) Matrices. (May be omitted in a first reading.) Here, we summarize a more algebraic approach to canonicity. Let \mathbf{J}, or $\mathbf{J}_{2 \mathrm{n}}$, be the following block matrix

$$
\mathbf{J} \equiv \mathbf{J}_{2 \mathrm{n}} \equiv\left(\begin{array}{rr}
\mathbf{0}_{\mathrm{n}} & \mathbf{1}_{\mathrm{n}} \tag{a}\\
-\mathbf{1}_{\mathrm{n}} & \mathbf{0}_{\mathrm{n}}
\end{array}\right)
$$

where $\mathbf{0}_{\mathrm{n}}=n \times n$ zero matrix, and $\mathbf{1}_{\mathrm{n}}=n \times n$ (diagonal) unit, or identity, matrix.
We can readily confirm that

$$
\begin{equation*}
\mathbf{J}^{2}=-\mathbf{1}_{2 \mathrm{n}} \quad \text { and } \quad \mathbf{J}=-\mathbf{J}^{-1} \tag{b}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\operatorname{Det}\left(\mathbf{J}^{2}\right)=(\operatorname{Det} \mathbf{J})^{2}=\operatorname{Det} \mathbf{1}_{2 \mathrm{n}}=1 \Rightarrow \operatorname{Det} \mathbf{J} \neq 0 \tag{c}
\end{equation*}
$$

Next, a $2 n \times 2 n$ matrix $\mathbf{M}_{2 n}$, or simply \mathbf{M}, is called symplectic if

$$
\begin{equation*}
\mathbf{M}^{\mathrm{T}} \mathbf{J} \mathbf{M}=\mathbf{J} \quad\left[(\ldots)^{\mathrm{T}}: \text { Transpose of }(\ldots)\right] \tag{d}
\end{equation*}
$$

Since $\operatorname{Det}\left(\mathbf{M}^{\mathrm{T}} \mathbf{J M}\right)=\left(\operatorname{Det} \mathbf{M}^{\mathrm{T}}\right)(\operatorname{Det} \mathbf{J})(\operatorname{Det} \mathbf{M})=\operatorname{Det} \mathbf{J}$, then due to $\operatorname{Det} \mathbf{M}^{\mathrm{T}}=$ $\operatorname{Det} \mathbf{M}$ and (c), we readily conclude that $(\operatorname{Det} \mathbf{M})^{2}=1 \Rightarrow \operatorname{Det} \mathbf{M}= \pm 1$ (it can be shown that $\operatorname{Det} \mathbf{M}=1$). Hence, \mathbf{M} is invertible. Indeed, from (d), we find that

$$
\begin{equation*}
\mathbf{M}^{-1}=-\mathbf{J} \mathbf{M}^{\mathrm{T}} \mathbf{J} \tag{e}
\end{equation*}
$$

Now, we introduce the following fundamental definition.

DEFINITION

The one-to-one (invertible) transformation $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$, in the $2 n$-dimensional phase space, is called canonical if the corresponding $2 n \times 2 n$ Jacobian matrix

$$
\left(\begin{array}{ll}
\partial p_{k} / \partial p_{l^{\prime}} & \partial p_{k} / \partial q_{l^{\prime}} \tag{f}\\
\partial q_{k} / \partial p_{l^{\prime}} & \partial q_{k} / \partial q_{l^{\prime}}
\end{array}\right)
$$

is symplectic. The equivalence of this definition with those based on the Poisson brackets is established as follows:
(i) Using the fact that the transpose of the block matrix

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \tag{g}\\
\mathbf{C} & \mathbf{D}
\end{array}\right)
$$

equals

$$
\left(\begin{array}{ll}
\mathbf{A}^{\mathrm{T}} & \mathbf{C}^{\mathrm{T}} \tag{h}\\
\mathbf{B}^{\mathrm{T}} & \mathbf{D}^{\mathrm{T}}
\end{array}\right)
$$

where $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are arbitrary $n \times n$ matrices, we can show that

$$
\mathbf{M} \equiv\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \tag{i}\\
\mathbf{C} & \mathbf{D}
\end{array}\right)
$$

is symplectic if, and only if

- $\mathbf{A}^{\mathrm{T}} \mathbf{C}$ and $\mathbf{B}^{\mathrm{T}} \mathbf{D}$ are symmetric (i.e., equal to their transposes),
- $\mathbf{D}^{\mathrm{T}} \mathbf{A}-\mathbf{B}^{\mathrm{T}} \mathbf{C}=1$.
(ii) Applying these results to the Jacobian (f); that is
$\mathbf{A}=\left(\partial p_{k} / \partial p_{l^{\prime}}\right)$,
$\mathbf{B}=\left(\partial p_{k} / \partial q_{l^{\prime}}\right)$,
$\mathbf{C}=\left(\partial q_{k} / \partial p_{l^{\prime}}\right)$,
$\mathbf{D}=\left(\partial q_{k} / \partial q_{l^{\prime}}\right)$,
we see that it is symplectic, and hence the transformation $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ is canonical, if, and only if,

$$
\begin{equation*}
\left[p_{k^{\prime}}, p_{l^{\prime}}\right]=0, \quad\left[q_{k^{\prime}}, q_{l^{\prime}}\right]=0, \quad\left[p_{k^{\prime}}, q_{l^{\prime}}\right]=\delta_{k^{\prime} l^{\prime}} \tag{k}
\end{equation*}
$$

which are, of course, the earlier-found Lagrangean bracket conditions.

Example 8.9.6 Evolution of a Mechanical System via PB. Let $f=f(q, p)$ and $H=H(q, p)$. Then, by (8.9.1), and assuming only potential forces,

$$
\begin{equation*}
d f / d t=(H, f) ; \tag{a}
\end{equation*}
$$

and again by (8.9.1), with $f \rightarrow d f / d t$:

$$
\begin{equation*}
d^{2} f / d t^{2}=(H, d f / d t)=(H,(H, f)) ; \tag{b}
\end{equation*}
$$

and similarly for $d^{3} f / d t^{3}, \ldots$. As a result, the MacLaurin expansion,

$$
\begin{equation*}
f[q(t), p(t)] \equiv f(t)=f(0)+(d f / d t)_{o} t+(1 / 2)\left(d^{2} f / d t^{2}\right)_{o} t^{2}+\cdots, \tag{c}
\end{equation*}
$$

becomes

$$
\begin{align*}
& f(t)=f(0)+t(H, f(0))+\left(t^{2} / 2\right)(H,(H, f(0))) \\
&+\left(t^{3} / 6\right)(H,(H,(H, f(0))))+\cdots \\
& \equiv f(0) \exp [t(H, \ldots)] \quad[\text { symbolically }] \tag{d}
\end{align*}
$$

This expresses the earlier-described (§3.12) doctrine of determinism: if all q 's and p 's, and hence all system functions, like $f(q, p)$, are known at an "initial" instant $t=0$, then the state of the system at any later time t can be determined with the help of its known (constant) Hamiltonian $H(q, p)$, from (d), to any degree of accuracy.

Example 8.9.7 Infinitesimal Canonical Transformations. A general transformation

$$
\begin{equation*}
q_{k} \rightarrow q_{k^{\prime}}=q_{k}+\varepsilon f_{k}(q, p), \quad p_{k} \rightarrow p_{k^{\prime}}=p_{k}+\varepsilon g_{k}(q, p) \tag{a}
\end{equation*}
$$

is called infinitesimal (IT) if ε can be viewed as an infinitesimal parameter, independent of the q 's and p 's, whose higher powers can, therefore, be neglected. Under such a transformation, a general function $F\left(q^{\prime}, p^{\prime}\right)$ becomes

$$
\begin{align*}
F\left(q^{\prime}, p^{\prime}\right) & =F(q+\varepsilon f, p+\varepsilon g) \\
& =F(q, p)+\varepsilon \sum\left[\left(\partial F / \partial q_{k}\right) f_{k}+\left(\partial F / \partial p_{k}\right) g_{k}\right] . \tag{b}
\end{align*}
$$

Examples of such IT are (i) the infinitesimal rotations of a rigid body about a fixed point (§ 1.9ff.); and, of course, (ii) the general (first-order) virtual displacement (§2.5) $\delta \boldsymbol{r}=\sum\left(\partial \boldsymbol{r} / \partial q_{k}\right) \delta q_{k}$.

If the transformation (a) is also canonical (infinitesimal canonical transformation, ICT) then, by the definition (8.8.12), we must have

$$
\begin{align*}
\delta F & =\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}} \\
& =\sum p_{k} \delta q_{k}-\sum\left(p_{k}+\varepsilon g_{k}\right)\left(\delta q_{k}+\varepsilon \delta f_{k}\right) \\
& =-\varepsilon \sum\left(p_{k} \delta f_{k}+g_{k} \delta q_{k}\right) \quad[\text { to the first order in } \varepsilon] \\
& =-\varepsilon \sum\left\{p_{k}\left(\sum\left[\left(\partial f_{k} / \partial p_{l}\right) \delta p_{l}+\left(\partial f_{k} / \partial q_{l}\right) \delta q_{l}\right]\right)+g_{k} \delta q_{k}\right\} \\
& =-\varepsilon \sum\left\{\left[g_{l}+\sum p_{k}\left(\partial f_{k} / \partial q_{l}\right)\right] \delta q_{l}+\left(\sum p_{k}\left(\partial f_{k} / \partial p_{l}\right)\right) \delta p_{l}\right\}, \tag{c}
\end{align*}
$$

and from this, setting $F \equiv \varepsilon W(q, p)$ and equating virtual differential coefficients, we obtain

$$
\begin{equation*}
g_{l}+\sum p_{k}\left(\partial f_{k} / \partial q_{l}\right)=-\partial W / \partial q_{l}, \quad \sum p_{k}\left(\partial f_{k} / \partial p_{l}\right)=-\partial W / \partial p_{l} \tag{d}
\end{equation*}
$$

or, since here the q 's and p 's are considered independent,

$$
g_{l}+\partial / \partial q_{l}\left(\sum p_{k} f_{k}\right)=-\partial W / \partial q_{l}, \quad \partial / \partial p_{l}\left(\sum p_{k} f_{k}\right)-f_{l}=-\partial W / \partial p_{l}
$$

or, finally, with the help of the new generating function: $G \equiv W+\sum p_{k} f_{k}$,

$$
\begin{equation*}
f_{l}=\partial G / \partial p_{l}, \quad g_{l}=-\partial G / \partial q_{l} . \tag{e}
\end{equation*}
$$

Hence, the original transformations (a) become

$$
\begin{equation*}
q_{k^{\prime}}-q_{k} \equiv \xi_{k}=\varepsilon\left(\partial G / \partial p_{k}\right), \quad p_{k^{\prime}}-p_{k} \equiv \eta_{k}=-\varepsilon\left(\partial G / \partial q_{k}\right) ; \tag{f}
\end{equation*}
$$

that is, Hamilton's equations can be viewed as an ICT with generating function the system Hamiltonian:

$$
\begin{equation*}
\varepsilon \rightarrow d t, \quad G \rightarrow H: \quad d q_{k}=\left(\partial H / \partial p_{k}\right) d t, \quad d p_{k}=-\left(\partial H / \partial q_{k}\right) d t \tag{g}
\end{equation*}
$$

a result admirably summed up by Whittaker in the following words: "The whole course of a dynamical system can thus be regarded as the gradual self-unfolding of a contact transformation" (1937, p. 304), with time merely as a parameter of that transformation.
[Some authors, including Whittaker, by contact transformations mean our canonical transformations - see next example. Others, however, use that term to signify homogeneous canonical (or Mathieu) transformations; see, for example, Rund (1966).]

Finally, substituting (e, f) in (b), we obtain

$$
\begin{align*}
\Delta F & =\sum\left[\left(\partial F / \partial q_{k}\right) \xi_{k}+\left(\partial F / \partial p_{k}\right) \eta_{k}\right] \\
& =\varepsilon \sum\left[\left(\partial F / \partial q_{k}\right)\left(\partial G / \partial p_{k}\right)-\left(\partial F / \partial p_{k}\right)\left(\partial G / \partial q_{k}\right)\right] \\
& =\varepsilon(G, F), \tag{h}
\end{align*}
$$

thus providing another interpretation of Poisson's brackets.

REMARKS

(i) Equations (f) can also be obtained by adding the infinitesimal $\varepsilon G\left(q, p^{\prime}\right)$ to the identity transformation [generated by $\sum q_{k} p_{k^{\prime}}$, or by $-\sum p_{k} q_{k^{\prime}}$ (§8.8)]; that is, if we take as generating function

$$
\begin{equation*}
F=\sum q_{k} p_{k^{\prime}}+\varepsilon G\left(q, p^{\prime}\right) \equiv F_{2}\left(q, p^{\prime}\right) \tag{i}
\end{equation*}
$$

then, recalling (8.8.17),

$$
\begin{align*}
& q_{k^{\prime}}=\partial F_{2} / \partial p_{k^{\prime}}=q_{k}+\varepsilon\left(\partial G / \partial p_{k^{\prime}}\right) \tag{j1}\\
& p_{k}=\partial F_{2} / \partial q_{k}=p_{k^{\prime}}+\varepsilon\left(\partial G / \partial q_{k}\right) \tag{j2}
\end{align*}
$$

that is, to the first order,

$$
\begin{align*}
\xi_{k} & =\varepsilon\left(\partial G / \partial p_{k^{\prime}}\right) \approx \varepsilon\left(\partial G / \partial p_{k}\right), \tag{k1}\\
\eta_{k} & =-\varepsilon\left(\partial G / \partial q_{k}\right) ; \quad G\left(q, p^{\prime}\right) \approx G(q, p) . \tag{k2}
\end{align*}
$$

(ii) That the transformation of the q 's and p 's from their initial values to their values at any later time is canonical can also be seen from the group property of these transformations; that is, from that, (a) the result of two successive canonical transformations is also canonical, and (b) the inverse of a canonical transformation, from the new variables to the old ones, is also canonical.

Example 8.9.8 Contact Transformation. If $\sum p_{k} \delta q_{k}=$ total virtual differential $\equiv \delta f$, then, by the fundamental definition (8.8.12),

$$
\begin{equation*}
\sum p_{k^{\prime}} \delta q_{k^{\prime}}=\sum p_{k} \delta q_{k}-\delta F=\delta(f-F) \tag{a}
\end{equation*}
$$

that is, $\sum p_{k^{\prime}} \delta q_{k^{\prime}}$ is also a total virtual differential.
Let us see if the converse is also true. For $\sum p_{k^{\prime}} \delta q_{k^{\prime}}=\delta f^{\prime}$ to follow from $\sum p_{k} \delta q_{k}=\delta f$, we must have

$$
\begin{equation*}
\sum p_{k^{\prime}} \delta q_{k^{\prime}}-\delta f^{\prime}=\mu\left(\sum p_{k} \delta q_{k}-\delta f\right) \tag{b}
\end{equation*}
$$

Now:
(i) If $\mu \equiv 1$, then, clearly, we are dealing with a canonical transformation with generating function $F=f-f^{\prime}$;
(ii) If $\mu \neq 1$, then (b) represents a so-called general contact transformation (Lie). We will not pursue such transformations any further here, but the reader should be aware that, in a number of expositions, the terms canonical and contact transformations are used synonymously.

Problem 8.9.1 Canonicity Conditions.
(i) Show that the linear homogeneous transformation

$$
\begin{equation*}
q_{k^{\prime}}=\sum Q_{k^{\prime} k} q_{k}, \quad p_{k^{\prime}}=\sum P_{k^{\prime} k} p_{k} \tag{a}
\end{equation*}
$$

where $Q_{k^{\prime} k}, P_{k^{\prime} k}$ are constant coefficients, is canonical if, and only if,

$$
\begin{equation*}
\sum Q_{k^{\prime} k} P_{k^{\prime} l}=\delta_{k l} \tag{b}
\end{equation*}
$$

that is, $P_{k^{\prime} k}$: cofactor of $Q_{k^{\prime} k}$ in $\operatorname{Det}\left(Q_{k^{\prime} k}\right) \equiv Q$, divided by $Q(\neq 0)$.
(ii) Then show that, as a result of (b), we have

$$
\begin{equation*}
\sum p_{k^{\prime}} q_{k^{\prime}}=\sum p_{k} q_{k} \tag{c}
\end{equation*}
$$

HINT
For canonicity, we must have $\left(p_{k^{\prime}}, q_{l^{\prime}}\right)=\delta_{k^{\prime} l^{\prime}}$.

Problem 8.9.2 Properties of Poisson's Brackets. Show that, for a general function $f=f(t, q, p)$, and with t, q, p regarded as independent variables,

$$
\begin{equation*}
\left(f, q_{k}\right)=\partial f / \partial p_{k}, \quad\left(f, p_{k}\right)=-\partial f / \partial q_{k}, \quad(f, t)=0 \tag{a}
\end{equation*}
$$

Problem 8.9.3 Properties of Poisson's Brackets. Using the results of the preceding problem, show that

$$
\begin{equation*}
\partial^{2} f / \partial q_{k} \partial q_{l}=\left(p_{l},\left(p_{k}, f\right)\right) \tag{a}
\end{equation*}
$$

Obtain similar expressions for $\partial^{2} f / \partial q_{k} \partial p_{l}$ and $\partial^{2} f / \partial p_{k} \partial p_{l}$.

Problem 8.9.4 Equations of Motion via Poisson's Brackets.
(i) Show that Hamilton's equations

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k}+Q_{k} \tag{a}
\end{equation*}
$$

can be rewritten, with the help of PB, as

$$
\begin{equation*}
d q_{k} / d t=\left(H, q_{k}\right), \quad d p_{k} / d t+\left(H, p_{k}\right)+Q_{k} . \tag{b}
\end{equation*}
$$

(ii) Then show that, if $\partial H / \partial t=0$ and $Q_{k}=0$,

$$
\begin{equation*}
d^{2} p_{k} / d t^{2}=\left(H,\left(H, p_{k}\right)\right) . \tag{c}
\end{equation*}
$$

Problem 8.9.5 Power Theorem via Poisson's Brackets. Consider a system whose motion is governed by the Hamiltonian equations

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k}+Q_{k} \tag{a}
\end{equation*}
$$

Using the dynamical identity (8.9.1), show that its power equation is

$$
\begin{equation*}
d H / d t=\partial H / \partial t+\sum Q_{k}\left(d q_{k} / d t\right) \tag{b}
\end{equation*}
$$

HINT
In (8.9.1), set $f \rightarrow H$.

Problem 8.9.6 Angular Momentum and Poisson's Brackets. Continuing from ex. 8.9.3, show that:

$$
\begin{equation*}
\left(x_{k}, h_{l}\right)=-\sum \varepsilon_{k l r} x_{r}=\sum \varepsilon_{k r l} x_{r} ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left(p_{k}, h_{l}\right)=-\sum \varepsilon_{k l r} p_{r}=\sum \varepsilon_{k r l} p_{r} . \tag{a}
\end{equation*}
$$

Problem 8.9.7 Infinitesimal Canonical Transformations (ICT). Show that if $G=$ constant is an integral of the canonical equations of motion of a system $d q_{k} / d t=\partial H / \partial p_{k}$ and $d p_{k} / d t=-\partial H / \partial q_{k}$, then all trajectories created by the ICT
with G as generating function satisfy its canonical variational equations of Jacobi (or Poincaré's équations aux variations):

$$
\begin{align*}
& d \xi_{k} / d t=\sum\left[\left(\partial^{2} H / \partial p_{k} \partial q_{l}\right) \xi_{l}+\left(\partial^{2} H / \partial p_{k} \partial p_{l}\right) \eta_{l}\right] \tag{a}\\
& d \eta_{k} / d t=\sum\left[\left(\partial^{2} H / \partial q_{k} \partial q_{l}\right) \xi_{l}+\left(\partial^{2} H / \partial q_{k} \partial p_{l}\right) \eta_{l}\right] \tag{b}
\end{align*}
$$

where all partial derivatives are evaluated at the system's fundamental trajectory (i.e., for $\varepsilon=0$).

HINT
Show that (a, b) are satisfied by the G-generated perturbations

$$
\begin{equation*}
\xi_{k}=\varepsilon\left(\partial G / \partial p_{k}\right), \quad \eta_{k}=-\varepsilon\left(\partial G / \partial q_{k}\right) \tag{c}
\end{equation*}
$$

where $d G / d t=\partial G / \partial t+(H, G)=0$.
For additional related results, see, for example, Hamel (1949, pp. 301-303).

8.10 THE HAMILTON-JACOBI THEORY

In this section we are carrying out the ultimate objective of canonical transformation (CT) theory: to provide a systematic way of finding CT that simplify the Hamiltonian equations of motion as much as possible, by which we mean $C T$ that render: (i) all new coordinates q^{\prime}, or (ii) all new momenta p^{\prime}, or (iii) both (q^{\prime}, p^{\prime}), constant in time.

Then, and assuming $Q_{k^{\prime}}=0$, the new Hamiltonian equations

$$
\begin{equation*}
d q_{k^{\prime}} / d t=\partial H^{\prime} / \partial p_{k^{\prime}}, \quad d p_{k^{\prime}} / d t=-\partial H^{\prime} / \partial q_{k^{\prime}} \tag{8.10.1}
\end{equation*}
$$

yield, successively:

$$
\begin{align*}
& d q_{k^{\prime}} / d t=0 \Rightarrow q_{k^{\prime}}=\text { constant } \equiv \alpha_{k} \tag{i}\\
& \partial H^{\prime} / \partial p_{k^{\prime}}=0 \quad \text { (i.e., all } p^{\prime} \text { ignorable) } \tag{8.10.2b}\\
& \Rightarrow H^{\prime}=H^{\prime}\left(t, q^{\prime}\right)=H^{\prime}\left(t, \alpha_{1}, \ldots, \alpha_{n}\right) \equiv H^{\prime}(t, \alpha)
\end{align*}
$$

[We hope no confusion will arise from the (tensorially nonrigorous) fact that in this, and similar equations, quantities with accented indices are equated to quantities with nonaccented indices!]

If, further, $\partial H^{\prime} / \partial t=0 \Rightarrow H^{\prime}=H^{\prime}\left(q^{\prime}\right)=H^{\prime}(\alpha)$: constant total energy $\equiv E$, then, by the second of (8.10.1),

$$
\begin{equation*}
d p_{k^{\prime}} / d t=-\partial H^{\prime} / \partial \alpha_{k}=\text { constant } \Rightarrow p_{k^{\prime}}=\text { linear function of time. } \tag{8.10.2d}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& d p_{k^{\prime}} / d t=0 \Rightarrow p_{k^{\prime}}=\text { constant } \equiv \beta_{k} \tag{8.10.3a}\\
& \partial H^{\prime} / \partial q_{k^{\prime}}=0 \text { (i.e., all } q^{\prime} \text { ignorable), } \tag{8.10.3b}\\
& \Rightarrow H^{\prime}=H^{\prime}\left(t, p^{\prime}\right)=H^{\prime}\left(t, \beta_{1}, \ldots, \beta_{n}\right) \equiv H^{\prime}(t, \beta) \tag{8.10.3c}
\end{align*}
$$

If, further, $\partial H^{\prime} / \partial t=0 \Rightarrow H^{\prime}=H^{\prime}\left(p^{\prime}\right)=H^{\prime}(\beta)$: constant total energy $\equiv E$, then, by the first of (8.10.1),

$$
\begin{align*}
& d q_{k^{\prime}} / d t=\partial H^{\prime} / \partial \beta_{k}=\text { constant } \equiv \omega_{k} \\
& \Rightarrow q_{k^{\prime}}=\text { linear function of time } \equiv \omega_{k} t+\alpha_{k}=\left(\partial E / \partial \beta_{k}\right) t+\alpha_{k} \tag{8.10.3d}
\end{align*}
$$

Cases (ii) and (i) can be summed up, respectively, in the following theorem.

THEOREM

If all coordinates (momenta) are ignorable, then the conjugate momenta (coordinates) are constant and the coordinates (momenta) vary linearly with time.
(iii) $\quad d q_{k^{\prime}} / d t=\partial H^{\prime} / \partial p_{k^{\prime}}=0 \Rightarrow q_{k^{\prime}}=$ constant $\equiv \alpha_{k}$,

$$
\begin{equation*}
d p_{k^{\prime}} / d t=-\partial H^{\prime} / \partial q_{k^{\prime}}=0 \Rightarrow p_{k^{\prime}}=\text { constant } \equiv \beta_{k} ; \quad H^{\prime}=H^{\prime}(t) . \tag{8.10.4a}
\end{equation*}
$$

Theorem of Jacobi

The simplest (of course, arbitrary) choice satisfying (8.10.4a, b) is $H^{\prime} \equiv 0$. The particular generating function accomplishing this we shall call (Hamiltonian) action: A_{H}, or, simply, A. [This function is frequently denoted by S (also W, usually for the Lagrangean action; from the German Wirkung $=$ action \equiv work \times time; not as in action/reaction of Newton's "third law"); but here that letter has been appropriated for the Appellian function; see also §8.11. Such action functions \rightarrow functionals play a prominent role in chapter 7.]

It is expedient to assume that A has the following functional representation:

$$
\begin{equation*}
A=A\left(t, q, p^{\prime}\right) \quad\left(=F_{2},\right. \text { recall §8.8). } \tag{8.10.5a}
\end{equation*}
$$

Then, by (8.8.17) and the earlier requirement $H^{\prime} \equiv 0$,

$$
\begin{gather*}
p_{k}=\partial A / \partial q_{k}, \quad q_{k^{\prime}}=\partial A / \partial p_{k^{\prime}} ; \tag{8.10.5b}\\
H^{\prime}=H(t, q, p)+\partial A / \partial t=0 \Rightarrow H(t, q, \partial A / \partial q)+\partial A / \partial t=0 \tag{8.10.5c}
\end{gather*}
$$

or, since (prob. 8.2.1)

$$
\begin{aligned}
H & \equiv T^{\prime}(t, q, p)+V(t, q) \\
& =(1 / 2)\left(M_{11}^{\prime} p_{1}^{2}+M_{22}^{\prime} p_{2}^{2}+\cdots+2 M_{12}^{\prime} p_{1} p_{2}+\cdots\right)+V \equiv H(t, q, p) \\
& \left\{M_{l k}^{\prime}=M_{k l}^{\prime} \equiv\left[\text { minor of element } M_{k l}\left(=M_{l k}\right) \text { in determinant } M_{n} \equiv\left(M_{k l}\right)\right] / M_{n}\right\},
\end{aligned}
$$ explicitly;

$$
\begin{align*}
\partial A / \partial t+(1 / 2)[& M_{11}^{\prime}\left(\partial A / \partial q_{1}\right)^{2}+M_{22}^{\prime}\left(\partial A / \partial q_{2}\right)^{2} \\
& \left.+\cdots+2 M_{12}^{\prime}\left(\partial A / \partial q_{1}\right)\left(\partial A / \partial q_{2}\right)+\cdots\right]+V=0 \tag{8.10.6}
\end{align*}
$$

This first-order nonlinear partial differential equation for A is the famous HamiltonJacobi (HJ) equation. Hence, the problem of bringing the Hamiltonian equations of motion to their simplest (integrable) form, by an appropriate canonical transformation, has been reduced to that of the integration of (8.10.6).

On this equation we can state the following: Since it depends on the $n+1 \mathrm{in}$ dependent variables t (time), q (space/coordinates), and the n constants $p^{\prime}=\beta, a(n y)$ complete integral (CI) of it must contain an equal number of independent arbitrary constants; say, $\beta_{1}, \ldots, \beta_{n} ; \beta_{n+1}$. [A CI of a first-order PDE is to be distinguished from its general integral (GI), which depends on an arbitrary function, and is not as important to dynamics as are the CIs. On how to obtain the GI from CIs, see ex. 2, below.] However, since (8.10.6) does not contain A explicitly, but only its derivatives (and, therefore, if A is a solution of it, so is $A+\beta^{\prime}$), identifying β_{n+1} with the additive (and dynamically inconsequential) constant β^{\prime}, we can finally state that a(ny) complete integral of the HJ equation of an n-DOF system contains n nontrivial, or essential, constants; that is, any such A has the form:

$$
\begin{equation*}
A=A(t, q, \beta), \quad \beta \equiv\left(\beta_{1}, \ldots, \beta_{n}\right) . \tag{8.10.7}
\end{equation*}
$$

Thus, for this special generating function, the new momenta p^{\prime}, by (8.10.4b), can be identified with the constants β :

$$
\begin{equation*}
p_{k^{\prime}}=\beta_{k} ; \tag{8.10.8a}
\end{equation*}
$$

while, by (8.10.4a) and the second of (8.10.5b),

$$
\begin{equation*}
q_{k^{\prime}}=\partial A / \partial p_{k^{\prime}}=\partial A(t, q, \beta) / \partial \beta_{k}=\alpha_{k} \quad \text { (arbitrary constants). } \tag{8.10.8b}
\end{equation*}
$$

From these algebraic equations, we can express the q 's in terms of t and the $2 n$ essential arbitrary constants (α, β) :

$$
\begin{align*}
q_{k} & =q_{k}\left(t ; \alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n}\right) \equiv q_{k}(t ; \alpha, \beta) \\
& =\text { general integral of original problem } . \tag{8.10.9a}
\end{align*}
$$

The old momenta can then be found from the first of (8.10.5b):

$$
\begin{align*}
p_{k} & =\partial A / \partial q_{k}=\left(\partial A(t, q, \beta) / \partial q_{k}\right)_{q=q(t, \alpha, \beta)}=\cdots=p_{k}(t ; \alpha, \beta) \\
& =\text { general integral of original problem } . \tag{8.10.9b}
\end{align*}
$$

Finally, evaluating (8.10.9a, b) for an initial time t_{o}, we can express α, β in terms of the $2 n$ (arbitrary) initial values of the old coordinates and momenta, q_{o}, p_{o} [assuming that the corresponding Jacobian, $\partial(q, p) / \partial(\alpha, \beta)$, does not vanish; otherwise, since the α, β would not be independent, the solution $q(t ; \alpha, \beta), p(t ; \alpha, \beta)$, would not be general]; and then, reinserting these expressions back into (8.10.9a, b), we can have q, p as functions of time t and the q_{o} 's, p_{o} 's. This completes, in principle, the HJ procedure for solving/simplifying canonical equations of motion. [For a proof that (8.10.8b), (8.10.9b) satisfy the canonical equations (8.10.10a), see ex. 8.10.1, below.]

REMARK

Incomplete HJ integrals - that is, expressions satisfying (8.10.6) but depending on fewer than n constants - cannot furnish the general integral (8.10.9a, b); but it can help us find it. Thus, from the known "incomplete integral" $A=A\left(t ; q, \beta_{1}, \ldots, \beta_{m}\right)$ $(m<n)$, we obtain the m (8.10.8b)-like equations: $\partial A / \partial \beta_{D}=(\text { constant })_{D}$ ($D=1, \ldots, m$).

The general integral $(8.10 .9 \mathrm{a}, \mathrm{b})$, thanks to the preceding theory, constitutes a canonical transformation from the α, β to the q, p with generating function
$A(t, q, \beta)$. However, every other general integral, say $q_{k}(t ; \gamma, \delta), p_{k}=p_{k}(t ; \gamma, \delta)$, where $\gamma \equiv\left(\gamma_{1}, \ldots, \gamma_{n}\right), \delta \equiv\left(\delta_{1}, \ldots, \delta_{n}\right)$ are arbitrary constants, is not a canonical transformation; and therefore knowledge of such an integral does not allow the construction of the complete integral of the HJ equation. That can happen only if the γ 's and δ 's equal, respectively, the initial positions and momenta.

The above results constitute the famous theorem of Jacobi (1842-1843). Let us restate it compactly:
(i) The integration of the canonical equations

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k} \tag{8.10.10a}
\end{equation*}
$$

is reduced to the integration of the Hamilton-Jacobi equation:

$$
\begin{equation*}
H(t, q, \partial A / \partial q)+\partial A / \partial t=0 \tag{8.10.10b}
\end{equation*}
$$

(ii) If we have a complete solution of (8.10.10b) - that is, a solution of the form

$$
\begin{equation*}
A=A\left(t ; q_{1}, \ldots, q_{n} ; \beta_{1}, \ldots, \beta_{n}\right) \equiv A(t ; q, \beta), \tag{8.10.10c}
\end{equation*}
$$

where $\beta \equiv\left(\beta_{1}, \ldots, \beta_{n}\right)=n$ essential arbitrary constants, and $\left|\partial^{2} A / \partial q \partial \beta\right| \neq 0$ (nonvanishing Jacobian), then the solution of the algebraic system:
$\partial A / \partial \beta_{k}=\alpha_{k}$
[Finite equations of motion, α : new arbitrary constants $\left.\Rightarrow q_{k}=q_{k}(t, \alpha, \beta)\right]$,

$$
\begin{align*}
& \partial A / \partial q_{k}=p_{k} \tag{8.10.10d}\\
& \quad\left[\Rightarrow p_{k}=p_{k}(t, \alpha, \beta): \text { canonically conjugate (finite) equations of motion }\right] \tag{8.10.10e}
\end{align*}
$$

constitutes a complete solution of (8.10.10a). For a proof, see ex. 8.10.1.
Schematically:
Hamilton: Differential equations of motion: $\quad d q / d t=\partial H / \partial p, \quad d p / d t=-\partial H / \partial q$ (If these equations can be integrated, an Action function can be obtained),

Hamilton-Jacobi:

$$
H(t, q, \partial A / \partial q)+\partial A / \partial t=0 \Rightarrow A=A(t, q, \beta)
$$

Jacobi: Finite equations of motion: $\partial A / \partial \beta=\alpha \Rightarrow q=q(t, \alpha, \beta)$,

$$
\partial A / \partial q=p \Rightarrow p=p(t, \alpha, \beta)
$$

(If an Action function can be obtained, then Hamilton's equations can be integrated).

Special Cases

Obtaining the complete integral of the HJ equation is, in general, quite complicated; but, frequently, simpler than solving the corresponding Hamiltonian equations; and if that can be done, either exactly (e.g., via quadratures) or approximately (e.g., via perturbations), it constitutes one of the most straightforward methods of solution of mechanical problems.

1. Conservative Systems

In this case, the Hamiltonian form of the power theorem yields

$$
\begin{aligned}
d H / d t= & \partial H / \partial t+\sum Q_{k}\left(d q_{k} / d t\right)=0 \\
& \Rightarrow \partial H / \partial t=0 \quad\left(\text { since we have assumed } Q_{k}=0\right) \\
& \Rightarrow H=H(q, p)=H(q, \partial A / \partial q)=E \equiv \text { constant }(\text { total energy }) ; \quad(8.10 .11 \mathrm{a})
\end{aligned}
$$

and so, from (8.10.10b), we conclude that, for such systems, A must be (to within an additive constant) a linear function of time:

$$
\begin{equation*}
A\left(t ; q, p^{\prime}\right)=-E t+A_{o}\left(q, p^{\prime}\right) \tag{8.10.11b}
\end{equation*}
$$

where A_{o} is the abbreviated, or reduced, action. As a result of (8.10.11a, b), the HJ equation (8.10.10b) assumes the abbreviated, or reduced, form:

$$
\begin{equation*}
H\left(q, \partial A_{o} / \partial q\right)=E \tag{8.10.11c}
\end{equation*}
$$

or, explicitly,

$$
\begin{align*}
(1 / 2) & {\left[M_{11}^{\prime}\left(\partial A_{o} / \partial q_{1}\right)^{2}+M_{22}^{\prime}\left(\partial A_{o} / \partial q_{2}\right)^{2}\right.} \\
& \left.+\cdots+2 M_{12}^{\prime}\left(\partial A_{o} / \partial q_{1}\right)\left(\partial A_{o} / \partial q_{2}\right)+\cdots\right]+V=E \tag{8.10.11d}
\end{align*}
$$

Now, the complete integral of the above must contain E as an essential constant. On the other hand, the action

$$
\begin{equation*}
A=A\left(t ; q, p^{\prime}\right)=A(t ; q, \beta)=A_{o}(q, \beta)-E t \tag{8.10.11e}
\end{equation*}
$$

can contain only n essential independent constants. Hence, it follows that E and the $n \beta$'s must be connected functionally:

$$
\begin{equation*}
E=E\left(\beta_{1}, \ldots, \beta_{n}\right) \equiv E(\beta) ; \tag{8.10.11f}
\end{equation*}
$$

that is, we can identify E with any one of the β 's, say $E=\beta_{1}$ (or, we need a A_{o} that contains only $n-1$ essential constants). Then, (8.10.11e) becomes

$$
\begin{align*}
A(t, q, \beta) & =A_{o}(q ; \beta)-E(\beta) t \\
& =A_{o}\left(q ; \beta_{1}, \ldots, \beta_{n}\right)-\beta_{1} t=A_{o}\left(q ; E, \beta_{2}, \ldots, \beta_{n}\right)-E t \tag{8.10.11~g}
\end{align*}
$$

and, provided that

$$
\left|\begin{array}{c}
\partial^{2} A / \partial E \partial q_{1} \cdots \partial^{2} A / \partial E \partial q_{n} \tag{8.10.11h}\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\partial^{2} A / \partial \beta_{n} \partial q_{1} \cdots \partial^{2} A / \partial \beta_{n} \partial q_{n}
\end{array}\right| \neq 0,
$$

the finite equations of motion $(8.10 .8 \mathrm{~b}, 10 \mathrm{~d})$ yield:
(i) For $k^{\prime}, k=1: \quad q_{1^{\prime}}=\partial A / \partial \beta_{1}=\partial A / \partial E=\partial A_{o} / \partial E-t=\alpha_{1}$, or

$$
\begin{equation*}
\partial A_{o} / \partial E=t+\alpha_{1} \equiv f(q, \beta) \Rightarrow \alpha_{1}=-t+\partial A_{o} / \partial E \tag{8.10.11i}
\end{equation*}
$$

(ii) For

$$
\begin{equation*}
k^{\prime}, k=2, \ldots, n: \quad q_{k^{\prime}}=\partial A / \partial \beta_{k}=\partial A_{o} / \partial \beta_{k}=\alpha_{k} \equiv g(q, \beta) \quad(k>1) \tag{8.10.11j}
\end{equation*}
$$

also

$$
\begin{equation*}
\partial A / \partial t=-E ; \text { and, of course, } p_{k}=\partial A_{o} / \partial q_{k} \tag{8.10.11k}
\end{equation*}
$$

The $n-1$ equations (8.10.11j), $\partial A_{o} / \partial \beta_{k}=\alpha_{k}$, connect the q 's with the constants $\beta_{1}, \ldots, \beta_{n} ; \alpha_{2}, \ldots, \alpha_{n}$, and thus specify the form of the sequence of configurations the system goes through during its motion - that is, the shape of its trajectory (orbit); while the remaining equation (8.10.11i), $\partial A_{o} / \partial \beta_{1}=t+\alpha_{1}$, yields the time it takes the system to arrive at each of these configurations. Since this implies that α_{1} must have temporal dimensions, setting $\alpha_{1}=-t_{o}$ (some "initial" instant) in (8.10.11i), we find

$$
\begin{equation*}
\partial A_{o} / \partial E=t-t_{o} \equiv f(q, \beta), \tag{8.10.111}
\end{equation*}
$$

again a total of $2 n$ arbitrary constants: $\beta_{1}=E ; \beta_{2}, \ldots, \beta_{n}$ and $\alpha_{1}=-t_{o}, \alpha_{2}, \ldots, \alpha_{n}$. From these equations we can have the $n q$'s in terms of $t-t_{o}$ and either the $n \alpha$'s or the $n \beta$'s.
[If the total energy is a function of a certain variable, say $u: u=u(E) \Leftrightarrow E=E(u)$, then

$$
A_{o}=A_{o}\left[q ; E(u), \beta_{2}, \ldots, \beta_{n}\right] \equiv A_{o}^{\prime}\left(q ; u ; \beta_{2}, \ldots, \beta_{n}\right)
$$

and, accordingly, $(8.10 .11 \mathrm{i}, 1)$ is replaced by

$$
\begin{equation*}
\left.\partial A_{o} / \partial E=\left(\partial A_{o}^{\prime} / \partial u\right)(d u / d E)=t+\alpha_{1} \Rightarrow \partial A_{o}^{\prime} / \partial u=(d E / d u)\left(t+\alpha_{1}\right) \cdot\right] \tag{8.10.11m}
\end{equation*}
$$

In sum, for a conservative system:

$$
\begin{equation*}
q_{k}=q_{k}\left(t-t_{o} ; c_{1}, \ldots, c_{2 n-1}\right), \quad p_{k}=p_{k}\left(t-t_{o} ; c_{1}, \ldots, c_{2 n-1}\right) \tag{8.10.11n}
\end{equation*}
$$

where $c^{\prime}=\left(c_{1}, \ldots, c_{2 n-1}\right): 2 n-1$ constants of integration.

2. Separation of Variables

This is a method of finding complete integrals of the HJ equation in the special but important case where a particular coordinate, say q_{1}, and corresponding derivative $\partial A / \partial q_{1}$ do not appear in the Hamilton-Jacobi equation (8.10.10b), except in the separable combination $f_{1}\left(q_{1}, \partial A / \partial q_{1}\right)$, so that the latter takes the form

$$
\begin{equation*}
F\left[t, q_{R}, \partial A / \partial q_{R}, \partial A / \partial t ; f_{1}\left(q_{1}, \partial A / \partial q_{1}\right)\right]=0 \tag{8.10.12a}
\end{equation*}
$$

where q_{R} denotes the remaining coordinates, here q_{2}, \ldots, q_{n}. In this case, we seek a complete integral in the following separable, or sum, form:

$$
\begin{equation*}
A=A_{R}\left(t, q_{R}\right)+A_{1}\left(q_{1}\right) \tag{8.10.12b}
\end{equation*}
$$

Substituting (8.10.12b) in (8.10.12a), we obtain

$$
\begin{equation*}
F\left[t, q_{R}, \partial A_{R} / \partial q_{R}, \partial A_{R} / \partial t ; f_{1}\left(q_{1}, d A_{1} / d q_{1}\right)\right]=0 \tag{8.10.12c}
\end{equation*}
$$

which, since it must be an identity in q_{1} [and the latter affects only $\left.f_{1}(\ldots)\right]$, leads us to the following: (i) ordinary differential equation,

$$
\begin{equation*}
f_{1}\left(q_{1}, d A_{1} / d q_{1}\right)=\text { arbitrary constant } \equiv \beta_{1} \tag{8.10.12d}
\end{equation*}
$$

from which, by a simple quadrature, we obtain A_{1}; and (ii) the partial differential equation,

$$
\begin{equation*}
F\left(t, q_{R}, \partial A_{R} / \partial q_{R}, \partial A_{R} / \partial t ; \beta_{1}\right)=0 \tag{8.10.12e}
\end{equation*}
$$

which contain fewer independent variables than the original equation (8.10.12a).
If it is possible to carry out this separation process for all $n q$'s and t, then the complete integral of the HJ equation will have been reduced to quadratures. In particular, for a conservative system, complete separation of its variables allows us to express its action integral ($8.10 .11 \mathrm{e}-\mathrm{g}$) as

$$
\begin{equation*}
A=A_{o}-E t \equiv \sum A_{k}\left(q_{k} ; \beta_{1}, \ldots, \beta_{n}\right)-E\left(\beta_{1}, \ldots, \beta_{n}\right) t \tag{8.10.12f}
\end{equation*}
$$

that is, $A_{k}=$ function of q_{k} only, and all the β 's; and the constant energy $E=E(\beta)$ is found from (8.10.11c) with $A_{o}=\sum A_{k}\left(q_{k} ; \beta\right)$. Then, $p_{k}=\partial A_{o} / \partial q_{k}=\partial A_{k} / \partial q_{k}$ and the HJ equation for A_{o} separates to n equations of the form (8.10.12d)
$f_{k}\left(q_{k}, \partial A_{k} / \partial q_{k} ; \beta\right)=\beta_{k}, \quad$ or $\quad f_{k}\left(q_{k}, \partial A_{k} / \partial q_{k}\right)=E_{k}\left(\beta_{1}, \ldots, \beta_{n}\right)$,
from which the sought $A_{k}\left(q_{k}, \beta\right)$ can be obtained by quadratures.
Hence, it is very important to know whether a given Hamiltonian $H(q, p)$ is (completely or partially) separable or not. It has been shown that the necessary and sufficient conditions for such separability are the following $n(n-1) / 2$ equations:

$$
\left|\begin{array}{lll}
0 & \partial H / \partial q_{k} & \partial H / \partial p_{k} \tag{8.10.12h}\\
\partial H / \partial q_{l} & \partial^{2} H / \partial q_{k} \partial q_{l} & \partial^{2} H / \partial p_{k} \partial q_{l} \\
\partial H / \partial p_{l} & \partial^{2} H / \partial q_{k} \partial p_{l} & \partial^{2} H / \partial p_{k} \partial q_{l}
\end{array}\right|=0
$$

for $k, l=1, \ldots, n(k \neq n)$. [See, for example, Hagihara (1970, p. 77 ff); who also "translates" (8.10.12h) into conditions in terms of the kinetic and potential energies.]

Alternatively, it can be shown that (8.10.12f)-type of separability occurs if (i) the HJ equation does not contain mixed products of $\left(\partial A_{o} / \partial q_{k}\right)\left(\partial A_{o} / \partial q_{l}\right), k \neq l$, but only pure squares $\left(\partial A_{o} / \partial q_{k}\right)^{2}$, that is, if the Hamiltonian has the so-called Stäckel (or orthogonal) form:

$$
\begin{equation*}
H=(1 / 2) \sum v_{k}(q) p_{k}^{2}+V(q), v_{k}(q): \text { functions of the } q \text { 's (as in ex. 3.12.4), } \tag{8.10.12i}
\end{equation*}
$$

and (ii) if, in addition, H satisfies certain necessary and sufficient "Stäckel conditions."
[For detailed treatments of separability, see, for example (alphabetically): Dobronravov (1976, pp. 117-129), Frank (1935, pp. 83-90), Goldstein (1980, pp. 449-457, 613-615), Lur'e (1968, pp. 538-548), Nordheim and Fues (1927, pp. 122), Pars (1965, pp. 320-348), Prange (1935, pp. 644-657); and books on celestial mechanics: for example, Hagihara (1970, p. 77 ff.). For a readable discussion of the Stäckel theorem/conditions, including proof and examples, see, for example, Greenwood (1977, pp. 206-211).]

3. Ignorable Coordinates

Finally, in the case of an ignorable coordinate, say $q_{1} \equiv \psi_{1}$, since the latter does not appear explicitly in either the Hamiltonian or the HJ equation, eqs. (8.10.12d) and (8.10.12b), with the slight indicial change $R \rightarrow P, p=2, \ldots, n$ (in conformity with §8.3 ff.), reduce, respectively, to

$$
\begin{array}{r}
d A_{1} / d q_{1}=\beta_{1} \equiv \Psi_{1} \Rightarrow A_{1}=\Psi_{1} \psi_{1}+(\text { additive }) \text { constant } \\
A=A_{R}\left(t, q_{R}\right)+\Psi_{1} \psi_{1} \equiv A_{P}\left(t, q_{p}\right)+\Psi_{1} \psi_{1} \tag{8.10.13b}
\end{array}
$$

where $\Psi_{1}=\partial A / \partial \psi_{1}=$ constant momentum, corresponding to ψ_{1}. Then, the HJ equation

$$
\begin{equation*}
H\left(t ; q_{2}, \ldots, q_{n} ; \partial A / \partial q_{1}=\Psi_{1}, \partial A / \partial q_{2}, \ldots, \partial A / \partial q_{n}\right)+\partial A / \partial t=0 \tag{8.10.13c}
\end{equation*}
$$

simplifies to

$$
\begin{equation*}
H\left(t ; q_{2}, \ldots, q_{n} ; \Psi_{1}, \partial A_{P} / \partial q_{2}, \ldots, \partial A_{P} / \partial q_{n}\right)+\partial A_{P} / \partial t=0 \tag{8.10.13d}
\end{equation*}
$$

and has as complete solution

$$
\begin{gather*}
A_{P}=A_{P}\left(t ; q_{2}, \ldots, q_{n} ; \Psi_{1}, \beta_{2}, \ldots, \beta_{n}\right) \equiv A_{P}\left(t ; q_{p} ; \beta_{1}=\Psi_{1}, \beta_{p}\right) ; \tag{8.10.13e}\\
\Rightarrow A=\Psi_{1} \psi_{1}+A_{P}\left(t, q_{p}, \Psi_{1}, \beta_{p}\right) \tag{8.10.13f}
\end{gather*}
$$

Hence, the finite equations of motion become

$$
\begin{equation*}
\partial A / \partial \Psi_{1}=\psi_{1}+\partial A_{P} / \partial \Psi_{1}=\alpha_{1}, \quad \partial A / \partial \beta_{k}=\partial A_{P} / \partial \beta_{k}=\alpha_{k} \quad(k=2, \ldots, n) \tag{8.10.13g}
\end{equation*}
$$

In a conservative system, $q_{1} \rightarrow t$ (time as an ignorable and separable "coordinate"), and $\beta_{1} q_{1} \rightarrow-E t(-E$ as corresponding constant "momentum"). For extensions of the above special cases to more than one variable, see ex. 8.10.5, below.

The inclusion of both ignorable and nonignorable coordinates under the general roof of separation of variables makes the HJ method one of the most powerful tools for integrating the Hamiltonian equations of motion. [The most prominent applications of this method are to be found not so much in earthly engineering as in celestial mechanics and modern nonlinear dynamics (and its transition to quantum mechanics); see, for example, Born (1927), Hagihara (1970), Tabor (1989). For extensive applications to rigid-body dynamics, see, for example, Chertkov (1960).]

Example 8.10.1 Proof of Theorem of Jacobi. Here, we show that the following equations

$$
\begin{equation*}
\partial A / \partial \beta_{k}=\alpha_{k}, \quad \partial A / \partial q_{k}=p_{k} \tag{a}
\end{equation*}
$$

where $A=A\left[t, q(t), \beta_{1}, \ldots, \beta_{n}\right] \equiv A[t, q(t), \beta]$, constitute a complete integral of the HJ equation

$$
\begin{equation*}
H(t, q, \partial A / \partial q)+\partial A / \partial t=0 \tag{b}
\end{equation*}
$$

or, explicitly,

$$
\begin{align*}
\partial A / \partial t+(1 / 2)[& M_{11}^{\prime}\left(\partial A / \partial q_{1}\right)^{2}+M_{22}^{\prime}\left(\partial A / \partial q_{2}\right)^{2} \\
& \left.+\cdots+2 M_{12}^{\prime}\left(\partial A / \partial q_{1}\right)\left(\partial A / \partial q_{2}\right)+\cdots\right]+V=0 \tag{b1}
\end{align*}
$$

and $\left|\partial^{2} A / \partial \beta_{k} \partial q_{l}\right| \neq 0$ [so that eqs. (a) are independent], satisfy the canonical equations

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k} \tag{c}
\end{equation*}
$$

identically.

PROOF
Since the α_{k} are constant, (... -differentiating the first of (a), we obtain

$$
\begin{equation*}
0=d \alpha_{k} / d t=\left(\partial A / \partial \beta_{k}\right)^{\cdot}=\partial^{2} A / \partial t \partial \beta_{k}+\sum\left(\partial^{2} A / \partial q_{l} \partial \beta_{k}\right)\left(d q_{l} / d t\right) \tag{d}
\end{equation*}
$$

Now we can either (i) solve the system (d) for the \dot{q}_{l} and show that the solution satisfies the first of (c) identically; or, conversely, (ii) insert the \dot{q}_{k} from the first of (c) into (d) and show that they satisfy it identically. Indeed:
(i) Equations (b, b1) hold identically in the β 's. Therefore, comparing their $\partial(\ldots) / \partial \beta_{k}$-derivative

$$
\begin{equation*}
\partial^{2} A / \partial \beta_{k} \partial t+\sum\left[M_{1 l}^{\prime}\left(\partial A / \partial q_{1}\right)+\cdots+M_{1 n}^{\prime}\left(\partial A / \partial q_{n}\right)\right]\left(\partial^{2} A / \partial \beta_{k} \partial q_{l}\right)=0 \tag{e1}
\end{equation*}
$$

with (d), we conclude that

$$
\begin{equation*}
d q_{l} / d t=M_{1 l}^{\prime}\left(\partial A / \partial q_{1}\right)+\cdots+M^{\prime}{ }_{n l}\left(\partial A / \partial q_{n}\right) . \tag{e2}
\end{equation*}
$$

[Equations (d) determine the \dot{q}_{l} uniquely as linear functions of the $\partial^{2} A / \partial \beta_{k} \partial t$; and, similarly, (e1) determine the right sides of (e2) as the same functions of them.] Hence, by prob. 8.2.1, $p_{k}=\partial A / \partial q_{k}$; and, accordingly, the Hamiltonian first of (c) hold; also, from (b), we conclude that $H=-\partial A / \partial t$. To prove the second of (c), we $\partial(\ldots) / \partial q_{k}$-differentiate (b), since the latter is an identity in the q 's thus obtaining, successively,

$$
\begin{align*}
\partial^{2} A / \partial q_{k} \partial t & =-\partial H / \partial q_{k}-\sum\left(\partial H / \partial p_{l}\right)\left(\partial p_{l} / \partial q_{k}\right) \\
& =-\partial H / \partial q_{k}-\sum\left(\partial H / \partial p_{l}\right)\left(\partial^{2} A / \partial q_{k} \partial q_{l}\right) \\
& =-\partial H / \partial q_{k}-\sum\left(\partial^{2} A / \partial q_{k} \partial q_{l}\right)\left(d q_{l} / d t\right) \quad[\text { by first of }(\mathrm{c})] \tag{f1}
\end{align*}
$$

or, rearranging,

$$
\begin{equation*}
\partial^{2} A / \partial q_{k} \partial t+\sum\left(\partial^{2} A / \partial q_{k} \partial q_{l}\right)\left(d q_{l} / d t\right)=-\partial H / \partial q_{k} \tag{f2}
\end{equation*}
$$

or, finally,

$$
\begin{equation*}
\left(\partial A / \partial q_{k}\right)^{\cdot}=d p_{k} / d t=-\partial H / \partial q_{k}, \quad \text { Q.E.D. } \tag{f3}
\end{equation*}
$$

Hence, in the assumed motion, both Hamiltonian equations hold.
(ii) Due to the first of (c), (d) becomes

$$
\begin{equation*}
\partial^{2} A / \partial t \partial \beta_{k}+\sum\left(\partial^{2} A / \partial q_{l} \partial \beta_{k}\right)\left(\partial H / \partial p_{l}\right)=0 \tag{g}
\end{equation*}
$$

We will show that (g) holds identically. By $\partial(\ldots) / \partial \beta_{k}$-differentiating (b), since the latter is satisfied for arbitrary β 's (i.e., identically), we obtain

$$
\begin{equation*}
\partial H / \partial \beta_{k}+\partial^{2} A / \partial \beta_{k} \partial t=0 . \tag{h1}
\end{equation*}
$$

But, since H depends on the β_{k} through the $\partial A / \partial q_{k}$ and these, in turn, depend on the β_{k} through $A=A[t, q(t), \beta]$,

$$
\begin{equation*}
\partial H / \partial \beta_{k}=\sum\left[\partial H / \partial\left(\partial A / \partial q_{l}\right)\right]\left(\partial^{2} A / \partial q_{l} \partial \beta_{k}\right) \tag{h2}
\end{equation*}
$$

and so, comparing (h1) with (h2), we find

$$
\partial^{2} A / \partial \beta_{k} \partial t+\sum\left[\partial H / \partial\left(\partial A / \partial q_{l}\right)\right]\left(\partial^{2} A / \partial q_{l} \partial \beta_{k}\right)=0
$$

or, thanks to the second of (a),

$$
\begin{equation*}
\partial^{2} A / \partial \beta_{k} \partial t+\sum\left(\partial H / \partial p_{l}\right)\left(\partial^{2} A / \partial q_{l} \partial \beta_{k}\right)=0 \tag{h3}
\end{equation*}
$$

that is, eqs. (g). Therefore, the first of (a) is indeed a solution of the first of (c).
Similarly, we can show that the second of (a) is a solution of the second of (c): $(\ldots)^{\text {- }}$-differentiating the second of (a) and combining the so-resulting (d)-like system for the p_{k} with the second of (c), we are led to a (g)-like equation, and so on. (See also MacMillan, 1936, pp. 371-375.)

Example 8.10.2 HJ Equation: From a Complete Integral (CI) to the General Integral (GI) (Landau and Lifshitz, 1960, p. 148, footnote). Even though the GI is not needed in dynamics, it can be obtained from a CI as follows: we begin with the CI

$$
\begin{equation*}
A=A^{\prime}\left(t ; q_{1}, \ldots, q_{n} ; \beta_{1}, \ldots, \beta_{n}\right)+\beta_{n+1} \equiv A^{\prime}(t, q, \beta)+\beta^{\prime} \tag{a}
\end{equation*}
$$

but now we view its $(n+1)$ th additive constant β^{\prime} as an arbitrary function of the n β 's:

$$
\begin{equation*}
\beta^{\prime}=\beta^{\prime}\left(\beta_{1}, \ldots, \beta_{n}\right) \equiv \beta^{\prime}(\beta) \Rightarrow A=A(t, q, \beta) \tag{b}
\end{equation*}
$$

Then, the GI of the HJ equation (8.10.10b) is found by replacing the β_{k} in (b) by their functional expressions obtained from the following n conditions

$$
\begin{equation*}
\partial A / \partial \beta_{k}=0 \Rightarrow \beta_{k}=\beta_{k}(t, q) \Rightarrow \beta^{\prime}=\beta^{\prime}(t, q) \tag{c}
\end{equation*}
$$

Indeed, applying chain rule to

$$
\begin{equation*}
A=A[t, q, \beta(t, q)]=W^{\prime}[t ; q, \beta(t, q)]+\beta^{\prime}[\beta(t, q)] \equiv a(t, q) \tag{d}
\end{equation*}
$$

and then invoking (d), we find

$$
\begin{equation*}
\partial a / \partial q_{k}=\partial A / \partial q_{k}+\sum\left(\partial A / \partial \beta_{l}\right)\left(\partial \beta_{l} / \partial q_{k}\right)=\partial A / \partial q_{k} \tag{e}
\end{equation*}
$$

that is, since the $\partial A / \partial q_{k}$ satisfy the HJ equation (A being a CI), so do the $\partial a / \partial q_{k}$, Q.E.D.

Example 8.10.3 Particle in a Conservative Force Field; Harmonic Oscillator. Let us consider the free motion of a particle P of mass m in a potential field $V=V(x, y, z)$, where $(x, y, z)=$ rectangular Cartesian and inertial coordinates of P. Then, since

$$
\begin{align*}
H=E \equiv T+V & =m v^{2} / 2+V=p^{2} / 2 m+V \\
& =(1 / 2 m)\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+V \tag{a}
\end{align*}
$$

where $v^{2}=\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}$, and recalling (8.10.10e), $p_{x}=\partial A / \partial x=\partial A_{o} / \partial x=x$-component of linear momentum of P, and so on, cyclically, the "abbreviated" HJ equation of the system (8.10.11c) becomes

$$
\begin{equation*}
\left(\partial A_{o} / \partial x\right)^{2}+\left(\partial A_{o} / \partial y\right)^{2}+\left(\partial A_{o} / \partial z\right)^{2}=2 m[E-V(x, y, z)] \tag{b}
\end{equation*}
$$

If P undergoes one-dimensional motion, say $V=V(q)$, where $q=$ single Lagrangean coordinate, then (b) reduces to the ordinary differential equation

$$
\begin{equation*}
\left(d A_{o} / d q\right)^{2}=2 m[E-V(q)] \tag{c}
\end{equation*}
$$

and this leads readily to the quadrature

$$
\begin{equation*}
A_{o}(q ; E)-A_{o}\left(q_{o} ; E\right)=\int_{q_{o}}^{q}\{2 m[E-V(q)]\}^{1 / 2} d q \tag{d}
\end{equation*}
$$

from some initial value q_{o} to q. From this, by (8.10.111), we obtain

$$
\begin{align*}
\partial A_{o} / \partial E & =(m / 2)^{1 / 2} \int_{q_{o}}^{q}[E-V(q)]^{-1 / 2} d q \equiv f(q, E)=t-t_{o} \tag{e}\\
& \Rightarrow q=q\left(t-t_{o} ; E\right) \tag{el}
\end{align*}
$$

Specialization
One-Dimensional Linear Harmonic Oscillator. Here,

$$
\begin{equation*}
2 T=m(\dot{q})^{2}, \quad 2 V=k q^{2} \quad(k=\text { constant coefficient of elasticity }) \tag{f}
\end{equation*}
$$

from which

$$
\begin{align*}
p & =\partial L / \partial \dot{q} \Rightarrow \dot{q}=p / m \\
& \Rightarrow T=p^{2} / 2 m \Rightarrow H=p^{2} / 2 m+k q^{2} / 2 \\
& \Rightarrow d q / d t=\partial H / \partial p=p / m, \quad d p / d t=-\partial H / \partial q=-k q \tag{g}
\end{align*}
$$

Accordingly, the HJ equation (8.10.10b) and its conservative specialization (8.10.11c) become

$$
\begin{align*}
& (1 / 2 m)(\partial A / \partial q)^{2}+k q^{2} / 2+\partial A / \partial t=0 \tag{h}\\
& (1 / 2 m)\left(\partial A_{o} / \partial q\right)^{2}+k q^{2} / 2=E \tag{i}
\end{align*}
$$

respectively, where

$$
\begin{equation*}
A=A(t, q, \beta)=A(t, q, E)=A_{o}(q, E)-E t \tag{j}
\end{equation*}
$$

The solution of (i) is, to within an inessential additive constant, the quadrature

$$
\begin{equation*}
A_{o}(q, E)=(k m)^{1 / 2} \int\left[(2 E / k)-q^{2}\right]^{1 / 2} d q \tag{k}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
A(t, q, E)=(k m)^{1 / 2} \int\left[(2 E / k)-q^{2}\right]^{1 / 2} d q-E t \tag{1}
\end{equation*}
$$

As a result, (8.10.10e) becomes (there is no need to evaluate the above integral yet)

$$
\begin{aligned}
\alpha & =\partial A / \partial \beta=\partial A / \partial E=(m / k)^{1 / 2} \int\left[(2 E / k)-q^{2}\right]^{-1 / 2} d q-t \\
& =(m / k)^{1 / 2} \arccos \left[(k / 2 E)^{1 / 2} q\right]-t \quad \text { (to within an arbitrary constant), }
\end{aligned}
$$

and solving for q

$$
\begin{equation*}
q=(2 E / k)^{1 / 2} \cos \left[(k / m)^{1 / 2}(t+\alpha)\right]=q(t ; E, \alpha) \tag{n}
\end{equation*}
$$

To express q in terms of t and the initial values q_{o}, p_{o}, we apply (8.10.10e):

$$
\begin{align*}
p_{o} & =(\partial A / \partial q)_{\text {initial values }}=(k m)^{1 / 2}\left[(2 E / k)-q_{o}{ }^{2}\right]^{1 / 2} \\
& =(2 m)^{1 / 2}\left(E-k q_{o}{ }^{2} / 2\right)^{1 / 2}=(2 m)^{1 / 2}\left(E-V_{o}\right)^{1 / 2}=\cdots=m v_{o} \tag{o}
\end{align*}
$$

from which, solving for E, we get

$$
\begin{equation*}
p_{o}{ }^{2} / 2 m+k q_{o}^{2} / 2=E=H . \tag{p}
\end{equation*}
$$

Next, evaluating (m), or (n), at the initial instant t_{o} :

$$
\begin{equation*}
q_{o}=(2 E / k)^{1 / 2} \cos \left[(k / m)^{1 / 2}\left(t_{o}+\alpha\right)\right] \quad\left[\Rightarrow \alpha=\alpha\left(q_{o}, E ; t_{o}\right)\right] \tag{q}
\end{equation*}
$$

then, solving (p) and (q) for E and α in terms of q_{o} and p_{o}, and inserting these values in (n), we obtain $q=q\left(t ; q_{o}, p_{o}\right)$.

For example, choosing $t_{o}=0, q_{o}=0, p_{o} \neq 0$ (i.e., impact), and with $\omega_{o}{ }^{2} \equiv k / m=(\text { frequency })^{2}$, we obtain from (p, q)

$$
\begin{equation*}
E=p_{o}^{2} / 2 m, \quad 0=(2 E / k)^{1 / 2} \cos \left(\omega_{o} \alpha\right) \Rightarrow \alpha= \pm\left(\pi / 2 \omega_{o}\right) \tag{r}
\end{equation*}
$$

and so (n) becomes

$$
\begin{equation*}
q=\left(p_{o}^{2} / k m\right)^{1 / 2} \cos \left(\omega_{o} t \pm \pi / 2\right)=(-/+)\left(p_{o}^{2} / k m\right)^{1 / 2} \sin \left(\omega_{o} t\right) \tag{s}
\end{equation*}
$$

This yields, further,

$$
\begin{equation*}
p=m \dot{q}=\cdots=(-/+) m\left(p_{o}^{2} / k m\right)^{1 / 2}(k / m)^{1 / 2} \cos \left(\omega_{o} t\right) \tag{t}
\end{equation*}
$$

and since for $t=0: p=p_{o}$, only the + sign applies in (s); that is, finally,

$$
\begin{equation*}
q=\left(p_{o}^{2} / k m\right)^{1 / 2} \sin \left(\omega_{o} t\right) \quad\left(\Rightarrow q_{o}=0\right) \tag{u}
\end{equation*}
$$

Geometrical Interpretation

(i) In the phase space of the old variables (i.e., the retangular Cartesian $q p$-plane), the representative system point describes an ellipse (with center at the origin $O-q p$, and $O q, O p$ as its principal axes) whose dimensions are determined from the initial conditions $q_{o}, p_{o} \rightarrow E$.
(ii) In the phase space of the new variables $q^{\prime}=\alpha, p^{\prime}=\beta=E$; however, the representative point does not vary with time - that is, it is fixed on that plane (compare with ex. 8.8.5). The properties of A_{o}, for this periodic system, are detailed in ex. 8.14.1.

Example 8.10.4 HJ Equation of a Heavy Axisymmetric Gyroscope, Moving about a Fixed Point O. For this well-known problem, we have already seen that (ex. 8.4.5; with the transverse moment of inertia denoted by B, instead of A, to avoid confusion with the action)

$$
\begin{align*}
& 2 T=B\left[(\dot{\theta})^{2}+(\dot{\phi})^{2} \sin ^{2} \theta\right]+C(\dot{\psi}+\dot{\phi} \cos \theta)^{2}, \\
& V=m g l \cos \theta \quad(l \equiv O G, G=\text { center of mass of gyroscope }) \text {; } \tag{al}\\
& \Rightarrow p_{\phi} \equiv \partial T / \partial \dot{\phi}=B \dot{\phi} \sin ^{2} \theta+C(\dot{\psi}+\dot{\phi} \cos \theta) \cos \theta \\
& \equiv B \dot{\phi} \sin ^{2} \theta+C n \cos \theta=\text { constant } \equiv C_{\phi}, \tag{a2}\\
& p_{\theta} \equiv \partial T / \partial \dot{\theta}=B \dot{\theta}, \tag{a3}\\
& p_{\psi} \equiv \partial T / \partial \dot{\psi}=C(\dot{\psi}+\dot{\phi} \cos \theta) \equiv C n=\text { constant } \equiv C_{\psi} ; \tag{a4}\\
& \dot{\phi}=\left(p_{\phi}-p_{\psi} \cos \theta\right) / B \sin ^{2} \theta, \tag{a5}\\
& \dot{\theta}=p_{\theta} / B, \tag{a6}\\
& \dot{\psi}=p_{\psi} / C-\left(p_{\phi}-p_{\psi} \cos \theta\right) \cos \theta / B \sin ^{2} \theta ; \tag{a7}\\
& \Rightarrow H=(1 / 2 B)\left[p_{\theta}{ }^{2}+\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2} / \sin ^{2} \theta\right]+(1 / 2 C) p_{\psi}{ }^{2}+m g l \cos \theta . \tag{a8}
\end{align*}
$$

Accordingly, the HJ equation of this conservative system becomes

$$
\begin{align*}
& (1 / 2)\left\{B^{-1}\left(\partial A_{o} / \partial \theta\right)^{2}+C^{-1}\left(\partial A_{o} / \partial \psi\right)^{2}\right. \\
& \left.\quad+\left(B \sin ^{2} \theta\right)^{-1}\left[\partial A_{o} / \partial \phi-\cos \theta\left(\partial A_{o} / \partial \psi\right)\right]^{2}\right\}+m g l \cos \theta=E \quad\left(=\beta_{1}\right) \tag{b}
\end{align*}
$$

But, since ϕ and ψ are ignorable coordinates, we also have the two integrals

$$
\begin{align*}
& p_{\phi}=\partial A_{o} / \partial \phi=\text { constant } \equiv C_{\phi} \equiv B \beta_{2} \tag{c1}\\
& p_{\psi}=\partial A_{o} / \partial \psi=\text { constant } \equiv C_{\psi} \equiv B \beta_{3} \tag{c2}
\end{align*}
$$

and, accordingly, (b) simplifies to

$$
\begin{align*}
(1 / 2)\left[B^{-1}\left(\partial A_{o} / \partial \theta\right)^{2}\right. & +C^{-1}\left(B \beta_{3}\right)^{2} \\
& \left.+\left(A / \sin ^{2} \theta\right)\left(\beta_{2}-\beta_{3} \cos \theta\right)^{2}\right]+m g l \cos \theta=E \tag{d}
\end{align*}
$$

from which, solving for $\partial A_{o} / \partial \theta$, we find

$$
\begin{align*}
B^{-1}\left(\partial A_{o} / \partial \theta\right)^{2} & =2 E-B^{2} \beta_{3}^{2} / C-2 m g l \cos \theta-\left(B / \sin ^{2} \theta\right)\left(\beta_{2}-\beta_{3} \cos \theta\right)^{2} \\
& \equiv B f\left(\theta ; \beta_{1}=E, \beta_{2}, \beta_{3}\right) \equiv B f(\theta) \tag{e}
\end{align*}
$$

Therefore, it follows from the general results 8.10 .11 b , e) that (to within an additive constant)

$$
\begin{equation*}
A=A_{o}-E t=B \int[f(\theta)]^{1 / 2} d \theta+B\left(\beta_{2} \phi+\beta_{3} \psi\right)-E t \tag{f}
\end{equation*}
$$

Hence, the three finite equations of motions of the gyroscope are

$$
\begin{align*}
\partial A / \partial E & =-t+\int[f(\theta)]^{-1 / 2} d \theta=-t_{o} \quad\left(=\alpha_{1}\right) \tag{g1}\\
\partial A / \partial \beta_{2} & =B\left\{\phi-\int\left[\left(\beta_{2}-\beta_{3} \cos \theta\right) / \sin ^{2} \theta\right][f(\theta)]^{-1 / 2} d \theta\right\}=B \phi_{o} \quad\left(=\alpha_{2}\right) \tag{g2}\\
\partial A / \partial \beta_{3} & =B\left\{\psi+\int\left[-\left(B \beta_{3} / C\right)+\left(\beta_{2}-\beta_{3} \cos \theta\right) \cos \theta / \sin ^{2} \theta\right][f(\theta)]^{-1 / 2} d \theta\right\} \\
& =B \psi_{o} \quad\left(=\alpha_{3}\right) \tag{g3}
\end{align*}
$$

where $t_{o}, \phi_{o}, \psi_{o}$ are three new constants. Equation (g1) yields θ as a function of time, while ($\mathrm{g} 2,3$) yield, respectively, ϕ and ψ as functions of θ. These results, of course, coincide with those found by other means. See also MacMillan (1936, pp. 378-380).

Example 8.10.5 Separation of Variables, Ignorable Coordinates, Conservative Systems.
(i) Separation of Variables

Let the system Hamiltonian have the form

$$
\begin{equation*}
H=H\left[f_{1}\left(q_{1}, p_{1}\right), \ldots, f_{M}\left(q_{M}, p_{M}\right) ; q_{M+1}, \ldots, q_{n} ; \partial A / \partial q_{M+1}, \ldots, \partial A / \partial q_{n} ; t\right] \tag{a}
\end{equation*}
$$

that is, the first $M(<n)$ variables are separable. Then, the HJ equation becomes

$$
\begin{align*}
H\left[f_{1}\left(q_{1}, \partial A / \partial q_{1}\right), \ldots, f_{M}\left(q_{M}, \partial A / \partial q_{M}\right) ; q_{M+1}, \ldots, q_{n} ;\right. & \left.\partial A / \partial q_{M+1}, \ldots, \partial A / \partial q_{n} ; t\right] \\
& +\partial A / \partial t=0 \tag{b}
\end{align*}
$$

Assuming the following partially separable action:

$$
\begin{equation*}
A=A_{1}\left(q_{1}\right)+\cdots+A_{M}\left(q_{M}\right)+A_{R}\left(q_{R}, t\right) \tag{c}
\end{equation*}
$$

where $q_{R} \equiv\left(q_{M+1}, \ldots, q_{n}\right)=$ remaining (nonseparable) coordinates, reduces (b) to

$$
\begin{align*}
H\left[f_{1}\left(q_{1}, d A_{1} / d q_{1}\right), \ldots, f_{M}\left(q_{M}, d A_{M} / d q_{M}\right) ; q_{M+1}, \ldots, q_{n}\right. & \left.; \partial A_{R} / \partial q_{M+1}, \ldots, \partial A_{R} / \partial q_{n} ; t\right] \\
& +\partial A_{R} / \partial t=0, \tag{d}
\end{align*}
$$

and from this, reasoning as in the derivation of $(8.10 .12 \mathrm{~d}$, e) from (8.10.12c), we are readily led to the M uncoupled ordinary differential equations:

$$
\begin{equation*}
f_{1}\left(q_{1}, d A_{1} / d q_{1}\right)=\beta_{1}, \ldots, f_{M}\left(q_{M}, d A_{M} / d q_{M}\right)=\beta_{M} \tag{e}
\end{equation*}
$$

from which we can determine A_{1}, \ldots, A_{M} by quadrature; and the partial differential equation

$$
\begin{equation*}
H\left[\beta_{1}, \ldots, \beta_{M} ; q_{M+1}, \ldots, q_{n} ; \partial A_{R} / \partial q_{M+1}, \ldots, \partial A_{R} / \partial q_{n} ; t\right]+\partial A_{R} / \partial t=0 \tag{f}
\end{equation*}
$$

which is still coupled, but in fewer variables than the original (b).
(ii) Ignorable Coordinates

Next, let $q_{1} \equiv \psi_{1}, \ldots, q_{M} \equiv \psi_{M}$ be ignorable (recall §8.4). Then, the corresponding momenta are constant:

$$
\begin{equation*}
p_{1}=\partial A / \partial \psi_{1}=\beta_{1} \equiv \Psi_{1}, \ldots, p_{M}=\partial A / \partial \psi_{M}=\beta_{M} \equiv \Psi_{M} \tag{g}
\end{equation*}
$$

Setting in the corresponding HJ equation

$$
\begin{equation*}
H\left(q_{p} ; \Psi ; \partial A / \partial q_{p}, t\right)+\partial A / \partial t=0 \tag{h}
\end{equation*}
$$

the action

$$
\begin{equation*}
A=\sum \Psi_{i} \psi_{i}+A_{P}\left(q_{p}, t\right) \quad(i=1, \ldots, M) \tag{i}
\end{equation*}
$$

where $q_{p} \equiv\left(q_{M+1}, \ldots, q_{n}\right), \Psi \equiv\left(\Psi_{1}, \ldots, \Psi_{M}\right) \equiv\left(\Psi_{i}\right)$, reduces (h) to the simpler form:

$$
\begin{equation*}
H\left(q_{p} ; \Psi ; \partial A_{P} / \partial q_{M+1}, \ldots, \partial A_{P} / \partial q_{n} ; t\right)+\partial A_{P} / \partial t=0 \tag{j}
\end{equation*}
$$

A_{P} depends on fewer independent variables than A : the $M-n \quad q_{p}$ and t.
(iii) Conservative Systems

Continuing, we consider a conservative system with completely separable Hamiltonian

$$
\begin{equation*}
H=H\left[f_{1}\left(q_{1}, p_{1}\right), \ldots, f_{n}\left(q_{n}, p_{n}\right)\right] \tag{k}
\end{equation*}
$$

and, therefore, by (8.10.11c), HJ equation

$$
\begin{equation*}
H\left[f_{1}\left(q_{1}, \partial A_{o} / \partial q_{1}\right), \ldots, f_{n}\left(q_{n}, \partial A_{o} / \partial q_{n}\right)\right]=E(\text { constant }) . \tag{1}
\end{equation*}
$$

Substituting in it the completely separable reduced action

$$
\begin{equation*}
A_{o}=\sum A_{k}\left(q_{k}\right) \tag{m}
\end{equation*}
$$

transforms it to

$$
\begin{equation*}
H\left[f_{1}\left(q_{1}, d A_{1} / d q_{1}\right), \ldots, f_{n}\left(q_{n}, d A_{n} / d q_{n}\right)\right]=E \tag{n}
\end{equation*}
$$

and this, reasoning as in the derivation of (8.10.12d), leads us to the n ordinary differential equations:

$$
\begin{equation*}
f_{1}\left(q_{1}, d A_{1} / d q_{1}\right)=\beta_{1}, \ldots, f_{n}\left(q_{n}, d A_{n} / d q_{n}\right)=\beta_{n} \tag{o}
\end{equation*}
$$

which can be solved by quadratures.
In view of these results, the fundamental HJ relations (8.10.11e ff., 10d) reduce to

$$
\begin{align*}
& E=H\left(\beta_{1}, \ldots, \beta_{n}\right) \equiv H(\beta) \tag{p}\\
& A=A_{o}-E t=\sum A_{k}\left(q_{k} ; \beta_{k}\right)-E t \tag{q}\\
& \alpha_{k}=\partial A / \partial \beta_{k}=\partial A_{k} / \partial \beta_{k}-\left(\partial E / \partial \beta_{k}\right) t \Rightarrow \partial A_{k} / \partial \beta_{k}=\alpha_{k}+\left(\partial E / \partial \beta_{k}\right) t \tag{r}
\end{align*}
$$

(iv) Conservative Systems with Ignorable Coordinates

Finally, for a conservative system with $M(<n)$ ignorable coordinates $\psi \equiv\left(\psi_{1}, \ldots, \psi_{M}\right) \equiv\left(\psi_{i}\right)$, the reduced HJ equation (8.10.11c) becomes (with the earlier notations)

$$
\begin{equation*}
H\left(q_{p} ; \Psi ; \partial A_{o} / \partial q_{p}\right)=E \tag{s}
\end{equation*}
$$

Substituting into it, as in (h),

$$
\begin{equation*}
A_{o}=\sum \Psi_{i} \psi_{i}+A_{P}\left(q_{p}, \partial A_{P} / \partial q_{M+1}, \ldots, \partial A_{P} / \partial q_{n}\right) \tag{t}
\end{equation*}
$$

we are led to the simpler than (s) HJ equation

$$
\begin{equation*}
H\left(q_{p} ; \Psi ; \partial A_{P} / \partial q_{M+1}, \ldots, \partial A_{P} / \partial q_{n}\right)=E \tag{u}
\end{equation*}
$$

(since A_{P} is a function of only $n-M$ independent variables, the q_{p}), whose solution is, to within an inessential additive constant,

$$
\begin{align*}
A_{P} & =A_{P}\left(q_{M+1}, \ldots, q_{n} ; \beta_{M+1}, \ldots, \beta_{n} ; \Psi_{i}=\beta_{i}\right) \equiv A_{P}\left(q_{p} ; \beta_{p} ; \Psi\right), \tag{v}\\
& \Rightarrow A=A_{o}-E t=\sum \Psi_{i} \psi_{i}+A_{P}\left(q_{p}, \beta_{p}, \Psi\right)-E t \tag{w}
\end{align*}
$$

Hence, the fundamental HJ relations $(8.10 .11 \mathrm{i}, \mathrm{j}, 1)$ reduce to

$$
\begin{align*}
& \alpha_{i}=\partial A / \partial \beta_{i} \equiv \partial A / \partial \Psi_{i}=\partial A_{o} / \partial \Psi_{i}=\psi_{i}+\partial A_{P} / \partial \Psi_{i} \quad\left(\text { here }, \beta_{i}=\Psi_{i}\right), \\
& \tag{x}\\
& \quad \Rightarrow \partial A_{P} / \partial \Psi_{i}=\alpha_{i}-\psi_{i} \quad(i=1, \ldots, M), \\
& \alpha_{M+1}=\partial A / \partial \beta_{M+1} \equiv \partial A / \partial E=\partial A_{o} / \partial E-(\partial E / \partial E) t=\partial A_{P} / \partial E-(1) t=-t_{o}, \tag{y}\\
& \tag{z}\\
& \Rightarrow \partial A_{P} / \partial E=t-t_{o} \quad\left(\text { here }, \beta_{M+1}=E\right), \\
& \alpha_{p^{\prime}}= \\
& \partial A / \partial \beta_{p^{\prime}}=\partial A_{o} / \partial \beta_{p^{\prime}}=\partial A_{P} / \partial \beta_{p^{\prime}} \quad\left(p^{\prime}=M+1, \ldots, n\right) .
\end{align*}
$$

Below, we discuss a few elementary applications of the foregoing theory.

Example 8.10.6 Two-Dimensional Linear and Isotropic Oscillator (Butenin, 1971, pp. 163-165). Here, the kinetic and potential energies of this conservative system are (using standard notations)

$$
\begin{equation*}
2 T=m\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}\right], \quad 2 V=k\left(q_{1}^{2}+q_{2}^{2}\right) \tag{a}
\end{equation*}
$$

respectively, and therefore the Hamiltonian and reduced HJ equations are

$$
\begin{gather*}
H=(1 / 2 m)\left(p_{1}^{2}+p_{2}^{2}\right)+(k / 2)\left(q_{1}^{2}+q_{2}^{2}\right) \tag{b}\\
{\left[(1 / 2 m)\left(\partial A_{o} / \partial q_{1}\right)^{2}+(k / 2) q_{1}^{2}\right]+\left[(1 / 2 m)\left(\partial A_{o} / \partial q_{2}\right)^{2}+(k / 2) q_{2}^{2}\right]=E} \tag{c}
\end{gather*}
$$

Substituting into the completely separable equation (c) the equally separable reduced action

$$
\begin{equation*}
A_{o}=A_{1}\left(q_{1}\right)+A_{2}\left(q_{2}\right), \tag{d}
\end{equation*}
$$

we are immediately led to the two uncoupled ordinary differential equations

$$
\begin{equation*}
(1 / 2 m)\left(d A_{1} / d q_{1}\right)^{2}+(k / 2) q_{1}^{2}=\beta_{1}, \quad(1 / 2 m)\left(d A_{2} / d q_{2}\right)^{2}+(k / 2) q_{2}^{2}=\beta_{2} \tag{e}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{1}+\beta_{2}=E . \tag{f}
\end{equation*}
$$

The above readily lead to the quadratures (omitting inessential additive constants)

$$
\begin{equation*}
A_{r}=\int\left[m\left(2 \beta_{r}-k q_{r}^{2}\right)\right]^{1 / 2} d q_{r} \quad(r=1,2) \tag{g}
\end{equation*}
$$

and from these we obtain, by differentiation and elementary integrations,

$$
\begin{equation*}
d A_{r} / d \beta_{r}=(m / k)^{1 / 2} \arcsin \left[q_{r} /\left(2 \beta_{r} / k\right)^{1 / 2}\right] ; \tag{h}
\end{equation*}
$$

and when these results are compared with the corresponding finite equations of motion [equations (r) of preceding example, and (8.10.10e)]:

$$
\begin{align*}
d A_{r} / d \beta_{r} & =\alpha_{r}+\left(\partial E / \partial \beta_{r}\right) t=\alpha_{r}+t \tag{i}\\
d A_{r} / d q_{r} & =p_{r} \quad\left(=m \dot{q}_{r}\right) \tag{j}
\end{align*}
$$

they yield, respectively,
$\arcsin \left[q_{r} /\left(2 \beta_{r} / k\right)^{1 / 2}\right]=(k / m)^{1 / 2}\left(t+\alpha_{r}\right) \Rightarrow q_{r}=\left(2 \beta_{r} / k\right)^{1 / 2} \sin \left[(k / m)^{1 / 2}\left(t+\alpha_{r}\right)\right]$,

$$
\begin{equation*}
p_{r}=\left[m\left(2 \beta_{r}-k q_{r}{ }^{2}\right)\right]^{1 / 2} . \tag{k}
\end{equation*}
$$

For the initial conditions at $t=0: q_{1}=a, \dot{q}_{1}=0, q_{2}=0, \dot{q}_{2}=v_{o},(\mathrm{k}, 1)$ give

$$
\begin{align*}
& a=\left(2 \beta_{1} / k\right)^{1 / 2} \sin \left[(k / m)^{1 / 2} \alpha_{1}\right], \quad 0=\left(2 \beta_{2} / k\right)^{1 / 2} \sin \left[(k / m)^{1 / 2} \alpha_{2}\right], \\
& \quad\left[m\left(2 \beta_{1}-k a^{2}\right)\right]^{1 / 2}=0, \quad\left[m\left(2 \beta_{2}\right)\right]^{1 / 2}=m v_{o}, \tag{m}
\end{align*}
$$

or, upon solving for the β 's and α 's,

$$
\begin{equation*}
\beta_{1}=k a^{2} / 2, \quad \beta_{2}=m v_{o}^{2} / 2 ; \quad \alpha_{1}=(\pi / 2)(m / k)^{1 / 2}, \quad \alpha_{2}=0 \tag{n}
\end{equation*}
$$

and so, finally, the motion $(k, 1)$ specializes to

$$
\begin{equation*}
q_{1}=a \cos \left[(k / m)^{1 / 2} t\right], \quad q_{2}=v_{o}(m / k)^{1 / 2} \sin \left[(k / m)^{1 / 2} t\right] . \tag{o}
\end{equation*}
$$

Example 8.10.7 Plane Motion of a Particle in a Uniform Gravitational Field. Here, the kinetic and potential energies of this system are (using standard notations)

$$
\begin{equation*}
2 T=m\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}\right], \quad V=m g q_{2} \tag{a}
\end{equation*}
$$

respectively $\left[O-q_{1} q_{2}\right.$: inertial rectangular Cartesian coordinates of particle, q_{1} : horizontal, q_{2} : vertical (positive upward)], and therefore the Hamiltonian and HJ equations are

$$
\begin{gather*}
H=(1 / 2 m)\left(p_{1}^{2}+p_{2}^{2}\right)+m g q_{2}, \tag{b}\\
(1 / 2 m)\left[\left(\partial A / \partial q_{1}\right)^{2}+\left(\partial A / \partial q_{2}\right)^{2}\right]+m g q_{2}+\partial A / \partial t=0 . \tag{c}
\end{gather*}
$$

Since q_{1} is also ignorable, in addition to the system being conservative, following the theory of (8.10.13a ff.) and the preceding example, we try the Action function (with $\left.q_{1} \equiv \psi_{1}, p_{1} \equiv \Psi_{1}=\beta_{1}\right):$

$$
\begin{equation*}
A=\beta_{1} \psi_{1}+A_{2}\left(q_{2}\right)-E t \equiv A_{o}-E t \tag{d}
\end{equation*}
$$

First Solution

Substituting (d) into (c), we readily find

$$
\begin{equation*}
\beta_{1}^{2} / 2 m+(1 / 2 m)\left(d A_{2} / d q_{2}\right)^{2}+m g q_{2}=E, \tag{e}
\end{equation*}
$$

and this leads us, easily, to the following two equations:

$$
\begin{equation*}
(1 / 2 m)\left(d A_{2} / d q_{2}\right)^{2}+m g q_{2}=\beta_{2}, \quad \beta_{2}+\beta_{1}^{2} / 2 m=E . \tag{f}
\end{equation*}
$$

Hence, the finite equations of motion are

$$
\begin{align*}
\partial A / \partial \beta_{1} & =q_{1}-\left(\partial E / \partial \beta_{1}\right) t=q_{1}-\left(\beta_{1} / m\right) t=\alpha_{1} \\
& \Rightarrow q_{1}=\left(\beta_{1} / m\right) t+\alpha_{1} \tag{g}\\
\partial A / \partial \beta_{2} & =d A_{2} / d \beta_{2}-\left(\partial E / \partial \beta_{2}\right) t=d A_{2} / d \beta_{2}-(1) t=\alpha_{2} \\
& \Rightarrow d A_{2} / d \beta_{2}=t+\alpha_{2} . \tag{h}
\end{align*}
$$

But, from the first of (f), we find

$$
\begin{align*}
& d A_{2} / d q_{2}=\left[2 m\left(\beta_{2}-m g q_{2}\right)\right]^{1 / 2} \tag{i}\\
& \Rightarrow A_{2}=\int\left[2 m\left(\beta_{2}-m g q_{2}\right)\right]^{1 / 2} d q_{2}+\text { constant } \tag{j}
\end{align*}
$$

and, therefore

$$
\begin{equation*}
d A_{2} / d \beta_{2}=\int m\left[2 m\left(\beta_{2}-m g q_{2}\right)\right]^{-1 / 2} d q_{2}=-(1 / m g)\left[2 m\left(\beta_{2}-m g q_{2}\right)\right]^{1 / 2} \tag{k}
\end{equation*}
$$

Equating the right sides of (h) and (k), and then solving for q_{2}, we get

$$
\begin{equation*}
q_{2}=-(g / 2)\left(t+\alpha_{2}\right)^{2}+\beta_{2} / m g . \tag{1}
\end{equation*}
$$

Finally, applying the remaining finite equations

$$
\partial A / \partial q_{1}=\beta_{1}=p_{1}=m \dot{q}_{1}, \quad \partial A / \partial q_{2}=d A_{2} / d q_{2}=t+\beta_{2}=p_{2}=m \dot{q}_{2}, \quad(\mathrm{~m})
$$

for the common initial conditions at $t=0: q_{1}=0, \dot{q}_{1}=v_{o}, q_{2}=h, \dot{q}_{2}=0$, we find

$$
\begin{equation*}
\beta_{1}=m v_{o}, \quad \beta_{2}=m g h ; \quad \alpha_{1}=0, \quad \alpha_{2}=0 \tag{n}
\end{equation*}
$$

and so, finally, the motion $(\mathrm{g}, 1)$ specializes to the well-known solution

$$
\begin{equation*}
q_{1}=v_{o} t, \quad q_{2}=h-(1 / 2) g t^{2} . \tag{o}
\end{equation*}
$$

Second Solution

The reduced HJ equation is

$$
\begin{equation*}
(1 / 2 m)\left[\left(\partial A_{o} / \partial q_{1}\right)^{2}+\left(\partial A_{o} / \partial q_{2}\right)^{2}\right]+m g q_{2}=\beta_{2} \tag{p}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\partial A_{o} / \partial q_{1}\right)^{2}+\left(\partial A_{o} / \partial q_{2}\right)^{2}+2 m^{2} g q_{2}=2 m \beta_{2} \tag{q}
\end{equation*}
$$

By Hamilton's equations: $\partial H / \partial q_{1}=d p_{1} / d t=0 \Rightarrow p_{1}=$ constant $\equiv \beta_{1}=\partial A_{o} / \partial q_{1}$, and so (q) gives

$$
\left(\partial A_{o} / \partial q_{2}\right)^{2}=2 m \beta_{2}-2 m^{2} g q_{2}-\left(\partial A_{o} / \partial q_{1}\right)^{2}=2 m \beta_{2}-\beta_{1}^{2}-2 m^{2} g q_{2}
$$

Hence, q_{1}, q_{2} are separable and

$$
\begin{align*}
A_{o} & =\int\left(\partial A_{o} / \partial q_{1}\right) d q_{1}+\int\left(\partial A_{o} / \partial q_{2}\right) d q_{2} \\
& =\beta_{1} q_{1}+\int\left(2 m \beta_{2}-\beta_{1}^{2}-2 m^{2} g q_{2}\right)^{1 / 2} d q_{2} \tag{r}
\end{align*}
$$

The particle trajectory is given by $\partial A_{o} / \partial \beta_{1}=\alpha_{1}$:

$$
\begin{align*}
& q_{1}-\int \beta_{1}\left(2 m \beta_{2}-\beta_{1}^{2}-2 m^{2} g q_{2}\right)^{-1 / 2} d q_{2}=\alpha_{1} \\
& \Rightarrow q_{1}+\left(\beta_{1} / g m^{2}\right)\left(2 m \beta_{2}-\beta_{1}^{2}-2 m^{2} g q_{2}\right)^{1 / 2}=\alpha_{1} \quad \text { (a parabola) } \tag{s}
\end{align*}
$$

and the corresponding time by $\partial A_{o} / \partial \beta_{2}=t+\alpha_{2}$:

$$
\begin{align*}
& \int m\left(2 m \beta_{2}-\beta_{1}^{2}-2 m^{2} g q_{2}\right)^{-1 / 2} d q_{2}=t+\alpha_{2} \\
& \quad \Rightarrow-(1 / m g)\left(2 m \beta_{2}-\beta_{1}^{2}-2 m^{2} g q_{2}\right)^{1 / 2}=t+\alpha_{2} \quad\left(\text { time at which height is } q_{2}\right) \tag{t}
\end{align*}
$$

Example 8.10.8 Theorem of Liouville (Recall ex. 3.12.4). This generalizes the results of the preceding examples, 8.10.6 and 8.10.7. Let us consider a Liouville system; that is, one whose kinetic and potential energies have the following forms:

$$
\begin{align*}
2 T & =u\left[v_{1}\left(q_{1}\right)\left(\dot{q}_{1}\right)^{2}+\cdots+v_{n}\left(q_{n}\right)\left(\dot{q}_{n}\right)^{2}\right] \equiv u\left[v_{1}\left(\dot{q}_{1}\right)^{2}+\cdots+v_{n}\left(\dot{q}_{n}\right)^{2}\right], \tag{a}\\
V & =\left[w_{1}\left(q_{1}\right)+\cdots+w_{n}\left(q_{n}\right)\right] / u \equiv\left(w_{1}+\cdots+w_{n}\right) / u, \tag{b}
\end{align*}
$$

respectively, where $u \equiv u_{1}\left(q_{1}\right)+\cdots+u_{n}\left(q_{n}\right) \equiv u_{1}+\cdots+u_{n}(>0)$.
Since $p_{k} \equiv \partial T / \partial \dot{q}_{k}=u v_{k} \dot{q}_{k}$, it is not hard to see that the corresponding Hamiltonian function and reduced HJ equation of this conservative system are

$$
\begin{gather*}
H=T+V=(1 / 2) u \sum v_{k}\left(\dot{q}_{k}\right)^{2}+u^{-1} \sum w_{k}=u^{-1} \sum\left(p_{k}^{2} / 2 v_{k}+w_{k}\right) \\
\sum\left[\left(1 / 2 v_{k}\right)\left(\partial A_{o} / \partial q_{k}\right)^{2}+w_{k}-E u_{k}\right]=0 . \tag{c}
\end{gather*}
$$

Setting in this completely separable equation the following similarly separable reduced action:

$$
\begin{equation*}
A_{o}=A_{1}\left(q_{1}\right)+\cdots+A_{n}\left(q_{n}\right), \tag{d}
\end{equation*}
$$

yields

$$
\begin{equation*}
\sum\left[\left(1 / 2 v_{k}\right)\left(d A_{k} / d q_{k}\right)^{2}+w_{k}-E u_{k}\right]=0, \quad p_{k}=d A_{k} / d q_{k} \tag{e}
\end{equation*}
$$

and from this, reasoning as in the derivation of (8.10.12d), we obtain the following n ordinary differential equations:

$$
\begin{equation*}
\left(1 / 2 v_{k}\right)\left(d A_{k} / d q_{k}\right)^{2}+w_{k}-E u_{k}=\beta_{k} \tag{f}
\end{equation*}
$$

where the n constants β_{k} are subject to the condition

$$
\begin{equation*}
\beta_{1}+\beta_{2}+\cdots+\beta_{n}=0 \Rightarrow \beta_{1}=-\left(\beta_{2}+\cdots+\beta_{n}\right)=\beta_{1}\left(\beta_{2}, \ldots, \beta_{n}\right) \tag{g}
\end{equation*}
$$

[Recall equivalent condition (j4) of ex. 3.12.4.]
From (f), we are readily led to the quadratures (to within inessential additive constants)

$$
\begin{equation*}
A_{k}=\int\left[2 v_{k}\left(\beta_{k}+E u_{k}-w_{k}\right)\right]^{1 / 2} d q_{k} \quad\left[=\int p_{k} d q_{k}=A_{k}\left(q_{k} ; \beta, E\right)\right] . \tag{h}
\end{equation*}
$$

Due to the constraint (g), only n of the constants $E, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ appearing in the integrals (h) are independent; and therefore the reduced action built from the latter
via (d), as containing n independent essential constants, will indeed be a complete integral; that is,

$$
\begin{align*}
A_{0} & =\sum A_{k}\left(q, E, \beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)=\sum A_{k}\left[q, E, \beta_{1}\left(\beta_{2}, \ldots, \beta_{n}\right), \beta_{2}, \ldots, \beta_{n}\right] \\
& \equiv A_{o o}\left(q, E, \beta_{2}, \ldots, \beta_{n}\right)=A_{o o} . \tag{i}
\end{align*}
$$

In view of these results, the finite equations of motion reduce to the following quadratures:
(i) $\partial A_{o o} / \partial E=\partial A_{o} / \partial E=t-t_{o}$:

$$
\begin{equation*}
\sum \int\left(v_{k}\right)^{1 / 2}\left[2\left(\beta_{k}+E u_{k}-w_{k}\right)\right]^{-1 / 2} u_{k} d q_{k}=t-t_{o} \tag{j}
\end{equation*}
$$

(ii) $\partial A_{o o} / \partial \beta_{r}=\partial A_{o} / \partial \beta_{r}+\left(\partial A_{o} / \partial \beta_{1}\right)\left(\partial \beta_{1} / \partial \beta_{r}\right)$

$$
=\partial A_{o} / \partial \beta_{r}+\left(\partial A_{o} / \partial \beta_{1}\right)(-1)=\partial A_{o} / \partial \beta_{r}-\partial A_{o} / \partial \beta_{1}=\alpha_{r}(r=2, \ldots, 2 n)
$$

$$
\int\left(v_{r}\right)^{1 / 2}\left[2\left(\beta_{r}+E u_{r}-w_{r}\right)\right]^{-1 / 2} d q_{r}-\int\left(v_{1}\right)^{1 / 2}\left[2\left(\beta_{1}+E u_{1}-w_{1}\right)\right]^{-1 / 2} d q_{1}=\alpha_{r} .(\mathrm{k})
$$

[Compare with their equivalent equations ($\mathrm{k} 1,2$) of ex. 3.12.4.] Equation (j) and the $n-1$ equations (k) supply the n independent constants $\alpha_{1}=-t_{o}, \ldots, \alpha_{n}$, which, along with the earlier $n-1$ independent β 's and the energy (i.e., $E, \beta_{2}, \ldots, \beta_{n}$), constitute the $2 n$ constants of integration of our system (a, b).

For additional details on these systems [including generalizations originally studied by Goursat, Di Pirro, Stäckel et al. (late 19th century)] see, for example (alphabetically): Appell (1953, vol. 2, pp. 439-440), Hamel (1949, pp. 302-303, 358-361), Lur'e (1968, pp. 538-548), Whittaker (1937, pp. 335-336); and, especially, texts on celestial mechanics, for example, Hagihara (1970).

Example 8.10.9 Hamiltonian Form of Lagrangean Method of Variation of Constants/Parameters. Let us consider a system with canonical equations of motion

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k} \quad(k=1, \ldots, n) \tag{a}
\end{equation*}
$$

and such that

$$
\begin{equation*}
H=H_{o}+H_{1}, \quad H_{1}: \text { small relative to } H_{o} \tag{b}
\end{equation*}
$$

For example, in a planetary motion problem, H_{o} would be the Sun-Earth (two-body problem) Hamiltonian, while H_{1} would be the Hamiltonian of the perturbative action of the remaining planets of our solar system on Earth [recall discussion following eq. (8.7.17)]. Let us assume that the solution of the unperturbed problem

$$
\begin{equation*}
d q_{k} / d t=\partial H_{o} / \partial p_{k}, \quad d p_{k} / d t=-\partial H_{o} / \partial q_{k} \tag{c}
\end{equation*}
$$

is known - that is, an action function

$$
\begin{equation*}
A=A(t, q, \beta), \quad \beta \equiv\left(\beta_{1}, \ldots, \beta_{n}\right), \tag{d}
\end{equation*}
$$

has been (or can be) found that satisfies the unperturbed Hamilton-Jacobi (HJ) equation

$$
\begin{equation*}
\partial A / \partial t+H_{o}(t, q, \partial A / \partial t)=0, \tag{e}
\end{equation*}
$$

and can, therefore, supply the integrals of (c) via the finite equations

$$
\begin{equation*}
p_{k}=\partial A / \partial q_{k}, \quad \alpha_{k}=\partial A / \partial \beta_{k} \tag{f}
\end{equation*}
$$

that is, the solutions of (f):

$$
\begin{equation*}
q_{k}=q_{k}(t, \alpha, \beta), \quad p_{k}=p_{k}(t, \alpha, \beta), \quad \alpha \equiv\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tag{g}
\end{equation*}
$$

when substituted back into (c), satisfy them identically.
Here, however, we will view (g) not as solutions of (c) but as equations of a canonical transformation from the old variables (q, p) to the new "variables" $(\alpha, \beta) \equiv\left(q^{\prime}, p^{\prime}\right)$, with generating function $A=A(t, q, \beta) \equiv A\left(t, q, \beta=p^{\prime}\right)=$ $F_{2}\left(t, q, p^{\prime}\right)$ (§8.8). In this interpretation, the (no longer constant) $\alpha=q^{\prime}$ and $\beta=p^{\prime}$, satisfy the perturbation canonical equations

$$
\begin{align*}
d \alpha_{k} / d t & =\partial H^{\prime} / \partial \beta_{k}=\partial / \partial \beta_{k}(H+\partial A / \partial t) \\
& =\partial / \partial \beta_{k}\left(H_{o}+H_{1}+\partial A / \partial t\right)=\partial H_{1} / \partial \beta_{k} \quad \text { [invoking (e)] } \tag{h}\\
d \beta_{k} / d t & =-\partial H^{\prime} / \partial \alpha_{k}=\cdots=-\partial H_{1} / \partial \alpha_{k} ; \tag{i}
\end{align*}
$$

where we have used the unperturbed solutions (g) in H_{1} to express it in terms of the α and β, and t. Substituting the solutions of (h, i) in the unperturbed solutions for q, p, we obtain the solutions of the perturbed problem.

We notice that equations (h, i) coincide with the earlier (j, l) of ex. 8.7.4, with the following identifications: $c_{k} \rightarrow \alpha_{k}, c_{n+l} \rightarrow \beta_{l}, \Omega \rightarrow H_{1}$.

An Application

Let the unperturbed Hamiltonian be

$$
\begin{equation*}
H_{o}=(1 / 2) p^{2} ; \quad \text { e.g., free rectilinear motion of particle of unit mass. } \tag{j}
\end{equation*}
$$

The corresponding HJ equations is

$$
\begin{equation*}
(1 / 2)\left(\partial A_{o} / \partial q\right)^{2}=\alpha \quad(=\text { total energy }), \tag{k}
\end{equation*}
$$

and its solution is

$$
\begin{equation*}
A_{o}=(2 \alpha)^{1 / 2} q \quad\left[A=A_{o}-\alpha t=F_{1}\left(t, q, q^{\prime}\right)\right] . \tag{1}
\end{equation*}
$$

Hence, the complete unperturbed solution is

$$
\begin{aligned}
p & =\partial F_{1} / \partial q=\partial A_{o} / \partial q=(2 \alpha)^{1 / 2} \\
\beta & =-\partial A / \partial \alpha=-\partial A_{o} / \partial \alpha+t \Rightarrow t-\beta=\partial A_{o} / \partial \alpha=(2 \alpha)^{-1 / 2} q \\
& \Rightarrow q=(2 \alpha)^{1 / 2}(t-\beta) ; \quad \text { i.e., rectilinear motion with uniform velocity }(2 \alpha)^{1 / 2} .(\mathrm{n})
\end{aligned}
$$

Next, let us add to the system the perturbative (linear elastic) force $-q$, so that its complete perturbed Hamiltonian is

$$
\begin{equation*}
H=(1 / 2) p^{2}+(1 / 2) q^{2} \equiv H_{o}+H_{1} \tag{o}
\end{equation*}
$$

and view the perturbed solution as having the same form as the unperturbed solution (m, n), but with α and β as variables satisfying the perturbation equations (h, i), with $k=1$ and

$$
\begin{align*}
& H_{1}=\left.(1 / 2) q^{2}\right|_{\text {unperturbed solution }(n)}=\alpha(t-\beta)^{2}=H_{1}(t, \alpha, \beta) \tag{p}\\
& d \alpha / d t=\partial H_{1} / \partial \beta=-2 \alpha(t-\beta), \quad d \beta / d t=-\partial H_{1} / \partial \alpha=-(t-\beta)^{2} \tag{q}
\end{align*}
$$

Integrating (p, q) we readily find

$$
\begin{equation*}
\alpha=\alpha_{o} \cos ^{2}\left(t-\beta_{o}\right), \quad \beta=t-\tan \left(t-\beta_{o}\right) ; \quad \alpha_{o}, \beta_{o}: \text { integration constants, } \tag{r}
\end{equation*}
$$

and hence the perturbed solution is

$$
\begin{equation*}
q=\left(2 \alpha_{o}\right)^{1 / 2} \sin \left(t-\beta_{o}\right), \quad p=\left(2 \alpha_{o}\right)^{1 / 2} \cos \left(t-\beta_{o}\right) \tag{s}
\end{equation*}
$$

that is, a simple harmonic motion of amplitude: $\left(2 \alpha_{o}\right)^{1 / 2}$, frequency: 1 (period: 2π), and phase (or "epoch of origin passage"): β_{0}. It is not hard to verify that (s) does indeed satisfy the canonical perturbed [(o)-based] equations:

$$
\begin{equation*}
d q / d t=\partial H / \partial p=p, \quad d p / d t=-\partial H / \partial q=-q \tag{t}
\end{equation*}
$$

Example 8.10.10 A Simplification of the Perturbation Equations. Continuing from the preceding example, let $\alpha_{k o}$, $\beta_{k o}$ denote the parts of α_{k}, β_{k} that are constant in the perturbed motion. Then we can write

$$
\begin{equation*}
\alpha_{k}=\alpha_{k o}+x_{k}(t), \quad \beta_{k}=\beta_{k o}+y_{k}(t) \tag{a}
\end{equation*}
$$

and, therefore, to the same degree of accuracy [since the Hamiltonian equations, unlike the Lagrangean equations (§3.10), are of the first order], and with some easily understood notations,

$$
\begin{align*}
H_{1} & =H_{1}(\alpha, \beta)=H_{1}\left(\alpha_{o}+x, \beta_{o}+y\right) \\
& =H_{1}\left(\alpha_{o}, \beta_{o}\right)+\sum\left[\left(\partial H_{1} / \partial \alpha_{k}\right)_{o} x_{k}+\left(\partial H_{1} / \partial \beta_{k}\right)_{o} y_{k}\right] \\
& \equiv H_{1 o}+\sum\left[\left(\partial H_{1 o} / \partial \alpha_{k o}\right) x_{k}+\left(\partial H_{1 o} / \partial \beta_{k o}\right) y_{k}\right] \tag{b}
\end{align*}
$$

Substituting the above into eqs. (h, i) of the preceding example, we obtain

$$
\begin{equation*}
d x_{k} / d t=\partial H_{1} / \partial \beta_{k o}, \quad d y_{k} / d t=-\partial H_{1} / \partial \alpha_{k o} \tag{c}
\end{equation*}
$$

or, again, to the first order,

$$
\begin{equation*}
d x_{k} / d t=\partial H_{1 o} / \partial \beta_{k o}, \quad d y_{k} / d t=-\partial H_{1 o} / \partial \alpha_{k o} \tag{d}
\end{equation*}
$$

An Application
Let us apply these results to the (weakly) quadratically nonlinear oscillator:

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q+\varepsilon q^{2}=0 \quad\left[\omega_{o}=\text { frequency for } \varepsilon=0, \text { a constant }\right] \tag{e}
\end{equation*}
$$

Here, clearly,

$$
\begin{equation*}
H_{o}=(1 / 2)\left(p^{2}+\omega_{o}^{2} q^{2}\right), \quad H_{1}=(1 / 3) \varepsilon q^{3}, \tag{f}
\end{equation*}
$$

and since the solution of the unperturbed problem (i.e., $\varepsilon=0, H_{1}=0$) is

$$
\begin{equation*}
q=q_{o} \cos \left(\omega_{o} t\right)+\left(p_{o} / \omega_{o}\right) \sin \left(\omega_{o} t\right), \quad p=\dot{q}=\ldots \tag{g}
\end{equation*}
$$

where $q_{o} / p_{o}=$ initial position/momentum of unperturbed problem (i.e., $\alpha_{o}=q_{o}$, $\beta_{o}=p_{o}$), we will have

$$
\begin{equation*}
H_{1} \rightarrow H_{1 o}=(\varepsilon / 3)\left[q_{o} \cos \left(\omega_{o} t\right)+\left(p_{o} / \omega_{o}\right) \sin \left(\omega_{o} t\right)\right]^{3} \equiv(\varepsilon / 3)[\ldots]^{3} . \tag{h}
\end{equation*}
$$

As a result, the perturbation equations (d) yield

$$
\begin{align*}
& d x / d t=\partial H_{1 o} / \partial p_{o}=\varepsilon[\ldots]^{2}\left[\sin \left(\omega_{o} t\right) / \omega_{o}\right], \tag{i}\\
& d y / d t=-\partial H_{1 o} / \partial q_{o}=-\varepsilon[\ldots]^{2} \cos \left(\omega_{o} t\right) \tag{j}
\end{align*}
$$

Integrating (i, j), and then adding the results to (g), we obtain the solution of (e), correct to ε-proportional terms. The details are left to the reader (see, e.g., Kilmister, 1967, p. 118).

Example 8.10.11 Hamiltonian Form of Variation of Constants/Parameters (continued): Combination with Method of Averaging. Continuing from the last two examples, if the solution of the unperturbed equations is τ-periodic, then we still solve the approximate perturbation equations (h, i) of ex. 8.10.9, but with $H^{\prime}=H_{1}$ replaced with its average over τ, that is, by

$$
\begin{equation*}
\left\langle H_{1}\right\rangle \equiv(1 / \tau) \int_{0}^{\tau} H_{1}(\alpha, \beta, t) d t \tag{a}
\end{equation*}
$$

and α, β treated as constants. Let us apply this "averaged method of variation of parameters' to the well-known Duffing's oscillator:

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q+\varepsilon q^{3}=0 \quad\left[\omega_{o}=\text { frequency for } \varepsilon=0, \text { a constant }\right] . \tag{b}
\end{equation*}
$$

Its Hamiltonian is easily found to be

$$
\begin{align*}
& H=H_{o}+H_{1} \\
& H_{o}=(1 / 2)\left(p^{2}+\omega_{o}^{2} q^{2}\right), \quad H_{1}=(1 / 4) \varepsilon q^{4}=\text { small perturbation } . \tag{c}
\end{align*}
$$

The corresponding reduced and unperturbed HJ equation $(\varepsilon=0)$ is

$$
\begin{equation*}
\left(d A_{o} / d q\right)^{2}+\omega_{o}^{2} q^{2}=2 \beta \quad\left[\text { where } A=A_{o}(q)-\beta t\right] \tag{d}
\end{equation*}
$$

and so its solution is

$$
\begin{equation*}
A_{o}=\int\left(2 \beta-\omega_{o}^{2} q^{2}\right)^{1 / 2} d q \Rightarrow A=\int\left(2 \beta-\omega_{o}^{2} q^{2}\right)^{1 / 2}-\beta t \tag{e}
\end{equation*}
$$

As a result, the equation of finite unperturbed motion becomes

$$
\begin{align*}
& \alpha=\partial A / \partial \beta=\int\left(2 \beta-\omega_{o}{ }^{2} q^{2}\right)^{-1 / 2} d q-t=\left(1 / \omega_{o}\right) \arcsin \left[\omega_{o} q /(2 \beta)^{1 / 2}\right]-t \\
& \Rightarrow q=\left[(2 \beta)^{1 / 2} / \omega_{o}\right] \sin \left[\omega_{o}(t+\alpha)\right]: \text { unperturbed solution; } \tau=2 \pi / \omega_{o} . \tag{f}
\end{align*}
$$

Therefore, the perturbation Hamiltonian equals

$$
\begin{aligned}
H_{1} & =(1 / 4) \varepsilon q^{4}=\left(\varepsilon \beta^{2} / \omega_{o}^{4}\right) \sin ^{4}\left[\omega_{o}(t+\alpha)\right]=H_{1}(t, \alpha, \beta) \\
& =\cdots=\left(\varepsilon \beta^{2} / \omega_{o}^{4}\right)\left\{(3 / 8)-(1 / 2) \cos \left[2 \omega_{o}(t+\alpha)\right]+(1 / 8) \cos \left[4 \omega_{o}(t+\alpha)\right]\right\},
\end{aligned}
$$

and so its average over τ is

$$
\begin{equation*}
\left\langle H_{1}\right\rangle \equiv\left(\omega_{o} / 2 \pi\right) \int_{0}^{2 \pi / \omega_{o}} H_{1} d t=\cdots=3 \varepsilon \beta^{2} / 8 \omega_{o}{ }^{4} . \tag{g}
\end{equation*}
$$

Hence, the averaged perturbation equations give

$$
\begin{align*}
& d \beta / d t=-\partial\left\langle H_{1}\right\rangle / \partial \alpha=0 \Rightarrow \beta=\text { constant } \tag{h}\\
& d \alpha / d t=\partial\left\langle H_{1}\right\rangle / \partial \beta=3 \varepsilon \beta / 4 \omega_{o}{ }^{4} \Rightarrow \alpha=\left(3 \varepsilon \beta / 4 \omega_{o}{ }^{4}\right) t+\alpha_{o} \tag{i}
\end{align*}
$$

where α_{o} is the integration constant. Finally, substituting (h,i) back into (f), we obtain the first ε-order correction:

$$
\begin{equation*}
q=\left[(2 \beta)^{1 / 2} / \omega_{o}\right] \sin \left\{\omega_{o}\left[1+\left(3 \varepsilon \beta / 4 \omega_{o}^{4}\right)\right] t+\omega_{o} \alpha_{o}\right\}, \tag{j}
\end{equation*}
$$

and the constants β, α_{o} are to be determined from the initial conditions. This agrees with the expressions obtained by other asymptotic methods (e.g., Krylov, Bogoliubov, Mitropolskii; see also chap. 7). For additional problems, see, for example, Nayfeh (1973, pp. 183-189).

Problem 8.10.1 Show that the HJ equation of a particle of mass m in a potential field $V=V$ (particle position, time) in the following common systems of coordinates (with standard notations) is:
(i) rectangular Cartesian:

$$
\begin{equation*}
\partial A / \partial t+(1 / 2 m)\left[(\partial A / \partial x)^{2}+(\partial A / \partial y)^{2}+(\partial A / \partial z)^{2}\right]+V(x, y, z ; t)=0 \tag{a}
\end{equation*}
$$

(ii) polar cylindrical:

$$
\begin{equation*}
\partial A / \partial t+(1 / 2 m)\left[(\partial A / \partial r)^{2}+r^{-2}(\partial A / \partial \phi)^{2}+(\partial A / \partial z)^{2}\right]+V(r, \phi, z ; t)=0 \tag{b}
\end{equation*}
$$

(iii) spherical coordinates:
$\partial A / \partial t+(1 / 2 m)\left[(\partial A / \partial r)^{2}+r^{-2}(\partial A / \partial \theta)^{2}+(r \sin \theta)^{-2}(\partial A / \partial \phi)^{2}\right]+V(r, \phi, \theta ; t)=0$.

Recall that r has different meanings in (b) and (c).

Problem 8.10.2 Consider the following action function, $A=A\left(t, q, q^{\prime}\right)$, that satisfies the HJ equation

$$
\begin{equation*}
H(t, q, \partial A / \partial q)+\partial A / \partial t=0 \tag{a}
\end{equation*}
$$

Show that any solution of (a) of the form

$$
\begin{equation*}
A=A(t, q, \alpha), \quad \alpha \equiv\left(\alpha_{1}, \ldots, \alpha_{n}\right): n \text { arbitrary and independent constants, } \tag{b}
\end{equation*}
$$

solves the dynamical problem through the $2 n$ finite equations

$$
\begin{equation*}
p_{k}=\partial A / \partial q_{k}, \quad-\beta_{k}=\partial A / \partial \alpha_{k} \tag{c}
\end{equation*}
$$

where
$q^{\prime} \rightarrow \alpha$ and $p^{\prime} \rightarrow \beta\left[\equiv\left(\beta_{1}, \ldots, \beta_{n}\right): n\right.$ new arbitrary and independent constants] are, respectively, the new constant canonical coordinates and momenta.

HINT
Recall (8.8.15), with $A(t, q, \alpha) \rightarrow F_{1}\left(t, q, q^{\prime}\right)$.

Problem 8.10.3 Continuing from the preceding problem, show that if $\partial H / \partial t=0$, then the HJ equation assumes the special form

$$
\begin{equation*}
H\left(q, \partial A_{o} / \partial q\right)=E \tag{a}
\end{equation*}
$$

where $A=A_{o}(q, \alpha)-E t$, and the solution of the dynamical problem is given by the following $2 n$ finite equations:

$$
\begin{align*}
& \partial A_{o} / \partial q_{k}=p_{k} \tag{b}\\
& \partial A_{o} / \partial E=t-\beta_{1} \tag{c}\\
& \partial A_{o} / \partial \alpha_{r}=-\beta_{r} \quad(r=2, \ldots, n) \tag{d}
\end{align*}
$$

where $\alpha_{1}=E$ and $\left(\alpha_{2}, \ldots, \alpha_{n}\right): n-1$ constants of integration of (a).

HINT

$$
\beta_{1}=-\partial A / \partial \alpha_{1}=-\left[\partial A_{o} / \partial \alpha_{1}-\left(\partial E / \partial \alpha_{1}\right) t\right]=\cdots
$$

Problem 8.10.4 Hamiltonian Form of Variation of Constants/Parameters: Nonpotential Forces.
(i) By applying (8.7.22 ff.) with

$$
\begin{align*}
X_{k} & \rightarrow X_{k}^{(1)}=-\partial H_{1} / \partial q_{k}+Q_{k}, \quad(k=1, \ldots, n) \tag{a}\\
Q_{k} & =\text { small nonpotential perturbative forces }, \tag{b}\\
c_{k} & \rightarrow \alpha_{k}, \quad c_{n+l} \rightarrow \beta_{l} \quad(k, l=1, \ldots, n) \tag{c}
\end{align*}
$$

and (8.9.10 ff.), show that, in the presence of forces - that is, for perturbed Hamiltonian equations: $d q_{k} / d t=\partial H / \partial p_{k}, d p_{k} / d t=-\partial H / \partial q_{k}+Q_{k}, H=H_{o}+H_{1}$ - the fundamental perturbation equations (ex. 8.10.9: h, i) generalize to

$$
\begin{align*}
& d \alpha_{k} / d t=\partial H_{1} / \partial \beta_{k}+\sum\left(\partial \alpha_{k} / \partial p_{l}\right) Q_{l}=\partial H_{1} / \partial \beta_{k}-\sum\left(\partial q_{l} / \partial \beta_{k}\right) Q_{l} \tag{d}\\
& d \beta_{k} / d t=-\partial H_{1} / \partial \alpha_{k}+\sum\left(\partial \beta_{k} / \partial p_{l}\right) Q_{l}=-\partial H_{1} / \partial \alpha_{k}+\sum\left(\partial q_{l} / \partial \alpha_{k}\right) Q_{l} . \tag{e}
\end{align*}
$$

The advantage of the second forms of (d , e) over their corresponding first forms lies in that the former do not require inversion of the general solution of the unperturbed problem: $q=q(t, \alpha, \beta), p=p(t, \alpha, \beta)$.
(ii) Verify that if $Q_{k}=Q_{k}(t)$-for example, if the perturbative forces are constant - then (d, e) can be rewritten, respectively, in the canonical form:

$$
\begin{equation*}
d \alpha_{k} / d t=\partial \eta_{1} / \partial \beta_{k}, \quad d \beta_{k} / d t=-\partial \eta_{1} / \partial \alpha_{k} \tag{f}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{1} \equiv H_{1}-\sum Q_{k} q_{k}=\text { generalized Hamiltonian perturbation. } \tag{g}
\end{equation*}
$$

[Under such forces, the perturbed Hamiltonian equations can, similarly, be written as

$$
\begin{equation*}
d q_{k} / d t=\partial \eta / \partial p_{k}, \quad d p_{k} / d t=-\partial \eta / \partial q_{k}, \tag{h}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\eta \equiv H-\sum Q_{k} q_{k}=\text { generalized Hamiltonian. }\right] \tag{i}
\end{equation*}
$$

HINTS

To prove the second forms of (d , e), we proceed as follows: from the table of the various types of generating functions of $\S 8.8$ (table 8.1) by equating the second mixed partial $F_{1,2,3,4}$-derivatives, we readily find the following equalities:

$$
\begin{align*}
& \partial^{2} F_{1} / \partial q_{k} \partial q_{k^{\prime}}=\partial p_{k} / \partial q_{k^{\prime}}=-\partial p_{k^{\prime}} / \partial q_{k}, \tag{j}\\
& \partial^{2} F_{2} / \partial q_{k} \partial p_{k^{\prime}}=\partial p_{k} / \partial p_{k^{\prime}}=\partial q_{k^{\prime}} / \partial q_{k}, \tag{k}\\
& \partial^{2} F_{3} / \partial p_{k} \partial q_{k^{\prime}}=-\partial q_{k} / \partial q_{k^{\prime}}=-\partial p_{k^{\prime}} / \partial p_{k}, \tag{1}\\
& \partial^{2} F_{4} / \partial p_{k} \partial p_{k^{\prime}}=-\partial q_{k} / \partial p_{k^{\prime}}=\partial q_{k^{\prime}} / \partial p_{k}, \tag{m}
\end{align*}
$$

and then, as described in ex. 8.10.9, we view [in $(1, \mathrm{~m})]$ the q^{\prime}, p^{\prime} as α, β.
For an alternative derivation of (d, e) along with several advanced and detailed applications of them, see Lur'e (1968, pp. 560-562, ff.].

8.11 HAMILTON'S PRINCIPAL AND CHARACTERISTIC FUNCTIONS, AND ASSOCIATED VARIATIONAL PRINCIPLES/ DIFFERENTIAL EQUATIONS

In this section, we examine the connection between the Hamilton-Jacobi (HJ) equation and Hamilton's integral variational principle (chap. 7). Let us assume that,
somehow, we have obtained the general solution of the canonical equations

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k} \quad(k=1, \ldots, n) \tag{8.11.1}
\end{equation*}
$$

that is, we have found the expressions

$$
\begin{equation*}
q_{k}=q_{k}(t ; c), \quad p_{k}=p_{k}(t ; c), \quad c \equiv\left(c_{1}, \ldots, c_{2 n}\right)=\text { constants of integration. } \tag{8.11.1a}
\end{equation*}
$$

Substituting (8.11.1a) in the system Hamiltonian $H=H(t, q, p)$, we obtain

$$
\begin{equation*}
H=H(t, q, p)=H[t, q(t ; c), p(t ; c)] \equiv H(t, c) \tag{8.11.2}
\end{equation*}
$$

and, therefore, applying chain rule to the above, we find, successively (with $\mu=1, \ldots, 2 n)$,

$$
\begin{align*}
\partial H / \partial c_{\mu} & =\sum\left[\left(\partial H / \partial q_{k}\right)\left(\partial q_{k} / \partial c_{\mu}\right)+\left(\partial H / \partial p_{k}\right)\left(\partial p_{k} / \partial c_{\mu}\right)\right] \\
& =\sum\left[\left(\partial p_{k} / \partial c_{\mu}\right)\left(d q_{k} / d t\right)-\left(\partial q_{k} / \partial c_{\mu}\right)\left(d p_{k} / d t\right)\right] \quad[\text { by }(8.11 .1)] \\
& =\partial / \partial c_{\mu}\left(\sum p_{k} \dot{q}_{k}\right)-d / d t\left(\sum p_{k}\left(\partial q_{k} / \partial c_{\mu}\right)\right) \tag{8.11.2a}
\end{align*}
$$

[due to the identity: $\partial \dot{q}_{k} / \partial c_{\mu}=\partial / \partial c_{\mu}\left(\partial q_{k} / \partial t\right)=\partial / \partial t\left(\partial q_{k} / \partial c_{\mu}\right)=\left(\partial q_{k} / \partial c_{\mu}\right){ }^{\circ}$];
or, since

$$
\begin{equation*}
\partial / \partial c_{\mu}\left(\sum p_{k} \dot{q}_{k}\right)-\partial H / \partial c_{\mu}=\partial L / \partial c_{\mu}=\partial(T-V) / \partial c_{\mu} \tag{8.11.3}
\end{equation*}
$$

we finally obtain the following [special form of the central equation (§3.6)]:

$$
\begin{equation*}
\partial L / \partial c_{\mu}=d / d t\left(\sum p_{k}\left(\partial q_{k} / \partial c_{\mu}\right)\right) \tag{8.11.4}
\end{equation*}
$$

Integrating the above, from an initial instant t_{o} to a current one t [and noting that $\partial(\ldots) / \partial c_{k}$ and $\int(\ldots) d t$ commute], we get

$$
\begin{equation*}
\partial / \partial c_{\mu} \int_{t_{o}}^{t} L d t=\sum\left[p_{k}\left(\partial q_{k} / \partial c_{\mu}\right)-p_{k o}\left(\partial q_{k o} / \partial c_{\mu}\right]\right. \tag{8.11.5}
\end{equation*}
$$

where $q_{k o}\left(p_{k o}\right)$ are the values of $q_{k}\left(p_{k}\right)$ at $t=t_{o}$. The function (§7.9)

$$
\begin{equation*}
A_{H} \equiv \int_{t_{o}}^{t} L d t=\int_{t_{o}}^{t}(T-V) d t \equiv A \tag{8.11.6}
\end{equation*}
$$

is called, after Hamilton (1834-1835), the principal function of the motion of the system, because, in his words, "The variation of this definite integral S [our A] has therefore the double property, of giving the differential equations of motion for any transformed coordinates when the extreme positions are regarded as fixed, and of giving the integrals of those differential equations when the extreme positions are treated as varying." (Quoted in MacMillan, 1936, p. 367.) To understand these
statements better, we need to examine A more closely. In view of (8.11.1a) and (8.11.6), we will have

$$
\begin{align*}
q_{k}=q_{k}(t ; c) & \Rightarrow q_{k o}=q_{k}\left(t_{o} ; c\right) \tag{8.11.7a}\\
& \Rightarrow A=A\left(t, t_{o} ; c\right) \tag{8.11.7b}
\end{align*}
$$

and, therefore, arbitrary variations of the $2 n$ integration constants, $c \rightarrow c+\delta c$, cause the following (first-order in the δc, and fixed-time) variations in the q 's and A :

$$
\begin{equation*}
\delta q_{k}=\sum\left(\partial q_{k} / \partial c_{\mu}\right) \delta c_{\mu}, \quad \delta A=\sum\left(\partial A / \partial c_{\mu}\right) \delta c_{\mu} . \tag{8.11.8}
\end{equation*}
$$

Hence, multiplying (8.11.5) with δc_{μ} and summing over $\mu=1, \ldots, 2 n$, we arrive at the fundamental variational equation

$$
\begin{equation*}
\delta A=\sum\left(p_{k} \delta q_{k}-p_{k o} \delta q_{k o}\right) . \tag{8.11.9}
\end{equation*}
$$

To obtain differential equations from the above, we, first, solve the $2 n$ equations (8.11.7a) for the $2 n$ constants c in terms of the $2 n q$'s and q_{o} 's (and time): $c_{\mu}=c_{\mu}\left(t ; q, q_{o}\right)$, and then substitute this result in (8.11.7b)

$$
\begin{equation*}
A=A\left(t, t_{o} ; q, q_{o}\right) \tag{8.11.10}
\end{equation*}
$$

This expresses the action functional along the actual path (or orbit) as a function of the coordinates of its lower (initial) and upper (final) limits of integration. More important: (i) from the mathematical point of view, the transition from (8.11.7b) to (8.11.10) is one from an initial-value problem [c given, or equivalently, due to (8.11.1a), q_{o} and p_{o} given] to a boundary-value problem (q_{o} and q given); while (ii) physically, it signifies a transition from motion determined by the initial positions and velocities (or momenta) to motion determined by the initial and final positions (provided, of course, that the latter are achievable from the former).

Varying (8.11.10), for fixed t, we obtain

$$
\begin{equation*}
\delta A=\sum\left[\left(\partial A / \partial q_{k}\right) \delta q_{k}+\left(\partial A / \partial q_{k o}\right) \delta q_{k o}\right] \tag{8.11.11}
\end{equation*}
$$

and, therefore, comparing this with (8.11.9), while recalling that the δq and δq_{o} are arbitrary, we obtain the equations

$$
\begin{equation*}
\partial A / \partial q_{k}=p_{k}, \quad \partial A / \partial q_{k o}=-p_{k o} . \tag{8.11.12}
\end{equation*}
$$

Solving the second group of (8.11.12) for the q 's in terms of t and $q_{o}{ }^{\prime} s, p_{o}$'s, and then substituting these expressions into the first group, we obtain the p 's as functions of t, q_{o} 's, p_{o} 's:

$$
\begin{equation*}
q_{k}=q_{k}\left(t ; q_{o}, p_{o}\right), \quad p_{k}=p_{k}\left(t ; q_{o}, p_{o}\right) ; \tag{8.11.13}
\end{equation*}
$$

that is, eqs. (8.11.12) constitute a complete set of integrals of the equations of motion (8.11.1): knowledge of A provides a complete solution to the problem. Indeed, A satisfies the Hamilton-Jacobi equation (HJ, §8.10), and, hence, can be identified with
the there-introduced action function A. Here is why: $(\ldots)^{\text {- }}$-differentiating (8.11.10), we find, successively,

$$
d A / d t=\partial A / \partial t+\sum\left(\partial A / \partial q_{k}\right)\left(d q_{k} / d t\right)=\partial A / \partial t+\sum p_{k} \dot{q}_{k}
$$

[by the first of (8.11.12)],
and from this, since $d A / d t=L(=T-V)\left[\right.$ by (8.11.6)] and $\sum p_{k} \dot{q}_{k}=L+H$ [by the Hamiltonian definition], we readily conclude that

$$
\begin{equation*}
\partial A / \partial t+H(t ; q, p)=\partial A / \partial t+H(t ; q, \partial A / \partial q)=0, \quad \text { Q.E.D. } \tag{8.11.14}
\end{equation*}
$$

Hamilton's Principle

Substituting $L=\sum p_{k} \dot{q}_{k}-H$ in (8.11.6), and then taking its (first and fixed-endpoint) variation δA, we find, successively,

$$
\begin{aligned}
\delta A= & \delta \int L d t=\delta \int\left(\sum p_{k} \dot{q}_{k}-H\right) d t \\
= & \int\left\{\sum\left[p_{k} \delta\left(\dot{q}_{k}\right)+\dot{q}_{k} \delta p_{k}\right]-\delta H\right\} d t \\
= & \int\left\{\left[\left(\sum p_{k} \delta q_{k}\right) \cdot-\sum \dot{p}_{k} \delta q_{k}+\sum \dot{q}_{k} \delta p_{k}\right]\right. \\
& \left.\quad-\sum\left[\left(\partial H / \partial q_{k}\right) \delta q_{k}+\left(\partial H / \partial p_{k}\right) \delta p_{k}\right]\right\} d t \\
& \quad\left[\text { assuming that } \delta(d q)=d(\delta q), \text { or } \delta(\dot{q})=(\delta q)^{\cdot}\right],
\end{aligned}
$$

or, after integrating out the (...) term:

$$
\begin{align*}
\delta A=\int \sum\left[\left(d q_{k} / d t-\partial H / \partial p_{k}\right) \delta p_{k}\right. & \left.-\sum\left(d p_{k} / d t+\partial H / \partial q_{k}\right) \delta q_{k}\right] \\
& +\sum\left(p_{k} \delta q_{k}-p_{k o} \delta q_{k o}\right) \tag{8.11.15}
\end{align*}
$$

Now, if

$$
\begin{equation*}
d q_{k} / d t=\partial H / \partial p_{k}, \quad d p_{k} / d t=-\partial H / \partial q_{k} \tag{8.11.16}
\end{equation*}
$$

and $\delta q_{k}=\delta q_{k o}=0$ (or some other combination that nullifies the last ("boundary") terms, then $\delta A=0$; and, conversely, if $\delta A=0$, for all variations of the q 's and p 's that vanish at the temporal endpoints, then (8.11.16) follow. This is Hamilton's principle in canonical variables (and for contemporaneous variations).

In sum:
(i) Given the function $H=H(t, q, p)$ and the differential equations $d q_{k} / d t=$ $\partial H / \partial p_{k}, d p_{k} / d t=-\partial H / \partial q_{k}$, the principal function $A \equiv \int L d t=\int\left(\sum p_{k} \dot{q}_{k}-H\right) d t$ $=\int\left(\sum p_{k} d q_{k}-H d t\right)$ satisfies the partial differential equation $\partial A / \partial t+$ $H(t ; q, \partial A / \partial q)=0$.
(ii) Hamilton: if $A=A\left(t, t_{o} ; q, q_{o}\right)$, then a complete integral of the equations of motion can be obtained from $p_{k}=\partial A / \partial q_{k}, p_{k o}=\partial A / \partial q_{k o}$.
(iii) Jacobi: If $A=A(t, q, \beta)$ is a complete solution of $\partial A / \partial t+H(t, q, \partial A / \partial q)=0$, then a complete integral of the equations of motion can be obtained from $p_{k}=\partial A / \partial q_{k}, \alpha_{k}=\partial A / \partial \beta_{k}$.

Action as a Function of the Coordinates and Time

Comparing the earlier $d A / d t=L$ with $d A / d t=\partial A / \partial t+\sum\left(\partial A / \partial q_{k}\right)\left(d q_{k} / d t\right)=$ $\partial A / \partial t+\sum p_{k} \dot{q}_{k}$, we immediately obtain

$$
\begin{equation*}
\partial A / \partial t=L-\sum p_{k} \dot{q}_{k}=-H \tag{8.11.17}
\end{equation*}
$$

which also follows from the HJ equation (8.11.14). Hence, if A is considered as a function of the current coordinates and upper (current) time limit in (8.11.6), its total differential equals

$$
\begin{equation*}
d A=(\partial A / \partial t) d t+\sum\left(\partial A / \partial q_{k}\right) d q_{k}=\sum p_{k} d q_{k}-H d t \tag{8.11.18}
\end{equation*}
$$

Generally, if A is considered as a function of both initial and final coordinates and time, then

$$
\begin{equation*}
d A=\left(\sum p_{k} d q_{k}-H d t\right)-\left(\sum p_{k o} d q_{k o}-H_{o} d t_{o}\right) \tag{8.11.19}
\end{equation*}
$$

which can be rewritten in terms of variational calculus notation as

$$
\begin{align*}
\Delta A & =\left(\sum p_{k} \Delta q_{k}-H \Delta t\right)-\left(\sum p_{k o} \Delta q_{k o}-H_{o} \Delta t_{o}\right) \\
& =\sum p_{k} \Delta q_{k}-\sum p_{k o} \Delta q_{k o}-H \Delta\left(t-t_{o}\right) \quad[\text { if } H=\text { constant }] \tag{8.11.20}
\end{align*}
$$

[where $\Delta(\ldots)=\delta(\ldots)+(\ldots)^{\cdot} \Delta t=$ noncontemporaneous variation (§7.2, §7.9)], from which (8.11.12) and (8.11.17) follow. If $(\partial L / \partial t=0 \Rightarrow) H=$ constant, then the latter can be rewritten as

$$
\begin{equation*}
\partial A / \partial \tau=-H, \quad \tau \equiv t-t_{o}=\text { time of transit } ; \tag{8.11.21}
\end{equation*}
$$

whereas if $H \neq$ constant, then we have $\partial A / \partial t_{o}=H_{o}, \partial A / \partial t=-H$. Equation (8.11.20) is referred to as Hamilton's principle of varying, or varied, action.

The above show that the final (or current) state of the system cannot be an arbitrary function of its initial state; the right side of (8.11.19) must be an exact differential, no matter what the impressed (potential) forces are. These results are of interest in geometrical optics.

Specializations

(i) If $\partial L / \partial t=-\partial H / \partial t=0$, then $H(q, p)=$ constant $\equiv E$ (total energy). Then we can write

$$
\begin{equation*}
A=\int\left(\sum p_{k} d q_{k}-H d t\right)=A_{o}-E\left(t-t_{o}\right) \tag{8.11.22}
\end{equation*}
$$

where
$A_{o} \equiv \int \sum p_{k} d q_{k}=\int\left(\sum p_{k} \dot{q}_{k}\right) d t=\int 2 T d t$
$=$ Abbreviated action (or characteristic function $-A_{o}$ of §8.10; and the
Lagrangean action A_{L} of $\S 7.9$; also, frequently denoted by W).
In this case, and for variations satisfying $\left(\Delta t_{o} \rightarrow\right) d t_{o}=0,\left(\Delta q_{k o} \rightarrow\right) d q_{k o}=0$, and $\left(\Delta q_{k} \rightarrow\right) d q_{k}=0$ but $(\Delta t \rightarrow) d t \neq 0$ (i.e., given initial coordinates and time, and given final coordinates but not time) eqs. (8.11.19), (8.11.20) reduce, respectively, to

$$
\begin{equation*}
d A=-H d t=-E d t, \quad \Delta A=-E \Delta t \tag{8.11.24}
\end{equation*}
$$

and, therefore, comparing with (8.11.22), we conclude that, for such isoenergetic variations,

$$
\begin{equation*}
\Delta A_{o}=0 \tag{8.11.25}
\end{equation*}
$$

This is the "principle" of Maupertuis \rightarrow Euler \rightarrow Lagrange (MEL; recalling discussion in §7.9): The abbreviated, or Lagrangean, action has a stationary value for the actual path of the system, among all comparison paths that satisfy conservation of energy (and all have the same energy constant as the actual path), pass from the given initial configuration at a given time, and from the given final configuration at an unspecified time.

Generally, and in variational calculus notation,

$$
\begin{equation*}
\Delta A_{o}=\left(\sum p_{k} \Delta q_{k}-\sum p_{k o} \Delta q_{k o}\right)+\Delta H\left(t-t_{o}\right) \tag{8.11.26}
\end{equation*}
$$

from which, if we regard A_{o} as a function of the initial and final coordinates and the energy - that is, $A_{o}=A_{o}\left(q_{o}, q, E\right)$ - we obtain the differential relations

$$
\begin{equation*}
p_{k}=\partial A_{o} / \partial q_{k}, \quad p_{k o}=-\partial A_{o} / \partial q_{k o}, \quad \tau \equiv t-t_{o}=\partial A_{o} / \partial E \tag{8.11.27}
\end{equation*}
$$

Here, too, knowledge of A_{o} determines the motion: the $n+1$ equations, second and third of (8.11.27), plus q_{o}, p_{o} determine the energy H and the q 's; then the first of (8.11.27) gives the p 's.

If the system Lagrangean has the common form

$$
\begin{equation*}
L=(1 / 2) \sum \sum M_{k l}(q) \dot{q}_{k} \dot{q}_{l}-V(q), \tag{8.11.28}
\end{equation*}
$$

then, since $p_{k}=\partial L / \partial \dot{q}_{k}=\sum M_{k l}(q) \dot{q}_{l}$, and by energy conservation:

$$
\begin{equation*}
E=(1 / 2) \sum \sum M_{k l} \dot{q}_{k} \dot{q}_{l}+V \Rightarrow(d t)^{2}=\left(\sum \sum M_{k l} d q_{k} d q_{l}\right) / 2(E-V) \tag{8.11.29}
\end{equation*}
$$

the corresponding A_{o} is expressed in terms of the coordinates q and their differentials $d q$, and with the energy as a constant parameter, in the generalized

Jacobi form (§7.9):

$$
\begin{align*}
A_{o} \equiv \int \sum p_{k} d q_{k} & =\int \sum \sum\left[M_{k l}\left(d q_{l} / d t\right)\right] d q_{k} \quad[\operatorname{by}(8.11 .29): d t=\cdots] \\
& =\int\left[2(E-V) \sum \sum M_{k l} d q_{k} d q_{l}\right]^{1 / 2} \tag{8.11.30}
\end{align*}
$$

Clearly, since $p_{k}=\partial L(q, \dot{q}) / \partial \dot{q}_{k}$ and $E=H(q, \dot{q})=E(q, \dot{q})$, this method can be extended to systems with more general Lagrangeans than (8.11.28).
(ii) If, in (8.11.22), we vary both E and t, we obtain (again in variational notation, and recalling (8.11.24)]

$$
\begin{equation*}
\Delta A=\Delta A_{o}-\left(t-t_{o}\right) \Delta E-E \Delta t=-E \Delta t \tag{8.11.31}
\end{equation*}
$$

from which we easily conclude that

$$
\begin{equation*}
\partial A_{o} / \partial E=t-t_{o} . \tag{8.11.32}
\end{equation*}
$$

(a) If, further, A_{o} has the form (8.11.30), then (8.11.32) leads to the integral [of (8.11.29)]:

$$
\begin{equation*}
t-t_{o}=\int\left(\sum \sum M_{k l} d q_{k} d q_{l} / 2(E-V)\right)^{1 / 2} \tag{8.11.33}
\end{equation*}
$$

which, along with the path equation, determines the motion.
(b) If the system undergoes periodic motion with the (single) period $\tau=t-t_{o}=2 \pi / \omega$, then its frequency ω is found from

$$
\begin{equation*}
\omega=2 \pi\left(\partial A_{o} / \partial E\right)^{-1} . \tag{8.11.34}
\end{equation*}
$$

Additional related results are given in the examples and problems of \$7.9.

Extension to Cyclic/Ignorable Systems

(Larmor, 1884)
In such a case, A and A_{o} are replaced, respectively, by (recalling eq. (8.3.3c)):

$$
\begin{aligned}
A_{R} & \equiv \int\left(T^{\prime \prime}-V\right) d t \equiv \int\left[\left(T-\sum \Psi_{i} \dot{\psi}_{i}\right)-V\right] d t \equiv \int\left(L-\sum \Psi_{i} \dot{\psi}_{i}\right) d t \\
& \equiv \int R(t, q, \dot{q} ; \Psi \equiv C) d t \equiv \int R d t:
\end{aligned}
$$

Function of the initial and final values of the nonignorable (or positional) coordinates q and time of transit $\tau \equiv t-t_{o}$; with the cyclic momenta Ψ as constant parameters,

$$
\begin{equation*}
A_{o, R} \equiv \int\left(2 T-\sum \Psi_{i} \dot{\psi}_{i}\right) d t: \tag{8.11.35}
\end{equation*}
$$

Function of the initial and final values of the nonignorable coordinates q, and the total energy H under constant cyclic momenta.

All previous variations and differential equations hold for A_{R} and $A_{o, R}$, provided only the nonignorable coordinates and velocities are varied. Indeed:
(i) Varying A_{R}, we obtain, successively,

$$
\begin{aligned}
\Delta A_{R} & =\delta \int R d t+\left(R \Delta t-R_{o} \Delta t_{o}\right) \\
& =\cdots=-\int \sum E_{p}(R) \delta q_{p} d t+\sum\left(p_{p} \delta q_{p}-p_{p o} \delta q_{p o}\right)+\left(R \Delta t-R_{o} \Delta t_{o}\right) \\
& =-(0)+\sum\left[p_{p}\left(\Delta q_{p}-\dot{q}_{p} \Delta t\right)-p_{p o}\left(\Delta q_{p o}-\dot{q}_{p o} \Delta t_{o}\right)\right]+\left(R \Delta t-R_{o} \Delta t_{o}\right)
\end{aligned}
$$

or, since $R=T^{\prime \prime}-V, T+V=H=$ constant; and

$$
\begin{aligned}
& 2 T=\sum p_{p} \dot{q}_{p}+\sum \Psi_{i} \dot{\psi}_{i} \\
& \Rightarrow \sum p_{p} \dot{q}_{p}=2 T-\sum \Psi_{i} \dot{\psi}_{i}=T+\left(T-\sum \Psi_{i} \dot{\psi}_{i}\right)=T+T^{\prime \prime}
\end{aligned}
$$

finally,

$$
\begin{equation*}
\Delta A_{R}=\sum\left(p_{p} \Delta q_{p}-p_{p o} \Delta q_{p o}\right)-H \Delta\left(t-t_{o}\right) \tag{8.11.37}
\end{equation*}
$$

- If $\Delta q_{p}=0, \Delta q_{p o}=0, \Delta\left(t-t_{o}\right) \equiv \Delta \tau=0$, then the above yields $\Delta A_{R}=0$; which is the Routhian generalization of Hamilton's principle.
- If both initial and final configurations as well as time of transit are variable, then (8.11.37) leads us to

$$
\begin{equation*}
p_{p}=\partial A_{R} / \partial q_{p}, \quad p_{p o}=-\partial A_{R} / \partial q_{p o}, \quad H=-\partial A_{R} / \partial \tau \quad(p=M+1, \ldots, n), \tag{8.11.38}
\end{equation*}
$$

which are the Routhian versions of (8.11.12) and (8.11.17).
(ii) For $A_{o, R}$, we find, similarly,

$$
\begin{align*}
A_{o, R} & =\int\left(\sum p_{p} \dot{q}_{p}\right) d t=\cdots=\int\left(T+T^{\prime \prime}\right) d t \\
& =A_{R}+\int(T+V) d t=A_{R}+H \tau ; \tag{8.11.39}
\end{align*}
$$

that is, here, the independent variable is the total energy, not the transit time. Hence, varying this generally, we obtain

$$
\begin{align*}
\Delta A_{o, R} & =\Delta A_{R}+\tau \Delta H+H \Delta \tau \quad[\operatorname{invoking}(8.11 .37)] \\
& =\sum\left(p_{p} \Delta q_{p}-p_{p o} \Delta q_{p o}\right)+\tau \Delta H, \tag{8.11.40}
\end{align*}
$$

and from this we get the equations
$p_{p}=\partial A_{o, R} / \partial q_{p}, \quad p_{p o}=-\partial A_{o, R} / \partial q_{p o}, \quad \tau=\partial A_{o, R} / \partial H \quad(p=M+1, \ldots, n)$,
which constitute the Routhian versions of (8.11.27).
Example 8.11.1 The Characteristic Function, or Abbreviated Action, of a One-DOF System. Application of the energy equation to such a system yields

$$
\begin{equation*}
p=p(q, E) \quad(\beta=E, n=1) \tag{a}
\end{equation*}
$$

and therefore its characteristic function becomes

$$
\begin{equation*}
A_{o}=\int p(q, E) d q, \tag{b}
\end{equation*}
$$

with the integral extending from an initial configuration, q_{o}, to a current one, q. Hence, by (8.10.111):

$$
\begin{equation*}
t-t_{o}=\partial A_{o} / \partial E=\partial / \partial E\left[\int p(q, E) d q\right]=\int[\partial p(q, E) / \partial E] d q \tag{c}
\end{equation*}
$$

Specialization
For a single particle of mass m, the energy equation

$$
\begin{equation*}
H=p^{2} / 2 m+V(q)=E \tag{d}
\end{equation*}
$$

yields the (a)-like representation

$$
\begin{equation*}
p=\{2 m[E-V(q)]\}^{1 / 2}=p(q ; E) \tag{e}
\end{equation*}
$$

and hence the (b)-like action

$$
\begin{equation*}
A_{o}=(2 m)^{1 / 2} \int[E-V(q)]^{1 / 2} d q \tag{f}
\end{equation*}
$$

From (e), we obtain

$$
\begin{equation*}
\partial p / \partial E=(m / 2)^{1 / 2}[E-V(q)]^{-1 / 2} \tag{g}
\end{equation*}
$$

and, from this, the (c)-like equation of motion

$$
\begin{equation*}
t=(m / 2)^{1 / 2} \int[E-V(q)]^{-1 / 2} d q+t_{o} \tag{h}
\end{equation*}
$$

In particular, if $V=m g q$ (i.e., vertical motion of particle in constant field of gravity), then (h) gives

$$
t=(m / 2)^{1 / 2} \int(E-m g q)^{-1 / 2} d q+t_{o}=t_{o}-(1 / g)[2(E-m g q) / m]^{1 / 2}
$$

and if we choose the q-origin so that $m g q_{o}=E$, the above reduces to the wellknown $q=q_{o}-(g / 2)\left(t-t_{o}\right)^{2}$.

It is not hard to see that the above also apply to an n-DOF system with only one nonignorable coordinate: $q_{n}=q$. Then, since all momenta except $p_{n}=p$ are constant, the energy equation and characteristic function reduce, respectively, to

$$
\begin{equation*}
H\left(q, p ; \beta_{1}, \ldots, \beta_{n-1}\right)=E, \quad A_{o}=\int p\left(q ; \beta_{1}, \ldots, \beta_{n-1}, \beta_{n}=E\right) d q \tag{i}
\end{equation*}
$$

Example 8.11.2 On Hamilton's Principal Function and Associated Differential Equations.
(i) Let

$$
\begin{equation*}
L=T-V=(m / 2)\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right] ; \tag{a}
\end{equation*}
$$

that is, free motion of particle P of mass m. Then, as is well known,

$$
\begin{equation*}
x=x_{o}+\dot{x}_{o} t, \quad y=y_{o}+\dot{y}_{o} t, \quad z=z_{o}+\dot{z}_{o} t \quad(\text { law of inertia }) \tag{b}
\end{equation*}
$$

where $x_{o}, y_{o}, z_{o} / \dot{x}_{o}, \dot{y}_{o}, \dot{z}_{o}=$ rectangular Cartesian components of initial position/ velocity of P, at time $t_{o}=0$. As a result of (b), the corresponding action (principal function) becomes, successively,

$$
\begin{aligned}
A & =\int L d t=\int(m / 2)\left[(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}\right] d t \\
& =\cdots=(m / 2)\left[\left(\dot{x}_{o}\right)^{2}+\left(\dot{y}_{o}\right)^{2}+\left(\dot{z}_{o}\right)^{2}\right]\left(t-t_{o}\right) \equiv\left(m v_{o}{ }^{2} / 2\right) t
\end{aligned}
$$

[by (b): $\left.\quad \dot{x}_{o}=\left(x-x_{o}\right) / t=\dot{x}, \quad \dot{y}_{o}=\left(y-y_{o}\right) / t=\dot{y}, \quad \dot{z}_{o}=\left(z-z_{o}\right) / t=\dot{z}\right]$

$$
=(m / 2 t)\left[\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}+\left(z-z_{o}\right)^{2}\right]
$$

$$
\begin{equation*}
=A\left(t, t_{o} ; x, y, z ; x_{o}, y_{o}, z_{o}\right) \tag{c}
\end{equation*}
$$

and from this expression we readily find

$$
\begin{align*}
& \partial A / \partial x=(m / 2 t)\left[2\left(x-x_{o}\right)\right]=m\left(x-x_{o}\right) / t=m \dot{x} \equiv p_{x}, \quad \text { etc., cyclically, } \tag{a}\\
& \partial A / \partial x_{o}=-(m / 2 t)\left[2\left(x-x_{o}\right)\right]=\cdots=-m \dot{x}_{o} \equiv-p_{x o}, \quad \text { etc., cyclically, } \tag{e}\\
& \begin{aligned}
\partial A / \partial t & =-\left(m / 2 t^{2}\right)\left[\left(x-x_{o}\right)^{2}+\cdots\right]=-(m / 2)\left\{\left[\left(x-x_{o}\right) / t\right]^{2}+\cdots\right\} \\
& =-\left(m v_{o}^{2} / 2\right)=-(\text { energy }) \equiv-E, \quad \text { as expected. }
\end{aligned}
\end{align*}
$$

(ii) Let the equations of motion of a particle P be

$$
\begin{equation*}
\ddot{x}=-\omega^{2} x, \quad \ddot{y}=-\omega^{2} y ; \tag{g}
\end{equation*}
$$

that is, isotropic harmonic oscillator of (constant) frequency $\omega ; x, y=$ rectangular Cartesian coordinates. The general solution of (g) is

$$
\begin{equation*}
x=a \sin \left(\omega t+\phi_{o}\right), \quad y=b \sin \left(\omega t+\psi_{o}\right), \tag{h}
\end{equation*}
$$

where $a, b ; \phi_{o}, \psi_{o}=$ four constants of integration. From the above, we readily obtain the system Lagrangean:

$$
\begin{align*}
L & =T-V=(m / 2)\left[(\dot{x})^{2}+(\dot{y})^{2}\right]-\left(m \omega^{2} / 2\right)\left(x^{2}+y^{2}\right) \\
& =\cdots=\left(m \omega^{2} / 2\right)\left\{a^{2} \cos \left[2\left(\omega t+\phi_{o}\right)\right]+b^{2} \cos \left[2\left(\omega t+\psi_{o}\right)\right]\right\} \tag{i}
\end{align*}
$$

and, from the latter, the following system action:

$$
\begin{align*}
& A=\int L d t=(m \omega / 4)\left\{a^{2} \sin \left[2\left(\omega t+\phi_{o}\right)\right]+b^{2} \sin \left[2\left(\omega t+\psi_{o}\right)\right]-a^{2} \sin \left(2 \phi_{o}\right)-b^{2} \sin \left(2 \psi_{o}\right)\right\} \\
& \\
& \quad\left[\text { introducing the initial positions: } x(0) \equiv x_{o}=a \sin \phi_{o}, y(0) \equiv y_{o}=b \sin \psi_{o}\right] \\
& =(m \omega / 2)\left\{\left[a x \cos \left(\omega t+\phi_{o}\right)+b y \cos \left(\omega t+\psi_{o}\right)\right]-a x_{o} \cos \phi_{o}-b y_{o} \cos \psi_{o}\right\} \\
& \\
& {\left[\begin{array}{rl}
\left.\operatorname{since} \text { by }(\mathrm{h}), a \cos \phi_{o}=\left[x-x_{o} \cos (\omega t)\right] / \sin (\omega t), b \cos \psi_{o}=\left[y-y_{o} \cos (\omega t)\right] / \sin (\omega t)\right] \\
= & (m \omega / 2)\left\{a x\left[\cos (\omega t) \cos \phi_{o}-\sin (\omega t) \sin \phi_{o}\right]+b y\left[\cos (\omega t) \cos \psi_{o}-\sin (\omega t) \sin \psi_{o}\right]\right. \\
& \left.\quad-a x_{o} \cos \phi_{o}-b y_{o} \cos \psi_{o}\right\} \\
= & {[m \omega / 2 \sin (\omega t)]\left[\left(x^{2}+y^{2}+x_{o}{ }^{2}+y_{o}{ }^{2}\right) \cos (\omega t)-2\left(x x_{o}+y y_{o}\right)\right]} \\
= & {[m \omega / 2 \sin (\omega t)]\left\{\left[\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}\right] \cos (\omega t)-2[1-\cos (\omega t)]\left(x x_{o}+y y_{o}\right)\right\} \cdot(\mathrm{j})}
\end{array}\right.}
\end{align*}
$$

From this expression, we readily obtain

$$
\begin{align*}
\partial A / \partial x= & {[m \omega / 2 \sin (\omega t)]\left[2 x \cos (\omega t)-2 x_{o}\right] } \\
& {\left[x=a \sin \left(\omega t+\phi_{o}\right) \Rightarrow x_{o}=a \sin \phi_{o}\right] } \\
= & a m \omega \cos \left(\omega t+\phi_{o}\right)=m \dot{x}=p_{x}, \quad \text { etc., cyclically, } \tag{k}\\
\partial A / \partial x_{o}= & {[m \omega / 2 \sin (\omega t)]\left[2 x_{o} \cos (\omega t)-2 x\right] } \\
= & -[a m \omega / \sin (\omega t)] \sin (\omega t) \cos \phi_{o}=-m \dot{x}_{o}=-p_{x o}, \quad \text { etc., cyclically. } \tag{1}
\end{align*}
$$

Let the reader verify that $\partial A / \partial t=-(T+V)=-E$.

Example 8.11.3 Second Proof of the Constancy of Lagrange's Brackets (8.7.11 ff.). The expression following eq. (8.11.2) can be successively rewritten as follows:
$\partial H / \partial c_{\mu}=\partial / \partial c_{\mu}\left(\sum p_{k} \dot{q}_{k}\right)-d / d t\left(\sum p_{k}\left(\partial q_{k} / \partial c_{\mu}\right)\right)$
(expanding and simplifying)

$$
=\sum \dot{q}_{k}\left(\partial p_{k} / \partial c_{\mu}\right)-\sum \dot{p}_{k}\left(\partial q_{k} / \partial c_{\mu}\right)
$$

(adding and subtracting the second and fourth summands below)

$$
\begin{align*}
& =\sum\left[\dot{q}_{k}\left(\partial p_{k} / \partial c_{\mu}\right)+q_{k}\left(\partial \dot{p}_{k} / \partial c_{\mu}\right)\right]-\sum\left[\dot{p}_{k}\left(\partial q_{k} / \partial c_{\mu}\right)+q_{k}\left(\partial \dot{p}_{k} / \partial c_{\mu}\right)\right] \\
& =d / d t\left[\sum q_{k}\left(\partial p_{k} / \partial c_{\mu}\right)\right]-\partial / \partial c_{\mu}\left(\sum q_{k} \dot{p}_{k}\right) \tag{a}
\end{align*}
$$

or, after slight rearrangement and use of $d p_{k} / d t=-\partial H / \partial q_{k}$,

$$
\begin{equation*}
d / d t\left(\sum q_{k}\left(\partial p_{k} / \partial c_{\mu}\right)\right)=\partial / \partial c_{\mu}\left(H-\sum q_{k}\left(\partial H / \partial q_{k}\right)\right) \equiv \partial H^{\prime} / \partial c_{\mu} \tag{b}
\end{equation*}
$$

and, similarly, with $c_{\mu} \rightarrow c_{\nu}$, we obtain

$$
\begin{equation*}
d / d t\left(\sum q_{k}\left(\partial q_{k} / \partial c_{\nu}\right)\right)=\partial / \partial c_{\nu}\left(H-\sum q_{k}\left(\partial H / \partial q_{k}\right)\right) \equiv \partial H^{\prime} / \partial c_{\nu} \tag{c}
\end{equation*}
$$

Now, differentiating (b) relative to c_{ν} and (c) relative to c_{μ}, and then subtracting side by side, we readily obtain

$$
\begin{gather*}
d / d t\left[\partial / \partial c_{\nu} \sum q_{k}\left(\partial p_{k} / \partial c_{\mu}\right)-\partial / \partial c_{\mu} \sum q_{k}\left(\partial p_{k} / \partial c_{\nu}\right)\right] \\
=\partial^{2} H^{\prime} / \partial c_{\nu} \partial c_{\mu}-\partial^{2} H^{\prime} / \partial c_{\mu} \partial c_{\nu}=0 \tag{d}
\end{gather*}
$$

that is,

$$
\begin{gather*}
d / d t\left(\sum\left(\partial q_{k} / \partial c_{\nu}\right)\left(\partial p_{k} / \partial c_{\mu}\right)-\sum\left(\partial q_{k} / \partial c_{\mu}\right)\left(\partial p_{k} / \partial c_{\nu}\right)\right) \equiv\left[c_{\mu}, c_{\nu}\right]^{\cdot}=0 \tag{e}\\
\Rightarrow\left[c_{\mu}, c_{\nu}\right]=\text { constant, } \quad \text { Q.E.D. } \tag{f}
\end{gather*}
$$

Problem 8.11.1 By carrying out the two distinct (fixed time) variations $\delta_{1}(\ldots)$ and $\delta_{2}(\ldots)$ on the Hamiltonian equations

$$
\begin{equation*}
p_{k o}=-\partial A / \partial q_{k o}, \quad p_{k}=\partial A / \partial q_{k}, \text { where } A=A\left(t, t_{o} ; q, q_{o}\right) \tag{a}
\end{equation*}
$$

prove the earlier Lagrange-Poisson theorem (8.7.10):

$$
\begin{equation*}
I \equiv \sum\left(\delta_{1} p_{k} \delta_{2} q_{k}-\delta_{2} p_{k} \delta_{1} q_{k}\right)=\sum\left(\delta_{1} p_{k o} \delta_{2} q_{k o}-\delta_{2} p_{k o} \delta_{1} q_{k o}\right) \equiv I_{o} \tag{b}
\end{equation*}
$$

that is, $I=$ constant in time, namely, $d I / d t=0$. (For relevant applications, see, e.g., Lamb, 1943, pp. 277-281.)

Problem 8.11.2 Assume that after the action-like integral (functional)

$$
\begin{equation*}
A^{\prime} \equiv \int\left(T+V+\sum q_{k} \dot{p}_{k}\right) d t \tag{a}
\end{equation*}
$$

is evaluated along an actual path, it becomes a function of the initial and final momenta and time of transit $\tau \equiv t-t_{o}: A^{\prime}=A^{\prime}\left(p, p_{o}, \tau\right)$. Show that

$$
\begin{align*}
\Delta A^{\prime} & =\left(\partial A^{\prime} \partial \tau\right) \Delta \tau+\sum\left[\left(\partial A^{\prime} / \partial p_{k}\right) \Delta p_{k}+\left(\partial A^{\prime} / \partial p_{k o}\right) \Delta p_{k o}\right] \\
& =H \Delta \tau+\sum\left(q_{k} \Delta p_{k}-q_{k o} \Delta p_{k o}\right) \tag{b}
\end{align*}
$$

that is,

$$
\partial A^{\prime} / \partial \tau=H, \quad \partial A^{\prime} / \partial p_{k}=q_{k}, \quad \partial A^{\prime} / \partial p_{k o}=-q_{k o} .
$$

Problem 8.11.3 Alternative Variational Formulation of the Routhian Formalism. Show that the variational problem (say, with vanishing endpoint variations, and the usual notations)

$$
\begin{equation*}
\delta \int \Lambda d t=0 \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda \equiv R(t, q, \dot{q} ; \psi, \Psi)+\sum \dot{\psi}_{i} \Psi_{i}=\Lambda(t, q, \dot{q}, \psi, \dot{\psi}, \Psi, \dot{\Psi}) \tag{b}
\end{equation*}
$$

yields Routh's equations for the system described by the "Lagrangean" Λ; that is, verify that

$$
\begin{array}{ll}
\left(\partial \Lambda / \partial \dot{q}_{p}\right)^{\cdot}-\partial \Lambda / \partial q_{p}=0 & \text { gives Routh's equations of motion } \\
& \begin{array}{l}
\text { (i.e., } R \text { : Lagrangean for the } q \text { 's), }
\end{array} \\
\left(\partial \Lambda / \partial \dot{\psi}_{i}\right)^{\cdot}-\partial \Lambda / \partial \psi_{i}=0 & \begin{array}{l}
\text { gives } d \Psi_{i} / d t=\partial R / \partial \psi_{i} \\
\left(\Rightarrow \Psi_{i}=\text { constant, if } \partial R / \partial \psi_{i}=\partial L / \partial \psi_{i}=0\right) \\
\left(\partial \Lambda / \partial \dot{\Psi}_{i}\right)^{\cdot}-\partial \Lambda / \partial \Psi_{i}=0
\end{array} \\
\text { gives } d \psi_{i} / d t=\partial R / \partial \Psi_{i} .
\end{array}
$$

8.12 INTEGRAL INVARIANTS

We have already seen (§8.8) that canonical transformations leave the Hamiltonian equations form invariant, and they also have the same effect on Hamilton's principle; that is, if

$$
\begin{equation*}
\int\left(\sum p_{k} \dot{q}_{k}-H(t, q, p)\right) d t \rightarrow \text { stationary } \tag{8.12.1a}
\end{equation*}
$$

and the transformation $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ is canonical, then

$$
\begin{equation*}
\int\left(\sum p_{k^{\prime}} \dot{q}_{k^{\prime}}-H^{\prime}\left(t, q^{\prime}, p^{\prime}\right)\right) d t \rightarrow \text { stationary } \tag{8.12.1b}
\end{equation*}
$$

[In this case, the difference of the integrands of (8.12.1a, b) equals the (...) 'derivative of a function of $2 n$ of the old and new variables, and time (i.e., the generating function F); and so, under fixed endpoint (q, p) variations, that difference vanishes.]

Now, Poincaré, E. Cartan, et al. have shown that not only differential, but also certain integral forms exist that remain invariant under canonical transformations. Such quantities, named by them integral invariants, are the object of study of this section.

We begin by considering the fundamental equation of varied action (8.11.20), rewritten as

$$
\begin{equation*}
\Delta A=\left.\left(\sum p_{k} \Delta q_{k}-H \Delta t\right)\right|_{\text {Final time }}-\left.\left(\sum p_{k} \Delta q_{k}-H \Delta t\right)\right|_{\text {Initial time }} \tag{8.12.2}
\end{equation*}
$$

where (fig. 8.8), and to the first order in $\Delta q, \Delta t$:

$$
\begin{equation*}
\Delta A=A\left(\text { from } a_{1}{ }^{\prime} \text { to } a_{2}{ }^{\prime} \text {, along } C^{\prime}\right)-A\left(\text { from } a_{1} \text { to } a_{2}, \text { along } C\right) . \tag{8.12.3}
\end{equation*}
$$

Let us assume that not only the fundamental path C, but also its adjacent C^{\prime} are actual mechanical trajectories (or integral curves) of the system; that is, both are solutions of its equations of motion but have different initial conditions (positions and momenta) and initial times (a total of $2 n+1$ initial parameters); and, as a result, A, A^{\prime} and ΔA are functions (not functionals) of these initial conditions.

To study these changes analytically, we begin with the following, easy to understand, parametric representation of the Hamiltonian variables:

$$
\begin{equation*}
q_{k}=q_{k}(s ; c), \quad p_{k}=p_{k}(s ; c), \quad t=t(s ; c), \tag{8.12.4a}
\end{equation*}
$$

Figure 8.8 Trajectories C and C^{\prime} satisfy the same equations of motion, but have different initial conditions and times (only q vs. t shown here; see also Fig. 8.9).
Coordinates of points involved:

$$
\begin{aligned}
& a_{1}\left(t_{1}, q_{1}\right) \rightarrow a_{1}^{\prime}\left(t_{1}+\Delta t_{1}, q_{1}+\Delta q_{1}\right) \\
& a_{2}\left(t_{2}, q_{2}\right) \rightarrow a_{2}^{\prime}\left(t_{2}+\Delta t_{2}, q_{2}+\Delta q_{2}\right) .
\end{aligned}
$$

or, equivalently,

$$
\begin{equation*}
q_{k}=q_{k}\left[s ; t_{1}, q^{(1)}, p^{(1)}\right], \quad p_{k}=p_{k}\left[s ; t_{1}, q^{(1)}, p^{(1)}\right], \quad t=t\left[s ; t_{1}, q^{(1)}, p^{(1)}\right], \tag{8.12.4b}
\end{equation*}
$$

where s is an "arc-length" parameter in the $(2 n+1)$-dimensional extended phase space of (t, q, p), and $c \equiv\left(c_{1}, \ldots, c_{2 n+1}\right)$ are $2 n+1$ constants of integration; while $t_{1}, q^{(1)} \equiv$ $\left(q_{1}{ }^{(1)}, \ldots, q_{n}{ }^{(1)}\right), p^{(1)} \equiv\left(p_{1}{ }^{(1)}, \ldots, p_{n}{ }^{(1)}\right)$ are the initial values of t, q, p, respectively.

Now, let us assume that these $2 n+1$ initial values (corresponding to the initial value s_{1} of s) are all functions of a single parameter α, independent of s :

$$
\begin{equation*}
q_{k}{ }^{(1)}=q_{k}^{(1)}(\alpha), \quad p_{k}^{(1)}=p_{k}^{(1)}(\alpha), \quad t^{(1)}=t^{(1)}(\alpha), \tag{8.12.5}
\end{equation*}
$$

so that as α varies between the finite values α_{1} (initial) and $\alpha_{2}($ final $)\left(\alpha_{1} \leq \alpha \leq \alpha_{2}\right)$, the initial (left) endpoint of the system trajectories goes around the simple closed curve γ_{1} in (t, q, p)-space:

$$
\begin{equation*}
a_{1}\left(\alpha_{1}\right) \rightarrow a_{1}^{\prime} \rightarrow a_{1}^{\prime \prime} \rightarrow \cdots \rightarrow a_{1}\left(\alpha_{2}\right) . \tag{8.12.6}
\end{equation*}
$$

Then, substituting (8.12.5) into (8.12.4b), we obtain the following parametric representation of the system trajectories:

$$
\begin{align*}
& q_{k}=q_{k}\left[s ; t_{1}(\alpha), q^{(1)}(\alpha), p^{(1)}(\alpha)\right]=q_{k}(s ; \alpha), \\
& p_{k}=p_{k}\left[s ; t_{1}(\alpha), q^{(1)}(\alpha), p^{(1)}(\alpha)\right]=p_{k}(s ; \alpha), \\
& t=t\left[s ; t_{1}(\alpha), q^{(1)}(\alpha), p^{(1)}(\alpha)\right]=t(s ; \alpha) . \tag{8.12.7}
\end{align*}
$$

Figure 8.9 As the parameter α varies from α_{1} to α_{2}, a closed tube of trajectories is created.

These equations show that as the left endpoint traces γ_{1}, the right (final) endpoint traces a similar closed curve γ_{2}, and a generic in-between point traces a closed curve γ (fig. 8.9); that is, as α varies from α_{1} to α_{2}, a closed tube of trajectories (as its generatrices) is created in (t, q, p)-space. We assume that the closed curves $\gamma_{1}, \ldots, \gamma, \ldots, \gamma_{2}$ are nowhere tangent to the trajectories $C, C^{\prime}, C^{\prime \prime}, \ldots, C$, and are intersected only once by them. The above translate to the following α-periodicity relations:

$$
\begin{array}{ll}
\gamma_{1}: & q_{k}{ }^{(1)}\left(\alpha_{1}\right)=q_{k}{ }^{(1)}\left(\alpha_{2}\right) \\
p_{k}{ }^{(1)}\left(\alpha_{1}\right)=p_{k}{ }^{(1)}\left(\alpha_{2}\right) & {\left[\text { or } q_{k}\left(s_{1} ; \alpha_{1}\right)=q_{k}\left(s_{1} ; \alpha_{2}\right)\right],} \\
t_{1}\left(\alpha_{1}\right)=t_{1}\left(s_{2}\right) & \left.\left.\left.\left[\text { or } t\left(s_{1}\right)=p_{k}\right)=t\left(s_{1} ; s_{2}\right)\right], \alpha_{2}\right)\right] \tag{8.12.8}
\end{array}
$$

and similarly for γ_{2} and γ.
From (8.12.7) we immediately see that the most general variations/differentials of t, q, p along $\gamma_{1}, \gamma_{2}, \gamma$-that is, from trajectory to trajectory by varying the initial conditions (with a slight, easily understood, notational change to conform with calculus and the integrations below)-are

$$
\begin{align*}
\Delta q_{k} \rightarrow d q_{k}= & \left\{\left(\partial q_{k} / \partial t_{1}\right)\left(d t_{1} / d \alpha\right)\right. \\
& \left.+\sum\left[\left(\partial q_{k} / \partial q_{l}^{(1)}\right)\left(d q_{l}^{(1)} / d \alpha\right)+\left(\partial q_{k} / \partial p_{l}^{(1)}\right)\left(d p_{l}^{(1)} / d \alpha\right)\right]\right\} d \alpha \\
\Delta p_{k} \rightarrow d p_{k}= & \left\{\left(\partial p_{k} / \partial t_{1}\right)\left(d t_{1} / d \alpha\right)\right. \\
& \left.+\sum\left[\left(\partial p_{k} / \partial q_{l}^{(1)}\right)\left(d q_{l}^{(1)} / d \alpha\right)+\left(\partial p_{k} / \partial p_{l}^{(1)}\right)\left(d p_{l}^{(1)} / d \alpha\right)\right]\right\} d \alpha \\
\Delta t \rightarrow d t=\{ & \left(\partial t / \partial t_{1}\right)\left(d t_{1} / d \alpha\right) \\
& \left.+\sum\left[\left(\partial t / \partial q_{l}^{(1)}\right)\left(d q_{l}^{(1)} / d \alpha\right)+\left(\partial t / \partial p_{l}^{(1)}\right)\left(d p_{l}^{(1)} / d \alpha\right)\right]\right\} d \alpha . \tag{8.12.9}
\end{align*}
$$

With these analytical preliminaries, let us now integrate the fundamental equation (8.12.2) for a complete variation of α; that is, $\alpha_{1} \rightarrow \alpha_{2}$. Since, here,

$$
\begin{align*}
A & =\int L(t, q, \dot{q}) d t \\
& =\int_{t_{1}(\alpha)}^{t_{2}(\alpha)} L[t(s ; \alpha), q(s ; \alpha), p(s ; \alpha)][(\partial t / \partial s) d s]=A(\alpha), \tag{8.12.10}
\end{align*}
$$

[where the integrand is taken along a trajectory; i.e., for a fixed α], the total change of A equals zero:

$$
\begin{equation*}
\oint d A \equiv \int_{\alpha_{1}}^{\alpha_{2}} d A \equiv \int_{\alpha_{1}}^{\alpha_{2}} A^{\prime}(\alpha) d \alpha=A\left(\alpha_{2}\right)-A\left(\alpha_{1}\right)=0 \tag{8.12.11}
\end{equation*}
$$

and therefore the integral of (8.12.2) (slightly rewritten in simplified standard calculus notation, now that we understand the situation better) becomes

$$
\begin{align*}
0=\oint d A= & \oint_{\gamma_{2}}\left(\sum p_{k}^{(2)}(\alpha) d q_{k}^{(2)}(\alpha)-H^{(2)}(\alpha) d t_{2}(\alpha)\right) \\
& -\oint_{\gamma_{1}}\left(\sum p_{k}^{(1)}(\alpha) d q_{k}^{(1)}(\alpha)-H^{(1)}(\alpha) d t_{1}(\alpha)\right), \tag{8.12.12a}
\end{align*}
$$

where

$$
\begin{aligned}
& H^{(*)}(\alpha) \equiv H\left[t_{*}(\alpha), q^{(*)}(\alpha), p^{(*)}(\alpha)\right], \quad q^{(*)}(\alpha) \equiv q\left(s_{*} ; \alpha\right), \quad p^{(*)}(\alpha) \equiv p\left(s_{*} ; \alpha\right), \\
& d q^{(*)}(\alpha), d t_{*}(\alpha): \text { as given by }(8.12 .9), \text { at } s_{*}(*=1,2) ;
\end{aligned}
$$

or, after another easily understood notational simplification,

$$
\begin{equation*}
\oint_{\gamma_{1}}\left(\sum p_{k} d q_{k}-H d t\right)=\oint_{\gamma_{2}}\left(\sum p_{k} d q_{k}-H d t\right)=\oint_{\gamma}\left(\sum p_{k} d q_{k}-H d t\right) \tag{8.12.12b}
\end{equation*}
$$

that is,

$$
\begin{equation*}
I \equiv \oint\left(\sum p_{k} d q_{k}-H d t\right)=\text { constant } . \tag{8.12.13}
\end{equation*}
$$

In words: The integral I (around an arbitrary closed curve that encircles the tube of system trajectories and intersects them only once) is constant along these trajectories; as we say, I is a (Poincaré-Cartan) relative integral invariant. [If the domain of integration is closed (open), like γ, the integral invariant is called relative (absolute).]

For $t=$ constant $(\Rightarrow d t=0$; i.e., γ consists of simultaneous system states), I reduces to the first-order (Poincaré) relative integral invariant:

$$
\begin{equation*}
I \rightarrow I_{1} \equiv \oint \sum p_{k} d q_{k}=\text { constant } \tag{8.12.14}
\end{equation*}
$$

I_{1} is also called circulation integral, due to its formal similarity with the integrals that appear in the Helmholtz-Thomson theorems of continuum kinematics.

REMARK

If we, formally, set $q_{n+1} \equiv t$, then, since $\partial A / \partial t=-H$, the corresponding canonical "momentum" equals $-H$; that is, $p_{n+1}=\partial A / \partial q_{n+1}=\partial A / \partial t=-H$, and therefore (8.12.13) can be rewritten in the following (i)-form for $n+1 q$'s:

$$
\begin{equation*}
I \equiv \oint \sum p_{\mu} d q_{\mu}=\text { constant } \quad(\mu=1, \ldots, n+1) \tag{8.12.13a}
\end{equation*}
$$

Now, the simple closed curve γ [a one-dimensional manifold in either the $(n+1)$ dimensional extended configuration space, or the $(2 n+1)$-dimensional extended phase space] can be viewed as the boundary of a two-dimensional (simply connected) surface there, σ, described by the two Gaussian (curvilinear) coordinates u, v. Hence, when the system point varies over σ, we can write

$$
\begin{equation*}
q_{k}=q_{k}(u, v) \rightarrow d q_{k}=\left(\partial q_{k} / \partial u\right) d u+\left(\partial q_{k} / \partial v\right) d v \tag{8.12.15a}
\end{equation*}
$$

and similarly for $p_{k}, d p_{k}$. Then, say (8.12.14) becomes

$$
\begin{equation*}
I_{1}=\oint\left\{\left[\sum p_{k}\left(\partial q_{k} / \partial u\right)\right] d u+\left[\sum p_{k}\left(\partial q_{k} / \partial v\right)\right] d v\right\} \tag{8.12.15b}
\end{equation*}
$$

or, applying the (two-dimensional) Kelvin-Stokes theorem to it:

$$
\begin{align*}
& \oint_{\gamma}[(*) d u+(* *) d v]=\iint_{\sigma}\{[\partial(*) / \partial v]-[\partial(* *) / \partial u]\} d u d v \tag{8.12.15c}\\
& I_{1}= \iint_{\sigma}\left\{\partial / \partial v\left[\sum p_{k}\left(\partial q_{k} / \partial u\right)\right]-\partial / \partial u\left[\sum p_{k}\left(\partial q_{k} / \partial v\right)\right]\right\} d u d v \\
& \quad[\text { where } \sigma=\text { region in } u v \text {-plane bounded by image of } \gamma \text { there }] \\
&= \iint_{\sigma}\left\{\sum\left[\left(\partial p_{k} / \partial v\right)\left(\partial q_{k} / \partial u\right)-\left(\partial p_{k} / \partial u\right)\left(\partial q_{k} / \partial v\right)\right]\right\} d u d v \\
& \equiv \iint_{\sigma} \sum\left[\partial\left(q_{k}, p_{k}\right) / \partial(u, v)\right] d u d v, \tag{8.12.15d}
\end{align*}
$$

or, finally, recalling that $\partial\left(q_{k}, p_{k}\right) / \partial(u, v)$ is none other than the Jacobian of the transformation $\left(q_{k}, p_{k}\right) \rightarrow(u, v)$, where the q 's and p 's are rectangular Cartesian coordinates in phase space, and the earlier definition of Lagrangean brackets (8.7.9), we can rewrite $I_{1}=$ constant as

$$
\begin{equation*}
I_{1}=I_{2}=\iint_{S_{2}} \sum d q_{k} d p_{k}=\iint_{\sigma_{2}}[u, v] d u d v=\text { constant } \tag{8.12.16}
\end{equation*}
$$

where S_{2} =two-dimensional subspace in phase space corresponding to σ_{2} via (8.12.16). Alternatively, invariance of I_{2} under a canonical transformation
$(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ requires that (here, for constant time, but the argument can be extended to variable time):

$$
\begin{aligned}
I_{2}{ }^{\prime} & \equiv \iint_{S_{2}} \sum d q_{k^{\prime}} d p_{k^{\prime}}=\iint_{\sigma_{2}} \sum\left[\partial\left(q_{k^{\prime}}, p_{k^{\prime}}\right) / \partial(u, v)\right] d u d v \\
& =I_{2}=\iint \sum d q_{k} d p_{k}=\iint \sum\left[\partial\left(q_{k}, p_{k}\right) / \partial(u, v)\right] d u d v \\
& \Rightarrow \sum\left[\partial\left(q_{k^{\prime}}, p_{k^{\prime}}\right) / \partial(u, v)\right]=\sum\left[\partial\left(q_{k}, p_{k}\right) / \partial(u, v)\right]
\end{aligned}
$$

or

$$
\begin{equation*}
[u, v]_{q^{\prime}, p^{\prime}}=[u, v]_{q, p}, \tag{8.12.17}
\end{equation*}
$$

which is the earlier-proved canonical invariance property of the Lagrange's (and Poisson's) brackets (\$8.9).

Similarly, we can prove the integral invariance of

$$
\begin{align*}
I_{4} & \equiv \iiint \int \sum \sum d q_{k} d q_{l} d p_{k} d p_{l} \tag{8.12.18a}\\
I_{6} & \equiv \iiint \iiint \int \sum \sum \sum d q_{k} d q_{l} d q_{r} d p_{k} d p_{l} d p_{r} \tag{8.12.18b}
\end{align*}
$$

and, generally, of

$$
\begin{equation*}
I_{2 n} \equiv \int \cdots(2 n \text { times }) \cdots \int \sum \cdots(n \text { sums }) \cdots \sum d q_{k} d q_{k^{\prime}} \cdots d p_{k} d p_{k^{\prime}} \tag{8.12.18c}
\end{equation*}
$$

The last integral of this series:

$$
\begin{equation*}
\int \cdots(2 n \text { times }) \cdots \int d q_{1} \cdots d q_{n} d p_{1} \cdots d p_{n} \tag{8.12.19a}
\end{equation*}
$$

represents the volume of the corresponding region in (q, p) phase space. Hence, such volumes are invariant under canonical transformations; that is,

$$
\begin{align*}
& \int \cdots(2 n \text { times }) \cdots \int d q_{1} \cdots d q_{n} d p_{1} \cdots d p_{n} \\
& \quad=\int \cdots(2 n \text { times }) \cdots \int d q_{1^{\prime}} \cdots d q_{n^{\prime}} d p_{1^{\prime}} \cdots d p_{n^{\prime}} ; \tag{8.12.19b}
\end{align*}
$$

and this (by the earlier-mentioned theorem of multiple integral calculus) shows that the corresponding Jacobian $\partial(q, p) / \partial\left(q^{\prime}, p^{\prime}\right)$ equals +1 .

This theorem leads to an important conclusion in phase space: we have already seen (ex. 8.9.6) that $\left(\dot{q}_{k}, \dot{p}_{k}\right)$, or $\left(d q_{k}, d p_{k}\right)$, can be viewed as an infinitesimal canonical transformation with the Hamiltonian as generating function. Therefore, all invariants of canonical transformations are also invariants of the motion. This means, geometrically, that the corresponding $2 n$-dimensional phase space points can be viewed as representative points of a corresponding manifold of identical mechanical systems with differing initial state conditions. As a result of the motion of these systems, the initial domain of integration of (q, p) is carried over to another one of equal volume.

In the extended phase space of (t, q, p), the world lines of such systems build a tube of constant cross-section. This constitutes the celebrated theorem of Liouville of statistical mechanics. As mentioned earlier, the above integral invariants are called absolute, because no special assumptions were made about their region of integration. However, with the help of the multidimensional generalization of Stokes' theorem, they can be transformed to relative invariants; that is, invariants over closed areas of lower order (= fewer integrations). For example, the absolute integral invariant I_{1} can be transformed into the following relative integral invariant:

$$
I_{1}=\oint \sum p_{k} d q_{k}, \quad \begin{aligned}
& \text { over a closed curve in }(q, p) \text {-space, } \\
& \text { which lies on the plane } t=\text { constant }, \text { in }(t, q, p) \text {-space. }
\end{aligned}
$$

As an application of the above, it follows that if we choose as range of integration the elementary parallelogram spanned by the two infinitesimal (q, p)-space vectors;

$$
\left(d_{1} q_{k}=\left(\partial q_{k} / \partial u\right) d u, \quad d_{1} p_{k}=\left(\partial p_{k} / \partial u\right) d u\right)
$$

and

$$
\left(d_{2} q_{k}=\left(\partial q_{k} / \partial v\right) d v, \quad d_{2} p_{k}=\left(\partial p_{k} / \partial v\right) d v\right)
$$

for a constant time t, then

$$
\begin{align*}
I_{2} & =\iint\left\{\sum\left[\left(\partial p_{k} / \partial u\right) d u\right]\left[\left(\partial q_{k} / \partial v\right) d v-\left(\partial p_{k} / \partial v\right) d v\right]\left[\left(\partial q_{k} / \partial u\right) d u\right]\right\} \\
& =\iint \sum\left(d_{1} p_{k} d_{2} q_{k}-d_{2} p_{k} d_{1} q_{k}\right)=\text { integral invariant }, \tag{8.12.20}
\end{align*}
$$

from which it follows that the Lagrangean bilinear covariant (8.7.10 ff.)

$$
\begin{equation*}
\sum\left(d_{1} p_{k} d_{2} q_{k}-d_{2} p_{k} d_{1} q_{k}\right)=\sum \sum\left[c_{\mu}, c_{\nu}\right] \delta_{1} c_{\mu} \delta_{2} c_{\nu} \tag{8.12.21}
\end{equation*}
$$

of the differential form $\sum p_{k} d q_{k}$, is invariant; and, conversely, its invariance is sufficient for the corresponding transformation to be canonical (with no recourse to generating functions, as in §8.8). [For alternative proofs see examples below, and Whittaker (1937, pp. 272-274).]

In sum:

- Direct: The quantity $\oint p d q$ is a relative integral invariant of any Hamiltonian system of differential equations ("the circulation in any circuit moving with the fluid does not change with time").
- Converse: If a system of equations $d q / d t=Q, d p / d t=-P$ possesses the relative integral invariant $\oint p d q$, then its equations of motion have the Hamiltonian form: $Q=\partial H / \partial p, P=-\partial H / \partial q$.

REMARKS

(i) The invariance of the circulation

$$
\begin{equation*}
\oint \sum p_{k} d q_{k}=\iint\left\{\sum\left[\left(\partial p_{k} / \partial v\right)\left(\partial q_{k} / \partial u\right)-\left(\partial p_{k} / \partial u\right)\left(\partial q_{k} / \partial v\right)\right]\right\} d u d v \tag{8.12.22}
\end{equation*}
$$

should not come as a complete surprise; after all, the fundamental definition of canonical transformations (8.8.12):

$$
\begin{equation*}
\sum p_{k} \delta q_{k}-\sum p_{k^{\prime}} \delta q_{k^{\prime}}=\delta F \tag{8.12.22a}
\end{equation*}
$$

looks like a requirement that "the work" of the left side of the above be potential; or, equivalently, that, for any closed path in phase space, $\oint d F=0$; and this leads immediately to

$$
\begin{equation*}
\oint \sum p_{k} d q_{k}=\oint \sum p_{k^{\prime}} d q_{k^{\prime}} . \tag{8.12.22b}
\end{equation*}
$$

(ii) If we also vary the time, then it is not (8.12.21) that is invariant, but the extended bilinear covariant of the extended differential form $\sum p_{k} d q_{k}-H d t$:

$$
\begin{equation*}
\sum\left(d_{1} p_{k} d_{2} q_{k}-d_{2} p_{k} d_{1} q_{k}\right)-\left(d_{1} H d_{2} t-d_{2} H d_{1} t\right) \tag{8.12.23}
\end{equation*}
$$

(See also Routh, 1905(b), §479, pp. 325-326.)
Incidentally, this theorem of Lagrange signals a basic difference between Lagrangean and Hamiltonian mechanics. Restricting ourselves to the common scleronomic case, we may remark that:
(a) In the former (Lagrangean), due to the geometrical structure of its configuration space, the fundamental invariant under point transformations $q \rightarrow q^{\prime}$ is the Riemannian line element ds (§3.9):

$$
\begin{equation*}
(d s)^{2} \equiv 2 T(d t)^{2}=\sum \sum M_{k l} d q_{k} d q_{l}=\sum \sum M_{k^{\prime} l^{\prime}} d q_{k^{\prime}} d q_{l^{\prime}}=\cdots ; \tag{8.12.24}
\end{equation*}
$$

whereas
(b) In the latter (Hamiltonian), due to the geometrical structure of its phase space, the fundamental invariant under canonical transformations $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)$ is the also quadratic and homogeneous form in the $d q$'s and $d p$'s expression (8.12.21); but since it is associated with two, rather than one, infinitesimal displacements, $d_{1}(\ldots)$ and $d_{2}(\ldots)$, it is a bilinear form in them and hence represents an area, rather than a line, element $d_{12} A$:

$$
\begin{equation*}
I \equiv d_{12} A \equiv \sum\left(d_{1} p_{k} d_{2} q_{k}-d_{2} p_{k} d_{1} q_{k}\right)=\sum\left(d_{1} p_{k^{\prime}} d_{2} q_{k^{\prime}}-d_{2} p_{k^{\prime}} d_{1} q_{k^{\prime}}\right)=\cdots . \tag{8.12.25}
\end{equation*}
$$

These remarks can be extended, with some precautions, to the rheonomic case.
[The literature on integral invariants is quite extensive and varied. For further details and insights, we recommend (alphabetically): Aizerman (1974, pp. 289-308), Cartan (1922: a classic in the field), Gantmacher (1970, pp. 119-127), Kilmister (1964, pp. 128-140), Lovelock and Rund (1975, pp. 207-213), Prange (1935, pp. 657-689).]

Example 8.12.1 Let us calculate the Poincaré-Cartan invariant

$$
\begin{equation*}
I \equiv \oint\left(\sum p_{k} d q_{k}-H d t\right) \tag{a}
\end{equation*}
$$

for a system with Hamiltonian

$$
\begin{equation*}
H=(1 / 2)\left(p^{2}+q^{2}\right) ; \tag{b}
\end{equation*}
$$

that is, a one-DOF linear oscillator (of unit mass and stiffness).
We will evaluate (a) along (i) the initial closed curve $\gamma_{1} \equiv O A B O$ ($s=s_{1}$), which has the following parametric representation [(fig. 8.10); since there is only one DOF, we use subscripts throughout: 1 for initial values and 2 for final values]:

$$
\begin{array}{ll}
\gamma_{1}: \quad O A\left(s_{1}\right): & t_{1}=\alpha, \quad q_{1}=0, \quad p_{1}=0 \\
A B\left(s_{1}\right): & t_{1}=\alpha_{2}, \quad q_{1}=0, \quad p_{1}=0 \\
B O\left(s_{1}\right): & t_{1}=\alpha, \quad q_{1}=0, \quad p_{1}=\alpha ; \\
& {\left[\alpha_{1}=0 \leq \alpha \leq \alpha_{2}\right] ;} \tag{c}
\end{array}
$$

and (ii) along the intermediate closed curve $\gamma(s=s)$. Since the solution of the Hamiltonian equations of motion of (b), with initial conditions: t_{1}, q_{1}, p_{1}, is

$$
\begin{align*}
& t=t_{1}+f, \quad q=q_{1} \cos f+p_{1} \sin f, \quad p=\dot{q}=-q_{1} \sin f+p_{1} \cos f \\
& f \equiv f\left(s ; q_{1}, p_{1}\right)=\text { monotonic function in } s, \text { and such that } f\left(s_{1} ; q_{1}, p_{1}\right)=0 \tag{d}
\end{align*}
$$

the parametric representation of γ will be

$$
\begin{array}{lll}
\gamma: \quad O A(s): & t=\alpha+f(s, 0,0), & q=0, \quad p=0 \\
A B(s): & t=\alpha_{2}+f(s, 0, \alpha), & q=\alpha \sin f(s, 0, \alpha), \quad p=\alpha \cos f(s, 0, \alpha), \\
B O(s): & t=\alpha+f(s, 0, \alpha), & q=\alpha \sin f(s, 0, \alpha), p=\alpha \cos f(s, 0, \alpha) \\
& {\left[\alpha_{1}=0 \leq \alpha \leq \alpha_{2}\right] .} \tag{e}
\end{array}
$$

Figure 8.10 Initial closed path of harmonic oscillator conditions, in three-dimensional phase space.

Hence, we find, successively:
(i) Along $\gamma_{1}\left(s=s_{1}\right)$:

$$
\begin{align*}
I\left(\gamma_{1}\right) & =\oint_{\gamma_{1}}\left(p_{1} d q_{1}-H_{1} d t_{1}\right) \\
& =\int\left[\text { along } O A\left(s_{1}\right)\right]+\int\left[\text { along } A B\left(s_{1}\right)\right]+\int\left[\operatorname{along} B O\left(s_{1}\right)\right] \\
& =0+0+\int\left[\operatorname{along} B O\left(s_{1}\right)\right] \\
& =\int_{\alpha_{2}}^{0}-\left(p_{1}^{2} / 2\right) d t_{1}=+(1 / 2) \int_{0}^{\alpha_{2}} \alpha^{2} d \alpha=\alpha_{2}^{3} / 6 . \tag{f}
\end{align*}
$$

(ii) Along $\gamma(s=s)$:

$$
\begin{align*}
I(\gamma)= & \oint(p d q-H d t)=\int[\text { along } O A(s)]+\int[\text { along } A B(s)]+\int[\text { along } B O(s)] \\
= & 0+\int_{0}^{\alpha_{2}}\left\{(\alpha \cos f)(d \alpha \sin f)-(1 / 2)\left(\alpha^{2} \sin ^{2} f+\alpha^{2} \cos ^{2} f\right)[(\partial f / \partial \alpha) d \alpha]\right\} \\
& +\int_{\alpha_{2}}^{0}\left\{(\alpha \cos f)(d \alpha \sin f)-(1 / 2)\left(\alpha^{2} \sin ^{2} f+\alpha^{2} \cos ^{2} f\right)[d \alpha+(\partial f / \partial \alpha) d \alpha]\right\} \\
= & \int_{0}^{\alpha_{2}}\left[\alpha \sin f \cos f-\left(\alpha^{2} / 2\right)(\partial f / \partial \alpha)\right] d \alpha \\
& -\int_{0}^{\alpha_{2}}\left\{\alpha \sin f \cos f-\left(\alpha^{2} / 2\right)[1+(\partial f / \partial \alpha)]\right\} d \alpha \\
= & -\int_{0}^{\alpha_{2}}\left[-\left(\alpha^{2} / 2\right)\right] d \alpha=\alpha_{2}^{3} / 6 \tag{g}
\end{align*}
$$

that is, $I\left(s_{1}\right)=I(s)$, Q.E.D.; I is indeed constant along the trajectories of (b).

Example 8.12.2 Integral Variants for Nonpotential (\rightarrow Nonconservative) Holonomic Systems. Starting with Hamilton's principle of varying action for systems under nonpotential forces $\left(Q_{k} ; k=1, \ldots, n\right)$ (chap. 7), and proceeding as in the potential case discussed earlier, it is not hard to show that, here, the Poincaré-Cartan and Poincaré invariant equations must be replaced, respectively, by the following integral variant relations:

$$
\begin{align*}
& d I / d t \equiv d / d t\left[\oint_{\gamma}\left(\sum p_{k} d q_{k}-H d t\right)\right]=\oint_{\gamma} \sum Q_{k} d q_{k} \tag{al}\\
& d I_{1} / d t \equiv d / d t\left[\oint_{\gamma}\left(\sum p_{k} d q_{k}\right)\right]=\oint_{\gamma} \sum Q_{k} d q_{k} . \tag{a2}
\end{align*}
$$

For these variants to become invariants - namely, in order that $I=$ constant, $I_{1}=$ constant - we must have

$$
\begin{equation*}
\oint_{\gamma} \sum Q_{k} d q_{k}=0 \tag{b}
\end{equation*}
$$

Application of the generalized theorem of Stokes:

$$
\begin{equation*}
\oint_{\gamma} \sum A_{s} d x_{s}=\iint_{\sigma} \sum \sum\left(\partial A_{s} / \partial x_{r}-\partial A_{r} / \partial x_{s}\right) d x_{s} d x_{r} \tag{c}
\end{equation*}
$$

[where $s, r=, \ldots$; on the right side (double) summation $r<s$; and γ is the boundary of the diaphragm-like surface σ, locus at time t of points that were initially located on another surface bounded by the initial position of γ] to eq. (b), with the identifications

$$
\begin{equation*}
A_{k}=Q_{k}, \quad A_{n+k}=0 ; \quad x_{k}=q_{k}, x_{n+k}=p_{k}(s, r=1, \ldots, n, \ldots, 2 n ; k=1, \ldots, n), \tag{d}
\end{equation*}
$$

shows that the necessary and sufficient conditions for it to occur (for arbitrary σ and independent $d x_{s}, d x_{r}$) are

$$
\begin{align*}
& \partial A_{s} / \partial x_{r}-\partial A_{r} / \partial x_{s}=0 \quad(s, r=1, \ldots, 2 n ; r<s): \\
& \partial Q_{k} / \partial q_{l}=\partial Q_{l} / \partial q_{k} \quad \text { and } \quad \partial Q_{k} / \partial p_{l}=0 \quad(k, l=1, \ldots, n) ; \tag{e}
\end{align*}
$$

that is, the Q_{k} must be derivable from a potential function, say $V=V(t, q)$: $Q_{k}=-\partial V / \partial q_{k}$. Hence, no Poincaré-Cartan/Poincaré invariants exist for nonpotential forces.

An Application of Equation (a2) to
the Method of Slowly Varying Parameters
However, equations $(a 1,2)$ can become useful in approximate calculations. Let us apply (a2) to such a solution of the quasi-linear oscillator equation

$$
\begin{equation*}
\ddot{q}+\omega_{o}^{2} q=\varepsilon f(q, \dot{q}), \tag{f}
\end{equation*}
$$

where $\varepsilon f(\ldots)=$ small relative to \ddot{q} (inertia) and $\omega_{o}{ }^{2} q$ (elasticity). Here, clearly,

$$
\begin{equation*}
L=(1 / 2)(\dot{q})^{2}-(1 / 2) \omega_{0}^{2} q^{2}, \quad Q=\varepsilon f(q, \dot{q}) \equiv \varepsilon f(\ldots) \tag{g}
\end{equation*}
$$

and therefore the corresponding canonical equations are

$$
\begin{equation*}
\dot{q}=p, \quad \dot{p}=-\omega_{0}^{2} q+\varepsilon f(\ldots) \tag{h}
\end{equation*}
$$

Let us seek a solution of the above in the form

$$
\begin{equation*}
q=a(t) \sin \chi(t) \Rightarrow p=\dot{q}=a(t) \omega_{o} \cos \chi(t) \tag{i}
\end{equation*}
$$

where $\chi(t)=\omega_{o} t+\phi(t)$ and $a(t), \phi(t)=$ unknown functions to be determined.
By δ-varying the first of (i), we obtain

$$
\begin{equation*}
\delta q=(\partial q / \partial a) \delta a+(\partial q / \partial \phi) \delta \phi=\sin \chi \delta a+a \cos \chi \delta \phi \tag{j}
\end{equation*}
$$

and, therefore $\{$ returning to the δ-notation, $\delta(\ldots) \equiv[\partial(\ldots) / \partial \alpha] \delta \alpha$, to avoid possible confusion with $d(\ldots) \equiv[\partial(\ldots) / \partial s] d s\}$,

$$
\begin{align*}
& I_{1} \equiv \oint_{\gamma} p \delta q=\oint_{\gamma}\left[a \omega_{o} \cos \chi(\sin \chi \delta a+a \cos \chi \delta \phi)\right] \tag{k}\\
& \oint_{\gamma} Q \delta q=\oint_{\gamma} \varepsilon f \delta q=\oint_{\gamma}[\varepsilon f(\ldots)(\sin \chi \delta a+a \cos \chi \delta \phi)], \tag{1}
\end{align*}
$$

where $\gamma=$ arbitrary closed curve encircling simultaneously $(d t=0)$ the closed tube of trajectories.

Now, proceeding as in the method of slowly varying parameters (ex. 7.9.14 ff.), we average equations (k, l) over χ, from 0 to 2π, thus obtaining (skipping the factor $1 / 2$ in both equations)

$$
\begin{aligned}
\left\langle I_{1}\right\rangle & =\int_{0}^{2 \pi} d \chi\left(\oint_{\gamma} p \delta q\right)=\oint_{\gamma}\left(\int_{0}^{2 \pi} a \omega_{o} \cos \chi(\sin \chi \delta a+a \cos \chi \delta \phi)\right) d \chi \\
& =\oint_{\gamma}\left[a \omega_{o} \delta a\left(\int_{0}^{2 \pi} \sin \chi \cos \chi d \chi\right)+a^{2} \omega_{o} \delta \phi\left(\int_{0}^{2 \pi} \cos ^{2} \chi d \chi\right)\right] d \phi
\end{aligned}
$$

[the second (inner) integral vanishes, while the second equals π]

$$
\begin{equation*}
=\oint_{\gamma} \pi a^{2} \omega_{o} \delta \phi \tag{m}
\end{equation*}
$$

$$
\begin{equation*}
\langle Q\rangle=\int_{0}^{2 n} d \chi\left(\oint_{\gamma} Q \delta q\right)=\oint_{\gamma}\left[\int_{0}^{2 \pi} \varepsilon f(\ldots)(\sin \chi \delta a+a \cos \chi \delta \phi)\right] d \chi \tag{n}
\end{equation*}
$$

and then apply to them the integral variant equation (a2); or, equivalently, we average (a2) over χ from 0 to 2π; that is,

$$
\begin{equation*}
\left\langle d I_{1} / d t\right\rangle=\langle Q\rangle \Rightarrow d\left\langle I_{1}\right\rangle / d t=\langle Q\rangle . \tag{o}
\end{equation*}
$$

In this way, we find

$$
d / d t\left(\oint_{\gamma} \pi a^{2} \omega_{o} \delta \phi\right)=\pi \omega_{o}\left\{\oint_{\gamma}\left[\left(a^{2}\right)^{\cdot} \delta \phi+\left(a^{2}\right)(\delta \phi)^{\cdot}\right]\right\}
$$

[in the second term, we assume that $(\delta \phi)^{\circ}=\delta(\dot{\phi})$, then integrate it by parts (for $t=$ constant)]

$$
=\pi \omega_{o}\left[\oint_{\gamma}(2 a \dot{a}) \delta \phi+\left.\left(a^{2} \dot{\phi}\right)\right|_{\gamma}-\int \dot{\phi} \delta\left(a^{2}\right)\right]
$$

[by periodicity, the integrated out boundary/endpoints term vanishes]

$$
=\oint_{\gamma}\left[\left(2 \pi \omega_{o} a \dot{a}\right) \delta \phi-\left(2 \pi \omega_{o} a \dot{\phi}\right) \delta a\right]
$$

$$
\begin{equation*}
=\langle Q\rangle=\oint_{\gamma}\left\{\left(\int_{0}^{2 \pi} \varepsilon f(\ldots) \sin \chi d \chi\right) \delta a+\left(\int_{0}^{2 \pi} \varepsilon f(\ldots) a \cos \chi d \chi\right) \delta \phi\right\} \tag{p}
\end{equation*}
$$

and, from this, since γ is arbitrary and the $\delta a, \delta \phi$ are independent (and $a \neq 0$), we obtain the well-known van der Pol/Krylov/Bogoliubov equations:

$$
\begin{align*}
d a / d t & =\left(\varepsilon / 2 \pi \omega_{o}\right) \int_{0}^{2 \pi} f(\ldots) \cos \chi d \chi \tag{q}\\
d \phi / d t & =-\left(\varepsilon / 2 \pi a \omega_{o}\right) \int_{0}^{2 \pi} f(\ldots) \sin \chi d \chi \tag{r}
\end{align*}
$$

Example 8.12.3 Alternative Proof of Relation between Integral Invariance and Canonicity of Equations of Motion. Here, we show, by direct calculation, that if

$$
\begin{equation*}
I \equiv \oint_{\gamma}\left(\sum p_{k} d q_{k}-H d t\right)=\text { constant } \tag{a}
\end{equation*}
$$

then

$$
\begin{equation*}
d p_{k} / d t=-\partial H / \partial q_{k}, \quad d q_{k} / d t=\partial H / \partial p_{k}, \quad d H / d t=\partial H / \partial t \tag{b}
\end{equation*}
$$

For extra clarity, we introduce the following special notations:

$$
\begin{align*}
d_{1}(\ldots)=[\partial(\ldots) / \partial s] d s= & \text { differential along an integral curve } \tag{cl}\\
d_{2}(\ldots)=[\partial(\ldots) / \partial \alpha] d \alpha= & \text { differential along closed curve } \gamma \text { encircling tube } \\
& \text { of integral curves. } \tag{c2}
\end{align*}
$$

Clearly, since the parameters s and α are independent, $d_{1}\left[d_{2}(\ldots)\right]=d_{2}\left[d_{1}(\ldots)\right]$; and so (a) can be rewritten as

$$
\begin{equation*}
I \equiv I(s) \equiv \oint_{\gamma}\left(\sum p_{k} d_{2} q_{k}-H d_{2} t\right)=\text { constant } \tag{d}
\end{equation*}
$$

We have, successively,

$$
\begin{aligned}
d_{1} I \equiv d_{1} I(s) & =d_{1} \oint_{\gamma}(\ldots) \\
& =\oint_{\gamma}\left\{\sum\left[d_{1} p_{k} d_{2} q_{k}+p_{k} d_{1}\left(d_{2} q_{k}\right)\right]-\left[d_{1} H d_{2} t-H d_{1}\left(d_{2} t\right)\right]\right\} \\
& =\oint_{\gamma}\left\{\sum\left[d_{1} p_{k} d_{2} q_{k}+p_{k} d_{2}\left(d_{1} q_{k}\right)\right]-\left[d_{1} H d_{2} t-H d_{2}\left(d_{1} t\right)\right]\right\}
\end{aligned}
$$

[integrating the second and fourth terms by parts relative to $d_{2}(\ldots)$; i.e., along $\left.\gamma\right]$

$$
\begin{aligned}
=\oint_{\gamma} \sum d_{1} p_{k} d_{2} q_{k} & +\left.\left(\sum p_{k} d_{1} q_{k}\right)\right|_{\gamma}-\oint_{\gamma} \sum d_{2} p_{k} d_{1} q_{k} \\
& -\oint_{\gamma} d_{1} H d_{2} t-\left.\left(\sum H d_{1} t\right)\right|_{\gamma}+\oint_{\gamma} d_{2} H d_{1} t
\end{aligned}
$$

[due to the α-periodicity, the integrated out (second and fifth sums) vanish]

$$
\begin{align*}
& =\oint_{\gamma}\left[\left(\sum d_{1} p_{k} d_{2} q_{k}-\sum d_{2} p_{k} d_{1} q_{k}\right)-\left(d_{1} H d_{2} t-d_{2} H d_{1} t\right)\right] \\
& \text { [setting } \quad d_{2} H=\sum\left[\left(\partial H / \partial q_{k}\right) d_{2} q_{k}+\left(\partial H / \partial p_{k}\right) d_{2} p_{k}\right] \\
& +(\partial H / \partial t) d_{2} t \text {, and regrouping terms] } \\
& =\oint_{\gamma}\left(\sum\left\{\left[d_{1} p_{k}+\left(\partial H / \partial q_{k}\right) d_{1} t\right] d_{2} q_{k}+\left[-d_{1} q_{k}+\left(\partial H / \partial p_{k}\right) d_{1} t\right] d_{2} p_{k}\right\}\right. \\
& \left.+\left[-d_{1} H+(\partial H / \partial t) d_{1} t\right] d_{2} t\right) . \tag{e}
\end{align*}
$$

Therefore, if $d_{1} I(s)=0$, since γ is arbitrary and the α-differentials $d_{2} q, d_{2} p, d_{2} t$ are independent, it follows that, along each trajectory [with $\left.s=t \Rightarrow d_{1}(\ldots)=(\ldots)^{\cdot} d t=d t\right]$

$$
\begin{gather*}
d_{1} p_{k}+\left(\partial H / \partial q_{k}\right) d_{1} t=0 \Rightarrow d p_{k} / d t=-\partial H / \partial q_{k}, \tag{f1}\\
-d_{1} q_{k}+\left(\partial H / \partial p_{k}\right) d_{1} t=0 \Rightarrow d q_{k} / d t=\partial H / \partial p_{k}, \tag{f2}\\
-d_{1} H+(\partial H / \partial t) d_{1} t=0 \Rightarrow d H / d t=\partial H / \partial t \tag{f3}
\end{gather*}
$$

that is, the Hamiltonian equations of motion and energy (b) hold. Hence, the importance of the integral invariant $I=I(s)$ to mechanics. The converse theorem can be shown similarly.

In sum: - If $I=$ constant, then the system satisfies Hamilton's equations.

- If the system satisfies Hamilton's equations, then $I=$ constant.

§8.13 NOETHER'S THEOREM (E. Noether, 1918)

This famous and conceptually elegant theorem - much more useful to physicists (classical and quantum field theory) than to engineers - uncovers the consequences of the invariance of the, say, Lagrangean action functional of a system S

$$
\begin{equation*}
A=\int L(t, q, \dot{q}) d t \quad\left(\text { with arbitrary time limits, say from } t_{1} \text { to } t_{2}\right) \tag{8.13.1}
\end{equation*}
$$

not under the customary, and hitherto examined (ch.7) (first-order special kinematically admissible changes known as) virtual variations δq, from a "fundamental" kinetic trajectory q (i.e. a solution of S 's Lagrangean equations of motion), BUT under the special, "narrower", finite continuous/Lie group of transformations
$t \rightarrow t^{\prime}=t^{\prime}(t ; \varepsilon)\left[\right.$ or even $\left.t^{\prime}=t^{\prime}(t, q ; \varepsilon)\right]$ and $q_{k} \rightarrow q_{k^{\prime}}$ or $q_{k}^{\prime}=q_{k}^{\prime}(t, q ; \varepsilon)$:
coordinate system, or "extended point, transformations" (or, simply, "point transformations" if $t^{\prime}=t$), in configuration space (or collection of system trajectories, i.e. solutions of the system's Lagrangean equations of motion) generated/evolved from t, q by the continuous variation of the parameter ε, and assumed: (a) as many times continuously differentiable in ε as needed, and uniquely invertible $t, q \Leftrightarrow t^{\prime}, q^{\prime}$ (i.e. each ε-value defines a different coordinate system q^{\prime}), AND with (b) the group parameter ε chosen so that

$$
\begin{equation*}
t^{\prime}(t ; 0)=t\left[\operatorname{or} t^{\prime}(t, q ; 0)=t\right], q_{k}^{\prime}(t, q ; 0)=q_{k}: \text { identity transformation. } \tag{8.13.2,2a}
\end{equation*}
$$

In other words, under such "Lie-Noether changes" both $q=q^{\prime}(0)$ and $q^{\prime}=q^{\prime}(\varepsilon)$ are different coordinate descriptions of the same dynamics! [Remark: As with orthogonal matrices/tensors ($\S 1.11$), both active and passive interpretations of q and q^{\prime} are available: either our physical system stays fixed in space while the coordinate system ("laboratory") is transformed, i.e. the same system configuration viewed from two different coordinate systems (passive interpretation); or our system is transformed (moved) while the coordinate system stays fixed in space (active i.)]
Now: that the finite transformation (8.13.2) $t^{\prime}(\varepsilon), q^{\prime}(\varepsilon)$ results, or can be generated, by a continuous sequence of "infinitesimal/elementary" transformations, i.e. by a continuous variation of ε, from the identity transformation $t=$ $t^{\prime}(0), q=q^{\prime}(0)$, allows us to replace A-invariance under the finite ε coordinate change (8.13.2) with invariance under the first-order ε-change, that is, with $(\partial \ldots / \partial \varepsilon)_{\varepsilon=0} \equiv(\partial \ldots / \partial \varepsilon)_{o}$, under:

$$
\begin{align*}
& t \rightarrow t^{\prime}=t^{\prime}(t ; \varepsilon) \approx t^{\prime}(t ; 0)+\left(\partial t^{\prime} / \partial \varepsilon\right)_{o} \varepsilon \equiv t+\Delta t \tag{8.13.3a}\\
& q_{k} \rightarrow q_{k}^{\prime}=q_{k}^{\prime}(t, q ; \varepsilon) \approx q_{k}^{\prime}(t, q ; 0)+\left(\partial q_{k}^{\prime} / \partial \varepsilon\right)_{o} \varepsilon \equiv q_{k}+\Delta q_{k} \tag{8.13.3b}
\end{align*}
$$

$$
\begin{equation*}
\left[\Rightarrow q_{k}^{\prime}-q_{k} \approx \Delta q_{k}:\right. \text { a kinetic variation, i.e. from one system trajectory to another, not a kinematic one]; } \tag{8.13.3c}
\end{equation*}
$$

also $\quad\left(\partial q_{k}^{\prime} / \partial q_{l}\right)_{o}=\delta_{k l}($ Kronecker delta $),\left(\partial q_{k}^{\prime} / \partial t\right)_{o}=0 ;\left(\partial t^{\prime} / \partial q_{k}\right)_{o}=0,\left(\partial t^{\prime} / \partial t\right)_{o}=1$,
and

$$
\begin{equation*}
\left(\partial^{2} \ldots / \partial \varepsilon \partial q_{l}\right)_{o}=\partial / \partial q_{l}\left[(\partial \ldots / \partial \varepsilon)_{o}\right] \tag{8.13.3d}
\end{equation*}
$$

As a result of these, ε-induced, transformations the system Lagrangean becomes:

$$
\begin{equation*}
L(t, q, d q / d t)=L\left\{t\left(t^{\prime}, q^{\prime} ; \varepsilon\right), q\left(t^{\prime}, q^{\prime} ; \varepsilon\right), d / d t\left[q\left(t^{\prime}, q^{\prime} ; \varepsilon\right)\right]\right\} \equiv L^{\prime}\left(t^{\prime}, q^{\prime}, d q^{\prime} / d t^{\prime} ; \varepsilon\right) \tag{8.13.4}
\end{equation*}
$$

CHAPTER 8: INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS

(left side independent of ε). The above expresses the numerical invariance of the scalar function L; no surprises here: such invariance holds not only under the smaller/restricted Lie-Noether transformations (8.13.2, 2a), but under arbitrary (differentiable) point transformations $q=q\left(t^{\prime}, q^{\prime}\right) \Leftrightarrow q^{\prime}=q^{\prime}(t, q)$ (ex. 3.5.12, and $\S 8.8$); however, in the latter L^{\prime} is, generally, a different function of $t^{\prime}, q^{\prime}, d q^{\prime} / d t^{\prime}$ than L is of $t, q, d q / d t!$ For example, the kinetic energy of a particle of mass m, T, in plane rectangular Cartesian and polar coordinates, (x, y) and $(r, \phi): x=r \cos \phi, y=r \sin \phi$, is:

$$
\begin{equation*}
2 T(\dot{x}, \dot{y}) / m=(d x / d t)^{2}+(d y / d t)^{2}=(d r / d t)^{2}+r^{2}(d \phi / d t)^{2}=2 T^{\prime}(\dot{r}, \dot{\phi}) / m \tag{8.13.4a}
\end{equation*}
$$

i.e. $T(\dot{x}, \dot{y})=T^{\prime}(\dot{r}, \dot{\phi})$: same numerical value, BUT $T(\ldots)$ is a different function (-al form) of \dot{x}, \dot{y} than $T^{\prime}(\ldots)$ is of \dot{r}, $\dot{\phi}$, i.e. $T^{\prime}(\dot{r}, \dot{\phi}) \neq T(\dot{r}, \dot{\phi})$ and $T^{\prime}(\dot{x}, \dot{y}) \neq T(\dot{x}, \dot{y})$! Here, since we are interested in discovering the consequences of the symmetry (-ies) of $L(\Rightarrow$ invariance of $A)$, we require, in addition to the "same number" invariance (8.13.4), that:

$$
\begin{align*}
& L(t, q, d q / d t)=L\left(t^{\prime}, q^{\prime}, d q^{\prime} / d t^{\prime}\right), \text { or simply } L(q)=L\left(q^{\prime}\right) \tag{8.13.5}\\
& {\left[\text { briefly: } L(q)=L^{\prime}\left(q^{\prime}\right)=L\left(q^{\prime}\right)-\text { need for precise notation here! }\right]} \tag{8.13.5a}
\end{align*}
$$

in words, that, under (8.13.2), the Lagrangean be also form invariant, i.e. that it retains its original functional form in both the original and the Noetherianly transformed variables; or, that the new Lagrangean be the same function in the new variables as the old one was in the old. In the above example, such narrower transformation \rightarrow Noetherian invariance occurs, for instance, under

$$
q=(x, y) \rightarrow q^{\prime}=\left(x^{\prime}=x^{\prime}(x, y ; \varepsilon)=x \cos \varepsilon+y \sin \varepsilon, y^{\prime}=y^{\prime}(x, y ; \varepsilon)=-x \sin \varepsilon+y \cos \varepsilon\right):
$$

i.e., say, a rigid rotation of "old" rectangular Cartesian axes x, y by an angle ε to "new/transformed", also rectangular Cartesian, axes x^{\prime}, y^{\prime} (passive interpretation);
then

$$
\begin{align*}
& 2 T(d x / d t, d y / d t) / m=(d x / d t)^{2}+(d y / d t)^{2}=\cdots=\left(d x^{\prime} / d t\right)^{2}+\left(d y^{\prime} / d t\right)^{2} \tag{8.13.4b}\\
& \quad=2 T^{\prime}\left(d x^{\prime} / d t, d y^{\prime} / d t\right) / m \text { (same number, i.e. numerical invariance/equality) } \\
&=2 T\left(d x^{\prime} / d t, d y^{\prime} / d t\right) / m \text { (same function, i.e. form invariance). } \tag{8.13.4c}
\end{align*}
$$

Hence, under Noetherian transformations, not just the general form of the system's Lagrangean equations of motion is preserved, i.e.

$$
E_{k}(L) \equiv\left(\partial L / \partial \dot{q}_{k}\right)^{\cdot}-\partial L / \partial q_{k}=0, \quad E_{k^{\prime}}\left(L^{\prime}\right) \text { or } E_{k}^{\prime}\left(L^{\prime}\right) \equiv\left(\partial L^{\prime} / \partial \dot{q}_{k}^{\prime}\right)^{\cdot}-\partial L^{\prime} / \partial q_{k}^{\prime}=0
$$

but so is their explicit form, i.e. these equations are the same in the q s and q^{\prime} s. Now we are ready to find the consequences of our initial A-invariance assumption, under (8.13.2), for any ε, and arbitrary integration limits $t_{1,2}^{\prime}, t_{1,2}$, respectively, i.e.

$$
\begin{align*}
A(\varepsilon)-A(0) \equiv & \int L^{\prime}\left(t^{\prime}, q^{\prime}, d q^{\prime} / d t^{\prime}\right) d t^{\prime}-\int L(t, q, d q / d t) d t=\int L\left(t^{\prime}, q^{\prime}, d q^{\prime} / d t^{\prime}\right) d t^{\prime}-\int L(t, q, d q / d t) d t=0 \tag{8.13.6a}\\
& {\left[\Rightarrow L\left(t^{\prime}, q^{\prime}, d q^{\prime} / d t^{\prime}\right)\left(d t^{\prime} / d t\right)=L(t, q, d q / d t) \quad \text { (necessary and sufficient) }\right] } \tag{8.13.6b}
\end{align*}
$$

indeed, utilizing the preceding in the earlier general integral identities (7.9.11a-h)ff., we find successively,

$$
\begin{equation*}
\Delta A=\cdots=\int\left\{d / d t\left[L \Delta t+\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\Delta q_{k}-\dot{q}_{k} \Delta t\right)\right]-\sum E_{k}(L)\left(\Delta q_{k}-\dot{q}_{k} \Delta t\right)\right\} d t=0 \tag{8.13.6c}
\end{equation*}
$$

[or, equivalently, ε-differentiating (8.13.6b), while noting that its right side is independent of ε],
from which, since $E_{k}(L)=0$, and the integration limits (and ε) are arbitrary, Noether's theorem follows:

$$
N \equiv L \Delta t+\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\Delta q_{k}-\dot{q}_{k} \Delta t\right)=\sum\left(\partial L / \partial \dot{q}_{k}\right) \Delta q_{k}-\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right) \Delta t=\text { constant },
$$

or, in common "Noetherian notation",

$$
\begin{align*}
N & =L\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}+\sum\left(\partial L / \partial \dot{q}_{k}\right)\left[\left(\partial q_{k}^{\prime} / \partial \varepsilon\right)_{o}-\dot{q}_{k}\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}\right]=\text { constant } \text { (along any system trajectory/orbit) } \\
& =\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\partial q_{k}^{\prime} / \partial \varepsilon\right)_{o}-\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right)\left(\partial t^{\prime} / \partial \varepsilon\right)_{o} \\
& \equiv \sum p_{k}\left(\partial q_{k}^{\prime} / \partial \varepsilon\right)_{o}-h(L)\left(\partial t^{\prime} / \partial \varepsilon\right)_{o} \tag{8.13.6e}
\end{align*}
$$

in words: If A is invariant under the one-parameter (finite) continuous/Lie group of transformations [8.13.2 (finite) \rightarrow 8.13 .3 (first-order)], the n equations $E_{k}(L)=0$ imply the single conservation equation $N=$ constant; or, every family of such transformations that leaves the action functional invariant leads to a first integral of the equations of motion; and inversely, given the equation $N=$ constant, the n equations $E_{k}(L)=0$ ensure the existence of a one-parameter continuous transformation (8.13.3) that leaves A invariant.
Noether's theorem (NT): (i) Can be generalized in the following ways: (i.a) From first to higher derivatives of the q s (of minor physical interest); (i.b) From one to several, say m, group parameters (in which case we obtain m distinct constants/integrals, along any system trajectory - of great physical interest; see examples below); and (i.c) From one to several independent variables (of great interest in field theory). These, and "Invariance under Gauge Transformations" (below), lead to additional invariance theorems (see references at this section's end); and (ii) Along with the concepts of closed/open systems and Routh's method for "ignorable coordinates" $\{\S 3.12$ (esp. pp. 573-574), $\S 8.3, \S 8.4\}$, the latter seen now as a specialization of NT [i.e. (8.13.6e) with $\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}=0,\left(\partial q_{k}^{\prime} / \partial \varepsilon\right)_{o}=1$ (explain)], reveal the following fundamental idea of theoretical dynamics (and physics):

SYMMETRIES (of Lagrangean, Hamiltonian etc; invariance under a transformation group, a geometrical idea)
\rightarrow INVARIANCE properties (of Action, Langrangean; an algebraic/analytical idea expressing these symmetries)
\rightarrow CONSERVATION quantities, or integrals/constants of motion (of momentum, energy, etc).

Example 8.13.1

(i) The action functional

$$
\begin{equation*}
A=\int_{t_{1}}^{t_{2}} L(q, \dot{q}) d t \quad[\text { i.e., } \partial L / \partial t=0] \tag{a}
\end{equation*}
$$

is, clearly, invariant under the one-parameter group of transformations:

$$
\begin{equation*}
t^{\prime}=t+\varepsilon, \quad q_{k^{\prime}}=q_{k} \quad[\text { temporal translation }] . \tag{b}
\end{equation*}
$$

Since, in this case, $\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}=1$ and $\left(\partial q_{k^{\prime}} / \partial \varepsilon\right)_{o}=0$, the Noetherian expressions $(8.13 .4,5)$ yield the generalized energy integral

$$
\begin{equation*}
N=\sum p_{k}(0)-h(1)=-h=\text { constant }, \tag{c}
\end{equation*}
$$

an already well-known result. Hence, invariance under time-translation leads to energy conservation.
(ii) The action functional [with x, y, z : rectangular Cartesian coordinates; and $K, L=1, \ldots, N$ (\# of particles)]

$$
\begin{equation*}
A=\int\left\{\sum(1 / 2) m_{K}\left[\left(\dot{x}_{K}\right)^{2}+\left(\dot{y}_{K}\right)^{2}+\left(\dot{z}_{K}\right)^{2}\right]-\sum \sum V_{K L}\left(\left|\boldsymbol{r}_{K}-\boldsymbol{r}_{L}\right|\right)\right\} d t \tag{d}
\end{equation*}
$$

where $K \neq L$ (or $K<L$) and $\boldsymbol{r}_{K}=\left(x_{K}, y_{K}, z_{K}\right)$, is, clearly, invariant under the oneparameter rigid spatial translations in the x-direction:

$$
\begin{equation*}
x_{K^{\prime}}=x_{K}+\varepsilon, \quad y_{K^{\prime}}=y_{K}, \quad z_{K^{\prime}}=z_{K}, \quad\left(\text { and } t^{\prime}=t\right) . \tag{e}
\end{equation*}
$$

Therefore, by $(8.13 .4,5)$, the system possesses the integral $(K=1, \ldots, 3 N)$

$$
\begin{align*}
N & =\sum\left(\partial L / \partial \dot{x}_{K}\right)\left(\partial x_{K^{\prime}} / \partial \varepsilon\right)_{o}-\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right]\left(\partial t^{\prime} / \partial \varepsilon\right)_{o} \\
& =\sum\left(\partial L / \partial \dot{x}_{K}\right)(1)-\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right](0) \\
& =\sum \partial L / \partial \dot{x}_{K}=\sum m_{K} \dot{x}_{K} \equiv p_{X} \\
& =x \text {-component of total linear } \text { momentum }=\text { constant } ; \tag{f}
\end{align*}
$$

and similarly for the y - and z-directions.
Hence, invariance under rigid translations leads to conservation of the linear momentum vector.
(iii) If the above action (d) is invariant under the one-parameter rigid rotations of the system about, say the z-axis, through an angle ε (say, under the active interpretation, §1.11):

$$
\begin{align*}
& x_{K^{\prime}}=x_{K^{\prime}}\left(x_{K}, y_{K} ; \varepsilon\right)=x_{K} \cos \varepsilon-y_{K} \sin \varepsilon \approx x_{K}-\varepsilon y_{K}, \\
& y_{K^{\prime}}=y_{K^{\prime}}\left(x_{K}, y_{K} ; \varepsilon\right)=x_{K} \sin \varepsilon+y_{K} \cos \varepsilon \approx y_{K}+\varepsilon x_{K}, \\
& z_{K^{\prime}}=z_{K} \quad\left(\text { and } t^{\prime}=t\right), \tag{g}
\end{align*}
$$

then, again by $(8.13 .4,5)$, the system has the integral

$$
\begin{aligned}
N & =\sum\left[\left(\partial L / \partial \dot{x}_{K}\right)\left(\partial x_{K^{\prime}} / \partial \varepsilon\right)_{o}+\left(\partial L / \partial \dot{y}_{K}\right)\left(\partial y_{K^{\prime}} / \partial \varepsilon\right)_{o}\right. \\
& \left.+\left(\partial L / \partial \dot{z}_{K}\right)\left(\partial z_{K^{\prime}} / \partial \varepsilon\right)_{o}\right]-h\left(\partial t^{\prime} / \partial \varepsilon\right)_{o} \\
& =\sum\left[\left(\partial L / \partial \dot{x}_{K}\right)\left(-y_{K}\right)+\left(\partial L / \partial \dot{y}_{K}\right)\left(+x_{K}\right)+\left(\partial L / \partial \dot{z}_{K}\right)(0)\right]-h(0) \\
& =\sum\left[\left(x_{K}\right)\left(\partial L / \partial \dot{y}_{K}\right)-\left(y_{K}\right)\left(\partial L / \partial \dot{x}_{K}\right)\right] \\
& =\sum\left[\left(x_{K}\right)\left(m_{K} \dot{y}_{K}\right)-\left(y_{K}\right)\left(m_{K} \dot{x}_{K}\right)\right] \equiv H_{z} \\
= & z \text {-component of total angular momentum about origin } O=\text { constant } ; \quad(\mathrm{h})
\end{aligned}
$$

and similarly for its x - and y-components.
Hence, invariance under rigid rotations, about a point, leads to conservation of the angular momentum vector about that point.
[The reader may verify that the passive interpretation of rotation (as well as of the earlier translation) leads to the same result!]

Extension of Noether's Theorem to m-Parameter Family of Transformations

If the action A is invariant under the m-parameter continuous group of transformations

$$
\begin{equation*}
t \rightarrow t^{\prime}=t^{\prime}(t, q ; \varepsilon), \quad q_{k} \rightarrow q_{k^{\prime}}=q_{k^{\prime}}(t, q ; \varepsilon) \tag{8.13.7}
\end{equation*}
$$

where $\varepsilon \equiv\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)=$ group parameters, and, again, such that

$$
\begin{equation*}
t^{\prime}(t, q ; 0)=t, \quad q_{k^{\prime}}(t, q ; 0)=q_{k} \quad[\text { identity transformations }] ; \tag{8.13.7a}
\end{equation*}
$$

then, along each system trajectory, the following m distinct quantities $(\bullet: 1, \ldots, m)$:

$$
\begin{align*}
& N_{\bullet} \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\partial q_{k^{\prime}} / \partial \varepsilon_{\bullet}\right)_{o}-\left(\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right)\left(\partial t^{\prime} / \partial \varepsilon_{\bullet}\right)_{o} \\
&=L\left(\partial t^{\prime} / \partial \varepsilon_{\bullet}\right)_{o}+\sum\left(\partial L / \partial \dot{q}_{k}\right)\left[\left(\partial q_{k^{\prime}} / \partial \varepsilon_{\bullet}\right)_{o}-\dot{q}_{k}\left(\partial t^{\prime} / \partial \varepsilon_{\bullet}\right)_{o}\right] \\
& {[\text { Lagrangean form }] } \tag{8.13.8}\\
&=\sum p_{k}\left(\partial q_{k^{\prime}} / \partial \varepsilon_{\bullet}\right)_{o}-h\left(\partial t^{\prime} / \partial \varepsilon_{\bullet}\right)_{o} \tag{8.13.9}
\end{align*} \quad[\text { Hamiltonian form }],
$$

are constant. In words: every m-parameter family of transformations that leaves the action functional invariant leads to m distinct first integrals of the equations of motion.
[For readable proofs, see, for example, Lovelock and Rund (1975, pp. 201-207), Mittelstaedt (1970, pp. 138-160); or, one could extend the previous one-parameter proof to the m-parameter case.]

Invariance under Gauge Transformations

Recalling the nonuniqueness of the Lagrangean (ex's. 3.5.13 and 7.9.5) - namely, that $L=L(t, q, \dot{q})$ and $L^{\prime}=L+d f(t, q) / d t[f(\ldots)=$ arbitrary function of t and the
q 's] yield the same equations of motion - we, now, generalize Noether's theorem as follows: If the invariance equation (8.13.6a), under (8.13.2), is replaced by

$$
\begin{equation*}
\int_{t_{1}^{\prime}}^{t_{2}^{\prime}} L\left(t^{\prime}, q^{\prime}, d q^{\prime} / d t^{\prime}\right) d t^{\prime}=\int_{t_{1}}^{t_{2}}[L(t, q, \dot{q})+d f(t, q ; \varepsilon) / d t] d t \tag{8.13.10a}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
L\left[t^{\prime}, q^{\prime}, d q^{\prime}\left(t^{\prime}\right) / d t^{\prime}\right]\left(d t^{\prime} / d t\right)=L[t, q, d q(t) / d t]+d f(t, q ; \varepsilon) / d t \tag{8.13.10b}
\end{equation*}
$$

(again, from action integrals to their Lagrangean integrands), then the Noetherian integrals $(8.13 .6 \mathrm{a}, \mathrm{b})$ are replaced by

$$
\begin{align*}
N^{\prime} & =N-(\partial f / \partial \varepsilon)_{o} \\
& =\sum\left(\partial L / \partial \dot{q}_{k}\right)\left(\partial q_{k^{\prime}} / \partial \varepsilon\right)_{o}-\left[\sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L\right]\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}-(\partial f / \partial \varepsilon)_{o} \\
& =L\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}+\sum\left(\partial L / \partial \dot{q}_{k}\right)\left[\left(\partial q_{k^{\prime}} / \partial \varepsilon\right)_{o}-\dot{q}_{k}\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}\right]-(\partial f / \partial \varepsilon)_{o} \\
& =\text { constant, } \quad[\text { Lagrangean form }], \tag{8.13.11}\\
& =\sum p_{k}\left(\partial q_{k^{\prime}} / \partial \varepsilon\right)_{o}-h\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}-(\partial f / \partial \varepsilon)_{o} \\
& =\text { constant, } \quad[\text { Hamiltonian form }] . \tag{8.13.12}
\end{align*}
$$

This follows easily if we notice that, in this case, the first ε-order action variation (8.13.6c) must be replaced by

$$
\begin{align*}
\Delta A & =\varepsilon\left[\sum p_{k}\left(\partial q_{k^{\prime}} / \partial \varepsilon\right)_{o}-\left(\sum p_{k} \dot{q}_{k}-L\right)\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}\right] \\
& =\Delta \int(d f / d t) d t=\Delta[f]=\left[(\partial f / \partial \varepsilon)_{o}\right] \varepsilon \tag{8.13.13}
\end{align*}
$$

The rest of the details are left to the reader.
Example 8.13.2 Continuing from the conservation theorems of the preceding example, let us consider the motion of our system in two inertial frames, (O, F) and $\left(O^{\prime}, F^{\prime}\right)$, in relative motion with constant velocity $\boldsymbol{v}_{o} \equiv \boldsymbol{v}_{F / F^{\prime}}$, and let us assume, for simplicity but no loss in generality, that $V=0$ and $Q_{k}=0$ (inertial motion).

The system Lagrangean in F^{\prime} is (with $P=1, \ldots, N=\#$ system particles):

$$
\begin{align*}
L^{\prime} & =\sum(1 / 2) m_{P}\left(d \boldsymbol{r}_{P}^{\prime} / d t\right) \cdot\left(d \boldsymbol{r}_{P}^{\prime} / d t\right) \\
& =\sum(1 / 2) m_{P}\left[\left(d \boldsymbol{r}_{P} / d t\right)+\boldsymbol{v}_{o}\right] \cdot\left[\left(d \boldsymbol{r}_{P} / d t\right)+\boldsymbol{v}_{o}\right] \\
& =L+d f / d t \tag{a}
\end{align*}
$$

where

$$
\begin{aligned}
& L=\sum(1 / 2) m_{P}\left(d \boldsymbol{r}_{P} / d t\right) \cdot\left(d \boldsymbol{r}_{P} / d t\right)=\text { system Lagrangean in } F, \\
& f=\sum m_{P} \boldsymbol{r}_{P} \cdot \boldsymbol{v}_{o}+\left[\sum(1 / 2) m_{P}\left(\boldsymbol{v}_{o} \cdot \boldsymbol{v}_{o}\right)\right] t:
\end{aligned}
$$

Galilean gauge; function of time, coordinates, and group parameter $\varepsilon \rightarrow \boldsymbol{v}_{o}$,

$$
\begin{equation*}
\Rightarrow d f / d t=\sum m_{P}\left(d \boldsymbol{r}_{P} / d t\right) \cdot \boldsymbol{v}_{o}+\sum(1 / 2) m_{P}\left(\boldsymbol{v}_{o} \cdot \boldsymbol{v}_{o}\right) . \tag{c}
\end{equation*}
$$

Choosing, for mathematical convenience, in these two frames, rectangular Cartesian coordinates $F:(O ; x, y, z)$ and $F^{\prime}:\left(O^{\prime} ; x^{\prime}, y^{\prime}, z^{\prime}\right)$, such that

$$
\begin{equation*}
x^{\prime}=x+v_{o} t \quad\left(\Rightarrow \dot{x}^{\prime}=\dot{x}+v_{o}\right), \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=t, \tag{d}
\end{equation*}
$$

reduces (b, c) to

$$
\begin{equation*}
L=\sum(1 / 2) m_{P} \dot{x}_{P} \dot{x}_{P}, \quad f=\sum m_{P} x_{P} v_{o}+\left[\sum(1 / 2) m_{P} v_{o}^{2}\right] t \tag{e}
\end{equation*}
$$

and, therefore, with parameter ε the relative frame velocity v_{o}, the Noetherian expressions $(8.13 .10,11)$ yield the integral

$$
\begin{align*}
N^{\prime} & =N-(\partial f / \partial \varepsilon)_{o} \\
& =\sum p_{P}\left(\partial x_{P}^{\prime} / \partial \varepsilon\right)_{o}-h\left(\partial t^{\prime} / \partial \varepsilon\right)_{o}-(\partial f / \partial \varepsilon)_{o} \\
& =\sum p_{P}\left(\partial x_{P}^{\prime} / \partial v_{o}\right)_{o}-h\left(\partial t^{\prime} / \partial v_{o}\right)_{o}-\left(\partial f / \partial v_{o}\right)_{o} \\
& =\sum\left(m_{P} \dot{x}_{P}\right)(t)-h(0)-\sum m_{P} x_{P}=\text { constant }=c, \tag{f}
\end{align*}
$$

or, since $\sum m_{P} \dot{x}_{P} \equiv p_{x}=$ constant $\equiv c_{x} \quad$ (by ex. 8.13.1) and $\sum m_{P} x_{P}=$ (total mass) $(x-$ coordinate of mass center $) \equiv m x$,

$$
\begin{align*}
& N^{\prime}=c_{x} t-m x=c \Rightarrow m x=c_{x} t-c \\
& \Rightarrow \dot{x}=c_{x} / m \quad \text { (mass center moves with constant velocity); } \tag{g1}\\
& \text { or, if } c_{x}=0, \quad x=-c / m \quad \text { (mass center at rest); } \tag{g2}
\end{align*}
$$

and similarly for the y - and z-directions (recall ex. 3.12.3).
These results can be summed up in the following theorem.

THEOREM

Let us consider a system of N particles moving under their mutual (Newtonian) gravitational attractions [" N-body problem" of classical (celestial) mechanics], and therefore having equations of motion

$$
\begin{equation*}
m_{P} \ddot{\boldsymbol{r}}_{P}=\sum \Delta_{P P^{\prime}} G\left(m_{P} m_{P^{\prime}} / r_{P P^{\prime}}{ }^{3}\right) \boldsymbol{r}_{P P^{\prime}} \tag{h}
\end{equation*}
$$

where $\Delta_{P P^{\prime}} \equiv 1-\delta_{P P^{\prime}}=$ complementary Kronecker delta, $G=$ gravitational constant (not gauge function!), $r_{P P^{\prime}} \equiv\left|\boldsymbol{r}_{P P^{\prime}}\right| \equiv\left|\boldsymbol{r}_{P^{\prime}}-\boldsymbol{r}_{P}\right|=\left|-\boldsymbol{r}_{P^{\prime} P}\right|=r_{P^{\prime} P} \neq 0$, and $P, P^{\prime}=1$, $\ldots, N=$ number of particles.

From the Noetherian invariance of its action under the ten-parameter Galilean group [between two inertial frames $\left(x_{k}(t), t\right),\left(x_{k^{\prime}}\left(t^{\prime}\right), t^{\prime}\right)$, in arbitrary mutual orientation]

$$
\begin{align*}
& x_{k^{\prime}}\left(t^{\prime}\right)=\sum a_{k^{\prime} k}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right) x_{k}+b_{k}\left(\varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}\right) t+c_{k}\left(\varepsilon_{7}, \varepsilon_{8}, \varepsilon_{9}\right), \\
& \quad\left[\left(a_{k^{\prime} k}\right)=\left(a_{k^{\prime} k}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)\right): \begin{array}{l}
\text { proper orthogonal matrix [eqs. (1.1.19a ff.) } \\
\text { and(1.5.1a, b) }] ; \text { with } k, l=1,2,3]
\end{array}\right. \\
& t^{\prime}=t+\varepsilon_{10}, \tag{i}
\end{align*}
$$

we obtain the following ten integrals:
(i) Temporal translation (1) \rightarrow energy conservation:

$$
\begin{equation*}
T+V \equiv \sum(1 / 2) m_{P}\left(\dot{\boldsymbol{r}}_{P} \cdot \dot{\boldsymbol{r}}_{P}\right)-\sum \sum(1 / 2) \Delta_{P P^{\prime}} G\left(m_{P} m_{P^{\prime}} / r_{P P^{\prime}}\right)=\text { constant }, \tag{k}
\end{equation*}
$$

(ii) Spatial translation (3) \rightarrow linear momentum conservation:

$$
\begin{equation*}
\sum m_{P} \dot{\boldsymbol{r}}_{P}=m \boldsymbol{v}_{\text {mass center }}=\text { constant } \equiv \boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right) \tag{1}
\end{equation*}
$$

(iii) Spatial rotation (3) \rightarrow angular momentum conservation:

$$
\begin{equation*}
\sum \boldsymbol{r}_{P} \times\left(m_{P} \dot{\boldsymbol{r}}_{P}\right)=\text { constant } \tag{m}
\end{equation*}
$$

(iv) Galilean transformation (3) \rightarrow center of mass theorem [integral of (1)]:

$$
\begin{equation*}
\sum m_{P} \boldsymbol{r}_{P}=m \boldsymbol{r}_{\text {mass center }}=\boldsymbol{b} t+\boldsymbol{c} \quad\left[\boldsymbol{c}=\left(c_{1}, c_{2}, c_{3}\right)\right] \tag{n}
\end{equation*}
$$

For a detailed Noetherian treatment, see, for example, Funk [1962, pp. 442-445; after the original derivation of Bessel-Hagen (1921)]. For an alternative derivation (via symmetrical infinitesimal canonical transformations), see Schmutzer (1989, pp. 438-445); also Meirovitch (1970, pp. 413-416).

Closing Remarks

Noether's theorem, in spite of its conceptual beauty and simplicity, has not been very successful in producing new and nontrivial integrals of the equations of motion. The systematic search for infinitesimal transformations that leave the Hamiltonian action functional invariant leads to a system of first-order partial differential equations (Killing's equations), the solution of which is a taxing problem in itself. The theorem seems to have fared better in field theory (i.e., invariance of multiple integrals under continuous groups of transformations).

For detailed treatments of these topics, and applications to the search for system symmetries/conservation theorems, we recommend (alphabetically):
(a) Mathematics oriented: Funk (1962, pp.437-452 - best overall treatment), Logan (1977), Lovelock and Rund (1975, pp. 201-207, 226-231), Rund (1966, pp. 208-322); and, of course, Noether's original paper (1918).
(b) Mechanics-physics oriented: Bahar and Kwatny (1987), Dobronravov (1976, pp. 139163), Hill (1951 - primarily for physicists), Kuypers (1993, pp. 281-295), Saletan
and Cromer (1971, pp. 60-87, 219-226, 345-348), Sudarshan and Mukunda (1974), Vujanovic and Jones (1989, pp. 74-151; and references given therein).

8.14 PERIODIC MOTIONS; ACTION-ANGLE VARIABLES

Outside of equilibrium, periodic motion is one of the most important and interesting physical states; for example, planets revolving around the Sun; penduli; parts of engines; the building blocks of molecular and atomic systems; and so on. Also, the close connection between periodicity (aperiodicity) and stability (instability) of motion is well known. Hence, such a state deserves a closer examination. This section constitutes a modest introduction to this vast and fascinating topic, using the earlier-developed concepts and theorems of Hamiltonian mechanics.

One DOF

Such a system undergoes periodic motion with period τ, if, after a time interval τ, it always returns to where it was before; that is, analytically, its Lagrangean coordinate $q=q(t)$ satisfies the condition

$$
\begin{equation*}
q=q(t)=q(t+\tau) \tag{8.14.1}
\end{equation*}
$$

and can, therefore, under mild continuity conditions, be represented by the Fourier series (in complex form, for algebraic compactness):

$$
\begin{equation*}
q(t)=\sum c_{s} \exp (i s \omega t)=\sum c_{s} \exp (2 \pi i s \nu t) \tag{8.14.2}
\end{equation*}
$$

where $\exp (\ldots) \equiv e^{\cdots}$,
$s=-\infty, \ldots,+\infty$,
$\omega \equiv 2 \pi / \tau=$ fundamental angular, or circular, frequency;
i.e., number of oscillations or rotations (see below) in 2π seconds,
$\nu \equiv 1 / \tau=\omega / 2 \pi=$ fundamental (true) frequency; i.e., number of oscillations or rotations in 1 second,
and the amplitudes c_{s}, which depend on the motion during a single period, are given by the well-known formula (which also makes it clear how it was obtained)
$c_{s}=(1 / \tau) \int_{0}^{\tau} q(t) \exp (-i s \omega t) d t \quad\left(c_{-s} \equiv c_{s}^{*}=\right.$ complex conjugate of $\left.c_{s}\right)$.
From the above, it follows that \dot{q} and any function of q and \dot{q} is also a Fourier series with the same fundamental frequency (period) $\nu(\tau)$. Other system properties, or variables, may also be periodic; for example, periodic system momentum $p \equiv \partial T / \partial \dot{q}$ means that $p(t)=p(t+\tau)$. However, this natural and simple concept can be obscured by the use of the wrong, that is, nonperiodic coordinates. For example, the uniform circular motion of a particle (or, of a rigid body about a fixed axis) is, clearly, periodic; but its description in terms of its angle of rotation ϕ (from a fixed radius):

$$
\begin{equation*}
\phi=c_{1} t+c_{2} \quad\left(c_{1,2}: \text { constants }\right), \tag{8.14.4}
\end{equation*}
$$

is a monotonically increasing (nonperiodic!) function of time; also, the corresponding angular momentum $p \sim \phi$ is constant; that is, trivially periodic.

In view of these possibilities, we classify periodic motions (according to their trajectories) in phase space into two kinds:

(i) Libration [from Latin verb librare $=$ to balance (libra $=$ scales), to sway]

This is the case where the coordinate q is a single-valued function of the system's position (i.e., it is not an angle that can have different values for the same configuration), and it remains between fixed limits; say, $q_{1}, q_{2}, q_{3}, q_{4}, q_{1}$ (fig. 8.11).

Both q and p are bounded, continuous and periodic in time, with the same period; say, τ. As a result, the corresponding (q, p)-curve, in phase space, is closed, and repeats itself after every time interval τ. Since the system integral $H(q, p)=$ constant $\equiv C$ (usually equal to the total energy of the system E) is single-valued, different values of C produce a family of closed and nonintersecting phase space trajectories; in fact, by decreasing C appropriately, we may reduce the trajectory to the fixed libration center q_{o}, so that the motion degenerates to small oscillations about the stable equilibrium position q_{0}. The libration limits are the roots of $d q / d t=\partial H / \partial p=0$ and they appear always in pairs (e.g., q_{3} and q_{4}); the point where they coincide (or, coalesce; e.g., q_{\bullet}) signifies an unstable equilibrium configuration. In particular, if p appears quadratically in the Hamiltonian $H=H(q, p)$, the system path in phase space $p=p(q ; E)$, obtained from its energy surface $H(q, p)=E$, is symmetric about the q-axis (fig. 8.11).

For example, if $H=p^{2} / 2 m+V(q)=E$, then, to within a sign,

$$
\begin{align*}
& p=(2 m)^{1 / 2}[E-V(q)]^{1 / 2} \\
& \Rightarrow d p / d q=-(m / 2)^{1 / 2}[E-V(q)]^{-1 / 2}(d V / d q) \tag{8.14.5}
\end{align*}
$$

Figure 8.11 Phase plane trajectory of libratory periodic motion (1 DOF), and example of harmonic oscillator. [The energy curve $H(q, p)=E$ (outer contour, left figure, for general q, p is not necessarily quadratic in p; that is why there are four possible values of p for $q_{3}<q<q_{4}$. If $H(q, p)$ was quadratic in p, there would be only two.]

Therefore, for libration, the equation $E-V(q)=0$ must have two simple zeros: $q_{\min }, q_{\text {max }}$; and between them be positive; at $q_{\min / \max }, d p / d q \rightarrow \infty$. Then, the curve is traversed completely and in the same sense. [Since $p \dot{q}=2 T \Rightarrow p d q>0$, the curve is traveled outward $(d q>0)$ in its upper branch $(p>0)$, and in its lower branch $(p<0)$ on its return $(d q<0)$.]
(ii) Rotation (or circulation, or revolution)

If, however, the coordinate q is angle-like, then since q and $q+k q_{o}(k=$ arbitrary integer - fig. 8.12) describe the same system configuration, the unique determination of the integral constant C by the system's state of motion requires either that the curve $H(q, p)=C$ is closed, or that $p=p(q)$ is a periodic function of q, with minimum period q_{o} (frequently, $q_{o}=2 \pi$). In the second case, q takes the full range of values; that is, it is neither bounded nor periodic (timewise) - this kind of motion is called rotation. In particular, the uniform rectilinear motion can be viewed as the limiting case of a periodic motion, indeed as a rotation on a circle of infinite radius.

REMARK

In HM, we always seek coordinates in which the motion appears as rotation; then (as with ignorable coordinates) $q=$ linear in time, $p=$ constant (see "action-angle" variables, below).

The libration-rotation difference can be summed up, mathematically, as follows:
(i) In a libration, $q \rightarrow q_{L}$ can be represented by a Fourier series;
(ii) In a rotation, $q \rightarrow q_{R}$ cannot be so represented. But for periodic motion, the new function: $q_{R}-2 \pi \nu t \equiv q_{R}-\omega t$, can be represented by a Fourier series with fundamental frequency ν. For example, if $q_{R} \rightarrow \phi=2 \pi \nu t$ (i.e., uniform rotation) $\rightarrow \phi-2 \pi \nu t=0$; and the latter can be represented by a Fourier series with all its coefficients zero. Thus, whether a periodic motion will be classified as libration or as rotation depends on the chosen positional coordinates. Also, one and the same physical system may, under different initial conditions $(\Rightarrow$ different initial energy constant) exhibit both libration and rotation. (The limiting case separating libration

Figure 8.12 Phase plane trajectory of rotatory periodic motion (1 DOF).

Figure 8.13 Phase plane trajectories of a planar mathematical pendulum.
from rotation is sometimes called limitation; that is, one where the points of motion reversal are reached in infinite time.)

The classic example here is the planar mathematical pendulum with fixed support O (fig. 8.13):
(i) Its to and fro oscillatory motion is a libration; whereas
(ii) Its full rotation around O, if its energy is sufficient, is a rotation.

Here,
$2 T=m l^{2}(\dot{\phi})^{2}, \quad V=m g l(1-\cos \phi)$,
$\Rightarrow T+V=T_{\text {initial }}+V_{\text {initial }}=m g l\left(1-\cos \phi_{o}\right) \equiv E \quad\left(\phi_{o} \equiv \phi_{\text {maximum }}\right)$,
$H \equiv(1 / 2 A) p^{2}-D \cos \phi=C \equiv E \quad$ (energy equation),
$\Rightarrow p= \pm(2 A)^{1 / 2}(E+D \cos \phi)^{1 / 2}= \pm(m l)(2 g l)^{1 / 2}\left(\cos \phi-\cos \phi_{o}\right)$
$\left[A \equiv m l^{2}, \quad D \equiv m g l\right]$.
We distinguish the following four cases:
(a) If $E=-m g l \equiv-D(<0)$, the (q, p)-trajectory contracts to the libration center q_{o}.
(b) If $-D<E<D$, then we have libration only for $|\phi|<\phi_{\max }$. [The libration limits are given by $d q / d t=\partial H / \partial p=0 \Rightarrow p=0: \cos \phi_{o}=-(E / m g l) \equiv-(E / D)$; there, $p=0$. Hence oscillation/libration will occur between $-\phi_{\max } \equiv-\arccos (-D / E)$ and $\left.\phi_{\max } \equiv \arccos (-D / E).\right]$
(c) If $E>D$, we have rotation (always in the same direction).
(d) If $E=D$, we move on a stability/instability boundary, or asymptotic orbit; and approach the highest point $q=\pi$ very slowly ("in infinite time"). (See also Born, 1927, pp. 48-52.)

However, in general, and for reasons that will appear gradually below (also, recalling rationale for canonical transformations, $\S 8.8$), we seek new ignorable coordinates q^{\prime}

Semi-infinite cylinder representation.
Instead of the (q ' p ') phase plane we can also use the surface of a cylinder:

Figure 8.14 Canonical transformation to action-angle variables: $(q, p) \rightarrow\left(q^{\prime}=w, p^{\prime}=J\right)$.
in which our periodic motion appears as a rotation (angle variables, $q^{\prime} \equiv w$), and new constant momenta p^{\prime} (action variables $p^{\prime} \equiv J$) which are the sole "variables" of the system Hamiltonian (which, here, equals the total energy); that is, recalling $\S 8.10$ (fig. 8.14),

$$
\begin{align*}
(q, p) & \rightarrow\left(q^{\prime}, p^{\prime}\right): \\
d q^{\prime} / d t & =\partial H^{\prime}\left(p^{\prime}\right) / \partial p^{\prime}=\text { constant } \equiv c_{1} \\
& \Rightarrow q^{\prime}=c_{1} t+c_{2} \quad\left(c_{2}: \text { integration constant }\right) \tag{8.14.7a}\\
d p^{\prime} / d t & =-\partial H^{\prime}\left(p^{\prime}\right) / \partial q^{\prime}=0 \Rightarrow p^{\prime}=\text { constant } \equiv c_{3} \tag{8.14.7b}
\end{align*}
$$

Let us quantify these concepts:
(i) The phase integral [with physical dimensions of (mass \times velocity $) \times($ length $)$; that is, angular momentum, or action]:

$$
J \equiv \oint p(q, \beta) d q[\text { or, equivalently, } \oint p(q, E) d q]:
$$

Libration: the integration extends over the closed path; and thus takes care of the multiple-valuedness of the momentum, due to its quadratic appearance in $(8.14 .5,6 \mathrm{~d}): p= \pm \ldots$ (integral equal to the shaded area in fig. 8.11);
Rotation: the integration extends over a single period q_{o} of q (integral equal to the shaded area in fig. 8.12),
is called action variable.
In a constant parameter (closed) system, J is independent of time. Therefore (recalling the Hamilton-Jacobi method, §8.10), for such systems, J can be taken as one of the two integration constants of motion (here, $n=1$); or, in the action function of our problem, $A(t, q, \beta)=A_{o}(q, \beta)-E(\beta) t$, we can take J as the new momentum $p^{\prime}=\beta$ (with a constant value for each particular periodic motion); that is, $\beta=J$, and consider the total energy E as a function of it:

$$
\begin{align*}
J & \equiv \oint p d q=\oint\left(\partial A_{o} / \partial q\right) d q=J(E) \Rightarrow E=E(J) \\
& \Rightarrow A(t, q, J)=A_{o}(q, J)-E(J) t \tag{8.14.9a}
\end{align*}
$$

From the foregoing, it follows that the first of the Hamilton-Jacobi (HJ) transformation equations, and corresponding HJ equation are

$$
\begin{align*}
& \left(\partial A_{o} / \partial q\right)_{E=\mathrm{constant}}=\left(\partial A_{o} / \partial q\right)_{J=\mathrm{constant}}=p \tag{8.14.9b}\\
& H\left(q, \partial A_{o} / \partial q\right)=\text { constant }=E \tag{8.14.9c}
\end{align*}
$$

(ii) The corresponding new coordinate $q^{\prime} \equiv w$, of the canonical transformation $(q, p) \rightarrow\left(q^{\prime}=w, p^{\prime}=J\right)$ with generating function $F=F_{2}\left(q, p^{\prime}\right)=A_{o}(q, J)$, is

$$
\begin{equation*}
q^{\prime}=\partial F_{2} / \partial p^{\prime}: \quad w=\partial A_{o}(q, J) / \partial J . \tag{8.14.10}
\end{equation*}
$$

To find its properties, we need the Hamiltonian equations of motion in these variables. Since $H^{\prime}=H+\partial A_{o} / \partial t=H=E(J)=$ constant (i.e., w is ignorable, and therefore J is a constant) these equations are

$$
\begin{array}{cl}
d q^{\prime} / d t=\partial H^{\prime}\left(p^{\prime}\right) / \partial p^{\prime}: \quad & d w / d t=\partial H(J) / \partial J=\text { constant } \equiv \nu(J) \equiv \nu \\
\Rightarrow w=\nu t+\gamma \tag{8.14.11}
\end{array}
$$

(ν is to be identified later with the fundamental frequency of the system and γ with a phase constant)

$$
\begin{gather*}
d p^{\prime} / d t=-\partial H^{\prime}\left(p^{\prime}\right) / \partial q^{\prime}: \quad d J / d t=-\partial H(J) / \partial w=0 \\
\Rightarrow J=\text { constant } . \tag{8.14.12}
\end{gather*}
$$

From the above, it follows that w increases linearly with time; and during a period τ it increases by

$$
\begin{equation*}
\Delta w \equiv w(t+\tau)-w(t)=\cdots=[\partial H(J) / \partial J] \tau \equiv \nu \tau \tag{8.14.13a}
\end{equation*}
$$

But also, from the earlier definitions, as q goes through a complete cycle of libration or rotation, we have, successively,

$$
\begin{align*}
\Delta w=\oint(\partial w / \partial q) d q & =\oint\left(\partial^{2} A_{o} / \partial J \partial q\right) d q=\partial / \partial J\left(\oint\left(\partial A_{o} / \partial q\right) d q\right) \\
& =\partial / \partial J(\oint p d q)=\partial J / \partial J=1 \tag{8.14.13b}
\end{align*}
$$

that is, the state of the system is periodic in w with period 1. (For a full justification of the commutation rule employed here, see ex. 8.14.13.) Comparing (8.14.13a, b), we immediately conclude that

$$
\begin{equation*}
\nu \equiv 1 / \tau \equiv \omega / 2 \pi=\partial H(J) / \partial J=\partial E(J) / \partial J \tag{8.14.14}
\end{equation*}
$$

that is, by differentiating the (constant) total energy with respect to the (constant) action variable, as soon as it becomes available in that form [without finding $q(t)$ from the equations of motion!], we obtain the fundamental frequency of the periodic motion. Thus, the difficulty of solving the equations of motion has been transferred to that of calculating the action integrals $J \equiv \oint p d q$; and in this lies the importance of action and angle variables.

The geometrical meaning of these transformations, and resulting advantage of action-angle variables, for systems with Hamiltonian $H=p^{2} / 2 m+V(q)$ are shown in fig. 8.15.

Libration:

$$
J(E)=\oint p(q, E) d q=2 \int_{q_{\text {min }}}^{q_{\text {max }}}(2 m)^{1 / 2}[E-V(q)]^{1 / 2} d q=(J)(1)=J ;
$$

Rotation: $J(E)=\int_{0}^{q_{0}} p(q, E) d q$; where $H(q, p)=E \Rightarrow p=p(q, E)$.
[Two solutions in opposite directions; from two actions corresponding to each direction of motion.]

Figure 8.15 Libration and rotation in general and in angle-action variables, in phase space (1 DOF system).

REMARK

Some authors define J as $(1 / 2 \pi) \oint p d q$. Then,

$$
w=[\partial H(J) / \partial J] t+\text { constant }=\omega t+\text { constant } \Rightarrow \Delta w=\omega \tau=2 \pi
$$

that is,

$$
\begin{equation*}
\omega \equiv 2 \pi \nu=\partial H(J) / \partial J=\text { fundamental circular frequency. } \tag{8.14.15a}
\end{equation*}
$$

Others define J as $\oint p d q$, but w as $2 \pi\left(\partial A_{o} / \partial J\right)$. Then,

$$
w=2 \pi\{[\partial H(J) / \partial J] t+\gamma\} \equiv 2 \pi(\nu t+\gamma) \Rightarrow \Delta w=2 \pi \nu \tau=2 \pi
$$

that is, again,

$$
\begin{equation*}
\nu=\partial H(J) / \partial J=\text { fundamental frequency. } \tag{8.14.15b}
\end{equation*}
$$

(And similarly for the general $n-D O F$ case.)
In view of the w-periodicity, eq. (8.14.13b), and recalling (8.14.2-3), we can write (again, with $s=-\infty, \ldots,+\infty$)
(i) Libration:

$$
\begin{align*}
& q=q(w)=\sum c_{s} \exp (2 \pi i s w)=\sum c_{s} \exp [2 \pi i s(\nu t+\gamma)] \\
& \equiv \sum d_{s} \exp (2 \pi i s t) \\
& c_{s}=\int_{0}^{1} q(w) \exp (-2 \pi i s w) d w=c_{s}(J) \tag{8.14.16a}
\end{align*}
$$

(ii) Rotation:

$$
\begin{align*}
& q=q_{o} w+\sum c_{s} \exp (2 \pi i s w)=q_{o}(\nu t+\gamma)+\sum c_{s} \exp [2 \pi i s(\nu t+\gamma)] \\
& \equiv \sum d_{s} \exp (2 \pi i s t) \\
& c_{s}=\int_{0}^{1}\left(q-q_{o} w\right) \exp (-2 \pi i s w) d w=c_{s}(J) \tag{8.14.16b}
\end{align*}
$$

It is not hard to see, from the above, that any single-valued function $f(q, p)$ when expressed in terms of the corresponding action (J) and angle (w) variables, becomes a periodic function of w with period 1 .

THEOREM

The reduced action $A_{o}(q, J)$ is a multiple-valued function of the coordinate q. Every time q varies over a cycle once - that is, during each period τ - the reduced action $A_{o}=A_{o}(q, J)$ increases by

$$
\begin{equation*}
\Delta A_{o} \equiv A_{o}(t+\tau)-A_{o}(t)=\oint\left(\partial A_{o} / \partial q\right) d q=\oint p d q=J \tag{8.14.17a}
\end{equation*}
$$

and hence the name modulus of periodicity of A_{o} for J. From the above, it follows that

$$
\begin{equation*}
\Delta\left(A_{o}-w J\right)=\Delta A_{o}-\Delta w J=J-J=0 \tag{8.14.17b}
\end{equation*}
$$

that is, the new action function

$$
\begin{equation*}
A_{o o} \equiv A_{o}-w J=A_{o o}(q, w) \tag{8.14.17c}
\end{equation*}
$$

is periodic in w, while $A_{o}(q, J)$ is not. Also, for two distinct but neighboring motions, with corresponding action variable values J and $J+\Delta J$, eq. (8.14.14) yields

$$
\begin{equation*}
\Delta E=\nu \Delta J \tag{8.14.17d}
\end{equation*}
$$

(an equation that constituted the starting point of the famous correspondence principle of the older quantum theory of N. Bohr, late 1910s-early 1920s).

REMARK

Instead of the canonical transformation $(q, p) \rightarrow(w, J)$, with generating function $A_{o}(q, J)$ and new Hamiltonian $H^{\prime}=H(J)=E(J)$, we can, equivalently, consider the canonical transformation $(q, p) \rightarrow(\gamma, J)$ with generating function $A(t, q, J)$ and, hence, new Hamiltonian $H^{\prime}=H+\partial A / \partial t=0$, so that

$$
\begin{align*}
& p=\partial A / \partial q \\
& \gamma=\partial A / \partial J=\partial A_{o} / \partial J-t(\partial E / \partial J)=w-(\partial E / \partial J) t=\text { phase constant } \\
& \Rightarrow w=(\partial E / \partial J) t+\gamma=\nu t+\gamma ; \tag{8.14.18a}
\end{align*}
$$

and new Hamiltonian equations

$$
\begin{align*}
& d \gamma / d t=\partial H^{\prime} / \partial J=0 \Rightarrow \gamma=\text { constant } \tag{8.14.18b}\\
& d J / d t=-\partial H^{\prime} / \partial \gamma=0 \Rightarrow J=\text { constant } \tag{8.14.18c}
\end{align*}
$$

Hence, in the new phase space $\left(q^{\prime}=\gamma, p^{\prime}=J\right)$, the system motion is specified by the point ($\gamma=$ constant,$J=$ constant).
[Strictly speaking, it is not $w \equiv \partial A_{o} / \partial J$ that is canonically conjugate to J, but $\left(q^{\prime} \rightarrow\right) \gamma \equiv \partial A / \partial J=\partial A_{o} / \partial J-(\partial E / \partial J) t=w-\nu t \Rightarrow w=\nu t+\gamma$. $]$

HISTORICAL

Action-angle variables were introduced to dynamics by the French engineering scientist C. Delaunay, in connection with astronomical perturbation problems (1846: Sur une nouvelle théorie analytique du mouvement de la lune; 1860: Théorie du mouvement de la Lune) and were also used by the German mathematician P. Stäckel (1891) and the Swedish astronomer C. L. Charlier (1907: Die Mechanik des Himmels); although the term "action-angle variables" seems to have been introduced by the German (astro)physicist K. Schwarzschild (1916; in German: Wirkungs-Winkel Variable). They became very important again in both the old and new quantum mechanics (1910s, early 1920s), where they proved indispensable in several key theoretical developments and analytical tools; for example, quantum conditions (Sommerfeld, Bohr), adiabatic invariants (Ehrenfest, Burgers; see §8.15), canonical perturbation theory (Born, Heisenberg, Jordan, Pauli, Epstein, Brody, Fues, et al.; see §8.16).

Example 8.14.1 Action-Angle Variables for the Harmonic Oscillator (Recall ex. 8.10.3). From the energy conservation equation

$$
\begin{equation*}
H(q, p)=p^{2} / 2 m+k q^{2} / 2=E \tag{a}
\end{equation*}
$$

where $m=$ mass, $q=$ amplitude, $k=$ stiffness, so that $\omega^{2}=k / m \Rightarrow k=m \omega^{2}=$ $m(2 \pi \nu)^{2}$, we obtain the momentum:

$$
\begin{equation*}
p=\partial A_{o} / \partial q= \pm\left(2 m E-m k q^{2}\right)^{1 / 2}=p(q ; E, k, m) \tag{b}
\end{equation*}
$$

and therefore the corresponding action variable becomes
$J=\oint p d q=\oint\left(\partial A_{o} / \partial q\right) d q=\oint\left(2 m E-m k q^{2}\right)^{1 / 2} d q$
[In this case of libration, q extends (oscillates) between the roots of $d q / d t=\partial H / \partial p=0$

$$
\Rightarrow p=0: \quad q_{\min } \equiv-(2 E / k)^{1 / 2} \quad \text { and } \quad q_{\max } \equiv+(2 E / k)^{1 / 2}
$$

this also guarantees that $p=\left(2 m E-m k q^{2}\right)^{1 / 2}$ remains real]
$=4 \int_{0}^{q_{\max }}\left[2 m\left(E-k q^{2} / 2\right)\right]^{1 / 2} d q=$ area of ellipse in (q, p)-space
[utilizing the standard trigonometric substitution $q=(2 E / k)^{1 / 2} \sin x$, etc.]

$$
\begin{equation*}
=(2 E)(m / k)^{1 / 2}\left(\int_{0}^{2 \pi} \cos ^{2} x d x\right)=(2 \pi E)(m / k)^{1 / 2} \tag{c}
\end{equation*}
$$

From (c), we obtain

$$
\begin{align*}
& E=(J / 2 \pi)(k / m)^{1 / 2}=E(J)=H^{\prime} \\
& \Rightarrow \nu=\partial E / \partial J=(1 / 2 \pi)(k / m)^{1 / 2}=\omega / 2 \pi \tag{d}
\end{align*}
$$

Next, by calculating how A_{o} changes during a complete period of oscillation - that is, as q varies from $q_{\text {min }}$ to $q_{\max }$ and then back to $q_{\text {min }}$ — we will verify that $A_{o}(q, E)$, or $A_{o}(q, J)$, is indeed a multiple-valued function of q. Integrating (b) [or ex. 8.10.3: (k)], while suppressing the resulting inessential constant, we obtain (fig. 8.16):

$$
\begin{equation*}
A_{o}=A_{o}(q, E)=E(m / k)^{1 / 2}\left\{\arcsin \left[(k / 2 E)^{1 / 2} q\right]+(k / 2 E)^{1 / 2} q\left[1-(k / 2 E) q^{2}\right]^{1 / 2}\right\} \tag{e}
\end{equation*}
$$

Figure 8.16 Graph of $A_{0}(q ; E)$, eq. (e). Its slope is the momentum of the particle: $p=\partial A_{o} / \partial q$.

Now, clearly, the second term of (e) is single-valued, and so, during one such period, contributes nothing to A_{o} (in fact, at its beginning and ending, $q_{\min }$, it vanishes); but its first term is multiple-valued, and since, during $q_{\min } \rightarrow q_{\max } \rightarrow q_{\min }$, the argument of $\arcsin (\ldots)$ changes from $-1 \rightarrow+1 \rightarrow-1, \arcsin (\ldots)$ itself changes by 2π. Hence,

$$
\begin{align*}
\Delta A_{o} & =E(m / k)^{1 / 2}(2 \pi)=E / \nu \equiv E \tau \quad[\equiv(2 \pi) E / \omega] \\
& =J\left(\text { modulus of periodicity of } A_{o}\right) ; \tag{f}
\end{align*}
$$

and, further, replacing in (e) E with $J \nu$, we obtain

$$
\begin{align*}
A_{o} & =A_{o}(q, J) \\
& =(J / 2 \pi)\left\{\arcsin \left[(k / 2 \nu J)^{1 / 2} q\right]+(k / 2 \nu J)^{1 / 2} q\left[1-(k / 2 \nu J) q^{2}\right]^{1 / 2}\right\} \\
& {\left[=\int p(q, J) d q=(1 / 2 \pi \nu) \int\left(2 k \nu J-k^{2} q^{2}\right)^{1 / 2} d q\right] . } \tag{g}
\end{align*}
$$

The above shows that in one complete period of q, the new coordinate w (canonically conjugate to J) changes by +1 :

$$
\begin{gather*}
w \equiv \partial A_{o} / \partial J=(1 / 2 \pi) \arcsin \left[(k / 2 \nu J)^{1 / 2} q\right]=\nu t+\gamma, \tag{h}\\
\Rightarrow \Delta w=(1 / 2 \pi)(2 \pi)=+1
\end{gather*}
$$

like an angle $\phi \equiv 2 \pi w$, hence the name angle variable. Finally, inverting (h), we obtain

$$
\begin{align*}
& q=(2 \nu J / k)^{1 / 2} \sin (2 \pi w)=\left(J / 2 \pi^{2} \nu m\right)^{1 / 2} \sin [2 \pi(\nu t+\gamma)], \tag{i}\\
& \Rightarrow p=m \dot{q}=\left(k J / 2 \pi^{2} \nu\right)^{1 / 2} \cos (2 \pi w) \tag{j}
\end{align*}
$$

that is, both q and p are periodic in w, with period 1 . Incidentally, eqs. (i, j) are the equations of canonical transformation from (w, J) to (q, p).

This simple example may, hopefully, begin to show the advantages of the actionangle variables: in the (q, p)-space, the system trajectory for a given constant energy E is the two-valued function (b); whereas in (w, J)-space, the system trajectory is characterized uniquely by the constant $J, J=J(E)$, and each such curve is characterized by a single-valued function of w.

Finally, we note the close relation of the above results to those of ex. 8.10.8. Each of the latter's equations (h) is of the harmonic oscillator type (b) $\rightarrow(\mathrm{g})$: $A_{o}=\int\left(2 m E-m k q^{2}\right)^{1 / 2} d q$; that is, each q_{k} varies between a $q_{k, \min }$ to $q_{k, \text { max }}$ and then back to $q_{k, \text { min }}$, with frequency ν_{k}. However, even though these q_{k} 's are uncoupled (Liouville system), this does not guarantee that the system is periodic as a whole; namely, that it returns to its original configuration. Such questions of periodicity in several DOF systems are treated below.

Several DOF, Multiply Periodic Motion

Here, we shall restrict ourselves to systems that are completely separable in all their $n+1$ variables $\left(q_{1}, \ldots, q_{n} ; t\right) \equiv(q ; t)$ (which, for all practical purposes is the only case where the Hamilton-Jacobi equation can be solved), and periodic in at least one
set of canonical variables. This (recalling §8.10) means that

$$
\begin{align*}
A & =A_{o}\left(q_{1}, \ldots, q_{n} ; \beta_{1}, \ldots, \beta_{n}\right)-E\left(\beta_{1}, \ldots, \beta_{n}\right) t \\
& \equiv A_{o}(q ; \beta)-E(\beta) t \\
& =\sum A_{o k}\left(q_{k}, \beta\right)-E(\beta) t, \quad(k=1, \ldots, n) \tag{8.14.19a}
\end{align*}
$$

from which it follows that

$$
\begin{equation*}
d A_{o}=\sum\left(\partial A_{o} / \partial q_{k}\right) d q_{k}=\sum\left(\partial A_{o k} / \partial q_{k}\right) d q_{k}=\sum p_{k} d q_{k} \tag{8.14.19b}
\end{equation*}
$$

or, by (indefinite) q_{k}-integration,

$$
\begin{align*}
A_{o} & =\int \sum\left(\partial A_{o} / \partial q_{k}\right) d q_{k}=\int \sum\left(\partial A_{o k} / \partial q_{k}\right) d q_{k}=\sum\left(\int\left(\partial A_{o k} / \partial q_{k}\right) d q_{k}\right) \\
& =\sum\left(\int p_{k}\left(q_{k}, \beta\right) d q_{k}\right) \equiv \sum \int\left[f_{k}\left(q_{k}, \beta\right)\right]^{1 / 2} d q_{k} \tag{8.14.19c}
\end{align*}
$$

[where the $A_{o k}=A_{o k}(q, J)$ are multiple-valued functions of the q 's]; and the projection of the system trajectory in phase space on every $\left(q_{k}, p_{k}\right)$-subplane, $p_{k}=p_{k}\left(q_{k}, \beta\right)$ (since now each p_{k} depends only on q_{k}, and the β 's) is also periodic (libration or rotation).

However this does not necessarily mean that all such projected $\left(q_{k}, p_{k}\right)$-subtrajectories have the same fundamental frequency - that is, periodicity in the sense that, after the passage of a certain finite time interval, all q's and p's return to their initial values, in general, does not exist - due to coordinate coupling; after the passage of a time interval τ_{k}, only the pair $\left(q_{k}, p_{k}\right)$ returns to its initial values, but not the other pairs (The reader, probably, recalls a similar situation in linear multi-DOF vibrations: each normal mode is periodic in time but their superposition, in general, is not.)

Such a motion (and system), is n-ply, or multiply, periodic. It can become truly periodic, in the earlier sense of the system as a whole, when certain special conditions of proportionality, or commensurability, exist among its partial frequencies $\nu_{k}=1 / \tau_{k}(k=1, \ldots, n)$. According to this definition, a two-dimensional oscillator is a periodic system even when its $x y$-plane trajectory (Lissajous' figure) is an open curve. These fundamental concepts are examined in detail below. [For an excellent summary of the basic underlying theory of multiply periodic functions, see Born (1927, pp. 71-76).]

As a result of the complete separability of the system: (i) once $A(t, q, \beta)$ has been found (as explained in $\S 8.10$), the individual $q_{k}(t)$ and $p_{k}(t)$ are determined by the finite Hamilton-Jacobi equations

$$
\begin{equation*}
\partial A / \partial \beta_{k}=\alpha_{k}, \quad \partial A / \partial q_{k}=\partial A_{o} / \partial q_{k}=\partial A_{o k} / \partial q_{k}=p_{k} \tag{8.14.20a}
\end{equation*}
$$

[provided that $\operatorname{Det}\left(\partial^{2} A_{o} / \partial q_{k} \partial \beta_{l}\right) \neq 0$]; that is, the motion has been reduced to onevariable integrations; and (ii) the constant energy equation

$$
\begin{align*}
H\left(q_{1}, \ldots, q_{n} ; p_{1}, \ldots, p_{n}\right) & \equiv H(q, p)=H\left(q, \partial A_{o} / \partial q\right) \\
& =E=E\left(\beta_{1}, \ldots, \beta_{n}\right) \equiv E(\beta)=\mathrm{constant} \tag{8.14.20b}
\end{align*}
$$

[a $(2 n-1)$-dimensional energy hypersurface in (q, p)-phase space] separates to the n one-to-one first integrals

$$
\begin{equation*}
H_{k}\left(q_{k}, p_{k}\right)=E_{k}(\beta) \equiv E_{k}, \tag{8.14.20c}
\end{equation*}
$$

where $E_{1}+\cdots+E_{n}=E$ is the value of the new Hamiltonian H^{\prime}, so that the projections of the phase-space trajectory of the system on the individual $\left(q_{k}, p_{k}\right)$ planes look just like the previous 1-DOF trajectories; that is, each individual q_{k} either librates between two fixed limits ($q_{\min }$ and $q_{\max }$); or increases boundlessly, but its corresponding p_{k} periodically returns to its original value (rotation).

Now, for such a completely separable system, with individually periodic (libratory or rotatory) q_{k} 's, we define the action variable J_{k} corresponding to q_{k} by the phase integral

$$
\begin{align*}
J_{k} & \equiv \oint p_{k} d q_{k}=\oint p_{k}\left(q_{k}, \beta\right) d q_{k}=J_{k}\left(\beta_{1}, \ldots, \beta_{n}\right) \equiv J_{k}(\beta) \\
& =\oint\left(\partial A_{o} / \partial q_{k}\right) d q_{k}=\oint\left[\partial A_{o k}\left(q_{k}, \beta\right) / \partial q_{k}\right] d q_{k}, \tag{8.14.21}
\end{align*}
$$

where the integrations extend over the complete periods on the $\left(q_{k}, p_{k}\right)$-plane, for fixed β_{k} 's \Rightarrow fixed E_{k} 's \Rightarrow fixed E. In the case of libration, this means integration over the closed $\left(q_{k}, p_{k}\right)$ paths - something that takes care of the multiple-valuedness of the momenta, due to their quadratic appearance in (8.14.20c): $p_{k}= \pm \ldots$; while in the case of rotation, the integration extends over a single period $q_{k o}$ of q_{k}. Hence, each J_{k} equals the corresponding shaded area of its trajectory in its $\left(q_{k}, p_{k}\right)$-plane (figs. 8.11, 8.12); that is, the area contained within the closed trajectory (libration), or under a single q_{k}-cycle (rotation).

REMARK

Comparison of (8.14.19c) with (8.14.21) shows that the former is an indefinite integral, while the latter is the closed line integral of the partial derivative $\partial A_{o k} / \partial q_{k}$ in the $\left(q_{k}, p_{k}\right)$-plane, as explained above. Since $J_{k} \neq 0$, we conclude that $A_{o k}$ is a multi-ple-valued function of its coordinate. In general, the calculation of the numbers J_{k} via (8.14.21) is very laborious; but since these are two-dimensional contour integrals, the application of complex variables (Cauchy integration) can be utilized to great advantage; see, for example, Born (1927; appendix II), Sommerfeld (1931, vol. 1); also Goldstein (1980, p. 472 ff.), Pars (1965, pp. 344-346).

In the case where neither the motion as a whole, nor each q_{k}, have a periodic variation in time, the integrals in (8.14.21) are understood as extending over the entire range of q_{k} values. See equations ($8.14 .24 \mathrm{i}, \mathrm{j}$) and subsequent discussion; and conditional periodicity and degeneracy below.

Solving the n independent functions (8.14.21), $J_{k}=J_{k}(\beta)$, for the β 's, we obtain

$$
\begin{equation*}
\beta_{k}=\beta_{k}\left(J_{1}, \ldots, J_{n}\right) \equiv \beta_{k}(J) ; \tag{8.14.21a}
\end{equation*}
$$

that is, the $n J_{k}$'s can replace the $n \beta_{k}$'s as the new constant momenta. Then A_{o} takes the following functional form:

$$
\begin{equation*}
A_{o}=A_{o}(q, \beta)=A_{o}[q, \beta(J)]=A_{o}(q, J)=\sum A_{o k}(q, J) \tag{8.14.21b}
\end{equation*}
$$

$[=$ generating function of the old coordinates (q) and the new momenta (J); i.e., $F_{2}\left(q, p^{\prime}\right)$], and therefore the canonical transformation equations $(q, p) \rightarrow\left(q^{\prime}, p^{\prime}\right)=$ (w, J) become
$p_{k}=\partial F_{2} / \partial q_{k}: \quad p_{k}=\partial A_{o k}\left(q_{k}, \beta\right) / \partial q_{k}=\partial A_{o k}\left(q_{k}, J\right) / \partial q_{k}=p_{k}\left(q_{k}, J\right)$,
$q_{k^{\prime}}=\partial F_{2} / \partial p_{k^{\prime}}: \quad w_{k}=\partial A_{o}\left(q_{k}, J\right) / \partial J_{k}=\sum\left[\partial A_{o l}\left(q_{l}, J\right) / \partial J_{k}\right]=w_{k}(q, J) ;(8.14 .21 \mathrm{~d})$ and show that each p_{k} depends only on the corresponding q_{k} (separation) and all the J_{k} 's; and each w_{k} depends on all the q 's (coupling) and all the J_{k} 's.

The new coordinates $w \equiv\left(w_{1}, \ldots, w_{n}\right)$, canonically conjugate to the new momenta $J \equiv\left(J_{1}, \ldots, J_{n}\right)$, are called angle variables. Let us find the corresponding equations of motion. Since the new Hamiltonian $H^{\prime}=H^{\prime}(w, J)$ equals

$$
\begin{equation*}
H^{\prime}=H+\partial A_{o} / \partial t=H=E(\beta)=E[\beta(J)] \equiv E(J)=H^{\prime}(J) \tag{8.14.22a}
\end{equation*}
$$

(i.e., all the w's are ignorable), the canonical equations are

$$
\begin{align*}
d w_{k} / d t & =\partial E(J) / \partial J_{k}=\text { constant } \equiv \nu_{k}(J)=\nu_{k} \Rightarrow w_{k}=\nu_{k} t+\gamma_{k}, \tag{8.14.22b}\\
d J_{k} / d t & =-\partial E(J) / \partial w_{k}=0 \Rightarrow J_{k}=\text { constant } \tag{8.14.22c}
\end{align*}
$$

recalling (8.10.3a-d) and the discussion following them.

BRIEF REMARKS ON COMPLETE INTEGRABILITY IN HAMILTONIAN SYSTEMS

(i) (Cont'd from $\S 3.12$, but now in canonical variables) We will call a, say (for concreteness but no loss of generality) Hamiltonian n - degree-of-freedom (DOF) holonomic system S, i.e. one of total order $2 n$, completely integrable (CI), or simply integrable, if it possesses $2 n$ (functionally independent/distinct, analytic, global) first integrals:

$$
\begin{aligned}
f_{\alpha}(t, q, p)= & C_{\alpha}: \text { constant/time invariant/conserved, for all finite times, along any system trajectory/orbit/ } \\
& \text { "streamline/flow", i.e. evaluated along any solution of } S \text { 's canonical equations of motion } \\
& {[\text { with Greek (Latin) subsripts running from } 1 \text { to } 2 n(n)] . }
\end{aligned}
$$

Among a system's integrals, those that isolate \rightarrow determine the $2 n$ variables in terms of the $(2 n+1)$ th variable, say as $q_{k}=$ $q_{k}\left(t ; C_{1}, \ldots, C_{2 n}\right), p_{k}=p_{k}\left(t ; C_{1}, \ldots, C_{2 n}\right)$, known as isolating integrals, or separation constants, are the most useful; the preceding $2 n$ constant momenta/actions J_{k} and phase constants/shifts γ_{k} [eq's $\left.(8.14 .22 \mathrm{~b}, \mathrm{c})\right]$ constitute an example of $2 n$ such integrals. Physically: "As in the noncanonical case, an integrable canonical Hamiltonian flow is one where the interactions can be transformed away: there is a special system of generalized coordinates and canonical momenta where the motion consists of n independent global translations $w_{k}=\nu_{k} t+\gamma_{k}$ along n axes, with both the ν_{k} and J_{k} constant. Irrespective of the details of the interactions, all integrable canonical flows are geometrically equivalent by a change of coordinates to n hypothetical free particles moving one-dimensionally at constant velocity in the (w, J) coordinate system." McCauley (1997, pp. 158 ff ., 192 ff ; our notations, his italics).
(ii) However, Hamiltonian system integrability should not be confused with either separability (CI systems may exist that are not separable in any canonical coordinate system), or with "exact solubility (or solvability)" = closed algebraic form solution; the latter may be completely chaotic, i.e. its phase space may be completely ("densely") filled with unstable (periodic or non-periodic) initial condition-sensitive orbits, while CI systems are either stable periodic ($=$ all frequency ratios rational - commensurability) or stable-quasiperiodic ($=$ at least one irrational frequency ratio - incommensurability), on tori. The central point of this specialized (group-theory based) iuntegrability is the following fundamental:

Theorem of Liouville [1850, e.g. Whittaker (1937, pp. 307-308, 322-325) and its specialization known as theorem of Liouville-Arnold]: (a) A CI n-DOF Hamiltonian system S is one that possesses n (functionally independent, analytic, global) first integrals f_{1}, \ldots, f_{n} in involution: $\left(f_{k}, f_{l}\right)=0$, for all k, l (mutually commuting integrals); i.e. to integrate S we need only n (not $2 n$) such integrals; (b) Once the latter have been found (e.g. the J_{k}), the remaining n integrals (e.g. the γ_{k}) follow automatically; (c) In such involutive systems, a canonical trsnsformation can be found such that, in the new (q, p) coordinates, the $n f_{k}$ yield constant system momenta, also in involution: $p \rightarrow J_{k}=$ constant (isolating integrals: each constant isolates one independent DOF), $\left(J_{k}, J_{l}\right)=0$; and (d) S 's motion in phase space is confined to a (smooth n-dimensional closed surface that is topologically equivalent to a) torus, and is either stable-periodic or stable-quasiperiodic; i.e. the ratios of the n independent frequencies determine the nature of the system's motion; or: integrable motions in q, p space are, irrespective of the details of their Hamiltonians (i.e. "of their interactions"), not more complex than collections of independent translations or simple harmonic oscillators!
IN SUM: Completely integrable (CI) systems cannot be (classically or deterministically) chaotic, i.e. such chaos cannot occur in CI systems, only among non-CI ones. CI systems exhibit stable, multiply periodic behavior: all their localized (bound) orbits are confined to an n-dimensional manifold (inside their $2 n$ phase space) that is geometrically equivalent to an n-dimensional torus; the conditions for the preservation of such tori under nontrivial perturbations [although in disturbed form (-s)] constitute the famous KAM theorem (§8.16).

For details, including the basic question of CI, or lack thereof, of a system's equations of motion, and ways to ascertain this topics well beyond the scope of this book - see (alphabetically): Gallavotti (1983, pp. 287-289, 361-362), Lichtenberg and Lieberman (1992), McCauley (1993), (1997, pp. 158 ff., 192 ff., 311 ff., 316 ff., 409 ff.), Tabor (1989, pp. 68-79), Wintner (1941, pp. 68, 144); also, encyclopaedic summary in our forthcoming Elementary Mechanics (Part I, "20th century").

Below, we show that the constants $\nu \equiv\left(\nu_{1}, \ldots, \nu_{n}\right)$ are the fundamental frequencies of each DOF of this multiply periodic motion - the main advantage of the action-angle method - while the $\gamma \equiv\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ are its phase constants.

Let us consider a special, kinematically admissible or possible, motion in which each $q_{l}(l=1, \ldots, n)$ goes through a complete (libratory or rotatory) cycle an integral number of times $i_{l}(=0,1,2, \ldots)$. Then, recalling (8.14.21d), and that the J remain constant here, we find that w_{k} changes by the following amount;

$$
\begin{align*}
\Delta w_{k} & =\oint d w_{k}=\oint \sum\left[\partial w_{k}(q, J) / \partial q_{l}\right] d q_{l}=\oint \sum\left(\partial^{2} A_{o} / \partial J_{k} \partial q_{l}\right) d q_{l} \\
& =\sum \partial / \partial J_{k}\left(\oint\left(\partial A_{o} / \partial q_{l}\right) d q_{l}\right)=\sum \partial / \partial J_{k}\left(\oint\left(\partial A_{o l} / \partial q_{l}\right) d q_{l}\right) \\
& \equiv \sum \partial / \partial J_{k}\left(\oint p_{l}\left(q_{l}, J\right) d q_{l}\right)=\sum \partial\left(i_{l} J_{l}\right) / \partial J_{k} \\
& =\sum i_{l} \delta_{k l}=i_{k} . \tag{8.14.23}
\end{align*}
$$

(For complete justification of the commutation step used in this derivation, see ex. 8.14.13 below.)

In words: the mapping (8.14 .21 d) from the q-space to the w-space has the following properties:

- If, starting from a certain configuration, a particular q_{k} is allowed to complete i_{k} cycles - that is, either vary "from here to there and back" (libration), or revolve (rotation), an integral number of times i_{k} - then only w_{k} changes by i_{k}, all other w 's do not; in other words, $w_{k}(q, J)$ is a multiple-valued function of the q 's, periodic in $q_{l}(l \neq k)$ and monotonically increasing in q_{k}; for each cycle of the latter, w_{k} increases by 1 .
- Inverting (8.14.21d), we also conclude that if w_{k} increases by i_{k} while the other w 's do not change, only q_{k} goes through i_{k} complete cycles. Any other $q_{l}(l \neq k)$ depending on w_{k} would have varied, but would have returned to its original value without completing its cycles; otherwise w_{l} would have increased by the number of those cycles. Hence, in general, each q depends on all the w's and J 's; and is periodic in each w with fundamental period unity. (If a particular q does not depend on all the w 's, then, of course, it will not be periodic in all of them; but the totality of q 's depends on the totality of the w 's.)

In addition, since:
(i) the $A_{o k}(q, J)$ are also multiple-valued functions of the q 's, every time q_{k} varies over a cycle once (i_{k} times), while all other q 's remain unchanged, the reduced action A_{o} increases by the amount $J_{k}\left(i_{k} J_{k}\right)$:

$$
\begin{align*}
\Delta A_{o} & \equiv A_{o}(t+\tau)-A_{o}(t)=\oint\left(\partial A_{o} / \partial q_{k}\right) d q_{k} \\
& =\Delta A_{o k}=\oint\left(\partial A_{o k} / \partial q_{k}\right) d q_{k}=\oint p_{k} d q_{k}=J_{k} \tag{8.14.23a}
\end{align*}
$$

and since, then,
(ii) w_{k} increases by 1 , while the other w 's do not change, the sum $\sum w_{k} J_{k}$ also increases by J_{k}; therefore, it follows that the new function

$$
\begin{equation*}
A_{o o} \equiv A_{o}-\sum w_{k} J_{k} \tag{8.14.23b}
\end{equation*}
$$

remains unchanged; that is, $A_{\text {oo }}$ is multiply periodic in the w's with fundamental period 1 in each of them.
[Recalling §8.8, we see that this is a Legendre transformation, from a $F_{2}\left(q, p^{\prime}\right)$ type generating function, $A_{o}(q, J)$, to a $F_{1}\left(q, q^{\prime}\right)$-type, $A_{o o}=A_{o o}(q, w)$. Indeed $(\ldots)^{\circ}$ differentiating $A_{o}=A_{o}(q, J)$ and then invoking (8.14.21c, d) and (8.14.23b), we obtain

$$
\begin{align*}
& d A_{o} / d t=\sum\left[\left(\partial A_{o} / \partial q_{k}\right)\left(d q_{k} / d t\right)+\left(\partial A_{o} / \partial J_{k}\right)\left(d J_{k} / d t\right)\right] \\
& =\sum p_{k}\left(d q_{k} / d t\right)+\sum w_{k}\left(d J_{k} / d t\right) \\
& \Rightarrow \sum p_{k}\left(d q_{k} / d t\right)=-\sum w_{k}\left(d J_{k} / d t\right)+d A_{o} / d t \\
& \Rightarrow \sum p_{k}\left(d q_{k} / d t\right)-\sum J_{k}\left(d w_{k} / d t\right)=d A_{o o} / d t \\
& \left.\Rightarrow p_{k}=\partial A_{o o}(q, w) / \partial q_{k}, \quad J_{k}=-\partial A_{o o}(q, w) / \partial w_{k} \cdot\right] \tag{8.14.23c}
\end{align*}
$$

The foregoing analysis is summarized in the following rule.

Frequency Rule

To calculate the fundamental frequencies of a completely separable multiply periodic system, we proceed as follows:

- Using the Hamilton-Jacobi theory (\$8.10), we first determine its reduced characteristic function

$$
A_{o}=A_{o}(q, \beta)=\sum A_{o k}\left(q_{k} ; \beta_{1}, \ldots, \beta_{n}\right) .
$$

- Then, using the definition (8.14.21) $J_{k} \equiv \oint p_{k} d q_{k}$, we calculate its action variables $J_{k}=J_{k}(\beta)$; and this is the main difficulty of the method.
- Next, we express its Hamiltonian as function of the J_{k} 's: $H^{\prime}(J)=H(q, p)=E(J)$.
- Finally, we calculate its fundamental frequencies from $\nu_{k}=\partial E(J) / \partial J_{k}$.

Analytically, the above are expressed as follows:
(i) Libration: The q 's (and p 's) are multiply periodic functions of the w 's with fundamental period 1:

$$
\begin{equation*}
q_{k}\left(w_{1}+i_{1}, \ldots, w_{n}+i_{n} ; J\right)=q_{k}\left(w_{1}, \ldots, w_{n} ; J\right) \equiv q_{k}(w, J) . \tag{8.14.24a}
\end{equation*}
$$

(ii) Rotation. If q_{k} has period $q_{k o}$, then

$$
\begin{equation*}
q_{k}\left(w_{1}+i_{1}, \ldots, w_{n}+i_{n} ; J\right)=q_{k}\left(w_{1}, \ldots, w_{n} ; J\right)+i_{k} q_{k o} . \tag{8.14.24b}
\end{equation*}
$$

The rotation case can be brought to the libration form in the new coordinates $q_{R, k}$ defined by

$$
\begin{align*}
q_{R, k} & \equiv q_{k}(w, J)-w_{k} q_{k o} \equiv q_{R, k}(w, J) \tag{8.14.24c}\\
& \Rightarrow q_{R, k}\left(w_{1}+i_{1}, \ldots, w_{n}+i_{n} ; J\right)=q_{R, k}\left(w_{1}, \ldots, w_{n} ; J\right) \equiv q_{R, k}(w, J) \tag{8.14.24d}
\end{align*}
$$

[Clearly, conditions (8.14.24a-d) still hold, trivially, even for the w 's absent from a particular q_{k}.] Other (nonseparable) arbitrary coordinates related to our (separable
q 's) by one-to-one and well-behaved transformations - for example, from the q 's and/or q_{R} 's to, say rectangular Cartesian coordinates

$$
\begin{equation*}
x_{k}=x_{k}(q) \Leftrightarrow q_{k}(x) \tag{8.14.24e}
\end{equation*}
$$

will be representable by the following multiple-frequency Fourier series (for generality, we keep the same notation as for the hitherto separable q 's):

$$
\begin{array}{rlr}
\sum_{\cdots n \text {-ple sum } \cdots} & \sum c_{k, s}(J) \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}) \\
& =q_{k}(w, J) \\
& =q_{k}(w, J)-w_{k} q_{k o} \equiv q_{R, k}(w, J) \quad(\text { Libration }) \tag{8.14.24f}\\
(\text { Rotation })
\end{array}
$$

where
$s \equiv\left(s_{1}, \ldots, s_{n}\right)=$ positive or negative integers, or zero; ranging from $-\infty$ to $+\infty$,
$\boldsymbol{w} \equiv\left(w_{1}, \ldots, w_{n}\right)$,
$\boldsymbol{s} \cdot \boldsymbol{w} \equiv s_{1} w_{1}+\cdots+s_{n} w_{n} \quad($ "dot product" of "vectors" \boldsymbol{s} and $\boldsymbol{w})$,
and

$$
\begin{equation*}
c_{k, s}(J)=\int_{0}^{1} \cdots n \text {-ple } \cdots \int_{0}^{1} q_{k}(w, J) \exp (-2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}) d w_{1}, \ldots, d w_{n} . \tag{8.14.24h}
\end{equation*}
$$

[For a simple proof of (8.14.24f-h) see ex. 8.14.2, below; and for a discussion of the significance of such series, in the context of general vibration theory, see the appendix at the end of this section.]

Since $w_{k}=\nu_{k} t+\gamma_{k}$, the above yield the following multiply periodic temporal variation of q_{k} :

$$
\begin{align*}
& \sum_{\cdots n \text {-ple sum } \cdots \sum c_{k, \boldsymbol{s}}(J) \exp [2 \pi i(\boldsymbol{s} \cdot \boldsymbol{v} t+\boldsymbol{s} \cdot \boldsymbol{\gamma})]} \begin{array}{lr}
\\
\quad=\sum \cdots n \text {-ple sum } \cdots \sum d_{k, s}(J, \gamma) \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{v} t) \\
\quad=q_{k}(t, J) & (\text { Libration }) \\
\quad=q_{k}(t, J)-w_{k} q_{k o} \equiv q_{R, k}(t, J) & (\text { Rotation }),
\end{array}
\end{align*}
$$

where

$$
\begin{aligned}
& \boldsymbol{v} \equiv\left(\nu_{1}, \ldots, \nu_{n}\right), \quad \boldsymbol{\gamma} \equiv\left(\gamma_{1}, \ldots, \gamma_{n}\right), \\
& \boldsymbol{s} \cdot \boldsymbol{v} \equiv s_{1} \nu_{1}+\cdots+s_{n} \nu_{n}, \quad \boldsymbol{s} \cdot \boldsymbol{\gamma} \equiv s_{1} \gamma_{1}+\cdots+s_{n} \gamma_{n}
\end{aligned}
$$

and

$$
\begin{equation*}
d_{k, s}(J, \gamma) \equiv c_{k, s}(J) \exp (2 \pi i \boldsymbol{s} \cdot \gamma) . \tag{8.14.24j}
\end{equation*}
$$

Since in separable systems, by (8.14.21c), $p_{k}=p_{k}\left(q_{k}, J\right)$, we will have similar Fourier expansions for the momenta p_{k}; and, in fact, any single-valued function $f(q, p)$ when expressed in terms of the corresponding action (J) and angle (w) variables, becomes a periodic function of the w's with period 1 in each of them; for example, the earliermentioned rectangular Cartesian coordinates.

Now, the series (8.14.24i) decomposes the q_{k}-motion into a sum of periodic motions (harmonic vibrations), each with frequency $|\boldsymbol{s} \cdot \boldsymbol{v}| \equiv\left|s_{1} \nu_{1}+\cdots+s_{n} \nu_{n}\right|$; but since, in general, these frequencies are not in rational ratios to each other (i.e., they are not mutually commensurate, or commensurable - see (8.14.27a) ff. below), their sum is not periodic in time; no common period τ exists that contains every "component period" an integral number of times; and similarly for the momenta, even though $p_{k}=p_{k}\left(q_{k}\right)$ is closed (libration) or periodic (rotation).

Hence, the system motion (as a whole) is nonperiodic, i.e the system does not return to any of its initial states in finite time (although, given sufficient time, it passes arbitrarily close to those states); or geometrically, the system trajectory, in the $2 n$-dimensional phase space, does not close on itself [in the n-dimensional configuration space, such orbits are called Lissajous figures (ex.8.14.4)] [Since all irrational numbers can be approximated to any desired accuracy with rational ones, we can approximate a nonperiodic function with a periodic one, for a given time. The latter is called almost periodic function. Also, recall discussion in §7.A4, and see "remark" below; and McCauley (1997, ch. 4: pp. 126-147).] For these reasons, such multiply, or quasi-periodic motions [since, for sufficiently short times and within finite accuracy, they may appear to be periodic ("mimic clockwork")] they have also been termed conditionally periodic (O. Staude, 1887); that is, they can become truly periodic (i.e., singly periodic) only under certain conditions among the system frequencies $\nu_{k}(k=1, \ldots, n)$. These conditions are summarized in the following theorem.

THEOREM

The motion of $q_{k}(t)$ and $p_{k}(t)$, given by (8.14.24f- j), is periodic in time with fundamental frequency ν_{k} in the first three of the following cases:
(i) The motion is one-dimensional; that is, only the pair $\left(q_{k}, p_{k}\right)$ varies. Then, $(8.14 .24 \mathrm{i}, \mathrm{j})$ becomes

$$
\begin{array}{rlr}
\sum d_{k, s}(J, \gamma) \exp \left(2 \pi i s \nu_{k} t\right) & \\
& =q_{k}(t, J) \\
& =q_{k}(t, J)-w_{k} q_{k o} \equiv q_{R, k}(t, J) & \text { (Rotation) } \tag{8.14.25a}
\end{array}
$$

and from (8.14.22b-23) for one cycle (i.e., $i_{k}=1$), we obtain

$$
\begin{align*}
\Delta w_{k} & \equiv w_{k}\left(t+\tau_{k}\right)-w_{k}(t)=\nu_{k} \tau_{k}=1 \\
& \Rightarrow \nu_{k}=1 / \tau_{k}=\partial E(J) / \partial J_{k}=\text { fundamental frequency } \tag{8.14.25b}
\end{align*}
$$

(ii) The motion of q_{k} is not influenced by the other coordinates (separability of variables: generalization of the uncoupled normal coordinates of linear vibration theory): in $(8.14 .24 \mathrm{i}, \mathrm{j})$ only the coefficient $d_{k ; 0 \ldots s(k) \ldots 0}(J, \gamma)$ survives; that is, the Fourier expansion looks like (8.14.25a). As a result, $q_{k}=q_{k}\left(w_{k}, J\right) \Leftrightarrow w_{k}=$ $w_{k}\left(q_{k}, J\right)$; and also [recalling (8.14.21d)]

$$
\begin{equation*}
w_{k}=\partial A_{o}\left(q_{k}, J\right) / \partial J_{k}=\partial A_{o k}\left(q_{k}, J_{k}\right) / \partial J_{k}=w_{k}\left(q_{k}, J_{k}\right) ; \tag{8.14.26}
\end{equation*}
$$

that is, J_{k} occurs only in $A_{o k}$, not in $A_{o l}(l \neq k)$. Here, too, $\Delta w_{k}=\nu_{k} \tau_{k}=1 \Rightarrow$ $\nu_{k}=1 / \tau_{k}$. General functions of them, say $f\left(q_{1}, \ldots, q_{n}\right)$, will be multiply periodic functions of the w's and, hence, nonperiodic functions of time, unless the ν_{k} are mutually commensurate [see (iii), (iv) below].
(iii) The other fundamental frequencies are integral multiples of ν_{k} :

$$
\begin{array}{ll}
\nu_{l}=i_{l} \nu_{k}: & i_{l}=\text { positive integer }(l \neq k) \\
& i_{k}=1 . \tag{8.14.27b}
\end{array}
$$

Then, (8.14.24i, j), with

$$
\begin{align*}
& \boldsymbol{i} \equiv\left(i_{1}, \ldots, i_{n}\right) \tag{8.14.27c}\\
& \boldsymbol{s} \cdot \boldsymbol{i}=s_{1} i_{1}+\cdots+s_{n} i_{n}=\text { integer }, \tag{8.14.27d}
\end{align*}
$$

becomes

$$
\begin{align*}
q_{k}(t)= & \sum_{\cdots n \text {-ple sum } \cdots \sum d_{k, s}(J, \gamma) \exp \left[2 \pi i(\boldsymbol{s} \cdot \boldsymbol{i}) \nu_{k} t\right]}= \\
& \text { periodic function of time, with fundamental frequency (period) } \\
& \nu_{k}\left(\tau_{k}\right) ; \tag{8.14.27e}
\end{align*}
$$

and, of course, after a time interval $\tau_{k}=1 / \nu_{k}=i_{l} / \nu_{l}$:

$$
\begin{align*}
& \Delta w_{l}=\nu_{l} \tau_{l}=i_{l}\left(\nu_{k} \tau_{k}\right)=i_{l} \quad(l \neq k) \tag{8.14.27f}\\
& \Delta w_{k}=\nu_{k} \tau_{k}=i_{k}=1 \tag{8.14.27~g}
\end{align*}
$$

and q_{l} returns to its initial value, after performing i_{l} complete cycles.
(iv) If none of the above three conditions hold, the motion of the system as a whole is periodic if all its fundamental frequencies are commensurate (or commensurable); that is, they are in rational ratios to each other-namely, for all $k, l=1, \ldots, n(k \neq l)$, and for arbitrary values of the J 's, integers i_{k}, i_{l} exist such that

$$
\begin{equation*}
\nu_{k} / \nu_{l}=i_{k} / i_{l}\left(\equiv \omega_{k} / \omega_{l}\right) \Rightarrow \tau_{l} / \tau_{k}=i_{k} / i_{l} \tag{8.14.28a}
\end{equation*}
$$

or, equivalently ($n-1$ relations),

$$
\begin{array}{ll}
\nu_{k} / i_{k}=\nu_{l} / i_{l}: & \nu_{1} / i_{1}=\nu_{2} / i_{2}=\cdots=\nu_{n} / i_{n} \equiv \nu(\equiv 1 / \tau) \\
\tau_{k} i_{k}=\tau_{l} i_{l}: & \tau_{1} i_{1}=\tau_{2} i_{2}=\cdots=\tau_{n} i_{n} \equiv \tau(\equiv 1 / \nu) \tag{8.14.28c}
\end{array}
$$

where $\nu=$ common/system frequency, $\tau=$ common/system period.
Then, the particular coordinate $q_{k}(k=1, \ldots, n)$ becomes
periodic function of time, with fundamental frequency

$$
\begin{equation*}
\left(\text { not } \nu_{k}=i_{k} \nu, \text { but }\right) \nu \tag{8.14.28d}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta w_{k} \equiv w_{k}\left(t+\tau_{k}\right)-w_{k}(t)=\nu_{k} \tau=\nu_{k} / \nu=i_{k} ; \tag{8.14.28e}
\end{equation*}
$$

after a time $\tau=1 / \nu=i_{k} / \nu_{k}$, each q_{k} returns to its initial value (after performing i_{k} complete cycles).

REMARK

Let q_{k} be a general multiply periodic function of all the w 's. Now, assume that during a time interval τ, q_{k} performs i_{k} complete cycles plus a fraction of a cycle. Then, it has been shown by Vinti (1961), via number-theoretic tools (Dirichlet's theorem), that

$$
\begin{equation*}
\text { as } \tau \rightarrow \infty: \quad \lim \left(i_{k} / \tau\right)=\nu_{k} ; \tag{8.14.29}
\end{equation*}
$$

that is, even when q_{k} is not a singly periodic function with frequency ν_{k}, still its "mean
frequency" [as defined by the left side of (8.14.29)] equals ν_{k} (see, e.g., Garfinkel, 1966, pp. 57-58).

Example 8.14.2 (Mathematical Appendix) Fourier's Theorem for Multiply Periodic Functions. Here, we prove ($8.14 .24 \mathrm{f}-\mathrm{h}$) for $n=2$. The extension to the general case $n=n$ should then be obvious.

Let the function $f=f(w)$ be periodic in w with period 1 (a function with arbitrary period can easily be brought to this case - see any text on Fourier series). Then, by Fourier's theorem in complex form:

$$
f(w)=\sum c_{s} \exp (2 \pi i s w) \quad(s=-\infty, \ldots,+\infty)
$$

where

$$
\begin{equation*}
c_{s}=\int_{0}^{1} f(w) \exp (-2 \pi i s w) d w . \tag{a}
\end{equation*}
$$

Next, let us consider the function $F=F\left(w, w^{\prime}\right)$, periodic in both w and w^{\prime}, with period 1 in each of them. Since F is periodic in w^{\prime}, by (a), we will have

$$
F\left(w, w^{\prime}\right)=\sum c_{s^{\prime}} \exp \left(2 \pi i s^{\prime} w^{\prime}\right) \quad\left(s^{\prime}=-\infty, \ldots,+\infty\right)
$$

where

$$
\begin{equation*}
c_{s^{\prime}}=\int_{0}^{1} F\left(w, w^{\prime}\right) \exp \left(-2 \pi i s^{\prime} w^{\prime}\right) d w^{\prime}=c_{s^{\prime}}(w) . \tag{b}
\end{equation*}
$$

Now, it is not hard to see that $c_{s^{\prime}}(w)$ is periodic in w with period 1. Therefore, again by (a), we can write

$$
c_{s^{\prime}}=\sum c_{s, s^{\prime}} \exp (2 \pi i s w) \quad(s=-\infty, \ldots,+\infty)
$$

where

$$
\begin{equation*}
c_{s, s^{\prime}}=\int_{0}^{1} c_{s^{\prime}} \exp (-2 \pi i s w) d w \quad(\text { a constant }) \tag{c}
\end{equation*}
$$

From the above, it follows immediately that

$$
F\left(w, w^{\prime}\right)=\sum \sum c_{s, s^{\prime}} \exp \left[2 \pi i\left(s w+s^{\prime} w^{\prime}\right)\right] \quad\left(s, s^{\prime}=-\infty, \ldots,+\infty\right)
$$

where

$$
\begin{equation*}
c_{s, s^{\prime}}=\int_{0}^{1} \int_{0}^{1} F\left(w, w^{\prime}\right) \exp \left[-2 \pi i\left(s w+s^{\prime} w^{\prime}\right)\right] d w d w^{\prime}, \quad \text { Q.E.D. } \tag{d}
\end{equation*}
$$

If the function $F\left(w, w^{\prime}\right)$ is real, as assumed here, the Fourier coefficients $c_{s, s^{\prime}}$ and $c_{-s,-s^{\prime}}$ are complex conjugate numbers; and similarly for the general n-variable case.

Geometrical Interpretation of Multiple Periodicity; Degeneracy

To understand the above results better, let us examine the system motion, neither in phase space $\left(P_{n}\right)$ nor in configuration space $\left(Q_{n}\right)$, but in the earlier-introduced, via (8.14.21d), $w_{k}=w_{k}(q ; J)$, space of the angle variables; or w-space W_{n}.

Let us view the q 's as rectangular Cartesian coordinates, spanning an n-dimensional Euclidean space Q_{n}. Then, since these coordinates have been assumed separable and periodic, the system motion in Q_{n} will be restricted to the interior of an n-dimensional finite rectangular prism, with sides parallel to the q-axes and size determined by the initial conditions on the q 's. If we also assume that W_{n} is an n-dimensional Euclidean space spanned by the rectangular Cartesian coordinates $\left\{w_{k} ; k=1, \ldots, n\right\}$, then, due to (8.14.23) and its consequences, the earlier Q_{n}-prism will be mapped onto an infinity of unit cubes, in W_{n}, such that corresponding points in any two or more such cubes correspond to the same Q_{n}-space point. It follows that the entire system motion in W_{n}-space can be described by the motion of a figurative system point in a single representative fundamental unit cube C_{n}, one corner of which is taken at the origin of the w-axes $(t=0)$. Then partial motions in any other W_{n}-cube can be transferred to their corresponding segment in C_{n}. Indeed, eliminating the time t among the n equations $w_{n}=\nu_{k} t+\gamma_{k}(k=1, \ldots, n)$, we see that the system motion in C_{n} is a uniformly traversed straight line whose direction cosines with the w-axes, l_{k}, satisfy the following $n-1$ relations:

$$
\begin{equation*}
l_{1}: l_{2}: \ldots: l_{n}=d w_{1}: d w_{2}: \ldots: d w_{n}=\nu_{1}: \nu_{2}: \ldots: \nu_{n} \tag{8.14.30}
\end{equation*}
$$

In view of the w-periodicity, there is no need to examine that line in its entire length, only its portions inside C_{n}; every other part of it is transferred there by translation parallel to the w-axes. In conclusion, the system path in W_{n} consists of well-defined parallel straight-line segments inside C_{n}; and this is far simpler than the corresponding path in Q_{n} (or in real space) which, in general, is a complicated "Lissajous figure."

Let us examine, for concreteness, a two-dimensional such case (fig. 8.17(a)). Let the C_{2}-origin O coincide with the initial system position $w_{k}(t=0)=\gamma_{k}=0$. When the system path meets the right C_{2}-boundary at O_{1} it is reflected horizontally back to the left boundary, which it meets at O_{2}, and with that as new origin continues again along a straight line segment parallel to $O O_{1}$. The reflection, or jump, at O_{1}, and so on, is the mathematical equivalent of transferring all w-motion inside C_{2}, and, as such, has no particular physical significance. The motion continues, similarly,

Figure 8.17 (a) Motion of separable and periodic systems in angle-space ($n=2$) inside the fundamental unit cube \rightarrow square C_{2}. (b) Case of degeneracy $(n=3, m=1)$.
through $O_{2} \rightarrow O_{3} \rightarrow O_{4} \rightarrow O_{5} \rightarrow O_{6} \rightarrow O_{7}$, where it is reflected vertically downwards to O_{8}, and from there on to $O_{9} \rightarrow O_{10} \rightarrow \cdots$. That is why C_{n} has been aptly described by Lanczos (1970, p. 249) as a small cubic room with doorless reflecting walls; a "mirror-cabinet."

Here, the following fundamental questions arise: will the system path ever return to its initial position O, and from there on repeat itself ad infinitum (in which case, C_{2} is laced by a finite number of parallel straight-line segments); or, will it keep going indefinitely, gradually filling C_{2} completely?

The answer to these questions involves the key concept of degeneracy. Let us summarize it here. A system whose frequencies satisfy the $m(0 \leq m \leq n-1)$ linear, homogeneous, and independent commensurability relations (i.e., special "frequency constraints"):

$$
\begin{equation*}
\sum i_{d k} \nu_{k}=0 \quad(d=1, \ldots, m) \tag{8.14.31}
\end{equation*}
$$

where the $i_{d k}$ are integers, or zero, but at least two of them (in each such equation) are nonzero, for arbitrary values of its actions, J_{k} is called m-ply (or m-fold) degenerate. Only an $(n-m)$-dimensional submanifold of the system's C_{n} cube is filled up densely; that is, only a finite number of equidistant and parallel planes [fig. 8.17(b): $n=3, m=1$]. The system point comes, infinitely often, arbitrarily close to any chosen point there. Similarly, its motion in Q_{n}-space is confined to an ($n-m$)-dimensional submanifold there, which it also fills up completely: straight lines $\left(C_{n}\right) \rightarrow$ curves $\left(Q_{n}\right)$, plane subspace $\left(C_{n}\right) \rightarrow$ curved subspace $\left(Q_{n}\right)$, and so on, but with the same number of dimensions. Due to (8.14.31), the Fourier series ($8.14 .24 \mathrm{i}, \mathrm{j}$), is reduced from an n-ply periodic function of time to an $(n-m)$-ply periodic function of time. (See pp. 1287-1289.)

In sum: an m-ply degenerate n-DOF system is $(n-m)$-ply periodic; compactly,

$$
\# \text { DOF - degree of degeneracy } \equiv n-m=\# \text { periods. }
$$

Special Cases

(i) If $m=0(\Rightarrow n-m=n)$, the system is called nondegenerate. Then, there exist n independent fundamental frequencies, and therefore the corresponding Fourier series is genuinely n-ply periodic. The system orbit, in Q_{n} or C_{n}, is open, but, in time, fills the entire n-dimensional q / w-region densely; that is, given sufficiently long time $(\tau \rightarrow \infty)$, the orbit will pass as near as we want ("arbitrarily close") to any arbitrarily chosen initial q / w-region point. In particular, C_{n} will, eventually, fill up completely by parallel, equally spaced (a nonobvious fact!) and uniformly traversed straight-line segments; and similarly for the Q_{n}-prism.
(ii) On the other extreme, if $m=n-1(\Rightarrow n-m=1)$, for example, $\nu_{1}=\nu_{2}=\cdots=\nu_{n}$, which is completely equivalent to the earlier case described by eqs. (8.14.28a-e) (since any ν_{k} can be expressed as a rational fraction of any other ν_{l}), the system is called completely, or fully, degenerate. In this case, eqs. (8.14.24i, j) become a purely (or singly, or genuinely) periodic function of time; and, hence, the system motion is confined to a one-dimensional submanifold - that is, a straight line $\left(C_{n}\right)$ or curve $\left(Q_{n}\right)$. In the C_{2}-square of the earlier example, the line $O O_{1} \ldots O_{10} \ldots$ returns to O after a finite time τ (fundamental period); and from there on it repeats itself; while, in the corresponding configuration plane Q_{2}, the system trajectory becomes a "Lissajous figure" that, depending on the values of the phase constants, either closes or retraces itself between an initial and a final point, again with
fundamental period τ. Finally, such single-frequency motions have a single angle variable and corresponding action variable equal to $J=\oint \sum p_{k} d q_{k}$.

The situation is summarized in the following diagram:

$$
\begin{gathered}
\text { Extreme cases of degeneracy } \\
m=0 \Rightarrow n-m=n \leftarrow \cdots \rightarrow m=n-1 \Rightarrow n-m=1
\end{gathered}
$$

No degeneracy
Motion manifold: n-dimensional Orbit: open curve

Complete degeneracy
Motion manifold: one-dimensional
Orbit: closed curve (or flattened curve)

Effects of Degeneracies

The latter, in addition to reducing the number of independent frequencies of a system, also:
(i) Reduce the number of its independent (and constant) action variables; and so restrict the forms in which the latter appear in the energy $E\left(J_{1}, \ldots, J_{n}\right) \equiv E(J)$. Thus, if ν_{k} and $\nu_{l}(k, l=1,2, \ldots ; k \neq l)$ are such that

$$
\begin{equation*}
i_{k} \tau_{k}=i_{l} \tau_{l} \Rightarrow i_{k} \nu_{l}=i_{l} \nu_{k}, \quad \text { or } \quad i_{k}\left(\partial E / \partial J_{l}\right)=i_{l}\left(\partial E / \partial J_{k}\right), \tag{8.14.32}
\end{equation*}
$$

where $i_{k}, i_{l}=$ integers, then J_{k}, J_{l} may appear in E only in the form:

$$
\begin{aligned}
J \equiv i_{k} J_{k}+i_{l} J_{l}\left[\nu_{k}\right. & =\partial E / \partial J_{k}=(\partial E / \partial J)\left(\partial J / \partial J_{k}\right)=(\partial E / \partial J) i_{k}, \\
\nu_{l} & \left.=\cdots=(\partial E / \partial J) i_{l} \Rightarrow i_{k} \nu_{l}=i_{l} \nu_{k}\right] ;
\end{aligned}
$$

or, equivalently, if they are such that

$$
\begin{equation*}
i_{k} \tau_{l}=i_{l} \tau_{k} \Rightarrow i_{k} \nu_{k}=i_{l} \nu_{l}, \quad \text { or } \quad i_{k}\left(\partial E / \partial J_{k}\right)=i_{l}\left(\partial E / \partial J_{l}\right) \tag{8.14.32a}
\end{equation*}
$$

then J_{k}, J_{l} may appear in E only in the form $J^{\prime} \equiv i_{k} J_{l}+i_{l} J_{k}$.
(ii) Increase the number of its single-valued integrals of motion over that number for the corresponding "same" but nondegenerate system. Indeed, a general nondegenerate conservative system has, outside of the energy integral, $2 n-1$ integrals of motion, of which only n are single-valued; for example, the $n J$'s; the remaining $(2 n-1)-n=n-1$ integrals can be written as

$$
\begin{align*}
& w_{k}\left(\partial E / \partial J_{l}\right)-w_{l}\left(\partial E / \partial J_{k}\right)=w_{k} \nu_{l}-w_{l} \nu_{k}=\left(\nu_{k} t+\gamma_{k}\right) \nu_{l}-\left(\nu_{l} t+\gamma_{l}\right) \nu_{k} \\
& \quad=\gamma_{k} \nu_{l}-\gamma_{l} \nu_{k} \quad\left[=\gamma_{k}\left(\partial E / \partial J_{l}\right)-\gamma_{l}\left(\partial E / \partial J_{k}\right)\right] \\
& \quad=\text { constant; but multiple-valued, since the angle variables are also } \\
& \quad \text { multiple-valued. } \tag{8.14.33a}
\end{align*}
$$

Now, in the case of degeneracy, as (8.14.32a) shows, the integral

$$
\begin{align*}
w_{k} i_{k}-w_{l} i_{l} & =\left(\nu_{k} t+\gamma_{k}\right) i_{k}-\left(\nu_{l} t+\gamma_{l}\right) i_{l} \\
& =\left(i_{k} \nu_{k}-i_{l} \nu_{l}\right) t+\left(\gamma_{k} i_{k}-\gamma_{l} i_{l}\right) \\
& =\gamma_{k} i_{k}-\gamma_{l} i_{l}=\text { constant } ; \tag{8.14.33b}
\end{align*}
$$

is multiple-valued, but to within an arbitrary multiple integral of 2π; and, therefore, by taking a trigonometric function of it, we obtain an additional single-valued integral of motion.

Also, this increase in the number of single-valued integrals allows for complete separability for more than one choice of coordinates: before the degeneracy, the $n J_{k}$'s ($k=1, \ldots, n$) are single-valued integrals of the corresponding separable coordinates. Upon imposition of a degeneracy, however, since then the number of single-valued integrals exceeds n, the choice of the new $n J_{k}$'s among them becomes nonunique. [On the connection between degeneracy (nondegeneracy) of motion and nonuniqueness (uniqueness) of separation of variables in its Hamilton-Jacobi equation, see, for example, Born (1927, pp. 76-95), Goldstein (1980, pp. 469-470).]

Nonseparable Systems

Lastly, let us outline the properties of finite motion of a general n-DOF conservative but nonseparable system. Here, contrary to the separable case where the singlevalued integrals are the $n J_{k}$'s, the single-valued integrals are only those obtained from the homogeneity of space (linear momentum), isotropy of space (angular momentum), and isotropy of time (energy).

Now, generally, the representative system point in phase space can traverse regions defined by the specified constant values of its single-valued integrals.
(i) For separable systems with n single-valued integrals, these n constants define an n dimensional hypersurface in phase space; given sufficient time, the system can pass arbitrarily close to every other chosen point on that hypersurface.
(ii) For nonseparable systems (degenerate systems), however, which possess fewer (more) than n single-valued integrals, the system point occupies, in phase space, a subspace with more (less) than n dimensions.

If the Hamiltonian of a nonseparable system differs by a very small amount from that of a separable (conditionally periodic) system, then we may reasonably suppose that the motion of the former will be very close to that of the latter; and that the difference between these two motions is much smaller than that of their Hamiltonians.

The systematic quantitative discussion of these topics belongs squarely to the frontier of contemporary nonlinear dynamics; and such Hamiltonian deep waters are, most definitely, beyond the scope of this introductory treatment (and the present state of knowledge of this writer!). For these advanced topics, and their connections to both classical chaotic/stochastic and quantum dynamics, we recommend the following readable and capable references (alphabetically): Dittrich and Reuter (1994), Hagihara (1970), Lichtenberg and Liebermann (1992), McCauley (1997), Pars (1965), Tabor (1989).

Action-Angle Variables and Atomic Physics

As mentioned earlier, action-angle variables have played a decisive part in the older quantum theory of Sommerfeld, Bohr, et al. (in the 1910s). According to this theory, the actual motions of an atomic system obey the quantization rule:

$$
\begin{equation*}
J_{k}=\oint p_{k} d q_{k}=n_{k} h \quad\left(n_{k}: \text { integer, } h: \text { Planck's action constant }\right) \tag{8.14.34a}
\end{equation*}
$$

However, this theory led to the appearance of the harmonics $\nu_{k}, 2 \nu_{k}, 3 \nu_{k}, \ldots$, and so on, in the Fourier series expansion of its variables; and this contrasted sharply with experimental facts that indicated that the frequencies of the atomic spectra are not harmonics of some fundamental frequency but, instead, obey the "Ritz combination principle," according to which these frequencies result from a series of energy levels E_{k}, E_{l} satisfying

$$
\begin{equation*}
\nu_{k l}=\left(E_{k}-E_{l}\right) / h \quad(k, l: \text { integers }) . \tag{8.14.34b}
\end{equation*}
$$

The resolution of these difficulties was carried out in the mid-1920s by W. Heisenberg (with some help from his teacher M. Born and his classmate P. Jordan, at Göttingen, Germany), and constitutes the matrix form of quantum mechanics - one of the greatest triumphs ("revolutions") of 20th century theoretical physics. Heisenberg (1925) replaced the Fourier series of, say q with the set

$$
\begin{equation*}
\left\{c_{s s^{\prime}} \exp \left(2 \pi i \nu_{s s^{\prime}} t\right) ; s, s^{\prime}: \text { integers }\right\} \tag{8.14.34c}
\end{equation*}
$$

that is, he replaced the frequencies $\nu_{k}, 2 \nu_{k}, 3 \nu_{k}, \ldots$, (and amplitudes c_{s}) with the matrices

$$
\begin{equation*}
\nu\left(s, s^{\prime}\right) \equiv \nu_{s s^{\prime}} \quad\left(\text { and } c_{s s^{\prime}}\right) \tag{8.14.34d}
\end{equation*}
$$

and introduced the algebra of these new "matrix coordinates" and functions of them. Born recognized that these were none other than the rules of matrix algebra, for the addition and multiplication of the q 's, and formulated the following famous noncommutative (Poisson bracket-like, §8.9) rules, for pairs of canonically conjugate variables:

$$
\begin{equation*}
p_{k} q_{l}-q_{l} p_{k}=(h / 2 \pi i) \delta_{k l}, \quad p_{k} p_{l}-p_{l} p_{k}=0, \quad q_{k} q_{l}-q_{l} q_{k}=0 \tag{8.14.34e}
\end{equation*}
$$

For readable accounts of those epoch-making developments, see, for example, Hund (1972), Simonyi (1986), and references cited therein; also Heisenberg (1930, p. 105 ff.).

Example 8.14.3 Action for Cyclic Systems. Let the coordinate q_{i}, of a separable group of q 's, be ignorable. Then (§8.4) $p_{i}=c o n s t a n t \equiv \Psi_{i}$, and therefore the corresponding action variable equals:

$$
\begin{array}{rlrl}
J_{i}=\oint p_{i} d q_{i} & =\Psi_{i}\left(\oint d q_{i}\right)=\Psi_{i}\left[q_{i}(2 \pi)-q_{i}(0)\right] \\
& =0 & & (\text { Libration }) \\
& =q_{i o} \Psi_{i} & & \text { (Rotation; } \left.q_{i o}: \text { fundamental period; e.g., } q_{i o}=2 \pi\right) \tag{b}
\end{array}
$$

Example 8.14.4 Two-DOF Conditionally Periodic System.
(i) Equal frequencies. Let us examine a particle P performing planar harmonic oscillations along the rectangular Cartesian axes $O-x, O-y$ [fig. 8.18(a)]. Let us assume that the displacements $q_{1}=x, q_{2}=y$ are

$$
\begin{equation*}
x=a \cos (\omega t), \quad y=b \cos (\omega t-\delta) \tag{a}
\end{equation*}
$$

where $a, b=$ constant amplitudes, $\omega=2 \pi \nu=$ common circular frequency, $\delta=$ phase difference.

(b)

Figure 8.18 Path of a two-DOF system: (a) equal frequencies, (b) unequal (incommensurate case) frequencies (Lissajous figures).

Depending on the values of δ, the tip of the vector $\boldsymbol{O P}=(x, y)$ describes very different curves. Thus:
(a) If $\delta=0[=0(\pi / 2)], P$ describes the straight line

$$
\begin{equation*}
y / x=b / a \quad(\text { diagonal of rectangle with sides } a \text { and } b) \tag{b}
\end{equation*}
$$

(b) If $\delta=\pi / 2[=1(\pi / 2)]$, eqs. (a) reduce to

$$
\begin{equation*}
x=a \cos (\omega t), \quad y=b \cos (\omega t) \tag{c}
\end{equation*}
$$

which are the parametric equations of an ellipse with semiaxes a, b :

$$
\begin{equation*}
(x / a)^{2}+(y / b)^{2}=1 \tag{d}
\end{equation*}
$$

traversed in a counterclockwise sense.
(c) If $\delta=\pi[=2(\pi / 2)], P$ describes the straight line

$$
\begin{equation*}
y / x=-b / a \tag{e}
\end{equation*}
$$

which is the straight line of case (a), but reflected about the axis $O y$.
(d) If $\delta=3 \pi / 2[=3(\pi / 2)]$, P describes the ellipse of eqs. (c, d), but traversed in a clockwise sense.
(e) If $\delta=2 \pi[=4(\pi / 2)], P$ describes the straight line of eq. (b).
(f) If $a=b, P$ traces a circle (clockwisely/counterclockwisely).
(ii) Unequal frequencies. Let us, next, assume that the displacements are

$$
\begin{equation*}
x=a \cos \left(\omega_{x} t\right), \quad y=b \cos \left(\omega_{y} t\right) \tag{f}
\end{equation*}
$$

Now we must distinguish the following two cases:
(a) If ω_{x}, ω_{y} are commensurate (degenerate case) - that is, if

$$
\begin{equation*}
\tau_{x} i_{x}=\tau_{y} i_{y} \equiv \tau \Rightarrow \omega_{x} / \omega_{y}=i_{x} / i_{y}=\text { rational } \quad\left(i_{x, y}: \text { integers }\right) \tag{g}
\end{equation*}
$$

(e.g., the earlier $\omega_{x}=\omega_{y}=\omega$) - then eqs. (f) become

$$
\begin{equation*}
x=a \cos \left(\omega_{x} t\right), \quad y=b \cos \left(\omega_{y} t\right)=b \cos \left[\left(i_{y} / i_{x}\right) \omega_{x} t\right] \tag{h}
\end{equation*}
$$

the motion has a single period - namely, it is periodic as a whole - and so the orbit of P is a closed curve.
(b) If ω_{x}, ω_{y} are incommensurate (nondegenerate case) - that is, if $\omega_{x} / \omega_{y}=$ irrational the orbit of P is a continuous Lissajous curve that never closes [fig. 8.18(b)] but forms a very dense web; that is, given sufficient time, it practically covers all points of the $2 a \times 2 b$ rectangle $A B C D$. Multiply periodic (or conditionally periodic) orbits are, in general, of that type: a certain space portion (the range of their q 's) is densely filled, even though the orbit is not closed, and the motion is not singly periodic in time.

In sum:

- If $\omega_{x}=\omega_{y}$ (special commensurate/degenerate case), the orbit of P is a straight line/ ellipse/circle, depending on the phase constant, and the relative size of the amplitudes.
- If $\omega_{x} / \omega_{y}=$ rational (degeneracy), the orbit of P is a closed curve.
- If $\omega_{x} / \omega_{y}=$ irrational (nondegeneracy), the orbit of P is an open curve that gradually fills up the whole rectangle (range of its variables).

Example 8.14.5 Two-DOF Linear Anisotropic Oscillator; Degeneracy. Here, using standard notation ($x, y=$ rectangular Cartesian coordinates):

$$
\begin{align*}
H & =(1 / 2 m)\left(p_{x}^{2}+p_{y}^{2}\right)+(1 / 2)\left(k_{x}^{2} x^{2}+k_{y}^{2} y^{2}\right) \\
& =(1 / 2 m)\left(p_{x}^{2}+p_{y}^{2}\right)+(m / 2)\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}\right) \tag{a}
\end{align*}
$$

$\omega_{x}{ }^{2} \equiv k_{x} / m$, and so on. Using the results of ex. 8.10 .6 [slightly modified notationally, and also to take into account the anisotropy of (a)] we obtain, successively,

$$
\begin{align*}
A_{1} \rightarrow A_{o x}= & \int p_{x} d x=\int\left[m\left(2 \beta_{x}-k_{x} x^{2}\right)\right]^{1 / 2} d x \\
= & (x / 2)\left(2 m \beta_{x}-k_{x} m x^{2}\right)^{1 / 2}+\beta_{x}\left(m / k_{x}\right)^{1 / 2} \arcsin \left[\left(k_{x} / 2 \beta_{x}\right)^{1 / 2} x\right] \\
& \quad \text { [multiple-valued function of the } x \text {-coordinate }], \text { etc. } \tag{b}\\
J_{x}= & \oint p_{x} d x=\int\left(\partial A_{o x} / \partial x\right) d x=A_{o x}\left(\tau_{x}\right)-A_{o x}(0) \\
& \quad \text { after a period } \tau_{x}, \text { the term }\left(2 m \beta_{x}-k_{x} m x^{2}\right)^{1 / 2} \text { returns to its } \\
& \text { original value, while arcsin }(\ldots) \text { increases by } 2 \pi] \\
= & 2 \pi \beta_{x}\left(m / k_{x}\right)^{1 / 2} \equiv\left(2 \pi / \omega_{x}\right) \beta_{x}, \quad \text { etc.; } \tag{c}\\
E= & \beta_{x}+\beta_{y}=\text { total energy } \quad(=\text { sum of "partial energies" }), \tag{d}\\
\Rightarrow & E=\left(J_{x} / 2 \pi\right)\left(k_{x} / m\right)^{1 / 2}+\left(J_{y} / 2 \pi\right)\left(k_{y} / m\right)^{1 / 2}=E\left(J_{x}, J_{y}\right), \tag{e}\\
\Rightarrow & \nu_{x}=\partial E / \partial J_{x}=(1 / 2 \pi)\left(k_{x} / m\right)^{1 / 2}, \nu_{y}=\partial E / \partial J_{y}=(1 / 2 \pi)\left(k_{y} / m\right)^{1 / 2} ; \tag{f}\\
\alpha_{x}= & \partial A / \partial \beta_{x}=\partial A_{o} / \partial \beta_{x}-t=\partial A_{o x} / \partial \beta_{x}-t \\
= & -t+\left(m / k_{x}\right)^{1 / 2} \arcsin \left[\left(k_{x} / 2 \beta_{x}\right)^{1 / 2} x\right], \quad \text { etc. } \tag{g}\\
\Rightarrow & x=\left(2 \beta_{x} / k_{x}\right)^{1 / 2} \sin \left[\left(k_{x} / m\right)^{1 / 2}\left(t+\alpha_{x}\right)\right] \\
& =\left(J_{x} / \pi \omega_{x} m\right)^{1 / 2} \sin \left(2 \pi w_{x}\right)=\left[J_{x} / \pi\left(k_{x} m\right)^{1 / 2}\right]^{1 / 2} \sin \left(2 \pi w_{x}\right), \tag{h}
\end{align*}
$$

$$
\begin{align*}
& \Rightarrow p_{x}=\left(\omega_{x} m J_{x} / \pi\right)^{1 / 2} \cos \left(2 \pi w_{x}\right) \text {, } \tag{i}\\
& \Rightarrow y=\left(2 \beta_{y} / k_{y}\right)^{1 / 2} \sin \left[\left(k_{y} / m\right)^{1 / 2}\left(t+\alpha_{y}\right)\right] \\
& =\left(J_{y} / \pi \omega_{y} m\right)^{1 / 2} \sin \left(2 \pi w_{y}\right)=\left[J_{y} / \pi\left(k_{y} m\right)^{1 / 2}\right]^{1 / 2} \sin \left(2 \pi w_{y}\right), \tag{j}\\
& \Rightarrow p_{y}=\left(\omega_{y} m J_{y} / \pi\right)^{1 / 2} \cos \left(2 \pi w_{y}\right) \text {; } \tag{k}
\end{align*}
$$

where

$$
\begin{align*}
& w_{x}=\nu_{x} t+\gamma_{x} \\
& \Rightarrow 2 \pi w_{x}=2 \pi\left(\nu_{x} t+\gamma_{x}\right) \equiv 2 \pi \nu_{x}\left(t+\alpha_{x}\right) \equiv \omega_{x} t+\delta_{x}, \quad \text { etc. } \tag{1}
\end{align*}
$$

To represent the above graphically in their rectangular Cartesian $w_{x, y}$-axes, we eliminate t between w_{x}, w_{y} in (1), and thus obtain the curves (straight lines)

$$
\begin{equation*}
w_{y}=\left(\nu_{y} / \nu_{x}\right) w_{x}+\left[\gamma_{y}-\left(\nu_{y} / \nu_{x}\right) \gamma_{x}\right] . \tag{m}
\end{equation*}
$$

As discussed in the preceding example, we must distinguish the following two general cases:
(i) $\nu_{y} / \nu_{x}=$ rational (commensurability, or complete degeneracy): the motion as a whole is (singly) periodic, which means that the representative system point traces a (n - number of commensurability relations $=2-1=$) one-dimensional manifold; that is, in our $x y$-axes, a closed and always retraceable Lissajous curve. [If that curve has an endpoint (e.g., flattened, open-looking, path), the motion reverses itself at that point (i.e., it does a very flat U-turn there) and proceeds in the opposite direction until it reaches the next endpoint; and then the whole process repeats itself periodically.] The corresponding w-curve, inside the system's "unit square" C_{2}, consists of straight-line segments, as explained earlier in this section.

Figures 8.19 and 8.20 show the following special such cases (in both figures, the left column shows the x, y (Lissajous) curves, while the right column shows the corresponding $w_{x, y}$ straight lines):
(α) Figure 8.19:
frequency ratio: $\nu_{y} / \nu_{x}=1,2,3,5 / 3$, phase constants: $\gamma_{x}, \gamma_{y}=0$,
$(\mathrm{h}, \mathrm{j}): x=\left[J_{x} / \pi\left(k_{x} m\right)^{1 / 2}\right]^{1 / 2} \sin \left(2 \pi \nu_{x} t\right), \quad y=\left[J_{y} / \pi\left(k_{y} m\right)^{1 / 2}\right]^{1 / 2} \sin \left(2 \pi \nu_{y} t\right), \quad(\mathrm{o})$
$(\mathrm{m}): w_{y}=\left(\nu_{y} / \nu_{x}\right) w_{x}$ (straight lines through the $w_{x, y}$-origin);
(β) Figure 8.20 [same frequency ratios as (a), but different phase constants]:
frequency ratio: $\nu_{y} / \nu_{x}=1,2,3,5 / 3$, phase constants: $\gamma_{x}=0, \gamma_{y}=1 / 4, \quad(q)$
(h): $\quad x=\left[J_{x} / \pi\left(k_{x} m\right)^{1 / 2}\right]^{1 / 2} \sin \left(2 \pi \nu_{x} t\right)$,
(j): $\quad y=\left[J_{y} / \pi\left(k_{y} m\right)^{1 / 2}\right]^{1 / 2} \sin \left[\left(2 \pi \nu_{y}+\pi / 2\right) t\right]=\left[J_{y} / \pi\left(k_{y} m\right)^{1 / 2}\right]^{1 / 2} \cos \left(2 \pi \nu_{y} t\right)$,
$(\mathrm{m}): \quad w_{y}=\left(\nu_{y} / \nu_{x}\right) w_{x}+1 / 4$ (straight lines not through the $w_{x, y}$-origin).
(ii) $\nu_{y} / \nu_{x} \neq$ rational (incommensurability, or nondegeneracy): the motion as a whole is not periodic, which means that the representative system point traces a $(n-0=2-0) t w o$-dimensional manifold; that is, in our $x y$-axes an open and nonretraceable curve, which eventually $(t \rightarrow \infty)$ covers the entire finite area formed by

$$
v_{y} / v_{x}=1 ; \gamma_{x}=0 ; \gamma_{y}=0 \Rightarrow w_{y}=w_{x}
$$

$$
v_{y} / v_{x}=2 ; \gamma_{x}=0 ; \gamma_{y}=0 \Rightarrow w_{y}=2 w_{x}
$$

$$
v_{y} / \nu_{x}=3 ; \gamma_{x}=0 ; \gamma_{y}=0 \Rightarrow w_{y}=3 w_{x}
$$

$v_{y} / v_{x}=5 / 3 ; \gamma_{x}=0 ; \gamma_{y}=0 \Rightarrow w_{y}=(5 / 3) w_{x}$

Figure 8.19 System paths in x, y-space (Lissajous curves) and in $w_{x, y}$-space;
for $\nu_{y} / \nu_{x}=1,2,3,5 / 3$, and $\gamma_{x}=0, \gamma_{y}=0$.

$$
v_{y} / v_{x}=1 ; \gamma_{x}=0 ; \gamma_{y}=1 / 4 \Rightarrow w_{y}=w_{x}+1 / 4
$$

$v_{y} / v_{x}=2 ; \gamma_{x}=0 ; \gamma_{y}=1 / 4 \Rightarrow w_{y}=2 w_{x}+1 / 4$

$$
v_{y} / v_{x}=3 ; \gamma_{x}=0 ; \gamma_{y}=1 / 4 \Rightarrow w_{y}=3 w_{x}+1 / 4
$$

$$
v_{y} / v_{x}=5 / 3 ; \gamma_{x}=0 ; \gamma_{y}=1 / 4 \Rightarrow w_{y}=\left(5 w_{x}\right) / 3+1 / 4
$$

Figure 8.20 System paths in x, y-space (Lissajous curves) and in $w_{x, y}$-space; for $\nu_{y} / \nu_{x}=1,2,3,5 / 3$, and $\gamma_{x}=0, \gamma_{y}=1 / 4$.
the tangents bounding the motion (analogous to the rectangle $A B C D$ of the preceding example); and similarly for the unit square $w_{x, y}$

Finally, for complicated but rational ratios ν_{y} / ν_{x}, the system path comes close to covering the corresponding $x y$-plane region and unit square $w_{x, y}$ completely, that is, such ratios approximate the nonrational ratio case.

Example 8.14.6 Coupled Penduli via Action-Angle Variables (Butenin, 1971, pp. 173-176). Let us consider a system consisting of two thin homogeneous bars, $O_{1} A_{1}$ and $O_{2} A_{2}$ of masses/lengths/moments of inertia about their pivots O_{1} and $O_{2}: m_{1} / l_{1} / I_{1}$ and $m_{2} / l_{2} / I_{2}$, respectively (fig. 8.21), oscillating about O_{1} and O_{2}, and connected at $C_{1}, C_{2}\left(O_{1} C_{1}=O_{2} C_{2} \equiv c\right)$ by a light linear spring of constant stiffness k. Let us calculate the two natural frequencies of its free (small amplitude) oscillations under gravity, via the method of action-angle variables.

The kinetic and potential energies of the system are, respectively,

$$
\begin{align*}
2 T= & I_{1}\left(\dot{\phi}_{1}\right)^{2}+I_{2}\left(\dot{\phi}_{2}\right)^{2}, \tag{a}\\
V= & m_{1} g\left(l_{1} / 2\right)\left(1-\cos \phi_{1}\right)+m_{2} g\left(l_{2} / 2\right)\left(1-\cos \phi_{2}\right)+(k / 2)\left(e-e_{o}\right)^{2} \\
& \quad \text { using the second-order approximations: } \cos \phi_{k} \approx 1-\phi_{k}^{2} / 2 \quad(k=1,2),
\end{align*}
$$

and

$$
\begin{align*}
& \left.e-e_{o} \approx c \phi_{1}-c \phi_{2}\right] \\
\approx & (1 / 2)\left\{\left[m_{1} g\left(l_{1} / 2\right)+k c^{2}\right] \phi_{1}^{2}-2 k c^{2} \phi_{1} \phi_{2}+\left[m_{2} g\left(l_{2} / 2\right)+k c^{2}\right] \phi_{2}^{2}\right\}, \tag{b}
\end{align*}
$$

or, after choosing, for algebraic convenience, $l_{1}=l_{2}=l, m_{1}=m_{2}=m, I_{1}=I_{2}=I$:

$$
\begin{align*}
& 2 T=I\left[\left(\dot{\phi}_{1}\right)^{2}+\left(\dot{\phi}_{2}\right)^{2}\right], \tag{c}\\
& 2 V=\left[K\left(\phi_{1}^{2}+{\phi_{2}^{2}}^{2}\right)-2 k c^{2} \phi_{1} \phi_{2}\right], \quad K \equiv m g(l / 2)+k c^{2} \tag{d}
\end{align*}
$$

Figure 8.21 Coupled double penduli, oscillating under gravity.
or, in terms of the (easily noticeable) new uncoupling coordinates:

$$
\begin{gather*}
\phi_{1}=q_{1}+q_{2}, \quad \phi_{2}=q_{1}-q_{2} \Rightarrow 2 q_{1}=\phi_{1}+\phi_{2}, \quad 2 q_{2}=\phi_{1}-\phi_{2}, \\
T=I\left[\left(\dot{q}_{1}\right)^{2}+\left(\dot{q}_{2}\right)^{2}\right], \quad V=K_{1} q_{1}^{2}+K_{2} q_{2}^{2} \tag{e}
\end{gather*}
$$

where $K_{1} \equiv m g l / 2, K_{2} \equiv K_{1}+2 k c^{2} \equiv K+k c^{2}$.
Since $p_{1}=2 I \dot{q}_{1}$ and $p_{2}=2 I \dot{q}_{2}$, the time-independent (reduced) Hamilton-Jacobi equation of the system is

$$
\begin{equation*}
\left[(1 / 4 I)\left(\partial A_{o} / \partial q_{1}\right)^{2}+K_{1} q_{1}^{2}\right]+\left[(1 / 4 I)\left(\partial A_{o} / \partial q_{2}\right)^{2}+K_{2} q_{2}^{2}\right]=E \tag{f}
\end{equation*}
$$

and separates, in by now well-understood ways, to the two HJ equations

$$
\begin{equation*}
(1 / 4 I)\left(\partial A_{o 1} / \partial q_{1}\right)^{2}+K_{1} q_{1}^{2}=\beta_{1}, \quad(1 / 4 I)\left(\partial A_{o} / \partial q_{2}\right)^{2}+K_{2} q_{2}^{2}=\beta_{2} \tag{g}
\end{equation*}
$$

where $A_{o}=A_{o 1}\left(q_{1}\right)+A_{o 2}\left(q_{2}\right), \beta_{1}+\beta_{2}=E$. Hence, the finite HJ equations become

$$
\begin{align*}
& p_{1}=\partial A_{o} / \partial q_{1}=\partial A_{o 1} / \partial q_{1}=2\left(I K_{1}\right)^{1 / 2}\left[\left(\beta_{1} / K_{1}\right)-q_{1}^{2}\right]^{1 / 2} \tag{h}\\
& p_{2}=\partial A_{o} / \partial q_{2}=\partial A_{o 2} / \partial q_{2}=2\left(I K_{2}\right)^{1 / 2}\left[\left(\beta_{2} / K_{2}\right)-q_{2}^{2}\right]^{1 / 2} \tag{i}
\end{align*}
$$

and, from these expressions, it follows that the corresponding action variables are

$$
\begin{align*}
& J_{1}=2\left(I K_{1}\right)^{1 / 2} \oint\left[\left(\beta_{1} / K_{1}\right)-q_{1}^{2}\right]^{1 / 2} d q_{1} \tag{j}\\
& J_{2}=2\left(I K_{2}\right)^{1 / 2} \oint\left[\left(\beta_{2} / K_{2}\right)-q_{2}^{2}\right]^{1 / 2} d q_{2} \tag{k}
\end{align*}
$$

With the help of the convenient transformation of variables:

$$
\begin{equation*}
q_{1} \equiv\left(\beta_{1} / K_{1}\right)^{1 / 2} \sin x, \quad q_{2} \equiv\left(\beta_{2} / K_{2}\right)^{1 / 2} \sin x \tag{1}
\end{equation*}
$$

(and, accordingly, x-limits of integration: $0,2 \pi$) eqs. (j, k) integrate readily to

$$
\begin{equation*}
J_{1}=2 \pi\left(I / K_{1}\right)^{1 / 2} \beta_{1}, \quad J_{2}=2 \pi\left(I / K_{2}\right)^{1 / 2} \beta_{2} \tag{m}
\end{equation*}
$$

and so the total energy assumes the following form, in terms of the action variables:

$$
\begin{equation*}
E=\beta_{1}+\beta_{2}=\left(J_{1} / 2 \pi\right)\left(K_{1} / I\right)^{1 / 2}+\left(J_{2} / 2 \pi\right)\left(K_{2} / I\right)^{1 / 2}=E\left(J_{1}, J_{2}\right) \tag{n}
\end{equation*}
$$

From this expression (and recalling the definitions of K_{1}, K_{2}, and that $3 I=m l^{2}$), we readily obtain the system frequencies:

$$
\begin{align*}
& \nu_{1}=\partial E / \partial J_{1}=(1 / 2 \pi)\left(K_{1} / I\right)^{1 / 2}=(1 / 2 \pi)(3 g / 2 l)^{1 / 2} \tag{o}\\
& \nu_{2}=\partial E / \partial J_{2}=(1 / 2 \pi)\left(K_{2} / I\right)^{1 / 2}=(1 / 2 \pi)\left[(3 g / 2 l)+\left(6 k c^{2} / m l^{2}\right)\right]^{1 / 2} \tag{p}
\end{align*}
$$

which, of course, coincide with the values found by ordinary linear vibration theory.

Example 8.14.7 Action-Angle Formulation for Partially Separable Systems. Let us consider a system in motion, and such that the projection of its orbit on the particular phase space subplane $\left(q_{k}, p_{k}\right)$ is a periodic (libratory or rotatory) curve. This
can occur if the system action has the separable form in q_{1} (§8.10):

$$
\begin{equation*}
A=A_{o R}\left(q_{2}, \ldots, q_{n} ; \beta_{2}, \ldots, \beta_{n}\right)+A_{o 1}\left(q_{1}, \beta_{1}\right)-E t \tag{a}
\end{equation*}
$$

Here, as in the completely separable case, we replace throughout the constant β_{1} with the constant action variable (with the usual notations):

$$
\begin{equation*}
J_{1} \equiv \oint p_{1} d q_{1}=\oint\left(\partial A_{o 1} / \partial q_{1}\right) d q_{1}=A_{o 1}\left(\tau_{1}\right)-A_{o 1}(0) ; \tag{b}
\end{equation*}
$$

and similarly for $E=E\left(\beta_{1}\right)=E\left(J_{1}\right)$.
Then, the corresponding (ignorable) canonical angle variable w_{1} equals

$$
\begin{equation*}
w_{1}=\partial A_{o} / \partial J_{1}=\partial A_{o 1}\left(q_{1}, J_{1}\right) / \partial J_{1}=\left(\partial E / \partial J_{1}\right) t+\partial A / \partial J_{1} \tag{c}
\end{equation*}
$$

and, from this, it follows that during a cycle with (fundamental) period τ_{1}, it changes by

$$
\begin{equation*}
\Rightarrow \Delta w_{1} \equiv w_{1}\left(t+\tau_{1}\right)-w_{1}(t)=\tau_{1}\left(\partial E / \partial J_{1}\right) . \tag{d}
\end{equation*}
$$

Comparing (d) with the general result:

$$
\begin{align*}
\Delta w_{1} & =\oint\left(\partial w_{1} / \partial q_{1}\right) d q_{1}=\oint\left(\partial^{2} A_{o 1} / \partial q_{1} \partial J_{1}\right) d q_{1} \\
& =\partial / \partial J_{1}\left[\oint\left(\partial A_{o 1} / \partial q_{1}\right) d q_{1}\right]=\partial / \partial J_{1}\left(\oint p_{1} d q_{1}\right)=\partial J_{1} / \partial J_{1}=1 \tag{e}
\end{align*}
$$

we readily conclude that

$$
\begin{equation*}
\partial E / \partial J_{1}=\text { frequency of }\left(q_{1}, p_{1}\right) \text {-motion } \equiv \nu_{1}=1 / \tau_{1} . \tag{f}
\end{equation*}
$$

Finally, q_{1} is a periodic function in w_{1} with period 1 , and can therefore be represented by a single Fourier series à la ($24 \mathrm{f}-\mathrm{j}$). The extension of the above to partially separable systems in two, three, ... , periodic coordinates should be obvious.

Example 8.14.8 An Alternative Expression for the Frequencies. Since $w_{k}=$ $\partial A_{o}(q, J) / \partial J_{k}=w_{k}(q, J)$, and the J_{k} 's remain constant during the motion, any changes in the w_{k} 's can arise only from changes in the q 's. Indeed, from the preceding, we find, successively,

$$
\begin{align*}
d w_{k} & =\sum\left(\partial w_{k} / \partial q_{l}\right) d q_{l}=\sum\left[\partial / \partial q_{l}\left(\partial A_{o} / \partial J_{k}\right)\right] d q_{l} \\
& =\sum\left[\partial / \partial J_{k}\left(\partial A_{o} / \partial q_{l}\right)\right] d q_{l} \\
& =\sum\left(\partial p_{l} / \partial J_{k}\right) d q_{l}, \quad \text { where } p_{l}=p_{l}\left(q_{l}, J\right) ; \tag{a}
\end{align*}
$$

and, since $w_{k}=\nu_{k} t+\gamma_{k} \Rightarrow d w_{k}=\nu_{k} d t$ and $d q_{l}=\dot{q}_{l} d t$, we finally obtain the alternative frequency expression

$$
\begin{equation*}
\nu_{k}=\sum\left(\partial p_{l} / \partial J_{k}\right)\left(d q_{l} / d t\right) \tag{b}
\end{equation*}
$$

Example 8.14.9 (Born, 1927, p. 82). Let

$$
\begin{equation*}
K \equiv \sum p_{k} \dot{q}_{k} \quad(=2 T, \text { for stationary constraints }) \tag{a}
\end{equation*}
$$

Below we show that

$$
\begin{equation*}
\langle K\rangle \equiv \sum \nu_{k} J_{k} \tag{b}
\end{equation*}
$$

where $\langle\ldots\rangle \equiv$ time-average of (...) over a long period of time τ, including a large number of w-periods. With the help of the earlier $(8.14 .23 \mathrm{~b}, \mathrm{c})$:

$$
\begin{equation*}
A_{o o} \equiv A_{o}-\sum w_{k} J_{k}, \quad \dot{A}_{o o}=\sum p_{k} \dot{q}_{k}-\sum J_{k} \dot{w}_{k} \tag{c}
\end{equation*}
$$

we obtain, successively,

$$
\begin{align*}
\langle K\rangle & \equiv \tau^{-1}\left(\int_{0}^{\tau} \sum p_{k} \dot{q}_{k}\right) d t \\
& =\tau^{-1}\left[\int_{0}^{\tau}\left(\sum J_{k} \dot{w}_{k}+\dot{A}_{o o}\right) d t\right]=\tau^{-1}\left[\int_{0}^{\tau}\left(\sum J_{k} \nu_{k}+\dot{A}_{o o}\right) d t\right] \\
& =\sum w_{k} J_{k}+\left\{A_{o o} / \tau\right\}_{0}^{\tau} \text { (since both the } \nu_{k} \text { 's and } J_{k} \text { 's are constant), } \tag{d}
\end{align*}
$$

from which, since $A_{o o}$ is w-periodic and τ contains a large number of periods of the w 's, and therefore $A_{o o}(0)=A_{o o}(\tau)$, the proposition (b) follows.

Example 8.14.10 (Bohr, 1918). Here, we show that for an n-DOF but completely degenerate (i.e., singly periodic) system

$$
\begin{equation*}
\Delta E=\nu \Delta J . \tag{a}
\end{equation*}
$$

Let us consider the system in a fundamental oscillatory state I of period τ. Then, its (sole) action variable is

$$
\begin{equation*}
J=\int_{0}^{\tau}\left(\sum p_{k} \dot{q}_{k}\right) d t \tag{b}
\end{equation*}
$$

Now, let us consider a small noncontemporaneous variation from that state to the neighboring, also oscillatory and singly periodic, state $I I=I+\Delta(I)$ with period $\tau+\Delta \tau$. Using the results of $\$ 7.9$, we obtain, successively,

$$
\begin{aligned}
\Delta J & =\int_{0}^{\tau} \delta\left(\sum p_{k} \dot{q}_{k}\right) d t+\left\{\left(\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{0}^{\tau} \\
& =\int_{0}^{\tau} \sum\left(\delta p_{k} \dot{q}_{k}+p_{k} \delta \dot{q}_{k}\right) d t+\left\{\left(\sum p_{k} \dot{q}_{k}\right) \Delta t\right\}_{0}^{\tau}
\end{aligned}
$$

[integrating the $p \delta(\dot{q})$ terms by parts, and using Hamilton's equations with $Q_{k}=0$; while recalling that $\left.\Delta q=\delta q+\dot{q} \Delta t\right]$

$$
\begin{align*}
& =\int_{0}^{\tau} \sum\left[\left(\partial H / \partial p_{k}\right) \delta p_{k}-\left(-\partial H / \partial q_{k}\right) \delta q_{k}\right] d t+\left\{\sum p_{k} \Delta q_{k}\right\}_{0}^{\tau} \\
& =\int_{0}^{\tau} \delta H d t \quad \text { [the integrated-out "boundary" term vanishes by periodicity] } \\
& =\int_{0}^{\tau} \delta E d t . \tag{c}
\end{align*}
$$

If the adjacent motion $I I$ corresponds to slightly different initial conditions, then $\delta E=$ constant $(\Rightarrow \Delta E=\delta E+\dot{E} \Delta t=\delta E)$, and so (b) yields immediately

$$
\begin{equation*}
\Delta J=(\Delta E) \tau \Rightarrow \Delta E=\Delta J / \tau=\nu \Delta J, \quad \text { Q.E.D. } \tag{d}
\end{equation*}
$$

Example 8.14.11 Let us show that

$$
\begin{equation*}
\Delta E=\sum \nu_{k} \Delta J_{k} . \tag{a}
\end{equation*}
$$

Since $H=H(J)$, we have

$$
\begin{equation*}
\Delta H=\sum\left(\partial H / \partial J_{k}\right) \Delta J_{k}=\sum \nu_{k} \Delta J_{k}=\Delta E, \quad \text { Q.E.D. } \tag{b}
\end{equation*}
$$

Example 8.14.12 (Born, 1927, pp. 94-95). According to (8.14.23a) and (8.14.23b), the function

$$
\begin{equation*}
A_{o}=A_{o o}+\sum w_{k} J_{k} \tag{a}
\end{equation*}
$$

increases by J_{k} whenever w_{k} increases by 1 , while the remaining w 's and J 's remain constant. This is expressed mathematically by

$$
\begin{align*}
J_{k} & =\int_{0}^{1}\left[\partial A_{o}(w, J) / \partial w_{k}\right] d w_{k} \\
& =\int_{0}^{1}\left\{\sum\left[\partial A_{o}(q, J) / \partial q_{l}\right]\left(\partial q_{l} / \partial w_{k}\right)\right\} d w_{k} \\
& =\int_{0}^{1}\left(\sum p_{l}\left(\partial q_{l} / \partial w_{k}\right)\right) d w_{k} ; \tag{b}
\end{align*}
$$

and its usefulness consists in yielding the action variables from a knowledge of the q 's and p 's in terms of the w 's.

Example 8.14.13 Proof of Commutativity of $\partial / \partial J_{k}[\oint(\ldots) d q]=\oint\left(\partial \ldots / \partial J_{k}\right) d q$, eqs. (8.14.13b, 23) (Kuypers, 1993, pp. 345-346, 533-534). In the derivation of (8.14.13b, 23), we assumed that

$$
\begin{equation*}
\oint\left(\partial^{2} A_{o} / \partial J_{k} \partial q_{l}\right) d q_{l}=\partial / \partial J_{k}\left[\oint\left(\partial A_{o} / \partial q_{l}\right) d q_{l}\right], \tag{a}
\end{equation*}
$$

in spite of the fact that the integration limits do depend on J_{k}. Let us justify this point. The proof is based on the well-known "Leibniz formula" (using standard
calculus notations):

$$
\begin{align*}
\partial / \partial \alpha & \int_{l_{1}(\alpha)}^{l_{2}(\alpha)} f(x ; \alpha, \ldots) d x \\
= & \int_{l_{1}(\alpha)}^{l_{2}(\alpha)} \\
& {[\partial f(x ; \alpha, \ldots) / \partial \alpha] d x } \tag{b}\\
& \quad+f\left(x, l_{2}, \ldots\right)\left[\partial l_{2}(\alpha) / \partial \alpha\right]-f\left(x, l_{1}, \ldots\right)\left[\partial l_{1}(\alpha) / \partial \alpha\right] .
\end{align*}
$$

With the identifications:

$$
\begin{equation*}
\alpha \rightarrow J_{k}, \quad x \rightarrow q_{l}, \quad f(x ; \alpha, \ldots) \rightarrow \partial A_{o}(q, J) / \partial q_{l}, \tag{c}
\end{equation*}
$$

eq. (b) yields

$$
\begin{align*}
\partial / \partial J_{k} & \int_{q_{l, 1}(J)}^{q_{l, 2}(J)}\left[\partial A_{o}(q, J) / \partial q_{l}\right] d q_{l} \\
= & \int_{q_{l, 1}(J)}^{q_{l, 2}(J)}\left[\partial / \partial J_{k}\left(\partial A_{o} / \partial q_{l}\right)\right] d q_{l} \\
& +\left\{\left(\partial A_{o} / \partial q_{l}\right)_{2}\left[\partial q_{l, 2}(J) / \partial J_{k}\right]-\left(\partial A_{o} / \partial q_{l}\right)_{1}\left[\partial q_{l, 1}(J) / \partial J_{k}\right]\right\} \tag{d}
\end{align*}
$$

where the subscripts 1,2 refer to the limits of integration.
Now we apply (d) to our two periodic cases:
(i) Case of libration. Then,

$$
\begin{equation*}
\oint\left(\partial A_{o} / \partial q_{l}\right) d q_{l}=2 \int_{q_{l, \min }(J)}^{q_{l, \max }(J)}\left(\partial A_{o} / \partial q_{l}\right) d q_{l} \tag{e}
\end{equation*}
$$

where the integration limits $q_{\max / \min }$ are the turning points of the oscillation. But, there, we also have $p_{l}=\partial A_{o} / \partial q_{l}=0$, and therefore the boundary terms in (d) vanish individually; that is, (a) holds for libration.
(ii) Case of rotation. Here,

$$
\begin{equation*}
\oint\left(\partial A_{o} / \partial q_{l}\right) d q_{l}=\int_{q_{l i}(J)}^{q_{l, i}(J)+q_{l o}}\left(\partial A_{o} / \partial q_{l}\right) d q_{l} \tag{f}
\end{equation*}
$$

where $q_{l, i}=$ arbitrary initial position of $q_{l}, q_{l o}=$ fundamental period of q_{l}. However, since $\partial A_{o} / \partial q_{l}=p_{l}=$ periodic function of q_{l}, and

$$
\begin{equation*}
\partial / \partial J_{k}\left[q_{l, i}(J)+q_{l o}\right]=\partial / \partial J_{k}\left[q_{l, i}(J)\right], \tag{g}
\end{equation*}
$$

the boundary terms in (d) taken together vanish; that is, (a) also holds for rotation, and so it holds for periodic motions in general.

Example 8.14.14 Independent Action-Angle Variables in the Case of Degeneracy. Whenever the frequency constraints (8.14.31)

$$
\begin{equation*}
\sum i_{d k} \nu_{k}=0 \quad(d=1, \ldots, m) \tag{a}
\end{equation*}
$$

hold [and following the Lagrange-Hamel method of constrained coordinates/velocities (chaps. 2 and 3), with which this theory of degenerate systems bears some unmistakable mathematical similarities!], we may replace the old action-angle variables (w, J) with new action-angle variables $\left(w^{\prime}, J^{\prime}\right)$, defined through the following special equations:

$$
\begin{array}{rlrl}
w_{k}^{\prime}: & w_{d}^{\prime} & \equiv \sum i_{d k} w_{k}=0 & \\
& (d=1, \ldots, m) \tag{c}\\
w_{i}^{\prime} & \equiv w_{i} \neq 0 & & (i=m+1, \ldots, n)
\end{array}
$$

and generating function [recalling §8.8, with $F_{1}=0$, and the correspondences: $\left.q \rightarrow w, p^{\prime} \rightarrow J^{\prime}, \quad F_{2}\left(q, p^{\prime}\right) \rightarrow F_{2}\left(w, J^{\prime}\right)\right]$

$$
\begin{align*}
F_{2}\left(w, J^{\prime}\right) & =\sum w^{\prime}{ }_{k}{J^{\prime}}^{\prime} \quad\left(=\sum w_{k} J_{k}\right) \\
& =\sum w^{\prime}{ }_{d} J^{\prime}{ }_{d}+\sum w_{i}^{\prime} J^{\prime}{ }_{i} \\
& =\sum \sum i_{d k} w_{k} J^{\prime}{ }_{d}+\sum w_{i} J_{i}^{\prime} \quad\left(=\sum w_{i} J_{i}^{\prime}\right) . \tag{d}
\end{align*}
$$

Then, the old and new action variables will be related by [recalling (8.8.17)]

$$
\begin{align*}
& p_{k}=\partial F_{2} / \partial q_{k}: \quad J_{k}=\partial F_{2} / \partial w_{k}=\sum i_{d k} J^{\prime}{ }_{d}+\sum \delta_{i k} J^{\prime}{ }_{i} \quad\left(\delta_{i k}: \text { Kronecker delta }\right), \tag{e}\\
& \Rightarrow J_{d^{\prime}}=\sum i_{d d^{\prime}} J^{\prime}{ }_{d} \quad\left(d^{\prime}=1, \ldots, m\right), \tag{el}\\
& \Rightarrow J_{i^{\prime}}=J_{i^{\prime}}^{\prime}+\sum i_{d i^{\prime}} J_{d}^{\prime} \quad\left(i^{\prime}=m+1, \ldots, n\right) ; \tag{e2}\\
& \left.q_{k^{\prime}}=\partial F_{2} / \partial p_{k^{\prime}}: \quad w^{\prime}{ }_{k}=\partial F_{2} / \partial J^{\prime}{ }_{k} \quad \text { [i.e., eqs. }(\mathrm{b}, \mathrm{c})\right] . \tag{f}
\end{align*}
$$

From the above, it follows that
(i) The new frequencies will be

$$
\begin{align*}
& \nu_{k}^{\prime}=d w_{k}^{\prime} / d t: \quad d w^{\prime}{ }_{d} / d t=\sum i_{d k}\left(d w_{k} / d t\right)=\sum i_{d k} \nu_{k}=0 ; \quad \text { i.e., } \nu_{d}^{\prime}=0 ; \tag{g1}\\
& d w_{i}^{\prime} / d t=d w_{i} / d t=\nu_{i} ; \quad \text { i.e. } \nu^{\prime}{ }_{i}=\nu_{i} ; \tag{g2}
\end{align*}
$$

with the zeroes among them $\left(\nu^{\prime}{ }_{d}\right)$ yielding constant factors in the corresponding Fourier series expansions; while
(ii) Since the $H^{\prime}\left(J^{\prime}\right)=H(J)=E(J)=E^{\prime}\left(J^{\prime}\right)$, the Hamiltonian equations in the new variables will be

$$
\begin{align*}
d w^{\prime}{ }_{k} / d t & =\partial H^{\prime} / \partial J^{\prime}{ }_{k}=\nu^{\prime}{ }_{k}: \\
& \Rightarrow \partial H^{\prime} / \partial J^{\prime}{ }_{d}=\nu^{\prime}{ }_{d}=0 \Rightarrow \text { E: independent of the }{J^{\prime}}^{\prime}, \tag{h1}\\
& \Rightarrow \partial H^{\prime} / \partial J^{\prime}{ }_{i}=\nu^{\prime}{ }_{i}=\nu_{i} \neq 0 ; \tag{h2}\\
d J^{\prime}{ }_{k} / d t & =-\partial H^{\prime} / \partial w^{\prime}{ }_{k}=0 \Rightarrow{J^{\prime}}^{\prime}=\text { constant. } \tag{h3}
\end{align*}
$$

Hence, in a completely degenerate system $(m=n-1) H^{\prime}=H^{\prime}\left(J_{n}^{\prime}\right)$; that is, the Hamiltonian can depend on only one new action variable.

We leave it to the reader to show that the new coordinates obtained by the generating function $A_{o}(q, \beta)=A_{o}(q, J)=A_{o}\left(q, J^{\prime}\right)$ are indeed the new angle variables w^{\prime}, that is, $w^{\prime}{ }_{k}=\partial A_{o} / \partial J^{\prime}{ }_{k}$. For further details and insights, see, for example, Frank (1935, pp. 97-99), Fues (1927, p. 142 ff.).

Problem 8.14.1 Show that equation (a) of the preceding example implies that

$$
\begin{equation*}
\nu_{k}=\sum i^{\prime}{ }_{k i} \nu_{i}^{\prime}=0 \quad(i=M+1, \ldots, n), \tag{a}
\end{equation*}
$$

where $i^{\prime}{ }_{k i}=$ integers; that is, the old frequencies are linear/homogeneous/integral combinations of the $n-m$ independent quantities $\nu^{\prime}{ }_{i}$ (the new frequencies).

REMARK

If we analogize the n old frequencies with n constrained virtual displacements (the δq 's of chap. 2) and the $n-m$ new ones with $n-m$ independent virtual variations of quasi coordinates (the $\delta \theta_{I}$'s of chap. 2, or any other group of $n-m$ independent "parameters"), then (a) is the analog of none other than Maggi's projection idea (§3.5)!

Problem 8.14.2 Extend the results of ex. 8.14.13 for the case where its equations (b, c) are replaced by

$$
\begin{align*}
w_{k}^{\prime}: w_{d}^{\prime} & \equiv \sum i_{d k} w_{k}=0 & (d=1, \ldots, m), \tag{a}\\
w_{i}^{\prime} & \equiv \sum i_{i k} w_{k} \neq 0 & (i=m+1, \ldots, n) \tag{b}
\end{align*}
$$

REMARK

This is the frequency analog of the general Hamel choice of quasi velocities (chap. 2).

Problem 8.14.3 Let $H^{\prime}=H=E=E(J)$ have the special form

$$
\begin{equation*}
E(J)=F\left(f, J_{4}, J_{5}, \ldots, J_{n}\right), \tag{a}
\end{equation*}
$$

where $f \equiv i_{1} J_{1}+i_{2} J_{2}+i_{3} J_{3}, \quad i_{1,2,3}$ are given integers. Show that the first three system frequencies are given by

$$
\begin{equation*}
\nu_{r}=i_{r}(\partial F / \partial f) \quad(r=1,2,3) ; \tag{b}
\end{equation*}
$$

and then show that they also satisfy the two degeneracy conditions

$$
\begin{equation*}
i_{2} \nu_{1}-i_{1} \nu_{2}=0, \quad i_{3} \nu_{1}-i_{1} \nu_{3}=0 \tag{c}
\end{equation*}
$$

Appendix: On Multiply Periodic Functions/Motions

To help the reader to understand better the meaning of multiple Fourier series, like (8.14.24f-j), we point out the following facts from linear and nonlinear vibrations of discrete systems with constant coefficients (for extra clarity in real forms):
(i) The free vibrations of a linear, 1-DOF system [e.g., particle with kinetic and potential energies $m(\dot{q})^{2} / 2$ and $k q^{2} / 2$, respectively (m : mass, k : elasticity constant >0)], have the following form:

$$
\begin{align*}
q & =a \sin (\omega t)+b \cos (\omega t)=c \cos (\omega t+\delta) \\
\left(\omega^{2}\right. & =k / m ; a, b, c: \text { constant amplitudes, } \delta=\text { "phase" constant }) \tag{8.14.35}
\end{align*}
$$

Motion: simply harmonic and singly periodic.
(ii) The free vibrations of a nonlinear, 1-DOF system [e.g., elastic potential equal to $k q^{2} / 2+k^{\prime} q^{3}+k^{\prime \prime} q^{4}+\cdots\left(k, k^{\prime}, k^{\prime \prime}, \ldots\right.$: constants $\left.)\right]$ have the single Fourier series form: $q=c_{0}+c_{1} \cos \left(\omega t+\delta_{1}\right)+c_{2} \cos \left(2 \omega t+\delta_{2}\right)+\cdots$
(periodic but non-simply harmonic due to the presence of higher harmonics, or overtones: $\omega, 2 \omega, 3 \omega, \ldots ; \omega$ depends on both the physical constitution (parameters) of the system [as in (i) and (iii), below] and on the initial conditions of its motions [as in (iv), below]).

Motion: multiply harmonic and singly periodic.
(iii) The free vibrations of a linear, $n-D O F$ system [one with elastic potential equal to $(1 / 2)\left(k_{11} q_{1}^{2}+2 k_{12} q_{1} q_{2}+k_{22} q_{2}{ }^{2}+\cdots+k_{n n} q_{n}{ }^{2}\right)$: positive definite] have the form (assuming no degeneracies!):
$q_{k}=\sum c_{k l} \cos \left(\omega_{l} t+\delta_{l}\right) \quad\left[c_{k l}=\right.$ amplitudes, $\delta_{l}=$ phase constants; $\left.k, l=1, \ldots, n\right]$ (simply harmonic but with n intrinsic (natural) frequencies, or "modes of vibration" ω_{l}; i.e., no overtones).

Motion: simply harmonic and multiply periodic; an n-dimensional Lissajous figure in q-space.
(iv) The free vibrations of a nonlinear, n-DOF system (one whose elastic potential contains terms of the third and higher order in the q_{k} 's) have the following mutually equivalent forms of multiple Fourier series [infinite r-ple sums $\boldsymbol{s} \equiv\left(s_{1}, \ldots, s_{r}\right)$]:

$$
\begin{align*}
q_{k}= & \sum \cdots \sum c_{k, s} \cos \left[\left(s_{1} \omega_{1}+\cdots+s_{r} \omega_{r}\right) t+\delta_{s}\right] \tag{8.14.38a}\\
= & \cdots \\
= & \sum \cdots \sum\left\{A_{k, s} \cos \left[2 \pi\left(s_{1} w_{1}+\cdots+s_{r} w_{r}\right)\right]\right. \\
& \left.\quad+B_{k, s} \sin \left[2 \pi\left(s_{1} w_{1}+\cdots+s_{r} w_{r}\right)\right]\right\} \tag{8.14.38b}\\
= & \sum \cdots \sum\left\{(1 / 2)\left(A_{k, s}-i B_{k, s}\right) \exp \left[2 \pi i\left(s_{1} w_{1}+\cdots+s_{r} w_{r}\right)\right]\right. \\
& \left.\quad+(1 / 2)\left(A_{k, s}+i B_{k, s}\right) \exp \left[-2 \pi i\left(s_{1} w_{1}+\cdots+s_{r} w_{r}\right)\right]\right\} \tag{8.14.38c}\\
= & \sum \cdots \sum C_{k, s} \exp \left[2 \pi i\left(s_{1} w_{1}+\cdots+s_{r} w_{r}\right)\right] \tag{8.14.38d}\\
= & \sum \cdots \sum D_{k, s} \exp \left[2 \pi i\left(s_{1} \nu_{1}+\cdots+s_{r} \nu_{r}\right) t\right] \tag{8.14.38e}\\
= & \sum \cdots \sum D_{k, s} \exp \left[i\left(s_{1} \omega_{1}+\cdots+s_{r} \omega_{r}\right) t\right] \tag{8.14.38f}
\end{align*}
$$

Here:

- In (8.14.38a-c), the summations extend over all possible positive and negative but integral values of the integers $\boldsymbol{s} \equiv\left(s_{1}, \ldots, s_{r}\right)$, from 0 to $+\infty$; while in
(8.14.38d-f) they extend from $-\infty$ to $+\infty$. [We may assume, with no loss of generality, that $f \equiv s_{1} \omega_{1}+\cdots+s_{r} \omega_{r}>0$; because a term in f, in (8.14.38), can be combined with one with $-f$, and therefore the number of terms for which $f<0$ can be reduced by half.]
- $r \equiv n-m \leq n[m=$ number of degeneracies $(\leq n-1), r=$ number of independent frequencies].
- The series of equations (8.14.38) combine the structures of both (8.14.36) (nonlinearity \rightarrow overtones: $s_{k} \omega_{k}$) and (8.14.37) (several DOFs \rightarrow combination tones: $\left.s_{1} \omega_{1}+\cdots+s_{r} \omega_{r}\right)$; and that is why they consist of an (r) ple-infinity of terms.
- The ω 's, known as "intrinsic vibration frequencies," are constants whose values depend on both the physical constitution of the system and the initial conditions of its motions; but they are not frequencies in the ordinary sense of the term, that is like ω in (8.14.35), (8.14.36): the system does not return to its original configuration after a time $\tau_{k}=2 \pi / \omega_{k}(k=1, \ldots, n)$.

Motion: multiply harmonic and multiply (or conditionally, or occasionally) periodic; that is, superposition of r periodic motions of different frequencies, each consisting of an infinite number of overtones; an n-dimensional Lissajous figure in q-space. If, for certain values of the constants of integration (initial conditions) and/or the coefficients (parameters) of the equations of motion, $m=n-1 \Rightarrow r=1$, the motion (8.14.38a-f) degenerates into the multiply harmonic and singly periodic case (ii), eq. (8.14.36); and that is the reason for the adjective "conditionally."

Finally, if, in eqs. (8.14.38), we replace $\left(s_{1} \omega_{1}+\cdots+s_{r} \omega_{r}\right) t$ with $s_{1} x_{1}+\cdots+s_{r} x_{r}$, we obtain the generalization of a Fourier series to a function $q_{k}=q_{k}\left(x_{1}, \ldots, x_{r}\right)$, where the x 's range over a generalized unit cube in x-space.

In sum: (i) the adjective Fourier series refers to the presence of a, generally, infinite number of higher harmonics, originating from the same fundamental frequency; and it is the result of the nonlinearity; (ii) whereas the adjectives singly/multiply periodic series refer to the number of independent frequencies present, and are the result of the number of DOFs; that is

> linear (nonlinear) \rightarrow harmonic (overtones) one DOF (several DOF) \rightarrow singly (multiply) periodic;
and the corresponding frequencies are

$$
\begin{array}{ll}
\text { fundamental frequency } & \nu=\partial E / \partial J_{k} \\
\text { overtones } & \nu=s_{k}\left(\partial E / \partial J_{k}\right) \\
\text { combination tones } & \nu=\sum s_{k}\left(\partial E / \partial J_{k}\right) .
\end{array}
$$

The systems encountered in celestial mechanics and the old quantum theory were both nonlinear and had several DOFs; that is why their periodic motions (orbits) were expressed as multiple Fourier series.

HISTORICAL

It was N. Bohr who, with his famous "principle of correspondence" (late 1910s-early 1920s), established the quantum counterparts of eqs. (8.14.39) for the frequencies of the spectra of atomic systems, and thus prepared the way for Heisenberg's invention of modern quantum mechanics that followed soon thereafter (1925-1927).

8.15 ADIABATIC INVARIANTS

Historical Background

Roughly, adiabatic invariants (AI), or parameter invariants, of a periodic system, are quantities that remain essentially constant, or invariant, when the system parameters change very slowly relative to its periods. These quantities have played a key role in both classical (Boltzmann) and older quantum (Ehrenfest, Burgers, et al.) mechanics \{see, for example, Bierhalter [1981(a), (b), 1982, 1983, 1992], Papastavridis [1985(a)], Polak (1959, 1960); also, recall introductory examples/problems on this topic in $\$ 7.9$ of this book.\} But also, recently, AI have become important in problems of charged particles in magnetic fields, and modern nonlinear dynamics. [See, for example, Lichtenberg (1969), Lichtenberg and Lieberman (1992), Percival and Richards (1982). For a detailed treatment, see Bakay and Stepanovskii (1981).]

Let us consider, with no loss in generality, a mechanical system S that is completely describable by the Hamiltonian

$$
\begin{equation*}
H=H(q, p ; c) \tag{8.15.1}
\end{equation*}
$$

where, with the usual notations, $q \equiv\left(q_{1}, \ldots, q_{n}\right), p \equiv\left(p_{1}, \ldots, p_{n}\right)$; and the additional special parameters $c=c(t) \equiv\left(c_{1}(t), \ldots, c_{m}(t)\right) \equiv\left(c_{1}, \ldots, c_{m}\right) \equiv\left(c_{\alpha}\right)$ characterize the external and/or internal kinematico-inertial structure of S (e.g., length or mass of bob of a mathematical pendulum), and/or strength of the external field(s) of force in which S may be immersed.

REMARK

From a mechanistic viewpoint of thermodynamics, system coordinates are divided into two distinct kinds: (i) macroscopic, or controllable, whose variations produce visible changes to the system and flows of mechanical energy ΔW_{c} in/out of it (see below); and (ii) molecular, or uncontrollable, whose unceasing changes become perceptible only as energy going in/out of the system in the form of heat ΔQ (see below). [See also Brillouin (1964, pp. 231-245) and Bryan (1891-2, 1903).]

The earlier $m c$'s classify as controllable and are treated as additional Lagrangean coordinates, constrained to remain constant during certain motions and vary in certain ways in others. Now, since, in general [recalling (8.2.14); see also (8.15.5) below],

$$
\begin{equation*}
d H / d t=\partial H / \partial t=\sum\left(\partial H / \partial c_{\alpha}\right)\left(d c_{\alpha} / d t\right) \quad(\alpha=1, \ldots, m) \tag{8.15.2}
\end{equation*}
$$

if the c_{α} are constant ("turned off"), the system is closed and its generalized energy H is conserved; whereas if they are variable ("turned on"), the system has become open and H is no longer constant. In the latter case [i.e., $H=H(t, q, p)$], no general and exact methods are available for the analysis of motion. However, for some special cases of variation of the c 's it is possible to find other energetic quantities that are conserved, exactly or approximately. Among the most interesting such cases are the two extremes of very slow (adiabatic) and very fast (or parametric) variations of the c 's, relative to some characteristic time interval of the unperturbed (here, conservative) system. Below, we examine in some detail the adiabatic case; for the rapid case, see, for example, Forbat (1966, pp. 189-193), Landau and Lifshitz (1960, pp. 93-95), Percival and Richards (1982, pp. 153-157, 161-162).

We assume that initially the c_{α} are turned off and the system oscillates with the single frequency $\nu(=1 / \tau, \tau=$ period $)$. Then, as a result of some external energysupplying agency, the c_{α} are turned on and begin to vary (i) erratically, or randomly (i.e., their variations are not systematically correlated to the oscillation of the system; namely, they are not in phase with that motion-no resonances), and (ii) very slowly relative to τ :

$$
\begin{equation*}
d c / d t \ll c / \tau, \quad \text { or } \quad \tau(d c / d t) \ll c \tag{8.15.3}
\end{equation*}
$$

or

$$
\begin{equation*}
d c / d t=(d c / d \tau)(d \tau / d t) \equiv c^{\prime} \varepsilon=(\text { finite })(\text { small })=\text { small } ; \tag{8.15.3a}
\end{equation*}
$$

that is, the parameter changes, being small fractions of their original constant values, are spread over a large number of oscillations; or, equivalently, within a period τ these parameters may be considered constant; for example, the mass of the bob of an oscillating mathematical pendulum varying slowly by picking up dust from its environment. [In the earlier-mentioned rapid case, the period (frequency) of the external disturbance is small (large) relative to the period (frequency) of the undisturbed system; or, generally, relative to a time interval during which the motion of the latter changes appreciably.] If the system can still oscillate (an example to the contrary is an axially loaded and transversely oscillating "beam-column" whose adiabatically varying axial load reaches the critical value for buckling, and hence reduces the fundamental frequency of the beam to zero; i.e., no motion), our task consists in:
(i) Calculating its new frequency (frequencies) $\nu+\Delta \nu$, or period(s):

$$
\begin{equation*}
\tau+\Delta \tau=1 / \nu+\Delta(1 / \nu)=1 / \nu+\left(-1 / \nu^{2}\right) \Delta \nu \tag{8.15.4}
\end{equation*}
$$

in terms of these $c \rightarrow c+\Delta c$ changes; and, since its energy is no longer constant,
(ii) Finding out if there exist new "adiabatic constants of motion," or adiabatic invariants. That such quantities occur can be argued as follows: by (8.15.2) we have $d H \sim d c$, and so there exists some combination(s) of H and the c 's that remains constant during the motion, replacing the energy integral of the constant parameter system.

The classic example here is the oscillating mathematical pendulum whose length l (and/or mass m) is varied very slowly by some external agency. It turns out that, for small (linear) and undamped oscillations, the ratio of the pendulum's energy to its frequency is an adiabatic invariant; and this also allows us to relate the adiabatic change Δl to the amplitude and period changes $\Delta \tau$.

The Fundamental Theory

Let us quantify these ideas. Below, we present three treatments, in increasing order of difficulty: (i) Energetic (one DOF, single frequency), (ii) integral variational (n DOF; first singly periodic, then multiply/conditionally periodic motion), and (iii) action-angle variables (n DOF, multiply/conditionally periodic motion).

(i) Energetic Derivation

Let us assume here, for algebraic simplicity, that $m=1$ (i.e., $c_{1} \equiv c$), and that the kinetic energy is homogeneous quadratic in \dot{q} (or p), so that $H=$ total energy $\equiv E$.

If $H=H[q(t), p(t) ; c(t)] \equiv H(q, p ; c)$, then we obtain, successively,

$$
\begin{aligned}
d H / d t & =(\partial H / \partial q)(d q / d t)+(\partial H / \partial p)(d p / d t)+(\partial H / \partial c)(d c / d t) \\
& =(\partial H / \partial q)(\partial H / \partial p)+(\partial H / \partial p)(-\partial H / \partial q)+(\partial H / \partial c)(d c / d t)
\end{aligned}
$$

(by Hamilton's equations)
that is,

$$
\begin{equation*}
d E / d t=(\partial H / \partial c)(d c / d t) \quad(=\partial H / \partial t) . \tag{8.15.5}
\end{equation*}
$$

Averaging (8.15.5) over a complete cycle (of libration or rotation), while noting that, by (8.15.3), we can treat $d c / d t$ as a constant, we obtain [with the customary notation $\langle\ldots\rangle \equiv$ time average of (...)]

$$
\begin{equation*}
\langle d E / d t\rangle=\tau^{-1} \int_{0}^{\tau}(\partial H / \partial c)(d c / d t) d t \tag{8.15.6}
\end{equation*}
$$

or, since

$$
d q / d t=\partial H / \partial p \Rightarrow d t=d q /(\partial H / \partial p) \Rightarrow \tau=\int_{0}^{\tau} d t=\oint d q /(\partial H / \partial p)
$$

we obtain

$$
\begin{equation*}
\langle d E / d t\rangle=\{\oint(\partial H / \partial c) /(\partial H / \partial p) d q / \oint[1 /(\partial H / \partial p)] d q\}(d c / d t) \tag{8.15.7}
\end{equation*}
$$

Let us transform (8.15.7) further. Solving the energy equation

$$
\begin{equation*}
H(q, p ; c)=E \quad(=\text { constant }, \text { if } c=\text { constant }), \tag{8.15.8}
\end{equation*}
$$

for the momentum p, we obtain

$$
\begin{equation*}
p=p(q, E ; c) \tag{8.15.8a}
\end{equation*}
$$

and, inserting this back into (8.15.8), we can rewrite the latter in the convenient form

$$
\begin{equation*}
H[q, p(q, E ; c) ; c]=E . \tag{8.15.8b}
\end{equation*}
$$

Next, differentiating (8.15.8b) partially with respect to c and E, which for the integrations involved in $(8.15 .6,7)$ must be considered as two independent and constant parameters, we obtain, respectively,

$$
\begin{array}{r}
(\partial H / \partial p)(\partial p / \partial c)+\partial H / \partial c=\partial E / \partial c=0 \Rightarrow \partial p / \partial c=-(\partial H / \partial c) /(\partial H / \partial p) \tag{8.15.8c}\\
(\partial H / \partial p)(\partial p / \partial E)=\partial E / \partial E=1 \Rightarrow \partial p / \partial E=1 /(\partial H / \partial p)
\end{array}
$$

As a result of (8.15.8c, d), eq. (8.15.7) transforms to

$$
\begin{equation*}
\langle d E / d t\rangle=-[\oint(\partial p / \partial c) d q / \oint(\partial p / \partial E) d q](d c / d t) \tag{8.15.8e}
\end{equation*}
$$

and, rearranging this, we obtain

$$
\begin{equation*}
\oint[(\partial p / \partial E)\langle d E / d t\rangle+(\partial p / \partial c)(d c / d t)] d q=0 \tag{8.15.8f}
\end{equation*}
$$

and this, recalling the action variable definition (§8.14), states simply that

$$
\begin{equation*}
d J / d t=0,\left.\quad J \equiv \oint p(q ; E, c) d q\right|_{\text {given } E, c}=J(E, c) \tag{8.15.9}
\end{equation*}
$$

In words: If the oscillatory motion of a system is altered very slowly relative to its period, either by gradually varying the external field of force or by slowly modifying the system's physical constitution, then, during such adiabatic changes, the action variable remains constant; it is an adiabatic invariant. [Or, equivalently, the ratio of twice its average kinetic energy divided by its frequency remains constant - see (8.15.16-19) and ex. 8.15.1.] The preceding arguments indicate that for an adiabatic invariant to exist, the period (frequency) must remain finite (nonzero); if $\tau \rightarrow \infty(\nu \rightarrow 0)$, the argument fails.

One might have thought that, under such an external influence, J would depend on the precise moment at which c ceased to vary - that is, $d c / d t=0$ (and the system became, again, truly periodic) - but, as shown below, the change of the action over a (possibly very long) time interval Δt, during which c changes adiabatically (but without causing a resonance), is $\Delta J \sim\langle d c / d t\rangle^{2} \Delta t$.

From the above, it also follows that

$$
\begin{equation*}
\partial J / \partial E=\oint(\partial p / \partial E) d q=\oint d q /(\partial H / \partial p)=\int_{0}^{\tau} d t=\tau=1 / \nu \tag{8.15.10}
\end{equation*}
$$

in complete agreement with $\S 8.14$.
Geometrical Interpretation. Let us assume, for concreteness, that the periodic motion of the system is a libration. Then, as explained in $\S 8.14$, the action variable J equals the area enclosed by the closed curve representing that motion, in (q, p) space (fig. 8.22).

Figure 8.22 Geometrical interpretation of adiabatic invariance in phase space (1 DOF, libration): $p= \pm(2 m)^{1 / 2}[E-V(q ; c)]^{1 / 2}=p(q ; E, c)$. In the adiabatic case, the area enclosed by the open path of each cycle (say, $1 \rightarrow 2 \rightarrow 3$) remains constant; although it changes shape. Then, J equals the area enclosed by a hypothetical closed trajectory obtained by fixing c at the beginning of each cycle.

Hence, by the well-known plane Green-Stokes theorem, also:

$$
\begin{equation*}
J=\oint p d q=-\oint q d p=\iint d q d p=\text { adiabatic invariant. } \tag{8.15.11}
\end{equation*}
$$

[Generally, if $I=f(q, p, c, t)$ is a first integral of the equations of motion, then its total change over the duration of the adiabatic variation process, say from t_{1} to t_{2}, will be

$$
\begin{equation*}
\Delta I=\int_{t_{1}}^{t_{2}}(\partial f / \partial c)(d c / d t) d t=\langle\partial f / \partial c\rangle \Delta c, \tag{8.15.11a}
\end{equation*}
$$

were, due to the adiabaticity, the time average can be taken over the unvaried motion. Hence, if the integral $I=f$ is independent of c, it is an adiabatic invariant. See also action-angle variable proof below.]

(ii) Integral Variational Derivation

[The following is due to Boltzmann (late 19th century, classical case) and his student Ehrenfest (1910s, classical \rightarrow quantum case). We follow Schaefer (1937, pp. 58-66); see also Brillouin (1964, pp. 231-243), De Donder (1924, 1925), Jeans (1925, pp. 409417), and Juvet (1926, pp. 134-144).] Let us reconsider the earlier system with Hamiltonian given by (8.15.1) and, hence, Lagrangean of the same form:

$$
\begin{equation*}
L=L(q, \dot{q} ; c), \tag{8.15.12}
\end{equation*}
$$

in the following two continuous and finite (but not yet assumed periodic) motions:
(a) A fundamental orbit I lasting from an initial time t_{1} to a final t_{2}, and characterized by $q=q(t)$ and $c=$ constant along $I \equiv c(I)$; and
(b) A neighboring orbit $I I=I+\Delta(I)$, lasting from $t_{1}+\Delta t_{1}$ to $t_{2}+\Delta t_{2}$, and characterized by $q+\Delta q$ and $c+\Delta c=$ constant along $I \equiv c(I I)$.

Now, using the analytical results and notation of $\S 7.9$, and treating the parameters $c_{\alpha}(\alpha=1, \ldots, m)$ as additional Lagrangean coordinates, it is not hard to show that, under such a $I \rightarrow I I$ variation, and since, along both these orbits, Lagrange's equations of motion for the q 's hold, to the first noncontemporaneous order,

$$
\begin{align*}
\Delta A_{H} & \equiv \Delta \int_{t_{1}}^{t_{2}} L d t \\
& =\int_{t_{1}}^{t_{2}} \sum\left(\partial L / \partial c_{\alpha}\right) \Delta c_{\alpha} d t+\left\{\sum p_{k} \Delta q_{k}-h \Delta t\right\}_{t_{1}}^{t_{2}} \tag{8.15.13}
\end{align*}
$$

(notice the additional Δc-sum) where (§3.9)

$$
\begin{align*}
h & \equiv \sum\left(\partial L / \partial \dot{q}_{k}\right) \dot{q}_{k}-L=\underset{\quad \text { variables }}{\operatorname{generalized}} \\
& =h(c)=h(I)=\text { constant } \equiv h, \\
& =h(c+\Delta c) \equiv h(I I)=\text { constant } \equiv h+\Delta h . \tag{8.15.13a}
\end{align*}
$$

Next, let I be a completely degenerate periodic motion, with the single period τ and frequency ν, and let, in eq. (8.15.13), $t_{1}=0, t_{2}=\tau$ (the multiply/conditionally periodic case is discussed later). With
$\partial L / \partial c_{\alpha} \equiv C_{\alpha}$: Lagrangean force with which the system reacts to a change of its parameter c_{α},
and, hence,
$-C_{\alpha} \equiv-\partial L / \partial c_{\alpha}$: External force that, at every instant, must be acting on the system to keep c_{α} constant,
so that

$$
\sum\left(\partial L / \partial c_{\alpha}\right) \Delta c_{\alpha}=\sum C_{\alpha} \Delta c_{\alpha} \equiv \Delta W_{c}: \begin{align*}
& \text { First-order work done by the system to its } \\
& \text { environment, during } a c \rightarrow c+\Delta c \text { change }, \tag{8.15.14c}
\end{align*}
$$

and analogously for $-\Delta W_{c}$, and with the notation $\int_{0}^{\tau} \ldots \equiv \oint \ldots$, eq. (8.15.13) becomes

$$
\begin{equation*}
\Delta \oint L d t=\oint \Delta W_{c} d t+\left\{\sum p_{k} \Delta q_{k}-h \Delta t\right\}_{0}^{\tau} \tag{8.15.14d}
\end{equation*}
$$

If, further, the neighboring orbit $I I$ is also (singly) periodic with period

$$
\begin{equation*}
\tau+\Delta \tau=\tau+\Delta(1 / \nu)=\tau+\left(-1 / \nu^{2}\right) \Delta \nu \tag{8.15.14e}
\end{equation*}
$$

(a fact that clearly indicates why we need a variable time-endpoints treatment), then choosing, with no loss in generality, $\Delta t_{1}=0$, and since, then, $\Delta t_{2}=\Delta \tau$, $h(I)=$ constant $\equiv h,\left\{\sum p_{k} \Delta q_{k}\right\}_{0}^{\tau} \equiv 0$ (due to periodicity), reduces (8.15.14d) to

$$
\begin{equation*}
\Delta \oint L d t=\oint \Delta W_{c} d t-h \Delta \tau \tag{8.15.14f}
\end{equation*}
$$

or, equivalently, in terms of mean/averaged values of their integrands,
$\Delta(\langle L\rangle \tau)=\left\langle\Delta W_{c}\right\rangle \tau-h \Delta \tau$
\{or, adding and subtracting $\tau \Delta h \equiv \tau[h(I I)-h(I)] \equiv \tau[h(c+\Delta c)-h(c)]\}$

$$
\begin{equation*}
\equiv\left\langle\Delta W_{c}\right\rangle \tau-\Delta(h \tau)+\tau \Delta h, \tag{8.15.14~g}
\end{equation*}
$$

or, rearranging,

$$
\begin{equation*}
\Delta[(\langle L\rangle+h) \tau]=\left(\Delta h+\left\langle\Delta W_{c}\right\rangle\right) \tau . \tag{8.15.14h}
\end{equation*}
$$

But, (i) $\langle L\rangle=\langle T-V\rangle=\langle T\rangle-\langle V\rangle$, and (assuming T : quadratic homogeneous in \dot{q} or p)

$$
\begin{equation*}
h=T+V=\langle T+V\rangle=\langle T\rangle+\langle V\rangle=\text { constant }, \tag{8.15.14i}
\end{equation*}
$$

so that

$$
\begin{equation*}
\langle L\rangle+h=2\langle T\rangle ; \tag{8.15.14j}
\end{equation*}
$$

and (ii) by the first law of thermodynamics: if

$$
\begin{equation*}
\Delta Q=\text { Heat added to the system during the transition } I \rightarrow I I, \tag{8.15.14k}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta Q+\left(-\Delta W_{c}\right)=\Delta h ; \tag{8.15.141}
\end{equation*}
$$

that is,
Heat supplied to system + Work done to system to violate its constraint

$$
(c=\text { constant })=\text { Increase of energy of system. }
$$

As a result of (8.15.14j, 1), eq. (8.15.14h) assumes the Boltzmann-Clausius form:

$$
\begin{equation*}
\Delta[2\langle T\rangle \tau]=\tau \Delta Q . \tag{8.15.15}
\end{equation*}
$$

This result is exact. If we, now, assume that the transition $I \rightarrow I I$ is adiabatic (i.e., $\Delta Q=0$), then (8.15.15) immediately leads us to the famous adiabatic theorem of Ehrenfest:

$$
\begin{equation*}
\Delta[2\langle T\rangle \tau]=\Delta[2\langle T\rangle / \nu]=0 . \tag{8.15.16}
\end{equation*}
$$

[Physically the process must be (i) fast enough so that our system cannot exchange heat with its environment (i.e., it remains thermally insulated); and (ii) slow compared with other processes that lead to thermal equilibrium. For example, in order that the expansion of a gas in a cylinder be adiabatic, the velocity of its outward moving piston must be slow only relative to the velocity of sound in the gas; that is, the piston may move quite fast!

For a precise definition of adiabaticity, see books on thermal physics, and so on: for example, Landau and Lifshitz (1980, pp. 38-41).]

Other, equivalent, forms of the theorem are

$$
\begin{align*}
{[2\langle T\rangle / \nu]_{I} } & =[2\langle T\rangle / \nu]_{I I}: \text { Adiabatic invariant } ; \tag{8.15.17}\\
J \equiv 2\langle T\rangle / \nu & =2 \oint T d t=\oint\left(\sum p_{k} \dot{q}_{k}\right) d t \\
& =\sum\left(\int_{0}^{1 / \nu}\left(p_{k} \dot{q}_{k}\right) d t\right): \text { Adiabatic invariant. } \tag{8.15.18}
\end{align*}
$$

Specialization. If $2\langle T\rangle=h=E$ (i.e., if $\langle T\rangle=\langle V\rangle$; e.g., linear harmonic oscillations), eqs. $(8.15 .16,17)$ reduce to the "Planck form":

$$
\begin{equation*}
E / \nu: \text { adiabatic invariant. } \tag{8.15.19}
\end{equation*}
$$

Multiply/Conditionally Periodic System
So far, we have assumed that our n-DOF system is completely separable and completely degenerate (§8.14) and has the single period τ; that is, there exist $n-1$ independent equations of the form (8.14.31)

$$
\begin{equation*}
i^{\prime}{ }_{1} \nu_{1}+i^{\prime}{ }_{2} \nu_{2}+\cdots+i^{\prime}{ }_{n} \nu_{n}=0, \tag{8.15.20}
\end{equation*}
$$

where the $i^{\prime}{ }_{k}$ are integers and the ν_{k} are the fundamental frequencies of its individual DOFs; or, equivalently,

$$
\begin{equation*}
i_{1}\left(1 / \nu_{1}\right)=i_{2}\left(1 / \nu_{2}\right)=\cdots=i_{n}\left(1 / \nu_{n}\right)=1 / v \equiv \tau \tag{8.15.21}
\end{equation*}
$$

or, with $\tau_{k}=1 / \nu_{k}$,

$$
\begin{equation*}
i_{1} \tau_{1}=i_{2} \tau_{2}=\cdots=i_{n} \tau_{n}=\tau \tag{8.15.21a}
\end{equation*}
$$

where the i_{k} are positive integers (naturals). Then, (8.15.18) reduces further to

$$
\begin{align*}
\sum\left(\int_{0}^{i_{k} / \nu_{k}}\left(p_{k} \dot{q}_{k}\right) d t\right) & =\sum\left(i_{k} \int_{0}^{1 / \nu_{k}}\left(p_{k} \dot{q}_{k}\right) d t\right) \\
& =\sum i_{k} J_{k}: \text { adiabatic invariant } \tag{8.15.22}
\end{align*}
$$

or, since $i_{k}=\nu_{k} / \nu=\tau \nu_{k}(\nu \neq 0)$, finally,

$$
\begin{equation*}
\sum \nu_{k} J_{k}: \text { adiabatic invariant } \tag{8.15.23}
\end{equation*}
$$

in agreement with ex. 8.14.9.
If, however, our system is only conditionally/multiply periodic - that is, if at least one or more of $(8.15 .20,21)$ do not hold, and, instead, are replaced with equations of the form

$$
\begin{equation*}
I_{1} \nu_{1}+I_{2} \nu_{2}+\cdots+I_{n} \nu_{n}=\varepsilon \tag{8.15.24}
\end{equation*}
$$

where the I_{k} are, generally, large integers and ε is arbitrarily small, then a "quasi period" τ can be defined by

$$
\begin{align*}
\tau=1 / \nu & =i_{1} / \nu_{1}+\varepsilon_{1}=i_{2} / \nu_{2}+\varepsilon_{2}=\cdots=i_{n} / \nu_{n}+\varepsilon_{n} \tag{8.15.25a}\\
& =i_{1} \tau_{1}+\varepsilon_{1}=i_{2} \tau_{2}+\varepsilon_{2}=\cdots=i_{n} \tau_{n}+\varepsilon_{n} \tag{8.15.25b}
\end{align*}
$$

where the ε_{k} are arbitrarily small (in order to achieve any required degree of accuracy) and the boundary terms $\left\{\sum p_{k} \Delta q_{k}\right\}_{0}^{\tau}$ can be made as small as needed. Hence, a conditionally periodic system can also be brought as close as desired to a purely (singly) periodic one, so that $(8.15 .22,23)$ still hold. [More precisely: $\sum\left(\int_{t_{1}}^{t_{2}}\left(p_{k} \dot{q}_{k}\right) d t\right)=$ adiabatic invariant, where $t_{2}=i_{k} / \nu_{k}+\varepsilon_{k}, t_{1}=0$.]

- If the original system is completely separable, then it is reduced to n subsystems, each with one DOF and one frequency. If, further, these frequencies, ν_{1}, \ldots, ν_{n}, are incommensurate - that is, independent - then our non-degenerate system has n independent adiabatic invariants:

$$
\begin{equation*}
J_{k} \equiv \oint p_{k} d q_{k}=\text { adiabatic invariant } \quad(k=1, \ldots, n) \tag{8.15.26a}
\end{equation*}
$$

- But if our system is m-fold degenerate, or $(n-m)$-periodic, then it has only $n-m$ independent adiabatic invariants; namely, certain combinations of its $n J_{k}$'s.

Hence the rule: There exist as many independent adiabatic invariants as there are independent (incommensurate) frequencies; that is, $n-m(0 \leq m \leq n-1)$. For example, the spatial linear and isotropic oscillator has three mutually equal frequencies
(i.e., $n=3$, and since $\nu_{x}=\nu_{y}=\nu_{z}, m=2$) and, therefore, only one adiabatic invariant:

$$
\begin{equation*}
J_{x}+J_{y}+J_{z}=\oint p_{x} d q_{x}+\oint p_{y} d q_{y}+\oint p_{z} d q_{z}=\text { adiabatic invariant. } \tag{8.15.26b}
\end{equation*}
$$

(iii) Action-Angle Variables Derivation

[The following is due to Burgers (1917) and Krutkow (1919); also Bohr (1918, who calls it theorem of mechanical transformability). Here, we follow the excellent summary of these proofs given by Birtwistle (1926, pp. 76-78). See also Born (1927, pp. 56-59, 95-98), Haar (1971, pp. 139-144), Saletan and Cromer (1971, pp. 259-263). It may be omitted in a first reading.]

To simplify the discussion, let us assume, with no loss in generality, that our n-DOF system contains only one adiabatically varying parameter, $c=c(t)$. As we have seen in $\S 8.10$, in the constant parameter case, the generating function of the canonical transformation $(q, p) \rightarrow\left(q^{\prime}=w, p^{\prime}=J\right)$ is $A_{o}(q, J)\left[=F_{2}\left(q, p^{\prime}\right)\right]$. In the adiabatic case, we can think of c as an additional system coordinate unrelated to the motion; that is, unrelated to the q 's. Hence, the reduced action A_{o} becomes the explicitly time-dependent function $A_{o}[q, J ; c(t)]$, so that

$$
\begin{equation*}
w_{k}=\partial A_{o}(q, J, c) / \partial J_{k}, \quad p_{k}=\partial A_{o}(q, J, c) / \partial q_{k} . \tag{8.15.27a}
\end{equation*}
$$

Here, the Hamiltonian transformation $H \rightarrow H^{\prime}(\neq H)$ is

$$
\begin{equation*}
H=H(J ; c)=E(J ; c) \rightarrow H^{\prime}=H+\partial A_{o} / \partial t=E+\left(\partial A_{o} / \partial c\right)(d c / d t) \tag{8.15.27b}
\end{equation*}
$$

and, therefore, with $A_{o}=A_{o}[q(w, J ; c), J ; c] \equiv A_{o}(w, J ; c)\left[\Rightarrow H^{\prime}=H^{\prime}(w, J ; c)\right]$, the Hamiltonian equations of motion of the w_{k} 's and J_{k} 's are

$$
\begin{align*}
d w_{k} / d t & =\partial H^{\prime} / \partial J_{k}=\partial H / \partial J_{k}+\partial / \partial J_{k}\left(\partial A_{o} / \partial t\right) \\
& =\partial H / \partial J_{k}+\partial / \partial J_{k}\left[\left(\partial A_{o} / \partial c\right)(d c / d t)\right] \\
& =\nu_{k}+\left[\partial / \partial w_{k}\left(\partial A_{o} / \partial c\right)\right](d c / d t) \tag{8.15.27c}\\
d J_{k} / d t & =-\partial H^{\prime} / \partial w_{k}=-\partial H / \partial w_{k}-\partial / \partial w_{k}\left(\partial A_{o} / \partial t\right) \\
& =0-\partial / \partial w_{k}\left[\left(\partial A_{o} / \partial c\right)(d c / d t)\right]=-\left[\partial / \partial w_{k}\left(\partial A_{o} / \partial c\right)\right](d c / d t) \tag{8.15.27d}
\end{align*}
$$

Equivalently, instead of the above choice $A_{o}(q, J) \rightarrow A_{o}[q, J ; c(t)]$ for generating function, we try the form $W(q, w, t) \equiv A(q, w, t)\left[=F_{1}\left(t, q, q^{\prime}\right)\right]$. Indeed, recalling (8.14.23b, c), we have

$$
\begin{align*}
\delta A_{o o} & \equiv \delta\left(A_{o}-\sum w_{k} J_{k}\right) \\
& =\sum\left[\left(\partial A_{o} / \partial q_{k}\right) \delta q_{k}+\left(\partial A_{o} / \partial J_{k}\right) \delta J_{k}\right]-\sum \delta\left(w_{k} J_{k}\right) \\
& =\sum\left(p_{k} \delta q_{k}+w_{k} \delta J_{k}\right)-\sum\left(\delta w_{k} J_{k}+w_{k} \delta J_{k}\right) \\
& =\sum\left(p_{k} \delta q_{k}-J_{k} \delta w_{k}\right) \\
& \Rightarrow p_{k}=\partial A_{o o} / \partial q_{k}, \quad J_{k}=-\partial A_{o o} / \partial w_{k}, \tag{8.15.28a}
\end{align*}
$$

and therefore (by the theory of $\S 8.8$ and $\S 8.10$) the Hamiltonian equations of w_{k} and J_{k} are

$$
\begin{equation*}
d w_{k} / d t=\partial H^{\prime} / \partial J_{k}, \quad d J_{k} / d t=-\partial H^{\prime} / \partial w_{k}, \quad \text { where } H^{\prime}=H+\partial A_{o o} / \partial t \tag{8.15.28b}
\end{equation*}
$$

But since $H=H(J ; c)$ and $A_{o o}=A_{o o}[q, w ; c(t)] \equiv A_{o o}(q, w ; t)$, and therefore $\partial A_{o o} / \partial t=\left(\partial A_{o o} / \partial c\right)(d c / d t)$, the above yield, further,

$$
\begin{equation*}
d w_{k} d t=\partial H / \partial J_{k}+\partial / \partial J_{k}\left[\left(\partial A_{o} / \partial c\right)(d c / d t)\right]=\nu_{k}+\left[\partial / \partial w_{k}\left(\partial A_{o} / \partial c\right)\right](d c / d t) \tag{8.15.28c}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\Rightarrow w_{k}=\nu_{k}(J, c) t+\gamma_{k}(J, c)=\left(\nu_{k o} t+\gamma_{k o}\right)+\left(\nu_{k 1} t^{2}+\gamma_{k 1} t\right)(d c / d t)+\cdots\right] } \\
d J_{k} / d t & =-\partial H / \partial w_{k}-\partial / \partial w_{k}\left(\partial A_{o o} / \partial t\right) \\
& =0-\partial / \partial w_{k}\left[\left(\partial A_{o o} / \partial c\right)(d c / d t)\right]=-\left[\partial / \partial w_{k}\left(\partial A_{o o} / \partial c\right)\right](d c / d t), \tag{8.15.28d}
\end{align*}
$$

or, finally, with the simplifying notation $\Phi \equiv \partial A_{o o} / \partial c=\Phi[q(w, J, c), J, c]=$ $\Phi(w, J, c)$,

$$
\begin{equation*}
d J_{k} / d t=-\left(\partial \Phi / \partial w_{k}\right)(d c / d t) . \tag{8.15.28e}
\end{equation*}
$$

Integrating, next, (8.15.28d, e) over a long time interval $\Delta t \equiv t_{2}-t_{1}$, we obtain

$$
\begin{equation*}
\Delta J_{k} \equiv J_{k}\left(t_{2}\right)-J_{k}\left(t_{1}\right)=-\int_{t_{1}}^{t_{2}}\left(\partial \Phi / \partial w_{k}\right)(d c / d t) d t \tag{8.15.29a}
\end{equation*}
$$

Now, since $A_{o o}$ is periodic in each of the w_{k} 's with period 1 [8.14 .23 b ff.$\left.\right)$], so is $\partial A_{o o} / \partial c$; that is, $\Phi=\Phi(w, J, c)[\rightarrow \Phi(w, J, t)]$. Therefore, we can represent it as the following multiply periodic Fourier series [(8.14.24f-j), with a single \sum sign standing for all summations, for simplicity]:

$$
\begin{equation*}
\sum D_{k, \boldsymbol{s}}(J, c) \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}) \tag{8.15.29b}
\end{equation*}
$$

where, as earlier, $\boldsymbol{s} \equiv\left(s_{1}, \ldots, s_{n}\right)$ are positive or negative integers, or zero; ranging from $-\infty$ to $+\infty$,

$$
\begin{equation*}
\boldsymbol{w} \equiv\left(w_{1}, \ldots, w_{n}\right), \quad \boldsymbol{s} \cdot \boldsymbol{w} \equiv s_{1} w_{1}+\cdots+s_{n} w_{n} \tag{8.15.29c}
\end{equation*}
$$

and from this we readily conclude that
$\partial \Phi / \partial w_{k}=-\sum^{\prime} E_{k, s} \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{w})=-\sum^{\prime} F_{k, s} \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{v} t)$
$(=$ a multiply periodic Fourier series but without the constant term $)$,
such terms having been removed, from each of these series, by the $\partial / \partial w_{k}$-differentiations. This key step in our proof is designated by the accent (prime) on the summation sign. We have also made the related assumption (see below) that

$$
\begin{equation*}
\boldsymbol{s} \cdot \boldsymbol{v} \equiv s_{1} \nu_{1}+\cdots+s_{n} \nu_{n} \neq 0 \quad \text { (i.e., no degeneracies!). } \tag{8.15.29e}
\end{equation*}
$$

As a result of the above, (8.15.29a) becomes, successively,

$$
\begin{align*}
\Delta J_{k} & =-\int_{t_{1}}^{t_{2}}(d c / d t)\left[-\sum^{\prime} F_{k, s} \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{v} t)\right] d t \\
& =-\langle d c / d t\rangle \int_{t_{1}}^{t_{2}}\left[-\sum^{\prime} F_{k, s} \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{v} t)\right] d t \\
& \equiv-\langle d c / d t\rangle \int_{t_{1}}^{t_{2}} G(c, t) d t, \tag{8.15.29f}
\end{align*}
$$

since both the $F_{k, s}$'s and ν_{k} 's depend on c. [The condition of erratic or unsymmetric variation of $c(t)$ can be satisfied by taking, for example, $d c / d t=$ constant.] Next, to study the precise dependence of the above integral on c, we expand its integrand à la Taylor around $c_{1} \equiv c(t)$, and thus obtain

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} G(c, t) d t=\int_{t_{1}}^{t_{2}}\left[G\left(c_{1}, t\right)+\left(c-c_{1}\right) G^{\prime}\left(c_{1}, t\right)+\cdots\right] d t . \tag{8.15.29~g}
\end{equation*}
$$

Now:
(i) The first term of the integrand is periodic in the constant ν_{k} 's (i.e., the frequencies before c began to vary). Therefore, if Δt is long enough to contain a large number of the corresponding periods, since G is periodic in time (and does not contain a constant term),

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} G\left(c_{1}, t\right) d t=0 . \tag{8.15.29h}
\end{equation*}
$$

(ii) The second term,

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left(c-c_{1}\right) G^{\prime}\left(c_{1}, t\right) d t \tag{8.15.29i}
\end{equation*}
$$

is of the same order (of magnitude) as

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}[(d c / d t) t] G^{\prime}\left(c_{1}, t\right) d t \tag{8.15.29j}
\end{equation*}
$$

and that, in turn, is of the order of

$$
\begin{equation*}
\langle d c / d t\rangle\left(t_{2}-t_{1}\right) \equiv\langle d c / d t\rangle \Delta t \equiv \Delta c \quad(=\text { finite }) . \tag{8.15.29k}
\end{equation*}
$$

From the above, we conclude that

$$
\Delta J_{k}=-\langle d c / d t\rangle(\text { Term of order } \Delta c) \sim\langle d c / d t\rangle \Delta c=\langle d c / d t\rangle^{2} \Delta t
$$

or, equivalently, since $\Delta J_{k}=\left\langle d J_{k} / d t\right\rangle \Delta t$,

$$
\begin{equation*}
\left\langle d J_{k} / d t\right\rangle \sim\langle d c / d t\rangle^{2} \tag{8.15.291}
\end{equation*}
$$

and hence even if Δc is finite (after a very long period of time), it is possible to make ΔJ_{k} as small as desired by decreasing $d c / d t$; that is, the J_{k} 's are adiabatic invariants. [The extension of this proof to several c 's does not offer any difficulties; (8.15 .28 d)
is replaced by $d J_{k} / d t=-\sum\left[\left(\partial^{2} A_{o o} / \partial w_{k} \partial c_{l}\right)\right]\left(d c_{l} / d t\right)$, where $l=1,2, \ldots, m$, and so on.]

Effect of Degeneracies on Adiabatic Invariance. The no degeneracy requirement (8.15.29e) is crucial. If an (8.14.31)-like relation

$$
\begin{equation*}
\boldsymbol{i} \cdot \boldsymbol{v} \equiv i_{1} \nu_{1}+\cdots+i_{n} \nu_{n}=0 \quad\left[\boldsymbol{i} \equiv\left(i_{1}, \ldots, i_{n}\right): \text { integers }\right], \tag{8.15.30a}
\end{equation*}
$$

exists among the original frequencies (and/or occurs at some stage of the subsequent adiabatic variation), then, for $\boldsymbol{s}=\boldsymbol{i}$, the Fourier series

$$
\begin{equation*}
G\left(c_{1}, t\right)=\left.\left[-\sum^{\prime} F_{k, s} \exp (2 \pi i \boldsymbol{s} \cdot \boldsymbol{v} t)\right]\right|_{c=c_{1}} \tag{8.15.30b}
\end{equation*}
$$

will contain a constant term, say C; and, accordingly, eq. (8.15.29h) will be replaced by

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} G\left(c_{1}, t\right) d t=C \Delta t \tag{8.15.30c}
\end{equation*}
$$

Then we will have, instead of (8.15.291),

$$
\begin{align*}
\Delta J_{k} & =-\langle d c / d t\rangle(C \Delta t+\text { Term of order } \Delta c) \\
& =-C \Delta c-\langle d c / d t\rangle(\text { Term of order } \Delta c) \\
& =-C \Delta c=\text { finite change, } \quad \text { as } \quad\langle d c / d t\rangle^{2} \rightarrow 0 \tag{8.15.30d}
\end{align*}
$$

that is, the J_{k} will no longer be adiabatic invariants. In such degenerate cases, as stated earlier, the number of independent adiabatic invariants equals the number of independent frequencies $(n-m)$.
[If m (8.15.30a)-like relations hold identically - that is, for all J 's, for a certain c, then, following the method of (ex. 8.14.14), we introduce new w 's and J 's such that the first $n-m$ of the new frequencies $\left(\nu^{\prime}{ }_{d} ; d=1, \ldots, m\right)$ are equal to zero, while the remaining m of them $\left(\nu^{\prime}{ }_{i} ; i=n-m, \ldots, n\right)$ are independent (i.e., incommensurate). Then, the constant exponents appearing in the Fourier series for $A_{o o}$ involve only the "dependent" angle variables $\left(w_{d}^{\prime}\right)$, and, upon differentiation with respect to the "independent" such variables $\left(w_{i}^{\prime}\right)$, they disappear. It follows that at such "places of degeneration" the "independent" actions $\left(J_{i}^{\prime}\right)$ remain invariant; while, in general, the "dependent" ones $\left(J_{i}^{\prime}\right)$ do not.

If, in addition to the above cases of identical degeneration, (8.15.30a)-like relations hold for particular values of the employed J 's - a case known as accidental degeneration - these action variables need not be invariant; unless the amplitude corresponding to (8.15.30a) also vanishes from its $(8.15 .29 \mathrm{~g})$-like series. On this delicate topic, see also Fues (1927, p. 150; and references given therein).]

Example 8.15.1 Adiabatic Invariant of Linear 1-DOF Oscillator. Here, with the customary notations,

$$
\begin{equation*}
H=p^{2} / 2 m+m \omega^{2} q^{2} / 2=H(q, p) \tag{a}
\end{equation*}
$$

and therefore the energy curve in phase space, $H(q, p)=E$ (libration), is

$$
\begin{equation*}
\left[p /(2 m E)^{1 / 2}\right]^{2}+\left[q /\left(2 E / m \omega^{2}\right)^{1 / 2}\right]^{2}=1 ; \tag{b}
\end{equation*}
$$

that is, an ellipse with semiaxes: $\left(2 E / m \omega^{2}\right)^{1 / 2}$ along q, and $(2 m E)^{1 / 2}$ along p. Hence,

$$
\begin{align*}
J & =\text { area of ellipse }=\pi\left[\left(2 E / m \omega^{2}\right)^{1 / 2} \times(2 m E)^{1 / 2}\right] \\
& =\pi(2 E / \omega)=2 \pi(E / \omega)=E / \nu=\text { adiabatic constant } ; \tag{c}
\end{align*}
$$

that is, as long as $\nu \neq 0$, under adiabatic changes, the oscillator energy is proportional to its frequency; as predicted by the general theory.

Example 8.15.2 Effect of Light Damping on the Adiabatic Invariant. Let us consider the linear 1-DOF spring-mass-damper system with equation of motion

$$
\begin{equation*}
m \ddot{q}+d \dot{q}+k q=0 \tag{a}
\end{equation*}
$$

where $m, d, k=$ mass, viscous damping coefficient (constant), spring constant, respectively. Since (a) has no periodic solutions, it has no adiabatic invariants. However, as is well known from second-order differential equations, the change of variables

$$
\begin{equation*}
q \rightarrow q^{\prime}=q \exp [(d / 2 m) t] \Rightarrow q=q^{\prime} \exp [-(d / 2 m) t] \tag{b}
\end{equation*}
$$

transforms (a) to the linear dampingless equation (for the fictitious system described by q^{\prime}):

$$
\begin{equation*}
m^{\prime}\left(q^{\prime}\right)^{\cdot \cdot}+k^{\prime} q^{\prime}=0 \tag{c}
\end{equation*}
$$

where $\quad m^{\prime}=m$,

$$
\begin{align*}
& \left(\omega^{\prime}\right)^{2} \equiv k^{\prime} / m^{\prime}=k / m-(1 / 4)(d / m)^{2}=\omega^{2}\left[1-\left(d^{2} / 4 m k\right)\right] \\
& \omega^{2} \equiv k / m \tag{d}
\end{align*}
$$

Clearly, (c) has periodic solutions with the single frequency $\nu^{\prime} \equiv \omega^{\prime} / 2 \pi$, and therefore adiabatically invariant action $\left\{\right.$ with $a^{\prime}=$ amplitude of $\left.(\mathrm{b}, \mathrm{c})=a \exp [(d / 2 m) t]\right\}$:

$$
\begin{align*}
J^{\prime} & =E^{\prime} / \nu^{\prime}=V_{\max }^{\prime} / \nu^{\prime} \\
& =\left[(1 / 2) k^{\prime}\left(a^{\prime}\right)^{2}\right]=\left[(1 / 2) m^{\prime}\left(\omega^{\prime}\right)^{2}\left(a^{\prime}\right)^{2}\right] /\left(\omega^{\prime} / 2 \pi\right) \\
& =\pi m^{\prime} \omega^{\prime}\{a \exp [(d / 2 m) t]\}^{2} \\
& =\pi m\left\{\omega\left[1-\left(d^{2} / 4 m k\right)\right]^{1 / 2}\right\}\left\{a^{2} \exp [(d / m) t]\right\} \\
& =\pi\left\{m a^{2} \omega\left[1-\left(d^{2} / 4 m k\right)\right]^{1 / 2}\right\} \exp [(d / m) t]=\text { constant } \\
& \left.=\pi\left\{m a^{2} \omega\left[1-\left(d^{2} / 4 m k\right)\right]^{1 / 2}\right\} \quad \text { (i.e., }\left.J^{\prime}\right|_{t=0}\right) . \tag{e}
\end{align*}
$$

Hence, for the adiabatically noninvariant action of (a), we will have the following exponential decay variation:

$$
\begin{equation*}
J\left(t^{\prime}\right)=J(0) \exp \left(-k t^{\prime} / m\right) \tag{f}
\end{equation*}
$$

where

$$
\begin{equation*}
t^{\prime} \equiv \varepsilon t=\text { slow time } \equiv(d / k) t, \quad-(d / m) t=-(k / m)(\varepsilon t) \equiv-(k / m) t^{\prime} \tag{g}
\end{equation*}
$$

For an alternative treatment of a more general case, see Kevorkian and Cole (1981, pp. 271-272).

Example 8.15.3 Let us consider a particle, of mass m, in rectilinear horizontal and perfectly elastic collisional motion between two perfectly elastic and infinitely massive walls of width l, one fixed (say, the left) and one movable (the right).
(i) If both walls are fixed (stationary), and the particle moves with velocity v, then, clearly, its energy (neglecting gravity) and "period of collision" are, respectively,

$$
\begin{equation*}
E=T=(1 / 2) m v^{2}, \quad \tau=2 l / v . \tag{a}
\end{equation*}
$$

(ii) If the right wall moves with velocity \dot{i}, assumed unaffected by the repeated particle collisions, (i.e., to the right, if $i>0$), then, after the particle has collided with both walls, once, its velocity has changed from v to $v-2 i$ [recalling definition of restitution coefficient, (4.4.1), e; here $e=1$]; i.e., $\Delta v=-2 i$. Assuming now that $\dot{i}<v$; that is, the right wall moves very slowly relative to the particle, let us calculate the adiabatic invariant of this periodic system.

From First Principles

Choosing a time interval Δt that is very large relative to the collision period of the fixed wall case, and very small relative to the l / i - that is,

$$
\begin{equation*}
2 l / v \ll \Delta t \ll l / i \tag{b}
\end{equation*}
$$

it is not hard to see that if one pair of such collisions changes the velocity of the particle by $-2 \dot{l},(v / 2 l) \Delta t$ pairs will change it by

$$
\begin{equation*}
\Delta v=-(v \dot{l} / l) \Delta t \quad \text { (a decrease if the right wall moves outward). } \tag{c}
\end{equation*}
$$

Integrating (c), we readily obtain the adiabatic invariant

$$
\begin{equation*}
v l=\text { constant } \tag{d}
\end{equation*}
$$

or, due to (a),

$$
\begin{equation*}
E l^{2}=\text { constant } . \tag{e}
\end{equation*}
$$

From the General Adiabatic Theory
We readily find

$$
\begin{equation*}
J=\oint p d q=\int_{0}^{\tau}(m v)(v d t)=2 m v l=\text { constant } \tag{f}
\end{equation*}
$$

These results are shown graphically in fig. 8.23.
For alternative treatments of this popular example, see, for example, Kuypers (1993, pp. 346, 535-536), Matzner and Shepley (1991, pp. 198-199), Percival and Richards (1982, pp. 142-144).

Figure 8.23 Temporal variation of wall distance (I, i), particle velocity (v), and action variable $(J \sim / v)$.

Problem 8.15.1 Adiabatic Motion of a Planar Mathematical Pendulum (Ol'khovskii, 1970, p. 430 ff .). Consider the small angular amplitude adiabatic motions of a planar mathematical pendulum of mass m, length l, and angle with the vertical ϕ.
(i) Show that its reduced Hamilton-Jacobi equation is (with $E=$ total energy of pendulum)

$$
\begin{equation*}
\left(d A_{o} / d \phi\right)^{2}+m^{2} g l^{3} \phi^{2}=2 m l^{2} E . \tag{a}
\end{equation*}
$$

(ii) Show that the complete solution of (a) is

$$
\begin{equation*}
A_{o}=\left(m^{2} g l^{3}\right)^{1 / 2}\left\{(\phi / 2)\left[(2 E / m g l)-\phi^{2}\right]^{1 / 2}+(E / m g l) \arcsin \left[\phi /(2 E / m g l)^{1 / 2}\right]\right\} \tag{b}
\end{equation*}
$$

and, therefore, during a complete libratory cycle of the pendulum,

$$
\begin{equation*}
\Delta A_{o}=E / \nu=J \Rightarrow E(t)=J \nu(t), \quad \text { where } \omega^{2}=g / l\left(=(2 \pi \nu)^{2}\right) \tag{c}
\end{equation*}
$$

(iii) Show that the average of the total energy of the pendulum, over a cycle, equals

$$
\begin{equation*}
\langle E\rangle=\left(m l^{2} / 2\right)\left\langle(\dot{\phi})^{2}\right\rangle+(m g l / 2)\left\langle\phi^{2}\right\rangle \tag{d}
\end{equation*}
$$

that is,

$$
\begin{equation*}
E=\langle T+V\rangle=\langle T\rangle+\langle V\rangle \tag{e}
\end{equation*}
$$

(iv) Show that

$$
\begin{equation*}
\left\langle\phi^{2}\right\rangle=\phi_{o}^{2} / 2, \quad\left\langle(\dot{\phi})^{2}\right\rangle=\left(\phi_{o}^{2} / 2\right) \omega^{2} \tag{f}
\end{equation*}
$$

($\phi_{o}=$ maximum angular amplitude), and, therefore,

$$
\begin{equation*}
\langle E\rangle=m g l \phi_{o}{ }^{2} / 2 \quad(=E) \tag{g}
\end{equation*}
$$

(v) Show that

$$
\begin{equation*}
l^{3 / 4} \phi_{o}=\text { adiabatic invariant }, \quad \text { or } \quad l^{3} \phi_{o}{ }^{4}=\text { adiabatic invariant } \tag{h}
\end{equation*}
$$

or $\phi_{o} \sim l^{-3 / 4}$; that is, if l is reduced adiabatically by $50 \%, \phi_{o}$ increases by 68%.
(vi) Show that under adiabatic variations,

$$
\begin{equation*}
d E=-(E / 2 l) d l \tag{i}
\end{equation*}
$$

Problem 8.15.2 Consider the linear oscillations of a mathematical pendulum of mass m and length l on a smooth inclined plane of angle with the horizontal χ. Show that under adiabatic changes of χ,

$$
\begin{equation*}
\phi_{o} \sim(\sin \chi)^{-1 / 4} \tag{a}
\end{equation*}
$$

where $\phi_{o}=$ angular amplitude.
HINT
In the equation of motion of the ordinary mathematical pendulum (i.e., when $\chi=\pi / 2$), replace g with $g \sin \chi$. Then, the frequency becomes

$$
\nu=(1 / 2 \pi)(g / l)^{1 / 2}(\sin \chi)^{1 / 2}
$$

and

$$
\begin{equation*}
E=\text { maximum potential energy } \sim m g l \sin \chi \phi_{0}{ }^{2} . \tag{b}
\end{equation*}
$$

Problem 8.15.3 Consider a linear and undamped spring-mass oscillator of frequency

$$
\begin{equation*}
\nu=(1 / 2 \pi)(k / m)^{1 / 2} \tag{a}
\end{equation*}
$$

($k=$ spring "constant," $m=$ mass). Show that under adiabatic variations of k :

$$
\begin{equation*}
E^{2} / k=\text { adiabatic invariant } \quad(E=\text { total energy }) \tag{i}
\end{equation*}
$$

(ii) $\quad k a^{4}=$ adiabatic invariant $\quad(a=$ oscillation amplitude $)$.

HINT

$$
E=\text { maximum potential energy }=k a^{2} / 2
$$

For additional examples on adiabatic invariance, see, for example, Kotkin and Serbo [1971, chap. 13; too compact; to be read in conjunction with the mechanics volume of Landau and Lifshitz (1960)], Morton (1929), Pöschl (1949, pp. 161-163); and the examples/problems of $\$ 7.9$ in this book.

8.16 CANONICAL PERTURBATION THEORY IN ACTION-ANGLE VARIABLES

[For the writing of this section, we owe a big debt to the following excellent references: Born (1927, pp. 107-110, 249-261), Dittrich and Reuter (1994, pp. 109-136), Saletan and Cromer (1971, pp. 241-247, 251-258), Tabor (1989, pp. 96-105).]

This section constitutes a concise introduction to canonical perturbation theory; that is, an asymptotic approximation technique based on canonical transformations
and action-angle variables (§8.14). We have already treated perturbation problems via general canonical variables [variation of constants and associated averaging (§8.7, examples in §8.10)]. But, it turns out that action-angle variables, due to their special properties, are particularly well suited here; and this may explain why this topic has been so central to both the genesis of the new quantum mechanics (1920s) and modern (classical) nonlinear dynamics (1960s to the present).

One DOF

Let us begin with the first-order perturbation of a one-DOF conservative system; that is, $\partial H / \partial t=0$ (time-independent, or stationary state, perturbation theory). We will assume that both its undisturbed and disturbed motions are periodic, and that the undisturbed one of them is known exactly; that is, after solving its unperturbed Hamilton-Jacobi (HJ) equation, say by separation of its (unperturbed) variables, we have expressed the latter $\left(q_{o}, p_{o}\right)$ in terms of (unperturbed) action and angle variables $\left(J_{o}, w_{o}\right)$. Its Hamiltonian H_{o} will, then, depend only on $J_{o}: H_{o}=H_{o}\left(q_{o}, p_{o}\right)=H_{o}\left(J_{o}\right)$; so that its (constant) frequency equals $\nu_{o}=\partial H_{o} / \partial J_{o}$ and, therefore, $w_{o}=\nu_{o} t+\gamma_{o}$.

Let the disturbed problem be described by the perturbed Hamiltonian $H=H_{o}+\varepsilon H_{1}+\varepsilon^{2} H_{2}+\cdots$, or, more precisely, after substituting in it the unperturbed variables,

$$
\begin{align*}
& H=H\left(w_{o}, J_{o} ; \varepsilon\right)=H_{o}\left(J_{o}\right)+\varepsilon \\
&\left(=\text { unperturbed Hamiltonian }\left(w_{o}, J_{o}\right)+\varepsilon^{2} H_{2}\left(w_{o}, J_{o}\right)+\cdots\right. \\
&+ \text { second-order perturbation Hamiltonian } \tag{8.16.1a}
\end{align*}
$$

where

$$
\varepsilon=\text { parameter }, \text { or strength, of the perturbation }
$$

(of the order of the ratio of the disturbing agency to that already in action) $\ll 1$;
and $H\left(w_{o}, J_{o} ; 0\right)=H_{o}\left(J_{o}\right)$. Since H is a known function of w_{o} and J_{o}, all the "perturbation components" $H_{p}(p=o \equiv 0,1,2,3, \ldots)$ are known.

The series (8.16.1a) is assumed to converge for a sufficiently large domain of values of the coordinates and momenta used; and, the resulting motions are assumed to remain periodic for all values of ε in an interval of interest containing $\varepsilon=0$.

By solution of the perturbed problem, we will understand the finding of a generating function $W_{o} \equiv A_{o} \equiv G$ [new notation is introduced in this section to avoid having too many subscripts (see below)] that transforms the original Hamiltonian coordinates into new angle-action variables

$$
\begin{equation*}
\left(q_{o}, p_{o}\right) \rightarrow(w, J): \quad p_{o}=\partial G / \partial q_{o}, \quad w=\partial G / \partial J, \tag{8.16.1c}
\end{equation*}
$$

[recall §8.8, case: $F_{2}\left(q, p^{\prime}\right) \rightarrow G\left(q_{o}, J\right)$] or, if the original coordinate and momentum are w_{o} and J_{o}, respectively [i.e., $F_{2}\left(q, p^{\prime}\right) \rightarrow G\left(w_{o}, J\right) \Rightarrow \delta G=J_{o} \delta w_{o}+w \delta J$], then

$$
\begin{equation*}
\left(w_{o}, J_{o}\right) \rightarrow(w, J): \quad J_{o}=\partial G / \partial w_{o}, \quad w=\partial G / \partial J, \tag{8.16.1d}
\end{equation*}
$$

and, also, is such that:

- For $\varepsilon=0,(w, J)$ reduce to $\left(w_{o}, J_{o}\right)$;
- The perturbed (new) coordinate q is periodic in the new angle variable w with period 1 ;
- The perturbed (new) Hamiltonian depends only on the new action variable: $H=H(J)$; that is,

$$
\begin{equation*}
H\left(q_{o}, p_{o} ; 0\right)=H_{o}\left(J_{o}\right)=E\left(J_{o} ; 0\right) \rightarrow H(q, p ; \varepsilon)=H(J)=E(J ; \varepsilon) \tag{8.16.1e}
\end{equation*}
$$

Then,

$$
\begin{gather*}
\nu=\partial H(J) / \partial J=\partial E(J) / \partial J=\text { new (constant) frequency, } \tag{8.16.1f}\\
\Rightarrow \quad w=\nu t+\gamma=\text { new angle variable } \tag{8.16.1~g}
\end{gather*}
$$

Since $\partial G / \partial t=0$, the corresponding (perturbed) HJ equation is

$$
\begin{equation*}
H\left(w_{o}, J_{o}\right)=H\left(w_{o}, \partial G / \partial w_{o}\right)=E(J) \tag{8.16.2a}
\end{equation*}
$$

REMARK

The undisturbed motion variables w_{o}, J_{o} remain canonical in the perturbed motion; but without their usual angle-action behavior. Indeed, here, the corresponding equations of motion are

$$
\begin{align*}
& d J_{o} / d t=-\partial H / \partial w_{o}=-\varepsilon\left(\partial H_{1} / \partial w_{o}\right) \neq 0 \tag{8.16.2b}\\
& d w_{o} / d t=\partial H / \partial J_{o}=\partial H_{o} / \partial J_{o}+\varepsilon\left(\partial H_{1} / \partial J_{o}\right) \neq \text { constant } \tag{8.16.2c}
\end{align*}
$$

that is, J_{o} is no longer constant, and w_{o} is no longer a linear function of time.
Let us find the perturbational consequences of the basic equation (8.16.2a), or, more precisely,

$$
\begin{equation*}
H\left[w_{o}(w, J), J_{o}(w, J), \varepsilon\right]=E(J, \varepsilon) \tag{8.16.2d}
\end{equation*}
$$

Expanding all functions involved there in ε-powers, we obtain

$$
\begin{align*}
H\left(w_{o}, J_{o}\right) & =H_{o}\left(J_{o}\right)+\varepsilon H_{1}\left(w_{o}, J_{o}\right)+\cdots \\
& =H_{o}\left(\partial G / \partial w_{o}\right)+\varepsilon H_{1}\left(w_{o}, \partial G / \partial w_{o}\right)+\cdots \tag{8.16.3a}\\
E(J, \varepsilon)= & E_{o}(J)+\varepsilon E_{1}(J)+\cdots \tag{8.16.3b}\\
G\left(w_{o}, J\right) & =G_{o}\left(w_{o}, J\right)+\varepsilon G_{1}\left(w_{o}, J\right)+\cdots \\
& =w_{o} J+\varepsilon G_{1}\left(w_{o}, J\right)+\cdots \tag{8.16.3c}
\end{align*}
$$

since for $\varepsilon=0$ the function G must reduce to the identity transformation $w_{o} J\left(J_{o}=\partial G / \partial w_{o}=J, w=\partial G / \partial J=w_{o}\right)$; and where all its "perturbation components" G_{1}, G_{2}, \ldots, are periodic in w_{o} with fundamental period 1 .
[To prove this, it suffices to prove the w_{o}-periodicity of

$$
G^{\prime}\left(w_{o}, J\right) \equiv G\left(w_{o}, J\right)-w_{o} J=\varepsilon G_{1}\left(w_{o}, J\right)+\cdots .
$$

Indeed, since (§8.12) after j cycles of q the action function increases by $j J$, we will have

$$
\begin{aligned}
G^{\prime}\left(w_{o}+j, J\right) & =G\left(w_{o}+j, J\right)-\left(w_{o}+j\right) J=\left[G\left(w_{o}, J\right)+j J\right]-\left(w_{o} J+j J\right) \\
& =G\left(w_{o}, J\right)-w_{o} J=G^{\prime}\left(w_{o}, J\right), \quad \text { Q.E.D. }
\end{aligned}
$$

Then, as eq. (8.16.3e) shows, $w=w_{o}+$ periodic function of w_{o}, with fundamental period 1); and so q is periodic in both w and w_{o}.]

Next, to be able to compare the various ε-order terms of H and $E[$ i.e., implement (8.16.2d)], we must express (8.16.3a) in terms of J, instead of J_{o}. To this end, first, we introduce (8.16.3c) in (8.16.1d) and expand in ε :

$$
\begin{align*}
& J_{o}=\partial G\left(w_{o}, J\right) / \partial w_{o}=J+\varepsilon\left[\partial G_{1}\left(w_{o}, J\right) / \partial w_{o}\right]+\cdots, \tag{8.16.3d}\\
& w=\partial G\left(w_{o}, J\right) / \partial J=w_{o}+\varepsilon\left[\partial G_{1}\left(w_{o}, J\right) / \partial J\right]+\cdots ; \tag{8.16.3e}
\end{align*}
$$

and then insert these series into (8.16.3a) and, again, expand in ε. Thus, we find, to the first order,

$$
\begin{align*}
H\left(w_{o}, J_{o}\right) & =H_{o}\left[J+\varepsilon\left(\partial G_{1} / \partial w_{o}\right)\right]+\varepsilon H_{1}\left[w_{o}, J+\varepsilon\left(\partial G_{1} / \partial w_{o}\right)\right] \\
& =\left\{H_{o}(J)+\varepsilon\left(\partial G_{1} / \partial w_{o}\right)\left[\partial H_{o}(J) / \partial J\right]\right\}+\varepsilon H_{1}\left(w_{o}, J\right) \\
& =H_{o}(J)+\varepsilon\left\{H_{1}\left(w_{o}, J\right)+\left(\partial G_{1} / \partial w_{o}\right)\left[\partial H_{o}(J) / \partial J\right]\right\}, \tag{8.16.3f}
\end{align*}
$$

where

$$
\begin{equation*}
H_{o}(J)=\left[H_{o}\left(J_{o}\right)\right]_{J_{o}=J}, \quad H_{1}\left(w_{o}, J\right)=\left[H_{1}\left(w_{o}, J_{o}\right)\right]_{J_{o}=J} . \tag{8.16.3~g}
\end{equation*}
$$

Substituting the above results into (8.16.2a, d) we obtain, to the first order,

$$
\begin{align*}
H_{o}(J)+\varepsilon\left\{H_{1}\left(w_{o}, J\right)+\right. & {\left.\left[\partial H_{o}(J) / \partial J\right]\left[\partial G_{1}\left(w_{o}, J\right) / \partial w_{o}\right]\right\} } \\
& =E_{o}(J)+\varepsilon E_{1}(J) \tag{8.16.4a}
\end{align*}
$$

and, equating the coefficients of like powers of ε, we get

$$
\begin{array}{ll}
\varepsilon^{0}: & H_{o}(J)=E_{o}(J), \\
\varepsilon^{1}: & H_{1}\left(w_{o}, J\right)+\left[\partial H_{o}(J) / \partial J\right]\left[\partial G_{1}\left(w_{o}, J\right) / \partial w_{o}\right]=E_{1}(J) . \tag{8.16.4c}
\end{array}
$$

Now:

- Equation (8.16.4b) yields the zeroth approximation to the energy E_{o} : we find it by replacing J_{o} with J in the energy of the unperturbed motion.
- Equation (8.16.4c) is a differential equation that yields the first approximation to the energy E_{1}; and, at first sight, it gives the impression that to do this we need not only H_{1}, but also G_{1}, both functions of w_{o}, and the unknown but constant J.

However, things are not that complicated:
(i) Since [recalling (8.16.3g)]

$$
\begin{equation*}
\partial H_{o}(J) / \partial J=\left[\partial H_{o}\left(J_{o}\right) / \partial J_{o}\right]_{J_{o}=J}=\partial / \partial J\left\{\left[H_{o}\left(J_{o}\right)\right]_{J_{o}=J}\right\}=\nu_{o}(J) \tag{8.16.5a}
\end{equation*}
$$

[i.e., $\nu_{o}(J)$ is obtained from the frequency of the unperturbed motion $\nu_{o}\left(J_{o}\right)$, by replacing in it J_{o} with J], (8.16.4c) can be rewritten as

$$
\begin{equation*}
H_{1}\left(w_{o}, J\right)+\nu_{o}\left[\partial G_{1}\left(w_{o}, J\right) / \partial w_{o}\right]=E_{1}(J) ; \tag{8.16.5b}
\end{equation*}
$$

(ii) E_{1} is constant, and H_{1} is periodic in w_{o} with constant term; and
(iii) G_{1} is periodic in w_{o} with constant term; that is, it is representable by the Fourier series:

$$
\begin{equation*}
G_{1}\left(w_{o}, J\right)=\sum g_{s}(J) \exp \left(2 \pi i s w_{o}\right) \quad(s=-\infty, \ldots,+\infty) \tag{8.16.5c}
\end{equation*}
$$

and so its derivative $\partial G_{1} / \partial w_{o}$ is also periodic in w_{o}, but contains no constant term. Hence, averaging $\left(8.16 .5 \mathrm{~b}\right.$) over one unperturbed period $\tau_{o}=1$ (or over the unperturbed time variation), and noting that

$$
\begin{equation*}
\left\langle\partial G_{1} / \partial w_{o}\right\rangle=0, \tag{8.16.5d}
\end{equation*}
$$

a consequential result in our perturbation scheme, we obtain the first-order energy correction:

$$
\begin{equation*}
E_{1}(J)=\left\langle H_{1}\left(w_{o}, J\right)\right\rangle \quad\left(=\left\langle E_{1}(J)\right\rangle\right), \tag{8.16.5e}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle H_{1}\left(w_{o}, J\right)\right\rangle \equiv(1 / 1) \int_{0}^{1} H_{1}\left(w_{o}, J\right) d w_{o}=\text { function of } J \tag{8.16.5f}
\end{equation*}
$$

Then, (8.16.3b) becomes

$$
\begin{equation*}
E(J)=E_{o}(J)+\varepsilon E_{1}(J)=H_{o}(J)+\varepsilon\left\langle H_{1}\left(w_{o}, J\right)\right\rangle ; \tag{8.16.5g}
\end{equation*}
$$

in words: to a first approximation, the energy of the perturbed motion equals the energy of the unperturbed motion plus the average of the first-order part of the perturbation Hamiltonian taken over the unperturbed motion.

The perturbed frequency is then given, to the first order, by

$$
\begin{equation*}
\nu=\partial E(J) / \partial J=\nu_{o}+\varepsilon\left[\partial E_{1}(J) / \partial J\right]=\nu_{o}+\varepsilon\left[\partial\left\langle H_{1}\right\rangle / \partial J\right]_{J=J_{o}} \tag{8.16.5h}
\end{equation*}
$$

Next, we turn to the calculation of the first-order correction of the motion. As ($8.16 .3 \mathrm{~d}, \mathrm{e}$) show, this requires finding G_{1} : due to (8.16 .5 e), eq. (8.16 .5 b) can be written as the following (linear and constant coefficient partial differential) equation for G_{1} :

$$
\begin{equation*}
\nu_{o}\left[\partial G_{1}\left(w_{o}, J\right) / \partial w_{o}\right]=\text { known function of } w_{o} \text { and } J=-\Delta H_{1}\left(w_{o}, J\right) \tag{8.16.5i}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{1}\left(w_{o}, J\right)-\left\langle H_{1}\left(w_{o}, J\right)\right\rangle=H_{1}\left(w_{o}, J\right)-E_{1}(J) \equiv \Delta H_{1}\left(w_{o}, J\right) \\
& \quad=\text { oscillatory part, or periodic component, of } H_{1} \text { (of zero average/mean, } \\
& \left.\quad \text { and a known function of } w_{o} \text { and the constant } J\right) \tag{8.16.5j}
\end{align*}
$$

and so it is expressible as a Fourier series without constant term (a fact denoted, as in $\S 8.15$, by a prime on the summation sign):

$$
\begin{equation*}
\Delta H_{1}\left(w_{o}, J\right)=\sum^{\prime} h_{s}(J) \exp \left(2 \pi i s w_{o}\right) \quad(s=-\infty, \ldots,+\infty ; \neq 0) \tag{8.16.5k}
\end{equation*}
$$

Utilizing (8.16.5c) and (8.16.5k) in (8.16.5i) and then equating coefficients of like harmonics, we express the unknown amplitudes g_{s} in terms of the known ones $h_{s}: g_{s}=-\left[2 \pi i\left(\nu_{o} s\right)\right]^{-1} h_{s}$, and so

$$
\begin{align*}
& G_{1}\left(w_{o}, J\right)=-\sum^{\prime}\left[2 \pi i\left(\nu_{o} s\right)\right]^{-1} h_{s} \exp \left(2 \pi i s w_{o}\right) \\
&=\sum^{\prime}\left(\omega_{o} s\right)^{-1}\left(i h_{s}\right) \exp \left(2 \pi i s w_{o}\right) \\
& {[}=\text { Infinite sum of finite terms (assuming, of course } \nu_{o} \neq 0, \\
&\quad \text { and since } s \neq 0] . \tag{8.16.51}
\end{align*}
$$

[The general solution of (8.16.5i) is $G_{1}\left(w_{o}, J\right)+f(J)$, where $f(J)$ is an arbitrary function of J. But as $\left(8.16 .3 \mathrm{~d}\right.$, e) show, $f(J)$ does not affect the $J-J_{o}$ relation, and simply adds a term $\varepsilon[d f(J) / d J]$ to $w-w_{o}$. However, since $J=$ constant, this amounts to the addition of an inconsequential constant to $w-w_{o} ; w$ and w_{o} being angle variables, their difference at the "initial" angle $w_{o}(=0$, for convenience) is arbitrary. In view of this freedom, we will henceforth set $f(J)=0$.]

Then, using (8.16.3d, e), we obtain the new action-angle variables to the first order; that is, eq. (8.16.3e) yields the small oscillations, superimposed on the unperturbed motion, with amplitude of order ε, and analogously for (8.16.3d). Hence, in this perturbation scheme, no secular perturbations occur; that is, quantities that are constant in the unperturbed motion do not undergo changes of their own order of magnitude.

REMARK

A word of caution is needed here: if ν_{o} is very small, then, as (8.16 .5 k) shows, the effect of this first-order perturbation may be pretty substantial - the convergence of our perturbation series cannot be guaranteed for very long time intervals (i.e., for all time). (Similarly, it can be shown that the effect of the (p) th perturbation will be proportional to $\nu_{o}{ }^{-p}$.) As a rule, "small ν_{o} " situations occur near a separatrix - that is, a boundary that separates phase space curves of very different properties; for example, a curve that separates libration from rotation (fig. 8.13). As shown below, such mathematical difficulties become far greater in $n(\geq 2)$ DOF systems: there, not just small frequencies, but also finite/large ones, may combine among themselves (i.e., in near-degeneracy conditions) to produce very small denominators in the coefficients of the corresponding perturbational series; and, thus, may call into question its convergence. More on this famous problem of "small divisors" later.

Several DOF

Here, we extend our perturbation method in a twofold way: (i) to systems with n DOF, and (ii) to include up to second-order terms in ε. The basic assumptions of the one-DOF case are also made here:

- For $\varepsilon=0$, the new (perturbed) angle-action variables

$$
\begin{align*}
w & \equiv\left(w_{1}, \ldots, w_{n}\right) \equiv\left(w_{k} ; k=1, \ldots, n\right), \tag{8.16.6a}\\
J & \equiv\left(J_{1}, \ldots, J_{n}\right) \equiv\left(J_{k} ; k=1, \ldots, n\right), \tag{8.16.6b}
\end{align*}
$$

reduce to the old (unperturbed) ones

$$
\begin{align*}
& w_{o} \equiv\left(w_{1 o}, \ldots, w_{n o}\right) \equiv\left(w_{k o} ; k=1, \ldots, n\right), \tag{8.16.6c}\\
& J_{o} \equiv\left(J_{1 o}, \ldots, J_{n}\right) \equiv\left(J_{k o} ; k=1, \ldots, n\right) . \tag{8.16.6d}
\end{align*}
$$

- The solution of the unperturbed problem in the $\left(w_{o}, J_{o}\right)$ is assumed known and nondegenerate.
- Both unperturbed and perturbed Hamiltonians depend only on the corresponding action variables: $H_{o}=H_{o}\left(J_{o}\right)$ and $H=H(J)$, and
- The perturbed coordinates are periodic in both the $w_{k o}$ and w_{k}, with fundamental period 1 .

As in the one-DOF case, we are seeking the perturbative solution of the new HJ equation

$$
\begin{equation*}
H\left(w_{o}, J_{o}\right)=H\left(w_{o}, \partial G / \partial w_{o}\right)=E(J) \tag{8.16.6e}
\end{equation*}
$$

where $G=G\left(w_{o}, J\right)$ is the generating function of the canonical transformation

$$
\begin{equation*}
\left(w_{o}, J_{o}\right) \rightarrow(w, J): \quad J_{k o}=\partial G\left(w_{o}, J\right) / \partial w_{k o}, \quad w_{k}=\partial G\left(w_{o}, J\right) / \partial J_{k} \tag{8.16.6f}
\end{equation*}
$$

Expanding H, E, and G in ε-powers, we obtain

$$
\begin{align*}
H\left(w_{o}, J_{o}\right) & =H_{o}\left(J_{o}\right)+\varepsilon H_{1}\left(w_{o}, J_{o}\right)+\varepsilon^{2} H_{2}\left(w_{o}, J_{o}\right)+\cdots \\
& =H_{o}\left(\partial G / \partial w_{o}\right)+\varepsilon H_{1}\left(w_{o}, \partial G / \partial w_{o}\right)+\varepsilon^{2} H_{2}\left(w_{o}, \partial G / \partial w_{o}\right)+\cdots \tag{8.16.7a}\\
E(J, \varepsilon)= & E_{o}(J)+\varepsilon E_{1}(J)+\varepsilon^{2} E_{1}(J)+\cdots \tag{8.16.7b}\\
G\left(w_{o}, J\right)= & G_{o}\left(w_{o}, J\right)+\varepsilon G_{1}\left(w_{o}, J\right)+\varepsilon^{2} G_{2}\left(w_{o}, J\right)+\cdots \\
= & \sum w_{k o} J_{k}+\varepsilon G_{1}\left(w_{o}, J\right)+\varepsilon^{2} G_{2}\left(w_{o}, J\right)+\cdots \tag{8.16.7c}
\end{align*}
$$

Then, (8.16.6f) become

$$
\begin{align*}
J_{k o} & =J_{k}+\varepsilon\left(\partial G_{1} / \partial w_{k o}\right)+\varepsilon^{2}\left(\partial G_{2} / \partial w_{k o}\right)+\cdots \tag{8.16.8a}\\
w_{k} & =w_{k o}+\varepsilon\left(\partial G_{1} / \partial J_{k}\right)+\varepsilon^{2}\left(\partial G_{2} / \partial J_{k}\right)+\cdots \tag{8.16.8b}
\end{align*}
$$

and this allows us to rewrite (8.16.7a) to the second order as follows:

$$
\begin{align*}
H\left(w_{o}, J_{o}\right)=H_{o}[J & \left.+\varepsilon\left(\partial G_{1} / \partial w_{o}\right)+\varepsilon^{2}\left(\partial G_{2} / \partial w_{o}\right)\right] \\
& +\varepsilon H_{1}\left(w_{o}, J+\cdots\right)+\varepsilon^{2} H_{2}\left(w_{o}, J+\cdots\right) \\
=H_{o}(J) & +\sum\left[\varepsilon\left(\partial G_{1} / \partial w_{k o}\right)+\varepsilon^{2}\left(\partial G_{2} / \partial w_{k o}\right)\right]\left(\partial H_{o} / \partial J_{k}\right) \\
& +(1 / 2) \sum \sum\left(\partial^{2} H_{o} / \partial J_{k} \partial J_{l}\right)\left[\varepsilon\left(\partial G_{1} / \partial w_{k o}\right)\right]\left[\varepsilon\left(\partial G_{1} / \partial w_{l o}\right)\right] \\
& +\varepsilon H_{1}\left(w_{o}, J\right)+\varepsilon^{2} \sum\left(\partial G_{1} / \partial w_{k o}\right)\left(\partial H_{1} / \partial J_{k}\right)+\varepsilon^{2} H_{2}\left(w_{o}, J\right) \tag{8.16.8c}
\end{align*}
$$

where, as in (8.16.5a),

$$
\begin{equation*}
\partial H_{o} / \partial J_{k} \equiv\left[\partial H_{o}\left(J_{o}\right) / \partial J_{k o}\right]_{J_{o}=J}=\partial / \partial J_{k}\left[\left.H_{o}\left(J_{o}\right)\right|_{J_{o}=J}\right] \tag{8.16.8d}
\end{equation*}
$$

and similarly for the other H-derivatives.
Next, inserting the power series $(8.16 .8 \mathrm{c}, 7 \mathrm{~b})$ into $(8.16 .6 \mathrm{e})$, and equating coefficients of like powers of ε, while noting that [recall (8.16.5a)]

$$
\begin{equation*}
\partial H_{o} / \partial J_{k}=\nu_{k o}(J) \quad\left[\Rightarrow \partial \nu_{k o} / \partial J_{l}=\partial \nu_{l o} / \partial J_{k}\right] \tag{8.16.9a}
\end{equation*}
$$

we obtain the following group of differential equations:

$$
\begin{array}{ll}
\varepsilon^{0}: & H_{o}(J)=E_{o}(J), \\
\varepsilon^{1} \equiv \varepsilon: & H_{1}\left(w_{o}, J\right)+\sum \nu_{k o}\left(\partial G_{1} / \partial w_{k o}\right)=E_{1}(J), \\
\varepsilon^{2}: & K_{2}\left(w_{o}, J\right)+\sum \nu_{k o}\left(\partial G_{2} / \partial w_{k o}\right)=E_{2}(J), \tag{8.16.9d}
\end{array}
$$

where

$$
\begin{align*}
K_{2}\left(w_{o}, J\right) \equiv H_{2}\left(w_{o}, J\right) & +\sum\left(\partial G_{1} / \partial w_{k o}\right)\left(\partial H_{1} / \partial J_{k}\right) \\
& +(1 / 2) \sum \sum\left(\partial^{2} H_{o} / \partial J_{k} \partial J_{l}\right)\left(\partial G_{1} / \partial w_{k o}\right)\left(\partial G_{1} / \partial w_{l o}\right) \tag{8.16.9e}
\end{align*}
$$

Next, as in the 1-DOF case, it can be shown that all G_{p} 's in (8.16.7c) are periodic in the $w_{k o}$'s; that is,

$$
\begin{equation*}
G_{p}\left(w_{o}, J\right)=\sum g_{p, s}(J) \exp \left(2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}_{\boldsymbol{o}}\right), \tag{8.16.10a}
\end{equation*}
$$

where $p=1,2, \ldots, \boldsymbol{s} \equiv\left(s_{1}, \ldots, s_{n}\right)=$ integers ranging from $-\infty$ to $+\infty, \boldsymbol{w}_{\boldsymbol{o}} \equiv\left(w_{1 o}\right.$, $\left.\ldots, w_{n o}\right) \equiv w_{o}$, and so their w_{o}-derivatives $\partial G_{p} / \partial w_{k o}$ contain no constant terms; that is, $\boldsymbol{s} \neq(0, \ldots, 0)$. Therefore, averaging ($8.16 .9 \mathrm{~b}-\mathrm{e}$) over a complete unperturbed period w_{o} - that is, over the unit w_{o}-cube (§8.14), since $\left\langle\partial G_{p} / \partial w_{k o}\right\rangle=0$ and the last/ double sum group of terms in (8.16.9e) is periodic in the w_{o} 's (the $\partial^{2} H_{o} / \partial J_{k} \partial J_{l}$ depend only on the J 's) - we obtain

$$
\begin{align*}
& H_{o}(J)=E_{o}(J) \tag{8.16.10b}\\
& \left\langle H_{1}\left(w_{o}, J\right)\right\rangle=E_{1}(J), \tag{8.16.10c}\\
& \left\langle K_{2}\left(w_{o}, J\right)\right\rangle=\left\langle H_{2}\left(w_{o}, J\right)+\sum\left(\partial G_{1} / \partial w_{k o}\right)\left(\partial H_{1} / \partial J_{k}\right)\right\rangle=E_{2}(J) \tag{8.16.10d}
\end{align*}
$$

that is, to the second order, the energy is

$$
\begin{equation*}
E=H_{o}+\left\langle H_{1}\right\rangle+\left\langle H_{2}+\sum\left(\partial G_{1} / \partial w_{k o}\right)\left(\partial H_{1} / \partial J_{k}\right)\right\rangle . \tag{8.16.10e}
\end{equation*}
$$

Due to the above [and recalling (8.16.5j)], we can rewrite the perturbation equations (8.16.9c, d), respectively, as

$$
\begin{align*}
& \sum \nu_{k o}\left(\partial G_{1} / \partial w_{k o}\right)=-\left[H_{1}\left(w_{o}, J\right)-\left\langle H_{1}\left(w_{o}, J\right)\right\rangle\right] \equiv-\Delta H_{1}\left(w_{o}, J\right), \tag{8.16.11a}\\
& \sum \nu_{k o}\left(\partial G_{2} / \partial w_{k o}\right)=-\left[K_{2}\left(w_{o}, J\right)-\left\langle K_{2}\left(w_{o}, J\right)\right\rangle\right] \equiv-\Delta K_{2}\left(w_{o}, J\right) \tag{8.16.11b}
\end{align*}
$$

and, from these, G_{1}, G_{2} can be determined (see below). Then, equations (8.16.8a, b) yield the new action-angle variables, correct to second order.

The above show that (i) knowledge of $K_{2}\left(\rightarrow\left\langle K_{2}\right\rangle=E_{2}\right)$ requires knowledge of G_{1}; then G_{2} can be calculated; and (ii) in a one-DOF system, both G_{1} and G_{2} can be found by direct quadrature:

$$
\begin{align*}
& \partial G_{1} / \partial w_{o}=\left(1 / \nu_{o}\right)\left(\left\langle H_{1}\right\rangle-H_{1}\right)=\text { known function of } w_{o} \text { and } J, \tag{8.16.11c}\\
& \partial G_{2} / \partial w_{o}=\left(1 / \nu_{o}\right)\left(\left\langle K_{2}\right\rangle-K_{2}\right)=\text { known function of } w_{o} \text { and } J ; \tag{8.16.11d}
\end{align*}
$$

and can be easily extended to higher ε-orders.

Finally, by ($8.16 .10 \mathrm{~b}-\mathrm{d}$), the perturbed frequencies equal, to the second order,

$$
\begin{align*}
\nu_{k} & =\partial E / \partial J_{k}=\partial E_{o} / \partial J_{k}+\varepsilon\left(\partial E_{1} / \partial J_{k}\right)+\varepsilon^{2}\left(\partial E_{2} / \partial J_{k}\right) \\
& \approx \nu_{k o}+\varepsilon\left(\partial\left\langle H_{1}\right\rangle / \partial J_{k}\right)+\varepsilon^{2}\left(\partial\left\langle K_{2}\right\rangle / \partial J_{k}\right), \tag{8.16.11e}
\end{align*}
$$

in agreement with (8.16.5h).
[For the extension of this perturbation scheme to the (p) th order; that is, the differential equation that results by equating the coefficients of ε^{p} in (8.16.6e), see Born (1927, p. 254 ff .); also prob. 8.16.3. It is not hard to see that finding E_{p} requires knowledge of G_{p-1}; then G_{p} can be calculated.]

Small Divisors

Now, let us resume the calculation of G_{1}, G_{2}. To express the (unknown) Fourier coefficients of the left sides of (8.16.11a, b) in terms of the (known) Fourier coefficients of their right sides, we proceed as follows. The right side of (8.16.11a) is a known periodic function of the w_{o} 's without constant term, and so we can write

$$
\begin{equation*}
-\Delta H_{1}\left(w_{o}, J\right)=-\sum^{\prime} h_{1, s}(J) \exp \left(2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}_{\boldsymbol{o}}\right) \tag{8.16.12a}
\end{equation*}
$$

Similarly, by (8.16.10a) with $p=1$, we have

$$
\begin{equation*}
G_{1}\left(w_{o}, J\right)=\sum g_{1, s}(J) \exp \left(2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}_{\boldsymbol{o}}\right), \tag{8.16.12b}
\end{equation*}
$$

and therefore the left side of (8.16.11a) can be expressed as

$$
\begin{equation*}
\sum \nu_{k o}\left(\partial G_{1} / \partial w_{k o}\right)=\sum^{\prime}\left[2 \pi i\left(\boldsymbol{s} \cdot \boldsymbol{v}_{\boldsymbol{o}}\right) g_{1, s}(J)\right] \exp \left(2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}_{\boldsymbol{o}}\right) \tag{8.16.12c}
\end{equation*}
$$

where $s_{k} \neq 0$ (i.e., no constant term) and $\boldsymbol{s} \cdot \boldsymbol{v}_{\boldsymbol{o}} \equiv \sum s_{k} \nu_{k o} \neq 0(k=1, \ldots, n)$.
Hence, equating coefficients of equal harmonics of (8.16.12a) and (8.16.12c), as required by (8.16.11a), we immediately obtain the sought relations for the Fourier coefficients:

$$
\begin{equation*}
g_{1, s}(J) \equiv g_{1}(\boldsymbol{s} ; J)=-\left[2 \pi i\left(\boldsymbol{s} \cdot \boldsymbol{v}_{\boldsymbol{o}}\right)\right]^{-1} h_{1, s}(J) ; \tag{8.16.12d}
\end{equation*}
$$

and so, finally, (8.16.12b) becomes

$$
\begin{equation*}
G_{1}\left(w_{o}, J\right)=-\sum^{\prime}\left[2 \pi i\left(\boldsymbol{s} \cdot \boldsymbol{v}_{\boldsymbol{o}}\right)\right]^{-1} h_{1, s}(J) \exp \left(2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}_{\boldsymbol{o}}\right) . \tag{8.16.12e}
\end{equation*}
$$

Similarly, expanding both sides of (8.16.11b) à la Fourier, and equating coefficients, we determine G_{2}. This, as (8.16.9e) shows, requires knowledge of G_{1}. Continuing in this way, we can determine G_{3}, G_{4}, \ldots, and hence G to any accuracy desired.

Now, it is not too hard to see that for the representation (8.16.12e) to be meaningful, not only the unperturbed frequencies $\nu_{k o}$ should be nondegenerate (i.e., $\sum s_{k} \nu_{k o} \neq 0$; unless the coefficients h_{1}, \ldots obtained from all sets of integers that cause degeneracies also vanish), but also, since by an appropriate choice of the integers s_{k} the sum $\sum s_{k} \nu_{k o}$ may come arbitrarily close to zero (and, worse, such a near-degeneracy situation may occur an infinite number of times, as the s_{k} roam from $-\infty$ to $+\infty$), for all these very unpleasant reasons the amplitudes $h_{1, s}$ must converge very rapidly. Hence, from a rigorous mathematical viewpoint, the series (8.16.12b, e)
does not converge; and this inescapable fact casts serious reservations on the unconditional validity of the entire method of canonical perturbations.

REMARKS

(i) This is the Hamiltonian version of the famous problem of small divisors (or resonant denominators), first recognized by Poincaré in his epoch-making researches on the nonlinear ordinary differential equations of celestial mechanics [late 19th century, culminating in his classic three-volume work: Les Méthodes Nouvelles de la Mécanique Céleste (1890s)]; and on which, understandably, there exists an enormous (astronomical size) literature!

Briefly, Poincare has shown that the series (8.16.12b) is semiconvergent; that is, if it is truncated (discontinued) after a certain finite number of terms, it represents the motion of the perturbed system very accurately; not for long periods of time, but long enough for many practical purposes. It is theoretical reasons like this that had made it so difficult to prove the stability of our solar system; that is, to show that the mutual distances among the planets and the sun remain bounded for infinitely long time intervals. (And, of course, it should not be forgotten that a realistic stability investigation of this problem must include nonmechanical causes, such as electromagnetic and thermal interactions.) Several decades later, it was shown that the situation is not fatal: Kolmogorov (mid-1950s)/ Arnold/Moser (early 1960s) (KAM theorem) demonstrated that if the $\nu_{k o}$ are "very irrational," then the series (8.16.12b) converges for all time.
(ii) For in-depth analyses of these fundamental difficulties [for a long time viewed as mathematically insuperable, but whose resolution in the 1960s led straight up to the frontier of contemporary nonlinear dynamics (regular and stochastic, or chaotic, motion) and the threshold with quantum mechanics], we can do no more than refer the reader to the following excellent references: Dittrich and Reuter (1994, chaps. 11-14: pp. 137-171), Lichtenberg and Lieberman (1992), McCauley (1997), Stoker (1950, pp. 112-114, 235-239; elementary but enlightening introduction to the problem of small divisors), Straumann (1987, chap. 10: pp. 259-307), Tabor (1989, chap. 3: pp. 89-117); also Born (1927, pp. 255-256), and our Elementary Mechanics [under production, Part I (20th cent.): an encyclopaedic summary]. Mathematically oriented readers (or mathematicians) may wish to consult (the not so readable) Arnold (1976, chap. 10: pp. 269-299, appendix 8: pp. 405-423).]

Finally, we recall that our discussion of perturbation theory has been limited not only to nondegenerate cases, but also to time-independent Hamiltonians. For classical (pre-KAM) treatments of the effects of degeneracies and/or time-dependence, with an eye toward their older quantum-mechanical applications, we recommend Born (1927, pp. 261-286; best reference in English) and Fues (1927, pp. 161-177; comprehensive handbook exposition); also Birtwistle (1926, pp. 216-217) and Haar (1971, pp. 160-162).

Example 8.16.1 Weakly Nonlinear Planar Mathematical Pendulum; First-Order Perturbation (Dittrich and Reuter, 1994, pp. 113-115). Let us consider a plane mathematical pendulum of mass m and length l undergoing (free and undamped) small but nonlinear angular oscillations ϕ, under gravity, about a fixed point O. Expanding its exact Hamiltonian

$$
\begin{equation*}
H=p^{2} / 2 m l^{2}+m g l(1-\cos \phi)=p^{2} / 2 m l^{2}-m g l \cos \phi+\text { constant } \tag{a}
\end{equation*}
$$

in powers of ϕ, and keeping only up to the first term after its quadratic ones, we find

$$
\begin{align*}
& H=p^{2} / 2 m l^{2}+m g l\left[\left(\phi^{2} / 2\right)-\left(\phi^{4} / 24\right)\right] \equiv H_{o}+\varepsilon H_{1} \tag{b}\\
& H_{o} \equiv p^{2} / 2 A+\left(A \omega_{o}^{2} / 2\right) \phi^{2}, \quad \varepsilon H_{1} \equiv-\left(A \omega_{o}^{2} / 24\right) \phi^{4} \tag{c}
\end{align*}
$$

where $A \equiv m l^{2}=$ moment of inertia of pendulum bob about $O, \omega_{o}{ }^{2} \equiv g / l=$ circular frequency (squared) of unperturbed $=$ linearized problem. We have already seen (ex. 8.14.1) that the solution of the latter in action-angle variables is (with $m \rightarrow A, q \rightarrow \phi)$

$$
\begin{equation*}
\phi=\left(J_{o} / A \pi \omega_{o}\right)^{1 / 2} \sin \left(2 \pi w_{o}\right), \quad p=\left(A \omega_{o} J_{o} / \pi\right)^{1 / 2} \cos \left(2 \pi w_{o}\right), \tag{d}
\end{equation*}
$$

and so H, eq. (b), assumes the action-angle variable form

$$
\begin{align*}
H & =\left(\omega_{o} / 2 \pi\right) J_{o}-(1 / 24)\left(J_{o}{ }^{2} / A \pi^{2}\right) \sin ^{4}\left(2 \pi w_{o}\right) \\
& =\nu_{o} J_{o}-\left(J_{o}{ }^{2} / 24 A \pi^{2}\right) \sin ^{4}\left(2 \pi w_{o}\right)=H_{o}+\varepsilon H_{1} \tag{e}
\end{align*}
$$

Choosing as perturbation parameter ε the square of the maximum angular amplitude of the unperturbed problem $\phi_{o}{ }^{2}$, and applying (8.16.5e), we obtain

$$
\begin{equation*}
E_{1}(J)=\left\langle H_{1}\left(w_{o}, J\right)\right\rangle=-\left(J^{2} / 24 A \pi^{2} \phi_{o}{ }^{2}\right)\left\langle\sin ^{4}\left(2 \pi w_{o}\right)\right\rangle, \tag{f}
\end{equation*}
$$

or, since by simple trigonometry and calculus

$$
\begin{align*}
& \sin ^{4}(\ldots)=\{[\exp (i \ldots)-\exp (-i \ldots)] / 2 i\}^{4} \\
&=\cdots=(1 / 8)[\cos (4 \ldots)-6 \cos (2 \ldots)+3] \\
& \Rightarrow\left\langle\sin ^{4}\left(2 \pi w_{o}\right)\right\rangle=\int_{0}^{1} \sin ^{4}\left(2 \pi w_{o}\right) d w_{o}=\cdots=3 / 8 \tag{g}
\end{align*}
$$

we get

$$
\begin{equation*}
E_{1}(J)=-J^{2} / 64 A \pi^{2} \phi_{o}^{2} . \tag{h}
\end{equation*}
$$

Hence, by (8.16.5i), the first-order change of the fundamental frequency is

$$
\begin{equation*}
\Delta \nu \equiv \nu-\nu_{o}=\varepsilon\left[\partial E_{1}(J) / \partial J\right]=-J / 32 A \pi^{2} \approx-J_{o} / 32 A \pi^{2} \tag{i}
\end{equation*}
$$

or, since

$$
\begin{align*}
J_{o}=\left(2 \pi / \omega_{o}\right) E_{o} & =\left(2 \pi / \omega_{o}\right) T_{\max }=\left(2 \pi / \omega_{o}\right)\left(A \omega_{o}{ }^{2} \phi_{o}{ }^{2} / 2\right) \\
& =\pi A \omega_{o} \phi_{o}{ }^{2}=2 \pi^{2} A \phi_{o}{ }^{2} \nu_{o} \tag{j}
\end{align*}
$$

finally,

$$
\begin{equation*}
\Delta \nu=-\left(\phi_{o}{ }^{2} / 16\right) \nu_{o} \tag{k}
\end{equation*}
$$

which agrees with the first-order correction found by other means (e.g., Lur'e, 1968, pp. 702-703) for a derivation based on integral variational calculus; see also examples/problems in $\S 7.9$ of this book.

Example 8.16.2 One-DOF Nonlinear Oscillator; Second-Order Perturbation. (Birtwistle, 1926, pp. 213-216; with $c_{o}=0$ and $\omega \rightarrow \nu$). Let us consider a oneDOF oscillator, with mass m and unperturbed circular frequency $\omega_{o}=2 \pi \nu_{o}$, and perturbed Hamiltonian, to second ε-order:

$$
\begin{equation*}
H=H_{o}+\varepsilon H_{1}+\varepsilon^{2} H_{2}, \tag{a}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{o}=p^{2} / 2 m+m \omega_{o}^{2} q^{2} / 2 \tag{a1}\\
& H_{1}=h_{1} q^{3}, \quad H_{2}=h_{2} q^{4} \quad\left(h_{1}, h_{2}: \text { known physical constants }\right) . \tag{a2}
\end{align*}
$$

We already know that the unperturbed solution is (ex. 8.14.1)

$$
\begin{equation*}
q_{o}=\left(J_{o} / \pi \omega_{o} m\right)^{1 / 2} \sin \left(2 \pi w_{o}\right), \quad p_{o}=\left(\omega_{o} m J_{o} / \pi\right)^{1 / 2} \cos \left(2 \pi w_{o}\right), \tag{b}
\end{equation*}
$$

and so the perturbed Hamiltonian H can be expressed in terms of the unperturbed variables $\left(w_{o}, J_{o}\right)$ as follows:

$$
\begin{align*}
& H_{o}=\nu_{o} J_{o}, \tag{cl}\\
& H_{1}=h_{1}\left(J_{o} / \pi \omega_{o} m\right)^{3 / 2} \sin ^{3}\left(2 \pi w_{o}\right), \tag{c2}\\
& H_{2}=h_{2}\left(J_{o} / \pi \omega_{o} m\right)^{2} \sin ^{4}\left(2 \pi w_{o}\right) . \tag{c3}
\end{align*}
$$

Now, let us apply the perturbation equations (8.16.10b-11b):
(i) Since, here,

$$
\begin{equation*}
E_{1}(J)=\left\langle H_{1}\left(w_{o}, J\right)\right\rangle \sim\left\langle\sin ^{3}\left(2 \pi w_{o}\right)\right\rangle=\cdots=0, \tag{d1}
\end{equation*}
$$

we will have

$$
\begin{align*}
\partial G_{1} / \partial w_{o} & =-\left(1 / \nu_{o}\right) H_{1}\left(w_{o}, J\right)=-\left(1 / \nu_{o}\right) \Delta H_{1}\left(w_{o}, J\right) \\
& =-\left(h_{1} / \nu_{o}\right)\left(J / \pi \omega_{o} m\right)^{3 / 2} \sin ^{3}\left(2 \pi w_{o}\right) ; \tag{d2}
\end{align*}
$$

that is, the ε-order perturbation does not change the energy $\left(E_{1}=0\right)$, but does change the action-angle variables $\left(G_{1} \neq 0\right)$.
(ii) To find the ε^{2}-order energy correction equation, we employ the equations

$$
\begin{align*}
K_{2}+ & \nu_{o}\left(\partial G_{2} / \partial w_{o}\right) \\
& =H_{2}+\left(\partial G_{1} / \partial w_{o}\right)\left(\partial H_{1} / \partial J\right)+\nu_{o}\left(\partial G_{2} / \partial w_{o}\right)=E_{2}, \tag{el}\\
\left\langle K_{2}\right\rangle & =\left\langle H_{2}\right\rangle+\left\langle\left(\partial G_{1} / \partial w_{o}\right)\left(\partial H_{1} / \partial J\right)\right\rangle=E_{2} . \tag{e2}
\end{align*}
$$

Using (c2,3) and (d2) in (e2), and carrying out the indicated w_{o}-averagings, we obtain, after some algebra (since $\left\langle\sin ^{4}\left(2 \pi w_{o}\right)\right\rangle=3 / 8$ and $\left.\left\langle\sin ^{6}\left(2 \pi w_{o}\right)\right\rangle=5 / 16\right)$,

$$
\begin{equation*}
E_{2}=-(15 / 4) h_{1}^{2}\left[J^{2} /(2 \pi)^{6} \nu_{o}^{4} m^{3}\right]+(3 / 2) h_{2}\left[J^{2} /(2 \pi)^{4} \nu_{o}{ }^{2} m^{2}\right] . \tag{e3}
\end{equation*}
$$

Then, to the second order, the perturbed energy and frequency are, respectively,

$$
\begin{align*}
E(J) & =E_{o}+\varepsilon E_{1}+\varepsilon^{2} E_{2}=\nu_{o} J+\varepsilon^{2} E_{2}=\cdots, \tag{e4}\\
\nu(J) & =\nu_{o}+\varepsilon\left(\partial\left\langle H_{1}\right\rangle / \partial J\right)+\varepsilon^{2}\left(\partial\left\langle K_{2}\right\rangle / \partial J\right) \\
& =\nu_{o}+\varepsilon^{2}\left(\partial E_{2} / \partial J\right)=\cdots ; \tag{e5}
\end{align*}
$$

and then set in them $J=J_{o}-\varepsilon\left(\partial G_{1} / \partial w_{o}\right)=\cdots$ (see below). We notice the weak dependence of the frequency on the amplitude.
(iii) To find the ε-order effect on the motion - that is, on q-first we integrate (d2), thus finding

$$
\begin{equation*}
G_{1}=\left[h_{1} /(2 \pi)^{4} \nu_{o}\right]\left(2 J / \nu_{o} m\right)^{3 / 2}\left[(1 / 3) \sin ^{2}\left(2 \pi w_{o}\right) \cos \left(2 \pi w_{o}\right)+(2 / 3) \cos \left(2 \pi w_{o}\right)\right] \tag{f1}
\end{equation*}
$$

then, applying the old/new variable perturbation equations, we get

$$
\begin{align*}
J_{o} & =J+\varepsilon\left(\partial G_{1} / \partial w_{o}\right)=J-\varepsilon\left(h_{1} / \nu_{o}\right)\left(J / 2 \pi^{2} \nu_{o} m\right)^{3 / 2} \sin ^{3}\left(2 \pi w_{o}\right) \tag{f2}\\
w & =w_{o}+\varepsilon\left(\partial G_{1} / \partial J\right) \\
& =w_{o}+\varepsilon\left[h_{1} /(2 \pi)^{4} 2 J \nu_{o}\right]\left(2 J / \nu_{o} m\right)^{3 / 2}\left[\sin ^{3}\left(2 \pi w_{o}\right) \cos \left(2 \pi w_{o}\right)+2 \cos \left(2 \pi w_{o}\right)\right] \tag{f3}
\end{align*}
$$

and, finally, solving (f3) for w_{o} and substituting that result, and J_{o} from (f2), into the unperturbed form of motion of the first of (b):

$$
\begin{equation*}
q_{o}=\left(J_{o} / \pi \omega_{o} m\right)^{1 / 2} \sin \left(2 \pi w_{o}\right)=\left(J_{o} / 2 \pi^{2} \nu_{o} m\right)^{1 / 2} \sin \left(2 \pi w_{o}\right), \tag{f4}
\end{equation*}
$$

we obtain

$$
\begin{align*}
q_{o} \rightarrow q & =q_{o}+\varepsilon q_{1} \\
& =\left(J / 2 \pi^{2} \nu_{o} m\right)^{1 / 2} \sin (2 \pi w)-\varepsilon h_{1}\left[J /(2 \pi)^{4} \nu_{o}{ }^{3} m^{2}\right][3+\cos (4 \pi w)] \tag{f5}
\end{align*}
$$

that is, the nonlinearity $\left(h_{1}\right)$ produces oscillatory overtones ($4 \pi w$). These results agree with those found by quadrature (since this is a one-DOF system) for $h_{2}=0$ (see, e.g., Born, 1927, pp. 66-70). Proceeding similarly, we may obtain the ε^{2}-order effect on $\left(w_{o}, J_{o}\right)$ [after finding G_{2} from (e1)] and hence on q. The details are left to the reader (for confirmation of those results, see, e.g., Haar, 1971, pp. 157-158).

Example 8.16.3 Two-DOF Nonlinear Oscillator; First-Order Perturbation. Let us consider an oscillating system with perturbed Hamiltonian

$$
\begin{align*}
H(q, p ; \varepsilon) & =(1 / 2)\left(p_{1}^{2}+p_{2}^{2}\right)+(1 / 2)\left(k_{1} q_{1}^{2}+k_{2} q_{2}^{2}\right)+\varepsilon k_{1} k_{2} q_{1}^{2} q_{2}^{2} \\
& =H_{o}+\varepsilon H_{1}, \tag{a}
\end{align*}
$$

where

$$
\begin{align*}
& H_{o}=H_{o}(q, p ; 0)=\sum(1 / 2)\left(p_{l}^{2}+k_{l} q_{l}^{2}\right) \quad(l=1,2), \tag{a1}\\
& H_{1}=H_{1}(q, p ; 0)=k_{1} k_{2} q_{1}^{2} q_{2}^{2} \tag{a2}
\end{align*}
$$

that is, the unperturbed Hamiltonian represents two uncoupled harmonic oscillators, each of unit mass and stiffness $k_{l}(>0)$, and hence unperturbed circular frequency (squared) $\omega_{l o}{ }^{2}=k_{l}$. As we already know (exs. 8.14 .1 and 8.14.6), the unperturbed solutions are

$$
\begin{align*}
& q_{k o}=\left(J_{k o} / \pi \omega_{k o}\right)^{1 / 2} \sin \left(2 \pi w_{k o}\right), \tag{b1}\\
& p_{k o}=\left(\omega_{k o} J_{k o} / \pi\right)^{1 / 2} \cos \left(2 \pi w_{k o}\right) \quad(k=1,2), \tag{b2}
\end{align*}
$$

and so the perturbed Hamiltonian H, (a-a2), can be expressed in terms of the unperturbed variables (w_{o}, J_{o}) as follows:

$$
\begin{align*}
H_{o} & =(1 / 2 \pi) \sum \omega_{k o} J_{k}=\sum \nu_{k o} J_{k}=E_{o}, \tag{c1}\\
H_{1} & =\left(1 / \pi^{2}\right) \omega_{1 o} \omega_{2 o} J_{1 o} J_{2 o} \sin ^{2}\left(2 \pi w_{1 o}\right) \sin ^{2}\left(2 \pi w_{2 o}\right) \\
& =4 \nu_{1 o} \nu_{2 o} J_{1 o} J_{2 o} \sin ^{2}\left(2 \pi w_{1 o}\right) \sin ^{2}\left(2 \pi w_{2 o}\right) ; \tag{c2}
\end{align*}
$$

where $\nu_{l o}=\omega_{l o} / 2 \pi=$ unperturbed frequencies. Hence, the first-order energy correction yields

$$
\begin{align*}
E_{1}(J) & =\left\langle H_{1}\left(w_{o}, J\right)\right\rangle \equiv \int_{0}^{1} \int_{0}^{1} H_{1}\left(w_{1 o}, w_{2 o} ; J_{1}, J_{2}\right) d w_{1 o} d w_{2 o} \\
& =\cdots=\left(1 / 4 \pi^{2}\right) \omega_{1 o} \omega_{2 o} J_{1} J_{2}=\nu_{1 o} \nu_{2 o} J_{1} J_{2} \tag{d1}\\
\Rightarrow & E(J)=E_{o}(J)+\varepsilon E_{1}(J)=\nu_{o 1} J_{1}+\nu_{o 2} J_{2}+\varepsilon \nu_{1 o} \nu_{2 o} J_{1} J_{2}, \tag{d2}
\end{align*}
$$

(w-integration limits from 0 to 1) and so, to the same accuracy, the perturbed frequencies are (whether the system is degenerate or not)

$$
\begin{align*}
& \nu_{1}=\partial E / \partial J_{1}=\nu_{1 o}+\varepsilon \nu_{1 o} \nu_{2 o} J_{2}, \tag{d3}\\
& \nu_{2}=\partial E / \partial J_{2}=\nu_{2 o}+\varepsilon \nu_{1 o} \nu_{2 o} J_{1} \tag{d4}
\end{align*}
$$

and these show clearly the coupling of the two oscillators and the effect of the amplitudes (initial conditions) on the frequencies.

Next, to express the perturbed coordinates and momenta in terms of the new action-angle variables (w, J), we must calculate G_{1} :
(i) On one hand, in view of (c2), (d1), we have

$$
\begin{align*}
\left\langle H_{1}\left(w_{o}, J\right)\right\rangle & -H_{1}\left(w_{o}, J\right) \equiv-\Delta H_{1}\left(w_{o}, J\right) \\
& =\nu_{1 o} \nu_{2 o} J_{1} J_{2}\left[1-4 \sin ^{2}\left(2 \pi w_{1 o}\right) \sin ^{2}\left(2 \pi w_{2 o}\right)\right] \\
& \equiv\left(\nu_{1 o} \nu_{2 o} J_{1} J_{2} / 4\right) \sum \sum^{\prime} h_{1, s} \exp \left[2 \pi i\left(s_{1} w_{1 o}+s_{2} w_{2 o}\right)\right] \tag{el}
\end{align*}
$$

(where $\boldsymbol{s} \equiv\left(s_{1}, s_{2}\right)=$ nonzero integers ranging from $-\infty$ to $+\infty$); from which we readily conclude that the sole nonvanishing Fourier coefficients of $-\Delta H_{1}$, $h_{1, \ldots .} \equiv h_{1 ;}$, are

$$
\begin{align*}
& h_{1 ; 2,2}=h_{1 ; 2,-2}=h_{1 ;-2,2}=h_{1 ;-2,-2}=-1, \tag{e2}\\
& h_{1 ; 2,0}=h_{1 ; 0,2}=h_{1 ; 0,-2}=h_{1 ;-2,0}=2 . \tag{e3}
\end{align*}
$$

(ii) On the other hand, recalling (8.16.12b, c), we can write

$$
\begin{align*}
& G_{1}\left(w_{o}, J\right)=\sum g_{1, s}(J) \exp \left(2 \pi i \boldsymbol{s} \cdot \boldsymbol{w}_{\boldsymbol{o}}\right), \\
& \Rightarrow \sum^{\prime} \nu_{k o}\left(\partial G_{1} / \partial w_{k o}\right) \\
& =\sum \sum^{\prime}\left[(2 \pi i)\left(s_{1} \nu_{1 o}+s_{2} \nu_{2 o}\right)\right] g_{1, s} \exp \left[2 \pi i\left(s_{1} w_{1 o}+s_{2} w_{2 o}\right)\right] . \tag{e4}
\end{align*}
$$

Hence, substituting these Fourier series into the first-order averaged equation (8.16.11a):

$$
\begin{equation*}
\sum^{\prime} \nu_{k o}\left(\partial G_{1} / \partial w_{k o}\right)=\left\langle H_{1}\left(w_{o}, J\right)\right\rangle-H_{1}\left(w_{o}, J\right) \equiv-\Delta H_{1}\left(w_{o}, J\right) \tag{e5}
\end{equation*}
$$

and equating coefficients of like harmonics, we find [with $h \equiv \nu_{1 o} \nu_{2 o} J_{1} J_{2} / 4$]

$$
\begin{align*}
g_{1, \ldots .} \equiv g_{1 ; \ldots, \ldots} & =\left[h /(2 \pi i)\left(s_{1} \nu_{1 o}+s_{2} \nu_{2 o}\right)\right] h_{1 ; \ldots \ldots}: \\
g_{1 ; 0,2} & =-g_{1 ; 0,-2}=\left(2 \pi i \nu_{2 o}\right)^{-1} h, \tag{e6}\\
g_{1 ; 2,0} & =-g_{1 ;-2,0}=\left(2 \pi i \nu_{1 o}\right)^{-1} h, \tag{e7}\\
g_{1 ; 2,2} & =-g_{1 ;-2,-2}=-\left[4 \pi i\left(\nu_{1 o}+\nu_{2 o}\right)\right]^{-1} h \tag{e8}\\
g_{1 ; 2,-2} & =-g_{1 ;-2,2}=-\left[4 \pi i\left(\nu_{1 o}-\nu_{2 o}\right)\right]^{-1} h . \tag{e9}
\end{align*}
$$

Hence, to the first order, the generating function equals

$$
\begin{align*}
G=\sum w_{k o} J_{k} & +(\varepsilon / 4 \pi) J_{1} J_{2}\left\{\nu_{2 o} \sin \left(4 \pi w_{1 o}\right)+\nu_{1 o} \sin \left(4 \pi w_{2 o}\right)\right. \\
& -\left[2 \nu_{1 o} \nu_{2 o} /\left(\nu_{1 o}+\nu_{2 o}\right)\right] \sin \left[4 \pi\left(w_{1 o}+w_{2 o}\right)\right] \\
& \left.-\left[2 \nu_{1 o} \nu_{2 o} /\left(\nu_{1 o}-\nu_{2 o}\right)\right] \sin \left[4 \pi\left(w_{1 o}-w_{2 o}\right)\right]\right\} \tag{e10}
\end{align*}
$$

and from this the w_{k} and J_{k} follow:

$$
\begin{align*}
& w_{k}=w_{k o}+\varepsilon\left(\partial G / \partial J_{k}\right) \Rightarrow w_{k o}=w_{k}-\varepsilon(\text { function of } w \text { and } J), \tag{f1}\\
& J_{k o}=J_{k}+\varepsilon\left(\partial G / \partial w_{k o}\right) \Rightarrow J_{k}=J_{k o}+\varepsilon(\text { function of } w \text { and } J) \tag{f2}
\end{align*}
$$

(because, replacing w_{o} with w in the ε-terms causes an ε^{2}-error), where $J_{k}=$ constant and $w_{k}=\nu_{k} t+\gamma_{k}$; and then inserting (f1,2) into (b1,2) yields the perturbed motion $q_{k}(w, J), p_{k}(w, J)$. The details are left to the reader.

REMARKS ON DEGENERACIES

As (e10) shows, if $\nu_{1 o}=\nu_{2 o}$ (degeneracy, or internal resonance), this approach fails - G diverges; then we have to develop special methods. In view of (e2,3, 6-9), other degeneracies do not seem to create problems; for example, that would happen to the degeneracy $\nu_{1 o}=2 \nu_{2 o}$ [i.e., (1) $\left.\nu_{1 o}+(-2) \nu_{2 o}=0\right]$ if $h_{1 ; s,-2 s} \neq 0$, for some integer s. However, such difficulties may arise in the higher ε-order terms; that is, $G_{l}(l \geq 2)$; and for their full treatment, we recommend the earlier-given references on small divisors.

Problem 8.16.1 For a 1-DOF system, the earlier-given general n-DOF secondorder formalism specializes to

$$
\begin{align*}
& E_{o}(J)=H_{o}(J), \tag{a1}\\
& E_{1}(J)=H_{1}\left(w_{o}, J\right)+\nu_{o}(J)\left(\partial G_{1} / \partial w_{o}\right)=H_{1}\left(w_{o}, J\right)+\left(\partial H_{o} / \partial J\right)\left(\partial G_{1} / \partial w_{o}\right), \tag{a2}\\
& E_{2}(J)=H_{2}\left(w_{o}, J\right)+\left(\partial H_{1} / \partial J\right)\left(\partial G_{1} / \partial w_{o}\right)+\left(\partial H_{o} / \partial J\right)\left(\partial G_{2} / \partial w_{o}\right) \\
& +(1 / 2)\left(\partial^{2} H_{o} / \partial J^{2}\right)\left(\partial G_{1} / \partial w_{o}\right)^{2} . \tag{a3}
\end{align*}
$$

We have already seen that since

$$
\begin{equation*}
\left\langle\partial G_{1} / \partial w_{o}\right\rangle \equiv \int_{0}^{1}\left(\partial G_{1} / \partial w_{o}\right) d w_{o}=0 \tag{b}
\end{equation*}
$$

eq. (a2) averages to

$$
\begin{equation*}
E_{1}(J)=\left\langle H_{1}\right\rangle \Rightarrow \partial G_{1} / \partial w_{o}=\left(1 / \nu_{o}\right)\left(\left\langle H_{1}\right\rangle-H_{1}\right)=-\left(1 / \nu_{o}\right) \Delta H_{1} . \tag{c}
\end{equation*}
$$

Show that:
(i) The second-order correction (a3) averages, similarly, to

$$
\begin{align*}
E_{2}(J)= & \left\langle H_{2}\right\rangle+\left\langle\left(\partial H_{1} / \partial J\right)\left(\partial G_{1} / \partial w_{o}\right)\right\rangle+(1 / 2)\left(\partial^{2} H_{o} / \partial J^{2}\right)\left\langle\left(\partial G_{1} / \partial w_{o}\right)^{2}\right\rangle \\
=\left\langle H_{2}\right\rangle & +\left(1 / \nu_{o}\right)\left[\left\langle\left(\partial H_{1} / \partial J\right)\right\rangle\left\langle H_{1}\right\rangle-\left\langle\left(\partial H_{1} / \partial J\right) H_{1}\right\rangle\right] \\
& +\left(1 / 2 \nu_{o}^{2}\right)\left(\partial \nu_{o} / \partial J\right)\left[\left\langle H_{1}{ }^{2}\right\rangle-\left\langle H_{1}\right\rangle^{2}\right] ; \tag{d}
\end{align*}
$$

and, therefore,
(ii)

$$
\begin{align*}
\partial G_{2} / \partial w_{o}= & \left(1 / \nu_{o}\right)\left(E_{2}-K_{2}\right) \\
=\left(1 / \nu_{o}\right)\left[E_{2}-\right. & \left.H_{2}-\left(\partial H_{1} / \partial J\right)\left(\partial G_{1} / \partial w_{o}\right)-(1 / 2)\left(\partial^{2} H_{o} / \partial J^{2}\right)\left(\partial G_{1} / \partial w_{o}\right)^{2}\right] \\
= & \left(1 / \nu_{o}\right)\left(\left\langle H_{2}\right\rangle-H_{2}\right) \\
& +\left(1 / \nu_{o}{ }^{2}\right)\left[\left\langle\partial H_{1} / \partial J\right\rangle\left\langle H_{1}\right\rangle-\left\langle\left(\partial H_{1} / \partial J\right) H_{1}\right)\right\rangle \\
& \left.\quad-\left(\partial H_{1} / \partial J\right)\left\langle H_{1}\right\rangle+\left(\partial H_{1} / \partial J\right) H_{1}\right] \\
& \left.\quad+\left(1 / 2 \nu_{o}{ }^{3}\right)\left(\partial \nu_{o} / \partial J\right)\left[\left\langle H_{1}{ }^{2}\right\rangle-2\left\langle H_{1}\right\rangle^{2}+2 H_{1}\left\langle H_{1}\right\rangle-H_{1}{ }^{2}\right], \quad \text { (e) }\right) \tag{e}
\end{align*}
$$

and, by integration, yields G_{2}. Thus, (w, J) can be expressed in terms of (w_{o}, J_{o}), and so on.
(iii) Using the above, show that, to the second order, the perturbed energy equals (with no need to calculate G first)

$$
\left.\left.\begin{array}{rl}
E(J)=H_{o}(J) & +\varepsilon\left\langle H_{1}\right\rangle \\
& +\varepsilon^{2}\left\{\left\langle H_{2}\right\rangle\right.
\end{array}+\left(1 / \nu_{o}\right)\left[\left\langle\partial H_{1} / \partial J\right\rangle\left\langle H_{1}\right\rangle-\left\langle\left(\partial H_{1} / \partial J\right) H_{1}\right\rangle\right]\right] \text { } \quad+\left(1 / 2 \nu_{o}{ }^{2}\right)\left(\partial \nu_{o} / \partial J\right)\left[\left\langle H_{1}{ }^{2}\right\rangle-\left\langle H_{1}\right\rangle^{2}\right]\right\} ;
$$

and readily supplies the perturbed frequencies via $\nu=\partial E / \partial J=\cdots$.

Problem 8.16.2 (Dittrich and Reuter, 1994, pp. 112-113). Consider a nonlinear mass-spring oscillator, of mass m and linearized circular frequency $\omega_{o} \equiv(\mathrm{k} / \mathrm{m})^{1 / 2}$, with perturbed Hamiltonian

$$
\begin{align*}
& H=H_{o}+\varepsilon H_{1} \tag{a}\\
& H_{o} \equiv p^{2} / 2 m+\left(m \omega_{o}^{2} / 2\right) q^{2}, \quad H_{1} \equiv(m / 6) q^{6} \tag{al}
\end{align*}
$$

As shown in the preceding examples,

$$
\begin{align*}
& H_{o}=\nu_{o} J_{o}=\left(\omega_{o} / 2 \pi\right) J_{o}, \quad w_{o}=\nu_{o} t+\gamma_{o} \tag{a2}\\
& q_{o}=\left(J_{o} / \pi m \omega_{o}\right)^{1 / 2} \sin \left(2 \pi w_{o}\right), \quad p_{o}=\left(m \omega_{o} J_{o} / \pi\right)^{1 / 2} \cos \left(2 \pi w_{o}\right) \tag{a3}
\end{align*}
$$

(i) Show that

$$
\begin{equation*}
E_{1}(J)=\left\langle H_{1}\right\rangle=\cdots=(5 / 16)(m / 6)\left(J / \pi m \omega_{o}\right)^{3} . \tag{b}
\end{equation*}
$$

(ii) Show that

$$
\begin{equation*}
\Delta \nu \equiv \nu-\nu_{o}=\varepsilon\left(5 / 64 \pi^{2}\right)\left(q_{\max }^{4} / \nu_{o}\right), \tag{c}
\end{equation*}
$$

where $q_{\max }=$ maximum amplitude of unperturbed (harmonic) oscillator.

HINTS
(i) Verify that

$$
\begin{align*}
\sin ^{6}(\ldots) & \equiv\{[\exp (i \ldots)-\exp (-i \ldots)] / 2 i\}^{6} \\
& =\cdots=-(2 / 64)[\cos (6 \ldots)-6 \cos (4 \ldots)+15 \cos (2 \ldots)-10] \tag{d}
\end{align*}
$$

(ii)

$$
\begin{equation*}
J \rightarrow J_{o}=E_{o} / \nu_{o}=\cdots=\pi m \omega_{o} q_{\max }^{2} \quad \text { (explain). } \tag{e}
\end{equation*}
$$

Problem 8.16.3 (Born, 1927, pp. 254-255). Continuing the perturbation scheme to the (p) th order in ε :
(i) Show that, then,

$$
\begin{equation*}
\left(\partial H_{o} / \partial J\right)\left(\partial G_{p} / \partial w_{o}\right)=E_{p}(J)-R_{p}\left(w_{o}, J\right), \tag{a}
\end{equation*}
$$

where $R_{p}\left(w_{o}, J\right)$ stands for a term involving only results of the preceding orders of perturbation; that is, only up to those obtained in the $(p-1)$ th order, and is periodic in the w_{o} 's.
(ii) Verify that averaging (a) yields

$$
\begin{equation*}
E_{p}(J)=\left\langle R_{p}\left(w_{o}, J\right)\right\rangle ; \tag{b}
\end{equation*}
$$

from which it follows that (with the usual notations)

$$
\begin{equation*}
\partial G_{p}\left(w_{o}, J\right) / \partial w_{o}=-\left(1 / \nu_{o}(J)\right) \Delta R_{p}\left(w_{o}, J\right) . \tag{c}
\end{equation*}
$$

Equation (c) is solved by expanding both sides in Fourier series and then equating the same harmonic coefficients, thus expressing the unknown coefficients of the left side in terms of the known coefficients of the right side.

For additional related examples and problems, see, for example (alphabetically): Born (1927, pp. 259-261), Frank (1935, pp. 203-209, 214-218), Meirovitch (1970, pp. 376377), Saletan and Cromer (1971, pp. 252-256), Straumann (1987, pp. 271-273).

References and Suggested Reading

Additional comparable and complementary lists, for further and deeper study, can be found in:
Leimanis (1965) — analytical rigid-body dynamics until the mid-1960s
Mikhailov and Parton (1990) - advanced topics in analytical mechanics and stability of equilibrium/motion; complements and updates the list of Neimark and Fufaev
Neimark and Fufaev [1967 (1972)] - analytical mechanics, theory and applications; includes most Soviet/Russian works until the early 1960s
Papastavridis (Elementary Mechanics, under production) - comprehensive treatise/ compendium of Newton-Euler (momentum) mechanics of particles, rigid bodies, and continua, with extensive reference/bibliography lists.
Roberson and Schwertassek (1988) — multibody and computational dynamics; see also Huston (1990)
Stäckel (1905) - elementary and intermediate theoretical dynamics until the early 1900s Voss (1901) - principles of theoretical mechanics until 1900
Ziegler (1985) — geometrical methods in rigid-body mechanics
Abbreviations used below:
AIAA: American Institute of Aeronautics and Astronautics (U.S.)
PMM: Journal of Applied Mathematics and Mechanics (English translation from the Russian)
Springer: Springer-Verlag
ZAMM: Zeitschrift für angewandte Mathematik und Mechanik (German)
ZAMP: Zeitschrift für angewandte Mathematik und Physik (Swiss)
For a steady supply of worthwhile material from the frontier of (classical) theoretical/analytical dynamics, including archival papers, discussions, and book reviews, we recommend the following journals:

```
American Journal of Physics
Applied Mathematics and Mechanics (English translation from the Chinese)
Archive of Applied Mechanics (German, formerly Ingenieur-Archiv)
International Journal of Non-Linear Mechanics (U.S.)
PMM
ZAMM
ZAMP
```

Also:
Journal of Applied Mechanics (ASME)
Journal of the Astronautical Sciences
Journal of Guidance, Control, and Dynamics (AIAA)
Nonlinear Dynamics
For the historical and cultural aspects of mechanics, etc., we recommend the following journals:
Archive for History of Exact Sciences
Centaurus (International Magazine of the History of Mathematics, Science, and Technology; Munksgaard, Copenhagen)
Physics Today

Abhandlungen über die Prinzipien der Mechanik, von Lagrange, Rodrigues, Jacobi, und Gauss. 1908. Edited by P. E. B. Jourdain. Leipzig: Engelmann (Ostwald's Klassiker der exakten Wissenschaften, nr. 167).
Abraham, R., and J. E. Marsden. 1978. Foundations of Mechanics, 2nd ed. Reading, MA: Benjamin/Cummings Publishing Co.
Agostinelli, C. 1946. "Sull'Esistenza di Integrali di un Sistema Anolonomo con Coordinate Ignorabili," Ac. Sc. Torino, Atti, 80, 231-239.
Agostinelli, C. 1956. "Nuova Forma Sintetica delle Equazioni del Moto di un Sistema Anolonomo ed Esistenza di un Integrale Lineare nelle Velocita Lagrangiane," Boll. Un. Mat. Ital., 11(3), 1-9.
Agrawal, O. P., and S. Saigal. 1987. "A Novel, Computationally Efficient, Approach for Hamilton's Law of Varying Action," Int. J. Mech. Sci., 29, 285-292.
Aharoni, J. 1972. Lectures in Mechanics. Oxford, U.K.: Clarendon Press.
Aharonov, Y., H. A. Farach, and C. P. Poole, Jr. 1977. "Nonlinear Vector Product to Describe Rotations," Am. J. Physics, 45, 451-454.
Ainola, L. Ia. 1966. "Integral Variational Principles of Mechanics," PMM, 30, 1124-1128 (original in Russian, 946-949).
Aizerman, M. A. 1974. Classical Mechanics (in Russian). Moscow: Nauka.
Alishenas, T. 1992. Zur Numerischen Behandlung, Stabilisierung durch Projektion und Modellierung mechanischer Systeme mit Nebenbendingungen und Invarianten. Dissertation, Köningl. Techn. Hochsch. (Royal Institute of Technology), Stockholm.
Alt, H. 1927. "Geometrie der Bewegungen," pp. 178-232 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Altmann, S. L. 1986. Rotations, Quaternions, and Double Groups. Oxford, U.K.: Clarendon Press.
Ames, J. S., and F. D. Murnaghan. 1929. Theoretical Mechanics, An Introduction to Mathematical Physics. Boston, MA: Ginn (reprinted 1958 by Dover, New York).
Amirouche, F. M. L. 1992. Computational Methods in Multibody Dynamics. Englewood Cliffs, NJ: Prentice Hall.
Andelic (Angelitch), T. P. 1954. "Ueber die Bewegung starrer Körper mit nichtholonomen Bindungen in einer inkompressiblen Flüssigkeit," pp. 314-316 in vol. 2 of Proc. Int. Congr. Math. (Amsterdam, 1954). Groningen and Amsterdam, Holland: Noordhoff.
Angeles, J. 1988. Rational Kinematics. New York: Springer.
Appell, P. 1896. "Sur l'emploi des équations de Lagrange dans la théorie du choc et des percussions," J. de Math. Pures et Appliquées, Series 5, 2, 5-20.
Appell, P. 1899(a). Les Mouvements de Roulement en Dynamique, avec deux notes de M. Hadamard. Paris: Scientia.
Appell, P. 1899(b). "Sur les mouvements de roulement; équations du mouvement analogues à celles de Lagrange," Comptes Rendus (Acad. Sci. of Paris), 129, 317-320.
Appell, P. 1900(a). "Sur une forme générale des équations de la dynamique," J. für die reine und angewandte Mathematik, 121, 310-331.
Appell, P. 1900(b). "Développements sur une forme nouvelle des équations de la dynamique," J. de Math. Pures et Appliquées, Series 5, 6, 5-40.

Appell, P. 1901. "Remarques d'ordre analytique sur une nouvelle forme des equations de la dynamique," J. Math. Pures et Appliquées, Series 5, 7, 5-12.
Appell, P. 1911(a). "Sur les liaisons exprimées par des relations non-lineaires entre les vitesses," Comptes Rendus (Acad. Sci. of Paris), 152, 1197-1200.
Appell, P. 1911(b). "Exemple de mouvement d'un point assujetti a une liaison exprimée par une relation non-lineaire entre les composantes de la vitesse," Rend. Circ. Mat. Palermo, 32, 48-50.
Appell, P. 1912(a). "Aperçu sur l'emploi possible de l'énergie d'accéleration dans les équations de l'électrodynamique," Comptes Rendus (Acad. Sci. of Paris), 154, 1037-1040.
Appell, P. 1912(b). "Sur les liaisons non lineaires par rapport aux vitesses," Rend. Circ. Mat. Palermo, 33, 259-267.

Appell, P. 1916. "Sur les liaisons cachées et les forces gyroscopiques apparentes dans les systemes non holonomes," Comptes Rendus (Acad. Sci. of Paris), 162, 27-29.
Appell, P. 1924. "Sur l'ordre d'un systeme non holonome," Comptes Rendus (Acad. Sci. of Paris), 179, 549-550.
Appell, P. 1925. "Sur une forme générale des équations de la dynamique," fascicule 1, pp. 150, Mémorial des Sciences Mathematiques. Paris: Gauthier-Villars.
Appell, P. Traité de Mécanique Rationelle, vol. 4, fascicule I: Figures d'Équilibre d'une Masse Liquide Homogène en Rotation (1932, 2nd ed.); fascicule II: Les Figures d'Équilibre d'une Masse Héterogène en Rotation, Figure de la Terre et des Planètes (1937). Paris: GauthierVillars.
Appell, P. 1953. Traité de Mécanique Rationelle, vol 2: Dynamique des Systèmes, Mécanique Analytique, 6th ed. Paris: Gauthier-Villars.
Apykhtin, N. G., and V. F. Iakovlev. 1980. "On the Motion of Dynamically Controlled Systems with Variable Masses," PMM, 44, 301-305 (original in Russian, 427-433).
Arczewski, K. P., and J. A. Pietrucha. 1993. Mathematical Modelling of Mechanical Complex Systems, vol. 1: Discrete Models. New York: Ellis Horwood.
Argyris, J., and V. F. Poterasu. 1993. "Large Rotations Revisited. Application of Lie Algebra," Computer Methods in Applied Mechanics and Engineering, 103, 11-42.
Arhangelskii, Ju. A. 1977. Analytical Dynamics of Rigid Bodies (in Russian). Moscow: Nauka.
Ariaratnam, S. T., and N. Sri Namachchiraya. 1986. "Periodically Perturbed Linear Gyroscopic Systems," J. Structural Mechanics, 14, 127-151.
Ariaratnam, S. T., and N. Sri Namachchiraya. 1986. "Periodically Perturbed Nonlinear Gyroscopic Systems," J. Structural Mechanics, 14, 153-175.
Arnold, D. H. "The Mécanique Physique of Siméon Denis Poisson: The Evolution and Isolation in France of his Approach to Physical Theory (1800-1840)," Archive for History of Exact Sciences, 28, 243-266, 267-287, 289-297, 299-320, 321-342, 343-367 (1983); 29, 37-51, 53-72, 73-94 (1983/1984); 29, 289-307 (1984).

Arnold, R. N., and L. Maunder. 1961. Gyrodynamics, and its Engineering Applications. New York: Academic Press.
Arnold, V. I. 1976. Méthodes Mathématiques de la Mécanique Classique. Moscow: Mir (original in Russian, 1974; English translation as Mathematical Methods of Classical Mechanics. New York: Springer, 1978, 1st ed.; 1989, 2nd ed.).
Arnold, V. I., V. V. Kozlov, and A. I. Neishtadt. 1988. "Mathematical Aspects of Classical and Celestial Mechanics," pp. 1-291 in Dynamical Systems III, vol. 3 of Encyclopaedia of Mathematical Sciences, edited by V. I. Arnold. Berlin: Springer (original in Russian, 1985).
Arnol'd, V. I. 1990. Huygens and Barrow, Newton and Hooke. Basel: Birkhäuser (original in Russian, 1989).
Arrighi, G. 1939. "Sul Moto Impulsivo dei Sistemi Anolonomi," Accad. Naz. Lincei, Rendiconti, Cl. Sc. Fis. Mat. Nat. (Serie Siesta), 29, 472-477.
Arrighi, G. 1940. "Sui Sistemi Anolonomi," Rendiconti Inst. Lombardo Sci. Lett. Cl. Sci. Mat. Nat. 4(3), 367-374.
Arya, A. P. 1990. Introduction to Classical Mechanics. Boston: Allyn and Bacon.
Arzanyh, I. S. 1965. Impulsive Fields (in Russian). Tashkent: Nauka, Uzbek. S.S.R.
Asimov, I. 1964. Asimov's Biographical Encyclopedia of Science and Technology, The living stories of more than 1000 great scientists from the age of Greece to the space age chronologically arranged. Garden City, New York: Doubleday.
Atanackovic, T. M. 1982. "The Sufficient Conditions for an Extremum in the Variational Principle with Non-Commutative Variational Rules," Acad. Sci. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11, 1982, vol. 2, 463-467. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]
Atkin, R. H. 1959. Classical Dynamics. New York: Wiley.
Atluri, S. N., and A. Cazzani. 1995. "Rotations in Computational Solid Mechanics," Archives of Computational Methods in Engineering (State of the Art Reviews), 2(1), 49-138.

Audin, M. 1996. Spinning Tops. Cambridge, U.K.: Cambridge University Press.
Auerbach, F. 1908. "Kinematik und Dynamik," pp. 299-357 in vol. 1 of (older) Handbuch der Physik, 2nd ed. Leipzig: Barth.
Azizov, A. G. 1975. "Impulsive Motion of Systems with Servoconstraints" (in Russian), pp. 33-38 in Problems of Analytical Mechanics, Theory of Stability and Control. Moscow: Nauka, Acad. U.S.S.R.
Azizov, A. G. 1986. "On the Motion of a Controlled System of Variable Mass," PMM, 50, 433-437 (original in Russian, 567-572).
Babakov, I. M. 1968. Theory of Oscillations (in Russian), 3rd edition. Moscow: Nauka.
Bahar, L. Y. 1970. "Direct Determination of Finite Rotation Operators," J. Franklin Inst., 289, 401-404.
Bahar, L. Y. 1970-1980. Advanced Dynamics, Lecture Notes. Philadelphia: Drexel University.
Bahar, L. Y. 1984. "Equations of Motion for the Chaplygin-Carathéodory Problem by Means of Appell's Equations," Private Communication.
Bahar, L. Y. 1987. "The Theory of Rigid-Body Rotations," Private Communication.
Bahar, L. Y. 1991. "Generalized Gantmacher Formulas through Functions of Matrices," Am. J. Phys., 59, 1103-1111.

Bahar, L. Y. 1992. "Response, Stability and Conservation Laws for the Sleeping Top Problem," J. Sound and Vibration, 158, 25-34.
Bahar, L. Y. 1993. "On a Non-holonomic Problem Proposed by Greenwood," Int. J. NonLinear Mechanics, 28, 169-186.
Bahar, L. Y. 1994. 'On the use of Quasi-velocities in Impulsive Motion," Int. J. Eng. Sci., 32, 1669-1686.
Bahar, L. Y. 1998. "A Non-linear Non-holonomic Formulation of the Appell-Hamel Problem," Int. J. Non-Linear Mechanics, 33, 67-83.
Bahar, L. Y., and H. Anton. 1972. "On the Application of Distribution Theory to Variational Problems," J. Franklin Inst., 293, 215-223.
Bahar, L. Y., and H. G. Kwatny. 1987. "Extension of Noether's Theorem to Constrained Non-Conservative Systems," Int. J. Non-Linear Mechanics, 22, 125-138.
Bahar, L. Y., and H. G. Kwatny. 1992. "Matrix Analysis of Some Linear Gyroscopic Systems," J. Franklin Inst., 329, 679-695.
Bakay, A. S., and Yu. P. Stepanovskii. 1981. Adiabatic Invariants (in Russian). Kiev: Naukova Dumka.
Bamberger, Y. 1981. Mécanique de l'Ingénieur I. Systèmes de Corps Rigides. Paris: Hermann.
Barbour, J. B. 1989. Absolute or Relative Motion? A Study from the Machian Point of View of the Discovery and the Structure of Dynamical Theories. vol. 1: The Discovery of Dynamics. Cambridge, U.K.: Cambridge University Press.
Bartlett, J. H. 1975. Classical and Modern Mechanics. Alabama: University of Alabama Press.
Baruh, H. 1999. Analytical Mechanics. New York: McGraw-Hill.
Bat, M. I., G. Iu. Dzanelidze, and A. S. Kelbzon. 1973. Theoretical Mechanics, in Examples and Problems (in Russian), 3 vols., edited by G. Iu. Dzanelidze and D. P. Merkin. Moscow: Nauka.
Battin, R. H. 1987. An Introduction to the Mathematics and Methods of Astrodynamics (AIAA Education Series). New York: American Institute of Aeronautics and Astronautics.
Baumgarte, J. 1972. "Stabilization of Constraints and Integrals of Motion in Dynamical Systems," Computer Methods in Appl. Mechanics and Eng., 1, 1-16.
Baumgarte, J. 1980(a). "Ein rein Hamiltonsche Formulierung der Mechanik von Systemen mit holonomen Bindungen," Acta Mechanica, 36, 135-142.
Baumgarte, J. 1980(b). "Verallgemeinerung des Jacobischen Prinzips der kleinsten Wirkung auf den allgemeinen nichtconservativen Fall," ZAMM, 60, T35-T36.
Baumgarte, J. 1982. "Stabilisierung von Bindungen über Zwangsimpulse," ZAMM, 62, 447454.

Baumgarte, J. 1983. "A New Method of Stabilization for Holonomic Constraints," J. Appl. Mechanics (ASME), 50, 869-870.

Baumgarte, J. 1984. "Analytische Mechanik der beschränkten Konfigurationsräume," ZAMM, 64, 321-328.
Baumgarte, J. 1987. "Aussagen über die Stabilität quasiperiodischer Lösungen durch Einbettung in höherdimensionale Räume," ZAMM, 67, 357-365.
Beatty, M. F. 1966. "Kinematics of Finite, Rigid-Body Displacements," Am. J. Physics, 34, 949-954.
Beatty, M. F., Jr. 1986. Principles of Engineering Mechanics, vol. 1: Kinematics - The Geometry of Motion. New York: Plenum Press. (Vol. 2: Dynamics - The Analysis of Motion, to appear in 2001.)
Beer, F. P. 1963. "Impulsive Motions," J. Appl. Mechanics (ASME), 30, 315-316.
Beghin, H. 1967. Cours de Mécanique Théorique et Appliquée, tome 1, new edition revised by J. Mandel. Paris: Gauthier-Villars.

Beghin, H., and G. Julia. Exercices de Mécanique, tome 1, fascicules 1 (1946) and 2 (1951). Paris: Gauthier-Villars.
Beghin, H., and T. G. Rousseau. 1903. "Sur les percussions dans les systèmes nonholonomes," J. Math. Pures et Appliquées, series 5, 9, 21-26.

Belen'kii, I. M. 1964. Introduction to Analytical Mechanics (in Russian). Moscow: Vischaya Shkola.
Belen'kii, I. M. 1970. 'On the Theory of Hamiltonian Systems," PMM, 34, 723-728 (original in Russian, 756-761).
Bell, E. T. 1937. Men of Mathematics. New York: Simon and Schuster (several subsequent reprintings).
Bellet, D. 1988. Cours de Mécanique Générale. Toulouse: Editions Cepadues (Collection "La Cheveche").
Bellman, R., and R. Kalaba, editors. 1964. Mathematical Trends in Control Theory. New York: Dover.
Benati, M., and A. Morro. 1994. "Angular Vectors and Kinetic Energy of Rigid Bodies," Eur. J. Mechanics, A/Solids, 13, 819-832.

Benvenuto, E. 1991. An Introduction to the History of Structural Mechanics, part I: Statics and Resistance of Solids; Part II: Vaulted Structures and Elastic Systems. New York: Springer (original in Italian, 1981). [See also its review by J. Casey, in Physics Today, July 1992, pp. 65-67.]
Berdichevskii, V. L. 1983. Variational Principles in the Mechanics of Continuous Media (in Russian). Moscow: Nauka.
Berezkin, E. N. 1968. Lectures on Theoretical Mechanics, vol. 2: Dynamics of Systems, Dynamics of Rigid Bodies, Analytical Mechanics (in Russian). Moscow: Moscow University Press.
Bergmann, P. G. 1942. Introduction to the Theory of Relativity. Englewood Cliffs, NJ: Prentice Hall (reprinted 1976 by Dover, New York).
Bert, C. W. 1980. "Paul Appell, Mechanician, Mathematician, and Educator," The Engineering Science Perspective, 5, 21-25.
Besant, W. H. 1914. A Treatise on Dynamics, 5th ed. London: Bell.
Betten, J. 1987. Tensorrechnung für Ingenieure. Stuttgart: Teubner.
Bewley, L. V. 1961. Tensor Analysis of Electric Circuits and Machines. New York: Ronald Press.
Beyer, R. 1928. "Dynamik der Mehrkurbelgetriebe," ZAMM, 8, 122-133.
Beyer, R. 1929. "Geometrische Bewegungslehre," Band I, Erster Teil, pp. 405-467 in Handbuch der Physikalischen und Technischen Mechanik. Leipzig: J. A. Barth.
Beyer, R. 1963. Technische Raumkinematik. Berlin: Springer.
Bierhalter, G. 1981(a). "Boltzmanns mechanische Grundlegung des zweitwn Hauptsatzes der Wärmelehre aus dem Jahre 1866," Archive for History of Exact Sciences, 24, 195-205.
Bierhalter, G. 1981(b). "Clausius' mechanische Grundlegung des zweiten Hauptsatzes der Wärmelehre aus dem Jahre 1871," Archive for History of Exact Sciences, 24, 207-220.

Bierhalter, G. 1982. "Das Virialtheorem in seiner Beziehung zu den mechanischen Grundlegungen des zweiten Hauptsatzes der Wärmelehre," Archive for History of Exact Sciences, 27, 199-211.
Bierhalter, G. 1983. "Zu Szilys Versuch einer mechanischen Grundlegung des zweiten Hauptsatzes der Thermodynamik," Archive for History of Exact Sciences, 28, 25-35.
Bierhalter, G. 1992. "Von L. Boltzmann bis J. J. Thomson: die Versuche einer mechanischen Grundlegung der Thermodynamik (1866-1890)," Archive for History of Exact Sciences, 44, 25-75.
Biezeno, C. 1927. "Geometrie der Kräfte und Massen," pp. 233-304 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Bilimovitch, A. D. 1964. On a General Phenomenological Differential Principle. Beograd, Serbia: Naucno delo (under Monographs of the Section of Natural and Mathematical Sciences of the Serbian Academy of Sciences and Arts).
Billington, E. W. 1986. Introduction to the Mechanics and Physics of Solids. Bristol, U.K.: A. Hilger.
Birkhoff, G. D. 1927. Dynamical Systems. New York: American Mathematical Society.
Birtwistle, G. 1926. The Quantum Theory of the Atom. Cambridge, U.K.: Cambridge University Press.
Blajer, W. 1992(a). "Projective Formulation of Maggi's Method for Nonholonomic System Analysis," J. Guidance, Control, and Dynamics, 15, 522-525.
Blajer, W. 1992(b). "A Projection Method Approach to Constrained Dynamic Analysis," J. Appl. Mechanics (ASME), 59, 643-649.

Blatt, J. M., and J. N. Lyness. 1961/1962. "The Practical Use of Variation Principles in NonLinear Mechanics," J. Australian Math. Soc., 2, 357-368 (see also Lyness and Blatt.)
Bleick, W. E. 1968. "Angular Velocity of an Orthogonal Curvilinear Coordinate Frame," Am. J. Physics, 36, 638-639.

Blekhman, I. I. 1971. Synchronization in Dynamic Systems (in Russian). Moscow: Nauka.
Blekhman, I. I. 1979. "Oscillations of Nonlinear Mechanical Systems" (in Russian), Vibrations in Engineering, vol. 2. Moscow: Mashinostroenie.
Blekhman, I. I. 1988. Synchronization in Science and Technology. New York: ASME Press (original in Russian, 1981).
Blekhman, I. I., and O. Z. Malakhova. 1990. "Extremal Criteria of the Stability of Certain Motions," PMM, 54, 115-133 (original in Russian, 142-161).
Bobillo-Ares, N. 1988. "Noether's Theorem in Discrete Classical Mechanics," Am. J. Physics, 56, 174-177.
Bochner, S. 1966. The Role of Mathematics in the Rise of Science. Princeton, NJ: Princeton University Press.
Bogoliubov, N. N., and Y. A. Mitropolskii. 1974. Asymptotic Methods in the Theory of Nonlinear Oscillations (in Russian), 4th ed. Moscow: Nauka.
Bolotin, V. V. 1963. Nonconservative Problems of the Theory of Elastic Stability. New York: Macmillan/Pergamon (original in Russian, 1961).
Boltzmann, L. 1974. Vorlesungen über die Prinzipe der Mechanik, vols. I (1897) and II (1904a). Leipzig: Barth (reprinted 1974 by Wissenschaftliche Buchgesellschaft, Darmstadt).
Boltzmann, L. 1902. "Ueber die Form der Lagrangeschen Gleichungen für nichtholonome, generalisierte Koordinaten," Wienersche Sitzungsberichte, Math. Naturwiss. Kl., 111, 16031614. [Also in B.'s Gesammelte Wissenschaftliche Abhandlungen (Collected Scientific Works), vol. 3, pp. 682-692; edited in 3 vols. by F. Hasenöhrl. Leipzig: Barth. Reprinted by Chelsea, New York, 1968.]
Boltzmann, L. 1904. "Ueber die Anwendung der Lagrangeschen Gleichungen auf nicht holonome generalisierte Koordinaten," Jahresbericht der Deutschen Mathematiker-Vereinigung, 13, 132-133.
Bookchin, M. 1990. Remaking Society, Pathways to a Green Future. Boston, MA: South End Press.
Born, M. 1927. The Mechanics of the Atom. London: Bell (original in German, 1925).

Born, M. 1964. Natural Philosophy of Cause and Chance. New York: Dover (originally published 1949 by Oxford University Press).
Borri, M. 1994. "Numerical Approximations in Analytical Dynamics," pp. 323-361 in Applied Mathematics in Aerospace Science and Engineering, edited by A. Miele and A. Salvetti. New York: Plenum.
Borri, M., F. Mello, and S. Atluri. 1990. "Variational Approaches for Dynamics and FiniteElements: Numerical Studies," Computational Mechanics, 7, 49-76.
Borri, M., F. Mello, and S. Atluri. 1991. "Primal and Mixed Forms of Hamilton's Principle for Constrained Rigid Body Systems: Numerical Studies," Computational Mechanics, 7, 205-220.
Borri, M., C. Bottasso, and P. Mantegazza. 1990. "Equivalence of Kane's and Maggi's Equations," Meccanica, 25, 272-274. [See also 27, 63-64, 1992 (discussion).]
Borri, M., C. Bottasso, and P. Mantegazza. 1992. "Acceleration Projection Method in Multibody Dynamics," European J. Mechanics, A/Solids, 11, 403-418.
Bottema, O. 1955. "Note on a Nonholonomic System," Quart. Appl. Math., 13, 191-192.
Bottema, O., and B. Roth. 1990. Theoretical Kinematics. Amsterdam: North Holland (reprinted 1990 by Dover, New York).
Bouligand, G. 1954. Mécanique Rationelle, 5th ed. Paris: Vuibert.
Brach, R. M. 1991. Mechanical Impact Dynamics, Rigid Body Collisions. New York: Wiley.
Bradbury, T. C. 1968. Theoretical Mechanics. New York: Wiley.
Brand, L. 1947. Vector and Tensor Analysis. New York: Chapman and Hall.
Brand, L. 1957. Vector Analysis. New York: Wiley.
Brell, H. 1913(a). "Über eine neue Fassung des verallgemeinerten Prinzipes der kleinsten Aktion," Wienersche Sitzungsberichte, Math.-Natur. Kl., IIa, 122, 1031-1036 (see also pp. 933-944).
Brell, H. 1913(b). "Ueber eine neue Form des Gauß’schen Prinzipes des kleinsten Zwanges," Wienersche Sitzungsberichte, Math.-Natur. Kl., IIa, 122, 1531-1538.
Brelot, M. 1945. Les Principes Mathématiques de la Mécanique Classique. Grenoble and Paris: B. Arthaud.

Bremer, H. 1988(a). Dynamik und Regelung Mechanischer Systeme. Stuttgart: Teubner.
Bremer, H. 1988(b). "Ueber eine Zentralgleichung in der Dynamik," ZAMM, 68, 307-311.
Bremer, H. 1992. "Zwang und Zwangskräfte," Archive of Applied Mechanics (formerly Ingenieur-Archiv), 62, 158-171.
Bremer, H. 1993. "Das Jourdainsche Prinzip," ZAMM, 73, 184-187.
Bremer, H. 1998. Robotik I, II, Vorlesung und Arbeitsgrundlage für weitere Vertiefungsstudien. Inst. für Fertigungs- und Hanhabungssysteme, Abteilung Robotik, Johannes Kepler Universität, Linz, Austria.
Bremer, H. 1999. "On the Dynamics of Elastic Multibody Systems," Applied Mechanics Reviews (ASME), 52, 275-303.
Bremer, H., and F. Pfeiffer. 1992. Elastische Mehrkörpersysteme. Stuttgart: Teubner.
Brill, A. 1909. Vorlesungen zur einführung in die Mechanik raumerfüllender Massen. Leipzig: Teubner.
Brill, A. 1928. Vorlesungen über allgemeine Mechanik. München and Berlin: Oldenbourg.
Brillouin, L. 1964. Tensors in Mechanics and Elasticity. New York: Academic Press (original in French; 1938, 1st ed.; 1949, 2nd ed.).
Brogliato, B. 1999. Nonsmooth Mechanics, Models, Dynamics and Control, 2nd ed. London, Berlin: Springer.
Broucke, R. A. 1990. "Equations of Motion of a Rotating Rigid Body," J. Guidance, Control, and Dynamics, 13, 1150-1152.
Broucke, R. and J. Touma. 1993. "On Generalized Changes of Variables in Dynamics," private communication.
Brousse, P. 1981. Mécanique Analytique; Puissances Virtuelles, Equations de Lagrange, Applications. Paris: Vuibert.

Brunk, G. 1980. "Die geometrische Deutung kinematischer Nebenbedingungen im Konfigurations - oder im Ereignisraum," ZAMM, 60, T37-T38.
Brunk, G. 1981. "Geometrie und Integrabilität räumlicher Drehungen," ZAMM, 61, T18T20.
Brunk, G., and J. Myszkowski. 1970. "Zur Kinematik des starren Körpers und der Relativbewegung," Acta Mechanica, 10, 99-110.
Bryan, G. 1892. "Researches Relating to the Connection of the Second Law (of Thermodynamics) with Dynamical Principles," pp. 88-96 in Report of the 61st Meeting of the British Association for the Advancement of Science (Cardiff, U.K., 1891). London: Murray.
Bryan, G. 1903. "Ableitung des Zweiten Hauptsatzes aus der Prinzipien der Mechanik," pp. 146-151 in vol. 5, part 1 of Encyclopädie der Mathematischen Wissenschaften. Leipzig: Teubner.
Buch, L. H., and H. H. Denman. 1976. "Variational Principle for t-Dependent Classical Hamiltonian Systems," Physics Letters, 55A, 325-326.
Bucholz, N. N. 1972. Fundamental Course in Theoretical Mechanics, vol. 2: Dynamics of Particles and Systems (in Russian). Moscow: Nauka.
Buckley, R., and E. V. Whitfield. 1949. "Impulses and Constraints in Classical Mechanics," Applied Scientific Research, A1, 306-312.
Budde, E. Allgemeine Mechanik der Punkte und starren Systeme, Erster Band: Mechanik der Punkte und Punktsysteme (1890); Zweiter Band: Mechanische Summen und starre Gebilde (1891). Berlin: Georg Reimer.

Bulgakov, B. V. 1954. Oscillations (in Russian). Moscow: State Publishing House for TechnicalTheoretical Literature.
Burali-Forti, C., and T. Boggio. 1921. Meccanica Razionale. Torino and Genova: Lattes.
Burnet, J. 1930. Early Greek Philosophy, 4th ed. London: Adam and Charles Black.
Butenin, N. V. 1971. Introduction to Analytical Mechanics (in Russian). Moscow: Nauka.
Butenin, N. V., Ya. L. Lunts (or Lunc), and D. R. Merkin. 1985. A Course in Theoretical Mechanics, 2 vols. (in Russian), 3rd ed. Moscow: Nauka.
Byerly, W. E. 1916. An Introduction to the Use of Generalized Coordinates in Mechanics and Physics. Boston, MA: Ginn and Co. (reprinted by Dover, New York).
Cabannes, H. 1966. Problèmes de Mécanique Générale. Paris: Dunod.
Cabannes, H. 1968. General Mechanics. Waltham, MA: Blaisdell/Ginn (original in French, 1965, 2nd ed.).
Calkin, M. G. 1996. Lagrangian and Hamiltonian Dynamics. New Jersey: World Scientific.
Campbell, R. 1971. La Mécanique Analytique. Paris: Presses Universitaires de France.
Candotti, E., C. Palmieri, and B. Vitale. 1972. "On the Inversion of Noether's Theorem in Classical Dynamical Systems," Am. J. Physics, 40, 424-429.
Cannon, R. H. 1967. Dynamics of Physical Systems. New York: McGraw-Hill.
Capon, R. S. 1952. "Hamilton's Principle in Relation to Nonholonomic Mechanical Systems," Quart. J. Mech. and Appl. Math., 5, 472-480.
Carathéodory, C. 1933. "Der Schlitten," ZAMM, 13, 71-76.
Carathéodory, C. 1935. Variationsrechnung und partielle Differentialgleichungen erster Ordnung. Leipzig: Teubner (English translation available from Holden-Day, San Francisco).
Cartan, E. 1922. Leçons sur les Invariants Integraux. Paris: Hermann.
Carvallo, E. "Théorie du mouvement du monocycle et de la bicyclette," J. de l'Ecole Polytechnique, Série 2, Cahier 5, 119-188 (1900); Série 2, Cahier 6, 1-118 (1901).
Casey, J., and W. Stadler. 1983. "A Remark on the Principle of Angular Momentum for Systems of Particles," ZAMM, 66, 190-192.
Casey, J. 1983. "A Treatment of Rigid Body Dynamics," J. Appl. Mechanics (ASME), 50, 905-907 [51, 227, 1984 (errata)].
Casey, J. 1992. "The Principle of Rigidification," Archive for History of Exact Sciences, 43, 329-383.

Casey, J., and V. C. Lam. 1986(a). "On the Relative Angular Velocity Tensor," J. Mechanisms, Transmissions, and Automation in Design (ASME), 108, 399-400.
Casey, J., and V. C. Lam. 1986(b). "A Tensor Method for the Kinematical Analysis of Systems of Rigid Bodies," Mechanism and Machine Theory, 21, 87-97.
Casey, J., and V. C. Lam. 1987. "On the Reduction of the Rotational Equations of Rigid Body Dynamics," Meccanica, 22, 41-42.
Casey, J., and C. E. Smith. 1986. "When is the Direction of Angular Momentum Fixed in a Rigid Body?" ZAMM, 66, 559-560.
Castigliano, C. A. P. 1966. The Theory of Equilibrium of Elastic Systems and its Applications. New York: Dover (original in French, 1879; English translation: Elastic Stresses in Structures, 1919).
Castoldi, L. 1945/1946. "Sopra una Definizione di 'Spostamento Virtuale' di un Sistema Dinamico Valida per Vincoli di Natura Qualunque," Inst. Lombardo Rendiconti, Cl. Sc. Mat. e Natur., 79, 71-88.
Castoldi, L. 1947(a). "Equazioni Lagrangiane per i Sistemi a Vincoli Anolonomi Non Lineari nelle Velocità," Inst. Lombardo Rendiconti, Cl. Sc. Mat. e Natur., 80, 189-200.
Castoldi, L. 1947(b). "Il Principio di Hamilton per Sistemi Dinamici a Vincoli Anolonomi Generali," Atti Accad. Naz. Lincei, Rendiconti, Cl. Sci. Fis. Mat. Nat., 3(8), 329-333.
Castoldi, L. 1949. "Formulazione Lagrangiana delle Equazioni del Moto per Sistemi Dinamici Sogetti a Vincoli Servomotori," Il Nuovo Cimento, 6(3), 180-186.
Cayley, A. 1858. "Report on the Recent Progress of Theoretical Dynamics," pp. 1-42 in Report of the 27th Meeting of the British Association for the Advancement of Science (Dublin, 1857). London: Murray.
Cayley, A. 1863. "Report on the Progress of the Solution of Certain Special Problems of Dynamics," pp. 184-252 in Report of the 32nd Meeting of the British Association for the Advancement of Science (Cambridge, U.K., 1862). London: Murray.
Cetto, A. M., and L. de la Peña. 1984. "Simple Relationship between Energy and Adiabatic Invariants for Systems with a Power-Law Potential," Am. J. Physics, 52, 539-542.
Chadwick, P. 1976. Continuum Mechanics, Concise Theory and Problems. New York: Wiley/ Halsted/G. Allen and Unwin.
Chandrasekhar, S. 1995. Newton's Principia for the Common Reader. Oxford, U.K.: Clarendon Press (Oxford University Press).
Chandrasekharaiah, D. S., and L. Debnath. 1994. Continuum Mechanics. Boston: Academic Press.
Chaplygin, S. A. 1895. "On the Motion of a Heavy Figure of Revolution on a Horizontal Plane" (in Russian), Proceedings of the Society of the Friends of Natural Science, 9(1), 10-16 (published in 1897). (Also in C.'s Selected Works on Mechanics and Mathematics, pp. 413425. State Publishing House of Technical and Theoretical Literature, Moscow, 1954.)

Chaplygin, S. A. 1911. "On the Theory of Motion of Nonholonomic Systems. Theory of the Reducing Multiplier" (in Russian), Mat. Sbornik, 28, 303-314. (Also in C.'s Selected Works on Mechanics and Mathematics, pp. 426-433. State Publishing House of Technical and Theoretical Literature, Moscow, 1954.)
Charlier, C. L. 1927. Die Mechanik des Himmels, Vorlesungen, 2nd ed., 2 vols. Berlin and Leipzig: W. de Gruyter.
Chen, F., and D. Y. Hsieh. 1981. A Galerkin Method and Nonlinear Oscillations and Waves. Providence, RI: Brown University, Division of Applied Mathematics.
Chen, G. 1987. "A Generalized Galerkin's Method for Non-linear Oscillators," J. Sound \& Vibrations, 112, 503-511.
Chen, Y.-H. 1998(a). "Pars' Acceleration Paradox," J. Franklin Inst., 335B, 871-875.
Chen, Y.-H. 1998(b). "Second Order Constraints for Equations of Motion of Constrained Systems," IEEE/ASME Transactions on Mechatronics, 3(3), 240-248.
Cheng, H., and K. C. Gupta. 1989. "An Historical Note on Finite Rotations," J. Appl. Mechanics (ASME), 56, 139-145.

Chertkov, R. I. 1960. The Method of Jacobi in the Dynamics of Rigid Bodies (in Russian). Leningrad (St. Petersburg): Sudprom.
Chester, W. 1979. Mechanics. London: G. Allen and Unwin.
Chetaev, N. G. 1962. "On the Equations of Poincaré," several papers: pp. 197-198, 199-200, 201-210, 381-383, 503-549 (in Russian) in Works by Chetaev on Stability of Motion and on Analytical Mechanics. Moscow: U.S.S.R. Academy of Sciences.
Chetaev, N. G. 1989. Theoretical Mechanics. Moscow/Berlin: Mir and Springer (original in Russian revised edition of 1987; based on Chetaev's lectures from the 1950s).
Chetayev, N. G. (or Chetaev). 1961. The Stability of Motion, 2nd ed. New York: Pergamon Press (original in Russian, 1955).
Chirgwin, B. H., and C. Plumpton. 1966. Advanced Theoretical Mechanics, vol. 6: A Course of Mathematics for Engineers and Scientists. Oxford, U.K.: Pergamon Press.
Chorlton, F. 1983. Textbook of Dynamics, 2nd ed. Chichester, U.K.: Ellis Horwood/Halsted Press/Wiley.
Chow, T. L. 1995. Classical Mechanics. New York: Wiley.
Christoffersen, J. 1989. "When is a Moment Conservative?" J. Applied Mechanics (ASME), 56, 299-301.
Clifford, W. K. 1878 and 1887. Elements of Dynamic, An Introduction to the Study of Motion and Rest in Solid and Fluid Bodies. London: Macmillan.
Coburn, N. 1955. Vector and Tensor Analysis. New York: Macmillan (reprinted 1970 by Dover, New York).
Coe, C. J. 1934. "Displacements of a Rigid Body," Am. Mathematical Monthly, 41, 242-253.
Coe, C. J. 1938. Theoretical Mechanics, A Vectorial Treatment. New York: Macmillan.
Collar, A. R. and A. Simpson. 1987. Matrices and Engineering Dynamics. Chichester, U.K.: Ellis Horwood/Halsted Press/Wiley.
Cooke, R. 1984. The Mathematics of Sonya Kovalevskaya. New York: Springer.
Corben, H. C., and P. Stehle. 1960. Classical Mechanics, 2nd ed. New York: Wiley (reprinted 1974 by R. E. Krieger, Huntington, NY and 1994 by Dover, New York).
Coriolis, G. 1835. "Mémoire sur les équations du mouvement relatif des systèmes de corps," J. École Polytechnique, 15(24), 142-154.

Cosserat, E. and F. Cosserat. 1909. Théorie des Corps Déformables. Paris: Hermann.
Cotton, E. 1907. "A propos des equations de M. Appell," Nouvelles Annales de Mathématiques, Series 4, vol. 7, 529-539.
Cović, V. 1987. "On the First Integrals of Rheonomic Holonomic Mechanical Systems," ZAMM, 67, T416-T419.
Čović, V., and M. Lukačević. 1985. "An Interpretation of the Gauss Principle of Least Constraint," ZAMM, 65, T334-T336.
Čović, V., and M. Lukačević. 1988. "Jourdain's Principle as a Principle of Least Constraint," ZAMM, 68, T452-T453.
Craige, L. G., and J. L. Junkins. 1976. "Perturbation Formulations for Satellite Attitude Dynamics," Celestial Mechanics, 13, 39-64.
Crandall, S. H., D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown. 1968. Dynamics of Mechanical and Electromechanical Systems. New York: McGraw-Hill.
Crouch, T. 1981. Matrix Methods Applied to Engineering Rigid Body Mechanics. Oxford, U.K.: Pergamon.

Cunningham, W. J. 1958. Introduction to Nonlinear Analysis. New York: McGraw-Hill.
D'Abro, A. 1951. The Rise of the New Physics, 2 vols. New York: Dover (2nd ed. of The Decline of Mechanism, 1939).
D'Abro, A. 1950. The Evolution of Scientific Thought, 2nd ed. New York: Dover.
D'Alembert, J. Le Rond. Traité de Dynamique, Dans lequel les Loix (or Lois) de l'Equilibre et du Mouvement des Corps sont réduites au plus petit nombre possible, et démontrées d'une maniére nouvelle, et où l'on donne un Principe général pour trouver le Mouvement de plusieurs corps qui agissent les uns sur les autres, d'une maniére quelconque. Paris: David l'aîné, 1743 1st ed. (186 pp); 1758 2nd ed. (272 pp.); 1796 3rd ed. (identical to the

2nd). (German translation in 1899. 1st ed. reprinted 1967 by "Culture et Civilisation," Bruxelles; 2nd ed. reprinted 1921 by Gauthier-Villars, Paris, and 1968 by Johnson Reprint Corporation, New York.)
Dautheville, S. 1909. 'Sur les systèmes non holonomes," Bull. Soc. Math. de France, 37, 120132.

Davis, P. J., and R. Hersh, 1986. Descartes’ Dream, The World According to Mathematics. Boston, MA: Houghton and Mifflin.
Davis, W. R. 1967. "Constraints in Particle Mechanics and Geometry," Am. J. Physics, 35, 916-920.
De Donder, T. "Sur un Théorème de Boltzmann Relatif aux Systèmes Mécaniques," Académie Royale de Belgique, Bulletins de la Classe des Sciences, Serie 5, 10, 504-518 (1924); 11, 2836 (1925).
De Donder, T. 1927. Théorie des Invariants Intégraux. Paris: Gauthier-Villars.
De Jalón, J. G., and E. Bayo. 1994. Kinematic and Dynamic Simulation of Multibody Systems, The Real-Time Challenge. New York: Springer.
Delachet, A. 1967. Le Calcul Vectoriel, 4th ed. Paris: Presses Universitaires de France.
Delassus, E. 1913(a). "Les diverses formes du principe de d'Alembert et les équations générales du mouvement des systèmes soumis a des liaisons d'ordre quelconque," Comptes Rendus (Acad. Sci. of Paris), 156, 205-209.
Delassus, E. 1913(b). Leçons sur la Dynamique des Systèmes Materiels. Paris: Hermann.
Delaunay, Ch. E. 1883. Traité de Mécanique Rationelle, 7th ed. Paris: Garnier and Masson (1856, 1st ed.).
De la Vallée Poussin, Ch.-J. 1912. Cours d'Analyse Infinitesimale, tome II, 2nd ed. Louvain: Uystpruyst and Dieudonné; and Paris: Gauthier-Villars.
Den Hartog, J. P. 1948. Mechanics. New York: McGraw-Hill (reprinted 1961 by Dover, New York).
Denman, H. H. 1966. "On Linear Friction in Lagrange's Equation," Am. J. Physics, 34, 11471149.

Denman, H. H., and P. N. Kupferman. 1973. "Lagrangian Formalism for a Classical Particle Moving in a Riemannian Space with Dissipative Forces," Am. J. Physics, 41, 1145-1148.
Desloge, E. A. 1982. Classical Mechanics, 2 vols. New York: Wiley.
Desloge, E. A. 1986. "A Comparison of Kane’s Equations of Motion and the Gibbs-Appell Equations of Motion," Am. J. Physics, 54, 470-472, 472 (rebuttal).
Desloge, E. A. 1987. "Relationship between Kane's Equations and the Gibbs-Appell Equations," J. Guidance, Control, and Dynamics, 10, 120-122.
Desloge, E. A. 1988. "The Gibbs-Appell Equations of Motion, Am. J. Physics, 56, 841-846.
Desloge, E. A. 1989. "Efficacy of the Gibbs-Appell Method for Generating Equations of Motion for Complex Systems," J. Guidance, Control, and Dynamics, 12, 114-116.
Desloge, E. A., and R. I. Karch. 1977. "Noether’s Theorem in Classical Mechanics," Am. J. Physics, 45, 336-339.
Despeyrous, T. Cours de Mécanique, avec des notes par M. Darboux, vol. 1: 1884; vol. 2: 1886. Paris: Hermann.
Destouches, J. L. 1948. Principes de la Mécanique Classique. Paris: Centre National de la Recherche Scientifique.
Destouches, J. L. 1967(a). La Mécanique Elementaire, 2nd ed. Paris: Presses Universitaires de France.
Destouches, J. L. 1967(b). La Mécanique des Solides. Paris: Presses Universitaires de France.
Dickson, D. 1984. The New Politics of Science. New York: Pantheon.
Dictionary of Scientific Biography, 16 vols, edited by C. C. Gillispie. New York: Charles Scribner's Sons, 1970s.
Dijksterhuis, E. J. 1961. The Mechanization of the World Picture. London: Oxford University Press (original in Dutch, 1950).
Dimentberg, F. M. 1961. Flexural Vibrations of Rotating Shafts. London: Butterworths (original in Russian, 1959).

Dinh, V. N. 1981. "Carnot Theorem for a Rheonomic System," Applied Mechanics (transl. of Soviet/Ukrainian Prikladnaya Mekhanika), 17, 96-101 (original in Russian, 120-125).
Di Stefano, J. J., A. R. Stubberud, and I. J. Williams. 1990. Feedback and Control Systems, 2nd ed. New York: McGraw-Hill/Schaum's.
Dittrich, W., and M. Reuter. 1994. Classical and Quantum Dynamics, From Classical Paths to Path Integrals, 2nd ed. New York: Springer (1992, 1st ed.)
Djukic, D. S. 1974. "Conservation Laws in Classical Mechanics for Quasi-Coordinates," Archive for Rational Mechanics and Analysis, 56, 79-98.
Djukic, D. S. 1976. "A Variational Principle Involving a Conditional Extremum for the Hamel-Boltzmann Equations of Motion," Acta Mechanica, 25, 105-110.
Djukic, D. S. 1981. "Adiabatic Invariants for Dynamical Systems with One Degree of Freedom," International J. Nonlinear Mechanics, 16, 489-498.
Djukic, Dj. S., and T. M. Atanackovic. 1982. "Extremum Variational Principles in Classical Mechanics," Acad. Sci. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11), 1982, vol. 2, 481-505. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]
Djukic, Dj., and B. Vujanovic. 1975. "On Some Geometrical Aspects of Classical Nonconservative Mechanics," J. Mathematical Physics, 16, 2099-2102.
Dobronravov, V. V. 1945. "Integral Invariants of the Equations of Analytical Dynamics in Nonholonomic Coordinates," Comptes Rendus [Doklady] de l'Académie des Sciences de l'URSS, 46(5), 179-181.
Dobronravov, V. V. 1948. "Analytical Dynamics in Nonholonomic (or Anholonomic) Coordinates" (in Russian), Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta, 2(122), 77-182.
Dobronravov, V. V. 1970. Fundamentals (or Elements) of Nonholonomic System Mechanics (in Russian). Moscow: Vischaya Shkola.
Dobronravov, V. V. 1976. Principles of Analytical Mechanics (in Russian). Moscow: Vischaya Shkola.
Dolaptschiew, B. 1966(a). "Ueber die Nielsensche Form der Gleichungen von Lagrange und deren Zusammenhang mit dem Prinzip von Jourdain und mit den nichtholonomen mechanischen Systemen," ZAMM, 46, 351-355.
Dolaptschiew, B. 1966(b). "Ueber die verallgemeinerte Form der Lagrangeschen Gleichungen, welche auch die Behandlung von nicht-holonomen mechanischen Systemen gestattet," ZAMP, 17, 443-449.
Dolaptschiew, B. 1967. "Ueber die 'verallgemeinerten' Gleichungen von Lagrange und deren Zusammenhang mit dem 'verallgemeinerten' Prinzip von d'Alembert,' J. für die Reine und Angewandte Mathematik, 226, 103-107.
Dolaptschiew, B. 1969. "Verwendung der einfachsten Gleichungen Tzenoffschen Typs (Nielsenschen Gleichungen) in der nicht-holonomen Dynamik," ZAMM, 49, 179-184.
Drish, W. F., and W. J. Wild. 1983. "Numerical Solutions of Van der Pol's Equation," Am. J. Physics, 51, 439-445.
Duan, L. 1989. "Conservation Laws of Nonholonomic Nonconservative Dynamical Systems," Acta Mechanica Sinica, 5, 167-175.
Dugas, R. 1955. A History of Mechanics. New York: Central Book Co. (original in French; Editions du Griffon, Neuchatel, Switzerland. Reprinted 1988 by Dover, New York).
Duhem, P. 1911. Traité d’Energetique, ou de Thermodynamique Générale; tome II: Dynamique Générale, Conductibilité de la Chaleur, Stabilité de l'Equilibre. Paris: Gauthier-Villars.
Duhem, P. M. M. 1980. The Evolution of Mechanics. Alphen aan den Rijn, The Netherlands: Sijthoff and Noordhoff (original in French, 1903-1905).
Dühring, E. 1887. Kritische Geschichte der allgemeinen Principien der Mechanik, 3rd ed. Leipzig: Fues (1872, 1st ed; 1876, 2nd ed.; available through Dr. Martin Sändig, oHG, Wiesbaden, Germany).

Dysthe, K. B., and O. T. Gudmestad, 1975. "On Resonance and Stability of Conservative Systems," J. Math. Physics, 16, 56-64.
Easthope, C. E. 1964. Three Dimensional Dynamics, 2nd ed. London: Butterworths.
Eberhard, O. v. 1922. "Entgegnung des Herrn O. v. Eberhard auf eine Kritik des Herrn R. v. Mises; gleichzeitig ein Beitrag zum Verständnis des d'Alembertschen Prinzips," Zeitschrift für Technische Physik, 3, 28-31.
Ehrenfest, P. 1959. "Die Bewegung von Starrer Koerper in Flüssigkeiten und die Mechanik von Hertz," pp. 1-77 in Paul Ehrenfest, Collected Scientific Papers, edited by M. J. Klein. Amsterdam: North Holland (Ehrenfest's unpublished doctoral dissertation, 1904, Vienna).
Einstein, A. 1956. The Meaning of Relativity, 5th ed. Princeton, NJ: Princeton University Press.
El Naschie, M. S. 1990. Stress, Stability and Chaos in Structural Engineering: An Energy Approach. London: McGraw-Hill.
Elsgolts, L. 1970. Differential Equations and the Calculus of Variations. Moscow: Mir.
Epstein, S. T. 1968. "A Derivation of the Jacobi Identity in Classical Mechanics," Am. J. Physics, 36, 759.
Erlichson, H. 1996. "Christiaan Huygens' Discovery of the Center of Oscillation Formula," Am. J. Physics, 64, 571-574.
Essén, H. 1981. "The Cat Landing on its Feet Revisited, or Angular Momentum Conservation and Torque-Free Rotations of Nonrigid Mechanical Systems," Am. J. Physics, 49, 756758.

Essén, H. 1994. "On the Geometry of Nonholonomic Dynamics," J. Appl. Mechanics (ASME), 61, 689-694.
Euler, L. 1736. Mechanica Sive Motus Scientia, Analytice Exposita, 2 vols. Petropoli (St. Petersburg). Academy of Sciences Press (Typographia Academiae Scientiarum). [Also in E.'s Collected Works (Opera Omnia): II, 1 and 2, 1912. German translation Mechanik oder analytische Darstellung der Wissenschaft von der Bewegung, mit Anmerkungen und Erläuterungen, Herausgegeben von J. P. Wolfers, 3 Teile in 2 Bänden Greifswald, 18481853 (almost 1900 pages).]
Euler, L. 1750. "Découverte d'un nouveau principe de mécanique," Mém. Acad. Sci. Berlin, 6, 185-217 (published in 1752). [Also in E.'s Collected Works (Opera Omnia): II, 5, 81-108, 1957.]

Euler, L. 1758. "Du mouvement de rotation des corps solides autour d'un axe variable," Mém. Acad. Sci. Berlin, 14, 154-193 (published in 1765). [Also in E.'s Collected Works (Opera Omnia): II, 8, 200-235, 1964.]
Euler, L. 1760. 'Du mouvement d'un corps solide quelconque lorsqu'il tourne autour d'un axe mobile," Mém. Acad. Sci. Berlin, 16, 176-227 (published in 1767). [Also in E.'s Collected Works (Opera Omnia): II, 8, 313-356, 1964.]
Euler, L. 1765. Theoria Motus Corporum Solidorum Seu Rigidorum, Ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accomodata. Rostock and Greifswald (1790, 2nd ed). [Also in E.'s Collected Works (Opera Omnia): II, 3, 1948 and 4, 1950. German translation as Theorie der Bewegung fester oder starrer Koerper, Greifswald, 1853.]
Euler, L. 1775. "Nova methodus motum corporum rigidorum determinandi," Novi Comment. Acad. Sci. Petropolitanae, 20, 208-238 (published in 1776). [Also in E.'s Collected Works (Opera Omnia): II, 9, 99-125, 1968.]
Euler, Leonhard, 1958. Volume on the occasion of his 250th birthday (in Russian, with German summaries), edited by M. A. Lawrentjew, A. P. Juschkewitsch, and A. T. Grigorian. Moscow: Academy of Sciences of the U.S.S.R.
Euler, Leonhard 1707-1783, 1983. Beiträge zu Leben und Werk; Gedenkband des Kantons Basel Stadt, edited by J. J. Burkhardt, E. A. Fellmann, and W. Habicht. Basel: Birkhäuser.
Falk, G. 1966. Theoretische Physik, auf die Grundlage einer allgemeinen Dynamik, Band I: Elementare Punktmechanik, Band Ia: Aufgaben und Ergänzungen zur Punktmechanik. Berlin: Springer.

Favre, H. 1946. Cours de Mécanique, vol. 1: Statique; vol. 2: Dynamique; vol. 3: Elasticité, Hydrodynamique. Paris: Dunod, and Zurich: Leeman.
Featherstone, R. 1987. Robot Dynamics Algorithms. Norwell, MA: Kluwer.
Federhofer, K. 1928. Graphische Kinematik und Kinetostatik des Starren räumlichen Systems. Berlin: Springer.
Federhofer, K. 1932. Graphische Kinematik und Kinetostatik. Berlin: Springer.
Ferrarese, G. 1980. Lezioni di Meccanica Razionale, 2 vols. Bologna: Pitagora.
Ferrell, T. L. 1971. "Hamilton-Jacobi Perturbation Theory," Am. J. Physics, 39, 622-627.
Ferrers, N. M. 1873. "Extension of Lagrange's Equations," Quart. J. Pure and Appl. Mathematics, 12, 1-4.
Fetter, A. L. and J. D. Walecka. 1980. Theoretical Mechanics of Particles and Continua. New York: McGraw-Hill.
Finzi, B. 1949. Principi Variazionali. Milano, Tamburini.
Fischer, U. 1972. "Übergangsbedingungen für Stossvorgänge in mechanischen Systemen mit endlich vielen Freiheitsgraden," Wiss. Z. Tech. Hochschule Magdeburg, 16, 323-325.
Fischer, U. 1987. "Stösse in Mehrkörpersysteme," Proc. 7th World Congress on Theory of Machines and Mechanisms (Sevilla, Spain, Sept. 17-22, 1987). Oxford: Pergamon.
Fischer, U., and K. Henning. 1982. "Formalisierte Berechnung der Geschwindigkeitssprüngen und Impulse bei Stossvorgängen in Starrkörper- und hybriden Mehrkörpersystemen," Technische Mechanik, 3, 78-80.
Fischer, U., and W. Stephan. 1972. Prinzipien und Methoden der Dynamik. Leipzig: VEB Fachbuchverlag.
Fischer, U., and W. Stephan. 1984. Mechanische Schwingungen, 2nd ed. Leipzig: VEB Fachbuchverlag.
Föppl, A. Vorlesungen über technische Mechanik, vol. 1: Einführung in die technische Mechanik (1898, 1st ed.); vol. 4: Dynamik (1899, 1st ed.); vol. 6: Die wichtigsten Lehren der höheren Dynamik (1910, 1st ed.); several subsequent editions: 1898-1940s. Leipzig: Teubner.
Forbat, N. 1966. Analytische Mechanik der Schwingungen. Berlin: VEB Deutscher Verlag der Wissenschaften.
Forbes, G. W. 1991. "On Variational Problems in Parametric Form," Am. J. Physics, 59, 1130-1140.
Förster, E. 1903. "Zum Ostwaldschen Axiom der Mechanik," Zeitschrift für Mathematik und Physik, 49, 84-89.
Forsyth, A. R. 1885. A Treatise on Differential Equations. London: Macmillan (1954, 6th ed., posthumous).
Forsyth, A. R. 1890. Theory of Differential Equations, vol. 1: Exact Equations and Pfaff's Problem. Cambridge, U.K.: Cambridge University Press (reprinted 1959 by Dover, New York; original 6-vol. work bound in 3 vols.).
Fourier, J. B. 1798. "Mémoire sur la statique, contenant la démonstration du principe des vitesses virtuelles, et la théorie des moments," Journal de l'Ecole Polytechnique, Cahier 5, Tome II, 20-60. [Also in Fourier's Collected Works.]
Fox, C. 1950. An Introduction to the Calculus of Variations. Oxford, U.K.: Oxford University Press (reprinted 1987, by Dover, New York; from corrected printing of 1963).
Fox, E. A. 1967. Mechanics. New York: Harper and Row.
Fradlin, B. N. 1961. "Petr Vassilievich Voronets - one of the Founders of Nonholonomic Mechanics" (in Russian), History of Physical-Mathematical Sciences, Reports of the Institute of the History of Natural Sciences and Technology, USSR Academy of Sciences, Moscow, 43, 422-469.
Fradlin, B. N. 1965. "Analytical Dynamics of Mechanical Systems with Nonlinear Nonholonomic Constraints" (in Russian), Applied Mechanics, 1(7), 21-27.
Fradlin, B. N., and L. D. Roshchupkin 1973(a). "The Equations of Dynamics, Review," Applied Mechanics, 9, 1-7 (original in Russian, 3-9).

Fradlin, B. N., and L. D. Roshchupkin. 1973(b). "On the Dolapchiev-Manzheron-Tsenov Equations in the Case of Natural Systems," Applied Mechanics, 9, 251-254 (original in Russian, 21-25).
Fradlin, B. N., and L. D. Roshchupkin. 1976. "Theory of Stability and Theory of Small Oscillations of Nonholonomic Mechanical Systems," Applied Mechanics (transl. of Soviet/Ukrainian Prikladnaya Mekhanika), 12, 329-335 (original in Russian, 3-11).
Frank, P. 1927. "Analytische Mechanik," pp. 1-176 in vol. 2, of Die Differential-und Integralgleichungen der Mechanik und Physik, edited by P. Frank and R. v. Mises. Braunschweig: Vieweg (1935, 2nd ed., pp. 44-239, reprinted by Dover, New York).
Frank, P. 1957. Philosophy of Science, The Link Between Science and Philosophy. Englewood Cliffs, NJ: Prentice Hall.
Frankfort, H., H. A. Frankfort, J. A. Wilson, and T. Jacobsen. 1946. Before Philosophy, The Intellectual Adventure of Ancient Man. Chicago: University of Chicago Press (reprinted 1951, 1954, 1959, 1961, 1963, 1964, 1967, 1968, 1971, 1972 by Pelican and Penguin Books).
Fraser, C. "J. L. Lagrange's Early Contributions to the Principles and Methods of Mechanics," Archive for History of Exact Sciences, 28, 197-241 (1983); 32, 151-191 (1985).
Fraser, C. 1985. "D'Alembert's Principle: The Original Formulation and Application in Jean d'Alembert's Traité de Dynamique (1743)," Centaurus, 28, part 1: 31-61; part 2: 145-159.
French, A. P. 1971. Newtonian Mechanics. New York: Norton.
Frenkel, J. I. 1940. Course of Theoretical Mechanics, based on the Elements of Vector and Tensor Analysis (in Russian). Leningrad: Gos. izd-vo tekhn.-theoret. lit-ry (State Publishers of Technical \& Theoretical Literature).
Frobenius, F. G. 1877. "Über das Pfaffsche Problem," J. für die Reine und Angewandte Mathematik (Crelle's J.), 82, 230-315. [Also in his Collected Works, Springer, 1968; and, secondarily, "Ueber homogene totale Differentialgleichungen," J. für die Reine und Angewandte Mathematik (Crelle's J.), 86, 1-18 (1879).]
Fues, E. 1927. "Störungrechnung," pp. 131-177 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Fufaev, N. A. 1985. "Theory of the Motion of Systems with Rolling," PMM, 49, 41-49 (original in Russian, 1, 56-65).
Fufaev, N. A. 1990. "About an Example of a System with a Nonholonomic Constraint of Second Order," ZAMM, 70, 593-594.
Funk, P. 1962. Variationsrechnung und ihre Anwendung in der Technik. Berlin: Springer.
Galiulin, A. S. 1984. Inverse Problems in Dynamics. Moscow: Mir (original in Russian, 1981).
Gallavotti, G. 1983. The Elements of Mechanics. New York: Springer.
Gantmacher, F. 1970. Lectures in Analytical Mechanics. Moscow: Mir (original in Russian, 1966).

Garfinkel, B. 1966. "The Lagrange-Hamilton-Jacobi Mechanics," part 1, pp. 40-76 of Lectures in Applied Mathematics, vol. 5 of Space Mathematics, edited by J. B. Rosser. Providence, RI: American Mathematical Society.
Garnier, R. Cours de Cinématique, tomes I: Cinématique du Point et du Solide. Composition des Mouvements, 1960, 4th ed.; II: Roulement et Viration. La Formule du Savary et son Extension à l'Espace, 1956, 3rd ed.; III: Géometrie et Cinématique Cayleyennes, 1951, 1st ed. Paris: Gauthier-Villars.
Gascoigne, R. M. 1984. A Historical Catalogue of Scientists and Scientific Books, From the Earliest Times to the Close of the Nineteenth Century. New York: Garland Publishing.
Ge, Z.-M. 1984. "The Equations of Motion of Nonlinear Nonholonomic Variable Mass System with Applications, J. Appl. Mechanics (ASME), 51, 435-437.
Geiringer, H. 1942. Geometrical Foundations of Mechanics (mimeographed notes). Providence, RI: Brown University.
Gelfand, I. M., and S. V. Fomin. 1963. Calculus of Variations. Englewood Cliffs, NJ: Prentice Hall (revised English translation from Russian original, 1961).
Gericke, H. 1994. Mathematik in Antike und Orient, and Mathematik im Abendland, Von den römischen Feldmessern bis zu Descartes, 3rd ed. Wiesbaden, Germany: Fourier Verlag.

Germain, P. 1962. Mécanique des Milieux Continus. Paris: Masson.
Gernet, M. M. 1981. Course of Theoretical Mechanics (in Russian). Moscow: Vischaya Shkola.
Geronimus, J. L. 1973. Theoretical Mechanics (in Russian). Moscow: Nauka.
Ghori, Q. K. 1970. "Virtual Displacements of Nonholonomic Systems with Arbitrary Constraints," ZAMM, 52, 123-124.
Ghori, Q. K. 1977. "Conservation Laws for Dynamical Systems in Poincaré-Cetaev Variables," Arch. Rat. Mech. Analysis, 64, 327-337.
Ghori, Q. K., and N. Ahmed. 1994. "Hamilton's Principle for Nonholonomic Systems," $Z A M M, 74,137-140$.
Ghori, Q. K., and M. Hussain. 1973. "Poincarés Equations for Nonholonomic Dynamical Systems," ZAMM, 53, 391-396.
Ghori, Q. K., and M. Hussain. 1974. "Poincare's Equations for a Nonholonomic System with Variable Mass," Arch. Rat. Mech. Analysis, 56, 70-78.
Giacaglia, G. E. O. 1972. Perturbation Methods in Non-Linear Systems. New York: Springer.
Gibbs, J. W. 1879. "On the Fundamental Formulae of Dynamics," Am. J. Mathematics, 2, 4964. (Also in G.'s 1928 Collected Works, vol. 2, part 2, pp. 1-15, New York: Longmans and Green.)
Gilmartin, H., A. Klein, and C.-T Li. 1979. "Application of Hamilton's Principle to the Study of the Anharmonic Oscillator in Classical Mechanics," Am. J. Physics, 47, 636-639.
Ginsberg, J. H. 1995. Advanced Engineering Dynamics, 2nd ed. Cambridge, U.K.: Cambridge University Press.
Girtler, R. 1928. "Ueber die Berechnung kinetostatisch unbestimmter Systeme," Wiener Sitzungsberichte, Math.-naturwiss. Klasse, Abteilung IIa, 137, 51-69.
Glocker, C. 1995. Dynamik von Starrkörpersystemen mit Reibung und Stößen. Fortschritt Berichte, Reiche 18: Mechanik/Bruchmechanik, Nr. 182, Düsseldorf: VDI Verlag.
Golab, S. 1974. Tensor Calculus. Amsterdam: Elsevier.
Göldner, H. 1984. "Leonhard Euler - seine Beiträge zur Festkörpermechanik und sein Wirken an der Berliner Akademie," Technische Mechanik, 5, 67-75.
Goldsmith, W. 1960. Impact, The Theory and Physical Behavior of Colliding Solids. London: Arnold.
Goldstein, H. 1980. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley.
Golomb, M. 1961. Lectures on Theoretical Mechanics (mimeographed notes prepared by I. Marx). West Lafayette, IN: Purdue University, School of Mathematics.
Gontier, G. 1969. Mécanique des Milieux Déformables, Principes et Théorèmes Généraux. Paris: Dunod.
Goodbody, A. M. 1982. Cartesian Tensors, With Applications to Mechanics, Fluid Mechanics and Elasticity. Chichester, U.K.: Ellis Horwood/Halsted Press/Wiley.
Grammel, R. 1927. "Kinetik der Massenpunkte," pp. 305-372 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Grammel, R. 1950. Der Kreisel, Seine Theorie und Anwendungen, 2 vols, 2nd ed. Berlin: Springer.
Gray, A. (1908/1909). "On Lagrange's Equations of Motion, and on Elementary Solutions of Gyrostatic Problems," Proc. Roy. Soc. Edinburgh, 29, 327-348.
Gray, A. 1918. A Treatise on Gyrostatics and Rotational Motion. London: Macmillan (reprinted 1959 by Dover, New York).
Gray, C. G., G. Karl, and V. A. Novikov. 1996(a). "Direct Use of Variational Principles as an Approximation Technique in Classical Mechanics," Am. J. Physics, 64, 1177-1184.
Gray, C. G., G. Karl, and V. A. Novikov. 1996(b). "The Four Variational Principles of Mechanics," Annals of Physics, 251, 1-25.
Greenwood, D. T. 1977. Classical Dynamics. Englewood Cliffs, NJ: Prentice Hall (reprinted 1997 by Dover, New York).
Greenwood, D. T. 1988. Principles of Dynamics, 2nd ed. Englewood Cliffs, NJ: Prentice Hall.
Greenwood, D. T. 2000. Advanced Topics in Dynamics (Lecture Notes). Ann Arbor, MI: University of Michigan, Dept. of Aerospace Eng (to appear in book form in near future).

Grioli, G. 1970. "Generalized Precessions," Revue Roumaine des Sciences Techniques, Mécanique Appliquée, 15, 249-255.
Groesberg, S. W. 1968. Advanced Dynamics. New York: Wiley.
Groves, G. W. 1967. "Acceleration Referred to Moving Curvilinear Coordinates," Am. J. Physics, 35, 927-929.
Grubin, C. 1962. "Vector Representation of Rigid Body Rotation," Am. J. Physics, 30, 416417.

Guen, F. 1968. "On the Equations of Motion of Nonholonomic Mechanical Systems in Poincaré-Chetaev Variables," PMM, 31, 274-281 (original in Russian, 253-259).
Guen, F. 1969. "One Form of the Equations of Motion of Mechanical Systems," PMM, 33, 386-392 (original in Russian, 397-402).
Guen, F. 1982. "On the Theory of Ignorable Displacements for Generalized PoincaréChetaev Equations," PMM, 45, 343-350 (original in Russian, 471-480).
Gugino, E. 1930. "Sul problema dinamico di un quasivoglia sistema vincolato ridotto all'analogo problema relativo ad un sistema libero," Atti Accad. Naz. Lincei, Rendiconti Cl. Fis. Mat. Nat., Series 6, 12, 307-312.
Gugino, E. 1936(a). "Deduzione unitaria delle equazione dinamiche del Maggi et dell' Appell," Atti Accad. Naz. Lincei, Rendiconti Cl. Fis. Mat. Nat., Series 6, 23, 406-413.
Gugino, E. 1936(b). "Sulle equazioni dinamiche di Eulero-Lagrange secondo G. Hamel," Atti Accad. Naz. Lincei, Rendiconti Cl. Fis. Mat. Nat., Series 6, 23, 413-421.
Guldberg, A. 1927. "Partielle und totale Differentialgleichungen," Erster Band, Zweiter Teilband, pp. 561-578 of Repertorium der Höheren Mathematik, 2nd ed. Leipzig and Berlin: Teubner.
Gupta, K. C. 1988. Classical Mechanics of Particles and Rigid Bodies. New York: Wiley.
Gutowski, R. 1971. Mechanika Analityczna. Warsaw: Panstwowe Wydawnictwo Naukowe (PWN).
Gutowski, R. 1992. "Analytical Mechanics, " pp. 1-119 of Foundations of Mechanics, edited by H. Zorski. Warszaw: Polish Scientific Publishers (PWN)/Elsevier (original in Polish, 1985).

Gutzwiller, M. C. 1990. Chaos in Classical and Quantum Mechanics. New York: Springer.
Haar, D. Ter. 1971. Elements of Hamiltonian Mechanics, 2nd ed. Oxford: Pergamon (unaltered photographic reproduction of the 2nd ed. of 1964, by North Holland, Amsterdam).
Haas, A. E. 1914. Die Grundgleichungen der Mechanik dargestellt auf Grund der geschichtlichen Entwicklung. Leipzig: Veit.
Hadamard, J. 1895. "Sur les Mouvements de Roulement," Mémoires de la Societé des Sciences Physiques et Naturelles de Bordeaux, 5, 397-417. [Also in Appell, 1899(a).]
Hagedorn, P. 1970. "Zur Umkehrung des Satzes von Lagrange über die Stabilität," ZAMP, 21, 841-845.
Hagedorn, P. 1971. "Die Umkehrung der Stabilitätssätze von Lagrange-Dirichlet und Routh," Arch. for Rat. Mech. and Analysis, 42, 281-316.
Hagedorn, P. 1975. "Ueber die Instabilität Konservativer Systeme mit Gyroskopischen Kräften," Arch. Rat. Mech. and Analysis, 58, 1-9.
Hagedorn, P. 1978. Nichtlineare Schwingungen. Wiesbaden: VAG, Akademische Verlagsgesellschaft (English translation also available from Clarendon Press, Oxford, U.K. 1981).

Hagihara, Y. 1970. Dynamical Principles and Transformation Theory, vol. 1 of (2-vol. treatise on) Celestial Mechanics. Cambridge, MA: MIT Press.
Halfman, R. I. 1962. Dynamics, vol. 1: Particles, Rigid Bodies, and Systems; vol. 2: Systems, Variational Methods, and Relativity. Reading, MA: Addison-Wesley.
Hamel, G. 1904(a). "Die Lagrange-Eulersche Gleichungen der Mechanik," Zeitschrift für Mathematik und Physik, 50, 1-57.
Hamel, G. 1904(b). "Ueber die virtuellen Verschiebungen in der Mechanik," Mathematische Annalen, 59, 416-434.

Hamel, G. 1908. "Ueber die Grundlagen der Mechanik," Mathematische Annalen, 66, 350397.

Hamel, G. 1917. "Ueber ein Prinzip der Befreiung bei Lagrange," Jahresbericht der Deutschen Mathematiker-Vereinigung, 25, 60-65.
Hamel, G. 1922(a). "Zum Verständnis des d'Alembertschen Prinzips," Zeitschrift für Technische Physik, 3, 181-182.
Hamel, G. 1922(b). Elementare Mechanik, 2nd ed. Leipzig: Teubner (1912 1st ed.; reprinted 1965 by Johnson Reprint Co., New York)
Hamel, G. 1924. "Ueber Nichtholonome Systeme," Mathematische Annalen, 92, 33-41.
Hamel, G. 1926. "Ueber die Mechanik der Drähte und Seile," Sitzungsberichte der Berliner Mathematischen Gesellschaft, 25, 3-8.
Hamel, G. 1927. "Die Axiome der Mechanik," pp. 1-42 in vol. 5, of Handbuch der Physik, Berlin: Springer.
Hamel, G. 1935. "Das Hamiltonsche Prinzip bei nichtholonomen Systemen," Mathematische Annalen, 111, 94-97.
Hamel, G. 1936. "Joseph Louis Lagrange, Zur Zweihundertjahrfeier seines Geburtstages," Die Naturwissenschaften, 24, 51-53.
Hamel, G. 1938. "Nichtholonome Systeme höherer Art," Sitzungsberichte der Berliner Mathematischen Gesellschaft, 37, 41-52.
Hamel, G. 1949. Theoretische Mechanik, Eine einheitliche Einführung in die gesamte Mechanik. Berlin: Springer.
Hamilton, E. 1948. The Greek Way, 3rd ed. New York: Norton.
Hammond, P. 1970. Energy Methods in Electromagnetism. Oxford, U.K.: Clarendon Press.
Hand, L. N., and J. D. Finch. 1998. Analytical Mechanics. Cambridge, U.K.: Cambridge University Press.
Hankins, T. L. 1970. Jean d'Alembert. Science and the Enlightenment. Oxford, U.K.: Clarendon Press.
Hankins, T. L. 1985. Science and the Enlightenment. Cambridge, U.K.: Cambridge University Press.
Harman, P. M. 1982. Energy, Force, and Matter, The Conceptual Development of NineteenthCentury Physics. Cambridge, U.K.: Cambridge University Press.
Harrison, H. R., and T. Nettleton. 1997. Advanced Engineering Dynamics. London: Arnold.
Hartman, P. 1964. Ordinary Differential Equations. New York: Wiley.
Haug, E. J. 1989. Computer Aided Kinematics and Dynamics, vol. I: Basic Methods. Boston, MA: Allyn and Bacon.
Haug, E. J. 1992. Intermediate Dynamics. Englewood Cliffs, NJ: Prentice Hall.
Haug, E. J., S. S. Kim, and F. F. Tsai. 1992. Computer Aided Kinematics and Dynamics, vol. II: Advanced Methods. Englewood Cliffs, NJ: Prentice Hall. (Announced but seemingly never published.)
Heading, J. 1958. Matrix Theory for Physicists. London: Longmans, Green and Co.
Heil, M. and F. Kitzka. 1984. Grundkurs Theoretische Mechanik. Stuttgart: Teubner.
Heinz, C. 1970. 'Das d'Alembertsche Prinzip in der Kontinuumsmechanik," Acta Mechanica, 10, 111-129.
Heisenberg, W. 1930. The Physical Principles of the Quantum Theory. Chicago: University of Chicago Press (original in German; reprinted 1949 by Dover, New York).
Helleman, R. H. G. 1978. "Variational Solutions of Non-Integrable Systems," pp. 264-285 in Topics in Nonlinear Dynamics (A Tribute to Sir Edward Bullard), edited by S. Jorna. New York: American Institute of Physics, Conference Proceedings \#46.
Hellinger, E. 1914. "Die allgemeinen Ansätze der Mechanik der Kontinua," art. 30, pp. 601694 in vol. 4 of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner.
Helmholtz, H. v. 1898. Vorlesungen über theoretische Physik; Band I, Abtheilung 2: (Vorlesungen über) Die Dynamik Discreter Massenpunkte, edited by O. Krigar-Menzel. Leipzig: J. A. Barth.

Henneberg, L. 1903. "Die graphische Statik der starren Koerper," art. 5, pp. 345-434 in vol. 4 of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner.
Hertz, H. 1899. The Principles of Mechanics, presented in new form. London: Macmillan (original in German, 1894; English translation reprinted in paperback, 1956, by Dover, New York).
Hestenes, D. 1986. New Foundations for Classical Mechanics. Dordrecht: Reidel-Kluwer.
Heun, K. 1901. "Die kinetischen Probleme der wissenschaftlichen Technik," Jahresbericht der Deutschen Mathematiker-Vereinigung, 9(2), 1-123.
Heun, K. 1902(a). "Die Bedeutung des D'Alembertschen Prinzipes für starre Systeme und Gelenkmechanismen," Archiv der Mathematik und Physik, Dritte Reihe, 2, 57-77 and 298326.

Heun, K. 1902(b). "Review of A. Foeppl's book: Vorlesungen über Technische Mechanik," Zeitschrift für Mathematik und Physik (Bücherschau), 47, 270-279.
Heun, K. 1902(c) "Ueber die Hertzsche Mechanik," Sitzungsberichte der Berliner Mathematischen Gesellschaft, 1, 12-16.
Heun, K. 1902(d). Formeln und Lehrsätze der Allgemeinen Mechanik. Leipzig: Göschen.
Heun, K. 1903. "Ueber die Einwirkung der Technik auf die Entwicklung der theoretischen Mechanik," Jahresbericht der Deutschen Mathematiker-Vereinigung, 12, 389-398.
Heun, K. 1906. Lehrbuch der Mechanik, I. Teil: Kinematik. Leipzig: Göschen.
Heun, K. 1908. "Die Grundgleichungen der Kinetostatik der Körperketten mit Anwendungen auf die Mechanik der Maschinen," Zeitschrift für Mathematik und Physik, 56, 38-77.
Heun, K. 1914. "Ansätze und allgemeine Methoden der Systemmechanik," art. 11, pp. 357504 in vol. 4, of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner (article completed in April 1913).
Heun, K. 1925. "Grundlagen der modernen Mechanik. Vorgänge und Zustände mit linearem und mehrdimensionalem Grundfeld," pp. 67-95 of Festschrift zur Hundertjahrfeier der Technischen Hochschule Karlsruhe.
Hilborn, R. C. 1972. "A Note on Euler Angle Rotations," Am. J. Physics, 40, 1036-1037.
Hill, E. L. 1945. "Rotations of a Rigid Body About a Fixed Point," Am. J. Physics, 13, 137140.

Hill, E. L. 1951. "Hamilton's Principle and the Conservation Theorems of Mathematical Physics," Reviews of Modern Physics, 23, 253-260.
Hill, R. 1964. Principles of Dynamics. New York: Macmillan (and Pergamon).
Hiller, M. 1983. Mechanische Systeme. Berlin: Springer.
Holden, J. T., and A. C. King. 1970. "The Dynamics of a Ball Rolling on a Rotating Plane," ZAMM, 70, 353-355.
Hölder, E. 1939. "Über die explizite Form der dynamischen Gleichungen für die Bewegung eines starren Körpers relativ zu einem geführten Bezugssystem," ZAMM, 19, 166-176.
Hölder, O. 1896. "Über die Principien von Hamilton und Maupertuis," Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Kl., Heft 2, 122-157.
Honerkamp, J., and H. Römer. 1993. Theoretical Physics, A Classical Approach. New York: Springer (original in German, 1986, 1989).
Hoppe, E. 1926(a). "Geschichte der Physik," pp. 1-179 in vol. 1 of Handbuch der Physik. Berlin: Springer.
Hoppe, E. 1926(b). Geschichte der Physik. Braunschweig: Fr. Vieweg and Sohn (reprinted 1965 by Johnson Reprint Corporation, New York and London).
Horák, Z. 1931. "Théorie Générale du Choc dans les Systèmes Matériels," Journal de l'Ecole Polytechnique, Serie II, 28(2), 15-64.
Horn, J. 1905. "Weitere Beiträge zur Theorie der kleinen Schwingungen," Zeitschrift für Mathematik und Physik, 52, 1-43; also: 1906, 53, 370-402 (same title).
Housner, G. W., and D. E. Hudson. 1959. Applied Mechanics, 2 vols. (Statics and Dynamics), 2nd ed. New York: Van Nostrand and Reinhold.
Howard, J. E. 1967. "Singular Cases of the Inertia Tensor," Am. J. Physics, 35, 281-282.

Høyrup, J. 1988. "Jordanus de Nemore, 13th Century Mathematical Innovator: An Essay on Intellectual Context, Achievement, and Failure," Archive for History of Exact Sciences, 38, 307-363.
Hughes, P. C. 1986. Spacecraft Attitude Dynamics. New York: Wiley.
Hund, F. 1972. Geschichte der Physikalischen Begriffe. Mannheim: Bibliographisches Institut.
Hunt, K. H. 1974. "Mechanics Pure and Simple (Applied and Elaborated in Design)," The South African Mechanical Engineer, 24, 218-230.
Hunt, K. H. 1978. Kinematic Geometry of Mechanisms. Oxford, U.K.: Clarendon Press.
Hunter, S. C. 1983. Mechanics of Continuous Media, 2nd ed. New York: Horwood/Halsted/ Wiley.
Hurwitz, A. 1895. "Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt," Mathematische Annalen, 46, 273-284 (English translation 1964, pp. 70-82 in Selected Papers on Mathematical Trends in Control Theory, edited by R. Bellmann and R. Kalaba. New York: Dover).
Huseyin, K. 1978. Vibrations and Stability of Multiple Parameter Systems. Amsterdam: Noordhoff.
Hussain, M. 1982. "Conservation Laws for a Dynamical System in Group Variables," ZAMM, 62, 441-446.
Hussein, M. S., J. G. Pereira, V. Stojanoff, and H. Takai. 1980. "The Sufficient Condition for an Extremum in the Classical Action Integral as an Eigenvalue Problem," Am. J. Physics, 48, 767-770.
Huston, R. L. 1990. Multibody Dynamics. Boston, MA: Butterworth-Heinemann.
Huston, R. L., and C. E. Passerello. 1976. "Nonholonomic Systems with Non-linear Constraint Equations," Int. J. Non-linear Mechanics, 11, 331-336.
Ishlinsky, A. 1984. Orientation, Gyroscopes et Navigation par Inertie, vol. 1: Cinématique des Mobiles Gyrostabilisés; vol. 2: Systèmes Gyroscopiques de la Navigation par Inertie. Moscow: Mir (original in Russian, 1976).
Ishlinsky, A. Iu. 1987. Classical Mechanics and Inertial Forces (in Russian). Moscow: Nauka. Isidori, A. 1989. Nonlinear Control Systems, An Introduction, 2nd ed. New York: Springer.
Ispolov, I. G. 1983. "On Appell's Equations in Nonlinear Quasi-Accelerations and QuasiVelocities," PMM, 46, 399-400 (original in Russian, 507-508).
Ivanov, A. P., and A. P. Markeev. 1984. "The Dynamics of Systems with Unilateral Constraints," PMM, 48, 448-451 (original in Russian, 632-636).
Jacobi, C. G. J. 1866. Vorlesungen über Dynamik, nebst fünf hinterlassenen Abhandlungen desselben (lectures delivered during the Winter semester of 1842-1843, at the University of Königsberg), edited by A. Clebsch, and also by C. W. Borchardt. Berlin: G. Reimer.
Jacobi, C. G. J. 1996. Vorlesungen über analytische Mechanik (lectures delivered in Berlin during the Winter semester of 1847-1848). Nach einer Mitschrift von W. Scheibner; herausgegeben von H. Pulte. Published for the Deutsche Mathematiker-Vereinigung (in the series Dokumente zur Geschichte der Mathematik, Band 8). Braunschweig/Wiesbaden: F. Vieweg.

Jammer, M. Concepts of Force, A Study in the Foundations of Dynamics. Cambridge, MA: Harvard University Press (1957); and New York: Harper and Row (1962). [Also Concepts of Space (1960) and Concepts of Mass (1964); both Harper and Row.]
Jankowski, K. 1988. "Formulation of Equations of Motion in Quasi-Velocities for Constrained Mechanical Systems," Mechanism and Machine Theory, 23, 441-447.
Jankowski, K. 1989(a). "Dynamics of Mechanical Systems with Nonholonomic Constraints of Higher Order," Modelling, Simulation and Control, B, 25, 47-63.
Jankowski, K. 1989(b). "Dynamics of Controlled Mechanical Systems with Material and Program Constraints; I. Theory, II. Methods of Solution, III. Illustrative Examples," Mechanics and Machine Theory, 24, 175-179, 181-185, 187-193.
Jaunzemis, W. 1967. Continuum Mechanics. New York: Macmillan Co.
Jeans, J.H. 1925. The Dynamical Theory of Gases, 4th ed. Cambridge, U.K.: Cambridge University Press (reprinted 1954 by Dover, New York).

Jeans, J. H. 1947. The Growth of Physical Science. Cambridge, U.K.: Cambridge University Press.
Jeffreys, H. 1954. "What is Hamilton's Principle?" Quart. J. Mech. and Appl. Math., 7, 335-337.
Jehle, H. and J. H. Cahn. 1953. "Anharmonic Resonance," Am. J. Physics, 21, 526-531.
Jellett, J. H. 1872. A Treatise On The Theory of Friction. Dublin: Hodges, Foster, and Co.; London: Macmillan and Co.
Johnsen, L. 1936 (publ. 1937). "Allgemeine Quasikoordinaten," Avh. Norske Vid. Akad. Oslo, 11, $1-13$.
Johnsen, L. 1937(a). "Die virtuellen Verschiebungen der nicht holonomen Systeme und das d’Alembertsche Prinzip," Avh. Norske Vid. Akad. Oslo, 10, 1-10
Johnsen, L. 1937(b). "Sur la Reduction au Nombre Minimum des Equations du Mouvement d'un Systeme Non-holonome," Avh. Norske Vid. Akad. Oslo, 11, 1-14.
Johnsen, L. 1938. "Sur la Déviation Non-holonome," Avh. Norske Vid. Akad. Oslo, 3, 1-13.
Johnsen, L. 1939. "Calcul Symbolique des Pseudo-coordonées," Arch. for Math. og Naturvidenskab, 42(3), 1-12.
Johnsen, L. 1941. "Dynamique Génerale des Systèmes Non-Holonomes," Skrifter Utgitt Av Det Norske Videnskaps Akademi i Oslo, I. Mat. Naturv. Klasse, 4, 1-75.
Jørgensen, A. E., and W. Kliem, 1975. "About the Torques of Fictitious Forces," ZAMM, 55, 534-535.
José, J. V., and E. J. Saletan. 1998. Classical Dynamics; A Contemporary Approach. Cambridge, U.K.: Cambridge University Press.
Jouguet, J. C. E. Lectures de Mécanique, La Mécanique enseignée par les auteurs originaux. Paris: Gauthier-Villars; 1908, vol. 1; 1909, vol. 2 (reprinted by Johnson Reprint Corporation, New York, year unspecified).
Joukovsky (or Joukowski, or Zhukovskii), N. E. 1937. "On the Stability of Motion," pp. 110208 in vol. 1 of Joukovsky's Collected Papers, Moscow and Leningrad: United Scientific Technical Publishing House (ONTI).
Jourdain, P. E. B. 1909. "Note on an Analogue of Gauss' Principle of Least Constraint," Quart. J. Pure and Appl. Math., 40, 153-157.
Jourdain, P. E. B. 1913. The Principle of Least Action. Chicago: Open Court Publishing Co. (reprinted from the Monist of April and July 1912, and April 1913). [Also in the collection The Conservation of Energy and the Principle of Least Action, edited by I. Bernard Cohen. New York: Arno Press, 1981.]
Jung, G. 1901-1908. "Geometrie der Massen," art. 4, pp. 279-344 in vol. 4, of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner (article completed in March 1903).
Jungnickel, C., and R. Mc Cormmach. 1986. Intellectual Mastery of Nature, Theoretical Physics from Ohm to Einstein, vol. 1: The Torch of Mathematics 1800-1870; vol. 2: The Now Mighty Theoretical Physics 1870-1925. Chicago and London: University of Chicago Press.
Junkins, J. L., and Y. Kim. 1993. Introduction to Dynamics and Control of Flexible Structures. Washington, DC: AIAA Education Series.
Junkins, J. L., and M. D. Shuster. 1993. "The Geometry of the Euler Angles," J. Astronautical Sciences, 41, 531-543.
Junkins, J. L., and J. D. Turner. 1986. Optimal Spacecraft Rotational Maneuvers. Amsterdam: Elsevier.
Juvet, G. 1926. Mécanique Analytique et Théorie des Quanta. Paris: A. Blanchard.
Kalaba, R. E., and F. E. Udwadia. 1993. "Equations of Motion for Nonholonomic, Constrained Dynamical Systems via Gauss's Principle," J. Appl. Mechanics (ASME), 60, 662-668.
Kalaba, R. E., and F. E. Udwadia. 1994. "Lagrangian Mechanics, Gauss's Principle, Quadratic Programming, and Generalized Inverses: New Equations for Nonholonomically Constrained Discrete Mechanical Systems," Quart. Appl. Mathematics, 52, 229241.

Kampen, N. G. van, and J. J. Lodder. 1984. "Constraints," Am. J. Physics, 52, 419-424.
Kane, T. R. 1961. "Dynamics of Nonholonomic Systems," J. Appl. Mechanics (ASME), 28, 574-578. [Discussion in 29, 606-607, 1962.]

Kane, T. R. 1962. "Impulsive Motions," J. Appl. Mechanics (ASME), 29, 715-718. [Discussion in 30, 315-316, 1963.]
Kane, T. R. 1968. Dynamics. New York: Holt, Rinehart, and Winston.
Kane, T. R. 1973. "Lagrange's Equations for a Rigid Body," J. Appl. Mechanics (ASME), 40, 1118-1119.
Kane, T. R. 1983. "Formulation of Dynamical Equations of Motion," Am. J. Physics, 51, 974-977.
Kane, T. R. 1986. "Rebuttal to 'A comparison of Kane's equations of motion and the GibbsAppell equations of motion'," Am. J. Physics, 54, 472.
Kane, T. R., and D. A. Levinson. 1980. "Formulation of Equations of Motion for Complex Spacecraft," J. Guidance, Control, and Dynamics, 3, 99-112.
Kane, T. R., and D. A. Levinson. 1983. "Multibody Dynamics," J. Appl. Mechanics (ASME), 50, 1971-1978.
Kane, T. R., and D. A. Levinson. 1985. Dynamics: Theory and Applications. New York: McGraw-Hill.
Kane, T. R., and D. A. Levinson. 1988. "A Method for Testing Numerical Integrations of Equations of Motion of Mechanical Systems," J. Appl. Mechanics (ASME), 55, 711-715.
Kane, T. R., and D. A. Levinson. 1990. "Orthogonal Curvilinear Coordinates and Angular Velocity," J. Appl. Mechanics (ASME), 57, 468-470.
Kane, T. R., and C. F. Wang. 1965. "On the Derivation of Equations of Motion," J. Soc. Industrial and Applied Math. (SIAM), 13, 487-492.
Kane, T. R., P. W. Likins, and D. A. Levinson. 1983. Spacecraft Dynamics. New York: McGraw-Hill.
Karapetyan, A. V. and I. S. Lagutina. 1998. "The Influence of Dissipative and Constant Forces on the Form and Stability of Steady Motions of Mechanical Systems with Cyclic Coordinates," PMM, 62, 503-510 (original in Russian; 539-547).
Kauderer, H. 1958. Nichtlineare Mechanik. Berlin: Springer.
Keller, J. B. 1986. "Impact with Friction," J. Appl. Mechanics (ASME), 53, 1-4.
Keis, I. A. 1976. "On the Existence Conditions for the Particular Jacobi Integral," PMM, 40, 563-569 (original in Russian, 611-617).
Kevorkian, J., and J. D. Cole. 1981. Perturbation Methods in Applied Mathematics. New York: Springer.
Khmelevski, I. L. 1960. "On Hamilton's Principle for Nonholonomic Systems," PMM, 24, 1177-1182 (original in Russian, 777-780).
Khodzhaev, K. Sh. 1969. "Integral Criterion of Stability for Systems with Quasicyclic Coordinates and Energy Relations for Oscillations of Current-Carrying Conductors," PMM, 33, 76-93 (original in Russian, 85-100).
Kibble, T. W. B., and F. H. Berkshire. 1996. Classical Mechanics, 4th ed. Harlow, England: Addison Wesley/Longman (1st. ed. 1966).
Kil'chevskii, N. A. 1972. Elements of Tensor Calculus and its Applications to Mechanics (in Russian), 2nd ed. Kiev: Naukova Dumka.
Kil'chevskii, N. A. 1977. Course of Theoretical Mechanics (in Russian), 2 vols. Moscow: Nauka.
Killingbeck, J. 1970. "Methods of Proof and Applications of the Virial Theorem in Classical and Quantum Mechanics," Am. J. Physics, 38, 590-596.
Kilmister, C. W. 1964. Hamiltonian Dynamics. New York: Wiley.
Kilmister, C. W. 1967. Lagrangian Dynamics: An Introduction for Students. London: Logos Press (Elek Books).
Kilmister, C. W., and F. A. E. Pirani. 1965. 'Ignorable Coordinates and Steady Motion in Classical Mechanics," Proc. Camb. Phil. Soc., 61, 211-222.
Kilmister, C. W., and J. E. Reeve. 1966. Rational Mechanics. London: Longmans.
Kirchgraber, U., and E. Stiefel. 1978. Methoden der analytischen Störungsrechnung und ihre Anwendungen. Stuttgart: Teubner.

Kirchhoff, G. R. 1876. Vorlesungen über mathematische Physik: Mechanik. Leipzig: Teubner [1877, 2nd edn; 1883, 3rd edn (starting with this edition, Mechanics appears as vol. 1 of a 4 -vol. Lectures ...); 1897, 4th (last) edition, ed. by W. Wien].
Kirgetov, V. I. 1964(a). "On Kinematically Controlled Mechanical Systems," PMM, 28, 1526 (original in Russian, 15-24).
Kirgetov, V. I. 1964(b). "On the Equations of Motion of Controlled Mechanical Systems," PMM, 28, 285-296 (original in Russian, 232-241).
Kirgetov, V. I. 1967. "The Motion of Controlled Mechanical Systems with Prescribed Constraints (Servoconstraints)," PMM, 31, 465-477 (original in Russian, 433-446).
Kittel, C., W. D. Knight, and M. A. Ruderman. 1965. Mechanics (vol. 1 of Berkeley Physics Course). New York: McGraw-Hill.
Kitto, H. D. F. 1957. The Greeks. Middlesex, U.K.: Penguin Books.
Kitzka, F. 1986. "An Example for the Application of a Nonholonomic Constraint of Second Order in Particle Mechanics," ZAMM, 66, 312-314.
Kleban, P. 1979. "Virial Theorem and Scale Transformations," Am. J. Physics, 47, 883-886.
Klein, F. 1926(a). Vorlesungen über höhere Geometrie, 3rd ed., edited by W. Blaschke. Berlin: Springer.
Klein, F. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, 2 vols.: vol. I 1926(b); vol. II 1927. Berlin: Springer.
Klein, F. 1939. Elementary Mathematics from an Advanced Viewpoint, vol. 1: Arithmetic, Algebra, Analysis; vol. 2: Geometry, 3rd ed. New York: Dover (original in German, 1924-1925).
Klein, M. J. 1970. Paul Ehrenfest, vol. 1: The Making of a Theoretical Physicist, pp. 53-74. Amsterdam: North Holland.
Kline, M. 1972. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press.
Klein, F., and A. Sommerfeld. Ueber die Theorie des Kreisels, in four parts: I (1897); II (1898); III (1903); IV (1910). Leipzig: Teubner.
Klingbeil, E. 1966. Tensorrechnung für Ingenieure. Mannheim: Bibliographisches Institut.
Klotter, K. 1955. "Neuere Methoden und Ergebnisse auf dem Gebiet nichtlinearer Schwingungen," VDI Berichte, 4, 35-46.
Klotter, K. 1960. Technische Schwingungslehre, vol. 2: Systems with Several Degrees of Freedom. Berlin: Springer (reprinted 1981).
Kochin, N. E. 1965. Vector Calculus and the Elements of Tensor Calculus, 9th ed. Moscow: Nauka (in Russian).
Kochina, P. 1985. Love and Mathematics: Sofya Kovalevskaya. Moscow: Mir (original in Russian, 1981).
Kogan, B. Iu. 1964. "On an Extremal Property of Constraint Reactions," PMM, 28, 11151116 (original in Russian, 921-922).
Koiller, J. 1992. "Reduction of Some Classical Non-Holonomic Systems with Symmetry," Arch. Rational Mech. Anal. 118, 113-148.
Konopinski, E. J. 1969. Classical Descriptions of Motion, The Dynamics of Particle Trajectories, Rigid Rotations, and Elastic Waves. San Francisco: W. H. Freeman.
Korenev, G. V. 1967. The Mechanics of Guided (or Steerable) Bodies. London: Iliffe (original in Russian, 1964).
Korenev, G. V. 1979. Mechanics of Controllable Manipulators (in Russian). Moscow: Nauka.
Korteweg, D. J. 1899. "Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung, über die Theorie dieser Bewegung, und ins besondere über kleine rollende Schwingungen um eine Gleichgewichtslage," Nieuw Arch. Wisk., 4(2), 130-155.
Koschmieder, L. 1962. Variationsrechnung, Band I: Das freie und gebundene Extrem einfacher Grundintegrale, 2nd ed. Berlin: W. de Gruyter.
Kosenko, I. I. 1995. "The Application of Galerkin's Method in Lagrangian Dynamics," PMM, 59, 9-18 (original in Russian, 10-20).

Koshlyakov, V. N. 1985. Problems of Rigid Body Dynamics and Applied Gyroscope Theory. Analytical Methods (in Russian). Moscow: Nauka.
Koshlyakov, V. N. 1990. "Rodrigues-Hamilton Parameters in Rigid Body Dynamics Problems," pp. 105-115 in vol. 1 of General and Applied Mechanics of Mechanical Engineering and Applied Mechanics, edited by V. Z. Parton. New York: Hemisphere Publishing Co.
Kotkin, G. L., and V. G. Serbo. 1971. Collection of Problems in Classical Mechanics. Oxford, U.K.: Pergamon (original in Russian, 1969).

Kowalewski, G. 1933. Lehrbuch der höheren Mathematik, Erster Band: Vektorrechnung und analytische Geometrie. Berlin: W. de Gruyter.
Kozlov, V. V., and N. N. Kolesnikov. 1978. "On Theorems of Dynamics," PMM, 42, 26-31 (original in Russian, 28-33).
Kraft, F. 1885. Sammlung von Problemen der Analytischen Mechanik, 2 vols. Stuttgart: J. B. Metzler.
Kramer, E. E. 1970. The Nature and Growth of Modern Mathematics. Princeton, NJ: Princeton University Press.
Krbek, F. v. 1954. Grundzüge der Mechanik. Leipzig: Akademische Verlagsgesellschaft-Geest und Portig.
Kronauer, R. E. 1983. "Oscillations," pp. 697-746 in Handbook of Applied Mathematics, Selected Results and Methods, 2nd ed., edited by C. E. Pearson. New York: Van Nostrand and Reinhold.
Kronauer, R. E., and S. A. Musa. 1966. "Exchange of Energy Between Oscillations in Weakly Nonlinear Conservative Systems," J. Appl. Mechanics (ASME), 33, 451-452.
Krutkov (or Krutkow), G. 1928. "Ueber die Relativbewegung eines Freien Massenpunktes," Izvestia Akademii Nauk USSR, 6-7, 549-572.
Krutkov, Ju. A. 1953. "On a New Type of Quasi-coordinate" (in Russian), Dokl. Akad. Nauk SSSR, 89, 793-795.
Kuipers, M., and A. A. F. van de Ven 1982. "The Lagrangian Formalism and the Balance Law of Angular Momentum for a Rigid Body," J. Eng. Mathematics, 16, 77-90.
Kurdila, A., J. G. Papastavridis, and M. P. Kamat. 1990. "Role of Maggi's Equations in Computational Methods for Constrained Multibody Systems," J. Guidance, Control, and Dynamics, 13, 113-120.
Kurth, R. 1957. Introduction to the Mechanics of Stellar Systems. London, U.K.: Pergamon Press.
Kurth, R. 1960. Axiomatics of Classical Statistical Mechanics. Oxford, U.K.: Pergamon Press.
Kuypers, F. 1993. Klassische Mechanik, 4th ed. Weinheim, Germany: VCH Verlagsgesellschaft mbH.
Kuzmin, P. A. 1973. Small Oscillations and Stability of Motion (in Russian). Moscow: Nauka.
Kwatny, H. G., and Blankenship, G. L. 2000. Nonlinear Control and Analytical Mechanics. A Computational Approach. Boston: Birkhäuser.
Lagrange, J. L. 1760-1761. "Application de la Méthode Exposée dans le Mémoire Précedent a la Solution de Différens Problemes de Dynamique," Miscellanea Taurinensia (Recueils de l'Academie de Tourin), 2(2), 196-298. [Also in Lagrange's Collected Works (Oeuvres), edited by J.-A. Serret, 1, 365-468, 1873.]
Lagrange, J. L. 1764. "Recherches sur la Libration de la Lune, dans Lesquelles on Tâche de Résoudre la Question Proposée par l'Academie Royale des Sciences pour le Prix de l'Année 1764," Prix de l'Academie Royale des Sciences de Paris, 9. [Also in Lagrange's Collected Works (Oeuvres), edited by J.-A. Serret, 6, 4-61, 1873.]
Lagrange, J. L. 1780. "Théorie de la Libration de la Lune, et des Autres Phénomènes qui Dépendent de la Figure Non sphérique de cette Planète," Nouveaux Mémoires de l'Academie Royale des Sciences et Belles-Lettres de Berlin, 203-309 (published in 1782). [Also in Lagrange's Collected Works (Oeuvres), edited by J.-A. Serret, 5, 5-122, 1870.]

Lagrange (De la Grange), J. L. 1788. Méchanique Analitique. Paris: Chez La Veuve Desaint [2nd ed. as Mécanique Analytique, 1811, vol. 1; 1815, vol. 2, Courcier, Paris; 3rd ed. (18531855) (edited and amended/annotated by J. Bertrand), Gauthiers-Villars, Paris; 4th ed. (1888-1889) (edited by G. Darboux), Oeuvres Completes, 11, 12, Paris. Also available by Librairie Scientifique et Technique A. Blanchard, Paris, 1965. Translations: German (1797, 1817, 1853, 1887), Russian (1950), English (by A. Boissonnade and V. N. Vagliente, from 2nd French edition; Kluwer Academic Publishers, Dordrecht, 1997).]
Lainé, E. 1946. Exercices de Mécanique. 2nd ed. Paris: Vuibert.
Lamb, H. 1910. "Dynamics," pp. 756-763 in vol. 8; "Mechanics," pp. 955-994 in vol. 17 of Encyclopaedia Britannica, 11th ed. Cambridge, U.K. and New York: Cambridge University Press.
Lamb, H. 1923. Dynamics, 2nd ed. Cambridge, U.K.: Cambridge University Press (reprinted 1951).

Lamb, H. 1928. Statics, 3rd ed. Cambridge, U.K.: Cambridge University Press (reprinted 1954).

Lamb, H. 1929. Higher Mechanics, 2nd ed. Cambridge, U.K.: Cambridge University Press (reprinted in 1943).
Lamb, H. 1932. Hydrodynamics, 6th (last) ed. Cambridge, U.K.: Cambridge University Press (reprinted 1945 by Dover, New York; and 1994 by Cambridge University Press). [Earliest appearance as Treatise on the Mathematical Theory of the Motion of Fluids, 1879.]
Lampariello, L. 1943. "Su certe identita differenziali cui soddisfano le funzioni y delle equazioni dinamiche di Volterra-Hamel," Atti Accad. Ital., Rendiconti, Cl. Sci. Fis. Mat. Nat. 4(7), 12-19.
Lanczos, C. 1962. "Variational Principles of Mechanics," pp. 24-1-24-23 in Handbook of Engineering Mechanics, edited by W. Flügge. New York: McGraw-Hill.
Lanczos, C. 1970. The Variational Principles of Mechanics, 4th ed. Toronto: University of Toronto Press (reprinted 1986 by Dover, New York).
Landau, L. D., and E. M. Lifshitz. 1960. Mechanics, vol. 1 of Course of Theoretical Physics. Oxford, U.K.: Pergamon Press (original in Russian, 1958).
Landau, L. D., and E. M. Lifshitz. 1971. The Classical Theory of Fields, 3rd revised ed. (vol. 2 of Course of Theoretical Physics). Addison-Wesley, Reading, MA and Pergamon, London, Oxford, U.K. (original in Russian, late 1950s).
Landau, L. D., and E. M. Lifshitz. 1980. Statistical Physics, 3rd revised and enlarged ed. (vol. 5 of Course of Theoretical Physics). London, Oxford, U.K.: Pergamon (original in Russian, late 1950s; 2nd revised and enlarged English ed. 1968/1969, 1st English ed. 1959).
Langhaar, H. L. 1962. Energy Methods in Applied Mechanics. New York: Wiley.
Langner, R. 1997-1998. Arbeitsumdrucke zur Mechanik der Punkt und Starrkörper (Lecture Notes). Karlsruhe: Institut für Theoretische Mechanik, University of Karlsruhe (TH).
Lawden, D. F. 1972. Analytical Mechanics. London: Allen and Unwin.
Layton, R. A. 1998. Principles of Analytical System Dynamics. New York: Springer.
Le, S. A. 1990. "The Painlevé Paradoxes and the Law of Motion of Mechanical Systems with Coulomb Friction," PMM, 54, 430-438 (original in Russian, 520-529).
Leach, P. G. L. 1978. "Note on the Time-Dependent Damped and Forced Harmonic Oscillator," Am. J. Physics, 46, 1247-1249.
Leach, P. G. L. 1982. "First Integrals for Non-Autonomous Hamiltonian Systems," Acad. Sci. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11, 1982), vol. 2, 575-579. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]
Ledoux, P. 1958. "Stellar Stability," pp. 605-688 in vol. 51 of Handbuch der Physik, ed. by S. Flügge, Berlin: Springer.

Lee, H.-C. 1947. "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations," Proc. Roy. Soc. Edinburgh, A, 62, part III, no. 26, 237-246.
Lee, S. M. 1970. "The Double-Simple Pendulum Problem," Am. J. Physics, 38, 536-537.

Leech, J. W. 1965. Classical Mechanics, 2nd ed. London: Methuen (1958, 1st ed.).
Lefkowitz, M. 1996. Not Out of Africa, How Afrocentrism became an Excuse to Teach Myth as History. New York: Basic Books.
Lehmann, T. 1985. Elemente der Mechanik, vol. IV: Schwingungen, Variationsprinzipe, 2nd ed. Braunschweig/Wiesbaden, Germany: F. Vieweg and Sohn.
Lehmann-Filhés, R. 1890. "Über einige Fundamentalsätze der Dynamik," Astronomische Nachrichten, 125, 49-62.
Leimanis, E. 1965. The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. New York: Springer.
Leipholz, H. H. E. 1970. Stability Theory, An Introduction to the Stability of Dynamic Systems and Rigid Bodies. New York: Academic Press (original in German, 1968).
Leipholz, H. H. E. 1978. Six Lectures on Variational Principles in Structural Engineering. Waterloo, ON, Canada: Solid Mech. Division, University of Waterloo Press.
Leipholz, H. H. E. 1983. "The Galerkin Formulation and the Hamilton-Ritz Formulation: A Critical Review," Acta Mechanica, 47, 283-290.
Leitinger, R. 1913. "Ueber Jourdain's Prinzip der Mechanik und dessen Zusammenhang mit dem verallgemeinerten Prinzip der kleinsten Aktion," Wienersche Sitzungsberichte, Math.Naturwiss. Kl., IIa, 122, 635-650.
Lemos, N. A. 1979. "Canonical Approach to the Damped Harmonic Oscillator," Am. J. Physics, 47, 857-858.
Lemos, N. A. 1991. "Remark on Rayleigh's Dissipation Function," Am. J. Physics, 59, 660661.

León, M. de, and P. R. Rodrigues. 1989. Methods of Differential Geometry in Analytical Mechanics. Amsterdam: North Holland.
Lesser, M. 1995. The Analysis of Complex Nonlinear Mechanical Systems, A Computer Algebra Assisted Approach. New Jersey: World Scientific.
Leubner, C. 1979. "Coordinate-Free Rotation Operator," Am. J. Physics, 47, 727-729.
Leubner, C. 1980. "Pedagogical Aspects of Time-Dependent Rotation Operators," Am. J. Physics, 48, 563-568.
Leubner, C. 1981. "Correcting a Widespread Error Concerning the Angular Velocity of a Rotating Rigid Body," Am. J. Physics, 49, 232-234.
Leubner, C., and G. Grübl. 1985. "Interrelation of Euler's and Piña's Parametrization of Rotations," Am. J. Physics, 53, 487-488.
Levi-Civita, T. 1926. The Absolute Differential Calculus (Calculus of Tensors). London: Blackie (reprinted 1977 by Dover, New York; original in Italian, 1924).
Levi-Civita, T., and U. Amaldi. 1927. Lezioni di Meccanica Razionale, vol. II, parts 1 and 2. Bologna: Zanichelli.
Levit, S., and U. Smilansky. 1977. "A New Approach to Gaussian Path Integrals and the Evolution of the Semiclassical Propagator," Annals of Physics, 103, 198-207.
Lévy-Leblond, J.-M. 1971. "Conservation Laws for Gauge-Variant Lagrangians in Classical Mechanics," Am. J. Physics, 39, 502-506.
Lewis, H. R. 1982. "Exact Invariants for Time-Dependent Hamiltonian Systems," Acad. Sci. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11), 1982, vol. 2, 581-591. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]
Liapunov, A. M. 1982. Lectures on Theoretical Mechanics (in Russian). Kiev: Naukova Dumka (Lecture Notes on Theoretical and Analytical Mechanics, Statics, Dynamics, Continuum Mechanics, and Theory of Potential; originally delivered in 1885, 1893, etc. [See also p. 268 of next reference, on Liapunov's courses of lectures.]
Liapunov, A. M. 1992. The General Problem of the Stability of Motion. London: Taylor and Francis (original in Russian, 1892; translated into French, 1893; translated from French to English, 1992).
Lichtenberg, A. L. 1969. Phase-Space Dynamics of Particles. New York: Wiley.

Lichtenberg, A. L., and M. A. Lieberman. 1992. Regular and Chaotic Dynamics. New York: Springer (second revised and expanded edition of Regular and Stochastic Motion, Springer, 1983).

Likins, P. W. 1973. Elements of Engineering Mechanics. New York: McGraw-Hill.
Lilov, L. 1984. "Variationsprinzipien in der Starrkörpermechanik," ZAMM, 64, T377-T379.
Lilov, L., and M. Lorer. 1982. "Dynamic Analysis of Multirigid-Body System Based on the Gauss Principle," ZAMM, 62, 539-545.
Lindelöf, E. 1895. "Sur le Mouvement d’un Corps de Révolution roulant sur un Plan Horizontal," Acta Societatis Scientiarum Fennicae, 20(10), 1-18.
Lindsay, R. B., and H. Margenau. 1957. Foundations of Physics. New York: Dover (reprint of original version of 1936).
Lipschitz, R. 1872. "Untersuchung eines Problems der Variationsrechnung in welchem das Problem der Mechanik enthalten ist," J. Reine und Angewandte Mathematik, 74, 116-149.
Lipschitz, R. 1877. "Bemerkungen zu dem Prinzip des kleinsten Zwanges," J. Reine und Angewandte Mathematik, 82, 316-342.
Liu, C. Q., and R. L. Huston. 1992. "Another Look at Orthogonal Curvilinear Coordinates in Kinematic and Dynamic Analyses," J. Appl. Mechanics (ASME), 59, 1033-1035.
Liu, D. 1989. "Conservation Laws of Nonholonomic Nonconservative Dynamical Systems," Acta Mechanica Sinica, 5, 167-175.
Liu, D., and Y. Luo. 1991. "About the Basic Integral Variants of Holonomic Nonconservative Dynamical Systems," Acta Mechanica Sinica, 7, 178-185.
Liu, Y.-Z. 1985. "On the Motion of an Asymmetrical Rigid Body Rolling on a Horizontal Plane," ZAMM, 65, 180-183.
Liu, Z.-F., F.-S. Jin, and F.-X. Mei. 1986. 'Nielsen's and Euler's Operators of Higher Order in Analytical Mechanics," Applied Mathematics and Mechanics, 7, 53-63 (translated from the Chinese).
Livens, G. H. 1918-1919. "On Hamilton's Principle and the Modified Function in Analytical Dynamics," Proc. Roy. Soc. Edinburgh, 39, 113-119.
Lobas, L. G. 1966. "On a Transformation of the Equations of Dynamics," Applied Mechanics (transl. of Soviet/Ukrainian Prikladnaya Mekhanika), 2, 56-60 (original in Russian, 97105).

Lobas, L. G. 1970. "Remarks Concerning Nonholonomic Systems," Applied Mechanics (transl. of Soviet/Ukrainian Prikladnaya Mekhanika), 6, 541-545 (original in Russian, 108-113).
Lobas, L. G. 1986. Nonholonomic Models of Wheeled Equipment (in Russian). Kiev: Naukova Dumka.
Logan, J. D. 1977. Invariant Variational Principles. New York: Academic Press.
Lohr, E. 1939. Vektor und Dyadenrechnung für Physiker und Techniker. Berlin: W. de Gruyter.
Loitsianskii, L. G., and A. I. Lur'e. Course of Theoretical Mechanics, vol. 1: Statics and Kinematics (1982); vol. 2: Dynamics (1983) (in Russian), 6th ed. Moscow: Nauka.
Loney, S. L. 1909. An Elementary Treatise on the Dynamics of a Particle and of Rigid Bodies. Cambridge, U.K.: Cambridge University Press.
Loney, S. L. 1926. Solutions of the Examples in a Treatise on Dynamics of a Particle and of Rigid Bodies. Cambridge, U.K.: Cambridge University Press.
Long, R. 1963. Engineering Science Mechanics. Englewood Cliffs, NJ: Prentice Hall.
Lorenz, H. 1902. Technische Mechanik starrer Systeme, vol. 1 of Lehrbuch der Technischen Physik. München/Berlin: R. Oldenbourg.
Lotze, A. 1950. Vektor- und Affinor-Analysis. München: Oldenbourg.
Lovelock, D., and H. Rund. 1975. Tensors, Differential Forms, and Variational Principles. New York: Wiley-Interscience (reprinted 1989, with a new Appendix, by Dover, New York).
Ludwig, G. 1985. Einführung in die Grundlagen der Theoretischen Physik, Band 1: Raum, Zeit, Mechanik, 3rd ed. Braunschweig/Wiesbaden: F. Vieweg and Sohn.
Lunn, M. 1991. A First Course in Mechanics. Oxford, U.K.: Oxford University Press.
Lur'e, A. I. 1957. "Notes on Analytical Mechanics," PMM, 21, 759-768 (in Russian).

Lur'e, A. I. 1968. Mécanique Analytique, 2 vols. Louvain, Belgium: Librairie Universitaire (author erroneously appears there as L. Lur'e; original in Russian, 1961; English translation as: A. I. Lurie, Analytical Mechanics (by A. Belyaev), Springer, 2002).

Lurie, A. I. 1990. Nonlinear Theory of Elasticity. Amsterdam: North Holland (original in Russian 1980-1981).
Lur'e, A. I., and G. Iu. Dzhanelidze. 1960. "On the Application of Integral and Variational Principles of Mechanics to Problems of Vibrations," PMM, 24, 103-112 (original in Russian, 80-87).
Luttinger, J. M., and R. B. Jr. Thomas. 1960. "Variational Method for Studying the Motion of Classical Vibrating Systems," J. Math. Physics, 1, 121-126.
Lützen, J. 1995(a). "Interactions between Mechanics and Differential Geometry in the 19th Century," Archive for History of Exact Sciences, 49, 1-72.
Lützen, J. 1995(b). "Renouncing Forces; Geometrizing Mechanics. Hertz's Principles of Mechanics," Preprint Series, No. 22. Copenhagen: Matematisk Institut, Københavns Universitet.
L’vovich, A. Yu., and N. N. Poliahov. 1977. "Application of Nonholonomic Mechanics to the Theory of Electromechanical Systems," Vestnik Leningradskogo Universiteta, 13, 137-146 (in Russian).
Lyness, J. N., and J. M. Blatt. 1961-1962. "The Practical Use of Variation Principles in the Determination of the Stability of Non Linear Systems," J. Australian Math. Society, 2, 153-188. (See also Blatt and Lyness.)
Lynn, J. W. 1963. Tensors in Electrical Engineering. London: Edward Arnold.
Lyttleton, R. A. 1953. The Stability of Rotating Liquid Masses. Cambridge, U.K.: Cambridge University Press.
Mach, E. 1960. The Science of Mechanics, A Critical and Historical Account of its Development. 6th ed., with revisions through the 9th German edition. La Salle, IL: Open Court Publishing Co. (original in German, with corresponding editions: 1883, 1888, 1897, 1901, 1904, 1907, 1912, 1933).
MacKinnon, E. M. 1982. Scientific Explanation and Atomic Physics. Chicago, IL: University of Chicago Press.
MacLane, S. 1968. Geometrical Mechanics, parts 1 and 2, Lecture Notes. Chicago, IL: University of Chicago, Dept. of Mathematics.
MacMillan, W. D. Theoretical Mechanics, vol. 1: Statics and the Dynamics of a Particle (1927, reprinted 1958 by Dover, New York); vol. 2: The Theory of the Potential (1930, reprinted 1958 by Dover); vol. 3: Dynamics of Rigid Bodies (1936, reprinted 1960 by Dover).
Maggi, G. A. 1896. Principii della Teoria Matematica del Movimento dei Corpi, Corso di Meccanica Razionale. Milano: U. Hoepli.
Maggi, G. A. 1901. "Di alcune nuove forme delle equazioni della Dinamica, applicabili ai sistemi anolonomi," Atti della Reale Accademia dei Lincei, Rendiconti, Classe di scienze fisiche, matematiche e naturali, Seria 5, 10(12), 287-292.
Maggi, G. A. 1903. Principii di Stereodinamica, Corso sulla Formazione, l'Interpretazione e l'Integrazione delle equazioni del movimento dei solidi. Milano: U. Hoepli.
Magnus, K. 1957. "Ueber den Zusammenhang verschiedener Näherungsverfahren zur Berechnung nichtlinearer Schwingungen," ZAMM, 37, 471-485.
Magnus, K. 1970. "Der Einfluß verschiedener Kräftearten auf die Stabilität linearer Systeme," ZAMP, 21, 523-534.
Magnus, K. 1971. Kreisel, Seine Theorie und Anwendungen. Berlin: Springer.
Magnus, K. 1974. Gyrodynamics. Wien: Springer.
Magnus, K. 1977. "The Multibody Approach for Mechanical Systems," Solid Mechanics Archives, 2, 187-204.
Magnus, K. 1978. "Kreiselmechanik," ZAMM, 58, T56-T65.
Magnus, K., and H. H. Müller. 1974. Grundlagen der Technischen Mechanik. Stuttgart, Germany: Teubner (several subsequent reprintings).

Maißer, P. 1981. "Der Lagrange - Formalismus für diskrete elektromechanische Systeme in anholonomen Koordinaten und seine Anwendung in der Theorie elektrischer Maschinen," Tech. Hochschule Ilmenau, Wiss. Zeitschrift, 27(2), 131-145.
Maißer, P. 1982. "Modellgleichungen für Manipulatoren," Technische Mechanik, 3, 64-77.
Maißer, P. 1983-1984. Ein Beitrag zur Theorie diskreter elektromechanischer Systeme mit Anwendungen in der Manipulator-/Robotertechnik. Dissertation zur Erlangung des akademischen Grades Dr. sc. nat., Technische Hochschule Ilmenau.
Maißer, P. 1988. "Analytische Dynamik von Mehrkörpersystemen," ZAMM, 68, 463-481.
Maißer, P. 1991(a). "Analytical Dynamics of Multibody Systems," Computer Methods in Applied Mechanics and Engineering, 91, 1391-1396.
Maißer, P. 1991(b). "A Differential-Geometric Approach to the Multi Body System Dynamics," ZAMM, 71, T116-T119.
Maißer, P. 1996. "Dynamik hybrider Mehrkörpersysteme aus kontinuumsmechanischer Sicht," ZAMM, 76, 15-33.
Maißer, P. 1996 and 1997. "Differential-Geometric Methods in Multibody Dynamics," Second World Congress of Nonlinear Analysts (Athens, Greece, July 10-17, 1996). Also in Nonlinear Analysis, Theory, Methods \& Applications, 30, 5127-5133, 1997.
Malvern, L. E. 1969. Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, NJ: Prentice Hall.
Mander, J. 1985. "Six Grave Doubts about Computers," Whole Earth Review, 44, 10-20.
Mangeron, D., and S. Deleanu. 1962. "Sur une Classe d'Équations de la Mécanique Analytique au Sens de I. Tzénoff," Comptes Rendus, Bulgarian Acad. Sci., 15, 9-12.
Mann, R. A. 1974. The Classical Dynamics of Particles, Galilean and Lorentz Relativity. New York: Academic Press.
Mansour, M. 1999. "Stability as the Fundamental Problem of Control Systems," Applied Mechanics Reviews, 52(3), R11-R15.
Mantion, M. 1981. Problèmes de Mécanique Analytique, Questions de Stabilité. Paris: Vuibert.
Marcolongo, R. Theoretische Mechanik, 2 vols; vol. 1 (1911); vol. 2 (1912). Leipzig: Teubner (original in Italian, 1905; German translation edited by H. E. Timerding).
Marion, J. B. and S. T. Thornton. 1995. Classical Dynamics, of Particles and Systems, 4th ed. Fort Worth, TX: Saunders/Harcourt/Brace.
Markhasov, L. M. 1985. "The Poincaré and Poincaré-Chetayev Equations," PMM, 49, 30-41 (original in Russian, 43-55).
Markeev, A. P. 1990. Theoretical Mechanics (in Russian). Moscow: Nauka.
Marmo, G., E. J. Saletan, A. Simoni, and B. Vitale. 1985. Dynamical Systems, A Differential Geometric Approach to Symmetry and Reduction. Chichester, U.K.: Wiley-Interscience.
Marris, A. W., and C. E. Stoneking. 1967. Advanced Dynamics. New York: McGraw-Hill.
Marsden, J. E. 1992. Lectures on Mechanics. Cambridge, U.K.: Cambridge University Press.
Marsden, J. E., and T. S. Ratiu. 1999. Introduction to Mechanics and Symmetry, A Basic Exposition of Classical Mechanical Systems, 2nd ed. New York: Springer (1994, 1st ed.).
Martin, D. 1960. "Sir Edmund Whittaker, F.R.S." Edinburgh Mathematical Society, 43, 1-9.
Massa, E., and E. Pagani, 1991. "Classical Dynamics of Non-holonomic Systems: A Geometric Approach," Ann. Inst. Henri Poincaré, Physique Théorique, 55, 511-544.
Mathieu, E. 1878. Dynamique Analytique. Paris: Gauthier-Villars.
Mattioli, G. D. 1931-1932. "Su una forma delle equazioni di Lagrange nelle quali il tempo è introdotto come $n+1$-esima coordinata," Atti del Reale Instituto Veneto di Scienze, Lettere ed Arti, 91 (second part), 79-91.
Matzner, R. A., and L. C. Shepley. 1991. Classical Mechanics. Englewood Cliffs, NJ: Prentice Hall.
Maurer, L. 1905. "Ueber die Differentialgleichungen der Mechanik," Königl. Ges. d. Wiss. z. Göttingen, Nachrichten, Math.-Phys. Klasse, Heft 2, 91-116.
Mavraganis, A. G. 1987. Kinematics and Dynamics of Rigid Bodies (in Greek). Athens: National Technical University of Athens (Е.М.П.).

Mavraganis, A. G. 1998. Analytical Dynamics, Principles and Methods (in Greek). Athens: National Technical University of Athens (Е.M.П.).
Maxwell, J. C. 1877. Matter and Motion. Cambridge, U.K.: Cambridge University Press (republished with Notes and Appendices by J. Larmor, Society for Promoting Christian Knowledge, London, 1920; reprinted 1952 and 1991 by Dover, New York).
McCarthy, J. M. 1990. An Introduction to Theoretical Kinematics. Boston, MA: MIT Press.
McCauley, J. L. 1993. Chaos, Dynamics, and Fractals, An Algorithmic Approach to Deterministic Chaos. Cambridge, U.K.: Cambridge University Press.
McCauley, J. L. 1997. Classical Mechanics, Transformations, Flows, Integrable and Chaotic Dynamics. Cambridge, U.K.: Cambridge University Press.
McCuskey, S. W. 1959. An Introduction to Advanced Dynamics. Reading, MA: AddisonWesley.
McGill, D. J., and J. G. Papastavridis. 1987. "Comments on 'Comments on Fixed Points in Torque-Angular Momentum Relations'," Am. J. Physics, 55, 470-471.
McKinley, J. M. 1981. "Problem on Moments of Inertia," Am. J. Physics, 49, 234, 264.
McLachlan, N. W. 1956. Ordinary Non-Linear Differential Equations in Engineering and Physical Sciences, 2nd ed. Oxford, U.K.: Clarendon Press (second corrected printing, 1958).

Megias, I., M. A. Serna, and C. Bastero. 1982. "Lagrange's Equation of Motion: A Simple Derivation," Int. J. Mech. Eng. Education, 11, 89-92.
Mei, F.-X. 1982. "On the Nielsen's Operator and the Euler's Operator for Non-holonomic Systems," Acad. Sc. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11, 1982). [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 627-634, 1983.]
Mei, F.-X. 1984. "Extension of the MacMillan's Equations to Nonlinear Nonholonomic Mechanical Systems," Appl. Math. Mechanics (English edition), 5(5), 1633-1638.
Mei, F.-X. 1985. Foundations of Mechanics of Nonholonomic Systems (in Chinese). Beijing: Beijing Institute of Technology Press.
Mei, F -X. 1987. Researches on Nonholonomic Dynamics (in Chinese). Beijing: Beijing Institute of Technology Press.
Mei, F.-X. 1989. "Time-Integral Theorems for Variable Mass Nonholonomic Systems," Proceedings ICAM.
Mei, F.-X. 1990. "Two New Operators in Non-Holonomic Mechanics," J. Beijing Inst. Technology, 10, 113-121.
Mei, F.-X. 1991(a). "One Type of Integrals for the Equations of Motion of Higher-Order Nonholonomic Systems," Appl. Math. Mechanics, 12, 799-805 (original in Chinese).
Mei, F.-X. 1991(b). "Routh's Method of Order Reduction for the Equations of Motion of Higher Order Nonholonomic Systems," Chinese Science Bulletin, 36, 377-381.
Mei, F.-X. 1991(c). "First Integral and Integral-Invariant for Nonholonomic Systems," Chinese Science Bulletin, 36, 2038-2042.
Mei, F.-X. 1993. "The Noether's Theory of Birkhoffian Systems," Science in China, Series A, 36, 1456-1467.
Mei, F.-X. 1999. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Beijing: Science Press.
Mei, F.-X. 2000. "Nonholonomic Mechanics," Applied Mechanics Reviews, 53, 283-305.
Mei, F.-X., and G. L. Liu. 1987. Foundations of Analytical Mechanics (in Chinese). Tsien An: Tsiao Tong University Press.
Mei, F.-X., D. Liu, and Y. Luo. 1991. Advanced Analytical Mechanics (in Chinese). Beijing: Beijing Institute of Technology Press.
Meirovitch, L. 1970. Methods of Analytical Dynamics. New York: McGraw-Hill.
Melis, A. 1955. "Un Esempio di Sistema Anolonomo Non Lineare: il Patino Guidato," Rend. Sem. Fac. Sci. Univ. Cagliari, 25, 143-153.
Mercier, A. 1955. Principes de Mécanique Analytique. Paris: Gauthier-Villars.

Meriam, J. L., and L. G. Kraige. 1986. Engineering Mechanics, 2 vols, 2nd ed. New York: Wiley.
Merkin, D. R. 1974. Gyroscopic Systems (in Russian), 2nd ed. Moscow: Nauka.
Merkin, D. R. 1975. "On the Structure of Forces," PMM, 39, 893-896 (original in Russian, 929-932).
Merkin, D. R. 1987. Introduction to the Theory of Stability of Motion (in Russian), 3rd ed. Moscow: Nauka (English translation by Springer, New York, 1997).
Message, P. J. 1966. 'Stability and Small Oscillations about Equilibrium and Periodic Motions," pp. 77-99 in part 1 of Space Mathematics (vol. 5 of Lectures in Applied Mathematics), edited by J. B. Rosser. Providence, RI: American Mathematical Society.
Mikhailov, G. K. 1981. "History of Mechanics: Present State and Problems," pp. 148-165 in Advances in Theoretical and Applied Mechanics, edited by A. Y. Ishlinsky and F. L. Chernousko. Moscow: Mir (original in Russian, 1978).
Mikhailov, G. K. 1990. "Newton's Principia (To the Tercentenary of the First Edition)," pp. 274-290 in vol. 1 of General and Applied Mechanics of Mechanical Engineering and Applied Mechanics, edited by V. Z. Parton. New York: Hemisphere Publishing.
Mikhailov, G. K., and V. Z. Parton, editors. 1990. Applied Mechanics: Soviet Reviews, vol. 1: Stability and Analytical Mechanics. New York: Hemisphere (original reviews in Russian, 1979, 1982, 1983).
Mikhailov, G. K., G. Schmidt, and L. I. Sedov. 1984. "Leonhard Euler und das Entstehen der Klassischen Mechanik," ZAMM, 64, 73-82.
Miller, P. H. 1957. 'Hamilton's Principle as a Computational Device," Am. J. Physics, 25, 3032. [See also Am. J. Physics, 54, 87, 1986, for corrections.]

Milne, E. A. 1948. Vectorial Mechanics. London: Methuen (reprinted 1957, 1965).
Mingori, D. L. 1995. "Lagrange's Equations, Hamilton's Equations, and Kane's Equations: Interrelations, Energy Integrals, and a Variational Principle," J. Appl. Mechanics (ASME), 62, 505-510.
Minkin, Yu. G. 1977. "Variational Methods for Putting Upper and Lower Limits on the Parameters of the Periodic Vibrations of Nonlinear Systems," Applied Mechanics, 13, 385-388 (original in Russian, 91-95).
Mironov, M. V. 1967. "Use of the Hamilton-Ostrogradskii Principle in Problems of the Theory of Nonlinear Oscillations," PMM, 31, 1115-1121 (original in Russian, 11101116).

Mitropolskii, Yu. A. 1990. "Asymptotic Methods in Nonlinear Mechanics," pp. 59-74 in vol. 1 of General and Applied Mechanics of Mechanical Engineering and Applied Mechanics, edited by V. Z. Parton. New York: Hemisphere Publishing Co.
Mittelstaedt, P. 1970. Klassische Mechanik. Mannheim: Bibliographisches Institut.
Mladenova, C. 1995. "Dynamics of Nonholonomic Systems," ZAMM, 75, 199-205.
Moiseyev, N. N., and V. V. Rumyantsev. 1968. Dynamic Stability of Bodies Containing Fluid. New York: Springer (original in Russian, 1965).
Molenbroek, P. 1890. "Over de zuiver rollende beweging van een lichaam over een willenkeurig oppervlek," Nieuw Arch. Wisk., 17, 130-157.
Montel, P. 1927. Cours de Mécanique Rationelle, 2nd ed., 2 vols. ("livres"). Paris: Eyrolles.
Moon, F. C. 1998. Applied Dynamics, With Applications to Multibody and Mechatronic Systems. New York: Wiley-Interscience.
Moon, P., and E. D. Spencer. 1961. Field Theory Handbook. Berlin: Springer.
Moore, E. Neal. 1983. Theoretical Mechanics. New York: Wiley.
Moreau, J. J. Mécanique Classique, 2 vols: vol. I (1968); vol. II (1971). Paris: Masson.
Morera, G. 1903. "Sulle equazioni dinamiche di Lagrange," Atti R. Accad. Sci. Torino, 38, 121-134.
Morgenstern, D., and I. Szabó. 1961. Vorlesungen über Theoretische Mechanik. Berlin: Springer.
Moritz, H., and I. I. Müller. 1987. Earth Rotation, Theory and Observation. New York: Ungar.

Morton, H. S., Jr. 1984. "A Formulation of Rigid-Body Rotational Dynamics Based on Generalized Angular Momentum Variables Corresponding to the Euler Parameters," AIAA/AAS Astrodynamics Conference, paper no. 84-2023 (Seattle, WA, August 20-22, 1984).

Morton, H. S., J. L. Junkins, and J. N. Blanton. 1974. "Analytical Solutions for Euler Parameters," Celestial Mechanics, 10, 287-301.
Morton, W. B. 1929. "Simple Examples of Adiabatic Invariance," Philosophical Magazine and Journal of Science, Series 7, 8, 186-194.
Mott, D. L. 1966. "Torque on a Rigid Body in Circular Orbit," Am. J. Physics, 34, 562-564.
Müller, C. H., and G. Prange. 1923. Allgemeine Mechanik. Hannover: Helwingsche Verlagsbuchandlung.
Müller, H. H., and K. Magnus. 1974. Übungen zur Technischen Mechanik. Stuttgart, Germany: Teubner (several subsequent reprintings).
Müller, P. C. 1977. Stabilität und Matrizen. Berlin: Springer.
Müller, P. C., and W. O. Schiehlen. 1985. Linear Vibrations, A Theoretical Treatment of Multi-Degree-of-Freedom Vibrating Systems. Dordrecht: Martinus Nijhoff/Kluwer (originally in German, 1976).
Muschik, W. 1980(a). "Axiome für Zwangskräfte bei geschwindigkeitsabhängingen differentiellen Nebenbedingungen," ZAMM, 60, T44-T46.
Muschik, W., N. Poliatzky, and G. Brunk. 1980(b). "Die Lagrangeschen Gleichungen bei Tschetajew-Nebenbedingungen," ZAMM, 60, T46-T47.
Mušicki, D. 1994. "Generalization of Noether's Theorem for Non-conservative Systems," European J. Mechanics, A/Solids, 13, 533-539.
Nadile, A. 1950. 'Sull'esistenza per i sistemi anolonomi soggetti a vincoli reonomi di un integrale analogo a quello dell'energia," Bolletino della Unione Matematica Italiana, Series 3, 5, 297-301.
Nagornov, V. A. 1958. 'On the Equations of Motion of Nonholonomic Mechanical Systems with Nonholonomic Coordinates," Izvestia Acad. Nauk Uzb. SSR, Ser. Phys. Math. Nauk, 6, 65-81 (in Russian).
Nayfeh, A. H. 1973. Perturbation Methods. New York: Wiley.
Nayfeh, A. H., and D. T. Mook. 1979. Nonlinear Oscillations. New York: Wiley.
Naziev, E. Kh. 1969. "Mechanical Systems with Integrals Linear in the Momenta," Moscow U. Mechanics Bulletin, 24, 59-62 (original in Russian, 77-85).

Naziev, E. Kh. 1972. "On the Hamilton-Jacobi Method for Nonholonomic Systems," PMM, 36, 1038-1045 (original in Russian, 1108-1114).
Neimark, J. I. 1968. "Dynamics of Nonholonomic Systems," pp. 171-178 in vol. 1 of Mechanics in the USSR During the Last 50 years (1917-1967). Moscow: Nauka (in Russian).
Neimark, J. I., and N. A. Fufaev. 1972. Dynamics of Nonholonomic Systems. Providence, RI: American Mathematical Society (original in Russian, 1967).
Neuber, H. 1950. Review of book Theoretische Mechanik, by G. Hamel, in ZAMM, 30, 397398.

Neuberger, J. 1981. "Coriolis Force Revisited," Am. J. Physics, 49, 782-784.
Neumann, C. 1885. "Ueber die rollende Bewegung eines Körpers auf einer gegebenen Horizontal-Ebene unter dem Einfluss der Schwere," Königl. Sächsischen Ges. Wiss. Leipzig, Berichte, Math.-Phys. Kl., 37, 352-378.
Neumann, C. 1887. "Grundzüge der analytischen Mechanik, insbesondere der Mechanik starrer Körper," Berichte Verh. Königl. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl., 39, 153-190. [Also 40, 22-88, 1888.]
Neumann, C. 1899. "Beiträge zur analytischen Mechanik," Berichte Verh. Königl. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl., 51, 371-443.
Nevanlina, R. 1968. Space Time and Relativity. London: Addison-Wesley (original in German, 1964).

Nevzgliadov, V. G. 1959. Theoretical Mechanics (in Russian). Moscow: PhysicalMathematical Literature.
Newboult, H. O. 1946. Analytical Method in Dynamics. Oxford, U.K.: Clarendon Press.
Newland, D. E. 1965. "On the Methods of Galerkin, Ritz and Krylov-Bogoliubov in the Theory of Nonlinear Vibrations," Int. J. Mech. Sci., 7, 159-172.
Nielsen, J. 1935. Vorlesungen über Elementare Mechanik. Berlin: Springer (2nd ed. in Danish, published by Jul. Gjellerups, København; part I: 1943, part II: 1945).
Nijmeijer, H., and A. J. van der Schaft. 1990. Nonlinear Dynamical Control Systems. New York: Springer (second corrected printing, 1991).
Nikitina, N. V. 1976. "A New Form of the Equations of Motion of Systems with Nonholonomic Constraints," Applied Mechanics, 12, 99-101 (original in Russian, 131134).

Nikravesh, P. E. 1988. Computer-Aided Analysis of Mechanical Systems. Englewood Cliffs, NJ: Prentice Hall.
Noether, E. 1918. "Invariante Variationsprobleme," Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-phys. Klasse, Heft 2, 235-257.
Noether, F., 1929. "Karl Heun," ZAMM, 9, 167-171. [Also: ZAMM, 1, 232, 1921.]
Nordheim, L. 1927. "Die Prinzipe der Dynamik," pp. 43-90 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Nordheim, L., and E. Fues. 1927. "Die Hamilton-Jacobische Theorie," pp. 91-130 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Novoselov, V. S. 1957. "Application of Nonlinear Non-holonomic Coordinates in Analytical Mechanics," Leningrad University, 217 ser. Mat. Nauk., 31, 50-83 (in Russian).
Novoselov, V. S. 1961(a). "The Extremal Character of the Hamilton-Ostrogradskii Principle in Non-holonomic Mechanics," Vestnik Leningrad University, 16(13), 121-130 (in Russian).
Novoselov, V. S. 1961(b). "Extremal Character of the Euler-Lagrange Principle in Nonholonomic Mechanics," Vestnik Leningrad University, 16(19), 138-144 (in Russian).
Novoselov, V. S. 1962. "Extremal Character of Integral Principles of Non-holonomic mechanics in Non-holonomic Coordinates," Vestnik Leningrad University, 17(1), 124133 (in Russian).
Novoselov, V. S. 1966. Variational Methods in Mechanics (in Russian). Leningrad: Leningrad University Press.
Novoselov, V. S. 1967. Holonomic Systems in Lagrangean Coordinates (in Russian). Leningrad: Leningrad University Press.
Novoselov, V. S. 1969. Analytical Mechanics of Systems with Variable Mass (in Russian). Leningrad: Leningrad University Press.
Novoselov, V. S. 1979. "Analytical Mechanics of Models of Motion," pp. 102-143 in vol. 3 of Problems of Mechanics and Control, Mechanics of Controlled Motion. Leningrad: Leningrad University Press.
Ogden, R. W. 1984. Non-Linear Elastic Deformations. Chichester, U.K.: Ellis Horwood/ Halsted/Wiley.
Oliver, D. 1994. The Shaggy Steed of Physics. Mathematical Beauty in the Physical World. New York: Springer.
Ol'khovskii, I. I. 1970. Course of Theoretical Mechanics for Physicists (in Russian). Moscow: Nauka.
Olsson, M. G. 1981. 'Spherical Pendulum Revisited," Am. J. Physics, 49, 531-534.
Oravas, G. E., and L. McLean. 1966. "Historical Development of Energetical Principles in Elastomechanics," Applied Mechanics Reviews, 19, 647-658 and 919-933. [See also Introduction to English translation of C. A. P. Castigliano, The Theory of Equilibrium of Elastic Systems and its Applications, reprinted 1966 by Dover, New York (original in French, 1879; German translation 1886; English translation 1919).]
O'Reilly, O. M. 1996. "The Dynamics of Rolling Disks and Sliding Disks, Nonlinear Dynamics, 10, 287-305.

O'Reilly, O. M., and A. S. Srinivasa. 2001. "On a Decomposition of Generalized Constraint Forces," Proc. Roy. Soc. London, 457, 1307-1313.
Osgood, W. F. 1937. Mechanics. New York: Macmillan (reprinted 1965 by Dover, New York).
Ostrovskaya, S., and J. Angeles. 1998. "Nonholonomic Systems Revisited within the Framework of Analytical Mechanics, Applied Mechanics Reviews, 51, 415-433.
Otterbein, S. 1981. Stabilität und Steuerbarkeit bei Systemen mit quasizyklischen Koordinaten. Dr.-Ing. Dissertation, Tech. Hochschule, Darmstadt, Germany.
Panovko, J. G. 1971. Introduction to the Theory of Mechanical Oscillations (in Russian). Moscow: Nauka.
Panovko, J. G. 1977. Introduction to the Theory of Mechanical Impact (in Russian). Moscow: Nauka.
Papastavridis, J. G. 1980. "On the Extremal Properties of Hamilton's Action Integral," J. Appl. Mechanics (ASME), 47, 955-956.

Papastavridis, J. G. 1981. "An Energy Test for the Stability of Rheolinear Vibrations," J. Sound and Vibration, 74, 499-506.

Papastavridis, J. G. 1982(a) "A Direct Variational Method for Nonconservative System Stability," J. Sound and Vibration, 80, 447-459.
Papastavridis, J. G. 1982(b). "Parametric Excitation Stability via Hamilton's Action Principle," J. Sound and Vibration, 82, 401-410.
Papastavridis, J. G. 1983(a). "Toward an Extremum Characterization of Kinetic Stability," J. Sound and Vibration, 87, 573-587.

Papastavridis, J. G. 1983(b). "An Eigenvalue Criterion for the Study of the Hamiltonian Action's Extremality," Mechanics Research Communications, 10, 171-179.
Papastavridis, J. G. 1983(c). "On the Variational Theory of Linear Configuration-Dependent Systems," J. Sound and Vibration, 89, 85-94.
Papastavridis, J. G. 1983(d). "Complementary Variational Principles and their Application to Rheolinear and Nonlinear Vibrations," J. Sound and Vibration, 89, 233-241.
Papastavridis, J. G. 1983(e). "On the Static and Kinetic Methods of Conservative System Stability, and Rayleigh's Principle: A Reexamination," J. Sound and Vibration, 90, 51-58.
Papastavridis, J. G. 1984. "The Loading-Frequency Relationship of Linear Conservative Systems via a Direct Energetic (Action) Method," J. Sound and Vibration, 94, 223-233.
Papastavridis, J. G. 1985(a). "The Variational Theory of Adiabatic Motions and its Applications to Linear and Non-linear Oscillators," J. Sound and Vibration, 103, 83-98.
Papastavridis, J. G. 1985(b). "An Action-Based Method for the Kinetic Stability of Potential but Nonconservative Systems," J. Appl. Mechanics (ASME), 52, 731-733.
Papastavridis, J. G. 1986(a). "On a Lagrangean Action Based Kinetic Instability Theorem of Kelvin and Tait," Int. J. Eng. Sci., 24, 1-17.
Papastavridis, J. G. 1986(b). "The Variational and Virial-like Theory of Oscillations and Stability of Nonconservative and/or Nonlinear Mechanical Systems," J. Sound and Vibration, 104, 209-227.
Papastavridis, J. G. 1986(c). "The Principle of Least Action as a Lagrange Variational Problem: Stationarity and Extremality Conditions," Int. J. Eng. Sci., 24, 1437-1443.
Papastavridis, J. G. 1987(a). "Rayleigh's Principle via Least Action," J. Sound and Vibration, 113, 395-399.
Papastavridis, J. G. 1987(b). "Time-integral Theorems for Nonholonomic Systems," Int. J. Eng. Sci., 25, 833-854.
Papastavridis, J. G. 1987(c) "The Energetic/Variational Interpretation of Poincaré's Criterion for the Orbital Stability of Limit Cycles of Autonomous Systems," Int. J. Eng. Sci., 25, 871-882.
Papastavridis, J. G. 1987(d). "The Variational Principles of Mechanics, and a Reply to C. D. Bailey," J. Sound and Vibration, 118, 378-393.
Papastavridis, J. G. 1990. "The Maggi or Canonical Form of Lagrange's Equations of Motion of Holonomic Mechanical Systems," J. Appl. Mechanics (ASME), 57, 1004-1010.

Papastavridis, J. G. 1992. "On the Transitivity Equations of Rigid-Body Dynamics," J. Appl. Mechanics (ASME), 59, 955-962.
Papastavridis, J. G. 1998. "A Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics," Applied Mechanics Reviews (ASME), 51, 239-265.
Papastavridis, J. G. 1999. Tensor Calculus and Analytical Dynamics. London/Ann Arbor/Boca Raton: CRC Press.
Papastavridis, J. G. Elementary Mechanics, An Advanced and Unified Approach to the NewtonianEulerian Mechanics of Particles, Rigid Bodies and Continua; under production (World Scientific).
Papastavridis, J. G., and G. Chen. 1986. "The Principle of Least Action in Nonlinear and/or Nonconservative Oscillations," J. Sound and Vibration, 109, 225-235.
Parczewski, J., and W. Blajer. 1989. "On Realization of Program Constraints; I. Theory, II. Practical Implications," J. Appl. Mechanics (ASME), 56, 676-679 and 680-684.
Park, D. 1990. Classical Dynamics and its Quantum Analogies, 2nd ed. Berlin: Springer.
Parkus, H. 1966. Mechanik der festen Körper, 2nd ed. Vienna: Springer.
Pars, L. A. 1953. Introduction to Dynamics. Cambridge, U.K.: Cambridge University Press.
Pars, L. A. 1954. "Variation Principles in Dynamics," Quart. J. Mech. and Appl. Math., 7, 338-351.
Pars, L. A. 1965. A Treatise on Analytical Dynamics. London: Heinemann (reprinted 1979 by Ox Bow Press, Woodridge, CT).
Pascal, E. 1927. "Totale Differentialgleichungen und Differentialformen," Erster Band, Zweiter Teilband, pp. 579-600 in Repertorium der Höheren Mathematik, 2nd ed. Leipzig/ Berlin, Teubner.
Päsler, M. 1968. Prinzipe der Mechanik. Berlin: W. de Gruyter.
Passerello, C. E., and R. L. Huston. 1973. "Another Look at Nonholonomic Systems," J. Appl. Mechanics (ASME), 40, 101-104.

Pastori, M. 1960. "Vincoli e Riferimenti Mobili in Meccanica Analitica," Annali di Matematica pura ed applicata, 50 (Series 4), 476-484.
Pastori, M. 1967. "Apparent Forces of Analytical Mechanics," Meccanica, 2, 75-81.
Paul, B. 1979. Kinematics and Dynamics of Planar Machinery. Englewood Cliffs, NJ: Prentice Hall.
Paulus, F. 1910. "Ueber eine unmittelbare Bestimmung jeder einzelnen Reaktionskraft eines bedingten Punktsystems für sich aus den Lagrange'schen Gleichungen zweiter Art," Wienersche Sitzungsberichte, Math.-Naturwiss. Kl., IIa, 119, 1669-1718.
Paulus, F. 1916. "Ergänzungen und Beispiele zur Mechanik von Hertz," Wienersche Sitzungsberichte, Math.-Naturwiss. Kl., IIa, 125, 835-882.
Pearson, K. 1937. The Grammar of Science. London: J. M. Dent (original in 1892, W. Scott; reprinted 1951).
Peck, E. 1978. 'Cart Wheels," Am. J. Physics, 46, 509-512.
Peisakh, E. E. 1966. "On the Kinetic Foci of a Conservative System for Isoenergetic Disturbances," PMM, 30, 1336-1341 (original in Russian, 1128-1132; German translation also available, 1997).
Percival, I. C., and D. Richards. 1982. Introduction to Dynamics. Cambridge, U.K.: Cambridge University Press.
Peres, A. 1979. "Finite Rotations and Angular Velocity," Am. J. Physics, 48, 70-71.
Pérès, J. 1953. Mécanique Générale. Paris: Masson.
Pérez, J. Ph. 1992. Mécanique, Points Matériels, Solides, Fluides avec Exercices et Problèmes Résolus, 3rd ed. Paris: Masson.
Pfeiffer, F. 1984. "Mechanische Systeme mit unstetigen Übergängen," Ingenieur-Archiv, 54, 232-240.
Pfeiffer, F. 1989. Einführung in die Dynamik. Stuttgart, Germany: Teubner.
Pfister, F. 1995. "Contributions à la Mécanique Analytique des Systèmes Multicorps." Doctoral Thesis, Institut National des Sciences Appliquées (INSA) de Lyon/Ecole Doctorale des Sciences pour l'Ingenieur de Lyon.

Pfister, F. 1997. "Das Gaußsche Prinzip und das Lagrangesche-Notizen zu einer kaum beachteten Arbeit Paul Stäckels," ZAMM, 77, 503-508.
Pfister, F. 1998. "Bernoulli Numbers and Rotational Kinematics," J. Appl. Mechanics (ASME), 65, 758-763.
Phelps, F. M., III, and J. H. Hunter, Jr. 1968. "An Analytical Solution of the Inverted Pendulum," Am. J. Physics, 36, 285-295.
Pignedoli, A. 1982. "On Some Investigations of the Italian School about Holonomic and NonHolonomic Systems," Acad. Sci. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11), 1982, vol. 2, 645-670. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]
Piña, E. 1983. "A New Parametrization of the Rotation Matrix," Am. J. Physics, 51, 375-379.
Pironneau, Y. 1982. "Sur les liaisons non holonomes non linéaires déplacement virtuels à travail nul, conditions de Chetaev," Acad. Sci. Turin, Proceedings of the IUTAMISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11), 1982, vol. 2, 671-686. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]

Planck, M. 1928. General Mechanics, vol. I of Introduction to Theoretical Physics, 4th ed. London: Macmillan and Co. (original in German, circa 1916).
Planck, M. 1960. A Survey of Physical Theory. New York: Dover [formerly titled A Survey of Physics (in German, 1925)].
Platrier, C. 1954. Mécanique Rationelle, 2 vols. Paris: Dunod.
Pogorelov, A. 1987. Geometry. Moscow: Mir.
Poincaré, H. 1901. "Sur une Forme Nouvelle des Équations de la Mécanique," Comptes Rendus (Acad. Sci. of Paris), 132, 369-371.
Poinsot, L. 1877. Eléments de Statique, 12th (last) ed. Paris: Bachelier (1804, 1st ed.).
Poinsot, L. 1975. La Théorie Générale de l'Équilibre et du Mouvement des Systèmes, Edition Critique et Commentaires par P. Bailhache. Paris: Librairie Philosophique J. Vrin.
Poisson, S. D. 1811. Traité de Mécanique, 2 vols, 1st ed. Paris: Courcier [1833, 2nd ed.; 1838, 3rd ed., Brussels. German translation as Lehrbuch der Mechanik, Stuttgart/Tübingen (1825-1826), Berlin (1835-1836, from 2nd French edition; 2 Teile, by M. A. Stern), Dortmund (1888).]
Polak, L. S., editor. 1959. Variational Principles in Mechanics (collection of original memoirs; in Russian). Moscow: Physical-Mathematical Literature.
Polak, L. S. 1960. Variational Principles in Mechanics; their Development and Application in Physics (in Russian). Moscow: Physical-Mathematical Literature.
Poliahov, N. N. 1972. "Equations of Motion of Mechanical Systems under Nonlinear, Nonholonomic Constraints," Vestnik Leningrad University, 1, 124-132 (in Russian).
Poliahov, N. N. 1974. "On Differential Principles of Mechanics, Derived from the Equations of Motion of Nonholonomic Systems," Vestnik Leningrad University, 13, 106-114 (in Russian).
Poliahov, N. N., S. A. Zegzhda, and M. P. Yushkov. 1985. Theoretical Mechanics (in Russian). Leningrad: Leningrad University Press.
Pollard, H. 1976. Celestial Mechanics. The Mathematical Association of America (\#18 of The Carus Mathematical Monographs).
Pöschl, T. 1913. "Sur les Équations Canoniques des Systèmes Non Holonomes," Comptes Rendus (Acad. Sci. of Paris), 156, 1829-1831.
Pöschl, T. 1927. "Technische Anwendungen der Stereomechanik," pp. 484-577 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Pöschl, T. 1928. "Der Stoss," pp. 484-577 in vol. 6 of Handbuch der Physik. Berlin: Springer.
Pöschl, T. 1949. Einführung in die Analytische Mechanik. Karlsruhe: G. Braun.
Pozharitskii, N. N. 1960. "On the Equations of Motion for Systems with Nonideal Constraints," PMM, 24, 669-676 (original in Russian, 458-462).

Prange, G. 1935. "Die allgemeinen Integrationsmethoden der analytischen Mechanik," arts. 12 and 13, pp. 505-804 in vol. 4 of Encyklopädie der Mathematischen Wissenschaften. Leibniz: Teubner (article completed in December 1933).
Pringle, R., Jr. 1965. "Stability of Damped Mechanical Systems," AIAA J., 3, 363.
Provost, J. P. 1975. "Least Action Principle on Air Table," Am. J. Physics, 43, 774-781.
Przeborski, A. 1933. "Die allgemeinsten Gleichungen der klassischen Dynamik," Math. Zeitschrift, 36, 184-194.
Pulte, H. 1998. "Jacobi's Criticism of Lagrange: The Changing Role of Mathematics in the Foundations of Classical Mechanics," Historia Mathematica, 25, 154-184.
Putyata, T. V., and B. N. Fradlin. 1971. "On the Centenary of the Birth of Petr Vasil'evich Voronets," Applied Mechanics, 7, 1177-1179 (original in Russian, 10, 137-139).
Qiao, Y.-F. 1990. "Gibbs-Appell's Equations of Variable Mass Nonlinear Nonholonomic Mechanical Systems," Applied Mathematics and Mechanics, 11, 973-983 (original in Chinese).
Quanjel, J. 1906. "Les Équations Générales de la Mécanique dans le Cas des Liaisons Nonholonomes," Rendiconti del Circolo Matematico di Palermo, 22, 263-273.
Quimby, S. L. 1994. Analytical Dynamics. River Edge, NJ: World Scientific (author's name on book's cover and spine appears as Samuel D. Lindenbaum!).
Radetsky, P. 1986. "The Man who Mastered Motion," Science, 7, 52-60.
Raher, W. 1954. "Das d'Alembertsche Prinzip in Motorsymbolik und seine Anwendung auf Stoßprobleme," ZAMM, 34, 323-324.
Raher, W. 1955. "Zur Theorie des Stosses starrer Körper," Oesterreichisches Ing. Archiv, 9, 55-68.
Rajan, M., and J. L. Junkins. 1983. "Perturbation Methods Based upon Varying Action Integrals," Int. J. Nonlinear Mechanics, 18, 335-351.
Ramsey, A. S. Dynamics. Cambridge, U.K.: Cambridge University Press [part I: 1933, 2nd ed.); part II: 1937 (several subsequent reprintings).]
Ramsey, A. S. 1940. An Introduction to the Theory of Newtonian Attraction. Cambridge, U.K.: Cambridge University Press (several subsequent reprintings).
Ramsey, A. S. 1941. Statics, 2nd ed. Cambridge, U.K.: Cambridge University Press (several subsequent reprintings).
Rasband, S. Neil. 1983. Dynamics. New York: Wiley-Interscience.
Rausenberger, O. 1888. Lehrbuch der Analytischen Mechanik, vol. 1: Mechanik der Materiellen Punkte, vol. 2: Mechanik der Zusammenhängenden Körper, 2nd ed. Leipzig: Teubner.
Rayleigh, J. W. Strutt (Third Baron of Rayleigh). 1894. The Theory of Sound, vol. 1, 2nd ed. London: Macmillan (reprinted 1945 by Dover, New York).
Rayleigh, Lord. 1902. "On the Pressure of Vibrations," Philosophical Magazine, series 6, 3, 338-346.
Relvik, H. 1989. "On Mangeron's Generalized Equations of Analytical Dynamics and Some Related Problems," Romanian Academy of Sciences (Memoirs of Scientific Sections), Series IV, 12, 59-89.
Renteln, M. v. 1995. "Karl Heun—his life and scientific work," pp. xvii-xx of Heun's Differential Equation, edited by A. Ronveaux. Oxford: Oxford University Press (rare photo of Heun on p. xvi).
Ricci, G. and T. Levi-Civita. 1901. "Méthodes de Calcul Différentiel Absolu et leurs Applications," Mathematische Annalen, 54, 125-201.
Richardson, D. L. 1992. "Determination of the Angular Velocity Vector in Orthogonal Curvilinear Coordinates," J. Appl. Mechanics (ASME), 59, 456-457.
Richter, M. 1887. "Über die Bewegung eines Körpers auf einer horizontal-Ebene," Inaugural Dissertation (57 pages). Leipzig: Metzger and Wittig.
Rimrott, F. P. J., and G. Patkó. 1995. "Zur Altenbachschen Vermutung bei Komplementärfassungen der Analytischen Mechanik," ZAMM, 75, 401-403.

Rimrott, F. P. J., W. M. Szczygielski, and B. Tabarrok. 1993. "Kinetic Energy and Complementary Kinetic Energy in Gyrodynamics," J. Appl. Mechanics (ASME), 60, 398-405.
Ritter, A. 1899. Lehrbuch der Analytischen Mechanik, 3rd ed. Leipzig: Baumgartner (earlier editions 1873, 1883).
Roberson, R. E., and R. Schwertassek. 1988. Dynamics of Multibody Systems. Berlin: Springer.
Rocard, J. M. 1974. Mécanique des Systémes, Mécanique Analytique, Relativité Restreinte. Paris: Masson.
Rodrigues, O. 1840. "Des Lois Géométriques qui Régissent les Déplacements d'un Système Solide dans l'Éspace, et de la Variation des Coordonées Provenant de ces Déplacements Considérés Independamment des Causes qui Peuvent les Produire," J. Math. Pures et Appl. 5(1), 380-440.
Romanov, I. P., 1976. "On Equivalence of the Equations of Motion of Nonholonomic Systems," PMM, 40, 157-161 (original in Russian, 176-179).
Rose, N. V. 1938. Lectures on Analytical Mechanics, part I (in Russian). Leningrad: Leningrad University Press.
Roseau, M. 1987. Vibrations in Mechanical Systems, Analytical Methods and Applications. Berlin: Springer (original in French, 1984).
Rosenberg, R. M. 1977. Analytical Dynamics of Discrete Systems. New York: Plenum.
Rosenberg, R. M. 1991. "Some Remarks about Time in Newtonian Particle Mechanics," Acta Mechanica, 89, 13-19.
Routh, E. J. 1877. A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion. London: Macmillan. [Also pp. 19-138 of Stability of Motion, by E. J. Routh, edited by A. T. Fuller, published by Taylor and Francis /Halsted Press, London, 1975.]
Routh, E. J. A Treatise on Analytical Statics, with Numerous Examples, vol. I (1891), vol. II (1892). Cambridge, U.K.: Cambridge University Press.

Routh, E. J. 1898. A Treatise on Dynamics of a Particle, with Numerous Examples. Cambridge, U.K.: Cambridge University Press (reprinted by Stechert and Dover, New York).

Routh, E. J. 1905(a). Dynamics of a System of Rigid Bodies, Elementary Part, 7th ed. London: Macmillan/St. Martin (reprinted 1960 by Dover, New York).
Routh, E. J. 1905(b). Dynamics of a System of Rigid Bodies, Advanced Part, 6th ed. London: Macmillan/St. Martin (reprinted 1955 by Dover, New York).
Roy, M. 1965. Mécanique, I. Corps Rigides. Paris: Dunod.
Rüdiger, D., and A. Kneschke. 1966. Technische Mechanik, Band 3: Kinematik und Kinetik. Zürich und Frankfurt/Main: H. Deutsch.
Rühlman, M. 1885. Vorträge über Geschichte der Technischen Mechanik und Theoretischen Maschinenlehre sowie der damit in Zusammenhang stehenden mathematischen Wissenschaften. Leipzig: Baumgärtner.
Rumiantsev, V. V. 1975. "On the Compatibility of Two Basic Principles of Dynamics and on Chetaev's Principle," pp. 258-267 in Problems of Analytical Mechanics, Theory of Stability and Control (in Russian). Moscow: Nauka (Acad. Sci. U.S.S.R.).
Rumiantsev, V. V. 1976. "On the Motion of Controllable Mechanical Systems," PMM, 40, 719-729 (original in Russian, 771-781).
Rumiantsev, V. V. 1978. "On Hamilton’s Principle for Nonholonomic Systems," PMM, 42, 407-419 (original in Russian, 387-399).
Rumiantsev, V. V. 1979. "On the Lagrange and Jacobi Principles for Nonholonomic Systems," PMM, 43, 625-632 (original in Russian, 583-590).
Rumiantsev, V. V. 1981. "Certain Variational Principles of Mechanics," pp. 36-52 in Advances in Theoretical and Applied Mechanics, edited by A. Y. Ishlinsky and F. L. Chernousko. Moscow: Mir (original in Russian, 1978).
Rumiantsev, V. V. 1982(a). "On Some Nonlinear Problems of Analytical Mechanics and Theory of Stability," pp. 869-881 in Nonlinear Phenomena in Mathematical Sciences, edited by V. Lakshmikantham. New York: Academic Press.

Rumiantsev, V. V. 1982(b). "On Integral Principles for Nonholonomic Systems," PMM, 46, 1-8 (original in Russian, 3-12).
Rumiantsev, V. V. 1983. "On Some Problems of Analytical Dynamics of Nonholonomic Systems," pp. 697-716 in vol. 2 of Proc. IUTAM-ISIMM Symp. Modern Developments in Analytical Mechanics. Acad. Sc. Torino (June 1982).
Rumiantsev, V. V. 1984. "The Dynamics of Rheonomic Lagrangian Systems with Constraints," PMM, 48, 380-387 (original in Russian, 540-550).
Rumyantsev, V. V. 1990. "On the Principal Laws of Classical Mechanics," pp. 257-273 in vol. 1 of General and Applied Mechanics of Mechanical Engineering and Applied Mechanics, edited by V. Z. Parton. New York: Hemisphere Publishing.
Rumyantsev, V. V. 1994. "On the Poincaré-Chetayev Equations," PMM, 58, 373-386 (original in Russian, 3-16).
Rumyantsev, V. V. 1998. "On the Poincaré and Chetayev Equations," PMM, 62, 495-502 (original in Russian, 531-538).
Rumyantsev, V. V. 1999. "Forms of Hamilton's Principle in Quasi-coordinates," J. Applied Mathematics and Mechanics, 63, 165-171 (original in Russian, 172-178).
Rumyantsev, V. V., and A. S. Sumbatov. 1978. "On the Problem of a Generalization of the Hamilton-Jacobi Method for Nonholonomic Systems," ZAMM, 58, 477-481.
Rund, H. 1966. The Hamilton-Jacobi Theory in the Calculus of Variations, Its Role in Mathematics and Physics. New York: Van Nostrand/Reinhold (reprinted 1973, with a supplementary appendix, by Krieger, Huntington, New York).
Rutherford, D. E. 1960. Classical Mechanics, 2nd ed. Edinburgh, U.K. Oliver and Boyd.
Sagdeev, R. Z., D. A. Usikov, and G. M. Zaslavsky. 1988. Nonlinear Physics: From the Pendulum to Turbulence and Chaos. Chur (Switzerland) etc.: Harwood.
Saint-Germain, A. de. 1900. "Sur la Fonction S Introduite par P. Appell dans les Equations de la Dynamique," Comptes Rendus (Acad. Sci. of Paris), 130, 1174-1176.
Saletan, E. J., and A. H. Cromer. 1970. "A Variational Principle for Nonholonomic Systems," Am. J. Physics, 38, 892-897.
Saletan, E. J., and A. H. Cromer. 1971. Theoretical Mechanics. New York: Wiley.
San, D. 1973. "Equations of Motion of Systems with Second-Order Nonlinear Nonholonomic Constraints," PMM, 37, 329-334 (original in Russian, 349-354).
Sanh, D. 1981(a). "On a Mechanical System with Nonideal Constraints," Nonlinear Vibration Problems, 20, 81-93.
Sanh, D. 1981(b). "On the Dynamical Action of Each Constraint on a Mechanical System," Nonlinear Vibration Problems, 20, 95-107.
Sanden, H. v. 1945. Praxis der Differential-gleichungen. Berlin: W. de Gruyter and Co.
Santilli, R. M. Foundations of Theoretical Mechanics, part I: 1978, part II: 1980. New York: Springer.
Sarlet, W. 1982. "Noether's Theorem and the Inverse Problem of Lagrangian Mechanics," Acad. Sci. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11), 1982, vol. 2, 737-751. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]
Savin, G. N., and B. N. Fradlin. 1972. "Genesis of the Fundamental Concepts in Nonholonomic Mechanics," J. Applied Mechanics, 5(1), 8-15 (translation of Ukrainian Prikladnaya Mekhanika, 11-20, 1969, by Consultants Bureau of Plenum Co., New York).
Schaefer, C. 1918. "Eine einfache Herleitung der verallgemeinerten Lagrangeschen Gleichungen für nichtholonome Koordinaten," Physik. Zeitschrift, 19, 129-134 and 406407.

Schaefer, C. 1919. Die Prinzipe der Dynamik. Berlin: Walter de Gruyter and Co.
Schaefer, C. 1937. Einführung in die Theoretische Physik, Dritter Band, Zweiter Teil: Quantentheorie. Berlin: Walter de Gruyter and Co.
Schaefer, H. 1951. "Die Bewegungsgleichungen nichtholonomer Systeme," Abhandlungen der Braunschweig Wiss. Gesellschaft (published by F. Vieweg), 3, 116-121.

Schaub, H., P. Tsiotras, and J. L. Junkins. 1995. "Principal Rotation Representations of Proper $N \times N$ Orthogonal Matrices," Int. J. Eng. Sci., 33, 2277-2295.
Scheck, F. 1994. Mechanics, From Newton's Laws to Deterministic Chaos, 2nd ed. Berlin: Springer [translated from German, 1988 (1st ed.), 1990 (2nd ed.), 1992 (3rd ed.), 1994 (4th ed.)].
Scheck, F., and R. Schöpf. 1989. Mechanik Manual, Aufgaben mit Lösungen. Berlin: Springer.
Schell, W. Theorie der Bewegung und der Kräfte, Ein Lehrbuch der Theoretischen Mechanik [vol. I (1879): Geometrie der Streckensysteme und Geometrie der Massen. Geometrie der Bewegung und Theorie der Bewegungszustände (Kinematik); vol. II (1880): Theorie der Kräfte und ihrer Aequivalenz (Dynamik im weiteren Sinne einschl. Statik). Theorie der durch Kräfte erzeugten Bewegung (Kinetik oder Dynamik im engeren Sinne)], 2nd ed. Leipzig: Teubner (1st ed. in 1870).
Schering, E. 1873. "Hamilton-Jacobische Theorie für Kräfte, deren Maass von der Bewegung der Körper abhangen," Königl. Ges. Wiss. Göttingen, Abh. Math. Kl., 18, 3-54.
Schiehlen, W. 1981. "Nichtlineare Bewegungsgleichungen großer Mehrkörpersysteme," ZAMM, 61, 413-419.
Schiehlen, W. 1986. Technische Dynamik. Stuttgart, Germany: Teubner.
Schieldrop, E. B. 1925. "Sur une Notion de Déviation Non-holonome, et son Application à la Cinématique et la Dynamique des Systèmes Matériels," Den Sjette Skandinaviske Matematikerkongres i Kobenhavn, Beretning, pp. 281-307.
Schlitt, D. W. 1977. "Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics," Am. J. Physics, 45, 205-207.
Schmeidler, W. 1955. "Zum Gedächtnis an Georg Hamel," Jahresbericht d. DMV (yearly report/book of the German Mathematical Society), 58, 1-5.
Schmieder, L. 1994. "Die Anwendung der Lieschen Gruppentheorie auf Probleme der Mechanik," ZAMM, 74, 133-137.
Schmutzer, E. 1973. Grundprinzipien der klassischen Mechanik und der klassischen Feldtheorie (Kanonischer Apparat). Berlin: VEB Deutscher Verlag der Wissenschaften.
Schmutzer, E. 1989. Grundlagen der Theoretischen Physik, mit einem Grundriß der Mathematik für Physiker, Teil I. Berlin: VEB Deutscher Verlag der Wissenschaften.
Schönflies, A., and M. Grübler. 1901-1908. "Kinematik," art. 3, pp. 190-278 in vol. 4 of Encyklopaedie der Mathematischen Wissenschaften. Leipzig: Teubner (article completed in June 1902. French translation also available).
Schot, S. H. 1978. "Jerk: The Time Rate of Change of Acceleration," Am. J. Physics, 46, 1090-1094.
Schouten, G. 1889. "Algemeene eigenschappen van de zuiver rollende beweging van een omwentelingslichaam op een horizontaal vlak, toegepast op de beweging van een omwentelingslichaam om een vast punt van zijne as," Verslag. en Mededeel. Koninkl. Akad. Wetensch. Amsterdam, series 3, 5, 292-335.
Schouten, J. A. 1954. Tensor Analysis for Physicists, 2nd ed. Oxford, U.K.: Clarendon Press (reprinted 1989 by Dover, New York; from corrected printing of 1959).
Schräpel, H.-D. 1982. "Equivalent Linearization of Canonical Systems," Acad. Sci. Turin, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Dynamics (June 7-11), 1982, vol. 2, 759-763. [Also in Atti della Accademia delle Scienze di Torino, Supplemento, 117, 1983.]
Schräpel, H.-D. 1988. "Analytische Näherungslösungen nichtlinearer Eigenschwingungen mit dem Hamiltonschen Prinzip," ZAMM, 68, T117-T118.
Schuster, J., and R. H. Good, Jr. 1986. "Angular Velocity and Time Derivative of Angular Displacement," Am. J. Physics, 54, 1029-1031.
Schwartz, B. 1986. The Battle for Human Nature, Science, Morality and Modern Life. New York: Norton.
Schwartz, H. M. 1963. "Derivation of the Matrix of Rotation about a Given Direction as a Simple Exercise in Matrix Algebra," Am. J. Physics, 31, 730-731.

Schwartz, M. 1964. "Lagrangian and Hamiltonian Formalisms with Supplementary Conditions," J. Mathematical Physics, 5, 903-907.
Scott, D. 1988. "Can a Projection Method of Obtaining Equations of Motion Compete with Lagrange's Equations?" Am. J. Physics, 56, 451-456.
Seeger, R. J. 1934. "The Virial Theorem for Nonholonomic Systems," J. Washington Acad. Sci., 24, 461-464.
Seeliger, R., in collaboration with F. Henning, and R. v. Mises. 1921. Aufgaben aus der Theoretischen Physik. Braunschweig: F. Vieweg and Sohn.
Semenova, L. N. 1965. "On Routh's Theorem for Nonholonomic Systems," PMM, 29, 167169 (original in Russian, 156-157).
Serrin, J. 1959. "Mathematical Principles of Classical Fluid Dynamics," pp. 125-263 in vol. VIII/1 of Handbuch der Physik. Berlin: Springer.
Sethna, P. R., and M. B. Balachandra. 1976. "On Nonlinear Gyroscopic Systems," pp. 191242 in vol. 3 of Mechanics Today. New York: Pergamon Press.
Shabana, A. A. 1989. Dynamics of Multibody Systems. New York: Wiley.
Shabana, A. A. 1994. Computational Dynamics. New York: Wiley-Interscience.
Shan, D. 1975(a). "Canonical Equations for Mechanical Systems with Second-Order Linear Nonholonomic Constraints," Applied Mechanics, 11, 159-166 (original in Russian, 58-67).
Shan, D. 1975(b). "The Gauss Principle and Equations of Motion of Mechanical Systems with Arbitrary Couplings," Applied Mechanics, 11, 757-764 (original in Russian, 89-97).
Sharf, I., G. M. T. D'Eleuterio, and P. C. Hughes. 1992. "On the Dynamics of Gibbs, Appell, and Kane," Eur. J. Mechanics, A/Solids, 11, 145-155.
Shen, Z.-C., and F.-X. Mei. 1987. "On the New Forms of the Differential Equations of the Systems with Higher-Order Nonholonomic Constraints," Applied Mathematics and Mechanics, 8, 189-196 (original in Chinese).
Shields, A. 1988. "Lagrange and the Mécanique Analytique," The Mathematical Intelligencer, 10, 7-10.
Shuster, M. D. 1993(a). "Attitude Determination in Higher Dimensions," J. Guidance, Control, and Dynamics (AIAA), 16, 393-395.
Shuster, M. D. 1993(b). "The Kinematic Equation for the Rotation Vector," IEEE Transactions on Aerospace and Electronic Systems, 29, 263-267.
Shuster, M. D. 1993(c). "A Survey of Attitude Representations," J. Astronautical Sciences, 41, 439-517.
Siegel, C. L., and J. K. Moser. 1971. Lectures on Celestial Mechanics. New York: Springer.
Simonyi, K. 1990. Kulturgeschichte der Physik. Thun/Frankfurt am Main: Harri Deutsch (original in Hungarian, 1986, 3rd ed.).
Sinitsin, V. A. 1979. "On the Carnot Theorem in the Theory of Impulsive Motion of Mechanical Systems," PMM, 43, 1207-1210 (original in Russian, 1114-1116).
Sinitsyn, V. A. 1982. "On the Hamilton-Ostrogradskii Principle in the Case of Impulsive Motions of Dynamic Systems," PMM, 45, 356-359 (original in Russian, 488-493).
Sivardière, J. 1986. "Using the Virial Theorem," Am. J. Physics, 54, 1100-1103.
Sivardière, J. 1994. "Products of Rotations: A Geometrical Point of View," Am. J. Physics, 62, 737-743.
Skalmierski, B. 1991. Mechanics. Amsterdam: Elsevier; also: Warszawa: Polish Scientific Publishers (PWN).
Slater, J. C., and N. H. Frank. 1947. Mechanics. New York: McGraw-Hill.
Smart, E. H. 1951. Advanced Mechanics, 2 vols. London: Mcmillan.
Smith, C. E. 1982. Applied Mechanics: Dynamics, 2nd ed. New York: Wiley.
Smith, C. E., and P.-P. Liu. 1992. "Coefficients of Restitution," J. Applied Mechanics (ASME), 59, 963-969.
Smith, C., and M. N. Wise. 1989. Energy and Empire, A Biographical Study of Lord Kelvin. Cambridge, U.K.: Cambridge University Press.
Sneddon, I. N. 1957. Elements of Partial Differential Equations. New York, McGraw-Hill.

Snider, A. D., and M. McWaters. 1980. "Infinitesimal Rotations," Am. J. Physics, 48, 250-251.
Sokolnikoff, I. S. 1964. Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed. New York: Wiley (1951, 1st ed.).
Soltahanov, Sh. Kh., M. P. Yushkov, and S. A. Zegzhda. 2009. Mechanics of Non-holonomic Systems: A New Class of Control Systems. Springer.
Sommerfeld, A. 1931. Atombau und Spektrallinien, 5th ed. Braunschweig: F. Vieweg and Sohn (English translation available by Dutton, New York, 1934).
Sommerfeld, A. 1964. Mechanics, vol. 1 of Lectures on Theoretical Physics, 4th ed. New York: Academic Press (original in German, 1940s).
Somoff, J. Theoretische Mechanik; I. Theil: Kinematik (1878); II. Theil: Einleitung in die Statik und Dynamik. Statik (1879). Leipzig: Teubner (original in Russian, early 1870s).
Sonntag, R. 1955. Aufgaben aus der Technischen Mechanik, Graphische Statik, Festigkeitslehre, Dynamik. Berlin: Springer.
Spiegel, M. R. 1967. Theoretical Mechanics. New York: Schaum.
Stäckel, P. 1903. "Bericht über die Mechanik mehrfacher Mannigfaltigkeiten," Jahresbericht der Deutschen Mathematiker-Vereinigung, 12, 469-481.
Stäckel, P. 1901-1908. "Elementare Dynamik der Punktsysteme und Starrer Körper," art. 6, pp. 435-691 in vol. 4 of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner (article completed in 1905).
Stadler, W. 1982. "Inadequacy of the Usual Newtonian Formulation for Certain Problems in Particle Mechanics," Am. J. Physics, 50, 595-598.
Stadler, W. 1991. "Controllability Implications of Newton's Third Law," Dynamics and Control, 1, 53-61.
Stadler, W. 1995. Analytical Robotics and Mechatronics. New York: McGraw-Hill.
Stadler, W. 1996. "Natural Structural Shapes, The Dynamic Case," Private Communication.
Starzhinskii, V. M. 1980. Applied Methods in the Theory of Nonlinear Oscillations. Moscow: Mir (original in Russian, 1977).
Stavrakova, N. E. 1965. "The Principle of Hamilton-Ostrogradskii for Systems with OneSided Constraints," PMM, 29, 874-878 (original in Russian, 738-741).
Stephani, H. 1982, General Relativity, An Introduction to the Theory of the Gravitational Field. Cambridge, U.K.: Cambridge University Press (original in German, 1980, 2nd ed.).
Stephani, H. and G. Kluge. 1980. Grundlagen der Theoretischen Mechanik, 2nd ed. Berlin: VEB Deutscher Verlag der Wissenschaften.
Stickforth, J. 1978. "On the Complementary Lagrange Formalism of Classical Mechanics," Am. J. Physics, 46, 71-73.
Stiefel, E. L., and G. Scheifele. 1971. Linear and Regular Celestial Mechanics. New York: Springer.
Stiller, W. 1989. Ludwig Boltzmann, Altmeister der klassischen Physik, Wegbereiter der Quantenphysik und Evolutionstheorie. Thun and Frankfurt: H. Deutsch.
Stoker, J. J. 1950. Nonlinear Vibrations in Mechanical and Electrical Systems. New York: Interscience Publishers (Wiley).
Storch, J., and S. Gates, 1989, "Motivating Kane's Method for Obtaining Equations of Motion for Dynamic Systems," J. Guidance, Control, and Dynamics, 12, 593-595.
Straumann, N. 1987. Klassische Mechanik, Grundkurs über Systeme endlich vieler Freiheitsgrade. Berlin: Springer.
Stronge, W. J. 1990. "Rigid Body Collisions with Friction," Proc. Roy. Soc. London, Series A, 431, 169-181.
Struik, D. J. 1976. "Lagrange, Joseph-Louis," Encyclopaedia Britannica, 15th ed, vol. 7, pp. 101-102.
Struik, D. J. 1987. A Concise History of Mathematics, 4th revised and enlarged ed. New York: Dover (earlier editions 1948 and 1967).
Stückler, B. 1955. "Uber die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen," Ingenieur-Archiv, 23, 279-287.
Stuelpnagel, J. 1964. "On the Parametrization of the Three-Dimensional Rotation Group," SIAM Review, 6, 422-429.

Sturm, Ch. 1883. Cours de Mécanique de l'Ecole Polytechnique, 2 vols, 5th ed. Paris: Prouhet (earlier editions 1861 and 1875).
Sudarshan, E. C. G., and N. Mukunda. 1974. Classical Mechanics: A Modern Perspective. New York: Wiley-Interscience.
Sumbatov, A. S. 1970. "Hamiltonian Principle for Nonholonomic Systems," Moscow U. Mechanics Bulletin, 25, 29-32 (original in Russian, 98-101).
Sumbatov, A. S. 1972. "Integration of Dynamic Equations with Constraint Multipliers," $P M M$, 36, 153-162 (original in Russian, 163-171).
Sumbatov, A. S. 1972. "Reduction of the Differential Equations of Nonholonomic Mechanics to Lagrange Form," PMM, 36, 194-201 (original in Russian, 211-217).
Suslov, G. K. 1901-1902. "On a Particular Variant of d'Alembert's Principle," Matematisheskii Svornik, 22, 687-691 (in Russian).
Suslov, G. K. 1946. Theoretical Mechanics (in Russian). Moscow and Leningrad: Technical/ Theoretical Literature (Gostehizdat).
Symon, K. R. 1971. Mechanics, 3rd ed. Reading, MA: Addison-Wesley.
Synge, J. L. 1926-1927. "On the Geometry of Dynamics," Philosophical Transactions of the Royal Society of London, Series A, 226, 31-106.
Synge, J. L. 1936. Tensorial Methods in Dynamics. Toronto: University of Toronto Press.
Synge, J. L. 1960. "Classical Dynamics," pp. 1-225 in vol. III/1 of Handbuch der Physik. Berlin: Springer.
Synge, J. L., and B. A. Griffith. 1959. Principles of Mechanics, 3rd ed. New York: McGrawHill.
Synge, J. L. and A. Schild. 1949. Tensor Calculus. Toronto: University of Toronto Press (reprinted 1978 by Dover, New York).
Szabó, I. 1954. "Georg Hamel zum Gedächtnis," Jahrbuch der Wiss. Ges. Luftforschung, pp. 25-28.
Szabó, I. 1975. Einführung in die Technische Mechanik, 8th ed. Berlin: Springer.
Szabó, I. 1977. Höhere Technische Mechanik, 6th ed. Berlin: Springer.
Szabó, I. 1979. Geschichte der mechanischen Prinzipien, 2nd ed. Basel, Switzerland: Birkhäuser.
Tabarrok, B., and F. P. J. Rimrott. 1994. Variational Methods and Complementary Formulations in Dynamics. Dordrecht: Kluwer.
Tabarrok, B., X. Tong, and F. P. J. Rimrott. 1995. "The Spinning Top: A Complementary Approach," ZAMM, 75, 535-542.
Tabor, M. 1989. Chaos and Integrability in Nonlinear Dynamics, An Introduction. New York: Wiley-Interscience.
Tait, P. G. 1895. Dynamics. London: A. Black and C. Black (reprint, in book form, of article "Mechanics" from Encyclopaedia Britannica, 1883).
Tatevskii, V. M. 1947. "On Various Forms of the Equations of Dynamics and their Applications," Zeit. Eksper. Teoret. Fiz., 17, 520-529 (in Russian).
Taylor, A. E. 1934. "On Integral Invariants of Non-holonomic Dynamical Systems," Bull. Am. Math. Soc., 40, 735-742.
Thomson, J. J. 1888. Applications of Dynamics to Physics and Chemistry. London: Macmillan (reprinted 1968 by Dawsons, Pall Mall, London).
Thomson, W. (Lord Kelvin), and P. G. Tait. 1872. Elements of Natural Philosophy, 1st ed. Cambridge, U.K.: Cambridge University Press (also published 1905 by Collier, New York).
Thomson, W. (Lord Kelvin), and P. G. Tait. 1912. Treatise on Natural Philosophy, 2 parts. Cambridge, U.K.: Cambridge University Press (1867, 1st ed.; reprinted 1962 as Principles of Mechanics and Dynamics by Dover, New York).
Thurnauer, P. G. 1967. "Kinematics of Finite, Rigid-Body Displacements," Am. J. Physics, 35, 1145-1154.
Timerding, H. E. 1901-1908. "Geometrische Grundlegung der Mechanik eines starren Körpers," art. 2, pp. 125-189 in vol. 4 of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner (article completed in February 1902).

Timerding, H. E. 1908. Geometrie der Kräfte. Leipzig: Teubner (reprinted 1968 by Johnson Reprint Corporation, New York as vol. 38 of the Bibliotheca Mathematica Teubneriana).
Timoshenko, S. P. 1953. History of Strength of Materials. New York: McGraw-Hill (reprinted 1983 by Dover, New York).
Timoshenko, S. P., and D. H. Young. 1948. Advanced Dynamics. New York: McGraw-Hill.
Tiolinia, I. A. 1979. History and Methodology of Mechanics (in Russian). Moscow: Moscow University Press.
Tomonaga, S.-I. 1962. Quantum Mechanics, vol. I: Old Quantum Theory. Amsterdam: North Holland (also by Interscience, New York).
Torretti, R. 1983. Relativity and Geometry. Oxford, U.K.: Pergamon Press.
Truesdell, C. A. 1954. The Kinematics of Vorticity. Bloomington, IN: Indiana University Press.
Truesdell, C. A. 1964. "Die Entwicklung des Drallsatzes," ZAMM, 44, 149-158.
Truesdell, C. A. 1968. Essays in the History of Mechanics. Berlin: Springer.
Truesdell, C. A. 1984. An Idiot's Fugitive Essays on Science, Methods, Criticism, Training, Circumstances. New York: Springer.
Truesdell, C. A. 1987. Great Scientists of Old as Heretics in "The Scientific Method." Charlottesville, VA: University Press of Virginia.
Truesdell, C. A., and W. Noll. 1965. "The Non-Linear Field Theories of Mechanics," pp. 1602 in vol. III/3 of Handbuch der Physik. Berlin: Springer (2nd corrected edition, as an independent volume, 1992).
Truesdell, C. A., and R. Toupin. 1960. "The Classical Field Theories," pp. 226-793 in vol. III/1 of Handbuch der Physik. Berlin: Springer.
Tzénoff, I. V. 1924(a). "Sur les Équations du Mouvement des Systèmes Matériels Non Holonomes," Math. Annalen, 91, 161-168. [Also in J. Math. Pures Appl., 4, 193-207, 1925.]
Tzénoff, I. 1924(b). "Sur les Percussions Appliquées aux Systèmes Matériels," Mathematische Annalen, 92, 42-57.
Tzénoff, I. V. 1953. "Über eine neue Form der Gleichungen der analytischen Dynamik," Akad. Nauk UdSSR, Doklady, 89, 21-24.
Udwadia, F. E., and R. E. Kalaba. 1993. "On Motion," J. Franklin Institute, 330, 571-577.
Udwadia, F. E., and R. E. Kalaba. 1996. Analytical Dynamics, A New Approach. Cambridge, U.K.: Cambridge University Press.

Vâlcovici, V. 1958. "Une Extension des Liaisons Nonholonomes et des Principes Variationels," Berichte Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 102(4), 3-39.
Valeev, K. G., and R. F. Ganiev. 1969. "A Study of Nonlinear Systems Oscillations," PMM, 33, 401-418 (original in Russian, 413-430).
van Vleck, J. H. 1926. "Quantum Principles and Line Spectra," Bulletin of the National Research Council of the National Academy of Sciences, vol. 10, pt. 4, no. 54 (March). Washington, DC.
Vershik, A. M., and V. Ya. Gershkovich. 1994. "I. Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems," pp. 1-81 in Dynamical Systems VII, vol. 16 of Encyclopaedia of Mathematical Sciences, edited by V. I. Arnol'd and S. P. Novikov. Berlin: Springer (original in Russian, 1987).
Vesselovskii, I. N. 1974. Essays on the History of Theoretical Mechanics (in Russian). Moscow: Vischaya Shkola.
Vieille, J. 1849. "Sur les Équations Différentielles de la Dynamique Réduites au Plus Petit Nombre Possible de Variables," J. de Mathématiques Pures et Appliquées, 14, 201-224.
Vierkandt, A. 1892. "Über gleitende und rollende Bewegung," Monatshefte für Math. und Phys., 3, 31-54 and 97-134.
Vinti, J. P. 1998. Orbital and Celestial Mechanics, edited by G. J. Der and N. L. Bonavito. Reston, VA: American Institute of Aeronautics and Astronautics (Vol. 177 of Progress in Aeronautics and Astronautics).
Voigt, W. 1895. Mechanik starrer und nichtsstarrer Körper. Wärmelehre, vol. 1 of Kompendium der theoretischen Physik. Leipzig: Veit.

Voigt, W. 1901. Elementare Mechanik, als Einleitung in das Studium der theoretischen Physik, 2nd ed. Leipzig: Veit.
Volkmann, P. 1900. Einführung in das Studium der Theoretischen Physik, insbesondere in das der Analytischen Mechanik, mit einer Einleitung in die Theorie der Physikalischen Erkentniss. Leipzig: Teubner.
Volterra, V. 1898. "Sopra una Classe di Equazione Dinamiche," Atti Accad. Sc. Torino, 33, 451-475 ["Sopra una Classe di Equazione Dinamiche," Atti Accad. Sc. Torino, 35, 118, 1899 (errata)]. [Also in Volterra's collected works Opere matematiche, Memorie e note, vol. 2 (1893-1899), pp. 336-355, 1956, by Accad. Naz. Lincei, Roma.]
Voronets, P. 1901-1902. "On the Equations of Motion for Nonholonomic Systems," Matematicheskii Svornik, 22, 659-686 (in Russian). [See also under Woronetz.]
Voss, A. 1885. "Ueber die Differentialgleichungen der Mechanik," Mathematische Annalen, 25, 258-286.
Voss, A. 1900. "Über die Prinzipe von Hamilton und Maupertuis," Kgl. Ges. d. Wiss. z. Göttingen, Nachrichten, Math.-phys. Klasse, 322-327.
Voss, A. 1901-1908. "Die Prinzipien der rationellen Mechanik," art. 1, pp. 3-121 in vol. 4 of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner (article completed in 1901; enlarged translation in French by E. and F. Cosserat, Paris, 1915).
Vranceanu, G. 1929. "Studio Geometrico dei Sistemi Anolonomi," Ann. Mat. Pura Appli., Series 4, 6, 9-43.
Vranceanu, G. 1931. "Sopra i Sistemi Anolonomi a Legami Dipendenti dal Tempo," Atti della Reale Accademia Nazionale dei Lincei, serie sesta, Rendiconti, Cl. Sc. Fis. Mat. Natur., 13, 38-44.
Vranceanu, G. 1936. Les Espaces Non Holonomes. (Fascicule 76). Paris: Gauthier-Villars.
Vujanovic, B. 1970. "On Nonholonomic Parametrization," J. Appl. Mechanics (ASME), 37, 128-132.
Vujanovic, B. 1975. "A Variational Principle for Non-Conservative Dynamical Systems," ZAMM, 55, 321-331.
Vujanovic, B. D. 1976. "The Practical Use of Gauss' Principle of Least Constraint," J. Appl. Mechanics (ASME), 43, 491-496.
Vujanovic, B. D., and S. E. Jones. 1989. Variational Methods in Nonconservative Phenomena. Boston, MA: Academic Press.
Vujicic, V. A. 1987. "A Consequence of the Invariance of the Gauss Principle," PMM, 51, 573-578 (original in Russian, 735-740).
Vujicic, V. A. 1990. Dynamics of Rheonomic Systems. Beograd: Matematicki Institut.
Vukobratovic, M., V. Potkonjak, D. Stokic, and M. Kircanski. 1982-1986. Scientific Fundamentals of Robotics, 6 vols. Berlin: Springer.
Walton, W. 1876. A Collection of Problems in Illustration of the Principles of Theoretical Mechanics, 3rd ed. Cambridge, U.K.: Deighton, Bell and Co.
Waerden, B. L. van der. 1976. "Hamilton's Discovery of Quaternions: Contemporary Sources Describe Hamilton's Trail from Repeated Failures at Multiplying Triplets to the Intuitive Leap into the Fourth Dimension," Mathematics Magazine, 49, 227-234.
Wang, C. C. 1979. Analytical and Continuum Mechanics; part A of Mathematical Principles of Mechanics and Electromagnetism. New York: Plenum Press.
Wang, J. T., and R. L. Huston. 1989. "A Comparison of Analysis Methods of Redundant Multibody Systems," Mech. Research Communications, 16, 175-182.
Wang, Y., and M. T. Mason. 1992. "Two-Dimensional Rigid-Body Collisions with Friction," J. Applied Mechanics (ASME), 59, 635-642.

Wassmuth, A. 1895. "Ueber die Transformation des Zwanges in allgemeine Coordinaten," Wienersche Sitzungsberichte, Math.-Naturwiss. Kl., IIa, 104, 281-285.
Wassmuth, A. 1901. "Das Restglied bei der Transformation des Zwanges in allgemeine Coordinaten," Wienersche Sitzungsberichte, Math.-Naturwiss. Kl., IIa, 110, 387-413.
Wassmuth, A. 1919. "Studien über Jourdain's Prinzip der Mechanik," Wienersche Sitzungsberichte, Math.-Naturwiss. Kl., IIa, 128, 365-378.

Watson, H. W., and S. H. Burbury. 1879. A Treatise on the Application of Generalised Coordinates to the Kinetics of a Material System. Oxford, U.K.: Clarendon Press.
Weber, E. v. 1900(a) Vorlesungen über das Pfaff'sche Problem, und die Theorie der partiellen Differentialgleichungen erster Ordnung. Leipzig: Teubner.
Weber, E. v. 1900(b). "Partielle Differentialgleichungen," art. A 5, pp. 294-399 in vol. 2, part 1 (first half) of Encyklopädie der Mathematischen Wissenschaften, edited by H. Burkhardt, W. Wirtinger, and R. Fricke, 1899-1916. Teubner, Leipzig (article completed in March 1900).

Weber, R. W. 1980. "Eine alternative Herleitung der Euler-Hamilton Gleichungen der Mechanik," ZAMP, 31, 780-784.
Weber, R. W. 1981. Kanonische Theorie Nichtholonomer Systeme. Bern, Switzerland: P. Lang. [Doctoral Dissertation at the Federal Polytechnic of Zürich (ETH, no. 6876).]
Weber, R. W. 1986. "Hamiltonian Systems with Constraints and their Meaning in Mechanics," Archive for Rational Mechanics and Analysis, 91, 309-335.
Webster, A. G. 1912. The Dynamics of Particles, and of Rigid, Elastic and Fluid Bodies, 2nd ed. Leipzig: Teubner [3rd ed. (identical to 2nd) reprinted 1942 by Stechert, and 1959 by Dover New York].
Wehrli, C., and H. Ziegler. 1966. "Zur Klassification von Kräften," Schweiz. Bauzeitung, 84, 851-855.
Weidemann, H.-J., and F. Pfeiffer. 1995. Technische Mechanik in Formeln, Aufgaben und Lösungen. Stuttgart: Teubner.
Weinstein, B. 1901. Einleitung in die höhere mathematische Physik. Berlin: F. Dümmler.
Wells, D. 1967. Lagrangian Dynamics. New York: Schaum.
Westenholz, C. V. 1981. Differential Forms in Mathematical Physics, revised edition. Amsterdam: North Holland.
Westfall, R. S. 1977. The Construction of Modern Science, Mechanisms and Mechanics. Cambridge, U.K.: Cambridge University Press.
Weyl, H. 1922. Space-Time-Matter. London: Methuen [original in German: 1918 (1st ed.), 1919 (3rd ed.), 1921 (4th ed., translated into English); reprinted 1952 by Dover, New York].
Wheeler, L. P. 1952. Josiah Willard Gibbs, The History of a Great Mind. New Haven, CT: Yale University Press (reissued in 1962).
Whittaker, E. T. 1937. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies, 4th ed. Cambridge, U.K.: Cambridge University Press (earlier editions: 1904, 1917, 1927; reprinted 1944 by Dover, New York and 1944, 1959, 1960, 1961, 1970, 1988 by Cambridge University Press).
Wie, B. 1998. Space Vehicle Dynamics and Control. Reston, VA: American Institute of Aeronautics and Astronautics (AIAA Education Series).
Wiechert, E. 1925. "Die Mechanik im Rahmen der Allgemeinen Physik," Dritter Teil, Dritte Abteilung, Erster Band (Physik), pp. 3-91 in Die Kultur der Gegenwart, 2nd ed. Leipzig: Teubner.
Wilkes, J. M. 1978. "Rotations as Solutions of a Matrix Differential Equation," Am. J. Physics, 46, 685-687.
Willems, P.-Y. 1979. Introduction à la Mécanique. Paris: Masson.
Willers, F. 1937. "Prof. Dr. Hamel 60 Jahre," ZAMM, 17, 311.
Williamson, B., and F. A. Tarleton. 1900. An Elementary Treatise on Dynamics, 3rd ed. London: Longmans, Green and Co.
Wilson, C. 1987. "D'Alembert versus Euler on the Precession of the Equinoxes and the Mechanics of Rigid Bodies," Archive for History of Exact Sciences, 37, 233-273.
Winkelmann, M. 1909. "Untersuchungen über die Variation der Konstanten in der Mechanik," Archiv der Mathematik und Physik, 15(3), 1-67.
Winkelmann, M., 1929. "Prinzipien der Mechanik," pp. 307-349 in vol. I of Handbuch der physikalischen und technischen Mechanik. Leipzig: Barth.
Winkelmann, M. 1930. "Allgemeine Kinetik," pp. 1-44 in vol II of Handbuch der physikalischen und technischen Mechanik. Leipzig: Barth.

Winkelmann, M., and R. Grammel. 1927. "Kinetik der Starren Körper," pp. 373-483 in vol. 5 of Handbuch der Physik. Berlin: Springer.
Winner, L. 1986. The Whale and the Reactor, A Search for Limits in an Age of High Technology. Chicago: University of Chicago Press.
Wintner, A. 1941. The Analytical Foundations of Celestial Mechanics. Princeton, NJ: Princeton University Press.
Wittenburg, J. 1977. Dynamics of Systems of Rigid Bodies. Stuttgart, Germany: Teubner.
Wittenburg, J. 1983. "Analytical Methods in the Dynamics of Multi-body Systems," pp. 835858 in vol. II of Modern Developments in Analytical Mechanics. Turin: Supplement no. 117 of Acts of Academy of Sciences, Class of Phys. Math. and Nat. Sci.
Woernle, C. 1990-1991. Dynamik mechanischer Systeme (Lecture Notes). University of Stuttgart, Germany: Institut A für Mechanik.
Woodhouse, N. M. J. 1987. Introduction to Analytical Dynamics. Oxford, U.K.: Clarendon Press.
Woronetz, P. 1911(a). "Ueber die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche Rollt," Math. Annalen, 70, 410-453. [See also under Voronets.]
Woronetz, P. 1911(b). "Ueber die Bewegungsgleichungen eines starren Körpers," Math. Annalen, 71, 392-403. [See also under Voronets.]
Wu, Z. 1984. Analytical Mechanics (in Chinese). Shanghai, China: University of Tsiao Tong.
Wußing, H., and W. Arnold, editors. Biographien bedeutender Mathematiker, Eine Sammlung von Biographien, 3rd ed. Darmstadt, Germany: Wissenschaftliche Buchgesellschaft.
Xing, J.-T., and W. G. Price. 1992. "Some Generalized Variational Principles for Conservative Holonomic Dynamical Systems," Proc. Roy. Soc. London, Series A, 436, 331-344.
Yablonskii, A. A., and V. M. Nikiforova. 1984. Course of Theoretical Mechanics, 2 vols (in Russian), 6th ed. Moscow: Vischaya Shkola.
Yang, J.-Y. 1991. "The Motion of a Sphere on a Rough Horizontal Plane," J. Applied Mechanics (ASME), 58, 296-298.
Ying, Shuh-Jing. 1997. Advanced Dynamics, Reston, VA: American Institute of Aeronautics and Astronautics (AIAA Education Series).
Yourgrau, W., and S. Mandelstam. 1968. Variational Principles in Dynamics and Quantum Theory, 3rd ed. London and Philadelphia: Pitman and Saunders (reprinted 1979 by Dover, New York).
Yuan, S., and F.-X. Mei. 1987. "Appell Equations in Terms of Quasi-velocities and Quasiaccelerations," Acta Mechanica Sinica, 3, 268-277.
Zajac, A. 1966. Basic Principles and Laws of Mechanics. Boston, MA: Heath.
Zander, W. 1970. "Sätze und Formeln der Mechanik und Elektrotechnik, I. Mechanik," teil IV, pp. 248-418 in Mathematischen Hilfsmittel des Ingenieurs. Berlin: Springer.
Zech, P., and C. Cranz. 1920. Aufgabensammlung zur theoretischen Mechanik, 4th ed., edited by O. Ritter v. Eberhard. Stuttgart, Germany: J. B. Metzler.
Zhilin, P. A. 1996. "A New Approach to the Analysis of Free Rotations of Rigid Bodies," ZAMM, 76, 187-204.
Zhuravlev, V. F., and N. A. Fufaev. 1993. Mechanics of Systems with Unilateral Constraints (in Russian). Moscow: Nauka.
Ziegler, F. 1995. Mechanics of Solids and Fluids, 2nd ed. New York, Vienna: Springer.
Ziegler, H. Mechanik, 3 vols. [vol. I, 1946 (1st ed.), 1948 (2nd ed.) (both with E. Meissner); vol. II (1947; with E. Meissner); vol. III (1952)]. Basel, Switzerland: Birkhäuser. (English translation of the first 2 vols., as Mechanics, by D. B. McVean; published by Addison-Wesley, Reading, MA, 1965.)
Ziegler, H. 1968. Principles of Structural Stability. Waltham, MA: Blaisdell and Ginn.
Ziegler, R. 1985. Die Geschichte der Geometrischen Mechanik im 19. Jahrhundert. Stuttgart, Germany: Steiner Verlag Wiesbaden GMBH.

Zimmerman, H. 1955. "Anwendung der Pfaffschen Formen auf anholonome Systeme der Mechanik," ZAMM, 35, 359-360.
Zoller, K. 1972. "Zur anschaulichen Deutung der Lagrangeschen Gleichungen zweiter Art," Ingenieur-Archiv, 41, 270-277.
Zubov, V. I. 1970. Analytical Dynamics of Gyroscopic Systems (in Russian). Leningrad: Sudostroenie.

Index

(The numbers refer to the pages)

A

Abbreviations, 15
Abbreviations, symbols, notations, formulae, 14-70
Absolute
(or inertial) frame of reference, 90 , 105-106
integral invariant, 1233
Acatastatic/catastatic (Pfaffian) constraint, 247, 249, 303
Acceleration
absolute (or inertial)/centripetal/Coriolis/ relative/transport, 91 ff., 121, 278-279, 620, 623
angular
tensor, 191-192
vector, 117, 379-380
in orthogonal curvilinear coordinates, 96 ff .
in system variables, 278-279, 308, 311
Lagrangean, 537-542
nonholonomic, 542-544
Accessibility, in configuration space, 263
Accompanying vectors (Heun's "begleitvektoren"), 279 ff .
Action
(-angle) variables, 1254 ff .
and atomic physics, 1273-1274
averaged, 1062, 1065
Hamiltonian, 991-992, 1055 ff., 1218 ff .
integral (functional) of, 991 ff .
reduced (or abbreviated), 1196, 1223, 1225-1226
Lagrangean, 992 ff., 994
Action and Reaction, Law of (or Principle of), 108-109
Active/passive interpretations of a proper orthogonal tensor, 178-192
Actual displacements, 278 ff.

Addition theorem for angular velocities, 174, 189-190
Adiabatic
invariance/invariants, 1013-1018, 1290-1305
theorem
Boltzmann-Clausius form of, 1296
Ehrenfest form of, 1296
Planck form of, 1296
Adjoining/embedding of constraints, 410 ff ., 425, 707
Aizerman, M. A., 1061, 1237
Alishenas, T., 277
Alt, H., 140
Altmann, S. L., 14, 140
Amaldi, U., 323, 975
Ames, J. S., 138, 170
Analogies between forces/moments and velocities, 147-148
Analytical mechanics, 4 ff ., 702 ff .
Analytical statics, 394-397, 602-604
Angeles, J., 129, 265, 312
Angle (-action) variables, 1254 ff .
Angles
Cardanian (yaw, pitch, roll), 202-205
Eulerian (nutation, precession, spin), 192-202
Angular
acceleration
tensor, 191-192
vector, 117-118
(or rotational) displacement, 141 ff ., 155 ff .
momentum, principle of, 107-113
speed, 144, 173
velocity
addition theorem for, 174, 189 ff .
components, for all Eulerian angle sequences, 205-212
in orthogonal curvilinear coordinates, 137-138

Angular (cont.)
tensor, $131 \mathrm{ff} ., 137,188 \mathrm{ff}$.
vector, $114,118 \mathrm{ff}$., 144 ff ., 172 ff ., 188-192, 197-202, 204-205, 206 ff.
Anti- (or skew-) symmetric tensor, 76
Apparent indeterminacy of Lagrange's equations, 425-426
Appell, P. E., x, xv, 11, 404, 421, 466, 626, $645,650,689,705,714,724,787,923$, 1179, 1212
Appellian inertial terms
holonomic variables, 403
nonholonomic variables, 403-404
Appell's
classification of impulsive constraints, 725 ff.
equations, 418, 493, 704 ff ., 755, 837
explicit forms, 563-566
function (or Appellian, or Gibbs-Appell function, or acceleration energy), 403
constrained, 424, 493
Archangelskii, Ju. A., 14
Areal velocity, 94, 466 ff .
Argyris, J., 164
Arnold, V. I., 8, 14, 457, 1314
Arrighi, G., 755
Astatic equilibrium, virtual work characterization of, 604
Astronomical (or absolute) frame of reference, 90, 104 ff .
Asymptotic
methods in nonlinear oscillations, 1047
stability, 551 ff ., 1067, 1123 ff .
Atkin, R. H., 254
Atwood's machine, 477 ff .
Averaging, method of, 1049 ff., 1215
Axes
fixed (inertial)/moving (noninertial), 113 ff .
of inertia, principal, 216 ff .
Axial vector, of a second-order tensor, 80, 85
Axioms (or principles, or postulates) of mechanics, 102, 106 ff., 392
Axis
instantaneous, 144
of rotation, 155 ff .
screw, 143, 147 ff .

B

Bahar, L. Y., xviii, 155, 164, 470, 555, 597, $633,659,701,716,718,757,761,766$, 770, 782, 794, 817, 1114, 1249
Bakay, A. S., 14, 1018, 1290

Battin, R. H., 14
Baumgarte, J., 1062
Beer, F. P., 778
Beghin, H., 237, 255, 636, 644, 650, 667, 731, 754, 770, 772, 1115
Bell, E. T., 13
Bellah, R., xii
Bellet, D., 1127
Bellman, R., 551, 553
Berezkin, E. N., 532, 1115
Bergmann, P. G., 85, 89, 106
Bernoulli, D., 1022
Bernoulli, Jakob (or James), 10, 393, 703
Bernoulli, Johann (or John), 10, 703
Bertrand's theorem on impulsive motion, 788 ff.
Besant, W. H., 233, 254
Bessel-Hagen, E., 1249
Beyer, R., 140
Bierhalter, G., 1013, 1290
Biezeno, C., 604
Bilateral (or equality, or reversible)/unilateral (or inequality, or irreversible)
constraints, 248-249, 388, 410, 484 ff., 604
Bilinear covariant, 297 ff., 1086
Binormal vector, to a curve, 92, 125 ff .
Birkhoff, G. D., 14, 527
Birtwistle, G., 1298, 1314, 1316
Blekhman, I. I., 1055, 1063
Bochner, S., 13
Body, 98 ff. rigid, 138 ff .
Body-fixed (or, generally, moving) axes, 113 ff .
Boggio, T., 283
Bogoliubov, N. N., 1029, 1055, 1158
Bohr, N., 1273, 1283, 1289, 1298
Bolotin, V. V., 558
Boltzmann, L., x, xv, xxiii, 11, 13, 247, 313, 316, 935, 1290, 1294, 1296
Boltzmann's
axiom (i.e., symmetry of stress tensor), 111
equations, 704 ff .
Born, M., 14, 631, 1072, 1199, 1253, 1261, $1262,1273,1284,1298,1305,1314$, 1317, 1321, 1322
Borri, M., 281, 963
Bottema, O., 140
Bouligand, G., 718, 724, 797
Bouquet, J. C., 269
Brach, R. M., 718
Brackets of
Lagrange, 1145
Poisson, 1151

Bradbury, T. C., 82
Brand, L., 263
Brell, H., 923
Bremer, H., xi, xviii, 14, 372, 553, 558, 879
Brill, A., 890, 911, 923, 924, 933
Brillouin, L., 1290, 1294
British theorem (i.e., kinetic energy and Appellian of uniform rod), 228, 597
Bryan, G., 1290
Buch, L. H., 1043
Budde, E., 1085
Burali-Forti, C., 283
Burbury, S. H., 1057, 1085
Burgers, J. M., 1290, 1298
Burnet, J., 3
Butenin, N. V., 13, 225, 323, 382, 426, 472, 497, 575, 1053, 1175, 1208, 1280
Byerly, W. E., 757, 761, 788

C

Cabannes, H., 622, 644, 645
Calculus of variations and mechanics, 960 ff .
Canonical (Hamiltonian)
form of equations of motion, 1073 ff ., 1079
perturbations, 1151 ff .
transformation(s), 1161-1176
generalized, 1173
infinitesimal, 1188 ff .
variables (or canonically conjugate variables), 1071 ff .
Canonicity of a transformation, 1162-1163
Capon, R. S., 962, 964, 988
Carathéodory, C., 1174
Cardan
angles, 202 ff .
suspension (of a gyroscope), 373-374, 647-648
Carnot's theorems on impulsive motion, 785 ff.
Carr, E. H., 9
Cartan, E., 299, 337, 1237
Cartesian coordinates, 72
Carvallo, E., 242, 703
Castoldi, L., 646
Catastatic/acatastatic constraints, 247, 249, 303
Cauchy, A. L., 1071
Cauchy's theorem (continuum kinematics), 144

Cayley, A., 12, 231
Cayley-Hamilton theorem, 82
Center of
gravity/mass/centroid, 103 ff .
instantaneous
of zero acceleration, 151 ff .
of zero velocity, 150 ff .
Central axis (of a screw displacement), 143, 148
Central equation (or principle, the Zentralgleichung of Lagrange-Heun-Hamel)
Hamiltonian form, 1073
integral forms, 968 ff .
Lagrangean form, $461 \mathrm{ff} ., 506-507$, 832-833, 1219
Routhian form, 1089
Centrifugal
force, 128, 221-222
moment (products of inertia), 222
potential, 616, 620, 625
Centripetal acceleration, 121
Centroid, 103-104
Chaplygin, S. A., 11, 497, 705
Chaplygin coefficients, 339, 824, 831
Characteristic (or secular) equation, 550, 1018, 1123, 1124
Characteristic function (or abbreviated action), 1223
Characteristics of vectors, 72
Charlier, C. V. L., 8, 1258
Chasles' theorem (of rigid body displacements), 143-144
Chen, G., 1034, 1039, 1041
Chertkov, R. I., 14, 1072, 1199
Chester, W., 170
Chetaev, N. G., 12, 299, 553, 1067, 1079
Chirgwin, B. H., 785, 788, 1023, 1142
Chorlton, F., 228, 770, 772
Christoffel symbols
of first kind, 538 ff ., 543 ff ., 929
of second kind, 540 ff .
Circular frequency, 1250
Clausius, R., 939, 1296
Clifford, W. K., 279
Closed form solution, 571
Coe, C. J., 13, 140, 155, 170, 176, 263, 283, 714, 911
Coefficient(s) of
Chaplygin, 339, 824, 831
friction, 238-239
Hamel, 313 ff., 321 ff., 342 ff., 824
inertia, 795, 802 ff., 1022-1023
restitution, 726, 735

Coefficient(s) of (cont.)
stiffness/stability, 1022
Voronets, 339, 824
Cole, J. D., 1303
Collision(s), elastic/inelastic, 725, 726, 734-736
Combination tones and overtones, 1288-1289
Commensurable (or commensurate) frequencies, 1261, 1267 ff., 1271 ff.
Components
of tensors, 75 ff .
of vectors, 72 ff .
physical, 95 ff .
vs. projections (nonorthogonal axes), 598-602
Composition of (finite) rotations, 168 ff .
Conditions (or tests) of
canonicity of a transformation, 1164 ff ., 1180 ff.
compatibility (here, holonomicity), 269
Jacobi (of sufficiency variational theory), 1058-1061
Legendre-Weierstrass (of sufficiency variational theory), 1058-1059
Maurer-Appell-Chetaev-Johnsen-Hamel (in nonlinear constraints), 820-821, 957 ff.
Conditionally (or multiply, or quasi-) periodic motion, 1260 ff ., 1267-1268, 1269 ff ., 1287 ff .
Configuration
of a system, 243
space, 291 ff .
Conjugate kinetic focus (in sufficiency variational theory), 1058-1061
Conservation of
energy, 522, 575 ff .
mass, 107
momentum
angular, 107 ff .
generalized (i.e., system), 573 ff.
linear, 107
Constant
gravitational, 1248
of the motion, 569
spring (i.e., stiffness), 440
Constitutive postulate, Lagrange's principle as, 388-393
Constrained motion, 244 ff .
Constraint reactions (forces and/or moments), 382 ff .
Constraint(s)
acatastatic/catastatic, 247, 249
addition/relaxation of, 273-275
bilateral (or equality, or reversible)/ unilateral (or inequality, or irreversible), 248-249, 388, 410, 484 ff., 604
classifications of, 243
control (or servo-), 636-650
definitions of, 249
external/internal, 249
forces of (or reactions of), 382 ff .
geometrical interpretation of, 291 ff ., 331 ff.
holonomic (or finite, or geometric, or integrable, or positional), 245
impulsive (Appellian classification), 724 ff.
inequality (or unilateral, or irreversible), 248, 388
linearly independent, 301 ff .
nonholonomic (or nonintegrable motional), 246
nonideal, 397-398
nonlinear, 818 ff .
Pfaffian, 245, 257 ff., 262, 287-288, 294, 323 ff .
rheonomic (or nonstationary)/scleronomic (or stationary), 247
second-order, 871
semiholonomic, 264
servo- (or control), 636-650
sudden rupture of, 726, 733
system forms of, 270 ff ., 286 ff .
transitivity equations, 334 ff .
virtually workless, 386 ff .
Contact
of rigid bodies
kinematics, 153 ff .
kinetics, 237 ff.
transformation(s), 1190
Coordinate system vs. frame of reference transformation, 87 ff .
Coordinates
Cartesian, 72
controllable (or macroscopic)/ uncontrollable (molecular), 1290 ff .
curvilinear, 271
cylindrical/spherical, 95 ff., 97 ff.
equilibrium (or adapted), 275
excess, 276
generalized (or curvilinear), 271 ff .
holonomic, 271 ff ., 305 ff .
ignorable (or cyclic, or absent, or kinosthenic, or speed), 1097 ff., 1199
inertial/noninertial, 272, 608 ff .

Lagrangean, 271 ff .
nonholonomic (or quasi coordinates), 212 ff ., 301 ff ., 304 ff .
normal, or principal, 435 ff ., 1018 ff .
orthogonal curvilinear, 94 ff .
palpable (or positional, or essential), 1088, 1098
quasi (or nonholonomic), 212 ff ., 301 ff ., 304 ff.
regular, 292
spherical, 95, 97
system, 270 ff., 272
Corben, H. C., xi, 14, 323, 446, 527, 537, 941, 1079
Coriolis
acceleration, 121
force, 128 ff .
Correction/deviation, nonholonomic, 402, 824, 838
transformation properties, 508 ff ., 840 ff .
Cotton, E., 421
Coulomb-Morin law of friction, 238 ff ., 384, 397, 425
Couple, gyroscopic, 621-622, 1111
Coupling/uncoupling
gyroscopic, 1105, 1124
inertial (or dynamical), 539
of penduli, 430 ff ., 1280-1281
Crandall, S. H., xi, 13, 155, 218, 1076
Cromer, A. H., 8, 572, 1249, 1298, 1305, 1322
Cunningham, W. J., 1069
Curvature
least (or straightest path, Hertz's principle), 930-933
radius of, 91 ff ., 125 ff .
Cut principle (free-body diagrams), 392-393
Cyclic (or ignorable, or absent, or kinosthenic, or speed) coordinates/ systems, 1097 ff.
Cylindrical coordinates, 95, 97

D

D'Abro, A., 12
D'Alembert, J. Le Rond, 4, 10
D'Alembert's
force decomposition ("ansatz"), 384
principle, in Lagrange's form, 386, 637
Damping, 519 ff .
forces (viscous), 519-520, 549-550

Darboux, G., 163
Darboux vector, 126
Davis, P. J., xiii, xiv
Deahna, H. W. F., 269
De Donder, T., 1294
Degeneracy, 1269 ff .
Degrees of freedom, global (geometrical)/ local (motional), 246, 264
Delassus, E., 12, 701
Delaunay, C., 385, 1258
Delaunay's theorem on impulsive motion, 788 ff.
De la Vallée Poussin, Ch.-J., 269, 299
Delta of Kronecker, 73, 1248
Denman, H. H., 1043
Density of matter, 99
Derivative (or rate of change), absolute/ relative/transport, 114
Desloge, E. A., xi, 323, 713
Determinant, characteristic, 82
Determinism, 570 ff., 1188
Deviation/correction, nonholonomic, 402, 824, 838
Dextral basis, 73
Differential
form(s) (or Pfaffian)/equations, 257 ff . integrability (or holonomicity) of, 257 ff., 265 ff., 268 ff ., 334 ff ., 343 ff .
variational principles, 875-933
Direct variational methods of Galerkin and Ritz, 1034 ff.
Direction, cosines, 84, 178 ff .
Dirichlet, P. G. L., 1128, 1268
Disk (or coin, or ring, or hoop), rolling of, 235 ff ., 351 ff ., 359 ff ., 590-591, 680 ff ., 986 ff.
Displacement(s)
actual, 278 ff .
classification of, 280 ff .
infinitesimal, 144 ff .
irreversible (or one-sided)/reversible (or two-sided), 248, 388, 484 ff.
kinematically admissible (or possible), 280 ff.
of a particle, 278 ff .
of a rigid body, 138 ff ., 140 ff ., 155 ff ., 177 ff.
plane (or planar), 140-141
screw, 143, 147-148
vector, 155 ff., 177 ff.
virtual, δ-operator, 280 ff ., 290-291
Dissipation function, of Rayleigh, 519-520, 549-550
Dissipative forces, 519

Dittrich, W., 14, 1273, 1305, 1314, 1321
Divisors, elementary (or small), 444, 1310, 1313-1314
Djukic, D. S., 323
Dobronravov, V. V., xi, 12, 13, 14, 312, 317 , $323,382,497,529,656,855,1198$, 1249
Dolaptschiew, B., 901
Donkin, W. F., 1071, 1076
Double pendulum, 430 ff., 738, 804
Duffing's equation, 945, 1030 ff., 1037 ff., 1051 ff .
Dugas, R., 12, 231, 911, 1151
Duhamel's superposition integral, 1064
Duhem, P. M. M., 626
Dühring, E., 12
Dyad (-ic, i.e., second-order/rank tensor), 75 ff.
Dyname (or torsor) of a vector system, 148
Dynamic (or inertial) coupling, 539
Dysthe, K. B., 443

E

Easthope, C. E., 13, 219, 718, 785, 1095
Ehrenfest, P., 705, 933, 1290, 1294, 1296
Eigenvalues/eigenvectors of a second-order tensor, 81 ff .
Einstein, A., xiv, xxiii, 7, 9, 88, 90, 817, 1015
Ellipsoid of inertia, or momental ellipsoid, 218 ff .
Elsgolts, L., 1006, 1056
Embedding/adjoining of constraints, 410 ff ., 425, 707
Energy
conservation of, 522
generalized, 521
in cyclic systems, 1105-1106
gyroscopic, 1124
in relative motion, 631, 1084
integral(s) of, 522, 524, 567 ff.
kinetic
of a rigid body, 582 ff ., 585 ff .
of a system, 511 ff .
of acceleration (or Appellian), 403-405, 594-597
potential, 515 ff .
rate theorem, $520 \mathrm{ff} ., 938-939$
relation to frequency (frequency rule), 1256 ff.
variation from a steady motion, 1119

Equality (or bilateral, or reversible) constraints, 248, 348
Equation(s) of
Appell, 418, 493, 563 ff., 704 ff., 755, 837
Boltzmann, 704 ff .
central, 461 ff ., 506-507, 832 ff., 1073, 1089, 1219
Chaplygin, 495-497, 845, 847, 907
generalized, 497-498
Chaplygin-Hadamard, 491 ff.
constitutive (in Lagrange's principle), 383 ff.
Dolaptsiew, 886-887
Euler (gyro-equations), 230
Euler (impulse-momentum principles), 106 ff., 228 ff.
Ferrers, 702 ff.
geometrical interpretation, 427-428
Gibbs, 595
Greenwood, 704
Hadamard, 844
Hamel (or Lagrange-Euler), 419, 421 ff ., 503-505
Hadamard form of, 503
mixed Hamel-Voronets, 505-508
special, 503-505
Hamilton (canonical), 1073 ff .
Hamilton-Jacobi, 1193 ff .
impulse-momentum, 718-720
Jacobi (of sufficiency variational theory), 1057
Jacobi-Synge, 562-563
Johnsen (-Hamel), 833
Kelvin-Tait, 1103 ff.
Korteweg, 494
Lagrange, 418 ff .
explicit forms, 537-563
of first kind, 411 ff .
of second kind, 418 ff .
special forms, 486-510
Maggi, 418 ff., 752, 837
Mangeron-Deleanu, 886-887, 891-892, 897
Mathieu, 442 ff., 1068-1069
mixed, of Hamel-Voronets, 505-508
motion, 409 ff., 418 ff., 486 ff. first integral(s), 567 ff .
integration and conservation theorems, 566 ff., 1249
Neumann, 497
Nielsen, 881, 894-895
perturbations (Hamiltonian), 1147 ff .
Poincaré, 1066
Quanjel, 495

Routh, 1089
Routh-Voss (i.e., Lagrange's equations with multipliers), 419, 730, 836
special (Hamel), 503-505
Tzénoff, 885, 894 ff.
van der Pol-Krylov-Bogoliubov, 1050, 1242
variations
of Jacobi, 1057-1058
of Poincaré, 1066
Volterra, 419
Voronets, 498-500, 845
generalized, 501-503
work-energy rate, 520 ff .
Equilibrium, 387, 602-604
astatic, 604
Euclidean geometry/manifold(s)/space(s), 89-90, 269, 291 ff.
Euler, L., xviii, 4, 10, 102, 107
Euler-Lagrange
differential equation (of variational calculus), 962, 1056, 1058
operator, 280, 311, 615
Eulerian
angles [precession, nutation, proper (or eigen) spin], 192 ff .
equations (kinetic), 230
rigid-body formula, 144 ff .
Event/event space, 90, 293 ff .
Exactness conditions (of a Pfaffian form), 305
Extended configuration (or event, or film) space(s), 293
External/internal forces, 102-103, 108-109, 384-385, 392
Extremal properties of Hamiltonian action, 1055-1062

F

Falk, G., 945
Ferrarese, G., 176, 333
Ferrers, N. M., 10, 11, 702 ff.
Fetter, A. L., 451
Finch, J. D., 704
Finite rotation, 155 ff.
as an eigenvalue problem, 167-168
composition of, 168 ff .
tensor, 161 ff .
"vector(s)" (of Gibbs et al.), 156 ff .
Finzi, B., 935
First
integrals, 567 ff .
law of thermodynamics, 1296
Fischer, U., 323, 1041
Focus kinetic (in sufficiency variational theory), 1058-1061
Fomin, S. V., 935, 960, 1006, 1056
Föppl, A., 3
Forbat, N., 1290
Force function, 522
Force(s)
apparent (i.e., frame-dependent, or relative), 127 ff .
arguments of the, 101-102, 385-386
centrifugal, 128, 221-222
circulatory, 548
classification, 102-103, 382 ff., 548 ff .
constraint (reactions), 382 ff .
contact, 237 ff .
Coriolis, 128 ff.
damping (dissipative), 519-520, 549
elastic (potential), 548
equipollent/equivalent, 603, 709
external/internal (or mutual), 108, 384 ff ., 392
friction (Coulomb-Morin, i.e., solid/solid), 238-240, 384-385, 397, 425-426
generalized (i.e., system), 405 ff .
given (physically, or impressed), 382 ff .
gravitational, 103 ff., 1248
gyroscopic, 454, 517 ff., 549, 1104-1105
impressed (or physical, i.e., physically given), 382 ff .
impulsive, 719-723
inertial, 128 ff .
internal (or mutual), 108, 384 ff .
Lagrangean (or system, or generalized), 405 ff .
in relative motion (of translation, centrifugal, rotational, gyroscopic/ Coriolis), 615 ff., 618-619
lost (in Lagrange's form of d'Alembert's principle), 386
momental (or associated), 400
motional, 548
of constraint (or constraint reactions), 382 ff.
passive/servoreactions, 382, 636 ff .
positional, 548
potential, 515 ff .
reactions (of constraint), 382 ff .
reduction of a system of, 148
system (or Lagrangean, or generalized), 405 ff .
Form/equation, linear (Pfaffian), differential, 257 ff., 265 ff., 287-288, 296 ff.

Förster, W., 928
Forsyth, A. R., 260, 266, 270, 299, 343
Fourier, J. B., 604
Fourier series, 1034, 1049, 1250, 1266-1267, 1269, 1288-1289
Fox, C., 1006, 1056
Fox, E. A., 1, 13, 71, 99, 170, 237, 242, 704, 960
Frame(s) of reference, 87 ff ., 90
effect on
impulsive motion, 731-732
Routh-Voss equations, 451-452
inertial (or fixed, or Newtonian), 90
noninertial/rotating (or moving), 113 ff ., 622-634
Frank, P., 1004, 1072, 1127, 1129, 1180, 1198, 1287, 1322
Free-body diagram (Euler's "cut principle"), 392-393

Free vector, 72
Freedom, degrees of, 246, 264
French, A. P., 5
Frenet-Serret (or Serret-Frenet) formulae, 125 ff.
Frequency (-ies)
circular, 1250
combination tones and overtones, 1287 ff .
commensurable (or commensurate)/ noncommensurable (or noncommensurate), 1261, 1267 ff ., 1271 ff .
relation to energy, 1256 ff .
rule, 1265 ff .
Friction (Coulomb-Morin, i.e., solid/solid), 238-240, 384-385, 397, 425-426
Frobenius, G., 298, 299
Frobenius
bilinear covariant, 297, 304-305
theorem, 298
geometrical interpretation of, 344-345
Hamel form of, 335 ff .
Fues, E., 14, 1072, 1198, 1287, 1301, 1314
Fufaev, N. A., viii, x, xi, 7, 12, 13, 14, 242, 255, 265, 315, 323, 382, 497 ff., 505, $688,689,714,715,817,860,865,867$, 904, 935
Function
conjugate (in Legendre's transformation), 1076
dissipation (of Rayleigh), 519-520, 549-550
generating, 1164 ff .
Hamiltonian, 1074 ff.
Hamilton's characteristic, 1222 ff.

Hamilton's principal, 1218 ff.
Lagrangean (or kinetic potential), 516
Routhian (or modified Lagrangean), 1090
Funk, P., 214, 323, 960, 1056, 1249

G

Galilean
group/transformation, 104 ff ., 1249
reference frame, 106
relativity/law of inertia, 104 ff ., 455
Galileo, G., 10
Gallavotti, G., 458, 1263
Ganiev, R. F., 1063
Gantmacher, F. R., x, xi, 13, 248, 382, 390, 411, 512, 517, 553, 1021, 1023, 1072, 1076, 1095, 1128, 1129, 1141, 1237
Garfinkel, B., 1163, 1269
Garnier, B., 140
Gauss, C. F., xviii, 10, 11, 911, 923
Gauss' principle of least constraint (or compulsion), 877, 911-930
Gelfand, I. M., 935, 960, 1006, 1056
General variational equation of dynamics (Lagrange's principle), 386-387, 392, 409 ff., 418 ff.
Generalized (i.e., system)
accelerations
holonomic, 279
nonholonomic, 308, 310
coordinates (i.e., system or Lagrangean
coordinates, or positional
parameters), 271 ff .
energy integral, 522 ff .
forces, 406 ff .
impulsive, 723
impulse, 724
momentum
holonomic, 400
nonholonomic, 402
potential, 453 ff ., 516 ff .
speeds, 715
velocities
holonomic, 279
nonholonomic, 304 ff .
Generating function/solution, 1048, 1063 ff ., 1164 ff., 1168
Geodesics, 932, 1001-1002
Geometric (or holonomic, or finite, or integrable, or positional) constraint, 245
Geometrical object (Hamel coefficients, etc.), 322

Gibbs, J. W., 8, 11, 312, 381, 419, 565, 595, 706-707, 817, 923
Gibbs-Appell function (or Appellian), 403, 424, 493, 565-566, 595
Gibbs-Rodrigues "vector" (of finite rotation), 156 ff .
Girtler, R., 924
Given (i.e., physically given, or impressed) forces, 382 ff.
Glocker, C., 486
Golab, S., 317, 322
Goldsmith, W., 718
Goldstein, H., xi, xii, 265, 517, 941, 1198, 1262, 1273
Golomb, M., 323, 923
Grammel, R., 225, 230, 232, 323, 561, 635, 689, 1072, 1095, 1127, 1138
Gravity, force of, 1248
Gray, A., 13, 225, 704, 791, 1134
Gray, C. G., 1062
Greenwood, D. T., xi, xvii, 13, 190, 199, 248, 532, 628, 766, 792, 795, 802, 804, 819, 975, 1129, 1198
Griffith, B. A., 13, 71, 221, 446, 775, 1021
Group(s), 164, 318, 1249
Grübler, M., 127, 140
Gudmestad, O. T., 443
Guldberg, A., 299
Gutowski, R., 323
Gyration, ellipsoid of, 219
Gyroscope, 373-374, 633-634; see also Cardan suspension; Top
servo-gyroscope, 647-648
Gyroscopic
coefficients/terms, 540 ff., 549, 1104, 1122
couple, 621-622, 1111
coupling/uncoupling, 1105, 1124
energy, 1124
forces, 454
stability in the presence of, 549 ff ., 1122 ff .
systems, variational and virial theorems, 947-948

H

Haar, D. ter, 1298, 1314, 1317
Haas, A., 12
Hadamard, J., 11, 423
Hagihara, Y., 8, 14, 305, 318, 1072, 1198, $1199,1212,1273$

Hamel, G., x, xi, xv, xvii, 7, 11, 12, 13, 71, $100,102,109,131,155,170,176,202$, 242, 250, 305, 312, 318, 323, 335, 337, 363, 382 ff ., 391, 402, 411, 421, 423, 440, 446, 448, 486, 500, 505, 580, 678, $689,697,709,715,718,736,817,819$, $825,833,834,837,849,854,926,928$, 954, 973, 974, 1072, 1073, 1161, 1173, 1180, 1192, 1212
Hamel
coefficients, 313 ff., 824
transformation properties of, 321-322, 342-343, 824, 848
equations of, 419 ff ., 752,833
transitivity equations of, 312 ff ., 825 ff .
Hamel-Lagrange principle of relaxation of the constraints (Befreiungsprinzip), 398-399, 469-486, 732-733
Hamilton, W. R., 10, 1071, 1219
Hamilton-Jacobi theory, 1192-1218
Hamiltonian
action (functional), 991
extremal properties of, 1055-1062
central equation (i.e., in canonical variables), 1073
function
holonomic, 1074 ff .
nonholonomic, 1079
mechanics, 1070
(or canonical) form of equations of motion, 1073 ff .
Hamilton's
canonical equations of motion, 1073 ff .
characteristic function (or abbreviated action), 1223
partial differential equation of Hamilton-Jacobi, 1193 ff.
principal and characteristic function(s), 1218-1230
principal function, 1219
principle, 991, 1221 ff .
Hand, L. N., 704
Hankins, T. L., 12
Hartman, P., 299
Haug, E. J., xii, 14, 265, 419
Heidegger, M., xxiii
Heil, M., 13, 299
Heisenberg, W., 1274, 1289
Helleman, R. H. G., 1062
Hellinger, E., 924
Helmholtz, H. von, 7, 1090
Herakleitos, 3
Hersh, R., xiii, xiv
Hertz, H., 7, 11, 245, 263, 383, 933, 1103

Hertz's principle (of least curvature, or of straightest path), 930-933
Heun, K., x, xi, xv, 5, 7, 11, 13, 230, 242, 279, $311,312,323,385,590,604,605,933$, 1095
Heun's Central Equation (Zentralgleichung), 462 ff., 506-507
Hill, E. L., 1249
History of analytical mechanics, 9 ff ., 702 ff.
Hölder, E., 590
Hölder, O., 974, 1007
Holonomic
component(s), 279
constraint(s), 289
coordinate(s), 271 ff ., 305 ff .
Hoppe, E., 12, 410
Hughes, P. C., 14, 225, 553, 1067
Hund, F., 12, 71, 1274
Hunt, K. H., 140, 148
Hurwitz, A., 552
Huseyin, K., 553
Huseyin, M. S., 1056
Huston, R. L., 14

I

Identity of Poisson-Jacobi, 1178-1179
Ignorable (or cyclic, or absent, or kinosthenic, or speed) coordinate(s), 1097 ff., 1199
Ignoration of coordinates, 1097 ff., 1173, 1192 ff., 1199, 1206
Impact, elastic/inelastic, 726, 735
Impulsive
constraint(s) (Appellian classification of), 724 ff.
force, 719, 723
motion
Lagrangean theory, 721-724
in quasi variables, 751 ff .
Newton-Euler theory, 718-721, 733-736
theorem of
Bertrand (Delaunay-Sturm), 788 ff .
Carnot, 785 ff .
energy, 720
Gauss, 793-794
Kelvin, 787-788
Robin, 791 ff.
Taylor, 790-791
Indicial notation (Cartesian vectors/tensors), 73
Inelastic collision, 726, 735

Inequality (or unilateral) constraint, 248-249
Inertia
coefficients, 511
ellipsoid of, 218 ff .
matrix, 512
moments of, 216 ff .
moments/products of, extremum properties, 220 ff .
principal axes and moments of, 216 ff .
products of, 216 ff .
tensor (or dyadic), 215 ff .
transfer (parallel axis) theorem, 217
Inertial
coupling/decoupling, 539-540
force, 127 ff .
frame of reference, 90
Infinitesimal
canonical transformations, 1188 ff .
displacements, 144
rotations, 171 ff .
Initial conditions (positions, velocities), 567 ff., 570-571
Instantaneous
axis of rotation, 583
center of zero
acceleration, 151 ff .
velocity, 150 ff .
Integrability
conditions of
nonlinear constraints, 824-825
Pfaffian constraints, 268 ff., 1263
via Hamilton-Jacobi theory (separability), 1192 ff., 1263 ff.
Integral(s)
classical (of the equations of motion)/ conservation theorems, 566-580, 1249
invariants, 1230-1243
absolute/relative, 1233
of energy/Jacobi-Painlevé, 131, 522 ff., 999
in Routhian form, 1106
stability criterion (of Blekhman), 1062-1069
variants, 1239 ff .
Internal/external forces, 102-103, 108-109, 384 ff.
Interpretations of a proper orthogonal tensor, 178 ff .
Invariance
à la Noether, 1243 ff.
of Routh-Voss equations under frame of reference transformations, 451-452
under gauge transformations, 1246 ff .
under time translations/rigid spatial translations/infinitesimal rigid rotations, 1245-1246
Invariants
adiabatic, 1290-1305
in general, 262
integral, 1230-1243
of a second-order tensor, 82
of antisymmetric (or skew-symmetric) tensor, 83
Inverse matrix/tensor, 77
Ishlinsky, A. Iu., 254
Ishlinsky's problem, 254-255

J

Jacobi, C. G. J., 10, 413, 562, 923, 1180
Jacobi instability criterion, 941 ff .
Jacobi-Painlevé integral, 522 ff .
Jacobi-Poisson theorem, 1179-1180
Jacobi’s
(geodesic) form of principle of least action, 1001-1002, 1223-1224
variational equation (in sufficiency variational theory), 1057-1061
Jeans, 1294
Jeffreys, H., 982
Jerk vector, 127, 311, 884
Johnsen, L., 12, 306, 328, 817, 819, 825, 833
Jones, S. E., 14, 924, 935, 1250
Jouguet, E., 391
Joukowski, N., 1056
Jourdain, P. E. B., 11
Junkins, J. L., xvii, 14, 192, 1051
Juvet, G., 1294

K

Kalaba, R. E., 714, 924
Kampen, N. G. van, 458
Kane, T. R., 265, 281, 713 ff., 778, 882
Kauderer, H., 628, 1011, 1028, 1032, 1053
Kelvin, Lord, see Thomson, W.
Kepler's laws, 469
Kevorkian, J., 1303
Kil'chevskii, N. A., 317, 323, 382, 497, 1106
Killingbeck, J., 946, 947
Kilmister, C. W., xi, 101, 237, 248, 323, 718, $778,791,811,934,1099,1215,1237$
Kinematics
Lagrangean, 242-380
of a particle, 91 ff .
Kinetic
energy
absolute (in system variables), 511 ff .
conjugate (Legendre transformed), 1073
constrained, 424, 490-491
in relative motion (in system variables), 608-609
of a rigid body (of translation/rotation/ coupling, König's theorem, etc.), 215 ff., 225 ff., 582 ff.
focus (in sufficiency variational theory), 1058 ff .
/kinetostatic equations/kinetostatics, 422 ff., 426
potential (i.e., Lagrangean function), 1090

Kinetics

Lagrangean, 381-717
of a particle, 102-103
Kirchhoff, G. R., 3, 214, 368
Kirgetov, V. I., 645, 650
Kitzka, F., 13, 299, 860, 865
Klein, F., 11, 13, 299
Klein, M. J., 705
Kline, M., xi, 13
Klotter, K., 1055, 1130
Knife (or skate, or sled, or scissors, etc.) problem, 345 ff., 650 ff., 889-890, 954 ff .
Kochina, P., 12
Koiler, J., 323
Kolmogorov, A. N., xxiii, 1314
König's theorem, 225 ff . [eq. (1.17.3d)], 583
Korenev, G. V., xi, 14
Korteweg, D. J., 11, 264, 495
Koschmieder, L., 1011
Kosenko, I. I., 1041
Koshlyakov, V. N., 14
Kotkin, G. L., 1305
Kraft, F., 413, 415
Kramer, E. E., 13
Kronauer, R. E., 1015
Kronecker δ-symbol, 73, 1248
Krutkov, G., 705, 1298
Kurth, R., 941, 942
Kuypers, F., xi, 860, 865, 1249, 1284, 1303
Kuzmin, P. A., 1067
Kwatny, H. G., 555, 1249

L

Lagrange, J. L., xviii, 4, 5, 10, 214, 470, 1071, 1151-1152
Lagrangean
action, 992 ff., 994
coordinates, 271 ff .

Lagrangean (cont.)
function (or kinetic potential), 516
gyroscopic, 947
inertial terms
holonomic variables, 399
mixed (Lagrangean/canonical) forms, 1084 ff.
nonholonomic variables, 401 ff .
kinematics, 242-380
kinetics, 381-717
mechanics, 242 ff .
modified (or Routhian), 1090
multipliers (or parameters), 410 ff ., 418 ff .
physical significance of, 456-458
Lagrange's
bracket(s), 1145
central equation, 461 ff., 506-507, 832-833, 1219
equations
apparent indeterminacy of, 425 ff .
explicit forms, 537-563
of first kind, 411 ff .
of impulsive motion, 728 ff .
of second kind (i.e., of Routh-Voss), 419
principle (or Lagrange's form of d'Alembert's principle), 386 ff ., 835 ff.
as a constitutive postulate, 388 ff .
in impulsive motion, 722 ff., 728
with multipliers (Routh-Voss, etc.), 419-420
problem, 961
Lainé, E., 718, 736, 741
Lamb, H., x, 13, 219, 254, 283, 430, 446, 512, $536,562,626,712,739,805,811,813$, 948, 1082, 1126, 1128, 1129, 1145, 1229
Lamellar fields, 263
Lanczos, C., vii, x, xi, xv, 8, 13, 381, 458, 911, 919, 935, 1072
Landau, L. D., 446, 572, 578, 900, 941, 945, 1181, 1179, 1290, 1296, 1305
Langhaar, H. L., 263, 292, 512, 935, 1129
Langner, R., 71, 383
Laplace, P. S. de, 7
Larmor, J., 1224
Lasch, C., 9
Lawden, D. F., 470, 475
Laws of motion, 102-103, 107 ff.
Least action, principle of, 993
Ledoux, P., 626
Lefkowitz, M., 9
Legendre transformation, 1076-1077
Leimanis, E., 14, 225

Leipholz, H. H. E., 470
Leitinger, R., 877
Levi-Civita, T., 270, 323, 541, 975
Levinson, D. A., 281
Levit, S., 1056
Libration, 1251 ff .
Lichtenberg, A. L., 14, 571, 1072, 1263, 1273, 1290, 1314
Lie, S., 1164
Lieberman, M. A., 14, 571, 1072, 1263, 1273, 1290, 1314
Lifshitz, E. M., 900, 941, 945, 1179, 1181, 1290, 1296, 1305
Likins, P. W., 147, 193, 713
Lilov, L., 924
Limit cycle, 1047 ff.
Lindelöf, E., 11
Lindsay, R. B., 875, 911
Linear
momentum
of a rigid body, 222 ff .
of a system, 107
vibration theory, 435 ff ., 1018 ff .
Linearized equations
approximation of a nonlinear system, 545 ff.
steady motion specialization, 548 ff .
double pendulum, 434 ff .
Liouville (and Stäckel) systems, 578 ff ., 1211-1212
Liouville's theorem, 1183, 1236
Lipschitz, R., 528, 923
Lissajous figures, 1261, 1271-1272, 1274 ff., 1277 ff.
Lobas, L. G., 12, 14, 242, 368
Lodder, J. J., 458
Logan, J. D., 935, 1249
Loitsianskii, L. G., 13, 71, 149, 426, 718
Loney, S. L., 233
Lorenz, E., 571
Lorer, M., 924
Lovelock, D., 299, 935, 1237, 1246, 1249
Lur'e, A. I., x, xi, xvii, 12, 13, 14, 71, 170, $218,242,292,323,368,380,382$, $390,426,466,497,520,580,606,613$, 690, 715, 718, 935, 1011, 1029, 1030, $1056,1095,1161,1198,1212,1218$, 1315
Luttinger, J. M., 1043
Lützen, J., 933
Lyapounov (or Liapunov, or Liapounoff), A. M., 551

Lynn, J. W., 322
Lyttleton, R. A., 626

M

Mach, E., 12, 911
Mach's Denkökonomie, 90
MacMillan, W. D., x, 13, 232, 237, 446, 575, $689,705,715,911,1071,1180,1201$, 1205, 1219
Maggi, G. A., x, 11, 333, 404
Magnus, K., 14, 218, 225, 1055
Maißer, P., xi, 294, 317, 323, 333, 714, 1079
Malakhova, O. Z., 1063
Malvern, L. E., 85
Mander, J., xiv
Manifold(s), in Lagrangean kinematics, 292 ff .
Marcolongo, R., x, 71, 439, 704, 715
Margenau, H., 875, 911
Marris, A. E., 708
Marx, I., 323, 923
Mass
center, 104
motion of, 107
conservation, 107
density, 99
point (or particle), 98 ff .
Mathieu, E., 214
Matrix/tensor
antisymmetric (or skew-symmetric), 76
diagonal, 79
identity (or unit), 78
inertia, 216
inverse (or reciprocal), 77
notation, 87
of direction cosines, 84-85, 104 ff ., 178 ff .
of rotation, 162 ff .
product, 76 ff .
symmetric, 76
symplectic (or simplicial), 1186
trace of a, 77
transpose of a, 77
Mattioli, G. D., 536
Matzner, R. A., 1303
Maurer, L., 11, 972
Mavraganis, A. G., 225
Maxwell, J. C., 1085
Mayer, A., 1061
McCarthy, J. M., 14, 140
McCauley, J. L., xi, 8, 14, 318, 571, 572, 1072, 1263, 1273
McCuskey, S. W., 553, 1099, 1114
McKinley, J. M., 220
McLachlan, N. W., 1052, 1054
McLean, L., 13

Mechanics, analytical/celestial/chaotic/ Hamiltonian/Lagrangean/quantum/ synthetical/technical (engineering)/ variational/vako-nomic (variational axiomatic kind)/vectorial, 4 ff ., 8 ff .
Mei, F.-X., xvii, 13, 255, 323, 368, 382, 705, 817, 848, 850, 851, 854, 855, 857, 872, 875, 893, 894, 906, 907, 909, 983
Meirovitch, L., xi, 1067, 1249, 1322
Merkin, D. R., 14, 553, 1095, 1106, 1127, 1130, 1138, 1141
Method of
Galerkin, 1034 ff., 1039 ff.
Ritz, 1035 ff.
slowly varying parameters/averaging, 1047 ff., 1053 ff., 1240 ff.
small oscillation(s), 545 ff .
variation of constants (or parameters), 1048 ff., 1153 ff., 1212 ff., 1215-1218
Mićević, D., 892
Mikhailov, G. K., 1130
Milne, E. A., 13, 71, 254, 785, 791
Minimum
Gaussian constraint (or compulsion, i.e., Gauss' principle), 918-922
moments of inertia (extremum properties), 220 ff .
of the Hamiltonian action, 1055-1061
Mitropolskii (or Mitropolsky), Yu. A., 1029, 1055, 1158
Mittelstaedt, P., 8, 14, 1246
Modified (or cyclic) generalized energy, 1106
Moiseyev, N. N., 372
Moment(s)
of a force, 148
of inertia, 215 ff .
of momentum (or angular momentum)
absolute, 108 ff ., 223 ff ., 709 ff .
in relative motion, 609 ff .
resultant, 148
Momental (or associated) inertial force, 400
Momentum
angular/linear, 107-113, 222 ff., 709 ff .
in relative motion, 609 ff .
generalized (i.e., in system variables)
holonomic, 400
nonholonomic, 402
integrals, 573 ff ., 1097 ff .
of a rigid body, 222 ff ., 228 ff .
Monorail, 1135-1138
Mook, D. T., 443
Moreau, J. J., 264
Morgenstern, D., 323, 621
Morton, H. S., Jr., 192

Morton, W. B., 1305
Motion
constants of, 568
equations of
Hamiltonian, 1073 ff .
Lagrangean, 409 ff., 486 ff., 537 ff.
gyroscopic (cyclic systems), 540 ff ., 1097 ff .
impulsive, 718-816
periodic, 1250 ff .
multiply (or conditionally, or quasi-), 1260 ff ., 1267-1268, 1269 ff ., 1287 ff .
plane, $140,150 \mathrm{ff}$.
relative, 120 ff ., 533 ff ., 606-636
rigid body, 138 ff .
rolling, 153 ff
steady, 548 ff., 1115 ff., 1122
Moving axes theorem(s), 86-87, 113 ff .
Moving coordinate system (axes), 113 ff .
Mukunda, N., 8, 1250
Müller, C. H., 12, 446
Müller, P. C., 553
Multiplier rule/multipliers of Lagrange, 410 ff ., 418 ff .
physical significance of, 456-458
Multiply (or conditionally, or quasi-)
periodic motion, 1260 ff ., 1267-1268, 1269 ff., 1287 ff.
Murnaghan, F. D., 138, 170
Musa, S. A., 1015

N

Nadile, A., 536
Natural frequencies, 435 ff .
stationarity/extremum characterization of (Rayleigh's principle), 1018 ff .
Nayfeh, A. H., 443, 1216
Neimark, Ju. I., viii, x, xi, 7, 12, 13, 14, 242, 255, 265, 315, 323, 382, 497 ff., 505, $688,689,714,715,817,904,935$
Neumann, C., 11, 245, 497, 706
Nevanlina, R., 106
Nevzgliadov, V. G., 1004
Newton-Euler mechanics, 4 ff., 101 ff .
equations/laws, 102 ff ., 107 ff .
Newtonian (or inertial, or fixed) frame of reference, 90
Newton's
law of gravitation, 1248
law (or rule) of impact (coefficient of restitution), 726
Nielsen, J., 13, 881, 883
Nielsen's equations, 881 ff .

Nikitina, N. V., 503
Nodal line (or axis of nodes), 194 (fig. 1.26) ff.

Noether, E., 1243, 1249
Noether's theorem, 1243-1250
Noll, W., 244
Noncommutativity (or transitivity, or transpositional) relations
for a rigid body, 368 ff ., 374 ff .
linear (Pfaffian), 312 ff .
nonlinear, 825 ff .
Noncontemporaneous (or skew) variation, 937 ff.
Nonholonomic
constraints, 246, 257 ff., 818 ff.
coordinates (or quasi coordinates)
linear (or Pfaffian), 305 ff .
nonlinear, 819 ff .
correction/deviation term(s), 402, 824, 838
Noninertial (or moving, or non-Newtonian) frame of reference, 113 ff .
Nonintegrability conditions/relations
holonomic variables, 280
nonholonomic variables
linear (Pfaffian), 290, 310-311, 319-320
nonlinear, 824 ff ., 827-828
Nordheim, L., x, 13, 14, 323, 382, 397, 877, 923, 1072, 1198
Normal
mode theory (linear nongyroscopic vibrations), 435 ff .
stationary/extremum properties via Rayleigh's principle, 1018 ff .
vector, to a curve, $92,125 \mathrm{ff}$.
Notations, formulae, 15-70
Novoselov, V. S., xi, 12, 14, 99, 242, 817, 848, 935
Numbering of equations, examples, and problems, 14
Nutation, angle of, 194-195 (fig. 1.26)

O

Ol'khovskii, I. I., 1304
Operator
differential, 89
Euler-Lagrange, 280, 311
Oravas, G. E., 12
Orbit(s)/trajectory (-ies), 293 ff ., 962 ff .
Orientation (or attitude), angles, 139, 192 ff.
Orthogonal
axes/basis, 72 ff.
curvilinear coordinates, 94 ff .
matrix/tensor, 83 ff .
transformation (proper or improper), 84 ff .
Orthogonality, of eigenvectors, 81 ff .
Oscillation(s)
direct variational methods, 1034 ff . energy-frequency relation, 1256 ff ., 1265 ff .
Oscillator
adiabatic, 1301 ff .
Duffing, 945, 1030 ff., 1037 ff., 1043, 1046, 1051 ff., 1054, 1215-1216
forced, 1153 ff .
harmonic/linear, 553, 1171 ff., 1202 ff., 1208-1209, 1258 ff ., 1276 ff .
natural frequency (-ies) of, 1288
nonlinear, 1028 ff., 1047 ff., 1288-1289, 1316 ff .
Rayleigh, 1029
van der Pol, 946, 1026, 1032 ff., 1040-1041, 1052 ff .
Osculating plane, 92 (fig. 1.1)
Osgood, W. F., 13, 411, 475
Ostrogradsky, M., 1071
Ostwald, W., 929
Otterbein, S., 1097
Overtones and combination tones, 1288-1289

P

Pair of (rolling) wheels, 365 ff., 693 ff., 778 ff .
Panovko, J. G., 718, 1029
Papastavridis, J. G., xii, 6, 13, 72, 96, 170, $225,242,266,282,292,294,313,314$, $316,317,322,323,345,379,541,605$, 783, 935, 941, 945, 993, 1009, 1010, 1011, 1012, 1015, 1016, 1028, 1039, 1061, 1069, 1290
Parallel axis theorem(s), 217-218
Parameters of Euler-Rodrigues, 161
Park, D., xi, 458
Parkus, H., 13, 71
Pars, L. A., x, 13, 14, 129, 149, 197, 233, 247, $265,382,385,386,408,520,580,628$, $689,724,755,791,811,816,935,1029$, $1067,1105,1198,1262,1273$
Pars' "insidious fallacy," 520, 527 ff.
Partial accelerations/jerks/positions/ velocities, 311, 715
Particle [or material (or mass) point], 98 ff .
Parton, V. Z., 1130
Pascal, E., 299, 343
Päsler, M., 14, 323
Pastori, M., 536

Path in configuration space, 292 ff .
Pavlova, A., xxiii
Peisakh, E. E., 1011, 1061
Pendulum
adiabatic, 1013 ff .
double/physical, 430 ff ., 437 ff., 1280-1281
elastic, 440 ff .
nonlinear, 440 ff ., 1030, 1046, 1314-1315
plane and simple (or mathematical), 393, 471 ff .
rotating, 628
servo-, 644 ff .
spherical, 445 ff., 1083
varying length, 430
gyroscopic effects, 634
Percival, I. C., 1290, 1303
Pérès, J., x, xi, 14, 237, 264, 688, 696, 701, 715
Period (/frequency) of oscillation, relation to energy, 1256 ff ., 1265 ff .
Periodic motion, 1250-1289
Permutation ε-symbol (of Levi-Civita), 73-74
Perturbation, canonical, in action-angle variables, 1305-1322
method/equations of, 1147 ff .
one DOF, 1306 ff .
several DOF, 1310 ff .
Perturbed motion, 1148 ff .
Pfaffian, differential form/equation, 257 ff ., 265 ff., 287-288, 296 ff .
Pfeiffer, F., 14, 443, 553
Pfister, F., 562, 923
Phase
angle, 1258, 1266, 1288
space, 1071, 1074
Physical significance of Lagrangean multipliers, 456-458
Pitch, of a dyname (or wrench), 148
Planar (or plane)
displacement/motion, 140-141, 149 ff .
pendulum, 393
double, 430 ff .
elastic, 440 ff .
Planck, M., xiv, 383, 934, 1296
Planes, osculating/rectifying/normal, 92 (fig. 1.1)
Platrier, C., 715
Plumpton, C., 785, 788, 1023, 1142
Poincaré, H. J., 11, 312, 545, 551, 1314
Point mass (or particle), 98 ff .
Point transformation, 1162
Poisson, S. D., 1071
Poisson bracket, 1151

Poisson theorem (in rigid-body kinematics), 144
Poisson-Jacobi
identity, 1178-1179
theorem, 1179-1180
Polak, L. S., 13, 935, 1013, 1290
Poliahov, N. N., 12, 13, 333, 382, 398
Pollard, H., 941, 1067
Pöschl, T., 446, 718, 813, 1305
Possible (or admissible) acceleration/ displacement, etc., $278 \mathrm{ff} ., 307 \mathrm{ff}$.
Possible (or admissible) and virtual displacement(s), 280 ff .
Potential
centrifugal, 616, 620, 625
energy, 515 ff
force, 516 ff .
kinetic (or Lagrangean), 516
of constraint reactions, 516
reduced, 1127
relative, 534, 625
Schering, 620
velocity-dependent (or generalized), 453-454, 516 ff.
Poterasu, V. F., 164
Power theorem(s)
in cyclic systems, 1105-1106
in relative motion, 129 ff ., 635-636
for a rigid body, 231-232
mechanical, 520 ff., 549, 627, 635-636
thermal (first law of thermodynamics), 1296
Prange, G., x, xi, 12, 14, 242, 294, 323, 333, 382, 446, 505, 935, 1072, 1198, 1237
Precession, angle of, 194-195 (fig. 1.26)
Primitive concepts of mechanics, 102
Principal
axes/moments of inertia, 81 ff ., 216 ff .
(or normal) coordinates/mode(s) of oscillation, 435 ff .
radius of curvature, 92 (fig. 1.1), 125 ff .
Principle(s) [or axiom(s)] of
action/reaction, 108-109
angular momentum, 107 ff ., 109 ff ., 228 ff ., 392
correspondence (of N. Bohr), 1289
cut (i.e., method of free-body diagram), 392
d’Alembert (/Jacob Bernoulli et al.), 392
determinism, 570-571, 1188
Förster (differential variational), 928 ff .
Fourier (for irreversible virtual displacements), 604
Galilean relativity, 106, 455

Gauss [of least constraint (or compulsion)], 884-885, 911-930
Gray-Karl-Novikov ("reciprocal" variational of Hamilton, etc.), 1044 ff .
Hamilton (of stationary action), 937, 938, 991, $992,1221 \mathrm{ff}$.
Hertz (of least curvature, or of straightest path), 930-933
Hölder (of stationary action under nonholonomic constraints), 981-982, 1006-1007
Jacobi (of stationary action, in "geodesic" form), 1224
Jourdain (differential variational), 781-782, 877 ff.
Lagrange (or Lagrange's form of d'Alembert's principle), 386, 637, 835 ff.
in impulsive motion, 722 ff., 728
least action (MEL), 993 ff .
linear momentum, 107, 392
in impulsive motion, 722
Mangeron-Deleanu (generalization of Lagrange's principle), 877
Maupertuis-Euler-Lagrange (MEL), 993 ff., 1223
Rayleigh (in linear, undamped, nongyroscopic vibrations), 1018 ff .
relaxation of the constraints (Hamel's Befreiungsprinzip), 398-399, 469 ff.
in impulsive motion, 732-733
rigidification, 392
Ritz (of combination of frequencies of atomic spectra), 1274
Suslov, Voronets et al. (of stationary action under nonholonomic constraints), 974 ff., 977, 979, 981-982
varied (or varying) action, 937, 959, 992 ff., 1222
virtual work(s) (in statics), 394-397, 604
Voss, 997
Whittaker, 1009 ff.
Principles of classical mechanics (Newton-Euler), 106 ff .
Problem of
Lagrange, 961
Liouville-Stäckel, 578 ff., 1211-1212
N-bodies, 1248-1249
two-body, 1148
Product(s) of inertia, 216 ff .
Projection operator, 160
Projections vs. components of vectors (nonorthogonal axes), 598-602

Proper (or intrinsic) Eulerian angle of rotation (or eigen spin), 194-195 (fig. 1.26)

Przeborski, A., 837
Pure rolling, 153-154

Q

Quadratures, 571
Quanjel, J., 495
Quantum mechanics, 1273-1274
Quasi chain rule, 308 ff .
Quasi coordinates, 212 ff ., 301 ff . particle kinematics, 307 ff .
Quasi-linear system, 1028 ff., 1047 ff., 1063 ff., 1157 ff., 1240
Quasi- (or conditionally, or multiply) periodic motion, 1260 ff ., 1267-1268, 1269 ff., 1287 ff.

R

Radetsky, P., 713
Radius (-i) of curvature, 91 ff ., 125 ff .
Raher, W., 778
Rajan, M., 1051
Ramsey, A. S., x, 233, 458, 766, 785, 791, 811, 904, 1023
Rasband, S. N., 265
Rational (or theoretical) mechanics, 5 ff .
Rayleigh, Lord (J. W. Strutt), 811, 813, 1017, 1021, 1082
Rayleigh
dissipation function, 519-520, 549-550
pendulum, 1016 ff .
principle, 1018 ff .
quotient, 1022 ff .
Reaction
forces (/moments) of constraints, 382 ff . law of Action and, 108-109
Rectifying plane, 92 (fig. 1.1)
Reduced (cyclic) system, 1104
Reduction of a vector system (to a torsor), 148
Reeve, J. E., 101, 237, 248, 718, 778, 785, 811
Reference frame
astronomical, 90, 104 ff .
inertial (or fixed, or Newtonian), 104 ff .
noninertial (or moving), 113 ff .
rotating, 113 ff .
Relative
acceleration, 121
motion, 120 ff., 37
Lagrangean treatment, 533 ff., 606-636 velocity, 120
Relativity, principle of Galilean, 106, 455
Relaxation of constraints (Lagrange-Hamel Befreiungsprinzip), 398-399, 469 ff., 732-733
Renteln, M. von, 11
Resonance curve, 1038-1039
Restitution, coefficient of, 725, 726
Resultant of a vector system (torsor), 148
Reuter, M., 14, 1273, 1305, 1314, 1321
Rheonomic (or nonstationary)/scleronomic (or stationary) constraints, 247
Richards, D., 1290, 1303
Richardson, D. L., 138
Riemannian manifold(s)/space(s), 269, 292
Rigid body
acceleration, 149
Appellian (or Gibbs-Appell) function, 594-597
collisions, 725 ff., 733 ff .
contact
kinematics, 153 ff.
kinetics (friction, etc.), 237 ff .
degrees of freedom, 139 ff .
displacement, 140 ff .
equations in matrix form, 233-234
equilibrium conditions, 602 ff .
Eulerian equations, 229 ff., 604-605
general displacement/motion, 177 ff .
geometry of motion/kinematics, 140 ff .
Hamel-type equations, 610 ff .
inertia tensor, 215 ff .
kinematico-inertial identities
Appellian, 594-597
Lagrangean-Eulerian, 581-594
kinematics, 140 ff .
kinetic energy, 214-215, 225 ff .
kinetics (Newton-Euler), 228 ff .
Lagrange-type equations, 614 ff .
momentum (linear/angular), 228 ff .
power theorem, 231-232
quasi coordinates, 212 ff .
transformation matrices/angular velocity components, for all Eulerian angle sequences, 205-212
transitivity equations, 212 ff ., 368 ff ., 374 ff.
velocity, 144 ff .
virtual work, 597-606
Rimrott, F. P. J., 935
Roberson, R. E., viii, xiii, 14, 264, 265, 1323
Robin's theorem on impulsive motion, 791 ff .

Rodrigues

formula for finite rotation, 157 ff .
parameters, 156
vector, 157
Rolling, of a coin (or disk), 235 ff ., 351 ff ., 359 ff., 680 ff., 986 ff .
Rose, N. V., x, 14, 323, 704
Roseau, M., 622
Rosenberg, R. M., ix, xi, 13, 129, 363, 386, $411,689,696,724,791,972,983,1076$
Rotating
reference frame, 113 ff ., 622 ff .
ring, 1138-1140
shaft, 554-558
Rotation(s)
about a fixed axis (centrifugal forces/ moments), 221-222, 225
composition (or resultant) of, 168 ff .
finite, about a fixed point, 155 ff ., 224-225
in periodic motion, 1252
infinitesimal (small), 171 ff .
instantaneous axis of, 144
matrix of, 161 ff .
successive, 168 ff ., 182 ff .
tensor, 161 ff .
Rotational motion of a rigid body, 140 ff ., 155 ff.
Roth, B., 140
Routh, E. J., x, 10, 11, 233, 417, 495, 552, $548,688,704,713,715,718,814,1012$, 1056, 1057, 1087, 1095, 1114, 1122, 1127, 1237
Routh-Hurwitz criterion, 552 ff.
Routh-Voss equations (i.e., Lagrange's equations with multipliers), 419, 730, 836
for a rigid body, 605
Routhian
analytical structure of, 1093 ff .
matrix form of, 1096-1097
function (or modified Lagrangean), 1090 ff., 1098 ff.
identities, 1089-1090, 1092-1093
Routh's
equations, 1089 ff .
method of ignoration of coordinates, 1087 ff.
problems (in mechanical theory of heat), 1012
Roy, M., 659, 720, 724
Rule of Schieldrop-Nielsen, 882 ff.
Rumiantsev, V. V., 12, 372, 385, 975, 983, 988
Rund, H., 299, 935, 1189, 1237, 1246, 1249

Rusov, L., 892
Rutherford, D. E., 355

S

Saint-Germain, A. L. de, 403
Saletan, E. J., 8, 572, 1249, 1298, 1305, 1322
San, D., 855, 874
Santilli, R. M., 14, 1057
Scalar
invariants of a second-order tensor, 82
product, 73, 76 ff .
Schaefer, C., 715, 1294
Schaefer, H., xv, 323, 715, 882
Scheffler, H., 923
Schell, W., 439
Schering potential, 620
Schiehlen, W. O., 14, 714
Schieldrop, E., 883
Schild, A., 783
Schmutzer, E., 1249
Schönflies, A., 127, 140
Schouten, J. A., 246, 294, 306, 312, 317, 322, 323, 421, 505
Schräpel, H. D., 1044
Schwartz, B., xii, xxiii
Schwarzschild, K., 1258
Schwertassek, R., viii, xiii, 14, 264, 265, 1323
Scleronomic (/rheonomic) constraints, 247
Screw, axis/displacement/motion, 143, 147 ff.
Second variation of (Hamiltonian) action, 1056-1061
Secular (or characteristic) equation, 550, 1018, 1123, 1124
Segner, J., 222
Semenova, L. N., 868, 870
Separable system, 1197 ff .
Separation of variables/separability, Hamilton-Jacobi equation, 1197 ff .
Serbo, V. G., 1305
Serret-Frenet (or Frenet-Serret) formulae, 125 ff.
Serrin, J., 470
Shabana, A. A., 14, 265
Shepley, L. C., 1303
Shuster, M. D., 155
Simonyi, K., 12, 1274
Simply (or singly) periodic motion, 1271 ff ., 1288 ff.
Skate (or knife, or narrow boat, or pizza cutter, or razor blade, or sled) problem, 345 ff., 650 ff., 889-890, 954 ff.

Skew- (or anti-) symmetric tensor, 76 ff .
Sleeping top, 1112-1113
stability of, 1114-1115, 1141
Small
(or resonant) denominators (or divisors), $444,1310,1313-1314$
oscillation(s) method, 545 ff .
Smart, E. H., x, 718, 766, 773, 785, 811, 813, 1023, 1114
Smilansky, U., 1056
Smith, C. E., 13
Sneddon, I. N., 263
Sokolnikoff, I. S., 269, 783
Sommerfeld, A., 8, 13, 264, 383, 911, 1262
Somoff, J., 279
Space
axioms, 89-90
configuration, 291 ff . constrained, 293 ff.
Euclidean, 292
event, 293
extended, 293
homogeneous/isotropic, 89, 577
phase, 1071, 1074
Riemannian, 292
Speed, 91, 95
angular, 173
Sphere, 353 ff., 648 ff., 658 ff., 988 ff.
Spherical
coordinates, 95, 97
pendulum, 445 ff ., 1083
Spiegel, M. R., vii, 13, 219, 633
Spin
proper (or intrinsic) Eulerian angle of rotation (or eigen spin), 194-195 (fig. 1.26)
total, 634, 1108, 1118
Spring, linear/nonlinear, 440 ff., 1288
Stability
asymptotic (Lyapounov's theorems), 550 ff ., 1067, 1123 ff .
gyroscopic (in steady motion), 1122 ff .
integral criterion of, 1062-1069
linear(-ized)/nonlinear, 550 ff .
of steady motion, 447-448, 550 ff ., 1119-1142
of (steady precession, etc., of) top, 1109, 1114-1115, 1140 ff.
ordinary (or temporary, or dynamical) vs. practical (or permanent, or secular), 1127 ff.
Stäckel, P., 7, 13, 225, 231, 385, 683, 791, 923, 1258

Stäckel
conditions, 1198
form of Hamiltonian, 1198
Stadler, W., xvii
Steady (or stationary)
motion, 548 ff., 1115 ff., 1122
stability of, 447 ff ., 550 ff ., 1119-1142
precession of top, 1118
stability of, 1140 ff .
Stehle, P., 14, 323, 446, 527, 537, 941, 1079
Stepanovskii, Yu. P., 14, 1018, 1290
Stephan, W., 323, 1041
Stieltjes integral, 101, 103
Stoker, J. J., 1053, 1314
Stoneking, C. E., 708
Straumann, N., 14, 1322
Struik, D. J., 13, 312
Stückler, B., xv, 242, 323, 368, 421
Sturm-Liouville form (of Jacobi’s variational equation), 1058
Sturm's theorem on impulsive motion, 788
Sudarshan, E. C. G., 1250
Suggestions to reader for background, concurrent, and further reading, 13-14
Summary of formulae, notations, etc., 15-70
Summation convention (for Cartesian vectors and tensors), 73
Superposition
integral (of Duhamel), 1064
of linear vibrations (theorem of Daniel Bernoulli), 1022
Suslov, G. K., x, 11, 13, 341, 590, 718, 975
Symbol(s) of
Christoffel
of first kind, 538 ff., 543 ff ., 929
of second kind, 540 ff .
Hamel (or coefficients of)
linear (Pfaffian), 313 ff ., 321 ff ., 342-343
nonlinear, 824
Symmetric, matrix/tensor, 76
Symplectic matrix, 1187
Synge, J. L., x, 6, 13, 14, 71, 72, 221, 242, 312, $317,322,333,337,382,562,775,783$, 1021, 1070, 1129
System
acatastatic/catastatic, 247, 249
closed/open, 572 ff .
conservative/nonconservative, 520 ff .
coordinates (or positional parameters), 271 ff .
holonomic/nonholonomic, 245
nonseparable, 1273

System (cont.)

of Liouville, Stäckel et al., 578-580
quasi coordinates, 304 ff .
reduced (or apparent, or palpable, or visible), 1102
rheonomic (or nonstationary)/scleronomic (or stationary), 247
separable, 1197 ff., 1260 ff .
System of coordinates (orthogonal curvilinear), 94 ff .
Szabó, I., 12, 101, 323, 440, 446, 621

T

Tabarrok, B., 935
Tabor, M., 14, 571, 1072, 1087, 1199, 1263, 1273, 1305, 1314
Tait, P. G., x, 10, 106, 271, 272, 381, 439, 539, $788,1056,1070,1129,1134,1148$ ff.
Tangent vector, to a curve, 91 ff . (fig. 1.1), 94-95, 125 ff.
Tarleton, F. A., 1013
Taylor's theorem on impulsive motion, 790-791

Tchapligine, S. A., or Tchaplygine, S. A., see Chaplygin, S. A.
Tetherball, 860 ff .
Tensor
algebra, 75 ff .
alternating (Levi-Civita ε-symbol), 73
antisymmetric (or skew-symmetric), 76 ff .
Cartesian, 75
eigenvalues/eigenvectors of a, 81 ff .
notations, 87
orthogonal (proper), 84 ff .
active/passive interpretations of a, 178 ff
symmetric, 76 ff .
transformation, 84 ff .
unit (or identity), 78
zero, 78
Tensor of
angular momentum, 234
angular velocity, 234
inertia, 215 ff .
moment, 234
(finite) rotation, 161 ff .
second order (or dyadic), Cartesian, 75 ff .
Test of canonicity of a transformation, 1164 ff., 1180 ff.
Theorem(s) of
Bertrand (and Delaunay), 788 ff .
Carnot, 785 ff .
Chasles (geometry of rigid motion), 143
cyclic power, 1105 ff .
Dirichlet, 1126, 1128, 1268
Ehrenfest, 1296
energy rate (or power), 520 ff ., 670-674
in relative motion, $129 \mathrm{ff} ., 623,627,631$, 635-636
equipartition, 941, 948, 1012, 1065
Euler (geometry of rigid motion), 141
extremum in impulsive motion, 784 ff ., 794
Frobenius, 298 ff., 335 ff.
Gauss, 793 ff ., 815 ff .
Hamilton-Jacobi, 1192-1218
Huygens-Steiner (generalized parallel axis theorem), 217-218
Jacobi, 1193 ff.
Kelvin, 787-788
König, 225 ff. [eq. (1.17.3d)], 583
Lagrange-Jacobi, 941
Lagrange-Poisson, 1143 ff.
Liouville, 1211-1212, 1236
mechanical transformability, 1298
moving axes, 86-87, 113 ff .
Mozzi (rigid-body kinematics), 145 ff.
Noether, 1243-1250
Poisson-Jacobi, 1179-1180
Robin, 791 ff.
spectral decomposition (of second-order tensors), 81 ff .
Stokes (-Kelvin), 1234, 1240
Taylor, 790-791
Vinti, 1268-1269, 1296-1297
virial, 939 ff .
work-energy in impulsive motion, 720
Thermodynamics, first law of, 1296
Thomas, R. B., Jr., 1043
Thomson, J. J., 7, 1018
Thomson, W. (Lord Kelvin), x, 7, 10, 106, 271, 272, 381, 439, 539, 635, 788, 1056, 1070, 1103, 1129, 1134
Time
absolute (and homogeneous), 89-90, 104 ff., 575
as canonical variable conjugate to energy, 1075-1076, 1165 ff.
as $(n+1)$ th Lagrangean coordinate, 535-537
-dependent potential, 515 ff .
-derivative(s), 113 ff.
Timerding, H. E., 14, 140, 155
Timoshenko, S. P., 439, 440, 766
Tiolina, I. A., 12
Tomonaga, S.-I., 1018
Top (gyroscope)
Hamilton-Jacobi equation, 1204 ff.

Hamiltonian and Routhian treatments, 1107 ff .
heavy symmetrical, 1107 ff .
sleeping, 1109, 1112-1113
stability of, 1109, 1114-1115, 1141
stability of, 1109
steady precession of, 1140-1142
Torsor (or dyname), of a vector system, 148
Toupin, R., 103, 192, 244, 269, 924
Trace, of a matrix, 77
Transformation
canonical, 1161 ff .
contact, 1190
coordinate (geometrical) vs. frame of reference (kinematical/physical), 87 ff .
Galilean, 104 ff.
infinitesimal (canonical), 1188 ff .
Legendre, 1076-1077
matrices (all possible Eulerian sequences), 205-212
orthogonal, 83 ff .
orthonormal, 84
point, 116
proper orthogonal, 84
Transfer theorem for angular momentum, 109 ff.
Transitivity (or noncommutativity, or transpositional) relations
for a rigid body, 368 ff ., 374 ff .
linear (Pfaffian), 312 ff.
nonlinear, 825 ff .
Translation, of a body, 141, 143, 177 ff .
Transposed matrix, 77
Triple vector product, scalar/vector, 74
Truesdell, C. A., xiii, xiv, xviii, xxiii, 7, 13, $101,103,192,242,244,269,817,924$
Tsenov (or Tzénoff), I. V., 886
Turner, J. D., 14, 192

\mathbf{U}

Udwadia, F. E., 714, 924
Unilateral (or inequality, or irreversible)/ bilateral (or equality, or reversible) constraint(s), 248-249, 388, 410, 484 ff., 604
Uniqueness of Lagrangean, 452 ff., 1246 ff. Unit
dyadic/matrix/tensor, 78
vector(s), binormal/normal/tangent, 91, 92 (fig. 1.1), 125 ff .
Unstable vs. stable, state of motion, 550 ff .

V

Vagner, V. V., 312, 313
Valeev, K. G., 1063
Variables, action-angle, 1254 ff .
Variation
admissible/possible/virtual, 280 ff ., 290-291, 936 ff.
contemporaneous (or vertical), 936 ff .
Lagrangean action, 1056 ff .
noncontemporaneous (or skew), 937-938, 991 ff .
of constants (or parameters), 1143-1161, 1212 ff .
theorem of Lagrange-Poisson, 1143 ff ., 1145
of kinetic energy, 528-529, 937, 950, 959, 972 ff., 976 ff., 979 ff.
of potential energy/work, 515 ff ., 528-529
Variational
calculus and mechanics, 960 ff .
equations
of Jacobi, 1057 ff .
of Poincaré, 1066
methods in oscillations, 1034 ff .
principles
differential, 875-933
integral, 960 ff ., 990, 1007, 1221 ff . for cyclic systems, 1224-1225
theorems for gyroscopic systems, 947-948
Vector (s)
algebra, 72 ff .
axial/polar, 79 ff ., 84 ff .
bound/free, etc., 72
cross (or vector) product of, 74
Darboux (of angular velocity of Frenet-Serret triad), 126
dot (or scalar) product of, 73
of second-order (antisymmetric) tensor, 79 ff.
tensor product of, 74 ff .
unit, 72 ff.
Velocity
absolute/relative/transport, 120 ff .
angular, 114
-dependent (or generalized) potential, 453-454, 516 ff .
in orthogonal curvilinear coordinates, 94 ff .
in a rigid body, 144 ff .
in system variables
holonomic (or Lagrangean, or generalized), 278 ff .

Velocity (cont.)
nonholonomic (or quasi variables), 306 ff.
initial (in initial conditions), 566 ff . instantaneous center of zero, 150 ff . linear (of a particle), 91 ff .
relative (of a particle), 120
Vesselovskii, I. N., 12
Vibration pressure (in adiabatic pendulum), 1016
Vibrations (or oscillations)
about (absolute) equilibrium, 429 ff . stationary/extremum properties via Rayleigh's principle, 1018 ff .
about steady motion (or relative equilibrium), 548 ff ., 1122 ff .
Vierkandt, A., 11
Vinti, J. P., 1268
Virial (of a force system), 939 ff .
Virtual
change of kinetic energy, 528-529, 937, 950, $959,972 \mathrm{ff}$., 976 ff ., 979 ff.
displacement
particle form, 280 ff., 290-291, 304, 821 ff.
system form, 708 ff ., 820-821
velocity, 512
work(s), 386
in impulsive motion, 722, 723
of a force, 386 ff ., 405 ff ., 597 ff .
of a gyroscopic force, 518
of inertial forces, 399 ff .
principle of (in statics), 394-397, 604
Volkmann, P., 911
Volterra, V., 11, 313, 404, 419, 706 ff.
Voronets, P., 11, 974
Voronets coefficients, 339
Voss, A., 13, 413, 417, 704, 715, 972
Vranceanu, G., 312, 317, 322, 323, 333, 337
Vujanovic, B., 14, 924, 935, 1099, 1250

W

Walecka, J. D., 451
Walton, W., 416

Wang, C. C., 323
Wang, J. T., 882
Wassmuth, A., 923
Watson, H. W., 1057, 1085
Webster, A. G., x, 3, 232, 316, 385, 446, 689, 1090
Weinstein, B., 1085
Wells, D., 13, 228, 1142
Weyl, H., 101
Wheeler, L. P., 13
Whittaker, E. T., x, 6, 14, 305, 323, 408, 562, 570, 575, 578, 580, 713, 815, 928, 1057, $1072,1114,1173,1189,1212,1236$, 1263
Wiechert, E., 934
Williamson, B., 1013
Winkelmann, M., x, xv, 14, 72, 230, 232, 323, 590, 635, 689, 1072, 1073, 1095, 1127
Winner, L., x
Wintner, A., 8, 13, 1263
Wittenburg, J., 14
Woodhouse, N. M. J., xi, 411
Work
admissible/possible vs. virtual, 388 ff .
of forces, 388 ff .
rate of, 520 ff .
virtual, 386 ff., 405-409, 597 ff.
Woronetz, P., see Voronets, P.
Wrench (of a force system; or screw, of a velocity field), 148

Y

Young, D. H., 439, 440, 766
Yushkov, M. P., xvii

Z

Zegzhda, S. A., xvii
Zhuravlev, V. F., 486
Ziegler, H., 426, 528, 558, 1129, 1130
Ziegler, R., 13

[^0]: [There are] three items of religious worship inside present-day science, the third of which is experiment. [I]n the main the role of experiment constitutes a harmless myth in the philosophy of scientists. The myth considers experiment to be a generator of theories. In fact the role of experiment ... is solely to decide between two or more existing theories ... Experiment does not generate theories but rather is suggested by them. [As quoted in Truesdell (1987, p. 83). And, in a similar vein, Einstein declares: "Experiment never responds with a 'yes' to theory. At best, it says 'maybe' and, most frequently, simply 'no.' When it agrees with theory, this means 'maybe' and, if it does not, the verdict is 'no.'"]

[^1]: Variational (e.g., Lanczos, Rund).
 Vako-nomic (=Variational Axiomatic Kind; e.g., Arnold, Kozlov).
 Algebraic ($=$ infinitesimal and finite canonical transformations, Lie algebras and groups, symmetries and conservation theorems; e.g., McCauley, Mittelstaedt, Saletan and Cromer, Sudarshan and Mukunda).
 Nonlinear dynamics (= regular and stochastic/chaotic motion; e.g., Gabor, Guggenheimer and Holmes, Lichtenberg and Lieberman, McCauley).

 Geometrical ($=$ symplectic geometry, canonical structure; e.g., Arnold, Abraham and Marsden, MacLane).
 Statistical and thermodynamical (= Liouville's theorem, equilibrium and nonequilibrium statistical mechanics, irreversible processes, entropy, etc.; e.g., Gibbs, Katz, Fürth, Sommerfeld, Tolman).
 Many-body and celestial mechanics (= orbits and their stability, many-body problem; e.g., Charlier, Hagihara, Happel, Siegel and Moser, Szebehely, Wintner).

[^2]: Note: In matrix notation, the product dot is, frequently, omitted.

[^3]: Newton-Euler (or momentum) mechanics:
 Internal: originating wholly from within the system; in pairs. They depend on the spatial limits of the system.

[^4]: * See also Hunt (1974).

[^5]: Appell [1899(a), (b); 1900(a), (b); 1925; 1953, pp. 388-395, eqs. (3.A2.6). Leisurely component presentation]

