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To the living and loving memory of my father,

GEORGE S. PAPASTAVRIDIS
(!E:P!IOY D. &A&ADTAYPI"H)

A lawyer and fearless maverick, who, throughout
his life, fought with fortitude, conviction, and class

to better his world;
and to whom I owe a critical part of my Weltanschauung.

[The author’s father is shown here in the traditional Greek foustanélla,
in Athens, Greece (Themistokléous street, near Lófos Stréfi), ca.1924]



PREFACE TO THE CORRECTED REPRINT

This is a corrected reprint of a work first published in early 2002, by Oxford University
Press, and which went out of print shortly thereafter.

A few sign misprints and similar errors have been corrected; some notations have been,
hopefully, improved (especially in Chs. 1, 2); a useful addition has been made on p. 336,
and a couple of sections have been thoroughly revised (e.g. §3.12, §8.13).

I am grateful to (a) the many reviewers, in some of the most prestigious professional
journals and elsewhere (e.g. Bulletin of the American Mathematical Society, IEEE Control
Systems Magazine, Zentralblatt für Mathematik; amazon.com and amazon.co.uk, private
communications, and references in advanced works of mechanics), for their enthusiastic
comments; (b) the American Association of Publishers for selecting, in January 2003, the
book for their “Annual Award for Outstanding Professional and Scholarly Titles of 2002,
in Engineering”; and (c) last but not least, my WSPC editor, Dr. S. W. Lim, and his most
capable and courteous staff, for their continuous and effective support. All these have been
of essential moral and practical help to me in the making of this “new” edition!

Here, I take the opportunity to restate that, in this book, I have:

(a) Sought to combine the best of the old and new, i.e. no age discrimination; no knee-jerk
disdain for “dusty old stuff” nor automatic following of “progress/modernity” — even
in the exact sciences, and especially in mechanics, new is not necessarily or uniformly
better; and

(b) Avoided developments of considerable but nevertheless purely mathematical interest,
especially those of the a-historical and intuition-deadening (“epsilonic”) type.

May this treatise, as well as my other two works on mechanics [“Tensor Calculus
and Analytical Dynamics” (CRC, 1999) and “Elementary Mechanics” (WSPC, under
production)], keep making many and loyal readers!

John G. Papastavridis
Atlanta, Georgia, Spring 2014



PREFACE

Many of the scientific treatises today are formulated in a half-

mystical language, as though to impress the reader with the

uncomfortable feeling that he is in the permanent presence of a

superman. The present book is conceived in a humble spirit and

is written for humble people.

(Lanczos, 1970, pp. vii–viii)

GENERAL DESCRIPTION

This book is a classical and detailed introduction to advanced analytical mechanics
(AM), with special emphasis on its basic principles and equations of motion, as they
apply to the most general constrained mechanical systems with a finite number of
degrees of freedom (this term is explained in Chapter 2). For the reasons detailed
below, and in spite of the age of the subject, I think that no other single volume exists,
in English and in print, that is comparable to the one at hand in breadth and depth of the
material covered—and, in this nontrivial sense, this ca. 1400-page and 174-figure long
work is unique.

The book is addressed to graduate students, professors, and researchers, in the
areas of applied mechanics, engineering science, and mechanical, aerospace, struc-
tural, (even) electrical engineering, as well as physics and applied mathematics.
Advanced undergraduates are also very welcome to browse, and thus get initiated
into higher dynamics. The sole technical prerequisite here, a relatively modest one, is
a solid working knowledge of ‘‘elementary/intermediate’’ (i.e., undergraduate)
dynamics; roughly, equivalent to the (bulk of the) material covered in, say,
Spiegel’s Theoretical Mechanics, part of the well-known Schaum’s outline series.
Also, familiarity with the simplest aspects of Lagrange’s equations, that is, how to
take the partial and total derivatives of scalar energetic functions, would be helpful;
although, strictly, it is not necessary. [See also ‘‘Suggestions to the Reader’’
(Introduction, }3).]

CONTENTS

Specifically, the book covers in what I consider to be a most logical and pedagogical
sequence, the following topics:

Introduction: Introduction to analytical mechanics, brief summary of the history of
theoretical mechanics; suggestions to the reader; and list of symbols/notations, abbre-

viations, and basic formulae.



Chapter 1: Background: Algebra of vectors and Cartesian tensors, and basic concepts

and equations of Newton–Euler (or momentum) mechanics of particles and rigid
bodies; that is, a highly selective compendium of undergraduate dynamics, and (some
of) its mathematics, from a mature viewpoint.

Chapter 2: Kinematics of constrained systems (i.e., Lagrangean kinematics); including
the general theory of up to linear velocity (i.e., Pfaffian) constraints, in both holonomic

(or true) and nonholonomic (or quasi) coordinates; and a uniquely readable account of

the fundamental theorem of Frobenius, for testing the nonholonomicity of such con-
straints.

Chapter 3: Kinetics of constrained systems (i.e., Lagrangean kinetics); including the
fundamental principles of AM; that is, those of d’Alembert–Lagrange and of relaxation

of the constraints, the central equation of Heun–Hamel; equations of motion with or
without reactions, with or without multipliers, in true or quasi system variables; an

introduction to servoconstraints (theories of Appell–Beghin, et al.); and rigid-body

applications. This is the key chapter of the entire book, as far as engineering readers
are concerned.

Chapter 4: Impulsive motion, under ideal constraints; including the associated extremum
theorems of Carnot, Kelvin, Bertrand, Robin, et al.

Chapter 5: Nonlinear nonholonomic constraints; that is, kinematics and kinetics under
nonlinear, and generally nonholonomic, velocity constraints.

Chapter 6: Differential variational principles, of Jourdain, Gauss, Hertz, et al., and their
derivative higher-order equations of motion of Nielsen, Tsenov, et al.

Chapter 7: Time-integral theorems and variational principles, of Lagrange, Hamilton,
Jacobi, O. Hölder, Voss, Suslov, Voronets, Hamel, et al.; for linear and nonlinear

velocity constraints in true and quasi variables, with or without multipliers; plus energy

and virial theorems.

Chapter 8: Introduction to Hamiltonian/Canonical methods; that is, equations of

Hamilton and Routh–Helmholtz, cyclic systems, steady motion and its stability, varia-
tion of constants, canonical transformations and Poisson’s brackets, Hamilton–Jacobi

integration theory, integral invariants, Noether’s theorem, and action–angle variables
and their applications to adiabatic invariants and perturbation theory.

Chapters 2–8 each contain a large number of completely solved examples, and
problems with their answers (and, occasionally, hints), to illustrate and extend the
previous theories; short ones are integrated within each chapter section, and longer,
more synthetic, ones are collected at each chapter’s end; and also, critical comments/
references for further study. The exposition ends with a relatively extensive, cumu-
lative, and alphabetical list of References and Suggested Reading, including every-
thing from standard textbooks all the way to epoch-making memoirs of the last
(more than) two hundred years. This list complements those found in such well-
known references as Neimark and Fufaev (1967/1972) and Roberson and
Schwertassek (1988).

Parts of the text have, unavoidably, state-of-the-art flavor. However, as far as
fundamental ideas go, very little, if anything, of the topics covered is truly new—
today, no one can claim much originality in classical mechanics! The newness here, a
nontrivial one, I think, consists in restoring, clarifying, putting together, and pre-
senting, in what I hope is a readable form, material most of which has appeared over
the past one hundred fifty, or so, years; frequently in little known, and/or hard to
find and decipher, sources. (In view of the thousands of books, lecture notes, articles,
and so on, used in the writing of this work, failure to acknowledge an author’s
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particular contribution is not intentional, merely an oversight.) But, given the aston-
ishing unfamiliarity, confusion, and intellectual provincialism so prevalent in many
theoretical and applied mechanics circles today, even in the fundamental concepts
and principles of analytical dynamics (like virtual displacements/work and principle
of d’Alembert–Lagrange, which is, by far, the most misunderstood ‘‘principle’’ of
physics!), I felt very strongly that this noble, beautiful, and powerful body of knowl-
edge, that diamond of our cultural heritage, should be accurately preserved and
represented, so as to benefit present and future workers in dynamics.

No single volume can even pretend to cover satisfactorily all aspects of this vast
and fascinating subject; in particular, both its theoretical and applied aspects, let
alone the currently popular computational ones. Since this is not an encyclopedia of
theoretical and applied dynamics, an inescapable and necessary selection has oper-
ated, and so, the following important topics are not covered: applications of differ-
ential forms/exterior calculus (of Cartan, Gallissot, et al.) and symplectic geometry

RAISON D’ÊTRE, AND SOME PHILOSOPHY

The customary words of explanation, or apology, for writing ‘‘another’’ book on
advanced dynamics are now in order. The main theme of this work, like a Wagnerian
leitmotiv, is deductive order, formal structure, and physical ideas, as they pertain to
that particular energetic form of mechanics of constrained systems founded by
Lagrange and known as analytical (¼deductive) mechanics; to be differentiated
from the also analytical but momentum, or ‘‘elementary,’’ form of system mechanics,
founded by Euler. It is a book for people who place theory (theories), ideas, knowledge,
and understanding above all else—and do not apologize for it. Here, AM is studied

‘‘The field of dynamics is plowed by two classes of people: those who enjoy the
inherent beauty, symmetry and consistency of this discipline, and those who are
satisfied with having a machine that manufactures equations of motion of complex
mechanisms’’ (private communication, 1986).] Generally, science is more than a
collection of particular problems and special techniques, even involved ones— it is
much more than mere information. However, practical people should be reminded
that theory and application are mutually complementary rather than adversarial; in
fact, contemporary important practical problems and the availability of powerful
computational capabilities have made the thorough understanding of the fundamen-
tal principles of mechanics more necessary today than before. Applications and
computers have, among other things, helped resurrect, restore, and sharpen
old academic curiosities (for engineers anyway), such as the differential variational
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to Lagrangean and Hamiltonian mechanics; group theoretic applications; nonlinear dynam-
ics (incl. regular and stochastic/chaotic motion) and stability of motion; theory of orbits;
and computational/numerical techniques. For all these, there already exists an enormous
and competent literature (see “Suggestions to the Reader”). However, with the help of this
treatise, the conscientious reader will be able to move quickly and confidently into any par-
ticular theoretical and/or computational area of modern dynamics. In this sense, the work
at hand constitutes an optimal investment of the reader’s precious energies.

not as the “maid” of some other (allegedly) more important discipline, but as a sub-
ject worth knowing in its own right; that is, as a “king or queen.” As such, it will
attract those with a qualitative and theoretical bent of mind; while it may not be as
agreeable to those with purely computational and/or intellectually local predilections. [In
the words of the late Professor R.M. Rosenberg (University of California, Berkeley):



principles of Jourdain and Gauss (which have found applications in such ‘‘un-
related’’ areas as multibody dynamics, nonlinear oscillations, even the elasto-plastic
buckling of shells); and Hamilton’s canonical equations in quasi variables (which
have found applications in robotic manipulators).

A more concrete reason for writing this book is that, outside of the truly monu-
mental British treatise of Pars (1965) and the English translations of the beautiful
(former) Soviet monographs of Neimark and Fufaev (1967/1972) and Gantmacher
(1966/1970), there is no comprehensive exposition of advanced engineering-oriented
dynamics in print, in the entire English language literature! True, the famous treatise
of Whittaker (1904/1917/1927/1937), for many years out of print, has recently been
reprinted (1988). However, even Whittaker, although undeniably a classic and in
many respects the single most influential dynamics volume of the twentieth century
(primarily, to celestial and quantum mechanics), nevertheless leaves a lot to be
desired in matters of logic, fundamental principles, and their earthly applications;
for example, there is no clear and general formulation of the principle of
d’Alembert–Lagrange and its use, in connection with Hamel’s method of quasi
variables, to uncouple the equations of motion and obtain constraint reactions;
also, Whittaker would be totally unacceptable with the better of today’s educational
philosophies. Such drawbacks have plagued most British texts of that era; for exam-
ple, the otherwise excellent works of Thomson/Tait, Routh, Lamb, Ramsey, Smart,
and many of their U.S.-made descendants. [In a way, Whittaker et al. have been
pretty lucky in that most of the great continental European works on advanced
dynamics— for example, those of Boltzmann, Heun, Maggi, Appell, Marcolongo,
Suslov, Nordheim et al. (vol. 5 of Handbuch der Physik, 1927), Winkelmann (vol. 1
of Handbuch der Physikalischen und Technischen Mechanik, 1929), Prange (vol. 4 of
Encyclopädie der Mathematischen Wissenschaften, 1935), Rose, Hamel, Pérès, Lur’e,
et al. were never translated into English.] Next, the comprehensive three-volume
work of MacMillan (late 1920s to early 1930s) and the encyclopedic treatise of
Webster (early 1900s), probably the two best U.S.-made mechanics texts, are, unfor-
tunately, out of print. The very lively and deservedly popular monograph of Lanczos
(1949–1970) does not go far enough in areas of engineering importance; for example,
nonholonomic variables and constraints; and, also, lacks in examples and problems.
Only the excellent encyclopedic article of Synge (1960) comes close to our objectives;
but, that, too, has Lanczos’ drawbacks for engineering students and classroom use.

The existing contemporary expositions on advanced dynamics, in English and in
print, fall roughly into the following three groups:

Formalistic/Abstract, of the by-and-for-mathematicians variety, and, as such, of next to

zero relevance and/or usefulness to most nonmathematicians. Considering the high
mental effort and time that must be expended toward their mastery vis-à-vis their

meager results in understanding mechanics better and/or solving new and nontrivial

problems, these works represent a pretty poor investment of ever scarce intellectual
resources; that is, they are not worth their ‘‘money.’’ The effort should be commensurate

to the returns. And, contrary to the impression given by authors of this group, even in
the most exact sciences, books are written by and for concrete people; not by super-

logical, detached, and cold machines. As Winner puts it: ‘‘The accepted form of ‘objec-
tivity’ in scientific and technical reports (one can also include books and articles in social

science) requires that the prose read as if there were no person in the room when the

writing took place’’ (1986, p. 71). Also, I categorically reject soothing apologies of the
type ‘‘oh, well, that is a book for mathematicians’’; that is, the book has little or no

consideration for ordinary folk. The distinguished physicist F. J. Dyson confirms our

x PREFACE



suspicions that ‘‘the marriage of mathematics and physics [about which we have been

told so many nice things since our high school days] has ended in divorce’’ (quoted
in M. Kline’s Mathematics, The Loss of Certainty, Oxford University Press, 1980,
pp. 302–303).

Applied, which either emphasize the numerical/computational aspects of mechanics, but,
perhaps unavoidably, are soft and/or sketchy on its fundamental principles; or are so

theoretically/conceptually impoverished and unmotivated that the reader is soon led to

a narrow and dead-end view of mechanics. [Notable and refreshing exceptions to this
style are the recent compact but rich-in-ideas works by Bremer et al. [1988(a), (b), 1992]

in dynamics/control/flexible multibody systems.]

Mainstream or traditionalist; for example, those by (alphabetically): Arya, Baruh, Calkin,

Crandall et al., Corben et al., Desloge, Goldstein, Greenwood, Kilmister et al.,
Konopinski, Kuypers, Lanczos, Marion, McCauley, Meirovitch, Park, Rosenberg,

Woodhouse. The problem with this group, however, is that its representatives either

do not go far and deep enough (somehow, the more advanced topics seem to be mono-
polized by the expositions of the first group); or they could use some improvements in

the quality and/or quantity of their engineeringly relevant examples and problems.

The book at hand belongs squarely and unabashedly to this last group, and aims
to remedy its above-mentioned shortcomings by bridging the space between it and
some of the earlier-mentioned classics, such as (chronologically): Heun (1906, 1914),
Prange (1933–1935), Hamel (1927, 1949), Pérès (1953), Lur’e (1961/1968),
Gantmacher (1966/1970), Neimark and Fufaev (1967/1972), Dobronravov (1970,
1976), and Novoselov (1966, 1967, 1979). Hence, my earlier claim that this treatise
is unique in the entire contemporary literature; and my strong belief that it does meet
real and long overdue needs of students and teachers of advanced (engineering)
dynamics of the international community. I have sought to combine the best of
the old and new—no age discrimination here—and I hope that this work will
help counter the very real and disturbing trend, brought about by the proponents
of the first two groups, toward a dynamical tower of Babel.

ON NOTATION

To make the exposition accessible to as many willing and able readers as possible,
and following the admirable and ever applicable example of Lanczos (1949–1970), I
have chosen, wherever possible, an informal approach; and I have, thus, deliberately
avoided all set-theoretic and functional-analytic formalisms, all unnecessary rigor
(‘‘epsilonics’’) and similar ahistorical/unmotivating/intuition-deadening tools and
methods. For the same reasons, I have also avoided the currently popular direct/
dyadic (coordinate-free) and matrix notations (except in a very small number of
truly useful situations); and I have, instead, chosen good old-fashioned elementary/
geometrical (undergraduate) form, for vectors, and/or indicial Cartesian tensorial
notation for vectors, tensors, etc.

The ad nauseam advertised ‘‘advantages’’ of the coordinate-free (‘‘direct’’) nota-
tion and matrices are vastly exaggerated and misguiding. To begin with, it is no
accident that the solution of all concrete physical problems is intimately connected
with a specific and convenient (or natural, or canonical) system of coordinates.
Indicial tensorial notation seems to kill two birds with one stone: it combines both
coordinate invariance (generality) and coordinate specificity; that is, one knows
exactly what to do in a given set of coordinates/axes; see, for example, Korenev
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(1979), Maißer (1988) for robotics applications. However, the systematic use of
general tensors in dynamics has been kept out of this book. [That is carried out in
my monograph, Tensor Calculus and Analytical Dynamics (CRC Press, 1999).] The
only thing tensorial used here amounts to nothing more than the earlier-mentioned
indicial Cartesian tensor notation; and for reasons that will become clear later, not
even the well-known summation convention is employed. Indicial tensorial notation
turns out to be the best tool in ‘‘unknown and rugged terrain’’; and frequently it is
the only available notation, for example, in dealing with nonvectorial/tensorial ‘‘geo-
metrical objects,’’ such as the Christoffel symbols and the Ricci/Boltzmann/Hamel
coefficients. Once the fundamental theory is thoroughly understood, and the numer-
ical implementation of a (frequently large-scale) concrete problem is sought, then
one can profitably use matrices, and so on. Heavy use of matrices, with their non-
commutativity ‘‘straitjacket,’’ at an early stage [e.g., Haug, 1992(a)] is likely to
restrict creativity and replace physical understanding with the local mechanical
manipulation of symbols.

FURTHER PHILOSOPHY: On Computerization, Applications, and

Ultimate Goals of Research

I do not think that the author of a book on analytical mechanics (AM) should be
constantly defending it as simply a means to some other allegedly higher ends [e.g., a
prerequisite to quantum mechanics, as Goldstein (1980) does], or in terms of its
current ‘‘real life’’ applications in space or earth (e.g., artificial satellites, rocketry,
robotics, etc.; i.e., in terms of dollars to be made); although, clearly, such connec-
tions do exist and can be helpful. What should worry us is that these days, under
what B. Schwartz calls ‘‘economic imperialism,’’ or what R. Bellah calls ‘‘market
totalitarianism’’ (i.e., the penetration of purely monetary values into every aspect of
social life; or, to regard all aspects of human relations as matters of economic self-
interest, and model them after the market) every activity is fast becoming a means
for something else, preferably quantifiable and monetary. In the process, daily work,
craftsmanship, and the pleasure derived from the practice of that activity, have all
been degraded. Unless we restore some internal, or intrinsic, goals and rewards to our
subject and disseminate them to our young students, pretty soon such an activity will
be no different from clerical or assembly-line work; that is, just a paycheck. As stated
earlier, we view AM as a course worth pursuing in its own terms. We study it because
it is worth learning, and because it is a grand and glorious part of our intellectual/
cultural heritage— those who do not care about the past cannot possibly care about
the present, let alone the future.

On a more practical level, a few years from now such applied areas as multibody
dynamics, a subject with which so many dynamicists are preoccupied today, will be
exhausted— some say that that has already happened. What are the practical
mechanicians going to do then? Most of their expositions (second of the earlier
groups) are too narrow and do not prepare the reader for the long haul. But there
is a more fundamental reason for adopting ‘‘my’’ particular approach to mechanics:
I strongly believe that every generation has to rediscover (better, reinvent)AM, andmost
other areas of knowledge for that matter, anew and on its own terms; that is, replow
the soil and not just be handed down from their predecessors, discontinuously,
prepackaged and predigested ‘‘information’’ in a diskette (the electronic equivalent
of ashes in an urn). To squeeze the ‘‘entire’’ mechanics into a huge master computer
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program, which (according to common but nevertheless vulgar advertisements)
‘‘does everything,’’ and makes it available to the reader (‘‘user’’) in the form of
data inputs, is not only dangerous for the present (e.g., accidents, screw-ups,
which are especially consequential in today’s large-scale systems—recall the omni-
present Murphy’s laws), but also, being a degradation and dehumanization of
knowledge, it guarantees the intellectual death of our society. If the job makes the
person (mentally, psychologically, and physically), then how are we going to answer
the question ‘‘What are people for?’’

Typical of such contemporary one-dimensional, or ‘‘digital,’’ approaches to
dynamics are sweeping statements like: ‘‘pre-computer analytical methods for
deriving the system equations must be replaced by systematic computer oriented
formalisms, which can be translated conveniently into efficient computer codes for
� generating the system equations based on simple user data describing the system
model, � solving those complex equations yielding results ready for design evalua-
tion’’ and ‘‘Emphasis is on computer based derivation of the system equations thus
freeing the user from the time consuming and error-prone task of developing equa-
tions of motion for various problems again and again.’’ [From advertisement of
Roberson and Schwertassek (1988) in Ingenieur-Archiv, 59, p.A.3, 1989.] Here, the
advertisers hide the well-known fact of how much error prone is the formulating and
running of any complicated program; and how the combination of this with the
absence of any physically simple and meaningful checks for finding errors— some-
thing of a certainty for the structureless/formless mechanics of Newton–Euler, on
which so much of multibody dynamics rests— is a recipe for chaos () arbitrariness)!
Our reading of this ad is that the whole process will, eventually, ‘‘free’’ the user from
thinking at all—first, we replace the human functions and then we replace humans
altogether [first industrial revolution: mechanization of muscles, second (current)
industrial revolution: automation of both muscles and brains]; and anyone who
dares to criticize, or inquire about choices (i.e., politics), is summarily and arrogantly
dismissed as a technophobe or, worse, a neo-Luddite!

As the mathematicians Davis and Hersh put it accurately:

By turning attention away from underlying physical mechanisms and towards the pos-

sibility of once-for-all algorithmization, it encourages the feeling that the purpose of

computation is to spare mankind of the necessity of thinking deeply. . . . Excessive
computerization would lead to a life of formal actions devoid of meaning, for the

computer lives by precise languages, precise recipes, abstract and general programs
wherein the underlying significance of what is done becomes secondary. [Inimitably

captured in M. McLuhan’s well-known dictum: The medium is the message.] It fosters
a spirit-sapping formalism. The computer is often described as a neutral but willing

slave. The danger is not that the computer is a robot but that humans will become

robotized as they adapt to its abstractions and rigidities (1986, pp. 293, 16).

And, in a similar vein, H. R. Post adds: ‘‘You understand a subject when you have
grasped its structure, not when you are merely informed of specific numerical
results’’ (quoted in Truesdell, 1984, p. 601).

The issue is not whether the complete computer codification of (some version of )
dynamics can be achieved or not; it clearly can, somehow. The issue is the desirability
of it; that is, the could versus the should, its scale compared with the other
approaches, and the temporal order of such a presentation to the student (‘‘user’’).
The only safe way for using such heavily computerized schemes is for the student to
already possess a very thorough grounding in the fundamentals of mechanics— like
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vaccination against a virus! There is no painless and short way to bypass several
centuries of hard thinking by a handful of great fellow humans—no royal road to
mechanics! Otherwise, we are headed for more confusion, degradation, errors, and
accidents, and eventual disengagement fromour subject. [For iconoclastic, devastating,
and sobering critiques of the contemporary mindless and rabid computeritis, see, for
example, Truesdell (1984, pp. 594–631), Davis and Hersh (1986), andMander (1985).]

As for the applications of mechanics, there is nothing wrong with them; as long as
they do not hurt or exploit people and nature—alas, several such contemporary
applications do just that. Those preoccupied with them rarely, if ever, ask the natural
question: What are the (most likely) applications of the applications; namely, their
social/environmental consequences? In this light, common statements like ‘‘the com-
puter is only a tool’’ are utterly naive and meaningless. I should also add that the
current relentless emphasis, even in the academia, on applied research with quick
tangible results— that is, dollars at the expense of every other nonmonetary aspect—
is a relatively recent phenomenon imposed on us from outside; it is neither intrinsic
nor accidental to science, but instead is an intensely socio-economic activity—
technology is neither autonomous nor neutral! [And as Truesdell concurs, with
depressing accuracy (1987, p. 91): ‘‘It is not philosophers of science who will enforce
one kind of research or another. No, it will be the national funding agencies, the
sources of manna, nectar, and ambrosia for the corrupted scientists. The directors of
funds are birds of a feather, chattering mainly to each other and at any one moment
singing more or less the same cacophonous tune. There may come a time when even
the scholarly foundations will give preference to those who claim to promote
national ‘defense’ by research on the basic principles governing some new, as yet
totally secret— that is, known only to the directors of war in the U.S. and Russia—
allegedly secret idea for a broader and more effective death by torture in a world full
of humanitarians and their -isms.’’]

If applications, even worthwhile ones, are but one motive for studying mechanics,
and science in general, then what else is? Here are some plausible (existential?)
reasons offered by Einstein, which I have found particularly inspiring, since my
high school years:

Man tries to make for himself in the fashion that suits him best a simplified and

intelligible picture of the world; he then tries to some extent to substitute this cosmos
of his for the world of experience, and thus to overcome it. This is what the painter, the

poet, the speculative philosopher, and the natural philosopher do, each in his own
fashion. Each makes this cosmos and its construction the pivot of his emotional life, in

order to find in this way the peace and security which he cannot find in the narrow whirlpool
of personal experience (emphasis added; from ‘‘Principles of Research,’’ an address

delivered in 1918, on the occasion of M. Planck’s sixtieth birthday).

From a broader perspective, I am convinced that the quality of our lives depends not
so much on specific gadgets/artifacts, no matter how technically advanced they may
be (e.g., from artificial hearts to space stations), but on our collective abilities to
formulate simple, clear, and unifying ideas that will allow us to understand (and then
change gently and gracefully— sustainably) our increasingly complicated, unstable
and fragile societies; and, in the process, understand ourselves. The resulting psycho-
logical and intellectual peace of mind from such a liberal arts (¼ liberating) approach
cannot be overstated. It is this kind of activity and attitude that gives human life
meaning—we do not do science just to make money, merely to exchange and con-
sume. This book is intended as a small but tangible contribution to this lofty goal.
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SOME PERSONAL HISTORY

My interest in AM began during my undergraduate studies (mid-to-late 1960s) upon
reading in Hamel (1949, pp. 233–236, 367) about the differences between the calculus
of variations (mathematics) and Hamilton’s variational principle (mechanics) for
nonholonomic systems. The need for a deeper understanding of the underlying
kinematical concepts led me, about twenty years later, to the study of the original
epoch-making memoirs of such mechanics masters as Appell, Boltzmann, Heun, and
Hamel. Then, in the spring of 1986, in related studies on variational calculus, I had
the good fortune to stumble upon the virtually unknown but excellent papers of
Schaefer (1951) and Stückler (1955), which, along with my earlier acquaintance with
tensors, showed me the way toward the correct understanding of everything virtual:
virtual displacements and virtual work/Lagrange’s principle; that is, I arrived at AM
via the calculus of variations, just like Lagrange in the 1760s! Finally, the emphasis
on the fundamental distinction between particle and system quantities I owe to
the writings of Heun, the founder of theoretical engineering dynamics (early 20th
century), and especially to those of his students: Winkelmann and the great Hamel.

In closing, I would like to recommend the reading of the preface(s) of Lanczos
(1949–1970); the present work has been conceived and driven by a similar overall
philosophy.

May this book make many and loyal friends!

Atlanta, Georgia J. G. P.
Autumn 2001

PREFACE xv

john.papas@me.gatech.edu
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Words of Wisdom and Beauty

On Rigor It is not so much important to be rigorous as to be right.
—A. N. KOLMOGOROV

On Theory There is nothing more practical than a good theory.
—L. BOLTZMANN

We have no access to a theory-independent world— that is, a world
unconditioned by our point of view . . . . The world we see is . . .
theory-laden: it already bears the ineliminable mark of our involve-
ment in it . . . . Knowledge is always a representation of reality from
within a particular perspective . . . . We cannot assume . . . ‘‘the view
from nowhere.’’
—T. W. CLARK

I really do not at all like the now fashionable ‘‘positivistic’’
tendency of clinging to what is observable . . . I think . . . that theory
cannot be fabricated out of the results of observation, but that it can
only be invented.
—A. EINSTEIN

On Method In the sciences the subject is not only set by the method; at the same
time it is set into the method and remains subordinate to the method
. . . . In the method lies all the power of knowledge. The subject belongs
to the method. (emphasis added)
—M. HEIDEGGER

The core of the practice of science— the thread that keeps it going
as a coherent and developing activity— lies in the actions of those
whose goals are internal to the practice. And these internal goals are
all noneconomic. (emphasis added.)
—B. SCHWARTZ

On Beauty My own students, few they have been, I have tried to teach how to
ask questions humbly and to see ways to some taste in a vulgar,
obscene epoch. Taste is acquired by those who can face questions,
especially insoluble questions.
—C. A. TRUESDELL

It is by the steady elimination of everything which is ugly—
thoughts and words no less than tangible objects—and by the sub-
stitution of things of true and lasting beauty that the whole progress
of humanity proceeds.
—A. PAVLOVA



This page intentionally left blankThis page intentionally left blank



A Comprehensive Treatise 
on the

Dynamics of Constrained Systems

ANALYTICAL
MECHANICS

Reprint Edition�                      �



This page intentionally left blankThis page intentionally left blank



Introduction

KOSMON TONDE, TON AYTON AUANTON, OYTE TIS TEON

OYTE ANTPOUON EUOIHSEN, ARR0HN AEI KAI ESTIN KAI ESTAI

UYP AEIZOON, AUTOMENON METPA KAI AUOSBENNYMENON

METPA.

[HPAKREITOS (Herakleitos, Greek philosopher; Ephesos, Ionia,

late 6th century B.C.)]

[Translation: ‘‘This world [order], which is the same for all

[beings], no one of gods or humans have created; but it was

ever, is now, and ever shall be an ever-living Fire, that starts and

goes out according to certain rules [laws].’’

This magnificent statement marks the beginning of science—one

of the countless, fundamental, and original gifts of Greece to the

world. (See, e.g., Burnet, 1930, p. 134; also Frankfort et al.,

1946, chap. 8.)]

D

Die Mechanik ist ein Teil der Physik.

(Translation: Mechanics is a part of physics.)

(Föppl, 1898, vol. 1, p. 1)

3

Die Mechanik ist die Wissenschaft von der Bewegung; als ihre

Aufgabe bezeichnen wir: die in der Natur vor sich gehenden

Bewegungen vollständig und auf die einfachste Weise zu

beschreiben.

(Translation: Mechanics is the science of motion; we define as its

task the complete description and in the simplest possible manner

of such motions as occur in nature.)

(Kirchhoff, 1876, p. 1, author’s emphasis)

Dynamics or Mechanics is the science of motion . . . . The

problem of dynamics according to Kirchhoff, is to describe all

motions occurring in nature in an unambiguous and the simplest

manner. In addition it is our object to classify them and to

arrange them on the basis of the simplest possible laws.

The success which has attended the efforts of physicists,

mathematicians, and astronomers in achieving this object from the

time of Galileo and Newton through that of Lagrange and Laplace

to that of Helmholtz and Kelvin, constitutes one of the greatest

triumphs of the human intellect.

(Webster, 1912, p. 3, emphasis added)



1 INTRODUCTION TO ANALYTICAL MECHANICS

What Is Analytical Mechanics?

Classical mechanics (CM)—that is, the exact science of nonrelativistic and non-
quantum motion (effects) and forces (causes)—was founded in the 17th century
(Galileo, 1638; Newton, 1687), and was brought to fruition and generality during
the next century, almost single-handedly, by Euler (1752: principle of linear momen-
tum; 1775: principle of angular momentum). [D’Alembert too had formulated sepa-
rate laws of linear and angular momentum (1743, 1758), but his approach came
nowhere near that of Euler in generality and power.] That was the first complete
dynamical theory in history. We shall call it, conveniently (even though not quite
accurately), the Newton–Euler method of mechanics (NEM).

The second such theory was also initiated in the (late) 17th century, this time by
Huygens and Jakob Bernoulli; it was further developed during the 18th century by
Johann Bernoulli (Jakob’s brother) and d’Alembert (early 1740s), and was finally
brought to relative mathematical and physical completion by the other great math-
ematician of that century, Lagrange (1760: principle of ‘‘least’’ action; 1764: princi-
ple of d’Alembert in Lagrange’s form, or Lagrange’s principle; 1780: central equation
and Lagrange’s equations; 1788:Méchanique Analitique; 1811–1812: transitivity equa-
tions). This second approach, what we shall call the method of d’Alembert–Lagrange,
or, simply and more accurately, the method of Lagrange, forms the basis of what has
come to be known as analytical mechanics (AM); or, equivalently, Lagrangean
mechanics (LM). Although both these methods are, roughly, theoretically equivalent,
since there is only one classical mechanics, the second approach proved much more
influential and fertile to the subsequent development not only of mechanics, but also
of practically all areas of physics: from generalized coordinates and configuration
space to Riemannian geometry and tensors, and from there to general relativity; and
similarly for quantum mechanics.

Analytical mechanics proved particularly significant and useful to engineers,
although it took another century after Lagrange for this to be fully realized (see
}2). The reason for this is that AM was specifically designed by its inventors to
handle constrained (earthly) systems—the concept of constraint is central to AM.
Not that NEM could not handle such systems, but AM proved incomparably
more expedient both for formulating their simplest (or minimal) equations of
motion, and also for offering numerous theoretical and practical insights and
tools for their solution (e.g., theorems of conservation and invariance, variational
‘‘principles’’ and associated direct methods of approximation, etc.—detailed in
chaps. 3–8).

In NEM, the basic principles (or axioms) are those of linear and angular momen-
tum, and, secondarily, that of action–reaction, for the internal (or mutual) forces (see
chap. 1); that is,

NEM is a mechanics of systems based on momentum principles.

In LM, on the other hand, the primary axiom is the kinetic principle of virtual work
for the constraint reactions [¼Lagrange’s principle (LP)] and, secondarily, the principle
of relaxation (or liberation, or freeing) of the constraints (see chap. 3); that is,

LM is a mechanics of systems based on energetic principles.
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With the help of his LP, Lagrange and many others later (see }2) formulated the
most general equations of motion of systems subject to general positional and/or
motional constraints. [The former are called holonomic, while the latter, if they
cannot be brought (integrated) to positional form are called nonholonomic (see
chap. 2).]

Last, from the viewpoint of applications, AM constitutes the theoretical founda-
tion of advanced engineering dynamics; which, in turn, is very useful to the following:
structural dynamics (e.g., bridges, airport runways); machine dynamics (e.g., internal
combustion engines); vehicle dynamics (e.g., automobiles, locomotives); rotor
dynamics (e.g., turbines); robot dynamics (e.g., robotic manipulators); aero-/astro-
dynamics (e.g., airplanes, artificial satellites); control theory/system dynamics (e.g.,
electromechanical systems, valves); celestial dynamics (e.g., astronomy), and so on.

Comments on the Methodology of AM

1. From the otherwise physically complete (particle) mechanics of Newton two
things were missing: rotation and constraints (and, of course, deformation, but we do
not deal with continua here). The first was taken care of by Euler, Mozzi, Cauchy,
Chasles, Rodrigues et al. (1750s to the mid 19th century), and the second by
Lagrange (1760s–1780s) and later many others (1870–1910). Of course, special
cases of both problems had been examined earlier: for example, Newton discussed
motions on specified curves and the associated forces, and, as Heun points out, with
the help of his third law of action/reaction, he could have built a constrained particle
mechanics, had he pursued that possibility; d’Alembert worked with particles ‘‘con-
strained in rigid body connections’’; and even Huygens had such pendula involving
several constrained particles. Much later (early 1810s), Lagrange brought rotation
under his energetic plan (genesis of nonholonomic, or quasi-coordinates; special tran-
sitivity equations—see bridge between Euler and Lagrange below).

2. Analytical versus synthetical, Euler versus Lagrange. To begin with, CM holds
quite satisfactorily for sizes, or lengths, from 10�10 m (atom) to 1020 m (galaxy), and
for speeds up to c=10 (c ¼ speed of light � 300,000 km/s). Outside of these broad
ranges, CM is replaced by relativity (high speeds) and quanta (small sizes) (see, e.g.,
French, 1971, p. 8). Now, depending on the method adopted, CM can be classified as
follows:

This classification, a logically possible one out of many (see below; e.g., Hamel,
1917), stresses the following:

2(a). Contrary to popular declarations, and Lagrange himself is partly to blame
for this, AM does not mean mechanics via mathematical analysis; that is, it does not
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mean an ageometrical and figureless mechanics. [Even such 20th century mechanics
authorities as Whittaker state that ‘‘The name Analytical Dynamics is given to that
branch of knowledge in which the motions of material bodies, . . . , are discussed by
the aid of mathematical analysis’’ (1937, p. 1).] Instead, and in the sense used in
philosophy/logic, AM means a deductive mechanics: everything flowing from a few
selected initial postulates/principles/axioms by logical (mathematical) reasoning;
that is, from the general to the particular—as contrasted with inductive, or synthetic,
mechanics; that is, from the particular to the general. As such, AM is by no means
ageometrical (and, similarly, synthetic mechanics does not necessarily mean geome-
trical and nonmathematical mechanics). Also, in the past (mainly 19th century) the
terms theoretical, rational, and analytical have frequently been used synonymously.

2(b). In such a classification, the mechanics of Euler also deserves to be called
analytical! The reason that we in this book, and most everybody else, do not have
more to do with historical tradition and usage rather than with strict logic: today
AM has come to mean, specifically,

Lagrangean method ¼ Principle of Lagrange

ð¼ Principle of d’Alembertþ Johann Bernoulli’s principle

of virtual workÞ
þ Principle of relaxation of the constraints

ðHamel’s BefreiungsprinzipÞ

After more than 200 years, AM is defined by its practice—that is, by its methods,
tools, and range of problems dealt with by its practitioners—and because, contrary
to the mechanics of Newton–Euler, it is capable of extending to other areas of
physics: for example, statistical mechanics, electrodynamics. As the distinguished
applied mathematician Gantmacher puts it

[A]nalytical mechanics is characterized both by a specific system of presentation and

also by a definite range of problems investigated. The characteristic feature . . . is that
general principles (differential or integral) serve as the foundation; then the basic differ-

ential equations of motion are derived from these principles analytically. The basic

content of analytical mechanics consists in describing the general principles of
mechanics, deriving from them the fundamental differential equations of motion, and

investigating the equations obtained and methods of integrating them (1970, p. 7).

2(c). Frequently, one is left with the impression that Eulerian mechanics is vec-
torial, whereas Lagrangean mechanics is scalar. This, however, is only superficially
true: LM can be quite geometrical and vectorial, but in generalized nonphysical/non-
Euclidean (Riemannian and beyond) spaces [see, e.g., Papastavridis (1999), Synge
(1926–1927, 1936), and references therein].

2(d). Euler and Lagrange should be viewed as mutually complementary, not as
adversarial—as some historians of mechanics do. And although it is undeniably true
that, of the two, Euler was the greater ‘‘geometer’’ in both quantity and quality, yet it
was the method of Lagrange that shaped and drove the subsequent epoch-making
developments of theoretical physics and a fair part of applied mathematics (i.e.,
differential geometry/tensors ! relativity; Hamiltonian mechanics/phase space !
statistical mechanics, quantum mechanics). Lagrange himself, shortly before his
death (in 1813), succeeded in building the bridge between his method and that of
Euler (rigid-body equations) by obtaining a special case of ‘‘transitivity equations’’
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[so named by Heun (early 20th century) because they allow the transition from
Lagrangean to Eulerian], which appeared in the second volume of the second edition
of his Mécanique Analytique (1815). And that is why the great mechanician Hamel,
in 1903–1904, dubbed his own famous equations the ‘‘Lagrange–Euler equations’’;
and in his magnum opus Theoretische Mechanik (1949) he founded the entire
mechanics on Lagrangean principles. [With the exception of Neimark and Fufaev
(1972), the transitivity equations are completely and conspicuously absent from the
entire English and French literature!]

3. Newtonian particles versus Eulerian continua. There is a certain viewpoint,
particularly popular among celestial dynamicists/astronomers, (particle) physicists,
and some applied mathematicians, according to which classical mechanics is the
study of the motions of systems of particles under mutually attractive/repulsive
forces, whose intensities depend only on the distances among these particles (mole-
cules, etc.); and that, eventually, all physical phenomena are to be explained by such
a ‘‘mechanistic’’ model. This Newtonian mindset dominated 19th century mechanics
and physics almost completely, and obscured the fact that such a ‘‘central force þ
particle(s)’’ mechanics [launched, mainly, by P. S. de Laplace in his monumental five-
volume Traité de Mécanique Celeste (1799–1825)] is but one possibility, even within
the nonrelativistic and nonquantum confines of the 19th century. Under other,
physically more realistic, possibilities the total interparticle force, generally, consists
of a reaction to the geometrical and/or kinematical constraints imposed, and an
impressed, or physical, part that can depend explicitly on time, position(s), and
velocity(-ies) of some or all of the system particles. However, the introduction of
such forces to mechanics creates effects that cannot be accounted by mechanics
alone, such as thermal and/or electromagnetic phenomena; whereas, the conse-
quences of Newtonian forces stay within mechanics.

The ‘‘mechanistic theory of matter’’—namely, to explain all nonmechanical phe-
nomena via simple models of internal nonvisible (concealed) motions of the system’s
molecules (second half of 19th century, proposed by physicists like W. Thomson,
J. Thomson, Helmholtz, Hertz et al.)—was only partially successful, and eventually
evolved to statistical mechanics and physics (Boltzmann, Gibbs) and quantum
mechanics [Planck, Einstein, Bohr, Born, Heisenberg, Schrödinger, Dirac et al.;
see also Stäckel (1905, p. 453 ff.)].

Finally, as Hamel (1917) points out, it should be remembered that AM is not
restricted to particles: even though Lagrange himself starts with particles, that fact is
totally unimportant to his method; he could have just as well spoken of ‘‘volume
elements.’’

4. Theory versus experiment. The logical consequences of the principles of AM
should not contradict experience. This, however, does not mean that these conse-
quences (theorems, corollaries, etc.) should be derived from experiments; the latter
cannot supply missing mathematics, or be used to prove and/or verify something,
but they can be used to disprove a hypothesis. As H. R. Post puts it:

[There are] three items of religious worship inside present-day science, the third of which is
experiment. [I]n the main the role of experiment constitutes a harmless myth in the philo-

sophy of scientists. Themyth considers experiment to be a generator of theories. In fact the
role of experiment . . . is solely to decide between two or more existing theories . . .

Experiment does not generate theories but rather is suggested by them. [As quoted

in Truesdell (1987, p. 83). And, in a similar vein, Einstein declares: ‘‘Experiment never
responds with a ‘yes’ to theory. At best, it says ‘maybe’ and, most frequently, simply ‘no.’

When it agrees with theory, this means ‘maybe’ and, if it does not, the verdict is ‘no.’ ’’]
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But if the axioms of mechanics do not flow simply (‘‘mechanically’’) and uniquely
out of experiments, then where do they come from? Paraphrasing Hamel, Einstein
et al., we may say that these axioms are erected from the facts of experience (the
object) by the human mind (the subject) as an equal and imaginative partner, from a
little observation, a lot of thought and eventually a rather sudden (qualitative) under-
standing and insight into nature. In other words, humans are not passive at all in the
formation of scientific theories, but because of the enormous difficulty involved, the
creation of a successful set of axioms is the rare act of genius [e.g. (chronologically):
Euclid, Archimedes, Newton, Euler, Lagrange, Maxwell, Gibbs, Boltzmann, Planck,
Einstein, Heisenberg, Schrödinger].

In CM, although open and nontrivial problems still remain, yet they are to be
solved by the adoped principles; namely, we do not risk much in stating that this
science is essentially closed, and that is why here the analytical/deductive method is
possible. Otherwise, we would have to adopt a synthetic/inductive approach and
change it slowly, depending on the new empirical facts.

5. In addition to the Lagrangean (and Hamiltonian) analytical formulation of
mechanics—namely, the classical tradition of Whittaker, Hamel, Lur’e, Pars,
Gantmacher et al. followed here, and depending on the emphasis laid on their
most significant aspects, the following complementary formulations of CM also exist:

Variational (e.g., Lanczos, Rund).

Vako-nomic (¼Variational Axiomatic Kind; e.g., Arnold, Kozlov).

Algebraic (¼ infinitesimal and finite canonical transformations, Lie algebras and groups,

symmetries and conservation theorems; e.g., McCauley, Mittelstaedt, Saletan and
Cromer, Sudarshan and Mukunda).

Nonlinear dynamics (¼ regular and stochastic/chaotic motion; e.g., Gabor,
Guggenheimer and Holmes, Lichtenberg and Lieberman, McCauley).

Geometrical (¼ symplectic geometry, canonical structure; e.g., Arnold, Abraham and
Marsden, MacLane).

Statistical and thermodynamical (¼Liouville’s theorem, equilibrium and nonequilibrium
statistical mechanics, irreversible processes, entropy, etc.; e.g., Gibbs, Katz, Fürth,

Sommerfeld, Tolman).

Many-body and celestial mechanics (¼ orbits and their stability, many-body problem;

e.g., Charlier, Hagihara, Happel, Siegel and Moser, Szebehely, Wintner).

All these, and other, formulations testify once more to the vitality and importance of
CM for the entire natural science, even today.

6. For engineering purposes, the following (nonunique) partitioning of mechanics
seems useful:

[We consider this preferable to the following partitioning, customary in the U.S.
undergraduate engineering education:
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Kinematics (motion)

MECHANICS
Statics (forces and equilibrium)

Dynamics (forces)

Kinetics (forces and motion)
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In addition, we will be using the following, not so common, terms:

Stereomechanics: mechanics of rigid bodies (and, accordingly, stereostatics, stereo-
kinetics, etc.—mainly, after Maggi, late 1800s to early 1900s);

Kinetostatics: study of internal and external reactions in rigid bodies in motion (after
Heun, early 1900s).

7. Finally, the problem of AM consists in the following:

(a). Formulation of the smallest, or minimal, number of equations of motion
without (external and/or internal) constraint reactions; namely, the so-called kinetic
equations; and also the ability to retrieve these reactions if needed; namely, the so-
called kinetostatic equations. And then,

(b). The ability to solve these equations for the motion and unknown forces,
respectively, either analytically (exactly or approximately) or numerically (computa-
tionally or symbolically). This is aided by the possible existence of first integrals; for
example, energy, momentum, and conservation/invariance principles; more on these
in chapter 3.

2 HISTORY OF THEORETICAL MECHANICS: A BIRD’S-EYE VIEW

For us believing physicists the distinction between past, present,

and future is only an illusion, even if a stubborn one.

(A. Einstein, Aphorisms)

The past is intelligible to us only in the light of the present; and

we can fully understand the present only in the light of the past

. . . . Past, present, and future are linked together in the endless

chain of history.

(E. H. Carr, What is History?, 1961)

But it is from the Greeks, and not from any other ancient society,

that we derive our interest in history and our belief that events in

the past have relevance for the present.

(M. Lefkowitz, 1996, p. 6)

For in a real sense, history isn’t the past—it’s a posture in the

present toward the future.

(L. Weschler, American author/journalist, 1986)

Rootless men and women take no more interest in the future

than they take in the past.

(C. Lasch, The Minimal Self, 1984)
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The devaluation of history is a prerequisite for the free exercise of

pure power.

( J. Rifkin, Time Wars, 1988)

The complete history of analytical mechanics, including 20th century contributions,
has not been written yet—in English, anyway—and lack of space prevents us from
doing so here. However, we hope that the following brief, selective, subjective, and
unavoidably incomplete (but essentially correct and fair) summary, and references,
will inspire others to pursue such a worthwhile and long overdue task more fully.

Most Important Milestones in the Evolution of
Theoretical Engineering Dynamics
(from the Viewpoint of Analytical Mechanics)

Unconstrained System Mechanics (Momentum mechanics of Newton–Euler)

1638: Special particle motions (Galileo)

1730s: Mechanics of a particle (Euler)

1740s: Mechanics of a system of particles (Euler, late 1740s: Newtonian equa-

tions of motion!)

1750s: General principle of linear momentum (Euler); kinetics of rigid bodies

(Euler)

1770s: General principle of angular momentum (Euler); kinematics and geo-

metry of rigid body motion (Euler)

Constrained System Mechanics (Energetic mechanics of Lagrange)

1743: Principle of d’Alembert (Jakob Bernoulli ! Jean Le Rond
d’Alembert)

1760: Principle of least action (Maupertuis ! Euler ! Lagrange)

Principle of Lagrange [Principle of virtual work (Johann Bernoulli,

1717, published 1725) þ Principle of d’Alembert]

Equations of Lagrange

Méchanique Analitique (1st ed.; note old spelling)

1811: Special transitivity equations (Lagrangean derivation of rigid-body

Eulerian equations)

1811–1815: Mécanique Analytique (2nd ed.; 3rd ed.: 1853–1855; 4th ed.: 1888–

1889; English translation, from 2nd ed.: 1997!)

1829: Gauss’ Principle of least constraint (or least deviation, or extreme

compulsion)

1830s: Canonical formulation of mechanics (Hamilton)

1840s: Transformation/integration theory of dynamics (Jacobi)

1860s: Gyroscopic systems [Thomson (Lord Kelvin), Tait]

1870s: Cyclic coordinates, steady motion, and its stability (Routh)

1873: Earliest reactionless Lagrange-like equations for nonholonomic

systems (Ferrers)
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1764:

1780:

1788:

Physical foundations of mechanics [Newton: incomplete principles,
no method (no equations of
motion in his Principia)]

1687:



1879: Gauss’ Principle for inequality constraints; Gibbs–Appell equations

for unconstrained systems, but in general nonholonomic velocities
(quasi velocities; Gibbs)

Dynamics of nonholonomic systems, under linear (or Pfaffian) velocity

constraints, possibly nonholonomic (Routh, Appell, Chaplygin,

Voronets, Maggi, Heun, Hamel et al.—see below)

1910s–1930s: Dynamics of nonholonomic systems, under nonlinear velocity con-
straints (Appell, Delassus, Chetaev, Johnsen, Hamel); Study of non-

holonomic systems via general tensor calculus (Schouten, Synge,
Vranceanu, Wundheiler, Horák, Vagner et al.)

1970s–present: Applications of the above to multi-body dynamics, computational

dynamics [(alphabetically): Bremer, Haug, Huston, Maiber,

Let us elaborate a little on the dynamics of nonholonomic systems. The original
Lagrangean equations (1780) were limited to holonomically constrained systems. At
that time, and for several decades afterwards, velocity constraints (holonomic or not)
were only a theoretical possibility; though one that could be easily handled by the
Lagrangean method (i.e., principles of Lagrange and of the relaxation of the con-
straints (detailed in chap. 3)). But it was not until about a century later that such
constraints were studied systematically. However, that necessitated a thorough re-
examination of the entire edifice of Lagrangean mechanics: roughly between 1870
and 1910, what may be accurately called the second golden age of analytical
mechanics, a host of first-rate mathematicians (Ferrers, Lindelöf, Hadamard,
Appell, Volterra, Poincaré, Klein, Jourdain, Stäckel, Maurer), physicists (Gibbs,
C. Neumann, Korteweg, Boltzmann), mechanicians (Routh, Maggi, Chaplygin,
Voronets, Suslov, Heun, Hamel), and engineering scientists (Vierkandt, Beghin)
developed the modern AM of constrained systems, including nonholonomic ones;
and, also, the unified theory of differential variational principles of Lagrange,
Jourdain, Gauss, Hertz et al. Up until then (ca. 1900), AM was used almost
exclusively, by mathematicians and physicists, to study unconstrained systems: for
example, celestial mechanics. The Promethean transition from heavens down to
earth (i.e., constraints) was led by the great German mechanician Heun (1859–
1929), who can be fairly considered as the founder of modern engineering dynamics;
and, also, by his more famous student Hamel (1877–1954), arguably the greatest
mechaniker of the 20th century. For instance, to these two we owe the correct
formulation and interpretation of the d’Alembert–Lagrange principle (i.e., LP),
and its successful application (along with additional geometrical and kinematical
concepts, already in embryonic or special forms in Lagrange’s works) to systems
under general holonomic and/or linear velocity (or Pfaffian, possibly nonholonomic)
constraints. Therein lie the roots of all correct treatments of the subject. [Heun also
made important contributions to applied mathematics. For example, the well-known
Runge–Kutta method in ordinary differential equations should be called method of
Runge–Kutta–Heun; see, for example, Renteln (1995).]

Between the two world wars, on the basis of the so-accumulated powerful insights
into the mathematical structure of LM (especially from the differential variational
principles), its methods were extended to nonlinear nonholonomic constraints; first
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1903–1904: Definitive and general study of nonholonomic systems (Pfaffian con-
straints) in nonholonomic variables; Lagrange–Euler equations (Hamel)

Roberson and Schwertassek, Schiehlen, Wittenburg et al.]; Nonlinear
dynamics (regular and stochastic/chaotic motion)



by Appell (1911–1925) and his student Delassus (1910s) [also by Prange and Müller
(1923)] and then by Chetaev (1920s), Johnsen (1936–1941), and Hamel (1938).
During the post World War II era, the entire field was summarized by Hamel himself
in his magnum opus Theoretische Mechanik (1949); and then elaborated upon by a
new generation of Soviet mechanicians [(alphabetically) Dobronravov, Fradlin,
Fufaev, Lobas, Lur’e, Novoselov, Neimark, Poliahov, Rumyantsev (or Rumi-
antsev), et al.], whose efforts culminated in the unique and classic monograph
Dynamics of Nonholonomic Systems by Neimark and Fufaev (1967, transl. 1972).
Both of these works are most highly recommended to all serious dynamicists.

[(a) On the history of the nonholonomic equations of motion, see also chapter 3,
appendix I. (b) Nonlinear (possibly nonholonomic) constraints are an area that,
probably, constitutes the last theoretical frontier of LM and is of potential interest
to nonlinear control theory. Also, the differential variational principles have
rendered important services in the numerical treatment of problems of multibody
dynamics, and promise to do more in the future.]

Guide Through the Literature on the History of
Mechanics

1. General (Mechanics and Physics):
D’Abro (1939, 2nd ed.): Qualitative and quantitative tracing of the evolution of

ideas from antiquity to modern quantum mechanics; excellent. Hoppe [1926(a), (b)]:
Concise history of physics, with some quantitative detail; good place to start. Hund

(1972): Panoramic, competent and compact history of physics, from antiquity tomod-
ern quantummechanics, cosmology, and so on; one of the best places to start. Simonyi

(1990): Comprehensive and sufficiently quantitative history of physics from antiquity
to modern; beautifully and richly illustrated; most highly recommended.

2. Mechanics—General:
Dugas (1955): Comprehensive and quantitative history of classical and modern

mechanics, from a French physicist’s viewpoint; quite useful. Dühring (1887):
Comprehensive treatment of the history of mechanics from antiquity to the middle
of the 19th century; difficult to read due to its complete absence of figures and almost
complete absence of mathematics; for specialists/scholars. Haas (1914): Detailed and
pedagogical treatment of the principles of classical mechanics, from antiquity to the
early 19th century; very warmly recommended, especially for undergraduates in
science/engineering. Mach (1883–1933): Leisurely and mostly qualitative history of
the principles of classical mechanics, from antiquity to the end of the 19th century;

3. Mechanics—Specialized:
Cayley (1858, 1863): Excellent and authoritative summaries of theoretical devel-

opments until the mid 19th century; by a very famous mathematician. Hankins

(1970): Detailed account of the life and work of d’Alembert; highly recommended
to mechanics historians/scholars. Hankins (1985): Physics during the 18th century
(of enlightenment). Kochina (1985): Life and works of S. Kovalevskaya. Oravas and
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interesting and influential, but in some respects incomplete and misleading. Papastavridis
[Elementary Mechanics (under production)] and references cited there. Szabó (1979):
Selective history of entire mechanics, with lots of beautiful photographs and diagrams;
combines features of Mach, Dugas, and Truesdell.Tiolina (1979) andVesselovskii (1974):
General histories of mechanics, with detailed accounts of Russian contributions; very
highly recommended for both their contents and references.



McLean (1966): Detailed account of the development of energetic/variational prin-
ciples, mainly of elastostatics. Polak (1959, 1960): Detailed and lively history of
differential and integral variational principles of mechanics and classical/modern
physics, from antiquity to the 20th century; most highly recommended. Stäckel

(1905): Excellent quantitative history of particle and rigid-body dynamics (elemen-
tary to intermediate), from antiquity to the early 20th century; a must for mature
dynamicists; complements Voss’s article. Truesdell (1968, 1984, 1987): Authoritative
and lively detailing of the life and contributions of Euler; but invariably unfair/
misleading to Lagrange and to anything remotely connected to particles and physics;
for mature mechanicians/physicists. Voss (1901): Detailed and quantitative history
of the principles of theoretical mechanics; with extensive lists of original references,
from antiquity to ca. 1900; very highly recommended to mechanics and physics
specialists. Wheeler (1952): Life and works of J. W. Gibbs. Wintner (1941, pp.
410–443): Notes and references on the history of analytical mechanics, with special
emphasis on the mathematical aspects of celestial mechanics—the book, in general,
is not recommended to anyone but specialists in theoretical astronomy. Ziegler

(1985): Detailed and quantitative history of geometrical approach to rigid-body
mechanics; primarily for kinematicians, not dynamicists.

4. Histories of Mathematics:
Bell (1937): Lively and enjoyable; concentrates on the lives and times of famous

mathematicians. Bochner (1966): Informative, unconventional. Klein (1926(b), 1927):
Detailed and authoritative. Kline (1972): Arguably, the best of its kind in English;
encyclopedic, reliable, insightful, witty; a scholarly masterpiece. Kramer (1970): Like
a more elementary version of Kline’s book; interesting account of the evolution of
determinism in physics (pp. 204–245). Struik (1987): Compact, dependable; includes
socioeconomic explanations of mathematical inventions. Also Dictionary of
Scientific Biography (ed. Gillispie, 1970s).

3 SUGGESTIONS TO THE READER

A cumulative and alphabetical bibliography is located at the end of the book (see
References and Suggested Reading, pp. 1323–1370). The following grouping of
textbooks and treatises aims to better orient the reader relative to (some of ) the
best available international mechanics/dynamics literature, and thus obtain max-
imum benefit from this work. References in bold, below, happen to be our per-
sonal favorites, and have influenced us the most in the writing of this book.

1. For Background (Elementary to Intermediate Level):

Butenin et al. (1985), Coe (1938), Crandall et al. (1968), Easthope (1964), Fox (1967),
Hamel (1912, 1st ed.; 1927), Loitsianskii and Lur’e (1983), Milne (1948), Nielsen

(1935), Osgood (1937), Papastavridis (EM, in preparation), Parkus (1966),
Rosenberg (1977), Smith (1982), Sommerfeld (1964), Spiegel (1967), Stäckel

(1905), Suslov (1946), Synge and Griffith (1959), Wells (1967).

2. For Concurrent Reading (Intermediate to Advanced Level):

Boltzmann (1902, 1904), Butenin (1971), Dobronravov (1970, 1976), Gantmacher

(1970), Gray (1918), Greenwood (1977, 2000), Hamel (1949), Heil and Kitzka
(1984), Heun (1906), Lamb (1943), Lanczos (1970), Lur’e (1968), MacMillan (1927,
1936), Mei (1985, 1987), Neimark and Fufaev (1972), Nordheim (1927), Pars (1965),
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Päsler (1968), Pérès (1953), Poliahov et al. (1985), Prange (1935), Rose (1938), Synge
(1960), Winkelman (1929, 1930).

3. For Further Reading:

Theoretical Physics, Nonlinear Dynamics, and so on:

Arnold (1989), Arnold et al. (1988), Bakay and Stepanovskii (1981), Birkhoff
(1927), Born (1927), Corben and Stehle (1960), Dittrich and Reuter (1994),
Dobronravov (1976), Fues (1927), Hagihara (1970), Lichtenberg and Lieberman

(1983/1992), McCauley (1997), Mittelstaedt (1970), Nordheim and Fues (1927),
Pars (1965), Prange (1935), Santilli (1978, 1980), Straumann (1987), Synge

(1960), Tabor (1989), van Vleck (1926), Vujanovic and Jones (1989), Whittaker
(1937).

Special Topics (Analytical):

Altmann (1986), Arhangelskii (1977), Chertkov (1960), Korenev (1967, 1979),
Koshlyakov (1985), Leimanis (1965), Lobas (1986), Lur’e (1968), Merkin (1974,
1987), Neimark and Fufaev (1972), Novoselov (1969), Timerding (1908).

Applied (Multibody Dynamics/Computational/Numerical, etc.):

Battin (1987), Bremer [1988(a)], Bremer and Pfeiffer (1992), Haug (1992), Hughes
(1986), Huston (1990), Junkins and Turner (1986), Magnus (1971), McCarthy (1990),
Roberson and Schwertassek (1988), Schiehlen (1986), Shabana (1989), Wittenburg

(1977).

4 ABBREVIATIONS, SYMBOLS, NOTATIONS, FORMULAE

These are the customary meanings; but, of course, some, hopefully easily under-
stood, exceptions are possible. The reader is urged always to keep common sense
handy!

Numbering of Equations, Examples, and Problems

Chapters are divided into sections; for example, }3.4 means chapter 3, section 4.
Equations are numbered consecutively within each section. For example, reference
to eq. (3.4.2) means equation (2) of chapter 3, section 4. Related equations are
indicated, further, by letters; for example, eq. (3.4.2a) follows eq. (3.4.2) and some-
how complements or explains it.

In chapters 2–8, examples and problems are placed anywhere within a section,
and are numbered consecutively within it; for example, ex. 5.7.2 means the second
example of chapter 5, section 7 and prob. 5.7.3 means the third problem of the same
section. Within examples/problems, equations are numbered consecutively alpha-
betically; for example, reference to (ex. 5.7.3: b) means equation (b) of the third
example of chapter 5, section 7. Related equations in examples/problems are
followed by numbers; for example, (ex. 5.7.2: k2) is related to or explains (ex.
5.7.2: k).
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Abbreviations

AD Analytical dynamics JP Jourdain’s principle (}6.3)
AM Analytical mechanics LP Lagrange’s principle (or D’Alembert’s

CM Classical mechanics principle in Lagrange’s form, }3.2)
GP Gauss’ principle (}6.4, }6.6) NP Nonholonomic (coordinate/

H Holonomic (coordinate/constraint/ constraint/system)
system) VD Virtual displacement (}2.5)

HP Hamilton’s principle (ch. 7) PVW Principle of virtual work (}3.2)
HZP Hertz’s principle (}6.7)

Chapter 1: Background

General symbols

N Number of particles of a system
ðP ¼ 1; . . . ;NÞ

h Number of holonomic constraints

ðH ¼ 1; . . . ; hÞ
n Number of Lagrangean (or global) coordinates
ð¼ 3N � hÞ

m Number of Pfaffian (holonomic and/or non-

holonomic) constraints
f Number of (local or global) degrees of freedom

ð� n�mÞ
k, l, p, r, . . . General (system) indices ð¼ 1; . . . ; nÞ
I , I 0, I 00, . . . Independent variable indices ð¼ mþ 1; . . . ; nÞ

D, D 0, D 00, . . . Dependent variable indices ð¼ 1; . . . ;m < nÞ
A) B A implies, or leads to, B (A, B, for both

‘‘directions’’)X
Discrete summation; usually, over a pair of

indices (one
P

for each such pair)

S (. . .) Summation over all the material points (par-
ticles) of a system, for a fixed time; a three-

dimensional material Stieltjes integral, equiva-
lent to Lagrange’s famous integration sign

S . . .

ð. . .Þ: � dð. . .Þ=dt Total/inertial time derivative
ð. . .Þ 0 The (. . .) have been subjected to some kind of

transformation

ð. . .Þo � ð. . .Þ Evaluated at some special value: for example,
initial or equilibrium; or with some constraints

enforced in it
ð. . .Þ* � ð. . .Þ Expressed as function of the variables t, q, !

(quasi velocities)
ð. . .ÞT � Transpose of matrix (. . .)

ð. . .Þ�1 � Inverse of matrix (. . .)

�kl Kronecker delta
"krs Permutation symbol (! tensor, in rectangular

Cartesian coordinates)
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Scalars in italics: for example, a, A, ω, Ω
Vectors in boldface italics: for example, a, A, ω, Ω
Tensors/Dyads in boldface, upper case, italics;Matrices in boldface (always), upper case
(usually), roman (usually, but sometimes in italics, like tensors; should be clear from
context, or clarified locally)



r=v=a (Instantaneous, and usually inertial) position/

velocity/acceleration of a particle P
Position/velocity/acceleration vector of
particle A relative to particle B

dm Mass of a particle P (Continuum approach)

mP Mass of a particle P (Discrete approach)
df Total force on particle P

(¼ df e þ df i; Newton–Euler)

(¼ dF þ dR; D’Alembert–Lagrange)
df e Total external force on particle P
df i Total internal, or mutual, force on particle P

dF Total impressed, or physical, force on

particle P
dR Total constraint reaction, or geometrical/

kinematical force on particle P

O� XYZ (O� IJK) or O� xk 0 (O� uk 0 ) Space-fixed; namely, inertial, axes (basis) at O
^� xyz (^� ijk) or ^� xk (^� uk) Body-fixed; namely, moving, axes (basis) at

body point ^

^� XYZ (^� IJK ) or ^� xk 0 (^ � uk 0 ) Comoving, translating but nonrotating (or
intermediate, or accessory) axes at body
point ^

dð. . .Þ=dt Rate of change of vector or tensor (. . .) relative

to fixed (inertial) axes
Rate of change of vector or tensor (. . .) relative

to moving (noninertial) axes

a arbitrary vector, T arbitrary (second-order)

axes relative to fixed ones

A ¼ ðAk 0kÞ Matrix of direction cosines between moving

(e.g., body-fixed) axes and space-fixed ones; a
(proper) orthogonal matrix ( passive interpreta-

tion):

Ak 0k ¼ Akk 0 � cosine ½ðfixedÞk 0 ; ðmovingÞk�
� cosine ½xk 0 ; xk�
� cosine ½xk;xk 0 �

A
�1 ¼ A

T Determinant of A � Det A ¼ þ1
Rotation tensor (active interpretation of A)

Rotation tensor about a point O and axis
through it specified by the unit vector n, by an
angle �
Rotator tensor

� Angle of finite rotation about a point O and
axis specified by the unit vector n

c � tanð�=2Þn Gibbs vector of finite rotation

c ¼ ð�1;2;3Þ � ð�X;Y ;ZÞ Rodrigues parameters relative to O� XYZ
�; �;  Eulerian angles (sequence 3! 1! 3):

precession ð�Þ ! nutation ð�Þ ! proper
(or eigen-) spin ( )

Angular velocity vector/tensor (moving axes
components)

Angular acceleration vector/tensor (moving

axes components)
Angular velocity vector/tensor (space-fixed

axes components)

16 INTRODUCTION

o∂(. . .)/∂t

rA/B/vA/B/aA/B

R

R′ ≡ R − 1

R(n, χ)

ω/Ω ≡ AT
· (dA/dt)

ω′/Ω′ ≡ (dA/dt) · AT

α ≡ dω/dt
/
≡ dΩ/dtA

da/dt = ∂a/∂t + ω × a
dT/dt = ∂T/∂t + ω × T − T × ω tensor, ω angular velocity vector of moving



Angular acceleration vector/tensor (space-

fixed axes components)
Sometimes referred to as tensor of angular
acceleration

G Center of mass of a rigid body

C Contact point between two bodies
^ Generic/arbitrary body point

� Generic/arbitrary space point

H
�;absolute � H

�
�Sðr� r

�
Þ � dm m Absolute angular momentum about �

H
�;relative � h

�
�S ðr� r

�
Þ � dm ðv� v

�
Þ Relative angular momentum about �

�S r=� � dm v=�
M . . . Moment of a force (or couple) about . . .

. . . Moment of inertia tensor about . . .

T � ð1=2ÞS m � m dm (Usually inertial) kinetic energy of a system

Chapter 2: Kinematics

q � ðq1; . . . ; qnÞ Holonomic, or global, or Lagrangean, or
system, coordinates; otherwise known as

generalized coordinates

r ¼ rðt; qÞ Fundamental Lagrangean representation of
position of typical system particle P

rðt; qþ �qÞ � rðt; qÞ � �r �P ð@r=@qkÞ�qk (First-order) virtual displacement of P
ek � @r=@qk, e0 � enþ1 � @r=@t Fundamental holonomic particle and system

vectors (Heun’s begleitvektoren)

v � ðdq1=dt � _qq1 � v1; . . . ; dqn=dt � _qqn � vnÞ Holonomic, or global, or Lagrangean, or
system, velocities; otherwise known as

generalized velocities
v ¼P ek _qqk þ e0 Particle velocity expressed in holonomic

variables

a ¼P ek€qqk þNo other €qqk terms Particle acceleration expressed in holonomic
variables

@r=@qk ¼ @v=@ _qqk ¼ @a=@€qqk ¼ � � � ¼ ek Basic kinematical identity (holonomic
variables)

!D �
P

aDk _qqk þ aD ¼ 0 Pfaffian constraints in velocity form ðaDk, aD:
constraint coefficients, functions of t and q;

!: quasi velocities)
d�D �

P
aDkdqk þ aDdt ¼ 0 Pfaffian constraints in kinematically admissible,

or possible, form (�: quasi coordinates)
��D �

P
aDk�qk ¼ 0 Pfaffian constraints in virtual form

General, kinematically admissible, variations of (. . .):

dð. . .Þ �
X
ð@ . . . =@qkÞ dqk þ ð@ . . . =@tÞ dt ¼

X
ð@ . . . =@�kÞ d�k þ ð@ . . . =@�nþ1Þ dt

Virtual variation of (. . .):

�ð. . .Þ �
X
ð@ . . . =@qkÞ�qk ¼

X
ð@ . . . =@�kÞ��k
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Ω′
/
dt

+Ω ·ΩE ≡ A

α
′/A′

≡ d



Quasi chain rules

@ . . . =@�k �
X
ð@ . . . =@qlÞð@ _qql=@!kÞ ¼

X
Alkð@ . . . =@qlÞ

@ . . . =@ql �
X
ð@ . . . =@�kÞð@!k=@ _qqlÞ ¼

X
aklð@ . . . =@�kÞ

@ . . . =@�nþ1 �
X
ð@ . . . =@qlÞð@ _qql=@!nþ1Þ þ @ . . . =@t

¼
X

Alð@ . . . =@qlÞ þ @ . . . =@t � @ . . . =@ðtÞ þ @ . . . =@t
@ . . . =@t ¼

X
akð@ . . . =@�kÞ þ @ . . . =@�nþ1 ¼ �

X
Akð@ . . . =@qkÞ þ @ . . . =@�nþ1

GENERAL (LOCAL) QUASI-VELOCITY

TRANSFORMATIONS

Velocity form

!D �
X

aDk _qqk þ aD ¼ 0; !I �
X

aIk _qqk þ aI 6¼ 0; !nþ1 � _qqnþ1 ¼ _tt ¼ 1

Kinematically admissible (or possible) form

d�D �
X

aDk dqk þ aD dt ¼ 0; d�I �
X

aIk dqk þ aI dt 6¼ 0;

d�nþ1 � dqnþ1 ¼ dt 6¼ 0

Virtual form

��D �
X

aDk�qk ¼ 0; ��I �
X

aIk�qk 6¼ 0; ��nþ1 � �qnþ1 ¼ �t ¼ 0

HOLONOMIC VELOCITIES EXPRESSED IN TERMS OF

QUASI VELOCITIES [(akl) and (Akl) are inverse matrices]

Velocity form

_qqk � vk ¼
X

Akl!l þAk ¼
X

AkI!I þ Ak 6¼ 0

Kinematically admissible (or possible) form

dqk ¼
X

Akl d�l þ Ak dt ¼
X

AkI d�I þ Ak dt 6¼ 0 ðunder d�D ¼ 0Þ

Virtual form

�qk ¼
X

Akl��l ¼
X

AkI ��I 6¼ 0 ðunder ��D ¼ 0Þ

PARTICLE KINEMATICS IN TERMS OF QUASI VARIABLES

(�; !; etc.)

Virtual displacement

�r �
X

ek �qk ¼
X

ek ��k ¼
X

eI ��I
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Velocity

v ¼
X

!leI þ enþ1 �
X

!leI þ e0

Acceleration

a ¼
X

_!!kek þNo other _!! terms

¼
X

_!!IeI þNo other _!! terms

Basic kinematical identity [where f ¼ f ðt; q; _qqÞ ¼ f *ðt; q; !Þ ¼ f *�

@r=@�k ¼ @v*=@!k ¼ @a*=@ _!!k ¼ � � � ¼ ek

Transformation relations between the holonomic and nonholonomic bases e..., e...

ek ¼
X
ð@ _qql=@!kÞel ¼

X
Alkel

enþ1 �
X

e0 ¼
X

Alel þ enþ1 ¼ �
X

akek þ enþ1

el ¼
X
ð@!k=@ _qqlÞek ¼

X
aklek

enþ1 � e0 � et ¼
X

akek þ enþ1 ¼ �
X

Alel þ enþ1

FROM PARTICLE TO SYSTEM VECTORS

(i.e., vectors characterizing, or expressing, system variables)

S ðparticle vectorÞ � ek ¼ ðsystem vectorÞk ðholonomic componentsÞ

S ðparticle vectorÞ � ek ¼ ðsystem vectorÞk ðnonholonomic componentsÞ

SPECIAL FORMS OF PFAFFIAN CONSTRAINTS

Chaplygin

!D � _qqD �
X

bDI _qqI ¼ 0; bDI : functions of qI � ðqmþ1; . . . ; qnÞ
!I � _qqI 6¼ 0

Voronets

!D � _qqD �
X

bDI _qqI � bD ¼ 0; bDI ; bD: functions of t and all qs

!I � _qqI 6¼ 0

) _qqD ¼
X

bDI!I þ bD; _qqI � !I

h i
Corresponding particle virtual displacement

�r �
X

ek�qk ¼
X

bI�qI
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Corresponding particle velocity

v ¼
X

_qqIbI þ bnþ1 � vo

HAMEL COEFFICIENTS

�krs ¼ ��ksr ¼
XX

ð@akb=@qc � @akc=@qbÞAbrAcs

¼
XX

akb½Acrð@Abs=@qcÞ � Acsð@Abr=@qcÞ�
¼
XX

ðAbrAcs � AcrAbsÞð@akb=@qcÞ
� k

r;nþ1 ¼ �� k
nþ1;r � � k

r ¼
XX

ð@akb=@qc � @akc=@qbÞAbrAc

þ
X
ð@akb=@t� @ak=@qbÞAbr

�nþ1kl ¼ 0; �nþ1k;nþ1 ¼ ��nþ1nþ1;k ¼ 0; �nþ1nþ1;nþ1 ¼ 0

TRANSITIVITY EQUATIONS

ð��kÞ:� �!k ¼
X

akl ½ð�qlÞ:� �ð _qqlÞ� þ
XX

�kbs!s��b þ
X

�kb��b

ð�qkÞ: � �ð _qqkÞ ¼
X

Akl ½ð��lÞ:� �!l � �
XX

�lbs!s��b �
X

�lb��b

n o
ð��nþ1Þ:� �!nþ1 � ð�qnþ1Þ:� �ð _qqnþ1Þ � ð�tÞ:� �ð _ttÞ ¼ 0

or, equivalently,

dð��kÞ � �ðd�kÞ ¼
X

akl ½dð�qlÞ � �ðdqlÞ� þ
XX

�kbs d�s ��b þ
X

�kb dt ��b

dð�qkÞ � �ðdqkÞ ¼
X

Akl ½dð��lÞ � �ðd�lÞ� �
XX

�lbs d�s ��b �
X

�lb dt ��b

n o
dð��nþ1Þ � �ðd�nþ1Þ ¼ dð�tÞ � �ðdtÞ ¼ dð0Þ � �ðdtÞ ¼ 0� 0 ¼ 0;

or, assuming (Hamel viewpoint)

ð�qkÞ: ¼ �ð _qqkÞ or dð�qkÞ ¼ �ðdqkÞ
ð��kÞ:� �!k ¼

XX
�kbs !s ��b þ

X
�kb ��b �

X
hkb ��b

dð��kÞ � �ðd�kÞ ¼
XX

� k
bs d�s ��b þ

X
� k

b dt ��b

¼
XX 0

�kbsðd�s ��b � ��s d�bÞ þ
X

�kb dt ��b

(where
PP 0 means that the summation extends over b and s only once; say, s < b)

Generally [with o, � ¼ 1; . . . ; n; ��nþ1 � �t ¼ 0�

dð��	Þ � �ðd�	Þ ¼
XX

�	
� o

d�o ��
�
þ
X

�	
�
dt ��

�
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FROBENIUS’ THEOREM

(Necessary and sufficient conditions for holonomicity ¼ complete integrability of a
system of m Pfaffian constraints in the nþ 1 variables q1; . . . ; qn; qnþ1Þ

�DII 0 ¼ 0; �DI ;nþ1 � �DI ¼ 0 ðD ¼ 1; . . . ;m; I ; I 0 ¼ mþ 1; . . . ; nÞ

Chapter 3: Kinetics

BASIC QUANTITIES

T � ð1=2ÞS v � v dm ðUsually inertialÞ Kinetic Energy of system

S � ð1=2ÞS a � a dm ðUsually inertialÞ Gibbs�Appell function of system;

or simply Appellian

NOTATION

f ðt; q; _qqÞ ¼ f ½t; q; _qqDðt; q; !Þ� � f *ðt; q; !Þ � f * ½arbitrary function�;

for example,

Tðt; q; _qqÞ ¼ T ½t; q; _qqDðt; q; !Þ� � T*ðt; q; !Þ � T*

) T*ðt; q; !D ¼ 0; !I Þ � T*oðt; q; !IÞ � T*o

Tðt; q; _qqÞ ¼ T ½t; q; _qqDðt; q; _qqIÞ; _qqI � � Toðt; q; _qqI Þ � To ðand similarly for SÞ

LAGRANGE’S PRINCIPLE

� 0WR 
 0 ) �I 
 � 0W

(for unilateral constraints; for bilateral constraints, 
 is replaced by ¼)
Particle (or raw) forms

� 0WR �SdR � �r; � 0W �SdF � �r; �I �Sdm a � �r

Holonomic variable forms

� 0WR ¼
X

Rk �qk; Rk �SdR � ek;

� 0W ¼
X

Qk �qk; Qk �SdF � ek;

�I ¼
X
½ð@T=@ _qqkÞ:� @T=@qk� �qk ¼

X
ð@S=@€qqkÞ �qk �

X
Ek �qk
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Nonholonomic variable forms

� 0WR ¼
X

Lk ��k ¼
X

LI ��I ; Lk �SdR � ek;

� 0W ¼
X

Yk ��k; Yk �SdF � ek;

�I ¼
X
½ð@T*=@!kÞ: � @T*=@�k � Gk� ��k ¼

X
ð@S*=@ _!!kÞ ��k �

X
Ik ��k

INERTIAL ‘‘FORCES’’ IN HOLONOMIC VARIABLES

Ek �Sdm a � ek

¼ ð@T=@ _qqkÞ:� @T=@qk ðLagrangean formÞ
¼ @S=@€qqk ðAppellian formÞ
¼ @ _TT=@ _qqk � 2ð@T=@qkÞ � NkðTÞ � Nk ðNielsen form; see chap: 5Þ

INERTIAL ‘‘FORCES’’ IN NONHOLONOMIC VARIABLES

Ik �Sdm a � ek

¼ ð@T*=@!kÞ:� @T*=@�k � Gk � Ek*ðT*Þ � Gk ðVolterra�Hamel formÞ
¼ @S*=@ _!!k ðGibbs�Appell formÞ
¼
X
ð@ _qql=@!kÞEl ¼

X
AlkEl ðMaggi formÞ

Nonholonomic deviation

Gk �Sdm v* � ½ð@v*=@!kÞ: � @v*=@�k�
�Sdm v* �Ek*ðv*Þ �Sdm v* � ck ðparticle=raw formÞ
¼ �

XX
�lksð@T*=@!lÞ!s �

X
�lkð@T*=@!lÞ

¼ �
X

hlkð@T*=@!lÞ hlk �
X

�lks !s þ �lk
h i

TRANSFORMATION EQUATIONS

Rl ¼
X

aklLk , Lk ¼
X

AlkRl

Ql ¼
X

aklYk , Yk ¼
X

AlkQl

El ¼
X

aklIk , Ik ¼
X

AlkEl

THE CENTRAL EQUATION

(Lagrange–Heun–Hamel Zentralgleichung)

First Form
�T þ � 0W þ �D ¼ ð�PÞ:
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Second FormX
_PPk ��kþ

X
Pk½ð��kÞ:� �!k� �

X
ð@T*=@�kÞ ��k ¼

X
Yk ��k

where

�T ¼Sdm v � �v ¼
X
½ð@T=@qkÞ �qk þ ð@T=@ _qqkÞ �ð _qqkÞ�

¼
X
½ð@T*=@qkÞ �qk þ ð@T*=@!kÞ �!k�

�
X
½ð@T*=@�kÞ ��k þ ð@T*=@!kÞ �!k� ¼ �T*

� 0W �SdF � �r ¼
X

Qk �qk ¼
X

Yk ��k

�D �Sdm v � ½ð�rÞ:� �v�
¼
X
ð@T*=@!kÞ½ð��kÞ:� �!k� �

X
hlkð@T*=@!lÞ ��k

�P ¼Sdm v � �r ¼
X

pk �qk ¼
X

Pk ��k

pk �Sdm v � ek ¼ @T=@�k ðholonomic momentumÞ
Pk �Sdm v* � ek ¼ @T*=@!k ðnonholonomic momentumÞ
pl ¼

X
aklPk , Pk ¼

X
Alkpl ðtransformation formulaeÞ

EQUATIONS OF MOTION

COUPLED

Routh–Voss (adjoining of constraints via multipliers)

Ek ¼ Qk þ Rk ðmultipliers; holonomic variablesÞ

UNCOUPLED

Maggi (projections)

Kinetostatic:
P

ADkED ¼
P

ADkQD þ LD (multipliers; holonomic variables)

Kinetic:
P

AIkEI ¼
P

AIkQI (no multipliers; holonomic variables)

Hamel (embedding of constraints via quasi variables)

Kinetostatic: ED*ðT*Þ � GD ¼ YD þ LD (multipliers; nonholonomic variables)

Kinetic: EI*ðT*Þ � GI ¼ YI (no multipliers; nonholonomic variables)

SPECIAL FORMS ðconstraints of form _qqD ¼
P

bDI _qqI þ bD; bDI , bD functions of t, qÞ

Maggi ! Hadamard

ED ¼ QD þ �D ðkinetostaticÞ EI ¼ QI �
X

bDI�D

) EI þ
X

bDIED ¼ QI þ
X

bDIQD � QI ;o � QIo ðkineticÞ
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Hamel ! Voronets

To ¼ Toðt; q; _qqIÞ; _qqD ¼
X

bDI _qqI þ bD

h i
ð@To=@ _qqIÞ: � @To=@qI �

X
bDIð@To=@qDÞ

�
XX

wD
II 0 ð@T=@ _qqDÞo _qqI 0 �

X
wD

I ð@T=@ _qqDÞo ¼ QI þ
X

bDIQD;

wD
II 0 � @bDI=@qI 0 þ

X
bD 0I ð@bDI 0=@qD 0 Þ

h i
� @bDI=@qI 0 þ

X
bD 0I 0 ð@bDI=@qD 0 Þ

h i
wD

I � wD
I ;nþ1 � @bD=@qI þ

X
bD 0I ð@bD=@qD 0 Þ

h i
� @bDI=@tþ

X
bD 0 ð@bDI=@qD 0 Þ

h i
Voronets ! Chaplygin

To ¼ ToðqI ; _qqIÞ; _qqD ¼
X

bDIðqmþ1; . . . ; qnÞ _qqI ; i:e:, bD ¼ 0
h i
ð@To=@ _qqIÞ:� @To=@qI

�
XX

tDII 0 ð@T=@ _qqDÞo _qqI 0 ¼ QI þ
X

bDIQD

tDII 0 � @bDI=@qI 0 � @bDI 0=@qI

POWER (OR ENERGY RATE) THEOREMS

Holonomic variables

dh=dt ¼ �@L=@tþ
X

Qk;nonpotential _qqk �
X

�DaD;

h �
X
ð@L=@ _qqkÞ _qqk � L ¼ T2 þ ðV0 � T0Þ; L � T � V ;

dE=dt ¼ �@L=@tþ dðT1 þ 2T0Þ=dtþ
X

Qk;nonpotential _qqk �
X

�DaD;

E � T þ V0; L ¼ T �V ¼ T � ðV0 þ V1Þ; h � E � ðT1 þ 2T0Þ

Nonholonomic variables

dh*=dt ¼ �@L*=@�nþ1 þ
X

YI ;nonpotential !I � R;

h* �
X
ð@L*=@!IÞ!I � L* ¼ T*2 þ ðV0 � T*0Þ

@L*=@�nþ1 � @L*=@tþ
X

Akð@L*=@qkÞ
R �

XX
�rIð@L*=@!rÞ!I ðRheonomic nonholonomic powerÞ

EXPLICIT FORMS OF THE EQUATIONS OF MOTION

Lagrangean equations: with

T ¼ T2 þ T1 þ T0; 2T2 �
XX

Mkr _qqr _qqk; T1 �
X

Mr _qqr; 2T0 �M0;

Mkl ¼Mlk; Mk;nþ1 ¼Mnþ1;k �Mk0 ¼M0k �Mk;

Mnþ1;nþ1 �M00 �M0: Inertia coefficients;
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2Gk;rs � 2Gk;sr � @Mkr=@qs þ @Mks=@qr � @Mrs=@qk: 1st kind Christoffels;

Gk �
X

gkr _qqr �
X
ð@Mr=@qk � @Mk=@qrÞ _qqr: Gyroscopic ‘‘force’’;

Qk ¼ Qk;nonpotential þ ð@V=@ _qqkÞ: � @V=@qk;
V ¼

X
Vkðt; qÞ _qqk þ V0ðt; qÞ � V1ðt; q; _qqÞ þ V0ðt; qÞ: Generalized potential;

the Lagrangean-type equations, say Ek ¼ Qk, assume the form

EkðT2Þ þ EkðT1Þ þ EkðT0Þ ¼ Qk;

EkðT2Þ ¼
X

Mkr€qqr þ
XX

Gk;rs _qqr _qqs þ
X
ð@Mkr=@tÞ _qqr;

EkðT1Þ ¼ @Mk=@t� Gk;

EkðT0Þ ¼ �ð1=2Þð@M0=@qkÞ:

Hamel equations (stationary case, no constraints), with

2T* ¼ 2T*2 ¼
XX

M*kr !r !k;

2G*k;rs � 2G*k;sr � @M*kr=@�s þ @M*ks=@�r � @M*rs=@�k;

Lk;lp � G*k;lp þ
X

�rklM*rp ð‘‘nonholonomic Christoffels’’Þ

Hamel-type equations, say Ik ¼ Yk, assume the formX
M*kl _!!l þ

XX
Lk;lp !l !p ¼ Yk:

APPELLIAN FUNCTION

Holonomic variables

2S ¼
X

Mkr€qqr€qqk þ 2
XXX

Gk;lp€qqk _qql _qqp

þ 4
XX

Gk;l;nþ1€qqk _qql þ 2
X

Gk;nþ1;nþ1€qqk

Nonholonomic variables (stationary case)

2S* ¼
XX

M*kr _!!k _!!r þ 2
XXX

Lk;lp _!!k !l !p

LAGRANGEAN TREATMENT OF THE RIGID BODY

Kinetic energy

T ¼ Ttranslation þ Trotation þ Tcoupling

2Ttranslation ¼ m �^
2 ð^: arbitrary body point; m: mass of bodyÞ

2Trotation ¼ x �Sdmðr=^ � v=^Þ
¼ x �Sdm ½r=^ � ðx� r=^Þ� � x � h^ ¼ x � I^ �x

Tcoupling ¼ x �Sdm ðr=^ � v^Þ ¼ m v^ � ðx� rG=^Þ ¼ m v^ � vG=^
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Momentum vectors

�P ¼Sdm v � �r ¼ p � �r^ þH^

p �Sdm v ¼ m vG: linear momentum of body

H^ �S r=^ � ðdm vÞ ¼ h^ þ rG=^ � ðm v^Þ: absolute angular momentum of body

about ^

HO �S r� ðdm vÞ ¼ H^ þ r^=O � p ðO: fixed pointÞ

Kinetic energy in terms of the momentum vectors

2T ¼ p � v^ þH^ �x; p ¼ @T=@v^; H^ ¼ @T=@x

Kinematico-inertial (KI) acceleration vectors

�I ¼Sdm a � �r ¼ I � �r^ þ A^

I �Sdm a ¼ m aG: linear KI acceleration of body

A^ �S r=^ � ðdm aÞ: angular KI acceleration of body about ^

Eulerian principles in Lagrangean form

Angular momentum

APPELLIAN FUNCTION (to within acceleration-proportional terms)

2S ¼ ma^
2 þ 2m rG=^ � ða^ � aÞ þ 2m ðx� rG=^Þ � ða^ �xÞ
þ a � I^ � aþ 2ða� xÞ � I^ �x

¼ maG
2 þ a � IG � aþ 2ða� xÞ � IG �x

ðAppellian counterpart of K€oonig’s theoremÞ

RELATIVE MOTION (I: inertial origin; O: moving origin)

Positions

rI ¼ rOðtÞ þ rðq1; . . . ; qnÞ ðmotion of O known; q: noninertial coordinatesÞ
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A� = dH�/dt + v� × p

= (∂H�/∂t +Ω ×H�) + v� × p

· δθ

I = dp/dt = ∂p/∂t +Ω × p = ∂/∂t(∂T/∂v�) +Ω × (∂T/∂v�)

= ∂/∂t(∂T/∂ω) +Ω × (∂T/∂ω) + v� × (∂T/∂v�)

· δθ (δθ: virtual rotation vector)

Linear momentum (Ω: vector of angular velocity of moving axes)

(also A
·
= dH
·
/dt + v
·
× p; •: any point)



Velocities

v ¼ vO þ vrelative þX � r;
X
ð@r=@qkÞ _qqk

Virtual displacements

Kinetic energy

T ¼ Ttransport þ Trelative þ Tcoupling

2Ttransport ¼ mvO
2 þ 2m vO � ðX � rGÞ þX � IO �X � 2T0 ½� _qq0�

2Trelative ¼Sdm vrel;ve � vrel;ve � 2T2 ½� _qq2�
Tcoupling ¼ prel;ve � vO þHO;rel

;
ve �X � T1 ½� _qq1�

prel;ve �Sdm vrel;ve ¼
X

Sdmð@r=@qkÞ
� �

_qqk

ðnoninertial linear momentumÞ
HO;rel

;
ve �S r�

X
Sdm r� ð@r=@qkÞ
� �

_qqk

ðnoninertial absolute angular momentumÞ

LAGRANGEAN TREATMENT OF RELATIVE MOTION

[equations of carried body; say, EkðTÞ ¼ Qk�

EkðT2Þ ¼ Qk þQk;transport transl
;
n

þQk;transport rotat
;
n þQk;transport rotat

;
n centrifugal þQk;Coriolis;

Qk;transport transl
;
n � �@Vtranslation=@qk; Vtranslation � m aO � rG;

Qk;transport rotat
;
n � �ðdX=dtÞ � ð@HO;rel

;
ve=@qkÞ

¼ �ðdX=dtÞ � Sdm r� ð@r=@qkÞ
� �

;

Qk;transport rotat
;
n centrifugal

2Vcentrifugal � �Sdm ðX � rÞ2 ¼ �X � IO �X;

Qk;Coriolis � �2SX � ðdm vrel;veÞ � ð@r=@qkÞ ¼
X

gkl _qql ;

gkl � gkl �X; gkl � 2Sdm

Chapter 4: Impulsive Motion

Fundamental impulsive variational equation (impulsive principle of Lagrange—LIP):

b�I�I ¼ d� 0W� 0W ;
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vrelative ≡ ∂r/∂t =

m(∂rG/∂t) =

(∂r/∂t) =

[
(∂r/∂qk) × (∂r/∂ql)

]

δrI = δrO + δr = δrO + δrelr+ δΘ × r (Ω ≡ dΘ/dt: frame angular velocity)



where

b�I�I �Sdm a � �r ¼S Dðdm vÞ � �r:

(first-order) virtual work of impulsive momenta, and

d� 0W� 0W �S dF � �r ¼S cdFdF � �r:

(first-order) virtual work of impulsive impressed ‘‘ forces.’’

d� 0WR� 0WR ¼S cdRdR � �r ¼
X

S cdRdR � ek

� �
�qk �

X
R̂Rk �qk;

d� 0W� 0W ¼S cdFdF � �r ¼
X

S cdFdF � ek

� �
�qk �

X
Q̂Qk �qk;

b�I�I ¼S Dðdm vÞ � �r ¼
X

SdmDv � ek
� �

�qk

¼
X

D Sdm v � ek

� �
�qk �

X
Dpk �qk;

and

pk �S ðdm v � ekÞ � @T=@ _qqk
) Dpk ¼ D Sdm v � ek

� �
¼S ½Dðdm vÞ � ek�:

[holonomic (k)th component] impulsive system momentum change,

Q̂Qk �S dF � ek ¼S cdFdF � ek:

[holonomic (k)th component] impulsive system impressed force; or, simply,
impressed system impulse,

R̂Rk �S dR � ek ¼S cdRdR � ek:

[holonomic (k)th component] impulsive system constraint reaction force, we finally
obtain LIP in holonomic system variables:X

R̂Rk �qk ¼ 0;
X

Dð@T=@ _qqkÞ �qk ¼
X

Q̂Qk �qk;

and similarly in quasi variables.

Energetic theorem

DT � Tþ � T� ¼W�=þ;

where

2Tþ �Sdm vþ � vþ; 2T� �Sdm v� � v�;

28 INTRODUCTION



and

W�=þ �S cdFdF � ðvþ þ v�Þ=2

In words: The sudden change of the kinetic energy of a moving system, due to
arbitrary impressed impulses, equals the sum of the dot products of these impulses
with the mean (average) velocities of their material points of application, immedi-
ately before and after their action.

APPELLIAN CLASSIFICATION OF IMPULSIVE

CONSTRAINTS, AND CORRESPONDING EQUATIONS OF

IMPULSIVE MOTION

At a given initial instant t 0, new constraints are suddenly introduced into the system
and/or some old constraints are removed, or suppressed. As a result, mutual percus-
sions are generated, which, in the very short time interval 	 � t 00 � t 0 over which they
are supposed to act and during which the shock lasts, produce finite velocity changes,
but, according to our ‘‘first’’ approximation, produce negligible position changes;
that is, for 	 ! 0: Dq ¼ 0, Dðdq=dtÞ 6¼ 0. The constraints existing at the shock
moment are either persistent or nonpersistent. By persistent we mean constraints
that, existing at the shock ‘‘moment,’’ exist also after it, so that the actual postimpact
displacements are compatible with them; whereas by nonpersistent we mean con-
straints that, existing at the shock moment, do not exist after it, so that the actual
postimpact displacements are incompatible with them.

The constraints that exist at the shock instant can be classified into the following
four distinct kinds or types:

1. Constraints that exist before, during, and after the shock; that is, the latter neither
introduces new constraints, nor does it change the old ones; the system, however, is

acted on by impulsive forces. An example of such a constraint is the striking of a
physical pendulum with a nonsticking (or nonplastic) hammer at one of its points,

and the resulting communication to it of a specified impressed impulsive force.
2. Constraints that exist during and after the shock, but not before it; that is, the latter

introduces suddenly new constraints on the system. Examples: (a) A rigid bar that

falls freely, until the two inextensible slack strings that connect its endpoints to a
fixed ceiling become taut (during) and do not break (after). (b) The inelastic central

collision of two solid spheres (‘‘coefficient of restitution’’ � e ¼ 0—see below). (c) In
a ballistic pendulum, the pendulum is constrained to rotate about a fixed axis, which

is a constraint that exists before, during, and after the percussion of the pendulum

with a projectile (i.e., first-type constraint). The projectile, however, originally inde-
pendent of the pendulum, strikes it and becomes embedded into it, which is a case of

a new constraint whose sudden realization produces the shock, and which exists

during and after the shock but not before it (i.e., second-type constraint).
3. Constraints that exist before and during the shock, but not after it. For example, let us

imagine a system that consists of two particles connected by a light and inextensible

bar, or thread, thrown up into the air. Then, let us assume that one of these particles

is suddenly seized (persistent constraint introduced abruptly; i.e., second type), and,
at the same time, the bar breaks (constraint that exists before the shock but does not

exist after it; i.e., third type).

4. Constraints that exist only during the shock, but neither before nor after it. For
example, when two solids collide, since their bounding surfaces come into contact,
a constraint is abruptly introduced into this two-body system. If these bodies are
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elastic (e ¼ 1—see coefficient of restitution, below), they separate after the collision,

which is a case of a constraint that exists during the percussion but neither before nor
after it (i.e., fourth type); while if they are plastic (e ¼ 0), they do not separate
(projectile and pendulum, above; i.e., second type). If 0 < e < 1, the bodies separate;

that is, we have a fourth kind constraint.

Clearly, the first two types contain the persistent constraints, while the last two
contain the nonpersistent ones. Schematically, we have the classification shown in
table 1.

In impulsive problems: the excess of the number of unknowns (postimpact velo-
cities and constraint reactions) over that of the available equations [those obtained
from Lagrange’s impulsive principle; plus preimpact velocities, impressed impulsive
forces, constraints, and, sometimes, knowledge of the postimpact state (second type;
e.g., e ¼ 0)]—namely, the degree of its indeterminancy—equals the number of its
constraints, which, having existed before or during the shock, cease to do so at the
end of it; that is:

Degree of indeterminacy ¼ Number of nonpersistent constraints;

that is, the persistent types 1 and 2 are determinate, while the nonpersistent ones 3
and 4 are indeterminate.

COEFFICIENT OF RESTITUTION (e)

e ¼ �ðv2=1 � nÞ
þ

ðv2=1 � nÞ�
� � v2=1;n

þ

v2=1;n
� ¼ �

Relative velocity of separation

Relative velocity of approach

where 1 and 2 are the two points of bodies A and B that come into contact during the
collision, and n is the unit vector along the common normal to their bounding
surfaces there, say from A to B. This coefficient ranges from 0 (plastic impact, no
separation) to 1 (elastic impact, no energy loss); that is, 0 � e � 1.

ANALYTICAL EXPRESSION OF THE APPELLIAN

CLASSIFICATION; PERSISTENCY VERSUS DETERMINACY

1. In terms of elementary dynamics: Consider a system that consists of N solids, in
contact with each other at K points, out of which C are of the nonpersistent type,
and/or with a number of foreign solid obstacles that are either fixed or have known
motions. Assuming frictionless collisions, we shall have a total of 6N þ K unknowns
(6N postshock velocities, plus K percussions at the smooth contacts, along the
common normals), and 6N þ K � C equations (6N impulsive momentum equations,
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Table 1 Appellian Classification of Impulsive Constraints

Preshock Shock Postshock
(before) (during) (after)

1 (persistent) &&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&

2 (persistent) &&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&

3 (nonpersistent) &&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&

4 (nonpersistent) &&&&&&&&&&&&&&&&&&&



plus K � C persistent-type constraints); and therefore the degree of indeterminacy
equals the number of nonpersistent contacts C (i.e., the kind that disappear after the
shock).

Hence: (a) a free (i.e., unconstrained) solid subjected to given percussions or (b) a
system subjected only to persistent constraints are impulsively determinate.
2. From the Lagrangean viewpoint: (a) A number of constraints, imposed on a

system originally defined by n Lagrangean coordinates, can always be put in the
equilibrium form:

q1 ¼ 0; q2 ¼ 0; . . . ; qm ¼ 0 ðm: number of such constraints < nÞ:

(b) Within our impulsive approximations, even Pfaffian constraints (including non-
holonomic ones) can be brought to the holonomic form; that is, in impulsive motion,
all constraints behave as holonomic; and to solve them, either we use impulsive
multipliers, or we avoid them by choosing the above equilibrium coordinates; or
we use quasi variables.

Assuming, henceforth, such a choice of Lagrangean coordinates for all our impul-
sive constraints (and, for convenience, re-denoting these new equilibrium coordi-
nates by q1; . . . ; qm; . . . ; qn), we can quantify the four Appellian types of impulsive
constraints as follows:

� First-type constraints (existing before, during, and after the shock). As a result of these

constraints, let the system configurations depend on n, hitherto independent,
Lagrangean parameters: q � ðq1; . . . ; qnÞ. During the shock interval ðt 0; t 00Þ, the cor-
responding velocities _qq � ð _qq1; . . . ; _qqnÞ pass suddenly from the known values ð _qqÞ�, at
t 0, to other values ð _qqÞþ, while the q’s remain practically unchanged; that is, here we

have

ðqkÞbefore ¼ 0; ðqkÞduring ¼ 0; ðqkÞafter ¼ 0;

D _qqk � ð _qqkÞþ � ð _qqkÞ� 6¼ 0 ½ð _qqkÞþ: unknown; ð _qqkÞ�: known�:

� Second-type constraints (additional constraints existing during and after the shock, but
not before it). Here, with qD 00 � ðq1; . . . ; qm 00 Þ, where m 00 < n, we have

ðqD 00 Þbefore 6¼ 0; ðqD 00 Þduring ¼ 0; ðqD 00 Þafter ¼ 0;

ð _qqD 00 Þ� 6¼ 0; ð _qqD 00 Þþ ¼ 0) Dð _qqD 00 Þ ¼ �ð _qqD 00 Þ� 6¼ 0:

� Third-type constraints (additional constraints existing before and during the shock, but

not after it). Here, with qDF � ðqmFþ1; . . . ; qmFÞ, where mF < n, we have

ðqDFÞbefore ¼ 0; ðqDFÞduring ¼ 0; ðqDFÞafter 6¼ 0;

ð _qqDFÞ� ¼ 0; ð _qqDFÞþ 6¼ 0) Dð _qqDFÞ ¼ ð _qqDFÞþ 6¼ 0:

� Fourth-type constraints (additional constraints existing only during the shock, but
neither before nor after it). Here, with qD 0000 � ðqmFþ1; . . . ; qm 0000 Þ, where m 0000 < n, we

have

ðqD 0000 Þbefore 6¼ 0; ðqD 0000 Þduring ¼ 0; ðqD 0000 Þafter 6¼ 0;

ð _qqD 0000 Þ� 6¼ 0; ð _qqD 0000 Þþ 6¼ 0) Dð _qqD 0000 Þ ¼ ð _qqD 0000 Þþ � ð _qqD 0000 Þ� 6¼ 0:
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Hence, if no fourth-type constraints exist, mF ¼ m 0000; and if no third-type con-

straints exist, m 00 ¼ mF; etc.

Next, arguing as in the case of continuous motion (chap. 3), during the shock
interval, we may view the constraints of the second, third, and fourth types as absent,
provided that, in the spirit of the impulsive principle of relaxation (LIP), we add to the
system the corresponding constraint reactions. All relevant equations of motion are
contained in the LIP:X

Dð@T=@ _qqkÞ �qk ¼
X

Q̂Qk �qk ðk ¼ 1; . . . ; nÞ:

If the virtual displacements �q � ð�q1; . . . ; �qnÞ are arbitrary, the right side of the
above equation contains the impulsive virtual works of the reactions stemming
from the second, third, and fourth type constraints, and operating during the
shock interval ðt 0; t 00Þ. Therefore, to eliminate these ‘‘forces,’’ and thus produce
n�m 0000 reactionless, or kinetic, impulsive equations, we choose �q’s that are com-
patible with all constraints holding at the shock moment; that is, we take

�q1; . . . ; �qm 00 ; �qm 00þ1; . . . ; �qmF; �qmFþ1; . . . ; �qm 0000 ¼ 0;

�qm 0000þ1; . . . ; �qn 6¼ 0:

Corresponding two (uncoupled) sets of equations:

Impulsive kinetostatic: Dð@T=@ _qqDÞ ¼ Q̂QD þ �̂�D ðD ¼ 1; . . . ;m 0000Þ;
Impulsive kinetic: Dð@T=@ _qqIÞ ¼ Q̂QI ðI ¼ m 0000 þ 1; . . . ; nÞ:
Further, since the velocity jumps D _qq are produced only by the very large impulsive
constraint reactions, operating during the very small interval t 00 � t 0, within our
approximations, the Q̂QI [since they derive only from ordinary (i.e., finite, nonimpul-
sive) forces, like gravity] vanish: Q̂QI ¼ 0; and so eq. (b) reduces to Appell’s rule:

Dð@T=@ _qqI Þ ¼ 0 ) ð@T=@ _qqI Þþ ¼ ð@T=@ _qqI Þ�:

In words: The partial derivatives of the kinetic energy relative to the velocities of
those system coordinates q’s that are not forced to vanish at the shock instant (i.e.,
qduring 6¼ 0) have the same values before and after the impact; or, these n�m 0000

unconstrained momenta, pI � @T=@ _qqI , are conserved.
To make the problem determinate, in the presence of nonpersistent-type con-

straints, we must make particular constitutive (i.e., physical) hypotheses: for example,
elasticity assumptions about the postshock state.

EXTREMUM THEOREMS OF IMPULSIVE MOTION

All based on the following master equation (impulsive Lagrange’s principle):

Sdm ðvþ � v�Þ � �r ¼S cdFdF � �r

Carnot (first part—collisions)

�r � vþ; cdFdF ¼ 0 ! Tþ � T� < 0
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Carnot (second part—explosions)

�r � v�; cdFdF ¼ 0 ! Tþ � T� > 0

Kelvin (prescribed velocities)

�r � vþ; �r � vþ þ �Kv ¼ v; v� ¼ 0 ! TðvÞ � TðvþÞ > 0; �KT
þ ¼ 0

Bertrand–Delaunay (prescribed impulses)

�r � vþ; �r � vþ þ �B=Dv ¼ v ! TðvÞ � TðvþÞ < 0; �B=DT
þ ¼ 0

[Taylor: TKelvinðvÞ � TðvþÞ > TðvþÞ � TðvÞBertrand�Delaunay�
Robin (prescribed impulses and constraints)

�r � vþ; �r � vþ þ �Rv ¼ v

! P �S ðdm=2Þðv� v�Þ2 �S cdFdF � ðv� v�Þ: stationary and minimum

Gauss (impulsive compulsion)

ẐZ �S ðdm=2Þðv� v� � cdFdF=dmÞ2 ¼ PþS ðcdFdF Þ2=2dm: stationary and minimum

Chapter 5: Nonlinear Nonholonomic Constraints

CONSTRAINTS

fDðt; q; _qqÞ ¼ 0

QUASI VARIABLES

Velocity form

!D � fDðt; q; _qqÞ ¼ 0; !I � fIðt; q; _qqÞ 6¼ 0; !n¼1 � _qqnþ1 ¼ _tt ¼ 1

Virtual form (by Maurer–Appell–Chetaev–Johnsen–Hamel)

��D ¼
X
ð@fD=@ _qqkÞ �qk ¼

X
ð@!D=@ _qqkÞ �qk ¼ 0;

��I ¼
X
ð@fI=@ _qqkÞ �qk ¼

X
ð@!I=@ _qqkÞ �qk 6¼ 0;

�qk ¼
X
ð@ _qqk=@!lÞ ��l ¼

X
ð@ _qqk=@!IÞ ��I

CompatibilityX
ð@fk=@ _qqbÞð@ _qqb=@!lÞ �

X
ð@!k=@ _qqbÞð@ _qqb=@!lÞ ¼ @!k=@!l ¼ �kl ;X

ð@Fk=@!bÞð@!b=@ _qqlÞ �
X
ð@ _qqk=@!bÞð@!b=@ _qqlÞ ¼ @ _qqk=@ _qql ¼ �kl

)4 ABBREVIATIONS, SYMBOLS, NOTATIONS, FORMULAE 33



PARTICLE KINEMATICS

Virtual displacements

�r ¼
X
ð@r*=@�lÞ ��l �

X
el ��l � �r*;

where

el ¼
X
ð@r=@qkÞð@ _qqk=@!lÞ �

X
ð@ _qqk=@!lÞek;

ek ¼
X
ð@r*=@�lÞð@!l=@ _qqkÞ �

X
ð@!l=@ _qqkÞel ;

that is,

@ð. . .Þ=@�l �
X
½@ð. . .Þ=@qk�ð@ _qqk=@!lÞ;

@ð. . .Þ=@qk �
X
½@ð. . .Þ=@�l�ð@!l=@ _qqkÞ

[nonlinear symbolic (nonvectorial/tensorial) quasi chain rules]

Velocities

v ¼
X

_qqkðt; q; !Þek þ e0 ½t � qnþ1�
¼
X

!kðt; q; _qqÞek þ e0 � v*ðt; q; !Þ � v*;

where

e0 � @r=@�nþ1 �
X
ð@r=@q
Þð@ _qq
=@!nþ1Þ ½
 ¼ 1; . . . ; nþ 1�

¼
X
ð@ _qqk=@!nþ1Þek þ e0

¼
X
ð _qqkek � !kekÞ þ e0

¼ e0 þ
X

_qqk �
X
ð@ _qqk=@!lÞ!l

� �
ek;

and, inversely,

e0 � @r=@t �
X
ð@r=@�
Þð@!
=@ _qqnþ1Þ ½
 ¼ 1; . . . ; nþ 1�

¼ e0 þ
X

!k �
X
ð@!k=@ _qqlÞ _qql

� �
ek:

For any function f * ¼ f *ðt; q; !Þ,

@f *=@�nþ1 �
X
ð@f *=@qkÞ _qqk �

X
ð@ _qqk=@!lÞ!l

� �
þ @f *=@t;

which in the Pfaffian case reduces to the earlier

@f *=@�nþ1 ¼
X
ð@f *=@qkÞAk þ @f *=@t � @f *=@ðtÞ þ @f *=@t:
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In particular, for f * ¼ qb we find

@qb=@�s ¼ @ _qqb=@!s;

@qb=@�nþ1 ¼ @ _qqb=@!nþ1 ¼ _qqb �
X
ð@ _qqb=@!lÞ!l

½¼ _qqb �
X

Abl!l ¼ Ab; in the Pfaffian case�;

and, inversely,

@�k=@t � @!k=@ _qqnþ1 ¼ !k �
X
ð@!k=@ _qqlÞ _qql:

Accelerations

a � dv=dt ¼
X
ð@v=@ _qqkÞ€qqk þNo other €qq= _!! terms

�
X
ð@v*=@!lÞ _!!l þ � � �

¼
X

el _!!l þ � � � ¼
X
ð@a*=@ _!!lÞ _!!l þ � � �

� a*ðt; q; !; _!!Þ � a*;

where

@v*=@!l ¼
X
ð@v=@ _qqkÞð@ _qqk=@!lÞ or el ¼

X
ekð@ _qqk=@!lÞ

(which is a vectorial transformation equation, and not some quasi chain rule).

BASIC KINEMATIC IDENTITIES

Holonomic variables

@r=@qk ¼ @v=@ _qqk ¼ @a=@€qqk ¼ � � � ¼ ek

Nonholonomic variables

@r*=@�k ¼ @v*=@!k ¼ @a*=@ _!!k ¼ � � � ¼ ek

System forms

@qk=@�l � @ _qqk=@!l ¼
@�l=@qk � @!l=@ _qqk ¼ @ _!!l=@€qqk ¼ � � �

NONINTEGRABILITY RELATIONS

Nonholonomic deviation (vector)

ck � Ek*ðv*Þ ¼
X

Ek*ð _qqlÞel �
X

Vl
kel ¼ �

X
Hb

keb

where

Nonlinear Voronets–Chaplygin coefficients

Vl
k � ð@ _qql=@!kÞ:� @ _qql=@�k � Ek*ð _qqlÞ:
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Nonlinear Hamel coefficients

Hk
b �

X
ð@ _qql=@!bÞ½ð@!k=@ _qqlÞ:� @!k=@ql � �

X
ð@ _qql=@!bÞElð!kÞ�

) hkb �
X

�kb
!
 ¼
X

�kbs!s þ �kb;nþ1 ðin the Pfaffian caseÞ
�

Hb
k � �

X
ð@!b=@ _qqlÞVl

k , Vl
k ¼ �

X
ð@ _qql=@!bÞHb

k

Elð!kÞ ¼ �
XX

ð@!b=@ _qqlÞð@!k=@ _qqsÞEb*ð _qqsÞ
Eb*ð _qqsÞ ¼ �

XX
ð@ _qql=@!bÞð@ _qqs=@!kÞElð!kÞ

For a general function f * ¼ f *ðt; q; !Þ, the following noncommutativity relations
hold:

@=@�lð@f *=@�kÞ � @=@�kð@f *=@�lÞ ¼
XXX

½ð@2 _qqb=@qs @!kÞð@ _qqs=@!lÞ
� ð@2 _qqb=@qs @!lÞð@ _qqs=@!kÞ�ð@!p=@ _qqbÞð@f *=@�pÞ

THE NONLINEAR TRANSITIVITY EQUATIONS

ð��kÞ: � �!k ¼
X
ð@!k=@ _qqlÞ½ð�qlÞ:� �ð _qqlÞ� þ

X
Elð!kÞ �ql

¼
X
ð@!k=@ _qqlÞ½ð�qlÞ:� �ð _qqlÞ� þ

X
Hk

b ��b

¼
X
ð@!k=@ _qqlÞ½ð�qlÞ:� �ð _qqlÞ� �

XX
Vl

bð@!k=@ _qqlÞ ��b
ð�qlÞ: � �ð _qqlÞ ¼

X
ð@ _qql=@!kÞ½ð��kÞ: � �!k� þ

X
Vl

k ��k

¼
X
ð@ _qql=@!kÞ½ð��kÞ: � �!k� �

XX
ð@ _qql=@!bÞHb

k ��k

SPECIAL CHOICE OF QUASI VELOCITIES

!D � fDðt; q; _qqÞ ¼ 0; !I ¼ fI ðt; q; _qqÞ ¼ _qqI 6¼ 0;

) _qqD ¼ _qqDðt; q; _qqIÞ � �Dðt; q; _qqI Þ

System virtual displacements

�qk: �qD ¼
X
ð@�D=@ _qqIÞ �qI ;

�qI ¼
X
ð@ _qqI=@ _qqI 0 Þ �qI 0 ¼

X
ð�II 0 Þ �qI 0 ¼ �qI

Particle virtual displacements

�r ¼
X

ek �qk ¼
X

BI �qI ;

where

BI � @r=@ðqI Þ � @r=@qI þ
X
ð@r=@qDÞð@�D=@ _qqIÞ � eI þ

X
ð@�D=@ _qqIÞeD;
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and, in general,

@BI=@qI 0 6¼ @BI 0=@qI ði:e:; the BI are nongradient vectorsÞ

Particle velocities and accelerations

v! vo ¼
X

BI _qqI þNo other _qq terms;

a! ao ¼
X

BI €qqI þNo other €qq terms;

) @r=@ðqI Þ � @vo=@ _qqI � @ao=@€qqI � � � � � BI

Special transitivity relations

�qD ¼
X
ð@�D=@ _qqIÞ �qI and _qqD ¼ _qqDðt; q; _qqIÞ � �Dðt; q; _qqIÞ

ð�qDÞ: � � _qqD ¼
X
ð@�D=@ _qqIÞ½ð�qIÞ: � �ð _qqIÞ�

þ
X
½ð@�D=@ _qqI Þ:� @�D=@ðqIÞ� �qI ;

where

@�D=@ðqIÞ � @�D=@qI þ
X
ð@�D=@qD 0 Þð@�D 0=@ _qqI Þ;

@ð. . .Þ=@ðqIÞ � @ð. . .Þ=@qI þ
X
½@ð. . .Þ=@qD�ð@ _��D=@ _qqIÞ

Nonlinear Suslov transitivity relations

ð�qkÞ:� �ð _qqkÞ: ð�qDÞ: � � _qqD ¼
X

WD
I �qI ð6¼ 0Þ

ð�qIÞ:� � _qqI ¼ 0 ½¼ 0; i:e:; WI 0
I ¼ 0�;

where

WD
I � EIð�DÞ �

X
ð@�D=@qD 0 Þð@�D 0=@ _qqI Þ

� ð@�D=@ _qqI Þ:� @�D=@ðqI Þ � EðIÞð�DÞ

[special nonlinear Voronets coefficients]

Nonlinear Chaplygin system

_qqD ¼ _qqDðqI ; _qqIÞ � �DðqI ; _qqIÞ
WD

I ! TD
I � ð@�D=@ _qqI Þ:� @�D=@qI � EI ð�DÞ

[special nonlinear Chaplygin coefficients]

KINETIC PRINCIPLES ðPk � @T*=@!kÞ
Central equationX

ðdPk=dtÞ ��k �
X
ð@T*=@�kÞ ��k þ

X
Pk½ð��kÞ:� �!k� ¼

X
Yk ��k
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Lagrange’s principle in NNH variablesX
dPk=dt� @T*=@�k þ

X
Hl

kPl �Yk

� �
��k ¼ 0

EQUATIONS OF MOTION ðD ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ
Coupled

EkðTÞ ¼ Qk þ
X

�Dð@fD=@ _qqkÞ ðRouth�Voss formÞ

Uncoupled

ID ¼ YD þ LD ðKinetostaticÞ II ¼ YI ðKineticÞ

where

Ik �Sdm a* � ek ðRaw formÞ
¼
X
ð@ _qql=@!kÞEl ðMaggi formÞ

¼ @S*=@ _!!k ðAppell formÞ
¼ ð@T*=@!kÞ:� @T*=@�k � Gk ðJohnsen�Hamel formÞ

and

Gk �Sdm v* �Ek*ðv*Þ ¼
X

Vl
k pl ¼ �

X
Hl

kPl

[nonholonomic correction term]

Transformation equations between holonomic and nonholonomic components

Ik ¼
X
ð@ _qql=@!kÞEl , El ¼

X
ð@!k=@ _qqlÞIk;

Yk ¼
X
ð@ _qql=@!kÞQl , Ql ¼

X
ð@!k=@ _qqlÞYk;

Ek 0*� Gk 0 ¼
X
ð@!k=@!k 0 ÞðEk*� GkÞ

Transformation equations of Ek*ðT*Þ and Gk between the quasi velocities !$ ! 0

Ek 0*ðT* 0Þ ¼
X
ð@!k=@!k 0 ÞEk*ðT*Þ þ

X
ð@T*=@!kÞEk 0*ð!kÞ;

Gk 0 ¼
X
ð@T*=@!kÞEk 0*ð!kÞ þ

X
ð@!k=@!k 0 ÞGk

Johnsen–Hamel forms in extenso

Ik ¼ dPk=dt� @T*=@�k þ
X

Hl
kPl

¼ dPk=dt� @T*=@�k �
XX

ð@!l=@ _qqbÞVb
kPl

¼ dPk=dt� @T*=@�k �
X

Vb
k pb*X

ð@!l=@ _qqkÞPl ¼ pk ¼ pkðt; q; _qqÞ ¼ pk*ðt; q; !Þ � ð@T=@ _qqkÞ*
h i
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SPECIAL FORMS OF THE EQUATIONS OF MOTION FOR

THE CHOICE

!D � fDðt; q; _qqÞ ¼ _qqD � �Dðt; q; _qqI Þ ¼ 0; !I � fI ðt; q; _qqÞ ¼ _qqI 6¼ 0

and its inverse

_qqD ¼ !D þ �Dðt; q; _qqIÞ ¼ !D þ �Dðt; q; !IÞ; _qqI ¼ !I ;

and with the notation

Ek � EkðTÞ � ð@T=@ _qqkÞ:� @T=@qk ¼ @S=@€qqk

Maggi equations ) nonlinear Hadamard equations

Kinetostatic: ED ¼ QD þ �D
Kinetic: EI þ

X
ð@�D=@ _qqIÞED ¼ QI þ

X
ð@�D=@ _qqIÞQD

or

@So=@€qqI ¼ QI þ
X
ð@�D=@ _qqIÞQD ð� QI ;o � QIoÞ;

where

S ¼ Sðt; q; _qq; €qqÞ ¼ � � � ¼ Soðt; q; _qqI ; €qqIÞ ¼ So; constrained Appellian So

Hamel equations ) nonlinear Voronets equations

EI ðToÞ �
X
ð@�D=@ _qqIÞð@To=@qDÞ � GIo � EðIÞðToÞ � GIo ¼ QIo;

HD
I ! �EðIÞð�DÞ ¼ �WD

I ;

GI ! GI ;o � GIo ¼
X

WD
Ið@T=@ _qqDÞo �

X
WD

I pDo

Voronets equations ) Chaplygin equationsh
_qqD ¼ _qqDðqI ; _qqIÞ � �DðqI ; _qqI Þ and To ¼ ToðqI ; _qqIÞ

)WD
I � EðIÞð�DÞ ! EIð�DÞ � ð@�D=@ _qqI Þ: � @�D=@qI � TD

I

) GIo !
X

TD
Ið@T=@ _qqDÞo

i
ð@To=@ _qqIÞ:� @To=@qI �

X
TD

I ð@T=@ _qqDÞo ¼ QIo

Transformation of the nonlinear Hamel and Voronets coefficients Vl
k;H

l
k under

!b 0 ¼ !b 0 ðt; q; _qqÞ , _qql ¼ _qqlðt; q; ! 0Þ:
Gk ¼

X
Vl

k pl ¼ �
X

Hl
kPl ;

Vl
k 0 ¼

X
ð@!k=@!k 0 ÞVl

k þ
X
½ð@!k=@!k 0 Þ: � @!k=@�k 0 �ð@ _qql=@!kÞ;
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Hl 0
k 0 ¼

XX
ð@!k=@!k 0 Þð@!l 0=@!lÞHl

k �
X
½ð@!k=@!k 0 Þ:� @!k=@�k 0 �ð@!l 0=@!kÞ;

Hl 0
k 0 ¼ �

X
ð@!l 0=@ _qqlÞVl

k 0 , Vl
k 0 ¼ �

X
ð@ _qql=@!l 0 ÞHl 0

k 0

Chapter 6: Differential Variational Principles

PRINCIPLE OF LAGRANGE

S ðdm a� dFÞ � �r ¼ 0; with �t ¼ 0

PRINCIPLE OF JOURDAIN

S ðdm a� dFÞ � �v ¼ 0; with �t ¼ 0 and �r ¼ 0

PRINCIPLE OF GAUSS

S ðdm a� dFÞ � �a ¼ 0; with �t ¼ 0; �r ¼ 0; and �v ¼ 0

PRINCIPLE OF MANGERON–DELEANU

S ðdm a� dFÞ � �rðsÞ ¼ 0; ðs ¼ 1; 2; . . .Þ

with

�t ¼ 0; and �r ¼ 0; �ð _rrÞ ¼ 0; ¼ 0; . . . ;

¼ 0 ðs� 1 
 0Þ

NIELSEN IDENTITY

NkðTÞ � @ _TT=@ _qqk � 2ð@T=@qkÞ ¼ ð@T=@ _qqkÞ:� @T=@qk � EkðTÞ

TSENOV IDENTITIES

Second kind

EkðTÞ ¼ Ck
ð2ÞðTÞ � ð1=2Þ½@ €TT=@€qqk � 3ð@T=@qkÞ�

Third kind

EkðTÞ � Ck
ð3ÞðTÞ � ð1=3Þ½@ _€TT=@ _€qk � 4ð@T=@qkÞ�
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MANGERON–DELEANU IDENTITIES

EkðTÞ ¼ Ck
ðsÞðTÞ � ð1=sÞ @T

ðsÞ
=@q
ðsÞ
k � ðsþ 1Þð@T=@qkÞ

� �
½Ck

ð1ÞðTÞ ¼ NkðTÞ�

VARIOUS KINEMATICO-INERTIAL IDENTITIES

@ T
ðs�1Þ

=@q
ðsÞ
k ¼ @T=@ _qqk ¼Sdm _rr � ð@ _rr=@ _qqkÞ

h i
;

@ T
ðs�1Þ

=@ q
ðs�1Þ

k ¼ sð@T=@qkÞ ¼ sS dm _rr � ð@ _rr=@qkÞ
h i

;

T
ðsÞ
¼Sdm _rr � r

ðsþ1Þ
þ sS dm €rr � r

ðsÞ
þ no r

ðsþ1Þ
terms;

d=dt @ To

ðs�1Þ
=@q
ðsÞ
I

� �
� @T=@qI

¼ d=dtð@T=@ _qqI Þ � @T=@qI þ
X

d=dt ð@T=@ _qqDÞð@qD
ðsÞ
=@qI
ðsÞ
Þ

� �
@ To

ðs�1Þ
=@qI
ðsÞ
¼ @ T

ðs�1Þ
=@ q
ðsÞ
I þ

X
@ T
ðs�1Þ

=@q
ðsÞ
D

� �
@q
ðsÞ
D=@q

ðsÞ
I

� �

VIRTUAL DISPLACEMENTS NEEDED TO PRODUCE THE

CORRECT EQUATIONS OF MOTION

Constraints Lagrange Jourdain Gauss

f ðt; qÞ ¼ 0: @f =@q �f ¼ ð@f =@qÞ �q � 0f ¼ 0 � 00f ¼ 0,

� 0 _ff ¼ ð@f =@qÞ � _qq � 00 _ff ¼ 0
� 00 €ff ¼ ð@f =@qÞ �€qq

f ðt; q; _qqÞ ¼ 0: @f =@ _qq — � 0f ¼ ð@f =@ _qqÞ � _qq � 00f ¼ 0

� 00 _ff ¼ ð@f =@ _qqÞ �€qq
f ðt; q; _qq; €qqÞ ¼ 0: @f =@€qq — — � 00f ¼ ð@f =@€qqÞ �€qq

CORRECT EQUATIONS OF MOTION

[Notation: Mk � EkðTÞ �Qk � NkðTÞ �Qk � @S=@€qqk �Qk.
Principle:

P
Mk �	k ¼ 0, �	k ¼ �qk, � _qqk, �€qqk; . . .]

Constraints Virtual Displacements Equations of Motion

fDðt; qÞ ¼ 0 �fD ¼
P ð@fD=@qkÞ �qk Mk ¼

P
�Dð@fD=@qkÞ

fDðt; q; _qqÞ ¼ 0 � 0fD ¼
P ð@fD=@ _qqkÞ � _qqk Mk ¼

P
�Dð@fD=@ _qqkÞ

fDðt; q; _qq; €qqÞ ¼ 0 � 00fD ¼
P ð@fD=@€qqkÞ �€qqk Mk ¼

P
�Dð@fD=@€qqkÞ

SPECIAL FORM OF CONSTRAINTS

_qqD ¼ �Dðt; q; _qqIÞ ðD ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ:
For an arbitrary differentiable function

f ¼ f ðt; q; _qqÞ ¼ f ½t; q; �Dðt; q; _qqIÞ; _qqI � ¼ foðt; q; _qqIÞ � fo;
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the following identity holds:

NI ð foÞ ¼ EIð foÞ þ
X
ð@fo=@qDÞð@�D=@ _qqI Þ

) NIðToÞ ¼ EIðToÞ þ
X
ð@To=@qDÞð@�D=@ _qqIÞ;

NIð _qqDÞ ¼ EIð _qqDÞ þ
X
ð@ _qqD=@qD 0 Þð@�D 0=@ _qqIÞ:

NIELSEN FORM OF SPECIAL NONLINEAR VORONETS

EQUATIONS

NI ðToÞ �
X
ð@T=@ _qqDÞoNI ð _qqDÞ � 2

X
ð@T=@ _qqDÞoð@�D=@ _qqIÞ ¼ QIo

NIELSEN FORM OF SPECIAL NONLINEAR CHAPLYGIN

EQUATIONS

@ _TTo=@ _qqI � 2ð@To=@qI Þ
�
X
ð@T=@ _qqDÞo½@€qqD=@ _qqI � 2ð@ _qqD=@qIÞ� ¼ QIo

Special Pfaffian ! Voronets form

_qqD ¼
X

bDIðt; qÞ _qqI þ bDðt; qÞ

Then the above Voronets equations assume the special Nielsen form:

@ _TTo=@ _qqI � 2ð@To=@qIÞ

�
X
ð@T=@ _qqDÞo

X
½bDII 0 � 2ð@bDI 0=@qI Þ� _qqI 0 þ ½bDI � 2ð@bD=@qI Þ�

n o
� 2

X
ð@T=@qDÞobDI ¼ QIo;

where

bDII 0 �
X
½ð@bDI=@qD 0 ÞbD 0I 0 þ ð@bDI 0=@qD 0 ÞbD 0I � þ ð@bDI=@qI 0 þ @bDI 0=@qI Þ;

bDI � bDI ;nþ1 �
X
½ð@bD=@qD 0 ÞbD 0I þ ð@bDI=@qD 0 ÞbD 0 � þ ð@bDI=@tþ @bD=@qIÞ:

Special Voronets ! Chaplygin form

_qqD ¼
X

bDIðqIÞ _qqI ; and @T=@qD ¼ 0

Then the above Chaplygin equations assume the special Nielsen form:

@ _TTo=@ _qqI � 2ð@To=@qI Þ �
XX

ð@T=@ _qqDÞoð@bDI=@qI 0 � @bDI 0=@qI Þ _qqI 0 ¼ QIo

½bD ¼ 0; bDI ¼ 0; bDII 0 ¼ @bDI=@qI 0 þ @bDI 0=@qI �
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NIELSEN FORMS OF HIGHER-ORDER EQUATIONS

Let

Nk
ðsÞð. . .Þ � @ð. . .Þ

ðsÞ
=@q
ðsÞ
k � 2 @ð. . .Þ

ðs�1Þ
=@ q
ðs�1Þ

k

� �
;

Ek
ðsÞð. . .Þ � d=dt @ð. . .Þ

ðs�1Þ
=@q
ðsÞ
k

� �
� @ð. . .Þ

ðs�1Þ
=@ qk
ðs�1Þ� �

:

Then, for any sufficiently differentiable function f ¼ f ðt; q; _qqÞ, and any
k ¼ 1; 2; . . . ; n; s ¼ 1; 2; 3; . . . ;

Nk
ðsÞð f Þ ¼ Ek

ðsÞð f Þ:

Let

Nk*
ðsÞð. . .Þ � @ð. . .Þ

ðsÞ
=@�
ðsÞ
k � 2 @ð. . .Þ

ðs�1Þ
=@ �
ðs�1Þ

k

� �
;

Ek*
ðsÞð. . .Þ � d=dt @ð. . .Þ

ðs�1Þ
=@�
ðsÞ
k

� �
� @ð. . .Þ

ðs�1Þ
=@ �
ðs�1Þ

k

� �
;

where

@ð. . .Þ
ðs�1Þ

=@ �
ðs�1Þ

k �
X

@ð. . .Þ
ðs�1Þ

=@ q
ðs�1Þ

l

� �
@q
ðsÞ
l=@�
ðsÞ
k

� �

[(s)th-order quasi chain rule].

Then, for any sufficiently differentiable function f * ¼ f *ðt; q; !Þ, and any
k ¼ 1; 2; . . . ; n; s ¼ 1; 2; 3; . . . ;

Nk*
ðsÞ f*ð Þ ¼ Ek*

ðsÞ f*ð Þ;

where

f ðt; q; _qqÞ ) _ff ) . . . f
ðs�1Þ
) f
ðsÞ
;

f *
ðs�1Þ
¼ f
ðs�1Þ

t; q; _qq � q
ð1Þ
; . . . ; q

ðs�1Þ
; q
ðsÞ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ� �� �

¼ f
ðs�1Þ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ� �

;

f
ðsÞ
* ¼ f

ðsÞ
t; q; q

ð1Þ
; . . . ; q

ðs�1Þ
; q
ðsÞ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ� �

; q
ðsþ1Þ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ
; �
ðsþ1Þ� �� �

¼ f
ðsÞ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ
; �
ðsþ1Þ� �

:
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Hamel-type equations ðs ¼ 1; 2; 3; . . .Þ

ðsÞ d=dt @ T
ðs�1Þ

*=@�
ðsÞ
I

� �
� @ T

ðs�1Þ
*=@ �

ðs�1Þ
I

�
X

s @q
ðsÞ
k=@�
ðsÞ
I

� �
�

� @q
ðsÞ
k=@ �

ðs�1Þ
I

� �
@ T
ðs�1Þ

=@q
ðsÞ
k

� �
*

¼
X

@q
ðsÞ
k=@�
ðsÞ
I

� �
Qk � YI

Nielsen-type equations

ðsÞ @T
ðsÞ
*=@�
ðsÞ
I

� �
� ðsþ 1Þ @ T

ðs�1Þ
*=@ �

ðs�1Þ
I

� �
�
X

s @ q
ðsþ1Þ

k=@�
ðsÞ
I

� �
� ðsþ 1Þ @q

ðsÞ
k=@ �I

ðs�1Þ� �� �
@ T
ðs�1Þ

=@q
ðsÞ
k

� �
* ¼ YI

For s ¼ 1, the above yield, respectively,

d=dtð@T*=@ _��IÞ � @T*=@�I

�
X

ð@ _qqk=@ _��IÞ:� @ _qqk=@�I
� 	ð@T=@ _qqkÞ* ¼ YI ;

@ _TT*=@ _��I � 2ð@T*=@�I Þ
�
X

@€qqk=@ _��I � 2ð@ _qqk=@�I Þ
� 	ð@T=@ _qqkÞ* ¼ YI ;

and, for s ¼ 2,

2ð@ _TT*=@€��I Þ:� @ _TT*=@ _��I

�
X

2ð@€qqk=@ €��IÞ: � @€qqk=@ _��I
� 	ð@ _TT=@€qqkÞ* ¼ YI ;

2ð@ €TT*=@€��I Þ � 3ð@ _TT*=@ _��I Þ
�
X

2ð@€q_k=@ €��IÞ � 3ð@€qqk=@ _��IÞ
� 	ð@ _TT=@€qqkÞ* ¼ YI :

GAUSS’ PRINCIPLE

Compulsion

Z � ð1=2ÞSdm ½a� ðdF=dmÞ�2 � ð1=2ÞS ð1=dmÞðdm a� dFÞ2

� ð1=2ÞS ðdRÞ2=dm
h

¼S ð�dRÞ2=2 dm ¼S ðLost forceÞ2=2 dm 
 0
i

¼ S �SdF � aþ terms not containing accelerations;

where

S ¼ ð1=2ÞSdm a � a: Appellian:
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Gauss’ principle

� 00Z ¼ 0;

where

� 00t ¼ 0; � 00r ¼ 0; � 00v ¼ 0; � 00ðdFÞ ¼ 0; but � 00a 6¼ 0

½dF ¼ dFðt; r; vÞ ) � 00ðdFÞ ¼ 0; � 00Qk ¼ 0�
a ¼

X
ek€qqk þ no €qq-terms ¼

X
eI _!!I þ no _!!-terms;

) � 00a ¼
X

ek �€qqk ¼
X

eI � _!!I ;

and so, explicitly,

� 00Z ¼ ð1=2ÞSdm 2 ½a� ðdF=dmÞ� � � 00a
¼S ðdm a� dFÞ � � 00a
¼S ðdR=dmÞ � � 00ðdRÞ ¼S ðdR=dmÞ � � 00ðdm a � dFÞ
¼S ðdR=dmÞ � dm � 00a ¼SdR � � 00a ¼ 0:

COMPATIBILITY BETWEEN THE PRINCIPLES OF GAUSS

AND LAGRANGE

�qk �
X
ð@ _qqk=@!lÞ ��l ;

��I �
X
ð@!I=@ _qqkÞ �qk �

X
ð@fI=@ _qqkÞ �qk 6¼ 0

Also,

�fD � �!D ¼S ð@fD=@vÞ � �r ¼
X
ð@fD=@ _qqkÞ �qk ¼ 0;

instead of the formal (calculus of variations) definition

�fD ¼
X
ð@fD=@qkÞ �qk þ

X
ð@fD=@ _qqkÞ � _qqk ¼ 0:

The same conclusion can be reached by requiring compatibility between the
principles of Lagrange and Jourdain.

EQUATIONS OF MOTION

� 00Z þ
X

�D �
00 _ffD ¼ 0;

where

� 00Z ¼
X
½EkðTÞ �Qk� �€qqk ðHolonomic system variablesÞ

¼
X
ð@S*=@ _!!k �YkÞ �ð _!!kÞ ðNonholonomic system variablesÞ
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� 00ð _ffDÞ ¼ � 00 @fD=@tþS ½ð@fD=@rÞ � vþ ð@fD=@vÞ � a�
n o

¼S ð@fD=@vÞ � �a ðParticle formÞ

¼ � 00 @fD=@tþ
X
½ð@fD=@qkÞ _qqk þ ð@fD=@ _qqkÞ€qqk�

n o
¼
X
ð@fD=@ _qqkÞ �€qqk ðHolonomic system variablesÞ

MINIMALITY OF THE COMPULSION

D 00Z � Zðaþ � 00aÞ � ZðaÞ
¼ ð1=2ÞSdm ½ðaþ � 00aÞ � ðdF=dmÞ�2 � ð1=2ÞSdm ½a� ðdF=dmÞ�2

¼ � 00Z þ ð1=2Þ � 00 2Z 
 0;

where

� 00Z ¼S ðdm a� dFÞ � � 00a ð¼ 0Þ;
� 00 2Z ¼S ðdm � 00a � � 00aÞ ð
 0Þ:

Chapter 7: Time-Integral Theorems and Variational
Principles

GENERALIZED HOLONOMIC VIRIAL IDENTITYð X
ð@T=@ _qqkÞ _zzk þ

X
@T=@qk þQk þ

X
�DaDk

� �
zk

n o
dt

¼
X
ð@T=@ _qqkÞzk

n o2

1

[zk ¼ zkðtÞ: arbitrary functions, but as well behaved as needed; and integral extends
from t1 to t2 (arbitrary time limits).

Specializations

zk ! �qk [virtual displacement of qk; and assuming � _qqk ¼ ð�qkÞ:�:ð
ð�T þ � 0WÞ dt ¼

X
pk �qk

n o2

1
;

[Hamilton’s law of virtually/vertically varying action]
zk ! Dqk ¼ �qk þ _qqk Dt (noncontemporaneous, or skew, or oblique, variation of qkÞ:
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ð X
ð@T=@ _qqkÞðDqkÞ: þ

X
ð@T=@qk þ QkÞDqk �

X
�DaD DD

n o
dt

¼
X

pk D _qqk

n o2

1

[Hamilton’s law of skew-varying action]

ðDqkÞ:� Dð _qqkÞ ¼ _qqkðDtÞ: ½i:e:; Dð. . .Þ and ð. . .Þ: do not commute�
zk ! qk (actual system coordinate):ð X

ð@T=@ _qqkÞ _qqk þ
X

@T=@qk þQk þ
X

�DaDk

� �
qk

n o
dt

¼
X

pkqk

n o2

1

[Virial theorem (of Clausius, Szily et al.)]

zk ! _qqk (actual system velocity): power theorem in holonomic variables.

GENERALIZED NONHOLONOMIC VIRIAL IDENTITYð X
ð@T*=@!kÞ _zzk þ

X
ð@T*=@�kÞzk �

XX
hbkð@T*=@!bÞzk

�
þ
X
ðYk þ LkÞzk

�
dt ¼

X
ð@T*=@!kÞzk

n o2

1

Specializations

zk ! ��k (recalling that ��D ¼ 0, ��nþ1 � �t ¼ 0, while ��I 6¼ 0):ð
�T*þ

X
YI ��I

� �
dt ¼

X
PI ��I

n o2

1

[Hamilton’s law of virtual and nonholonomic action].

zk ! _��k � !k (recalling that !D ¼ 0): power theorem in nonholonomic variables.

zk ! �k: This case is meaningless because there is no such thing as �k.

zk ! _!!k: This case does not seem to lead to any readily useful and identifiable result.

zk ! D�k:h
� ��b þ _��b Dt � ��b þ !b Dt

) ðD�bÞ:� D!b ¼ ð��bÞ:� �ð _��bÞ þ !bðDtÞ: ¼
X

hbk ��k þ !bðDtÞ:
i

ð X
ð@T*=@�kÞD�k þ

X
ð@T*=@!kÞD!k

n
þ
X
ð@T*=@!kÞ !kðDtÞ:�

X
�kb!b Dt

h i
þ
X
ðYk þ LkÞD�k

o
dt

¼
X
ð@T*=@!kÞD�k

n o2

1

[Hamilton’s law of skew-varying action in nonholonomic variables].
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NONLINEAR NONHOLONOMIC CONSTRAINTS;

HOLONOMIC VARIABLESð X
ð@T=@ _qqkÞ _zzk þ

X
@T=@qk þQk þ

X
�Dð@fD=@ _qqkÞ

h i
zk

n o
dt

¼
X
ð@T=@ _qqkÞzk

n o2

1

Specializations

zk ! qk (Virial theorem):ð X
ð@T=@ _qqkÞ _qqk þ

X
@T=@qk þQk þ

X
�Dð@fD=@ _qqkÞ

h i
qk

n o
dt

¼
X
ð@T=@ _qqkÞqk

n o2

1

zk ! _qqk ðNonlinear ðnonpotentialÞ generalized power equationÞ:

d=dt
X
ð@T=@ _qqkÞ _qqk � T

� �
¼ �@T=@tþ

X
Qk _qqk þ

XX
�Dð@fD=@ _qqkÞ _qqk

zk ! �qk ðHamilton’s law of varying actionÞ;
zk ! Dqk ðHamilton’s law of skew-varying actionÞ:ð X

ð@T=@ _qqkÞðDqkÞ:þ
X
ð@T=@qk þQkÞDqk

n
þ
XX

�Dð@fD=@ _qqkÞ _qqk
� �

Dt
o
dt

¼
X
ð@T=@ _qqkÞzk

n o2

1

NONLINEAR NONHOLONOMIC CONSTRAINTS;

NONHOLONOMIC VARIABLESð
ð�T*þ � 0WÞ dt ¼

X
Pk ��k

n o2

1
;

where

�T* ¼ � � � ¼
X
ð@T*=@!kÞ ��k

� �:
�
X
ð@T*=@!kÞ: ��k

�
XX

Hk
bð@T*=@!kÞ ��b þ

X
ð@T*=@�kÞ ��k;

)
ð
�T* dt

¼ �
ð X

ð@T*=@!kÞ:� @T*=@�k þ
X

Hb
kð@T*=@!bÞ

h i
��k dt

þ
X
ð@T*=@!kÞ ��k

n o2

1
;
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and

ð��bÞ:� �!b ¼
X

Esð!bÞ �qs ¼
XX

Esð!bÞð@ _qqs=@!kÞ ��k �
X

Hb
k ��k

¼ �
XX

Ekð _qqlÞð@!b=@ _qqlÞ ��k � �
XX

Vl
kð@!b=@ _qqlÞ ��k;

Gk ¼ �
X

Hb
kð@T*=@!bÞ ¼

X
Vb

kð@T=@ _qqbÞ*

[assuming again that ð�qkÞ: ¼ �ð _qqkÞ�:
GENERAL INTEGRAL EQUATIONSð

�T þ
X
ð@T=@ _qqkÞ½ð�qkÞ: � �ð _qqkÞ� þ � 0W

n o
dt

¼
ð

�T þ � 0W þ
X

Pk½ð��kÞ: � �!k� þ
XX

Vk
b pk ��b

n o
dt

¼
ð

�T þ � 0W þ
X

Pk½ð��kÞ: � �!k� �
XX

Hk
bPk ��b

n o
dt

¼
X
ð@T=@ _qqkÞ �qk

n o2

1
;

where

ð�qkÞ:� �ð _qqkÞ ¼
X
ð@ _qqk=@!bÞ½ð��bÞ:� �!b� þ

X
Vk

b ��b

¼
X
ð@ _qqk=@!bÞ½ð��bÞ:� �!b� �

XX
ð@ _qqk=@!lÞHl

b ��b

T ¼ T ½t; q; _qqðt; q; !Þ� � T*ðt; q; !Þ � T*:

The above yield the ‘‘equation of motion forms’’ [without the assumption
ð�qkÞ: ¼ �ð _qqkÞ�:

�
ð X h

ð@T*=@!kÞ: � @T*=@�k

�
X
ð@T=@ _qqbÞ*Vb

k �Yk

i
��k dt ¼ 0;

�
ð X h

ð@T*=@!kÞ: � @T*=@�k

þ
X
ð@T*=@!bÞHb

k �Yk

i
��k dt ¼ 0:

HÖLDER–VORONETS–HAMEL VIEWPOINT

ð�qkÞ: ¼ � _qqk, whether the �qk are further constrained or not. Then, with:
� 0W* �P Yk ��k, the above yieldð

ð�T þ � 0WÞ dt ¼
ð
ð�T*þ � 0W*Þ dt

¼
X
ð@T*=@!kÞ ��k

n o2

1
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CONSTRAINED INTEGRAL FORMS

Generally:

�T* ¼ �T*o þ
X
ð@T*=@!DÞo �!D;

�T*o ¼
X
ð@T*o=@�IÞ ��I þ

X
ð@T*o=@!IÞ �!I

Under the Hölder–Voronets–Hamel viewpoint:

�ð _qqkÞ ¼ ð�qkÞ:; ��D ¼ 0; dð��DÞ ¼ 0) ð��DÞ: ¼ 0;

but �ðd�DÞ 6¼ 0; �!D ¼
XX

Vk
I ð@!D=@ _qqkÞ ��I ¼ �

X
HD

I ��I 6¼ 0;

and �!I ¼ ð��IÞ:�
X

HI
I 0 ��I 0 ;

we obtain the constrained integral equationð
�T*o þ

XX
ð@T=@ _qqkÞoVk

I ��I þ � 0W*o

h i
dt

¼
ð
�T*o �

XX
ð@T*=@!DÞoHD

I ��I þ � 0W*o

h i
dt

¼
X
ð@T=@ _qqkÞ �qk

n o2

1
:

Special form of the constraints:

_qqD ¼ �Dðt; q; _qqIÞ
) !D � _qqD � �Dðt; q; _qqIÞ ¼ 0; !I � _qqI 6¼ 0;

_qqD ¼ !D þ �D½t; q; _qqI ðt; q; !I Þ� ¼ !D þ �Dðt; q; !IÞ;

��D ¼ �qD �
X
ð@�D=@ _qqIÞ �qI ¼ 0; ��I ¼ �qI 6¼ 0:

Suslov transitivity assumptions and integral equation:

ð�qDÞ: 6¼ �ð _qqDÞ; ð�qIÞ:� �ð _qqI Þ ¼ 0;

but

�ðd�DÞ ¼ 0

or

�!D ¼ �ð _qqD � �DÞ ¼ �ð _qqDÞ � ��D ¼ 0 ½and ð��DÞ: ¼ 0�
) �ð _qqDÞ ¼ ��D ½definition of �ð _qqDÞ�;

) ð�qDÞ:� �ð _qqDÞ ¼
X
ð@�D=@ _qqI Þ �qI

� �
� ��D

¼ � � � ¼
X

EðIÞð�DÞ �qI �
X

WD
I �qI 6¼ 0;

) �T ¼ �To:
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Suslov principle:ð
�To þ

X
ð@T=@ _qqDÞo½ð�qDÞ: � ��D� þ � 0Wo

n o
dt

¼
ð

�To þ
XX

ð@T=@ _qqDÞWD
I �qI þ � 0Wo

n o
dt

¼
X
ð@T=@ _qqkÞ �qk

n o2

1

Hölder–Voronets–Hamel transitivity assumptions:

�ð _qqkÞ ¼ ð�qkÞ:; ��D ¼ 0; dð��DÞ ¼ 0) ð��DÞ: ¼ 0;

but

�ðd�DÞ 6¼ 0

or

�!D ¼ �ð _qqD � �DÞ ¼ �ð _qqDÞ � ��D ¼ ð�qDÞ: � ��D
¼
X

EðIÞð�DÞ �qI �
X

WD
I �qI 6¼ 0 ½definition of �ð _qqDÞ�;

) �T ¼ �To þ
XX

ð@T=@ _qqDÞWD
I �qI :

Voronets principle:ð
�To þ

XX
ð@T=@ _qqDÞWD

I �qI þ � 0Wo

h i
dt

¼
X
ð@T=@ _qqkÞ �qk

n o2

1
:

In both cases:

T ! Toðt; q; _qqIÞ ! �To ðvariation of constrained TÞ;
@T=@ _qqD ! ð@T=@ _qqDÞo ¼ pD½t; q; _qqI ; �Dðt; q; _qqI Þ� � pD;oðt; q; _qqIÞ � pDo;X

ð@T=@ _qqkÞ �qk
n o2

1
¼ � � � ¼

X
ð. . .ÞI �qI

n o2

1
;

� 0Wo �
X

QIo �qI :

NONCONTEMPORANEOUS VARIATIONS AND RELATED

THEOREMS

Definition:

Dð. . .Þ � �ð. . .Þ þ ½dð. . .Þ=dt�Dt: noncontemporaneous variation operator

) Dqk ¼ �qk þ _qqk Dt; Dt ¼ �tþ ðdt=dtÞDt ¼ 0þ ð1ÞDt ¼ Dt:
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Basic identities:

D
ð
ð. . .Þ dt ¼

ð
�ð. . .Þ dtþ fð. . .ÞDtg21

¼
ð
fDð. . .Þ þ ð. . .Þ½dðDtÞ=dt�g dt

¼
ð
½Dð. . .Þ dtþ ð. . .Þ dðDtÞ�;ð

Dð. . .Þ dt ¼
ð
f�ð. . .Þ � ð. . .Þ½dðDtÞ=dt�g dtþ fð. . .ÞDtg21

¼
ð
½�ð. . .Þ dt� ð. . .Þ dðDtÞ� þ fð. . .ÞDtg21;

) D
ð
ð. . .Þ dt�

ð
Dð. . .Þ dt ¼

ð
ð. . .Þ dðDtÞ

¼
ð
fð. . .Þ½dðDtÞ=dt�g dt;

D
ð
ð. . .Þ dt ¼ � � � ¼ �

ð X
Ekð. . .ÞDqk dt

þ
ð
½dhð. . .Þ=dtþ @ð. . .Þ=@t�Dt dt

þ
X
ð@ . . . =@ _qqkÞDqk � hð. . .ÞDt

n o2

1

¼ �
ð X

Ekð. . .Þ �qk dtþ
X
ð@ . . . =@ _qqkÞDqk � hð. . .ÞDt

n o2

1

¼ �
ð X

Ekð. . .Þ �qk dtþ
X
ð@ . . . =@ _qqkÞ �qk þ ð. . .ÞDt

n o2

1
;

where

hð. . .Þ �
X
½@ð. . .Þ=@ _qqk� _qqk � ð. . .Þ: generalized energy operator:

With

h � hðLÞ �
X

pk _qqk � L ¼ hðt; q; _qqÞ: generalized energy;

AH �
ð
ðT � VÞ dt �

ð
Ldt: Hamiltonian action ðfunctionalÞ;

AL �
ð
2T dt: Lagrangean action ðfunctionalÞ;

E � T þ V : total energy of the system;

we have the following mechanical integral theorems:

D
ð
T dtþ

ð
� 0W dt ¼

X
pk Dqk þ T �

X
pk _qqk

� �
Dt

n o2

1
;
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DAH þ
ð
� 0Wnp dt ¼

X
pk Dqk � hDt

n o2

1

¼
X

pk �qk þ LDt
n o2

1
;

DAL �
ð
ð�E � � 0WnpÞ dt ¼

X
pk Dqk �

X
pk _qqk � 2T

� �
Dt

n o2

1

¼
X

pk �qk þ 2T Dt
n o2

1
;

D
ð
E dt ¼

ð
�E dtþ fE Dtg21;

D
ð
2T dt ¼

ð
ð�E � � 0WnpÞ dt

þ
X

pk Dqk þ 2T �
X

pk _qqk

� �
Dt

n o2

1
;

D
ð
2V dt ¼

ð
ð�E þ � 0WnpÞ dt

þ �
X

pk Dqk þ 2V þ
X

pk _qqk

� �
Dt

n o2

1
;ð

½DT þ 2TðDtÞ:þ _TT Dt� dtþ
ð
� 0W dt

¼
ð
½DT dtþ 2T dðDtÞ þ dT Dtþ � 0W dt�

¼
X

pk �qk þ ð2TÞDt
n o2

1

¼
X

pk Dqk �
X

pk _qqk � 2T
� �

Dt
n o2

1

SECOND (VIRTUAL) VARIATION OF AH

Total (virtual) variation:

�TAH � AHðqþ �qÞ � AHðqÞ ¼ �AH þ ð1=2Þ �2AH þ � � �

First (virtual) variation:

�AH ¼
ð
�Ldt ¼ � � � ¼ �

ð
EðqÞ �q dtþ f p �qg21

Second (virtual) variation (one Lagrangean coordinate):

�2AH � �ð�AHÞ ¼
ð
�2Ldt

¼ � � � ¼ �
ð
Jð�qÞ �q dtþ f�p �qg21;
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where

�2L � �ð�LÞ ¼ ½ð@=@qÞ �qþ ð@=@ _qqÞ �ð _qqÞ�2L
¼ � � � ¼ ð@2L=@ _qq2Þð� _qqÞ2 þ 2ð@2L=@q @ _qqÞ �q � _qqþ ð@2L=@q2Þð�qÞ2

Jacobi’s variational equation:

Jð�qÞ ¼ fd=dt½@=@ð� _qqÞ� � ½@=@ð�qÞ�gð1=2Þ �2L
¼ ð@2L=@ _qq2Þ �€qqþ ð@2L=@ _qq2Þ: � _qqþ ½ð@2L=@q @ _qqÞ:� ð@2L=@q2Þ� �q
¼ d=dt½ð@2L=@ _qq2Þ � _qq� � @2L=@q2 � d=dtð@2L=@q @ _qqÞ� 	

�q ¼ 0

Equivalently:

E½Lðt; qþ �q; _qqþ � _qqÞ� � E½Lðt; q; _qqÞ� � �Eðq; �qÞ ðto first-orderÞ
¼ Jð�q; qÞ � Jð�qÞ

Chapter 8: Hamiltonian/Canonical Methods

CONJUGATE (HAMILTONIAN) KINETIC ENERGY

T 0 �
X

pk _qqk � T
� �




_qq¼ _qqðt;q;pÞ
¼
X

pk _qqkðt; q; pÞ � TðqpÞ � T 0ðt; q; pÞh
¼
X
ð@T=@ _qqkÞ _qqk � T ¼ ð2T2 þ T1Þ � ðT2 þ T1 þ T0Þ ¼ T2 � T0;

i:e:; if T ¼ T2 ðe:g:; stationary constraintsÞ; then T 0 ¼ T
i

CANONICAL, OR HAMILTONIAN, CENTRAL EQUATIONX
ðdpk=dtþ @T 0=@qk � QkÞ �qk þ

X
ðdqk=dt� @T 0=@pkÞ �pk ¼ 0

CANONICAL, OR HAMILTONIAN, EQUATIONS OF MOTION

(for unconstrained variations)

dpk=dt ¼ �ð@T 0=@qkÞ þQk ð¼ @T=@qk þQk ) @T=@qk ¼ �@T 0=@qkÞ;
dqk=dt ¼ @T 0=@pk

If Qk ¼ �@Vðt; qÞ=@qk, the above assume the antisymmetrical form:

dpk=dt ¼ �@H=@qk; dqk=dt ¼ @H=@pk;
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where

H � T 0 þV ¼
X

pk _qqk � T þ V
� �




_qq¼ _qqðt;q;pÞ
�
X

pk _qqkðt; q; pÞ � ðTðqpÞ � VÞ

¼
X

pk _qqk � L
� �




_qq¼ _qqðt;q;pÞ
�
X

pk _qqkðt; q; pÞ � LðqpÞ

� Hðt; q; pÞ: Hamiltonian of system ðfunction of 2nþ 1 argumentsÞ:

If both potential and nonpotential forces ðQkÞ are present, the above are replaced by

dpk=dt ¼ �@H=@qk þ Qk; dqk=dt ¼ @H=@pk;

also,

@H=@qk ¼ �@L=@qk and @L=@t ¼ �@H=@t:

For stationary (holonomic) constraints,

H ¼ Tðt; q; pÞ þ V0ðt; qÞ � Eðt; q; pÞ ¼ total energy; in Hamiltonian variables:

In all cases, the following kinematico-inertial identities hold:

@T 0=@t ¼ �@T=@t; @T 0=@qk ¼ �@T=@qk; @T 0=@pk ¼ dqk=dt;

@H=@t ¼ �@L=@t; @H=@qk ¼ �@L=@qk; @H=@pk ¼ dqk=dt:

LEGENDRE TRANSFORMATION (LT)

An LT transforms a function Yð. . . ; y; . . .Þ into its conjugate function Zð. . . ; z; . . .Þ,
where z ¼ @Y=@y, so that @Z=@z ¼ y. Here in dynamics we have the following
identifications:

Yð. . .Þ ! L; . . .! q; t; y! _qq; z ¼ @Y=@y! p ¼ @L=@ _qq;
Zð. . .Þ ! H; @Z=@z ¼ y! @H=@p ¼ _qq:

POWER THEOREM

dH=dt ¼ @H=@tþ
X

Qk _qqk

If @H=@t ¼ 0 (e.g., stationary constraints) and Qk ¼ 0 (e.g., potential forces), then
the Hamiltonian energy of the system is conserved:

H ¼ Hðq; pÞ ¼ constant:

CANONICAL ROUTH–VOSS EQUATIONS

Under the m Pfaffian constraints X
aDk �qk ¼ 0;
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the canonical equations are

dpk=dt ¼ �@T 0=@qk þQk þ
X

�DaDk ¼ �@H=@qk þQk;nonpotential þ
X

�DaDk;

dqk=dt ¼ @T 0=@pk ð¼ @H=@pkÞ:

ROUTH’S EQUATIONS

Ignorable (or cyclic) coordinates and momenta

ðq1; . . . ; qMÞ � ð 1; . . . ;  MÞ � ð iÞ �  ; ð p1; . . . ; pMÞ � ðC1; . . . ;CMÞ � ðCiÞ � C

Positional (or palpable) coordinates and velocities

ðqMþ1; . . . ; qnÞ � ðqpÞ � q ð _qqMþ1; . . . ; _qqnÞ � ð _qqpÞ � _qq

Kinetic energy

T � Tðt; 1; . . . ;  M ; qMþ1; . . . ; qn; _  1; . . . ; _  M ; _qqMþ1; . . . ; _qqnÞ
� Tðt;  ; q; _  ; _qqÞ ¼ T ½t;  ; q; _  ðt;  ; q;C; _qqÞ; _qq�
¼ Tðt;  ; q;C; _qqÞ � T C

Modified (Routhian) kinetic energy

T 00 � T �
X

Ci
_  i

� �



_  ¼ _  ðt; ;q;C; _qqÞ

¼ T 00ðt;  ; q;C; _qqÞ

Routhian central equationX
ðdpk=dt� @T 00=@qk �QkÞ �qk þ

X
ð pp � @T 00=@ _qqpÞ � _qqp

�
X
ðd i=dtþ @T 00=@CiÞ �Ci ¼ 0

Routh’s equations (for unconstrained variations)

dpk=dt ¼ @T 00=@qk þQk: dCi=dt ¼ @T 00=@ i þQi ði ¼ 1; . . . ;MÞ;
dpp=dt ¼ @T 00=@qp þQp ð p ¼M þ 1; . . . ; nÞ;

d i=dt ¼ �@T 00=@Ci ði ¼ 1; . . . ;MÞ;
pp ¼ @T 00=@ _qqp ð p ¼M þ 1; . . . ; nÞ

Hamilton-like Routh’s equations

dCi=dt ¼ �@ð�T 00Þ=@ i þQi; d i=dt ¼ @ð�T 00Þ=@Ci

Lagrange-like Routh’s equations

dpp=dt ¼ @T 00=@qp þQp; pp ¼ @T 00=@ _qqp ð¼ @T=@ _qqpÞ
) ð@T 00=@ _qqpÞ:� @T 00=@qp ¼ Qp
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Additional Routhian kinematico-inertial identities

@T=@qk ¼ @T 00=@qk: @T=@ i ¼ @T 00=@ i ði ¼ 1; . . . ;MÞ;
@T=@qp ¼ @T 00=@qp ð p ¼M þ 1; . . . ; nÞ

In sum, we have the following two groups of such kinematico-inertial identities:

@T 00=@ i ¼ @T=@ i and @T 00=@Ci ¼ �d i=dt;

@T 00=@qp ¼ @T=@qp and @T 00=@ _qqp ¼ @T=@ _qqp ð¼ ppÞ:

If pk � @L=@ _qqk, the above are replaced by the following:

Hamilton-like Routh’s equations

dCi=dt ¼ @R=@ i þQi; d i=dt ¼ �@R=@Ci

and Lagrange-like Routh’s equations

dpp=dt ¼ @R=@qp þ Qp; pp ¼ @R=@ _qqp ð¼ @L=@ _qqpÞ
) EpðRÞ � ð@R=@ _qqpÞ:� @R=@qp ¼ Qp;

where

R � L�
X

Ci
_  i

� �



_  ¼ _  ðt; ;q;C; _qqÞ

¼ Rðt; ; q;C; _qqÞ

¼ Routhian function; or modified Lagrangean;

L ¼ Lðt; ; q;C; _qqÞ � T C � V � L C

¼ Lagrangean expressed in Routhian variables;

that is, the Routhian is a Hamiltonian [times (�1)] for the  i, and a Lagrangean for
the qp.

Relation between Routhian and Hamiltonian

H �
X

pk _qqk � L; R ¼
X

pp _qqp �H ¼ L�
X

Ci
_  i

STRUCTURE OF THE ROUTHIAN

Decomposition of T (scleronomic system):

T ¼ T _qq _qq þ T _qq _  þ T _  _  ¼ Tð ; q; _  ; _qqÞ;

where

2T _qq _qq �
XX

apq _qqp _qqq ¼ homogeneous quadratic in the _qq’s

ðapq ¼ aqp: positive definiteÞ;
T _qq _  �

XX
bpi _qqp _  i ¼ homogeneous bilinear in the _qq’s and _  ’s

ðin general: bpi 6¼ bip; sign indefiniteÞ;
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2T _  _  �
XX

cij _  i
_  j ¼ homogeneous quadratic in the _  ’s

ðcij ¼ cji: positive definiteÞ

[i; j ¼ 1; . . . ;M; p, q ¼M þ 1; . . . ; n; and the coefficients are functions of all n qk’s].

Next,

Ci � @T=@ _  i ¼
X

cji _  j þ
X

bpi _qqp )
X

cji _  j ¼ Ci �
X

bpi _qqp;

d j=dt ¼
X

Cji Ci �
X

bpi _qqp

� �

(since T _  _  is positive definite ) cij is nonsingular), where

Cji ¼ ½cofactor of element cji in DetðcjiÞ�=DetðcjiÞ ¼ Cij

(¼ known function of the q’s and  ’s).

Then

T ¼ T2;0 þ T0;2 ¼ Tð ; q;C; _qqÞ;

where

2T2;0 �
XX

apq �
XX

Cjibpjbqi

� �
_qqp _qqq; 2T0;2 �

XXX
CjiCjCi;

that is, T ¼ Tð ; q;C; _qqÞ does not contain any bilinear terms in the _qq’s and C’s; and
so

T 00 � T �
X

Ci
_  i ¼ T �

X
Ci

�X
Cij Cj �

X
bpj _qqp

� ��
¼ T2;0 þ T 001;1 � T0;2 � T 002;0 þ T 001;1 þ T 000;2

¼ T 00ð ; q;C; _qqÞ;

where

2T 002;0 �
XX

apq �
XX

Cjibpj bqi

� �
_qqp _qqq �

XX
rpqðqÞ _qqp _qqq

¼ 2T2;0 ð¼ positive definite in the _qq’sÞ;

T 001;1 �
XX X

Cjibpi

� �
Cj _qqp �

X
rpðq;CÞ _qqp

½No counterpart in T ¼ Tð ; q;C; _qqÞ; i:e:;T1;1 ¼ 0; sign indefinite�;
2T 000;2 � �

XX
CjiCjCi ¼ 2T 000;2ðq;CÞ

¼ �2T0;2 ð¼ negative definite in the C’sÞ:
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Conversely,

T � T 00 þ
X

Ci
_  i ¼ T 00 �

X
Cið@T 00=@CiÞ

¼ ðT 002;0 þ T 001;1 þ T 000;2Þ � ðT 001;1 þ 2T 000;2Þ
¼ T 002;0 � T 000;2 ¼ Tð ; q;C; _qqÞ:

Hence,

L ¼ T � V ¼ ðT2;0 þ T0;2Þ � V ¼ T2;0 � ðV � T0;2Þ
¼ ðT 002;0 � T 000;2Þ � V ¼ T 002;0 � ðV þ T 000;2Þ ¼ Lð ; q;C; _qqÞ
) R ¼ L�

X
Ci

_  i ¼ Lþ
X
ð@T 00=@CiÞCi

¼ ðT 002;0 � T 000;2 � VÞ þ ð2T 000;2 þ T 001;1Þ
� R2 þ R1 þ R0 ¼ Rð ; q;C; _qqÞ;

where

R2 � T 002;0 ¼ T2;0; R1 � T 001;1; R0 � T 000;2 � V ¼ �T0;2 � V:

Additional results

(i) With

T ¼ T _qq _qq þ T _qq _  þ T _  _  ¼ Tð ; q; _  ; _qqÞ
) T 00 ¼ T �

X
Ci

_  i ¼ T �
X
ð@T=@ _  iÞ _  i ¼ T _qq _qq � T _  _  ¼ T 00ðt;  ; q; _  ; _qqÞ;

(ii) d i=dt ¼ �@T 00=@Ci ¼ � � � ¼ @T0;2=@Ci � @K2;2=@�i;

where

2T0;2 ¼ �2T 000;2 �
XX

CjiCjCi;

and

2K2;2 �
XX

Cji

X
bpj _qqp

� � X
bqi _qqq

� �
�
XX

Cji�j�i:

Matrix form of these results:

_qqT ¼ ð _qqMþ1; . . . ; _qqnÞ; _ttT ¼ ð _  1; . . . ; _  MÞ; )T ¼ ðC1; . . . ;CMÞ;
a ¼ ðapqÞ ¼ ðaqpÞ ¼ a

T; b ¼ ðbipÞ 6¼ ðbpiÞ ¼ b
T; c ¼ ðcijÞ ¼ ðcjiÞ ¼ c

T;

2T ¼ _qqTa _qqþ 2 _ttT
b
T _qqþ _ttT

c _tt;

@T=@ _tt ¼ b
T _qqþ c _tt ¼ )

) _tt ¼ c
�1ð)� b

T _qqÞ � Cð) � b
T _qqÞ ) _ttT ¼ ð)T � _qqTbÞC
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[since c is symmetric, so is its inverse C � ðCjiÞ: C � c
�1 ¼ ðc�1ÞT � C

T�;

T ¼ � � � ¼ ð1=2Þ _qqTða� bC bTÞ _qqþ ð1=2Þ)T C) � T2;0 þ T0;2 ¼ T 002;0 � T 000;2;

½since )T
Cb

T _qq ¼ _qqT bC) �
)T _tt ¼ � � � ¼ )T C)�)T CbT _qq ¼ �2T 000;2 �)T CbT _qq;

R ¼ ðT � VÞ �)T _tt ¼ � � � ¼ R2 þ R1 þ R0

R2 � T 002;0 ¼ T2;0 ¼ ð1=2Þ _qqT ða� bC b
TÞ _qq;

R1 � T 001;1 ¼ )T CbT _qq;

R0 � T 000;2 � V ¼ �ðV þ T0;2Þ ¼ �ð1=2Þ)T
C)� V:

If b ¼ 0 (i.e., _qq’s and _  ’s uncoupled in the original T), R reduces to

R ¼ ð1=2Þ _qqT a _qq� ð1=2Þ)T C)� V :

CYCLIC (OR GYROSTATIC) SYSTEMS

(i) ðq1; . . . ; qMÞ � ð 1; . . . ;  MÞ � ð iÞ �  
do not appear explicitly, neither in its kinetic energy nor in its nonvanishing
impressed forces; only the corresponding Lagrangean velocities

ð _qq1; . . . ; _qqMÞ � ð _  1; . . . ; _  MÞ � ð _  iÞ � _  

appear there, and, of course, time t and the remaining coordinates and/or velocities

ðqMþ1; . . . ; qnÞ � ðqpÞ � q and ð _qqMþ1; . . . ; _qqnÞ � ð _qqpÞ � _qq;

respectively; that is,

@T=@ i ¼ 0

but, in general,

@T=@ _  i 6¼ 0) T ¼ Tðt; q; _  ; _qqÞ:

(ii) The corresponding impressed forces vanish; that is,

Qi ¼ 0; but Qp ¼ QpðqÞ 6¼ 0:

If all impressed forces are wholly potential, the above requirements are replaced,
respectively, by

@L=@ i ¼ 0 and @L=@ _  i 6¼ 0) L ¼ Lðt; q; _  ; _qqÞ:

The coordinates  , and corresponding velocities _  , are called cyclic (Helmholtz), or
absent (Routh), or kinosthenic, or speed (J. J. Thomson), or ignorable (Whittaker).
The remaining coordinates q, and corresponding velocities _qq, are called palpable, or
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positional. Then the Lagrangean equations corresponding to the cyclic coordinates/
variables, become

ð@T=@ _  iÞ:� @T=@ i ¼ Qi: ð@T=@ _  iÞ: ¼ 0) @T=@ _  i � Ci ¼ constant � Ci;

that is, the momenta Ci corresponding to the cylic coordinates  i are constants of the
motion. [Conversely, however, if @T=@ _  i ¼ 0, then @T=@ i ¼ 0, and, as a result,
T ¼ Tðt; q; _qqÞ; that is, the evolution of the  ’s does not affect that of the q’s.]
Hence, the Routhian of a cyclic system is a function of t, q, _qq and C � ðCiÞ; that
is, with C � ðCiÞ;

R � L�
X

Ci
_  i

� �



_  ¼ _  ðt;q; _qq;CÞ

½after solving @T=@ _  i � Ci ¼ Ci for the _  in terms of t; q; _qq;C�
¼ L½t; q; _qq; _  ðt; q;C; _qqÞ;C� �

X
Ci

_  iðt; q; _qq;CÞ
¼ Rðt; q; _qq;CÞ

) L ¼
X

Ci
_  iðt; q; _qq;CÞ þ Rðt; q; _qq;CÞ�;

h
that is, the system has been reduced to one with only n�M Lagrangean coordinates,
new ‘‘reduced Lagrangean’’ R, and, therefore, Lagrange-type Routhian equations
for the positional coordinates and the ‘‘palpable motion’’ qpðtÞ:

ð@R=@ _qqpÞ: � @R=@qp ¼ Qp;nonpotential impressed positional forces:

Then,

R ¼ known function of time

) @R=@Ci ¼ known function of time � �fiðt;CÞ;

)  i ¼ �
ð
ð@R=@CiÞ dtþ constant ¼

ð
fiðt;CÞ dtþ constant

¼  iðt;CÞ þ constant:

EQUATIONS OF KELVIN–TAIT

Let

T ¼ Tðq; _qq; _  Þ ¼ homogeneous quadratic in the _  and _qq;

) R ¼ R2 þ R1 þ R0;

where

R2 � T 002;0 ¼ ð1=2Þ
XX

rpqðqÞ _qqp _qqqð¼ T2;0Þ
¼ R2ðq; _qqÞ ¼ homogeneous quadratic in the nonignorable velocities _qq;

R1 � T 001;1 ¼
X

rpðq;CÞ _qqp
¼ R1ðq; _qq;CÞ ¼ homogeneous linear in the nonignorable velocities _qq;

½apparent kinetic energy T 001;1�;
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and

rp ¼
X

�piCi �pi �
X

Cijbpj ¼ �piðqÞ
h i

;

R0 � T 000;2 � V ¼ �ðV � T 000;2Þ � �ð1=2Þ
XX

CjiCjCi � V ½¼ �ðV þ T0;2Þ�
¼ R0ðq;CÞ ¼ homogeneous quadratic in the constant ignorable momenta C ¼ C

½apparent potential energy T 000;2 ¼ �T0;2ð< 0Þ�:

Hence, the situation is mathematically identical to that of relative motion (}3.16)
Lagrangean equations of palpable motion:

ð@R=@ _qqpÞ:� @R=@qp ¼ Qp;nonpotential impressed positional forces:

From the above we obtain the following.

Kelvin–Tait equations (with p, p 0 ¼M þ 1; . . . ; n)

EpðRÞ � EpðR2 þ R1 þ R0Þ ¼ EpðR2Þ þ EpðR1Þ þ EpðR0Þ ¼ Qp;

or

EpðR2Þ ¼ Qp � EpðR1Þ � EpðR0Þ;

or, explicitly,

ð@R2=@ _qqpÞ:� @R2=@qp ¼ Qp þ @R0=@qp � ½ð@R1=@ _qqpÞ: � @R1=@qp�
¼ Qp � @ðV � T 000;2Þ=@qp þ

X
ð@rp 0=@qp � @rp=@qp 0 Þ _qqp 0

¼ Qp � @ðV � T 000;2Þ=@qp þ Gp;

where

Gp � �½ð@R1=@ _qqpÞ:� @R1=@qp�
¼
X
ð@rp 0=@qp � @rp=@qp 0 Þ _qqp 0 �

X
Gpp 0 _qqp 0

[Gyroscopic Routhian ‘‘force,’’ since Gpp 0 ¼ �Gp 0p ¼ Gpp 0 ðq;CÞ�:
These are the equations of motion of a fictitious scleronomic system (sometimes
referred to as ‘‘conjugate’’ to the original, or reduced, system) with n�M positional
coordinates q, and subject, in addition to the impressed forces Qp (nonpotential) and
�@V=@qp (potential), to two special constraint forces: a centrifugal-like @T 000;2=@qp,
and a gyroscopic one Gp.

Ignorable motion, once the palpable motion has been determined:

qpðtÞ ) d i=dt ¼ �@R=@Ci ¼ �@R1=@Ci � @R0=@Ci ¼ �@T 000;2=@Ci �
X

�pi _qqp

Gyroscopic uncoupling Gpp 0 ¼ 0

) EpðR2Þ � ð@R2=@ _qqpÞ:� @R2=@qp ¼ Qp þ @R0=@qp
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A system is gyroscopically uncoupled if, and only if, R1 dt �
P

rpðq;CÞ dqp is an
exact differential. [A similar uncoupling occurs if all the Ci vanish: rp ¼ 0) R1 ¼ 0;
and R0 ¼ �VðqÞ:�
A cyclic power theorem

dhR=dt ¼
X

Qp _qqp;

where

hR � R2 � R0 ¼ T 002;0 þ ðV � T 000;2Þ
¼ T2;0 þ ðV þ T0;2Þ ¼ Tðq; _qq;CÞ þ VðqÞ � Eðq; _qq;CÞ
¼Modified ðor cyclicÞ generalized energy;

if
P

Qp _qqp ¼ 0:

hR � T 002;0 þ ðV � T 000;2Þ � Tðq; _qq;CÞ þ VðqÞ ¼ constant:

Alternatively,

H �
X
ð@L=@ _qqkÞ _qqk � L ð¼ constant; if Qp ¼ 0 and @L=@t ¼ @R=@t ¼ 0Þ

¼ �Rþ
X
ð@R=@ _qqpÞ _qqp

¼ �ðR2 þ R1 þ R0Þ þ ð2R2 þ R1Þ
¼ R2 � R0 ¼ Hðq; _qq;CÞ ð¼ hRÞ:

For rheonomic cyclic systems; that is, L ¼ Lðt; q; _qq;CÞ

) R ¼ Lðt; q; _qq;CÞ �
X

Ci
_  iðt; q; _qq;CÞ ¼ Rðt; q; _qq;CÞ:

STEADY MOTION (OR CYCLIC SYSTEMS)

_  i ¼ constant � ci ðin addition to Ci ¼ constant � CiÞ;
and qp ¼ constant � sP ð) _qqp ¼ 0Þ

(with i ¼ 1; . . . ;M; p ¼M þ 1; . . . ; n);

that is, all velocities are constant (and, hence, all accelerations vanish); and, for
scleronomic such systems, the Lagrangean has the form L ¼ Lðci; spÞ:

Conditions for steady motion [necessary and sufficient conditions for the steady
motion of an originally (scleronomic and holonomic) system; or, equivalently, for
the equilibrium of the corresponding reduced q-system]:

Qp þ @R0=@qp � Qp þ ð@T 000;2=@qp � @V=@qpÞ ¼ 0;

or, if the forces are wholly potential:

@R0=@qp ¼ 0; or @T 000;2=@qp ¼ @V=@qp:
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Equivalently, since

R ¼ R2ðhomogeneous quadratic in the _qq’sÞ
þR1 ðhomogeneous bilinear in the C’s and _qq’sÞ
þR0 ðhomogeneous quadratic in the C’sÞ

and

@R=@qp ¼ @L=@qp;
the above equations can be rewritten as

ð@R=@qpÞo ¼ ð@L=@qpÞo ¼ 0 ½ð. . .Þo � ð. . .Þj _  ¼c; q¼s�;

expressing q’s � s’s in terms of the arbitrarily chosen C’s � C’s. The _  ’s can then be
found from the second (Hamiltonian) group of Routh’s equations:

d i=dt ¼ �ð@R=@CiÞo ¼ �ð@Ro=@CiÞo ¼ �ð@T 000;2=@CiÞo
¼
X

CijCj ¼ constant � ci ½with _qqp ¼ 0�
¼ Function of the s’s and the ðarbitrarily chosenÞ C’s;

)  iðtÞ ¼ �ciðt� tinitialÞ þ  i; initial

¼ Function of the s’s and the ðnowÞ arbitrarily chosen ci’s and  initial’s;

i:e:; in steady motion, the cyclic coordinates vary linearly with time:

If we initially choose arbitrarily the C’s, then the above equations relate them to the
q’s. If, on the other hand, we choose the _  ’s � c’s, then, to relate them directly
to the q’s: first, we take T 000;2, and, using Ci ¼

P
cji _  j, change it to a homo-

geneous quadratic function in the _  ’s (with i, j, j 0, j 00: 1; . . . ;M):

2T 000;2 � 2T 00CC � �
XX

CjiCjCi recalling that
X

Cjicj 0j ¼ �ij 0
h i

¼ � � � ¼ �
XX

cij _  i
_  j � 2T 00 _  _  ¼ �2T _  _  ;

or, since

@T 00CC=@qp ¼ �ð@T 00 _  _  =@qpÞ ¼ @T _  _  =@qp;

we can, finally, replace the steady motion conditions by

�ð@T 00 _  _  =@qpÞ ¼ @V=@qp; or @T _  _  =@qp ¼ @V=@qp;

relating the q’s to the _  ’s; and, using Ci ¼
P

cji _  j, we can relate both to the C’s.

VARIATION OF CONSTANTS (OR PARAMETERS)

Theorem of Lagrange–Poisson:

Equations of motion:

dpk=dt ¼ fkðt; q; pÞ and dqk=dt ¼ gkðt; q; pÞ;
½ fk ¼ �@H=@qk þQk and gk ¼ @H=@pk; for a Hamiltonian system�;
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general solutions:

pk ¼ pkðt; cÞ and qk ¼ qkðt; cÞ;

where

c � ðc1; . . . ; c2nÞ � ðc�; � ¼ 1; . . . ; 2nÞ: constants of integration:

Adjacent trajectory, II ¼ I þ �ðIÞ,
�pk ¼

X
ð@pk=@c�Þ �c� and �qk ¼

X
ð@qk=@c�Þ �c�:

Linear variational, or perturbational, equations:

ð�pkÞ: ¼ �ð _ppkÞ ¼
X
½ð@fk=@plÞ �pl þ ð@fk=@qlÞ �ql �;

ð�qkÞ: ¼ �ð _qqkÞ ¼
X
½ð@gk=@plÞ �pl þ ð@gk=@qlÞ �ql �:

Then, for a Hamiltonian system,

d=dt
X
ð@1pk �2qk � �2pk �1qkÞ

� �
¼
X
ð�1Qk �2qk � �2Qk �1qkÞ:

Theorem of Lagrange–Poisson: In a holonomic and potential (i.e., Qk ¼ 0, or
@Qk=@ql ¼ @Ql=@qk, for all k, l ¼ 1; . . . ; n), but possibly rheonomic, system, the
bilinear expression

I �
X
ð�1pk �2qk � �2pk �1qkÞ

is time-independent; that is, it is a constant of the motion.

Lagrange’s brackets (LB):

I ¼
XX

½c; c�� �1c �2c�;

where

½c; c�� �
X
½ð@pk=@cÞð@qk=@c�Þ � ð@pk=@c�Þð@qk=@cÞ�

¼ Lagrangean bracket of c; c�:

Properties of LB:

½c; c� ¼ 0; ½c; c�� ¼ �½c�; c�;
@½c; c��=@c� þ @½c�; c��=@c þ @½c�; c�=@c� ¼ 0;

½c; c�� ¼ @=@c�
X

qkð@pk=@cÞ
� �

� @=@c
X

qkð@pk=@c�Þ
� �

:

PERTURBATION EQUATIONS

Unperturbed problem and its solution

dpk=dt ¼ �@H=@qk; dqk=dt ¼ @H=@pk; pk ¼ pkðt; cÞ; qk ¼ qkðt; cÞ
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Slightly perturbed problem

dpk=dt ¼ �@H=@qk þ Xk; dqk=dt ¼ @H=@pk;

where

Xk ¼ Xkðt; q; pÞ ¼ given function of its arguments

� Xk
ð1Þðt; cÞ ½first-order approximation; upon substitution of unperturbed

solution in it�

2n first-order differential equations for the c ¼ constant! cðtÞ:X
ð@pk=@cÞðdc=dtÞ ¼ Xk

ð1Þ;
X
ð@qk=@cÞðdc=dtÞ ¼ 0:

Lagrangean form of the perturbation equations:X
½c�; c�ðdc�=dtÞ ¼

X
Xk
ð1Þð@qk=@cÞ:

If the perturbations are potential—that is, if Xk ¼ �@O=@qk—then, since
qk ¼ qkðt; cÞ, the above specializes toX

½c�; c�ðdc�=dtÞ ¼ �@O=@c:

Inverting, we obtain

c ¼ hðt; q; pÞ ¼ first integral ðconstantÞ of the unperturbed problem;

dc=dt ¼
X
ð@h=@pkÞXk ¼

X
ð@c=@pkÞXk

ð1Þ:

Poisson’s brackets. If the perturbations are potential—that is, if

Xk ¼ �@O=@qk ¼ �
X
ð@O=@c�Þð@c�=@qkÞ;

then

dc=dt ¼ �
X
ð@O=@c�Þðc; c�Þ;

where

ðc; c�Þ �
X
½ð@c=@pkÞð@c�=@qkÞ � ð@c=@qkÞð@c�=@pkÞ�

¼ Poisson bracket of c; c�:

Compatibility with LB: X
½c�; c�ðc�; c�Þ ¼ ��:
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First-order corrections. Setting in c ¼ co þ c1, where co ¼ unperturbed values
and c1 ¼ corresponding first-order corrections, we have

dc1=dt ¼ �
X
ð@Oo=@c�oÞðco; c�oÞ ½where Oo � OðcoÞ�:

Lagrange’s result. Let

qk ¼ qk0 þ qk1tþ qk2t
2 þ � � � ; pk ¼ pk0 þ pk1tþ pk2t

2 þ � � � :

Then, with

ck ¼ qk0 and cnþl ¼ pl0 ðk; l ¼ 1; . . . ; nÞ;

the perturbation equations assume the canonical form:

dck=dt ¼ @O=@cnþk; dcnþk=dt ¼ �@O=@ck ðk ¼ 1; . . . ; nÞ:

CANONICAL TRANSFORMATIONS

Transformations

q ¼ qðt; q 0; p 0Þ $ q 0 ¼ q 0ðt; q; pÞ; p ¼ pðt; q 0; p 0Þ $ p 0 ¼ p 0ðt; q; pÞ;

[with nonvanishing Jacobian @ðq 0; p 0Þ=@ðq; pÞ

 

] that leave Hamilton’s equations
form invariant.

Requirements:

Ldt ¼ L 0 dtþ dF

)
X

pk dqk �H dt ¼
X

pk 0 dqk 0 �H 0 dtþ dF ;

)
X

pk dqk �
X

pk 0 dqk 0 ¼ ðH �H 0Þ dtþ dF ;

where F is the generating function of the transformation (an arbitrary differentiable
function of the coordinates, momenta, and time); and H 0 satisfies the Hamiltonian
equations in the new variables.

Alternatively,X
pk dqk �H dt ¼ df ðt; q; pÞ and

X
pk 0 dqk 0 �H 0 dt ¼ df 0ðt; q 0; p 0Þ;

)
X

pk dqk �
X

pk 0 dqk 0 � ðH �H 0Þ dt
¼ df ðt; q; pÞ � df 0ðt; q 0; p 0Þ � dF :

Virtual form of a canonical transformation:X
pk �qk �

X
pk 0 �qk 0 ¼ �F :
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Forms of F and their relations with the corresponding conjugate variables:

F ¼ F1ðt; q; q 0Þ: pk ¼ @F1=@qk; pk 0 ¼ �@F1=@qk 0 ; H 0 ¼ H þ @F1=@t;

F ¼ F2ðt; q; p 0Þ: pk ¼ @F2=@qk; qk 0 ¼ @F2=@pk 0 ; H 0 ¼ H þ @F2=@t;

F ¼ F3ðt; p; q 0Þ: qk ¼ �@F3=@pk; pk 0 ¼ �@F3=@qk 0 ; H 0 ¼ H þ @F3=@t;

F ¼ F4ðt; p; p 0Þ: qk ¼ �@F4=@pk; qk 0 ¼ @F4=@pk 0 ; H 0 ¼ H þ @F4=@t;

F2 ¼ F1 þ
X

pk 0qk 0 ;

F3 ¼ F1 �
X

pkqk;

F4 ¼ F1 þ
X

pk 0qk 0 �
X

pkqk ¼ F2 �
X

pkqk ¼ F3 þ
X

pk 0qk 0 :

POISSON’S BRACKETS (PB) AND CANONICITY

CONDITIONS

The PB of f, g (where f, g, h are arbitrary differentiable dynamical quantities) is

ð f ; gÞ �
X
½ð@f =@pkÞð@g=@qkÞ � ð@f =@qkÞð@g=@pkÞ� �

X
@ð f ; gÞ=@ð pk; qkÞ:

Then

df =dt ¼ @f =@tþ ðH; f Þ þ
X
ð@f =@pkÞQk;

and so for f to be an integral of the motion, we must have

@f =@tþ
X
ð@f =@pkÞQk þ ðH; f Þ ¼ 0 ) ðH; f Þ ¼ 0; if f ¼ f ðq; pÞ and Qk ¼ 0;

that is, its PB with the Hamiltonian of its variables must be zero.

[Remarks on notation: A number of authors define PBs as the opposite of ours; that
is, as

ð f ; gÞ �
X �ð@f =@qkÞð@g=@pkÞ � ð@f =@pkÞð@g=@qkÞ	:

Therefore, a certain caution should be exercised when comparing references. Also,
others denote our Lagrangean brackets, [. . .], by {. . .}; and our Poisson brackets,
(. . .), by [. . .].]

Properties/theorems of PBs

ð f ; gÞ ¼ �ðg; f Þ ¼ ð�g; f Þ ) f ; f Þ ¼ 0 ðanti-symmetryÞ
ð f ; cÞ ¼ 0 ðc ¼ a constantÞ
ð f1 þ f2; gÞ ¼ ð f1; gÞ ¼ ð f2; gÞ ðdistributivityÞ
ð f1 f2; gÞ ¼ f1ð f2; gÞ þ f2ð f1; gÞ
) ðcf ; gÞ ¼ cð f ; gÞ ðc ¼ a constantÞ
) If f ¼

X
ck fk; then ð f ; gÞ ¼

X
ckð fk; gÞ ðck ¼ constantsÞ
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@=@tð f ; gÞ ¼ ð@f =@t; gÞ þ ð f ; @g=@tÞ ð‘‘Leibniz rule’’Þ
½Actually; @=@xð f ; gÞ ¼ ð@f =@x; gÞ þ ð f ; @g=@xÞ; x ¼ any variable�
ð f ; qkÞ ¼ @f =@pk;

ð f ; pkÞ ¼ �@f =@qk;
ðqk; qlÞ ¼ 0;

ð pk; plÞ ¼ 0;

ð pk; qlÞ ¼ �kl ð¼ Kronecker deltaÞ:
½The last three types of brackets are called fundamental; or basic; PB�

ð f ; ðg; hÞÞ þ ðg; ðh; f ÞÞ þ ðh; ð f ; gÞÞ ¼ 0;

ðð f ; gÞ; hÞ þ ððg; hÞ; f Þ þ ððh; f Þ; gÞ ¼ 0 ðPoisson�Jacobi identityÞ

Theorem of Poisson–Jacobi: If f and g are any two integrals of the motion, so is their
PB; that is, if f ¼ c1 and g ¼ c2, then ð f ; gÞ ¼ c3 (c1;2;3 ¼ constants).

Theorem: The PBs are invariant under CT; that is, ð f ; gÞq; p ¼ ð f ; gÞq 0; p 0 ¼ � � � ; where
f and g keep their value, but not necessarily their form, in the various canonical
coordinates involved.

Canonicity conditions via PB

½ pl 0 ; pk 0 � ¼ 0; ½ql 0 ; qk 0 � ¼ 0; ½ pk 0 ; ql 0 � ¼ �kl ;
ð pl 0 ; pk 0 Þ ¼ 0; ðql 0 ; qk 0 Þ ¼ 0; ð pl 0 ; qk 0 Þ ¼ �lk;

since both Poisson and Lagrange brackets are canonically invariant.

Theorem of Jacobi

(i) The integration of the canonical equations

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk;

is reduced to the integration of the Hamilton–Jacobi equation ðH � JÞ:

Hðt; q; @A=@qÞ þ @A=@t ¼ 0;

A ¼ Aðt; q; p 0Þ: generating function ðHamiltonian actionÞ:

(ii) If we have a complete solution of H � J; that is, a solution of the form

A ¼ Aðt; q1; . . . ; qn;�1; . . . ; �nÞ � Aðt; q; �Þ;

where � � ð�1; . . . ; �nÞ ¼ n essential arbitrary constants, and j@2A=@q @�j 6¼ 0 (non-
vanishing Jacobian), then the solution of the algebraic system:

@A=@�k ¼ 
k

½Finite equations of motion; 
: new arbitrary constants) qk ¼ qkðt; 
; �Þ�;
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@A=@qk ¼ pk

½) pk ¼ pkðt; 
; �Þ: canonically conjugate ðfiniteÞ equations of motion�;

constitutes a complete solution of the canonical equations. Schematically, these are
as follows.

Hamilton: Differential equations of motion:

dq=dt ¼ @H=@p; dp=dt ¼ �@H=@q
ðIf these equations can be integrated; an action function can be obtainedÞ

Hamilton–Jacobi:

Hðt; q; @A=@qÞ þ @A=@t ¼ 0) A ¼ Aðt; q; �Þ

Jacobi: Finite equations of motion:

@A=@� ¼ 
! q ¼ qðt; 
; �Þ;
@A=@q ¼ p! p ¼ pðt; 
; �Þ

(If an action function can be obtained, then Hamilton’s equations can be integrated.)
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1

Background

Basic Concepts and Equations of
Particle and Rigid-Body
Mechanics

Therefore it would seem right that any systematic treatment of

classical dynamics should start with axioms carefully laid down,

on which the whole structure would rest as a house rests on its

foundations. The analogy to a house is, however, a false one.

Theories are created in mid-air, so to speak, and develop both

upward and downward. Neither process is ever completed.

Upward, the ramifications can extend indefinitely, downward,

the axiomatic base must be rebuilt continually as our views

change as to what constitutes logical precision. Indeed, there is

little promise of finality here, as we seem to be moving towards

the idea that logic is a man-made thing, a game played

according to rules to some extent arbitrary.

(Synge, 1960, p. 5, emphasis added)

In this chapter we summarize, without detailed proofs and/or elaborate discussions,
in a handbook (not textbook) fashion, like a first-aid kit, but in a hopefully accurate
and serviceable form, the basic concepts, definitions, axioms, and theorems of
‘‘elementary’’ (or momentum/Newton–Euler, or general) theoretical mechanics.
This compact, highly selective, perhaps nonhomogeneous, and unavoidably incom-
plete account should help to establish a common background with readers, and thus
enhance their understanding of the rest of this relatively self-contained book.

For complementary reading, we recommend (alphabetically):

Hund (1972): concise, insightful.

Langner (1996–1997): dense, clear; ‘‘best buy.’’

Loitsianskii and Lur’e (1982, 1983): excellent.

Marcolongo (1905, 1911/1912): rigorous, comprehensive.

Milne (1948): interesting vectorial treatment of rigid dynamics.
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Fox (1967): one of the best, and most economically written, U.S. texts on elementary–
intermediate general mechanics.

Hamel (1909), (1912, 1st ed., 1922, 2nd ed.): arguably the best text on elementary–

Papastavridis: Elementary Mechanics (EM for short), under production: encyclopedia/
handbook of Newton-Euler momentum mechanics, from an advanced and unified viewpoint;
includes the elements of continuum mechanics.

intermediate general mechanics written to date, (1927), (1949).



Synge (1960): comprehensive, encyclopedic, mature.

Winkelmann (1929, 1930): concise, comprehensive.

Additional references, at particular sections, and so on, will also be given, as deemed

beneficial.

1.1 VECTOR AND (CARTESIAN) TENSOR ALGEBRA

Vectors: Basic Concepts/Definitions and Algebra

Geometrically, vectors are straight line segments that, in the most general case, have
the following five characteristics: (i) length, (ii) direction, (iii) sense, (iv) line of action
(or carrier), and (v) origin (or point of application) on carrier; (iv) and (v) can be
replaced with spatial origin. Also, vectors obey the well-known parallelogram law
of addition () commutativity); that is, not all line segments with characteristics
(i)–(v) are vectors (e.g., finite rotations, }1.10). Next, if only characteristics (i)–(iii)
matter, but (iv) and (v) do not, the vector is called free; if characteristics (i)–(iv)
matter, but (v) does not, the vector is called line bound or sliding; and if all five
characteristics matter, the vector is called point bound. As a rule, the vectors of
continuum mechanics and the system vectors of analytical mechanics (chap. 2 ff.) are
point bound; while those of rigid-body mechanics are line bound.

Notation for vectors: a, b; . . . (bold italic).
Length, or magnitude, or modulus, or intensity, or norm, of a: jaj � a 
 0. If

a ¼ 0, the vector is called null; if a ¼ 1, the vector is called unit (or normalized).
The physical space of classical mechanics is a three-dimensional Euclidean point

space, denoted by E3 or E; while the associated (also Euclidean) vector space is
denoted by E3 or E.

An orthonormal basis (i.e., one whose vectors are unit and mutually orthogonal—
see below)

fu1; u2; u3g � fu1;2;3g � fuk; k ¼ 1; 2; 3g � fukg
� fux; uy; uzg � fux;y;zg � fi; j; kg; ð1:1:1Þ

together with an ‘‘origin,’’ O, make up a (local) rectangular Cartesian frame: fO; ukg.
If the origin is not important, we simply write fukg.

[Since E is flat (noncurved), a single such frame, and associated rectilinear and
mutually rectangular axes of coordinates O�123 � O–xyz, can be extended to cover,
or represent, the entire space: local frame! global frame. For details, see, for exam-
ple, Papastavridis (1999, pp. 84–91, 211–218), or Lur’e (1968, p. 807).]

In such a basis, a vector a can be represented by its rectangular Cartesian com-
ponents

fa1; a2; a3g � fa1;2;3g � fak; k ¼ 1; 2; 3g � fakg � fax; ay; azg � fax;y;zg; ð1:1:2aÞ

or

a ¼ a1u1 þ a2u2 þ a3u3 ¼ axux þ ayuy þ azuz ¼
X

akuk: ð1:1:2bÞ
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In terms of the famous Einsteinian summation convention [¼ lone, or free, sub-
scripts range over the integers 1, 2, 3, or x, y, z, while summation is implied over
repeated (i.e., pairs) of subscripts], we can simply write a ¼ akuk. In this book, how-
ever, and for reasons that will gradually become clear (chap. 2), we shall NOT use
this convention!

Dotting (1.1.2b) with uk, and noting the six orthonormality (metric!) conditions or
constraints:

uk � ul: scalar; or dot; or inner; product of uk; ul ¼ �kl ¼ �lk ðKronecker deltaÞ
¼ 1 if k ¼ l; ¼ 0 if k 6¼ l ðk; l ¼ 1; 2; 3; or x; y; zÞ; ð1:1:3Þ

in extenso:

i � j ¼ j � j ¼ k � k ¼ 1 ðnormalityÞ; i � j ¼ i �k ¼ j � k ¼ 0 ðorthogonalityÞ:
ð1:1:3a;bÞ

we obtain the following expression for the a-components:

ak ¼ a � uk: ð1:1:2cÞ

In such a basis, the dot product of two vectors a and b is expressed as

a � b ¼ b � a ¼
X

akuk

� �
�

X
blul

� �
¼ � � � ¼

X
akbk: ð1:1:4Þ

For a ¼ b, the above yields the length, or norm, or magnitude, of a:

NðaÞ � a ¼ jaj ¼ ða � aÞ1=2 ¼
X

akak

� �1=2

 0 ðthis bookÞ: ð1:1:5Þ

The basis fu1;2;3g is called OrthoNormalDextral (i.e., right-handed) � OND, if, in addition to
(1.1.3), it satisfies

uk � ður � usÞ � ðuk; ur; usÞ � "krs ðpermutation symbol; or alternator; of Levi�CivitaÞ
¼ þ1=�1=0 according as k; r; s are an even=odd=no permutation

of 1; 2; 3

½i:e:; "123 ¼ "231 ¼ "312 ¼ þ1; "132 ¼ "213 ¼ "321 ¼ �1;
ðtwo or more indices equalÞ�; ð1:1:6Þ

or, equivalently, if

ur � us ¼
X

"rskuk ¼
X

"krsuk , uk ¼ ð1=2Þ
XX

"krsður � usÞ; ð1:1:6aÞ

that is, ður � usÞk ¼ "rsk; otherwise fu1;2;3g is left-handed, or sinister, in which case
ðuk; ur; usÞ � �"krs. Henceforth, only OND bases will be used.

� The symbols of Kronecker and Levi–Civita are connected by the following ‘‘ed iden-
tity’’: X

"krs"lms ¼
X

"skr"slm ¼ �kl�rm � �km�rl; ð1:1:6bÞ
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which, for r ¼ m (and then summation over repeated subscripts), producesXX
"krs"lrs ¼ 2�kl ; ð1:1:6cÞ

and this, for k ¼ l, etc., yields

XXX
"krs"krs ¼ 2

X
�kk

� �
¼ 2ð3Þ ¼ 6: ð1:1:6dÞ

� The dextrality of the orthonormal basis (i; j;k) (i.e., i � i ¼ j � j ¼ k� k ¼ 0), is

expressed by

i � j ¼ �ð j � iÞ ¼ k; j � k ¼ �ðk� jÞ ¼ i; k� i ¼ �ði � kÞ ¼ j: ð1:1:6eÞ

With the help of the above, we express the vector, or cross, or outer, product of a
and b as

a� b ¼ �ðb� aÞ ¼
XXX

"klrakblur; ð1:1:7aÞ

that is,

ða� bÞr ¼
XX

"klrakbl ¼
XX

"rklakbl : ð1:1:7bÞ

It can be shown that

ju1 � u2j2 ¼ ju2 � u3j2 ¼ ju3 � u1j2 ¼ ðu1; u2; u3Þ2 ¼ þ1; ð1:1:8aÞ
where

ða; b; cÞ � a � ðb� cÞ ¼ b � ðc� aÞ ¼ c � ða� bÞ
¼ ða� bÞ � c ¼ ðb� cÞ � a ¼ ðc� aÞ � b
¼
XXX

"krsakbrcs: ð1:1:8bÞ

[þ, if (a, b, c) is right; �, if (a, b, c) is left; 0, if (a, b, c) are coplanar or zero]: scalar
triple product of a, b, c ¼ signed volume of parallelepiped having a, b, c as sides;
also

½a; b; c� � a� ðb� cÞ ¼ ða � cÞb� ða � bÞc
6¼ ða� bÞ � c ¼ �c� ða� bÞ ¼ ða � cÞb� ðb � cÞa½ �: ð1:1:8cÞ

vector triple product of a, b, c.
The dyadic, or direct, or open, or tensor product of two vectors a and b,

a b � a b ð6¼ b a; in generalÞ; ð1:1:9aÞ
is defined as (the tensor — see below):

a b � a  b ¼
X

akuk

� �


X
blul

� �
¼
XX

akblðuk  ulÞ: ð1:1:9bÞ

� This product can also be defined as the tensor that assigns to each vector x the vector

a ðb � xÞ:
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ða bÞ � x ¼ a ðb � xÞ ¼ ðb � xÞa; ð1:1:9cÞ

and also

x � ða bÞ ¼ ðx � aÞb ¼ b ðx � aÞ: ð1:1:9dÞ

In components, these read, respectively,

ða bÞ � x ¼
XX

ðakblxlÞuk; x � ða bÞ ¼
XX

ðxlalbkÞuk: ð1:1:9eÞ

� It can be shown that

½a; b; c� ¼ ½ðb cÞ � ðc bÞ� � a: ð1:1:8dÞ

Tensors: Basic Concepts/Definitions and Algebra

A second-order (or rank) tensor (or dyadic, from the Greek DYO ¼ two) or, here,
simply tensor T (bold, in italics or roman) is defined as a linear transformation from
V to V ; or as a linear mapping assigning to each vector a another vector b:

b ¼ T � a; ð1:1:10aÞ
or in components X

bkuk ¼
XX

Tklaluk ) bk ¼
X

Tklal ; ð1:1:10bÞ

or as

b ¼ a �T ¼
XX

akTklul ) bl ¼
X

Tklak;

where

Tkl � uk � ðT � ulÞ ¼ ðT � ulÞ � uk ¼ T � ðuk  ulÞ; ð1:1:10cÞ
are the Cartesian components of T (see tensor products, below). Alternatively, a
vector/tensor//(n)th order tensor associates a scalar/vector//(n� 1)th order tensor
with each spatial direction ud ¼ (uðdÞk: direction cosines of unit vector ud ), via a
linear and homogeneous expression in the uðdÞk; that is, for a (second-order) tensor:

T ! vd ¼ T � ud ðdirect notationÞ; vðdÞk ¼
X

TkluðdÞl ðcomponent notationÞ:

Thus (and in addition to the well-known 3� 3 matrix form), T has the following
representations:

T ¼
XX

Tkluk  ul ðDyadic or nonion representationÞ
¼
X

uk  tk; where tk �
X

Tklul ; ð1:1:10dÞ
¼

X
Tkluk: ð1:1:10eÞ
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τ l ⊗ ul, where τ l ≡



The nine tensors fuk  ulg span the set of all (second-order) tensors; they form an
orthonormal ‘‘tensor basis’’ there. If T12 ¼ T21ð¼ �T21Þ, etc., then T is called sym-
metric (anti-, or skew-symmetric). Generally [see definition of transpose, (. . .)T,
below]:

Symmetric tensor: T ¼ TT; Tkl ¼ Tlk; ð1:1:11aÞ
Antisymmetric tensor: T ¼ �TT; Tkl ¼ �Tlk ð) Tkk ¼ 0; no sum!Þ ð1:1:11bÞ

Algebra of Tensors: Basic Operations

� Sum/difference of tensors T and S:

T � S ¼
XX

ðTkl � SklÞuk  ul : ð1:1:12aÞ

� Product of T with a scalar (number) �, �T :

�T ¼
XX

ð�TklÞuk  ul : ð1:1:12bÞ

� Tensor product of T and S, T �S, is defined by

T �S ¼
XXX

TkrSrluk  ul ð6¼ S �T ; in generalÞ;

that is,

ðT �SÞkl ¼
X

TkrSrl 6¼ ðS �TÞkl ¼
X

SkrTrl : ð1:1:12cÞ

� Inner, or dot, scalar product of T and S, T : S, is defined by (see trace below)

T : S �
XX

TklSkl ¼ TrðT �STÞ
¼
XX

SklTkl ¼ TrðS �T TÞ � S : T ; ð1:1:12dÞ

where Tr means ‘‘trace of.’’ If T ¼ S,

T � jT j ¼ ðT :T Þ1=2: magnitude of T ð> 0; unless T ¼ 0Þ: ð1:1:12eÞ
If either of T, S is symmetric (as is almost always the case in mechanics), then,

T : S �
XX

TklSkl ¼
XX

TklSlkh
¼ TrðT � SÞ � T � � S

¼
XX

SlkTkl ¼ TrðS �TÞ � S � � T
i
: ð1:1:12f Þ

In sum, we have defined the following three tensorial products:

ðT �SÞkl ¼
X

TkrSrl ðTensorÞ;
T : S �

XX
TklSkl ðScalarÞ; T � �S �

XX
TklSlk ðScalarÞ: ð1:1:12gÞ
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The reader should be warned that these notations are by no means uniform, and so
caution should be exercised in comparing various references.

� Transpose of T, T T, is defined uniquely by

ðT � aÞ � b ¼ a � ðT T
� bÞ; for all a; b: ð1:1:12hÞ

� Trace of T is defined by

Trace of T � TrðT Þ � T11 þ T22 þ T33 �
X

Tkk: ð1:1:12iÞ

� Determinant of T is defined by

Determinant of T � DetðT Þ ¼ DetðTklÞ � jTkl j: ð1:1:12jÞ

It can be shown that:

ðiÞ TrðT Þ ¼ TrðT TÞ; DetðT Þ ¼ DetðT TÞ; ð1:1:12kÞ

(ii) For any two vectors a and b:

ða bÞT ¼ b a; Trða bÞ ¼ a � b ¼
X

akbk; Detða bÞ ¼ 0; ð1:1:12lÞ

(iii) For any two tensors T and S:

ðT �SÞT ¼ S T
�T T; TrðT �SÞ ¼ TrðS �T Þ ¼ T � �S; ð1:1:12mÞ

DetðT �S Þ ¼ DetðTÞDetðSÞ; ð1:1:12nÞ

also (in three dimensions):

DetðtT Þ ¼ t3 DetðTÞ; for any real number t: ð1:1:12oÞ

� Inverse of T , T �1, is defined uniquely by:

½DetðT Þ 6¼ 0�: ð1:1:12pÞ

From the above, we can easily deduce that

ðiÞ DetðT �1Þ ¼ ðDet T Þ�1 ð1:1:12qÞ
ðiiÞ ðT �S Þ�1 ¼ S�1 �T �1 ðT ;S: invertibleÞ ð1:1:12rÞ
ðiiiÞ d=dxðDet T Þ ¼ ðDet T ÞTr½ðdT=dxÞ �T �1�; ð1:1:12sÞ

where T ¼ TðxÞ ¼ invertible, x ¼ real parameter, and dT=dx � ðdTkl=dxÞ:
� A tensor can be built from two vectors; but, in general, it cannot be decom-

posed into two vectors.
� Every tensor can be decomposed uniquely into a sum of a symmetric part (T 0kl)

and an antisymmetric part (T 00kl):

Tkl ¼ T 0kl þ T 00kl ;

2T 0kl � Tkl þ Tlk ¼ 2T 0lk; 2T 00kl � Tkl � Tlk ¼ �2T 00lk; ð1:1:13aÞ
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T · T−1 = T−1 · T = 1 (unit tensor),



that is,

T ¼ T 0 þ T 00; T 0 ¼ ðT 0ÞT; T 00 ¼ �ðT 00ÞT: ð1:1:13bÞ

� For any tensor T and any three vectors a, b, c, the following identities hold:

ðiÞ a � ðT � bÞ ¼ T : ða bÞ;
X

ak
X

Tklbl

� �
¼
XX

TklðakblÞ ðin componentsÞ:
ð1:1:14aÞ

(ii) Since

T � a ¼
XX

ðTklalÞuk; a �T ¼
XX

ðalTlkÞuk;

we will have T � a ¼ a �T , only if T is symmetric; from which we also conclude that

ðuk  ulÞ : ður  usÞ ¼ �kr �ls: ð1:1:14bÞ
ðiiiÞ ða� T Þ � b ¼ a� ðT � bÞ; ðT � aÞ � b ¼ T � ða� bÞ; ð1:1:14cÞ

where

T � a ¼
XXXX

ðTkras"rslÞuk  ul ;

that is,

ðT � aÞkl ¼
XX

"lrsTkras; ð1:1:14dÞ

and

a� T ¼
XXXX

ðTslar"rskÞuk  ul; ða� T Þkl ¼
XX

"krsarTsl : ð1:1:14eÞ
ðivÞ ðT � a;T � b;T � cÞ ¼ ðDetTÞða; b; cÞ: ð1:1:14f Þ
ðvÞ T T

� ðT � a� T � bÞ ¼ ðDetTÞða� bÞ: ð1:1:14gÞ

Special Tensors

Zero tensor O:

O � a ¼ 0; for every vector a: ð1:1:15aÞ

; for every vector a; ð1:1:15bÞ

¼
XX

�kluk  ul ¼ u1  u1 þ u2  u2 þ u3  u3 ðDyadic formÞ
¼ ð�klÞ ¼ diagonalð1; 1; 1Þ ðMatrix formÞ;

78 CHAPTER 1: BACKGROUND

Unit, or identity, tensor 1:

1

) ð1:1:15cÞDet 1¼ þ1:

1 · a = a



Diagonal tensor D:

D ¼ D11u1  u1 þD22u2  u2 þ D33u3  u3 ðDyadic formÞ
¼ diagonal ðD11;D22;D33Þ ðMatrix formÞ: ð1:1:15dÞ

If D11 ¼ D22, D reduces to

ð1:1:15eÞ
a result that is useful in the representation of moments of inertia of bodies of revolu-
tion.

Alternator tensor e:

e ¼
XXX

"klm uk  ul  um: ð1:1:15f Þ

It can be shown that

ðiÞ Det T � jTkl j ¼
XXXXXX

ð1=6Þ"klm"pqrTkpTlqTmr: ð1:1:15gÞ
ðiiÞ If S is symmetric; then T :S ¼ T T

:S ¼ ð1=2ÞðT þ T TÞ :S; ð1:1:15hÞ
If S is antisymmetric; then T :S ¼ �ðT T

:SÞ ¼ ð1=2ÞðT � T TÞ : S; ð1:1:15iÞ
If S is symmetric and T is antisymmetric; then T :S ¼ 0: ð1:1:15jÞ

ðiiiÞ If T :S ¼ 0 for every tensor S; then T ¼ 0; ð1:1:15kÞ
If T :S ¼ 0 for every symmetric tensor S; then T ¼ antisymmetric; ð1:1:15lÞ
If T :S ¼ 0 for every antisymmetric tensor S; then T ¼ symmetric: ð1:1:15mÞ

Axial Vectors

There exists a one-to-one correspondence between antisymmetric tensors and
vectors: given a (any) antisymmetric tensor W—that is, W ¼ �W T— there exists
a unique vector w, its axial (or dual) vector or axis, such that for every vector a:

W � a ¼ w� a; ð1:1:16aÞ
that is, (recalling the earlier definitions of products, etc.)

½) a � ðW � aÞ ¼ 0�: ð1:1:16bÞ
And, conversely, given a vector w, there exists a unique antisymmetric tensor W ,
such that (1.1.16a,b) hold. In components, the above read:

wk ¼ �ð1=2Þ
XX

"klmWlm ¼ ð1=2Þ
XX

"lkmWlm; ð1:1:16cÞ
Wlm ¼ �

X
"lmkwk ¼

X
"lkmwk; ð1:1:16dÞ

or, in matrix form:

W ¼ ðWlmÞ ¼
0 W12 ¼ �w3 W13 ¼ w2

W21 ¼ w3 0 W23 ¼ �w1

W31 ¼ �w2 W32 ¼ w1 0

0B@
1CA: ð1:1:16eÞ
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D = D111 + (D33 − D11)u3 ⊗ u3,

W · (. . .) = (w × 1) · (. . .) = w × (. . .)



[Sometimes (especially in general indicial tensorial treatments) wk is defined as the
negative of the above; that is,

wk ¼ ð1=2Þ
XX

"klmWlm , Wlm ¼
X

"lmkwk; ð1:1:16f Þ

or

W � a ¼ �w� a ¼ a� w; ð1:1:16gÞ

and so, here too, the reader should be careful when comparing references.]
It can be shown that:
(i) The axial vector of a general nonsymmetric tensor equals the axial vector of its

antisymmetric part; that is, the axial vector of its symmetric part (and, generally, of
any symmetric tensor) vanishes; and, conversely, the vanishing of that vector shows
that that tensor is symmetric.

(ii)

�2t ¼ ðT23 � T32Þu1 þ ðT31 � T13Þu2 þ ðT12 � T21Þu3
¼ u1 � t1 þ u2 � t2 þ u3 � t3: ð1:1:16hÞ

(iii) The axial vector of

W ¼
XX

Wkl uk  ul ¼
XX

ð1=2ÞWklðuk  ul � ul  ukÞ;

w has the following dyadic representation (note k, l order):

w ¼
XXX

�ð1=2Þ"rklWkl½ �ur ¼ � � � ¼
XX

ð1=2ÞWklðul � ukÞ: ð1:1:16iÞ

(iv) Let w ¼ wu1. Then,

W ¼ wðu3  u2 � u2  u3Þ; w ¼ u3 � ðW � u2Þ; ð1:1:16jÞ

and cyclically for w ¼ w u2, w ¼ w u3.
(v) The antisymmetric part of the tensor a b equals (in matrix form)

0 �w3 w2

w3 0 �w1

�w2 w1 0

0B@
1CA; ð1:1:16kÞ

where

w ¼ ð1=2Þ b � a ðnote orderÞ: ð1:1:16lÞ

(vi) The tensor a b� b a, where a, b are arbitrary vectors, is antisymmetric;

(vii) Let w1, w2 be the axial vectors of the antisymmetric tensors W1, W2, respec-
tively. Then,

TrðW1 �W2Þ ¼ �2ðw1 �w2Þ: ð1:1:16mÞ
)
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The axial vector of T, t (or Tx, or tx), can be expressed as

and, by the preceding, its axial vector is b × a (note order).

W1 ·W2 = w2 ⊗ w1 − (w1 · w2)1,

W ·W = w ⊗ w − (w · w)1, or W2 = w ⊗ w − w21. ð1:1:16nÞ



Spectral Theory of Tensors

DEFINITION

A scalar � is a principal, or characteristic, or proper value, or eigenvalue, of T if there
exists a unit vector n ¼ ðn1; n2; n3Þ such that

T � n ¼ �n; or in components
X

Tklnl ¼ �nk: ð1:1:17aÞ

Then n is called a principal, or characteristic, or proper, or eigen-direction of T
corresponding to that value of �.

DEFINITION

The principal, or characteristic, or proper, or eigen-space of T corresponding to � is
the subspace of V consisting of all vectors a satisfying (1.1.17a): T � a ¼ �a; that is,
the subspace of all the eigenvectors of T.

If T is positive definite—that is, if a � ðT � aÞ > 0 for all a 6¼ 0—then its eigen-
values are strictly positive.

THEOREM OF SPECTRAL DECOMPOSITION (of T )

and three real, but not necessarily distinct, eigenvalues �1, �2, �3 of T such that

T � nk ¼ �knk ðk ¼ 1; 2; 3; no sumÞ; ð1:1:17bÞ
and X

nk  nk

� �
¼
X
ðT � nkÞ  nk

¼
X

�kðnk  nkÞ ðDyadic representationÞ
¼ diagonalð�1; �2; �3Þ ðMatrix representationÞ; ð1:1:17cÞ

) nk � ðT � nlÞ ¼ T � nk � nl ¼ �k �kl ð¼ �k or 0; according as k ¼ l or k 6¼ lÞ;
that is, with

nk ¼ ðnðkÞl: components of nkÞ;
Tkl ¼ �1nð1Þknð1Þl þ �2nð2Þknð2Þl þ �3nð3Þknð3Þl : ð1:1:17dÞ

Conversely, if T ¼P �kðnk  nkÞ, with fnkg ¼ orthonormal, then T � nk ¼ �knk (no
sum).

Depending on the relative sizes of the three eigenvalues, we distinguish the follow-
ing three cases:

(i) If �1, �2, �3 ¼ distinct, then the eigendirections of T are the three mutually
orthogonal lines, through the origin, spanned by n1, n2, n3.

(ii) If �1 6¼ �2 ¼ �3 (i.e., two distinct eigenvalues), then the spectral decomposition
(1.1.17c) reduces to the following (with jn1j ¼ 1):

ð1:1:17eÞ
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1, n2, n3} for VIf T = TT (i.e., symmetric), there exists an orthonormal basis {n

T = λ1(n1 ⊗ n1) + λ2(1 − n1 ⊗ n1).

T = T · 1 = T ·



Conversely, if (1.1.17e) holds with �1 6¼ �2 ¼ �3, then �1 and �2 are the sole distinct
eigenvalues of T; which, in this case, has the two distinct eigenspaces: (a) the line
spanned by n1, and (b) the plane perpendicular to n1.

(iii) If �1 ¼ �2 ¼ �3 ¼ �, in which case

ðDyadic representationÞ
¼ diagonalð�; �; �Þ ðMatrix representationÞ; ð1:1:17f Þ

then the eigenspace of T is the entire space V. Conversely, if V is the eigenspace of T,
then T has the form (1.1.17f). [For extensions of the theorem to polynomial functions
of T see books on linear algebra; also Bradbury (1968, pp. 113–116).] The require-
ment of nontrivial solutions for n, in (1.1.17a), leads, in well-known ways, to the
characteristic (polynomial) equation for T:

ð1:1:18aÞ
where the coefficients, or principal invariants of T (i.e., quantities independent of the
choice of the basis used for the representation of T ), are given by

I1ðT Þ � I1 � TrðT Þ ¼
X

Tkk ¼ �1 þ �2 þ �3;
I2ðT Þ � I2 � ð1=2Þ½ðTrT Þ2 � TrðT 2Þ�

¼ ð1=2Þ
X

Tkk

� � X
Tll

� �
�

XX
TklTlk

� �h i
¼ �1�2 þ �1�3 þ �2�3;

I3ðT Þ � I3 � DetT ¼ jTkl j ¼
XXX

"klmTk1Tl2Tm3 ¼ �1�2�3
¼ ð1=6Þ ðTrT Þ3 � 3ðTrT ÞðTrT 2Þ þ 2TrðT 3Þ

h i
; ð1:1:18bÞ

also

I1
2 � 2I2 ¼ �12 þ �22 þ �32 ¼ TrðT 2Þ: ð1:1:18cÞ

[(a) It is shown in linear algebra/matrix theory that:

� In general, that is, T ¼ nonsymmetric, eq. (1.1.18a) has either three real roots; or one

real and two complex (conjugate) roots.

� Every tensor T satisfies its own characteristic equation; that is, eq. (1.1.18a) with �

generally, if f ð�Þ ¼ real polynomial in an eigenvalue � of T , then f ð�Þ is an eigenvalue

of f ðT Þ; and, an eigenvector of T corresponding to � is also an eigenvector of f ðT Þ
corresponding to f ð�Þ.

(b) The above show that TrT , TrðT 2Þ, TrðT 3Þ may also be considered as princi-
pal invariants of T .]

Further, it can be shown, that:
(i) If N1;2;3 are the antisymmetric tensors whose axial vectors are, respectively, the

three orthonormal eigenvectors of (the symmetric tensor) T : n1;2;3; then T has, in
addition to (1.1.17c), the following spectral decomposition:

ð1:1:18dÞ
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T = λ1 = λ(n1 ⊗ n1 + n2 ⊗ n2 + n3 ⊗ n3)

− Det(T − λ1) = Det(λ1 − T) ≡D(λ) ≡ λ3 − I1λ
2 + I2λ − I3 = 0,

T = λ1(N1 · N1) + λ2(N2 · N2) + λ3(N3 · N3) + Tr(T)1;

replaced by T : T3 − I1T2 + I2T − I31 = 0 (Cayley–Hamilton theorem). And, more



and, therefore, for an arbitrary vector a,

T � a ¼ �1ðN1 �N1Þ � aþ �2ðN2 �N2Þ � aþ �3ðN3 �N3Þ � a þ TrðT Þa; ð1:1:18e1Þ
also,

TrðN1 �N1Þ ¼ TrðN2 �N2Þ ¼ TrðN3 �N3Þ ¼ �2: ð1:1:18e2Þ
(ii) If a ¼ axial vector of A, then

T � a ¼ axial vector of ½�ðT �Aþ A �T Þ þ TrðT ÞA�: ð1:1:18f Þ
(iii) The principal invariants of

T ¼
XX

Tkluk  ul ¼
X

uk  tk; where tk �
X

Tklul ; ð1:1:18gÞ

can be expressed as

I1 ¼ u1 � t1 þ u2 � t2 þ u3 � t3; ð1:1:18hÞ
I2 ¼ u1 � ðt2 � t3Þ þ u2 � ðt3 � t1Þ þ u3 � ðt1 � t2Þ; ð1:1:18iÞ
I3 ¼ t1 � ðt2 � t3Þ: ð1:1:18jÞ

(iv) The principal invariants of an antisymmetric tensor W are

I1 ¼ TrW ¼ 0; ð1:1:18kÞ
I2 ¼W23

2 þW31
2 þW12

2

¼ ð�w1Þ2 þ ð�w2Þ2 þ ð�w3Þ2 ¼ w1
2 þ w2

2 þ w3
2; ð1:1:18lÞ

I3 ¼ DetW ¼ 0 jwj2 ¼ w2 ¼ ðaxial vector of W Þ2
h i

; ð1:1:18mÞ

(v) If T is a symmetric and positive definite tensor with () positive) eigenvalues,
then

DetT > 0 ði:e:; T is invertibleÞ; T �1 ¼
X

�k
�1 : ð1:1:18nÞ

(vi) If T is an invertible tensor, and the characteristic equation of T �1 is

ð1:1:18oÞ
then

 ¼ 1=�; i:e:; the eigenvalues of T �1 are the inverse of those of T; ð1:1:18pÞ
I 01 ¼ I2=I3; I 02 ¼ I1=I3; I 03 ¼ 1=I3; ð1:1:18qÞ

ð1:1:18rÞ

Orthogonal Transformations

A tensor T is called orthogonal (or length-preserving) if it satisfies

ð1:1:19aÞ
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(nk ⊗ nk).

from which, and from (1.1.18a), we can deduce that W has a single real eigenvalue
λ = 0.

T · TT = TT · T = 1 ⇒ T−1 = TT;

D

T−1 = (T2 − I1T + I21)/I3.

Det(T−1 − μ1) = 0 ⇒ μ3 − I ′1μ2 + I ′2μ − I ′3 = 0,



or, in components, X
TklðT TÞlr ¼

X
TklTrl ¼ �kr; ð1:1:19bÞX

ðT TÞklTlr ¼
X

TlkTlr ¼ �kr; ð1:1:19cÞ

from which, since DetT ¼ DetT T (always), and DetðT �T TÞ ¼ ðDetT ÞðDetT TÞ

ðDetT Þ2 ¼ 1 ) DetT ¼ �1: ð1:1:19dÞ

uk 0 � ul 0 ¼ �k 0l 0 and uk � ul ¼ �kl; ð1:1:19gÞ

of the nine elements (direction cosines) of A are independent.

� For a vector a, we have the following component representations in fukg, fuk 0 g:

a ¼
X

akuk ¼
X

ak 0uk 0 ; ð1:1:19hÞ

and from this, using the basis transformation equations (1.1.19e), we readily obtain
the corresponding component transformation equations:

ak 0 ¼
X

Ak 0kak ¼
X

Akk 0ak , ak ¼
X

Akk 0ak 0 ¼
X

Ak 0kak 0 : ð1:1:19iÞ

� Polar versus axial vectors: In general tensor algebra, the word axial (vector,
tensor) is frequently used in the following broader sense:

(a) Vectors that transform as (1.1.19i) under any/all orthogonal transformations
fukg , fuk 0 g proper or not, are called polar (or genuine); whereas,
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[which, due to (1.1.19e) are none other than (1.1.19a): A · AT = AT · A = 1] only three

and Det 1 = 1, it follows that

THEOREM

The set of all orthogonal tensors forms the (full) orthogonal group; and the set of all
orthogonal tensors with DetT ¼ þ1 forms the proper orthogonal (sub) group.

THEOREM (transformation of bases and preservation of their dextrality)

If A ¼ ðAk 0k ¼ Akk 0 Þ is a proper orthogonal tensor, or a rotation, and the basis
fuk; k ¼ 1; 2; 3g is ortho–normal–dextral (OND), the new basis fuk 0 ; k 0 ¼ 1; 2; 3g
defined by

uk 0 ¼
X

Ak 0kuk , uk ¼
X

Akk 0uk 0 ð1:1:19eÞ

is also OND. Conversely, if both fukg and fuk 0 g are OND, then there exists a unique
proper orthogonal tensor such that (1.1.19e) holds. It is not hard to see that

Ak 0k ¼ cosðuk 0 ; ukÞ ¼ cosðuk; uk 0 Þ ¼ Akk 0 ; ð1:1:19f Þ

and in this commutativity of the indices lies one of the advantages of the non-
accented/accented index notation: one does not have to worry about their order.
[In a matrix representation: A = (Ak′k), k

′: rows, k: columns; AT = (Akk′), k: rows, k′:
columns; where (in general): A1′2 = A21′ �= A2′1 = A12′ etc.] Also, in view of the earlier
orthonormality conditions (or constraints):



(b) Vectors that, under such transformations, transform as

ak 0 ¼ ðDetAÞ�1
X

Ak 0kak ¼ ðDetAÞ
X

Ak 0kak ,
ak ¼ ðDetA�1Þ�1

X
Akk 0ak 0 ¼ ðDetATÞ�1

X
Akk 0ak 0 ¼ ðDetAÞ

X
Akk 0ak 0 ;

are called axial (or pseudo-) vectors. Hence, under a change from a right-hand system
to a left-hand system (a reflection), in which case DetA ¼ DetðAk 0kÞ ¼ �1, the com-
ponents of the axial vectors are unaffected; while those of polar vectors are multi-
plied by�1. Since only proper orthogonal transformations are used in this book, this
difference disappears— all our vectors will be polar, in that sense. This polar/axial
distinction is of importance in other areas of physics; for example, relativity, electro-
dynamics (see, e.g., Bergmann, 1942, p. 56; Malvern, 1969, pp. 25–29).

� Every orthogonal tensor is either a rotation, A! R, or the product of a rotation

build a one-dimensional subspace of V called the axis (of rotation) of R.
� Under fukg , fuk 0 g transformations, the components of a tensor T ¼ ðTklÞ ¼

ðTk 0l 0 Þ transform as follows:

Tk 0l 0 ¼
XX

Ak 0kAl 0lTkl ¼
XX

Akk 0All 0Tkl ; ð1:1:19jÞ
Tkl ¼

XX
Akk 0All 0Tk 0l 0 ¼

XX
Ak 0kAl 0lTk 0l 0 ; ð1:1:19kÞ

or, in matrix form (also shown, frequently, in bold but roman),

ð1:1:19jÞ: or T 0 ¼ A �T �AT; ð1:1:19lÞ
ð1:1:19kÞ: or T ¼ AT

�T 0 �A: ð1:1:19mÞ

(b) We do not see much advantage of (1.1.19l,m) over (1.1.19j,k), especially as a
working tool in new and nontrivial situations. However, (1.1.19l,m) could be useful
once the general theory has been thoroughly understood and is about to be applied
to a concrete/numerical problem.]

It can be shown that:

(i) If W is antisymmetric, then

(a result useful in rigid-body rotations). (1.1.19n)

(ii) If O–u123 and O–u1 02 03 0 originally coincide, then the rotation tensor of a counter-
clockwise (positive) rotation of O–u123 through an angle � about u3 ¼ u3 0 has the

matrix form (with c� � cos�; s� � sin�Þ:

A! R ¼
c� �s� 0

s� c� 0

0 0 1

0B@
1CA: ð1:1:19oÞ
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with −1; that is, R or −1 · R (1: 3 × 3 unit tensor).

(a) 1 + W is nonsingular; that is, Det(1 + W) �= 0; and
(b) (1 − W) · (1 + W)− 1 is orthogonal

[(a) Here, T′ should not be confused with the symmetrical part of T, (1.1.13a, b). The
precise meaning should be clear from the context.

• The eigenvectors of R — that is, the set of vectors satisfying R · x = x (R �= 1) —

(Tk′l′) = (Ak′k)(Tkl)(All′)

(Tkl) = (Akk′)(Tk′l′)(Al′l)



Moving Axes Theorems for Vectors and Tensors

Let us consider the following representation of a vector a and a tensor T, measured
relative to inertial, or fixed, OND axes fuk 0 g, but expressed in terms of their com-
ponents along (also OND) moving axes fukg rotating with angular velocity x relative
to fuk 0 g:

a ¼
X

akuk; T ¼
XX

Tkluk  ul : ð1:1:20aÞ
Let us calculate their inertial rates of change [i.e., relative to the fixed axes, da=dt,
dT=dt ðt ¼ t 0: time)], but in terms of their moving axes representations (1.1.20a) and
their rates of change.

(i) By dð. . .Þ=dt-differentiating the first of (1.1.20a) and invoking the fundamental
kinematical result (most likely known from undergraduate dynamics)—a result
which, along with the concept of angular velocity, is detailed in }1.7:

duk=dt ¼ x� uk; ð1:1:20bÞ
we obtain

da=dt ¼
X

ð1:1:20cÞ

where

�
X
ðdak=dtÞuk: rate of change of a relative to the moving axes:

ð1:1:20dÞ
(ii) Repeating this process for the second of (1.1.20a) we obtain

dT=dt ¼
XX �ðdTkl=dtÞuk  ul þ Tkl ½ðx� ukÞ  ul þ uk  ðx� ulÞ�

�
ð1:1:20eÞ

where

�
X
ðdTkl=dtÞuk  ul : rate of change of T relative to the moving axes

ðor Jaumann; or corotational; derivative of T Þ: ð1:1:20f Þ

Recalling the earlier results on the algebra of vectors/tensors and axial vectors [eqs
(1.1.12), (1.1.14), (1.1.16)] we can rewrite (1.1.20c,e) in uk-components as follows:

ðiÞ ðda=dtÞk ¼ dak=dtþ ðx� aÞk ð6¼ dak=dtÞ
¼ dak=dtþ

XX
"krs !ras ¼ dak=dtþ

X
ksas; ð1:1:20gÞ

ðiiÞ ðdT=dtÞkl ¼
¼ dTkl=dtþ

XX
"krs !rTsl �

XX
"lrs !sTkr

¼ dTkl=dtþ
X

ksTsl þ
X

lrTkr

[after some index renaming in the last (third) group of terms, and noting that
�

¼ dTkl=dtþ
X

ksTsl �
X

; ð1:1:20hÞ
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Ω

Ω Ω

Ω TksΩsl

Ωls = − Ωsl

[(dak/dt) uk + ak(ω × uk)] = ∂a/∂t + ω × a,

∂a/∂t

= ∂T/∂t + ω × T − T ×ω,

∂T/∂t

(∂T/∂t)kl + (ω × T)kl − (T × ω)kl



where

¼
XX

kluk  ul : moving axes representation of angular velocity tensor

ðof these axes relative to the fixed onesÞ;
i:e:; antisymmetric tensor whose axial vector is x:

in components:

!k ¼ �ð1=2Þ
XX

ð1:1:20iÞ

Thus, in dyadic/matrix notation (see table 1.1), eq. (1.1.20e) reads

ð1:1:20jÞ
ð1:1:20kÞ

REMARKS

(i) Overdots, like ð. . .Þ:, are unambiguous only when applied to well-defined com-
ponents of vectors/tensors; that is, _aak, _aak 0 , _TTkl , _TTk 0l 0 , . . . ; not when applied to their

This is a common source of confusion in rigid-body dynamics.
(ii) We hope that this has convinced the reader of the superiority of the indicial

notation over the (currently popular but nevertheless cumbersome and after-the-
factish) dyadic/matrix notations.

Coordinate Transformations versus Frame of Reference Transformations

See also }1.2, }1.5. Let a 0 and a be the values of a vector asmeasured, respectively, in the
fixed (inertial) and moving (noninertial) frames. Then [recalling (1.1.19e–i)], we have

Inertial: a 0 ¼
X

a 0kuk ¼
X

a 0k 0uk 0 ; ð1:1:20lÞ
ð1:1:20mÞ

Noninertial: a ¼
X

akuk ¼
X

ak 0uk 0 ; ð1:1:20nÞ
) ak 0 ¼

X
Ak 0kak , ak ¼

X
Akk 0ak 0 ðdefinition of ak 0 ; akÞ: ð1:1:20oÞ
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Table 1.1 Common Tensor Notations

Direct/Dyadic Matrix Indicial/Component

a � b ¼ b � a (Dot product) a
T
� b ¼ b

T
� a

P
akbk

T ¼ a b (Outer product) T ¼ a � b
T Tkl ¼ akbl

b ¼ T � a b ¼ T � a bk ¼
P

Tklal
b ¼ a �T b

T ¼ a
T
�T or b ¼ T

T
� a bk ¼

P
alTlk

a �T � b (Bilinear form) a
T
�T � b

PP
Tklakbl

T �S (Tensor product) T �S
P

TkrSrl

T �S T (Tensor product) T �S
T P

TkrSlr

T : S ¼ S :T (Dot product) TrðT �S
TÞ ¼ TrðS �T

TÞ PP
TklSkl

� �S ¼ S � �T (Dot product) TrðT �S Þ ¼ TrðS �T Þ PP
TklSlk

Note: In matrix notation, the product dot is, frequently, omitted.

Ω Ω

Ω · a = ω × a,

dT/dt = ∂T/∂t + Ω · T − T · Ω
[ = ∂T/∂t + Ω · T + (Ω · T)T, if T = TT].

direct or dyadic, and/or matrix representations; that is, does ȧ mean da/dt or ∂a/∂t?

εkrsΩrs ⇔ Ωrs = −
∑

εkrsωk .

⇒ a′k′ =
∑

Ak′ka
′

k ⇔ a′k =
∑

Akk′a
′

k′ (definition of a′k′ , a
′

k)

T



However, to relate the noninertial components ak 0 , ak to the inertial components a 0k 0 ,
a 0k, say, to be able to write something like

ak ¼ a 0k , ak 0 ¼ a 0k 0 ; ð1:1:20pÞ
we need additional assumptions (postulates) or derivations—eqs. (1.1.20p) express
frame of reference ( physical) transformations; that is, they do not follow from
eqs. (1.1.20m,o), which are simply coordinate system (geometrical/projection) trans-
formations; (1.1.20p) have to be either postulated or derived from these postulates!
Mathematically, a frame of reference transformation is equivalent to an explicitly
time-dependent transformation between coordinate systems representing the two
frames: xk 0 ¼ xk 0 ðxk; tÞ , xk ¼ xkðxk 0 ; tÞ, while an ordinary coordinate transforma-
tion is explicitly time-independent: xk 0 ¼ xk 0 ðxkÞ , xk ¼ xkðxk 0 Þ.

For example, let us consider an inertial frame represented by the (fixed) axes
O–xk 0 and a noninertial one represented by the (moving) axes O–xk, related by the
homogeneous transformation (common origin!)

xk 0 ¼
X

Ak 0kxk , xk ¼
X

Akk 0xk 0 ; ð1:1:20qÞ

where

Ak 0k ¼ Akk 0 ¼ Ak 0kðtÞ:
Clearly, from geometry [i.e., (1.1.20p)-type postulates]:

x 0k 0 ¼ xk 0 ; x 0k ¼ xk: ð1:1:20rÞ
By ð. . .Þ:-differentiating the first of (1.1.20q), and since dx 0k 0=dt ¼ dxk 0=dt � v 0k 0 :
inertial velocity of particle (with inertial coordinates xk 0 ) resolved along inertial
axes, dx 0k=dt ¼ dxk=dt � vk: noninertial velocity of same particle (with noninertial
coordinates xk) resolved along noninertial axes, we get

v 0k 0 ¼
X

Ak 0kvk þ
X
ðdAk 0k=dtÞxk ¼ vk 0 þ

X
ðdAk 0k=dtÞxk; ð1:1:20sÞ

is, v 0k 0 6¼ vk 0 , even if the xk and xk 0 are, instantaneously, aligned (i.e., Ak 0k ¼ �k 0k—see
}1.7); and, similarly, from the second of (1.1.20q), v 0k 6¼ vk, where v 0k ¼

P
Akk 0v

0
k 0 .

As eq. (1.1.20s) shows, v 0k 0 depends on both the relative orientation between xk and
xk 0 ðterm

P
Ak 0kvk ¼ vk 0 : noninertial particle velocity, but resolved along inertial

axes—a geometrical effectÞ as well as on their relative motion [termP ðdAk 0k=dtÞxk —a kinematical effect]. There is more on moving axes theorems/
applications in }1.7. Vectors transforming between frames as (1.1.20p) are called
objective—namely, frame-independent; otherwise they are called nonobjective.
Similarly for tensors: if T 0k 0l 0 ¼ Tk 0l 0 , or T

0
kl ¼ Tkl, where T 0k 0l 0 ¼

PP
Ak 0kAl 0lT

0
kl

and Tk 0l 0 ¼
PP

Ak 0kAl 0lTkl, that tensor is called objective.
These concepts are important in continuum mechanics: the constitutive (physical)

equations—namely, those relating stresses with strains/deformations and their time
rates of change—must be objective. They also constitute the fundamental, or guid-
ing, philosophical principle of the ‘‘Theory of Relativity’’ [A. Einstein, 1905 (special
theory); 1916 (general theory)]. Classical mechanics does not admit of a fully phy-
sically invariant formulation (although its geometrically invariant formulation is
easy via tensor calculus), and the reason is that it is based on Euclidean geometry
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[invoking (1.1.20o)], where dAk′k/dt =
∑

Ωk′l′Al′k =
∑

Ak′lΩlk (see §1.7); that



and on a sharp separation between space and (absolute, or Newtonian) time. Hence, to
obtain such a physically invariant mechanics, one had to change these concepts—
and this was the great achievement of relativity: The latter replaced classical space
and time with a more general non-Euclidean ‘‘space-time,’’ a fusion of both space
and time (and gravity). In this new ‘‘space,’’ physical invariance is again expressed as
geometrical invariance, via a ‘‘physical tensor calculus.’’ (See, e.g., Bergmann, 1942.)

Table 1.1 summarizes, for the readers’ convenience, common vector and tensor
operations in all three notations. [We are reminded that in matrix notation, vectors
are displayed as 3� 1 column matrices, so that, in order to save space, we write
a! aT ¼ ða1; a2; a3ÞT:�

Differential Operators (Field Theory)

The most important differential operators of scalar ð f Þ=vector (a)/tensor (T ) field
theory, needed not so much in analytical mechanics as in continuum mechanics/
physics, are

ð@=@rÞ f � grad f � @f =@r ¼
X
ð@f =@xkÞuk; ð1:1:21aÞ

ð@=@rÞ  a � grad a � @a=@r ¼
XX

ð@al=@xkÞðuk  ulÞ; ð1:1:21bÞ
ð@=@rÞ � a ¼ Trðgrad aÞ � div a �

X
ð@ak=@xkÞ; ð1:1:21cÞ

ð@=@rÞ � a � curl a �
XXX

"krsð@as=@xrÞuk; ð1:1:21dÞ
ð@=@rÞ  T � grad T ¼

XXX
ð@Trs=@xkÞ½uk  ður  usÞ�; ð1:1:21eÞ

ð@=@rÞ �T ¼ Trðgrad T Þ � divT �
XX

ð@Tks=@xkÞus; ð1:1:21f Þ

where r ¼ ðx; y; zÞ: position vector, from some origin O, on which f, a, T depend; and
ðakÞ, ðTklÞ are the respective components of a, T relative to an OND basis fO, ukg.

1.2 SPACE-TIME AXIOMS; PARTICLE KINEMATICS

Space, Time, Events

Classical mechanics (CM), the only kind of mechanics studied here, and that of
which analytical mechanics is the most illustrious exponent, studies the motions of
material bodies, or systems, under the action of mechanical loads (forces, moments).
Hence, bodies, forces, and motions are its fundamental ingredients. Before examining
them, however, we must postulate a certain space-time, or stage, where these phe-
nomena occur, so that we may describe them via numbers assigned to elements of
length/area/volume/time interval. In CM: (i) space is assumed to be three-dimensional
and Euclidean (E3); that is, in good experimental agreement with the Pythagorean
theorem, both locally and globally; and (ii) there is a definite method for assigning
numbers to time intervals, which is based on the existence of perfect clocks; that is, on
completely periodic physical systems (i.e., such that a certain of their configurations
is repeated indefinitely; e.g., an oscillating pendulum in vacuo, or our Earth in its
daily rotation about its axis). Further, we assume that space and time are homoge-
neous (i.e., no preferred positions), and that space is also isotropic (i.e., no preferred
directions). A physical phenomenon that is more or less sharply localized spatially
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and temporally (i.e., one that is occurring in the immediate neighborhood of a space
point at a definite time: e.g., the arrival of a train at a certain station at a certain
time) is called an event. Geometrically, events can be viewed as points in space-time,
or event space; that is, in a four-dimensional mathematical space formed jointly by
three-dimensional space and time. There, the four coordinates of an event, three for
space and one for time, are measured by observers using geometrically invariant, or
rigid, yardsticks (space) and the earlier postulated perfect clocks (time). [Fuller
understanding of this measurement process requires elaboration of the concepts
of immediate (spatial) neighborhood and (temporal) simultaneity. This is done in
relativistic physics. Here, we take them with their intuitive meaning.]

Frame of Reference

A frame of reference is a rigid material framework, or rigid body, relative to which
spatial and temporal measurements of events are made, by a team of (equivalent)
observers, distributed over that body (at rest relative to it), equipped with rigid
yardsticks and mutually synchronized perfect clocks. Clearly, some, if not all, of
these measurements will depend on the state of motion of the frame (relative to some
other frame!); that is, this ‘‘coordinate-ization of events’’ is, generally, nonunique.
The relation between the measurements of the same event(s), as registered in two
such frames, in relative motion to each other, is called a frame of reference transfor-
mation; and the latter is expressed, mathematically, by an explicitly time-dependent
coordinate transformation—one coordinate system rigidly embedded to each frame
and ‘‘representing’’ it.

Inertial Frame of Reference

This is a frame determined by the center of mass (‘‘origin’’) of our Sun and the so-
called fixed stars (directions of axes of frame). This primary, or astronomical, frame is
Newton’s absolute space; and, like a cosmic substratum, is assumed to exist (in
Newton’s words) ‘‘in its own nature, and without reference to anything external,
remains always similar and immovable.’’ Similarly, Newton assumes the existence of
absolute time, which is measured by standard clocks, and flows uniformly and inde-
pendently of any physical phenomena or processes— something that, today, is con-
sidered physically absurd: ‘‘[I]t is contrary to the mode of thinking in science to
conceive of a thing (the space-time continuum) which acts itself, but which cannot
be acted upon’’ (Einstein, 1956, pp. 55–56). In spite of its logically/epistemologically
crude and no longer tenable foundations, CM is astonishingly accurate in several
areas. For example, the planet Mercury in its motion around our Sun sweeps out a
total angle of 150,0008/century; which is only 43 00 more than the Newtonian predic-
tion! In this sense, of Machean Denkökonomie (�Principle of economy, in the for-
mation of concepts), CM is an extremely economical intellectual and practical
investment.

As the mathematical structure of the Newton–Euler laws of motion shows
(}1.4,5), any other frame moving with (vectorially) constant velocity, relative to
the primary frame, is also inertial; so we have a family, or group, of secondary
inertial frames. In inertial frames, the laws of motion have their simplest form [the
familiar ‘‘force equals mass times acceleration (relative to that frame)’’].
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Particle Kinematics

The instantaneous position, or place, of a particle P relative to an origin, or reference
point, O, fixed in a, say, inertial frame F in E3, is given by its position vector
r ¼ ðx; y; zÞ; where x; y; z are at least twice (piecewise) continuously differentiable
functions of time t. Clearly, r depends on O while x, y, z depend on the kind of
coordinates used in F . (Also, we are reminded that in kinematics, the frame does not
really matter; any frame is as good as any other.) At time t, a collection of particles,
or body B, occupies in E3 a certain shape, or configuration, described by the single-
valued and invertible mapping

r ¼ f ðP; tÞ: Place of P; in F ; at time t; ð1:2:1aÞ

P ¼ f �1ðr; tÞ: ð1:2:1bÞ
A motion of B is a change of its configuration with time; that is, it is the locus of r

of each and every P of B, for all time in a certain interval. Formally, this is a one-
parameter family f of configurations with time as the (real) parameter.

Often, especially in continuum mechanics, the motion of P is described as

The velocity and acceleration of P, relative to a frame F , are defined, respectively,
by (assuming rectangular Cartesian coordinates)

v � dr=dt ¼ ðdx=dt; dy=dt; dz=dtÞ;
a � dv=dt ¼ d2r=dt2 ¼ ðd2x=dt2; d2y=dt2; d2z=dt2Þ: ð1:2:3Þ

v ¼ dr=dt ¼ ðdr=dsÞðds=dtÞ � ðds=dtÞt � vtt ð¼ vttþ 0nþ 0bÞ; ð1:2:3aÞ
a ¼ dv=dt ¼ ðd2s=dt2Þtþ ½ðds=dtÞ2=��n � ðdvt=dtÞtþ ðvt2=�Þn

¼ ðdvt=dtÞtþ ðv2=�Þn ð¼ attþ annþ 0b; see belowÞ: ð1:2:3bÞ
� The speed of P is defined as the magnitude of its velocity:
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from which, inverting (conceptually), we obtain

r ¼ f ðro; tÞ � rðro; tÞ; ð1:2:2Þ

where ro is the position of P at some “initial or reference” time; that is, a reference
configuration used as the name of P (see also §2.2 ff.). The above representation
— in addition to being single-valued, continuous, and twice (piecewise) continuously
differentiable in t — must also be single-valued and invertible in ro; that is, one-to-one in
both directions. (In mathematicians’ jargon: a configuration is a smooth homeomorphism
of B onto a region of E3.)

Clearly, v and a depend on the frame, but not on its chosen fixed origin O. The
representation of the velocity and acceleration of P, relative to F , moving on a general
space, or skew, (F-fixed) curve C, along its natural, or intrinsic, ortho–normal–dextral
moving trihedron/triad {ut , un, ub} ≡ {t,n,b} (see fig. 1.1 for definitions, etc.) is

i.e., vt ≡ v · t = ṡ = ±v . (1.2.3c)

Speed ≡ v ≡ |v| = |vt| = |ds/dt| = +
[
(dx/dt)2 + (dy/dt)2 + (dz/dt)2

]1/2
� 0 ;
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Figure 1.1 Natural, or intrinsic, triad representation in particle kinematics. s: arc coordinate
along C, measured (positive or negative) from some origin A on C; ρ: radius of curvature of C at
P(0 ≤ ρ ≤ ∞); orthonormal and dextral (OND) triad: {ut ,un,ub} ≡ {t,n,b}; (oriented) tangent:

center of curvature); (second) normal, or binormal: ub ≡ b ≡ t× n; osculating plane: plane
spanned by t and n (locus of tip of acceleration vector); rectifying plane: plane spanned by t and b;

Hence, in general, since v2 = vtvt = (ṡ)2,

a ≡ |a| ≡ |dv/dt| = [(dv/dt)2 + (v4/ρ2)]1/2
�= |dvt/dt| ≡ |d2s/dt2| = |dv/dt|;

i.e., at ≡ s̈ (tangential accel’n), an ≡ (ṡ)2/ρ (normal a.), ab ≡ 0 (binormal a.)

⇒ v · a = ṡ s̈ = (ṡ2/2)· , v× a = (ṡ3/ρ)b . (1.2.3.d)

ds > 0, and vt = −v < 0 if ds < 0] results from the oriented-ness of the curveC [i.e. that
it is equipped with (a) an origin A, and (b) a positive/negative sense of traverse ⇒ ± s];
i.e. in any motion of P along it, the unit tangent vector t ≡ dr/ds ( �= 0) points always
towards the increasing arcs s (just like i ≡ ∂r/∂x always points towards the positive/
increasing x – see below). Fortunately, this vt versus v difference (almost never noticed in
the literature) rarely results in fatal errors.
(ii) Thus, it becomes clear that s [≡ (intrinsic) arc/path/trajectory curvilinear
coordinate/abscissa, of P relative to a chosen C-origin A] is the “natural” curvilinear
generalization of the rectilinear position (-al) coordinates x, y, z (and {t, n, b} are of
{i, j, k}, respectively).
(iii) The equation s = s(t), resulting by integrating ds = ±|v(t)|dt = ± v(t) dt [say,
from t(A) to t(P)], is referred to as the equation/law of motion of P on C.
(iv) Last, (a) the length of the arc AP is defined as the absolute value of s, |s| ≥ 0,
while (b) the (total) distance traveled by our particle P, along C, from an origin A to its
current/final position (i.e. what a car odometer shows) is defined by:

∫

origin→ current C-position
|ds| (≥ |s| ≥ 0). (1.2.3e)

For details on arc length, admissible curve parametrizations etc, see works on differential
geometry.

ut ≡ t ≡ dr/ds) [always pointing toward (algebraically) increasing values of s (= positive

C-sense)]; (first, or principal) normal: un ≡ n ≡ ρ(dt/ds) (always in sense of concavity, toward

REMARKS

(i) The difference between speed v ≡ |dr/dt| = |v| = |ds/dt| > 0 and the (tangential)
velocity component vt ≡ v · t = ds/dt = ± v [i.e. by equation (1.2.3c): vt = +v > 0 if

normal plane: plane spanned by n and b; t · (n×b) ≡ (t,n,b) = +1 > 0. [More in §1.7: (1.7.18a)ff.]

t n

b

P



ðiÞ t ¼ r 0=s 0 ¼ r 0=ðr 0 � r 0Þ1=2 ¼ ðdx=dsÞi þ ðdy=dsÞ j þ ðdz=dsÞk; ð1:2:4aÞ
ðiiÞ n ¼ �ðdt=dsÞ ¼ �ðd2r=ds2Þ ¼ �½ðd2x=ds2Þi þ ðd2y=ds2Þ j þ ðd2z=ds2Þk�

¼ �ðt 0=s 0Þ ¼ �t 0=ðr 0 � r 0Þ1=2

¼ ½ �=ðr 0 � r 0Þ3=2�½ðr 0 � r 0Þ1=2r 00 � ðr 0 � r 0Þ�1=2ðr 0 � r 00Þr 0�
¼ ½ �=ðr 0 � r 0Þ2�½ðr 0 � r 0Þr 00 � ðr 0 � r 00Þr 0�; ð1:2:4bÞ

ðiiiÞ
ð1:2:4cÞ

ðivÞ �
2 ¼ 1=�2 ¼ ðr 0 � r 00Þ2=ðr 0 � r 0Þ3 ¼ ½ðr 0 � r 0Þðr 00 � r 00Þ � ðr 0 � r 00Þ2�=ðr 0 � r 0Þ3

½
ðvÞ r 0 ¼ s 0t;

r 00 ¼ s 00tþ s 0t 0 ¼ s 00tþ s 0
� ¼ s 00tþ ðs 0Þ2ðdt=dsÞ	

¼ s 00tþ �ðs 0Þ2n ¼ s 00tþ ½ðs 0Þ2=��n

ðviÞ t ¼ v=ðds=dtÞ � v=vt; ð1:2:4f Þ
n ¼ �½v2a� ðv � aÞv�=
b ¼ t� n ¼ �½ðdr=dsÞ � ðd2r=ds2Þ� ¼ �ðr 0 � r 00Þ=ðr 0 � r 0Þ3=2

¼ �ðv� aÞ=vt3 ¼ �ðv� aÞ=vtv2; ð1:2:4hÞ
ðviiÞ �

2 ¼ 1=�2 ¼ ðv� aÞ2=v6 ¼ ½v2a2 � ðv � aÞ2�=v6; ð1:2:4iÞ

ðviiiÞ at � a � t ¼ ½vxðdvx=dtÞ þ vyðdvy=dtÞ þ vzðdvz=dtÞ�=vt; ð1:2:4jÞ
ðixÞ an ¼ ja� tj ¼ f½vxðdvy=dtÞ � vyðdvx=dtÞ�2 þ ½vyðdvz=dtÞ � vzðdvy=dtÞ�2

þ ½vzðdvx=dtÞ � vxðdvz=dtÞ�2g1=2=ðvx2 þ vy
2 þ vz

2Þ1=2: ð1:2:4kÞ

� In plane polar coordinates, the position/velocity/acceleration of a particle P are
(where ur, u�: unit vectors along OP and perpendicular to it, in the sense of increasing
r, � respectivelyÞ:

dur=dt ¼ ðd�=dtÞu� and du�=dt ¼ �ðd�=dtÞur;
or dur ¼ d� u� and du� ¼ �d� ur;

r ¼ r ur ½¼ ðrÞur þ ð0Þu��; ð1:2:5aÞ
v ¼ ðdr=dtÞur þ rðd�=dtÞu� � vrur þ v�u�; ð1:2:5bÞ
a ¼ ½d2r=dt2 � rðd�=dtÞ2�ur þ fr�1 d=dt½r2ðd�=dtÞ�gu�
¼ ½d2r=dt2 � rðd�=dtÞ2�ur þ ½2ðdr=dtÞðd�=dtÞ þ rðd2�=dt2Þ�u�
� aðrÞur þ að�Þu�: ð1:2:5cÞ
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(first) curvature of C, at P,

It can be shown that [with the additional notation (. . .)′ ≡ d(· · ·)/du]:

[= (d2
x/ds

2)2 +(d2
y/ds

2)2 +(d2
z/ds

2)2, if u = s]; (1.2.4d)

(1.2.4e)

v
4 =

s
′
r
′′
− s

′′
r
′

(s′)3
,

�
(1.2.4g)

κ ≡ 1/ρ = |dt/ds| = |d2r/ds2
| (� 0, 0 � ρ � +∞):

[(dt/ds)(ds/du)]

[= (dvt/dt)t + (v2/ρ)n, vtvt = vv = (ds/dt)2; if u = t];



The vectors ðd�=dtÞk and ðd2�=dt2Þk are, respectively, the angular velocity and
angular acceleration of the radius OP ¼ r relative to O�xy. It can be shown that

ðiÞ at � a � t ¼ �ðvrar þ v�a�Þ=ðvr2 þ v�
2Þ1=2 ½þ if vt > 0; � if vt < 0�:

ð1:2:5dÞ
(ii) The rectangular Cartesian components of the velocity and acceleration are,
respectively,

dx=dt ¼ ðdr=dtÞ cos�� ½rðd�=dtÞ� sin �; dy=dt ¼ ðdr=dtÞ sin�þ ½rðd�=dtÞ� cos�;
ð1:2:5eÞ

d2x=dt2 ¼ ½d2r=dt2 � rðd�=dtÞ2� cos�� ½2ðdr=dtÞðd�=dtÞ þ rðd2�=dt2Þ� sin�;
d2y=dt2 ¼ ½d2r=dt2 � rðd�=dtÞ2� sin�þ ½2ðdr=dtÞðd�=dtÞ þ rðd2�=dt2Þ� sin�;

ð1:2:5f Þ

and, inversely,

dr=dt ¼ ðxvx þ yvyÞ=ðx2 þ y2Þ1=2; d�=dt ¼ ðxvy � yvxÞ=ðx2 þ y2Þ; etc: ð1:2:5gÞ

[A more precise notation of vector components along various bases of orthogonal
curvilinear (i.e., nonrectangular Cartesian) coordinates is introduced below.]
� In general (i.e., not necessarily plane) motion, the areal velocity dA=dt of a

particle equals

dA=dt ¼ ð1=2Þjr� vj ¼ ð1=2Þjangular momentum of particle about origin;
per unit massj: ð1:2:6aÞ

It can be shown that (assuming r 6¼ 0Þ
d2A=dt2 ¼ ðr� vÞ � ðr� aÞ=2jr� vj: ð1:2:6bÞ

Velocity and Acceleration in Orthogonal Curvilinear Coordinates

(A certain familiarity with the latter is assumed—otherwise, this topic can be omitted
at this point.) In such coordinates, say q � ðq1; q2; q3Þ � ðq1;2;3Þ [see fig. 1.2(a)] the
position vector r, of a particle P, is expressed as:

r ¼ xðqÞi þ yðqÞ j þ zðqÞk � rðqÞ; ð1:2:7aÞ
and so the corresponding unit tangent vectors along the coordinate lines q1;2;3, u1;2;3,
are

u1 ¼ ð1=h1Þð@r=@q1Þ � e1=h1;

u2 ¼ ð1=h2Þð@r=@q2Þ � e2=h2;

u3 ¼ ð1=h3Þð@r=@q3Þ � e3=h3;

where

uk � ul ¼ �kl ðk; l ¼ 1; 2; 3Þ; ð1:2:7bÞ
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and since

@r=@q1 ¼ ð@x=@q1Þi þ ð@y=@q1Þ j þ ð@z=@q1Þk; @r=@q2 ¼ � � � ; @r=@q3 ¼ � � � ;
ð1:2:7cÞ

the (normalizing) Lamé coefficients h1;2;3 are given by

h1 � j@r=@q1j ¼ ½ð@x=@q1Þ2 þ ð@y=@q1Þ2 þ ð@z=@q1Þ2�1=2; h2 ¼ � � � ; h3 ¼ � � � :
ð1:2:7dÞ

We notice that

cosðuk; xÞ ¼ uk � i ¼
�ð1=hkÞð@r=@qkÞ	 � i ¼ ð1=hkÞð@x=@qkÞ; etc:;

or, generally, with x � x1, y � x2, z � x3, and i � i1, j � i2, k � i3,

cosðuk; xlÞ ¼ uk � il ¼ ð1=hkÞð@xl=@qkÞ: ð1:2:7eÞ

As a result of the above, and since @r=@qk � ek ¼ hkuk, the arc length element ds,
velocity v, and speed jvj of P are given, respectively, by

ðiÞ ds ¼ jdrj ¼
X
ð@r=@qkÞ dqk




 


 ¼ ðh12 dq12 þ h2
2 dq2

2 þ h3
2 dq3

2Þ1=2; ð1:2:7f Þ

ðiiÞ v � dr=dt ¼
X
ð@r=@qkÞðdqk=dtÞ �

X
vkek ¼

X
vkðhkukÞ �

X
vðkÞuk;
ð1:2:7gÞ

ðiiiÞ jvj � v ¼ ðh12v12 þ h2
2v2

2 þ h3
2v3

2Þ1=2; ð1:2:7hÞ

where

dqk=dt � vk: ‘‘contravariant’’ or generalized component of v along qk; ð1:2:7iÞ
vðkÞ � hkðdqk=dtÞ � hkvk: corresponding physical component

ðwith units of length=timeÞ; ð1:2:7jÞ
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Figure 1.2 (a) General orthogonal curvilinear coordinates;

(b) cylindrical (polar) coordinates: x ¼ r cos�, y ¼ r sin�, z ¼ z, r ¼ jOP 0j; h1;2;3 � hr ;�;z ¼ 1; r ;1;

(c) spherical coordinates: x ¼ ðr sin �Þ cos�, y ¼ ðr cos �Þ sin�, z ¼ r cos �, r ¼ jOPj;
h1;2;3 � hr ;�;� ¼ 1; r ; r sin �:



Next, we define the generalized and physical components of the particle acceleration
a as

ak � a � ek ¼ ðdv=dtÞ � ð@r=@qkÞ; aðkÞ � a � uk ¼ a � ðek=hkÞ ¼ ak=hk: ð1:2:7kÞ

REMARKS

(i) For an arbitrary vector b, in general orthogonal curvilinear coordinates, we
have the following representations:

b ¼
X

bkek ¼
X

bke
k ¼

X
bkðek=hk2Þ ¼

X
ðbk=hkÞðek=hkÞ �

X
bðkÞuk

where

ek � el � gkl ¼ 0; if k 6¼ l; ¼ hk
2 if k ¼ l; ek � el ¼ �kl ¼ �kl ; ek � el ¼ gkl ¼ glk

) gkk ¼ 1=hk
2; gkk ¼ 1=gkk ¼ hk

2; DetðgklÞ ¼ h1
2h2

2h3
2; ek ¼ ek=hk

2;

bk � b � ek ¼ b � ðhkukÞ ¼ hkðb � ukÞ � hkbðkÞ; bk � b � ek ¼ b � ðuk=hkÞ ¼ bðkÞ=hk;

that is,

bðkÞ ¼ bkhk ¼ bk=hk: physical components of b; bk ¼ bk=hk
2; uk ¼ ek=hk ¼ hke

k:

(ii) Strictly speaking, qk should have been written as qk; and, consequently, vk
as vk!

(iii) In rectangular Cartesian coordinates/axes (this book), clearly, hk ¼ 1) bðkÞ ¼
bk ¼ bk.

(iv) For the extension of the above to general curvilinear coordinates, see books
on tensor calculus; for example, Papastavridis (1999, chap. 2, especially }2.10).

From the first of (1.2.7k) we obtain successively (what are, in essence, the famous
Lagrangean kinematico-inertial transformations, to be generalized and detailed in
chaps. 2 and 3):

ak � a � ek � ðdv=dtÞ � ð@r=@qkÞ ¼ d=dt ½v � ð@r=@qkÞ� � v � d=dtð@r=@qkÞ
and; using the basic kinematical identities:

(a) @r=@qk ¼ @v=@vk ½from ð1:2:7gÞ�
(b) d=dtð@r=@qkÞ
¼
X

@=@qlð@r=@qkÞðdql=dtÞ þ @=@tð@r=@qkÞ

¼ @=@qk
X
ð@r=@qlÞðdql=dtÞ þ @r=@t

� �
¼ @v=@qk;

i:e:; d=dtð@v=@vkÞ � @v=@qk ¼
�

¼ d=dt
�
v � ð@v=@vkÞ

	� v � ð@v=@qkÞ

¼ d=dt½@=@vkðv2=2Þ� � @=@qkðv2=2Þ
ðsince v � v ¼ v2Þ; ð1:2:7lÞ
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and, invoking the second of (1.2.7k), we get, finally, the Lagrangean form:

aðkÞ ¼ ak=hk ¼ ð1=hkÞ
�
d=dtð@T=@vkÞ � @T=@qk

	
; ð1:2:7mÞ

where

T � v2=2 ¼ ð1=2Þ½h12ðdq1=dtÞ2 þ h2
2ðdq2=dtÞ2 þ h3

2ðdq3=dtÞ2�1=2

� ð1=2Þðh12v12 þ h2
2v2

2 þ h3
2v3

2Þ1=2:
kinetic energy of a particle of unit mass ði:e:; m ¼ 1Þ: ð1:2:7nÞ

Application

(i) Cylindrical (polar) coordinates [fig. 1.2(b)]. Here, x ¼ r cos�, y ¼ r sin�, z ¼ z,
and, therefore,

ds2 ¼ dsr
2 þ ds�

2 þ dsz
2 ¼ dr2 þ r2 d�2 þ dz2; ð1:2:8aÞ

from which we immediately read off the following Lamé coefficients:

h1 ! hr ¼ 1; h2 ! h� ¼ r; h3 ! hz ¼ 1: ð1:2:8bÞ

Hence, the ‘‘unit kinetic energy’’ equals

2T ¼ ðds=dtÞ2 ¼ v2 ¼ ½ðdr=dtÞ2 þ r2ðd�=dtÞ2 þ ðdz=dtÞ2� � vr
2 þ r2v�

2 þ vz
2;

ð1:2:8cÞ

and so, by (1.2.7l), the (physical) components of the acceleration are

að1Þ ! aðrÞ ¼ d=dtð@T=@vrÞ � @T=@r ¼ d2r=dt2 � rðd�=dtÞ2; ð1:2:8dÞ
að2Þ ! að�Þ ¼ ð1=rÞ

�
d=dtð@T=@v�Þ � @T=@�

	
¼ ð1=rÞ�d=dt½r2ðd�=dtÞ�� ¼ rðd2�=dt2Þ þ 2ðdr=dtÞðd�=dtÞ; ð1:2:8eÞ

að3Þ ! aðzÞ ¼ d=dtð@T=@vzÞ � @T=@z ¼ d2z=dt2: ð1:2:8f Þ

(ii) Spherical coordinates. Here, x ¼ ðr sin �Þ cos�, y ¼ ðr cos �Þ sin �, z ¼ r cos �
[fig. 1.2(c)]. Using similar steps, we can show that

að1Þ ! aðrÞ ¼ d=dtð@T=@vrÞ � @T=@r ¼ d2r=dt2 � rðd�=dtÞ2 � rðd�=dtÞ2 sin2 �;
ð1:2:8gÞ

að2Þ ! að�Þ ¼ ð1=rÞ½@T=@v� � @T=@��
¼ ð1=rÞ�d=dt½r2ðd�=dtÞ� � r2ðd�=dtÞ2 sin � cos ��; ð1:2:8hÞ

að3Þ ! að�Þ ¼ ð1=r sin �Þ
�
d=dtð@T=@v�Þ � @T=@�

	
¼ ð1=r sin �Þ�d=dt½r2ðd�=dtÞ sin2 ���; ð1:2:8iÞ

vx ¼ dx=dt ¼ ðdr=dtÞ sin � cos�þ rðd�=dtÞ cos � cos�� rðd�=dtÞ sin � sin�;
ð1:2:8jÞ
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vy ¼ dy=dt ¼ ðdr=dtÞ sin � sin�þ rðd�=dtÞ cos � sin �þ rðd�=dtÞ sin � cos�;
ð1:2:8kÞ

vz ¼ dz=dt ¼ ðdr=dtÞ cos � � rðd�=dtÞ sin �; ð1:2:8lÞ
ax ¼ d2x=dt2 ¼ ½d2r=dt2 � rðd�=dtÞ2 � rðd�=dtÞ2� sin � cos�

þ ½rðd2�=dt2Þ þ 2ðdr=dtÞðd�=dtÞ� cos � cos�
� ½rðd2�=dt2Þ þ 2ðdr=dtÞðd�=dtÞ� sin � sin �
� 2rðd�=dtÞðd�=dtÞ cos � sin�; ð1:2:8mÞ

ay ¼ d2y=dt2 ¼ ½d2r=dt2 � rðd�=dtÞ2 � rðd�=dtÞ2� sin � sin�
þ ½rðd2�=dt2Þ þ 2ðdr=dtÞðd�=dtÞ� cos � sin�
þ ½rðd2�=dt2Þ þ 2ðdr=dtÞðd�=dtÞ� sin � cos�
þ 2rðd�=dtÞðd�=dtÞ cos � cos�; ð1:2:8nÞ

az ¼ d2z=dt2 ¼ ½d2r=dt2 � rðd�=dtÞ2� cos �
� ½rðd2�=dt2Þ þ 2ðdr=dtÞðd�=dtÞ� sin �; ð1:2:8oÞ

and, inversely,

dr=dt ¼ ½xðdx=dtÞ þ yðdy=dtÞ þ zðdz=dtÞ�=ðx2 þ y2 þ z2Þ1=2; ð1:2:8pÞ

d�=dt ¼ �½xðdx=dtÞ þ yðdy=dtÞ�z� ðx2 þ y2Þðdz=dtÞ�=ðx2 þ y2Þ1=2ðx2 þ y2 þ z2Þ;
ð1:2:8qÞ

d�=dt ¼ ½xðdy=dtÞ � yðdx=dtÞ�=ðx2 þ y2Þ; ð1:2:8rÞ
and

d2r=dt2 ¼ � � � ; d2�=dt2 ¼ � � � ; d2�=dt2 ¼ � � � ;
in complete agreement with (1.2.5).

REMARK

From now on, parentheses around subscripts (employed to denote physical compo-
nents) will, normally, be omitted; that is, unless absolutely necessary, we shall simply
write ar, a�, a� for aðrÞ, að�Þ, að�Þ, respectively, etc.

1.3 BODIES AND THEIR MASSES

Body or System

A body or system is an ordinary three-dimensional material object whose points fill a
spatial region completely; or a continuous connected three-dimensional set of mate-
rial points, or mass points, or particles, such that any part of it, no matter how small,
possesses the same physical properties as the entire object. The interactions of
bodies, under the action of forces/fields, produces the various physical phenomena.
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Bodies are usually classified as solids, fluids, and gases.

� The rigid body is a special solid whose deformation (or strain), relative to its other

motions, can be neglected; and whose geometric form/shape and spatial material
distribution are invariable.

� The particle is a special rigid body whose rotation, relative to its other motions, can be

neglected; it is small relative to its distance from other bodies, and its motion as a
whole is virtually unaffected by its internal motion. It is a special localized continuum
of infinite material density (see below).

The complete characterization of a particle requires specification of its spatial posi-
tion and of the values of its associated parameters (e.g., mass, electric charge). The
former varies with time but the latter, since they describe the internal constitution of
our particle, do not; if they did, we would have a more complex system.

Whether one and the same body or system will be modeled as deformable con-
tinuum, or rigid, or particle, etc., depends on the problem at hand. Below, we show
such a problem to model correspondence for the system Earth:

Problem Mathematical Model

Orbit around the Sun Particle
Tides and/or lunar eclipses Rigid sphere

Precession of the equinoxes Rigid ellipsoid
Earthquakes Elastic sphere

etc.

Mass

To each body, B, that instantaneously occupies continuously a spatial region of
volume V , we assign, or order, a real, positive and time-independent number expres-
sing the quantity of matter in B, its mass m; a primitive concept with dimensions
independent of the (also primitives) length and time. Symbolically, we have

B! mðBÞ � m ¼SB
dm ¼

ð
V

ðdm=dVÞ dV �
ð
V

� dV > 0; ð1:3:1Þ

where (continuity hypothesis)

� � ½limðDm=DVÞ�DV!0 � dm=dV : mass density; or specific mass; of B

ða piecewise continuous function of t and rÞ ð1:3:2Þ
and m ¼ constant, for a given body (conservation of mass).

The above imply that the mass is additive: the mass of a body, or system, equals
the sum of the masses of its parts; with some intuitively obvious notation:

mðBÞ ¼ mðB1 þ B2Þ ¼ mðB1Þ þmðB2Þ ¼ m1 þm2: ð1:3:3Þ

REMARKS

(i) For so-called ‘‘variable mass problems’’ (clearly, a misleading term); for exam-
ple, rockets, chemical reactions, see Fox (1967, pp. 321–326) and, particularly,
Novoselov (1969).
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(ii) To describe several bodies, including possible gaps, via (1.3.1) and (1.3.2), we
may have to assume that in some regions � ¼ 0.

(iii) Mathematically, mass additivity can be expressed as follows: Consider an
arbitrary subset of the body B, b. If we can associate with b a nonnegative real
number mðbÞ, with physical dimensions independent of those of time and length,
and such that

mðb1 [ b2Þ ¼ mðb1Þ þmðb2Þ ½ [ � union of two sets�
for all pairs b1 and b2 of disjoint subsets of b; and

mðbÞ ! 0;

as the volume occupied by b goes to zero; then we call B a material body with mass
function m. The additive set function mðbÞ is the mass of b; or the mass content of the
corresponding set of points occupied by b. The above properties of mð. . .Þ imply the
existence of a scalar field � ¼ mass density of B, defined over the configuration of B,
such that (1.3.1) holds.

Impenetrability Axiom (and One-to-One Event Occurrence)

Not more than one particle may occupy any position in space, at any given time.
More generally (continuum form), if, during its motion, the material system initially
occupies the spatial region Vo, and later the region V , then the relation between Vo

and V is mutually one-to-one, and piecewise continuously differentiable (for the
associated field functions). Discontinuities (e.g., rupture, impact) and accompanying
loss of uniqueness can occur only across certain (two-dimensional) boundary sur-
faces.

Remarks on Particles, Bodies, Mathematical Modeling, and so on

(i) A finite, or extended, body B or system S can be treated exactly, or approxi-
mately, as a particle in the following three cases:

(a) If B undergoes pure translation; that is, all its points describe congruent paths with

(vectorially) equal velocities and accelerations. In this case, any point of B can play
the role of that particle.

(b) If the description of the kinetic properties of B requires only the investigation of the

motion of its center of mass (}1.4).
(c) If B is such that its dimensions are so small (or its distances from other bodies, its

environment, are so large) that its size can be neglected; and its motion can be

represented satisfactorily by the motion of either its mass center or any other inter-

nal point of it. Such bodies we call small.

� In cases (b) (always) and (c) (usually) that particle is the mass center.

� Cases (a, b) are exact, while (c) is only approximate.
� In case (a), that particle describes the motion of B completely, in (b) only partially
(the motion about the mass center is neglected), and in (c) with an error depending on

the neglected dimensions of B.

From such a continuum viewpoint, a particle is viewed not as the building block
of matter, but as a rigid and rotationless body! As Hamel (1909, p. 351) aptly
summarizes: ‘‘What one understands, in practice, by particle mechanics
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(Punktmechanik) is none other than the theorem of the center of mass
(Schwerpunktsatz).’’

(ii) Both models of a body—that is, the one based on the atomistic hypothesis
(body as a finite, discrete, set of material points, or particles; namely, small hard balls
with no rotational characteristics) and the other based on the continuity hypothesis
(body as a family of measurable sets, with associated additive set functions represent-
ing the mass of that set)—have advantages and disadvantages; and both are useful
for various purposes. The sometimes (in some engineering circles) fierce debate for/
against one or the other viewpoint, we consider counterproductive and petty hair-
splitting; and so we will use both models as needed. Such dualisms are no strangers
to physics (e.g., particles/corpuscules vs. waves/fields in atomic phenomena) and
constitute a creative, dialectical, stress in it.

Thus, wewill view the rigid body (}1.8 ff.) either as a (finite or infinite) set of particles
whose mutual distances are constrained to remain invariable (i.e., fixed in time); or,
more conveniently, as a rigid continuum, and accept the Newton–Euler law of motion
for its differential mass elements as for a particle (}1.4, }1.6). In the discrete model, the
building block is the single ‘‘sizeless,’’ but possibly quite ‘‘massive,’’ particle of mass
mk > 0 ðk ¼ 1; 2; . . .Þ; while, in the continuummodel, it is the differential element with
mass dm ¼ � dV > 0. In sum, we shall adopt the logically unorthodox, but quite fertile
and successful, dialectical compromise: particle language and continuum notation; and
eventually (chap. 3 ff.) we will end up with ordinary differential equations.

[In general, it is extremely difficult, if not impossible, to go by a limiting process
from a statement about particles to one about continua; whereas, conversely, con-
tinuum statements formulated in terms of Stieltjes’ integrals, like our earlier S ð. . .Þ:

S ð. . .Þ dm:
X
ð. . .Þkmk ðdiscreteÞ; or

ð
B

ð. . .Þ dm ðcontinuumÞ;

lead to the same statements for discrete systems without much difficulty, almost
automatically. See, for example, Kilmister and Reeve (1966, pp. 129–131).]

1.4 FORCE; LAW OF NEWTON–EULER

[I]n the concept of force lies the chief difficulty in the whole of

mechanics.

(Hamel, 1952; as quoted in Truesdell, 1984, p. 527)

Jeder weib aus der Erfahrung, was Schwerkraft ist; jede gerichtete

Physikalische Gröbe, die sich mit der Schwerkraft in

Gleichgewicht befinden kann, ist eine Kraft!

[Approximate translation: Everyone knows from experience what

gravity is; every directed physical quantity that can be in

equilibrium with gravity is a force! (emphasis added).]

(How Hamel used to begin his mechanics lectures; quoted in

Szabó, 1954, p. 26)

The fundamental law of mechanics [i.e. mass � acceleration ¼
force] is a blank form which acquires a concrete content only

when the conception of force occurring in it is filled in by

physics.

(Weyl, 1922, pp. 66–67)
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Local Form of Newton–Euler Law

To each and every material particle P of elementary mass dm and inertial accelera-
tion a, of a body B or system S, we associate a total elementary force vector df acting
on it, such that

dm a ¼ df ; ð1:4:1Þ
where df itself is the resultant of other ‘‘partial’’ elementary forces of various origins
(to be examined later); that is,

df ¼
X

df k ðk ¼ 1; 2; . . .Þ: ð1:4:2Þ

Equation (1.4.1) is not simply a definition of one vector ðdf Þ in terms of another
ðdm aÞ, but is an equality of two physically very different vectors: one, the effect or
kinetic reaction ðdm aÞ, depending only on the properties of the particle P itself; and
another, the cause ðdf Þ, depending on the interaction between P and the rest of the
universe—that is, on the action of the external world on the moving system, and the
mutual, or internal, actions of the body parts on each other. Paraphrasing Hamel
(1927, p. 3) slightly, we may state: The forces are determined by their ‘‘causes’’; that
is, by variables that represent the geometrical, kinematical, and physical state of the
matter surrounding P (local causes) and away from it (global causes). This depen-
dence is single-valued and, in general, continuous and differentiable; and, in addi-
tion, these forces are objective—that is, independent of the frame of reference (see
also Hamel, 1949, pp. 509–512). In practice, this leads to constitutive equations for
the forces (stresses) that, when combined with the field, or ponderomotive, equations
(1.4.1) lead to relations of the form:

a ¼ aðt; r; v; physical constantsÞ; ð1:4:3Þ
where a may also depend on the r’s and v’s of other system (and even external)
particles, but not on accelerations or other higher (than the first) d=dtð. . .Þ-deriva-
tives. Such an a-dependence would introduce an additional constitutive, or con-
straint, equation of the form: dm a ¼ df ð. . . ; a; . . .Þ. However, and this does not
contradict (1.4.1), such equations can occur as part of the solution process; namely,
through elimination of variables from the complete set of equations of the problem;
that is, elimination of forces related to the accelerations of other parts of the body, so
that the acceleration of point P depends on, among other things, the accelerations of
points Q, R; . . . : On this delicate and sometimes confusing point, see Hamel (1949,
p. 49). In view of such difficulties in defining the force, a number of authors (mostly
continuum mechanicians) consider it as a primitive concept—along with space, time,
and mass.

Force Classification

[This also includes moments; and, in analytical mechanics, both forces and moments
are replaced by system, or generalized, forces (}3.4).]

The most important such classifications are as follows:

Newton–Euler (or momentum) mechanics:
Internal: originating wholly from within the system; in pairs. They depend on the

spatial limits of the system.
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External: originating, even partially, from outside the system. Only such forces appear

in the corresponding equations of equilibrium/motion.

Lagrangean (or energetic) mechanics:
Impressed: depending, even partially, on physical (material) coefficients (chap. 3).

Constraint reactions: depending exclusively on the constraints; geometrical and/or
kinematical forces (chap. 3).

Continuum mechanics:

Surface, or contact: continuously distributed over material surfaces (and/or lines and
points).

Volume, or body: continuously distributed over material volumes.

Usually, a given force is a combination of the above, and more. For example:

Gravity: external, impressed, body;

Stresses in rigid bodies: internal, reactions, surface;

Stresses in elastic bodies: internal, impressed, surface;

Dry rolling friction: internal or external, reaction, surface;

Dry sliding friction: internal or external, impressed, surface.

Other, more specialized force classifications are the following: potential/nonpotential,
conservative/nonconservative, gyroscopic/nongyroscopic, circulatory/noncirculatory,
autonomous/nonautonomous, etc. They will be introduced later, if and when needed.
Occasionally, forces are classified with the help of the momentum principles as
follows:

Linear or translatory loads: forces;

Angular or rotatory loads: moments of forces and moments of couples;

but such terminology is not uniform. For example, the authoritative Truesdell and
Toupin (1960, p. 531) states that, in the general case, the (total) torque consists of two
parts: the moment of the force(s) and the couple; also, virtually alone among
mechanics works, it refuses to use the term internal forces, opting instead for the
term mutual (loc. cit., pp. 533–535).

On Centers of Gravity and Mass, and Centroid

The center of gravity (CG) of a material system in a parallel gravitational field is a
point defined uniquely by

rCG ¼S r dG S dG;
.

ð1:4:4Þ

where dG ¼ elementary gravity force ¼ g dm ¼ � g dV � � dV; g ¼ acceleration of
gravity; � ¼ density of matter; � ¼ specific weight; dm ¼ element of mass;
dV ¼ element of volume; and CG is independent of the orientation of the system,
and through it passes the resultant gravity force, or weight, of the system, and:

S ð. . .Þ: material summation, for a fixed time, and valid for discrete and/or contin-
uous distributions (Stieltjes’ integral). This helpful notation, originated informally by
Lagrange, is used a lot in the main body of this work.
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The center of mass, or inertial center, (CM) of a material distribution is defined
uniquely by

rCM � rG ¼S r dm S dm:
.

ð1:4:5Þ

The centroid (or geometrical center, or geometrical center of gravity) (C) of a figure is
defined uniquely by

rC ¼S r dV S
.

dV : ð1:4:6Þ

� If g ¼ constant, the gravitational field is uniform. Then, g ¼ g u ¼ constant,

u ¼ vertical unit vector (positive downward).
� If � ¼ constant, the body (matter) is homogeneous.

In a uniform field:

rCG ¼ rCM � rG; ð1:4:7aÞ
For a homogeneous body:

rCM � rG ¼ rC; ð1:4:7bÞ
For a homogeneous body in a uniform field:

rCG ¼ rCM ¼ rC: ð1:4:7cÞ

REMARK

In nonuniform fields, eq. (1.4.7a) is no longer true: the parts of the body closer to the
attracting earth experience stronger gravity forces than those farther from it; and,
therefore, upon rotation of the body, the point of application of the resultant of such
forces changes relative to the body; that is, the center of gravity is no longer definable
as a unique body-fixed point, independent of the orientation of the body relative to the
field. The center of mass and centroid, however, are still defined uniquely by (1.4.5)
and (1.4.6), respectively. Such complications may arise in problems of astronautics/
spacecraft dynamics; there, we replace the constant g with a central–symmetric grav-
itational field.

1.5 SPACE-TIME AND THE PRINCIPLE OF GALILEAN RELATIVITY

Galilean Transformations (GT)

These are frame of reference transformations that leave the Newton–Euler law
(1.4.1) form invariant. The most general such transformations have the following
form (fig. 1.3):

ð1:5:1aÞ
or

xk 0 ¼
X

Ak 0kxk þ bk 0 tþ ck 0 ðComponent notationÞ; ð1:5:1bÞ
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r′ = A · r + bt + c (Direct/matrix notation)



where A ¼ ðAk 0kÞ is a proper orthogonal tensor with constant components—that is,
A�1 ¼ AT; Det A ¼ þ1; and b ¼ ðbk 0 Þ and c ¼ ðck 0 Þ are constant vectors—that is, F
and F 0 are in nonrotating uniform motion (uniform translation) relative to each other,
with velocity b; and

t 0 ¼ 
tþ �; ð1:5:1cÞ
where t is measured in F and t 0 in F 0, and 
, � are constant scalars; 
 depends on the
units of time, while � depends on its origin in the two systems of time measurement.
Hence, if these units are taken to be the same, and these origins are made to coincide,
then 
 ¼ 1 and � ¼ 0; in which case (henceforth assumed in this book),

t 0 ¼ t; ð1:5:1dÞ
that is, in classical (Newtonian) mechanics there is, essentially, only one time scale.

From the transformation equations (1.5.1a–d) we immediately obtain the follow-
ing:

d2r 0=dt2 ¼ A � ðd2r=dt2Þ or a 0 ¼ A � a; ð1:5:2aÞ
or, explicitly, with some easily understood notation,

d2x 0=dt2 ¼ cosðx 0;xÞðd2x=dt2Þ þ cosðx 0; yÞðd2y=dt2Þ þ cosðx 0; zÞðd2z=dt2Þ; etc:;
ð1:5:2bÞ

that is, the accelerations of a particle P as measured in F and F 0 differ only by an
ordinary (time-independent) geometrical transformation due to the, possibly, differ-
ent orientation of their axes; and, therefore, they are physically equal: that is, un-
affected by the relative motion of F and F 0. Hence, we may take, with no loss in
physical generality, the corresponding axes of F and F 0 to be ever parallel, in which

r 0 ¼ rþ btþ c ) a 0 ¼ a: ð1:5:2cÞ
Since dmjF ¼ dmjF 0 � dm, and assuming that from dm a ¼ df ðt; r; vÞ and (1.5.2c) it
follows that

dm a 0 ¼ df ðt; r 0 � bt� c; dr 0=dt� bÞ � df 0ðt; r 0; dr 0=dt � v 0Þ � df 0; ð1:5:3Þ
that is, df is also invariant under GT, and, therefore, as far as the law of motion
(1.4.1) is concerned, there is no one (absolute) frame in which it holds, but, in fact, once

)1.5 SPACE-TIME AND THE PRINCIPLE OF GALILEAN RELATIVITY 105

Figure 1.3 On the geometry of Galilean transformations.

case A = 1 (unit tensor), in which case (1.5.1a) simplifies to



one such ‘‘inertial ’’ frame is established, there is a whole family of them dynamically
equivalent to it. More precisely, there is a (continuous linear) group that depends on
ten (10) parameters: three for A [out of its nine components (direction cosines), due
to the six orthonormality constraints, only three are independent], three for b, three
for c, and one for � [equations (1.5.1c, d), 
 ¼ 1, with no loss in generality]. This
Galilean, or Newtonian, principle of relativity can be summed up as follows: an
inertial frame— that is, one in which dmðd2r=dt2Þ ¼ df holds— is determined only
to within a Galilean transformation ð1:5:1a�dÞ:

REMARKS

(i) The linear transformation (1.5.1c) can also be obtained by requiring that if

a ¼ d2r=dt2 ¼ 0; ð1:5:4aÞ
then also

d2r=dðt 0Þ2 ¼ 0; ð1:5:4bÞ
for arbitrary values of r and dr=dt. Indeed, using chain rule, we find:
dr=dt 0 ¼ ðdr=dtÞ=ðdt 0=dtÞ

) d2r=dðt 0Þ2 ¼ ½ðdt 0=dtÞðd2r=dt2Þ � ðdr=dtÞðd2t 0=dt2Þ�=ðdt 0=dtÞ3; ð1:5:4cÞ
and so, due to (1.5.4a), the requirement (1.5.4b) translates to

ðdr=dtÞðd2t 0=dt2Þ ¼ 0; for arbitrary dr=dt; ð1:5:4dÞ
that is,

d2t 0=dt2 ¼ 0 ) t 0 ¼ 
tþ �; 
; �: integration constants; Q:E:D: ð1:5:4eÞ
(ii) The logical circularity involved in the classical mechanics definition of inertial

frames (i.e., ‘‘if dm a ¼ df holds, the frame is inertial’’ and ‘‘if the frame is inertial
frame then dm a ¼ df holds’’) can be resolved only by relativistic physics. Here, we
are content to postulate the existence of frames in which dm a ¼ df holds exactly
(or, equivalently, of frames in which forceless motions are also unaccelerated motions;
i.e., the position vectors are linear functions of time, and vice versa); and to call such
frames inertial. For detailed discussions of this important topic, see any good text on
the physical foundations of relativity; e.g., Bergmann, 1942; Nevanlina, 1968.

1.6 THE FUNDAMENTAL PRINCIPLES (OR BALANCE LAWS) OF

GENERAL SYSTEM MECHANICS

An Axiom is a proposition, the truth of which must be admitted

as soon as the terms in which it is expressed are clearly

understood . . . physical axioms are axiomatic to those only who

have sufficient knowledge of the action of physical causes to

enable them to see their truth.

(Thomson and Tait, 1912, part 1, section 243, p. 240)
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Conservation of Mass (Euler, Early 1760s)

dmðBÞ=dt � dm=dt ¼ d=dt S dm
� �

¼ d=dt

ð
� dV

� �
¼
ð
d=dtð� dV Þ ¼ 0:

ð1:6:1aÞ
(Henceforth, we shall, usually, omit the subscripts V , @V, etc., in the various
integrals.)

In the absence of discontinuities, the above leads to the local (differential) form:

d=dtð� dV Þ ¼ 0 ) � dV ¼ constant ¼ �o dVo

½Material; or Lagrangean; or referential; equation of continuity� ð1:6:1bÞ
where �oðdVoÞ ¼ density (element of volume) in some initial or reference configura-
tion.

d=dt S v dm
� �

¼Sdf or dp=dt ¼ f ; ð1:6:2aÞ

where

� p �S v dm ¼
ð
�v dV : Linear momentum of B; ð1:6:2bÞ

a system vector that depends on the frame, but not on the (fixed) origin in it;
equivalent to Newton’s ‘‘quantitas motus’’; and Sdf � f . From the above, and
invoking mass conservation [}1.3:(1.3.1)ff.), (1.6.1a, b)] and the definition of mass
center (}1.4), we obtain

p ¼ mvG ) maG ¼ f ; ð1:6:2cÞ
where rG=vG=aG are, respectively, the position/velocity/acceleration vectors of the
center of mass of B, G. Equation (1.6.2c) shows that the motion of the center of
mass G, of a body (or any material system, rigid or not), B, is identical to that of a
fictitious particle of mass m located at G and acted upon by the body resultant on B, f;
that is, by the vector sum of all (! external) forces transported parallel to themselves
to G. Thus, the motion of G is taken care of by this simple principle! theorem. But
the remaining problem of the motion of B about G (and, generally, of the motion of
other body points) is far more difficult, and, unlike the motion of G, does depend on
the specific material constitution of B (e.g., rigid, elastic), as well as on its motion
(i.e., 1-, 2-, 3-dimensional); and, therefore, that problem necessitates additional con-
siderations, such as the following.

d=dt S ðr� v dmÞ
� �

¼S ðr� df Þ or dHO=dt ¼MO; ð1:6:3aÞ
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Principle of Linear Momentum [Euler, 1750 (publ. 1752)]

Principle of Angular Momentum [Euler, 1775 (publ. 1776)]

p(B, t)



where

and

MO �S ðr� df Þ: total moment about O ðEg: 1:4Þ: ð1:6:3cÞ

Other angular momenta, and their interrelations, are detailed in ‘‘Additional Forms
of the Angular Momentum,’’ below.

External and Internal Loads

In the Newton–Euler approach to system mechanics, whether discrete or continuous,
we classify body and/or surface forces and moments as internal or mutual (i.e., those
due exclusively to internal causes) and external [i.e., those whose cause(s) lie, even
partially, outside of the body or system]. Stresses are caused by one or more of the
following: (i) deformations (solids); (ii) flows (gases, liquids); (iii) geometrical/kine-
matical constraints [e.g., incompressibility, inextensibility (¼ incompressibility in one
or two dimensions)].

Analytical mechanics necessitates a different force/moment classification (chap. 3).

Principle of Action–Reaction

(i) Discrete version. Let us consider a system of N particles fPk; k ¼ 1; . . . ;Ng.
Each particle Pk is acted upon by a total external (to that system) force f k;ext and a
total internal force f k;int due to the other N � 1 particles:

f k;int ¼
X

f kl; with l 6¼ k; i:e:; f kk is; as yet; undefinedð!Þ ð1:6:4aÞ
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Figure 1.4 On the meaning of absolute and relative angular momentum.

HO(B, t) ≡ HO ≡S (r× v dm): absolute angular momentum (or moment of momentum,

or kinetic moment), about the fixed point O, (1.6.3b)



Now, by Newton’s third law of motion (action–reaction) we shall understand the
constitutive (i.e., physical) postulate;

(a) f kl ¼ �f lk and f kk ¼ 0 (i.e., the particle cannot act on itself !) (1.6.4b)

and

(b) ðrk � rlÞ � f kl ¼ 0 (i.e., the internal forces are central and opposite; or
oppositely directed pair by pair and collinear). (1.6.4c)

[The second of (1.6.4b) is not included in the original Newtonian formulation. We
follow Hamel (1949, p. 51).]

In the discrete/particle model, so popular among physicists and such an anathema
among certain mechanicians, this postulate, plus the principle of linear momentum,
lead to the theorem of angular momentum for the external loads only. However, the
converse is not necessarily true; that is, the angular momentum equation for a finite
body dHO=dt ¼MO;external does not necessarily lead to (1.6.4b, c); other combinations
of the internal forces may lead to the same effect (e.g., a sum of terms may vanish in a
number of different ways). The converse may hold if we assume the validity of the
angular momentum equation for any part of the system, or for any size subsystem.

(ii) Continuum version. For every pair of particles P1 and P2, with respective
positions r1 and r2, the mutual forces and moments satisfy the following constitutive
postulate:

df ðr1; r2Þ ¼ �df ðr2; r1Þ and dMðr1; r2Þ ¼ �dMðr2; r1Þ: ð1:6:4dÞ
Without (1.6.4d), or something equivalent that supplies knowledge of the internal
loads, the problem of mechanics would, in general, be indeterminate (i.e., the adopted
model would produce more unknowns than the number of scalar equations
furnished by its laws).

Additional Forms of the Angular Momentum

Although the results derived below hold for any body or system, they become useful
only for rigid ones. We define the following two kinds of (inertial) angular momen-
tum (fig. 1.4):

H�;absolute � H� �S ðr� r�Þ � dm v �S r=� � dm v: ½v � dr=dt�
Absolute angular momentum of body B; about the arbitrarily moving point �

½because it involves the absolute ðinertialÞ velocity v � dr=dt�; ð1:6:5aÞ
and

H�;relative � h� �S ðr� r�Þ � dm ðv� v�Þ �S r=� � dm v=�:

Relative angular momentum of body B; about the arbitrarily moving point �
½because it involves the relative ðinertialÞ velocity v� v� � v=��: ð1:6:5bÞ

REMARKS

(i) Although these kinematico-inertial definitions hold for any frame of reference
(with r, r�, v, v� denoting the positions and velocities relative to points fixed or
moving with respect to that frame—see }1.7), they will normally be understood to
refer to a specific inertial frame, unless explicitly stated to the contrary.

)1.6 THE FUNDAMENTAL PRINCIPLES (OR BALANCE LAWS) OF GENERAL SYSTEM MECHANICS 109



(ii) Some authors define absolute angular momentum as in our (1.6.5a), but only
for fixed points (i.e., v� ¼ 0); in which case, clearly, (1.6.5a) and (1.6.5b) coincide.
Unfortunately, here too, there is no uniformity of terminology and or notation in the
literature; but, as will be seen in kinetics, some angular momenta are more useful
than others. The connection between the above two angular momenta is given by the
following basic theorem.

THEOREM

The angular momenta H� and h�, defined by equations (1.6.5a, b), are related by

H� � h� ¼ mðrG � r�Þ � v� � mrG=� � v�: ð1:6:5cÞ

PROOF

Subtracting (1.6.5b) from (1.6.5a) side by side, and then utilizing the properties of
the center of mass of B, G, we obtain

H� � h� ¼S r=� � ðv� v=�Þ dm ¼S ðr=� � v�Þ dm
¼S r� ðdm v�Þ �S ðr� � v�Þ dm ¼ ðmrGÞ � v� � r� � ðmv�Þ; Q:E:D:

ð1:6:5dÞ
Equations (1.6.5c, d) show immediately that, in the following three cases, the differ-
ence between absolute and relative angular momentum disappears:

ðiÞ rG=� ¼ 0; i:e:; � ¼ G: HG ¼ hG ¼S r=G � ðdm v=GÞ; ð1:6:5eÞ
ðiiÞ v� ¼ 0; i:e:; � ¼ fixed origin; say O: HO ¼ hO ¼S r� ðdm vÞ; ð1:6:5f Þ
ðiiiÞ rG=� parallel to v�: ð1:6:5gÞ

The first and second cases, (1.6.5e, f ), are, by far, the most important; (1.6.5g) may
be hard to check before solving the (kinetic) problem.

Next, let us relateH� and h� withHO (which appears in the basic Eulerian form of
the angular momentum principle). We have, successively,

HO ¼S r� ðdm vÞ ðintroducing positions=velocities relative to �Þ
¼S ½ðr� þ r=�Þ � dm ðv� þ v=�Þ�
¼ � � � ¼ h� þmðr� � vGÞ þmðrG=� � v�Þ; ð1:6:5hÞ
¼ H� þmðr� � vGÞ ½thanks to ð1:6:5cÞ�: ð1:6:5iÞ

The above leads easily to the following corollaries:
(i) If � ¼ fixed ) v� ¼ 0, then

HO ¼ H� þ r� � ðmvGÞ ¼ h� þmðr� � vGÞ ½r� � r�=O; H� ¼ h��; ð1:6:5jÞ

a slight generalization over (1.6.5f ).
(ii) If � ¼ G, then

HO ¼ HG þ rG � ðmvGÞ ¼ hG þmðrG � vGÞ
½rG � rG=O; vG � drG=dt; HG ¼ hG�: ð1:6:5kÞ
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By comparing (1.6.5h,i) with (1.6.5k), it can be seen that

H� ¼ HG þ rG=� � ðmvGÞ; h� ¼ HG þ rG=� � ðmvG=�Þ: ð1:6:5lÞ
(Interpret these ‘‘transfer’’ equations geometrically. What happens if � is fixed; say,
an origin O?) Finally, by applying the transfer equations (1.6.5h, i) between O and
the arbitrarily moving points 1 and 2, and then comparing, we can obtain the rela-
tion between the absolute, relative, and absolute–relative angular momenta of a
body: H1 $ H2, H1 $ h2, h1 $ h2.

Additional Forms of the Principle of Angular Momentum

With the help of the preceding kinematico-inertial identities/results, and the purely
geometrical theorem of transfer of moments (hopefully well known from elementary
statics)

M� ¼MG þ rG=� � f ½where the force resultant f goes through G�
¼MG þ rG=� � ðmaGÞ ½by the principle of linear momentum�; ð1:6:6aÞ

the Eulerian principle of angular momentum

S r� ðdm aÞ ¼ d=dt S r� ðdm vÞ
� �

¼S r� df ;

that is,

dHO=dt ¼MO ð1:6:6bÞ
½)MO;external; by action�reaction ðplus; in the continuum version;

of Boltzmann’s axiom) symmetry of the stress tensorÞ�;
assumes the following forms:

Center of Mass Form

By (1.6.5k):

dHO=dt ¼ d=dt½HG þ rG � ðmvGÞ� ¼ dHG=dtþmðrG � aGÞ; ð1:6:6cÞ
and by (1.6.6a), for � ! O:

MO ¼MG þ rG � ðmaGÞ; ð1:6:6dÞ
and comparing these expressions with (1.6.6b), we obtain the fundamental form

MG ¼ dHG=dt ð¼ dhG=dtÞ: ð1:6:6eÞ

Absolute Form

Using the above, and (1.6.5l), we obtain, successively,

M� ¼MG þ rG=� � ðmaGÞ ¼ dHG=dtþ rG=� � ðmaGÞ
¼ d=dt

�
H� � rG=� � ðmvGÞ

	þ rG=� � ðmaGÞ
¼ dH�=dt� vG=� � ðmvGÞ � rG=� � ðmaGÞ þ rG=� � ðmaGÞ;
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that is, finally,

M� ¼ dH�=dt� vG=� � ðmvGÞ ðusing vG=� � vG � v�Þ
¼ dH�=dtþ v� � ðmvGÞ ¼ dH�=dtþ v� � ðmvG=�Þ: ð1:6:6f Þ

Relative Form

Similarly, using the above, and (1.6.5l), we obtain, successively,

M� ¼MG þ rG=� � ðmaGÞ ¼ dHG=dtþ rG=� � ðmaGÞ
¼ d=dt ðh� � rG=� � ðmvG=�ÞÞ þ rG=� � ðmaGÞ
¼ dh�=dt� vG=� � ðmvG=�Þ � rG=� � ðmaG=�Þ þ rG=� � ðmaGÞ;

that is, finally,

M� ¼ dh�=dtþ rG=� � ðma�Þ: ð1:6:6gÞ
In particular, if � is fixed, then (1.6.6f,g) reduce at once to

M� ¼ dH�=dt ð¼ dh�=dtÞ; ð1:6:6hÞ
which, since it holds for any fixed point, is a slight generalization of (1.6.6b). These
forms show clearly the importance of fixed points and of the center of mass, above all
other points, in rotational dynamics, especially rigid-body dynamics. All these forms
of the principle of angular momentum, and many more flowing from them, can be
quite confusing, they are almost impossible to remember, and may be error-prone in
concrete applications. They are stated here only for comparison purposes with the
existing literature. From them, the most useful in both theoretical and practical
situations, are, by far, (1.6.6b,e), and, secondarily, (1.6.6a) with (1.6.6e). We
summarize them here:

MO ¼ dHO=dt � d=dt S r� ðdmvÞ
� �n o

; O: fixed origin; ð1:6:6iÞ

MG ¼ dHG=dt � d=dt S r=G � ðdmv=GÞ
� �n o

; G: center of mass; ð1:6:6jÞ

M� ¼ dHG=dtþ rG=� � ðmaGÞ; � : arbitrarily moving spatial point; ð1:6:6kÞ
or, compactly,

Kinetic vectors ð‘‘torsor’’Þ at G: ðmaG; dHG=dtÞ

ffKinetic torsor at � : ðmaG; dHG=dtþ rG=� � ðmaGÞÞ;
and we are reminded that their left sides, by action–reaction (plus Boltzmann’s
axiom, i.e., symmetry of stress tensor), include only external moments and couples.

By comparing the absolute and relative forms of the principle of angular momen-
tum, eqs. (1.6.6f, g) [or by d=dtð. . .Þ, eq. (1.6.5c)], we can show that

dH�=dt� dh�=dt ¼ rG=� � ðma�Þ þ vG=� � ðmv�Þ
¼ rG=� � ðma�Þ þ vG � ðmv�Þ ¼ rG=� � ðma�Þ þ vG � ðmv�=GÞ:

ð1:6:6lÞ
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Finally, crossing the local law of motion dm a ¼ df with r=� � r� r�, and then
integrating over the body, etc., we obtain the following additional form of the
principle of angular momentum:

M� ¼ dHO=dt� r� � ðmaGÞ ð¼MO � r� � f ; with f applied at �Þ: ð1:6:6mÞ

1.7 ACCELERATED (NONINERTIAL) FRAMES OF REFERENCE

(OR RELATIVE MOTION, OR MOVING AXES);

ANGULAR VELOCITY AND ACCELERATION

The theory of moving axes, a subject indispensable to rigid-body dynamics and other
key areas of mechanics (including the transition to relativity), is based on the follow-
ing fundamental kinematical theorem.

Theorem (of Moving Axes)

Let us consider two frames of reference in arbitrary relative motion, each represented
by an ortho–normal–dextral (OND) basis and associated coordinate axes, rigidly
attached to the frame; say, for concreteness but no loss in generality, one fixed or
inertial F :

ðOF � I ; J ;K=X ;Y ;ZÞ � ðOF � uX ; uY ; uZ=X ;Y ;ZÞ � ðOF � uX ;Y ;Z=X ;Y ;ZÞ
� ðOF � uk 0=xk 0 ; k

0 ¼ 1; 2; 3=X;Y ;ZÞ; ð1:7:1aÞ
and one moving or noninertial M:

ðOM � i; j; k=x; y; zÞ � ðOM � ux; uy; uz=x; y; zÞ � ðOM � ux;y;z=x; y; zÞ
� ðOM � uk=xk; k ¼ 1; 2; 3=x; y; zÞ; ð1:7:1bÞ

and an arbitrary (say free) vector p [fig. 1.5(a)]. Then its rate of change in F and M,

ð1:7:2aÞ
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Figure 1.5 (a) Geometry of moving frames; (b) geometrical proof of (1.7.3c).

dp/dt = ∂p/∂t + ω × p,

dp/dt and ∂p/∂t, respectively, are related by



where (recalling the moving axes theory, }1.1)

p ¼ pXuX þ pYuY þ pZuZ �
X

pk 0uk 0 ¼ pxux þ pyuy þ pzuz �
X

pkuk;

½assumed instantaneous representation of p in F and M�; ð1:7:2bÞ

dp=dt � ðdpX=dtÞuX þ ðdpY=dtÞuY þ ðdpZ=dtÞuZ ¼
X
ðdpk 0=dtÞuk 0 :

Absolute rate of change of p ðor time fluxÞ; i:e:; relative to F ; ð1:7:2cÞ

t � ðdpx=dtÞux þ ðdpy=dtÞuy þ ðdpz=dtÞuz ¼
X
ðdpk=dtÞuk:

Relative rate of change of p; i:e:; relative to M; ð1:7:2dÞ

x ¼ !XuX þ !YuY þ !ZuZ �
X

!k 0uk 0 ¼ !xux þ !yuy þ !zuz �
X

!kuk

� ½ðduy=dtÞ � uz�ux þ ½ðduz=dtÞ � ux�uy þ ½ðdux=dtÞ � uy�uz:
Angular velocity ðvectorÞ of Mmoving frame relative to Ffixed frame;

i:e:; of ðOM � uk 0 Þ relative to ðOF � ukÞ; ð1:7:2eÞ
x� p ¼ Transport rate of change of p relative to F : ð1:7:2f Þ

NOTATIONAL CLARIFICATION

To express this theorem in components, which is the best way to understand it, the
simplest way is to choose the axes OF�XYZ and OM�xyz so that, instantaneously,
either they coincide or are parallel. Then, since in such a case,

ðdp=dtÞX � ðdp=dtÞ � uX � dpX=dt ¼ ðdp=dtÞ � ux � ðdp=dtÞx; etc:; cyclically;

ð1:7:3aÞ

ð1:7:3bÞ

the theorem assumes the component form:

dpX=dt ¼ dpx=dtþ !y pz � !z py;

dpY=dt ¼ dpy=dtþ !z px � !x pz; ð1:7:3cÞ
dpZ=dt ¼ dpz=dtþ !x py � !y px;

and gives inertial rates of change, but expressed in terms of noninertial (relative) and
transport rates. The above show clearly that

ðdp=dtÞk 6¼ dpk=dt ðk ¼ x; y; zÞ; ð1:7:3dÞ
even though, instantaneously,

pX ¼ px; etc:; cyclically; ð1:7:3eÞ
unless x� p ¼ 0 () x ¼ 0, or p ¼ 0, or x parallel to p).
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Here, partial derivatives, ∂(. . .)/∂t, are, normally, associated with moving frame(s); while,
for simplicity, primed subscripts signify fixed axes/components.

∂p/∂

(∂p/∂t)x ≡ (∂p/∂t) · ux ≡ dpx/dt = (∂p/∂t) ·uX ≡ (∂p/∂t)X , etc., cyclically,



A geometrical interpretation of (1.7.3c) is shown in fig. 1.5(b): the moving axes
OM�xyz momentarily coincide with the axes OM�XYZ; the latter are always trans-
lating relative to OF�XYZ—that is, they are ‘‘rotationally equivalent’’ to them.

PROOF OF EQUATION (1.7.2a)

By d=dtð. . .Þ-differentiating (1.7.2b), we obtain X
pkðduk=dtÞ: ð1:7:4aÞ

To transform the key second term in the above, we begin by d=dtð. . .Þ-differentiating
the six geometrical orthonormality () rigidity) constraints of these basis vectors
uk � ul ¼ �kl ðk; l ¼ x; y; zÞ, thus translating them into the following six kinematical
constraints:

ðduk=dtÞ � ul þ uk � ðdul=dtÞ ¼ 0; ð1:7:4bÞ

that is, from the nine components of fduk=dtg only 9� 6 ¼ 3 are independent.
Let us find them. By (1.7.4b) for k, l ¼ x, dux=dt is perpendicular to ux; that is, it

must lie in the plane of uy, uz. Therefore, we can write

dux=dt ¼ l1uy þ l2uz; ð1:7:4cÞ

and, cyclically,

duy=dt ¼ l3uz þ l4ux; duz=dt ¼ l5ux þ l6uy; ð1:7:4dÞ

where l1;...;6 are scalar functions of time. Substituting these representations back into
(1.7.4b) for k ¼ x, l ¼ y, and taking into account the geometrical constraints, we
obtain

ðdux=dtÞ � uy þ ux � ðduy=dtÞ ¼ 0 ) l1 þ l4 ¼ 0; ð1:7:4eÞ

and, cyclically,

ðduy=dtÞ � uz þ uy � ðduz=dtÞ ¼ 0 ) l3 þ l6 ¼ 0; ð1:7:4f Þ
ðduz=dtÞ � ux þ uz � ðdux=dtÞ ¼ 0 ) l5 þ l2 ¼ 0: ð1:7:4gÞ

Hence, (1.7.4c,d) can be rewritten in terms of the following three independent
(unconstrained) l ’s, or in terms of the three equivalent parameters !x, !y, !z:

l1 ¼ �l4 � !z; l3 ¼ �l6 � !x; l5 ¼ �l2 � !y; ð1:7:4hÞ

as

dux=dt ¼ !zuy � !yuz ¼ x� ux;

duy=dt ¼ !xuz � !zux ¼ x� uy; ð1:7:4iÞ
duz=dt ¼ !yux � !xuy ¼ x� uz;
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dp/dt = (dpx/dt)ux + px(dux/dt) + · · · = ∂p/∂t +



where

x ¼ !xux þ !yuy þ !zuz

¼ ux½ðduy=dtÞ � uz� þ uy½ðduz=dtÞ � ux� þ uz½ðdux=dtÞ � uy�
½a form that shows the cyclicity of the subscripts x; y; z�
¼ �ux½ðduz=dtÞ � uy� � uy½ðdux=dtÞ � uz� � uz½ðduy=dtÞ � ux�: ð1:7:4jÞ

Finally, substituting these results into (1.7.4a), we obtain (1.7.2a):

REMARKS

(i) Frequently, and with some good reason, the notation �p=�t is employed for our

(ii) The vector equation (1.7.2a) can be expressed in component form (i.e., it can
be projected) along any axes, fixed or moving, by eqs. (1.7.3c), if OM�xyz and
OM�XYZ momentarily coincide; and, if they do not, by

ðdp=dtÞx ¼ cosðx;XÞðdpX=dtÞ þ cosðx;YÞðdpY=dtÞ þ cosðx;ZÞðdpZ=dtÞ ð6¼ dpx=dtÞ
¼ cosðx;XÞðdp1=dtþ !2p3 � !3p2Þ þ � � � ; ð1:7:5aÞ

where the new axes OM�123 coincide momentarily with OM�XYZ, but, in general,
have an angular velocity x 0 ¼ ð!1; !2; !3Þ relative to them.

(iii) The above show that as long as no rates of change are involved, the compo-
nents of a vector along the various axes (fixed or moving) are related by ordinary
coordinate transformations, with possibly time-dependent coefficients—that is, like
the first line of (1.7.5a), or (1.7.5b), below; all such axes are mechanically (though not
mathematically) equivalent. But when rates of change between such moving axes
(! frames) are compared, then, in general, a component of a vector derivative
ðdp=dtÞx does not equal the derivative of that component dpx=dt [(1.7.3d, e)]; these
quantities are related by a frame of reference transformation— that is, like the second
line of (1.7.5a). Mathematically, this is equivalent to an explicitly time-dependent
coordinate transformation: x ¼ xðX ;Y ;Z; tÞ; . . . , X ¼ Xðx; y; z; tÞ; . . . (recall dis-
cussion following eq. (1.1.20k)). In such cases, to obtain equations like (1.7.3c), we
begin with OM�XYZ and OM�xyz in arbitrary relative orientations, then we
d/dtð. . .Þ-differentiate the component transformations, like

px ¼ cosðx;XÞpX þ cosðx;YÞpY þ cosðx;ZÞpZ; etc:; cyclically; ð1:7:5bÞ
(not like px ¼ pX ) and then we make OM�XYZ and OM�xyz coincide.

(iv) In kinematics, all frames are theoretically equivalent; and thus during the 17th
century both Galileo and the Catholic church were . . . kinematically correct! This is
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dp/dt = ∂p/∂t +
∑

pk(ω × uk) = ∂p/∂t + ω ×
(∑

pkuk

)

= ∂p/∂t + ω × p. ð1:7:4kÞ

∂p/∂t. Here, however, we chose the latter because in analytical mechanics δ(. . .) is
reserved for virtual changes, under which δt = 0 (chap. 2ff.). Other popular notations
for the relative rate of change are ∂∗p/∂t (British authors; but some German authors use
∂p/∂t for our ω × p), (dp/dt)M or (dp/dt)rel or d∗p/dt; or with a tilde over d
(Soviet/Russian authors) d̃. Also recall remarks made regarding eq. (1.1.20i) about the
overdot notation.



expressed by the following geometrical, or Euclidean, and kinematical principle of
relativity: any system of rectangular Cartesian coordinates can be replaced by any
other such system that moves in an arbitrary fashion relative to the first; or,
alternatively, the form of geometrical relationships must be invariant under the proper
orthogonal group of rotations—and this, in effect, constitutes a definition of Euclidean
geometry—that is, any two such sets of coordinates xk 0 and xk are related by

xk 0 ¼
X

Ak 0kðtÞxk þ Ak 0 ðtÞ; ð1:7:6aÞ

where X
Ak 0kðtÞAl 0kðtÞ ¼ �k 0l 0 ;

X
Ak 0kðtÞAk 0lðtÞ ¼ �kl ;

and

DetðAk 0kðtÞÞ ¼ þ1; ð1:7:6bÞ
and Ak 0kðtÞ, Ak 0 ðtÞ are continuous functions of time, with first and second time
derivatives. Such transformations include all frames/motions produced from the
moving frame M by a continuous rigid-body movement (translations and rotations,
but not mirror reflections).

(v) If the moving triad ux;y;z is non-OND, then its inertial angular velocity is,
instead of (1.7.4j),

x ¼ �ux½ðduy=dtÞ � uz� þ uy½ðduz=dtÞ � ux� þ uz½ðdux=dtÞ � uy�
�
=½ux � ðuy � uzÞ�:

ð1:7:6cÞ
[See, for example, Truesdell and Toupin (1960, p. 437). In case such angular velocity
vector definitions seem unmotivated, another more natural one, based on the linear-
ization of the finite rotation equation, is detailed in }1.10.]

Corollaries of the Moving Axes Theorem

Applying (1.7.2a) for x, we get

a:

Angular acceleration of moving axes relative to fixed axes: ð1:7:7aÞ
This result shows the special position of x in moving axes theory.

From eq. (1.7.2a) and its derivation, we easily obtain the following general opera-
tor form:

Applying (1.7.7b) to (1.7.2a), and invoking (1.7.7a), we obtain the following expres-
sion for the second absolute rate of p, d=dtðdp=dtÞ � d2p=dt2:
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dω/dt = ∂ω/∂t + ω × ω = ∂ω/∂t ≡

d(. . .)/dt = ∂(. . .)/∂t + ω × (. . .), (. . .): any vector. (1.7.7b)

p/dt2 = d(. . .)/dt(∂p/∂t + ω × p)

= [∂(. . .)/∂t + ω × (. . .)](∂p/∂t) + (dω/dt)× p + ω × (dp/dt)

(1.7.7c)= · · · = ∂
2p/∂t2 + [α × p + ω × (ω × p)] + 2ω × (∂p/∂t),

d2



where

bX ¼ bx ¼ dax=dtþ !yaz � !zay; ð1:7:7eÞ
cX ¼ cx ¼ dbx=dtþ !ybz � !zby

¼ d=dtðdax=dtþ !yaz � !zayÞ þ !yðdaz=dtþ !xay � !yaxÞ
� !zðday=dtþ !zax � !xazÞ; etc:; cyclically:

ð1:7:7f Þ
For example, application of (1.7.7c, d) to the moving basis vectors ux;y;z yields

¼ 0þ ½a� ux þ x� ðx� uxÞ� þ 0

¼ a� ux þ x� ðx� uxÞ; etc:; cyclically: ð1:7:7gÞ
Since (1.7.2a) is a purely kinematical result, the roles of the frames F and M can be
interchanged. Indeed, from it, we immediately obtain

ð1:7:7hÞ
where �x is the angular velocity of F relative to M.

In particular, if p remains constant (i.e., fixed ) relative to F, (1.7.2a) and (1.7.7h)
yield

ð1:7:7iÞ
that is, an observer, stationed in M, sees the tip of p rotate relative to that frame with
an angular velocity �x. Application of (1.7.7i) to the fixed basis uX ;Y ;Z gives

and, therefore,

� uY ¼ �!Z ð¼ �!z; for coinciding axesÞ
� uZ ¼ þ!Y ð¼ þ!y; for coinciding axesÞ; etc:; cyclically: ð1:7:7kÞ

Alternative Definition of Angular Velocity

(i) Below, we show that

x ¼
X
ð1=2Þ�uk � ðduk=dtÞ	 ðwhere k ¼ 1; 2; 3! x; y; zÞ; ð1:7:8aÞ

which can be viewed as an alternative to (1.7.2e, 6c) definition of angular velocity.
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(d2px/dt2)ux + (d2py/dt2)uy + (d2pz/dt2)uz . (1.7.7d)

(∂uX/∂t)

(∂uX/∂t)

∂p/∂t = dp/dt + (− ω)× p ,

∂p/∂t = (− ω)× p ;

∂uX/∂t = (−ω)× uX = −(ωX, ωY, ωZ)× (1, 0, 0)

= · · · = (0)uX + (−ωZ)uY + (ωY)uZ ,

∂2p/∂t2 =

In general, if a→ b = da/dt→ c = db/dt = d2a/dt2 → . . . , then we shall have for their
components:

d2ux/dt
2 = ∂2ux/∂t2 + [α× ux + ω × (ω × ux)] + 2ω × (∂ux/∂t)

∂uY/∂t = (−ω)× uY = · · · = (ωZ)uX + (0)uY + (−ωX)uZ ,

∂uZ/∂t = (−ω)× uZ = · · · = (−ωY)uX + (ωX)uY + (0)uZ ; (1.7.7j)



Indeed, using the fundamental equations (1.7.4i), we obtain, successively,X
½uk � ðduk=dtÞ� ¼

X
½uk � ðx� ukÞ� ¼

X
½ðuk � ukÞx� ðuk �xÞukÞ�

¼ x
X
ðuk � ukÞ

� �
�
X
ð!kukÞ ¼ xð3Þ � x ¼ 2x; Q:E:D:

ð1:7:8bÞ
From the above, and using the results of }1.1, we can show that the (inertial) angular
velocity tensor of the moving frame u [i.e., the antisymmetric tensor whose axial
vector is the (inertial) angular velocity of that frame x] can be expressed as

u ¼ ð1=2Þ
X �ðduk=dtÞ  uk � uk  ðduk=dtÞ

	
: ð1:7:8cÞ

(ii) Next, if the (orthonormal) basis vectors uk are functions of the curvilinear
coordinates q ¼ ðq1; q2; q3Þ—that is, uk ¼ ukðqÞ—then, applying (1.7.8a), we find,
successively (with all Latin subscripts running from 1 to 3; i.e., x; y; z),

x ¼
X
ð1=2Þ uk �

X
ð@uk=@qlÞðdql=dtÞ

� �n o
¼ � � � ¼

X
ckðdql=dtÞ; ð1:7:9aÞ

where

cl �
X
ð1=2Þ�uk � ð@uk=@qlÞ	 ð‘‘Eulerian basis’’ for xÞ; ð1:7:9bÞ

that is, the dql=dt are the (contravariant) components of x in the (covariant) basis cl .
By formally comparing (1.7.8a) and the earlier equations (1.7.4i), (1.7.2e, 4j), with

(1.7.9a, b) [i.e., x! cl and duk=dt! @uk=@ql ], it is easy to conclude that

@uk=@ql ¼ cl � uk; ð1:7:9cÞ
cl ¼ u1½ð@u2=@qlÞ � u3� þ u2½ð@u3=@qlÞ � u1� þ u3½ð@u1=@qlÞ � u2�: ð1:7:9dÞ

We leave it to the reader to extend the above to the ‘‘rheonomic’’ case: uk ¼ ukðq; tÞ.

EXAMPLES

1. The absolute (i.e., inertial) components of the angular acceleration of a rigid
body rotating with angular velocity xB are (with the hitherto used notations)

d!B;X=dt ¼ d!B;x=dtþ !y !B;z � !z !B;y; etc:; cyclically: ð1:7:10aÞ
What happens if xB ¼ x?

2. The conditions for a straight line with direction cosines (relative to moving
axes) lx, ly, lz to have a fixed inertial direction are

dlx=dtþ !ylz � !zly ¼ 0; etc:; cyclically: ð1:7:10bÞ
How many of these three conditions are independent? Hint: lx

2 þ ly
2 þ lz

2 ¼ 1:
3. The moving axis theorem (1.7.2a), applied to the generic vector p expressed in

plane polar coordinates:

p ¼ prur þ p�u�; ð1:7:10cÞ
yields

dp=dt ¼ ½dpr=dt� p�ðd�=dtÞ�ur þ ½dp�=dtþ prðd�=dtÞ�u�: ð1:7:10dÞ
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Apply (1.7.10d) for p ¼ position vector of a particle r, and velocity vector of a particle v.
Hint: The angular velocity of the moving polar ortho–normal–dextral triad

ur;�;z¼Z, relative to the inertial one uX ;Y ;Z, is

x ¼ ðd�=dtÞuz ¼ ðd�=dtÞuZ: ð1:7:10eÞ

Particle Kinematics in Moving Frames

Velocities

Application of the fundamental formula (1.7.2a) to the motion of a particle P, of
inertial position vector R ¼ rO þ r (fig. 1.6) (i.e., for p! rÞ, yields

v � dR=dt ¼ dðrO þ rÞ=dt ¼ drO=dtþ dr=dt

¼ ð1:7:11aÞ
(since, in general, r is known only along the moving axes) or, rearranging,

ð1:7:11bÞ
or

vabs ¼ vtrans þ vrel; ð1:7:11cÞ
where

vabs � v � dR=dt ¼ ðdX=dtÞuX þ ðdY=dtÞuY þ ðdZ=dtÞuZ:
Absolute velocity of P; ð1:7:11dÞ

v � ðdx=dtÞux þ ðdy=dtÞuy þ ðdz=dtÞuz:
Relative velocity of P; ð1:7:11eÞ

vtrans � drO=dtþ x � r ¼ drO=dtþ ½xðdux=dtÞ þ yðduy=dtÞ þ zðduz=dtÞ�:
Transport velocity of P: ð1:7:11f Þ
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Figure 1.6 (a) Relative kinematics of particle P in two dimensions; (b) geometry of centripetal

acceleration.

drO/dt + (∂r/∂t + ω × r),

v = (drO/dt + ω × r) + ∂r/∂t

vrel ∂r/∂t�



Clearly, if P is rigidly attached to Mmoving frame (e.g., if it is one of the particles of
the rigid body M), then vrel ¼ 0 and v ¼ vtrans; that is, generally, vtrans is the velocity
of a particle rigidly attached to M and instantaneously coinciding with P.

Accelerations

Application of (1.7.2a) to (1.7.11a–f ) yields

aabs ¼ arel þ atrans þ acor; ð1:7:12aÞ

where

aabs � a � d2R=dt2 ¼ ðd2X=dt2ÞuX þ ðd2Y=dt2ÞuY þ ðd2Z=dt2ÞuZ:
Absolute acceleration of P; ð1:7:12bÞ

� ðd2x=dt2Þux þ ðd2y=dt2Þuy þ ðd2z=dt2Þuz:
Relative acceleration of P; ð1:7:12cÞ

atrans � d2rO=dt
2 þ a� rþ x� ðx� rÞ

¼ d2rO=dt
2 þ ½xðd2ux=dt

2Þ þ yðd2uy=dt
2Þ þ zðd2uz=dt

2Þ�:
Transport ðor dragÞ acceleration of P

½ ¼ Inertial acceleration of a particle fixed relative to M; and momentarily
coinciding with P; its first term;

d2r

is due to the inertial acceleration of the origin of M; its second ; a� r; to
the inertial angular acceleration of M; and its last term;

x� ðx� rÞ � ðx � rÞx� !2r � �!2rp;

where rp ¼ vector of perpendicular distance from x� axis
ðthrough OÞ to P; ðEg: 1:6ðbÞÞ; is called centripetal acceleration of P�;

ð1:7:12dÞ
¼ 2
�ðdx=dtÞðdux=dtÞ þ ðdy=dtÞðduy=dtÞ

þ ðdz=dtÞðduz=dtÞ
	
:

Coriolis ðor complementaryÞ acceleration of P

½ ¼ Acceleration due to the coupling between the relative motion of the
particle P; vrel; and the absolute rotation ðtransport motionÞ of the frame

M;x; it vanishes if vrel ¼ 0; or if x is parallel to vrel�: ð1:7:12eÞ

If x ¼ 0 and a ¼ 0—that is, if M translates relative to F—these equations reduce to

ð1:7:12f Þ
ð1:7:12gÞ
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�arel ∂vrel/∂t = ∂2r/∂t2

O/dt2 = dvO/dt = ∂vO/∂t + ω × vO,

acor ≡ 2ω × vrel ≡ 2ω × (∂r/∂t)

v = vrel + vO = ∂r/∂t + drO/dt = dr/dt + drO/dt,

a = arel + aO = ∂2r/∂t2 + d2rO/dt2 = d2r/dt2 + d2rO/dt2,



Component Forms

To appreciate eqs. (1.7.11) and (1.7.12) better, and prepare the reader for the key
concept of nonholonomic coordinates, and so on (}2.9 ff.), we present them below in
terms of their components. In the general case of nonaligned axes we can project
them on an arbitrary, fixed, or moving axis; that is, each of their terms can be
resolved along any set of axes.

(i) The position relation R ¼ rO þ r, with rO ¼ ðXO;YO;ZOÞ, reads
X ¼ XO þ cosðX ; xÞxþ cosðX ; yÞyþ cosðX ; zÞz; etc:; cyclically: ð1:7:13aÞ

(ii) The velocity equations (1.7.11a ff.) assume the following forms, along the fixed
axes:

dX=dt ¼ dXO=dtþ cosðX ;xÞðdx=dtþ !yz� !zyÞ
þ cosðX ; yÞðdy=dtþ !zx� !xzÞ þ cosðX ; zÞðdz=dtþ !xy� !yxÞ

¼ dXO=dtþ d=dtðX � XOÞ; etc:; cyclically; ð1:7:13bÞ
and, along the moving axes:

v � ux � vx ¼ vO;x þ dx=dtþ !yz� !zy; etc:; cyclically; ð1:7:13cÞ
where

vO;x � vO � ux ¼ cosðx;XÞðdXO=dtÞ þ cosðx;YÞðdYO=dtÞ þ cosðx;ZÞðdZO=dtÞ:
component of inertial velocity of moving origin O; along the moving axis
Ox ½in general; not equal to the d=dtð. . .Þ-derivative of a coordinate; like
dXO=dt or dx=dt; and hence a quasi velocity ðL2:9 ff :Þ�; etc:; cyclically:

ð1:7:13dÞ
(iii) The acceleration equations (1.7.12a ff.) read, along the fixed axes:

d2X=dt2 ¼ d2XO=dt
2 þ cosðX; xÞ½d=dtðdx=dtþ !yz� !zyÞ
þ !yðdz=dtþ y!x � x!yÞ � !zðdy=dtþ x!z � z!xÞ� þ � � �

¼ d2XO=dt
2 þ cosðX; xÞfðd2x=dt2Þ þ ½zðd!y=dtÞ � yðd!z=dtÞ�
þ !yð!xy� !yxÞ � !zð!zx� !xzÞ
þ 2½!yðdz=dtÞ � !zðdy=dtÞ�g þ � � �

¼ d2XO=dt
2 þ d2=dt2ðX �XOÞ; etc:; cyclically; ð1:7:13eÞ

¼ ðd2X=dt2Þrel þ ðd2X=dt2Þtrans þ ðd2X=dt2Þcor; ð1:7:13f Þ
where

ðd2X=dt2Þrel ¼ cosðX ; xÞðd2x=dt2Þ þ cosðX ; yÞðd2y=dt2Þ þ cosðX ; zÞðd2z=dt2Þ;
ðd2X=dt2Þtrans ¼

þ !yð!xy� !yxÞ � !zð!zx� !xzÞ
�þ � � � ;

ðd2X=dt2Þcor ¼ cosðX ;xÞ�2½!yðdz=dtÞ � !zðdy=dtÞ�
�þ � � � ; etc:; cyclically;

ð1:7:13gÞ
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�
d2XO/dt

2 + cos(X, x) [z(dωy/dt) − y(dωz/dt)]



and, along the moving axes:

a � ux � ax ¼ aO;x þ ½d=dtðdx=dtþ !y z� !z yÞ
þ !yðdz=dtþ y!x � x!yÞ � !zðdy=dtþ x!z � z!xÞ�

¼ ax;rel þ ax;trans þ ax;cor; ð1:7:13hÞ

where

ax;rel ¼ d2x=dt2;

ax;trans ¼ aO;x þ ½zðd!y=dtÞ � yðd!z=dtÞ� þ !yð!x y� !y xÞ � !zð!z x� !x zÞ;
ax;cor ¼ 2½!yðdz=dtÞ � !zðdy=dtÞ�; and ð1:7:13iÞ
aO;x �

ðin general; a quasi accelerationÞ; etc:; cyclically: ð1:7:13jÞ

EXAMPLES

1. It is not hard to show that the conditions for a particle, with coordinates x, y,
z, relative to moving axes, to be stationary relative to absolute space are

uþ dx=dtþ z!y � y!z ¼ 0; etc:; cyclically; ð1:7:14Þ
where ðu; v;wÞ ¼ inertial components of velocity of origin of moving frame.

2. Plane Rotation Case. Let us find the components of velocity and acceleration of
a particle P in motion on a plane described by the two sets of momentarily coincident
rectangular Cartesian axes, a fixed O–XY and a second O–xy rotating relative to the
first so that always OZ ¼ Oz, with angular velocity x ¼ ð0; 0; !z ¼ !Z � !Þ. Here,
momentarily,

X ¼ x; Y ¼ y: ð1:7:15a;bÞ

Application of the moving axes theorem (1.7.2a), or (1.7.3c), (1.7.7e), with !x;y ¼ 0
and !z ¼ !, yields the velocity components:

dX=dt ¼ dx=dt� y!; dY=dt ¼ dy=dtþ x!; ð1:7:15c;dÞ

and application of that theorem, or (1.7.3c), (1.7.7f), to the above gives the accel-
eration components:

d2X=dt2 ¼ d=dtðdx=dt� y!Þ � ðdy=dtþ x!Þ!
¼ d2x=dt2 � yðd!=dtÞ � x!2 � 2ðdy=dtÞ!
ð¼ relativeþ transportþ CoriolisÞ; ð1:7:15eÞ

d2Y=dt2 ¼ d=dtðdy=dtþ x!Þ þ ðdx=dt� y!Þ!
¼ d2y=dt2 þ xðd!=dtÞ � y!2 þ 2ðdx=dtÞ!
ð ¼ relativeþ transportþ CoriolisÞ; ð1:7:15f Þ

and similarly for higher d=dtð. . .Þ-derivatives.
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aO · ux = cos(x,X)(d2XO/dt2) + cos(x, Y)(d2YO/dt2) + cos(x, Z)(d2ZO/dt2),



[Alternatively, we may start from the geometrical O–XY/O–xy relationship for a
generic angle of orientation � ¼ �ðtÞ:

X ¼ ðcos�Þxþ ð� sin�Þy; Y ¼ ðsin�Þxþ ðcos�Þy; ð1:7:15gÞ

d=dtð. . .Þ-differentiate it, and then set � ¼ 0 ðd�=dt � ! 6¼ 0Þ, thus obtaining
(1.7.15c, d); then d=dtð. . .Þ-differentiate once more, for general �, and then set
� ¼ 0 (! 6¼ 0, d!=dt � 
 6¼ 0Þ, thus obtaining (1.7.15e, f). The details of this straight-
forward calculation are left to the reader. In this way we do not have to remember
any kinematical theorems—differential calculus does it for us!]

3. Velocity and Acceleration in Plane Polar Coordinates via the Moving Axes
Theorem [continued from (1.7.10c–e)]. Here, with the usual notations,

r ¼ rur and x ¼ ðd�=dtÞuz ¼ ðd�=dtÞuZ; ð1:7:16aÞ
and, therefore, by direct d=dtð. . .Þ-differentiation and then use of (1.7.4i)— that is,
treating the corresponding OND basis/axes through P, P� uru�=r, �, as the moving
frame—we obtain

ðiÞ v ¼ dr=dt ¼ ðdr=dtÞur þ rðdur=dtÞ ¼ ðdr=dtÞur þ rðx� urÞ
¼ ðdr=dtÞur þ rðd�=dtÞðuz � urÞ ¼ ðdr=dtÞur þ rðd�=dtÞu� � vr ur þ rv� u�;

ð1:7:16bÞ

ðiiÞ a ¼ dv=dt ¼ ðdvr=dtÞur þ vrðdur=dtÞ þ ½dðrv�Þ=dtÞ�u� þ ðrv�Þðdu�=dtÞ
¼ ðdvr=dtÞur þ vrðx� urÞ þ ½dðrv�Þ=dtÞ�u� þ ðrv�Þðx� u�Þ
¼ ðdvr=dtÞur þ vr½ðd�=dtÞu�� þ ½dðrv�Þ=dtÞ�u� þ ðrv�Þ½ð�d�=dtÞur�
¼ ½dvr=dt� ðd�=dtÞðrv�Þ�ur þ ½vrðd�=dtÞ þ dðrv�Þ=dt�u�
¼ ½d2r=dt2 � rðd�=dtÞ2�ur þ

�ðdr=dtÞðd�=dtÞ þ d=dt½rðd�=dtÞ��u�
¼ ½d2r=dt2 � rðd�=dtÞ2�ur þ ½2ðdr=dtÞðd�=dtÞ þ rðd2�=dt2Þ�u�
� aðrÞur þ að�Þu�: ð1:7:16cÞ

4. Velocity and Acceleration in Spherical Coordinates via the Moving Axes
Theorem. Proceeding as in the preceding example, and since here r ¼ rur (not
the r of the polar cylindrical case) and x ¼ ðd�=dtÞuZ þ ðd�=dtÞu�,
uZ ¼ � sin �u� þ cos �ur, we can show that the velocity and acceleration are given,
respectively, by

v ¼ ðdr=dtÞur þ ½rðd�=dtÞ�u� þ ½rðd�=dtÞ sin ��u� � vr ur þ rv� u� þ v� u�; ð1:7:17aÞ
a ¼ ½d2r=dt2 � rðd�=dtÞ2 � rðd�=dtÞ2 sin2 ��ur

þ ½2ðdr=dtÞðd�=dtÞ þ rðd2�=dt2Þ � rðd�=dtÞ2 sin � cos ��u�
þ ½2ðdr=dtÞðd�=dtÞ sin �þ rðd2�=dt2Þ sin �þ 2rðd�=dtÞðd�=dtÞ cos ��u�

� aðrÞur þ að�Þu� þ að�Þu�: ð1:7:17bÞ

The above are, naturally, in agreement with (1.2.8a ff.)
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5. Inertial Angular Velocity of the Natural, or Intrinsic, OND Triad OM�utunub �
OM�tnb; Frenet–Serret Equations (fig. 1.7). We have already seen (}1.2) that

dt=ds ¼ n=�) dt=dt ¼ ðdt=dsÞðds=dtÞ ¼ ½ðds=dtÞ=��n � ðvt=�Þn; ð1:7:18aÞ
also

b ¼ t� n: ð1:7:18bÞ
Next, d=dtð. . .Þ-differentiating b � t ¼ 0, we obtain

0 ¼ ðdb=dtÞ � tþ b � ðdt=dtÞ ¼ ðdb=dtÞ � tþ b � ½ðvt=�Þn� ¼ ðdb=dtÞ � t; ð1:7:18cÞ
and, similarly, d=dtð. . .Þ-differentiating b � b ¼ 1 we readily conclude that

ðdb=dtÞ � b ¼ 0: ð1:7:18dÞ
Equations (1.7.18c, d) show that db=dtmust be perpendicular to both t and b. Hence,
we can set

db=ds ¼ �ð1=	Þn) db=dt ¼ ðdb=dsÞðds=dtÞ ¼ �ðvt=	Þn; ð1:7:18eÞ
where 	 ¼ radius of torsion (or second curvature) of the curve C, traced by the moving
origin OM � O, at O; positive (negative) whenever the tip of db=dt turns around t
positively (negatively); that is, like a right- (left-)hand screw; or, according as db=dt

Now, the angular velocity of O–tnb, relative to some background fixed triad
OF�uXuYuZ, is found by application of the basic formulae (1.7.4j), with the identi-
fication OM�uxuyuz ¼ O�tnb, and eqs. (1.7.18a–e). Thus, we find

Tangent: !t ! !x ¼ uz � ðduy=dtÞ ¼ �uy � ðduz=dtÞ ¼ �n � ðdb=dtÞ ¼ vt=	 ; ð1:7:18f Þ
Normal: !n ! !y ¼ ux � ðduz=dtÞ ¼ �uz � ðdux=dtÞ ¼ �b � ðdt=dtÞ ¼ 0; ð1:7:18gÞ
Binormal: !b ! !z ¼ uy � ðdux=dtÞ ¼ �ux � ðduy=dtÞ ¼ n � ðdt=dtÞ ¼ vt=�: ð1:7:18hÞ
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Figure 1.7 On the geometry and kinematics of the Frenet–Serret

triad O–tnb.

has the opposite (same) direction as n. [Some authors use τ for our 1/τ ; others use ρκ and
ρτ for our ρ and τ , respectively.]
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and similarly for the other components.

then

dt1=ds ¼ n1=�; dn1=ds ¼ b1=	 � t1=�; db1=ds ¼ �n1=	 ; ð1:7:19cÞ

With the help of the above, we can easily show that
(i) The Frenet–Serret equations can be put in the following kinematical form:

dt=dt ¼ x� t; dn=dt ¼ x � n; db=dt ¼ x� b

ðx: kinematical Darboux vector; ð1:7:18iÞÞ: ð1:7:19aÞ
(ii) If t, n, b can be expressed, in terms of their direction cosines along a fixed OND

triad, as

t ¼ ðt1; t2; t3Þ; n ¼ ðn1; n2; n3Þ; b ¼ ðb1; b2; b3Þ; ð1:7:19bÞ

finally,

Torsion � 1=	 ¼ ½ðr 0 � r 00Þ � r 000�=jr 00j2: ð1:7:18qÞ

or, since [recalling (1.2.4c)]

1=�2 ¼ r 00 � r 00 ¼ jr 00j2; ð1:7:18pÞ

ð. . .Þ 0 � dð. . .Þ=ds, we get

b=	 ¼ t=�þ ð �t 0Þ 0 ¼ t=�þ � 0t 0 þ �t 00 ¼ t=�þ � 0ðn=�Þ þ �r 000; ð1:7:18nÞ
and so, dotting this equation with b, we find

1=	 ¼ �ðb � r 000Þ ¼ �½ðt� nÞ � r 000 � ¼ �2½ðr 0 � r 00Þ � r 000 �; ð1:7:18oÞ

In sum, the triad O–tnb rotates with inertial angular velocity:

x= (vt/τ)t+ (0)n+ (vt/ρ)b = vt(t/τ + b/ρ). (1.7.18i)

In general, x �= dθ/dt, where θ is some vector expressing angular displacement/rota-
tion; that is, θ is a quasi vector (§1.10, chap. 2). Further, from (1.7.18a–e) we also conclude

dt=dt ¼ ð0Þtþ ðvt=�Þnþ ð0Þb; ð1:7:18kÞ
dn=dt ¼ ð�vt=�Þtþ ð0Þnþ ðvt=	Þb; ð1:7:18lÞ
db=dt ¼ ð0Þtþ ð�vt=	Þnþ ð0Þb: ð1:7:18mÞ

Frenet–Serret formulae for a space (or skew, or twisted) curve. It is shown in differential
geometry that: the “natural/intrinsic” curve equations ρ = ρ(s) and τ = τ(s) determine
the spatial position of that curve to within a rigid displacement (i.e., a translation and a
rotation).

The F-S equations can also be written in the following memorable “antisymmetric
form”:

that

dn=ds ¼ d=dsðb� tÞ ¼ ðdb=dsÞ � tþ b� ðdt=dsÞ
¼ �ð1=	Þðn� tÞ þ ð1=�Þðb� nÞ
¼ �ð1=	Þð�bÞ þ ð1=�Þð�tÞ ¼ ð�1=�Þtþ ð1=	Þb: ð1:7:18jÞ

Equations (1.7.18a, e, j) (where 0 � ρ � +∞ and −∞ � τ � +∞, τ �= 0) are the famous

The above allow us to calculate the torsion, 1/τ . From (1.7.18j, k, l), with



(iii) The (inertial) angular acceleration of the Frenet–Serret triad, a � dx=dt, is
given by

a ¼ ½ðdvt=dtÞ=	 � ðvt2=	2Þðd	=dsÞ�tþ ½ðdvt=dtÞ=�� ðvt2=�2Þðd�=dsÞ�b: ð1:7:19dÞ
(iv) The (inertial) jerk vector of a particle, j � da=dt (or hyperacceleration, or

velocity of the acceleration) is expressed along the Frenet–Serret triad as

j ¼ ½d2vt=dt2 � ðvt3=�2Þ�tþ
�
vt

2½d=dtð1=�Þ� þ 3vtðdvt=dtÞ=�Þ�
�
nþ ðvt3=�	Þb

¼ ½d2vt=dt2 � ðvt3=�2Þ�tþ ½d=dtðvt3=�Þ=vt�nþ ðvt3=�	Þ�b
¼ ½d2vt=dt2 � ðvt3=�2Þ�tþ ½ð3vt2=�Þðdvt=dsÞ � ðvt3=�2Þðd�=dsÞ�nþ ðvt3=�	Þ�b;

ð1:7:19eÞ

Particle Kinetics in Moving Frames

Substituting the inertial acceleration a of a particle P of mass m, in terms of its
moving axes representation, into its Newton–Euler equation of motion

m a ¼ f ð¼ total noninertial; or real; or objective; force on PÞ; ð1:7:20aÞ
and, rearranging slightly, we obtain its fundamental equation of relative motion (fig.
1.8):

marel ¼ f þ f trans þ f cor; ð1:7:20bÞ
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where

dð. . .Þ=dt ¼ ½dð. . .Þ=ds�ðds=dtÞ ¼ vt½dð. . .Þ=ds�;

(v) The following kinematic formulae hold for the curvature and torsion:

ð1:7:19f Þ
κ = 1/ρ = |v× a|/|v|3 =

[
v2a2

− (v · a)2
]1/2

/v3,

that is, contrary to the acceleration, a = (dvt/dt)t + (v2
t/ρ) n, the jerk vector has t, n,

and b components, and involves both ρ and τ .

HISTORICAL

The theory of accelerations of any order (along general curvilinear coordinates) is
due to the Russian mathematician/mechanician Somov (1860s), who also gave recur-
rence formulae, from the ðn� 1Þth order to the ðnÞth order; and to the French
mathematician Bouquet (1879). The second order shown above is due to the
French mechanician Resal (1862), although the earliest such investigations seem to
be due to a certain Transon (1845) (see, e.g., Schönflies and Grübler, 1902: 1901–
1908). The jerk vector is called ‘‘accéleration du second ordre’’ (Resal), or
‘‘Beschleunigung að2Þ’’ (Schönflies/Grübler), where the ordinary acceleration (of
the first order) is denoted by að1Þ � a. Clearly, such derivations are enormously
aided with the use of vectors. These results allowed Möbius (1846, 1848) to give a
geometrical interpretation to Taylor’s expansion (with some standard notations):

Dr � rðtÞ � rð0Þ ¼ vtþ að1Þðt2=2Þ þ að2Þðt3=1:2:3Þ þ � � �
¼ chord of particle trajectory between the times 0 and t:

1/τ = [v · (a× j)]/(a× j)2 = (v, a, j)/κ2v6.



in words:

mass� relative acceleration ðarelÞ ¼ total real ð f Þ plus inertial ð f trans þ f corÞ force;
ð1:7:20cÞ

where

f trans � �matrans � �m½d2rO=dt
2 þ a� rþ x� ðx� rÞ�:

¼ �mðd2rO=dt
2Þ ½due to the inertial acceleration of the origin of the moving

�mða� rÞ
�m½x� ðx� rÞ� ¼ �m½ðx � rÞx� !2r� ¼ � � �

f cor � �macor � �2mðx� vrelÞ ¼ �
inertial force of Coriolis ðor composite centrifugal forceÞ on P ½due to

absolute rotation of the moving frame ðxÞ; normal to both vrel; x; and
such that vrel; x; and f cor ¼ 2mðvrel � xÞ; in that order; form a
right-hand system�: ð1:7:20fÞ
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arel ≡ ∂vrel/∂t ≡ ∂2r/∂t2: apparent or Relative acceleration of P,

total iniertial force of Transport on P

[due to the inertial angular acceleration of frame M]

[centrifugal force on P, due to the inertial angular velocity of frame M;
always perpendicular to the instantaneous axis of ω, in the plane of P

ð1:7:20dÞ

2m[ω × (∂r/∂t)] :

Figure 1.8 Geometry and forces in two-dimensional relative motion.

Moving (Rotating) Frame, M

the interaction of the relative motion of P (vrel = ∂r/∂t) with the

P≡ mω2rP

and that axis, and directed away from it (fig. 1.6(b))],



REMARKS

force; f trans and f cor are relative (i.e., frame dependent). At most, f can depend
explicitly on relative positions (displacements), relative velocities, and time; but
not on relative accelerations (as an independent constitutive equation). [In relativity
all forces are relative, and hence can be eliminated by proper frame choice. On the
classical objectivity requirements for f , see, for example, Pars (1965, pp. 11–12),
Rosenberg (1977, pp. 12–16).] In addition, in general, the relative forces are not
additive; for example, the total force acting on a particle P due to two or more
attracting masses, each exerting separately on it the absolute forces f 1 and f 2, equals
ð f 1 þ f 2Þ þ ð f trans þ f corÞ; not ð f 1 þ f trans þ f corÞ þ ð f 2 þ f trans þ f corÞ. As for the
Coriolis ‘‘force’’ f cor ¼ �2mðx� vrelÞ, even for the same problem (i.e., samem and f )
that term obviously does depend on the particular noninertial frame used. This, how-
ever, does not mean that its effects on people, property, and so on, are any less physi-
cally/technically real than those of the real force f. [In fact, the study of such similarities
between these forces led to the general theory of relativity (mid-1910s).]

For the comoving (noninertial) observer, both f trans and f cor are very real! Some of
the most spectacular Coriolis effects occur in the atmospheric sciences (meteorology,
etc.); that is, in phenomena involving the coupling between the motion of large liquid
and/or gas masses and the Earth’s rotation about its axis. A prime such example is
Baer’s law of river displacements: The inertia force on the northbound flowing water,
along a meridian, presses against the right (left) bank in the northern (southern) hemi-
sphere. The effects of this pressure are a stronger erosion of the right embankment; and
a slightly but measurably higher water level at the right shore of the river. [In view of
these realities, statements like the following cannot be taken seriously: ‘‘From the
foregoing it is clear that the Coriolis-acceleration term arises from the description
adopted, namely, via moving observers, and hence, contrary to popular belief it
bears no physical significance’’ [Angeles, 1988, p. 74 (the italics are that author’s)].]

Finally, since f cor is perpendicular to vrel, its ‘‘relative power’’ f cor � vrel vanishes
(more on such ‘‘gyroscopic forces’’ in }3.9).

(ii) In the case of a finite body, vrel ðarelÞ in (1.7.20b) refers to the relative velocity
(acceleration) of its center of mass G; and r is the position of G relative to the origin
of the moving frame.

Power Theorem in Relative Motion

This constitutes the vector/particle form of theorems treated in detail in }3.9. Let us
consider a system S in motion relative to the noninertial axes O–xyz. To find its
power equation in relative variables, we start with the equation of relative motion of
a generic particle P of S, of mass dm [recall (1.7.20b ff.)]

dm arel ¼ df þ df trans þ df cor; ð1:7:21aÞ
where

ð1:7:21bÞ
df ¼ dF þ dR ðimpressed þ constraint reaction�see L3:2Þ ð1:7:21cÞ
df trans � �dm atrans � �dm ½d2rO=dt

2 þ a� rþ x� ðx� rÞ�; ð1:7:21dÞ
ð1:7:21eÞ
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(i) In classical mechanics, only f is a frame independent, or objective (or absolute)

arel ≡ ∂vrel/∂t ≡ ∂2r/∂t2 ,

dfcor ≡ −dm acor ≡ −2 dm(ω × vrel) = −2 dm[ω × (∂r/∂t)]



Now, the system power equation corresponding to the particle equation (1.7.21a) is

Sdm arel � vrel ¼Sdf � vrel þSdf rel � vrel þSdf cor � vrel: ð1:7:21f Þ

Let us transform each of its terms:

ðiÞ

ð1:7:21gÞ

or, since

finally,

ð1:7:21hÞ

(ii) We define

ð1:7:21iÞ

where, in general, no W exists (i.e., W is a quasi variable—more on this in }2.9). If

(iii) Clearly,

Sdf cor � vrel ¼S
�� 2 dm ðx� vrelÞ

	
� vrel ¼ 0: ð1:7:21jÞ

ðivÞ Sdf rel � vrel ¼ �Sdm
�
aO þ a� rþ x� ðx� rÞ	 � vrel: ð1:7:21kÞ

ðaÞ �Sdm aO � vrel ¼ �aO � Sdm vrel

� �
¼ �m vG;rel � aO

ð1:7:21lÞ

ðbÞ �Sdm ½vrel � ða� rÞ� ¼ �a � Sdm ðr� vrelÞ
� �

� �a �HO;rel: ð1:7:21mÞ

(c) We have, successively,

ð1:7:21nÞ
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S dm arel · vrel = Sdm vrel · (∂vrel/∂t)

= ∂/∂t
(
S (1/2)dm vrel · vrel

)
≡ ∂Trel/∂t ,

vrel · (dvrel/dt) = vrel · (∂vrel/∂t+ ω × vrel) = vrel · (∂vrel/∂t) ,

S dm arel · vrel = ∂Trel/∂t = dTrel/dt .

S df · vrel = S df · (∂r/∂t) ≡ ∂′W/∂t ;

S dR · vrel = 0 , then ∂′W/∂t = S dF · vrel .

(vG,rel ≡ ∂rG/dt) .

vrel · [ω × (ω × r)] = (ω × r) · (vrel × ω) = −(ω × r) · [ω × (∂r/∂t)]

= −∂/∂t[(ω × r)2/2] = −∂/∂t[|ω × r|2/2] = −d/dt[|ω × r|2/2] ,

−S dm vrel · [ω × (ω × r)] = ∂/∂t
(
S dm [|ω × r|2/2]

)

= d/dt
(
S dm [|ω × r|2/2]

)
. (1.7.21o)

(i.e., as if during ∂/∂t the vector ω remains constant) and, therefore,



In view of (1.7.21g–o), eq. (1.7.21f ) takes the following definitive form:

ð1:7:21pÞ

Specializations

If O–xyz spins about a fixed axis through O, Ol, then aO ¼ 0 and eq. (1.7.21p)
reduces to

where

I �Sdm r2 ¼ moment of inertia of S about Ol: ð1:7:21rÞ
If, further, ! ¼ constant, then (1.7.21q) simplifies to

d=dt
�
Trel þ ðVO � I!2=2Þ	 ¼ 0 ) Trel þ ðVO � I!2=2Þ ¼ constant: ð1:7:21tÞ

The above is a special case of the Jacobi–Painlevé integral (}3.9). As with the equa-
tions of motion, the ‘‘Newton–Euler’’ power equation (1.7.21p) may be physically
clearer than its Lagrangean counterparts, but the latter have the same form in both
inertial and noninertial frames, and hence are easier to remember and apply. For
further details and insights, see Hamel (1912, pp. 440–443).

The Angular Velocity Tensor

Moving Axes Components

Let us consider two OND frames/axes with common originOF � OM � O (no loss in
generality here), in arbitrary relative motion (rotation): one fixed O�uXuYuZ=�XYZ
and another moving O�uxuyuz=�xyz; or, compactly (in view of the heavy indicial
notation that follows), O�uk 0=�xk 0 and O�uk=�xk, respectively.

Now, d=dtð. . .Þ-differentiating their transformation relations,

uk ¼
X

Akk 0uk 0 ; Akk 0 � uk � uk 0 ¼ cosðxk;xk 0 Þ ¼ cosðxk 0 ; xkÞ � Ak 0k; ð1:7:22aÞ
and then employing their inverses, we find (since duk 0=dt ¼ 0):

duk=dt ¼
X
ðdAkk 0=dtÞuk 0 ¼

X
ðdAkk 0=dtÞ ð1:7:22bÞ

where

lk �
X

Ak 0lðdAkk 0=dtÞ ¼
X

Alk 0 ðdAkk 0=dtÞ ¼
X
ðdAkk 0=dtÞAlk 0 ¼ � � �

¼
X �

cosðxl ; xk 0 Þ d=dt½cosðxk; xk 0 Þ�
�

¼ ul � ðduk=dtÞ ¼ ðduk=dtÞ � ul ½¼ ðlÞth component of duk=dt�:
Tensor of angular velocity of moving axes relative to the fixed axes;
but resolved along the moving axes: ð1:7:22cÞ
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dTrel/dt = ∂′W/∂t− (mvG,rel) · aO −HO,rel ·α+ d/dt
(
S dm [|ω × r|2/2]

)
.

dTrel/dt = ∂′W/dt−HO,rel ·α+ d/dt(Iω2/2) , (1.7.21q)

dTrel/dt = ∂′W/∂t+ (dI/dt)ω2/2 . (1.7.21s)

Finally, if ∂′W/∂t = −dVO(r)/t, where VO = VO(r) = potential of impressed forces, then
(1.7.21s) yields the conservation theorem:

Ω

(∑
Ak′lul

)
≡

∑
Ωlkul ,



[As already pointed out (}1.1), this commutativity of subscripts in A.. constitutes one
of the big advantages of the accented indices over other notations, such as Akl , A

0
kl :]

differentiating the orthonormality conditions (constraints!),

uk � ul ¼
X

Akk 0uk 0
� �

�

X
All 0ul 0

� �
¼ � � � ¼

X
Akk 0Alk 0 ¼ �kl ; ð1:7:22dÞ

and then invoking the definition (1.7.22c) we obtain

0 ¼
X
ðdAkk 0=dtÞAlk 0 þ

X
Akk 0 ðdAlk 0=dtÞ ½¼ ul � ðduk=dtÞ þ uk � ðdul=dtÞ�

ð1:7:22eÞ

are independent. Hence, we can replace this tensor by its axial vector (1.1.16a ff.)

ð1=2Þ"krs½Arp 0 ðdAsp 0=dtÞ�; ð1:7:22f Þ

and, inversely,

rs ¼ �
X

"krs !k ¼ �
X

"rsk !k: ð1:7:22gÞ

In extenso, and recalling the properties of "krs (}1.1), eqs. (1.7.22f ) yield

¼ �
X

A2k 0 ðdA3k 0=dtÞ ½¼ �u2 � ðdu3=dtÞ � �uy � ðduz=dtÞ�
¼
X

A3k 0 ðdA2k 0=dtÞ ½¼ u3 � ðdu2=dtÞ � uz � ðduy=dtÞ��
with 1; 2; 3! x; y; z; 1 0; 2 0; 3 0 ! X ;Y ;Z:

¼ �½AXyðdAXz=dtÞ þ AYyðdAYz=dtÞ þ AZyðdAZz=dtÞ�
¼ AXzðdAXy=dtÞ þ AYzðdAYy=dtÞ þ AZzðdAZy=dtÞ

�
; ð1:7:23aÞ

¼ �
X

A3k 0 ðdA1k 0=dtÞ ½¼ �u3 � ðdu1=dtÞ � �uz � ðdux=dtÞ�
¼
X

A1k 0 ðdA3k 0=dtÞ ½¼ u1 � ðdu3=dtÞ � ux � ðduz=dtÞ�� ¼ �½AXzðdAXx=dtÞ þ AYzðdYYx=dtÞ þ AZzðdAZx=dtÞ�
¼ AXxðdAXz=dtÞ þ AYxðdAYz=dtÞ þ AZxðdAZz=dtÞ

�
; ð1:7:23bÞ

¼ �
X

A1k 0 ðdA2k 0=dtÞ ½¼ �u1 � ðdu2=dtÞ � �ux � ðduy=dtÞ�
¼
X

A2k 0 ðdA1k 0=dtÞ ½¼ u2 � ðdu1=dtÞ � uy � ðdux=dtÞ�� ¼ �½AXxðdAXy=dtÞ þ AYxðdAYy=dtÞ þ AZxðdAZy=dtÞ�
¼ AXyðdAXx=dtÞ þ AYyðdAYx=dtÞ þ AZy ðdAZx=dtÞ

�
; ð1:7:23cÞ
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= Ωlk +Ω

ωk = −

∑∑
(1/2)εkrsΩrs = −

∑∑∑

ω2 ≡ ωy = −(1/2)(ε231Ω31 + ε213Ω13) = −Ω31 = Ω13

ω3 ≡ ωz = −(1/2)(ε312Ω12 + ε321Ω21) = −Ω12 = Ω21

Ω

that is, due to the six constraints (1.7.22d), only three of the nine components of Ωkl

= Ωlk +Ωkl ⇒ Ωlk = −Ωkl , Q.E.D.;

Below we show that this tensor is antisymmetric: Ωlk = −Ωkl. Indeed, d/dt(. . .)-

ω1 ≡ ωx = −(1/2)(ε123Ω23 + ε132Ω32) = −Ω23 = Ω32



which are in complete agreement with (1.7.4j), and justify the name angular velocity
tensor for (1.7.22c). In terms of matrices, the above assume the following memorable
form:

0 �!3 !2

!3 0 �!1

�!2 !1 0

0BB@
1CCA

¼
0

P
A1k 0 ðdA2k 0=dtÞ

P
A1k 0 ðdA3k 0=dtÞP

A2k 0 ðdA1k 0=dtÞ 0
P

A2k 0 ðdA3k 0=dtÞP
A3k 0 ðdA1k 0=dtÞ

P
A3k 0 ðdA2k 0=dtÞ 0

0BB@
1CCA: ð1:7:23dÞ

REMARKS

(i) The formulae (1.7.22f ff.) can be combined into the following useful form:

!k ¼ ðdur=dtÞ � us; ð1:7:24Þ
where

k; r; s ¼ cyclic ðevenÞ permutation of 1; 2; 3 ð� x; y; zÞ:
(ii) The final expressions (1.7.23d) would have resulted if we had employed the

following common angular velocity tensor definitions:

kl � ðduk=dtÞ � ul ¼ �ðdul=dtÞ � uk ¼
X
ðdAkk 0=dtÞAlk 0 ¼ �

X
ðdAlk 0=dtÞAkk 0 ;

ð1:7:25aÞ
but in connection with the also common axial vector definition:

ð1:7:25bÞ

Then, we would have

¼
X
ðdA2k 0=dtÞA3k 0 ¼ �

X
ðdA3k 0=dtÞA2k 0 ; etc: ð1:7:25cÞ

Fixed Axes Components

Let us express the above inertial angular velocity tensor in terms of their components
along the fixed axes O�uXuYuZ=�XYZ � O�uk 0=�xk 0 . Dotting the representations of
the position vector of a typical particle P,

r ¼
X

xkuk ¼
X

xk 0uk 0 ; ð1:7:26aÞ

with ul and ul 0 , respectively, and taking into account the orthonormality constraints
of their basis vectors:

uk � ul ¼
X

Akk 0uk 0
� �

�

X
All 0ul 0

� �
¼
X

Akk 0Alk 0 ¼ �kl; ð1:7:26bÞ

uk 0 � ul 0 ¼
X

Ak 0kuk

� �
�

X
Al 0lul

� �
¼
X

Ak 0kAl 0k ¼ �k 0l 0 ; ð1:7:26cÞ
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(Ωkl) =

Ω

ω1 = (1/2)(ε123Ω23 + ε132Ω32) = Ω23 = −Ω32

ωk =
∑∑

(1/2)εkrsΩrs



we easily obtain the component transformation equation

xk 0 ¼
X

Ak 0kxk , xk ¼
X

Akk 0xk 0 : ð1:7:26dÞ

If the two sets of axes do not have a common origin, but [recalling fig. 1.6(a)]

R ¼ rO þ r; ð1:7:26eÞ

where

R ¼
X

xk 0uk 0 ; ð1:7:26f Þ
rO � rmoving origin=fixed origin ¼

X
bkuk ¼

X
bk 0uk 0

) bk 0 ¼
X

Ak 0kbk , bk ¼
X

Akk 0bk 0 ; ð1:7:26gÞ
r ¼

X
xkuk; ð1:7:26hÞ

then (1.7.26d) are replaced by

xk 0 ¼
X

Ak 0kxk þ bk 0 �
X

Ak 0kðxk þ bkÞ
, xk ¼

X
Akk 0 ðxk 0 � bk 0 Þ ¼

X
Akk 0xk 0 � bk: ð1:7:26iÞ

Now, let us consider P to be rigidly attached to the moving axes. Then d=dtð. . .Þ-
differentiating the xk 0 , while recalling that in this case xk ¼ constant) dxk=dt ¼ 0,
we obtain, successively,

dxk 0=dt ¼
X
ðdAk 0k=dtÞxk ¼

X
ðdAk 0k=dtÞ

½which is none other than the familiar v ¼ x� r; resolved along the fixed axes�
ð1:7:26jÞ

where X
ðdAk 0k=dtÞAkl 0 �

X
ðdAk 0k=dtÞAl 0k

¼
X
fcosðxl 0 ; xkÞ d=dt½cosðxk 0 ; xkÞ�g:

Tensor of angular velocity of moving axes relative to the fixed axes;
but resolved along the fixed axes [Note order of accented indices, and

compare with order of unaccented indices in expression (1.7.22c, 25a).](1.7.26k)

entiating (1.7.26c), we obtain

0 ¼
X
ðdAk 0k=dtÞAl 0k þ

X
Ak 0kðdAl 0k=dtÞ

ð1:7:26lÞ
ð1=2Þ"k 0r 0s 0

�
Ar 0rðdAs 0r=dtÞ

	
; ð1:7:26mÞ
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(∑
Akl′xl′

)
≡

∑
Ωk′l′xl′ ,

Ωk′ l′ ≡

The components Ωk′l′ , just like the Ωkl, are antisymmetric. Indeed, d/dt(. . .)-differ-

= Ωl′k′ +Ωk′l′

⇒ Ωl′k′ = −Ωk′l′ , Q.E.D.

ωk′ = −

∑∑
(1/2)εk′r′s′Ωr′s′ = −

∑∑∑



and, inversely, X
"k 0r 0s 0 !k 0 ¼ �

X
"r 0s 0k 0 !k 0 ; ð1:7:26nÞ

or, in extenso,

�
with 1; 2; 3! x; y; z; 1 0; 2 0; 3 0 ! X ;Y ;Z:

¼ �½AZxðdAYx=dtÞ þ AZyðdAYy=dtÞ þ AZzðdAYz=dtÞ�
¼ AYxðdAZx=dtÞ þ AYyðdAZy=dtÞ þ AYzðdAZz=dtÞ

�
; ð1:7:27aÞ

¼ �
X

A1 0kðdA3 0k=dtÞ ¼
X

A3 0kðdA1 0k=dtÞ� ¼ �½AXxðdAZx=dtÞ þ AXyðdAZy=dtÞ þ AXzðdAZz=dtÞ�
¼ AZxðdAXx=dtÞ þ AZyðdAXy=dtÞ þ AZzðdAXz=dtÞ

�
; ð1:7:27bÞ

¼ �
X

A2 0kðdA1 0k=dtÞ ¼
X

A1 0kðdA2 0k=dtÞ� ¼ �½AYxðdAXx=dtÞ þ AYyðdAXy=dtÞ þ AYzðdAXz=dtÞ�
¼ AXxðdAYx=dtÞ þ AXyðdAYy=dtÞ þ AXzðdAYz=dtÞ

�
; ð1:7:27cÞ

or, finally, in the following memorable matrix form:

0 �!3 0 !2 0

!3 0 0 �!1 0

�!2 0 !1 0 0

0BB@
1CCA

¼
0

P ðdA1 0k=dtÞA2 0k
P ðdA1 0k=dtÞA3 0kP ðdA2 0k=dtÞA1 0k 0
P ðdA2 0k=dtÞA3 0kP ðdA3 0k=dtÞA1 0k

P ðdA3 0k=dtÞA2 0k 0

0BB@
1CCA; ð1:7:27dÞ

or ð1:7:27eÞ

A Special Case

If the axes xk and xk 0 coincide momentarily—that is, if instantaneously Ak 0k ¼ �k 0k
(Kronecker delta), then eqs. (1.7.23) and (1.7.27) yield

!x ¼ dAZy=dt ¼ �dAYz=dt; !y ¼ dAXz=dt ¼ �dAZx=dt;

!z ¼ dAYx=dt ¼ �dAXy=dt; ð1:7:28aÞ
!X ¼ dAZy=dt ¼ �dAYz=dt; !Y ¼ dAXz=dt ¼ �dAZx=dt;

!Z ¼ dAYx=dt ¼ �dAXy=dt: ð1:7:28bÞ
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Ωr′s′ = −

Ωk′l′ =
∑∑

Ak′k Al′lΩkl ⇔ Ωkl =
∑∑

Akk′All′Ωk′l′ .

(Ωk′l′) =

ω3′ ≡ ωz′ ≡ ωZ = −(1/2)(ε3′1′2′Ω1′2′ + ε3′2′1′Ω2′1′) = −Ω1′2′ = Ω2′1′

ω2′ ≡ ωy′ ≡ ωY = −(1/2)(ε2′3′1′Ω3′1′ + ε2′1′3′Ω1′3′) = −Ω3′1′ = Ω1′3′

ω1′ ≡ ωx′ ≡ ωX = −(1/2)(ε1′2′3′Ω2′3′ + ε1′3′2′Ω3′2′) = −Ω2′3′ = Ω3′2′



Rates of Change of Direction Cosines

(i) Fixed axes representation: Multiplying both sides of (1.7.22c) with Al 0l and
summing over l, we obtainX

ðdAk 0k=dtÞ
X

Ak 0l Al 0l

� �
¼
X
ðdAk 0k=dtÞð�k 0l 0 Þ ¼ dAl 0k=dt:

ð1:7:29aÞ
(ii) Moving axes representation: Multiplying both sides of (1.7.26k) with Al 0s and

summing over l 0, we obtainX
ðdAk 0k=dtÞ

X
Akl 0Al 0s

� �
¼
X
ðdAk 0k=dtÞð�ksÞ ¼ dAk 0s=dt;

ð1:7:29bÞ
ð1:7:29cÞ

) dAk 01=dt ¼ Ak 02!3 � Ak 03!2; i:e:; dAk 0x=dt ¼ Ak 0y!z �Ak 0z!y;

dAk 02=dt ¼ Ak 03!1 � Ak 01!3; i:e:; dAk 0y=dt ¼ Ak 0z!x � Ak 0x!z;

dAk 03=dt ¼ Ak 01!2 � Ak 02!1; i:e:; dAk 0z=dt ¼ Ak 0x!y � Ak 0y!x

ðk 0 ¼ X ;Y ;ZÞ; ð1:7:29dÞ

) dA1 0k=dt ¼ A3 0k!2 0 � A2 0k!3 0 ; i:e:; dAXk=dt ¼ AZk!Y � AYk!Z;

dA2 0k=dt ¼ A1 0k!3 0 � A3 0k!1 0 ; i:e:; dAYk=dt ¼ AXk!Z � AZk!X ;

dA3 0k=dt ¼ A2 0k!1 0 � A1 0k!2 0 ; i:e:; dAZk=dt ¼ AYk!X � AXk!Y

ðk ¼ x; y; zÞ: ð1:7:29eÞ

Additional Useful Results

(i) By d=dtð. . .Þ-differentiating the fixed basis vectors:

0 ¼ duk 0=dt ¼
X �ðdAk 0k=dtÞuk þ Ak 0kðduk=dtÞ

	 ¼ � � � ; ð1:7:30aÞ
it can be shown that

ð1:7:30bÞ
where

ð1:7:30cÞ�
Similarly, we can define the following mixed angular velocity ‘‘tensor’’:

�
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Ωkk′ ≡
∑

Ωkl Alk′ =
∑

(∂xl/∂xk′)Ωkl =
∑

Alk′
(∑∑

Akp′ Alq′Ωp′q′

)

= · · · =
∑

Akl′Ωl′k′ .

duk/dt =
∑

Ωk′kuk′ ,

dAk′k/dt = Ak′1Ω1k + Ak′2Ω2k + Ak′3Ω3k

dAk′k/dt = A1′kΩk′1′ + A2′kΩk′2′ + A3′kΩk′3′

∑
Ωk′l′ Al′s =

∑
Ωlk Al′l =

Let us calculate dAk′k/dt in term of Ωkl, Ωk′ l′ .

dAk′k/dt =
∑

Ak′ lΩlk =
∑

Ωk′l′ Al′k ;

Ωk′k ≡
∑

Al′kΩk′l′ =
∑

(∂xl′/∂xk)Ωk′l′ = · · · = dAk′k/dt (mixed “tensor”)



(ii) By d=dtð. . .Þ-differentiating x 0k 0 ¼ xk 0 ¼
P

Ak 0kxk, and noticing that

v 0k ¼
P

Akk 0v
0
k 0 , it can be shown that the inertial velocity of a particle permanently

fixed in the moving frame (i.e., dxk=dt � vk ¼ 0) vk 0 ¼ 0Þ equals:

v 0k ¼ klxl ðalong the moving axesÞ; ð1:7:30dÞ
dxk 0=dt � v 0k 0 ¼ k 0l 0xl 0 ðalong the fixed axesÞ: ð1:7:30eÞ

(iii) Let us define the following matrices:

ð1:7:30fÞ
ð1:7:30gÞ

A ¼ ðAk 0kÞ: matrix of direction cosines between moving and fixed axes: ð1:7:30hÞ

It can be shown that the earlier relations among them (i.e., among their elements)
can be put in the following matrix forms [recalling that A

�1 ¼ A
T and

ð. . .ÞT � Transpose of ð. . .Þ]:

[(a) Equation (1.7.30j) expresses the following important general theorem: for an
arbitrary (differentiable) orthogonal matrix (or tensor) A ¼ AðtÞ,

dA=dt ¼ ðmatrix of second-order antisymmetric tensorÞ �A; ð1:7:30lÞ

and similarly for equation (1.7.30i).

Angular Velocity Vector in General Orthogonal
Curvilinear Coordinates

[This section may be omitted in a first reading. For background, see (1.2.7a ff.).]
In such coordinates, say q � ðq1; q2; q3Þ � ðq1;2;3Þ, the inertial position vector of a

particle r becomes

r ¼ XðqÞuX þ YðqÞuY þ ZðqÞuZ �
X

xk 0 ðqÞuk 0 ; ð1:7:31aÞ

and so the corresponding moving OND basis along q1;2;3 (i.e., the earlier xk) is

uk ¼ ð@r=@qkÞ=j@r=@qkj � ð1=hkÞð@r=@qkÞ ðk ¼ x; y; zÞ; ð1:7:31bÞ

with

uk � ul ¼ �kl ðk; l ¼ x; y; zÞ: ð1:7:31cÞ
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(b) Recall remarks on p. 84, below (1.1.19f), e.g. A1′2 = A21′ �= A2′1 = A12′ .]

Ω = AT
· (dA/dt) = −(dA/dt)T

·A ⇔ dA/dt = A ·Ω , (1.7.30i)

Ω
′ = (dA/dt) ·AT = −A · (dA/dt)T

⇔ dA/dt = Ω
′
·A , (1.7.30j)

Ω
′ = A ·Ω ·AT

⇔ Ω = AT
·Ω

′
·A . (1.7.30k)

Ω = (Ωkl): matrix of angular velocity tensor, along the moving axes,

Ω
′ = (Ωk′l′): matrix of angular velocity tensor, along the fixed axes,

∑
Ω

∑
Ω



Next, d=dtð. . .Þ-differentiating (1.7.31b), we obtain, successively,

d=dtð@r=@qrÞ ¼ d=dtðhrurÞ ¼ ðdhr=dtÞur þ hrðdur=dtÞ
¼ ðdhr=dtÞur þ hrðx� urÞ ½by ð1:7:4iÞ�; ð1:7:31dÞ

and dotting this with @r=@qs ¼ hsus ð� es, where r 6¼ sÞ, in order to isolate !k, we get�
d=dtð@r=@qrÞ

	
� ð@r=@qsÞ ¼ ðdhr=dtÞhsður � usÞ þ hrhs½ðx� urÞ � us�

¼ 0 þ hrhs½ðx � ður � usÞ� ¼ hrhsðx � ukÞ � hrhs!k

[definition of !k’s; where k, r, s ¼ even (cyclic) permutation of 1, 2, 3 � x, y, z],

that is, finally,

!k ¼ ð1=hrhsÞ
�
d=dtð@r=@qrÞ � ð@r=@qsÞ

	� ¼ ðdur=dtÞ � us ¼ d=dt
�ð1=hrÞð@r=@qrÞ	 � �ð1=hsÞð@r=@qsÞ	�: ð1:7:31eÞ

Additional forms for these components exist in the literature; for example, with the
help of the differential-geometric identities:

@ur=@qs ¼ ð1=hrÞð@hs=@qrÞus ðr 6¼ sÞ; ð1:7:31fÞ
@ur=@qr ¼ �ð1=hsÞð@hr=@qsÞus � ð1=hkÞð@hr=@qkÞuk ðr 6¼ s 6¼ k 6¼ rÞ; ð1:7:31gÞ
and applying the second line of (1.7.31e), we can easily show that

!1 ¼ ð1=h2Þð@h3=@q2Þðdq3=dtÞ � ð1=h3Þð@h2=@q3Þðdq2=dtÞ; ð1:7:31hÞ
!2 ¼ ð1=h3Þð@h1=@q3Þðdq1=dtÞ � ð1=h1Þð@h3=@q1Þðdq3=dtÞ; ð1:7:31iÞ
!3 ¼ ð1=h1Þð@h2=@q1Þðdq2=dtÞ � ð1=h2Þð@h1=@q2Þðdq1=dtÞ: ð1:7:31jÞ

½See Richardson (1992), also Ames and Murnaghan (1929, pp. 26–34, 94–98), for an
alternative derivation based on the direction cosines between the moving and fixed
axes:

Ak 0k ¼ Akk 0 � uk 0 � uk ¼ ð@r=@xk 0 Þ �
�ð1=hkÞð@r=@qkÞ	

¼ ð1=hkÞ ð@r=@xk 0 Þ �
X
ð@r=@xl 0 Þð@xl 0=@qkÞ

� �n o
¼ ð1=hkÞ

X
ðuk 0 � ul 0 Þð@xl 0=@qkÞ

� �
ðsince uk 0 � ul 0 ¼ �k 0l 0 Þ

¼ ð1=hkÞð@xk 0=@qkÞ; ð1:7:31kÞ
and their d=dtð. . .Þ-derivatives.]

1.8 THE RIGID BODY: INTRODUCTION

The following material relies heavily on the preceding theory of moving axes (}1.7).
The reason for this is that every set of such axes can be thought of as a moving rigid
body; and, conversely, every rigid body in motion carries along with it one or more sets
of axes rigidly attached to it, or embedded in it. To describe the translatory and
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r ¼ rðP; tÞ ¼ rðP; f1; . . . ; f6Þ ¼ r^ð f1; f2; f3Þ þ r=^ðP; f4; f5; f6Þ; ð1:8:2aÞ
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Figure 1.9 Axes used to describe rigid-body motion.

O–XYZ/IJK: fixed axes/basis; ^�xyz/ijk: moving (body-fixed) axes/basis;
^�XYZ=IJK: moving, translating but nonrotating axes/basis.

angular motion of a rigid body B, we consider (at least) two sets of rectangular
Cartesian axes and associated bases:

(i) a fixed: that is, inertial, O–XYZ/IJK or compactly O–xk 0=uk 0 ; and
(ii) a moving: that is, noninertial, and body-fixed set ^–xyz=ijk or compactly ^–xk=uk,

at the arbitrary body point ^ (fig. 1.9).

In the language of constraints (chap. 2), a free rigid body in space is a mechanical
system with six degrees of global freedom; that is, six independent possibilities of
finite spatial mobility: (i) three for the location of its body point ^, say its O–XYZ
coordinates

X^ ¼ f1ðtÞ; Y^ ¼ f2ðtÞ; Z^ ¼ f3ðtÞ; ð1:8:1aÞ
and (ii) three for its orientation—that is, of ^–xyz relative to either O–XYZ or ^–
XYZ; where the latter are a translating frame at ^ ever parallel to O–XYZ—that is,
one that is nonrotating but translating and hence is, generally, noninertial. Such
‘‘rotational freedoms’’ can be described via the nine direction cosines of ^–xyz
relative to ^–XYZ (of which, as explained in }1.7, only three are independent); or
via their three attitude angles: for example, their Eulerian or Cardanian angles

� ¼ f4ðtÞ; � ¼ f5ðtÞ;  ¼ f6ðtÞ; ð1:8:1bÞ
or via a directed line segment called rotation ‘‘vector’’ [or via four parameter form-
alisms (plus one constraint among them); for example, Hamiltonian quaternions,
Euler–Rodrigues parameters, or complex numbers; detailed in kinematics treatises, also

system parameters, or system coordinates, f1, . . . ,6(t), the location/motion of any other body
point P can be determined:

our Elementary Mechanics, ch. 16 (under production)]. With the help of the six positional



or, in components,

X ¼ X^ þ cosðX ; xÞx=^ þ cosðX ; yÞy=^ þ cosðX ; zÞz=^; etc:; cyclically; ð1:8:2bÞ
where

r=^ ¼ ðx=^; y=^; z=^Þ:
constant rectangular Cartesian coordinates of P relative to �̂xyz; ð1:8:2cÞ

or, in compact (self-explanatory) indicial notation,

xk 0 ¼ x^;k 0 þ
X

Ak 0kxk: ð1:8:2dÞ
In addition to ^–xyz and ^–XYZ, we occasionally use other intermediate axes (or
accessory axes, in Routh’s terminology) that, like ^–XYZ, are neither space- nor
body-fixed, but have their own special translatory and/or rotatory motion.

1.9 THE RIGID BODY: GEOMETRY OF MOTION AND KINEMATICS

(SUMMARY OF BASIC THEOREMS)

Sections }1.9–1.13 cover material that is due to Euler, Mozzi, Cauchy, Chasles,
Poinsot, Rodrigues, Cayley et al. (late 18th to mid-19th century). For detailed dis-
cussions, proofs, insights, and so on, see for example (alphabetically): Alt (1927),
Altmann (1986), Beyer (1929, 1963), Bottema and Roth (1979), Coe (1938), Garnier
(1951, 1956, 1960), Hunt (1978), McCarthy (1990), Schönflies and Grübler (1902),
Timerding (1902, 1908).

The position, or configuration, of a rigid body B is known when the positions of
any three noncollinear of its points are known; hence, six independent parameters are
needed to specify it [e.g., 3� 3 ¼ 9 rectangular Cartesian coordinates of these points,
minus the three independent constraints of distance invariance (i.e., rigidity) among
them; or six coordinates for two of its points defining an axis of rotation, minus one
invariance constraint between them, plus the angle of rotation of a body-fixed plane
with a space-fixed plane, both through that axis]. If the body is further constrained,
this number is less than six. It follows that the most general change of position, or
displacement, of B is determined by the displacements of any three noncollinear of its
points; that is, given their initial and final positions and the initial (final) position of a
fourth, fifth, and so on, we can find their final (initial) positions with no additional
data.

Special Rigid-Body Displacements

(i) Plane, or planar, displacement: One in which the paths of all body points are
plane curves on planes parallel to each other and to a fixed plane f [fig. 1.10(a)]: the
body fiber P 0PP 00 remains perpendicular to f , and the distance P^ remains constant,
so that we need to study only the motion of a typical body section, or rigid lamina, b
imagined superimposed on f and sliding on it.

THEOREM

Every displacement of a rigid lamina in its plane is equivalent to a rotation about
some plane point I [fig. 1.10(b)].
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(ii) Translational displacement: One in which all body points have vectorially equal
velocities. Translations can be either rectilinear or curvilinear, and can be represented
by a free vector (three components).

(iii) Rotational displacement: One in which at least two points remain fixed. These
points define the axis of rotation; and either they are actual body points, or belong to
its appropriate fictitious rigid extensions. Rotations are, by far, the more complex
and interesting part of rigid-body displacements/motions.

The rotation is specified by its axis (i.e., its line of action) and by its angle of
rotation; and since a line is specified by, say, its two points of intersection with two
coordinate planes— that is, four coordinates—and an angle is specified by one
coordinate, the complete characterization of rotation requires 4þ 1 ¼ 5 positional
parameters.

THEOREM

Every translation can be decomposed into rotations.

COROLLARY

All rigid displacements can be reduced to rotations. The above special displacements
(plane, translations, rotations) are all examples of constrained motions; that is, they
result from special geometrical [or finite, or holonomic (chap. 2)] restrictions on the
global mobility of the body; as contrasted with local restrictions of its mobility [by
nonholonomic constraints (chap. 2)].

EULER’S THEOREM (1775–1776)

Any displacement of a rigid body, one point of which is fixed but is otherwise free to
move, can be achieved by a single rotation, of 1808 or less, about some axis through
that point; that is, any displacement of such a system is equivalent to a rotation. Or:
any rigid displacement of a spherical surface into itself leaves two (diametrically
opposed) points of that surface fixed; and hence, in such a displacement, an infinite
number of points, lying on the axis of rotation defined by the preceding two points,
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Figure 1.10 (a) Plane displacement of a rigid body. (b) The plane displacement of a rigid lamina

on its plane is equivalent to a rotation about I; if I !1, that displacement degenerates to a

translation.



remain fixed. (Under certain conditions this theorem extends to deformable bodies:
one body-fixed line remains invariant.)

To understand this fundamental theorem, let us consider a body-fixed unit sphere
SB with center the fixed point ^, representing the body, and let us follow its motion
as it slides over another unit sphere SS concentric to SB but space-fixed and repre-
senting fixed space. (This is the spatial equivalent of the earlier plane motion pro-
blem where a representative rigid lamina slides over another fixed lamina.) Now,
since this is a three degree-of-freedom system, its position can be specified by the
coordinates of two of its points on SB, P, and Q [fig. 1.11(a)]: 2� 2 ¼ 4 coordinates
[of which, since the distance between P and Q (¼ length of arc of great circle joining
P and Q) remains invariable, only three can be varied independently]. Hence, to
study two positions of the body—that is, a displacement of it—it suffices to study
two positions of an arbitrary pair of surface points of it: an initial PQ and a final
P 0Q 0 [fig. 1.11(b)]. Then we join P and P 0, and Q and Q 0 by great arcs and draw the
two symmetry planes of the arcs PP 0 and QQ 0; that is, the two great circle planes
that halve these two arcs. Their intersection, ^C (which, contrary to the plane
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Figure 1.11 (a, b) The motion of a rigid body about a fixed point ^ can be found by

studying the motion of a pair of its points on the unit sphere with center ^: from PQ to P 0Q 0;
(c) special case of (b) where the planes of symmetry of the arcs PP 0 and QQ 0 coincide.
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motion case, always lies a finite distance away), defines the axis of rotation; and their
angle, �, defines the angle of rotation (around ^C) that brings the spherical triangle
CPQ into coincidence with its congruent triangle CP 0Q 0; and hence arc (PP 0) into
coincidence with arc (QQ 0); and ^PQ into coincidence with ^P 0Q 0, and similarly for
any other point of SB. In the special case where these two symmetry planes coincide
[fig. 1.11(c)], the rotation axis is the intersection of the planes defined by ^PQ and
^P 0Q 0.

FUNDAMENTAL THEOREM OF GEOMETRY OF RIGID-BODY MOTION

Any rigid-body displacement can be reduced to a succession of translations and
rotations. Specifically, any such displacement can be produced by the translation
of an arbitrary ‘‘base point,’’ or ‘‘pole,’’ of the body, from its initial to its final
position, followed by a rotation about an axis through the final position of the
chosen pole—and this is the most general rigid-body displacement. The translatory
part varies with the pole, but the rotatory part (i.e., the axis direction and angle of
rotation) is independent of it (fig. 1.12).

COROLLARY FOR PLANE MOTION

Any rigid planar displacement can be produced by a single rotation about a certain
axis perpendicular to the plane of the motion; in the translation case, that axis
recedes to infinity [fig. 1.10(b)].

THEOREMS OF CHASLES (1830) AND POINSOT (1830s, 1850s)

Any rigid-body displacement can be reduced, by a certain choice of pole, to a screw
displacement; that is, to a rotation about an axis and a translation along that axis. In
special cases, either of these two displacements may be missing.

In a screw displacement: (a) The axis of rotation is called central axis, and (for
given initial and final body positions) it is unique, except when the displacement is a
pure translation; (b) The ratio of the translation (l) to the rotation angle (�), which
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Figure 1.12 The most general displacement of the rigid body ^PQ can be effected by a

translation of the pole ^, from ^PQ to ^ 0P 00Q 00; followed by a rotation about an axis

through ^ 0, from ^ 0P 00Q 00 to ^ 0P 0Q 0.



equals the advance (p) per revolution (2�), is called pitch of the screw:
p=2� ¼ l=�) p ¼ 2�ðl=�Þ; and (c) The translation and rotation commute.

EXTENSION TO DEFORMABLE BODIES

(Chasles’ TheoremþDeformation ¼ Cauchy’s Theorem)

The total displacement of a generic point of a continuous medium, say a small
deformable sphere (fig. 1.13), is the result of a translation, a rigid rotation [of the
local principal axes (or directions) of strain], and stretches along these axes; that is,
the sphere becomes a general ellipsoid. Hence, rigid-body kinematics is of interest to
continuum mechanics too; the latter, however, will not be pursued any further here.

Rigid-Body Kinematics

Thus far, no restrictions have been placed on the size of the displacements; the above
theorems hold whether the translations and rotations are finite or infinitesimal. The
finite case is detailed quantitatively in the following sections.

Next, let us examine the important case of sequence of rigid infinitesimal displace-
ments in time, namely, rigid motion. In particular, let us return to the motion about a
fixed point (Euler’s theorem) and consider the case where the initial and final posi-
tions of the arcs PQ (at time t) and P 0Q 0 (at time t 0 ¼ tþ Dt) are very close to each
other. Now, as Dt! 0 the earlier (great circle) planes that halve the arcs PP 0 and
QQ 0 coincide with the normal planes to the directions of motion of P and Q, respec-
tively, at time t; and their intersection yields the instantaneous axis of rotation. Then
the velocity of the generic body point P equals

vP � v ¼ ½limðPP 0=DtÞ�Dt!0 ¼ x� rP=^ � x� r; ð1:9:1Þ
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Figure 1.13 General displacement of a small deformable sphere:

Translation ! Rotation ! Strain (Sphere ! Ellipsoid).

since vP ≡ v≡ | v| equals the magnitude of the angular velocity of that rotation, |ω|, times
the perpendicular distance of P from the rotation axis. [Euler (1750s), Poisson (1831);
of course, in components.] Hence, the instantaneous rotation of the body B about the
fixed point � is described by the single vector ω, which combines all three character-
istics of rotation: axis, magnitude, and sense. As the motion proceeds, and since only
the point � is fixed, the axis of rotation (carrier of ω) traces, or generates, two general
and generally open conical surfaces with common center �: one fixed on the body, the



polhode cone; and one fixed in space, the herpolhode cone (fig. 1.14). Hence, the
following theorem:

THEOREM

Every finite motion of a rigid body, having one of its points ^ fixed, can be described
by the pure (or slippingless) rolling of the polhode cone on the herpolhode cone; and,
at every moment, their common generator (through ^) gives the direction of the
instantaneous axis of rotation/angular velocity. If ^ recedes to infinity, these two
cones reduce to cylinders and their normal sections become, respectively, the body
and space centrodes.

Velocity Field (Mozzi, 1763)

Since, for the first-order geometrical changes involved here (‘‘infinitesimal displace-
ments’’) superposition holds, we conclude that the velocity of a generic body point P
in general motion, vP � v, is given by the following fundamental formula of rigid
body kinematics:

v ¼ v^ þ x� ðr� r^Þ � v^ þ x� r=^ � v^ þ v=^

½v=^ ¼ velocity of P relative to ^ ðboth measured in the same frameÞ� ð1:9:2Þ

where ^ is any body point (pole) (fig. 1.15); or, in terms of components (fig. 1.9) as
follows:

Space-Fixed Axes

dX=dt � dX^=dtþ !Y ðZ � Z^Þ � !ZðY �Y^Þ; etc:; cyclically; ð1:9:2aÞ
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Figure 1.14 Rolling of body cone (PPolhode) on space cone (HerPPolhode).



or, equivalently,

vX � v^;X þ !YZ=^ � !ZY=^; etc:; cyclically: ð1:9:2bÞ

Body-Fixed Axes

vx � v^;x þ !yz=^ � !zy=^; etc:; cyclically; ð1:9:2cÞ
where

v^;x ¼ cosðx;XÞv^;X þ cosðx;YÞv^;Y þ cosðx;ZÞv^;Z; etc:; cyclically; ð1:9:2d1Þ
and, inversely,

v^;X ¼ cosðX ; xÞv^;x þ cosðX ; yÞv^;y þ cosðX ; zÞv^;z; etc:; cyclically: ð1:9:2d2Þ
The six functions of time v^;x;y;z; !x;y;z (or v^;X;Y ;Z; !X ;Y ;Z) characterize the rigid-
body motion completely. The line-bound vectors x and v^ constitute the torsor of
motion, or velocity torsor, at ^, from which the rigid-body velocity field can be
determined uniquely. [Just as, in elementary statics, the resultant force f (or R)
and moment M^ of a system of forces constitute the force system torsor at ^ (see
‘‘Formal Analogies . . .’’ section that follows.] In the case of motion about a fixed
point ^, that torsor reduces there to (x, 0).

Now, from the displacement viewpoint, the velocity transfer equation (1.9.2) states
that:

(i) The state of motion of the body consists of an elementary translation
(dr^ � v^ dt) of a base point (or pole) ^, and an elementary rotation (dv � x dt)
about that point. Therefore, applying the earlier theorem of Chasles, we deduce that:
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Figure 1.15 Geometrical interpretation of eq. (1.9.2).



(ii) Any infinitesimal rigid (nontranslatory) displacement can be reduced uniquely
to an infinitesimal screw; that is, an infinitesimal translation plus an infinitesimal
rotation about a (central) axis parallel to the translation. (The location of that axis
and the pitch of the screw are given in the ‘‘Formal Analogies . . .’’ section below.) As
the motion proceeds, that axis traces two (ruled) surfaces with it as common gen-
erator: one fixed in space ðGSÞ and another fixed in the body ðGBÞ—which constitute
the ‘‘no fixed point’’ generalization of the herpolhode and polhode, respectively.
Hence, the following theorem:

(iii) The general finite motion of a rigid body can be produced by the rolling and
sliding of GB over GS. (In plane motion, sliding is absent.) Next, we prove that

(iv) The angular velocity vector x is independent of the choice of the pole. Applying
the fundamental formula (1.9.2) for the two arbitrary and distinct poles ^ and ^ 0,
we have

v ¼ v^ þ x� ðr� r^Þ � v^ þ x� r=^

¼ v^ 0 þ x 0 � ðr� r^ 0 Þ � v^ 0 þx 0 � r=^ 0 ; ð1:9:2eÞ
where initially, we assume that x and x 0 are different and go through ^ and ^ 0,
respectively. We shall show that

x ¼ x 0: ð1:9:2fÞ
Indeed, since

r=^ ¼ r=^ 0 þ r^ 0=^ and v^ 0 ¼ v^ þ x� r^ 0=^; ð1:9:2gÞ
equating the right sides of (1.9.2e) we obtain

x � r=^ ¼ x� r^ 0=^ þ x 0 � r=^ 0 ) x� r=^ 0 ¼ x 0 � r=^ 0 ; ð1:9:2hÞ
from which, since r=^ 0 is arbitrary, (1.9.2f) follows.

[Since x is a body quantity (a system vector), it carries no body point subscripts
(like v...), just like a force resultant. The only ‘‘insignia’’ it may carry are those needed
to specify a particular body and/or frame of reference. Perhaps this supposed ‘‘base
point invariance’’ of it may have given rise to the false notion that ‘‘x [of a body-
fixed basis relative to a space-fixed basis] is a free vector, not bound to any point or
line in space’’ (Likins, 1973, p. 105, near page bottom); emphasis added. A correct
interpretation of (1.9.2e,f), however, shows that x is a line-bound, or sliding, vector,
not a free one (just like the force on a rigid body); hence, x in eq. (1.9.2), is under-
stood to be going through point ^.]

A USEFUL RESULT

Let r1 and r2 be the position vectors of two arbitrary points of a rigid body. Then, its
angular velocity x equals

x ¼ ðv1 � v2Þ=ðv1 � v2Þ; where v... � dr...=dt: ð1:9:2iÞ

Formal Analogies Between Forces/Moments and
Linear/Angular Velocities

Comparing (1.9.2), rewritten as v2 ¼ v1 þ r1=2 �x (1, 2: two arbitrary body points)
with the well-known moment transfer theorem of elementary statics (with some,
hopefully, self-explanatory notation): M2 ¼M1 þ r1=2 � f , we may say that the
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velocity v2 is the moment of the motion, or velocity torsor ðx; v1Þ about point 2; that
is, x is the kinematic counterpart of the force resultant ð f or RÞ, and hence is a line-
bound, or sliding vector; while v . . . is the counterpart of the point–dependent moment of
the torsor M. Hence, recalling the (presumably, well-known) theorems of elementary
statics, we can safely state the following:

� An elementary rotation dv � x dt about an axis can always be replaced with an

elementary rotation of equal angle about another arbitrary but parallel axis, plus

an elementary translation dr ¼ v dt, where v ¼ x� r is perpendicular to (the plane
of ) both axes of rotation, and r is the vector from an arbitrary point of the original

axis to an arbitrary point of the second axis; that is, an elementary rotation here is

equivalent to an equal rotation plus an elementary perpendicular translation there.
� Several elementary rotations about a number of arbitrary axes can be replaced by a

resultant motion as follows: (a) We choose a reference point O, and transport all these

elementary rotations parallel to themselves to O, and then add them geometrically
there. Then, (b) We combine the corresponding translational velocities, created by the

parallel transport of the rotations in (a) (according to the preceding statement), to a
single translational velocity at O. For example, two equal and opposite elementary

rotations about parallel axes can be replaced by a single elementary translation per-
pendicular to (the plane of ) both axes. These formal analogies between forces/

moments and linear/angular velocities (also, linear/angular momenta), which are

quite useful from the viewpoint of economy of thought (elimination of unnecessary
duplication of proofs), are summarized in table 1.2.
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Table 1.2 Formal Analogies Among Vectors/Forces/Rigid-Body Velocities

Forces/Moments Rigid-Body Velocities
Vector Systems (On Rigid Bodies) (Instantaneous Geometry)

Single vector a Single force f Angular velocity x

(along line of action) (about axis of rotation)
Moment of a about point O Moment of f about O Linear velocity of body point OvO
Vector couple (a1;a2 ¼ �a1) Force couple ðf 1; f 2 ¼ �f 1Þ Rotational pair (x1;x2 ¼ �x1Þ
) Constant moment ) Constant moment; or ) Constant translational

couple velocity
Vector resultant R Force resultant R Rotation resultant x
Vector torsor (R, MO) Force torsor (R, MO) Motion torsor (x, vO)

Spatial Variation (or Transfer) Theorem: O! O 0ðR;x at OÞ
MO 0 ¼ MO þ rO=O 0 � R MO 0 ¼ MO þ rO=O 0 � R vO 0 ¼ vO þ rO=O 0 � x

Invariants: R �R, R �M . . . Invariants: R � R, R �M . . . Invariants: x �x, x � v . . .

Simplest Representation of Torsor

Vector wrench (or screw) Force wrench Motion screw
ðR;McÞ ðR;McÞ ðx; vcÞ

Central Axis of Wrench/Screw

r ¼ �R þ ðR �MOÞ=R2 r ¼ �R þ ðR �MOÞ=R2 r ¼ xþ ðx� vOÞ=!2

½� � ðr �RÞ=R2� ½ � ðr �xÞ=!2�
Pitch � p ¼ Mc=R ¼ R �MO=R

2 p ¼ Mc=R ¼ R �MO=R
2 p ¼ vc=x ¼ x � vO=!

2

� p ¼ 0:
Vector resultant R Pure force (resultant) R Pure rotation x

� p ¼ 1:
Couple Pure couple Pure translation*

* See also Hunt (1974).



Acceleration Field

By d=dtð. . .Þ-differentiating (1.9.2), we readily obtain the acceleration field of a rigid
body in general motion:

a ¼ a^ þ a� r=^ þ x� ðx� r=^Þ ¼ a^ þ a� r=^ þ ½ðx � r=^Þx � !2r=^�
¼ a^ þ ða=^Þtangent þ ða=^Þnormal ð� a^ þ a=^Þ; ð1:9:3Þ

or in terms of components (figure 1.9):

Space-Fixed Axes

aX � a^;X þ ð
YZ=^ � 
ZY=^Þ
þ �!Xð!XX=^ þ !YY=^ þ !ZZ=^Þ � !2X=^

	
; etc:; cyclically: ð1:9:3aÞ

Body-Fixed Axes

ax � a^;x þ ð
yz=^ � 
zy=^Þ
þ �!xð!xx=^ þ !yy=^ þ !zz=^Þ � !2x=^

	
; etc:; cyclically; ð1:9:3bÞ

where

a^;x ¼ cosðx;XÞa^;X þ cosðx;YÞa^;Y þ cosðx;ZÞa^;Z

� cosðx;XÞðd2X^=dt
2Þ þ cosðx;YÞðd2Y^=dt

2Þ þ cosðx;ZÞðd2Z^=dt
2Þ;

etc:; cyclically; ð1:9:3cÞ
and, inversely,

a^;X ¼ cosðX ;xÞa^;x þ cosðX ; yÞa^;y þ cosðX ; zÞa^;z; etc:; cyclically; ð1:9:3dÞ
and


X ¼ ðdx=dtÞX ¼ d!X=dt; etc:; cyclically; ð1:9:3eÞ

x ¼ ðdx=dtÞ � i ¼ dðx � iÞ=dt�x � ðdi=dtÞ
¼ d!x=dt� x � ðx� iÞ ¼ d!x=dt; etc:; cyclically: ð1:9:3fÞ

Plane Motion

The distances of all body points from a fixed, say inertial, plane f 0 remain constant;
and so the body B moves parallel to f 0 (fig. 1.10a). [For extensive discussions of this
pedagogically and technically important topic, see, for example, Pars (1953, pp. 336–
356), Loitsianskii and Lur’e (1982, pp. 227–261).] A rigid body in plane (but other-
wise free) motion is a system with three global, or finite, degrees of freedom. As
such, we choose (fig. 1.16): (a) The two positional coordinates of an arbitrary body
point (pole) ^ (that is, of a point belonging to the cross section of B with a generic
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plane f ever parallel to f 0) relative to arbitrary but f -fixed rectangular Cartesian
coordinates O�XY , (X^;Y^); and (b) The angle between an arbitrary f -fixed line,
say the axis OX , and an arbitrary B-fixed line, say ^P, where P is a generic body
point.

(i) The velocity field (i.e., the instantaneous spatial
distribution of velocity)

Here,

x ¼ !z k ¼ !Z K � !K ¼ ðd�=dtÞK ði:e:; x is perpendicular to vÞ; ð1:9:4aÞ
and so the general velocity formula (1.9.2) becomes

vP � drP=O � dr=dt

� v ¼ v^ þ vP=^ � v^ þ v=^ ¼ v^ þ x� rP=^ � v^ þ x� r=^; ð1:9:4bÞ

or, in components [along space-fixed (inertial) axes]

ðdX=dt; dY=dt; 0Þ ¼ ðdX^=dt; dY^=dt; 0Þ þ ð0; 0; !Þ � ðX=^;Y=^; 0Þ;
) dX=dt ¼ dX^=dt� !Y=^; dY=dt ¼ dY^=dtþ !X=^: ð1:9:4cÞ

The above show that, in plane motion, there exists—in every configuration—a point,
either belonging to the body or to its fictitious rigid extension, called instantaneous
center of zero velocity, or velocity pole (IC, or I, for short), whose velocity, at least
momentarily, vanishes; that is, locally, at least, the motion can be viewed as an
elementary rotation about that point (local version of fig. 1.10b). Indeed, setting in
(1.9.4b,c)

v! vI ¼ 0; i:e:; choosing P ¼ I ; ð1:9:4dÞ
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Figure 1.16 Plane motion of a rigid body B.



we obtain its inertial instantaneous coordinates relative to our originally chosen
pole ^:

XI=^ � XI � X^ ¼ �ðdY^=dtÞ=!; YI=^ � YI � Y^ ¼ þðdX^=dtÞ=!: ð1:9:4eÞ
From these equations we conclude that, as long as ! 6¼ 0; I is located at a finite
distance from the body and is unique; if ! ¼ 0, then I recedes to infinity, and the
motion becomes a translation; and if we choose I as our pole— that is, ^ ¼ I —then
(1.9.4b, c) yield

dX=dt ¼ �!Y=I ; dY=dt ¼ !X=I ; or v ¼ ! r=I ½v2 ¼ ðdX=dtÞ2 þ ðdY=dtÞ2�:
ð1:9:4fÞ

½In the case of translation; eq: ð1:9:4fÞ can be written qualitatively=symbolically as

finite velocity ¼ ðzero angular velocityÞ � ðinfinite radius of rotationÞ�:

As the body moves, I traces two curves: one fixed on the body (space centrode) and
one fixed in the plane (space centrode); so that the general plane motion can be
described as the slippingless rolling of the body centrode on the space centrode, with
angular velocity !.

(ii) The acceleration field

Here,

a � dx=dt ¼ ðd!=dtÞk � 
 k ¼ 
K ; ð1:9:4gÞ
and x � r=^ ¼ 0, and so the general acceleration formula (1.9.3) becomes

aP � a � a^ þ a=^ ¼ a^ þ a� r=^ þ x� ðx� r=^Þ
¼ a^ þ a� r=^ � !2r=^; ð1:9:4hÞ

or, in components [along space-fixed (inertial) axes],

ðd2X=dt2; d2Y=dt2; 0Þ ¼ ðd2X^=dt
2; d2Y^=dt

2; 0Þ
þ ð0; 0; 
Þ � ðX=^;Y=^; 0Þ � !2ðX=^;Y=^; 0Þ;

) d2X=dt2 ¼ d2X^=dt
2 � 
Y=^ � !2X=^; d2Y=dt2 ¼ d2Y^=dt

2 þ 
X=^ � !2Y=^:

ð1:9:4iÞ

Along body-fixed axis ^�xy, eq. (1.9.4h) yields the components (with some easily
understood notation):

ax ¼ ða^Þx � 
y=^ � !2x=^; ay ¼ ða^Þy þ 
x=^ � !2y=^; ð1:9:4jÞ
where

ða^Þx � a^ � i ¼ cosðx;XÞðd2X^=dt
2Þ þ cosðx;YÞðd2Y^=dt

2Þ; etc:;
and similarly for the velocity field (1.9.4b), if needed.
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Here, too, there exists an instantaneous center of zero acceleration, or acceleration
pole, I 0, whose coordinates are found by setting in (1.9.4i) d2X=dt2 ¼ 0, d2Y=dt2 ¼ 0
and then solving for X=^, Y=^ðP! I 0Þ :

XI 0=^ � XI 0 � X^ ¼
�
!2ðd2X^=dt

2Þ � 
ðd2Y^=dt
2Þ	=ð
2 þ !4Þ;

YI 0=^ � YI 0 � Y^ ¼
�
!2ðd2Y^=dt

2Þ þ 
ðd2X^=dt
2Þ	=ð
2 þ !4Þ: ð1:9:4kÞ

These equations show that as long as 
2 þ !4 6¼ 0 (i.e., not both ! and 
 vanish), the
acceleration pole I 0 exists and is unique. If !, 
 ¼ 0 (i.e., if the body translates), then
I 0 (as well as I) recedes to infinity. Finally, with the choice ^ ¼ I 0 eqs. (1.9.4h,i)
specialize to

a � a^ þ a=^ ¼ a� r=I 0 þ x � ðx� r=I 0 Þ ¼ a � r=I 0 � !2r=I 0 ; ð1:9:4lÞ

or, in components

d2X=dt2 ¼ �
Y=I 0 � !2X=I 0 ; d2Y=dt2 ¼ þ
X=I 0 � !2Y=I 0 : ð1:9:4mÞ

For the geometrical properties of I 0, the reader is referred to texts on kinematics.

Additional Useful Results

(i) Crossing 0 ¼ v^ þ x� ðrI � r^Þ with x, expanding, and so on, it can be
shown that the position of the instantaneous velocity center is given by

rI=^ � rI � r^ ¼ ðx� v^Þ=!2; ð1:9:4nÞ

and similarly for the location of the acceleration pole I 0.
(ii) The location of the instantaneous center of zero velocity I , and zero accelera-

tion I 0, in body-fixed coordinates ^�xy, are given, respectively, by (fig. 1.17)
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Figure 1.17 Body-fixed axes in plane motion.



xI ¼ ð1=!Þ
�ðdX^=dtÞ sin �� ðdY^=dtÞ cos�

	 ¼ �ðv^Þy=!; ð1:9:4oÞ
yI ¼ ð1=!Þ

�ðdX^=dtÞ cos�þ ðdY^=dtÞ sin�
	 ¼ ðv^Þx=!; ð1:9:4pÞ

xI 0 ¼ ½!2ða^Þx � 
ða^Þy�=ð!4 þ 
2Þ; yI 0 ¼ ½
ða^Þx þ !2ða^Þy�=ð!4 þ 
2Þ;
ð1:9:4qÞ

where

ðv^Þx � v^ � i ¼ cosðx;XÞðdX^=dtÞ þ cosðx;YÞðdY^=dtÞ; etc:

Contact of Two Rigid Bodies;
Slipping, Rolling, Pivoting

Let us consider a system of rigid bodies forced to remain in mutual contact at points,
or along curves or surfaces of their boundaries. For simplicity and concreteness, we
restrict the discussion to two rigid bodies, B 0 (fixed) and B (moving), in contact at a
space point C; that is, a certain point P of the bounding surface of B, S, is in contact
with a point P 0 of the bounding surface of B 0, S 0; that is, then, C ¼ P ¼ P 0 (fig.
1.18).

Now: (i) If C is fixed on both bodies, we call such a ‘‘bilateral constraint’’ (i.e., one
expressible by equalities) a hinge, and we say that the bodies are pivoting about it.

(ii) If, on the other hand, C is not fixed on one (both) of the bodies, we say that it
is wandering on it (them). In this case, we call the relative velocity of P and P 0, which
are instantaneously at C, the slip velocity there:

vP=P 0 � vP � vP 0 � vs: ð1:9:5aÞ

If we view the motion of C relative to B 0, C=B 0, as the resultant of C=B and B=B 0,
then, since the velocities of the latter are tangent to the surfaces S and S 0, respec-
tively, at C we conclude that vs lies on their common tangent plane there, p.
Analytically,

vs ¼ vs;T þ vs;N ¼ vs;T ; ð1:9:5bÞ
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Figure 1.18 Two rigid bodies in contact at a space point C.
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where

vs;T ¼ component of vs along p; vs;N ¼ component of vs normal to p

ð¼ 0; i:e:; contact is preserved; the two bodies cannot penetrate each otherÞ;
ð1:9:5cÞ

and if, at that instant, B and B 0 separate, then vs;N lies on the side of B 0.
Next, if the angular velocity of B relative to B 0, at C, is x with components along

and normal to p: xT , xN , respectively; that is,

x ¼ xT þ xN ; ð1:9:5dÞ
then we can say that the most general infinitesimal motion of B relative to B 0, B=B 0,
is a superposition of the following special motions:

a pure slipping: vs 6¼ 0; xT ¼ 0; xN ¼ 0; ð1:9:5eÞ
a pure rolling: vs ¼ 0; xT 6¼ 0; xN ¼ 0; ð1:9:5fÞ
a pure pivoting: vs ¼ 0; xT ¼ 0; xN 6¼ 0: ð1:9:5gÞ

If vs ¼ 0 and x 6¼ 0, the motion B=B 0 is an instantaneous rotation called rolling and
pivoting; which results in two (scalar) equations of constraint. In this case, the point
C has identical velocities relative to both B and B 0; and hence its trajectories, or loci,

that P and P 0, both at C at the moment under consideration, have equal velocities
relative to a (third) arbitrary body, or frame or reference; and the velocities of B
about B 0 are the same as if B had only a rotation x about an axis through the
‘‘instantaneous hinge’’ C. If the locus of x on B is the ruled surface S, and on B 0 the
also ruled surface S 0, then the slippingless motion B=B 0 can be obtained by rolling S
on S 0 [The earlier curve �ð� 0Þ is the intersection of S with SðS 0 with S 0Þ].

If B and B 0 are in contact at two points, say C and C 0, and if vs ¼ vs 0 ¼ 0, then the
motion B=B 0 is an instantaneous rotation about the line CC 0; that is, x is along it.
And if B, B 0 contact each other at several points C, C 0, C 00; . . . ; then slipping cannot
vanish at all of them unless they all lie on a straight line. If, in addition, xN ¼ 0 (or
xT ¼ 0), we have pure rolling (or pure pivoting). In sum, slippingless rolling along a
curve can happen only if that curve is a straight line carrying x (like a long hinge).

Some Analytical Remarks on Rolling

(i) The contact among rigid bodies is expressed analytically by one or more
equations of the form

f ðt; q1; q2; . . . ; qnÞ ¼ 0; ð1:9:6aÞ
where q � ðq1; . . . ; qnÞ are geometrical parameters that determine the position, or
configuration, of the bodies of the system; hence, their alternative name: system
coordinates. Equation (1.9.6a) is called a holonomic constraint.
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and are traced at the same pace; that is, if, starting from C, we grade them in, say cen-
timeters, then the points that will come into contact during the subsequent motion will
have the same arc-coordinates numerically. Such a B/B′ rolling is expressed by saying

on the bounding surfaces of B and B′, γ and γ′ respectively, are continuously tangent,



(ii) If, in addition to contact, there is also slippingless rolling, and possibly pivot-
ing, then equating the velocities of the two (or more pairs of) material points in
contact, we obtain constraints of the form

a1dq1 þ a2dq2 þ � � � þ andqn þ anþ1dt ¼ 0; ð1:9:6bÞ
or, (roughly) equivalently,

a1ðdq1=dtÞ þ a2ðdq2=dtÞ þ � � � þ anðdqn=dtÞ þ anþ1 ¼ 0; ð1:9:6cÞ
where ak ¼ akðt; qÞ ðk ¼ 1; . . . ; nÞ. If (1.9.6b,c) is not integrable [i.e., if it cannot be
replaced, through mathematical manipulations, by a finite (1.9.6a)-like equation], it
is called nonholonomic. In mechanical terms, holonomic constraints restrict the mobi-
lity of a system in the large (i.e., globally); whereas nonholonomic constraints restrict
its mobility in the small (i.e., locally). The systematic study of both these types of
constraints (chap. 2) and their fusion with the general principles and equations of
motion (chap. 3 ff.) is the object of Lagrangean analytical mechanics.

1.10 THE RIGID BODY: GEOMETRY OF ROTATIONAL MOTION;

FINITE ROTATION

The peculiarities of the algebra of finite rotations are just the

peculiarities of matrix multiplication.

(Crandall et al., 1968, p. 58)

Recommended for concurrent reading with this section are (alphabetically): Bahar
(1987), Coe (1938, pp. 157 ff.), Hamel (1949, pp. 103–117), Shuster (1993), Timerding
(1908).

The Fundamental Equation of Finite Rotation

Since, by the fundamental theorem of the preceding section, the rotatory part of a
general displacement of a rigid body is independent of the base point (pole), let us
examine first, with no loss in generality, the finite rotation of a rigid body B about the
(body- and space-) fixed point O; and later we will add to it the translatory displace-
ment of O. Specifically, let us examine the finite rotation of B about an axis through
O, with positive direction (unit) vector n, by an angle � that is counted positive in
accordance with the right-hand (screw) rule (fig. 1.19).

As a result of such an angular displacement, a generic body point P moves from
an initial position Pi to a final position Pf ; or, symbolically,

ðri; piÞ ! ðrf ; pf Þ; ð1:10:1aÞ

where p is the projection, or component, of the actual position vector of P, r, on the
plane through it normal to the axis of rotation; that is, to n. Our objective here is to
express rf in terms of ri, n, and �. To this end, we decompose the displacement
Dr � rf � ri ¼ pf � pi � Dp, which lies on the plane of the triangle APiPf , into two
components: one along pi, PiB ¼ Dr1, and one perpendicular to it, BPf ¼ Dr2:

Dr ¼ Dr1 þ Dr2: ð1:10:1bÞ
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Now, from fig. 1.19 and some simple geometry, we find, successively,
(i) Dr1 ¼ �ðAPi � ABÞ ¼ �ðpi � pi cos�Þ ¼ �pið1� cos�Þ ¼ �2pi sin2ð�=2Þ; or,

since Dr1 is perpendicular to both n� ri and n, and

n� ðn� riÞ ¼ ðn � riÞn� ðn � nÞri ¼ OA� ri ¼ PiA ¼ �pi;
finally,

Dr1 ¼ n� ðn� riÞ2 sin2ð�=2Þ: ð1:10:1cÞ
(ii) The component Dr2 is perpendicular to the plane OAPi, and lies along n� ri;

and since the length of the latter equals

jn� rij ¼ jnjjrij sin� ¼ jrij sin� ¼ jpij;
and

jpij sin� ¼ jCPij ¼ jBPf j � jDr2j ðthe triangle APiPf being isosceles!Þ;
finally

Dr2 ¼ ðn� riÞ sin�: ð1:10:1dÞ
Substituting the expressions (1.10.1c, d) into (1.10.1b), we obtain the following
fundamental equation of finite rotation:

Dr � rf � ri ¼ ðn� riÞ sin�þ n� ðn� riÞ2 sin2ð�=2Þ: ð1:10:1eÞ
All subsequent results on this topic are based on it.

Alternative Forms of the Fundamental Equation

(i) With the help of the so-called ‘‘Gibbs vector of finite rotation’’

c � tanð�=2Þn � ð�1; �2; �3Þ � ð�X ; �Y ; �ZÞ ¼ Rodrigues parameters; ð1:10:2aÞ
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Figure 1.19 Finite rigid rotation about a fixed point O (axis n, angle �).



relative to some background axes, say O�XYZ [Rodrigues (1840) – Gibbs (late
1800s) ‘vector’] and, since by simple trigonometry,

sin� ¼ 2 sinð�=2Þ cosð�=2Þ ¼ 2 tanð�=2Þ=½1þ tan2ð�=2Þ�
¼ 2�=ð1þ �2Þ; where � ¼ jcj ¼ j tanð�=2Þj; ð1:10:2bÞ

sin2ð�=2Þ ¼ tan2ð�=2Þ=½1þ tan2ð�=2Þ� ¼ ð1� cos�Þ=2 ¼ �2=ð1þ �2Þ; ð1:10:2cÞ

we can easily rewrite (1.10.1e) as

Dr ¼ ½2=ð1þ �2Þ�½c� ri þ c� ðc� riÞ�; ð1:10:2dÞ
and from this, since c� ðc� riÞ ¼ ��2ri þ ðc � riÞc, we obtain the additional form

rf ¼ ½2=ð1þ �2Þ�½c� ri þ ðc � riÞc� þ ½ð1� �2Þ=ð1þ �2Þ�ri; ð1:10:2eÞ
which, clearly, has a singularity at � ¼ �i.

Further, in terms of the normal projection of ri to the rotation axis n, ri;n, defined
by

ri;n � ri � ðc � riÞc=�2 ¼ ri � ½ðc cÞ � ri�=�2; ð1:10:2fÞ
we can rewrite (1.10.2e) successively as

rf ¼ ri þ ½2=ð1þ �2Þ�ðc� ri;n � �2ri;nÞ
¼ ri þ ½2=ð1þ �2Þ�½c� ri � �2ri þ ðc cÞ � ri�
¼ ri þ ½2=ð1þ �2Þ�½c� ri þ c� ðc� riÞ�
¼ ri þ ½2c=ð1 þ �2Þ� � ðri þ c� riÞ; ð1:10:2gÞ

that is, express rf in terms of ri and the single vector c.
{It is not hard to show that the components, or projections, of a vector a along

(aalong � al) and perpendicular to (aperpendicular=normal � an) another vector b (of com-
mon origin) are

al ¼ ða � bÞb=b2; an ¼ a� al ¼ a� ða � bÞb=b2 ¼ ½b� ða� bÞ�=b2g:

Inversion of Eqs. (1.10.2e,g)

Since a rotation �c should bring rf back to ri, if in (1.10.2g) we swap the roles of ri
and rf and replace c with �c, we obtain the initial position in terms of the final one
and its rotation:

ri ¼ rf � ½2c=ð1þ �2Þ� � ðrf � c� rf Þ; ð1:10:3Þ
and thus avoid complicated vector-algebraic inversions.

Rodrigues’ Formula (1840)

Adding ri to both sides of (1.10.2e), we obtain

ri þ rf ¼ ½2=ð1þ �2Þ�½ri þ c� ri þ ðc � riÞc�; ð1:10:4aÞ
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and crossing both sides of the above with c, and then using simple vector identities
and (1.10.2g) [or, adding (1.10.2g) and (1.10.3) and setting the coefficient of
2c=ð1þ �2Þ equal to zero, since it cannot be nonzero and parallel to c], we arrive
at the formula of Rodrigues:

rf � ri ¼ c� ðri þ rf Þ � 2c� rm ¼ 2n� rm tanð�=2Þ; ð1:10:4bÞ

where

2rm � ri þ rf ¼ 2 ðposition vector of midpoint of PiPf Þ; ð1:10:4cÞ

or, rearranging,

rf þ rf � c ¼ ri þ c� ri: ð1:10:4dÞ

Finally, dotting both sides of this equation with c (or n), we obtain

c � rf ¼ c � ri; ð1:10:4eÞ

as expected.
(ii) With the help of the finite rotation vector

v � �n; ð1:10:5aÞ
which is, obviously, related to the earlier Gibbs vector c by

c ¼ tanð�=2Þðv=�Þ; ð1:10:5bÞ
and since

1þ �2 ¼ 1= cos2ð�=2Þ; 1� �2 ¼ cos�= cos2ð�=2Þ; ð1:10:5cÞ

the preceding rotation equations yield

rf ¼ 2 cos2ð�=2Þ� tanð�=2Þðv� riÞð1=�Þ þ tan2ð�=2Þðv � riÞðv=�2Þ	þ cos�ri;

ð1:10:5dÞ
or finally,

rf ¼ ri cos�þ ðv� riÞðsin�=�Þ þ ðv � riÞv½ð1� cos�Þ=�2�; ð1:10:5eÞ

a form that is symmetrical and (integral) transcendental function of v � v ¼ �2.
The above can also be rewritten as

rf � ri ¼ ðsin�Þðn� riÞ þ ð1� cos�Þ½n� ðn� riÞ�
¼ ðsin�Þðn� riÞ þ ð1� cos�Þ½ðn � riÞn� ðn2Þri�; ð1:10:5fÞ

or, slightly rearranged (since n2 ¼ 1),

rf ¼ ri cos�þ ðn� riÞ sin�þ ðn � riÞnð1� cos�Þ
¼ ri þ sin�ðn� riÞ þ ðcos�� 1Þ½ri � ðri � nÞn�

½¼ ri þ sin�ðn� riÞþðcos�� 1Þ ðcomponent of ri perpendicular to nÞ�: ð1:10:5gÞ
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REMARK

The preceding rotation equations give the final position vector rf in terms of the
initial position vector ri and the various rotation vectors c, v, n (and �). It is shown
later in this section that, despite appearances, c is not a vector in all respects, but
simply a directed line segment; that is, it has some but not all of the vector character-
istics (} 1.1). This is a crucial point in the theory of finite rotations.

Additional Useful Results

(i) In the preceding rotation formulae:

(a) For � ¼ �2�n ðn ¼ 1; 2; 3; . . .) they yield

rf ¼ ri; ð1:10:6aÞ
that is, the body point returns to its initial position, as it should; and

(b) If ri � n ¼ 0, and � ¼ �=2, then
rf ¼ n� ri; ð1:10:6bÞ

that is, n, ri, rf form an orthogonal and dextral triad at O.

(ii) By swapping the roles of rf and ri and replacing � with �� in (1.10.5g) (i.e.,
inverting it), we get

ri ¼ rf cos�� ðn� rf Þ sin�þ ðn � rf Þnð1� cos�Þ: ð1:10:6cÞ
(iii) For small �, eqs. (1.10.5d, e) linearize to the earlier ‘‘Euler–Mozzi’’ formula:

rf ¼ ri þ v� ri ) Dr � rf � ri ¼ v� ri: ð1:10:6dÞ

Finite Rotation of a Line

By using the rotation formulae, one can show that the final position of a body-fixed
straight fiber joining two arbitrary such points P1 and P2, or 1 and 2 (fig. 1.20), is
given by

ðr2=1Þf � r2; f � r1; f

¼ � � � ¼ ðsin�Þn� ðr2=1Þi þ ðcos�Þðr2=1Þi þ ð1� cos�Þ½n � ðr2=1Þi�n; ð1:10:7aÞ
where

Initial position � ðr2=1Þi ! Final position � ðr2=1Þf ; ð1:10:7bÞ

and

r2=1 � r2 � r1; for both i and f : ð1:10:7cÞ

Finite Rotation of an Orthonormal Basis

By employing the finite rotation equations, let us find the relations between the two
ortho–normal–dextral (OND) bases of common origin, O�uk 0 (space-fixed) and
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O�uk (body-fixed), if the latter results from the former by a rotation � about an axis
n; that is, symbolically,

uk 0 �!
ðn;�Þ

uk: ð1:10:8aÞ

Applying the earlier rotation equations to this transformation, with ri ¼ uk 0 and
rf ¼ uk, we obtain the following equivalent expressions:

ðiÞ uk ¼ uk 0 þ ðsin�Þðn� uk 0 Þ þ ðcos�� 1Þuk 0;n; ð1:10:8bÞ

where

ð1:10:8cÞ

ðiiÞ uk ¼ ðcos�Þuk 0 þ ðsin�Þðn� uk 0 Þ þ ð1� cos�Þðn � uk 0 Þn

� ðrotation tensorÞ � uk 0

� uk 0 þ ð�nÞ � uk 0

¼ uk 0 þ v � uk 0 ½Euler�Mozzi formula for small rotations�: ð1:10:8dÞ
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Figure 1.20 Finite rotation of straight segment 12,

from (12)i to (12)f.

uk′,n ≡ uk′ − (uk′ · n)n = uk′ − (n ⊗ n) ·uk′ = (1 − n ⊗ n) · uk′

≡ P ·uk′ = Component of uk′ normal to n

[P = projection operator, 1 = unit tensor (§1.1)] .

= uk′ + (χn)× uk′ (to the first order in χ)

= [(cosχ)1 + (sinχ)(n × 1) + (1− cosχ)(n ⊗ n)] ·uk′

[examined in detail below]



ðiiiÞ uk ¼ uk 0 þ ½2=ð1þ �2Þ�½c� uk 0 � �2uk 0 þ ðc cÞ � uk 0 �
¼ uk 0 þ ½2=ð1þ �2Þ�½c� uk 0 þ c� ðc� uk 0 Þ�
¼ uk 0 þ ½2c=ð1þ �2Þ� � ðuk 0 þ c� uk 0 Þ: ð1:10:8eÞ

To express the initial basis vectors uk 0 in terms of the final ones uk, we simply replace
in any of the above, say (1.10.8e), c with �c. The result is

uk 0 ¼ uk � ½2c=ð1þ �2Þ� � ðuk 0 � c� uk 0 Þ: ð1:10:8fÞ

From the above, we can easily deduce that

c � uk ¼ c � uk 0 ; ð1:10:8gÞ

as expected; or setting

c ¼
X

�kuk ¼
X

�k 0uk 0 ; ð1:10:8hÞ

in component form

�k ¼ �k 0 : ð1:10:8iÞ

The Tensor of Finite Rotation

Let us express the earlier rotation equations in direct/matrix and component forms.
Along the rectangular Cartesian axes O�XYZ � O�Xk, common to all vectors and
tensors involved here, and with the component notations ðk ¼ X;Y ;ZÞ:

ri � ðXkÞ; rf � ðYkÞ;
c ¼ ð�k: Rodrigues parametersÞ ) �2 ¼

X
�k

2 ¼ ð�XÞ2 þ ð�Y Þ2 þ ð�ZÞ2;
n ¼ ðnk: direction cosines of unit vector defining the axis of rotationÞ; ð1:10:9aÞ

our rotation equations become

where, recalling (1.10.2e ff.) and the simple tensor algebra of }1.1, the (nonsym-
metrical but proper orthogonal) tensor of finite rotation,

has the following equivalent representations.
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rf = R · ri , Yk =
∑

Rkl Xl =
∑

[rkl/(1 + γ2)]Xl , (1.10.9b)

R ≡ R(n, χ) ≡ (Rkl) ≡ (rkl/(1 + γ2)) , (1.10.9c)



¼
1 0 0

0 1 0

0 0 1

0BB@
1CCA cos�þ

0 �nZ nY

nZ 0 �nX
�nY nX 0

0BB@
1CCA sin�

þ
nX

2 nXnY nXnZ

nYnX nY
2 nYnZ

nZnX nZnY nZ
2

0BB@
1CCAð1� cos�Þ

¼
c�þ nX

2ð1� c�Þ �nZs�þ nXnY ð1� c�Þ nYs�þ nXnZð1� c�Þ
nZs�þ nXnY ð1� c�Þ c�þ nY

2ð1� c�Þ �nXs�þ nYnZð1� c�Þ
�nYs�þ nXnZð1� c�Þ nXs�þ nYnZð1� c�Þ c�þ nZ

2ð1 � c�Þ

0BB@
1CCA

ð1:10:10aÞ

where, as usual, cð. . .Þ � cosð. . .Þ, sð. . .Þ � sinð. . .Þ.

¼ ð�klÞ cos�þ
X

"krlnr

� �
sin�þ nknlð1� cos�Þ: ð1:10:10bÞ

Occasionally, the rotation formula is written as

and

R 0kl � Rkl � �kl ¼ � � � ¼
X

"krlnr

� �
sin�þ ðnknl � �klÞð1� cos�Þ: ð1:10:10dÞ

We notice that the representation (1.10.10d) coincides with the decomposition of R 0kl
into its antisymmetric part:

and symmetric part:

ðnknl � �klÞð1� cos�Þ;

of which, the former is of the first order in �, while the latter is of the second order; a
result that explains the antisymmetry of the angular velocity tensor [(1.7.22e)].
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(i) Direct/matrix form (with N: antisymmetric tensor of vector n):

R = 1 cosχ+ N sinχ+ n⊗ n(1 − cosχ)

(ii) Indicial (Cartesian tensor) form [with N = (Nkl), n = (nk)]:

Rkl ≡ Rkl(nr, χ) = (δkl) cosχ+ (Nkl) sinχ + nknl(1− cosχ)

R′
≡ (R′

kl) ≡ R− 1 = (Rkl − δkl) ; rotator tensor ,

f − ri , r ≡ ri , (1.10.10c)Δ r = R′
· r , where Δ r ≡ rf − ri , r ≡ ri , (1.10.10c)

∑
(εkrl nr) sinχ = Nkl sinχ ,

= R(nX, nY, nZ;χ) , under nX
2 + nY

2 + nZ
2 = 1 ,



(iii) In terms of the Rodrigues parameters (a form, most likely, due to G. Darboux):

ðrklÞ ¼
1 þ �X 2 � ð�Y 2 þ �Z2Þ 2ð�X�Y � �ZÞ 2ð�X�Z þ �Y Þ

2ð�X�Y þ �ZÞ 1þ �Y 2 � ð�Z2 þ �X 2Þ 2ð�Y�Z � �XÞ
2ð�X�Z � �YÞ 2ð�Y�Z þ �XÞ 1þ �Z2 � ð�X2 þ �Y 2Þ

0B@
1CA

ð1:10:10eÞ
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Figure 1.21 Plane rotation about Oz, through an angle �.

The properties of R can be summarized as follows:

(i) limR(n, χ)

∣∣∣∣
χ→0

= R(n, 0) = 1 , for all n ; (1.10.11a)

that is, R(n, χ) is a continuous function of χ.

(ii) R(n, χ) ·n = n ; n = axis of rotation . (1.10.11b)

(iii) R(n, χ1) ·R(n, χ2) = R(n, χ1 + χ2) . (1.10.11c)

(iv) R(n, χ) ·RT(n, χ) = 1 , (1.10.11d)

RT(n, χ) = R−1(n, χ) = R(n,−χ) . (1.10.11e)

Also, since the elements of R, Rkl, depend continuously and differentiably on three
independent parameters — for example, Euler’s angles (§1.12) — we can say that the



rotation group is a continuous one; or a Lie group; see, for example, Argyris and
Poterasu (1993).

Plane Rotation

This is a special rotation in which

Then, with Xk � X , Y and Yk � X 0, Y 0 (fig. 1.21), the rotational equations,
(1.10.2g), and so on, specialize to

X 0 ¼ ½ð1� �2Þ=ð1þ �2Þ�X � ½2�=ð1þ �2Þ�Y ¼ � � � ¼ ðcos�ÞX þ ð� sin�ÞY ;
ð1:10:12bÞ

Y 0 ¼ ½2�=ð1þ �2Þ�X þ ½ð1� �2Þ=ð1þ �2Þ�Y ¼ � � � ¼ ðsin�ÞX þ ðcos�ÞY ;
ð1:10:12cÞ

Z 0 ¼ Z: ð1:10:12dÞ

Additional Useful Results
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(ii) By swapping the roles of ri and rf and setting χ → −χ, in the preceding
rotation formulae, one can show that

ri = R
−1

· rf , (1.10.14a)

where

R−1 = 1− N sinχ+ 2N ·N sin2(χ/2) = RT = R(n,−χ) ; (1.10.14b)

that is, the rotation tensor is indeed orthogonal.

(a) Indicial notation:

Rkl = δkl +
(∑

εkrlnr
)

sinχ+ (nknl − δkl)(1− cosχ)

= δkl + Nkl sinχ+
∑

NksNsl(1− cosχ) (1.10.13a)

(b) Direct/matrix form [N = (Nkl) antisymmetric tensor of vector n = (nk)]:

[Notice that 1− cos χ = 2 sin2(χ/2) and
∑

NksNsl = nknl− δkl, or, in direct notation,

(i) Alternative expressions of the rotation tensor:

R = 1+N sinχ+ 2N ·N sin2(χ/2) (1.10.13b)

= 1+ (sinχ)N+ [2 sin2(χ/2)]N 2 (1.10.13c)

= 1+ (sinχ)N+ (1− cosχ)N 2 (1.10.13d)

= 1+ 2N sin(χ/2)[1 cos(χ/2) + N sin(χ/2)] (1.10.13e)

c =
(
γX = 0, γY = 0, γZ = tan(χ/2)

)
= tan(χ/2)n⇒ n = K . (1.10.12a)

N ·N = n ⊗ n− 1. See also Bahar (1970)].



þ ð1� cos�Þ
XX

nknk

� �
¼ cos�ð3Þ þ sin�ð0Þ þ ð1� cos�Þð1Þ ¼ 2 cos�þ 1: ð1:10:16aÞ

ðiiÞ
XX

"sklRkl ¼ cos�
XX

"skl�kl

� �
þ sin�

XXX
"skl"krlnr

� �
þ ð1� cos�Þ

XX
"sklnknl

� �
¼ cos�ð0Þ þ sin�

X
ð�2�rsÞnr

� �
þ ð1� cos�Þðn� nÞs

¼ �2ðsin�Þns ½Thanks to the "-identities ð1:1:6b ff :Þ�:
ð1:10:16bÞ

In sum,
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the Cayley–Hamilton theorem to Γ [i.e., every tensor satisfies its own characteristic
equation (§1.1)],

Δ (λ) ≡ |Γ − λ1| = 0 ⇒ Δ (Γ ) = −Γ
3
− [tan2(χ/2)]Γ = 0 , (1.10.15a)

(since TrΓ = 0 and DetΓ = 0), one can show that

R = 1+ 2 cos2(χ/2)(Γ + Γ
2) , R = (1− Γ )−1

· (1+ Γ ) . (1.10.15b)

Next, expanding (1.10.15b) symbolically in powers of Γ , we obtain the representa-
tion

for the treatment of angular velocity later in this section.] Similar results can be
obtained in terms of N.

The Mathematical Problem of Finite Rotation

Usually, this takes one of the following two forms: (i) given χ and n, find R; or
(ii) given R, find χ and n. Now, from the preceding indicial forms, we easily obtain
(with k = X, Y, Z):

(i) TrR ≡

∑
Rkk = cosχ

(∑
δkk

)
+ sinχ

(∑∑
εkrk nr

)

I1 ≡ TrR ≡

∑
Rkk = 1 + 2 cosχ = First invariant of R , (1.10.16c)

−

R = (1+ Γ + · · ·) · (1+ Γ ) = 1+ 2Γ , to first Γ -order ; (1.10.15c)

⇒ R′
≡ R− 1 = 2Γ , to first Γ -order . (1.10.15d)

∑∑
εskl Rkl = 2Rs = 2(Axial vector of R)s = 2(sinχ)ns ⇒ Rk = (sinχ)nk ,

(1.10.16d)

(iii) Let Γ ≡ N tan(χ/2): antisymmetric tensor of the Gibbs vector c . By applying

[Equations (1.10.15c, d) shed some light into the meaning of c and Γ , and prepare us



or, explicitly,

R1 ¼ ð�1=2Þð"123R23 þ "132R32Þ ¼ ðR32 � R23Þ=2 ¼ ðsin�Þn1; ð1:10:16eÞ
R2 ¼ ð�1=2Þð"231R31 þ "213R13Þ ¼ ðR13 � R31Þ=2 ¼ ðsin�Þn2; ð1:10:16fÞ
R3 ¼ ð�1=2Þð"312R12 þ "321R21Þ ¼ ðR21 � R12Þ=2 ¼ ðsin�Þn3: ð1:10:16gÞ

Now, the first problem of rotation is, clearly, answered by the earlier rotation for-
mulae (1.10.10 ff.); while the second is answered by solving the system of the four
equations (1.10.16c, e–g) for the four unknowns �; n1;2;3. Indeed,

(i) From (1.10.16c), we obtain

(a) From (1.10.16e–g), if sin� 6¼ 0,

n1 ¼ ðR32 � R23Þ=2 sin�; n2 ¼ ðR13 � R31Þ=2 sin�; n3 ¼ ðR21 � R12Þ=2 sin�;
ð1:10:17bÞ

or, vectorially,

n ¼ ð1=n 0Þ�ðR32 � R23ÞI þ ðR13 � R31ÞJ þ ðR21 � R12ÞK
	
;

where

(b) If sin� ¼ 0, then � ¼ 0 or �� (or some integral multiple thereof );

undetermined: no rotation occurs; while
(b.2) If � ¼ �� ) cos� ¼ �1, then, as (1.10.10 ff.) show,

¼
2n1

2 � 1 2n1n2 2n1n3

2n2n1 2n2
2 � 1 2n2n3

2n3n1 2n3n2 2n3
2 � 1

0BB@
1CCA; ð1:10:17dÞ

or, explicitly,

R11 ¼ 2n1
2 � 1 ) n1 ¼ �½ð1þ R11Þ=2�1=2; ð1:10:17eÞ

R22 ¼ 2n2
2 � 1 ) n2 ¼ �½ð1þ R22Þ=2�1=2; ð1:10:17fÞ

R33 ¼ 2n3
2 � 1 ) n3 ¼ �½ð1þ R33Þ=2�1=2; ð1:10:17gÞ

and the ultimate signs of n1;2;3 are chosen so that (1.10.17e–g) are consistent with the
rest of (1.10.17d):

n1n2 ¼ R12=2 ¼ R21=2; n1n3 ¼ R13=2 ¼ R31=2; n2n3 ¼ R23=2 ¼ R32=2:

166 CHAPTER 1: BACKGROUND

cosχ = (I1 − 1)/2 ≡ (Tr R− 1)/2 . (1.10.17a)

n′ ≡ 2 sinχ = · · · = [(1 + Tr R) · (3 − Tr R)]1/2 : normalizing factor , (1.10.17c)

(b.1) If χ = 0, then, as (1.10.11a) shows, R = (Rkl) = (δkl) ≡ 1; that is, n becomes

R = (Rkl) = (2nknl − δkl) (a symmetric tensor)



multiplying (1.10.17b) with n1, n2, n3, respectively, adding together, and invoking the
normalization constraint n1

2 þ n2
2 þ n3

2 ¼ 1, we find

sin� ¼ ð1=2Þ�n1ðR32 � R23Þ þ n2ðR13 � R31Þ þ n3ðR21 � R12Þ
	
: ð1:10:17hÞ

Rotation as an Eigenvalue Problem

(This subsection relies heavily on the spectral theory of } 1.1.) In view of the rotation
formula

ð1:10:18aÞ
the earlier fundamental Eulerian theorem (}1.9: The most general displacement of a
rigid body about a fixed point can be effected by a rotation about an axis through

eigenvalue þ1; that is, at least one of the eigenvalues of the eigenvalue problem

ð1:10:18bÞ
equals þ1; or, every rotation has an invariant vector, which is Euler’s theorem.

Let us examine these eigenvalues more systematically. The latter are the three
roots of

and it is shown in linear algebra that:

ri � ri ¼ ri
2, the eigenvalue equation (1.10.18b) becomes

rf � rf ¼ ri � ri ¼ �2ri � ri ) �2 ¼ 1 ðfor ri 6¼ 0Þ	;
(b) At least one of them is real

�
From the corresponding characteristic equation:

D

we readily see that

limDð�Þ





�!�1

¼ þ1; and limDð�Þ





�!þ1

¼ �1:

Hence, Dð�Þ crosses the � axis at least once; that is, Dð�Þ ¼ 0 has at least one real

root; and, by (i), that root is either þ1 or �1.	
(c) Complex eigenvalues occur in pairs of complex conjugate numbers [since the coeffi-

cients of Dð�Þ ¼ 0 are real];

long as we remain inside our Euclidean three-dimensional space, a right-handed

coordinate system cannot change to a left-handed one by a continuous rigid-body
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f

The angle χ can also be obtained from the off-diagonal elements of R as follows:

rf = R · ri ,

that point ⇒ that axis is carried onto itself: R ·n = n) translates to the following
algebraic statement: The real proper orthogonal tensor of rotation R has always the

(rf =) R · ri = λri ,

(a) They all have unit magnitude [Since rf · rf = (R · ri) · (R · ri) = (ri ·R
T) · (R · ri) =

(λ) ≡ |R− λ1| = (−1)3λ3 + · · · + (Det R)λ0 = 0 ,

(d) I3(R) ≡ I3 = Det R ≡ |Rkl| ≡ R = λ1λ2λ3 = +1. [Initially, that is before
the rotation, rf = R · ri = ri ⇒ R = 1⇒ Det 1 = +1, and since thereafter R
evolves continuously from 1, it must be a proper orthogonal tensor; that is,
|R| ≡ Det R = +1 = Δ (0). This expresses the “obvious” kinematical fact that, as

|R− λ1| = 0 (λ : λ1,2,3) , (1.10.18c)



motion of its axes; such ‘‘polarity’’ changes, called inversions or reflections, require

continuous transformations in a higher dimensional space; for example, right-
handed two-dimensional axes can be changed to left-handed two-dimensional axes

by a continuous rotation inside the surrounding three-dimensional space.]

real and equal to þ1; which is the trivial case of the identity transformation; or, and
this is the case of main interest (Euler’s theorem), (ii) Only one of these eigenvalues is

conjugate numbers: cos�� i sin� � expð�i�Þ. As a result of the above:

(a) The direction cosines of the axis of rotation n ¼ ðnX ; nY ; nZÞ can be obtained by

setting in eq. (1.10.18b) � ¼ 1, ri ¼ n:

ð1:10:19aÞ

and then solving for nX;Y ;Z under the constraint nX
2 þ nY

2 þ nZ
2 ¼ 1; and

I

ð1:10:19bÞ

� ¼ �1�2 þ �1�3 þ �2�3
¼ ð1Þ½expði�Þ� þ ð1Þ½expð�i�Þ� þ expði�Þ expð�i�Þ ¼ 2 cos�þ 1

	
; ð1:10:19cÞ
ð1:10:19dÞ

Composition of Finite Rotations

Here we show that finite rotations are noncommutative; specifically, that two or
more successive finite rotations of a rigid body with a fixed point O (or, generally,
about axes intersecting at the real or fictitious rigid extension of the body) can be
reproduced by a single rotation about an axis through O; but that resultant or
equivalent single rotation does depend on the order of the component or constituent
rotations.

Quantitatively, let the rotation vector c1 carry the generic body point position
vector from r1 to r2; and, similarly, let c2 carry r2 to r3. We are seeking to express the
vector of the resultant rotation c1;2 (i.e., of the one carrying r1 to r3) in terms of its
‘‘components’’ c1 and c2. Schematically,
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c1 c2
r1 r2 r3

c1;2 (1.10.20a)

��������! ��������!
���������������������%

Combining these results, we conclude that either: (i) All three eigenvalues of R are

real and equals +1 [ ⇒ Δ (1) ≡ |R − 1| = 0]; while the other two are the complex

(R− λ1) · ri = 0 ⇒ R · n = n ,

I1(R) = TrR ≡ R11 + R22 + R33

= λ1 + λ2 + λ3 = 1 + exp(+iχ) + exp(−iχ) = 1 + 2 cosχ ;

that is, R has only two independent invariants.

I3(R) = DetR = λ1λ2λ3 = +1 ;

I2(R) = [(TrR)2
− Tr (R2)]/2 = (DetR)(TrR−1)

= (+1)(TrRT) = (+1)(TrR) = I1(R)

(b) The invariants of R can be summarized as follows:



By Rodrigues’ formula (1.10.4b), applied to r1 ! r2 and r2 ! r3, we obtain

r2 � r1 ¼ c1 � ðr2 þ r1Þ; r3 � r2 ¼ c2 � ðr3 þ r2Þ; ð1:10:20bÞ
respectively. Now, on these two basic equations we perform the following opera-
tions:

(i) We dot the first of the above with c1 and the second with c2:

c1 � ðr2 � r1Þ ¼ c1 � ½c1 � ðr2 þ r1Þ� ¼ 0 ) c1 � r2 ¼ c1 � r1; ð1:10:20cÞ
c2 � ðr3 � r2Þ ¼ c2 � ½c2 � ðr3 þ r2Þ� ¼ 0 ) c2 � r3 ¼ c2 � r2: ð1:10:20dÞ

(ii) We cross the first of (1.10.20b) with c2 and the second with c1 and subtract side
by side:

c2 � ðr2 � r1Þ � c1 � ðr3 � r2Þ ¼ ðc1 þ c2Þ � r2 � c2 � r1 � c1 � r3

¼ c2 � ½c1 � ðr2 þ r1Þ� � c1 � ½c2 � ðr3 þ r2Þ�
¼ fc1½c2 � ðr2 þ r1Þ� � ðc1 � c2Þðr2 þ r1Þg

� fc2½c1 � ðr3 þ r2Þ� � ðc1 � c2Þðr3 þ r2Þg
½expanding; and then rearranging while taking into account ð1:10:20c; dÞ�

¼ ½ðc2 � r2 þ c2 � r1Þc1 � ðc1 � c2Þr2 � ðc1 � c2Þr1�
� ½ðc1 � r3 þ c1 � r2Þc2 � ðc1 � c2Þr3 � ðc1 � c2Þr2�

¼ ½ðc2 � r3 þ c2 � r1Þc1 � ðc1 � c2Þr2 � ðc1 � c2Þr1�
� ½ðc1 � r3 þ c1 � r1Þc2 � ðc1 � c2Þr3 � ðc1 � c2Þr2�

¼ ½ðc2 � r3 þ c2 � r1Þc1� � ½ðc1 � r3 þ c1 � r1Þc2� � ðc1 � c2Þðr1 � r3Þ
¼ ½ðc2 � r1Þc1 � ðc1 � r1Þc2� þ ½ðc2 � r3Þc1 � ðc1 � r3Þc2�

� ðc1 � c2Þðr1 � r3Þ
¼ ðc2 � c1Þ � r1 þ ðc2 � c1Þ � r3 � ðc1 � c2Þðr1 � r3Þ
¼ ðc2 � c1Þ � ðr1 þ r3Þ þ ðc1 � c2Þðr3 � r1Þ; ð1:10:20eÞ

or, equating the right side of the first line with the last line of (1.10.20e) and rearrang-
ing,

ðc1 þ c2Þ � r2 ¼ c2 � r1 þ c1 � r3

þ ðc2 � c1Þ � ðr1 þ r3Þ þ ðc1 � c2Þðr3 � r1Þ: ð1:10:20fÞ

(iii) We add (1.10.20b) side by side and rearrange to obtain

r3 � r1 ¼ c1�ðr2 þ r1Þ þ c2 � ðr3 þ r2Þ ¼ c1 � r2 þ c1 � r1 þ c2 � r3 þ c2 � r2

) ðc1 þ c2Þ � r2 ¼ r3 � r1 � c1 � r1 � c2 � r3: ð1:10:20gÞ

(iv) Finally, equating the two expressions for ðc1 þ c2Þ � r2, right sides of
(1.10.20f) and (1.10.20g), and rearranging, we obtain the Rodrigues-like formula
[i.e., à la (1.10.4b)]

r3 � r1 ¼ c1;2 � ðr3 þ r1Þ; ð1:10:20hÞ
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where

c1;2 � c1!2 � ½c1 þ c2 þ c2 � c1�=ð1� c1 � c2Þ
¼ Resultant single rotation ‘‘vector; ’’ that brings r1 to r3: ð1:10:20iÞ

This is the sought fundamental formula for the composition of finite rigid rotations.
[For additional derivations of (1.10.20h, i) see, for example, Hamel (1949, pp. 107–
117; via complex number representations and quaternions), Lur’e (1968, pp. 101–
104; via spherical trigonometry); also, Ames and Murnaghan (1929, pp. 82–85). The
above vectorial proof seems to be due to Coe (1938, p. 170); see also Fox (1967, p. 8);
and, for a simpler proof, Chester (1979, pp. 246–248).]

In terms of the corresponding rotation tensors, we would have (with some ad hoc
notations),

REMARKS ON c1;2

(i) Equation (1.10.20i) readily shows that the c’s are not genuine vectors; as the
presence of c2 � c1 there makes clear [or the noncommutativity in (1.10.21c)], in
general, finite rotations are noncommutative. Indeed, had we applied c2 first, and c1
second, the resultant would have been [swap the order of c1 and c2 in (1.10.20i)]

ðc2 þ c1 þ c1 � c2Þ=ð1� c2 � c1Þ � c2;1 � c2!1 6¼ c1;2 � c1!2: ð1:10:22aÞ
For rotations to commute, like genuine vectors, the term c2 � c1 must vanish, either
exactly or approximately. The former happens for rotations about the same axis;
and the latter for infinitesimal (i.e., linear) rotations: there, c2 � c1 ¼ second-order
quantity � 0.

(ii) If c1 � c2 ¼ 1, the composition formula (1.10.20i), obviously, fails. Then, the
corresponding ‘‘resultant angle’’ �1;2 is an integral multiple of �.

(iii) From (1.10.20i) it is not hard to show that

1=ð1þ �1;22Þ1=2 ¼ ð1� c2 � c1Þ=½ð1þ �12Þ1=2ð1þ �22Þ1=2�; ð1:10:22bÞ
and combining this, again, with (1.10.20i) we readily obtain

c1;2=ð1þ �1;22Þ1=2 ¼ ½c1 þ c2 þ c2 � c1�=½ð1þ �12Þ1=2ð1þ �22Þ1=2� ð1:10:22cÞ

Finite rotations may not be commutative, but they are associative: the sequence of
rotations, expressed in terms of their c vectors—for example, c1 ! c2 ! c3—can be
achieved either by combining the resultant of c1 ! c2 with c3, or by combining c1
with the resultant of c2 ! c3. In view of this, the sequence �c1 ! c1 ! c2 is equiva-
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[which is the formula for the vector part of a product of two (unit) quaternions; see

ri → rf ′ : rf ′ = R1 · ri , (1.10.21a)

rf ′ → rf : rf = R2 · rf ′ = R2 · (R1 · ri) ≡ R1,2, · ri , (1.10.21b)

where

R1,2 ≡ R2 ·R1 ( �= R1 ·R2 ≡ R2,1): resultant rotation tensor. (1.10.21c)

Papastavridis (Elementary Mechanics, under production)].



lent to the rotation c2, and also to the sequence �c1 ! c1;2. Therefore, if in the
fundamental ‘‘addition’’ formula (1.10.20i) we make the following replacements:

c1 ! �c1; c2 ! c1;2; c1;2 ! c2; ð1:10:23aÞ

we obtain the ‘‘subtraction’’ formula:

c2 ¼ ½�c1 þ c1;2 þ c1;2 � ð�c1Þ�=½1� ð�c1Þ � c1;2�; ð1:10:23bÞ

or, finally,

c2 ¼ ½c1;2 � c1 þ c1 � c1;2�=ð1þ c1 � c1;2Þ; ð1:10:23cÞ

which allows us to find the second rotation ‘‘vector’’ from a knowledge of the first
and the compounded rotation ‘‘vectors.’’ Similarly, to find c1 from c2 and c1;2, we
consider the rotation sequence c1;2 ! �c2, which, clearly, is equivalent to the rota-
tion c1. Hence, with the following replacements:

c1 ! c1;2; c2 ! �c2; c1;2 ! c1; ð1:10:23dÞ

in (1.10.20i) we obtain the ‘‘subtraction’’ formula:

c1 ¼ ðc1;2 � c2 þ c1;2 � c2Þ=ð1 þ c2 � c1;2Þ: ð1:10:23eÞ

With such simple (and obviously nonunique) geometrical arguments, we can avoid
solving (1.10.20i) for c1, c2. (These results prove useful in relating c to the angular
velocity x.)

Infinitesimal (Linearized) Rotations Commute

First, let us apply the infinitesimal rotation v1 to ri [recalling (1.10.6d)]:

ri ! r1
0 ¼ ri þ dri ¼ ri þ v1 � ri: ð1:10:24aÞ

Next, let us apply v2 to r1
0:

r1
0 ! rf

0 ¼ r1
0 þ dr1

0 ¼ r1
0 þ v2 � r1

0

¼ ðri þ v1 � riÞ þ v2 � ðri þ v1 � riÞ
¼ ri þ ðv1 þ v2Þ � ri þ v2 � ðv1 � riÞ: ð1:10:24bÞ

Reversing the order of the process— that is, applying v2 first to ri, and then v1 to the
result—we obtain

rf
00 ¼ r1

00 þ dr1
00 ¼ r1

00 þ v1 � r1
00

¼ ðri þ v2 � riÞ þ v1 � ðri þ v2 � riÞ
¼ ri þ ðv2 þ v1Þ � ri þ v1 � ðv2 � riÞ; ð1:10:24cÞ

and, therefore, subtracting (1.10.24c) from (1.10.24b) side by side, we obtain

rf
0 � rf

00 ¼ v2 � ðv1 � riÞ � v1 � ðv2 � riÞ ¼ second-order vector in v1; v2;

ð1:10:24dÞ
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that is, to the first order in v1, v2:

rf
0 ¼ rf

00; Q:E:D: ð1:10:24eÞ
Similarly, for an arbitrary number of infinitesimal rotations v1; v2; . . . ; to the first
order:

rf ¼ ri þ ðv1 þ v2 þ � � �Þ � ri: ð1:10:24fÞ

Angular Velocity

(i) Angular Velocity from Finite Rotation

Expanding the rotation tensor (1.10.10e) [with (1.10.9b)] in powers of �X ;Y ;Z, and
since (with customary calculus notations)

c � tanð�=2Þn ¼ ð�=2ÞnþOð�3Þ ¼ v=2þ Oð�3Þ; ð1:10:25aÞ
we find

1 �2�Z 2�Y

2�Z 1 �2�X
�2�Y 2�X 1

0BB@
1CCAþOð�2Þ

¼
1 0 0

0 1 0

0 0 1

0BB@
1CCAþ

0 �2�Z 2�Y

2�Z 0 �2�X
�2�Y 2�X 0

0BB@
1CCAþOð�2Þ

ð1:10:25bÞ
0 �nZ nY

nZ 0 �nX
�nY nX 0

0BB@
1CCA�þ Oð�2Þ; ð1:10:25cÞ

0 ��Z �Y

�Z 0 ��X

��Y �X 0

0BB@
1CCAþ Oð�2Þ; ð1:10:25dÞ

and, with the notations

ri ¼ ðX ;Y ;ZÞ � r;

rf ¼ ri þ Dri ¼ ðX þ DX ;Y þ DY ;Z þ DZÞ � rþ Dr; ð1:10:25eÞ
we obtain, to the first order in the rotation angle,
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R =

[Linear rotation tensor ≡ Ro]

= 1+

= 1+

[Identity tensor] [Linear rotator tensor ≡ Ro
′ (recall (1.10.10d, 15d))]

r+ Δ r = Ro · r = (1+ Ro
′) · r⇒ Δ r = Ro

′
· r , (1.10.25f1)



or, in extenso,

DX

DY

DZ

0B@
1CA ¼ 0 ��Z �Y

�Z 0 ��X

��Y �X 0

0B@
1CA X

Y

Z

0B@
1CA: ð1:10:25f2Þ

This basic kinematical result states that any orthogonal tensor that differs infinitesi-
mally from the identity tensor, that is, to within linear terms, differs from it by an anti-
symmetric tensor.

Finally, dividing (1.10.25f1, 2) by Dt, during which Dr occurs, assuming continuity
and with the following notations:

limðDX=DtÞ

Dt!0
¼ dX=dt � vX ; etc:; limð�X=DtÞ




Dt!0

� !X ; etc:;

vX

vY

vZ

0B@
1CA ¼ 0 �!Z !Y

!Z 0 �!X

�!Y !X 0

0B@
1CA X

Y

Z

0B@
1CA; ð1:10:25gÞ

or, in direct notation,

ð1:10:25hÞ
where

ð1:10:25iÞ

ð1:10:25jÞ

(ii) x is a Genuine Vector

Using the Rodrigues equation (1.10.4b):

rf � ri ¼ c� ðri þ rf Þ; ð1:10:26aÞ
let us prove directly that the angular velocity x, defined as

x � limð2c=DtÞ

Dt!0
; where c � tanð�=2Þn; ð1:10:26bÞ

is a genuine vector, even though c is not.

PROOF

ri ¼ r; rf ¼ ri þ Dr ¼ rþ Dr: ð1:10:26cÞ
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Ω ≡ lim(Ro
′/Δ t)

∣∣
Dt!0

: angular velocity tensor,

(axial vector ofΩ — a genuine vector!).

As shown below [(1.10.26f)], (a) the velocities of the points of a rigid body moving with
one point fixed are, at any instant, the same as they would be if the body were rotating in the
positive sense about a fixed axis through the fixed point, in the direction and sense of x and
with an angular speed equal to |x|; and, (b) since both r and v are genuine vectors, so is
x (a fact that is re-established below). From all existing definitions of the angular velocity,
this seems to be the most natural; but, in return, requires knowledge of finite rotation.

With this in mind, we introduce the following judicious renamings:

v ≡ dr/dt = Ω · r = x × r ,

we obtain the earlier found (1.9.1) fundamental kinematical equation of Poisson:

x≡ lim(2c/Δ t)
∣∣
Dt!0

: angular velocity vector



Then, eq. (1.10.26a) yields

Dr ¼ c� ½ðr� DrÞ þ r� ¼ c� ð2rþ DrÞ ¼ ð2cÞ � ðrþ Dr=2Þ: ð1:10:26dÞ

Dividing both sides of the above by Dt, and then letting Dt! 0 (while assuming
existence of a unique limit as Dr! 0), we obtain

m � limðDr=DtÞ

Dt!0
¼ lim½ð2c=DtÞ � r�

Dt!0

þ lim½2c� ðDr=2Þ�

Dt!0

ð1:10:26eÞ

To complete the proof, let us next show that the line segments x indeed commute.
Dividing the composition of rotations equation (1.10.20i)

c3 � c1;2 ¼ ðc1 þ c2 þ c2 � c1Þ=ð1� c1 � c2Þ ð1:10:26gÞ

by Dt=2, we get

2c3=Dt ¼
�
2c1=Dtþ 2c2=Dt

þ ðDt=2Þð2c2=DtÞ � ð2c1=DtÞ
	
=
�
1� ðDt=2Þ2ð2c2=DtÞ � ð2c1=DtÞ

	
;

and then letting Dt! 0, while recalling the earlier x-definition (1.10.26b, f), we find

x3 � x1;2 ¼ x1 þ x2 ¼ x2 þ x1 � x2;1; ð1:10:26hÞ

that is, simultaneous x’s obey the parallelogram law for their addition and decom-
position, Q.E.D.

(iii) x$ c Differential Equation

Let us consider a rigid body B with the fixed point O. Its instantaneous angular
velocity x is related to its Gibbs ‘‘vector’’ c, which carries a typical B-particle

from ri � rðtÞ to rf � rðtþ DtÞ; ð1:10:27aÞ

by a differential equation. The latter is obtained as follows: in the composition of
rotations equation (1.10.20i) and in order to create the difference Dc there, we choose
the rotation sequence

c1 ¼ �c ! c2 ¼ cþ Dc; ð1:10:27bÞ
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The physical significance of x is understood by examination of the following case: χ̇ =
constant, in the direction and sense of the constant unit vector n. Then, with χ → χ̇ Δ t ⇒

i.e., here, x has the direction and sense of n (= instantaneous rotation axis), and length
equal to the angular speed. Hence, Poisson’s formula, (1.10.25h), allows us to draw the
conclusions following (1.10.25j).

˙

=

˙

= x× r+ 0 = x× r (v, r : vectors ⇒ x : vector); Q.E.D.

c = [tan(χ̇Δ t/2)]n, and so (1.10.26b) specializes to:

x= lim(2c/Δ t)
∣∣
Dt!0

= n lim

{
2[tan(χ̇Δ t/2)]

Δ t

}

Dt!0

= · · · = χ̇n ; (1.10.26f)



which, clearly, is equivalent to the single rotation c1;2 ¼ Dc, and occurs in time Dt.
With these identifications in (1.10.20i), the earlier angular velocity definition yields

x ¼ limð2Dc=DtÞ

Dt!0
¼ 2flimðDc=DtÞ

Dt!0

g
¼ 2 lim

�ð1=DtÞf½ð�cÞ þ ðcþ DcÞ þ ðc� DcÞ�=½1� ð�cÞ � ðcþ DcÞ�g	

Dt!0

¼ 2 limf�ðDc=DtÞ þ c� ðDc=DtÞ	=�1þ c � cþ c �Dc
	g

Dt!0

;

or, finally,

x ¼ ½2=ð1þ �2Þ�½dc=dtþ c� ðdc=dtÞ�: ð1:10:27cÞ
This remarkable formula, due to A. Cayley (Cambridge and Dublin J., vol. 1, 1846),
shows that, in general, x and dc=dt are not parallel!

REMARK

Equation (1.10.27c) also results if we apply to the formula for the subtraction of
rotations (1.10.23c), the sequence

c1 ¼ c� Dc ! c2 ¼ Dc 0; ð1:10:27dÞ
which is equivalent to c1;2 ¼ c. Thus, we obtain

Dc 0 ¼ ½c� ðc� DcÞ þ ðc� DcÞ � c�=½1þ ðc� DcÞ � c�
¼ ðDcþ c� DcÞ=ð1þ �2 � c �DcÞ; ð1:10:27eÞ

then divide by Dt and take the limit as Dt! 0 to obtain

x ¼ 2 limðDc 0=DtÞ

Dt!0

¼ �½limðDc=DtÞ þ c� limðDc=DtÞ�=ð1þ �2 � c �DcÞ�

Dt!0

¼ ½2=ð1þ �2Þ�½dc=dtþ c� ðdc=dtÞ�; ð1:10:27fÞ

as before. The reader may verify that the sequence c1 ¼ c! c2 ¼ Dc 0, which is
equivalent to c1;2 ¼ cþ Dc, also leads to the same formula.

(iv) Inversion of the Preceding Formula x ¼ xðc; dc=dtÞ

First Derivation. Dotting both sides of that equation,
(1.10.27c), by c yields

c �x ¼ ½2=ð1þ �2Þ�½c � ðdc=dtÞ�; ð1:10:28aÞ
while crossing it with c gives

c� x ¼ ½2=ð1þ �2Þ��c� ðdc=dtÞ þ c� ½c� ðdc=dtÞ��
¼ ½2=ð1þ �2Þ��c� ðdc=dtÞ þ ½c � ðdc=dtÞ�c� �2ðdc=dtÞ�: ð1:10:28bÞ
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Eliminating c � ðdc=dtÞ between (1.10.28a, b) produces

c� x ¼ ½2=ð1þ �2Þ�c� ðdc=dtÞ
� ½2�2=ð1þ �2Þ�ðdc=dtÞ þ ðc �xÞc
½expressing the first right-side term of the above via ð1:10:27cÞ�

¼ �x� ½2=ð1þ �2Þ�ðdc=dtÞ�� ½2�2=ð1 þ �2Þ�ðdc=dtÞ þ ðc �xÞc
¼ x� 2ðdc=dtÞ þ ðc �xÞc; ð1:10:28cÞ

or, rearranging, finally gives

2ðdc=dtÞ ¼ xþ ðc �xÞcþ x� c; ð1:10:28dÞ
which, for a given xðtÞ, is a vector first-order nonlinear (second-degree) differential
equation for cðtÞ (and can be further reduced to a ‘‘Ricatti-type equation’’).

Equations (1.10.27d), and (1.10.27c) clearly demonstrate the one-to-one relation
between x and dc=dt: if one of them vanishes, so does the other.

Second Derivation. Applying the earlier rotation sequence

c1 ¼ c! c2 ¼ Dc 0; ð1:10:28eÞ
which is equivalent to c1;2 ¼ cþ Dc, both occurring in time Dt, to the composition
formula (1.10.20i) we obtain

cþ Dc ¼ ðcþ Dc 0 þ Dc 0 � cÞ=ð1� Dc 0 � cÞ; ð1:10:28fÞ
from which, subtracting c, we get

Dc ¼ ½Dc 0 þ ðc �Dc 0Þcþ Dc 0 � c�=ð1� c �Dc 0Þ; ð1:10:28gÞ
and from this, dividing by Dt and taking the limit as Dt! 0, while recalling that [eq.
(1.10.27f)] x ¼ 2 limðDc 0=DtÞjDt!0, we re-obtain (1.10.28d).

For still alternative derivations of the x$ c equations, via the compatibility of
the Eulerian kinematic relation m � dr=dt ¼ x� r with the d=dtð. . .Þ-derivative of

(v) Additional Useful Results

(a) Starting with

c ¼ n tanð�=2Þ
) dc=dt ¼ ðdn=dtÞ tanð�=2Þ þ n½ðd�=dtÞ=2� sec2ð�=2Þ; etc:;

and then using the x$ c equation, we can show that

x ¼ ðd�=dtÞnþ ðsin�Þðdn=dtÞ þ ð1� cos�Þn� ðdn=dtÞ: ð1:10:29aÞ
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the finite rotation equation rf = rf (γ; ri) [eqs. (1.10.2–4)], see, for example (alpha-
betically): Coe (1938, chap. 5; best elementary/vectorial treatment), Ferrarese (1980,
pp. 122–137), Hamel (1949, pp. 106–107; pp. 391–393).



(What happens if n ¼ constant?)
(b) Again, starting with

c ¼ n tanð�=2Þ ¼ tanð�=2Þðv=�Þ ¼ ½tanð�=2Þ=��v ) dc=dt ¼ � � � ; etc:;
and then using the x$ c equation, we can show that

ð1:10:29bÞ
(c) By inverting (1.10.29b), we can show that

ð1:10:29cÞ

General Rigid-Body Displacement (i.e., no point fixed)

We have already seen (}1.9) that the most general rigid-body displacement can be
effected by the translation of an arbitrary base point or pole of it, from its initial to its
final position, followed by a rotation about an axis through the final position of that
point (see figs 1.12 and 1.22). Here, we show that the translational part of the above
total displacement does depend on the base point, but the rotational part— that is, the
rotation tensor—does not.

Referring to fig. 1.22, let

ð1:10:30aÞ
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Figure 1.22 Most general rigid-body displacement; the rotation tensor is independent

of the base point (or pole).

dχ/dt = ω − (χ× x )/2 + (1/χ2)[1 − (χ/2) cot(χ/2)][χ × (χ× x )] .

More in our Elementary Mechanics (§13.8 — under production).

11′ ≡ r1′/1 , PP′′ ≡ rf/i , 1P ≡ r
/1 , 1′P′ ≡ r

/1′ , 1′′P′′ ≡ 1′P′′ ≡ r
/1′′ ,

R1 ≡ rotation tensor bringing 1′P′ to 1′P′′; i.e., r
/1′′ = R1 · r/1′ .

x = (sinχ/χ)(dχ/dt) + [(1− cosχ)/χ2][χ× (dχ/dt)]

+ [(1/χ)− (sinχ/χ2)](dχ/dt)χ

= dχ/dt+ [(1 − cosχ)/χ2][χ× (dχ/dt)]

+ [(χ− sinχ)/χ3]{χ× [χ× (dχ/dt)]}.

r/1 → r/1′ → r/1′′ = R1 · r/1′ ;
ri = r1 + r/1 → ri ′ = r1′ + r/1′ → rf = r1′′ + r/1′′ = r1′′ +R1 · r/1′ (r1′ = r1′′).



In words: the rotation tensor is independent of the chosen base point; it is a position-
independent tensor. This fundamental theorem simplifies rigid-body geometry
enormously and brings out the intrinsic character of rotation. (In kinetics, however,
as the reader probably knows, such a decoupling between translation and rotation is
far more selective.)

1.11 THE RIGID BODY: ACTIVE AND PASSIVE INTERPRETATIONS

OF A PROPER ORTHOGONAL TENSOR; SUCCESSIVE FINITE ROTATIONS

A 3� 3 proper orthogonal tensor may be interpreted in the following consistent
ways:

(i) As the matrix of the direction cosines orienting two orthonormal and dextral
(OND) triads, or bases, and associated axes; say, a body-fixed, or moving, triad t:

t � ðukÞ �
u1

u2

u3

0B@
1CA � ux

uy

uz

0B@
1CA � i

j

k

0B@
1CA; ð1:11:1aÞ

relative to a space-fixed triad T:
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T

or since 1P = 1′P′ (i.e., r/1 = r/1′),

rf / i = r1′/1 + (R1 − 1) · r/1 . (1.10.30c)

Had we chosen another base point, say 2, then reasoning as above we would have
found (with some easily understood notations)

rf / i = r2′/2 + (R2 − 1) · r/2 . (1.10.30d)

But also, applying (1.10.30c) for P = 2, we have (since r2′ = r2′′ )

r2′ /2 = r1′/1 + (R1 − 1) · r2/1 . (1.10.30e)

Therefore, substituting (1.10.30e) in (1.10.30d) and equating its right side to that of
(1.10.30c), we obtain

r1′/1 + (R1 − 1) · r2/1 + (R2 − 1) · r/2 = r1′/1 + (R1 − 1) · r/1 ,

from which, rearranging, we get

(R1 − 1) · (r/1 − r2/1) ≡ (R1 − 1) · r/2 = (R2 − 1) · r/2 , (1.10.30f)

and since this must hold for all body point pairs P and 2 (i.e., it must be an identity
in them), we finally conclude that

R1 = R2 = · · · ≡ R . (1.10.30g)

Then, successively,

PP′′ = P1+ 11′ + 1′P′′ = −r/1 + r1′/1 + R1 · r/1′ , (1.10.30b)



T � ðuk 0 Þ �
u1 0

u2 0

u3 0

0B@
1CA � uX

uY

uZ

0B@
1CA � I

J

K

0B@
1CA: ð1:11:1bÞ

(ii) Then, since

I ¼ ðI � iÞi þ ðI � jÞ j þ ðI � kÞk � AXx i þ AXy j þ AXzk; etc:; cyclically;

i ¼ ði � IÞI þ ði � JÞJ þ ði �KÞK � AXx I þ AYx J þ AZx K ; etc:; cyclically;

the two triads are related by

T ¼ A � t , t ¼ A�1 �T ¼ AT
�T; ð1:11:1cÞ

where

A �
I � i I � j I � k

J � i J � j J � k

K � i K � j K � k

0BB@
1CCA �

AXx AXy AXz

AYx AYy AYz

AZx AZy AZz

0BB@
1CCA ð1:11:1dÞ

¼ ðAk 0kÞ; Ak 0k � cosðxk 0 ; xkÞ ¼ uk 0 � uk ½¼ cosðxk; xk 0 Þ ¼ Akk 0 �: ð1:11:1eÞ

The rotation of an OND triad, equation (1.11.1c), T! t, constitutes the second
interpretation of a proper orthogonal tensor.

(iii) The third such interpretation is that of a coordinate transformation from the
T-axes: O�xk 0 � O�XYZ to the t-axes: O�xk � O�xyz (of common origin, with
no loss in generality). In this interpretation, known as passive or alias (meaning
otherwise known as), the point P is fixed in T-space and the t-axes rotate. Then
[fig. 1.23(a)],

OP � r ¼
X

xk 0uk 0 ¼ XI þ YJ þ ZK ¼
X

xkuk ¼ xi þ yj þ zk; ð1:11:2aÞ
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Figure 1.23 (a) Passive and (b) Active interpretation of a proper orthogonal tensor
(two dimensions).



and so we easily find

xk 0 � r � uk 0 ¼ � � � ¼
X

Ak 0kxk;

xk � r � uk ¼ � � � ¼
X

Akk 0xk 0 ¼
X

Ak 0kxk 0
� �

; ð1:11:2bÞ

or explicitly, in matrix form,

X

Y

Z

0BB@
1CCA ¼

AXx AXy AXz

AYx AYy AYz

AZx AZy AZz

0BB@
1CCA

x

y

z

0BB@
1CCA

r 0 ¼ A � r

Old axes New axes; ð1:11:2cÞ

x

y

z

0BB@
1CCA ¼

AXx AYx AZx

AXy AYy AZy

AXz AYz AZz

0BB@
1CCA

X

Y

Z

0BB@
1CCA

r ¼ A
T
� r 0

New axes Old axes: ð1:11:2dÞ
For example, in two dimensions [fig. 1.23(a)], the above yield

X

Y

 !
¼

cos� � sin�

sin� cos�

 !
x

y

 !
x

y

 !
¼

cos� sin�

� sin� cos�

 !
X

Y

 !
r 0 ¼ A � r; r ¼ A

T
� r 0

ð1:11:2eÞ

(iv) Under the fourth interpretation, known as active or alibi (meaning elsewhere),
the axes remain fixed in space, say T ¼ t, and the point P rotates about O, from an
initial position ri ¼ XI þ YJ þ ZK to a final one rf ¼ X 0I þ Y 0J þ Z 0K . Then,
following }1.10, and with A! R (rotation tensor),

X 0

Y 0

Z 0

0BB@
1CCA ¼ R

X

Y

Z

0BB@
1CCA ¼ A

X

Y

Z

0BB@
1CCA

rf ¼ R � ri

Final position Initial position; ð1:11:2f Þ

X

Y

Z

0BB@
1CCA ¼ R

T

X 0

Y 0

Z 0

0BB@
1CCA ¼ A

T

X 0

Y 0

Z 0

0BB@
1CCA

ri ¼ R
T
� rf

Initial position Final position: ð1:11:2gÞ
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Equations (1.11.2f, g) hold about any common axes; and, clearly, the components of
R depend on the particular axes used. For example, in two dimensions [fig. 1.23(b)],
the above yield

X 0

Y 0

� �
¼ cos� � sin�

sin� cos�

� �
X

Y

� �
X

Y

� �
¼ cos�

� sin�

sin�

cos�

� �
X 0

Y 0

� �
rf ¼ R � ri; ri ¼ R

T
� rf ; ð1:11:2hÞ

and for the new triad (actually a dyad) i, j in terms of the old triad I, J [along the
same (old) axes], they readily yield

cos�

sin�

� �
¼ cos�

sin�

� sin�

cos�

� �
1

0

� � � sin�

cos�

� �
¼ cos�

sin�

� sin�

cos�

� �
0

1

� �
i ¼ R � I ; j ¼ R � J : ð1:11:2iÞ

The passive and active interpretations are based on the fact that: The rigid body
rotation relative to space-fixed axes (active interpretation), and the axes rotation
relative to a fixed body (passive interpretation) are mutually reciprocal motions.
Hence [fig. 1.24(a, b)]: The coordinates of a rotated body-fixed vector along the
old axes ( final position, active interpretation), equal the coordinates of the unrotated
rigid body along the inversely rotated axes (new axes, passive interpretation).

It follows that if the body is fixed relative to the new axes and r 0 ¼ XI þ YJ ,
r ¼ xi þ yj, then the rotation equations—for example, (1.10.2e)—yields (with
ri ! rnew ðbody-fixedÞ axes � r and rf ! r 0old axes � r 0Þ

r 0 ¼ ½2=ð1þ �2Þ�½c� rþ ðc � riÞc� þ ½ð1� �2Þ=ð1þ �2Þ�r: ð1:11:3Þ
A correct understanding of the above four interpretations—in particular, the inter-
change of A with A

T ¼ Að��Þ [and R with R
T ¼ Rð��Þ] in single, and, especially,

successive rotations (see below)—is crucial to spatial rigid-body kinematics. Lack of
it, as Synge (1960, p. 16) accurately puts it ‘‘can be a source of such petty confusion.’’
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Figure 1.24 The final coordinates under � [active interpretation (a)] equal

the new coordinates under �� [passive interpretation (b)], and vice versa.

(X0�-rotated vector; old axes ¼ xunrotated vector;��-rotated axes, etc.)



ðiÞ A ¼ ðAk 0kÞ ¼ ðuk 0 � ukÞ: Direction cosine matrix;

ðiiÞ
I

J

K

0BB@
1CCA ¼ A

i

j

k

0BB@
1CCA

or T ¼ A � t: Triad rotation;

ðiiiÞ
X

Y

Z

0BB@
1CCA ¼ A

x

y

z

0BB@
1CCA

or rold axes � r 0 ¼ A � rnew axes � A � r: Passive interpretation

ðVector fixed; axes rotatedÞ;

ðivÞ
X 0

Y 0

Z 0

0BB@
1CCA ¼ R

X

Y

Z

0BB@
1CCA

or rf ¼ R � ri: Active interpretation A ¼ R

ðVector rotated; axes fixed; and commonÞ:

REMARKS

(i) In the passive interpretation, we denote the components of A as Ak 0k; whereas,
in the active one, we denote them, in an arbitrary but common set of axes, as Rkl (or
Rk 0l 0). This is an extra advantage of the accented indicial notation, especially in cases
where both interpretations are needed.

(ii) The passive interpretation also holds for the components of any other vector;
for example, angular velocity.

Successive Rotations

Let us consider a sequence of rotations compounded according to the following
scheme:

T ! T1 ! T2 ! � � � ! Tn�1 ! Tn � t

A1 A2 A3 An�1 An ð1:11:4aÞ
Then we shall have the following composition formulae, for the various interpreta-
tions.

(i) Triad Rotation

T ¼ ðA1 �A2 � � � � �AnÞ � t , t ¼ ðAn
T
�An�1

T
� � � � �A1

TÞ �T; ð1:11:4bÞ
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Below, we summarize these four interpretations of an orthogonal tensor A or R:



or, in extenso,

I

J

K

0BB@
1CCA ¼ ðA1 �A2 � � � � �AnÞ

i

j

k

0BB@
1CCA

ð1:11:4cÞ

i

j

k

0BB@
1CCA ¼ ðAn

T
�An�1

T
� � � � �A1

TÞ
I

J

K

0BB@
1CCA

Final triad Initial triad: ð1:11:4dÞ

(ii) Passive Interpretation

Here, with some easily understood ad hoc notations, we will have

rold axes � r 0 ¼ A1 � r1 ¼ A1 � ðA2 � r2Þ ¼ � � � ¼ ðA1 �A2 � � � � �AnÞ � r; ð1:11:4eÞ

rnew axes � r ¼ ðA1 �A2 � � � � �AnÞT � r 0 ¼ ðAn
T
�An�1

T
� � � � �A1

TÞ � r 0; ð1:11:4f Þ

or, in extenso,

X

Y

Z

0BB@
1CCA ¼ ðA1 �A2 � � � � �AnÞ

x

y

z

0BB@
1CCA

Old axes New axes; ð1:11:4gÞ

x

y

z

0BB@
1CCA ¼ ðAn

T
�An�1

T
� � � � �A1

TÞ
X

Y

Z

0BB@
1CCA

New axes Old axes: ð1:11:4hÞ

(iii) Active Interpretation

Here, choosing common axes corresponding to T; that is,

ri ¼ XI þ YJ þ ZK ! rf ¼ X 0I þY 0J þ Z 0K ð¼ X i þ Y j þ ZkÞ; ð1:11:4iÞ
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Initial triad (natural order Final triad,
of component
matrices)



we obtain, successively,

ri ¼ A1
T
� rf ;1 ¼ A

T
1 � ðAT

2 � rf ;2Þ ¼ � � � ¼ ðA1
T
�A2

T
� � � � �An

TÞ � rf
� ðR1

T
�R2

T
� � � � �Rn

TÞ � rf ; ð1:11:4jÞ

) rf ¼ ðAn �An�1 � � � � �A1Þ � ri � ðRn �Rn�1 � � � � �R1Þ � ri; ð1:11:4kÞ
or, in extenso,

X 0

Y 0

Z 0

0BB@
1CCA ¼ ðRn �Rn�1 � � � � �R1Þ

X

Y

Z

0BB@
1CCA

Final position Initial position; ð1:11:4lÞ

X

Y

Z

0BB@
1CCA ¼ ðR1

T
�R2

T
� � � � �Rn

TÞ
X 0

Y 0

Z 0

0BB@
1CCA

Initial position Final position: ð1:11:4mÞ

Body-Fixed versus Space-Fixed Axes

The moving triad t and associated axes (O–xyz) may be considered as a rigid body
going through a sequence of rotations, either about these body-fixed axes themselves,
or about the space-fixed axes O–XYZ with which it originally coincided. Either of
these two types of sequences may be used (although the tensors/matrices of rotations
about body-fixed axes have simpler structure than those about space-fixed axes), and
their outcomes are related by the following remarkable theorem: The sequence of
rotations about Ox, Oy, Oz has the same effect as the sequence of rotations of equal
amounts about OX, OY, OZ, but carried out in the reverse order. Symbolically,

ðR1R2Þbody-fixed axes ¼ ðR2R1Þspace-fixed axes:

This nontrivial result will be proved in }1.12.
Thus, for a sequence about space-fixed axes, eq. (1.11.4h) (which expresses the

passive interpretation for a body-fixed sequence) should be replaced by

x

y

z

0BB@
1CCA ¼ ðS1

T
�S2

T
� � � � �Sn

TÞ
X

Y

Z

0BB@
1CCA

¼ ðSn �Sn�1 � � � � �S1ÞT
X

Y

Z

0BB@
1CCA

New axes Old axes; ð1:11:4nÞ
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where the Sk are the space-fixed axes counterparts (of equal angle of rotation) of the
Rk; and similarly for the other compounded rotation equations.

REMARKS

(i) In algebraic terms, we say that such successive rotations form the Special
Orthogonal (Unit Determinant)—Three Dimensional group of Real Matrices
[�SO(3, R)], and are representable by three independent parameters; for example,
Eulerian angles (}1.12).

[By group, we mean, briefly, that (a) an identity rotation exists (i.e., one that
leaves the body unchanged); (b) the product of two successive rotations is also a
rotation; (c) every rotation has an inverse; and (d) these rotations are associative. See
books on algebra/group theory.]

(ii) Some authors call rotation tensor/matrix the transpose of this book’s, while
others, in addition, fail to mention the distinction between active and passive inter-
pretations. Hence, a certain caution is needed when comparing various references.
Our choice was based on the fact that when the rotation tensor of the active inter-
pretation is expanded à la Taylor around the identity tensor, and so on (1.10.25a ff.),
it leads to an angular velocity compatible with the definition of the axial vector (x) of

Let us consider the following two rectangular Cartesian sets of axes, O–xk 0

(� O�XYZ, fixed) and O�xk ð� O�xyz, moving), related by the proper orthogonal
transformation:

xk 0 ¼
X

Ak 0kxk , xk ¼
X

Akk 0xk 0 ; Ak 0k ¼ Akk 0 ¼ cosðxk 0 ; xkÞ: ð1:11:5aÞ

The corresponding components of the rotation tensor, Rk 0l 0 and Rkl , respectively,
will be related by the well-known transformation rule for second-order tensors
(1.1.19j ff.):

Rk 0l 0 ¼
XX

Ak 0kAl 0lRkl , Rkl ¼
XX

Ak 0kAl 0lRk 0l 0 ; ð1:11:5bÞ

or, in matrix form,

R
0 ¼ A �R �A

T , R ¼ A
T
�R
0
�A; ð1:11:5cÞ

where

R 0 ¼ ðRk 0l 0 Þ; R ¼ ðRklÞ; A ¼ ðAk 0kÞ: ð1:11:5dÞ

Here, choosing axes O–xk in which Rkl have the simplest form possible, and then
applying (1.11.5b, c), we will obtain the rotation tensor components in the general
axes O�xk 0 , Rk 0l 0 ; that is, eq. (1.10.10a). To this end, we select Oxk so that x1 � x is
along the positive sense of the rotation axis n, while x2 � y, x3 � z are on the plane
through O perpendicular to n (fig. 1.25). For such special axes, the finite rotation is a
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Ω · r = − x × r.
an antisymmetric tensor (1.1.16a ff.) Ω: Ω · r = ω × r; otherwise we would have

Tensorial Derivation of the Finite Rotation Tensor



plane rotation of (say, right-hand rule) angle � about Ox, and, hence, there the
rotation tensor has the following simple planar form:

R ¼
1 0 0

0 cos� � sin�

0 sin� cos�

0B@
1CA: ð1:11:5eÞ

Now, to apply (1.11.5c) we need A. The latter, since

i ¼ AxXI þ AxYJ þ AxZK ¼ n � nXI þ nYJ þ nZK ; ð1:11:5f Þ
becomes

A ¼
nX AXy AXz

nY AYy AYz

nZ AZy AZz

0B@
1CA; ð1:11:5gÞ

and so, with the abbreviations cosð. . .Þ � cð. . .Þ, sinð. . .Þ � sð. . .Þ, (1.11.5c) specia-
lizes to

R 0 ¼
nX AXy AXz

nY AYy AYz

nZ AZy AZz

0B@
1CA 1 0 0

0 c� �s�
0 s� c�

0B@
1CA nX nY nZ

AXy AYy AZy

AXz AYz AZz

0B@
1CA;
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Figure 1.25 Tensor transformation of rotation tensor, between the

general fixed axes O–XYZ and the special moving axes O–xyz; Ox

axis of rotation.



or, carrying out the matrix multiplications, and recalling that R1 01 0 � RXX ,
R1 02 0 � RXY , and so on,

RXX ¼ nX
2 þ ðAXy

2 þ AXz
2Þ cos�;

RXY ¼ nXnY þ ðAXyAYy þ AXzAYzÞ cos�� ðAXyAYz � AYyAXzÞ sin�;
RXZ ¼ nXnZ þ ðAXyAZy þ AXzAZzÞ cos�þ ðAZyAXz � AXyAZzÞ sin�;
RYX ¼ nYnX þ ðAYyAXy þ AYzAXzÞ cos�þ ðAXyAZz � AYyAXzÞ sin�;
RYY ¼ nY

2 þ ðAYy
2 þ AYz

2Þ cos�;
RYZ ¼ nYnZ þ ðAYyAZy þ AYzAZzÞ cos�� ðAYyAZz � AZyAYzÞ sin�;
RZX ¼ nZnX þ ðAZyAXy þ AZzAXzÞ cos�� ðAZyAXz � AXyAZzÞ sin�;
RZY ¼ nZnY þ ðAZyAYy þ AZzAYzÞ cos�þ ðAYyAZz � AZyAYzÞ sin�;
RZZ ¼ nZ

2 þ ðAZy
2 þAZz

2Þ cos�: ð1:11:5hÞ

However, the nine Ak0k are constrained by the six orthonormality conditions:

I � J ¼ nXnY þ AXyAYy þ AXzAYz ¼ 0;

J �K ¼ nYnZ þ AYyAZy þ AYzAZz ¼ 0;

K � I ¼ nZnX þ AZyAXy þ AZzAXz ¼ 0;

I � I ¼ nX
2 þ AXy

2 þ AXz
2 ¼ 1;

J � J ¼ nY
2 þ AYy

2 þ AYz
2 ¼ 1;

K �K ¼ nZ
2 þ AZy

2 þ AZz
2 ¼ 1; (1.11.5i)

and also n ¼ uy � uz, or, in components,

nX ¼ AYyAZz � AZyAYz; nY ¼ AZyAXz �AXyAZz; nZ ¼ AXyAYz � AYyAXz:

ð1:11:5jÞ

As a result of the above, it is not hard to verify that the Rk 0l 0 , (1.11.5h), reduce to

RXX ¼ nX
2 þ ð1� nX

2Þ cos�;
RXY ¼ nXnY þ ð�nXnY Þ cos�þ ðnZÞ sin�;
RXZ ¼ nXnZ þ ð�nXnZÞ cos�þ ðnYÞ sin�;
RYX ¼ nYnX þ ð�nXnY Þ cos�þ ðnZÞ sin�;
RYY ¼ nY

2 þ ð1� nY
2Þ cos�;

RYZ ¼ nYnZ þ ð�nYnZÞ cos�þ ð�nXÞ sin�;
RZX ¼ nZnX þ ð�nZnXÞ cos�þ ð�nY Þ sin�;
RZY ¼ nZnY þ ð�nZnY Þ cos�þ ðnX Þ sin�;
RZZ ¼ nZ

2 þ ð1� nZ
2Þ cos�; (1.11.5k)
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and when put to matrix form is none other than eq. (1.10.10a). We notice that the
components Rk 0l 0 are independent of the orientation of the O–xyz axes, as expected.

Angular Velocity via the Passive Interpretation

Let us consider a generic body point P fixed in the moving frame t: O–ijk/O–xyz, and
hence representable by

r 0 ¼ XI þ YJ þ ZK (space-fixed frame T : O�IJK=O�XYZÞ; (1.11.6a)

r ¼ xi þ yj þ zk (body-fixed frame; i.e. x; y; z ¼ constantÞ; (1.11.6b)

or, in matrix form,

r 0T ¼ ðX ;Y ;ZÞ; rT ¼ ðx; y; zÞ: (1:11:6cÞ

r 0 ¼ R � r; ð1:11:6dÞ

and, therefore, the inertial velocity of P, resolved along the fixed axes O–XYZ equals

v 0 � dr 0=dt ¼ ðdR=dtÞ � rþ R � ðdr=dtÞ ¼ ðdR=dtÞ � rþ R � 0

(1.11.6e)

where [recalling (1.7.30f ff.), with A! R]

The components of the angular velocity along the moving axes can then be found
easily from the vector transformation (passive interpretation):

v ¼ inertial velocity of P; but resolved along the moving axes ðnot to be confused
with the velocity of P relative to t, which is zero: dr/dt= 0)

where
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According to the passive interpretation (1.11.2c) (with A replaced by the rotation
tensor/matrix R),

=

x ′ = axial vector of Ω′; angular velocity vector of t relative to T, along T. (1.11.6g)

Ω
′
≡ (dR/dt) ·RT = angular velocity tensor of body frame t relative to the fixed

frame T, but resolved along the fixed axes O–XYZ, (1.11.6f)

 

Ω ≡ RT
· (dR/dt) = angular velocity tensor of body frame t relative to the fixed frame
T, but resolved along the moving axes O–xyz

{
= [RT

· (dR/dt)] · (RT
·R) = RT

· [(dR/dt) ·RT] ·R

= RT
·Ω

′
·R; a second-order tensor transformation, as it should be

}
, (1.11.6i)

x = axial vector of Ω; angular velocity of t relative to T, along t [= RT
·x ′] . (1.11.6j)

= (dR/dt) · (RT
· r′) = Ω

′
· r′ ≡ x ′

× r′ ,

== RT
· v ′ = RT

· [(dR/dt) · r] = Ω · r ≡ x × r , (1.11.6h)



REMARK

If

Additional Useful Results

1. Consider the following two successive (component) rotations: First, from the
‘‘fixed’’ frame 0 to the moving frame 1, R1=0 � R1, and, next, from 1 to the also
moving frame 2, R2=1 � R2. Then, by (1.11.4a ff.), the resultant rotation from 0 to 2
will be R ¼ R1 �R2. Now, let:

angular velocity of frame 2 relative to frame 0, but expressed along 1-axes; etc.;
i.e., the multiplications R1 � ð. . .Þ �R1

T convert components from 1-frame axes to
0-frame axes; while R1

Tð. . .Þ �R1 convert components from 0-frame axes to 1-frame
axes; and analogously for R2 � ð. . .Þ �R2

T, R2
T
� ð. . .Þ �R2:

Then, and since R; R1, R2 are orthogonal tensors,
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If R = R(q1, q2, q3) ≡ R(q
α
), where the q

α
are system rotational parameters (e.g., the

three Eulerian angles, §1.12), then Ω
′ and x ′ can be expressed, respectively as follows:

Tensor: Ω′ =
∑

Ω
′

α(dqα/dt) , Vector: x ′ =
∑

x ′

α(dqα/dt) , (1.11.6k)

where

Ω
′

α ≡ (∂R/∂q
α
) ·RT and Ω

′

α · x = x ′

α × x , (1.11.61)

for an arbitrary vector x; that is, Ω
′ can be expressed in terms of the local basis

{Ω
′

α; α = 1, 2, 3}; and similarly for Ω and x .

(this or some similar intricate notation is a must in matrix territory!) and therefore

Ω1/0, 0 = R1 ·Ω1/0, 1 ·R1
T
⇔ Ω1/0, 1 = R1

T
·Ω1/0, 0 ·R1 ,

Ω2/1, 0 = R1 ·Ω2/1, 1 ·R1
T
⇔ Ω2/1, 1 = R1 ·Ω2/1, 0 ·R1

T ,

Ω2/1, 1 = R2 ·Ω2/1, 2 ·R2
T
⇔ Ω2/1, 2 = R2

T
·Ω2/1, 1 ·R2 ,

Ω2/0, 1 = R1
T
·Ω2/0, 0 ·R1 = R2 ·Ω2/0, 2 = R2

T :

(a) Ω2/0, 0 = (dR/dt) ·RT = [d/dt(R1 ·R2)] · (R1 ·R2)
T

= · · · = (dR1/dt) ·R1
T + R1 · [(dR2/dt) ·R2

T] ·R1
T

= Ω1/0, 0 + R1 ·Ω2/1, 1 ·R1
T
≡ Ω1/0, 0 +Ω2/1, 0

Ω1/0, 0 ≡ (dR1/dt) ·R1
T: angular velocity tensor of frame 1 relative to frame 0 ,

along 0-axes ;

Ω1/0, 1 ≡ R1
T
· (dR1/dt): angular velocity tensor of frame 1 relative to frame 0 ,

along 1-axes ;

Ω2/1, 1 ≡ (dR2/dt) ·R2
T: angular velocity tensor of frame 2 relative to frame 1 ,

along 1-axes ;

Ω2/1, 2 ≡ R2
T
· (dR2/dt) : angular velocity tensor of frame 2 relative to frame 1 ,

along 2-axes ;

Ω2/0, 0 ≡ (dR/dt) ·RT: angular velocity tensor of frame 2 relative to frame 0 ,

along 0-axes ;

Ω2/0, 2 ≡ RT
· (dR/dt) : angular velocity tensor of frame 2 relative to frame 0 ,

along 2-axes ; (1.11.7a)



vectorial (undergraduate) kinematics. The extension of the above to three or more
successive rotations is obvious.

[As Professor D. T. Greenwood has aptly remarked: ‘‘Equations (1.11.7b–e) illus-
trate how the use of matrix notation can make the simple seem obscure.’’]

2. Matrix forms of relative motion of a particle, in two frames with common origin.
By d=dtð. . .Þ-differentiating the passive interpretation (1.11.2c),

X

Y

Z

0B@
1CA ¼ A �

x

y

z

0B@
1CA

Fixed axes Moving axes; ð1:11:8aÞ

we can show that

ðiÞ
d=dt

X

Y

Z

0BB@
1CCA ¼ A � d=dt

x

y

z

x

y

z

0BB@
1CCA

2664
3775

f ¼ A � ½relative velocityþ transport velocity�g: ð1:11:8bÞ
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(theorem of additivity of angular velocities, along 0-axes) ; (1.11.7b)

Ω2/0, 1 = R1
T
·Ω2/0, 0 ·R1 = R1

T
·Ω1/0, 0 ·R1 +Ω2/1, 1 ≡ Ω1/0, 1 +Ω2/1, 1

(theorem of additivity of angular velocities, along 1-axes) ; (1.11.7c)

(b) Next, d(. . .)/dt-differentiating the above, say (1.11.7b), it is not hard to show
that:

dΩ2/0, 0/dt = dΩ1/0, 0/dt + d/dt(R1 ·Ω2/1, 1 ·R1
T)

= dΩ1/0, 0/dt + R1 · (dΩ2/1, 1/dt) ·R1
T + R1 · (Ω1/0, 1 ·Ω2/1, 1 −Ω2/1, 1 ·Ω1/0, 1) ·R1

T

(theorem of non-additivity of angular accelerations, along 0-axes) ; (1.11.7e)

and similarly for dΩ2/0, 1/dt, dΩ2/0, 2/dt. The last (third) term of (1.11.7e) shows that
if the elements of the matrices, Ω1/0, 0, Ω2/1, 1 are constant, then, in general, the elements
of Ω2/0, 0 will also be constant if Ω1/0, 1 and Ω2/1, 1 commute, a well-known result from

Ω2/0, 2 = RT
· (dR/dt) [= R2

T
·Ω2/0, 1 ·R2 = RT

·Ω2/0, 0 ·R]

≡ (R1 ·R2)
T
· [d/dt(R1 ·R2)]

= · · · = R2
T
· [R1

T
· (dR1/dt)] ·R2 + R2

T
· (dR2/dt)

= R2
T
·Ω1/0, 1 ·R2 +Ω2/1, 2 ≡ Ω1/0, 2 +Ω2/1, 2

(theorem of additivity of angular velocities, along 2-axes) . (1.11.7d)

+Ω ·

0BB@
1CCA



ðiiÞ
d2=dt2

X

Y

Z

0BB@
1CCA ¼ A � d2=dt2

x

y

z

0BB@
1CCA

x

y

z

0BB@
1CCA

2664
x

y

z

0BB@
1CCA

x

y

z

0BB@
1CCA
3775

(iii) If the position of the origin of the moving axes, relative to that of the fixed
ones, is ro ¼ ðXo;Yo;ZoÞT, so that [instead of (1.11.8a)]

X

Y

Z

0B@
1CA ¼ Xo

Yo

Zo

0B@
1CAþA �

x

y

z

0B@
1CA; ð1:11:8dÞ

then we simply add d=dtðXo;Yo;ZoÞT to the right side of (1.11.8b) and
d2=dt2ðXo;Yo;ZoÞT to the right side of (1.11.8c).

that

where

where, as before, an accent (prime) denotes matrix of components along the fixed
axes.
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+(dΩ/dt) ·

++Ω
2
· + 2Ω · d/dt

(1.11.8c)

we point out that, in the matrix notation, the d/dt vs. ∂/∂t difference (§1.7) disappears.

3. Tensor of Angular Acceleration, and so on.
(i) By d(. . .)/dt-differentiating (1.7.30i, j): dA/dt = A ·Ω = Ω

′
·A, we can show

E ≡ A+Ω ·Ω ≡ A+Ω
2 , (1.11.9b)

A ≡ dΩ/dt : (Matrix of components, along the moving axes, of the)

tensor of angular acceleration of the moving axes relative

to the fixed ones (1.11.9c)
{
= d/dt[AT

· (dA/dt)] = (dAT/dt) · (dA/dt) + AT
· (d2A/dt2)

= −Ω ·Ω + E
}
. (1.11.9d)

(ii) Both E and A are (second-order) tensors; that is,

E′(= A

′ +Ω
′
·Ω

′) = A ·E ·AT
⇔ E = AT

·E′
·A , (1.11.9e)

A

′(= dΩ′/dt) = A ·A ·AT
⇔ A = AT

·A

′
·A ; (1.11.9f)

d2A/dt2 = A ·E ⇒ E = AT
· (d2A/dt2) , (1.11.9a)

acceleration tensor, but we think that that term should apply to dΩ/dt; that is,
definition (1.11.9c).]

{
= A· [relative acceleration (∂2r/∂t2) + transport acceleration (α × r+ x × (x × r))

+ Coriolis acceleration (2x × (∂r/∂t))]
}
;

[In fact, both A and E appear in (1.11.8c). Also, some authors call E the angular



respectively, the tensors of angular velocity and acceleration of that body relative to
the space-fixed axes; and if the earlier particle is frozen (fixed) relative to B (i.e.,
dx=dt ¼ 0, d2x=dt2 ¼ 0, etc.), then (1.11.8b, c) give, respectively, the matrix forms of
the well-known formulae for the distribution of velocities and acceleration of the
various points of B (from body-axes components to space-axes components). [For an
indicial treatment of these tensors, and recursive formulae for their higher rates, see
Truesdell and Toupin (1960, pp. 439–440).]

1.12 THE RIGID BODY: EULERIAN ANGLES

We recommend for concurrent reading with this section: Junkins and Turner (1986,
chap. 2), Morton (1984).

As explained already (}1.7, }1.11), the nine elements of the proper orthogonal
tensor A (or R), in all its four interpretations, depend on only three independent
parameters. A particularly popular such parametrization is afforded by the three
(generalized) Eulerian angles. These latter appear naturally as we describe the
general orientation of an ortho–normal–dextral (OND) body-fixed triad, or local
frame t ¼ fukg � ði; j; kÞ relative to an OND space-fixed frame
T ¼ fuk 0 g � ðI ; J ;KÞ, with which it originally coincides, via the following sequence
of three, possibly hypothetical, simple planar rotations (i.e., in each of them, the two
triads have one axis in common, or parallel, and so the corresponding ‘‘partial
rotation tensor’’ depends on a single angle):

(i) Rotation about the (i)th body axis through an angle �ðiÞ � �1 � �; followed by a
(ii) Rotation about the ( j)th body axis ( j 6¼ i) through an angle �ðjÞ � �2 � �; followed

by a

(iii) Rotation about the (k)th body axis (k 6¼ j) through an angle �ðkÞ � �3 �  .

The angles �1 ¼ � (about the original ui ¼ ui 0 ), �2 ¼ � (about the �-rotated uj ! uj 0),
and �3 ¼  (about the �-rotated uk ! uk 00 ) are known as the i! j ! k Eulerian
angles.
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(v) Since dΩ/dt is antisymmetric, and Ω ·Ω is symmetric (explain this), show that
the axial vectors of (the nonsymmetric) E and A coincide, and are both equal to none

Finally, if the moving axes are fixed relative to a body B, then Ω/Ω′ and A/A′ are

(iii) The fixed axes counterpart of (1.11.9a) is:

d2A/dt2 = E′
·A ⇒ E′ = (d2A/dt2) ·AT , (1.11.9g)

(iv) It can be verified, independently of (1.11.9a–d) and (1.11.9e–g), that

Ω
2
≡ Ω ·Ω = −Ω

T
·Ω = −Ω ·Ω

T

= · · · = −(dA/dt)T
· (dA/dt) = −(dAT/dt) · (dA/dt) , (1.11.9h)

(Ω′)2
≡ Ω

′
·Ω

′ = −(Ω′)T
· Ω

′ = −Ω
′
· (Ω′)T

= · · · = −(dA/dt) · (dA/dt)T = −(dA/dt) · (dAT/dt) . (1.11.9i)

other than the vector of angular acceleration α ; thus justifying calling A the tensor of
angular acceleration.



Of the twelve possible such angle triplets, six form a group for which i 6¼ j 6¼ k ¼ i
(two-axes group):

1! 2! 1; 1! 3! 1; 2! 1! 2; 2! 3! 2; 3! 1! 3; 3! 2! 3;

and six form a group for which i 6¼ j 6¼ k 6¼ i (three-axes group):

1! 2! 3; 1! 3! 2; 2! 1! 3; 2! 3! 1; 3! 1! 2; 3! 2! 1:

[Similar results, but with more complicated rotation tensors, would hold for rota-
tions about the space-fixed axes fuk 0 : I ; J ;Kg. If the partial rotations were about
arbitrary (body- or space-fixed) axes, then, due to the infinity of their possible
directions, we would have an infinity of angle triplets. It is the restriction that
these rotations are about the body-fixed axes fukg that brings them down to twelve.]

Eulerian Angles

The sequence 3! 1! 3, shown and described in fig. 1.26 [with the customary
abbreviations: cosð. . .Þ � cð. . .Þ, sinð. . .Þ � sð. . .Þ] is considered to be the classical
Eulerian angle description, originated and frequently used in astronomy and physics,

(1973, p. 97)].
Using the passive interpretation and fig. 1.26, we readily find that the correspond-

ing coordinates of the compounded transformation resulting from the above

[i.e., the (originally assumed coinciding) space-fixed O�XYZ and body-fixed O�xyz]
are related by

X

Y

Z

0BB@
1CCA ¼

c� �s� 0

s� c� 0

0 0 1

0BB@
1CCA

x 0

y 0

z 0

0BB@
1CCA

¼
c� �s� 0

s� c� 0

0 0 1

0BB@
1CCA

1 0 0

0 c� �s�
0 s� c�

0BB@
1CCA

x 00

y 00

z 00

0BB@
1CCA

¼
c� �s� 0

s� c� 0

0 0 1

0BB@
1CCA

1 0 0

0 c� �s�
0 s� c�

0BB@
1CCA

c �s 0

s c 0

0 0 1

0BB@
1CCA

x

y

z

0BB@
1CCA

RðK ; �Þ �Rði 0; �Þ �Rðk 00;  Þ � Rf �Ry �Rc � R; ð1:12:1aÞ
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[although “In his original work in 1760, Euler used a combination of right-handed and
left-handed rotations; a convention unacceptable today” Likins (1973, p. 97)].

sequence of partial rotations about the nonmutually orthogonal axes OZ, Ox′, Oz′′



¼
c� c � s� c� s �c� s � s� c� c s� s�

s� c þ c� c� s �s� s þ c� c� c �c� s�
s� s s� c c�

0B@
1CA x

y

z

0B@
1CA

REMARKS

(i) Equation (1.12.1b) readily shows that if the direction cosines Ak 0k are known,
the three Eulerian angles can be calculated from

� ¼ tan�1ð�A1 03=A2 03Þ; � ¼ cos�1ðA3 03Þ;  ¼ tan�1ðA3 01=A3 02Þ: ð1:12:1cÞ

(ii) If the origin of the body-fixed axes ^ is moving relative to the space-fixed
frame O–XYZ, then in the above we simply replace X with X � X^ and so on,
cyclically. Then, x; y; z [or x=^; y=^; z=^ (}1.8)] are the particle coordinates relative
to ^–xyz. In this case, eq. (1.12.1b) shows clearly that a free (i.e., unconstrained) rigid
body has six (global) degrees of freedom:
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Figure 1.26 Partial, or elementary, rotations of classical Eulerian sequence: �! �!  

(originally: O—xyz ¼ O—xoyozo � O—XYZ).

I

J

K

0B@
1CA ¼ c� �s� 0

s� c� 0

0 0 1

0B@
1CA i 0

j 0

k 0

0B@
1CA

T ¼ Rðko � K ; �Þ � t 0 � Rf � t
0

i 0

j 0

k 0

0B@
1CA ¼ 1 0 0

0 c� �s�
0 s� c�

0B@
1CA i 00

j 00

k 00

0B@
1CA

t 0 ¼ Rði 0 ; �Þ � t 00 � Ry � t
00

i 00

j 00

k 00

0B@
1CA ¼ c �s 0

s c 0

0 0 1

0B@
1CA i

j

k

0B@
1CA

t 00 ¼ Rðk 00 ¼ k;  Þ � t � Rc � t

Classical Eulerian Sequence: ðI; J;KÞ: 3ð�Þ ! 1ð�Þ ! 3ð Þ : ði ; j; kÞ
0 � � (precession, or azimuth, angle) < 2�,

0 � � [nutation (i.e., nodding), or pole, angle] � �,
0 �  [proper, or intrinsic, rotation angle; or (eigen-) spin] < 2�.

In sum: T ¼ R f � ½Ry � ðRc � tÞ� � ðRf �Ry �RcÞ � t � R � t

ψ

Z, z'

X
x' = x"
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y"

y"

y' y'

Z, zo , z'
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OO
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O

y
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R or A = (Ak′k) (= 1, if φ, θ, ψ = 0). (1.12.1b)



q1;2;3 ¼ X^;Y^;Z^ : inertial coordinates of base point (pole) ^,

q4;5;6 ¼ �; �;  : Eulerian angles of body-fixed ^�xyz relative to ^�XYZ;

and the constant x; y; z is the ‘‘name’’ of a generic body particle [more on this in
chap. 2].

Inverting (1.12.1b)—while noting that, since all three component matrices Rf;y;c

are orthogonal, the inverse of each equals its transpose (or using the passive inter-
pretation equations in }1.11)—we readily obtain

x

y

z

0B@
1CA ¼ RT

�

X

Y

Z

0B@
1CA; ð1:12:2Þ

where

R
T ¼ ðRf �Ry �RcÞT ¼ Rc

T
�Ry

T
�Rf

T ¼ R�c �R�y �R�f

¼
c s 0

�s c 0

0 0 1

0BB@
1CCA

1 0 0

0 c� s�

0 �s� c�

0BB@
1CCA

c� s� 0

�s� c� 0

0 0 1

0BB@
1CCA: ð1:12:2aÞ

By adopting the active interpretation, we can show that (along arbitrary but
common axes)

ðaÞ rf ¼ Rðk 00;  Þ �Rði 0; �Þ �Rðko ¼ K ; �Þ � ri ¼ ðRc �Ry �RfÞ � ri; ð1:12:3aÞ

ðbÞ ri ¼ ðRc �Ry �RfÞT � rf ¼ Rf
T
�Ry

T
�Rc

T
� rf ¼ ðR�f �R�y �R�cÞ � rf

¼ �RðK ;��Þ �Rði 0;��Þ �Rðk 00;� Þ	 � ri; ð1:12:3bÞ

while, by adopting the rotation of a triad interpretation, we can show that

ðaÞ T ¼ ðRf �Ry �RcÞ � t; ð1:12:4aÞ
ðbÞ t ¼ ðR�c �R�y �R�fÞ �T; ð1:12:4bÞ

where T ¼ ðI ; J ;KÞT; t ¼ ði; j; kÞT.
Next, we prove the following remarkable theorem.

Rc �Ry �Rf � Rðk 00;  Þ �Rði 0; �Þ �Rðko ¼ K ; �Þ
¼ RðK ; �Þ �RðI ; �Þ �RðK ;  Þ: ð1:12:5aÞ

In words: the resultant rotation tensor of the classical Eulerian sequence about
the body-fixed axes: �ðk � ko ¼ KÞ ! �ði 0Þ !  ðk 00Þ, equals the resultant rotation
of the reverse-order sequence about the corresponding space-fixed axes:
 ðKÞ ! �ðIÞ ! �ðKÞ.

(i) To this end, we first prove the following auxiliary theorem.
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THEOREM (on Compounded Rotations about Body-fixed versus Space-fixed Axes)



Shift of the Axis Theorem

Let us consider two concurrent axes of rotation described by the unit vectors n and
n 0, and related by a rotation through an angle  about a third (also concurrent) axis
described by the unit vector m; that is,

n 0 ¼ Rðm; Þ � n ¼ n �RTðm; Þ: ð1:12:5bÞ
Then, the corresponding rotation tensors about n and n 0, but with a common angle
�, are related by the tensor-like (or, generally, ‘‘similarity’’) transformation:

Rðn 0; �Þ ¼ Rðm; Þ �Rðn; �Þ �RTðm; Þ: ð1:12:5cÞ

PROOF

Applying the rotation formula (1.10.10a) for n! n 0 and �, we obtain, successively,

Rðn 0; �Þ ¼ R½Rðm; Þ � n; ��
¼ ðcos�Þ1þ ðsin�Þ½Rðm; Þ � n� � 1

þ ð1� cos�Þ½Rðm; Þ � n�  ½Rðm; Þ � n�
[using the fact that, for any vector, v: ðR � vÞ � 1 ¼ R � ðv� 1Þ �RT

�� see proof below�
¼ ðcos�Þ1þ ðsin�Þ½Rðm; Þ � ðn � 1Þ �RTðm; Þ�

þ ð1� cos�Þ½Rðm; Þ � ðn nÞ �RTðm; Þ�
[recalling that Rðm; Þ �RTðm; Þ ¼ 1�

¼ Rðm; Þ � ½ðcos�Þ1þ ðsin�Þðn � 1Þ þ ð1� cos�Þðn nÞ� �RTðm; Þ
¼ Rðm; Þ � ½ðcos�Þ1þ ðsin�ÞNþ ð1� cos�Þðn nÞ� �RTðm; Þ

[recalling again (1:10:10aÞ�
¼ Rðm; Þ �Rðn; �Þ �RTðm; Þ; Q.E.D. ð1:12:5dÞ

According to the passive interpretation, v and its corresponding antisymmetric tensor
V ¼ v� 1 transform as follows:

R � v ¼ components of v along the old axes � v 0;

R �V �R
T ¼ components of V along the old axes � V 0:

Therefore,

ðR � vÞ � 1 ¼ v 0 � 1 ¼ V 0 ¼ R �V �R
T ¼ R � ðv� 1Þ �RT; Q:E:D:�

This theorem allows one to relate the rotation tensors about the initial ðnÞ and final
(i.e., rotated) ðn 0Þ positions of a body-fixed axis.

(ii) Now, back to the proof of (1.12.5a). Applying the preceding shift of axis
theorem (1.12.5b, c), we get

ðaÞ Rðk 00;  Þ ¼ Rði 0; �Þ �Rðk 0;  Þ �RTði 0; �Þ; ð1:12:5eÞ
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[PROOF that (R · v)× 1 = R · (v× 1) ·RT



where

k 00 ¼ Rði 0; �Þ �k 0: ð1:12:5fÞ

ðbÞ Rði 0; �Þ ¼ RðK ; �Þ �RðI ; �Þ �RTðK ; �Þ; ð1:12:5gÞ

) R
Tði 0; �Þ ¼ RðK ; �Þ �RTðI ; �Þ �RTðK ; �Þ; ð1:12:5hÞ

where

i 0 ¼ RðK ; �Þ � I ; ð1:12:5iÞ

ðcÞ Rðk 0;  Þ ¼ RðK ; �Þ �RðK ;  Þ �RTðK ; �Þ; ð1:12:5jÞ
where

k 0 ¼ RðK ; �Þ �K : ð1:12:5kÞ
Substituting (1.12.5g, h, j) into the right side of (1.12.5e), while recalling that all these
R’s are orthogonal tensors, yields

Rðk 00;  Þ ¼ ½RðK ; �Þ �RðI ; �Þ �RTðK ; �Þ�
� ½RðK ; �Þ �RðK ;  Þ �RTðK ; �Þ�
� ½RðK ; �Þ �RTðI ; �Þ �RTðK ; �Þ�
¼ RðK ; �Þ �RðI ; �Þ �RðK ;  Þ �RTðI ; �Þ �RTðK ; �Þ: ð1:12:5lÞ

In view of (1.12.5g) and (1.12.5l), the left side of (1.12.5a) transforms successively to

Rðk 00;  Þ �Rði 0; �Þ �RðK ; �Þ
¼ �RðK ; �Þ �RðI ; �Þ �RðK ;  Þ �RTðI ; �Þ �RTðK ; �Þ	
�

�
RðK ; �Þ �RðI ; �Þ �RTðK ; �Þ	 �RðK ; �Þ

¼ RðK ; �Þ �RðI ; �Þ �RðK ;  Þ; Q:E:D: ð1:12:5mÞ
Generally, consider a body-fixed frame O–xyz originally coinciding with the space-
fixed frame O–XYZ. Then the sequence of rotations about Ox ( first, �1Þ !
Oy ðsecond ; �2Þ ! Oz (third, �3Þ has the same final orientational effect as the
sequence about OZ ð first; �3Þ ! OY ðsecond ; �2Þ ! OX ðthird; �1Þ. [See also
Pars, 1965, pp. 103–105.]

Angular Velocity via Eulerian Angle Rates

Let us calculate the vector of angular velocity of the body frame O–xyz relative to
the space frame O–XYZ, in terms of the Eulerian angles �; �;  and their rates
!� � d�=dt, !� � d�=dt, ! � d =dt; both along the body- and the space-fixed
axes. We present several approaches.

(i) Geometrical Derivation

By inspection of fig. 1.26 we easily find that

x ¼ !�K þ !� i 0 þ ! k 00: ð1:12:6aÞ
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But, again by inspection, along the space basis,

K ¼ ð0ÞI þ ð0ÞJ þ ð1ÞK ;
i 0 ¼ ðcos�ÞI þ ðsin�ÞJ þ ð0ÞK ;
k 00 ¼ ð� sin �Þ j 0 þ ðcos �Þk 0

¼ ð� sin �Þ½ð� sin�ÞI þ ðcos�ÞJ � þ ðcos �ÞK
¼ ðsin � sin �ÞI þ ð� sin � cos�ÞJ þ ðcos �ÞK ; ð1:12:6bÞ

and along the body basis,

K ¼ j 00ðsin �Þ þ k 00ðcos �Þ ¼ ði sin þ j cos Þ sin �þ k cos �;

i 0 ¼ i cos � j sin ; k 00 ¼ k: ð1:12:6cÞ
Inserting (1.12.6b, c) in (1.12.6a) and rearranging, we obtain the representations

x ¼ !XI þ !YJ þ !ZK ¼ !xi þ !y j þ !zk; ð1:12:7aÞ

where, in matrix form

!X

!Y

!Z

0BB@
1CCA ¼

0 c� s� s�

0 s� �c� s�
1 0 c�

0BB@
1CCA

!�

!�

! 

0BB@
1CCA ð1:12:7bÞ

Space axes EsðpaceÞð�; �Þ ½no  -dependence�;

!x

!y

!z

0BB@
1CCA ¼

s� s c 0

s� c �s 0

c� 0 1

0BB@
1CCA

!�

!�

! 

0BB@
1CCA ð1:12:7cÞ

Body axes EbðodyÞð�;  Þ ½no �-dependence�;

Inverting (1.12.7b, c) (noting that, since the axes of !�; �;  are non-orthogonal, the
transformation matrices Es; Eb are nonorthogonal also; that is, their inverses do not
equal their transposes), we obtain, respectively,

!�

!�

! 

0BB@
1CCA ¼ ð1= sin �Þ

�s� c� c� c� s�

c� s� s� s� 0

s� �c� 0

0BB@
1CCA

!X

!Y

!Z

0BB@
1CCA ð1:12:7dÞ

Es
�1ð�; �Þ;

¼ ð1= sin �Þ
s c 0

s� c �s� s 0

�c� s �c� c s�

0BB@
1CCA

!x

!y

!z

0BB@
1CCA ð1:12:7eÞ

Eb
�1ð�;  Þ;
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from which we can also calculate the !X ;Y ;Z , !x; y; z (orthogonal!) transformation
matrices.

REMARKS

(b) Equations (1.12.7b, c) also show that the components !X;Y ;Z=x; y; z are quasi or
nonholonomic velocities; that is, although they are linear and homogeneous combina-
tions of the Eulerian angle rates !� � d�=dt, !� � d�=dt, ! � d =dt, they do not

¼ ð0Þðd�=dtÞ þ ðc�Þðd�=dtÞ þ ðs� s�Þðd =dtÞ [by (1.12.7b)], ð1:12:7hÞ
that is,

ð1:12:7iÞ
But, from (1.12.7i), it follows that, in general,

ð1:12:7jÞ
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equal the rates of other angles. Indeed, if, for example, ωX = dθX/dt, where θX =
θX (φ, θ, ψ), then we should have

dθX/dt = (∂θX/∂φ)(dφ/dt) + (∂θX/∂θ)(dθ/dt) + (∂θX/∂ψ)(dψ/dt)

∂θX/∂φ = 0 , ∂θX/∂θ = cθ , ∂θX/∂ψ = sφ sθ .

∂/∂θ(∂θX/∂φ) = 0 �= ∂/∂φ(∂θX/∂θ) = −sφ .

which means that knowing !X ;Y ;Z=x; y; zðtÞ [say, after solving the kinetic Eulerian
equations (}1.17)], we can determine !� uniquely, but not !� and ! !

Actually, all twelve generalized Eulerian angle descriptions mentioned earlier,
�1 ! �2 ! �3, exhibit such singularities for some value(s) of their second rotation
angle �2; in which case, the planes of the other two angles become indistinguishable!
From the numerical viewpoint, this means that in the close neighborhood of these
values of �2, it becomes difficult to integrate for the rates d�k=dt ðk ¼ 1; 2; 3Þ. This is
the main reason that, in rotational (or ‘‘attitude’’) rigid-body dynamics, (singularity
free) four-parameter formalisms are sought, and the reason that the classical Eulerian
sequence 3! 1! 3 has been of much use in astronomy (where x; y; z have origin at
the center of the Earth, and point to three distant stars) and physics; whereas other
Eulerian sequences, such as 1! 2! 3 or 3! 2! 1 [associated with the names of
Cardan (1501–1576) (continental European literature), Tait (1869), Bryan (1911)
(British literature); and examined below] are more preferable in engineering rigid-
body dynamics; for example, airplanes, ships, railroads, satellites, and so on.
[Similarly, the position ð�; �;  Þ ¼ ð0; 0; 0Þ represents a singular ‘‘gimbal lock’’: the
motions !� and ! are indistinguishable since each is about the vertical axis Z; only
!� þ ! is known. The !� motion is about the X-axis, and so it is impossible to
represent rotations about the Y-axis; it is ‘‘locked out’’; that is (0, 0, 0) introduces
artificially a constraint, !Y ¼ 0, !y ¼ 0 that mechanically is not there (then, !X ¼ !�,
!Y ¼ 0, !Z ¼ !� þ ! ; !x ¼ !�, !z ¼ !� þ ! ).]

(a) The transformations (1.12.7b–e) readily reveal a serious drawback of the
3! 1! 3 Eulerian angle description, for � ¼ 0 (or ��); that is, when Oz coincides
with OZ (or �OZ), in which case the nodal line ON disappears, sin � ¼ 0, and, so,
assuming �;  6¼ 0, eqs. (1.12.7b, c) yield, respectively,

!X ¼ ðc�Þ!�; !Y ¼ ðs�Þ!�; !Z ¼ !� þ ! ) !X
2 þ !Y

2 ¼ !�2; ð1:12:7fÞ

!x ¼ ð�c Þ!�; !y ¼ ð�s Þ!�; !z ¼ !� þ ! ) !x
2 þ !y

2 ¼ !�2; ð1:12:7gÞ



coordinates is given in }1.14; and a detailed treatment is given in chap. 2.)

(ii) Passive Interpretation Derivation

(a) Body-fixed axes representation. Since x is a vector, we can express it as the
sum of its three Eulerian angular velocities:

x ¼ x� þ x� þ x ; ð1:12:8aÞ

where

x� ¼ ðd�=dtÞK ; x� ¼ ðd�=dtÞi 0; x ¼ ðd =dtÞk 00: ð1:12:8bÞ

Then, using the passive interpretation, (1.11.4h, 7a ff.), we can express (1.12.8a, b)
along the (new) body axes basis ði; j; kÞ. Since the Eulerian basis ðK ; i 0; k 00Þ is non-
orthogonal, we carry out this transformation, not for the entire x, but for each of its
above components x�;u�;x , and then, adding the results, we obtain

x�; body components ¼ Rc
T
�Ry

T
�

0

0

!�

0BB@
1CCA
ðI J KÞ

¼ R�c �R�y �

0

0

!�

0BB@
1CCA

¼
c s 0

�s c 0

0 0 1

0BB@
1CCA

1 0 0

0 c� s�

0 �s� c�

0BB@
1CCA

0

0

!�

0BB@
1CCA ¼

ðs� s Þ!�
ðs� c Þ!�
ðc�Þ!�

0BB@
1CCA; ð1:12:8cÞ

x�; body components ¼ Rc
T
�

!�

0

0

0BB@
1CCA
ði 0 j 0 k 0Þ

¼ R�c �

!�

0

0

0BB@
1CCA

¼
c s 0

�s c 0

0 0 1

0BB@
1CCA

!�

0

0

0BB@
1CCA ¼

ðc Þ!�
ð�s Þ!�
ð0Þ!�

0BB@
1CCA; ð1:12:8dÞ

x ; body components ¼
0

0

! 

0BB@
1CCA
ði j kÞ

: ð1:12:8eÞ

Adding (1.12.8c–e), we obtain the body axes components, equations (1.12.7c), as
expected.
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Hence, no such θX exists; and similarly for the other ω’s. (An introduction to quasi



(b) Space-fixed axes representation. Proceeding similarly, we find

x¼
0

0

!�

0B@
1CAþ c� �s� 0

s� c� 0

0 0 1

0B@
1CA

Rf

!�

0

0

0B@
1CA

þ
c� �s� 0

s� c� 0

0 0 1

0B@
1CA

Rf

1 0 0

0 c� �s�
0 s� c�

0B@
1CA

Ry

0

0

! 

0B@
1CA

¼
0

0

1

0B@
1CA!� þ c�

s�

0

0B@
1CA!� þ s� s�

�c� s�
c�

0B@
1CA! ; ð1:12:8fÞ

which is none other than (1.12.7b).
Let the reader verify that the space-axes representation (1.12.8f) can also be

rewritten as

x ¼ Rf �

0

0

!�

0B@
1CAþ Rf �Ry �

!�

0

0

0B@
1CAþ Rf �Ry �Rc �

0

0

! 

0B@
1CA; ð1:12:8gÞ

while the body-axes representation (1.12.8c–e) can be rewritten as

x ¼ R�c �R�y �R�f �

0

0

!�

0B@
1CAþ R�c �R�y �

!�

0

0

0B@
1CAþ R�c �

0

0

! 

0B@
1CA: ð1:12:8hÞ

(iii) Tensor (Matrix) Derivation

We have already seen [(1.7.27e) and (1.7.30i–k)] that the space-axes components of

ðx 0 ¼ R �x , x ¼ R
T
�x 0Þ; ð1:12:9aÞ

where R, or A, is the matrix of the direction cosines between these axes; and also that
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Ω
′ = (dR/dt) ·RT = −R · (dR/dt)T

Ω = RT
· (dR/dt) = −(dR/dt)T

·R ,

dR′/dt = Ω
′
·R [= (R ·Ω ·RT) ·R] = R ·Ω (1.12.9b)

Ω
′ = R ·Ω ·RT

⇔ Ω = RT
·Ω

′
·R

[due to d/dt(R ·RT) = d1/dt = 0]

the angular velocity tensor (vector) Ω′(ω′) are related to its body-axes components
Ω(ω) by the tensor (vector) transformation



(a) Space-fixed axes representation. As we have seen, in the case of the classical
Eulerian sequence �! �!  : R � Rf �Ry �Rc, and therefore (1.12.9b) yields,
successively,

¼ ðdR=dtÞ �RT ¼ d=dtðRf �Ry �RcÞ � ðRf �Ry �RcÞT

¼ ½ðdRf=dtÞ �Ry �Rcþ Rf � ðdRy=dtÞ �Rcþ Rf �Ry � ðdRc=dtÞ� � ðRc
T
�Ry

T
�Rf

TÞ
¼ ðdRf=dtÞ � ½Ry � ðRc �Rc

TÞ �Ry
T� �Rf

T

þ Rf � ½ðdRy=dtÞ � ðRc �Rc
TÞ �Ry

T� �Rf
T

þ Rf � fRy � ½ðdRc=dtÞ �Rc
T� �Ry

Tg �Rf
T

¼ ðdRf=dtÞ�Rf
TþRf �½ðdRy=dtÞ�Ry

T��Rf
TþRf �Ry � ½ðdRc=dtÞ�Rc

T�� ðRf �RyÞT

[recalling the definition of tensor transformation (1.12.9a), and (1.12.9b)], (1.12.9c)

¼
½ f; y;c : ‘‘partial’’ rotation tensors, along the space-fixed axes], ð1:12:9dÞ

from which, after some long but straightforward algebra, we obtain [recalling
(1.12.1a ff.)]

which coincide with (1.12.7b), as expected.
(b) Body-fixed axes representation. Proceeding analogously, we obtain

¼ R
T
� ðdR=dtÞ ¼ ðRf �Ry �RcÞT � ½d=dtðRf �Ry �RcÞ�

¼ � � � ¼ Rc
T
�Ry

T
� ½Rf

T
� ðdRf=dtÞ� �Ry �Rc

þ Rc
T
� ½Ry

T
� ðdRy=dtÞ� �Rc þ Rc

T
� ðdRc=dtÞ

�
½ f; y;c : ‘‘partial’’ rotation tensors, along the body-fixed axes]. ð1:12:9fÞ

Cardanian Angles

This is the Eulerian rotation sequence 3! 2! 1 (fig. 1.27). The angles �1 ¼ �ð3Þ !
�2 ¼ �ð2Þ ! �3 ¼ 
ð1Þ are commonly (but not uniformly) referred to as Cardanian
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Ω
′

Ω
′

φ + Rφ ·Ω′θ ·RφT
+ Rφ ·Rθ ·Ω′ψ · (Rφ ·Rθ)T

Ω
′

Ω1′1′ ≡ ΩXX = 0 ,

Ω1′2′ = −Ω2′1′ ≡ ΩXY = −ΩYX = −ωZ = −[dφ/dt + (cθ)(dψ/dt)] ,

Ω1′3′ = −Ω3′1′ ≡ ΩXZ = −ΩZX = −ωY = (sφ)(dθ/dt) − (cφ sθ)(dψ/dt) ,

Ω2′2′ ≡ ΩYY = 0 ,

Ω2′3′ = −Ω3′2′ ≡ ΩYZ = −ΩZY = −ωX = −[(cφ)(dθ/dt) + (sφ sθ)(dψ/dt)] ,

Ω3′3′ ≡ ΩZZ = 0 ,

Ω

R ψT
·RθT

·Ωφ ·Rθ ·Rψ + RψT
·Ωθ ·Rψ +Ωψ

Ω

We leave it to the reader to verify that the above coincides with (1.12.7c).
Alternatively, one can use the transformation equations (1.12.9a) to calculate Ω/ω
fromΩ′/ω′. (See also Hamel, 1949, pp. 735–739.)

(1.12.9e)



angles. In vehicle and aeronautical dynamics, where such an attitude representation
is popular, they are called yaw ð�Þ, pitch ð�Þ, and roll ð
Þ.

Following the passive interpretation, we readily obtain

X

Y

Z

0BB@
1CCA ¼ R �

x

y

z

0BB@
1CCA ¼ Rg � Rb � Ra �

x

y

z

0BB@
1CCA

2664
3775

8>><>>:
9>>=>>;

¼
c� �s� 0

s� c� 0

0 0 1

0BB@
1CCA

c� 0 s�

0 1 0

�s� 0 c�

0BB@
1CCA

1 0 0

0 c
 �s

0 s
 c


0BB@
1CCA

x

y

z

0BB@
1CCA

Rg � Rb � Ra; ð1:12:10aÞ

¼
c� c� s
 s� c� � c
 s� c
 s� c� þ s
 s�

c� s� s
 s� s� þ c
 c� c
 s� s� � s
 c�

�s� s
 c� c
 c�

0BB@
1CCA

x

y

z

0BB@
1CCA; ð1:12:10bÞ
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Figure 1.27 Cardanian angles: �1 ¼ �ð3Þ ! �2 ¼ �ð2Þ ! �3 ¼ 
ð1Þ.
(i) Rotation (OZ, �1 ¼ �): O�XYZ (space axes) ¼ O�xoyozo (initial body axes) ! O�x 0y 0z 0.
(ii) Rotation (Oy 0, �2 ¼ �): O�x 0y 0z 0 ! O�x 00y 00z 00.
(iii) Rotation (Ox 00, �3 ¼ 
): O�x 00y 00z 00 ! O�xyz (final body axes).



and, inversely, since Ra; b; g are proper orthogonal,

x

y

z

0B@
1CA ¼ R

T
�

X

Y

Z

0B@
1CA ¼ ðRa

T
�Rb

T
�Rg

TÞ �
X

Y

Z

0B@
1CA

¼ ðR�a �R�b �R�gÞ �
X

Y

Z

0B@
1CA: ð1:12:10cÞ

Angular Velocity Tensors

Using the basic relations (1.12.9a, b), we can show, after some long and careful but
straightforward algebra, that (with !� � d�=dt, !� � d�=dt, !
 � d
=dt)

!X

!Y

!Z

0B@
1CA

Space axes

¼
0 �s� c� c�

0 c� s� c�

1 0 �s�

0B@
1CA !�

!�

!


0B@
1CA

EsðpaceÞð�; �Þ ½no 
-dependence�;
ð1:12:10dÞ

!x

!y

!z

0@ 1A
Body axes

¼
�s� 0 1
c� s
 c
 0
c
 c� �s
 0

0@ 1A !�
!�
!


0@ 1A
EbðodyÞð�; 
Þ ½no �-dependence�:

ð1:12:10eÞ

Inverting (1.12.10d, e) (noting that, since the axes of !
; �; � are non-orthogonal, the
transformation matrices Esð�; �Þ; Ebð�; 
Þ are nonorthogonal also; that is, their
inverses do not equal their transposes), we obtain respectively,

!�

!�

!


0BB@
1CCA ¼ ð1= cos �Þ

s� c� s� s� c�

�s� c� c� c� 0

c� s� 0

0BB@
1CCA

!X

!Y

!Z

0BB@
1CCA ð1:12:10fÞ

Es
�1ð�; �Þ;

¼ ð1= cos �Þ
0 s
 c


0 c
 c� �s
 c�

c� s� s
 s� c


0BB@
1CCA

!x

!y

!z

0BB@
1CCA ð1:12:10gÞ

Eb
�1ð
; �Þ;

from which it is clear that the Cardanian sequence 3ð�Þ ! 2ð�Þ ! 1ð
Þ has a
singularity at � ¼ �ð�=2Þ. There, (1.12.10d, e) become, respectively (for � ¼ �=2Þ,
!X ¼ ð�s�Þ!�; !Y ¼ ðc�Þ!�; !Z ¼ !� � !
 ) !X

2 þ !Y
2 ¼ !�2; ð1:12:10hÞ

!x ¼ �!� þ !
; !y ¼ ðc
Þ!�; !z ¼ ð�s
Þ!� ) !x
2 þ !y

2 ¼ !�2; ð1:12:10iÞ
that is, a unique determination of !� and !
 from !Z, or !x, is impossible.
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Finally, using (1.12.10f, g), we can obtain the !X ;Y ;Z $ !x; y; z transformation.
For a complete listing of the transformations between !x; y; z � !1;2;3 (body-fixed
axes) and the Eulerian rates d�1;2;3=dt � v1;2;3 (and corresponding singularities),
for all body-/space-axis Eulerian rotation sequences, see the next section.

1.13 THE RIGID BODY: TRANSFORMATION MATRICES

(DIRECTION COSINES) BETWEEN SPACE-FIXED AND BODY-FIXED TRIADS;

AND ANGULAR VELOCITY COMPONENTS ALONG BODY-FIXED AXES,

FOR ALL SEQUENCES OF EULERIAN ANGLES

Summary of Theory, Notations

T ¼ ðuk 0 ÞT � ðu1 0 ; u2 0 ; u3 0 ÞT � ðI ; J ;KÞT : Space-fixed ð fixedÞ triad:
t ¼ ðukÞT � ðu1; u2; u3ÞT � ði; j;kÞT : Body-fixed ðmovingÞ triad:

All triads are assumed ortho–normal–dextral (OND), and such that, initially, T ¼ t.
Eulerian angles (see §1.12): �1; �2; �3 (the earlier �; �;  ; or 
; �; �).

1. Basic Triad Transformation Formula

T ¼ R � t , t ¼ RT
�T;

where

R ¼ ðRk 0kÞ � ðuk 0 � ukÞ ½or ðAk 0kÞ� : Tensor=Matrix of rotation

¼ Rðui; �1Þ �Rðuj ; �2Þ �Rðuk; �3Þ � ½ið�1Þ; jð�2Þ; kð�3Þ�
[Rotation sequence �1 ! �2 ! �3 about the body-fixed axes ui ! uj ! uk�

¼ Rðuk 0 ; �3Þ �Rðuj 0 ; �2Þ �Rðui 0 ; �1Þ � ½k 0ð�3Þ; j 0ð�2Þ; i 0ð�1Þ�
[Rotation sequence �3 ! �2 ! �1 about the space-fixed axes uk 0 ! uj 0 ! ui 0 �

½i; j; k ¼ 1; 2; 3; i 0; j 0; k 0 ¼ 1 0; 2 0; 3 0�;
and, by the basic theorem on compounded rotations (§1.12), the inverse rotation

¼ Rðui 0 ;��1Þ �Rðuj 0 ;��2Þ �Rðuk 0 ;��3Þ
returns the body-triad t to its original position, i.e. realigns it with the space-triad T.

How to obtain space-axis rotations; i.e., ½k 0ð�1Þ; j 0ð�2Þ; i 0ð�3Þ�, from a knowl-
edge of body-axis rotations with the same rotation sequence: �1 ! �2 ! �3; i.e., from
½ið�1Þ; jð�2Þ; kð�3Þ�, and vice versa. An example should suffice; by the above theo-
rem, we will have

½2ð�1Þ; 3ð�2Þ; 1ð�3Þ� ¼ ½1 0ð�3Þ; 3 0ð�2Þ; 2 0ð�1Þ�
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R−1 = RT = R(uk,−χ3) ·R(uj,−χ2) ·R(ui,−χ1)



and, therefore, swapping in the latter �3 with �1 (and vice versa), we obtain
½1 0ð�1Þ; 3 0ð�2Þ; 2 0ð�3Þ�, which appears in the listing below. Similarly, we have

½2 0ð�1Þ; 3 0ð�2Þ; 1 0ð�3Þ� ¼ ½1ð�3Þ; 3ð�2Þ; 2ð�1Þ�

and swapping in there �3 with �1 (and vice versa) we obtain ½1ð�1Þ; 3ð�2Þ; 2ð�3Þ�:
Abbreviations: sið. . .Þ � sinð�iÞ; cið. . .Þ � cosð�iÞ.

2. Angular Velocity Components

Body-fixed (moving) axes components:

¼ RT
� ðdR=dtÞ ¼ �ðdR=dtÞT �R; ½due to d=dtðR �RTÞ ¼ d1=dt ¼ 0�

Space-fixed (fixed) axes components:

Rotation tensor derivative:

Listing of Transformation Matrices; and Angular
Velocity Components

(Body-fixed vs. Eulerian rates; and corresponding singularities. Notation:
d�1;2;3=dt � v1;2;3Þ

1ðaÞ ½1ð�1Þ; 2ð�2Þ; 3ð�3Þ� ¼ ½3 0ð�3Þ; 2 0ð�2Þ; 1 0ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c2c3 �c2s3 s2

s1s2c3 þ s3c1 �s1s2s3 þ c1c3 �s1c2
�c1s2c3 þ s1s3 c1s2s3 þ s1c3 c1c2

0BBB@
1CCCA;

!1 ¼ ðc2c3Þv1 þ ðs3Þv2 þ ð0Þv3
!2 ¼ ð�c2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!3 ¼ ðs2Þv1 þ ð0Þv2 þ ð1Þv3

v1 ¼ ðc2Þ�1½ðc3Þ!1 þ ð�s3Þ!2 þ ð0Þ!3�

v2 ¼ ðc2Þ�1½ðc2s3Þ!1 þ ðc2c3Þ!2 þ ð0Þ!3�

v3 ¼ ðc2Þ�1½ð�s2c3Þ!1 þ ðs2s3Þ!2 þ ðc2Þ!3�:
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Ω

Ω
′ = (dR/dt) ·RT = −R · (dR/dt)T ;

with mutual transformations:

dR/dt = Ω
′
·R [= (R ·Ω ·RT) ·R] = R ·Ω .

Ω
′ = R ·Ω ·RT

⇔ Ω = RT
·Ω

′
·R , ω

′ = R ·ω ⇔ ω = RT
·ω

′

where ω = axial vector of Ω , ω
′ = axial vector of Ω′

[i.e. Ω · (vector) = ω × (vector), etc.] ;



1ðbÞ ½1 0ð�1Þ; 2 0ð�2Þ; 3 0ð�3Þ� ¼ ½3ð�3Þ; 2ð�2Þ; 1ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c2c3 s1s2c3 � c1s3 c1s2c3 þ s1s3

c2s3 s1s2s3 þ c1c3 c1s2s3 � s1c3

�s2 s1c2 c1c2

0BB@
1CCA;

!1 ¼ ð1Þv1 þ ð0Þv2 þ ð�s2Þv3
!2 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1c2Þv3
!3 ¼ ð0Þv1 þ ð�s1Þv2 þ ðc1c2Þv3

v1 ¼ ðc2Þ�1½ðc2Þ!1 þ ðs1s2Þ!2 þ ðc1s2Þ!3�
v2 ¼ ðc2Þ�1½ð0Þ!1 þ ðc1c2Þ!2 þ ð�s1c2Þ!3�
v3 ¼ ðc2Þ�1½ð0Þ!1 þ ðs1Þ!2 þ ðc1Þ!3�:











2ðaÞ ½2ð�1Þ; 3ð�2Þ; 1ð�3Þ� ¼ ½1 0ð�3Þ; 3 0ð�2Þ; 2 0ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c1c2 �c1s2c3 þ s1s3 c1s2s3 þ s1c3

s2 c2c3 �c2s3
�s1c2 s1s2c3 þ c1s3 �s1s2s3 þ c1c3

0BB@
1CCA;

!1 ¼ ðs2Þv1 þ ð0Þv2 þ ð1Þv3
!2 ¼ ðc2c3Þv1 þ ðs3Þv2 þ ð0Þv3
!3 ¼ ð�c2s3Þv1 þ ðc3Þv2 þ ð0Þv3

v1 ¼ ðc2Þ�1½ð0Þ!1 þ ðc3Þ!2 þ ð�s3Þ!3�
v2 ¼ ðc2Þ�1½ð0Þ!1 þ ðc2s3Þ!2 þ ðc2c3Þ!3�
v3 ¼ ðc2Þ�1½ðc2Þ!1 þ ð�s2c3Þ!2 þ ðs2s3Þ!3�:











2ðbÞ ½2 0ð�1Þ; 3 0ð�2Þ; 1 0ð�3Þ� ¼ ½1ð�3Þ; 3ð�2Þ; 2ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c1c2 �s2 s1c2

c1s2c3 þ s1s3 c2c3 s1s2c3 � c1s3

c1s2s3 � s1c3 c2s3 s1s2s3 þ c1c3

0BB@
1CCA;

!1 ¼ ð0Þv1 þ ð�s1Þv2 þ ðc1c2Þv3
!2 ¼ ð1Þv1 þ ð0Þv2 þ ð�s2Þv3
!3 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1c2Þv3

v1 ¼ ðc2Þ�1½ðc1s2Þ!1 þ ðc2Þ!2 þ ðs1s2Þ!3�
v2 ¼ ðc2Þ�1½ð�s1c2Þ!1 þ ð0Þ!2 þ ðc1c2Þ!3�
v3 ¼ ðc2Þ�1½ðc1Þ!1 þ ð0Þ!2 þ ðs1Þ!3�:











3ðaÞ ½3ð�1Þ; 1ð�2Þ; 2ð�3Þ� ¼ ½2 0ð�3Þ; 1 0ð�2Þ; 3 0ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
�s1s2s3 þ c1c3 �s1c2 s1s2c3 þ c1s3

c1s2s3 þ s1c3 c1c2 �c1s2c3 þ s1s3

�c2s3 s2 c2c3

0BB@
1CCA;

!1 ¼ ð�c2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!2 ¼ ðs2Þv1 þ ð0Þv2 þ ð1Þv3
!3 ¼ ðc2c3Þv1 þ ðs3Þv2 þ ð0Þv3

v1 ¼ ðc2Þ�1½ð�s3Þ!1 þ ð0Þ!2 þ ðc3Þ!3�
v2 ¼ ðc2Þ�1½ðc2c3Þ!1 þ ð0Þ!2 þ ðc2s3Þ!3�
v3 ¼ ðc2Þ�1½ðs2s3Þ!1 þ ðc2Þ!2 þ ð�s2c3Þ!3�:
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3ðbÞ ½3 0ð�1Þ; 1 0ð�2Þ; 2 0ð�3Þ� ¼ ½2ð�3Þ; 1ð�2Þ; 3ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
s1s2s3 þ c1c3 c1s2s3 � s1c3 c2s3

s1c2 c1c2 �s2
s1s2c3 � c1s3 c1s3c3 þ s1s3 c2c3

0BB@
1CCA;

!1 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1c2Þv3
!2 ¼ ð0Þv1 þ ð�s1Þv2 þ ðc1c2Þv3
!3 ¼ ð1Þv1 þ ð0Þv2 þ ð�s2Þv3

v1 ¼ ðc2Þ�1½ðs1s2Þ!1 þ ðc1s2Þ!2 þ ðc2Þ!3�
v2 ¼ ðc2Þ�1½ðc1c2Þ!1 þ ð�s1c2Þ!2 þ ð0Þ!3�
v3 ¼ ðc2Þ�1½ðs1Þ!1 þ ðc1Þ!2 þ ð0Þ!3�:











4ðaÞ ½1ð�1Þ; 3ð�2Þ; 2ð�3Þ� ¼ ½2 0ð�3Þ; 3 0ð�2Þ; 1 0ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c2c3 �s2 c2s3

c1s2c3 þ s1s3 c1c2 c1s2s3 � s1c3

s1s2c3 � c1s3 s1c2 s1s2s3 þ c1c3

0BB@
1CCA;

!1 ¼ ðc2c3Þv1 þ ð�s3Þv2 þ ð0Þv3
!2 ¼ ð�s2Þv1 þ ð0Þv2 þ ð1Þv3
!3 ¼ ðc2s3Þv1 þ ðc3Þv2 þ ð0Þv3

v1 ¼ ðc2Þ�1½ðc3Þ!1 þ ð0Þ!2 þ ðs3Þ!3�
v2 ¼ ðc2Þ�1½ð�c2s3Þ!1 þ ð0Þ!2 þ ðc2c3Þ!3�
v3 ¼ ðc2Þ�1½ðs2c3Þ!1 þ ðc2Þ!2 þ ðs2s3Þ!3�:











4ðbÞ ½1 0ð�1Þ; 3 0ð�2Þ; 2 0ð�3Þ� ¼ ½2ð�3Þ; 3ð�2Þ; 1ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c2c3 �c1s2c3 þ s1s3 s1s2c3 þ c1s3

s2 c1c2 �s1c2
�c2s3 c1s2s3 þ s1c3 �s1s2s3 þ c1c3

0BB@
1CCA;

!1 ¼ ð1Þv1 þ ð0Þv2 þ ðs2Þv3
!2 ¼ ð0Þv1 þ ðs1Þv2 þ ðc1c2Þv3
!3 ¼ ð0Þv1 þ ðc1Þv2 þ ð�s1c2Þv3

v1 ¼ ðc2Þ�1½ðc2Þ!1 þ ð�c1s2Þ!2 þ ðs1s2Þ!3�
v2 ¼ ðc2Þ�1½ð0Þ!1 þ ðs1c2Þ!2 þ ðc1c2Þ!3�
v3 ¼ ðc2Þ�1½ð0Þ!1 þ ðc1Þ!2 þ ð�s1Þ!3�:











5ðaÞ ½2ð�1Þ; 1ð�2Þ; 3ð�3Þ� ¼ ½3 0ð�3Þ; 1 0ð�2Þ; 2 0ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
s1s2s3 þ c1c3 s1s2c3 � c1s3 s1c2

c2s3 c2c3 �s2
c1s2s3 � s1c3 c1s2c3 þ s1s3 c1c2

0BB@
1CCA;

!1 ¼ ðc2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!2 ¼ ðc2c3Þv1 þ ð�s3Þv2 þ ð0Þv3
!3 ¼ ð�s2Þv1 þ ð0Þv2 þ ð1Þv3

v1 ¼ ðc2Þ�1½ðs3Þ!1 þ ðc3Þ!2 þ ð0Þ!3�
v2 ¼ ðc2Þ�1½ðc2c3Þ!1 þ ð�c2s3Þ!2 þ ð0Þ!3�
v3 ¼ ðc2Þ�1½ðs2s3Þ!1 þ ðs2c3Þ!2 þ ðc2Þ!3�:
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5ðbÞ ½2 0ð�1Þ; 1 0ð�2Þ; 3 0ð�3Þ� ¼ ½3ð�3Þ; 1ð�2Þ; 2ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
�s1s2s3 þ c1c3 �c2s3 c1s2s3 þ s1c3

s1s2c3 þ c1s3 c2c3 �c1s2c3 þ s1s3

�s1c2 s2 c1c2

0B@
1CA;

!1 ¼ ð0Þv1 þ ðc1Þv2 þ ð�s1c2Þv3
!2 ¼ ð1Þv1 þ ð0Þv2 þ ðs2Þv3
!3 ¼ ð0Þv1 þ ðs1Þv2 þ ðc1c2Þv3

v1 ¼ ðc2Þ�1½ðs1s2Þ!1 þ ðc2Þ!2 þ ð�c1s2Þ!3�
v2 ¼ ðc2Þ�1½ðc1c2Þ!1 þ ð0Þ!2 þ ðs1c2Þ!3�
v3 ¼ ðc2Þ�1½ð�s1Þ!1 þ ð0Þ!2 þ ðc1Þ!3�:










6ðaÞ ½3ð�1Þ; 2ð�2Þ; 1ð�3Þ� ¼ ½1 0ð�3Þ; 2 0ð�2Þ; 3 0ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c1c2 c1s2s3 � s1c3 c1s2c3 þ s1s3

s1c2 s1s2s3 þ c1c3 s1s2c3 � c1s3

�s2 c2s3 c2c3

0B@
1CA;

!1 ¼ ð�s2Þv1 þ ð0Þv2 þ ð1Þv3
!2 ¼ ðc2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!3 ¼ ðc2c3Þv1 þ ð�s3Þv2 þ ð0Þv3

v1 ¼ ðc2Þ�1½ð0Þ!1 þ ðs3Þ!2 þ ðc3Þ!3�
v2 ¼ ðc2Þ�1½ð0Þ!1 þ ðc2c3Þ!2 þ ð�c2s3Þ!3�
v3 ¼ ðc2Þ�1½ðc2Þ!1 þ ðs2s3Þ!2 þ ðs2c3Þ!3�:










6ðbÞ ½3 0ð�1Þ; 2 0ð�2Þ; 1 0ð�3Þ� ¼ ½1ð�3Þ; 2ð�2Þ; 3ð�1Þ� ½Singularity at �2 ¼ �ð�=2Þ�:
c1c2 �s1c2 s2

c1s2s3 þ s1c3 �s1s2s3 þ c1c3 �c2s3
�c1s2c3 þ s1s3 s1s2c3 þ c1s3 c2c3

0BB@
1CCA;

!1 ¼ ð0Þv1 þ ðs1Þv2 þ ðc1c2Þv3
!2 ¼ ð0Þv1 þ ðc1Þv2 þ ð�s1c2Þv3
!3 ¼ ð1Þv1 þ ð0Þv2 þ ðs2Þv3

v1 ¼ ðc2Þ�1½ð�c1s2Þ!1 þ ðs1s2Þ!2 þ ðc2Þ!3�
v2 ¼ ðc2Þ�1½ðs1c2Þ!1 þ ðc1c2Þ!2 þ ð0Þ!3�
v3 ¼ ðc2Þ�1½ðc1Þ!1 þ ð�s1Þ!2 þ ð0Þ!3�:











7ðaÞ ½1ð�1Þ; 2ð�2Þ; 1ð�3Þ� ¼ ½1 0ð�3Þ; 2 0ð�2Þ; 1 0ð�1Þ� ½Singularities at �2 ¼ 0;���:
c2 s2s3 s2c3

s1s2 �s1c2s3 þ c1c3 �s1c2c3 � c1s3

�c1s2 c1c2s3 þ s1c3 c1c2c3 � s1s3

0BB@
1CCA;

!1 ¼ ðc2Þv1 þ ð0Þv2 þ ð1Þv3
!2 ¼ ðs2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!3 ¼ ðs2c3Þv1 þ ð�s3Þv2 þ ð0Þv3

v1 ¼ ðs2Þ�1½ð0Þ!1 þ ðs3Þ!2 þ ðc3Þ!3�
v2 ¼ ðs2Þ�1½ð0Þ!1 þ ðs2c3Þ!2 þ ð�s2s3Þ!3�
v3 ¼ ðs2Þ�1½ðs2Þ!1 þ ð�c2s3Þ!2 þ ð�c2c3Þ!3�:
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7ðbÞ ½1 0ð�1Þ; 2 0ð�2Þ; 1 0ð�3Þ� ¼ ½1ð�3Þ; 2ð�2Þ; 1ð�1Þ� ½Singularities at �2 ¼ 0;���:
c2 s1s2 c1s2

s2s3 �s1c2s3 þ c1c3 �c1c2s3 � s1c3

�s2c3 s1c2c3 þ c1s3 c1c2c3 � s1s3

0BB@
1CCA;

!1 ¼ ð1Þv1 þ ð0Þv2 þ ðc2Þv3
!2 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1s2Þv3
!3 ¼ ð0Þv1 þ ð�s1Þv2 þ ðc1s2Þv3

v1 ¼ ðs2Þ�1½ðs2Þ!1 þ ð�s1c2Þ!2 þ ðc1c2Þ!3�
v2 ¼ ðs2Þ�1½ð0Þ!1 þ ðc1s2Þ!2 þ ð�s1s2Þ!3�
v3 ¼ ðs2Þ�1½ð0Þ!1 þ ðs1Þ!2 þ ðc1Þ!3�:










8ðaÞ ½1ð�1Þ; 3ð�2Þ; 1ð�3Þ� ¼ ½1 0ð�3Þ; 3 0ð�2Þ; 1 0ð�1Þ� ½Singularities at �2 ¼ 0;���:

c2 �s2c3 s2s3

c1s2 c1c2c3 � s1s3 �c1c2s3 � s1c3

s1s2 s1c2c3 þ c1s3 �s1c2s3 � c1c3

0BB@
1CCA;

!1 ¼ ðc2Þv1 þ ð0Þv2 þ ð1Þv3
!2 ¼ ð�s2c3Þv1 þ ðs3Þv2 þ ð0Þv3
!3 ¼ ðs2s3Þv1 þ ðc3Þv2 þ ð0Þv3

v1 ¼ ðs2Þ�1½ð0Þ!1 þ ð�c3Þ!2 þ ðs3Þ!3�
v2 ¼ ðs2Þ�1½ð0Þ!1 þ ðs2s3Þ!2 þ ðs2c3Þ!3�
v3 ¼ ðs2Þ�1½ðs2Þ!1 þ ðc2c3Þ!2 þ ð�c2s3Þ!3�:










8ðbÞ ½1 0ð�1Þ; 3 0ð�2Þ; 1 0ð�3Þ� ¼ ½1ð�3Þ; 3ð�2Þ; 1ð�1Þ� ½Singularities at �2 ¼ 0;���:

c2 �c1s2 s1s2

s2c3 c1c2c3 � s1s3 �s1c2c3 � c1s3

s2s3 c1c2s3 þ s1c3 �s1c2s3 þ c1c3

0BB@
1CCA;

!1 ¼ ð1Þv1 þ ð0Þv2 þ ðc2Þv3
!2 ¼ ð0Þv1 þ ðs1Þv2 þ ð�c1s2Þv3
!3 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1s2Þv3

v1 ¼ ðs2Þ�1½ðs2Þ!1 þ ðc1c2Þ!2 þ ð�s1c2Þ!3�
v2 ¼ ðs2Þ�1½ð0Þ!1 þ ðs1s2Þ!2 þ ðc1s2Þ!3�
v3 ¼ ðs2Þ�1½ð0Þ!1 þ ð�c1Þ!2 þ ðs1Þ!3�:










9ðaÞ ½2ð�1Þ; 1ð�2Þ; 2ð�3Þ� ¼ ½2 0ð�3Þ; 1 0ð�2Þ; 2 0ð�1Þ� ½Singularities at �2 ¼ 0;���:

�s1c2s3 þ c1c3 s1s2 s1c2c3 þ c1s3

s2s3 c2 �s2c3
�c1c2s3 � s1c3 c1s2 c1c2c3 � s1s3

0BBB@
1CCCA;

!1 ¼ ðs2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!2 ¼ ðc2Þv1 þ ð0Þv2 þ ð1Þv3
!3 ¼ ð�s2c3Þv1 þ ðs3Þv2 þ ð0Þv3

v1 ¼ ðs2Þ�1½ðs3Þ!1 þ ð0Þ!2 þ ð�c3Þ!3�

v2 ¼ ðs2Þ�1½ðs2c3Þ!1 þ ð0Þ!2 þ ðs2s3Þ!3�

v3 ¼ ðs2Þ�1½ð�c2s3Þ!1 þ ðs2Þ!2 þ ðc2s3Þ!3�:
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9ðbÞ ½2 0ð�1Þ; 1 0ð�2Þ; 2 0ð�3Þ� ¼ ½2ð�3Þ; 1ð�2Þ; 2ð�1Þ� ½Singularities at �2 ¼ 0;���:
�s1c2s3 þ c1c3 s2s3 c1c2s3 þ s1c3

s1s2 c2 �c1s2
�s1c2c3 � c1s3 s2c3 c1c2c3 � s1s3

0BB@
1CCA;

!1 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1s2Þv3
!2 ¼ ð1Þv1 þ ð0Þv2 þ ðc2Þv3
!3 ¼ ð0Þv1 þ ðs1Þv2 þ ð�c1s2Þv3

v1 ¼ ðs2Þ�1½ð�s1c2Þ!1 þ ðs2Þ!2 þ ðc1c2Þ!3�
v2 ¼ ðs2Þ�1½ðc1s2Þ!1 þ ð0Þ!2 þ ðs1s2Þ!3�
v3 ¼ ðs2Þ�1½ðs1Þ!1 þ ð0Þ!2 þ ð�c1Þ!3�:











10ðaÞ ½2ð�1Þ; 3ð�2Þ; 2ð�3Þ� ¼ ½2 0ð�3Þ; 3 0ð�2Þ; 2 0ð�1Þ� ½Singularities at �2 ¼ 0;���:
c1c2c3 � s1s3 �c1s2 c1c2s3 þ s1c3

s2c3 c2 s2s3

�s1c2c3 � c1s3 s1s2 �s1c2s3 þ c1c3

0BB@
1CCA;

!1 ¼ ðs2c3Þv1 þ ð�s3Þv2 þ ð0Þv3
!2 ¼ ðc2Þv1 þ ð0Þv2 þ ð1Þv3
!3 ¼ ðs2s3Þv1 þ ðc3Þv2 þ ð0Þv3

v1 ¼ ðs2Þ�1½ðc3Þ!1 þ ð0Þ!2 þ ðs3Þ!3�
v2 ¼ ðs2Þ�1½ð�s2s3Þ!1 þ ð0Þ!2 þ ðs2c3Þ!3�
v3 ¼ ðs2Þ�1½ð�c2c3Þ!1 þ ðs2Þ!2 þ ð�c2s3Þ!3�:











10ðbÞ ½2 0ð�1Þ; 3 0ð�2Þ; 2 0ð�3Þ� ¼ ½2ð�3Þ; 3ð�2Þ; 2ð�1Þ� ½Singularities at �2 ¼ 0;���:
c1c2c3 � s1s3 �s2c3 s1c2c3 þ c1s3

c1s2 c2 s1s2

�c1c2s3 � s1c3 s2s3 �s1c2s3 þ c1c3

0BB@
1CCA;

!1 ¼ ð0Þv1 þ ð�s1Þv2 þ ðc1s2Þv3
!2 ¼ ð1Þv1 þ ð0Þv2 þ ðc2Þv3
!3 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1s2Þv3

v1 ¼ ðs2Þ�1½ð�c1c2Þ!1 þ ðs2Þ!2 þ ð�s1c2Þ!3�
v2 ¼ ðs2Þ�1½ð�s1s2Þ!1 þ ð0Þ!2 þ ðc1s2Þ!3�
v3 ¼ ðs2Þ�1½ðc1Þ!1 þ ð0Þ!2 þ ðs1Þ!3�:











11ðaÞ ½3ð�1Þ; 1ð�2Þ; 3ð�3Þ� ¼ ½3 0ð�3Þ; 1 0ð�2Þ; 3 0ð�1Þ� ½Singularities at �2 ¼ 0;���:
�s1c2s3 þ c1c3 �s1c2c3 � c1s3 s1s2

c1c2s3 þ s1c3 c1c2c3 � s1s3 �c1s2
s2s3 s2c3 c2

0BB@
1CCA;

!1 ¼ ðs2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!2 ¼ ðs2c3Þv1 þ ð�s3Þv2 þ ð0Þv3
!3 ¼ ðc2Þv1 þ ð0Þv2 þ ð1Þv3

v1 ¼ ðs2Þ�1½ðs3Þ!1 þ ðc3Þ!2 þ ð0Þ!3�
v2 ¼ ðs2Þ�1½ðs2c3Þ!1 þ ð�s2s3Þ!2 þ ð0Þ!3�
v3 ¼ ðs2Þ�1½ð�c2s3Þ!1 þ ð�c2c3Þ!2 þ ðs2Þ!3�:
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11ðbÞ ½3 0ð�1Þ; 1 0ð�2Þ; 3 0ð�3Þ� ¼ ½3ð�3Þ; 1ð�2Þ; 3ð�1Þ� ½Singularities at �2 ¼ 0;���:
�s1c2s3 þ c1c3 �c1c2s3 � s1c3 s2s3

s1c2c3 þ c1s3 c1c2c3 � s1s3 �s2c3
s1s2 c1s2 c2

0BB@
1CCA;

!1 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1s2Þv3
!2 ¼ ð0Þv1 þ ð�s1Þv2 þ ðc1s2Þv3
!3 ¼ ð1Þv1 þ ð0Þv2 þ ðc2Þv3

v1 ¼ ðs2Þ�1½ð�s1c2Þ!1 þ ð�c1c2Þ!2 þ ðs2Þ!3�
v2 ¼ ðs2Þ�1½ðc1s2Þ!1 þ ð�s1s2Þ!2 þ ð0Þ!3�
v3 ¼ ðs2Þ�1½ðs1Þ!1 þ ðc1Þ!2 þ ð0Þ!3�:











12ðaÞ ½3ð�1Þ; 2ð�2Þ; 3ð�3Þ� ¼ ½3 0ð�3Þ; 2 0ð�2Þ; 3 0ð�1Þ� ½Singularities at �2 ¼ 0;���:

c1c2c3 � s1s3 �c1c2s3 � s1c3 c1s2

s1c2c3 þ c1s3 �s1c2s3 þ c1c3 s1s2

�s2c3 s2s3 c2

0BB@
1CCA;

!1 ¼ ð�s2c3Þv1 þ ðs3Þv2 þ ð0Þv3
!2 ¼ ðs2s3Þv1 þ ðc3Þv2 þ ð0Þv3
!3 ¼ ðc2Þv1 þ ð0Þv2 þ ð1Þv3

v1 ¼ ðs2Þ�1½ð�c3Þ!1 þ ðs3Þ!2 þ ð0Þ!3�
v2 ¼ ðs2Þ�1½ðs2s3Þ!1 þ ðs2c3Þ!2 þ ð0Þ!3�
v3 ¼ ðs2Þ�1½ðc2c3Þ!1 þ ð�c2s3Þ!2 þ ðs2Þ!3�:











12ðbÞ ½3 0ð�1Þ; 2 0ð�2Þ; 3 0ð�3Þ� ¼ ½3ð�3Þ; 2ð�2Þ; 3ð�1Þ� ½Singularities at �2 ¼ 0;���:

c1c2c3 � s1s3 �s1c2c3 � c1s3 s2c3

c1c2s3 þ s1c3 �s1c2s3 þ c1c3 s2s3

�c1s2 s1s2 c2

0BB@
1CCA;

!1 ¼ ð0Þv1 þ ðs1Þv2 þ ð�c1s2Þv3
!2 ¼ ð0Þv1 þ ðc1Þv2 þ ðs1s2Þv3
!3 ¼ ð1Þv1 þ ð0Þv2 þ ðc2Þv3

v1 ¼ ðs2Þ�1½ðc1c2Þ!1 þ ð�s1c2Þ!2 þ ðs2Þ!3�
v2 ¼ ðs2Þ�1½ðs1s2Þ!1 þ ðc1s2Þ!2 þ ð0Þ!3�
v3 ¼ ðs2Þ�1½ð�c1Þ!1 þ ðs1Þ!2 þ ð0Þ!3�:












1.14 THE RIGID BODY: AN INTRODUCTION TO QUASI COORDINATES

As an introduction to quasi coordinates, and quasi variables in general (a topic to be
detailed in chap. 2), we show in this section that the angular velocity, although a
vector, does not result by simple d=dtð. . .Þ-differentiation of an angular displace-
ment; its components along space-/body-fixed axes, say !k, do not equal the total
time derivatives of angles or any other genuine (global) rotational coordinates/para-
meters, say �k; that is, !k 6¼ d�k=dt. This is another complication of rotational
mechanics, one that is intimately connected with the noncommutativity of finite
rotations; and it necessitates the hitherto search for connections of the !k’s with
genuine angular coordinates and their rates, like the Eulerian angles �; �;  .
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Let us consider, for concreteness, the body-axes components of the angular velo-

(1.7.30f ff.) we have

!x ¼ AXzðdAXy=dtÞ þ AYzðdAYy=dtÞ þ AZzðdAZy=dtÞ; etc:; cyclically; ð1:14:1bÞ

ð1:14:1cÞ

We shall show that

�ðd�xÞ � dð��xÞ 6¼ 0; etc:; cyclically; ð1:14:2aÞ
where, for our purposes, �ð. . .Þ can be viewed as just a differential of ð. . .Þ, along a
different direction from dð. . .Þ; that is, with dð. . .Þ � d1ð. . .Þ and �ð. . .Þ � d2ð. . .Þ,

�ðd�xÞ � d2ðd1�xÞ; dð��xÞ � d1ðd2�xÞ; ð1:14:2bÞ
and

ð1:14:2cÞ

Now, �ð. . .Þ-differentiating d�x and dð. . .Þ-differentiating ��x, and then subtracting
side by side, while noticing that

�ðdAk 0kÞ ¼ dð�Ak 0kÞ ðk 0 ¼ X ;Y ;Z; k ¼ x; y; zÞ; ð1:14:3aÞ
we get

�ðd�xÞ � dð��xÞ ¼ �AXzdAXy � dAXz�AXy þ �AYzdAYy � dAYz�AYy

þ �AZzdAZy � dAZz �AZy: ð1:14:3bÞ

Next, in order to express �Ak 0k, dAk 0k in terms of ��k and d�k, we multiply the

dAXz ¼ AXxd�y � AXyd�x ) �AXz ¼ AXx��y � AXy��x; ð1:14:4aÞ
dAYz ¼ AYxd�y � AYyd�x ) �AYz ¼ AYx��y � AYy��x; ð1:14:4bÞ
dAZz ¼ AZxd�y � AZyd�x ) �AZz ¼ AZx��y � AZy��x; ð1:14:4cÞ
dAXy ¼ AXzd�x � AXxd�z ) �AXy ¼ AXz��x � AXx��z; ð1:14:4dÞ
dAYy ¼ AYzd�x � AYxd�z ) �AYy ¼ AYz��x � AYx��z; ð1:14:4eÞ
dAZy ¼ AZzd�x � AZxd�z ) �AZy ¼ AZz��x � AZx��z: ð1:14:4fÞ

Substituting (1.14.4a–f) into the right side of (1.14.3b), and invoking the orthogon-
ality of A ¼ ðAk 0kÞ [e.g., (1.7.6a, b; 1.7.22d)], we find, after some straightforward
algebra, the noncommutativity equation

�ðd�xÞ � dð��xÞ ¼ d�y��z � d�z��y: ð1:14:5aÞ
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Ω = AT
· (dA/dt) = −(dAT/dt) ·A , (1.14.1a)

city tensor. From

dθx ≡ AXzdAXy + AYzdAYy + AZzdAZy , etc., cyclically.

components of dA/dt = A ·Ω (1.7.30i) with dt, thus obtaining

or, multiplying through by dt and setting ωxdt ≡ dθx (just a suggestive shorthand!),

δθx ≡ AXzδAXy + AYzδAYy + AZzδAZy , etc., cyclically.



Working in complete analogy with the above, we obtain

�ðd�yÞ � dð��yÞ ¼ d�z��x � d�x��z; ð1:14:5bÞ
�ðd�zÞ � dð��zÞ ¼ d�x��y � d�y��x: ð1:14:5cÞ

HISTORICAL

Equations (1.14.5a–c), along with the systematic use of direction cosines to rigid-
body dynamics, are due to Lagrange. They appeared posthumously in the 2nd edi-
tion of the 2nd volume of his Mécanique Analytique (1815/1816). See also (alphabe-
tically): Funk (1962, pp. 334–335), Kirchhoff (1876, sixth lecture, §2), Mathieu (1878,
pp. 138–139).

1.15 THE RIGID BODY: TENSOR OF INERTIA, KINETIC ENERGY

Introduction, Basic Definitions

To get motivated, let us begin by calculating the (inertial) kinetic energy T of a rigid
body B rotating about a fixed point O; the extension to the case of general motion
follows easily. If x is the inertial angular velocity of B, then, since the inertial velocity
of a genetic body particle P, of inertial position r, is x� r ¼ v, we have, successively,

2T �Sdm v � v ¼Sdmðx � rÞ � ðx� rÞ
¼Sdm

�ðx �xÞðr � rÞ � ðx � rÞðx � rÞ	 (by simple vector algebra)

¼Sdm½!2r2 � ðx � rÞ2�; ð1:15:1aÞ
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These remarkable transitivity equations [because they allow for a smooth transition
from Lagrangean mechanics (chap. 2 ff.) to Eulerian mechanics (§1.15 ff.)] show
clearly that the �x; y; z are not ordinary (or genuine, or holonomic, or global; or as
Lagrange puts it ‘‘variables finies’’) coordinates, like the Eulerian angles �; �;  ;
that is why they are called pseudo- or quasi coordinates. Their general theory, along
with a simpler derivation of the above, are detailed in chap. 2.

Similarly, we can show that in terms of space-axes components, the transitivity
equations are

�ðd�XÞ � dð��XÞ ¼ d�Z��Y � d�Y��Z; ð1:14:6aÞ
�ðd�Y Þ � dð��Y Þ ¼ d�X��Z � d�Z��X ; ð1:14:6bÞ

ð1:14:6cÞδ(dθZ)− d(δθZ) = dθYδθX − dθXδθY .

In compact vector form, (1.14.5a, b, c) and (1.14.6a, b, c) read, respectively,

δrel(dθ)− ∂(δθ) = dθ × δθ , (1.14.7a)

δ(dθ)− d(δθ) = δθ × dθ , (1.14.7b)

where dθ = dθxi + dθy j + dθzk = dθXI + dθYJ + dθZK ⇒ δθ = δθxi + δθy j + δθzk =
δθXI + δθYJ + δθZK ⇒ δrel(dθ) ≡ δ(dθx)i + δ(dθy) j + δ(dθz)k, ∂(δθ) ≡ d(δθx)i +
d(δθy) j + d(δθz)k; that is, again, θ is a quasi vector. Here (recall 1.7.30j), Ω

′ =

(dA/dt) ·AT and dA/dt = Ω
′
·A. [More in Examples 2.13.9 and 2.13.11 (pp. 368 ff.).]



or, in terms of components along arbitrary (i.e., not necessarily body-fixed) rectan-
gular Cartesian axes O�xyz � O�xk, in which r ¼ ðx; y; zÞ � ðxkÞ, x ¼ ð!x; !y; !zÞ �
ð!kÞ ðk ¼ 1; 2; 3Þ,

2T ¼Sdm
X

!k
2

� � X
xk

2
� �

�
X

!kxk

� � X
!lxl

� �h i
¼Sdm

XX
�kl !k !l

� � X
xr

2
� �

�
XX

!k !l xkxl

� �h i
¼
XX

Ikl !k !l ðIndicial notationÞ ð1:15:1bÞ

ðDirect notationÞ ð1:15:1cÞ

¼ xT
� I �x ðMatrix notation;x: column vectorÞ; ð1:15:1dÞ

where

ð1:15:2aÞ
Ikl �Sdmðr2�kl � xkxlÞ:

ð1:15:2bÞ
r2 �

X
xk

2 ¼
X

xkxk; ð1:15:2cÞ

or, equivalently,

Ikl ¼ Jo �kl � Jkl; ð1:15:2dÞ

where

ð1:15:2eÞ
Jkl �Sxkxl dm

ð1:15:2fÞ
Jo � J11 þ J22 þ J33 ¼ ð1:15:2gÞ

In direct notation, the above read

S ðr rÞ dm: ð1:15:2hÞ

along O�xk; Ikl , and along O�xk 0 ; Ik 0l 0 , where xk 0 ¼
P

Ak 0kxk (proper orthogonal
transformation), are related by

Ik 0l 0 ¼
XX

Ak 0kAl 0lIkl ¼
XX

Ak 0kIklAll 0

, Ikl ¼
XX

Akk 0All 0Ik 0l 0 (Since, indicially, Ak 0k ¼ Akk 0 Þ
h i

: ð1:15:2iÞ
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= x · I ·x

IO ≡ I = (IO,kl) ≡ (Ikl) ,

Components of tensor of inertia of B, I, at O, along O–xk,

JO ≡ J = (JO,kl) ≡ (Jkl) ,

≡ Components of Binet’s tensor of B, J, at O, along O–xk,

That I is a (second-order) tensor follows from the fact that, under rotations of the
axes, T is a scalar invariant while x is a vector (what, in effect, constitutes a simple
application of the tensorial “quotient rule”). This means that the components of I

= (A · I ·AT)k′l′ [recalling eqs. (1.1.19j ff.)]

I =S [(r · r)1− r ⊗ r]dm , J =

S r2dm = Tr J .



Properties of the Inertia Tensor

six, of its nine components, are independent. In extenso, (1.15.2a, b) read

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

0BB@
1CCA

¼
Sdm ðy2 þ z2Þ �Sdm xy �Sdm x z

�Sdm yx S dm ðz2 þ x2Þ �Sdm y z

�Sdm zx �Sdm zy S dm ðx2 þ y2Þ

0BBB@
1CCCA: ð1:15:3Þ

they are sign-indefinite; that is, they may be >0, <0, or ¼0.
In view of the above, T can be rewritten as

2T ¼ Ixx !x
2 þ Iyy !y

2 þ Izz !z
2 þ 2Ixy !x !y þ 2Ixz !x !z þ 2Iyz !y !z: ð1:15:4Þ

Now, evidently, the choice of the axes O–xyz is nonunique. Not only can they be non–
body-fixed (in which case, the Ikl are, in general, time-dependent); but even if they are
taken as body-fixed, (1.15.3, 4) are still fairly complicated. Hence, to simplify matters
as much as possible, and since the kinetic energy is so central to analytical
mechanics, we, in general, strive to choose principal axes at O: O�xyz! O�123;

I1 0 0

0 I2 0

0 0 I3

0B@
1CA ¼ Principal axes representation of inertia tensor; ð1:15:5Þ

where the principal moments of inertia, at O, I1; 2; 3 are the eigenvalues ofX
Ikl !l ¼ �!k; ð1:15:6aÞ

that is, they are the roots of its characteristic equation:

Dð�Þ � �DetðIkl � ��klÞ ¼ 0; �1; 2; 3 � I1; 2; 3: ð1:15:6bÞ

Using basic theorems of the spectral theory of tensors [(1.1.17a ff.)] we can show the
following:

(i) At each point of a rigid body B there exists at least one set of principal axes.

(ii) Since, by (1.15.1b–d), the inertia tensor is not only symmetric, but also positive
definite [i.e.,

PP
Iklakal > 0, for all vectors a ¼ ðakÞ 6¼ 0�, all three roots of

(1.15.6b) are not only real but also strictly positive.
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I →

usually, but not always, body-fixed. Since I is symmetric, such (mutually orthogonal)
axes exist always; and along them I becomes

xy

I =

Clearly (and like most mechanics tensors), I is symmetric: Ikl = Ilk; that is, at most

The diagonal elements of I, Ixx, Iyy, Izz, are called moments of inertia of B about

I, Ixy = Iyx, Ixz = Izx, Iyz = Izy, are called products of inertia of B about O–xyz, and
O–xyz; and they are nonnegative; that is, Ixx, yy, zz ≥ 0. The off-diagonal elements of



Further

� If �1 6¼ �2 6¼ �3 6¼ �1 (all three eigenvalues distinct), then O–123 is unique.

� If �1 6¼ �2 ¼ �3 (two distinct eigenvalues), there exists a single infinity of such sets of
principal axes; O1 and every line perpendicular to it are principal axes; that is, the

direction of either O2 or O3, in the plane perpendicular to O1, can be chosen arbi-

trarily (e.g., a homogeneous right circular cylinder, with O on its axis of symmetry).
� If �1 ¼ �2 ¼ �3 (only one distinct eigenvalue), there exists a double infinity: any three

mutually perpendicular axes can be chosen arbitrarily as O–123 (e.g., O being the

center of a homogeneous sphere). Along principal axes, T, (1.15.4), with

x ¼ ð!1; !2; !3Þ, reduces to

2T ¼ I1!1
2 þ I2!2

2 þ I3!3
2: ð1:15:6cÞ

THEOREM

LetO–xyz and G–xyz be two sets of mutually parallel axes, and let the coordinates of
the center of mass of B, G, relative to O, be

ð1:15:7aÞ
that is, a; b; c ¼ coordinates of O relative to G–xyz. Then, the components of the
inertia tensor of B at O; IO; kl , and at G; IG; kl , are related by

ð1:15:7bÞ

Indicial notation : IO; kl ¼ IG; kl þm
X

GrGr

� �
�kl � GkGl

h i
; ð1:15:7cÞ

or, in extenso,

ð1:15:7dÞ

PROOF

We have, successively,

ðiÞ IO;xx ¼Sdm½ð y� bÞ2 þ ðz� cÞ2�

¼Sdmð y2 þ z2Þ � 2b S dm y
� �

� 2b S dm z
� �

þSdmðb2 þ c2Þ

¼ IG; xx þ 0þ 0þmðb2 þ c2Þ; etc., cyclically, for IO; yy; IO; zz: ð1:15:7eÞ

ðiiÞ IO; yz ¼ �Sdm½ð y� bÞðz� cÞ�
¼ �Sdm yzþ c S dm y

� �
þ b S dm z
� �

�Sdm bc

¼ IG; yz þ 0þ 0�mbc; etc., cyclically, for IO; xz; IO;xy: ð1:15:7fÞ
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The Generalized Parallel Axis Theorem (“Huygens–Steiner”)

This explains how I changes from point to point, among parallel sets of axes.

IO = IG +

⎛
⎝
m(b2 + c2) −mab −mac
−mba m(c2 + a2) −mbc
−mca −mcb m(a2 + b2)

⎞
⎠ .

OG ≡ rG ≡ (xG, yG, zG) ≡ (G1, G2, G3) ≡ (−a,−b,−c) ,

Direct notation : IO = IG + m(rG
21− rG ⊗ rG) ,



More generally, it can be shown that between any two points A, B (with some ad hoc
but, hopefully, self-explanatory notation),

ð1:15:7gÞ

which, when A! G and rG=A ! 0, reduces to (1.15.7b) (see below). (See, e.g., Lur’e,
1968, p. 143; also Crandall et al., 1968, pp. 180–182, Magnus, 1974, pp. 200–201.)

It should be noted that the transfer formulae (1.15.7b, g) are based on definitions
of moments of inertia about points, like (1.15.2h), not axes, and therefore hold for
any set of axes through these points; that is, they are independent of the axes
orientation at A, B. If, however, these axes are parallel, certain simplifications
occur; indeed, (1.15.7g) then yields the component form,

IB;kl ¼ IA;kl þm
�ðxA=B;12 þ xA=B;2

2 þ xA=B;3
2Þ�kl � xA=B;kxA=B;l

	
þ 2m

�ðxA=B;1 xG=A;1 þ xA=B;2 xG=A;2 þ xA=B;3 xG=A;3Þ�kl
� ð1=2ÞðxA=B;k xG=A;l þ xG=A;k xA=B;lÞ

	
; ð1:15:7hÞ

where rA=B � ðxA=B;1; xA=B;2; xA=B;3Þ ¼ coordinates of A relative to B, along axes
B�xyz � B�xk, and rG=A � ðxG=A;1; xG=A;2; xG=A;3Þ ¼ coordinates of G relative to
A, along axes A�xyz � A�xk (parallel to B�xk); or, in extenso, with
xA=B;1 � xA=B; xA=B;2 � yA=B; xA=B;3 � zA=B; xG=A;1 � xG=A, etc.,

IB;xx ¼ IA;xx þmð yA=B2 þ zA=B
2Þ þ 2mð yA=B yG=A þ zA=BzG=AÞ; etc., cyclically;

ð1:15:7iÞ
IB;xy ¼ IA;xy �mð yA=BxG=A þ xA=B yG=AÞ �mðxA=B yA=BÞ;

If A! G, then rG=A ! 0; rA=B ! rG=B, and the above reduces to

IB;kl ¼ IG;kl þm
�ðxG=B;12 þ xG=B;2

2 þ xG=B;3
2Þ�kl � xG=B;kxG=B;l

	
; ð1:15:7kÞ

from which, in extenso,

IB;xx ¼ IG;xx þmð yG=B2 þ zG=B
2Þ ¼ IG;xx þm½ð�bÞ2 þ ð�cÞ2�; etc., cyclically;

ð1:15:7lÞ
IB;xy ¼ IG;xy �mðxG=B yG=BÞ ¼ IG;xy �m½ð�aÞð�bÞ�; etc., cyclically; i.e., ð1:15:7b�fÞ:

ð1:15:7mÞ

Ellipsoid of Inertia

Let us consider a rectangular Cartesian coordinate system/basis O�xyz=ijk, and an
axis u through O defined by the unit vector u ¼ ðux; uy; uzÞ. Then, as the transfor-
mation equations against rotations (1.15.2i) show, the moment of inertia of a body B
about u, Iuu � I , will be (with k 0 ¼ l 0 ¼ u; k; l ¼ x; y; z; Ak 0k ¼ uk ¼ u1;2;3,
Ak 0l ¼ ul ¼ u1;2;3, etc.)

I ¼ Ixxux
2 þ Iyyuy

2 þ Izzuz
2 þ 2Ixyuxuy þ 2Iyzuyuz þ 2Ixzuxuz: ð1:15:8aÞ
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IB = IA + m(rA/B
21− rA/B ⊗ rA/B)

+ 2m
[
(rA/B · rG/A)1− (1/2)(rA/B ⊗ rG/A + rG/A ⊗ rA/B)

]
;

etc., cyclically. ð1:15:7jÞ



[For nontensorial derivations of (1.15.8a), see, for example, Lamb (1929, pp. 66–67),
Spiegel (1967, pp. 263–264)]. We notice that if x ¼ !u ¼ ð!ux; !uy; !uzÞ ¼
ð!x; !y; !zÞ, then the kinetic energy of B, moving about the fixed point O, eq.
(1.15.4), becomes

2T ¼ I!2: ð1:15:8bÞ
Now, by defining the radius vector

r � u=I1=2 ¼ xi þ yj þ zk ½i:e:; jrj � r ¼ ð1=IÞ1=2�; ð1:15:8cÞ
we can rewrite (1.15.8a) as

Ixxx
2 þ Iyy y

2 þ Izzz
2 þ 2Ixyxyþ 2Iyzyzþ 2Izxzx ¼ 1: ð1:15:8dÞ

Since I is positive [except when all the mass lies on u; then one of the principal
moments of inertia, roots of (1.15.6b), is zero and the other two are equal and
positive], every radius through O meets the quadric surface represented by
(1.15.8d), in O–xyz, in real points located a distance r ¼ ð1=IÞ1=2 from O, and there-
fore (1.15.8d) is an ellipsoid; appropriately called ellipsoid of inertia or momental
ellipsoid. [A term most likely introduced by Cauchy (1827), who also carried out
similar investigations in the theory of stress in continuous media (‘‘stress quadric’’).]

If the axes are rotated so as to coincide with the principal axes of the ellipsoid—
that is, O�xyz! O�123— then (1.15.8d) simplifies to

I1r1
2 þ I2r2

2 þ I3r3
2 ¼ 1;

or

½r1=ð1=I1Þ1=2�2 þ ½r2=ð1=I2Þ1=2�2 þ ½r3=ð1=I3Þ1=2�2 ¼ 1; ð1:15:8eÞ
where r1;2;3 are the ‘‘principal’’ coordinates of r, and ð1=I1;2;3Þ1=2 are the semidia-
meters of the ellipsoid. [Some authors (mostly British) define the radius of the
momental ellipsoid along u (i.e., our r) as

r ¼ m"4=I1=2 � I1=2; ð1:15:8c:1Þ
where m ¼mass of body, and " ¼ any linear magnitude (taken in the fourth power
for purely dimensional purposes), so that the ellipsoid equations (1.15.8d) and
(1.15.8e) are replaced, respectively, by

Ixxx
2 þ Iyy y

2 þ Izzz
2 þ 2Ixyxyþ 2Iyzyzþ 2Izxzx ¼ m"4; ð1:15:8d:1Þ

I1r1
2 þ I2r2

2 þ I3r3
2 ¼ m"4: ð1:15:8e:1Þ

Also, for a discussion of the closely related concept of the ellipsoid of gyration
(introduced by MacCullagh, 1844), see, for example, Easthope (1964, p. 134 ff.),
Lamb (1929, p. 68 ff.)] However, it should be remarked that not every ellipsoid can
represent an inertia ellipsoid; in view of the ‘‘triangle inequalities’’ (see below),
certain restrictions apply on the relative magnitudes of the semidiameters, and
hence the possible forms of the momental ellipsoid.

Now, and these constitute a geometrical sequel to the discussion of the roots of
the characteristic equation (1.15.6b):
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� If I1 ¼ I2 ¼ I3, the momental ellipsoid is a sphere. All axes through O are principal,

and all moments of inertia are mutually equal. Such a body is called kinetically
symmetrical about O.
� If, say, I2 ¼ I3, the ellipsoid is one of revolution about Ox—all perpendicular

diameters to Ox are principal axes. Such a body is called kinetically symmetric

about that axis; or simply uniaxial (Routh).

The above show that, in general, the ellipsoid of inertia, at a point, is nonunique.
The ellipsoid of inertia of a body at its mass center G, commonly referred to as its
central ellipsoid (Poinsot), is of particular importance: As the parallel axis theorem
shows, if the moment of inertia about an axis through G is known, IG, then the
moment of inertia about any other axis parallel to it is obtained by adding to IG the
nonnegative quantity md2, where d is the distance between the two axes.

Finally, the momental ellipsoid interpretation, plus the above parallel axis theo-
rem, allow us to conclude the following extremum (i.e., maximum/minimum) proper-
ties of the principal axes:

� The principal axes of inertia, at a point O, are those with the larger or smaller moment

of inertia than those about any other line through that point, I. Quantitatively, if

I1 � Imax 
 I2 
 I3 � Imin ð1:15:8fÞ�) ð1=I1Þ1=2 � ð1=I2Þ1=2 � ð1=I3Þ1=2	, something that can always be achieved by appro-

priate numbering of the principal axes, then

Imax 
 I 
 Imin: ð1:15:8gÞ

� The smallest central principal moment of inertia of a body, say IG;3 � IG;min, is smaller

than or equal to any other possible moment of inertia of the body (i.e., moment of
inertia about any other space point and direction there); that is, IG;min 
 I...;uu.

Additional Useful Results

(i) It can be shown that

I1 � I2 þ I3; I2 � I3 þ I1; I3 � I1 þ I2; ð1:15:8hÞ
that is, no principal moment of inertia can exceed the sum of the other two. Equations
(1.15.8h) are referred to as the triangle inequalities (since similar relations hold for
the sides of a plane triangle). Actually, this theorem holds for the moments of inertia
about any mutually orthogonal axes (McKinley, 1981).

(ii) Let �1;2;3 be the semidiameters (semiaxes) of the ellipsoid of inertia; that is,
�1;2;3 � ðI1;2;3Þ�1=2. Then, the third and second of (1.15.8h) lead, respectively, to the
following lower and upper bounds for �3, if �1;2 are given,

ð�2�2 þ �1�2Þ�1=2 � �3 � j�2�2 � �1�2j�1=2; ð1:15:8iÞ
and, cyclically, for �1;2; that is, arbitrary inertia tensors, upon diagonalization,
may yield (mathematically correct but) physically impossible principal moments of
inertia!

As a result of the above, if two axes, say �1 and �2, are approximately equal, the
corresponding inertia ellipsoid can be quite prolate (longer in the third direction,
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cigar shaped), but not too oblate (shorter in the third direction; flattened at the poles,
like the Earth).

of the coordinates, but not on their orientation.

ðivÞ � Ixx=2 � Iyz � Ixx=2; �Iyy=2 � Izx � Iyy=2; �Izz=2 � Ixy � Izz=2:

ð1:15:8jÞ

(v) Consider the following three sets of axes: (a) O–XYZ: arbitrary ‘‘background’’
(say, inertial) axes; (b) G�XYZ � G�xyz: translating but nonrotating axes, at center
of mass G; and (c) G–123: principal axes at G. By combining the transformation
formulae for Ikl , between parallel axes of differing origins (like O–XYZ and G–xyz)
and arbitrary oriented axis of common origin (like G–xyz and G–123), we can show
that

IXX ¼ mðYG
2 þ ZG

2Þ þ AX1
2I1 þ AX2

2I2 þ AX3
2I3; ð1:15:8kÞ

IYY ¼ mðZG
2 þ XG

2Þ þ AY1
2I1 þ AY2

2I2 þ AY3
2I3; ð1:15:8lÞ

IZZ ¼ mðXG
2 þ YG

2Þ þ AZ1
2I1 þ AZ2

2I2 þ AZ3
2I3; ð1:15:8mÞ

IXY ¼ �mXGYG þ AX1AY1ðI3 � I1Þ þ AX2AY2ðI3 � I2Þ; ð1:15:8nÞ
IYZ ¼ �mYGZG þ AY1AZ1ðI3 � I1Þ þ AY2AZ2ðI3 � I2Þ; ð1:15:8oÞ
IZX ¼ �mZGXG þ AZ1AX1ðI3 � I1Þ þ AZ2AX2ðI3 � I2Þ; ð1:15:8pÞ

where AX1 � cosðOX ; G1Þ ¼ cosðGx; G1Þ, etc., and XG; YG; ZG are the coordinates
of G relative to O–XYZ. The usefulness of (1.15.8k–p) lies in the fact that they yield
the moments/products of inertia about arbitrary axes, once the principal moments of
inertia at the center of mass are known.

(a) If a body has a plane of symmetry, then (
) its center of mass and (�) two of its

principal axes of inertia there lie on that plane; while the third principal axis is

perpendicular to it.
(b) If a body has an axis of symmetry, then (
) its center of a mass lies there, and ð�Þ

that axis is one of its principal axes of inertia; while the other two are perpendicular
to it.

(c) If two perpendicular axes, through a body point, are axes of symmetry, then they are

principal axes there. (But principal axes are not necessarily axes of symmetry!)
(d) If the products of inertia vanish, for three mutually perpendicular axes at a

point, these axes are principal axes there. [For a general discussion of the relations
between principal axes and symmetry (via the concept of covering operation), see, for

example, Synge and Griffith (1959, p. 288 ff.).]
(e) A principal axis at the center of mass of a body is a principal axis at all points of that

axis.

(f) If an axis is principal at any two of its points, then it passes through the center of
mass of the body, and is a principal axis at all its points.

(vii) Centrifugal forces: whence the products of inertia originate. Let us consider
an arbitrary rigid body rotating about a fixed axis OZ with constant angular velocity
x. Then, since the centripetal acceleration of a generic particle of it P, of mass dm,
equals v2=r ¼ !2r, where r ¼distance of P from OZ, the associated centrifugal force
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(iii) The quantity Tr I ≡ Ixx + Iyy + Izz (first invariant of I) depends on the origin

(vi)



dfc has magnitude dfc ¼ dmð!2rÞ, and hence components along a, say, body-fixed set
of axes O�xyzðOZ ¼ OzÞ will be

dfc;x ¼ dfcðx=rÞ ¼ dm x!2; dfc;y ¼ dfcð y=rÞ ¼ dm y!2; dfc;z ¼ 0; ð1:15:9aÞ

where x; y; z are the coordinates of P. Therefore, the components of the moment of
dfc along these axes are

dMc;x ¼ y dfc;z � z dfc;y ¼ �dm y z!2;

dMc;y ¼ z dfc;x � x dfc;z ¼ þdm x z!2;

dMc;z ¼ x dfc;y � y dfc;x ¼ 0: ð1:15:9bÞ

From the above, it follows that these centrifugal forces, when summed over the
entire body and reduced to the origin O, yield a resultant centrifugal force f c:

fc;x �Sdfc;x ¼ !2Sdm x � !2mxG;

fc;y �Sdfc;y ¼ !2Sdm y � !2myG;

fc;z �Sdfc;z ¼ 0; ð1:15:9cÞ

where xG; yG are the coordinates of the mass center of B, G; and a resultant cen-
trifugal moment Mc:

Mc;x �SdMc;x ¼ �!2Sdm y z � þ!2Iyz;

Mc;y �SdMc;y ¼ !2Sdm zx � �!2Ixz;

Mc;z �SdMc;z ¼ 0: ð1:15:9dÞ

Equations (1.15.9c, d) show clearly that if G lies on the Z ¼ z axis, then f c vanishes,
but Mc does not. For the moment to vanish, we must have Iyz ¼ 0 and Ixz ¼ 0; that
is, Oz must be a principal axis. In sum: The centrifugal forces on a spinning body tend
to change the orientation of its instantaneous axis of rotation, unless the latter goes
through the center of mass of the body and is a principal axis there. Such kinetic
considerations led to the formulation of the concept of principal axes of inertia,
at a point of a rigid body [Euler, Segner (1750s)]; and to the alternative term devia-
tion moments, for the products of inertia. We shall return to this important topic
in §1.17.

1.16 THE RIGID BODY: LINEAR AND ANGULAR MOMENTUM

(i) The inertial, or absolute, linear momentum of a rigid body B (or system S),
relative to an inertial frame F, represented by the axes I–XYZ (fig. 1.28), is defined as

p �Sdm v ¼ mvG ðG : center of mass of BÞ: ð1:16:1aÞ

ð1:16:1bÞ
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Substituting in the above [recalling (1.7.11a ff.), and with rG/O = rG, x → Ω: angular

vG = vO + vG/O = vO + vG,rel +Ω × rG (vG,rel ≡ ∂rG/∂t)
velocity vector of noninertial frame → axes O–xyz relative to inertial ones I–XYZ ]



readily yields

p � ptrans þ prel; ð1:16:1cÞ
ptrans � mðvO þX� rGÞ : Linear momentum of transport; ð1:16:1dÞ

ð1:16:1eÞ

If B is rigidly attached to the moving frame M, represented by the axes O–xyz (fig.
1.28), then, clearly, prel ¼ 0.

(ii) The inertial and absolute angular momentum of B, relative to the inertial origin
I, H I ;abs � H I , is defined as

H1 �S ½rI � dm ðdrI=dtÞ� �S ½R� dm ðdR=dtÞ�
½substituting R ¼ rO=I þ r � rO þ r ) dR=dt ¼ vO þ vrel þX� r; vrel

¼ mrO � ðvO þX� rGÞ þmrG � vO

þSdm ½r� ðX� rÞ� þSdm ðr� vrelÞ; ð1:16:2aÞ

or, since

Sdm ½r� ðX� rÞ� ¼Sdm ½r2X � ðr rÞ �X�
ð1:16:2bÞ

and calling

HO; rel �S r� ðdm vrelÞ: Noninertial and absolute angular momentum of B; about O;

ð1:16:2cÞ
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Figure 1.28 Rigid body (B), or system (S), in general motion relative

to the noninertial frame O�xyz; X: inertial angular velocity of O�xyz
(two-dimensional case).

prel ≡ mvG,rel ≡ m(∂rG/∂t) : Linear momentum of relative motion.

≡ ∂r/∂t]

= Sdm [r21− (r⊗ r)] ·Ω ≡ IO ·Ω ,



we finally obtain the following general kinematico-inertial result:

ð1:16:2dÞ

Special Cases

(i) If the body B is rigidly attached to the moving frame M, then

vrel ¼ 0; prel ¼ 0; HO; rel ¼ 0; X ¼ x ¼ inertial angular velocity of B;

ð1:16:3aÞ

and, therefore,

ð1:16:3bÞ

(ii) If, further, O ¼ G, then rG ¼ 0, rO ¼ rG, and, therefore,

ð1:16:3cÞ

(iii) If I ¼ O (i.e., rigid-body motion with one point, O, fixed), then rO ¼ 0,
vO ¼ 0, and, therefore,

ð1:16:3d1; 2Þ

It should be pointed out that the above hold for any set of axes, including non–body-

general, not be constant. Equation (1.16.3d2) would then yield, in components
[omitting the subscript O and with r ¼ ðxkÞ�,

Hk ¼
X

Ikl !l ; ð1:16:4aÞ

Ikl ¼
X

xrxr

� �
�kl � xkxl

h i
: ð1:16:4bÞ

If the axes at O are body-fixed, then the Ikl are constant; and, further, if they are
principal, then

Hk ¼ Ik !k: ð1:16:4cÞ

Linear Momentum of a Rotating Body

To dispel possible notions that the linear momentum is associated only with transla-
tion, let us calculate the linear momentum of a rigid body rotating about a fixed point
^. We have, successively, with the usual notations,

p ¼ mvG ¼ mðx� rG=^Þ � mðx� rGÞ
¼ mð!x; !y; !zÞ � ðxG; yG; zGÞ ½components along any ^-axes�
¼ mð!yzG � !z yG; !zxG � !xzG; !x yG � !yxGÞ: ð1:16:5aÞ
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HI = HO + rO × p+ mrG × vO, HO = IO ·Ω +HO,rel .

p = m(vO + x× rG) = mvG, HI = IO ·x + rO × p+ mrG × vO .

p = mvG, HI = IO ·x + rO × p .

p = m(x× rG) = mvG, HI = HO = IO ·x
[
≡S r× dm v

]
.

fixed ones, at the fixed point O; but along such axes the components of IO will, in

Sdm
[
(r · r)1− (r ⊗ r)

]
kl
=Sdm



In particular, if the body rotates about a fixed axis through ^, say ^z [recalling
(1.15.9a ff.)], then x ¼ !z k � ðd�=dtÞ k, and so (1.16.5a) reduces to

px ¼ �ðmyGÞ!z � �my !z; py ¼ ðmxGÞ!z � mx !z; pz ¼ 0: ð1:16:5bÞ

These expressions appear in the problem of rotation of a rigid body about a fixed
axis, treated via body-fixed axes ^–xyz [see, e.g., Butenin et al. (1985, pp. 266–278)
and Papastavridis (EM, in preparation)].

It is not hard to show that, in this case, the (inertial and absolute) angular
momentum of the body

H^ �S r� dm v ¼ ðHx;Hy;HzÞ; ð1:16:5cÞ

reduces to

Hx ¼ Ixz !z; Hy ¼ Iyz !z; Hz ¼ Izz !z � Iz !z: ð1:16:5dÞ

1.17 THE RIGID BODY: KINETIC ENERGY AND KINETICS OF

TRANSLATION AND ROTATION

(EULERIAN ‘‘GYRO EQUATIONS’’)

We recommend, for this section, the concurrent reading of a good text on rigid-body
dynamics; for example (alphabetically): Grammel (1950), Gray (1918), Hughes
(1986), Leimanis (1965), Magnus (1971, 1974), Mavraganis (1987), Stäckel (1905,
pp. 556–563).

(i) The inertial kinetic energy of a rigid body B in general motion, T , is defined as
the sum of the (inertial) kinetic energies of its particles:

ð1:17:1Þ

or, since

v ¼ v^ þx� r=^ ð^: arbitrary body-fixed pointÞ; ð1:17:2Þ
2T ¼Sdmðv^ þx � r=^Þ � ðv^ þ x� r=^Þ ¼ 2ðTtransl’n þ Trot’n þ Tcpl’gÞ; ð1:17:3Þ

where

2Ttransl’n � mv^ � v^ ¼ mv^
2:

ðtwice of Þ Translatory ðor slidingÞ kinetic energy of B; ð1:17:3aÞ

ðtwice of Þ Rotatory kinetic energy of B; ð1:17:3bÞ
Tcpl’g � mðx� rG=^Þ � v^ ¼ mvG=^ � v^ ¼ ðm rG=^Þ: � v^ � ðdmG=^=dtÞ � v^;
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2T(B, t) ≡ 2T ≡Sdm v · v ,

2Trot’n ≡Sdm(x× r
/^ ) · (x× r

/^ ) = x · I^ ·x: (recalling §1.15)



or

Tcpl’g � mrG=^ � ðv^ � xÞ � mG=^ � ðv^ � xÞ: ð1:17:3cÞ
Kinetic energy of coupling between v^ and x ðwhere mG=^ � mrG=^Þ

� These expressions hold for any axes, either body-fixed or moving in an arbitrary
manner, or even inertial. But if they are non–body-fixed, the components of rG=^ and

� We also notice that, in there, the mass m appears as a scalar ðm:Ttransl’nÞ, as a
vector of a first-order moment ðmG=^:Tcpl’gÞ, and as a second-order tensor

� From (1.17.3b), we obtain, successively,

gradxTrot’n � @Trot’n=@x

¼Sdm v=^ � ð@v=^=@xÞ ¼S r=^ � ðx � r=^Þ dm ¼S r=^ � ðdm v=^Þ
� H^; relative � h^ ½recalling ð1:6:5bÞ�; ð1:17:4Þ

that is, the angular momentum is normal to the surface Trot’n ¼ constant, in the
space of the !’s.
� If v^ ¼ 0—for example, gyro spinning about a fixed point— (1.17.3b) yield

2T ) 2Trot’n ¼ Ixx !x
2 þ � � � þ 2Ixy !x !y þ � � � ¼ H^ �x ¼ h^ �x 
 0; ð1:17:4aÞ

that is, since T is positive definite, the angle between H^ ¼ h^ and x is never obtuse:

08 � angle ðH^;xÞ < 908: ð1:17:4bÞ

� Similarly, we can express T in terms of relative velocities; that is, with

where X is the inertial angular velocity of the moving axes.

Another Useful T-Representation

We have, successively,

2T ¼Sdm v � v ¼S v � ðdm vÞ ¼S ðv^ þ x� r=^Þ � ðdm vÞ

¼ v^ � Sdm v
� �

þSdp � ðx� r=^Þ ðsince dm v � dpÞ

¼ v^ � pþ x � S r=^ � dp
� �

¼ v^ � pþ x �H^; absolute: ð1:17:6Þ

226 CHAPTER 1: BACKGROUND

motion (§1.9)]; in which case, T decouples into translatory and rotatory kinetic
energy]. (1.17.3d)

I^ will, in general, not be constant.

v = v^+Ω × r
/^+ v

/^, relative, v
/^, relative ≡ ∂r

/^/∂t , (1.17.5)

(I^ : Trot’n).

[= 0; e.g. if G = ^, or if v^ and x are parallel [^ on instantaneous screw axis of



Kinetic Energy of a Thin Plate of Mass m
in Plane Motion on its Own Plane (fig. 1.17)

Using plate-fixed axes ^�xy, we find [with cosð. . .Þ � cð. . .Þ, sinð. . .Þ � sð. . .Þ�

rG=^ ¼ xG i þ yG j � x i þ y j; ðx; y: constantÞ ð1:17:7aÞ
v^ ¼ ðdX^=dtÞI þ ðdY^=dtÞJ � ðdX=dtÞI þ ðdY=dtÞJ
¼ ðdX=dtÞðc� i � s� jÞ þ ðdY=dtÞðs� i þ c� jÞ
¼ �ðdX=dtÞc�þ ðdY=dtÞs�	i þ �� ðdX=dtÞs�þ ðdY=dtÞc�	 j
� vx i þ vy j; x ¼ ðd�=dtÞK ¼ ðd�=dtÞk; ð1:17:7b; cÞ

and so, successively,

2Ttransl’n � m v^ � v^ ¼ m
�ðdX=dtÞ2 þ ðdY=dtÞ2	; ð1:17:7dÞ

Tcpl’g � m rG=^ � ðv^ � xÞ ¼ mðx; y; 0Þ � ½ðvx; vy; 0Þ � ð0; 0; d�=dtÞ�

¼ mðd�=dtÞðvy x� vx yÞ
¼ mðd�=dtÞ�½ðdY=dtÞx� ðdX=dtÞy�c�� ½ðdX=dtÞxþ ðdY=dtÞy� s��;

ð1:17:7eÞ
ð1:17:7f Þ

that is,

2T ¼ 2TðdX=dt; dY=dt; d�=dtÞ
¼ m½ðdX=dtÞ2 þ ðdY=dtÞ2� þ Iðd�=dtÞ2

þ 2mðd�=dtÞ�½ðdY=dtÞx� ðdX=dtÞy�c�� ½ðdX=dtÞxþ ðdY=dtÞy�s��: ð1:17:7gÞ

An Application

It is shown in chap. 3 that for this three degrees of freedom (DOF) (unconstrained)
system, defined by the positional coordinates q1 ¼ X , q2 ¼ Y , q3 ¼ �, the
Lagrangean equations of motion d=dt

�
@T=@ðdqk=dtÞ

	� ð@T=@qkÞ ¼ Qk

½¼ system ðimpressedÞ force corresponding to qk�; or, explicitly, angular equation
(with M ¼ total external moment about ^):

Iðd2�=dt2Þþm
�½ðd2Y=dt2Þx� ðd2X=dt2Þy�c�
� ½ðd2X=dt2Þxþ ðd2Y=dt2Þy�s�� ¼M; ð1:17:7hÞ

which is none other than the (not-so-common form of the) angular momentum
equation:

I^
z þ ðrG=^ � m a^Þz ¼ Iðd2�=dt2Þ þm
�
xða^Þy � yða^Þx

	 ¼M; ð1:17:7iÞ
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2Trot’n ≡ x · I^ ·x = I ^ , zz ωz
2
≡ I(dφ/dt)2 ;



where (fig. 1.17),

rG=^ ¼ xG i þ yG j � x i þ y j ¼ � � �
¼ ðx c�� y s�ÞI þ ðx s�þ y c�ÞJ � XI þ YJ ; ð1:17:7jÞ

¼ ðd2X=dt2Þðc�i � s� jÞ þ ðd2Y=dt2Þðs� i þ c� jÞ
¼ ½ðd2X=dt2Þc�þ ðd2Y=dt2Þs�� i þ ½�ðd2X=dt2Þs�þ ðd2Y=dt2Þc�� j
� ða^Þx i þ ða^Þy j � ax i þ ay j; ð1:17:7kÞ

x, y-equations (with fx;y ¼ components of total external force about x, y-axes,
respectively):

m½d2X=dt2 � ðd2�=dt2Þðx s�þ y c�Þ � ðd�=dtÞ2ðx c�� y s�Þ� ¼ fx; ð1:17:7lÞ
m½d2Y=dt2 þ ðd2�=dt2Þðx c�� y s�Þ � ðd�=dtÞ2ðx s�þ y c�Þ� ¼ fy; ð1:17:7mÞ

which are none other than

mða^Þx �m½ðd2�=dt2ÞY þ ðd�=dtÞ2X � ¼ fx; ð1:17:7nÞ
mða^Þy þm½ðd2�=dt2ÞX � ðd�=dtÞ2Y � ¼ fy: ð1:17:7oÞ

For additional related plane motion problems, see, for example, Wells (1967, pp.
150–152).

‘‘British Theorem’’

It can be shown that the (inertial) kinetic energy of a thin homogeneous bar AB of
mass m equals

T ¼ ðm=6ÞðvA � vA þ vB � vB þ vA � vBÞ ¼ ðm=6ÞðvA2 þ vB
2 þ vA � vBÞ: ð1:17:8Þ

(This useful result appears almost exclusively in British texts on dynamics; hence, the
name; see, for example, Chorlton, 1983, pp. 165–166.)

Principle of Linear Momentum; Motion of Mass Center

Since

vG ¼ v^ þ x� rG=^ ð^: body-fixed pointÞ; ð1:17:9aÞ

the principle of linear momentum (}1.6)

mðdvG=dtÞ ¼ f ðtotal external force; acting at GÞ; ð1:17:9bÞ
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a^ = (d 2X^/dt
2)I + (d 2Y^/dt

2)J ≡ (d 2X/dt 2)I+ (d 2Y/dt 2)J



along body-fixe daxes (i.e., x ¼ X) yields, successively,

m d=dtðv^ þx� rG=^Þ

½with dx=dt � a; drG=^=dt � vG=^ ¼ x� rG=^�

ð1:17:9cÞ
or, in terms of the center of mass vector of the mass moment mG=^ � m rG=^ [as in
(1.17.3c, d)],

ð1:17:9dÞ
Along body-fixed axes ^�xyz, and with mG=^ ¼ ðmx; y;zÞ, v^ ¼ ðvx; y;zÞ there,
the x-component of (1.17.9d) is

m½dvx=dtþ !yvz � !zvy� þ
�
mzðd!y=dtÞ �myðd!z=dtÞ

	
þ �!yðmy!x �mx!yÞ � !zðmx!z �mz!xÞ

	 ¼ fx;

etc:; cyclically: ð1:17:9eÞ

Special Cases

(i) If ^ ¼ G, then mG=^ ¼ 0 and, clearly, (1.17.9d) reduces to

ð1:17:9fÞ
(ii) Along non–body-fixed axes at G, rotating with inertial angular velocity X,

(1.17.9b) yields

ð1:17:9gÞ
or, in components, with vG ¼ ðvG; x; y;zÞ,

mðdvG=dtÞx ¼ m
�
dvG;x=dtþ Oy vG;z � OzvG; y

� ¼ fx; etc:; cyclically; ð1:17:9hÞ
where ðdvG=dtÞx ¼ component of aG along an inertial axis that instantaneously coin-
cides with the moving axis Gx, and so on. In general, the vG;x; y; z are quasi velocities.

Principle of Angular Momentum;
Motion (Rotation) about the Mass Center

Along body-fixed axes �̂xyz, the principle of angular momentum [}1.6, with �
(arbitrary spatial point)! ^ (arbitrary body point), and H^; relative � h^],

dh^=dtþ rG=^ � ½mðdv^=dtÞ� ¼M^; ð1:17:10aÞ

becomes

ð1:17:10bÞ
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= m(∂v̂ /∂t+ x × v̂ ) + m
[
(dx/dt) × rG/^ + x × (drG/^/dt)

]

= m(∂v^/∂t) + m(x × v^ ) + α × (mrG/^) + x × [x × (mrG/^)] = f ,

m(∂v^/∂t) +m(x × v^) + α × (mG/^ + x × (x ×mG/^) = f .

m(∂vG/∂t+ x × vG) = f .

m(∂vG/∂t+Ω × vG) = f ;

∂h^/∂t + x × h^ + mG/^ × (∂v^/∂t) +mG/^ × (x × v^) = M^ ;



or, in components, with h^ ¼ ðhx; y;zÞ, mG=^ � mrG=^ ¼ ðmx; y;zÞ, v^ ¼ ðvx; y;zÞ, and so
on,

dhx=dt þ !yhz � !zhy þmy½dvz=dtþ !xvy � !yvx�
�mz½dvy=dtþ !zvx � !xvz� ¼Mx; etc:; cyclically: ð1:17:10cÞ

[The forms (1.17.9d, e) and (1.17.10b–c) seem to be due to Heun (1906, 1914); see
also Winkelmann and Grammel (1927) for a concise treatment via von Mises’ (not
very popular) ‘‘motor calculus.’’]

Special Cases

(i) If ^ ¼ G, then mG=^ ¼ 0, and (1.17.10b) reduces to

(ii) Along non–body-fixed axes at G, rotating with inertial angular velocity X,
(1.17.10a) yields

or, in components,

ðdhG=dtÞx ¼ dhG;x=dtþOyhG;z � OzhG; y ¼MG;x; etc:; cyclically: ð1:17:10f Þ

(iii) If the axes are body-fixed, then X ¼ x; and if they are also principal axes,

eqs. (1.17.10f ) assume the famous Eulerian form (1758, publ. 1765):

I1ðd!1=dtÞ � ðI2 � I3Þ!2!3 ¼M1;

I2ðd!2=dtÞ � ðI3 � I1Þ!3!1 ¼M2; ð1:17:11aÞ
I3ðd!3=dtÞ � ðI1 � I2Þ!1!2 ¼M3;

or, alternatively,

d!1=dt� ½ðI2 � I3Þ=I1�!2!3 ¼M1=I1; etc:; cyclically: ð1:17:11bÞ

From the above we readily conclude that:

� A force-free rigid body in space can rotate permanently [i.e.,
dx=dt ¼ 0) x ¼ ð!1; 0; 0Þ, or (0, !2, 0), or (0, 0, !3) ¼ constant] only about a central

principal axis of inertia. Or, if a free rigid body under no external forces begins to

rotate about one of its central principal axes, it will continue to rotate uniformly
about that axis; and, if a rigid body with a fixed point, and zero torque about that

point, begins to rotate about a principal axis through that point, it will continue to do
so uniformly about that axis.

� The principle of angular momentum takes the ‘‘elementary’’ form M ¼ d=dt ðI!Þ
only for principal axes of inertia, or if the body rotates about a (body- and space-)
fixed axis. That is why a central principal axis was called a permanent axis (Ampère,

1823).
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∂hG/∂t+ x × hG = MG . (1.17.10d)

∂hG/∂t+Ω × hG = MG ; (1.17.10e)

then, since (omitting the subscript G throughout) h = I ·x : hk = Ikωk, k = 1, 2, 3,



REMARKS

(i) Equations (1.17.10a ff.) also hold for any fixed point O.
(ii) The principles of linear and angular momentum are summarized as follows:

the vector system of mechanical loads, or inputs [ f at G, MG (moments of forces and
couples)] is equivalent to the kinematico-inertial vector system of the responses, or
outputs, ðmaG at G, dhG=dt); and this equivalence, holding about any other space
point �, can be expressed via the (hopefully familiar from elementary statics) purely
geometrical transfer theorem:

M� ¼MG þ rG=� � f atG ¼MG þ rG=� �maG � dhG=dtþmG=� � aG: ð1:17:12Þ
(iii) In general, the direct application of the vectorial forms of the principle of

angular momentum, either about the mass center G, or a fixed point O, and then
taking components of all quantities involved about common axes in which the inertia
tensor components remain constant, is much preferable to trying to match a (any)
particular problem to the various scalar components forms of the principle.

(iv) The relative magnitudes of the principal moments of inertia of a rigid body at,
say its mass center G, IG;1;2;3 � I1;2;3 (i.e., its mass distribution there) provide an
important means of classifying such systems. Thus, we have the following classifica-
tion (}1.15: subsection ‘‘Ellipsoid of Inertia’’):

. If I1 ¼ I2 ¼ I3 � I , we have a spherical top, or a kinetically symmetrical body. Then,

. If I1 ¼ I2 6¼ I3, the body (or ‘‘top’’) is symmetric; if I1 > I3, it is elongated, and if I1 < I3,

it is flattened.

. If I1 6¼ I2 6¼ I3 6¼ I1, the body is unsymmetric.

For further details and insights on these fascinating equations, see Cayley (1863, pp.
230–231), Dugas (1955, pp. 276–278), Stäckel (1905, pp. 581–589).

Energy Rate, or Power, Theorem for a Rigid Body

By d=dtð. . .Þ-differentiating the kinetic energy definition 2T ¼ Sdm v � v, and then
utilizing in there the rigid-body kinetic equation v ¼ v^ þ x� r=^, we obtain, suc-
cessively,

dT=dt ¼Sdm v � ðdv=dtÞ ¼Sdm v � a ¼Sdm ðv^ þ x� r=^Þ � a

¼Sdm v^ � aþSdmðx� r=^Þ � a ¼ v^ � Sdm a
� �

þ x � Sdm r=^ � a
� �

¼ v^ � ðm aGÞ þ x � Sdm ½d=dtðr=^ � vÞ þ v^ � v�
n o

¼ v^ � ðdp=dtÞ þ x � ðdH^=dtþ v^ � pÞ; ð1:17:13aÞ
where (recalling the definitions in }1.6),

p �Sdm v ¼ m vG: Linear momentum of body; ð1:17:13bÞ
H^ �Sdm ðr=^ � vÞ: Absolute ðand inertialÞ angular momentum of body; about

the body-fixed point ^: ð1:17:13cÞ
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HG = hG = IG · x = (I1) · x = Ix .



Invoking the principles of linear and angular momentum (}1.6), we can rewrite
(1.17.13a) as

dT=dt ¼ v^ � f þ x �M^: ð1:17:13dÞ

Sdf � ðv^ þ x� r=^Þ ¼ v^ � Sdf
� �

þ x � S r=^ � df
� �

¼ v^ � f þ x �M^; ð1:17:13eÞ

that is,

ð1:17:13f Þ

which is the well-known power theorem, proved here for a rigid system.

Special Case

If v^ ¼ 0 (i.e., rotation about a fixed point), (1.17.13d–f ) reduce to

ð1:17:13gÞ

(energy integral), and M^ ¼ dH^=dt ¼ dh^=dt ¼ 0 ) H^ ¼ h^ ¼ constant (angu-
lar momentum integral). These two integrals of the torque-free and fixed-point
motion form the basis of an interesting geometrical interpretation of rigid-body
motion, due to Poinsot (1850s). For details see, for example (alphabetically):
MacMillan (1936, pp. 204–216), Webster (1912, pp. 252–270), Winkelmann and
Grammel (1927, pp. 392–398).

Additional Useful Results

(i) By multiplying the Eulerian (rotational) equations with !x; y;z, respectively, and
then adding them, we obtain the following power equation:

d=dt½ðA!x
2 þ B!y

2 þ C!z
2Þ=2� ¼Mx!x þMy!y þMz!z;

i:e:; d=dt ðRotational kinetic energyÞ ¼ Power of external moments: ð1:17:14Þ
(ii) Plane motion: Principle of angular momentum for a rigid body B, about its

instantaneous center of rotation I. We have already seen (1.9.4d ff.) that the inertial
coordinates of the instantaneous center (of zero velocity) I, relative to the center of
mass G, are

rI=G ¼ ðXI=G;YI=G; 0Þ ¼ ð�dYG=dt=!; þdXG=dt=!; 0Þ: ð1:17:15aÞ

Therefore, application of the principle of angular momentum about I :
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On the other hand, the power of all forces, d ′W/dt ≡ Sdf ·v, transforms, succes-
sively, to

d ′W/dt =

dT/dt = d ′W/dt ,

dT/dt = d ′W/dt = x ·M^ .

If, in addition, M^ = 0 (torque-free motion), then d ′W/dt = 0 and T = constant

MI = IG(dω/dt) + (rG/I × maG)Z, (1.17.15b)



yields, successively (with IG � mk2),

MI ¼ IGðd!=dtÞ þ ðm=!Þ
�ðdYG=dt;�dXG=dt; 0Þ � ðd2XG=dt

2; d2YG=dt
2; 0Þ	

¼ IGðd!=dtÞ þ ðm=!Þ
�ðdYG=dtÞðd2YG=dt

2Þ � ð�dXG=dtÞðd2XG=dt
2Þ	

¼ IGðd!=dtÞ þ ðm=!Þ
�ðdXG=dtÞðd2XG=dt

2Þ þ ðdYG=dtÞðd2YG=dt
2Þ	

¼ ðm=!Þ�k2!ðd!=dtÞ þ ðdXG=dtÞðd2XG=dt
2Þ þ ðdYG=dtÞðd2YG=dt

2Þ	
¼ ðm=!Þðd=dt�ð1=2Þ½k2!2 þ ðdXG=dtÞ2 þ ðdYG=dtÞ2�

�Þ
½noting that ðdXG=dtÞ2 þ ðdYG=dtÞ2 ¼ vG

2 ¼ r2!2; r ¼ jrG=I j�
¼ ð1=2!Þfd=dt½mðk2 þ r2Þ!2�g;

or, finally, with II � mðk2 þ r2Þ � mK2: moment of inertia of B about I (by the
parallel axis theorem),

MI ¼ ð1=2!Þ½d=dt ðII!2Þ� ¼ IIðd!=dtÞ þ ð1=2Þ!ðdII=dtÞ
¼ IIðd!=dtÞ þmrðdr=dtÞ!: ð1:17:15cÞ

Special Cases

(a) If B is turning about a fixed axis, or if I is at a constant distance from G, then
dr=dt ¼ 0 and (1.17.15c) reduces to

MI ¼ IIðd!=dtÞ: ð1:17:15dÞ
(b) If the axis of rotation is mobile, but the body starts from rest, then, since

initially ! ¼ 0 and dr=dt ¼ 0, the initial value of its angular acceleration is given
by (1.17.15d):

d!=dt ¼MI=II : ð1:17:15eÞ
(c) If the body undergoes small angular oscillations about a position of equili-

brium, then the term dII=dt ¼ 2mrðdr=dtÞ is of the order of the rate dr=dt, and
therefore ðdII=dtÞ! is of the order of the square of a small velocity and so, to the
first order (linear angular oscillations), it can be neglected; thus reducing (1.17.15c)
to (1.17.15d), with II given by its equilibrium value.

In sum, eq. (1.17.15d) holds if the instantaneous axis of rotation is either fixed, or
remains at a constant distance from the center of mass; or if the problem is one of
initial motion, or of a small oscillation. In all other cases of moments about I , we
must use (1.17.15c). For further details and applications, see, for example (alphabe-
tically): Besant (1914, pp. 310–314), Loney (1909, pp. 287, 346–347), Pars (1953, pp.
403–404), Ramsey (1933, part I, pp. 241–242), Routh (1905(a), pp. 103–104, 171–
172). Somehow this topic is treated only in older British treatises!

Rigid-Body Mechanics in Matrix Form
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[Here, following earlier remarks on notation (§1.1), we denote vectors by bold italics, and
matrices/tensors by bold, roman, upper case (capital) letters; for example, a, A (vectors),



By recalling the tensor results of }1.1, and the earlier definitions and notations,
(1.15.2a ff.),

I �S ½ðr � rÞ1 � r r� dm ¼ �S ðr � rÞ dm ¼ ð1=2ÞðTr IÞ1� J ð1:17:16a1Þ
½ ) Tr I ¼ 2TrJ�;
J �S ðr rÞ dm; ð1:17:16a2Þ

½r ¼ axial vector of tensor r and dð. . .Þ=dt is inertial rate of change], we can verify the
following matrix forms of the earlier (}1.15–1.17) basic equations of rigid-body
mechanics [while assuming that, in a given equation, all moments of inertia and
moments of forces are taken either about the body’s center of mass, or about a
body-and-space-fixed point (if one exists), and along body-fixed axes; and suppres-
sing all such point-dependence for notational simplicity, except in eqs. (1.17.16b1–3)
for obvious reasons]:

ðiÞ IO ¼ IG �m rG � rG ¼ IG þm
�ðrG � rGÞ1� rG  rG

	
½rG � rG=O; etc:; parallel axis theorem in terms of I: ð1:15:7bÞ�;ð1:17:16b1Þ
) Tr IO ¼ Tr IG þ 2m rG � rG; ð1:17:16b2Þ

JO ¼ JG þm rG  rG ¼ ðTr IG=2Þ1� IG þm rG  rG

½Parallel axis theorem in terms of J�; ð1:17:16b3Þ

(ii)

ð1:17:16cÞ
(iii) (1.17.16d)

(iv) H ¼ I �x ¼ �J �xþ ðTr JÞx
(v)

½H ¼ axial vector of H ðangular momentum tensorÞ�

ðviÞ M ¼ d=dt ðI �xÞ ¼ ðdI=dtÞ �xþ I � ðdx=dtÞ ½then invoking ð1:17:16cÞ�

ðviiÞ

½M ¼ axial vector of M ðmoment; or torque; tensorÞ;

Additional forms of the above are, of course, possible.
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that it adds anything significant to our conceptual understanding of mechanics, but because
it happens to be fashionable among some contemporary applied dynamicists.]

[recalling results of 1.1.20a ff.; x = axial vector of tensor Ω];

H = I ·ΩT
−Ω · I + (Tr I) ·Ω = (Ω · I)T

−Ω · I+ (Tr I) ·Ω (1.17.16e1)

= I · (dx/dt) +Ω · (I ·x) = I · (dx/dt) + x × (I ·x)

= −[J · (dx/dt) +Ω · (J ·x)] + (Tr J)(dx/dt) ;

(1.17.16f1)

(1.17.16f2)

(1.17.16g1)

= E · J− (E · J)T (1.17.16g2)

dI/dt = Ω · I+ I ·ΩT = Ω · I− I ·Ω

dI/dt = −(dJ/dt) [= −(Ω · J− J ·Ω)]

= J ·Ω+Ω · J = J ·Ω− (J ·Ω)T = J ·Ω−Ω
T
· J ; (1.17.16e2)

A, B (matrices, tensors). This material (notation) is presented here not because we think

recalling (1.11.9a ff.): E ≡ dΩ/dt +Ω ·Ω ≡ A+Ω · Ω] .

M = (E · I)T
− E · I+ (Tr I) · (dΩ/dt)



A Comprehensive Example: The Rolling Disk

Let us discuss the motion of a thin homogeneous disk D (or coin, or hoop) of mass m
and radius r, on a fixed, horizontal, and rough plane P (fig. 1.29).

Kinematics

Relative to the intermediate axes/basis G�xyz=ijk (defined so that k is perpendicular
to D, at its center of mass G; i is continuously horizontal and parallel to the tangent
to D, at its contact point C; and j goes through G, along the steepest diameter of D,
and is such that ijk form an ortho–normal–dextral triad), whose inertial angular
velocity X is

X ¼ Ox i þ Oy j þ Oz k ¼ ð!�Þi þ ð!� sin �Þ j þ ð!� cos �Þk; ð1:17:17aÞ

[where !� � d�=dt, !� � d�=dt, ! � d =dt] the inertial angular velocity of D, x,
equals

x ¼ !x i þ !y j þ !z k ¼ ð!�Þi þ ð!� sin �Þ j þ ð!� cos �þ ! Þk
¼ Xþ ! k: ð1:17:17bÞ

In view of the above, the rolling constraint vC ¼ 0, becomes

vC ¼ vG þ x� rC=G ¼ vx i þ vy j þ vzkþ ð!x; !y; !zÞ � ð0;�r; 0Þ
¼ ðvx þ r!zÞi þ ðvyÞ j þ ðvz � !xrÞk ¼ 0; ð1:17:17cÞ
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Figure 1.29 Rolling of thin disk/coin D on a fixed, rough, and horizontal plane P.
O–XYZ : space-fixed (inertial) axes; O–xyz : intermediate axes (of angular velocity Ω). A, B = A,
C : principal moments of inertia at G. For our disk: A = mr2/4, C = mr2/2.



from which it follows that

vx þ r!z ¼ 0 ) vx ¼ �r!z ¼ �r ð!� cos �þ ! Þ; ð1:17:17dÞ
vy ¼ 0; ð1:17:17eÞ
vz � !xr ¼ 0 ) vz ¼ r!x ¼ r!�: ð1:17:17f Þ

These equations connect the velocity of G with the angular velocity and the rates of
the Eulerian angles.

Kinetics

To eliminate the rolling contact reaction R, we apply the principle of angular
momentum about C; that is, we take moments of all forces and couples [including
inertial ones at G; i.e., �m ðdvG=dtÞ and �dhG=dt] about G (recalling 1.6.6a ff.) to
give

MC ¼ dhG=dtþ rG=C � ½mðdvG=dtÞ�: ð1:17:18aÞ

But, with W ¼ weight of disk, and sinð. . .Þ � sð. . .Þ, cosð. . .Þ � cð. . .Þ, we have

ðiÞ MC ¼ rG=C �W ¼ ð0; r; 0Þ � ð0;�Ws�;�Wc�Þ ¼ ð�rWc�Þi; ð1:17:18bÞ
ðiiÞ

¼ ax i þ ay j þ az kþ ðOx;Oy;OzÞ � ðvx; vy; vzÞ
¼ ðax þ Oyvz � OzvyÞi

þ ðay þ Ozvx �OxvzÞ j þ ðaz þ Oxvy � OyvxÞk
¼ ðax þ vz !� s�� vy !� c�Þi þ ðay þ vx !� c�� vz !�Þ j

þ ðaz þ vy !� � vx !� s�Þk; ð1:17:18cÞ

ðiiiÞ
¼ �ðA
xÞi þ ðA
yÞ j þ ðC
zÞk

	þ ðOx;Oy;OzÞ � ðA!x;B!y;C!zÞ
¼ ðA
x þCOy!z � AOz!yÞi þ ðA
y þ AOz!x � COx!zÞ j

þ ðC
z þ AOx!y � AOy!xÞk
¼ ðA
x þC!z !� s�� A!y !� c�Þi þ ðA
y þ A!x !� c�� C!z !�Þ j

þ ðC
z þ A!y !� � A!x !� s�Þk;
ð1:17:18dÞ

and so (1.17.18a) yields the three component equations of angular motion:

mrðaz þ vy !� � vx !� s�Þ þ ðA
x þ C!z !� s�� A!y !� c�Þ ¼ �Wrc�; ð1:17:18eÞ
A
y þ A!x !�c�� C!z !� ¼ 0; ð1:17:18f Þ
�mrðax þ vz !� s�� vy !� c�Þ þ ðC
z þ A!y !� � A!x !� s�Þ ¼ 0: ð1:17:18gÞ
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dhG/dt = ∂hG/∂t+Ω × hG [with the ad hoc notation dωx,y,z/dt ≡ αx,y,z]

dvG/dt = ∂vG/∂t+Ω × vG [with the ad hoc notation dvx,y,z/dt ≡ ax,y,z]



The nine equations (1.17.18e, f, g) þ (1.17.17d, e, f ) þ (1.17.17b, in components)
constitute a determinate system for the nine functions (of time): �, �,  ; !x; y;z (quasi
velocities); vx; y;z (quasi velocities). We may reduce it further to two steps:

(i) Using (1.17.17d, e, f ) in (1.17.18e, f, g) (i.e., eliminating vx; y;z), we obtain

mrðr
x þ r!z !� s�Þ þ A
x þ C!z !� s�� A!y !� c� ¼ �Wrc�; ð1:17:19aÞ
A
y þ A!x !� c�� C!z !� ¼ 0; ð1:17:19bÞ
�mrð�r
z þ r!x !� s�Þ þ C
z þ A!y !� � A!x !� s� ¼ 0: ð1:17:19cÞ

(ii) Using (1.17.17b) in (1.17.19a, b, c) (i.e., eliminating !x; y), we get three equa-
tions of rotational motion in terms of �, the rates of �, �, and the total spin
!z ¼ ! þ !�c�:

ðAþmr2Þðd2�=dt2Þ þ ðC þmr2Þ!zðd�=dtÞs��Aðd�=dtÞ2c�s� ¼ �Wrc�; ð1:17:20aÞ
A d=dt ½ðd�=dtÞs�� þ Aðd�=dtÞðd�=dtÞc�� C!zðd�=dtÞ ¼ 0; ð1:17:20bÞ
ðC þmr2Þðd!z=dtÞ �mr2ðd�=dtÞðd�=dtÞs� ¼ 0; ð1:17:20cÞ

or, since A ¼ B ¼ mr2=4 ¼ ð1=2Þðmr2=2Þ ¼ C=2,

�: 5rðd2�=dt2Þ þ 6r!zðd�=dtÞ sin �� rðd�=dtÞ2 sin � cos �þ 4g cos � ¼ 0; ð1:17:21aÞ
�: 2!zðd�=dtÞ � 2ðd�=dtÞðd�=dtÞ cos �� ðd2�=dt2Þ sin � ¼ 0; ð1:17:21bÞ
!z: 3ðd!z=dtÞ � 2ðd�=dtÞðd�=dtÞ sin � ¼ 0: ð1:17:21cÞ

These three nonlinear coupled equations contain an enormous variety of disk
motions. For simple particular solutions of them, see, for example, MacMillan
(1936, pp. 276–281); also Fox (1967, pp. 263–267). Once �ðtÞ, �ðtÞ,  ðtÞ have been
found, the rolling contact reaction R ¼ ðRx; y;zÞ can be easily obtained from the
principle of linear momentum:

ð1:17:22Þ
The details are left to the reader.

1.18 THE RIGID BODY: CONTACT FORCES, FRICTION

Recommended for concurrent reading with this section are (alphabetically): Beghin
(1967, pp. 139–145), Kilmister and Reeve (1966, pp. 81–84, 141–143, 164–177), Pérès

Introduction and Constitutive Equations
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maG = m(∂vG/∂t+Ω × vG) = W+ R⇒ R = · · · = R(t) .

The forces between two rigid bodies, B and B1, at a mutual contact point C (actually,
a small area around C that is practically independent of the macroscopic shape of the
bodies and increases with pressure), say from B to B1, reduce, in general, to a
resultant force R and a couple C; frequently, C can be neglected. Decomposing R

(1953; pp. 62–66); also, our Elementary Mechanics (§20.1, 2, under production).



R ¼ RN þ RT

¼ Normal reaction ðopposing mutual penetrationÞ
þ Tangential reaction ðopposing relative slippingÞ; ð1:18:1Þ

C ¼ CN þ CT

¼ Pivoting couple ðopposing mutual pivotingÞ
þ Rolling couple ðopposing relative rollingÞ: ð1:18:2Þ

These components satisfy the following ‘‘laws’’ (better, constitutive equations) of dry
friction; that is, for a solid rubbing against solid, without lubrication:

(i) As soon as an existing contact ceases, R ¼ 0.
(ii) Whenever there is slipping—that is, relative motion of B and B1 ðvC 6¼ 0Þ—

RN points toward B1; and RT and vC are collinear and in opposite directions:

RT � vC ¼ 0; RT � vC < 0; ð1:18:3Þ
and

RT ¼ f ðRN ; vCÞ; ð1:18:4Þ
or, approximately (for small relative velocities),

jRT=RN j ¼ : coefficient of friction between B and B1; a nonnegative constant:

ð1:18:5Þ
Frequently, we use the following notation:

RT � F and RN � N: ð1:18:6Þ
Then, with jF j ¼ jNj, the above read

where

n ¼ common unit normal vector; from B towards B1; ð1:18:7aÞ
t ¼ unit tangent vector; in direction of slipping velocity: ð1:18:7bÞ

(iii) When vC ¼ 0 (no slipping—relative rest), RN points toward B1, while RT can
have any arbitrary direction and value on the common tangent plane, as long as

jRT=RN j � jF=Nj � ; or; vectorially; jR� nj � jR � nj; ð1:18:8Þ
with the equality sign holding for impending tangential motion. Actually, the  in
(1.18.8) is called coefficient of static friction, S; and the  in (1.18.5) is called
coefficient of kinetic friction, K ; and, generally,

S 
 K : ð1:18:9Þ
Here, unless specified otherwise,  will mean K :
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and C along the common normal to the bounding surfaces of B, B1, say from B towards
B1, and along the common tangent plane, at C, we obtain

R = RN + RT; RN = Nn, RT = Ft = −μ|N|t, (1.18.7)



The friction coefficient  is, in general, not a constant but a function of: (a) the
nature of the contacting surfaces; (b) the conditions of contact (e.g., dry vs. lubricated
surfaces); (c) the normal forces (pressure) between the surfaces; and (d) the velocity
of slipping. Further, in the dry friction case (solid/solid, no lubricant),  increases
with pressure, and decreases with vC; and this dependence is particularly pronounced
for small values of vC, so that, if  ¼ ðvCÞ, then  < o, where o � ð0Þ. In most
such applications, we assume that  is, approximately, a positive constant (rough
surface). Then the relation  ¼ tan� defines the ‘‘angle of friction.’’ If  � 0 (smooth

ness), then vC ¼ 0 throughout the motion, and R can have any direction, as long as
RN � N points toward B1.

(iv) The contact couple C is included in the cases of small  and/or slippingless
motion as follows:

(a) If at a given instant and immediately afterwards xN ¼ 0 (i.e., no instantaneous
pivoting), then

jCN j � jCN;maxj; CN;max � fpRN ¼ limiting pivoting moment; ð1:18:10Þ
fp � pivoting friction=resistance coefficient: ð1:18:10aÞ

(b) If at a given instant xN 6¼ 0, or if it stops being zero at that instant, then

jCN j ¼ jCN;maxj; ð1:18:11Þ

and CN and xN have opposite senses.
(c) If xT ¼ xrolling � xR ¼ 0, then

jCT j � jCT ;maxj; CT ;max � frRN ¼ limiting rolling moment; ð1:18:12Þ
fr � rolling friction=resistance coefficient: ð1:18:12aÞ

(d) If at a given instant xT 6¼ 0, or if it stops being zero at that instant, then

jCT j ¼ jCT ;maxj; ð1:18:13Þ

and CT and xT have opposite senses.

The coefficients fp and fr have dimensions of length (whereas  is dimensionless!),
and their values are to be determined experimentally. Theoretically, fp can be related
to , if CN is viewed as resulting from the slipping friction over a small area around
the contact point C—something requiring use of the theory of elasticity (no such
relationship can be established for fr). It turns out that fp is, generally, five to ten
times smaller than fr; in general, pivoting is produced faster than rolling.

that rest is possible, not that it will happen. And if we end up with an inconsistency,
it means that the particular assumption(s) that led to it is (are) false. Thus, to show
that two contacting bodies roll (slip) on each other, all we can do is show that the
assumptions of their slipping (rolling) lead to a contradiction. [For detailed examples
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In closing this very brief summary, we point out that the above “friction laws” sup-
ply only indirect criteria for relative rest or motion (rolling and slipping); that is, if,
for example, we assume rest and the resulting equations are consistent with it, it means

surfaces), then R ≈ RN ≡ N, RT ≈ 0. If, on the other end, μ → ∞ (perfect rough-



illustrating these points, see, for example (alphabetically): Hamel (1949, pp. 543–549,
629–639), Kilmister and Reeve (1966, pp. 165–177); also Pöschl (1927, pp. 484–497).]

Work of Contact Forces

Under a kinematically possible infinitesimal displacement of B1 relative to B
(assumed fixed) that preserves their mutual contact at C, the total elementary
(first-order) work of the contact actions (of B on B1) is:

where

drC ¼ elementary translatory displacement of the B1-fixed point; at contact;
relative to B

ð� vC dt; in an actual such displacementÞ; ð1:18:14aÞ

ð� x dt; in an actual such displacementÞ; ð1:18:14bÞ

� Since drC preserves the B=B1 contact, it lies on their common tangent plane at C.
Then: (
) if RT � 0 (i.e., negligible slipping friction), or (�) if drC ¼ 0 (i.e., no

d 0W ¼ 0: ð1:18:15Þ

� If drC violates contact, but remains compatible with the unilateral constraints, it
makes an acute angle with the normal toward B1. In this case, if RT � 0 ) R � RN ,
and therefore

d 0W > 0; ð1:18:16Þ

while for elementary displacements incompatible with the constraints,

d 0W < 0: ð1:18:17Þ

� In a real, or actual, displacement d 0W becomes

d 0W ¼ ðR � vC þ C �xÞ dt:

From the earlier constitutive laws, we see that, as long as vC, xN , xT do not vanish,
the pairs

ðRT ; vCÞ; ðCN ;xNÞ; ðCT ;xT Þ;

are collinear and oppositely directed. Hence, frictions do negative work; that is, in
general,

d 0W � 0: ð1:18:18Þ
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d ′W = R · drC + C · dθ (1.8.14)

dθ = elementary rotatory displacement of B1 relative to B

slipping) and dθ = 0 (i.e., no rotating), then:



If, as commonly assumed, C � 0, then

d 0W ¼ ðRT � vCÞ dt � ðF � vCÞ dt
¼ 0; if F ¼ 0 ðfrictionless; or smooth; contactÞ
¼ 0; if vC ¼ 0 ðslippingless; or rough; contactÞ: ð1:18:19Þ

It should be stressed that, in all these considerations, the relevant velocities are those
of material particles, and not those of geometrical points of application of the loads.
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2

Kinematics of Constrained Systems

(i.e., Lagrangean Kinematics)

I cannot too strongly urge that a kinematical result is a result

valid forever, no matter how time and fashion may change the

‘‘laws’’ of physics.

(Truesdell, 1954, p. 2)

It is my belief that students have difficulty with mechanics

because of an inadequate knowledge of kinematics.

(Fox, 1967, p. xi)

2.1 INTRODUCTION

As complementary reading for this chapter, we recommend the following (alpha-
betically):

General: Hamel (1904(a), (b)), Heun (1906, 1914), Lur’e (1968), Neimark and Fufaev
(1972), Novoselov (1979), Papastavridis (1999), Prange (1935).

Special problems, extensions: Carvallo (1900, 1901), Lobas (1986), Lur’e (1968),
Stückler (1955), Synge (1960).

Research journals (see the references at the end of this book): Acta Mechanica Sinica

(Chinese), Applied Mathematics and Mechanics (Chinese), Archive of Applied Mechanics
(former Ingenieur Archiv; German), Journal of Applied Mechanics (ASME; American),

Applied Mechanics (Soviet!Ukrainian), Journal of Guidance, Control, and Dynamics
(AIAA; American), PMM (Soviet!Russian), ZAMM (German), ZAMP (Swiss); also

the various journals on kinematics, mechanisms, machine theory, design, robotics, etc.

In this chapter we begin the study of analytical mechanics proper with a detailed
treatment of Lagrangean kinematics, i.e., the theory of position and linear velocity
constraints (or Pfaffian constraints) in mechanical systems with a finite number of
degrees of freedom; that is, a finite number of movable parts; as opposed to contin-
uous systems that have a countably infinite set of such freedoms. All relevant funda-

holonomicity versus nonholonomicity, constraint stationarity (or scleronomicity)
versus nonstationarity (or rheonomicity)—are detailed in both particle and system
variables, along with elaborate discussions of quasi coordinates and the associated

very rare) treatment of Frobenius’ fundamental necessary and sufficient conditions
for the holonomicity, or lack thereof, of a system of Pfaffian constraints.
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mental concepts, definitions, equations — such as velocity, acceleration, constraint,

transitivity equations and Hamel coefficients; as well as a direct and readable (and



The examples and problems, some at the ends of the paragraphs and some (the
more comprehensive ones) at the end of the chapter, are an indispensable part of the
material; several secondary theoretical points and results are presented there.

This chapter, and the next one on Kinetics, constitute the fundamental essence and
core of Lagrangean analytical mechanics.

2.2 INTRODUCTION TO CONSTRAINTS AND THEIR CLASSIFICATIONS

Positions, Configurations, Motions

Let us consider a general finite mechanical system S consisting of N (=positive
integer), free, or unconstrained, material particles. The position r of a generic
S-particle, P, at the generic time instant, t, relative to an ‘‘origin’’ fixed in a, say
inertial, frame of reference, F, is defined by the vector function

r ¼ f ðP; tÞ � rðP; tÞ: ð2:2:1Þ
The collection of all these particle vectors, at a current instant t, make up a current
system position, or current configuration of S;CðtÞ, and its evolution in time consti-
tutes a motion of S. The latter, clearly, depends on the frame of reference. Thus, the
complete description of a motion of S, if the latter is modeled as a collection of N
particles, requires (at most) knowledge of 3N functions of time; for example, the 3N
rectangular Cartesian components ¼ coordinates of the N r’s:

ðx1; y1; z1; . . . ; xN ; yN ; zNÞ � ðx; y; zÞ � ð�1; . . . ; �3NÞ � n: ð2:2:1aÞ
These numbers can be viewed as the rectangular Cartesian coordinates of the
3N-dimensional position vector of a single fictitious, or figurative, particle represent-
ing S, in a 3N-dimensional Euclidean space, E3N , henceforth called the system’s
unconstrained configuration space; and, therefore, a motion of S can be visualized
as the path traced by the tip of that system position vector in E3N . Equation (2.2.1)
can be replaced by

r ¼ f ðro; t; toÞ � rðro; t; toÞ; ð2:2:2Þ
where (fig. 2.1): ro ¼ ‘‘reference position’’ of P at the ‘‘reference time’’ t ¼ to, is used
to distinguish, or label, the various S-particles; and the totality of ro’s constitutes the
reference configuration of S at to, CðtoÞ. For a fixed ro and variable t (i.e., a motion
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of P), eqs. (2.2.1, 2) give the path of a particle P that was initially at ro. (The same
equations for fixed t and variable ro would give us the transformation of the spatial
region initially occupied by the system, to its current position at time t.)

The one-to-one correspondence between r (and t) and ro (and to), of the same
particle P—that is, the physical fact that ‘‘initially distinct particles must remain
distinct throughout the motion’’— requires that (2.2.2) has an inverse:

ro ¼ f �1ðr; t; toÞ � gðr; to; tÞ : reference configuration at ðvariableÞ time to:

ð2:2:2aÞ
Switching the roles of ðr; tÞ and ðro; toÞ, we can view (2.2.2a) as expressing the
‘‘current’’ position ro in terms of the ‘‘reference’’ position and time ðr; tÞ and
‘‘current’’ time to. From now on, for simplicity, we shall drop, in the above, the
explicit ðro; toÞ and/or P-dependence [also, replace the rigorous notation f ð. . .Þ with
rð. . .Þ, as done frequently in engineering mathematics, except whenever extra clarity
is needed], and write (2.2.1) simply as

r ¼ rðtÞ: ð2:2:3Þ
REMARKS

(i) For (2.2.2) and (2.2.2a) to be mutually consistent, we must have

ð2:2:2Þ for t ¼ to ) ð2:2:2aÞ : r ¼ f ðro; t; toÞ ) ro ¼ f ðro; to; toÞ ¼ f �1ðr; t; toÞ;
ð2:2:2aÞ for to ¼ t) ð2:2:2Þ : ro ¼ f �1ðr; t; toÞ ) r ¼ f �1ðr; t; tÞ ¼ f ðro; t; toÞ;

ð2:2:2bÞ

r ¼ f f ðro; t1; toÞ; t; t1
� 	 ¼ f ðro; t; toÞ; ð2:2:2cÞ

where t1 is another reference time:
(ii) In continuum mechanics, ðro; tÞ and ðr; tÞ are called, respectively, material (or

Lagrangean) and spatial (or Eulerian) variables; with the former preferred in solid
mechanics (e.g., nonlinear elasticity), and the latter dominating fluid mechanics (e.g.,
hydrodynamics). (See, e.g., Truesdell andToupin, 1960, andTruesdell andNoll, 1965.)

(iii) For systems with a finite number of particles, the dependence on the latter is,
frequently, expressed by the discrete subscript notation (i.e., ro ! positive integer
denoting the ‘‘name’’ of the particle):

rP ¼ rPðtÞ ¼ fxPðtÞ; yPðtÞ; zPðtÞg ðP ¼ 1; . . . ;NÞ: ð2:2:4Þ
The simpler continuum mechanics notation, eqs. (2.2.1, 3), dispenses with all un-
necessary particle indices, and allows one to concentrate on the system indices (as
we begin to show later), which is the essence of the method of analytical mechanics.
It also allows for a more general exposition; for example, a unified treatment of
systems containing both rigid (discrete) and flexible (continuous) parts.

Constraints

If theN vectors r, and/or corresponding (inertial) velocities m � dr=dt, are functionally
unrelated and uninfluenced from each other (internally) or from their environment
(externally), apart from continuity and consistency requirements, like (2.2.2b,c)—
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something we will normally assume— that is, if, and prior to any kinetic considera-
tions, the r’s and v’s are free to vary arbitrarily and independently from each other,
then S is called (internally and/or externally) free or unconstrained; if not, S is called
(internally and/or externally) constrained. In the latter case, certain configurations
and/or (velocities)Þ motions are unattainable, or inadmissible; or, alternatively, if
we know the positions and velocities of some of the particles of the system, we can
deduce those of the rest, without recourse to kinetics. [Outside of areas like astron-
omy/celestial mechanics, ballistics, etc., almost all other Earthly systems of rele-
vance, and a lot of non-Earthly ones, are constrained—hence, the importance of
analytical mechanics, especially to engineers.]

Such restrictions, or constraints, on the positions and/or velocities of S are
expressed analytically by one or more (<3NÞ scalar functional relations of the form

f ðt; r1; . . . ; rN ; v1; . . . ; vNÞ ¼ 0; or; compactly; f ðt; r; vÞ ¼ 0: ð2:2:5Þ
These equalities are assumed to be: (i) continuous and as many times differentiable in
their arguments as needed (usually, continuity of the zeroth, first-, and second-order
partial derivatives will suffice), in some region of the ðx; y; z; dx=dt; dy=dt; dz=dt; tÞ;
(ii) mutually consistent (i.e., kinematically possible, or admissible); (iii) independent
[i.e., not connected by additional functional relations like Fð f1; f2; . . .Þ ¼ 0�; and (iv)
valid for any forces acting on S, any motions of it, and any temporal boundary/initial
conditions on these motions (see also semiholonomic systems below).

Following ordinary differential equation terminology, we call (2.2.5) a first-order
(nonlinear) constraint, or nonlinear velocity constraint. With few exceptions [as in
chaps. 5 and 6, where generally nonlinear constraints of the form f ðr; v; a; tÞ ¼ 0
(a: accelerations) are discussed], the velocity constraint (2.2.5) is the most general
constraint examined here.

[Other, perhaps more suggestive terms, for constraints are conditions (Victorian
English: equations of condition; German: bedingungen), and connections or couplings
(French: liaisons; German: bindungen; Greek: ������"�o�; Russian: svyaz’).]

Special Cases of Equation (2.2.5)

(i) Constraints like

�ðt; rÞ ¼ 0; or ½recalling ð2:2:1aÞ�; �ðt; nÞ ¼ 0; ð2:2:6Þ
are called finite, or geometrical , or positional, or configurational, or holonomic. [From
the Greek: hólos ¼ complete, whole, integral; that is, finite, nondifferential; and
nómos¼ law, rule, (here) condition, constraint. After Hertz (early 1890s); also C.
Neumann (mid-1880s).]

(ii) Again, with the exception of chapters 5, 6, and 7, all velocity constraints
treated here have the practically important linear velocity, or Pfaffian, form

f �S ðB � vÞ þ B ¼ 0; ð2:2:7Þ

where B ¼ Bðt; rÞ; B ¼ Bðt; rÞ are known functions of the r’s and t, and Lagrange’s
symbol S ð. . .Þ signifies summation over all the material particles of S, at a given
instant, like a Stieltjes’ integral (so it can handle uniformly both continuous and
discrete situations). Those uncomfortable with it may replace it with the more famil-
iar Leibnizian

R ð. . .Þ.
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Multiplying (2.2.7) by dt, which does not interact with S ð. . .Þ, we obtain the
kinematically possible, or kinematically admissible, form of the Pfaffian constraint,

f dt �S ðB � drÞ þ Bdt ¼ 0: ð2:2:7aÞ

Degrees of Freedom

A system of N particles subject to h (independent) positional constraints:

�Hðt; rÞ ¼ 0 ðH ¼ 1; . . . ; hÞ; ð2:2:8Þ
and m (independent) Pfaffian constraints:

fD �S ðBD � vÞ þ BD ¼ 0 ðD ¼ 1; . . . ;mÞ; ð2:2:9Þ

that is, a total of hþm constraints, is said to have a total of 3N � ðhþmÞð>0Þ
degrees of freedom (DOF). This is a fundamental concept whose significance to
both kinematics and kinetics (of constrained systems) will emerge gradually in
what follows.

[Quick preview: DOF¼Number of independent components of system vector of
virtual displacement (} 2.3–7)
¼Number of kinetic (i.e., reactionless) equations of
motion of system (chap. 3).]

Holonomicity versus Nonholonomicity

Apositional constraint like (2.2.6), since it holds identically during all systemmotions,
can always be brought to the velocity form (2.2.7) by dð. . .Þ=dt-differentiation:

d�=dt ¼S ð@�=@rÞ � vþ @�=@t ¼ 0; ð2:2:10Þ

that is, B ! @�=@r � grad � (normal to the E3N-surface � ¼ 0) and B! @�=@t.
However, the converse is not always true: the velocity constraint (2.2.7) may or
may not be (able to be) brought to the positional form (2.2.6); that is, by integration
and with no additional knowledge of the motion of the system; namely, without
recourse to kinetics. If (2.2.7) can be brought to the form (2.2.6), then it is called
completely integrable, or holonomic (H); if it cannot, it is called nonintegrable, or
nonholonomic (NH); or, sometimes, anholonomic. This holonomic/nonholonomic
distinction of velocity constraints is fundamental to analytical mechanics; it is by
far the most important of all other constraint classifications. [The term anholonomic,
more consistent than the term nonholonomic seems to be due to Schouten (1954).]

Schematically, we have
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Hence, a H velocity constraint, like (2.2.10), is actually a positional constraint
disguised in kinematical form. Before embarking into a detailed study of H/NH con-
straints, we will mention some additional, secondary but useful, constraint classifica-
tions.

Scleronomicity versus Rheonomicity

Velocity constraints of the form

f ðr; vÞ ¼ 0 ) @f =@t ¼ 0 ð2:2:7bÞ
are called stationary; otherwise (i.e., if @f =@t 6¼ 0Þ, they are called nonstationary. If all
the constraints of a system are stationary, the system is called scleronomic; if not, the
system is called rheonomic. [From the Greek: sclerós ¼ hard, rigid, invariable;
rhéo ¼ to flow; and the earlier nómos ¼ law, rule, decree, (here) condition; that is,
scleronomic ¼ invariable constraint, rheonomic ¼ variable/fluid constraint. After
Boltzmann (1897–1904).] For positional constraints and Pfaffian constraints,
stationarity means, respectively,

�ðrÞ ¼ 0 and S BðrÞ � v ¼ 0: ð2:2:11Þ

Catastaticity versus Acatastaticity

Pfaffian constraints of the form

S Bðt; rÞ � vþ Bðt; rÞ ¼ 0; ð2:2:11aÞ

are called acatastatic; while those of the form

S Bðt; rÞ � v ¼ 0 ½i:e:; Bðt; rÞ ¼ 0� ð2:2:11bÞ

are called catastatic. It is this classification [due to Pars (1965, pp. 16, 24) and,
obviously, having meaning only for Pfaffian constraints], and not the earlier one
of scleronomicity versus rheonomicity, that is important in the kinetics of systems
under such constraints.

REMARKS

(i) The reason for calling the second of (2.2.11) scleronomic, instead of

S BðrÞ � vþ BðrÞ ¼ 0; ð2:2:11cÞ

that is, for requiring that scleronomic constraints linear in the velocities be also
homogeneous in them (i.e., have B ¼ 0) catastaticity), is so that it matches the
kinematic form generated by d=dtð. . .Þ-differentiating the scleronomic positional
constraint (first of 2.2.11):

�ðrÞ ¼ 0 ) d�=dt ¼S ð@�=@rÞ � v ¼ 0: ð2:2:11dÞ

Geometrical interpretation of this requirement: Otherwise, the corresponding con-
straint surface, in ‘‘velocity space,’’ would be a plane with distance from the origin
proportional to B. That term, representing the (negative of the) velocity of the
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constraint plane normal to itself, is clearly a rheonomic effect. (Remark due to Prof.
D. T. Greenwood, private communication.)

(ii) Clearly, every scleronomic Pfaffian constraint is catastatic ðB ¼ 0Þ; but cata-
static Pfaffian constraints may be scleronomic [B ¼ BðrÞ, second of (2.2.11)] or
rheonomic [B ¼ Bðt; rÞ; (2.2.11b)].

Bilateral versus Unilateral Constraints

Equality constraints of the form (2.2.5) are called bilateral, or two-sided, or equality,
or reversible, or unchecked (after Langhaar, 1962, p. 16); while constraints of the form

f ðt; r; vÞ 
 0 or f ðt; r; vÞ � 0 ð2:2:11eÞ
are called unilateral, or one-sided, or inequality, or irreversible. Physically, bilateral
constraints occur when the bodies in contact cannot separate from each other: for
example, a rigid sphere moving between two parallel fixed planes, in continuous
contact with both. In the unilateral case, the bodies in contact can separate: for
example, a sphere in contact with only one plane, or a system of two particles
connected by an inextensible string—their distance cannot exceed the string’s length.
Following Gantmacher (1970, p. 12), we can state that the general motion of a
unilaterally constrained motion may be divided into segments, such that: (i) in
certain segments the constraint is ‘‘taut’’ [(2.2.11e) with the ¼ sign; e.g., particle on
a light, inextensible, and taut string], and motion occurs as if the constraint were
bilateral; and (ii) in other segments, the constraint is not taut, it is ‘‘loose,’’ and
motion occurs as if the constraint were absent. Concisely, a unilateral constraint is
either replaced by a bilateral one, or is eliminated altogether. Hence, in what follows,
we shall limit ourselves to bilateral constraints.

REMARKS

(i) A small number of authors call all constraints of the form (2.2.6) holonomic, as
well as those reducible to that form; and call all others nonholonomic. According to
such a definition, bilateral constraints like (2.2.11e) would be nonholonomic! The
reader should be aware of such historically unorthodox practices.

(ii) The equations �ðr; tÞ ¼ 0 and d�=dt � S ð@�=@rÞ � vþ @�=@t ¼ 0 restrict a

system’s positions and velocities; equation d�=dt ¼ 0 is the compatibility of veloci-
ties with � ¼ 0. Similarly, the equation

d2�=dt2 ¼S
�
d=dtð@�=@rÞ � vþ ð@�=@rÞ � a	þ d=dtð@�=@tÞ ¼ 0

is the compatibility of accelerations with � ¼ 0, d�=dt ¼ 0; and likewise for higher
such derivatives.

(iii) In the case of unilateral constraints, if at a certain time t: f > 0, then, as
explained earlier, that constraint plays no role in the system’s motion. But if f ¼ 0,
then, as a Taylor expansion around t shows, motion that satisfies either of these two
relations may occur; in the former case df =dt ¼ 0, and in the latter df =dt 
 0. Thus,
the simultaneous conditions f ¼ 0 and df =dt < 0 allow us to detect a possible
incompatibility between velocities and f 
 0: Usually, such conditions occur in
impact problems (chap. 4; also Kilmister and Reeve, 1966, pp. 67–68).

(iv) Geometrical/physical remarks: In a system S consisting of several rigid bodies,
and its environment (i.e., other bodies/foreign obstacles, massless coupling elements:
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e.g., springs, cables) the following conditions apply:

(a) Every condition expressing the direct contact of two rigid bodies of S, or the contact
of one of its bodies with a foreign obstacle (environment) that is either fixed or has
known motion (i.e., its position coordinates are known functions of time only),

results in a holonomic equation of the form (2.2.6); and the corresponding contact

forces are the reactions of that constraint.
(b) If, further, at those contact points, friction is high enough to guarantee us (in

advance of kinetic considerations) slippinglessness, then the positions and velocities

there satisfy (2.2.7)-like Pfaffian equations (usually, but not always, nonholonomic).
These conditions express the vanishing of a component of (relative) slipping velocity
in a certain direction; and, therefore, there are as many as the number of indepen-

dent such nonslipping directions.

(c) If, in addition, friction there is very high, so that not only slipping but also pivoting
vanishes, then we have additional (usually nonholonomic) (2.2.7)-like equations;

that is, linear velocity constraints arise quite naturally and frequently in daily life.

[Nonslipping and nonpivoting are maintained by constraint forces (and couples),
just like contact. All these constraint forces are examples of passive reactions; for

more general, active, constraint reactions, see, for example, } 3.17.]

(v) Holonomic and/or nonholonomic constraints due exclusively to the mutual
interaction of the system bodies are called internal (or mutual); while those arising,
even partially, from the interaction of the system with its environment are called
external. The associated constraint reactions are called, respectively, internal (or
mutual) and external.

(vi) Finally, we repeat that such holonomic and/or nonholonomic constraints
express restrictions among positions and velocities independently of the equations
of motion and associated (temporal) initial/boundary conditions, and before the
complete solution of the problem is carried out. Solving the problem means finding
r ¼ rðtÞ: known function of time; then v ¼ dr=dt ¼ vðtÞ: known function of time; and
these r’s and v’s automatically satisfy the constraints. Under such a viewpoint,
integrals of the system, like those of linear/angular momentum and energy, assuming
they exist, do not qualify as constraint equations.

The (bilateral) constraints, discussed above, are summarized as follows:

General first-order constraints

f ðrÞ ¼ 0 : Holonomic ðintegrableÞ and scleronomic ðstationaryÞ
f ðt; rÞ ¼ 0 : Holonomic ðintegrableÞ and rheonomic ðnonstationaryÞ
f ðr; vÞ ¼ 0 : Nonholonomic ðif nonintegrableÞ and scleronomic ðstationaryÞ
f ðt; r; vÞ ¼ 0 : Nonholonomic ðif nonintegrableÞ and rheonomic ðnonstationaryÞ

Pfaffian velocity constraints

S Bðt; rÞ � vþ Bðt; rÞ ¼ 0 : Rheonomic and acatastatic

S BðrÞ � vþ BðrÞ ¼ 0 : Rheonomic and acatastatic

S Bðt; rÞ � v ¼ 0 : Rheonomic and catastatic

S BðrÞ � v ¼ 0 : Scleronomic and catastatic

(There is no such thing as scleronomic and acatastatic Pfaffian constraint.)
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Example 2.2.1 Plane Pursuit Problem—Catastatic but Rheonomic (or Nonstation-
ary) Pfaffian constraint. The master (M) of a dog (D) walks along a given plane
curve: R ¼ RðtÞ ¼ fX ¼ XðtÞ;Y ¼ YðtÞg: Let us find the differential equation of
the path of D: r ¼ rðtÞ ¼ fx ¼ xðtÞ; y ¼ yðtÞg, if D moves, with instantaneous velo-
city v, to meet M, so that at every instant its velocity is directed toward M
(fig. 2.2).

We must have:

v ¼ parallel to R� r ¼ v
�ðR� rÞ=jR� rj	 � ve;

or, in components,

dx=dt ¼ v
�ðX � xÞ=jR� rj	; dy=dt ¼ v

�ðY � yÞ=jR� rj	; ðaÞ

or, eliminating v between them,

½YðtÞ � y�ðdx=dtÞ � ½XðtÞ � x�ðdy=dtÞ ¼ 0: ðbÞ

It is not hard to show that this pursuit problem in space leads to the following
constraints (with some obvious notation):

½YðtÞ � y�ðdx=dtÞ � ½XðtÞ � x�ðdy=dtÞ ¼ 0; ðcÞ
½ZðtÞ � z�ðdx=dtÞ � ½XðtÞ � x�ðdz=dtÞ ¼ 0; ðdÞ
½ZðtÞ � z�ðdy=dtÞ � ½YðtÞ � y�ðdz=dtÞ ¼ 0: ðeÞ

See also Hamel (1949, pp. 770–773).

Example 2.2.2 Acatastatic Constraints. Let us consider the rolling of a sphere S
of radius r and center G on the rough inner surface of a vertical circular cylinder
A of radius Rð> rÞ. Let us introduce the following convenient intermediate axes/
basis G–123/G–ijk (fig. 2.3): Let � be the azimuth, or precession-like, angle of the
plane G–13, and z ¼ vertical coordinate of G (positive upward from some fixed
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Figure 2.2 Plane pursuit problem: a dog (D) moving continuously

toward its master (M).



plane, perpendicular to the cylinder axis). Then,

vG ¼ inertial velocity of G ¼ ðv1 ¼ dz=dt; v2 ¼ ðR� rÞðd�=dtÞ � ðR� rÞ!�; v3 ¼ 0Þ;
ðaÞ

or, alternatively, if OG ¼ zK þ ðR � rÞð�kÞ, then (with d�=dt � !�Þ
vG ¼ dðOGÞ=dt ¼ ðdz=dtÞK þ ðR� rÞð�dk=dtÞ ¼ ðdz=dtÞi þ ðR� rÞð!� j Þ: ðbÞ

If x ¼ inertial angular velocity of sphere ¼ ð!1; !2; !3Þ, then the inertial velocity of
the contact point C, vC, is

vC ¼ vG þ x� rC=G ¼ ðv1; v2; v3Þ þ ð!1; !2; !3Þ � ð0; 0;�rÞ
¼ ðv1 � !2r; v2 þ !1r; v3Þ: ðcÞ

Therefore: (i) If the cylinder is stationary (i.e., fixed), the rolling constraint is vC ¼ 0,
or, in components,

v1 � !2r ¼ 0 ) !2 ¼ ðdz=dtÞ=r; v2 þ !1r ¼ 0 ) !1 ¼ ½1� ðR=rÞ�!�; v3 ¼ 0: ðdÞ

(ii) If the cylinder is made to rotate about its axis with an (inertial) angular
velocity X ¼ XðtÞ ¼ given function of time, the rolling constraint is

vC ¼ X � rC=O ¼ ðOK Þ � ð�RkÞ ¼ ðOiÞ � ð�RkÞ ¼ ðORÞ j � ð0;OR; 0Þ;

or, in components [invoking (c)],

v1 � !2r ¼ 0 ) !2 ¼ ðdz=dtÞ=r � vz=r;

v2 þ !1r ¼ OðtÞR ) !1 ¼ !� þ ðR=rÞ!r; v3 ¼ 0; ðeÞ
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Figure 2.3 Rolling of a sphere on a vertical circular cylinder. G1: vertically upward;

G3: horizontally intersects the (vertical) cylinder axis; G2: horizontal, so that G–123 is

orthogonal–normalized–dextral (OND).



where !r � O� !� ¼ relative angular velocity of cylinder about meridian plane
G–13. The first of the constraints (e) is nonstationary and acatastatic, even if
O ¼ constant. [As explained in }2.5 ff., the virtual form of that constraint is
�p2 þ ��1r ¼ 0; where dp2 � v2 dt and d�1 � !1 dt; and this coincides with the virtual
form of the catastatic second of the constraints (d). In general, p2 and �1 are ‘‘quasi
coordinates’’— see }2.9 ff.]

First and second of the constraints ðdÞ in terms of the Eulerian angles of the sphere
F, Y, C, relative to the ‘‘semiinertial’’ (translating but nonrotating) axes G–XYZ

We have, successively (recalling }1.12,13),

v1 ¼ dz=dt � vZ;

!2 ¼ cosð2;X Þ!X þ cosð2;YÞ!Y þ cosð2;ZÞ!Z

¼ ð� sin �Þ!X þ ðcos�Þ!Y þ ð0Þ!Z

¼ ð� sin �Þ½cosFðdY=dtÞ þ sinF sinYðdC=dtÞ�
þ ðcos�Þ½sinFðdY=dtÞ � cosF sinYðdC=dtÞ�
¼ � � � ¼ sinðF� �ÞðdY=dtÞ � cosðF� �Þ sinYðdC=dtÞ; ðf Þ

that is, the familiar !Y component but with � replaced by F� �;

v2 ¼ ðR� rÞðd�=dtÞ;
!1 ¼ cosð1;XÞ!X þ cosð1;YÞ!Y þ cosð1;ZÞ!Z

¼ ð0Þ!X þ ð0Þ!Y þ ð1Þ!Z ¼ dF=dtþ cosYðdC=dtÞ: ðgÞ

Therefore, the first and second constraints (d) transform to

v1 � !2r ¼ dz=dt� r
�
sinðF� �ÞðdY=dtÞ � cosðF� �Þ sinYðdC=dtÞ	 ¼ 0; ðhÞ

v2 þ !1r ¼ ðR� rÞðd�=dtÞ þ r
�
dF=dtþ cosYðdC=dtÞ	 ¼ 0; ðiÞ

and similarly for the first two of (e).

Example 2.2.3 Acatastatic Constraints. Let us consider the rolling of a sphere S
of radius r and center G on a rough surface of revolution with a vertical axis. Let
us introduce the convenient frame/axes/basis G–123/G–ijk shown in fig. 2.4.
Further, let � be the azimuth, or precession-like, angle of the meridian plane (and
of plane G–23); and � be the nutation-like angle between the positive surface axis
and the common (outward) normal. Then, with d�=dt � !�, d�=dt � !�, we will
have

Xo ¼ inertial angular velocity of G�123 � ðO1;O2;O3Þ
¼ ð�!� sin �; !�; !� cos �Þ; ðaÞ

vG ¼ inertial velocity of G � ðv1; v2; v3Þ ¼ ð�!�; R!� ¼ � sin � !�; 0Þ; ðbÞ

where � ¼ radius of curvature of meridian curve of parallel surface at G.
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If x ¼ inertial angular velocity of sphere ¼ ð!1; !2; !3Þ, then the inertial velocity
of the contact point C, vC, equals

vC ¼ vG þ x� rC=G

¼ ðv1; v2; v3Þ þ ð!1; !2; !3Þ � ð0; 0;�rÞ ¼ ðv1 � !2r; v2 þ !1r; v3Þ: ðcÞ

Therefore: (i) If the surface is stationary, the rolling constraint is vC ¼ 0, or, in
components,

v1 � !2r ¼ 0; v2 þ !1r ¼ 0; v3 ¼ 0: ðdÞ

(ii) If the surface is compelled to rotate about its axis with (inertial) angular
velocity X ¼ XðtÞ ¼ given function of time, the rolling constraint is

vC ¼ X� rC=O ¼
�
0;OðR� r sin �Þ; 0�; ðeÞ

or, in components,

v1 � !2r ¼ 0 ) !2 ¼ v1=r ¼ �!�=r; ðf Þ
v2 þ !1r ¼ OðR� r sin �Þ ) !1 ¼ ðR=rÞ!r � O sin �; v3 ¼ 0; ðgÞ

where !r � O� !� ¼ relative angular velocity of surface about meridian plane G–13.
The first constraint (g) is nonstationary and acatastatic, even if O ¼ constant.
[As explained in }2.5 ff., the virtual form of that constraint is �p2 þ ��1r ¼ 0,
where dp2 � v2 dt and d�1 � !1 dt; and it coincides with the virtual form of the
catastatic second constraint (d). In general, p2 and �1 are ‘‘quasi coordinates’’—
see }2.9 ff.]
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Figure 2.4 Rolling of a sphere on a vertical surface of revolution. G3: along common normal,

outward; G1: parallel to tangent to meridian curve, at contact point C; G2: parallel to tangent

to circular section through C (or, so that G–123 is OND).



SPECIALIZATIONS

(i) If the surface of revolution is another sphere with radius �o � �� r ¼ constant,
since then v1 ¼ ð�o þ rÞ!�, v2 ¼ ½ð�o þ rÞ sin ��!�, the constraints (f) and the second
of (g) reduce, respectively, to

!2 ¼ ½ð�o þ rÞ=r�!� ¼ ½ð�o=rÞ þ 1�!�; ðhÞ
!1 ¼ ½ð�o=rÞ þ 1� sin � !r � O sin �: ðiÞ

(ii) If the surface of revolution is another sphere with radius �o � �� r, that is free
(i.e., unconstrained) to rotate about its fixed center with inertial angular velocity
x 0 � ð! 01; ! 02; ! 03Þ; then, reasoning as earlier, we obtain the catastatic constraint
equations

v1 � !2r ¼ �o! 02; v2 þ !1r ¼ ��o! 01; v3 ¼ 0: ðjÞ
However, if the ! 01, !

0
2, !

0
3 are prescribed functions of time, then the first and second

of ( j) become nonstationary (and acatastatic).
For additional such rolling examples, including the corresponding Newton–Euler

(kinetic) equations, and so on, see the older British textbooks: for example, Atkin
(1959, pp. 253–259), Besant (1914, pp. 353–359), Lamb (1929, pp. 162–170), Milne
(1948, chaps. 15, 17).

Example 2.2.4 Problem of Ishlinsky (or Ishlinskii). Let us consider the rolling
of a circular rough cylinder of radius R on top of two other identical circular and
rough cylinders, each of radius r, rolling on a rough, fixed, and horizontal plane
(fig. 2.5).

Let O–xyz and O–x 0y 0z 0 be inertial axes, such that O–xy and O–x 0y 0 are both on
that plane, while their axes Ox and Ox 0 are parallel to the lower cylinder generators
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Figure 2.5 Rolling of a cylinder on top of two other rolling cylinders. Transformation equations:

x ¼ x 0 cos�� y 0 sin�, y ¼ x 0 sin�þ y 0 cos�.



and make, with each other, a constant angle �. To describe the (global) system
motion, let us choose the following six position coordinates: (i) ðx; yÞ ¼ inertial co-
ordinates of mass center of upper cylinder G (as for its third, vertical, coordinate we
have z ¼ 2rþ R); (ii) � ¼ angle between þOx and upper cylinder generator; (iii)  ,
 1,  2 ¼ spin angles of the upper and two lower cylinders, respectively. Finally, let r1
and r2 be the position vectors of the contact points of the lower cylinders with the
upper one, relative to G, and v1, v2 be the corresponding (inertial) velocities.

The rolling constraints are

vG þ x� r1 ¼ v1 and vG þ x� r2 ¼ v2: ðaÞ
Let us express them in terms of components along O–xyz. We have

vG ¼ ðdx=dt; dy=dt; 0Þ � ðvx; vy; 0Þ
x: inertial angular velocity of upper cylinder

¼ ððd�=dtÞ cos �; ðd�=dtÞ sin �; d�=dtÞ � ð!� cos �; !� sin �; !�Þ;
r1 ¼

�� ðy� r�1Þcot �;�ðy� r�1Þ;�R
�
;

r2 ¼ ½r�2 � ðy cos�� x sin�Þ� cotð� � �Þi 0 þ ½r�2 � ðy cos�� x sin�Þ� j 0 � Rk 0

¼ �ðr�2 þ x sin�� y cos�Þ cos �= sinð�� �Þ;
ðr�2 þ x sin�� y cos�Þ sin �= sinð�� �Þ;�R�;

v1 ¼ ð0; 2r!1; 0Þ ½where !1;2 � d�1;2=dt�;
v2 ¼ ð�2r!2 sin�; 2r!2 cos�; 0Þ: ðbÞ

Substituting the above into (a), we obtain the following four constraint components:

vx �R!� sin �� !�ðr�1 � yÞ ¼ 0;

vy þ R!� cos �þ !�ðr�1 � yÞ cot �� 2r!1 ¼ 0;

vx sinð�� �Þ � R!� sin � sinð�� �Þ � !�ðr�2 þ x sin�� y cos�Þ sin �
þ 2r!2 sin� sinð�� �Þ ¼ 0;

vy sinð� � �Þ þ R!� cos � sinð�� �Þ þ !�ðr�2 þ x sin�� y cos�Þ cos �
� 2r!2 cos� sinð�� �Þ ¼ 0: ðcÞ

For further details, see, for example, Mei (1985, pp. 33–35), Neimark and Fufaev
(1972, pp. 99–101). It can be shown (}2.11, 12) that these constraints are non-
holonomic. Therefore, the system has n ¼ 6 global DOF, and n� m ¼ 6� 4 ¼ 2
local DOF (concepts explained in }2.3 ff.).

Example 2.2.5 When is Rolling Holonomic? So as to dispell the possible notion
that all problems of (slippingless) rolling among rigid bodies lead to nonholo-
nomic constraints, let us summarize below the cases of rolling that lead to holo-
nomic constraints. It has been shown by Beghin (1967, pp. 436–438) that these are
the following two kinds:

(i) The paths of the contact point(s) of the rolling bodies are known ahead of time;
that is, before any dynamical consideration of the system involved and as function of
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its original position, on these bodies. Consider two such bodies whose bounding
surfaces, S1 and S2, are described by the curvilinear surface (Gaussian) coordinates
ðu1; v1Þ and ðu2; v2Þ, respectively, in contact at a point C. Their relative positions, say
of S1 relative to S2, are determined by the values of these coordinates at C and the
angle � formed by the tangents to the lines u1 ¼ constant and u2 ¼ constant (or v1,
v2 ¼ constant) there. Knowledge of the paths of C on both S1 and S2 translates to
knowledge of the four holonomic functional relations:

u1 ¼ u1ðv1Þ; u2 ¼ u2ðv2Þ; � ¼ �ðu1; u2Þ; s1ðu1Þ ¼ s2ðu2Þ � c; ðaÞ
where s1 and s2 are the arc lengths (or curvilinear abscissas) of the contact point
paths S1 and S2, and c is an integration constant. It follows that, out of the five
surface positional parameters, u1, v1, u2, v2, �, only one is independent; the other four
can be expressed in terms of that one by finite (holonomic) relations.

(ii) The bounding surfaces S1 and S2 are applicable on each other; they touch at
homologous points and their homologous curves (trajectories of the contact point C
on them) join together there. This is expressed by the condition of contact, and by

u1 ¼ u2; v1 ¼ v2; � ¼ 0; ðbÞ
at C; that is, again, a total of four holonomic equations. This condition is guaranteed
to hold continuously if it holds initially and, afterwards, the pivoting vanishes. Such
conditions are met in the following examples:

(a) Rolling of two plane curves (or normal cross sections of cylindrical surfaces S1 and

S2) on each other, and expressed by s1 ¼ s2 � c.
(b) Rolling of a body on a fixed surface, which it touches on only two points. For

example, the rolling of a sphere on a system made up of a fixed circular cylinder and

a fixed plane perpendicular to it [fig. 2.6(a)]. (If the cylinder rotates about its axis in
a known fashion, the trajectories of the contact points on both plane and cylinder

are known, but they are unknown on the sphere and, hence, such rolling is non-
holonomic.)

(c) Rolling of two equal bodies of revolution whose axes are constrained to meet and,

initially, are in contact along homologous parallels, or meridians [fig. 2.6(b)]. The
pivoting of such applicable surfaces vanishes.
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Figure 2.6 Examples of holonomic rolling: (a) rolling of a sphere on a fixed

circular cylinder and a fixed plane perpendicular to it; (b) rolling of a cone on

another equal fixed cone.



2.3 QUANTITATIVE INTRODUCTION TO NONHOLONOMICITY

Let us examine the differences between holonomic and nonholonomic constraints,
in some mathematical detail, for the simplest possible case: a single particle, with
(inertial) rectangular Cartesian coordinates x, y, z, moving in space under the
Pfaffian equation

a dxþ b dyþ c dz ¼ 0; ð2:3:1Þ
where a, b, c ¼ continuously differentiable functions of x, y, z.�

The Pfaffian expression a dxþ b dyþ c dz is a special differential form of the first
degree. The total or Pfaffian differential equation (2.3.1) is a specialization of the
Monge form:

0 ¼ f ðx; y; z; dx; dy; dzÞ ¼ stationary and homogeneous in the velocity components
ðdx=dt; dy=dt; dz=dtÞ; and hence ðsince t is absentÞ only
path restricting:

The Monge form is, in turn, a specialization of the general first-order partial differ-
ential equation:

Fðt; x; y; z; dx=dt; dy=dt; dz=dtÞ ¼ 0:
	

Now, the constraint (2.3.1) may be nonholonomic or it may be holonomic in
differential (or velocity) form; specifically, if (2.3.1) can become, through multiplica-
tion with an appropriate integrating factor,  ¼ ðx; y; zÞ; an exact, or perfect, or
total differential d� ¼ d�ðx; y; zÞ of a scalar function � ¼ �ðx; y; zÞ:

ða dxþ b dyþ c dzÞ ¼ d�; ð2:3:1aÞ
from which, by integration, we may obtain the (rigid and stationary) surface:

�ðx; y; zÞ ¼ constant; or z ¼ zðx; yÞ; ð2:3:1bÞ
then (2.3.1) is holonomic; if not, it is nonholonomic.

[Since, as is well known, the two-variable Pfaffian aðx; yÞ dxþ bðx; yÞ dy has
always an integrating factor (in fact, an infinity of them), eq. (2.3.1) is the simplest
possibly nonholonomic constraint. More on this below.]

In particular, if  ¼ 1 (i.e., d� ¼ a dxþ b dyþ c dz), the integrable Pfaffian d� is
exact. Then,

a ¼ @�=@x; b ¼ @�=@y; c ¼ @�=@z; ð2:3:2Þ
and so the necessary and sufficient conditions for (2.3.1) to be exact are that the
first partial derivatives of a, b, c, exist and satisfy (by equating the second mixed
�-derivatives):

@a=@y ¼ @b=@x; @a=@z ¼ @c=@x; @b=@z ¼ @c=@y: ð2:3:3Þ
Equations (2.3.3) are sufficient for (2.3.1) to be completely integrable ¼ holonomic;
but they are not necessary: every exact Pfaffian equation is integrable, but every
integrable Pfaffian equation need not be exact; in general, a  6¼ 1 may exist, even
though not all of (2.3.3) hold. In mechanics, we are interested in the holonomicity
(� complete or unconditional) integrability, or absence thereof, of the constraints.
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Let us now make a brief detour to the general case: the system of m Pfaffian
constraints in the nð> mÞ variables x ¼ ðx1; . . . ; xnÞ,

ð2:3:4Þ

where rankðaDkÞ ¼ m (i.e., these equations are linearly independent in a certain
x-region), is called completely (or unconditionally) integrable, or complete, or
holonomic, if either (i) it is immediately integrable, or exact; that is, if the

�D ¼ �DðxÞ: X
aDkðxÞ dxk ¼ d�DðxÞ; ð2:3:4aÞ

(nonzero) integrating factor FDðxÞ; that is, if the 2m (not all zero) functions
fFDðxÞ, �DðxÞ; D ¼ 1; . . . ;mð< nÞg and (2.3.4) satisfy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : ð2:3:4bÞ

)
X

FDaDk ¼ @�=@xk:

Clearly, in both cases, (2.3.4a, b), the constraints (2.3.4) are equivalent to the
holonomic equations

�1ðxÞ ¼ C1; . . . ; �mðxÞ ¼ Cm; ð2:3:4cÞ
where the m constants fCD; D ¼ 1; . . . ;mg are fixed throughout the motion of the
system. (Elaboration of this leads to the concept of semiholonomic constraints,
treated later in this section.) If the constraints (2.3.4) are nonintegrable, neither
immediately nor with integrating factors, they are called nonholonomic; and the
mechanical system whose motion obeys, in addition to the kinetic equations, such
nonholonomic constraints, either internally (constitution of its bodies) or externally
(interaction with its environment, obstacles, etc.), is called a nonholonomic system.

An alternative definition of complete integrability of the system (2.3.4), equivalent
to (2.3.4b), is the existence of m independent, that is, distinct, linear, combinations of

where DD 0 ¼ DD 0 ðxÞ, or, compactly,

ð2:3:4eÞ

[where ðMDD 0 Þ is the inverse matrix of ðDD 0 Þ, and both ðm �mÞ matrices are
nonsingular] and, hence, yield the m independent integrals (hypersurfaces):
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d ′θD ≡

∑
aDk(x)dxk = 0 [D = 1, . . . ,m(< n)],

m d ′θD’s are the exact, or total, or perfect, differentials of m functions

or (ii) each d ′θD, although not immediately integrable, nevertheless admits a

Φ1 d
′θ1 = Φ1(a11 dx1 + · · ·+ a1n dxn) = dφ1(x),

Φm d
′θm = Φm(am1 dx1 + · · ·+ amn dxn) = dφm(x);

∑
ΦD d

′θD =
∑

ΦD

(∑
aDk dxk

)
=

∑
dφk ≡ dφ =

∑
(∂φ/∂xk) dxk

the m d ′θD that are exact differentials of the m independent functions fD(x):

∑
μDD′ d ′θD′ = dfD ⇔ d ′θD =

∑
MDD′ dfD′ (D, D′ = 1, . . . ,m),

or, compactly, ΦD d′θD = ΦD(
∑

aDk dxk) = dφD(x), where the {dφD} are (linearly)
independent. Summing (2.3.4b), over D, we also obtain its following consequence:

μ11 d
′θ1 + · · ·+ μ1m d

′θm = df1, . . . , μm1 d
′θ1 + · · ·+ μmm d

′θm = dfm, (2.3.4d)



f1 ¼ c1; . . . ; fm ¼ cm; that is, the system of eqs. (2.3.4) is completely integrable if
there exists an m-parameter ðn�mÞ-dimensional manifold that solves them.
[Frobenius (1877) has shown that if m ¼ n, or n� 1, then the system (2.3.4) is always
completely integrable—more on this later.]

Finally, calling the determinant of the coefficients DD 0 the multiplicator of (2.3.4)
[i.e., jDD 0 j � ð6¼ 0Þ], and generalizing from the single constraint case (2.3.1), we
can state that every multiplicator has always the form  Fð f1; . . . ; fDÞ, where Fð. . .Þ
is an arbitrary differentiable function of the f ’s; that is, there exists an infinity of
multiplicators.

From the above, it immediately follows that in the case of a single Pfaffian
equation in the n variables x ¼ ðx1; . . . ;xnÞ (i.e., for m ¼ 1), complete integrability,
in a certain x-domain, means that there exists, locally at least, a one-parameter family
of ðn� 1Þ-dimensional manifolds f ðxÞ � �ðxÞ � constant ¼ 0, which solves that
equation.

sional manifolds, or curves: xk ¼ xkðuÞ, where u ¼ curve parameter. And, generally,
if the x are functions of the mð< nÞ new variables ðu1; . . . ; umÞ, then

upon substitution into it, identical satisfaction results.]

Problem 2.3.1 Verify that the sufficient (but non-necessary!) conditions for the
complete integrability of the system of m Pfaffian equations [essentially the dis-
crete version of (2.2.9) for a system of N particles],

fD dt �
X
ðaDk dxk þ bDk dyk þ cDk dzkÞ þ eD dt ¼ 0; ðaÞ

where D ¼ 1; . . . ;mð< 3NÞ, k ¼ 1; . . . ;N; and ða; b; c; eÞ ¼ continuously differenti-
able functions of ðx; y; z; tÞ, are that

@aDk=@xl ¼ @aDl=@xk; @aDk=@yl ¼ @bDl=@xk; @aDk=@zl ¼ @cDl=@xk;

@aDk=@t ¼ @eD=@xk; ðbÞ
@bDk=@yl ¼ @bDl=@yk; @bDk=@zl ¼ @cDl=@yk; @bDk=@t ¼ @eD=@yk; ðcÞ
@cDk=@zl ¼ @cDl=@zk; @cDk=@t ¼ @eD=@zk; ðdÞ

for all k, l ¼ 1; . . . ;N; for a fixed D: [In fact, the (obvious) choice: aDk ¼ @�D=@xk,
bDk ¼ @�D=@yk, cDk ¼ @�D=@zk, eD ¼ @�D=@t; �D ¼ �Dðt;x; y; zÞ satisfies (b – d).]
Then, (a) simply states that d�D ¼ 0; and the latter integrates immediately to the
holonomic constraints: �D ¼ �Dðt;x; y; zÞ ¼ ðconstantÞD.

Introduction to Necessary and Sufficient Conditions for Holonomicity

Let us, for the time being, postpone the discussion of the general case and return to
the single Pfaffian equation in three variables, eq. (2.3.1), and find the necessary and
sufficient conditions for its holonomicity. Assuming that this is indeed the case, then
from (2.3.1) and the second of (2.3.1b) we readily see that

dz ¼ ð@z=@xÞ dx þ ð@z=@yÞ dy ¼ ð�a=cÞ dxþ ð�b=cÞ dy ð2:3:5Þ
must hold for all dx, dy, dz. Therefore, equating the coefficients of dx and dy of both
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[We remark that the solutions of d ′θ ≡

∑
ak(x) dxk = 0 are always one-dimen-

xk = xk(u1, . . . , um) is called an m-dimensional solution manifold of d ′θ = 0, if,



sides, we obtain [assuming c 6¼ 0, and that zðx; yÞ is substituted for z in a, b, c]

@z=@x ¼ �ða=cÞ and @z=@y ¼ �ðb=cÞ; ð2:3:5aÞ
and since @=@yð@z=@xÞ ¼ @=@xð@z=@yÞ, we obtain @=@yða=cÞ ¼ @=@xðb=cÞ, or,
explicitly,

c½@a=@yþ ð@a=@zÞð@z=@yÞ� � a½@c=@yþ ð@c=@zÞð@z=@yÞ�
¼ c½@b=@xþ ð@b=@zÞð@z=@xÞ� � b½@c=@xþ ð@c=@zÞð@z=@xÞ�;

and inserting in it the @z=@x- and @z=@y-values from (2.3.5a), and simplifying, we
finally find

I � að@b=@z� @c=@yÞ þ bð@c=@x� @a=@zÞ þ cð@a=@y� @b=@xÞ ¼ 0: ð2:3:6Þ
Equation (2.3.6), being a direct consequence of the earlier mixed partial derivative
equality, is the necessary and sufficient condition for (2.3.1) to be holonomic. If I ¼ 0
identically (i.e., for arbitrary x; y; z), then (2.3.1) is holonomic; if I 6¼ 0 identically,
then (2.3.1) is nonholonomic.

REMARKS

(i) The form I is symmetric in ðx; y; zÞ and ða; b; cÞ; that is, it remains unchanged
under simultaneous cyclic changes of ðx; y; zÞ and ða; b; cÞ.

(ii) Alternative derivation of equation (2.3.6): The mixed partial derivatives rule
applied to (2.3.1a) readily yields

@ðbÞ=@x ¼ @ðaÞ=@y; @ðcÞ=@x ¼ @ðaÞ=@z; @ðcÞ=@y ¼ @ðbÞ=@z:
Multiplying the above equalities with c, b, a, respectively, and adding them together,
we obtain (2.3.6); so, clearly, the latter is necessary and sufficient for the existence
of an integrating factor (for further details, see, e.g., Forsyth, 1885 and 1954,
pp. 247 ff.).

(iii) A special case: If a ¼ aðx; yÞ, b ¼ bðx; yÞ; and c ¼ 0, then, clearly, I ¼ 0;
which proves the earlier claim that the two-variable Pfaffian equation
aðx; yÞ dxþ bðx; yÞ dy ¼ 0 is always holonomic; that is, for nonholonomicity, we
need at least three variables.

(iv) A special form: If (2.3.1) has the equivalent form

dz ¼ ð�a=cÞ dxþ ð�b=cÞ dy � Aðx; y; zÞ dxþ Bðx; y; zÞ dy
¼ A½x; y; zðx; yÞ� dxþ B½x; y; zðx; yÞ� dy
� A*ðx; yÞ dxþ B*ðx; yÞ dy; ð2:3:7Þ

(or, similarly, dx ¼ � � � ; dy ¼ � � � ; depending on analytical convenience and/or avoid-
ance of singularities), then the mixed partial derivative rule

@A*ðx; yÞ=@y ¼ @B*ðx; yÞ=@x; ð2:3:7aÞ
due to the chain rule (one should be extra careful here):

@A*=@y ¼ @A=@yþ ð@A=@zÞð@z=@yÞ ¼ @A=@yþ ð@A=@zÞB; ð2:3:7bÞ
@B*=@x ¼ @B=@xþ ð@B=@zÞð@z=@xÞ ¼ @B=@xþ ð@B=@zÞA; ð2:3:7cÞ
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finally yields

@A=@yþ ð@A=@zÞB ¼ @B=@xþ ð@B=@zÞA; ð2:3:7dÞ

whose identical satisfaction in x, y, z, is the necessary and sufficient condition for
the complete integrability, or holonomicity, of (2.3.7).

It is not hard to verify that (i) replacing, in (2.3.7d), A with �a=c and B with �b=c,
we recover (2.3.6); and, conversely, (ii) since (2.3.7) can be written in the (2.3.1)-like
form: Adxþ Bdyþ ð�1Þ dz ¼ 0, replacing, in (2.3.6), a, b, c, with A, B, �1, respec-
tively, we recover (2.3.7d). If, in (2.3.7), @A=@z ¼ 0 and @B=@z ¼ 0, then (2.3.7d)
reduces to @A=@y ¼ @B=@x. Finally, the sole analytical requirement here is the con-
tinuity of all partial derivatives appearing in these conditions (but not those of the
nonappearing ones, such as @A=@x and @B=@y).

Example 2.3.1 Let us test, for complete integrability, the following constraints:

(i) dz ¼ ðzÞ dxþ ðz2 þ a2Þ dy; (ii) dz ¼ zðdxþ x dyÞ:
(i) Here, A ¼ z and B ¼ z2 þ a2, and therefore (2.3.7d) yields

ð1Þðz2 þ a2Þ ¼ ð2zÞz ) z2 ¼ a2;

that is, no identical satisfaction; or, our constraint is not completely integrable— it is
nonholonomic. Then, the original equation becomes

dz ¼ z dxþ 2z2 dy;

and so (a) if a ¼ 0, then z ¼ 0 is a constraint integral; but (b) if a 6¼ 0, then there is no
integral. For complete integrability, we should have an infinity of integrals depend-
ing on an arbitrary integration constant.

(ii) Here, the test (2.3.7d) gives xz ¼ zþ xz ) z ¼ 0; that is, no identical satis-
faction, and therefore no holonomicity. As the original equation shows, this is the
sole integral.

Problem 2.3.2 Show that the constraint of the plane pursuit problem (ex. 2.2.1):

½YðtÞ � y�ðdx=dtÞ � ½XðtÞ � x�ðdy=dtÞ ¼ 0; ðaÞ

or, equivalently,

½YðtÞ � y� dx� ½XðtÞ � x� dyþ ð0Þ dt ¼ 0; ðbÞ

is holonomic if and only if

½XðtÞ � x�=½YðtÞ � y� ¼ ðdX=dtÞ=ðdY=dtÞ ½¼ ðdx=dtÞ=ðdy=dtÞ�: ðcÞ

Problem 2.3.3 Show that under a general one-to-one (nonsingular) coordinate
transformation ðx; y; zÞ , ðu; v;wÞ: x ¼ xðu; v;wÞ; y ¼ � � � ; z ¼ � � � ;

I ¼ ½@ðu; v;wÞ=@ðx; y; zÞ� � I 0; ðaÞ
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where (with subscripts denoting partial derivatives)

ðbÞ
I ¼ Iðx; y; zÞ � aðbz � cyÞ þ bðcx � azÞ þ cðay � bxÞ; ðcÞ

I 0 ¼ I 0ðu; v;wÞ � pðqw � rvÞ þ qðru � pwÞ þ rðpv � quÞ; ðdÞ
and @ðu; v;wÞ=@ðx; y; zÞ ¼ Jacobian of the transformation ð6¼ 0Þ; that is, I and I 0

ordinate invariant, and hence an intrinsic property of the constraint (a proof of this
fundamental fact, for a general Pfaffian system, will be given later).

[Incidentally, the transformation law (a) also shows that scalars like I are not
necessarily invariants ðI 6¼ I 0, in general); in fact, in the more precise language of
tensor calculus, they are called relative scalars of weight þ1, or scalar densities; see,
e.g., Papastavridis (1999, pp. 46–49).]

Geometrical Interpretation of the Pfaffian Equation (2.3.1)

The latter, rewritten with the help of the vectors dr ¼ ðdx; dy; dzÞ and h ¼ ða; b; cÞ as

h � dr ¼ 0; ð2:3:8Þ

means that, at each specified point Qðx; y; zÞ; dr must lie on a local plane perpendi-
cular to the ‘‘constraint coefficient vector’’ h there; or, that the particle P can move
only along those curves, emanating from Q, whose tangent is perpendicular to h.
Such curves are called kinematically admissible, or kinematically possible. If (2.3.1, 8)
is holonomic, then all motions lie on the integral surface (2.3.1b); that is, (2.3.6) is the
necessary and sufficient condition for the existence of an orthogonal surface through
Q, for the field h ¼ ða; b; cÞ [actually, a family of surfaces � ¼ �ðx; y; zÞ ¼ constant,
everywhere normal to h—see below]. We also notice that, with the help of h, the
condition (2.3.6) takes the memorable (invariant) form:

I � h � curl h ¼ 0; or; symbolically;

a b c

@=@x @=@y @=@z

a b c
















 ¼ 0; ð2:3:8aÞ

that is, at every field point, h is parallel to the plane of its rotation, or perpendicular
to that rotation and tangent to the surface � ¼ constant there [W. Thomson (Lord
Kelvin) called such fields doubly lamellar]; while (2.3.7d), with h! H � ðA;B;�1Þ,
becomes

H � curl H ¼ @A=@yþ Bð@A=@zÞ � @B=@x� Að@B=@zÞ ¼ ð1=c2Þh � curl h ¼ 0:

ð2:3:8bÞ

Vectorial Derivation of Equation (2.3.8a)

We recall from vector analysis that a (continuously differentiable) vector is called
irrotational, or singly lamellar, if (a) its line integral around every closed circuit
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dθ ≡ a dx+ b dy+ c dz = p du+ q dv+ r dw,

vanish simultaneously; or, the holonomicity of dθ = 0, or absence thereof, is co-



vanishes, or, equivalently, (b) if its curl (rotation) vanishes, or (c) if it equals the
gradient of a scalar.

Now: (i) If h ¼ ða; b; cÞ is irrotational, then there is a � ¼ �ðx; y; zÞ such that
h ¼ grad �, and, therefore, h � dr ¼ grad � � dr ¼ d� ¼ exact differential.

(ii) If h 6¼ irrotational, still an integrating factor (IF)  ¼ ðx; y; zÞ may exist so
that  h ¼ grad �. Then, as before,  h � dr ¼ grad � � dr ¼ d� ¼ exact differential.

(iii) Conversely, if  ¼ IF , then  h ¼ grad � ¼ irrotational; and ‘‘curling’’ both
sides of this latter, we obtain: 0 ¼ curlðgrad �Þ ¼  curl hþ grad � h, and dotting
this with h: 0 ¼ ðh � curl hÞ, from which, since  6¼ 0, we finally get (2.3.8a). In this
case, since h and grad � are parallel: h ¼ ð1=Þ grad � � �ðgrad �Þ, and, therefore,
curl h ¼ curlð� grad �Þ ¼ grad � � grad �, so that

h � curl h ¼ � grad � � ðgrad � � grad �Þ ¼ 0; ð2:3:8cÞ

that is, the doubly lamellar field h is perpendicular to its rotation curl h. [This condi-
tion is necessary for the existence of an IF . For its sufficiency, see, for example, Brand
(1947, pp. 200, 230–231), Sneddon (1957, pp. 21–23); also Coe (1938, pp. 477–478),
for an integral vector calculus treatment.] These derivations are based on a general
vector field theorem according to which an arbitrary vector field can be written as the
sum of a simple and a complex (or doubly) lamellar field: h ¼ grad f þ � grad �.

Finally, if the Pfaffian constraint is, nonholonomic, then (2.3.1, 7) yield one-
dimensional ‘‘nonholonomic manifolds’’; that is, space curves orthogonal to the
field h (or H), and constituting a one-parameter family on an arbitrary surface.

Accessibility

The restrictions on the motion of the particle P in the two cases I ¼ 0 (holonomic)
and I 6¼ 0 (nonholonomic) are of entirely different nature. If I ¼ 0, then P is obliged
to move on the surface � ¼ �ðx; y; zÞ ¼ 0. If, on the other hand, I 6¼ 0, then the
constraint (2.3.1) does not restrict the ðx; y; zÞ, but does restrict the direction
ðvelocityÞ of the curves through a given point ðx; y; zÞ. The cumulative effect of
these local restrictions in the direction of motion (velocity) is that the transition
between two arbitrary points is not arbitrary; P can move (or be guided through)
from an arbitrary initial (analytically possible) position, to any other arbitrary final
(analytically possible) position, while at every point of its path satisfying (2.3.1, 8);
that is, the particle can move from ‘‘anywhere’’ to ‘‘anywhere,’’ not via any route we
want, but along restricted paths. As Langhaar puts it, the particle is ‘‘constrained to
follow routes that coincide with a certain dense network of paths’’ (1962, pp. 5–6); like
kinematically possible tracks guiding the system.

In sum: (i) Holonomic constraints do reduce the dimension of the space of acces-
sible configurations, but do not restrict motion and paths in there; in Hertz’s words:
‘‘all conceivable continuous motions [between two arbitrary accessible positions] are
also possible motions.’’

(ii) Nonholonomic constraints do not affect the dimension of the space of acces-
sible configurations, but do restrict the motions locally (and, cumulatively, also
globally) in there; not all conceivable continuous motions (between two arbitrary
accessible positions) are possible motions (Hertz, 1894, p. 78 ff.).

These geometrical interpretations and associated concepts are extended to general
systems in }2.7.
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Degrees of Freedom

The above affect the earlier DOF definition: they force us to distinguish between
DOF in the large (measure of global accessibility, or global mobility) and DOF in the
small (measure of local/infinitesimal mobility). We define the former, DOFðLÞ, as the
number of independent global positional (or holonomic) ‘‘parameters,’’ or
Lagrangean coordinates � n ð¼ 3 in our examples, so far); and the latter,
DOFðSÞ � f , as n minus the number of additional (possibly nonholonomic) inde-
pendent Pfaffian constraints: f ¼ n�m ð> 0Þ. In the absence of the latter,
DOFðLÞ ¼ DOFðSÞ: f ¼ n. This fine distinction between DOFs rarely appears in
the literature, where, as a rule, DOF means DOF in the small. {For enlightening
exceptions, see, for example, Sommerfeld (1964, pp. 48–51); also Roberson and
Schwertassek (1988, p. 96), who call these DOFs, respectively, positionalðLÞ and
motionalðSÞ; and the pioneering Korteweg (1899, p. 134), who states that ‘‘Die
anzahl der Freiheitsgrade sei bei ihr eine andere (kleinere) für unendlich kleine wie
für endliche Verrückungen’’ [Translation: The number of degrees of freedom is
different (smaller) for infinitesimal displacements than for finite displacements.]}

As explained later in this chapter (}2.5 ff.), DOFðSÞ � f equals the number of
independent virtual displacements of the system; and this, in turn (chap. 3), equals
the smallest, or minimal, number of kinetic (i.e., reactionless) equations of motion of
it. In view of this, from now on by DOF we shall understand DOF in the small; that
is, DOF � DOFðSÞ � n�m � f , unless explicitly specified otherwise. The concept
of DOF in the large is more important in pure kinematics (mechanisms).

Finally, in the general constraint case, all these results hold intact, but for the
figurative system ‘‘particle’’ in a higher dimensional space—more on this later.

Semiholonomic Constraints

We stated earlier that if I ¼ 0, the Pfaffian constraint (2.3.1) is holonomic; that is, it
can be brought to the form

d�=dt ¼ 0 ) � ¼ constant � c: ð2:3:9Þ
Such situations necessitate an additional, albeit minor, classification of holonomic
constraints into proper holonomic, or simply holonomic, and improper holonomic,
or semiholonomic ones. In both cases, the constraints are finite (i.e., holonomic), but,
in the proper case, the constraint constants have a priori fixed values, independent of
the system’s position/motion; whereas, in the semiholonomic case, those constants
depend on the arbitrarily specified values of the system coordinates at some ‘‘initial’’
instant; that is, semiholonomic constraints are completely integrable velocity
(Pfaffian) constraints ) (generally) initial condition-depending holonomic con-
straints. In the proper holonomic case, the initial values of the coordinates must
be determined in conjunction with the given constraints and their constants; that is,
they must be compatible with the latter. However, semiholonomic constraints, being
essentially holonomic, can be used to reduce the number of independent global/
Lagrangean coordinates; and, thus, differ profoundly from the nonholonomic
ones. Clearly, the proper/semiholonomic distinction applies to rheonomic holonomic
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constraints, like φ(x, y, z, t) = c. For further details, see (alphabetically): Delassus
(1913(b), pp. 23–25: earliest extensive discussion of semiholonomicity), Moreau (1971,
pp. 228–232), and Pérès (1953, pp. 60–62, 218–219).



Critical Comments on Nonholonomic Constraints

The concept of nonholonomicity (in mechanics) has been around since the 1880s,
and has been thoroughly studied and expounded by some of the greatest mathema-
ticians, physicists, and mechanicians, for example (approximately chronologically):
Voss, Hertz, Hadamard, Appell, Chaplygin, Voronets, Maggi, Boltzmann, Hamel,
Heun, Delassus, Carathéodory, Schouten, Struik, Goursat, Cartan, Synge,
Vranceanu, Vagner, Dobronravov, Lur’e, Neimark, Fufaev, et al. Direct definitions
of nonholonomicity and analytical tests have been available, on a large and readable
scale, at least since the 1920s. And yet, on this topic, there exists widespread mis-
understanding and confusion; especially in the engineering literature. For example,
some authors state that constraints that can be represented by equations like
�ðr; tÞ ¼ 0, or �ðx; y; z; tÞ ¼ 0, are called holonomic, and that all others are called
nonholonomic; for example, Goldstein (1980, p. 12 ff.), Kane (1968, p. 14), Kane
and Levinson (1985, p. 43), Likins (1973, pp. 184, 295), Matzner and Shepley (1991,
pp. 23–24). Under such an indirect, vague, negative definition, inequality constraints
like � 
 0, or (perhaps?!) holonomic ones, but in velocity form, like

d�=dt ¼S ð@�=@rÞ � vþ @�=@t ¼ 0; ð2:2:10Þ

would be called nonholonomic! Or, we read blatantly contradictory and erroneous
statements like ‘‘With nonholonomic systems the generalized coordinates are not
independent of each other, and it is not possible to reduce them further by means
of equations of constraint of the form f ðq1; . . . ; qn, tÞ ¼ 0. Hence it is no longer true
that the qj ’s are independent’’ (Goldstein (1980, p. 45), emphasis added). Others
call nonholonomic all velocity constraints that cannot be written in the above
form � ¼ 0, which is correct; but they fail to supply the reader with analytical (or
geometrical, or even numerical) tools on how to test this; for example, Roberson and
Schwertassek (1988, p. 96), Shabana (1989, pp. 123, 128). The more careful of this
last group talk clearly about integrability, exactness, and so on, but restrict them-
selves to only one velocity constraint; for example, Haug (1992, pp. 87–89). Still
others mix nonholonomic coordinates (quasi coordinates, etc.) with nonholonomic
constraints, and exactness of Pfaffian forms with (complete) integrability of a system
of Pfaffian equations, without ever supplying clear and general definitions, let alone
analytical tests. And this results in defective definitions of the concept of DOF; for
example, Angeles (1988, pp. 80, 103). Even the (otherwise monumental) treatise of
Pars (1965, pp. 16–19, 22–24, 35–37, 64–72, 196) is limited to an introduction to the
subject, albeit a careful and precise one. Finally, there is the recent crop of texts on
‘‘modern’’ dynamics, where the problem of nonholonomicity is ‘‘solved’’ by ignoring
it altogether; for example, Rasband (1983). Only Neimark and Fufaev (1967/1972)
discuss the nonholonomicity issue clearly, competently, and in sufficient generality
and completeness to be useful. We hope that our treatment complements and
extends their beautiful work.

Extensions/Generalizations of the Integrability Conditions
(May be omitted in a first reading)

(i) Single Pfaffian Equation in the n Variables x ¼ ðx1; . . . ; xnÞ:
ð2:3:10Þ
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d ′θ ≡

∑
ak dxk = 0, ak = ak(x).



It can be shown that the necessary and sufficient condition for the complete integr-
ability¼holonomicity of (2.3.10) is the identical satisfaction of the following
‘‘symmetric’’ equations:

Iklp � akð@al=@xp � @ap=@xlÞ þ alð@ap=@xk � @ak=@xpÞ
þ apð@ak=@xl � @al=@xkÞ ¼ 0; ð2:3:10aÞ

for all combinations of the indices k, l, p ¼ 1; . . . ; n. [For example, one may start
with the integrability condition of (2.3.1), (2.3.6) (i.e., n ¼ 3) and then use the
method of induction; or perform similar steps as in the three-dimensional case;
see, for example, Forsyth (1885 and 1954, pp. 259–260).] Further, it can be shown
(e.g., again, by induction) that out of a total of nðn� 1Þðn� 2Þ=6 equations
(2.3.10a), equal to the number of triangles that can be formed with n given points
as corners, only nI � ðn� 1Þðn� 2Þ=2 are independent. For n ¼ 3, that number is
indeed 1: eqs. (2.3.6) or (2.3.8a). Also, if ak 6¼ 0, it suffices to apply (2.3.10) only for l
and p different from k. Finally, with appropriate extension of the curl of a vector to
n-dimensional spaces, (2.3.10) can be cast into a (2.3.8a)-like form (see, e.g.,
Papastavridis, 1999, chaps. 3, 6).

Problem 2.3.4 (i) Specialize (2.3.10a) to the acatastatic constraint ðn ¼ 4Þ:
aðt; x; y; zÞ dxþ bðt; x; y; zÞ dyþ cðt;x; y; zÞ dy þ eðt; x; y; zÞ dt ¼ 0: ðaÞ

(ii) Show that (a) is holonomic if, and only if, the symbolic matrix

a b c e

@=@x @=@y @=@z @=@t

a b c e

0B@
1CA; ðbÞ

has rank 2 (actually, less than 3); that is, all possible four of its 3� 3 symbolic
subdeterminants, each to be developed along its first row, vanish.

(iii) Further, show that if all such 2� 2 subdeterminants of (b) vanish, then (a) is
exact.

(iv) Specialize the preceding result to the catastatic case e � 0; verify that, then,
we obtain (2.3.6).

Problem 2.3.5 For the Pfaffian equation (2.3.10), define the ðnþ 1Þ � n matrix

P ¼
a1 . . . an

a11 . . . a1n

an1 . . . ann

0BB@
1CCA; ðaÞ

� � � � � � � � � � � � �

where akl � @ak=@xl � @al=@xk ð¼ �alkÞ; k, l ¼ 1; . . . ; n. Clearly, a11 ¼ � � � ¼
ann ¼ 0. Now, it is shown in differential equations/differential geometry that for
the holonomicity of (2.3.10), it is necessary and sufficient that the rank of P equal
1 or 2.

Show that (i) rank P ¼ 1 (i.e., all its 2� 2 subdeterminants vanish) leads to the
exactness conditions

akl ¼ 0; ðbÞ
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(ii) rank P ¼ 2 (i.e., all its 3� 3 subdeterminants vanish) leads to the earlier
complete integrability conditions (2.3.10a)

akalp þ alapk þ apakl ¼ 0: ðcÞ

Problem 2.3.6 Show that for n ¼ 3, equations (b, c) of the preceding problem
become, respectively,

akl ¼ 0 ðk; l ¼ 1; 2; 3Þ; ðaÞ
and

a1a23 þ a2a31 þ a3a12 ¼ 0 ½i:e:; ð2:3:6Þ�: ðbÞ

Problem 2.3.7 Consider the Pfaffian equation (2.3.10). Subject its variables x to
the invertible coordinate transformation (with nonvanishing Jacobian) x! x 0; in
extenso:

xk ¼ xkðxk 0 Þ , xk 0 ¼ xk 0 ðxkÞ ðk; k 0 ¼ 1; . . . ; nÞ: ðaÞ

ðbÞ

leads to the following (covariant vector) transformations for the form coefficients:

ak 0 ¼
X
ð@xk=@xk 0 Þak , ak ¼

X
ð@xk 0=@xkÞak 0 : ðcÞ

Problem 2.3.8 Continuing from the previous problem, define the antisymmetric
quantities

akl ¼ @ak=@xl � @al=@xk ð¼ �alkÞ; ðaÞ
ak 0l 0 ¼ @ak 0=@xl 0 � @al 0=@xk 0 ð¼ �al 0k 0 Þ; ðk 0; l 0 ¼ 1; . . . ; nÞ: ðbÞ

quantities transform as (second-order covariant tensors):

ak 0l 0 ¼
XX

ð@xk=@xk 0 Þð@xl=@xl 0 Þakl , akl ¼
XX

ð@xk 0=@xkÞð@xl 0=@xlÞak 0l 0 :
ðcÞ

Problem 2.3.9 Continuing from the preceding problems, assume that the x (and,
therefore, also the x 0) depend on two parameters u1 and u2:

xk ¼ xkðu1; u2Þ and x 0k ¼ x 0kðu1; u2Þ: ðaÞ

)2.3 QUANTITATIVE INTRODUCTION TO NONHOLONOMICITY 267

Show that the requirement that, under that transformation, the Pfaffian form d ′θ
remain (form) invariant; that is,

d ′θ → (d ′θ)′ ≡
∑

ak′ dxk′ = d ′θ (= 0), ak′ = ak′(x
′),

Show that under the earlier invariance requirement d ′θ → (d ′θ)′ = d ′θ, the above

Introducing the simpler notation d ′θ ≡ dθ and (d ′θ)′ ≡ dθ′, show that

d2(d1θ) − d1(d2θ) = d2(d1θ
′)− d1(d2θ

′), (b)



where

are equivalent toXX
ð@xk=@u1Þð@xl=@u2Þakl ¼

XX
ð@xk 0=@u1Þð@xl 0=@u2Þak 0l 0 : ðcÞ

(ii) If the Pfaffian Constraint (2.3.10) has the Equivalent, (2.3.5, 7)-like, Special
Form:

dz ¼
X

bkðx; zÞ dxk ðk ¼ 1; . . . ; nÞ; ð2:3:10bÞ

then, proceeding as in the three-dimensional case, or specializing (2.3.10a), we can
show that the necessary and sufficient integrability conditions are the nðn� 1Þ=2
independent identities [replacing n with nþ 1 in the earlier nI , following (2.3.10a)]:

@bk=@xl þ ð@bk=@zÞbl ¼ @bl=@xk þ ð@bl=@zÞbk ðk; l ¼ 1; . . . ; nÞ: ð2:3:10cÞ
Here, too, only the existence and continuity of the partial derivatives involved is
needed.

(iii) General Case of mð< nÞ Independent Pfaffian Equations in n Variables

[In the slightly special total differential equation form, with x � ðxD; xI Þ]:

dxD ¼
X

bDIðxÞ dxI or @xD=@xI ¼ bDI ðxÞ ðgeneral formÞ; ð2:3:11Þ

where (here and throughout this book)

D ¼ 1; . . . ;m ðfor DependentÞ and I ¼ mþ 1; . . . ; n ðfor IndependentÞ;
bDI ¼ given ðcontinuously differentiableÞ functions of the m xD ¼ ðx1; . . . ;xmÞ;

and the ðn�mÞ xI ¼ ðxmþ1; . . . ; xnÞ: ð2:3:11aÞ

The system (2.3.11) is called holonomic or completely integrable [i.e., functions
xDðxIÞ can be found whose total differentials are given by (2.3.11)], if, for any set
of initial values xI ;o; xD;o, for which the bDI are analytic, there exists one, and only
one, set of D functions xDðxI Þ satisfying (2.3.11) and taking on the initial values
xD;o at xI ;o. It is shown in the theory of partial (total) differential equations—see
references below—that:

For the system (2.3.11) to be holonomic, it is necessary and sufficient that the follow-
ing conditions hold:

@bDI=@xI 0 þ
X

bD 0I 0 ð@bDI=@xD 0 Þ ¼ @bDI 0=@xI þ
X

bD 0I ð@bDI 0=@xD 0 Þ
½D;D 0 ¼ 1; . . . ;m; I ; I 0 ¼ mþ 1; . . . ; n�; ð2:3:11bÞ
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d1θ =
∑

ak d1xk =
∑

ak[(∂xk/∂u1)du1],

d2θ =
∑

ak d2xk =
∑

ak[(∂xk/∂u2)du2],



identically in the xD, xI ’s [i.e., not just for some particular motion(s)] and for all
combinations of the above values of their indices; if they hold for some, but not all,
m values of D, then the system (2.3.11) is called ‘‘partially integrable.’’

Now, and this is very important, as the second (sum) term, on each side of
(2.3.11b), shows, the integrability of the Dth constraint equation of (2.3.11) depends,
through the coupling with bD 0I 0 and bD 0I , on all the other constraint equations of that
system; that is, each (2.3.11b) tests the integrability of the corresponding constraint
equation (i.e., same D) against the entire system— in general, holonomicity/non-
holonomicity are system not individual constraint properties.

Geometrically, integrability means that the system (2.3.11) yields a field of
ðn�mÞ-dimensional surfaces in the n-dimensional space of the x’s; that is, mechani-
cally, the system has ðn�mÞ global positional/Lagrangean coordinates, namely,
DOFðLÞ ¼ DOFðSÞ ¼ n�m.

Further:

� With the notation

bDI ¼ bDI ðxD; xI Þ ¼ bDI ½xDðxI Þ;xI � � �DI ðxI Þ � �DI ; ð2:3:11cÞ

and since, by careful application of chain rule to the above,

@�DI=@xI 0 ¼ @bDI=@xI 0 þ
X
ð@bDI=@xD 0 Þð@xD 0=@xI 0 Þ

¼ @bDI=@xI 0 þ
X
ð@bDI=@xD 0 ÞbD 0I 0 ;

[if xD ¼ xDðxI Þ, then dxD ¼
P ð@xD=@xI Þ dxI ¼P bDI ðxÞ dxI ] the holonomicity

conditions (2.3.11b) can also be expressed in the following perhaps more intelligible/

memorable (‘‘exactness’’) form:

@�DI=@xI 0 ¼ @�DI 0=@xI ðI 0 ¼ mþ 1; . . . ; nÞ; ð2:3:11dÞ

� It is not hard to verify that the system (2.3.11b, d) stands for a total of
mðn� 1Þðn� 2Þ=2 identities, out of which, however, only mðn�mÞðn�m� 1Þ=2 �
m f ð f � 1Þ=2 are independent ½ f � n�m; as in the general case of the first of

(2.12.5)].

� In the special case where bDI ¼ bDI ðxI Þ [Chaplygin systems (}3.8)], (2.3.11b) reduce
to the conditions:

@bDI=@xI 0 ¼ @bDI 0=@xI ½compare with ð2:3:11dÞ�; ð2:3:11eÞ

which, being uncoupled, test each constraint equation (2.3.11) independently of the
others. Last, we point out that all these holonomicity conditions are special cases of

the general theorem of Frobenius, which is discussed in }2.8–2.11.
� Equations (2.3.11b, d) also appear as necessary and sufficient conditions for a

Riemannian (‘‘curved’’) space to be Euclidean (‘‘flat’’) ) vanishing of Riemann–
Christoffel ‘‘curvature tensor’’; and in the related compatibility conditions in non-

linear theory of strain—see, for example, Sokolnikoff (1951, pp. 96–100), Truesdell

and Toupin (1960, pp. 271–274).
� Historical: The fundamental partial differential equations (2.3.11b) are due to the

German mathematician H. W. F. Deahna [J. für die reine und angewandte

Mathematik (Crelle’s Journal) 20, 340–349, 1840] and, also, the French mathemati-
cian J. C. Bouquet [Bull. Sci. Math. et Astron., 3(1), 265 ff., 1872]. For extensive and

readable discussions, proofs, and so on, see, for example, De la Valée Poussin (1912,
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pp. 312–336), Levi-Civita (1926, pp. 13–33), and the earlier Forsyth (1885/1954).

Regrettably, most contemporary treatments of Pfaffian system integrability are
written in the language of Cartan’s ‘‘exterior forms,’’ and so are virtually inaccessible
to the average nonmathematician.

2.4 SYSTEM POSITIONAL COORDINATES AND

SYSTEM FORMS OF THE HOLONOMIC CONSTRAINTS

So far, we have examined constraints in terms of particle vectors, and so on. Here, we
begin to move into the main task of this chapter: to describe constrained systems in
terms of general system variables. Let us assume that our originally free, or uncon-
strained, mechanical system S, consisting of N particles with inertial position vectors
[recalling (2.2.4)]

rP ¼ rPðtÞ ¼ fxPðtÞ; yPðtÞ; zPðtÞg ðP ¼ 1; . . . ;NÞ; ð2:4:1Þ
is now subject to hð< 3NÞ independent positional/geometrical/holonomic (internal
and/or external) constraints

�Hðt; rPÞ � �Hðt; rÞ � �Hðt; x; y; zÞ ¼ 0 ½H ¼ 1; . . . ; hð< 3NÞ�; ð2:4:2Þ
or, in extenso,

�1ðt; x1; y1; z1; . . . ; xN ; yN ; zNÞ ¼ 0;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð2:4:2aÞ
�hðt; x1; y1; z1; . . . ; xN ; yN ; zNÞ ¼ 0;

where independent means that the �1; . . . ; �h are not related by a(ny) functional
equation of the form Fð�1; . . . ; �hÞ ¼ 0 {In that case we would have, e.g.,
�h ¼ Fðt;�1; . . . ; �h�1Þ, so that one of the constraints (2.4.2, 2a), i.e., here �h ¼ 0,
would either be a consequence of the rest of them [if Fðt; 0; . . . ; 0Þ � 0, while �h ¼ 0],
or it would contradict them [if Fðt; 0; . . . ; 0Þ 6¼ 0; while �h ¼ 0]}.

At this point, to simplify our discussion and improve our understanding, we
rename the particle coordinates ðx; y; zÞ as follows [recalling (2.2.1a)]:

x1 � �1; y1 � �2; z1 � �3; . . . ; xN � �3N�2; yN � �3N�1; zN � �3N ;
ð2:4:3Þ

or, compactly,

xP � �3P�2; yP � �3P�1; zP � �3P ðP ¼ 1; . . . ;NÞ; ð2:4:3aÞ
in which case, the constraints (2.4.2a) read simply

�Hðt; �1; . . . ; �3NÞ � �Hðt; �	Þ ¼ 0 ½H ¼ 1; . . . ; hð< 3NÞ; * ¼ 1; . . . ; 3N�:
ð2:4:3bÞ

Therefore, using the h constraints (2.4.2a, 3b), we can express h out of the 3N
coordinates � � ðx; y; zÞ, say the first h of them (‘‘dependent’’) in terms of the
remaining n � 3N � h (‘‘independent’’), and time:

�d ¼ Xdðt; �hþ1; . . . ; �3NÞ � Xdðt; �iÞ ½d ¼ 1; . . . ; h; i ¼ hþ 1; . . . ; 3N�; ð2:4:4Þ
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and so it is now clear that our system has n (global) DOF, h down from the previous
3N of the unconstrained situation. Further, since for h ¼ 3N (i.e., n ¼ 0) the solu-
tions of (2.4.2a) would, in general, be incompatible with the equations of motion
and/or initial conditions, while for h ¼ 0 (i.e., n ¼ 3N) we are back to the original
unconstrained system; therefore, we should always assume tacitly that

0 < h < 3N or 0 < n < 3N: ð2:4:5Þ
Now, to express this n-parameter freedom of our system, we can use either the last n
of the �’s [i.e., the earlier �i � ð�hþ1; . . . ; �3NÞ], or, more generally, any other set of n
independent (or unconstrained, or minimal), and generally curvilinear, coordinates,
or holonomic positional parameters

q � ½q1 ¼ q1ðtÞ; . . . ; qn ¼ qnðtÞ� � fqk ¼ qkðtÞ; k ¼ 1; . . . ; ng;
or, simply,

q ¼ ðq1; . . . ; qnÞ; ð2:4:6Þ
related to the �i via invertible transformations of the type

�i ¼ �iðt; qÞ , qk ¼ qkðt; �iÞ: ð2:4:6aÞ
[The reader has, no doubt, already noticed that sometimes we use �i for the totality
of the independent �’s; i.e., ð�hþ1; . . . ; �3NÞ, and sometimes for a generic one of them;
and similarly for other variables. We hope the meaning will be clear from the
context.] In view of (2.4.6a), eq. (2.4.4) can be rewritten as

�d ¼ Xdðt; �iÞ ¼ Xd

�
t; �iðt; qÞ

	 ¼ Xdðt; qÞ; ð2:4:6bÞ
that is, in toto, �	 ¼ �	ðt; qÞ; 	 ¼ 1; . . . ; 3N; and so (2.2.4), (2.4.1) can be replaced by

xP ¼ xPðt; qÞ; yP ¼ yPðt; qÞ; zP ¼ zPðt; qÞ;
or

rP ¼ rPðt; qÞ; ð2:4:6cÞ
or, finally, by the definitive continuum notation,

r ¼ rðt; qÞ: ð2:4:7Þ
Let us pause and re-examine our findings.

(i) The n � 3N � h independent positional parameters q ¼ qðtÞ are, at every
instant t, common to all particles of the system (even though not every particle,
necessarily, depends on all of them); that is, the q’s are system coordinates; but
once known as functions of time they allow us, through (2.4.7), to calculate the
motion of the individual particles of our system S. The q’s are also called holonomic
(or true, or genuine, or global), independent (or unconstrained, or minimal) coordi-
nates, although they might be constrained later (!); for short, Lagrangean coordi-
nates; and the problem of analytical mechanics (AM) is to calculate them as functions
of time. Most authors call them ‘‘generalized coordinates’’ (and, similarly, ‘‘general-
ized velocities, accelerations, forces, momenta, etc.’’). This pretensorial/Victorian
terminology, introduced (most likely) by Thomson and Tait [1912, pp. 157–60,
286 ff.; also 1867 (1st ed.)], though inoffensive, we think is misguiding, because it
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directs attention away from the true role of the q’s: the key word here is not general-
ized but system (coordinates)! The fact that they are, or can be, general—that is,
curvilinear (nonrectangular Cartesian, nonrectilinear)—which is the meaning
intended by Thomson and Tait, is, of course, very welcome but secondary to AM,
whose task is, among others, to express all its concepts, principles, and theorems in
terms of system variables. Nevertheless, to avoid breaking with such an entrenched
tradition, we shall be using both terms, generalized and system coordinates, and the
earlier compact expression, Lagrangean coordinates.

(ii) The ability to represent by (2.4.7) the most general position (and, through it,
motion) of every system particle (i.e., in terms of a finite number of parameters),
before any other kinetic consideration, is absolutely critical (‘‘nonnegotiable’’) to
AM; without it, no further progress toward the derivation of (the smallest possible
number of ) equations of motion could be made.

(iii) Further, as pointed out byHamel, as long as the representation (2.4.7) holds, the
original assumption of discretemass-points/particles is not really necessary.We could,
just as well, have modeled our system as a rigid continuum; for example, a rigid body
moving about a fixed point, whether assumed discrete or continuum, needs three q’s to
describe its most general (angular) motion, such as its three Eulerian angles (}1.12).
In sum, as long as (2.4.7) is valid, AM does not care about the molecular structure/
constitution of its systems. [However, as n!1 (continuum mechanics), the descrip-
tion of motion changes so that the corresponding differential equations of motion
experience a ‘‘qualitative’’ change from ordinary to partial.]

(iv) Even though, so far, r has been assumed inertial, nevertheless, the q’s do not
have to be inertial; they may define the system’s configuration(s) relative to a non-
inertial body, or frame, of known or unknown motion, and that (on top of the
possible curvilinearity of the q’s) is an additional advantage of the Lagrangean
method. (As shown later, the r’s may also be noninertial.) For example, in the double
pendulum of fig. 2.7, �1, �2, �1 are inertial angles, whereas �2 is not.

If the constraints are stationary (! scleronomic system), then we can choose the
q’s so that (2.4.7) assumes the stationary form [recalling (2.2.2 ff.)]:

rP ¼ rPðqÞ or r ¼ rðro; qÞ � rðqÞ; ð2:4:7aÞ

and, therefore, scleronomicity/rheonomicity (¼ absence/presence of @r=@t) are
q-dependent properties, unlike holonomicity/nonholonomicity.
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Figure 2.7 Inertial and noninertial descriptions of a double pendulum: OA, AB.

Coordinates: �1,2: inertial; �1 ¼ �1: inertial; �2 � �2 � �1: noninertial; O, A, C: collinear.



Analytical Requirements on Equations (2.4.6a–c, 7)

The n q’s are arbitrary, that is, nonunique, except that when the representations
(2.4.6c, 7) are inserted back into the constraints (2.4.2, 2a) they must satisfy them
identically in the q’s, which, analytically, means that

�Hðt; �	Þ ¼ 0 ) �H ½t; �	ðt; qÞ� � 0 )
X
ð@�H=@�	Þð@�	=@qkÞ � @�H=@qk � 0;

where

H ¼ 1; . . . ; h; 	 ¼ 1; . . . ; 3N; k ¼ 1; . . . ; n ð� 3N � hÞ; ð2:4:8Þ
and where, due to the constraint independence and to (2.4.5), the Jacobians of the
transformations �H , �	 and �	 , qk must satisfy

rankð@�H=@�	Þ ¼ h; rankð@�	=@qkÞ ¼ n ð2:4:8aÞ
[and since j@�i=@qkj 6¼ 0 ) rankð@�i=@qkÞ ¼ n�, in the region of definition of the
� and t. In addition, the functions in the transformations (2.4.6a, b) must be of
class C2 (i.e., have continuous partial derivatives of zeroth, first, and second order,
at least, to accommodate accelerations) in the region of definition of the q’s and t.

Last, conditions (2.4.8a) imply that the representations (2.4.6a, b) have a (non-
unique) inverse:

qk ¼ qkðt; �Þ � qkðt; x; y; zÞ ¼ qk ¼ qkðt; rÞ: ð2:4:8bÞ
Additional ‘‘regularity’’ requirements are presented in }2.7.

Example 2.4.1 Let us express the above analytical requirements in particle vari-
ables. Indeed, substituting into (2.2.8) and (2.2.10):

v ¼ dr=dt ¼
X
ð@r=@qkÞðdqk=dtÞ þ @r=@t ðk ¼ 1; . . . ; nÞ; ðaÞ

we obtain, successively,

0 ¼ d�H=dt ¼S ð@�H=@rÞ �
X
ð@r=@qkÞðdqk=dtÞ þ @r=@t

� �
þ @�H=@t

¼
X

S ð@�H=@rÞ � ð@r=@qkÞ
� �

ðdqk=dtÞ

þ S ð@�H=@rÞ � ð@r=@tÞ þ @�H=@t
� �

�
X
ð@FH=@qkÞðdqk=dtÞ þ @FH=@t; ðbÞ

from which, since the holonomic system velocities dqk=dt are independent,

@FH=@qk ¼ 0; ðcÞ
@FH=@t ¼ 0: ðdÞ

Constraint Addition and Constraint Relaxation

The n q’s ( just like the h �H ’s) are independent; that is, we cannot couple them by
nontrivial functions FðqÞ ¼ 0, independent of the problem’s initial conditions, and
such that upon substitution of the q’s from (2.4.8b) into them they vanish identically
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in the �’s and t (i.e., F½t; qðt; �Þ� � Fðt; �Þ ¼ 0 is impossible). Thus, as in differential
calculus, when all the q’s except (any) one of them remain fixed, we are still left with
a ‘‘nonempty’’ continuous numerical range for the nonfixed q’s; and these latter
correspond to a ‘‘nonempty’’ continuous kinematically admissible range of system
configurations (a similar conception of independence will apply to the various q-
differentials, dq, �q; . . . ; to be introduced later). However, upon subsequent imposi-
tion of additional holonomic constraints to the system, the n q’s will no longer be
independent, or minimal. To elaborate: in the ‘‘beginning,’’ the system of particles is
free, or unconstrained (‘‘brand new’’); then, its q’s are the 3N �’s. Next, it is subjected
to a mix of constraints; say, h holonomic ones like (2.4.2, 2a), and m Pfaffian
(possibly nonholonomic) ones like (2.2.7, 9). Now, the introduction of the
n ¼ 3N � h q’s, as explained above, allows us to absorb, or build in, or embed, the
h holonomic constraints into our description; the representations (2.4.6c, 7) guaran-
tee automatically the satisfaction of the holonomic constraints, and thus achieve the
primary goal of Lagrangean kinematics, which is the expression of the system’s
configurations, at every constrained stage, by the smallest, or minimal, number of
positional coordinates needed [which, in turn (chap. 3) results in the smallest number
of equations of motion. The corresponding embedding of the Pfaffian constraints,
which is the next important objective of Lagrangean kinematics (to be presented
later, }2.11 ff.), follows a conceptually identical methodology, but requires new ‘‘non-
holonomic, or quasi, coordinates’’]. Specifically, if at a later stage, h 0ð< nÞ additional,
or residual, or non–built-in, independent holonomic constraints, say of the form

FH 0 ðt; qÞ ¼ 0 ðH 0 ¼ 1; . . . ; h 0Þ; ð2:4:9Þ

are imposed on our already constrained system, then, repeating the earlier proce-
dure, we express the n q’s in terms of n 0 � n� h 0 new positional parameters
q 0 � ðqk 0 ; k 0 ¼ 1; . . . ; n 0Þ:

qk ¼ qkðt; qk 0 Þ; rankð@q=@q 0Þ ¼ n 0; ð2:4:10Þ

so that, now, (2.4.7) may be replaced by

r ¼ rðt; qÞ ¼ r½t; qðt; q 0Þ� � rðt; q 0Þ; ð2:4:11Þ

the representation (2.4.7) still holds, no matter how many holonomic and nonholo-
nomic constraints are imposed on the system; but then our q’s will not be indepen-
dent: they have become the earlier �’s.

This process of adding holonomic constraints to an already constrained system,
one or more at a time, can be continued until the number of (global) DOF reduces
to zero: 3N � ðhþ h 0 þ h 00 þ � � �Þ ! 0. Also, no matter what the actual sequence
(history) of constraint imposition is, it helps to imagine that they are applied succes-
sively, one or more at a time, in any desired order, until we reach the current, or last,
state of ‘‘constrainedness’’ of the system. It helps to think of a given constrained
system as being somewhere ‘‘in the middle of the constraint scale’’: when we first
encounter it, it already has some constraints built into it; say, it was not born yester-
day. Then, as part of a problem’s requirements, it is being added new constraints
that reduce its DOFðLÞ, eventually to zero; and, similarly, proceeding in the opposite
direction, we may subtract some of its built-in constraints, thus relaxing the system
and increasing its DOFðLÞ, eventually to 3N. [Usually, such a (mental) relaxation of
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one or more built-in constraints is needed to calculate the reaction forces caused by
them (! principle of ‘‘relaxation,’’ }3.7).]

In sum: Any given system may be viewed as having evolved from a former
‘‘relaxed’’ (younger) one by imposition of constraints; and it is capable of becoming
a more ‘‘rigid’’ (older) one by imposition of additional constraints.

For example, let us consider a ‘‘newborn’’ free rigid body. The meaning of rigidity
is that our system is internally constrained; and the meaning of free(dom) is that,
when presented to us and unless additionally constrained later, the system is exter-
nally unconstrained; that is, at this point, its built-in constraints are all internal:
hence, n ¼ 6. If, from there on, we require it to have, say, one of its points fixed
(or move in a prescribed way), then, essentially, we add to it three external (holo-
nomic) constraints; that is, n 0 ¼ n� 3 ¼ 6 � 3 ¼ 3. If, further, we require it to have
one more point fixed, then we add two more such constraints; that is,
n 00 ¼ n 0 � 2 ¼ 3� 2 ¼ 1: And if, finally, we require that one more of its points
(noncollinear with its previous two) be fixed, then we add one more such constraint;
that is, n 000 ¼ n 00 � 1 ¼ 1� 1 ¼ 0. But if, on the other hand, we, mentally or actually,
separate the original single free rigid body into two free rigid bodies, then we sub-
tract from it six internal built-in constraints (in Hamel’s terminology, we ‘‘liberate’’
the system from those constraints) so that this new relaxed system has
nþ 6 ¼ 6þ 6 ¼ 12 (global) DOF .

Equilibrium, or Adapted, Coordinates

Frequently, we choose, in E3N , the following ‘‘equilibrium,’’ or ‘‘adapted (to the
constraints)’’ curvilinear coordinates:

�1 � �1ðt;x; y; zÞ ð¼ 0Þ; . . . ; �h � �hðt; x; y; zÞ ð¼ 0Þ;
�hþ1 � �hþ1ðt; x; y; zÞ ð6¼ 0Þ; . . . ; �3N � �3Nðt;x; y; zÞ ð6¼ 0Þ;

or, compactly,

�d � �dðt; x; y; zÞ ð¼ 0Þ ðd ¼ 1; . . . ; hÞ;
�i � �iðt;x; y; zÞ ð6¼ 0Þ ði ¼ hþ 1; . . . ; 3NÞ; ð2:4:12Þ

and �3Nþ1 � �3Nþ1 � t ð6¼ 0Þ; where �d � ð�1; . . . ; �hÞ are the given constraints, and
�i � ð�hþ1; . . . ; �3NÞ are n new and arbitrary functions, but such that when (2.4.12)
are solved for the 3N þ 1 (t; x; y; z), in terms of ðt;�1; . . . ; �3NÞ, and the results are
substituted back into the constraints �d ¼ 0, they satisfy them identically in these
variables. In terms of the latter, which are indeed a special case of q’s, the constraints
take the simple equilibrium forms:

�d � ð�1 ¼ 0; . . . ; �h ¼ 0Þ; ð2:4:12aÞ

and so (2.4.7), with q! �i, reduces to

r ¼ rðt; �hþ1; . . . ; �3NÞ � rðt; �iÞ: ð2:4:12bÞ
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Clearly, the earlier choice (2.4.4) corresponds to the following special �-case (assum-
ing nonvanishing Jacobian of the transformation):

�d ¼ �dðt; �Þ � �d � Xdðt; �iÞ ¼ 0 ðd ¼ 1; . . . ; hÞ;
�i ¼ �iðt; �Þ � �i 6¼ 0 ði ¼ hþ 1; . . . ; 3NÞ: ð2:4:12cÞ

In practice, the transition from � to q, �i is frequently suggested ‘‘naturally’’ by the
geometry of the particular problem. However, the general method described above
[but in differential forms; i.e., as d�d � d�d ð¼ 0Þ and d�i � d�i ð6¼ 0Þ] will allow us,
later (}2.11 ff.), to build in Pfaffian (possibly nonholonomic) constraints.

Finally, such equilibrium q, �i’s extend to the case of the earlier described n 0ð> 0Þ
additional constraints. There we may choose the new equilibrium coordinates:

� 0d 0 � Fd 0 ð¼ 0Þ ðd 0 ¼ 1; . . . ; h 0Þ;
� 0i 0 � Fi 0 ð6¼ 0Þ ði 0 ¼ h 0 þ 1; . . . ; nÞ; ð2:4:12dÞ

so that

r ¼ rðt; qÞ ! rðt; � 0i 0 Þ: ð2:4:12eÞ

Excess Coordinates

Sometimes, in a system possessing n minimal Lagrangean coordinates,
q ¼ ðq1; . . . ; qnÞ, we introduce, say for mathematical convenience, e additional
excess, or surplus, Lagrangean coordinates qE ¼ ðqnþ1; . . . ; qnþeÞ. Since the nþ e
positional coordinates q and qE are nonminimal—that is, mutually dependent—
they satisfy e constraints of the type

FEðt; q1; . . . ; qn; qnþ1; . . . ; qnþeÞ � FEðt; q; qEÞ ¼ 0 ðE ¼ 1; . . . ; eÞ; ð2:4:13Þ
and then we may have

r ¼ rðt; q; qEÞ: ð2:4:13aÞ
If we do not need the qE ’s, we can easily get rid of them: solving the e equations
(2.4.13) for them, we obtain qE ¼ qEðt; qÞ; and substituting these expressions back
into (2.4.13a) we recover (2.4.7). For this to be analytically possible we must have
(see any book on advanced calculus)

j@FE=@qE 0 j 6¼ 0 ðE ¼ 1; . . . ; e; E 0 ¼ nþ 1; . . . ; nþ eÞ: ð2:4:13bÞ

Example 2.4.2 Let us consider the planar three-bar mechanism shown in fig. 2.8.
The O–xy coordinates of a generic point on bars OA1 and A2A3 can be expressed
in terms of the angles �1 and �3, respectively; similarly, for a generic point P on
A1A2, such that A1P ¼ l, we have

x ¼ l1 cos�1 þ l cos�2; y ¼ l1 sin�1 þ l sin �2: ðaÞ
So, �1, �2, �3 express the configurations of this system; but they are not minimal (i.e.,
independent). Indeed, taking the x, y components of the obvious vector equation

OA1 þA1A2 þ A2A3 þ A3O ¼ 0;
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we obtain the two constraints:

F1 � l1 cos�1 þ l2 cos�2 þ l3 cos�3 � L ¼ 0;

F2 � l1 sin�1 þ l2 sin�2 � l3 sin�3 ¼ 0: ðbÞ

Therefore, here, n ¼ 1 and e ¼ 2; knowledge of any one of these three angles deter-
mines the mechanism’s configuration.

However, it is preferable to work with the representation (a), under (b), because if
we tried to use the latter to express x and y in terms of either �1, or �2, or �3 only
(wherever the corresponding Jacobian does not vanish), we would end up with fewer
but very complicated looking equations of motion. It is preferable to have more but
simpler equations (of motion and of constraint); that is, requiring minimality of
coordinates, and thus embedding all holonomic constraints into the equations of
motion, may be highly impractical. [See books on multibody dynamics; or Alishenas
(1992). On the other hand, minimal formulations have numerical advantages (com-
putational robustness).]

Another ‘‘excess representation’’ of this mechanism would be to use the four
O–xy coordinates of A1 and A2, ðx1; y1Þ and ðx2; y2Þ, respectively. Clearly, these
latter are subject to the three constraints (so that, again, n ¼ 1 but e ¼ 3):

ðx1Þ2 þ ðy1Þ2 ¼ ðl1Þ2; ðx2 � x1Þ2 þ ðy2 � y1Þ2 ¼ ðl2Þ2;
ðL� x2Þ2 þ ð0� y2Þ2 ¼ ðl3Þ2: ðcÞ

Example 2.4.3 Let us consider the planar double pendulum shown in fig. 2.9.
The four bob coordinates x1, y1 and x2, y2 are constrained by the two equations

ðx1Þ2 þ ðy1Þ2 ¼ ðl1Þ2; ðx2 � x1Þ2 þ ðy2 � y1Þ2 ¼ ðl2Þ2; ðaÞ

that is, here N ¼ 2 ) 2N ¼ 4, and so the number of holonomic constraints �
H ¼ 2 ) n ¼ 2N �H ¼ 2. A convenient minimal representation of the pendulum’s
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configurations is

x1 ¼ l1 cos�1; y1 ¼ l1 sin �1;

x2 ¼ l1 cos�1 þ l2 cos�2; y2 ¼ l1 sin�1 þ l2 sin �2: ðbÞ

2.5 VELOCITY, ACCELERATION, ADMISSIBLE AND

VIRTUAL DISPLACEMENTS; IN SYSTEM VARIABLES

Velocity and Acceleration

We begin with the fundamental representation of the inertial position of a typical
system particle P in Lagrangean variables (2.4.7):

r ¼ rðt; qÞ: ð2:5:1Þ
[Again, the inertialness of r is not essential, and is stated here just for concreteness. The
methodologydeveloped belowapplies to inertial andnoninertial position vectors alike;
and this, along with the possible curvilinearity (nonrectangular Cartesianness) and
possible noninertialness of the coordinates, are the two key advantages of
Lagrangean kinematics (and, later, kinetics) over that of Newton–Euler. This will
become evident in the Lagrangean treatment of relative motion (}3.16).]

From this, it readily follows that the (inertial) velocity and acceleration of P, in
these variables, are, respectively,

v � dr=dt ¼
X
ð@r=@qkÞðdqk=dtÞ þ @r=@t �

X
vkek þ e0; ð2:5:2Þ

a � dv=dt ¼
X
ð@r=@qkÞðd2qk=dt

2Þ þ
XX

ð@2r=@qk @qlÞðdqk=dtÞðdql=dtÞ
þ 2

X
ð@2r=@qk @tÞðdqk=dtÞ þ @2r=@t2

�
X

wkek þ
XX

vkvl ek;l þ 2
X

vkek;0 þ e0;0; ð2:5:3Þ

278 CHAPTER 2: KINEMATICS OF CONSTRAINED SYSTEMS

Figure 2.9 Excess coordinates in a planar double pendulum.



where

dqk=dt � vk; v ¼ ðv1; . . . ; vnÞ � ðvk; k ¼ 1; . . . ; nÞ; ð2:5:2aÞ
d2qk=dt

2 � dvk=dt � wk; w ¼ ðw1; . . . ;wnÞ � ðwk; k ¼ 1; . . . ; nÞ
½but; in general; a 6¼

X
wkek þ w0e0; see ð2:5:4�6Þ belowÞ�; ð2:5:3aÞ

associated with these q’s; and the fundamental (holonomic) basis vectors ek, e0, also
associated with the q’s, are defined by

ek ¼ ekðt; qÞ � @r=@qk; e0 ¼ e0ðt; qÞ � @r=@t ðor; sometimes; enþ1; or etÞ;
ð2:5:4Þ

and the commas signify partial derivatives with respect to the q’s, t:

ek;l � @ek=@ql ¼ @el=@qk ¼ el;k ½i:e:; @=@qlð@r=@qkÞ ¼ @=@qkð@r=@qlÞ�; ð2:5:4aÞ
ek;0 � @ek=@t ¼ @e0=@qk ¼ e0;k ½i:e:; @=@tð@r=@qkÞ ¼ @=@qkð@r=@tÞ�; ð2:5:4bÞ

we reserve the notation ak for the representation a ¼P akek þ a0e0:
Also, note that with the help of the formal (nonrelativistic) notations:

t � q0 � qnþ1 ) dt=dt � dq0=dt � dqnþ1=dt � v0 � vnþ1 ¼ 1; ð2:5:5aÞ
and

d2t=dt2 � dv0=dt � dvnþ1=dt � w0 � wnþ1 ¼ 0; ð2:5:5bÞ
we can rewrite (2.5.2, 3), respectively, in the ‘‘stationary’’ forms:

v ¼
X

v
e
; a ¼
X

w
e
 þ
XX

v
v� e
; �; ð2:5:6Þ

where, here and throughout the rest of the book, Greek subscripts range from 1 to
nþ 1 (� ‘‘0’’).

The vk � dqk=dt are the holonomic (and contravariant, in the sense of tensor
algebra) components, in the q-coordinates, of the system velocity or, simply,
Lagrangean velocities or, briefly, but not quite accurately, ‘‘generalized velocities.’’
The key point here is that the velocity and acceleration of each particle, v and a,
respectively, are expressed in terms of system velocities v � dq=dt and their rates
w � dv=dt � d2q=dt2, which are common to all particles, via the (generally, neither
unit nor orthogonal) ‘‘mixed’’ ¼ particle and system, basis vectors ek, e0. The latter,
since they effect the transition from particle to system quantities, are fundamental to
Lagrangean mechanics.

HISTORICAL

These vectors, most likely introduced by Somoff (1878, p. 155 ff.), were brought to
prominence by Heun (in the early 1900s; e.g., Heun, 1906, p. 67 ff., 78 ff.), and were
called by himBegleitvektoren � accompanying, or attendant, vectors. Perhaps a better
term would be ‘‘H(olonomic) mixed basis vectors’’ (see also Clifford, 1887, p. 81).

From the above, we readily deduce the following basic kinematical identities:

ðiÞ @r=@qk ¼ @v=@vk ¼ @a=@wk ¼ � � � � ek; ð2:5:7Þ
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that is, [with ð. . .Þ: � dð. . .Þ=dt],
@r=@qk ¼ @ _rr=@ _qqk ¼ @€rr=@€qqk ¼ � � � ¼ ek ð‘‘cancellation of the ðoverÞdots’’Þ;

ð2:5:7aÞ
and

ðiiÞ d=dtð@r=@qkÞ � d=dt ð@v=@vkÞ � dek=dt ¼ @=@qk ðdr=dtÞ � @v=@qk;
or, with the help of the Euler–Lagrange operator in holonomic coordinates:

Ekð. . .Þ � d=dtð. . . =@ _qqkÞ � @ . . . =@qk � d=dtð. . . =@vkÞ � @ . . . =@qk; ð2:5:9Þ
finally,

EkðvÞ � d=dtð@v=@vkÞ � @v=@qk ¼ 0: ð2:5:10Þ
In fact, for any well-behaved function f ¼ f ðt; qÞ, we have

_ff � df=dt �
X
ð@f=@qkÞðdqk=dtÞ þ @f=@t; €ff � d2f =dt2 ¼ � � � ;

) @f=@qk ¼ @ _ff=@ _qqk ¼ @ €ff=@€qqk ¼ � � � ; ð2:5:8Þ
and

Ekð f Þ � d=dt ð@f=@ _qqkÞ � @f=@qk � d=dt ð@f=@vkÞ � @f=@qk ¼ 0: ð2:5:11Þ
The integrability conditions (2.5.7, 10) are crucial to Lagrangean kinetics (chap. 3);
and, just like (2.5.2, 3), have nothing to do with constraints; that is, they hold the
same, even if holonomic and/or nonholonomic constraints are later imposed on
the system, as long as the q’s are holonomic (genuine) coordinates (i.e.,
q 6¼ nonholonomic or quasi coordinates; see }2.6, }2.9).

Admissible and Virtual Displacements

Proceeding as with the velocities, (2.5.2), we define the (first-order and inertial)
kinematically admissible, or possible, and virtual displacements of a generic system
particle P, respectively, by

dr ¼
X
ð@r=@qkÞ dqk þ ð@r=@tÞ dt �

X
ek dqk þ e0 dt; ð2:5:12aÞ

�r ¼
X
ð@r=@qkÞ �qk �

X
ek �qk; ð2:5:12bÞ

whether the q-increments, or differentials, dq, �q, and dt are independent or not (say,
by imposition of additional holonomic and nonholonomic constraints, later).

As the above show:

(i) if dqk ¼ ðdqk=dtÞ dt � vk dt, then dr ¼ v dt;

(ii) if all the dq’s and dt (�q’s) vanish, then dr ¼ 0 (�r ¼ 0); and

(iii) @ðdrÞ=@ðdqkÞ ¼ @ð�rÞ=@ð�qkÞ ¼ ek:

These identities (in unorthodox but highly instructive notation) are useful in prepar-
ing the reader to understand, later, the nonholonomic coordinates.
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REMARKS ON THE VIRTUAL DISPLACEMENT

Let us, now, pause to examine carefully this fundamental concept. First, we notice
that �r is the linear (or first-order) and homogeneous, in the �q’s, part of the ‘‘total
virtual displacement’’ Dr, which is defined by the following Taylor-like r-expansion
in the first-order increments �q, from a generic system configuration corresponding
to the values q, but for a fixed time t:

Dr � rðt; qþ �qÞ � rðt; qÞ � �rþ ð1=2Þ �2rþ � � � : ð2:5:13Þ
In other words, �r is a special first position differential, mathematically equivalent
to dr with t ¼ constant! dt ¼ 0 (i.e., completely equivalent to it for stationary
constraints); hence, the special notation �ð. . .Þ:

dr! �r; dq! �q; and dt! �t ¼ 0 ðisochrony; alwaysÞ: ð2:5:13aÞ
One could have denoted it as d*r, or ðdrÞ*, or z, and so on; but since we do not
see anything wrong with �ð. . .Þ, and to keep with the best traditions of analytical
mechanics [originated by Lagrange himself and observed by all mechanics masters,
such as Kirchhoff, Routh, Schell, Thomson and Tait, Gibbs, Appell, Volterra,
Poincaré, Maggi, Webster, Heun, Hamel, Prange, Whittaker, Chetaev, Lur’e,
Synge, Gantmacher, Pars et al.], we shall stick with it. Readers who feel uncomfor-
table with �ð. . .Þ may devise their own suggestive notation; dr and dq won’t do!

The above definitions also show the following:
(i) �r is mathematically equivalent to the difference between two possible/admis-

sible displacements, say d1r and d2r, taken along different directions but at the same
time (and same dt); that is, skipping summation signs and subscripts, for simplicity,

d2r� d1r ¼ ½ð@r=@qÞ d2qþ ð@r=@tÞ dt� � ½ð@r=@qÞ d1qþ ð@r=@tÞ dt�
¼ ð@r=@qÞðd2q� d1qÞ � ð@r=@qÞ �q ¼ �r: ð2:5:14Þ

(ii) For anywell-behaved function f ¼ f ðtÞ: �f ¼ ð@f =@tÞ �t ¼ 0; but if f ¼ f ðt; qÞ,
then �f ¼ ð@f =@qÞ �q 6¼ 0 [even though, after the problem is solved, q ¼ qðtÞ!].

(iii) The virtual displacements of mechanics do not always coincide with those of
mathematics (i.e., calculus of variations). For example, even though, in general,
dr 6¼ �r, for catastatic systems [i.e., dr ¼P ekðt; qÞ dqk, �r ¼

P
ekðt; qÞ �qk� the

equality dqk ¼ �qk ) dr ¼ �r is kinematically possible [and in (q; t)-space dr and
�r are ‘‘orthogonal’’ to the t-axis, even though dt 6¼ 0, �t ¼ 0]; whereas, in variational
calculus we are explicitly warned that dq (parallel to the t-axis) 6¼ �q (perpendicular to
it). These differences, rarely mentioned in mechanics and/or mathematics books, are
very consequential, especially in integral variational principles for nonholonomic
systems (chap. 7).

As definitions (2.5.12, 13), and so on, show, the (particle and/or system) virtual
displacement is a simple, direct, and, as explained in chapter 3 and elsewhere, indis-
pensable concept—without it Lagrangean mechanics would be impossible! Yet,
since its inception (in the early 18th century), this concept has been surrounded
with mysticism and confusion; and even today it is frequently misunderstood and/
or ignorantly maligned. For instance, it has been called ‘‘too vague and cumbersome
to be of practical use’’ by D. A. Levinson, in discussion in Borri et al. (1992); ‘‘ill-
defined, nebulous, and hence objectionable’’ by T. R. Kane, in rebuttal to Desloge
(1986); or, at best, has been given the impression that it has to be defined, or ‘‘chosen
properly’’ (Kane and Levinson (1983)), in an ad hoc or a posteriori fashion to fit the
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facts, that is, to produce the correct equations of motion. For an extensive rebuttal
of these false and misleading statements, from the viewpoint of kinetics, see chap. 3,
appendix II. Others object to the arbitrariness of the �q’s. But it is precisely in this
arbitrariness that their strength and effectiveness lies: they do the job (e.g., yielding
of the equations of motion) and then, modestly, retreat to the background leaving
behind the mixed basis vectors ek. It is these latter [and their nonholonomic counter-
parts (}2.9)] that appear in the final equations of motion (chap. 3), just as in the
derivation of differential (‘‘field’’) equations in other areas of mathematical physics.
For example, in continuummechanics, for better visualization, wemay employ a small
spatial element (e.g., a ‘‘control volume’’), of ‘‘infinitesimal’’ dimensions dx, dy, dz, to
derive the local field equations of balance of mass, momentum, energy, and so on; but
the ultimate differential equations never contain lone differentials—only combina-
tions of finite limits of ratios among them; that is, combinations of derivatives.
Moreover, differentials, actual/admissible/virtual, in addition to being easier to visua-
lize than derivatives, are invariant under coordinate transformations; whereas deriva-
tives are not. [Such invariance ideas led the Italian mathematicians G. Ricci and T.
Levi-Civita to the development of tensor calculus (late 19th to early 20th century); see,
for example, Papastavridis (1999).] For example, taking for simplicity, a one (global)
DOF system, under the transformation q! q 0 ¼ q 0ðt; qÞ, we find, successively,
�r ¼ e �q ¼ ð@r=@qÞ �q ¼ ð@r=@qÞ½ð@q=@q 0Þ �q 0� ¼ ½ð@r=@qÞð@q=@q 0Þ� �q 0 � e 0 �q 0;

that is,

e 0 � @r=@q 0 ¼ ð@q=@q 0Þe , e � @r=@q ¼ ð@q 0=@qÞe 0: ð2:5:15Þ
But there is an additional, deeper, reason for the representation (2.5.12b): the
position vectors rðt; qÞ and (possible) additional constraints, say  H 0 ðt; rÞ ¼
0!  H 0 ðt; qÞ ¼ 0, cannot be attached in these finite forms to the general kinetic
principles of analytical mechanics, which are differential, and lead to the equations
of motion (}3.2 ff.). Only virtual forms of r and  H 0 ¼ 0— special first differentials of
them, linear and homogeneous in the �q’s [like (2.5.12b)]— can be attached, or
adjoined, to the Lagrangean variational equation of motion via the well-known
method of Lagrangean multipliers (}3.5 ff.); and similarly for nonlinear (non-
Pfaffian) velocity constraints, an area that shows clearly that nonvirtual schemes
(as well as those based on the calculus of variations) break down (chap. 5)!
Hence, the older admonition that the virtual displacements must be ‘‘small’’ or
‘‘infinitesimal.’’ For example, to incorporate the nonlinear holonomic constraint
�ðx; yÞ � x2 þ y2 ¼ constant to the kinetic principles, we must attach to them its
first virtual differential, �� ¼ 2ðx �xþ y �yÞ ¼ 0; which is the linear and homoge-
neous part of the total constraint change, between the system configurations ðx; yÞ
and ðxþ �x, yþ �yÞ:

D� � �ðxþ �x; yþ �yÞ � �ðx; yÞ ¼ ½��þ ð1=2Þ �2��for small �x; �y � �� ¼ 0:

But in the case of the linear holonomic constraint � � xþ y ¼ constant, that total
constraint change equals

D� ¼ �� ¼ �xþ �y ¼ 0; no matter what the size of �x; �y;

and both equations, � ¼ 0 and �� ¼ 0, have the same coefficients (! slopes).
In sum: As long as we take the first virtual differentials of the constraints, the size

of the �q’s is inconsequential, whether they are one millimeter or ten million miles! It
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is the holonomic (or ‘‘gradient,’’ or ‘‘natural’’) basis vectors fek; k ¼ 1; . . . ; ng, that
matter.

As Coe puts it: ‘‘We often speak of displacements, both virtual and real, as being
arbitrarily small or infinitesimal. This means that we are concerned only with the
limiting directions of these displacements and the limiting values of the ratios of their
lengths as they approach zero. Thus any two systems of virtual displacements are for
our purposes identical if they have the same limiting directions and length ratios as
they approach zero’’ (1938, p. 377). Coe’s seems to be the earliest correct and
vectorial exposition of these concepts in English; most likely, following the exposi-
tion of Burali-Forti and Boggio (1921, pp. 136 ff.). See also Lamb (1928, p. 113).

The earlier mentioned indispensability of the virtual displacements for kinetics
will become clearer in chapter 3. Nevertheless, here is a preview: it is the virtual work
of the forces maintaining the holonomic and/or nonholonomic constraints (i.e., the
constraint reactions) that vanishes, and not just any work, admissible or actual; in
fact, the latter would supply only one equation. This vanishing-of-the-virtual-work-
of-constraint-reactions (principle of d’Alembert–Lagrange) is a physical postulate
that generates not just one equation of motion (like the actual work/power equation
does), but as many as the number of (local) DOFs; and, additionally, it allows us to
eliminate/calculate these constraint forces. A more specialized virtual displacement
! virtual work-based postulate is used to characterize the more general ‘‘servo/
control’’ constraints (}3.17).

Example 2.5.1 Differences Between Kinematically Admissible/Possible and Virtual
Displacements.

(i) Let us assume that we seek to determine the motion of a particle P capable of
sliding along an ever straight line l rotating on the plane O�xy about O. The config-
urations of l and of P relative to that plane are determined, respectively, by � and r, �
(fig. 2.10). Since r ¼ rðr; �Þ: position of P in O�xy, we will have, in the most general
case,

dr ¼ ð@r=@rÞ drþ ð@r=@�Þ d�: kinematically admissible displacement of P;
in O�xy; ðaÞ

�r ¼ ð@r=@rÞ �rþ ð@r=@�Þ ��: virtual displacement of P; in O�xy: ðbÞ
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(a) If the rotation of l is influenced by the motion of P relative to it, then � is another
unknown Lagrangean coordinate, like r, waiting to be found from the equations of
motion of the system P and l (i.e., n ¼ 2). Then dr and �r are given by (a, b),
respectively, and are mathematically equivalent. (b) If, however, the motion of l is
known ahead of time (i.e., if it is constrained to rotate in a specified way, unin-
fluenced by the, yet unknown, motion of P), then

� ¼ f ðtÞ: given function of time)
d� ¼ df ðtÞ ¼ ½df ðtÞ=dt� dt � !ðtÞ dt 6¼ 0; but �� ¼ �f ðtÞ ¼ !ðtÞ �t ¼ 0:

As a result, (a, b) yield

dr ¼ ð@r=@rÞ drþ ð@r=@�Þ d� ¼ ð@r=@rÞ drþ ð@r=@�Þ!ðtÞ dt ¼ drðt; r; dt; drÞ; ðcÞ
�r ¼ ð@r=@rÞ �r ¼ �rðt; r; �rÞ: ðdÞ

(ii) Let us consider the motion of a particle P along the inclined side of a wedge W
that moves with a given horizontal motion: x ¼ f ðtÞ (fig. 2.11). Here, we have

MM1 ¼M3M2 ¼ ð@r=@xÞ dx ¼ ð@r=@xÞ½df ðtÞ=dt� dt ¼ ð@r=@tÞ dt � dt; ðeÞ
MM3 ¼M1M2 ¼ �r ¼ ð@r=@qÞ �q � �q; ðf Þ
MM2 � dr ¼ ð@r=@qÞ dqþ ð@r=@tÞ dt; but �x ¼ 0: ðgÞ

(iii) Let us consider the motion of a particle P on the fixed and rigid surface
�ðx; y; zÞ ¼ 0 or z ¼ zðx; yÞ. Then, r ¼ rðx; y; zÞ ¼ r½x; y; zðx; yÞ� � rðx; yÞ, and the
classes of dr and �r are equivalent. But, on the moving and possibly deforming
surface �ðt; x; y; zÞ ¼ 0 or z ¼ zðx; y; tÞ, r ¼ � � � ¼ rðt;x; yÞ, and so dr 6¼ �r: �r still
lies on the instantaneous tangential plane of the surface at P, whereas dr does
not.
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Example 2.5.2 Lagrangean Coordinates and Virtual Displacements. Let us deter-
mine the Lagrangean description r ¼ rðro; t; qÞ and corresponding virtual displace-
ments �r ¼ � � � for the following systems:

(i) Two particles, P1 and P2, are connected by a massless rod of length l, in plane
motion (fig. 2.12). For an arbitrary rod point PðX ;YÞ, including P1 and P2, we have

X ¼ X1 þ x cos� ¼ Xðx;X1; �Þ; Y ¼ Y1 þ x sin� ¼ Yðx;Y1; �Þ; ðaÞ

or, vectorially,

r ¼ r1 þ xi ¼ rðx;X1;Y1; �Þ; 0 � x � l: ðbÞ

Therefore, ro ¼ xi; while the (inertial) positions of P1 and P2 are given, respectively,
by

r1 ¼ rð0;X1;Y1; �Þ ¼ X1I þY1J ; ðcÞ
r2 ¼ rðl;X1;Y1; �Þ ¼ ðX1 þ l cos�ÞI þ ðY1 þ l sin�ÞJ

¼ ðX1I þ Y1J Þ þ lðcos�I þ sin�J Þ ¼ r1 þ li: ðdÞ

Hence, this is a (holonomic) three DOF system: q1 ¼ X1, q2 ¼ Y1, q3 ¼ �. From (a)
we obtain, for the virtual displacements,

�X ¼ �X1 þ xð� sin�Þ ��; �Y ¼ �Y1 þ xðcos�Þ ��; ðeÞ

or, vectorially,

�r ¼ �r1 þ x �i ¼ �r1 þ x½ð��kÞ � i � ¼ �r1 þ ðx ��Þ j: ðf Þ

(ii) A rigid body in plane motion (fig. 2.13). For this three DOF system we have

X ¼ X^ þ x cos�� y sin� ¼ Xðx; y;X^; �Þ;
Y ¼ Y^ þ x sin�þ y cos� ¼ Yðx; y;Y^; �Þ; ðgÞ
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(and Z ¼ Z^ ¼ 0, say), or, vectorially,

r ¼ XI þ YJ ¼ rðx; y;X^;Y^; �Þ; ðhÞ
that is, ro ¼ xi þ yj and q1 ¼ X^, q2 ¼ Y^, q3 ¼ �. Therefore, the virtual displace-
ments are

�X ¼ �X^ � x sin� ��� y cos� �� ¼ �X^ � ��ðY � Y^Þ;
�Y ¼ �Y^ þ x cos� ��� y sin� �� ¼ �Y^ þ ��ðX � X^Þ; ðiÞ

(and �Z ¼ �Z^ ¼ 0), or, vectorially,

�r ¼ �r^ þ �/� ðr� r^Þ; �/ ¼ �� k: ð jÞ
The extension to a rigid body in general spatial motion (with the help of the Eulerian
angles, }1.12, and recalling discussion in } 1.8) is straightforward.

2.6 SYSTEM FORMS OF LINEAR VELOCITY (PFAFFIAN) CONSTRAINTS

Stationarity/Scleronomicity/Catastaticity for
Positional/Geometrical () Holonomic) Constraints in
System Variables

We begin by extending the discussion of }2.2 to general system variables, inertial or
not. Positional constraints of the form �ðqÞ ¼ 0 () @�=@t ¼ 0) are called stationary;
otherwise— that is, if �ðt; qÞ ¼ 0 () @�=@t 6¼ 0)— they are called nonstationary; and
if all constraints of a system are (or can be reduced to) such stationary (nonstation-
ary) forms, the system is called scleronomic (rheonomic). Clearly, such a classification
is nonobjective—that is, it depends on the particular mode and/or frame of reference
used for the description of position/configuration: for example, substituting rðt; qÞ
into the stationary constraint �ðrÞ ¼ 0 turns it to a nonstationary constraint,
�½rðt; qÞ� ¼ �ðt; qÞ ¼ 0 (and this is a reason that certain authors prefer to base this
classification only for constraints expressed in system variables); or, a constraint that
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is stationary when expressed in terms of inertial coordinates (q) may very well
become nonstationary when expressed in terms of noninertial coordinates (q 0):
under the frame of reference (i.e., explicitly time-dependent!) transformation
q! q 0ðt; qÞ , q 0 ! qðt; q 0Þ, the stationary constraint �ðqÞ ¼ 0 transforms to the
nonstationary one �ðt; q 0Þ ¼ 0. Hence, a scleronomic constraint �ðqÞ ¼ 0 remains
scleronomic under all coordinate (not frame of reference) transformations
q! q 0ðqÞ , q 0 ! qðq 0Þ; that is, its scleronomicity under such transformations is
an objective property.

Stationarity/Scleronomicity/Catastaticity for Pfaffian Constraints
in System Variables

Next, let us assume that the h holonomic constraints have been embedded into
our system by the n � 3N � h Lagrangean coordinates q. To embed the additional,
mð< nÞ mutually independent and possibly nonholonomic Pfaffian constraints
(2.2.9) into our Lagrangean kinematics and kinetics: first, we express them in system
variables. Indeed, substituting v from (2.5.2) into (2.2.9), we obtain the Pfaffian
constraints in system (holonomic) variables:

fD �S ðBD � vÞ þ BD ¼ � � � ¼
X

cDkvk þ cD ¼ 0 ðD ¼ 1; . . . ;mÞ; ð2:6:1Þ

where

cDk ¼ cDkðt; qÞ �S BD � ð@r=@qkÞ �S BD � ek; ð2:6:1aÞ
cD � cD;nþ1 � cD;0 ¼ cDðt; qÞ �S BD � ð@r=@tÞ þ BD �S BD � e0 þ BD; ð2:6:1bÞ

and rankðcDkÞ ¼ m. Similarly, substituting dr from (2.5.12a) into the differential
form of (2.2.9), fD dt ¼ 0, we obtain the kinematically admissible, or possible, form
of these constraints in (holonomic) system variables:

ð2:6:2Þ

‘‘quasi variable’’ (}2.9) and, in view of what has already been said about virtualness,
namely, dt! �t ¼ 0, the virtual form of these constraints in particle variables is

ð2:6:3Þ

and, accordingly, invoking (2.5.12b), in system variables,

ð2:6:4Þ

The above show that, as in the particle variable case, the virtual displacements are
mathematically equivalent to the difference between two systems of possible
displacements, d1q and d2q, occurring at the same position and for the same time,
but in different directions: apply (2.6.2) at ðt; qÞ, for d1q 6¼ d2q, and subtract side by
side and a (2.6.4)-like equation results.

And, as in (2.5.12a,b), once the constraints have been brought to these Pfaffian
forms, the size of the �q’s does not matter; it is the constraint coefficients cDk that do.
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d ′θD ≡ fD dt =
∑

cDk dqk + cD dt = 0;

with d ′θD: not necessarily an exact differential; that is, θD may not exist, it may be a

δ′θD ≡SBD · δr = 0,

δ′θD ≡

∑
cDk δqk = 0.



Now, if in (2.6.1–2),

ðiÞ @cDk=@t ¼ 0 ) cDk ¼ cDkðqÞ ð2:6:5aÞ
and

ðiiÞ cD � cD;nþ1 � cD;0 ¼ 0; ð2:6:5bÞ
) constraint: fD ¼

X
cDkðqÞvk ¼ 0;

for all D ¼ 1; . . . ;m and k ¼ 1; . . . ; n; these constraints are called stationary; other-
wise they are nonstationary; and a system with even one nonstationary constraint
is called rheonomic; otherwise it is scleronomic. The inclusion of (2.6.5b) in the
stationarity definition is made so that the velocity form of stationary position con-
straints coincides with that of the stationary velocity constraints:

�DðqÞ ¼ 0 ) d�D=dt ¼
X
ð@�D=@qkÞvk �

X
�DkðqÞvk ¼ 0: ð2:6:5cÞ

If only cD � cD;nþ1 � cD;0 ¼ 0, for allD, but @cDk=@t 6¼ 0 ) cDk ¼ cDkðt; qÞ even for
one value of D and k, the Pfaffian constraints are called catastatic [� calm, orderly
(Greek)]; otherwise they are called acatastatic. We notice that stationary constraints
are catastatic, but catastatic constraints may not be stationary; we may still have
@cDk=@t 6¼ 0 for some D and k. As mentioned earlier (2.2.11a ff.), it is the castastatic/
acatastatic classification, having meaning only for Pfaffian constraints, that is the
important one for analytical kinetics, not the stationary/nonstationary one.

Finally, as (2.6.1b) shows, the acatastatic coefficients cD result from the nonsta-
tionary part of v (i.e., @r=@t), and the acatastatic part of (2.2.9) (i.e., BD). From this
comes the search for frames of reference/Lagrangean coordinates where the Pfaffian
constraint coefficients take their simplest possible form; a problem that, in turn, leads
us to the investigation of the following.

Transformation Properties of cDk and cD, under a
General Frame-of-Reference Transformation

The latter is mathematically equivalent to an explicitly time-dependent coordinate
transformation: q! q 0 ¼ q 0ðt; qÞ and t! t 0 ¼ t. Then (2.6.1–1b) become

fD ¼
X

cDk

X
ð@qk=@qk 0 Þvk 0 þ @qk=@t

� �
þ cD

¼ � � � ¼
X

cDk 0 vk 0 þ c 0D ð¼ 0Þ ðk; k 0 ¼ 1; . . . ; n; D ¼ 1; . . . ;mÞ; ð2:6:6Þ

where

cDk 0 �
X
ð@qk=@qk 0 ÞcDk ðcovariant vector-like transformation in kÞ; ð2:6:6aÞ

c 0D �
X
ð@qk=@tÞcDk þ cD ðcovariant vector-like transformation in t � nþ 1;

with q 0nþ1 � t 0 ¼ t ) @t 0=@t ¼ 1Þ: ð2:6:6bÞ
The above readily show that: (i) if @qk=@t ¼ 0 [i.e., q ¼ qðq 0Þ] (¼ coordinate trans-
formation; in the same frame of reference), then c 0D ¼ cD; and (ii) we can choose a
frame of reference in which c 0D ¼ 0; that is, catastaticity/acatastaticity (and statio-
narity/nonstationarity) are frame-dependent properties.
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Holonomicity versus Nonholonomicity

The mð< nÞ constraints (2.6.1) are independent if the m� n constraint matrix (cDk)
has maximal rank (i.e., m) at each point in the region of definition of the q’s and t.

Now, if these constraints are completely integrable � holonomic [i.e., either they
are exact: cDk ¼ @hD=@qk and cD ¼ @hD=@t, where hD ¼ hDðt; qÞ ð¼ 0Þ; or they
possess integrating factors, as explained in }2.2], then there exists a set of n ‘‘equili-
brium,’’ or ‘‘adapted (to the constraints)’’ system coordinates � ¼ ð�1; . . . ; �nÞ in
which these constraints take the simple uncoupled form:

�1 � h1ðt; qÞ ¼ 0; . . . ; �m � hmðt; qÞ ¼ 0; ð2:6:7aÞ
�mþ1 � hmþ1ðt; qÞ 6¼ 0; . . . ; �n � hnðt; qÞ 6¼ 0; ð2:6:7bÞ

where, as in }2.4, the n�m functions hmþ1ðt; qÞ; . . . ; hnðt; qÞ are arbitrary, except that
when (2.6.7a, b) are solved for the n q’s in terms of the ðn�mÞ �I � ð�mþ1; . . . ; �nÞ
and these expressions are inserted back into the m holonomic constraints
h1ðt; qÞ ¼ 0; . . . ; hmðt; qÞ ¼ 0, they satisfy them identically in the �I ’s and t. The
�I ’s are the new positional system coordinates of this 3N � ðhþmÞ ¼
ð3N � hÞ þm ¼ n�m � n 0 (both global and local) DOF:

q! q 0 � ð�mþ1; . . . ; �nÞ � ðq 01; . . . ; q 0n 0 Þ: ð2:6:7cÞ

This process of adaptation to the constraints via new equilibrium coordinates can be
repeated if additional holonomic constraints are imposed on the system; and with
some nontrivial modifications it carries over to the case of additional nonholonomic
constraints (}2.11: essentially, by expressing this adaptation . . . idea in the small;
i.e., locally, via ‘‘equilibrium quasi coordinates’’). The importance of this method
to AM lies in its ability to uncouple constraints, and thus to simplify significantly the
equations of motion (chap. 3).

If, on the other hand, the constraints (2.6.1) are noncompletely integrable � non-
holonomic, then the number of independent Lagrangean coordinates (¼ number of
global DOF) remains n, but the system has n�m � f DOF (in the small, or local
case); that is, under the additional m nonholonomic constraints [(2.6.1), (2.6.2)], the n
q’s remain independent (unlike the holonomic case!), but the n v/dq/�q’s do not—or, if
the differential increments �q are arbitrary (if, for example, we let qk become qk þ �qk
while all the other q’s remain constant), then they will no longer be virtual; that is, they
will not be compatible with the virtual form of the constraints (2.6.4); and similarly
for the v’s, dq’s. [Of course, if m ¼ 0, then the n q’s are independent and their
arbitrary increments �q are virtual; that is, both q’s and �q’s satisfy the existing
(initial) h holonomic constraints. For example, in the case of a sphere rolling on,
say, a fixed plane: (a) if the plane is smooth (i.e., m ¼ 0), both the arbitrary q’s and
the arbitrary ðqþ dqÞ’s, are kinematically possible; while (b) if the plane is suffi-
ciently rough so that the sphere rolls on it (i.e., m 6¼ 0, and the additional (rolling)
constraints are nonholonomic), only the q’s are still arbitrary (independent), the
ðqþ dqÞ’s are not—or, if they are, the sphere does not roll. For details, see exs.
2.13.4, 2.13.5, 2.13.6.]

To find the number of independent �q’s under the additional m (holonomic or
nonholonomic) constraints (2.6.1, 2, 4) we must now turn to the examination of the
following.
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Introduction to Virtual Displacements under Pfaffian Constraints
(Introduction to Quasi Variables)

In this case, the particle virtual displacement is still represented by (2.5.12b):

�r ¼
X
ð@r=@qkÞ �qk �

X
ek �qk; ð2:6:8Þ

but, due to the virtual constraints (2.6.4), out of the n �q’s only n� m are indepen-
dent; that is, if, now, all n �q’s vary arbitrarily, the resulting �r, via (2.6.8), will not be
virtual—denoting a differential increment of a system coordinate by �q does not
necessarily make it virtual; it must also be constraint compatible. For example,
solving (2.6.4) for the first m �q’s,

�qD � ð�q1; . . . ; �qmÞ ¼ Dependent �q’s; ð2:6:9aÞ
in terms of the last n�m of them,

�qI � ð�qmþ1; . . . ; �qnÞ ¼ Independent �q’s; ð2:6:9bÞ
we obtain

�qD ¼
X

bDI �qI ðD ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ; ð2:6:9Þ

where bDI ¼ bDIðq; tÞ ¼ known functions of (generally, all) the q’s and t.
Substituting (2.6.9) into (2.6.8), we obtain, successively,

�r ¼
X

ek �qk ¼
X

eD �qD þ
X

eI �qI ¼
X

eD
X

bDI �qI

� �
þ
X

eI �qI ;

finally

either �r ¼
X

ek �qk; under
X

cDk �qk ¼ 0 ð�qk; nonarbitraryÞ; ð2:6:10aÞ
or �r ¼

X
bI �qI ð�qI ; arbitraryÞ; ð2:6:10bÞ

where

bI � eI þ
X

bDIeD � @r=@qI þ
X

bDI ð@r=@qDÞ ½see also ð2:11:13a ff:Þ�;
ð2:6:10cÞ

that is, the most general particle virtual displacement under (2.6.4) can be
expressed as a linear and homogeneous combination of the ‘‘narrower’’ basis fbI ;
I ¼ mþ 1; . . . ; ng, whose vectors are, in general [and unlike the ek’s—recalling
(2.5.4a ff.)], nongradient, or nonholonomic:

bI 6¼ @r=@qI ) @bI=@qI 0 6¼ @bI 0=@qI ðI ; I 0 ¼ mþ 1; . . . ; nÞ; ð2:6:11Þ
as can be verified directly by using (2.6.10c) in (2.6.11).

The number of independent �q’s, here n�m � f , equals the earlier defined
number of local DOFs; and, inversely, we can redefine the number of DOFs in
the small, henceforth called simply DOF, as the smallest number of independent
parameters _qqI � vI=dqI=�qI needed to determine v=dr=�r, for all system particles and
any admissible, and so on, local motion; that is, the number of DOFs (in the small)
¼minimum number of independent ‘‘local positional’’, or motional, parameters. Just
as the number of DOFs in the large, F ¼ n (here), is the minimum number of
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independent positional parameters needed to determine the configurations of all
system particles in any admissible, and so on, global motion.

REMARKS

(i) The f �qI can, in turn, be expressed as linear and homogeneous combinations
of another set of f-independent motional parameters, say �I : �qI ¼

P
HII 0 ðt; qÞ �I 0

ðI ; I 0 ¼ mþ 1; . . . ; nÞ; in which case (2.6.10b) becomes

�r ¼
X

bI �qI ¼
X

bI

X
HII 0 �I 0

� �
¼
X X

HII 0bI

� �
�I 0

�
X

hI 0�I 0 ¼
X

hI�I : ð2:6:10dÞ
(ii) As already mentioned, the importance of these considerations lies in kinetics

(chap. 3), where it is shown that the number of independent kinetic equations of
motion (¼ equations not containing forces of constraint) equals the number of inde-
pendent �q’s.

Problem 2.6.1 Show that due to the m Pfaffian constraints (2.6.1) (expressed in
terms of the notation dqk=dt � vk):X

cDkvk þ cD ¼ 0 ðD ¼ 1; . . . ;m; k ¼ 1; . . . ; nÞ; ðaÞ
or, equivalently, in the (2.6.9)-like form, in the velocities,

vD ¼
X

bDIvI þ bD ðI ¼ mþ 1; . . . ; nÞ; ðbÞ
the additional holonomic constraint �ðt; qÞ ¼ 0 satisfies the following ðn�mÞ þ 1
conditions:

@�=@qI þ
X

bDIð@�=@qDÞ ¼ 0 and @�=@tþ
X

bDð@�=@qDÞ ¼ 0; ðcÞ
which, in terms of the notation �ðt; qD; qI Þ ¼ �½t; qDðt; qIÞ; qI � � �oðt; qI Þ ¼ 0, read
simply

@�o=@qI ¼ 0 and @�o=@t ¼ 0; ðdÞ
respectively (compare with example 2.4.1.).

Before embarking into the detailed study of nonholonomic constraints and asso-
ciated ‘‘coordinates’’ (to embed them), and the most general v=dr=�r-representations
in terms of n�m arbitrary motional system parameters, of which the previous
vI � _qqI=dqI=�qI are a special case, let us pause to geometrize our analytical findings;
and in the process dispel the incorrect impressions, held by many, that analytical
mechanics is, somehow, only numbers (analysis), no pictures—an impression
initiated, ironically, by Lagrange himself !

2.7 GEOMETRICAL INTERPRETATION OF CONSTRAINTS

Configuration Spaces

As explained in }2.2, before the imposition of any constraints, the configurations of a
mechanical system S are described by the motion of its representative, or figurative,
particlePðS Þ � P in a (clearly, nonunique) 3N-dimensional Euclidean, or noncurved/
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flat, space, E3N , called unconstrained, or free, configuration space. [Briefly, Euclidean,
or noncurved, or flat, means that, in it, the Pythagorean theorem (‘‘distance squared¼
sumof squares of coordinate differences’’) holds globally; that is, between any two space
points, no matter how far apart they may be; see, for example, Lur’e (1968, p. 807 ff.),
Papastavridis (1999, }2.12.3).]

The position vector of P, in terms of its rectangular Cartesian coordinates/com-
ponents relative to some orthonormal basis of fixed origin O, in there, is [recall
(2.4.3 ff.)]

n ¼ ½�1 ¼ �1ðtÞ; . . . ; �3N ¼ �3NðtÞ�: ð2:7:1Þ
However, as detailed in }2.4, upon imposition on S of h holonomic constraints
and subsequent introduction of n � 3N � h Lagrangean coordinates
q � ½q1 ¼ q1ðtÞ; . . . ; qn ¼ qnðtÞ�, or simply q ¼ ðq1; . . . ; qnÞ, the above assumes the
parametric representation

n ¼ nðt; qÞ ¼ ½�1 ¼ �1ðt; qÞ; . . . ; �3N ¼ �3Nðt; qÞ�; ð2:7:1aÞ
which, in geometrical terms, means that, as a result of these constraints, P can no
longer roam throughout E3N , but is forced to remain on its time-dependent n-dimen-
sional surface defined by (2.7.1a), called reduced, or constrained configuration space of
the system; actually the portion of that surface corresponding to the mathematically
and physically allowable range of its curvilinear coordinates q. In differential–geo-
metric/tensorial terms, that space, described by the surface coordinates q, when
equipped with a physically motivated metric, becomes, at every instant t, a generally
non-Euclidean (or curved, or nonflat) metric manifold, MnðtÞ �Mn, usually a
Riemannian one, embedded in E3N ; and this explains the importance of
Riemannian geometry to theoretical dynamics. [Riemannian manifold means one in
which the square of the infinitesimal distance (‘‘line element’’) is quadratic, homo-
geneous, and (usually) positive–definite in the coordinate differentials dqk. In
dynamics, the manifold metric is built from the system’s kinetic energy (}3.9).
See, for example, Lur’e (1968, pp. 810 ff.), Papastavridis (1999, }2.12, }5.6 ff.)]
Schematically, we have

Now, as S moves in any continuous, or finite, way in the ordinary physical (three-
dimensional and Euclidean) space, or some portion of it, P moves along a contin-
uous Mn-curve, q ¼ qðtÞ. The relevant analytical requirements on such q’s (}2.4) are
summarized as follows:

(i) The correspondence between the q n-tuples and some region ofMn must be one-to-

one and continuous (additional holonomic constraints would exclude some parts of
that region from the possible configurations).

(ii) If Ds ¼ displacement, in Mn, corresponding to the q-increment Dq, we must have

limðDs=DqkÞ 6¼ 0, as Dqk ! 0 ðk ¼ 1; . . . ; nÞ; or dqk=ds (¼ ‘‘direction cosines’’ of

unit tangent vector to system path in MnÞ ¼ finite. The q’s are then called regular.
(See also Langhaar, 1962, p. 16.)
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Event Spaces

Instead of the ‘‘dynamical’’ spaces E3N and Mn, we may use their (formal and
nonrelativistic) ‘‘union’’ with time t � q0 � qnþ1; symbolically,

E3Nþ1 � E3N � TðimeÞ and Mnþ1 �Mn � TðimeÞ: ð2:7:2Þ
These latter are called (unconstrained and constrained, respectively): manifolds of
configuration and time (or of extended configuration), or ‘‘geometrical’’ space-time
manifolds, or film spaces; or, simply, event spaces. MnðMnþ1Þ is suitable for the
study of scleronomic (rheonomic) systems. (One more such ‘‘generalized space,’’
the phase space of Lagrangean coordinates and momenta, is examined in chap. 8.)

Constrained Configuration Spaces and their Tangent
Planes

The h stationary and holonomic constraints define, in E3N , a stationary (nonmoving)
and rigid (nondeforming) n-dimensional surface Mn; while h nonstationary holonomic
constraints define, in E3N , a nonstationary (moving) and nonrigid (deforming) n-
dimensional surface MnðtÞ. However, these same nonstationary constraints also
define, in E3Nþ1, a stationary and rigid ðnþ 1Þ-dimensional surface Mnþ1; hence,
the relativity of these terms! The equations t ¼ constant define11 privileged surfaces
MnðtÞ inMnþ1. Thus, the motion of the system can be viewed either as (i) a stationary
curve in the geometrical space Mnþ1; or (ii) as the motion of the representative system
point in the deformable, or ‘‘breathing,’’ dynamical space MnðtÞ. Further, through
eachMn-point qðtÞ there passes a ðn� 1Þ-ple infinity of kinematically possible system
paths, on each of which the ‘‘rate of traverse’’ dq=dt is arbitrary; and through each
Mnþ1-point ðq; tÞ there passes an n-ple infinity of such paths, but these latter, since
there is no motion in Mnþ1, are not traversed. The kinetic paths of a system in Mn

and Mnþ1 are called its trajectories/orbits and world lines, respectively. Additional
Mn=Mnþ1 differences are given below, in connection with nonholonomic constraints.

Next, and as differential geometry teaches, (i) the set of all ðnþ 1Þ-ples ðdq
Þmake
up the tangent point space (hyperplane) to Mnþ1 at P, Tnþ1ðPÞ; while (ii) the vectors
fE
 � E
ðPÞ; 
 ¼ 1; . . . ; n; nþ 1g, defined by dP � dn � dq �PE
 dq
: vector of
elementary system displacement determined by PðqÞ and Pðqþ dqÞ (each E
 being
tangent to the coordinate line q
 through P) constitute a ‘‘natural’’ basis for the
tangent vector space associated with, or corresponding to, Tnþ1ðPÞ; and similarly for
Mn. For simplicity, we shall denote both these point and vector spaces by Tnþ1ðPÞ,
TnðPÞ.

REMARKS

(i) Without a metric, these tangent spaces are affine. After they become equipped
with one, they become Euclidean; properly Euclidean if the metric is positive definite,
and pseudo-Euclidean if the metric is indefinite. As mentioned earlier, in mechanics
the metric is based on the kinetic energy, and, therefore, it is either positive definite
or positive semidefinite.

(ii) It is shown in differential geometry that the condition that dE
 ¼
Pð� � �Þ
�E�

be an exact differential [i.e., @=@q�ð@E
=@q�Þ ¼ @=@q�ð@E
=@q�Þ� leads to the
requirement that Mnþ1=Mn be a Riemannian manifold. For details, see, for example,
Papastavridis (1999, p. 135).
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Pfaffian Constraints

Let us begin with a system subjected to h holonomic constraints (2.4.2), and, there-
fore, described by the n � 3N � h holonomic coordinates q. Then, a motion of the
system in the physical space E3 corresponds to a certain curve in Mn(trajectory or
orbit)/Mnþ1(world line) traced by the figurative system particle P; and, conversely,
admissible Mn=Mnþ1 curves represent some system motion. Now, let us impose on it
the additional m Pfaffian constraints:

ð2:7:3Þ

ð2:7:4Þ

As a result of the above, we have the following geometrical picture:
(i) At each admissible Mnþ1-point P � ðq; tÞ, the m constraints (2.7.3) define (or

order, or map, or form), the ½ðnþ 1Þ �m� ¼ ½ðn�mÞ þ 1�-dimensional ‘‘element’’
Tðnþ1Þ�mðPÞ � Tðn�mÞþ1ðPÞ � TIþ1ðPÞ: tangent space (plane) of kinematically admis-
sible displacements (motions), of the earlier tangent plane Tnþ1ðPÞ, on which the
kinematically admissible displacements of the system, dq, and dt lie. Therefore, at
every P, only world lines with velocities v
 � dq
=dt on that plane are possible—the
system can only move along directions compatible with (2.7.3).

(ii) At each such point P, the m constraints (2.7.4) define the ðn�mÞ-dimensional
plane Tn�mðPÞ: tangent space of virtual displacements (motions), or virtual plane, on
which the virtual displacements of the system, �q, lie. Clearly, Tn�mðPÞ is the inter-
section of Tðn�mÞþ1ðPÞ with the hyperplane dt! �t ¼ 0 there; symbolically,
Tn�mðPÞ ¼ Tðn�mÞþ1j�t¼0 � Vn�mðPÞ (V for virtual).

�
And a manifold Mn=Mnþ1

whose tangential bundle (i.e., totality of its tangential spaces) is restricted by the m
nonholonomic equations (2.7.3) [assuming that (2.7.3), (2.7.4) are nonholonomic] is
called nonholonomic manifold Mn;n�m=Mnþ1;n�m: Some authors call the so-restricted
bundle, Tðn�mÞþ1 or Tn�m, nonholonomic space embedded in Mn, or Mnþ1. See also
Maiber (1983–1984), Papastavridis (1999, chap. 6), Prange (1935, pp. 557–560),
Schouten (1954, p. 196).

�
(iii) The given constraint coefficients ðcDk; cDÞ define, at P, an ðmþ 1Þ-dimensional

kinematically admissible constraint plane (element) Cmþ1ðPÞ perpendicular to
Tmþ1ðPÞ (with orthogonality defined in terms of the kinetic energy-based metric);
while the ðcDkÞ define an m-dimensional virtual constraint plane (i.e., of the virtual
form of the constraints) CmðPÞ perpendicular to Vn�mðPÞ. Sometimes, CmðPÞ is
referred to as the orthogonal complement of Vn�mðPÞ relative to TnðPÞ. The cDk

can be viewed as the covariant (in the sense of tensor calculus) and holonomic
components of the m virtual constraint vectors cD ¼ ðcDkÞ, which, by (2.7.4), are
orthogonal to the virtual displacements �qk: cD � �q ¼

P
cDk �qk ¼ 0. Hence since

the cD are independent, they constitute a basis (span) for the earlier space CmðPÞ.
These two local planes are frequently called the null½Vn�mðPÞ� and range½CnðPÞ�
spaces of the m� n constraint matrix ðcDnÞ. These geometrical results are shown
in fig. 2.14 (see also fig. 3.1).

Let us consolidate our findings:
(i) Under n initial holonomic constraints, a system can go from any admissible

initial Mn=Mnþ1-point, Pi, to any other final such point, Pf , along any chosen
ðMn=Mnþ1Þ-lying path joining Pi and Pf .
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Kinematically admissible form : d ′θD ≡

∑
cDk dqk + cD dt = 0,

Virtual form : δ′θD ≡

∑
cDk δqk = 0.



(ii) If the additional m Pfaffian constraints (2.7.3, 4) are holonomic, disguised in
kinematical form, the local tangent planes become the earlier local tangent planes to
reduced, or ‘‘smaller,’’ configuration/event manifolds Mn�m=Mðnþ1Þ�m, inside
Mn=Mnþ1. These reduced but finite surfaces contain all possible system motions
through a given Pi —the system can go from any admissible initial
Mn�m=Mðnþ1Þ�m-point, Pi, to any other final such point, Pf , along any chosen
ðMn=Mnþ1Þ-lying path joining Pi and Pf ; that is, DOF(local)¼
DOF(global)¼ n� m.

(iii) On the other hand, if the additional m Pfaffian constraints are nonholonomic,
we cannot construct these Mn�m=Mðnþ1Þ�m. The global configuration/event mani-
folds of the system are still Mn=Mnþ1, but these constraints have created, in there,
a certain path-dependence: any ðMn=Mnþ1Þ-point Pf (in the admissible portions of
Mn=Mnþ1Þ is, again, accessible from any other ðMn=Mnþ1)-point Pi but only along a
certain kinematical family, or ‘‘network,’’ of tracks that is ‘‘narrower’’ than that of
case (i); that is, the transition Pi ! Pf is no longer arbitrary because of direction-of-
motion constraints, at every point of those paths. Or, under such constraints,
all configurations/events are still possible, but not all velocities (and, hence, not all
paths); only certain Mn=Mnþ1-curves correspond to physically realizable motions—
the system is restricted locally, not globally; that is, n ¼ DOFðglobalÞ 6¼
DOFðlocalÞ ¼ n�m. We continue this geometrical interpretation of constrained
systems in }2.11.

Kinetic Preview, Quasi Coordinates

The importance of these considerations, and especially of the concept of virtualness,
to contrained system mechanics arises from the fact that most of the constraint
forces dealt by AM (the so-called ‘‘passive,’’ or contact, ones; i.e., those satisfying
the d’Alembert–Lagrange principle, chap. 3) are perpendicular to the virtual displa-
cement plane Vn�m, and so lie on the virtual constraint plane Cm. And this, as detailed
in chapter 3, allows us to bring the system equations of motion into their simplest
form; that is (i) to their smallest possible, or minimal, number (n), and (ii) to
a complete decoupling of them into ðn�mÞ purely kinetic equations—that is,

Figure 2.14 Virtual displacement (Vn�m) and constraint (Cm) hyperplanes in

configuration space (see also fig. 3.1).
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equations not containing constraint forces—by projecting them onto the local
virtual hyperplane, and ðmÞ kinetostatic equations—equations containing constraint
forces—by projecting them onto the local constraint hyperplane, which is perpendi-
cular to the virtual hyperplane there. This is the raison d’être of virtualness, and the
essence of Lagrangean analytical mechanics. In all cases, under given initial/bound-
ary conditions and forces, the system will follow a unique path (a trajectory, or orbit)
determined, or singled out among the problem’s kinematically admissible paths, by
solving the full set of its kinetic and kinematic equations.

Schematically, our strategic plan is as the following:

Now, if the m Pfaffian constraints are holonomic, their uncoupling (and that of
the corresponding equations of motion) is easily achieved by ‘‘adaptation to the
constraints,’’ as explained in }2.4 and }2.6; but, if they are nonholonomic this
‘‘adaptation’’ can be achieved only locally, via ‘‘equilibrium’’ nonholonomic co-
ordinates, or quasi coordinates.

We begin the study of these fundamental kinematical concepts by first examining
one of their important features: the possible commutativity/noncommutativity of the
virtual and possible operations, �ð. . .Þ and dð. . .Þ, respectively, when applied to this
new breed of ‘‘coordinates’’; that is, we investigate the relation between
d½�ðquasi coordinateÞ� and �½dðquasi coordinateÞ�.

2.8 NONCOMMUTATIVITY VERSUS NONHOLONOMICITY;

INTRODUCTION TO THE THEOREM OF FROBENIUS

ð2:8:1Þ

where D ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; n; k (and all other small Latin indices)¼ 1; . . . ; n.
Now, �ð. . .Þ-varying the first of (2.8.1), and dð. . .Þ-varying the second, and then
subtracting them side by side, we find, after some straightforward differentiations
and dummy index changes,

þ
X X

ð@cDk=@ql � @cDl=@qkÞ dql
�
þð@cDk=@t� @cD=@qkÞ dt

�
�qk

þ cD½dð�tÞ � �ðdtÞ�; ð2:8:1aÞ
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Minimal number of

eqs. of motion ðnÞ
Virtual displacements )
Simplest form of eqs. of motion Kinetic ðn�mÞ

Uncoupling of eqs.

of motion: Kinetostatic ðmÞ

�����!���
���
�!

�!��!

dθD ≡

∑
cDk dqk + cD dt = 0 and δθD ≡

∑
cDk δqk = 0,

d(δθD)− δ(dθD) =
∑

cDk[d(δqk)− δ(dqk)]

Let us recall the admissible (d) and virtual (δ) forms of the Pfaffian constraints
(2.7.3, 4) (henceforth keeping possible non-exactness accents only when really
necessary!):



or, since the last term is zero ½�t ¼ 0) dð�tÞ ¼ 0, and, during �ð. . .Þ time is kept
constant ) �ðdtÞ ¼ 0�, and with the earlier notations q0 � qnþ1 � t) �q0 ¼ �qnþ1 ¼
�t ¼ 0, cD � cD0 � cD;nþ1, andGreek subscripts running from1 to nþ 1 (or from0 to n):

þ
XX

ð@cDk=@q
 � @cD
=@qkÞ dq
 �qk:
ð2:8:2Þ

A final simplification occurs with the useful notations dð� . . .Þ � �ðd . . .Þ � Dð. . .Þ,
and

CD
�
 � @cD�=@q
 � @cD
=@q� ¼ �CD


�; ð2:8:2aÞ

FD �
XX

CD
k
 dq
 �qk : Frobenius’ bilinear, or antisymmetric, covariant

of the Pfaffian forms (2.8.1). ð2:8:2bÞ

Thus, (2.8.2) transforms to

ð2:8:2cÞ

Problem 2.8.1 Starting with eqs. (2.5.12a,b):

dr ¼
X

ek dqk þ e0 dt; �r ¼
X

ek �qk; ðaÞ

and repeating the above process, show that

Dr ¼
X

Dqkek: ðbÞ

From the above basic kinematical identities, we draw the following conclusions:
(i) If CD

k
 ¼ 0, identically in the q’s and t, and for all values of D, k, 
 then, since

Dqk � dð�qkÞ � �ðdqkÞ ¼ 0; ð2:8:3aÞ
the qk being genuine ¼ holonomic coordinates, it follows that

ð2:8:3bÞ

In this case (2.8.1) may be replaced by m holonomic constraints; which, in turn, may
be embedded into the system via n 0 ¼ n�m new equilibrium coordinates, as
explained in }2.4.

detailed in chap. 7, this realization helps one understand the fundamental differences
that exist between variational mathematics and variational mechanics. See also
pr. 2.12.5.) If we assume (2.8.3a) for all holonomic coordinates, constrained or not,

theorem shows (see below), the constraints (2.8.1) are nonholonomic.
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then DθD �= 0; that is, the θD are nonholonomic coordinates; and, as Frobenius’

(ii) If FD �= 0, then DθD �= 0; or, more generally, we cannot assume that both
d(δqk) = δ(dqk) and d(δθD) = δ(dθD) hold; it is either the one or the other. (As

that is, the θD are also holonomic coordinates, the dθD/δθD are exact differentials.

DθD ≡ d(δθD)− δ(dθD) = 0;

DθD =
∑

cDk Dqk + FD.

d(δθD)− δ(dθD) =
∑

cDk[d(δqk)− δ(dqk)]



(iii) If, however, FD ¼ 0, since the dq=�q are not independent, it does not neces-
sarily follow that CD

k
 ¼ 0. To make further progress— that is, to establish necessary
and sufficient holonomicity/nonholonomicity conditions in terms of the constraint co-
efficients, cDk and cD, we need nontrivial help from differential equations/differential
geometry; and this leads us directly to the following fundamental theorem of
Frobenius (1877). First, let us formulate it in simple and general mathematical
terms, and then we will tailor it to our kinematical context.

Theorem of Frobenius

The necessary and sufficient condition for the complete (or unrestricted) integrability�
holonomicity of the Pfaffian system:

XD �
X

XDK dxK ¼ 0 ½D ¼ 1; . . . ;mð5F Þ; K ;L ¼ 1; . . . ;F �; ð2:8:4Þ

where XDK ¼ XDKðx1; . . . ; xF Þ � XDkðxÞ ¼ given and well-behaved functions of
their arguments, and rankðXDKÞ ¼ mð5FÞ; that is, for it to have m independent
integrals fDðxÞ ¼ CD ¼ constants, is the vanishing of the corresponding m bilinear
forms:

FD �
XX

ð@XDK=@xL � @XDL=@xKÞuKvL; ð2:8:5Þ

identically (in the x’s) and simultaneously (for all D’s), for any/all solutions
u ¼ ðu1; . . . ; uF Þ, and v ¼ ðv1; . . . ; vFÞ of the m constraints

P
XDK�K ¼ 0; that is,

for any/all �K ! uK ; vK satisfyingX
XDKuK ¼ 0 and

X
XDKvK �

X
XDLvL ¼ 0: ð2:8:6Þ

[Also, recall comments following eqs. (2.3.11e).]
[If the system (2.8.4) is completely integrable, then, since its finite form depends on

the integration constants CD (i.e., ultimately, on the initial values of the x’s), then it is
semiholonomic (}2.3).]

Adapted to our kinematical problem—that is, with the identifications F ! n þ 1,
uK ! �qk, vL ! dq
, x! t, q, and recalling that qnþ1 � t satisfies the additional
holonomic constraint �qnþ1 � �t ¼ 0—Frobenius theorem states that: If

¼
X X

ð@cDk=@q
 � @cD
=@qkÞ dq

� �

�qk �
XX

CD
k
 dq
 �qk ¼ 0;

ð2:8:7Þ

for arbitrary dq
 ¼ dqk, dqnþ1 � dq0 � dt and �qk, solutions of the constraints:X
cD
 dq
 ¼

X
cDk dqk þ cD dt ¼ 0 and

X
cDk �qk ¼ 0; ð2:8:1Þ

then these constraints are holonomic.

298 CHAPTER 2: KINEMATICS OF CONSTRAINED SYSTEMS

FD ≡ d(δθD)− δ(dθD) = d
(∑

cDk δqk
)
− δ

(∑
cDα dqα

)



The above show that since our dq’s and �q’s are not independent, the vanishing
of the FD’s does not necessarily lead to

CD
k
 ¼ 0; ð2:8:8Þ

as holonomicity conditions. For this to be the case, eqs. (2.8.8) are, clearly, sufficient
but not necessary; they would be if the dq’s and �q’s were independent; namely,
unconstrained.

This observation leads to the following implementation of Frobenius’ theorem:
we express each of the ðnÞ nonindependent dq’s and �q’s as a linear and homoge-
neous combination of a new set of n�m independent parameters (and dt, for the
dq’s), insert these representations in FD ¼ 0, and then, in each of the so resulting m
bilinear covariants (in these new parameters), set its n�m coefficients equal to zero.
We shall see in }2.12 that, in the general case, this approach leads to a direct and usable
form of Frobenius’ theorem, due toHamel. But before proceeding in that direction, we
need to examine in sufficient detail the necessary tools: nonholonomic coordinates, or
quasi coordinates (}2.9), and the associated transitivity relations (}2.10).

REFERENCES ON PFAFFIAN SYSTEMS AND

FROBENIUS’ THEOREM

(for proofs, and so on, in decreasing order of readability for nonmathematicians):

Klein (1926(a), pp. 207–214): introductory, quite insightful.

De la Vallée Poussin (1912, vol. 2, chap. 7): most readable classical exposition.

Guldberg (1927, pp. 573–576) and Pascal (1927, pp. 579–588): outstanding handbook
summaries.

Forsyth (1890/1959, especially chaps. 2 and 11): detailed classical treatment.

Lovelock and Rund (1975/1989, chap. 5): excellent balance between classical and

modern approaches.

Cartan (1922, chaps. 4–10): the foundation of modern treatments.

Weber [1900(a), (b)]: older encyclopedic treatise (a) and article (b, pp. 317–319).

Heil and Kitzka (1984, pp. 264–295): relatively readable modern summary.

Chetaev (1987/1989, pp. 319–326): happens to be in English (not particularly enlighten-

ing).

Frobenius (1877, pp. 267–287; also, in his Collected Works, pp. 249–334): the original

exposition; not for beginners.

Hartman (1964, chap. 6): quite advanced; for ordinary differential equations specialists.

Outside of Lovelock et al., we are unaware of any contemporary readable exposition of

these topics in English; i.e., without Cartanian exterior forms, and so on.

Example 2.8.1 Necessary and Sufficient Condition(s) for the Holonomicity of the
Single Pfaffian Constraint (2.3.1) via Frobenius’ Theorem:

ðaÞ

ðbÞ
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dθ ≡ a(x, y, z) dx+ b(x, y, z) dy+ c(x, y, z) dz ≡ a dx+ b dy+ c dz = 0,

or, since it is catastatic,

δθ ≡ a δx+ b δy+ c δz = 0.



By d-varying (b), and �-varying (a), and then subtracting side by side, we find, after
some straightforward differentiations:

þ ½ðda �x��a dxÞþðdb �y��b dyÞþðdc �z��c dzÞ�
¼ ð@a=@y� @b=@xÞðdy �x� �y dxÞ þ ð@a=@z� @c=@xÞðdz �x� �z dxÞ

þ ð@b=@z� @c=@yÞðdz �y� �z dyÞ
[substituting into this, dz ¼ ð�a=cÞ dxþ ð�b=cÞ dy and �z ¼
ð�a=cÞ �xþ ð�b=cÞ �y, solutions of the constraints (a, b), respec-
tively; since here n�m ¼ 3� 1 ¼ 2 ¼ number of independent differ-
entials (for each form of the constraint); we could, just as well,
substitute dx ¼ � � � dyþ � � � dz and �x ¼ � � � �yþ � � � �z; or dy ¼ � � �
and �y ¼ � � � �

¼ � � � ¼ ð@a=@y� @b=@xÞðdy �x� �y dxÞ
þ ð@a=@z� @c=@xÞð�b=cÞðdy �x� �y dxÞ
þ ð@b=@z� @c=@yÞð�a=cÞðdx �y� �x dyÞ

¼ ½ð@a=@y� @b=@xÞ þ ðb=cÞð@c=@x� @a=@zÞ
þ ða=cÞð@b=@z� @c=@yÞ�ðdy �x� �y dxÞ:

independent, we recover the earlier holonomicity condition (2.3.6).

Vectorial Considerations

Equations (a)/(b), in terms of the vector notation

h ¼ ða; b; cÞ; dr ¼ ðdx; dy; dzÞ; and �r ¼ ð�x; �y; �zÞ; ðdÞ
state that

h � dr ¼ 0 and h � �r ¼ 0; ðeÞ
that is, h is perpendicular to the plane defined by the two (generally independent)
directions dr and �r, through r ¼ ðx; y; zÞ. On the other hand, the second of (c) states
that

ðfÞ
that is, curl h is perpendicular to the normal to that plane; and, hence, excluding the
trivial case dr� �r ¼ 0, curl h lies on that plane. Accordingly, h and curl h are
perpendicular to each other:

h � curl h ¼ 0: i:e:; ð2:3:8aÞ: ðgÞ

Example 2.8.2 The Two Independent and Catastatic Pfaffian Constraints:

ðaÞ
ðbÞ
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d(δθ)− δ(dθ) = a[d(δx)− δ(dx)] + b[d(δy)− δ(dy)] + c[d(δz)− δ(dz)]

Setting d(δθ) − δ(dθ) = 0, and since now the bilinear terms dy δx and δy dx are

d(δθ)− δ(dθ) = curl h · (dr× δr) = 0,

dΘ ≡ A(x, y, z) dx+ B(x, y, z) dy+ C(x, y, z) dz ≡ A dx+ B dy+ Cdz = 0,

dθ ≡ a(x, y, z) dx+ b(x, y, z) dy+ c(x, y, z) dz ≡ a dx+ b dy+ c dz = 0,



when taken together (i.e., n ¼ 3, m ¼ 2) will always make up a holonomic system;
even if each one of them separately (i.e., n ¼ 3, m ¼ 1) may be nonholonomic!

Solving (a) and (b) for any two of the dx, dy, dz in terms of the third, say dx and
dy in terms of dz, we obtain

dx � eðx; y; zÞ dz and dy � f ðx; y; zÞ dz; ðcÞ
and, similarly, since (a) and (b) are catastatic,

�x � eðx; y; zÞ �z and �y � f ðx; y; zÞ �z: ðdÞ
Therefore, we find, successively,

¼ � � � ¼ ð� � �Þðdy �x� �y dxÞ þ ð� � �Þðdz �x� �z dxÞ þ ð� � �Þðdz �y� �z dyÞ
¼ ½using ðcÞ and ðdÞ� ¼ � � � ¼ ð� � �Þðdz �z� �z dzÞ ¼ ð� � �Þ0 ¼ 0; ðeÞ

and, similarly,

ðfÞ
Proceeding in a similar fashion, we can show that: a system of n� 1 (or n) indepen-
dent Pfaffian equations, in n variables [like ð2:8:1Þ with m ¼ n� 1 or n] is always
holonomic. This theorem illustrates the interesting kinematical fact that additional
constraints may turn an originally (individually) nonholonomic constraint into a
holonomic one (as part of a system of constraints); see also }2.12.

2.9 QUASI COORDINATES, AND THEIR CALCULUS

Let us, again, consider a holonomic system S described by the hitherto minimal, or
independent, n Lagrangean coordinates q ¼ ðq1; . . . ; qnÞ, and hence having kinema-
tically admissible/possible system displacements ðdq; dtÞ � ðdq1; . . . ; dqn; dtÞ. Now, at
a generic admissible point of S’s configuration or event space ðq; tÞ, we can describe
these local displacements via a new set of general differential positional and time
parameters ðd�; dtÞ � ðd�1; . . . ; d�n; d�nþ1 � d�0Þ, defined by the nþ 1 linear, homo-
geneous, and invertible transformations:

d�k �
X

akl dql þ ak dt; d�nþ1 � d�0 � dqnþ1 � dq0 � dt; ð2:9:1Þ

rankðaklÞ ¼ n ) DetðaklÞ 6¼ 0; ðk; l ¼ 1; . . . ; nÞ; ð2:9:1aÞ
where the coefficients akl and ak � ak;nþ1 � ak0 are given functions of the q’s and t
(and as well-behaved as needed; say, continuous and once piecewise continuously
differentiable, in some region of interest of their variables). Inverting (2.9.1), we
obtain

dql ¼
X

Alk d�k þ Al dt; dqnþ1 � d�nþ1 � d�0 � dt; ð2:9:2Þ

rankðAlkÞ ¼ n ) DetðAlkÞ 6¼ 0; ðk; l ¼ 1; . . . ; nÞ; ð2:9:2aÞ
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d(δθ)− δ(dθ) =

d(δΘ)− δ(dΘ) = · · · = (· · ·)(dz δz − δz dz) = (· · ·)0 = 0; Q.E.D.



where the ‘‘inverted coefficients’’ Alk and Al � Al;nþ1 � Al0 become known functions
of the q’s and t, and are also well-behaved. Clearly, since the transformations (2.9.1)
and (2.9.2) are mutually inverse, their coefficients must satisfy certain consistency, or
compatibility, conditions; so that, given the a’s, one can determine the A’s and vice
versa. Indeed, substituting dql from (2.9.2) into (2.9.1), and d�k from (2.9.1) into
(2.9.2), and with �kl ¼ Kronecker delta ð¼ 1 or 0, according as k ¼ l, or k 6¼ l), we
obtain the inverseness relations:X

akrArl �
X

Arlakr ¼ �kl ;
X

akrAr �
X

Arakr ¼ �ak; ð2:9:3aÞ

X
Alrark �

X
arkAlr ¼ �kl ;

X
Alrar �

X
arAlr ¼ �Al : ð2:9:3bÞ

Further, with the help of the unifying notations ak � ak;nþ1 and Al � Al;nþ1, the
definitions anþ1;k � �nþ1;k ð¼ 0Þ and Anþ1;l � �nþ1;l ð¼ 0Þ, and recalling that Greek
subscripts have been agreed to run from 1 to nþ 1, the transformation coefficient
matrices in (2.9.1) and (2.9.2) take the ðnþ 1Þ � ðnþ 1Þ ‘‘Spatio-Temporal’’ forms:

a ¼

a11 � � � a1n a1;nþ1

an1 � � � ann an;nþ1

0 � � � 0 1

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

0BBBBBBB@

1CCCCCCCA �
akl ak

0 1

 !
�

aS aT

0 1

 !
� ða��Þ; ð2:9:4aÞ

A ¼

A11 � � � A1n A1;nþ1

An1 � � � Ann An;nþ1

0 � � � 0 1

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

0BBBBBBBB@

1CCCCCCCCA
�

Akl Ak

0 1

 !
�

AS AT

0 1

 !
� ðA��Þ; ð2:9:4bÞ

Then (2.9.1, 2) assume the simpler (homogeneous) forms:

d�� ¼
X

a�� dq� , dq� ¼
X

A�� d��; ð2:9:5Þ

while the consistency relations (2.9.3a) read simply

aA ¼ 1 or
X

a�� A�� �
X

A�� a�� ¼ ��� ; ð2:9:6aÞ

and from this we obtain the ‘‘spatio-temporally partitioned’’ matrix multiplications:

aS aT

0 1

 !
AS AT

0 1

 !
¼

aSAS aSAT þ aT

0 1

 !
¼

1 0

0 1

 !

that is,

aSAS ¼ 1 and aSAT þ aT ¼ 0; ð2:9:7aÞ
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and, similarly, the consistency relations (2.9.3b) read

ðaAÞT ¼ A
T
a
T ¼ 1 or

X
A�� a�� ¼

X
a�� A�� ¼ ���; ð2:9:6bÞ

from which

AS 0

AT 1

 !
aS 0

aT 1

 !
¼

ASaS 0

ATaS þ aT 1

 !
¼

1 0

0 1

 !
that is,

ASaS ¼ 1 and ATaS þ aT ¼ 0: ð2:9:7bÞ
Let us recapitulate the notations used here:

(i) Matrices are shown in roman and bold; vectors in italic and bold;
(ii) ð. . .ÞT � transpose of square matrix ð. . .Þ;
(iii) aS;AS ¼ ðn� nÞ spatial, or catastatic, submatrices of a and A, respectively; and

aT;AT ¼ ðn� 1Þ temporal, or acatastatic, submatrices of a and A, respectively;
(iv) 1 ¼ square unit, or identity, matrix (of appropriate dimensions);

(v) 0 ¼ zero matrix (column or row vector of appropriate dimension); and

(vi) Here, commas in subscripts—for example, ak;nþ1;Al � Al;nþ1 —are used only to sepa-
rate the spatial from the temporary of these subscripts, for better visualization; that is,
no partial differentiations are implied, unless explicitly specified to that effect.

Thus, for example, for � ! k and � ! l eqs. (2.9.6a) yieldX
akrArl þ ak;nþ1Anþ1;l ¼ �kl !

X
akrArl ¼ �kl ; i:e:; first of ð2:9:3aÞ;

for � ! nþ 1 and � ! l they yieldX
anþ1; r Arl þ anþ1; nþ1 Anþ1;l ¼ �nþ1;l ; i:e:; 0þ 0 ¼ 0;

while for � ! k and � ! nþ 1 they yieldX
akr Ar; nþ1 þ ak; nþ1Anþ1; nþ1 ¼ �k; nþ1 ¼ 0; i:e:; second of ð2:9:3aÞ;

and similarly with (2.9.6b).

Specializations, Remarks

(i) If ðaklÞ is an orthogonal matrix— that is, if

akl ¼ Alk and DetðaklÞ ¼ �1; ð2:9:8aÞ
then the spatial parts of (2.9.3a, 3b) are replaced, respectively, byX

akr alr �
X

alr akr ¼ �kl and
X

arl ark �
X

ark arl ¼ �kl ; ð2:9:8bÞ

and, similarly, for the full ðnþ 1Þ � ðnþ 1Þ a and A matrices.
(ii) As shown in chap. 3, and foreshadowed below, it is the spatial/catastatic

submatrices aS and AS that enter the equations of motion; not the temporary/acata-
static submatrices aT and AT. The latter, however, enter the rate of energy, or power,
equations (}3.9). In what follows, we shall have the opportunity to use all these,
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mutually equivalent and complementary notations; primarily the indicial and secon-
darily the matrix ones. All have relative advantages/drawbacks, depending on the
task at hand.

Velocities and Virtual Displacements

Just as we defined new general kinematically admissible/possible system displace-
ments via (2.9.1, 2), etc., we next define the following:

(i) The corresponding general system velocities ðd�! ! dtÞ;
!k �

X
aklðdql=dtÞ þ ak �

X
akl _qql þ ak �

X
aklvl þ ak;

!nþ1 � !0 � dqnþ1=dt � dt=dt ¼ 1 ðisochronyÞ; ð2:9:9Þ
or, compactly,

!� �
X

a��ðdq�=dtÞ �
X

a�� v� ; ð2:9:9aÞ

and, inversely,

dql=dt � _qql � vl ¼
X

Alk !k þ Al ; dqnþ1=dt � !nþ1 � dt=dt ¼ 1; ð2:9:10Þ

or, compactly,

dq�=dt � _qq� � v� ¼
X

A�� !�; ð2:9:10aÞ
and

(ii) The corresponding general system virtual displacements ðd�! ��,
d�nþ1 ! ��nþ1 ¼ �t ¼ 0Þ:

��k �
X

akl �ql ; ��nþ1 � �qnþ1 � �t ¼ 0; ð2:9:11Þ

and, inversely,

�ql ¼
X

Alk ��k; �qnþ1 � �q0 � ��nþ1 � ��0 � �t ¼ 0: ð2:9:12Þ

If the d� and dt describe an actual motion, then d�k ¼ !k dt. But it would be incor-
rect to set ��k ¼ !k �t, because of the ever present (better, ever assumed) virtual time
constraint �t ¼ 0; whereas, in general, ��k 6¼ 0!

Next, let us examine the integrability of these Pfaffian forms (not constraints!)
(2.9.1, 11), of our hitherto n DOF system.

Bilinear Covariants, Integrability, Quasi Coordinates

Indeed, proceeding as in }2.8, and assuming that dð�qkÞ ¼ �ðdqkÞ, constraints or not,
we find that the Frobenius bilinear covariants of (2.9.1, 11), dð��kÞ � �ðd�kÞ, equal

dð��kÞ � �ðd�kÞ ¼
XX

ð@akl=@qs � @aks=@qlÞ dqs�ql
þ
X
ð@akl=@t� @ak=@qlÞ dt �ql

�
X

d kl �ql: ð2:9:13Þ
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Now, with the help of these expressions, and since the dq’s and �q’s are (as yet)
unconstrained (i.e., m ¼ 0), like the q’s, we can enunciate the following ‘‘obvious’’
theorems, in increasing order of specificity:

. The necessary and sufficient conditions for the particular Pfaffian form (not constraint!)

d�k �
X

akl dql þ ak dt; or in virtual form ��k �
X

akl �ql; ð2:9:14Þ

to be an exact differential— that is, for the hitherto shorthand symbols d�k and ��k to
be the genuine (first and total) differentials of a bona fide function �k ¼ �kðq; tÞ
(! holonomic coordinate)— is that its bilinear covariant (2.9.13), vanish.

. The necessary and sufficient condition for a Pfaffian form (2.9.14) to be the exact

differential of �k [since its n �q’s in (2.9.13) are arbitrary] is that its associated n
Pfaffian forms

d kl �
X
ð@akl=@qs � @aks=@qlÞ dqs þ ð@akl=@t� @ak=@qlÞ dt; ð2:9:15Þ

all vanish; that is, d kl ¼ 0 for all l ð¼ 1; . . . ; nÞ.
. The necessary and sufficient condition for a Pfaffian form (2.9.14) to be the exact

differential of �k [since the n dq’s and dt in (2.9.15) are arbitrary] is that the following

nðnþ 1Þ=2 integrability (or exactness) conditions hold:

@akl=@qs � @aks=@ql ¼ 0 and @akl=@t� @ak=@ql ¼ 0; ð2:9:16Þ

identically in the q’s and t, and for all values of l, s ð¼ 1; . . . ; nÞ. [For additional

insights and details, see, for example, Hagihara (1970, pp. 42–46), Whittaker (1937,

p. 296 ff.).]

Hence, if (2.9.16) hold for all k ¼ 1; . . . ; n, the n �’s are just another minimal set of
Lagrangean coordinates, like the q’s: �k ¼ �kðq1; . . . ; qn; tÞ; and !k � d�k=dt are the
corresponding holonomic Lagrangean (generalized) velocities. But if, and this is the
case of interest to AM,

@akl=@qs � @aks=@ql 6¼ 0 or @akl=@t� @ak=@ql 6¼ 0; ð2:9:17Þ
even for one l, s, then !k is not a total time derivative, and d�k is not a genuine
differential of a holonomic coordinate �k; only the d�k=��k=!k are defined through
(2.9.1, 9, 11). Such undefined quantities, �k, are called pseudo- or quasi coordinates [a
term, most likely, due to Whittaker (1904)], or nonholonomic coordinates; and the !k,
depicted by some authors by symbolic ð. . .Þ_-derivatives, like

!k � d 0�k=dt � �k
	 � �k

o
; etc:; ð2:9:18Þ

instead of d�k=dt, are called quasi velocities. From now on we shall assume, with no
loss in generality, that all (2.9.17) hold, and therefore all �k are quasi coordinates.
{We notice that, the isochrony choice d�nþ1 � dqnþ1 � dt, resulting in [recalling
(2.9.4a, b)]

anþ1;k � �nþ1;k ¼ 0; anþ1; nþ1 ¼ �nþ1; nþ1 ¼ 1; ð2:9:19aÞ
and

Anþ1;k � �nþ1;k ¼ 0; Anþ1; nþ1 ¼ �nþ1; nþ1 ¼ 1; ð2:9:19bÞ
guarantees that �nþ1 remains holonomic.}
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REMARKS

(i) Let us consider, for simplicity, the catastatic version of (2.9.9),

!k ¼
X

aklðt; qÞvl ¼ !kðt; q; _qq � vÞ: ð2:9:20Þ

If the q’s are known/specified functions of time t, then integrating (2.9.20) between an
initial instant to and a current one t we obtain the line integral

�kðtÞ � �kðtoÞ ¼
ðt
to

!k½	; qð	Þ; vð	Þ� d	 ¼
ðt
to

�X
akl ½	; qð	Þ�vlð	Þ

�
d	 ; ð2:9:20aÞ

similar to the work integral of general mechanics and thermodynamics. Since this is
the integral of an inexact differential, as calculus/vector field theory teach, �kðtÞ
depends on both t (current configuration) and the particular path of integration/
history followed from to to t; it is point- and path-dependent. If it was a genuine
global coordinate, it would be point-dependent, but path-independent. �kðt; toÞ is a
functional of the particular curves/motion fqð	Þ; to � 	 � tg!

(ii) As will be explained in }2.11, the satisfaction of (2.9.16) guarantees that �k, as
defined by (2.9.14), is a holonomic coordinate; and that property will hold even if, at
a later stage, the dqk=�qk=vk become holonomically and/or nonholonomically con-
strained. One the other hand, if �k is originally [i.e., as defined by (2.9.14)] nonholo-
nomic, then upon imposition on the latter’s right side of a sufficient number of
additional holonomic and/or nonholonomic constraints, later, it will become holo-
nomic; but that would be a different Pfaffian form.

In sum: once a holonomic coordinate, always a holonomic coordinate; but once a
nonholonomic coordinate, not always a nonholonomic coordinate.

(iii) The local transformations a� �
P

A��E� , E� ¼
P

a��a�, where [recalling
discussion in (}2.7)] each E� is tangent to the coordinate line dq� at ðq; tÞ and all
together they constitute a holonomic basis for the local tangent space Tnþ1, and the
coefficients satisfy the earlier (2.9.3a, 3b), define a new but, generally nonholonomic
basis there: that is,

P
a� d��: nonexact differential ) @a�=@�� 6¼ @a�=@�� [where the

nonholonomic gradients, @=@��, are defined in (2.9.27 ff.)]. And, in view ofX
_qq�E� �

X
v�E� ¼

X
v�
X

a�� a�

� �
¼
X X

a��v�

� �
a� ¼

X
!� a�

¼
X

!� a�;

the !� are simply the nonholonomic components of the system velocity vector, while
the v� are its holonomic components. [The system basis fa�g plays a key role in the
geometrical interpretation of Pfaffian constraints (}2.11.19a ff.)]

(iv) The precise term for the �k’s is ‘‘nonholonomic (local) system coordinates,’’
and for the !k’s ‘‘nonholonomic system velocity parameters,’’ or ‘‘(contravariant)
nonholonomic components of the system velocity’’ (Schouten, 1954/1989, pp. 194–
197). We shall call them collectively quasi variables; and their symbolic calculus, if
proper precautions are taken, is quite useful. As Synge puts it: ‘‘In the theory of
quasi-coordinates in dynamics, however, it pays to live dangerously and to use the
notation d�k [in our notation]. Otherwise we shall be depriving ourselves of a very
neat formal expression of the equations of motion’’ (1936, p. 29). On the symbolic
calculus of quasi variables, see also Johnsen (1939).
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Example 2.9.1 The most common example of quasi velocities in mechanics is the
components of the (inertial) angular velocity of a rigid body moving, with no loss
in generality here, about a fixed point O, resolved along either space-fixed
(inertial) axes O–XYZ, !X ; !Y ; !Z; or body-fixed (moving) axes O–xyz; !x; !y; !z.
If �! �!  are the three Eulerian angles 3! 1! 3, then for body-axes, and
with the convenient notations sð. . .Þ � sinð. . .Þ and cð. . .Þ � cosð. . .Þ, and
d�=dt � !�, d�=dt � !�, d =dt � ! , we have (}1.12)

!x ¼ ðs s�Þ!� þ ðc Þ!� þ ð0Þ! ; ðaÞ

!y ¼ ðc s�Þ!� þ ð�s Þ!� þ ð0Þ! ; ðbÞ

!z ¼ ðc�Þ!� þ ð0Þ!� þ ð1Þ! ; ðcÞ
that is, with k ¼ x! 1, y! 2, z! 3; and l ¼ �! 1, �! 2,  ! 3, the nonvan-
ishing elements of ðaklÞ are
a11 ¼ s s�; a12 ¼ c ; a21 ¼ c s�; a22 ¼ �s ; a31 ¼ c�; a33 ¼ 1: ðdÞ

Clearly, not all (2.9.16) hold identically here. For example,

@a12=@q3 6¼ @a13=@q2 : @ðc Þ=@ 6¼ @ð0Þ=@� : �s 6¼ 0; ðeÞ
except in the special (nonidentical!) case:  ¼ 0, 2�. If we set !x ¼ d�x=dt, then

�xðtÞ �
ðt
to

!x

�
�ð	Þ;  ð	Þ;!�ð	Þ; !�ð	Þ

	
d	 þ �x ðinitialÞ : path dependent; ðfÞ

that is, �x is an (angular) quasi coordinate, and !x an (angular) quasi velocity; and
similarly for �y; �z;!y; !z; that is, they are quasi variables (if the �, �,  are uncon-
strained). However, if we impose additional constraints, for example, � ¼ constant,
� ¼ constant (fixed-axis rotation), then (a–c) reduce to

!x ¼ 0; !y ¼ 0; !z ¼ d =dt ) !x; !y; !z : holonomic velocities; ðgÞ

�zðtÞ � �z ðto: initialÞ ¼
ðt
to

½d ð	Þ=d	 � d	 ¼  ðtÞ �  ðto: initialÞ: path independent:ðhÞ

Problem 2.9.1 Let the reader verify that the corresponding space-fixed
components �X ; �Y ; �Z and !X ; !Y ; !Z (such that !X � d�X=dt, etc.) are also,
respectively, quasi coordinates and quasi velocities; and that under additional
constraints they too may become holonomic variables.

Particle Kinematics in Quasi Variables

Due to the �$ q transformation relations (2.9.1, 2, 9, 10, 11, 12), the (inertial)
velocity, acceleration, kinematically admissible/possible displacement, and virtual
displacement, of a typical system particle, obtained in }2.5 in holonomic variables,
assume the following quasi-variable representations, respectively:
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(i) Velocity:

v ¼
X

ek
X

Akl !l þ Ak

� �
þe0 ¼ � � � ¼

X
ek!kþ enþ1 �

X
ek!k þ e0; ð2:9:21Þ

(ii) Acceleration:

a ¼ � � � ¼
X

ekðd!k=dtÞ þ terms not containing ðd!=dtÞ’s;
�
X

ek _!!k þ terms not containing _!!’s; ð2:9:22Þ

(iii) Kinematically possible/admissible displacement:

dr ¼
X

ek
X

Akl d�l þ Ak dt
� �

þ e0 dt ¼ � � � ¼
X

ek d�k þ e0 dt; ð2:9:23Þ

(iv) Virtual displacement:

�r ¼
X

ek
X

Akl ��l

� �
¼ � � � ¼

X
ek ��k; ð2:9:24Þ

where the fundamental, generally nongradient, nþ 1 particle and system vectors ek
and enþ1 � e0, corresponding to the �’s, nonholonomic counterparts of the gradient
vectors ek and enþ1 � e0, which correspond to the q’s [recalling (2.5.4–4b)], and
defined naturally by (2.9.21–24), obey the following basic (covariant vector-like)
transformation equations:

ek �
X
ð@vl=@!kÞel ¼

X
Alkel ; ð2:9:25aÞ

ek �
X
ð@!l=@vkÞel ¼

X
alkel [comparing with (2.9.11, 12)]; ð2:9:25bÞ

e0 �
X

Akek þ e0 ¼ �
X

akek þ e0; ð2:9:26aÞ

e0 �
X

akek þ e0 ¼ �
X

Akek þ e0 [recalling (2.9.3a, 3b)]: ð2:9:26bÞ

Clearly, if the e vectors are linearly independent (and jakl j, jAkl j 6¼ 0), so are the e

vectors; even if the q’s and/or dq=dt � v’s get constrained later. And, as with the
�r-representation (2.5.12b), so with (2.9.24): the size of the ��’s is unimportant; it is
the e’s that matter, because they are the ones entering the equations of motion (chap. 3)!

Quasi Chain Rule, Symbolic Notations

The above, especially (2.9.24), suggest the adoption of the following very useful
symbolic quasi-chain rule for quasi variables:

@r=@�k �
X
ð@r=@qlÞð@vl=@!kÞ �

X
ð@r=@qlÞ

�
@ðdqlÞ=@ðd�kÞ

	
¼
X
ð@r=@qlÞ

�
@ð�qlÞ=@ð��kÞ

	
;
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or, simply,

@r=@�k �
X

Alkð@r=@qlÞ : i:e:; ð2:9:25aÞ; ð2:9:27Þ

and, inversely,

@r=@qk ¼
X
ð@r=@�lÞð@!l=@vkÞ ¼

X
alkð@r=@�lÞ : i:e:; ð2:9:25bÞ: ð2:9:28Þ

Similarly, for a general well-behaved function f ¼ f ðq; tÞ, and recalling (2.9.12), we
obtain, successively, (i) for its virtual variation �f :

�f ¼
X
ð@f=@qkÞ �qk ¼

X
ð@f=@qkÞ

X
ð@vk=@!lÞ ��l

� �
�
X
ð@f=@�lÞ ��l ;

ð2:9:29Þ

that is,

@f=@�l �
X
ð@f=@qkÞð@vk=@!lÞ ¼

X
Aklð@f=@qkÞ; ð2:9:30aÞ

and, inversely,

@f=@qk ¼
X
ð@f=@�lÞð@!l=@vkÞ ¼

X
alkð@f=@�lÞ; ð2:9:30bÞ

and (ii) for its total differential df [recalling (2.9.2)]:

df ¼
X
ð@f=@q�Þ dq� ¼

X
ð@f=@qkÞ dqk þ ð@f=@tÞ dt

¼
X
ð@f=@qkÞ

X
Akl d�l þ Ak dt

� �
þ ð@f=@tÞ dt

¼
X X

Aklð@f=@qkÞ
� �

d�l þ
X

Akð@f=@qkÞ þ @f=@t
� �

dt

�
X
ð@f=@�lÞ d�l þ ð@f=@�0Þ dt; ð2:9:31Þ

where we have introduced the additional symbolic notation [recalling that
_��0 � _��nþ1 � !nþ1 ¼ 1]:

@ . . . =@�nþ1 �
X
ð@ . . . =@q�Þð@v�=@!nþ1Þ

¼
X
ð@ . . . =@qkÞð@vk=@!nþ1Þ þ ð@ . . . =@tÞð@vnþ1=@!nþ1Þ

¼
X

Akð@ . . . =@qkÞ þ @ . . . =@t; ð2:9:32Þ

instead of the formal extension of (2.9.30a) for �l ! �nþ1. This latter we shall denote
by @ . . . =@ðtÞ:

@ . . . =@ðtÞ �
X
ð@ . . . =@qkÞð@vk=@!nþ1Þ ¼

X
Akð@ . . . =@qkÞ; ð2:9:32aÞ

so that (2.9.32) assumes the final symbolic form

@ . . . =@�nþ1 � @ . . . =@�0 � @ . . . =@ðtÞ þ @ . . . =@t: ð2:9:32bÞ
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Inversely, we have

@ . . . =@t ¼
X
ð@!
=@vnþ1Þð@ . . . =@�
Þ ¼ @ . . . =@�nþ1 þ

X
akð@ . . . =@�kÞ;

ð2:9:32cÞ

and, comparing this with (2.9.30a, b), we readily conclude that

@ . . . =@ðtÞ ¼
X

Akð@ . . . =@qkÞ ¼ �
X

akð@ . . . =@�kÞ: ð2:9:32dÞ

Such (by no means uniform) symbolic notations are useful in energy rate/power
theorems in nonholonomic variables (}3.9).

Some Fundamental Kinematical Identities

From the above (2.9.21 ff.), we readily obtain the following fundamental kinematical
identities, nonholonomic counterparts of (2.5.7–10), and like them, holding indepen-
dently of any subsequent holonomic and/or nonholonomic constraints.

ðiÞ @r=@�k ¼ @ _rr=@ _��k ¼ @€rr=@ €��k � @€rr=@ _!!k ¼ � � � � ek;

or

@r=@�k ¼ @v=@!k ¼ @a=@ _!!k ¼ � � � � ek; ð2:9:33Þ

ðiiÞ @qk=@�l � @ _qqk=@ _��l ¼ @€qqk=@€��l � @€qqk=@ _!!l ¼ � � � � Akl ;

or

@qk=@�l ¼ @vk=@!l ¼ @wk=@ _!!l ¼ � � � � Akl ; (where dvk=dt � wkÞ ð2:9:34Þ

ðiiiÞ @�k=@ql ¼ @!k=@vl ¼ @ _!!k=@wl ¼ � � � � akl ; ð2:9:35Þ

with formal extensions for �nþ1 � qnþ1 � t. The d!k=dt � d2�k=dt
2 are called (not

quite correctly) quasi accelerations; while the �=!= _!!= . . . are referred to, collectively,
as (system) quasi variables.
(iv) We have, successively,

dð@r=@�kÞ=dt ¼ dð@v=@!kÞ=dt ¼ dek=dt

¼ d
X

Alkel

� �
=dt ¼

X �ðdAlk=dtÞel þ Alkðdel=dtÞ
	

¼
X
ðdAlk=dtÞel þ

X
Alkð@v=@qlÞ ½recalling ð2:5:7; 10Þ�: ð2:9:36Þ

But by partial @ql-differentiation of vðq; v; tÞ ¼ v½q; vðq; !; tÞ; t� � v*ðq; !; tÞ, we find

@v*=@ql ¼ @v=@ql þ
X
ð@v=@vrÞð@vr=@qlÞ ¼ @v=@ql þ

X
ð@vr=@qlÞer;
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and so X
Alkð@v=@qlÞ ¼

X
Alkð@v*=@qlÞ �

XX
Alkð@vr=@qlÞer

¼ @v*=@�k �
XX

Alkð@vr=@qlÞer:

Therefore, returning to (2.9.36), we see that it yields

dek=dt� @v*=@�k ¼
X

dAlk=dt�
X

Arkð@vl=@qrÞ
h i

el 6¼ 0; ð2:9:36aÞ

that is, unlike the H coordinate case (2.5.10),

Ek*ðv*Þ � ð@v*=@ _��kÞ: � @v*=@�k � d=dtð@v*=@!kÞ � @v*=@�k 6¼ 0: ð2:9:37Þ

This nonintegrability relation is a first proof that, in general, the ek basis vectors are
nongradient, or nonholonomic. More comprehensible and useful forms of Ek*ðv*Þ are
presented in the next section.

[Some authors call the ek vectors ‘‘partial velocities.’’ However, in view of (2.9.33),
they could just as well have been called partial positions, or partial accelerations, or
even partial jerks (recall that da=dt � j ¼ jerk vector, and therefore @j=@ €!!k ¼ ek), etc.
Perhaps a better term would be nonholonomic mixed basis vectors (i.e., nonholonomic
counterpart of Heun’s Begleitvektoren).]

A Useful Nonholonomic-Variable Notation

Frequently, for extra clarity, we will be using the following ‘‘(. . .)*-notation’’:

f ¼ f ðt; q; dq=dt � vÞ ¼ f ½t; q; vðt; q; !Þ� � f *ðt; q; !Þ � f *: ð2:9:38Þ

With its help:
(i) Equations (2.9.21), (2.9.22), (2.9.33) become, respectively,

vðt; q; vÞ ¼
X

ekðt; qÞvk þ e0ðt; qÞ ¼
X

ekðt; qÞ!k þ e0ðt; qÞ � v*ðt; q; !Þ; ð2:9:39Þ

aðt; q; v;wÞ ¼
X

ekðt; qÞwk þ no other €qq � w-terms

¼
X

ekðt; qÞ _!!k þ no other _!!-terms � a*ðt; q; !; _!!Þ; ð2:9:40Þ

@r=@�k ¼ @v*=@!k ¼ @a*=@ _!!k ¼ � � � � ek; ð2:9:41Þ

(ii) The quasi-chain rule (2.9.30a) and its inverse (2.9.30b) generalize, respectively,
to

@f*=@�l �
X
ð@f*=@qkÞð@vk=@!lÞ ¼

X
Aklð@f*=@qkÞ; ð2:9:42aÞ

and

@f*=@qk ¼
X
ð@f*=@�lÞð@!l=@vkÞ ¼

X
alkð@f*=@�lÞ; ð2:9:42bÞ
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also, we easily obtain the related chain rules [recall derivation of (2.9.37), and
(2.9.42a)]

@f*=@qk ¼ @f=@qk þ
X
ð@f=@vlÞð@vl=@qkÞ; ð2:9:43aÞ

) @f*=@�l ¼
X

Aklð@f*=@qkÞ ¼
X

Akl @f=@qk þ
X
ð@f=@vrÞð@vr=@qkÞ

h i
:

ð2:9:43bÞ
(iii) The following genuine (i.e., ordinary calculus) chain rule, and its inverse, hold:

@f*=@!l �
X
ð@f=@vkÞð@vk=@!lÞ ¼

X
Aklð@f=@vkÞ; ð2:9:44aÞ

@f=@vk ¼
X
ð@f*=@!lÞð@!l=@vkÞ ¼

X
alkð@f*=@!lÞ: ð2:9:44bÞ

We notice the difference between (2.9.42a, b) and (2.9.44a, b); the former are non-
vectorial transformations, just symbolic definitions; while (for those familiar with
tensors) the latter are genuine covariant vector transformations.

(iv) Finally, invoking (2.9.11, 12, 42a, b), it is not hard to see thatX
ð@f*=@�kÞ ��k ¼

X
ð@f*=@qkÞ �qk: ð2:9:45Þ

Some Closing Comments on Quasi Coordinates

The theory of nonholonomic coordinates and constraints is, by now, a well estab-
lished and well understood part of differential geometry/tensor calculus and
mechanics, with many fertile applications in those areas. Its long and successful
history has been created by several famous mathematicians, such as (chronologi-
cally): Gibbs, Volterra, Poincaré, Heun, Hamel, Synge, Schouten, Struik,
Vranceanu, Vagner, Kron, Kondo, Dobronravov et al. And yet, we encounter con-
temporary statements of appalling ignorance and confusion, like the following from
an advanced ‘‘Tract in Natural Philosophy’’ devoted to rigid kinematics: ‘‘It appears
that the reason why many a book on classical dynamics follows Kirchhoff’s
approach is a lack of understanding of the kinematics of rigid bodies. Thus, one
finds extensive discussions on ill-defined—or, sometimes, totally undefined—esoteric
quantities such as quasi-coordinates and virtual displacements,’’ (Angeles, 1988, p. 2,
the italics are that author’s).

2.10 TRANSITIVITY, OR TRANSPOSITIONAL, RELATIONS;

HAMEL COEFFICIENTS

So far, our system remains a holonomic (H) one, with n � 3N � h DOF . Now, to be
able to either (i) embed to it additional Pfaffian (possibly nonholonomic) constraints in
their ‘‘simplest possible form’’ or, even if no such additional constraints are imposed,
(ii) express the equations of the problem in quasi variables, or (iii) do both, we need
to represent the right sides of the Frobenius bilinear covariants of the Pfaffian forms
of its quasi variables, ð. . .Þ dq �q [recall (2.9.13)], in terms of the latter’s differentials,
ð. . .Þ d� ��. [By simplest possible form we mean uncoupled from each other; and, as
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detailed in chap. 3, this leads to the simplest possible form of the equations of
motion.] To this end, we insert expressions (2.9.2 and 12) into the right side of
(2.9.13), and group the terms appropriately. The result is the following generalized
transitivity, or transpositional, equations (Hamel’s Übergangs-, or Transitivitäts-
gleichungen):

dð��kÞ � �ðd�kÞ ¼
X

akl ½dð�qlÞ � �ðdqlÞ� þ
XX

�k
� d�� ��


¼
X

akl ½dð�qlÞ � �ðdqlÞ� þ
XX

�kr� d�� ��r ½since ��nþ1 � �t ¼ 0�

¼
X

akl ½dð�qlÞ � �ðdqlÞ� þ
XX

�krs d�s ��r þ
X

�kr dt ��r;

ð2:10:1Þ

(again, we recall that all Latin (Greek) indices run from 1 to n ð1 to nþ 1)) where the
so-defined �’s, known as Hamel (three-index) coefficients, are explicitly given (and
sometimes also defined) by

�krs ¼
XX

ð@ak�=@q" � @ak"=@q�ÞA�rA"s

¼
XX

ð@akb=@qc � @akc=@qbÞAbrAcs

þ
X
ð@akb=@t� @ak;nþ1=@qbÞAbrAnþ1;s

þ
X
ð@ak;nþ1=@qc � @akc=@tÞAnþ1;r Acs

þ ð@ak;nþ1=@t� @ak;nþ1=@tÞAnþ1;rAnþ1;s; ð2:10:1aÞ

or, due to Anþ1;r ¼ �nþ1;r ¼ 0 which leads to the vanishing of the last three groups/
sums of terms, finally,

�krs ¼
XX

ð@akb=@qc � @akc=@qbÞAbrAcs; ð2:10:2Þ

and

�kr;nþ1 ¼ ��knþ1;r � �kr �
XX

ð@ak�=@q" � @ak"=@q�ÞA�rA";nþ1; ð2:10:3Þ

or, with ak;nþ1 � ak, Ak;nþ1 � Ak, and since Anþ1;nþ1 � �nþ1;nþ1 ¼ 1, finally,

�kr �
XX

ð@akb=@qc � @akc=@qbÞAbrAc þ
X
ð@akb=@t� @ak=@qbÞAbr: ð2:10:4Þ

[The �’s are a significant generalization of coefficients introduced by Ricci (mid-
1890s), Volterra (1898), Boltzmann (1902) et al.; and, hence, they are also referred
as ‘‘Ricci/Boltzmann/Hamel (rotation) coefficients.’’ See, for example, Papastavridis
(1999, chaps. 3, 6).]

It is not hard to show [with the help of (2.9.3a, b)] that (2.10.1) inverts to

dð�qkÞ � �ðdqkÞ ¼
X

Akl

n
½dð��lÞ � �ðd�lÞ�

�
XX

�lrs d�s ��r �
X

�lr dt ��r

o
: ð2:10:5Þ
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For an actual motion, dividing both sides of (2.10.1) and (2.10.5) with dt [which does
not interact with �ð. . .Þ], we obtain, respectively, the (system) velocity transitivity
equation and its inverse:

ð��kÞ:� �!k ¼
X

akl ð�qlÞ: � �vl½ � þ
XX

� k
rs !s ��r þ

X
� k

r ��r; ð2:10:6Þ

ð�qkÞ: � �vk ¼
X

Akl ð��lÞ:� �!l½ � �
XX

� l
rs !s ��r �

X
� l

r ��r

n o
: ð2:10:7Þ

Properties of the Hamel Coefficients

(i) Clearly, these coefficients depend, through the transformation coefficients a�"
and A�", on the particular v$ ! choice; that is, they do not depend on any particular
system motion.

(ii) The � k
r contain the contributions of (a) the acatastatic terms ak and Ak, and of

(b) the explicit time-dependence of the homogeneous coefficients of the v , ! trans-
formation. Hence, for scleronomic such transformations (i.e., ak ¼ 0) Ak ¼ 0, and
@akl=@t ¼ 0) @Akl=@t ¼ 0) they vanish; but for catastatic ones, in general, they do
not. In fact then, as (2.10.4) shows, they reduce to

� k
r ¼

X
ð@akb=@tÞAbr (for catastatic Pfaffian transformations). ð2:10:4aÞ

(iii) The matrix ck ¼ ð�krsÞ is, obviously, antisymmetric; that is,

� k
rs ¼ �� k

sr ) � k
rr : diagonal elements ¼ 0 ðk; r; s ¼ 1; . . . ; n; also nþ 1Þ:

ð2:10:8Þ
To stress this antisymmetry in r and s, we chose to raise k; that is, we wrote � k

rs

instead of �rks, or �krs, or �rsk, and so on. [Nothing tensorial is implied here, although
this happens to be the tensorially correct index positioning; see, for example,
Papastavridis (1999, chaps. 3, 6).] Hence, each matrix ck can have at most
nðn� 1Þ=2 nonzero (nondiagonal) elements.

(iv) From the above, we readily conclude that

� nþ1
"� ¼ 0) � nþ1

kl ¼ 0; � nþ1
k;nþ1 ¼ �� nþ1

nþ1;k ¼ 0; � nþ1
nþ1;nþ1 ¼ 0

½k; l ¼ 1; . . . ; n; "; � ¼ 1; . . . ; n; nþ 1�; ð2:10:9Þ
and from this (recalling that anþ1;k ¼ �nþ1;k ¼ 0), that

ð��nþ1Þ:� �!nþ1 � d=dtð�qnþ1Þ � �ðdqnþ1=dtÞ � d=dtð�tÞ � �ðdt=dtÞ

¼
XX

� nþ1
rs !s ��r þ

X
� nþ1

r;nþ1 ��r ¼ 0þ 0 ¼ 0; ð2:10:10Þ

which, essentially, states that

dð��nþ1Þ � �ðd�nþ1Þ ¼ dð�tÞ � �ðdtÞ ¼ dð0Þ � �ðdtÞ ¼ 0� 0 ¼ 0; ð2:10:10aÞ
as it should, and also shows that (2.10.1) and (2.10.2) also hold for k ¼ nþ 1.

(v) In concrete problems, the analytical calculation of the nonvanishing �’s is
best done, as Hamel et al. have pointed out, not by applying (2.10.1a–4), which
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are admittedly laborious and error prone, but by reading them off as coefficients
of the bilinear covariant (2.10.1, 6), in terms of the general subindices:
o; r ¼ 1; . . . ; n; nþ 1:

dð��	Þ � �ðd�	Þ ¼ � � � þ ð�*o r Þ d� r ��o þ � � � : ð2:10:11Þ
Also, this task is independent of any particular assumptions about dð�qÞ � �ðdqÞ;
and, hence, assuming that for all holonomic coordinates dð�qkÞ ¼ �ðdqkÞ, or equiva-
lently ð�qkÞ: ¼ �ð _qqkÞ � �vk (Hamel viewpoint— see also pr. 2.12.5), even if they (or
their differentials) become constrained later, we may safely and conveniently calculate
all the nonvanishing �’s from the simplified, and henceforth definitive, transitivity
equation:

dð��kÞ � �ðd�kÞ ¼
XX

� k
rs d�s ��r þ

X
� k

r dt ��r: ð2:10:12Þ

Finally, dividing the above with dt, and so on, we obtain its velocity form:

ð��kÞ:� �!k ¼
XX

� k
rs!s ��r þ

X
� k

r ��r; ð2:10:13Þ

a representation useful in Hamilton’s time integral ‘‘principle’’ in quasi variables
(chap. 7). Unfortunately, the transitivity equations, and their relations with the
�’s, are nowhere to be found in the English language literature (with the exception
of Neimark and Fufaev, 1967 and 1972, p. 126. ff.); although the definition of the �’s
via (2.10.1a, 2) appears in a number of places. This unnatural situation produces an
incomplete understanding of these basic quantities.

REMARK (A PREVIEW)

As will become clear in chapter 3, the expression for the system kinetic energy (and
the Appellian ‘‘acceleration energy’’) are simpler in terms of quasi variables, such as
the !’s and d!=dt’s, than in terms of holonomic variables like the v’s and dv=dt’s.
And this leads to formally simpler equations of motion in the former variables than
in the latter; for example, the well-known Eulerian rotational rigid-body equations
(}1.17) are simpler in terms of such quasi variables than, say, in terms of Eulerian
angles and their ð. . .Þ:-derivatives. But there is a catch: to obtain such simpler-look-
ing Lagrange-type equations of motion— that is, equations based on the kinetic
energy and its various gradients—we must calculate the corresponding �’s; some-
thing that, even with utilization of (2.10.11–13) and other practice-based short cuts,
requires some labor and skill. On the positive side, however, the �’s supply an
important ‘‘amount’’ of understanding into the kinematical structure of the parti-
cular problem; and Appellian-type equations in quasi variables may not contain the
�’s, but they have other calculational difficulties. In sum, there is no painless way to
obtain simple-looking equations of motion in quasi variables.

Problem 2.10.1 Verify that the transitivity equations, say (2.10.12), can be
rewritten as

dð��kÞ � �ðd�kÞ ¼
XX 0

� k
rsðd�s ��r � ��s d�rÞ þ

X
� k

r dt ��r; ðaÞ

where
PP 0 means that the summation extends over r and s only once; say, for s5r.

[We point out the following interesting geometrical interpretation of (a): each of its
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double summation terms is proportional to a 2� 2 determinant, which, in turn,
equals the area of the infinitesimal parallelogram with sides two vectors on the
local ‘‘�s�r-plane,’’ at its origin ðq; tÞ in configuration/event space, of respective
rectangular Cartesian components ðd�s; d�rÞ and ð��s; ��rÞ there; with the factor
of proportionality being � k

rs. That parallelogram is the projection of the generalized
parallelogram with sides d� � ðd�1; . . . ; d�nÞ and �� � ð��1; . . . ; ��nÞ, at ðq; tÞ, on the
‘‘�s�r-plane’’ (see, e.g., Boltzmann, 1904, pp. 104–107; Webster, 1912, pp. 84–87,
381–383; also Papastavridis, 1999, }3.14).]

Other Expressions for the �’s

By @q-differentiating (2.9.3a) and then rearranging so as to go from the ð@a=@qÞ’s to
the ð@A=@qÞ’s, we obtainX

ð@akb=@qcÞAbr ¼ �
X

akbð@Abr=@qcÞ; ð2:10:14aÞ

X
ð@akc=@qbÞAcs ¼ �

X
akcð@Acs=@qbÞ; ð2:10:14bÞ

then, substituting the above into (2.10.2), and renaming some dummy indices, we
obtain the equivalent �-expression:

� k
rs ¼

XX
akb
�
Acrð@Abs=@qcÞ � Acsð@Abr=@qcÞ

	
: ð2:10:15Þ

For s! nþ 1, the above yields an alternative to the (2.10.3), (2.10.4) expression for
� k

r;nþ1 � � k
r.

Problem 2.10.2 Show that yet another �-expression is

� k
rs ¼

XX
ðAbrAcs � AcrAbsÞð@akb=@qcÞ; ðaÞ

and similarly for � k
r;nþ1 � � k

r (see also Stückler, 1955; Lobas, 1986, pp. 34–36).

Some Transformation Properties of the �’s

(i) With the help of the following useful notation:

akbc � @akb=@qc � @akc=@qb ¼ �akcb; ð2:10:16aÞ
ak

b;nþ1 � ak
b � @akb=@t� @ak=@qb ð2:10:16bÞ

[recalling (2.9.16); also similar notation in (2.8.2a)], the �-definitions (2.10.2)–(2.10.4)
are rewritten, respectively, as

� k
rs ¼

XX
ak

bcAbrAcs; � k
r ¼

XX
ak

bcAbrAc þ
X

ak
bAbr: ð2:10:17a; bÞ

With the help of the inverseness conditions (2.9.3a, 3b) and a number of dummy
index changes, it is not too hard to show that (2.10.17a,b) invert, respectively, to

ak
bc ¼

XX
� k

rsarbasc; ak
b ¼

XX
� k

rsarbas þ
X

� k
rarb: ð2:10:18a; bÞ
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The above transformation equations show that if the ak
bc and ak

b vanish [recall con-
ditions (2.9.16)], so do the � k

rs and �
k
r; and vice versa; that is, the vanishing of � k . . .

constitutes the necessary and sufficient condition for d�k=��k to be an exact differential,
and hence, for �k to be a holonomic coordinate. If the dq=�q=v are unconstrained, as is
the case so far (i.e., m ¼ 0), this new set of exactness conditions in terms of the �’s
does not offer any advantages over (2.9.16); the ak

bc and ak
b are easier to calculate

than � k
rs and �

k
r. As shown in the next section, the real value of the �’s, in questions

of holonomicity, appears whenever the dq=�q=v are constrained ðm 6¼ 0Þ.
REMARK

For those familiar with tensors, the transformation equations (2.10.17a, b) show that
the � k

... and ak
... transform as covariant tensors in their two subscripts; that is, both

are components of the same geometrical entity: the a’s, its holonomic components in
the local ‘‘coordinates’’ dq=�q, and the �’s, its nonholonomic components in the local
‘‘coordinates’’ d�=��, at ðq; tÞ. In precise tensor notation, using, for example,
accented (unaccented) indices for nonholonomic (holonomic) components, summation
convention over pairs of diagonal indices of the same kind (i.e., both holonomic, or
both nonholonomic), and with the notational changes: Abr ! Ab

r 0 ! Ar
r 0 ;

Acs ! Ac
s 0 ! As

s 0 , and ak
bc ! ak

0
bc ! ak 0

rs ! � k 0
rs (¼holonomic components),

� k
rs ! � k 0

r 0s 0 (¼ nonholonomic components), the transformation equations
(2.10.17a) read

� k 0
r 0s 0 ¼ Ar

r 0A
s
s 0�

k 0
rs; ð2:10:17cÞ

and similarly for (2.10.17b)–(2.10.18b). Such elaborate notation is a must in
advanced differential-geometric investigations of nonholonomic systems.
Fortunately, it will not be needed here.

(ii) The invariant definition of the �’s via the transitivity equations (2.10.1) and
(2.10.12) readily shows that, contrary to what one might conclude by casually
inspecting their derivative definition via (2.10.2–4), these nontensorial coefficients,
known in tensor calculus as geometrical objects of nonholonomicity (or
anholonomicity), are independent of the original holonomic coordinates q, and
thus express geometric properties of the local/differential basis d�=��=!. In
particular, it follows that if the �’s do (not) vanish, when based on some ðq; tÞ
frame of reference, they will (not) vanish in any other frame ðq 0; tÞ, obtainable from
the original frame by an admissible transformation.

(iii) However, under a local transformation d�k , d�k 0 , that is, at the same ðq; tÞ-
point, the �’s, do change, in the earlier mentioned nontensorial fashion.

[(a) For further details on tensorial nonholonomic dynamics see, for example,
Dobronravov (1948, 1970, 1976), Kil’chevskii (1972, 1977), Maißer (1981, 1982,
1983–1984, 1991(b), 1997), Papastavridis (1999), Schouten (1954), Synge (1936),
Vranceanu (1936); and references cited there. (b) For transitivity equation–based
proofs of these statements, see, for (ii): ex. 2.12.2, and for (iii): ex. 2.10.1; and for
a derivative definition–based proof, see, for example, Golab (1974, pp. 140–141).]

Noncommutativity of Mixed Partial Quasi Derivatives

Below we show that the second mixed partial symbolic quasi derivatives of an
arbitrary well-behaved function f ¼ f ðq; t; . . .Þ, in general, do not commute:

@=@�kð@f =@�lÞ 6¼ @=@�lð@f =@�kÞ: ð2:10:19Þ
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Invoking the basic quasi-derivative definition (2.9.30a, b), we obtain, successively,

@2f =@�k @�l � @=@�kð@f =@�lÞ �
X

Ark @=@qr
X

Aslð@f =@qsÞ
� �n o

¼
XX �

ArkAslð@2f=@qr @qsÞ þ Arkð@Asl=@qrÞð@f=@qsÞ
	

¼
XX

ArkAslð@2f=@qr @qsÞ þ
X XX

absArkð@Asl=@qrÞ
� �

ð@f=@�bÞ;

and, analogously (with k! l and l ! k in the above),

@2f=@�l @�k � @=@�lð@f=@�kÞ ¼ � � �

¼
XX

ArlAskð@2f=@qr @qsÞ þ
X XX

absArlð@Ask=@qrÞ
� �

ð@f=@�bÞ;

and therefore subtracting these two side by side, and recalling the �-definition
(2.10.15), we obtain the following alternative transitivity/noncommutativity relation:

@2f=@�k @�l�@2f=@�l @�k � @=@�kð@f=@�lÞ � @=@�lð@f=@�kÞ

¼
X XX

abs
�
Arkð@Asl=@qrÞ�Arlð@Ask=@qrÞ

	n o
ð@f=@�bÞ

¼
X

� b
klð@f=@�bÞ; ð2:10:20Þ

which expresses noncommutativity in terms of ð@ . . . =@�Þ-derivatives, rather than
ðd . . . =� . . .Þ-differentials, as (2.10.1) and (2.10.12) do.

REMARK

In the theory of continuous (or Lie) groups, it is customary to write Xk f for our
@f=@�k, (2.9.30a); that is,

@ . . . =@�k � Xk � � � �
X
ð@ . . . =@qlÞð@vl=@!kÞ ¼

X
Alkð@ . . . =@qlÞ: ð2:10:21Þ

The differential operators Xk are called the generators of that group. In this notation,
equation (2.10.20) is rewritten as

½Xk;Xl� f ¼
X

� b
klðXb f Þ; ð2:10:22Þ

where ½Xk;Xl � � XkXl � XlXk �
P

� b
klðXbÞ: commutator of group. For further

details, see texts on Lie groups, and so on; also Hamel (1904(a), (b)), Hagihara
(1970), McCauley (1997).

Problem 2.10.3 Extend (2.10.20) to the case where one or both of �k, �l are the
ð�nþ1Þth ‘‘coordinate’’, that is, �! t.

Problem 2.10.4 The choice f ! qr in (2.10.20), and then use of (2.9.34), yields
the symbolic identity

@2qr=@�k @�l � @2qr=@�l @�k ¼
X

� b
klð@qr=@�bÞ ¼

X
Arb�

b
kl: ðaÞ
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Solving (a) for the �’s, derive the following alternative symbolic expression/definition
for �:

� b
kl ¼

X
abrð@2qr=@�k @�l � @2qr=@�l @�kÞ: ðbÞ

HINT

Multiply (a) with asr and sum over r, and so on.

Nonintegrability Conditions for a Nonholonomic Basis

Since (2.10.20) holds for an arbitrary f , let us apply it for f ! r ¼ rðt; qÞ. In this
case, @f=@�b ! @r=@�b � eb, and thus we obtain the basic nonintegrability conditions
for the nonholonomic basis fek; k ¼ 1; . . . ; ng:

@el=@�k � @ek=@�l ¼
X

� b
kl eb; ð2:10:23Þ

or, compactly,

½ek; el � �
X

� b
kl eb � commutator of basis fekg: ð2:10:23aÞ

In differential geometry, such bases are called nonholonomic, or noncoordinate, or
nongradient; that is, they are not parts of a global coordinate system; like the
fek � @r=@qkg for which, clearly [recalling (2.5.4a)],

@el=@qk � @ek=@ql � ½ek; el� � 0: ð2:10:23bÞ

In sum: the vanishing of the �’s is the necessary and sufficient condition for the
corresponding basis to be holonomic; or gradient, or coordinate.

We leave it to the reader to show that (2.10.23) also hold for k; l ¼ n þ 1; that is,
�! t.

A Fundamental Kinematical Identity

Here, with the help of (2.10.23), we will complete the derivation of the basic identity
(2.9.37). Indeed, since ek ¼ @v=@!k � @v*=@!k ¼ ekðt; qÞ, and [recalling (2.9.21)]
v ¼ v*ðt; q; !Þ ¼P ek!k þ enþ1 �

P
ek!k þ e0, we obtain, successively,

ðiÞ d=dtð@v=@!kÞ � d=dtð@v*=@!kÞ � dek=dt

¼
X
ð@ek=@qlÞvl þ @ek=@t

[recalling the inverse quasi chain rule (2.9.30b)]

¼
X X

arlð@ek=@�rÞ
� �

vl þ @ek=@t [recalling (2.9.9)]

¼
X
ð@ek=@�rÞð!r � arÞ þ @ek=@t

¼
X
ð@ek=@�rÞ!r �

X
ð@ek=@�rÞar þ @ek=@t: ð2:10:24aÞ

ðiiÞ @v=@�k � @v*=@�k ¼
X
ð@er=@�kÞ!r þ @e0=@�k: ð2:10:24bÞ
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Therefore, subtracting the above side by side, and recalling (2.9.32a, d), we obtain

dek=dt� @v=@�k ¼
X
ð@ek=@�r � @er=@�kÞ!r þ ð@ek=@t� @e0=@�kÞ �

X
ð@ek=@�rÞar

¼
X
ð@ek=@�r � @er=@�kÞ!r

þ @ek=@�0 �
X

Asð@ek=@qsÞ
� �
� @e0=@�k �

X
ð@ek=@�rÞar

� �
¼
X
ð@ek=@�� � @e�=@�kÞ!�

�
X

As

X
arsð@ek=@�rÞ

� �
�
X

arð@ek=@�rÞ

{for the first sum we use (2.10.23), with l ! k, k! �, b! r [recalling (2.10.9)]; and
by the second of (2.9.3a) the last two sums add up to zero}

¼
X X

� r
�ker

� �
!�; ð2:10:24cÞ

and so, finally,

Ek*ðvÞ � Ek*ðv*Þ : Hamel vector of nonholonomic deviation of a particle

� d=dtð@v=@!kÞ � @v=@�k � d=dtð@v*=@!kÞ � @v*=@�k � dek=dt� @v=@�k
¼
XX

� r
�ker !� ¼

XX
� r

lk !ler þ
X

� r
nþ1;k !nþ1er [swapping k and l]

¼ �
XX

� r
kl !ler �

X
� r

ker ¼ �
X X

� r
kl !l þ � r

k

� �
er

� �
X

hrk er; ð2:10:25Þ

where

hrk �
X

� r
kl !l þ � r

k ¼
X

� r
k� !� : Two-index Hamel symbols: ð2:10:25aÞ

This fundamental kinematical identity, in its various equivalent forms, like the tran-
sitivity equations (2.10.1, etc.), shows clearly the difference between holonomic and
nonholonomic coordinates (not constraints): for the former, EkðvÞ ¼ 0; while for the
latter, Ek*ðvÞ � Ek*ðv*Þ 6¼ 0. It is indispensable in the derivation of equations of
motion in quasi variables (}3.3).

Problem 2.10.5 Transitivity Relations for System Velocities.

(i) Show that for the general nonstationary transformation (with _qql � vlÞ
!k �

X
aklvl þ ak , vl ¼

X
Alk!k þ Al ; ðaÞ

the following transitivity identities hold:

Elð!kÞ � d=dtð@!k=@vlÞ � @!k=@ql ¼
X X

� k
r� !�

� �
arl

¼
X X

� k
rs !s þ � k

r

� �
arl �

X
hkr arl : ðbÞ
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(ii) Then show that, in the stationary case, (b) specializes to

Elð!kÞ � d=dtð@!k=@vlÞ � @!k=@ql ¼
XX

� k
rs !sarl ; ðcÞ

that is, the first line of (b) with � ! s.
(iii) Show that, as a result of the above, the transitivity equations (2.10.13),

become

ð��kÞ:� �!k ¼
XX

� k
rs !s ��r þ

X
� k

r ��r ¼
X

hkr ��r

¼
XX

Elð!kÞAlr ��r ¼
XX

ð@vl=@!rÞElð!kÞ��r; ðdÞ
where the

P ð@vl=@!rÞElð!kÞ can be viewed as the nonlinear generalization of the hkr
(}5.2).

Problem 2.10.6 By direct d=�-differentiations of �r ¼P ek ��k and
dr ¼P ek d�k, respectively (assume stationary systems, for algebraic simplicity but
no loss in generality), and then use of

dek ¼ d
X

Alk el

� �
¼
X
ðdAlk el þ Alk delÞ; ðaÞ

and

del ¼
X
ð@el=@qrÞ dqr ¼

XX
ð@el=@qrÞArs d�s;

dAlk ¼
X
ð@Alk=@qrÞ dqr ¼

XX
ð@Alk=@qrÞArs d�s; ðbÞ

and similarly for �ek ¼ �
P

Alkelð Þ ¼ . . . ; and then recalling the �-definitions, obtain
the following basic particle/vectorial transitivity equation:

dð�rÞ � �ðdrÞ ¼
X

dð��kÞ � �ðd�kÞ½ � þ
XX

� k
rs d�r ��s

n o
ek; ðcÞ

or, dividing by dt, its equivalent velocity form

ð�rÞ: � �v ¼
X

ð��kÞ:� �!k½ � þ
XX

� k
rs !r ��s

n o
ek: ðdÞ

Replacing in the above r with � ¼ 1; . . . ; nþ 1, extends it to the nonstationary/
rheonomic case.

[Note that (c) and (d) are independent of any dð�qÞ � �ðdqÞ assumptions.
Therefore, since

dð�rÞ � �ðdrÞ ¼
X
½dð�qlÞ � �ðdqlÞ�el ¼

XX
½dð�qlÞ � �ðdqlÞ�aklek; ðeÞ

if we assume dð�qlÞ � �ðdqlÞ ¼ 0 (Hamel viewpoint), then dð�rÞ � �ðdrÞ ¼ 0, and this
leads us back to the transitivity equations (2.10.12) and (2.10.13).]

Example 2.10.1 Local Transformation Properties of the Hamel Coefficients. Let
us find how the �’s transform under the admissible (and, for simplicity, but with
no loss in generality) stationary quasi-variable transformation �! � 0:

d�k 0 ¼
X

ak 0k d�k , d�k ¼
X

Akk 0 d�k 0 ; ðaÞ
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where ak 0k ¼ ak 0kðqÞ, Akk 0 ¼ Akk 0 ðqÞ, and all Latin indices run from 1 to n. We find,
successively,

dð��k 0 Þ � �ðd�k 0 Þ ¼ d
X

ak 0k ��k

� �
� �

X
ak 0k d�k

� �
¼
X �

dak 0k ��k þ ak 0k dð��kÞ � �ak 0k d�k � ak 0k �ðd�kÞ
	

¼
X �X

ð@ak 0k=@qpÞ dqp
�
��k þ ak 0k dð��kÞ

�
X
ð@ak 0k=@qpÞ �qp

� �
d�k � ak 0k �ðd�kÞ

�
[recalling that dqp ¼

X
Apr d�r ; etc:�

¼
X

ak 0k½dð��kÞ � �ðd�kÞ�
þ
XXX �ð@ak 0k=@qpÞApr d�r ��k � ð@ak 0k=@qpÞApr d�k ��r

	
¼
X

ak 0k
XX

� k
bc d�c ��b

� �
þ
XXX �ð@ak 0k=@qpÞApr � ð@ak 0r=@qpÞApk

	
d�r ��k

¼
XXX

ak 0k�
k
bc

X
Acc 0 d�c 0

� � X
Abb 0 ��b 0

� �
þ
XXX�ð@ak 0k=@qpÞApr�ð@ak 0r=@qpÞApk

	 X
Arr 0 d�r 0

� � X
akl 0 ��l 0

� �
¼
XXXXX

ðak 0kArr 0All 0�
k
lrÞ d�r 0 ��l 0

þ
XXXX

ð@ak 0k=@�r � @ak 0r=@�kÞArr 0Akl 0 d�r 0 ��l 0 ; ðbÞ

and since, by definition,

dð��k 0 Þ � �ðd�k 0 Þ ¼
XX

� k 0
l 0r 0 d�r 0 ��l 0 ; ðcÞ

we conclude that

�k
0
l 0r 0 ¼

XXX
ak 0kAll 0Arr 0�

k
lr þ

XX
ð@ak 0k=@�r � @ak 0r=@�kÞAkl 0Arr 0 : ðdÞ

In tensor calculus language, the transformation equation (d) shows that the � k
lr do

not constitute a tensor: if � k
lr ¼ 0 (i.e., if the �k are holonomic coordinates), it does

not necessarily follow that � k 0
l 0r 0 ¼ 0; and that is why these quantities are called,

instead, components of a geometrical object. However, if the second group of terms
(double sum) in (d), which looks (symbolically) like aHamel coefficient between the d�k
and d�k 0 , vanishes, the �

k
lr transform tensorially. In such a case, we call the d�k and d�k 0

relatively holonomic; that happens, for example, if the coefficients ak 0k are constant.
For futher details, and the relation of the �’s to the Christoffell symbols (}3.10)

and the Ricci rotation coefficients, both of which are also geometrical objects, see, for
example (alphabetically): Papastavridis (1999), Schouten (1954), Synge (1936),
Vranceanu (1936); also, for an alternative derivation of (d), see Golab (1974, pp.
141–142), Lynn (1963, pp. 201–203).
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We have developed all the necessary analytical tools of Lagrangean kinematics. In
the following sections, we will show how to apply them to the handling of additional
Pfaffian (possibly nonholonomic) constraints.

For quick comparison, when working with other references, we present below the
following, admittedly incomplete, but hopefully helpful, list of common �-notations
in the literature:

(i) Our notation (also in Papastavridis, 1999): �a
b
c � � b

ac (sometimes, for extra
clarity, a subscript dot is added between a and c, directly below b).

(ii) Authors whose notation coincides with ours: Dobronravov (1948, 1970, 1976),
Golomb and Marx (1961), Gutowski (1971), Kil’chevskii (1972, 1977), Koiller
(1992): �a

b
c:

(iii) Authors whose notation differs from ours: Butenin (1971), Fischer and Stephan
(1972), Neimark and Fufaev (1967/1972), Whittaker (1937; but his akl is our alk):
�abc; Corben and Stehle (1960): �acb; Nordheim (1927): �cba; Rose (1938): �bac; Päsler
(1968): ��bac; Djukic (1976), Funk (1962), Lur’e (1961/1968), Mei (1985), Prange
(1935): �c

b
a; Kilmister (1964, 1967): �ab

c; Maißer (1981): Ac
b
a; Desloge (1982): 
abc;

Stückler (1955): �abc; Heun (1906): �acb; Winkelmann and Grammel (1927): �cab;
Morgenstern and Szabó (1961): �b;ac; Hamel (1904(a), (b)): �a;c;b; Hamel (1949):
�b

a;c; Schaefer (1951): �c
b
a; Vranceanu (1936): wa

b
c; Wang (1979): KA

B
C; Schouten

(1954): 2Oc
b
a; Levi-Civita and Amaldi (1927): �bjca.

2.11 PFAFFIAN (VELOCITY) CONSTRAINTS VIA QUASI VARIABLES,

AND THEIR GEOMETRICAL INTERPRETATION

Let us, now, assume that our hitherto holonomic n ð� 3N � hÞ-DOF system is sub-
jected to the additional m independent Pfaffian constraints [recalling (2.7.3 and
2.7.4)]:
Kinematically admissible/possible form:X

cDk dqk þ cD dt ¼ 0; ð2:11:1aÞ

Virtual form: X
cDk �qk ¼ 0; ð2:11:1bÞ

Velocity form (with dqk=dt � vkÞ:X
cDkvk þ cD ¼ 0; ð2:11:1cÞ

where D ¼ 1; . . . ;m ð5nÞ; k ¼ 1; . . . ; n; and the constraint independence is expressed
by the algebraic requirement rankðcDkÞ ¼ m. Since additional holonomic constraints
(in any form) can always be embedded, or built in, with a new set of fewer q’s, we
can, with no loss of generality, assume that all constraints (2.11.1) are nonholo-
nomic.

Now, and in what constitutes a direct and natural extension of the method
of holonomic equilibrium coordinates (}2.4) to the embedding Pfaffian constraints,
we introduce the following equilibrium quasi variables (Hamel’s choice):

)2.11 PFAFFIAN (VELOCITY) CONSTRAINTS VIA QUASI VARIABLES 323



Kinematically admissible/possible form:

d�D �
X

aDk dqk þ aD dt ð¼ 0Þ; ð2:11:2aÞ

d�I �
X

aIk dqk þ aI dt ð6¼ 0Þ; ð2:11:2bÞ

d�nþ1 � d�0 � dqnþ1 � dq0 � dt ð6¼ 0Þ; ð2:11:2cÞ
Virtual form:

��D �
X

aDk �qk ð¼ 0Þ; ð2:11:2dÞ

��I �
X

aIk �qk ð6¼ 0Þ; ð2:11:2eÞ

��nþ1 � �qnþ1 � �t ð¼ 0Þ; ð2:11:2fÞ
Velocity form:

!D �
X

aDkvk þ aD ð¼ 0Þ; ð2:11:2gÞ

!I �
X

aIkvk þ aI ð6¼ 0Þ; ð2:11:2hÞ

!nþ1 � !0 � vnþ1 � v0 � dt=dt ¼ 1 ð6¼ 0Þ; ð2:11:2iÞ
where (here and throughout the rest of the book): D ¼ 1; . . . ;m ð< nÞ ¼ Dependent,
I ¼ mþ 1; . . . ; n ¼ Independent [additional dependent (independent) indices will be
denoted by D 0, D 00; . . . ðI 0; I 00; . . .Þ]; and the coefficients akl, ak are chosen as follows:

ðiÞ aDk � cDk and aD � cD ½i:e:; �D � �D; recall (2.6.2 -- 4; 2.8.1)]; ð2:11:3Þ
(ii) The aIk and aI are arbitrary, except that when eqs. (2.11.2) are solved (inverted)
for the dq=�q=v in terms of the independent d�=��=!, respectively; that is,

Kinematically admissible/possible form:

dqk �
X

AkI d�I þ AI dt ð6¼ 0Þ; ð2:11:4aÞ

dqnþ1 � dq0 � d�nþ1 � d�0 � dt ð6¼ 0Þ; ð2:11:4bÞ
Virtual form:

�qk �
X

AkI ��I ð6¼ 0Þ; ð2:11:4cÞ

�qnþ1 � �q0 � ��nþ1 � ��0 � �t ¼ 0; ð2:11:4dÞ
Velocity form:

vk �
X

AkI!I þ AI ð6¼ 0Þ; ð2:11:4eÞ

vnþ1 � v0 � !nþ1 � !0 � dt=dt ¼ 1 ð6¼ 0Þ; ð2:11:4fÞ
and then these results are substituted back into (2.11.1a–c) and (2.11.3), they satisfy
them identically. Other choices of �’s and a’s are, of course, possible (see special
forms/choices, below), but Hamel’s choice (2.11.2) is the simplest and most natural,
because then our Pfaffian constraints assume the simple and uncoupled form:
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Kinematically admissible/possible form:

d�D ¼ 0; ð2:11:5aÞ
Virtual form:

��D ¼ 0; ð2:11:5bÞ
Velocity form:

!D ¼ 0; ð2:11:5cÞ
and, as a result (already described in } 2.7 and detailed in ch. 3), the equations of
motion decouple into n�m kinetic equations (no constraint forces) and m kineto-
static equations (constraint forces).

Constrained Particle Kinematics

In view of the constraints (2.11.5), the particle kinematical quantities (2.9.23–26)
reduce to the following:

Kinematically admissible/possible displacement:

dr ¼
X

eI d�I þ enþ1 dt �
X

eI d�I þ e0 dt; ð2:11:6aÞ

Virtual displacement:

�r ¼
X

eI ��I ; ð2:11:6bÞ

Velocity:

v ¼
X

eI !I þ enþ1 �
X

eI !I þ e0 ; ð2:11:6cÞ

Acceleration:

a ¼
X

eI _!!I þ terms not containing _!!: ð2:11:6dÞ

Special Forms/Choices of Quasi Variables

1. Once we have chosen the equilibrium quasi variables d�=��=!, we can move to
any other such set d� 0=�� 0=! 0, defined via linear (invertible) transformations of
the following type:

d�k 0 �
X

ak 0k d�k þ ak 0 dt ¼
X

ak 0I d�I þ ak 0 dt ð6¼ 0Þ; ð2:11:7aÞ

d�ðnþ1Þ 0 � d�nþ1 � dqnþ1 � dt ð6¼ 0Þ; ð2:11:7bÞ

and, inversely ½ðak 0kÞ; ðAkk 0 Þ: nonsingular matrices],

d�k �
X

Akk 0 d�k 0 þ Ak dt ! d�D ¼ 0 and d�I 6¼ 0; ð2:11:7cÞ

and similarly for ��k 0 , !k 0 .
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2. If the Pfaffian nonholonomic constraints are given in the quasi-variable forms:X
aD 0k d�k þ aD 0 dt ¼ 0; or

X
aD 0k ��k ¼ 0; or

X
aD 0k !k þ aD 0 ¼ 0;

ð2:11:8aÞ

then, proceeding à la Hamel again, we may introduce new quasi variables by

d�D 0 �
X

aD 0k d�k þ aD 0 dt ¼ 0; d�I 0 �
X

aI 0k d�k þ aI 0 dt 6¼ 0; ð2:11:8bÞ

or

��D 0 �
X

aD 0k ��k ¼ 0; ��I 0 �
X

aI 0k ��k 6¼ 0; ð2:11:8cÞ

or

!D 0 �
X

aD 0k!k þ aD 0 ¼ 0; !I 0 �
X

aI 0k !k þ aI 0 6¼ 0; ð2:11:8dÞ

where, again, the coefficients aI 0k, aI 0 are arbitrary; but when (2.11.8b–d) are
solved for the d�=��=! in terms of the d� 0=�� 0=! 0, and the results are substituted
back into (2.11.8a), they satisfy them identically (see also their specialization in
item 4, below).

3. Frequently, the Pfaffian constraints (2.11.1) are given, or can be easily brought to,
the special form [recalling (2.6.9–11), and, using the notation dqk=dt � vk�:
dqD ¼

X
bDI dqI þ bD dt; or �qD ¼

X
bDI �qI ; or vD ¼

X
bDI vI þ bD;

ð2:11:9Þ

where the coefficients bDI , bD are known functions of q and t; that is, the first m
(or dependent) dqD=�qD=vD are expressed in terms of the last n�m (independent)
dqI=�qI=vI . [In terms of the elements of the original m� n constraint matrix

ðcDkÞ � ðaDkÞ, we, clearly, have ðbDIÞ ¼ �ðaDD 0 Þ�1ðaDI Þ, and so on. See also pr.
2.11.2.]
Now, the transformations (2.11.9) can be viewed as the following special choice

of d�=��=! :

d�D ¼ dqD �
X

bDI dqI � bD dt ¼ 0; d�I � dqI 6¼ 0; d�nþ1 � dqnþ1 � dt 6¼ 0;

ð2:11:10aÞ

��D � �qD �
X

bDI �qI ¼ 0; ��I � �qI 6¼ 0; ��nþ1 � �qnþ1 � �t ¼ 0;

ð2:11:10bÞ

!D � vD �
X

bDIvI � bD ¼ 0; !I � vI 6¼ 0; !nþ1 � vnþ1 � dt=dt ¼ 1 6¼ 0:

ð2:11:10cÞ

The above invert easily to

dqD ¼ d�D þ
X

bDI d�I þ bD dt ¼
X

bDI d�I þ bD dt;
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dqI ¼ d�I ; dqnþ1 � d�nþ1 � dt; ð2:11:11aÞ

�qD ¼ ��D þ
X

bDI �qI ¼
X

bDI �qI ;

�qI ¼ ��I ; �qnþ1 � ��nþ1 � �t ¼ 0; ð2:11:11bÞ

vD ¼ !D þ
X

bDI!I þ bD ¼
X

bDI!I þ bD;

vI ¼ !I ; vnþ1 � v0 ¼ !nþ1 � !0 ¼ dt=dt ¼ 1: ð2:11:11cÞ

Comparing (2.11.10, 11) with (2.11.2, 4) we readily conclude that, in this case, the
(mutually inverse) transformation matrices a and A [recalling (2.9.4a ff.)] have the
following special forms:

a ¼
1 �b �bnþ1
0 1 0

0 0 1

0BBBB@
1CCCCA A ¼

1 b bnþ1

0 1 0

0 0 1

0BBBB@
1CCCCA; ð2:11:12Þ

that is,

aS ¼
1 �b
0 1

0@ 1A aT ¼
�bnþ1

0

0@ 1A; ð2:11:12aÞ

AS ¼
1 b

0 1

0@ 1A AT ¼
bnþ1

0

0@ 1A; ð2:11:12bÞ

where b ¼ ðbDI Þ, bnþ1 ¼ ðbD;nþ1 � bDÞ; and, of course, satisfy the consistency rela-
tions (2.9.3a, b). For a slight generalization of the choice (2.11.10c), see pr. 2.11.2.

Particle Kinematics

In this case, the particle kinematical quantities [recalling (2.5.2 ff.) and (2.11.6a ff.),
and that enþ1 � e0 � @r=@t] specialize to

dr ¼
X

ek dqk þ enþ1 dt ¼
X

eD dqD þ
X

eI dqI þ enþ1 dt

¼
X

eD
X

bDI dqI þ bD dt
� �

þ
X

eI dqI þ enþ1 dt

�
X

bI dqI þ bnþ1 dt �
X

bI dqI þ b0 dt; ð2:11:13aÞ

�r ¼ � � � ¼
X

bI �qI ; ð2:11:13bÞ

v ¼
X

bI vI þ bnþ1 ¼ vðt; q; vIÞ � vo; ð2:11:13cÞ

a ¼
X

bI _vvI þ terms not containing _vvI ¼ aðt; q; vI ; _vvIÞ � ao; ð2:11:13dÞ
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where ðeI ! bI Þ:

bI � eI þ
X

bDIeD; bnþ1 � b0 � enþ1 þ
X

bDeD � e0 þ
X

bDeD:

ð2:11:13eÞ

REMARK

It should be pointed out that under the quasi-variable choice (2.11.9), and, according
to an unorthodox yet internally consistent interpretation [advanced, mainly, by
Ukrainian/Soviet/Russian authors, like Suslov, Voronets, Rumiantsev; and at
odds with the earlier statement (}2.9) that the q’s are always holonomic coordinates],
the qI , and hence also the qD, are no longer genuine � holonomic coordinates, but
have instead become quasi-, or nonholonomic coordinates; even though one could
not tell that very well from their notation. To avoid errors in this slippery terrain,
some authors have introduced the particular notation ðqÞ (Johnsen, 1939); we shall
use it occasionally, for extra clarity. Thus, specializing (2.9.27), while recalling the
first of (2.11.12b), we can write

@r=@ðqIÞ �
X
ð@r=@qkÞð@vk=@vIÞ

¼
X
ð@r=@qDÞð@vD=@vI Þ þ

X
ð@r=@qI 0 Þð@vI 0=@vIÞ

¼ @r=@qI þ
X

bDIð@r=@qDÞ ¼
X

ADIeD þ
X

AI 0IeI 0

¼
X

bDIeD þ
X

�I 0IeI 0 ¼
X

bDIeD þ eI � bI ; ð2:11:14aÞ

and analogously for bnþ1 � b0. Similarly, with the helpful notation [(2.11.13c)]:
v ¼ vðt; q; vÞ ¼ � � � ¼ voðt; q; vIÞ � vo, chain rule, and recalling (2.11.9), we obtain

@vo=@vI � @v=@vI þ
X
ð@v=@vDÞð@vD=@vI Þ ¼ eI þ

X
eDbDI ¼ bI ; ð2:11:14bÞ

that is, the fundamental identities (2.9.33) specialize to

@r=@ðqIÞ ¼ @vo=@vI ¼ @ao=@ _vvI ¼ � � � ¼ bI ¼ bIðt; qÞ ð2:11:14cÞ

[not to be confused with the analogous holonomic identities (2.5.7, 7a)].
Equation (2.11.14a) gives rise to the special symbolic quasi chain rule (see also

chap. 5):

@ . . . =@ðqI Þ �
X
ð@ . . . =@qkÞð@vk=@vIÞ

¼
X
ð@ . . . =@qDÞð@vD=@vI Þ þ

X
ð@ . . . =@qI 0 Þð@vI 0=@vIÞ

¼ @ . . . =@qI þ
X

bDIð@ . . . =@qDÞ; ð2:11:15aÞ

which, when applied to vD, yields

@vD=@ðqIÞ �
X
ð@vD=@qD 0 Þð@vD 0=@vIÞ þ

X
ð@vD=@qI 0 Þð@vI 0=@vI Þ

¼ @vD=@qI þ
X

bD 0Ið@vD=@qD 0 Þ: ð2:11:15bÞ
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Generally, applying chain rule to

f ¼ f ðt; q; vÞ ¼ f ½t; q; vDðt; q; vIÞ; vI � � foðt; q; vI Þ ¼ fo; ð2:11:15cÞ
we obtain the useful formulae

@fo=@vI ¼ @f=@vI þ
X
ð@f=@vDÞð@vD=@vIÞ ¼ @f=@vI þ

X
bDI ð@f=@vDÞ;

ð2:11:15dÞ
and

@fo=@qI ¼ @f=@qI þ
X
ð@f=@vDÞð@vD=@qIÞ; ð2:11:15eÞ

while (2.11.15a,b) are seen as specializations of

@fo=@ðqI Þ � @fo=@qI þ
X
ð@fo=@qDÞð@vD=@vI Þ

� @fo=@qI þ
X

bDI ð@fo=@qDÞ [notation, not chain rule!]: ð2:11:15fÞ

Problem 2.11.1 With the help of the above symbolic identities [recall (2.11.12 ff.)]
show that:

ðiÞ @qk=@�l � @vk=@!l ! @qk=@ðqlÞ :
@qD=@ðqD 0 Þ ¼ ADD 0 ¼ �DD 0 ; @qD=@ðqI Þ ¼ ADI ¼ bDI ; @qI=@ðqDÞ ¼ AID ¼ 0;

@qI=@ðqI 0 Þ ¼ AII 0 ¼ �II 0 : ðaÞ

ðiiÞ @�k=@ql � @!k=@vl ! @ðqkÞ=@ql :
@ðqDÞ=@qD 0 ¼ aDD 0 ¼ �DD 0 ; @ðqDÞ=@qI ¼ aDI ¼ �bDI ; @ðqIÞ=@qD ¼ aID ¼ 0;

@ðqI Þ=@qI 0 ¼ aII 0 ¼ �II 0 : ðbÞ
[Notice that @qD=@ðqIÞ ¼ bDI 6¼ @ðqDÞ=@qI ¼ �bDI :]

ðiiiÞ @ . . . =@�nþ1 ! @ . . . =@ðqnþ1Þ [recall (2.9.32 ff.), and since Ak;nþ1 � Ak�
¼
X

Akð@ . . . =@qkÞ þ @ . . . =@t
¼
X

ADð@ . . . =@qDÞ þ
X

AI ð@ . . . =@qI Þ þ @ . . . =@t
¼
X

bDð@ . . . =@qDÞ þ 0þ @ . . . =@t � @ . . . =@ðtÞ þ @ . . . =@t; ðcÞ

which for r yields the earlier (2.11.13e).

ðivÞ @r=@ðqDÞ �
X
ð@r=@qkÞð@vk=@vDÞ ¼

X
ekAkD ¼ � � � ¼ @r=@qD;

i:e:; bD ¼ eD: ðdÞ
ðvÞ @bI=ðqI 0 Þ 6¼ @bI 0=@ðqI Þ; ðeÞ
which is a specialization of (2.10.23), and shows clearly that the basis fbIg is non-
gradient.
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4. Occasionally, the constraints appear in the (2.11.9)-like form, but in the quasi
variables d�=��=! [special case of (2.11.8a)]:

d�D ¼
X

BDI d�I þ BD dt; or ��D ¼
X

BDI ��I ; or !D ¼
X

BDI!I þ BD;

ð2:11:16Þ

where the coefficients BDI , BD are known functions of q and t.
To uncouple them, proceeding as before, we introduce the following new equi-

librium quasi variables d� 0=�� 0=! 0 (to avoid accented indices, we accent the quasi
variables themselves):

d� 0D � d�D �
X

BDI d�I � BD dt ¼ 0; d� 0I � d�I 6¼ 0; d� 0nþ1 � d�nþ1 � dt 6¼ 0;

ð2:11:17aÞ

�� 0D � ��D �
X

BDI ��I ¼ 0; �� 0I � ��I 6¼ 0; �� 0nþ1 � ��nþ1 � �t ¼ 0;

ð2:11:17bÞ

! 0D � !D �
X

BDI!I � BD ¼ 0; ! 0I � !I 6¼ 0; ! 0nþ1 � !nþ1 � dt=dt ¼ 1 6¼ 0;

ð2:11:17cÞ
which invert easily to

d�D ¼ d� 0D þ
X

BDI d�
0
I þ BD dt ¼

X
BDI d�

0
I þ BD dt;

d�I ¼ d� 0I ; d�nþ1 � d� 0nþ1 � dt; ð2:11:18aÞ
��D ¼ �� 0D þ

X
BDI ��

0
I ¼

X
BDI ��

0
I ;

��I ¼ �� 0I ; ��nþ1 � �� 0nþ1 � �t ¼ 0; ð2:11:18bÞ
!D ¼ ! 0D þ

X
BDI !

0
I þ BD ¼

X
BDI !

0
I þ BD;

!I ¼ ! 0I ; !nþ1 ¼ ! 0nþ1 ¼ dt=dt ¼ 1: ð2:11:18cÞ

Clearly, (2.11.16)–(2.11.18) bear the same formal relation to (2.11.8a) that
(2.11.9)–(2.11.11) bear to (2.11.2)–(2.11.4).
In sum, the possibilities are endless and, in practice, they are dictated by the

specific features and needs of the problem at hand. The essential point in all these
descriptions is that, ultimately, they express the n dq=�q=v in terms of n�m
independent parameters d�I=��I=!I ; and if the nonholonomic constraints are in
coupled form, either among the dq=�q=v or among another set of n quasi variables
d�=��=! then, following Hamel, we introduce new equilibrium quasi variables
d� 0=�� 0=! 0 such that d� 0D=��

0
D=!

0
D ¼ 0 and d� 0I=��

0
I=!

0
I 6¼ 0. And, as already stated,

this uncoupling of the Pfaffian constraints is the main advantage of the method.

Problem 2.11.2 Consider the homogeneous Pfaffian constraints,

!D ¼
X

aDkvk ¼
X

aDD 0vD 0 þ
X

aDI 0vI 0 ð¼ 0Þ; ðaÞ

!I ¼ vI ¼
X

�ID 0vD 0 þ
X

�II 0vI 0 ¼
X

aIkvk 6¼ 0
� �

; ðbÞ
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where D, D 0 ¼ 1; . . . ;m; I , I 0 ¼ mþ 1; . . . ; n; that is, (with some easily understood
notations)

a) aS ¼ ðaklÞ �
ðaDD 0 Þ ðaDI 0 Þ
ðaID 0 Þ ðaII 0 Þ

 !
¼
ðaDD 0 Þ ðaDI 0 Þ
ð0ID 0 Þ ð�II 0 Þ

 !
: ðcÞ

(i) Verify that its inverse (assuming that a is nonsingular) equals

A) AS ¼ ðAklÞ �
ðADD 0 Þ ðADI 0 Þ
ðAID 0 Þ ðAII 0 Þ

 !
¼

ðaDD 0 Þ�1 �ðaDD 0 Þ�1ðaD 0I 0 Þ
ð0ID 0 Þ ð�II 0 Þ

0@ 1A: ðdÞ

(ii) Extend the above to the nonhomogeneous case; that is,!D¼
P

aDkvkþaD ð¼0Þ,
!I ¼ vI ð6¼ 0Þ.

(iii) Verify that the earlier particular choice (2.11.9 ff.) is a specialization of the
above.

Geometrical Interpretation of Constraints

(May be omitted in a first reading.) We begin by partitioning the mutually inverse
n� n matrices of the virtual transformation between �q$ ��, aS ¼ ðaklÞ and
AS ¼ ðAklÞ, into their dependent and independent parts:

aS ¼
aD

aI

 !
¼

aDk

aIk

 !
; ð2:11:19aÞ

AS ¼ ðAD j AIÞ ¼ ðAkD j AkI Þ: ð2:11:19bÞ

Clearly,

aS AS ¼
aDAD aDAI

aIAD aIAI

 !
¼

1 0

0 1

 !
: ð2:11:19cÞ

Next, we partition these submatrices in terms of their dependent and independent
(column) vectors as follows [with ð. . .ÞT � transpose of ð. . .Þ, and using strict matrix
notation for vectors and their dot products, instead of the customary vector notation
used before and after this subsection]:

aD ¼
a1

T

� � �
am

T

0BBB@
1CCCA; aD

T ¼ ða1; . . . ; amÞ; aD
T ¼ ðaD1; . . . aDnÞ; ð2:11:20aÞ

aI ¼
amþ1

T

� � �
an

T

0BBB@
1CCCA; aI

T ¼ ðamþ1; . . . ; anÞ; aI
T ¼ ðaI1; . . . aInÞ; ð2:11:20bÞ
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AD ¼ ðA1; . . . ;AmÞ; AD
T ¼

A1
T

� � �
Am

T

0BBB@
1CCCA; AD

T ¼ ðA1D; . . . ;AnDÞ; ð2:11:20cÞ

AI ¼ ðAmþ1; . . . ;AnÞ; AI
T ¼

Amþ1
T

� � �
An

T

0B@
1CA; AI

T ¼ ðA1I ; . . . ;AnIÞ; ð2:11:20dÞ

Also, since ðaD � aD
TÞ�1 � ðaD � aD

TÞ ¼ 1 and AD
T
� aD

T ¼ 1, it follows that

AD
T ¼ ðaD � aD

TÞ�1 � aD: ð2:11:20eÞ

Now, in linear algebra terms, the virtual form of the constraint equationsX
aDk �qk ¼ 0 ½rankðaDkÞ ¼ m ð5nÞ�; ð2:11:21aÞ

[we note, in passing, that rankðaDkÞm�n ¼ rankðaDkjaDÞ½m�ðnþ1Þ�� or, in the above-
introduced matrix notation,

aD � �q ¼ 0 ðone matrix eq:Þ; aD
T
� �q ¼ 0 ½m vector ðdot productÞ eqs:�;

ð2:11:21bÞ

state that every virtual displacement (column) vector �qT ¼ ð�q1; . . . ; �qnÞ, at the point
ðq; tÞ, lies on the local ðn�mÞ-dimensional tangent/null/virtual plane of the (virtual
form of the) constraint matrix aD ¼ ðaDkÞ;Tn�mðPÞ � Vn�mðPÞ � Vn�m (}2.7,
suppressing the point dependence); or, equivalently, that �q is always orthogonal

to the local m-dimensional range space/constraint plane of aD
T;CmðPÞ � Cm (which

is orthogonally complementary to Vn�m).
Next, in view of our quasi-variable choice, that is, �q ¼ AI � �hI , where

�hI
T ¼ ð��mþ1; . . . ; ��nÞ, the ðn �mÞ vectors ðAmþ1; . . . ;AnÞ � fAIg constitute a

basis for Vn�m; while the m constraint vectors ða1; . . . ; amÞ � faDg constitute a
basis for Cm. Or, all ð�qkÞ satisfying (2.11.21a, b), at ðq; tÞ, form a local vector
space Vn�m, which is orthogonal to the local vector space Cm built (spanned) by

the m constraint vectors aD
T ¼ ðaD1; . . . ; aDnÞ.

More precisely, expressing (2.9.3a, b) in the above matrix/vector notation, we
have

ðiÞ
X

aIkAkI 0 ¼ aI
T
�AI 0 ¼ �II 0 ðI ; I 0 ¼ mþ 1; . . . ; nÞ; ð2:11:22aÞ

or aI �AI ¼ 1; or AI
T
� aI

T ¼ 1; ð2:11:22bÞ

that is, the columns of aI
T and AI, or the rows of aI and AI

T, namely, the vectors faIg
and fAIg, are mutually dual, or reciprocal, bases of Vn�m; and

ðiiÞ
X

aDkAkD 0 ¼ aD
T
�AD 0 ¼ �DD 0 ðD;D 0 ¼ 1; . . . ;mÞ; ð2:11:22cÞ

or aD �AD ¼ 1; or AD
T
� aD

T ¼ 1; ð2:11:22dÞ
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that is, the columns of aD
T and AD, or the rows of aD and AD

T, namely, the vectors
faDg and fADg, are mutually dual bases of Cm. Clearly, if the faDg are orthonormal,
so are the fADg, and the two bases coincide; and similarly for the bases faIg, fAIg.

Likewise, from (2.9.3a, b) we obtain

ðiiiÞ
X

aDkAkI ¼ aD
T
�AI ¼ �DI ¼ 0 ðD ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ;

ð2:11:22eÞ
or aD �AI ¼ 0; or AI

T
� aD

T ¼ 0; ð2:11:22f Þ
that is, the vectors faDg and fAIg are mutually orthogonal.

ðivÞ
X

aIkAkD ¼ aI
T
�AD ¼ �ID ¼ 0 ðI ¼ mþ 1; . . . ; n; D ¼ 1; . . . ;mÞ;

ð2:11:22gÞ
or aI �AD ¼ 0; or AD

T
� aI

T ¼ 0: ð2:11:22hÞ
that is, the vectors faIg and fADg are mutually orthogonal. Equations (2.11.22f) and
(2.11.22h) state, in linear algebra terms, that the ‘‘virtual displacement matrix’’ AI is
the orthogonal complement of the ‘‘constraint matrix’’ aD.

[Hence, the projections of an arbitrary system vector M ¼ ðM1; . . . ;MnÞ on the
local mutually orthogonal (complementary) subspaces Vn�m and Cm, are, respec-
tively,

Null/Virtual space projection P . . . ð� � �Þ:X
AkIMk ¼ ðAI

T
�MÞI ¼ AI

T
�M �MI � PNðNullÞðMÞ � PVðVirtualÞðMÞ;

ð2:11:23aÞ
Range/constraint space projection P . . . ð� � �Þ:X

AkDMk ¼ ðAD
T
�MÞD ¼ AD

T
�M �MD � PRðRangeÞðMÞ � PCðConstraintÞðMÞ:�

ð2:11:23bÞ
The above hold, locally at least, for any velocity constraints, be they holonomic or

nonholonomic. However: (a) If the constraints are nonholonomic, the corresponding
null and range spaces are only local; at each admissible point of the system’s con-
strained configuration (or event) space; but (b) If they are holonomic, then these
spaces become global; that is, the hitherto n-dimensional configuration space is
replaced by a new ‘‘smaller’’ such space described by n�m Lagrangean coordinates,
as detailed in }2.4 and }2.7.

Tensorial Hors d’Oeuvre

These projection ideas, originated by G. A. Maggi (1890s) and elaborated, via
tensors, by J. L. Synge, G. Vranceanu, V. V. Vagner, G. Prange, G. Ferrarese,
P. Maißer, N. N. Poliahov et al. (1920s–1980s), are very useful in interpreting the
general problem of AM [i.e., of decoupling its equations of constrained motion into
those containing the forces resulting from these constraints and those not containing
these forces], in terms of simple geometrical pictures of the motion of a single
‘‘particle’’ in a generalized system space. They have become quite popular among
multibody dynamicists, in recent decades; but, predominantly as exercises in linear
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algebra/matrix manipulations, that is, without the geometrical understanding and
insight resulting from the full use of general tensors.

To show the advantages of the powerful tensorial indicial notation, over the
noncommutative straightjacket of matrices, we summarize below some of the
above results. With the help of the summation convention [over pairs of indices,
one up and one down, from 1 to n; and where, here, capital indices (accented and/
or unaccented), signify nonholonomic components], we have the following:

(a) Equations (2.11.21a, b), and their inverses:

��D � aDk �q
k ¼ 0; �qk ¼ Ak

I ��
I ; ð2:11:24aÞ

(b) Equations (2.11.22a, b):

aIkA
k
I 0 ¼ � II 0 ; ð2:11:24bÞ

(c) Equations (2.11.22c, d):

aDkA
k
D 0 ¼ �DD 0 ; ð2:11:24cÞ

(d) Equations (2.11.23a):

PVðMÞ � Ak
IMk ¼MI ; ð2:11:24dÞ

(e) Equations (2.11.23b):

PCðMÞ � Ak
DMk ¼MD: ð2:11:24eÞ

The summation convention explains why, in order to project the (covariant) Mk,
above, we dot them with Ak

I and Ak
D, instead of aIk, a

D
k, respectively. [Briefly, the

aIðAI Þ build a nonholonomic contravariant (covariant) basis in Vn�m, while the
aDðADÞ build a nonholonomic contravariant (covariant) basis in Cm.]

Last, a higher level of tensorial formalism may be achieved, if, as described briefly
in (2.10.17c), we use accented (unaccented) indices to denote nonholonomic (holo-
nomic) components; for example, successively: akl ! akl ! Ak 0

k, Akl ! Ak
l ! Ak

k 0 ;
so that a �A ¼ 1 reads Ak 0

kA
k
l 0 ¼ �k

0
l 0 , and similarly for the other equations. For

further details on tensorial nonholonomic dynamics, see, for example, Papastavridis
(1999) and references cited therein.

2.12 CONSTRAINED TRANSITIVITY EQUATIONS, AND

HAMEL’S FORM OF FROBENIUS’ THEOREM

Constrained Transitivity Equations

Let us begin by examining the transitivity relations (2.10.1) under the Pfaffian con-
straints (2.11, 2a ff.), d�D ¼ 0, ��D ¼ 0, and their implications for the latter’s holo-
nomicity/nonholonomicity. Indeed, assuming dð�qkÞ ¼ �ðdqkÞ for all k ¼ 1; . . . ; n,
whether the dq=�q are constrained or not (what is known as the Hamel viewpoint,
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see pr. 2.12.5), the general transitivity equations (2.10.1) reduce to

dð��DÞ � �ðd�DÞ ¼
XX

�D
II 0 d�I 0 ��I þ

X
�D

I dt ��I ; ð2:12:1aÞ

dð��IÞ � �ðd�IÞ ¼
XX

� I
I 0I 00 d�I 00 ��I 0 þ

X
� I

I 0 dt ��I 0 : ð2:12:1bÞ

From the above we conclude that, even though !DðtÞ ¼ 0 (or a constant), or
d�DðtÞ ¼ 0, or ��DðtÞ ¼ 0, from which it follows that ð��DÞ: ¼ 0 or dð��DÞ ¼ 0, yet,
in general, dð��DÞ � �ðd�DÞ 6¼ 0 ) ��ðd�DÞ 6¼ 0! Specifically, as (2.12.1a) shows,

��ðd�DÞ ¼
XX

�D
II 0 d�I 0 ��I þ

X
�D

I dt ��I 6¼ 0 ðin generalÞ; ð2:12:1cÞ

is a delicate point that has important consequences in time-integral variational prin-
ciples for nonholonomic systems (see Hamel, 1949, pp. 476–477; and this book,
chapter 7; also pr. 2.12.5).

The Frobenius Theorem Revisited (and Made Easier to Implement)

We have already stated (}2.8) that the necessary and sufficient condition for the
holonomicity of the system of m Pfaffian constraints

d�D �
X

aDk dqk þ aD dt ¼ 0; ��D �
X

aDk �qk ¼ 0 ðD ¼ 1; . . . ;mÞ;
ð2:12:2Þ

that is, for the existence of m linear combinations of the d�D ¼ 0, or ��D ¼ 0; that
equal m independent exact differential equations df1 ¼ 0; . . . ; dfm ¼ 0) f1 ¼
constant; . . . ; fm ¼ constant; is the identical vanishing of their Frobenius bilinear
covariants [recall (2.9.13)]

dð��DÞ � �ðd�DÞ
¼
XX

ð@aDk=@ql � @aDl=@qkÞ dql �qk þ
X
ð@aDk=@t� @aD=@qkÞ dt �qk;

ð2:12:3Þ
for all dqk, dt; �qk solutions of (2.12.2). From this fundamental theorem we draw
the following conclusions:

(i) If the dqk, dt; �qk are unconstrained, that is, if m ¼ 0, then the identical satisfaction
of the conditions

aDkl � @aDk=@ql � @aDl=@qk ¼ 0; aDk � @aDk=@t� @aD=@qk ¼ 0; ð2:12:3aÞ
for all k, l ¼ 1; . . . ; n, is both necessary and sufficient for the holonomicity of �D
(}2.9).

(ii) But, if the dqk, dt, and �qk are constrained by (2.12.2), then the vanishing of
dð��DÞ � �ðd�DÞ does not necessarily lead to (2.12.3a).

To obtain necessary conditions for the holonomicity of the system (2.12.2), we must
express the dqk, dt, �qk, on the right side of (2.12.3), as linear and homogeneous
combinations of n�m independent parameters (Maggi’s idea); that is, we must take
the constraints (2.12.2) themselves into account. Indeed, substituting into (2.12.3) the
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that is, we cannot assume that both d(δqk) = δ(dqk) and d(δθD) = δ(dθD)(= 0)! This



general solutions of (2.12.2) [recalling (2.11.4)]:
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dqk �
X

AkI d�I þ AI dt; �qk �
X

AkI ��I ; ð2:12:4Þ
we obtain (2.12.1a). From this, it follows that (and this is the crux of this argument),
since the 2ðn�mÞ differentials d�I , ��I are independent/unconstrained, the conditions

�D
II 0 ¼ 0 and �D

I ;nþ1 � �D
I ¼ 0; ð2:12:5Þ

� Since [recalling the �-definition (2.10.2 ff.)] (2.12.5) can be rewritten as

�D
II 0 ¼

XX
ð@aDb=@qc � @aDc=@qbÞAbIAcI 0 �

XX
aDbcAbIAcI 0 ¼ 0; ð2:12:5aÞ

�D
I �

XX
ð@aDb=@qc � @aDc=@qbÞAbIAc þ

X
ð@aDb=@t� @aD=@qbÞAbI

�
XX

aD
bcAbIAc þ

X
aD

bAbI ¼ 0; ð2:12:5bÞ

we readily recognize that the (identical) vanishing of (all) the �D
: :’s does not neces-

sarily lead to the vanishing of (all) the aD
bc, a

D
b, while the vanishing of all the latter

leads to the vanishing of all the �D
: :’s; that is, (2.12.3a) lead to (2.12.5, 5a, b) but not

the other way around. Hence, (2.12.3a) are sufficient for holonomicity but not
necessary, whereas (2.12.5, 5a, b) are both necessary and sufficient.
� Since, as (2.12.5a, b) make clear, each �D

: : ð�D
:Þ depends, in general, on all the

coefficients aDk;AkI ðaDk;AkI ; aD;AkÞ, the holonomicity/nonholonomicity of a(ny)
particular constraint, of the given system (2.12.2), depends on all the others; that
is, on the entire system of constraints. In other words: eqs. (2.12.5) check the holo-
nomicity, or absence thereof, of each equation d�D; ��D ¼ 0 against the entire sys-
tem; that is, there is no such thing as testing an individual Pfaffian constraint, of a
given system of such constraints, for holonomicity; doing that would be testing the
new system consisting of that Pfaffian equation alone (i.e., m ¼ 1) for holonomicity.
In short, holonomicity/nonholonomicity is a system property.

As Neimark and Fufaev put it ‘‘the existence of a single nonintegrable constraint
(in a system of constraints) does not necessarily mean a system is nonholonomic,
since this constraint may prove to be integrable by virtue of the remaining constraint
equations’’ (1972, p. 6, italics added). However [and recalling (2.10.16a–18b)], we can
see that the identical vanishing of all coefficients � k

rs and � k
r;nþ1 � � k

r (for all
r; s ¼ 1; . . . ; nÞ in

dð��kÞ � �ðd�kÞ ¼ � � � þ ð� k
: :Þ d� �� þ ð� k

: :Þ dt ��; ð2:12:5cÞ
independently of the constraints d�D; ��D ¼ 0 (or, as if no constraints had been
applied; and which is equivalent to ak

rs ¼ 0, ak
r ¼ 0, identically), is the necessary

and sufficient condition for that particular �k to be a genuine/Lagrangean coordinate;
that is, akr ¼ @�k=@qr, ak ¼ @�k=@t.

Let us recapitulate/summarize our findings:

(i) Pfaffian forms (not equations), like

d�k �
X

aklðqÞ dql ðk ¼ 1; . . . ; n 0; l ¼ 1; . . . ; n; n and n 0 unrelatedÞ ð2:12:6Þ

independent such γD ..’s is [m(n−m)(n−m−1)/2]+m(n−m) = m(n−m)(n−m+1)/2 =
mf (f + 1)/2, f ≡ n − m}, are both sufficient and necessary for the holonomicity of the
Pfaffian system (2.12.2).

for all D = 1, . . . ,m; I, I ′ = m + 1, . . . , n {i.e. maximum total number of distinct/



(for algebraic simplicity, but no loss in generality, we consider the stationary case),
are either exact differentials, or inexact differentials.

If their dq’s are unconstrained, then the necessary and sufficient conditions for d�k
to be exact, and hence for �k to be a holonomic coordinate, are

ak
rs ¼ 0 ðr; s ¼ 1; . . . ; nÞ: ð2:12:7Þ

In this case, each of the n 0 forms d�k is tested for exactness independently of the
others; k, in (2.12.7), is a free index, uncoupled to both r and s. If n ¼ n 0, then, as
already stated, conditions (2.12.7) can be replaced by

� k
rs ¼ 0 ðr; s ¼ 1; . . . ; nÞ; ð2:12:8Þ

but since calculating the �’s requires inverting (2.12.6) for the n dq’s in terms of the
n d�’s, eqs. (2.12.8) offer no advantage over eqs. (2.12.7).

If eqs. (2.12.7) hold, then d�k remains exact no matter how many additional con-
straints may be imposed on its dq’s later. For, then, we have

dð��kÞ � �ðd�kÞ ¼
XX

ð@akr=@qs � @aks=@qrÞ dqs �qr ¼ 0; ð2:12:9Þ

that is, if �k is a holonomic coordinate, it remains holonomic if additional constraints
be imposed among its dq; �q’s, later. This is the meaning of Hamel’s rule:
dð�qkÞ ¼ �ðdqkÞ, for all q’s, constrained or not.

If eqs. (2.12.7) do not hold, d�k is inexact; but it can be made exact by additional
constraints among its dq; �q’s; that is, if �k is a quasi coordinate, it may become a
holonomic coordinate by imposition of additional appropriate dq; �q constraints.
For example, let us consider the Pfaffian form (not constraint)

Under the additional constraints y ¼ constant ) dy ¼ 0 and z ¼ constant )

ally, � was a quasi coordinate.
(ii) Pfaffian systems of constraints

d�D �
X

aDk dqk ¼ 0; ��D �
X

aDk �qk ¼ 0; ð2:12:10aÞ

are either holonomic or they are nonholonomic. The necessary and sufficient condi-
tions for holonomicity are

dð��DÞ � �ðd�DÞ ¼
XX

�D
II 0 d�I 0 ��I ¼ 0; ð2:12:10bÞ

or, since the d�I 0 , ��I are independent,

�D
II 0 ¼ 0 ðD ¼ 1; . . . ;m; I ; I 0 ¼ mþ 1; . . . ; nÞ; ð2:12:10cÞ

that is, the ‘‘dependent’’ �’s relative to their ‘‘independent’’ indices (subscripts) should
vanish; or, the components of the dependent (constrained) Hamel coefficients along the
independent (unconstrained) directions vanish.

{This, more easily implementable, form of Frobenius’ theorem seems to be due to
Hamel (1904(a), 1935); also Cartan (1922, p. 105), Synge [1936, p. 19, eq. (4.16)], and
Vranceanu [1929, p. 17, eq. (9 0); 1936, p. 13].}
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dθ ≡ a(x, y, z) dx+ b(x, y, z) dy+ c(x, y, z) dz.

dz = 0, it becomes dθ ≡ a(x, y, z) dx ≡ f (x) dx = exact differential, even if, origin-



In closing this section, we repeat that Frobenius’ theorem is about the integra-
bility of systems of Pfaffian equations, like (2.12.2), not about the exactness of
individual Pfaffian forms, like (2.12.6).

Example 2.12.1 Special Case of the Hamel Coefficients, via Frobenius’ Theorem.
Let us calculate the Hamel coefficients corresponding to the special constraint form

dqD ¼
X

bDI dqI ; �qD ¼
X

bDI �qI ; ðaÞ

where bDI ¼ bDI ðqÞ, and formulate the necessary/sufficient conditions for their
holonomicity. We begin by viewing (a) as the following special Hamel choice [sta-
tionary version of (2.11.10a–12b)]:

d�D ¼ dqD �
X

bDI dqI ¼ 0; d�I � dqI 6¼ 0; d�nþ1 � dqnþ1 � dt 6¼ 0; ðbÞ

��D � �qD �
X

bDI �qI ¼ 0; ��I � �qI 6¼ 0; ��nþ1 � �qnþ1 � �t ¼ 0; ðcÞ

dqD ¼ d�D þ
X

bDI d�I ¼
X

bDI d�I ; dqI ¼ d�I ; dqnþ1 � d�nþ1 � dt; ðdÞ

�qD ¼ ��D þ
X

bDI �qI ¼
X

bDI �qI ; �qI ¼ ��I ; �qnþ1 � ��nþ1 � �t ¼ 0; ðeÞ

also, since here dqI ¼ d�I , we can rewrite the system (a) as

dqk ¼
X

BkI dqI �
X

AkI d�I ;

where

ðBkI Þ ¼

b1;mþ1 . . . b1n

� � � � � � � � � � � � � � � � � �
bm;mþ1 . . . bmn

1 � � � 0
� � � � � � � � � � � � � � � � � �

0 � � � 1

0BBBBBBBBBB@

1CCCCCCCCCCA
: ðfÞ

Since �I ¼ qI , we shall have � I

� ¼ 0; while (2.12.9), with k! D and (f), becomes,

successively,

dð��DÞ � �ðd�DÞ ¼
XX

aDrs dqs �qr ¼
XX

aDrs
X

BsI dqI

� � X
BrI 0 �qI 0

� �
¼ � � � ¼

XXXX
ðaDrs bsI brI 0 Þ dqI �qI 0

¼ � � � ¼
XX

�D
I 0I dqI �qI 0

¼
XX

�D
II 0 dqI 0 �qI ¼

XX
�D

II 0 d�I 0 ��I

h i
; ðgÞ

where (expanding the sums in r and s, withD,D 0,D 00 ¼ 1; . . . ;m; I ; I 0 ¼ mþ 1; . . . ; nÞ

�D
I 0I �

XX
aDD 0D 00 bD 00I bD 0I 0 þ

X
aDD 0I bD 0I 0 þ

X
aDI 0D 0 bD 0I þ aDI 0I ; ðhÞ

or, since aDD 0D 00 � aDD 0;D 00 � aDD 00 ;D 0 , where commas denote partial differentiations
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relative to the indicated q’s and [by (2.11.12–12b)] aDD 0 ! �DD 0 , aDI ! �bDI ,
aID ! 0, aII 0 ! �II 0 :

�D
I 0I ¼

XX
ð0ÞbD 00I bD 0I 0 þ

X �
0� ð�@bDI=@qD 0 Þ

	
bD 0I 0

þ
X �ð�@bDI 0=@qD 0 Þ � 0

	
bD 0I þ

�ð�@bDI 0=@qIÞ � ð�@bDI=@qI 0 Þ
	
;

or finally,

�D
I 0I ¼

�
@bDI=@qI 0 þ

X
ð@bDI=@qD 0 ÞbD 0I 0

	� �@bDI 0=@qI þ
X
ð@bDI 0=@qD 0 ÞbD 0I

	
� �wD

I 0I ¼ wD
II 0 ¼ Voronets ðor WoronetzÞ coefficients; ðiÞ

clearly, a specialization of �D
I 0I . Thus, (g) becomes

dð��DÞ � �ðd�DÞ ¼
XX

�D
I 0I dqI �qI 0 ¼

XX
wD

II 0 dqI �qI 0 ; ð jÞ

and, since the dqI and �qI are independent, by Frobenius’ theorem, the necessary
and sufficient conditions for the holonomicity of the system (a) are

wD
II 0 ¼ 0; ðkÞ

which are none other than the earlier Deahna–Bouquet conditions (2.3.11b ff.).

REMARKS

(i) With the help of the symbolic notation (2.11.15a), we can rewrite (k) in the
more memorable form,

�D
I 0I ¼ wD

II 0 ¼ @bDI=@ðqI 0 Þ � @bDI 0=@ðqIÞ: ðlÞ
(ii) In the special ‘‘Chaplygin (or Tchapligine) case’’ (}3.8), where bDI ¼

bDIðqmþ1; . . . ; qnÞ � bDIðqDÞ, the above reduce to

�D
I 0I ¼ @bDI=@qI 0 � @bDI 0=@qI � tDII 0 : ðmÞ

Problem 2.12.1 Continuing from the previous example, show that eqs. (i) for the
Voronets coefficients also result by direct application of the definition (2.10.2)

�D
II 0 ¼

XX
ð@aDk=@qr � @aDr=@qkÞAkIArI 0 ðaÞ

to the constraints (ex. 2.12.1:a) in the equilibrium forms (ex. 2.12.1:b–e).

HINT

Here [recalling again (2.11.12–12b)]: aDD 0 ¼ �DD 0 , aDI ¼ �bDI , aID ¼ 0, aII 0 ¼ �II 0 ;
ADD 0 ¼ �DD 0 , ADI ¼ bDI , AID ¼ 0, AII 0 ¼ �II 0 .

Problem 2.12.2 Continuing from the above, show that in the general
nonstationary case

dqD ¼
X

bDI dqI þ bD dt; dqI ¼
X

�II 0 dqI 0 ¼ dqI ; ðaÞ

�qD ¼
X

bDI �qI ; �qI ¼
X

�II 0 �qI 0 ¼ �qI ; bDI ¼ bDI ðt; qÞ; bD ¼ bDðt; qÞ; ðbÞ
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the �D
II 0 remain unchanged, but we have, the additional nonstationary Voronets

coefficients:

�D
I ;nþ1 � �D

I ¼ �wD
I ;nþ1 � �wD

I

¼ @bD=@qI þ
X
ð@bD=@qD 0 ÞbD 0I

h i
� @bDI=@tþ

X
ð@bDI=@qD 0 ÞbD 0

h i
¼ @bD=@ðqI Þ � @bDI=@ðqnþ1Þ ðcÞ

[recalling the symbolic (2.9.32 ff.), (2.11.15): Ak ! bD, and
P ð@ . . . =@qDÞbD ¼

@ . . . =@ðtÞ�.
REMARK

In concrete problems, use of the above definitions to calculate the w-coefficients is
not recommended. Instead, the safest way to do this is to read them off directly as
coefficients of the following bilinear difference/covariant:

dð��DÞ � �ðd�DÞ ¼ � � � þ �D
II 0 d�I 0 ��I þ � � � þ �D

I dt ��I þ � � �
¼ � � � � wD

II 0 dqI 0 �qI þ � � � � wD
I dt �qI þ � � � : ðdÞ

Problem 2.12.3 Continuing from the preceding problem, verify that:

(i) in the catastatic Voronets case, the wD
II 0 remain unchanged, while wD

I ¼ @bDI=@t;
and

(ii) in the stationary Voronets case, the wD
II 0 remain unchanged, while wD

I ¼ 0:

Problem 2.12.4 Continuing from the above problems, verify that

ðiÞ � I
�" ¼ 0 ðI ¼ mþ 1; . . . ; n; �; " ¼ 1; . . . ; n; nþ 1Þ; ðaÞ

ðiiÞ �D
D 0" ¼ 0 ðD;D 0 ¼ 1; . . . ;m; " ¼ 1; . . . ; n; nþ 1Þ; ðbÞ

(recall that �I ¼ qI is a holonomic coordinate).

Problem 2.12.5 Continuing from the above example and problems, consider
again the nonstationary constraints in the special form (2.11.10a ff.):

dqD ¼
X

bDI dqI þ bD dt; �qD ¼
X

bDI �qI ; vD ¼
X

bDI vI þ bD; ðaÞ

where bDI ¼ bDIðt; qÞ, bD ¼ bDðt; qÞ, and, as usual, vk � dqk=dt.
Show by direct d=�-differentiations of the above, and assuming that dð�qIÞ�

�ðdqIÞ ¼ 0, that

dð�qDÞ � �ðdqDÞ ¼
XX

wD
II 0 dqI 0 �qI þ

X
wD

I dt �qI ; ðbÞ

or, dividing both sides by dt,

ð�qDÞ: � �ð _qqDÞ � ð�qDÞ: � �vD ¼
X X

wD
II 0 vI 0 þ wD

I

� �
�qI �

X
vDI �qI ; ðcÞ

340 CHAPTER 2: KINEMATICS OF CONSTRAINED SYSTEMS



that is, in general, and contrary to the hitherto adopted Hamel viewpoint (}2.12),
dð�qDÞ 6¼ � ðdqDÞ, as if the qD are no longer holonomic coordinates!

REMARKS

The alternative (and, as shown below, internally consistent) viewpoint exhibited by
(c) [originally advanced by Suslov (1901–1902), (1946, pp. 596–600), and continued
by Levi-Civita (and Amaldi), Neimark and Fufaev, Rumiantsev, and others], is
based on the following assumptions:

(i) If the n differentials/velocities dq=�q=v are unconstrained, then we assume that the

Hamel viewpoint holds for all of them; that is, dð�qkÞ ¼ � ðdqkÞ ðk ¼ 1; . . . ; nÞ.
(ii) But, if these differentials/velocities are subject to m (a)-like constraints, then we

assume that the Hamel viewpoint holds only for the independent of them, say the

last n�m, but not for the dependent of them, that is for the remaining (first) m:

Suslov viewpoint : dð�qI Þ � �ðdqI Þ ¼ 0; but dð�qDÞ � �ðdqDÞ 6¼ 0: ðdÞ

Let us examine this quantitatively, from the earlier generalized transitivity equations
(2.10.1, 5):

dð��kÞ � �ðd�kÞ ¼
X

akl ½dð�qlÞ � �ðdqlÞ� þ
XX

� k
rs d�s ��r þ

X
� k

r dt ��r; ðeÞ

dð�qkÞ � �ðdqkÞ ¼
X

Akl ½dð��lÞ��ðd�lÞ��
XX

� l
rs d�s ��r�

X
� l

r dt ��r

n o
: ðfÞ

(a) Hamel viewpoint: dð�qkÞ ¼ �ðdqkÞ, always. Then, since d�D, ��D ¼ 0, (e) yields

dð��DÞ � �ðd�DÞ ¼
XX

�D
II 0 d�I 0 ��I þ

X
�D

I dt ��I [by (pr. 2.12.4: b)] ðgÞ

¼ �
XX

wD
II 0 dqI 0 �qI �

X
wD

I dt �qI [by (ex. 2.12.1: g, j)]; ðhÞ

dð��I Þ � �ðd�I Þ ¼
XX

� I
I 0I 00 d�I 00 ��I 0 þ

X
� I

I 0 dt ��I 0 ¼ 0

[by (pr. 2.12.4: a)]: ðiÞ
(b) Suslov viewpoint [for the Voronets-type constraints (a)]. Since here, ADD 0 ¼ �DD 0 ,
AID ¼ 0, AII 0 ¼ �II 0 , eq. (f) yields, successively,
ð1Þ 0 ¼ dð�qI Þ � �ðdqIÞ

¼
X

AII 0 ½dð��I 0 Þ � �ðd�I 0 Þ� �
XX

� I
I 0I 00 d�I 00 ��I 0 �

X
� I

I 0 dt ��I 0
n o

¼ ½dð��IÞ � �ðd�IÞ� �
XX

� I
I 0I 00 d�I 00 ��I 0 �

X
� I

I 0 dt ��I 0

¼ dð��I Þ � �ðd�I Þ [by (pr. 2.12.4: a)]; ðjÞ
ð2Þ dð�qDÞ � �ðdqDÞ

¼
X

ADD 0 ½dð��D 0 Þ � �ðd�D 0 Þ� �
XX

�D 0
II 0 d�I 0 ��I �

X
�D 0

I dt ��I

n o
¼ ½dð��DÞ � �ðd�DÞ� �

XX
�D

II 0 d�I 0 ��I �
X

�D
I dt ��I

¼ ½dð��DÞ � �ðd�DÞ� þ
XX

wD
II 0 d�I 0 ��I þ

X
wD

I dt ��I

[by (ex. 2.12.1: i), (pr. 2.12.2: c)]

¼
XX

wD
II 0 dqI 0 �qI þ

X
wD

I dt �qI [by (b)],
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and comparing the last two expressions of dð�qDÞ � �ðdqDÞ, we immediately con-
clude that

dð��DÞ � �ðd�DÞ ¼ 0: ðkÞ
Hence: In the Suslov viewpoint we must assume that dð��kÞ ¼ � ðd�kÞ ðk ¼ 1; . . . ; nÞ.

Both viewpoints are internally consistent; but, if applied improperly, they may give
rise to contradictions/paradoxes. Hamel’s viewpoint, however, has the advantage of
being in agreement with variational calculus (more on this in }7.8).

Problem 2.12.6 Consider the special stationary d� , dq transformation:

d�D�
X

aDD 0 dqD 0 ð¼ 0Þ and d�I �dqI ð6¼ 0; the �I are holonomic coordinatesÞ; ðaÞ

where aDD 0 ¼ aDD 0 ðq1; . . . ; qmÞ � aDD 0 ðqDÞ. Show that, in this case, the Hamel co-
efficients are

ðiÞ �D
D 0D 00 ¼

XX
ð@aDd 0=@qd 00 � @aDd 00=@qd 0 ÞAd 0D 0Ad 00D 00 ; ðbÞ

where D, D 0, D 00, d 0, d 00 ¼ 1; . . . ;m and dqD 0 ¼
P

AD 0D d�D; and

ðiiÞ � k
rs ¼ 0; for any one of k; r; s greater than m: ðcÞ

Example 2.12.2 Transformation of the Hamel Coefficients under Frame of
Reference Transformations. Let us again consider, for algebraic simplicity but no
loss in generality, the stationary Pfaffian constraint system:

d�D �
X

aDk dqk ¼ 0; ��D �
X

aDk �qk ¼ 0: ðaÞ

Further, let us assume that (a) is nonholonomic; that is, �DII 0 6¼ 0. Now we ask the
question: Is it possible, by a frame of reference transformation q! q 0ðt; qÞ, to make
the constraints (a) holonomic? In other words, is it possible to find new Lagrangean
coordinates qk 0 ¼ qk 0 ðt; qkÞ, in which the corresponding ðdqk 0 , d�kÞ Hamel co-
efficients �ðq 0ÞDII 0 � � 0DII 0 vanish? Below we show that the answer to this is no; that
is, if a system of constraints is nonholonomic in one frame of reference, it remains
nonholonomic in all other frames of reference obtainable from the original via
admissible frame of reference transformations.

Indeed, we find, successively [with �ðqÞDII 0 � �DII 0 ],

0 6¼ dð��DÞ � �ðd�DÞ ¼
XX

�D
I 0I d�I ��I 0 ¼

XX
aDrs dqs �qr

¼
XX

aDrs
X
ð@qs=@qs 0 Þ dqs 0 þ ð@qs=@tÞ dt

� � X
ð@qr=@qr 0 Þ �qr 0

� �
¼
XXXX

ð@qs=@qs 0 Þð@qr=@qr 0 ÞaDrs
� 	

dqs 0 �qr 0

þ
XXX

ð@qs=@tÞð@qr=@qr 0 ÞaDrs
� 	

dt �qr 0

�
XX

aDr 0s 0 dqs 0 �qr 0 þ
X

aDr 0 dt �qr 0

½where aDr 0s 0 � @aDr 0=@qs 0 � @aDs 0=@qr 0 ; etc:�
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¼
XX

aDr 0s 0
X

As 0I d�I þ As 0 dt
� � X

Ar 0I 0 ��I 0
� �

þ
X

aDr 0
X

Ar 0I 0 ��I 0
� �

dt

¼
XXXX

ðaDr 0s 0As 0IAr 0I 0 Þ d�I ��I 0 þ
X XX

aDr 0s 0Ar 0I 0As 0 þ
X

aDr 0Ar 0I 0
� �

dt ��I 0

¼
XX

� 0DI 0I d�I ��I 0 þ
X

� 0DI 0 dt ��I 0 ; ðbÞ

from which, comparing with the first line of this equation, we readily conclude that

�ðqÞDI 0I ¼ �ðq 0ÞDI 0I and �ðq 0ÞDI 0 ¼ 0; ðcÞ

that is, the Hamel coefficients remain invariant under frame of reference transforma-
tions; or, these coefficients depend on the nonholonomic ‘‘coordinates’’ �k but they
are independent of the particular holonomic coordinates frame used for their
derivation.

Incidentally, this derivation also demonstrates that the �-definition (2.10.1) is
both practically and theoretically superior to the more common (2.10.2–4).

REMARKS

(i) We are reminded that the transformation properties of the �’s under local
transformations: d�k , d�k 0 , at ðq; tÞ, have already been given in ex. 2.10.1.

(ii) The reader can easily verify that if, instead of (a), we had chosen a general
nonstationary d� , dq transformation, we would have found �ðq 0ÞDI 0 ¼ �ðqÞDI 0 ,
instead of the second of (c). Also, then,

d�r ¼
X

ars dqs þ ar dt ¼
X

ars
X
ð@qs=@qs 0 Þ dqs 0 þ ð@qs=@tÞ dt

� �
þ ar dt

�
X

arr 0 dqr 0 þ a 0r dt;

from which we can readily deduce the transformation relations among the coeffi-
cients aðqÞ, aðq 0Þ [recall (2.6.6 ff.)].

Problem 2.12.7 (see Forsyth, 1890, p. 54.) Verify that a system of n independent
Pfaffian constraints in the n (or even nþ 1) variables; that is,

d�k �
X

akl dql ¼ 0 ðk; l ¼ 1; . . . ; nÞ; ðaÞ

is always holonomic.

Problem 2.12.8 Alternative Formulation of Frobenius’ Theorem. It has been
shown, by Frobenius and others (see, e.g., Pascal, 1927, p. 584), that the Pfaffian
system:

d�D �
X

aDkðqÞ dqk ¼ 0 ðD ¼ 1; . . . ;m; k ¼ 1; . . . ; nÞ; ðaÞ
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is holonomic if, and only if, each of its m ðnþmÞ � ðnþmÞ antisymmetric
‘‘Frobenius matrices’’:

FD �

0 aD12 aD13 � � � aD1n a11 � � � am1

aD21 0 aD23 � � � aD2n a12 � � � am2

aDn1 aDn2 � � � � � � 0 a1n � � � amn

a11 a12 � � � � � � a1n 0 � � � 0

am1 am2 � � � � � � amn 0 � � � 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA
where aDkl � @aDk=@ql � @aDl=@qk � aDk;l � aD;lk ¼ �aDlk (e.g., aD12 ¼ �aD21,
aD11 ¼ �aD11 ) aD11 ¼ 0, etc.), has rank 2m.

Apply this theorem for various simple cases: for example, m ¼ 0 (i.e., dqk uncon-
strained), m ¼ 1 (one constraint), and m ¼ 2 (two constraints).

Example 2.12.3 Geometrical Interpretations of the Frobenius Conditions (May be
omitted in a first reading.) In terms of the earlier (2.11.20a ff.) m constraint vectors
aD ¼ ðaD1; . . . ; aDnÞ and n�m virtual vectors AI ¼ ðAI1; . . . ;AInÞ (in ordinary
vector, nonmatrix notation), Frobenius’ conditions first of (2.12.5) assume the
following forms:

(i) First interpretation: From the aD we build the antisymmetric tensor:

ðaDklÞ ¼ ð�aDlkÞ � ð@aDk=@ql � @aDl=@qkÞ: ðaÞ

These can be viewed as the holonomic (covariant) components of the ‘‘rotation or
curl(ing) of aD’’: a

D
kl ¼ �ðcurl aDÞkl . Also, we recall that Akl � @vk=@!l . As a result

of the above, (2.12.5):

�D
II 0 ¼

XX
ð@aDk=@ql � @aDl=@qkÞAkIAlI 0 �

XX
aDklAkIAlI 0 ¼ 0; ðbÞ

assumes the (covariant) tensor transformation form, in k, l:

�D
II 0 ¼

XX
ð@vk=@!IÞð@vl=@!I 0 ÞaDkl

¼ AI 0 � curl aD � AI ¼
XX

ðAI 0 Þlðcurl aDÞlkðAIÞk ¼ 0; ðcÞ

that is, the (covariant) components of the curl of the dependent/constraint vectors aD
along the independent nonholonomic directions AI should vanish.

(ii) Second interpretation: The Frobenius conditions (first of 2.12.5), rewritten
with the help of the alternative expression (2.10.15) and the quasi chain rule
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(2.9.30a) as

�D
II 0 ¼

XX
aDb AcIð@AbI 0=@qcÞ � AcI 0 ð@AbI=@qcÞ½ �� �

�
X

aDbð@AbI 0=@�I � @AbI=@�I 0 Þ ¼ 0; ðdÞ

state that the constraint vectors aD should be perpendicular to the
ðn�mÞ ðn� m� 1Þ=2 vectors:

AII 0 ¼
X

AcI ð@AbI 0=@qcÞ �
X

AcI 0 ð@AbI=@qcÞ
� �

� @AbI 0=@�I � @AbI=@�I 0ð Þ ¼ �AI 0I ;

that is,

�D
II 0 ¼ aD � AII 0 ¼ 0: ðeÞ

Similarly for the nonstationary/rheonomic Frobenius conditions (second of 2.12.5):
�D

I ¼ 0.
For further details, including the precise positioning of indices, as practiced in

general tensor analysis (and not observed in the above discussion!), see, for example,
Papastavridis (1999, }6.9).

2.13 GENERAL EXAMPLES AND PROBLEMS

Example 2.13.1 Introduction to the Simplest Nonholonomic Problem: Knife, Sled,
Scissors, and so on. Let us consider the motion of a knife S, whose rigid blade
remains perpendicular to the fixed plane O��xy, and in contact with it at the point
Cðx; yÞ, and whose mass center G lies a distance b ( 6¼ 0) from C along the blade
(fig. 2.15). The instantaneous angular orientation of S is given by its blade’s angle
with the þOx axis �.

Let us choose as Lagrangean coordinates: q1 ¼ x, q2 ¼ y, q3 ¼ �. If v ¼ ðdx=dt,
dy=dt, dz=dt ¼ 0) � (vx, vy, 0) ¼ (inertial) velocity of C, and u � (cos �, sin �, 0):
unit vector along the blade, then the velocity constraint is

v� u ¼ 0) ðsin�Þvx þ ð� cos�Þvy ¼ 0; or dy=dx ¼ tan�: ðaÞ
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Figure 2.15 Knife in motion on fixed plane.



Since this is a stationary (and, of course, catastatic) constraint, we will also have, for
its kinematically admissible/possible and virtual forms, respectively,

ðsin�Þ dxþ ð� cos�Þ dy ¼ 0 and ðsin�Þ �xþ ð� cos�Þ �y ¼ 0: ðbÞ

Other physical problems leading to such a constraint are:

(i) A racing boat with thin, deep, and wide keel, sailing on a still sea. Since the water

resistance to the boat’s longitudinal motion is much larger than the resistance to its

transverse motion, the direction of the boat’s instantaneous velocity must be always
parallel to its keel’s instantaneous heading;

(ii) a lamina moving on its plane, with a short and very stiff razor blade (or some
similar rigid and very thin object: e.g., a small knife) embedded on its underside.

Again, the lamina can move only along the instantaneous direction of its guiding

blade;
(iii) a sled;

(iv) a pair of scissors cutting through a piece of paper;
(v) a pizza cutter, etc.

Application of the holonomicity criterion (2.3.6) or (2.3.8a) to (a), (b), with
h ¼ ðsin�;� cos�; 0Þ and dr ¼ ðdx; dy; d�Þ [as if x; y; � were rectangular Cartesian
right-handed coordinates] yields

I � h � curl h ¼ h �
�ð@=@x; @=@y; @=@�Þ � ðsin�;� cos �; 0Þ	

¼ ðsin�;� cos�; 0Þ � ð� sin �; cos�; 0Þ ¼ �1 6¼ 0; ðcÞ

that is, the constraint (a), (b) is nonholonomic. This means that, although the general
(global) configuration of S is specified completely by the three independent coordi-
nates x; y; �, not all three of them can be given, simultaneously, small arbitrary
variations; that is, although there is no functional restriction of the type
f ðx; y; �Þ ¼ 0, there is one of the type gðdx; dy; d�; x; y; �Þ ¼ 0, namely the Pfaffian
constraint (a), (b). Put geometrically: the blade has three global freedoms (x; y; �),
but only two local freedoms (any two of dx; dy; d�). Since n ¼ 3 and m ¼ 1, this is
the simplest nonholonomic problem; and, accordingly, it has been studied extensively
(by Bahar, Carathéodory, Chaplygin, et al.).

The independence of x; y; � can be demonstrated as follows: we keep any two of
them constant, and then show that varying the third results in a nontrivial (or
nonempty) range of kinematically admissible positions:

(i) keep x and y fixed and vary � continuously; the constraint (a), (b) is not violated

[fig. 2.16(a)];
(ii) keep y and � fixed. Varying x we can achieve other admissible configurations with

different x’s but the same y and �;
but to go from one of them to another we have to vary all three coordinates [fig.
2.16(b)];

(iii) similarly when x and � are fixed and y varies [fig. 2.16(c)].

The precise kinetic path followed in each case, among the kinematically possible/
admissible ones, depends on the system’s equations of (constrained) motion and on

its initial conditions.
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An Ad Hoc Proof of the
Impossibility of Obtaining a Relation f ðx; y; �Þ ¼ 0

Let us assume that such a constraint exists. Then d-varying it, and with subscripts
for partial derivatives, yields

d f ¼ fx dxþ fy dyþ f� d� ¼ 0; ðdÞ

or, taking into account the constraint in the form: dy ¼ ðtan�Þ dx;
d f ¼ ðfx þ fy tan�Þ dxþ ðf�Þ d� ¼ 0; ðeÞ

where now dx and d� are independent. Equation (e) leads immediately to

f� ¼ 0 ) f ¼ f ðx; yÞ and fx þ fy tan� ¼ 0: ðfÞ

By ð@=@�Þ-differentiating the second of (f ), while observing the first of (f ), we obtain

fyð1= cos2�Þ ¼ 0; ðgÞ

from which, since in general 1= cos2� 6¼ 0, it follows that fy ¼ 0 ) f ¼ f ðxÞ. But
then the second of (f ) leads to fx ¼ 0 ) f ¼ constant ðindependent of x; y; �Þ, and as
such it cannot enforce the constraint f ðx; y; �Þ ¼ 0. Hence, no such f exists (with or
without integrating factors).
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coordinates. We can always, through a suitable finite motion, bring the knife to a position and

orientation as close as we want to any specified original position and orientation; that is, the

relation among x, y, � is nonunique.



However, if the knife was constrained to move along a prescribed path, on the
O��xy plane, the system would be holonomic! In that case, we would have in advance
the path’s equations, say in the parametric form:

x ¼ xðsÞ and y ¼ yðsÞ ðs ¼ arc lengthÞ; ðhÞ
from which � could be uniquely determined for every s [i.e., � ¼ �ðsÞ], via

dy=dx ¼ dy=ds
.
dx=ds � y 0ðsÞ=x 0ðsÞ ¼ tan�ðsÞ: ðiÞ

This is somewhat analogous to the basic variables of Lagrangean mechanics qk,
dqk=dt � vk, which, before the problem is solved, are considered as independent,
and then, after the problem is completely solved, become dependent through time.

Example 2.13.2 The Knife Problem: Hamel Coefficients. Continuing from the
preceding example: in view of the constraint (a), (b) there, and following Hamel’s
methodology (‘‘equilibrium quasi velocities,’’ }2.11), let us introduce the following
three quasi velocities:

!1 � ð� sin�Þvx þ ðcos�Þvy þ ð0Þv� ð¼ 0Þ;
!2 � ðcos�Þvx þ ðsin�Þvy þ ð0Þv� ¼ v ð6¼ 0Þ;
!3 � ð0Þvx þ ð0Þvy þ ð1Þv� ¼ v� ð6¼ 0Þ; ðaÞ

where v ¼ velocity component of the knife’s contact point C; and hence vx ¼ v cos�,
vy ¼ v sin�, and the constraint is simply !1 ¼ 0. Clearly, since

@ðcos�Þ=@� 6¼ @ð0Þ=@x and @ðsin�Þ=@� 6¼ @ð0Þ=@y; ðbÞ
!2 ¼ v is a quasi velocity; that is, v 6¼ total time derivative of a genuine position
coordinate, or of any function of x; y; �. Inverting (a), we obtain

vx ¼ ð� sin�Þ!1 þ ðcos�Þ!2 þ ð0Þ!3;

vy ¼ ðcos�Þ!1 þ ðsin�Þ!2 þ ð0Þ!3;

v� ¼ ð0Þ!1 þ ð0Þ!2 þ ð1Þ!3: ðcÞ
If a and A are the matrices of the transformations (a) and (c), respectively, then we
easily verify that a ¼ A, and Det a ¼ DetA ¼ � sin2 �� cos2 � ¼ �1 (i.e., nonsin-
gular transformations). Further, we notice that (a), (c) hold with !1;2;3 and vx; vy; v�
replaced, respectively, with d�1;2;3 ¼ !1;2;3 dt and ðdx; dy; d�Þ ¼ ðvx; vy; v�Þ dt; and,
since they are stationary, also for ��1;2;3 and �x; �y; ��.

Next, by direct d=�-differentiations of ��1; d�1, and then subtraction, we find,
successively,

dð��1Þ � �ðd�1Þ ¼ d ½ð� sin �Þ �xþ ðcos�Þ �yþ ð0Þ ���
� �½ð� sin�Þ dxþ ðcos�Þ dyþ ð0Þ d��
¼ ð� sin�Þðd�x� �dxÞ þ ðcos�Þðd�y� �dyÞ
� cos� d� �x� sin� d� �y þ cos� dx ��þ sin� dy ��

¼ 0þ 0� cos�ð1Þ d�3 ð� sin�Þ ��1 þ ðcos�Þ ��2 þ ð0Þ ��3½ � � � � �
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[i.e., expressing dx; �x, dy; �y, d�; �� from (c), with !1;2;3 replaced with
d�1;2;3; ��1;2;3] and so we, finally, obtain the differential transitivity equation:

dð��1Þ � �ðd�1Þ ¼ d�2 ��3 � d�3 ��2; ðdÞ
[i.e., dð��1Þ � �ðd�1Þ 6¼ 0, even though ��1 ¼ 0 and d�1 ¼ 0]; and, also, dividing this
by dt, which does not couple with �ð. . .Þ, we obtain its (equivalent) velocity transi-
tivity equation:

ð��1Þ:� �!1 ¼ ð0Þ ��1 þ ð�1Þ!3 ��2 þ ð1Þ!2 ��3 ð6¼ 0Þ: ðeÞ
Similarly, after some straightforward differentiations, we find

ð��2Þ:� �!2 ¼ ð1Þ!3 ��1 þ ð0Þ ��2 þ ð�1Þ!1 ��3 ð¼ 0Þ; ðfÞ
ð��3Þ:� �!3 ¼ ð0Þ ��1 þ ð0Þ ��2 þ ð0Þ ��3 ð¼ 0Þ: ðgÞ

From (e, f, g) we readily read off the nonvanishing Hamel’s coefficients:

�DII 0 ðD ¼ 1; I ; I 0 ¼ 2; 3Þ : �123 ¼ ��132 ¼ �1; ðhÞ
�Ikl ðI ¼ 2; k; l ¼ 1; 3Þ : �213 ¼ ��231 ¼ 1: ðiÞ

REMARKS

(i) Since not all �DII 0 ! �1kl (k; l ¼ 2; 3) vanish, we conclude, by Frobenius’ the-
orem (}2.12), that our constraint, in any one of the following three forms:

Velocity:

!1 � ð� sin�Þvx þ ðcos�Þvy þ ð0Þv� ð¼ 0Þ; ð jÞ
Kinematically admissible:

d�1 � ð� sin�Þ dxþ ðcos�Þ dyþ ð0Þ d� ð¼ 0Þ; ðkÞ
Virtual:

��1 � ð� sin�Þ �xþ ðcos�Þ �y þ ð0Þ �� ð¼ 0Þ; ðlÞ
is nonholonomic.

(ii) The fact that upon imposition of the constraints ��1 ¼ 0, !1 ¼ 0, the transitivity
equation (f ) yields ð��2Þ:� �!2 ¼ 0 does not mean that

d�2 � ðcos�Þ dxþ ðsin�Þ dyþ ð0Þ d� ¼ v dt ð6¼ 0Þ; ðmÞ
or

��2 � ðcos�Þ �xþ ðsin �Þ �yþ ð0Þ �� ð6¼ 0Þ; ðnÞ
are exact; it does not mean that �2 is a genuine (Lagrangean) coordinate. For
exactness, we should have �2kl ¼ 0 ðk; l ¼ 1; 2; 3Þ ) ð��2Þ:� �!2 ¼ 0, independently
of the constraints !1=d�1=��1 ¼ 0. [We recall (}2.12) that Frobenius’ theorem tests
the holonomicity, or absence thereof, of a system of Pfaffian equations of constraint;
whereas the exactness, or inexactness, of a particular Pfaffian form, like d�2 and
d�3ð6¼ 0Þ is a property of that form; that is, it is ascertained by examination of
that form alone, independently of other constraint equations. In sum: constraint
holonomicity is a system (coupled) property; while coordinate holonomicity is an
individual (uncoupled) property.]
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(iii) Since !3 ¼ d�=dt � v� is a genuine velocity, �3kl ¼ 0 (k; l ¼ 1; 2; 3); as
expected.

Hamel Viewpoint versus Suslov Viewpoint

So far, we have assumed Hamel’s viewpoint; that is,

dð�xÞ ¼ �ðdxÞ; dð�yÞ ¼ �ðdyÞ; dð��Þ ¼ �ðd�Þ; ðoÞ

and dð��1Þ 6¼ �ðd�1Þ, in spite of the constraint ��1 ¼ 0 and d�1 ¼ 0 [and that even if
dð��1Þ ¼ 0, still ��ðd�1Þ 6¼ 0!].

Let us now examine the Suslov viewpoint: with the analytically convenient choice,
qD ¼ y and qI ¼ x; �, we can rewrite the constraint as

d�1 � dy� ðtan �Þ dx ¼ 0 and ��1 � �y� ðtan�Þ �x ¼ 0 ½instead of ðaÞ�;

or

dy ¼ ðtan�Þ dx þ ð0Þ d� and �y ¼ ðtan�Þ �xþ ð0Þ ��; ðpÞ

and, therefore, the corresponding transitivity equations become [instead of (d)–(g)]

Dependent : dð�yÞ � �ðdyÞ ¼ dð�x tan�Þ � �ðdx tan �Þ ¼ � � �
¼ ½dð�xÞ � �ðdxÞ� tan�þ ð1= cos2�Þðd� �x� dx ��Þ
¼ ð1= cos2�Þðd� �x� dx ��Þ 6¼ 0; ðqÞ

Independent : dð�xÞ � �ðdxÞ ¼ 0; dð��Þ � �ðd�Þ ¼ 0; ðrÞ

from which we readily read off the sole nonvanishing Voronets symbol:

wy
x� ¼ �wy

�x ¼ 1= cos2�: ðsÞ

Under Hamel’s viewpoint, using the same variables, from �y ¼ ðtan�Þ �x (i.e.,
��1 ¼ 0) it follows that dð�yÞ ¼ dð�xÞ tan�þ ð1= cos2�Þ d� �x [i.e., dð��1Þ ¼ 0]; but
from dy ¼ ðtan �Þ dx (i.e., d�1 ¼ 0) it does not follow that �ðdyÞ ¼
�ðdxÞ tan�� ð1= cos2�Þ �� dx [i.e., �ðd�1Þ 6¼ 0].

Problem 2.13.1 Consider a knife (or sled, or scissors, etc.) moving on a
uniformly rotating turntable T (fig. 2.17). In T-fixed (moving) coordinates O��xy�,
its constraint is

ðsin �Þvx þ ð� cos�Þvy ¼ 0 ½vx � dx=dt; vy � dy=dt�: ðaÞ

Show that in inertial (fixed) coordinates O��XYF, where

X ¼ ðcos �Þxþ ð� sin �Þyþ ð0Þ�;
Y ¼ ðsin �Þxþ ðcos �Þyþ ð0Þ�;
F ¼ ð0Þxþ ð0Þyþ ð1Þ�þ �; ðbÞ
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and � ¼ !t; !: constant angular velocity of O��xy relative to O��XY [i.e., say,
X ¼ Xðx; y; tÞ, etc.], the constraint takes the (acatastatic) form (with vX � dX=dt,
vY � dY=dt),

ðsinFÞvX þ ð� cosFÞvY þ !
�ðcosFÞX þ ðsinFÞY 	 ¼ 0: ðcÞ

Example 2.13.3 Rolling Disk—Vertical Case. Let us consider a circular thin disk
D, of center G and radius r, rolling while remaining vertical on a fixed, rough,
and horizontal plane P (fig. 2.18). (The general nonvertical case is presented later
in ex. 2.13.7.) This system has four Lagrangean coordinates (or global DOF ): the
(x; y; z ¼ r) coordinates of G, and the Eulerian angles � (precession) and  (spin).
The constraints z ¼ r (contact) and � ¼ �=2 are, clearly, holonomic (H). The
velocity constraint is vC ¼ 0 (where C is the contact point); or, since along the
fixed axes O��XYZ [with the notation dx=dt � vx; dy=dt � vy; d�=dt � !�;
d =dt � ! ]:

vG ¼ ðvx; vy; 0Þ; x ¼ ð�! sin�; ! cos�; !�Þ; and rC=G ¼ ð0; 0;�rÞ;
) vC ¼ vG þ x� rC=G ¼ � � � ¼ ðvx � r! cos�; vy � r! sin�; 0Þ ¼ 0; ðaÞ

or, in components, in the following equivalent forms:

Velocity : vx ¼ r! cos� and vy ¼ r! sin�; ðbÞ

Kinematically admissible : dx ¼ ðr cos�Þ d and dy ¼ ðr sin�Þ d ; ðcÞ

Virtual :: �x ¼ ðr cos�Þ � and �y ¼ ðr sin�Þ � : ðdÞ
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Figure 2.17 Knife moving on a uniformly rotating turntable.



As shown below, these constraints are nonholonomic (NH). Hence, the disk is a
scleronomic NH system with f � n�m ¼ 4� 2 ¼ 2 DOF in the small.

It is not hard to see that imposition, on (b–d), of the additional H constraint
d� ¼ 0 ) � ¼ constant, say � ¼ 0, would reduce them to the well-known H case
of plane rolling: dx ¼ r d ) x ¼ r þ constant, and dy ¼ 0 ) y ¼ constant.
{Also, the problem would become H if the disk was forced to roll along a prescribed
O��XY path. For, then, the rolling condition would be [with s: arc-length along (c)]
ds ¼ r d ) s ¼ r þ constant, and (c) would yield the parametric equations
x ¼ xðsÞ and y ¼ yðsÞ; that is, for each s there would correspond a unique x; y;  ,
and � [from (b–d)], and that would make the disk a 1 (global) DOF H system.}

Ad Hoc Proof of the Nonholonomicity of the Constraints (b–d)

Let us assume that we could find a finite relation f ðx; y; �;  Þ ¼ 0, compatible with
(b–d). Then (with subscripts denoting partial derivatives), we would have

df ¼ fx dxþ fy dyþ f� d�þ f d ¼ 0: ðeÞ
Substituting dx and dy from (c) into (e)— that is, embedding the constraints into it—
yields

ðr fx cos�þ r fy sin�þ f Þ d þ ð f�Þ d� ¼ 0; ðfÞ
which, since now d and d� are independent, gives

f� ¼ 0 ) f ¼ f ðx; y;  Þ and r fx cos�þ r fy sin�þ f ¼ 0: ðgÞ
Next, (@=@�)-differentiating the second of (g) once, while taking into account the first
of (g), yields

�r fx sin�þ r fy cos� ¼ 0; ðhÞ
and repeating this procedure on (h), while again observing the first of (g), produces

�r fx cos�� r fy sin � ¼ 0: ðiÞ
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Figure 2.18 Rolling of vertical disk on a fixed plane.



[Further (@=@�)-differentiations would not produce anything new.] The system (h),
(i) has the unique solution,

fx ¼ 0 and fy ¼ 0; ð jÞ
due to which the second of (g) reduces to f ¼ 0. It is clear that the above result in
f ¼ constant, and such a functional relation, obviously, cannot produce the con-
straints (b–d)—no f ðx; y; �;  Þ exists. Geometrically, this nonholonomicity has the
following consequences: Starting from a certain initial configuration, we can roll the
disk along two different paths to two final configurations with the same contact
point—namely, same final (x; y), but rotated relative to each other; that is, with
different final (�;  ). If the constraints were H, then � and  would be functions
of (x; y) and the two final positions of the disk would coincide completely.

Proof that the Constraints (b–d) are NH via Frobenius’
Theorem

Let us rewrite the two constraints (c, d) in the equilibrium forms:

Kinematically admissible :

d�1 � dx� ðr cos�Þ d ¼ 0; d�2 � dy� ðr sin�Þ d ¼ 0; ðkÞ
Virtual : ��1 � �x� ðr cos�Þ � ¼ 0; ��2 � �y� ðr sin�Þ � ¼ 0: ðlÞ
It follows that the corresponding bilinear covariants (2.8.2 ff.) are

dð��1Þ � �ðd�1Þ ¼ � � � ¼ ðr sin�Þðd� � � d ��Þ; ðmÞ
dð��2Þ � �ðd�2Þ ¼ � � � ¼ ð�r cos�Þðd� � � d ��Þ; ðnÞ

and, clearly, these vanish for arbitrary values of the independent differentials
d�; ��; d ; � , if sin� ¼ 0 and cos� ¼ 0. But then the constraints (c) reduce to
dx ¼ 0) x ¼ constant and dy ¼ 0) y ¼ constant, which is, in general, impossible.
Hence, the constraints are NH [one can arrive at the same conclusion with the help
of the �’s (}2.12), but that is more laborious].

Problem 2.13.2 Continuing from the previous problem (vertically rolling disk),
show that its velocity constraints can be expressed in the equivalent form:

vG � u ¼ vx cos �þ vy sin� ¼ r! ; ðaÞ
vG � n ¼ �vx sin�þ vy cos� ¼ 0; ðbÞ

where u and n are unit vectors on the disk plane (parallel to O��XY) and perpendi-
cular to it, respectively (fig. 2.18). [Notice that (b) coincides, formally, with the knife
problem constraint.]

Example 2.13.4 Rolling Sphere— Introduction. Let us consider a sphere of center G
and radius r, rolling without slipping on a fixed, rough and, say, horizontal plane P
(fig. 2.19). The complete specification of a generic sphere configuration requires five
independent (minimal) Lagrangean coordinates. As such, we could take the (inertial)
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G��xyz relative to translating (nonrotating) axes G��XYZ. The contact constraint is
expressed by the holonomic (H) equation, Z � vertical coordinate of G ¼ r. The

vC ¼ vG þ x� rC=G ¼ dqG=dtþ x� ð�rKÞ
¼ ðvX ; vY ; 0Þ þ ð!X ; !Y ; !ZÞ � ð0; 0;�rÞ ¼ � � � ¼ ðvX � r!Y ; vY þ r!X ; 0Þ ¼ 0:

Hence, the rolling conditions are

vX � r!Y ¼ 0; vY þ r!X ¼ 0; ðaÞ
or, expressing the space-fixed components !X ;Y in terms of their Eulerian angle rates
(}1.12),

vX � rðsin�!� � sin � cos�! Þ ¼ 0; vY þ rðcos�!� þ sin � sin�! Þ ¼ 0; ðbÞ

or, further, in kinematically admissible form,

dX � rðsin� d�� sin � cos� d Þ ¼ 0; dY þ rðcos� d�þ sin � sin � d Þ ¼ 0; ðcÞ
or, finally, since these constraints are catastatic, in virtual form,

�X � rðsin� ��� sin � cos� � Þ ¼ 0; �Y þ rðcos� ��þ sin � sin� � Þ ¼ 0: ðdÞ
[Absence of pivoting would have meant the following additional constraint:

ðxÞnormal to sphere atC ¼ !Z ¼ !� þ cos � ! ¼ 0;

or

d�þ cos � d ¼ 0 ) d�=d ¼ � cos � � hð�Þ�: ðeÞ
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Figure 2.19 Rolling of a sphere on a fixed horizontal plane.

coordinates of G (X, Y), and the three Eulerian angles (φ, θ, ψ) of body-fixed axes

rolling constraint is found by equating the (inertial) velocity of the contact point of the
sphere C with that of its (instantaneously) adjacent plane point, which here is zero;
ω ≡ inertial angular velocity of sphere. Using components alongO–XYZ axes throughout,
we find



As shown later, the constraints (a–d) are nonholonomic (NH). [We already notice
that (c), for example, do not involve d�, and yet the constraints feature sin� and
cos�.] Mathematically, this means that it is impossible to obtain them by differen-
tiating two finite constraint equations of the form FðX ;Y ; �; �;  Þ ¼ 0 and
EðX ;Y ; �; �;  Þ ¼ 0; that is, the coordinates X ;Y ; �; �;  are independent. But
their differentials dX; dY ; d�; d�; d , in view of (a–d), are not independent; that is,
in general, only three of them can be varied simultaneously and arbitrarily. We say
that the sphere has five DOF in the large, but only three DOF in the small:
f � n�m ¼ 5� 2 ¼ 3. (Had we added pivoting, we would have f ¼ 2.)

Kinematically, the above mean that the sphere may roll from an initial config-
uration, along two different routes, to two final configurations, which have both the
same contact point and center location (i.e., same X , Y), but different angular
orientations relative to each other (i.e., different �; �;  ). If the constraints (a–d)
were holonomic—for example, if the plane was smooth—it would be possible to
vary all X ;Y ; �; �;  independently and arbitrarily without violating the (then) con-
straints; namely, the sphere’s rigidity and the constancy of distance between G and
C. Further, the sphere can roll from any initial configuration, with the sphere point
Ci in contact with the plane point Pi, to any other final configuration, with the sphere
point Cf in contact with the plane point Pf . To see this property, known as acces-
sibility (} 2.3), we draw on the plane a curve (�) joining Ci and Pf , and another curve
on the sphere (�), of equal length to (�), joining Ci and Cf . Now, a pivoting of the
sphere can make the two arcs (�) and (�) tangent, at Ci ¼ Pi. Then, we bring Cf to Pf

by rolling (�) on (�). A final pivoting of the sphere brings it to its final configuration
(see also Rutherford, 1960, pp. 161–162).

A Special Case

Assume, next, that the sphere rolls without pivoting, and also moves so that
� ¼ constant � �o. Let us find the path of G. With � ¼ constant) d� ¼ 0, the roll-
ing constraints (c) reduce to

dX þ rðsin �oÞ cos� d ¼ 0; dY þ rðsin �oÞ sin� d ¼ 0; ðfÞ

and the no-pivoting constraint (e) to

d�=d ¼ � cos �o ¼ constant: ðgÞ

This leaves only n�m ¼ 5� 4 ¼ 1DOF in the small. Taking � as the independent
coordinate and eliminating d between (f ), with the help of (g), yields

dX ¼ rðtan �oÞ cos� d�; dY ¼ rðtan �oÞ sin� d�; ðhÞ

which integrates readily to the curve (with Xo and Yo as integration constants):

X � X0 ¼ rðtan �oÞ sin�; Y � Y0 ¼ �rðtan �oÞ cos�; ðiÞ

that is, G describes, on the plane Z ¼ r, a circle of radius r tan �o.
[These considerations also show how imposition of a sufficient number of
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additional holonomic and/or nonholonomic constraints turns an originally non-
holonomic system into a holonomic one.]

Example 2.13.5 Rolling Sphere on a Spinning Table— Introduction. Let us extend
the previous example to the case where the plane P is not fixed, but rotates about
a fixed axis OZ perpendicular to it with, say, constant (inertial) angular velocity
X. In this case, the rolling condition expresses the fact that the contact points of
the sphere and the plane, C, have equal inertial velocities:

ðvCÞsphere ¼ ðvCÞplane : vG þ x� rC=G ¼ X� rC=O ð¼ X � qÞ; ðaÞ

or, in terms of their components along inertial (background) axes O��XYZ=O��IJK :

ðvX ; vY ; 0Þ þ ð!X ; !Y ; !ZÞ � ð0; 0;�rÞ ¼ ð0; 0;OÞ � ðX ;Y ; 0Þ; ðbÞ

from which we easily obtain the two rolling conditions:

vX � r!Y ¼ �OY ; vY þ r!X ¼ OX : ðcÞ

Next, expressing !X , !Y in terms of their Eulerian angles (between translating/
nonrotating axes G��XYZ and sphere-fixed axes G��xyz) and their time rates, as in
the preceding example, we transform (c) to

vX � rðsin�!� � sin � cos�! Þ þ OY ¼ 0;

vY þ rðcos�!� þ sin � sin�! Þ � OX ¼ 0: ðdÞ

The O-proportional terms in (d) are the acatastatic parts of these constraints, and
arise out of our use of inertial coordinates to describe the kinematics in a noninertial
frame; had we used plane-fixed (noninertial) coordinates, the constraints would have
been catastatic in them. It is not hard to see that the kinematically admissible/possible
and virtual forms of these constraints are, respectively (note differences between them
resulting from constraint �t ¼ 0),

dX � rðsin � d�� sin � cos� d Þ þ ðOYÞ dt ¼ 0;

dY þ rðcos� d�þ sin � sin� d Þ � ðOXÞ dt ¼ 0; ðeÞ
�X � rðsin � ��� sin � cos� � Þ ¼ 0;

�Y þ rðcos� ��þ sin � sin� � Þ ¼ 0: ðfÞ

Example 2.13.6 Rolling Sphere on Spinning Table— the Transitivity Equations.
Continuing from the preceding example, let us show that its rolling constraints
(c–f ); as well as those of its previous, stationary table case) are nonholonomic; that
is, the system has n ¼ 5 DOF in the large, and f � n�m ¼ 5� 2 ¼ 3 DOF in the
small.

In view of the structure of these constraints, we choose the following equilibrium
quasi velocities (with the usual notations: dX=dt � vX ; . . . ; d�=dt � !�; . . .):
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Dependent:

!1 � vX� r!Y þOY ¼ vX � rðsin�!�� cos� sin � ! ÞþOY ¼ vX� r!4 þ OY ð¼ 0Þ;
ðaÞ

!2 � vY þ r!X�OX ¼ vY þ rðcos�!� þ sin� sin � ! Þ � OX ¼ vY þ r!3� OX ð¼ 0Þ;
ðbÞ

Independent:

!3 � !X ¼ ðcos �Þ!� þ ðsin� sin �Þ! ð6¼ 0Þ; ðcÞ
!4 � !Y ¼ ðsin�Þ!� þ ð� cos� sin �Þ! ð6¼ 0Þ; ðdÞ
!5 � !Z ¼ ð1Þ!� þ ðcos �Þ! ð6¼ 0Þ; ðeÞ
!6 � dt=dt ¼ 1 ðisochronyÞ: ðf Þ

Recalling results from }1.12, we readily see that these partially decoupled equations
invert to

v1 � vX ¼ !1 þ r!4 � OY ðwithout enforcement of constraints !1;2 ¼ 0Þ; ðg1Þ
v2 � vY ¼ !2 � r!3 þ OX ðwithout enforcement of constraints !1;2 ¼ 0Þ; ðg2Þ
v3 � !� ¼ ð� cot � sin �Þ!3 þ ðcot � cos�Þ!4 þ !5; ðg3Þ
v4 � !� ¼ ðcos�Þ!3 þ ðsin�Þ!4; ðg4Þ
v5 � ! ¼ ðsin�= sin �Þ!3 þ ð� cos�= sin �Þ!4; ðg5Þ
v6 � dt=dt ¼ !6 ¼ 1: ðg6Þ

The virtual forms of (a–g6) are as follows [note absence of acatastatic terms in
(h1, 2)]:

Dependent:

��1 � �X� r��Y ¼ �Xþð�r sin�Þ ��þðr cos� sin �Þ � ¼ �X� r ��4 ð¼ 0Þ; ðh1Þ
��2 � �Y þ r��X ¼ �Y þ ðr cos�Þ ��þ ðr sin� sin �Þ � ¼ �Y þ r ��3 ð¼ 0Þ; ðh2Þ

Independent:

��3 � ��X ¼ ðcos�Þ ��þ ðsin� sin �Þ � ð6¼ 0Þ; ðh3Þ
��4 � ��Y ¼ ðsin�Þ ��þ ð� cos� sin �Þ � ð6¼ 0Þ; ðh4Þ
��5 � ��Z ¼ ð1Þ �� þ ðcos �Þ � ð6¼ 0Þ; ðh5Þ
��6 � �q6 � �t ¼ 0 ðisochronyÞ; ðh6Þ
�q1 � �X ¼ ��1 þ r ��4; ði1Þ
�q2 � �Y ¼ ��2 � r ��3; ði2Þ
�q3 � �� ¼ ð� cot � sin �Þ ��3 þ ðcot � cos�Þ ��4 þ ��5; ði3Þ
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�q4 � �� ¼ ðcos�Þ ��3 þ ðsin�Þ ��4; ði4Þ

�q5 � � ¼ ðsin �= sin �Þ ��3 þ ð� cos�=sin �Þ ��4; ði5Þ

�q6 � �t ¼ ��6 ¼ 0: ði6Þ

Now we are ready to calculate Hamel’s coefficients from the transitivity equations
(}2.10):

ð��kÞ:� �!k ¼
XX

�kr� !� ��r ¼
XX

�krs !s ��r þ
X

�kr ��r; ðjÞ

where k; r; s ¼ 1; . . . ; 5; � ¼ 1; . . . ; 6; �kr � �kr;nþ1 ¼ �kr6:
By direct differentiations, use of the above, and the indicated shortcuts [and

noting that, even if O ¼ OðtÞ ¼ given function of time, still �O ¼ 0], we obtain,
successively,

ð��1Þ:� �!1 ¼ ð�X � r ��YÞ:� �ðvX � r!Y þ OYÞ
¼ ½ð�XÞ:� �vX � � r½ð��YÞ:� �!Y � � O �Y

¼ 0� r½ð��4Þ: � �!4� � O �Y

[invoking the rotational transitivity equations (}1.14 and ex. 2.13.9), and (i2)]

¼ �rð!Z ��X � !X ��ZÞ � Oð��2 � r��3Þ
¼ �rð!5��3 � !3��5Þ � Oð��2 � r��3Þ;

or, finally,

ð��1Þ:� �!1 ¼ ð�rÞ!5 ��3 þ ðrÞ!3 ��5 þ ð�OÞ ��2 þ ðrOÞ ��3; ðk1Þ
ð��2Þ:� �!2 ¼ ð�Y þ r ��XÞ:� �ðvY þ r!X �OXÞ

¼ ½ð�YÞ: � �vY � þ r½ð��XÞ:� �!X � þ O �X

¼ 0þ r½ð��3Þ:� �!3� þ O �X

[invoking again the rotational transitivity equations and (i1)]

¼ rð!Y��Z � !Z��Y Þ þ Oð��1 þ r ��4Þ
¼ rð!4��5 � !5��4Þ þ Oð��1 þ r ��4Þ;

or, finally,

ð��2Þ:� �!2 ¼ ð�rÞ!5��4 þ ðrÞ!4��5 þ ðOÞ ��1 þ ðrOÞ ��4; ðk2Þ

and, again, the rotational transitivity equations (with X ! 3, Y ! 4, Z ! 5) give

ð��3Þ:� �!3 ¼ !4 ��5 � !5 ��4; ðk3Þ
ð��4Þ:� �!4 ¼ !5 ��3 � !3 ��5; ðk4Þ
ð��5Þ:� �!5 ¼ !3 ��4 � !4 ��3: ðk5Þ
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Comparing ( j) with (k1–5) we readily find that the nonvanishing �’s are

�135 ¼ ��153 ¼ �r; �126 ¼ ��162 � �12 ¼ �O; �136 ¼ ��163 � �13 ¼ rO; ðl1Þ
�245 ¼ ��254 ¼ �r; �216 ¼ ��261 � �21 ¼ O; �246 ¼ ��264 � �24 ¼ rO; ðl2Þ
�345 ¼ ��354¼ �453 ¼��435¼ �534 ¼��543¼�1 ½¼ �1 ðpermutation symbolÞ�: ðl3Þ
Here, DðependentÞ ¼ 1; 2 and I ; I 0ðndependentÞÞ ¼ 3; 4; 5. Therefore,

ðmÞ

!1 ¼ 0 and !2 ¼ 0 is nonholonomic, in both the catastatic (rolling on fixed plane) and
acatastatic (rolling on rotating plane) cases; that is, for any given O ¼ OðtÞ.

Example 2.13.7 Rolling Disk on Fixed Plane. Let us consider a thin circular disk
(or coin, or ring, or hoop), of radius r and center G, rolling on a fixed horizontal
and rough plane (fig. 2.20). A generic configuration of the disk is determined by
the following six Lagrangean coordinates:

X ;Y ;Z: inertial coordinates of G;

�; �;  : Eulerian angles of body-fixed axes G��xyz relative to the cotranslating but
nonrotating axes G��XYZ (similar to the rolling sphere case).
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Figure 2.20 Geometry and kinematics of circular disk rolling on fixed rough

plane. Axes: G–nNZ � G�x 0NZ: semifixed; G–nn 0z � G�x 0y 0z 0: semimobile;

G–xyz: body axes (not shown, but easily pictured); G–XYZ: space axes.

and so, according to Frobenius’ theorem (§2.12), the system of Pfaffian constraints

γDII′ : γ
1

35 = −r �= 0, γ2
45 = −r �= 0; γDI : γ

1
3 = γ2

4 = r Ω �= 0;



[In view of the complicated geometry, we avoid all ad hoc, possibly shorter, treat-
ments, in favor of a fairly general and uniform approach. An alternative description
is shown later.]

The vertical coordinate of G, clearly, satisfies the holonomic constraint

Z ¼ r sin �; ðaÞ
and this brings the number of independent Lagrangean coordinates down to five:
X ;Y ; �; �;  ; that is, n ¼ 5.

The rolling constraint becomes, successively,

0 ¼ vC ¼ vG þ x� rC=G ðx : inertial angular velocity of diskÞ
¼ vG � rx� j 0

¼ vG � rð!x 0 i
0 þ !y 0 j

0 þ !z 0k
0Þ � j 0 ðsemimobile x-decompositionÞ

¼ vG � r!x 0 ði 0 � j 0Þ � r!z 0 ðk 0 � j 0Þ
¼ vG � r!x 0 ðk 0Þ � r!z 0 ð�i 0Þ; ðbÞ

from which we obtain the constraint components along the two ‘‘natural’’ (semi-
fixed) directions nði 0Þ and NðuNÞ:
ðiÞ 0 ¼ vC � i 0 ¼ vG � i 0 þ r!z 0 or vG;n þ r!z 0 ¼ 0; ðc1Þ
ðiiÞ 0 ¼ vC � uN ¼ vG � uN � r!x 0 ðk 0 � uNÞ þ r!z 0 ði 0 � uNÞ ¼ vG � uN � r!x 0 ðk 0 � uNÞ;
or

vG;N � r!x 0 cosð�=2þ �Þ ¼ vG;N þ r!x 0 sin � ¼ 0: ðc2Þ
The third semifixed direction component gives the earlier constraint (a):

0 ¼ vC �K ¼ vG �K � r!x 0 ðk 0 �KÞ þ r!z 0 ði 0 �KÞ ¼ vG �K � r!x 0 ðk 0 �KÞ;
or, since !x 0 ¼ !�,

0 ¼ vG;Z � r!� cos � ) dZ � r cos � d� ¼ 0 ) Z � r sin � ¼ constant! 0:

ðiÞ !x 0 ¼ !�; !y 0 ¼ ðsin �Þ!�; !z 0 ¼ ðcos �Þ!� þ ! ; ðd1Þ
ðiiÞ vG;n ¼ vG � i 0 � vG � un

¼ ðvXI þ vYJ þ vZKÞ � ðcos� I þ sin � JÞ ¼ ðcos�ÞvX þ ðsin�ÞvY ; ðd2Þ
ðiiiÞ vG;N ¼ vG � uN

¼ ðvXI þ vYJ þ vZKÞ � ð� sin � I þ cos� JÞ ¼ ð� sin�ÞvX þ ðcos�ÞvY : ðd3Þ
With the help of (d1–3), the constraints (c1, 2) take, respectively, the holonomic
velocities form:

ðiÞ vC � i 0 � vC;n ¼ ðcos�ÞvX þ ðsin�ÞvY þ rð! þ cos � !�Þ ¼ 0; ðe1Þ
ðiiÞ vC � uN � vC;N ¼ ð� sin�ÞvX þ ðcos�ÞvY þ r sin � !� ¼ 0: ðe2Þ
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Equations (c1, 2) contain nonholonomic velocities. Let us express them in terms of holo-
nomic velocities exclusively. It is not hard to see that, with vG = (Ẋ, Ẏ, Ż) ≡ (vX, vY, vZ),



In view of (e1, 2), we introduce the following equilibrium quasi velocities:

Dependent:

!1 � vC;n ¼ vG;n þ r!z 0 ¼ ðcos�ÞvX þ ðsin�ÞvY þ ðr cos �Þ!� þ ðrÞ! ð¼ 0Þ; ðf1Þ

!2 � vC;N ¼ vG;N þ r sin � !x 0 ¼ ð� sin�ÞvX þ ðcos�ÞvY þ ðr sin �Þ!� ð¼ 0Þ; ðf2Þ

!3 � !n � !x 0 ¼ !� ð6¼ 0Þ; ðf3Þ
!4 � !n 0 � !y 0 ¼ ðsin �Þ!� ð6¼ 0Þ; ðf4Þ
!5 � !z � !z 0 ¼ ðcos �Þ!� þ ! ð6¼ 0Þ: ðf5Þ

These catastatic, and partially uncoupled, equations invert easily to

v1 � vX ¼ ðcos�Þ!1 þ ð� sin�Þ!2 þ ðr sin � sin �Þ!3 þ ð�r cos�Þ!5; ðg1Þ
v2 � vY ¼ ðsin�Þ!1 þ ðcos�Þ!2 þ ð�r sin � cos�Þ!3 þ ð�r sin�Þ!5; ðg2Þ
v3 � !� ¼ ð1= sin �Þ!4; ðg3Þ
v4 � !� ¼ !3; ðg4Þ
v5 � ! ¼ !5 � ðcot �Þ!4: ðg5Þ

Below, we show that the constraints !1 ¼ 0 and !2 ¼ 0 are nonholonomic; that is,
n ¼ 5 global DOF, m ¼ 2! f � n�m ¼ 3 local DOF.

Indeed, by direct d- and �-operations on (f1–g5), and their virtual forms (which
can be obtained from the above velocity forms in, by now, obvious ways), and
combination of simple shortcuts with some straightforward algebra, we find, succes-
sively,

ð��1Þ:� �!1 ¼ ð�pG;nÞ: � �vG;n
� 	þ r½ð��5Þ:� �!5� ½where dpG;n � vG;n dt�

¼ � � � ¼ ðcos�Þ �X þ ðsin�Þ �Y½ �:� � ðcos �ÞvX þ ðsin�ÞvY½ �f g
þ rð!4 ��3 � !3 ��4Þ

¼ � � � ¼ !�½ð� sin�Þ �X þ ðcos�Þ �Y � � ��½ð� sin�ÞvX þ ðcos�ÞvY �
� �

þ rð!4 ��3 � !3 ��4Þ
¼ ð!� �pG;N � vG;N ��Þ þ rð!4 ��3 � !3 ��4Þ ½where dpG;N � vG;N dt�
¼ ½ð!4= sin �Þ �pG;N � vG;Nð��4= sin �Þ� þ rð!4 ��3 � !3 ��4Þ
¼ ð!4= sin �Þð�pG;N þ r sin � ��3Þ � ð��4= sin �ÞðvG;N þ r sin � !3Þ
¼ ð1= sin �Þð!4 �pC;N � vC;N ��4Þ ½where dpC;N � vC;N dt�
¼ ð1= sin �Þð!4 ��2 � !2 ��4Þ ¼ 0

ðafter enforcing the constraints ��2; !2 ¼ 0Þ; ðh1Þ
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Independent (semimobile components of x):



ð��2Þ:� �!2 ¼ ½ð�pG;NÞ:� �vG;N � þ ½ðr sin � ��3Þ:� �ðr sin � !3Þ�
[since !3 sin � ¼ !� sin � is integrable, the second bracket term vanishes]

¼ ½ð� sin�Þ �X þ ðcos�Þ �Y �:� �½ð� sin�ÞvX þ ðcos�ÞvY �
¼ �!�ðcos� �X þ sin� �YÞ þ ��½ðcos�ÞvX þ ðsin�ÞvY �
¼ �!� �pG;n þ �� vG;n
¼ �ð!4= sin �Þð��1 � r ��5Þ þ ð��4= sin �Þð!1 � r!5Þ
¼ �ð1= sin �Þð!4 ��1 � !1 ��4Þ þ ðr= sin �Þð!4 ��5 � !5 ��4Þ
¼ ðr= sin �Þð!4 ��5 � !5 ��4Þ 6¼ 0

ðeven after enforcing the constraints ��1; !1 ¼ 0Þ; ðh2Þ
ð��3Þ:� �!3 ¼ 0 ðindependently of constraintsÞ ) �3 ¼ holonomic coordinate; ðh3Þ
ð��4Þ:� �!4 ¼ ðsin � ��Þ:� �ðsin � !�Þ ¼ ðcos �Þð!� ��� !� ��Þ

¼ ðcot �Þð!3 ��4 � !4 ��3Þ; ðh4Þ
ð��5Þ:� �!5 ¼ ð� þ cos � ��Þ: � �ð! þ cos � !�Þ ¼ ðsin �Þð!� ��� !� ��Þ

¼ !4 ��3 � !3 ��4; ðh5Þ
and since Z ¼ r sin �, with !6 � vZ � r cos � !� ) ��6 ¼ �Z � r cos � ��, we get

ð��6Þ:� �!6 ¼ ð�Z � r cos � ��Þ:� �ðvZ � r cos � !�Þ
¼ ð�ZÞ:� rðcos �Þ:��� r cos �ð��Þ:� �vZ þ rð� sin �Þ �� !� þ r cos � �!� ¼ 0;

(independently of the other constraints) as expected.
From the above, we immediately read off the nonvanishing �’s:

�124 ¼ ��142 ¼ 1= sin �;

�241 ¼ ��214 ¼ 1= sin �; �254 ¼ ��245 ¼ r= sin �;

�443 ¼ ��434 ¼ cot �;

�534 ¼ ��543 ¼ 1: ðiÞ
Here, DðependentÞ ¼ 1; 2 and I ; I 0ðndependentÞ ¼ 3; 4; 5. Therefore,

�DII 0 : �254 ¼ r= sin � 6¼ 0; ð jÞ

!1 ¼ 0 and !2 ¼ 0 is nonholonomic. We also notice that to calculate all nonvanishing
�’s, we must refrain from enforcing the constraints !1; ��1 ¼ 0 and !2; ��2 ¼ 0, in
the earlier bilinear covariants.

Rolling Constraints via Components along Space Axes

With reference to fig. 2.20, we have, successively,

rC=G ¼ �ðr cos �ÞuN � ðr sin �ÞK ¼ ð�r cos �Þð� sin� I þ cos� JÞ þ ð�r sin �ÞK
¼ ðr cos � sin�ÞI þ ð�r cos � cos�ÞJ þ ð�r sin �ÞK ; ðk1Þ
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and so, according to Frobenius’ theorem (§2.12), the system of Pfaffian constraints



x ¼ !XI þ !YJ þ !ZK ½recalling formulae in }1:12�
¼ ½ðcos�Þ!� þ ðsin� sin �Þ! �I þ ½ðsin�Þ!� þ ð� cos� sin �Þ! �J

þ½!� þ ðcos �Þ! �K ; ðk2Þ

and, of course,

vG ¼ vXI þ vYJ þ vZK : ðk3Þ

Substituting these fixed-axes representations into the constraint (b):
0 ¼ vC ¼ vG þ x� rC=G, and setting its components along I ; J ;K ; equal to zero,
we obtain the scalar conditions:

vX þ rðcos� cos � !Z � sin � !Y Þ
¼ vX þ r½ðcos� cos �Þ!� � ðsin� sin �Þ!� þ ðcos�Þ! � ¼ 0;

vY þ rðsin � !X þ sin � cos � !ZÞ
¼ vY þ r½ðsin� cos �Þ!� þ ðcos� sin �Þ!� þ ðsin�Þ! � ¼ 0;

vZ � r cos �ðcos�!X þ sin�!YÞ
¼ vZ � r cos � !� ¼ 0 ) Z ¼ r sin � ði:e:; holonomicÞ: ðk4; 5; 6Þ

We leave it to the reader to verify that (k4, 5) are equivalent to the earlier (e1–f2);
and, also, that they can be brought to the (perhaps simpler) form,

½ðX=rÞ þ sin� cos ��: þ ðcos�Þ! ¼ 0; ½ðY=rÞ þ cos� cos ��:þ ðsin�Þ! ¼ 0:

ðk7Þ

Constraints and Transitivity Equations in Terms of the
(Inertial) Coordinates of the Contact Point of the Disk (XC;YC)

[This is a popular choice among mechanics authors (e.g., Hamel, 1949, pp. 470 ff.,
478–479; Rosenberg, 1977, pp. 265 ff.) but our choice— that is, in terms of the
coordinates of the disk center, G—shows more clearly the connection with the
Eulerian angles.]

Taking the fixed-axes components of the obvious relation rG ¼ rC þ rG=C, and
then d=dtð. . .Þ-differentiating them, we obtain (consulting again fig. 2.20, and with
vC;X � dXC=dt; vC;Y � dYC=dt)

ðiÞ X ¼ XC � ðr cos �Þ sin� ) vX ¼ vC;X � ðr cos� cos �Þ!� þ ðr sin� sin �Þ!�; ðl1Þ

ðiiÞ Y ¼ YC þ ðr cos �Þ cos� ) vY ¼ vC;Y � ðr sin� cos �Þ!� � ðr cos� sin �Þ!�; ðl2Þ

and substituting these vX , vY expressions into (k4, 5), respectively, we eventually
obtain the simpler forms

vC;X þ ðr cos�Þ! ¼ 0 and vC;Y þ ðr sin�Þ! ¼ 0: ðl3Þ

(The above can, also, be obtained by ad hoc knife problem–type considerations.)
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In view of (l3), we introduce the following new equilibrium quasi velocities:

Dependent:

!1 � vC;X þ ðr cos �Þ! ð¼ 0Þ; ðm1Þ
!2 � vC;Y þ ðr sin�Þ! ð¼ 0Þ; ðm2Þ

Independent:

!3 � !�ð6¼ 0Þ ) �3: : ¼ 0; ðm3Þ
!4 � !�ð6¼ 0Þ ) �4: : ¼ 0; ðm4Þ
!5 � ðcos�ÞvC;X þ ðsin�ÞvC;Y ½¼ �r! ; by ðl3Þ�; ðm5Þ

or, instead, the equivalent but simpler, knife-type, quasi velocities:

Dependent:

O1 � ð� sin�ÞvC;X þ ðcos�ÞvC;Y ½¼ 0; by ðl3Þ�; ðn1Þ
O2 � r! þ ðcos�ÞvC;X þ ðsin�ÞvC;Y ¼ r! þ !5 ð¼ 0Þ; ðn2Þ

Independent:

O3 � !3 � !� ð6¼ 0Þ; ðn3Þ
O4 � !4 � !� ð6¼ 0Þ; ðn4Þ
O5 � !5 � ðcos�ÞvC;X þ ðsin �ÞvC;Y ½¼ �r! þ O2 ¼ �r! �: ðn5Þ

Inverting the above yields

v1 � vC;X ¼ ð� sin�ÞO1 þ ðcos�ÞO5; ðo1Þ
v2 � vC;Y ¼ ðcos�ÞO1 þ ðsin�ÞO5; ðo2Þ
v3 � !� ¼ O3; ðo3Þ
v4 � !� ¼ O4; ðo4Þ
v5 � ! ¼ ð1=rÞðO2 � O5Þ: ðo5Þ

By direct d=�-differentiations of (n1–5), use of (o1–5), and the obvious notation
dYk � Okdt; k ¼ 1; . . . ; 5, we obtain the corresponding transitivity equations as
follows:

ð�Y1Þ: � �O1 ¼ ½ð� sin �Þ �XC þ ðcos�Þ �YC�:� �½ð� sin�ÞvC;X þ ðcos�ÞvC;Y �
¼ � � � ¼ cos�ðvC;X ��� !� �XCÞ þ sin�ðvC;Y ��� !� �YCÞ
¼ cos�

�ð� sin�O1 þ cos�O5Þ �Y3 �O3ð� sin� �Y1 þ cos� �Y5Þ
	

þ sin�
�ðcos�O1 þ sin�O5Þ �Y3 � O3ðcos� �Y1 þ sin� �Y5Þ

	
¼ O5 �Y3 �O3 �Y5; ðp1Þ
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ð�Y2Þ:� �O2 ¼ ½r � þ ðcos�Þ �XCþðsin�Þ �YC�:��½r! þðcos�ÞvC;X þ ðsin�ÞvC;Y �
¼ � � � ¼ sin�ðvC;X ��� !� �XCÞ þ cos�ð!� �YC � vC;Y ��Þ
¼ sin�

�ð� sin�O1 þ cos�O5Þ �Y3 �O3ð� sin� �Y1 þ cos� �Y5Þ
	

þ cos�
�
O3ðcos� �Y1 þ sin� �Y5Þ � ðcos�O1 þ sin �O5Þ �Y3

	
¼ O3 �Y1 � O1 �Y3

ð¼ 0; upon imposition of the constraints �Y1;O1 ¼ 0Þ; ðp2Þ
ð�Y3Þ:� �O3 ¼ ð��Þ:� �!� ¼ 0 ðY3 ¼ holonomicÞ; ðp3Þ
ð�Y4Þ:� �O4 ¼ ð��Þ: � �!� ¼ 0 ðY4 ¼ holonomicÞ; ðp4Þ
ð�Y5Þ:� �O5 ¼ ½ðcos�Þ �XC þ ðsin�Þ �YC�:� �½ðcos�ÞvC;X þ ðsin�ÞvC;Y �

¼ ð�r � Þ:� �ð�r! Þ þ ð�Y2Þ:� �O2 ¼ 0þ O3 �Y1 � O1�Y3

¼ O3 �Y1 � O1 �Y3

ð¼ 0; upon imposition of the constraints �Y1;O1 ¼ 0Þ; ðp5Þ
that is, just like the knife problem (ex. 2.13.2), all the �’s are either �1 or 0.

Finally, here, DðependentÞ ¼ 1; 2 and I ; I 0ðndependentÞ ¼ 3; 4; 5. Therefore,

�DII 0 : �135 ¼ ��153 ¼ 1 6¼ 0; ð jÞ
and so, by Frobenius’ theorem (}2.12), the constraint system O1 ¼ 0 and O2 ¼ 0 is
nonholonomic.

Problem 2.13.3 Rolling Disk in Accelerating Plane. Continuing from the
preceding example, show that if the plane translates (i.e., no rotation), relative to
inertial space, with a given velocity (vXðtÞ; vY ðtÞ; vZðtÞ), and the new inertial axes
O��XYZ are chosen so that OZ is always perpendicular to the translating plane,
and X ;Y ;Z are the new inertial coordinates of the center of the disk G, then the
rolling constraints take the rheonomic form

ðcos�Þ½VX � vXðtÞ� þ ðsin�Þ½VY � vYðtÞ� þ ðr cos �Þ!� þ ðrÞ! ¼ 0; ðaÞ
ð� sin�Þ½VX � vXðtÞ� þ ðcos�Þ½VY � vYðtÞ� þ ðr sin �Þ!� ¼ 0; ðbÞ

in the fixed plane case, but with vG replaced with vG � vC (where vC is the inertial
velocity of contact point of disk with plane).

Example 2.13.8 Pair of Rolling Wheels on an Axle. Let us discuss the kinematics
of a pair of two thin identical wheels, each of radius r, connected by a light axle
and able to turn freely about its ends (fig. 2.21), rolling on a fixed, horizontal, and
rough plane. For its description, we choose the following ðsix!Þ five Lagrangean
coordinates:

ðX ;Y ;Z ¼ rÞ: inertial coordinates of midpoint of axle, G;

�: angle between the O��XY projection of the axle (say, from G 00 toward G 0) and
þOX ;

 0,  00: spin angles of the two wheels.
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where VX ≡ dX/dt, VY ≡ dY/dt; ωφ ≡ dφ/dt, and so on; that is, they are the same as



Here, the constraints are vC 0 ¼ 0 and vC 00 ¼ 0, where C 0 and C 00 are the contact
points of the two wheels. However, due to the constancy of G 00G 0 (and
C 00C 0 ¼ 2b) and the continuous perpendicularity of the wheels to the axle, these
conditions translate to three independent component equations, not four; say, the
vanishing of vC 0 and vC 00 along and perpendicularly to the axle (the ‘‘natural’’
directions of the problem). Let us express this analytically: since

vC 0 ¼ vG 0 þ xw 0 � rC 0=G 0 ¼ ðvG þxA � rG 0=GÞ þ xw 0 � rC 0=G 0

½xw 0 and xA: inertial angular velocities of first wheel and axle; respectively�
¼ ðvX ; vY ; 0Þþð0; 0; !�Þ�ðb cos�; b sin�; 0Þ þ ð! 0 cos�; ! 0 sin�; !�Þ�ð0; 0;�rÞ
¼ ðvX � b!� sin�� r! 0 sin�; vY þ b!� cos�þ r! 0 cos�; 0Þ; ðaÞ

and similarly, for the second wheel [whose inertial angular velocity is xw 00 ¼
ð! 00 cos�; ! 00 sin�; !�Þ],

vC 00 ¼ ðvX þ b!� sin�� r! 00 sin �; vY � b!� cos�þ r! 00 cos�; 0Þ; ðbÞ
the constraints are (with u . . . for unit vector):

0 ¼ vC 0;n � vC 0 � un ¼ vC 0 � ðcos�; sin�; 0Þ ¼ vC 00;n � vC 00 � un ¼ vC 00 � ðcos�; sin�; 0Þ;
or

vC 0;n ¼ vC 00;n ¼ vX cos�þ vY sin� ¼ 0; ðc1Þ
and

vC 0;t � vC 0 � ut ¼ vC 0 � ð� sin�; cos�; 0Þ ¼ �vX sin �þ vY cos�þ b!� þ r! 0 ¼ 0;

ðc2Þ
vC 00;t � vC 00 � ut ¼ vC 00 � ð� sin�; cos�; 0Þ ¼ �vX sin�þ vY cos�� b!� þ r! 00 ¼ 0:

ðc3Þ
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Figure 2.21 Rolling of two wheels on an axle, on fixed plane.
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[The above can also be obtained by simple geometrical considerations based on fig.
2.21.]

By inspection, we see that (c2, 3) yield the integrable combination

2b!�þ rð! 0 � ! 00 Þ ¼ 0 ) 2b� ¼ c� rð 0 �  00Þ;
½c ¼ integration constant; depending on the initial values of �;  0;  00�: ðdÞ

Hence, we may take X ;Y ;  0;  00, as the minimal Lagrangean coordinates of our
system, subject to the two knife-like nonholonomic (to be shown below) constraints

vC 0;n ¼ vC 00;n ¼ vX cos �þ vY sin� ¼ 0; ðe1Þ
vC 0;t ¼ �vX sin �þ vY cos�þ ðr=2Þð! 0 þ ! 00 Þ ¼ 0; ðe2Þ

that is, n ¼ 4;m ¼ 2 ) f � n�m ¼ 4� 2 ¼ 2 DOF in the small, and 4 DOF in the
large.

In view of (e1, 2), we introduce the following equilibrium quasi velocities:

!1 � ðcos�ÞvX þ ðsin�ÞvY ð¼ 0Þ; ðf1Þ
!2 � ð� sin�ÞvX þ ðcos�ÞvY ð6¼ 0Þ; ðf2Þ
!3 � !� ð6¼ 0Þ; ðf3Þ
!4 � 2ð�vX sin �þ vY cos�Þ þ rð! 0 þ ! 00 Þ ð¼ 0Þ; ðf4Þ
!5 � 2b!� þ rð! 0 � ! 00 Þ ð¼ 0; !5 ¼ holonomic velocityÞ; ðf5Þ

which invert easily to

vX ¼ ðcos�Þ!1 þ ð� sin�Þ!2; ðf6Þ
vY ¼ ðsin �Þ!1 þ ðcos�Þ!2; ðf7Þ
!� ¼ ð0Þ!1 þ ð0Þ!2 þ ð1Þ!3; ðf8Þ
! 0 ¼ ð1=2rÞð�2!2 � 2r!3 þ !4 þ !5Þ; ðf9Þ
! 00 ¼ ð1=2rÞð�2!2 þ 2r!3 þ !4 � !5Þ: ðf10Þ

Comparing the above with the quasi velocities of the knife problem (ex. 2.13.2), to

be denoted in this example by !K
..., we readily see that we have the following corre-

spondences:

!1 ! !K
2; !2 ! !K

1; !3 ! !K
3: ðf11Þ

Hence, and recalling the transitivity equations of that example, we find

ð��1Þ:� �!1 ¼ ð��K2Þ:� �!K
2 ¼ !K

3 ��
K
1 � !K

1 ��
K
3 ¼ !3 ��2 � !2 ��3 ð6¼ 0Þ; ðg1Þ

ð��2Þ:� �!2 ¼ ð��K1Þ:� �!K
1 ¼ !K

2 ��
K
3 � !K

3 ��
K
2 ¼ !1 ��3 � !3 ��1 ð6¼ 0Þ;

ð¼ 0; after enforcement of the constraints ��1; !1 ¼ 0Þ; ðg2Þ
ð��3Þ:� �!3 ¼ 0 ð�3 ¼ � ¼ holonomic coordinateÞ; ðg3Þ
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ð��4Þ:� �!4 ¼ 2½ð��2Þ:� �!2� þ r½ð� 0 þ � 00Þ: � �ð! 0 þ ! 00 Þ�
¼ 2ð!1��3 � !3 ��1Þ þ 0 ð¼ 0; after enforcing ��1; !1 ¼ 0Þ; ðg4Þ

ð��5Þ:� �!5 ¼ 2b½ð��Þ: � �!�� þ r½ð� 0 � �! 00Þ: � �ð! 0 � ! 00 Þ�
½¼ 0 ) �5 ¼ 2b�þ rð 0 �  00Þ ¼ holonomic coordinate�: ðg5Þ

The above immediately show that the nonvanishing �’s equal �1, as in the knife
problem; and since here D ¼ 1; 4; I ; I 0 ¼ 2; 3 and

�DII 0 : �123 ¼ ��132 ¼ 1 6¼ 0; ðhÞ

the system of Pfaffian constraints !1 ¼ 0 and !4 ¼ 0 is nonholonomic.
For additional wheeled vehicle applications, see also Lobas (1986), Lur’e (1968,

pp. 27–31), Mei (1985, pp. 35–36, 168–175, 437–439), Stückler (1955—excellent
treatment).

Example 2.13.9 Transitivity Equations for a Rigid Body in General (Uncon-
trained) Motion. As explained in }1.8 ff., to describe the general spatial motion of
a rigid body B we employ, among others, the following two sets of rectangular
Cartesian axes [and associated orthogonal–normalized–dextral (OND) bases]: (i) a
body-fixed set ^–xyz=^–ijk (noninertial), where ^ is a generic body point (pole);
and (ii) a space-fixed one O–XYZ=O–IJK (inertial), where O is a generic fixed
origin. Frequently (recalling }1.17, ‘‘A Comprehensive Example: The Rolling
Coin’’), we also use other ‘‘intermediate’’ axes/bases that are neither space- nor
body-fixed: ^–x 0y 0z 0=^–i 0j 0k 0; for example, axes ^–XYZ translating, or
comoving, with B but nonrotating (i.e., ever parallel to O–XYZ).

Let us examine the transitivity equations associated with the translation of B with
pole ^, and its rotation about ^ (earliest systematic treatment in Kirchhoff, 1883,
pp. 56–59).

(i) Rotation. As shown in }1.12, the transformation relations among the spatial
and body components of the inertial angular velocity of B, x, and the Eulerian
angles (and their rates) between ^–xyz and O–XYZ (or ^–XYZ) are [with
s . . . � sin . . . ; c . . . � cos . . .] as follows:

Body axes components (assuming sin � 6¼ 0Þ:
!x ¼ ðs� s Þ!� þ ðc Þ!�; !y ¼ ðs� c Þ!� þ ð�s Þ!�; !z ¼ ðc�Þ!� þ ! ; ða1Þ

) !� ¼ ðs =s�Þ!x þ ðc =s�Þ!y; !� ¼ ðc Þ!x þ ð�s Þ!y;

! ¼ ð� cot � s�Þ!x þ ð� cot � c Þ!y þ !z: ða2Þ

Space axes components (assuming sin � 6¼ 0Þ:
!X ¼ ðc�Þ!� þ ðs� s�Þ! ; !Y ¼ ðs�Þ!� þ ð�c� s�Þ! ; !Z ¼ !� þ ðc�Þ! ; ðb1Þ

) !� ¼ ð� cot � s�Þ!X þ ðcot � c�Þ!Y þ !Z; !� ¼ ðc�Þ!X þ ðs�Þ!Y ;

! ¼ ðs�=s�Þ!X þ ð�c�=s�Þ!Y : ðb2Þ
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Since these transformations are stationary, they also hold with the !x;y;z;X;Y ;Z

replaced by the d�x;y;z;X ;Y ;Z or ��x;y;z;X ;Y ;Z and the !�;�; replaced by d�; . . . ; or
��; . . . ; respectively.

Transitivity Equations

(a) Body axes: Differentiating/varying the first of (a1), while invoking the
‘‘d� ¼ �d’’ rule for �; �;  , we obtain, successively,

ð��xÞ: � �!x ¼ ðs� s Þ ��þ ðc Þ ��½ �:� � ðs� s Þ!� þ ðc Þ!�
� 	

¼ c� s ð!� ��� !� ��Þ þ s� c ð! ��� !� � Þ þ s ð!� � � ! ��Þ;

and substituting !�; . . . =��; . . . in terms of !x; . . . =��x; . . . ; from (a2), we eventually
find

ð��xÞ:� �!x ¼ !z ��y � !y ��z; ðc1Þ

and similarly, for the other two,

ð��yÞ:� �!y ¼ !x ��z � !z ��x; ðc2Þ
ð��zÞ:� �!z ¼ !y ��x � !x ��y: ðc3Þ

Hence, the nonvanishing �’s are

� x
yz ¼ �� x

zy ¼ 1; � y
zx ¼ �� y

xz ¼ 1; � z
xy ¼ �� z

yx ¼ 1; ðd1Þ

or, compactly [with k; r; s! x; y; z : 1; 2; 3],

� k
rs ¼ "krs � ðk� rÞðr� sÞðs� kÞ=2
¼ �1; according as k; r; s=x; y; z are an even or odd permutation of 1, 2, 3;

and ¼ 0 in all other cases: Levi-Civita permutation symbol (1.1.6 ff.). ðd2Þ

(b) Space axes: Applying similar steps to (b1, 2), we eventually obtain

ð��XÞ: � �!X ¼ !Y ��Z � !Z ��Y ; ðe1Þ
and similarly, for the other two,

ð��YÞ:� �!Y ¼ !Z ��X � !X ��Z; ðe2Þ
ð��ZÞ:� �!Z ¼ !X ��Y � !Y ��X : ðe3Þ

Hence, the nonvanishing �’s are

�X
YZ ¼ ��X

ZY ¼ �1; �Y
ZX ¼ ��Y

XZ ¼ �1; �Z
XY ¼ ��Z

YX ¼ �1; ðf 1Þ
or, compactly (with k; r; s! X;Y ;Z : 1; 2; 3),

�K
RS ¼ �"KRS ¼ "RKS: ðf 2Þ

The above show clearly that the orthogonal components of x, !x;y;z and !X ;Y ;Z are
nonholonomic; while the nonorthogonal components !�;�; are holonomic (and,
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again, this has nothing to do with constraints, but is a mathematical consequence of
the noncommutativity of rigid rotations).

REMARK

These transitivity relations and �-values, (c1–f2), are independent of the particular
!x;y;z;X ;Y ;Z , !�;�; relationships (a1–b2); they express, in component form, in-
variant noncommutativity properties between the differentials of the vectors of
infinitesimal rotation and angular velocity. A direct vectorial proof of these proper-
ties is presented in the next example.

(c) Intermediate axes: Such sets are the following axes of ex. 2.13.7: (i) G–nn 0z �
G–x 0y 0z 0, with OND basis G–i 0j 0k 0 � G–unun 0k; and (ii) G–nNZ, with OND basis
G–unuNK ðun � i 0 ¼ unit vector along +nodal line); and they are called by some
authors semimobile (SM) and semifixed ðSFÞ, respectively.

Below, we collect some kinematical data pertinent to them. Since their inertial
angular velocities are (consult fig. 2.20)

xSM � x 0 ¼ !� K þ !� i 0 ¼ !� i 0 þ !�ðsin � j 0 þ cos �k 0Þ
¼ ð!�Þi 0 þ ð!� sin �Þj 0 þ ð!� cos �Þk 0

¼ !� K þ !� un ¼ xSF þ !� un � x 00 þ x� un; ðg1Þ

xSF � x 00 ¼ !� K ; ðg2Þ

we will have the following relations for the rates of change of their bases:

dun=dt ¼ x 0 � un ¼ !� uN ¼ !�ðcos � un 0 � sin �k 0Þ; ðg3Þ
dun 0=dt ¼ x 0 � un 0 ¼ ð�!� cos �Þun þ !� k 0; ðg4Þ
dk 0=dt ¼ x 0 � k 0 ¼ ð!� sin �Þun � !� un 0 ; ðg5Þ
dun=dt ¼ x 00 � un ¼ !� uN ; ðg6Þ
duN=dt ¼ x 00 � uN ¼ �!� un; ðg7Þ
dK=dt ¼ x 00 � K ¼ 0: ðg8Þ

Finally, the body angular velocity along the SM axes, thanks to the second line of
(g1), equals

x ¼ x 0 þ ! k 0 ¼ ð!�Þi 0 þ ð!� sin �Þj 0 þ ð! þ !� cos �Þk 0

� !x 0 i
0 þ !y 0 j

0 þ !z 0 k
0; ðg9Þ

and since this is a scleronomic system, (g9) holds with !x 0;y 0;z 0 , replaced with d�x 0;y 0;z 0
and ��x 0;y 0;z 0 ; and !�;�; replaced with d�; d�; d and ��; ��; � , respectively.

From the above, by straightforward differentiations, we obtain the rotational
transitivity equations in terms of semimobile components:

ð��x 0 Þ: � �!x 0 ¼ 0 ð�x 0 � � ¼ holonomic coordinate ) � x 0
: : ¼ 0Þ; ðh1Þ

ð��y 0 Þ:� �!y 0 ¼ cot �ð!x 0 ��y 0 � !y 0 ��x 0 Þ; ðh2Þ
ð��z 0 Þ:� �!z 0 ¼ ð!y 0 ��x 0 � !x 0 ��y 0 Þ; ðh3Þ

370 CHAPTER 2: KINEMATICS OF CONSTRAINED SYSTEMS



and hence the nonvanishing �’s are (assuming cot � ¼ finite)

� y 0
y 0x 0 ¼ �� y 0

x 0y 0 ¼ cot �; � z 0
x 0y 0 ¼ �� z 0

y 0x 0 ¼ 1: ðh4Þ

Note that (h1–4) are none other than (h3–5) and (i) of ex. 2.13.7.
(ii) Translation of pole (or basepoint) ^. Let us assume that ^ has inertial

position:

OP ¼ q ¼ �X I þ �Y J þ �Z K ; ðh5Þ
and, therefore, inertial velocity:

v � dq=dt

¼ ðd�X=dtÞI þ ðd�Y=dtÞJ þ ðd�Z=dtÞK � vX I þ vY J þ vZ K

[along space-axes: vX � d�X=dt ¼ v � I ; etc.;

�X ;Y ;ZðvX ;Y ;ZÞ: holonomic coordinates (velocities) of ^:�
¼ vx i þ vy j þ vz k � ðdpx=dtÞi þ ðdpy=dtÞj þ ðdpz=dtÞk

[along body-axes: vx � dpx=dt � v � i; etc.;

px;y;zðvx;y;zÞ: nonholonomic coordinates ðvelocitiesÞ of ^:� ðh6Þ

Clearly, the above velocity components are related by the following vector transfor-
mations:

vx ¼ cosðx;XÞvX þ cosðx;YÞvY þ cosðx;ZÞvZ; etc:

vX ¼ cosðX; xÞvx þ cosðX ; yÞvy þ cosðX ; zÞvz; etc:; ðh7Þ

and, since this is a scleronomic system, their differentials are related by

dpx � vx dt ¼ ðv � iÞ dt � dq � i ¼ cosðx;XÞ d�X þ cosðx;YÞ d�Y þ cosðx;ZÞ d�Z; etc:

�px � �q � i ¼ cosðx;XÞ ��X þ cosðx;YÞ ��Y þ cosðx;ZÞ ��Z; etc: ðh8Þ

Next, since

ð�pxÞ: ¼ ð�q � iÞ: ¼ ð�qÞ: � i þ �q � ðiÞ: ¼ ð�qÞ: � i þ �q � ðx� iÞ;
ði2Þ

and subtracting the above side by side, while noting that ð�qÞ:� �v ¼
�ðdq=dtÞ � �v ¼ �v� �v ¼ 0, we obtain the x-component of the pole velocity transi-
tivity equation:

ði3Þ
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(δpx)
·
− δvx = δρ · (x× i)− v · (δθ × i) = (δρ×x) · i− (v × δθ) · i

= (δρ×x − v× δθ) · i;

and hence the nonvanishing �’s are (assuming cot � ¼ finite)

� y 0
y 0x 0 ¼ �� y 0

x 0y 0 ¼ cot �; � z 0
x 0y 0 ¼ �� z 0

y 0x 0 ¼ 1: ðh4Þ

Note that (h1–4) are none other than (h3–5) and (i) of ex. 2.13.7.
(ii) Translation of pole (or basepoint) ^. Let us assume that ^ has inertial

position:

OP ¼ q ¼ �X I þ �Y J þ �Z K ; ðh5Þ
and, therefore, inertial velocity:

v � dq=dt

¼ ðd�X=dtÞI þ ðd�Y=dtÞJ þ ðd�Z=dtÞK � vX I þ vY J þ vZ K

[along space-axes: vX � d�X=dt ¼ v � I ; etc.;

�X ;Y ;ZðvX ;Y ;ZÞ: holonomic coordinates (velocities) of ^:�
¼ vx i þ vy j þ vz k � ðdpx=dtÞi þ ðdpy=dtÞj þ ðdpz=dtÞk

[along body-axes: vx � dpx=dt � v � i; etc.;

px;y;zðvx;y;zÞ: nonholonomic coordinates ðvelocitiesÞ of ^:� ðh6Þ

Clearly, the above velocity components are related by the following vector transfor-
mations:

vx ¼ cosðx;XÞvX þ cosðx;YÞvY þ cosðx;ZÞvZ; etc:

vX ¼ cosðX; xÞvx þ cosðX ; yÞvy þ cosðX ; zÞvz; etc:; ðh7Þ

and, since this is a scleronomic system, their differentials are related by

dpx � vx dt ¼ ðv � iÞ dt � dq � i ¼ cosðx;XÞ d�X þ cosðx;YÞ d�Y þ cosðx;ZÞ d�Z; etc:

�px � �q � i ¼ cosðx;XÞ ��X þ cosðx;YÞ ��Y þ cosðx;ZÞ ��Z; etc: ðh8Þ

Next, since

ði1Þ

ð�pxÞ: ¼ ð�q � iÞ: ¼ ð�qÞ: � i þ �q � ðiÞ: ¼ ð�qÞ: � i þ �q � ðx� iÞ;
ði2Þ

and subtracting the above side by side, while noting that ð�qÞ:� �v ¼
�ðdq=dtÞ � �v ¼ �v� �v ¼ 0, we obtain the x-component of the pole velocity transi-
tivity equation:

ði3Þ
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where dθ ≡ x dt = dθx i + dθy j + dθz k = dφK + dθ un + dψ k = elementary (inertial)

δ(dpx/dt) ≡ δvx = δ(v · i) = δv · i+ v · δi = δv · i+ v · (δθ × i),

kinematically admissible/possible rotation vector, hence δθ = δθx i + δθy j + δθz k =

di = dθ × i, δi = δθ × i etc., (i1)

δφK+ δθ un + δψ k = (inertial) virtual rotation vector, we find by direct calculation [with
(. . .)· = inertial rate of change, for vectors]



Semifixed axes ^��unuNK . Here, we have

vn � ðpnÞ: ¼ v � un � v � i 0 ¼ ð�XÞ: cos�þ ð�YÞ: sin�; ð j1Þ
vN � ðpNÞ: ¼ v � uN ¼ �ð�XÞ: sin�þ ð�Y Þ: cos�; ð j2Þ
vZ � ðpZÞ: ¼ v �K ¼ ð�ZÞ: ) �Z

: : ¼ 0 (i.e., vZ ¼ holonomic velocityÞ: ð j3Þ

We leave it to the reader to show that (recalling the earlier semimobile axes kine-
matics)

ð�pnÞ:� �vn ¼ �½!� ��X � ð�XÞ: ��� sin �þ ½!� ��Y � ð�YÞ: ��� cos�
¼ !� �pN � vN �� ¼ ð1= sin�Þð!y �pN � vN ��yÞ; ð j4Þ

ð�pNÞ:� �vN ¼ �½!� ��X � ð�XÞ: ��� cos�þ ½ð�YÞ: ��� !� ��Y � sin�
¼ �!� �pn þ ðpnÞ: �� ¼ ð1= sin�Þ½ðpnÞ: ��y � !y �pn�; ð j5Þ

[Recalling ex. 2.13.7 (rolling disk problem), eqs. (d2, 3), (h1, 2), (i), etc.]
For related discussions of the rigid-body transitivity equations, see also Bremer

(1988(b)) and Moiseyev and Rumyantsev (1968, pp. 7–8).

and similarly for its y and z components. Hence, our pole transitivity equation can be

vectors, and so on, relative to the moving, here body-fixed, axes]:
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written in the following vector form [with ∂ (. . .) and δrel (. . .) denoting differentials of

or

∂(δρ)/∂t− δrel(dρ/dt) = δρ×x− v× δθ, (i4a)

δrelv = ∂(δρ)/∂t+x× δρ+ v× δθ. (i4b)

In component form, along ^–xyz, (i4a) reads

ð�pxÞ:� �vx ¼ ð!z �py � !y �pzÞ � ðvy ��z � vz ��yÞ; ði5Þ
ð�pyÞ:� �vy ¼ ð!x �pz � !z �pxÞ � ðvz ��x � vx ��zÞ; ði6Þ
ð�pzÞ:� �vz ¼ ð!y �px � !x �pyÞ � ðvx ��y � vy ��xÞ; ði7Þ

and, therefore, the nonvanishing �’s are [with accented (unaccented) indices for the
components �px;y;zð��x;y;zÞ]

� x 0
y 0z ¼ �� x 0

zy 0 ¼ 1 and � x 0
yz 0 ¼ �� x 0

z 0y ¼ 1; ði8Þ
� y 0

z 0x ¼ �� y 0
xz 0 ¼ 1 and � y 0

zx 0 ¼ �� y 0
x 0z ¼ 1; ði9Þ

� z 0
x 0y ¼ �� z 0

yx 0 ¼ 1 and � z 0
xy 0 ¼ �� z 0

y 0z ¼ 1: ði10Þ

and hence that the nonvanishing �’s are (with some, easily understood, ad hoc
notation; and assuming that sin � 6¼ 0)

� n
Ny ¼ �� n

yN ¼ 1= sin �; �N
yn ¼ ��N

ny ¼ 1= sin �: ð j6Þ



Example 2.13.10 Cardanian Suspension of a Gyroscope. Let us consider a
gyroscope suspended à le Cardan (fig. 2.22). The rotation sequence

q1 � �ðprecessionÞ ! q2 � �ðnutationÞ ! q3 �  ðspinÞ
(i.e., 3! 2! 1, in the Eulerian angle sense of }1.12) brings the original axes
G��XYZ, through the intermediate position G��x 0y 0z 0 (outer gimbal), to the also
intermediate position G��xyz (inner gimbal).

Now: (i) The inertial angular velocity of the outer gimbal xO, along outer gimbal–
fixed axes, is

!O;x 0 ¼ 0; !O;y 0 ¼ 0; !O;z 0 ¼ !�; ðaÞ
(ii) the inertial angular velocity of the inner gimbal xI , along inner gimbal–fixed axes,
is

!I ;x ¼ �!� sin �; !I ;y ¼ !�; !I ;z ¼ !� cos �; ðbÞ
and (iii) the inertial angular velocity of the gyroscope x, along inner gimbal–fixed
axes, is

!x ¼ ! � !� sin �; !y ¼ !�; !z ¼ !� cos �: ðcÞ
Let us find the transitivity equations corresponding to these quasi velocities.
Equations (c) can be rewritten as

!1 � !x � ð� sin �Þ!� þ ð0Þ!� þ ð1Þ! ð6¼ 0Þ; ðdÞ
!2 � !y � ð0Þ!� þ ð1Þ!� þ ð0Þ! ð6¼ 0Þ; ðeÞ
!3 � !z � ðcos �Þ!� þ ð0Þ!� þ ð0Þ! ð6¼ 0Þ; ðf Þ

)2.13 GENERAL EXAMPLES AND PROBLEMS 373

Figure 2.22 Kinematics of Cardanian suspension of a gyroscope.



and their inverses are readily found to be

v1 � !� ¼ ð0Þ!x þ ð0Þ!y þ ð1= cos �Þ!z; ðgÞ
v2 � !� ¼ ð0Þ!x þ ð1Þ!y þ ð0Þ!z; ðhÞ
v3 � ! ¼ ð1Þ!x þ ð0Þ!y þ ðsin �= cos �Þ!z: ðiÞ

From these stationary relations, and assuming dð�qkÞ ¼ �ðdqkÞ ðk ¼ x; y; zÞ, we
obtain, successively,

ðiÞ dð��xÞ � �ðd�xÞ ¼ d ð� sin �Þ ��þ � ½ � � � ð� sin �Þ d�þ d ½ �
¼ � � � ¼ ðcos �Þðd� ��� d� ��Þ ¼ � � � ¼ d�z ��y � d�y ��z; ð jÞ

ðiiÞ dð��yÞ � �ðd�yÞ ¼ 0 ð) �y ¼ holonomic coordinateÞ; ðkÞ
ðiiiÞ dð��zÞ � �ðd�zÞ ¼ d ðcos �Þ ��½ � � � ðcos �Þ d�½ �

¼ � � � ¼ ðsin �Þðd� ��� d� ��Þ ¼ � � � ¼ ðtan �Þðd�z ��y � d�y ��zÞ; ðlÞ
and so the nonvanishing �’s are (assuming � 6¼ � �=2Þ

� x
yz ¼ �� x

zy � � 1
23 ¼ �� 1

32 ¼ þ1; ðmÞ
� z

yz ¼ �� z
zy � � 3

23 ¼ �� 3
32 ¼ tan �: ðnÞ

Example 2.13.11 An Elementary ad hoc Vectorial Derivation of the Rotational
Rigid-Body Transitivity Equations. Let us consider, with no loss of generality, a
free rigid body B rotating with (inertial) angular velocity x about a fixed point O.
Then, as is well known (}1.9 ff.), and since this is an internally scleronomic system,
the (inertial) velocity/kinematically admissible displacements/virtual displacements
of a typical B-particle of (inertial) position vector r, are, respectively,

iation operators. Now, dð. . .Þ-varying the last of (a), �ð. . .Þ-varying the second, and
then subtracting the results side by side, while invoking (a) and the rule
dð�rÞ � �ðdrÞ ¼ 0, we obtain, successively,

[and applying to the second bracket (last two triple cross-products) the cyclic vector
identity, holding for any three vectors a; b; c : a� ðb� cÞ þ b� ðc� aÞþ

from which, since r is arbitrary, we finally get the fundamental and general inertial
rotational transitivity equation:
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v = ω × r⇒ dr = dθ × r, δr = δθ × r, (a)

where dθ ≡ ω dt, and d(. . .)/δ(. . .) are kinematically admissible/virtual (inertial) var-

0 = d(δr)− δ(dr) = [d(δθ)× r+ δθ × dr]− [δ(dθ)× r+ dθ × δr]

= [d(δθ)× r+ δθ × (dθ × r)]− [δ(dθ)× r+ dθ × (δθ × r)]

= [d(δθ)− δ(dθ)]× r+ [δθ × (dθ × r)− dθ × (δθ × r)]

c × (a× b) = 0, with the identifications: a→ δθ, b→ dθ, c→ r]

d(δθ)− δ(dθ) = dθ × δθ. (b)

= [d(δθ)− δ(dθ)]× r+ (δθ × dθ) × r,



Dividing the above with dt, which does no interact with these differentials (and

sitivity equation in terms of the angular velocities:

the well-known kinematical operator identities [(}1.7 ff.)]

tively, and then substracting side by side, we find, successively,

or, invoking (b) for its left side and rearranging slightly, we get, finally,

and dividing by dt, we also obtain its velocity equivalent,

The kinematical identities (f, g) are the noninertial counterparts of (b, c).
The difference between (b, c) and (f, g) often goes unnoticed in the literature.

To understand it better, let us write them down in component form, along space-
fixed axes ^��XYZ and body-fixed axes ^��xyz. Only the first equations are shown
(i.e., X , x); the rest follow cyclically:

Space-fixed (inertial) axes:

dð��XÞ � �ðd�XÞ ¼ d�Y ��Z � d�Z ��Y ; or ð��XÞ:� �!X ¼ !Y ��Z � !Z ��Y ;

ðh1Þ
Body-fixed (noninertial) axes:

dð��xÞ � �ðd�xÞ ¼ d�z ��y � d�y ��z; or ð��xÞ: � �!x ¼ !z ��y � !y ��z; ðh2Þ

which, naturally, coincide with equations (c1–f2) of ex. 2.13.9, and }1.14.
[When dealing with derivatives/differentials of components, we may safely use the

same notation ð. . .Þ:=dð. . .Þ=�ð. . .Þ for both space and body such changes; here, the
intended meaning is conveyed unambiguously].

Additional Special Results

(i) Applying the second of (d) for x, and then equating the resulting �x-expres-
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noting that, by Newtonian relativity, dt = ∂t), we also obtain the equivalent tran-

d(δθ)/dt− δx = x×δθ. (c)

d(. . .) = ∂(. . .) + dθ × (. . .), δ(. . .) = δrel(. . .) + δθ × (. . .), (d)

d(δθ)− δ(dθ) = ∂(δθ)− δrel(dθ) + (dθ × δθ − δθ × dθ)

= ∂(δθ)− δrel(dθ) + 2(dθ × δθ), (e)

∂(δθ)/dt− δrelx = δθ ×x . (g)

sion with that obtained from (c), we get d(δθ)/dt − x × δθ = δrelx + δθ × x , or,
simplifying, d(δθ)/dt = δrelx ; or, equivalently (multiplying with dt),

d(δθ) = δrel(dθ). (i)

Next, let us find the counterparts of (b, c) in terms of relative differentials/variations,
i.e. relative to moving (here body-fixed) axes, to be denoted by ∂(. . .)/δrel(. . .). Applying

(which immediately yield ∂r = 0 and δrel r = 0, as expected) to δθ and dθ, respec-

∂(δθ)− δrel(dθ) = δθ × dθ; (f )



(ii) Starting from (c), and then invoking the first of (d), we obtain, successively,

that is,

which is ‘‘symmetrical’’ to (i).
(iii) Applying the first of (d) for x yields

but the second of (d) shows that

Problem 2.13.4 Rigid-body Transitivity Equations. Using the results of the
preceding example and its notations, show that, for a rigid body rotating about a
fixed point,

even though dð�rÞ � �ðdrÞ ¼ 0; that is, the rule dð� . . .Þ ¼ �ðd . . .Þ is not frame-

Example 2.13.12 A Special Rigid-Body Transitivity Equation—Holonomic Coordi-
nates. Continuing from the above examples, we show below that, for a rigid body
rotating about a fixed point, the following transitivity/nonintegrability identity
holds:

EkðxÞ � d=dtð@x=@vkÞ � @x=@qk ¼ x� ð@x=@vkÞ: ðaÞ
For such a system (with k ¼ 1; 2; 3; and qk ¼ angular Lagrangean coordinates; e.g.,
Eulerian angles �; �;  ) we will have

x ¼ xðqk; dqk=dt � vkÞ � xðq; vÞ
¼ linear and (for our system, also) homogeneous function of the vk’s

¼
X
ð@x=@vkÞvk (by Euler’s homogeneous function theorem) �

X
ckvk;

ðbÞ
[definition of the ck’s; also, recalling (1.7.9a, b)] from which it follows that
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invariant!

δx = d(δθ)/dt− x × δθ = [∂(δθ)/∂t+ x × δθ]− x × δθ

dx = ∂x , or, equivalently, d(dθ) = ∂(dθ); (k)

or, equivalently (dividing by dt = ∂t),

dθ ≡ x dt =
∑

ck dqk,

δx = ∂(δθ)/∂t, or, equivalently, δ(dθ) = ∂(δθ); ( j)

= ∂(δθ)/∂t [= δrelx + δθ × x , by (g)];

δx �= δrelx , or, equivalently, δ(dθ) �= δrel(dθ). (l)

∂(δr)− δrel(dr) = (δθ × dθ)× r �= 0, (a)

∂(δr)/∂t− δrelv = (δθ × x)× r �= 0; (b)



and since this is a scleronomic system

and so the basis (quasi) vectors ck � @x=@vk (independent of the vk’s) can also be
defined symbolically by

Now, let us substitute the above representations into the earlier (inertial) transitivity
equation

We find, successively,

ðiÞ Left side [we assume that ð�qÞ: ¼ �ðdq=dtÞ � �v� :

¼ � � � ¼
X

d=dtð@x=@vkÞ � @x=@qk½ ��qk ¼
X

EkðxÞ �qk: ðf Þ

(ii) Right side:

and therefore (since the �qk are independent—but even if they were constrained that
would only affect the equations of motion) equating the right sides of (f) and (g), the
identity (a) follows.

In terms of the earlier ck vectors, (a) reads

dck=dt ¼ x� ck þ @x=@qk ¼
X
ðcl � ck þ @cl=@qkÞvl: ðhÞ

Finally, applying the first of (d) of ex. 2.13.11 to @x=@vk, and inserting the result
into (a, h) produces the following interesting result:

Problem 2.13.5 Using the well-known kinematical result

duk=dt ¼ x� uk; ðaÞ
where fuk ¼ ukðqÞg is, say, a body-fixed basis rotating with inertial angular velocity x
(like the earlier i; j; k), with the x-representation (b) of the preceding example:

x ¼ xðqk; vkÞ � xðq; vÞ ¼
X

ckvk; ðbÞ
show that

@uk=@ql ¼ cl � uk [note subscript order]; ðcÞ
i.e., (1.7.9c). Clearly, such a result holds for any vector b ¼ bðqÞ rotating with angu-
lar velocity x: @b=@ql ¼ cl � b � ð@x=@vkÞ � b. Also: (i) d=dtð@b=@qlÞ ¼
@=@qlðdb=dtÞ; and (ii) @b=@vl ¼ 0.
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ck ≡ ∂θ/∂qk ≡ ∂(dθ)/∂(dqk) ≡ ∂(δθ)/∂(δqk). (d)

d(δθ)/dt− δx = x × δθ. (e)

d(δθ)/dt− δx = d/dt
(∑

(∂x/∂vk)δqk
)
−

∑
[(∂x/∂qk)δqk + (∂x/∂vk)δvk]

x × δθ = x ×

(∑
(∂x/∂vk)δqk

)
=

∑

Ek,rel(x) ≡ ∂/∂t(∂x/∂vk)− ∂x/∂qk = 0 or ∂ck/∂t = ∂x/∂qk. (i)

δθ =
∑

ck δqk; (c)

[x × (∂x/∂vk)]δqk, (g)



Problem 2.13.6 By direct substitution of the representations

into the earlier inertial rotational transitivity equation [ex. 2.13.11: eq. (b)].

and some simple differentiations, show that

@ck=@ql � @cl=@qk ¼ cl � ck: ðcÞ

This nonintegrability relation shows clearly that the basis fckg is nonholonomic

coordinate. Simplify (c) if the fckg are an orthogonal–unit–dextral basis (see also
Brunk, 1981).

Example 2.13.13 A Special Rigid-Body Transitivity Equation—Nonholonomic
Coordinates. Continuing from ex. 2.13.11, let us substitute the (fully non-
holonomic) representations

where, as usual, �k ¼ quasi coordinates, !k � d�k=dt ¼ quasi velocities, and

into the fundamental inertial rotational transitivity equation

We find, successively,

(i) Left side:

�
X �ð@x=@qkÞ �qk þ ð@x=@!kÞ �!k

	
[and setting �qk ¼

X
Akl ��l �

X
ð@vk=@!lÞ ��l (definition of the AklÞ�

¼
X

ð@x=@!kÞ:�
X

Alkð@x=@qlÞ
h i

��kþ
X
ð@x=@!lÞ ð��lÞ:��!l½ �

½recalling the @ . . . =@�k definition (2.9.30a); and setting (as in pr. 2.10.5)

ð��lÞ:� �!l ¼
X

hlk ��k (definition of the hlkÞ�
�
X �ð@x=@!kÞ:� @x=@�k

	
��k þ

XX
ð@x=@!lÞhlk ��k

�
X

Ek*ðxÞ þ
X

hlkð@x=@!lÞ
h i

��k: ðdÞ
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dθ ≡ xdt =
∑

ck dqk and δθ =
∑

ck δqk (a)

d(δθ) − δ(dθ) = dθ × δθ, (b)

(nongradient); whereas if ck = ∂θ/∂qk, then d(δθ) = δ(dθ) ⇒ θ = genuine angular

d(δθ)/dt− δx = x × δθ. (c)

∑
[(∂x/∂ωk)

·δθk + (∂x/∂ωk)(δθk)
·]

e k ≡ ∂x/∂ωk ≡ ∂(dθ)/∂(dθk) ≡ ∂(δθ)/∂(δθk) ≡ ∂θ/∂θk : nonholonomic basis, (b)

d(δθ)/dt− δx =

x =
∑

(∂x/∂ωk)ωk ≡
∑

ekωk = x(q, ω), dθ =
∑

ek dθk, δθ =
∑

ek δθk,

(a)



(ii) Right side:

and, therefore, equating the right sides of (d) and (e), we obtain the identity

d=dtð@x=@!kÞ � @x=@�k þ
X

hlkð@x=@!lÞ ¼ x� ð@x=@!kÞ; ðf Þ

or, in terms of the quasi vectors ek ¼ ekðqÞ,
dek=dt� @x=@�k ¼ x� ð@x=@!kÞ �

X
hlkel : ðgÞ

ðhÞ

which is a special case of the transitivity equation (2.10.25).

[Here too, we point out the differences between the notation:

@xðq; !Þ=@�l �
X �

@xðq; !Þ=@qk
	ð@vk=@!lÞ; ðiÞ

and the vector transformation (by chain rule):

@xðq; !Þ=@!l ¼
X �

@xðq; vÞ=@vk
	ð@vk=@!lÞ or el ¼

X
Akl ek:

See also Papastavridis, 1992.

Problem 2.13.7 By direct substitution of the representations

into the earlier inertial rotational transitivity equation [ex. 2.13.11, eq. (b)]

and some simple differentiations, show that

@ek=@�l � @el=@�k þ
X

�bkl eb ¼ el � ek; ðcÞ

where these special Hamel coefficients �bkl are defined by dð��bÞ � �ðd�bÞ ¼PP
�bkl d�l ��k.

Example 2.13.14 Angular Acceleration. Let us consider intermediate axes ^��uk
rotating with inertial angular velocity X ¼P Ok uk. If the inertial angular velocity
of a rigid body, resolved along these axes, is x ¼P !k uk then its inertial angular
acceleration equals
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[ ðjÞ

Finally, since dek/dt = ∂e k/∂t+x × ek, (g) takes the body-axes form:

∂e k/∂t− ∂x/∂θk ≡ ∂/∂t(∂x/∂θ̇k)− ∂x/∂θk ≡ E ∗

k,rel(x) = −

∑
hlke l,

d(δθ)− δ(dθ) = dθ × δθ (b)

where ∂x/∂t =
∑

(dωk/dt)uk, and xo ≡ x − Ω = angular velocity of body relative

x × δθ = x ×

(∑
(∂x/∂ωk)δθk

)
=

∑
[x × (∂x/∂ωk)] δθk; (e)

dθ ≡ x dt =
∑

ek dθk and δθ =
∑

ek δθk (a)

a ≡ dx/dt = ∂x/∂t+ O ×x = ∂x/∂t−x o × x , (a)

to the intermediate axes.



Applying this result to the earlier case of semimobile axes ^��i 0j 0k 0 � ^��unun 0k
(ex. 2.13.9) where

x ¼ ð!�Þun þ ð!� sin �Þun 0 þ ð! þ !� cos �Þk ¼ X þ ! k ¼ Xþ xo; ðbÞ
[with the customary notations: !� � d�=dt; !� � d�=dt; ! � d =dt]

that is, xo ¼ ! k, we find, after some straightforward calculations,

a � 
nun þ 
n 0un 0 þ 
kk; ðcÞ
where


n � d!�=dtþ !� ! sin �;

n 0 � ðd!�=dtÞ sin �þ !� !� cos �� !� ! ;

k � ðd!�=dtÞ cos �þ d! =dt� !� !� sin �: ðdÞ

Let the reader repeat the above for the semifixed axes ^��unuNK , where

x ¼ ð!�K þ !�unÞ þ ! k ¼ ð!�K þ !�unÞ þ ! ð� sin � uN þ cos �KÞ
¼ ð!�Þun þ ð�! sin �ÞuN þ ð!� þ ! cos �ÞK
� !�K þ xo � X þ xo: ðeÞ

[For matrix forms of rigid-body accelerations, see (1.11.9a ff.); also Lur’e (1968,
pp. 68–72).]
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3

Kinetics of Constrained Systems

(i.e., Lagrangean Kinetics)

Where we may appear to have rashly and needlessly interfered

with methods and systems of proof in the present day generally

accepted, we take the position of Restorers, and not of

Innovators.

(Thomson and Tait, 1867–1912, Preface, p. vi)

[A] work of which the unity of method is one of the most

striking characteristics. . . : That which most distinguishes the plan

of this treatise from the usual type is the direct application of the

general principle to each particular case.

[T]he author . . . again and again . . . experienced the

extraordinary elation of mind which accompanies a

preoccupation with the basic principles and methods of

analytical mechanics.

(Lanczos, 1970, p. vii)

3.1 INTRODUCTION

This is the key chapter of the entire book; and since it is based on chapter 2, it should
be read after the latter. We begin with a detailed coverage of the two fundamental
principles, or pillars, of Lagrangean analytical mechanics:

From these two, with the help of virtual displacements, and so on (}2.5 ff.), we,
subsequently, obtain all possible kinetic energy–based (Lagrangean) and acceleration
energy–based (Appellian) equations of motion of holonomic and/or Pfaffian (possibly
nonholonomic) systems; in holonomic and/or nonholonomic variables, with/without
constraint reactions; such as the equations of Routh–Voss, Maggi, Hamel, and
Appell, to name the most important.

Next, applying standard mathematical transformations to these equations, we
obtain the theorem of work–energy in its various forms; that is, in holonomic and/
or nonholonomic variables, with/without constraint reactions, and so on. This con-
cludes the first, general, part of the chapter (}3.1–12). The second and third parts
apply the previous Lagrangean and Appellian methods/principles/equations,
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(i) The Principle of Lagrange (and its velocity form known as The Central Equation); and
(ii) The Principle of Relaxation of the Constraints.

(Gibbs, 1879, 3rd footnote, emphasis added; the work/treatise
Gibbs refers to is LagrangeʼsMećanique Analytique, and the
“general principle” is Lagrange’s Principle (§3.2))



respectively, to the rigid body (}3.13–15) and to noninertial frames of reference (or
moving axes) (}3.16). The chapter ends with (i) a concise discussion of the servo-, or
control, constraints of Beghin–Appell (}3.17); and (ii) twoAppendices on the historical
evolution of (some of ) the above principles/equations ofmotion, and their relations to
virtual displacements and the confusion-laden principle of d’Alembert–Lagrange.

As with the previous chapters, a large number of completely solved examples and
problems with their answers and/or helpful hints, many of them kinetic continua-
tions of corresponding kinematical examples and problems of chapter 2, have been
appropriately placed throughout this chapter.

For complementary reading, we recommend (alphabetically): Butenin (1971),
Dobronravov (1970, 1976), Gantmacher (1966/1970), Hamel (1912/1922(b), 1949),

(1985), Prange (1935), Synge (1960). As with chapter 2, we are unaware of any
other single exposition, in English, comparable to this one in the range of topics
covered. Only Hamel (1949), Mei et al. (1991) and Neimark and Fufaev (1967/1972)
cover major portions of the material treated here.

3.2 THE PRINCIPLE OF LAGRANGE (LP)

We begin with a finite mechanical system S consisting of particles fPg; each of mass
dm, inertial acceleration a � dv=dt � d 2r=dt2, and each obeying the Newton–Euler
equation of motion (}1.4):

dm a ¼ df ; ð3:2:1Þ
where df ¼ total force acting on P. As explained in chapter 2, the continuum notation
for particle quantities, employed here, simplifies matters, since it allows us to reserve
all indices (to be introduced below) for system quantities.

The Force Classification

Now, and here we start parting company with the Newton–Euler mechanics, we
decompose df into two parts: (i) a total physical, or impressed, force dF, and (ii) a
total constraint force, or constraint reaction, dR:

df ¼ dF þ dR: ð3:2:2Þ
Let us elaborate on these fundamental concepts:

(i) By constraint reactions, on our particle P, we shall understand (external and/or
internal) forces, due solely to the (external and/or internal) geometrical and/or kine-
matical constitution of the system S; that is, forces caused exclusively by the pre-
scribed (external and/or internal) constraints of S, and whose raison d’être is the
preservation of these constraints. As a result, such forces are (a) passive (i.e., they
appear only when absolutely needed; see below), and (b) expressible only through
these constraints (since, by their definition, they contain neither physical constants
nor material functions/coefficients). Therefore, these reactions become fully known
only after the motion of S (under possible additional, nonconstraint forces and
initial conditions) has been found. Examples of constraint reactions are: inextensible
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Kilchevskii (1977), Lur’e (1961/1968/2002), Mei (1985, 1987(a), 1991), Mei and Liu
(1987), Neimark and Fufaev (1967/1972), Nordheim (1927), Pars (1965), Poliahov et al.



cable tensions, internal forces in a rigid body, normal forces among contacting
(rolling/sliding/pivoting/nonpivoting) rigid bodies, and rolling (or static) friction.

(Generally, constraints and their reactions are classified, on the basis of the precise
physical manner by which they are maintained, as passive, or as active. Except }3.17,
where the latter are elaborated, this chapter deals only with passive constraints/
reactions.)

(ii) By physical or impressed forces, on our particle P, we shall understand all
other (external and/or internal, nonconstraint) forces acting on it, which means that
[since the total force on P is determined through variables describing the geometrical/
kinematical and physical state of the rest of the matter surrounding that particle
(recalling }1.4)] the impressed forces depend, at least partially, on physical, or mate-
rial, constants, unrelated to the constraints, and which can be determined only
experimentally. Examples of such constants are: mass, gravitational constant, elastic
moduli, viscous and/or dry friction coefficients, readings of the scale of a barometer
or manometer; and examples of physical/impressed forces are gravity (weight), elas-
tic (spring) forces, viscous damping forces, steam pressure, slipping (or sliding, or
kinetic) friction [see remark (iii) below].

In other words, the impressed forces are forces expressed by material, or consti-
tutive, equations, that contain those physical constants, and are assumed to be valid
for any motion of the system; physical means physically ( functionally) given—it does
not mean that the values of these forces are necessarily known ahead of

In sum: Impressed forces are given by constitutive equations, while reactions are not;
but, in general, both these forces require, for their complete determination, knowledge
of the subsequent motion of the system (which, in turn, requires solution of an initial-
value problem; namely, that of its equations of motion plus initial conditions).

Impressed forces are also, variously, referred to as (directly) applied, active, acting,
assigned, given, known (where the last two terms have the meaning described above—
see also remarks (iii) and (iv) below). In addition, the great physicist Planck (1928, pp.
101–103) calls our impressed forces ‘‘treibende’’ (driving, or propelling), while the
highly instructive Langner (1997–1998, p. 49) proposes the rare but conceptually
useful terms ‘‘urgente’’ (urging) for the impressed forces, and ‘‘cogente’’ (cogent, con-
vincing) for the constraint forces. We follow Hamel (1949, pp. 65, 82, 517, 551), who
calls impressed forces ‘‘physikalisch gegebene’’ (physically given) or ‘‘eingeprägte’’;
also Sommerfeld (1964, pp. 53–54), who calls them ‘‘forces of physical origin.’’

REMARKS

(i) From the viewpoint of continuum mechanics, practically all forces are physical
(i.e., impressed); for example, an inextensible cable tension can be viewed as the limit
of the tension of an elastic cable, or rubber band, whose modulus is getting higher
and higher (!1); and a rigid body can be viewed as a very stiff, practically strain-
less, deformable body. But there is also the exactly opposite viewpoint: kinetic and
statistical theories of matter explain macroscopic phenomena, such as friction, visc-
osity, rust, by the motion of large numbers of smooth molecules, atoms, and so on.
Their 19th century forerunners (Kelvin, Helmholtz, et al.) even tried to reduce the
internal potential energy of bodies to the kinetic energy of a number of spinning
‘‘molecular gyrostats’’ strategically located inside them—see, for example, Gray
(1918, chap. 8). And there is, of course, general relativity, which, continuing tradi-
tions of forceless mechanics, initiated by Hertz et al., set out to geometrize gravity
completely; that is, replace tactile mechanics by a visual mechanics, albeit in a
four-dimensional ‘‘space.’’ For the modest purposes of macroscopic earthly
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mechanics, the impressed/constraint force division is both logically consistent and
practically useful (economical), and so we uphold it throughout this book.

(ii) The decomposition (3.2.2), what Hamel (1949, p. 218) calls ‘‘d’Alembertsche
Ansatz’’ (� initial proposition), is the hallmark of analytical mechanics. Expressing
system accelerations as partial/total derivatives of kinetic energies with respect to
system coordinates, velocities, and time (}3.3) is a welcome but secondary character-
istic of Lagrangean analytical mechanics; the primary one is the decomposition
(3.2.2) and its consequences with regard to the equations of motion. By contrast,
the Newton–Euler mechanics decomposes d f into (a) a total external force d f e
(¼ force originating, even partially, from outside of our system S), and (b) a total
internal, or mutual, force df i (¼ force due exclusively to the rest of S, on its generic
particle P):

d f ¼ d f e þ d f i : ð3:2:3Þ

The connection between (3.2.2) and (3.2.3) is easily seen by decomposing dFðdRÞ
into an external part dFeðdReÞ and an internal part dF iðdRiÞ, and then rearranging à
la (3.2.3); that is, successively,

d f ¼ dF þ dR ¼ ðdFe þ dF iÞ þ ðdRe þ dRiÞ
¼ ðdFe þ dReÞ þ ðdF i þ dRiÞ � d f e þ d f i ;

ð3:2:4Þ

where

d f e � dFe þ dRe and d f i � dF i þ dRi : ð3:2:4aÞ

The decompositions (3.2.2) and (3.2.3), although physically different, may, for some
special systems, coincide. For example, in a free (i.e., externally unconstrained) rigid
body all external forces are impressed (i.e., external reactions=0), and all internal
forces are reactions (i.e., internal impressed forces=0). The coincidence of external
forces with impressed forces and of internal forces with reactions in this popular and
well-known system is, probably, responsible for the frequent confusion and error
accompanying d’Alembert’s principle (detailed below), even in contemporary
dynamics expositions.

(iii) Rolling friction should be counted as a constraint reaction because it is
expressed by a geometrical/kinematical condition, not by a constitutive equation;
while slipping friction should be counted as an impressed force because, according to
the well-known Coulomb–Morin friction ‘‘law,’’ it depends both on the contact
condition (through the normal force, which is in both cases a constraint reaction)
and on the physical properties of the contacting surfaces (through the kinetic friction
coefficient). (That slipping friction is governed by a physical inequality does not affect
our force classification.) The above apply to the (possible) rolling/slipping and pivot-
ing/non-pivoting couples.

The difference between rolling and slipping friction, from the viewpoint of analy-
tical mechanics (principle of virtual work, etc.), has been a source of considerable
confusion and error, even among the better authors on the subject.

(iv) The force decomposition (3.2.2) is completely analogous to that occurring in
continuum mechanics. For instance, in an incompressible (i.e., internally con-
strained) elastic solid, the total stress (force) consists of a ‘‘hydrostatic pressure’’
or ‘‘reaction stress’’ term (constraint reaction), plus an ‘‘elastic stress’’ term
(impressed force) expressed by a constitutive equation/function of the elastic moduli

384 CHAPTER 3: KINETICS OF CONSTRAINED SYSTEMS



(material constants) and the strains (motion! deformation), and it is assumed to be
valid for any motion of that system. In general, the values of the stresses,
both ‘‘incompressible/pressure’’ and ‘‘elastic’’ parts, for specific initial and boundary
conditions, are found after solving that particular ‘‘initial- and boundary-value
problem’’; namely, the equations of motion of the solid plus its initial and boundary
conditions.

HISTORICAL

The fundamental decomposition (3.2.2) seems to have been first given by Delaunay
(1856); see, for example (alphabetically): Rumyantsev (1990, p. 268), Stäckel (1905,
p. 450, footnote 11a); also Hamel (1912, pp. 81–82, 301–302, 457–458, 469–470),
Heun [1902 (a, d)], Pars (1953, pp. 447–448), Webster (1912, pp. 41–42, 63–65).

Example 3.2.1 Let us Find the Most Important Internal/External and Impressed/
Constraint Forces in a Diesel-Powered Electric Locomotive, Rolling on
Rails. These are as follows:

(i) Gravity and air resistance (drag) are both external (their cause lies outside the
system locomotive), and impressed (both depend partially on the physical constants:
g ¼ acceleration of gravity and � ¼ air density, respectively).

(ii) Pressure of burnt diesel fuel is internal (it originates within the engine’s cylin-
ders) and impressed (depends on the gas temperature, density, etc.).

(iii) Forces on connecting rods and other moving parts of the engine:

(a) If these bodies are considered rigid, the forces are internal reactions;

(b) If they are considered flexible, say elastic, these forces are internal but impressed (and
to calculate them we must know their elastic moduli).

(iv) Forces between axles and their wheel bearings are internal (for obvious rea-
sons) and impressed (due to the relative motion among them—no constraints).

(v) Friction forces between wheels and rail are external (caused, partially, by an
external body, the rail) and reactions (due to the slippingless rolling of wheels), and
this holds for both their tangential (friction) and normal components; however, in
the case of slipping (skidding), the friction changes to an external impressed force (it
depends, partially, on the wheel–rail friction coefficient).

Example 3.2.2 Let us Identify and Classify the Key Forces on a Person Walking
up a Rough Hilly Road. The external forces needed to overcome the (also exter-
nal) forces of gravity and air resistance are those generated by the road friction.
The latter are reactions, since there is no relative motion (i.e., constraint) between
the walker’s shoes and the road surface.

Arguments of the Forces

In classical (Newtonian) mechanics, the force d f on a particle P, of a system S, can
depend, at most, on its position, velocity, and time; and on those of other particles of
S, or even outside of S; and also, on material functions/coefficients. But, as an
independent constitutive equation (i.e., not by some artificial control law), d f cannot
depend on the acceleration a of P (and/or its higher time derivatives). This, however,
does not preclude the occurrence of such a dependence by elimination: in the course
of solving the equations of motion, and so on, of a problem, it is possible to relate
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functionally a force with an acceleration; but that is a mathematical coupling, not an
independent physical one.

[Pars (1965, pp. 11–12; also 24–25) has shown that if d f depended on a, then the
initial state of P, that is, its initial position and velocity, would not determine its
future uniquely; see also Rosenberg (1977, pp. 10–17); and Hamel (1949, p. 49). But
in other areas of classical physics, for instance electrodynamics (e.g., radiation damp-
ing), such a non-Newtonian explicit a-dependence does not create inconsistencies.]

Lagrange’s Principle

Dotting each of (3.2.1) and (3.2.2) with the corresponding particle’s inertial virtual
displacement �r (}2.5 ff.) and then summing the resulting equations over all system
particles, for a fixed generic time, we obtain

Sdm a � �r ¼SdF � �rþSdR � �r; ð3:2:5Þ

or, rearranging,

S ðdm a� dFÞ � �rþS ð�dRÞ � �r ¼ 0; ð3:2:6Þ

where [recall (}2.2.7 ff.)] the material sum S ð. . .Þ is to be understood as a Stieltjes’
integral extending over all the continuously and/or discretely distributed system
particles and their geometric/kinematic/inertial/kinetic variables.

Equations (3.2.5, 6) do not contain anything physically new; that is, they result
from (3.2.1, 2) by purely mathematical transformations. To make further progress
towards the derivation of reactionless equations of motion, one of the key objectives
of analytical mechanics, we now postulate that (for bilateral, or equality, or rever-
sible, constraints)

�� 0WR �S ð�dRÞ � �r � �SdR � �r ¼ 0; ð3:2:7Þ

in words: at each instant, the (first-order) total virtual work of the system of (external
and internal) ‘‘lost’’ (or forlorn, or accessory) forces f�dRg, �� 0WR, vanishes. Then,
equations (3.2.5, 6) immediately reduce to the new and nontrivial principle of
d’Alembert in Lagrange’s form, or, simply and more accurately, principle of
Lagrange (LP) for such constraints:

Sdm a � �r ¼SdF � �r or S ðdm a� dFÞ � �r ¼ 0; ð3:2:8Þ

what Lagrange calls ‘‘la formule générale de la Dynamique pour le mouvement d’un
système quelconque de corps.’’

This fundamental differential variational equation states that during the motion of
a constrained system whose reactions, at each instant, satisfy the physical postulate
(3.2.7), the total (first-order) virtual work of (the negative of ) its ‘‘inertial forces’’
�f�dm ag ¼ fdm ag,

�I �Sdm a � �r; ð3:2:9Þ

equals the similar virtual work of its (external and internal) impressed forces fdFg,
� 0W �SdF � �r; ð3:2:10Þ
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that is,

� 0WR ¼ 0 ) �I ¼ � 0W : ð3:2:11Þ
The entire Lagrangean kinetics is based on LP, equations (3.2.7–11). Let us, therefore,
examine them closely.
� Another, equivalent, formulation of the above is the following: during the

motion, the totality of the lost forces f�dR ¼ dF � dm ag are, at each instant, in
equilibrium; not in the elementary sense of zero force and moment, but in that of the
virtual work equation (3.2.7) (see also chap. 3, appendix 2).
� Here, we must stress that the above equations, and associated virtual work

conception of equilibrium, are the contemporary formulation and interpretation of
d’Alembert’s principle; and they are due, primarily, to Heun and Hamel (early 20th
century). As such, they bear practically zero resemblance to the original workless
exposition of d’Alembert (1743). The latter postulated what, again in contemporary
terms, amounts to equilibrium of the f�dRg in the elementary (i.e., Newton–Euler)
sense of zero resultant force and moment:

S ð�dRÞ ¼ 0 ) S ðdm a� dFÞ ¼ 0;

S r� ð�dRÞ ¼ 0 ) S r� ðdm a� dFÞ ¼ 0: ð3:2:12Þ

It is not hard to see that for a rigid body (what d’Alembert dealt with) (3.2.7)
specializes to (3.2.12). Indeed, substituting into (3.2.7) the most general rigid

then M^ð�RÞ ¼Moriginð�RÞ]. If, further, the rigid body is free, that is, uncon-
strained, then, as explained earlier, all its external (internal) forces are impressed
(reactions) (i.e., fd f eg ¼ fdFg and fd f ig ¼ fdRg), and the above lead to the
Eulerian principles of linear and angular momentum (recall }1.8.18):

Sd f e ¼Sdm a and S ðr� r^Þ � d f e ¼S ðr� r^Þ � dm a: ð3:2:14Þ

It follows that, in studying the statics of free rigid bodies via virtual work, we only
need include their external ¼ impressed forces; and that is why here the methods of
Newton–Euler and d’Alembert–Lagrange coincide and supply conditions that are
both necessary and sufficient for equilibrium (see also Hamel, 1949, pp. 80–83).

This preoccupation of d’Alembert, and many others since him, with the special
case of (systems of) rigid bodies and elementary vector equilibrium (3.2.12), has
diverted attention from the far more general scalar virtual work equilibrium
(3.2.7), which constitutes the essence of LP.
� In LP it is the sum � 0WR � SdR � �r that vanishes, and not necessarily each

of its terms dR � �r separately; although this latter may happen in special cases.
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−δ′WR = S (−dR) · [δr^ + δθ × (r− r^ )]

=
[
S (−dR)

]
· δr^ +

[
S (r − r^ )× (−dR)

]
· δθ

from which, since δr^ and δθ are arbitrary, (3.2.12) follows [and if S (−dR) = 0,

virtual displacement, δr = δr^ + δθ × (r − r^ ) [where ^ = generic body point, and
δθ = (first-order/elementary) virtual rigid body rotation (recalling §1.10 ff.)] and simple
vector algebra, we obtain, successively,

≡ (−R) · δr^ +M^ (−R) · δθ = 0, (3.2.13)



For example, as explained above, in a free rigid body (3.2.7) reduces to � 0WR !
ð� 0WÞinternal forces ¼ 0, although individually d f i � �r may not vanish.
� While the dm a are present wherever a mass is accelerated, the dF may act

only at a few system particles.
� In general, � 0WR and � 0W are not the exact (or perfect, or total) virtual differ-

entials of some system ‘‘work/force functions’’ WR and W , respectively; that is, in
general, they are quasi variables, and that is the purpose of the accented delta � 0

(recall }2.9 ff.). The same holds for �I , but here, for convenience, we will make an
exception and leave it unaccented.
� For unilateral (or inequality, or irreversible) constraints, LP is enlarged from

(3.2.7–11) to

SdR � �r ¼S ðdm a � dFÞ � �r 
 0 ) Sdm a � �r 
SdF � �r; ð3:2:15Þ

or

� 0WR 
 0 ) �I 
 � 0W : ð3:2:15aÞ

For example, in the case of a block resting under its own weight on a fixed horizontal
table, the sole impressed force on the block, gravity, cannot perform positive virtual
work; while the normal table reaction cannot perform negative virtual work:
� 0WR ¼ �� 0W 
 0.

Lagrange’s Principle as a Constitutive Postulate

It must be stressed that LP, eqs. (3.2.7–11), is what is known in continuum
mechanics as a constitutive postulate for the nonphysical part of the d f ’s, namely,
the constraint reactions fdRg; like Hooke’s law in elasticity, or the Navier–Stokes
law in fluid mechanics; hence, applying LP to a free (i.e., unconstrained) particle is
like, say, applying the theory of elasticity to a rigid body! As such, LP is not a law of
nature, like the Newton–Euler equation (3.2.1) (and its Cauchy form, in continuum
mechanics), but subservient to them; if (3.2.1) can be likened to a constitution article,
LP is a secondary law (say, a state law). Just as in continuum mechanics, where not
all parts of the stress need be elastic, here in analytical mechanics too, not all con-
straint reactions need satisfy (3.2.7) (see }3.17). Those reactions that do, which is
most of this book, we shall call ideal (or perfect, or passive, or frictionless).

In view of these facts, the frequently occurring expression ‘‘workless, or nonwork-
ing, constraints’’ must be replaced by the more precise one, virtually workless con-
straints. Indeed, under the most general kinematically admissible/possible particle
displacement (}2.5)

dr ¼
X

ek dqk þ e0 dt; where ek � @r=@qk; e0 � @r=@t ð� enþ1Þ;
ð3:2:16Þ

the corresponding (first-order, or elementary) work of the constraint reactions is

d 0WR �SdR � dr ¼ � � � ¼ ðd 0WRÞ1 þ ðd 0WRÞ2; ð3:2:16aÞ
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where

ðd 0WRÞ1 �
X

Rk dqk; Rk �SdR � ek; ð3:2:16bÞ

ðd 0WRÞ2 � R0 dt; R0 �SdR � e0 ð� Rnþ1Þ; ð3:2:16cÞ

while, under an equally general virtual displacement �r ¼P ek �qk, the correspond-
ing work is

� 0WR �SdR � �r ¼ � � � ¼
X

Rk �qk ¼ 0; ð3:2:16dÞ

and therefore, since ðd 0WRÞ1 and � 0WR are mathematically equivalent ðdq � �qÞ,

ðd 0WRÞ1 ¼ 0 ) d 0WR ¼ ðd 0WRÞ2 ¼ SdR � ð@r=@tÞ
h i

dt 6¼ 0: ð3:2:16eÞ

[In view of (3.2.16 ff.), it is, probably, better to think of first-order virtual work as
projection of the forces in certain directions; and to forget all those traditional (and
confusion-prone) definitions of it like ‘‘work of forces for a constraint compatible
infinitesimal movement of the system.’’]

In sum: in general, the constraint reactions are working; even when virtually
nonworking. Actually, that is why the whole concept of virtualness was invented in
analytical mechanics. For example, let us consider a particle P constrained to remain
on a rigid surface S, which undergoes a given motion. Then, the virtual work of the
normal reaction exerted by S on P is zero, while the corresponding d 0WR is not;
but, if S is stationary, then both � 0WR and d 0WR vanish. From the viewpoint of
continuum mechanics, the need for LP, or something equivalent, for the constraint
reactions is relatively obvious.

Below, we present a simple such mathematical argument from the viewpoint of
discrete mechanics. In an N-particle system with equations of motion [discrete coun-
terparts of (3.2.1)],

mP aP ¼ FP þ RP ðP ¼ 1; . . . ;NÞ; ð3:2:17aÞ
and assuming that the impressed FP’s are completely known functions of t; r; v
(something that may not always be the case: e.g., sliding friction), we have
3N þ 3N ¼ 6N unknown scalar functions: (i) the 3N position vector components/
coordinates fxPðtÞ; yPðtÞ; zPðtÞ: rectangular Cartesian components of rPg !
fd 2xP=dt

2 ¼ aP;x, d 2yP=dt
2 ¼ aP;y, d 2zP=dt

2 ¼ aP;z: rectangular Cartesian com-
ponents of aP ¼ d 2rP=dt

2g, plus (ii) the 3N reaction force components
fRP;x;RP;y;RP;zg. Against these unknowns, we have available: (i) the 3N scalar
equations of motion (3.2.17a), and (ii) a total of hþm scalar equations of
constraint (recall }2.2 ff.):

h geometric : �Hðt; rPÞ ¼ 0 ðH ¼ 1; . . . ; h; P ¼ 1; . . . ;NÞ; ð3:2:17bÞ
m velocity (possibly nonholonomic): fDðt; rP; vPÞ ¼ 0 ðD ¼ 1; . . . ;m; P ¼ 1; . . . ;NÞ;

ð3:2:17cÞ
that is, a total of 3N þ hþm (differential) equations. Therefore, to make our
problem determinate, we need 6N � ð3N þ hþmÞ ¼ ð3N � hÞ �m � n�m � f
ð� # DOF in the small) additional scalar equations. And here is where LP comes
in: as shown later in this chapter, the single energetic but variational equation

)3.2 THE PRINCIPLE OF LAGRANGE (LP) 389



� 0WR ¼ 0 ) �I ¼ � 0W produces precisely these f needed independent scalar equa-
tions (unlike the single actual, nonvariational, work/energy theorem, which always
produces only one such equation!); and the latter, along with initial/boundary con-
ditions make the above constrained dynamical problem determinate, or closed.

This simple argument, number of equations ¼ number of unknowns [probably
originated by Lur’e (1968, pp. 245–248) and Gantmacher (1970, pp. 16–23)],
shows clearly the impossibility of building a general constrained system mechanics
without additional physical postulates, like LP, or something equivalent (it would
be like trying to build a theory of elasticity without Hooke’s law, or something
similar relating stress to strain!), and thus lays to rest frequent but nevertheless
erroneous claims that ‘‘analytical mechanics is nothing but a mathematically sophis-
ticated rearrangement of Newton’s laws.’’

In sum, analytical mechanics is both mathematically and physically different from
the momentum mechanics of Newton–Euler. Schematically:

Lagrangean analytical mechanics ¼ Newton -- Euler laws

þ d’Alembert’s physical postulate.

As Lanczos puts it: ‘‘Those scientists who claim that analytical mechanics is nothing
but a mathematically different formulation of the laws of Newton must assume that
[LP] is deducible from the Newtonian laws of motion. The author is unable to see
how this can be done. Certainly the third law of motion, ‘‘action equals reaction,’’ is
not wide enough to replace [LP]’’ (1970, p. 77).

The above also show clearly that trying to prove LP is meaningless; although, in
the past, several scientists have tried to do that (like trying to prove Hooke’s law in
elasticity!). These considerations also indicate that if we choose to decompose the
total force df according to some other physical characteristic, then we must equip
that mechanics with appropriate constitutive postulates for (some of ) the forces
involved, so as to make the corresponding dynamical problem determinate. Thus,
in the Newton–Euler mechanics, where, as we have already seen, df is decomposed
into external and internal parts, the system equations of motion— that is, the
principles of linear and angular momentum—thanks to the additional constitutive
postulate of action–reaction, contain only the external forces (and couples); with-
out that postulate, the equations of motion would involve all the forces, and the
corresponding problem would be, in general, indeterminate. And in the case of
matter–electromagnetic field interactions (e.g., electroelasticity, magneto-fluid-
mechanics), we must, similarly, either know all forces involved, or supplement the
equations of motion (of Newton–Euler and Maxwell) with special electromechanical
constitutive equations, so that we end up again with a determinate system of
equations.

More on Lagrange’s Principle as a Constitutive Postulate

Here is what the noted mechanics historian E. Jouguet says about the physical nature
of Lagrange’s Principle (freely translated):

In sum, therefore, Huygens and Jacob Bernoulli implicitly admit that the forces devel-
oped by the constraints in the case of motion, are, like the forces developed by the con-

straints in the case of equilibrium, forces that do no work in the virtual displacements
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compatible with the constraints. There is here a new physical postulate. It could be quite

possible that the property of not doing work be true for the constraint forces during
equilibrium and not for the constraint forces during motion; the reaction of a fixed surface
on a point could be normal if the point was in equilibrium, and inclined if the point was

moving; the reaction of a surface on a point could be normal if the surface was fixed and

oblique if it was moving or deformable. This new postulate expresses, to use the lan-
guage of Mr. P. Duhem [a French master (1861–1916), particularly famous for his

contributions to continuum thermodynamics/energetics (in the tradition of Gibbs),

and the history/axiomatics of theoretical mechanics], that the constraints, that have
already been supposed [statically] frictionless, are also without viscosity. (1908, pp.
195–196),

and

The dynamics of systems with constraints rests therefore on the property of forces

generated, during the motion, by the constraints, of not doing work in the virtual
displacements compatible with the given constraints. This is an experimental property,

and at the same time an experimental property distinct from those that we have found
for the forces developed by the constraints in the case of equilibrium, because it intro-

duces the condition that the constraints are without viscosity. (1908, p. 202, emphasis
added).

When Are the Methods of Newton–Euler (NE) and
d’Alembert–Lagrange (AL) Equivalent?

Since there is only one mechanics, this is a natural question, but not an easy one. To
begin with, since NE divides forces into external and internal (‘‘apples’’), while AL
divides them into impressed and reactions (‘‘oranges’’), we should not be surprised if,
for general mechanical systems and forces, no such equivalence exists, or should be
expected, at all stages of the formulation and solution of a problem.

Equivalence at the highest level of the fundamental principles may exist only for
special systems and problems: that is, those for which (i) the internal forces (NE)
coincide with those of constraint (AL), and (ii) the external forces (NE) coincide with
the impressed ones (AL). The only such system that we are aware of, satisfying both
(i) and (ii), is the earlier-examined free rigid body; and there we saw that LP leads to
the NE principles of linear and angular momentum. For other systems where the
internal forces may be (wholly or partly) impressed, for example, an elastic body, the
NE principles do not follow from LP; the latter, as an independent axiom, says
nothing about impressed forces. However, for a given system and forces, both meth-
ods of NE and AL do the job pledged by all classical descriptions of motion, which
is, given (i) the external (NE) and impressed (AL) forces, along with (ii) the system’s
state at an ‘‘initial’’ instant (i.e., initial configuration and velocities ¼ initial condi-
tions), and (iii) appropriate constitutive postulates for its internal forces (NE) and
constraint reactions (AL), respectively (and possibly other additional geometrical/
kinematical/physical facts intrinsic to that problem), then both NE and AL are
theoretically equally capable in predicting the subsequent motion of the system
and its remaining unknown forces (although both approaches may not be equivalent
laborwise, or from the important Machian viewpoint of conceptual economy). On
these fundamental issues, see also the masterful treatment of Hamel (1909; 1927,
pp. 8–10, 14–18, 23–27, 38–39; 1949, chap. 4 and pp. 513–524).
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The above can be summarized in the following:

(ii) Whence the need for d’Alembert’s principle:

Unknown forces

NE: Internal fdf ig ! Discrete: action��reaction S d f i ¼ 0; S r� d f i ¼ 0

½! Continuum: Boltzmann’s axiom; i.e., symmetry of stress tensor�

AL : Reactions fdRg ! Lagrange’s principle S dR � �r ¼ 0

(iii) Consequences:

NE: Linear momentum : Sdf i þSdf e ¼Sdm a

)Sdf e ¼Sdm a ) f e ¼ m aG ðG ¼ mass centerÞ

Angular momentum : S ½r� ðdf i þ df eÞ� ¼S ðr� dm aÞ

) S r� df e ¼ d=dt S ðr� dm vÞ
h i

AL: Lagrange’s principle : ½�� 0WR �SdR � �r ¼ 0� þ ½dm a ¼ dF þ dR�

)SdF � �r ¼Sdm a � �r

(iv) Unknown force retrieval:

NE: Principles of rigidification and cut

AL: Principle of constraint relaxation (Befreiungsprinzip, see below and }3.7)

(v) Coincidence of NE with d’AL: free rigid body

Free: External forces ¼ Impressed forces; i.e., fdf eg ¼ fdFg ðfdReg ¼ 0Þ
Rigid: Internal forces ¼ Constraint reactions; i.e., fdf ig ¼ fdRg ðfdF ig ¼ 0Þ

[Briefly (a) Rigidification principle: If a system is in equilibrium under impressed and
constraint forces, it will remain in equilibrium if additional constraints are imposed
on it so as to render it partly or wholly rigid; that is, deformable bodies in
equilibrium can be treated just like rigid ones—both satisfy the same (necessary)
conditions; (b) Cut principle: We can replace the action of two contiguous parts
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(i) Force decomposition:

Newton–Euler (NE) ——————External —————External impressed

External reactions

Internal ————— Internal impressed

Internal reactions

D’Alembert–Lagrange (AL) ——�� Impressed ———— Impressed external

Impressed internal

Reactions ————� External reactions

Internal reactions

�������
�������
������
�������

���������
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of the body by corresponding force systems ð) free body diagrams). Both prin-
ciples are due to Euler. For details, see books on statics; also Papastavridis (EM,
in prep.).]

Example 3.2.3 Plane Mathematical Pendulum: Comparison Between Principles of
Moment (Original d’Alembert) and Virtual Work (Lagrange). Let us consider
the motion of a mathematical pendulum, of length l and mass m, about a fixed
point O on a vertical plane.

(i) According to the original formulation of the principle (first by Jakob Bernoulli
and then by d’Alembert), the string reaction S on the oscillating particle P must be in
equilibrium; that is, its moment about O must vanish:

MO � r� S ¼ 0 ) S must be parallel to the string OP ðr � OPÞ: ðaÞ
As a result, the second part of the principle—that is, impressed forces minus inertia
forces must be in equilibrium, yields (with W ¼ weight of PÞ

r�W ¼ r� ðm aÞ ) �ðWÞðl sin�Þ ¼ �m½lðd2�=dt2Þ��ðlÞ
) d 2�=dt2 þ ðg=lÞ sin� ¼ 0: ðbÞ

(ii) According to Lagrange’s formulation of the principle, the virtual work of S
must vanish:

� 0WR ¼ S � �r ¼ 0 ) S must be perpendicular to the virtual displacement of P;

ðcÞ
and since the latter is along the instantaneous tangent to P’s circular path about O,
we conclude that S must be parallel to OP, as before.

Hence, the second part of the principle—that is, virtual work of impressed forces
minus that of inertia forces must vanish, yields

W � �r ¼ ðm aÞ � �r ) �ðW sin�Þðl ��Þ ¼ m½lðd 2�=dt2Þ�� �ðl ��Þ
) d 2�=dt2 þ ðg=lÞ sin� ¼ 0; ðdÞ

that is, the moment condition (b) and the virtual work condition (d) differ only by an
inessential factor ��, and thus they produce the same reactionless equation of
motion.

In view of the extreme similarity, almost identity, of these two approaches in this
and other rigid-body problems, we can see how, over the 19th and 20th centuries,
various scientists came to confuse the zero moment method of James (Jakob)
Bernoulli-d’Alembert {i.e., S r� ðdF � dm aÞ ¼ 0, in our notation} with the zero
virtual work method of Lagrange {i.e., S �r � ðdF � dm aÞ ¼ 0}, and to view the
former as equivalent to the latter. (Also, the fact that the string tension S is not
zero—that is, that the constraint reaction is in equilibrium, not in the elementary
sense of zero moment and force, but in the sense of zero virtual work, demon-
strates clearly one of the drawbacks of the original d’Alembertian formulation of
the principle.)

Example 3.2.4 Motion of an Unconstrained System Relative to its Mass Center
G, via Lagrange’s Principle (Adapted from Williamson and Tarleton, 1900,

)3.2 THE PRINCIPLE OF LAGRANGE (LP) 393



pp. 242–293). Substituting r ¼ rG þ r=G ) a ¼ aG þ a=G into LP, (3.2.8), and
regrouping, we obtain

0 ¼ �rG � S ðdm aG � dFÞ
h i

þ �rG � Sdm a=G

� �
þ aG � Sdm �r=G

� �
þS ðdm a=G � dFÞ � �r=G; ðaÞ

from which, since Sdm r=G ¼ 0) Sdm �r=G ¼ 0 and S dm a=G ¼ 0, and the �rG,
�r=G are unrelated, we obtain

ðiÞ �rG � S ðdm aG � dFÞ
h i

¼ 0 ) Sdm aG ¼SdF;

that is,

m aG ¼ F (Principle of linear momentum); ðbÞ

if �rG is unconstrained, and

ðiiÞ S ðdm a=G � dFÞ � �r=G ¼ 0; under the constraint Sdm �r=G ¼ 0: ðcÞ

Combining, or adjoining, the second of (c) into the first of (c) with the vectorial
Lagrangean multiplier k ¼ kðtÞ (see }3.5), we readily get

dm a=G ¼ dF þ k dm; ðdÞ

and, summing this over the system, we obtain

Sdm a=G ¼SdF þ k Sdm
� �

) 0 ¼ F þ km ) k ¼ �F=m; ðeÞ

so that, finally, (d) becomes

dm a=G ¼ dF � dmðF=mÞ ð¼ dF � dm aG; as expected): ðfÞ

Example 3.2.5 Sufficiency of the Statical Principle of Virtual Work (PVW) for
the Equilibrium of Ideally Constrained Systems Deduced from LP. In analytical
statics (i.e., LP with a ¼ 0), the PVW states that in a bilaterally constrained and
originally motionless system (in an inertial frame), the vanishing of � 0W is a neces-
sary and sufficient condition for it to remain in equilibrium in that frame. In con-
crete applications, what we really employ is the sufficiency of the principle; that is,
if � 0W ¼ 0, then the originally motionless system remains in equilibrium.

Here, we will start with LP as the basic axiom, set � 0W ¼ 0, and then derive
sufficient conditions to maintain equilibrium; that is, go from kinetics to statics.
Most authors proceed inversely—that is, go from statics to kinetics—and that
makes the detection of the importance of the various constraints more difficult.

(i) Necessary conditions: If the system is in (inertial) equilibrium, then a ¼ 0, and
therefore

� 0W �SdF � �r ¼ 0 ð) � 0WR �SdR � �r ¼ 0Þ; ðaÞ

for ti � t � tf , where tiðtf Þ ¼ initial ð finalÞ time and tf � ti � 	:
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(ii) Sufficiency conditions: If � 0W ¼ 0, for ti � t � tf , then LP gives

�I �Sdm a � �r ¼ 0; for ti � t � tf : ðbÞ

Let us investigate the consequences of (a, b) for equilibrium. Substituting into (b) the
particle displacement dr� e0 dt ¼ ðv� e0Þ dt � ½v� ð@r=@tÞ�dt, which is mathemati-
cally equivalent to its virtual displacement, and cancelling dtð6¼ 0Þ, we obtain

Sdm a � v ¼Sdm a � e0; ðcÞ

and since 2T � S dm v � v) dT=dt ¼ S dm a � v, we are readily led to the following
rheonomic-type power equation:

dT=dt ¼Sdm a � e0 ¼SdF � e0 þSdR � e0: ðdÞ

Integrating the above between ti and tð� tf Þ, and setting Ti � TðtiÞ, T � TðtÞ yields

DT � T � Ti ¼
ðt
ti
S dm a � e0

� �
dt; ðeÞ

which also follows from
Ð t
ti
� 0W dt ¼ 0. Equation (e) leads to the following conclu-

sions:

(a) If e0 ¼ 0, then DT ¼ 0, and since vi � vðtiÞ ¼ 0) Ti ¼ 0, it follows that T ¼ 0

for some time t� tið� tf � tiÞ; and from this, since T ¼ positive definite in the
v � v ¼ v2, we conclude that then all the v’s vanish for t� ti ð� tf � tiÞ; that is, the
system remains in equilibrium in that time interval.

Conversely, if DT ¼ 0 for any t > ti, then (e) leads, for arbitrary systems, to e0 ¼ 0.
In this case, (c) gives v ¼ 0; that is, equilibrium [while (a) yields

S dF � v ¼ SdF � e0 ¼ 0]. The consequences of this in the presence of additional

Pfaffian constraints are discussed below.

(b) If e0 6¼ 0, then, in general, DT 6¼ 0; that is, the system moves away from its original

equilibrium configuration, even though � 0W ¼ 0, for ti � t � tf , and vi ¼ 0.

Weaker special assumptions for equilibrium result for the following conditions:

(c) If e0 6¼ 0, but
Ð t
ti S dm a � e0
� �

dt ¼ 0; or
(d) If e0 6¼ 0 but a � e0 ¼ 0, for ti � t � tf .

Comparison with Gantmacher

Gantmacher’s formulation of the PVW is as follows: ‘‘For some position (compa-
tible with constraints) of a system to be an equilibrium position, it is necessary and
sufficient that in this position the sum of the works of effective forces [our impressed
forces] on any virtual displacements of the system be zero’’ and ‘‘If the constraints
are nonstationary, then the term ‘compatible with constraints’ signifies that they are
satisfied for any t if in them we put [our notation] r ¼ ri and v ¼ 0’’ and ‘‘It is then
assumed that [our] equation (a) holds for any value of t if in the expression for dF we
put all r ¼ ri and all v ¼ 0’’ (1970, p. 25). Let us relate this formulation with ours. By
(2.5.2) v ¼P ekvk þ e0. Hence, if v ¼ 0:

(i) If the vk’s are unconstrained, and since ek 6¼ 0, then vk ¼ 0) qk ¼ constant and
e0 ¼ 0—that is, the constraints are stationary—then the system will remain in equi-

librium.
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(ii) If, on the other hand, the vk’s are constrained, then, invoking the convenient repre-

sentations (2.11.9, 13c, e), we have

v! v0 ¼
X

bI vI þ b0 ¼ 0) vi ¼ 0 ) qI ¼ constant; and b0 ¼ 0;

b0 ¼ e0 þ
X

bDeD ¼ 0 ) e0 ¼ 0; and bD ¼ 0;

vD ¼
X

bDIvI þ bD ) vD ¼ 0 ) qD ¼ constant ð) qk ¼ constantÞ:

In the light of the above, the PVW can be reformulated as follows: An originally
motionless system remains in equilibrium if and only if (i) � 0W ¼ 0 and (ii) its
holonomic constraints are stationary ðe0 � @r=@t ¼ 0Þ and its Pfaffian constraints
are catastatic ðaD ¼ 0 or bD ¼ 0Þ. (The latter, however, may be nonstationary; and
this explains Gantmacher’s statement: ‘‘Note that in this case the virtual displace-
ments . . . may also be different for different t.’’)

REMARKS

(i) That ‘‘compatibility with constraints (during equilibrium)’’ leads to the above
conclusions about them can be seen more clearly as follows. Let our system be
subject to h holonomic constraints and m Pfaffian (holonomic and/or nonholonomic
constraints):

�Hðt; rÞ ¼ 0; fD �S BDðt; rÞ � vþ BDðt; rÞ ¼ 0 ðH ¼ 1; . . . ; h; D ¼ 1; . . . ;mÞ:
ðfÞ

By d=dtð. . .Þ-differentiating the above, to make them explicit in both velocities and
accelerations, we readily obtain [recalling dot-product-of-tensor-definition [(see
1.1.12d ff.)], in the first sum in (g2) below]:

ðaÞ d�H=dt ¼S ð@�H=@rÞ � v þ @�H=@t ¼ 0; ðg1Þ

ðbÞ d 2�H=dt
2 ¼S ð@2�H=@r @rÞ : ðv vÞ þ ð@�H=@rÞ � aþ 2ð@2�H=@t @rÞ � v

� 	
þ @2�H=@t2 ¼ 0; ðg2Þ

ðcÞ dfD=dt �S
�
@BD=@rð Þ � vþ @BD=@tð Þ½ � � vþ BD � a

�
þS ð@BD=@rÞ � vþ @BD=@t ¼ 0: ðg3Þ

Now, since compatibility requires that, for ti � t � tf , eqs. (f–g3) should hold with
v ¼ 0 and a ¼ 0 in them (just like the equations of motion), we readily obtain from
the above the following conditions on these constraints:

�H ¼ 0; ðh1Þ
d�H=dt ¼ 0) @�H=@t ¼ 0; ðh2Þ
d 2�H=dt

2 ¼ 0) @2�H=@t
2 ¼ 0; ðh3Þ

fD ¼ 0) BD ¼ 0; ðh4Þ
dfD=dt ¼ 0) @BD=@t ¼ 0; ðh5Þ

that is, for ti � t � tf , the holonomic constraints must be stationary, and the Pfaffian
ones must be catastatic, as found earlier.
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(ii) If we assume Earth to be inertial, then an Earth-bound system is scleronomic.
But if we assume it to have a given motion, then our system is rheonomic. In both
cases, the contact (nongravitational) forces from the Earth to that system are exter-
nal reactions. If, finally, the Earth interacts with our system, then the two taken
together constitute a scleronomic system whose internal forces are impressed (see
also Nordheim, 1927, pp. 47–49).

Example 3.2.6 Nonideal Constraints. Let us consider a particle P of mass m,
moving under an impressed force F and subject to the velocity constraint

fðt; r; vÞ ¼ 0: ðaÞ
If the reaction created by (a) is R, then the equation of motion of P is

m a ¼ F þ R: ðbÞ
To relate the constraint equation to the reaction, so as to incorporate (a) into (b), we
d=dtð. . .Þ-differentiate the former:

f ¼ 0) df=dt ¼ @f=@tþ ð@f=@rÞ � vþ ð@f=@vÞ � a ¼ 0; ðcÞ
and, therefore,

m a � ð@f=@vÞ ¼ �m½@f=@tþ ð@f=@rÞ � v�; ðdÞ
but, also, from (b),

m a � ð@f=@vÞ ¼ F � ð@f=@vÞ þ R � ð@f=@vÞ: ðeÞ
Equating the right sides of (d, e), thus eliminating the acceleration, and rearranging,
we obtain

R � ð@f=@vÞ ¼ �½mð@f=@tÞ þmð@f=@rÞ � vþ F � ð@f=@vÞ�: ðfÞ
Now, the most general solution of (f ), for R, is

R ¼ �ð@f=@vÞ�mð@f=@tÞ þmð@f=@rÞ � vþ F � ð@f=@vÞ	=ð@f=@vÞ2 þ T ; ðgÞ
where T ¼ arbitrary vector orthogonal to @f=@v. The above shows that, generally, the
constraint reaction consists of two parts: (i) one parallel to @f=@v:

N ¼ �ð@f=@vÞ�mð@f=@tÞ þmð@f=@rÞ � vþ F � ð@f=@vÞ	=ð@f=@vÞ2 � �ð@f=@vÞ ðhÞ
[where � ¼ Lagrangean multiplier—see Lagrange’s equations of the first kind,
(}3.5)]; and (ii) one normal to it, T .

If T ¼ 0, the constraint (a) is called ideal; and in that case, clearly, the equation of
motion of the particle (b), under (a), becomes

m a ¼ F � �F � ð@f=@vÞ þmð@f=@rÞ � v þmð@f=@tÞ	 �ð@f=@vÞ=ð@f=@vÞ2	: ðiÞ
To make the problem determinate, we, usually, introduce a constitutive equation
between N and T . For example, in the common case of dry (solid/solid) sliding
friction, we postulate the following relation between their magnitudes:

T ¼ N ¼ j�ð@f=@vÞj;  ¼ coefficient of kinetic friction. ( j)
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Then, and with (g, h), eq. (b) becomes

m a ¼ F þ �ð@f=@vÞ � j�ð@f=@vÞju; ðkÞ
where u ¼ v

�jvj.
For further details and applications of (k) see Poliahov et al. (1985, pp. 152–170).

Problem 3.2.1 Continuing from the preceding example, show that if the con-
straint (a) has the holonomic form

�ðt; rÞ ¼ 0; ðaÞ
then (h) and (i) reduce, respectively, to

N ¼ �ð@�=@rÞ�mð@ _��=@tÞ þmð@ _��=@rÞ � vþ F � ð@�=@rÞ	=ð@�=@rÞ 2 � �ð@�=@rÞ ðbÞ
and

m a ¼ F � �F � ð@�=@rÞ þmð@ _��=@rÞ � vþmð@ _��=@tÞ	�ð@�=@rÞ=ð@�=@rÞ2	: ðcÞ
(See also Lagrange’s equations of the first kind, in }3.5.)

Introduction to the Principle of Relaxation of the
Constraints (PRC)

Before we embark into a detailed quantitative discussion of Lagrange’s Principle
(LP) and its derivative equations of motion, let us discuss briefly the second pillar of
analytical mechanics, the principle of relaxation of the constraints (Befreiungsprinzip;
Hamel, 1917). LP allows us to get rid of the constraint forces and, eventually, obtain
reactionless equations of motion; and, historically, this has been considered (and is)
one of the advantages of the method, especially in physics. However, in many
engineering problems we do need to calculate these reactions, and thus the question
arises: How do we achieve this with such a reaction-eliminating Lagrangean form-
alism?

Here is where PRC comes in: to retrieve a(ny) particular, external and/or internal,
‘‘lost’’ reaction we, hypothetically, free, or relax, the system of its particular, external
and/or internal, geometrical and/or motional, constraint(s) causing that reaction;
that is, we, mentally, allow the formerly rigid, or unyielding, constraint(s) to deform,
or become flexible, relaxed, so that the former reaction becomes an impressed
force that depends on the deformation of the violated constraint via some constitutive
equation. Then we calculate its virtual work, add it to � 0W , and apply LP:
ð�I ¼ � 0WÞrelaxed system; and so on and so forth, for as many reactions as needed
(one, or more, or all, at a time). Last, since in our model the constraints are rigid,
we enforce them in the final stage of the differential equations of motion. The
mathematical expression of PRC is the very well-known and widely applied method
of ‘‘undetermined,’’ or Lagrangean, multipliers (}3.5).

REMARKS

(i) Another, mixed, method is, first, to use LP to calculate the reactionless equa-
tions (and from them the motion), and to then use the method of Newton–Euler (NE)
to calculate the external and/or internal reactions. This may be practically expedient,
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but it is not logically/conceptually satisfactory; it makes Lagrangean mechanics look
incomplete.

(ii) The counterpart of PRC in the NE method is the following: if, for example, we
want to calculate an internal force— that is, one that, due to the action–reaction
postulate, drops out of the force/moment side in the NE principles of linear/angular
momentum—then, applying Euler’s cut principle, we choose an appropriate new
free-body diagram so that the former internal force(s)/moment(s) becomes external,
and then apply to these new subsystems, the NE principles.

3.3 VIRTUAL WORK OF INERTIAL FORCES (dI), AND RELATED

KINEMATICO-INERTIAL IDENTITIES

Here we transform (3.2.9), �I � Sdm a � �r, from particle variables to system vari-
ables; both holonomic and nonholonomic. (Actually, �I is the negative of the virtual
work of the ‘‘inertial forces’’ f�dm ag. We hope that this slight deviation from
traditional terminology will not cause any problems.) Understandably, this relies
critically on the kinematical results of chapter 2 and, therefore knowledge of that
material is absolutely necessary. To obtain the most general system equations of
motion from LP, we must use the most general expressions for a and �r. We recall
(}2.5 ff.) that these are (with k, l ¼ 1; . . . ; n)

�r ¼
X

ek�qk ¼ holonomic variable representation

¼
X

el ��l ¼ nonholonomic variable representation ð� �r*Þ�
¼
X

eI ��I ; under the constraints ��D ¼ 0; D þ 1; . . . ;m; I ¼ mþ 1; . . . ; n

�
:

ð3:3:1Þ

where the fundamental mixed basis vectors fekg and felg are related by

ek � @r=@qk ¼
X

alkel , el � @r=@�l ¼
X

Aklek: ð3:3:1aÞ

1. Holonomic System Variables

Substituting the first of (3.3.1) into �I we obtain, successively,

�I �Sdm a � �r ¼Sdm a �
X

ek �qk

� �
¼ � � � ¼

X
Ek �qk; ð3:3:2Þ

where Ek �Sdm a � ek: holonomic (k)th component of system inertial ‘‘force’’�
�Sdm a � ð@r=@qkÞ ¼Sdm a � ð@m=@ _qqkÞ ¼Sdm a � ð@a=@€qqkÞ

�Sdm a � ð@r=@qkÞ ¼Sdm a � ð@m=@vkÞ ¼Sdm a � ð@a=@wkÞ
�
: ð3:3:3Þ
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Now, Ek transforms, successively, as follows:

Ek �Sdm a � ek ¼Sdmðdv=dtÞ � ð@v=@vkÞ
¼ d=dt S dm v � ð@v=@vkÞ

h i
�S ½dm v � ðd=dtÞð@v=@vkÞ�

[recalling identity ð2:5:10Þ : EkðvÞ � d=dtð@v=@vkÞ � @v=@qk ¼ 0�
¼ d=dt S dm v � ð@v=@vkÞ

h i
�Sdm v � ð@v=@qkÞ; ð3:3:4Þ

or, finally, with the help of the (inertial) kinetic energy

T �S ð1=2Þðdm v � vÞ ¼ Tðt; q; _qqÞ � Tðt; q; vÞ ½since v ¼ vðt; q; vÞ�; ð3:3:5Þ

we obtain

Ek ¼ d=dtð@T=@vkÞ � @T=@qk � d=dtð@T=@ _qqkÞ � @T=@qk � EkðTÞ; ð3:3:6Þ
where

Ekð. . .Þ ¼ d=dtð@ . . . =@vkÞ � @ . . . =@qk � d=dtð@ . . . =@ _qqkÞ � @ . . . =@qk:
(holonomic Euler -- Lagrange operator)k: ð3:3:6aÞ

Equation (3.3.6) is a kinematico-inertial identity; that is, it holds always, indepen-
dently of any possible additional constraints, as long as the q’s are holonomic coor-
dinates. Its cardinal importance to Lagrangean mechanics lies in the fact that it
expresses system accelerations in terms of the partial and total derivatives of a scalar

_qq’s � v’s (and t) were independent variables. That is why we have reserved the special
notation EkðTÞ � Ek when that operator is applied to the kinetic energy; even though
Ekð. . .Þ can be applied to any function of the q’s, v’s, and t. Also, (3.3.1–6a) clearly
show the indispensability of virtual displacements (i.e., the ek vectors) to Lagrangean
mechanics/equations of motion [i.e., the particular T-based expression for the system
inertia/acceleration given by (3.3.6)], whether the constraint reactions are ideal or not.

In sum: no ek’s, no Lagrangean equations, that is, for an arbitrary particle/system
vector zk 6¼ ek,

Sdm a � zk 6¼ ðd=dtÞð@T=@vkÞ � @T=@qk: ð3:3:6bÞ

This should put to rest once and for all false claims that ‘‘one can build Lagrangean
mechanics without virtual displacements.’’ The �ð. . .Þ is not the issue; the
ek ð! projectionsÞ are!

Let us collect the key kinematico-inertial identities involved here:

ðaÞ Sdm v � ek ¼Sdm v � ð@v=@vkÞ ¼ @T=@vk � @T=@ _qqk � pkðt; q; vÞ ¼ pk :

Holonomic (k)th component of system momentum; ð3:3:7aÞ
ðbÞ Sdm v � ðdek=dtÞ ¼Sdm v � ð@v=@qkÞ ¼ @T=@qk � rkðt; q; vÞ ¼ rk :

Holonomic (k)th component of ‘‘associated, or momental, inertial force’’;

ð3:3:7bÞ
ðcÞ Ek � dpk=dt� rk: ð3:3:7cÞ
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[pk � @T=@ _qqk is the only kind of momentum that there is in analytical (Lagrangean
and Hamiltonian) mechanics; and, as shown later, it comprises both the linear and
angular momentum of the Newton–Euler mechanics.]

2. Nonholonomic System Variables

Substituting the second of (3.3.1) into �I , we obtain, successively with a ¼ a* ¼
particle acceleration in nonholonomic variables (and similarly for other quantities):

�I �Sdm a � �r ¼Sdm a* �
X

ek ��k

� �
¼ � � � ¼

X
Ik ��k; ð3:3:8Þ

where Ik �Sdm a* � ek ¼ nonholonomic (k)th component of system inertial forceh
�Sdm a* � ð@v*=@!kÞ ¼Sdm a* � ð@a*=@ _!!kÞ; recalling ð2:9:35; 43Þ

i
¼ Ikðt; q; !; _!!Þ ½since a* ¼ a*ðt; q; !; _!!Þ and ek ¼ ekðt; qÞ�: ð3:3:9Þ

From the invariance of �I :
P

Ek �qk ¼
P

Ik ��k, and [recalling (2.9.11, 12)]
�qk ¼

P
Akl ��l , ��l ¼

P
alk�qk, we readily obtain the basic (covariant vector-

like) transformation equations:

Ik ¼
X

AlkEl , Ek ¼
X

alkIl : ð3:3:10Þ
The above expresses the nonholonomic inertial components in holonomic variables.
To express them in terms of nonholonomic variables, we transform (3.3.9), succes-
sively, as follows:

Ik �Sdm a* � ek ¼Sdmðdv*=dtÞ � ð@v*=@!kÞ

¼ d=dt S dm v* � ð@v*=@!kÞ
� �

�S ½dm v* � d=dtð@v*=@!kÞ�

[adding and subtractingSdm v* � ð@v*=@�kÞ; and regrouping�

¼ d=dt S dm v* � ð@v*=@!kÞ
� �

�Sdm v* � ð@v*=@�kÞ

�Sdm v* � ½ðd=dtÞð@v*=@!kÞ � @v*=@�k�;
ð3:3:11aÞ

or, invoking the nonintegrability identity (2.10.24, 25) [Greek subscripts run from 1
to n þ 1 (time)],

Ek*ðv*Þ � d=dtð@v*=@!kÞ � @v*=@�k � dek=dt� @v*=@�k
¼ �

XX
�rkl !ler �

X
�rk er [since !nþ1 � !0 � dt=dt ¼ 1�

¼ �
XX

�rk
 !
er ¼ �
XX

�rk
 !
ð@v*=@!rÞ; ð3:3:11bÞ
introducing the (inertial) kinetic energy in quasi variables

T �S 1=2ðdm v* � v*Þ ¼ Tðt; q; !Þ � T* [since v* ¼ v*ðt; q; !Þ� ð3:3:11cÞ
and recalling the symbolic quasi chain rule (2.9.32a, 44a)

@T*=@�k �
X
ð@T*=@qlÞð@vl=@!kÞ ¼

X
Alkð@T*=@qlÞ; ð3:3:11dÞ
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and the (nonholonomic Euler–Lagrange operator)k

Ek*ð. . .Þ � d=dtð@ . . . =@!kÞ � @ . . . =@�k; ð3:3:11eÞ

we finally obtain the nonholonomic (system) variable counterpart of Ek:

Ik ¼ d=dtð@T*=@!kÞ � @T*=@�k þ
XX

�rklð@T*=@!rÞ!l þ
X

�rkð@T*=@!rÞ
¼ d=dtð@T*=@!kÞ � @T*=@�k þ

XX
�rk
ð@T*=@!rÞ!


� Ek*ðT*Þ � Gk � Ek*� Gk [note difference from (3.3.6)]; ð3:3:12Þ

where [recalling (2.10.25a)]

�Gk � �Sdm v* �Ek*ðv*Þ ¼
XX

�rk
ð@T*=@!rÞ!
 �
X

hrkð@T*=@!rÞ
¼ �(System nonholonomic deviation, or correction, term)k: ð3:3:12aÞ

We summarize the key kinematico-inertial identities below:

ðaÞ Sdm v* � ek ¼Sdm v* � ð@v*=@!kÞ ¼ @T*=@!k � Pkðt; q; !Þ ¼ Pk:

Nonholonomic (k)th component of system momentum, ð3:3:13aÞ

ðbÞ ck � Ek*ðv*Þ � dek=dt� @v*=@�k ¼ � � � ¼
XX

�r
k !
er

¼ �(Particle nonholonomic deviation, or correction, term)k; ð3:3:13bÞ

Sdm v* � ðdek=dtÞ �Sdm v* � ð@v*=@�kÞ þSdm v* � ck

¼ @T*=@�k þ
XX

�r
kð@T*=@!rÞ!
 ¼ @T*=@�k �
XX

�rk
ð@T*=@!rÞ!

¼ @T*=@�k þ Gk [note diGerence from (3.3.7b)], ð3:3:13cÞ
� Gk ¼

XX
�rk
ð@T*=@!rÞ!
 ¼ �Gk;n � Gk;0; ð3:3:13dÞ

where

� Gk;n �
XX

�rklð@T*=@!rÞ!l ; ð3:3:13eÞ
� Gk;0 � �Gk;nþ1 �

X
�rkð@T*=@!rÞ:

‘‘nonholonomic rheonomic force’’. ð3:3:13fÞ

With the help of the above, Ik, (3.3.12), can be rewritten in the momentum form:

Ik ¼ dPk=dt� @T*=@�k þ
XX

�rk
Pr !
: ð3:3:14Þ

[Originally due to Hamel [1904(a),(b)], but for stationary/scleronomic transforma-
tions; that is, with 
 replaced by, say, l ¼ 1; . . . ; n.]

ðcÞ �I �Sdm a � �r ¼
X

Ek �qk ¼
X

Ik ��k; ð3:3:15Þ
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where

Ek �Sdm a � ek ¼ d=dtð@T=@vkÞ � @T=@qk � EkðTÞ ¼
X

alkIl ; ð3:3:15aÞ

Ik �Sdm a* � ek ¼ d=dtð@T*=@!kÞ � @T*=@�k þ
XX

�rk
ð@T*=@!rÞ!

� Ek*ðT*Þ � Gk � Ek*� Gk ¼

X
AlkEl ; ð3:3:15bÞ

that is, it is Ek � EkðTÞ and Ik that transform like covariant vectors; the
Ek* � Ek*ðT*Þ do not (or, the terms Ek* and Gk, considered separately, do not
transform as covariant vectors; but taken together, as Ek*� Gk � Ik, they do! ).

3. Acceleration, or Appellian, Forms

The above expressions for the inertia vector Ek (or Ik) are based on the kinetic energy
T (or T*), because for their derivation we used the velocity identities ek ¼ @v=@vk (or
ek ¼ @v*=@!kÞ. Let us now find expressions for these vectors using the acceleration
identities ek ¼ @a=@€qqk � @a=@wk (or ek ¼ @a*=@ _!!kÞ. The results will turn out to be
based on a scalar function that depends on the accelerations in a similar way that T
(or T*) depend on the velocities. [The choice ek ¼ @r=@qk does not seem to lead to
any useful expression for Ek; while the choice ek ¼ @r*=@�k �P

Alkel �
P

Alkð@v=@vlÞ will be examined later.]

(i) Holonomic variables

We have, successively,

Ek �Sdm a � ek ¼Sdm a � ð@a=@€qqkÞ ¼ @S=@€qqk � @S=@wk; ð3:3:16aÞ

where

S �S ð1=2Þðdm a � aÞ ¼S ð1=2Þðdm a2Þ ¼ Sðt; q; _qq; €qqÞ � Sðt; q; v;wÞ:
‘‘Gibbs��Appell function,’’ or simply Appellian, in holonomic variables

[or ‘‘acceleration energy’’ (Saint-Germain, 1901)]: ð3:3:16bÞ

(ii) Nonholonomic variables

Similarly, we obtain

Ik �Sdm a* � ek ¼Sdm a* � ð@a*=@ _!!kÞ ¼ @S*=@ _!!k; ð3:3:17aÞ

where

S* �S ð1=2Þðdm a* � a*Þ ¼S ð1=2Þ½dmða*Þ2� ¼ S*ðt; q; !; _!!Þ:
Appellian, in nonholonomic variables. ð3:3:17bÞ

To relate the above, we apply chain rule to S ¼ S*. We obtain, successively,

@S=@€qqk � @S=@wk ¼
X
ð@S*=@ _!!lÞð@ _!!l=@€qqkÞ ¼

X
alkð@S*=@ _!!lÞ; ð3:3:17cÞ
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and, inversely,

@S*=@ _!!k ¼
X
ð@S=@€qqlÞð@€qql=@ _wwkÞ ¼

X
Alkð@S=@€qqlÞ �

X
Alkð@S=@wlÞ;

ð3:3:17dÞ
which are none other than the transformation equations (3.3.10).

In sum, we have the following theoretically equivalent expressions for Ek and Ik:

ðiÞ Ek �Sdm a � ek ¼
X

alkIl

� �
¼ d=dtð@T=@vkÞ � @T=@qk ½Lagrange ð1780Þ�
¼
X

alk½El*ðT*Þ � Gl �
¼
X

alkð@S*=@ _!!lÞ ¼ @S=@€qqk � @S=@wk ½Appell ð1899Þ�; ð3:3:18aÞ

ðiiÞ Ik �Sdm a* � ek ¼
X

AlkEl

� �
¼ d=dtð@T*=@!kÞ � @T*=@�k þ

XX
�rk
ð@T*=@!rÞ!


� Ek*ðT*Þ � Gk ½Volterra (1898), Hamel (1903/1904)]

¼
X

Alk

�
d=dtð@T=@vlÞ � @T=@ql

	
[Maggi (1896, 1901, 1903)]

¼
X

Alkð@S=@€qqlÞ ¼ @S*=@ _!!k [Gibbs (1879)]. ð3:3:18bÞ

REMARKS

(i) We can define ðnþ 1Þth, or ð0Þth, ‘‘temporal’’ holonomic and nonholonomic
components of the system inertia vector by (with dqnþ1=dt � dq0=dt � dt=dt �
vnþ1 � v0 ¼ 1Þ

Enþ1 � E0 �Sdm a � enþ1 ¼Sdm a � e0 ¼Sdm a � ð@r=@tÞ
¼ � � � ¼ d=dtð@T=@v0Þ � @T=@q0 ¼ d=dtð@T=@ _ttÞ � @T=@t; ð3:3:19aÞ

Inþ1 � I0 �Sdm a* � enþ1 ¼Sdm a* � e0 ¼Sdm a* � ð@r*=@�0Þ ¼ � � � :
ð3:3:19bÞ

However, such nonvirtual components will not be needed in the equations of motion;
they could play a role in the formulation of ‘‘partial work/energy rate’’ equations
(}3.9).

(ii) Here, as throughout this book [e.g. (2.9.38ff.), ch. 5], superstars ð. . .Þ* denote
functions of t; q; !; _!!; . . . :

f ðt; q; _qq; €qq; . . .Þ ¼ f ½t; q; _qqðt; q; !Þ; €qqðt; q; !; _!!Þ; . . .� � f *ðt; q; !; _!!; . . .Þ:

A Special Case

Let us findEk and Ik for the following special quasi-velocity choice (recalling 2.11.9 ff.)

vD ¼
X

bDI ðt; qÞvI þ bDðt; qÞ; vI ¼
X

�II 0vI 0 ¼ vI ; ð3:3:20aÞ
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and its inverse

!D ¼
X

bDIðt; qÞvI þ bDðt; qÞ; !I ¼ vI : ð3:3:20bÞ

Here, clearly [recalling (2.11.12b), and with ��� ¼ Kronecker delta ];

ADD 0 ¼ �DD 0 ; ADI ¼ bDI ; AID ¼ 0; AII 0 ¼ �II 0 ; ð3:3:20cÞ
and so the Maggi form Ik ¼

P
AlkEl specializes to Ik ¼

P
ADkED þ

P
AIkEI

)ID 0 ¼
X

�DD 0ED þ
X
ð0ÞEI ¼ ED 0 ; ð3:3:20dÞ

II 0 ¼
X

bDI 0ED þ
X

�II 0EI ¼ EI 0 þ
X

bDI 0ED: ð3:3:20eÞ

In sum, for the special choice (3.3.20a, b) Ik takes the following form, in terms of
holonomic Lagrangean ðTÞ and Appellian ðSÞ variables (with D ¼ 1; . . . ;m;
I ¼ mþ 1; . . . ; n as usual):

ID ¼ ED � ð@T=@vDÞ:� @T=@qD ¼ @S=@ _vvD � @S=@wD; ð3:3:20fÞ
II ¼ EI þ

X
bDIED � ½ð@T=@vIÞ:� @T=@qI � þ

X
bDI ½ð@T=@vDÞ: � @T=@qD�

[Chaplygin (1895, publ. 1897), Hadamard (1895)] (3.3.20g)

¼ @S=@€qqI þ
X

bDIð@S=@€qqDÞ � @S=@wI þ
X

bDIð@S=@wDÞ: ð3:3:20hÞ

The specialization of Ik, for (3.3.20a, b), to nonholonomic variables [due to Chaplygin
(1895/1897), in addition to his equations (3.3.20g); and Voronets (1901)] and other
related results, are given in }3.8.

We have expressed the (total, first order) virtual work of the (negative of the)
inertial ‘‘forces,’’ �I , in system variables. The kinematico-inertial identities obtained
are central to analytical mechanics, and that is why they were deliberately presented
before any discussion of system forces and constraints; because, indeed, they are
independent of the latter. These identities also show clearly the importance of the
kinetic energy (primarily) and the Appellian (secondarily) to our subject, and so these
quantities are examined in detail later (}3.9.11, 13–16).

Now, let us proceed to express the virtual works of the real forces, namely, � 0W
and � 0WR, in system variables. This will be considerably easier than the task just
completed.

3.4 VIRTUAL WORKS OF FORCES:

IMPRESSED (d 0W) AND CONSTRAINT REACTIONS (d 0WR)

1. Holonomic Variables

Substituting �r ¼P ek �qk into the earlier expressions for � 0W and � 0WR (3.2.7,
10), we readily obtain

� 0W �SdF � �r ¼SdF �

X
ek �qk

� �
¼ � � � ¼

X
Qk �qk; ð3:4:1aÞ

� 0WR �SdR � �r ¼SdR �

X
ek �qk

� �
¼ � � � ¼

X
Rk �qk; ð3:4:1bÞ
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where

Qk �SdF � ek: Holonomic (k)th component of system impressed force, ð3:4:1cÞ

Rk �SdR � ek: Holonomic (k)th component of system constraint reaction.

ð3:4:1dÞ

2. Nonholonomic Variables

Substituting �r ¼P ek ��k ð� �r*Þ into � 0W and � 0WR, we, similarly, obtain

� 0W �SdF � �r* ¼SdF �

X
ek ��k

� �
¼ � � � ¼

X
Yk ��k; ð3:4:2aÞ

� 0WR �SdR � �r* ¼SdR �

X
ek ��k

� �
¼ � � � ¼

X
Lk ��k; ð3:4:2bÞ

where

Yk �SdF � ek: Nonholonomic (k)th component of system impressed force,

ð3:4:2cÞ
Lk �SdR � ek: Nonholonomic (k)th component of system constraint force.

ð3:4:2dÞ
Here too, these are ever valid definitions/results, no matter how many constraints
may be imposed on the system later.

3. Transformation Relations

From the invariance of the virtual differentials � 0W and � 0WR, we obtain the follow-
ing transformation formulae for the various system forces; that is, from

� 0W ¼
X

Qk �qk ¼
X

Qk

X
Akl ��l

� �
¼
X

Yl ��l ¼
X

Yl

X
alk �qk

� �
¼
X

Qk �qk; ð3:4:3aÞ

we conclude

Yl ¼
X

AklQk ¼
X

Qkð@vk=@!lÞ
h i

ð3:4:3bÞ

and, inversely,

Qk ¼
X

alkYl ¼
X
ð@!l=@vkÞYl

h i
; ð3:4:3cÞ

and, similarly, from � 0WR ¼ � � �, we conclude

Ll ¼
X

AklRk ¼
X

Rkð@vk=@!lÞ
h i

ð3:4:3dÞ

and, inversely,

Rk ¼
X

alkLl ¼
X
ð@!l=@vkÞLl

h i
: ð3:4:3eÞ
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[These formulae can also be obtained from the ek , ek transformation equations
(2.9.25a, b) as follows:

Yl �SdF � el ¼SdF �

X
Aklek

� �
¼
X

Akl S dF � ek

� �
¼
X

AklQk;

Qk �SdF � ek ¼SdF �

X
alkel

� �
¼
X

alk S dF � el

� �
¼
X

alkYl :�

Rheonomic, or ‘‘temporal,’’ ðnþ 1Þth nonvirtual force components can also be
defined by

Qnþ1 � Q0 �SdF � enþ1 �SdF � e0 �SdF � ð@r=@tÞ (holonomic impressed),

ð3:4:4aÞ
Rnþ1 � R0 �SdR � enþ1 �SdR � e0 �SdR � ð@r=@tÞ (holonomic reaction);

ð3:4:4bÞ
Ynþ1 � Y0 �SdF � enþ1 �SdF � e0 �SdF � ð@r*=@�nþ1Þ

(nonholonomic impressed), ð3:4:4cÞ
Lnþ1 � L0 �SdR � enþ1 �SdR � e0 �SdR � ð@r*=@�nþ1Þ

(nonholonomic reaction); ð3:4:4dÞ
and, recalling (2.9.26a, b), we can easily deduce the following transformation equa-
tions among these components:

Qnþ1 � Q0 �SdF � enþ1 ¼SdF �

X
ak;nþ1ek þ enþ1

� �
¼
X

ak;nþ1 SdF � ek

� �
þSdF � enþ1 ¼

X
ak;nþ1Yk þYnþ1; ð3:4:4eÞ

Rnþ1 � R0 �SdR � enþ1 ¼SdR �

X
ak;nþ1ek þ enþ1

� �
¼
X

ak;nþ1 SdR � ek

� �
þSdR � enþ1 ¼

X
ak;nþ1Lk þ Lnþ1; ð3:4:4fÞ

and, conversely,

Y0 �SdF � e0 ¼SdF �

X
Akek þ e0

� �
¼
X

Ak S dF � ek

� �
þSdF � e0 ¼

X
AkQk þQ0; ð3:4:4gÞ

L0 �SdR � e0 ¼SdR �

X
Akek þ e0

� �
¼
X

Ak S dR � ek

� �
þSdR � e0 ¼

X
AkRk þ R0: ð3:4:4hÞ

Problem 3.4.1 With the help of the second of each of (2.9.3a, b), prove the addi-
tional forms of the above transformation equations:

Ynþ1 ¼ �
X

ak;nþ1Yk þQnþ1; or; simply; Y0 ¼ �
X

akYk þQ0; ðaÞ
Lnþ1 ¼ �

X
ak;nþ1Lk þ Rnþ1; or; simply; L0 ¼ �

X
akLk þ R0: ðbÞ
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REMARK

A little analytical reflection will show that all these transformations can be con-
densed in the formulae [with Greek subscripts running from 1 to nþ 1, recall
(2.9.6a, b)]:

Y
 ¼
X

A�
Q� , Q� ¼
X

a
�Y
; ð3:4:5aÞ

L
 ¼
X

A�
R� , R� ¼
X

a
�L
: ð3:4:5bÞ

A Special Case

For the earlier particular case (3.3.20a ff.:ADD 0 ¼ �DD 0 , ADI ¼ bDI , AID ¼ 0,
AII 0 ¼ �II 0 ), the above transformation equations specialize to

YD 0 ¼
X

AkD 0Qk ¼
X

�DD 0QD þ
X
ð0ÞQI ¼ QD 0 ; i:e:; YD ¼ QD; ð3:4:6aÞ

YI 0 ¼
X

AkI 0Qk ¼
X

bDI 0QD þ
X

�II 0QI ¼ QI 0 þ
X

bDI 0QD;

i:e:; YI ¼ QI þ
X

bDIQD � QI ;o � QIo; ð3:4:6bÞ

and, similarly,

Y0 ¼ � � � ¼
X

bDQD þQ0 � Q0;o: ð3:4:6cÞ

Example 3.4.1 Virtually Workless Forces. The following are examples of forces
that do zero virtual work:

(i) Forces among the particles of a rigid body; generally, the forces among rigidly

connected particles and/or bodies.

(ii) Forces on particles that are either at rest (e.g., a fixed pivot, or hinge, about which a
system body may turn, or a joint between two system bodies), or are constrained to

move in prescribed ways; that is, their (inertial) motion is known in advance as a

function of time.
(iii) Forces from completely smooth curves and/or surfaces that are either at (inertial)

rest or have prescribed (inertial) motions.

(iv) Forces from perfectly rough curves and/or surfaces, either at rest or having pre-

scribed motions. See also Pars (1965, pp. 24–25), Whittaker (1937, pp. 31–32).

Example 3.4.2 If z is a virtual displacement, then SdR � z ¼ 0. Let us show the
converse: If for a kinematically admissible/possible vector z we have SdR � z ¼ 0,
then z is a virtual displacement; that is,

z ¼
X

eI ��I ðI ¼ mþ 1; . . . ; nÞ: ðaÞ

The proof is by contradiction: Let z ¼ �rþ y ð6¼ �rÞ, where the relaxed part y may
be, at most,

y ¼
X

eD �
0�D þ e0 �

0t ðD ¼ 1; . . . ;m; � 0�D; �
0t: components of yÞ: ðbÞ

Substituting (b) into LP we get, successively,

0 ¼SdR � z ¼SdR � �rþSdR � y ¼ � � � ¼ 0þ
X

LD �
0�D þ L0 �

0t;
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from which, since the mþ 1 � 0�D and � 0t are independent, we obtain LD, L0 ¼ 0. But,
clearly, due to the constraints ��D ¼ 0 and �t ¼ 0, this is impossible. Thus, if we
assume that y 6¼ 0, we are led to a contradiction. Hence, y ¼ 0, and z is a virtual
displacement expressible by (a).

3.5 EQUATIONS OF MOTION VIA LAGRANGE’S PRINCIPLE:

GENERAL FORMS

Let us now proceed to the final synthesis; that is, the formulation of equations of
motion in general system variables. We begin with the ‘‘constraint reaction part’’ of
LP, eq. (3.2.7), and so on:

� 0WR �SdR � �r ¼
X

Rk �qk ¼
X

Lk ��k ¼ 0: ð3:5:1Þ

If the n �q’s are unconstrained (or independent, or free), so are the n ��’s. Then, (3.5.1)
leads to

Rk ¼ 0; Lk ¼ 0: ð3:5:2Þ
If, however, the n �q’s are constrained by the m ð< nÞ Pfaffian, holonomic and/or
nonholonomic, constraints

��D �
X

aDk �qk ¼ 0 ðD ¼ 1; . . . ;mÞ; ð3:5:3Þ

then, introducing m Lagrangean (hitherto) undetermined multipliers ��D ¼ ��DðtÞ
(the minus sign is only for algebraic convenience—see multiplier rule, below), and
invoking (3.5.3), we can replace (3.5.1) with

� 0WR þ
X
ð��DÞ ��D ¼

X
Lk ��k þ

X
ð��DÞ ��D

¼
X

Rk �qk þ
XX

ð��DÞaDk �qk ¼ 0; ð3:5:4Þ

where, now, the n �q’s and ��’s (can be treated as if they) are free. Therefore, (3.5.4)
leads immediately to the following:

(i) in holonomic variables,X
Rk �

X
�D aDk

� �
�qk ¼ 0 ) Rk ¼

X
�DaDk ½¼ Rkðq; tÞ�; ð3:5:5Þ

(ii) in nonholonomic variables (with I ¼ mþ 1; . . . ; nÞ,X
Lk ��k �

X
�D ��D ¼

X
ðLD � �DÞ ��D þ

X
ðLI � 0Þ ��I ¼ 0; ð3:5:6Þ

and from this to the nonholonomic counterpart of (3.5.5),

LD ¼ �D ð1 � ��D ¼ 0Þ and LI ¼ 0 ð0 � ��I ¼ 0Þ; ð3:5:7Þ
that is, them Lagrangean multipliers associated with them ‘‘equilibrium’’ constraints
!D ¼ 0 or ��D ¼ 0 are, in effect, the first m nonholonomic (covariant) components of
the system reaction vector in configuration space. We also notice that when-
ever ��k ¼ 0, Lk 6¼ 0, and vice versa (k ¼ 1; . . . ; n; and even nþ 1), that is,
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LD ��D ¼ ðLDÞð0Þ ¼ 0 and LI ��I ¼ ð0Þð��I Þ ¼ 0, so that

� 0WR ¼
X

LD ��D þ
X

LI ��I ¼ 0þ 0 ¼ 0; ð3:5:8Þ

in accordance with LP.
The advantage of the nonholonomic (3.5.7, 8) over the holonomic (3.5.5) is that,

in the former, constraints and reactions decouple naturally; whereas in the latter they
are coupled; that is, in general,

�qk 6¼ 0; Rk 6¼ 0 ) Rk �qk 6¼ 0; but
X

Rk �qk ¼ 0: ð3:5:9Þ

Finally, substituting the first of (3.5.7) into (3.5.5), we recover the earlier transfor-
mation equations (3.4.3e): Rk ¼

P
LDaDk ¼

P
Llalk, as expected.

REMARK

In the case of unilateral constraints ��D 
 0 (if, originally, they have the form
��D � 0, we replace ��D with ���D), from the ‘‘unilateral LP’’ � 0WR 
 0 and
(3.5.4) we conclude that

P
�D ��D 
 0; and since the ��D are positive or zero, the

�D must also be positive or zero.
In sum: If the unilateral constraints are chosen so that ��	 > 0 is possible/admis-

sible, then the corresponding reaction �	 is positive or zero (see also }3.7).

The Lagrangean Multiplier Rule,
or Adjoining of Constraints

This fundamental mathematical theorem [one of the most useful mathematical
results of the 18th century, initiated by Euler, but brought to prominence by
Lagrange—see Hoppe (1926(a), p. 62)] states that:

The single (differential) variational equation

� 0M �
X

Mk �qk ¼ 0; ð3:5:10aÞ

where Mk ¼Mkðq; _qq; €qq; . . . ; tÞ and the n �q’s are restricted by the m ð<nÞ indepen-
dent Pfaffian constraints

��D �
X

aDk �qk ¼ 0 ½rank ðaDkÞ ¼ m�; ð3:5:10bÞ

is completely equivalent to the new variational equation

� 0M þ
X
ð��DÞ ��D ¼ � 0M þ

XX
ð��DaDkÞ �qk ¼ 0;

or X
Mk �

X
�DaDk

� �
�qk ¼ 0; ð3:5:10cÞ

where the n �q’s are (better, can be viewed as) unconstrained; that is, (3.5.10a, b) are
equivalent to the n equations

Mk ¼
X

�DaDk ð3:5:10dÞ
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which, along with the m constraints (3.5.10b), in velocity form

!D �
X

aDk _qqk þ aD ¼ 0; ð3:5:10eÞ

make up a system of nþ m equations for the nþ m unknown functions qðtÞ and �ðtÞ.
INFORMAL PROOF

Let us define the m �D’s by the m nonsingular equations

MD 0 ¼
X

�DaDD 0 ðD;D 0 ¼ 1; . . . ;mÞ; ð3:5:10fÞ

that is, eqs. (3.5.10d) with k! D 0. For such �’s eq. (3.5.10c) reduces toX
MI �

X
�DaDI

� �
�qI ¼ 0; ð3:5:10gÞ

where the ðn�mÞ �qI ’s are now free. From the above, we immediately conclude that

MI ¼
X

�DaDI ; ð3:5:10hÞ

that is, eqs. (3.5.10d) with k! I .
[References on the multiplier rule: Gantmacher (1970, pp. 20–23), Hamel (1949,

pp. 85–91), Osgood (1937, pp. 316–318), Rosenberg (1977, pp. 132, 212–214). For a
linear algebra based proof, see, for example, Woodhouse (1987, pp. 114–115).]

Example 3.5.1 Lagrange’s Equations of the First Kind. The multiplier rule
applied to

� 0WR �SdR � �r ¼ 0; ðaÞ

where the �r are restricted by (i) the h holonomic constraints ðH ¼ 1; . . . ; hÞ
�Hðt; rÞ ¼ 0 ) ��H ¼S ð@�H=@rÞ � �r ¼ 0; ðb1Þ

and (ii) the m Pfaffian (possibly nonholonomic) constraints ½D ¼ 1; . . . ;m
ð< n � 3N � hÞ and BD ¼ BDðt; rÞ]

S BD � vþ BD ¼ 0 ) S BD � �r ¼ 0; ðb2Þ

leads, with the help of the hþm LagrangeanmultipliersH ¼ HðtÞ and �D ¼ �DðtÞ,
to

S dR�
X

Hð@�H=@rÞ �
X

�DBD

� �
� �r ¼ 0; ðc1Þ

from which, since the �r can now be treated as free, we obtain the constitutive
equation for the total constraint reaction on the typical particle P due to all system
constraints:

dR ¼
X

Hð@�H=@rÞ þ
X

�DBD: ðc2Þ

Then, the Newton–Euler/d’Alembert particle equation dm a ¼ dF þ dR becomes the
famous Lagrange’s equation of the first kind:

dm a ¼ dF þ
X

Hð@�H=@rÞ þ
X

�DBD: ðc3Þ
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In the more common discrete notation, the constraints (b1, 2) become (with
P ¼ 1; . . . ;N � number of system particles)

��H ¼
X
ð@�H=@rPÞ � �rP ¼ 0 and

X
BDP � �rP ¼ 0; ðc4Þ

respectively, while the equation of constrainted motion (c3) assumes the form

mPaP ¼ FP þ RP ¼ FP þ
X

Hð@�H=@rPÞ þ
X

�DBDP: ðc5Þ

To understand the relation between the particle reactions dR, RP and their system
counterparts Rk, Lk, we insert (c2) into their corresponding definitions (3.4.1d, 2d).
We find, successively,

ðiÞ Rk �SdR � ek ¼S
X

Hð@�H=@rÞ þ
X

�DBD

� �
� ek

¼
X

H S ð@�H=@rÞ � ð@r=@qkÞ
� �

þ
X

�D S BD � ek

� �
�
X

Hð@�H=@qkÞ þ
X

�DBDk; ðd1Þ

and, comparing with the second of (3.5.5), Rk ¼
P

�DaDk, we readily conclude that

@�Hðt; qÞ=@qk �S @�Hðt; rÞ=@r½ � � @rðt; qÞ=@qk½ � ¼ 0; ðd2Þ

and

BDk �S BD � ek ¼ aDk; ðd3Þ

recall ex. 2.4.1 and (2.6.1ff.).

REMARK

The above also show that, as long as the quasi variables are chosen so that

0 ¼S BD � �r � ��D ¼
X

aDk �qk ) S BD � ek ¼ aDk; ðe1Þ

the multipliers �D in (c2, 3) coincide with those in the second of (3.5.5). Indeed,

ek � dotting (c3) and then S -summing, we obtain the ‘‘Routh–Voss’’ equations [see
(3.5.15) below]:

Sdm a � ek ¼SdF � ek þ
X

H S ð@�H=@rÞ � ek
� �

þ
X

�D S BD � ek

� �
; ðe2Þ

or

Ek ¼ Qk þ 0þ
X

�DaDk: ðe3Þ

ðiiÞ Lk �SdR � ek ¼S
X

Hð@�H=@rÞ þ
X

�DBD

� �
� ek

¼
X

H S ð@�H=@rÞ � ð@r=@�kÞ
� �

þ
X

�D S BD � ek

� �
�
X

Hð@�H=@�kÞ þ
X

�DB
0
Dk; ðf1Þ
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and, comparing with (3.5.7), LD ¼ �D and LI ¼ 0, we readily conclude that

@�H=@�k �S ð@�H=@rÞ � ek ¼S ð@�H=@rÞ �
X

Alkel

� �
¼ � � � ¼

X
Alkð@�H=@qlÞ ¼ 0; ðf2Þ

and (with k ¼ 1; . . . ; n; D;D 0 ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ

B 0Dk �S BD � ek ¼S BD �

X
Alkel

� �
¼
X

Alk S BD � el

� �
¼
X

AlkaDl ¼ �kD;

that is,

B 0DD 0 �S BD � eD 0 ¼ �DD 0 ; B 0DI �S BD � eI ¼ �DI ¼ 0: ðf3Þ

Some of the above can also be obtained from the virtual forms of the constraints.
Thus, we find, successively,

ðaÞ
0 ¼ ��H ¼S ð@�H=@rÞ � �r ¼S ð@�H=@rÞ �

X
ek ��k

� �
¼ � � � ¼

X
ð@�H=@�kÞ ��k

¼
X
ð@�H=@�DÞ ��D þ

X
ð@�H=@�IÞ ��I ¼ 0þ

X
ð@�H=@�IÞ ��I ) @�H=@�I ¼ 0:

ðg1Þ

ðbÞ 0 ¼ ��D �S BD � �r ¼S BD �

X
ek ��k

� �
¼ � � � ¼

X
B 0Dk ��k

¼
X

B 0DD 0 ��D 0 þ
X

B 0DI ��I ¼ 0þ
X

B 0DI ��I ) B 0DI ¼ 0: ðg2Þ

HISTORICAL

The terms Lagrange’s equations of the first kind (and second kind—see below) seem
to have originated in Jacobi’s famous Lectures on Dynamics (winter 1842/1843, publ.
1866), and have been widely used in the German and Russian literature. They are not
too well known among English and French authors (see, e.g., Voss, 1901, p. 81,
footnote #220).

Example 3.5.2 Lagrange’s Principle and Multipliers: Particle on a Surface (Kraft,
1885, vol. 2, pp. 194–195). Let us consider a particle P of mass m moving on a
smooth surface �ðx; y; z; tÞ ¼ 0, where x; y; z are inertial rectangular Cartesian
coordinates of P, under a total impressed force with rectangular Cartesian compo-
nents ðX ;Y ;ZÞ. According to LP, the motion is given by (with the customary
notations dx=dt � vx, d

2x=dt2 � dvx=dt � ax; . . .Þ
ðmax � XÞ �xþ ðmay � YÞ �yþ ðmaz � ZÞ �z ¼ 0; ðaÞ

under the (virtual form of the surface) constraint

�� ¼ 0 : ð@�=@xÞ �xþ ð@�=@yÞ �yþ ð@�=@zÞ �z ¼ 0: ðbÞ
By Lagrange’s multipliers, (a) and (b) combine to the unconstrained variational
equation,

½max � X � �ð@�=@xÞ� �xþ ½may �Y � �ð@�=@yÞ� �y
þ ½maz � Z � �ð@�=@zÞ� �z ¼ 0; ðcÞ
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and this leads directly to the three Lagrangean (Routh–Voss) equations of the first
kind:

max ¼ X þ �ð@�=@xÞ; may ¼ Y þ �ð@�=@yÞ; maz ¼ Z þ �ð@�=@zÞ: ðdÞ
Eliminating the multiplier � among (d) we obtain the two reactionless equations
(with subscripts denoting partial derivatives):

ðmax � XÞ=�x ¼ ðmay � YÞ=�y ¼ ðmaz � ZÞ=�z ð¼ �Þ: ðeÞ
Next:

(i) either we solve the system consisting of any two of (e), plus the constraint � ¼ 0,
for the three unknown functions xðtÞ, yðtÞ, zðtÞ, and then calculate �! �ðtÞ from
(d), or (e), if needed;

(ii) or we solve the system consisting of (d) and � ¼ 0 for the four unknown functions

xðtÞ, yðtÞ, zðtÞ, and �ðtÞ.

Equations (e) can also be obtained as follows: in view of (b), only two out of the three
virtual displacements are independent; here n ¼ 3 and m ¼ 1. Taking �x as the depen-
dent virtual displacement, and solving (b) for it in terms of the other two (assuming
that �x 6¼ 0), we obtain

ðfÞ
and substituting this into (a), and regrouping terms, we get the new unconstrained
variational equation of motion

½may � Y � ðmax � XÞð�y=�xÞ� �y
þ ½maz � Z � ðmax � XÞð�z=�xÞ� �z ¼ 0: ðgÞ

The above, since �y and �z are now free, leads immediately to the two reactionless �
kinetic equations,

may ¼ Y þ ðmax � XÞð�y=�xÞ; maz ¼ Z þ ðmax � XÞð�z=�xÞ; ðhÞ
which are none other than the earlier eqs. (e).

REMARKS

(i) Equations (h) can be, fairly, called ‘‘Maggi! Hadamard equations of the first
kind’’; and the extension of this idea to holonomic system variables and correspond-
ing Pfaffian constraints yields ‘‘Hadamard’s equations (of the second kind)’’ (}3.8).

(ii) Equations (b–d ¼ ‘‘adjoining of constraints’’) and equations (f–h ¼ ‘‘em-
bedding of constraints’’) embody the two available ways of handling constrained
stationary problems in differential calculus; although, there, the former is discussed
much more frequently than the latter

Specialization

Let the reader verify that if the surface constraint has the special form z ¼ f ðx; yÞ,
then:

(i) eqs. (d, e) reduce, respectively, to
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Routh–Voss equations:

max ¼ X þ �ð@f=@xÞ; may ¼ Y þ �ð@f=@yÞ; maz ¼ Z � �; ðiÞ
Kinetic Maggi ! Hadamard equations (of the first kind):

ðmax � XÞ=fx ¼ ðmay � YÞ=fy ¼ ðmaz � ZÞ=ð�1Þ ð¼ �Þ; ð jÞ

) ðmax � XÞ þ ðmaz � ZÞ fx ¼ 0; ðmay � YÞ þ ðmaz � ZÞfy ¼ 0: ðkÞ
(ii) Substituting into (k): az � €zz ¼ � � � ¼ €xx fx þ €yy fy þ ð _xxÞ2fxx þ ð _yyÞ2fyy þ 2 _xx _yy fxy;

that is, using the constraint and its ð. . .Þ:-derivatives to eliminate z and its derivatives
from them, we obtain the two kinetic equations in x; y and their derivatives alone:

€xxð1þ fx
2Þ þ €yy fx fy þ ð _xxÞ2fx fxx þ 2 _xx _yy fx fxy þ ð _yyÞ2fx fyy ¼ ðX þ fx ZÞ=m; ðlÞ

€yyð1þ fy
2Þ þ €xx fx fy þ ð _yyÞ2fy fyy þ 2 _xx _yy fy fxy þ ð _xxÞ2fy fxx ¼ ðY þ fy ZÞ=m; ðmÞ

[which are the ‘‘Chaplygin–Voronets’’-type equations of the problem (see }3.8)].
(iii) Solving the last of ( j) for �, and then using into it the earlier expression

€zz ¼ � � �, we obtain the following (kinetostatic) expression:

� ¼ Z �m €zz

¼ Z �m €xx fx þ €yy fy þ ð _xxÞ2fxx þ ð _yyÞ2fyy þ _xx _yy fxy

h i
; ðnÞ

which, once the motion has been found: x ¼ xðtÞ, y ¼ yðtÞ, yields the constraint
reaction � ¼ �ðtÞ.

(iv) Finally, substituting (n) into the first and second of (i), we recover (k, l),
respectively.

Example 3.5.3 Let us apply the results of the preceding example to a particle P
of mass m moving under gravity on a smooth vertical plane that spins about a
vertical of its straight lines, Oz (positive upward), with constant angular velocity x

(Kraft, 1885, vol. 2, pp. 194–195). Choosing inertial axes O��xyz so that Ox coin-
cides with the original intersection of the spinning plane and the horizontal plane
O��xy through the origin, we have, for the impressed forces,

X ¼ 0; Y ¼ 0; Z ¼ þmg; ðaÞ
and, for the constraint,

y=x ¼ sinð!tÞ= cosð!tÞ ) �ðt; x; y; zÞ ¼ y cosð!tÞ � x sinð!tÞ ¼ 0: ðbÞ
Therefore, equations (e) of the preceding example yield

ðm €xx� 0Þ=½� sinð!tÞ� ¼ ðm €yy� 0Þ= cosð!tÞ ¼ ðm €zz�mgÞ=0 ð¼ ��Þ;
or, rearranging (to avoid the singularity caused by fz ¼ 0Þ;

ðm €xx� 0Þ cosð!tÞ ¼ ðm €yy� 0Þ½� sinð!tÞ� ) €xx cosð!tÞ þ €yy sinð!tÞ ¼ 0; ðcÞ
ðm €xx� 0Þð0Þ ¼ ðm €zz�mgÞ½� sinð!tÞ� ) €zz ¼ g; ðdÞ
ðm €yy� 0Þð0Þ ¼ ðm €zz�mgÞ cosð!tÞ ) €zz ¼ g: ðeÞ
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Let us, now, solve (c–e). Using plane polar coordinates ðr; �Þ: x ¼ r cosð!tÞ )
_xx ¼ � � � ) €xx ¼ � � � and y ¼ r sinð!tÞ ) _yy ¼ � � � ) €yy ¼ � � �, we can rewrite (c) in the
simpler form

€rr� !2r ¼ 0: ðfÞ
The solution of (d) ¼ (e), with initial conditions zð0Þ � zo and _zzð0Þ � vo, is

z ¼ ð1=2Þgt2 þ votþ zo; ðgÞ
while that of (f), with initial conditions rð0Þ ¼ ro and _rrð0Þ ¼ vr;o, is

2! r ¼ ð! ro þ vr;oÞe!t þ ð! ro � vr;oÞe�!t: ðhÞ
Equations (g, h) locate P on the spinning plane at time t, and, with the help of (b),
specify its inertial position at the same time. (See also Walton, 1876, pp. 398–411.)

Example 3.5.4 Lagrange’s Equations of the First Kind; Particle on Two Surfaces.
Let us calculate the reactions on a particle P moving in space under the two con-
straints (where x; y; z are the inertial rectangular Cartesian coordinates of P)

�1 � x2 þ y2 þ z2 � l2 ¼ 0 and �2 � z� y tan � ¼ 0; ðaÞ
that is, n ¼ 3� 2 ¼ 1: for example, the bob of spherical pendulum of (constant)
length l, forced to remain on the plane �2 ¼ 0, that makes an angle � with the
plane z ¼ 0. Using commas followed by subscripts to denote partial (coordinate)
derivatives, we find, from (a),

��1 ¼ �1;x �xþ �1;y �yþ �1;z �z ¼ 0; ��2 ¼ �2;x �xþ �2;y �yþ �2;z �z ¼ 0: ðbÞ
Solving (b) for the two excess virtual displacements in terms of the third, say �y and
�z in terms of �x, we obtain

�y ¼ �ð2x=JÞ �x and �z ¼ �ð2x tan �=JÞ �x; ðcÞ
where

J �
�1;y �1;z

�2;y �2;z












 ¼ 2ðyþ z tan �Þ ð6¼ 0; assumedÞ: ðdÞ

Substituting �y and �z from (c) into the principle of d’Alembert–Lagrange for the
particle reaction— that is,

Rx �xþ Ry �yþ Rz �z ¼ 0; ðeÞ
results in

Rx � ð2x=JÞRy � ð2x tan �=JÞRz

� 	
�x � R 0x �x ¼ 0; ðfÞ

from which, since �x is independent, we obtain R 0x ¼ 0; that is,

Rx=ðRy þ tan �RzÞ ¼ x=ðyþ z tan �Þ: ðgÞ
Further, the ideal reaction postulate for R:

R ¼ �1ð@�1=@rÞ þ �2ð@�2=@rÞ; ðhÞ
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with (a) and in components, yields

Rx ¼ �1�1;x þ �2�2;x ¼ � � � ¼ 2�1x; ðiÞ
Ry ¼ �1�1;y þ �2�2;y ¼ � � � ¼ 2�1y� �2 tan �; ð jÞ
Rz ¼ �1�1;z þ �2�2;z ¼ � � � ¼ 2�1zþ �2; ðkÞ

which, of course, are consistent with (g). Finally, since J 6¼ 0, we can use any two of
(i–k) to express �1;2 uniquely, in terms of Rx;y;z; for instance, solve (j, k) for �1;2 in
terms of Ry;z. (See also Routh, 1891, p. 35.)

Example 3.5.5 Lagrange’s Equations of the First Kind; and Elimination of Reactions.
Let us consider a system of N particles, moving under the hþm �M (possibly
nonholonomic but ideal) constraints

fDðt; r; vÞ ¼ 0 ðD ¼ 1; . . . ;M < 3NÞ; ðaÞ
and, therefore (recalling ex. 3.2.6), having Lagrangean equations of motion of the
first kind (we revert to continuum notation for convenience),

dm a ¼ dF þ
X

�Dð@fD=@vÞ: ðbÞ

Now, to obtain reactionless ¼ kinetic equations of motion, we will combine (b)
with the acceleration form of (a). To this end, we ð. . .Þ:-differentiate (a) once, thus
obtaining

dfD=dt ¼ @fD=@tþS ð@fD=@rÞ � vþ ð@fD=@vÞ � a
� 	 ¼ 0; ðcÞ

and from this, rearranging, we get

S ð@fD=@vÞ � a ¼ �S ð@fD=@rÞ � v� @fD=@t: ðdÞ

Now, to be able to use (d) in (b), so as to eliminate a, we dot the latter with @fD=@v
and sum over the particles (with D;D 0 ¼ 1; . . . ;M):

S ð@fD=@vÞ � a ¼S ðdF=dmÞ � ð@fD=@vÞ½ � þ
X

�D 0 S ð@fD 0=@vÞ � ð@fD=@vÞ=dm
� �

;

ðeÞ
and, comparing the right sides of the above with (d), we readily conclude thatX

�D 0 S @fD 0=@ðdmvÞ½ � � ð@fD=@vÞ
n o

¼ �S dF � @fD=@ðdmvÞ½ �f g �S ð@fD=@rÞ � v� @fD=@t: ðfÞ

Since rank½@fD=@ðdmvÞ� ¼ rankð@fD=@vÞ ¼M, and therefore

Det S @fD 0=@ðdmvÞ½ � � ð@fD=@vÞ
n o

6¼ 0; ðgÞ

the M linear nonhomogeneous equations (f) can supply uniquely (locally, at least)
the �D’s as functions of the r’s, v’s, and t. Finally, substituting the so-calculated �D’s
back into (b), we obtain N second-order equations for the r ¼ rðtÞ. (See also exs.
3.10.2, 5.3.5, and 5.3.6; and Voss, 1885.)
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Problem 3.5.1 Continuing from the preceding example, find the form that (f)
takes if the constraints (a) have the holonomic form

�Hðt; rÞ ¼ 0: ðaÞ

HINT

Calculate fD � d�D=dt ¼ 0, and then show that @fD=@v ¼ @�D=@r.

Let us now turn to the second, and more important, ‘‘reactionless part’’ of LP, (eqs.
3.2.8, 11), and express it in system variables.

1. Holonomic Variables

In this case LP, �I ¼ � 0W , assumes the formX
Ek �qk ¼

X
Qk �qk;

or, explicitly,X
d=dtð@T=@ _qqkÞ � @T=@qk½ � �Qkf g �qk

�
X

d=dtð@T=@vkÞ � @T=@qk½ � � Qkf g �qk ¼ 0: ð3:5:11Þ

This differential variational equation is fundamental to Lagrangean analytical
mechanics; all conceivable/possible Lagrangean equations of motion are based on
it and flow from it.

(a) Now, if the n �q’s are independent (i.e., m ¼ 0) f ¼ n DOF), (3.5.11) leads
immediately to Lagrange’s equations of the second kind: Ek ¼ Qk; or explicitly (re-
calling the kinematico-inertial results of }3.3 in holonomic variables),

Ek � d=dtð@T=@ _qqkÞ � @T=@qk
� d=dtð@T=@vkÞ � @T=@qk ¼ Qk [Lagrange (1780)]; ð3:5:12Þ
� @S=@€qqk � @S=@ _vvk � @S=@wk ¼ Qk [Appell (1899)]: ð3:5:13Þ

Further, substituting �qk ¼
X

Akl ��l ðk; l ¼ 1; . . . ; nÞ into (3.5.11) readily yieldsX
AklEk ¼

X
AklQk ði:e:; Il ¼ �l ; but in holonomic variablesÞ

[Maggi (1896, 1901, 1903)]: ð3:5:14Þ

However, in this unconstrained case, neither Appell’s equations, (3.5.13), norMaggi’s
equations, (3.5.14), offer any particular advantages over those of Lagrange, (3.5.12);
their real usefulness/advantages over eqs. (3.5.12) lie in the constrained case (see
below). Equations (3.5.12) are rightfully considered among the most important
ones of the entire mathematical physics and engineering; we shall call them simply
Lagrange’s equations.

(b) If the n �q’s are constrained by (3.5.3):
P

aDk �qk ¼ 0 ðD ¼ 1; . . . ;m;

k ¼ 1; . . . ; n), that is, f � n �m ¼ number of DOF, then application of the multiplier
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rule, between these constraints and (3.5.11), leads immediately to the Routh–Voss
equations

Ek ¼ Qk þ
X

�DaDk ð� Qk þRkÞ; ð3:5:15Þ

or, explicitly, as in (3.5.12, 13),

Ek � d=dtð@T=@ _qqkÞ � @T=@qk ¼ Qk þ
X

�DaDk

[Routh (1877), Voss (1885)]; ð3:5:16Þ
� @S=@€qqk¼Qkþ

X
�DaDk (Appellian form of the Routh --Voss eqs.). ð3:5:17Þ

The corresponding Maggi form is presented below.
[Equations (3.5.15) are not to be confused with the other, more famous, equations

of Routh of steady motion, etc. (}8.3 ff.)]

CAUTION

Some authors (e.g., Haug, 1992, pp. 169–170) state, falsely, that if the n q’s are
independent, the n �q’s are arbitrary, and then (3.5.12, 13) follow from (3.5.11).
But as we have seen (}2.3, }2.8, and }2.12), if the additional constraints (3.5.3,
10b) are nonholonomic the q’s remain independent, whereas, obviously, the �q’s
are no longer arbitrary, that is, (3.5.12, 13) do not always hold for independent q’s.

2. Holonomic ! Nonholonomic Variables

In this case LP, �I ¼ � 0W , assumes the formX
Ik ��k ¼

X
Yk ��k: ð3:5:18Þ

(a) If the n ��’s are unconstrained (i.e., if m ¼ 0) f � n�m ¼ n ¼ # DOF),
then (3.5.18) leads to Ik ¼ Yk, or, due to the kinematico-inertial identities (3.3.10
ff.) for Ik, to the following three general forms:

Ik �
X

AlkEl ¼
X

AlkQl ;

or, in extenso,X
½d=dtð@T=@ _qqlÞ � @T=@ql �Alk ¼

X
AlkQl

(Maggi form: holonomic variables), ð3:5:19aÞ
�
X

Alkð@S=@€qqlÞ ¼
X

AlkQl

(Appellian form of Maggi form: holonomic variables), ð3:5:19bÞ
� @S*=@ _!!k ¼ Yk

[Gibbs (1879): nonholonomic variables, but no constraints!]; ð3:5:19cÞ
� d=dtð@T*=@!kÞ � @T*=@�k þ

XX
� r

k
ð@T*=@!rÞ!
 ¼ Yk

� Ek*ðT*Þ � Gk ¼ Yk

[Volterra (1898), Hamel (1903 --1904)]: ð3:5:19dÞ
Equations (3.5.19a, b) have no advantages over Lagrange’s equations (3.5.12);
but equations (3.5.19c, d) may be truly useful for unconstrained systems in quasi
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variables, for example, a rigid body moving about a fixed point [!Eulerian rota-
tional equations (}1.17)].

(b) If the ��’s are constrained by ��D ¼ 0, but ��I 6¼ 0 (i.e., if f � n�m ¼
# DOF), then the multiplier rule applied to (3.5.18) yields the following two groups
of equations:

Kinetostatic (i.e., reaction containing) equations:

ID ¼ YD þ LD ½¼ YD þ �D ðD ¼ 1; . . . ;mÞ�; ð3:5:20aÞ

Kinetic (i.e., reactionless) equations:

II ¼ YI ðI ¼ mþ 1; . . . ; nÞ; ð3:5:20bÞ

[and in view of the constraint 1 � ��nþ1 ¼ 1 � �t ¼ 0, we also have Inþ1 ¼ Ynþ1 þ Lnþ1,
but that nonvirtual relation is more of an energy rate–like equation (as in }3.9)].

Alternative Derivation of Equations (3.5.20a, b)

First, with the help of the Kronecker delta (hopefully, not to be confused with the
virtual variation symbol � . . .), we rewrite the constraints ��D ¼ 0 as

0 ¼ ��D ¼
X

�DD 0 ��D 0 ¼
X

�DD 0 ��D 0 þ
X

�DI ��I ¼
X

�Dk ��k: ð3:5:20cÞ

Then, using the method of Lagrangean multipliers, we combine them with (3.5.18):
(1) we multiply each constraint ��Dð¼ 0Þ with ��Dð6¼ 0Þ and sum over D; (2) we
multiply each ‘‘nonconstraint’’ ��I ð6¼ 0Þ with ��Ið¼ 0Þ and sum over I ; and, (3), we
add the so-resulting two zeros to (3.5.18), thus obtaining

X
Ik �Yk �

X
�D �Dk

� �
��k ¼ 0: ð3:5:20dÞ

Since the ��k can now be viewed as unconstrained, (3.5.20d) decouples to the two
sets of equations:

k ¼ D 0: ID 0 �YD 0 ¼
X

�D �DD 0 ¼ �D 0 ðKinetic equationsÞ; ð3:5:20eÞ

k ¼ I : II �YI ¼
X

�D �DI ¼ �I ¼ 0 ðKinetostatic equationsÞ: ð3:5:20fÞ

Here, too, as with the unconstrained case (3.5.19a–d), we have the following three
general forms for (3.5.20a) and (3.5.20b):

� Kinetic equations (with I ; I 0 ¼ mþ 1; . . . ; n; k ¼ 1; . . . ; n; � r
I � � r

I ;nþ1Þ:

II �
X

AkIEk ¼
X

AkIQk;
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or, in extenso,X
½d=dtð@T=@ _qqkÞ � @T=@qk�AkI ¼

X
AkIQk

[Maggi (1896, 1901, 1903): holonomic variables], ð3:5:21aÞ
�
X

AkIð@S=@€qqkÞ ¼
X

AkIQk

(Appellian form of Maggi form: holonomic variables), ð3:5:21bÞ
� @S*=@ _!!I ¼ YI

[Appell (1899��1925): special cases of nonholonomic variables], ð3:5:21cÞ
� d=dtð@T*=@!IÞ � @T*=@�I þ

XX
� k

II 0 ð@T*=@!kÞ!I 0

þ
X

� k
Ið@T*=@!kÞ ¼ YI

[Hamel (1903��1904): ‘‘Lagrange��Euler equations’’]; ð3:5:21dÞ
� Kinetostatic equations (with D ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; n; k ¼ 1; . . . n;
� r

D � � r
D;nþ1Þ :

ID �
X

AkDEk ¼
X

AkDQk þ LD;

or, in extenso,X
½d=dtð@T=@ _qqkÞ � @T=@qk�AkD ¼

X
AkDQk þ LD; ð3:5:22aÞ

�
X

AkDð@S=@€qqkÞ ¼
X

AkDQk þ LD; ð3:5:22bÞ
� @S*=@ _!!D ¼ YD þ LD

[Cotton (1907): special variables] ð3:5:22cÞ
� d=dtð@T*=@!DÞ � @T*=@�D

þ
XX

� k
DIð@T*=@!kÞ!I þ

X
� k

Dð@T*=@!kÞ ¼ YD þ LD

[St€uckler (1955); special case by Schouten (late 1920s, 1954)]: ð3:5:22dÞ

REMARKS

(i) In the absence of constraints, the above n equations in the !’s, plus the n
transformation equations _qqk ¼

P
Akl!l þ Ak, constitute a system of 2n first-order

equations in the 2n unknown functions !k ¼ !kðtÞ and qk ¼ qkðtÞ. [Or, after using
the !$ _qq equations in them, thus expressing the !k’s in terms of the _qqk’s, they
constitute a set of n second-order equations for the n unknowns qkðtÞ.] In the presence
of m constraints !D ¼ 0, the n�m kinetic equations plus the n transformation
equations _qqk ¼

P
AkI!I þAk constitute a system of 2n�m first-order equations

in the 2n�m functions !I ¼ !IðtÞ and qk ¼ qkðtÞ. Or, equivalently, substituting
!I ¼

P
aIk _qqk þ aI ð6¼ 0Þ into the n�m kinetic equations, we obtain a system of

n�m second-order equations for the qk ¼ qkðtÞ; and then, pairing them with the m
constraints

P
aDk _qqk þ aD ¼ 0, we finally obtain a system of ðn�mÞ þm ¼ n

second-order reactionless equations for the qk ¼ qkðtÞ. Further, it can be shown
that there exists a nonsingular linear transformation _qqk ¼

P
Akl!l þAk, or
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_qq
 ¼
P

A
� !� (recalling that dqnþ1=dt ¼ !nþ1 ¼ dt=dt ¼ 1) that brings the non-
negative kinetic energy 2T ¼PP

M
� _qq
 _qq� to the following sum of squares
form:

2T ! 2T* ¼
X

!

2 ¼

X
!k

2 þ !nþ1
2; ð3:5:23aÞ

in which case, since Pk � @T*=@!k ¼ !k and Pnþ1 � @T*=@!nþ1 ¼ !nþ1 ¼ 1,
@T*=@�k �

P ð@T*=@qlÞAlk ¼ 0, the nonholonomic system inertia assumes the
Eulerian form (recall inertia side of Eulerian rigid-body rotational equations, }1.17):

Ik ¼ d!k=dtþ
XX

� r
k
 !r !
; ð3:5:23bÞ

and that is why Hamel called his equations ‘‘Lagrange–Euler equations.’’ (However,
by choosing the !k’s so as to nullify the @T*=@�k’s, we probably end up complicat-
ing the � r

k
’s.)
(ii) The advantage of nonholonomic variables in the Hamel ‘‘equilibrium form’’

!D ¼ 0 is that then both constraints and equations of motion decouple naturally into
n�m purely kinetic (i.e., reactionless) equations ð��I 6¼ 0; LI ¼ 0) II ¼ YIÞ and m
reaction-containing, or kinetostatic, equations ð��D ¼ 0; LD 6¼ 0) ID ¼ YD þ LDÞ.
In holonomic variables, by contrast, both (Pfaffian) constraints and (Routh–Voss
and Appell) equations of motion are coupled. Solving the n�m kinetic equations
(plus constraints, etc.) constitutes the lion’s share of the difficulty of the problem.
Once this has been achieved, then the reactions LD follow immediately from the
(now) algebraic equations: LD ¼ LDðtÞ ¼ IDðtÞ �YDðtÞ.

(iii) When using Hamel’s equations under the constraints !D ¼ 0, we must
enforce the latter after all partial differentiations have been carried out, not before;
otherwise, we would not, in general, calculate correctly the key nonholonomic terms
ðk; r ¼ 1; . . . ; n; 
 ¼ 1; . . . ; nþ 1; I 0 ¼ mþ 1; . . . ; nÞ

�Gk ¼
XX

� r
k
ð@T*=@!rÞ!
 ¼

XX
� r

kI 0 ð@T*=@!rÞ!I 0 þ
X

� r
kð@T*=@!rÞ;
ð3:5:24aÞ

and, unfortunately, this drawback holds for both kinetic and kinetostatic equations.
Let us see why. Expanding T* à la Taylor around !D ¼ 0, we obtain

T* ¼ T*o þ
X
ð@T*=@!DÞo !D þ quadratic terms in !D; ð3:5:24bÞ

where

T*o ¼ T*ðq; !D ¼ 0; !I ; tÞ ¼ T*oðq; !I ; tÞ; ð3:5:24cÞ

and, generally, ð. . .Þo � ð. . . ; !D ¼ 0; . . .Þ (a useful notation, to be utilized frequently,
for extra clarity); and, therefore,

ð@T*=@!DÞo 6¼ @T*o=@!D ¼ 0; ð3:5:24dÞ
ð@T*=@!IÞo ¼ @T*o=@!I ) d=dt½ð@T*=@!I Þo� ¼ d=dtð@T*o=@!IÞ; ð3:5:24eÞ

ð@T*=@�kÞo �
X

Arkð@T*=@qrÞo ¼
X

Arkð@T*o=@qrÞ: ð3:5:24fÞ
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In view of these results, �Gk, (3.5.24a), transforms to

�Gk ¼
XX

�D
kI 0 ð@T*=@!DÞo !I 0 þ

XX
� I 00

kI 0 ð@T*o=@!I 00 Þ!I 0

þ
X

�D
kð@T*=@!DÞo þ

X
� I

kð@T*o=@!IÞ; ð3:5:24gÞ

an expression that shows clearly that the presence of the first (double) and third
(single) sums generally necessitates the use of T*, instead of T*o.

However, with the help of the above expression we can obtain conditions that tell
us when we can use the constrained kinetic energy T*o in Hamel’s equations right
from the start. Let us do this, for simplicity, for the common case of the kinetic such
equations of a scleronomic system. Then,

�Gk ! �GI ¼
XX

�D
II 0 ð@T*=@!DÞo !I 0 þ

XX
� I 00

II 0 ð@T*o=@!I 00 Þ!I 0 ;

ð3:5:24hÞ

and (3.5.24d, e) make it clear that the sought conditions will result from the (iden-
tical) vanishing of the first sum in (3.5.24h); that is,XX

�D
II 0 ð@T*=@!DÞo !I 0 ¼ 0: ð3:5:24iÞ

But (as made clear in }3.9),

2T* ¼
XX

M*klðqÞ!k !l ¼
XX

ð@2T*=@!k @!lÞ!k !l

) ð@T*=@!DÞo ¼
X
ð@2T*=@!D @!IÞ!I ; ð3:5:24jÞ

and so (3.5.24i) reduces toXXX
�D

II 0 ð@2T*=@!D @!I 00 Þ!I 00 !I 0 ¼ 0; ð3:5:24kÞ

and from this we easily conclude that the necessary and sufficient conditions for the
use of T*o in Hamel’s equations areX

�D
II 0 ð@2T*=@!D @!I 00 Þ ¼ 0: ð3:5:24lÞ

For example, in the case of a single Pfaffian constraint, !1 ¼ 0 (i.e., m ¼ 1), (3.5.24l)
yields

� 1
II 0 ð@2T*=@!1 @!I 00 Þ ¼ 0 ðI ; I 0; I 00 ¼ 2; . . . ; nÞ; ð3:5:24mÞ

which means that either all ‘‘nonholonomic inertial coefficients’’ @2T*=@!1 @!I 00

�M*1I 00 vanish [i.e., T* consists of an !1-free part and an !1
2-proportional part;

or � 1
II 0 ¼ 0, which means that constraint is holonomic (by Frobenius’ theorem,

}2.12)]. The consequences of (3.5.24l) are detailed in Hamel (1904(a), pp. 22–29);
see also Hadamard (1895).

constraint reactions, we must begin with the unconstrained kinetic energy
T* ¼ T*ðq; !D; !I ; tÞ, carry out all required differentiations, and then enforce the

time in T*-terms that are quadratic in that !D; namely, in ð. . .Þ!D
2 terms.
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constraints ωD = 0, at the end; and, a constraint ωD = 0 can be enforced ahead of

In sum, in using the Hamel equations, even if we are not interested in



This inconvenience is a small price to pay for such powerful and conceptually
insightful equations. Similarly, a detailed analysis of (3.5.24g) shows that it is
possible to have Gk ¼ 0 (i.e., Hamel equations ! Lagrange’s equations) even
though not all �’s are zero. An analogous situation occurs in the Maggi equations,
even in the kinetic case—that is,

II �
X

AkIEk �
X

d=dtð@T=@ _qqkÞ � @T=@qk½ �AkI ¼
X

AkIQk; ð3:5:24nÞ

since k ¼ 1; . . . ; n, we have to calculate T ¼ Tðt; q; _qqD; _qqIÞ; the ‘‘reduced,’’ or con-
strained, kinetic energy

To � T t; q; _qqD ¼
P

bDI _qqI þ bD; _qqIð Þ � Toðt; q; _qqIÞ; ð3:5:24oÞ
obviously will not do. This seems to be a drawback of all T-based (i.e., Lagrangean)
equations. No such problems appear for the kinetic Appellian equations: there, with
the convenient notation

S* ¼ S*ðt; q; !D; !I ; _!!D; _!!IÞ ¼ original; or unconstrained; or relaxed; Appellian

! S*ðt; q; !D ¼ 0; !I ; _!!D ¼ 0; _!!IÞ � S*oðt; q; !I ; _!!I Þ
� S*o ¼ constrained Appellian; ð3:5:25aÞ

and the help of the Taylor expansion (with some obvious calculus notations)

S* ¼ S*o þ
X

ð@S*=@!DÞo !D þ ð@S*=@ _!!DÞo _!!D

� 	þ quadratic terms in !D; _!!D;

ð3:5:25bÞ
we get the general results [similar to (3.5.24c, e)]

ð@S*=@ _!!IÞo ¼ @S*o=@ _!!I and ð@S*=@ _!!DÞo 6¼ @S*o=@ _!!D ¼ 0: ð3:5:25cÞ
Therefore, if we are not interested in finding constraint reactions, we can enforce the
constraints !D ¼ 0 and _!!D ¼ 0 into S* right from the beginning; that is, start work-
ing with S*o, and thus save a considerable amount of labor. This property, due to the
first of (3.5.25c), marks a key difference between the equations of Appell and Hamel,
and their corresponding special cases.

Special Case

If all constraints on the q’s are holonomic and have the equilibrium form
�D ! qD ¼ constant � qDo, then

ð@S*=@ _!!I Þo ! EI ðTÞjo ! EIðToÞ;
where To � Tðt; qD ¼ constant, qI , _qqD ¼ 0, _qqI Þ � Toðt; qI ; _qqIÞ, and, similarly for the
impressed forces, QI ¼ QIðt; q; _qqÞ ! QI ðt; qI ; _qqIÞ � QIo, and so the kinetic equations
become EI � EI ðToÞ � @So=@€qqI ¼ QIo.

(iv) Comparison between Lagrange’s equations of the first and second kind, and
their respective constraints. Those of the first kind, eq. (ex. 3.5.1: c3), constitute a
set of

3N þ ðhþmÞ ¼ ½ð3N � hÞ þm� þ 2h � ðnþmÞ þ 2h
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scalar equations, for the 3N þ ðhþmÞ unknown functions:

xP; yP; zP; P ¼ 1; . . . ;Nf g; H ; H ¼ 1; . . . ; hf g and �D; D ¼ 1; . . . ;mf g:
Once the positions (and hence accelerations) and multipliers become known functions
of time, (ex. 3.5.1: c2) supply the reactions.

Those of the second kind, actually the Routh–Voss equations (3.5.15, 16), con-
stitute a set of

nþm � ð3N � hÞ þm

equations for the nþm unknowns:

fqk; k ¼ 1; . . . ; ng and f�D; D ¼ 1; . . . ;mg:
Once the q’s and �’s have been found as functions of time, then rP ¼ rPðt; qÞ ! rPðtÞ
½! aP ¼ aPðtÞ�, and, again, (ex. 3.5.1: c2) supply the reactions. From the latter and
the (now) known �’s, we can calculate the ’s.

In sum, in the second-kind case we have 2h fewer equations, which is the result of
having absorbed the h holonomic constraints into that description with the
n � 3N � h q’s [see remark (v) below]. Also, even in the presence of additional
holonomic and/or nonholonomic constraints, we still work with the unconstrained
kinetic energy T .

However, and this is a general comment, the ultimate judgement regarding the
relative merits of various types of equations of motion must be shaped by several,
frequently intangible/nonquantifiable considerations (in the sense of the famous
Machian principle of Denkökonomie), in addition to the mere tallying of their num-
ber of equations, and so on (‘‘bean counting’’).

(v) Purpose for appearance of the multipliers. That the multipliers H , of the h
holonomic constraints �Hðt; rÞ ¼ 0, are not present in Lagrange’s equations of the
second kind (and in the Routh–Voss equations) is no accident: the m �D’s (and this
is a general remark) express the reactions of whatever constraints have not been
taken care of by our chosen q’s; that is, they are due to the additional holonomic and/
or nonholonomic constraints not yet built in (or embedded, or absorbed) into our
particular q’s description. Then, the multipliers appear as coefficients in the virtual
work of the reactions of these additional constraints.

(vi) Apparent indeterminacy of Lagrange’s equations. Let us consider a system
with equations of motion

Ek � d=dtð@T=@ _qqkÞ � @T=@qk ¼ Qk: ð3:5:26aÞ
Since, as explained earlier, all possible constraints are already built in into the chosen
q-description, the corresponding system constraint reactions Rk have been elimi-
nated from the right side of (3.5.26a); the Qk are wholly impressed. However, occa-
sionally, the latter depend on constraint reactions: for example, the sliding
Coulomb–Morin friction F on a particle sliding on a rough surface—according
to our definition, an impressed force— is given by

�Nðv=jvjÞ; ð3:5:26bÞ
where N ¼ normal force from surface to particle (clearly, a contact constraint reac-
tion),  ¼ sliding friction coefficient, and v ¼ particle velocity relative to the surface. In
such a case, if we embed all holonomic constraints into our q’s, and hence into our T
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and Qk’s, the resulting Lagrangean equations (3.5.26a) will, in general, constitute an
indeterminate system; that is, the total number of equations, including constitutive
ones like (3.5.26b), will be smaller than the number of unknowns involved. Such an
indeterminacy [what Kilmister and Reeve (1966, p. 215) call ‘‘failure’’ of Lagrange’s
equations] can be easily removed by relaxing the system’s constraints, and thus
generating the hitherto missing equations (see also ‘‘principle of relaxation’’ in
}3.7). Similar ‘‘failures’’ would appear if one used minimal quasi velocities to
embed all nonholonomic constraints (see also Rosenberg, 1977, pp. 152–157).

(vii) We have presented the four basic types of equations of motion: Routh–Voss,
Maggi, Hamel, and Appell. They can be classified as follows:

Kinetic energy-based equations of motion

Holonomic variables: Routh-Voss (coupled)

Maggi (uncoupled: kinetic, kinetostatic)

Nonholonomic variables: Hamel (uncoupled: kinetic, kinetostatic)

Acceleration-based equations of motion

Holonomic variables: Appell (coupled)

Nonholonomic variables: Appell (uncoupled: kinetic, kinetostatic)

Additional special cases and/or combinations of the above—for example, equations
of Ferrers, Hadamard, Chaplygin, Voronets, et al.—are presented in }3.8.
� From all the equations of constrained motion given earlier, only those by Hamel

(and their special cases—see }3.8), through their �-proportional terms (recall
Hamel’s formulation of Frobenius’ theorem, }2.12), can distinguish between genu-
inely nonholonomic Pfaffian constraints and holonomic ones disguised in Pfaffian/
velocity form. All other types, that is the equations of Routh–Voss, Maggi, Appell
(and their special cases—see }3.8), hold unchanged in form whether their Pfaffian
constraints are holonomic or nonholonomic; that is, those equations cannot detect
nonholonomicity, only Hamel’s equations can do that.
� On the other hand, only Appell’s equations preserve their form in both holo-

nomic and nonholonomic variables; and, in the kinetic ones, the nonholonomic con-
straints can be enforced in the Appellian function right from the start.

(viii) The terms kinetic and kinetostatic, in the particular sense used here (brought
to mainstream dynamics by Heun and his students, in the early 20th century), and
observed by some of the best contemporary textbooks on engineering dynamics, for
example, Butenin et al. (1985, vol. 2, chap. 16, pp. 330–339), Loitsianskii and Lur’e
(1983, vol. 2, chap. 28, pp. 345–384), Ziegler (1965, vol. 2, pp. 146–152), are not well
known among English language authors, and so one should be careful in comparing
various references.

(ix) Finally, we would like to state that we are not partial to any particular set of
equations of motion; all have advantages and disadvantages; all are worth learning!

All such conceivable equations (whose combinations and special cases are practi-
cally endless; see also }3.8) flow out of the differential variational principles of
analytical mechanics; that is, the principles of Lagrange and of relaxation of the
constraints, in their various forms (see also }3.6 and }3.7). These principles, being
invariant, constitute the sole physical and mathematical glue that holds all these
(coordinate and constraint-dependent) equations of motion together—and they keep
reminding us that, in spite of appearances, there is only one (classical) mechanics!
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Geometrical Interpretation of the Uncoupling of the
Equations of Motion into Kinetic and Kinetostatic

The Routh–Voss equations,

Ek � d=dtð@T=@ _qqkÞ � @T=@qk ¼ Qk þ
X

�DaDk; ð3:5:27aÞ

represent an equation among (covariant) components of vectors at a point (q) in
configuration space, or a point ðt; qÞ in event space. Now, we recall from }2.11, eq.
(2.11.19a ff.), that the n� m vectors AI

T ¼ ðA1I ; . . . ;AnIÞ span, at that point, the
null, or virtual, hyperplane (or affine space) NI � V , of the constraint matrix
AD ¼ ðaDkÞ; while the m vectors AD

T ¼ ðA1D; . . . ;AnDÞ span its orthogonal comple-
ment, the range, or constraint, hyperplane (or affine space) Cm. Therefore, multi-
plying (3.5.27a) with AkI ðAkDÞ and then summing over k, from 1 to n, means
projecting that equation onto the local virtual (constraint) space; and since the con-
straint reactions Rk ¼

P
�DaDk are perpendicular to the virtual space, they disap-

pear from the kinetic Maggi equations. Indeed, we have, successively,

ðiÞ
X

AkIEk ¼
X

AkIQk þ
XX

�DaDkAkI

¼
X

AkIQk þ
X

�D �DI ¼
X

AkIQk þ 0;

that is, X
AkIEk ¼

X
AkIQk or II ¼ YI ; ð3:5:27bÞ

ðiiÞ
X

AkD 0Ek ¼
X

AkD 0Qk þ
XX

�DaDkAkD 0

¼
X

AkD 0Qk þ
X

�D �DD 0 ¼
X

AkD 0Qk þ �D 0 ;

that is, X
AkDEk ¼

X
AkDQk þ �D or ID ¼ YD þ �D: ð3:5:27cÞ

Tensorial Treatment

(Kinetic complement of comments made at the end of }2.11; may be omitted in a first
reading.) In the language of tensors (whose general indicial notation begins to show
its true simplicity and power here), the II ; YI ; LI ¼ 0 ðID;YD;LD ¼ �DÞ are covar-
iant components of the corresponding system vectors along the contravariant basis
AIðADÞ, which is dual to the earlier basis AIðADÞ. Dotting the vectorial Routh–Voss
equations [fig. 3.1(a)]

E ¼ Q þ R; ð3:5:28aÞ
where (with summation convention) R ¼ RkE

k ¼ ð�D aDkÞEk ¼ �DAD (i.e., R is per-
pendicular to the virtual local plane) with AI ¼ Ak

IEk—that is, projecting it onto the
virtual local plane — yields

E �AI ¼ Q �AI þ R �AI ; ð3:5:28bÞ
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or, since R �AI ¼ �DðAD
�AIÞ ¼ �D �DI ¼ 0, finally E �AI ¼ Q �AI ,

i:e:; Ak
IEk ¼ Ak

IQk ðkinetic MaggiÞ; or II ¼ YI ; ð3:5:28cÞ

while dotting them with AD ¼ Ak
DEk—that is, projecting it onto the constraint local

plane—yields

E �AD ¼ Q �AD þ R �AD; ð3:5:28dÞ

or, since R �AD ¼ �D 0 ðAD 0
�ADÞ ¼ �D 0 �D

0
D ¼ �D, finally

Ak
DEk ¼ Ak

DQk þ �D ðkinetostatic MaggiÞ; or ID ¼ YD þ �D: ð3:5:28eÞ

For the planar mathematical pendulum of length l, mass m, and string tension S
[fig. 3.1(b)], AI ¼ @r=@� ¼ along tangent, AD ¼ @r=@r ¼ along normal, and so
(3.5.28b, d) become

E �AI ¼ Q �AI : mlðd2�=dt2Þ ¼ �mg sin� ðkinetic Maggi eq:Þ;
ð3:5:28fÞ

E �AD ¼ Q �AD þ R �AD: mlðd�=dtÞ2 ¼ �mg cos�þ S ðkinetostatic Maggi eq:Þ:
ð3:5:28gÞ

These geometrical considerations demonstrate the importance of the method of pro-
jections of Maggi, over and above that of the Maggi equations. His method can be
applied to any kind of multiplier-containing (mixed) equations.

Example 3.5.6 Lagrange’s Equations (Williamson and Tarleton, 1900, pp. 437–
438). Let us consider a scleronomic system described by the Lagrangean equations

d=dtð@T=@vkÞ � @T=@qk ¼ Qk ðk ¼ 1; . . . ; nÞ: ðaÞ
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Figure 3.1 (a) Geometrical interpretation of uncoupling of equations of motion (‘‘Method

of projections’’ of Maggi); and (b) its application to the planar mathematical pendulum.



Now, the change of the system momentum pk � @T=@vk during an elementary time
interval dt is ðdpk=dtÞdt, and this, according to (a), equals Qk dtþ ð@T=@qkÞ dt.
Since the system is scleronomic, @T=@qk ¼ quadratic homogeneous function of the
vk’s (see also }3.9), and therefore if the system is at rest, it vanishes. Hence, the result:
The elementary change of a typical component of the system momentum consists of two
parts: one due to the corresponding impressed force, and one due to the (possible)
previous motion.

Problem 3.5.2 Lagrange’s Equations: 1 DOF. Let us consider the most general
holonomic and rheonomic 1 DOF system; that is, n ¼ 1 and m ¼ 0, with inertial
(double) kinetic energy

2T ¼ Aðt; qÞ _qq2 þ 2Bðt; qÞ _qqþ Cðt; qÞ; ðA;C 
 0; alwaysÞ ðaÞ

and hence Lagrangean (negative) inertial force

EqðTÞ � ð@T=@ _qqÞ:� @T=@q
¼ ð1=2Þ 2A €qqþ ð@A=@qÞ _qq2 þ 2ð@A=@tÞ _qqþ 2ð@B=@tÞ � @C=@q� 	

: ðbÞ

(i) Show that the new Lagrangean coordinate x, defined by

x �
ð
Aðt; qÞ½ �1=2 dq ¼ xðt; qÞ , q ¼ qðt;xÞ; ðcÞ

reduces 2T to

2T ¼ _xx2 þ 2bðx; tÞ _xxþ cðx; tÞ; ðdÞ

where

bðt;xÞ � A1=2ðB=Aþ @q=@tÞ
n o

evaluated at q¼qðt;xÞ
; ðeÞ

cðt; xÞ � Að@q=@tÞ2 þ 2Bð@q=@tÞ þ C
n o

evaluated at q¼qðt;xÞ
; ðfÞ

and generates the following (negative) Lagrangean inertial force:

ExðTÞ � ð@T=@ _xxÞ: � @T=@x ¼ d2x=dt2 þ @b=@t� ð1=2Þð@c=@xÞ; ðgÞ

that is, no ðdx=dtÞ-proportional (i.e., damping/friction) terms. Such coordinate trans-
formations may prove useful in nonlinear oscillation problems.

(ii) Show that in the scleronomic case, i.e., when B, C � 0 and hence 2T ¼ AðqÞ _qq2,
the inertia forces (b) and (g) reduce, respectively, to

Aðd2q=dt2Þ þ ð1=2ÞðdA=dqÞðdq=dtÞ2 and d2x=dt2: ðhÞ

Problem 3.5.3 Lagrange’s Equations: 1 DOF. Let us consider a 1 DOF system
with kinetic and potential energies

2T ¼ AðqÞðdq=dtÞ2 and V ¼ VðqÞ; ðaÞ
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respectively, capable of oscillating about its equilibrium position q ¼ 0. Show that
the period of its small amplitude (i.e., linearized, or harmonic) vibration equals [with
ð. . .Þ 0 � dð. . .Þ=dq]

2�½Að0Þ=V 00ð0Þ�1=2: ðbÞ

HINT

Here, Að0Þ > 0, Vð0Þ ¼ 0, V 0ð0Þ ¼ 0, V 00ð0Þ > 0; and, as shown in }3.9 ff.,

Q ¼ �@V=@q ¼ �dV=dq � �V 0:
Expand T and V à la Taylor about q ¼ 0, and keep only up to quadratic terms in q
and _qq, etc.

Problem 3.5.4 Lagrange’s Equation: 1 DOF. Continuing from the preceding
problem, show that if q ¼ qo is an equilibrium position, instead of q ¼ 0, then (b)
is replaced by

2�½AðqoÞ=V 00ðqoÞ�1=2: ðaÞ

Problem 3.5.5 Lagrange’s Equations: Pendulum of Varying Length. Show that
the planar oscillations of a mathematical pendulum of varying, or variable, length
l ¼ lðtÞ ¼ given function of time, on a vertical plane, are governed by the (variable
coefficient) equation

ðl2 _��Þ:þ g l sin� ¼ 0 ) d2�=dt2 þ 2ð _ll=lÞðd�=dtÞ þ ðg=lÞ sin � ¼ 0; ðaÞ
where � ¼ angle of pendulum string with vertical.

For the treatment of special cases, see for example, Lamb (1943, pp. 198–199).

Example 3.5.7 Lagrange’s Equations: Planar Double Pendulum; Work of
Impressed Forces. Let us consider a double mathematical pendulum in vertical
plane motion, under gravity [fig. 3.2(a)]. Below we calculate the components of
the system impressed force by several methods.
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Figure 3.2 (a–c) Double planar mathematical pendulum, under gravity;

calculation of impressed system forces.



(i) From the Qk-definitions (}3.4). Here, with q1 ¼ �1, q2 ¼ �2 and some obvious
notations, we have

r1 ¼ ðl1 cos�1; l1 sin�1; 0Þ; r2 ¼ ðl1 cos�1 þ l2 cos�2; l1 sin�1 þ l2 sin�2; 0Þ; ðaÞ
F1 ¼ ðm1g; 0; 0Þ; F2 ¼ ðm2g; 0; 0Þ; ðbÞ

and, therefore, we obtain

Q1 �SdF � ð@r=@q1Þ ¼ F1 � ð@r1=@q1Þ þ F2 � ð@r2=@q1Þ
¼ � � � ¼ �m1 gl1 sin�1 �m2g l1 sin�1 ¼ �ðm1 þm2Þgl1 sin�1; ðcÞ

Q2 �SdF � ð@r=@q2Þ ¼ F1 � ð@r1=@q2Þ þ F2 � ð@r2=@q2Þ
¼ � � � ¼ �m2g l2 sin�2: ðdÞ

(ii) Directly from virtual work. Let us find Q2; that is, � 0W for ��1 ¼ 0 and
��2 6¼ 0: ð� 0WÞ2 � Q2 ��2. Referring to fig. 3.2(b), we have

ð� 0WÞ2 ¼ ðm2gÞ �ðl2 cos�2Þ ¼ �m2g l2 sin�2 ��2 ) Q2 ¼ �m2g l2 sin�2: ðeÞ

Similarly, to find Q1 — that is, � 0W for ��1 6¼ 0 and ��2 ¼ 0: ð� 0WÞ1 � Q1 ��1,
referring to fig. 3.2(c), we find

ð� 0WÞ1 ¼ ðm1gÞ �ðl1 cos�1Þ þ ðm2gÞ �ðl1 cos�1Þ ¼ ðm1 þ m2Þg �ðl1 cos�1Þ
¼ �ðm1 þm2Þg l1 sin �1 ��1 ) Q1 ¼ �ðm1 þm2Þg l1 sin�1: ðfÞ

(iii) From potential energy (see also } 3.9). Here, the total potential energy of
gravity (! impressed forces), V ¼ Vð�1; �2Þ, is

V ¼ �ðm1gÞðl1 cos�1Þ � ðm2gÞðl1 cos�1 þ l2 cos�2Þ
¼ �ðm1 þm2Þg l1 cos�1 �m2g l2 cos�2; ðgÞ

and since � 0W ¼ ��V , we obtain

Q1 ¼ �@V=@�1 ¼ �ðm1 þm2Þg l1 sin�1; Q2 ¼ �@V=@�2 ¼ �m2g l2 sin�2:

ðh; iÞ

REMARK

Had we chosen as system positional coordinates (fig. 3.3)

then (g) would assume the form

V ¼ Vð�1; �2Þ ¼ �ðm1 þm2Þg l1 cos �1 � m2g l2 cos ð�1 þ �2Þ; ðkÞ
and the corresponding Lagrangean forces would be

Q1 ¼ �@V=@�1 ¼ �ðm1 þm2Þg l1 sin �1 � m2g l2 sin ð�1 þ �2Þ; ðlÞ
Q2 ¼ �@V=@�2 ¼ �m2g l2 sinð�1 þ �2Þ: ðmÞ
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q1 = θ1 ≡ φ1 and q2 = θ2 ≡ φ2 − φ1 = φ2 − θ1, (j)



Example 3.5.8 Lagrange’s Equations: Planar Double Pendulum; Derivation of
Equations of Motion. Continuing from the preceding example (and its figures),
let us first calculate the kinetic energy of the pendulum. We find, successively,

x1 ¼ l1 cos�1 ) _xx1 ¼ �l1 _��1 sin�1; ðaÞ
y1 ¼ l1 sin �1 ) _yy1 ¼ l1 _��1 cos�1; ðbÞ
x2 ¼ l1 cos�1 þ l2 cos�2 ) _xx2 ¼ �l1 _��1 sin�1 � l2 _��2 sin�2; ðcÞ
y2 ¼ l1 sin �1 þ l2 sin�2 ) _yy2 ¼ l1 _��1 cos�1 þ l2 _��2 cos�2; ðdÞ
v1

2 ¼ ð _xx1Þ2 þ ð _yy1Þ2 ¼ � � � ¼ l1
2ð _��1Þ2; ðeÞ

v2
2 ¼ ð _xx2Þ2 þ ð _yy2Þ2 ¼ � � � ¼ l1

2ð _��1Þ2 þ 2l1l2 cosð�2 � �1Þ _��1 _��2 þ l2
2ð _��2Þ2; ðfÞ

2T ¼ m1v1
2 þ m2v2

2

¼ � � � ¼ ðm1 þm2Þl12ð _��1Þ2 þ 2m2l1l2 cosð�2 � �1Þ _��1 _��2 þm2l2
2ð _��2Þ2; ðgÞ

and by the preceding example,

Q1 ¼ �ðm1 þm2Þg l1 sin�1; Q2 ¼ �m2g l2 sin�2: ðhÞ

From the above, we obtain

@T=@ _��1 ¼ ðm1 þm2Þl12 _��1 þm2l1l2 cosð�2 � �1Þ _��2;
ð@T=@ _��1Þ: ¼ ðm1 þ m2Þl12 €��1

þm2l1l2 cosð�2 � �1Þ €��2 �m2l1l2 sinð�2 � �1Þð _��2 � _��1Þ _��2; ðiÞ

@T=@�1 ¼ m2l1l2 sinð�2 � �1Þ _��1 _��2: ðjÞ
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Figure 3.3 Double planar mathematical pendulum under gravity;

alternative coordinates.



Therefore, Lagrange’s equation for q1 ¼ �1: ð@T=@ _��1Þ: � @T=@�1 ¼ Q1, becomes
after some simple algebra,

ðm1 þm2Þl12ðd 2�1=dt
2Þ þm2l1l2 cosð�2 � �1Þðd 2�2=dt

2Þ
�m2l1l2 sinð�2 � �1Þðd�2=dtÞ2 þ ðm1 þ m2Þg l1 sin�1 ¼ 0: ðkÞ

Similarly, we find Lagrange’s equation for q2 ¼ �2:

m2l2
2ðd 2�2=dt

2Þ þm2l1l2 cosð�2 � �1Þðd 2�1=dt
2Þ

þm2l1l2 sinð�2 � �1Þðd�1=dtÞ2 þm2g l2 sin�2 ¼ 0: ðlÞ

The above constitute a set of two coupled nonlinear second-order equations for
�1ðtÞ and �2ðtÞ.

Constraints

(i) Assume, next, that we impose on our system the constraint

that is, we restrict the upper half OP1 to remain vertical, so that the double pendulum
reduces to a simple pendulum P1P2 oscillating about the fixed point P1.

�1: �1 ¼ m2l2
�
cos�2ðd 2�2=dt

2Þ � sin�2ðd�2=dtÞ2
	 ðkinetostaticÞ; ðnÞ

�2: d 2�2=dt
2 þ ðg=l2Þ sin�2 ¼ 0 ðkineticÞ: ðoÞ

readily integrates, in well-known elementary ways, to (the energy equation)

ð _��2Þ2 ¼ ð _��oÞ2 � ð2g=l2Þð1� cos�2Þ; ðpÞ

Finally, since

� 0WR ¼ ½�1ð@f1=@�1Þ� ��1 � R1 ��1

¼ ð�1l1 cos�1Þ ��1 ¼ �1 �ðl1 sin�1Þ ¼ �1 �y1 ð¼ 0Þ; ðrÞ

the multiplier represents the (variable) horizontal force of reaction needed to preserve
the constraint (m). [Other forms of (m) will result in different, but physically equiva-
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f1 ≡ y1 = l1 sinφ1 = 0 [⇒ φ1(t) = 0 ⇒ δφ1 = 0]; (m)

in which case, (n) yields the constraint reaction in terms of the angle φ2 = φ2(t) and its
initial conditions

λ1 = · · · = m2[(2 − 3 cosφ2)g− l2(φ̇o)
2]sinφ2 = λ1(t;φo, φ̇o). (q)

lent, forms of the multiplier. See also §3.7: Relaxation of Constraints.]

Since ∂f1/∂φ1 = l1 cosφ1 = l1 and ∂f1/∂φ2 = 0 [⇒ δf1 = (l1 cosφ1)δφ1 + (0)δφ2 =
(l1)δφ1 + (0)δφ2], the equations of motion in this case are (k) and (l), but with the terms
λ1l1 cosφ1 = λ1l1 and and λ1 · 0 = 0 (where λ1 = multiplier corresponding to the con-
straint δf1 = 0) added, respectively, to their right sides; that is, in general, it is not enough
to simply set in these two equations φ1 = 0 (⇒ φ̇1 = 0, φ̈1 = 0)! Indeed, then the
equations of the (m)-constrained pendulum motion decouple to the Routh–Voss equations:

With the initial conditions at, say, t = 0: φ2(0) ≡ φo = 0 and φ̇2(0) ≡ φ̇o, equation (o)



(ii) Similarly, if �2 acquires a prescribed motion, say �2 ¼ f ðtÞ ¼ known
function of time, then, since in that case ��2 ¼ �f ðtÞ ¼ 0 ½¼ ð0Þ ��1 þ ð1Þ ��2�, we
must add a term �2 � 0 ¼ 0 to the right side of the �1-equation, and a term �2 � 1
to the right side of the �2-equation [where �2 ¼ multiplier corresponding to the
constraint f2 � �2 � f ðtÞ ¼ 0) �f2 ¼ 0]. The rest of the calculations are left to the
reader.

Problem 3.5.6 Constrained Double Pendulum. Continuing from the preceding
example, assume that we impose on our pendulum the constraint

f2 � y2 ¼ l1 sin�1 þ l2 sin�2 ¼ 0: ðaÞ

(i) Show that in this case, and for the special simplifying choice l1 ¼ l2 �

ðm1 þm2Þl 2ðd 2�1=dt
2Þ �m2l

2 cosð2�1Þðd 2�1=dt
2Þ þm2l

2 sinð2�1Þðd�1=dtÞ2
þ ðm1 þm2Þg l sin�1 ¼ �1l cos�1; ðbÞ

�m2l
2ðd 2�1=dt

2Þ þm2l
2 cosð2�1Þðd 2�1=dt

2Þ �m2l
2 sinð2�1Þðd�1=dtÞ2

�m2g l sin�1 ¼ �1l cos�1: ðcÞ

�1 ¼ ðm1l=2Þð1= cos�1Þðd 2�1=dt
2Þ þ ðm1g=2Þ tan�1: ðdÞ

Interpret the multiplier �1 physically.

Example 3.5.9 Small (Linearized) Oscillations of Double Pendulum. Continuing
from the preceding example, let us study the small (linearized) amplitude/velocity/
acceleration oscillatory motions of our planar double mathematical pendulum
about its equilibrium configuration �1 ¼ 0; �2 ¼ 0.

There are two ways to proceed. Either (i) we keep up to quadratic terms in �1; �2
and their derivatives in T and V (or up to linear ones in the Q’s) so that the
corresponding Lagrangean equations end up linear in these functions; or (ii) we
directly linearize the earlier-found equations of motion (for a more general treatment
of linearized motions, see }3.10).

Let us begin with the first way; it is not hard to show that the earlier T ; V ðQ1;2Þ
approximate to the homogeneous quadratic (linear) forms:

2T ¼ ðm1 þm2Þl12ð _��1Þ2 þ 2m2l1l2 _��1
_��2 þm2l2

2ð _��2Þ2; ðaÞ
2V ¼ ðm1 þm2Þg l1�12 þm2g l2�2

2 þ constant terms; ðbÞ
Q1 ¼ �ðm1 þm2Þg l1�1; Q2 ¼ �m2g l2�2: ðcÞ
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l [⇒ sinφ1 + sinφ2 = 0 ⇒ φ1 + φ2 = 0], the equations of motion reduce to

(ii) From the above, deduce that [e.g. by adding (b) and (c) etc.]:

(iii) From the above, deduce that [e.g. by subtracting (b) and (c) from each other etc.]:

(m1+4m2 sin2φ1)(d
2φ1/dt

2)+2m2 sin(2φ1)(dφ1/dt)
2+(m1+2m2)(g/l) sin φ1 = 0; (e)

i.e., a single pendulum-like, reactionless (kinetic) and nonliner equation.



Then, with L � T �V ¼ Lagrangean of the system, we easily obtain

@L=@ _��1 ¼ ðm1 þm2Þl12 _��1 þm2l1l2 _��2; ðdÞ
ð@L=@ _��1Þ: ¼ ðm1 þm2Þl12 €��1 þm2l1l2 €��2; ðeÞ
@L=@�1 ¼ �ðm1 þm2Þg l1�1 ð¼ Q1Þ; ðfÞ
@L=@ _��2 ¼ m2l1l2 _��1 þm2l2

2 _��2; ðgÞ
ð@L=@ _��2Þ: ¼ m2l1l2 €��1 þm2l2

2 €��2; ðhÞ
@L=@�2 ¼ �m2g l2�2 ð¼ Q1Þ: ðiÞ

Therefore, Lagrange’s linearized (but still coupled!) equations are

ðm1 þm2Þl1ðd 2�1=dt
2Þ þm2l2ðd 2�2=dt

2Þ þ ðm1 þm2Þg�1 ¼ 0; ðjÞ
l1ðd 2�1=dt

2Þ þ l2ðd 2�2=dt
2Þ þ g�2 ¼ 0: ðkÞ

The reader can verify that (j, k) result by direct linearization of (k, l) of the preceding
example, respectively.

Solution of System of Equations (j, k)

As the theory of differential equations/linear vibration teaches us, the general solu-
tion of this homogeneous system is a linear combination, or superposition, of the
following harmonic motions (or modes):

�1 ¼ A sinð!tþ "Þ and �2 ¼ B sinð!tþ "Þ; ðlÞ

where A,B ¼ mode amplitudes, ! ¼ mode frequency, and " ¼ mode phase. Substitu-
ting (l) into (j, k), we are readily led to the algebraic system for the mode amplitudes:

½ðm1 þm2Þðg� l1!
2Þ�Aþ ð�m2l2!

2ÞB ¼ 0; ðmÞ

ð�l1!2ÞAþ ðg� l2!
2ÞB ¼ 0: ðnÞ

The requirement for nontrivial A and B leads, in well-known ways, to the determi-

ðm1 þm2Þðg� l1!
2Þ �m2l2!

2

�l1!2 g� l2!
2












 ¼ 0; ðoÞ

which, when expanded, becomes

ðm1l1l2Þ!4 � ½ðm1 þm2Þðl1 þ l2Þg�!2 þ ðm1 þ m2Þg2 ¼ 0: ðpÞ

To simplify the algebra we, henceforth, assume that m1 ¼ m2 � m and l1 ¼ l2 � l.
Then (p) reduces to

!4 � 4ðg=lÞ!2 þ 2ðg=lÞ2 ¼ 0; ðqÞ
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nantal (secular) equation



and its positive roots can be easily shown to be

!1 ¼ f½2� ð2Þ1=2�ðg=lÞg1=2 ðlower frequencyÞ; ðr1Þ
!2 ¼ f½2þ ð2Þ1=2�ðg=lÞg1=2 ð> !1; higher frequencyÞ: ðr2Þ

For ! ¼ !1; !2, the amplitude ratios

 � B=A ¼ ½l1!2=ðg� l2!
2Þ� ¼ !2=½ðg=lÞ � !2� ½¼ ð!2Þ� ðsÞ

[obtained from (n), for l1 ¼ l2] are found to be

1 ¼ B1=A1 ¼ ½2� ð2Þ1=2�=½ð2Þ1=2 � 1� ¼ ð2Þ1=2; ðs1Þ
2 ¼ B2=A2 ¼ �½2þ ð2Þ1=2�=½1þ ð2Þ1=2� ¼ �ð2Þ1=2; ðs2Þ

that is, B1 ¼ ð2Þ1=2A1 and B2 ¼ �ð2Þ1=2A2, for any initial conditions, and therefore
the general solution of (j, k) is

�1 ¼ �1;1 þ �1;2; �2 ¼ �2;1 þ �2;2; ðtÞ

where

�1;1 ¼ A1 sinð!1tþ "1Þ; �2;1 ¼ 1A1 sinð!1tþ "1Þ; ðt1Þ
�1;2 ¼ A2 sinð!2tþ "2Þ; �2;2 ¼ 2A2 sinð!2tþ "2Þ: ðt2Þ

The above show that, for each frequency !kðk ¼ 1; 2Þ, the ratio of the correspond-
ing mode amplitudes �1;k and �2;k is constant; that is, independent of the initial
conditions

�2;1=�1;1 ¼ 1 ¼ ð2Þ1=2 and �2;2=�1;2 ¼ 2 ¼ �ð2Þ1=2: ðt3Þ

The remaining four constants A1; "1, and A2; "2 are determined from the initial
conditions.

For example, if at t ¼ 0 we choose �1 ¼ 0, _��1 ¼ 0, and �2 ¼ �o, _��2 ¼ 0, then,
since

_��1 ¼ A1!1 cosð!1tþ "1Þ þ A2!2 cosð!2tþ "2Þ; ðu1Þ
_��2 ¼ ð2Þ1=2A1!1 cosð!1tþ "1Þ � ð2Þ1=2A2!2 cosð!2tþ "2Þ; ðu2Þ

eqs. (t–t2), the above, and the initial conditions lead to the following algebraic
system:

�1: 0 ¼ A1 sin "1 þA2 sin "2; ðv1Þ
�2: �o ¼ ð2Þ1=2A1 sin "1 � ð2Þ1=2A2 sin "2; ðv2Þ
_��1: 0 ¼ A1!1 cos "1 þ A2!2 cos "2; ðv3Þ
_��2: 0 ¼ ð2Þ1=2A1!1 cos "1 � ð2Þ1=2A2!2 cos "2: ðv4Þ

From the last two equations, we readily conclude that cos "1 ¼ cos "2 ¼
0 ) "1 ¼ "2 ¼ �=2; and so the first two reduce to A1 þ A2 ¼ 0 and A1 � A2 ¼
½ð2Þ1=2=2��o, and from these we easily find A1 ¼ ½ð2Þ1=2=4��o and A2 ¼
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�½ð2Þ1=2=4��o. Hence, the particular solution of our system (j, k), satisfying the
earlier chosen initial conditions, is

�1 ¼ ½�oð2Þ1=2=4�½cosð!1tÞ � cosð!2tÞ�; ðw1Þ
�2 ¼ ð�o=2Þ½cosð!1tÞ þ cosð!2tÞ�; ðw2Þ

where !1; !2 are given by (r1, 2).
The relative modal contributions for each frequency are shown in fig. 3.4(a, b).

Problem 3.5.7 Double Pendulum; Noninertial Coordinates. Consider the double
pendulum of fig. 3.3.

(i) Show that its (Lagrangean) equations of motion in the angles �1ð� �1Þ and �2,
under gravity, are

½m1l1
2 þm2ðl12 þ 2l1l2 cos �2 þ l2

2Þ�ðd 2�1=dt
2Þ þm2l2ðl1 cos �2 þ l2Þðd 2�2=dt

2Þ
� ðm2l1l2 sin �2Þðd�2=dtÞ2 � ð2m2l1l2 sin �2Þðd�1=dtÞðd�2=dtÞ
þ ðm1 þm2Þl1g sin �1 þm2l2g sinð�1 þ �2Þ ¼ 0; ðaÞ

ðm2l2
2Þðd 2�2=dt

2Þ þm2l2ðl1 cos �2 þ l2Þðd 2�1=dt
2Þ

þ ðm2l1l2 sin �2Þðd�1=dtÞ2 þm2l2g sinð�1 þ �2Þ ¼ 0: ðbÞ
(ii) Obtain its equations of small motion; that is, linearize (a, b).
(iii) What do (a, b) reduce to for l1 ¼ 0, or l2 ¼ 0, before and after their linear-

ization?

Problem 3.5.8 Double Physical Pendulum. A rigid body I of mass M can rotate
freely about a fixed and smooth vertical axis. A second rigid body II of mass m
can rotate freely about a second smooth and also vertical axis that is fixed on
body I (fig. 3.5).

(i) Show that the (double) kinetic energy of this double planar ‘‘physical’’ pendu-
lum is

2T ¼ A _��2 þ 2G _�� _  þ B _  2; ðaÞ
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Figure 3.4 Angular modes of planar double pendulum, for its two frequencies: (a) lower

frequency, (b) higher frequency. The amplitudes of �1;1, �1;2 depend on the initial conditions.



where A �MK2 þma2, B � mðk2 þ b2Þ, G � mab cosð��  Þ ¼ mab cosð � �Þ �
mab cos� (definition of angle �); KðkÞ ¼ radius of gyration of IðIIÞ about O ðG 0Þ.

(ii) Show that, in this (force-free) case,

@T=@ _��þ @T=@ _  � p� þ p � total angular momentum about O-axis

¼ constant � c; ðbÞ

or

ðAþ GÞðd�=dtÞ þ ðBþ GÞðd =dtÞ ¼ c; ðb1Þ
and

2T ¼ E ðanother constantÞ: ðcÞ
(iii) Show that, with the help of � � ��  , eq. (b1) can be further transformed

to

ðAþ 2Gþ BÞðd =dtÞ ¼ c� ðAþ GÞðd�=dtÞ;
or

ðAþ 2Gþ BÞ½Aðd�=dtÞ þ Gðd =dtÞ� ¼ ðAþ GÞcþ ðAB� G2Þðd�=dtÞ: ðdÞ
(iv) With the help of this integral, show that the energy integral (c) can be

rewritten as

ðd�=dtÞ½Aðd�=dtÞ þ Gðd =dtÞ� þ cðd =dtÞ ¼ E;

or

ðd�=dtÞ2ðAB� G2Þ þ c2 ¼ ðAþ 2Gþ BÞE: ðeÞ
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Figure 3.5 Double and planar physical pendulum, moving on horizontal plane.



(v) Finally, and recalling the G-definition, show that (e) transforms to

ðd�=dtÞ2 ¼ ½ðAþ Bþ 2mab cos�ÞE � c2��½AB � ðmabÞ2 cos2 �� � f ð�Þ; ðfÞ
that is, the problem has been led to a quadrature.

For further discussion of this famous problem, and of its many variations, see, for
example (alphabetically): Marcolongo (1912, pp. 213–216), Schell (1880, pp. 549–
551), Thomson and Tait (1912, pp. 310, 324–325), Timoshenko and Young (1948,
pp. 209–211, 215–216, 249–250, 276–278, 312–314).

Problem 3.5.9 Double Physical Pendulum: Vertical Axes. Continuing from the
preceding problem (penduli axes through O and O 0 vertical), obtain its
Lagrangean equations of motion. What happens to these equations if the center of
mass of the entire system I þ II is at its maximum/minimum distance from O?
Assume that O; G; O 0 are collinear, and OG ¼ h.

HINT

Introduce the new angular variables q1 ¼ � and q2 ¼ � �  � � ð¼ ��Þ ¼
inclination of body II relative to I (positive counterclockwise). Then,
T ! Tð�; _��; _��Þ, and so on.

Problem 3.5.10 Double Physical Pendulum: Horizontal Axes. Consider the pre-
ceding double pendulum problem, but now with both axes through O and O 0

horizontal. In addition, assume that the mass center of body I ; G, lies in the plane
of the axes O and O 0, and OG ¼ h. Show that here T is the same, in form, as in
the previous vertical axes case, but the potential of gravity forces, V , equals
(exactly)

V ¼ �Mgh cos��mgða cos�þ b cos Þ þ constant; ðaÞ
and therefore the corresponding Lagrangean impressed forces are

Q� ¼ �@V=@� ¼ � � � and Q ¼ �@V=@ ¼ � � � : ðbÞ
Then write down Lagrange’s equations for q1 ¼ � and q2 ¼  .

Problem 3.5.11 Double Physical Pendulum: Horizontal Axes; Small Oscillations.
Continuing from the preceding problem (O and O 0 horizontal), show that for small
oscillations about the vertical equilibrium position �;  ¼ 0, linearization of the
exact equations leads to the coupled system

ðMhþmaÞ½Lðd 2�=dt2Þ þ g�� þmabðd 2 =dt2Þ ¼ 0;

aðd 2�=dt2Þ þ L 0ðd 2 =dt2Þ þ g ¼ 0; ðaÞ
where

L � ðMK2 þ ma2Þ=ðMhþmaÞ and L 0 � ðk2 þ b2Þ=b: ðbÞ
Interpret L and L 0 in termsof single pendulumquantities. Then, assumeas solutions
of (a)

� ¼ �o sinð!tþ "Þ and  ¼  o sinð!tþ "Þ; ðcÞ
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where �o;  o ¼ angular amplitudes, " ¼ initial phase, and ! ¼ frequency, and show
that the !2 are real, positive, and unequal, and are the roots of

ðO� LÞðO� L 0Þ ¼ ðma2bÞ=ðMhþmaÞ; where O � g=!2; ðdÞ
say O1 < O2; and thus conclude that

O1 < minðL;L 0Þ � maxðL;L 0Þ < O2: ðeÞ
Finally, show that

 o=�o ¼ a=ðO� L 0Þ ¼ � � � ; ðfÞ
and, therefore, (i) for the smaller ! ð! larger O ¼ O2Þ; � � > 0 (i.e., in the slower
mode, the angles have the same sign); while (ii) for the larger
! ð! smaller O ¼ O1Þ; � � < 0 (i.e., in the faster mode, the angles have opposite
signs).

[For a discussion of the historically famous case of the nonringing, or ‘‘silent’’, bell
of Köln (Cologne), Germany (1876; bellþ clapper¼ double pendulum), based on
(a), see, for example, Hamel ([1922(b)] 1912, 1st ed., pp. 514 ff.), Szabó (1977, pp.
89–90), Timoshenko and Young (1948, p. 278).]

Problem 3.5.12 General Form of Lagrange’s Equations for a 2 DOF System.
Consider a 2 DOF holonomic and scleronomic system; for example, a particle on
a fixed surface, or the previous double pendulum, with (double) kinetic energy

2T ¼ Aðdx=dtÞ2 þ 2Gðdx=dtÞðdy=dtÞ þ Bðdy=dtÞ2; ðaÞ
and such that � 0W ¼ X�xþ Y�y, where A;B;G;X ;Y , are functions of x; y.

(i) Show that its Lagrangean equations of motion in q1 ¼ x and q2 ¼ y are

Aðd 2x=dt2Þ þ Gðd 2y=dt2Þ þ ð1=2Þð@A=@xÞðdx=dtÞ2 þ ð@A=@yÞðdx=dtÞðdy=dtÞ
þ ½@G=@y� ð1=2Þð@B=@xÞ�ðdy=dtÞ2 ¼ X; ðbÞ

Bðd 2y=dt2Þ þ Gðd 2x=dt2Þ þ ð1=2Þð@B=@yÞðdy=dtÞ2 þ ð@B=@xÞðdx=dtÞðdy=dtÞ
þ ½@G=@x� ð1=2Þð@A=@yÞ�ðdx=dtÞ2 ¼ Y ; ðcÞ

and ponder over the geometrical/kinematical/inertial meaning and origin of each of
these terms.

(ii) Show that these equations linearize to the (still coupled) system:

Aoðd 2x=dt2Þ þ Goðd 2y=dt2Þ ¼ ð@X=@xÞo xþ ð@X=@yÞo y; ðdÞ

Boðd 2y=dt2Þ þ Goðd 2x=dt2Þ ¼ ð@Y=@xÞo xþ ð@Y=@yÞo y; ðeÞ
where ð. . .Þo � ð. . .Þ evaluated at x; y ¼ 0.

Example 3.5.10 Lagrange’s Equations, 2 DOF: Elastic Pendulum, or Swinging
Spring. Let us derive and discuss the equations of plane motion, under gravity,
of a pendulum consisting of a heavy particle (or bob) of mass m suspended by a
linearly elastic and massless spring of stiffness k (a positive constant) and
unstretched (or natural) length b (fig. 3.6). This is a holonomic and scleronomic
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two DOF system; that is, n ¼ 2, m ¼ 0. With Lagrangean coordinates as the polar
coordinates of the bob: q1 ¼ r, q1 ¼ �, its (double) kinetic energy is

2T ¼ mv2 ¼ mðds=dtÞ2 ¼ m½ð _rrÞ2 þ r2ð _��Þ2�; ðaÞ

while the virtual work of its impressed forces, gravity and spring force, equals

� 0W ¼ �kðr� bÞ �rþ ðmg cos�Þ �r� ðmg sin�Þðr ��Þ � Qr �rþQ� ��; ðbÞ

that is,

Qr ¼ �kðr� bÞ þmg cos�; Q� ¼ �mg r sin�: ðcÞ

Alternatively, the potential energy of the system is

V ¼ ð1=2Þkðr� bÞ2 �mg r cos� ¼ Vðr; �Þ; ðdÞ

and so the corresponding Lagrangean forces are Qr ¼ �@V=@r ¼ � � �, Q� ¼
�@V=@� ¼ � � �, equations (c). We also notice that for r > b: Qr;spring

� �kðr� bÞ < 0, as it should; and analogously for r < b. Lagrange’s equations,
then, are

ErðTÞ � Er ¼ Qr: ðm _rrÞ:�mrð _��Þ2 ¼ �kðr� bÞ þmg cos�; ðeÞ
E�ðTÞ � E� ¼ Q�: ðmr2 _��Þ: ¼ �mg r sin�; ðfÞ

or, after some simplifications (since r 6¼ 0),

d 2r=dt2 � rðd�=dtÞ2 ¼ �ðk=mÞðr� bÞ þ g cos�; ðgÞ
rðd 2�=dt2Þ þ 2ðdr=dtÞðd�=dtÞ ¼ �g sin�: ðhÞ

The general solution of this nonlinear and coupled system is unknown, and so we will
limit ourselves to some simple and physically motivated special solutions of it.

)3.5 EQUATIONS OF MOTION VIA LAGRANGE’S PRINCIPLE: GENERAL FORMS 441
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(i) Equilibrium solution: Setting all ð. . .Þ:-derivatives in (g, h) equal to zero, we
find [with ð. . .Þo � equilibrium value of ð. . .Þ]

0 ¼ �ðk=mÞðro � bÞ þ g cos�o; 0 ¼ �g sin�o; ðiÞ

and, from these algebraic equations, we readily obtain the equilibrium values

�o ¼ 0; ro � b ¼ mg=k � �: ð jÞ

Thus, in terms of the new variable

x � r� ro ¼ r� ðbþ �Þ ¼ r� ½bþ ðmg=kÞ� ¼ deviation from vertical equilibrium;

and with !r
2 � k=m, eqs. (g, h) can be, finally, rewritten as

€xx� ðro þ xÞð _��Þ2 þ gð1� cos�Þ þ !r
2x ¼ 0; ðkÞ

ðro þ xÞ €��þ 2 _xx _��þ g sin� ¼ 0: ðlÞ

(ii) Ordinary (or mathematical) pendulum solution; that is, r ¼ constant � R. In
this case, (g, h) become [since all forces here are impressed; and, contrary to (ex.
3.5.8: m ff.), no multipliers are involved]:

�Rð _��Þ2 ¼ �ðk=mÞðR� bÞ þ g cos�; ðmÞ
€��þ !�2 sin� ¼ 0; !�

2 � g=R; ðnÞ

and, from these, we get �ðtÞ ¼ �o ¼ 0 and R ¼ ro ¼ bþ ðmg=kÞ; that is, the pre-
vious equilibrium case.

(iii) Linearization of equations (g, h), (k, l). We readily obtain the uncoupled
system:

€rrþ !r
2r ¼ ðk=mÞbþ g

) €xxþ !r
2x ¼ 0 ) x ¼ A sinð!rtÞ þ B cosð!rtÞ; ðoÞ

g sin� ¼ 0 ) �ðtÞ ¼ 0 ðA;B: integration constantsÞ; ðpÞ

that is, a small oscillation of frequency !r about the vertical equilibrium r ¼ ro, or
x ¼ 0.

(iv) Nearly vertical oscillation; that is, � small. Then (g, h)/(k, l) reduce to the
coupled system:

€rrþ !r
2r ¼ ðk=mÞbþ g

) €xxþ !r
2x ¼ 0 ) x ¼ A sinð!rtÞ þ B cosð!rtÞ; ðq ¼ oÞ

r €��þ 2 _rr _��þ g� ¼ 0

) ðro þ xÞ €��þ 2 _xx _��þ g� ¼ 0 ) ð1þ "Þ €��þ 2 _"" _��þ !�2� ¼ 0; ðrÞ

where " ¼ "ðtÞ � x=ro (and !�
2 � g=ro).

Now, since x ¼ harmonic in time, equation (r) is a linear differential equation with
harmonically varying coefficients; or, as it is generally called, a parametrically excited
one [or rheo-linear ¼ rheonomicþ linear]. As the theory of these important ‘‘Hill/
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Floquet/Mathieu’’ equations shows, the solutions of (r) are stable; that is, � ¼
oscillatory and bounded, or not, depending on the values of

!�=!r � !; or !2 ¼ ðg=roÞ
�ðk=mÞ ¼ mg=rok ¼ gravity=elasticity: ðsÞ

Specifically, it can be shown that:

(i) If ! 6¼ N=2, or !2 6¼ N2=4 ðN ¼ 1; 2; 3; . . .), then both x and � remain
small as required by the linearization; but,

(ii) If ! � N=2, or !2 � N2=4 (¼ 1=4; 1; 9=4; . . .), then �!1, in spite of the
absence of external excitation; that is, then, the vertical x-oscillation, acting as
internal forcing, causes ever larger (nonlinear) angular oscillations; and since the
total energy of the system remains constant, this phenomenon [commonly known
as parametric, or internal, resonance] comes at the expense of the x-oscillation;
that is, energy flows from the vertical oscillation to the angular one, and (as
shown by experiments) back. But here, contrary to constant coefficient linearized
coupled systems (e.g., the earlier double pendulum), we do need to examine some
nonlinear version of the problem: either the exact equations (g, h)/(k, l), or some
weakly nonlinear system of them, and the linear but parametric equations (q, r).

[The case N ¼ 1 ) !r � !�, or mg � kro=4, is the most dangerous one,
because, as the ‘‘stability chart’’ of equation (r) shows, that is where the instability
region is at its widest; and that width is proportional to the amplitude of the ‘‘funda-
mental x-solution,’’ (q¼ o).]

For further details, see, for example, Nayfeh (1973, pp. 185–189, 214–216, 262–
264; and references cited there), Nayfeh and Mook (1979, pp. 369–370, 431–432),
Pfeiffer (1989, pp. 209–210); also Dysthe and Gudmestad (1975). For an extensive
treatment, see Starzhinskii (1977/1980, pp. 50–55; also pp. 59–75, 79–83, 95–98, 133–
135).

Problem 3.5.13 Elastic Pendulum. Continuing from the preceding example, let
us consider the ‘‘fundamental’’ solution, equations (q¼ o)

x ¼ A sinð!rtÞ þ B cosð!rtÞ ¼ xo cosð!rtþ �Þ;
" ¼ "ðtÞ � x=ro ¼ "o cosð!rtþ �Þ; ðaÞ

where A;B;xo; � ¼ integration constants. Next, and following standard methods of
perturbation theory, assume a solution of (r) in the form

� ¼ �o cosð!�tþ  Þ þ F1 � Fo þF1; ðbÞ
where F1 ¼ small relative to Fo. Then, insert these " and � solutions in (r) and,
after neglecting all terms containing products of "; "o with F1, and its ð. . .Þ:-deriva-
tives, bring it to the ordinary (i.e., constant coefficient) undamped and forced oscil-
lation form

€FF1 þ !�2F1 ¼ �½ð1þ "Þ€FFo þ 2" _FFo þ !�2Fo�
¼ �½" €FFo þ 2" _FFo� ½explain why�
¼ � � � ¼ fðt; !r; !f ; �;  ; "o; �oÞ
ðknown function; linear superposition of two harmonic excitations of

frequencies !r þ !� and !r � !�Þ ðcÞ
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Find the particular solution of this equation (nonhomogeneous part), and then
establish that:

(i) If !�=!r 6¼ 1=2, then both x and � remain small; but
(ii) If !�=!r � 1=2, then F1 (and therefore �) !1 [as in the (nonlinear) problem of

‘‘small denominators,’’ or ‘‘combination tones’’— see, e.g., Stoker (1950, pp. 112–
114); also }8.16, this volume].

Problem 3.5.14 Elastic Pendulum. Continuing from the last example, let us sub-
stitute into its exact equations (k, l) [instead of the preceding problem’s assumed
solution (b)]

x ¼ X þ�X; � ¼ Fþ�F; ðaÞ
where X and F are its following fundamental motion/solutions,

X ¼ XðtÞ ¼ xo cosð!rtþ �Þ; F ¼ FðtÞ ¼ 0; ðbÞ
and �XðtÞ; �FðtÞ are the small perturbations about that state, and keep only up to
linear terms in this small (neighboring) motion. Show that, then, we obtain the
uncoupled linear system:

ð�XÞ:: þ !r
2 �X ¼ 0 and ð1þ "Þð�FÞ::þ 2 _"" ð�FÞ:þ !�2 �F ¼ 0; ðcÞ

where " � X=ro; or, since j"j ¼ much smaller than 1,

ð�FÞ::þ 2 _"" ð�FÞ:þ !�2ð1� "Þ�F ¼ 0; ðdÞ
that is, the neighboring motion �FðtÞ depends on the fundamental one through
XðtÞ, or "ðtÞ. Solve the first of (c), insert its solution into (d), and then show that,
since the coefficients of both�F and ð�FÞ: have the same (parametric) frequency !r,
the resulting equation (d) can be led to a standard Mathieu equation; that is,

€yy þ PðtÞy ¼ 0; ðeÞ
where Pðtþ 2�=!rÞ ¼ PðtÞ, �� � y expð�"Þ, and P ¼ !�2ð1� "Þ � €"" � _""2.

Problem 3.5.15 Lagrange’s Equations: Cylindrical and Spherical Coordinates.
Show that the equations of motion of, say, a free particle P in cylindrical and
spherical coordinates, are (fig. 3.7) as follows:

(i) Cylindrical ðx ¼ r cos�; y ¼ r sin�; z ¼ z; vr
0 ¼ _rr; v�

0 ¼ r _��; vz
0 ¼ _zzÞ:

Radial: m½€rr� rð _��Þ2� ¼ Qr ð¼ Fr; mar
0 ¼ FrÞ; ðaÞ

Transverse: mðr2 _��Þ: ¼ Q� ð¼ rF�; ma�
0 ¼ F�Þ; ðbÞ

Vertical: m €zz ¼ Qz ð¼ Fz; maz
0 ¼ FzÞ; ðcÞ

where

� 0W ¼ ðFr;F�;FzÞ � ð�r; r ��; �zÞ ¼ Fr �rþ ðrF�Þ �� þ Fz �z

¼ Qr �rþQ� ��þ Qz �z; ðdÞ
F ¼ ðFr;F�;FzÞ ¼ total force on P.
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(ii) Spherical ½x ¼ ðR sin �Þ cos�; y ¼ ðR sin �Þ sin �; z ¼ R cos �; vR
0 ¼ _RR;

v�
0 ¼ R _��; v�

0 ¼ ðR sin �Þ _���:

Radial: m½ €RR� Rð _��Þ2 �R sin2 �ð _��Þ2� ¼ QR ð¼ FR; maR
0 ¼ FRÞ; ðeÞ

Transverse ð�-planeÞ: m½ðR2 _��Þ:� R2 sin � cos �ð _��Þ2� ¼ Q� ð¼ RF�; ma�
0 ¼ F�Þ; ðfÞ

Normal ðto �-planeÞ: mðR2 sin2 � _��Þ: ¼ Q� ð¼ R sin �F�; ma�
0 ¼ F�Þ; ðgÞ

where

� 0W ¼ ðFR; F�; F�Þ � ð�R; R ��; R sin � ��Þ
¼ ðFRÞ �Rþ ðRF�Þ ��þ ðR sin �F�Þ �� ¼ QR �RþQ� ��þQ� ��; ðhÞ

F ¼ ðFR; F�; F�Þ ¼ total force on P.

HINT

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2�; _xx ¼ � � � ; _yy ¼ � � � ; _zz ¼ � � � ; and so on.

Problem 3.5.16 Lagrange’s Equations: Particle on Sphere, or Spherical Pendulum.
Consider the motion of a heavy particle P of mass m on the inner part of a
smooth and stationary spherical surface of radius l, under (constant) gravity
(fig. 3.8).

Show that the Routh–Voss equations of this constrained system [constraint:
f1 � R� l ð¼ 0Þ; q1 ¼ R, q2 ¼ �, q3 ¼ �; n ¼ 3, m ¼ 1], with þOz taken vertically
downwards, are

R: ð _��Þ2 þ sin2 � ð _��Þ2 ¼ �ð1=lÞ½g cos � þ ð�=mÞð@f1=@RÞo�; ðaÞ
�: €��� sin � cos � ð _��Þ2 ¼ �ðg=lÞ sin �; ðbÞ
�: ðsin2 �Þ _�� ¼ constant � p; ðcÞ

½) ðl sin �Þ2 _�� ¼ l 2p � C; i.e., the horizontal projection of the motion follows
Kepler’s second law].
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Solving (b, c) we find the motion, and then substituting the results into (a) we
obtain the multiplier � ¼ �ðt; initial conditionsÞ. Show that � ¼ �S=l, where S ¼
sphere reaction on P (or string tension, in the pendulum case), and ð. . .Þo � ð. . .ÞR¼l.

On the analytical treatment of these nonlinear equations (including the stability of
special motions), there exists a large literature; see, for example (alphabetically):
Hamel (1949, pp. 262–264, 285, 691–692, 710–712), Lamb (1923, pp. 305–307),
Landau and Lifshitz (1960, pp. 33–34), MacMillan (1927, pp. 337–344), Müller and
Prange (1923, pp. 163–184), Pöschl (1949, pp. 46–49, 141–143), Synge and Griffith
(1959, pp. 335–342), Webster (1912, pp. 42–45, 48–55, 124–125); also Corben and
Stehle (1960, pp. 105–107), for an application of the perturbation method.

Problem 3.5.17 Lagrange’s Equations: Particle on Sphere, or Spherical Pendulum.
Continuing from the preceding problem:

(i) Show that its integrals of energy and angular momentum (about the Oz axis)
can be written, respectively, as

ð1=2Þml 2½ð _��Þ2 þ sin2 �ð _��Þ2� �mg l cos � ¼ constant � E; ðaÞ
ðsin2 �Þ _�� ¼ constant � p: ðbÞ

(ii) Show that eliminating _�� between (a, b) and then ð. . .Þ:-differentiating the
resulting equation, and so on, we recover the �-equation of the last problem.

Problem 3.5.18 Lagrange’s Equations: Particle on Sphere, or Spherical Pendu-
lum; Integration of the �-Equation. Continuing from the preceding problem:

(i) Show that its �- and �-equations combine to the �-only equation:

d 2�=dt2 � ðC2=l 4Þðcos �= sin3 �Þ þ ðg=lÞ sin � ¼ 0; ðaÞ
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x ¼ ðl sin �Þ cos�
y ¼ ðl sin �Þ sin �
z ¼ l cos �



where C ¼ ðl sin �Þ2 _�� ¼ constant. What is the physical meaning of the singularity, in
(a), for � ¼ 0?

(ii) By integrating (a), show that

t ¼
ð�
�o

sin � ½2h sin2 �� ðC 2=l 4Þ þ 2ðg=lÞ cos � sin2 ���1=2 d�: ðbÞ

HINT

The first integral of the differential equation €xx ¼ f ðxÞ is

ð1=2Þðdx=dtÞ2 þ VðxÞ ¼ constant � h; where VðxÞ ¼ �
ð
fðxÞ dx; ðcÞ

and from this we readily obtain

t ¼
ðx
xo¼xð0Þ

½2h� 2VðxÞ��1=2 dx: ðdÞ

Here, x ¼ �, and
fðxÞ ! fð�Þ ¼ ðC 2=l 4Þðcos �= sin3 �Þ � ðg=lÞ sin �; ðeÞ

so that Vð�Þ ¼ � Ð f ð�Þd� ¼ � � �.
(iii) Setting cos � ¼ z, and with the abbreviations

2h� ðC 2=l 4Þ � 
; �2ðg=lÞ � �; �2h � �; ðfÞ
reduces (b) to the elliptic integral

t ¼ �
ðz
zo

½
� �zþ �z2 þ �z3��1=2 dz; ðgÞ

which cannot be integrated by a combination of elementary functions. For further
details, see books on the asymptotic integration of ordinary differential equations,
elliptic functions, and so on.

Problem 3.5.19 Lagrange’s Equations: Particle on Sphere, or Spherical Pendu-
lum; Steady Motion. Continuing from the preceding problems, show that the
particular solution � ¼ �o (i.e., particle describes a horizontal circle), requires that

d�=dt ¼ C=r2 ¼ ðg=lÞ1=2ðcos �oÞ�1=2 ¼ constant � !o; ðaÞ
where C2 ¼ ðgl3 sin4 �oÞ= cos �o; that is, for every �o there exists a particular such
‘‘steady motion’’ of constant angular velocity !o; and, hence, a period

	o � 2�=!o ¼ 2�ðl=gÞ1=2ðcos �oÞ1=2

� 2�ðl=gÞ1=2; for small �o ðas for the plane pendulumÞ: ðbÞ

Problem 3.5.20 Lagrange’s Equations: Particle on Sphere, or Spherical Pendu-
lum; Stability of Steady Motion. Continuing from the preceding problems:

(i) By setting in the exact �-equation of the pendulum

�ðtÞ ¼ �o þ��ðtÞ � �o þ xðtÞ; d�ðtÞ=dt ¼ !o þ�½d�ðtÞ=dt� � !o þ yðtÞ; ðaÞ
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expanding à la Taylor, and keeping only up to first-degree terms in x; y and their
ð. . .Þ:-derivatives (i.e., considering small disturbances), and taking into account the
equations of the fundamental state �o, obtain the linear perturbation equations from
that state:

d 2x=dt2 þ ½ð1þ 2 cos2 �oÞ= sin4 �o�ðC 2=l 4Þ þ ðg=l Þ cos �o
� �

x ¼ 0: ðbÞ
Then, taking into account the C versus �o relation for that state (see preceding
problem), show that (b) simplifies to

d 2x=dt2 þ k2x ¼ 0; where k2 � ½ðg=l Þð1þ 3 cos2 �oÞ�
�
sin4 �o; ðcÞ

that is, a harmonic oscillation around the constant value �o with a period [recall (b)
of preceding problem]

	 0 ¼ 2�=k ¼ 2�ðl=gÞ1=2ðcos �oÞ1=2
h i.

ð1þ 3 cos2 �oÞ1=2

� 	o=ð1þ 3 cos2 �oÞ1=2: ðdÞ
Notice that, since �o ¼ 0, �=2 are excluded, we will have 	o=2 < 	 0 < 	o.

Such motions, where the linear perturbation equations around them are equations
with constant coefficients, we call, after Routh steady (for an extensive treatment,
see }8.5).

(ii) By carrying out a similar linearization of the exact �-equation,
_�� ¼ C=ðl sin �Þ2, around �o, show that (to the first degree in x)

y ¼ �½ð2C cos �oÞ=ðl 2 sin3 �oÞ�x ¼ �2½ðg=l Þðcos �oÞ= sin2 �o�1=2x; ðeÞ
that is, _�� oscillates just like x, but the presence of the minus sign shows that as �
increases _�� decreases, and vice versa.

For further details on the integration of the above equations, and the behavior of
the perturbed motion, for various values of �o, see, for example, Hamel ([1922(b)]
1912, 1st ed., pp. 106–108).

Example 3.5.11 Constrained Lagrange’s Equations ! Routh–Voss Equations. Let
us consider the spatial, and initially unconstrained, motion of a particle of mass
m in cylindrical coordinates q1 ¼ r, q2 ¼ �, q3 ¼ z (vertical, positive upward),
under the action of (constant) gravity (fig. 3.9).
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Figure 3.9 Particle on a helical path.



Here, clearly, the (double) kinetic energy and impressed forces are, respectively,

2T ¼ mv2 ¼ mðds=dtÞ2 ¼ m½ð _rrÞ2 þ r2ð _��Þ2 þ ð _zzÞ2�; ðaÞ
Qr ¼ 0; Q� ¼ 0; Qz ¼ �mg; ðbÞ

and therefore, Lagrange’s equations are (recall prob. 3.5.15)

Er � ð@T=@ _rrÞ:� @T=@r ¼ m½€rr� rð _��Þ2� ¼ 0; ðcÞ
E� � ð@T=@ _��Þ:� @T=@� ¼ mðr2 _��Þ: ¼ 0; ðdÞ
Ez � ð@T=@ _zzÞ:� @T=@z ¼ m €zz ¼ �mg: ðeÞ

Next, assume that the particle is constrained to move on a smooth circular helix with
axis z, radius R, and pitch p. Analytically, this means that now r, �, z are coupled
by the two constraints (assume that for � ¼ 0, z ¼ 0):

f1 � r� R ¼ 0; f2 � z� p� ¼ 0 ðR; p: positive constantsÞ: ðfÞ

In this case, the kinetic energy (a) assumes the constrained form

T ! To ¼ � � � ¼ ðm=2ÞðR2 þ p2Þð _��Þ2 � Toð _��Þ ¼ ðm=2Þ½1þ ðR=pÞ2�ð _zzÞ2 � Toð _zzÞ;
ðgÞ

and, from � 0W ¼ �mg �z ¼ �mg �ðp�Þ ¼ �mgp ��, we readily conclude that,
contrary to (b),

Qz;o ¼ �mg; Q�;o ¼ �mgp: ðhÞ

Therefore, the kinetic = reactionless equations are either of the following:

ðiÞ ð@To=@ _��Þ: � @To=@� ¼ Q�;o: mðR2 þ p2Þ €�� ¼ �mgp; ðiÞ
) � ¼ �½ðg pÞ=ðR2 þ p2Þ�ðt2=2Þ þ _��ð0Þtþ �ð0Þ; ðjÞ

ðiiÞ ð@To=@ _zzÞ:� @To=@z ¼ Qz;o: m½1þ ðR=pÞ2�€zz ¼ �mg; ðkÞ
) z ¼ �½ðg p2Þ=ðR2 þ p2Þ�ðt2=2Þ þ _zzð0Þtþ zð0Þ ð¼ p�Þ: ðlÞ

To calculate the constraint reactions, we use the Routh–Voss equations

EkðTÞ ¼ Qk þ
X

�Dð@fD=@qkÞ � Qk þ Rk

ðk ¼ 1; 2; 3! r; �; z; D ¼ 1; 2; i:e:; n ¼ 3; m ¼ 2Þ: ðmÞ

These latter here give [using (a), (b) and (f), not (g); and then enforcing (f)]

Er ¼ �1ð@f1=@rÞ þ �2ð@f2=@rÞ: m½€rr� rð _��Þ2� ¼ �1ð1Þ þ �2ð0Þ or � mRð _��Þ2 ¼ �1;
ðnÞ

E� ¼ �1ð@f1=@�Þ þ �2ð@f2=@�Þ: mðr2 _��Þ: ¼ �1ð0Þ þ �2ð�pÞ or mR2 €�� ¼ �p �2;
ðoÞ

Ez ¼Qz þ �1ð@f1=@zÞ þ �2ð@f2=@zÞ: m €zz ¼ �mgþ �1ð0Þþ�2ð1Þ or m €zz ¼ �mgþ�2:
ðpÞ
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If ðFr; F�; FzÞ ¼ vector of constraint reaction on particle, from wire (in polar coordi-
nates), then from the reaction virtual work invariance

� 0W ¼ Fr �rþ F�ðR ��Þ þ Fz �z ¼ Rr �rþ R� ��þ Rz �z ð¼ 0Þ;

we readily obtain

Rr ¼ �1 ¼ Fr; R� ¼ �p �2 ¼ RF�; Rz ¼ �2 ¼ Fz; ðqÞ

and so (n–p) transform to

mRð _��Þ2 ¼ �Fr; mR2 €�� ¼ RF�; m €zz ¼ �mgþ Fz; ðrÞ

and, from these [since �2 ¼ �ðR=pÞF� ¼ Fz ) �RF� ¼ p Fz] and the second of
(f), we get

�mR2 €�� ¼ pðm €zzþmgÞ ) mðR2 þ p2Þ €�� ¼ �mgp; i:e:; eq: ðiÞ: ðsÞ

Solving (i = s), we find �ðtÞ, and then inserting it into (r) we obtain (Fr; F�; Fz) and
�1; �2 as functions of time and the initial conditions. The reader may wish to discuss
the limiting cases:

p! 0 ði:e:; helix! circle of radius RÞ and p!1:

Problem 3.5.21 Routh–Voss Equations: Plane Rolling. Consider two right circu-
lar and rough cylinders, C and C 0, with corresponding masses M and m, radii R
and r, and horizontal (mutually parallel) axes O and O 0, in plane and slippingless
rolling on each other. Assume, for simplicity, that C 0 is stationary (fig. 3.10; initi-
ally, P and P 0 coincide). Here, the constraints are

f1 � �� ðRþ rÞ � �� b ¼ 0 ðcontactÞ; f2 � b�� r � ¼ 0 ðrollingÞ: ðaÞ
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Figure 3.10 Cylinder C in a plane rolling over the fixed cylinder C 0. [Initially, P ¼ P 0; rolling
condition: arcðPQÞ ¼ arcðQ 0P 0Þ ) R� ¼ rð�� �Þ ) ðRþ rÞ� ¼ r�.]



(i) Show that the Routh–Voss equations, in q1 ¼ �, q2 ¼ �, q3 ¼ �, and with
�1 � �, �2 �  [i.e., n ¼ 3 and m ¼ 2, as long as C and C 0 are in contact], are

m €�� ¼ �mg cos�þm �ð _��Þ2 þ �ð1Þ


eqs:ðaÞ ) � ¼ mg cos��mbð _��Þ2; ðbÞ

ðm �2 _��Þ: ¼ mg� sin�þ ðbÞ


eqs:ðaÞ )  ¼ mg €���mg sin �; ðcÞ

ðmr2=2Þ€�� ¼ ð�rÞ


eqs:ðaÞ )  ¼ �ðmb=2Þ €�� ¼ �ðmr=2Þ€��: ðdÞ

(ii) Eliminating  between (c, d), obtain the kinetic equation

€�� ¼ ð2g=3bÞ sin�: ðeÞ

(iii) Show that (a) � ¼ N ¼ normal force from C 0 to C [> 0, for g cos� > bð _��Þ2,
from eq. (b); if not, then � ¼ 0]; and (b)  ¼ �F ) F ¼ � ¼ tangential ð frictionalÞ
force from C 0 to C [ ¼ �ðmb=2Þ €�� ¼ �ðmg=3Þ sin� < 0, by (e)].

(iv) Finally, find the critical angle at which C loses contact with C 0. (See also
Fetter and Walecka, 1980, pp. 74–77.)

Example 3.5.12 Invariance of the Routh–Voss Equations under Frame of Reference
Transformations. Let us consider a system subject to the Pfaffian (holonomic
and/or nonholonomic) constraints

fD �
X

aDk _qqk þ aD ¼ 0 ½D ¼ 1; . . . ;mð< nÞ; k ¼ 1; . . . ; n�; ðaÞ

and, hence, having the Routh–Voss equations of motion

EkðLÞ ¼ Qk þ
X

�D aDk � Qk þ Rk; ðbÞ

where L � T � V ¼ Lagrangean of system [¼ �ðV � TÞ ¼ �ðkinetic potentialÞ of
system, in 19th century terminology], and Qk ¼ nonpotential impressed forces.

Now, let us subject its Lagrangean coordinates q � ðq1; . . . ; qnÞ to the following
general explicitly time-dependent and nonsingular (i.e., uniquely invertible) point trans-
formation:

qk ¼ qkðt; q1 0 ; . . . ; qn 0 Þ , q 0k 0 � qk 0 ¼ qk 0 ðt; q1; . . . ; qnÞ; ðcÞ

or, compactly, q ¼ qðt; q 0Þ , q 0 ¼ q 0ðt; qÞ. Let us express eqs. (b) in terms of the qk 0s.
From (c), we readily find

dqs=dt ¼
X
ð@qs=@qs 0 Þðdqs 0=dtÞ þ @qs=@t and �qs ¼

X
ð@qs=@qs 0 Þ �qs 0 ; ðdÞ

and so the constraints (a) transform to

fD �
X

aDk

X
ð@qk=@qk 0 Þðdqk 0=dtÞ þ @qk=@t

� �
þ aD ¼ � � �

¼
X

aDk 0 ðdqk 0=dtÞþa 0D¼ 0; ðeÞ

where [recalling (2.6.6–6b)]

aDk 0 �
X
ð@qk=@qk 0 ÞaDk; a 0D �

X
ð@qs=@tÞaDs þ aD: ðfÞ
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Next, to the left side of (b). Applying the chain rule to Lðt; q; dq=dtÞ ¼
L 0ðt; q 0; dq 0=dtÞ: q 0-Lagrangean, and, with the helpful notations dqk=dt � vk,
dqk 0=dt � vk 0 , we obtain

@L 0=@vs 0 ¼
X
ð@L=@vsÞð@vs=@vs 0 Þ ¼

X
ð@L=@vsÞð@qs=@qs 0 Þ; ðg1Þ

@L 0=@qs 0 ¼
X
ð@L=@qsÞð@qs=@qs 0 Þ þ

X
ð@L=@vsÞð@vs=@qs 0 Þ: ðg2Þ

But, from (c, d), and in addition to @vs=@vs 0 ¼ @qs=@qs 0 [utilized in (g1)], we also
have

@vs=@qs 0 ¼ ð@=@qs 0 Þ
X
ð@qs=@qk 0 Þvk 0 þ @qs=@t

� �
¼
X
ð@2qs=@qs 0@qk 0 Þvk 0 þ @2qs=@qs 0@t ¼ ð@qs=@qs 0 Þ:;

that is,

Es 0 ðvsÞ � d=dtð@vs=@vs 0 Þ � @vs=@qs 0 ¼ 0 ½recalling ð2:5:7��10Þ�: ðhÞ
Thanks to these identities and (g1, 2) we find, successively,

ð@L 0=@vs 0 Þ:� @L 0=@qs 0 ¼
X
ð@L=@vsÞ:ð@qs=@qs 0 Þ þ

X
ð@L=@vsÞð@qs=@qs 0 Þ:

� �
�

X
ð@L=@qsÞð@qs=@qs 0 Þ þ

X
ð@L=@vsÞð@qs=@qs 0 Þ:

� �
¼
X
½ð@L=@ _qqsÞ:�@L=@qs�ð@qs=@qs 0 Þ ½invoking ðb; aÞ and ðfÞ�

¼
X

Qs þ
X

�DaDs

� �
ð@qs=@qs 0 Þ � Qs 0 þ

X
�DaDs 0 ; ðiÞ

or, compactly,

Es 0 ðL 0Þ ¼ Qs 0 þ
X

�DaDs 0 � Qs 0 þ Rs 0 ; ð jÞ

where Qs 0 �
P ð@qs=@qs 0 ÞQs. [The latter can also be established from the virtual

work invariance: � 0W �P Qk �qk ¼
P

Qk 0 �qk 0 and the second of eq: ðdÞ.]
Notice that (j) amounts to � 0D 0 ! �D 0 ¼ �D; that is, the multipliers are invariant,

or objective, under the frame of reference transformation (c). Equations (j) express
the following fundamental theorem.

THEOREM

The Routh–Voss equations transform like a covariant vector under general frame of
reference transformations q! q 0ðt; qÞ; that is, these equations are form invariant not
only under arbitrary Lagrangean coordinate transformations in a given frame, but also
under arbitrary frame of reference transformations (whereas the Newton–Euler equa-
tions are not!).

As already stated on several occasions, this twofold form invariance of the equa-
tions of motion constitutes the major advantage of ‘‘Lagrange’’ over ‘‘Newton–
Euler.’’

Example 3.5.13 Uniqueness of the Lagrangean, Introduction to Gyroscopicity, etc.
Let us consider two distinct Lagrangeans, L and L 0, which, however, produce the
same (Lagrangean) equations of motion; that is,

EkðLÞ ¼ EkðL 0Þ ð¼ 0; or Qk; or Qk þ RkÞ: ðaÞ
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We ask the questions: By what amount can L and L 0 differ at most (so that we work
with the simplest of them)? or, How unique is a system Lagrangean? To answer
these, we assume that

L 0 � L ¼ fðt; q; dq=dt � vÞ; ðbÞ

and then try to find as much as possible about f .
Indeed, since Ekð. . .Þ is a linear operator, (a) and (b) lead to

0 ¼ EkðL 0 � LÞ ¼ EkðL 0Þ � EkðLÞ ¼ Ekðf Þ � d=dtð@f =@vkÞ � @f =@qk
¼
X
½ð@=@qsÞð@f =@vkÞ�vs þ

X
½ð@=@vsÞð@f =@vkÞ�ðdvs=dtÞ

þ ð@=@tÞð@f =@vkÞ � @f =@qk: ðcÞ

However, since L and L 0 must produce the same accelerations (i.e., the same
� dv=dt � d 2q=dt2 terms), the corresponding coefficients in (c) must vanish:
@2f =@vs@vk ¼ 0. This leads readily to

f ¼
X

Csvs þ C; ðdÞ

where Cs ¼ Csðt; qÞ and C ¼ Cðt; qÞ are arbitrary but sufficiently differentiable func-
tions of the q’s and t. Substituting (d) into (c), we obtain

Erðf Þ ¼
X
ð@Cr=@qs � @Cs=@qrÞðdqs=dtÞ þ ð@Cr=@t� @C=@qrÞ ¼ 0; ðeÞ

and, since this must hold for arbitrary (dq=dt)’s we conclude that

@Cr=@qs � @Cs=@qr ¼ 0 and @Cr=@t� @C=@qr ¼ 0; for all r; s ¼ 1; . . . ; n:

ðfÞ

These exactness conditions (recalling } 2.3), in turn, imply the existence of a gauge
function Fðt; qÞ, such that

Cr ¼ @F=@qr and C ¼ @F=@t; ðgÞ

and so, (d) reduces to

f ¼ � � � ¼ dFðt; qÞ=dt; ðhÞ

that is, L and L 0 ¼ Lþ dF=dt will produce the same equations of motion.
In sum: The Lagrangean function is defined only to within the total time-derivative

of an arbitrary function of the Lagrangean coordinates and time. It follows that con-
stant terms, or terms of the form f ðtÞ, can be immediately neglected from a
Lagrangean with no consequences on the equations of motion.

Generalized Potential, Gyroscopic Forces

A similar argument shows that if some (or all) of the Qk’s are expressible in terms of
a generalized potential V ¼ Vðt; q; _qq � vÞ as

Qk ¼ d=dtð@V=@vkÞ � @V=@qk; ðiÞ
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then the most general such V must be linear in the v’s:

V ¼
X

Vsðt; qÞ vs þ Vð0Þðt; qÞ: ð jÞ

Indeed, by (i), Qk ¼ � � � ¼
P ð@2V=@vk@vsÞðdvs=dtÞ þ ðt; q; vÞ-terms. But, in classical

mechanics, Qk ¼ Qkðt; q; vÞ, and therefore @2V=@vk@vs ¼ 0, from which (j) follows.
So substituting (j) into (i), we see that such forces take the explicit form

Qk ¼ � � � ¼ �@V ð0Þ=@qk þ
X
ð@Vk=@ql � @Vl=@qkÞ _qql þ @Vk=@t: ðkÞ

Here, we introduce a new definition.

DEFINITION

The (non-constraint) forces with vanishing power—that is,
P

Qk _qqk �
P

Qkvk ¼ 0
— are called gyroscopic. Then, since

PP ð@Vk=@ql � @Vl=@qkÞvl vk ¼ 0 [due to the
antisymmetry of the ð. . .Þ terms in k; l], it follows that ifX

ð@Vk=@tÞvk ¼ 0 and
X
ð@V ð0Þ=@qkÞvk ¼ dV ð0Þ=dt� @V ð0Þ=@t ¼ 0; ðlÞ

then the generalized potential forces (i, k) are gyroscopic. (Gyroscopicity is detailed
in }3.9 ff.)

Next, let us illustrate the theorem of the uniqueness of the Lagrangean by a few
simple examples.

(i) Consider a particle P of mass m free to slide along a massless smooth and rigid
rod OA, which rotates, say clockwise, about a horizontal axis through O (i.e., on a
vertical plane) with a given motion � ¼ �ðtÞ ¼ known function of time (fig. 3.11).

It is not hard to show that a Lagrangean for this system is

L 0 ¼ ðm=2Þ½ðro þ rÞ2ð _��Þ2 þ ð _rrÞ2� � ½�mgðro þ rÞ sin��; ðmÞ
where B is any ‘‘origin’’ on OA ½ro ¼ constant; q ¼ r ¼ rðtÞ�. By the foregoing
theory, the Lagrangean L ¼ L 0 �mg ro sin�ðtÞ will result in the same equation of
motion for q1 ¼ r as L 0:

ErðLÞ ¼ ErðL 0Þ: €rr� ð _��Þ2r ¼ g sin�þ roð _��Þ2: ðnÞ
That, however, would not be the case if OA was unconstrained; then, q2 ¼ �.
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Figure 3.11 Particle P sliding over a rotating rod OA, which

rotates in a prescribed way about a horizontal axis through O.



(ii) Consider the motion of a particleP of massm in two inertial frames of reference,
F1 and F2, in relative motion; say, F1 moving with (vectorially) constant velocity v1=2
relative to F2 (fig. 3.12). If we assume, for simplicity, but no loss of generality, that
V ¼ 0 and/or Qk ¼ 0, then the Lagrangean of P in F2, which is L2, equals

L2 ¼ ðm=2Þv2 � v2 ¼ ðm=2Þðv1 þ v1=2Þ � ðv1 þ v1=2Þ
¼ ðm=2Þv1 � v1 þm v1 � v1=2 þ ðm=2Þv1=2 � v1=2
¼ L1 þ df=dt � L1 þ F ; ðoÞ

where

L1 ¼ ðm=2Þv1 � v1; f ¼ m r1 � v1=2 þ ðm=2Þðv1=2 � v1=2Þt: ðo1Þ

Clearly, both Lagrangeans produce the same (i.e., equivalent) equations of motion
(‘‘principle’’ of Galilean relativity):

ð@L2=@v2Þ: � @L2=@r2 ¼ 0: dðmv2Þ=dt ¼ 0; ðp1Þ
ð@L1=@v1Þ: � @L1=@r1 ¼ 0: dðmv1Þ=dt ¼ 0: ðp2Þ

(iii) Let us extend the preceding example to the case of general translation; that is,

v1=2 ¼ v1=2ðtÞ: ðqÞ

Here, we have, successively,

L2 ¼ ðm=2Þv2 � v2 ¼ ðm=2Þðv1 þ v1=2Þ � ðv1 þ v1=2Þ
¼ ðm=2Þv1 � v1 þm v1 � v1=2 þ ðm=2Þv1=2 � v1=2
¼ ðm=2Þv1 � v1 þ ðm=2Þv1=2 � v1=2 þ ½ðm r1 � v1=2Þ:�m r1 � ðdv1=2=dtÞ�
¼ L1 þ given function of time ði:e:; omittableÞ

þ total derivative of function of position and time ði:e:; omittableÞ
�m r1 � ðdv1=2=dtÞ
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Figure 3.12 Two inertial frames in relative motion, assuming that at time

t ¼ 0 their origins, O1 and O2, coincide.



and so, to within ‘‘L-important’’ terms,

L2 ¼ L1 �m r1 � ðdv1=2=dtÞ � L1 �m r1 � a1=2: ðrÞ

[In the earlier, Galilean case, clearly, a1=2 ¼ 0.] The corresponding Lagrangean equa-
tions are

ð@L2=@v2Þ: � @L2=@r2 ¼ 0: dðmv2Þ=dt ¼ 0) ma2 ¼ 0; ðs1Þ
ð@L1=@v1Þ: � @L1=@r1 ¼ 0: dðmv1Þ=dt� ð�ma1=2Þ ¼ 0

) m a1 ¼ �m a1=2ð¼ ‘‘transport force’’Þ; ðs2Þ
that is, F2 is noninertial.

Example 3.5.14 On the Physical Significance of the Lagrangean Multipliers [May
be omitted in a first reading]. Let us consider an n DOF system with kinetic and
potential energies T and V, respectively, no nonpotential impressed forces, but
subject to the holonomic constraints

fD ¼ fDðq1; . . . ; qnÞ � fDðqÞ ¼ 0 ½D ¼ 1; . . . ;mð< nÞ�: ðaÞ
Its Routh–Voss equations of motion (with k ¼ 1; . . . ; n)

ð@T=@ _qqkÞ:� @T=@qk ¼ �ð@V=@qkÞ þ
X

�Dð@fD=@qkÞ � Qk þ Rk; ðbÞ

can, clearly, be rewritten in the multiplierless/kinetic form

ð@T=@ _qqkÞ:� @T=@qk ¼ �ð@VT=@qkÞ; ðcÞ
where

VT � V þ VC ¼ V �
X

�DðtÞfDðqÞ;
in words:

Total potential ¼ Ordinary potential þ ‘‘Constraint potential’’; ðdÞ
that is, the holonomic constraint reactions can be brought to the potential
(impressed) force form

Rk ¼ �@VC=@qk ¼ �ð@=@qkÞ �
X

�D fD

� �
¼
X

�Dð@fD=@qkÞ ¼ Rkðt; qÞ: ðeÞ

The apparent contradiction of a conservative system [since @V=@t ¼ 0 and
@fD=@t ¼ 0 (more in }3.9)] containing explicitly time-dependent forces [i.e.,
@Rk=@t ¼

P ðd�D=dtÞð@fD=@qKÞ 6¼ 0] is explained by the fact that the constraint
potential VC ¼ �

P
�D fD is known only along the trajectory curve of the figurative

system point, in configuration space; and not throughout the allowable domain of the
q’s there, like VðqÞ. Below, elaborating the above, we interpret the constraint re-
actions as limiting cases of elastic (potential) forces whose stiffnesses tend to infinity,
something which is in agreement with the principle of relaxation of the constraints
(}3.7); and in the process we obtain an interesting physical interpretation of the
Lagrangean multipliers.

Let us consider, for simplicity, but no loss of generality, the case of a single
constraint (i.e., m ¼ 1)

f ¼ fðq1; . . . ; qnÞ � fðqÞ ¼ 0: ðfÞ
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Now, since this constraint is maintained by strong forces, during actual system
motions equation (f) cannot be violated by a large amount. Therefore, the potential
of the (reaction turned impressed) forces maintaining (f), PðfÞ, can be written with
sufficient accuracy as the following finite Taylor series around f ¼ 0 [with
ð. . .Þ 0 � dð. . .Þ=df ]:

P ¼ Pð fÞ ¼ Pð0Þ þP 0ð0Þf þ ð1=2ÞP 00ð0Þf 2; ðgÞ

and since these forces can be likened, for small f , to very stiff elastic forces, we must
also have

P 0ð0Þ ¼ 0 and P 00ð0Þ � 1=" > 0; ðhÞ

where " ¼ small positive constant; so that the constraint (f ) is maintained by strong
forces (theoretically, "! 0). Hence, and neglecting the immaterial constant Pð0Þ, we
have for small f ’s,

Pð f Þ ¼ f 2=2"; ðiÞ

in which case the corresponding spring-like force equals

�@P=@qk ¼ �ð f ="Þð@f=@qkÞ; ð jÞ

and since this must equal the Lagrangean constraint reaction (e), that is,

Rk ¼ �@VC=@qk ¼ �ð@=@qkÞð�� f Þ ¼ �ð@f=@qkÞ; ðkÞ

comparing (j, k), we immediately conclude that

� ¼ �f=" � �ð f; "Þ; ðlÞ

that is, � is a measure of the (time-dependent) violation of the constraint f ¼ 0; and
in the theoretical limit of analytical mechanics, "! 0 and f ! 0,

� ¼ � limð f ="Þ ¼ force caused by a linear elastic spring of inOnite stiQness ð1="Þ:
ðmÞ

Application of these ideas to the plane motion of a particle of, say, unit mass
under the constraint f ðx; yÞ ¼ 0 (plane curve, in rectangular Cartesian coordinates
x; y), and, for simplicity, no impressed forces, yields the equations

Constrained Lagrangean eqs : €xx ¼ �ð@f =@xÞ; €yy ¼ �ð@f =@yÞ; ðnÞ
Unconstrained Newton��Euler eqs : €xx ¼ �ð1="Þð@w=@xÞ; €yy ¼ �ð1="Þð@w=@yÞ; ðoÞ

where (fig. 3.13)

P � VC ¼ VCð f ; "Þ ¼ w=" ¼ ð1="Þf 2 ¼ ð f ="Þ f ¼ �� f ; ðpÞ

that is, for small ";VC represents a steep potential gully whose bottom coincides
with the constraint curve f ¼ 0.
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A detailed analysis of whether and how, as "! 0 (limit of infinite stiffness), the
solutions of (o) tend to those of (n), carried out by Kampen and Lodder, shows that
for this to happen

[T]he applied forces [must] vary smoothly compared with the periods of the internal

elastic vibrations in the rods and bodies responsible for the constraints. If that is not
satisfied one cannot treat these bodies as rigid, but must include their internal vibrations

as additional degrees of freedom in the description of the system. Lagrange’s equations

apply to a pendulum that I have set in motion with my hand, but not when I have hit it with
a hammer . . . or when it is set in motion by an escapement. (Kampen and Lodder, 1984,

pp. 420–421, emphasis added)

For further details and insights, see, for example, Arnold (1974, }17), Kampen
and Lodder (1984; and references cited therein); also Gallavotti (1983, p. 168 ff.),
Lanczos (1962, chap. 24, pp. 11–12; 1970, pp. 141–145), and Park (1990, pp. 60–61).

Example 3.5.15 Maggi Equations (Holonomic Constraints). Let us formulate
the kinetic and kinetostatic rotational Maggi equations for a thin homogeneous
bar AB [of length jABj ¼ 2, and moment of inertia about a(ny) axis through its
mass center G, perpendicular to its length, I ], in arbitrary spatial motion, under
gravity, in terms of the direction cosines of the bar 
; �; � relative to fixed (iner-
tial) axes O��xyz; or, equivalently, relative to comoving/translating but nonrotating
axes G��xyz (fig. 3.14) (Ramsey, 1937, p. 234).

Here, only the rotational part of the kinetic energy of the bar is needed. Choosing
as Lagrangean rotational coordinates q1 ¼ 
, q2 ¼ �, q2 ¼ �, we readily obtain
from geometry


 ¼ sin � cos�; � ¼ sin � sin�; � ¼ cos �; and 
2 þ �2 þ �2 ¼ 1 ðconstraintÞ;
ðaÞ

that is, n ¼ 3, m ¼ 1. Hence, using König’s theorem, the Eulerian angle kinematics
(}1.12), and with the usual notations [(!1; !2; !3)¼ inertial angular velocity of bar,
along its principal axes G��123 (G��1: along bar, G��2; 3: perpendicular to it), and
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I1;2;3 ¼ principal moments of inertia there], we find for the (double) rotational kinetic
energy of the bar

2T ¼ I1 !1
2 þ I2 !2

2 þ I3 !3
2

¼ ð0Þð _  þ _�� cos �Þ2 þ ðI Þð _��Þ2 þ ðI Þð _�� sin �Þ2 ¼ I ½ð _��Þ2 þ sin2 �ð _��Þ2�: ðbÞ

To implement Maggi’s equations, we need to express T in terms of 
; �; � and their
ð. . .Þ:-derivatives. Indeed, using (a) we find, successively,

ðiÞ sin2 � ¼ 1� cos2 � ¼ 1� �2 ¼ 
2 þ �2; ðcÞ

ðiiÞ ð _��Þ2 ¼ ð� sin � _��Þ2 ¼ sin2 �ð _��Þ2 ¼ ð
2 þ �2Þð _��Þ2; ðdÞ

ðiiiÞ ð
 _�� � _

�Þ ¼ ðsin � cos�Þ½ðcos � sin�Þ _��þ 
 _���
� ðsin � sin�Þ½ðcos � cos�Þ _�� � � _���

¼ � � � ¼ ð
2 þ �2Þ _��; ðeÞ

ðivÞ � � ð
 _�� � _

�Þ2 þ ð
 _

þ � _��Þ2 ¼ � � � ¼ ð
2 þ �2Þ½ð _

Þ2 þ ð _��Þ2�; ðfÞ

but, also [invoking the fourth of eq. (a)]

� ¼ ð
 _�� � _

�Þ2 þ �2ð _��Þ2; ðgÞ
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and so equating the right sides of (f) and (g), adding ð _��Þ2 to both, and rearranging,
we get

ð
 _�� � _

�Þ2 þ ð _��Þ2 ¼ ð
2 þ �2Þ½ð _

Þ2 þ ð _��Þ2� þ ð _��Þ2ð1� �2Þ
¼ � � � ¼ ð
2 þ �2Þ½ð _

Þ2 þ ð _��Þ2 þ ð _��Þ2�: ðhÞ

As a result of the above [ðdÞ ! ðcÞ ! ðeÞ ! ðhÞ], the kinetic energy (b) becomes,
successively,

2T ¼ I
n
ð _��Þ2=ð
2 þ �2Þ þ ð
2 þ �2Þ½ð
 _�� � _

�Þ2=ð
2 þ �2Þ2�

o
¼ I
n
½ð
 _�� � _

�Þ2 þ ð _��Þ2�=ð
2 þ �2Þ

o
¼ I ð _

Þ2 þ ð _��Þ2 þ ð _��Þ2

h i
: ðiÞ

Next, we introduce the new (holonomic) coordinates:

f1 � 
2 þ �2 þ �2 � 1 ð¼ 0Þ; f2 � � ð6¼ 0Þ; f3 � � ð6¼ 0Þ; ð jÞ
which invert easily to (no constraint enforcement yet!)


2 ¼ 1þ f1 � ð f2Þ2 � ð f3Þ2; � ¼ f2; � ¼ f3: ðkÞ
Now, with the useful notation Mk � ½ð@T=@ _qqkÞ:� @T=@qk� �Qk � Ek �Qk ¼
Ek þ @V=@qk, where V ¼ Vðqk: 
; �; �Þ ¼ potential energy, Maggi’s equations yield

Kinetostatic:

f1: ð@
=@f1ÞM
 þ ð@�=@f1ÞM� þ ð@�=@f1ÞM� ¼ �1;
) ð1=2
ÞM
 ¼ �1 ) ð1=
ÞðI €

þ @V=@
Þ ¼ 2�1; ðlÞ

Kinetic:

f2: ð@
=@f2ÞM
 þ ð@�=@f2ÞM� þ ð@�=@f2ÞM� ¼ 0;

) ð��=
ÞM
 þM� ¼ 0) ð1=
ÞðI €

þ @V=@
Þ
¼ ð1=�ÞðI €�� þ @V=@�Þ; ðmÞ

f3: ð@
=@f3ÞM
 þ ð@�=@f3ÞM� þ ð@�=@f3ÞM� ¼ 0;

) ð��=
ÞM
 þM� ¼ 0) ð1=
ÞðI €

þ @V=@
Þ
¼ ð1=�ÞðI €�� þ @V=@�Þ; ðnÞ

and from these we immediately obtain the more symmetric form

ð1=
ÞðI €

þ @V=@
Þ ¼ ð1=�ÞðI €�� þ @V=@�Þ ¼ ð1=�ÞðI €�� þ @V=@�Þ ¼ 2�1: ðoÞ
If only the motion is sought, we combine (k, l) with the constraint (a); then, if the
reaction �1ðtÞ is needed, it can be found from (j).

It is not hard to see that the Routh–Voss equations of this problem are

M
 ¼ �1ð2
Þ; M� ¼ �1ð2�Þ; M� ¼ �1ð2�Þ; i:e:; eqs: ðmÞ: ðpÞ
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Other f -coordinate choices would have led to different, but equivalent, �’s and
equations of motion.

Problem 3.5.22 Maggi Equations. Formulate both kinetic and kinetostatic
Maggi equations for a particle constrained to move on a smooth circular helix
(ex. 3.5.11), for the following choice of coordinates:

f1 � r� R ð¼ 0Þ; f2 � z� p� ð¼ 0Þ; f3 � z ð6¼ 0Þ: ðaÞ

HINT

After ð. . .Þ:-differentiating (a), we easily conclude that here the nonvanishing ele-
ments of ðaklÞ are a11 ¼ a23 ¼ a33 ¼ 1, a22 ¼ �p; and, therefore, the nonvanishing
elements of its inverse matrix [(i.e., the Maggi equation coefficients)¼ (Akl)], are
A11 ¼ A33 ¼ 1, A22 ¼ �A23 ¼ �1=p.

Problem 3.5.23 Maggi Equations. Repeat the preceding problem, but for the
following choice of coordinates:

f1 � r� R ð¼ 0Þ; f2 � z� p� ð¼ 0Þ; f3 � � ð6¼ 0Þ: ðaÞ

Problem 3.5.24 Euler’s Equations via Lagrange’s Equations. Consider, for sim-
plicity, but no real loss in generality, the force-free motion of a rigid body B rotat-
ing about a fixed point O. With the help of the !1;2;3 , _��; _��; _  relationships
(}1.12), where O��123 are principal axes of B at O, show that the Lagrangean
equations for �; �;  , lead to Euler’s equations (}1.17).

HINT

Since 2T ¼ I1!1
2 þ I2!2

2 þ I3!3
2 ¼ 2Tð!1;2;3Þ ¼ 2T*, we find, successively,

@T=@ _  ¼ ð@T*=@!1Þð@!1=@ _  Þ þ ð@T*=@!2Þð@!2=@ _  Þ þ ð@T*=@!3Þð@!3=@ _  Þ
¼ ðI1!1Þð0Þ þ ðI2!2Þð0Þ þ ðI3!3Þð1Þ ¼ I3!3; ðaÞ

@T=@ ¼ ð@T*=@!1Þð@!1=@ Þ þ ð@T*=@!2Þð@!2=@ Þ þ ð@T*=@!3Þð@!3=@ Þ
¼ ðI1!1Þ½ðs� c Þ _��þ ð�s Þ _��� þ ðI2!2Þ½ð�s� s Þ _��þ ð�c Þ _�� � þ ðI3!3Þð0Þ
¼ ðI1!1Þð!2Þ þ ðI2!2Þð�!1Þ; ðbÞ

and, therefore,

E ðTÞ � ð@T=@ _  Þ:� @T=@ ¼ I3ðd!3=dtÞ � ðI1 � I2Þ!1!2 ¼ 0; ðcÞ
and similarly for E�ðTÞ ¼ 0 and E�ðTÞ ¼ 0. Let the reader ponder about the
possible drawbacks of this derivation of Euler’s equations.

3.6 THE CENTRAL EQUATION (THE ZENTRALGLEICHUNG OF HEUN AND HAMEL)

Thus far, the transition from the particle accelerations that appear explicitly in
Lagrange’s principle (LP),

�I ¼ � 0W ; or; in extenso; Sdm a � �r ¼SdF � �r; ð3:6:1Þ
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to system velocities/kinetic energy derivatives, and so on, that appear in the equa-
tions of motion deriving from it, is carried out in the components of the (negative
of the) system inertial ‘‘forces’’: for example, Ek � S dm a � ek ¼ � � � ¼
ð@T=@ _qqkÞ:� @T=@qk, and similarly for Ik � Sdm a � ek ¼ � � �. However, a transition
from particle accelerations to particle velocities (i.e., from a’s to v’s), and from there
to system velocities, can also be effected by proceeding directly from the variational
equation (3.6.1).

Indeed, in view of the purely kinematic identity

dðv � �rÞ=dt ¼ a � �rþ �ðv � v=2Þ þ v � ½dð�rÞ=dt� �ðdr=dtÞ�; ð3:6:2Þ
�I transforms readily to

�I �Sdm a � �r

¼ d=dt S dm v � �r
� �

�Sdm v � �v�Sdm v � ½dð�rÞ=dt� �ðdr=dtÞ�;

or

�I � dð�PÞ=dt� �T � �D; ð3:6:3Þ
where

�T � � S ð1=2Þdm v � v
� �

¼Sdm v � �v ¼Sdm v � �ðdr=dtÞ
¼ First virtual variation of ðinertialÞ kinetic energy;

ð3:6:3aÞ

�P �Sdm v � �r ¼ Total virtual work of ðlinearÞ momenta of system particles;

ð3:6:3bÞ

�D �Sdm v � ½dð�rÞ=dt� �ðdr=dtÞ� �Sdm v � ½ð�rÞ: � �v�
¼ Total ‘‘virtual ðwork of Þ nonholonomic deviation:’’ ð3:6:3cÞ

Hence LP, (3.6.1), takes the velocity form:

�T þ � 0W þ �D ¼ dð�PÞ=dt: ð3:6:4Þ
This fundamental differential variational equation, on a par with LP, was originally
obtained by Lagrange himself (in the course of the derivation of his equations from
LP), but its importance was fully appreciated much later by Heun (early 1900s), who
dubbed it the central equation of AM (Zentralgleichung, CE). Specifically, its impor-
tance lies in that it replaces a second-order invariant, �I � S dm a � �r, with its first-
order invariants �T , �P, �D.

We should, also, point out the following:

(i) Multiplying (3.6.4) with dt and then integrating the result over the arbitrary
time interval (t1; t2), we obtain the following time integral variational equation:ðt2

t1

ð�T þ � 0W þ �DÞ dt ¼
n
�P
ot2

t1
�
n
Sdm v � �r

ot2

t1
; ð3:6:5Þ

commonly known as Hamilton’s principle (HP—detailed in chap. 7).
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(ii) It is not necessary to assume, in CE, that ð�rÞ: ¼ �v, or equivalently
dð�rÞ ¼ �ðdrÞ. As Hamel has stressed, and as will become clear below, the equations
of motion derived from the above are independent of any such commutation rules.
Thus, assuming in (3.6.4), (3.6.5) ð�rÞ: ¼ �v, that is, �D ¼ 0, reduces them, respec-
tively, to

�T þ � 0W ¼ dð�PÞ=dt ðordinary CEÞ ð3:6:6Þðt2
t1

ð�T þ � 0WÞ dt ¼
n
�P
ot2

t1
�
n
Sdm v � �r

ot2

t1
ðordinary HPÞ: ð3:6:6aÞ

[Heun called (3.6.6) the central equation; while Hamel (1949, pp. 233–235) called
(3.6.4) the generalized, or general, central equation. Also, Rosenberg (1977, pp. 167–
168), virtually alone in the entire English language literature to handle this matter
properly, chose to translate (3.6.4, 6) as the central principle.]

Now, the differential variational equation (3.6.4) is expressed in particle vectors/
variables; and in that form it may be quite useful in, say, rigid-body applications.
For the purposes of the general theory, however, we need to express it in general
system variables. Indeed, proceeding from the invariant definitions (3.6.3a–c) we
find, successively,

ðaÞ T ¼ Tðt; q; _qqÞ ¼ T* ¼ T*ðt; q; !Þ ) �T ¼ �T*

�T ¼ �Tðt; q; _qqÞ ¼
X
½ð@T=@qkÞ �qk þ ð@T=@ _qqkÞ �ð _qqkÞ�; ð3:6:7aÞ

�T* ¼ �T*ðt; q; !Þ ¼
X
½ð@T*=@!kÞ �!k þ ð@T*=@qkÞ �qk�

¼
X
ð@T*=@!kÞ �!k þ

X
ð@T*=@qkÞ

X
Akl ��l

� �h i
¼ � � � �

X
Pk �!k þ

X
ð@T*=@�kÞ ��k; ð3:6:7bÞ

ðbÞ � 0W �SdF � �r ¼
X

Qk �qk ¼
X

Yk ��k; ð3:6:7cÞ

ðcÞ �P ¼ � � � ¼
X

Pk ��k ¼
X

pk �qk sinceSdm v � ek � pk; Sdm v � ek � Pk

h i
ð3:6:7dÞ

) pl ¼
X

aklPk; i:e:; @T=@ _qql ¼
X
ð@T*=@!kÞð@!k=@ _qql Þ; ð3:6:7eÞ

Pk ¼
X

Alkpl ; i:e:; @T*=@!k ¼
X
ð@T=@ _qql Þð@ _qql=@!kÞ; ð3:6:7fÞ

) ð�PÞ: � Sdm v � �r
� �:

¼
X

pk �qk

� �:
¼
X

_ppk �qk þ
X

pkð�qkÞ:; ð3:6:7gÞ

¼
X

Pk ��k

� �:
¼
X

_PPk ��k þ
X

Pkð��kÞ: ; ð3:6:7hÞ

(d) Recalling the general particle transitivity equation (prob. 2.10.6; with Greek
indices running from 1 to nþ 1), which holds independently of any dð�qÞ � �ðdqÞ
rules,

ð�rÞ:� �v ¼
X
½ð�qkÞ:� �ð _qqkÞ�ek

¼
X
½ð��kÞ:� �!k�ek �

X XX
�kr
 !
 ��r

� �
ek; ð3:6:7iÞ
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we obtain (invoking the above definitions of pk;Pk)

�D �Sdm v � ½ð�rÞ:� �v�
¼ � � � ¼

X
pk½ð�qkÞ: � �ð _qqkÞ� ¼

X
Pk½ð��kÞ:� �!k� �

XXX
�kr
Pk!
 ��r:

ð3:6:7jÞ
Next, substituting the above system expressions into the general CE, (3.6.4), re-
arranged à la LP as ð�PÞ:� �T � �D ¼ � 0W , we obtain its following system forms.

1. Holonomic System Variables

X
pk �qk

� �:
� �T �

X
pk½ð�qkÞ:� �ð _qqkÞ� ¼

X
Qk �qk ð� � 0WÞ; ð3:6:8Þ

or (after expanding and collecting terms, and factoring out �qk)X
ðdpk=dt� @T=@qkÞ �qk ¼

X
Qk �qk ½LP in holonomic variables ð3:5:11 ff :Þ�

ð3:6:8aÞ
We notice that (3.6.8a) results always from (3.6.8), regardless of any assumptions
about ð�qkÞ:� �ð _qqkÞ. However, (3.6.8) is more general than (3.6.8a); for example, if
we express some of its terms in �-variables (see below, and ex. 3.8.1), or if we assume
that ð�qkÞ: 6¼ �ð _qqkÞ, for some �q, _qq’s [see Voronets equations (3.8.14a ff.)].

2. Nonholonomic System Variables

X
Pk ��k

� �:
��T�

X
Pk½ð��kÞ:��!k��

XXX
�kr
Pk !
 ��r

n o
¼
X

Yk ��k;

or, after expanding and collecting terms, etc.,X
_PPk ��k �

X
ð@T*=@�kÞ ��k þ

XXX
�kr
Pk !
 ��r ¼

X
Yk ��k; ð3:6:9Þ

or (factoring out ��k, and performing some index changes in the �-term)X
dPk=dt� @T*=@�k þ

XX
�rk
Pr !


� �
��k ¼

X
Yk ��k; ð3:6:9aÞ

which is none other than LP in quasi variables (3.5.18 ff.).

3. Mixed Variable Forms

(i) With the help of (3.6.7a–j) [also, recalling the general system transitivity equa-
tions (2.10.6, 7)], we can rewrite (3.6.9) as follows:X

_PPk ��k �
X
ð@T*=@�kÞ ��k

þ
X

Pk ½ð��kÞ:� �!k� �
X

akl ð�ql Þ:� �ð _qql Þ½ �
n o

¼
X

Yk ��k: ð3:6:10Þ

From the above we readily see the following.
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(ii) If we assume that ð�qkÞ:��ð _qqkÞ ¼ 0 ½) dð�rÞ��ðdrÞ ¼P ½dð�qkÞ��ðdqkÞ�ek¼
0) �D ¼ 0 (ordinary CE, (3.6.6)) — Hamel viewpoint], then (3.6.10) becomesX

_PPk ��k �
X
ð@T*=@�kÞ ��k þ

X
Pk½ð��kÞ:� �!k� ¼

X
Yk ��k; ð3:6:11Þ

which, since in this case ð��kÞ:� �!k ¼
PP

�kr
 !
 ��r, is none other than (3.6.9).
Hence, even if we had started with (3.6.6), rearranged as ð�PÞ:� �T ¼ � 0W , with �T ,
� 0W , ð�PÞ: given by (3.6.7b, c, h), respectively, we would still have arrived at
(3.6.11). Also, recalling (3.3.12a), and comparing (3.6.11) with (3.6.9), we readily
conclude that, then, X

Pk½ð��kÞ: � �!k� ¼ �
X

Gk ��k: ð3:6:11aÞ

(iii) However, if we assume that ð��kÞ: � �!k ¼ 0 (Suslov viewpoint), and invoke
(3.6.7e), eq. (3.6.10) becomesX

_PPk ��k �
X
ð@T*=@�kÞ ��k �

X
Pk

X
akl ½ð�ql Þ:� �ð _qql Þ�

n o
¼
X

_PPk ��k�
X
ð@T*=@�kÞ ��k�

X
pk½ð�qk Þ:��ð _qqk Þ� ¼

X
Yk ��k: ð3:6:12Þ

Equations (3.6.4, 6; 8; 9; 10, 11, 12) are mutually equivalent; but, unless properly
understood and applied, they may lead to (apparently) contradictory results. [These
variational equations are useful in integral variational ‘‘principles’’: chap. 7; also ex.
3.8.1.] Hence, whenever needed, we may safely assume that dð�qkÞ ¼ �ðdqkÞ for all
holonomic coordinates, constrained or not. Indeed, in applications to concrete pro-
blems, the CE in the form (3.6.11) seems to be the single most useful equation of
analytical mechanics. Its implementation requires knowledge of T ! T*, the Y’s,
and the _qq$ ! transformation; the �k*^’s, as already pointed out in } 2.10, are simply
read off as the coefficients of

ð��kÞ:� �!k ¼ � � � þ ð. . .Þk*^ !^ ��* þ � � � : ð3:6:12aÞ

WHICH ARE THE BEST EQUATIONS OF MOTION ?

Over the past couple of decades or so, a debate has been brewing, in applied engi-
neering (multibody) dynamics circles, as to which of all available equations of
motion are the best, or ‘‘more efficient.’’ We believe that such questions, and
attempted answers, are at best counterproductive and myopic; and, at worst, self-
serving and wasteful. Fortunately, for dynamics, there is no cure-all set of equations
that works best under all circumstances; theoretical and applied, exact and approx-
imate (including computational). Different equations (see also special forms in }3.8)
have different uses, advantages and disadvantages, like the various tools in a
mechanic’s toolbox. Some are more conceptually efficient (a classification almost
never heard of by applied dynamicists) and less computationally efficient, and vice
versa; some are more fertile and/or beautiful (!) than others. Such a healthy pluralism
testifies to the vitality and diversity of the human intellect, keeps our science alive
and should be welcome, indeed treasured, by all—we learn more by solving one
problem with several methods than by solving several problems with one method. We
must learn them all, especially today!
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It seems to us, however, that one of the best such tools is not any particular set of
equations of motion, but instead, the central (variational) equation in the form
(3.6.11)) X

ð. . .ÞD ��D þ
X
ð. . .ÞI ��I ¼ 0: ð3:6:12bÞ

The vanishing of its ð. . .ÞD terms (appropriately modified, according to the method
of Lagrangean multipliers) yields the m kinetostatic equations, while the vanishing of
its ð. . .ÞI terms yields the n�m kinetic equations; and these, plus constraints and
initial/boundary temporal conditions, constitute a mathematically determinate sys-
tem. [Also, the differential variational principles (chap. 6), of which LP, eqs. (3.6.8a)
and (3.6.9a), constitute the foundation, seem especially promising, for both finite and
impulsive motion, and for both linear (Pfaffian) and nonlinear velocity constraints.]
Such a unifying approach, acting like a conceptual centripetal force and countering
the centrifugal ones of the various equations of motion, should be welcome and
psychologically satisfying. After all, there is only one mechanics; although the average
observer of the contemporary (tower of Babel-like) dynamics literature would not
get that impression!

Example 3.6.1 Holonomic System in Nonholonomic Coordinates: Plane Motion of
a Free Particle (Appell, 1925, pp. 6–7, 17–18; Lur’e, 1968, pp. 401–402). Let us
consider a particle P of mass m moving along the plane curve C, on the O��xy
plane, under known/given forces (fig. 3.15). The instantaneous position and velo-
city of this two DOF system (n ¼ 2; m ¼ 0) can be defined in several equivalent
ways. Thus, we may choose the following descriptions:

(i) Holonomic variables: a convenient such choice are the polar coordinates of P

q1 ¼ r; q2 ¼ � ðangle from OxÞ ) _qq1 ¼ _rr; _qq2 ¼ _��: ðaÞ
(ii) Nonholonomic variables: following Appell, we choose as such: (a) �1 ¼ q1 ¼ r;

that is, the magnitude of the position vector r ¼ OP, and (b) �2 ¼ � (a quasi coor-
dinate, as shown below), such that _��2 � !2 ¼ _�� ¼ r2 _��, or d� ¼ r2d� ¼ twice the area
of the elementary sector swept by the radius vector OP between the time instants tð! rÞ
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Figure 3.15 Plane motion of a particle under given forces ð2dA ¼ r2 d� � d�Þ.



and tþ dt ð! rþ drÞ; that is, approximately, twice the area of a circular sector of
radius r and central angle d� — a well-known calculus result. Hence, the following
transformation equations, and their inverses:

!1 ¼ ð1Þ _qq1 þ ð0Þ _qq2; !2ð0Þ _qq1 þ ðr2Þ _qq2; ðbÞ
_qq1 ¼ ð1Þ!1 þ ð0Þ!2; _qq2 ¼ ð0Þ!1 þ ðr�2Þ!2: ðcÞ

Transitivity Equations

From (b, c), and since this is a scleronomic system, that is, �q1 ¼ ��1 ¼ �r;
dq1 ¼ d�1 ¼ dr; ��2 ¼ �� ¼ r2 �� ¼ r2 �q2; d�2 ¼ d� ¼ r2 d� ¼ r2 dq2, and so on,
we find

ð��1Þ:� �!1 ¼ ð�rÞ:� �ð _rrÞ ¼ 0 ðr ¼ holonomic coordinateÞ; ðdÞ
ð��2Þ:� �!2 ¼ ðr2 ��Þ: � �ðr2 _��Þ ¼ � � � ¼ 2r _rr ��� 2r _�� �r

¼ 2r!1 ��� 2rð!2=r
2Þ �r ¼ 2r!1ðr�2 ��2Þ � ð2r�1!2Þ ��1

¼ 2r�1ð!1 ��2 � !2 ��1Þ: ðeÞ

Kinetic Energy

From x ¼ r cos�; y ¼ r sin� ) _xx ¼ . . . ; _yy ¼ . . ., and the above, we find

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2� ¼ � � � ¼ m½ð _rrÞ2 þ r2ð _��Þ2�
¼ � � � ¼ m½ð!1Þ2 þ r�2ð!2Þ2� ¼ T *: ðfÞ

Appellian

From €xx ¼ . . . ; €yy ¼ . . . , we find, successively,

2S ¼ m½ð€xxÞ2 þ ð€yyÞ2� ¼ � � � ¼ m½ðarÞ2 þ ða�Þ2� ðphysical componentsÞ
¼ m ½€rr� rð _��Þ2�2 þ ½r�1ðr2 _��Þ:�2

n o
¼ m ½€rr� r�3ð _��Þ2�2 þ ðr�1€��Þ2

n o
;

or, to within ‘‘Appell-important’’ terms � � � �,

2S! 2S* ¼ m½ð€rrÞ2 � 2r�3€rrð _��Þ2 þ r�2ð€��Þ2� þ � � �
¼ m½ð _!!1Þ2 � 2r�3ð!2Þ2 _!!1 þ r�2ð _!!2Þ2� þ � � � : ðgÞ

Virtual Works

Let the physical (polar) components of the total impressed force on P, that is, F, be
ðFr;F�Þ. Then,

� 0W ¼ Fr �rþ F�ðr ��Þ � Qr �rþ Q� ��

¼ Fr ��1 þ F�ðr�1 ��2Þ ¼ Y1 ��1 þY2 ��2; ðhÞ
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that is,

Q1 � Qr ¼ Fr; Q2 � Q� ¼ rF� ðholonomic componentsÞ ðiÞ
Y1 ¼ Fr; Y2 ¼ r�1F� ðnonholonomic componentsÞ: ð jÞ

Equations of Motion

(i) Holonomic variables: The Lagrange and Appell equations are

q1 � r: ð@T=@ _rrÞ:� @T=@r � @S=@€rr ¼ Qr: m½€rr� rð _��Þ2� ¼ Fr; ðkÞ
q2 � �: ð@T=@ _��Þ: � @T=@� � @S=@ €�� ¼ Q�: mðr2 _��Þ: ¼ rF�: ðlÞ

(ii) Nonholonomic variables: Since

P1 � @T*=@!1 ¼ m!1 ð¼ m _rrÞ ) _PP1 ¼ m _!!1 ð¼ m €rrÞ; ðmÞ
P2 � @T*=@!2 ¼ mr�2!2 ð¼ mr�2 _��Þ ) _PP2 ¼ ðmr�2!2Þ: ; ðnÞ

and

@T*=@�1 � @T*=@r ¼ A11ð@T*=@q1Þ þ A21ð@T*=@q2Þ
¼ ð1Þð@T*=@rÞ þ ð0Þð@T*=@�Þ ¼ @T*=@r

¼ ðm=2Þð�2Þ½r�3ð!2Þ2� ¼ �mr�3ð!2Þ2; ðoÞ

@T*=@�2 � @T*=@� ¼ A12ð@T*=@q1Þ þ A22ð@T*=@q2Þ
¼ ð0Þð@T*=@rÞ þ ðr2Þð@T*=@�Þ ¼ 0; ðpÞ

X
_PPk ��k �

X
ð@T*=@�kÞ ��k þ

X
Pk½ð��kÞ:� �!k� ¼

X
Yk ��k ðqÞ

yields

_PP1 ��1 þ _PP2 ��2 � ð@T*=@�1Þ ��1 � ð@T*=@�2Þ ��2
þ P1½ð��1Þ:� �!1� þ P2½ð��2Þ:� �!2� ¼ Y1 ��1 þY2 ��2; ðrÞ

or collecting ð. . .Þ ��k terms,

½ _PP1 � @T*=@�1 þ ð�2!2=rÞP2 �Y1� ��1 þ ½ _PP2 þ ð2!1=rÞP2 �Y2� ��2 ¼ 0; ðsÞ
from which, since ��1 and ��2 are unconstrained, we obtain the Hamel equations:

�1: _PP1 � @T *=@�1 � ð2!2=rÞP2 ¼ Y1; ðt1Þ
or

m _!!1 þm r�3ð!2Þ2 � ð2r�1!2Þðmr�2!2Þ ¼ Y1;

or, finally,

m½€rr� r�3ð _��Þ2� ¼ Fr; i:e:; equation ðkÞ; ðt2Þ
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the central equation (3.6.11)



and

�2: _PP2 þ ð2!1=rÞP2 ¼ Y2; ðt3Þ
or

ðmr�2!2Þ:þ ð2r�1!1Þðmr�2!2Þ ¼ Y2;

or, finally,

mr�2€��� r�3ð2m _rr _��Þ þ r�3ð2m _rr _��Þ ¼ Y2 ) m €�� ¼ rF�; ðt4Þ
that is, (l); from which, if F� ¼ 0, we obtain Kepler’s second ‘‘law’’: _�� ¼ r2 _�� ¼
constant.

REMARKS

(i) The above Hamel equations coincide with those of Appell, but in nonholo-
nomic variables:

@S*=@€rr ¼ Yr ½@S*=@ _!!1 ¼ Y1�; ðu1Þ
@S*=@€�� ¼ Y� ½@S*=@ _!!2 ¼ Y2�: ðu2Þ

(ii) We also notice that, since

½ð@T*=@ _rrÞ:� @T*=@r� � @S*=@€rr � Gr ½¼ ð2!2=rÞP2� 6¼ 0; ðv1Þ
½ð@T*=@ _��Þ: � @T*=@�� � @S*=@€�� � G� ½¼ �ð2!1=rÞP2� 6¼ 0; ðv2Þ

the Lagrange-type equations in quasi variables

ErðT*Þ � ð@T*=@ _rrÞ:� @T*=@r ¼ Yr; E�ðT*Þ � ð@T*=@ _��Þ:� @T*=@� ¼ Y�;

ðv3Þ
would have been incorrect.

3.7 THE PRINCIPLE OF RELAXATION OF THE CONSTRAINTS

(THE LAGRANGE–HAMEL BEFREIUNGSPRINZIP )

We have already seen (}3.5) how to (i) eliminate the constraint reactions (kinetic
equations), and (ii) how to retrieve them, if needed (kinetostatic equations). For the
first task, we postulated Lagrange’s principle (LP); while for the second, we have
utilized the method of Lagrangean multipliers. This latter (recall last part of }3.2) is
the mathematical expression of the principle of relaxation, or freeing, or liberation, of
the constraints (PRC)—the second pillar of analytical mechanics, and its logical
counterpart to the Eulerian cut principle (‘‘free-body diagram’’) for calculating inter-
nal forces, of the stereomechanical approach.

It was Hamel who, around 1916 (publ. 1917), recognized the cardinal importance
of this principle and introduced the term Befreiungsprinzip for it. Up until then, it
had not been stated explicitly anywhere. Lagrange, in his admirably informal style,
had simply said about it, ‘‘Car c’est en quoi consiste l’esprit de la méthode de cette
section. . . . Notre méthode donne, comme l’on voit, le moyen de déterminer ces
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forces et ces résistances; ce qui n’est pas un des moindres avantages de cette méth-
ode’’. [Lagrange, 1965 (reprint of 4th ed.), vol. 1, p. 73, emphasis added]. Even

was not sufficiently acknowledged, explicitly. That is why its extension to kinetics,
a nontrivial matter, was aptly called by Heun (early 1900s) kinetostatics¼ the deter-
mination of internal and external reactions in moving rigid systems—an important
mechanical engineering problem (see also Stäckel, 1905, pp. 667–670). Let us exam-
ine it more closely. Following Hamel (1927, p. 26; 1949, pp. 74, 173, 522):
� In addition to the constrained system, we form (mentally) a relaxed, or freed

one, in which a particular, or all, constraints have been eliminated. The equations of
motion remain formally the same, except that now the former reactions are
impressed forces whose virtual work isX

�D ��D ¼
X X

�D aDk

� �
�qk; ð3:7:1Þ

for a particular �D ¼ LD, the corresponding ‘‘relaxed virtual work’’ is

ð� 0WRÞD � �D ��D ¼ LD ��D; ð3:7:1aÞ
as if the constraint ��D ¼ 0 did not exist.
� The former reactions have now become impressed forces that depend on the

previously forbidden deformation/motion, i.e., on those geometrical/kinematical vari-
ables that were not allowed to vary in the non-relaxed system (and, possibly, on other
non-mechanical variables — see below).
� A word of caution: When applying this principle to cases where the freed system

requires more than mechanics (M) for its description — that is, wherever the addi-
tional, relaxed, deformation/motion introduces additional, say thermodynamical (T)
and/or electrodynamical (E) variables, mutually coupled — we should expect such a
dependence to be reflected in the multipliers; that is, symbolically, � ¼ �ðM;T ;EÞ.
As long as we stay within pure mechanics (this book), however, no such problems
seem to arise. See for instance Serrin (1959, pp. 146–147), who warns against the
blind generalization of the principle from simple mechanics [e.g., the compressible
perfect, or ideal, fluid viewed as a freed incompressible perfect fluid, whose stress
(pressure), according to the PRC, depends on the formerly forbidden com-
pressibility; i.e., on the density which, before, was not allowed to vary], to more
physically complex cases (e.g., a gas where the pressure is a definite thermodynamical
variable).

Example 3.7.1 Applications of PRC.
(i) In pure (or slippingless) rolling, the friction is a reaction force. It follows that in

slipping, the friction depends on the previous constraint; that is, on the relative
velocity of the two contacting surfaces, and on other material coefficients; and,
hence, it has become an impressed force.

(ii) The tension in an extensible cable depends on the latter’s stretch, and other
material coefficients.
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today, it is rarely stated explicitly in the English language literature: for example,
Lawden (1972, p. 54; who (seems to have) coined our term “method of relaxation of
constraints”), Leipholz (1978, 1983; who calls it “relaxation principle of Lagrange”),
Serrin (1959, pp. 146–147; who refers to it as “Lagrange’s Freeing Principle”); and
Bahar (1970–1980; who describes it, instructively, as “the rubber-band approach”).
Such a method was long known and routinely applied in analytical statics; although it



(iii) Statics: Let us calculate the reaction B of the simply supported (statically
determinate) beam of fig. 3.16(a). We allow, mentally, the formerly unyielding sup-
port B to move down (or up) and then calculate the virtual works of all impressed
forces on the so relaxed beam, i.e., of the ever impressed P and of the former reaction
B, and set it equal to zero [fig. 3.16(b)]:

� 0W ¼ P �p � B �b ¼ 0 ) B ¼ ð�p=�bÞP ¼ ða=lÞP; ða1Þ

(since �p=�b ¼ finite, and independent of the �p, �b magnitudes); and, similarly,
A ¼ ðb=lÞP. Because of the linearity of � 0W , we can calculate one or more reactions
at a time, or even all of them simultaneously.

(iv) Dynamics: Let us calculate the string tension S in the planar mathematical
pendulum of mass m and length l (fig. 3.17).

(a) Relaxed LP version. Here, we allow the inextensible string to become a rubber
band, compute the virtual works of all (old and new) impressed and inertial forces
(i.e., apply LP to the relaxed system), and then enforce on the result the old con-
straint, r ¼ l:

� 0W jr¼l ¼ ðW cos�� SÞ �r� ðW sin�Þðr ��Þ


r¼l ¼ ðW cos�� SÞ �r� ðW l sin �Þ ��

¼ Qr �rþQ� �� ) Qr ¼W cos�� S; Q� ¼ �W l sin�; ða2Þ

and similarly for �I ¼ Er �rþ E� ��, where the relaxed (double) kinetic energy is
2T ¼ m½ð _rrÞ2 þ r2ð _��Þ2�, and therefore:

Er � ð@T=@ _rrÞ:� @T=@r ¼ ðm _rrÞ:� mrð _��Þ2


r¼l ¼ �m lð _��Þ2; ðbÞ

E� � ð@T=@ _��Þ:� @T=@� ¼ ðmr2 _��Þ:


r¼l ¼ m l 2 €��: ðcÞ

Hence, the relaxed ! constrained LP, ð�I ¼ � 0WÞ


r¼l , yields

m lð _��Þ2 ¼ S �W cos� ðkinetostaticÞ; m l 2 €�� ¼ �W l sin � ðkineticÞ: ðdÞ

First, we solve the kinetic equation, the second of (d) (plus initial conditions), and
obtain the motion � ¼ �ðtÞ; and then, substituting the latter into the kinetostatic
equation, the first of (d), we get the tension S ¼ mlð _��Þ2 þW cos� ¼ SðtÞ. Had we
started with the constrained (double) kinetic energy ml2ð _��Þ2, we would not have been
able to obtain the kinetostatic equation, just the kinetic one.
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Figure 3.16 Principle of relaxation in statics: reactions on a simply supported beam.



(b) Lagrangean multipliers. In this version of LP/PRC, we have

Qr ¼W cos�; Q� ¼ ðWr sin�Þ


r¼l ¼W l sin�; ðeÞ

since S is a reaction, while q1 ¼ r and q2 ¼ � are subject to the constraint

f � r� l ¼ 0 ) �f ¼ ð@f =@rÞ �r ¼ ð1Þ �r ¼ 0; ðf Þ
that is, n ¼ 2, m ¼ 1. Hence, the Routh–Voss equations yield

Er ¼ Qr þ �ð@f =@rÞ: � mlð _��Þ2 ¼W cos�þ �ð1Þ; ðg1Þ
E� ¼ Q� þ �ð@f =@�Þ: ml 2 €�� ¼ �W l sin�; ðg2Þ

while from � 0WR ¼ �S �r ¼ Rr �r ¼ �ð1Þ �r, we conclude that � ¼ �S, thus recover-
ing (d). Had we written the constraint as f � l � r ¼ 0) ð�1Þ � �r ¼ 0, we would
have Rr ¼ �ð@f =@rÞ ¼ �ð�1Þ ¼ ��, and, accordingly, � 0WR ¼ �S �r ¼ Rr �r ¼
�ð�1Þ �r) � ¼ S, so that the final equations of motion would be unchanged.
Also, since � 0WR 
 0 for �r � 0 (}3.2.15, 15a), it follows that S > 0, as expected.

Example 3.7.2 Relaxation of Constraints, External Reactions: Pendulum with
Horizontally Moving Support (Butenin, 1971, pp. 73–74). A block A of mass M,
capable of translating along the smooth horizontal axis/floor Ox, is smoothly
hinged to a massless rod AB of length l. The latter carries at its other end a parti-
cle B of mass m [fig. 3.18(a)]. Let us find the floor reaction on A and its motion
on the O��xy plane.

Equations of Motion

For the relaxed system [fig. 3.18(b)], we introduce the following equilibrium coordi-
nates:

q1 ¼ yA � y; q2 ¼ xA � x; q3 ¼ �; ðaÞ
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Figure 3.17 Principle of constraint relaxation applied in the calculation of the tension of the

inextensible string of a planar pendulum.
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so that the floor constraint is simply q1 ¼ 0; that is, here f � n� m ¼
3� 1 ¼ 2 DOF . Since the (inertial) coordinates of A and B are, respectively,

ðxA; yAÞ ¼ ðx; yÞ; ðxB; yBÞ ¼ ðxþ l sin�; y þ l cos�Þ; ðbÞ

the (double) kinetic energy of the system becomes, successively,

2T ¼M½ð _xxAÞ2 þ ð _yyAÞ2� þm½ð _xxBÞ2 þ ð _yyBÞ2�
¼ � � � ¼ ðM þmÞð _xxÞ2 þ ðM þmÞð _yyÞ2 þ ðml 2Þð _��Þ2

ðcÞ

and so the constrained (double) kinetic energy is

2T



y¼0 � 2To ¼ ðM þmÞð _xxÞ2 þ ðm l2Þð _��Þ2 þ 2ðm l cos�Þ _xx _��: ðdÞ

Next, the relaxed virtual work � 0W equals, successively,

� 0W ¼ ðMgÞ �yþ ðmgÞ �yB ¼ ðMgÞ �yþ ðmgÞ �ðyþ l cos�Þ
¼ ½ðM þmÞg� �yþ ð�mg l sin�Þ �� ¼ Qx �xþQy �yþQ� ��;

from which it follows that

Qx ¼ 0; Qy ¼ ðM þmÞg; Q� ¼ �mg l sin�; ðeÞ

that is, Qy could not have been obtained from the constrained virtual work

� 0W



y¼0 ¼ ð� 0WÞo ¼ ð�mg l sin�Þ ��: ðf Þ
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Figure 3.18 Principle of relaxation applied to a two DOF pendulum: (a) constrained,

and (b) relaxed.

+ 2(ml cosφ)ẋφ̇− 2(ml sinφ)ẏφ̇,

y y



Therefore, the Routh–Voss equations [which, due to the chosen special equilibrium
relaxed coordinates (a), decouple] are

ðiÞ EyðT Þ ¼ Qy þ �y



o
:

½ðM þmÞ€yy�m l sin� €���m lð _��Þ2 cos��


y¼0 ¼ ðM þmÞgþ �y; ðgÞ

or, finally,

�y � � ¼ �m l½sin� €��þ cos�ð _��Þ2� � ðM þmÞg; ðhÞ

ðiiÞ ExðT Þ ¼ Qx




o
: ½ðM þ mÞ _xxþ m l cos� _���:



y¼0 ¼ 0

) ðM þmÞ _xxþ ðm l _��Þ cos� ¼ constant ðiÞ
(i.e., conservation of total linear momentum of system in the x-direction, since the

ðiiiÞ E�ðT Þ ¼ Q�




o
: ðm l2 _��þm l cos� _xxÞ:þ m l sin� _xx _�� ¼ �mg l sin�;

or, after some simple manipulations,

€��þ ðcos�=l Þ€xx ¼ �ðg=l Þ sin�; ð jÞ
and for small �’s, linearizing in �, we obtain the forced pendulum-type equation:

€��þ ðg=lÞ� ¼ �ð1=lÞ€xx: ðkÞ

SOLUTION

First, we solve the two kinetic (¼ reactionless) equations (i, j/k), plus initial condi-

substitute these solutions into the kinetostatic equation (h) and obtain
� ¼ �ðt; ICÞ. Clearly, thanks to the uncoupling of the equations, all difficulty lies
in the first (kinetic) part.

REMARK

Use of the initial conditions, say �ð0Þ ¼ 0; _��ð0Þ ¼ !o; _xxð0Þ ¼ vo, in the constrained
(i.e., actual) energy conservation equation To þ Vo ¼ ðTo þ VoÞi (i for initial) where,
as found earlier,

2To ¼ ðM þmÞð _xxÞ2 þ ðml 2Þð _��Þ2 þ 2ðml cos�Þ _xx _��; ðlÞ

) 2To;i ¼ ðM þmÞðvoÞ2 þ ðml 2Þð!oÞ2 þ 2m l vo !o; ðmÞ
and

Vo ¼ mg lð1� cos�Þ ¼ �mg l cos�þ constant; ðnÞ
) Vo;i ¼ �mg l þ constant; ðoÞ

yields the additional [to (i)] integral:

To �mg l cos� ¼ To;i �mg l ¼ ðanotherÞ constant: ðpÞ
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total horizontal external force on the system vanishes).

tions: {xo, φo, ẋo, φ̇o} ≡ IC, and thus find x = x(t, IC), φ = φ(t, IC); and then we



Example 3.7.3 Relaxation of Constraints, External Reactions: Ladder (Lawden,
1972, pp. 16–17, 54; also Osgood, 1937, pp. 322–325). A homogeneous bar (lad-
der) of length 2l and mass m, with one of its ends, A, constrained to move on a
smooth vertical wall and the other, B, on a smooth horizontal floor [fig. 3.19(a)],
is released, say with initial conditions (IC) �ð0Þ ¼ �o; _��ð0Þ ¼ 0, and slides on the
vertical plane O��xy. Let us find its equations of motion and external reactions: A
from the wall and B from the floor, on the ladder. For algebraic simplicity, first,
we relax only the wall and find A [fig. 3.19(b)]; then, we relax only the floor and
find B [fig. 3.19(c)].

(i) Wall relaxation: Assume that the wall can translate horizontally, and let
x ¼ xðtÞ be its generic distance/coordinate from the original wall (or from another
fixed wall to its right, or left). With q1 ¼ x; q2 ¼ �, the wall constraint is x ¼ 0, or
x ¼ constant; that is, f � n�m ¼ 2� 1 ¼ 1. Next, the (double) relaxed kinetic
energy, by König’s theorem (G ¼ center of mass), is

2T ¼ ðml2=3Þð _��Þ2 þmvG
2 ðinvoking the law of cosinesÞ

¼ ðml2=3Þð _��Þ2 þm½ð _xxÞ2 þ l2ð _��Þ2 þ 2l _xx _�� cos ��; ðaÞ

) 2T



x¼o � 2To ¼ ð4m l2=3Þð _��Þ2 ¼ constrained ðdoubleÞ kinetic energy; ðbÞ

and the total relaxed virtual work (to the first order in ��, and with A as an
impressed force) is

� 0W ¼ A �xþmg l½cos �� cosð�þ ��Þ�
¼ A �xþmg l½cos �� ðcos �� sin � ��þ � � �Þ�
¼ A �xþ ðmg l sin �Þ �� ) Qx ¼ A; Q� ¼ mg l sin �; ðcÞ

Q� can also be found from the constrained system potential Vo ¼ mgl cos �:

Q� ¼ �@Vo=@� ¼ �@ðmgl cos �Þ=@� ¼ mgl sin �: ðdÞ
In view of the above, the equations of motion are

ðaÞ E�ðTÞ



o
¼ E�ðToÞ ¼ Q�




o
:

½ð4l€��=3Þ þ cos � €xxÞ�


o
¼ ð4l=3Þ€�� ¼ g sin �; ðeÞ
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Figure 3.19 Plane motion of homogeneous ladder on smooth wall and floor: (a) constrained,
and (b, c) partially constrained.



ðbÞ ExðTÞ ¼ Qx




o
:

m½€xxþ ðl cos �Þ€��� l sin �ð _��Þ2�


o
¼ m l½ðcos �Þ€��� sin �ð _��Þ2� ¼ A: ðfÞ

SOLUTION

First, we solve the kinetic equation (e) for � ¼ �ðt; ICÞ, and then insert that value
into the kinetostatic equation (f), thus obtaining A ¼ Aðt; ICÞ, or A ¼ Að�; ICÞ.
Indeed, due to the well-known energetic identity _�� €�� ¼ ðd=dtÞ½ð _��Þ2=2�, (e) integrates
to (ladder in contact with wall)

2lð _��Þ2=3 ¼ gðcos �o � cos �Þ ) _�� ¼ � � � ; €�� ¼ � � � ; ðgÞ

and substituting into (f) yields the wall reaction as a function of the angle � (and the
initial condition �o as parameter):

A ¼ 3mgð3 cos �� 2 cos �oÞ sin �
�
4; ðhÞ

an expression that shows that the ladder loses contact with the wall when
cos � ¼ 2 cos �o=3; that is, when the end A has descended by 2=3 of its initial height
above the floor.

REMARK

Equation (g) also results from energy conservation (i for initial):

To þ Vo ¼ ðTo þ VoÞi ) 2m l2ð _��Þ2=3þ mg l cos � ¼ 0þ mg l cos �o: ðiÞ

(ii) Floor relaxation [fig. 3.19(c)]: By König’s theorem (and the theorem of
cosines), we find

2T ¼ ðml 2=3Þð _��Þ2 þmvG
2

¼ ðml 2=3Þð _��Þ2 þm½ð _yyÞ2 þ l 2ð _��Þ2 � 2l _yy _�� sin ��
¼ ð4ml 2=3Þð _��Þ2 þmð _yyÞ2 � ð2m l sin �Þ _yy _��; ð jÞ

) 2T



y¼o � 2To ¼ ð4ml2=3Þð _��Þ2 ¼ constrained ðdoubleÞ kinetic energy; ðkÞ

and the total relaxed virtual work (to the first order in ��, and with B as an
impressed force) is

� 0W ¼ B �y�mg �y�mg �ðl cos �Þ ¼ ðB�mgÞ �yþ ðmgl sin �Þ ��
) Qy ¼ B�mg; Q� ¼ mg l sin �: ðlÞ

Hence, the equations of motion are

ðaÞ E�ðTÞ



o
¼ E�ðToÞ ¼ Q�




o
:

½ðml2 €��=3Þ þ ðml2 _���ml _yy sin �Þ:þml _�� _yy cos ��


o
¼ mgl sin �;

) ð4l=3Þ€�� ¼ g sin � ðas beforeÞ; ðmÞ
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ðbÞ EyðTÞ ¼ Qy




o
½¼ Qy




o
þ �; if we set Qy ¼ �mg; � ¼ B�:

½mð _yy� l sin � _��Þ:�


o
¼ B�mg

) �ml½ðsin �Þ€��þ cos �ð _��Þ2� ¼ B�mg; ðnÞ

from which [and invoking (g, m)]

B ¼ �mlð3g sin �=4�Þ sin ��ml cos �½ð3g cos �o=2lÞ � ð3g cos �=2lÞ� þmg

¼ ðmg=4Þ½�3ð1� cos2 �Þ þ 6 cos2 �� 6 cos � cos �o� þmg

¼ ðmg=4Þ½1� 6 cos � cos �o þ 9 cos2 �� ¼ function of � and �oð> 0Þ: ðoÞ

For cos � ¼ 2 cos �o=3 [loss of contact with the wall, from (h)], the above yields
B ¼ mg=4.

Example 3.7.4 Relaxation of Constraints, Internal Reactions: Atwood’s Machine.
Two particles, P1 and P2, of respective masses m and M, are connected by a light
and inextensible string of negligible mass, that passes over a light, smooth, and
fixed pulley [fig. 3.20(a)]. Let us find the accelerations of P1 and P2 and the
(approximately constant) string tension S.

(i) Original (constrained) system. This well-known apparatus is subject to the
holonomic and stationary constraint

xþ ðh� XÞ ¼ constant ) x ¼ X � constant ) _xx ¼ _XX and �x ¼ �X; ðaÞ

that is, n ¼ 1. Choosing as Lagrangean coordinate q1 ¼ q ¼ x, and with the earlier
notation ð. . .Þo � ð. . .Þ




constrained system

, we find

2To ¼ ðmþMÞð _xxÞ2;
� 0W ) ð� 0WÞo ¼ ðmgÞ �x� ðMgÞ �x ¼ ðm�MÞg �x ) Qx;o ¼ ðm�MÞg
½¼ ðmg� SÞ �x� ðMg� SÞ �x; had we included the constraint reaction�; ðbÞ
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Figure 3.20 Atwood’s machine: (a) original (constrained), and (b) relaxed.



and therefore Lagrange’s sole (kinetic) equation is

ð@To=@ _xxÞ:� @To=@x ¼ Qx;o: ðmþMÞ€xx ¼ ðm�MÞg; ðcÞ
from which [plus initial conditions xðtoÞ ¼ xo; _xxðtoÞ ¼ vo] we obtain the motion
€xx ¼ � � � ) x ¼ xðtÞ ¼ � � � . Finally, the constraint yields the P2 motion X ¼
XðtÞ ¼ � � � .

(ii) Relaxed (unconstrained) system; calculation of string tension.

(a) Rubber-band version. Since the constraint is the string’s inextensibility, let us
relax it by cutting it into two separate inextensible substrings [fig. 3.20(b)], in a
manner reminiscent of the ‘‘free-body diagram’’ method (‘‘cut principle’’), so that
n ¼ 2. Choosing as Lagrangean coordinates q1 ¼ x and q2 ¼ X, we have (now
with S considered an impressed force)

2T ¼ mð _xxÞ2 þMð _XXÞ2;
� 0W ¼ ðmg� SÞ �xþ ðS �MgÞ �X ) Qx ¼ mg� S; QX ¼ S �Mg; ðdÞ

and therefore Lagrange’s equations are

ð@T=@ _xxÞ:� @T=@x ¼ Qx: m€xx ¼ mg� S; ðeÞ
ð@T=@ _XXÞ: � @T=@X ¼ QX : m €XX ¼ S �Mg: ðfÞ

These two, plus the constraint (a) (i.e., we return to the original, constrained,
system), allow us to find xðtÞ ¼ � � � ;XðtÞ � � � ;SðtÞ ¼ � � � . Eliminating S between
(e, f), and then enforcing the constraint (a) ! €xx ¼ €XX , produces the earlier equation
(c); while utilizing the solution of the latter into either (e) or (f) [or eliminating €xx ¼ €XX
between (e, f)] yields the sought reaction S ¼ ½2mM=ðmþMÞ�g.

(b) Lagrange’s multiplier version. Since the constraint is f ðx;XÞ � x� X�
constant ¼ 0, and now, with x and X treated as independent (and S no longer
considered an impressed force, but a reaction!), and taking �x, �X > 0,

� 0W ¼ ðmgÞ �x� ðMgÞ �X ) Qx ¼ mg; QX ¼ �Mg; ðgÞ
the Routh–Voss equations, with multiplier �, are

ð@T=@ _xxÞ:� @T=@x ¼ Qx þ �ð@f =@xÞ: m€xx ¼ mgþ �ð1Þ; ðhÞ
ð@T=@ _XXÞ: � @T=@X ¼ QX þ �ð@f =@XÞ: M €XX ¼ �Mgþ �ð�1Þ: ðiÞ

From the above, clearly, � 0WR � Rx �xþ RX �X ¼ �ð�x� �XÞ (¼ 0, upon en-
forcing the constraint f ¼ 0; as LP requires). But also, by direct calculation
[from fig. 3.20(b)], � 0WR ¼ �S �xþ S �X ¼ �Sð�x� �XÞ. Hence, it follows that
� ¼ �Sð< 0Þ, and so (h, i) coincide with (e, f), respectively.

REMARKS

(a) Had we written the above constraint as f ðx;XÞ � X � x� constant ¼ 0, the
Routh–Voss equations would be

ð@T=@ _xxÞ:� @T=@x ¼ Qx þ �ð@f =@xÞ: m€xx ¼ mgþ �ð�1Þ; ð jÞ
ð@T=@ _XXÞ: � @T=@X ¼ QX þ �ð@f =@XÞ: M €XX ¼ �Mgþ �ðþ1Þ; ðkÞ
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but since, now,

� 0WR � Rx �xþ RX �X ¼ ð��Þ �xþ ð�Þ �X ¼ ��ð�x� �XÞ ¼ �Sð�x� �XÞ;
we conclude that � ¼ Sð> 0Þ, and so (h, i) coincide with (j, k), respectively.

The lesson of this is that the multiplier adjusts its sign [and/or value, under
mathematically different but physically equivalent forms of the constraint
f ðx;XÞ ¼ 0], so that the final equations of motion retain their invariant physical
content; and, of course, � 0WR ¼ 0.

(b) In terms of the equilibrium coordinates q1 ¼ x� X � constant and q2 ¼
xð) dq1 ¼ 0, _qq1 ¼ 0, �q1 ¼ 0), the constraint is simply f � q1 ¼ 0 (or a constant).
For such a choice, since now x ¼ q2 and X ¼ q2 � q1 � constant (no constraint
enforcement yet!),

2T ¼ mð _xxÞ2 þMð _XXÞ2 ¼ � � � ¼Mð _qq1Þ2 þ ðmþMÞð _qq2Þ2 � 2M _qq1 _qq2; ðlÞ
� 0W ¼ ðmgÞ �x� ðMgÞ �X ¼ � � � ¼ ðMgÞ �q1 þ ðm �MÞg �q2

) Q1 ¼Mg; Q2 ¼ ðm�MÞg; ðmÞ
and so, in these coordinates, the Routh–Voss equations decouple naturally (upon
enforcement of the constraint q1 ¼ 0, _qq1 ¼ 0; . . . at the end) to a kinetostatic equa-
tion:

ð@T=@ _qq1Þ: � @T=@q1 ¼ Q1 þ �ð@f =@q1Þ:
�M€qq2 ¼Mgþ �ðþ1Þ; or M€xx ¼ �Mg� �; ðnÞ

and a kinetic one:

ð@T=@ _qq2Þ:� @T=@q2 ¼ Q2 þ �ð@f =@q2Þ:
ðM þmÞ€qq2 ¼ ðm�MÞgþ �ð0Þ; or ðM þmÞ€xx ¼ ðm�MÞg; ðoÞ

(R2 ¼ 0, since q2 is unconstrained); and since

� 0WR � R1 �q1 þ R2 �q2 ¼ � �q1 ¼ �Sð�x� �XÞ; ðpÞ
it follows that now � ¼ �S, as observed earlier; that is, (n, o) coincide with (i, c),
respectively.

Finally, we notice that E2ðToÞ ¼ E2ðTÞ



o
¼ ðM þmÞ€qq2 ¼ ðM þmÞ€xx; while by (l),

2T jo ¼ 2To ¼ ðmþMÞð _qq2Þ2, and therefore E1ðToÞ ¼ 0 6¼ E1ðTÞjo ¼ �M€qq2.
(iii) Inclusion of rotary inertia of pulley. If the pulley is assumed circular and

homogeneous with radius r, mass , and radius of gyration k about its pin C,
then it is not hard to show that the earlier results modify slightly to

€xx¼ ðm�MÞg�½ðmþMÞþðk=rÞ2�; Left cable¼mðg� €xxÞ;
Right cable¼Mðgþ €xxÞ: ðqÞ

Example 3.7.5 PRC and the Determinacy versus Indeterminacy of Lagrange’s
Equations. Let us consider a homogeneous sphere (or cylinder, or disk) of mass
m and radius r, in plane motion (rolling or slipping) down a fixed inclined plane
of slope with the horizontal � (fig. 3.21). In terms of the ‘‘natural’’ Lagrangean
coordinates of the problem q1 ¼ y and q2 ¼ x (coordinates of center of mass G)
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and q3 ¼ �, the constraints are

f1 � y� r ¼ 0 ) �f1 ¼ �y ¼ 0 ðcontactÞ; ðaÞ
f2 � x� r� ¼ 0 ) �f2 ¼ �x� r �� ¼ 0 ðif the sphere rollsÞ: ðbÞ

By König’s theorem, the (double) relaxed kinetic energy of the sphere, rolling or
slipping, is

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2� þ Ið _��Þ2 ðcÞ

(I ¼ moment of inertia of sphere about axis through G, normal to plane of
motion ¼ 2mr2=5). Now, and as is well known from the undergraduate dynamics
treatment of this problem, we distinguish the following two cases.

(i) The sphere rolls ½jF=Nj <  ¼ coeRcient of ðstaticÞ friction�.
(a) Relaxation of constraints; rubber-band approach. Here, f � n�m ¼

3� 2 ¼ 1. The virtual work of all forces is (no constraint enforcement!)

� 0W ¼ mg sin � �x�mg cos � �yþ N�y� Fð�x� r ��Þ
¼ Qx �xþQy �yþQ� ��

) Qx ¼ mg sin �� F ; Qy ¼ N �mg cos �; Q� ¼ rF : ðdÞ

With eqs. (c, d) Lagrange’s equations yield

ð@T=@ _xxÞ:� @T=@x ¼ Qx: m€xx ¼ mg sin �� F ; ðe1Þ
ð@T=@ _yyÞ:� @T=@y ¼ Qy: m€yy ¼ N �mg cos �; ðe2Þ
ð@T=@ _��Þ:� @T=@� ¼ Q�: I €�� ¼ rF ; ðe3Þ
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and along with the constraints (a, b) they constitute a determinate system of five
equations in the five unknown functions of time: x, y, �, N, F .

(b) Relaxation of constraints; Lagrangean multiplier approach. Here, too, f �
n�m ¼ 3� 2 ¼ 1. Now the virtual work of all forces is [recall eqs. (a, b); the
work of the reactions F and N appears indirectly as virtual work of the multipliers]

� 0W ¼ mg sin � �x�mg cos � �yþ �1 �f1 þ �2 �f2
¼ ðmg sin �þ �2Þ �xþ ð�mg cos � þ �1Þ �yþ ð�r �2Þ ��
¼ ðQx þ RxÞ �xþ ðQy þ RyÞ �yþ ðQ� þ R�Þ �� ðf1Þ

) Qx ¼ mg sin �; Rx ¼ �1ð@f1=@xÞ þ �2ð@f2=@xÞ ¼ �1ð0Þ þ �2ð1Þ ¼ �2;
Qy ¼ �mg cos �; Ry ¼ �1ð@f1=@yÞ þ �2ð@f2=@yÞ ¼ �1ð1Þ þ �2ð0Þ ¼ �1;
Q� ¼ 0; R� ¼ �1ð@f1=@�Þ þ �2ð@f2=@�Þ ¼ �1ð0Þ þ �2ð�rÞ ¼ ��2r:

ðf2Þ

With eqs. (c, h, i) the Routh–Voss equations yield

ð@T=@ _xxÞ:� @T=@x ¼ Qx þ Rx: m €xx ¼ mg sin �þ �2; ðg1Þ
ð@T=@ _yyÞ:� @T=@y ¼ Qy þ Ry: m €yy ¼ �mg cos �þ �1; ðg2Þ

ð@T=@ _��Þ:� @T=@� ¼ Q� þ R�: I €�� ¼ ��2r; ðg3Þ

and along with eqs. (a, b) they constitute a determinate system of five equations
in the five unknowns: x; y; �; �1; �2. Upon calculating � 0WR � �1 �f1 þ �2 �f2 ¼
�1 �yþ �2ð�x� r ��Þ and equating it with � 0WR ¼ ð�FÞ �xþ ðNÞ �yþ ðF rÞ ��, cal-
culated from the relaxed free-body diagram of the sphere, we immediately conclude
that �1 ¼ N and �2 ¼ �F . [Also, a ‘‘mixed’’ relaxation approach; i.e., part rubber
band (e.g., including the virtual work of N directly) and part multiplier (e.g., includ-
ing the virtual work of F via a �2 �f2 term) would have resulted in completely
equivalent results.]

(c) Embedding of all constraints. Enforcing both eqs. (a, b) into T and � 0W and
keeping � as the sole Lagrangean coordinate (i.e., n ¼ 1, m ¼ 0), we obtain

2To ¼ mðr _��Þ2 þ Ið _��Þ2 ¼ ICð _��Þ2 ðhÞ

(IC � I þmr2 ¼ moment of inertia of sphere about axis through contact point C,
normal to plane of motion ¼ 7mr2=5),

� 0Wo ¼ mg sin � �x ¼ Q�;o �� ) Q�;o ¼ mgr sin �: ðiÞ

With eqs. (h, i), the sole (kinetic) Lagrangean equation yields

IC €�� ¼ mg r sin �; or; explicitly; €��� ð5g=7rÞ sin � ¼ 0; ð jÞ

and with the initial conditions, say �ð0Þ ¼ �o and _��ð0Þ ¼ !o, readily yields � ¼ �ðtÞ.
Then, using the constraints (a, b), we obtain x ¼ xðtÞ and y ¼ yðtÞ. However, to find
the reactions N and F , we either have to apply relaxation [as in parts (i.a) and (i.b) of
this example], or go outside Lagrangean mechanics and apply the Newton–Euler
momentum principles to the sphere. If we embed only some of the constraints into
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T and � 0W , say eq. (a) but not eq. (b) (i.e., n ¼ 2, m ¼ 1), then

2T ¼ mð _xxÞ2 þ Ið _��Þ2; ðkÞ

� 0W ¼ ðmg sin �� FÞ �xþ ðF rÞ �� ¼ Qx �xþQ� ��

) Qx ¼ mg sin �� F ; Q� ¼ rF ; ðlÞ

and so Lagrange’s equations yield

ð@T=@ _xxÞ:� @T=@x ¼ Qx: m€xx ¼ mg sin �� F ; ðm1Þ
ð@T=@ _��Þ:� @T=@� ¼ Q�: I €�� ¼ r F ; ðm2Þ

and along with the constraint (b) constitute a determinate system of three equations
in the three unknowns: x, �, F . To find y and N we can either use relaxation, as
before, or resort to the Newton–Euler momentum principles.

In sum: as long as the sphere rolls, all Lagrangean approaches (zero, partial, or
complete embedding of the holonomic constraints) result in determinate systems of
equations for their variables.

(ii) The sphere slips. In this case, the sole constraint is eq. (a):

f1 � y� r ¼ 0 ) �f1 ¼ �y ¼ 0 ðcontactÞ; ðaÞ
while eq. (b) is replaced by the constitutive equation

jF=N j ¼ ; or jF j ¼  jN j ½ ¼ coeRcient of ðkineticÞ friction�: ðnÞ
(a) Relaxation of constraints; rubber-band approach. Here, f � n�m ¼ 3� 1 ¼ 2,

and so T and � 0W are given by eqs. (c, d), respectively. Therefore, Lagrange’s
equations are again eqs. (e–g); and along with eqs. (a), (r) constitute a determinate
system of five equations in the five unknowns: x, y, �, N, F .

(b) Relaxation of constraints; Lagrange’s multiplier approach. Here, too,
f � n�m ¼ 3� 1 ¼ 2;T is given by eq. (c), while [in the spirit of eq. (f1), the normal
reaction appears through a multiplier]

� 0W ¼ mg sin � �x�mg cos � �y� F �xþ ðF rÞ ��þ �1 �f1
¼ ðmg sin � � FÞ �xþ ð�1 �mg cos �Þ �yþ ðF rÞ ��; ðo1Þ

that is,

Qx ¼ mg sin �� F ; Rx ¼ �1ð@f1=@xÞ ¼ 0;

Qy ¼ �mg cos �; Ry ¼ �1ð@f1=@yÞ ¼ �1;

Q� ¼ Fr; R� ¼ �1ð@f1=@�Þ ¼ 0: ðo2Þ

Hence, the Routh–Voss equations yield

ð@T=@ _xxÞ: � @T=@x ¼ Qx þ Rx: m €xx ¼ mg sin �� F ; ðp1Þ
ð@T=@ _yyÞ:� @T=@y ¼ Qy þ Ry: m€y ¼ �mg cos �þ �1; ðp2Þ
ð@T=@ _��Þ: � @T=@� ¼ Q� þ R�: I €�� ¼ F r; ðp3Þ
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and along with eqs. (a, n) constitute a determinate system of five equations in the five
unknowns: x, y, �, N, F . Here too we can easily show that �1 ¼ N.

(c) Embedding of all constraints. Here, f � n�m ¼ 2� 1 ¼ 1. Enforcing eq. (a)
into T and � 0W (¼ virtual work of all impressed forces), we have

2T ¼ mð _xxÞ2 þ Ið _��Þ2; ðqÞ
� 0W ¼ ðmg sin �� FÞ �xþ ðF rÞ �� ¼ Qx �xþQ� �� ðr1Þ
) Qx ¼ mg sin �� F ; Q� ¼ r F ; ðr2Þ

and so Lagrange’s equations yield

ð@T=@ _xxÞ: � @T=@x ¼ Qx: m €xx ¼ mg sin �� F ; ðs1Þ
ð@T=@ _��Þ:� @T=@� ¼ Q�: I €�� ¼ r F : ðs2Þ

But this is an indeterminate system, since we have generated two equations for our
three unknowns: x, �, F ; and adding eq. (n) would introduce the extra unknown N.

As the handling of the previous cases has shown, such an apparent failure of the
Lagrangean method to produce a ‘‘well-posed’’ problem is, generally, due to (i) our
embedding of all (here holonomic) constraints into T and � 0W , and (ii) the existence
of impressed forces that depend explicitly on (some or all of) the constraint reactions.
(Similar indeterminacy will result if we embed all nonholonomic constraints into T
and � 0W via quasi variables.) To achieve determinacy, either we apply the principle
of relaxation of the constraints; or we go outside of Lagrangean mechanics, usually
applying the Newton–Euler principles of linear/angular momentum.

REMARK

Similar ‘‘indeterminacies’’ appear often in the Newton–Euler method; for example,
by application of the momentum principles to an inappropriate free-body diagram.
Here, determinacy is attained through the use of additional judiciously chosen sub–
free-body diagrams, and subsequent application of the momentum principles to the
resulting subbodies; for example, the well-known method of sections, of A. Ritter, in
the statics of trusses.

Problem 3.7.1 Determinacy versus Indeterminacy of Lagrange’s Equations.
Consider a thin homogeneous bar AB of mass m and length 2l, in plane motion,
sliding on a fixed horizontal rough floor and a fixed vertical rough wall; in both,
contacts with the same friction coefficient  (fig. 3.22).

(i) Show that if we embed all (holonomic) constraints into T and � 0W , and keep
� as the sole positional coordinate, then

2To ¼ ð4=3Þml2ð _��Þ2; ðaÞ
� 0Wo ¼

�
mgl sin �� 2l sin �ðAÞ � 2l cos �ðBÞ	 ��; ðbÞ

and therefore the (kinetic) Lagrangean equation for � is

4mlðd2�=dt2Þ ¼ 3
�
mg sin �� 2 sin �ðAÞ � 2 cos �ðBÞ	: ðcÞ

Is this a determinate problem for the equations and unknowns involved?
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(ii) Show that if we apply the principle of relaxation, then (with positional co-
ordinates x; y ¼ Cartesian coordinates of bar’s center of mass, and �)

2T ¼ m½ _xx2 þ _yy2 þ ð1=3Þl2 _��2�; ðdÞ
� 0W ¼ ðA � BÞ �xþ ðBþ A�mgÞ �y

þ lðB sin �� A cos �� A sin �� B cos �Þ ��; ðeÞ

and therefore Routh–Voss equations yield

m €xx ¼ A� B; ðfÞ
m €yy ¼ Bþ A�mg; ðgÞ
ðml=3Þ€�� ¼ Bðsin ��  cos �Þ � Aðcos � þ  sin �Þ: ðhÞ

Is this system of equations (plus constraints) determinate in its unknowns?
(iii) Show that by eliminating A and B from eq. (h), via eqs. (f, g), and the x, y,

� constraints, we obtain the kinetic �-equation

2lð2 � 2Þðd2�=dt2Þ þ 6lðd�=dtÞ2 þ 3g½ð1� 2Þ sin �� 2 cos �� ¼ 0: ðiÞ

Example 3.7.6 Motion under Frictionless Unilateral Constraints. Let us consider
a holonomic n DOF system under the single unilateral constraint f ðt; qÞ 
 0.
Then, two types of motion are possible:

(i) f > 0: The system escapes the constraint, and its equations of motion
Ek ¼ Qk ðk ¼ 1; . . . ; nÞ hold until f ¼ 0 vanishes.
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Figure 3.22 Plane sliding of homogeneous bar on rough

wall and floor.



(ii) f ¼ 0: The system obeys the constraint, and its motion is governed by, say its
Routh–Voss equations Ek ¼ Qk þ �ð@f =@qkÞ, to which we must also append
f ðt; qÞ ¼ 0. As long as f ¼ 0, we must also have

df =dt ¼
X
ð@f =@qkÞðdqk=dtÞ þ @f =@t ¼ 0 ðvelocity compatibilityÞ; ðaÞ

d 2f =dt2 ¼
X
ð@f =@qkÞðd 2qk=dt

2Þ þ
XX

ð@2f =@ql@qkÞðdql=dtÞðdqk=dtÞ
þ 2

X
ð@2f =@t @qkÞðdqk=dtÞ þ @2f =@t2 ¼ 0

ðacceleration compatibilityÞ: ðbÞ

The nþ 1 equations [Routh–Voss þ eq. (b)] determine, at every instant for which
f ¼ 0, the n ðd 2q=dt2Þ’s and t. Further, in such a case, the n �q’s may satisfy (a)
�f ¼ 0, or (b) �f > 0. In the former case, � 0WR � � �f ¼ 0; in the latter, � 0WR > 0
(for every �q compatible with �f > 0) ) � > 0 (i.e., these (normal) reactions have a
definite sense; for example, when a body B contacts an obstacle, the reaction from
the latter to B must be directed toward B).

In sum: an ( f ¼ 0)-type of motion is physically meaningful as long as � remains
positive.

Finally, let us examine the following three possible cases (at a given instant):

(i) f ¼ 0 and df =dt � 0: then we have impact (! chap. 4); the velocities at the
end of it will be such that df =dt 
 0.

(ii) f ¼ 0 and df =dt > 0: then f will take positive values, and we are back to the
case f > 0.

(iii) f ¼ 0 and df =dt ¼ 0: then we have one of the following two possibilities: (a)
constraint-preservingmotion ( f ¼ 0), or (b) escaping from it ( f > 0). In the first case,
we can calculate the (d 2q=dt2)’s and �ð> 0Þ from the Routh–Voss equations and eq.
(b); while in the second, the (d 2q=dt2)’s are found from Ek ¼ Qk, and then
d 2f =dt2 � a 
 0 ( f , after being zero, will become later positive). Denoting by
Dðd 2q=dt2Þ the ðd 2q=dt2Þ-difference in the above two cases, and since the Q’s, q’s,
and ðdq=dtÞ’s are the same for both, we obtain [with kinetic energy:
2T ¼PP

Mklðdqk=dtÞðdql=dtÞ ¼ positive definite 
 0]X
MklDðd 2ql=dt

2Þ ¼ �ð@f =@qkÞ; ðcÞ

and similarly from eq. (b)X
ð@f =@qkÞDðd 2qk=dt

2Þ ¼ �a: ðdÞ

Combining the above we obtain

�a� ¼
XX

Mkl Dðdqk=dtÞDðdql=dtÞ ¼ positive deOnite 
 0;

that is, since � > 0, it follows that a � 0. Hence, cases (iii.a, b) are complementary to
each other, and thus only one of them will be physically acceptable. For example, in a
constraint-preserving motion ( f ¼ 0), as long as � > 0, an escape from it is impos-
sible; such an escape will happen if �, in going from þ to �, vanishes.

So, basically, the study of the escape from a unilateral constraint can be made
equally well either (i) by looking at the sign of the multiplier � in the constraint-
preserving motion, or (ii) by examining if the escaping assumption leads to f > 0.
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The general theory of unilateral constraints has been developed by the ‘‘French
school’’ of Appell, Delassus, Pérès, Beghin, Bouligand, et al.; see, for example, Pérès
(1953, pp. 301–328); also (alphabetically): Glocker (1995), Hamel (1949, pp. 219–
220) for a(n implicitly applied) postulate of continuous transition from the state where
a unilateral constraint holds to the one where that constraint is abandoned (moment
of loss of contact, or separation), Zhuravlev et al. (1993).

3.8 EQUATIONS OF MOTION: SPECIAL FORMS

We have established the four basic types of equations of motion (}3.5); namely, the
equations of

(i) Lagrange and Routh–Voss (holonomic variables, motion and reactions coupled);

(ii) Maggi (holonomic variables, motion and reactions uncoupled);
(iii) Hamel (nonholonomic variables, motion and reactions uncoupled); and

(iv) Appell (holonomic and/or nonholonomic variables, motion and reactions coupled

and/or uncoupled).

Let us now see the various special forms that these equations assume, for special
choices of the coordinates and forms of the constraints.

3.8.1 Holonomic Constraints

Holonomic Coordinates

If the (additional) constraints are

fD � fDðt; qÞ ¼ 0 ðin Enite formÞ ½D ¼ 1; . . . ;mð< nÞ�; ð3:8:1aÞ
or

�fD �
X
ð@fD=@qkÞ �qk �

X
aDk �qk ¼ 0 ½in virtual ðPfaHanÞ form�; ð3:8:1bÞ

then
(A) The Routh–Voss and Appell equations specialize, respectively, to

Ek � d=dtð@T=@ _qqkÞ � @T=@qk ¼ Qk þ
X

�Dð@fD=@qkÞ; ð3:8:2aÞ
Ek � @S=@€qqk ¼ Qk þ

X
�Dð@fD=@qkÞ; ð3:8:2bÞ

or, compactly, with the convenient notation

Mk � Ek �Qk; ð3:8:2cÞ
Mk ¼

X
�Dð@fD=@qkÞ: ð3:8:2dÞ

(B) Let us find the corresponding Maggi equations. To embed (or absorb) equations
(3.8.1a) into Lagrange’s principle (LP), and following Hamel’s choice of quasi vari-
ables, we introduce n new ‘‘equilibrium’’ holonomic coordinates e � fek; k ¼ 1; . . . ; ng
by

eD � fDðt; qÞ ¼ 0; eI � fI ðt; qÞ 6¼ 0; enþ1 � qnþ1 ¼ t;

ðD ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ; ð3:8:3aÞ
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where the fIðt; qÞ are arbitrary, but such that when the system (3.8.3a) is solved for
the q’s in terms of the e’s, for each t (assuming this can be done uniquely), and the
result is substituted back into the constraints fDðt; qÞ ¼ 0, it satisfies them identically.
Clearly, the @ek=@ql ð@qk=@elÞ are the holonomic counterparts of the Pfaffian coeffi-
cients aklðAklÞ. We also notice that since

qk ¼ qkðt; eÞ ) _qqk ¼
X
ð@qk=@elÞ _eel þ @qk=@t;

€qqk ¼
X
ð@qk=@elÞ€eel þ function of e; _ee; t; ð3:8:3bÞ

we have [as expected, recalling (2.9.35 ff.)]

@qk=@el ¼ @ _qqk=@ _eel ¼ @€qqk=@€eel ¼ � � � � Akl; ð3:8:3cÞ
and, similarly, we can show that

@ek=@ql ¼ @ _eek=@ _qql ¼ @€eek=@€qql ¼ � � � � akl : ð3:8:3dÞ
Inverting (3.8.3a) results in qk ¼ qkðt; eÞ [) qkðt; eIÞ, upon enforcing eD ¼ 0], from
which we obtain the virtual system displacement representation [holonomic specia-
lization of (2.11.4a ff.)]:

�qk ¼
X
ð@qk=@elÞ �el �

X
Akl �el

¼
X
ð@qk=@eIÞ �eI �

X
AkI �eI ; upon enforcing eD ¼ 0) �eD ¼ 0

h i
: ð3:8:3eÞ

Now, combining LP, in terms of these new coordinates; that is,X
Mk �qk ¼

X
Mk

X
ð@qk=@elÞ �el

� �
¼
X X

ð@qk=@elÞMk

� �
�el

¼
X X

ð@qk=@eDÞMk

� �
�eD þ

X X
ð@qk=@eI ÞMk

� �
�eI ¼ 0; ð3:8:4aÞ

with the method of Lagrangean multipliers [in effect, rewriting the constraints
�eD ¼ 0 as 1 � �eD ¼ 0 (and 1 � �enþ1 ¼ 1 � �qnþ1 ¼ 1 � �t ¼ 0), and viewing the
�eI 6¼ 0 as satisfying the constraints 0 � �eI ¼ 0], yieldsX X

ð@qk=@eDÞMk � �D
� �

�eD þ
X X

ð@qk=@eIÞMk � 0
� �

�eI ¼ 0; ð3:8:4bÞ

from which, since now the �eD and �eI can be viewed as unconstrained, we obtain
the following holonomic Maggi-type of equations:X

ð@qk=@eDÞMk ¼ �D ðm kinetostatic equationsÞ; ð3:8:4cÞX
ð@qk=@eIÞMk ¼ 0 ðn�m kinetic equationsno multipliersÞ; ð3:8:4dÞ

or, in extenso [recalling the notation (3.8.2c)],X �ð@T=@ _qqkÞ:� @T=@qk	ð@qk=@eDÞ ¼X ð@qk=@eDÞQk þ �D; ð3:8:4eÞX �ð@T=@ _qqkÞ:� @T=@qk	ð@qk=@eIÞ ¼X ð@qk=@eIÞQk: ð3:8:4fÞ
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The kinetic equations (3.8.4d, f) can also be obtained as follows: substituting
�qk ¼

P ð@qk=@eI Þ �eI (i.e., constraints enforced) into LP we obtain, successively,X
Mk�qk ¼

X
Mk

X
ð@qk=@eIÞ �eI

� �
¼
X X

ð@qk=@eI ÞMk

� �
�eI ¼ 0;

from which, since the �eI are arbitrary, (3.8.4d, f) result.

REMARKS

(i) In forming the expressions appearing in (3.8.4c–f) we start with the uncon-
strained T and Qk’s (i.e., as functions of both the eD’s and eI ’s, etc.), then carry out
all relevant differentiations, and then, at the end, set eD ¼ 0 (just as in the nonho-
lonomic variable case); otherwise the @=@eD-differentiations would be impossible.

Also, using (3.8.3a), we can express these holonomic Maggi equations, exclu-
sively, either in terms of q; _qq; t, or in terms of e; _ee; t; whichever is more helpful/
desirable.

(ii) In view of the kinematico-inertial identity ð@T=@ _qqkÞ:� @T=@qk � @S=@€qqk,
eqs. (3.8.4c, d) can also be written, respectively, in the Appellian formsX

ð@S=@€qqkÞð@qk=@eDÞ ¼
X
ð@qk=@eDÞQk þ �D; ð3:8:4gÞX

ð@S=@€qqkÞð@qk=@eIÞ ¼
X
ð@qk=@eIÞQk: ð3:8:4hÞ

Special Case of Coordinates

An interesting special choice of e’s, in (3.8.3e), is the following:

that is, the last n� m _qq’s are taken as the new independent Lagrangean coordinates.

X
ð@qk=@eDÞMk ¼

X
ð@qD 0=@eDÞMD 0 þ

X
ð@qI=@eDÞMI

¼
X
ð�D 0DÞMD 0 þ

X
ð0ÞMI ¼ �D;

or, finally,

MD ¼ �D ðm kinetostatic equationsÞ; ð3:8:5bÞ
and X

ð@qk=@eIÞMk ¼
X
ð@qD=@eI ÞMD þ

X
ð@qI 0=@eIÞMI 0

¼
X
ð@qD=@qI ÞMD þ

X
ð�I 0IÞMI 0 ¼ 0;

or, finally,

MI þ
X
ð@qD=@qIÞMD ¼ 0 ðn�m kinetic equationsÞ: ð3:8:5cÞ
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eD � fDðt; qÞ ¼ 0; eI � qI 6¼ 0; enþ1 � qnþ1 ¼ t;

ðD ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ; ð3:8:5aÞ

The above invert readily to qD = qD(t, eI) = qD(t, qI), qI = qI, and hence [recalling
(2.11.9) ff., with bDI → ∂qD/∂qI; also, by (3.8.6a) ff. and (3.8.11a) ff.] (3.8.4c, d) special-
ize, respectively, to



Special Case of Constraints

If the constraints (3.8.1a), fD ¼ 0, have the special ‘‘equilibrium’’ (or ‘‘adapted to the
constraints’’) form qD ¼ constant � qDo, then rewriting them as fD � qD � qDo ¼ 0,
we readily find

aDk � @fD=@qk: aDD 0 ¼ @fD=@qD 0 ¼ �DD 0 ; aDI ¼ @fD=@qI ¼ 0; ð3:8:8aÞ
and so the Routh–Voss equations (3.8.2a, b) readily decouple to

ED ¼ QD þ �D ðkinetostaticÞ; EI ¼ QI ðkineticÞ: ð3:8:8bÞ

Because then we have [recalling (2.11.9–12b), and with D; D 0 ¼ 1; . . . ;m; I ; I 0 ¼
mþ 1; . . . ; n]

ðaklÞ ! ð@ek=@qlÞ � ð@fk=@qlÞ:
aDD 0 ¼ �DD 0 ; aDI ¼ �@qD=@qI ; aID ¼ 0; aII 0 ¼ �II 0 ; ð3:8:7bÞ

ðAklÞ ! ð@qk=@elÞ:
ADD 0 ¼ �DD 0 ; ADI ¼ @qD=@qI ; AID ¼ 0; AII 0 ¼ �II 0 ; ð3:8:7cÞ

In extenso, eqs. (3.8.5b, c) read, respectively,

ED � ð@T=@ _qqDÞ� � @T=@qD ¼ QD þ �D; ð3:8:5dÞ

EI þ
X
ð@qD=@qIÞED

� ½ð@T=@ _qqI Þ� � @T=@qI � þ
X
½ð@T=@ _qqDÞ� � @T=@qD�ð@qD=@qIÞ

¼ QI þ
X
ð@qD=@qIÞQD: ð3:8:5eÞ

Appellian forms of (3.8.5b, c) can be immediately written down [ED � @S=@€qqD;
EI � @S=@€qqI ]. We notice the following

(i) From qD ¼ qDðt; qI Þ, it follows that

_qqD ¼
X
ð@qD=@qI Þ _qqI þ @qD=@t; €qqD ¼

X
ð@qD=@qIÞ€qqI þ function of t; qI ; _qqI ;

ð3:8:6aÞ
and therefore [specialization of (3.8.3c)]

@qD=@qI ¼ @ _qqD=@ _qqI ¼ @€qqD=@€qqI ¼ � � � � bDI ðt; qIÞ: ð3:8:6bÞ
Equations (3.8.5b–e) are the holonomic counterparts of Hadamard ’s equations (see
below); and to obtain the latter we simply replace in the above @qD=@qI with
@ _qqD=@ _qqI � bDI .

ð3:8:7aÞ
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⇒ qD = eD + qD(t, eI), qI = eI.

and so (3.8.4c, d) specialize to (3.8.5b, c), as shown there. For additional derivations, see
(3.8.11a) ff. (Chaplygin-Hadamard eq’s, a specialization of the Routh–Voss equations).

(ii) As hinted earlier, equations (3.8.5b, c) also result if we view the choice (3.8.5a) as
the following special case of (3.8.3a):

eD ≡ fD = qD − qD(t, qI) = 0, eI ≡ fI = qI �= 0,



These are also the corresponding Maggi equations: for, in this case, we have (3.8.8a)
and

aID ¼ 0; aII 0 ¼ �II 0 ; ADD 0 ¼ �DD 0 ; ADI ¼ 0; AID ¼ 0; AII 0 ¼ �II 0 ;
ð3:8:8cÞ

and therefore [recalling (3.3.10)]

ID ¼
X

AkDEk ¼
X

AD 0DED 0 þ
X

AIDEI ¼
X

�D 0DED 0 þ 0 ¼ ED; ð3:8:8dÞ

II ¼
X

AkIEk ¼
X

ADIED þ
X

AI 0IEI 0 ¼ 0þ
X

�I 0IEI 0 ¼ EI ; ð3:8:8eÞ

and similarly for the impressed forces [recalling (3.4.3b ff.)].
Equations (3.8.8b) are sometimes taken as the analytical expression of the

principle of relaxation of the constraints; see, for example, Butenin (1971, pp. 70–
71), Symon (1971, pp. 370–372).

Further, if we are not interested in calculating the reactions �D, then with

T ¼ Tðt; q; _qqÞ ¼ Tðt; qD ¼ qDo; qI ; _qqD ¼ 0; _qqI Þ � Toðt; qI ; _qqI Þ
� To: constrained ðor reducedÞ kinetic energy;

and since (expanding à la Taylor, and with some obvious calculus notations)

ð3:8:9aÞ

from which

ð@T=@qI Þo ¼ @To=@qI ½ð@T=@qDÞo 6¼ @To=@qD ¼ 0�; ð3:8:9bÞ
ð@T=@ _qqIÞo ¼ @To=@ _qqI ½ð@T=@ _qqDÞo 6¼ @To=@ _qqD ¼ 0�; ð3:8:9cÞ

we obtain the following rule: In the case of holonomic variables and constraints, if we
are only interested in the motion (kinetic problem), we may embed/enforce the con-
straints qD=constant into T ! To right from the start; that is, the second of (3.8.8b)
can be replaced by EIðToÞ � ð@To=@ _qqIÞ:� @To=@qI ¼ QI ; and this saves consider-
able labor (see also the holonomic Hamel equations below).

(C) Let us find the corresponding Hamel equations. In this case (recalling 2.9–
2.12), �k ! ek (holonomic coordinates), !D � _eeD � _ffD ¼ 0, !I � _eeI � _ffI 6¼ 0, the cor-
responding Hamel coefficients �k:: vanish [) Ik ¼ Ek*ðT*Þ], and so Hamel’s equa-
tions (3.5.19a ff.) reduce to

d=dtð@T*=@ _eeDÞ � @T*=@eD ¼
X
ð@qk=@eDÞQk þ �D ðkinetostatic eqs:Þ;

ð3:8:10aÞ
d=dtð@T *=@ _eeIÞ � @T*=@eI ¼

X
ð@qk=@eIÞQk ðkinetic eqs:Þ; ð3:8:10bÞ

where T* ¼ T ½t; qðt; eÞ; _qqðt; e; _eeÞ� � T*ðt; e; _eeÞ; that is, these equations are none other
than Maggi’s equations (3.8.4e, f), respectively, but expressed in the e-variables.

We also notice that, here, too, we can replace the n�m kinetic equations
(3.8.10b) with

d=dtð@T*o=@ _eeI Þ � @T*o=@eI ¼
X
ð@qk=@eI ÞQk ðkinetic eqs:Þ; ð3:8:10cÞ
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T = To +
∑

(∂T/∂qD)oqD +
∑

(∂T/∂q̇D)oq̇D + · · · ,



or, compactly, EIðT*oÞ ¼ YI , where

T*o ¼ T*½t; eD ¼ 0; eI 6¼ 0; _eeD ¼ 0; _eeI 6¼ 0� � T*oðt; eI ; _eeIÞ:
constrained kinetic energy T *:

Thus, for the earlier special choice qD ¼ qDðt; qIÞ; qI ¼ qI , eqs. (3.8.10c) reduce to

EIðToÞ � d=dtð@To=@ _qqIÞ � @To=@qI ¼ QIo; ð3:8:10dÞ
where

To � T ½t; qDðt; qIÞ; qI ; _qqDðt; qI ; _qqIÞ; _qqI � � Toðt; qI ; _qqIÞ: constrained kinetic energy T ;

QIo � QI þ
X

bDIQD : constrained impressed force
½a special case of YIrecall ð3:8:6bÞ�:

Equations (3.8.10d) are none other than the earlier equations (3.8.5e), but expressed
in the qI ’s only.

Unfortunately, if the constraints _qqD ¼ _qqDðt; qI ; _qqI Þ are nonholonomic, then eqs.
(3.8.10d) do not hold; that is, EI ðToÞ 6¼ QIo (or even QI ). It is shown later that, in
such a case, if we use the velocity constraints to eliminate the m _qqD’s from the
kinetic energy and impressed forces, and then apply these constrained, or reduced,
quantities to multiplierless Lagrangean equations, like (3.8.10d), we will get incorrect
equations of motion; other equations apply there (special cases of Hamel equations:
equations of Chaplygin and Voronets) — equations that, if the velocity constraints
are holonomic, reduce to (3.8.10d).

3.8.2 Nonholonomic Constraints

Holonomic Variables

(A) Equations of Chaplygin–Hadamard. Let us find the equations of motion corre-
sponding to the additional, possibly nonholonomic, special Pfaffian constraints
(2.11.9 ff.)

_qqD ¼
X

bDI _qqI þ bD ) �qD ¼
X

bDI �qI : ð3:8:11aÞ

In view of the importance of this topic for the entire Lagrangean kinetics, we present
four derivations.

(i) Via Lagrange’s principle (LP). With the help of the earlier notation (3.8.2c),
Mk � Ek �Qk, LP specializes, successively, to

0 ¼
X

Mk �qk ¼
X

MD �qD þ
X

MI �qI ¼
X

MD

X
bDI �qI

� �
þ
X

MI �qI

¼
X

MI þ
X

bDIMD

� �
�qI ; ð3:8:11bÞ

from which, since the n �m �qI ’s are independent, we obtain the n� m kinetic
equations (Chaplygin, 1895, publ. 1897; Hadamard, 1895)

MI þ
X

bDIMD ¼ 0; or EI þ
X

bDIED ¼ QI þ
X

bDIQD ð� QIoÞ;
ð3:8:11cÞ
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or, in extenso, (a) in the (more common) Lagrangean form:

½ð@T=@ _qqIÞ:� @T=@qI � þ
X
½ð@T=@ _qqDÞ: � @T=@qD�bDI

¼ QI þ
X

bDIQD � QIo; ð3:8:11dÞ

and, in view of the kinematico-inertial identity ð@T=@ _qqkÞ:� @T=@qk � @S=@€qqk,
(b) in the Appellian form:

@S=@€qqI þ
X

bDIð@S=@€qqDÞ ¼ QI þ
X

bDIQD � QIo: ð3:8:11eÞ

(ii) Via Lagrangean multipliers. Multiplying each constraint (3.8.11a),
�qD �

P
bDI�qI ¼ 0, with the multiplier ��D and adding them to LP, we obtain,

successively,

0 ¼
X

Mk �qk ¼
X

Mk �qk þ
X
ð��DÞ �qD �

X
bDI �qI

� �
¼ � � � ¼

X
ðMD � �DÞ �qD þ

X
MI þ

X
�DbDI

� �
�qI ; ð3:8:11f Þ

from which, since now the �qD’s and �qI ’s can be treated as independent, we
obtain the two groups of equations

MD ¼ �D or ED ¼ QD þ �D; ð3:8:11gÞ

MI ¼ �
X

�DbDI or EI ¼ QI �
X

bDI�D; ð3:8:11hÞ

and eliminating the m �D’s among them [solving (3.8.11g) for �D and substituting
in (3.8.11h), etc.], we recover the Hadamard equations (3.8.11c). Equations (3.8.11g)
can be considered as the kinetostatic complement of the kinetic equations (3.8.11c).

aDD 0 ¼ �DD 0 ; aDI ¼ @!D=@ _qqI ¼ �bDI ðand aID ¼ 0; aII 0 ¼ �II 0 Þ: ð3:8:11iÞ
In view of these values, the general Routh–Voss equations

Ek � ð@T=@ _qqkÞ� � @T=@qk ¼ Qk þ
X

�DaDk ð3:8:11jÞ

specialize to the two groups:

ðaÞ ED ¼ QD þ
X

�D 0aD 0D ¼ QD þ
X

�D 0�DD 0 ¼ QD þ �D;
) RD ¼

X
aD 0D�D 0 ¼

X
�D 0�DD 0 ¼ �D; ð3:8:11kÞ

ðbÞ EI ¼ QI þ
X

�DaDI ¼ QI þ
X

�Dð�bDI Þ ¼ QI �
X

�DbDI

¼ QI �
X

bDIðED �QDÞ
) EI þ

X
bDIED ¼ QI þ

X
bDIQD ð� QIoÞ; ð3:8:11cÞ

) RI ¼
X

aDI�D ¼ �
X

bDI�D ¼ �
X

bDI ðED �QDÞ
h i

: ð3:8:11lÞ
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(iii) As a specialization of the Routh–Voss equations. We recall [(2.11.9) ff.] that the
special constraint form (3.8.11a) [(2.11.9)ff.] can be viewed as a Pfaffian system with the
following coefficients:



Here, too, note that the multipliers and their interpretation depend on the particular
form of the constraints; that is, if the constraints of a problem are written in two
physically equivalent but analytically different forms, the associated multipliers (and,
hence, kinetic and kinetostatic equations) will be equivalent but different; although,
for theoretical purposes (and because both are components of the same constraint
reaction vector, in configuration space), we may designate them both by �D. We
repeat (} 3.5), what holds all these descriptions together is the variational equation of
Lagrange (LP), plus his method of multipliers (relaxation principle). It is these
fundamental invariant tools that allow us to interrelate and compare the particular
multiplier/constraint representation and equations of motion of the same problem.

(iv) As a specialization of the Maggi equations. In this case [recalling (3.8.7c)]

ADD 0 ¼ �DD 0 ; ADI ¼ @ _qqD=@ _qqI ¼ bDI ; AID ¼ 0; AII 0 ¼ �II 0 : ð3:8:11mÞ
Therefore, (a) Maggi’s kinetostatic equations, ID �YD �

P
AkDMk ¼ LDð¼ �DÞ,

specialize to

ID �YD ¼
X

AD 0DMD 0 þ
X

AIDMI ¼ � � � ¼MD þ 0 ¼ �D; i:e:; ED ¼ QD þ �D;
ð3:8:11nÞ

while (b) Maggi’s kinetic equations, II �YI �
P

AkIMk ¼ 0, specialize to

II �YI ¼
X

ADIMD þ
X

AI 0IMI 0 ¼
X

bDIMD þMI ¼ 0;

i:e:; EI þ
X

bDIED ¼ QI þ
X

bDIQD:

REMARKS

(i) In these equations, T and the Q’s (and S) are functions of all n _qq’s ( _qq’s and €qq’s);
that is, no constraints are to be enforced in them yet. That has to wait until all
differentiations have been carried out. The n�m equations (3.8.11o) plus the m
constraints (3.8.11a) constitute a system of n equations for the n qkðtÞ. Had we
enforced the constraints in the Appellian

S ¼ Sðt; q; _qqD; _qqI ; €qqD; €qqIÞ ¼ S½t; q; _qqDðt; q; _qqI Þ; _qqI ; €qqDðt; q; _qqI ; €qqIÞ; €qqI �
� Soðt; q; _qqI ; €qqIÞ ¼ So: constrained Appellian; ð3:8:12aÞ

then LP would have given us, not (3.8.11e), but since

�I ¼
X
ð@S=@€qqkÞ �qk ¼

X
ð@So=@€qqIÞ �qI ; ð3:8:12bÞ

even though @S=@€qqI 6¼ @So=@€qqI and

� 0W ¼
X

Qk�qk ¼
X

QI þ
X

bDIQD

� �
�qI �

X
QIo �qI ; ð3:8:12cÞ

finally [and this is Appell’s original form of 1899 (scleronomic case), 1900 (rheonomic
case)],

@So=@€qqI ¼ QIo: ð3:8:12dÞ
As stressed earlier, no such simplification (and preservation of form of the equations
of motion) holds for T ! To-based equations.
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(ii) Here, too, we first solve the kinetic equations (+ constraints + initial con-
ditions) and obtain the motion qkðtÞ. Then, the kinetostatic equations immediately
yield

�D ¼ EDðt; q; _qq; €qqÞ �QDðt; q; _qqÞ
¼ � � � ¼ known function of time ðand initial conditionsÞ: ð3:8:12eÞ

(iii) What is important here is not so much Hadamard’s equations themselves,
but the method(s) for obtaining them. These latter can be applied even for nonho-
lonomic variable constraints: for example,

!D ¼
X

fDIðt; qÞ!I þ fDðt; qÞ ) ��D ¼
X

fDIðt; qÞ ��I ; ð3:8:12f Þ

(i.e., ��D; ��I 6¼ 0), and for both Hamel- and Appell-type equations of motion.
(iv) Finally, we point out (what is probably amply clear by now) that if the

constraints (3.8.11a) are holonomic (bDI ¼ @qD=@qI ), then the Hadamard equations
reduce to the earlier equations (3.8.5c, e).

Problem 3.8.1 The Korteweg Equations. Consider a system subject to the m,
possibly nonholonomic, Pfaffian constraintsX

aDk �qk ¼ 0 ½k ¼ 1; . . . ; n; D ¼ 1; . . . ;mð< nÞ; rank ðaDkÞ ¼ m�; ðaÞ

and hence, assuming, as usual, ideal constraints, that is,X
Rk �qk ¼ 0; ðbÞ

having the Routh–Voss equations of motion

Mk � Ek �Qk � ð@T=@ _qqkÞ: � @T=@qk �Qk ¼
X

�DaDk ð¼ RkÞ: ðcÞ

Show that the above imply that the following ðmþ 1Þ � ðmþ 1Þ determinant

R1 . . . Rm Rmþ1 �qmþ1 þ � � � þ Rn �qn

a11 . . . a1m a1;mþ1 �qmþ1 þ � � � þ a1n �qn

am1 . . . amm am;mþ1 �qmþ1 þ � � � þ amm �qn





























� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

ðdÞ
vanishes, identically—that is, for arbitrary �qI � ð�qmþ1; . . . ; �qnÞ; and that this, in
turn, thanks to well-known determinant properties, leads to the following n�m
determinantal equations:

R1 . . . Rm Rmþ1

a11 . . . a1m a1;mþ1

am1 . . . amm am;mþ1


























¼ 0; . . . ;

R1 . . . Rm Rn

a11 . . . a1m a1n

am1 . . . amm amn


























¼ 0;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
ðeÞ

and, conversely, (e) lead to the vanishing of (d).

494 CHAPTER 3: KINETICS OF CONSTRAINED SYSTEMS

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
�



REMARKS

(i) In view of (c), eqs. (e) constitute a set of n �m kinetic equations, which, along
with the m constraints (a) [in velocity form; i.e.,

P
aDk _qqk þ aD ¼ 0], make up a

determinate system for the n qkðtÞ.
(ii) Equations (d, e) seem to be due to Korteweg (1899, pp. 135–136, eqs. (8)];

and also Quanjel (1906, pp. 268–269, eqs. (16)). See also Routh (1891, vol. I, pp.
34–35).

HINT

The m �qD � ð�q1; . . . ; �qmÞ, obtained from (a) as functions of the n�m
�qI � ð�qmþ1; . . . ; �qnÞ, must satisfy (b) for arbitrary �qI .

Nonholonomic variables

(A) Equations of Chaplygin (or Tschaplygine). Let us find the form that Hamel’s
equations assume when the, generally nonholonomic, Pfaffian constraints have the
special scleronomic/stationary form

_qqD ¼
X

bDI _qqI ) �qD ¼
X

bDI �qI ; ð3:8:13aÞ

where (a) bDI ¼ bDIðqmþ1; . . . ; qnÞ [a specialization of (3.8.11a)], and (b)
@T=@qD ¼ 0 ) T ¼ Tðt; qI ; _qqD; _qqIÞ; that is, the m qD’s do not appear either in the
constraint coefficients or in the original (unconstrained) kinetic energy.

Such ‘‘Chaplygin systems’’ can be viewed as the following special Hamel case:

!D � _qqD �
X

bDI _qqI ¼ 0; !I � _qqI 6¼ 0; ð3:8:13bÞ

which invert immediately to

_qqD ¼ !D þ
X

bDI!I ; _qqI ¼ !I : ð3:8:13cÞ

Equations (3.8.13b, c) readily show that here (akl) and (Akl) have their earlier special
forms:

aDD 0 ¼ �DD 0 ; aDI ¼ @!D=@ _qqI ¼ �bDI ; aID ¼ 0; aII 0 ¼ �II 0 ; ð3:8:13dÞ

ADD 0 ¼ �DD 0 ; ADI ¼ @ _qqD=@!I ¼ bDI ; AID ¼ 0; AII 0 ¼ �II 0 : ð3:8:13eÞ

From the above we find, successively, the following specializations for the various
Hamel equation terms (D;D 0;D 00; . . . ¼ 1; . . . ;m; I ; I 0; I 00; . . . ¼ mþ 1; . . . ; n):

ðiÞ �I I 0I 00 ¼ 0 ðnotice that �I � qI ; i:e:; �I is a holonomic coordinateÞ; ð3:8:13f Þ
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ðiiÞ �DII 0 ¼
XX

ð@aDk=@qr � @aDr=@qkÞAkIArI 0

¼
XX

½@ð�bDI 00 Þ=@qI 000 � @ð�bDI 000 Þ=@qI 00 ��I 00I �I 000I 0
¼
XX

ð@bDI 000=@qI 00 � @bDI 00=@qI 000 Þ �I 00I �I 000I 0
¼
X
ð@bDI 0=@qI 00 � @bDI 00=@qI 0 Þ �I 00I ¼ @bDI 0=@qI � @bDI=@qI 0

� �tDII 0 ¼ tDI 0I : Chaplygin coeRcients ðex: 2:12:1; RemarksÞ:
ð3:8:13gÞ

(iii) By chain rule (and recalling that @ _qqk=@!r ¼ Akr),

@T*=@!D ¼
X
ð@T=@ _qqkÞð@ _qqk=@!DÞ ¼

X
ð@T=@ _qqkÞAkD

¼
X
ð@T=@ _qqD 0 ÞAD 0D þ

X
ð@T=@ _qqI ÞAID

¼
X
ð@T=@ _qqD 0 Þð�D 0DÞ þ

X
ð@T=@ _qqI Þð0Þ

¼ ð@T=@ _qqDÞ



enforcing of constraints

� ð@T=@ _qqDÞo ¼ function of t; qI ; _qqI :

ð3:8:13hÞ
(iv) Substituting the above into the correction term �GI , (3.3.12a), we find, succes-
sively,

�GI �
XX

�kI
ð@T*=@!kÞ!
 !
XX

�DII 0 ð@T*=@!DÞ!I 0 ;

or, finally,

� GI ! �GIo �
XX

tDI 0I ð@T=@ _qqDÞo _qqI 0

¼
XX

ð@bDI 0=@qI � @bDI=@qI 0 Þð@T=@ _qqDÞo _qqI 0

¼ function of t; qI ; _qqI ðquadratic in the _qqIÞ: ð3:8:13iÞ
(v) With

T ¼ Tðt; qI ; _qqD; _qqI Þ ¼ T ½t; qI ; _qqDðt; qI ; _qqIÞ; _qqI �
¼ Toðt; qI ; _qqI Þ � To ¼ Chaplygin constrained kinetic energy; ð3:8:13jÞ

we have

@T*=@!I ! @To=@ _qqI ; ð3:8:13kÞ
@T*=@�I �

X
ð@T*=@qkÞð@ _qqk=@!I Þ ¼

X
ð@T *=@qkÞAkI

¼
X
ð@T*=@qDÞADI þ

X
ð@T*=@qI 0 ÞAI 0I

¼
X
ð@T*=@qDÞbDI þ

X
ð@T*=@qI 0 Þ �I 0I

¼
X
ð0ÞbDI þ

X
ð@T*=@qI 0 Þ �I 0I ¼ @T*=@qI ! @To=@qI : ð3:8:13lÞ

(vi) Recalling (3.8.12c) and (3.8.13b)

� 0W ¼
X

Yk ��k ¼
X

YI ��I ¼
X

QIo �qI : ð3:8:13mÞ
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(vii) And so,

EI*ðT*Þ ! EIðToÞ � ð@To=@ _qqIÞ:� @To=@qI ½6¼ EI ðTÞ�: ð3:8:13nÞ
Substituting all these findings into the kinetic Hamel equations (3.5.21d) [or into the
central equation (3.6.8 ff.)], we obtain the n�m (kinetic) equations of Chaplygin, in
the following equivalent forms:

ð@To=@ _qqIÞ:� @To=@qI þ
XX

ð@bDI 0=@qI � @bDI=@qI 0 Þð@T=@ _qqDÞo _qqI 0

� ð@To=@vIÞ:� @To=@qI þ
XX

tDI 0Ið@T=@vDÞo vI 0
� ð@To=@vIÞ:� @To=@qI �

XX
tDII 0 ð@T=@vDÞo vI 0

� EIðToÞ � GIo ¼ QI þ
X

bDIQD � QIo: ð3:8:13oÞ

REMARKS

(i) Chaplygin’s equations (1895, publ. 1897) are the earliest (special Hamel-type)
equations of motion of nonholonomic systems in terms of To (and T) and in special
nonholonomic system variables. Chaplygin obtained these equations by expressing
the T-gradients appearing in his earlier Chaplygin–Hadamard equations (3.8.11c, d)
in terms of To-gradients [by applying chain rule to (3.8.13j)—an instructive exercise
in partial differentiations that the readers are urged to reproduce for themselves].
The importance of (3.8.13o) is primarily theoretical and conceptual, not so much
practical: these equations, presented at a time when nonholonomic dynamics was at
its infancy, clearly demonstrated that, in general, EIðToÞ 6¼ QIo (or even QI ); that is,
unless the constraints are holonomic (tDI 0I ¼ 0), or some other special case in which
GIo ¼ 0 (for some or all I ¼ mþ 1; . . . ; nÞ, the ordinary Lagrangean equations do not
hold for the constrained, or reduced, system. [To the best of our knowledge, the first
proof of this basic fact, for the special case of a convex body rolling, under gravity, on a
rough plane, is due to C. Neumann (1885). But Chaplygin’s treatment was, simulta-
neously, more general and easier to follow. See also appendix 3.A1.] Failure to observe
this rule led, in the 1890s, to a number of erroneous equations of motion, even by some
of the better mathematicians/mechanicians of that epoch (see examples below).

(ii) By their very structure, Chaplygin’s equations are only kinetic; that is, since
@To=@ _qqD ¼ 0, they do not allow for constraint reaction calculations. However, these
n�m equations, when solved, allow us to determine the n�m functions qI ¼ qI ðtÞ
without recourse to the constraints (3.8.13a); the latter are then used to calculate the
m qD ¼ qDðtÞ.

(iii) Contrary to Hamel’s equations, Chaplygin’s equations involve both T and
To, an apparent formal drawback; but, in return, they do not require a(ny) constraint
matrix inversion [i.e., ðaklÞ ! ðAklÞ], just the given nonsquare matrix ðbDI Þ, instead of
two.

For ad hoc chain-rule derivations of Chaplygin’s equations, see, for example,

Problem 3.8.2 Generalized Chaplygin Equations. Show that in terms of the general
independent quasi velocities !I defined by (in terms of the helpful notation _qqk � vk)

vI ¼
X

BII 0!I 0 ; BII 0 ¼ BII 0 ðqmþ1; . . . ; qnÞ � BII 0 ðqIÞ; ðaÞ
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Chaplygin’s equations take the [slightly more general than (3.8.13o)] form

ð@T*o=@!I Þ� � @T*o=@�I þ
XX

ð@BkI 0=@�I � @BkI=@�I 0 Þð@T=@ _qqkÞo !I 0

¼ Q*Io; ðbÞ
where:

ðiÞ vk ¼
X

lkI!I ; lkI ¼ lkI ðqmþ1; . . . ; qnÞ � lkIðqIÞ;
vD ¼

XX
ðbDIBII 0 Þ!I 0 �

X
lDI!I ; vI ¼

X
BII 0!I 0 �

X
lII 0!I 0 ; ðcÞ

ðiiÞ T ¼ Tðt; qI ; vkÞ ¼ T t; qI ; vk ¼
X

lkI!I

� �
� T *oðt; qI ; !IÞ � T *o; ðdÞ

ðiiiÞ @T *o=@�I �
X
ð@T *o=@qI 0 Þð@vI 0=@!IÞ ¼

X
ð@T *o=@qI 0 ÞBI 0I ; ðeÞ

@lkI 0=@�I �
X
ð@lkI 0=@qI 00 Þð@vI 00=@!I Þ ¼

X
ð@lkI 0=@qI 00 ÞBI 00I ; ðf Þ

ðivÞ � 0W �
X

Qk �qk ¼ � � � ¼
X

Q*Io ��I ð ðgÞ
) Q*Io ¼

X
BI 0I QI 0 þ

X
bDI 0QD

� �
�
X

BI 0I QI 0o: ðhÞ

[See also Neimark and Fufaev (1972, pp. 110–112). In there, on pp. 106–108, eqs.
(3.16, 17, 19), it seems that a tilde ð�Þ should be placed on the impressed force QI .]

Equations of Voronets (or Woronetz). Let us find the form that Hamel’s equations
assume when the, generally nonholonomic, Pfaffian constraints have the special
rheonomic/nonstationary form (again, with vk � _qqkÞ

vD ¼
X

bDIvI þ bD ) �qD ¼
X

bDI �qI ; ð3:8:14aÞ

where bDI ¼ bDIðt; q1; . . . ; qnÞ � bDI ðt; qÞ, bD ¼ bDðt; q1; . . . ; qnÞ � bDðt; qÞ; or the
Hamel form

!D � vD �
X

bDIvI � bD ¼ 0; !I � vI 6¼ 0; ð3:8:14bÞ

with its (easy to obtain) inverse

vD ¼ !D þ
X

bDI!I þ bD; vI ¼ !I : ð3:8:14cÞ

Clearly, since (3.8.14a–c) are a generalization of the Chaplygin constraints (3.8.13a–
c), the associated equations of Voronets, derived below, will constitute a general-
ization of those of Chaplygin (3.8.13o); but a special case of those of Hamel.

Equations (3.8.14b, c) readily show that, here, the transformation matrices ðaklÞ
and ðAklÞ have their earlier special forms:

aDD 0 ¼ �DD 0 ; aDI ¼ @!D=@vI ¼ �bDI ; aID ¼ 0; aII 0 ¼ �II 0 ; ð3:8:14dÞ
ADD 0 ¼ �DD 0 ; ADI ¼ @vD=@!I ¼ bDI ; AID ¼ 0; AII 0 ¼ �II 0 : ð3:8:14eÞ
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(definition ofQ∗

Io);



From the above, and the results of ex. 2.12.1 and prob. 2.12.1 ff., we find, successively,
the following specializations for the various Hamel equation terms (D, D 0, D 00,
. . . ¼ 1; . . . ;m; I ; I 0; I 00; . . . ¼ mþ 1; . . . ; nÞ:

ðiÞ � I
I 0I 00 ¼ 0 ð�I � qI ; i:e:; �I is a holonomic coordinate!Þ: ð3:8:14f Þ

ðiiÞ �D
II 0 ¼

XX
ð@aDk=@qr � @aDr=@qkÞAkIArI 0

¼ � � � ¼ @bDI 0=@qI þ
X

bD 0Ið@bDI 0=@qD 0 Þ
h i
� @bDI=@qI 0 þ

X
bD 0I 0 ð@bDI=@qD 0 Þ

h i
� @bDI 0=@ðqIÞ � @bDI=@ðqI 0 Þ
¼ tDI 0I þ

X
bD 0Ið@bDI 0=@qD 0 Þ � bD 0I 0 ð@bDI=@qD 0 Þ½ �

� wD
I 0I ¼ �wD

II 0 (recalling ex. 2.12.1), ð3:8:14gÞ
�DI ;nþ1 � �DI ¼ � � � ¼ @bD=@qI þ

X
bD 0Ið@bD=@qD 0 Þ

h i
� @bDI=@tþ

X
bD 0 ð@bDI=@qD 0 Þ

h i
� @bD=@ðqIÞ � @bDI=@ðqnþ1Þ
¼ �tDI ;nþ1 þ

X
bD 0Ið@bD=@qD 0 Þ � bD 0 ð@bDI=@qD 0 Þ½ �

� �wD
I ;nþ1 � �wD

I (recalling prob. 2.12.2); ð3:8:14hÞ

or they can be read off from the transitivity equations below (which, incidentally,
show clearly that the only surviving �’s are the �DII 0 and �

D
I Þ

dð��DÞ � �ðd�DÞ ¼
XX

�D
II 0 d�I 0 ��I þ

X
�D

I ��I

¼ �
XX

wD
II 0 dqI 0 �qI �

X
wD

I �qI : ð3:8:14iÞ

(iii) With

T ¼ Tðt; q; vD; vI Þ ¼ T ½t; q; vDðt; q; vIÞ; vI �
¼ Toðt; q; vIÞ � To ¼ Voronets constrained kinetic energy

[a generalization of Chaplygin’s (3.8.13j), and a special case of T*ðt; q; !Þ�;
ð3:8:14jÞ

we find, successively,

@T*=@!I ! @To=@vI ½6¼ ð@T=@vIÞo � pIo ¼ function of t; q; vI �; ð3:8:14kÞ
@T*=@!D ¼ [repeating steps as in (3.8.13h)] ¼ ð@T=@vDÞo ¼ function of t; q; vI ;

ð3:8:14lÞ
@T*=@�I �

X
ð@T*=@qkÞð@vk=@!IÞ ¼

X
ð@T*=@qkÞAkI

¼
X
ð@T*=@qDÞADI þ

X
ð@T*=@qI 0 ÞAI 0I

¼
X
ð@T*=@qDÞbDI þ

X
ð@T*=@qI 0 Þ �I 0I

¼ @T*=@qI þ
X

bDIð@T*=@qDÞ; ð3:8:14mÞ
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that is,

@T*=@�I ! @To=@qI þ
X

bDI ð@To=@qDÞ � @To=@ðqIÞ (symbolic derivative):

ð3:8:14nÞ
(iv) Substituting the above into the correction term �GI , (3.3.12a), we find, succes-
sively,

�GI �
XX

� b
I
ð@T*=@!bÞ!
!

XX
�D

II 0 ð@T*=@!DÞ!I 0 þ
X

�D
Ið@T*=@!DÞ

¼ � � � ¼ �
XX

wD
II 0 ð@T=@vDÞo vI 0 �

X
wD

Ið@T=@vDÞo � �GIo: ð3:8:14oÞ

(v) Proceeding as in (3.8.13m),

� 0W ¼
X

Yk ��k ¼
X

YI ��I ¼
X

QI þ
X

bDIQD

� �
�qI �

X
QIo �qI :

ð3:8:14pÞ
Substituting all these findings into the kinetic Hamel equations (3.5.21d) [or into
the central equation (3.6.9 or 11), with (3.8.14i); namely, the Hamel approach;
or into (3.6.8 or 12), but with dð�qDÞ � �ðdqDÞ ¼

PP
wD

II 0 dqI 0 �qI þ
P

wD
I �qI ;

dð�qIÞ � �ðdqIÞ ¼ 0; namely the Suslov approach (see also ex. 3.8.1, below)], we
obtain the n�m (kinetic) equations of Voronets, in the following equivalent
forms [recalling (3.8.13o)]:

ð@To=@ _qqIÞ: � @To=@qI �
X

bDIð@To=@qDÞ
�
XX

wD
II 0 ð@T=@ _qqDÞo _qqI 0 �

X
wD

Ið@T=@ _qqDÞo
� ð@To=@vIÞ� � @To=@ðqIÞ �

XX
wD

II 0 pDo vI 0 �
X

wD
I pDo; ½since vnþ1¼1�

� EI ðToÞ �
X

bDI ð@To=@qDÞ � GIo

� EðIÞðToÞ � GIo ¼ QI þ
X

bDIQD � QIo: ð3:8:14qÞ

SPECIALIZATIONS, REMARKS

(i) If the constraints are catastatic (i.e., bD ¼ 0), then, as (3.8.14h) readily shows,
the wD

I reduce to @bDI=@t; and if they are stationary, or scleronomic, they vanish.
(ii) If the Voronets constraints reduce to those of Chaplygin, then (3.8.14q)

reduce to (3.8.13o).
(iii) We believe that the above derivation of the Voronets equations (i.e., deduc-

tively from those of Hamel) is their clearest presentation in the entire dynamics
literature in English; and one of the few anywhere.

(iv) By looking at the constraint forms (3.8.11a), (3.8.14a), we can state that the
Voronets equations bear the same relation to those of Hamel that the Hadamard
equations bear relative to those of Maggi [although it took about 20 years for that
to be recognized: Hamel (1924)]. Schematically:

Maggi (1896, 1901, 1903)! Hadamard (1895)

Hamel (1903, 1904)! Voronets (1901).

500 CHAPTER 3: KINETICS OF CONSTRAINED SYSTEMS



Problem 3.8.3 Generalized Voronets’ Equations. Formulate Voronets’ equations
in the general quasi velocities !I defined by

vI ¼
X

BII 0 !I 0 þ BI ; ðaÞ

where the coefficients BII 0 and BI are assumed functions of all the q’s and t; and
the �k are constrained, as in (3.8.14a):

vD ¼
X

bDI vI þ bD: ðbÞ

(2C) Equations in General Nonholonomic Variables; when the nonholonomic con-
straints have the general form ½D 0 ¼ 1; . . . ;m ð< nÞ; k ¼ 1; . . . ; n�:

X
aD 0k!k þ aD 0 ¼ 0 )

X
aD 0k ��k ¼ 0; ð3:8:15aÞ

where (i) the coefficients aD 0k and aD 0 are functions of all the q’s and t [and rank
ðaD 0kÞ ¼ m�, and (ii) the v’s and !’s are related by

!k �
X

aklvl þ ak 6¼ 0 , vl ¼
X

Alk!k þ Al 6¼ 0; ð3:8:15bÞ

instead of the earlier holonomic variable forms !D �
P

aDk�k þ aD ¼ 0, etc..
Applying the general methods expounded in }3.5, we may proceed in one of the

following two ways: either we

(i) Adjoin the constraints (3.8.15a) to LP in the ! variables (3.5.18),X
Ik ��k ¼

X
Yk ��k; ð3:8:15cÞ

with m Lagrangean multipliers �D 0 , and thus obtain the n coupled Routh–Voss type
of equations:

Ik ¼ Yk þ
X

�D 0aD 0k; ð3:8:15dÞ

where the inertia terms Ik have one of the following basic forms:

Ik ¼
X
ð@vl=@!kÞEl �

X
Alk ð@T=@ _qqlÞ� � @T=@ql½ � (Maggi), ð3:8:15eÞ

¼ ð@T*=@!kÞ� � @T*=@�k þ
XX

� b
k
ð@T*=@!bÞ!
 (Hamel), ð3:8:15f Þ

¼ @S*=@ _!!k �
X

Alkð@S=@€qqlÞ (Appell); ð3:8:15gÞ

and which, along with the m constraints (3.8.15a) and the n transformation equa-
tions (3.8.15b), constitute a system of nþmþ n ¼ 2nþm equations for the 2nþm
unknown functions qkðtÞ, !kðtÞ, �D 0 ðtÞ; or we

(ii) Introduce new quasi variables � 0, ! 0 � d� 0=dt by

!D 0 �
X

aD 0k !k þ aD 0 ð¼ 0Þ ) ��D 0 �
X

aD 0k ��k ð¼ 0Þ; ð3:8:15hÞ
!I 0 �

X
aI 0k !k þ aI 0 ð6¼ 0Þ ) ��I 0 �

X
aI 0k ��k ð6¼ 0Þ; ð3:8:15iÞ
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and, inversely,

!k �
X

Akk 0!k 0 þ Ak ¼
X

AkI 0!I 0 þAk ) ��k �
X

AkI 0 ��I 0 ¼ 0; ð3:8:15jÞ

[where, as in }2.11, the n�m !I 0 � � � � are arbitrary, except that when the system
(3.8.15h, i) is solved for the ! in terms of the ! 0 (and time) and the results are
inserted in (3.8.15a), they satisfy them identically], and then, with the help of these
Maggi-like representations, apply LP in the ! 0 variablesX

Ik 0 ��k 0 ¼
X

Yk 0 ��k 0 )
X

II 0 ��I 0 ¼
X

YI 0 ��I 0 ; ð3:8:15kÞ

where

Ik 0 ¼
X
ð@!k=@!k 0 ÞIk �

X
Akk 0Ik

, Ik ¼
X
ð@!k 0=@!kÞIk 0 �

X
ak 0kIk 0 ; ð3:8:15lÞ

Yk 0 ¼
X

Akk 0Yk , Yk ¼
X

ak 0kYk 0 ; ð3:8:15mÞ

from which, applying the method of Lagrangean multipliers [by now, in well-under-
stood ways; i.e., with the constraints (3.8.15a, h) written as 1 � ��D 0 ¼ 0, and the
��I 0 6¼ 0 viewed as satisfying the constraints 0 � ��I 0 ¼ 0], we readily obtain the
following two groups of equations:

ID 0 ¼ YD 0 þ �D 0 ðn�m kinetostatic equationsÞ; ð3:8:15nÞ
II 0 ¼ YI 0 ðm kinetic equationsÞ; ð3:8:15oÞ

where the inertia terms Ik 0 have one of the following basic forms:

Ik 0 ¼
X
ð@!k=@!k 0 ÞIk �

X
Akk 0Ik (Maggi-type), ð3:8:15pÞ

¼ ð@T* 0=@!k 0 Þ� � @T* 0=@�k 0 þ
XX

� b 0
k 0
 0 ð@T* 0=@!b 0 Þ!
 0

ð
 0 ¼ mþ 1; . . . ; n; n þ 1Þ (Hamel-type), ð3:8:15qÞ
¼ @S* 0=@ _!!k 0 �

X
Akk 0 ð@S*=@ _!!kÞ (Appell-type). ð3:8:15rÞ

In these equations:
(i) T* 0 � T*ðt; q; !k �

P
Akk 0!k 0 þ AkÞ � T*ðt; q; !D 0 ; !I 0 Þ; and the constraints

!D 0 ¼ 0 are to be enforced after all differentiations, not before; otherwise we could
not calculate terms like �D 0

k 0
 0 ð@T* 0=@!D 0 Þ!
 0 .
(ii) The �D 0

k 0
 0 can be calculated either from the transitivity equations

dð��k 0 Þ � �ðd�k 0 Þ ¼
XX

� k 0
l 0
 0 d�
 0 ��l 0 ¼

XX
� k 0

l 0r 0 d�r 0 ��l 0 þ
X

� k 0
l 0 ��l 0 ;

ð3:8:15sÞ

(which is, usually, the easier way), or from the transformation equations (ex. 2.10.1: d)

� k 0
l 0r 0 ¼

XXX
ak 0kAll 0Arr 0 �

k
lr þ

XX
ð@ak 0k=@�r � @ak 0r=@�kÞAkl 0Arr 0 ;

ð3:8:15tÞ
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where

@ak 0k=@�r �
X
ð@ak 0k=@qbÞð@ _qqb=@!rÞ ¼

X
Abrð@ak 0k=@qbÞ; ð3:8:15uÞ

and similarly for the � k 0
l 0 � � k 0

l 0;ðnþ1Þ 0 :

ðiiiÞ S* 0 � S*½t; q; !ðt; q; ! 0Þ; _!!ðt; q; ! 0; _!! 0Þ� � S* 0ðt; q; ! 0; _!! 0Þ and
S* 0o � S* 0ðt; q; !D 0 ¼ 0; !I 0 6¼ 0; _!!D 0 ¼ 0; _!!I 0 Þ � S* 0oðt; q; !I 0 ; _!!I 0 Þ;

and in (3.8.15r) S* 0 can be replaced by S* 0o for k 0 ! I ¼ mþ 1; . . . ; n, but not for
k 0 ! D ¼ 1; . . . ;m. Let the reader adapt the above to the case where the �=!
variables are already constrained by, say, the m1 constraints !D ¼ 0=��D ¼ 0
ðD ¼ 1; . . . ;m1Þ, and then are subjected to the additional m2 (3.8.15a)-like constraintsX

aD 0k !k þ aD 0 ¼ 0 ½D 0 ¼ 1; . . . ;m2; n� ðm1 þm2Þ > 0�: ð3:8:15vÞ

Problem 3.8.4 Hadamard Form of the Hamel Equations. Let the m Pfaffian con-
straints have the special Voronets form

!D �
X

BDI!I þ BD; ðaÞ

with the BDI and BD assumed known functions of all the q’s and t. By viewing (a) as
the following special case of the Hamel-type constraints (3.8.15a)

OD � !D �
X

BDI!I � BD ð¼ 0Þ; OI � !I ð6¼ 0Þ; ðb; cÞ

with inverse

!D � OD þ
X

BDIOI þ BD ¼
X

BDIOI þ BD

� �
; ðdÞ

!I � OI ; ðeÞ
and applying any one of the above methods used in the derivation of the Hadamard
equations, show that, in this case, the equations of motion (in the t; q; ! variables)
may take the decoupled Hadamard form as follows:

Kinetostatic: ID ¼ YD þ �D; ðf Þ
Kinetic: II þ

X
BDIID ¼ YI þ

X
BDIYD; ðgÞ

where, with our usual notations,

Ik ¼ ð@T*=@!kÞ� � @T*=@�k þ
XX

� b
k
ð@T*=@!bÞ !
; ðhÞ

¼ @S*=@ _!!k ð¼ @S*o=@ _!!I ; for I ¼ mþ 1; . . . ; nÞ: ðiÞ
For an application of these equations, see Nikitina (1976).

Problem 3.8.5 Special Hamel Equations. Show that if the Pfaffian constraints
have the special Hamel form [but slightly more general than Voronets’ form
(3.8.14a)]

!D �
X

aDkvk þ aD ð¼ 0Þ; !I � vI ð6¼ 0Þ; ðaÞ
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where the aDk, aD are functions of all the q’s and t; that is,

aDk ¼ aDk; aD;nþ1 ¼ aD; aID ¼ �ID ¼ 0; aII 0 ¼ �II 0 ; aI ;nþ1 ¼ 0;

anþ1;k ¼ 0; anþ1;nþ1 ¼ 1; ðbÞ
and, therefore (recalling prob. 2.11.2),

ðADD 0 Þ ¼ ðaDD 0 Þ�1; ðADI Þ ¼ �ðaDD 0 Þ�1ðaD 0I Þ; AID ¼ �ID ¼ 0; AII 0 ¼ �II 0 ;
ðcÞ

then (i) the Maggi kinetic and kinetostatic equations specialize, respectively, to

MI þ
X

ADIMD ¼ 0;
X

AD 0DMD 0 ¼ �D; ðdÞ

where Mk � Ek �Qk � ½ð@T=@ _qqkÞ:� @T=@qk� �Qk (and for ADI ¼ bDI , AD 0D ¼
�D 0D, they specialize to the corresponding Hadamard equations), and (ii) the
Hamel kinetic equations specialize to

ð@T*=@!IÞ� � @T*=@�I þ
XX

�D
II 0 ð@T*=@!DÞ!I 0 þ

X
�D

I ð@T*=@!DÞ ¼ YI ;

ðeÞ
where after all differentiations we set !D ¼ 0 and !I � _qqI (Schouten, 1954, pp. 196–
197); and similarly for the kinetostatic equations.

HINT

Since �I � qI (i.e., holonomic coordinates), we will have

dð��IÞ � �ðd�IÞ ¼ 0 ) � I
kl ; �

I
k;nþ1 � � I

k ¼ 0; ðf Þ
and, of course, �nþ1kl , �

nþ1
k ¼ 0; and, due to (d, e), the remaining �D

II 0 , �
D
I simplify

further.

Problem 3.8.6 Special Hamel Equations (continued). Show that eqs. (e) of the
preceding problem can be further simplified to

ð@T*o=@ _qqIÞ:� @T*o=@�I þ
XX

�D
II 0 ð@T*=@!DÞ _qqI 0 þ

X
�D

Ið@T*=@!DÞ ¼ YI ;

ðaÞ
where T*o ¼ T*ðt; q; !D ¼ 0, !I ¼ _qqIÞ � T*oðt; q; _qqIÞ; that is, the constraints have
been enforced in T* right from the start (as in the Voronets case) in the first and
second terms, and after the differentiations in the third and fourth terms (sums); or,
we replace @T*=@!D with its equal:X

AkDð@T=@ _qqkÞ ¼
X

AD 0Dð@T=@ _qqD 0 Þ þ
X

AIDð@T=@ _qqI Þ ¼
X

AD 0Dð@T=@ _qqD 0 Þ:

REMARKS

(i) The n�m equations (a), plus the m constraints
P

aDk _qqk þ aD ¼ 0,
constitute a determinate system of n equations in the n functions qkðtÞ.

(ii) Clearly, if the constraints (a) of the preceding problem assume the Voronets
form (3.8.14a) (i.e., ADD 0 ¼ �DD 0 , AID ¼ �ID ¼ 0, �D

II 0 ! �wD
II 0 , etc.) then (a) must
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reduce to the Voronets equations (3.8.14q). [See also Hamel, 1904(a), pp. 20–21;
Prange, 1935, pp. 537–539; Schouten, 1954, pp. 196–197.]

Problem 3.8.7 Special Hamel Equations (continued). Write down the kineto-static
Hamel equations of the preceding problem.

Example 3.8.1 A Mixed Hamel–Voronets Type of Equations [May be omitted in
a first reading. Adapted from Neimark and Fufaev (1972, pp. 141–143)]. Let us
consider a system subject to the Voronets-like Pfaffian constraints (with _qqk � vk):

vD �
X

bDI vI þ bD ½D ¼ 1; . . . ;m ð< nÞ; I ¼ mþ 1; . . . ; n�: ðaÞ

To handle these constraints, we make the following quasi-velocity choice: (i) We
express the first M ð� mÞ of the m vD’s à la Hamel:

!d � vd �
X

bdI vI � bd �
X

adI vI þ aI ð¼ 0Þ; ðb1Þ

and also

!I �
X

aII 0 vI 0 þ aI ð6¼ 0Þ; ðb2Þ

where d ¼ 1; . . . ;M; I ; I 0 ¼ m þ 1; . . . ; n [and the new coefficients aII 0 , aI are such
that upon inversion of (b2) and substitution of the v’s in (a), the latter is satisfied
identically]; and (ii) express the remaining m�M of the vD’s à la Voronets:

v� �
X

b�I vI þ b� ½� ¼M þ 1; . . . ;m ð< nÞ�: ðcÞ

The range of these indices, so important to the understanding of this example, is
shown below for quick reference:

Hamel Voronets

1 M m n

 �����������! �������!
qd q�

 ���������������������! �������������������!
qD qI

qi : union of qd and qI

D;D 0;D 00; . . . ¼ 1; . . . ;m ð< nÞ; I ; I 0; I 00; . . . ¼ mþ 1; . . . ; n;

d; d 0; d 00; . . . ¼ 1; . . . ;M ð< mÞ; �; � 0; � 00; . . . ¼M þ 1; . . . ;m;

i; i 0; i 00; . . . ¼ 1; . . . ;M and mþ 1; . . . ; n; ðdÞ
and, these indices may be used to characterize either a particular v or ! of a group,
or the entire group. Hence, they can be rewritten compactly as !i �

P
aii 0vi 0 þ ai.

Now, let us establish the transitivity equations. Recalling the results of prob.
2.12.5, we have the following:

(i) For the Hamel group, eqs. (b):

Hamel viewpoint: ð��iÞ� � �!i ¼
XX

� i
i 0i 00 !i 00 ��i 0 þ

X
� i

i 0 ��i 0 ; ðeÞ
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whereX
Aii 0ai 0i 00 ¼ �ii 00 ) � i

i 0i 00 �
XX

ð@aiiF=@qi 0000 � @aii 0000=@qiFÞAi 000i 0Ai 0000i 00 ; ðe1Þ

and analogously for � i
i0 � � i

i 0;nþ1; that is, the �i ::’s are based on eqs. (b), and
dð�qiÞ ¼ �ðdqiÞ.

(ii) For the Voronets group, eq. (c):

Suslov viewpoint: ð�qI Þ� � �ð _qqI Þ ¼ 0;

ð�q�Þ� � �ð _qq�Þ ¼
XX

w �
II 0 _qqI 0 �qI þ

X
w �

I �qI ðf Þ

[i.e., here, too, we may assume dð�qdÞ ¼ �ðdqdÞ ) dð�qiÞ ¼ �ðdqiÞ�.
In addition, to implement the central equation (CE), and thus derive the equations of
motion:

(i) We invert the virtual form of eqs. (b), thus obtaining [no enforcement of
constraints (b1) yet]

�qi ¼
X

Aii 0 ��i 0 ¼
X

AiI ��I ; since; by ðb1Þ; ��d ¼ 0
h i

; ðgÞ

where _��i � !i.
(ii) From the virtual form of (c), and then use of (g) for i ! I , we get

�q� ¼
X

b�I �qI ¼
X X

b�IAIi

� �
��i �

X
F�i ��i ¼

X
F�I ��I

h i
: ðhÞ

Equations (g, h) express the n �q’s in terms of theM þ ðn�mÞ ��i’s ½) ðn�mÞ ��I ’s]
introduced by the virtual form of (b).

(iii) Finally, we employ the notation

T ¼ Tðt; q; _qqi; _qq�Þ ¼ � � � ¼ T*ðt; q; !iÞ ¼ T* (no constraint enforcement yet), ðiÞ
meaning that T* is what becomes of T after expressing all its _qq’s in terms of the !i’s
[velocity forms of (g, h)]; that is, after substituting into it

_qqi ¼
X

Aii 0!i 0 þ Ai [obtained after solving (b) for the _qqi � vi�;

and

_qq� ¼
X

b�I _qqI þ b� ¼
X

b�I
X

AIi !i þ AI

� �
þ b� �

X
F�i !i þ F�: ð jÞ

Next, to obtain the equations of motion, we will utilize the central equation
(3.6.8 ff.)X

pk � _qqk

� �� � �T �X pk ð�qkÞ� � �ð _qqkÞ½ � ¼
X

Qk �qk ð� � 0WÞ: ðkÞ

Indeed, substituting into it the two expressions (f) for ð�qÞ� � �ð _qqÞ, we obtainX
pk �qk

� �� � �T �X p�½ð�q�Þ� � �ð _qq�Þ�

¼
X

pk �qk

� �� � �T �X p�
XX

w �
II 0 vI 0 �qI þ

X
w �

I �qI

� �
¼ � 0W : ðlÞ
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Next, due to (i, j) (and this is the important step here)

�P �S dm v � �r ¼
X

pk �qk ¼
X

Pk ��k ¼
X

Pi ��i; Pk � @T*=@!k;

�T ¼ �T* ¼
X
ð@T*=@!iÞ �!i þ ð@T*=@�iÞ ��i½ �; and � 0W ¼

X
Yi ��i; ðmÞ

and so, with the help of (g), the variational equation (l) can be rewritten as

¼
X

Yi ��i: ðnÞ

Finally, transforming the first two terms of the above via (m) [or (3.6.7a ff., with
k! i)], then applying the transitivity equations (e), and, finally, factoring out the
common ��i, we get X

ðIi �YiÞ ��i ¼ 0; ðoÞ

where

Ii � ð@T*=@!iÞ� � @T*=@�i

þ
XX

� i 0
ii 00 ð@T*=@!i 0 Þ!i 00 þ

X
� i 0

ið@T*=@!i 0 Þ
� �
�

XXX
w �

II 0 ð@T=@v�ÞvI 0AIi þ
XX

w �
I ð@T=@v�ÞAIi

� �
; ðpÞ

and

@T*=@�i �
X
ð@T*=@qkÞð@vk=@!iÞ

¼
X
ð@T*=@qi 0 Þð@vi 0=@!iÞ þ

X
ð@T*=@q�Þð@v�=@!iÞ [invoking (j)]

¼
X
ð@T*=@qi 0 ÞAi 0i þ

XX
ð@T*=@q�Þðb�IAIiÞ: ðqÞ

From the above we obtain, in by now well-understood ways (i.e., ��d ¼ 0)
multipliers; LdÞ, the two uncoupled groups of ‘‘mixed’’ (or ‘‘intermediate’’)
Hamel–Voronets equations:

Id ¼ Yd þ Ld (kinetostatic equations), II ¼ YI (kinetic equations). ðr1; 2Þ
In particular, the kinetic equations (r2) are, in extenso,

ð@T*=@!I Þ� � @T*=@�I þ
XX

� i
Ii 0 ð@T*=@!iÞ!i 0 þ

X
� i

Ið@T*=@!iÞ
� �

�
XXX

w �
I 0I 00AI 0Ið@T=@v�ÞvI 00 þ

XX
w �

I 0AI 0I ð@T=@v�Þ
� �

¼ YI : ðsÞ

These are, indeed, mixed Hamel–Voronets equations, because:

(i) If M ¼ m (i.e., � ¼ 0), the Voronets terms ( fourth group of terms: �½. . .�) disap-
pear and (s) reduce to the kinetic Hamel equations; whereas

(ii) If M ¼ 0 (i.e., d ¼ 0, � ¼ D, and i ¼ I), and we restrict ourselves to holonomic
coordinates and the Voronets constraints (a)¼ (c), then AII 0 ¼ �II 0 [¼Kronecker

delta in (g)], all the Hamel symbols � i
Ii 0 , �

i
I vanish, T* becomes Toðt; q; vI Þ, and
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(∑
Pi δθi

)·
− δT ∗

−

∑∑∑∑
wδ

II′pδ vI′(AIi δθi) −
∑∑∑

wδ

I pδ(AIi δθi)



(from � 0W ¼P YI ��I ¼
P

QIo �qI ) YI ! QIo; and, as a result, (s) reduce to

the familiar Voronets equations (3.8.14q):

ð@To=@vIÞ� � @To=@qI �
X
ð@To=@qDÞbDI

�
XX

wD
II 0 ð@T=@vDÞvI 0 þ

X
wD

Ið@T=@vDÞ
� �

¼ YI ; ðtÞ

and for Chaplygin systems, they reduce to the Chaplygin equations (3.8.13o).

Finally, if M ¼ 0 and we choose nonholonomic coordinates, (s) lead to the Voronets
and Chaplygin equations in quasi variables. The details are left to the reader [recall
probs. 3.8.2 and 3.8.3; see also Fradlin (1961)].

Example 3.8.2 Transformation of the Correction Terms �Gk that Appear in the
Hamel Equations. From the invariance of LP, under local quasi-coordinate
differential/velocity transformations

��k 0 ¼
X
ð@!k 0=@!kÞ ��k �

X
ak 0k ��k , ��k ¼

X
ð@!k=@!k 0 Þ ��k 0 � Akk 0 ��k 0 ;

that is, X
Ik ��k ¼

X
Yk ��k ,

X
Ik 0 ��k 0 ¼

X
Yk 0 ��k 0 ; ða1Þ

we readily conclude that the Ik and Yk transform as (covariant) vectors, that is,

Ik 0 ¼
X

Akk 0Ik , Ik ¼
X

ak 0kIk 0 ; etc: ða2Þ

However, this does not imply that the constituents of Ik � Ek*ðT*Þ � Gk �
Ek*� Gk, taken individually, transform as such vectors. In fact, as shown below,
neither Ek* (=nonholonomic Euler–Lagrange part of inertia) nor �Gk (or Gk ¼
nonholonomic deviation/correction) transform vectorially; that is, à la (a2);
although their combination Ek*� Gk does!

We begin by examining the transformation properties of the �Gk’s under
!k 0 ¼

P
ak 0k !k, !k ¼

P
Akk 0 !k 0 (assumed stationary for algebraic simplicity, but

no loss in generality); that is, relate

�Gl 0 �
XX

� k 0
l 0r 0 ð@T* 0=@!k 0 Þ!r 0 � �Gl 0 ðt; q; ! 0Þ; ðbÞ

and �Gl ¼ �Glðt; q; !Þ. Below, we present two such derivations; one in system
variables and one in terms of particle vectors.

(i) System variable derivation. Substituting the �-transformation equations
(3.8.15t)

� k 0
l 0r 0 ¼

XXX
ak 0kAll 0Arr 0�

k
lr þ

XX
ð@ak 0k=@�r � @ak 0r=@�kÞAkl 0Arr 0 ;

where

@ak 0k=@�r �
X
ð@ak 0k=@qbÞð@ _qqb=@!rÞ �

X
Abrð@ak 0k=@qbÞ;
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into (b), we find, successively,

�Gl 0 �
XX XXX

ak 0kAll 0Arr 0�
k
lr þ � � �

� � X
Ask 0 ð@T*=@!sÞ

� � X
ar 0b !b

� �n o
¼ � � � ¼

XXX
All 0
�
� s

lbð@T*=@!sÞ!b

�
þ
XXXX

All 0Akk 0 ð@ak 0l=@�r � @ak 0r=@�lÞ!r½ �ð@T*=@!kÞ
¼
X

All 0 ð�GlÞ þ
XXXX

All 0Akk 0 ð@ak 0l=@�r � @ak 0r=@�lÞ!r½ �ð@T*=@!kÞ;
ðcÞ

which is the sought nonvectorial transformation equation.
(ii) Particle variable derivation. We begin with the definition of Gk 0 in terms of

the transformed particle variables (3.3.12a):

Gl 0 �S dm v* 0 � ð@v* 0=@!l 0 Þ: � @v* 0=@�l 0
� 	

¼Sdm v* 0 � ðdel 0=dt� @v* 0=@�l 0 Þ; ðdÞ

where (again, assuming, for algebraic simplicity, stationary constraints and a station-
ary ! , ! 0 transformation)

v ¼ v* �
X

!l el ¼
X
ð@v*=@!lÞ!l ¼ v* 0 �

X
!l 0 el 0 ¼

X
ð@v* 0=@!l 0 Þ !l 0 : ðeÞ

From the representations (e), we readily deduce the basic e$ e 0 transformation
equations

el 0 ¼
X
ð@!l=@!l 0 Þel , el ¼

X
ð@!l 0=@!lÞel 0 [like (a2)]: ðf Þ

From the above, and with an eye toward (d), we obtain, successively,

ðaÞ del 0=dt ¼
X
ð@!l=@!l 0 Þ:el þ ð@!l=@!l 0 Þðdel=dt½ Þ�; ðgÞ

ðbÞ @v* 0=@�l 0 �
X
ð@v* 0=@qlÞð@ _qql=@!l 0 Þ (by deEnition)

¼
X

ð@v*=@qlÞ þ
X
ð@v*=@!sÞð@!s=@qlÞ

� �
ð@ _qql=@!l 0 Þ [by chain rule on (e)]

¼
X
ð@v*=@qlÞð@ _qql=@!l 0 Þ þ

X
ð@v*=@!sÞ

X
ð@!s=@qlÞð@ _qql=@!l 0 Þ

� �
¼
X X

ð@v*=@�sÞð@!s=@ _qqlÞ
� �

ð@ _qql=@!l 0 Þ þ
X
ð@v*=@!sÞð@!s=@�l 0 Þ

¼
X
ð@v*=@�lÞð@!l=@!l 0 Þ þ

X
ð@!l=@�l 0 Þel: ðhÞ

Inserting the expressions (g, h) into (d), and regrouping, we find

Gl 0 ¼ � � � ¼Sdm v* 0 �
X
½ð@!l=@!l 0 Þ� � @!l=@�l 0 �el

� �
þ
X

Sdm v* 0 � ðdel=dt� @v*=@�lÞ
� �

ð@!l=@!l 0 Þ

¼
X

Sdm v* 0 � ½@v*=@!l � @v*=@�l �
n o

ð@!l=@!l 0 Þ

þ
X
½ð@!l=@!l 0 Þ� � @!l=@�l 0 � Sdm v* 0 � el

� �
;
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or, finally (and recalling that v* 0 ¼ v* ¼ vÞ,
Gl 0 ¼

X
ð@!l=@!l 0 ÞGl þ

X �ð@!l=@!l 0 Þ� � @!l=@�l 0
	ð@T*=@!lÞ 0; ðiÞ

where

ð@T*=@!lÞ 0 � ð@T*=@!lÞ



after the diGerentiations we insert !¼!ðt;q;! 0Þ ¼ function of t; q; ! 0:

We leave it to the reader to show that (i) [which, actually, holds for a general (non-
linear and nonstationary) transformation ! ¼ !ðt; q; ! 0Þ (see chap. 5)], in our linear
and homogeneous case, coincides with (c).

Now, from the transformation law (a2), for the Ik � Ek*� Gk, and (i) for the Gl

[or following steps entirely similar to those taken in obtaining (g, h), but for
T* ¼ T* 0], it is not hard to see that the nonholonomic Euler–Lagrange terms
Ek* ¼ Ik þ Gk must transform as follows:

Ek 0* � ð@T* 0=@!k 0 Þ� � @T* 0=@�k 0 ð¼ Ik 0 þ Gk 0 Þ
¼
X
ð@!k=@!k 0 ÞEk* þ

X
½ð@!k=@!k 0 Þ� � @!k=@�k 0 �ð@T*=@!kÞ 0; ð jÞ

indeed, subtracting (i) from (j), side by side, yields (a2).
Clearly: (i) if ð@!k=@!k 0 Þ� � @!k=@�k 0 ¼ 0 (in which case, ! and ! 0 are referred to

as ‘‘relatively holonomic’’), both Gk and Ek* transform as vectors; and (ii) if Gk,
Gk 0 ; . . . ¼ 0 (i.e., holonomic coordinates), then Ek* ð! Ek ¼ holonomic inertiaÞ
transforms as a vector.

Problem 3.8.8 Show that (assuming a linear and stationary _qq$ ! relationship)

�Gk ¼
X �ð@ _qql=@!kÞ� � @ _qql=@�k

	ð@T=@ _qqlÞ*
¼
XX

� b
ks !s

X
ð@ _qql=@!bÞð@T=@ _qqlÞ*

� �
¼
XX

� b
ksð@T*=@!bÞ !s; ðaÞ

[for rheonomic systems s runs from 1 to nþ 1] and, therefore, also

�Gk 0 ¼
X�ð@ _qql=@!k 0 Þ� � @ _qql=@�k 0

	ð@T=@ _qqlÞ 0 ¼ � � � ¼XX
� b 0

k 0s 0 ð@T* 0=@!b 0 Þ!s 0 ;

ðbÞ
where

ð@T=@ _qqlÞ 0 � ð@T=@ _qqlÞ



after the diGerentiations we insert _qq¼ _qqðt;q;! 0Þ ¼ function of t; q; ! 0:

Below, we summarize the most prevalent quasi-velocity/constraint choices in
equations of motion:

Hamel ðgeneralÞ: !D �
X

aDk _qqk þ aD ¼ 0; !I : arbitrary 6¼ 0;

Hamel ðspecialÞ: !D �
X

aDk _qqk þ aD ¼ 0; !I � _qqI 6¼ 0;

Voronets ðspecialÞ: !D � _qqD �
X

bDI _qqI � bD ¼ 0; !I � _qqI 6¼ 0;

Voronets ðgeneralÞ: !D � _qqD �
X

bDI _qqI�bD ¼ 0; !I : arbitrary 6¼ 0;

Maggi: _qqk ¼
X

Akl!l þ Ak 6¼ 0; !D ¼ 0; !I : arbitrary 6¼ 0:
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3.9 KINETIC AND POTENTIAL ENERGIES;

ENERGY RATE, OR POWER, THEOREMS

The foregoing theory has shown the importance of kinetic energy, T � S ðdm v � vÞ=2,
to analytical mechanics and its equations of motion. Let us, therefore, examine in
some detail the following topics.

3.9.1 Kinetic Energy in Holonomic (System) Variables

Substituting into it the particle (inertial) velocity representation in holonomic
variables (}2.5)

v ¼
X

ek _qqk þ e0 ðek � @r=@qk; e0 � enþ1 � @r=@qnþ1 � @r=@tÞ; ð3:9:1Þ

and grouping terms, we obtain the following basic kinetic energy representation:

T ¼ Tðt; q; _qqÞ ¼ T2 þ T1 þ T0; ð3:9:2Þ
where

T2 ¼ T2ðt; q; _qqÞ � ð1=2Þ
XX

Mkl ¼Mklðt; qÞ �Sdm ek � el �Sdm ð@r=@qkÞ � ð@r=@qlÞ ð¼MlkÞ; ð3:9:2aÞ
T1 ¼ T1ðt; q; _qqÞ �

X
Mk _qqk

Mk ¼Mkðt; qÞ �Sdm ek � e0 �Sdmð@r=@qkÞ � ð@r=@tÞ
ð¼Mk0 ¼M0k �Mk;nþ1 ¼Mnþ1;kÞ; ð3:9:2bÞ

T0 ¼ T0ðt; qÞ �M0=2

M0 ¼M0ðt; qÞ �Sdm e0 � e0 �Sdmð@r=@tÞ � ð@r=@tÞ
ð¼M00 �Mnþ1;nþ1 
 0Þ; ð3:9:2cÞ

that is,

2T ¼M11 _qq1
2 þ 2M12 _qq1 _qq2 þM22 _qq2

2 þ � � � þMnn _qqn
2

þ 2M1 _qq1 þ � � � þ 2Mn _qqn

þM0;

or, compactly (with 
, � ¼ 1; . . . ; n; nþ 1; and noting that _qqnþ1 ¼ _tt ¼ 1Þ,
2T ¼

XX
M
� _qq
 _qq�; M
� ¼M�
 �Sdm ð@r=@q
Þ � ð@r=@q�Þ: ð3:9:2dÞ

Clearly, the holonomic coefficients of inertia M
� ¼M
�ðt; qÞ vary with the system
configuration and time, and, of course, the particular q-representation (in some q’s,
they might even be constant, like the particles’ masses).

Some Analytical Considerations

(i) If r ¼ rðqÞ (i.e., stationary holonomic constraints in the q’s) ) e0 �
@r=@t ¼ 0) all the Mk and M0 vanish, and
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Mklq̇kq̇l (� 0, quadratic and homogeneous in the q̇s),

(linear and homogeneous in the q̇s),

(≥ 0, zeroth degree in the q̇s),



2T ! 2T2 ¼
XX

Mkl _qqk _qql ½¼ 2ðkinetic energy for ‘‘frozen constraints’’Þ�;
ð3:9:2eÞ

and the vanishing of the v’s implies that of the _qq’s and of T . Also, since, in general,

2T2 ¼Sdmðv� e0Þ2 ¼Sdm
X

ek _qqk

� �2
;

T2 represents the kinetic energy of the ‘‘virtual velocities’’ v� e0 (Lur’e, 1968, pp. 10,
135).

(ii) In the general nonstationary case ð@r=@t 6¼ 0Þ, it can be shown that, as long as
the 3N coordinates of the system’s particles n � f�	; 	 ¼ 1; . . . ; 3Ng can be expressed
in terms of n minimal positional coordinates q � fqk; k ¼ 1; . . . ; ng—that is, as long

nondegenerate, or nonsingular; that is, DetðMklÞ 6¼ 0; and since T2 
 0 it follows that

T2 ¼ positive deOnite in the _qq’s ði:e:; always nonnegative; and zero only if all _qq’s ¼ 0Þ:
ð3:9:2f Þ

As is well known, the necessary and sufficient conditions for this are

jM11j ¼M11 > 0;
M11 M12

M21 M22












 > 0;

M11 � � � M1n

..

. � � � ..
.

Mn1 � � � Mnn





















 > 0; ð3:9:2gÞ

for all q’s and t in their domain of definition. The last of the above n inequalities
states that the inertia matrix M ¼ ðMklÞ is nonsingular; while the one before it states
the same for the corresponding matrix of the new system obtained from the given by
adding to it the constraint qn ¼ constant. [For proofs, see, for example, Gantmacher
(1970, pp. 46–47), Lamb (1929, pp. 182–183), Langhaar (1962, pp. 308–313).]

As for the total kinetic energy T , it is clear from its definition that it is always
nonnegative, but it vanishes for a single set of (not necessarily zero) values of the _qq’s.

(iii) The terms T1 and T0 are called, respectively, gyroscopic and centrifugal parts
of T (}3.16, }8.3 ff.). Clearly, T0 
 0; and also jT1j < T2 þ T0, otherwise we might
have T < 0.

(iv) If T1 ¼ T0 ¼ 0, the system is also called natural, eq. (3.9.2e).
(v) We notice that T can always be represented as

T ¼ T 02 þ T 00; ð3:9:2hÞ
where 2T 02 �

PP
Mklð _qqk � xkÞð _qql � xlÞ ¼ positive definite in the _qqk � xk, the

xk ¼ xkðtÞ have units of Lagrangean velocities; that is, _qqk, and T 00 ¼ T 00ðt; qÞ.
Clearly, if T 00 > 0, then T > 0.

Some Useful Identities

Invoking the homogeneous function theorem of Euler [according to which, if
f ¼ f ðx1; . . . ; xnÞ ¼ homogeneous of degree H in its variables x1; . . . ; xn, thenX

ð@f =@xkÞxk ¼ H � f �;
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we obtain the following useful kinematico-inertial T-identities:

ðaÞ
X
ð@T=@ _qqkÞ _qqk ¼

X
½@ðT2 þ T1 þ T0Þ=@ _qqk� _qqk

¼ ð2ÞT2 þ ð1ÞT1 þ ð0ÞT0 ¼ 2T2 þ T1 ¼ T þ ðT2 � T0Þ
½¼ 2T ; if @r=@t ¼ 0 �; ð3:9:3aÞ

ðbÞ
X

EkðTÞ _qqk �
X
ð@T=@ _qqkÞ: � @T=@qk½ � _qqk

¼
X
ð@T=@ _qqkÞ _qqk

� �:�X ð@T=@ _qqkÞ€qqk þ ð@T=@qkÞ _qqk½ �
¼ T þ ðT2 � T0Þ½ �:� ðdT=dt� @T=@tÞ;

or, finally, a form that will prove useful in the energy rate theorem below [with
EkðTÞ � Ek�,X

Ek _qqk ¼
X
ð@T=@ _qqkÞ _qqk � T

� �:þ @T=@t ¼ ðT2 � T0Þ:þ @T=@t: ð3:9:3bÞ

3.9.2 Kinetic Energy in Nonholonomic (System) Variables

Substituting into T the particle (inertial) velocity representation in nonholonomic
variables (2.9.23 ff.)

v! v* ¼
X

ek !k þ e0; ð3:9:4Þ

where

ek � @r=@�k;
e0 � enþ1 � @r=@�nþ1 �

X
ð@r=@q
Þð@ _qq
=@!nþ1Þ

¼ @r=@tþ
X

Akð@r=@qkÞ � @r=@tþ @r=@ðtÞ � e0 þ
X

Akek; ð3:9:4aÞ

and grouping terms, we obtain the following basic kinetic energy representation:

T ! T* ¼ T*ðt; q; !Þ ¼ T*2 þ T*1 þ T*0; ð3:9:4bÞ
where

2T*2 ¼ 2T*2ðt; q; !Þ �
XX

M*kl !k !l (quadratic and homogeneous in the !’s);

M*kl ¼M*klðt; qÞ �Sdm ek � el �Sdmð@r=@�kÞ � ð@r=@�lÞ ð¼M*lkÞ; ð3:9:4cÞ
T*1 ¼ T*1ðt; q; !Þ �

X
M*k !k ðlinear and homogeneous in the !’sÞ;

M*k ¼M*kðt; qÞ �Sdm ek � e0 �Sdmð@r=@�kÞ � ð@r=@�nþ1Þ
ð¼M*k;nþ1 ¼M*nþ1;kÞ; ð3:9:4dÞ

T*0 ¼ T*0ðt; qÞ �M*0=2 (zeroth degree in the !’s),

M*0 ¼M*0ðt; qÞ �Sdm enþ1 � enþ1

�Sdm e0 � e0 �Sdm ð@r=@�nþ1Þ � ð@r=@�nþ1Þ ð¼M*nþ1;nþ1=2Þ; ð3:9:4eÞ
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or, compactly (with 
, � ¼ 1; . . . ; n; nþ 1; and noting that _��nþ1 ¼ _tt ¼ 1),

2T* ¼
XX

M*
� !
 !�; M*
� ¼M*�
 �Sdm ð@r=@�
Þ � ð@r=@��Þ:
ð3:9:4f Þ

The nonholonomic coefficients of inertia M*
� ¼M*
�ðt; qÞ satisfy similar analytical
conditions as the holonomic ones M
�. Let us relate them; recalling (2.9.25a ff.) we
find the following:

ðaÞ M*kl �Sdm ek � el ¼Sdm
X

Ark er

� �
�

X
Asl es

� �
¼
XX

ArkAsl S dm er � es

� �
; i:e:; M*kl ¼

XX
ArkAslMrs; ð3:9:4gÞ

and, inversely,

Mrs ¼ � � � ¼
XX

akrals M*kl ; ð3:9:4hÞ

ðbÞ M*k �Sdm ek � e0 ¼Sdm
X

Ark er

� �
�

X
As es þ e0

� �
¼
XX

ArkAs S dm er � es

� �
þ
X

Ark S dm er � e0

� �
; ð3:9:4iÞ

that is,

M*k ¼
XX

ArkAsMrs þ
X

ArkMr; ð3:9:4jÞ

and, inversely,

Mr ¼ � � � ¼
XX

akr alM*kl þ
X

akrM*k; ð3:9:4kÞ

ðcÞ M*0 �Sdm e0 � e0 ¼Sdm
X

Ar er þ e0

� �
�

X
As es þ e0

� �
¼
XX

ArAs S dm er � es

� �
þ
X

Ar S dm er � e0

� �
þ
X

As S dm es � e0

� �
þSdm e0 � e0;

that is,

M*0 ¼
XX

ArAsMrs þ 2
X

ArMr þM0; ð3:9:4lÞ

and, inversely,

M0 ¼
XX

ak alM*kl þ 2
X

akM*k þM*0: ð3:9:4mÞ

The above show clearly that even if we start with a homogeneous (quadratic) T , still
we may end up with a nonhomogeneous (quadratic) T*, and vice versa. Also, a little
reflection (and recollection of the results of }2.9) shows that (3.9.4g–m) can be
consolidated into the compact formulae

M*
� ¼
XX

A�
A��M�� ,M�� ¼
XX

a
� a��M*
�: ð3:9:4nÞ
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[In tensor language, these are the transformation equations between the holonomic
ðM
�Þ and nonholonomic ðM*
�Þ covariant components of the metric tensor in the
system event space (}2.7), whose arc-length element (squared) is

ðdsÞ2 ¼ 2TðdtÞ2 ¼
XX

M
� dq
 dq� ¼
XX

M*
� d�
 d��; ð3:9:4oÞ

and similarly in configuration space; see, for example, Lur’e (1968), Papastavridis
(1998, 1999), Synge (1936).]

Some Useful Identities

Again, applying Euler’s homogeneous function theorem to T* we easily obtain the
following identities:

ðaÞX
ð@T*=@!kÞ !k ¼

X
½@ðT*2 þ T*1 þ T*0Þ=@!k� !k

¼ ð2ÞT*2 þ ð1ÞT*1 þ ð0ÞT*0 ¼ 2T*2 þ T*1 ¼ T*þ ðT*2 � T*0Þ;
ð3:9:5aÞ

ðbÞX
Ek* !k �

X
ð@T*=@!kÞ:� @T*=@�k½ �!k

¼
X
ð@T*=@!kÞ!k

� �:�X ð@T*=@!kÞ _!!k

n o
�
X
ð@T*=@qlÞ

X
Alk!k

� �
[replacing, in the last term,

X
Alk!k with _qql � Al �

¼
X
ð@T*=@!kÞ!k � T*

� �:þ @T*=@tþ
X

Alð@T*=@qlÞ
� �

;

or, finally [recalling (2.9.33 ff.) and (3.9.5a)],X
Ek* !k ¼

X
ð@T*=@!kÞ !k � T*

� �: þ @T*=@�nþ1 ¼ ðT*2 � T*0Þ:þ @T*=@�nþ1;

where

@T*=@�nþ1 � @T*=@tþ
X

Alð@T*=@qlÞ; ð3:9:5bÞ

a form that will prove useful in the energy rate theorem below.

3.9.3 Potential Energy

It is frequently possible to express the virtual work of the impressed forces,
� 0W � S dF � �r, as

� 0W ¼ � �V þ � 0WNP ¼
X
½�@V=@qk þQk;NP� �qk �

X
Qk �qk

¼
X
½�@V*=@�k þYk;NP� ��k �

X
Yk ��k; ð3:9:6aÞ

where

V ¼ Vðq; tÞ ¼ V*ðq; tÞ ¼ potential (or potential energy), in system variables;

ð3:9:6bÞ
@V*=@�k �

X
ð@V*=@qlÞð@ _qql=@!kÞ ¼

X
Alkð@V*=@qlÞ; ð3:9:6cÞ
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@V*=@qk �
X
ð@V*=@�lÞð@!l=@ _qqkÞ ¼

X
alkð@V*=@�lÞ; ð3:9:6dÞ

�@V=@qk ¼ holonomic potential part of Qk; ð3:9:6eÞ
Qk;NP ¼ holonomic nonpotential part of Qk; ð3:9:6f Þ
�@V*=@�k ¼ nonholonomic potential part of Yk; ð3:9:6gÞ
Yk;NP ¼ nonholonomic nonpotential part of Yk: ð3:9:6hÞ

The connection between �V in particle and system variables is given by

�V ¼S ð@V=@rÞ � �r ¼S ð@V=@rÞ �
X

ek �qk

� �
¼
X

S ð@V=@rÞ � ek
� �

�qk ¼
X
ð@V=@qkÞ �qk; ð3:9:6iÞ

¼S ð@V=@rÞ �
X

ek ��k

� �
¼
X

S ð@V=@rÞ � ek
� �

��k ¼
X
ð@V*=@�kÞ ��k: ð3:9:6jÞ

REMARK ON THE POTENTIAL OF CONSTRAINT REACTIONS

Since, in general,

d 0WR �SdR � dr 6¼ 0 whereas � 0WR �SdR � �r ¼ 0
� �

;

it is conceivable that d 0WR ¼ �dV, namely, that constraint reactions are, partly or
wholly, potential. Thus, we may have

R0 � Rnþ1 �SdR � e0 ¼ �@V=@t ¼ �
X
ð@V=@ckÞðdck=dtÞ; ð3:9:6kÞ

where the ck ðk ¼ 1; 2; 3; . . .Þ are certain time-dependent system parameters; for
example, mass, length, area, and so on. Such ‘‘parameteric reactions’’ appear in
areas like parametric excitation (Mathieu–Floquet theory) and adiabatic invariance
(}7.9 examples/problems; }8.15).

From now on, generally, we will omit the subscripts NP in the Q’s and Y’s. If
potential parts exist, they will usually be absorbed into the system’s kinetic potential,
or Lagrangean function L � T � V ¼ L* � T *�V *; explicitly,

L ¼ Lðt; q; _qqÞ � Tðt; q; _qqÞ � Vðt; qÞ (holonomic variables), ð3:9:7aÞ
L* ¼ L*ðt; q; !Þ � T *ðt; q; !Þ � V *ðt; qÞ (nonholonomic variables). ð3:9:7bÞ

The only change in the earlier equations of motion is that TðT *Þ is replaced,
wherever it appears, by LðL*Þ; then, and unless explicitly stated to the contrary,
QkðYkÞ will stand for the nonpotential parts of the corresponding forces.

Generalized Potential

(Recall ex. 3.5.12.) Occasionally, the potential part of Qk is given by the [slightly
more general than (3.9.6e)] expression

Qk; generalized potential � Qk;GP � ð@V=@ _qqkÞ: � @V=@qk � EkðVÞ; ð3:9:8aÞ
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where

V ¼ Vðt; q; _qqÞ ¼ generalized (holonomic) potential;

or, in extenso,

Qk;GP ¼
X

ð@2V=@ql @ _qqkÞ _qql þ ð@2V=@ _qql @ _qqkÞ€qql
� 	þ @2V=@t @ _qqk � @V=@qk

¼
X
ð@2V=@ _qql @ _qqkÞ€qql þ terms not containing accelerations €qq: ð3:9:8bÞ

However, since in classical mechanics @Qk=@€qql ¼ 0 (Pars, 1965, pp. 11–12), we con-
clude from the above that @2V=@ _qql @ _qqk ¼ 0 ) V can be, at most, linear in the _qq’s;
that is,

V ¼
X

�kðt; qÞ _qqk þ V0ðt; qÞ � V1ðt; q; _qqÞ þ V0ðt; qÞ: ð3:9:8cÞ

Substituting (3.9.8c) into (3.9.8a, b), we obtain

Qk;GP ¼ d�k=dt� @=@qk
X

�l _qql þ V0

� �
¼ � � � ¼

X
�kl _qql þ @�k=@t� @V0=@qk;

where

�kl ¼ �klðt; qÞ � @�k=@ql � @�l=@qk ð¼ � �lkÞ; ð3:9:8dÞ
that is, �11 ¼ ��11 ) �11 ¼ 0, �12 ¼ ��21, and so on.

Gyroscopicity

Now we introduce the following important concept.

DEFINITION

Impressed (i.e., nonconstraint) forces Qk that satisfy the ‘‘power’’ conditionX
Qk _qqk ¼ 0 ð3:9:8eÞ

are called gyroscopic. In view of the antisymmetry of the gyroscopic coefficients �kl ,
it is not hard to see thatX X

�kl _qql

� �
_qqk �

XX
�kl _qqk _qql ¼

XX
½ð�kl þ �lkÞ=2� _qqk _qql ¼ 0: ð3:9:8f Þ

Hence, the representation/decomposition (3.9.8d) states that a generalized
potential force consists, at most, of three parts: a gyroscopic

P
�kl _qql, a nonstationary

@�k=@t, and a purely potential �@V0=@qk. If, further,
P ð@�k=@tÞ _qqk ¼ 0 andP ð@V0=@qkÞ _qqk ¼ dV0=dt� @V0=@t ¼ 0, then Qk;GP is (purely) gyroscopic.

REMARKS ON GYROSCOPIC FORCES/TERMS

(i) Typically, but not exclusively, gyroscopic forces appear in problems of relative
motion/moving axes (}3.16); for example, Coriolis force [see also Gantmacher (1970,
pp. 68–69), Goldstein (1980, pp. 21–23), for applications of generalized, or ‘‘velocity-
dependent,’’ potentials to electrodynamics].
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(ii) Let us assume that dqk ¼ _qqk dt (actual motion). Then, due to (3.9.8e), we have

d 0Wg �
X X

�kl _qql

� �
dqk ¼

XX
�kl _qqk _qql

� �
dt ¼ 0; ð3:9:9aÞ

but, in general,

� 0Wg �
X X

�kl _qql

� �
�qk ¼

XX
�kl _qql �qk 6¼ 0; ð3:9:9bÞ

that is, the actual elementary work of gyroscopic forces vanishes; but their virtual
work, in general, does not (if it did, such forces would not have the opportunity to
appear in Lagrangean equations!).

(iii) Gyroscopicity of particle variables: Let us call the force system fdFg gyro-
scopic, if it satisfies S dF � v ¼ 0. Substituting into this the particle velocity repre-
sentation (3.9.1), we obtain, successively,

0 ¼SdF �

X
ek _qqk þ e0

� �
¼
X

SdF � ek

� �
_qqk þSdF � e0

¼
X

Qk _qqk þQ0 )
X

Qk _qqk 6¼ 0; ð3:9:9cÞ

that is, in general, the corresponding system forces Qk are not gyroscopic; and,
conversely, even if the Qk are gyroscopic (i.e.,

P
Qk _qqk ¼ 0Þ, the dF may not be

SdF � v 6¼ 0
� �

. However, if e0 � @r=@t ¼ 0 (stationary holonomic constraints), then

the Qk and dF are gyroscopic simultaneously.

(iv) More generally, let us examine how gyroscopicity is affected by a general
frame of reference transformation:

q! q 0 : qk ¼ qkðt; qk 0 Þ ) _qqk ¼
X
ð@qk=@qk 0 Þ _qqk 0 þ @qk=@t: ð3:9:9dÞ

Indeed, substituting (3.9.9d) into (3.9.8e), and recalling that the q 0-frame impressed
forces Qk 0 are defined by the frame invariant virtual work relation:

� 0W ¼
X

Qk �qk ¼
X

Qk

X
ð@qk=@qk 0 Þ �qk 0

� �
�
X

Qk 0 �qk 0 ; ð3:9:9eÞ

that is,

Qk 0 ¼
X
ð@qk=@qk 0 ÞQk , Qk ¼

X
ð@qk 0=@qkÞQk 0 ; ð3:9:9f Þ

we obtain

0 ¼
X

Qk _qqk ¼
X

Qk

X
ð@qk=@qk 0 Þ _qqk 0

� �
þ
X

Qkð@qk=@tÞ

¼
X

Qk 0 _qqk 0 þ
X

Qkð@qk=@tÞ )
X

Qk 0 _qqk 0 6¼ 0; ð3:9:9gÞ

that is, in general, the Qk 0 are nongyroscopic. If, however, @qk=@t ¼ 0 [in which case
(3.9.9d) expresses a coordinate (not a frame of reference) transformation], the Qk 0 are
also gyroscopic. In sum: force gyroscopicity is a frame-dependent property.
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Finally, similar results hold for the generalized potential and corresponding forces
in nonholonomic coordinates; that is,

V * ¼ V *ðt; q; !Þ ¼
X

�*kðt; qÞ !k þ V *0ðt; qÞ � V *1ðt; q; !Þ þ V *0ðt; qÞ
¼ generalized ðnonholonomicÞ potential; ð3:9:9hÞ

) Yk; generalized potential � Yk;GP � ð@V *=@!kÞ:� @V *=@�k

¼ � � � ¼
X

�*kl !l þ @�*k=@t� @V *0=@�k; ð3:9:9iÞ

where

�*kl ¼ �*klðt; qÞ � @�*k=@�l � @�*l=@�k ð¼ ��*lkÞ: ð3:9:9jÞ

Rayleigh’s Dissipation Function

Let us consider the linear viscous friction on a particle; that is, the impressed force
given by the constitutive equation

dF ¼ �f v; f ¼ positive constant: ð3:9:10aÞ

Recalling (3.9.1), the corresponding system force Qk;D � SdF � ek ¼ � � � can be
expressed as

Qk;D ¼ �@F=@ _qqk ¼ �
X

fkl _qql � fk; ð3:9:10bÞ

where the Rayleigh dissipation function, or dissipativity (Kelvin), F , is defined by

F �S ðf =2Þ v � v ¼ � � � ¼ F2 þ F1 þ F0 ½¼ Fðt; q; _qqÞ�; ð3:9:10cÞ
F2 � ð1=2Þ

X
fkl _qqk _qql ð
 0Þ; fkl �Sf ek � el ð¼ flkÞ; ð3:9:10dÞ

F1 �
X

fk _qqk; fk �Sf ek � e0 ð¼ fk;nþ1 � fk;0Þ; ð3:9:10eÞ
F0 � ð1=2ÞSf e0 � e0 ð¼ fnþ1;nþ1=2 � f0;0=2Þ; ð3:9:10f Þ

and has similar analytical properties with the kinetic energy (in the latter, replace dm
with f ).

Stationary Case

If e0 � @r=@t ¼ 0 (case dealt by Rayleigh, in 1873), then

F ¼ F2 ¼ ð1=2Þ
X

fkl _qqk _qql ; ð3:9:10gÞ

and the power of the corresponding dissipative forces, by Euler’s homogeneous
function theorem, equalsX

Qk;D _qqk ¼ �
X
ð@F=@ _qqkÞ _qqk ¼ �2F2 ð¼ �2F Þ; ð3:9:10hÞ
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that is (as detailed below, or may be already known from general mechanics), 2F2

measures the rate of decrease of the system’s energy due to such friction. For more
general forms of dissipation functions, see Lur’e (1968, pp. 227–238).

Finally, if we use the nonholonomic particle velocity representation (3.9.4) in
F , (3.9.10c), we will obtain the dissipation function in quasi variables:
F ! F*ðt; q; !Þ ¼ � � � . The details are left to the reader.

Energy Rate, or Power (or Activity) Theorems

As a rule, such theorems are obtained by, first, multiplying (dotting) the equations of
motion by the corresponding velocities and then summing over the entire system (or
pairs of indices), for a fixed generic time. The result is a single scalar equation whose
inertia side is (roughly) the rate of change of the kinetic energy of the system, and
whose force side is the rate of working, or power, of whatever forces appear in the
equations of motion.

Contrary to LP, which is a single energetic but variational equation (and, as such,
can generate as many independent equations of motion as the number of the sys-
tem’s DOF), the energy rate relation is also a single energetic but actual equation
(and, as such, it cannot, in general, be used to produce correct equations of
motion)—and this is a fundamental difference between energy and variational theo-
rems/principles of mechanics! [On this ‘‘insidious fallacy,’’ see Pars (1965, pp. 86–87),
also ex. 3.9.3.]

Below we derive these theorems (better, theorem in its various forms) in both
holonomic and nonholonomic variables.

Holonomic Variables

Multiplying each Routh–Voss equation (3.5.15), say, with free index k, with _qqk and
summing over k, from 1 to n, and then invoking the earlier identity (3.9.3b) and the
mð< nÞ Pfaffian constraints

P
aDk _qqk þ aD ¼ 0 [from which it follows thatX X

�DaDk

� �
_qqk ¼

X
�D

X
aDk _qqk

� �
¼ �

X
�DaD

i
; ð3:9:11aÞ

we obtain the holonomic power equationX
ð@T=@ _qqkÞ _qqk � T

� �: ¼ ðT2 � T0Þ: ¼ �@T=@tþ
X

Qk _qqk �
X

�DaD:

ð3:9:11bÞ

If some (or all) of the Qk’s are derived partly (or wholly) from a potential function V ,
then (3.9.3b) is replaced byX

EkðLÞ _qqk �
X
ð@L=@ _qqkÞ:� @L=@qk½ � _qqk ¼ @L=@tþ dh=dt; ð3:9:11cÞ

and, accordingly, (3.9.11b) is replaced by the simpler looking form

dh=dt ¼ �@L=@tþ
X

Qk _qqk �
X

�DaD ; ð3:9:11dÞ
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where

h ¼ hðt; q; _qqÞ �
X
ð@L=@ _qqkÞ _qqk � L

¼ L2 � L0 ¼ T2 � ðT0 � V0Þ:
Generalized energy of the system in holonomic variables

ð ¼ Hamiltonian function, when expressed in terms of t; q; and p

� @T=@ _qq; instead of the _qq’s�� see chap. 8), ð3:9:11eÞ
and

L ¼ L2 þ L1 þ L0; L2 � T2; L1 � T1 � V1; L0 � T0 � V0; ð3:9:11fÞ

Qk ¼ nonpotential part of virtual work term ð. . .Þ �qk: ð3:9:11gÞ
An additional useful form of the power theorem results if, instead of h, we use the
ordinary (or classical) total energy of the system E:

E � T þ V0 ð¼ T þ V ; if V1 ¼ 0Þ: ð3:9:11hÞ
Then, since

h ¼ T2 � ðT0 � V0Þ ¼ ðT � T1 � T0Þ � ðT0 � V0Þ ¼ ðT þ V0Þ � ðT1 þ 2T0Þ
or

h ¼ E � ðT1 þ 2T0Þ or E � h ¼ T1 þ 2T0; ð3:9:11iÞ
the power equations (3.9.11b, d) assume the equivalent classical energy rate form
(analytical mechanics form of Leibniz’s ‘‘law of vis viva’’)

dE=dt ¼ �@L=@tþ ðT1 þ 2T0Þ:þ
X

Qk _qqk �
X

�DaD : ð3:9:11jÞ

If, in the above, all forces are nonpotential, then E and L must be replaced by
T ½! (3.9.11b)].

Problem 3.9.1 Show that in terms of the more general total energy

E 0 � E þ V1 ¼ T þ V ¼ T þ ðV1 þ V0Þ ð) _EE ¼ _EE 0 � _VV1Þ; ðaÞ
the power equation (3.9.11j) becomes

dE 0=dt ¼ �@L=@tþ ðT1 þ 2T0Þ� þ _VV1 þ
X

Qk _qqk �
X

�DaD: ðbÞ

Specializations

(i) If the (initial) holonomic constraints of the system are stationary/scleronomic,
then T1, T0 ¼ 0, @T=@t ¼ 0 ) T ¼ T2, h ¼ E ¼ T2 þ V0, and (3.9.11d, j) reduce to

dE=dt ¼ @V0=@tþ
X

Qk _qqk �
X

�DaD : ð3:9:11kÞ
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(ii) If, further, @V=@t ¼ 0 and all additional Pfaffian constraints are catastatic—
that is, aD ¼ 0 ðD ¼ 1; . . . ;mÞ—then the above simplifies to

dE=dt ¼
X

Qk _qqk; ð3:9:11lÞ

[or dT=dt ¼P Qk _qqk, if all forces are nonpotential].
(iii) Finally, if all impressed forces are either potential ðQk ¼ 0Þ, or gyroscopic,

then (3.9.11l) yields the theorem of conservation of (classical) energy:

dE=dt ¼ 0 ) E ¼ T þ V0 ¼ constant: ð3:9:11mÞ

Systems that satisfy all the above: namely, (a) all their constraints are stationary
[slightly stronger than just catastatic—in view of (ii), condition (a) is sufficient but
nonnecessary], (b) all their forces are either potential or gyroscopic, and (c) their
(ordinary or generalized) potential does not depend explicitly on time; are called
(classically) conservative. Hence, (3.9.11m) expresses the following theorem.

THEOREM

During any actual motion of a conservative system, its (classical) energy, evaluated
at any point of its trajectory (or orbit), remains constant.

Equation (3.9.11m) is a first integral of the system’s equations of motion; that is, it
does not contain any accelerations; it is called the (classical) energy integral.
[Equation (3.9.11m) is the reason for the minus sign in the potential force definitions
(3.9.6a ff.). In the older literature (roughly, until the early 1900s), we frequently
encounter the term ‘‘force function’’ for U � �V0: Qk;potential � @U=@qk; then
(3.9.11m) would read T ¼ U þ constant: Some authors have, erroneously, taken
this to mean some kind of a scalar function from which we can, by taking its
gradients, obtain all system forces ! ]

A slightly more general conservation theorem than (3.9.11m) can be obtained
from (3.9.11d) wherever the following conditions apply: (a) @L=@t ¼ 0 (which does
not necessitate that T1, T0 vanish, and/or that @T=@t or @V=@t vanish individu-
ally), (b) all forces are either potential or gyroscopic, and (c) aD ¼ 0 (catastatic
Pfaffian constraints). Then, (3.9.11d) yields the (holonomic) Jacobi–Painlevé general-
ized energy integral :

dh=dt ¼ 0 ) h ¼ T2 � ðT0 � V0Þ ¼ T2 þ ðV0 � T0Þ ¼ constant; ð3:9:11nÞ

even though in this case, as (3.9.11i) shows, E 6¼ constant; if, in addition, T0 ¼ 0,

Nonholonomic Variables

The power equations (3.9.11b, d, j), just like the equations of motion they came
from, have two drawbacks: (i) they contain multipliers (reactions)—that is, they are
‘‘mixed power equations,’’ and (ii) they cannot distinguish between nonholonomic
Pfaffian constraints and holonomic ones disguised as Pfaffian. Hence the need for
nonholonomic power equations. To obtain them, we begin by multiplying the kinetic
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Hamel equations (3.5.19d, 20b, 21d) with T *! L* � T *� V * (to include possible
potential forces)

II � ð@L*=@!I Þ: � @L*=@�I þ
XX

� r
II 0 ð@L*=@!rÞ!I 0 þ

X
� r

Ið@L*=@!rÞ
¼ YI ðr ¼ 1; . . . ; n; I ; I 0 ¼ mþ 1; . . . ; nÞ; ð3:9:12aÞ

with !I and sum over I .
(i) Then notice that by (3.9.5b), with T*! L*,X

EI*ðL*Þ !I �
X

E*I !I �
X
½ð@L*=@!IÞ:� @L*=@�I �!I

¼ dh*=dtþ @L*=@�nþ1; ð3:9:12bÞ

where

h* �
X
ð@L*=@!I Þ !I � L* ¼ L*2 � L*0 ¼ T *2 þ ðV *0 � T *0Þ

¼ h*ðt; q; !Þ: generalized energy of the system;

in nonholonomic variables ð6¼ h; in generalÞ; ð3:9:12cÞ
and

L* ¼ L*ðt; q; !Þ � L*2 þ L*1 þ L*0;

L*2 � T *2; L*1 � T *1 � V *1; L*0 � T *0 � V *0; ð3:9:12dÞ

YI ¼ nonpotential part of virtual work term ð. . .Þ ��I ; ð3:9:12eÞ
and

@L*=@�nþ1 � @L*=@tþ
X

Akð@L*=@qkÞ ð3:9:12f Þ

[Note the differences between (3.9.12b) and (3.9.11c); and absence of linear !ð _qqÞ
terms in h*ðhÞ, even though T *1ðT1Þ appear in E*IðEkÞ].

(ii) Since �rII 0 ¼ ��rI 0I (i.e., antisymmetry, or gyroscopicity, of Hamel’s coeffi-
cients),X XX

�rII 0 ð@L*=@!rÞ!I 0
� �

!I ¼
X XX

�rII 0!I 0!I

� �
ð@L*=@!rÞ ¼ 0:

ð3:9:12gÞ
Collecting these results, we obtain the nonholonomic (multiplierless, or kinetic) power
equationX

II !I ¼
X

EI*ðL*Þ !I þ
X X

�rI ð@L*=@!rÞ
� �

!I ¼
X

YI !I ; ð3:9:12hÞ

or, finally,

dh*=dt ¼ �@L*=@�nþ1 þ
X

YI !I � R; ð3:9:12iÞ

where

R �
XX

�rI ð@L*=@!rÞ !I : rheonomic nonholonomic power. ð3:9:12jÞ

)3.9 KINETIC AND POTENTIAL ENERGIES; ENERGY RATE, OR POWER, THEOREMS 523



From this important equation, we draw the following special conclusions: by
(2.10.4),

�rI ¼
XX

ð@ark=@ql � @arl=@qkÞAkI Al þ
X
ð@ark=@t� @ar=@qkÞAkI ; ð3:9:12kÞ

and, therefore, if ar � ar;nþ1 ¼ 0) Ar � Ar;nþ1 ¼ 0; then @L*=@�nþ1 ¼ @L*=@t and

R ¼ � � � ¼
XXX

ð@ark=@tÞAkI½ �ð@L*=@!rÞ !I ¼
XX

ð@ark=@tÞð@L*=@!rÞ _qqk;
ð3:9:12lÞ

if, further, ark ¼ arkðqÞ, then R ¼ 0, and (3.9.12i) reduces to

dh*=dt ¼ �@L*=@tþ
X

YI !I ð3:9:12mÞ

(R also vanishes if all Pfaffian constraints are holonomic; then �rI ¼ 0); and, if, in
addition, @L*=@t ¼ 0 and

P
YI !I ¼

P
Yk!k ¼ 0 (all impressed forces are poten-

tial; i.e., YI ¼ 0, or gyroscopic), then (3.9.12m) leads immediately to the nonholo-
nomic Jacobi–Painlevé energy integral

dh*=dt ¼ 0 ) h* ¼ T *2 þ ðV *0 � T *0Þ ¼ constant: ð3:9:12nÞ

[However, other combinations can create the same result—see example of rolling
sphere on spinning plane (ex. 3.18.4).]

Finally, as with the Hamel-type equations of motion, the constraints !D ¼ 0
should be enforced after all pertinent differentiations have been carried out; other-
wise we would miss the

PP
�DIð@L*=@!DÞ !I terms in R.

REMARKS

(i) As (3.9.12f) shows, the term @L*=@�nþ1 derives from the nonstationarity of L*
[through @L*=@t, as in the holonomic case (3.9.11d)] and also from the acatastaticity
of the Pfaffian constraints [through

P
Akð@L*=@qkÞ], whether these latter are non-

holonomic or not.
(ii) The R term should be expected on analytical and physical grounds: Hamel’s

equations, through their �-terms, do distinguish between genuine nonholonomic
constraints and holonomic ones disguised in velocity/differential form; and this
unique characteristic of theirs is carried over to the corresponding power equation
(3.9.12i).

(iii) The above make clear that the nonholonomic and kinetic equation (3.9.12i) can
be written down without knowledge of the solution of the equations of motion [unlike
its holonomic counterpart (3.9.11d, j), which require knowledge of the multipliers].

(iv) Had we used the following definition:

d*L*=dt �
X
ð@L*=@�I Þ !I þ ð@L*=@!I Þ _!!I½ � þ @L*=@t; ð3:9:12oÞ

instead of the one made here [in view of L* ¼ L*ðt; q; !Þ]:

dL*=dt �
X
ð@L*=@qkÞ _qqk þ ð@L*=@!kÞ _!!k½ � þ @L*=@t; ð3:9:12pÞ
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then

dL*=dt� d*L*=dt ¼
X
ð@L*=@qkÞ _qqk �

X
ð@L*=@�I Þ !I

¼
X
ð@L*=@qkÞ

X
AkI !I þ Ak

� �
�
X
ð@L*=@�IÞ !I

¼ � � � ¼
X
ð@L*=@qkÞAk ¼ @L*=@�nþ1 � @L*=@t ð3:9:12qÞ

[and for a general function f *ðt; q; !Þ : df *=dt ¼ d *L*=dtþP ð@ f *=@qkÞAk]; and
the power equation would be

d *h*=dt ¼ �@L*=@tþ
X

YI !I � R; ð3:9:12rÞ
where

d *h*=dt �
X
ð@L*=@!I Þ !I

� �:� d *L*=dt: ð3:9:12sÞ

(v) Since !D ¼ 0, no power equations can result by multiplying Hamel’s equa-
tions (kinetic and/or kinetostatic) with !D.

(vi) A power theorem in terms of the classical total energy, but in nonholonomic
variables

E ¼ E* � T *þ V *0 ¼ � � � ¼ h*þ ðT *1 þ 2T *0Þ ½¼ T *þ V *; if V *1 ¼ 0�;
ð3:9:12tÞ

can also be formulated. The details are left to the reader.
(vii) About the possibility of formulating power equations using the remaining

two general forms of the equations of motion—namely, those by Appell and
Maggi—we note the following:

(a) The equations of Appell contain accelerations explicitly, and therefore are
pretty inconvenient as a starting point for power equations.

(b) Multiplying each of Maggi’s kinetic equations (3.5.19a, 20b, 21a) with !I

and then summing over I , we obtain, successively,X X
AkI Ek

� �
!I ¼

X X
AkI Qk

� �
!I ; ð3:9:12uÞ

or, since _qqk ¼
P

AkI !I þ Ak ,X
Ekð _qqk � AkÞ ¼

X
Qkð _qqk � AkÞ;

or, rearranging, X
ðEk �QkÞAk ¼

X
ðEk �QkÞ _qqk : ð3:9:12vÞ

It is not hard to show that, since Ek �Qk ¼
P

�D aDk and [recalling the second of
(2.9.3a)]

P
aDkAk ¼ �aD, both sides of the above equal �P �DaD, and so no

really new power theorem has emerged here.
(viii) The methodology of this section can be carried intact to the case of nonlinear

constraints/coordinates, ! ¼ !ðt; q; _qqÞ — see chap. 5.

Example 3.9.1 Energy Rate Equations in Particle Variables via LP or the Central
Equation. Let us consider a stationary system; that is, one whose constraints are
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all scleronomic. Then, �r and dr are mathematically equivalent. Hence:
(i) Substituting dr ¼ v dt for �r in LP yields

Sdm a � dr ¼SdF � dr ) dT ¼ d 0W ; ðaÞ

(ii) Similarly, with �r! dr ¼ v dt and �v! dv, the central equation (3.6.6) yields

Sdm v � dvþSdF � dr ¼ d=dt S dm v � dr
� �

) dT þ d 0W ¼ dð2TÞ ) dT ¼ d 0W ; ðbÞ

that is, in both cases we obtain, as a special case, the differential form (in time) of the
work–energy theorem.

Problem 3.9.2 Consider a system of N particles, under the ideal constraints

�HðrP; tÞ ¼ 0 ðH ¼ 1; . . . ; hÞ;X
BDPðrP; tÞ � vP þ BDðrP; tÞ ¼ 0 ðD ¼ 1; . . . ;mÞ; ðaÞ

and, therefore (recall ex. 3.5.1) having Lagrangean equations of the first kind

mP aP ¼ FP þ RP; RP ¼
X

Hð@�H=@rPÞ þ
X

�DBDP ; ðbÞ

where FP ðRPÞ: total impressed (reaction) force on a system particle P ¼ 1; . . . ;N
ð¼ # particles), and 3N � ðhþ mÞ > 0. Show that its corresponding power equation
is

dT=dt ¼
X

FP � vP �
X

Hð@�H=@tÞ �
X

�DBD ; ðcÞ

and then interpret it physically.

Problem 3.9.3 Continuing from the preceding problem, show that for stationary
constraints (i.e., scleronomic system) and potential impressed forces (i.e.,
FP ¼ �@V0ðrP; tÞ=@rPÞ, the power equation (c) reduces to the nonstationary
energy rate equation

dE=dt ¼ �@V0=@t; E � T þ V0 : ðaÞ

Example 3.9.2 Power Equations from Particle Variable Considerations. Dotting
the Newton–Euler equation of particle motion (in continuum form) dm a ¼
dF þ dR with the inertial particle velocity v, and then summing over the system
particles, we obtain the ‘‘D’Alembert–Lagrange form of the power theorem’’

Sdm a � v ¼SdF � vþSdR � v: ðaÞ

[That, in general, SdR � v 6¼ 0 points to another big difference between power

theorems and LP]. Next, substituting into (a) the holonomic representation (3.9.1),
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v ¼P ek _qqk þ e0, we getX
Sdm a � ek

� �
_qqk þSdm a � e0

¼
X

SdF � ek

� �
_qqk þ

X
SdR � ek

� �
_qqk þS ðdF þ dRÞ � e0 ; ðbÞ

and, from this, we immediately obtain the two holonomic power equations:

ðiÞ
X

Ek _qqk ¼
X

Qk _qqk þ
X

Rk _qqk ; ðcÞ
and, since Rk ¼

P
�DaDk )

P
Rk _qqk ¼ � � � ¼ �

P
�DaD ;X

Ek _qqk ¼
X

Qk _qqk �
X

�DaD ; ðdÞ
that is, eq. (3.9.11c, d); and the ‘‘rheonomic power equation’’

ðiiÞ Sdm a � e0 ¼S ðdF þ dRÞ � e0 ;
that is,

Sdm a � ð@r=@tÞ ¼S ðdF þ dRÞ � ð@r=@tÞ: ðeÞ

Similarly, inserting in (a) the nonholonomic representation (3.9.4), v* ¼P eI!I þ e0,
we obtain the two power equationsX

II !I ¼
X

YI !I ; ðf Þ
that is, eq. (3.9.12h); and

Sdm a � ð@r=@�nþ1Þ ¼S ðdF þ dRÞ � ð@r=@�nþ1Þ or Inþ1 ¼ Ynþ1 þ Lnþ1 : ðgÞ

Example 3.9.3 On the Derivation of Lagrangean Equations of Motion from the
Single Power Equation (Pars’ ‘‘insidious fallacy’’). It is frequently claimed
[especially in engineering books on vibration, but also in more theoretical and
classy expositions; e.g., Birkhoff (1927, p. 17), Corben and Stehle (1960 and 1994,
pp. 78–79)] that the Lagrangean equations of motion, say for concreteness, the
Routh–Voss equations

Ek ¼ Qk þ Rk ; Rk ¼
X

�DaDk ; ðaÞ
can be derived, not only from Lagrange’s principle (LP), which is variational, but
also from a single power equation, like (c) of the preceding example:X

Ek _qqk ¼
X

Qk _qqk þ
X

Rk _qqk ; ðbÞ
and, therefore, one does not need all those strange and annoying concepts like virtual
displacements/work, LP, and so on.

Well, such claims are false for the following reasons:

(i) Clearly, the forces in eq. (a) whose power is zero will not appear in eq. (b).
How, then, are such forces going to be retrieved in the reverse reasoning from (b)
to (a)? Such equations of motion would be ‘‘correct to within zero power terms’’
[ just like Lagrangean equations are ‘‘correct to within zero virtual work terms’’; or
contain multiplier-proportional terms, like (a)]. The most important such ‘‘zero
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power forces’’ are the following two: (a) constraint reactions of catastatic Pfaffian
constraints, and (b) (impressed) gyroscopic forces; like the �-proportional terms of
the Hamel-type equations. So the claim that if the Qk are wholly potential (i.e.,
Qk ¼ �@V0ðq; tÞ=@t), then the equations of motion are EkðLÞ ¼ Qk þ

P
�D aDk,

may be correct (for a nongyroscopic system), or it may not (for a gyroscopic system).
(See also Ziegler, 1968, pp. 34–35.)

(ii) But there is a more serious objection to a reasoning that ‘‘leads’’ from the
single equation (b) to the n equations (a), even for catastatic and nongyroscopic
systems. We can deduce eq. (a) from LP—that is,

P ðEk � QkÞ �qk ¼ 0, underP
aDk �qk ¼ 0 — because of the arbitrariness of the �q’s. On the other hand, eq.

(b), rewritten as
P ðEk � Qk �RkÞ dqk ¼ 0, holds for dqk ¼ ð _qqkÞdt ¼ actual motion

differentials/velocities.
(iii) We have seen (}3.6) that LP is equivalent to the central equation

�T þ � 0W ¼
X
ð@T=@kÞ �qk

� �:
: ðcÞ

On the other hand, as we know from general mechanics, the power equation (b) is
equivalent to

dT ¼ d 0W ; ðdÞ
where d 0W is actual elementary work, in time, of all forces; that is, impressed plus
reactions. Hence, eqs. (c) and (d) are, in general, very different equations; eq. (c)
represents much more than eq. (d).

HISTORICAL REMARK

A fair number of (unsuccessful) attempts to derive all the equations of motion from a
single energy equation were made in the late 1800s to early 1900s by the so-called
school of ‘‘Energetics.’’ Specifically, its followers sought to obtain the equations of
motion from the energy conservation equation (3.9.11m)

E � T þ V0 ¼ constant; V0 ¼ V0ðrÞ: ðeÞ
If the system is unconstrained, then ð. . .Þ:-differentiating (e) we obtain

S ½dm aþ ð@V0=@rÞ� � v ¼ 0; ðf Þ
and further, if this holds for each and every value of v, then we are led to the correct
equation

dm aþ ð@V0=@rÞ ¼ 0: ðgÞ
If, however, the system if constrained then, as Lipschitz remarked, this argument does
not apply. To circumvent this difficulty, Helm, a leading ‘‘energeticist,’’ proposed
that, instead of introducing the usual virtual considerations, give the energy ‘‘prin-
ciple’’ the following form: the total energy change along any kinematically possible
translational and/or rotational direction should vanish. But, under such an arbitrary
variation [assuming �ðdrÞ ¼ dð�rÞ],

V0 ! V0 þ �V0 ¼ V0 þS ð@V0=@rÞ � �r;

T þ �T ¼ T þSdm v � �v

¼ T þ d=dt S dm v � �r
� �

�Sdm a � �v;
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that is,

�T ¼ d=dt S dm v � �r
� �

� �I ð) �T 6¼ �IÞ:

Combining the above with �E � �T þ �V0 ¼ 0, we obtain

�I � �V0 ¼ d=dt S dm v � �r
� �

;

instead of the correct �I þ �V0 ¼ 0. Hence, such a variation of the energy equation
does not produce the correct equations even for a conservative system; again, the
stumbling block is the difference between (c) and (d). If, on the other hand, we had
defined, a priori,

�T �Sdm a � �r ð¼ �IÞ;
then �T þ �V0 ¼ 0 would indeed lead to the correct equations of motion, but that
would be an arbitrary formalism with the sole purpose to show the equivalence
between the energy rate equation and LP. [At the time, that was a hotly debated
issue among some of the best physicists of the day; and it makes us, today, appreciate
better the simple and correct formulations of Heun and Hamel.] However, such ideas
of invariance of a certain differential (or integral) variational energetic expression
under translations/rotations proved useful later in supplying classical and nonclassical
conservation theorems; for example, integral invariants (}8.12), Noetherian theory
(}8.13), and so on; see also Dobronravov (1976, pp. 139–186, 209–249).

Example 3.9.4 Let us consider a homogeneous bar AB of mass m and length l
pinned to the vertical shaft S of negligible mass (fig. 3.23). The system is
constrained to spin about S with the constant angular velocity X. Let us discuss
its power equation.

We will present two solutions: one with q1 ¼ � as the sole unconstrained
Lagrangean coordinate, and one with the two Lagrangean coordinates, q1 ¼ �
(angle of precession of shaft) and q2 ¼ �, but under the holonomic constraint

f1 � �� Ot� constant ¼ 0 (Enite form) ða1Þ
) �f1 ¼ �� ¼ 0 (virtual form, since �t ¼ 0Þ; ða2Þ
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Figure 3.23 Geometry and kinematics of spinning bar AB.



or

_��þ ð�OÞ ¼ 0 (velocity form; acatastatic). ða3Þ

2To ¼ Ix!x
2 þ Iy!y

2 þ Iz!z
2

¼ ðml 2=3Þ½O2 sin2 � þ ð _��Þ2� ¼ 2To;2 þ 2To;1 þ 2To;0 ; ðb1Þ
where

2To;2 ¼ ðml 2=3Þð _��Þ2; 2To;1 ¼ 0; 2To;0 ¼ ðml 2=3Þðsin2 �ÞO2; ðb2Þ

that is, @Lo=@t � @ðTo � VÞ=@t ¼ 0; also, Q�;nonpotential � Q� ¼ 0, aD ¼ 0 (no con-
straints ) no multipliers). As a result of the above, the power equation (3.9.11d)
reduces to the Jacobi–Painlevé integral (3.9.11n):

h! ho � To;2 þ ðV � To;0Þ ¼ constant

(evaluated at some initial time instant, and hence function of the initial conditions

6¼ Eo � To þ V Þ

or

an equation which, for given initial conditions, relates � and _�� ; but, being a kinetic
power equation, cannot supply the reactive couple M enforcing the constraint
O ¼ constant. To find the latter, either we apply the elementary ‘‘Newton–Euler’’
power equation to this constrained system, in which case M appears as an external
moment; or we apply the generalized power equation to the relaxed system (second
solution), in which case M appears either as a Lagrangean multiplier or as an
impressed moment. Indeed, we have:

reduces to

that is, M ¼ variable, even though O ¼ constant.
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Vo ≡ V = −(mgl/2)cos θ (= 0 at horizontal level through A); (b3)

l(θ̇)2
− 3g cos θ − (l sin2θ)Ω2 = constant; (c)

(ii) Elementary power equation [corresponding to (i)]: here, eq. (3.9.11j)

and therefore the elementary (“Newton–Euler”) power equation, dE/dt = power of external
forces and couples, yields

(i) First solution (n = 1, m = 0 — constraints embedded, no multipliers): Here x =
inertial angular velocity of AB = (−Ω cos θ,Ω sin θ, θ̇), along the body-fixed (and prin-
cipal) axes A–xyz, and I is the moment of inertia tensor of AB at A: diagonal(Ix = 0,
Iy = ml2/3, Iz = ml2/3). Hence, by König’s theorem, and with (. . .)o denoting constrained
system quantities, we have

dEo/dt ≡ (To + V)· = (2To,0)
·, (d2)

dE/dt = −∂L/∂t+ (T1 + 2T0)
· +

∑
Qk q̇k −

∑
λDaD, (d1)

(2To,0)
· = MO ⇒ M = (2To,0)

·/O = (2ml 2O/3) sin θ cos θ θ̇; (d3)



Without the benefit of (d1, 2) [or (3.9.11i): _EEo � _hho ¼ ðTo;1 þ 2To;0Þ: ¼ ð2To;0Þ: ],
the elementary power theorem, ðTo þ VÞ: ¼MO, would have given

and this, to eliminate €�� and thus reproduce (d3), would have to be combined with the
kinetic �-equation, or with the ð. . .Þ: version of (c).

2T ¼ ðml 2=3Þð _��Þ2 þ ðml 2=3Þð _�� sin �Þ2 ¼ 2T2 þ 2T1 þ 2T0; ðe1Þ
where

2T2 ¼ ðml 2=3Þðsin2 �Þð _��Þ2 þ ðml 2=3Þð _��Þ2; 2T1 ¼ 0; 2T0 ¼ 0; ðe2Þ
ðe3Þ

that is, @L=@t � @ðT � V Þ=@t ¼ 0.
Next, and in the sense of the relaxation principle, either we take Qk;nonpotential �

Qk ¼ 0, but [recalling (a1–3), and since now n ¼ 2, m ¼ 1] add the term �P �DaD ¼
��1 a1 ¼ ��1ð�OÞ � � O; or, using the ‘‘rubber-band’’ approach, we take �D ¼ 0,
but keep the term

P
Qk _qqk ¼ Q�

_��, where ð� 0WÞ� � Q� �� ¼M ��, since nowM has
become an impressed force (moment) and �� 6¼ 0. Following the first of these
two equivalent alternatives, we obtain _hh ¼ � O, or since [recall (3.9.11i)]
h ¼ E � ðT1 þ 2T0Þ ¼ E, we find ð _EEÞo ¼ � O, that is, (d3); and similarly for the
second approach.

In this problem, the first solution (constrained system) is simpler; but to find the

Problem 3.9.4 Continuing from the preceding example, discuss the power equa-
tions if � and � are connected by the acatastatic Pfaffian constraint _��þ ð�cÞ� ¼ 0,
c ¼ constant; that is, O � _�� ¼ c� (variable rate of shaft spinning).

Problem 3.9.5 Consider a particle of mass m moving on a smooth circular tube
of radius r (fig. 3.24).

(i) Show that if the tube is free to rotate about a vertical diameter, the Lagrangean
equations of motion of the particle + tube system, for q1 ¼ � and q2 ¼ �, are

E� ¼ ðI þmr2 sin2 �Þ _��� 	: ¼ Q� ; E� ¼ mr2½€�� � sin � cos �ð _��Þ2� ¼ Q� ; ðaÞ
where I ¼ moment of inertia of tube about its vertical diameter. Calculate and inter-
pret Q�, Q�.

(ii) Show that if the tube is constrained to rotate with constant angular velocity,
_�� � O ¼ constant, then the driving moment needed to enforce this constraint, M,
equals

M ¼ 2mr2O sin � cos � _�� ¼ mr2O sinð2�Þ _�� :
variable; even though O is constant: ðbÞ

Relate M with Q�, and interpret the second of (a).
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(iii) Second solution (n = 2, m = 1 — constraints adjoined, multipliers): Here, we have

V = −(mgl/2)cos θ (= 0 at horizontal level through A);

constraint reaction, we had to go outside of Lagrangean mechanics, to the Newton–
Euler power equation (3.9.11j) [⇒ line following (d2)]. The second solution (relaxed
system) could prove more useful in complicated situations, where the application of
(d1, 2) might not be so simple.

, (d4)
{
(ml 2/6)

[
O2 sin2 θ + (θ̇)2

]
− (mgl/2) cos θ

}
·

= MO



HINT

mO2ðr sin �Þ ¼ centrifugal force on particle.
(iii) Discuss the power theorem in case (ii), and, with its help, calculate M.
[See also Greenwood (1977, pp. 74–77) for a discussion of the stability of the

equilibrium of the particle relative to the tube, in case (ii).]

Problem 3.9.6 (Berezkin, 1968, vol. II, pp. 67–68). Consider a homogeneous
bar AB of mass m and length 2l, whose ends A and B are constrained to slide on
the perpendicular and smooth sides of the rigid, plane, and rectangular frame
abcd [fig. 3.25(a)]. The whole assembly is constrained to rotate about the vertical
axis ðvÞ with constant (inertial) angular velocity x.

(i) Show that the kinetic Lagrangean equation of the (relative) angular motion of
the bar is

€��þ !2 sin � cos � ¼ �ð3g=4l Þ cos �: ðaÞ
(ii) Then show that the corresponding Jacobi–Painlevé integral—that is,

ðT2 � T0Þ þ V0 ¼ constant — is

ð2l=3Þ ð _��Þ2 � !2 cos2 �
h i

þ g sin � ¼ constant � h: ðbÞ

(iii) By applying the principle of relaxation (}3.7), show that the kinetostatic
equation that yields the normal reaction at A, N, is

ml €�� cos �� ð _��Þ2 sin �
h i

¼ �mgþN: ðcÞ
HINT

Introduce the relaxed coordinate y (fig. 3.25); and, at the end, set y ¼ 0.
(iv) Finally, show that, substituting into (c): €�� from the kinetic equation (a), and

ð _��Þ2 from the energy integral (b), we obtain

N ¼ mg�ml 2!2 sin � cos2 �þ ð3g=4l Þðcos2 �� 2 sin2 �Þ þ ð3h=2mÞ sin �� 	
¼ function of �; !; and the initial conditions ðthrough hÞ: ðdÞ
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Figure 3.24 Particle moving on a smooth circular spinning tube.



Example 3.9.5 Introduction to Relative Motion (for an extensive coverage see }3.16).
Let us consider a particle P of mass m constrained to move on, say, the outer
surface of a vertical circular and smooth cylinder of radius r (fig. 3.26). We will
examine the energy equation of the particle when the cylinder is stationary, and
when it spins about OZ with constant angular velocity x. Then we will examine
the case when P moves relative to the cylinder–fixed axes O–xyz.

(i) Stationary cylinder. With q1 ¼ F and q2 ¼ Z (here, r ¼ constant) _rr ¼ 0)
and the plane Z ¼ 0 for zero potential energy, we have

2T ¼ m½r2ð _FFÞ2 þ ð _ZZÞ2�; V ¼ mgZ; L ¼ T � V; ðaÞ

and, therefore,

h ¼ ð@L=@ _FFÞ _FFþ ð@L=@ _ZZÞ _ZZ � L ¼ � � � ¼ ðm=2Þ½r2ð _FFÞ2 þ ð _ZZÞ2� þmgZ

¼ E � T þV ¼ constant; since Qk; nonpotential � Qk ¼ 0; @L=@t ¼ 0; aD ¼ 0: ðbÞ

(ii) Spinning cylinder. In terms of the noninertial coordinates r ¼ constant, �
such that _�� ¼ _FF� !; z ¼ Z, we readily find

2T ¼ m½r2ð _��þ !Þ2 þ ð _zzÞ2� � 2T2 þ 2T1 þ 2T0; V ¼ m g z; L ¼ T � V ;

2T2 ¼ m½r2ð _��Þ2 þ ð _zzÞ2�; T1 ¼ mr2! _��; 2T0 ¼ m r2!2; ðcÞ

and, therefore,

h ¼ ð@L=@ _��Þ _��þ ð@L=@ _zzÞ _zz� L

¼ � � � ¼ ðm=2Þ½r2ð _��Þ2 þ ð _zzÞ2� � ðm=2Þðr2!2Þ þmgz

¼ T2 � T0 þ V ¼ constant; since Qk;nonpotential � Qk ¼ 0; @L=@t ¼ 0; aD ¼ 0: ðdÞ

Clearly, h 6¼ E � T þ V ¼ ðm=2Þ½r2ð _��þ !Þ2 þ ð _zzÞ2� þmgz.
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Figure 3.25 (a) Bar AB sliding on a uniformly rotating, plane, rigid, and rectangular frame abcd;

(b) relaxed end A, with corresponding coordinate y and reaction N.



(iii) (Introduction to) Relative Motion. Let us generalize the above for an arbi-
trary system moving relative to the uniformly rotating frame Oxyz; that is,
r ¼ rðtÞ 6¼ constant. Since, in this case,

X ¼ r cosð�þ !tÞ; Y ¼ r sinð�þ !tÞ; Z ¼ z; ðeÞ
we obtain, successively,

where

2Tð2Þ �Sdm ½ð _rrÞ2 þ r2ð _��Þ2 þ ð _zzÞ2� ð� 2T2Þ; ðg1Þ
Tð1Þ �Sdm r2 _�� ð!Tð1Þ � T1Þ; ðg2Þ
2Tð0Þ �Sdm r2 ð!2Tð0Þ � T0Þ: ðg3Þ

Now, if r; �; z ¼ stationary functions of n (noninertial) Lagrangean coordinates
q � ðq1; . . . ; qnÞ, and the system is further unconstrained, but under a potential
V0 ¼ V0ðqÞ, then (since the Euler–Lagrange operator is linear) the Lagrangean equa-
tions of the system in the q’s become

½ð@Tð2Þ=@ _qqkÞ:� @Tð2Þ=@qk� þ !½ð@Tð1Þ=@ _qqkÞ:� @Tð1Þ=@qk�
¼ �@VR=@qk; ðhÞ

where

VR � V0 � !2Tð0Þ ¼ V0 � T0 ¼ relative potential: ðiÞ

For reasons that will become clearer in }3.16, the � ! (second) group of terms, in
(h), are called gyroscopic. If they vanish, the relative motion of the system is the same
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Figure 3.26 Particle moving on the outer surface of (a) a fixed and (b) a moving cylinder.

2T =Sdm[(Ẋ)2 + (Ẏ )2 + (Ż)2] = · · · = 2(T(2) + ωT(1) + ω2T(0)), (f)



as if the cylinder was at rest but the system’s potential energy was diminished by the
‘‘centrifugal potential’’ !2Tð0Þ. These terms vanish if every _qqk vanishes; that is, if
qk ¼ constant ðrelative equilibriumÞ. For a general rigid body in relative motion this
cannot happen, unless the body translates parallelly to the OZ ¼ Oz axis; but it may
happen for special systems of particles, or if Tð1Þ is an exact differential, say

Tð1Þ ¼ df ðq; _qqÞ=dt; where f ¼ arbitrary function of its arguments; ð jÞ

because then it is not hard to see that

ð@Tð1Þ=@ _qqkÞ: ¼ ð@ _ff =@ _qqkÞ: ¼ ð@f =@qkÞ: ¼ @=@qkðdf =dtÞ ¼ @Tð1Þ=@qk: ðkÞ

If k ¼ 1, this holds always; then Tð1Þ ¼ Fðq1Þ _qq1, where Fðq1Þ ¼ arbitrary function of
q1; that is, there are no gyroscopic terms in one DOF systems! We shall return to this
important topic in the examples of }3.16, where it will be shown that (h) has the
generalized energy integral

h � Tð2Þ þ VR � Tð2Þ þ ðV � !2Tð0ÞÞ ¼ constant: ðlÞ

Problem 3.9.7 Consider a particle P of mass m constrained to slide inside a
smooth and straight tube of negligible mass, and also under the action of a linear
spring of constant k and unstretched length ro (fig. 3.27). The tube spins about a
vertical axis OZ with constant angular velocity !.

With � � r� ro, show that the system has the following Jacobi–Painlevé
integral:

h � T2 � T0 þ V0

¼ ðm=2Þð _��Þ2 � ðm!2=2Þð�þ roÞ2 þ ðk=2Þð�2Þ ¼ constant: ðaÞ

Example 3.9.6 Lagrangean Equations for qnþ1. Let us find the ‘‘temporal
Lagrangean equation’’; that is, (assuming the n �q’s are unconstrained)

d=dtð@T=@ _qq0Þ � @T=@q0 ¼ Q0 þR0; ðaÞ
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Figure 3.27 Particle on uniformly rotating horizontal tube.



where qnþ1 � q0 � t ) _qq0 ¼ 1; and ½recalling ð3:4:4a ff :Þ�

Qnþ1 � Q0 �SdF � e0 �SdF � ð@r=@tÞ;
Rnþ1 � R0 �SdR � e0 �SdR � ð@r=@tÞ ð6¼ 0; in generalÞ: ðbÞ

Since (recalling that 
; � ¼ 1; . . . ; nþ 1)

2T ¼
XX

M
� _qq
 _qq�

¼
XX

Mkl _qqk _qql þ 2
X

Mk;nþ1 _qqk _qqnþ1 þMnþ1; nþ1 _qqnþ1 _qqnþ1

�
XX

Mkl _qqk _qql þ 2
X

Mk0 _qqk _qq0 þM00 _qq0 _qq0

�
XX

Mkl _qqk _qql þ 2
X

Mk _qqk þM0; ðcÞ

eq. (a) becomes X
Mk _qqk þM0q0

� �: � @T=@q0 ¼ Q0 þ R0; ðdÞ

or, finally, X
Mk _qqk þM0

� �:� ð1=2ÞXX
ð@M
�=@tÞ _qq
 _qq� ¼ Q0 þ R0h

or; if Mk ¼ 0 and M0 ¼ 0; i:e:; if 2T ¼
XX

Mklðt; qÞ _qqk _qql ;

then � @T=@t ¼ Q0 þ R0

i
; ðeÞ

which is none other than the rheonomic power identity (e) of example 3.9.2, but in
system variables.

Extensions to quasi variables (i.e., the (nþ 1)th Hamel equation) are easily obtain-
able. These equations, since they contain the unknown R0, do not seem to offer any
particular advantage and so they will not be pursued any further. [See, e.g., Mattioli
(1931–1932), Pastori (1960); also Nadile (1950) for the quasi-variable case, and an
alternative derivation of (3.9.12i).] However, the above considerations may prove
helpful in understanding better the connection between scleronomic and rheonomic
systems. Following Lamb (1910, p. 758), we may consider time as an additional
(nþ 1)th coordinate of an originally scleronomic system—that is, qnþ1 � q0 � t;
or, start with a scleronomic system in the nþ 1 coordinates ðq; q0Þ � ðq1; . . . qn;
qnþ1 � q0Þ and then let q0 ¼ �ðtÞ ¼ known function of time:

2T ¼
XX

M
� _qq
 _qq� ½where M
� ¼M
�ðq; q0Þ�

¼
XX

Mkl _qqk _qql þ 2
X

Mk0 _qqk _qq0 þM00 _qq0 _qq0

�
XX

Mkl _qqk _qql þ 2
X

Mk _qqk _��þM0
_�� _��

�
XX

Mkl _qqk _qql þ 2
X

M 0
k _qqk þM 0

0

¼ 2T2 þ 2T1 þ 2T0 ¼ ðdoubleÞ kinetic energy of an n DOF rheonomic system;
ðf Þ

where Mkl ¼Mklðq; tÞ; M 0
k ¼M 0

kðq; tÞ; M 0
0 ¼M 0

0ðq; tÞ.
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Finally, since the constraint _qq0 ¼ 1ð) �q0 ¼ 0Þ — or, generally, F½q0; �ðtÞ� ¼ 0
ð) �F ¼ 0Þ — is holonomic it can be enforced in T right from start; that is, before
any differentiations (recall remarks in }3.5); and that constraint is maintained by the
force Q0 þ R0.

REMARK

The above and ex. 3.9.2 show that, even if we dotted the Newton–Euler particle
equation of motion with dr ¼P ek dqk þ e0 dt (instead of with �r ¼P ek �qk) and
then summed over the system particles, (i.e., Sdm a � dr ¼ SdF � drþSdR � dr),
and thus ended up, in system variables, with

P ðEk �Qk � RkÞdqkþ
ðE0 �Q0 � R0Þ dt ¼ 0, (i) we would still need an additional postulate forP

Rk dqk (like the d’Alembert–Lagrange principle), and (ii) the ð. . .Þdt-terms
would not have produced anything new; that is, no additional Lagrangean equation
of motion. In sum [and contrary to what some Lagrangean derivations seem to,
falsely, imply; e.g., Corben and Stehle (1960, pp. 78–79)]: there is no way getting
around virtual displacements and an independent physical postulate for the constraint
reactions!

Problem 3.9.8 (i) Show that in the Voronets equations case, eqs. (3.8.14a ff.),
(a) [recall (3.9.12f )]

@L*=@�nþ1 ¼ @L*=@tþ
X

bDð@L*=@qDÞ; ðaÞ
where (by partial differentiation):

@L*=@qD ¼ @L=@qD þ
X
ð@L=@ _qqD 0 Þð@ _qqD 0=@qDÞ; ðbÞ

and (b) the rheonomic nonholonomic power term R, (3.9.12j), reduces to

R ¼
XX

wD
I ð@L=@ _qqDÞo _qqI ; ðcÞ

where [recall (3.8.14h)] �wD
I ¼ @bD=@ðqIÞ � @bDI=@ðqnþ1Þ.

(ii) Then formulate the ‘‘Voronets power equation’’; and, finally, specialize the
latter to the ‘‘Chaplygin power equation.’’

3.10 LAGRANGE’S EQUATIONS: EXPLICIT FORMS;

AND LINEAR VARIATIONAL EQUATIONS

(OR METHOD OF SMALL OSCILLATIONS)

Explicit Forms of Lagrange’s Equations

We have already seen (}3.9) that the most general expression for T in holonomic
system (Lagrangean) variables is

2T ¼
XX

Mkl _qqk _qql þ 2
X

Mk _qqk þM0 � 2T2 þ 2T1 þ 2T0: ð3:10:1aÞ

Let us find the explicit forms of the corresponding (and, hence, most general) inertia,
or Lagrangean acceleration, terms Ek � EkðTÞ � ð@T=@ _qqkÞ: � @T=@qk. Since
Ekð. . .Þ is a linear operator, we have

EkðTÞ ¼ EkðT2Þ þ EkðT1Þ þ EkðT0Þ: ð3:10:1bÞ
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Recalling that Mkl ¼Mlk, we obtain, successively,

ðiÞ EkðT2Þ ¼ ½ð@=@ _qqkÞ: � @=@qk� ð1=2Þ
XX

Mkl _qqk _qql

h i
¼

X
Mkr _qqr

� �
:� ð1=2Þ

XX
ð@Mrs=@qkÞ _qqr _qqs

¼
X

Mkr €qqr þ
XX

½@Mkr=@qs � ð1=2Þð@Mrs=@qkÞ� _qqr _qqs
þ
X
ð@Mkr=@tÞ _qqr: ð3:10:1cÞ

But XX
ð@Mkr=@qsÞ _qqr _qqs ¼ ð1=2Þ

XX
ð@Mkr=@qs þ @Mks=@qrÞ _qqr _qqs;

and so the middle (double sum) term of (3.10.1c) can be rewritten asXX
ð1=2Þð@Mkr=@qs þ @Mks=@qr � @Mrs=@qkÞ _qqr _qqs �

XX
Gk;rs _qqr _qqs;

where the just introduced quantities (‘‘geometrical objects,’’ in tensorial language)

Gk;rs ¼ Gk;sr � ð1=2Þð@Mkr=@qs þ @Mks=@qr � @Mrs=@qkÞ ð3:10:1dÞ

are the famous (holonomic) Christoffel symbols of the first kind. So, finally, (3.10.1c)
becomes

EkðT2Þ ¼
X

Mkr €qqr þ
XX

Gk;rs _qqr _qqs þ
X
ð@Mkr=@tÞ _qqr: ð3:10:1eÞ

ðiiÞ EkðT1Þ ¼ ð@=@ _qqkÞ
X

Mr _qqr

� �h i: � ð@=@qkÞ XMr _qqr

� �
¼ @Mk=@t�

X
ð@Mr=@qk � @Mk=@qrÞ _qqr � @Mk=@t� Gk; ð3:10:1fÞ

where

Gk �
X

gkr _qqr; gkr ¼ �grk � @Mr=@qk � @Mk=@qr; ð3:10:1gÞ

that is, g12 ¼ �g21; g11 ¼ �g11 ) g11 ¼ 0, and so on.

ðiiiÞ EkðT0Þ ¼ ð@T0=@ _qqkÞ:� @T0=@qk ¼ 0� @T0=@qk ¼ �ð1=2Þð@M0=@qkÞ:
ð3:10:1hÞ

In view of (3.10.1e, f, h), the Lagrangean acceleration (3.10.1b) assumes the definitive
form

Ek � EkðTÞ ¼
X

Mkr €qqr þ
XX

Gk;rs _qqr _qqs þ
X
ð@Mkr=@tÞ _qqr

þ @Mk=@t� Gk � ð1=2Þð@M0=@qkÞ: ð3:10:1iÞ

In the theory of relative motion (}3.16) where (3.10.1i) primarily applies, it is cus-
tomary to rearrange and rename the above as follows:

Ek ¼ Ek;R þ Ek;T þ Ek;C; ð3:10:2Þ
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where

Ek;R � EkðT2Þ � ð@T2=@ _qqkÞ: � @T2=@qk: Relative acceleration; ð3:10:2aÞ
Ek;T � @Mk=@t� @T0=@qk: Transport acceleration; ð3:10:2bÞ
Ek;C �

X
ð@Mk=@qr � @Mr=@qkÞ _qqr � �

X
gkr _qqr � �Gk:

Coriolis ðor gyroscopicÞ acceleration: ð3:10:2cÞ

This three-part decomposition of the Lagrangean acceleration Ek, and the recogni-
tion of its importance (especially of the Coriolis/gyroscopic part Ek;C), are due to
Thomson and Tait (1867–1912, }319, pp. 318–327).

In view of the above kinematico-inertial identities, the Lagrangean equations of
motion in the fairly general case of a holonomic n DOF system, with potential
V ¼ V0ðqÞ and under nonpotential forces Qk (i.e., Ek ¼ Qk � @V0=@qk), assume
the explicit formX

Mkr €qqr þ
XX

Gk;rs _qqr _qqs þ
X
ð@Mkr=@tÞ _qqr

¼ Qk þ Gk � @ðV0 � T0Þ=@qk � @Mk=@t; ð3:10:3Þ

and similarly for other T-based equations.
In the common case @T=@t ¼ 0 (‘‘stationary/scleronomic’’ kinetic energy),

(3.10.3) specializes toX
Mkr €qqr þ

XX
Gk;rs _qqr _qqs ¼ Qk þ Gk � @ðV0 � T0Þ=@qk; ð3:10:3aÞ

while if @r=@t ¼ 0 (stationary holonomic constraints), then T ! T2 and the above
reduces to X

Mkr €qqr þ
XX

Gk;rs _qqr _qqs ¼ Qk � @V0=@qk: ð3:10:3bÞ

Inertial Coupling

In general, all the above equations are inertially (or dynamically) coupled; that is,
each Ek contains all the system accelerations €qq. To decouple them, we introduce
the symmetric inertial quantities mkl ¼ mlk, ‘‘conjugate’’ to the Mkl ¼Mlk, via the
definition X

mklMlr ¼ �kr ð¼ 1; if k ¼ r; ¼ 0; if k ¼ rÞ: ð3:10:4Þ

Multiplying each of (3.10.3) with msk and adding over k, invoking (3.10.4),
and renaming some dummy indices, we obtain the inertially decoupled Lagrangean
equations

€qqk þ
XX

Gk
rs _qqr _qqs þ

XX
mksð@Msr=@tÞ _qqr

¼
X

mks½Qs þ Gs � @ðV0 � T0Þ=@qs � @Ms=@t�; ð3:10:5Þ
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where we have introduced the following, similar to (3.10.1d), quantities:

Gk
rs ¼ Gk

sr �
X

mklGl;rs:

ðholonomicÞ ChristoQel symbols of the second kind ð3:10:5aÞ

, Gl;rs ¼
X

MlkG
k
rs

� �
: ð3:10:5bÞ

Velocity-Proportional Terms of (3.10.3, 5)

In general, there are two kinds of such terms: linear (� _qqr) and nonlinear (� _qqr _qqs).
Let us examine the latter first.

(i) Nonlinear terms like Gk;rs _qqr _qqs or G
k
rs _qqr _qqs occur because their coefficients, the

Christoffels, are intimately related to the curvilinearity; that is, the nonlinearity, of
the coordinates q. Let us see this: recalling the definitions (3.9.2a) and (3.10.1d), we
have, successively,

Gk;rs ¼ ð1=2Þð@Mkr=@qs þ @Mks=@qr � @Mrs=@qkÞ

¼ ð1=2Þ ð@=@qsÞ Sdmð@r=@qkÞ � ð@r=@qrÞ
h i

þ � � �
n o

¼ ð1=2Þ
n
Sdm

�ð@2r=@qs@qkÞ � ð@r=@qrÞ þ ð@r=@qkÞ � ð@2r=@qs@qrÞ
þ ð@2r=@qr@qkÞ � ð@r=@qsÞ þ ð@r=@qkÞ � ð@2r=@qr@qsÞ

� ð@2r=@qk@qrÞ � ð@r=@qsÞ � ð@r=@qrÞ � ð@2r=@qk@qsÞ
	o

¼Sdmð@2r=@qr@qsÞ � ð@r=@qkÞ �Sdmð@er=@qsÞ � ek
¼Sdmð@es=@qrÞ � ek ¼ Gk;sr ½recalling ð2:5:4a; bÞ�; ð3:10:6Þ

from which we conclude that if @er=@qs � @2r=@qr@qs ¼ 0 (e.g., rectilinear coordi-
nates), then Gk;rs ¼ 0 ) Gk

rs ¼ 0. Hence, the following theorem.

THEOREM

In general, Lagrange’s equations are nonlinear; this is part of the price we pay for
using ‘‘generalized’’ (i.e., curvilinear) coordinates.

(ii) Linear terms like:
(a) ð@Mkr=@tÞ _qqr clearly result from the nonstationarity of the inertia coefficients;
(b) gkr _qqr result from the nonstationarity of the holonomic (built-in) constraints

ð@r=@t 6¼ 0) T1 6¼ 0; Mk 6¼ 0Þ;

(c) �kr _qqr [recall generalized (holonomic) potential (3.9.8a ff.)] result from the part
of the potential that is linear in the _qq’s.

We notice that both forces corresponding to (b) and (c) type of terms—namely, the
inertial Gk ¼

P
gkr _qqr and the potential Qk;GP � @�k=@t ¼

P
�kr _qqr (part of Qk)—

are gyroscopic; that is, they have zero power. And this explains the disappearance
of T1 and V1 from the generalized energy integral h � T2 þ ðV0 � T0Þ ¼ constant.
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Both forces can be combined as follows: with

L1 � T1 � V1 ¼
X
ðMk � �kÞ _qqk �

X
lk _qqk; ð3:10:7aÞ

[recalling (3.9.8c)] we obtain, successively,

�EkðL1Þ ¼ � � � ¼ �ð@Mk=@tÞ þ Gk þQk;GP ¼ �ð@lk=@tÞ þ
X

lkr _qqr; ð3:10:7bÞ

where the gyroscopic coefficients of L1; lkr, are defined by

lkr � gkr þ �kr � @ðMr � �rÞ=@qk � @ðMk � �kÞ=@qr ¼ @lr=@qk � @lk=@qr: ð3:10:7cÞ

We also notice that, whenever such terms appear, since gkk ¼ 0 and �kk ¼ 0, _qqk does
not appear in the (k)th Lagrangean equation, say Ek ¼ Qk. Instead, for each such
term that appears as grk _qqr in the (k)th equation (r 6¼ k), another term, like
gkr _qqk ¼ �grk _qqk appears in the (r)th equation Er ¼ Qr. For example, for n ¼ 3, eq.
(3.10.2c), Ek;C ¼ �

P
gkr _qqr, yields

E1;C ¼ ð0Þ _qq1 þ g21 _qq2 þ g31 _qq3;

E2;C ¼ �g21 _qq1 þ ð0Þ _qq2 þ g32 _qq3;

E3;C ¼ �g31 _qq1 � g32 _qq2 þ ð0Þ _qq3: ð3:10:7dÞ

This property also appears in the theory of cyclic systems (}8.4 ff.).

(d) �fkr _qqr [recall Rayleigh’s dissipation function (3.9.10b ff.)] result from linear
viscous friction.

A Compact Notation

Since q0 � t ) _qq � _tt ¼ 1 ) €qq0 � €tt ¼ 0, and with all Greek indices running from
1 to nþ 1, we may rewrite Ek, (3.10.1i), as follows

Ek ¼
X

Mk
 €qq
 þ
XX

Gk;
� _qq
 _qq�; ð3:10:8aÞ

where

2Gk;
� ¼ 2Gk;�
 � @Mk
=@q� þ @Mk�=@q
 � @M
�=@qk

¼ 2Sdmð@e
=@q�Þ � ek
h i

; ð3:10:8bÞ

a form, most likely, due to T. Levi-Civita (1895), one of the founders of tensor
calculus. If the index positioning (i.e., sub-/superscripts) appears arbitrary, it is
because we have been trying to avoid tensor calculus and its associated simple and
helpful conventions. [For an extensive treatment of these topics via this remarkable
and beautiful geometrico-analytical tool, see, e.g., Papastavridis (1999) and refer-
ences cited therein.]

Indeed, expanding the above, we obtain

Ek ¼
X

Mkr €qqr þ
XX

Gk;rs _qqr _qqs þ 2
X

Gk;r;nþ1 _qqr þ Gk;nþ1;nþ1

�
X

Mkr €qqr þ
XX

Gk;rs _qqr _qqs þ 2
X

Gk;r _qqr þ Gk; ð3:10:8cÞ
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where

ðaÞ 2Gk;r;nþ1 ¼ 2Gk;nþ1;r � 2Gk;r ¼ 2Sdmð@er=@tÞ � ek
h i

� @Mkr=@qnþ1 þ @Mk;nþ1=@qr � @Mr;nþ1=@qk
¼ @Mkr=@tþ ð@Mk=@qr � @Mr=@qkÞ � @Mkr=@tþ grk; ð3:10:8dÞ

so that the corresponding Ek-term becomes

2
X

Gk;r _qqr ¼
X
ð@Mkr=@tÞ _qqr �

X
gkr _qqr ¼

X
ð@Mkr=@tÞ _qqr � Gk:

nonstationary and gyroscopic=Coriolis terms � _qqð Þ; ð3:10:8eÞ
and

ðbÞ 2Gk;nþ1;nþ1 � 2Gk ¼ 2Sdmð@enþ1=@qnþ1Þ � ek ¼ 2Sdmð@e0=@tÞ � ek
h i

� @Mk;nþ1=@qnþ1 þ @Mk;nþ1=@qnþ1 � @Mnþ1;nþ1=@qk
¼ 2ð@Mk=@tÞ � @M0=@qk � 2ð@Mk=@t� @T0=@qkÞ:

nonstationary and centrifugal terms (no _qq ’sÞ: ð3:10:8f Þ
In this compact notation, the earlier equations (3.10.3) and (3.10.5) can be written,
respectively, asX

Mkr €qqr þ
XX

Gk;
� _qq
 _qq� ¼ Qk � @V0=@qk; ð3:10:8gÞ
and

€qqk þ
XX

Gk

� _qq
 _qq�h

¼ €qqk þ
XX

Gk
rs _qqr _qqs þ 2

X
Gk

r;nþ1 _qqr þ Gk
nþ1;nþ1

� €qqk þ
XX

Gk
rs _qqr _qqs þ 2

X
Gk

r _qqr þ Gk
i

ð3:10:8hÞ
where

Gk

� �

X
mksGs;
�

) Gk
r;nþ1 �

X
mksGs;r;nþ1 � Gk

r0 � Gk
r;

Gk
nþ1;nþ1 �

X
mksGs;nþ1;nþ1 � Gk

00 � Gk: ð3:10:8iÞ

We notice that Gnþ1;nþ1;nþ1 � G0;00 � G0 ¼ � � � ¼ ð1=2Þð@M0=@tÞ ¼ @T0=@t does not
appear in the equations of motion; but it might appear in special forms of power
equations.

Explicit Forms of Hamel’s Equations

Let us, next, extend the above to nonholonomic variables; that is, find the explicit
form of the Hamel acceleration (and equations)

Ik � ð@T*=@!kÞ:� @T*=@�k þ
XX

�rk
ð@T*=@!rÞ!
; ð3:10:9aÞ

542 CHAPTER 3: KINETICS OF CONSTRAINED SYSTEMS

=
∑

mkr(Qr − ∂V0/∂qr),



where

2T ¼
XX

M*
� !
!�: ð3:10:9bÞ

Nonholonomic Christoffel-Like Symbols

For algebraic simplicity, but no loss in generality, we restrict ourselves to the
stationary case. By @ . . . =@�k-differentiating the nonholonomic inertia coefficients

M*kl ¼M*lk �Sdm ek � el �Sdmð@r=@�kÞ � ð@r=@�lÞ; ð3:10:9cÞ

an operation that we shall also denote here by a subscript comma [i.e., @ð. . .Þ=@�k �
ð. . .Þ;k], we obtain

@M*kl=@�r ¼Sdmðek;r � el þ ek � el;rÞ;

and, therefore, the nonholonomic Christoffel symbol-like quantities, defined in com-
plete analogy with their holonomic counterparts (3.10.1d) as

2G*k;rs � @M*ks=@�r þ @M*kr=@�s � @M*rs=@�k; ð3:10:9dÞ

transform, successively, to

2G*k;rs �Sdm
�ðek � es;r þ es � ek;rÞ þ ðek � er;s þ er � ek;sÞ � ðer � es;k þ es � er;kÞ

	
¼Sdm

�
ek � ðes;r þ er;sÞ þ er � ðek;s � es;kÞ þ es � ðek;r � er;kÞ

	
;

and recalling the fundamental noncommutativity/nonintegrability relations (2.10.23),
rewritten here as

@2r=@�s@�k � @2r=@�k@�s � @ek=@�s � @es=@�k � ek;s � es;k

¼
X

�lskð@r=@�lÞ �
X

�lsk el ; ð3:10:9eÞ

we obtain, finally,

2G*k;rs ¼Sdm ek � ðes;r þ er;sÞ þ er �
X

�lskel

� �
þ es �

X
�lrk el

� �h i
¼Sdm ek � ðes;r þ er;sÞ þ

X
ð�lskM*rl þ �lrkM*slÞ: ð3:10:9fÞ

Nonholonomic Euler–Lagrange Terms

Next, differentiating the stationary version of (3.10.9b)

2T ¼
XX

M*kl!k!l ; ð3:10:9gÞ

we obtain @T*=@!k ¼
P

M*kl!l and, therefore,

ð@T*=@!kÞ: ¼
X

M*kl _!!l þ
X
ðdM*kl=dtÞ _!!l;
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or, since

dM*kl=dt ¼
X
ð@M*kl=@qrÞ _qqr ¼

X
ð@M*kl=@qrÞ

X
Ars!s

� �
¼
X X

Arsð@M*kl=@qrÞ
� �

!s �
X
ð@M*kl=@�sÞ!s;

we get,

ð@T*=@!kÞ: ¼
X

M*kl _!!l þ
XX

ð@M*kl=@�sÞ!s!l: ð3:10:9hÞ

Introducing the above into the stationary version of (3.10.9a) results in

Ik � d=dtð@T*=@!kÞ � @T*=@�k þ
XX

�rklð@T*=@!rÞ!l ;

¼
X

M*klðd!l=dtÞ þ
XXX

�rklM*rs!s!l

þ
XX

½@M*kl=@�s � ð1=2Þð@M*sl=@�kÞ�!s!l ; ð3:10:9iÞ

or, since the third (double sum) term equals

ð1=2Þ
XX

ð@M*ks=@�l þ @M*kl=@�s � @M*sl=@�kÞ!s!l

�
XX

G*k;ls!s!l; ð3:10:9jÞ

we finally obtain the (3.10.3b)-like form

Ik ¼
X

M*klðd!l=dtÞ þ
XX

Lk;ls!s!l; ð3:10:9kÞ

where

Lk;ls � G*k;ls þ
X

� r
klM*rs; ð3:10:9lÞ

that is, it is the just introduced quantities Lk;ls that deserve to be called nonholonomic
Christoffel symbols of the first kind, rather than the formally similar to the holonomic
ones G*k;ls, eqs. (3.10.9d). Finally, it is not hard to see that we can replace in
(3.10.9k) the Lk;ls with their symmetric parts (1/2) ðLk;ls þ Lk;slÞ. Let the reader
extend these results to the nonstationary case. [For a detailed tensorial treatment
of these topics, see, for example, Papastavridis (1999, chaps. 6, 7).]

Problem 3.10.1 Explicit Form of Chaplygin’s Equations [recall (3.8.13a ff.)]. Con-
sider a Chaplygin system; that is, one with constraints:

_qqD ¼
X

bDI _qqI ; ðD;D 0;D 00 . . . ¼ 1; . . . ;m; I ; I 0; I 00 . . . ¼ mþ 1; . . . ; nÞ; ðaÞ

where

bDI ¼ bDIðq1; . . . ; qmÞ � bDIðqIÞ:
(i) Show that its (double) kinetic energy becomes

2T �
XX

Mkl _qqk _qql

¼ � � � ¼
XX

MII 0o _qqI _qqI 0 ¼
XX

mII 0 _qqI _qqI 0 � 2ToðqI ; _qqIÞ ¼ 2To; ðbÞ
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where

Mkl ¼MklðqIÞ ðk; l ¼ 1; . . . ; nÞ; ðc1Þ
MII 0o �MII 0 þ 2

X
bDI 0MDI þ

X
bDIbD 0I 0MDD 0 ð6¼MI 0IoÞ; ðc2Þ

2mII 0 ¼ 2mI 0I �MII 0o þMI 0Io ( functions of the qI ’sÞ: ðc3Þ
(ii) Then show, by differentiating (b), that Chaplygin’s equations [recall (3.8.13o)]

ð@To=@ _qqIÞ:� @To=@qI �
XX

tDII 0 ð@T=@ _qqDÞo _qqI 0 ¼ QIo; ðdÞ

where

�tDII 0 � @bDI 0=@qI � @bDI=@qI 0 ¼ Chaplygin coeRcients ð¼ tDI 0I Þ; ðd1Þ
QIo � QI þ

X
bDIQD; ðd2Þ

assume the explicit, (3.10.9k)-like, formX
mII 0 €qqI 0 þ

XX
�I ;I 0I 00 _qqI 0 _qqI 00 ¼ QIo; ðeÞ

where

�I ;I 0I 00 � G 0I ;I 0I 00 þ
X

MDI 00 þ
X

bD 0I 00MDD 0
� �

tDII 0 ð6¼ �I ;I 00I 0 Þ; ðe1Þ

2G 0I ;I 0I 00 � 2G 0I ;I 00I 0 ¼ @mII 00=@qI 0 þ @mII 0=@qI 00 � @mI 0I 00=@qI

¼ ðdoubleÞ first-kind ChristoQels; based on the fmII 0 g: ðe2Þ
Note that: (i) in (e), the �I ;I 0I 00 may be replaced by their symmetric parts in their last
two subscripts: ð�I ;I 0I 00 þ �I ;I 00I 0 Þ=2; and (ii) equations (e) look like the Lagrangean
equations of a scleronomic and holonomic system with n� m Lagrangean coordi-
nates qI , kinetic energy given by (b), first-kind Christoffels ¼ the symmetric parts of
the �I ;I 0I 00 , and under the impressed forces QIo.

Linear Variational Equations; or Method of Small Oscillations
(Routh, Poincaré et al.)

Let us consider, with no real loss of generality, a scleronomic and holonomic system S
with equations of motion

ð@T=@ _qqkÞ:� @T=@qk ¼ Qk; where 2T ¼
XX

ð3:10:10Þ
in a completely known state of motion (or equilibrium), henceforth referred to as the
fundamental, or undisturbed, state I ; and given by the known particular solution(s) to
(3.10.10) qk ¼ fkðtÞ. Below, we examine the continuous motions of S in the neighbor-
hood of I ; I þ DðIÞ � II , resulting from small disturbances (in some sense) applied to
I . Such a study has a twofold usefulness: (i) it informs us about the stability/instabil-
ity of the original state I ; and/or (ii) helps us to understand, approximately, the
general motion of S whenever the exact solution of (3.10.10) is beyond our reach.
Since this is an approximate method, with no error analysis available, its results
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should be applied with caution; for example, in the case of finite disturbances on I ,
described by nonlinear perturbation equations, it may lead to completely false
results.

Linear Perturbation Equations

Let the solution(s) of (3.10.10) for the perturbed state II be qk ¼ fkðtÞ þ xkðtÞ, where
xk ¼ xkðtÞ is the small perturbation describing the temporal evolution of
II � I � DðIÞ � �ðI Þ. [Generally, we use �ð. . .Þ for first-order changes and Dð. . .Þ
for total changes, from I .] Then, with

TðIIÞ � Tðq; _qqÞ � Tðf þ x; _ff þ _xxÞ � T ; TðI Þ � Tð f ; _ff Þ � To; ð3:10:10aÞ
and all Mkl-derivatives evaluated at I, we obtain, to the second x; _xx-order,

2T ¼
XX n

Mkl þ
�X

ð@Mkl=@qrÞxr
þ ð1=2Þ

XX
ð@2Mkl=@qr@qsÞxrxs

�o
ð _ffk þ _xxkÞð _ffl þ _xxlÞ

¼ � � � ¼ 2ðTo þ DTÞ ¼ 2ðTo þ DT1 þ DT2Þ; ð3:10:10bÞ
where

2To �
XX

Mkl
_ffk _ffl ; ð3:10:10cÞ

DT1 �
X
ð
kxk þ �k _xxkÞ; ð3:10:10dÞ

2
k �
XX

ð@Mrl=@qkÞ _ffr _ffl �
X

"lk _ffl ; �k �
X

Mkl
_ffl ; ð3:10:10eÞ

2DT2 �
XX

kl _xxk _xxl þ 2
XX

"kl _xxkxl þ
XX

�klxkxl

ð� 2DT2;2 þ 2DT2;1 þ 2DT2;0Þ; ð3:10:10f Þ
kl �Mkl ð¼ lkÞ; ð3:10:10:gÞ
"kl �

X
ð@Mkr=@qlÞ _ffr ¼

X
ð@Mrk=@qlÞ _ffr ð6¼ "lk; in generalÞ; ð3:10:10hÞ

2�kl �
XX

ð@2Mrs=@qk@qlÞ _ffr _ffs ð¼ 2�lkÞ: ð3:10:10iÞ

Similarly, with

QkðIIÞ � Qkðt; q; _qqÞ ¼ Qkðt; f þ x; _ff þ _xxÞ � Qk;

QkðIÞ � Qkðt; f ; _ff Þ � Qk;o; ð3:10:10jÞ
and all Qk-derivatives evaluated at I, we obtain, to the first x; _xx-order,

Qk ¼ Qk;o þ
X
ð�klxl þ �kl _xxlÞ; ð3:10:10kÞ

�kl � @Qk=@ql ð6¼ �lk; in generalÞ; �kl � @Qk=@ _qql ð6¼ �lk; in generalÞ:
ð3:10:10lÞ

Now, since the fk and _ffk (i.e., the fundamental state I), are known functions of time
(equal to constants or zero in the case of equilibrium), T can be viewed as the
(approximate) kinetic energy of a rheonomic system with hitherto unknown and uncon-
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strained Lagrangean coordinates xk recalling ex. 3.9.6). Therefore, the equations of
motion of the adjacent state II are the Lagrangean equations for the xk:

ð@T=@ _xxkÞ:� @T=@xk ¼ Qk: ð3:10:11Þ
But, by (3.10.10a–l),

@T=@xk ¼ 
k þ
X
ð�kl xl þ "lk _xxlÞ; ð3:10:11aÞ

@T=@ _xxk ¼ �k þ
X
ð"kl xl þ kl _xxlÞ; ð3:10:11bÞ

and the undisturbed state I satisfies the equations

ð@To=@ _ffkÞ:� @To=@fk ¼ Qk;o;X
Mkl

_ffl

� �:� ð1=2ÞXX
ð@Mrl=@qkÞ _ffr _ffl � d�k=dt� 
k ¼ Qk;o; ð3:10:11cÞ

i.e., (3.10.10) with x ¼ 0; _xx ¼ 0. Therefore, eqs. (3.10.11), finally, assume the follow-
ing form of linear(ized) and homogeneous perturbation equations:X �

kl €xxl þ ½ð"kl � "lkÞ þ _kl � _xxl þ ð _""kl � �klÞxl
�

¼
X
ð�klxl þ �kl _xxlÞ: ð3:10:12Þ

REMARKS

(i) These equations can also be obtained by substituting
qk ¼ fk þ xk; _qqk ¼ _ffk þ _xxk in @T=@ _qqk and @T=@qk, expanding à la Taylor around
I , and keeping only up to linear terms in the x; _xx:

ðaÞ @T=@ _qqk ¼
X
ðMkl

_ffl þMkl _xxlÞ þ
XX �ð@Mkl=@qrÞ _ffl

	
xr;

) ð@T=@ _qqkÞ: ¼
X �

Mkl
€ffl þ _MMkl

_ffl þMkl €xxl þ _MMkl _xxl
�

þ
XX n

ð@Mkl=@qrÞ _ffl _xxr þ ½ð@Mkl=@qrÞ _ffl �: xr
o
; ð3:10:11dÞ

ðbÞ @T=@qk ¼ ð1=2Þ
XX

ð@Mrl=@qkÞ _ffr _ffl þ
XX

ð@Mrl=@qkÞ _ffr _xxl

þ ð1=2Þ
XXX �ð@2Mrs=@ql@qkÞ _ffr _ffs

	
xl; ð3:10:11eÞ

and similarly for Qk [as in (3.10.10j–l)]; and then inserting these values in (3.10.10)
while noting that, since the fkðtÞ describe the fundamental state, (3.10.11c) holds:X

ðMkl
€ffl þ _MMkl

_fflÞ � ð1=2Þ
XX

ð@Mrl=@qkÞ _ffr _ffl ¼ Qk;o: ð3:10:11f Þ

Again, the result is eqs. (3.10.12).
(ii) If, during the perturbed motion DðIÞ, an additional force Xk, not provided by

the expansion (3.10.10k) occurs, then such a term should be added to the right side
of (3.10.12). Here, we shall assume that Xk ¼ 0.

Since fr ¼ frðtÞ ¼ known function of time, so are the coefficients ; "; �; �; � in
(3.10.12). However, from the mathematical viewpoint, even such a linear but variable
coefficient system is (or can be) quite complicated. Therefore, to make some head-
way, from now on we shall restrict ourselves to the special case where all these

)3.10 LAGRANGE’S EQUATIONS: EXPLICIT FORMS; AND LINEAR VARIATIONAL EQUATIONS 547



coefficients are constant in time. Then, (3.10.12) reduces to the constant coefficient
system: X �

kl €xxl þ ð"kl � "lkÞ _xxl � �kl xl
	 ¼X ð�kl xl þ �kl _xxlÞ; ð3:10:13Þ

whose mathematical theory is well known (see below).

Steady Motion

A fundamental state whose linear perturbational equations have constant coefficients,
like (3.10.13), is called a state of steady motion (Routh, 1877), or, sometimes (but not
quite correctly), stationarymotion. Common examples of such a state are (i) absolute
or relative equilibrium (in which case, the fk are constant or zero); (ii) cyclic systems
undergoing ‘‘isocyclic’’ motions [i.e., certain of their coordinates (the ‘‘nonignor-
able’’ ones) and certain of their velocities (the ‘‘ignorable’’ ones) remain constant
(} 8.5)].

We begin our study of steady motion by noting that, in such a state, since the
; "; �; �; � are constant, the perturbed motion xkðtÞ is independent of the particular
instant at which the disturbance is applied to that state.

Next, let us examine closely the right (perturbed force) side of (3.10.13).
Following Kelvin and Tait, we call the x-proportional terms positional forces, and
the _xx-proportional terms motional forces. Each of these terms can be further sub-
divided into its symmetric and antisymmetric parts; the latter are defined, respec-
tively, by the following unique decompositions:

�kl ¼ � 0kl þ � 00kl ; �kl ¼ � 0kl þ � 00kl ; ð3:10:14Þ
where the symmetric parts (single accents) are defined by

� 0kl ¼ � 0lk � ð1=2Þð�kl þ �lkÞ; � 0kl ¼ � 0lk � ð1=2Þð�kl þ �lkÞ; ð3:10:14aÞ
and the antisymmetric ones (double accents) by

� 00kl ¼ �� 00lk � ð1=2Þð�kl � �lkÞ; � 00kl ¼ �� 00lk � ð1=2Þð�kl � �lkÞ; ð3:10:14bÞ
that is, � 0kk ¼ �kk; � 00kk ¼ 0 and � 0kk ¼ �kk; � 00kk ¼ 0. The so-resulting four types of
forces we classify as follows:

ðiÞ
X

� 0kl xl � � 0k ¼ potential positional forces; ð3:10:14cÞ

derivable from the potential:

V 0 ¼ �ð1=2Þ
XX

� 0kl xkxl ) �ð@V 0=@xkÞ ¼ � 0k; ð3:10:14dÞ

and whose inertial counterparts are the ��klxl terms in (3.10.13).

ðiiÞ
X

� 00kl xl � � 00k ¼ nonpotential ð) nonconservativeÞ; or circulatory;
positional forces ¼ ð1=2Þ

X
ð@� 00k=@xl � @� 00l=@xkÞxl; ð3:10:14eÞ

where the � 00kl are referred to as vorticity coefficients. [Such forces are also called
artificial (Thomson and Tait), since their work over a closed route of configurations
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is nonzero; and so, upon repetition of that cycle, they can produce unbounded
amounts of energy].

ðiiiÞ
X

� 0kl _xxl � � 0k ¼ damping motional forces; ð3:10:14f Þ

derivable from the Rayleigh dissipation function (3.9.10a ff.; with F ! D 0)

D 0 � �ð1=2Þ
XX

� 0kl _xxk _xxl ) �ð@D 0=@ _xxkÞ ¼ � 0k: ð3:10:14gÞ

If the (perturbational) power of these forces:X
� 0k _xxk ¼

XX
� 0kl _xxk _xxl ¼ �2D 0;

is negative definite (in the _xxÞ, then damping is called complete; if it is only negative
semidefinite (i.e., it may vanish for some _xx 6¼ 0), then it is called pervasive. (This
difference does matter in stability questions.)

ðivÞ
X

� 00kl _xxl � � 00k ¼ gyroscopic motional forces; ð3:10:14hÞ

derivable from the gyroscopic function

Y 00 ¼ �
XX

� 00kl xk _xxl ) �ð@Y 00=@xkÞ ¼ � 00k; ð3:10:14iÞ

and whose inertial counterparts are the ð"kl � "lkÞ _xxl terms in (3.10.13).
To understand these forces and their effects on the disturbance xkðtÞ better, let us

form the power equation of the perturbed motion: multiplying (3.10.13) with _xxk and
summing over k, while noting that the gyroscopic contributions from both sides
vanish, we obtain

dðDhÞ=dt ¼ C � 2D 0; ð3:10:15Þ

where [recalling (3.10.10f)]

2Dh �
XX

ðkl _xxk _xxl � �kl xk xlÞ þ 2V 0

� 2½DT2;2 þ ðV 0 � DT2;0Þ� ¼ 2 ðgeneralizedÞ energy of disturbance; ð3:10:15aÞ
C �

X
� 00k _xxk ¼

XX
� 00kl xl _xxk ¼ circulatory power: ð3:10:15bÞ

Hence, if C ¼ 0, then 2D 0 represents the rate of decrease of the perturbational energy
Dh.

For stability investigations (see below), it is convenient to bring all terms of
(3.10.13) on the same side and group them appropriately as follows (with some
renaming, to conform with standard contemporary practices):X

½Mkl €xxl þ ðDkl þ GklÞ _xxl þ ðKkl þNklÞ xl � ¼ 0; ð3:10:16Þ
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where

Mkl ¼Mlk � kl ¼ coeRcients of inertia=mass

½M ¼ ðMklÞ: symmetric and positive deEnite matrix�; ð3:10:16aÞ
Dkl ¼ Dlk � �� 0kl ¼ damping coeRcients

½D ¼ ðDklÞ: symmetric matrix; if positive deEnite: complete damping;

if positive semideEnite: pervasive damping�; ð3:10:16bÞ
Gkl ¼ �Glk � ð"kl � "lkÞ � � 00kl ¼ gyroscopic coeRcients

½G ¼ ðGklÞ: antisymmetric matrix; no general sign properties�; ð3:10:16cÞ
Kkl ¼ Klk � �ð�kl þ � 0klÞ ¼ conservative positional coeRcients

½K ¼ ðKklÞ: symmetric matrix; if positive deEnite; then static stability�;
ð3:10:16dÞ

Nkl ¼ �Nlk � �� 00kl ¼ nonconservative positional; or circulatory; coeRcients

½N ¼ ðNklÞ: antisymmetric matrix; no general sign properties�: ð3:10:16eÞ

Stability of Steady Motion (see also } 8.6)

Substituting into (3.10.16) xk ¼ xkðtÞ ¼ Xk expð�tÞ (Xk ¼ constant amplitude,
depending on the initial conditions, and � an exponent to be determined), and
requiring nontrivial solutions, we are led in well-known ways to the system’s secular
or characteristic equation

Dð�Þ � 

Mkl �
2 þ ðDkl þ GklÞ�þ ðKkl þNklÞ



 ¼ 0; ð3:10:17Þ
or, if expanded,

Dð�Þ � a0�
m þ a1�

m�1 þ a2�
m�2 þ � � � þ am�1�þ am ¼ 0; ð3:10:18Þ

where m ¼ 2n, all coefficients are real, and (by Viète’s rules, or by induction)

a0 ¼


Mkl



 > 0 and am ¼


Kkl þNkl



: ð3:10:18aÞ

Brief Detour/Summary of Relevant Fundamentals of
the Theory of Stability of Motion

DEFINITION

A (fundamental) state of motion I is called stable, relative to bounded initial dis-
turbances (i.e., initial condition changes), if the resulting perturbation from it, DðIÞ,
also remains bounded for all subsequent time. More precisely, let y ¼ yðtÞ � ðx; _xxÞ
and tinitial � ti. Then, I is stable if, for any constant " > 0, another constant
� ¼ �ð"Þ > 0 can be found such that, from j yi � yðtiÞj < �, it follows that
j yðtÞj < " for all t > ti; that is, I is stable if it is possible to keep y as small as we
wish by appropriately restricting its initial value yi. The intuitive/popular under-
standing of a stable state of motion (or equilibrium) as one in which ‘‘the smaller the
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initial disturbance, the smaller the subsequent perturbation from it’’ corresponds,
clearly, to the special case where �ð. . .Þ is a monotonically decreasing function of ".
(Outside of the absolute value j . . . j, other ‘‘norms’’ k . . . k can be selected.) In many
applications, however, such boundedness of DðIÞ is not enough; there, for stability,
the disturbance must also diminish in time, and eventually die away, that is, all so
perturbed motions must tend toward I as time increases indefinitely; mathematically:
jyj ! 0, as t!1. This, sharper, type of stability is called asymptotic stability, while
the earlier one requiring only DðIÞ-boundedness is referred to as stability in the sense
of Lagrange. If I is stable for any size initial disturbance, then I is called totally or
globally stable; while if it is stable only for ‘‘small’’ initial disturbances, then it is
called, simply, stable (e.g., a ship safe for ocean voyages vs. a ship safe only for
Mediterranean sea voyages). Clearly, in practice, only the latter type of stability is
serviceable. For nonlinear systems in particular, the initial disturbances must be
small enough so that the perturbed motions are still controlled by the fundamental
motion I. (We should remark that, since, out of nonlinear equations of motion, qua-
litatively new and unexpected phenomena may emerge, no single definition of stability
ofmotion, that is uniformly physicallymeaningful and technically useful, is possible or
desirable— stability is a human-made condition, not an ever valid and exceptionless
physical law, like the equations ofmotion. As the distinguished appliedmathematician
R. Bellman put it, ‘‘stability is a much overburdened word with an unstabilized defini-
tion.’’ Below, only the practically important asymptotic stability is examined.)

Usually, the exact equations of a perturbation DðIÞ, from I, consist of a linear part
[which here is assumed to (exist and) be the constant coefficient, or autonomous,
system (3.10.16)] and of a nonlinear part. Now, it is shown in the theory of stability
[A. M. Lyapounov’s ‘‘first approximation’’ (early 1890s); also H. Poincaré’s ‘‘équa-
tions aux variations’’ (1892)] that for such a system:

1. If the real parts of all roots of its characteristic equation (3.10.17, 18) are negative, then
the fundamental state I is asymptotically stable, irrespectively of the nonlinear terms of
DðIÞ; that is, our linearized analysis suffices to establish the asymptotic stability of I.

2. If even one of the roots of (3.10.17, 18) has a positive real part, then I is unstable,
irrespectively of the nonlinear terms of DðIÞ; again, the linearized analysis suffices.

3. Critical (or neutral, or marginally stable) case: If even one of the roots of (3.10.17, 18)
has zero real part while its remaining roots, if any, have negative real parts [i.e., if the
linearized perturbations are stable but not asymptotically stable—provided that those
zero-real-part roots are distinct, so that their contributions to the general solution of
(3.10.16) have no t-proportional (secular) terms, otherwise I is unstable as in the second
case], the stability of I cannot be decided from the first approximation (3.10.16), we
must also examine the nonlinear part of the exact perturbation equations; the linearized
analysis does not suffice! Physically, the presence of a root with zero real part indicates
an exact balance among certain of the system’s physical properties/parameters and
associated forces. Such systems may be structurally unstable, that is, they may be
such that, if their parameters and forces are subjected to small variations, the nature
of their motions changes completely, for example, from oscillatory to nonoscillatory.
So, in practical terms (i.e., unavoidable imperfections/irregularities/impurities, etc.), the
critical case should be classified as (nonlinearly) unstable!

For these reasons, the behavior of the linearized system (3.10.16) in cases 1 and 2
is called significant (i.e., conclusive), while that in case 3 is called nonsignificant (i.e.
inconclusive). Obviously: (i) If the linear part of DðIÞ is absent, the above results do
not apply; while (ii) if its nonlinear part is absent, then we can safely conclude that
the state I is: case 1, asymptotically stable; case 2, unstable; and case 3, stable/not
asymptotically stable.]
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From the above it follows that, since the imaginary parts of the roots of (3.10.18)
do not affect the stability of I, both ordinary and/or asymptotic, it is not necessary to
actually solve (3.10.18), just check the sign of the real part of its roots. This is
achieved by several (necessary and/or sufficient) criteria of various degrees of
generality and ease of application. Below we describe two of the most well-known
such criteria: those of Routh (1876–1877) and Hurwitz (1895) [also Clifford (1868)
and Hermite (1850)].

(i) Criterion of Routh. Let us build the following array of Routh coefficients:

a0 a2 a4 � � �
a1 a3 a5 � � �
b1 � ða1a2 � a0a3Þ=a1 b2 � ða1a4 � a0a5Þ=a1 b3 � ða1a6 � a0a7Þ=a1 � � �
c1 � ðb1a3 � a1b2Þ=b1 c2 � ðb1a5 � a1b3Þ=b1 c3 � ðb1a7 � a1b4Þ=b1 � � �
d1 � ðc1b2 � b1c2Þ=c1 d2 � ðc1b3 � b1c3Þ=c1 d3 � ðc1b4 � b1c4Þ=c1 � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

that is, its first (second) row consists of the even (odd) coefficients of (3.10.18); also,
a� ¼ 0, for � > m. Now, all the roots of the characteristic equation have negative real
parts () the fundamental state I is asymptotically stable) if and only if all the
elements of the first column of the above table are positive; that is, if and only if

a0 > 0; a1 > 0; b1 > 0; c1 > 0; d1 > 0; . . . ; ð3:10:18bÞ
or, more generally, if they have the same sign—it can be shown that the number of
roots with positive real parts () instability) equals the number of sign changes.

(ii) Criterion of Hurwitz. Let us build the following m Hurwitz determinants:

Hh �

a1 a3 a5 � � � a2h�1

a0 a2 a4 � � � a2h�2

0 a1 a3 � � � a2h�3

0 a0 a2 � � � a2h�4

0 0 0 � � � ah




































ðh ¼ 1; 2; . . . ;mÞ; ð3:10:18cÞ

� � � � � � � � � � � � � � � � � � � � � � �

that is, we build Hm and its m � 1 principal minors, while taking a� ¼ 0 for all � > m
or < 0:

H1 ¼ a1; H2 ¼
a1 a3

a0 a2





 



; H3 ¼
a1 a3 a5

a0 a2 a4

0 a1 a3
















; . . . : ð3:10:18dÞ

Now, assuming that a0 > 0 [if it is not, we multiply (3.10.18) with �1], all the roots of
the characteristic equation have negative real parts () the fundamental state I is
asymptotic stability) if and only if all m determinants Hh are positive, that is,

a0 > 0; and H1 > 0; . . . ;Hm�1 > 0; Hm > 0: ð3:10:18eÞ
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� Since Hm ¼ amHm�1 (verify this!), these inequalities can be replaced by

a0 > 0; and H1 > 0; . . . ;Hm�1 > 0; am > 0; ð3:10:18fÞ
that is, there is no need to calculate Hm, just check the signs of the first m� 1
Hurwitz determinants and am (and a0).
� Further, it can be shown that from (3.10.18e, f ) it follows that

a0 > 0; and a1 > 0; . . . ; am�1 > 0; am > 0; ð3:10:18gÞ
and therefore negativity of even one of the coefficients of (3.10.18) indicates in-
stability.

REMARKS

(i) For detailed discussions and proofs of these two criteria, see the original
works of Routh and Hurwitz; also Bellman and Kalaba (1964: collection of original
papers), Chetayev (1961, chap. 4), Di Stefano et al. (1990, chap. 5), Gantmacher
(1970, pp. 197–201), Leipholz (1970, }1.3, pp. 21–59), Mansour (1999, pp. R11–
R15), McCuskey (1959, pp. 185–187), Synge (1960, pp. 185–188).

(ii) The criteria are theoretically equivalent (as can be verified by, say, the method
of induction), but Hurwitz’s criterion has the slight advantage over that of Routh
of avoiding the calculation of fractions; hence the common term Routh–Hurwitz
criterion.

(iii) The Routh–Hurwitz criteria are most suitable if all the coefficients of
(3.10.18), a0; a1; . . . ; am�1; am are given numbers. If, however, these coefficients con-
tain parameters, then the implementation of the criteria becomes complicated. For
this reason, throughout the 20th century, a number of alternative stability criteria
have been formulated, especially criteria that are based directly on the sign proper-
ties of the coefficient matrices of (3.10.16); that is, (3.10.16a–e); and thus avoid the
calculation of the coefficients of (3.10.18) and associated Routh coefficients
(3.10.18b)/Hurwitz determinants (3.10.18c); e.g. criteria of Liénard–Chipart,
Mikhailov et al.

(iv) On this technically important topic there exists, understandably, a large body
of excellent literature; for example, (alphabetically): Bremer (1988, chap. 6), Hiller
(1983, chap. 8), Hughes (1986, appendix A, pp. 480–521), Huseyin (1978), Magnus
(1970), Merkin (1987), Müller (1977), Müller and Schiehlen (1976/1985), and Pfeiffer
(1989).

EXAMPLE

Let us verify the Hurwitz criterion for the simple case of the linearly damped and
undriven oscillator

M€xxþD _xxþ Kx ¼ 0; ð3:10:19Þ
where M ¼ mass ð> 0Þ; D ¼ damping ð> 0Þ; K ¼ elasticity ð> 0Þ. It is not hard to
see that, here (m ¼ 2), the characteristic equation is

M�2 þ D�þ K ¼ 0; ð3:10:19aÞ
and, therefore, the Hurwitz determinants are

H1 ¼ a1 ¼ D; H2 ¼ a1a2 � a0a3 ¼ DK �M0 ¼ DK : ð3:10:19bÞ
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For asymptotic stability, we must have H1 ¼ D > 0 and H2 ¼ DK > 0 ) D;
K > 0, and hence all solutions of (3.10.19) are asymptotically stable, as is already
well known.

Next, let us see some less trivial applications of these criteria.

Example 3.10.1 Rotating Shaft; Gyroscopic versus Circulatory Forces. Here, we
study a simplified version of the problem of critical speed of rotation of an
originally straight shaft (axis OZ), of noncircular cross-section, rotating with
constant (inertial) angular velocity x about OZ, by examining the equilibrium or
small linearized motion of a particle P of mass m, representing the concentrated
mass of a disk (of negligible rotary inertia) mounted on the shaft, relative to both
inertial axes O–XYZ and corotational (shaft-fixed) ones Oxyz ðOZ � OzÞ of

(i) Let us begin with the moving axes O–xyz. The disk/particle P is subjected to
the following forces (the OZ � Oz components are omitted if not needed):

(a) centrifugal (an inertial force):

m !2ðx; yÞ; ða1Þ

�2m x� vrelative ¼ �2mð0; 0; !Þ � ð _xx; _yy; 0Þ ¼ 2m !ð _yy;� _xxÞ; ða2Þ

(c) elastic (assuming the shaft has a single flexural rigidity and acts like a linear spring of
known constant stiffness k > 0; a physical positional conservative force):

�k r ¼ �kðx; yÞ; ða3Þ

(d) external damping [e.g., aerodynamic forces (drag), bearing forces; a physical force]:

�ð2deÞm vrelative ¼ �2m deð _xx; _yyÞ ðde: known positive constantÞ; ða4Þ

554 CHAPTER 3: KINETICS OF CONSTRAINED SYSTEMS

Figure 3.28 Particle model for study of stability of a rotating shaft.

(b) gyroscopic/Coriolis (an inertial force):

angular velocity x [fig. 3.28 (recall fig. 1.8); see also fig. 3.37].



(e) internal damping (due to the shaft properties; a physical force):

�ð2diÞm vrelative ¼ �2m dið _xx; _yyÞ ðdi: known positive constantÞ: ða5Þ

Applying the principle of linear momentum for relative motion to P (}1.7 ff.), we
obtain

m €xx ¼ �kx þm!2xþ 2m! _yy� 2mðde þ diÞ _xx; ðb1Þ
m €yy ¼ �ky þm!2y� 2m! _xx� 2mðde þ diÞ _yy; ðb2Þ

or, rearranging (and with d � de þ di),

€xxþ 2d _xx� 2! _yyþ ðk=m � !2Þx ¼ 0; ðb3Þ
€yyþ 2d _yyþ 2! _xxþ ðk=m� !2Þy ¼ 0: ðb4Þ

These (relative motion) equations contain all types of terms/forces, except circulatory
ones.

Power Equation

Multiplying (b3) with _xx and (b4) with _yy, and adding together, and then transform-
ing à la }3.9, we obtain the noninertial power equation

dh=dt ¼ �2Dr; ðcÞ
where

h � T2 þ ðV � T0Þ ¼ generalized energy; ðc1Þ
2T2 ¼ m½ð _xxÞ2 þ ð _yyÞ2�; 2T0 ¼ m!2ðx2 þ y2Þ; 2V ¼ kðx2 þ y2Þ; ðc2Þ

2Dr � ð2mdÞ½ð _xxÞ2 þ ð _yyÞ2� ¼ md½ð _xxÞ2 þ ð _yyÞ2�:
relative dissipation ðdampingÞ function: ðc3Þ

(ii) Now, let us examine the fixed axes O–XYZ description (see also Bahar and
Kwatny, 1992). Since the constitutive equations and associated material constants
are objective = frame-invariant, and by a simple moving! fixed axes transformation
(}1.7):

�2m divrelative ¼ �2mdi½vabsolute � ðx� rÞ�
¼ �2mdi½ð _XX ; _YY ; 0Þ � ð0; 0; !Þ � ðX ;Y ; 0Þ�
¼ �2mdið _XX þ !Y ; _YY � !X ; 0Þ; ðdÞ

(i.e., _xx ¼ _XX þ !Y and _yy ¼ _YY � !X , if O–XYZ and O–xyz coincide instantaneously),
the inertial equations of motion of P are

m €XX ¼ �kX � 2mde _XX � 2mdið _XX þ !YÞ; ðe1Þ
m €YY ¼ �kY � 2mde _YY � 2mdið _YY � !XÞ; ðe2Þ
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or, rearranging (and with d � de þ di, k=m � !o
2),

€XX þ 2d _XX þ !o
2X þ 2di!Y ¼ 0; ðe3Þ

€YY þ 2d _YY þ !o
2Y � 2di!X ¼ 0: ðe4Þ

Comparing the above with (b3, 4) we see that, here, instead of a gyroscopic force
(� ! terms), we have a circulatory one:

N � �2mdi ! ðY ;�XÞ ¼ 2mdi ! ð�Y ;XÞ; ðe5Þ

which, clearly, is perpendicular/transverse to the position vector OP � r (i.e.,
N � r ¼ 0) and rotates, or circulates, with it with angular velocity x; hence its name.

REMARK

Equations (e1, 2) can also be derived in an ad hoc fashion as follows: referring to fig.
3.28, we can write

m €XX ¼ �kX � 2mde _XX þ ½�ð2mdi _xxÞ cos�þ ð2mdi _yyÞ sin��; ðe6Þ
m €YY ¼ �kY � 2mde _YY þ ½�ð2mdi _xxÞ sin�� ð2mdi _yyÞ cos��: ðe7Þ

But, as is well known from analytic geometry,

x ¼ X cos�þ Y sin�; y ¼ �X sin�þ Y cos�;

and, therefore (since � ¼ ! t),

_xx ¼ _XX cos�þ _YY sin�� X! sin�þ Y! cos �; ðe8Þ
_yy ¼ � _XX sin�þ _YY cos�� X! cos�� Y! sin�: ðe9Þ

Substituting (e8, 9) into (e6, 7), we readily recover (e1, 2).

Power Equation

Multiplying (e3) with _XX and (e4) with _YY , and adding together, and so on, we
obtain the inertial power equation

dE=dt ¼ �2Da þ C; ðf Þ

where

E � T þ V ¼ total ðinertialÞ energy; ðf1Þ
2T ¼ m½ð _XXÞ2 þ ð _YYÞ2�; 2V ¼ kðX2 þY2Þ; ðf2Þ
2Da � ð2mdÞ½ð _XXÞ2 þ ð _YYÞ2�:

absolute dissipation ðdampingÞ function: ðf3Þ
C � N � v ¼ 2mdi !ðX _YY � Y _XXÞ: circulatory power ðv � vabsoluteÞ:
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Further, since the quantity

X _YY � Y _XX � 2ðdAZ=dtÞ
¼ 2 ðareal velocity; OZ-componentÞ swept in inertial space

by the radius OP in dt; ðf5Þ

is a quasi velocity ½2dAZ ¼X dYþð�YÞdX ) @ð�YÞ=@Y ¼�1 6¼ @ðXÞ=@X ¼þ1�,
it follows that

C ¼ 4mdi ! ðdAZ=dtÞ 6¼ total time derivative of a scalar energetic function; ðf6Þ
that is, C is a path-dependent quantity, like Da. Indeed, integrating (f) between two
arbitrary instants, from an ‘‘initial’’ ti to a ‘‘final’’ tf , we obtain

DE � Ef � Ei ¼
ðtf
ti

ð�2Da þ CÞ dt ¼ �
ðtf
ti

ð2DaÞ dtþ ð4mdi !ÞDAZ; ðgÞ

where

DAZ ¼ area swept by OP from ti to tf : ðg1Þ

[The total inertial power equation (f) holds unchanged even in the presence of gyro-
scopic forces; since these latter are normal to P’s inertial velocity, we would then have
an additional � � _YY term on the right side of (e1) and a � þ _XX term on that of
(e2): two terms whose combined inertial power, clearly, vanishes.]

Stability Investigation

Substituting X ; Y � expð�tÞ in (e3, 4) and requiring nontrivial solutions, we arrive,
in well-known ways, at the corresponding characteristic equation

a0�
4 þ a1�

3 þ a2�
2 þ a3�þ a4 ¼ 0; ðhÞ

where

a0 � 1;

a1 � 4ðde þ diÞ � 4d;

a2 � 4ðde þ diÞ2 þ 2ðk=mÞ � 4d2 þ 2!o
2;

a3 � 4ðde þ diÞðk=mÞ � 4d !o
2;

a4 � ðk=mÞ2 þ 4di
2!2 � !o

4 þ 4di
2!2: ðh1Þ

Hence, the Routh–Hurwitz asymptotic stability conditions (here m ¼ 4 — not to be
confused with the mass of P)

a0 > 0; a1 > 0; a1a2 � a0a3 > 0; ða1a2 � a0a3Þa3 � a1
2a4 > 0; a4 > 0;

yield

d > 0; dð4d2 þ !o
2Þ; d2ðd2!o

2 � di
2!2Þ > 0; !o

4 þ 4di
2!2 > 0: ðh2Þ
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Clearly, since de; di ð) d > 0Þ and k ð¼ m!o
2 > 0Þ are positive, the first, second,

and fourth (last) of conditions (h2) are satisfied; while the third of them furnishes the
upper !-bound:

!2 < ½1þ ðde=diÞ�2ðk=mÞ: ðh3Þ

This shows that as di ! 0,

!critical � ½1þ ðde=diÞ�ðk=mÞ1=2 � ½1þ ðde=diÞ� !o !1; ðh4Þ

and as di !1; !critical ! 0: that is, di has a destabilizing effect; hence, in rotor
design, we should aim at more de and less di.

For further details and insights, and discussion of stability using the rotating axes
equations (b3, 4), see, for example (alphabetically): Bolotin (1963, chap. 3),
Dimentberg (1961, chap. 2), Ziegler (1968, pp. 94–96, 101); and for additional,
more realistic, circulatory force examples, see Bremer [1988(a), pp. 144–149]. For
further applications of the Routh–Hurwitz criterion to the stability of mechanical
systems, see texts on linear and nonlinear vibrations and controls.

Problem 3.10.2 Show that if the fundamental state I of a scleronomic system is
one of equilibrium in the qk — that is, if fk ¼ constant, or 0 [recall (3.10.10a ff.)]—
the equations of small motion around I areX

Mkl €xxl ¼
X
½ð@Qk=@qlÞxl þ ð@Qk=@ _qqlÞ _xxl � ðaÞh

¼ �
X
ð@2V=@ql@qkÞxl; if Qk ¼ �@VðqÞ=@qk

i
; ðbÞ

where all the x= _xx=€xx-coefficients are evaluated on I and, therefore, are constant
[something that makes the systems (a, b) always solvable].

Notice that in case (b), or in case (a) with @Qk=@ _qql ¼ @Ql=@ _qqk, no gyroscopic
terms appear.

Problem 3.10.3 With the help of the following quadratic and bilinear forms:

2T 02 �
XX

Mkl _xxk _xxl ð� 2DT2;2: ‘‘contracted ’’ kinetic energyÞ; ðaÞ
2D �

XX
Dkl _xxk _xxl ð� �2D 0: damping functionÞ; ðbÞ

G �
XX

Gklxk _xxl ð� �2DT2;1 þY 00: gyroscopic functionÞ; ðcÞ
2V �

XX
Kklxkxl ð� 2V 0 � 2DT2;0: potential functionÞ; ðdÞ

and

Nk � �
X

Nklxl ð� � 0k: circulatory forceÞ; ðeÞ

show that the linear variational equations of small motion about a fundamental state
of steady motion can be rewritten in the Lagrangean (linear vibration) form

ð@T 02=@ _xxkÞ:þ @D=@ _xxk þ @ðGþ VÞ=@xk ¼ Nk: ðf Þ
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Problem 3.10.4 Show that if the fundamental state I is one of equilibrium —
that is, fkðtÞ � 0, and @Qk=@ _qql ¼ @Ql=@ _qqk (e.g., positional forces only) there —
then

"kl ¼ 0; �kl ¼ 0; �kl ¼ 0 ð) Gkl ¼ 0; Kkl ¼ �� 0klÞ; ðaÞ
and therefore the equations of small motion about such an I reduce toX

½Mkl €xxl þDkl _xxl þ ðKkl þNklÞxl � ¼ 0: ðbÞ

We notice that the absence of gyroscopic terms is the key difference between small
motion about absolute and relative equilibrium (and, of course, general motion).

Problem 3.10.5 Consider the cubic characteristic equation

�3 þ A2�
2 þ A1�þ A0 ¼ 0; ðaÞ

with roots �1, �2, �3.
(i) Show that

A2 ¼ �ð�1 þ �2 þ �3Þ; A1 ¼ �1�2 þ �1�3 þ �2�3; A0 ¼ �ð�1�2�3Þ: ðbÞ
(ii) Since one of these roots must be real and the other two either real or complex

conjugate, we write

�1 ¼ �1; �2 ¼ �2 þ i�2; �3 ¼ �2 � i�2 ; ðcÞ
where i2 � �1, and �1, �2, �2 are real. Show that

A2 ¼ �ð�1 þ 2�2Þ; A1 ¼ 2�1�2 þ �22 þ �22; A0 ¼ ��1ð�22 þ �22Þ: ðdÞ

Problem 3.10.6 Continuing from the preceding problem, show that the (necessary
and sufficient) asymptotic stability conditions for a system with the cubic character-
istic equation

�3 þ A2�
2 þ A1�þ A0 ¼ 0; ðaÞ

are

ðiÞ A2; A1; A0 > 0 ðpositive coeHcientsÞ; and ðiiÞ A2A1 > A0: ðbÞ
Problem 3.10.7 Consider the quartic characteristic equation

�4 þ A3�
3 þ A2�

2 þ A1�þ A0 ¼ 0; ðaÞ
with roots

�1 ¼ �1 þ i�1; �2 ¼ �1 � i�1; �3 ¼ �2 þ i�2; �4 ¼ �2 � i�2: ðbÞ
Show that

A3 ¼ �2ð�1 þ �2Þ;
A2 ¼ �12 þ �22 þ �12 þ �22 þ 4�1�2;

A1 ¼ �2�1ð�22 þ �22Þ � 2�2ð�12 þ �12Þ;
A0 ¼ ð�12 þ �12Þð�22 þ �22Þ: ðcÞ
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Problem 3.10.8 Consider again the quartic characteristic equation

�4 þ A3�
3 þ A2�

2 þ A1�þ A0 ¼ 0: ðaÞ
Show that the Routh–Hurwitz criteria applied to (a) produce the following (neces-
sary and sufficient) asymptotic stability conditions:

ðiÞ A3; A2; A1; A0 > 0 ðpositive coeHcientsÞ; ðbÞ
ðiiÞ A3A2A1 > A1

2 þ A3
2A0: ðcÞ

Problem 3.10.9 Deduce the Routh–Hurwitz asymptotic stability conditions for
the indicated special cases:

ðiÞ m ¼ 2; i:e:; a0�
2 þ a1�þ a2 ¼ 0:

a0; a1; a2 > 0; ðaÞ
ðiiÞ m ¼ 3; i:e:; a0�

3 þ a1�
2 þ a2�þ a3 ¼ 0:

� a0; a1; a2; a3 > 0; ðb1Þ
� a1a2 � a0a3 > 0; ðb2Þ

ðiiiÞ m ¼ 4; i:e:; a0�
4 þ a1�

3 þ a2�
2 þ a3�þ a4 ¼ 0:

� a0; a1 > 0; ðc1Þ
� A � a1a2 � a0a3 > 0; ðc2Þ
� B � a3A� a1

2a4 > 0; ðc3Þ
� a4 > 0: ðc4Þ

Due to eqs. (c3, 4), condition (c2) can be replaced by the simpler a3 > 0; then,
it follows that a2 > 0.

ðivÞ m ¼ 5; i:e:; a0�
5 þ a1�

4 þ a2�
3 þ a3�

2 þ a4�þ a5 ¼ 0:

With the abbreviations A � a1a2 � a0a3, C � a1a4 � a0a5, and D � a3a4 � a2a5,
they are

� a0; a1; A > 0; ðd1Þ
� a3A� a1C > 0; ðd2Þ
� AD �C2 > 0; ðd3Þ
� a5 > 0: ðd4Þ

But, since a1ðAD� C 2Þ � Cða3A� a1C Þ � a5A
2, and due to (d3, 4), condition (d2)

can be replaced by the simpler C > 0; also, we must have a4 > 0 and D > 0.
Notice that, in all cases, we must have satisfaction of the essential conditions:

a0 ¼ jMkl j > 0 and am ¼ jKkl þ Nkl > 0j.

Problem 3.10.10 Consider the two-DOF undamped and gyroscopic system with
perturbation equations

M1€xx1 þ G _xx2 þ K1x1 ¼ 0; M2€xx2 � G _xx1 þ K2x2 ¼ 0; ðaÞ
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where M1;2 ¼ inertia=mass ð> 0Þ, K1;2 ¼ positional noncirculatory coeRcients, and
G ¼ gyroscopicity.

(i) Show that its characteristic equation is

a0�
4 þ a2�

2 þ a4 ¼ 0; ðbÞ
where

a0 �M1M2 ð> 0 ���� always; on physical groundsÞ;
a2 �M1K2 þM2K1 þ G2;

a4 � K1K2: ðcÞ
(ii) Show that the Routh–Hurwitz criteria applied to this problem ðm ¼ 4, and

a1; a3 ¼ 0Þ produce the three asymptotic stability conditions

a0 > 0; a2 > 0; a4 > 0: ðdÞ
(iii) Show that the second of (d) can be satisfied for sufficiently high values of the

‘‘spin term’’ G2, no matter what the signs of K1 and K2 are. [This is a special case of
the famous gyroscopic stabilization theorem of Kelvin and Tait. For a more extensive
treatment, see }8.6.]

REMARK

The presence of light damping ð� _xxÞ changes this stability picture considerably. For
details and technical applications, for example, see Grammel (1950, vol. 1, pp. 261–
262; vol. 2, pp. 230–247).

Problem 3.10.11 Consider a smooth surface S spinning with constant inertial
angular velocity x about a vertical axis OZ (positive upward), where O is a
surface point with horizontal tangential plane to it there. Let the equation of S in
corotating (surface-fixed) coordinates O��xyz, where Ox;Oy are tangent to the
lines of principal curvature of S at O and Oz � OZ, be, to the second order in
x; y,

2z ¼ x2=�1 þ y2=�2; �1;2 ¼ principal radii of curvature of S at O: ðaÞ
In addition, consider a particle P of mass m ¼ 1, moving under gravity on S, in the
neighborhood of O.

(i) Show that, to the second order, the (double) Lagrangean of P is

2L ¼ ð _xxÞ2 þ ð _yyÞ2 þ 2!ðx _yy� y _xxÞ þ ½!2 � ðg=�1Þ�x2 þ ½!2 � ðg=�2Þ�y2
n o

; ðbÞ

and therefore its equations of (relative) motion in the neighborhood of O are

€xx� � _yyþ k1x ¼ 0; €yyþ � _xxþ k2y ¼ 0; ðcÞ
where

� � 2!; k1 � ðg=�1Þ � !2; k2 � ðg=�2Þ � !2: ðdÞ
(ii) The system (c) has the form of eqs. (a) of the preceding problem; with x1 ¼ x,

x2 ¼ y, M1 ¼M2 ¼ 1 ð> 0Þ, G ¼ ��, K1 ¼ k1, K2 ¼ k2. Specialize the asymptotic
stability conditions (d) established there to this problem.
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[See also Whittaker (1937, pp. 207–208); and for the case of small ð� _xx; _yyÞ friction,
see Lamb (1943, pp. 253–254).]

Problem 3.10.12 Using the Routh–Hurwitz criterion, show that in an
asymptotically stable (linear) system all the coefficients of the characteristic
equation (3.10.18), a0; a1; a2; . . . ; am�1; am; have the same sign ð> 0Þ; that is, none
of them vanishes. (This is a necessary, but not sufficient, condition for such
stability!)

HINT

Let the roots of that equation be

�"1; . . . ;�"	 and � �1 � i�1; . . . ;��� � i��;

where * þ � ¼ m (# possible multiple roots being counted individually), and all ", �,
� are real and positive (asymptotically stable system). Then, by well-known theorems
of the theory of equations,

Dð�Þ ¼ a0
�ð�þ "1Þ � � � ð�þ "	Þ	 ð�2 þ 2�1�þ �12 þ �12Þ � � � ð�2 þ 2���þ ��2 þ ��2Þ

� 	
¼ a0ð�m þ � � �Þ ¼ 0: ðaÞ

Example 3.10.2 The Jacobi–Synge Equations. The preceding equations show
that the Lagrangean equations of motion, under say, the holonomic constraints

�Hðt; qÞ ¼ 0 )
X
ð@�H=@qkÞ _qqk þ @�H=@t ¼ 0 ðH ¼ 1; . . . ;mÞ; ðaÞ

have the general formX
Mkrðt; qÞ€qqr ¼ fkðt; q; _qqÞ þ

X
�Hð@�H

�
@qkÞ; ðbÞ

where fkðt; q; _qqÞ is a known function of its arguments. [If the constraints are given in
the general Pfaffian (possibly nonholonomic) form

P
aHk _qqk þ aH ¼ 0, then we

replace the gradients @�H=@qk with the constraint coefficients aHkðt; qÞ.]
It was Jacobi’s idea (Jacobi, 1866, p. 55) to ð. . .Þ:-differentiate the velocity con-

straints (a) once more, thus bring them into their acceleration form (i.e., � €qq terms),
and then combine them, like additional equations of motion, with (b). [We are
indebted to Dr. F. Pfister for pointing this out to us; see Pfister (1995). This idea
was also carried out, independently and slightly differently, by Synge (in 1926) via
general tensor calculus, in his pioneering and influential memoir (Synge, 1926–1927,
pp. 53–55).] This fusion of constraints, in acceleration form, with the equations of
motion in Routh–Voss (multiplier) form, something very popular among applied
dynamicistes today, is carried out below in matrix form.

Indeed, first we ð. . .Þ:-differentiate (a) once more, thus obtainingX
ð@�H=@qkÞ€qqk ¼ gHðt; q; _qqÞ ðH ¼ 1; . . . ;mÞ; ðcÞ
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where gHðt; q; _qqÞ is a known function of its arguments, like fkðt; q; _qqÞ. Next we
introduce some simple matrix notation:

M ¼ ðMkrÞ: nonsingular and positive deEnite; q
T ¼ ðq1; . . . ; qnÞ;

(q ¼ ð@�H=@qkÞ: nonsingular; jT ¼ ð�1; . . . ; �mÞ;
f T ¼ ð f1; . . . ; fnÞ; gT ¼ ðg1; . . . ; gnÞ; where ð. . .ÞT � transpose of ð. . .Þ; ðdÞ

so that, with its help, we can rewrite eqs. (b, c) as

M €qq ¼ f þ(q
T j; (q €qq ¼ g; ðeÞ

respectively; and finally, we combine eqs. (e) into the following matrix form:

M (q
T

(q 0

 !
€qq

�j

 !
¼

f

g

 !
; ðf Þ

where 0 is the m� n zero matrix.
Equations (f) can be justifiably called the Jacobi form of the Routh–Voss equations;

and, at any instant for which q and _qq are known, these constitute a system of nþm
algebraic equations that (since M and (q are nonsingular) can be solved (numeri-
cally) for their linearly appearing nþm unknowns €qq and j. For further details, see
books on computational/multibody dynamics; for example, Nikravesh (1988),
Udwadia and Kalaba (1996); while, for a tensorial derivation, see Papastavridis
(1998; 1999, pp. 324–325) and Synge (1926–1927).

3.11 APPELL’S EQUATIONS: EXPLICIT FORMS

Holonomic Variables

Let us begin with holonomic variables and, for algebraic simplicity, but no loss of
generality, stationary constraints. Then [recalling (2.5.2 ff.)]

v ¼
X

ek _qqk

) a � dv=dt ¼
X

ek€qqk þ
X
ðdek=dtÞ _qqk

¼
X

ek€qqk þ
XX

ð@ek=@qlÞ _qql _qqk ; ð3:11:1Þ

and, accordingly (and using subscript commas for partial q-derivatives), the system
Appellian becomes

S �S ð1=2Þ dm a � a ¼ ð1=2ÞSdm

� X
ek€qqk þ

XX
ek;l _qql _qqk

� �
�

X
er€qqr þ

XX
er;s _qqr _qqs

� ��
; ð3:11:2Þ
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or, with some dummy index changes, and recalling that Mkl �Sdm ek � el and

Gk;lp ¼ Gk;pl �Sdm ek � el;p ¼Sdm ek � ep;l

¼ ð1=2Þð@Mkl=@qp þ @Mkp=@ql � @Mlp=@qkÞ ð3:11:3Þ
(}3.9, }3.10), we finally obtain, to within Appell important terms (i.e., � €qqÞ,

S ¼ ð1=2Þ
XX

Mkl €qqk €qql þ
XXX

Gk;lp €qqk _qql _qqp: ð3:11:4Þ

The above shows how to find the Appellian function for nonstationary constraints:
(i) since €qqnþ1 ¼ €tt ¼ _11 ¼ 0, the first group of terms (double sum) remains unchanged;
while (ii) in the second group of terms (triple sum), k still runs from 1 to n, but l and p
must now run from 1 to nþ 1; hence, we replace them, respectively, with the Greek
subscripts 
 and �. The result is

S ¼ ð1=2Þ
XX

Mkl €qqk €qql þ
XXX

Gk;
� €qqk _qq
 _qq�

¼ ð1=2Þ
XX

Mkl €qqk €qql þ
XXX

Gk;lp €qqk _qql _qqp

þ 2
XX

Gk;l;nþ1 €qqk _qql þ
X

Gk;nþ1;nþ1 €qqk ; ð3:11:5Þ

where Gk;l;nþ1ðGk;nþ1;nþ1Þ is what results from Gk;lp by formally replacing p (p and l )
with nþ 1; that is, qnþ1 ! t [recalling (3.10.8d–f)].

Expressions (3.11.4) and (3.11.5) show clearly how to build S if we know T ; that
is, if we know its inertial coefficients M
�: Mkl, Mk;nþ1 �Mk, Mnþ1;nþ1 �M0 ¼ 2T0;
they also reconfirm the kinematico-inertial identity @S=@€qqk ¼ ð@T=@ _qqkÞ:� @T=@qk.

Nonholonomic Variables

Next, let us repeat the above, but for quasi variables (i.e., S ! S*ðq; !; _!!; tÞ ¼ S*);
first, again, for the stationary case. Substituting

a ¼ a* � dv*=dt ¼
X

ek _!!k þ
X
ðdek=dtÞ!k

(and using here subscript commas for partial �-derivativesÞ
¼
X

ek _!!k þ
XX

ek;l !l !k ; ð3:11:6Þ

into S* � S ð1=2Þdm a* � a*, we obtain, to within Appell important terms (i.e., � _!!)

2S* ¼
XX

Sdm ek � el

� �
_!!k _!!l

þ
XXX

Sdm ek � ðel;p þ ep;lÞ
� �

_!!k!l!p ;

or, since [recalling (3.10.9f)]

Sdm ek � el;p þ ep;l
� � ¼ 2G*k;lp �

X
� r

lkM*pr þ � r
pkM*lr

� �
¼ 2G*k;lp þ

X
� r

kl M*pr þ � r
kpM*lr

� �
;

finally,

S* ¼ ð1=2Þ
XX

M*kl _!!k _!!l þ
XXX

Lk;lp _!!k !l !p ; ð3:11:7Þ
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where [recalling (3.10.9l)]

Lk;lp � G*k;lp þ
X

� r
klM*pr : ð3:11:7aÞ

from the above we easily see that:

(i) To find S* we need not just the M*kl (like T *), but also the � r
kl (like Ik); and

[recall (3.10.9k)]

ðiiÞ @S*=@ _!!k ¼
X

M*kl _!!l þ
XX

Lk;lp !l !p ¼ Ik : ð3:11:7bÞ

Let the reader extend the above, eqs. (3.11.6–7a), to the nonstationary case.

REMARKS

(i) In general, both kinetic energy and Appellian are more simply expressed in
nonholonomic rather than holonomic variables; that is, for the same problem, T *
and S* are simpler in form than T and S, respectively. As a result, for holonomic
systems in holonomic variables, Appell’s equations are trivial; that is, not worth the
effort. But for holonomic systems in nonholonomic variables, they may offer definite
advantages: for example, the Eulerian rigid-body equations (Gibbs, 1879; see exam-
ple below, and }3.13 ff.); then, the resulting equations of motion are of the first order
in the !’s.

(ii) For nonholonomic systems in nonholonomic variables, the equations of Hamel
and Appell, although theoretically equivalent, have the following differences:

(a) In the Hamel case, even if no reactions are sought, we still need the unconstrained

(relaxed) kinetic energy T *; and the coefficients � r
II 0 , �

r
I ;nþ1.

(b) In the Appell case, if no reactions are sought, we may work with the constrained
Appellian S*o right from the start, and thus save a considerable amount of labor;

otherwise we must calculate the unconstrained Appellian S*; and, in all cases, the

Appellian can be calculated only to within Appell-important (i.e., acceleration-con-
taining) terms.

Also, Appell’s equations are simpler looking than Hamel’s, and form-invariant in both
holonomic and nonholonomic variables. But calculating the Appellian requires more
labor than calculating the kinetic energy. In both cases, as in other areas of science,
with constant practice we learn special short cuts, or use ready-made expressions for
particular systems.

Example 3.11.1 Let us Find the Appellian of a Rigid Body Moving about a Fixed
Point O. Using body-fixed principal inertia axes O��xyz � O��123, we find

ðM*klÞ ¼ diagonal ðI1; I2; I3Þ ¼ constant components; ðaÞ
and therefore all G*’s vanish. Also, we recall from ex. 2.13.9 that for such axes
� r

kl ¼ "rkl � �1, according as r; k; l are an even or odd permutation of 1, 2, 3; and
zero in all other cases. Accordingly, the expression (3.11.7), with (3.11.7a), and
x ¼ ð!1; !2; !3Þ ¼ inertial angular velocity of body, specializes to

S* ¼ ð1=2Þ I1ð _!!1Þ2 þ I2ð _!!2Þ2 þ I3ð _!!3Þ2
h i

þ ðI3 � I2Þ _!!1 !2 !3 þ ðI1 � I3Þ _!!2 !3 !1 þ ðI2 � I1Þ _!!3 !1 !2; ðbÞ
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and from this we immediately obtain the well-known (body-fixed + principal axes)
Eulerian expressions for the body inertia (}1.17)

@S*=@ _!!1 ¼ I1 _!!1 þ ðI3 � I2Þ!2 !3; etc:; cyclically:
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3.12 EQUATIONS OF MOTION:

INTEGRATION AND CONSERVATION THEOREMS

Integrals of the Equations of Motion

or (recalling §3.10), with some easily understood ad hoc notations,

following transformation of variables q; _qq! ðx1; . . . ; x2nÞ � x:

q1 ¼ x1; . . . ; qn ¼ xn; _qq1 ¼ xnþ1; . . . ; _qqn ¼ x2n:

In terms of them, eqs. (3.12.1, 2), or, equivalently [assuming nonsingular Hessian
j@2L=@ _qqk @ _qql j],

EkðLÞ � ð@L=@ _qqkÞ:� @L=@qk ¼ 0 ðk ¼ 1; . . . ; nÞ;
or, in extenso, since L ¼ Lðq; _qq; tÞ (and with l ¼ 1; . . . ; n)

holonomic system S with Lagrangean equations of motion

Next, and for the purposes of our discussion below, it is helpful to introduce the

This is a system of n second-order equations in the qs, linear in the
lently, a system of total-order 2n (= sum of orders of highest derivatives of dependent
variables). As the theory of differential equations teaches, its general analytical solu-
tion (if and when known) will contain (at most) 2n arbitrary constants of integration
c ≡ (c1, . . . , c2n):

pk = ∂L/∂q̇k ≡ pk(q, q̇, t)

rewritten as the 2n first-order equations

_xx1 ¼ xnþ1 � X1ðx; tÞ; . . . ; _xxn ¼ x2n � Xnðx; tÞ;
_xxnþ1 ¼ Q1ðx; tÞ � Xnþ1ðx; tÞ; . . . ; _xx2n ¼ Qnðx; tÞ � X2nðx; tÞ;

(and, generally, any given differential system of total order 2n) reduce to the 2
system of equations

@T=@ _qqk ¼ @L=@ _qqk � pk ¼ pkðq; _qq; tÞ;

or, compactly,

dx	=dt ¼ X	ðx; tÞ ð	 ¼ 1; . . . ; 2nÞ:

Let us consider, without much loss in generality and understanding, a, say, potential and

∑
akl(q, t)q̈ l +

∑∑
bklm(q, t)q̇lq̇m +

∑
ckl(q, t)q̇l + dk(q, q̇, t) = 0

∑
(∂2L/∂q̇k∂q̇l)q̈l +

∑
(∂2L/∂q̇k∂ql)q̇l + ∂2L/∂q̇k∂t− ∂L/∂qk = 0

qk = qk(t, c) = general solution of (3.12.1-2a).

q̈l = · · · = Ql(q, q̇, t) (“forces”, known functions of their arguments — normal

[Alternatively, in terms of the Lagrangean momenta, conjugate to the qk,

(assuming ∂V/∂q̇k = 0), the n second-order Lagrangean equations (3.12.1-2a) can be



F	ðx; dx=dt; tÞ ¼ 0 ½implicit form�; ð3:12:5aÞ

dx1=X1 ¼ dx2=X2 ¼ � � � ¼ dx2n=X2n ¼ dt; ð3:12:5cÞ

THEOREM OF INITIAL CONDITIONS (UNIQUENESS OF SOLUTIONS,

LIPSCHITZ CONDITIONS)

If xðtinitial � toÞ ¼ given, and if, at every point of 	 , all X	 as well as @X	=@x� are
continuous, then the system (3.12.5a, b, c) has a unique solution in 	 . [These condi-
tions are restrictive, so, in practice, we frequently find cases where they do not hold.
If the existence conditions hold, but not those of uniqueness, several motions are
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and

ṗk = ∂L/∂qk = ṗk(q, q̇, t) = Pk(q, p, t), (3.12.4e)

where, in the last step, we inverted (3.12.4d) to obtain q̇k = q̇k(q, p, t) (see §8.2 on
Hamiltonian/canonical equations of motion). Such first-order formulations are quite use-
ful in both theoretical and numerical situations.]

Some Mathematical Background

[See also, e.g. Destouches (1948, ch. III: pp. 106–121; extensive classical discussion) and

Consider a (2n)th ≡ (∗)th order differential system, in any of the following equivalent
forms:

dx∗/dt = X∗(x•, t) [explicit/typical form (∗, • = 1, . . . , 2n)], (3.12.4c) = (3.12.5b)

where the F∗, X∗ are known functions of their arguments. A solution of (3.12.5a, b, c), in
an open time interval of interest, τ ≡ (t0, t1), is the set of 2n (continuously differentiable)
functions x∗(t) that satisfies them. Next, we recall from the theory of ordinary differential
equations, the following fundamental

The first step in the integration of the system (3.12.5a, b, c) is the search for integrals.

DEFINITION

possible (indeterminate motion). For example, the nonlinear system [plus initial conditions
(IC)] q̈ = 6q1/3, q(0), q̇(0) = 0 (e.g. rectilinear motion of a particle), is analytic every-
where except in the neighborhood of q = 0 (a singular point) — the uniqueness conditions

uniquely. If not even the existence conditions hold, worse things may happen.]
In mechanics terms, the theorem states that: If the n positions q and n velocities

dq/dt are specified/prescribed at an “initial” instant to, and if the n forces Q satisfy the
above Lipschitz conditions in τ , the subsequent system motion during that time interval is
determined uniquely.

We call first integral of the system (3.12.5a, b, c) any function f (x, t) that, for every one
of its solutions x∗ = x∗(t), remains constant, for arbitrary t: f (x, t) = constant ≡ c, where
the constant may change when the particular solution (i.e. motion) changes; that is, a first
integral is, in general, a function depending on time both explicitly and implicitly, through
the x’s, that stays constant on account of the equations of motion, independently of ini-

value depends (or, is determined by) the initial conditions, that is, on the particular sys-

are not satisfied there. The problem yields the following three (3) motions: q(t) = 0
(equilibrium), q(t) = −t3 and q(t) = +t3 — the IC do not determine the ultimate motion

tial conditions; i.e., it is an integral that depends on only one constant, a constant whose

tem solution/motion and stays the same throughout it. [A system integral that depends on
p(� 2n) distinct such constants leads to p first integrals — see (3.12.5f) ff.]

Nielsen (1935, pp. 216–232; outstanding elementary treatment).]
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In mechanics terms, a numerical/scalar function f (q, q̇, t) is called first integral of (the
equations of) motion of a system S, e.g. eqs (3.12.1, 2, 2a, 4a), if and only if it remains
constant for every solution of those equations:

f (q, q̇, t) = f [q(t), q̇(t), t] = constant during S’s motion

(depends on initial conditions of that particular motion), (3.12.5d)

⇒ df/dt =
∑

(∂f/∂x∗)(dx∗/dt) + ∂f/∂t =
∑

(∂f/∂x∗)X∗ + ∂f/∂t = 0,

identically, for any q(t), q̇(t), and t satisfying S’s equations of motion.
(3.12.5e)

Hence, every such integral lowers the degree of the differential system by 1; and therein
lies their principal usefulness to mechanics. [Also, since first integrals are defined relative
to the equations of motion, possible constraint equations may also be viewed as first inte-
grals of them (e.g. §6.1)]. In particular, we may show the following

THEOREM

Under broad analytical conditions, we can replace one, or more, of S’s equations of motion,
say of (3.12.4a), with an equal number of first integrals of them, i.e. with (3.12.5d, 6a)-like
equations (e.g. an energy integral). [However, for certain values of the initial conditions,
such a replacement may introduce “parasitic” (i.e. extraneous to our problem) solutions.]

Classification of first integrals: (i) First integrals explicitly independent of time; that
is, ∂f/∂t = 0 ⇒ f (x) = f (q, dq/dt) = constant. (ii) First integrals depending expli-
citly on time; that is, f (x, t) = f (q, dq/dt, t) = constant. [In certain areas of physics
(e.g., statistical mechanics), other first integral classifications are important.]

Distinct (or Independent) first integrals. If f = a (constant) is a first integral, so is
F (f ) = b (another constant), where F (f ) is an arbitrary function of f. More generally, let
f1 = a1, . . . , fp = ap be p(� 2n) distinct first integrals, that is, none of them is expressible

Now, it is shown in the theory of ordinary differential equations that the complete, or
general, analytical solution of the (2n)th order system (3.12.4a, c–d, 5a–c) contains, or
depends on, at most 2n independent, or distinct, constants of integration; and, conversely,
a 2n-order system is considered completely integrated (i.e. its motion completely known)
if 2n distinct first integrals of it are known (non-distinct integrals do not lower, further, the
system order, hence they are of no interest to mechanics). One way of expressing such a
solution is in the form of 2n distinct first integrals:

f
∗
(x, t) = c∗ = arbitrary constants (of integration) (∗ = 1, . . . 2n). (3.12.5g)

A second way is obtained, in principle by solving (3.12.5g) for the x:

x∗ = φ∗(t; c1, . . . , c2n) ≡ φ∗(t; c), (3.12.5h)

or, simply,

x∗ = x∗(t; c1, . . . , c2n) ≡ x∗(t; c). (3.12.5i)

= φ

then F (f1, . . . , fp) = b is also an integral (⇒ Ḟ =
∑

(∂F/∂f
α
) ḟ

α
= 0, α = 1, . . . , p),

though not a distinct one.

The constants are usually evaluated by applying the initial conditions to (3.12.5g) or
(3.12.5h, i). Indeed, applying them to the latter yields x∗o = φ∗(to; c1, . . . , c2n), from

as a(-n algebraic) function of the other p− 1, i.e. as

fi = φ( f1, . . . , fi−1, fi+1, . . . , fp), (3.12.5f)

which, solving for the c∗, we get

c∗ = c∗(to; x1o, . . . , x2n,o), (3.12.5j)
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Finally, evaluating this for t = to, or swapping the roles of t, to and x, xo, readily
leads to

Back to Mechanics

In terms of the variables of Lagrangean mechanics q and q̇, eq’s (3.12.5g) translate to the
2n independent first integrals of the equations of motion, or simply constants of the motion

not always equal to the sum of the system’s kinetic and potential energies (≡ total energy
of system)] is one such (first) integral (details in §3.9). Similarly, (3.12.5h, i) translate to

c∗ = f
∗
(q, q̇, t) (∗ = 1, . . . , 2n). (3.12.6d)

Each c∗ is a constant of the motion [and, therefore, along the latter each f
∗
(q, q̇, t) is

conserved] but its value depends on the particular qk ↔ t; that is, on the particular
motion. Further, due to (3.12.6c, d), an integral of motion F = F (q, q̇, t) = constant
becomes

F(q, q̇, t) = F[q(t, c), q̇(t, c), t] ≡ F ′(t, c). (3.12.6e)

But 0 = Ḟ = dF ′/dt = ∂F/∂t, and therefore F ′ does not depend explicitly on time;
that is, finally,

F(q, q̇, t) = F ′(c) = function of the independent c’s; (3.12.6f)

and every other constant of the motion depends on them.

Example: The second order differential equation/system q̈ + q = 0 (linear oscillator) has the two
distinct first integrals f1(q, q̇) = q2 + q̇2 = c1, f2(q, q̇, t) = tan−1(q/q̇) − t = c2, which, when

solved for q, q̇ yield q(t; c1, c2) = c1/2
1

sin(t + c2), q̇(t; c1, c2) = c1/2
1

cos(t+ c2)[= ∂q/∂t]; the

and, inserting these expressions back into (3.12.5h), we obtain the particular solution

x∗ = φ∗(t; to, x1o, . . . , x2n,o) ≡ φ∗(t; to, xo). (3.12.5k)

x∗o = φ∗(to, t; x1, . . . , x2n) ≡ φ∗(to, t; x) [solution of (3.12.5k) for the xo]; (3.12.5l)

that is, the (3.12.5k) are 2n first integrals, whose values are the initial values of the
dependent variables.

(each one depending on only one constant):

f
∗
(q, q̇, t) = c∗ (∗ = 1, . . . , 2n), (3.12.6a)

[or, in Hamiltonian variables(ch. 8), ψ∗(q, p, t) = c∗] (3.12.6b)

which is a system of total order 2n.
The energy integral, whenever it exists [usually, not an explicit function of time, and

the customary mechanics form (motion):

qk = qk(t; c1, . . . , c2n) ≡ qk(t; c), q̇k = q̇k(t; c1, . . . , c2n) ≡ q̇k(t; c). (3.12.6c)

[compatible with q̇k = ∂qk(t; c)/∂t = · · · ]

Each choice of constants c constitutes a different qk ↔ t relation and, therefore, a
particular solution/motion. And, conversely, inverting (3.12.6c) [assuming that their
Jacobian |∂(q, q̇)/∂c| �= 0], we obtain the earlier 2n distinct integrals

c1,2 are evaluated from the initial conditions q(0) ≡ q
o
= c1/2

1
sin c2, q̇(0) ≡ q̇

o
= c1/2

1
cos c2

(see below).



qk ¼ qkðt; qo; _qqoÞ; _qqk ¼ _qqkðt; qo; _qqoÞ; ð3:12:7bÞ
a fact that shows that the number of arbitrarily prescribable conditions (data) at our
disposal is 2n.

In sum:

These fundamental results allow us to express, in principle, the solution of any
dynamical problem as the following time power series around t ¼ 0:

qkðtÞ ¼ qkð0Þ þ _qqkð0Þtþ ð1=2Þ€qqkð0Þt2 þ � � �
� qk;o þ _qqk;otþ ð1=2Þ€qqk;ot2 þ � � � : ð3:12:8Þ

To calculate €qqkð0Þ � €qqk;o we evaluate (3.12.1, 2) at t ¼ 0, use the given qk;o and _qqk;o,
and then solve it for €qqk;o. To calculate _€qqkð0Þ � _€qqk;o we ð. . .Þ:-differentiate (3.12.1, 2),
evaluate it at t ¼ 0, and then solve for _€qqk;o while using qk;o, _qqk;o, €qqk;o in it.
Continuing this well-known process, we can determine all ð. . .Þ:-derivatives of the
qk at t ¼ 0 in terms of the 2n qo, _qqo. It can be shown that, for a large number of
useful mechanics problems, the conditions of convergence of the series (3.12.8) are
satisfied, for some time after t ¼ 0, and therefore that representation is meaningful.
[Also, such series are quite useful in problems of initial motions; see, e.g., Whittaker,
1937, pp. 45–46.]

Determinism

(advanced, especially in connection with problems of celestial mechanics, by Laplace
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The preceding constitute a quantitative version of the doctrine of classical determinism

Usually, we apply (3.12.6d) for some “initial” time to, say to = 0, and thus express the
c’s for all time in terms of the initial values of the qs and q̇s (or, in terms of the initial state

• The determination of the most general motion of an n DOF (holonomic and poten-
tial) mechanical system is mathematically equivalent to the determination of the 2n
distinct/independent integrals, or constants of motion, of its n second-order Lagrangean
equations. [Clearly, the more independent integrals we know—up to the (very rarely
achievable) theoretical maximum/full set 2n—the better we understand/characterize the
system’s motion; hence the keen interest in finding the greatest possible number of such
integrals. However, as Landau and Lifshitz (1960, p. 13) point out, not all such integrals are
equally important to mechanics. The most significant ones derive from “the fundamental
homogeneity and isotropy of space and time”; and the physical quantities represented by
them are said to be conserved. Further, such integrals of motion are additive; that is, for
systems with negligible mutual interaction of their parts (see closed/open systems, below),
their values for the whole system equal the sum of their values for its individual parts; and
therein lies their importance to mechanics; see ex. 3.12.3, below.]

• An initial state of a system — that is, a particular choice of the 2n q
o

s (positions) and q̇os
(velocities) — determines a particular motion; and every constant of motion is determined
by that initial state, via (3.12.7a, b). [For a detailed discussion of the geometrical inter-
pretation of the above in generalized spaces, and more, see, for example, Prange (1935,
pp. 547—564).]

of the system) qk(0) = qk,o and q̇k(0) = q̇k,o; i.e., compactly

c∗ = c∗(qo, q̇o) [= f
∗
(qo, q̇o, 0)]. (3.12.7a)

Then, (3.12.6c) can be rewritten, respectively, à la (3.12.5k), as



et al.). According to this doctrine, if we knew the present state of the universe—that
is, the positions and velocities of all its particles, and the forces acting on them,
and were able to solve its equations of motion (and exclude internal collisions)—
then, we would be able to predict its entire future (and past!) uniquely. However, such
strict causality ¼ determinism is illusory for the following theoretical and practi-
cal reasons:

(i) In general, the equations of motion cannot be solved via finite combinations
of the known elementary functions (see elementary vs. advanced problems below),
and the errors of approximate solutions, due either to truncations of series or to
iterations, do not remain small (bounded) for long time intervals.

(ii) The initial state of a system can never be known with infinite accuracy/pre-
cision. Therefore, the long-term predictions of systems that are sensitive to such initial
conditions, due to the cumulative effect of the unavoidable errors in these latter, will
be quite erroneous; for example, chaotic behavior of nonlinear (deterministic)
systems. As McCauley puts it: ‘‘Because of errors that were made by the computer’s
roundoff/truncation algorithm, he (E. Lorenz, 1963) discovered what is now called
sensitivity with respect to small changes in initial conditions: big changes in trajectory
patterns occurred at later times owing to shifts in the last digits of the starting
conditions’’ (1993, p. 3, last emphasis added). [The literature on chaotic, or
stochastic, motion/dynamics is enormous and growing . . . regularly; we recommend
Lichtenberg and Lieberman (1992), Tabor (1989).]

(iii) Clearly, our classical (i.e., nonrelativistic, nonquantum, nonprobabilistic,
etc.) mathematical model neglects certain factors, or causes, that may prove quite
significant in the long (and, sometimes, even short) run; for example, very high
speeds and electromagnetic fields (relativity) and/or very small spatial regions (atomic
phenomena: Heisenberg’s indeterminacy principle, and Born’s probabilistic/statisti-
cal interpretation of quantum mechanics).

Hence, since, even within classical mechanics, long-term predictions are practi-
cally unreliable, and depending on the system at hand and the accuracy sought, we
must update our exact or approximate solutions at the end of an(y) appropriate time
interval, using data obtained experimentally at that time.

Elementary versus Advanced Problems

On the basis of the principles used for their integration, we divide mechanical
problems into two kinds: elementary and advanced; not a clear-cut and/or uniform
terminology, by any means.

� Advanced are those problems that cannot be solved by quadratures.

via quadratures. This ability to predict properties of the solution(s) of a problem by
examining its Lagrangean—that is, without acutally solving its equations of
motion—is one of the key advantages of the Lagrangean (and Hamiltonian) method
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Unfortunately, as one might have anticipated, most mechanics problems are not
elementary; and, whenever they are, it is always because their Lagrangeans possess some
special (symmetry) properties. Below we summarize some of these special properties that
are frequently associated with the elementary problems and account for their solvability

• Elementary are those problems soluble completely by quadratures; namely, those whose
solutions are expressible either in terms of known elementary functions (solution in “closed
form”), or as indefinite integrals of such functions.



Closed Systems

We begin with an isolated, or closed, system; that is, a finite system S consisting of
a number of rigid bodies and/or particles that interact only with each other; and
as such, one without time-varying parameters; namely, a system uninfluenced by
sources outside itself. If S is also conservative, or reversible, and can be described
by a Lagrangean, then the latter must have the general (inertial) form

L � T � V ¼ ð1=2ÞSdm v � v� VðrÞ; ð3:12:9Þ

where r=v ¼ inertial position/velocity of a generic particle of S. The ‘‘force function’’
�VðrÞ represents the contribution of the mutual interaction (forces) to the
Lagrangean; if the bodies/particles of S are noninteracting, then V ¼ 0.

That V depends only on the r’s means that a change in the position of any of the
particles of S affects instantaneously all its other particles; otherwise, if interactions
spread with finite velocity, then, due to the law of velocity addition among any two
Galilean frames (¼ inertial frames in relative accelerationless translation), that velo-
city of propagation would be different in any two such frames. As a result, the
equations of motion of these interacting particles in two inertial frames would be
different; in clear violation of the classical principle of Galilean relativity, which
requires form invariance of the equations of motion among inertial frames [recalling
}1.4–1.6; see also Landau and Lifshitz (1960, p. 8)].

Now, the equations of motion of a typical particle of S are

ð@L=@vÞ:� @L=@r ¼ 0: dmðdv=dtÞ ¼ �@V=@r: ð3:12:9aÞ
From the above, and since dv=dt � d2r=dt2 � a, both L and the equations of motion
remain unchanged (invariant) under a t! �t transformation; and, hence, also
under dt! �dt. This expresses the reversibility of motion of such systems, and
the isotropy of time (i.e., identical properties in both future and past ‘‘directions’’),
in addition to its homogeneity.

In terms of (inertial) Lagrangean coordinates q ¼ ðq1; . . . ; qnÞ, equations (3.12.9)
and (3.12.9a) assume, respectively, the system forms

L � T � V ¼
XX

ð1=2ÞMklðqÞ _qqk _qql � VðqÞ; ð@L=@ _qqkÞ:� @L=@qk ¼ 0:

ð3:12:9bÞ

Open Systems

Next, let us consider a system S1 that is not closed, and interacts with another system
S2 that has a given motion; that is, it is unaffected by its interaction with S1. Then we
say that S1 is open, or that it moves in the given external field of S2. If we know the
Lagrangean of the combined system S1 þ S2 � S; L, then we can find the
Lagrangean of S1, L1, by replacing in L the coordinates and velocities of S2, qð2Þ
and _qqð2Þ by their given functions of time. In particular, if S is closed, then, since in
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over that of Newton–Euler. [For a general treatment of the relation between Lagrangean
properties and conservation theorems, see, for example, §8.13 and McCauley (1997,
pp. 63–72), Saletan and Cromer (1971, chap. 3); while, for a discussion of integrability
in Hamiltonian/canonical systems see §8.10, §8.14.]



this case [with qð1Þ and _qqð1Þ ¼ coordinates and velocities of S1, and corresponding
notations for its kinetic and potential energies]

L ¼ Tð1Þ qð1Þ; _qqð1Þ
� 	þ Tð2Þ qð2Þ; _qqð2Þ

� 	� V qð1Þ; qð2Þ
� 	

; ð3:12:10aÞ

from which (recalling ex. 3.5.13)

Tð2Þ qð2ÞðtÞ; _qqð2ÞðtÞ
� 	 ¼ given function of time, and hence omittable from L;

ð3:12:10bÞ
we finally obtain

L1 ¼ Tð1Þ qð1Þ; _qqð1Þ
� 	� V qð1Þ; qð2ÞðtÞ

� 	
� Tð1Þ qð1Þ; _qqð1Þ

� 	� V qð1Þ; t
� 	 ) @L1=@t ¼ �@V=@t 6¼ 0: ð3:12:10cÞ

Integrals of Closed Systems

Here, we prove that a closed mechanical system with n positional coordinates has
2n� 1 independent integrals. Indeed, since [as the second of eqs. (3.12.9b) shows]
the equations of motion for such a system do not contain the time explicitly, the time
origin is completely arbitrary and we can take as one of the 2n arbitrary constants of
integration of the general solution qkðt; c1; . . . ; cnÞ the additive time constant 	 .
Eliminating tþ 	 from the 2n functions qk ¼ qkðtþ 	 ; c1; . . . ; c2n�1Þ and _qqk ¼
_qqkðtþ 	 ; c1; . . . ; c2n�1Þ, we can express the remaining 2n� 1 constants c1; . . . ; c2n�1
in terms of the 2n q’s and _qq’s:

cl ¼ clðq; _qqÞ; ðl ¼ 1; . . . ; n� 1Þ; ð3:12:11Þ
that is, our system has 2n� 1 independent integrals, Q.E.D.

Ignorable Coordinates and Momentum Conservation

We have seen the power theorem and Jacobi–Painlevé generalized energy integral
(}3.9). Let us now see some generalized, or Lagrangean, momentum integrals. We
consider, again, a system with Lagrangean L ¼ Lðt; q; _qqÞ and equations of motion

ð@L=@ _qqkÞ:� @L=@qk ¼ 0 ðk ¼ 1; . . . ; nÞ: ð3:12:12aÞ
If some of the system coordinates, say q1; . . . ; qM ðM � nÞ, do not appear explicitly
in L (although the corresponding velocities _qq1; . . . ; _qqM do) — that is, if

L ¼ Lðt; qMþ1; . . . ; qn; _qq1; . . . ; _qqnÞ; ð3:12:12bÞ
then, as (3.12.12a) immediately show, the corresponding (holonomic) Lagrangean
momenta pi � @L=@ _qqi ði ¼ 1; . . . ;MÞ are conserved:

ð@L=@ _qqiÞ: ¼ 0 ) @L=@ _qqi � pi ¼ constant � ci ; ð3:12:12cÞ
where the constants of integration ci are to be evaluated from the initial conditions.
Coordinates like q1; . . . ; qM are called ignorable, or cyclic (after Thomson and Tait,

L, and hence satisfy eqs. (3.12.12a) but with k ¼M þ 1; . . . ; n, are called palpable.
The presence (or, rather, absence!) of ignorable coordinates is one of the most
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Helmholtz, Routh et al.—see §8.3, 4); whereas the rest of the q’s that do appear in



Example 3.12.1 Consider a system with Lagrangean

L ¼ ðm=2Þ ð _rrÞ2 þ r2ð _��Þ2
h i

� VðrÞ; ðaÞ

[particle of mass m in plane motion ðr; � ¼ polar coordinates) in potential field
V ¼ VðrÞ]. Here, clearly, @L=@� ¼ 0; that is, � is ignorable. Therefore, the system
possesses the cyclic integral

p� � @L=@ _�� ¼ mr2 _�� ¼ constant; ðbÞ
which expresses the conservation of the component of the angular momentum of the
particle, about the origin, along an axis perpendicular to the plane of the motion.

Example 3.12.2 First-Order Form of the Routh–Voss Equations. Let us find the
first-order forms of a system subject to the m Pfaffian constraints

!D �
X

aDk _qqk þ aD ¼ 0 ½k ¼ 1; . . . ; n; D ¼ 1; . . . ;m ð5nÞ�; ðaÞ

and, hence, having the Routh–Voss equations of motion

EkðLÞ ¼ Qk þ
X

�DaDk Qk ¼ nonpotential part of ð. . .Þ �qk in � 0W
� 	

: ðbÞ

With the variable change (3.12.4)

q1 ¼ x1; . . . ; qn ¼ xn; _qq1 ¼ xnþ1 ¼ _xx1; . . . ; _qqn ¼ x2n ¼ _xxn ; ðcÞ
L becomes Lðt; x1; . . . ; xn;xnþ1; . . . ;x2nÞ and therefore the m first-order equations
(a) and n second-order equations (b) in the q’s transform, respectively, to the m
finite equations X

aDkxnþk þ aD ¼ 0; ðdÞ
and the n first-order equations

ð@L=@xnþkÞ:� @L=@xk ¼ Qk þ
X

�DaDk ; ðeÞ

since @L=@xnþk ¼ linear in the xnþk ðk ¼ 1; . . . ; nÞ. Equations (d, e) and the second
half of (c) constitute a system of 2nþm first-order equations for the 2n x’s and m
�D’s.

Example 3.12.3 Integrals of a Closed System. Let us find the integrals of a
closed system with (inertial) Lagrangean

L ¼ ð1=2ÞSdm v � v� VðrÞ ¼ Tðq; _qqÞ � VðqÞ; ðaÞ

or, of a closed system in a constant (time-independent) external field.
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common reasons for the solubility of problems by quadratures. We show in §8.3, 4
how to utilize the M “cyclic integrals” (3.12.12c) to reduce the number of Lagrangean
equations (3.12.12a) by the number of ignorable coordinates present in L (method of
“ignoration of coordinates” of Routh and Helmholtz).



(i) Energy integral. Here, @L=@t ¼ 0, Qk;nonpotential ¼ 0, and aD ¼ 0. Hence, the
holonomic power equation (3.9.11d ff.) immediately yields

h �
X
ð@L=@ _qqkÞ _qqk � L ¼ ð2T Þ � ðT � V Þ ¼ T ðq; _qqÞ þ VðqÞ � E ¼ constant: ðbÞ

The condition @L=@t ¼ 0 is a consequence of the homogeneity of time for closed
systems. The energy integral (b) is additive: the energy of a closed system consisting
of several closed subsystems with negligible mutual interaction equals the sum of the
individual subenergies of these subsystems. This also results from the linearity of
h ¼ E in L in (b).

[Whittaker (in 1900) has shown how to use the energy equation (b) to reduce
a closed n-DOF system into another with ðn� 1Þ DOF (and a quadrature); see, for
example, Whittaker (1937, pp. 64–67); also Butenin (1971, pp. 103–110), MacMillan
(1936, pp. 320–322).]

Since, here, L ¼ Lðr; vÞ, the condition DL ¼ 0, under such changes, translates to

DL ¼S ð@L=@rÞ �Dr ¼ Dr �S ð@L=@rÞ ¼ 0 ) @L=@r ¼ 0: ðcÞ

As a result, Lagrange’s equations reduce to

Sd=dtð@L=@vÞ ¼ d=dt S @L=@v
� �

¼ 0; ðdÞ

or

p �S @L=@v ¼Sdm v �Sdp : system linear momentum ¼ constant: ðeÞ

Clearly, p is additive even for nonnegligible interactions of the constituent sub-
systems.

Next, the linear momentum p/(total) energy E/Lagrangean L of a system in
an inertial frame F are related to those in another frame F 0, translating relative to
F with velocity vo ¼ dro=dt (fig. 3.29), p 0=E 0=L 0, respectively, as follows: since
v ¼ vo þ v 0 ðv 0 ¼ particle velocities relative to F 0), we find, successively,

ðaÞ p ¼Sdm v ¼Sdmðvo þ v 0Þ ¼ vo S dm
� �

þSdm v 0 � p 0 þ m vo : ðf Þ

If p 0 ¼ 0 (i.e., if the system is at rest relative to F 0), then (f) yields the velocity of the
system as a whole relative to F , or velocity of its mass center G relative to F :

vo ¼ p=m ¼Sdm v

�
Sdm

)Sdm r� pt ¼ m rGo ) rG ¼ rGo þ ðp=mÞt; ðgÞ
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(ii) Linear momentum integral. The homogeneity of space for such systems
leads to the requirement that the first-order change of their Lagrangeans under
r→ r+ Δ r, where Δ r = arbitrary elementary rigid translation, i.e. common to all system
particles, and v→ v (i.e., no velocity change), should vanish.



that is, the center of mass of a closed system moves uniformly in a straight line.

ðbÞ E � ð1=2ÞSdm v � vþ V

¼ ð1=2ÞSdm ðvo þ v 0Þ � ðvo þ v 0Þ� 	þ V

¼ E 0 þ p 0 � vo þ ð1=2Þmvo
2; ðh1Þ

where

E 0 � ð1=2ÞSdm v 0 � v 0 þ V : ðh2Þ

If p 0 ¼ 0, as earlier (i.e., if G is at rest in F 0), then (h1) and (h2) reduce, respectively,
to

E ¼ ð1=2Þmvo
2 þ Einternal; ðh3Þ

and

E 0 ¼ Einternal ¼ internal energy of system

¼ kinetic energy of motion of system particles relative to mass center,

plus potential energy of their mutual interactions

¼ energy of system when at rest as a whole. ðh4Þ

ðcÞ L � ð1=2ÞSdm v � v� V

¼ ð1=2ÞSdm ðvo þ v 0Þ � ðvo þ v 0Þ� 	� V

¼ L 0 þ p 0 � vo þ ð1=2Þmvo
2; ði1Þ

where

L 0 � T 0 � V ¼ ð1=2ÞSdm v 0 � v 0 � V : ði2Þ
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Figure 3.29 Frames F and F 0 in mutual translation.



AH �
ð
L dt ¼ � � � ¼ AH 0 þm vo � rG 0 þ ð1=2Þmvo

2t; ði3Þ

where

AH 0 �
ð
L 0 dt; rG 0 ¼ position vector of G in F 0: ði4Þ

(iii) Angular momentum integral. The isotropy of space for such systems leads to
the requirement that the first-order change of their Lagrangeans under

Since, by Lagrange’s equations @L=@r ¼ d=dtð@L=@vÞ ¼ d=dtðdpÞ, the condition
DL ¼ 0 under ( j1, 2), yields, successively,

HO �S r� dp �S r� ðdm vÞ :
(inertial) absolute angular momentum (or moment of momentum) about an

F-fixed point O

¼ constant: ð j4Þ
Clearly, HO, like p, is additive even for nonnegligible interactions.

Thus, a closed system has ten additive (scalar) integrals:

� Homogeneity of time: conservation of energy (one),

� Homogeneity of space : conservation of linear momentum (three),
� Center of mass moves with constant velocity (three), and

� Isotropy of space : conservation of angular momentum (three).

Finally, let us relate the absolute angular momenta of the system in the two earlier
frames FðHOÞ and F 0ðHO 0 Þ. With ro ¼ position of origin O 0 of F 0 relative to
origin O of F , and r 0 ¼ position of typical system particle relative to O 0, we have

HO �S r� ðdm vÞ ¼S ðro þ r 0Þ � dmðvo þ v 0Þ� 	
¼ ro � ðmvoÞ þ ro � ðmv 0GÞ þmr 0G � vo þHO 0 ; ð j5Þ
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r→ r+ Δ r = r+ Δ θ × r, v→ v+ Δ v = v+ Δ θ × v, (j1, 2)

from which, since Δ θ is arbitrary, we obtain the principle of conservation of angular
momentum

where Δ θ = arbitrary elementary rigid rotation (i.e. common to all system particles),
should vanish.

Δ L =S [(∂L/∂r) ·Δ r+ (∂L/∂v) ·Δ v]

=S [(dp)· · (Δ θ × r) + dp · (Δ θ × v)]

= Δ θ ·S [r× (dp)· + v× dp]

= Δ θ ·

(
S r× dp

)·
= 0, ( j3)

Finally, integrating the above from an “initial” time up to a generic one, t, we obtain
(to within inessential constants) the law of transformation of the Hamiltonian action of
the system (chaps. 7 and 8) between the frames F(AH) and F ′(AH′):



where

HO 0 �S r 0 � ðdm v 0Þ ¼ absolute angular momentum about O 0; ð j6Þ

and

r 0G ðv 0GÞ ¼ position ðvelocityÞ of system mass center; G; relative to O 0: ð j7Þ
In particular, if the origins of F and F 0 instantaneously coincide ðro ¼ 0 )
r 0G ¼ rGÞ, and the system is at rest in F 0 as a whole ðvo ¼ vG ) mvo ¼ mvG ¼ pÞ,
then ( j5, 6) reduce, respectively, to

HO ¼ HO;intrinsic þ rG � p; ð j8Þ
HO 0 ¼ HO;intrinsic �S r� ðdm v 0Þ:

intrinsic angular momentum of system in F 0about O 0; ð j9Þ
rG � p ¼ angular momentum of system due to its motion as a whole. ð j10Þ

For additional special cases see, for example, Landau and Lifshitz (1960, pp. 20–22);

Example 3.12.4 Separable Systems of Liouville, Stäckel et al. (see also }8.10).
As eqs. (3.12.1, 2) readily show, Lagrange’s equations are coupled in the q’s; that
is, in general, the ðkÞth such equation ð1 � k � nÞ contains qk, _qqk, €qqk, and all the
other q’s and _qq’s. Below we examine some special systems in which each of their
equations of motion contains only one such variable and its ð. . .Þ:-derivatives. Such
uncoupled, or separable, systems can be solved by quadratures.

(i) Let us consider a system completely describable by

2T ¼ v1ðq1Þð _qq1Þ2 þ � � � þ vnðqnÞð _qqnÞ2; ða1Þ
V ¼ w1ðq1Þ þ � � � þ wnðqnÞ; ða2Þ

where each vkð. . .Þ ð> 0, assumed) and wkð. . .Þ is an arbitrary function of qk only. Its
Lagrangean equations [with ð. . .Þ 0 � dð. . .Þ=dqk; k ¼ 1; . . . ; n]

d vkðqkÞ _qqk½ ��dt� ð1=2Þvk 0ðqkÞð _qqkÞ2 ¼ �wk
0ðqkÞ;

or

vkðqkÞ€qqk þ ð1=2Þvk 0ðqkÞð _qqkÞ2 ¼ �wk
0ðqkÞ; ðbÞ

are clearly uncoupled. Integrating (b) once, we readily obtain the energy integrals

ð1=2ÞvkðqkÞð _qqkÞ2 þ wkðqkÞ ¼ ck ðck: constants of integrationÞ; ðcÞ
and integrating this once more, since qk and t are separable, we finally obtain the
quadrature

t ¼
ð �

vkðqkÞ
��
2ck � 2wkðqkÞ

	�1=2
dqk þ �k ð�k: new integration constantsÞ: ðdÞ
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also Whittaker (1937, pp. 59–62), and our ex. 8.13.1.



(ii) Let us consider the Liouville systems (1849)

2T ¼ u ½v1ðq1Þð _qq1Þ2 þ � � � þ vnðqnÞð _qqnÞ2�; ðe1Þ
V ¼ ½w1ðq1Þ þ � � � þ wnðqnÞ�=u; ðe2Þ

where u � u1ðq1Þ þ � � � þ unðqnÞ ð> 0Þ. Below we show that systems that are, or can
be put, in this form can be solved by quadratures, like (d).

Indeed, with the help of the (assumed invertible) transformation of variables
qk ! xk:

xk ¼
ð
½vkðqkÞ�1=2 dqk ) dxk ¼ ½vkðqkÞ�1=2 dqk ; ðf Þ

we can reduce T (to within u) to a sum of squares in the new velocities:

2T ¼ u ½ð _xx1Þ2 þ � � � þ ð _xxnÞ2�; ðg1Þ
u � u1½q1ðx1Þ� þ � � � þ un½qnðxnÞ� ¼ u1ðx1Þ þ � � � þ unðxnÞ; ðg2Þ

similarly V , (e2), transforms to

V ¼ �w1½q1ðx1Þ� þ � � � þ wn½qnðxnÞ�
���

u � ½w1ðx1Þ þ � � � þ wnðxnÞ�
�
u: ðg3Þ

Hence, renaming the x’s as q’s, we can rewrite (g1, 3) as

2T ¼ u ½ð _qq1Þ2 þ � � � þ ð _qqnÞ2�; ðh1Þ
V ¼ ½w1ðq1Þ þ � � � þ wnðqnÞ�

�
u: ðh2Þ

Now, the typical Lagrangean equation of the above system is

ðu _qqkÞ: � ð1=2Þð@u=@qkÞ½ð _qq1Þ2 þ � � � þ ð _qqnÞ2� ¼ �@V=@qk : ði1Þ
To find the corresponding energy equation, we multiply (i1) by 2u _qqk, and notice that

½u2ð _qqkÞ2�: ¼ 2u _uu ð _qqkÞ2 þ u2ð2 _qqk €qqkÞ ¼ 2u _qqkð _uu _qqk þ u €qqkÞ
¼ 2u _qqkðu _qqkÞ::

The result is

½u2ð _qqkÞ2�:� u _qqkð@u=@qkÞ½ð _qq1Þ2 þ � � � þ ð _qqnÞ2� ¼ �2u _qqkð@V=@qkÞ: ði2Þ
But from the energy integral (of this conservative system), we have

T þ V � E ¼ h ¼ constant ) u½ð _qq1Þ2 þ � � � þ ð _qqnÞ2� ¼ 2ðh� V Þ; ð j1Þ
and so (i2) can be rewritten, successively, as

½u2ð _qqkÞ2�: ¼ 2ðh� V Þ _qqkð@u=@qkÞ � 2u _qqkð@V=@qkÞ
¼ 2 _qqk @=@qk½uðh� V Þ�f g
¼ 2 _qqk

�
@=@qk

�
hu� w1ðq1Þ þ � � � þ wnðqnÞ½ ���

¼ 2 _qqk d=dqk hukðqkÞ � wkðqkÞ½ �f g
¼ 2 hukðqkÞ � wkðqkÞ½ �:: ð j2Þ
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Integrating (j2), we immediately obtain

ð1=2Þu2ð _qqkÞ2 ¼ hukðqkÞ � wkðqkÞ þ �k ð�k: integration constantsÞ: ð j3Þ

But the n �k are not independent: summing the n integrals ( j3) over all k, and then
dividing by u, we obtain

ð1=2Þu ½ð _qq1Þ2 þ � � � þ ð _qqnÞ2� þ ½w1ðq1Þ þ � � � þ wnðqnÞ�
��
u

¼ hþ ð�1 þ � � � þ �nÞ=u;

and comparing this with the energy equation ( j1), we easily conclude that

�1 þ � � � þ �n ¼ 0: ð j4Þ

Hence, the first integration of our system, ( j3), has produced n constants, say
�1; . . . ; �n�1; h; not n þ 1.

Finally, from (j3), we readily obtain the n (separable variable) equations

½h u1ðq1Þ � w1ðq1Þ þ �1��1=2 dq1 ¼ � � � ¼ ½h unðqnÞ � wnðqnÞ þ �n��1=2 dqn
¼ ð2Þ1=2 dt=u; ð j5Þ

and from these, with the notation 2½h ukðqkÞ � wkðqkÞ þ �k� � fkðqkÞ, we conclude
that X

uk dqk

.
fkðqkÞ1=2
h i� �

¼
X

uk

� �
dt
.
u ¼ dt;ðaÞ

or, integrating,

X ð
uk dqkffiffiffiffiffiffiffiffiffiffiffiffi
fkðqkÞ

p ¼ tþ �1 ð�1: integration constantÞ; ðk1Þ

and

ðbÞ
ð

dq1ffiffiffiffiffiffiffiffiffiffiffiffi
f1ðq1Þ

p �
ð

dqlffiffiffiffiffiffiffiffiffiffiffi
flðqlÞ

p ¼ �l ðl ¼ 2; . . . ; nÞ: ðk2Þ

Equation (k1) and the n� 1 equations (k2) supply the n independent constants of
integration �1; . . . ; �n, which along with the earlier n� 1 independent �’s and the
energy constant h (i.e., �1; . . . ; �n�1; h), constitute the 2n expected independent
constants of integration of the system (h1, 2) [we also note that, by ( j5), and since
u > 0, it follows that in (k1, 2) fkðqkÞ1=2 has the same sign as dqk; a fact that becomes
important whenever one or more of the q’s oscillates between fixed limits (libration—
see }8.14)]. Lastly, the original variables of (e1, 2) can be recovered from (f) with
another integration. For extensive discussions of these systems, including Hamilton–
Jacobi methods, see, e.g., Hamel (1949, pp. 302–303, 358–361, 669–688), Lur’e (1968,
pp. 538–548), Pars (1965, pp. 291–348); also Whittaker (1937, p. 60, and references
therein).
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3.13 THE RIGID BODY: LAGRANGEAN–EULERIAN KINEMATICO-INERTIAL IDENTITIES

Kinematical Preliminaries

As we have seen in }1.7 ff. (fig. 3.30), the inertial velocity of a typical body point P
equals

v � dr=dt � d r̂ =dt þ dðr� r̂ Þ=dt � d r̂ =dtþ dr=̂ =dt

� v̂ þ v=̂ ¼ v̂ þ x� r=̂ ; ð3:13:1Þ

or, in components, with some easily understood notation,

(a) Along the space-fixed (inertial) axes/basis O��XYZ=IJK :

r ¼ XI þ YJ þ ZK ; r=̂ ¼ ðX � X̂ ÞI þ ðY � Ŷ ÞJ þ ðZ � Ẑ ÞK ; ð3:13:1aÞ

and, therefore,

vX ¼ v̂ ;X þ !Y ðZ � Z^Þ � !ZðY � Ŷ Þ; etc:; cyclically; ð3:13:1bÞ

(b) Along the body-fixed (noninertial) axes/basis ^��xyz=ijk :

r=̂ ¼ x=̂ i þ y=̂ j þ z=̂ k; ð3:13:1cÞ
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Figure 3.30 Basic notation for general rigid-body motion:

O–XYZ ¼ space-fixed (inertial) axes; O–IJK ¼ associated basis;
^–xyz ¼ body-fixed (noninertial) axes; ^–ijk ¼ associated basis;

G ¼ center of mass of body B;

r=^ ¼ position of representative body particle P relative to arbitrary

body point ^;

r=G ¼ position of representative body particle P relative to G;

x ¼ inertial angular velocity of body B.



and therefore,

vx ¼ v̂ ;x þ !y z=̂ � !z y=̂ ; etc:; cyclically: ð3:13:1dÞ

We point out that since v̂ ;X ¼ _XX, etc., cyclically, the inertial components v̂ ;X ;Y ;Z

are holonomic; whereas, since

v̂ ;x ¼ cosðx;X Þ _XX þ cosðx;Y Þ _YY þ cosðx;ZÞ _ZZ; etc:; cyclically; ð3:13:1eÞ

the noninertial components v̂ ;x;y;z are nonholonomic, or quasi velocities; and so are
the !x;y;z.

Kinetic Energy

Substituting (3.13.1) into 2T �Sdm v � v, we obtain, successively,

2T �Sdmðv̂ þ x� r=̂ Þ � ðv̂ þ x� r=̂ Þ
¼ � � � ¼ 2Ttranslation þ 2Trotation þ 2Tcoupling; ð3:13:2Þ

where

2Ttranslation � 2TT �Sdm v̂ � v̂ ¼ m v̂ � v̂ ¼ m v̂ 2

¼ m v̂ ;X
2 þ v̂ ;Y

2 þ v̂ ;Z
2

� � ¼ m v̂ ;x
2 þ v̂ ;y

2 þ v̂ ;z
2

� �
¼ 2ðkinetic energy of translationÞ; ð3:13:2aÞ

2Trotation � 2TR �Sdmðx� r=̂ Þ � ðx� r=̂ Þ
¼ � � � ¼Sdmx � ½r=̂ � ðx� r=̂ Þ� � x � ĥ

¼ 2ðkinetic energy of rotationÞ; ð3:13:2bÞ

ĥ �Sdm½r=̂ � ðx� r=̂ Þ�
¼ ðinertialÞ relative angular momentum of the body B about ^; a system vector;

ð3:13:2cÞ

Tcoupling � TC �Sdm½v̂ � ðx� r=̂ Þ� ¼ x �Sdmðr=̂ � v̂ Þ

¼ x � Sdm r=̂

� �
� v̂

h i
¼ x � ðm rG=̂ � v̂ Þ

¼ m v̂ � ðx� rG=^Þ � m v̂ � vG=^

¼ kinetic energy of coupling ðof translation of ^ with rotation of BÞ:
ð3:13:2dÞ

[Clearly,

Sdm r=̂ ¼SdmðrG=^ þ r=GÞ ¼Sdm rG=^ þSdm r=G ¼ m rG=^ þ 0:�

Further, since (using simple vector algebra identities; recalling }1.16 ff.)
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h^ ≡Sdm
[
(r
/̂

· r
/^ )x − (x · r

/^ )r/̂
]
≡ I^ · x , (3.13.3)



h^;x ¼ I^;xx !x þ I^;xy !y þ I^;xz !z ; etc:; cyclically; ð3:13:3aÞ

the expression (3.13.2b) assumes the form

þ 2 I^;xy !x !y þ I^;xz !x !z þ I^;yz !y !z

� �
: ð3:13:3bÞ

Hence, finally [and with !x ¼ ! lx, etc., where l ¼ ðlx; ly; lzÞ ¼ unit vector along x],
2T becomes

2T ¼ m v̂ 2 þ Î ;l!
2 þ 2x � ðmrG=^ � v̂ Þ

¼ mv̂ 2 þ Î ;l!
2 þ 2m v̂ � ðx� rG=^Þ

� mv̂ 2 þ Î ;l!
2 þ 2m v̂ � vG=^; ð3:13:3cÞ

(¼ function of the six quasi velocities: v̂ ;x;y;z and !x;y;z, if body-fixed axes are used),

where

Î ;l � lx
2Î ;xx þ � � � þ 2lx ly Î ;xy þ � � �

¼ moment of inertia of B about axis of instantaneous rotation through ^:
ð3:13:3dÞ

Special Cases of (3.13.3c)

� If we choose our body-fixed axes to be also principal axes: ^��xyz! ^��123,
then, with some obvious notations,

Î ;l ¼ lx
2 Î ;x þ ly

2 Î ;y þ lz
2 Î ;z

� l1
2Î ;1 þ l2

2Î ;2 þ l3
2Î ;3 ð� l1

2Aþ l2
2Bþ l3

2CÞ; ð3:13:4aÞ

and so the rotational kinetic energy (3.13.3b) reduces to

2TR ¼ Î ;1 !1
2 þ Î ;2 !2

2 þ Î ;3 !3
3: ð3:13:4bÞ

� If, further, ^ ¼ G then, clearly, TC ¼ 0 and (3.13.3c) assumes the (König) form

2T ¼ mvG
2 þ IG;l!

2 ¼ mvG
2 þ ðIG;1!1

2 þ IG;2!2
2 þ IG;3!3

2Þ; ð3:13:4cÞ

in words: the kinetic energy of a moving rigid body consists of two independent
(uncoupled) parts: one depending on the motion of the body’s center of mass ðGÞ
and another equal to the kinetic energy of motion relative to that center. [This is the
kinetic energy analog of the familiar Newton–Euler (momentum) proposition that:
(i) the motion of G is indistinguishable from that of a fictitious particle of equal mass
placed there and acted on by a force equal to the total external force on the body,
through G; and (ii) the motion (rotation) of the body about G is the same as if G were
fixed and the body is acted on by the same forces (and/or couples) as in the actual
case. These results, clearly, also hold for impulsive motion (chap. 4).]
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where I^ = inertia tensor of B at ^; or, in components along, say, ^–xyz,

2TR = x · I^ · x = Î , xx ωx
2 + Î , yy ωy

2 + Î , zz ωz
2



It is also possible to express T in terms of holonomic (instead of quasi-) coordi-
nates: specifically, with rG ¼ XG I þ YGJ þ ZGK and �, �,  ¼ Eulerian angles of
G��xyz relative to O��XYZ (or G��XYZ), the (double) kinetic energy transforms to

2T ¼ mvG
2 þ x �Sdm½r=G � ðx� r=GÞ�

¼ m ð _XXGÞ2 þ ð _YYGÞ2 þ ð _ZZGÞ2
h i

þ 2TR �; �;  ; _��; _��; _  
� �

; ð3:13:4dÞ

[where, since the r=G, in the second term of (3.13.4d), depend only on the Eulerian
angles, and (recalling results of }1.12): x ¼ u�ð�; �;  Þ _��þ u�ð�; �;  Þ _��þ u ð�; �;  Þ _  ;
u�;�; ð� Ki 0k 00Þ: nonorthogonal unit vectors, that term, 2TR, becomes a quadratic
homogeneous function of the Eulerian rates _��, _��, _  , with coefficients functions of
the Eulerian angles �, �,  ] and, accordingly, the Lagrangean inertial forces (or
system accelerations) corresponding to the so-chosen Lagrangean coordinates q1 ¼
XG; . . . ; q6 ¼  are

Motion of G: E1 � EX ¼ m €XXG; E2 � EY ¼ m €YYG; E3 � EZ ¼ m €ZZG;

ð3:13:4eÞ
Motion around G: E4 � E� ¼ ð@TR=@ _��Þ:� @TR=@�;

E5 � E� ¼ ð@TR=@ _��Þ: � @TR=@�;

E6 � E ¼ ð@TR=@ _  Þ: � @TR=@ : ð3:13:4f Þ

However, upon explicit calculation, eqs. (3.13.4f) turn out to be less simple than
their quasi-variable counterparts based on eqs. (3.13.2a–4c).
� If B is a body of revolution about, say, the ^��z axis, then, since ^��xyz are

principal axes and I^;x ¼ I^;y ¼ perpendicular (or transverse, or equatorial ) moment
of inertia, then

2TR ¼ I^;x !x
2 þ I^;y !y

2 þ I^; z !z
2 ¼ I^;xð!x

2 þ !y
2Þ þ I^; z !z

2

¼ I^;xð!2 � !z
2Þ þ I^; z !z

2 ¼ I^;x !
2 þ ðI^; z � I^;xÞ!z

2; ð3:13:4gÞ

or, generally, with the helpful notations I^;x � I^;transverse � I^;T , I^;z � I^;axial �
I^;A, and k � u: unit vector along axis of revolution,

2TR ¼ I^;T !
2 þ ðI^;A � I^;T Þðx � uÞ2: ð3:13:4hÞ

The System Momentum Vectors
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[
We begin by pointing out that, by (1.10.29a)ff., if n = constant (fixed axis), then ω dt =

ω dt = d (quasi-vector) ≡ dθ.
]

Now, since the rigid body is an internally scleronomic
system, δr = δr^ + δθ × r

/^ , and, as a result, the total (inertial and first-order) virtual
“work” of its linear momenta, δP [recalling (3.6.3b)], specializes to

δP ≡Sdm v · δr =Sdm v · (δr^ + δθ × r
/^ )

= · · · = p · δr^ +H^ · δθ, (3.13.5)

d(χn) ≡ dχ = d (ordinary/holonomic vector); while, if n = variable (mobile axis), then



where

p �Sdm v ¼ mvG ¼ ðinertialÞ linear momentum of body B; ð3:13:5aÞ
H^ �S r=̂ � ðdm vÞ ¼ ðinertialÞ absolute angular momentum of B about ^:

ð3:13:5bÞ
These two momenta are the fundamental system vectors of Eulerian rigid-body
mechanics. They transform, further, as follows:

p �Sdmðv^ þ x� r=̂ Þ ¼ mv^ þ x� ðmrG=^Þ; ð3:13:5cÞ
H^ �Sdm r=̂ � ðv^ þ x� r=̂ Þ ¼ h^ þmðrG=^ � v^Þ: ð3:13:5dÞ

� If ^ ¼ G, then rG=^ ¼ 0, and (3.13.5c, d) reduce, respectively, to

p ¼ m vG and HG ¼ hG ¼Sdm r=̂ � ðx� r=̂ Þ: ð3:13:5eÞ

Next, let us relate the above to the (inertial) absolute angular momentum of B about
the origin O, HO (recalling }1.6). Since r ¼ r^ þ r=̂ , we find, successively,

HO �S r� ðdm vÞ ¼Sdmðr^ � vÞ þSdmðr=̂ � vÞ

¼ r^ � Sdm v
� �

þH^ ¼ r^ � pþ ½h^ þ mðrG=^ � v^Þ� ½recalling ð3:13:5dÞ�

and, therefore
� If ^¼ G, then

� If ^ ¼ O (i.e., motion about a fixed point— rotation), then r^ ¼ 0, v^ ¼ 0, and
the above reduce to

More general H=h=p definitions appear in }3.16, in connection with the problem of
relative motion; that is, when ^ is not a body point but has its own (known or
unknown) motion relative to both O��XYZ and the body.

Kinetic Energy via Momentum Vectors

2T ¼ p � v^ þH^ �x: ð3:13:7Þ
Let us examine T more closely. From the earlier representations—that is,

2T ¼ mv^ � v^ þ x � Sdm½r=̂ � ðx� r=̂ Þ�
n o

þ x � ðmrG=^ � v^Þ;
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=

Now we are ready to relate the system quantities T/p/H^ . Indeed, since the free
(i.e. externally unconstrained) rigid body is (an internally) scleronomic system, we can
replace in (3.13.5) δr/δr^/δθ with dr = v dt/dr^ = v^ dt/dθ = x dt, respectively, and
then divide by dt; thus resulting in

= I^ · x + m(rG/^ × v^) + r^ × p; (3.13.6)

HO = IG · x + rG × p = IG · x + rG × (mvG); (3.13.6a)

p = mvG = m(x × rG) and HO = hO = IO · x . (3.13.6b)



we realize that

2T ¼ 2Tðv^; xÞ ¼ function of the velocity variables; or velocity state; of the body;

ð3:13:7aÞ
and, therefore, differentiating T with respect to these variables, we obtain

dT ¼ mv^ � dv^ þ ð1=2Þ dx � h^ þ x �Sdm
�
r=̂ � ðdx� r=̂ Þ

	n o
þ x � ðmrG=^ � dv^Þ þ dx � ðmrG=^ � v^Þ; ð3:13:7bÞ

or, since x � ½r=̂ � ðdx� r=̂ Þ� ¼ ðr=̂ Þ2ðx � dxÞ � ðr=̂ � dxÞðr=̂ �xÞ, from which

x �Sdm½r=̂ � ðdx� r=̂ Þ� ¼ dx �Sdm½ðr=̂ Þ2x� ðr=̂ �xÞ r=̂ �
¼ dx � h^ ; ð3:13:7cÞ

we finally establish that

dT ¼ ½mv^ þmðx� rG=^Þ� � dv^ þ ½h^ þmðrG=^ � v^Þ� � dx: ð3:13:7dÞ

But from (3.13.7a) and the invariant differential definition, we must also have

dT ¼ ð@T=@v^Þ � dv^ þ ð@T=@xÞ � dx: ð3:13:7eÞ
The representations (3.13.7d) and (3.13.7e), since the dv^ and dx are independent,
immediately lead to the following basic kinematico-inertial identities:

p ¼ @T=@v^ ½¼ mðv^ þ x� rG=^Þ ¼ mvG�; ð3:13:7f Þ
H^ ¼ @T=@x ½¼ h^ þ ðmrG=^ � v^Þ�: ð3:13:7gÞ

[We notice that @Tðv^;xÞ=@v^ ¼ @TðvG;xÞ=@vG ¼ p.] The above translate readily
to the following six scalar/component equations:
� Along the body-fixed axes ^ �� xyz:

px ¼ mðv^;x þ !y zG=^ � !z yG=^Þ ¼ @T=@v^;x; etc:; cyclically; ð3:13:7hÞ

H^;x ¼ h^;x þmðyG=^v^;z � zG=^v^;yÞ ¼ @T=@!x ; etc:; cyclically; ð3:13:7iÞ

where

h^;x ¼ I^;xx!x þ I^;xy!y þ I^;xz!z ¼ @TR=@!x ; etc:; cyclically; ð3:13:7jÞ
� Along the space-fixed axes ^��XYZ:

pX ¼ m ½v^;X þ !Y ðZG � Z^Þ � !ZðYG � Y^Þ�
� m ðv^;X þ !Y ZG=^ � !ZYG=^Þ ¼ @T=@v^;X ; etc:; cyclically; ð3:13:7kÞ

H^;X ¼ h^;X þm ðYG=^ v^;Z � ZG=^v^;Y Þ ¼ @T=@!X ; etc:; cyclically; ð3:13:7lÞ

where the h^;X;Y ;Z can be found from the vector transformations

h^;X ¼ cosðX ;xÞ h^;x þ cosðX ; yÞ h^;y þ cosðX; zÞ h^;z ; etc:; cyclically: ð3:13:7mÞ
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Acceleration Vectors

Let us now calculate the total (inertial and first-order) virtual ‘‘work’’ of the inertial
forces of the particles of the body [recall (3.2.9, 3.3.2 ff.)]. We find, successively,

where

I �Sdm a ¼ m aG ¼ ðinertialÞ linear inertia of body B; ð3:13:8aÞ
A^ �S r=̂ � ðdm aÞ ¼ ðinertialÞ relative angular inertia of B about ^: ð3:13:8bÞ

Our next task is to relate these two Eulerian system vectors to their momentum
counterparts, p and H^ :

ðiÞ Clearly; I ¼ dp=dt; ð3:13:8cÞ
(ii) By ð. . .Þ:-differentiating H^ we obtain, successively,

dH^=dt ¼ d=dt S r=̂ � ðdm vÞ
h i

¼Sdmðv=̂ � vÞ þSdmðr=̂ � aÞ

¼Sdmðv� v^Þ � vþSdmðr=̂ � aÞ
¼ �Sdmðv^ � vÞ þSdmðr=̂ � aÞ; ð3:13:8dÞ

or, finally,

A^ ¼ dH^=dtþ v^ � p: ð3:13:8eÞ
For ^¼ G the above specialize, respectively, to

I ¼ m aG and AG ¼ dHG=dt ¼ dhG=dt; ð3:13:8f 1Þ
where

HG �S r=̂ � ðdm vÞ ¼ hG �S r=G � ðdm v=GÞ: ð3:13:8f 2Þ

REMARK

It is not hard to show that (3.13.8e) also holds with ^ replaced by any other (not
necessarily body-) point � moving with arbitrary inertial velocity v� � v�=O. Indeed,
with

H� �S r=� � ðdm vÞ;

we readily find

dH�=dt ¼S v=� � ðdm vÞ þS r=� � ðdm aÞ
¼S ðv� v�Þ � ðdm vÞ þS r=� � ðdm aÞ
¼ �S v� � ðdm vÞ þS r=� � ðdm aÞ; ð3:13:8gÞ
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δI ≡Sdm a · δr = Sdm a · (δr^ + δθ × r
/^ )

= · · · = I · δr^ + A^ · δθ, (3.13.8)



or, finally,

A� ¼ dH�=dtþ v� � p; Q:E:D: (see also }1.6, and appendix 3.A2). ð3:13:8hÞ

Moving Axes

To express the above inertia vectors in terms of the more useful rates relative to
(noninertial) axes, either body-fixed or intermediate (neither body- nor space-fixed—
chosen so that the inertia tensor components along them remain constant), we
simply replace in the right sides of their representations, such as (3.13.8c, e, f ),

. . . relative to axes that are rotating with (inertial) angular velocity X (recalling
}1.7 ff.). Thus, expressions (3.13.8c, h) become, respectively,

Special Cases

� If � ¼ ^ ¼ G, then v� ¼ vG (or, if v� ¼ 0), and so (3.13.9) specialize to

� If X ¼ x and � ¼ ^ ¼ G, the last two terms in (3.13.9b) and the last two (of the
four) terms of (3.13.9c) vanish, and so these equations reduce, respectively, to

The above show clearly the decoupling of the two motions: the translatory ðvGÞ from
the rotatory ðxÞ in the system inertia vectors: for the rotatory motion, G can be
viewed as stationary (Euler, 1749). Indeed, if vG ¼ 0, we are left with the sole system
vector

Component Representations

A better understanding of the (difficulties involved in the) preceding equations may
be achieved if we express them in components. Thus, along body-fixed axes ^��xyz,
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d(. . .)/dt with ∂(. . .)/∂t + Ω × (. . .), where ∂(. . .)/∂t = rate of change of vector

I = ∂p/∂t+Ω × p and A• = ∂H•/∂t+Ω ×H• + v• × p. (3.13.9)

I = ∂p/∂t +Ω × p and AG = ∂HG/∂t+Ω ×HG (with HG = hG).

(3.13.9a)

• If Ω = x and • = ^ (i.e., for body-fixed axes ^–xyz), then ∂rG/^/∂t = 0 and
∂x/∂t = dx/dt ≡ α = inertial angular acceleration of B, and so (3.13.9), with
(3.13.7f, g), reduce to

I = ∂p/∂t+ x × p

= m
[
∂v^/∂t+ x × v^ + x × (x × rG/^) + α × rG/^

]
, (3.13.9b)

A^ = ∂H^/∂t+ x ×H^ + v^ × p

= ∂h^/∂t+ x × h^ + mrG/^ × [∂v^/∂t+ (x × v^)]. (3.13.9c)

I = m(∂vG/∂t+ x × vG), AG = ∂hG/∂t+ x × hG. (3.13.9d)

AG = ∂hG/∂t+ x × hG = ∂/∂t(∂TR/∂x) + x × (∂TR/∂x). (3.13.9e)



eqs. (3.13.9b, c) translate to the following system of six coupled expressions for the
six quasi velocities v^;x;y;z and !x;y;z :

Ix ¼ m
n
_vv^;x þ ð!yv^;z � !zv^;yÞ

þ �!yð!x yG=^ � !y xG=^Þ � !zð!z xG=^ � !x zG=^Þ
	

þ ð _!!y zG=^ � _!!z yG=^Þ
o
; etc:; cyclically; ð3:13:10aÞ

A^;x ¼ I^;xx _!!x þ I^;xy _!!y þ I^;xz _!!z

þ �� ðI^;yy � I^;zzÞ!y!z þ I^;xy!x!z þ I^;xz!x!y þ I^;yzð!y
2 þ !z

2Þ	
þm

n
ðyG=^ _vv^;z � zG=^ _vv^;yÞ

þ �yG=^ð!x v^;y � !y v^;xÞ � zG=^ð!y v^;z � !z v^;yÞ
	o
; etc:; cyclically;

ð3:13:10bÞ

while (3.13.9d), if the corresponding body-axes G��xyz are also principal, G��123, take
the well-known (decoupled!) Eulerian form as follows:

Ix ¼ m½ _vvG;x þ ð!y vG;z � !z vG;yÞ�
� m½ _vvG;1 þ ð!2 vG;3 � !3 vG;2Þ� ¼ I1 ; etc:; cyclically; ð3:13:10cÞ

A^;x ¼ I^;x _!!x � ðI^;y � I^;z Þ!y!z

� I^;1 _!!1 � ðI^;2 � I^;3 Þ!2!3 ¼ A^;1 ; etc:; cyclically: ð3:13:10dÞ

As (3.13.9c) shows, the expressions (3.13.10d) also hold with G replaced by any body-
and space-fixed point; if one exists.

Lagrangean Forms

Let us now see the connection of the above with analytical mechanics. In terms of the
T-gradients (3.13.7f, g), eqs. (3.13.9 ff.) take the following Lagrangean forms:

ðiÞ

and, in components (intermediate axes),

Ix ¼ ð@T=@v^;xÞ:þ Oyð@T=@v^;zÞ � Ozð@T=@v^;yÞ etc:; cyclically; ð3:13:11cÞ
A�;x ¼ ð@T=@!xÞ:þ Oyð@T=@!zÞ � Ozð@T=@!yÞ

þ v�;yð@T=@v^;zÞ � v�;zð@T=@v^;yÞ; etc:; cyclically; ð3:13:11dÞ

ðiiÞ
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I = ∂/∂t(∂T/∂v^) +Ω × (∂T/∂v^) (3.13.11a)

[recalling that ∂T(v^ , x)/∂v^ = ∂T(vG, x)/∂vG = p],

A• = ∂/∂t(∂T/∂x) +Ω × (∂T/∂x) + v• × (∂T/∂v^), (3.13.11b)

I = ∂/∂t(∂T/∂v^) + x × (∂T/∂v^), (3.13.11e)

A• = ∂/∂t(∂T/∂x) + x × (∂T/∂x) + v^ × (∂T/∂v^), (3.13.11f)



and, in components (body-fixed axes),

Ix ¼ ð@T=@v^;xÞ: þ !yð@T=@v^;zÞ � !zð@T=@v^;yÞ; etc:; cyclically; ð3:13:11gÞ
A^;x ¼ ð@T=@!xÞ: þ !yð@T=@!zÞ � !zð@T=@!yÞ

þ v^;yð@T=@v^;zÞ � v^;zð@T=@v^;yÞ; etc:; cyclically; ð3:13:11hÞ

ðiiiÞ

and, in components (intermediate axes),

Ix ¼ ð@T=@vG;xÞ:þ Oyð@T=@vG;zÞ � Ozð@T=@vG;yÞ; etc:; cyclically; ð3:13:11kÞ
AG;x ¼ ð@T=@!xÞ:þ Oyð@T=@!zÞ � Ozð@T=@!yÞ; etc:; cyclically: ð3:13:11lÞ

For additional forms, see, for example, Heun (1906, pp. 269–271; 1913, pp. 397–
401), Suslov (1946, pp. 490–521), Winkelmann and Grammel [1927, pp. 446–449, via
the (not very popular) motor calculus of R. von Mises (1924)], Winkelmann [1929(b),
pp. 14–27]; also Hölder (1939), and }3.16, this volume.

Example 3.13.1 Kinetic Energy of a Rigid Body. A thin homogeneous disk D,
of mass m and radius r, with fixed center O, rolls without slipping on a fixed
rough plane P; its plane thus makes a constant angle (of nutation) � with P. Let
us calculate its kinetic energy if the disk/plane contact point C rotates with a
constant angular velocity xo on the circular projection of D on P (fig. 3.31).

Since vC ¼ 0 and vO ¼ 0, the basic velocity equation vC ¼ vO þ x� rC=O yields x:
parallel to the diameter COA; alternatively, since the velocities of two of its points, C
and O, vanish, the disk can only turn about the axis CO. As fig. 3.31(b) shows,
! ¼ !o sin �. [Or, we consider a point B along the disk axis, at distance l from O.
During the motion: (i) B traces a circle of radius l sin � (on a plane parallel to P) with
angular velocity !o, and hence velocity vB ¼ !oðl sin �Þ; and, simultaneously, (ii) as
part of the rotating disk, B turns (instantaneously) about CA with angular velocity
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Figure 3.31 (a) Circular disk D rolling at an angle � (nutation) on a fixed plane P; (b) details of

decomposition of xo along axes 123.

I = ∂/∂t(∂T/∂vG) +Ω × (∂T/∂vG), (3.13.11i)

AG = ∂/∂t(∂T/∂x) +Ω × (∂T/∂x), (3.13.11j)



x, and therefore has velocity vB ¼ ! l; Q:E:D:] By König’s theorem, and principal
central axes O��123 [i.e., x ¼ ð0; 0; !Þ], we readily find

2T ¼ IO;1!1
2 þ IO;2!2

2 þ IO;3!3
2

¼ ðmr2=2Þð0Þ þ ðmr2=4Þð0Þ þ ðmr2=4Þð!o sin �Þ2

¼ ðmr2 sin2 �=4Þ!o
2 ¼ ICOA !

2: ðaÞ

Example 3.13.2 Kinetic Energy of a Rigid Body. Let us calculate the kinetic
energy of a homogeneous and right circular cone, of radius r, height h, and half
angle �, rolling without slipping on a fixed rough plane P (fig. 3.32), with vO ¼ 0.

Reasoning as in the preceding example—that is, since vO ¼ 0 and vB ¼ 0—we
conclude that x is parallel to the cone generatorOB. If the angular velocity of turning
of OB around the perpendicular to the plane is xo, then, as fig. 3.32(b) shows,

ðr cos �Þ! ¼ ðh sin �Þ! ¼ ðh cos �Þ!o ) ! ¼ !o cot �; ðaÞ
and so along the (intermediate) principal axes O��123,

x ¼ ð�! cos �; ! sin �; 0Þ ¼ ½�ð!o cot �Þ cos �; ð!o cot �Þ sin �; 0�; ðbÞ
also, from tables,

IO;1 ¼ ð3=10Þmr2; IO;2 ¼ IO;3 ¼ ð3m=5Þ½h2 þ ðr2=4Þ�:
Therefore, König’s theorem yields (dropping the subscript O from the I ’s)

2T ¼ I1 !1
2 þ I2 !2

2 þ I3 !3
2

¼ ½ð3=10Þmr2�ð�!o cos
2 �= sin �Þ2

þ ð3m=5Þ½h2 þ ðr2=4Þ�� �ð!o cos �Þ2 þ ð3m=5Þ½h2 þ ðr2=4Þ�� �ð0Þ
¼ ½ð3m=20Þðr2 þ 6h2Þ� cos2 �� �

!o
2

¼ ½ð3m=20Þðr2 þ 6h2Þ� sin2 �� �
!2

¼ I1ð�! cos �Þ2 þ I2ð! sin �Þ2 ¼ ðI1 cos2 �þ I2 sin
2 �Þ!2 ¼ IOB !

2: ðcÞ

)3.13 THE RIGID BODY: LAGRANGEAN–EULERIAN KINEMATICO-INERTIAL IDENTITIES 591

Figure 3.32 (a) Rolling of a right and circular cone with one point fixed, on a rough and fixed

plane P; (b) decompositions of x along xo and 1, and along 1 and 2.



Example 3.13.3 Kinetic Energy of a Rigid Body. We consider here a homo-
geneous rigid body of revolution with central principal moments of inertia I1 �
A; I2 ¼ I3 � B (fig. 3.33; G ¼ center of mass), spinning about its axis of symmetry
G1 with angular velocity xo. This axis is fixed at a constant angle � in a housing,
as shown, and this latter turns about a fixed vertical axis with angular velocity X.

Let us calculate the kinetic energy of this body (gyrostat). Here, clearly,

x ¼ ð!1; !2; !3Þ ¼ ð!o þ O sin�; O cos�; 0Þ; ðaÞ
and, therefore, by König’s theorem (vC ¼ 0)

2T ¼ I1 !1
2 þ I2 !2

2 þ I3 !3
2 ¼ Að!o þ O sin�Þ2 þ BðO cos�Þ2 þ Bð0Þ2: ðbÞ

Example 3.13.4 Rigid Body: System Force and Kinematico-Inertial Identities. We
consider here a rigid body B in general spatial motion. Let us calculate the
components of its Lagrangean (holonomic) forces Q ¼ fQk; k ¼ 1; . . . ; 6g in terms
of the corresponding elementary vectorial quantities.

With reference to fig. 3.34, and recalling the results of } 3.4, we find, successively,

Qk �SdF � ek ¼SdF � ð@r=@qkÞ ¼SdF � ð@v=@ _qqkÞ
¼SdF � ð@=@ _qqkÞðvG þ x� r=GÞ

½but ð@=@ _qqkÞðx� r=GÞ ¼ ð@x=@ _qqkÞ � r=G þ x� ð@r=G=@ _qqkÞ ¼ ð@x=@ _qqkÞ � r=G ðexplainÞ�

¼SdF � ð@vG=@ _qqkÞ þSdF � ½ð@x=@ _qqkÞ � r=G�
¼ ð@vG=@ _qqkÞ �SdF þ ð@x=@ _qqkÞ �S ðr=G � dFÞ
� F � ð@vG=@ _qqkÞ þMG � ð@x=@ _qqkÞ; ðaÞ

where FðMGÞ ¼ resultant force ðmomentÞ of all dF, acting at G (about G). Actually,
this identity holds for any other chosen body-fixed point (pole) ^.
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Figure 3.33 (a) Gyrostat spinning inside a housing; (b) details of decomposition of X

along 123.



Further, if the body is unconstrained, then, by Euler’s principles, F ¼ m aG �
dp=dt and MG ¼ dHG=dt, where HG ¼ S r=G � ðdm vÞ [(16.5a ff.)], and so we can
rewrite (a) in the kinetic form

Qk ¼ ðm aGÞ � ð@vG=@ _qqkÞ þ ðdHG=dtÞ � ð@x=@ _qqkÞ: ðbÞ

[We can also replace in the above @vG=@ _qqk with @aG=@€qqk. Then,

2½m aG � ð@vG=@ _qqkÞ� ¼ @ðm aG � aGÞ=@€qqk; etc: ð�aa la AppellÞ� ðcÞ

Hence, we finally obtain (rather effortlessly!) the following important kinematico-
inertial identities:

Ek � ð@T=@ _qqkÞ:� @T=@qk ¼ ðdp=dtÞ � ð@vG=@ _qqkÞ þ ðdHG=dtÞ � ð@x=@ _qqkÞ; ðdÞ

which hold even under additional constraints, as long as the q’s are holonomic
coordinates.

Example 3.13.5 Rigid Body: System Force and Kinematico-Inertial Identities. Let
us prove eq. (d) of the preceding example directly, from general Lagrangean
identities. We have, successively,

Ek �Sdm a � ð@v=@ _qqkÞ
¼Sdm a � ½ð@vG=@ _qqkÞ þ ð@x=@ _qqkÞ � r=G�

¼ � � � ¼ m aG � ð@vG=@ _qqkÞ þ S r=G � ðdm aÞ
h i

� ð@x=@ _qqkÞ
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Figure 3.34 Impressed force dF applied to a typical particle P

of a rigid body B.



�
but dHG=dt ¼ S r=G � ðdm vÞ

h i
: ¼S

�
v=G � ðdm vÞ þ r=G � ðdm aÞ�

¼S ðv� vGÞ � ðdm vÞ þS r=G � ðdm aÞ

¼ 0þS r=G � ðdm aÞ ðexplainÞ
�
;

and so, finally,

Ek ¼ ðdp=dtÞ � ð@vG=@ _qqkÞ þ ðdHG=dtÞ � ð@x=@ _qqkÞ; Q:E:D: ðaÞ

3.14 THE RIGID BODY: APPELLIAN KINEMATICO-INERTIAL IDENTITIES

Here, we develop explicit expressions for the Appellian S � S ð1=2Þdm a � a of a
single rigid body. (The Appellian of a system of rigid bodies is the sum of the
Appellians of its parts; just like the mass and kinetic energy.)

Fixed-Point Rotation

We begin with a rigid body B moving (rotating) about a fixed point ^. Since, then,
the inertial acceleration of a typical body particle is

a ¼ dv=dt ¼ dv=^=dt ¼ d=dtðx � r=^Þ ¼ a� r=^ þ x� ðx� r=^Þ; ð3:14:1aÞ

the Appellian of B, to within acceleration terms � Appell-important terms, becomes

S ¼S ð1=2Þ dm½ða� r=^Þ � ða� r=^Þ� þSdm ða� r=^Þ � ½x � ðx� r=^Þ�
� �

:

ð3:14:1bÞ
Now: (i) The first integral in (3.14.1b) equals TR, eq. (3.13.2b), but with x replaced
with a. Therefore, reasoning as there, we find

(ii) The second integral, in view of the transformations [recalling the identities:
a � ðb� cÞ ¼ b � ðc� aÞ ¼ c � ða� bÞ and a� ðb� cÞ ¼ ða � cÞb� ða � bÞc, holding for
any three vectors a; b; c]:

ða� r=^Þ � ½x� ðx� r=^Þ� ¼ ða� r=^Þ � ½ðx � r=^Þx� !2 r=^�
¼ ðx� aÞ � ½ðx � r=^Þ r=^�
½since ða� r=^Þ � r=^ ¼ 0 and ða� r=^Þ �x ¼ ðx� aÞ � r=^�

¼ ða �xÞ � ½r=^ � ðx � r=^Þ�
½since ðx� aÞ �x ¼ 0�; ð3:14:1dÞ

reduces to [recalling the definition of h^, (3.13.2c)]

ða� xÞ �Sdm ½r=^ � ðx� r=^Þ� ¼ ða� xÞ � h^: ð3:14:1eÞ
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S (1/2)dm[(α × r
/^) · (α × r

/^)] = (1/2)α · I^ · α . (3.14.1c)



The above results allow us to rewrite (3.14.1b) in the following equivalent forms:

the second term/sum being a bilinear form in the components of a�x and x, with

Component Forms

^-xyz () �x ¼ _!!x, etc.), the expression (3.14.1f) assumes the explicit form

S ¼ ð1=2ÞðI^;xx �x
2 þ I^;yy �y

2 þ I^;zz �z
2

þ 2 I^;xy �x�y þ 2 I^;xz �x�z þ 2 I^;yz �y�zÞ
þ ½ð�y !z � �z !yÞðI^;xx !x þ I^;xy !y þ I^;xz !zÞ
þ ð�z !x � �x !zÞðI^;yx !x þ I^;yy !y þ I^;yz !zÞ
þ ð�x !y � �y !xÞðI^;zx !x þ I^;zy !y þ I^;zz !zÞ�; ð3:14:2aÞ

S ¼ ð1=2ÞðI^;x �x
2 þ I^;y �y

2 þ I^;z �z
2Þ

þ ½ð�y !z � �z !yÞðI^;x !xÞ þ ð�z !x � �x !zÞðI^;y !yÞ
þ ð�x !y � �y !xÞðI^;z !zÞ�

¼ ð1=2ÞðI^;x �x
2 þ I^;y �y

2 þ I^;z �z
2Þ

� �x½ðI^;y � I^;zÞ!y !z� � �y½ðI^;z � I^;xÞ!z !x�
� �z½ðI^;x � I^;yÞ!x !y�: ð3:14:2bÞ

From the latter we immediately obtain the well-known Eulerian angular inertia

components (Gibbs, 1879)

Ax ¼ @S=@�x ¼ I^;x �x � ðI^;y � I^;zÞ!y !z

½ ¼ I^;x _!!x � ðI^;y � I^;zÞ!y !z ¼ @S=@ _!!x�; etc:; cyclically: ð3:14:2cÞ

REMARKS

(i) If the axes ^-xyz are still principal but non–body-fixed, rotating with inertial

�x ¼ _!!x þ ðOy !z � Oz !yÞ; etc:; cyclically;

and so (3.14.2b) is replaced by

S ¼ ð1=2Þ½I^;xð _!!xÞ2 þ I^;yð _!!yÞ2 þ I^;zð _!!zÞ2�
� _!!x½ðI^;y � I^;zÞ!y !z þ I^;xð!yOz � !z OyÞ� � _!!y½. . .� � _!!z½. . .�: ð3:14:2dÞ
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coefficients the components of the inertia tensor I^ .

S = (1/2)α · I^ · α + α · (x × h^)

= (1/2)α · I^ · α + α · [x × (I^ · x)]

= (1/2)α · I^ · α + (α × x) · (I^ · x); (3.14.1f)

It is not hard to see that in terms of the components of x , α , I^ along body-fixed axes,

angular velocity Ω = (Ox, Oy, Oz), then α = ∂x/∂t+ Ω × x , or, in components,

or, if ^–xyz are also principal axes [i.e., I^ = diagonal (Î , x, Î , y, I ,̂ z)],



(ii) If the axes ^��xyz are nonprincipal and non–body-fixed, then it can be shown

(verify it!) that we must add the following terms to the right side of (3.14.2d):

�I^;yz
�� _!!y _!!z � _!!xð!y

2 � !z
2Þ þ _!!y½!yð!x � OxÞ þ !x Oy�

� _!!z½!zð!x � OxÞ þ !x Oz�
�� I^;zxf. . .g � I^;xyf. . .g: ð3:14:2eÞ

For detailed scalar derivations of the above see, for example, Appell [1900(a), (b)].

General Motion

In this case, the inertial acceleration of a typical body particle is

a ¼ dv=dt ¼ a^ þ a=^ ¼ a^ þ a� r=^ þ x� ðx � r=^Þ: ð3:14:3aÞ

Now, to avoid long calculations, we make the following observations:

(i) The difference between the corresponding velocity formula and the first two
terms in (3.14.3a) is that, there, a^ and a are replaced, respectively, by v^ and x.

Therefore, we will obtain the corresponding terms in S if, in the earlier T-expressions

(3.13.2 ff.); that is,

we replace v^ and x with a^ and a, respectively.

(ii) But the product a � a results in two additional Appell-important terms in S
[the square of x� ðx� r=^) does not produce any ðdx=dtÞ-proportional terms]:

� One from ða� r=^Þ � ½x� ðx� r=^Þ�, and hence given by (3.14.1d, e) [also (3.14.1f)];

and

� Another that transforms, successively, as follows:

Sdma^ � ½x� ðx� r=^Þ� ¼ ma^ � ½x� ðx� rG=^Þ�
¼ mða^ � xÞ � ðx� rG=^Þ: ð3:14:3cÞ

Collecting all these results, we conclude that in the case of general motion, and to
within � a terms,

Specializations

(i) If ^ ¼ G, the second and third terms in the above vanish, and so (3.14.3d)

reduces to the Appellian counterpart of the well-known König’s theorem (for T ,

with ^ ¼ G)

¼ 2 ðAppellian of translation of Gþ rotation about G

þ coupling of x and aÞ: ð3:14:4aÞ
However, there is no T-counterpart to the last term of (3.14.4a).
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2T = mv^ 2 + 2m(v^ × x) · r
/^ + x · Î · x , (3.14.3b)

2S = maG
2 + α · IG · α + 2(α × x) · (IG · x)

2S = ma^
2 + 2m(a^ × α ) ·rG/^ + 2m(a^ × x) · (x × rG/^)

+ α · I^ · α + 2(α × x) · (I^ · x). (3.14.3d)



Problem 3.14.1 Appellian Counterpart of the ‘‘British Theorem.’’ Show that, to

within ‘‘Appell-important terms,’’ the Appellian of a uniform rod AB, of mass m,

equals

S ¼ ðm=6ÞðaA2 þ aA � aB þ aB
2Þ; ðaÞ

where aA and aB are the accelerations of the endpoints A and B (see also Bahar, 1994,

pp. 1685–1686).

3.15 THE RIGID BODY: VIRTUAL WORK OF FORCES

Introduction, General Results

In the last two sections, we discussed the explicit forms of the virtual work of the

inertia forces, �I , for a rigid body B, in both Lagrangean and Appellian variables.

Here, we present the corresponding forms of the [total (first-order) and inertial]

virtual work of the impressed forces,

� 0W �SdF � �r; ð3:15:1aÞ

[recall (3.2.8 ff.) and }3.4], and thus complete the specialization of Lagrange’s
principle, �I ¼ � 0W , to the rigid body.

Using the notations, and so on, of the preceding sections, we obtain, successively,
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(ii) If ^–xyz (G–xyz) are body-fixed [in which case, Ω = x ⇒ αx,y,z = ω̇x,y,z], the
expressions (3.14.3d), (3.14.4a) can be simplified further. Since, in this case,

a^ ≡ dv^/dt = ∂v^/∂t+ x × v^ , (3.14.4b)

to within Appell-important terms, a^
2 can be replaced by

(∂v^/∂t)2 + 2(∂v^/∂t) · (x × v^ ), (3.14.4c)

and a^ × x by (∂v^/∂t) × x [where, we recall, (∂v^/∂t)x,y,z = (v̇^ ;x,y,z)]; and so,
to within ∼ (∂v^/∂t) [(∂vG/∂t)] and ∼ a terms, and after some simple vectorial
rearrangement, (3.14.3d) and (3.14.4a) read, respectively,

2S = m(∂v^/∂t)2 + 2m(∂v^/∂t + x × v^ ) · (a × rG/^ )

+ 2m[(∂v^/∂t)× x ] · (v^ ) + x × rG/^ )

+ a · I^ · a + 2(a × x) · (I^ · x); (3.14.4d)

δ′W =SdF · (δr^ + δθ × r
/^ ) = · · · = F · δr^ +M^ · δθ, (3.15.1b)

and

2S = m(∂vG/∂t)2 + 2m[(∂vG/∂t)× x ] · vG + a · IG · a + 2(a × x) · (IG · x).

(3.14.4e)



where

F ¼SdF ¼ total impressed force on B ðacting through ^Þ;

M^ ¼S r=^ � dF ¼ total impressed moment on B about ^: ð3:15:1cÞ

Component Representations

Let us, next, express (3.15.1b) in terms of the components of its vectors along the

following useful axes/coordinates:

(i) If the coordinates/components of ^ relative to the fixed axes/basis
O��XYZ=IJK are X^, Y^, Z^, and the Eulerian angles of a body-fixed axes/basis
^��xyz=ijk relative to the cotranslating (nonrotating) axes/basis ^��XYZ=IJK are

�; �;  [recalling }1.12] — that is, if the Lagrangean coordinates of B are q1;2;3 ¼
X^; Y^; Z^, and q4;5;6 ¼ �; �;  — then

[un: unit vector along nodal line] and, substituting them into (3.15.1b), we obtain

� 0W ¼ QX �X^ þQY �Y^ þQZ �Z^ þM^;� ��þM^;� ��þM^; � ; ð3:15:1eÞ
where

QX � F � I ð� Q1Þ; etc:; cyclically;

M^;� �M^ �K ð� Q4 � Q�Þ;
M^;� �M^ � un ð� Q5 � Q�Þ;
M^; �M^ � k ð� Q6 � Q Þ; ð3:15:1fÞ

� 0W ¼ Qx�x^ þQy�y^ þQz�z^ þM^;x��x þM^;y��y þM^;z��z; ð3:15:1gÞ

� 0W ¼ QX�X^ þQY�Y^ þQZ�Z^ þM^;X��X þM^;Y��Y þM^;Z��Z; ð3:15:1hÞ
where the (X^; Y^; Z^) are genuine (holonomic) coordinates, but the (�X ; �Y ; �Z)

are quasi coordinates [i.e., dX^ ¼ ðdX^=dtÞdt � v^;Xdt; d�X � !Xdt, etc.].

Component Transformations

To relate these various M^ components with each other we shall use (i) basis vector
transformations and, equivalently, (ii) the � 0W invariance.
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δr^ = δX^ I + δY^J+ δZ^K, δθ = δφK + δθ un + δψ k (3.15.1d)

that is, M^ ;φ,θ,ψ are the components of M^ along this “natural” unit but nonortho-
gonal axes/basis ^–Znz/Kunk.

(ii) Similarly, using body-fixed axes/basis, ^–xyz/ijk, we can write

but, here, both the (δx^, δy^, δz^) and (δθx, δθy, δθz) are virtual variations of quasi
coordinates [whose (. . .)·-derivatives are the earlier quasi velocities v ;̂x,y,z and ωx,y,z,
respectively; i.e., dx^ = v^,x dt, dθx = ωx dt, etc.].

(iii) Finally, using cotranslating axes/basis, ^–XYZ/IJK, we have



(i) Basis Vector Transformations

(a) Eulerian versus Inertial Components. With reference to fig. 3.35, we find, suc-

cessively,

M^;�ð �M^;ZÞ �M^ �K ½¼ ð0ÞM^;X þ ð0ÞM^;Y þ ð1ÞM^;Z�; ð3:15:2aÞ

M^;�ð �M^;nÞ �M^ � un

¼ ðM^;XI þM^;YJ þM^;ZKÞ � ðcos� I þ sin� JÞ
¼ ðcos�ÞM^;X þ ðsin�ÞM^;Y þ ð0ÞM^;Z; ð3:15:2bÞ

M^; ð �M^;zÞ �M^ � k ¼M^ � ð� sin � uN þ cos �KÞ
¼M^ � ½� sin �ð� sin� I þ cos� JÞ þ cos �K �
¼ ðM^;XI þM^;YJ þM^;ZKÞ � ðsin� sin � I � cos� sin � J þ cos �KÞ
¼ ðsin� sin �ÞM^;X þ ð� cos� sin �ÞM^;Y þ ðcos �ÞM^;Z: ð3:15:2cÞ

Inverting the above, we obtain, after some simple algebra,

M^;X ¼ ð� cot � sin�ÞM^;� þ ðcos�ÞM^;� þ ðsin�= sin �ÞM^; ; ð3:15:2dÞ

M^;Y ¼ ðcot � cos�ÞM^;� þ ðsin�ÞM^;� þ ð� cos�= sin �ÞM^; ; ð3:15:2eÞ

M^;Z ¼ ð1ÞM^;� þ ð0ÞM^;� þ ð0ÞM^; : ð3:15:2f Þ
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M  = M'  + M'  cos��� �
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k M
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M  = M'  + M'   cos����

�M'   cos��

�

Figure 3.35 Geometrical demonstration of difference between orthogonal

projections (in nonorthogonal axes) (M�;�; ) and parallel (M 0
�;�; ) projections

(components); M^ � M.



(b) Eulerian versus Body-Fixed Components. Again, with reference to fig. 3.35, we

find, successively,

M^;�ð �M^;ZÞ �M^ �K ¼M^ � ðsin � j 0 þ cos �kÞ
¼M^ � ½sin �ðsin i þ cos jÞ þ cos �k�
¼ ðM^;x i þM^;y j þM^;z kÞ � ðsin � sin i þ sin � cos j þ cos �kÞ
¼ ðsin � sin ÞM^;x þ ðsin � cos ÞM^;y þ ðcos �ÞM^z;; ð3:15:2gÞ

M^;� ð �M^;nÞ �M^ � un ¼M^ � ðcos i � sin jÞ
¼ ðcos ÞM^;x þ ð� sin ÞM^;y þ ð0ÞM^;z; ð3:15:2hÞ

M^; ð�M^;zÞ �M^ � k ¼ ð0ÞM^;x þ ð0ÞM^;y þ ð1ÞM^;z: ð3:15:2iÞ
Inverting the above, we obtain

M^;x ¼ ðsin = sin �ÞM^;� þ ðcos ÞM^;� þ ð� cot � sin ÞM^; ; ð3:15:2jÞ
M^;y ¼ ðcos = sin �ÞM^;� þ ðsin ÞM^;� þ ð� cot � cos ÞM^; ; ð3:15:2kÞ
M^;z ¼ ð0ÞM^;� þ ð0ÞM^;� þ ð1ÞM^; : ð3:15:2lÞ

Similarly, we can relate the Eulerian axes/basis components with, say, those along

the semimobile axes/basis ^��x 0y 0z 0=i 0j 0k 0 � ^��nn 0z=un j
0k, or the semifixed

^��x 0NZ=i 0uNK � ^��nNZ=unuNK ones; and, from (3.15.2a–c) and (3.15.2g–i), we

can relate the M^;x;y;z with the M^;X ;Y ;Z. The details are left to the reader.

(ii) � 0W Invariance

Such derivations are based on the following earlier found kinematic relations (}1.12):

� Eulerian versus inertial axes:

��X ¼ ð0Þ ��þ ðcos�Þ ��þ ðsin� sin �Þ � ;
��Y ¼ ð0Þ ��þ ðsin�Þ �� þ ð� cos� sin �Þ � ;
��Z ¼ ð1Þ ��þ ð0Þ ��þ ðcos �Þ � ; ð3:15:3aÞ
�� ¼ ð� cot � sin�Þ ��X þ ðcot � cos�Þ ��Y þ ð1Þ ��Z;
�� ¼ ðcos�Þ ��X þ ðsin�Þ ��Y þ ð0Þ ��Z;
� ¼ ðsin�= sin �Þ ��X þ ð� cos�= sin �Þ ��Y þ ð0Þ ��Z: ð3:15:3bÞ

� Eulerian versus body-fixed axes:

��x ¼ ðsin sin �Þ ��þ ðcos Þ ��þ ð0Þ � ;
��y ¼ ðcos sin �Þ ��þ ð� sin Þ ��þ ð0Þ � ;
��z ¼ ðcos �Þ ��þ ð0Þ �� þ ð1Þ � ; ð3:15:3cÞ
�� ¼ ðsin = sin �Þ ��x þ ðcos = sin �Þ ��y þ ð0Þ ��z;
�� ¼ ðcos Þ ��x þ ð� sin Þ ��y þ ð0Þ ��z;
� ¼ ð� cot � sin�Þ ��x þ ð� cot � cos Þ ��y þ ð1Þ ��z: ð3:15:3dÞ
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From the above, we can also find the relations ��x;y;z ¼ ð. . .Þ ��X ;Y ;Z and its inverse

��X ;Y ;Z ¼ ð. . .Þ ��x;y;z.
For obvious reasons, we need consider only the ‘‘moment part’’ of � 0W ; that is,

� 0WM �M^;� ��þM^;� ��þM^; � :

(a) Eulerian versus Inertial Components. With the help of (3.15.3b), we find, suc-

cessively,

� 0WM ¼M^;�½ð� cot � sin�Þ ��X þ ðcot � cos�Þ ��Y þ ð1Þ ��Z�
þM^;�½ðcos�Þ ��X þ ðsin�Þ ��Y þ ð0Þ ��Z�
þM^; ½ðsin�= sin �Þ ��X þ ð� cos�= sin �Þ ��Y þ ð0Þ ��Z�

¼ ½ð� cot � sin �ÞM^;� þ ðcos�ÞM^;� þ ðsin�= sin �ÞM^; � ��X
þ ½ðcot � cos�ÞM^;� þ ðsin�ÞM^;� þ ð� cos�= sin �ÞM^; � ��Y
þ ½ð1ÞM^;� þ ð0ÞM^;� þ ð0ÞM^; � ��Z

¼M^;X ��X þM^;Y ��Y þM^;Z ��Z; that is; eqs: ð3:15:2d��fÞ: ð3:15:4aÞ

(b) Eulerian versus Body-Fixed Components. With the help of (3.15.3c) we find,

successively,

� 0WM ¼M^;X ½ð0Þ ��þ ðcos�Þ ��þ ðsin� sin �Þ � �
þM^;Y ½ð0Þ �� þ ðsin �Þ ��þ ð� cos� sin �Þ � �
þM^;Z½ð1Þ ��þ ð0Þ ��þ ðcos�Þ � �

¼ ½ð0ÞM^;X þ ð0ÞM^;Y þ ð1ÞM^;Z� ��
þ ½ðcos�ÞM^;X þ ðsin�ÞM^;Y þ ð0ÞM^;Z� ��
þ ½ðsin� sin �ÞM^;X þ ð� cos� sin �ÞM^;Y þ ðcos �ÞM^;Z� � 

¼M^;� �� þM^;� ��þM^; � ; ð3:15:4bÞ

that is, eqs. (3.15.2a–c), without inverting eqs. (3.15.2d–f).

Similarly, using the transformations (3.15.3c, d), we can recover the earlier equa-

tions (3.15.2g–l).

We hope that the above have demonstrated the simplicity and superiority of

the ‘‘� 0W invariance’’ approach. It, clearly, allows us to find the Lagrangean forces

in any other ‘‘new’’ system of holonomic/nonholonomic variables—if we know

them in an ‘‘old’’ one—plus the differential geometrical equations relating these

two systems.

Example 3.15.1 Eulerian Components versus Projections [recall (1.2.7a ff.)]. As

already known, the Eulerian axes/basis ^��Znz=Kunk is nonorthogonal. Therefore

(and omitting all subscripts ^ for simplicity),

M 6¼M�K þM� un þM k; ðaÞ
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even though, as (3.15.1f ) remind us,

M� ¼M �K ; M� ¼M � un; M ¼M �k ðbÞ
(components entering virtual work, just like the system momenta p�;�; ); that is, in

the case of nonorthogonal axes, the (orthogonal) projections of (a vector) M ; M�;�; ,

are not equal to its components (i.e., parallel projections), say M 0
�;�; (fig. 3.35).

To find these latter (referred in tensor calculus as contravariant components), we

set

M ¼M 0
� K þM 0

� un þM 0
 k; ðcÞ

dot it in succession with K ; un; k, and then invoke (b) and fig. 3.35.

The results are

M� ¼M 0
�ðK �KÞ þM 0

�ðun �KÞ þM 0
 ðk �KÞ

¼M 0
�ð1Þ þM 0

�ð0Þ þM 0
 ðcos �Þ ¼M 0

� þ ðcos �ÞM 0
 ; ðdÞ

M� ¼M 0
�ðK � unÞ þM 0

�ðun � unÞ þM 0
 ðk � unÞ

¼M 0
�ð0Þ þM 0

�ð1Þ þM 0
 ð0Þ ¼M 0

�; ðeÞ
M ¼M 0

�ðK �kÞ þM 0
�ðun � kÞ þM 0

 ðk � kÞ
¼M 0

�ðcos �Þ þM 0
�ð0Þ þM 0

 ð1Þ ¼ ðcos �ÞM 0
� þM 0

 : ðfÞ
Inverting the above, we easily obtain (see also fig. 3.35)

M 0
� ¼ ð1= sin2 �ÞðM� � cos �M Þ; ðgÞ

M 0
� ¼M�; ðhÞ

M 0
 ¼ ð1= sin2 �ÞðM � cos �M�Þ: ðiÞ

Example 3.15.2 Equilibrium Conditions; and Accelerationless Rigid-Body Motion.

(i) Equilibrium conditions of forces via virtual work. Let us consider these forces as

acting on the various material particles of a rigid body/system, and let us calculate

the corresponding (total, first-order, and inertial) virtual work. Reasoning as in

(3.15.1b, c), we obtain

Sdf � �r

where

f ¼Sdf ¼ total force on B ðacting through ^Þ;

M^ ¼S r=^ � df ¼ total moment on B about ^: ðbÞ

� 0Wf ¼ 0 leads to the well-known force equilibrium equations

f ¼ 0 and M^ ¼ 0: ðcÞ
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Since the virtual displacements δr^ , δθ are independent/arbitrary, the condition

δ′Wall forces ≡ δ′Wf ≡

= Sdf · (δr^ + δθ × r
/^ ) = · · · = f · δr^ +M^ · δθ, (a)



In sum: if � 0Wf ¼ 0, for every rigid virtual displacement, the forces are in equili-

brium; and, conversely, if the forces are in equilibrium in the sense of (c), then

� 0Wf ¼ 0.

Finally, if we invoke the action–reaction principle for the internal forces (} 1.6),

eqs. (c) can be replaced by

f external ¼ 0 and M^;external ¼ 0: ðdÞ

[See also Marcolongo, 1911, pp. 266–269; and Heun, 1902(b)].

(ii) Accelerationless motion of a rigid body. The latter is defined as that for which

Then, since [recall (3.13.8 ff.)]

where

I �Sdm a ¼ m aG ¼ ðinertialÞ linear inertia of body B; ðgÞ
A^ �S r=^ � ðdm aÞ ¼ ðinertialÞ relative angular inertia of B about ^; ðhÞ

it follows that

I ¼ 0 and A^ ¼ 0; ðiÞ
and, therefore, that [choosing in (f) �r! v ¼ v^ þ x� r=^]

�I ! dT=dt �Sdm a � v ¼Sdm a � ðv^ þ x� r=^Þ
¼ � � � ¼ I � v^ þ A^ �x ¼ 0 ) T ¼ constant; ð jÞ

that is, if the body was initially at (inertial) rest, it remains at rest (equilibrium).
Clearly, the choice of ^ has no effect on such a motion. In particular, if we select

^ ¼ G, the equations of motion yield

mðdvG=dtÞ ¼ 0 ) vG ¼ constant and dhG=dt ¼ 0 ) hG ¼ constant; ðkÞ
from which, since vG and hG are mutually independent, we conclude that G can be

taken as still.

Example 3.15.3 Analytical Statics: Equilibrium Conditions via Virtual Work.
With the help of the concept of virtual work, and so on, we can summarize statics

into the following results/propositions:

THEOREM

Two equivalent force (and/or couple) systems acting on a rigid body produce equal

virtual works.
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If δ′W ≡SdF · δr = SdF · (δr^ + δθ × r
/^ ) = 0, then we are led to the follow-

ing.

δI ≡Sdma · (δr^ + δθ × r
/^ ) = · · · = I · δr^ + A^ · δθ, (f)

δI ≡Sdma · δr = 0, for every δr = δr^ + δθ × r
/̂

. (e)



THEOREM

In every reversible rigid virtual displacement, the total virtual work of the constraint

reactions vanishes (statical principle of Lagrange).

On Irreversible, or Unilateral, Constraints. Consider a particle P and a stationary

rigid surface S with equation f ðx; y; zÞ ¼ 0. If P moves on S, then its coordinates

satisfy the equation f ¼ 0. The function f is positive on one side of S and negative

on the other. Therefore, if P moves on the positive side of S, and cannot penetrate it

or move except on that side, then its constraint is f 	 0. In such cases, we distin-

guish: (i) ordinary positions of P, if f > 0, and (ii) limiting, or boundary, positions, if

f ¼ 0. Now we can state the general principle of virtual work, as follows.

LEMMA

The total virtual work of the (ideal) constraint reactions of a system in equilibrium

(or motion), in every unilateral virtual displacement, is either positive or zero:

� 0WR �SdR � �r 	 0: ðaÞ

PRINCIPLE OF VIRTUAL WORK

For equilibrium at a boundary configuration of a scleronomic and originally motion-

less system, it is necessary and sufficient that the total impressed virtual work,

� 0W � S dF � �r, be zero for all reversible virtual displacements; and zero or negative
for all nonreversible virtual displacements (Fourier, 1798).

Problem 3.15.1 Virtual Work-Like Characterization of Astatic Equilibrium. Show

that the vanishing of the (total, first-order, and inertial) vector virtual work of all
forces

� 0WV �Sdf � �r; ðaÞ

(recalling the tensor product definition, }1.1)

f ¼Sdf ¼ 0 ðvectorÞ; S r
 df ¼ 0 ðtensorÞ; ðbÞ

and, conversely, if (the twelve scalar conditions) (b) hold, then � 0WV ¼ 0.

[This result seems to be due to Heun, 1902(a), p. 69; see also Biezeno, 1927, pp.

253–254.]

Example 3.15.4 Eulerian Equations of Motion of a Rigid Body B Moving about a
Fixed Point ^ via the Central Equation (recall }3.6):

�T þ � 0W ¼ d=dtð�PÞ: ðaÞ
For this special system (with O ¼ ^; i.e., r=^ ¼ r, and using body-fixed axes at ^), we

have

M �M^ �S r� dF ¼ total impressed moment on B; about origin ^; ðcÞ
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for every δr = δr^ + δθ × r
/^ , leads to the astaticity conditions for these forces

(i) δ′W ≡SdF · δr =SdF · (δθ × r) = M · δθ, (b)



ðiiÞ 2T ¼Sdm v2 ¼Sdmðx� rÞ2 ¼Sdm ½r� ðx� rÞ� �xf g

¼ H �x ¼
X

Hk !k ¼ ð@T=@xÞ �x ¼
X
ð@T=@!kÞ!k; ðdÞ

where

H � H^ �Sdm ½r� ðx� rÞ� ¼S r� ðdm vÞ ¼ @T=@x
¼ ðHx;Hy;HzÞ ¼ ð@T=@!x; @T=@!y; @T=@!zÞ
¼ ðinertialÞ absolute angular momentum of B about ^; ðeÞ

and k ¼ 1; 2; 3 � x; y; z. From the above, and since, here, the independent kinema-
tical variable is x, we obtain

If the body-fixed axes ^��xyz are also principal, then Hk ¼ Ik !k (Ik ¼
principal moments of inertia at ^), and equations (i) readily reduce to the famous

Eulerian rotational equations. [The more general forms (i, j) seem to be due to

Lagrange. See also Heun (1906, pp. 276–280), and Papastavridis (1992) for alter-

native derivations and additional insights.]
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δT = Sdmv · δv =Sdm(x × r) · (δx × r)

=
{
Sdm[r× (x × r)]

}
· δx

= H · δrelx [δrel(· · · ) = virtual variation of (· · · ) relative to ^− xyz]. (f)

(iii) d/dt(δP) = d/dt
(
Sdmv · δr

)
= d/dt

[
Sdmv · (δθ × r)

]

= (∂H/∂t) · δθ +H · [∂(δθ)/∂t] [where ∂H/∂t = (dHk/dt)]

= (∂H/∂t) · δθ +H · (δrelx + δθ × x) [recalling ex. 2.3.11: (g)]

= (∂H/∂t+ x ×H) · δθ +H · δrelx . (g)

In view of (b–g), the central equation (a) reduces to

(∂H/∂t+ x ×H) · δθ = M · δθ, (h)

that is, δI = δ′W. Now: (a) If δθ is unconstrained, the variational equation (h) leads
immediately to the equation of motion

∂H/∂t+ x ×H = M; (i)

(b) If, on the other hand, δθ is constrained, say by the Pfaffian equation B · δθ = 0
[where B = B(t, r)], then the multiplier rule applied to (i) yields the “Routh–Voss-
type” equation [with λ = λ(t) = multiplier]:

∂H/∂t+ x ×H = M+ λB. (j)

Clearly, the reaction moment λB has zero virtual work: (λB) · δθ = 0.

= H · δx = (∂T/∂x) · δx =
∑

Hkδωk =
∑

(∂T/∂ωk)δωk

= d/dt(H · δθ) = d/dt
(∑

Hk δθk

)
= (∂/∂t)(H · δθ)



Problem 3.15.2 Consider a rigid body moving about a fixed point ^. Relate its

Lagrangean and Eulerian momentum and inertia/acceleration vectors.

HINT

With ^��xyz principal axes at ^, and Lagrangean coordinates their Eulerian angles

relative to fixed axes (�; �;  ), we have

�P �Sdm v � �r ¼ p� �� þ p� ��þ p � ðLagrangean momentaÞ;
�I �Sdm a � �r ¼ A� ��þ A� ��þ A � ðLagrangean inertia=accelerationsÞ;
2T ¼ 2T* ¼ Ix!x

2 þ Iy!y
2 þ Iz!z

2; ðaÞ
where

A� � I� � ð@T=@ _��Þ: � @T=@� ¼ dp�=dt� @T=@�; etc: ðbÞ
But also, using some of the earlier kinematics [eqs. (3.15.3d)],

�P ¼ p�½ð. . .Þ ��x þ ð. . .Þ ��y þ ð. . .Þ ��z� þ � � �
� Hx ��x þ � � � ðEulerian momentaÞ; ðcÞ

from which

Hx ¼ ð. . .Þp� þ ð. . .Þp� þ ð. . .Þp ; Hy ¼ � � � ; Hz ¼ � � � ;
p� ¼ ð. . .ÞHx þ ð. . .ÞHy þ ð. . .ÞHz; p� ¼ � � � ; p ¼ � � � ; ðdÞ

and by chain rule

@T=@� ¼
X
ð@T*=@!kÞð@!k=@�Þ ¼

X
ðIk!kÞð@!k=@�Þ ¼

X
Hkð@!k=@�Þ

¼ � � � ; @T=@� ¼ � � � ; @T=@ ¼ � � � ; etc: ðeÞ
Hence, using the above, we obtain the sought relations

A� ¼ dp�=dt� @T=@� ¼ � � � ¼ ð. . .ÞAx þ ð. . .ÞAy þ ð. . .ÞAz; etc:

Ax ¼ ð. . .ÞA� þ ð. . .ÞA� þ ð. . .ÞA ¼ dHx=dtþ !yHz � !zHy; etc:

ðEulerian inertia=accelerationsÞ: ðf Þ

3.16 RELATIVE MOTION (OR MOVING AXES/FRAMES) VIA

LAGRANGE’S METHOD

In this section, following the rare and masterful treatment of Lur’e (1968, chap. 9,

pp. 423–493), we derive the Lagrangean type of equations of motion of a system S
relative to a noninertial frame of reference (with associated moving axes O��xyz),
in general known or unknown rigid motion relative to an inertial frame (with

associated fixed axes I ��XYZ), or relative to its comoving nonrotating frame (with

associated translating axes O��XYZ) — see fig. 3.36, depicting a convenient two-

dimensional such case.
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Here, we shall use the following terminology and notation:

O��xyz: carrying (or supporting, or transporting, or intermediate, or housing) body,

or frame; e.g., an airplane. Its origin O is referred to as moving pole, or basis.

S: carried body/system; e.g., a spinning gyroscope inside the (earlier) carrying air-

plane.

Geometry

We begin with the obvious geometrical relations:

r=I ¼ rO=I þ r=O or; simply; RR ¼ rO þ r: ð3:16:2aÞ
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Figure 3.36 Two-dimensional case of system S in general motion relative to

the arbitrarily moving axes O–xyz.

R

Ω = (inertial) angular velocity vector of O–xyz; i.e., relative to I–XYZ/O–XYZ;
dΩ/dt ≡ A = corresponding angular acceleration vector.
d(. . .)/dt = inertial rate of change of (. . .); i.e., relative to I–XYZ/O–XYZ;
∂(. . .)/∂t = noninertial rate of change of (. . .); i.e., relative to O–xyz.

As shown in §1.1 and §1.7:

For an arbitrary vector b,

db/dt = ∂b/∂t+ Ω × b; (3.16.1a)

For an arbitrary second-order tensor T,

Also, as shown there (or, most easily, using Cartesian components), for any two
vectors a and b,

(a× T) · b = a× (T · b) and (T× a) · b = T · (a× b). (3.16.1c)

dT/dt = ∂T/∂t+ Ω × T− T× Ω . (3.16.1b)



Now: (i) Let

r ¼ rðq1; . . . ; qnÞ � rðqÞ; ð3:16:2bÞ
where n � 3N � h, N ¼ number of particles of S (if we choose to adopt the particle

model for it), h � number of holonomic constraints on S. The q � ðq1; . . . ; qnÞ are

noninertial Lagrangean coordinates; that is, they specify the configurations of the

carried body S relative to the carrying one O��xyz; and, as explained in }2.4, they

guarantee the satisfaction of the above holonomic constraints.

(ii) If the motion of O��xyz is known, or prescribed, and hence unaffected by the

motion of S, then rO ¼ rOðtÞ; S is rheonomic.
(iii) If, on the other hand, the motion of O��xyz is unknown [e.g., if the motion of

the earlier gyroscope (S) does affect the motion of the airplane (O��xyz)!], then

rO ¼ rO (inertial coordinates of pole O), and hence, not an explicit function of t; S
is scleronomic.

Kinematics ! Kinetic Energy

Since the inertial velocity of a typical S-particle is (recalling }1.7)

� vO þ vrel þX� r; ð3:16:3aÞ
where

vO ¼ drO=dt ¼ inertial velocity of pole O; ð3:16:3bÞ

¼
X
ð@r=@qkÞðdqk=dtÞ �

X
ek _qqk ½by ð3:16:2bÞ�; ð3:16:3cÞ

the (inertial) kinetic energy of S, T � ð1=2ÞSdm v � v, becomes

T ¼ Ttrnspt þ Trel þ Tcpl; ð3:16:3dÞ
where

2Ttrnspt � mvO
2 þSdmðX� rÞ2 þ 2m vO � ðX� rGÞ

¼ 2 ðkinetic energy of transportÞ; ð3:16:3eÞ
[recall, Trotation � TR, expressions (3.13.2b, 3b), and see fig. 3.36],

2Trel �Sdm vrel
2 ¼

¼Sdm
X
ð@r=@qkÞ _qqk

h i
�

X
ð@r=@qlÞ _qql

h i
¼
XX

Sdm ð@r=@qkÞ � ð@r=@qlÞ
h i

_qqk _qql �
XX

Sdm ek � el

� �
_qqk _qql

¼ 2 ðrelative kinetic energyÞ; ð3:16:3fÞ
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vrel = ∂r/∂t = relative velocity of typical S-particle

= mvO
2 + 2m vO · (Ω × rG) + Ω · IO · Ω

v ≡ d�/dt = drO/dt+ dr/dt = vO + (∂r/∂t+ Ω × r)

Sdm (∂r/∂t)2



Tcpl � prel � vO þHO;rel �X

¼ kinetic energy of coupling ðof carrying and carried motions;

or ‘‘Coriolis kinetic energy’’), ð3:16:3gÞ

¼Sdm
X
ð@r=@qkÞ _qqk

h i
¼
X

Sdm ð@r=@qkÞ
h i

_qqk

¼ ðnoninertialÞ linear momentum of body S; ð3:16:3hÞ

¼ � � � ¼
X

Sdm r� ð@r=@qkÞ
h i

_qqk

¼ noninertial ðabsoluteÞ angular momentum of S about O: ð3:16:3iÞ
Before applying the Lagrangean formalism to the above, let us reduce them further

to system forms, in the sense of }3.9:

(a) Ttrnspt is independent of the _qq’s. It would be the kinetic energy of S if the latter was

frozen relative to O��xyz; that is, if these axes were fixed in S. In accordance with

(3.9.2, 2c), we shall rename it T0 ½� ð _qqÞ0�.
(b) With the notations

Mk � vO � Sdm ð@r=@qkÞ
h i

þX � Sdmr� ð@r=@qkÞ
h i

¼ vO � Sdm ek

� �
þX � S ðdm r� ekÞ

h i
; ð3:16:4aÞ

Mkl �Sdm ð@r=@qkÞ � ð@r=@qlÞ ¼Sdm ek � el; ð3:16:4bÞ

and recalling (3.9.2a, b), we can rewrite Tcpl and Trel as

Tcpl ¼
X

Mk _qqk � T1 ð� _qqÞ;
2Trel ¼

XX
Mkl _qqk _qql � 2T2 ½� ð _qqÞ2�: ð3:16:4cÞ

So, finally, the total kinetic energy, (3.16.3d), assumes the following general

Lagrangean notation:

T ¼ Trel þ Tcpl þ Ttrnspt � T2 þ T1 þ T0: ð3:16:4dÞ
Now, as the above expressions show, T depends on the following:

(a) The six carrying quasi velocities vO ¼ ðvO;x;y;zÞ and X ¼ ðOx;y;zÞ, along O��xyz
[Along I ��XYZ=O��XYZ, we would have rO ¼ ðXO;YO;ZOÞ, and, therefore,

vO ¼ ðvO;X ;Y;ZÞ � ð _XXO; _YYO; _ZZOÞ ¼ holonomic components]; and

(b) The n carried holonomic velocities _qq � ð _qq1; . . . ; _qqnÞ.

Therefore, in the general case, we will obtain two groups of equations:

(a) six Hamel-type (or Lagrange–Euler) equations for the quasi velocities, coupled with

(b) n Lagrange-type equations for the q= _qq’s.
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prel ≡Sdm vrel =Sdm(∂r/∂t) = m vG,rel ≡ m(∂rG/∂t)

HO,rel ≡S r× (dm vrel) =S r × [dm(∂r/∂t)]



The right, or force, sides of these equations will contain the corresponding six non-

holonomic and n holonomic forces (and/or moments). Indeed, recalling (3.16.2a), we

have

if rO ¼ rOðtÞ then, clearly, �rO ¼ 0. Hence, in general, the total (inertial and first-

order) impressed virtual work equals

where

F �SdF ¼ total impressed force ðacting at OÞ; ð3:16:5cÞ
MO �S r� dF ¼ total impressed moment about O: ð3:16:5dÞ

Let us now find the 6þ n equations of motion.

Hamel-Type (or Lagrange–Euler) Carrying Body Equations

(A review of }3.13 is highly recommended.) Since Trel ¼ T2 is independent of the

quasi velocities vO;x;y;z and Ox;y;z, we can write

@T=@vO;k ¼ @T0=@vO;k þ @T1=@vO;k; @T=@Ok ¼ @T0=@Ok þ @T1=@Ok;

ð3:16:5eÞ
where k ¼ x; y; z. Now, recalling the expressions for T , @T=@v^; @T=@x from }3.13

(and setting in those formulae T ! TO, ^! O, x! X, we readily conclude that

@T0=@vO;x ¼ mðvO;x þ OyzG � OzyGÞ; etc:; cyclically; ð3:16:5fÞ
@T0=@Ox ¼ mðyGvO;z � zGvO;yÞ þ ðIO;xxOx þ IO;xyOy þ IO;xzOzÞ; etc:; cyclically;

ð3:16:5gÞ
where ðIO;kl; k; l ¼ x; y; zÞ are the components of the inertia tensor of the system S
about O, along O��xyz; and

@T1=@vO;x ¼ mðdxG=dtÞ ¼ ðprelÞx; etc:; cyclically; ð3:16:5hÞ
@T1=@Ox ¼ ðHO;relÞx; etc:; cyclically: ð3:16:5iÞ

A moment’s reflection will show that the left (inertia/acceleration) sides of the equa-

tions for vO and X are none other than the former expressions (3.13.11a, b) with
^; � ! O. Hence, for an unconstrained rigid body, we have [since all (symbolic)

partial derivatives of T relative to the quasi coordinates vanish]

or, in components,

Ix¼ ð@T=@vO;xÞ:þOyð@T=@vO;zÞ�Ozð@T=@vO;yÞ ¼ Fx; etc:; cyclically; ð3:16:6bÞ
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δ� = δrO + δr = δrO + (δrelr+ δΘ × r) [where dΘ/dt ≡ Ω]

= δrO + δΘ× r +
∑

(∂r/∂qk)δqk; (3.16.5a)

δ′W =SdF · δ� = · · · = F · δrO +MO · δΘ +
∑

Qk δqk, (3.16.5b)

I = d/dt(∂T/∂vO) ≡ ∂/∂t(∂T/∂v^) +Ω × (∂T/∂v^) = F, (3.16.6a)



and

or, in components,

AO;x ¼ ð@T=@OxÞ:þ Oyð@T=@OzÞ � Ozð@T=@OyÞ
þ vO;yð@T=@vO;zÞ � vO;zð@T=@vO;yÞ ¼MO;x; etc:; cyclically: ð3:16:6dÞ

To obtain explicit Euler-type equations from the above, we introduce in (3.16.6a–d)

the earlier found expressions for T . In this way:

(i) Equations (3.16.6b) yield

m
n
_vvO;x þ ð _OOyzG � _OOzyGÞ þ ðOy _zzG � Oz _yyGÞ þ ðOyvO;z � OzvO;yÞ

þ ½OyðOxyG � OyxGÞ � OzðOzxG � OxzGÞ�

þ ð€xxG þ Oy _zzG � Oz _yyGÞ
o
¼ Fx; etc:; cyclically; ð3:16:6eÞ

or, in vector form (appropriately grouped),

� m ½aO þ ðdX=dtÞ � rG þX� ðX� rGÞ� þ 2X� vG;rel þ aG;rel
� �

� mðaG;transport þ aG;Coriolis þ aG;relativeÞ � m aG;inertial � m aG ¼ F; ð3:16:6f Þ

which is the well-known equation of motion of the ‘‘inertial center’’ of the carried

system G.

[Also, the above equations and the earlier kinematic relations

demonstrate clearly the coupling of the holonomic velocities _qq with the nonholo-

nomic ones vO;x;y;z and Ox;y;z.]

(ii) Equations (3.16.6d) yield

mðyG _vvO;z�zG _vvO;yÞ þ ðIO;xx _OOx þ IO;yy _OOy þ IO;zz _OOz

þ _IIO;xx Ox þ _IIO;xyOy þ _IIO;xz OzÞ
þ ðHO;relÞx:þm½OyðvO;y xG � vO;x yGÞ � OzðvO;x zG � vO;z xGÞ�
þ OyðIO;zx Ox þ IO;zy Oy þ IO;zz OzÞ � OzðIO;yx Ox þ IO;yy Oy þ IO;yz OzÞ
þ OyðHO;relÞz � OzðHO;relÞy
þm½vO;yðOx yG � Oy xGÞ � vO;zðOz xG � Ox zGÞ� ¼MO;x; etc:; cyclically;

ð3:16:6hÞ
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AO = d/dt(∂T/∂Ω) + vO × (∂T/∂vO)

≡ ∂/∂t(∂T/∂Ω) +Ω × (∂T/∂Ω) + vO × (∂T/∂vO) = MO, (3.16.6c)

m[∂vO/∂t+Ω × vO) + (dΩ/dt) × rG +Ω × (Ω × rG) + 2Ω × (∂rG/∂t) + ∂2rG/∂t2]

vG,rel = ∂rG/∂t =
∑

(∂rG/∂qk)q̇k,

aG,rel = ∂vG/∂t =
∑

(∂rG/∂qk)q̈k +
∑∑

(∂2rG/∂qk∂ql)q̇kq̇l, (3.16.6g)



¼ 2
X n

Sdm
��
r � ð@r=@qkÞ

�
X � ð1=2Þ�ð@r=@qkÞ 
 r

�
�X � ð1=2Þ�r
 ð@r=@qkÞ� �X

þ ð1=2ÞX� �r� ð@r=@qkÞ��o _qqk

¼ 2
X

Sdm r� X� ð@r=@qkÞ½ �
n o

_qqk

¼ 2Sdm r� ðX � vrelÞ ¼ S r� ð2dmX� vrelÞ:
� ðTotal moment of Coriolis forces; on the carrying body; about O;

due to the motion of the carried body relative to itÞ � �MO;Coriolis:

ð3:16:7bÞ

In view of this result, and using (3.16.6f ) to eliminate aO, we can rewrite (3.16.6h)

(after some judicious regrouping) in the following Euler-like form:

REMARKS, SPECIALIZATIONS

(i) Equations (3.16.7c) result immediately from (3.16.6h) with the choice O! G.
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IG · (dΩ/dt) + Ω × (IG · Ω ) = MG +MG,Coriolis − ∂HG,rel/∂t, (3.16.7c)

where

IG = IO − m
[
(rG · rG)1− rG ⊗ rG

]
: Moment of inertia of S about G

(direct tensorial form of parallel axis theorem; recall §1.15), (3.16.7d)

HG,rel = HO,rel − m rG × (∂rG/∂t), (3.16.7e)

MG,Coriolis ≡ −[(∂IG/∂t) · Ω + Ω ×HG,rel]

= MO,Coriolis − rG × (2mΩ × vG,rel) [i.e., same as (3.16.7b), but about G],

(3.16.7f)

MG = MO − rG × F [withF assumed applied at O]. (3.16.7g)

Ω + Ω × HO,rel

or, vectorially,

IO · (dΩ/dt) + (∂IO/∂t) · Ω + Ω × (IO · Ω)

+ (∂HO,rel/∂t+ Ω ×HO,rel) + mrG × aO = MO. (3.16.6i)

This equation can be transformed further. Recalling the inertia tensor definition
[§1.15, and with 1 = (δkl) = 3 × 3 unit (Cartesian) tensor, where k, l = x, y, z; and
⊗ = tensor product (§1.1)], IO = S dm[(r · r)1− r⊗ r], we obtain

∂IO/∂t

= 2
∑{
Sdm

[
{r · (∂r/∂qk)}1− (1/2)r ⊗ (∂r/∂qk)− (1/2)(∂r/∂qk)⊗ r

]}
q̇k,

(3.16.7a)

and, therefore, we find, successively,

(∂IO/∂t) · Ω + Ω × HO,rel



m
�ð _vvO;x þ !y vO;z � !z vO;yÞ þ ð _!!y zG � _!!z yGÞ

� ½ð!y
2 þ !z

2ÞxG � !xð!y yG þ !z zGÞ�
� ¼ Fx; etc:; cyclically; ð3:16:8bÞ

and, of course, (its left side) coincides with (3.13.10a), with ^ ! O.

If, further, we choose, for algebraic simplicity, (body-fixed) principal axes of S at

O, eqs. (3.16.6h–7b) reduce to

IO;xx _!!x þ ðIO;zz � IO;yyÞ!y !z

þm½ yGð _vvO;z þ !z vO;y � !y vO;zÞ
� zGð _vvO;y þ !z vO;x � !x vO;zÞ� ¼ MO;x; etc:; cyclically: ð3:16:8dÞ

If, finally, O ! G then (3.16.8a, c) reduce, respectively, to the well-known

All these equations express the Eulerian principles of linear and angular momentum,

for the rigid body S about various points, O; G, and so on.

(iii) We hope that the above lengthy and tedious calculations (especially those in

components) have begun to convince the reader that, in this case at least, the
Lagrangean approach (L) is superior to the Eulerian approach (E); even though

both are, roughly, theoretically equivalent. As Lur’e (1968, pp. 412–413) points

out: In E, in order to derive rotational equations we begin with the principle of

angular momentum about a fixed point in I ��XYZ and then transfer both angular

momenta and moments of forces to an arbitrary, say, body-fixed point; and in the

process we utilize certain kinematico-inertial results. In L, on the other hand, the

calculations (of the various partial and total derivatives of the kinetic energy) are

almost automatic (. . . mechanical!); although their final results need ‘‘translating’’

back to the more geometrical Newtonian–Eulerian language. However, as already

stressed (Introduction and this chapter), a far more important advantage of L over

E, for theoretical work anyway, is that, even in complex problems, the former (L)
preserves the structure/form of the equations of motion, whereas in the latter (E) these
equations appear structureless/formless (‘‘a bunch of terms’’), and hence hard to

remember, understand, and interpret.

(iv) The preceding equations of motion can, of course, be derived via Appell’s
method. Indeed, from equation (3.14.4d), with ^ ! O and slight rearrangement, we

obtain
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rates ∂(. . .)/∂t vanish, Ω → x , dΩ/dt→ α , and (3.16.6f, e) reduce,

m[(∂vO/∂t+ x × vO) + α × rG + x × (x × rG)] = F, (3.16.8a)

IO · α + x × (IO · x) + mrG × aO = MO, (3.16.8c)

m(∂vG/∂t+ x × vG) = F and IG · α + x × (IG · x) = MO. (3.16.8e)

+ 2(∂vO/∂t) · [x × m(vO + x × rG)]

+ 2mα · [rG × (∂vO/∂t+ x × vO)]

+ α · IO · α + 2α · [x × (IO · x)]; (3.16.9a)

2S = m[(v̇O,x)
2 + (v̇O,y)

2 + (v̇O,z)
2]

(ii) If S is a rigid body and the O–xyz are body-fixed axes on it, then the relative



and from this, using the following simple identities (a; b: arbitrary vectors, and

k ¼ x; y; z):

@ða � bÞ=@ak ¼ bk; @ða � bÞ=@bk ¼ ak; ð3:16:9bÞ
and

@ða� bÞ=@ax ¼ i � b ¼ kby � jbz; etc:; cyclically; ð3:16:9cÞ
we find

@S
�
@ _vvO;k ¼ m _vvO;k þ ðx� vOÞk þ ða� rGÞk þ ½x� ðx� rGÞ�k

� � ¼ Fk; ð3:16:10aÞ
@

ð3:16:10bÞ
that is, equations (3.16.8a, c), respectively. This completes the discussion of the

quasi-velocity equations of the carrying body. Let us now turn to the q-equations

of the carried system S.

Lagrange-Type Carried System Equations

(This is an application of }3.10, and so we recommend a rereading of that section.)

First, we notice that, in view of the linearity of the holonomic Euler–Lagrange

operator,

EkðTÞ ¼ EkðT0Þ þ EkðT1Þ þ EkðT2Þ: ð3:16:11aÞ
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∂S/∂ω̇k = m
[
rG × (∂vO/∂t+ x × vO)

]
k
+

[
IO · α + x × (IO · x)

]
k
= MO,k,

Next, invoking the earlier T0,1,2 expressions (3.16.3d–4c), we find, successively,

(i) Ek(T0) = · · · = −∂T0/∂qk
= −m(vO ×Ω) · (∂rG/∂qk)− (1/2)Ω · (∂IO/∂qk) ·Ω, (3.16.11b)

(ii) Ek(T1) = Ek(vO · prel) + Ek(Ω ·HO,rel). (3.16.11c)

But:

(a) Ek(vO · prel) = (dvO/dt) · (∂prel/∂q̇k) + vO ·Ek(prel)

= m(dvO/dt) · [∂/∂q̇k(∂rG/∂t)] + m vO ·Ek(∂rG/∂t), (3.16.11d)

d/dt(∂rG/∂qk) = ∂/∂qk(drG/dt) = ∂/∂qk(∂rG/∂t) + ∂/∂qk(Ω × rG)

= ∂/∂qk(∂rG/∂t) +Ω × (∂rG/∂qk), (3.16.11f)

= d/dt(∂rG/∂qk) − ∂/∂qk(∂rG/∂t) = Ω × (∂rG/∂qk), (3.16.11g)

or, in view of the kinematical identities,

∂/∂q̇k(∂rG/∂t) = ∂rG/∂qk, (3.16.11e)

from which

Ek(∂rG/∂t) ≡ [∂/∂q̇k(∂rG/∂t)
]·
− ∂/∂qk(∂rG/∂t)



so that (3.16.11d) becomes

EkðvO � prelÞ ¼ m aO � ð@rG=@qkÞ þmðvO �XÞ � ð@rG=@qkÞ

that is, finally,

ðbÞ EkðX �HO;relÞ ¼ ðdX=dtÞ � ð@HO;rel=@ _qqkÞ þX �EkðHO;relÞ
� ðdX=dtÞ � ð@HO;rel=@ _qqkÞ þX � ½ð@HO;rel=@ _qqkÞ:� @HO;rel=@qk�
¼ ðdX=dtÞ � ð@HO;rel=@ _qqkÞ

Relative Euler��Lagrange operator ðfor the carrying bodyÞ: ð3:16:11jÞ

Introducing all these partial results into the Lagrangean equations of motion, say

EkðTÞ ¼ Qk, or

EkðT2Þ ¼ Qk � EkðT1Þ � EkðT0Þ; ð3:16:12aÞ

we obtain the equations of relative motion for the q’s:

� ðdX=dtÞ � ð@HO;rel=@ _qqkÞ �X �Ek;relðHO;relÞ: ð3:16:12bÞ

However, the inertial, or fictitious (¼ frame dependent) ‘‘forces’’ on the right side of

(3.16.12b) can be further transformed as follows:

ðiÞ
¼ �m aO � ð@rG=@qkÞ ¼ �@VT=@qk:

Lagrangean inertial force of translation; ð3:16:12cÞ

where the corresponding potential of the homogeneous field of these ‘‘forces’’ is

defined by
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that is, finally,

Ek(Ω ·HO,rel) = (dΩ/dt) · (∂HO,rel/∂q̇k) +Ω · [∂/∂t(∂HO,rel/∂q̇k)− ∂HO,rel/∂qk]

≡ (dΩ/dt) · (∂HO,rel/∂q̇k) +Ω ·Ek,rel(HO,rel), (3.16.11i)

where

Ek,rel(. . .) ≡ ∂/∂t(∂ . . . /∂q̇k)− ∂ . . . /∂qk :

= m
[
(∂vO/∂t+Ω × vO) + vO ×Ω

]
· (∂rG/∂qk);

Ek(vO · prel) = m(∂vO/∂t) · (∂rG/∂qk). (3.16.11h)

+Ω · [∂/∂t(∂HO,rel/∂q̇k) +Ω × (∂HO,rel/∂q̇k)− ∂HO,rel/∂qk];

Ek(T2) = Qk − m(∂vO/∂t+Ω × vO) · (∂rG/∂qk) + (1/2)Ω · (∂IO/∂qk) ·Ω

Qk,translation ≡ Qk,T ≡ −m(∂vO/∂t+Ω × vO) · (∂rG/∂qk)

VT ≡ m aO · rG = S aO · (dm r) =Sdm(∂vO/∂t+Ω × vO) · r

= Sdm
[
(∂vO/∂t) · r+ r · (Ω × vO)

]
. (3.16.12d)



ðiiÞ
¼Sdm ðX� rÞ � ½X� ð@r=@qkÞ� ¼ � @VCF=@qk :

Lagrangean centrifugal inertial force; ð3:16:12eÞ

where the corresponding centrifugal potential of these ‘‘forces’’ is defined by

(iii) Since

we have

ðdX=dtÞ � ð@HO;rel=@ _qqkÞ ¼ ðdX=dtÞ � Sdm r� ð@r=@qkÞ
� �

¼Sdm
	ðdX=dtÞ � r



� ð@r=@qkÞ; ð3:16:12hÞ

and, therefore,

Qk;rotation � Qk;R � �ðdX=dtÞ � ð@HO;rel=@ _qqkÞ
¼ �S ½ðdX=dtÞ � ðdm rÞ� � ð@r=@qkÞ ¼Sdm ðdX=dtÞ � ½ð@r=@qkÞ � r�
�SdIR � ek: Lagrangean rotational inertial force; ð3:16:12iÞ

where

dI rotation � dIR � �dm
	ðdX=dtÞ � r



: Rotational inertial force; on a typical particle:

ð3:16:12jÞ
(iv) Finally, from (3.16.12g) we obtain

@HO;rel=@ _qqk ¼Sdm r� ð@r=@qkÞ;
and from this, further,

and

@HO;rel=@qk ¼
X

Sdm
�ð@r=@qkÞ � ð@r=@qlÞ þ r� ð@2r=@qk@qlÞ

�n o
_qql :

Therefore, recalling (3.16.11j), we find, successively,

�X �Ek;relðHO;relÞ ¼ �2X �

X
Sdm

�ð@r=@qlÞ � ð@r=@qkÞ�n o� �
_qql

¼ �S ½2ðX� dm vrelÞ� � ð@r=@qkÞ
�
X
ðX �GklÞ _qql �

X
gkl _qql; ð3:16:12kÞ
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Qk,centrifugal ≡ Qk,CF ≡ (1/2)[Ω · (∂IO/∂qk) ·Ω]

VCF ≡ −(1/2)Ω · IO ·Ω = −(1/2)Sdm(Ω × r)2. (3.16.12f)

HO,rel ≡S r× dm(∂vO/∂t) =
∑(
Sdm r× (∂r/∂qk)

)
q̇k, (3.16.12g)

∂/∂t(∂HO,rel/∂q̇k) =
∑{
Sdm

[
(∂r/∂ql)× (∂r/∂qk) + r× (∂2/∂ql∂qk)

]}
q̇l,

= −2Ω ·Sdm[(∂r/∂t) × (∂r/∂qk)] [recalling (3.16.3c)],



where

Gkl � 2Sdm ½ð@r=@qkÞ � ð@r=@qlÞ� � 2Sdmðek � elÞ ð¼ �GlkÞ; ð3:16:12lÞ

gkl � X �Gkl ¼ 2Sdm½X � ðek � elÞ�: Gyroscopic coeRcients ð¼ �glkÞ;
ð3:16:12mÞ

or, finally [recalling (3.10.1f, g)],

�X �Ek;relðHO;relÞ ¼
X

gkl _qql

� Qk;gyroscopic � Qk;Coriolis � �Ek;C � Gk: ð3:16:12nÞ
[Also, recall mathematically similar terms arising out of the coefficients of the � _qq
terms of the generalized potential, equations (3.9.8a ff.).]

In view of all these partial results, eqs. (3.16.12c–n), and recalling that

Trelative � Trel � T2, we can rewrite (3.16.12b) as

EkðTrelÞ ¼ Qk þQk;R þ Gk � @ðVCF þ VTÞ
�
@qk � Qk þQk;inertial : ð3:16:13Þ

This completes the discussion of the Lagrange-type carried system equations.

REMARKS

The left side of (3.16.13) clearly depends only on quantities describing the config-

uration and motions of the carried body (bodies) relative to the carrying one; the

four parts of Qk;inertial are ‘‘correction terms,’’ since O��xyz is noninertial. Hence:

(i) If the motion of O��xyz is known, or prescribed, only eqs. (3.16.13) need be
considered; not the earlier Hamel-type carrying equations. Actually, since we have

indeed proved that, in the case of relative motion, LP, for the carried system, takes

the form X �
EkðTrelÞ �Qk �Qk;inertial

�
�qk ¼ 0; ð3:16:14Þ

any other set of Lagrangean, or Appellian, equations can be employed with the

replacements:

T ! Trel and Qk ! Qk þQk;inertial; ð3:16:14aÞ
for example, it is not hard to see that EkðTrelÞ � @Srel=@€qqk, where Srel ¼ part of S
that depends solely on t; q; _qq; €qq.

Additional Pfaffian constraints and/or nonholonomic coordinates can be easily

handled using the methods described in }3.2–3.8.

(ii) If, on the other hand, the motion of O��xyz is not known, then these equa-

tions should be solved together with the earlier ones of the carrying body. Then, we

would have a system of nþ 6 coupled equations of the second order in the n q’s and

of the first order in the 6 vO;x;y;z and !x;y;z. To these we should also add the (linear

and homogeneous) relations between the holonomic velocity components of O��xyz
relative to I ��XYZ, say _qq1;...;6 (not the q’s of S relative to O��xyz), and their non-
holonomic counterparts !1;...;6 � vO;x;y;z

�
!x;y;z.

(iii) Finally, if we had chosen inertial (I) Lagrangean coordinates, say qI ¼
qIðqNI ; tÞ, where the noninertial (NI) coordinates are the earlier q’s, then eqs.

(3.16.2a) would become

R ¼ rO þ rðqNI Þ ¼ rO þ rðt; qIÞ; ð3:16:14bÞ
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that is, r would be nonstationary! In this case, the relative motion equations (3.16.13)

would still hold, but with Trel � T2 replaced by T2;2 þ T2;1 þ T2;0, where

2T2;2 �
XX

M2;kl _qqk _qql ; T2;1 �
X

M2;k _qqk; 2T2;0 �M2;0; ð3:16:14cÞ

M2;kl �Sdmð@r=@qkÞ � ð@r=@qlÞ; M2;k �Sdmð@r=@qkÞ � ð@r=@tÞ;
M2;0 �Sdmð@r=@tÞ � ð@r=@tÞ: ð3:16:14dÞ

Example 3.16.1 Direct Derivation of the Lagrangean Equations of the Carried
Body via LP. Let us assume, for concreteness, that O��xyz has a prescribed
motion. Now, the Newton–Euler equation of motion of a typical particle P, of the

carried system S, of mass dm and acted upon by a total impressed (reaction) force

dFðdRÞ is (recalling }1.7)

dm arel ¼ ðdF þ dRÞ þ ðdf O þ df T þ df CÞ; ðaÞ
where

df ¼ dF þ dR: Real ði:e:; non��frame-dependentÞ force;
df O � �dm aO: Transport translational ‘‘force’’

ðdue to the inertial acceleration of the pole OÞ;
df T � �dm½ðdX=dtÞ � rþX� ðX� rÞ�
¼ �dmððdX=dtÞ � rÞ � dm½ðX � rÞX� O2r�:

Transport rotational þ centrifugal ‘‘force’’ ð¼ purely centrifugal;

if X ¼ constant; due to the inertial angular motion of O��xyzÞ;
df C ¼ �2 dm ðX� vrelÞ:

Coriolis ‘‘force’’ ðdue to the coupling of the relative motion

of S with the inertial angular motion of O��xyzÞ: ðbÞ
[Incidentally, the above show that, in the most general case of motion,

cles, yields LP for the carried body:

Sdm arel � �r ¼S ðdF þ dRÞ � �rþS ðdf O þ df T þ df CÞ � �r: ðcÞ

Now:

noninertial coordinates of S relative to O��xyz, reasoning as in (3.3.3 ff.), we readily

conclude that

Sdm arel � �r ¼
X

EkðTrelÞ �qk �
X �ð@Trel=@ _qqkÞ: � @Trel=@qk

�
�qk; ðdÞ
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(i) Since arel = ∂vrel/∂t = ∂/∂t(∂r/∂t), and during the above virtual variations

dm(∂2r/∂t2) = df+ (dfO + dfT + dfC) = function of t, r, vrel ≡ ∂r/∂t.]

Dotting (a) with δ� = δrO(t) + δr = δr, and then summing over the system parti-

the axes O–xyz are held fixed—that is, δr = δrel r =
∑

(∂r/∂qk) δqk—and the qk are



where

2Trel ¼ 2Trelðq; _qqÞ ¼Sdm vrel � vrel: ðeÞ

(ii) The Qk are defined, as usual, by (recalling }3.4)

SdF � �r ¼
X

Qk �qk: ðf Þ

(iii) The (relative ¼ inertial) virtual work of the constraint reactions vanishes:

(iv) We define the following fictitious Lagrangean forces:

Sdf O � �r � �Sdm aO � �r

�
X

Qk;translational transport �qk �
X

Qk;T �qk; ðhÞ

Sdf T � �r � �Sdm
	ðdX=dtÞ � r



� �r�X � SdmðX � rÞ �r

� �
þ O2 Sdm r � �r

� �
�
X

Qk;rotationalþcentrifugal transport �qk �
X
ðQk;R þ Qk;CF Þ �qk; ðiÞ

Sdf C � �r � �2SdmðX� vrelÞ � �r
�
X

Qk;Coriolis=gyroscopic �qk �
X

Qk;C �qk: ð jÞ

Now, since the motion of O��xyz is prescribed, aO;X, and dX=dt are given functions

of time, and, therefore, the ‘‘forces’’ Qk;T ;R;CF will be functions of t and the q’s, while

the Qk;C will be functions of t, q’s, and _qq’s. If the �q’s are independent—that is, if S
is unconstrained relative to (the constrained) O��xyz—then (c), with (d–j), yield the

earlier equations (3.16.13):

EkðTrelÞ ¼ Qk þQk;T þQk;R þQk;CF þ Qk;C; ðkÞ

where Qk;T ¼ �@VT=@qk, Qk;CF ¼ �@VCF=@qk, Qk;C ¼ Gk.

If the �q are constrained, then we proceed in, by now, well-known ways; that is,

either we adjoin the constraints to (c ff.) via multipliers, or embed them via relative

quasi variables. Let the reader work out the details of this direct approach if the

motion of O��xyz is also unknown.

Example 3.16.2 Cartesian Tensor Derivation of the Lagrangean Equations of the
Carried Body. Let us consider, without much loss in generality, two frames/axes

with common origin: an inertial/fixed O��xk 0 , and a noninertial/moving (rotating)

O��xk (k ¼ 1; 2; 3; k 0 ¼ 1 0; 2 0; 3 0). As is well known (}1.1), these two sets of axes

are related by the following orthogonal transformation:

xk 0 ¼
X

Ak 0kxk , xk ¼
X

Akk 0xk 0 ; ðaÞ

where fAk 0k � cosðxk 0 ;xkÞ ¼ cosðxk; xk 0 Þ � Akk 0 ¼ pure function of timeg is a proper
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orthogonal tensor/matrix. The inertial Lagrangean function and corresponding equations
of motion of a particle P of unit mass (i.e., m = 1, for analytical simplicity) and under

SdR · δr =SdR · δrelr =
∑

Rk δqk = 0. (g)



ordinary potential forces only (here we are interested in kinematical/frame of refer-

ence effects—nonpotential forces can always be added later) are, respectively,

L ¼ ð1=2Þ
X

_xxk 0 _xxk 0
� �

� Vðxk 0 ; tÞ ¼ Lðt; xk 0 ; _xxk 0 Þ; ðbÞ

ð@L=@ _xxk 0 Þ:� @L=@xk 0 ¼ 0: ð _xxk 0 Þ:þ @V=@xk 0 ¼ 0: ðcÞ
Next, using (a), we will express L in terms of ft; xk; _xxk;Ak 0k; _AAk 0kg and then, using the

frame invariance of the Lagrangean operator/equations in these new variables, we

will obtain the equations of relative motion of P: ð@L=@ _xxkÞ:� @L=@xk ¼ 0. Indeed,

ð. . .Þ:-differentiating (a), we obtain

_xxk 0 ¼
X
ð _AAk 0kxk þ Ak 0k _xxkÞ; ðdÞ

and, therefore, successively,X
_xxk 0 _xxk 0 ¼

X X
ð _AAk 0kxk þ Ak 0k _xxkÞ

� � X
ð _AAk 0l xl þ Ak 0l _xxlÞ

� �
¼
XXX

ðAk 0kAk 0l _xxk _xxl þ _AAk 0k
_AAk 0lxkxl þ 2 _AAk 0kAk 0lxk _xxlÞ; ðeÞ
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or, since [(1.7.22a ff.)],
∑

Ak′kAk′l = δkl and Ȧk′k =
∑

Ak′lΩlk, where
∑

Ȧk′kAk′l =
∑

Ȧkk′Alk′ ≡ Ωlk = −Ωkl:

(inertial) angular velocity tensor of moving axes relative to fixed axes,
but resolved along the moving axes, (f)

equation (e) transforms further to
∑

ẋk′ ẋk′ =
∑∑

δklẋkẋl +
∑∑∑ (∑

Ak′rΩrk

)(∑
Ak′sΩsl

)
xkxl

+ 2
∑∑

Ωlkẋlxk, (g)

and so, finally, the moving axes Lagrangean becomes

L =
∑

(1/2)ẋkẋk +
∑∑∑

(1/2)ΩskΩsl xk xl +
∑∑

Ωlk ẋl xk − V(t, xk). (h)

Now:

• The first term
∑

(1/2)ẋkẋk, will give rise to the relative acceleration;

• The second term
∑∑∑

(1/2)ΩskΩslxkxl: centrifugal potential, will give rise to the
acceleration of transport; and

• The third term
∑∑

Ωlkẋlxk: Schering potential, will give rise to the Coriolis accel-
eration.

Indeed, from (h) we obtain

∂L/∂ẋk = ẋk +
∑∑

Ωlrδlkxr = ẋk +
∑

Ωkrxr, (i)

∂L/∂xk =
∑∑

ΩskΩslxl +
∑

Ωrkẋr − ∂V/∂xk

=
∑∑

ΩskΩslxl −
∑

Ωkrẋr − ∂V/∂xk, (k)

⇒ (∂L/∂ẋk)
· = ẍk +

∑
(Ω̇krxr +Ωkrẋr), (j)



and, therefore, the Lagrangean equations of relative motion, ð@L=@ _xxkÞ:�@L=@xk¼ 0,

become

Let the reader show that (l) is none other than [with x ¼ ð!kÞ; a ¼ ð _!!kÞ;
r ¼ ðxkÞ; vrel ¼ ð _xxkÞ]

€xxk þ ½x� ðx� rÞ�k þ ða� rÞk þ ð2x� vrelÞk ¼ �@V=@xk: ðmÞ

HINT

Problem 3.16.1 Extend the tensorial method of the preceding example to the

most general case of relative motion (i.e., no common origin of relatively moving

frames):

xk 0 ¼
X

Ak 0kxk þ bk 0 , xk ¼
X

Akk 0xk 0 þ bk; ðaÞ

where bk 0 ¼ �
P

Ak 0kbk ¼ components of position vector of moving originO relative

Example 3.16.3 Direct Lagrangean Treatment of Gyroscopic Couple. Let us

consider an axisymmetric (carried) body, spinning with angular velocity xo about

its axis of symmetry. The latter is fixed relative to the body’s ‘‘housing’’ (carrying

body). It is shown in gyrodynamics that xo gives rise to an additional moment,

or ‘‘gyroscopic couple,’’ on the housingþ fixed (nonspinning) gyro system equal to

ðCxoÞ �X, where C ¼ moment of inertia of carried body about its spinning axis,

¼ ðCxoÞ �
X
ð@X=@ _qqlÞ _qql þ @X=@t

� �n o
�

X
ð@X=@ _qqkÞ �qk

� �
�
X X

gkl _qql þ gk

� �
�qk �

X
ðGk þ gkÞ �qk; ðbÞ
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ẍk −
∑∑

ΩskΩslxl +
∑

Ω̇klxl + 2
∑

Ωklẋl = −∂V/∂xk. (l)

Recall that (1.1.16a ff.) (Ω · r)k = (x × r)k:
∑

Ωklxl =
∑∑

εksl ωs xl; that is,
Ω = (Ωkl = −Ωlk =

∑
εksl ωs). See also Morgenstern and Szabó (1961, pp. 7–9).

and Ω = vector of inertial angular velocity of housing. Let us find the Lagrangean expres-
sion of that couple.

where dΘ/dt ≡ Ω. Therefore, the virtual work of the gyro-couple equals, succes-
sively,

δ′WG ≡ [(Cxo)×Ω] · δΘ

to fixed origin, along the fixed axes; bk = −

∑
Akk′ bk′ ; and {Ak′k, bk′ , bk} = pure func-

tions of time. This will give rise to “forces” due to the inertial motion (“transport”) of
the origin O.

Here

Ω =
∑

(∂Ω/∂q̇k)q̇k + ∂Ω/∂t⇒ δΘ =
∑

(∂Ω/∂q̇k)δqk, (a)



where

gkl � ½ðCxoÞ � ð@X=@ _qqlÞ� � ð@X=@ _qqkÞ
¼ ðCxoÞ � ½ð@X=@ _qqlÞ � ð@X=@ _qqkÞ� � ðCxoÞ �Gkl ¼ �glk; ðcÞ

gk � ½ðCxoÞ � ð@X=@tÞ� � ð@X=@ _qqkÞ
¼ ðCxoÞ � ½ð@X=@tÞ � ð@X=@ _qqkÞ� � ðCxoÞ �Gk ð� gk;nþ1 � gk;tÞ: ðdÞ

Clearly,
P

Gk _qqk ¼
PP

gkl _qql _qqk ¼ 0; that is, the Gk are gyroscopic. From the above,

it follows that, if there are no further constraints, the equations of motion of the

system housingþ gyro are

ð@TA=@ _qqkÞ:� @TA=@qk ¼ Qk þ Gk þ gk; ðeÞ
where TA ¼ ðinertialÞ kinetic energy of system housingþ gyro if xo ¼ 0 (i.e., with the

gyro held fixed in its housing) � apparent kinetic energy. The above can be easily

extended to a system consisting of several housings and gyros. [See Cabannes, 1965,

Example 3.16.4 Rotating Frames: The Free Particle. Here, using Lagrangean

methods, we derive the equations of plane motion of a particle P of mass m on a

frame O��xyz rotating with (inertial) angular velocity X ¼ ð0; 0;OÞ relative to an

inertial one O��XYZ; and such that OZ � Oz (fig. 3.37). By ð. . .Þ:-differentiating

the well-known transformation equations between these two frames

X ¼ x cos�� y sin�; Y ¼ x sin�þ y cos�; ðaÞ
and recalling that O ¼ _��, we obtain

_XX ¼ ð _xx cos�� _yy sin�Þ � ðx sin�þ y cos�ÞO;
_YY ¼ ð _xx sin�þ _yy cos�Þ þ ðx cos�� y sin�ÞO: ðbÞ
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Figure 3.37 Particle P moving on a rotating frame O–xy ðzÞ.

pp. 201–203, 274–277; Roseau, 1987, pp. 49–53; also §8.4 ff., and Papastavridis
(Elementary Mechanics (under production), examples on gyrodynamics).]



To understand better the meaning of (b), we consider the special instant at which the

axes of these two frames coincide; that is, for � ¼ 0. Then, (b) yields

_XX ¼ _xx� yO; _YY ¼ _yyþ xO; ðcÞ
that is, _XX 6¼ _xx and _YY 6¼ _yy, even though, then, X ¼ x and Y ¼ y; eq. (c) is the

O��xy=XY component form of the well-known vector equation (}1.7)

Thanks to (c), the inertial (double) kinetic energy of P becomes

2T ¼ m½ð _XXÞ2 þ ð _YYÞ2� � 2ðT2 þ T1 þ T0Þ; ðeÞ
where

2T2 � m½ð _xxÞ2 þ ð _yyÞ2�;
T1 � mðx _yy� _xxyÞO;
2T0 � mðx2 þ y2ÞO2 ¼ mðX2 þY2ÞO2 ¼ mr2O2; ðf Þ

and, therefore, if � 0W ¼ Qx �xþQy �y, Lagrange’s equations here are

½mð _xx� yOÞ�:�mð _yyþ xOÞO ¼ mð€xx� 2 _yyO� xO2 � y _OOÞ ¼ Qx; ðgÞ
½mð _yyþ xOÞ�:�mð _xx� yOÞO ¼ mð€yyþ 2 _xxO� yO2 þ x _OOÞ ¼ Qy; ðhÞ

and, from these, the following Newton–Euler (O��xy-centric) forms result:

m €xx ¼ Qx �mð�xO2 � y _OOÞ � ð�2m _yyOÞ; ðiÞ

m €yy ¼ Qy � mð�yO2 þ x _OOÞ � ðþ2m _xxOÞ; ð jÞ

where (in two dimensions)

aT ¼ ð�xO2 � y _OO;�yO2 þ x _OOÞ ¼ Transport acceleration ðnormal þ tangentÞ; ðkÞ
aC ¼ ð�2 _yyO;þ2 _xxOÞ ¼ Coriolis acceleration: ðlÞ

Since aC is perpendicular to vrel ¼ ð _xx; _yyÞ, if (i) _OO ¼ 0 and (ii) � 0W ¼ ��Vðx; yÞ, eqs.

(g, h/i, j) readily combine to produce the relative power equation

mð _xx €xxþ _yy €yyÞ �mðx _xxþ y _yyÞO2 ¼ � _VV ; ðmÞ
and the latter integrates easily to the generalized energy (Jacobi–Painlevé) integral
[recalling (3.9.11n)]

T2 þ ðV � T0Þ � h ¼ constant ð6¼ E � T þ VÞ: ðnÞ

Example 3.16.5 Rotating Frames: General System. Here, we extend the pre-

ceding example to a general system. (Although the general theory of such systems

in moving axes has already been studied in this section, nevertheless, we think

that the ad hoc treatment of this special but important case, presented below, is
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dr/dt = ∂r/∂t +Ω × r, where r = (x, y, 0), Ω = (0, 0, Ω). (d)



quite instructive.) Summing (e, f) over the entire system, we readily find

2T ¼S ð _XXÞ2 þ ð _YYÞ2
h i

dm � 2ðT2 þ T1 þ T0Þ

� 2 Trel þ OHO;rel þ ð1=2ÞO2IO
� � ¼ 2 Trel þ OHO � ð1=2ÞO2IO

� �
; ðaÞ

where

2T2 � 2Trel �S ð _xxÞ2 þ ð _yyÞ2
h i

dm

¼ 2ðkinetic energy relative to rotating frameÞ ði:e:; T for O ¼ 0Þ; ðbÞ
T1 � OS ðx _yy� y _xxÞ dm � OHO;rel; ðcÞ
2T0 � O2S ðx2 þ y2Þ dm ¼ O2S ðX2 þ Y2Þdm ¼ O2IO

¼ 2ðcentrifugal energyÞ; ðdÞ
HO;rel �S ðx _yy� y _xxÞ dm ¼ angular momentum about OZ � Oz and

relative to the rotating frame; ðeÞ
HO �S ðX _YY � Y _XXÞ dm ¼S ½xð _yyþ xOÞ � yð _xx� yOÞ� dm
¼ � � � ¼ HO;rel þ O IO ¼ angular momentum about OZ � Oz and

relative to the Oxed frame; ðf Þ
IO �S ðX2 þ Y2Þ dm ¼S ðx2 þ y2Þ dm ¼Sr2 dm

¼ moment of inertia about OZ � Oz ð frame independentÞ; ðgÞ
ð) OHO ¼ OHO;rel þ O2IO ¼ T1 þ 2T0Þ:

[In the general three-dimensional case, since _ZZ ¼ _zz, a ð1=2Þð _zzÞ2dm term must be

added to the integrand of T and Trel.]

Now, if the system is completely describable, relative to the rotating frame, by n
Lagrangean coordinates q ¼ ðq1; . . . ; qnÞ [i.e., if x ¼ xðqÞ; y ¼ yðqÞ; z ¼ zðqÞ], then

Trel ¼ quadratic and homogeneous in the _qq’s, with coefficients functions of the q’s. If,

further, T ¼ Tðq; _�� � OÞ— that is, qnþ1 ¼ � ¼ additional ‘‘azimuthal ’’ cyclic coordi-

nate (} 8.4), for the complete inertial description of the system — and Qk ¼ �@V=@qk,
Qnþ1 �MO ¼ total impressed moment about OZ � Oz, and no further constraints

are present, then the nþ 1 Lagrangean equations for these q’s are

ð@T=@ _qqkÞ: � @T=@qk ¼ �@V=@qk; ðhÞ

and [by (a), and noting that, equivalently,

@T=@O ¼ HO;rel þ OIO ¼ HO þOð@HO=@OÞ � OIO ¼ HO þ OðIOÞ � OIO ¼ HO�
ð@T=@OÞ: � @T=@� ¼ _HHO ¼MO: ðiÞ

If MO ¼ 0 ( free rotating system), then by eq. (i), HO ¼ 0 and O 6¼ constant;
whereas if O ¼ constant (constrained rotation), then MO ¼ constraint reaction (a
Lagrangean multiplier) 6¼ 0, and therefore HO 6¼ constant.
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Special Case

If O ¼ constant (e.g., O��xyz! Earth), substituting eq. (a ff.) into eq. (h), we obtain

ð@Trel=@ _qqkÞ:� @Trel=@qk þ O ½ð@HO;rel=@ _qqkÞ: � @HO;rel=@qk�
� ð1=2ÞO2ð@IO=@qkÞ ¼ �@V=@qk: ðjÞ

But, since @ _xx=@ _qqk ¼ @x=@qk and @ _xx=@qk ¼ ð@x=@qkÞ: [i.e., Ekð _xxÞ ¼ 0, etc.], we have

ðiÞ @HO;rel=@ _qqk ¼S ½xð@ _yy=@ _qqkÞ � yð@ _xx=@ _qqkÞ� dm ¼S ½xð@y=@qkÞ � yð@x=@qkÞ� dm;

and, from this,

ð@HO;rel=@ _qqkÞ: ¼S ½ _xxð@y=@qkÞ � _yyð@x=@qkÞ� dm þS ½xð@ _yy=@qkÞ � yð@ _xx=@qkÞ� dm;

ðiiÞ @HO;rel=@qk ¼S ½ _yyð@x=@qkÞ � _xxð@y=@qkÞ� dmþS ½xð@ _yy=@qkÞ � yð@ _xx=@qkÞ� dm:

Therefore, subtracting these two expressions side by side, we find

ð@HO;rel=@ _qqkÞ: � @HO;rel=@qk

¼ 2S ½ _xx ð@y=@qkÞ � _yy ð@x=@qkÞ� dm

¼ 2S
X
ð@x=@qlÞ _qql

� �
ð@y=@qkÞ �

X
ð@y=@qlÞ _qql

� �
ð@x=@qkÞ

n o
dm

�
X

Glk _qql ; ðkÞ

where

Glk � 2S ½ð@x=@qlÞð@y=@qkÞ � ð@x=@qkÞð@y=@qlÞ� dm
� 2S ½ð@ðx; yÞ

�
@ðql; @qkÞ� dm ¼ �Gkl

ðanalytically known; once the q’s are chosenÞ: ðlÞ

In view of (k, l), eq. ( j) can be rewritten in the definitive form

EkðTrelÞ þ O
X

Glk _qql ¼ �@Vrel=@qk; ðmÞ

where

Vrel � V � ð1=2ÞO2IO ¼ total relative potential ð¼ V � T0Þ: ðm1Þ

Other possible nonpotential and noninertial forces, such as friction and/or con-

straints, can be added to the right side of (m) as Q’s and/or multiplier-proportional

terms.

The Lagrangean form (m) brings out clearly the differences between uniformly

rotating axes ðO ¼ constant 6¼ 0Þ and inertial ones ðO ¼ 0Þ. These are:

� The additional centrifugal potential VCF ¼ �O2IO=2 [recalling (3.16.12f)], which gives

rise to the centrifugal ‘‘force’’ �@VCF=@qk ¼ ð1=2ÞO2ð@IO=@qkÞ; and

� The additional gyroscopic (or compounded centrifugal, or Coriolis), and generally

nonpotential, ‘‘forces’’ �OP Glk _qql ¼ O
P

Gkl _qql.
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It is not hard to see that, in the absence of nonpotential forces, the equations of

motion of the particle in ex. 3.16.4, eqs. (i, j), can be rewritten, respectively, in the

(m)–like form

m €xx ¼ �@Vrel=@xþ 2mO _yy; m €yy ¼ �@Vrel=@y� 2mO _xx; ðnÞ
(also m €zz ¼ �@Vrel=@z), Vrel � V � ð1=2ÞmO2ðx2 þ y2Þ; or, vectorially (2 dimen-

sions),

Equations (n, n1) are useful in atmospheric physics (O ¼ rotation of Earth).]

Relative Equilibrium

This is defined as the special motion for which

Trel ¼ 0 and all _qqk ¼ 0: ðoÞ
Then, eqs. (m) yield the following conditions for relative equilibrium:

@Vrel=@qk � @
	
V � 1

2
O2IO


�
@qk ¼ 0; ðpÞ

namely, that Vrel be stationary.

For further discussion, especially the case of (small) motion around such equili-

bria, and their stability, and applications, see, for example (alphabetically): Appell

(vol. 4, 1932, 1937), Duhem (1911, pp. 422-499), Lamb (1932, pp. 195–199, 307–310,

427–428, 713–714; 1943, pp. 244–255), Ledoux (1958, pp. 616–620), Lyttleton (1953,

pp. 19–30); also }8.6 in this volume.

Problem 3.16.2 Rotating Frames. Continuing from the preceding example,

show that:

(i) In terms of corotating (i.e., noninertial) polar coordinates ðr; �Þ, for each

particle,

2T ¼S ð _rrÞ2 þ r2ðOþ _��Þ2
h i

dm

¼S ð _rrÞ2 þ r2ð _��Þ2
h i

dmþ 2O Sr2 _�� dm
� �

þ O2 Sr2 dm
� �

; ðaÞ

ðiiÞ HO;rel �S ðx _yy� y _xxÞ dm ¼S ðr2 _��Þ dm ¼ � � � ¼
X

�k _qqk; ðbÞ

where

�k �S ½xð@y=@qkÞ � yð@x=@qkÞ� dm ¼ �kðqÞ;

then show that

Glk � @�k=@ql � @�l=@qk ¼ �Gkl ðk; l ¼ 1; . . . ; nÞ: ðcÞ

Problem 3.16.3 Rotating Frames: Special Cases. Continuing from the preceding

problem, show that (i) if _�� ¼ 0, or (ii) if n ¼ 1 (i.e., if the system is described on

the uniformly rotating frame by only one coordinate q), then the != _qq-proportional
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m(∂2r/∂t2) = −grad Vrel + 2m(∂r/∂t)×Ω. (n1)



(gyroscopic) terms, in the corresponding equations of motion, vanish; that is,

then, the effect of the rotation O there is only the centrifugal force

ð1=2ÞO2ð@IO=@qÞ.

HINT

In (ii) HO;rel = (some function of q) _qq; then EðHO;relÞ ¼ � � � .

Problem 3.16.4 Rotating Frames: A Special Power Equation. Continuing from

the preceding example, and employing its notations, show that the power equation

of a system moving on a uniformly rotating frame is

d=dtðTrel þ V � O2IO=2Þ � ðTrel þ VrelÞ: ¼
X

Qk _qqk; ðaÞ

where Qk = nonpotential and noninertial forces; and, therefore, if all Qk ¼ 0, eq. (a)

leads to the Jacobi–Painlevé integral

Trel þ V � O2IO=2 ¼ 0: ðbÞ

HINTS

We have

dT=dt ¼ ðT2 þ T0Þ:þ O S ðx€yy� y€xxÞ dm
h i

½by the results of ex: 3:16:4 and ex: 3:16:5�
¼ ðT2 � T0Þ:þ O S ðx dFy � y dFxÞ

h i
½by eqs: ðg; h = i; jÞ of ex: 3:16:4; summed over the entire system; with

O ¼ constant and ðQx;QyÞ ! dF ¼ ðdFx; dFyÞ ¼ total impressed force
on particle of mass dm�: ðcÞ

But, also, by the ‘‘elementary’’ power theorem (since, here, impressed forces¼
external forces), dT=dt ¼ Total externally supplied power

¼ O S ðx dFy � y dFxÞ
h i

þ
X

Qk _qqk: ðdÞ

Problem 3.16.5 Rotating Frames: A Special Power Equation (continued). Con-

tinuing from the preceding example, and employing its notations, show that:

(i) If MO ¼ 0, then HO ¼ constant; and

(ii) If, further, we choose O so that (always) HO;rel ¼ 0, then

HO ¼ O IO and T ¼ � � � ¼ Trel þHO
2=2IO; ðaÞ

and thus deduce that if all the (nonpotential) Qk’s vanish, the (inertial) energy

equation E � T þ V ¼ constant specializes to

Trel þ V þHO
2=2IO ¼ constant; ðbÞ

that is, eq. (b) of the preceding problem but with O! HO and �O2IO=2!
HO

2=2IO.
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Problem 3.16.6 Rotating Pendulum. Consider a mathematical pendulum, of

length l and mass m, whose plane of oscillation is constrained to rotate with

constant inertial angular velocity O about its vertical axis (fig. 3.38).

(i) Show that its equations of (relative angular) motion and energy are, respec-

tively,

€��þ ðg=lÞ sin �� ð1=2ÞO2 sinð2�Þ ¼ 0; ðaÞ
ðml2=2Þ�ð _��Þ2 � 2ðg=lÞ cos �� O2 sin2�

� � h ¼ constant: ðbÞ
Explain the absence of gyroscopic terms in both (a) and (b).

(ii) Linearize (a) in � and then show that if O25g=l, the pendulum performs

harmonic oscillations about the vertical with period � ¼ 2�½ðg=lÞ � O2��1=2
; that is,

the configuration of relative equilibrium � ¼ 0 is stable; whereas, if O2 	 g=l, it is

unstable (i.e., we need the nonlinear equation).

(iii) Next, add _��-proportional (small) friction �f _�� (f ¼ constant friction coeffi-
cient). Does this affect the stability/instability of � ¼ 0? Explain.

For an alternative discussion, see Kauderer (1958, pp. 239–242); and for discus-

sions of the stability of the equilibrium configurations of (a), based on (b), and more

see e.g. (alphabetically): Babakov (1968, pp. 463–467), Greenwood (1977, pp. 62, 74–

77), Pars (1965, pp. 85–86).

Problem 3.16.7 Rotating Frames: Carrying Body Effect. Consider a particle P
of mass m in unconstrained motion relative to a carrying rigid body B. The latter

can spin freely about the fixed vertical axis Oz.

(i) Show that the inertial kinetic energy of the entire system ‘‘Bþ P,’’ expressed in

terms of components along B-fixed axes O��xyz, is

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2� þ 2mðx _yy� y _xxÞ _��
þ ½I þmðx2 þ y2Þ�ð _��Þ2; ðaÞ

where I¼moment of inertia of B about Oz, � ¼ inertial angular coordinate of B;

and, therefore, its four Lagrangean equations of motion are (with some obvious

notations)
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Figure 3.38 Uniformly rotating plane pendulum.



x: m½€xx� 2 _�� _yy� xð _��Þ2 � y €��� ¼ Qx; ðbÞ
y: m½€yyþ 2 _�� _xx� yð _��Þ2 þ x €��� ¼ Qy; ðcÞ
z: m €zz ¼ Qz; ðdÞ
�: ½I þmðx2 þ y2Þ� _��þmðx _yy� y _xxÞ� �: ¼ F: ðeÞ

(ii) Specialize the above to the case where B spins at a constant rate: _��= constant;
that is, adjust the torque F so as to maintain €�� ¼ 0, or �� ¼ 0; or, equivalently,

assume that I !1.

(iii) Show that the above special case equations result by application of

Lagrange’s method to

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2� þ 2mOðx _yy� y _xxÞ þmO2ðx2 þ y2Þ
¼ inertial ðdoubleÞ kinetic energy of P referred to axes spinning with constant

inertial angular velocity _�� ¼ O: ðf Þ

Problem 3.16.8 Rotating Frames: 3-D Case. Extend the results of the preceding

examples and problems to the general case of two frames with common origin:

(i) a fixed O��XYZ (inertial), and (ii) a moving O��xyz (noninertial) rotating

relative to the first with constant angular velocity O (fig. 3.39).

Specifically, show that the (inertial) kinetic energy of a particle P of mass m equals

T ¼ T2 þ T1 þ T0; ðaÞ
where

2T2 ¼ m ½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2�; ðbÞ
T1 ¼ m ½ _xxðz!y � y!zÞ þ _yyðx!z � z!xÞ þ _zzðy!x � x!yÞ�; ðcÞ
2T0 ¼ m ½ðz!y � y!zÞ2 þ ðx!z � z!xÞ2 þ ðy!x � x!yÞ2�; ðdÞ
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Figure 3.39 (a) Particle P in general relative motion in a rotating frame O–xyz; (b) details of

centrifugal ‘‘force’’ f CF .
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and, therefore, by the method of Lagrange, the equations of (unconstrained) motion

of P in O��xyz, under a total impressed force F ¼ ðFx;Fy;FzÞ, are

where

½deEnition of antisymmetric angular velocity tensor : ð}1:1; }1:7Þ�
¼ Gyroscopic ðCoriolisÞ ‘‘force’’
¼ �2mðOx;Oy;OzÞ � ð _xx; _yy; _zzÞ
¼ ð2mOz _yy� 2mOy _zz; 2mOx _zz� 2mOz _xx; 2mOy _xx� 2mOx _yyÞ; ðf Þ

and

: ¼
Oxx ¼ 0 Oxy ¼ �Oz Oxz ¼ Oy

Oyx ¼ Oz Oyy ¼ 0 Oyz ¼ �Ox

Ozx ¼ �Oy Ozy ¼ Ox Ozz ¼ 0

0BB@
1CCA: ðgÞ

Problem 3.16.9 Rotating Frames: 3-D Case (continued). Continuing from the

preceding problem, show that

@T0=@x ¼ � � � ¼ m½O2x� ðX � rÞOx�; etc:; cyclically; ðaÞ
and, further, with X ¼ O e [fig. 3.39(b)], that

fCF ¼ grad T0 � @T0=@r ¼ � � � ¼ mO2½r� ðe � rÞe�
¼ mO2ðr� ONÞ ¼ ðmO2ÞNP

¼ Centrifugal ‘‘force’’ ði:e:; j f CF j ¼ mO2	Þ: ðbÞ

Problem 3.16.10 Lagrangean of a Particle in General Relative Motion. Consider

a particle P of mass m in unconstrained motion relative to a noninertial frame

O��xyz that has given motion, under a total force f ¼ �@VðrÞ=@r, VðrÞ ¼
potential. Show that:

(i) To within terms equal to the total time derivative of a given function of the
coordinates and time (i.e., to within ‘‘Lagrange-important’’ terms), the (double)

Lagrangean of P is

2L ¼ mvrel � vrel þ 2m vrelðX � rÞ þmðX � rÞ2 � 2mðaO � rÞ � 2VðrÞ: ðaÞ

ðiiÞ @L=@vrel ¼ mðvrel þX� rÞ � prel þmðX � rÞ ¼ m v � p

ðv ¼ inertial velocity of P relative to the moving axes origin OÞ; ðbÞ

@L=@r ¼ mðvrel �XÞ þmðX � rÞ �X�m aO � @V=@r: ðcÞ
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m(∂2r/∂t2) = F + ∂T0/∂r + f C, (e)

fC = −2mΩ × ( r t) = −2mΩ × vrel ≡ −2mΩ · vrel

Hence, obtain the Lagrangean equations of P: (∂L/∂vrel)
·
− ∂L/∂r = 0.



Notice that in the Lagrangean formalism, the equations of motion have the same

form in both inertial and noninertial axes; but the corresponding Lagrangeans are
different.

Problem 3.16.11 Energetics of a Particle in Relative Motion. Specialize the

results of the preceding problem to the case where O��xyz rotates uniformly about

a fixed axis through O.

(i) Show that, in this case, the generalized energy of a particle,

h � hrel � ð@L=@vrelÞ � vrel � L � p � vrel � L; ðaÞ
reduces to (notice absence of terms linear in vrel)

h ¼ ð1=2Þmvrel
2 þ ½V � ð1=2ÞmðX� rÞ2�: ðbÞ

(ii) Interpret the centrifugal potential

VCF � �ð1=2ÞmðX� rÞ2 ¼ ðm=2Þ½ðX � rÞ2 � O2r2�:
[Alternatively, we can show that the corresponding centrifugal ‘‘force’’

f CF � �m aCF ¼ �m½X� ðX� rÞ� ðcÞ
is irrotational; that is, show that curl f CF ¼ �m curl ½X� ðX� rÞ� ¼ 0 ) f CF ¼
�grad VCF :�

Problem 3.16.12 Energetics of a Particle in Relative Motion (continued). Con-

tinuing from the preceding problem (of uniform fixed-axis rotation), show that the

generalized energy h can be expressed as

hrel � h ¼ hinertial �HO �X; ðaÞ
where

hinertial � ð1=2Þmv2 þ V ¼ T þ V ð� EÞ; ðbÞ
v2 ¼ v � v ¼ inertial velocity of P; HO � r� ðmvÞ ¼ r� ð@L=@vrelÞ: ðcÞ

Equation (a) expresses the law of transformation of (generalized) energy between an

inertial frame and a uniformly rotating/nontranslating one. However, both linear

and angular momentum of P in the noninertial frame O��xyz are equal to their

inertial counterparts in the inertial O��XYZ:

p� @L=@vrel ¼ m v� pinertial and HO � r� ð@L=@vrelÞ ¼ r� p ¼ r� pinertial �HO;rel:

For a scalar derivation, see also Born (1927, p. 23).

Example 3.16.6 Motion of a Particle Near the Surface of Earth. Let us obtain

the equations of motion of a particle P of mass m near the surface of Earth (fig.

3.40). Referring to fig. 3.40, and employing the usual notations, we readily find

X ¼ ðOx;Oy;OzÞ ¼ ð�O cos �; 0;O sin �Þ; ðaÞ
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ðbÞ
and, therefore,

2T ¼ mv2 ¼ �ð _xx�Oy sin �Þ2 þ 	 _yyþ Ox sin �þ OðRþ zÞ cos �

2 þ ð _zz� Oy cos �Þ2�;

ðcÞ
also, in the neighborhood of Earth’s surface, V ¼ mg z.

From the above, it follows that Lagrange’s equations for x; y; z are

€xx ¼ 2O _yy sin �þ O2½sin �ðx sin �þ z cos �Þ þ R sin � cos ��; ðdÞ
€yy ¼ �2O _xx sin �� 2O _zz cos �þ O2y; ðeÞ
€zz ¼ 2O _yy cos � þO2½cos �ðx sin �þ z cos �Þ þ R cos2 �� � g: ðf Þ

The terms proportional to O are the components of the Coriolis (gyroscopic) ‘‘force’’

per unit mass, and those proportional to O2 are those of the centrifugal ‘‘force.’’

APPROXIMATE SOLUTION

Since O ¼ 2�=ð24Þ ð60Þ ð60Þ � 7:27� 10�5 rad/s, to a first O-approximation, we

may neglect in (d–f) the O2-terms, and rewrite the rest so that we can easily identify

the gyroscopic terms (� O) in there more easily:

€xx ¼ ð0Þ _xxþ ð2O sin �Þ _yyþ ð0Þ _zz; ðgÞ
€yy ¼ ð�2O sin �Þ _xxþ ð0Þ _yyþ ð�2O cos �Þ _zz; ðhÞ
€zz ¼ ð0Þ _xxþ ð2O cos �Þ _yyþ ð0Þ _zz� g: ðiÞ
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Figure 3.40 Motion of a particle P near Earth’s surface, using Earth-bound axes O–xyz.
ro →R, R = radius of the Earth; θ = latitude.

{with ro → R = Rk}

¼ ð _xx; _yy; _zzÞ þ ð�O cos �; 0; O sin �Þ � ðx; y;Rþ zÞ
¼ ð _xx� O y sin �; _yyþO x sin �þ OðRþ zÞ cos �; _zz� O y cos �Þ;

vP ≡ v = vO+vP/O = Ω×R+(vP,rel+ Ω×r) = vP,rel+ Ω×(R+r)



To solve the linear system (g–i) we choose, for algebraic simplicity, the free-fall initial
conditions at t ¼ 0:

x ¼ 0; y ¼ 0; z ¼ H ð> 0Þ; _xx ¼ 0; _yy ¼ 0; _zz ¼ 0: ð jÞ
Then (we recall that, here, � ¼ constant), eqs. (g) and (i) integrate once, respectively, to

_xx ¼ ð2O sin �Þy; _zz ¼ ð2O cos �Þy� g t: ðkÞ
Substituting (k) into (h), neglecting � O2 terms, for consistency, and integrating the

resulting equation while enforcing ( j), we obtain

€yy ¼ �4O2yþ ð2Og cos �Þt � ð2Og cos �Þt ) y ¼ ðOg cos �=3Þt3 ð> 0Þ; ðlÞ
that is, in both the north (0 � � � �=2) and south (��=2 � � � 0) hemispheres, the

particle deviates eastwards. Thanks to (l), and ( j), and to within � O terms, eqs. (k)

finally integrate, respectively, to

x ¼ 0 and z ¼ H � ð1=2Þgt2: ðmÞ
Clearly, for t ¼ ð2H=gÞ1=2 ) z ¼ 0; that is, P hits the ground. Then, its eastward

deviation is

yeastward ¼ ð2OH=3Þð2H=gÞ1=2 cos �: ðnÞ
The above derivation of the equations of motion (d–f ) clearly shows the superiority

and simplicity of the Lagrangean method over that of Newton–Euler.

For an alternative solution of (g–i) see, for example, Spiegel (1967, pp. 152–154);

and, for an instructive treatment of the effect of the � O2 terms, see, for example,

Bahar (1991).

Problem 3.16.13 Consider the gyroscope shown in fig. 3.41. With the usual

notations [and A=C ¼ transverse=axial (principal) moments of inertia at G], show

that:

ðiÞ 2T ¼ Að _��Þ2 þ Að _�� sin �Þ2 þ Cð _  þ _�� cos �Þ2: ðaÞ
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Figure 3.41 A gyroscope (and its Eulerian angles), supported in a light housing.



(ii) The equations of motion are

�: A€��� Að _��Þ2 sin � cos �þ Cð _  þ _�� cos �Þ _�� sin � ¼ Q�; ðbÞ
�: A €�� sin2 �þ 2A _�� _�� sin � cos � � Cð _  þ _�� cos �Þ _�� sin �

þ C cos �ð _  þ _�� cos �Þ: ¼ Q�; ðcÞ
 : Cð _  þ _�� cos �Þ: ¼ Q : ðdÞ

(iii) If Q ¼ 0, then _  þ _�� cos � � total spin ¼ constant � n, and the �; � equations

become

�: A €��� Að _��Þ2 sin � cos �þ ðC n sin �Þ _�� ¼ Q�; ðeÞ
�: A €�� sin2 � þ 2A _�� _�� sin � cos � � ðC n sin �Þ _�� ¼ Q�: ðf Þ

Identify the gyroscopic terms in the above equations of motion.

Problem 3.16.14 Gyroscopic Effects in a Pendulum of Varying Length. A block

B, of mass M, translates along the smooth horizontal floor/axis Ox. Block B
is also connected to a linear spring of stiffness k whose other end is joined to

the vertical wall Oy. A massless rod BP of variable length l ¼ lðtÞ ¼ lo þ v t
½lo ¼ constant ðinitialÞ length, v ¼ constant rate of change of l] carries at its end P
a particle P of mass m (fig. 3.42).

Choosing axes O��xy so that ðCOÞ ¼ stress-free length of spring, show that, with

the usual notations, the Lagrangean equations of motion of this system can be

written as

ð@T2=@ _xxÞ:� @T2=@x ¼ �k x�mv cos� _��; ðaÞ
ð@T2=@ _��Þ:� @T2=@� ¼ �mg l sin�þ mv cos� _xx: ðbÞ

Identify the gyroscopic (Coriolis) forces in the above equations, and indicate their

directions on fig. 3.42. What happens if l ¼ constant.
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Example 3.16.7 An Additional Power Theorem for Relative Motion. (Thomson

and Tait, 1867–1912, }319, p. 319; see also Winkelmann and Grammel, 1927,

pp. 463–465). Let us consider, with no loss of generality, a system with

Lagrangean equations of motion

Ek ¼ Qk; ðaÞ

where [recalling (3.10.1a ff.)] the left side decomposes into the following three parts:

Ek ¼ Ek;R þ Ek;T þ Ek;C; ðbÞ
Ek;R � EkðT2Þ � ð@T2=@ _qqkÞ: � @T2=@qk ðrelative inertiaÞ; ðcÞ
Ek;T � @Mk=@t� @T0=@qk ðtransport inertiaÞ; ðdÞ
Ek;C �

X
ð@Mk=@qr � @Mr=@qkÞ _qqr ðCoriolis inertiaÞ: ðeÞ

From (a), we immediately obtain the power equationX
Ek _qqk ¼

X
Qk _qqk � Pð-ower of impressed forcesÞ: ðf Þ

Let us transform the left side of (f). We find successively [recalling (3.9.3b) with

T0 ¼ 0; T1 ¼ 0; T2 ¼ T ]

ðiÞ
X

Ek;R _qqk �
X �ð@T2=@ _qqkÞ:� @T2=@qk

�
_qqk ¼ dT2=dtþ @T2=@t; ðgÞ

ðiiÞ
X

Ek;T _qqk �
X
ð@Mk=@tÞ _qqk �

X
ð@T0=@qkÞ _qqk � @T1=@t� dqT0=dt; ðhÞ

where

dqð. . .Þ=dt �
X
½@ð. . .Þ=@qk� _qqk ði:e:; t and the _qq’s remain ExedÞ; ðiÞ

ðiiiÞ
X

Ek;C _qqk �
X X

ð@Mk=@qr � @Mr=@qkÞ _qqr
� �

_qqk

�
X

�
X

gkr _qqr

� �
_qqk ¼ 0: ð jÞ

[Incidentally, eq. ( j) shows the error committed when one tries to obtain Lagrange’s equations

for gyroscopic systems, eqs. (a), from a single power equation like (f ), instead of a single but

virtual work equation, like LP.]

In view of (g–j), we can rewrite (f ) as

dT2=dt ¼ Pþ dqT0=dt� @ðT2 þ T1Þ=@t: ðkÞ

But, further, we have

dT0=dt ¼ @T0=@tþ
X
ð@T0=@qkÞ _qqk ¼ @T0=@tþ dqT0=dt; ðlÞ

and

dT1=dt ¼ @T1=@tþ
X
½ð@T1=@qkÞ _qqk þ ð@T1=@ _qqkÞ€qqk�

¼ @T1=@tþ dqT1=dtþ
X

Mk €qqk; ðmÞ
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and, therefore, the power equation (k) is finally transformed to

dT=dt ¼ ðT2 þ T1 þ T0Þ:

¼ Pþ dT0=dtþ dqðT0 þ T1Þ=dt� @T2=@tþ
X

Mk€qqk: ðnÞ

The last four terms on (the right side of) the above represent the rate of supply of
kinetic energy to the carried system from the carrying body (i.e., from its ‘‘tracks’’).

3.17 SERVO (OR CONTROL) CONSTRAINTS

The constraints examined so far, both holonomic and nonholonomic, are realized

through mechanical contact of the system parts with foreign objects or obstacles

(directly or indirectly, through auxiliary massless bodies; e.g., light inextensible

cables). These latter are either at rest, or, generally, they move in ways known in
advance; and, hence, they are unaffected by the motion and forces of the system.

The associated reactions are passive; that is, without the aforementioned contacts,

they cease to exist; and, for bilateral constraints, are assumed to satisfy LP (}3.2):

� 0WR �SdR � �r ¼
X

Rk�qk ¼ 0: ð3:17:1Þ

Such constraints are the simplest ones to be found in mechanical systems; and

analytical mechanics (AM) has, since its inception, been preoccupied with their

study to such an extent that, in the minds of many, the subject is almost synonymous

with their study. However, such constraints/reactions (C/R) are only one out of

many logical and physical possibilities. Just as in continuum mechanics, not all

parts of the total stress need obey Hooke’s law, or even be elastic, so in AM,

there exist constrained systems whose total reactions do not satisfy LP (3.17.1).

Here, we summarize the basics of that particular and technically important non-

LP type of C/R known as servo(motoric), or control, or control systems, or C/Rs of

the second kind: ðC=RÞ2; with the designation C/Rs of the first kind, ðC=RÞ1,
reserved for the earlier passive ones.

The ðC=RÞ2s are realized through auxiliary sources of energy that go into action

automatically, and are automatically adjusted (or turned off) so that, at every

moment, a particular such constraint is realized, that is, at least one of the obstacles

that interacts physically with our system, either through direct contact or via action

at a distance (e.g. electromagnetic forces), regulates its motion so that certain

holonomic and/or nonholonomic constraints, specified ahead of time, are enforced

continuously. Therefore, the motion of the controlling object(s) is not known in

advance as a function of time [as in the ðC=RÞ1 cases], but as the system moves, it

continuously adjusts itself so as to satisfy all prescribed constraints.

The associated servoreactions are not known in advance but are calculated after

the motion of the system has been determined; that is, as with (C/R)1, first we solve

the kinetic problem, and then the kinetostatic one.

HISTORICAL

These servoconstraints were introduced and examined in the early 1920s by P. Appell

and his distinguished student H. Beghin (‘‘Liaisons comportant un Asservissement,’’
since the term control did not exist then), in their investigations of the Sperry-

Anschütz gyrocompass and related navigation devices. Non-ðC=RÞ1 cases were
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also studied earlier (� 1910��1916) by the Russian–Ukrainian J. I. Grdina (1871–

1931) in his studies of the dynamics of living organisms; but we have not been able to

access them; see, for example, Fradlin, B. N., J. Appl. Mechanics (Ukrainian), 8 (6),

581–591, 1962 (in Russian); also, Arczewski and Pietrucha (1993, pp. 74–75).

Here, too, our treatment is based on a judicious modification of LP, with guiding

goal to make the servoproblem determinate; that is, generate as many equations as

the unknowns introduced by that model, say coordinates and multipliers (reactions).

We begin with the Newton–Euler equation of motion of a generic system particle P
of mass dm, which, in this case, has the following form:

dm a ¼ dF þ dRþ dR 0; ð3:17:2Þ
where

dF ¼ total impressed force on P; ð3:17:2aÞ
dR ¼ total passive reaction force ð1st kindÞ on P; ð3:17:2bÞ
dR 0 ¼ total servoreaction force ð2nd kindÞ on P: ð3:17:2cÞ

From (3.17.2), carrying out some obvious mathematical operations, we obtain

0 ¼S ðdm a� dF � dR� dR 0Þ � �r
¼S ðdm a� dF � dR 0Þ � �rþSdR � �r; ð3:17:3Þ

and, invoking (3.17.1), we finally obtain

S ðdm a� dFÞ � �r ¼SdR 0 � �r 6¼ 0: ð3:17:4Þ

From the above, it follows that to obtain completely reactionless equations in both

the fdRg and fdR 0g, we must modify the f�rg (and �q’s), if possible, by imposing on
them additional restrictions (constraints in virtual form) so that not only � 0WR ¼ 0, but
also

� 0WR 0 �SdR 0 � �r ¼ 0 )S ðdm a� dFÞ � �r ¼ 0
h i

: ð3:17:5Þ

This is the ‘‘Servo–Lagrange (D’Alembert) principle’’ (SLP). In words: among the

virtual displacements nullifying the virtual work of whatever ordinary contact/

passive reactions are present, we seek if there may exist a narrower class that, simul-

taneously, nullifies the virtual work of the additional servo/control constraint reac-

tions. That narrower class of �q’s, if it exists, is determined by eq. (3.17.5), which,

accordingly, becomes the key constitutive, namely, physical, tool for the Lagrangean

solution of servoproblems. Indeed, we show below that such problems are determi-
nate if the number of servoconstraints equals the number of additional restrictive virtual
conditions (¼ number of servoreactions) generated by (3.17.5).

An Example: The Servopendulum

Before we express these ideas in general system variables, let us discuss in some detail

the following simple but instructive example: the (vertical) plane motion of a mathe-

matical pendulum of mass m and variable (controlled) length l (fig. 3.43). Let us

choose here q1 ¼ l and q2 ¼ �, and study the case where an external agency, say, an
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agile hand, pulls the pendulum at O so that at every instant the following holonomic

servoconstraint holds:

f ðl; �Þ ¼ 0 ) l ¼ l ð�Þ ¼ known functional relation: ð3:17:6Þ

Since (3.17.6) is maintained by the hand at O, the virtual work of the corresponding

servoreaction vanishes, à la (3.17.5), if

�l ¼ 0: ð3:17:7Þ

In general, and this is important, the holonomic servoconstraint (3.17.6) and the
corresponding virtual servoconstraint (3.17.7) are unrelated to each other; that is,
the latter does not follow from the former by differentiation (variation).

Rewriting (3.17.7) as ð1Þ �l ¼ 0, or as ð1Þ �l þ ð0Þ �� ¼ 0, and combining it via

Lagrangean multipliers to LP:

Ml �l þM� �� ¼ 0; ð3:17:8Þ

where

Ml � El �Ql � ½ð@T=@ _llÞ:� @T=@l� �Ql ; ð3:17:8aÞ

M� � E� �Q� � ½ð@T=@ _��Þ: � @T=@�� �Q�; ð3:17:8bÞ

2T ¼ m½ð _llÞ2 þ l2ð _��Þ2�; ð3:17:8cÞ
V ¼ �mg l cos�

) Ql ¼ �@V=@l ¼ þmg cos�; Q� ¼ �@V=@� ¼ �mg l sin�; ð3:17:8dÞ

we immediately obtain the two Routh–Voss type equations of servomotion

(
 ¼ multiplier)

ð@T=@ _llÞ: � @T=@l ¼ Ql þ 
ð1Þ: ðm _llÞ:�m lð _��Þ2 ¼ mg cos�þ 
; ð3:17:9aÞ

ð@T=@ _��Þ:� @T=@� ¼ Q� þ 
ð0Þ: ðm l2 _��Þ: ¼ �mg l sin�; ð3:17:9bÞ
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which, along with the servoconstraint (3.17.6), constitute a determinate system for

lðtÞ; �ðtÞ; 
ðtÞ. Indeed, substituting (3.17.6) into the reactionless equation (3.17.9b),

and since dl=dt ¼ ðdl=d�Þ _��, results in [assuming lðtÞ 6¼ 0]

d2�=dt2 þ Að�Þðd�=dtÞ2 þ Bð�Þ sin � ¼ 0; ð3:17:10Þ
where

Að�Þ � 2½dlð�Þ=d���lð�Þ; Bð�Þ � g=lð�Þ: known functions of �: ð3:17:10aÞ
Next, solving the nonlinear �-equation (3.17.10) (plus initial conditions), we obtain

� ¼ �ðtÞ; then (3.17.6) yields l ¼ l½�ðtÞ� ¼ lðtÞ; and, finally, substituting the so-found

�ðtÞ and lðtÞ into the multiplier-containing equation (3.17.9a) we get the servoreac-

tion 
 ¼ 
ðtÞ. In sum:

� 0WR 0 ¼ 0 ) �l ¼ 0 ) M� ¼ 0 ) �ðtÞ ) l ¼ l ½�ðtÞ� ¼ lðtÞ ) 
ðtÞ:
To understand this servoconstraint problem better, let us also discuss the following

related nonservo versions of it:

(i) If the constraint (3.17.6) was an ordinary (i.e., passive) one, even though of the
exact same finite form as in the servo case, then we would have,

�f ¼ ð@f =@l Þ �l þ ð@f =@�Þ �� ¼ 0

) �l ¼ ��ð@f =@�Þ�ð@f =@l Þ� �� � ½dlð�Þ=d�� ��; ð3:17:11Þ
instead of (3.17.7); that is, in general, �l 6¼ 0 and �� 6¼ 0; and this combined with LP,

eq. (3.17.8), would have produced the two Routh–Voss-type equations

Ml ¼ 
ð@f =@lÞ and M� ¼ 
ð@f =@�Þ; ð3:17:12Þ
or, equivalently, the kinetic (Hadamard-type) equation

ð@f =@lÞM� � ð@f =@�ÞMl ¼ 0 ) M� þ ½dlð�Þ=d��Ml ¼ 0; ð3:17:13Þ
resulting by eliminating 
 between eqs. (3.17.12). These latter plus the (now assumed)

passive constraint (3.17.6) would constitute a determinate system for lðtÞ; �ðtÞ; 
ðtÞ.
(ii) Next, if, unlike the servo case, the temporal variation of l was known in

advance, that is, if l ¼ lðtÞ ¼ known (i.e., prescribed) function of time (e.g., para-

metric excitation), but no constraint f ðl; �Þ ¼ 0 existed, then we would have �l ¼ 0

but �� 6¼ 0, i.e., (1) �l þ ð0Þ �� ¼ 0, and so the equations of motion would be

Ml ¼ 
ð1Þ and M� ¼ 
ð0Þ ¼ 0; ð3:17:14Þ
as in the servo case; but without (3.17.6) to connect them. Clearly, this case is also

determinate.

(iii) Finally, if l and � were completely unrelated, and neither of the two was

known in advance, then

�l 6¼ 0 and �� 6¼ 0; i:e:; ð0Þ �l þ ð0Þ �� ¼ 0; ð3:17:15aÞ
and this combined with (3.17.8) would produce the two equations

Ml ¼ 
ð0Þ ¼ 0 and M� ¼ 
ð0Þ ¼ 0; ð3:17:15bÞ
from which lðtÞ and �ðtÞ could be determined.
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The above cases are summarized below [with accents (subscripts) denoting ordin-
ary (partial) derivatives]:

Finite constraints Virtual constraints Equations of motion

0: f ðl; �Þ ¼ 0) l ¼ lð�Þ ðservoÞ But: �l ¼ 0; �� 6¼ 0 Ml ¼ 
; M� ¼ 0

1: f ðl; �Þ ¼ 0 ðpassiveÞ ) �f ¼ 0: �l ¼ l 0ð�Þ�� 6¼ 0; Ml ¼ 
fl ; M� ¼ 
f�
�� 6¼ 0

2: No f ðl; �Þ ¼ 0 �l ¼ 0; �� 6¼ 0 Ml ¼ 
; M� ¼ 0

but l ¼ lðtÞ ðprescribedÞ
3: No f ðl; �Þ ¼ 0 �l 6¼ 0; �� 6¼ 0 Ml ¼ 0; M� ¼ 0

This simple but sort of prototypical example helps us understand some of the funda-

mental features of constrained system mechanics:

� Even though, in both cases 0 (servo) and 1 (passive), the constraint has the same finite

form, yet the virtual displacement restrictions in each case are not the same, but

depend on exactly how the corresponding constraint is realized, that is, on how the

controls are applied. And these differences in virtual displacements lead, in turn, to

different equations of motion, and, of course, different equations of power. Indeed,

for these four cases, we have, respectively:

Ml
_ll þM�

_�� ¼ ð
Þ ð _ll Þ þ ð0Þ ð _��Þ ¼ 
 _ll 6¼ 0 ½servo problem�
¼ ð
 flÞ ð _ll Þ þ ð
f�Þ ð _��Þ ¼ 
 _ff ¼ 0 ½passive problem�
¼ ð
Þ ð _ll Þ þ ð0Þ ð _��Þ ¼ 
 _ll 6¼ 0

¼ ð0Þ ð _ll Þ þ ð0Þ ð _��Þ ¼ 0 ½l and � independent; no f ðl; �Þ ¼ 0�;
ð3:17:16Þ

even though, in all cases, �I � � 0W ¼Ml �l þM� �� ¼ 0.

� Conversely, cases 0 and 2 may have the same virtual constraints () same form of

equations of motion), but since they are physically different () different finite con-

straints) they will have different ultimate solutions l ¼ l(t; initial conditions), � ¼
�(t; initial conditions).

The example also demonstrates that servoproblems can be treated competently

and clearly by Lagrangean mechanics; that is, contrary to certain authors’

claims (that, somehow, Lagrange’s method is restricted to ‘‘ideal’’ constraints),

these problems do not fall outside the classical methods, and, hence, do not need

new ‘‘principles’’ for their solution. However, they do need a proper understanding

of the underlying physics, and subsequent correct application of the dynamical prin-
ciple of virtual work, but viewed as a constitutive postulate, like (3.17.1) and (3.17.5),

and not as some mysterious ‘‘law of nature.’’ This is far safer than manipulating the

equations of motion, even the Lagrangean ones.

General Considerations

One Holonomic Servoconstraint

Now, let us resume our general considerations in system variables. For simplicity,

but no real loss of generality, we begin our discussion with an n-DOF system under

holonomic servoconstraints. We introduce the following basic definition.

DEFINITION

The holonomic equation

f ðt; q1; . . . ; qnÞ � f ðt; qÞ ¼ 0 ð3:17:17Þ
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represents a servoconstraint, say, relative to q1, if after substituting into it

q2 ¼ q2ðtÞ; . . . ; qn ¼ qnðtÞ, which are not known in advance, it takes the form

q1 ¼ q1ðt; q2; . . . ; qnÞ ¼ q1

�
t; q2 ¼ q2ðtÞ; . . . ; qn ¼ qnðtÞ

� � q1oðtÞ: ð3:17:17aÞ

Now, the virtual variations of the system—that is, the virtual form of (3.17.17, 17a),

follow from the constitutive requirement of the vanishing of the total virtual work of
the corresponding servoreactions; that is, from the constitutive variational equation
(3.17.5). The latter yields

�q1 ¼ ð@q1o=@tÞ �t ¼ 0; �q2 6¼ 0; . . . ; �qn 6¼ 0; ð3:17:17bÞ
or, equivalently,

ð1Þ �q1 þ ð0Þ �q2 þ � � � þ ð0Þ �qn ¼ 0; ð3:17:17cÞ
and when this is combined with (‘‘adjoined’’ to) SLP, eq. (3.17.4), it leads to the

following ‘‘servo-Routh–Voss’’ equations [with Ek �Qk �Mk ðk ¼ 1; . . . ; nÞ;

1 � 
]:

Kinetostatic: M1 ¼ 
ð1Þ or M1 ¼ 
; ð3:17:17dÞ
Kinetic: M2 ¼ � � � ¼Mn ¼ 
ð0Þ ¼ 0: ð3:17:17eÞ

Here, too, the finite holonomic control constraint (3.17.17) is, generally, unrelated

to the virtual control constraints (3.17.17b, c) resulting from � 0WR 0 ¼ 0. Next,

solving the n equations (3.17.17e) and (3.17.17), or (3.17.17a), with dq1=dt ¼P ð@q1=@q�Þ ðdq�=dtÞ þ @q1=@t ð� ¼ 2; . . . ; nÞ, we obtain q2 ¼ q2ðtÞ; . . . ; qn ¼ qnðtÞ;
and then, substituting these time functions in (3.17.17d), we find 
 ¼M1ðtÞ ¼ 
ðtÞ.

If the constraint (3.17.17, 17a) was passive, we would have

q1 ¼ q1ðt; q2; . . . ; qnÞ ) �q1 ¼
X
ð@q1=@q�Þ �q� 6¼ 0 ð� ¼ 2; . . . ; nÞ;

ð3:17:18aÞ
or, equivalently,

ð1Þ �q1 þ ð�@q1=@q2Þ �q2 þ � � � þ ð�@q1=@qnÞ �qn ¼ 0; ð3:17:18bÞ
instead of (3.17.17b, c), and so the corresponding equations of motion would be, in

the Routh–Voss form

M1 ¼ 
ð1Þ; M2 ¼ 
ð�@q1=@q2Þ; . . . ; Mn ¼ 
ð�@q1=@qnÞ; ð3:17:18cÞ
or, in the Hadamard form,

Kinetostatic: M1 ¼ 
; ð3:17:18dÞ
Kinetic: M2 þ ð@q1=@q2ÞM1 ¼ 0; . . . ; Mn þ ð@q1=@qnÞM1 ¼ 0; ð3:17:18eÞ

and since the constraint (3.17.17) is holonomic, we can enforce it directly into the

kinetic energy; that is,

T ¼ T ½t; q1ðt; q2; . . . ; qnÞ; _qq1ðt; q2; . . . ; qnÞ; q2; . . . ; qn; _qq2; . . . ; _qqn�
� Toðt; q�; _qq�Þ � To; ð3:17:18fÞ
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and E� þ ð@q1=@q�ÞE1 ¼ ð@To=@ _qq�Þ: � @To=@q� � E�ðToÞ, so that (3.17.18e) can be

rewritten as

E�ðToÞ ¼ Q� þ ð@q1=@q�ÞQ1 ð� Q�;oÞ: ð3:17:18gÞ

Two Holonomic Servoconstraints

Next, if we have two servoconstraints relative to q1 and q2:

f1ðt; q1; . . . ; qnÞ � f1ðt; qÞ ¼ 0 and f2ðt; q1; . . . ; qnÞ � f2ðt; qÞ ¼ 0;

ð3:17:19aÞ
or, equivalently,

q1 ¼ q1ðt; q3; . . . ; qnÞ ) q1½t; q3 ¼ q3ðtÞ; . . . ; qn ¼ qnðtÞ� � q1oðtÞ;
q2 ¼ q2ðt; q3; . . . ; qnÞ ) q2½t; q3 ¼ q3ðtÞ; . . . ; qn ¼ qnðtÞ� � q2oðtÞ; ð3:17:19bÞ

then, by repeating the earlier reasoning, we deduce that, for the fundamental equa-

tion (3.17.5) to hold, the virtual variations of the system must satisfy

�q1 ¼ 0; �q2 ¼ 0; �q3 6¼ 0; . . . ; �qn 6¼ 0; ð3:17:19cÞ
or, equivalently,

ð1Þ �q1 þ ð0Þ �q2 þ � � � þ ð0Þ �qn ¼ 0; ð0Þ �q1 þ ð1Þ �q2 þ � � � þ ð0Þ �qn ¼ 0;

ð3:17:19dÞ
and when these expressions are combined with LP,

M1 �q1 þM2 �q2 þM3 �q3 þ � � � þMn �qn ¼ 0; ð3:17:19eÞ
via the multipliers 
1 and 
2, they produce the following two groups of equations of

servomotion:

Kinetostatic: M1 ¼ 
1 ð1Þ þ 
2 ð0Þ ¼ 
1; M2 ¼ 
1 ð0Þ þ 
2 ð1Þ ¼ 
2;

ð3:17:19fÞ
Kinetic: M3 ¼ 
1 ð0Þ þ 
2 ð0Þ ¼ 0; . . . ; Mn ¼ 
1 ð0Þ þ 
2 ð0Þ ¼ 0: ð3:17:19gÞ

Solving the n equations (3.17.19g) and (3.17.19a, b) yields q1ðtÞ; . . . ; qnðtÞ; and then

substituting these time functions in (3.17.19f) gives the two servoreactions


1 ¼M1ðtÞ ¼ 
1ðtÞ and 
2 ¼M2ðtÞ ¼ 
2ðtÞ: ð3:17:19hÞ

General Case: Holonomic and/or Pfaffian

Servoconstraints

The extension to m 0ð5nÞ holonomic servoconstraints relative to q1; . . . ; qm 0 is

obvious. However, in all cases:

� In order to have a determinate problem, the number of nonvirtual servoconstraints

[like (3.17.17), (3.17.19a)], m 0, must equal the number of virtual servoconstraints

resulting from (3.17.5): � 0WR 0 ¼ 0 [like (3.17.17b, c), (3.17.19c, d)], say s; since this

also equals the number of unknown servoreactions/multipliers); that is, we must have

m 0ð � number of nonvirtual servoconstraintsÞ
¼ s ð� number of virtual servoconstraints � number of servoreactionsÞ:
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� If m 0 > s [i.e., more (nonvirtual) servoconstraints than servoreactions], the problem

is, in general, impossible (overdeterminate)—we cannot have more servoconstraints

than the number of virtual conditions on the Lagrangean coordinates resulting from

the nullification of the virtual work of the associated servoreactions; that is,

� 0WR 0 ¼ 0; while

� If m 0 < s [i.e., fewer (nonvirtual) servoconstraints than servoreactions], the problem is

indeterminate, unless we are given additional physical facts (constitutive equations)

about the behavior of these servoreactions.

The above methodology is extended intact to the case where some (or all) of the m 0

servoconstraints are holonomic and the rest (or all) are Pfaffian, holonomic or not.
Specifically, let our system be subject to the following additional constraints:

(i) m passive (1st kind) (with no loss in generality) Pfaffian constraintsX
adk _qqk þ ad ¼ 0 ðd ¼ 1; . . . ;mÞ ð3:17:20aÞ

whose virtual form is, therefore [recalling (2.9.11)],X
adk �qk ¼ 0; ð3:17:20bÞ

and

(ii) m 0 servo (2nd kind) (again, with no loss in generality) Pfaffian constraintsX
a 0d 0k _qqk þ a 0d 0 ¼ 0 ðd 0 ¼ 1; . . . ;m 0Þ ð3:17:20cÞ

with virtual form X
ADk �qk ¼ 0 ðD ¼ 1; . . . ; sÞ; ð3:17:20dÞ

where, as already stressed, the (coefficients of the) ‘‘servovirtual’’ forms (3.17.20d)

follow from the vanishing of the virtual work of the servoreactions, eq. (3.17.5); that is,
they are unrelated to (the coefficients of ) their velocity ‘‘counterparts’’ (3.17.20c),

and so are, in general, their numbers m 0 and s [unlike the coefficients/number of

(3.17.20b), which are directly related with those of (3.17.20a), as detailed in } 2.9].

Combination of the virtual forms (3.17.20b) and (3.17.20d) with LP readily yields the

n Routh–Voss-type equations of motion

ð@T=@ _qqkÞ: � @T=@qk ¼ Qk þ
X


d adk þ
X


 0D ADk; ð3:17:20eÞ

where the 
’s (
 0’s) are the mðsÞ passive (servo) reactions; and along with (3.17.20a)

and (3.17.20c) constitute a system of nþmþ m 0 equations for the nþ mþ s
unknowns (created by these ‘‘narrower’’ �q’s): fq1ðtÞ; . . . ; qnðtÞ; 
1ðtÞ; . . . ; 
mðtÞ;

 01ðtÞ; . . . ; 
 0sðtÞg; hence the requirement m 0 ¼ s, for determinacy. [For a Maggi–

like approach, the number of independent �q’s ¼ number of independent equations,
equals n� ðmþ sÞ.]

This is an area in rapid evolution, and one with great potential for significant

additional theoretical and practical results; for example, formulation in terms of

quasi variables, application of differential and integral variational principles

(chaps. 6, 7), extension to varying mass, impulsive motion of servocontrolled systems

(chap. 4).

So far, all the relevant work in English seems to consist of translations of French

and Soviet/Russian works. Among these, we recommend for complementary reading
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(alphabetically): Appell (1953, pp. 402–416), Apykhtin and Iakovlev (1980), Azizov

(1986), Beghin (1967, pp. 440–443, 523–525), Cabannes (1965, pp. 188–191; sum-

mary of Appell/Beghin’s work), Castoldi (1949), Kirgetov [1964(a),(b); 1967], Levi-

Civita and Amaldi (1927, pp. 377–380, Mei (1987, pp. 243–248; excellent summary),

Rumiantsev (1976, and references cited therein).

Problem 3.17.1 Consider a circular homogeneous disk D of negligible mass and

radius R, free to rotate about a fixed horizontal axis through its center (pin) O
(fig. 3.44). A plate P, of mass m and mass center G, is smoothly pin-joined on D
at a point A. A motor acting on the disk D (or, perhaps, being located at A) at

every instant realizes the servoconstraint

angleðOA; AGÞ � �� � ¼ �=2: ðaÞ
(i) Show that the (double) kinetic and potential energies of P are, respectively,

2T ¼ m
�
R2ð _��Þ2 þ ðl2 þ kG

2Þ ð _��Þ2 þ 2Rl cosð�� �Þ _�� _��
�
; ðbÞ

ðkG ¼ radius of gyration of P about GÞ
V ¼ �mgðR cos�þ l cos �Þ;
) � 0W ¼ �mgðR sin� ��þ l sin � ��Þ ¼ virtual work of weight: ðcÞ

An additional term ð1=2ÞIOð _��Þ2, in T , would have accounted for the inertia of D
(IO ¼ moment of inertia of disk about O).

(ii) Show that, here, the condition � 0WR 0 ¼ 0 (recall that the servomotor is acting

on D) leads to

�� ¼ 0 or ð1Þ ��þ ð0Þ �� ¼ 0; ðdÞ
and, hence, to the equations of motion

M� ¼ 
 and M� ¼ 0; ðeÞ
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where

M� � E� �Q� � ½ð@T=@ _��Þ:� @T=@�� � ð�mgR sin�Þ ¼ � � � ; ðf Þ

M� � E� �Q� � ½ð@T=@ _��Þ:� @T=@�� � ð�mgl sin �Þ ¼ � � � : ðgÞ
(iii) Show that (e, f, g), in extenso, after taking into account the servoconstraint

(a) and with kA
2 � kG

2 þ l2, are

m
�
R2 €��þ R lð _��Þ2 þ gR sin�

� ¼ 
; ðhÞ
or


ðtÞ ¼ m
�
R2 €��þ Rlð _��Þ2 þ gR cos �

�
; ðiÞ

and

kA
2 €��� Rlð _��Þ2 þ g l sin � ¼ 0: ð jÞ

[Hence solving the kinetic equation ( j), we obtain �ðtÞ, and then substituting that

function of time into the kinetostatic equation (i), we obtain the servoreaction 
ðtÞ.]
(iv) Extend the above to include the inertia of the disk D.

For additional details and insights, see Appell (1953, pp. 411–412), Cabannes

(1968, pp. 189–191), Kirgetov (1967, pp. 473–474).

Problem 3.17.2 Continuing from the preceding problem, show that if the

constraint (a), �� � ¼ �=2, is an ordinary passive one, say by contact between D
and P [) �� ¼ �� 6¼ 0, or ð1Þ ��þ ð�1Þ �� ¼ 0], then the corresponding equations

of motion are

M� ¼ 
 and M� ¼ �
: ðaÞ
Then show that combination of (a) ()M� þM� ¼ 0) with the above constraint

results in the physical pendulum-like kinetic equation

ðR2 þ kA
2Þ€��þ gðR cos �þ l sin �Þ ¼ 0; ðbÞ

from which �ðtÞ [and � ¼ �=2þ �ðtÞ � �ðtÞ] can be determined.

[The multiplier (passive reaction) can then be easily found from either of the

(now algebraic) equations (a): 
 ¼M�½�ðtÞ; �ðtÞ� ¼M�ðtÞ ¼ �M�½�ðtÞ; �ðtÞ� ¼
�M�ðtÞ ¼ 
ðtÞ.]

Finally, extend these results to include the inertia of the disk D.

Problem 3.17.3 Continuing from the preceding problems, show that if � ¼
�ðtÞ ¼ prescribed , but no f ð�; �Þ ¼ 0 exists [i.e., �� ¼ 0 but �� 6¼ 0�, then the

equations of motion are

M� ¼ 
 and M� ¼ 0; ðaÞ
and constitute a determinate system for � ¼ �ðtÞ, 
 ¼ 
ðtÞ.

What happens if � and � and their virtual variations are completely independent
[i.e., no f ð�; �Þ ¼ 0, and �� ¼ 0, �� ¼ 0]?

Finally, extend these results to include the inertia of the disk D.
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Problem 3.17.4 (Castoldi, 1949). Consider the motion of the spherical

(mathematical) pendulum P, of mass m and length l (fig. 3.45).

(i) Show that under the servoconstraint at O,

f ðl; �Þ ¼ 0 ) l ¼ lð�Þ f¼ � � � ¼ l½�ðtÞ�; �l ¼ 0; �� 6¼ 0; �� 6¼ 0g; ðaÞ

its � and � equations of motion are

E� ¼ Q�: ðl 2 sin2 �Þ €��þ 2½l sin2 �ðdl=d�Þ þ l2 sin � cos �� _�� _�� ¼ 0; ðbÞ

E� ¼ Q�: l 2 €��þ 2 lðdl=d�Þð _��Þ2 � ðl2 sin � cos �Þð _��Þ2 ¼ �g l sin �: ðcÞ

[Three equations for lðtÞ; �ðtÞ; �ðtÞ.]
(ii) Show that if eq. (a) represents an ordinary passive constraint

[) �l ¼ ðdl=d�Þ �� 6¼ 0; �� 6¼ 0; �� 6¼ 0], then the reactionless (Hadamard-type)

equations for � and � are

E� ¼ Q�: ðl2 sin2 �Þ €��þ 2
�
l sin2 �ðdl=d�Þ þ l2 sin � cos �

�
_�� _�� ¼ 0; ðdÞ

E� þ ðdl=d�ÞEl ¼ Q� þ ðdl=d�ÞQl :�ðdl=d�Þ2 þ l2
�
€��þ ðdl=d�Þ�ðd2l=d�2Þ þ l

�ð _��Þ2
� l
�
l cos �þ ðdl=d�Þ sin �� sin �ð _��Þ2 ¼ g l

�ðdl=d�Þl�1 cos �� sin �
�
:

½Again three equations for lðtÞ; �ðtÞ; �ðtÞ:� ðeÞ

(iii) Show that (e) can be rewritten as

ð@To=@ _��Þ:� @To=@� ¼ Q� þ ðdl=d�ÞQl ð� Q�oÞ; ðf Þ

where

2To ¼ m
�ðdl=d�Þ2ð _��Þ2 þ l2ð _��Þ2 þ l2 sin2 �ð _��Þ2�

Q� ¼ 0; Q� ¼ �mgl sin �; Ql ¼ mg cos �: ðgÞ

(iv) Find the general functional expressions for the reaction 
 ¼ 
ðtÞ in cases (i)

and (ii).
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Figure 3.45 Spherical mathematical pendulum under a servoconstraint at O.

Spherical coordinates: x ¼ ðl sin �Þ cos�; y ¼ ðl sin �Þ sin�; z ¼ l cos �.



Example 3.17.1 Let us consider a gyro B (axisymmetric body of revolution),

supported by two Cardan-like massless circular rings CiðinnerÞ and CoðouterÞ, with its

center of mass G at the intersection of the three axes a��a; a 0 ��a 0; a 00 ��a 00 (fig. 3.46).

(i) Now, let us assume that a motor, acting on Co, realizes, at every instant, the

servoconstraint

� ¼ �: ðaÞ
To nullify the virtual work of the corresponding reactions, from the motor to Co, we

choose the restricted virtual displacement

�� ¼ 0; ðbÞ
which, we notice, does not coincide with the formal mathematical virtual version of

(a): �� ¼ ��. Equation (b) can be rewritten, equivalently, as

ð1Þ �� þ ð0Þ ��þ ð0Þ � ¼ 0; ðcÞ
and, therefore, combined with the principle of Lagrange

M� ��þM� ��þM � ¼ 0; ðdÞ

leads, with the help of the multiplier 
 to the Routh–Voss equations

M� ¼ 
ð1Þ: E� ¼ Q� þ 
; ðeÞ
M� ¼ 
ð0Þ: E� ¼ Q�

ðe:g:;Q� ¼ �k �; k ¼ torsional spring constantÞ; ðf Þ
M ¼ 
ð0Þ: E ¼ Q ; ðgÞ

where [applying, by now, well-known steps, and with A=C ¼ transverse/axial prin-

cipal moments of inertia of B at G]

2T ¼ A
�ð _��Þ2 þ ð _��Þ2 sin2 �

�þ Cð _  þ _�� cos �Þ2: ðhÞ
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Figure 3.46 Servoconstraints on a Cardan-suspended gyro

½� ¼ angle of rotation of Co; � ¼ angle of planes of Ci and

Co;  ¼ angle of rotation of B about ‘‘articulation axis’’ a–a,

fixed in Ci (spin axis)].



The solution of this servoproblem proceeds as follows: solving (f, g) and (a), we

obtain �ðtÞ; �ðtÞ;  ðtÞ; and then substituting these time expressions into (e), we get

the servoreaction 
ðtÞ.
(ii) If (a) was an ordinary passive constraint, then (b, c) would be replaced by

�� ¼ ��; � 6¼ 0 ) ð1Þ ��þ ð�1Þ ��þ ð0Þ � ¼ 0; ðiÞ
and the equations of motion (e–g) by

M� ¼ 
ð1Þ ¼ 
; M� ¼ 
ð�1Þ ¼ �
; M ¼ 
ð0Þ ¼ 0; ð jÞ
and, along with (a), would constitute a determinate system for �ðtÞ; �ðtÞ;  ðtÞ; 
ðtÞ.

Here, too, we notice that analytically identical constraints, (a), depending on how
and where they are applied, lead to different equations of motion and reactions. In the

case of gyrocompasses, such servoconstraints allow us to increase or diminish the

resulting oscillations; that is, to control them.

Example 3.17.2 A plane P translates sliding over another fixed horizontal plane

O��XY . A homogeneous sphere S, of radius R and mass m, rolls on P with

inertial angular velocity x. The motion of P is regulated automatically so that the

center of mass G of S rotates uniformly around OZ with constant inertial angular

velocity X (fig. 3.47). Let us study the motion of the sphere. Here we have the

following two constraints:

(i) rolling of S on P (ordinary passive kind),

vCðSÞ ¼ vCðPÞ ) vG þ x � rC=G ¼ vCðPÞ ¼ vAðPÞ; ðaÞ
where A ¼ arbitrary plane point ¼ ðu; �; 0Þ, or, in components,

ð _��; _; _RR ¼ 0Þ þ ð!X ; !Y ; !ZÞ � ð0; 0; �RÞ ¼ ð _uu; _vv; 0Þ; ðbÞ
from which we readily obtain the two rolling constraints

_�� � !YR ¼ _uu and _ þ !XR ¼ _vv; ðc1; 2Þ
and (ii) uniform rotation of G around OZ (servoconstraint),

vG ¼ X� rG=O ¼ X� rG=O 0 ; ðdÞ
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Figure 3.47 Controlled rolling of a sphere on a translating plane.
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or, in components,

ð _��; _; 0Þ ¼ ð0; 0; OÞ � ð�; ; 0Þ; ðeÞ
from which we readily obtain the two Pfaffian servoconstraints

_�� þ O  ¼ 0 and _ � O � ¼ 0: ðf Þ
The servoconstraint on the sphere is expressed by the dependence of (c) on the

ð. . .Þ:-derivatives of the two control parameters u and v; that is, _uu and _vv.
Now, the servoreactions are the reaction forces from the plane to the sphere.

Therefore, their virtual work � 0WR 0 ¼ ð. . .Þ �uþ ð. . .Þ �v vanishes for the virtual

displacements

�u ¼ 0 and �v ¼ 0; ðgÞ
or, equivalently,

ð1Þ �uþ ð0Þ �v ¼ 0 and ð0Þ �uþ ð1Þ �v ¼ 0; ðhÞ
which bear no formal mathematical relation to (f ).

Next, to the equations of motion. To be able to enforce the nonholonomic Pfaffian

constraints (c) right from the start, it is best not to use the kinetic energy (!Hamel

equations), but the Appellian. Indeed, to within ‘‘Appell-important’’ terms (}3.14),

the (double) Appellian of the sphere equals

2S ¼ m½ð€��Þ2 þ ð€Þ2� þ ð2mR2=5Þ�ð _!!XÞ2 þ ð _!!Y Þ2 þ ð _!!ZÞ2
�

½or; eliminating _!!X and _!!Y via the passive constraints ðcÞ:
!Y ¼ R�1ð _�� � _uuÞ and !X ¼ R�1ð _vv� _Þ ) _!!X ¼ � � � ; _!!Y ¼ � � ��

¼ m
�ð€��Þ2 þ ð€Þ2�þ ð2m=5Þ�ð€vv� €Þ2 þ ð€�� � €uuÞ2 þ R2ð _!!ZÞ2

�
� 2Sð€��; €; €uu; €vv; _!!ZÞ; ðiÞ

and, therefore, combining the principle of virtual work [with d�X � !X dt, and

noticing that the virtual work of all impressed forces (here, gravity) vanishes]

ð@S=@€��Þ �� þ ð@S=@€Þ � þ ð@S=@€uuÞ �uþ ð@S=@€vvÞ �vþ ð@S=@ _!!ZÞ ��Z ¼ 0; ð jÞ
with the two virtual servoconstraints (g, h) via the two multipliers (servoreactions) 

and �, yields the following Routh–Voss equations (in Appellian form):

Kinetic: @S=@€�� ¼ 0: €�� � ð2=7Þ€uu ¼ 0; ðkÞ
@S=@€ ¼ 0: € � ð2=7Þ€vv ¼ 0; ðlÞ
@S=@ _!!Z ¼ 0: _!!Z ¼ 0 ) !Z � _��Z ¼ constant; ðmÞ

Kinetostatic: @S=@€uu ¼ 
ð1Þ þ �ð0Þ: ð2m=5Þ ð€uu� €��Þ ¼ 
;
or; invoking ðc1Þ; 2mR _!!Y þ 5
 ¼ 0; ðnÞ

@S=@€vv ¼ 
ð0Þ þ �ð1Þ: ð2m=5Þ ð€vv� €Þ ¼ �;
or; invoking ðc2Þ; 2mR _!!X � 5� ¼ 0: ðoÞ
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These five equations plus the two servo equations (f ) constitute a determinate system

for the seven unknowns: �ðtÞ; ðtÞ; !ZðtÞ; uðtÞ; vðtÞ; 
ðtÞ; �ðtÞ; then, !XðtÞ and

!Y ðtÞ can be found from (c). For additional details and insights, see, for example,

Appell (1953, pp. 415–416), Beghin (1967, pp. 523–525), Kirgetov (1967, pp. 475–

476).

Problem 3.17.5 Continuing from the preceding example,

(i) Show that the servoconstraints (f) integrate to

� ¼ a cosðOtÞ and  ¼ a sinðOtÞ ða ¼ constantÞ; ðaÞ
and, therefore, equations (k, l) yield, for a(ny) typical point A or C of the translating

plane, the ‘‘cycloidal’’ translatory motion

u ¼ ð7=2Þa cosðOtÞ þ c1tþ c2; v ¼ ð7=2Þa sinðOtÞ þ c3tþ c4; ðbÞ
where the c1;2;3;4 are integration constants.

(ii) After calculating !XðtÞ; !Y ðtÞ; !ZðtÞ [via equations (c), (m) and the above],

show that x ¼ ð!X ; !Y ; !ZÞ, emanating from G, describes an oblique cone of

circular horizontal base, of radius ð5=2Þða=RÞO, and is traversed at the uniform

rate X.

3.18 GENERAL EXAMPLES AND PROBLEMS

Example 3.18.1 Dynamics of a Sled (or Knife, or Scissors, etc.) Let us determine

the forces and equations of motion of the sled shown in fig. 3.48.

The sled kinematics have already been discussed in ex. 2.13.1 and ex. 2.13.2. We

recall that q1 ¼ x; q2 ¼ y; q3 ¼ �, and that the nonholonomic (scleronomic) con-

straint is

vC;y=vC;x ¼ _yy= _xx ¼ dy= dx ¼ tan� ) dy ¼ ðtan�Þ dx; ðaÞ
or

ð1Þ dx þ ð�1= tan�Þ dyþ ð0Þ d� ¼ 0: ðbÞ
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Figure 3.48 Sled in plane motion (on a fixed plane);

geometry and forces. G ¼mass center; C ¼ contact

point; I � IC � mkc
2 ¼ moment of inertia about

C ¼ IG þmb2 ðkc ¼ radius of gyration about C).



Kinetic Energy

Applying König’s theorem about C, we find (no constraint enforcement yet!), in

holonomic variables,

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2� þ 2m _��
�
_yyðxG � xÞ � _xxðyG � yÞ�þ ICð _��Þ2

¼ m½ð _xxÞ2 þ ð _yyÞ2� þ 2mb _��ð _yy cos�� _xx sin �Þ þ ICð _��Þ2; ðcÞ
and since [recalling (ex. 2.13.2: a–c)]

ð _xxÞ2þð _yyÞ2¼ ð�!1 sin�þ!2 cos�Þ2þð!1 cos�þ!2 sin�Þ2¼ � � � ¼ !1
2þ!2

2; ðd1Þ
ðcos�Þ _xxþ ðsin�Þ _yy � v � !2 ¼ velocity of contact point along sled ð6¼ 0Þ
_yy cos�� _xx sin� ¼ !1 ð¼ 0; to be enforced laterÞ and _�� ¼ !3; ðd2; 3; 4Þ
in nonholonomic variables:

2T ¼ 2T* ¼ mð!1
2 þ !2

2Þ þ 2mb!1 !2 þ IC !3
2: ðeÞ

We point out that the quadratic term m!1
2 can be safely omitted from 2T* right at

this stage; but not the term 2mb!1 !2 (why?). From (c) and (e), and the constraint,

we readily conclude that the corresponding constrained (double) kinetic energies are

2T ! 2Too ¼ m½ð _xxÞ2 þ ð _yyÞ2� þ ICð _��Þ2

ð‘‘partially constrained; ’’ i:e:; still a function of _xx; _yy; _��Þ; ðfÞ
2T*! 2T*o ¼ m!2

2 þ IC !3
2: ðgÞ

Appellian

Applying the Appellian counterpart of König’s theorem (recalling }3.14); that is,

S ¼ SG þ S=G; ðhÞ
2SG � m aG � aG ¼ maG

2 ¼ 2 ðAppellian of translation of mass centerÞ; ðiÞ
2S=G �Sdm a=G � a=G ¼Sdma=G

2

¼ 2 ½Appellian of motion ðrotationÞ about the mass center�; ðjÞ
for the relaxed (unconstrained) system and in holonomic variables, we find

aG
2 ¼ ð€xxGÞ2 þ ð€yyGÞ2 ¼ ½ðxþ b cos�Þ:: �2 þ ½ðyþ b sin�Þ:: �2

¼ ½€xx� b €�� sin�� bð _��Þ2 cos��2 þ ½€yyþ b €�� cos�� bð _��Þ2 sin ��2

¼ ð€xxÞ2 þ ð€yyÞ2 þ b2ð €��Þ2 þ 2b €��ð€yy cos�� €xx sin�Þ
� 2bð _��Þ2ð€xx cos�þ €yy sin�Þ þ terms not containing €xx; €yy; €��; ðkÞ

and (with r ¼ distance of a typical sled particle, of mass dm, from G)

2S=G �Sdm
�ðr €��Þ2 þ ðr _��2Þ2� ¼ IGð €��Þ2 þ IGð _��Þ4; ðlÞ
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or, to within ‘‘Appell-important terms,’’

2S ¼ m½ð€xxÞ2 þ ð€yyÞ2 þ b2ð €��Þ2 þ 2b €��ð€yy cos�� €xx sin�Þ
� 2bð _��Þ2ð€xx cos�þ €yy sin�Þ� þ IGð €��Þ2

¼ 2Sð�; _��; €xx; €yy; €��Þ: ðmÞ

To express S in the _!! variables — that is, S ! S*ðt; q; !; _!!Þ � S*— we need the

€qq’s; that is, €xx; €yy; €��, in terms of t; q; !; _!!. Indeed, ð. . .Þ:-differentiating _qqk ¼
P

Akl !l,

we find

€qq1 � €xx ¼ ð� sin�Þ _!!1 þ ðcos�Þ _!!2 þ ð� cos�Þ!1!3 þ ð� sin�Þ!2!3; ðn1Þ
€qq2 � €yy ¼ ðcos�Þ _!!1 þ ðsin�Þ _!!2 þ ð� sin �Þ!1!3 þ ðcos�Þ!2!3; ðn2Þ
€qq3 � €�� ¼ ð1Þ _!!3: ðn3Þ

However, and this is a very useful and labor-saving remark, since only

@S*=@ _!!k ðk ¼ 1; 2; 3Þ enter the equations of motion, and because of the analytical

identities:

S ðt; q; _qq; €qqÞ ¼ S*ðt; q; !; _!!Þ and @€qqk=@ _!!l ¼ @ _qqk=@!l � Aklðt; qÞ

ðk ¼ 1; 2; 3 — although, obviously, this is a general result), from which, by chain rule,

@S*=@ _!!k ¼
X
ð@S=@€qqlÞð@€qql=@ _!!kÞ ¼ � � � ¼

X
Alkð@S=@€qqlÞ; ðm1Þ

it follows that it is not necessary to square the €qq’s and then insert them into (m);

that is, there is no need to calculate S*ð. . . ; _!!Þ; but, as (m1) shows, we do need to use

the linear €qq, _!! relations (n1–3). From (m1) it also follows that

ð@S*=@ _!!kÞo ¼
X

Alkð@S=@€qqlÞo; ðm2Þ

where ð@S=@€qqlÞo means that after we differentiate S of (m) in the €qq’s, we insert there

the contrained €qq! ð€qqÞo � €qqo , ! relations and not the relaxed (n1–3); that is,

€qq1o � €xx ¼ ðcos�Þ _!!2 þ ð� sin�Þ!2 !3; ðn4Þ
€qq2o � €yy ¼ ðsin �Þ _!!2 þ ðcos�Þ!2 !3; ðn5Þ
€qq3o � €�� ¼ ð1Þ _!!3: ðn6Þ

The above can also be found by ð. . .Þ:-differentiation of the ‘‘natural’’ (constrained)

variables _xx ¼ v cos�; _yy ¼ v sin�, where v ¼ velocity in sled ’s direction. The result

is

€xx ¼ _vv cos�� v _�� sin �; €yy ¼ _vv sin�þ v _�� cos�; ðn7Þ

and inverts readily to

_vv ¼ €xx cos�þ €yy sin� ð¼ acceleration along sledÞ; ðn8Þ
v _�� ¼ €yy cos�� €xx sin� ð¼ acceleration normal to sledÞ; ðn9Þ
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[from which it also follows that ð€xxÞ2 þ ð€yyÞ2 ¼ ð _vvÞ2 þ v2ð _��Þ2�. Clearly, (n7) and (n4–6)

are identical. As a result of (n7–9), the Appellian expression (m) transforms to

2So ¼ m
�ð _vvÞ2 þ v2ð _��Þ2 þ b2ð €��Þ2 þ 2b v _�� €��� 2bð _��Þ2 _vv�þ IGð €��Þ2;

or

2S*o ¼ m
�ð _!!2Þ2 þ !2

2!3
2 þ b2ð _!!3Þ2 þ 2b!2 !3 _!!3 � 2b!3

2 _!!2

�þ IGð _!!3Þ2; ðm3Þ
or, finally, to within ‘‘Appell-important’’ terms (and recalling that, by the parallel

axis theorem, IC ¼ IG þmb2Þ
2S*o ¼ m

�ð _!!2Þ2 þ 2b!3ð!2 _!!3 � !3 _!!2

�þ ICð _!!3Þ2: ðm4Þ

Virtual Work

With reference to fig. 3.49 and }3.4 and }3.15, we find, successively,

� 0W ¼ X �xþ Y �yþMC �� ¼ Q1 �q1 þQ2 �q2 þQ3 �q3

) Q1 ¼ X; Q2 ¼ Y ; Q3 ¼MC ðholonomic componentsÞ; ðn10Þ
and (from the invariance of � 0W)

� 0W ¼
X

Qk �qk ¼
X

Qk

X
Akl ��l

� �
¼
X

Yl ��l

) Yl ¼
X

AklQk ðholonomic componentsÞ; and; inversely; Qk ¼
X

alkYl ;

ðn11Þ
and, therefore, here [recalling (ex. 2.13.2: a, c)],

Y1 ¼ �X cos�þ Y sin� � N ¼ impressed system force perpendicular to sled;

ðn12Þ
Y2 ¼ X cos�þ Y sin � � K ¼ impressed system force along sled; ðn13Þ
Y3 ¼MC �M ¼ impressed system moment about C ðperpendicular to O�XYÞ;

ðn14Þ
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on sled. Impressed forces on sled: holonomic: Q1 � X;Q2 � Y ;Q3 � M; nonholonomic:

Y1 � N;Y2 � K ;Y3 � M.



and similarly for the reactions (here, only L1 6¼ 0)

� 0WR ¼ 
1 ��1 ¼ L1 ��1 ¼
X

Rk �qk ð
1 ¼ Lagrangean multiplierÞ
) 
1 ¼ L1 ¼

X
Ak1Rk; and; inversely; Rk ¼ a1kL1 ¼ a1k
1: ðn15Þ

The Routh–Voss Equations

Invoking the above results, we find, successively,

E1ðTÞ ¼ Q1 þ 
1a11: ðm _xx� mb _�� sin�Þ: ¼ X þ 
ð� sin�Þ;
or m½€xx� b €�� sin �� bð _��Þ2 cos�� ¼ X � 
 sin�; ðo1Þ

E2ðTÞ ¼ Q2 þ 
1a12: ðm _yyþ mb _�� cos�Þ: ¼ Y þ 
ðcos�Þ;
or m½€yyþ b €�� cos�� bð _��Þ2 sin�� ¼ Y þ 
 cos�; ðo2Þ

E3ðTÞ ¼ Q3 þ 
1a13:

½IC _��þmbð� _xx sin �þ _yy cos�Þ�:þmb _��ð _xx cos�þ _yy sin�Þ ¼M þ 
ð0Þ;
or IC €��þmbð€yy cos�� €xx sin�Þ ¼M: ðo3Þ

These three coupled equations, plus the constraint (a, b), constitute a system of four

equations for the four functions: xðtÞ; yðtÞ; �ðtÞ; 
ðtÞ.

� Clearly, equations (o1, 2) express the principle of linear momentum for the sled along

O�XY , respectively; while (o3) expresses that of angular momentum about C.

� The derivation of the �-equation, (o3), shows clearly why we should not enforce the

constraint (a, b) in T . Had we done so — that is, T ! Too [eq. (f)], since that constraint

is nonholonomic—we would have obtained the incorrect Routh–Voss equations

E1ðTooÞ ¼ Q1 þ 
1a11: ðm _xxÞ: ¼ X � 
 sin�; ðo4Þ
E2ðTooÞ ¼ Q2 þ 
1a12: ðm _yyÞ: ¼ Y þ 
 cos�; ðo5Þ
E3ðTooÞ ¼ Q3 þ 
1a13: ICð _��Þ: ¼M: ðo6Þ

Elimination of the Reaction 
 among Equations (n7–9)

Multiplying (o1) with cos� and (o2) with sin�, and adding side by side, yields

cos�ðm _xx�mb _�� sin �Þ:þ sin�ðm _yyþ mb _�� cos�Þ: ¼ X cos�þ Y sin�;

or, simplifying, and so on,

m½€xx cos�þ €yy sin�� bð _��Þ2� ¼ K : ðo7Þ
Equations (o7) and (o3) are, essentially, the (kinetic) Maggi–Hadamard equations

of our problem (see below) and, along with the constraint (a), they constitute a

determinate system for xðtÞ; yðtÞ; �ðtÞ. Once this has been accomplished, then, to

isolate 
, we multiply (o1) with � sin� and (o2) with cos�, and add, and thus
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obtain (the kinetostatic Maggi equation)


 ¼ mð�€xx sin�þ €yy cos�þ b €��Þ � ð�X sin�þ Y cos�Þ
¼ inertia ‘‘force’’ perpendicular to sled � impressed force perpendicular to sled

� maG;n �N ð¼ constraint reaction perpendicular to sledÞ: ðo8Þ
In terms of the ‘‘natural’’ (or ‘‘intrinsic’’) variables v and �, defined by

_xx ¼ v cos� and _yy ¼ v sin�; where v ¼ velocity in direction of sled;

the kinetic equations (o7) and (o3) assume, respectively, the simpler Hamel forms

(see below)

m½ _vv� bð _��Þ2� ¼ K and IC €��þmb _�� v ¼M; ðp1; 2Þ
while the kinetostatic (o8) becomes

mðb €��þ v _��Þ ¼ N þ 
: ðp3Þ
If K ;M ¼ 0 (force-free case), eqs. (p1, 2) reduce to

m½ _vv � bð _��Þ2� ¼ 0 and IC €��þmb _�� v ¼ 0; ðp4; 5Þ
and yield, readily, the (first) integral of energy:

2T ¼ mv2 þ 2mb _��ð� _xx sin�þ _yy cos�Þ þ ICð _��Þ2 ¼ constant � 2h;

or, after enforcing the constraint (a),

mv2 þ ICð _��Þ2 ¼ 2h: ðp6Þ
(See also Carathéodory, 1933; and Hamel, 1949, pp. 467–470.)

The Maggi Equations

With Mk � EkðTÞ �Qk ðk ¼ 1; 2; 3! x; y; �Þ, and ðAklÞ from (n1–3), Maggi’s

equations become

AxxMx þ AyxMy þ A�xM� ¼ 
: ð� sin �ÞMx þ ðcos�ÞMy þ ð0ÞM� ¼ 
; ðq1Þ
AxyMx þ AyyMy þ A�yM� ¼ 0: ðcos�ÞMx þ ðsin�ÞMy þ ð0ÞM� ¼ 0; ðq2Þ
Ax�Mx þAy�My þ A��M� ¼ 0: ð0ÞMx þ ð0ÞMy þ ð1ÞM� ¼ 0; ðq3Þ

or, explicitly,

and coincide, respectively, with the earlier-found equations (o8), (o7), and (o3); that

is, the Maggi approach constitutes a systematization of the earlier uncoupling of the

Routh–Voss equations into kinetic and kinetostatic.
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m(ÿ cosφ− ẍ sinφ) + m b φ̈ = (cosφ Y − sinφX) + λ , (q4)

m b(ÿ cosφ− ẍ sinφ) + IC φ̈ = M , (q6)

m(ẍ cosφ+ ÿ sinφ)− mb(φ̇)2 = cosφX+ sinφY , (q5)



� Clearly, equations (q1, 2 / 4, 5) express, respectively, the principle of linear momentum

normally and along the sled; while (q3/6) expresses that of angular momentum about

C.

� If we express (any) one of the holonomic velocities, say _xx, in terms of the other two

via the constraint (a) [i.e., _xx ¼ _xxð _yy; _��;�Þ], and use this to eliminate _xx and €xx from the

kinetic Maggi equations (q2, 3), these two new (kinetic) equations in _yy; €yy; _��; €��; �
would be the Chaplygin–Voronets equations of our problem; equivalently, these

would be our Lagrangean equations of motion based on the kinetic energy expressed

in terms of the two independent velocities _yy and _��: T ! T ½ _xxð _yy; _��Þ; _yy; _��; �� ¼ Toð _yy; _��Þ �
To ¼ completely constrained kinetic energy [recall (3.8.13a ff.)]. The details, for any

of the three possible choices of dependent velocity, are left to the reader. See also

Dobronravov (1970, pp. 92–104).

The Appell Equations

ð@T=@ _qqkÞ:� @T=@qk, the holonomic variable Appellian equations are

@S=@€qqk ¼ Qk þ
X


D aDk ðk ¼ 1; 2; 3 ¼ x; y; �; D ¼ 1Þ; ðrÞ

and, of course, they coincide completely with the earlier Routh–Voss equations (o3).

(ii) Nonholonomic variables: With the help of the earlier results [(n1) ff.], we readily

find

@S*=@ _!!k ¼ ðm€qq1Þð@ _qq1=@!kÞ þ ðm€qq2Þð@ _qq2=@!kÞ þ ðmb2€qq3Þð@ _qq3=@!kÞ
þmbð@ _qq3=@!kÞð€qq2 cos�� €qq1 sin�Þ
þmb€qq3½ð@ _qq2=@!kÞ cos�� ð@ _qq1=@!kÞ sin��
�mbð _qq3Þ2½ð@ _qq1=@!kÞ cos�þ ð@ _qq2=@!kÞ sin �� þ IG€qq3ð@ _qq3=@!kÞ

¼ ðm€qq1ÞA1k þ ðm€qq2ÞA2k þ � � � ;

or, explicitly (recalling that IC ¼ IG þmb2Þ,

@S*=@ _!!1 ¼ m _!!1 þ mb _!!3 þm!2 !3 ) ð@S*=@ _!!1Þo ¼ mðb _!!3 þ !2 !3Þ;
@S*=@ _!!2 ¼ m _!!2 � m!1 !3 �mb!3

2 ) ð@S*=@ _!!2Þo ¼ mð _!!2 � b!3
2Þ;

@S*=@ _!!3 ¼ IC _!!3 þmb _!!1 þmb!2 !3 ) ð@S*=@ _!!3Þo ¼ IC _!!3 þmb!2 !3: ðs1; 2; 3Þ

From the above and (n12–15), we see that the nonholonomic Appellian equations of

our problem are

ð@S*=@ _!!1Þo ¼ Y1 þ 
1: m ðb _!!3 þ !2 !3Þ ¼ N þ 
; ðs4Þ
ð@S*=@ _!!2Þo ¼ Y2: m ð _!!2 � b!3

2Þ ¼ K ; ðs5Þ
ð@S*=@ _!!3Þo ¼ Y3: IC _!!3 þmb!2 !3 ¼M: ðs6Þ

Upon recalling the definitions of !1;2;3, we immediately see that the above are noth-

ing but (p3, 1, 2) in that order. Clearly, the above constitute a (determinate) system of

three equations in !2ðtÞ; !3ðtÞ; 
ðtÞ: first, we solve (s5, 6) for !2, !3, and, substituting

the results into (s4) (which then becomes algebraic), we obtain 
.
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=(i) Holonomic variables: Due to the kinematico-inertial identities ∂S/∂q̈k =



If we were not interested in finding the reaction L1 ¼ 
1 ¼ 
 (perpendicular to the

sled at C, and due to the constraint !1=d�1=��1 ¼ 0Þ, we would only need to evaluate

all relevant quantities for !1 ¼ 0, _!!1 ¼ 0, and denote them by ð. . .Þo; that is, instead

of the relaxed holonomic accelerations (n1–3), we would only need their constrained

values (n4–6) and corresponding constrained Appellian (m1, 2). Then, the two

kinetic Appellian equations would read

@S*o=@ _!!2 ¼ ð@S*=@ _!!2Þo ¼ mð _!!2 � b!3
2Þ ¼ Y2; ðs7Þ

@S*o=@ _!!3 ¼ ð@S*=@ _!!3Þo ¼ IC _!!3 þmb!2 !3 ¼ Y3; ðs8Þ

as before.

It is such ‘‘constrained’’ Appellian derivations, based on @S*o=@ _!!I ¼
ð@S*=@ _!!IÞo ðI ¼ 2; 3Þ, that one usually finds in the literature.

The Hamel Equations

Invoking the earlier equations (e, g), we easily find

P1 ¼ ð@T*=@!1Þo ¼ mb!3; ðt1Þ
P2 ¼ ð@T*=@!2Þo ¼ m!2; ðt2Þ
P3 ¼ ð@T*=@!3Þo ¼ ðmb!1 þ IC !3Þo ¼ IC !3; ðt3Þ

and therefore the master variational equation (3.6.12)X
_PPk ��k þ

X
Pk½ð��kÞ:� �!k� �

X X
Alkð@T*=@qlÞ

� �
��k ¼

X
Yk ��k;

with the help of the transitivity equations (ex. 2.13.2: d–i), yields

_PP1 ��1 þ _PP2 ��2 þ _PP3 ��3

þP1ð�!3 ��2þ!2 ��3ÞþP2ð!3 ��1�!1 ��3ÞþP3ð0Þ ¼Y1 ��1þY2 ��2þY3 ��3; ðt4Þ

or, collecting ð. . .Þ ��k terms:

ð _PP1 þ P2 !3 �Y1Þ ��1 þ ð _PP2 � P1 !3 �Y2Þ ��2 þ ð _PP3 þ P1 !2 �Y3Þ ��3 ¼ 0: ðt5Þ

Finally, adjoining to this variational equation the constraint

��1 ¼ 0; or ð1Þ ��1 þ ð0Þ ��2 þ ð0Þ ��3 ¼ 0; ðt6Þ

via the method of Lagrangean multipliers yields the three earlier equations (s4–6):

_PP1 þ P2 !3 ¼ Y1 þ 
1: mðb _!!3 þ !2 !3Þ ¼ N þ 
; ðt7Þ
_PP2 � P1 !3 ¼ Y2: mð _!!2 � b!3

2Þ ¼ K ; ðt8Þ
_PP3 þ P1 !2 ¼ Y3: IC _!!3 þmb!2 !3 ¼M: ðt9Þ

The above clearly demonstrate the usefulness of the nonholonomic form of LP (t4, 5)

over any particular set of equations.
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Problem 3.18.1 Formulate the constraint of a sled in plane motion on a turntable

spinning with constant (inertial) angular velocity O, in both inertial and rotating

coordinates (fig. 3.50).

HINT

Formulate the constraint in the (moving) O�xy axes, and then use the transforma-

tion equations: x ¼ X cos�� Y sin�; y ¼ X sin�þ Y cos�, and their ð. . .Þ:-deri-

vatives for the (fixed) O�XY axes.

Problem 3.18.2 Continuing from the preceding problem, write down its transitivity

equations and calculate (read off ) their Hamel coefficients. Then obtain its equations

of motion in both holonomic and nonholonomic variables.

Example 3.18.2 Dynamics of a Rolling Sphere on a Fixed Plane. Let us determine

the forces and equations of motion of a homogeneous sphere S, of mass m and

radius r, rolling on a rough horizontal fixed plane P (fig. 3.51).

The relevant kinematics has already been discussed in exs. 2.13.4–2.13.6. We recall

that q1 ¼ XG � X ; q2 ¼ YG ¼ Y ; q3 ¼ �; q4 ¼ �; q5 ¼  (coordinates of center of

mass G and Eulerian angles of sphere-fixed axes G�xyz relative to translating/non-

rotating axes G�XYZ), and that the constraints are

_XX � ðr sin�Þ _��þ ðr sin � cos�Þ _  ¼ 0; _YY þ ðr cos�Þ _��þ ðr sin � sin�Þ _  ¼ 0; ðaÞ
that is, here, n ¼ 5;m ¼ 2 ) f � n�m ¼ 3 (# local) DOF.

The Routh–Voss Equations

By König’s theorem and the results of }1.17, the (double) kinetic energy of S is

2T ¼ m½ð _XXÞ2 þ ð _YYÞ2� þ IX
2!X

2 þ IY
2!Y

2 þ IZ
2!Z

2
	 


658 CHAPTER 3: KINETICS OF CONSTRAINED SYSTEMS

Figure 3.50 Geometry of sled on a uniformly spinning turntable. Inertial

coordinates: q1 ¼ X;q2 ¼ Y ; q3 ¼  � �þ �; � ¼ !t; rotating coordinates:

q1 ¼ x; q2 ¼ y ; q3 ¼ �.



(the second term can be expressed in either body or space axes at G;

IX ¼ IY ¼ IZ � I ¼ 2mr2=5Þ
¼ m½ð _XXÞ2 þ ð _YYÞ2� þ I ½ð _��Þ2 þ ð _��Þ2 þ ð _  Þ2 þ 2 _�� _  cos ��, (b)

and, therefore, the corresponding five Routh–Voss equations,

EkðTÞ ¼ Qk þ
X


DaDk ðk ¼ 1; . . . ; 5 � X ;Y ; �; �;  ; D ¼ 1; 2Þ;

with 
1 ! 
 and 
2 ! �, are

m €XX ¼ QX þ 
 ði:e:; RX ¼ 
Þ; ðb1Þ
m €YY ¼ QY þ � ði:e:; RY ¼ �Þ; ðb2Þ
Ið €��þ €  cos �� _�� _  sin �Þ ¼ Q� ði:e:; R� ¼ 0Þ; ðb3Þ
Ið€��þ _�� _  sin �Þ ¼ Q� � rð
 sin�� � cos�Þ ð� Q� þ R�Þ; ðb4Þ
Ið €  þ €�� cos �� _�� _�� sin �Þ ¼ Q þ r sin �ð
 cos�þ � sin�Þ ð� Q þ R Þ: ðb5Þ

Equation (b3) shows that if Q� ¼ 0, then _!!Z ¼ €��þ €  cos �� _�� _  sin � ¼
0 ) !Z ¼ _��þ cos � _  ð¼ total vertical spinÞ ¼ constant, as expected. [See also

Bahar (1970–1980, pp. 446–450) and Roy (1965, vol. I, pp. 380–385) for additional

insights and special cases.]

Next:

� Eliminating 
 and � among (b1–5) [e.g., solving (b1) for 
 and (b2) for � and

inserting these values into (b4, 5)], we obtain the following three coupled kinetic

)3.18 GENERAL EXAMPLES AND PROBLEMS 659

�

�

�

����� ���	

�




�

�



�




� �

�

�

�

�

Figure 3.51 Geometry of sphere rolling on a fixed horizontal plane.

Axes: O�XYZ: inertial (fixed); G�XYZ: translating (nonrotating); G�xyz:
body-fixed.



Maggi-like equations:

Ið €��þ €  cos �� _�� _  sin �Þ ¼ Q�; ðb6Þ
Ið€�� þ _�� _  sin �Þ þmrð €XX sin�� €YY cos�Þ ¼ Q� þ rðQX sin��QY cos�Þ; ðb7Þ
Ið €  þ €�� cos �� _�� _�� sin �Þ �mrð €XX cos�þ €YY sin �Þ

¼ Q � r sin �ðQX cos�þQY sin�Þ; ðb8Þ
which, along with the two constraints (a) constitute a determinate system of

five equations in the five Lagrangean coordinates: XðtÞ;YðtÞ; �ðtÞ; �ðtÞ;  ðtÞ. After

these latter have been found, we can easily determine the multipliers/reactions


ðtÞ; �ðtÞ from (b1, 2), respectively.

� If, further, with the help of the constraints (a) we eliminate _XX ! €XX ¼
€XXð�; �; _��; _��; _  ; €��; €  Þ and _YY ! €YY ¼ €YYð�; �; _��; _��; _  ; €��; €  Þ, or any other two out of

the five _qq’s, among (b6–8), we will obtain the three (kinetic) Chaplygin–Voronets

equations of the problem, coupled in _��; _��; _  and their ð. . .Þ:-derivatives—see below.

� Equations (b1–5) can, of course, also be obtained by adjoining to LP:X
½ð@T=@ _qqkÞ:� @T=@qk� �qk ¼

X
Qk �qk; ðb9Þ

the constraints (a) in virtual form [i.e., with ð. . .Þ: replaced, in them, by �ð. . .Þ],
via multipliers 
 and �, and then setting of the coefficients of the (now) free

�q’s equal to zero.

The Hamel Equations

Recalling (ex. 2.13.6: a ff., with O ¼ 0):

!1 ¼ _XX � r!Y ¼ _XX � r!4 ð¼ 0Þ ) _XX ¼ !1 þ r!4; ðc1Þ
!2 ¼ _YY þ r!X ¼ _YY þ r!3 ð¼ 0Þ ) _YY ¼ !2 � r!3; ðc2Þ
!3 ¼ !X ) !X ¼ !3; ðc3Þ
!4 ¼ !Y ) !Y ¼ !4; ðc4Þ
!5 ¼ !Z ) !Z ¼ !5; ðc5Þ

we readily find (no constraint enforcement yet)

ð _XXÞ2 þ ð _YYÞ2 ¼ � � � ¼ !1
2 þ !2

2 þ r2ð!3
2 þ !4

2Þ þ 2rð!1 !4 � !2 !3Þ;
r2ð!X

2 þ !Y
2 þ !Z

2Þ ¼ r2ð!1
2 þ !2

2 þ !3
2Þ;

and, therefore, (b) becomes

2T ! 2Tð!Þ � 2T* ¼ � � � ¼ m½!1
2 þ !2

2 þ ð7r2=5Þð!3
2 þ !4

2Þ
þ ð2r2=5Þ!5

2 þ 2rð!1 !4 � !2 !3Þ�; ðc6Þ
or, to within ‘‘Hamel-important terms’’ [i.e., dropping the quadratic terms in

!1 ð¼ 0Þ and !2 ð¼ 0Þ, but not the linear ones]:

2T* ¼ m½ð7r2=5Þð!3
2 þ !4

2Þ þ ð2r2=5Þ!5
2 þ 2rð!1 !4 � !2 !3Þ�: ðc7Þ
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From this, we readily find [with the notation ð. . .Þo � ð. . .Þ evaluated for !1;2 ¼ 0]

P1 � ð@T*=@!1Þo ¼ mr!4; ðc8Þ
P2 � ð@T*=@!2Þo ¼ �3mr!3; ðc9Þ
P3 � ð@T*=@!3Þo ¼ ð7mr2=5Þ!3; ðc10Þ
P4 � ð@T*=@!4Þo ¼ ð7mr2=5Þ!4; ðc11Þ
P5 � ð@T*=@!5Þo ¼ ð2mr2=5Þ!5 ¼ I !5: ðc12Þ

Next, to the virtual work of the impressed forces. Recalling (ex. 2.13.6: i1–6), we

obtain, successively,

� 0W ¼ QX �X þQY �Y þQ� ��þQ� ��þQ � 

¼ QXð��1 þ r ��4Þ þQY ð��2 � r ��3Þ
þQ�ð� cot � sin� ��3 þ cot � cos � ��4 þ ��5Þ
þQ�ðcos� ��3 þ sin � ��4Þ þQ ½ðsin�= sin �Þ ��3 � ðcos�= sin �Þ ��4�

¼ ðQXÞ ��1þðQY Þ ��2þ½�rQY �cot � sin�Q�þcos�Q�þðsin �=sin �ÞQ � ��3

þ ½rQX þ cot � cos�Q� þ sin�Q� � ðcos�= sin �ÞQ � ��4 þQ� ��5; ðc13Þ

and, therefore,

Y1 ¼ QX ; Y2 ¼ QY ; ðc14; 15Þ
Y3 ¼ �rQY � cot � sin �Q� þ cos�Q� þ ðsin �= sin �ÞQ ; ðc16Þ
Y4 ¼ rQX þ cot � cos�Q� þ sin�Q� � ðcos�= sin �ÞQ ; ðc17Þ
Y5 ¼ Q�: ðc18Þ

[If no reactions are sought, we only need Y3;4;5. Then we can enforce the constraints

in � 0W ¼ Y3 ��3 þY4 ��4 þY5 ��5:�
In view of the above, noting that, here, @T*=@qk ¼ 0 and �rI ;nþ1 ¼ 0, and recal-

ling (ex. 2.13.6: l1–m, with O ¼ 0), the kinetic Hamel equations
_PPI þ

PP
�rII 0Pr !I 0 � _PPI � GI ¼ YI ðI ; I 0 ¼ 3; 4; 5; r ¼ 1; . . . ; 5Þ yield

I ¼ 3: ð7mr2=5Þ _!!3 � G3

¼ ð7mr2=5Þ _!!3 þ �1
34P1 !4 þ �1

35P1 !5 þ �2
34P2 !4 þ �2

35P2 !5

þ �4
35P4 !5 þ �5

34P5 !4

ðonly the Orst; third; sixth; and seventh terms surviveÞ
¼ ð7mr2=5Þ _!!3 � P5 !4 þ ðP4 � rP1Þ!5

¼ ð7mr2=5Þ _!!3 � ðI!5Þ!4 þ ½ð7mr2=5Þ!4 � rðmr!4Þ�!5

¼ ð7mr2=5Þ _!!3 þ 0 ðrecalling that I ¼ 2mr2=5Þ; ðc19Þ
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and similarly for I ¼ 4; 5. The final results are (recalling }3.15)

I ¼ 3: ð7mr2=5Þ _!!3 ¼ Y3;

or

ð7mr2=5Þ _!!X ¼ �rQY � cot � sin�Q� þ cos�Q� þ ðsin�= sin �ÞQ ¼MX � rQY ;

ðc20Þ

I ¼ 4: ð7mr2=5Þ _!!4 ¼ Y4;

or

ð7mr2=5Þ _!!Y ¼ rQX þ cot � cos�Q� þ sin�Q� � ðcos�= sin �ÞQ ¼MY þ rQX ;

ðc21Þ

I ¼ 5: ð2mr2=5Þ _!!5 ¼ Y5;

or

ð2mr2=5Þ _!!Z ¼ Q�: ðc22Þ

These three (first-order) equations, plus the three kinematic relations

!X ;Y ;Z , _��; _��; _  (}1.12) and the two constraints (a), constitute a determinate system

in the eight functions: XðtÞ;YðtÞ; �ðtÞ; �ðtÞ;  ðtÞ; !X;Y ;ZðtÞ.
Instead of the space-fixed !-components !X ;Y ;Z, we could just as well have used

its body-fixed components !x;y;z; or, we can always invoke the !X ;Y ;Z , !x;y;z

relations. However, because of the complete symmetry of this problem, the space-

fixed axes seems the best choice.

The Appell Equations

Since

aG
2 ¼ ð €XXÞ2 þ ð €YYÞ2 ¼ ½ð!1 þ r!4Þ:�2 þ ½ð!2 � r!3Þ:�2

¼ ð _!!1Þ2 þ ð _!!2Þ2 þ r2½ð _!!3Þ2 þ ð _!!4Þ2� þ 2rð _!!1 _!!4 � _!!2 _!!3Þ; ðd1Þ

and, as in the preceding example (à la König),

S ¼ SG þ S=G; 2SG ¼ maG
2; 2S=G �Sdm a=G � a=G ¼Sdma=G

2; ðd2Þ

it is not too hard to see that S* equals the earlier T*, but with the !’s replaced by the

corresponding _!!’s; that is,

2S* ¼ 2T*ð _!!Þ ¼ m ð _!!1Þ2 þ ð _!!2Þ2 þ ð7r2=5Þ½ð _!!3Þ2 þ ð _!!4Þ2�
n
þ ð2r2=5Þð _!!5Þ2 þ 2rð _!!1 _!!4 � _!!2 _!!3Þ

o
: ðd3Þ

Also, as the theory shows (3.5.25a ff.), if we are not interested in finding the con-

straint reactions, we can enforce the constraints !1;2 ¼ 0 ) _!!1;2 ¼ 0 in S* right
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from the start; that is, we can neglect from it not just the quadratic terms in _!!1;2 but

also the linear ones. Thus, we can take 2S*ð _!!1;2 ¼ 0Þ � 2S*o:

2S*o ¼ m ð7r2=5Þ½ð _!!3Þ2 þ ð _!!4Þ2� þ ð2r2=5Þð _!!5Þ2
n o

; ðd4Þ

and therefore the kinetic Appellian equations are

@S*o=@ _!!3 ¼ ð7r2=5Þ _!!3 ¼ Y3; ðd5Þ
@S*o=@ _!!4 ¼ ð7r2=5Þ _!!4 ¼ Y4; ðd6Þ
@S*o=@ _!!5 ¼ ð2r2=5Þ _!!5 ¼ Y5; ðd7Þ

and, of course, these coincide with the earlier kinetic Hamel equations.

The Chaplygin Equations (3.8.13a ff.)

We recall that here the (double) kinetic energy equals

2T ¼ m½ð _XXÞ2 þ ð _YYÞ2� þ I ½ð _��Þ2 þ ð _��Þ2 þ ð _  Þ2 þ 2 _�� _  cos ��; ðe1Þ

while the constraints (a), rewritten in the Chaplygin form — that is,

_qqD ¼
X

bDI _qqI ; where qD ¼ X ;Y ; qI ¼ �; �;  ;

are

_XX ¼ ðr sin�Þ _��� ðr cos � sin �Þ _  and _YY ¼ �ðr cos�Þ _��� ðr sin� sin �Þ _  : ðe2Þ

Therefore, in this problem, the ‘‘Chaplygin coefficients’’ are (with some easily under-

stood ad hoc notation)

b13 � bX� ¼ 0; b14 � bX� ¼ r sin�; b15 � bX ¼ �r cos � sin �;

b23 � bY� ¼ 0; b24 � bY� ¼ �r cos�; b25 � bY ¼ �r sin� sin �: ðe3Þ

Clearly, since (�) the constraints (e2, 3) are stationary, and (�) the chosen

‘‘dependent’’ coordinates X ;Y do not appear either in the constraint coefficients

bDI or in T (i.e., @T=@X ¼ 0; @T=@Y ¼ 0Þ, this is a Chaplygin system, and, there-

fore, Chaplygin’s equations hold; and, for this problem, they coincide with Voronets’

equations. Let us find them.

(i) Eliminating _XX and _YY from T with the help of the constraints (e2), we obtain

the ‘‘Chaplygin constrained kinetic energy’’
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2T = 2T [θ, Ẋ(φ, θ; θ̇, ψ̇), Ẏ (φ, θ; θ̇, ψ̇), φ̇, θ̇, ψ̇]

= · · · = (mr2)
[
(2/5)(φ̇)2 + (7/5)(θ̇)2 +

(
(2/5) + sin2 θ)

)
(ψ̇)2 + (4 cos θ/5)φ̇ψ̇

]

= 2To(φ, θ; φ̇, θ̇, ψ̇) ≡ 2To, (e4)



and, therefore,

E3ðToÞ � E�ðToÞ � ð@To=@ _��Þ:� @To=@� ¼ ð2mr2=5Þð €��þ €  cos � � _�� _  sin �Þ;
E4ðToÞ � E�ðToÞ � ð@To=@ _��Þ:� @To=@�

¼ ðmr2Þ½ð7=5Þ€��� ð _  Þ2 sin � cos �þ ð2=5Þ _�� _  sin ��;

(ii) Next, let us calculate the corresponding ‘‘Chaplygin corrective terms’’

�GIo �
XX

ð@bDI 0=@qI � @bDI=@qI 0 Þð@T=@ _qqDÞo _qqI 0

�
XX

tDI 0Ið@T=@ _qqDÞo _qqI 0 �
XX

tDI 0I pDo _qqI 0 : ðe8Þ

Using commas for partial derivatives relative to the qI , we obtain, successively,

�G3o � �G�o �
XX

tDI3 pDo _qqI ¼
X X

tDI3 _qqI

� �
pDo

¼ ½ðb13;3 � b13;3Þ _qq3 þ ðb14;3 � b13;4Þ _qq4 þ ðb15;3 � b13;5Þ _qq5�p1o

þ ½ðb23;3 � b23;3Þ _qq3 þ ðb24;3 � b23;4Þ _qq4 þ ðb25;3 � b23;5Þ _qq5�p2o

¼ ½ðbX�;� � bX�;�Þ _��þ ðbX ;� � bX�; Þ _  �pXo
þ ½ðbY�;� � bY�;�Þ _��þ ðbY ;� � bY�; Þ _  �pYo;

or, since,

p1o � pXo � ð@T=@ _XXÞo ¼ ðm _XXÞo ¼ mrð _�� sin�� _  cos� sin �Þ;
p2o � pYo � ð@T=@ _YYÞo ¼ ðm _YYÞo ¼ �mrð _�� cos�þ _  sin� sin �Þ;

finally,

�G3o � �G�o
¼ ½ðr cos�� 0Þ _��þ ðr sin� sin �� 0Þ _  �ðmrÞð _�� sin�� _  cos� sin �Þ
þ ½ðr sin�� 0Þ _��þ ð�r cos� sin �� 0Þ _  �ð�mrÞð _�� cos�þ _  sin� sin �Þ

¼ � � � ¼ 0; ðe9Þ

and similarly, after some careful algebra,

�G4o � �G�o ¼
X X

tDI4 _qqI

� �
pDo ¼ � � � ¼ mr2ð _��þ _  cos �Þð _  sin �Þ; ðe10Þ

�G5o � �G o ¼
X X

tDI5 _qqI

� �
pDo ¼ � � � ¼ �mr2ð _��þ _  cos �Þð _�� sin �Þ: ðe11Þ
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E5(To) ≡ Eψ(To) ≡ (∂To/∂ψ̇)
·
− ∂To/∂ψ

= (mr2)
{
(2/5)φ̈ cos θ +

[
(2/5) + sin2 θ

]
ψ̈ + 2θ̇ψ̇ sin θ cos θ

− (2/5)φ̇θ̇ sin θ
}
. (e5, 6, 7)



The above show that the nonvanishing Chaplygin coefficients are

t143 � tX�� ¼ r cos� ð¼ �t134 � �tX��Þ; ðe12Þ
t153 � tX � ¼ r sin� sin � ð¼ �t135 � �tX� Þ; ðe13Þ
t154 � tX � ¼ �r cos� cos � ð¼ �t145 � �tX� Þ; ðe14Þ
t243 � tY�� ¼ r sin� ð¼ �t234 � �tY��Þ; ðe15Þ
t253 � tY � ¼ �r cos� sin � ð¼ �t235 � �tY� Þ; ðe16Þ
t254 � tY � ¼ �r sin� cos � ð¼ �t245 � �tY� Þ: ðe17Þ

(iii) Finally, let us calculate the ‘‘Chaplygin impressed forces’’ QIo �
QI þ

P
bDI QD. With some obvious ad hoc notation, we find

Q3o � Q�o ¼ Q3 þ b13Q1 þ b23Q2 ¼ Q3 � Q�; ðe18Þ
Q4o � Q�o ¼ Q4 þ b14Q1 þ b24Q2 ¼ Q4 þ ðr sin�ÞQ1 þ ð�r cos�ÞQ2

¼ Q� þ rðQX sin��QY cos�Þ; ðe19Þ
Q5o � Q o ¼ Q5 þ b15Q1 þ b25Q2 ¼ Q5 þ ð�r cos� sin �ÞQ1 þ ð�r sin� sin �ÞQ2

¼ Q � r sin �ðQX cos�þ QY sin �Þ: ðe20Þ

Inserting now all the above partial results into Chaplygin’s equations (3.8.13o):

ð@To=@ _qqIÞ:� @To=@qI � GIo ¼ QIo ðe21Þ

(with I : 3! �; 4! �; 5!  ), and, simplifying a little, we obtain the following

three kinetic equations:

�: ð2mr2=5Þð €��þ €  cos �� _�� _  sin �Þ ¼ Q�; ðe22Þ
�: ð7mr2=5Þð€��þ _�� _  sin �Þ ¼ Q� þ rðQX sin ��QY cos�Þ; ðe23Þ
 : ðmr2Þ½ð2=5Þ €�� cos �þ ð2=5Þ €  þ €  sin2 �� ð7=5Þ _�� _�� sin �

þ _�� _  sin � cos �� ¼ Q � r sin �ðQX cos �þQY sin�Þ: ðe24Þ

These latter, of course, coincide (i) with the earlier-found kinetic Maggi equations

(b6–8), after we eliminate in them €XX and €YY using the ð. . .Þ:-differentiated constraints

(a); and (ii) with the earlier kinetic Hamel equations (c20–22), after we express
_��; . . . ; €��; . . . ; in terms of !3;4;5 and _!!3;4;5, and Q�;�; ; o in terms of Y3;4;5; and

similarly with the Appell equations (d5–7). The details are left to the reader.

REMARK

(May be omitted in a first reading.) A safer way to calculate the �GIo — and, in fact,

the entire set of Chaplygin’s equations — is by direct application of the Chaplygin
form of the master variational equation [specialization of the corresponding equation

of Hamel (}3.6.12)]X
ð@To=@ _qqI Þ: �qI �

X
ð@To=@qIÞ �qI �

X
GIo �qI ¼

X
QIo �qI ; ðe25Þ
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where

�
X

GIo �qI ¼
X XX

tDI 0I pDo _qqI 0
� �

�qI

¼
X XX

tDI 0I _qqI 0 �qI

� �
pDo ¼ �

X
pDo

�ð�qDÞ: � �ð _qqDÞ�: ðe26Þ

The reason for this is that here we have, in effect, adopted the Suslov viewpoint
according to which

ð��kÞ:� �!k ¼ 0 and ð�qIÞ:� �ð _qqI Þ ¼ 0; ðe27Þ
but, successively,

ð�qDÞ:� �ð _qqDÞ ¼
X

bDI �qI

� �:� � X bDI 0 _qqI 0
� �

¼
XX

ðbDI ;I 0 _qqI 0 �qI � bDI 0;I _qqI 0 �qIÞ
¼
XX

ðbDI ;I 0 � bDI 0;I Þ _qqI 0 �qI
�
XX

tDII 0 _qqI 0 �qI ¼ �
XX

tDI 0I _qqI 0 �qI ; ðe28Þ

whereas in the customary, and more general, viewpoint of Hamel (} 2.12):

ð�qkÞ: � �ð _qqkÞ ¼ 0, ðk ¼ 1; . . . ; nÞ, but

ð��DÞ:� �!D ¼
XX

�DI� !� ��I )
XX

tDI 0I _qqI 0 �qI 6¼ 0; ðe29Þ

and, accordingly, the term corresponding to �P GIo �qI is [recalling (}3.6.11)]X
Pk½ð��kÞ:� �!k� !

X
pDo½ð��DÞ:� �!D�

¼
X

pDo

XX
tDI 0I _qqI 0 �qI

� �
¼
X XX

tDI 0I pDo _qqI 0
� �

�qI ; ðe30Þ

that is, the two interpretations may be different, but, if utilized consistently, both lead

to the same equations of motion [and similarly for the case of Voronets (3.8.14a ff.)].

In our problem, adopting the Suslov viewpoint, we obtain, successively [recalling

(e2), etc.],

�
X

pDo½ð�qDÞ:� �ð _qqDÞ� ¼ �pXo½ð�XÞ: � �ð _XXÞ� � pYo½ð�YÞ:� �ð _YYÞ�
¼ �½mrð _�� sin�� _  cos� sin �Þ� f½ðr sin�Þ ��� ðr cos� sin �Þ � �:

� �½ðr sin�Þ _��� ðr cos � sin �Þ _  �g
� ½�mrð _�� cos�þ _  sin� sin �Þ� f½ð�r cos�Þ ��þ ð�r sin � sin �Þ � �:

� �½ð�r cos�Þ _��þ ð�r sin� sin �Þ _  �g
¼ � � � ¼ ð0Þ ��þ ½mr2ð _  sin �Þð _��þ _  cos �Þ� ��

þ ½ð�mr2Þð _�� sin �Þð _��þ _  cos �Þ� � 
¼ �ðG�o ��þ G�o ��þ G o � Þ; ðe31Þ

as (e26) requires; and, of course, in agreement with the earlier (e9–11).
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The above make clear that the methods of Chaplygin, and Voronets, are rather

complicated and error prone, even in this relatively simple problem; and the only

reason for working it out completely was [just like Chaplygin’s original effort (1895/

1897)] to demonstrate concretely that, in general,

EIðToÞ � ð@To=@ _qqIÞ:� @To=@qI 6¼ QIo; ðe32Þ
although, in this case, the equality does hold for qI ¼ � [see also Beghin, 1967, I,

pp. 436–438), and ‘‘a famous error’’ in our rolling coin example 3.18.5 (below)].

The Hadamard Equations

EIðTÞ þ
P

bDIEDðTÞ ¼ QI þ
P

bDIQD ð� QIoÞ. The EkðTÞ ðk ¼ 1; . . . ; 5Þ; bDI ,

and QIo have already been calculated. It is not hard to show that the final result

would be the earlier kinetic Maggi equations (b6–8); while for D ¼ 1; 2 we would

simply have [recalling (3.8.11a ff.)]

EDðTÞ ¼ QD þ 
D ¼ QD þRD: ðfÞ

Constraint Reactions

In view of the above, we obtain, successively,

R1 � RX ¼ m €XX �QX and R2 � RY ¼ m €YY � QY ; ðg1Þ
and [recalling (3.8.11l)] RI ¼

P

DaDI ¼

P

Dð�bDIÞ ¼ �

P
bDI ½EDðTÞ �QD�:

R3 ¼ R� ¼ �b13½E1ðTÞ �Q1� � b23½E2ðTÞ �Q2� ¼ �ð0Þð. . .Þ � ð0Þð. . .Þ ¼ 0;

R4 ¼ R� ¼ �b14½E1ðTÞ �Q1� � b24½E2ðTÞ �Q2�
¼ �r sin �ðm €XX �QXÞ � ð�r cos�Þðm €YY �QY Þ
¼ r½�mð €XX sin�� €YY cos�Þ þ ðQX sin��QY cos�Þ�;

R5 ¼ R ¼ �b15½E1ðTÞ �Q1� � b25½E2ðTÞ �Q2�
¼ �ð�r cos� sin �Þðm €XX �QXÞ � ð�r sin � sin �Þðm €YY �QY Þ
¼ r½mð €XX cos�þ €YY sin�Þ � ðQX cos�þQY sin�Þ�; ðg2; 3; 4Þ

so that once the motion has been found, the reactions can be readily determined.

Example 3.18.3 Dynamics of a Sphere Rolling on a Uniformly Spinning Plane.

Introduction: Hamel’s Equations

Continuing from the preceding example, let us find the motion of that sphere if the

plane P is revolving about the fixed (vertical) axis OZ with constant angular velocity

O. The relevant kinematics has already been discussed in ex. 2.13.5 and ex. 2.13.6. It

was shown there that the rolling constraints are (note additional acatastatic terms)

_XX � ðr sin �Þ _��þ ðr cos � sin �Þ _  þ OY ¼ 0;

_YY þ ðr cos�Þ _��þ ðr sin� sin �Þ _  � OX ¼ 0: ða1Þ
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Since the catastatic coefficients ½aDk; D ¼ 1; 2; k ¼ 1; . . . ; 5� and kinetic energy have

the same form as in the previous catastatic case, the equations of motion of Routh–

Voss and Maggi–Hadamard are the same in form as before; their solutions, however,

will be different because these equations must now be joined with the different

constraints (a1).

Similarly, LP and the virtual form of the constraints (a) remain the same. But

since T in quasi variables, T*, is not the same as before, Hamel’s equations (which

incorporate the new constraints) will be different; and so will be those of Appell.

Indeed, and remembering not to enforce the constraints !1;2 ¼ 0 until the final stage,

we find

2T ! 2T* ¼ m½ð!1 þ r!4 � OYÞ2 þ ð!2 � r!3 þ OXÞ2� þ Ið!3
2 þ !4

2 þ !5
2Þ: ða2Þ

The �’s have already been calculated in (ex. 2.13.6: l1–m); we have also found that

A13 ¼ 0; A14 ¼ r; A15 ¼ 0; A23 ¼ �r; A24 ¼ 0; A25 ¼ 0: ða3Þ

Therefore, Hamel’s kinetic equations

ð@T*=@!IÞ:�
X

ADI ð@T*=@qDÞ þ
XX

�kII 0 ð@T*=@!kÞ!I 0

þ
X

�kIð@T*=@!kÞ ¼ YI ; ða4Þ

yield, after some straightforward and careful algebra,

_PP3 � @T*=@�3 þ P4 !5 � P5 !4 þ P1 rðO� !5Þ ¼ Y3; ða5Þ
_PP4 � @T*=@�4 þ P5 !3 � P3 !5 þ P2 rðO� !5Þ ¼ Y4; ða6Þ
_PP5 � @T*=@�5 þ P3 !4 � P4 !3 þ P1r!3 þ P2 r!4 ¼ Y5; ða7Þ

or, explicitly,

ð7mr2=5Þ _!!X �mrOðr!Y � OYÞ ¼ YX ; ða8Þ
ð7mr2=5Þ _!!Y þmrOðr!X � OXÞ ¼ YY ; ða9Þ
ð2mr2=5Þ _!!Z ¼ YZ; ða10Þ

we notice the O-proportional terms [in addition to those of eqs. (c20–22) of the

preceding example]. The extension to the general case O ¼ OðtÞ involves only

some algebraic complications; in particular, eqs. (a5–7) still hold.

Hamel’s Equations via the Master Variational Equation

X
_PPk ��k þ

X
Pk½ð��kÞ:� �!k� �

X X
Alkð@T*=@qlÞ

h i
��k ¼

X
Yk ��k: ðb1Þ

The direct application of (b1), for the derivation of Hamel equations of motion, is

recommended in order to minimize the probability of errors. Its main advantage lies
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in the calculation of the second (noncommutative) term. Let us carry this out expli-

citly: Recalling the transitivity relations (ex. 2.13.6: j ff.), we find, successively,

P1½ð�OÞ ��2 þ rðO� !5Þ ��3 þ ðr!3Þ ��5�
þ P2½ðOÞ ��1 þ rðO � !5Þ ��4 þ ðr!4Þ ��5�
þ P3½ð!4Þ ��5 þ ð�!5Þ ��4�
þ P4½ð!5Þ ��3 þ ð�!3Þ ��5�
þ P5½ð!3Þ ��4 þ ð�!4Þ ��3�

¼ ðP2 OÞ ��1 þ ð�P1 OÞ ��2 þ ½P4 !5 � P5 !4 þ P1rðO� !5Þ� ��3

þ ½P5 !3 � P3 !5 þ P2 rðO� !5Þ� ��4

þ ½P3 !4 � P4 !3 þ rðP1 !3 þ P2 !4Þ� ��5: ðb2Þ

In the above, we notice that (a) the first and second terms, are needed in the kineto-
static equations ð��1;2 ¼ 0Þ; while the rest are needed in the kinetic equations

ð��3;4;5 ¼ 0Þ; and (b) the constraints have been enforced in the velocity form

!1;2 ¼ 0, but not in the virtual form ��1;2 ¼ 0 (unless we are not interested in the

reactions).

Let the reader verify that by collecting ð. . .Þ ��k terms, and so on, and applying the

method of multipliers, eqs. (b1, 2) lead to the following full set of equations of

motion:

Kinetostatic equations:

��1: _PP1 � A11P1 � A21P2 þOP2 ¼ Y1 þ L1; ðb3Þ
��2: _PP2 � A12P1 � A22P2 �OP1 ¼ Y2 þ L2; ðb4Þ

Kinetic equations:

��3: _PP3 � A13P1 � A23P2 þ P4 !5 � P5 !4 þ P1 rðO� !5Þ ¼ Y3; ðb5Þ
��4: _PP4 � A14P1 � A24P2 þ P5 !3 � P3 !5 þ P2 rðO� !5Þ ¼ Y4; ðb6Þ
��5: _PP5 � A15P1 � A25P2 þ P3 !4 � P4 !3 þ rðP1 !3 þ P2 !4Þ ¼ Y5; ðb7Þ

the last three in complete agreement with the earlier-found equations (a5–7).

The Appell Equations (Kinetic Equations Only)

Using the customary notations, we find

2S* ¼ maG
2 þ 2S*=G; ðc1Þ
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where

2S*=G ¼ I ½ð _!!XÞ2 þ ð _!!YÞ2 þ ð _!!ZÞ2� ¼ I ½ð _!!3Þ2 þ ð _!!4Þ2 þ ð _!!5Þ2�; ðc2Þ
aG

2 ¼ ð €XXÞ2 þ ð €YYÞ2 ¼ ½ðr!4 �OY þ !1Þ:�2 þ ½ð�r!3 þ OX þ !2Þ:�2

¼ ½r _!!4 þ Oðr!3 � OXÞ�2 þ ½�r _!!3 þ Oðr!4 � OYÞ�2

¼ r2½ð _!!3Þ2 þ ð _!!4Þ2� þ 2rO½ðr!3 � OXÞ _!!4 � ðr!4 �OYÞ _!!3�
þ non�Appell-important terms: ðc3Þ

Therefore, to within Appell-important terms, and since I ¼ 2mr2=5, the constrained
(double) Appellian of the sphere equals

2S*! 2S*o ¼ m
�ð7r2=5Þ½ð _!!3Þ2 þ ð _!!4Þ2� þ ð2r2=5Þð _!!5Þ2

�
þ 2mrO½ðr!3 � OXÞ _!!4 � ðr!4 � OYÞ _!!3�; ðc4Þ

where the second, O-proportional, group of terms is due to the rotation of the plane.

Differentiating this Appellian relative to _!!3;4;5 yields the left sides of the earlier

kinetic equations (a5–7, b5–7).

Example 3.18.4 Power Equations/Energetics of Rolling Sphere on Uniformly Spin-
ning Plane. Let us begin by collecting all needed analytical results; already calcu-

lated in exs. 2.13.5 and 2.13.6, and the preceding examples 3.18.2 and 3.18.3. [Here,

too, the case O ¼ constant was chosen for its algebraic simplicity; the general case

O ¼ given function of time would not have offered any theoretical difficulties. We

have (with I � 2mr2=5)

ðiÞ 2T ¼ m½ð _XXÞ2 þ ð _YYÞ2� þ ðIX 2!X
2 þ IY

2!Y
2 þ IZ

2!Z
2Þ

¼ m½ð _XXÞ2 þ ð _YYÞ2� þ I ½ð _��Þ2 þ ð _��Þ2 þ ð _  Þ2 þ 2 _�� _  cos ��: ða1Þ

That here T1 ¼ T0 ¼ 0 ) T ¼ T2, should come as no surprise. The holonomic

coordinates chosen here — namely, X ;Y ; �; �;  — are inertial.

ðiiÞ 2T* ¼ m½ð!1 þ r!4 �OYÞ2 þ ð!2 � r!3 þ OXÞ2� þ Ið!3
2 þ !4

2 þ !5
2Þ

¼ ðexpanding and grouping appropriatelyÞ ¼ 2T*2 þ 2T*1 þ 2T*0; ða2Þ
2T*2 ¼ m½!1

2 þ !2
2 þ r2ð!3

2 þ !4
2Þ þ 2rð!1!4 � !2 !3Þ�

þ Ið!3
2 þ !4

2 þ !5
2Þ

¼ ðdoubleÞ kinetic energy of motion of sphere relative to plane; ða3Þ
T*1 ¼ m½ð�YOÞ!1 þ ð�rYOÞ!4 þ ðXOÞ!2 þ ð�rXOÞ!3�

¼ kinetic energy of ‘‘coupling’’ of motion of plane and sphere=plane;

ða4Þ
2T*0 ¼ mO2ðX2 þ Y2Þ

¼ ðdoubleÞ kinetic energy of sphere when at rest relative the plane; ða5Þ

and no constraints have been enforced yet.
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(iii) Since the only impressed force here is gravity (i.e., YI ¼ 0), the corresponding

potential energy is constant; say, V ¼ V* ¼ mgr, and, therefore,

@V=@qk ¼ 0 ) @V*=@�k �
X

Alkð@V=@qlÞ ¼ 0; ðb1Þ

and [recalling (2.9.34 ff.) and (3.9.12f)]

@V*=@�nþ1 � @V*=@tþ
X

Akð@V*=@qkÞ ¼ 0þ
X

Akð0Þ ¼ 0; ðb2Þ

(iv) The nonvanishing Hamel coefficients are [recalling ex. 2.13.6: (l1–m)]

�1
35 ¼ ��1

53 ¼ �r; �1
36 ¼ ��1

63 � �1
3 ¼ rO; �1

26 ¼ ��1
62 � �1

2 ¼ �O;
�2

45 ¼ ��2
54 ¼ �r; �2

46 ¼ ��2
64 � �2

4 ¼ rO; �2
16 ¼ ��2

61 � �2
1 ¼ O;

�3
54 ¼ ��3

45 ¼ 1; �4
35 ¼ ��4

53 ¼ 1; �5
43 ¼ ��5

34 ¼ 1; ðcÞ

and from these only �1
3 ¼ rO and �2

4 ¼ rO will be needed in the power equation

below.

Nonholonomic Power Equation

From the above, and with an eye toward (3.9.12h ff.), we find, successively,

ðiÞ @L*=@�nþ1 ¼ @T*=@�nþ1 � @T*=@tþ
X

Akð@T*=@qkÞ
¼ m½OðX2 þ Y2Þ � rðX!X þ Y!Y Þ� _OOþ A1ð@T*=@XÞ

þ A2ð@T*=@YÞ;
¼ ð�OYÞ½ðmOÞðOX � r!3Þ� þ ðOXÞ½ðmOÞðOY � r!4Þ�
¼ � � � ¼ mrO2ðY!X � X!YÞ; ðd1Þ

ðiiÞ R �
XX

�bIð@T*=@!bÞ!I ½and with ð. . .Þo � ð. . .Þ evaluated at !1;2 ¼ 0�
¼ �1

3ð@T*=@!1Þo !3 þ �2
4ð@T*=@!2Þo !4

¼ ðrOÞ½mðr!Y �OYÞ�!X þ ðrOÞ½mð�r!X þ OXÞ�!Y

¼ mrO2ðX!Y � Y!XÞ: ðd2Þ
In view of these partial results (in particular, the mutual canceling of the rheonomic

effects of the nonholonomic constraints @L*=@�nþ1 þ R ¼ 0Þ, the general nonholo-

nomic power equation (3.9.12i)

dh*=dt ¼ � @L*=@�nþ1 þ
X

YI !I � R; ðe1Þ

where h* �P ð@L*=@!IÞ!I � L* ¼ T*2 þ ðV*� T*0Þ, reduces to the nonholo-

nomic Jacobi–Painlevé integral (3.9.12n)

h* ¼ T*2 � T*0 ¼ constant; ðe2Þ
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or, further, since [upon enforcing the constraints !1;2 ¼ 0 in (a3–5)]

2T*2 ¼ mr2ð!3
2 þ !4

2Þ þ Ið!3
2 þ !4

2 þ !5
2Þ

¼ � � � ¼ ðmr2=5Þ½7ð!X
2 þ !Y

2Þ þ 2!Z
2�; ðe3Þ

T*1 ¼ �mrOðY!4 þ X!3Þ ¼ �mrOðX!X þY!YÞ; ðe4Þ
2T*0 ¼ mO2ðX2 þ Y2Þ; ðe5Þ

that integral assumes the final form

7ð!X
2 þ !Y

2Þ þ 2!Z
2 ¼ 5ðO2=r2ÞðX2 þ Y2Þ þ constant ðe6Þ

[by the z-equation, (a10), I _!!Z ¼ YZ ¼ 0 ) !Z ¼ constant�. We notice that, due to

(e2),

E* � T*þ V* ¼ T*2 þ T*1 þ T*0 þ V* ¼ T*2 þ T*1 þ T*0 þ constant

¼ 2T*2 þ T*1 þ constant ¼ T*1 þ 2T*0 þ constant 6¼ constant; ðe7Þ

that is, the generalized energy h* is conserved, but the classical one Eð¼ E*Þ is not.

Next, eq. (e6) was obtained without recourse to the equations of motion. It is

instructive to rederive it, or its equivalent _TT*2 ¼ _TT*0, directly from expressions

(a3–5, e3–5) and the kinetic equations of motion and constraints [see preceding

example, eqs. (a8–10) and (a1), respectively]:

_!!X ¼ ð5=7ÞðO=rÞðr!Y � OYÞ; ðf1Þ
_!!Y ¼ �ð5=7ÞðO=rÞðr!X �OXÞ; ðf2Þ
_!!Z ¼ 0; ðf3Þ
_XX ¼ r!Y � OY ; _YY ¼ �r!X þOX : ðf4Þ

Indeed, ð. . .Þ:-differentiating T*2 and T*0, eqs. (a3, 5), and then utilizing (f1–4) yields

_TT*2 ¼ ðmr2=5Þ½7ð!X _!!X þ !Y _!!YÞ þ 2!Z _!!Z�
¼ � � � ¼ mrO2ðX!Y � Y!XÞ; ðf5Þ

_TT*0 ¼ mOðX2 þ Y2Þ _OOþ mO2ðX _XX þ Y _YYÞ
¼ � � � ¼ mrO2ðX!Y � Y!XÞ; Q:E:D: ðf6Þ

Holonomic Power Equation

For a more complete understanding of the energetics of this problem, let us also

formulate its power equation in holonomic variables, eq. (3.9.11d ff.):

dh=dt ¼ �@L=@tþ
X

Qk _qqk �
X


DaD; ðg1Þ

where h �P ð@L=@ _qqkÞ _qqk � L ¼ T2 þ ðV � T0Þ. Here, T ¼ T2 is given by (a1),

V ¼ constant;Qk ¼ 0 (i.e., no impressed nonpotential forces), and, from the con-

straints (ex. 3.18.3: a1), a1 ! aX ¼ OY ; a2 ! aY ¼ �OX ; while 
1 ¼ L1 ! 
X
and 
2 ¼ L2 ! 
Y are, respectively, the OX and OY components of the rolling
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constraint reaction, from the plane to the sphere, at its contact point CðX ;Y ; 0Þ. In

view of these partial results, eq. (g1) becomes

dh=dt ¼ dT2=dt ¼ �a1
1 � a2
2 ¼ �ðOYÞ
X � ð�OXÞ
Y
¼ OðX
Y � Y
XÞ �MO O; ðg2Þ

where MO ¼ X
Y � Y
X ¼ moment of (tangential) rolling reactions at C about OZ;

and, of course, agrees with what would have resulted by ‘‘elementary’’ (Newton–

Euler) considerations: the sphere is an ‘‘open’’ system, and, therefore, the rate of
change of its total classical (inertial) energy E � T þ V ð¼ hÞ must equal the (iner-
tial) power of all external forces on it. Since this latter is none other than the rolling

reaction (and, clearly, the power of its component normal to O-XY vanishes), we

obtain

dE=dt ¼MO O ð¼ externally supplied power; needed to keep the plane spinning
at the constant rate OÞ: ðg3Þ

Finally, invoking the principle of linear momentum for the sphere, we find

MO ¼ X
Y � Y
X ¼ Xðm €YYÞ � Yðm €XXÞ ¼ dHO=dt; ðg4Þ

where

HO � ½mðX _YY � Y _XXÞ� ¼ Xðm _YYÞ � Yðm _XXÞ
¼ inertial angular momentum of particle of mass m; located at the sphere center;

ðg5Þ

and this, combined with (g3) and the constancy of O, readily yields the integral

E �HOO ¼ constant; or T �HOO ¼ constant: ðg6Þ

It is not hard to show the equivalence of (e2) and (g6). Indeed, from the latter,

recalling (3.9.12t), we obtain, successively,

HOO ¼ E � constant ¼ E*� constant ¼ ðh*þ 2T*0 þ T*1Þ � constant

¼ 2T*0 þ T*1 þ ðh*� constantÞ: ðg7Þ

On the other hand, by direct calculation [invoking the constraints (f4) in the defini-

tion (g5)], we find

HO ¼ X ½mð�r!X þ OXÞ� � Y ½mðr!Y � OYÞ�
¼ mOðX2 þ Y2Þ �mrðX!X þ Y!Y Þ;

and, therefore,

HOO ¼ mO2ðX2 þ Y2Þ þ ½�mO rðX!X þY!YÞ� ¼ 2T*0 þ T*1: ðg8Þ

From (g7, 8), the integral (e2) follows immediately.
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Concluding Remarks

That the holonomic power equation does not produce a conservation theorem of the

same form as the nonholonomic power equation should not come as a surprise. It is

intimately connected with our choice of holonomic coordinates: if the q’s were

noninertial, the rolling constraint would be

mC; relative to plane-fixed axes O�xyz ¼ 0; ðhÞ
instead of the earlier mC; of sphere ¼ mC; of plane, and it would produce homogeneous
(i.e., catastatic) Pfaffian equations in these noninertial Lagrangean velocities,

that is, a1;2 ¼ 0. Then, T ¼ T2 þ T1 þ T0, and the holonomic power equation

would reduce to the holonomic Jacobi–Painlevé integral [recalling (3.9.11n)]

h ¼ T2 � T0 ¼ constant. A convenient set of such noninertial coordinates are the

two (horizontal) coordinates of the center of the sphere relative to plane-fixed rec-

tangular Cartesian axes, say O�x 0y 0z 0, and the three Eulerian angles between them

and the earlier sphere-fixed axes G�xyz; and O would not appear in the constraints,

but it would appear in T .

In sum: (a) Only T must be calculated relative to inertial axes, here O�XYZ; the
constraints can be expressed relative to any convenient axes, in terms of any convenient
system coordinates; and since during virtual work the time is assumed frozen, the

forces involved are frame independent.

(b) Energy conservation depends on both the system and the frame of reference.

Problem 3.18.3 Derive the power equations of a sled moving on a uniformly rotat-

ing, horizontal, and rough turntable (probs. 3.18.1 and 3.18.2), in both holonomic

and nonholonomic variables, and in both inertial and turntable-fixed coordinates.

Proceed either from the general energetic theory (}3.9), or from their equations of

motion (i.e., multiply each of them with the corresponding velocity, then add

together, etc.). Compare with the elementary method.

Problem 3.18.4 Formulate the constraints of a sphere rolling on a uniformly rotat-

ing, horizontal, and rough plane in terms of plane-fixed (noninertial) system coordi-

nates. Then (i) write down the corresponding transitivity equations, and read off the

Hamel coefficients; (ii) obtain its corresponding Hamel equations; and (iii) derive its

power equations in both holonomic and nonholonomic variables.

Problem 3.18.5 Consider the problem of rolling and pivoting of a homogeneous

sphere on a fixed, horizontal, and rough plane. Formulate its constraints, transitivity

equations and read off its Hamel coefficients; obtain its kinetic and kinetostatic

equations of motion of Routh–Voss, Maggi, Hamel, and Appell; and, finally, derive

its power equations, in both holonomic and nonholonomic variables.

Problem 3.18.6 Extend the preceding problem to the case where the plane,

on which the rolling and pivoting sphere moves, rotates with a constant angular

velocity O.

Problem 3.18.7 Consider a sphere S with eccentric center of mass G, in slippingless

rolling on a fixed, horizontal, and rough plane P (fig. 3.52).
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Here, using standard notations, we have the following:

(a) Velocity of a generic sphere point:

m ¼ m^ þ x � r=^ ¼ ð _XX ; _YY ; 0Þ þ ð!X ; !Y ; !ZÞ � ðX=^;Y=^;Z=^Þ; ða1Þ

(b) Velocity of contact point C:

mC ¼ m^ þx� r=^ ¼ ð _XX ; _YY ; 0Þ þ ð!X ; !Y ; !ZÞ � ð0; 0;�RÞ
¼ ð _XX � R!Y ; _YY þ R!X ; 0Þ; ða2Þ

(c) Relation of ð!X ; !Y ; !ZÞ with the time rates of the Eulerian angles between

O�XYZ and ^�xyz; �; �;  (recalling results from }1.12):

!X ¼ ðcos�Þ _��þ ðsin� sin �Þ _  ;
!Y ¼ ðsin�Þ _��þ ð� cos� sin �Þ _  ; !Z ¼ _��þ ðcos �Þ _  : ða3Þ

We also have the related coordinate transformation relations [}1.12, with

sinð. . .Þ � sð. . .Þ, etc.]:

XG=^ � XG � X^ � XG � X

¼ ðc� c � s� c� s Þxþ ð�c� s � s� c� c Þyþ ðs� s�Þz; ða4Þ
YG=^ � YG � Y^ � YG � Y

¼ ðs� c þ c� c� s Þxþ ð�s� s þ c� c� c Þyþ ð�c� s�Þz; ða5Þ
ZG=^ � ZG � Z^ � ZG � R

¼ ðs� s Þxþ ðs� c Þyþ ðc�Þz; ða6Þ
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Figure 3.52 Eccentric (nonhomogeneous) sphere rolling on fixed plane.

O�XYZ=IJK: plane-fixed (inertial) axes/basis;

G: eccentric center of mass of sphere, OG ¼ rG ¼ ðXG; YG;ZGÞ;
^: geometrical center of sphere, O^ ¼ ðX^; Y^;Z^Þ � ðX; Y ; RÞ;
C: contact point between sphere and plane, OC ¼ ðX; Y ;0Þ;

^–xyz=ijk: sphere-fixed (noninertial) axes/basis,

chosen so that ^G � rG=^ � ðx; y ; zÞ ¼ ð0;0; bÞ.



from which, since here ðx; y; zÞ ¼ ð0; 0; bÞ, we obtain

rG=^ ¼
	
XG=^;YG=^;ZG=^


� 	ðs� s�Þb;�ðc� s�Þb; ðc�Þb
: ða7Þ

(d) In view of (a2, 3), the rolling constraint mC ¼ 0 assumes the Pfaffian forms

_XX � R!Y ¼ _XX � R½ðsin�Þ _��þ ð� cos� sin �Þ _  � ¼ 0; ðb1Þ
_YY þ R!X ¼ _YY þ R½ðcos�Þ _��þ ðsin� sin �Þ _  � ¼ 0: ðb2Þ

(i) With the help of the above, show that the (double) kinetic energy of the sphere

equals

2T ¼Sdm m2 ¼ � � � ¼ m m^
2 þ 2m m^ � ðx� rG=^Þ þSdmðx� r=^Þ2

¼ � � � ¼ m½ð _XXÞ2 þ ð _YYÞ2�
þ 2mb

�
_XX ½ðs� c�Þ _�� þ ðc� s�Þ _��� þ _YY ½ð�c� c�Þ _��þ ðs� s�Þ _����

þ A½ð _��Þ2 þ sin2�ð _��Þ2� þ C½ðcos �Þ _��þ _  �2

¼ 2Tð _XX; _YY ; _��; _��; _  Þ; ðcÞ

where A and C ¼ moments of inertia of sphere about ^x (or ^y) and ^z, respectively.
(ii) Using the expression (c), the constraints (b1, 2), and noting that the only

impressed force (gravity) has potential equal to

V ¼ mgZG ¼ mgðZ^ þ ZG=^Þ ¼ mgðRþ b cos �Þ ¼ mgb cos �þ constant; ðdÞ

verify that the Routh–Voss equations of motion of the sphere are (with 
X � 
 and


Y � �):

X: mf _XX þ b½ðsin� cos �Þ _��þ ðcos� sin �Þ _���g: ¼ 
; ðe1Þ

Y : mf _YY þ b½ð� cos� cos �Þ _��þ ðsin � sin �Þ _���g: ¼ �; ðe2Þ

�: ½A _�� sin2 �þ Cðcos � _��þ _  Þ cos ��mbR sin2 � _  �:

þ mbR _�� _  sin � cos �þmbR _�� _�� sin � ¼ 0; ðe3Þ

�: ðA _��þ mbR cos � _��Þ:� Að _��Þ2 sin � cos �þ Cðcos � _��þ _  Þ _�� sin �

þ mbRð _��Þ2 sin �þmbR _�� _  cos � sin �

¼ 
ð�R sin �Þ þ �ðR cos�Þ þmgb sin �; ðe4Þ

 : ½Cðcos � _��þ _  Þ�: ¼ 
ðR cos� sin �Þ þ �ðR sin� sin �Þ: ðe5Þ
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(iii) Verify that by solving (e1, 2) for 
 and �, respectively, and substituting the

results into (e3–5), we obtain the (kinetic Maggi) equations:

�: remains unchanged; since it did not contain any multipliers; ðf1Þ
�: ðA _��þmbR cos � _��Þ: � Að _��Þ2 sin � cos �þ Cð _�� cos �þ _  Þ _�� sin �

þmbRð _��Þ2 sin �þmbR _�� _  cos � sin �

þmR sin�½ _XX þ bð _�� sin� cos � þ _�� cos� sin �Þ�:

�mR sin�½ _YY þ bð� _�� cos� cos �þ _�� sin � sin �Þ�:

¼ mgb sin �; ðf2Þ
 : ½Cð _�� cos �þ _  Þ�:�mR cos� sin �½ _XX þ bð _�� sin� cos �þ _�� cos� sin �Þ�:

�mR sin� sin �½ _YY þ bð� _�� cos� cos �þ _�� sin� sin �Þ�: ¼ 0: ðf3Þ

Problem 3.18.8 Continuing from the preceding problem, verify that by eliminating

the (chosen as) dependent velocities _XX and _YY from its eqs. (f2, 3), using the con-

straints (b1, 2), we eventually obtain the following Chaplygin–Voronets equations of

the problem:

�: ½A _�� sin2 � þCð _�� cos �þ _  Þ cos ��mbR sin2 � _  �:

þmbR _�� sin �ð _  cos �þ _��Þ ¼ 0; ða1Þ
�: ½ðAþ 2mbR cos �þmR2Þ _���:þ mbR sin �½ð _��Þ2 þ _�� _  cos �� ð _��Þ2�

þmR2 _�� _  sin �� Að _��Þ2 sin � cos �þ Cð _�� cos �þ _  Þ _�� sin �

�mgb sin � ¼ 0; ða2Þ
 : ½Cð _�� cos �þ _  Þ þmR2 _  sin2 ��mbR _�� sin2  �:

�mR2 _�� sin �ð _  cos �þ _��Þ ¼ 0: ða3Þ

HINTS

In the Maggi equations (f1–3), the terms deriving from 
 and � can be combined

with the remaining terms to produce equations of the form ½. . .�: þ � � � ¼ 0, like (a1–

3), first, by application of the familiar differentiation rule: f _gg ¼ ð f gÞ:� f _gg (where

f ; g ¼ arbitrary functions); and then by use of the constraints (b1, 2), but rewritten in

the equivalent forms

_XX sin�� _YY cos� ¼ R _��; _XX cos�þ _YY sin � ¼ �R _  sin �; ðbÞ

Problem 3.18.9 Continuing from the preceding problem, show that its eqs. (a1)

and (a3) combine to produce the (linear) integral

AR _�� sin2 �þ Cðbþ R cos �Þð _�� cos �þ _  Þ �mb2R _�� sin2 � ¼ constant: ðaÞ
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HINT

Multiply (a1) by R and (a3) by b, then combine, simplify, and, finally, integrate.

Problem 3.18.10 Continuing from the preceding problems, show that the

Chaplygin–Voronets equations (a1–3) of prob. 3.18.8, possess the (quadratic) energy

integral

mR2½ð _��Þ2 þ ð _  Þ2 sin2 �� þ 2mbR½ð _��Þ2 cos �� _�� _  sin2 ��
þ A½ð _��Þ2 þ ð _��Þ2 sin2 �� þ Cð _�� cos �þ _  Þ2 þ 2mgb cos � ¼ 2h; ðaÞ

in addition to (a) of prob. 3.18.9.

REMARKS

(i) Since the five equations (prob. 3.18.8: a1–3), (prob. 3.18.9: a), and (prob.

3.18.10: a) do not contain explicitly either � or  , we can, for example, solve the

last two of them for _�� and _  in terms of � and _��; that is, _�� ¼ _��ð�; _��Þ and _  ¼ _  ð�; _��Þ,
and then insert these expressions into any one of the first three equations (of

motion), say the simplest of them. The result would be a single second-order differ-

ential equation for �; and since the time does not appear explicitly, this can be further

reduced to a first-order problem.

(ii) If, next, our sphere shrinks to a particle of mass m, then A ¼ mb2 and C ¼ 0,

and the linear integral (prob. 3.18.9: a) degenerates to the trivial equality

0 ¼ constant ð¼ 0Þ; that is, one of our equations disappears! For a detailed discus-

sion and explanation of this interesting mathematical ‘‘paradox,’’ see the masterful

treatment of Hamel (1949, pp. 760–766).

Problem 3.18.11 Continuing from the above problems of the eccentric sphere:

(i) Introduce the following convenient quasi velocities:

!1 � _XX � R!Y ¼ _XX � ðR sin�Þ _��þ ðR cos� sin �Þ _  ð¼ 0Þ; ða1Þ
!2 � _YY þ R!X ¼ _YY þ ðR cos�Þ _��þ ðR sin� sin �Þ _  ð¼ 0Þ; ða2Þ
!3 � _��; ða3Þ
!4 � _��; ða4Þ
!5 � _  ; ða5Þ

which invert easily (no constraint enforcement yet), as follows:

_XX ¼ !1 þ R sin�!3 � R cos� sin � !5; ðb1Þ
_YY ¼ !2 � R cos�!3 � R sin� sin �!5; ðb2Þ
_�� ¼ !3; ðb3Þ
_�� ¼ !4; ðb4Þ
_  ¼ !5: ðb5Þ
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(ii) Using (a1–b5), verify the transitivity equations (no constraint enforcement yet)

ð��1Þ:� �!1 ¼ R cos �ð!3 ��4 � !4 ��3Þ � R sin � sin �ð!4 ��5 � !5 ��4Þ
þ R cos� cos �ð!3 ��5 � !5 ��3Þ; ðc1Þ

ð��2Þ:� �!2 ¼ R sin �ð!3 ��4 � !4 ��3Þ þ R cos� sin �ð!4 ��5 � !5 ��4Þ
þ R sin� cos �ð!3 ��5 � !5 ��3Þ; ðc2Þ

ð��3Þ:� �!3 ¼ 0; ð��4Þ:� �!4 ¼ 0; ð��5Þ: � �!5 ¼ 0; ðc3Þ

since �3;4;5 are holonomic coordinates. From the above, we read off the (nonvanish-

ing) Hamel coefficients:

�1
43 ¼ ��1

34 ¼ R cos�; �1
54 ¼ ��1

45 ¼ �R sin� sin �;

�1
53 ¼ ��1

35 ¼ R cos� cos �; ðd1Þ
�2

43 ¼ ��2
34 ¼ R sin�; �2

54 ¼ ��2
45 ¼ R cos� sin �;

�2
53 ¼ ��2

35 ¼ R sin� cos �; ðd2Þ
�3:: ¼ 0; �4:: ¼ 0; �5:: ¼ 0: ðd3Þ

(iii) Using (b1–5), show that the kinetic energy expression (prob. 3.18.7: c), or,

equivalently,

2T ¼ m½ð _XXÞ2 þ ð _YYÞ2�
þ 2mbf _�� cos �ð _XX sin�� _YY cos�Þ þ _�� sin �ð _XX cos�þ _YY sin�Þg
þ A½ð _��Þ2 þ sin2 �ð _��Þ2� þ C½ðcos �Þ _��þ _  �2; ðe1Þ

becomes, in the chosen quasi velocities (no constraint enforcement yet),

2T* ¼ m½!1
2 þ !2

2 þ R2!3
2 þ R2 sin2 � !5

2 þ 2R sin�!1!3

� 2R cos�!2 !3 � 2R cos� sin � !1 !5 � 2R sin� sin � !2 !5�
þ 2mb½!3 cos �ð!1 sin�� !2 cos�þ R!3Þ
þ !4 sin �ð!1 cos�þ !2 sin�� R sin � !5Þ�
þ A½!3

2 þ ðsin2 �Þ!4
2� þ C½ðcos �Þ!4 þ !5�2: ðe2Þ

[Quadratic terms in the constrained, or dependent, quasi velocities !1;2 can be

omitted from (e2) at this stage, without affecting the equations of motion; but linear
terms in them cannot — explain].

(iv) Using the above results and noting that (after enforcing the constraints

!1;2 ¼ 0)

@T*=@�1;2;4;5 ¼ 0; @T*=@�3 ¼ @T*=@� ¼ � � � ;
@V*=@�1;2;4;5 ¼ 0; @V*=@�3 ¼ @V*=@� ¼ �mgb sin �; ðe3Þ

show that the Hamel equations of this problem are (with Pk � @T*=@!k,

k ¼ 1; . . . ; 5).
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Kinetic equations:

_PP3 � @T*=@�3 þ �1
34P1 !4 þ �1

35P1 !5 þ �2
34P2 !4 þ �2

35P2 !5 ¼ �ð@V*=@�3Þ;
_PP4 þ �1

43P1 !3 þ �1
45P1 !5 þ �2

43P2 !3 þ �2
45P2 !5 ¼ 0;

_PP5 þ �1
53P1 !3 þ �1

54P1 !4 þ �2
53P2 !3 þ �2

54P2 !4 ¼ 0; ðf1; 2; 3Þ

or, explicitly, respectively,

½!3ðAþ 2mbR cos �þmR2Þ�� þmR2 sin � !4 !5

þmbR sin �ð�!4
2 þ cos � !4 !5 þ !3

2Þ
� A sin � cos � !4

2 þ Cðcos � !4 þ !5Þ sin � ¼ mgb sin �; ðf4Þ

½A sin2 � !4 þ Cðcos � !4 þ !5Þ cos ��mbR sin2 � !5��

þmbR sin � !3ð!4 þ cos � !5Þ ¼ 0; ðf5Þ

½mR2 sin2 � !5 �mbR sin2 � !4 þ Cðcos � !4 þ !5Þ��

�mR2 sin � cos � !3 !5 �mR2 sin � !3 !4 ¼ 0; ðf6Þ

and, as can be verified easily, these equations coincide with the earlier (prob. 3.18.8:

a1–3), respectively; but, unlike them, they have been derived without elimination of the
dependent velocities;

Kinetostatic equations:

_PP1 ¼ L1ð� 
1Þ; _PP2 ¼ L2ð� 
2Þ; ðf7; 8Þ
½since; as ðd1�3Þ show; all the �k1I and �k2I ðk ¼ 1; . . . ; 5; I ¼ 3; 4; 5Þ vanish�

or, explicitly, respectively,

½mR sin�!3 �mR cos� sin � !5 þmbð!3 sin� cos �þ !4 cos� sin �Þ�� ¼ L1;

½�mR cos�!3 � mR sin � sin � !5 þmbð�!3 cos� cos �þ !4 sin� sin �Þ�� ¼ L2:

ðf9; 10Þ

Example 3.18.5 Dynamics of a Rolling Hoop (or Disk, or Coin). Let us determine

the forces and equations of motion of a thin homogeneous hoop H, of mass m and

radius r, rolling on a rough, horizontal, and fixed plane P (fig. 3.53).

The relevant kinematics has already been detailed in ex. 2.13.7. We recall that

q1 � XG � X; q2 � YG � Y ; q3 � �; q4 � �; q5 �  ; ða1Þ
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since ZG � Z ¼ r sin �; Z is not independent (i.e., here, f � n�m ¼ 5� 2 ¼ 3 —

see below)

x ¼ ð!x 0 ; !y 0 ; !z 0 Þ ¼ ð _��; _�� sin �; _  þ _�� cos �Þ ðsemimobile componentsÞ
¼ ð!x 0 ; !N ; !ZÞ ¼ ð _��;� _  sin �; _��þ _  cos �Þ ðsemiOxed componentsÞ; ða2Þ

GC ¼ ð0;�r cos �;�r sin �Þ ðsemiOxed componentsÞ; ða3Þ
) x� GC ¼ 	rð _  þ _�� cos �Þ;�r _�� sin �;�r _�� cos �



; ða4Þ

and therefore the rolling constraint mC ¼ 0 translates to the two Pfaffian conditions

ðmCÞx 0 ¼ _XX cos�þ _YY sin�þ rð _  þ _�� cos �Þ ¼ 0; ða5Þ
ðmCÞN ¼ � _XX sin�þ _YY cos�þ r _�� sin � ¼ 0: ða6Þ

The Routh–Voss Equations

Since, by König’s theorem and the above geometry/kinematics,

2T ¼ m½ð _XXÞ2 þ ð _YYÞ2 þ ð _ZZÞ2� þ ðIx 0 !x 0
2 þ Iy 0 !y 0

2 þ Iz 0 !z 0
2Þ

¼ m½ð _XXÞ2 þ ð _YYÞ2 þ r2ð _��Þ2 cos2 �� þ ðmr2=2Þð _��Þ2 þ ðmr2=2Þð _��Þ2 sin2 �

þ ðmr2Þð _  þ _�� cos �Þ2; ðb1Þ
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Figure 3.53 Geometry of a homogeneous hoop rolling on rough, horizontal, and fixed plane.

G: geometrical center and center of mass of hoop, C: contact point between hoop and plane.

Axes=bases:

O�XYZ=IJK: plane-fixed (inertial) axes/basis;

G�x 0y 0z 0=i 0j 0k 0 � G�nn 0z 0=unun 0k
0: semimobile (noninertial) axes/basis;

G�x 0NZ=i 0uNK � G�nNZ=unuNK: semifixed (noninertial) axes/basis;

G�xyz=ijk: disk-fixed (noninertial) axes/basis;

�; �;  : Eulerian angles between O�XYZ=IJK (or G�XYZ=IJK) and G�xyz=ijk.



and V ¼ mgZ ¼ mgr sin � (and with 
1 � 
; 
2 � �Þ, the Routh–Voss equations of

the hoop are

X : m €XX ¼ 
 cos�� � sin �; ðb2Þ
Y : m €YY ¼ 
 sin�þ � cos�; ðb3Þ
�: ½ðmr2=2Þð _�� sin2 �Þ�: þ ½ðmr2Þ cos �ð _�� cos �þ _  Þ�: ¼ 
 r cos �; ðb4Þ
�: ½ðmr2Þð _�� cos2 �Þ�: þ ðmr2=2Þ€��þ ðmr2Þð _��Þ2 sin � cos �

� ðmr2=2Þð _��Þ2 sin � cos �þ ðmr2Þ _��ð _�� cos �þ _  Þ sin �

¼ �r sin � �mg r cos �; ðb5Þ
 : ½ðmr2Þð _  þ _�� cos �Þ�: ¼ 
 r: ðb6Þ

Equations (b2, 3) express the principle of linear momentum along the axes X and Y ,

respectively; while eqs. (b4–6) express that of angular momentum about G, and the

corresponding (nonorthogonal!) axes of rotation through it.

Determination of the Reactions; and the Equations of

Maggi and Chaplygin–Voronets

To determine and/or eliminate the multipliers (reactions) we, first, solve (b2, 3) for

them:


 ¼ mð €XX cos�þ €YY sin �Þ; � ¼ mð €YY cos�� €XX sin �Þ: ðc1Þ
Then, ð. . .Þ:-differentiating the constraints (a5, 6), to generate €XX and €YY , we find

€XX cos�þ €YY sin�þ _��ð _YY cos�� _XX sin�Þ þ rð _�� cos �þ _  Þ: ¼ 0; ðc2Þ
� €XX sin�þ €YY cos�� _��ð _XX cos�þ _YY sin�Þ þ rð _�� sin �Þ: ¼ 0; ðc3Þ

or, invoking (c1),

ð
=mÞ þ _��ð _YY cos�� _XX sin�Þ þ rð _�� cos �þ _  Þ: ¼ 0; ðc4Þ
ð�=mÞ � _��ð _XX cos�þ _YY sin �Þ þ rð _�� sin �Þ: ¼ 0; ðc5Þ

and, finally, eliminating the second sum/term in each of them via the constraints

(a5, 6) and then solving for the multipliers, we obtain these latter in terms of

�; �;  and their rates of change:


 ¼ mr½ _�� _�� sin �� ð _�� cos �þ _  Þ:�; ðc6Þ
� ¼ �mr½ _��ð _�� cos �þ _  Þ þ ð _�� sin �Þ:�: ðc7Þ

Now:

(a) Inserting (c1) into (b4–6) results in the three kinetic Maggi equations of our

problem, which, along with the two constraints (a5, 6), constitutes a determinate

system for XðtÞ;YðtÞ; �ðtÞ; �ðtÞ;  ðtÞ; then 
ðtÞ and �ðtÞ can be immediately found

from (c1); whereas
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(b) Inserting (c6, 7) into (b4–6) results in its three (kinetic only) Chaplygin–

Voronets equations for �ðtÞ; �ðtÞ;  ðtÞ:

�: ½ðmr2=2Þð _�� sin2 �Þ�: þ ½ðmr2Þ cos �ð _�� cos �þ _  Þ�:

¼ mr2 cos �½ _�� _�� sin �� ð _�� cos �þ _  Þ:�; ðc8Þ

�: ½ðmr2Þð _�� cos2 �Þ�:þ ðmr2=2Þ€��þ ðmr2Þð _��Þ2 sin � cos �

� ðmr2=2Þð _��Þ2 sin � cos �þ ðmr2Þ _�� ð _�� cos �þ _  Þ sin �þmg r cos �

¼ �mr2 sin �½ _�� ð _�� cos � þ _  Þ þ ð _�� sin �Þ:�; ðc9Þ

 : ½ðmr2Þð _  þ _�� cos �Þ�: ¼ mr2½ _�� _�� sin �� ð _�� cos �þ _  Þ:�: ðc10Þ

Once �ðtÞ; �ðtÞ;  ðtÞ have been found from the above, then 
ðtÞ and �ðtÞ can be

immediately calculated from (c6, 7).

(c) As shown a little later, eqs. (c8–10), when expressed in terms of the semimobile
angular velocity components, eq. (a2), are none other than the corresponding kinetic

Hamel equations (with !x 0;y 0;z 0 ! !3;4;5Þ.

A Famous and Instructive Error

The rolling hoop offers a good opportunity to demonstrate concretely that, in gen-

eral, EIðToÞ 6¼ QIo. Indeed, eliminating the two dependent velocities _XX and
_YY ðn ¼ 5;m ¼ 2 ) f � 5� 2 ¼ 3Þ from (b1) with the help of the constraints

(a5, 6), while noting that, then, ð _XXÞ2 þ ð _YYÞ2 ¼ r2ð _  þ _�� cos �Þ2 þ r2ð _��Þ2 sin2 �, we

bring the (double) kinetic energy to the constrained (or nonlegitimate) form,

2T ! 2To � 2Toð�; _��; _��; _  Þ
¼ ð3mr2=2Þð _��Þ2 þ ðmr2=2Þð _��Þ2 sin2 �þ ð2mr2Þð _  þ _�� cos �Þ2: ðd1Þ

Therefore, and since here, too, V ¼ Vo ¼ mgZ ¼ mgr sin � ) QIo ¼ �@Vo=@qI ,
the incorrect Lagrangean equations — that is, ð@To=@ _qqIÞ:� @To=@qI ¼ �@Vo=@qI
ðqI ¼ �; �;  Þ— are

d=dt
�ðmr2=2Þð _��Þ2 sin2 �þ ð2mr2Þ cos �ð _  þ _�� cos �Þ� ¼ 0; ðd2Þ

ð3mr2=2Þ€�� � ðmr2=2Þð _��Þ2 sin � cos �þ ð2mr2Þ _�� sin �ð _  þ _�� cos �Þ
¼ �mg r cos �; ðd3Þ

d=dtð _  þ _�� cos �Þ ¼ 0: ðd4Þ

On the history of this error (committed by some distinguished scientists in the

1890s), see, for example, Stäckel (1905, pp. 596–597); also Campbell (1971, pp.

102–108).
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The Hamel Equations

We recall that (ex. 2.13.7)

!1 � _XX cos�þ _YY sin�þ rð _  þ _�� cos �Þ ð¼ 0Þ; ðe1Þ
!2 � � _XX sin �þ _YY cos�þ r _�� sin � ð¼ 0Þ; ðe2Þ
!3 � !x 0 ¼ _��; !4 � !y 0 ¼ _�� sin �; !5 � !z 0 ¼ _  þ _�� cos �; ðe3�5Þ

and

ð��1Þ:� �!1 ¼ ð!4=sin �Þ ��2 þ ð�!2=sin �Þ ��4; ðe6Þ
ð��2Þ:� �!2 ¼ ð�!4=sin �Þ ��1þ½ð!1=sin �Þ�ðr!5=sin �Þ� ��4þðr!4=sin �Þ ��5; ðe7Þ
ð��3Þ:� �!3 ¼ 0 ð�: holonomic coordinateÞ; ðe8Þ
ð��4Þ:� �!4 ¼ ð!3 cot �Þ ��4 þ ð�!4 cot �Þ ��3; ðe9Þ
ð��5Þ:� �!5 ¼ ð!4Þ ��3 þ ð�!3Þ ��4: ðe10Þ

¼ m½ð!1 � r!5Þ2 þ ð!2 � r!3 sin �Þ2 þ r2!3
2 cos2 ��

þ ðmr2Þ½ð!3
2=2Þ þ ð!4

2=2Þ þ !5
2�

¼ m
�
r2½ð3!3

2=2Þ þ ð!4
2=2Þ þ 2!5

2� � 2r!1 !5 � 2r!2 !3 sin �

þ !1
2 þ !2

2
�
; ðe11Þ

(the last two terms can be safely neglected at this stage — why?) and from this we

readily obtain

ðbÞ P1 ¼ ð@T*=@!1Þo ¼ ð�mr!5 þm!1Þo ¼ �mr!5 ) _PP1 ¼ �mr _!!5; ðe12Þ
P2 ¼ ð@T*=@!2Þo ¼ �mr!3 sin �) _PP2 ¼ �mrð _!!3 sin �þ !3

2 cos �Þ; ðe13Þ
P3 ¼ � � � ¼ m½�r!2 sin �þ ð3r2!3=2Þ�o ¼ ð3mr2=2Þ!3 ) _PP3 ¼ ð3mr2=2Þ _!!3;

ðe14Þ
P4 ¼ � � � ¼ ðmr2=2Þ!4 ) _PP4 ¼ ðmr2=2Þ _!!4; ðe15Þ
P5 ¼ � � � ¼ 2mr2!5 ) _PP5 ¼ 2mr2 _!!5; ðe16Þ

also (check it!),

ðcÞ @T*=@�k �
X

Alkð@T*=@qlÞ ¼ ½A4kð@T*=@�Þ�o ¼ 0 ðk ¼ 1; . . . ; 5Þ; ðe17Þ
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Therefore, and since here IG = diagonal (A = mr2/2,B = A = mr2/2,C = mr2),

(a) 2T = 2T∗ = mvG2 + x · IG · x (no constraint enforcement yet!)



while the fundamental noncommutative term G �P Pk½ð��kÞ:� �!k� becomes

ðdÞ G ¼ P1½ð!4= sin �Þ ��2 � ð!2= sin �Þ ��4� þ � � �
ðwe can enforce the constraints !1;2 ¼ 0;

but not ��1;2 ¼ 0; if we want to calculate the constraint reactionsÞ
¼ �P2ð!4= sin �Þ ��1 þ P1ð!4= sin �Þ ��2 þ ðP5 !4 � P4 !4 cot �Þ ��3

þ ½P4 !3 cot �� P2 rð!5= sin �Þ � P5 !3� ��4 þ P2rð!4=sin �Þ ��5: ðe18Þ

Collecting all these results into the master variational equation

X
ð _PPk � @T*=@�kÞ ��k þ G ¼

X
Yk ��k;

and applying to it the method of Lagrangean multipliers, we obtain the two kineto-

static equations

k ¼ 1: _PP1 � ð!4= sin �ÞP2 ¼ Y1 þ 
1; or mrð� _!!5 þ !3 !4Þ ¼ Y1 þ 
1; ðe19Þ
k ¼ 2: _PP2 þ ð!4= sin �ÞP1 ¼ Y2 þ 
2;

or �mr½ _!!3 sin �þ !3
2 cos �þ ð!4 !5= sin �Þ� ¼ Y2 þ 
2; ðe20Þ

and the three kinetic equations

k ¼ 3: _PP3 � !4 cot �P4 þ !4P5 ¼ Y3;

or ð3mr2=2Þ _!!3 � ðmr2=2Þ cot � !4
2 þ ð2mr2Þ!4 !5 ¼ Y3;

or; further; mr2½ð3=2Þ _!!3 þ 2!4 !5 � ð1=2Þ cot � !4
2� ¼ Y3; ðe21Þ

k ¼ 4: _PP4 � ðr!5= sin �ÞP2 þ !3 cot �P4 � !3P5 ¼ Y4;

or mr2½ð1=2Þ _!!4 þ ð1=2Þ cot � !3 !4 � !3 !5� ¼ Y4; ðe22Þ
k ¼ 5: _PP5 þ ðr!4= sin �ÞP2 ¼ Y5;

or mr2ð2 _!!5 � !3 !4Þ ¼ Y5: ðe23Þ

If the only impressed force is gravity (sole case to be examined here), then

V ¼V*¼mgZ¼mg r sin �3 ) Y1;2;4;5 ¼ 0 and Y3¼�@V*=@�3 ¼ �mg r cos �;

and therefore the three kinetic equations (e21–23) reduce, respectively, to

ð3=2Þðd!3=dtÞ þ 2!4 !5 � ð1=2Þ cot � !4
2 ¼ �ðg=rÞ cos �; ðe24Þ

ð1=2Þðd!4=dtÞ þ ð1=2Þ cot � !3 !4 � !3 !5 ¼ 0; ðe25Þ
2ðd!5=dtÞ � !3 !4 ¼ 0: ðe26Þ
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We leave it to the reader to show, with the help of the above, that the corresponding

equations in terms of the components of x along the body-fixed axes G�xyz, !x;y;z,

are

3ðd!x=dtÞ þ !yð4!z � !y cot �Þ ¼ �2ðg=rÞ cos �; ðe27Þ
d!y=dtþ !xð!y cot �� 2!zÞ ¼ 0; ðe28Þ
2ðd!x=dtÞ � !x !y ¼ 0: ðe29Þ

HINT

Use the !x 0;y 0;z 0 , !x;y;z transformation equations (}1.12) in eqs. (e24–26).

The Appell Equations (No Reactions, only motion)

Here, all the difficulty lies in calculating the (constrained) Appellian in terms of the

q’s; !3;4;5; _!!3;4;5; and t; that is, S! S*! S*o. To this end, we will utilize the

Appellian counterpart of König’s theorem (3.14.3a ff.),

S* ¼ S*G þ S*=G;

where

Let us calculate these parts of S* separately, as follows.

(a) Using the convenient semifixed axes/basis G�x 0NZ=i 0uNK � G�nNZ=unuNK ,

and invoking the !, _qq relations (and then enforcing the constraints !1;2 ¼ 0 there)

yields, successively,

vG ¼ _XXI þ _YYJ þ _ZZK

¼ _XXðcos� un � sin� uNÞ þ _YYðsin� un þ cos� uNÞ þ _ZZK

¼ ð _XX cos�þ _YY sin�Þun þ ð� _XX sin�þ _YY cos�ÞuN þ _ZZK

¼ �rð _  þ _�� cos �Þun þ ð�r _�� sin �ÞuN þ ðr _�� cos �ÞK
¼ ð!1 � r!5Þun þ ð!2 � r sin � !3ÞuN þ ðr cos � !3ÞK
¼ ð�r!5Þun þ ð�r sin � !3ÞuN þ ðr cos � !3ÞK ; ðf2Þ

and since xsemifixed � xSF ¼ ð0Þun þ ð0ÞuN þ ð _��ÞK , from which it follows that

dun=dt ¼ xSF � un ¼ ð0; 0; _��Þ � ð1; 0; 0Þ ¼ _�� uN ¼ ð!4= sin �ÞuN ; ðf3Þ
duN=dt ¼ xSF � uN ¼ ð0; 0; _��Þ � ð0; 1; 0Þ ¼ � _�� un ¼ ð�!4= sin �Þun; ðf4Þ
dK=dt ¼ xSF �K ¼ ð0; 0; _��Þ � ð0; 0; 1Þ ¼ 0; ðf5Þ
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2S∗G ≡ m(aG · aG),

2S∗
/G ≡ Sdm(a

/G · a/G) = α · IG · α + 2(α × x) · (IG · x). (f1)



we, therefore, obtain (with some easily understood moving axes notations)

aG ¼ dvG=dt ¼ ðdvG=dtÞSF þ xSF � vG

¼ � � � ¼ �r�ð _!!5 � !3!4Þun þ ð _!!3 sin �þ !3
2 cos �þ !4!5= sin �ÞuN

� ð _!!3 cos �� !3
2 sin �ÞK�; ðf6Þ

and so, to within Appell-important terms (i.e., those containing _!!’s),

aG
2 � aG � aG ¼ r2½ð _!!3Þ2 þ ð _!!4Þ2� þ 2r2!4ð _!!3 !5 � !3 _!!5Þ: ðf7Þ

(b) To calculate the relative Appellian S*=G we need a. Here, it is more convenient

to work with the semimobile axes/basis G�x 0y 0z 0=i 0j 0k 0 � G�nn 0z 0=unun 0k 0. Since

x ¼ ð _��Þi 0 þ ð _�� sin �Þ j 0 þ ð _  þ _�� cos �Þk 0 ¼ !3 i
0 þ !4 j

0 þ !5 k
0; ðf8Þ

and

xsemimobile � xSM ¼ ð _��Þi 0 þ ð _�� sin �Þ j 0 þ ð _�� cos �Þk 0; ðf9Þ

from which

di 0=dt ¼ xSM � i 0 ¼ ð _��; _�� sin �; _�� cos �Þ � ð1; 0; 0Þ
¼ _��ðcos � j 0 � sin �k 0Þ ¼ !4ðcot � j 0 � k 0Þ; ðf10Þ

d j 0=dt ¼ xSM � j 0 ¼ ð _��; _�� sin �; _�� cos �Þ � ð0; 1; 0Þ
¼ � _�� cos � i 0 þ _��k 0 ¼ �!4 cot � i 0 þ !3 k

0; ðf11Þ
dk 0=dt ¼ xSM � k 0 ¼ ð _��; _�� sin �; _�� cos �Þ � ð0; 0; 1Þ

¼ _�� sin � i 0 � _�� j 0 ¼ !4 i
0 � !3 j

0; ðf12Þ

we, therefore, find

a � dx=dt ¼ ðdx=dtÞSM þ xSM � x ¼ ðdx=dtÞSM þ xSM � ðxSM þ _  k 0Þ
¼ � � � ¼ ½ _!!3 þ !4ð!5 � !4 cot �Þ�i 0

þ ½ _!!4 � !3ð!5 � !4 cot �Þ� j 0 þ _!!5 k
0; ðf13Þ

and so, to within Appell-important terms,

a� x ¼ � � � ¼ ð _!!4 !5 � !4 _!!5Þi 0 þ ð _!!5 !3 � !5 _!!3Þ j 0

þ ð _!!3 !4 � !3 _!!4Þk 0; ðf14Þ

and, accordingly,
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(α × x) · (IG · x) = (mr2/2)ω5(ω̇3ω4 − ω3ω̇4). (f16)

IG · x = (mr2/2)(ω3 i
′ + ω4 j

′ + 2ω4 k
′), (f15)



Next, with the help of the decomposition (again, in semimobile components)

a ¼ a 0 þ a 00;

a 0 � ð _!!3; _!!4; _!!5Þ;
a 00 � 	!4ð!5 � !4 cot �Þ;�!3ð!5 � !4 cot �Þ; 0
; ðf17Þ

we find that, to within Appell-important terms,

¼ � � � ¼ mr2
�½ð _!!3=2Þ2 þ ð _!!4=2Þ2 þ ð _!!5Þ2�

þ ð _!!3!4 � !3 _!!4Þð!5 � !4 cot �Þ�: ðf18Þ

Finally, utilizing all the above results in (f1) we deduce that

¼ mr2½3ð _!!3Þ2=2þ ð _!!4Þ2=2þ 2ð _!!5Þ2

þ 2!4ð _!!3!5 � !3 _!!5Þ þ 2!5ð _!!3!4 � !3 _!!4Þ
� !4ð _!!3!4 � !3 _!!4Þ cot ��: ðf19Þ

(c) Hence, the three kinetic Appell equations are

@S*o=@ _!!3 ¼ mr2½ð3=2Þ _!!3 þ 2!4 !5 � ð1=2Þ cot � !4
2� ¼ Y3; ðf20Þ

@S*o=@ _!!4 ¼ mr2½ð1=2Þ _!!4 þ ð1=2Þ cot � !3 !4 � !3 !5� ¼ Y4; ðf21Þ
@S*o=@ _!!5 ¼ mr2ð2 _!!5 � !3 !4Þ ¼ Y5; ðf22Þ

and, of course, these coincide with the earlier (e21–23).

� To find the reactions, we need the relaxed Appellian S* ¼ S*ðt; q1;...;5; !1;...;5; _!!1;...;5);

then, ð@S*=@ _!!1Þo ¼ Y1 þ 
1, ð@S*=@ _!!2Þo ¼ Y2 þ 
2, and these equations would, of

course, coincide with the earlier (e19–20). The details are left to the reader.

� In view of the kinematico-inertial identity (3.5.25c): ð@S*=@ _!!3;4;5Þo ¼ @S*o=@ _!!3;4;5, if

no reactions are sought there is no need to calculate S*; S*o will suffice.

� The above, hopefully, show the advantages of the (essentially Lagrangean) method of

Hamel over that of Appell. The explicit calculation of accelerations is a rather expen-

sive step! For alternative Appellian derivations of this problem, see also (alphabeti-

cally): Neimark and Fufaev (1972, pp. 149–156), Pérès (1953, pp. 224–226), Routh

[1905(a), pp. 352–353].

Brief Analytical Discussion of the Kinetic Hoop Equations (e24–26)

The solution of these equations is facilitated by the introduction of the nutation

angle � as the independent variable, instead of the time t. Then, since _�� ¼ !3, and

with the notation dð. . .Þ=d� � ð. . .Þ 0, we have

d!I=dt ¼ ðd!I=d�Þðd�=dtÞ; or _!!I ¼ !3 !I
0 ðI ¼ 3; 4; 5Þ; ðg1Þ
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α · IG · α = α ′
· IG · α ′ + 2(α ′′

· IG · α ′)

2S∗o = maG
2 + α · IG · α + 2(α × x) · (IG · x)



and so the last two kinetic equations (e25, 26) transform, respectively, to

!4
0 þ ðcot �Þ!4 � 2!5 ¼ 0; 2!5

0 � !4 ¼ 0; ðg2Þ

and eliminating !4 between them yields the single �-equation

!5
00 þ ðcot �Þ!5

0 � !5 ¼ 0: ðg3Þ

With the initial conditions

t ¼ 0: � ¼ �o; !3 ¼ !3o; !4 ¼ !4o ¼ 2!5o
0; !5 ¼ !5o;

the general solution of this linear and homogeneous but variable coefficient equation,

to be obtained via hypergeometric series, will have the form

!5 ¼ !5ð�; �o; !5o; !5o
0Þ ¼ !5ð�; �o; !5o; !4o=2Þ � !5ð�; �o; !4o; !5oÞ: ðg4Þ

Then, !4 can be found by �-differentiation; and since

dð!3
2Þ=d� ¼ 2!3ðd!3=d�Þ

¼ 2!3ðd!3=dtÞðdt=d�Þ ¼ 2½!3ð1= _��Þ�ðd!3=dtÞ ¼ 2 _!!3; ðg5Þ

the first kinetic equation (e24) reduces to

dð3!3
2=4Þ�d� ¼ �ðg=rÞ cos �þ ðcot �=2Þ!4

2 � 2!4 !5 ¼ known function of �;

from which !3ð�Þ may be found by a quadrature. Then, a final integration of _�� ¼ !3

yields �ðtÞ.
For full analytical treatments of these interesting equations, see, for example

(alphabetically): Appell (1953, pp. 253–258, 386–388), Grammel (1950, pp. 235–

245), MacMillan (1936, pp. 276–282), Neimark and Fufaev (1972, pp. 55–60, 155–

156), Pars (1965, pp. 120–122), Webster (1912, pp. 307–316), Winkelmann and

Grammel (1927, pp. 434–437).

Finally, for derivations of the equations of motion of this problem, in terms of the

coordinates of the contact point of the hoop with the plane (instead of those of its

mass center), and �, �,  , see, for example, Hamel [1949, pp. 470–471 (Routh–Voss

equations), 448–479, 489–492, 778–781 (Hamel equations, stability of motion, etc.)],

Rosenberg (1977, pp. 265–268, 338–340).

Brief Discussion of the Kinetostatic Hoop Equations (e19, 20)

Substituting into eqs. (e19, 20) _!!3 and _!!5 from the first and last of the kinetic

equations, respectively, and recalling that Y1;2 ¼ 0, we obtain the constraint reac-

tions on the hoop, at its contact point C (figure 3.53):

Along Cx 0: L1 ¼ 
1 � 
 ¼ ðmr=2Þ!3 !4; ðh1Þ
Along CN: L2 ¼ 
2 � � ¼ �mrfcos �ð!3

2 þ !4
2=3Þ

þ ½ð1= sin �Þ � ð4 sin �=3Þ�!4 !5 � ð2g=3rÞ sin � cos �g:
ðh2Þ
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Once the (rotational) motion has been determined from the kinetic equations — that

is, once !3;4;5 and � have been found as functions of t and the initial conditions —

then (h1, 2) immediately yield the reactions as functions of the same variables. Of

course, these forces can also be calculated by direct application of the Newton–Euler

principle of linear momentum to the hoop, along the semifixed axes

G� x 0NZ � G� nNZ—see, for example, Lur’e (1968, pp. 409–410).

Problem 3.18.12 Continuing from the preceding example, show that (under grav-

ity only) the power, or energy rate, theorem yields the first-order integral

mr2ð!3
2 þ !5

2Þ þ Að!3
2 þ !4

2Þ þ C!5
2 ¼ �2mg r sin � þ constant; ðaÞ

or, since here A ¼ mr2=2 and C ¼ mr2,

3!3
2 þ !4

2 þ 4!5
2 þ 4ðg=rÞ sin � ¼ constant: ðbÞ

Problem 3.18.13 Continuing from the preceding example, assume that, in addition

to rolling, the hoop is constrained to remain vertical; that is, �ðtÞ ¼ �=2.

(i) Find its constraints and its Routh–Voss equations of motion.

(ii) For the special (constraint-satisfying) initial conditions

�ð0Þ ¼ 0; _��ð0Þ ¼ _��o;  ð0Þ ¼ 0; _  ð0Þ ¼ _  o;

xð0Þ ¼ 0; _xxð0Þ ¼ �r _  o; yð0Þ ¼ r; _yyð0Þ ¼ 0; ðaÞ

show that:

� The Lagrangean multiplier associated with the tangential direction Cx 0 vanishes;

while

� The multiplier associated with the normal direction CN equals mr _��o _  o=3 ¼ constant;
and

� The hoop center G traces a circle of radius rð _  o= _��oÞ, with constant speed

( _XXÞ2 þ ð _YYÞ2 ¼ r2ð _  oÞ2, and normal acceleration of magnitude r _��o _  o.

Problem 3.18.14 Continuing from the preceding example, consider its key kinetic

equation (g3):

d2!5=d�
2 þ ðcot �Þðd!5=d�Þ � !5 ¼ 0; where !5 � _  þ _�� cos � ¼ !z 0 : ðaÞ

Show that the independent variable change �! � ¼ cos2 � transforms the above

to the hypergeometric equation

2�ð1� �Þðd2!5=d�
2Þ þ ð1� 3�Þðd!5=d�Þ � ð1=2Þ!5 ¼ 0: ðbÞ

Then, show that a particular infinite series solution of this famous equation is

!5 ¼
X

ak�
k ¼ a0 þ a1� þ a2�

2 þ � � � ; ðcÞ

where

ak=ak�1 ¼ ð4k2 � 6kþ 3Þ�2kð2k� 1Þ ðk ¼ 1; 2; . . .Þ:
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Problem 3.18.15 Consider again the hoop, but now rolling on a plane P, which

translates with given (inertial) velocity (fig. 3.54)

vplane � vP ¼ vC ¼
	
vXðtÞ; vYðtÞ; vXðtÞ



: ðaÞ

Also, assume for algebraic simplicity, but no loss in generality, that P is (and

remains) horizontal.

(i) If X , Y , Z ¼ inertial coordinates of the hoop center G [i.e., Z ¼ hðtÞ þ r sin �,
vZðtÞ ¼ dhðtÞ=dt�, show that the rolling constraints are (recall prob. 2.13.3)

½ _XX � vXðtÞ� cos�þ ½ _YY � vY ðtÞ� sin�þ r _�� cos �þ r _  ¼ 0; ðbÞ
� ½ _XX � vXðtÞ� sin�þ ½ _YY � vY ðtÞ� cos�þ r _�� sin � ¼ 0: ðcÞ

(ii) Show that the (inertial) potential and kinetic energies of the hoop are, respec-

tively,

V ¼ �mg½hðtÞ þ r sin ��; ðdÞ
2T ¼ mfð _XXÞ2 þ ð _YYÞ2 þ ½ _hhðtÞ þ r cos � _���2g

þ A½ð _��Þ2 þ ð _��Þ2 sin2 �� þ Cð _  þ _�� cos �Þ2 ðC ¼ 2A ¼ 2B ¼ mr2Þ; ðeÞ

and, therefore, verify that the corresponding Routh–Voss equations are (with


1;2 ¼ multipliers)

m €XX ¼ 
1 cos�� 
2 sin�; ðfÞ
m €YY ¼ 
1 sin�þ 
2 cos�; ðgÞ
½A _�� sin2 �þ Cð _  þ _�� cos �Þ cos ��: ¼ 
1r cos �; ðhÞ
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Figure 3.54 Hoop rolling on a translating horizontal plane.



mr cos � ½€hhþ rðsin �Þ:: � þ A½€��� ð _��Þ2 sin � cos ��
þ Cð _  þ _�� cos �Þ _�� sin � ¼ �mg r cos �þ 
2 r sin �; ðiÞ

Cð _  þ _�� cos �Þ: ¼ 
1 r: ð jÞ

(iii) Eliminating 
1;2 from the above Routh–Voss equations (f–j), and then €XX , €YY
via the [once ð. . .Þ:-differentiated] constraints (b, c), verify that the three (kinetic)

Chaplygin–Voronets equations of this problem are

A €�� sin �� C _�� _  ¼ 0; ðkÞ
ðC þmr2Þð _�� cos �þ _  Þ: �mr2 _�� _�� sin �

¼ mr½ _vvXðtÞ cos�þ _vvY ðtÞ sin��; ðlÞ
ðAþmr2Þ€��� Að _��Þ2 sin � cos �þ ðC þ mr2Þ sin � _��ð _�� cos �þ _  Þ

¼ �mg r cos �� mr½ _vvXðtÞ sin� sin �� _vvY ðtÞ cos� sin �þ _vvZðtÞ cos ��; ðmÞ

and that along, with the constraints (b, c), they constitute a determinate system for

XðtÞ, YðtÞ, �ðtÞ, �ðtÞ,  ðtÞ. Then, in both (ii) and here, ZðtÞ ¼ hðtÞ þ r sin �ðtÞ. Notice

that (a) the terms due to the translation of the plane appear as additional ‘‘forces’’ on

the right sides of (l) and (m), and equal, respectively, mraPðtÞ � i 0 and �mraPðtÞ � k 0,
where aPðtÞ � dvPðtÞ=dt ¼ ð _vvXðtÞ, _vvYðtÞ, _vvZðtÞÞ, i 0 � un ¼ ðcos�; sin�; 0Þ; k 0 ¼
ðsin� sin �; � cos� sin �; cos �Þ; and that (b) here, too, the Lagrangean method

shows its superiority over the momentum method of Newton–Euler.

Problem 3.18.16 Continuing from the preceding problem, examine the special

motion where P remains fixed [or, equivalently, translates uniformly:
dvX ;Y ;ZðtÞ=dt ¼ 0 ) vX ;Y ;ZðtÞ ¼ constant � cX ;Y ;Z], and the hoop rolls at a constant
nutation angle �ðtÞ ¼ constant � �o.

(i) After verifying that such a motion is possible, show that, then, the first two

Chaplygin–Voronets equations, (k, l), yield

_�� ¼ constant � _��o; _  ¼ constant � _  o; ðaÞ
while the third of them, (m), reduces to

�Að _��oÞ2 sin �o cos �o þ ðC þ mr2Þ sin �o _��oð _��o cos �o þ _  oÞ ¼ �mg r cos �o: ðbÞ
(ii) Then, using the constraints, eqs. (b, c) of the preceding problem, show that

_XX � cX ¼ �rð _��o cos �o þ _  oÞ cosð _��o tÞ; _YY � cY ¼ �rð _��o cos �o þ _  oÞ sinð _��o tÞ:
ðcÞ

Discuss particular cases of this special motion; for example, �o ¼ �=2
ð); _��o; _  o ¼ � � �Þ; �o 6¼ �=2 ð) _��o; _  o ¼ � � �Þ.

Problem 3.18.17 Examine the problem of a hoop rolling on a uniformly rotating
horizontal and rough platform; that is, formulate its constraints in any convenient set

of coordinates, write down its transitivity equations, and then obtain its Routh–

Voss, Hamel, and Appell equations, with or without reactions.
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Problem 3.18.18 Examine the earlier problems of the (sliding) sled and (rolling)

sphere, but on a translating platform; that is, obtain their constraints, transitivity

equations, and various equations of motion.

Example 3.18.6 Dynamics of Pair of Rolling Wheels on an Axle. Let us determine

the motion and reactions of a system consisting of two identical homogeneous

wheels, mounted on a light axle, and each capable of turning freely about it, and

The kinematics of this system has already been discussed in ex. 2.13.8. It was

found there that q1;...;5 ¼ X , Y , �,  0,  00, and that the rolling constraints are

_XX cos�þ _YY sin� ¼ 0; ða1Þ
� _XX sin�þ _YY cos�þ b _��þ r _  0 ¼ 0; ða2Þ
� _XX sin�þ _YY cos�� b _��þ r _  00 ¼ 0; ða3Þ

or, since the last two of them yield the integrable combination (with c ¼ integration

constant, depending on the initial values of �,  0,  00)

2b _��þ rð _  0 � _  00Þ ¼ 0 ) 2b� ¼ c� rð 0 �  00Þ; ða4Þ

we may take, as the two independent Pfaffian constraints,

_XX cos�þ _YY sin� ¼ 0; ðb1Þ
� _XX sin�þ _YY cos�þ ðr=2Þð _  0 þ _  00Þ ¼ 0: ðb2Þ

For the purposes of the Routh–Voss equations (see below), a further simplification

of these constraints is possible: (a) multiplying the first of them by sin� and the

second by cos� and adding together yields

_YY þ ðr=2Þð _  0 þ _  00Þ cos� ¼ 0; ðb3Þ
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Figure 3.55 (a) Rolling of two wheels on an axle, on a fixed plane; (b) acceleration components

needed for calculation of Appellian.

rolling on a fixed, horizontal, and rough plane (fig. 3.55).

(a)



while (b) multiplying the first of them by cos� and the second by � sin� and

adding together yields

_XX � ðr=2Þð _  0 þ _  00Þ sin � ¼ 0; ðb4Þ
and then (c) eliminating _  00 from these two with the help of the integrable relation

(a4, for b ¼ r): 2b _��þ rð _  0 � _  00Þ ¼ 0 ) _  00 ¼ 2 _��þ _  0, finally results in the two

new Pfaffian constraints

_XX � rð _  0 þ _��Þ sin� ¼ 0; _YY þ rð _  0 þ _��Þ cos� ¼ 0: ðb5Þ
In view of the above, we introduce the following quasi velocities:

!1 � _��1 � _XX cos�þ _YY sin� ð¼ 0Þ; ðc1Þ
!2 � _��2 � � _XX sin�þ _YY cos� ð6¼ 0Þ; ðc2Þ
!3 � _��3 � _�� ð6¼ 0Þ; ðc3Þ
!4 � _��4 � rð _  þ _  00Þ þ 2ð� _XX sin �þ _YY cos�Þ

¼ rð _  0 þ _  00Þ þ 2!2 ð¼ 0Þ; ðc4Þ
!5 � _��5 � 2b _��þ rð _  0 � _  00Þ ð¼ 0Þ: ðc5Þ

The above invert easily to

_XX ¼ ðcos�Þ!1 þ ð� sin�Þ!2; ðc6Þ
_YY ¼ ðsin�Þ!1 þ ðcos�Þ!2; ðc7Þ
_�� ¼ ð0Þ!1 þ ð0Þ!2 þ ð1Þ!3; ðc8Þ
_  0 ¼ ð1=2rÞð�2!2 � 2r!3 þ !4 � !5Þ; ðc9iÞ
_  00 ¼ ð1=2rÞð�2!2 þ 2r!3 þ !4 � !5Þ: ðc9iiÞ

From (c1–9i), we readily obtain the following transitivity equations:

ð��1Þ: � �!1 ¼ ð!3Þ ��2 þ ð�!2Þ ��3; ðd1Þ
ð��2Þ: � �!2 ¼ ð�!3Þ ��1 þ ð!1Þ ��3; ðd2Þ
ð��3Þ: � �!3 ¼ 0; ðd3Þ
ð��4Þ: � �!4 ¼ ð�2!3Þ ��1 þ ð2!1Þ ��3; ðd4Þ
ð��5Þ: � �!5 ¼ 0: ðd5Þ

The Routh–Voss Equations

Applying König’s theorem (plus parallel axis theorem for moments of inertia), we

obtain

2T ¼ ðm1 þ 2m2Þ½ð _XXÞ2 þ ð _YYÞ2� þ ðm1b
2=3Þð _��Þ2

þ 2½ðm2r
2=4Þ þm2b

2�ð _��Þ2 þ ðm2r
2=2Þ½ð _  0Þ2 þ ð _  00Þ2�; ðe1Þ
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or, for the special case, to be examined here for algebraic simplicity, m1 ¼ 0, m2 � m
(¼ mass of each wheel), b ¼ r:

T ¼ m½ð _XXÞ2 þ ð _YYÞ2� þ ðmr2=4Þ½ð _  0Þ2 þ ð _  00Þ2 þ 5ð _��Þ2�: ðe2Þ

Hence, the five Routh–Voss equations corresponding to (e1) and (b5) are (with

multipliers 
1 � 
 and 
2 � �; and with impressed force components to be

calculated from the invariant differential � 0W ¼ QX �X þQY �Y þQ� ��þ
Q 0 � 

0 þQ 00 � 
00, as if the �q’s were unconstrained)

X : ð2mÞ €XX ¼ QX þ 
; ðe3Þ
Y : ð2mÞ €YY ¼ QY þ �; ðe4Þ
�: ð5mr2=2Þ €�� ¼ Q� þ rð�
 sin�þ � cos�Þ; ðe5Þ
 0: ðmr2=2Þ €  0 ¼ Q 0 þ rð�
 sin�þ � cos�Þ; ðe6Þ
 00: ðmr2=2Þ €  00 ¼ Q 00 : ðe7Þ

If all Q’s vanish ( free motion), the above yield the two obvious integrals

_  00 ¼ constant;

ð5mr2=2Þ _��� ðmr2=2Þ _  0 ¼ constant ) 5 _��� _  0 ¼ constant: ðe8Þ

A third integral results as follows: first, we rewrite the two Pfaffian constraints as

_XX cos�þ _YY sin� ¼ 0; ðe9Þ
_XX sin�� _YY cos� ¼ rð _��þ _  0Þ; ðe10Þ

then we ð. . .Þ:-differentiate the first of them and take into account the second. The

result is

€XX sin�� €YY cos� ¼ rð €��þ €  0Þ
¼ ð1=2mÞð
 sin�� � cos�Þ ¼ �½mr=2ð2mÞ� €  0 ¼ �ðr=4Þ €  0;

and from this, by rearrangement and integration, it follows that

ð4mÞ _��þ ð5mÞ _  0 ¼ constant ) 4 _��þ 5 _  0 ¼ constant:

These integrals show that the angles �,  0,  00 vary linearly in time; in which case,

the constraints integrate easily to

_XX ¼ rðconstantÞ sin � ¼ ðconstantÞ Y ; ðe11Þ
_YY ¼ �rðconstantÞ cos� ¼ �ðconstantÞ X ; ðe12Þ

that is, the path of G is a circle, parallel to the plane Z ¼ 0, of radius

R ¼ rjð _��o þ _  o
0Þ= _��oj, described at the uniform rate _��o. Indeed, we have

vG
2 ¼ ð _XXÞ2 þ ð _YYÞ2 ¼ ðR _��oÞ2 ) ð _��o þ _  o

0Þ2r2 ¼ ð _��oÞ2R2; Q:E:D:
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[The third integral also results, more simply, from the constancy of T (by energy

conservation; and since, here, 
 and � are workless), if in there [eq. (e2)] using the

constraints (b5), we replace ( _XXÞ2 þ ð _YYÞ2 with r2ð _��þ _  0Þ2. Then, we obtain a constant
coefficient relation between ( _��Þ2 and ð _  0Þ2, from which it follows that _�� and _  0

are constants, like _  00. The earlier argument, however, may apply to more general

problems.]

Finally, inserting _XX and _YY from (e11, 12) into the first two equations of motion,

(e3, 4), yields the two constraint reactions 
 and �. For additional insights, see, for

example, Pérès (1953, pp. 213–214), Rosenberg (1977, pp. 340–345).

The Hamel Equations

From the _qq$ ! relations (c6–9), we easily find

ð _XXÞ2 þ ð _YYÞ2 ¼ !1
2 þ !2

2; ðf1Þ
ð _  0Þ2 þ ð _  00Þ2 ¼ ð1=2r2Þ½ð!4 � 2!2Þ2 þ ð!5 � 2r!3Þ2�; ðf2Þ
ð _��Þ2 ¼ !3

2; ðf3Þ

and, therefore,

T ! T* ¼ � � � ¼ ðmÞ!1
2 þ ð3m=2Þ!2

2 þ ð7mr2=4Þ!3
2 þ ðm=8Þð!4

2 þ !5
2Þ

þ ð�m=2Þ!2 !4 þ ð�mr=2Þ!3 !5; ðf4Þ

with no constraint enforcement yet. However, in view of the constraints !1;4;5 ¼ 0,

the (quadratic) first and fourth terms/summands in (f4) can be safely neglected at this

stage; that is, finally, to within Hamel-important terms,

T* ¼ ð3m=2Þ!2
2 þ ð7mr2=4Þ!3

2 þ ð�m=2Þ!2!4 þ ð�mr=2Þ!3!5: ðf5Þ

Next:

(a) The nonholonomic momenta Pk � ð@T*=@!kÞo ðk ¼ 1; . . . ; 5Þ and their

(. . .Þ_-derivatives are

P1 ¼ 0 ) _PP1 ¼ 0; ðf6Þ
P2 ¼ ð3mÞ!2 ) _PP2 ¼ ð3mÞ _!!2; ðf7Þ
P3 ¼ ð7mr2=2Þ!3 ) _PP3 ¼ ð7mr2=2Þ _!!3; ðf8Þ
P4 ¼ ð�m=2Þ!2 ) _PP4 ¼ ð�m=2Þ _!!2; ðf9Þ
P5 ¼ ð�mr=2Þ!3 ) _PP5 ¼ ð�mr=2Þ _!!3: ðf10Þ

(b) Since ð@T*=@qkÞo ¼ 0 ðk ¼ 1; . . . ; 5Þ, we will have

@T*=@�l �
X

Aklð@T*=@qkÞ ¼ 0 ðl ¼ 1; . . . ; 5Þ: ðf11Þ
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(c) In view of (d1–5) and (f6–10), the fundamental noncommutativity term

G �P Pk½ð��kÞ:� �!k�, upon enforcing the constraints !1;4;5 ¼ 0 (but not
��1;4;5 ¼ 0, since we want reactions too) becomes

G ¼ P1ð!3 ��2 � !2 ��3Þ þ P2ð�!3 ��1 þ !1 ��3Þ þ P3ð0Þ
þ P4ð�2!3 ��1 þ 2!1 ��3Þ þ P5ð0Þ

¼ �ðP2 þ 2P4Þ!3 ��1: ðf12Þ

(d) The nonholonomic impressed force components, Yk, are obtained as follows

[with use of virtual form of (c6–9), and calculated as if the constraints ��1;4;5 ¼ 0 did

not exist]:

� 0W ¼ QX �X þQY �Y þQ� ��þQ 0 � 
0 þQ 00 � 

00

¼ QXðcos� ��1 � sin� ��2Þ þQYðsin� ��1 þ cos� ��2Þ þQ� ��3

þQ 0 ð1=2rÞð�2 ��2 � 2r ��3 þ ��4 þ ��5Þ
þQ 00 ð1=2rÞð�2 ��2 þ 2r ��3 þ ��4 � ��5Þ
¼ ðQX cos�þQY sin�Þ ��1 þ ½�QX sin�þQY cos�� r�1ðQ 0 þQ 00 Þ� ��2

þ ½Q� � ðQ 0 �Q 00 Þ� ��3 þ ð2rÞ�1ðQ 0 þQ 00 Þ ��4

þ ð2rÞ�1ðQ 0 �Q 00 Þ ��5

� Y1 ��1 þY2 ��2 þY3 ��3 þY4 ��4 þY5 ��5: ðf13Þ

Substituting all these results into the, by now, well-known nonholonomic version of

LP, and applying to it the method of Lagrangean multipliers for (. . .) ��1;4;5, we

eventually obtain the Hamel equations (nonholonomic variables), and, next to them,

the Maggi equations (holonomic variables):

�1: � ðP2 þ 2P4Þ!3 ¼ Y1 þ 
1 ) �2m!2 !3 ¼ �2mð� _XX sin�þ _YY cos�Þ _�� ¼ Y1 þ 
1;

�2: _PP2 þ P1!3 ¼ Y2 ) 3m _!!2 ¼ 3mð� _XX sin�þ _YY cos�Þ: ¼ Y2;

�3: _PP3 � P1!2 ¼ Y3 ) ð7mr2=2Þ _!!3 ¼ ð7mr2=2Þ €�� ¼ Y3;

�4: _PP4 ¼ Y4 þ 
4 ) ð�m=2Þ _!!2 ¼ ð�m=2Þð� _XX sin�þ _YY cos�Þ: ¼ Y4 þ 
4;

�5: _PP5 ¼ Y5 þ 
5 ) ð�mr=2Þ _!!3 ¼ ð�mr=2Þ €�� ¼ Y5 þ 
5: ðf14�18Þ

Again, for the force–free motion (i.e., all Yk’s ¼ 0Þ, and recalling the constraints

(a2): � _XX sin�þ _YY cos�þ rð _��þ _  0Þ ¼ 0, and (a4): 2 _��þ ð _  0 � _  00Þ ¼ 0, we conclude

from the �2;3-equations that _��þ _  0 ¼ constant, _�� ¼ constant) _  0 ¼ constant,
ð 00Þ: ¼ constant. Further, it follows that, here, �5-equation: 
5 ¼ 0; �4-equation:


4 ¼ 0; �1-equation: 
1 ¼ constant.
For the related problem of the two-wheeled street vendor’s cart (where only the

algebra is slightly more complicated than here), see, for example, Hamel (1949,

pp. 471–472, 479, 484–485).
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The Appell Equations

(No reactions, only motion; i.e., equations for k! I ¼ 2; 3; not k! D ¼ 1; 4; 5:Þ
(i) Elementary nonvectorial solution. Here, with (XG 00 ;YG 00 Þ ¼ ðinertialÞ coordi-

nates of G 00 and (XG 0 ;YG 0 Þ ¼ ðinertialÞ coordinates of G 0, we have [fig. 3.55(a) and

(b)]

XG 00 ¼ X � r cos� ) ðXG 00 Þ:: ¼ €XX þ r cos�ð _��Þ2 þ r sin� €��; ðg1Þ

YG 00 ¼ Y � r sin� ) ðYG 00 Þ:: ¼ €YY þ r sin�ð _��Þ2 � r cos� €��; ðg2Þ

XG 0 ¼ X þ r cos� ) ðXG 0 Þ:: ¼ €XX � r cos�ð _��Þ2 � r sin� €��; ðg3Þ

YG 0 ¼ Y þ r sin� ) ðYG 0 Þ:: ¼ €YY � r sin �ð _��Þ2 þ r cos� €��; ðg4Þ

and, therefore, using the Appellian version of König’s theorem, we find the

Appellians

G 00 wheel: 2SG 00 ¼ m½ð €XXG 00 Þ2 þ ð €YYG 00 Þ2� þ fðmr2=2Þð €  00Þ2 þ ðmr2=4Þð €��Þ2g;

G 0 wheel: 2SG 0 ¼ m½ð €XXG 0 Þ2 þ ð €YYG 0 Þ2� þ fðmr2=2Þð €  0Þ2 þ ðmr2=4Þð €��Þ2g:

From the above, it follows that, to within Appell-important terms and with con-

straints enforced,

2Sentire system ¼ 2SG 00 þ 2SG 0

¼ � � � ¼ m½ð €XXÞ2 þ ð €YYÞ2 þ r2ð €��Þ2 þ 2r €��ð €XX cos�þ €YY sin �Þ

þ 2r €��ð €XX sin�� €YY cos�Þ�

þ ðmr2=2Þfð €  00Þ2 þ ð1=2Þð €��Þ2g

þm½ð €XXÞ2 þ ð €YYÞ2 þ r2ð €��Þ2 þ 2r €��ð� €XX cos�þ €YY sin�Þ

� 2r €��ð €XX cos�þ €YY sin�Þ�

þ ðmr2=2Þ�ð €  0Þ2 þ ð1=2Þð €��Þ2�
¼ 2m½ð €XXÞ2 þ ð €YYÞ2�

þ 2ðmr2=4Þ�ð €  00Þ2 þ ð €  0Þ2 þ 5ð €��Þ2�; ðg5Þ

that is, 2T , eq. (e2), but with the _qq’s replaced by the corresponding €qq’s (¼ homogeneous
quadratic in the €qq’s). Next, since @€qq=@ _!! ¼ @ _qq=@!, and recalling the _qq, ! relations

(c6–9), we find
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@S*=@ _!!2 ¼ ð@S=@ €XXÞð@ _XX=@!2Þ þ ð@S=@ €YYÞð@ _YY=@!2Þ þ ð@S=@ €��Þð@ _��=@!2Þ
þ ð@S=@ €  00Þð@ _  00=@!2Þ þ ð@S=@ €  0Þð@ _  0=@!2Þ
¼ ð2m €XXÞð� sin�Þ þ ð2m €YYÞðcos�Þ þ ð5mr2 €��=2Þð0Þ
þ ðmr2 €  00=2Þð�r�1Þ þ ðmr2 €  0=2Þð�r�1Þ
¼ 2mð� €XX sin �þ €YY cos�Þ � ðmr=2Þð €  00 þ €  0Þ
¼ 2mð�r €��� r €  0Þ � ðmr=2Þð €  00 þ €  0Þ
¼ �2mr½ð €  00 � €  0Þ=2� � 2mr €  0 � ðmr=2Þ €  0 � ðmr=2Þ €  00

¼ �ð3mr=2Þð €  00 þ _  0Þ
¼ �ð3mr=2Þ½ð�r�1 _!!2 � _!!3Þ þ ð�r�1 _!!2 þ _!!3Þ�
¼ �ð3mr=2Þð�2r�1 _!!2Þ ¼ 3m _!!2; ðg6Þ

and, similarly,

@S*=@ _!!3 ¼ ð2m €XXÞð0Þ þ ð2m €YYÞð0Þ
þ ð5mr2 €��=2Þð1Þ þ ðmr2 €  00=2Þð�1Þ þ ðmr2 €  0=2Þð1Þ
¼ ðmr2=2Þð €  00 � €  0 þ 5 €��Þ
¼ ðmr2=2Þð2 €��þ 5 €��Þ ¼ ð7mr2=2Þ €�� ¼ ð7mr2=2Þ _!!3; ðg7Þ

and these are precisely the left (i.e., inertia) sides of the earlier second and third
equations of Hamel. To derive the first, fourth, and fifth Appellian equations, we

use again S, apply the chain rule

@S*=@ _!!k ¼
X
ð@S=@€qqlÞð@ _qql=@!kÞ ðl ¼ 1; . . . ; 5Þ; ðg8Þ

and then impose the constraints !1;4;5 ¼ 0; that is, after the differentiations—not

before them! The details are left to the reader.

(ii) Vectorial solution. For each wheel, we shall have [recalling (3.14.4a ff.)]:

But here (using the notation of the first Appellian solution):

aG
2 ¼ ð €XXG 00 Þ2 þ ð €YYG 00 Þ2; or ð €XXG 0 Þ2 þ ð €YYG 0 Þ2; ðg10Þ

and along the intermediate but principal axes G–123 (fig. 3.55b), which have inertial

angular velocity (0; 0; _��), we easily find

x ¼ ð _  ; 0; _��Þ
) a ¼ dx=dt ¼ ð €  ; 0; €��Þ þ ð0; 0; _��Þ � ð _  ; 0; _��Þ ¼ ð €  ;� _  _��; €��Þ;
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IG = diagonal (mr2/2,mr2/4,mr2/4), (g11)

2S = maG
2 + α · (IG · α ) + (α × x) · (IG · x). (g9)



and, therefore,

¼ � � � ¼ �ðmr2=2Þð _  Þ2ð _��Þ2 ¼ non�Appell-important term; ðg12Þ

and

¼ mr2ð €  Þ2=2 þmr2ð _  Þ2ð _��Þ2=4þmr2ð €��Þ2=4
¼ ðmr2=2Þ�ð €  Þ2 þ ð1=2Þð €��Þ2� þ non�Appell-important term; ðg13Þ

that is, for each wheel, and to within Appell-important terms,

2S ¼ maG
2 þ ðmr2=2Þ½ð €  Þ2 þ ð1=2Þð €��Þ2�; ðg14Þ

and, adding these partial results, we re-establish the earlier entire system Appellian.

Example 3.18.7 Dynamics of Pair of Rolling Wheels on an Inclined Plane.
Continuing from the preceding example, let us specialize it to the case where

mwheel ¼ 0 but maxle � m 6¼ 0; and, in addition, the whole system rolls on a plane

We saw in the previous example that the constraints are

_XX cos�þ _YY sin� ¼ 0; ða1Þ
� _XX sin�þ _YY cos�þ b _��þ r _  0 ¼ 0; ða2Þ
� _XX sin�þ _YY cos�� b _��þ r _  00 ¼ 0: ða3Þ

It is not hard to see that, in this case,

2T ¼ m½ð _XXÞ2 þ ð _YYÞ2� þ ðmb2=3Þð _��Þ2; ðbÞ

and, therefore, to within Appell-important terms,

2S ¼ m½ð €XXÞ2 þ ð €YYÞ2� þ ðmb2=3Þð €��Þ2; ðcÞ
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Figure 3.56 Rolling wheels on an axle, on an inclined plane.

(α × x) · (IG · x) = [(ψ̈,−ψ̇φ̇, φ̈)× (ψ̇, 0, φ̇)] · (mr2ψ̇/2, 0,mr2φ̇/4)

α · (IG · α ) = [(ψ̈,−ψ̇φ̇, φ̈) · (mr2ψ̈/2,−mr2ψ̇φ̇/4,mr2φ̈/4)

inclined by an angle χ to the horizontal (fig. 3.56).



and

� 0W ¼ mgð�X sin�Þ � QX �X ) QX ¼ mg sin�: ðdÞ

Let us use the constraints to eliminate, say €YY , from S: (. . .Þ:-differentiating (a1) we

obtain

_YY ¼ � _XXðcos�= sin�Þ ) €YY ¼ � €XXðcos�= sin�Þ þ _XX _��ð1= sin2�Þ: ðeÞ

Substituting (e) into (c), we obtain S ¼ Soð €XX ; €��Þ � So ¼ � � � . We remark that in

building Appell’s equations, there is no need to square €YY of (e). Indeed, since

S ¼ S½ €XX ; €YYð €XX; . . .Þ; €��; . . .� ¼ So, the chain rule yields

@So=@ €XX ¼ @S=@ €XX þ ð@S=@ €YYÞð@ €YY=@ €XXÞ ¼ @S=@ €XX þ ð@S=@ €YYÞð@ _YY=@ _XXÞ
¼ ðm €XXÞ þ ðm €YYÞð� cos�= sin�Þ ð¼ mg sin�Þ; ðfÞ

@So=@ €�� ¼ @S=@ €��þ ð@S=@ €YYÞð@ €YY=@ €��Þ ¼ @S=@ €��þ ð@S=@ €YYÞð@ _YY=@ _��Þ
¼ ðmb2=3Þ €��þ ðm €YYÞð0Þ ð¼ 0Þ: ðgÞ

From (g), and with !o/�o ¼ initial angular velocity/angle of bar G 00G 0, we immedi-

ately find

_�� ¼ !o ) � ¼ !otþ �o: ðhÞ

Then, with the choice �o ¼ 0, (f) reduces to

€XX sinð!otÞ � €YY cosð!otÞ ¼ g sin� sinð!otÞ; ðiÞ

and along with (e) they constitute a system for XðtÞ and YðtÞ. Indeed, eliminating €YY
between (i) and (e) yields

€XX
�

sinð!otÞ þ
�
cos2ð!otÞ=sinð!otÞ

��� _XX!o½cosð!otÞ= sin2ð!otÞ� ¼ g sin� sinð!otÞ:
ð jÞ

Integrating ( j) twice {while noticing that its left side equals ½ _XX= sinð!otÞ�:}, we

obtain, after some elementary integrations (and with c1;2 ¼ integration constantsÞ,

X ¼ ðg sin�=4!o
2Þ cosð2!otÞ � ðc1=!oÞ cosð!otÞ þ c2: ðkÞ

Then, substituting from (k) into (a1) and integrating, we finally get (with

c3 ¼ integration constantÞ

that is, G traces a curve parallel to a cycloid with base(line) parallel to OY .

For additional insights, see Delassus [(1913(b), pp. 406–409), which investigates

the above system but with an additional particle of mass m placed at G, and then of

the limit as mwheels, mbar ! 0], Pérès (1953, p. 214); also Bahar (1998).
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Y = (g sinχ/4ωo2)[sin(2ωot) + 2ωot]− (c1/ωo) sin(ωot) + c3; (l)



APPENDIX 3.A1

REMARKS ON THE HISTORY OF THE HAMEL-TYPE EQUATIONS OF

ANALYTICAL MECHANICS

Below, and continuing from the Introduction and the early sections of this chapter,

we discuss the historical evolution of the Hamel-type equations; that is, of T-based

equations of nonholonomically constrained systems in nonholonomic variables.
We begin with the following, highly selective but adequate for our purposes,

summaries of the main theoretical developments of Lagrangean mechanics; see

tables 3.A1.1–3.A1.3.
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Table 3.A1.1

Newton (2nd half of 17th cent.) Physical foundations of mechanics (fundamental law); particle
Euler (18th cent.) Physical and mathematical foundations of mechanics

Lagrange (2nd half of 18th cent.) Mathematical deepening of mechanics (energetic mechanics);

Cauchy (1st half of 19th cent.)
Hamilton (1830’s) Canonical formalism; Hamilton’s equations
Jacobi (1840’s) Integration theory of dynamics
Kelvin/Helmholtz/Routh Ignorable (cyclic) coordinates; gyroscopic systems
(2nd half of 19th cent.)

Appell (late 19th-early 20th cent.) Nonholonomic systems; Appell’s equations (acceleration-based
equations)

Heun (early 20th cent.) Theoretical engineering dynamics
Hamel (1st half of 20th cent.) Nonholonomic systems, axiomatics of classical

(discreteþ continuum) mechanics; Hamel’s equations
(kinetic energy-based equations)

Table 3.A1.2

Mersenne (1646) Find the period of a mathematical pendulum with several masses
Huygens (1673) Center of oscillation (‘‘Horologium oscillatorium’’)
Jacob Bernoulli (1686–1703) Physical pendulum; earliest form of d’Alembert’s principle
D’Alembert (1743) Earliest monograph on constrained system dynamics

Table 3.A1.3

D’Alembert’s decomposition Laws of Simple Machines
(Ansatz): df ¼ dF þ dR Ancient Greeks (Aristotle, Archimedes et al.),

Del Monte (1577), Galileo (1594),
Torricelli (1644) et al.

# #
D’Alembert’s Principle: þ Johann Bernoulli

The {�dR} are in equilibrium (1743) Statical Principle of Virtual Work (1717, 1725):
Equilibrium, zero virtual work

#
Lagrange

Principle of least action (1760)
Lagrange’s principle (1764):
Lagrange’s equations (1780)

S ð�dRÞ � �r ¼ 0 ) Sdm a � �r ¼SdF � �r

Méchanique Analitique (1788)

(momentum mechanics); rigid body, rotation

constraints, Lagrangean equations
Continuum mechanics; deformation (strain), stress

Global Picture

Prehistory of Lagrangean Mechanics

Historical Synthesis (mid-to-late 18th Century)
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From the Prehistory of the Hamel-Type Equations

Let us now discuss, in ‘‘our’’ notation, some additional special forms of Hamel-type

equations of motion (early 1870s to the early 1900s). It is through the acquaintance

with such historical curiosities that we deepen our understanding of contemporary
Lagrangean mechanics, both holonomic and nonholonomic; and appreciate better

the importance of the fundamental contributions of Heun and Hamel (1901–1914) to

our subject.

(i) Equations of Ferrers (early 1870s, publ. 1873)

Let us assume for algebraic simplicity, but no loss in generality, a scleronomic system

with Chaplygin-type constraints (3.8.13a)

_qqD ¼
X

bDIðqmþ1; . . . ; qnÞ _qqI ¼
X

bDI _qqI ðI ¼ mþ 1; . . . ; nÞ: ð3:A1:1Þ

Then, Ferrers’ equations are

IIo � d=dtð@To=@ _qqI Þ �Sdm vo � ðdbI=dtÞ ¼ QIo; ð3:A1:2Þ
where

v ¼
X

ek _qqk ¼ � � � �
X

bI _qqI �
X
ð@vo=@ _qqIÞ _qqI � voðq; _qqIÞ � vo: ð3:A1:2aÞ

and, therefore, in the nonholonomic case,

RI �Sdm vo �
	
@vo=@ _qqI


: �Sdm vo � ðdbI=dtÞ 6¼Sdm vo � ð@vo=@qIÞ ¼ @To=@qI :

ð3:A1:3dÞ

Also, Carvallo (1900–1901), in his classic studies of the mono- and bi-cycle, and most

likely independently of Ferrers, introduced essentially equivalent equations of

motion. Clearly, the method of Ferrers can be extended to the most general rheo-

nomic nonholonomic constraints; even nonlinear ones (chap. 5).

Indeed, in view of the above, we obtain, successively (with I , I 0 ¼ m þ 1; . . . ; n),

EI ðvoÞ ¼ dbI=dt� @vo=@qI
¼
X
ð@bI=@qI 0 ÞðdqI 0=dtÞ �

X
ð@bI 0=@qIÞðdqI 0=dtÞ

¼
X
ð@bI=@qI 0 � @bI 0=@qIÞ _qqI 0 6¼ 0 ðin generalÞ; ð3:A1:3cÞ

even though (2.5.10)

We recall [(2.9.37), also prob. 2.11.1] that since, in general, the bI are nongradient

EIðvÞ � d=dtð@v=@ _qqI Þ � @v=@qI ¼ 0: ð3:A1:3bÞ

EIðvoÞ � d=dtð@vo=@ _qqIÞ � @vo=@qI � dbI=dt� @vo=@qI 6¼ 0; ð3:A1:3aÞ



REMARKS

(a) Such an extension of (3.A1.2) has been given (independently) by Greenwood

[1994, p. 83 ff., eqs. (3.98)]. With (our notation): _qqk ¼
P

AkI!I þ Ak, v ¼ � � � ¼
v*oðt; q; !IÞ)T*¼T*oðt; q; !IÞ, or

T ½t; q; _qqI ; _qqDðt; q; _qqI Þ� ¼ Toðt; q; _qqIÞ ¼ To½t; q; _qqIðt; q; !I Þ� ¼ T*oðt; q; !IÞ;
and with � 0W ¼P Qk �qk ¼

P
YI ��I , we obtain the Greenwood equations:

ð@T*o=@ _!!I Þ: �Sdm v*o � ð@v*o=@!IÞ ¼ YI : ð3:A1:3eÞ

Actually, (3.A1.3e) also holds for nonlinear nonholonomic transformations:

_qqI ¼ _qqI ðt; q; !IÞ.
(b) A certain unclear historical statement by Whittaker (1937, p. 215, footnote)

seems to have caused a number of other (less famous) authors to call, erroneously,
Ferrers equations the Routh–Voss (multiplier) equations; for example, Fox (1967,

p. 351), Hand and Finch (1998, p. 62, footnote), Rose (1938, p. 16). The record is

corrected in Routh 1905(a), p. 348, footnote.

(c) For complementary expositions on the Ferrers equations, and so on, see, for

example (alphabetically): Auerbach (1908, p. 327, eq. (68)), Gray (1918, pp. 411–

418), Marcolongo (1912, pp. 104–105), Voss (1901/1908, pp. 82–83).

(ii) T-Equations of Appell (1899) and Boltzmann (1902)

These result from further transformations of the key RI term, (3.A1.3d). Indeed, we

obtain, successively [recalling (3.3.11a ff.)],

RI �Sdm vo � ðdbI=dtÞ ¼Sdm vo � ½d=dtð@vo=@ _qqIÞ�
¼Sdmvo � ½d=dtð@vo=@ _qqIÞ � @vo=@qI � þSdm vo � ð@vo=@qIÞ

¼Sdm vo �
X
ð@bI=@qI 0 ÞðdqI 0=dtÞ �

X
ð@bI 0=@qIÞðdqI 0=dtÞ

� �
þ @To=@qI

¼ GIo þ @To=@qI ð) RI � @To=@qI ¼ GIoÞ; ð3:A1:4Þ

where

GIo �Sdm vo �EIðvoÞ

¼
X

Sdm vo � ð@bI=@qI 0 � @bI 0=@qIÞ
n o

_qqI 0 ð3:A1:4aÞ

an expression that shows clearly the gyroscopicity of this nonholonomic ‘‘correction

term.’’ Hence, Ferrers’ equations take the Appell form

EI ðToÞ � GIo � d=dtð@To=@ _qqI Þ � @To=@qI � GIo ¼ QIo: ð3:A1:5Þ
When the fundamental term GIo is expressed exclusively in system variables, say

GIo ¼
P

cII 0 _qqI 0 ¼ quadratic in the _qqI (where cII 0 ¼ �cI 0I ), eqs. (3.A1.5) are none

other than the Chaplygin equations (3.8.13a ff.); which, as we have seen, are a special

case of the Hamel equations.

From the above, we conclude, with Appell, that for Lagrange’s equations to apply

for a particular qI [i.e., ð@To=@ _qqI Þ:� @To=@qI ¼ QIo], it is necessary and sufficient
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that GIo ¼ 0, identically in t, qI ’s, _qqI ’s. In holonomic systems this holds for all
I ¼ mþ 1; . . . ; n; but in nonholonomic ones, it may hold for some of them; e.g.,

in the rolling coin problem it does hold for the nutation angle � [ex. 3.18.5, and

Ferrers (1873, pp. 3–4)]. Appell calls the number of nonvanishing GIo’s the ‘‘order of

nonholonomicity’’ of the system; and also, he points out the errors resulting from the

indiscriminate use of Lagrange’s equations EI ðToÞ ¼ QIo.

However, Appell (1899) did not pursue the transformation of RI and GI any

further, and thus missed arriving at the equations of Chaplygin (1895, publ. 1897)

and Voronets (1901). Instead, seeing an apparent dead-end in the direction of

Lagrange-type equations, like (3.A1.5) with (3.A1.4a), he turned his energies to

the development of his other, now famous, acceleration-based S-equations (1899,

1900):

@So=@€qqI ¼ QIo: ð3:A1:6Þ

Comparing (3.A1.5) and (3.A1.6), we immediately deduce the following basic kine-

matico-inertial identity:

GIo ¼ ½ð@To=@ _qqI Þ:� @To=@qI � � @So=@€qqI � EIðToÞ � @So=@€qqI

� ½ðconstrainedÞ Euler�Lagrange�I � ½ðconstrainedÞ Appell�I 6¼ 0 ðin generalÞ;
ð3:A1:7Þ

see, for example, Appell [1899(a), pp. 39–45; 1925, pp. 12–17; 1953, pp. 383–388].

The form (3.A1.5), but for general rheonomic nonholonomic systems [i.e., a form

that when brought to system variables would be none other than the Voronets equa-
tions (1901) — (3.8.14a ff.)] was also arrived at, independently, by Boltzmann (1902;

1904, pp. 104–105), who, among mechanicians, gave the first geometrical interpreta-

tion of the (‘‘Ricci–Boltzmann–Hamel’’) rotation coefficients: @bI=@qI 0 � @bI 0=@qI .
An additional, related, derivation of the Boltzmann equations, based on Hertz’s

‘‘principle of the straightest path’’ (}6.7), was given a little later by Boltzmann’s

famous student Ehrenfest [1904]. See also, Krutkov (1928: vectorial/dyadic treat-

ment of Boltzmann’s equations), MacMillan (1936, pp. 332–341: clear derivation of

(1984; 1985, pp. 108–114) for an extension of the MacMillan equations to nonlinear

nonholonomic constraints.]

To summarize: the main drawback of these equations of Ferrers–Appell–

Boltzmann–MacMillan is that they are mixed; that is, some of their terms

½EI ðToÞ;QIo� are expressed in system variables, and some ðGIoÞ in particle variables.

Perhaps this explains why they have not been used much in concrete problems, let

alone theoretical arguments. The equations that result by expressing the nonholo-

nomic term GIo too in system variables (a qualitatively higher step in the evolution

of Lagrangean-type equations!) are the equations of Chaplygin and Voronets;

schematically:

� Equations of Ferrers ð1873Þ=Appell ð1899Þ system
variables!Equations of Chaplygin ð1895�1897Þ;

� Equations of Boltzmann ð1902Þ=MacMillan ð1936Þ� system
variables!Equations of Voronets ð1901Þ:

ð3:A1:8Þ
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Boltzmann’s equations; unique and virtually unknown/unnoticed in the English literature);
and Klein (1970, pp. 53–74: critical summary of Ehrenfest’s dissertation). [See also Mei



Last, a special case of the Chaplygin–Voronets equations (rolling of convex body on

rough plane) was first given by Neumann (1885).

(iii) Boltzmann versus Hamel

In the light of this historical record, the widely used term ‘‘Boltzmann–Hamel equa-

tions’’ (probably originated by readers of Whittaker (1904, }30), and parroted by the

rest, except Hamel and his school) is inaccurate. There is a very big difference

between these two sets of equations, although they appeared only about a year

apart from each other (Boltzmann: 1902; Hamel: 1903, 1904).

(iv) Volterra versus Hamel

The only other Lagrange-type equations of motion that can stand next to Hamel’s

are those by Volterra (1898; corrections: 1899). However, even Volterra never dis-
cussed constraints, just equations of motion in terms of nonholonomic variables
(what he called ‘‘parameters,’’ or ‘‘motion characteristics’’); and, more importantly,

Hamel’s treatment is far more comprehensive and deep.

(v) Gibbs versus Appell

The S-equations of Appell under Pfaffian constraints are sometimes called ‘‘Gibbs–

Appell equations’’; for example, Pars (1965). However, a careful study of the original

memoirs of these two masters reveals that Appell’s contributions (several weighty

papers, a monograph exclusively devoted to these equations, plus extensive parts of

his famous treatise) completely overshadow by several orders of magnitude those of

Gibbs (two pages at the end of his single paper on theoretical dynamics). The main

difference between the two is that: Appell dealt with both nonholonomic coordinates
and constraints, whereas Gibbs dealt only with nonholonomic coordinates. Also, their

approaches are distinctly different: Gibbs derives his equations from the differential

form of the (lesser known) Gauss’ principle, whereas Appell obtains his from (the

simpler) Lagrange’s principle.

For these objective and incontrovertible reasons, we have decided to call them

Appell’s equations. In this practice, we are accompanied by the overwhelming major-

ity of the best mechanicians of the 20th century; for example, (in approximate

chronological order of appearance of their works on this subject): Voss, Heun,

Routh, Whittaker, Gray, Hamel, Nordheim, Johnsen, Prange, Ames and

Murnaghan, Levi-Civita and Amaldi, MacMillan, Rose, Lanczos, Beghin, Pérès,

Synge, Lur’e, Gantmacher, Novoselov, Dobronravov, Neimark and Fufaev, Mei

et al.

In view of the above, the situation in (iv) and (v) can be fairly summed up as

follows: Volterra’s equations stand relative to Hamel’s the same way that Gibbs’

equations stand relative to Appell’s (S-equations), and vice versa. In both cases, the

relevant contributions of Hamel and Appell exceed by several quantitative and

qualitative orders of magnitude those of Volterra and Gibbs, respectively. This is

shown schematically in table 3.A1.4.

The foregoing history helps us to build the following summaries and table of the

equations of motion of analytical dynamics:
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Lagrange’s Principle (LP)

Particle=vector variables: Sdm a � �r ¼SdF � �r

Holonomic system variables:
X

EkðTÞ �qk ¼
X

Qk �qk

Nonholonomic system variables:
X
½Ek*ðT*Þ � Gk� ��k ¼

X
Yk��k:

General Remarks

Additional Pfaffian constraints (holonomic and/or nonholonomic) are either (a)

adjoined to LP via multipliers, in which case the resulting equations are, in general,

coupled in the motion and reactions. However, under finite (geometrical) constraints,

the equations of motion can always be uncoupled by special choices of ‘‘equilibrium’’

coordinates; or they are (b) embedded to LP (or eliminated) via quasi coordinates, in

which case the resulting equations of motion can always be uncoupled by special

choices of such quasi variables into kinetic (reactionless, motion only) and kineto-
static (reaction-containing).

Table 3.A1.5 summarizes the equations of constrained dynamics.
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Table 3.A1.4 Volterra vs. Hamel, and Gibbs vs. Appell

Nonholonomic Coordinates

No Constraints Constraints

T-equations: Volterra (1898) < Hamel (1903, 1904)
S-equations: Gibbs (1879) < Appell (1899, 1900)

Table 3.A1.5 Global (Panoramic) Map of the Equations of Constrained Dynamics

T-Based Equations (velocities)

Multipliers: Routh (1879)/Voss (1884–1885)—holonomic variables
#

Projection: Maggi (1896, 1901)—holonomic variables
Special cases: Hadamard (1895, 1899), Korteweg (1899)

#
Quasi variables: Hamel (1903–1904)—nonholonomic variables

Special cases: (i) Ferrers (1873), Appell (1899), Carvallo (1900), Boltzmann (1902),
Auerbach (1908), MacMillan (1936), Greenwood (1994);

(ii) C. Neumann (1885), Chaplygin (1895–1897)!Voronets (1901);
(iii) Volterra (1898);
(iv) Poincaré (1901)

S-Based Equations (accelerations)

In view of the kinematico-inertial identities:

Holonomic variables: @S=@€qqk ¼ ð@T=@ _qqkÞ
:� @T=@qk

Nonholonomic variables: @S*=@ _!!k ¼ ð@T*=@!kÞ
: � @T*=@�k � Gk

there exist Appellian counterparts to all the above equations. Here, in general, both T and S are
unconstrained; if the additional Pfaffian constraints are holonomic, they can be constrained.

(For the less common (dT=dtÞ-based equations, see }6.3 ff.)



APPENDIX 3.A2

CRITICAL COMMENTS ON VIRTUAL DISPLACEMENTS/WORK;

AND LAGRANGE’S PRINCIPLE

Some Common Misunderstandings Regarding
d’Alembert’s Principle (d’AP)

As pointed out in }3.2 and elsewhere, d’AP is, in spite of its simplicity, one of the

most misunderstood principles in the history of physics. Although the whole matter

was finally and fully clarified, qualitatively and quantitatively, in the early years of

the 20th century by such mechanics greats as Heun and Hamel, considerable con-

fusion and misunderstanding still persists even today, especially among English

language texts and, more specifically, those written by physicists. (The most likely

culprits for such a tradition of error must be the very influential Victorian treatises of

Thomson/Tait, Routh, Whittaker, Lamb, et al.; which, in spite of their overall great-

ness, are pretty incomplete on this fundamental topic.) Let us try to identify and

dispel the most common of these intellectual malignancies.

(i) A frequent misrepresentation of d’AP runs as follows: one starts with the

Newton–Euler law:

df ¼ dm a; ð3:A2:1Þ
then one moves the inertia term dm a to the left/force side of the equation, and calls

the trivial result: df þ ð�dm aÞ ¼ 0, d’AP. In words: during the motion, the sum of

all forces, real (df ) and ‘‘reversed effective’’ (�dm a) are in dynamic (?!) equilibrium;

see, for example, (alphabetically): Halfman (1962, p. 62), Housner and Hudson

(1959, pp. 253–254), Meriam and Kraige (1986, p. 223), to name a few contemporary

(otherwise quite decent and worthwhile) expositions. Many more examples of this

physically vacuous formulation appear in other areas of engineering dynamics; for

example, vibrations, fluid mechanics, and so on.

(ii) Some authors talk about d’AP in so many places and (in, mostly, qualitative)

forms, including the correct one, that the reader ends up confused as to the true

meaning of the principle and unable to apply it to new and nontrivial circumstances.

Others confuse d’AP with the Newton–Euler principle (better, constitutive postulate)

of action–reaction for the internal forces, while limiting themselves to rigid bodies/

systems; for example, Marris and Stoneking (1967, pp. 95–96). But if d’AP simply

meant equilibrium of all internal forces, in the Newton–Euler sense, that is,

Sdf internal ¼ 0 and S r� df internal ¼ 0; ð3:A2:2Þ

then how would one apply the principle to constrained systems that do not possess

such forces? [As we have already seen (}3.2), in general, df internal 6¼ dR ð¼ total con-

straint reaction); df internal ¼ dRinternal , in a rigid body, and df internal ¼ dR, in a free

(i.e., externally unconstrained) rigid body.] For example, in the following simple

systems the constraint reactions are neither internal nor do they satisfy (3.A2.2):

(a) particle on, say a smooth, surface; (b) mathematical pendulum. Indeed, here we

have

Newton�Euler principles: SdR 6¼ 0 and S ðr� dRÞ 6¼ 0 ðfor a general rÞ;
ð3:A2:3aÞ
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but

D’Alembert�Lagrange principle: SdR � �r ¼ 0; ð3:A2:3bÞ

that is, it is not the constraint reactions that must vanish [individually or in the sense

of (3.A2.2), although that may happen in some problems], but the sum of their

projections in certain directions. In other words, to say that d’AP requires that

the constraint reactions be ‘‘in equilibrium,’’ or constitute a ‘‘null system’’ of forces,

is correct provided that equilibrium is understood in the generalized total virtual work
sense of (3.A2.3b), not (3.A2.3a). Then, it is meaningful even for a single reaction,

external or internal. Let us clarify this.

Following Hamel (1927; 1949, p. 217): we call two force (and/or couple) systems,

acting separately on the same mechanical system, equivalent if, and only if, starting

from the same initial kinematical state (i.e., time, positions, and velocities) they

communicate to it the same acceleration. In particular: a system of forces is said

to be in equilibrium (or be a null system) if the accelerations communicated by it to a

mechanical system are the same as those that would occur if no impressed forces

acted on it.

In this light it becomes clear why the earlier-mentioned pendulum tension is in

equilibrium; it may not vanish, but it does not affect the acceleration of the pendu-

lum’s bob; that is done by gravity, an impressed force.

(iii) A related misconception is to confuse d’AP with the spatial integral forms of

the Newton–Euler principles of linear/angular momentum. Thus, we read that ‘‘the

sum of the forces and the sum of the moments of the forces [including those of the

‘inertia forces’ �dm a] about any point vanish’’ and ‘‘d’Alembert’s principle leaves

one free to take moments about any point, whereas the angular momentum principle

restricts one in this regard’’ (Kane and Levinson, 1980, pp. 102–103). In our nota-

tion, the above read simply

S ðdf � dm aÞ ¼ 0 and S r=� � ðdf � dm aÞ ¼ 0; ð3:A2:4Þ

where r=� ¼ position vector of generic system particle relative to the completely

arbitrary (fixed or moving, not necessarily body-) point �.
But eqs. (3.A2.4) follow immediately from the local Newton–Euler principle

(3.A2.1) by the simple mathematical operations indicated above. Generally, starting

with (3.A2.1), we can perform to it any kind of mathematically meaningful opera-

tion; for example, dot it or cross it with an arbitrary scalar/vector/tensor, and so on,

differentiate/integrate it in space/time, and so on. Nothing physically new will result

from such analytical (logical) rearrangements. One does not need any special permis-

sion from Newton–Euler (i.e., a new postulate) to go from (3.A2.1) to (3.A2.4); and

the latter is not d’AL, anyway, but a trivial rearrangement of the Newton–Euler

principle. Let us elaborate on this matter.

Detour on Angular Momentum

As already described in }1.6, to obtain an angular momentum principle we cross

(3.A2.1) with r=� and then integrate/sum it, for a fixed time, over the material system:

M� �S r=� � df ¼S r=� � dm a: ð3:A2:5Þ
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However, the right (inertia) side of (3.A2.5) can be transformed further either as

ðaÞ S r=� � dm a ¼ S r=� � dm v
� �:�S v=� � dm v

¼ S r=� � dm v
� �:�S ðv� v�Þ � dm v

¼ dH�=dtþ v� �m vG; ð3:A2:5aÞ

where

H�;absolute � H� �S r=� � dm v ¼ Absolute angular momentum about �;
ð3:A2:5bÞ

and G ¼ center of mass of the system; that is, in general, the sum of the moments of

the rate of linear momenta about � [left side of (3.A2.5a)] is not equal to the rate of

change of the sum of moments of the linear momenta about � [first term in right side

of (3.A2.5a)]; or, in terms of � � relative quantities as

ðbÞ S r=� � dm a ¼ S r=� � dm v
� �:þ v� �m vG

¼ S ½r=� � dmðv� þ v=�Þ�
n o:þ v� �m vG

¼ S ðr=� � dm v�Þ
h i:þ S ðr=� � dm v=�Þ

h i:þ v� �m vG

¼S ðv=� � dm v�Þ þS ðr=� � dm a�Þ þ S ðr=� � dm v=�Þ
h i:
þ v� �m vG

¼ vG=� �m v� þ rG=� �m a� þ S ðr=� � dm v=�Þ
h i:þ v� �m vG

½since vG=� � vG � v�; the Orst and last terms; in the above;

add up to zero�
¼ dh�=dtþ rG=� �m a�; ð3:A2:5cÞ

where

H�;relative � h� �S r=� � dm v=� ¼ Relative angular momentum about �
¼S ½r=� � dmðv� v�Þ� ¼ � � � ¼ H� �mrG=� � v�: ð3:A2:5dÞ

From eqs. (3.A2.5a–d) it clearly follows that

(a) If � ¼ Oxed point, say O ð) v� ¼ 0Þ, or vG ¼ 0, or if v� parallel to vG, then

S r=� � dm a ¼ dH�=dt; ð3:A2:5eÞ

(b) If � ¼ Oxed point, say O ð) a� ¼ 0), or � ¼ G, or rG=� is parallel to a�, then

S r=� � dm a ¼ dh�=dt: ð3:A2:5fÞ
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In sum, and since, generally,

HO �S ½ðr� þ r=�Þ � dm v�
¼ � � � ¼ H� þ r� �m vG ¼ ðh� þm rG=� � v�Þ þ r� � m vG; ð3:A2:5gÞ

we will have the following two, most useful (and memorable!) expressions of the

principle of angular momentum:

S r� dm a ¼ S r� dm v
� �: ¼ dHO=dt ¼ dhO=dt ð¼MOÞ; ð3:A2:5hÞ

S r=G � dm a ¼ S r=G � dm v
� �

: ¼ dHG=dt ¼ dhG=dt ð¼MGÞ: ð3:A2:5iÞ

Back to d’AP. But all these, kinematico-inertial identities and corresponding

mutually equivalent forms of the principle of angular momentum (and many more

presented in }1.6) are only half the story; the other half is the forces and their
moments. Without the additional constitutive postulate of action–reaction for the

internal forces fdf i}, where df ¼ df external þ df internal � df e þ df i, in either local or

integral form, the moment side of (3.A2.5, 5h, 5i) would still contain the moments of

the (generally unknown) df i; and thus the solution of problems via these principles

would, in general, be indeterminate (i.e., # unknowns ># equations). Adopting that

postulate, as we will do, amounts to replacing in the above M ... with

M ...;external �M ...;e:

M�;e �S r=� � df e ¼S r=� � dm a; ð3:A2:6aÞ
MO;e �S r� df e ¼ dHO=dt ¼ dhO=dt; ð3:A2:6bÞ
MG;e �S r=G � df e ¼ dHG=dt ¼ dhG=dt; ð3:A2:6cÞ

because now M�;internal � S r=� � df i ¼ 0 (and f i � S df i ¼ 0Þ. [If the fdf e} contain

unknown constraint reactions, then the problem is still indeterminate; i.e., we need a

new postulate to supply the additional independent equations.] Other forms of the

above result from the purely geometrical (statical) relation: M� ¼MO þ rO=� � f ,
f ¼ S df (acting through O), and then use of linear momentum:

f ¼ m aG; and action�reaction: f ¼S ðdf e þ df iÞ ¼Sdf e � f e:

Now, the principle of d’Alembert (d’AP)!Lagrange (LP), and its associated

‘‘bothersome’’ virtual concepts, play a similar role with action–reaction but for the
constraint reactions. By postulating the new and nontrivial constitutive (i.e., physical)

postulate (3.A2.3b) for these forces, where

�r ¼
X
ð@r=@qkÞ �qk �

X
ek �qk ðholonomic coordinatesÞ;

¼
X
ð@r=@�kÞ ��k �

X
ek ��k ðnonholonomic coordinatesÞ; ð3:A2:6dÞ

Lagrangean mechanics succeeds in generating as many equations as needed to render

its problem determinate. That the virtual variations of the system coordinates

f�qk; ��kg are arbitrary (unless they, later, become constrained) is not a weakness

or vagueness of the Lagrangean method, as some ignoramuses claim, but, on

the contrary, its strength: it allows us to obtain as many independent reactionless
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equations as there are independent �q’s/��’s ð¼ #DOF), contrary to actual power

equations that produce only one dependent equation. It is the fundamental particle
and system vectors fek; ekg that enter the equations of motion; for example, if the �q’s
are independent, LP yields

Particle=vector variables: Sdm a � ek ¼SdF � ek; ð3:A2:6eÞ
Holonomic system variables: EkðTÞ ¼ Qk: ð3:A2:6fÞ

To further clarify the meaning of virtualness, and thus quell the irrational fears of all

those uncomfortable with ‘‘very small quantities,’’ and so on (residues of a precal-

culus mindset?!), we add the following passage from a Victorian master’s text on

introductory statics:

stood on the ordinary conventions of the Differential Calculus . . . � 0W vanishes [in

Statics, or � 0W ¼ �I in Kinetics], not because the quantities �q [or �r] themselves tend to

the limit zero, but in virtue of the ratios which these quantities bear to one another. The

equation [� 0WR ¼ 0] therefore holds if the resolved displacements �q are replaced by any

finite quantities having to one another the ratios in question. (Lamb, 1928, p. 113)

A related theme advanced by some antivirtual authors goes as follows: well, if you

stretch the definitions and concepts of virtual displacement long enough, ‘‘when �r
[our notation] are chosen properly,’’ then you will arrive at ‘‘their’’ equations.

However, as the fundamental definitions (3.A2.6d), or

�r � linear and homogeneous ðin �qÞ part of rðqþ �q; tÞ � rðq; tÞ; ð3:A2:6gÞ
and LP show, such a coincidence is hardly some accidental ad hoc result out of the

blue; but, instead, the only kind of equations flowing directly, logically, and

uniquely, out of the application of LP to Pfaffianly constrained systems. A true

principle leads, it does not follow; that is, it is not a conceptual rubber-band that

stretches (‘‘chosen properly’’) to fit the facts of the moment, after the latter have

occurred!

In sum: it is the force side of the equations of motion that compels us to introduce
LP. Equation (3.A2.3b) is a practical and theoretical necessity forced (!) upon us by

the particular decomposition of the total force into impressed and reaction—a fact

that is peculiar to Lagrangean mechanics; it is not an alternative to action–reaction.

The famous kinematico-inertial identity of Lagrange:

Sdm a � ð@r=@qkÞ �Sdm a � ek ¼ ð@T=@ _qqkÞ: � @T=@qk � EkðTÞ; ð3:A2:6hÞ

(that holds always, independently of subsequent constraints and constitutive postu-

lates, as long as the q’s are holonomic coordinates), is a most welcome and useful but
secondary result.

The preoccupation with (3.A2.6h), at the expense of the forces,

Qk � S dF � ð@r=@qkÞ � S dF � ek, Rk � S dR � ð@r=@qkÞ �S dR � ek ½¼ 0, in

(3.A2.6e, f )], is perhaps best reflected in the seemingly innocuous but revealing

fact that, although in ‘‘elementary’’ (Newton–Euler) mechanics most of us are taught

to write force¼ (mass)� (acceleration)—that is, place the force on the left side of

the equation—as soon as we graduate to advanced dynamics (d’Alembert–

Lagrange), we suddenly switch to the form ðmassÞ � ðaccelerationÞ ¼ force—that

is, place the force on the right side of the equation! Thus, many beginners in
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Lagrangean mechanics get the superficial impression that the latter is just an exercise in

differentiation of scalar energetic functions; the price one must pay for the transition

from rectangular to curvilinear, or ‘‘generalized’’ coordinates (a pretty primitive

term, in view of differential geometry and tensors). Even classics like Routh

(1905(a), pp. 45–48) or Whittaker (1937, pp. 34–37) reinforce this misrepresentation.

(iv) Finally, there are those who, failing to understand the fundamental, simple,

and natural kinematical representation (3.A2.6d), and in a complete breach with

rational discourse, furiously and ignorantly trivialize and/or dismiss everything

virtual (displacements, work, etc.) as ‘‘ill-defined,’’ ‘‘nebulous,’’ and ‘‘hence objec-

tionable’’; or complain ‘‘But it can hardly be gainsaid that maximum clarity is

guaranteed by defining �r [our notation] mathematically in terms of more funda-

mental quantities’’ and ‘‘Consequently, for the formulation of equations of motion,

the use of principles represented by LP [our term] is contraindicated, at least for

systems possessing a finite number of degrees of freedom’’ [Kane and Levinson

(1983, p. 1077), and rebuttal to Desloge (1986)]; and [virtual concepts are] ‘‘the

closest thing in dynamics to black magic,’’ ‘‘If you can construct a good virtual

displacement vector, you can do good business with it; . . . . The difficulty is con-

structing it in the first place. It’s like catching a bird by sprinkling salt on its tail.

Virtual displacement is the salt on the bird’s tail’’ (Radetsky, 1986, pp. 55–56);

and ‘‘It should be acknowledged at this point that the traditional concepts of

virtual displacement and virtual work are not necessary to the derivation of [our

3.A2.6e, f, h)]. It is quite sufficient (and more straightforward) simply to dot multiply

df ¼ dm a by [our] @v=@ _qqj and add these equations together, accomplishing this for

each of these n values of j’’ (Likins, 1973, pp. 297–298). The falsehood and mislead-

ingness of these criticisms should be clear in the light of the above, and chapters 2

and 3. But we also point out the following, in favor of virtualness:

(a) As (3.A2.6d) shows, �r is invariant under �q$ �� transformations, whereas the

{ek; ek} are not; and similarly for � 0W , � 0WR, �I , and so on.

(b) The �r admits of a far simpler and direct geometrical visualization than the

@v=@ _qqj � ej (and @v*=@!j � ej). In general, differentials are far easier to visualize than
derivatives, and this explains their dominant presence in most figures of free-body

diagrams, control volumes, and so on, even though the final equations do not con-

tain lone differentials but derivatives.

(c) What is the motivation for dotting df � dm a with @v=@ _qqj? Why not dot it

with its equal but simpler @r=@qj? Or, why not, say, cross it with them, or with

@v=@qj , and so on? Or, why does not @r=@t � enþ1 � e0 appear in the equations of

motion, although it appears in both v and a?
(d) We would like to see such (supposedly) virtual-less authors try to:

� Extend their ad hoc techniques, rigorously, to nonlinear nonholonomic velocity con-

straints, without virtual displacements, or something mathematically equivalent

(chap. 5). Fortunately for them, their constraints are linear in the velocities; that is,

they are Pfaffian.

� Teach (even discrete) analytical statics (S) to students with no knowledge of dynamics

(D), without virtual displacements/work! What does one do with their @v=@ _qqj there?

On the other hand, the definitions presented here are uniformly valid for both D and S

alike.

(e) And if the use of differential variational principles, such as LP, is ‘‘contra-

indicated,’’ how is one going to make the transition to the rest of the differential
variational principles of Jourdain, Gauss et al. (chap. 6), and the integral variational
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principles of Hamilton, Voronets, Hamel, et al. (chap. 7), with their increasingly

important role for approximate (analytical and numerical) solutions (chap. 7), as

well as invariance/conservation theorems (e.g., Noether’s theorem, }8.13)? Why such

scientific provincialism and short-sightedness? [On the numerical advantages of some

of these principles, see, e.g., Schiehlen (1981); for Gauss’ principle, in particular, see,

for example, Udwadia and Kalaba (1996)].

Such antivirtual attitudes artificially distance themselves from the tried and true

mainstream dynamics, built over several centuries by some of the greatest names in

mathematics and mechanics; such antihistorical and antitraditional attitudes contri-

bute to a dynamical tower of Babel!

So, to recapitulate, we think that the whole problem with the earlier ‘‘antivirtual

crowd’’ begins with their failure to acknowledge that in mechanics the crux of the
matter is the force; that Newton–Euler splits forces into internal and external
(‘‘apples’’), whereas d’Alembert–Lagrange splits them into impressed and reactions
(‘‘oranges’’); and that the basic goal of AL is to uncouple the equations of motion

into kinetic (motion only, no reactions) and kinetostatic (reactions). This failure also

hampers the extension of their dynamics to new types of constraints and associated

forces (e.g., servoconstraints, }3.17), let alone the application of its methodology to

other areas of engineering and physics (such as electromechanical analogies and

nonholonomic rotating electrical machinery; see, for example, Arczewski and

Pietrucha (1993), Maißer (1981), Neimark and Fufaev (1972).

Appell versus Kane

In our notation, the so-called ‘‘Kane’s equations’’ (1961, 1965, 1985) read simply

(with I ¼ mþ 1; . . . ; n):

SdF � ð@v*=@!IÞ þS ð�dm a*Þ � ð@v*=@!IÞ ¼ 0;

or

ðGeneralized active forceÞI þ ðGeneralized inertial ‘‘force’’ÞI ¼ 0: ð3:A2:7Þ
But in view of the fundamental kinematical identities (2.9.35 ff.)

@r*=@�I ¼ @v*=@!I ¼ @a*=@ _!!I ¼ @ _aa*=@ €!!I ¼ � � � � eI ; ð3:A2:7aÞ
eqs. (3.A2.7) can be immediately rewritten as

SdF � ð@a*=@ _!!I Þ þS ð�dm a*Þ � ð@a*=@ _!!IÞ ¼ 0; ð3:A2:7bÞ

or, finally, after some very simple rearrangements,

@=@ _!!I S ð1=2Þdm a* � a*
� �

¼SdF � ð@a*=@ _!!I Þ; ð3:A2:7cÞ

which are none other than Appell’s equations! Here is a partial (alphabetical) list of

readable textbooks/treatises/encyclopedias, and so on, on eqs. (3.A2.7–7c) [all of them

from before 1961 (year of first Kane paper), and several from before Kane was born!]:

Appell [1899(a), (b); 1900(a), (b); 1925; 1953, pp. 388–395, eqs. (3.A2.6). Leisurely

component presentation]

Coe [1938, pp. 386–390, eqs. (7). Earliest vectorial treatment in U.S. literature]
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Hamel (1927, pp. 30–32; especially equations on 17th line from top of p. 32. Force-free

case)

Hamel (1949, pp. 361–363; especially equations on 7th line from top of p. 362. Best

concise presentation)

Lur’e [1961/1968, pp. 389–395. Equations (8.5.18) and (8.6.10) are, respectively, Kane’s

equations of 1961 and 1965]

Marcolongo (1912, pp. 104–105; especially equations on 3rd line from bottom of p. 104)

Neimark and Fufaev [1967/1972, pp. 147–149, eqs. (8.3). Based completely on virtual

concepts]

Pérès [1953, pp. 219–222. Excellent concise (vectorial) treatment including Kane’s equa-

tions of both 1961 and 1965]

Platrier (1954, pp. 170–173, 323–324, 343–344)

Routh [1905(a), pp. 348–353, eqs. (5). Earliest appearance in English]

Schaefer [1919, p. 74, eq. (212)], similar treatment to Routh’s and MacMillan’s; well

known in the German-speaking world.

Schaefer [1951, eqs. (12). Earliest nonlinear generalization of ‘‘Kane’s equations’’ of

1965. Incidentally, in 1962 (in discussion of Kane (1961)) Schaefer warned Kane, in

vain, that any further improvement on the methods/equations of the classical masters of

dynamics (Appell, Heun, Hamel, Prange, Johnsen et al.) ‘‘is not imaginable.’’

Voss (1901–1908, pp. 82–83; and connection with Ferrers’ equations)

(i) To make matters worse, Kane uses the following arcane terminology/notation:

(a) Our !’s he calls ‘‘generalized speeds,’’ despite the fact that these are the

(contravariant) nonholonomic components of the system velocity vector, in config-

uration/event space; a vector whose holonomic components are none other than the

_qq’s (what most reasonable authors call ‘‘generalized velocities,’’ but Kane leaves

nameless!). In other words, the _qq’s and !’s are components of the same (system)

vector, but along different types of bases: one gradient, one nongradient. However,

and this is the essence of the method of quasi coordinates in constrained dynamics, a
proper choice of !’s uncouples the equations of motion into kinetic and kinetostatic;
and, roughly, the n q’s embed the (original) holonomic constraints, while the n�m !’s
embed the (additional) Pfaffian constraints.

But there is another problem with ‘‘generalized speeds.’’ According to time-

honored and standard mechanics practices, speed is the magnitude (or length) of
the velocity vector, and, as such, a nonnegative scalar, whereas the _qq’s and !’s,

being components, may have any sign—in automobiles, speedometers never show

negative speeds! (Actually, the speed is an invariant under coordinate transforma-

tions; in tensor language: an absolute tensor of rank zero.) Therefore, from the

viewpoint of tensors/differential geometry, and the traditions and practices of

dynamics, the term ‘‘generalized speeds’’ is archaic, erroneous, and confusing.

(b) Kane’s term ‘‘partial velocities,’’ for our ek and ek, is entirely capricious and

holonomic coordinates, we could just as well have called them ‘‘partial positions,’’ or

‘‘partial accelerations,’’ or even . . . ‘‘partial jerks,’’ and so on. A better term, though

a long one, would be ‘‘accompanying (particle and system) vectors,’’ that is the

begleitvektoren of Heun; but we would welcome a more concise terminology.
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(ii) To avoid virtual displacements, and so on, Kane (1961; 1968, p. 52) talks

about instantaneous constraints, or about dividing �r with �t, the latter understood

as ‘‘. . . any quantity having the dimensions of time.’’ But since �t ¼ 0 {in order to

eliminate reactions, i.e. so that
�
SdR � ð@r=@tÞ� �t � R0 �t ¼ 0, even though R0 6¼ 0},

such statements are likely to cause more confusion (division by a zero!), plus they are

irrelevant to the final result — that is, the equations of motion. Why not use the

simpler and rigorous definition (3.A2.6d, g).

(iii) In his frantic attempts to artificially distance himself from Appell, Kane

(1986) states that the Appellian S is ‘‘a quantity of no interest in its own right.’’

Well, most concepts of mechanics and physics derive their importance not ‘‘in their

own right,’’ but from their relation to the current edifice of those sciences; like a

stone in relation to a building it belongs. Such narrow, positivistic (?), undialectical,

objections can be raised against the Lagrangean, the Hamiltonian, the entropy, and

so on. When was the last time anyone saw a stress, or a strain or even an accelera-

tion?! During the 17th century, similar short-sighted complaints were raised against

Leibniz’s ‘‘vis viva’’ (¼ twice the kinetic energy). Tomorrow, perhaps, some other

quantity, involving still higher derivatives (again ‘‘of no interest in its own right’’)

might be introduced, in order to combine many new and old phenomena under one

simple conceptual roof.

(iv) An alleged advantage (of the bean-counting type) of Kane over Appell is that

in applying the latter one needs to square the accelerations a (or a*), then build the

Appellian S (S*), and then differentiate it with respect to the quasi accelerations _!!k,

whereas Kane’s approach dispenses with all that — compare (3.A2.7) with (3.A2.7c).

However, as Professor L.Y. Bahar has pointed out, the calculation of a* and

@a*=@ _!!k and subsequent formation of their dot product, in (3.A2.7b), is standard

procedure in engineering science whenever a quadratic form has to be partially differ-
entiated. For example, to calculate the static deflection p of a thin linearly elastic

Euler/Bernoulli beam, of length l, flexural rigidity EI , and bending moment M,

under a concentrated load P, we can use Castigliano’s well-known theorem:

p ¼ @V=@P ¼ @=@P
ðl

0

M2dx=2EI

� �
; ð3:A2:8aÞ

where V is the strain energy of the beam (see any book on structural analysis). It is

well known that, in practice, we never compute the integrand explicitly, then inte-

grate it, and then differentiate the resulting function of P; but, instead, we first carry

out the differentiation under the integral, and then integrate the result:

p ¼ @V=@P ¼
ð l

0

½Mð@M=@PÞ=EI � dx; ð3:A2:8bÞ

that is, the step from (3.A2.8a) to (3.A2.8b) is conceptual rather than practical. Here,

clearly, we have the correspondences a*!M, @a*=@ _!!k ! @M=@P. As with every-

thing else, practice with Appell’s equations helps one develop shortcuts and other

special labor-saving skills. Finally, why use @v*=@!k or @a*=@ _!!k, and not their

equal but simpler expression (2.9.27)

@r*=@�k �
X

Alkð@r=@qlÞ;

and analogously for holonomic variables. Such flexibilities are absent from Kane’s

scheme.
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In sum, Kane’s equations are just a special implementation (or ‘‘raw’’ form) of

Appell’s kinetic equations, along the way from LP; one that completely ignores the

long-term and big picture aspects of mechanics: namely, our understanding of its

underlying mathematical structure and physical ideas, and their interconnections with
other areas of natural science, which are the hallmarks of genuine education.

Moreover, the whole Kaneian approach is conceptually unmotivated, isolating

and primitive, historically ignorant and flat, intellectually stifling and wasteful.

Indeed, it is a degraded and sterile type of mechanics that soon leads its practitioners

down a dynamical dead-end. Ultimately, and this applies to most of the contemporary
multibody dynamics expositions, such schemes discourage active learning, with its

new and unpredictable turns, diversity and change. Like the currently promoted

antipluralistic ‘‘expert systems,’’ they assume that there is ‘‘a’’ best way to do

dynamics, which is best determined by whomever designs the relevant books/com-

puter programs. This is not normal human learning; it is not a presentation based on

a continuous historical evolution; namely, one that respects and expands the

dynamics traditions and practices. The brains of the readers (or users) are treated

as pieces of equipment (hardware), where one inserts abruptly a set of computer

instructions and commands (software). As a result, the majority of users of such

‘‘dynamics’’ will never be able to raise that edifice even by one inch; they will have

been transformed from thinking engineers to (highly expendable) filing clerks! [We

are indebted to B. Garson’s The Electronic Workshop: How Computers are
Transforming the Office of the Future into the Factory of the Past (Simon and

Schuster, 1988, p. 126) for some of these insights.]
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4

Impulsive Motion

4.1 INTRODUCTION

In this chapter, we present the Lagrangean principles and equations of impulsive, or
discontinuous, motion of constrained systems. The relevant ‘‘elementary’’ Newton–

Euler definitions and equations are summarized in }4.2. Then we cover, in sequence:

the impulsive version of Lagrange’s principle (}4.3); the Appellian classification of

impulsive constraints and corresponding equations of impulsive motion (}4.4); the

formulation of kinetic and kinetostatic impulsive equations, in both holonomic and

nonholonomic variables (}4.5; impulsive counterparts of the equations of Maggi,

Hamel, and Appell); and, finally, the various impulsive energetic/extremum theorems

of Carnot, Kelvin, Bertrand, Robin et al. (}4.6). As in the rest of the book, the

discussion is complemented with a number of examples and problems.

Impulsive motion is a topic of intense and rapidly expanding research. Hence, a

number of its aspects (e.g., role of friction, deformation), since they cannot be dealt

with definitively here, are omitted.

For complementary reading on this engineeringly important subject, we recom-

mend (alphabetically): Bouligand (1954, pp. 129–157, 444–483), Brach (1991),

Easthope (1964, pp. 268–306), Goldsmith (1960), Hamel (1949, pp. 395–402),

Kilmister and Reeve (1966, pp. 178–195, 217–221, 235–242, and Exercises),

Kilmister (1967, pp. 98–108), Lainé (1946, pp. 185–201, 259–278), Loitsianskii and

(1905(a), pp. 136–164, 254–268, 302–313, 323–327), Smart (1951, vol. 2, pp. 376–

390), Suslov (1946, pp. 607–645); also Bahar (1994), for instructive applications of

Jourdain’s variational principle (}6.3) to impact.

4.2 BRIEF OVERVIEW OF THE NEWTON–EULER IMPULSIVE THEORY

Below, we summarize a few basic definitions and concepts. [Some of our differentials

will be in time and some in space; we hope that their differences will be clear from the

context, and no confusion will arise.]

Integrating the fundamental equation of motion of a particle P of mass dm
(}1.4 ff.):

dm a ¼ df ; or dmðdv=dtÞ ¼ df ; ð4:2:1Þ
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from an arbitrary time t 0 to an arbitrary time t 00ð> t 0Þ yields

Dðdm vÞ � DðdpÞ ¼
ð 00
0
df dt; ð4:2:2Þ

where

Dð. . .Þ ¼ ð. . .Þt 00 � ð. . .Þt 0 ;
ð 00
0
. . . dt �

ðt 00
t 0
. . . dt: ð4:2:2aÞ

Equation (4.2.2) states that the change of the linear momentum dp ¼ dm v of a

(system) particle P during an arbitrary time interval t 00 � t 0 � � equals the impulse

of the total force df acting on P, during that interval. Now, if � is finite, the above is

just the first time-integral of the Newton–Euler equation of motion; and, therefore,

represents nothing new. If, however, � is very small, or infinitesimal, then an inde-

pendent and rather interesting chapter of dynamics, known as impulsive motion (IM;

or impact, or shock), emerges. More specifically, IM occurs whenever a very large (or

infinite, or delta function-like) force acts on P for a very short time; i.e., for � ! 0. As

a result of this, at the end of � : ðiÞ the particle’s momentum has changed by a finite
instantaneous, that is, discontinuous, jump DðdpÞ � ðdpÞþ � ðdpÞ� 6¼ 0, where

ð. . .Þþ=ð. . .Þ�: values of (. . .) just after/before the shock, respectively, or right/left
limits of (. . .); or, since dm ¼ constant,

Dv � vþ � v� 6¼ 0; ð4:2:3Þ
while (ii) the particle’s position r has remained essentially unchanged; that is,

Dr ¼ 0: ð4:2:4Þ
Symbolically, in the IM case, eq. (4.2.2) reads

Dðdm vÞ ¼ cdfdf ; ð4:2:5Þ
where

dð. . .Þð. . .Þ � lim
�!0

ðt 0þ�
t 0
ð. . .Þ dt ð‘‘hat’’ notationÞ: ð4:2:5aÞ

REMARKS

(i) The ‘‘hat’’ notation should not be confused with that notation occasionally

employed for unit vectors.

(ii) We point out that, here, and contrary to the finite force case, as � ! 0,

lim

ð
ð. . .Þ dt 6¼

ð
lim ð. . .Þ dt; in general: ð4:2:5bÞ

Clearly, impulsive ‘‘forces’’ (or percussions, or blows) cdfdf are not defined as ordin-

ary (or finite) forces at every instant of time, but, instead, only through the instan-
taneous and finite jump, or discontinuity, DðdpÞ ¼ Dðdm vÞ ¼ dmDv that they

produce; for finite forces, such as gravity, the limit (4.2.5a) is, clearly, zero [and

for an arbitrary continuous function f ¼ f ðt; qÞ: Df ¼ 0 and f̂f ¼ 0]. The result of

these approximations [i.e., DðpositionsÞ ¼ 0, DðvelocitiesÞ 6¼ 0, see ex. 2.4.1, below] is

an impulsive theory of, admittedly, reduced practical value, but one of conceptual

clarity and simplicity.
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Application of this same idea to the Newton–Euler principles of linear and angu-

lar momentum, for a general system [i.e., multiplication of its, generally, differential
equations of (finite) motion by dt, integration over � , and then taking of the limit as

� ! 0; while assuming that not all acting forces are finite, and that the ‘‘principle

of action–reaction’’ for the internal loads holds for IM too], leads to the impulsive
forms of these two principles, at time t, that are algebraic (finite difference; i.e.,

nondifferential!) equations.

As in finite motion, here, too, two possibilities arise: (i) either our theory generates

enough such algebraic equations to determine the system’s postimpact state; that is,

the Dv’s or the vþ’s, and therefore the problem is impulsively determinate; or (ii) we

have more unknowns than available equations, and thus the problem is impulsively
indeterminate, in which case we need (in addition to the already utilized kinematical

and kinetical equations) special physical, or constitutive, equations/postulates, as in

continuum mechanics (e.g., Hooke’s law in elasticity, Navier–Stokes law in fluid

dynamics, etc.) — see }4.4.

Work–Energy in Impulsive Motion

Integrating the (rate of ) work–(kinetic) energy equation, dT=dt ¼ Sdf � v, between

t 0 and t 00ð> t 0Þ yields the familiar integral form

DT � T 00 � T 0 � Tþ � T� ¼
ð 00
0 Sdf � v
� �

dt; ð4:2:6Þ

from which, passing to the impulsive limit (t 00 ! t 0) and invoking the mean value

theorem of integral calculus, we obtain

DT ¼S cdfdf � hvi � Impulsive ‘‘work:’’ ð4:2:7Þ

where

hvi: mean=average value of ðgenerally unknownÞ impact velocity: ð4:2:7aÞ
However, since impact involves friction and deformation— that is, phenomena

accompanied by conversion of mechanical energy into heat — and since the latter

lies outside pure mechanics, we should not view (4.2.7) as an ordinary work–energy
theorem; impulsive ‘‘work’’ is not connected with increase in energy; and so, unlike

momentum relations, in the case of energy there is no simple mathematical transition

from ordinary (continuous, or finite, motion) to impulsive dynamics. [For some

energetic aspects of impact, see, e.g., Roy (1965, pp. 176–179).]

Example 4.2.1 Proof that Under Impulsive Forces:

DðpositionsÞ ¼ 0; but DðvelocitiesÞ 6¼ 0:

Let us consider the motion of a particle P of mass m, along the axis Ox, with initial

conditions (at, say, to ¼ 0): xð0Þ ¼ 0 and _xxð0Þ ¼ 0, under the 2� � periodic total force:

X ¼ Xo sinð�t=�Þ; 0 � t � �;
X ¼ 0; � < t <1; ðaÞ
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where Xo ¼ force amplitude, a constant; and � ¼ duration of action of X (fig. 4.1).

Integrating the equation of motion of P:

m€xx ¼ Xo sinð�t=�Þ; ðbÞ
twice, while choosing the integration constants to satisfy the given initial conditions,

we obtain

_xx � v ¼ ðXo�=�mÞ
�
1� cosð�t=�Þ�; ðcÞ

x ¼ ðXo�=�mÞt� ðXo�
2=�2mÞ sinð�t=�Þ: ðdÞ

Hence,

Dx � xð�Þ � xð0Þ ¼ ðXo�
2Þ=ð�mÞ ¼ ðXo�Þ�=�m ¼

	hXi�=2m
�; ðeÞ
Dð _xxÞ � Dv ¼ _xxð�Þ � _xxð0Þ ¼ 2ðXo�Þ=ð�mÞ ¼

	hXi�
=m; ðf Þ
where

hXi � ð1=�Þ
ð�

0

XðtÞ dt ¼ ð1=�Þ
ð�

0

Xo sinð�t=�Þ dt ¼ 2Xo=�:

Mean value of force in �: ðgÞ
The above show that as long as the product hXi� ¼ Ð �

0
XðtÞ dt remains fixed (even

though � , and hence hXi, may vary) so does Dv. Hence, in the particular, ‘‘impact

limit’’: Xo !1 (and generally as jXoj ! 1))hXi ! 1, and � ! 0, so that

hXi� ¼ Oxed nonzero value � C, eqs. (e, f ) yield

Dx ¼ 0 and Dv ¼ C=m) DðmvÞ ¼ C; ðhÞ
that is, in the limiting case of a very large (‘‘infinite’’) force acting for a very short

(‘‘infinitesimal’’) time, the momentum changes (‘‘instantaneously/discontinuously’’)

by the finite amount C, while the position does not!

4.3 THE LAGRANGEAN IMPULSIVE THEORY;

NAMELY, CONSTRAINED DISCONTINUOUS MOTION

Let us now examine impulsive motion from the viewpoint of analytical mechanics.

Summing eqs. (4.2.2, 5) over all the material particles of the system, S ð. . .Þ, yields
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the impulsive linear momentum principle:

S Dðdm vÞ ¼ D Sdm v
� �

¼S cdfdf ¼Sdf ¼ f̂f ; ð4:3:1Þ

since, clearly, S ð. . .Þ and Dð. . .Þ can be interchanged; and, recalling the d’Alembert

decomposition (}3.2): df ¼ dF þ dR, we can rewrite (4.3.1), with some easily under-

stood notations, as

D Sdm v
� �

¼ F̂F þ R̂R: ð4:3:2Þ

This is the constrained impulsive linear momentum ‘‘principle.’’ A similar constrained

impulsive equation/theorem results if we cross both members of the Newton–Euler

law of motion for a typical particle, under d’Alembert’s decomposition, with its posi-

tion vector (relative to some fixed origin, or some other position vector), sum the

resulting angular momentum equations over the entire system, multiply the result

with dt, integrate it over � , and then, as before, take its limit as � ! 0. The result

would be the constrained impulsive angular momentum principle, featuring on its right

side the sums of the moments of the impressed impulsive forces dfdFfdFg, and impulsive

constraint reactions fcdRdRg [i.e., ‘‘forces’’ caused either by the cdFdF ’s, or by the sudden

introduction of constraints (in addition to the already existing ones, which are called

permanent, or primitive), cause discontinuous changes (jumps) to the system holo-

nomic and/or nonholonomic velocities — these are detailed below].

Now, the objective of Lagrangean impulsive theory — namely, the impulsive the-
ory of constrained mechanical systems— is to develop system impulsive equations

with or without the cdRdR’s. To this end, we proceed as in the case of finite motion

(chap. 3): dotting the constrained impulsive linear momentum equation for a typical

system particle P,

Dðdm vÞ ¼ cdFdF þ cdRdR ; ð4:3:3Þ

with its virtual displacement �r (at the shock instant t ¼ t 0), and then summing over

the system particles, yields

S
�
Dðdm vÞ � cdFdF � � �r ¼S ð�dRÞ � �r; ð4:3:3aÞ

and, next, assuming that for bilateral ‘‘ideal’’ constraints the cdRdR’s satisfy the con-

stitutive postulate/definition (while assuming that b�r�r ¼ 0; e.g., by choosing time-
independent/constant virtual displacements, for t 0 � t � t 00)

� � 0WR �S ð�dRÞ � �r ¼ S ð�dRÞ � �r ¼ 0; ð4:3:3bÞ

we readily obtain the fundamental impulsive variational equation (impulsive principle
of Lagrange—LIPÞ

b�I�I ¼ d� 0W� 0W ; ð4:3:4Þ
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where

b�I�I �Sdm a � �r ¼S Dðdm vÞ � �r:
ðErst-orderÞ virtual work of impulsive momenta; ð4:3:4aÞ

d� 0W� 0W � SdF � �r ¼S cdFdF � �r:

ðErst-orderÞ virtual work of impressed ‘‘forces:’’ ð4:3:4bÞ

From (4.3.3–4b), we can obtain all kinds of special impulsive equations: with/with-

out impulsive reactions (i.e., kinetostatic/kinetic/mixed impulsive equations), in

particle/system form, in holonomic/nonholonomic variables, and so on.

We begin by substituting into (4.3.3b, 4) the holonomic variable representation

(}2.5 ff.): �r ¼P ek �qk ðk ¼ 1; . . . ; nÞ. Since [in complete analogy with the finite

motion case (}3.2 ff.), and assuming that êek ¼ 0, d�qk�qk ¼ 0 ) b�r�r ¼ 0�
d� 0WR� 0WR ¼S cdRdR � �r ¼

X
S cdRdR � ek

� �
�qk �

X cRkRk �qk; ð4:3:5aÞ

d� 0W� 0W ¼S cdFdF � �r ¼
X

S cdFdF � ek

� �
�qk �

X cQkQk �qk; ð4:3:5bÞ

b�I�I ¼S Dðdm vÞ � �r ¼
X

SdmDv � ek
� �

�qk

¼
X

D Sdm v � ek

� �
�qk �

X
Dpk �qk; ð4:3:5cÞ

and

pk �S ðdm v � ekÞ � @T=@ _qqk
) Dpk ¼ D Sdm v � ek

� �
¼S Dðdm vÞ � ek:

½holonomic ðkÞth component of � impulsive systemmomentum change; ð4:3:6aÞ

cQkQk � SdF � ek ¼S dF � ek ¼S cdFdF � ek:

½holonomic ðkÞth component of � impulsive system impressed force;

or; simply; impressed system impulse; ð4:3:6bÞ

bRRk � SdR � ek ¼S dR � ek ¼S cdRdR � ek:

½holonomic ðkÞth component of � impulsive system constraint reaction force; ð4:3:6cÞ

we finally obtain LIP, eqs. (4.3.3b, 4), in holonomic system variables:X cRkRk �qk ¼ 0;
X

Dð@T=@ _qqkÞ �qk ¼
X cQkQk �qk; ð4:3:7Þ

and similarly for quasi variables (}4.5).

These are the fundamental (differential) variational equations of Lagrangean

impulsive theory. All equations of impulsive motion, compatible with our finite-

number-of-degrees-of-freedom model (i.e., impulsive counterparts of the equations

)4.3 THE LAGRANGEAN IMPULSIVE THEORY 723



of Routh–Voss, Maggi, Hamel, etc.), flow from (4.3.7) by appropriate specializations
of the virtual displacements; and these latter depend on the nature of the imposed

constraints. This process is detailed in the following sections.

Example 4.3.1 ‘‘Work–energy’’ theorem in Constrained Impulsive Motion; or,
Impressed Impulsive Forces Applied to a Moving System. Let us begin with the

LIP, eqs. (4.3.4–4b):

Sdmðvþ � v�Þ � �r ¼S cdFdF � �r: ðaÞ

Choosing in there, first �r! v� and then �r! vþ (since, here, time is considered

fixed), we obtain, respectively,

Sdmðvþ � v�Þ � v� ¼S cdFdF � v�; ðbÞ

Sdmðvþ � v�Þ � vþ ¼S cdFdF � vþ: ðcÞ

Adding (b) and (c) side by side, and then dividing by 2, we obtain the sought

energetic theorem

DT � Tþ � T� ¼W�=þ; ðdÞ
where

2Tþ �Sdm vþ � vþ; 2T� �Sdm v� � v�; ðeÞ
and

W�=þ �S cdFdF � ðvþ þ v�Þ=2 �S cdFdF � hvi: ðfÞ

In words: The sudden change of the kinetic energy of a moving system, due to

arbitrary impressed impulses, equals the sum of the dot products of these impulses

with the mean (average) velocities of their material points of application, immedi-

ately before and after their action.

4.4 THE APPELLIAN CLASSIFICATION OF IMPULSIVE CONSTRAINTS,

AND CORRESPONDING EQUATIONS OF IMPULSIVE MOTION

As mentioned earlier, to proceed further from the impulsive variational equation

(}4.3.7), we must specify the n �q’s; that is, specify the (variational form of the)

impulsive constraints of the particular problem. And this brings us to Appell’s

fundamental classification of impulsive constraints. [See Appell (1896, p. 6 ff.; 1953,

pp. 505–544); also (alphabetically): Bouligand (1954, pp. 129–157) and Roy (1965,

p. 171 ff.). For a related classification, but with different terminology, see Pars (1965,

pp. 228–248) and Rosenberg (1977, pp. 391– 411). Also, all impulsive constraints

dealt with here are assumed ideal; that is, d� 0WR� 0WR ¼ 0].

According to his approach, which we follow here, the most general way of viewing

a shock or percussion is as follows: at a given initial instant t 0 new constraints are

suddenly introduced into the system and/or some old constraints are removed, or

suppressed.As a result, percussions are generated,which, in the very short time interval
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� � t 00 � t 0, over which they are supposed to act and during which the shock lasts,

produce finite velocity changes, but, according to our ‘‘first’’ approximation negligible

position changes; that is, for � ! 0: Dq ¼ 0, Dðdq=dtÞ � Dv 6¼ 0 (ex. 4.2.1).

Now, the constraints existing at the shock moment are either persistent or nonper-
sistent. By persistent, we mean constraints that, existing at the shock ‘‘moment,’’

exist also after it, so that the actual postimpact displacements are incompatible with

them; whereas by nonpersistent we mean constraints that, existing at the shock

moment, do not exist after it, so that the actual postimpact displacements are

incompatible with them.

As a result of this, impulsive constraints can be classified into the following four
distinct kinds or types:

1. Constraints existing before, during, and after the shock; that is, the latter neither

introduces new constraints, nor does it change the old ones; the system, however,

is acted on by impulsive forces. An example of such a constraint is the striking of a

physical pendulum with a nonsticking (or, nonplastic) hammer at one of its points, and

resulting communication to it of a specified impressed impulsive force; while the impul-

sive reactions, generated at the pendulum support, satisfy (4.3.3b) and first of (4.3.7).

2. Constraints existing during and after the shock, but not before it; that is, the latter

introduces suddenly new constraints to the system. Examples: (a) A rigid bar falling

freely, until the two inextensible slack strings connecting its endpoints to a fixed

ceiling get taut (during) and do not break (after); (b) The inelastic central collision

of two solid spheres (‘‘coefficient of restitution’’ � e ¼ 0—see (4.4.1)); (c) In a bal-

listic pendulum (see prob. 4.4.9) the pendulum is constrained to rotate about a fixed

axis; which is a constraint existing before, during and after the percussion of the

pendulum with a projectile (i.e., first-type constraint). The projectile, however, ori-

ginally independent of the pendulum, strikes it and becomes embedded into it; which

is a case of a new constraint whose sudden realization produces the shock, and which

exists during and after the shock but not before it (i.e., second-type constraint).

3. Constraints existing before and during the shock, but not after it. For example, let us

imagine a system consisting of two particles connected by a light and inextensible

bar, or thread, thrown up into the air. Then, let us assume that one of these particles

is suddenly seized (persistent constraint introduced abruptly; i.e., second type) and,

at the same time, the bar breaks (constraint existing before the shock does not exist

after it; i.e., third type).

4. Constraints existing only during the shock, but neither before nor after it. For example,

when two solids collide, since their bounding surfaces come into contact, a constraint

is abruptly introduced into this two body system. If these bodies are elastic ðe ¼ 1—

see coefficient of restitution, below), they separate after the collision; which is a case

of a constraint existing during the percussion but neither before nor after it (i.e.,

fourth type); while if they are plastic ðe ¼ 0) they do not separate (projectile and

pendulum, above; i.e., second type). (If 0 < e < 1, the bodies separate; i.e., we have a

fourth-kind constraint.)

This classification is summarized in table 4.1; clearly, the first two types contain

the persistent constraints, while the last two contain the nonpersistent ones.

REMARKS

(i) Types 1, 2, 3, 4 are also referred to, respectively, as permanent, persistent, pre-
existing, and instantaneous (direct shock). Also, for obvious reasons, type 1 is referred

to as continuous; and types 2, 3, and 4, as discontinuous.
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(ii) These concepts are of paramount importance because, as shown below, in an

impulsive problem, the excess of the number of unknowns (postimpact velocities and

constraint reactions) over that of the available equations [those obtained from

Lagrange’s impulsive principle; plus preimpact velocities, impressed impulsive forces,

constraints, and sometimes knowledge of the postimpact state (second type; e.g.,

e ¼ 0)] — that is, the degree of its indeterminacy — equals the number of its constraints

that, having existed before or during the shock, cease to do so at the end of it; that is,

Degree of indeterminacy ¼ Number of nonpersistent constraints;

hence, the persistent types 1 and 2 are determinate, while the nonpersistent ones 3

and 4 are indeterminate.

(iii) Generally, problems of collision among solid bodies are indeterminate. For

example, in the collision of two smooth solids, A and B, with respective mass centers

GA and GB, we have thirteen unknowns: 3þ 3 ¼ 6 from the postimpact velocities of

GA and GB, 3þ 3 ¼ 6 from the postimpact angular velocities of A and B, and 1 from

the magnitude of the mutual normal impact force; and only twelve equations:

6þ 6 ¼ 12 from the theorems of impulsive linear/angular momenta. (For nonsmooth
solids, things get more complicated.) To make the problem determinate, we intro-

duce Newton’s coefficient of restitution, e. This latter is defined by

e ¼ � ðv2=1 � nÞþ
ðv2=1 � nÞ�

� � �2=1;n
þ

�2=1;n
� ¼ �

Relative velocity of separation

Relative velocity of approach
; ð4:4:1Þ

where 1 and 2 are the two points of A and B that come into contact during the

collision, and n is the unit vector along the common normal to their bounding

surfaces there, say from A to B (see also exs. 4.4.1 and 4.4.2 below). The coefficient

ranges from 0 (plastic impact, no separation) to 1 (elastic impact, no energy loss);

that is, 0 � e � 1.

(iv) The case of the removal of a constraint (e.g., the sudden snapping of one or

more of the taut strings supporting an originally motionless bar from a ceiling), is not
an impulsive motion problem (of the third kind) but one of initial motion; that is,

DðpositionsÞ ¼ 0; DðvelocitiesÞ ¼ 0; but DðaccelerationsÞ 6¼ 0:

However, if the rupture is the result of an impulsive force (a blow), the problem falls

under type 3 (see comments on rupture later in this section).

Analytical Expression of the Appellian Classification;
Persistency versus Determinacy

Let us express analytically all these types of constraints. We begin with a discussion

of this issue in terms of elementary dynamics. Let us consider a system consisting of
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Table 4.1 Appellian Classification of Impulsive Constraints

Preshock Shock Postshock
(before) (during) (after)

1 (persistent) gggg gggg gggg

2 (persistent) gggg gggg

3 (nonpersistent) gggg gggg

4 (nonpersistent) gggg



N solids, in contact with each other at K points, out of which C are of the non-

persistent type, and/or with a number of foreign solid obstacles that are either fixed

or have known motions. Assuming frictionless collisions, we will have a total of

6N þ K unknowns (6N postshock velocities, plus K percussions at the smooth con-

tacts, along the common normals); and 6N þ K �C equations (6N impulsive

momentum equations, plus K � C persistent-type constraints); and therefore the
degree of indeterminacy equals the number of nonpersistent contacts C (i.e., the kind

that disappear after the shock). Hence: (i) a free (i.e., unconstrained) solid subjected

to given percussions, and/or (ii) a system subjected only to persistent constraints are

impulsively determinate.

Let us now discuss the problem from the Lagrangean viewpoint. We recall

(}2.4 ff.) that a number of holonomic constraints, imposed on a system originally

defined by n Lagrangean coordinates, can always be put in the equilibrium form:

q1 ¼ 0; q2 ¼ 0; . . . ; qm ¼ 0 ðm: number of such constraints < nÞ ð4:4:1aÞ

REMARKS

(i) It is shown later in this section, that, within our impulsive approximations, even

Pfaffian constraints (including nonholonomic ones) can be brought to the holonomic

form; that is, in impulsive motion all constraints behave as holonomic! However, as

elaborated in the next section, quasi variables can be used to advantage in impulsive

problems.

(ii) Briefly, if the system is, originally, described by the Lagrangean coordinates

q � ðq1; . . . ; qnÞ, and if the mð< nÞ new constraints are expressed by

�1ðt; qÞ ¼ 0; . . . ; �mðt; qÞ ¼ 0; ð4:4:1bÞ

then, by replacing q1; . . . ; qm with the new Lagrangean coordinates,

�1 � �1ðt; qÞ; . . . ; �m � �mðt; qÞ; �mþ1 ¼ qmþ1; . . . ; �n ¼ qn; ð4:4:1cÞ

we can express the new constraints (b) by the ‘‘equilibrium’’ equations:

�1 ¼ 0; . . . ; �m ¼ 0: ð4:4:1dÞ

Assuming, henceforth, such a choice of Lagrangean coordinates for all our impulsive

constraints (and, for convenience, redenoting these new equilibrium coordinates by

q1; . . . ; qm; . . . ; qnÞ, we can quantify the four Appellian types of impulsive constraints

as follows:

� First-type constraints (existing before, during, and after the shock). As a result of

these constraints, let the system configurations depend on n, hitherto independent,

Lagrangean parameters: q � ðq1; . . . ; qnÞ. During the shock interval (t 0; t 00Þ, the

corresponding velocities _qq � ð _qq1; . . . ; _qqnÞ, pass suddenly from the known values

ð _qqÞ�, at t 0, to other values ( _qqÞþ, while the q’s remain practically unchanged; that

is, here we have

ðqkÞbefore ¼ 0; ðqkÞduring ¼ 0; ðqkÞafter ¼ 0; ð4:4:2aÞ

D _qqk � ð _qqkÞþ � ð _qqkÞ� 6¼ 0
�ð _qqkÞþ: unknown; ð _qqkÞ�: known

�
: ð4:4:2bÞ
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� Second-type constraints (additional constraints, existing during and after the

shock, but not before it). Here, with qD 00 � ðq1; . . . ; qm 00 Þ;where m 00 < n;we have

ðqD 00 Þbefore 6¼ 0; ðqD 00 Þduring ¼ 0; ðqD 00 Þafter ¼ 0; ð4:4:3aÞ
ð _qqD 00 Þ� 6¼ 0; ð _qqD 00 Þþ ¼ 0 ) Dð _qqD 00 Þ ¼ �ð _qqD 00 Þ� 6¼ 0: ð4:4:3bÞ

[Equations like qafter � qbefore 6¼ 0 i.e., (4.4.3a, 4a) in no way contradict our earlier

assumption (first approximation): DðconfigurationÞ � Dq � qþ � q� ¼ 0. As with the

finite motion case (chap. 2), any new holonomic constraints must be consistent with

the system configuration.]

� Third-type constraints (additional constraints existing before and during, but not
after the shock). Here, with qDF � ðqm 00þ1; . . . ; qmFÞ, where mF < n, we have

ðqDFÞbefore ¼ 0; ðqDFÞduring ¼ 0; ðqDFÞafter 6¼ 0; ð4:4:4aÞ
ð _qqDFÞ� ¼ 0; ð _qqDFÞþ 6¼ 0 ) Dð _qqDFÞ ¼ ð _qqDFÞþ 6¼ 0: ð4:4:4bÞ

� Fourth-type constraints (additional constraints existing only during, but neither
before nor after the shock). Here, with qD 00 00 � ðqmFþ1; . . . ; qm 00 00 Þ, where m 0000 < n, we

have

ðqD 00 00 Þbefore 6¼ 0; ðqD 00 00 Þduring ¼ 0; ðqD 00 00 Þafter 6¼ 0; ð4:4:5aÞ
ð _qqD 00 00 Þ 6¼ 0; ð _qqD 00 00 Þ� 6¼ 0 ) Dð _qqD 00 00 Þ ¼ ð _qqD 00 00 Þþ � ð _qqD 00 00 Þ� 6¼ 0: ð4:4:5bÞ

Hence, if no fourth-type constraints exist, m 000 ¼ m 0000; and if no third-type con-

straints exist, m 00 ¼ m 000; and so on. Now, arguing as in the case of continuous

motion (chap. 3), during the shock interval, we may view the constraints of the

second, third, and fourth types as absent, provided that, in the spirit of the impulsive
principle of relaxation [see also discussion below, after (4.4.16b)], we add to the

system the corresponding constraint reactions. All relevant equations of motion

are contained in the LIP (second of 4.3.7),X
Dð@T=@ _qqkÞ �qk ¼

X
Q̂Qk �qk ðk ¼ 1; . . . ; nÞ: ð4:4:6Þ

If the virtual displacements �q � ð�q1; . . . ; �qnÞ are arbitrary, the right side of the

above contains the impulsive virtual works of the reactions stemming from the

second, third, and fourth-type constraints, and operating during the shock interval

½t 0, t 00�. Therefore, to eliminate these ‘‘forces,’’ and thus produce n�m 0000 reaction-

less, or kinetic, impulsive equations, we choose �q’s that are compatible with all
constraints holding at the shock moment; that is, we take

�q1; . . . ; �qm 00 ; �qm 00þ1; . . . ; �qmF; �qmFþ1; . . . ; �qm 0000 ¼ 0; ð4:4:6aÞ
�qm 0000þ1; . . . ; �qn 6¼ 0: ð4:4:6bÞ

Applying the method of Lagrangean multipliers to the variational equation (4.4.6),

under the virtual constraints (4.4.6a, b), we readily obtain the two (uncoupled) sets of

equations:

Impulsive kinetostatic: Dð@T=@ _qqDÞ ¼ Q̂QD þ 
̂
D ðD ¼ 1; . . . ;m 0000Þ; ð4:4:7aÞ
Impulsive kinetic: Dð@T=@ _qqIÞ ¼ Q̂QI ðI ¼ m 0000 þ 1; . . . ; nÞ: ð4:4:7bÞ
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Further, since the velocity jumps D _qq are produced only by the very large impulsive

constraint reactions, operating during the very small interval t 00 � t 0, within our

approximations, the Q̂QI [since they derive only from ordinary (i.e., finite, nonimpul-

sive) forces, like gravity] vanish: Q̂QI ¼ 0; and so (4.4.7b) reduce to Appell’s rule:

Dð@T=@ _qqIÞ ¼ 0 ) ð@T=@ _qqI Þþ ¼ ð@T=@ _qqIÞ�: ð4:4:8Þ
In words: The partial derivatives of the kinetic energy relative to the velocities of those
system coordinates q’s that are not forced to vanish at the shock instant (i.e.,
qduring 6¼ 0) have the same values before and after the impact; or these n�m 0000 uncon-
strained momenta, pI � @T=@ _qqI , are conserved.

Now, since T is quadratic in the _qq’s, eqs. (4.4.8) are linear and (as explained below,

under ‘‘Frame of Reference Effects on Impulsive Motion’’) homogeneous in the

n D _qq’s. In there:

(i) The q1; . . . ; qn, have their constant shock instant values; that is,

qD: qD 00 ; qDF; qD 0000 ¼ 0; while qI : qm 0000þ1; . . . ; qn ¼ known; ð4:4:9aÞ

(ii) The ð _qq1Þ�; . . . ; ð _qqnÞ� are known; in particular, ð _qqDFÞ� ¼ 0; (4.4.9b)

(iii) The ð _qq1Þþ; . . . ; ð _qqnÞþ are the unknowns of the problem; except that, since the con-

straints ðqD 00 Þafter ¼ 0 are persistent,

ð _qqD 00 Þþ ¼ 0: ð4:4:9cÞ

Hence, we have n�m 0000 linear equations (4.4.8) for the n�m 00 unknowns:

ð _qqm 00þ1Þþ; . . . ; ð _qqnÞþ; and therefore the degree of indeterminacy of the impulsive

problem equals

ðn�m 00Þ � ðn�m 0000Þ ¼ m 0000 �m 00 ð> 0; assumedÞ
¼ number of nonpersistent constraints ð¼ number of 3rd and 4th typesÞ:

ð4:4:9dÞ
In sum: the impulsive problem (4.4.8) is, in general, indeterminate [unlike its ordinary

motion counterpart which is determinate (}3.5, }3.8)]: the m 0000 kinetostatic equations

(4.4.7a) introduce the m 0000 additional unknown 
̂
D’s. If, however, only persistent

constraints are present ðm 0000 ¼ m 00Þ, the impulsive problem (4.4.8) is determinate.
To make the problem determinate, in the presence of nonpersistent type con-

straints, we must make particular constitutive (i.e., physical) hypotheses; for example,

elasticity assumptions about the postshock state. For example, in the well-known

problem of central (or direct) collision of two solid spheres that separate after the

shock (fourth-type constraint), Newton–Euler mechanics provides only one equation

for the two postimpact velocities of the spheres’ centers: Dvcenter of mass of system ¼ 0. A

second equation is furnished by constitutive assumptions; for example, for perfect

elasticity, DT ¼ 0. The most common constitutive equations for such third and/or

fourth type ( _qqÞþ’s are

ð _qqD 000 ;D 0000 Þþ ¼ �eð _qqD 000 ;D 0000 Þ� ðDF ¼ m 00 þ 1; . . . ;m 000;D 0000 ¼ m 000 þ 1; . . . ;m 0000Þ;
ð4:4:10aÞ
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where e is the earlier coefficient of restitution. Then, the corresponding velocity

jumps equal

Dð _qqD 000 ;D 0000 Þ � ð _qqD 000 ;D 0000 Þþ � ð _qqD 000;D 0000 Þ� ¼ �ð1þ eÞð _qqD 000 ;D 0000 Þ�: ð4:4:10bÞ

REMARKS

(i) If the constraints have the general (nonequilibrium) form

�Dðt; qÞ ¼ 0 ) ��D ¼
X
ð@�D=@qkÞ �qk ¼ 0 ½D ¼ 1; . . . ;mð< nÞ�; ð4:4:11aÞ

then combination (‘‘adjoining’’) of the above with (4.4.6), via impulsive Lagrangean
multipliers 
̂
D yields the n impulsive Routh–Voss equations

Dpk ¼ Q̂Qk þ R̂Rk; with R̂Rk ¼
X


̂
Dð@�D=@qkÞ: ð4:4:11bÞ

As in the finite motion case (}3.8), these equations are coupled in the ( _qqÞþ’s and 
̂
’s,
because the q’s employed are coupled; i.e., eqs. (4.4.11a); whereas the earlier eqs.

(4.4.7a, b; 8), corresponding to the uncoupled (equilibrium) coordinates (4.4.1a–d)

are uncoupled.

In first-type problems, the above equations along with the m postshock forms of

(4.4.11a),

�D ¼ 0) _��D ¼
X
ð@�D=@qkÞ _qqk þ @�D=@t ¼ 0; ð4:4:11cÞ

with the partial derivatives of the �’s evaluated at the shock configuration and

instant, constitute a set of nþm algebraic equations for the n postshock velocities

( _qqÞþ and the m impulsive multipliers 
̂
. And since such constraints also hold, in form,

for the preshock velocities ( _qqÞ�, only n�m of the latter need be known.

In second-type problems, eqs. (4.4.11b) also hold, and the impulsive constraints

(4.4.11a) are imposed at the beginning of the shock and continue to hold during and

after, but not before, it. Therefore, we can apply (4.4.11c) for the ( _qqÞþ’s.

(ii) Equations (4.4.11b) can, of course, result directly by integration of the finite

Routh–Voss equations of the system (}3.5) in time, then taking the limit as

� � t 00 � t 0 ! 0, and noticing that since @T=@qk ¼ Onite during � ðDqk ¼ 0 and

_qqk ¼ Onite, hence D _qqk ¼ OniteÞ,

ð@T=@qkÞ ¼ 0; ð4:4:12Þ
and the partial �-derivatives, within our approximations, remain constant.

(iii) If the third- and fourth-type constraints have the general form (4.4.11a), then

(4.4.10a, b) must be replaced by

ð _��Þþ ¼ �eð _��Þ� ) D _�� � ð _��Þþ � ð _��Þ� ¼ �ð1þ eÞð _��Þ�: ð4:4:10c; dÞ
Further, due to the compatibility of velocities with the constraint, _�� � v2=1 � n ¼
ðv2=1Þn, and so

at t 0: ð _��Þ� < 0 ðbeginning of ‘‘approach’’ periodÞ;
at t 00: ð _��Þþ > 0 ðending of ‘‘restitution’’ periodÞ: ð4:4:10eÞ
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In sum: the n ð _qqÞþ’s can be determined from the n�m 0000 kinetic equations (4.4.8),

the m 00 kinematical equations (4.4.3b), and the m 0000 �m 00 constitutive equations

(4.4.10a, b); that is, a total of (n�m 0000Þ þ ðm 00Þ þ ðm 0000 �m 00Þ ¼ n equations. Once

all the ( _qqÞþ’s have been found, the m 0000 kinetostatic equations (4.4.7a) immediately

yield the m 0000 impulsive reactions 
̂
D.

For instance, in an impact problem with the three constraints q1 ¼ q2 ¼ q3 ¼ 0

(i.e., m 0000 ¼ 3), the impulsive multipliers will appear only in the first three equations:

Dð@T=@ _qqDÞ ¼ Q̂QD þ 
̂
D ðD ¼ 1; 2; 3Þ; ð4:4:10fÞ

while, by Appell’s rule, the remaining kinetic equations will be

Dð@T=@ _qqIÞ ¼ 0 ðI ¼ 4; 5; . . . ; nÞ: ð4:4:10gÞ

If we are only interested in the ( _qqÞþ’s and not the 
̂
’s, then we must add to the n� 3

equations (4.4.10g) the three postimpact conditions for ( _qq1;2;3Þþ. For example, if the

first and second constraints hold after the shock (persistent) while the third one does

not (nonpersistent), then these conditions are

ð _qq1Þþ ¼ ð _qq2Þþ ¼ 0; ð _qq3Þþ ¼ �eð _qq3Þ�; ð4:4:10hÞ

and along with (4.4.10g) these constitute a determinate system for the n ð _qqÞþ.

(iv) In applying impulsive equations, like (4.4.7a, b; 8; 11b), or any other form

involving @T=@ _qqk, there is no need to start with the general (configuration and velocity)

expression forT , then ð@ . . . =@ _qqÞ-differentiate it, and finally evaluate the results for the

shock configuration(s) and time, as in the finite motion case. It is simpler, and leads to

the same final results, if we calculate T only at the shock configuration and time and
proceed from there to calculate the momenta, and so on. [Why? Explain using a Taylor

expansion of T around the shock configuration, and then taking the partial q-deri-
vatives of both sides. See, for example, Beghin (1967, pp. 472–473).]

(v) Frame of reference effects on impulsive motion. We begin by pointing out that

the impulsive theorems of linear and angular momentum are independent of the

frame of reference used; that is, they hold unchanged in form even in noninertial frames
(moving axes), provided that the latter’s inertial motions remain continuous and

involve only finite accelerations. Then, the ‘‘inertial,’’ or ‘‘fictitious’’ forces on a

typical particle — that is, the ‘‘force’’ of transport (due to the translational and

rotational inertial accelerations of the noninertial frame), and the complementary,
or Coriolis, ‘‘force’’ (due to the coupling of the relative velocity of the particle with

the inertial angular velocity of the frame— recalling }1.7) — remain finite and there-

fore give zero impulses. [This also follows from the fact that the impulsive momen-

tum equations involve only velocity jumps Dv; and these latter are frame-independent,
as long as, during the shock, the transport velocities of the noninertial frames do not
undergo finite jumps; it is like adding and subtracting the same frame velocity (after

and before the shock, respectively) to all system particles! (Explain, quantitatively,

using the frame transformation equations for velocities.) Question: During a shock,

does the velocity of body-fixed axes, say at G, undergo finite changes (i.e., velocity

discontinuities)? If it does, then the above reasoning does not apply to these axes.]

The above are easy to see from the viewpoint of analytical mechanics: in all pertinent

impulsive derivations, we may consider only the quadratic and homogeneous part of

T (}3.9), T2 ¼ 1=2
PP

Mkl _qqk _qql ; under our impulsive approximations, its linear and

homogeneous part, T1 ¼
P

Mk _qqk (which, we recall, arises from the nonstationary/
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noninertial contributions @r=@tÞ, makes a zero contribution to Dpk:

Dð@T=@ _qqkÞ ¼ Dð@T2=@ _qqkÞ ¼ 0: ð4:4:13Þ
In sum: In impulsive (not finite) motion problems we can always replace the inertial

kinetic energy with the relative one; that is, take T � T2, and then proceed as in the

inertial case. Clearly, this results in considerable algebraic simplification.

(vi) Holonomic versus nonholonomic constraints in impulsive motion. We saw

earlier, eqs. (4.4.1a–d), that any set of mð< nÞ holonomic constraints,

�Dðt; qÞ ¼ 0 ðD ¼ 1; . . . ;mÞ; ð4:4:14aÞ
can be brought to the equilibrium form

�D � �Dðt; qÞ ¼ 0 ðD ¼ 1; . . . ;mÞ; ð4:4:14bÞ
and �I � qIð6¼ 0Þ. It follows that the associated generalized velocities and virtual

variations, from 1 to m, will satisfy, respectively (with k ¼ 1; . . . ; nÞ,
_��D ¼

X
ð@�D=@qkÞ _qqk þ @�D=@t ¼ 0 and ��D ¼

X
ð@�D=@qkÞ �qk ¼ 0:

ð4:4:14cÞ
Now, since we assume that during the shock the coordinates and time remain essen-

tially constant, we can replace in there the Pfaffian constraints (first of 4.4.14c) with

their approximate time integral

 D �
X

FDkqk þ FDt� CD ¼ 0; ð4:4:15Þ
where

FDk � @�D=@qk; FD � @�D=@t; CD: constants; for t 0 � t � t 00; ð4:4:15aÞ
and thus replace q1; . . . ; qm with the equilibrium coordinates  Dð¼ 0Þ. The same rea-

soning applied to the holonomic and/or nonholonomic Pfaffian impulsive constraints,X
aDk _qqk þ aD ¼ 0; ð4:4:16aÞ

allows us to approximate them, in ½t 0; t 00], with

�D �
X

aDkqk þ aDt� �D ¼ 0; �D ¼ integration constants; ð4:4:16bÞ

that is, replace q1; . . . ; qm with the new equilibrium variables �Dð¼ 0Þ.
In sum: In impulsive problems, we may disregard the holonomic versus non-

holonomic difference — during the shock, all constraints are approximately holo-
nomic— and to solve them, either we use impulsive multipliers, or avoid them by

choosing the above equilibrium coordinates, or use quasi variables (see }4.5).

Impulsive Principle of Relaxation (RIP)

To calculate impulsive reactions due to pre-existing constraints, say in a first-type

constraint problem (e.g., determine the impulsive bending moment at a certain point of

a physical pendulum caused by a given blow at another point of it), either we use the

impulsive forms of linear and angular momentum, after solving the Lagrangean impul-

sive equations of the given (unrelaxed) system, say (4.4.7a, b), and so on; or, in the spirit
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of an impulsive principle of relaxation of the constraints, we may endow the system

with an additional n 0 Lagrangean coordinates qk 0 ðk 0 ¼ 1; . . . ; n 0Þ, equal in number to

that of the sought reactions and satisfying the persistent equilibrium constraints

qk 0 ¼ constant; say ¼ 0; ð4:4:17aÞ
then calculate the ‘‘relaxed’’ kinetic energy

T ¼ Tðt; q1 0 ; . . . ; qn 0 ; q1; . . . ; qn; _qq1 0 ; . . . ; _qqn 0 ; _qq1; . . . ; _qqnÞ; ð4:4:17bÞ
from that calculate @T=@ _qqk 0 and @T=@ _qqk, and so on, and reasoning as before for the

new relaxed problem, arrive at the uncoupled system

Kinetostatic equations: ðDpk 0 Þo ¼ ðQ̂Qk 0 Þo þ 
̂
k 0 ðk 0 ¼ 1; . . . ; n 0Þ; ð4:4:17cÞ
Kinetic equations: ðDpkÞo ¼ ðQ̂QkÞo ðk ¼ 1; . . . ; nÞ; ð4:4:17dÞ

where ð. . .Þo � ð. . .Þ evaluated for qk 0 ¼ constant (e.g., for 0) and _qqk 0 ¼ 0. We can

easily show that the relaxed T , (4.4.17b), is needed only for the kinetostatic (4.4.17c);

for the kinetic ones, (4.4.17d), we can use the original (unrelaxed, or constrained)

kinetic energy To (why?). Finally, the whole method of RIP can be applied without

theoretical complications to second/third/fourth-types of impulsive problems.

Sudden Rupture of Constraints

As mentioned earlier, this is not an impulsive problem but one of initial ðOniteÞ motion;
the jumps appear in the €qq’s. If, after the rupture, the system has n Lagrangean coordi-

nates, its postrupture equations of motion are (with the usual notations)

EkðTÞ ¼ Qk ðk ¼ 1; . . . ; nÞ; ð4:4:18aÞ
and, if the suppressed (broken) constraints areX

aDk �qk ¼ 0 ½D ¼ 1; . . . ;mð< nÞ�; ð4:4:18bÞ

then the prerupture equations are

EkðTÞ ¼ Qk þ
X


DaDk ðk ¼ 1; . . . ; nÞ: ð4:4:18cÞ

Solving these sets of equations (e.g., subtracting them side by side, etc.), we can

calculate the acceleration jumps: D€qq � ð€qqÞþ � ð€qqÞ�.

Example 4.4.1 Elementary (Newton–Euler) Theory of Rigid-Body Collisions. Let

us consider two rigid bodies, B1 and B2, with respective masses m1 and m2, mass

centers G1 and G2, colliding at a certain instant t� at the contact point C (fig. 4.2).

Then, by the impulsive principles of linear and angular momentum, applied to B1

and B2 separately, we obtain

m1ðv1
þ � v1

�Þ ¼ �f̂f ; H1
þ �H1

� ¼ r1 � ð�f̂f Þ ¼ �r1 � f̂f ; ða1; 2Þ
m2ðv2

þ � v2
�Þ ¼ f̂f ; H2

þ �H2
� ¼ r2 � f̂f ; ða3; 4Þ

where f̂f ¼ impulsive force, at C, say from B1 to B2, and H1;2 ¼ angular momenta of

B1;2 about G1;2, respectively. Now, since the precollision velocities are assumed
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known, the above constitutes a system of 4� 3 scalar equations for the 5� 3

unknown components of v1
þ; v2

þ; H1
þ, H2

þ; f̂f [from H1
þ, H2

þ we can determine

the postcollision angular velocities x1
þ and x2

þ via inversion of H ¼ I �x,

I ¼ inertia tensor at G (known), for each body].

Hence, the principles of mechanics alone do not suffice to solve the impact problem; we

need additional physical hypotheses to remove the (15� 12 ¼Þ 3-fold indeterminacy.

REMARK

The indeterminacy is due to our simple/idealized model of the impact problem; that

is, to the rigid bodies and impulsive forces; a model that has also led to indetermi-

nacy in ordinary/finite motion, for example, statical indeterminacy. As there, deter-

minacy is here attained by adoption of the more realistic (and more ‘‘expensive’’)

model of the deformable body. Then, the contact point C becomes a contact surface
C ¼ CðtÞ; while the impulsive force f̂f is replaced by the following resultant of a

complicated distribution of surface tractions tðnÞ over C: f̂f ¼ Ð dtðÐC tðnÞ dCÞ. For

details, see works on dynamic elasticity, and so on.

Here, we remove the indeterminacy with the following two empirical hypotheses:

(i) B1 and B2 are smooth, so that f̂f ¼ f̂f n, where f̂f > 0 and n ¼ unit vector at C, along

the common normal, say from B1 to B2; a hypothesis that reduces the number of

unknowns to 13: v1
þ, v2

þ; H1
þ, H2

þ; f̂f , and

(ii) Conservation of (kinetic) energy: DT � Tþ � T� ¼ 0; which, since T� is known

and Tþ can be expressed in terms of v1
þ, v2

þ; H1
þ, H2

þ, reduces the number of

unknowns to 12, and thus makes the problem determinate.

Speed of Compression; Coefficient of Restitution

Let us generalize a bit. If the velocities of the two particles of B1 and B2 in contact at

C are u1 and u2, so that before, during, and after the collision, u1 ¼ v1 þ x1 � r1 and
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u2 ¼ v2 þ x2 � r2, then the speed of compression c is defined as

c � ðu1 � u2Þ � n ¼ normal component of relative velocity at C

ðinitially positive; since B1 and B2 tend to overlapÞ: ðbÞ

Now, with the help of c, the collision process is decomposed into the following two

stages:

(i) a period of compression (approaching of B1 and B2): c > 0;

(ii) a period of restitution (separation of B1 and B2): c < 0;

since, at the end of the compression period, the impact forces �f̂f ! �ÎIn and f̂f ! ÎIn
reduce c to zero. If (. . .Þ* � ð. . .Þ at the end of the compression period, then applying

again linear and angular momentum on B1 and B2, between the beginning and the end
of the compression period, we obtain

m1ðv1*� v1
�Þ ¼ �ÎIn; H1*�H1

� ¼ r1 � ð�ÎInÞ ¼ �r1 � ÎIn; ðc1; 2Þ
m2ðv2*� v2

�Þ ¼ ÎIn; H2*�H2
� ¼ r2 � ÎIn; ðd1; 2Þ

c* � ðu1*� u2*Þ � n ¼ 0; ðeÞ

which constitutes a determinate system of (4� 3Þ þ 1 ¼ 13 scalar equations for the

13 scalar unknowns of the end of the compression period: v1*, v2*; H1*, H2*; ÎI .
Having found ÎI , and assuming that the impulsive forces during the restitution period

are proportional to those forces during the compression period, the factor of that

proportionality called coeRcient of restitution, e, we can then write in (a1–4),

f̂f ¼ ð1þ eÞÎIn; ðfÞ
and thus reduce its number of scalar unknowns to 13: v1

þ, v2
þ; H1

þ, H2
þ; e.

Therefore, the problem becomes determinate by specifying the value of e. We have

the following three cases: e ¼ 0: inelastic collision; e ¼ 1: elastic collision; 0 < e < 1:

semielastic collision. It can be shown that the elastic case, e ¼ 1, implies the con-

servation condition Tþ ¼ T�.

Example 4.4.2 Specialization of the Above to the Case of the Collision of Two,
Originally Nonrotating, Smooth and Homogeneous Spheres. Here, since �r1� f̂f ¼ 0

and r2 � f̂f ¼ 0, eqs. (c1–e) of the preceding example reduce to

m1ðv1*� v1
�Þ ¼ �ÎIn; m2ðv2*� v2

�Þ ¼ ÎIn; ðu1*� u2*Þ � n ¼ 0; ðaÞ
and H1*�H1

� ¼ 0, H2*�H2
� ¼ 0 (since x1

� ¼ 0 and x2
� ¼ 0, and, hence, also

u1* ¼ v1* and u2* ¼ v2*; and x1
þ ¼ 0 and x2

þ ¼ 0Þ. Solving the system (a) we

obtain

ÎI ¼ ½m1m2=ðm1 þm2Þ�½ðv1
� � v2

�Þ � n� ¼ ðm1m2cÞ=ðm1 þ m2Þ; ðb1Þ
that is,

f̂f ¼ �m1m2cð1þ eÞ�ðm1 þm2Þ
�
n; ðb2Þ
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where c ¼ known initial (preimpact) value of compression speed (> 0). As a result,

eqs. (a1–4, f ) of the preceding example yield

m1ðv1
þ � v1

�Þ ¼ �ð1þ eÞÎIn; m2ðv2
þ � v2

�Þ ¼ ð1þ eÞÎIn; ðcÞ
and from these we readily obtain the postimpact velocities

v1
þ ¼ v1

� � fc=½1þ ðm2=m1Þ�gð1þ eÞn; ðd1Þ
v2
þ ¼ v2

� þ fc=½1þ ðm2=m1Þ�gð1þ eÞn: ðd2Þ

We leave it to the reader to show that the kinetic energy change equals

DT � Tþ � T� ¼ �½m1m2c
2=2ðm1 þm2Þ�ð1� e2Þ � 0; ðeÞ

that is, Tþ � T�, in general (since 0 � e � 1Þ an energy loss! Special cases are:

(i) e ¼ 1 (elastic impact): DT ¼ 0: energy of compression¼ energy of restitution;

(ii) e ¼ 0 (inelastic impact): DT ¼ �ðm1m2c
2Þ�2ðm1 þ m2Þ.

For an elementary, but instructive and rare, treatment of the role of friction in

impact, see, for example, Hamel ([1922(a)] 1912, pp. 447–450).

Example 4.4.3 A thin, straight, and homogeneous bar AB, of mass m and length

2b, moves on a fixed, horizontal, and smooth plane p. At a certain moment, the bar

strikes a fixed peg O located a distance c from the center of mass of the bar G. Let us

calculate the postimpact velocities in the following two cases: (i) the point of the bar

that strikes O stays fixed relative to the latter, and (ii) the bar remains in contact with

O and slides without friction on it (fig. 4.3) (Lainé, 1946, pp. 188–191).

On p, let us choose axes O�xy such that x ¼ c, y ¼ 0, � ¼ 0. Now, by König’s

theorem, the (double) kinetic energy of the bar is

2T ¼ m
�ð _xxÞ2 þ ð _yyÞ2�þ ðmb2=3Þð _��Þ2; ðaÞ

and since, obviously, � 0W ¼ 0d , the impulsive Lagrangean principle (LIP) yields

Dð@T=@ _xxÞ �xþ Dð@T=@ _yyÞ �y þ Dð@T=@ _��Þ �� ¼ 0

) ðD _xxÞ �xþ ðD _yyÞ �yþ ðb2D _��=3Þ �� ¼ 0: ðbÞ
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Figure 4.3 Geometry of bar AB moving on a fixed,

horizontal, and smooth plane p, and striking a fixed peg O.

jABj ¼ 2b;OG ¼ ðx; yÞ ) jOGj ¼ c, and angle ðAB;OxÞ � �! 0.



Let us find the restrictions among �x, �y, ��.

(i) When the bar point sticks to O, the constraints are

x ¼ c cos�) �x ¼ �c sin� ��

�¼0
¼ 0; ðc1Þ

y ¼ c sin�) �y ¼ c cos� ��

�¼0
¼ c ��; ðc2Þ

and, therefore, LIP, eq. (b), reduces to

ðD _yyÞðc ��Þ þ ðb2=3ÞD _�� �� ¼ 0 ) cD _yyþ ðb2=3ÞD _�� ¼ 0; ðd1Þ
or, explicitly [with ð _��Þþ � !�,

c½ð _yyÞþ � ð _yyÞ�� þ ðb2=3Þð!� !�Þ ¼ 0: ðd2Þ
However, from the velocity form of the constraints, evaluated at the impact config-

uration, we find the following postimpact velocities [with ( _xxÞþ � _xx, ð _yyÞþ � _yy�:

_xx ¼ �c sin� _��

�¼0
¼ 0; _yy ¼ c cos� _��


�¼0
¼ c!; ðeÞ

and so (d2) yields

c½c!� ð _yyÞ�� þ ðb2=3Þð!� !�Þ ¼ 0

) ! ¼ ½cð _yyÞ� þ ðb2=3Þ!���½c2 þ ðb2=3Þ�: ðf Þ�
Elementary solution: applying angular momentum conservation about O we get

HO
� ¼ HO

þ: ðmb2=3Þ!� þ mcð _yyÞ� ¼ m½ðb2=3Þ þ c2�!� ) !� ¼ . . . ; eq: ðf Þ:�
(ii) When the bar is obliged to slide on O, the component of vO 0 ¼ vG þ x� rO 0=G

(O 0: bar point, instantaneously adjacent to peg O) normal to Ox must vanish:

vO 0 � j ¼ vG � j þ ðx� rO 0=GÞ � j
¼ ð _xx; _yy; 0Þ � ð0; 1; 0Þ þ ½ð0; 0; _��Þ � ð�c; 0; 0Þ� � ð0; 1; 0Þ
¼ ð _yy� c _��; 0; 0Þ ¼ ð0; 0; 0Þ ½since at the impact moment: x ¼ c�; ðg1Þ

that is,

_yy� c _�� ¼ 0) �y� c �� ¼ 0 ½since this constraint is scleronomic�; ðg2Þ
which, we notice, is the same as (c2).

Hence, in this case, we have the following two variational equations:

ðD _xxÞ �xþ ðD _yyÞ �yþ ðb2D _��=3Þ �� ¼ 0; ðh1Þ
ð0Þ �xþ ð1Þ �yþ ð�cÞ �� ¼ 0; ðh2Þ

from which we obtain immediately

D _xx ¼ 0) _xx ¼ ð _xxÞ� ½diGerent from Erst of ðeÞ; since here �x 6¼ 0�; ði1Þ
cD _yyþ ðb2=3ÞD _�� ¼ 0 ) c½ _yy� ð _yyÞ�� þ ðb2=3Þ½ _��� ð _��Þ�� ¼ 0; ði2Þ
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from which, since _yy ¼ c _�� � c!, finally,

! ¼ ½cð _yyÞ� þ ðb2=3Þ!����½c2 þ ðb2=3Þ� ½same as in the preceding case; eq: ðfÞ�:
ði3Þ

Problem 4.4.1 Consider a two-DOF holonomic system with (double) kinetic

energy:

2T ¼ Að _xxÞ2 þ 2B _xx _yyþ Cð _yyÞ2; ðaÞ

where x; y ¼ Lagrangean coordinates; A;B;C ¼ inertia coefficients (functions of

x; y). Show that its postimpact kinetic energy, from a motionless preimpact state

defined by x; y ¼ 0; ð _xxÞ�, ð _yyÞ� ¼ 0; A;B;C ! Ao, Bo, Co, under the Lagrangean

impulsive forces X and Y , equals

2Tþ ¼ ðCoX
2 � 2BoXY þ AoY

2Þ��ðAoCo � Bo
2Þ: ðbÞ

HINT

Solve the impulsive Lagrangean equations ð@T=@ _xxÞþ � ð@T=@ _xxÞ� ¼ X , and so on,

for ( _xxÞþ, ð _yyÞþ in terms of X ;Y ; Ao, Bo, Co.

Problem 4.4.2 Apply the result (b) of the preceding problem to the impact of a

double pendulum (fig. 4.4) consisting of two equal and homogeneous rods, AB and

BC, each of mass m and length l, smoothly hinged at A to a fixed object (a ceiling)

and to each other at B, initially in vertical equilibrium and struck at C by a hor-

izontal blow of magnitude P̂P.
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Figure 4.4 Impact at tip of a double pendulum.



HINT

The postimpact kinetic energy equals [omitting the (. . .Þþ for convenience]

2T ¼ mðv1
2 þ v2

2Þ þ I ½ð _��1Þ2 þ ð _��2Þ2�;

where: I ¼ ml2=12, v1 ¼ ðl=2Þ _��1, v2 ¼ l _��1 þ ðl=2Þ _��2, v1;2 ¼ velocities of centers of

mass of AB and BC, respectively, in vertical configuration. (See, e.g., Lamb, 1923,

pp. 321–322.)

Problem 4.4.3 Assuming that the �q’s are independent, show that the Lagrangean
system momenta equal the corresponding Lagrangean system impulses that would,
instantaneously, create the motion from rest.

Problem 4.4.4 (Lainé, 1946, pp. 196–200). An articulated rhombus R, ABCD,

formed of four identical thin and homogeneous rigid bars, each of length 2b and

mass m (fig. 4.5), falls freely translating so that its diagonal AC is vertical; also, let

angle ðBADÞ � 2� (0 < � < �=2). At the instant of impact of A with the smooth

horizontal ground, its translational velocity (including that of its mass center G) is

vo, vertically and downwards. Finally, let e be the coefficient of restitution, and

assume that the impulse at A is distributed symmetrically between AB and AD.

For convenience, but no loss in generality, take axes O�xy (Ox: vertical, Oy:
horizontal) such that, at the impact moment; A ¼ O;R is also shown in an arbitrary

configuration A 0B 0C 0D 0 [fig. 4.5(b)]. The latter can, clearly, be specified by the

following four Lagrangean coordinates: (x; y) for G, angleðAx;A 0C 0Þ � �, and

angleðA 0C 0;A 0D 0Þ � �.

(i) Show that the (double) kinetic energy of R equals

2T ¼ 4m
�ð _xxÞ2 þ ð _yyÞ2�þ ð16mb2=3Þ�ð _��Þ2 þ ð _��Þ2�: ðaÞ
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HINTS

Let 1, 2, 3, 4 be, respectively, the centers of mass (midpoints) of the bars A 0B 0, A 0D 0,
B 0C 0, D 0C 0. Next, notice (or prove) that (a) 1 describes a circle of center G and

radius b, with angular velocity _��þ _��, while (b) the bar A 0B 0 rotates about 1 with

angular velocity _��� _��. Hence, its (double) kinetic energy relative to G is

2TA 0B 0;relative ¼ mb2ð _��þ _��Þ2 þ ðmb2=3Þð _��� _��Þ2; ða1Þ

and this clearly equals the kinetic energy of D 0C 0; that is, 2TC 0D 0;relative ¼
2TA 0B 0;relative; while reasoning analogously for the bars A 0D 0, B 0C 0 one finds

2TA 0D 0;relative ¼ 2TB 0C 0;relative ¼ mb2ð _��� _��Þ2 þ ðmb2=3Þð _��þ _��Þ2: ða2Þ

Finally, applying König’s theorem to this nonrigid system (i.e., T ¼ Tof G þ
Trelative to G) yields (a).

(ii) Since the constraints are (with some easily understood notations)

vA 0 ¼ v1 þ xA 0B 0 � rA 0=1 ¼ ðvG 0 þ v1=G 0 Þ þ xA 0B 0 � rA 0=1�
notice that v1=G 0 ¼ ðdx1=G 0=dt; dy1=G 0=dtÞ ðonly x and y components shownÞ

where x1=G 0 � x1 � xG 0 ¼ �b cosð�þ �Þ; y1=G 0 � y1 � yG 0 ¼ �b sinð�þ �Þ�
¼ ð _xx; _yyÞ þ 	bð _��þ _��Þ sinð�þ �Þ;�bð _��þ _��Þ cosð�þ �Þ


þ ½ð _��� _��Þk� � 	� b cosð�� �Þ; b sinð�� �Þ

¼ 	 _xxþ bð _��þ _��Þ sinð�þ �Þ þ bð _��� _��Þ sinð� � �Þ;

_yy� bð _��þ _��Þ cosð�þ �Þ � bð _��� _��Þ cosð�� �Þ

¼ 	 _xxþ 2b _�� cos� sin �þ 2b _�� sin� cos �;

_yy� 2b _�� cos� cos �þ 2b _�� sin� sin �



½evaluated at � ¼ 0; _�� ¼ 0�
¼ ð _xxþ 2b _�� sin�; _yyÞ ¼ vAx i þ vAy j; ðbÞ
) vertical virtual displacement of A should vanish: �xþ ð2b sin�Þ �� ¼ 0; ðcÞ

(although, in general, vAx ¼ nonzero constant), and since d� 0W� 0W ¼ 0, verify that the

impulsive Lagrangean principle, under (c), yields the following equations of motion:

y: Dð@T=@ _yyÞ ¼ 0) ð _yyÞþ � _yy ¼ ð _yyÞ� ¼ 0; ðc1Þ
�: Dð@T=@ _��Þ ¼ 0) ð _��Þþ � _�� ¼ ð _��Þ� ¼ 0; ðc2Þ
x; �: 
̂
 ¼ �Dð@T=@ _xxÞ ¼ �ð2b sin �Þ�1Dð@T=@ _��Þ ð
̂
: impulsive multiplierÞ ðc3Þ

) D _xx ¼ ð2b=3 sin�ÞD _�� ) 3ð _xxþ voÞ sin� ¼ 2b _��: ðc4Þ

[Since D _xx � ð _xxÞþ � ð _xxÞ� � _xx� ð _xxÞ� ¼ _xx� ð�voÞ ¼ _xxþ vo;

D _�� � ð _��Þþ � ð _��Þ� � _��� ð _��Þ� ¼ _��� 0 ¼ _���:

740 CHAPTER 4: IMPULSIVE MOTION



(iii) Verify that (c4) and the constitutive relation _xxþ 2b _�� sin� ¼ �eð�voÞ yield

the values

_xx ¼ �ðe � 3 sin2 �Þ��ð1þ 3 sin2 �Þ�vo; ðd1Þ
_�� ¼ �3ð1þ eÞ sin���2bð1þ 3 sin2 �Þ�vo; ðd2Þ

and from these, and (c3), that


̂
 ¼ �4m
�
_xx� ð _xxÞ�� ¼ �4mð _xxþ voÞ ¼ � � � : ðd3Þ

Since ( _��Þ� ¼ 0, then, by symmetry, we may set _�� ¼ 0, � ¼ 0, _yy ¼ 0, y ¼ 0, for all t.

REMARK

The inelastic case e ¼ 0 can be treated like a problem with a new constraint. Here,

too, �xþ ð2b sin�Þ �� ¼ 0, but now (taking the limit of the above values as e! 0Þ
_xx ¼ �� 3 sin2 �

��ð1þ 3 sin2 �Þ�vo; _yy ¼ 0; _�� ¼ 0; ðe1Þ
_�� ¼ �3 sin�

��
2bð1þ 3 sin2 �Þ�v0; 
̂
 ¼ ��4m=ð1þ 3 sin2 �Þ�vo: ðe2Þ

Similarly, for the elastic case e ¼ 1: _xxþ 2b _�� sin� ¼ vo.
For a solution based on the theorem of Carnot (}4.6), see Lainé (1946, p. 201).

Problem 4.4.5 (Lainé, 1946, pp. 193–194). A particle P of mass m is forced to slide

on a smooth moving circle (i.e., a circular, rigid, and light wire) C of center O and

radius r (fig. 4.6). The axis of C (perpendicular to the plane of the circle) coincides
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connected by a light and inextensible cord, which at some

point in time gets suddenly taut. P can slide on a uniformly

translating circle, while Q, before the impact, moves freely

in space.



continuously with a fixed line L, on which O is forced to move with constant

translational velocity v. A second particle Q of mass M moves freely in space. The

two particles are connected by an inextensible and massless cord whose length l, in

the beginning, is longer than the distance PQ; that is, the cord is slack. At a certain

moment, during the motion, the distance PQ becomes equal to the length of the

cord, which thus finds itself suddenly taut. Assume that, at that moment, the posi-

tions and (preimpact) velocities of P and Q are known, and that Q is on L.

For convenience, but no loss in generality, choose axes O–xyz such that, at the

impact moment, O coincides with the center of C, Oz with L and along the circle

velocity v, and Ox with OPð¼ þr). In these axes, the generic preimpact coordinates

of P are

x ¼ r cos�; y ¼ r sin�; z ¼ vt ½ðr; �Þ: plane polar coordinates of P�; ðaÞ

and, therefore, its corresponding velocity components are

_xx ¼ �r sin� _��; _yy ¼ r cos� _��; _zz ¼ v: ðbÞ

Hence, just before the impact (t ¼ 0, � ¼ 0),

x� ¼ r; y� ¼ 0; z� ¼ 0; ð _xxÞ� ¼ 0; ð _yyÞ� ¼ rð _��Þ�; _zz ¼ v: ðc1Þ

Similarly, let the preimpact position and velocity of Q be, respectively,

X�; Y�; Z�; ð _XXÞ�; ð _YYÞ�; ð _ZZÞ�: ðc2Þ

From the above it follows that, before the shock, the Lagrangean coordinates of the

system are q1;...;4 ¼ �, X , Y , Z.

(i) Show that its (double) kinetic energy equals

2T ¼ m½ðr _��Þ2 þ v2� þMð _XX2 þ _YY2 þ _ZZ2Þ; ðdÞ

while its impressed impulsive virtual work vanishes: d� 0W� 0W ¼ 0; and so the impulsive

Lagrangean principle becomes (dropping, for convenience, all superscript minuses
from q1;...;4)

Dð@T=@ _XXÞ �X þ Dð@T=@ _YYÞ �Y þ Dð@T=@ _ZZÞ �Z þ Dð@T=@�:Þ �� ¼ 0: ðeÞ

Now, the tightening of the cord is equivalent to the sudden introduction of the

constraint jPQj ¼ l ðconstantÞ, or, in terms of q1;...;4,

ðX � r cos�Þ2 þ ðY � r sin �Þ2 þ ðZ � vtÞ2 ¼ l2; ðf1Þ

or, rearranging,

ðX2 þ Y2 þ Z2Þ � 2rðX cos�þ Y sin�Þ � 2ZðvtÞ þ ðvtÞ2 ¼ l2 � r2; ðf 2Þ

and �ð. . .Þ-varying this (while recalling to set �t ¼ 0, and �v ¼ 0), we obtain the

virtual form of the constraint:

X �X þ Y �Y þ Z �Z

� rðcos� �X þ sin� �YÞ � rð�X sin�þ Y cos�Þ ��� ðvtÞ �Z ¼ 0: ðf 3Þ
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Therefore, at the impact moment (i.e., t ¼ 0, � ¼ 0), the �q1;...;4 satisfy

ðX � rÞ �X þ Y �Y þ Z �Z � rY �� ¼ 0: ðf 4Þ

(ii) Show that the variational equation (e), under (f4), produces [with the help of

the multiplier 
̂
 (proportional to the impulsive cord reaction)] the following four
equations:

M D _XX ¼ 
̂
ðX � rÞ; M D _YY ¼ 
̂
Y ; M D _ZZ ¼ 
̂
Z;
ðmr2ÞD _�� ¼ �
̂
 rY ; ðgÞ

and these, along with the (. . .)
:
-form of the constraint (f1, 2) (evaluated at t ¼ 0,

� ¼ 0; and, for convenience, without the superscript pluses in the postimpact _qq1;...;4Þ

ðX � r cos�Þ _XX þ ðY � r sin�Þ _YY þ ðZ � vtÞ _ZZ
� rð�X sin �þ Y cos�Þ _��� vZ þ v2t ¼ 0; ðh1Þ

) ðX � rÞ _XX þ ðYÞ _YY þ ðZÞ _ZZ � ðrYÞ _��� vZ ¼ 0; ðh2Þ

yield a system of five equations for _XX , _YY , _ZZ, _��; 
̂
.
For example, if at t ¼ 0, Q is on L (i.e., X , Y ¼ 0), verify that eqs. (g) and (h2)

reduce, respectively, to

_XX ¼ ð _XXÞ� � 
̂
ðr=MÞ; _YY ¼ ð _YYÞ�; _ZZ ¼ ð _ZZÞ� þ 
̂
ðZ=MÞ; _�� ¼ ð _��Þ�; ði1Þ
ð�rÞ _XX þ ðZÞ _ZZ � vZ ¼ 0; ði2Þ

and, upon elimination of 
̂
, yield the postimpact velocities

_XX ¼ Z
�
Zð _XXÞ� þ r½ð _ZZÞ� � v����ðr2 þ Z2Þ; _YY ¼ ð _YYÞ�;

_ZZ ¼ �r2ð _ZZÞ� þ Z½rð _XXÞ� þ vZ����ðr2 þ Z2Þ; _�� ¼ ð _��Þ�; ði3Þ

and when these results are substituted back into the first or third of (i1), they supply


̂
. The details are left to the reader.

Problem 4.4.6 Consider a regular hexagon consisting of six identical and homo-

geneous bars ABCDEF (fig. 4.7), each of mass m and length 2b, smoothly joined at

their mutual hinges A, B, C, D, E, F, and originally resting on a smooth horizontal

table. The system is struck by an impulse ÎI , normal to AF at its midpoint, which

communicates to it a postimpact velocity _xx. Show that the postimpact velocity of the

opposite bar CD, _yy, equals _xx=10.

HINTS

In this configuration � ¼ �=6 ¼ 308, and, therefore,

2T ¼ m½6ð _xxÞ2 � 12b _xx _��þ ð40=3Þb2ð _��Þ2�; d� 0W� 0W ¼ ÎI �x) @T=@ _�� ¼ 0:

_xx ¼ � � � ¼ ð20=9Þb _��;
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and so

_yy ¼ ½xþ 2ð2b cos�Þ�: ¼ ð _xx� 4b sin� _��Þ
�¼�=6 ¼ � � � ¼ ð2=9Þb _��:

Example 4.4.4 Consider a circular homogeneous disk D, of mass m and radius r,
moving in the vertical plane O�xy. At a certain instant, D strikes the fixed axis

(ground) Ox and is ready to begin rolling on it (fig. 4.8). Let us determine the

postimpact velocities.

Before the shock, the system positions depend on the following three parameters:

(x; y): coordinates of D’s center/center of mass G, angle of rotation � (from Oy
toward Ox� negative sense). At the shock moment, the following two (obviously)

persistent constraints are introduced:

(i) y ¼ r (contact of D with axis Ox), (a)

(ii) x ¼ r� (rolling of D on Ox; with proper origin choice); (b)

or, in terms of the new, convenient equilibrium coordinates

q1 � y� r; q2 � x� r�; q3 � x; ðcÞ
simply

q1 ¼ 0; q2 ¼ 0 ðwhile q3 6¼ 0Þ: ðdÞ
Next, by König’s theorem, the (unconstrained) kinetic energy of D (doubled; with

mk2 � I ¼ moment of inertia of D about its mass center G) is

2T ¼ m
�ð _xxÞ2 þ ð _yyÞ2�þ Ið _��Þ2 ¼ m

�ð _xxÞ2 þ ð _yyÞ2 þ k2ð _��Þ2�
¼ m

�ð _qq1Þ2 þ ð _qq3Þ2 þ ðk=rÞ2ð _qq3 � _qq2Þ2
�
: ðeÞ
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Now, since q3 is the only unconstrained coordinate, Appell’s rule, (4.4.8), yields

ð@T=@ _qq3Þþ ¼ ð@T=@ _qq3Þ�: D _qq3 þ ðk=rÞ2ðD _qq3 � D _qq2Þ ¼ 0; ðfÞ

from which, since q2 ¼ 0) ð _qq2Þþ ¼ 0 (second-type constraint)) ð _xxÞþ ¼ rð _��Þþ, we

obtain, successively,

½ð _xxÞþ � ð _xxÞ�� þ ðk=rÞ2�½ð _xxÞþ � ð _xxÞ�� � �½ð _xxÞþ � rð _��Þþ� � ½ð _xxÞ� � rð _��Þ���� ¼ 0;

or, simplifying,

½ð _xxÞþ � ð _xxÞ�� þ ðk=rÞ2½ð _xxÞþ � rð _��Þ�� ¼ 0

) ð _xxÞþ ¼ ½r2ð _xxÞ� þ k2rð _��Þ����ðr2 þ k2Þ; ðgÞ

an equation that expresses conservation of angular momentum about the contact

point C:
The above shows that if rð _xxÞ� þ k2ð _��Þ� ¼ 0, then ð _xxÞþ ¼ 0; that is, the sudden

impact stops the disk! It is left to the reader to obtain the impulsive equations for q1

and q2, and thus calculate the impulsive multipliers corresponding to the two con-

straints (d).

Problem 4.4.7 Continuing from the preceding example, show that under the coor-

dinate choice q1 ¼ x, q2 ¼ y, q3 ¼ �, the impulsive Routh–Voss equations, (4.4.11b),

yield

Dðm _xxÞ ¼ 
̂
2; Dðm _yyÞ ¼ 
̂
1; DðI _��Þ ¼ 
̂
2ð�rÞ; ðaÞ

where 
̂
1 and 
̂
2 are impulsive multipliers corresponding to the two constraints (d) of

that example, but, here, in these new q’s; that is, q2 � r ¼ 0 and q1 � rq3 ¼ 0.

Then, solving this new system, show that 
̂
1 ¼ �mð _yyÞ�, and 
̂
2 ¼
m½ð _xxÞþ � ð _xxÞ�� ¼ �ðmk2=rÞ½ð _��Þþ � ð _��Þ��; and, further, by eliminating ( _��Þþ, obtain

(g) of the preceding example.

Problem 4.4.8 Central (or Direct) Collision of Two Spheres. Consider two homo-

geneous spheres, S1 and S2, both translating along the fixed axis Ox. Let their
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respective centers of mass/masses/radii/center of mass coordinates be G1=m1=r1=x1

and G2=m2=r2=x2.

(i) Show that if S1 and S2 collide, the sole equation furnished by the Appellian

theory is

Dð@T=@ _qq1Þ ¼ 0: m1D _qq1 þ m2ðD _qq1 þ D _qq2Þ ¼ 0; ðaÞ
where q1 � x1 and q2 � x2 � x1 � ðr1 þ r2Þ ð¼ 0, constraint introduced at the shock

moment); and this expresses the conservation of total linear momentum along Ox.

(ii) Show that if we assume that ðq2Þafter shock ¼ 0 (plastic spheres)) ð _qq2Þþ ¼ 0

(second-type constraint; i.e., plastic impact) then

ð _xx1Þþ ¼
�
m1ð _xx1Þ� þm2ð _xx2Þ�

���ðm1 þm2Þ:

Problem 4.4.9 Ballistic Pendulum. Consider a projectile (e.g., bullet) B of mass m
(fig. 4.9), in rectilinear translation in a vertical plane, and a physical (ballistic)

pendulum P, of mass m and center of mass G, capable of rotating about a fixed

axis perpendicular to that plane through an origin O. Let the polar coordinates of B
be (r ¼ OB, � ¼ angleðO�vertical;OBÞ) and � ¼ angleðO�vertical;OGÞ; that is,

before the shock, the system positions depend on the three parameters r, �, �. At

a certain instant, B strikes P and becomes embedded into it, and from then on both

move as one body [i.e., plastic impact: r! constant � ro and �! � ð constantÞ
assume zero]. Show that, if ( _��Þ� ¼ 0 and I is the moment of inertia of P about O,

then

ð _��Þþ ¼ �mro
2=ðI þmro

2Þ�ð _��Þ� ðaÞ

½roð _��Þ�: (known) component of velocity of B along perpendicular to OB, at shock

moment].
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HINT

Introduce the new equilibrium parameters: q1 � r� ro, q2 � �� �, q3 � �. Then the

suddenly introduced persistent constraints are simply q1 ¼ 0, q2 ¼ 0) ð _qq1Þþ ¼ 0,

( _qq2Þþ ¼ 0 (second type); also ( _qq3Þ� � ð _��Þ� ¼ 0; and by Appell’s rule, for q3,

Dð@T=@ _qq3Þ ¼ 0.

Example 4.4.5 Impact of a Rigid Body B on a Fixed Obstacle, at a Common Contact
Point C.

Taking axes C�xyz, where Cz is along the common normal of the impacting

surfaces, and, say, toward B, and with

ðu; v;wÞ: components of velocity of contact point of B at C; vC; ða1Þ
ð!x; !y; !zÞ: components of angular velocity of B;x; ða2Þ
ðx; y; zÞ: coordinates of mass center of B;G; ða3Þ

and since

vG ¼ vC þ x� rG=C; ðbÞ

applying König’s theorem, we find (with Ikl : moments/products of inertia of B at G)

2T ¼ m
�ðuþ !yz� !zyÞ2 þ ðvþ !zx� !xzÞ2 þ ðwþ !xy� !yxÞ2

�
þ ðIx!x

2 þ Iy!y
2 þ Iz!z

2 þ 2Ixy !x!y þ 2Ixz !x!z þ 2Iyz !y!zÞ
¼ mðu2 þ v2 þ w2Þ þ 2m

�
!xðyw� zvÞ þ !yðzu� xwÞ þ !zðxv� yuÞ�

þ ðIx!x
2 þ Iy!y

2 þ Iz!z
2 þ 2Ixy !x!y þ 2Ixz !x!z þ 2Iyz !y!zÞ: ðcÞ

We also have the constitutive equation

wþ ¼ �e w� ) Dw ¼ �ð1þ eÞw� ð> 0; since w� < 0Þ: ðdÞ

Now, we consider the following two cases:

(i) Smooth obstacle: Then the sole constraint is w ¼ 0 (during the impact), and so

only the w-equation of motion contains a multiplier. The postimpact state will be

determined from (d) and the remaining (kinetic) equations

Dð@T=@uÞ ¼ 0; Dð@T=@vÞ ¼ 0; ðe1Þ
Dð@T=@!xÞ ¼ 0; Dð@T=@!yÞ ¼ 0; Dð@T=@!zÞ ¼ 0: ðe2Þ

(ii) Rough surfaces: In this case, the constraints are u ¼ 0; v ¼ 0;w ¼ 0 (during the

impact), and, therefore [assuming that a (d)-like relation still holds],

uþ ¼ 0) Du ¼ �u�; vþ ¼ 0) Dv ¼ �v�; Dw ¼ �ð1þ eÞu�: ðfÞ
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The values D!x;y;z will be determined from the three (kinetic) equations

Dð@T=@!xÞ ¼ 0: Ix D!x þ Ixy D!y þ Ixz D!z þmðyDw� zDvÞ ¼ 0; ðg1Þ
Dð@T=@!yÞ ¼ 0: Iyx D!x þ Iy D!y þ Iyz D!z þmðzDu� xDwÞ ¼ 0; ðg2Þ
Dð@T=@!zÞ ¼ 0: Izx D!x þ Izy D!y þ Iz D!z þmðxDv� yDuÞ ¼ 0: ðg3Þ

If the axes G�xyz are principal, the above simplify somewhat; that is, the products of

inertia vanish.

Problem 4.4.10 A heavy rigid body of revolution (axis Oz) moves in space about

the fixed point O. At time to its nutation angle � equals �o, and its Eulerian angle rates

are _��o; _��o; _  o. At that moment, the axis Oz hits a fixed obstacle, thus introducing the

nonpersistent constraint � (precession) ¼ constant. Show that

D _�� ¼ 0 ) ð _��Þþ ¼ ð _��Þ�; ðaÞ
Dð _  þ _�� cos �Þ ¼ 0 ) ð _  Þþ ¼ ð _  Þ� þ ð1þ eÞð _��Þ� cos �o; ðbÞ
D
�ðA sin2 �Þ _��þ Cð _  þ _�� cos �Þ cos �

� ¼ R�: ðcÞ

HINTS

Here (recalling }1.15 ff.):

ðiÞ 2T ¼ A
�ð _��Þ2 þ ð _��Þ2 sin2 �

�þ Cð _  þ _�� cos �Þ2; ðdÞ

where

A=C: transverse=axial moments of inertia of body at O; ðeÞ
ðiiÞ Q̂Q�;�; ¼ 0; ðf Þ
ðiiiÞ ð _��Þþ ¼ �eð _��Þ�; ðgÞ

and, therefore,

ðivÞ Dð@T=@ _��Þ ¼ 0;

Dð@T=@ _  Þ ¼ 0 ) D _  ¼ �Dð _�� cos �Þ ) ð _  Þþ ¼ ð _  Þ� þ � � � ;
Dð@T=@ _��Þ ¼ R� ðimpulsive multiplierÞ: ðhÞ

Example 4.4.6 A homogeneous sphere S, of center and center of mass G, mass M
and radius R, rests on a rough fixed horizontal plane p. Then, a given impulse F̂F is

applied at a specified S-point A. Let us find its postimpact velocities.

Relative to space-fixed axes O�xyz (coinciding with sphere-fixed axes G��� at the

impact instant; and such that O�xy: parallel to plane p;Oz ¼ perpendicular to p,
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positive upwards), let

Coordinates of G: ð�; ; �Þat impact instant ¼ ð0; 0; 0Þ; ða1Þ
Coordinates of A: ðx; y; zÞ; ða2Þ
Coordinates of contact point C: ðxC; yC; zCÞat impact instant ¼ ð0; 0;�RÞ; ða3Þ
Components of angular velocity of S: ð!x;y;zÞ; ða4Þ
Components of F̂F: ðX ;Y ;ZÞ: ða5Þ�

Instead of the ð!x;y;zÞwe could have chosen the rates of the 3! 1! 3 Eulerian angles

of G��� relative to O�xyz: ð _��; _��; _  Þ; even though ð�; �;  Þimpact instant ¼ ð0; 0; 0Þ.
�

Then, by König’s theorem (and with the constraint _�� ¼ vG;z ¼ 0 enforced in it),

2T ¼M½ð _��Þ2 þ ð _Þ2� þMk2ð!x
2 þ !y

2 þ !z
2Þ; ðbÞ

where k2 � 2R2=5; also, and since vA ¼ vG þ x� rA=G ) �rA ¼ �rG þ �v� rA=G;
or, in components,

_xx ¼ _�� þ z!y � y!z; _yy ¼ _ þ x!z � z!x; _zz ¼ _�� þ y!x � x!y; ðcÞ

the percussive virtual work is (with OA � rAÞ

d� 0W� 0W ¼ F̂F � �rA ¼ X �xþ Y �yþ Z �z

¼ Xð�� þ z ��y � y ��zÞ þ Yð� þ x ��z � z ��xÞ þ Zð0þ y ��x � x ��yÞ
¼ ðXÞ �� þ ðYÞ � þ ðZÞ0

þ ðyZ � zYÞ ��x þ ðzX � xZÞ ��y þ ðxY � yXÞ ��z; ðdÞ

where !x;y;z � _��x;y;z; and, since at the end of the impact

vcontact of S with p � vC ¼ vG þ x� rC=G ¼ 0;

or, in components,

ð _xxC; _yyC; _zzCÞat impact instant ¼ ð _��; _; _��Þ þ ð!x; !y; !zÞ � ð0; 0;�RÞ ¼ ð0; 0; 0Þ:
) _�� � R !y ¼ 0; _ þ R !x ¼ 0;

and _�� ¼ 0 ) � ¼ constant ¼ 0 ðas expectedÞ; ðeÞ

we will have (with 
̂
 and �̂� as impulsive multipliers along xC and yC, respectively)

d� 0WR� 0WR ¼ 
̂
 �xC þ �̂� �yC ¼ 
̂
ð�� � R ��yÞ þ �̂�ð� þR ��xÞ ¼ 0: ðfÞ

Utilizing the above in the impulsive principle of Lagrange {plus method of multi-

pliers (i.e., adjoining � [first/second of eqs. (e)] to it via 
̂
; �̂�); or, equivalently, and in

the spirit of impulsive relaxation, adding (f ) to d� 0W� 0W}, we readily obtain the following
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five equations of impulsive motion:

Dð@T=@ _��Þ ¼ X þ 
̂
ð1Þ þ �̂�ð0Þ: DðM _��Þ ¼ X þ 
̂
; ðg1Þ

Dð@T=@ _Þ ¼ Y þ 
̂
ð0Þ þ �̂�ð1Þ: DðM _Þ ¼ Y þ �̂�; ðg2Þ

Dð@T=@!xÞ ¼ yZ � zY þ 
̂
ð0Þ þ �̂�ðRÞ: DðMk2!xÞ ¼ yZ � zY þ �̂�R; ðg3Þ

Dð@T=@!yÞ ¼ zX � xZ þ 
̂
ð�RÞ þ �̂�ð0Þ: DðMk2!yÞ ¼ zX � xZ � 
̂
R; ðg4Þ

Dð@T=@!zÞ ¼ xY � yX þ 
̂
ð0Þ þ �̂�ð0Þ: DðMk2!zÞ ¼ xY � yX; ðg5Þ

which, along with the two constraints (e) constitute a determinate system of seven

algebraic equations for D _��;D _;D!x;y;z; 
̂
; �̂�. Finally, application of the Newton–

Euler impulsive linear momentum theorem in the vertical direction yields the vertical

impulsive reaction at C, if needed [instead of using relaxation in T , eq. (b), and an

extra multiplier].

An Introduction to Kinetic Impulsive Equations

To obtain multiplierless (i.e., kinetic impulsive) equations we may proceed as

follows:

(i) Eliminate 
̂
 and �̂� from (g3–5), with the help of (g1, 2); that is,


̂
 ¼MD _�� � X ; �̂� ¼MD _ � Y ; ðhÞ

thus obtaining the following three kinetic impulsive Maggi equations:

� ðMRÞD _ þ ðMk2ÞD!x ¼ yZ � ðzþ RÞY ; ði1Þ

ðMRÞD _�� þ ðMk2ÞD!y ¼ �xZ þ ðzþ RÞX ; ði2Þ

ðMk2ÞD!z ¼ xY � yX ðunchangedÞ; ði3Þ

which, along with the two constraints (e), constitute a determinate system of five
algebraic equations for D _��;D _;D!x;y;z; then 
̂
; �̂� follow immediately from (h).

[Equations (i1–3) also result by applying the principle of impulsive angular momen-

tum about C.]

Further, using (e) to eliminate, say D _�� and D _, from (i1–3) would result in the

three kinetic impulsive Chaplygin–Voronets equations in D!x;y;z (see }4.5).

(ii) Or, introduce the following ‘‘equilibrium’’ (quasi) velocities:

!1 � _��1 � _�� �R!y ð¼ 0Þ ) _�� ¼ _��1 þ R!y; �� ¼ ��1 þ R ��y; ð j1Þ

!2 � _��2 � _ þ R!x ð¼ 0Þ ) _ ¼ _��2 � R!x; � ¼ ��2 � R ��x; ð j2Þ
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in terms of which the expressions (b), (d), and (f ) become, respectively,

2T ! 2T* ¼M
�ð!1 þ R!yÞ2 þ ð!2 � R!xÞ2

�
þ ðMk2Þð!x

2 þ !y
2 þ !z

2Þ; ðk1Þd� 0W� 0W ! ðd� 0WÞ* ¼ � � � ¼ X ��1 þ Y ��2 þ
�
Zy� ðRþ zÞY� ��x

þ �XðRþ zÞ � Zx
�
��y þ

�
Yx� Xy

�
��z

� ŶY1 ��1 þ ŶY2 ��2 þ ŶYx ��x þ ŶYy ��y þ ŶYz ��z; ðk2Þ
d� 0WR� 0WR ! ðd� 0WRÞ* ¼ 
̂
 ��1 þ �̂� ��2 � L̂L1 ��1 þ L̂L2 ��2 ¼ 0; ðk3Þ

and then, using the above in the impulsive principle of Lagrange, obtain the follow-

ing five Hamel equations of impulsive motion:

Kinetostatic: Dð@T*=@!kÞ ¼ ŶYk þ L̂Lk ðk ¼ 1; 2Þ; ðl1Þ
Kinetic: Dð@T*=@!kÞ ¼ ŶYk ðk ¼ x; y; zÞ: ðl2Þ

The details are left to the reader; and the entire process of elimination of impulsive

multipliers is treated in full generality in }4.5.

4.5 IMPULSIVE MOTION VIA QUASI VARIABLES

Here the previous results are extended to nonholonomic ‘‘coordinates’’ and veloci-

ties, and in the process show that, contrary to the finite motion case (}3.5), the
Lagrangean impulsive equations retain the same form in both holonomic and nonholo-
nomic variables.

Let us assume, with no loss of generality, that our system is subjected to m
Pfaffian (holonomic and/or nonholonomic) constraints:X

aDk dqk þ aD dt ¼ 0 ðkinematically admissible formÞ; ð4:5:1aÞX
aDk �qk ¼ 0 ðvirtual formÞ ½D ¼ 1; . . . ;mð< nÞ; k ¼ 1; . . . ; n�: ð4:5:1bÞ

Introducing the n quasi coordinates � (as detailed in }2.9 ff.) via

d�D �
X

aDk dqk þ aD dt ð¼ 0Þ; d�I �
X

aIk dqk þ aI dt ð6¼ 0Þ; ð4:5:2aÞ
��D �

X
aDk �qk ð¼ 0Þ; ��I �

X
aIk �qk ð6¼ 0Þ; ð4:5:2bÞ

d�nþ1 � dqnþ1 � dt; ��nþ1 � �qnþ1 � �t ¼ 0 ðI ¼ mþ 1; . . . ; nÞ; ð4:5:2cÞ

and their n quasi velocities ! via

!D � d�D=dt ð¼ 0Þ; !I � d�I=dt ð6¼ 0Þ; !nþ1 � d�nþ1=dt ¼ _tt ¼ 1; ð4:5:2dÞ
we can write for the virtual displacement of a typical particle:

�r ¼
X

ek �qk �
X

eI ��I : ð4:5:3Þ
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The Impulsive Hamel Equations

Substituting the second of (4.5.3) into the LIP, eqs. (4.3.3b–4b), and since the

n�m ��I are unconstrained, and Dð. . .Þ and dð. . .Þð. . .Þ commute with Sð. . .Þ [assuming,

of course, that êeI ¼ DeI ¼ 0], we easily obtain, respectively,

L̂LI �S cdRdR � eI � ðIÞth nonholonomic component of system constraint reaction

¼ 0; ð4:5:4aÞ

and the n� m nonholonomic kinetic impulsive equations:

S Dðdm vÞ � eI ¼ D S dm v � eI

� �
¼S cdFdF � eI ; ð4:5:4bÞ

or, in system variables, and with PI � S dm v � eI ¼ PIðt; q; !Þ ¼ @T*=@!I ¼ (I)th
nonholonomic component of system momentum,

DPI ¼ ŶYI ðI ¼ mþ 1; . . . ; nÞ: ð4:5:5aÞ
It is not hard to show (e.g., invoking the relaxation principle/Lagrangean multipliers;

in a completely analogous way with the finite motion case — recall }3.5), that the

corresponding m impulsive nonholonomic kinetostatic equations are

DPD ¼ ŶYD þ L̂LD; L̂LD � 
̂
D ð6¼ 0Þ ðD ¼ 1; . . . ;mÞ: ð4:5:5bÞ
These uncoupled algebraic equations are the impulsive counterparts of Hamel’s equa-
tions (}3.3 ff.).

The Impulsive Maggi Equations

Multiplying the impulsive Routh–Voss equations corresponding to (4.5.1a, b),

Dpk ¼ Q̂Qk þ
X


̂
DaDk ðD ¼ 1; . . . ;mÞ; ð4:5:6Þ

with Akl ¼ Aklðq; tÞ, where ðAklÞ is the inverse of the (augmented) n� n matrix ðaklÞ,
as in chapters 2 and 3, and summing over k from 1 to n, we find, successively,

D
X

Aklpk

� �
¼
X

AklQ̂Qk þ
X

Akl

X

̂
DaDk

� �h i
¼
X

AklQ̂Qk þ
X


̂
D
X

aDkAkl

� �h i
¼
X

AklQ̂Qk þ
X


̂
D �Dl ;

or, finally, since DAkl ¼ 0, the above split into the following two groups:X
AkDDpk ¼

X
AkDQ̂Qk þ 
̂
D ð� ŶYD þ L̂LDÞ ðD ¼ 1; . . . ;mÞ; ð4:5:6aÞX

AkIDpk ¼
X

AkIQ̂Qk ð� ŶYIÞ ðI ¼ mþ 1; . . . ; nÞ; ð4:5:6bÞ

since 
̂
I � L̂LI ¼ 0. Equations (4.5.6a) and (4.5.6b) are, respectively, the impulsive
kinetostatic and kinetic Maggi’s equations.
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REMARKS

(i) The kinetic impulsive equations (4.5.5a) can also be obtained by integration of

the corresponding kinetic equations of ordinary continuous motion (}3.5) in time,

and then taking the impulsive limit � ! 0, while noting that [as in (4.4.12)]:

@T*=@�I �
X

AkI ð@T*=@qkÞ ¼ 0 and �cGIGI �
XX

�kII 0 ð@T*=@!kÞ!I 0 ¼ 0;

ð4:5:7Þ
and similarly for the kinetostatic equations (4.5.5b). The above allow us to rewrite

(4.5.5a) as

Dð@T*o=@!IÞ ¼ ŶYI ; ðI ¼ mþ 1; . . . ; nÞ; ð4:5:8Þ
where, as usual,

T*o � T*ðq; !1 ¼ 0; . . . ; !m ¼ 0; !mþ1; . . . ; !n; tÞ
¼ T*ðq; !mþ1; . . . ; !n; tÞ � T*oðq; !I ; tÞ: constrained T*; ð4:5:8aÞ

that is, here, and contrary to the Hamel equations for ordinary motion (}3.5), if no
impulsive reactions are sought, we can enforce the m nonholonomic constraints

!D ¼ 0 in T* (and YI ) before the partial differentiations; and this simplifies the

calculations somewhat.
�
Justification: expanding T* ¼ T*ð!I ; !DÞ à la Taylor

around !D ¼ 0, we obtain (with some easily understood calculus notations)

T*ð!I ; !DÞ ¼ T*ð!I ; 0Þ þ ð@T*=@!DÞo!D þO2ð!DÞ
) ½@T*ð!I ; !DÞ=@!I �o ¼ @T*ð!I ; 0Þ=@!I þ

�
@=@!I ½ð@T*=@!DÞo�!D þO2ð!DÞ

�
o

¼ @T*ð!I ; 0Þ=@!I þ 0;

that is, simply,

ð@T*=@!IÞo ¼ @T*o=@!I :
�

However, for problems with second-type constraints, where, clearly [recalling

(}4.4.3b)],

!D
þ ¼ 0 but !D

� 6¼ 0; ð4:5:8bÞ
eqs. (4.5.8) do not hold: even if no impulsive reactions are sought, still, we must

express T ! T* as function of all the !’s, carry out all differentiations, and then
enforce the m constraints, first of (8b), on the postimpact momenta; the preimpact
momenta will be calculated using the known !�. In sum, for second-type constraint

problems, (4.5.5b/8, 5c) will be replaced, respectively, by

ð@T*=@!IÞþ � ð@T*=@!IÞ� ¼ ŶYI ðI ¼ mþ 1; . . . ; nÞ; ð4:5:9aÞ
ð@T*=@!DÞþ � ð@T*=@!DÞ� ¼ ŶYD þ L̂LD ðD ¼ 1; . . . ;mÞ; ð4:5:9bÞ

although for the independent postimpact momenta we still have ð@T*=@!IÞþ ¼
ð@T*o=@!IÞ�.
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(ii) The special independent quasi-velocity choice !I ¼ _qqI , in (4.5.8), produces

what might be called the impulsive Chaplygin–Voronets (kinetic) equations:

Dð@To=@ _qqIÞ ¼ Q̂QIo; ð4:5:10Þ

where T � T*oðq; _qqmþ1; . . . ; _qqn; tÞ � T*oðq; _qqI ; tÞ � Toðq; _qqI ; tÞ; in which case,

@T*=@!I becomes @To=@ _qqI ¼ @T=@ _qqI þ
P

bDIð@T=@ _qqDÞ, a specialization of

PI ¼
P

AkIpk; and the ðn�mÞ Q̂QIo are defined from

d� 0W� 0W �X Q̂Qk �qk ¼
X

Q̂QI þ
X

bDIQ̂QD

� �
�qI �

X
Q̂QIo �qI ; ð4:5:10aÞ

a specialization of ŶYI ¼
P

AkI Q̂Qk [see also (4.5.12b, c)].

Equations (4.5.10) show that Lagrange’s impulsive equations in holonomic

variables hold unchanged in form, even for nonholonomically constrained systems,
provided we use, in there, the constrained quantities To and Q̂QIo, instead of their

unconstrained (relaxed) counterparts T and Q̂Qk; and, by comparing them with eqs.

(4.5.5a, 8) we conclude that, due to (4.5.7), the Lagrangean impulsive equations have
the same form in both holonomic and nonholonomic variables. Of course, (4.5.10) can

also be obtained by direct application of the impulsive limiting process to the

Chaplygin–Voronets equations (}3.8), with invocation of (4.5.7)-like results. [We

recall (}3.8) that here too, just like with eqs. (4.5.8), the situation is in sharp contrast

to its ordinary motion counterpart; that is, if the special Pfaffian constraints (4.5.1a)

are nonholonomic, then EIðToÞ 6¼ QIo.] In view of the earlier remark (i), these equa-

tions do not hold (without appropriate modifications) for second-type constraint

problems; and, obviously, cannot be used to calculate impulsive reactions.

Historical: equations (4.5.10) seem to be due to Beghin and Rousseau (1903), who

obtained them using the impulsive counterpart of the method of their teacher

P. Appell (1899, 1900); that is, independently of any Chaplygin–Voronets equation

considerations. In the past, they have been used by various authors [e.g., Beer

(1963)], but without the proper theoretical justification given here, or in the

Beghin/Rousseau paper.

(iii) Due to the vectorial transformations Pl ¼
P

Aklpk, and ŶYl ¼
P

AklQ̂Qk (via

chain rule), the impulsive Maggi equations (4.5.6a, b) are identical to the impulsive

Hamel equations (4.5.5c, b), respectively; but the former are in holonomic variables

while the latter are in nonholonomic variables. Also, Maggi’s equations can

result directly from the LIP, eqs. (second of 4.3.7), by inserting in it the inverse of

(4.5.2a–c):

�qk ¼
X

AkDð1 � ��DÞ þ
X

AkI ��I ¼
X

AkI ��I

� �
; ð4:5:11Þ

the details can be easily carried out by the reader.

(iv) In case the constraints (4.5.1a, b) have the special form (recalling results from

}2.11)

dqD ¼
X

bDI dqI þ bD dt; �qD ¼
X

bDI �qI ; ð4:5:12aÞ

the Maggi equations (4.5.6a, b) specialize, respectively, to

DpD ¼ Q̂QD þ 
̂
D and DpI ¼ Q̂QI �
X

bDI 
̂
D; ð4:5:12bÞ
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and by eliminating the m 
’s between these two sets of equations, we obtain the

n�m impulsive kinetic Hadamard equations

DpI þ
X

bDIDpD ¼ Q̂QI þ
X

bDIQ̂QD � Q̂QIo; ð4:5:12cÞ

which, along with the n constraints (first of 4.5.12a) (evaluated at the postimpact
instant— assuming, of course, that they hold there), constitute a determinate set

of ðn�mÞ þm ¼ n equations for the n ð _qqÞþ; the m 
̂
D can then be found from

(first of 4.5.12b). [We notice the similarity between the first of (4.5.12b) and the

earlier equations (4.4.7a).]

With the notation M̂Mk � Dpk � Q̂Qk, eqs. (4.5.12b, c) can be rewritten, respectively,

as

Kinetostatic: M̂MD ¼ 
̂
D and Kinetic: M̂MI þ
X

bDIM̂MD ¼ 0: ð4:5:12dÞ

For second-type constraint problems, clearly, the above impulsive equations of

Routh–Voss, Maggi, and Hadamard still hold; and the n ð _qqÞ� have known values,

unrelated to the constraints (4.5.1a).

Appell’s Equations and Impulsive Motion

Since these equations contain the accelerations explicitly, in general, they are not

very useful in impulsive problems. Nevertheless, an Appell-like form of impulsive

equations can be formulated. To this end, first, we define the kinetic energy of the
velocity jumps, or impulsive Appellian function:

ŜS �S dm Dv �Dv=2 6¼ DT �S dm ðvþ � vþ � v� � v�Þ=2
h i

; ð4:5:13aÞ

[in exception to the earlier hat notation, eqs. (4.2.5a)!)] and then notice that, since

DeI ¼ 0 and Denþ1 ¼ 0, we have

Dv ¼
X

eID!I ) @ðDvÞ=@ðD!IÞ ¼ eI ; ð4:5:13bÞ

and therefore, successively,

@ŜS=@ðD!I Þ ¼S ðdm=2Þ2Dv � �@ðDvÞ=@ðD!IÞ
�

¼S dmDv � eI ¼ D S dm v � eI

� �
� DPI ;

that is, finally, the kinetic equations of impulsive motion take the ‘‘Appellian’’ form

@ŜS=@ðD!I Þ ¼ Dð@T*=@!IÞ ¼ ŶYI ðI ¼ mþ 1; . . . ; nÞ; ð4:5:13cÞ
due to Arrighi (1939); see also Pars (1965, pp. 238–242). It is not hard to see, by

invoking the impulsive principle of relaxation and a relaxed S, that the correspond-

ing kinetostatic equations are

½@ŜS=@ðD!DÞ�o ¼ ŶYD þ L̂LD ðD ¼ 1; . . . ;mÞ: ð4:5:13dÞ

Example 4.5.1 One extremity of the major axis (point P) and one extremity of the

minor axis (point Q) of a thin homogeneous elliptical disk of (principal) semiaxes,
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a; b, and mass m, initially at rest, are imparted prescribed velocities, u (at P) and � (at

Q), perpendicular to the plane of the disk (fig. 4.10). Let us find its postimpact linear

and angular velocities.

By König’s theorem, the (double) kinetic energy of the disk is

2T ! 2T* ¼ mðvx2 þ vy
2 þ vz

2Þ þ ðA!x
2 þ B!y

2 þ C!z
2Þ; ðaÞ

where

vG ¼ ðvx; vy; vzÞ: velocity of mass center of disk; G;

x ¼ ð!x; !y; !zÞ: angular velocity of disk;

ðIx; Iy; IzÞ ¼
	
mb2=4;ma2=4;mða2þ b2Þ=4
: principal moments of inertia of disk at G:

ðbÞ

From rigid-body kinematics, we have

vP ¼ vG þ x� rP=G; vQ ¼ vG þ x� rQ=G; ðcÞ

or, in components,

uk ¼ ðvx; vy; vzÞ þ ð!x; !y; !zÞ � ða; 0; 0Þ; ðc1Þ
vk ¼ ðvx; vy; vzÞ þ ð!x; !y; !zÞ � ð0; b; 0Þ; ðc2Þ

respectively, from which, equating, we obtain the velocity compatibility conditions

vx ¼ 0 ðalso; by symmetryÞ; vy þ a!z ¼ 0; vz � a!y ¼ u; ðc3Þ
vx � b!z ¼ 0; vy ¼ 0 ðalso; by symmetryÞ; vz þ b!x ¼ v: ðc4Þ
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In view of the above, we choose the following convenient set of six quasi velocities:

!1 � vx ¼ 0; ðc5Þ
!2 � vy ¼ 0; ðc6Þ
!3 � !z ¼ 0; ðc7Þ
!4 � vz � a!y � u ¼ 0; ðc8Þ
!5 � vz þ b!x � v ¼ 0; ðc9Þ
!6 � vz 6¼ 0 ðc10Þ

(we could have chosen as !6 either !x or !y, or any linear combination of !x;y;z);

which invert readily to

vx ¼ !1 ¼ 0; ðc11Þ
vy ¼ !2 ¼ 0; ðc12Þ
vz ¼ !6 6¼ 0; ðc13Þ
!x ¼ ð1=bÞð!5 � vz þ vÞ ¼ ð1=bÞð0� !6 þ vÞ ¼ ð1=bÞðv� !6Þ 6¼ 0; ðc14Þ
!y ¼ ð1=aÞðvz � u� !4Þ ¼ ð1=aÞð!6 � u� 0Þ ¼ ð1=aÞð!6 � uÞ 6¼ 0; ðc15Þ
!z ¼ !3 ¼ 0: ðc16Þ

Hence the kinetic energy, (a) [with (b)], becomes, successively,

2T*! 2T** ¼ mvz
2 þ A½ðv=bÞ � ðvz=bÞ�2 þ B½ðvz=aÞ � ðu=aÞ�2

¼ � � � ¼ ðm=2Þ�3vz2 � ðuþ vÞvz þ ðu2 þ v2Þ=2�: ðc17Þ
Since the preimpact state is one of rest, the vz-impulsive equation becomes

Dð@T**=@vzÞ ¼ ð@T**=@vzÞþ � @T**=@vz ¼ ŶYz ð¼ 0; explainÞ:
ðm=4Þ½6vz � ðuþ vÞ� ¼ 0 ) vz ¼ ðuþ vÞ=6; ðd1Þ

and combined with (c3, 4) yields the following postimpact angular velocities:

!x ¼ ðv� vzÞ=b ¼ ð5v� uÞ=6b; !y ¼ ðvz � uÞ=a ¼ ðv� 5uÞ=6a: ðd2Þ
See also Bahar [1987, via Jourdain’s impulsive principle (see example below)] and

Byerly [1916, pp. 72–75, via Kelvin’s theorem (}4.6 and next problem)].

Problem 4.5.1 Continuing from the preceding example, by (c3, 4):

!x ¼ ðv� vzÞ=b; !y ¼ ðvz � uÞ=a; ðaÞ
so that the (constrained) kinetic energy [eq. (a) of ex. 4.5.1], becomes

T ¼ ð1=2Þmvz
2 þ ðmb2=8Þ½ðv� vzÞ=b�2 þ ðma2=8Þ½ðvz � uÞ=a�2 ¼ Tðvz; u; vÞ: ðbÞ

Then show that the earlier equation (d1) results from

@T=@vz ¼ 0: ðcÞ
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REMARK

This also constitutes an application of Kelvin’s theorem (}4.6).

Problem 4.5.2 Continuing from the preceding example and problem, show by any

means that the impulses at P and Q (i.e., the ones communicating to the disk the

above velocities), ÎIP and ÎIQ, respectively, equal

ÎIP ¼ ðm=24Þð5u� vÞ; ÎIQ ¼ ðm=24Þð5v� uÞ; ðaÞ

also,

vz ¼ ðÎIP þ ÎIQÞ=m; !x ¼ 4ÎIQ=mb; !y ¼ �4ÎIP=ma: ðbÞ

Example 4.5.2 A homogeneous sphere of center and center of mass G, mass

m, and radius r, rotating with angular velocity x� ¼ ð!x
�; !y

�; !z
�Þ is suddenly

placed on a perfectly rough horizontal plane (fig. 4.11). Let us find its postimpact

velocities

xþ � x ¼ ð!x; !y; !zÞ and vG
þ � v ¼ ðvx; vy; vzÞ:

By kinematics we have

vcontact point � vC ¼ vþ x� rC=G ¼ 0; ðaÞ

or, in components,

ð0; 0; 0Þ ¼ ðvx; vy; vzÞ þ ð!x; !y; !zÞ � ð0; 0;�rÞ; ðbÞ

and from this we obtain the three Pfaffian constraints

vx � r!y ¼ 0; vy þ r!x ¼ 0; vz ¼ 0: ðcÞ
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Figure 4.11 Sphere placed suddenly in contact with a rough plane.



Hence, introducing the six quasi velocities !k:

!1 � vx � r!y ¼ 0; ðd1Þ
!2 � vy þ r!x ¼ 0; ðd2Þ
!3 � vz ¼ 0; ðd3Þ
!4 � !x 6¼ 0; ðd4Þ
!5 � !y 6¼ 0; ðd5Þ
!6 � !z 6¼ 0 ðd6Þ

(or any other linear and invertible combination of vx; vy; vz; !x; y;zÞ; and their inverses,

vx ¼ !1 þ r!y ¼ !1 þ r!5 ¼ r!5; ðd7Þ
vy ¼ !2 � r!x ¼ !2 � r!4 ¼ �r!4; ðd8Þ
vz ¼ !3 ¼ 0; ðd9Þ
!x ¼ !4 6¼ 0; ðd10Þ
!y ¼ !5 6¼ 0; ðd11Þ
!z ¼ !6 6¼ 0; ðd12Þ

we can express the (double) kinetic energy of the sphere as follows:

2T ¼ mðvx2 þ vy
2 þ vz

2Þ þmk2ð!x
2 þ !y

2 þ !z
2Þ

¼ m½ð!1 þ r!5Þ2 þ ð!2 � r!4Þ2 þ !3
2 þ k2ð!4

2 þ !5
2 þ !6

2Þ� ð¼ 2T*Þ;

[where k2 � ð2=5Þr2: (squared) radius of gyration of sphere about G] or

2T* ¼ m
�ðr2 þ k2Þ!4

2 þ ðr2 þ k2Þ!5
2 þ k2!6

2

þ !1
2 þ !2

2 þ !3
2 þ 2r!1!5 � 2r!2!4

�
; ðeÞ

where the last five terms represent the ‘‘relaxed (i.e., unconstrained)’’ contributions to

T*. As a result of the above, the postimpact nonholonomic momenta ð@T*=@!kÞþ are

found to be [with the notation ð. . .Þjþ ¼ ð. . .Þpostimpact constraints enforced after differentiations�

1: mð!1 þ r!5Þjþ ¼ mr!5; ðf1Þ
2: mð!2 � r!4Þjþ ¼ �mr!4; ðf2Þ
3: m!3jþ ¼ m!3; ðf3Þ
4: m½ðr2 þ k2Þ!4 � r!2�jþ ¼ mðr2 þ k2Þ!4; ðf4Þ
5: m½ðr2 þ k2Þ!5 þ r!1�jþ ¼ mðr2 þ k2Þ!5; ðf5Þ
6: mk2!6jþ ¼ mk2!6; ðf6Þ

and similarly for the preimpact nonholonomic momenta ð@T*=@!kÞ�:

1: 0; 2: 0; 3: 0; 4: mk2!4
�; 5: mk2!5

�; 6: mk2!6
�: ðf7Þ
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Next, let us calculate the nonholonomic impulsive forces, ŶYk (impressed) and L̂LD

(reactions) [where, in view of (d1–6), k ¼ 1; . . . ; 6; D ¼ 1; 2; 3� and their relations

with their holonomic counterparts Q̂Qx; y;z;... and R̂Rx; y;z; M̂Mx; y;z. With d�k=dt � !k, we

obtain

d� 0W� 0W ¼
X

ŶYk ��k ¼ 0; ŶYk ¼ 0 ) Q̂Qx;y;z; ... ¼ 0; ðg1Þ
d� 0WR� 0WR ¼

X
L̂Lk ��k ¼

X
L̂LD ��D

¼ L̂L1 ��1 þ L̂L2 ��2 þ L̂L3 ��3

¼ L̂L1ð�x� r ��yÞ þ L̂L2ð�yþ r ��xÞ þ L̂L3 �z

¼ L̂L1 �xþ L̂L2 �yþ L̂L3 �zþ ðL̂L2 rÞ ��x þ ð�L̂L1 rÞ ��y þ ð0Þ ��z ðg2Þ
� R̂Rx �xþ R̂Ry �yþ R̂Rz �zþ M̂Mx ��x þ M̂My ��y þ M̂Mz ��z; ðg3Þ
) R̂Rx ¼ L̂L1; R̂Ry ¼ L̂L2; R̂Rz ¼ L̂L3; M̂Mx ¼ rL̂L2; M̂My ¼ �rL̂L1; M̂Mx ¼ 0: ðg4Þ

With the help of the above results, and the notationalDPk�ð@T*=@!kÞþ�ð@T*=@!kÞ�:
impulsive jumps of the nonholonomic momenta, the Hamel equations of impulsive

motion become

1: DP1 ¼ ŶY1 þ L̂L1: mr!5 ¼ mr!y ¼ L̂L1; ðh1Þ

or, due to the k ¼ 5 equation (see below),

mr½k2=ðr2 þ k2Þ�!y
� ¼ L̂L1; ðh2Þ

2: DP2 ¼ ŶY2 þ L̂L2: �mr!4 ¼ �mr!x ¼ L̂L2; ðh3Þ

or, due to the k ¼ 4 equation (see below),

�mr½k2=ðr2 þ k2Þ�!x
� ¼ L̂L2; ðh4Þ

3: DP3 ¼ ŶY3 þ L̂L3: m!3 ¼ mvz ¼ L̂L3 ¼ 0; ðh5Þ
4: DP4 ¼ ŶY4: mðr2 þ k2Þ!4 �mk2!�4 ¼ 0; ðh6Þ

or

!x ¼ ½k2=ðr2 þ k2Þ�!x
�; and then vy ¼ �r!x ¼ � � � ; ðh7Þ

5: DP5 ¼ ŶY5: mðr2 þ k2Þ!5 � mk2!5
� ¼ 0; ðh8Þ

or

!y ¼ ½k2=ðr2 þ k2Þ�!y
�; and then vx ¼ r!y ¼ � � � ; ðh9Þ

6: DP6 ¼ ŶY6: mk2!6 �mk2!6
� ¼ 0; ðh10Þ

or

!6 ¼ !6
� ) !z ¼ !z

�: ðh11Þ
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Finally, let us compare the above with the ‘‘elementary’’ Newton–Euler impulsive

theory. With vG
� ¼ ðvx�; vy�; vz�Þ ¼ 0, and recalling (g4), we readily find

mvx ¼ R̂Rx ð¼ L̂L1Þ ) R̂Rx ¼ mr!y ¼ mr½k2=ðr2 þ k2Þ�!y
�; ði1Þ

mvy ¼ R̂Ry ð¼ L̂L2Þ ) R̂Ry ¼ �mr!x ¼ �mr½k2=ðr2 þ k2Þ�!x
�; ði2Þ

mvz ¼ R̂Rz ð¼ L̂L3Þ ) R̂Rz ¼ 0; ði3Þ
M̂Mx ¼ r R̂Ry ¼ � � � ; M̂My ¼ �r R̂Rx ¼ � � � ; M̂Mz ¼ 0 ðangular momentum about GÞ:

ði4Þ

[To obtain reactionless equations we could apply the impulsive angular momentum

principle (here, conservation) about the contact point C.]

Finally, it is not hard to show that if ðvx�; vy�; vz�Þ 6¼ 0, (h7, 9) would be replaced,

respectively, by

!x ¼ ðk2!x
� þ r vy

�Þ�ðr2 þ k2Þ and !y ¼ ðk2!y
� þ r vx

�Þ�ðr2 þ k2Þ: ðjÞ

See also Bahar [1987, via Jourdain’s impulsive principle (see example below)] and

Byerly [1916, pp. 72–75, via Kelvin’s theorem (}4.6)].

Example 4.5.3 A homogeneous straight rigid bar AB of length l ¼ 2b and mass m
falls freely in the vertical plane O�xy and strikes a smooth and inelastic floor at A
(fig. 4.12). Find the postimpact velocities and forces.

We choose as Lagrangean coordinates q1;2;3 (i) the coordinates of the mass center

of the bar G: x and y, and (ii) the bar angle with the vertical (positive upward): �.
Clearly, this is a second-kind problem; that is, one of suddenly applied and persistent
constraints. The preimpact velocities are

ð _xxÞ� ¼ 0; ð _yyÞ� ¼ �v; ð _��Þ� ¼ !; all given; ðaÞ
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while the unknowns of the problem are the postimpact velocities:

ð _xxÞþ � _xx ¼ 0 ðby inspection��see belowÞ; ð _yyÞþ ¼ _yy; ð _��Þþ ¼ _��; ðbÞ

and the impulsive ground reaction R̂R. Below we present two solutions.

1. First Solution: Holonomic Coordinates

We have (double) kinetic energy (with I � mb2=3: moment of inertia of bar about G):

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2� þ Ið _��Þ2; ðcÞ

constraint:

vA ¼ vG þ x� rA=G ¼ ð _xx; _yy; 0Þ þ ð� _��kÞ � ð�b sin �; b cos �; 0Þ
¼ ð _xx� b _�� cos �; _yyþ b _�� sin �; 0Þ
¼ ðvAx; vAy; 0Þ; ðdÞ

and, since the floor is inelastic,

vAy ¼ _yyþ b _�� sin � ¼ 0 ði:e:; n�m ¼ 3� 1 ¼ 2Þ; ðe1Þ

and, in virtual form (with vAy � _yyAÞ;
�yA ¼ �yþ b sin � �� ¼ 0 ði:e:; the vertical virtual displacement of A vanishesÞ;

ðe2Þ
an equation that holds whether the inelastic floor is stationary (case discussed here),

or moves with a prescribed motion [generalization of (e1)].

Impulsive Lagrange’s principle:

Dð@T=@ _xxÞ �xþ Dð@T=@ _yyÞ �yþ Dð@T=@ _��Þ �� ¼ 0; ðf1Þ
under the constraint eq. (e2), rewritten as

ð0Þ �xþ ð1Þ �yþ ðb sin �Þ �� ¼ 0: ðf2Þ

Since �x is unconstrained, (f1) gives

Dð@T=@ _xxÞ ¼ Dðm _xxÞ ¼ m _xx� mð _xxÞ� ¼ 0 ) _xx ¼ 0: ðg1Þ

Then (f1, 2) reduce, respectively, to

Dð@T=@ _yyÞ �yþ Dð@T=@ _��Þ �� ¼ Dðm _yyÞ �yþ DðI _��Þ �� ¼ 0; ðg2Þ
ð1Þ �yþ ðb sin �Þ �� ¼ 0; ðg3Þ

and, via an impulsive multiplier �
̂
, combine, in well-known ways, to the single

unconstrained variational equation�
Dðm _yyÞ � 
̂
ð1Þ� �yþ �DðI _��Þ � 
̂
ðb sin �Þ� �� ¼ 0: ðg4Þ
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This yields, immediately, the two Routh–Voss impulsive equations

Dðm _yyÞ ¼ 
̂
; DðI _��Þ ¼ 
̂
ðb sin �Þ; ðh1Þ

or, invoking the preimpact velocities (a),

mð _yyþ vÞ ¼ 
̂
; Ið _��� !Þ ¼ 
̂
 b sin �; ðh2Þ

which, along with the constraint equation (e1) (evaluated at the postimpact instant)

constitute a system of three equations for _yy; _��; 
̂
. Solving them, we find

_�� ¼ ðb!þ 3v sin �Þ��bð1þ 3 sin2 �Þ; ði1Þ
_yy ¼ � sin �ðb!þ 3v sin �Þ��ð1þ 3 sin2 �Þ: ði2Þ

Then, from the first of (h2),


̂
 ¼ mð _yyþ vÞ ¼ mðv� b! sin �Þ�ð1þ 3 sin2 �Þ; ði3Þ

and [fig. 4.12(b)]

d� 0WR� 0WR ¼ R̂R �yA ¼ R̂R ð�yþ b sin � ��Þ ¼ R̂R �yþ ðR̂R b sin �Þ ��
� R̂Ry �yþ R̂R� �� ð¼ 0Þ; ðj1Þ

that is,

R̂Ry ¼ R̂R ¼ 
̂
; R̂R� ¼ R̂R b sin � ¼ 
̂
 b sin �; R̂Rx ¼ 0: ðj2Þ

The (two) kinetic impulsive Maggi equations of this problem are (g1) and the equa-

tion obtained by eliminating 
̂
 between (h2):

Ið _��� !Þ � b sin �
�
mð _yyþ vÞ� ¼ 0; ðk1Þ

or, simplifying,

3 sin �ð _yyþ vÞ � bð _�� � !Þ ¼ 0: ðk2Þ

Solving (g1), (k2), and (e1) for _xx; _yy; _��, we recover the second of (g1) and (i1, 2). These

results are rederived more systematically below.

2. Second Solution: Nonholonomic Coordinates

Due to the constraints (e1, 2), we introduce the following set of quasi velocities:

!1 � _yyþ ðb sin �Þ _�� ð¼ 0Þ; !2 � _yy; !3 � _xx: ðl1Þ

Their inverse is readily found to be

_xx ¼ !3; _yy ¼ !2; _�� ¼ ð!1 � !2Þ=b sin �; ðl2Þ
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that is, the corresponding transformation matrices are

ðaklÞ ¼
0 1 b sin �

0 1 0

1 0 0

0BB@
1CCA;

ðAklÞ ¼
0 0 1

0 1 0

ðb cos �Þ�1 �ðb cos �Þ�1
0

0BB@
1CCA: ðl3Þ

Then:

(i) Maggi’s kinetic equations:
P

AkIDpk ¼
P

AkIQ̂Qk ðk ¼ 1; 2; 3; I ¼ 2; 3Þ, with

some (hopefully obvious) ad hoc notations, become

I ¼ 2: Ax2ðDpx � Q̂QxÞ þ Ay2ðDpy � Q̂QyÞ þ A�2ðDp� � Q̂Q�Þ ¼ 0;

or ð0Þ ðDpx � 0Þ þ ð1Þ ðDpy � 0Þ þ ð�1=b sin �ÞðDp� � 0Þ ¼ 0;

or; Enally; Dp� ¼ ðb sin �ÞDpy: ðm1Þ

I ¼ 3: Ax3ðDpx � Q̂QxÞ þ Ay3ðDpy � Q̂QyÞ þ A�3ðDp� � Q̂Q�Þ ¼ 0;

or ð1Þ ðDpx � 0Þ þ ð0Þ ðDpy � 0Þ þ ð0Þ ðDp� � 0Þ ¼ 0;

or; Enally; Dpx ¼ 0; ðm2Þ

(ii) Maggi’s kinetostatic equations:
P

AkDDpk ¼
P

AkDQ̂Qk ðk ¼ 1; 2; 3; D ¼ 1;

i.e., here only one such equation) become

D ¼ 1: Ax1ðDpx � Q̂QxÞ þ Ay1ðDpy � Q̂QyÞ þ A�1ðDp� � Q̂Q�Þ ¼ 
̂
1 � 
̂
;
or ð0Þ ðDpx � 0Þ þ ð0Þ ðDpy � 0Þ þ ð1=b sin �ÞðDp� � 0Þ ¼ 
̂
;
or; Enally; Dp� ¼ ðb sin �Þ
̂
: ðm3Þ

Equations (m1–3), naturally, coincide with the earlier equations (k2), (g1), (second of

h2), respectively.

(iii) Next, let us formulate the impulsive Hamel equations. In terms of the above

!’s, the preimpact state is

!1
� ¼ �vþ ! b sin � ð6¼ 0; but !1

þ � ! ¼ 0Þ;
!2
� ¼ ð _yyÞ� ¼ �v; !3

� ¼ ð _xxÞ� ¼ 0; ðn1Þ

and, further,

2T ! 2T* ¼ mð!2
2 þ !3

2Þ þ ðm=3 sin2 �Þð!1 � !2Þ2 ½substituting ðl2Þ into ðcÞ�;
ðn2Þ

) 2T*o ¼ mð!2
2 þ !3

2Þ þ ðm=3 sin2 �Þ!2
2 ðconstrained 2T*Þ; ðn3Þ
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d� 0W� 0W ! dð� 0WÞ* ¼ ŶY1 ��1 þ ŶY2 ��2 þ ŶY3 ��3 ¼ 0

½where !1;2;3 � d�1;2;3=dt; since Q̂Qx;y;� ¼ 0 ) ŶY1;2;3 ¼ 0�; ðn4Þ

d� 0WR� 0WR !dð� 0WRÞ* ¼ L̂L1 ��1 þ L̂L2 ��2 þ L̂L3 ��3

¼ L̂L1ð�yþ b sin � ��Þ þ L̂L2 �yþ L̂L3 �x

¼ L̂L3 �xþ ðL̂L1 þ L̂L2Þ �yþ ðL̂L1b sin �Þ �� ð¼ 0Þ; ðn5Þ

from which [and ( j2)] it follows that

R̂Rx ¼ L̂L3 ¼ 0; R̂Ry ¼ L̂L1 þ L̂L2 ¼ 
̂
) L̂L2 ¼ 0 ðby next equationÞ;
R̂R� ¼ L̂L1b sin � ¼ 
̂
 b sin � ) L̂L1 ¼ 
̂
 ¼ R̂R; i:e:; L̂L1 6¼ 0; L̂L2 ¼ 0; L̂L3 ¼ 0: ðn6Þ
In view of the above, the Hamel impulsive equations are (we recall to set, after the

differentiations, !1 ¼ 0Þ
!3: Dð@T*=@!3Þ ¼ L̂L3: m!3 � 0 ¼ 0) !3 � _xx ¼ 0; ðo1Þ
!2: Dð@T*=@!2Þ ¼ L̂L2:

½m!2 þ ðm=3 sin2�Þð!2 � !1Þ�
� ½mð�vÞ þ ðm=3 sin2 �Þð�v� b! sin �þ vÞ�;

) mð!2 þ vÞ þ ðm=3 sin �Þ½ð!2= sin �Þ þ b� ¼ 0

) !2 � _yy ¼ � sin �ðb!þ 3v sin �Þ��ð1þ 3 sin2 �Þ; ðo2Þ
!1: Dð@T*=@!1Þ ¼ L̂L1:

½mð!1 � !2Þ=3 sin2 ��o � ½mðb! sin �� vþ vÞ=3 sin2 ��o
¼ ð�m!2=3 sin2 �Þ � ðmb!=3 sin �Þ ¼ L̂L1 ¼ 
̂
;

) �ðm=3 sin �Þ�ð!2= sin �Þ þ b!
� ¼ 
̂
;

) L̂L1 ¼ mðv� b! sin �Þ=ð1þ 3 sin2 �Þ ½invoking ðo2Þ�; ðo3Þ

and, finally, from (l2)

_�� ¼ �!2=b sin � ¼ � _yy=b sin � ¼ ðb!þ 3v sin �Þ��bð1 þ 3 sin2 �Þ; ðo4Þ
as before.

CLOSING REMARKS

(i) This is a problem of the second kind; that is, suddenly introduced persistent

constraints. Due to !1
� 6¼ 0, in expressions like ð@T*=@!DÞþ and ð@T*=@!DÞ�, we

must keep all the !’s in Tþ:T* ¼ T*ð!1; !2; !3Þ, and enforce the constraint

!þ1 � !1 ¼ 0 only after all differentiations have been carried out. However, the reader

may easily verify that

ð@T*=@!IÞþ ¼ ð@T*o=@!IÞþ:
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(ii) This problem is treated in Timoshenko and Young (1948, p. 226). Their

solution is, however, conceptually incorrect, since they treat R̂R as an impressed impul-

sive force; even though, clearly, all Q’s vanish. Their final results, however,

are correct. The same error is repeated in several other (mostly British) texts: for

example, Ramsey (1937, pp. 220–221), Smart (1951, pp. 262–263). Other authors do

not commit such errors only because they restrict their treatments to first-kind

problems.

Problem 4.5.3 (D. T. Greenwood, private communication, 1997). Continuing

from the preceding example, and in order to avoid calculating undesired impulsive

constraint reactions, choose as velocity variables _xxA � vAx; _yyA � vAy; _�� � O (i.e.,

!1 � vAy; !2 � vAx; !3 � _��Þ. Then the initial conditions are

vAx
� ¼ �b! cos �; vAy

� ¼ b! sin �� �; O� ¼ !; ðaÞ

while after the impact with the floor,

vAy ¼ 0; vAx; O: independent ði:e:; !1 ¼ 0; !2; !3: independentÞ: ðbÞ

(i) Show that the unconstrained kinetic energy of the bar is

T ¼ ðm=2ÞðvAx2 þ vAy
2Þ þ ð2mb2=3ÞO2 þmbOðvAx cos �� vAy sin �Þ ð¼ T*Þ: ðcÞ

(ii) Verify that Appell’s rule (i.e., conservation of system momenta corresponding

to vAx; O) gives

Dð@T=@vAxÞ ¼ Dð@T*=@!2Þ ¼ 0: mvAx þmbO cos � ¼ constant ð¼ 0Þ; ðd1Þ
Dð@T=@OÞ ¼ Dð@T*=@!3Þ ¼ 0:

ð4=3Þmb2OþmbðvAx cos ��vAy sin �Þ ¼ constant ½¼ ð4=3Þmb2!�mb2!þmb v sin ��;
ðd2Þ

from which, eliminating vAx, while recalling the first of (b), we obtain O [ex. 4.5.3:

(i1)].

(iii) Show that the vertical constraint impulse 
̂
 ¼ R̂Ry is found from the impulsive

Routh–Voss equation

Dð@T=@vAyÞ ¼ R̂Ry:

DðmvAy �mbO sin �Þ ¼ �m sin �
�ðb!þ 3v sin �Þ=ð1þ 3 sin2 �Þ�þmv ¼ R̂Ry; ðeÞ

in agreement with the earlier expressions (i3) and (o3) of ex. 4.5.3.

Example 4.5.4 A homogeneous straight rigid bar AB of length L and mass M can

rotate freely about a fixed pin at A. A particle of mass m strikes the bar and then

slides along it. The entire figure lies on a smooth horizontal plane O�xy (fig. 4.13).

Find the postimpact velocities and forces (reactions) if the bar is initially at rest; the

particle strikes at a distance �L ð0 < � < 1Þ, when the bar makes an angle � ¼ �o
with the positive x-axis, with preimpact velocity components ð _xxÞ� ¼ 0; ð _yyÞ� ¼ vo � v
(Bahar, 1970–1980; Greenwood, 1977, p. 118).
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By König’s theorem,

2T ¼MðL _��=2Þ2 þ ðML2=12Þð _��Þ2 þm½ð _xxÞ2 þ ð _yyÞ2�
¼M½L2ð _��Þ2=3� þm½ð _xxÞ2 þ ð _yyÞ2�; ða1Þ

also,

d� 0W� 0W ¼ 0; Q̂Qx; y;� ¼ 0: ða2Þ

1. First Solution: Holonomic Coordinates

By ð. . .Þ:-differentiating the holonomic and stationary constraint y ¼ x tan � [fig.

4.13(a)], we find

_yy ¼ _xx tan �þ x _�� sec2� ) ðtan �Þ _xxþ ð�1Þ _yyþ ðx sec2�Þ _�� ¼ 0; ðb1Þ
and, since this system is scleronomic,

ðtan �Þ �xþ ð�1Þ �yþ ðx sec2 �Þ �� ¼ 0: ðb2Þ
Further, we have

Particle conOguration: x ¼ ð�LÞ cos �; y ¼ ð�LÞ sin �; ðb3Þ
Preimpact velocities: ð _xxÞ� ¼ 0; ð _yyÞ� ¼ v; ð _��Þ� ¼ 0; ðb4Þ
Postimpact velocities: ðtan �Þ _xxþ ð�1Þ _yyþ ðx sec2�Þ _�� ¼ 0: ðb5Þ

Therefore, the impulsive principle of Lagrange yields

0 ¼ Dð@T=@ _xxÞ �xþ Dð@T=@ _yyÞ �yþ Dð@T=@ _��Þ ��
¼ ½m _xx�mð _xxÞ�� �xþ ½m _yy�mð _yyÞ�� �yþ ðML2=3Þ½ _��� ð _��Þ�� ��
¼ ðm _xxÞ �xþmð _yy� vÞ �yþ ðML2=3Þ _�� ��; ðcÞ
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Figure 4.13 (a) Particle impacting on a straight rigid bar AB, at a distance �L from A;

(b) corresponding constraint reaction, and its components. �L ¼ x sec �; 
̂
 sec � � F̂F ; 
̂
 tan � ¼ R̂Rx:



under (b2). Applying the multiplier rule to (c), with (b2), we readily obtain

m _xx ¼ 
̂
 tan �; mð _yy� vÞ ¼ �
̂
; ðML2=3Þ _�� ¼ 
̂
ðx sec2�Þ; ðd1; 2; 3Þ

which along with (b1) [or (b5)] constitutes an algebraic system of four equations for

_xx; _yy; _��; 
̂
. Solving it, we find (with � � m=MÞ

_xx ¼ ðsin � cos �=3�2�Þv; ðe1Þ
_yy ¼ ½ðsin2 �þ 3�2�Þ=ð1þ 3�2�Þ�v; ðe2Þ
L _�� ¼ ½ð3� cos �Þ=ð��1 þ 3�2Þ�v; ðe3Þ

̂
 ¼ mðv� _yyÞ ¼ � cos2 �=ð1þ 3�2�Þ�mv

¼ ½cos2 �=ð��1 þ 3�2Þ�Mv: ðe4Þ

From the above, and figure 4.13(b), we find that the holonomic components of the

impulsive constraint reactions equal

R̂Rx ¼ 
̂
 tan � ¼ F̂F sin � ¼ ðsin �=�LÞR̂R�; ðf 1Þ
R̂Ry ¼ �
̂
 ¼ �ðcos �=�LÞR̂R�; ðf 2Þ

R̂R� ¼dð� 0WRÞo= �� ¼ ½ð
̂
 sec �Þðx sec �Þ ������ ¼ 
̂
 x sec2�: ðf 3Þ

2. Second Solution: Nonholonomic Coordinates

In view of the constraint (b1), and recalling (b3), we introduce the following quasi

velocities:

!1 � ðtan �Þ _xxþ ð�1Þ _yyþ ð�L= cos �Þ _�� ð¼ 0Þ; !2 � _xx; !3 � _yy; ðg1Þ

with inverses (unconstrained, since we want to calculate the impulsive reactions)

_xx ¼ !2; _yy ¼ !3; _�� ¼ ðcos �=�LÞ!1 þ ðcos �=�LÞ!3 þ ð� sin �=�LÞ!2: ðg2Þ

Then:

(i) The, also unconstrained, (double) kinetic energy is

2T ! 2T* ¼ ðM=3�2Þ�ð!1 þ !3Þ cos �� !2 sin �
�2 þmð!2

2 þ !3
2Þ; ðhÞ

(ii) The preimpact velocities are

ð _��Þ� ¼ 0; ð _xxÞ� ¼ 0; ð _yyÞ� ¼ v ) !1
� ¼ �v; !2

� ¼ 0; !3
� ¼ v; ðiÞ

!1 � !1
þ ð¼ 0Þ 6¼ !1

� ðsudden! persistent constraints; i:e:; second-type problemÞ;
ðjÞ
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(iii) The (unconstrained) impulsive virtual works aredð� 0WÞ* � ŶY1 ��1 þ ŶY2 ��2 þ ŶY3 ��3 ¼ 0) ŶY1;2;3 ¼ 0; ðk1Þ

0 ¼dð� 0WRÞ* � L̂L1 ��1 þ L̂L2 ��2 þ L̂L3 ��3 ½invoking the virtual form of ðg2Þ�
¼ L̂L1½ðtan �Þ �x� �yþ ð�L= cos �Þ ��� þ L̂L2 �xþ L̂L3 �y

¼ � � � ¼ R̂Rx �xþ R̂Ry �yþ R̂R� �� �d� 0WR; ðk2Þ
) R̂Rx ¼ ðtan �ÞL̂L1 þ L̂L2 ¼ ðtan �ÞL̂L1 ½¼ ðsin �=�LÞR̂R�� ðsince L̂L2 ¼ 0Þ; ðk3Þ

R̂Ry ¼ ð�1ÞL̂L1 þ L̂L3 ¼ �L̂L1 ½¼ �ðcos �=�LÞR̂R�� ðsince L̂L3 ¼ 0Þ; ðk4Þ
R̂R� ¼ ð�L= cos �ÞL̂L1 ðwhere L̂L1 ¼ 
̂
Þ: ðk5Þ

Therefore, the Hamel impulsive equations are (we recall to set !þ1 � !1 ¼ 0, after the

differentiations)

!1: Dð@T*=@!1Þ ¼ L̂L1:

ðM=3�2Þð!3 cos2 �� !2 sin � cos �Þ ¼ L̂L1; ðl1Þ
!2: Dð@T*=@!2Þ ¼ 0:

ðM=3�2Þð!2 sin2 �� !3 sin � cos �Þ þ m!2 ¼ 0; ðl2Þ
!3: Dð@T*=@!3Þ ¼ 0:

ðM=3�2Þð!3 cos2 �� !2 sin � cos �Þ þmð!3 � vÞ ¼ 0: ðl3Þ

Solving this algebraic system for !2;3 and L̂L1 we find

!2 ¼ _xx ¼ ½" sin � cos �=ð1þ "Þ�v; ðm1Þ
!3 ¼ _yy ¼ ½ð1þ " sin2 �Þ=ð1þ "Þ�v; ðm2Þ
L̂L1 ¼ 
̂
 ¼ ðM=3�2Þ½cos2 �=ð1þ "Þ�v; ðm3Þ

where

" �M=3m�2 ¼ ðM=mÞð1=3�2Þ ¼ 1=3�2�; ðm4Þ
) _�� ¼ ðcos �=�LÞ!3 � ðsin �=�LÞ!2 ¼ ½cos �=�Lð1þ "Þ�v; ðm5Þ

which, naturally, coincide with the earlier values.

CLOSING REMARKS

If the problem was one of the first kind (i.e., only impressed impulsive forces,

no change of constraints), then D!1 � !1
þ � !1

� ¼ 0 � 0, and since always

ð@T*=@!I Þo ¼ @T*o=@!I , the kinetic impulsive equations can be written as

Dð@T*o=@!IÞ ¼ ŶYI ðI ¼ 2; 3Þ. But in second kind problems, like this one, since

!1
� 6¼ 0, the notation ð. . .Þo can only mean setting !1

þ ¼ 0, after all differentiations;

that is, we must start with T*, even if we do not seek the impulsive reactions. Then,

ð@T*=@!IÞþ ¼ ð@T*o=@!IÞþ but ð@T*=@!IÞ� 6¼ ð@T*o=@!I Þ�; ðn1; 2Þ
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and the kinetic (reactionless) impulsive equations can be written as

ð@T*o=@!I Þþ � ð@T*=@!I Þ� ¼ ŶYI . Clearly, these are general results.

Let us verify them for our problem. Equation (h) yields

2T*! 2T*o ¼ ðM=3�2Þð!3 cos �� !2 sin �Þ2 þmð!2
2 þ !3

2Þ; ðoÞ
) @T*o=@!2 ¼ ðM=3�2Þð!3 cos �� !2 sin �Þð� sin �Þ þm!2; ðp1Þ
ð@T*o=@!2Þ� ¼ ðM=3�2Þðv cos �Þð� sin �Þ; ðp2Þ

but

ð@T*=@!2Þ� ¼ ðM=3�2Þ�ð�vþ vÞ cos �� 0
�ð� sin �Þ þ 0 ¼ 0; ðp3Þ

that is,

ð@T*=@!2Þ� 6¼ ð@T*o=@!2Þ�;
and

ð@T*o=@!2Þþ ¼ ðM=3�2Þð!3 cos �� !2 sin �Þð� sin �Þ þm!2; ðp4Þ
ð@T*=@!2Þþ ¼ ðM=3�2Þð!3 cos �� !2 sin �Þð� sin �Þ þm!2; ðp5Þ

that is,

ð@T*o=@!2Þþ ¼ ð@T*=@!2Þþ; and similarly for !3:

In sum: the replacement of T* with T*o in the kinetic impulsive equations is allowed

only when the constraints !D ¼ 0 hold.

Example 4.5.5 Three slender homogeneous bars, AB;BC;CD, each of mass m and

length 2b, are pinned together at B and C, and pivoted at A to a fixed horizontal

table. The end D receives an impulse P̂P [fig. 4.14a]. Let us find the translational and

rotational (angular) velocities of the mass center of each rod (Bahar, 1987; Chorlton,

1983, pp. 227–229; also Beghin, 1967, pp. 472–473).
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Figure 4.14 (a) System consisting of three homogeneous bars AB; BC;CD, impacted at

D; (b) quasi velocities chosen to describe its velocities. ‘‘British theorem’’: the kinetic

energy of a thin homogeneous bar AB, of mass m, equals T ¼ ðm=6ÞðvA2 þ vB
2 þ vA � vBÞ.



1. Kinetic Equations

Although, clearly, this is a holonomic system, we choose to describe it by the quasi

velocities shown in fig. 4.14(a, b), compatible with plane and rigid kinematics. Using

the ‘‘British theorem’’ [(1.17.8)] and some easily understood ad hoc notation, we find

that the kinetic energy of the system, at the impact configuration, is

T ¼ TAB þ TBC þ TCD

¼ ðm=6Þð0þ v2Þþðm=6Þðv2 þ u2 þ v2 þ v2Þþðm=6Þðu2 þ v2 þ u2 þ w2 þ u2 þ w vÞ
¼ ðm=6Þð5v2 þ 4u2 þ w2 þ w vÞ: ðaÞ�

For comparison purposes, we point out that the König theorem-based calculation

would have given

2TAB ¼ mðv=2Þ2 þ ðmb2=3Þðv=2bÞ2 ¼ mv2=3; ða1Þ
2TBC ¼ m½v2 þ ðu2=4Þ� þ ðmb2=3Þðu=2bÞ2 ¼ mv2 þ mu2=3; ða2Þ
2TCD ¼ mfu2 þ ½ðwþ vÞ=2�2g þ ðmb2=3Þ½ðw� vÞ=2b�2

¼ ðm=3Þð3u2 þ v2 þ w2 þ wvÞ; etc:
� ða3Þ

The impressed impulsive forces are calculated from the corresponding virtual work

expression (as if u; v;w were quasi coordinates):

d� 0W� 0W ¼ ŶYu �uþ ŶYv �vþ ŶYw �w ¼ P̂P �w ) ŶYu ¼ 0; ŶYv ¼ 0; ŶYw ¼ P̂P: ðbÞ

In view of the above, the Hamel equations of motion are (with T instead of the

customary T*, and !þ � ! for all postimpact velocities)

Dð@T=@uÞ ¼ 0) ðm=6Þð8uÞ ¼ 0; ðc1Þ
Dð@T=@vÞ ¼ 0) ðm=6Þð10vþ wÞ ¼ 0; ðc2Þ
Dð@T=@wÞ ¼ P̂P) ðm=6Þðvþ 2wÞ ¼ P̂P; ðc3Þ

and their solution is easily found to be

u ¼ 0; v ¼ �ð6=19ÞðP̂P=mÞ; w ¼ ð60=19ÞðP̂P=mÞ: ðdÞ

Then, by simple kinematics,

!AB ¼ v=2b ¼ �ð3=19ÞðP̂P=mbÞ ðclockwiseÞ; !BC ¼ 0;

!DC ¼ ðw� vÞ=2b ¼ ð33=19ÞðP̂P=mbÞ ðclockwiseÞ; ðe1Þ

and

vcenter of mass of AB ¼ v=2 ¼ �ð3=19ÞðP̂P=mÞ ðdownwardsÞ;
vcenter of mass of BC ¼ v ¼ �ð6=19ÞðP̂P=mÞ ðdownwardsÞ;
vcenter of mass of DC ¼ ðvþ wÞ=2 ¼ ð27=19ÞðP̂P=mÞ ðupwardsÞ: ðe2Þ

)4.5 IMPULSIVE MOTION VIA QUASI VARIABLES 771



Note the simplicity of the quasi-velocity approach, as compared with Lagrangean

(holonomic) coordinates in connection with the calculation of T for a general
configuration (fig. 4.15).

2. Kinetostatic Equations

Next, let us use the impulsive relaxation principle to calculate the (external ) impulsive

reaction at A. Since that ‘‘force’’ has components in both directions, we must allow A
to move both up/down and left/right (fig. 4.16).

We notice the additional horizontal velocity component x at B, due to another x
at A; and a vertical one y at A; and two ‘‘force’’ components at A that go along with

x; y:X ;Y . The relaxed kinetic energy is

Trelaxed � Trx ¼ ðm=6Þðw2 þ u2 þ u2 þ v2 þ u2 þ wvþ u2 þ v2 þ v2

þ x2 þ v2 þ uxþ x2 þ y2 þ x2 þ v2 þ x2 þ yvÞ
¼ ðm=6Þðw2 þ 4u2 þ 5v2 þ 4x2 þ y2 þ wvþ uxþ yvÞ; ðfÞ

and so the equations of motion are

D
�ð@Trx=@!kÞo

� ¼ ŶYk þ L̂Lk; ðg1Þ

where

f!k: u; v;w; x ¼ 0; y ¼ 0g; fŶYk: 0; 0; P̂P; 0; 0g; fL̂Lk: 0; 0; 0; X ;Yg; ðg2Þ

and ð. . .Þo means enforcement of the constraints x ¼ 0; y ¼ 0, in ð. . .Þ. Thus, and
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Figure 4.15 Geometry of impact problem of fig. 4.14,

but for a generic configuration, defined by the bar angles

q1;2;3:�; �;  (see Beghin, 1967, pp. 472–473; Chorlton,

1983, pp. 227–229).



dropping the subscript rx from T , for simplicity, we find

ð@T=@uÞo ¼ 0: ðm=6Þð8uþ xÞo ¼ ðm=6Þð8uÞ ¼ 0; ðh1Þ
ð@T=@vÞo ¼ 0: ðm=6Þð10vþ wþ yÞo ¼ ðm=6Þð10vþ wÞ ¼ 0; ðh2Þ
ð@T=@wÞo ¼ P̂P: ðm=6Þð2wþ vÞo ¼ ðm=6Þð2wþ vÞ ¼ P̂P; ðh3Þ
ð@T=@xÞo ¼ X : ðm=6Þð8xþ uÞo ¼ ðm=6ÞðuÞ ¼ X ; ðh4Þ
ð@T=@yÞo ¼ Y : ðm=6Þð2yþ vÞo ¼ ðm=6ÞðvÞ ¼ Y ; ðh5Þ

from which, since u ¼ 0, we obtain

X ¼ mu=6 ¼ 0;

Y ¼ mv=6 ¼ ðm=6Þð�6=19ÞðP̂P=mÞ ¼ ð�1=19ÞP̂P ði:e:; downward; at AÞ: ðiÞ

These results can be easily confirmed via the elementary (Newton–Euler) methods:

by linear momentum for the entire system, in the þ vertical direction, we get

P̂PþY ¼ m
�ðv=2Þ þ vþ ðwþ vÞ=2� ¼ m½2vþ ðw=2Þ�; ðjÞ

from which, and the earlier values (d) [obtained by use of the kinetic equations

(c1–3)], we find Y ¼ � � � ¼ ð�1=19ÞP̂P; and similarly for the horizontal direction,

we find X ¼ 0.

Problem 4.5.4 (Smart, 1951, pp. 264–265). Four equal straight homogeneous

rods, AB, BC, CD, and DE, each of length l and mass m, are smoothly joined

together at B, C, D, and rest on a smooth horizontal table so that consecutive

rods are perpendicular to each other (fig. 4.17). The midpoints of all rods are colli-

near, and the end E is fixed. Then, the end A is struck by a blow P̂P parallel to the line

joining the midpoints of the rods (i.e., along ACE).
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Figure 4.16 Velocities and external impulsive forces of impact problem

of fig. 4.14.



(i) Using the kinematically compatible (postimpact) quasi velocities u; v;w; z (fig.

4.17), and the earlier ‘‘British theorem,’’ show that the (double) kinetic energy and

(impressed) impulsive virtual work, at the impact configuration, equal, respectively,

2T ¼ ðm=3Þðu2 þ 4v2 þ 5w2 þ 5z2 þ uwþ z vÞ; ðaÞd� 0W� 0W ¼ ŶYu �uþ ŶYv �vþ ŶYw �w

¼ ðP̂P=
ffiffiffi
2
p
Þ �uþ ðP̂P=

ffiffiffi
2
p
Þ �vþ ð0Þ �wþ ð0Þ �z

ðas if u; v;w; z were quasi coordinatesÞ: ðbÞ
(ii) Since the preimpact state is one of rest — that is, Dð@T=@!Þ ¼ @T=@!

ð!: u; v;w; zÞ— show that the equations of impulsive motion are

u: ðm=6Þð2uþ wÞ ¼ P̂P=
ffiffiffi
2
p

; v: ðm=6Þð8v þ zÞ ¼ P̂P=
ffiffiffi
2
p

; ðc1; 2Þ
w: 10wþ u ¼ 0; z: 10zþ v ¼ 0; ðc3; 4Þ

with solutions

u ¼ ð30
ffiffiffi
2
p �

19ÞðP̂P=mÞ; v ¼ ð30
ffiffiffi
2
p �

79ÞðP̂P=mÞ; ðc5; 6Þ
w ¼ �ð3

ffiffiffi
2
p �

19ÞðP̂P=mÞ; z ¼ �ð3
ffiffiffi
2
p �

79ÞðP̂P=mÞ: ðc7; 8Þ
(iii) Show that A begins to move in a direction making an angle tan�1ð30=49Þ with

that of the blow, and find the angle between the impulsive external reaction at E and

the blow P̂P.

HINTS

(i) If the angle between P̂P and vA is �, then tan� ¼ ðu� vÞ=ðuþ vÞ ¼ � � � ¼ 30=49.

[From trigonometry: tan (angle between u and vAÞ � tan � ¼ v=u, and

tanð� þ �Þ ¼ tan 45� ¼ 1 ¼ ðtan � þ tan �Þ�ð1� tan� tan �Þ ) tan � ¼ � � � :�
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Figure 4.17 System of four, originally motionless, straight and mutually perpendicular rods,

AB; BC;CD, and DE, (B;C;D: hinged; E: fixed) struck by a blow P̂P at its end A, along ACE.

(a) General view of problem; (b) free-body diagram of each rod; (c) detail of application of blow

P̂P, at A; (d) detail of impulsive reaction, at E.



(ii) The components of the reaction at E;X (perpendicular to DE), and Y (along

DE) can be found, either from the impulsive principle of relaxation (see next

problem), or from the principle of linear momentum applied to the entire (nonrigid)

system, in these two directions:

Along DE: Y þ ðP̂P=
ffiffiffi
2
p
Þ ¼ m

�ðw=2Þ þ wþ ððuþ wÞ=2Þ�; ðd1Þ
Perpendicular to DE: X þ ðP̂P=

ffiffiffi
2
p
Þ ¼ m

�ðz=2Þ þ zþ ððzþ vÞ=2Þ þ v
�
: ðd2Þ

Verify that the above, with the help of (c1–4), yield

X ¼ P̂P
ffiffiffi
2
p �� ð1=2Þ þ ð39=79Þ�; Y ¼ P̂P

ffiffiffi
2
p �� ð1=2Þ þ ð9=19Þ�; ðd3Þ

and, therefore,

tan ðangle between reaction at E and horizontalÞ ¼ ðY � XÞ=ðY þ XÞ ¼ 30=49

¼ tan ðangle between vA and horizontalÞ � tan �; Q:E:D: ðeÞ

Problem 4.5.5 Continuing from the preceding problem, calculate the external reac-

tion components X ;Y via the impulsive principle of relaxation; allow E to move with

corresponding velocities x (perpendicular to DE; i.e., parallel to X) and y (along DE;

i.e., parallel to Y). Formulate the equations of the relaxed system, and then set, at

the end, x ¼ 0; y ¼ 0 [fig. 4.17(b)].

HINTS

Show that the (double) kinetic energy of the so-relaxed system is

2Trelaxed ¼ ðm=3Þðu2 þ 4v2 þ 5w2 þ 5z2 þ uwþ 4y2 þ zvþ x2 þ wyþ xzÞ; ðaÞ

and, therefore, (a) the kinetic equations remain the same as in the preceding (con-

strained) case; while (b) the additional kinetostatic equations are

ðmw=6Þ ¼ Y ) Y ¼ � � � ¼ �ð
ffiffiffi
2
p

=38ÞP̂P; ðmz=6Þ ¼ X ) X ¼ � � � ¼ �ð
ffiffiffi
2
p

=158ÞP̂P;
ðbÞ

in agreement with the values found in the previous problem.

Problem 4.5.6 (Synge and Griffith, 1959, pp. 429–430). Two uniform rods, AB and

BC, each of mass m and length 2b, are smoothly hinged at B and, initially, rest on a

smooth horizontal table, so that A;B;C are collinear. Then, a horizontal blow P̂P is

struck at C in a direction perpendicular to BC (fig. 4.18).

(i) Holonomic coordinates. Show that, in terms of the Lagrangean coordinates,

ðx; yÞ: coordinates of B (positive to the right and upward, respectively) and ð�1; �2Þ:
angles of AB;BC, respectively, with horizontal (both positive counterclockwise), and

with k2 � b2=3, the postimpact (double) kinetic energy and (impressed) impulsive

virtual work, at the impact configuration (i.e., x; y; �1, �2 ¼ 0), equal, respectively
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(with _��1 � !1,
_��2 � !2),

2T ¼ m½ð _xxÞ2 þ ð _yy� b!1Þ2 þ k2!1
2�

þm½ð _xxÞ2 þ ð _yyþ b!2Þ2 þ k2!2
2�; ðaÞd� 0W� 0W ¼ X̂X �xþ ŶY �yþ ŶY1 ��1 þ ŶY2 ��2 ¼ P̂Pð�yþ 2b ��2Þ ðbÞ

½i:e:; X̂X ¼ 0; ŶY ¼ P̂P; ŶY1 ¼ 0; ŶY2 ¼ 2bP̂P�

and, therefore, verify that the equations of impulsive motion are,

x: 2m _xx ¼ 0; ðc1Þ
y: mð _yy� b!1Þ þmð _yyþ b!2Þ ¼ P̂P; ðc2Þ
�1: �mbð _yy� b!1Þ þ ðmk2Þ!1 ¼ 0; ðc3Þ
�2: mbð _yyþ b!2Þ þ ðmk2Þ!2 ¼ 2bP̂P; ðc4Þ

with solutions

_xx ¼ 0; _yy ¼ �ðP̂P=mÞ ði:e:; initially;B moves downward onlyÞ; ðc5Þ
!1 ¼ �ð3=4ÞðP̂P=mbÞ ði:e:; clockwiseÞ; !2 ¼ ð9=4ÞðP̂P=mbÞ ði:e:; counterclockwiseÞ:

ðc6Þ

(ii) Nonholonomic coordinates. Show that in terms of the kinematically compatible

quasi velocities u, v, w, z (fig. 4.18), again at the impact configuration,

2T ¼ ðm=3Þðu2 þ 6v2 þ 2w2 þ z2 þ uwþ z wÞ; ðdÞd� 0W� 0W ¼ P̂P �� ðwhere _�� � uÞ; ðeÞ
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Figure 4.18 System of two, originally motionless, straight rods, AB, BC (C: hinged; A, B, C:

collinear) struck by a blow P̂P at its end C, at a right angle to ABC.



and, therefore, verify that the equations of impulsive motion are

ðm=6Þð2uþ wÞ ¼ P̂P; ðm=6Þð12vÞ ¼ 0; ðm=6Þðuþ 4wþ zÞ ¼ 0; ðm=6Þðwþ 2zÞ ¼ 0;

ðfÞ
with solutions

u ¼ ð7=2ÞðP̂P=mÞ; v ¼ 0; w ¼ �ðP̂P=mÞ; z ¼ ð1=2ÞðP̂P=mÞ: ðgÞ
(iii) Show that as the number of bars goes to infinity (to the left of C, B, A),

u ¼ 2
ffiffiffi
3
p ðP̂P=mÞ.

Problem 4.5.7 Continuing from the preceding problem (figs. 4.18, 4.19), calculate

the internal reaction components at B: X̂X (assumed upward on the left bar, down-

ward on the right) and ŶY (assumed leftward on the left bar, rightward on the right

bar), via the impulsive principle of relaxation: allow Bleft bar to move with corre-

sponding velocities x (upward) and y (leftward), and Bright bar to move with corre-

sponding velocities w (upward) and v (leftward). Formulate the equations of the

relaxed system, and then set, at the end, x ¼ w, y ¼ v.

HINTS

Show that for the so-relaxed system,

2Trelaxed ¼ ðm=3Þðu2 þ 3v2 þ w2 þ x2 þ 3y2 þ z2 þ uwþ xzÞ; ðaÞd� 0W� 0W ¼ P̂P ��� ŶY �$� X̂X �!þ X̂X �� þ ŶY ��; ðbÞ
where

_�� � u; _$$ � v; _!! � w; _�� � x; _�� � y; ðb1Þ
and, hence, verify that [with the notations: Trelaxed � T and (. . .Þo �
ð. . .Þconstraints enforced] the equations of motion are

u: ð@T=@uÞo ¼ P̂P ) 2uþ w ¼ 6P̂P=m; ðc1Þ
v: ð@T=@vÞo ¼ �ŶY ) v ¼ �ðŶY=mÞ; ðc2Þ
w: ð@T=@wÞo ¼ �X̂X ) 2wþ u ¼ �ð6X̂X=mÞ; ðc3Þ
x: ð@T=@xÞo ¼ X̂X ) 2wþ z ¼ 6X̂X=m; ðc4Þ
y: ð@T=@yÞo ¼ ŶY ) v ¼ ŶY=m; ðc5Þ
z: ð@T=@zÞo ¼ 0 ) 2zþ w ¼ 0; ðc6Þ
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Figure 4.19 System of two, originally motionless straight rods, AB, BC (C: hinged; A, B, C:

collinear) struck by a blow P̂P at its end C, at a right angle to ABC, specially relaxed at B in order to

calculate the internal reactions there.



with solutions

u ¼ ð7=2ÞðP̂P=mÞ; v ¼ 0; w ¼ �ðP̂P=mÞ; z ¼ ð1=2ÞðP̂P=mÞ; X̂X ¼ �ðP̂P=4Þ; ŶY ¼ 0;

ðdÞ
in agreement with the values found (for the postimpact velocities) in the preceding

problem.

REMARK

Note that ð@T=@wÞo þ ð@T=@xÞo ¼ 0, ð@T=@vÞo þ ð@T=@yÞo ¼ 0; that is, the sum
of the internal reactions vanishes, like a Lagrangean form of impulsive action–

reaction.

For additional aspects of this problem, see Kilmister and Reeve (1966, pp. 220–

221, 229, 235–250).

Problem 4.5.8 (Beer, 1963; Kane, 1962; Raher, 1954, 1955). Two identical,

homogeneous, circular, and thin (sharp-edged) wheels, W 0 and W 00 (fig. 4.20),

each of radius r and mass m, are capable of rotating freely about the ends of a

common axle A, of mass M and length 2b, so that the entire assembly can roll on

a fixed, perfectly rough, and horizontal plane P. The system is struck (set in motion)

by an impulse ÎI , acting for the very short time interval [t 0; t 00], at the axle point S
located a distance i ð< 2b) from the center of W 0 (with no loss in generality), per-

pendicularly to A and parallel to P.

The kinematics of this problem has been discussed in ex. 2.13.8; while the kinetics
of its ordinary (continuous) motion has been detailed in ex. 3.18.6. It was found

there that, with the Lagrangean coordinates,

ðx; yÞ: coordinates of axle midpoint, G;

�: angle (of precession) of line joining the contact points of W 0 and W 00, C 0 and C 00,
respectively, with the þx-axis; and

ð 0;  00Þ: angles of rolling (or, of proper rotation) of W 0 and W 00,
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Figure 4.20 Geometry of a system of two identical, homogeneous, circular, and thin wheels,

rotating freely at the ends of an axle, and rolling on a fixed, rough, and horizontal plane, struck

by an impulse ÎI at the axle point S.



the three constraint equations are (i.e., here n ¼ 5, m ¼ 2)

vC 0;n ¼ vC 00;n ¼ _xx cos�þ _yy sin� ¼ 0; ða1Þ
vC 0;t ¼ � _xx sin�þ _yy cos�þ b _��þ r _  0 ¼ 0; ða2Þ
vC 00;t ¼ � _xx sin�þ _yy cos�� b _��þ r _  00 ¼ 0; ða3Þ
f) _xx ¼ ðb _��þ r _  0Þ sin�; _yy ¼ ðb _��þ r _  0Þ cos�g; ða4Þ

or, since (a2, 3) yield the integrable combination (with c ¼ integration constant,

depending on the initial values of �,  0,  00),

2b _��þ rð _  0 � _  00Þ ¼ 0 ) 2b� ¼ c� rð 0 �  00Þ; ðbÞ
we may take as independent Lagrangean coordinates: x, y;  0,  00 (i.e., actually,

n ¼ 4, m ¼ 2) under (a1–3), of which only two are independent. Finally, since this is

an impact problem, we can choose, with no loss in generality, the þx-axis so that

� ¼ 0 (or � ¼ �=2Þ; in which case, eqs. (a1–2)) (a4) and (a3) simplify, respectively,

to

_xx ¼ 0; _yyþ b _��þ r _  0 ¼ 0; _yy� b _��þ r _  00 ¼ 0; ðcÞ
or, adding the last two,

_xx ¼ 0; 2 _yyþ rð _  0 þ _  00Þ ¼ 0: ðdÞ
(i) Show that the (double) kinetic energy of the entire system is

2T ¼ ðM þ 2mÞ½ð _xxÞ2 þ ð _yyÞ2� þ ðMb2=3Þð _��Þ2

þ ðmr2=2Þ�½ _  0Þ2 þ ð _  00Þ2� þ ½1þ 4ðb=rÞ2�ð _��Þ2�; ðeÞ
and, therefore, for the special case where b ¼ r and M � 0,

2T ¼ 2m½ð _xxÞ2 þ ð _yyÞ2� þ ðmr2=2Þ½ð _  0Þ2 þ ð _  00Þ2 þ 5ð _��Þ2�; ðfÞ
or, thanks to (c), T ¼ Tð _xx; _yy; _��; _  0; _  00Þ ) Toð _��; _  0Þ ¼ To,

2T ) 2To ¼ ðmr2=2Þ�13ð _��Þ2 þ 6ð _  0Þ2 þ 12 _�� _  0
�
; ðgÞ

while the impressed impulsive virtual work is

d� 0W� 0W ¼ ð�i ÎIÞ �� þ ð�r ÎIÞ � 0 ) Q̂Q� ¼ �i ÎI ; Q̂Q 0 ¼ �i ÎI : ðhÞ
(ii) With the help of the above, deduce that, under the initial conditions (i.e., at

t ¼ t 0)
ð _��Þ� ¼ 0; ð _  0Þ� ¼ 0; ðiÞ

the (Hamel)) Chaplygin–Voronets impulsive equations of this first-type problem:

Dð@To=@ _��Þ ¼ Q̂Q�; Dð@To=@ _  0Þ ¼ Q̂Q 0 ; ðjÞ
yield the postimpact velocities (i.e., at t ¼ t 00Þ

ð _��Þþ ¼ ð2=7ÞðÎI=mr2Þðr� iÞ; ð _  0Þþ ¼ ð2=7ÞðÎI=mr2Þ½i � ð13=6Þr�: ðkÞ
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Combining these results with those of the ordinary motion case, ex. 3.18.6, we read-

ily see that after the impact (i.e., t 	 t 00), the system rolls with

_�� ¼ ð _��Þþ ¼ constant � O; _  0 ¼ ð _  0Þþ ¼ constant � ! 0; ðlÞ
in which case, the general constraints (a4) (with b ¼ r) can be integrated to yield

x ¼ R½cosðOtÞ � cosðOt 00Þ�; y ¼ R½sinðOtÞ � sinðOt 00Þ�; ðmÞ
where

R ¼ �r½1þ ð! 0=OÞ� ) jRj ¼ ð7=6Þr2jr� ij�1 ½invoking ðkÞ�: ðnÞ
Finally, eliminating the time between eqs. (m), we easily obtain

½xþ R cosðOt 00Þ�2 þ ½yþ R sinðOt 00Þ�2 ¼ R2; ðoÞ
that is, the postimpact path of the axle midpoint G is a circle of radius jRj; as predicted

in ex. 3.18.6.

Problem 4.5.9 Continuing from the preceding problem:

(i) Show that under the choice of _  0 and _  00 as independent (quasi) velocities,

since in that case _  00 ¼ _  0 þ 2 _��,

T ¼ Tð _xx; _yy; _��; _  0; _  00Þ ) Toð _  0; _  00Þ ¼ To:

2To ¼ ðmr2=2Þ�ð13=4Þðd 0=dtÞ2 þ ð13=4Þðd 00=dtÞ2 � ð1=2Þðd 0=dtÞðd 00=dtÞ�; ðaÞd� 0W� 0W ¼ Q̂Q� ��þ Q̂Q 0 � 
0 ¼ Q̂Q 0 � 

0 þ Q̂Q 00 � 
00

) Q̂Q� �� ¼ Q̂Q 00 � 
00 ) Q̂Q� ¼ ð@ _  00=@ _��ÞQ̂Q 00 ) Q̂Q 00 ¼ ð�i=2ÞÎI : ðbÞ

(ii) The corresponding impulsive Chaplygin–Voronets equations are

Dð@To=@ _  0Þ ¼ Q̂Q 0 ; Dð@To=@ _  00Þ ¼ Q̂Q 00 ; ðcÞ
where

@To=@ _  0 ¼ ðmr2=8Þð13 _  0 � _  00Þ; ðd1Þ
@To=@ _  00 ¼ ðmr2=8Þð13 _  00 � _  0Þ: ðd2Þ

REMARKS

(i) This and the previous problem illustrate the earlier-made observation that, in

first-kind problems, like this one, and in sharp contrast to the case of ordinary

motion (}3.8), we can enforce the Pfaffian constraints in T , that is, T ! To right

from the start, and then form the n� m multiplierless (kinetic) impulsive Hamel-like

equations; that is, in such impulsive problems, the equations of Hamel and Lagrange

have similar forms.

(ii) Additional convenient choices of quasi velocities (of which only two are inde-

pendent) would have been the following:

ðaÞ !1 � _xx ¼ 0; !2 � _yyþ b _��þ r _  0 ¼ 0;

!3 � _yy� b _��þ r _  00 ¼ 0; !4 ¼ _  0 6¼ 0; !5 ¼ _�� 6¼ 0; ðeÞ
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with inverses

_xx ¼ !1 ¼ 0; _yy ¼ ð!2 � r!4 � b!5Þjb¼r ¼ �rð!4 þ !5Þ; _�� ¼ !5;

_  0 ¼ !4; _  00 ¼ ð1=rÞð�!2 þ !3 þ r!4 þ 2b!5Þjb¼r ¼ !4 þ 2!5; ðfÞ
and

ðbÞ !1 � _xx ¼ 0; !2 � _yyþ r _��þ r _  0 ¼ 0;

!3 � _  0 6¼ 0; !4 � _�� 6¼ 0; ðgÞ
with inverses

_xx ¼ !1 ¼ 0; _yy ¼ � � � ¼ �rð!3 þ !4Þ; _  0 ¼ !3; _�� ¼ !4: ðhÞ

Problem 4.5.10 Continuing from the preceding two problems:

(i) Show that under the choice of vG � v � ds=dt [parallel to the impulse ÎI ; i.e.,

_xx ¼ �v sin �, _yy ¼ v cos� (for a general angle �), s: quasi coordinate] and _�� � ! as

independent (quasi) velocities, since then

_  0 � !1 ¼ �ð1=rÞðvþ b!Þ; _  00 � !2 ¼ �ð1=rÞðv� b!Þ; ðaÞ
the (double) kinetic energy and impulsive impressed virtual work are, respectively,

2T ¼ ðM þ 2mÞv2 þ ½ðMb2=3Þ þ 2mb2 þ ðmr2=2Þ�!2 þ ½ðmr2=2Þð!1
2 þ !2

2Þ�
¼ � � � ¼ ðM þ 3mÞv2 þ ½ðMb2=3Þ þ 3mb2 þ ðmr2=2Þ�!2 ¼ Toðv; !Þ ¼ To; ðbÞd� 0W� 0W ¼ Q̂Qs �sþ Q̂Q� �� ¼ ÎI �sþ ðÎI iÞ �� ) Q̂Qs ¼ ÎI ; Q̂Q� ¼ i ÎI : ðcÞ

(ii) Verify that the corresponding Chaplygin–Voronets impulsive equations are

@To=@v ¼ Q̂Qs: ðM þ 3mÞv ¼ ÎI ) v ¼ � � � ; ðd1Þ
@To=@! ¼ Q̂Q�:

�ðMb2=3Þ þ 3mb2 þ ðmr2=2Þ�! ¼ i ÎI ) ! ¼ � � � : ðd2Þ

Example 4.5.6 Jourdain’s Principle in Impulsive Motion (to be read after }6.3). We

begin with the general ‘‘raw’’ (i.e., particle variable) form of Jourdain’s principle for

ordinary, continuous motion (6.2.4) and (6.3.15):

S ðdm a� dFÞ � � 0v ¼ 0; ðaÞ

where � 0v � �vjwith �t¼0 and �r¼0 is the Jourdain variation of v (6.3.5). Next, integrating

(a) between t and tþ � , and then taking the limit as � ! 0 (or, integrating ‘‘between’’

t� and tþ), and using the notations introduced in }4.2, we obtain the ‘‘raw’’ form of

the impulsive Jourdain principle:

S ðdmDv� cdFdF Þ � � 0v ¼ 0 ½Dv � vþ � v��: ðbÞ

Now, substituting into (b) the basic representation of � 0v,

� 0v ¼ � 0
X

!IeI þ enþ1

� �
¼
X

eI �!I ¼
X
ð@v=@!IÞ �!I ðcÞ
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[recalling } 2.9ff.; and that, since the eI , enþ1 ðI ¼ mþ 1; . . . ; nÞ are functions of t and

q, their Jourdain variations vanish: � 0ðeI ; enþ1Þ ¼ 0], we obtain, successively,

0 ¼S ðdmDv� cdFdF Þ � X eI �!I

� �
¼
X

S ðdmDv� cdFdF Þ � eI� �
�!I

¼
X

S ½dmð@v=@!IÞ �Dv� cdFdF � eI �
n o

�!I

¼
X

D Sdmð@v=@!IÞ � v
� �

�S cdFdF � eI

n o
�!I ðsince DeI ¼ 0Þ

¼
X �

Dð@T*=@!IÞ � ŶYI

�
�!I since 2T* �Sdm v � v; etc:

� �
; ðdÞ

from which, since the n�m �!I ’s are independent, we immediately obtain the

earlier n�m impulsive kinetic Hamel equations,

Dð@T*=@!I Þ ¼ ŶYI : ðeÞ

For instructive applications of (c) and (e) to impulsive problems, see Bahar (1994).

Example 4.5.7 A Direct Method for the Determination of the Impulsive Reactions
(may be omitted in a first reading). Let us consider the earlier (}4.4) ‘‘Routh–Voss

impulsive equations’’ of a system subjected to the single Pfaffian constraintX
akðt; qÞ _qqk þ a0ðt; qÞ ¼ 0; ðaÞ

that is,

Dð@T=@ _qqkÞ ¼ Q̂Qk þ 
̂
 ak: ðbÞ

Since [with the usual notations (}3.9)]

2T ¼ 2ðT2 þ T1 þ T0Þ ¼
XX

Mkl _qqk _qql þ
X

2Mk _qqk þM0; ðcÞ

and the Mkl , Mk are functions of t, q: DðMkl ;MkÞ ¼ 0, and, therefore,

Dð@T=@ _qqkÞ ¼ D
X

Mkl _qql þMk

� �
¼
X

MklD _qql ð¼ DpkÞ; ðdÞ

eqs. (b) assume the explicit formX
Mkl D _qql ¼ Q̂Qk þ 
̂
 ak: ðeÞ

Let us isolate (uncouple) the D _qql : multiplying (e) with mrk ¼ mkr, whereX
Mklmkr ¼ �lr; ðfÞ

and summing over k yields the general D _qqr-expressions

D _qqr ¼
X

mrkQ̂Qk þ 
̂

X

mrkak

� �
: ðgÞ
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[In tensor calculus, the mrk are called conjugate to the Mkl (and vice versa); and

are denoted by Mrk. See, for example, Papastavridis (1999, chap. 2), Sokolnikoff

(1964, p. 76 ff.), Synge and Schild (1949, p. 29 ff.).]

Next, multiplying (g) with ar and summing over r, we getX
ar D _qqr ¼

XX
mrkarQ̂Qk þ 
̂
a2; ðhÞ

where XX
mrkarak � a2 ½magnitude ðsquaredÞ of vector ðarÞ�; ðiÞ

and solving for 
̂
,


̂
 ¼
X

ar D _qqr �
XX

mrkarQ̂Qk

� �.
a2: ðjÞ

Now:

(i) For first-kind impulsive problems (i.e., constraints holding before, during, and

after the shock), eq. (a) yields

D
X

ak _qqk þ a0

� �
¼
X

ak D _qqk ¼ 0; ðkÞ

and so ( j) reduces to


̂
 ¼ �
XX

mrkarQ̂Qk

.
a2: ðlÞ

Then, substituting (l) into (g) and solving for ( _qqrÞþ, we obtain (with some dummy-

index changes)

ð _qqrÞþ ¼ ð _qqrÞ� þ
X

mrkQ̂Qk �
XX

mlkalQ̂Qk

�
a2

� � X
mrsas

� �
: ðmÞ

(ii) For second-kind impulsive problems (i.e., constraints suddenly introduced at

the impact moment), the ( _qqrÞ� do not obey (a). Then, invoking the latter, we getX
ar D _qqr ¼

X
arð _qqrÞþ �

X
arð _qqrÞ� ¼ � a0 �

X
arð _qqrÞ� ð6¼ 0Þ; ðnÞ

and so ( j) reduces to


̂
 ¼ � a0 þ
X

arð _qqrÞ� þ
XX

mrkarQ̂Qk

h i.
a2: ðoÞ

Once 
̂
 is found, then (g) yield immediately (with some dummy-index changes)

D _qqr � ð _qqrÞþ � ð _qqrÞ�

¼
X

mrkQ̂Qk � a0 þ
X

akð _qqkÞ� þ
XX

mlkalQ̂Qk

h i.
a2

n o X
mrsas

� �
; ðpÞ

) ð _qqrÞþ ¼ . . . :

Equations (l) and (o) yield 
̂
 in terms of initially known quantities; that is, a0, ar,
Mkl ! mkl , and Q̂Qk (unlike the earlier impulsive kinetostatic equations of Maggi,

Hamel, Appell, et al.).
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The n equations (m) and n equations (p) might be called the impulsive Jacobi–
Synge equations of the corresponding problem (unlike the earlier n�m kinetostatic

and m kinetic impulsive equations of Maggi, Hamel, Appell, et al.; recall ex. 3.10.2).

We leave it to the reader to extend this method to the case of mð< nÞ Pfaffian

constraints.

Application of the above to Example 4.5.3

We recall that in this, second-kind, problem,

q1;2;3: x; y; �; a1 ¼ 0; a2 ¼ 1; a3 ¼ b sin �; a0 ¼ 0; Q̂Qk ¼ 0; ðq1Þ
and the nonvanishing inertia coefficients of T are

Mkl : M11 ¼M22 ¼ m; M33 ¼ I ) mkl : m11 ¼ m22 ¼ m�1; m33 ¼ I�1; ðq2Þ
Therefore,X

m1sas ¼ m11a1 þm12a2 þm13a3 ¼ ðm�1Þð0Þ þ ð0Þð1Þ þ ð0Þðb sin �Þ ¼ 0;X
m2sas ¼ m21a1 þm22a2 þm23a3 ¼ ð0Þð0Þ þ ðm�1Þð1Þ þ ð0Þðb sin �Þ ¼ m�1;X
m3sas ¼ m31a1 þm32a2 þm33a3 ¼ ð0Þð0Þ þ ð0Þð1Þ þ ðI�1Þðb sin �Þ ¼ I�1b sin �;

) a2 �
X X

mrsas

� �
ar ¼ ð0Þð0Þ þ ðm�1Þð1Þ þ ðI�1b sin �Þðb sin �Þ

¼ m�1 þ ½ðmb2=3Þ�1ðb sin �Þ�ðb sin �Þ ¼ m�1ð1þ 3 sin2 �Þ; ðq3ÞX X
mrkQ̂Qk

� �
ar ¼ � � � ¼ 0; ðq4Þ

and so, finally, eq. (o) yields


̂
 ¼ �½a1ð _xxÞ� þ a2ð _yyÞ� þ a3ð _��Þ��
�
a2

¼ �½ð0Þð0Þ þ ð1Þð�vÞ þ ðb sin �Þð!Þ��½m�1ð1þ 3 sin2 �Þ�
¼ mðv� b! sin �Þ=ð1þ 3 sin2 �Þ; ðrÞ

that is, (i3) of ex. 4.5.3. Similarly for ( _qqrÞþ via eq. (p); the details are left to the reader.

4.6 EXTREMUM THEOREMS OF IMPULSIVE MOTION

(OF CARNOT, KELVIN, BERTRAND, ROBIN, ET AL.)

Since the impulsive equations are algebraic equations in the shock velocities — that

is, of the first order — no proper integral variational principles exist for them. How-

ever, by appropriate specializations of the differential variational principles (chap. 6),

a host of interesting and useful extremum propositions (i.e., maxima/minima in the

sense of ordinary mathematical analysis) of sufficient generality can be obtained.

These theorems, summarized below, constitute impulsive counterparts of the ener-

getic theorems of ordinary (i.e., continuous) motion. [Carnot’s theorems (see below)

are included here, although they are neither variational nor extremum, but simply

energetic; that is, just like their ordinary motion counterparts, they deal with actual
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motions (velocities), and yield only one equation. For proofs of these theorems in

general system variables, see ex. 4.6.7.]

For complementary reading, we recommend the following older British texts

(alphabetically): Chirgwin and Plumpton (1966, pp. 329–343), Easthope (1964,

pp. 285–304), Kilmister and Reeve (1966, pp. 247–248), Milne (1948, pp. 370–

378), Ramsey (1937, pp. 185–195), Smart (1951, pp. 376–390).

4.6.1 Theorem of Carnot (1803)

1. First Part (Collisions)

In the absence of impressed impulses, the sudden introduction of (ideal) stationary and
persistent constraints that change some velocity reduces the kinetic energy; hence, by
the collision of inelastic bodies, some kinetic energy is always lost.

2. Second Part (Explosions)

The sudden removal of (ideal and) stationary constraints that break bonds of rigidity
(e.g., explosion of a shell, or breaking of the rope in a tug-of-war contest) increases the
kinetic energy.

Their proofs utilize the following auxiliary and purely kinematico-inertial iden-

tity: Let fv1g and fv2g be any two possible sets of velocities, with corresponding

kinetic energies T1 and T2; that is, 2T1 � S dm v1 � v1, 2T2 � S dm v2 � v2. Then, by

simple algebra,

2v2 � ðv2 � v1Þ ¼ v2
2 � v1

2 þ ðv2 � v1Þ2 ) 2K12 ¼ T1 þ T2 � T12; ð4:6:1a1Þ
also,

2v1 � ðv1 � v2Þ ¼ v1
2 � v2

2 þ ðv1 � v2Þ2 ) 2K12 ¼ T1 þ T2 � T12; ð4:6:1a2Þ
where

2K12 ¼ 2K21 �Sdm v1 � v2; ð4:6:1b1Þ
2T12 ¼ 2T21 �Sdmðv2 � v1Þ � ðv2 � v1Þ: ð4:6:1b2Þ

Kinetic energy of relative motion 	 0:

(a) To prove the first part, we begin with LIP, eqs. (4.3.4) ff.), or

d� 0WR� 0WR ¼ 0 ) b�I�I ¼ d� 0W� 0W ; ð4:6:1cÞ
where

d� 0WR� 0WR �S cdRdR � �r; b�I�I �Sdmðvþ � v�Þ � �r; d� 0W� 0W �S cdFdF � �r; ð4:6:1dÞ

and in there we make the identifications v� ¼ v1, v
þ ¼ v2 (i.e., velocities just before

and after additional workless constraints), and [since the new constraints are

stationary and the �r are compatible with both primitive (i.e., existing) and addi-

tional constraints] we choose �r! dr ¼ vþ dt � vþ ¼ v2, and notice that, here,d� 0W� 0W ! S cdFdF � vþ � S cdFdF � v2 ¼ 0. Thus, we obtain

Sdmðvþ � v�Þ � vþ ¼S cdFdF � vþ ¼ 0;
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or

Sdmðv2 � v1Þ � v2 ¼S cdFdF � v2 ¼ 0;

) Sdm v2 � v2 ¼Sdm v2 � v1; i:e:;T2 ¼ K12; ð4:6:1eÞ

and so (4.6.1a) becomes

2T2 ¼ T1 þ T2 � T12 ) T2 � T1 ¼ �T12 < 0; i:e:;

T2 < T1; ð4:6:1fÞ
[we exclude the case(s) where the introduction of new constraint(s) does not change

the kinetic energy] or, reverting to our standard notation,

DT � Tþ � T� �S ðdm=2Þvþ � vþ �S ðdm=2Þv� � v�

¼ �S ðdm=2Þðvþ � v�Þ � ðvþ � v�Þ
� �S ðdm=2ÞDv �Dv
� �Tjump: �

�
Kinetic energy of jump ðor of lostÞ motion

�
< 0;

or

T� � Tþ ¼ Tjump > 0; Q:E:D: ð4:6:1gÞ
[Recalling (4.5.13a), we see that, here, ŜS ¼ �DT .]

(b) To prove the second part, similarly, we identify v� ¼ v1; v
þ ¼ v2, choose

�r! dr ¼ v� dt � v� ¼ v1, and notice that, here, S cdFdF � v� � S cdFdF � v1 ¼ 0. The

result is

Sdmðvþ � v�Þ � v� ¼Sdmðv2 � v1Þ � v1 ¼ 0;

)Sdm v2 � v1 ¼Sdm v1 � v1; i:e:;T1 ¼ K12; ð4:6:1hÞ

and so (4.6.1a) yields

2T1 ¼ T1 þ T2 � T12 ) T1 � T2 ¼ �T12 < 0; i:e:;

T1 < T2; ð4:6:1iÞ
or, in terms of our standard notation,

DT � Tþ � T� �S ðdm=2Þvþ � vþ �S ðdm=2Þv� � v�

¼S ðdm=2Þðvþ � v�Þ � ðvþ � v�Þ
�S ðdm=2ÞDv �Dv � Tjump > 0; Q:E:D: ð4:6:1jÞ

REMARKS

(i) The above can also be easily obtained by combining the identities

Sdmðvþ � v�Þ � vþ ¼ DT þ Tjump; Sdmðvþ � v�Þ � v� ¼ DT � Tjump;

ð4:6:1kÞ
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[which follow at once from (4.6.1a, b) with the earlier identifications] with LIP,

(4.6.1c, d). Thus, the first of (4.6.1k) yields DT þ Tjump ¼ 0 ( first theorem, while

the second of (4.6.1k) yields DT � Tjump ¼ 0 (second theorem).

(ii) For Carnot’s first theorem under nonpersistent constraints, see Appell (1896,

p. 15 ff.).

(iii) If the bodies in question are elastic, then their collision consists of (a) a period

of compression (as if the bodies were inelastic), and (b) a period of explosion-like

restitution. Since the corresponding forces are equal and opposite, the kinetic energy
lost in compression balances exactly the kinetic energy gained in restitution. This is

sometimes called the third theorem of Carnot.

4.6.2 Theorem of Kelvin (1863)

If an originally motionless system is suddenly set in motion by (unknown) impressed
impulses acting at specified points of it and communicating to them prescribed (i.e.,
given) velocities, then the resulting (or actual) postimpact kinetic energy is less than
that of any other kinematically possible (or comparison, or hypothetical) motion; that
is, one in which the specified points have the same prescribed velocities as in the actual
motion, and all other external and/or internal system constraints are respected (which

is why this theorem is occasionally referred to as a ‘‘principle of laziness’’); that is,

with some obvious notations:

Tðvpostimpact comparisonÞ > Tðvpostimpact actualÞ: ð4:6:2aÞ

Hence, this result allows us to find the actual postimpact velocities in terms of the

prescribed velocities.

To prove it, and since such comparison motions may differ from each other infini-
tesimally, we let vþactual � vþ and vþcomparison � vþ þ �vþ � vþ þ �Kv � v; where, of

course, both vþ and v are kinematically admissible, and, at the specified points,

�Kv ¼ 0. Then, with �r � �Kv, and since, at these points, �Kv ¼ 0, while for the

rest of them cdFdF ¼ 0,

S cdFdF � �Kv ¼ 0 and S cdRdR � �Kv ¼ 0: ð4:6:2bÞ

� Stationarity: Next, setting v� ¼ 0 (since the system is initially at rest) and the

rest of the above specializations into the master equations (4.6.1c, d) yields the

stationarity condition

Sdm vþ � �Kv ¼ 0; or Sdm vþ � v ¼Sdm vþ � vþ; ð4:6:2cÞ

that is,

�K S ðdm=2Þvþ � vþ
� �

� �KTðvþÞ ¼ 0; ð4:6:2dÞ

that is, the actual postimpact motion makes the kinetic energy stationary.
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� Minimality: As a result of the above we have, successively,

DT � TðvÞ � TðvþÞ � Tðvþ þ �KvÞ � TðvþÞ
�S ðdm=2Þv � v�S ðdm=2Þvþ � vþ

¼S ðdm=2Þ
�ðvþ þ �KvÞ � ðvþ þ �KvÞ � vþ � vþ

� ½invoking ð4:6:2c; dÞ�
¼S ðdm=2Þ �Kv � �Kv �S ðdm=2Þðv� vþÞ � ðv� vþÞ
� ð1=2Þ �2

KTðvþÞ 	 0 ðwith the equality holding for �Kv ¼ 0Þ
) TðvþÞ ¼ minimum; Q:E:D: ð4:6:2eÞ

However, in concrete problems, it is the stationarity rather than the minimality that

is invoked.

REMARKS

(i) Equation (4.6.2c) also results, most simply, by setting in the master equations

(4.6.1c, d): (a) v� ¼ 0 and (b) first, �r � vþ, and, second, �r � v � vþ þ �Kv, and then

noting that

0 ¼S cdFdF � �Kv ) S cdFdF � v ¼S cdFdF � vþ:

(ii) For proofs utilizing (4.6.1a1, 1a2), see ex. 4.6.7; also Chirgwin and Plumpton

(1966, p. 330 ff.).

(iii) For applications of Kelvin’s theorem to hydrodynamics, and so on, see, for

example, Byerly (1916, pp. 76–80), and, of course, Thomson and Tait (1912, }312–

317, pp. 286–301).

4.6.3 Theorem of Bertrand (1853) and Delaunay (1840)

Consider a system in motion acted upon by prescribed impressed impulses applied to it:
(a) with its existing (i.e., original) ideal constraints and, separately, (b) with addi-
tional (also ideal) constraints. Then, the actual postimpact kinetic energy under the
existing constraints is greater than that under the additional constraints, where, in both
cases, the impulses, as well as the initial motion of the system, are the same; or, these
additional constraints reduce the kinetic energy; that is,

Tðvpostimpact existing constraintsÞ > Tðvpostimpact additional constraintsÞ: ð4:6:3aÞ

REMARKS

(i) Originally established by Lagrange; generalized by Sturm (1841) and Bertrand

[in his notes to the 3rd ed. of Lagrange’s Mécanique Analytique (1853–1855)]. The

maximum property is due to Delaunay (1840).

(ii) We notice the similarities with Carnot’s first theorem: in there, the system is

acted upon by given impulses, and then ideal impulsive constraints are imposed;

while in the Bertrand–Delaunay theorem, in the competing motion both impulses

and constraints are applied simultaneously. (On the latter, see also ‘‘Remarks’’

following the theorem of Robin, below.)
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To prove it, we let vþ and v be, respectively, the existing and additionally constrained

postimpact velocities, and v� be the common preimpact velocity. If the correspond-

ing impulsive reactions are fddRþdRþg and fcdRdRg, then, by the first parts of (4.6.1c, d)

with �r � vþ,

S ddRþdRþ � vþ ¼ 0 and S cdRdR � vþ ¼ 0; ð4:6:3bÞ

and so the second parts of (4.6.1c, d), with fcdFdFg the common impressed forces and,

again, �r � v, and vþ ! vþ, v, yield

Sdmðvþ � v�Þ � v ¼S cdFdF � v;

and

Sdmðv� v�Þ � v ¼S cdFdF � v; ð4:6:3cÞ

from which, subtracting side by side, we obtain

Sdmðvþ � vÞ � v ¼ 0; ð4:6:3dÞ

and from this it follows readily [as in the corresponding steps of the previous

theorems of Carnot and Kelvin, eqs. (4.6.1g–1j, 2e)]:

Tþ � T �S ðdm=2Þvþ � vþ �S ðdm=2Þv � v
¼S ðdm=2Þðvþ � vÞ � ðvþ � vÞ > 0; i:e:;Tþ > T ; Q:E:D: ð4:6:3eÞ

� Continuous case, variational formulation. If, further, the additionally constrained

(postimpact) motion depends continuously on its deviation from the (postimpact)

motion under existing constraints, then setting in the above v� vþ ¼ �vþ � �B=Dv,
we obtain [as in Kelvin’s theorem, (4.6.2d)], the stationarity equation

�B=DT
þ � �B=DTðvþÞ � �B=D S ðdm=2Þvþ � vþ

� �
¼Sdm vþ � �B=Dv ¼ 0; ð4:6:3fÞ

that is, for constrained variations, the actual motion makes the kinetic energy

stationary; and the maximality inequality (with the equality holding for �B=Dv ¼ 0)

DB=DTðvþÞ � T � Tþ ¼ � � �
¼ �ð1=2Þ �2

B=DT
þ ¼ �S ðdm=2Þ �B=Dv � �B=Dv � 0: ð4:6:3gÞ

Since, here, the impressed impulses are assumed to be the same for all kinematically

possible (comparison) postimpact velocities, Bertrand’s theorem can be reformulated

as follows: The postimpact velocities of the existing constraints (actual problem) vþ

make either T ¼ S ðdm=2Þv � v; or T ¼ T� þS cdFdF � ðv þ v�Þ=2 [resulting from the

impulsive work–energy theorem,’’ ex. 4.3.1, eqs. (d–f), with vþ ! v� stationary (a

maximum, since T is positive definite), under the constraint (expressing the sameness

of the impulses for all comparison motions)

2ðT � T�Þ �S cdFdF � ðvþ v�Þ ¼ 0; ð4:6:3hÞ
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or

Sdm v � v�S cdFdF � ðvþ v�Þ � 2T� ¼ 0: ð4:6:3iÞ

The Bertrand–Delaunay theorem, in spite of its conceptual elegance, has two serious

drawbacks:

(i) The earlier continuity requirement significantly limits its usefulness; and

(ii) As one might expect, its practical implementation is, usually, mathematically labor-

ious. [Convenient alternatives, for the determination of the motion of constrained

systems resulting from the sudden imposition of impulses, are the stationarity/

extremum theorems of Robin and Gauss, presented below.]

Relationship Between the Theorems of Kelvin and Bertrand–Delaunay,

Theorem of Taylor (1922)

Let us consider a straight rigid rod AB, initially at rest on a horizontal smooth table,

and then set in motion by a given impulse ÎIB applied perpendicularly to it at its end

B; and, hence, communicating to it a specified velocity vB, also perpendicular to the

rod at B. Then, we repeat the experiment with a point of the rod C permanently

fixed/hinged; something that forces it to rotate about C. Now: (a) If the impulse at B
is the same in both experiments, then the hinge decreases the kinetic energy

(Bertrand–Delaunay); in fact, since the value of ÎIB remains fixed, as C approaches

B the angular velocity of the rod decreases (and for C ! B ) !! 0Þ, and so does

its kinetic energy; whereas (b) If the velocity of B is the same in both experiments,

then the hinge increases the kinetic energy (Kelvin); in fact, since the value of vB
remains fixed, as C approaches B the angular velocity of the rod increases indefi-

nitely, and so does its kinetic energy!

The relationship between the kinetic energy increase of Kelvin’s theorem, and

the kinetic energy decrease of the Bertrand–Delaunay theorem is answered by the

following interesting theorem.

THEOREM OF TAYLOR

Let us consider an originally motionless system S and then apply to its points

impulses cdFdF , which produce velocities vþ, and result in a reference kinetic energy

Tþ. Next, we introduce to S given constraints. To this new, motionless, system, Sc,

we:

(a) First, apply the earlier cdFdF at the same points, which results in a kinetic energy

Tþc; impulses. By the theorem of Bertrand–Delaunay, Tþc; impulses < Tþ:

(b) Second, we apply the earlier velocities at the same points, which results in a kinetic

energy Tþc; velocities. By Kelvin’s theorem: Tþc; velocities > Tþ.

Now, Taylor’s theorem states that

jTþc; velocities � Tþj > jTþ c; impulses � Tþj; ð4:6:3jÞ
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or

DTK > jDTB=Dj;
DTK � Tðvpostimpact comparisonÞ � Tðvpostimpact actualÞ ð> 0Þ;

DTB=D � Tðvpostimpact additional constraintsÞ � Tðvpostimpact existing constraintsÞ ð< 0Þ; ð4:6:3kÞ

where

Tðvpostimpact actualÞ ¼ Tðvpostimpact existing constraintsÞ ¼ Tþ:

In words: the increase in energy due to the imposition of constraints in the Kelvin case
is greater than the (absolute value of the) reduction in energy due to the imposition of
the same constraints in the Bertrand–Delaunay case.

[For proofs and applications, see, for example, Kilmister (1967, pp. 105–107),

Milne (1948, pp. 374–378), Pars (1965, p. 238), Ramsey (1937, pp. 216–219),

Rosenberg (1977, p. 408). Also, for a combined formulation of the theorems of

Kelvin and Bertrand–Delaunay, due to Gray (1901), see Stäckel (1905, p. 517).]

4.6.4 Theorem of Robin (1887)

The actual postimpact velocities fvþg of a moving system subjected simultaneously to

given impressed impulses fcdFdFg, and to sudden ideal impulsive constraints make the
following expression:

P ¼ Pðv; v�; cdFdF Þ �S ðdm=2Þðv� v�Þ2 �S cdFdF � ðv� v�Þ; ð4:6:4aÞ

(stationary and) a minimum, among fvg: kinematically possible (or comparison)
postimpact velocities; that is,

Pðv; v�; cdFdF Þ 	 Pðvþ; v�; cdFdF Þ � Pmin;

Pmin ¼S ðdm=2Þðvþ � v�Þ2 �S cdFdF � ðvþ � v�Þ: ð4:6:4bÞ

Indeed, setting in the master equations (4.6.1c, d) �r � vþ and �r � v (to distinguish

them from the vþ of Bertrand’s theorem) yields

Sdmðvþ � v�Þ � vþ ¼S cdFdF � vþ;

Sdmðvþ � v�Þ � v ¼S cdFdF � v ¼Sdmðv� v�Þ � v
h i

; ð4:6:4cÞ

the last equation holding because, if we denote by cdRdR and ddR 0dR 0 the constraint reac-

tions of vþ and v, respectively and since the v are compatible with both cdRdR and ddR 0dR 0

(i.e., with all constraints — since the vþ are a subset of the v, they must also be

compatible with both the cdRdR and ddR 0dR 0 ), we shall have S cdRdR � v ¼ S ddR 0dR 0 � v ¼ 0.

Next, subtracting eqs. (4.6.4c) side by side readily results in

Sdmðvþ � v�Þ � ðv� vþÞ ¼S cdFdF � ðv� vþÞ; ð4:6:4dÞ
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or, since kinematically admissible postimpact velocities may differ infinitesimally

from each other, setting (as in Kelvin’s theorem) v� vþ ¼ �vþ � �Rv, we can rewrite

(4d) as

Sdmðvþ � v�Þ � �Rv ¼S cdFdF � �Rv; ð4:6:4eÞ

which is none other than the stationarity condition (since �Rv
� ¼ 0)

�RP ¼ �R S ðdm=2Þðv � v�Þ2 �S cdFdF � ðv� v�Þ
� �

¼ 0: ð4:6:4fÞ

Next, to the minimality condition. We obtain, successively, using the above results,

Pðv; . . .Þ � Pðvþ; . . .Þ � P� Pmin

¼S ðdm=2Þ
�ðv� v�Þ2 � ðvþ � v�Þ2��S cdFdF � ðv� vþÞ

¼S ðdm=2Þðv� vþÞ � ðvþ vþ � 2v�Þ �Sdmðvþ � v�Þ � ðv� vþÞ
¼S ðdm=2Þðv� vþÞ2

¼S ðdm=2Þð�RvÞ2 ¼ ð1=2Þ �2
RP 	 0; Q:E:D: ð4:6:4gÞ

REMARKS

The final (i.e., postimpact) velocities of a system under sudden prescribed impressed

impulses (or velocities), followed immediately by additional constraints, are the same

as if the system had the constraints imposed first, followed immediately by the

impressed impulses (or velocities); that is, the order of application of impressed
impulses (or velocities) and constraints is immaterial to the postimpact motion, as
long as it all occurs within an infinitesimal time interval. [However, the order of

equally sudden imposition of impressed impulses (or velocities) and removal of con-

straints, clearly, does make a difference!] And, wherever that order of application is

immaterial, the total impulse at various system points, impressed and constraint

(reaction), must be the same for either order; hence, then, impressed impulses (or

velocities) and additional constraints can be thought of as acting simultaneously, in

the sense of Robin’s theorem. [These remarks are due to Professor D. T. Greenwood

(private communication).]

Special (Extreme) Cases

(a) Only the fcdFdFg are imposed, but no additional constraints. Then the fvþg
make P, (4.6.4a), a minimum.

(b) Only the additional constraints are imposed, but no fcdFdFg. Then the fvþg
make the ‘‘comparison relative kinetic energy’’ P a minimum:

P!S ðdm=2Þðv� v�Þ2 !S ðdm=2Þðvþ � v�Þ2 ¼ Pmin: ð4:6:4hÞ
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Further, in this case, we obtain, successively,

S ðdm=2Þðv� v�Þ2 ¼S ðdm=2Þv � vþS ðdm=2Þv� � v� �Sdm v � v�

¼S ðdm=2Þv � vþS ðdm=2Þv� � v� �Sdm v � v

½the third ðlastÞ sum transformed with the help of ð4:6:4cÞ�
¼S ðdm=2Þv� � v� �S ðdm=2Þv � v > 0;

and, therefore, for v ¼ vþ,

Pmin ¼S ðdm=2Þðvþ � v�Þ2 ¼S ðdm=2Þv� � v� �S ðdm=2Þvþ � vþ

¼ T� � Tþ � �DT > 0 ð¼ kinetic energy lossÞ: ð4:6:4iÞ

In words: the postshock velocities of a system subjected to sudden ideal impulsive
constraints minimize its relative kinetic energy; and that minimum value equals the
lost kinetic energy (i.e., first part of Carnot’s theorem!).

(c) The preimpact state is one of rest. Then we simply set in (4.6.4a, b) v� ¼ 0.

4.6.5 Theorem of Gauss

[Impulsive Counterpart of Differential Variational Principle of Gauss (}6.4, }6.6).]

The actual postimpact velocities fvþg minimize the ‘‘impulsive compulsion’’:

ẐZ ¼ ẐZðvÞ �S ðdm=2Þ
�
v� v� � ðcdFdF=dmÞ�2 ð4:6:5aÞ

¼ � � � ¼ PþS ðcdFdF Þ2=2dm� �
;

relative to all kinematically admissible postimpact velocities fv � vþ þ �Gvg; that is,

min ẐZ ¼ ẐZðvþÞ. Indeed, from (4.6.5a) we readily obtain

DGẐZ � ẐZðvÞ � ẐZðvþÞ
¼S ðdm=2Þ

�ðvþ þ �Gv� v� � cdFdF=dmÞ2 � ðvþ � cdFdF=dmÞ2�
� �GẐZ þ ð1=2Þ�2

GẐZ; ð4:6:5bÞ

where

�GẐZ �Sdmðvþ � v� � cdFdF=dmÞ � �Gv ð¼ �RPÞ ¼ 0

½by setting in ð4:6:1c;dÞ �r! �Gv� ð4:6:5cÞ
�2
GẐZ �Sdmð�GvÞ2 ð¼ �2

RPÞ
� Relative kinetic energy ðas in Kelvin’s theoremÞ > 0; ð4:6:5dÞ

that is, DGẐZ ¼ ð1=2Þ�2
GẐZ ½¼ DRP ¼ ð1=2Þ�2

RPÞ� > 0; Q.E.D. The above clearly show

the equivalence of the theorems of Gauss and Robin.
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Alternatively, the stationarity condition (4.6.5c), with �Gv
þ ¼ v� vþ, applied to

ẐZ �Sðdm=2Þ
�ðvþ � v�Þ � cdFdF=dm�2

¼S ðdm=2Þvþ � vþ þS ðdm=2Þv� � v� þS ðcdFdF Þ2=2dm
�Sdm vþ � v� �S cdFdF � ðvþ � v�Þ;

yields

�GẐZ ¼Sdmðvþ � v� � cdFdF=dmÞ � �Gðvþ � v� � cdFdF=dmÞ
¼Sdm vþ � �Gv�Sdm v� � �Gv�S cdFdF � �Gv ¼ 0; ð4:6:5eÞ

or, rearranging,

Sdmðvþ � v�Þ � �Gv ¼S cdFdF � �Gv; ð4:6:5fÞ

that is, the master equations (4.6.1c, d) with �r! �Gv. Also, eq. (4.6.5f) constitutes

the impulsive counterpart of Jourdain’s differential variational principle (}6.3). This

latter, in holonomic system variables, reads
P ðDpk � Q̂QkÞ � _qqk ¼ 0, under �t ¼ 0,

�qk ¼ 0. For a detailed and lucid treatment of its application to impulsive problems,

see, for example, Bahar (1994); also ex. 4.5.6.

To facilitate the understanding of all these — admittedly, similarly sounding and

hence hard to differentiate and remember — theorems,we summarize them in table 4.2.
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Table 4.2 Extremum Theorems of Impulsive Motion

Master equation (impulsive Lagrange’s principle):

Sdmðvþ � v�Þ � �r ¼ S cdFdF � �r

� Carnot (first part—collisions):

�r � vþ; cdFdF ¼ 0 ) Tþ � T� < 0:

Carnot (second part—explosions):

�r � v�; cdFdF ¼ 0 ) Tþ � T� > 0:

� Kelvin (prescribed velocities):

�r � vþ; �r � vþ þ �Kv; v� ¼ 0 ) TðvÞ � TðvþÞ > 0; �KT
þ ¼ 0:

� Bertrand–Delaunay (prescribed impulses):

�r � vþ; �r � vþ þ �B=Dv ¼ v ) TðvÞ � TðvþÞ < 0; �B=DT
þ ¼ 0:

½Taylor: TKelvinðvÞ � TðvþÞ > TðvþÞ � TðvÞBertrand�Delaunay�
� Robin (prescribed impulses and constraints):

�r � vþ; �r � vþ þ �Rv ¼ v

P �S ðdm=2Þðv� v�Þ2 �S cdFdF � ðv� v�Þ: stationary and minimum:

� Gauss (impulsive compulsion):

ẐZ �S ðdm=2Þðv� v� � cdFdF=dmÞ2 ¼ PþS ðcdFdF Þ2=2dm: stationary and minimum:



Example 4.6.1 (D. T. Greenwood, 1997, private communication). On Input Inertia
and Impulse Response. Let us consider a finite and discrete system, and an impulse f̂fP,

acting at its point P and causing to it a velocity jump DvP � vP
þ � vP

�. Now, the

input inertia coefficient or driving-point mass at P, �P, is defined by

�P � f̂fP=DvP;t ðP ¼ 1; 2; . . .Þ; ðaÞ
where f̂fP is the magnitude of f̂fP and DvP;t is the component of DvP in the direction of

f̂fP. It is not hard to see that �P > 0, always (explain!); and, for a given system point

P, it is a function of the configuration and the direction of f̂fP, but not of the system’s

state of motion. From the above, it follows that if �P is also finite, DvP has always a

component in the direction of f̂fP. Now, and recalling the results of ex. 4.3.1 on the

impulsive ‘‘work–energy’’ theorem, the work (or, better, power) done by f̂fP; ŴWP,

equals its dot product with the average velocity of vP
þ and vP

�:

ŴWP � f̂fP � ½ðvP� þ vP
þÞ=2� ¼ f̂fP � ½vP� þ ðDvPþ=2Þ�; ðbÞ

and by that theorem, the corresponding kinetic energy change, DTP, is

DTP � TP
þ � TP

� ¼ ŴWP ¼ f̂fP � vP
� þ ð f̂fP2=2�PÞ: ðcÞ

From this, we conclude that DTP can be positive or negative, depending on the

preimpact state of motion (i.e., the value of f̂fP � vP
�Þ. But, an originally motionless

proportional to its �P’s.

Next, let us assume that additional stationary impulsive constraints are suddenly

imposed on a moving system. If some particle velocity is changed, and the impact is

inelastic, the resulting impulsive constraint reactions will do negative work on the

system as a whole, and thus reduce its kinetic energy (Carnot’s first theorem). This

and (c) imply that additional constraints result in an increase in the system’s input

masses, �P’s; a fact confirming our intuitive feeling that each constraint tends to
increase the resistance to velocity changes due to f̂fP, at P.

Appendix: Calculation of DvP;t for a single impressed impulse f̂fP

Recalling the results of }4.5 [eqs. 4.5.4a–5b)], let the constraints and kinetic equa-

tions of impulsive motion be, respectively,

!D �
X

ADk _qqk �
X

ADkvk ¼ 0;X
M*II 0D!I 0 ¼ YI ) D!I ¼

X
YII 0YI 0 ½ðYII 0 Þ: inverse of ðM*II 0 Þ�; ðdÞ

where

!I �
X

AIk _qqk �
X

AIkvk 6¼ 0; M*II 0 � @2T*o=@!I @!I 0 ;

T*o ¼ T*ðt; q; !D ¼ 0; !I Þ ¼ T*oðt; q; !I Þ ðD ¼ 1; . . . ;m; I ; I 0 ¼ m þ 1; . . . ; nÞ:
ðd1Þ

Now, with the earlier notations/definitions, suppose that

DvP;t ¼
X

CPI D!I ðP ¼ 1; 2; . . . ;# particles under impressed impulsesÞ: ðe1Þ
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system (i.e., vP− = 0) will always exhibit an increase in its kinetic energy, inversely



Hence, for a single such impulse f̂fP, by equating impulsive virtual works, we find

ŶYI ¼ ½@ðDvP;tÞ=@ðD!IÞ� f̂fP ¼ CPI f̂fP: ðe2Þ

Substituting (e2) into the second of (d), and the result into (e1), we obtain the sought

formula

DvP;t ¼
X

CPI

X
YII 0 ðCPI 0 f̂fPÞ

� �
¼

XX
CPIYII 0CPI 0

� �
f̂fP: ðf1Þ

From (f1), it also follows at once that the corresponding input mass equals

�P � f̂fP=DvP;t ¼
XX

CPIYII 0CPI 0
� ��1

: ðf2Þ

The extension of the above to include impulsive constraint reactions is straightfor-

ward, and is left to the reader. These formulae may find useful applications to

structural dynamics.

Example 4.6.2 Let us consider two circular homogeneous wheels, W1 and W2 (fig.

4.21), of respective radii r1 and r2, rotating with constant and, initially unrelated,

angular velocities about their frictionless parallel axes through their respective fixed

(geometrical and mass) centers O1 and O2. On these wheels, we drop an initially

slack, inextensible and massless cable that sticks to them and, then, at a certain

instant, becomes taut and thus exerts an impulsive moment on the wheels. Let us

calculate their postimpact angular velocities !1
þ and !2

þ, respectively.

Since the addition of the cable amounts to the sudden introduction of a constraint,
Carnot’s first theorem, (4.6.1e), yields immediately (with I1 and I2 denoting, respec-

tively, the moments of inertia of W1 and W2 about O1 and O2)

2ðTþ � T�Þ ¼ ½I1ð!1
þÞ2 þ I2ð!2

þÞ2� � ½I1ð!1
�Þ2 þ I2ð!2

�Þ2�
¼ ��I1ð!1

þ � !1
�Þ2 þ I2ð!2

þ � !2
�Þ2� < 0; ðaÞ
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Figure 4.21 Sudden imposition of constraint in a two-wheel system.



or, rearranging and simplifying,

I1½ð!1
�Þ2 � ð!1

þÞ2� þ I2½ð!2
�Þ2 � ð!2

þÞ2�
¼ I1ð!1

� � !1
þÞ2 þ I2ð!2

� � !2
þÞ2 > 0: ðbÞ

From kinematics we have, also,

!1
þ r1 ¼ !2

þ r2: ðcÞ
Solving the system (b, c), we obtain the sought postimpact angular velocities

!1
þ=r2 ¼ !2

þ=r1 ¼ ðI1 r2 !1
� þ I2 r1 !2

�Þ�ðI1r22 þ I2r1
2Þ: ðdÞ

Then, combining these results with the theorem of impulsive angular momentum,

about O1 and O2, we obtain the impulsive cable tension ŜS,

ŜS r1 ¼ I1ð!1
þ � !1

�Þ; �ŜS r2 ¼ I2ð!2
þ � !2

�Þ ðeÞ
) ŜS ¼ I1ð!1

þ � !1
�Þ�r1 ¼ �I2ð!2

þ � !2
�Þ�r2

¼ �ðr2 !2
� � r1!1

�Þ�ðI1r22 þ I2r1
2Þ�I1I2: ðfÞ

Problem 4.6.1 (Bouligand, 1954, pp. 139–142). Consider a thin straight homo-

geneous rod AB, of mass m and length 2l, originally suspended in horizontal equili-

brium from a fixed ceiling by two vertical identical taut strings, s and s 0, attached to

the bar at points other than its endpoints A and B [fig. 4.22(a)]. A third string s 00

connects A with the ceiling point O, directly above A. The length of s 00 is 2h, and

that is double the distance OA (i.e., originally, s, s 0 are taut, but s 00 is slack). Then,

the strings s and s 0 break simultaneously (or, someone burns them). Calculate the

velocity state of AB immediately after the shock produced by the sudden tensioning

of s 00.
Let [fig 4.22(b)] OA ¼ r, angleðOx;OAÞ ¼ �, angleðOx;ABÞ ¼ �. Now, the post

s; s 0-snap configurations of AB are determined by three Lagrangean coordinates; say,

r, �, �; while the shock amounts to the sudden introduction of the persistent con-

straint r ¼ constant ¼ 2h.
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Figure 4.22 Geometry of rod AB, of mass m and length 2l, originally suspended from a

fixed ceiling by the two equal and parallel strings s and s 0, of length h. A third string s 00,
of length 2h, connects A with the fixed ceiling point (origin) O. Then s and s 0 snap, AB
falls freely until s 00 gets taut and provokes a shock to AB.

(a) Equilibrium, (b) generic postshock configuration.



(i) Show that the (double) kinetic energy of AB, for a generic configuration, is

2T ¼ m
�
r2ð _��Þ2 þ ð _rrÞ2 þ ð4=3Þðl _��Þ2 þ 2l½r _�� _�� cosð�� �Þ þ _rr _�� sinð�� �Þ��: ðaÞ

HINT

Let the coordinates of the rod’s center and center of mass G be x, y. From geometry,

x ¼ r cos � þ l cos�; y ¼ r sin �þ l sin �;

) _xx ¼ �r _�� sin �þ _rr cos �� l _�� sin�; _yy ¼ r _�� cos �þ _rr sin �þ l _�� cos�: ðbÞ
Then use König’s theorem: 2T ¼ 2Twith all mass concentrated atG þ 2Trelative; aboutG.

(ii) By applying the fundamental Lagrangean impulsive virtual work equation

Dð@T=@ _rrÞ �rþ Dð@T=@ _��Þ ��þ Dð@T=@ _��Þ �� ¼ 0; for �r ¼ 0; ��; ��: arbitrary ðcÞ
(since here d� 0W� 0W ¼ 0), obtain the kinetic impulsive equations:

D
�
r _��þ l _�� cosð�� �Þ� ¼ 0 ) rD _�� ¼ 0; ðd1Þ

D
�ð4=3Þl _��� l _�� cos2ð�� �Þ þ _rr sinð�� �Þ� ¼ 0) ð4=3ÞlD _��� D _rr ¼ 0: ðd2Þ

(iii) Verify that, since the preshock conditions are (invoking energy conservation)

�� ¼ 0; �� ¼ �=2; r ¼ 2l; ð _��Þ� ¼ 0; ð _��Þ� ¼ 0; ð _rrÞ� ¼ ð2ghÞ1=2 ðfree fallÞ; ðe1Þ
while, after the shock: ð _rrÞþ ¼ 0) D _rr ¼ �ð2ghÞ1=2, the above yield the postshock

values

ð _��Þþ ¼ 0; ð _��Þþ ¼ �3ð2ghÞ1=2=4l: ðe2Þ
(iv) Verify that the kinetostatic impulsive equation is Dð@T=@ _rrÞ ¼ 
̂
 [impulsive

multiplier, to adjoin the constraint ð1Þ �r ¼ 0 to (c), and equal to the tension of s 00].
Show that

4
̂
 ¼ ð2ghÞ1=2:
(v) Show that if we choose as Lagrangean coordinates, x, y, and �, the (double)

kinetic energy and impulsive virtual work equation are, respectively,

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2� þ ðml2=3Þð _��Þ2; ðf1Þ
Dð@T=@ _xxÞ �xþ Dð@T=@ _yyÞ �yþ Dð@T=@ _��Þ �� ¼ 0; ðf2Þ

for all �x, �y, �� constrained by

�f jevaluated at �¼0;�¼�=2 ¼ 0; where f � ðx� l cos�Þ2 þ ðy� l sin�Þ2 ¼ r2 ðconstantÞ;

that is,

�xþ l �� ¼ 0: ðf3Þ
Verify that the variational equations (f2) and (f3) lead to the kinetic impulsive

equations

D _xx� ðl=3ÞD _�� ¼ 0 and D _yy ¼ 0: ðf4Þ
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Then [from (b) evaluated at � ¼ 0, � ¼ �=2, r ¼ 2l], since the preshock velocities are

ð _xxÞ� ¼ 2ðghÞ1=2, ð _yyÞ� ¼ 0, ð _��Þ� ¼ 0, confirm that the postshock velocities will be

ð _xxÞþ ¼ ð2ghÞ1=2 þ D _xx ¼ ð3=4Þð2ghÞ1=2; ð _yyÞþ ¼ D _yy ¼ 0; ð _��Þþ ¼ D _��; ðf5Þ

[while ð _yyÞ� ¼ ð _yyÞþ ¼ 0�, and they will be connected by

ðdf =dtÞþ ¼ 0) ð _xxÞþ þ lð _��Þþ ¼ 0: ð2ghÞ1=2 þ D _xxþ l D _�� ¼ 0: ðf6Þ

Finally, confirm that combination of (f4) with (f6) yields a D _�� value in agreement

with (e2); also that the impulsive multiplier needed for adjoining (f3) to (f2) equals

l D _��=3.

(vi) Show that

2T� ¼ 2mgh; 2Tþ ¼ m½r2ð _��Þ2 þ ð4=3Þl2ð _��Þ2�; ðg1Þ
2Tjump �Sdmðvþ � v�Þ � ðvþ � v�Þ ðkinetic energy of jump motionÞ
¼ m½ðD _xxÞ2 þ ðD _yyÞ2� þ ðm l2=3ÞðD _��Þ2

¼ m
�½ð _xxÞþ � ð2ghÞ1=2�2 þ ½ð _yyÞþ�2 þ ðl2=3Þ½ð _��Þþ�2�

¼ m
�½lð _��Þþ þ ð2ghÞ1=2�2 þ 4h2½ð _��Þþ�2 þ ðl2=3Þ½ð _��Þþ�2�: ðg2Þ

(vii) Show that the first theorem of Carnot — that is, T� � Tþ ¼ Tjump — applied

to the above yields

4h2½ð _��Þþ�2 þ ð4=3Þl2½ð _��Þþ�2 þ lð _��Þþð2ghÞ1=2 ¼ 0: ðh1Þ

A second equation connecting ( _��Þþ and ( _��Þþ is obtained by applying impulsive

angular momentum conservation about O (i.e., Oz—notice that, in our axes, clock-
wise is negative):

HO
� ¼ HO

þ: �m lð2g hÞ1=2 ¼ IG !
þ þ ½rG=O � ðmvGÞ�z

¼ ðml2=3Þð _��Þþ þ ½�mð _xxÞþl þ mð _yyÞþð2hÞ� ½using ðbÞ�
¼ ðml2=3Þð _��Þþ þ f�m½�lð _��Þþ�l þm½2hð _��Þþ�ð2hÞg
¼ ð4=3Þðm l2Þð _��Þþ þ mð2hÞ2ð _��Þþ;

) 4h2ð _��Þþð4=3Þl2ð _��Þþ þ lð2ghÞ1=2 ¼ 0: ðh2Þ

Verify that the solution of (h1) and (h2) gives the earlier postshock values.

[The fact that (h1) is a single nonvariational equation in the two unknowns —

namely, ( _��Þþ; ð _��Þþ (and also that it is quadratic in them, thus yielding a parasitic
solution, in addition to the actual one — a drawback of all nonvariational/extremum
energetic theorems) — severely limits the practical usefulness of Carnot’s theorem(s).]

Example 4.6.3 Let us consider a rigid lamina P, of mass m, originally at rest on a

smooth table, one point of which, say A, is suddenly communicated a prescribed

velocity (u; v), on the plane of P (fig. 4.23). We will calculate its actual postshock

angular velocity, !þ, via elementary (i.e., Newton–Euler) means, and by Kelvin’s
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theorem; namely, that for !þ the kinematically possible postimpact kinetic energy of

P becomes both stationary and minimum.

(i) Via Newton–Euler. Let (a; b) be the coordinates of A relative to the mass center

of P, G. Then, by plane kinematics, the velocity of G has x; y-components: uþ b!,

v� a!; and so, by impulsive angular momentum about A (with mk2: moment of

inertia of P about G),

0 ¼ ðmk2Þ!þ þ �½mðuþ b!þÞb� � ½mðv� a!þÞ�a� ðaÞ

(¼ angular momentum of P about Gþmoment of linear momentum of P about A),

and solving this for !þ, we readily obtain

!þ ¼ ðav� buÞ�ðk2 þ a2 þ b2Þ; ðbÞ

or, by applying the principle about the body-fixed point A, and corresponding

moment of inertia

IA ¼ IG þ mða2 þ b2Þ ¼ mðk2 þ a2 þ b2Þ:
0 ¼ D

�
IA!� ðrA=G � mvAÞz

�
: 0 ¼ IA !

þ � ½ðmvÞa� ðmuÞb� ) eq: ðbÞ: ðcÞ

(ii) Via Kelvin’s theorem. Now, by König’s theorem, the postimpact kinetic energy

of P for an arbitrary kinematically possible postimpact angular velocity !, equals

2T ¼ m
�ðuþ b!Þ2 þ ðv� a!Þ2�þ ðmk2Þ!2 ¼ 2Tð!; u; vÞ: ðdÞ

Let the reader show that, by Kelvin’s theorem, T ! stationary; that is, setting

dT=d! ¼ 0 yields ! ¼ !þ, eq. (b), and further, that there d2T=d!2 > 0.

Example 4.6.4 Let us consider an initially motionless rigid and homogeneous rod

AB, of mass m and length l (fig. 4.24), set in motion by causing its right end B to
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move normally to AB with a specified postimpact velocity u. Let us calculate its

postimpact angular velocity !þ.

Here, by König’s theorem, the kinematically possible postimpact kinetic energy of

the rod [with v: velocity of rod’s center of mass G; I : moment of inertia of rod about

Gð¼ ml2=12); and !: angular velocity of rod] equals

2T ¼ mv2 þ I!2; ðaÞ
and, by simple kinematics,

vB ¼ vG þ x� rB=G ¼ ð0; v; 0Þ þ ð0; 0; !Þ � ðl=2; 0; 0Þ ¼ ð0; vþ !l=2; 0Þ; ðbÞ

that is, u ¼ vþ !l=2) v ¼ u� !l=2 ðwhich expresses the kinematic possibilityÞ,
and, therefore,

2T ¼ mðu� !l=2Þ2 þ I!2 � Tð!; uÞ: ðcÞ
Now, according to Kelvin’s theorem, of all the kinematically possible postimpact

motions (i.e., velocities) of the rod with (vBÞþ � u ¼ prescribed, and hence for any
set of values of v and ! satisfying eq. (b), the actual, or kinetic, one will make T
stationary/minimum; that is, it will be such that

@T=@! ¼ �mðl=2Þ½u� !ðl=2Þ� þ I! ¼ 0 ½with !! !þ�
) ðl=2Þ!þ ¼ �mðl=2Þ2�½I þmðl=2Þ2��u; or; Enally; !þ ¼ 3u=2l: ðdÞ

Problem 4.6.2 By applying Kelvin’s theorem, show that the actual postimpact

angular velocities of two identical and homogeneous rods AB and BC (fig. 4.25),

!þ and Oþ, each of length l and mass m, smoothly hinged at B and originally at rest

so that A, B, C are collinear, and after A is suddenly imparted a specified velocity �,
normal to AB, equal

!þ ¼ 9v=7l ði:e:; clockwiseÞ; Oþ ¼ �ð3v=7lÞ ði:e:; counterclockwiseÞ: ðaÞ
HINT

By König’s theorem, the postimpact kinetic energy, for any kinematically admissible

angular velocities ! and O, equals

T � Tð!;O; vÞ ¼ ½ðm=2Þðv� l!=2Þ2 þ ð1=2Þðml2=12Þ!2�
þ fðm=2Þ½v � 2ðl=2Þ!� ðl=2ÞO�2 þ ð1=2Þðml2=12ÞO2g: ðbÞ

Then set @T=@! ¼ 0, @T=@O ¼ 0.
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Example 4.6.5 (D. T. Greenwood, private communication, 1997).

(i) Let us consider an initially motionless rigid and homogeneous rod AB, of mass

m and length l (and, hence, center of mass at the rod midpoint G— fig. 4.26), set in

motion by a given transverse impulse ÎI at B. Using impulsive principles of linear and

angular momentum (about G), we readily find the following postimpact velocities

(omitting superscript pluses):

vG ¼ ÎI=m; ! ¼ ÎIðl=2Þ�ðml2=12Þ ¼ 6ÎI=ml; ða1Þ

and, therefore, the (also transverse) velocity of B is

vB ¼ vG þ x� rB=G ) vB ¼ vG þ !ðl=2Þ ¼ 4ÎI=m: ða2Þ

Hence, by König’s theorem, the corresponding kinetic energy equals

T ¼ ð1=2ÞmvG
2 þ ð1=2Þðm l2=12Þ!2 ¼ � � � ¼ 2ÎI2=m

¼ ð1=2ÞðÎI2=�BÞ ¼ ð1=2Þ�B vB2 ¼ ð1=2ÞÎIvB; ðb1Þ

where (recalling the results/definitions of ex. 4.6.1)

�B � ÎI=vB ¼ m=4: input inertia coeRcient ðor; driving-point mass at BÞ: ðb2Þ

(ii) Next, suppose we introduce the constraint vA ¼ 0 (e.g., we hinge A) before the

initially motionless rod is struck by the same transverse impulse ÎI at B. Now we have

! ¼ ÎI l
�ðml2=3Þ ¼ 3ÎI=ml ) vB ¼ ! l ¼ 3ÎI=m

) T ¼ ð1=2Þðml2=3Þ!2 ¼ � � � ¼ 3ÎI2=2m ðcÞ
¼ ð1=2ÞðÎI2=�BÞ ¼ ð1=2Þ�B vB2 ¼ ð1=2ÞÎI vB; ðd1Þ

where

�B � ÎI=vB ¼ m=3: ðd2Þ

(iii) Comparing the above, we see that the introduction of a constraint (�) has

increased the value of the input inertia coefficient �B, and, since 2T ¼ ÎI2=�B, (�) has

reduced the postimpact kinetic energy, in accordance with the Bertrand–Delaunay

theorem.
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vA ¼ v, vG1
¼ v � ðl=2Þ!, vB ¼ v � 2ðl=2Þ!, vG2

¼ v � 2ðl=2Þ!� ðl=2ÞO.



If, on the other hand, we had prescribed the velocity vB, rather than the impulse

ÎI , and kept everything else the same, since also 2T ¼ �B vB2, the postimpact kinetic

energy would have been increased, in accordance with the Kelvin theorem.

(iv) Finally, let the values of the input inertia coefficient before the application of

the constraint and after it be denoted (for more precision), respectively, as �B and

�B;c. Then we can write

�B;c � �B þ D�B ¼ �B þ "�B ¼ ð1þ "Þ�B; ðe1Þ

where

" � ð�B;c � �BÞ=�B > 0: Fractional increase of �B due to the constraint ðe2Þ

(in the above example: " � ðm=3�m=4Þ�ðm=4Þ ¼ 1=3).

Now, (�) comparing the kinetic energies before and after the constraint, but

for the same vB (i.e., à la Kelvin) we see that (with some easily understood ad hoc

notations)

ðTc � TÞK � ð1=2Þ�B;cvB2 � ð1=2Þ�BvB2

¼ ð1=2Þ�BvB2ð�B;c � �BÞ ¼ ð1=2Þ�BvB2"

) ½ðTc � TÞ=T �K : Fractional increase of T due to the constraint

ð�aa la KelvinÞ ¼ " > 0: ðe3Þ

while (�) comparing the kinetic energies before and after the constraint, but for the

same ÎI (i.e., à la Bertrand–Delaunay) we see that

ðT � TcÞB=D � ð1=2ÞðÎI2=�BÞ � ð1=2ÞðÎI2=�B;cÞ
¼ ð1=2ÞÎI2

�ð1=�BÞ � ð1=�B;cÞ
� ¼ ð1=2ÞðÎI2=�BÞ½"=ð1þ "Þ�

) ½ðT � TcÞ=T �B=D > 0: Fractional reduction of T due to the

constraint ð�aa la Bertrand�DelaunayÞ
¼ "=ð1þ "Þ < "; ðe4Þ

that is, comparing (e3) and (e4), we immediately conclude that the T-increase à la
Kelvin is greater than the T-decrease à la Bertrand–Delaunay {by an amount equal to

"� ½"=ð1þ "Þ�ð¼ 1=12, in the above example)}, in accordance with Taylor’s theorem.
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Problem 4.6.3 (D. T. Greenwood, private communication, 1997). Continuing

from the preceding example, consider the response of the unconstrained (and origin-

ally motionless) rod AB to an impulse ÎI applied to its end B and making an angle �
with the perpendicular to the rod there (fig. 4.27). Let the component of the resulting

postimpact velocity at B, vB, along ÎI be vBt (i.e., vB is neither in the same direction as

ÎI , nor is it perpendicular to the rod at B, as before).

(i) By applying the impulsive principles of linear and angular momentum (about

G) show that

vG ¼ ðÎI=mÞð� sin � i þ cos � jÞ; ! ¼ 6ÎI cos �=ml; ða1Þ
vB ¼ vG þ x� rB=G ¼ � � � ¼ ðÎI=mÞð� sin � i þ 4 cos � jÞ ða2Þ
) vBt � vB � ðÎI=ÎIÞ ¼ � � � ¼ ðÎI=mÞð1þ 3 cos2 �Þ: ða3Þ

(ii) Show that the imparted kinetic energy is

T ¼ ðÎI2=2mÞð1þ 3 cos2 �Þ: ðb1Þ
(iii) Verify that T can also be put in the following general forms:

T ¼ ÎI2=2�B ¼ ð1=2ÞÎI vBt ¼ ð1=2Þ�BvBt
2; ðb2Þ

where

�B � ÎI=vBt ¼ m=ð1 þ 3 cos2 �Þ: input mass at B: ðb3Þ

Problem 4.6.4 Consider an originally motionless and vertical double pendulum

consisting of two identical and homogeneous rigid rods, AB and BC (fig. 4.28),

each of mass m and length l, smoothly hinged at B and at the fixed support A,

and struck by a given horizontal blow ÎI at C.

(i) Show that the comparison postimpact kinetic energy of the system equals

T ¼ ðm=6Þð2u2 þ u vþ v2Þ ¼ ð1=2ÞÎI v; ðaÞ
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Figure 4.27 Rod AB struck at its right end B by a given nontransverse

impulse ÎI. [i, j: unit vectors along the positive axes x (parallel to AB), y

(perpendicular to AB).]



where u and v are, respectively, the comparison (kinematically admissible) post-

impact velocities of B and C, both perpendicular to the pendulum.

(ii) Next, show that application of the Bertrand–Delaunay theorem leads to the

(constrained stationarity) conditions @F=@u ¼ @F=@v ¼ 0, where

F � T þ 
ð2T � ÎIvÞ
¼ ð1=2ÞÎIvþ 
�ðm=3Þð2u2 þ u vþ v2Þ � ÎIv

� ¼ Fðu; v; 
Þ;
constraint: 2T � ÎIv ¼ ðm=3Þð2u2 þ u vþ v2Þ � ÎIv ¼ 0; multiplier: 
: ðbÞ

(iii) Show that the above equations lead to the following actual postimpact

velocities:

uþ ¼ �ð6=7ÞÎI�m; vþ ¼ ð24=7ÞÎI�m ) Tþ ¼ ð1=2ÞÎI v ¼ ð12=7ÞÎI2
�
m: ðcÞ

See also Lamb (1923, p. 321).

Problem 4.6.5 Consider an originally motionless square ABCD consisting of four

identical and homogeneous rigid bars (fig. 4.29), each of length 2l and mass m,

mutually joined by smooth hinges and with corner A fixed, resting on a smooth

horizontal table. Then, a given impressed impulse ÎI acts on the square at B, along BD.

Show that the postimpact angular velocities of AB and AD are, respectively,

!AB
þ � !1 ¼ 3ÎI

�
10

ffiffiffi
2
p

ml; !AD
þ � !2 ¼ 0 ði:e:; AD stationaryÞ: ðaÞ
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HINT

Apply the Bertrand–Delaunay theorem to the square’s postimpact kinetic energy;

that is,

T ¼ � � � ¼ �ð10=3Þml2
�ð!1

2 þ !2
2Þ ¼ Tð!1; !2Þ ! maximum; ðbÞ

under the constraint (expressing the impulsive principle of angular momentum about

A— explain)

ÎIðl=
ffiffiffi
2
p
Þ ¼ � � � ¼ �ð20=3Þml2

�ð!1 þ !2Þ ¼ ðspeciOedÞ constant; ðcÞ
that is, Tþ ¼ � � � ¼ ð3=20ÞðÎI2=mÞ.

Problem 4.6.6 Continuing from the preceding problem, show that the postimpact

kinetic energy of the given (hinged square) is twice as much as the postimpact kinetic

energy produced by the same impulse ÎI , but acting on a rigid square, as stipulated by

the Bertrand–Delaunay theorem.

HINT

In this case, !1 ¼ !2 6¼ 0 and Tþ ¼ � � � ¼ ð3=40ÞðÎI 2=mÞ.
[We remark that the preceding problem may also be viewed as a superposition of

(a) a rigid square (!1 ¼ !2Þ under codirectional impulses ÎI=2 applied at B and D, and

(b) a hinged square with A fixed but C able to slide along AD (i.e., !1 ¼ �!2Þ under

an impulse ÎI=2 applied at B [as in case (a)] and an opposite impulse �ÎI=2 applied

at D.]

Problem 4.6.7 Consider a rhombus ABCD formed by four identical and homoge-

neous bars, AB, BC, CD, DA (fig. 4.30), each of mass m=4, length 2b, radius of

gyration about its own mass center k, and such that angle (ABCÞ ¼ 2�, smoothly

hinged at A, B, C, D, and originally resting on a frictionless horizontal table. The
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rhombus is struck by a blow of intensity ÎI at A, along AC: If x is the horizontal

coordinate of its mass center G, from some fixed origin along AC, show that:

(i) The (double) kinetic energy of the system, at a generic impact configuration, is

2T ¼ mð _xxÞ2 þmðk2 þ b2Þð _��Þ2: ðaÞ
(ii) The postimpact velocity of A equals

ðx� 2b sin �Þ: ¼ �1þ ½4b2 cos2�=ðk2 þ b2Þ��ðÎI=mÞ � �ðÎI=mÞ: ðbÞ

(iii) The (double) postimpact kinetic energy generated by ÎI is 2T ¼ �ðÎI2=mÞ �
ð2TþÞhinged; and, therefore, the ratio of the actual postimpact kinetic energy to that if
the rhombus were rigid— that is, under the additional constraint � ¼ constant

(Thinged=TrigidÞpostimpact, equals �ð> 1Þ; as stipulated by the Bertrand–Delaunay

theorem.

Example 4.6.6 Let us calculate the postimpact state of a system having kinetic

energy

2T ¼ Au2 þ Bv2 þ Cw2 ðaÞ
(where u, v, w: Lagrangean velocities), originally moving with velocities u� � uo,
v� � vo, w

� � wo, after the sudden imposition on it of the constraint

auþ bvþ cw ¼ 0; ðbÞ
where both triplets of coefficients A, B, C, and a, b, c have their (approximately)

constant impact values.

According to the Gauss–Robin theorem, the solution makes the impulsive compul-

sion,

ẐZ ¼ Aðu� uoÞ2 þ Bðv� voÞ2 þ Cðw� woÞ2 � ẐZðu; v;wÞ; ðcÞ
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a minimum, subject to the constraint (b). By differential calculus, we must have

dẐZ ¼ 0 ) Aðu� uoÞ duþ Bðv� v0Þ dvþ Cðw� woÞ dw ¼ 0; ðdÞ
and

d½equationðbÞ� ¼ 0 ) a duþ b dvþ c dw ¼ 0; ðeÞ

from which (using simple analytic geometry arguments in u=v=w space, and fraction

properties; thus avoiding Lagrangean multipliers) we obtain successively,

ðu� u0Þ
�ða=AÞ ¼ ðv� voÞ

�ðb=BÞ ¼ ðw� woÞ
�ðc=CÞ

¼ �aðu� uoÞ þ bðv� voÞ þ cðw� woÞ
���ða2=AÞ þ ðb2=BÞ þ ðc2=CÞ�

¼ �ðauo þ bvo þ cwoÞ
��ða2=AÞ þ ðb2=BÞ þ ðc2=CÞ�

� �L ½invoking ðbÞ�; ðfÞ

and from this the postimpact velocities follow:

u � uo ¼ �ða=AÞL; v� v0 ¼ �ðb=BÞL; w� wo ¼ �ðc=CÞL: ðgÞ

As a result of the above, the kinetic energy loss (as Carnot’s first theorem reminds us)

transforms, successively, as follows:

2ðT� � TþÞ � �2DT ð	 0Þ � Aðuo2 � u2Þ þ Bðvo2 � v2Þ þ Cðwo
2 � w2Þ

¼ Aðuo þ uÞða=AÞLþ Bðvo þ vÞðb=BÞLþ Cðwo þ wÞðc=CÞL
¼ ðauo þ bvo þ cwoÞL ½invoking ðbÞ�
¼ ðauo þ bvo þ cwoÞ2

��ða2=AÞ þ ðb2=BÞ þ ðc2=CÞ� 	 0; ðhÞ

invoking theL-definition (f). The above apply intact, even if u, v,w are quasi velocities.

Example 4.6.7 Let us express some of the earlier extremum theorems in general

Lagrangean coordinates.

(i) First, to enhance our understanding, we introduce the following ad hoc

(not quite rigorous, but simplifying and convenient) notations and corresponding

definitions:

dqk=dt � vk ðand similarly for any other value of the Lagrangean velocitiesÞ;
pk �

X
Mklvl ðsystem momentumÞ; or; symbolically; p ¼Mv; ðaÞ

2T �
XX

Mkl _qqk _qql �
XX

Mklvkvl �Mvv � p v:

Initial;or preimpact; 2 ðkinetic energyÞ; ðb1Þ

2T 0 �
XX

Mklvk
0vl
0 �Mv 0v 0 � p 0v 0:

Actual postimpact 2 ðkinetic energyÞ; ðb2Þ
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2T 00 �
XX

Mklvk
00vl
00 �Mv 00v 00 � p 00v 00:

Comparison;or kinematically admissible; postimpact 2 ðkinetic energyÞ;
ðb3Þ

2T01 ¼ 2T10 �
XX

Mklðvk 0 � vkÞðvl 0 � vlÞ
�Mðv 0 � vÞðv 0 � vÞ � ðp 0 � pÞðv 0 � vÞ:

2ðkinetic energyÞ of relative ðor jumpÞ motion v 0 � v; ðb4Þ

2T02 ¼ 2T20 �
XX

Mklðvk 00 � vkÞðvl 00 � vlÞ
�Mðv 00 � vÞðv 00 � vÞ � ðp 00 � pÞðv 00 � vÞ:

2ðkinetic energyÞ of relative motion v 00 � v; ðb5Þ

2T12 ¼ 2T21 �
XX

Mklðvk 00 � vk
0Þðvl 00 � vl

0Þ
�Mðv 00 � v 0Þðv 00 � v 0Þ � ðp 00 � p 0Þðv 00 � v 0Þ:

2ðkineticÞ energy of relative motion v 00 � v 0; ðb6Þ

2K01 ¼ 2K10 �
XX

Mklvkvl
0 �Mvv 0 � p v 0 � p 0v:

Impulsive power of the momenta corresponding to the v; times the

v 0; and vice versa: ðc1Þ

2K12 ¼ 2K21 �
XX

Mklvk
0vl
00 �Mv 0v 00 � p 0v 00 � p 00v 0:

Impulsive power of the momenta corresponding to the v 0; times the

v 00; and vice versa: ðc2Þ

(ii) Then, recalling the symmetry of the inertia coefficients (i.e., Mkl ¼Mlk), we

readily find that the above are related by

2T01 �Mðv 0 � vÞðv 0 � vÞ ¼ � � � ¼ 2T 0 þ 2T � 2K01 � 2K01

) 2K01 ¼ T þ T 0 � T01; ðd1Þ

and similarly we derive

2K02 �Mvv 00 ¼ T þ T 00 � T02; ðd2Þ
2K12 �Mv 0v 00 ¼ T 0 þ T 00 � T12: ðd3Þ

(iii) Next, setting in the LIP, (4.3.7), in succession, �q! v, v 0, v 00, we obtain the

following formal ‘‘impulsive power’’ expressions:XX
Mklðvl 0 � vlÞvk ¼

X
Q̂Qkvk; or Mðv 0 � vÞv ¼ Q̂Q v; ðe1ÞXX

Mklðvl 0 � vlÞvk 0 ¼
X

Q̂Qkvk
0; or Mðv 0 � vÞv 0 ¼ Q̂Q v 0; ðe2ÞXX

Mklðvl 0 � vlÞvk 00 ¼
X

Q̂Qkv
00
k ; or Mðv 0 � vÞv 00 ¼ Q̂Q v 00; ðe3Þ

)4.6 EXTREMUM THEOREMS OF IMPULSIVE MOTION 809



which, thanks to (d1–3), can be rewritten, respectively, as

T 0 � T � T01 ¼ Q̂Q v; ðf1Þ
T 0 � T þ T01 ¼ Q̂Q v 0; ðf2Þ
T 0 � T � T12 þ T02 ¼ Q̂Q v 00: ðf3Þ

(iv) With the help of the above, we now revisit the earlier extremum theorems:

(iv.a) Adding (f1) and (f2) side by side yields (the system form of ex. 4.3.1

2ðT 0 � TÞ ¼ Q̂Qðvþ v 0Þ; ðg1Þ
that is, the change in the kinetic energy of a moving system, due to impressed impulses,
equals the power of these impulses on the averaged velocities before and after their
application.

(iv.b) Subtracting (f1) from (f2) yields

2T01 ¼ Q̂Qðv 0 � vÞ; ðg2Þ
that is, the relative kinetic energy of a moving system, due to impressed impulses, equals
the power of these impulses on half the velocity jumps due to them.

(iv.c) If the power of the impressed impulses on the actual postimpact velocities

vanishes — that is, if Q̂Q v 0 ¼ 0 (e.g., sudden introduction of ideal impulsive con-

straints) — then (f2) leads to

T 0 � T þ T01 ¼ 0 ) T 0 � T ¼ �T01 < 0 ) T 0 < T : ðg3Þ
that is, the introduction of ideal constraints reduces the kinetic energy by an amount

equal to the relative (jump) kinetic energy T01 [Carnot’s first theorem, eq. (4.6.1e)].

(iv.d) If the power of the impressed impulses on the preimpact velocities

vanishes — that is, if Q̂Q v ¼ 0 (e.g., if an explosion occurs in any part of the moving

system) — then (f1) leads to

T 0 � T � T01 ¼ 0 ) T 0 � T ¼ T01 > 0 ) T 0 > T ; ðg4Þ
that is, in cases of explosion, kinetic energy is always gained by an amount equal to the
relative (jump) kinetic energy T01 [Carnot’s second theorem, eq. (4.6.1h)].

(iv.e) Assume, next, that certain points of the moving system are suddenly seized

and, under unknown impressed impulses acting there, are given prescribed velocities;

like given constraints. Here, since the velocities of the points of application of the
impressed impulses are prescribed:

Q̂Q v 0 ¼ Q̂Q v 00; ðg5Þ
and so the identities (f2, 3), and (b4, 6), immediately yield

T01 þ T12 ¼ T02 ) T01 < T02; ðg6Þ
that is, in the case of impressed impulses acting on amoving system, and imparting to their
points of application prescribed velocities, the ‘‘actual relative (jump) kinetic energy’’
ðT01Þ is smaller than any other ‘‘competing relative kinetic energy’’ ðT02Þ; in Routh’s

words: ‘‘the actual motion is such that the vis viva [¼ 2(kinetic energy)] of the relative

motion, before and after, is less than if the system took any other course.’’
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In particular, if the preimpact velocities vanish— that is, v ¼ 0 (initially motionless

system) — then T01 ! T 0 and T02 ! T 00, and thus (g6) reduces to the theorem of
Kelvin:

T 0 < T 00; ðg7Þ
that is, in a system initially at rest, and then set in motion by impressed impulses acting
at given material points and producing prescribed velocities there, the kinetic energy of
the actual velocities ðT 0Þ is less than that of any other competing motion in which these
points have the prescribed velocities ðT 00Þ. So (g6) constitutes a generalization of

Kelvin’s theorem to initially generally moving systems.

(iv.f ) Finally, assume that given impulses act at specified points, the postimpact

velocities of which are, however, unknown. Then, since the impulsive constraint

reactions of the so-competing motions v 00 are also ideal,

Mðv 0 � vÞ v 00 ¼ Q̂Q v 00 and Mðv 00 � vÞv 00 ¼ Q̂Q v 00; ðh1Þ
or, recalling their forms (e1–f3), and with v 0 ! v 00 in (e2) and (f2),

T 0 � T � T12 þ T02 ¼ T 00 � T þ T02 ð¼ Q̂Q v 00Þ
) T 00 þ T12 ¼ T 0 ) T 0 > T 00; ðh2Þ

that is, theorem of Bertrand–Delaunay: in a moving system acted on by given impressed
impulses, the actual postimpact kinetic energy is greater than that of any other addi-
tionally constrained competing motion, but under the same impulses.
In sum:

� If the postimpact velocities of the points of application of the impressed impulses are

given, the actual postimpact velocities are found by making the kinetic energy a

minimum (Kelvin); and

� If the impressed impulses are given, the actual postimpact velocities are found by

introducing some constraints and then making the kinetic energy a maximum

(Bertrand–Delaunay).

For complementary derivations, via the so-called reciprocity theorems of dynamics,

and so on, see, for example, (alphabetically): Kilmister and Reeve (1966, pp. 247–248),

Lamb (1929, pp. 184–187, 206, 216–217), Pars (1965, pp. 242–243), Ramsey (1937,

pp. 216–218), Rayleigh (1884, p. 91 ff.), Smart (1951, pp. 383–385); also ex. 4.6.8.

Example 4.6.8 Two Degree of Freedom System: Lagrangean Derivation of Theorems
of Kelvin, Bertrand–Delaunay, and of Reciprocity; as an illustration of the effect of
constraints on the kinetic energy of a mechanical system set in motion in different ways.
We consider a two–Lagrangean coordinate system with (double) kinetic energy

2T ¼ a vx
2 þ 2c vx vy þ b vy

2:

positive deOnite in the Lagrangean velocities vx; vy; ðaÞ

and a, b, c: inertial coefficients. Hence, its Lagrangean momenta will be

px � @T=@vx ¼ a vx þ c vy; py � @T=@vy ¼ c vx þ b vy: ðbÞ
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Next, solving the second of (b) for vy in terms of vx and py, and substituting the result

into (a), we obtain the mixed T-expression

2T ¼ �ðab� c2Þ=b�vx2 þ ð1=bÞpy2; ðcÞ
where ðab� c2Þ=b > 0 ) ab� c2 > 0 (positive definiteness of T).

Now, with the help of the above, let us revisit our extremum theorems.

(i) Theorem of Bertrand–Delaunay. For the actual postimpact state, we have

px ¼ X ¼ given; py ¼ 0; and; therefore; vx 6¼ 0; vy 6¼ 0; ðd1Þ
while for the comparison postimpact state (and denoting the corresponding values of

all quantities there with an accent),

px
0 ¼ px ¼ X ; py

0 6¼ 0; vx
0 6¼ 0; vy

0 ¼ 0: ðd2Þ
Then, the corresponding kinetic energies become

2T ¼ �ðab� c2Þ=b�vx2 and 2T 0 ¼ aðvx 0Þ2: ðeÞ
But from (d2), with (b), and then the second of (d1), we find, successively,

a vxþcvy ¼ a vx
0 þ c vy

0 ¼ a vx
0

) vx
0 ¼ vx þ ðc=aÞvy ¼ vx þ ðc=aÞ½ð�c=bÞvx� ¼

�
1� ðc2=abÞ�vx;

and therefore 2T 0 becomes

2T 0 ¼ aðvx 0Þ2 ¼ a½1� ðc2=abÞ�2vx2 ¼ � � � ¼ �1� ðc2=abÞ�2T < 2T ; ðfÞ
that is, the kinetic energy due to a given impulse (px 6¼ 0) acting alone (py ¼ 0) is

greater than if the other coordinate (y), under the action of a constraining impulse

(py
0 6¼ 0, but px

0 ¼ px 6¼ 0), had been prevented from varying (vy
0 ¼ 0Þ.

(ii) Theorem of Kelvin. For the actual postimpact state, we have

px 6¼ 0; py ¼ 0; and vx ¼ prescribed � u; vy 6¼ 0; ðg1Þ
while for the comparison postimpact state (accented quantities again),

px
0 6¼ 0; py

0 6¼ 0 ðconstraining impulseÞ; vx
0 ¼ vx ¼ u; vy

0 ¼ 0: ðg2Þ
Then, the corresponding kinetic energies become

2T ¼ �ðab� c2Þ=b�vx2 ¼ �a� ðc2=bÞ�vx2 and 2T 0 ¼ aðvx 0Þ2 ¼ a vx
2; ðh1Þ

and from these we easily conclude that

2T 0 > 2T ; ðh2Þ
that is, the kinetic energy started by a prescribed velocity ðvxÞ, generated by the
corresponding impulse acting alone ðpx 6¼ 0; py ¼ 0Þ, is less than if the other impulse
py
0ð6¼ 0Þ had acted, constraining its associated coordinate (i.e., vy

0 ¼ 0, but vx
0 ¼ vxÞ.

As Lamb sums it up: Bertrand–Delaunay theorem: ‘‘A system started from rest by

given impulses acquires greater energy than if it had been constrained in any way’’;

Kelvin theorem: ‘‘A system started with given velocities has less energy than if it had
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been constrained’’ (1923, p. 324). And as remarked by the great British physicist

(acoustician, etc.) Rayleigh: ‘‘Both theorems are included in the statement that the

[moment of ] inertia is increased by the introduction of a constraint’’; or, ‘‘the effect

of a constraint is to increase the apparent inertia of the system’’ (Rayleigh, 1894, p.

100; publ. 1886).

(iii) Appendix: A theorem of reciprocity. Let

2T ¼ a vx
2 þ 2c vx vy þ b vy

2

) px � @T=@vx ¼ a vx þ c vy; py � @T=@vy ¼ c vx þ b vy; ðjÞ
as in (a, b). Now, let us consider another state of motion, through the same con-
figuration, (. . .) 0: vx

0, vy
0, px

0, py
0. Then, it is not hard to see that we will have

pxvx
0 þ pyvy

0 ¼ px
0vx þ py

0vy

¼ a vx vx
0 þ cðvx 0vy þ vx vy

0Þ þ b vyvy
0: ðkÞ

Therefore, if we set px
0 ¼ 0, py ¼ 0, we find px vx

0 ¼ py
0vy ) vy=px ¼ vx

0=py
0; in

words: if an impulse px in the x-coordinate produces a velocity vy in the y-coordinate,
then an equal impulse py

0 in the y-coordinate will produce the same velocity vx
0 in

the x-coordinate. Clearly, such reciprocity relations (a) result from the symmetry of
the inertia coefficients (inertia tensor, etc.), for any independent set of velocities; and

(b) can be easily extended to systems with n Lagrangean coordinates.

EXAMPLE

As an illustration of their use in impulsive motion, let us show the following

theorem: If an impulsive couple C1 ¼ C u1 ¼ Cðu1x; u1y; u1zÞ, ðu1: unit vector),
applied to an originally motionless and unconstrained rigid body generates an angu-
lar velocity x2 ¼ !2 u2 ¼ !2ðu2x; u2y; u2zÞ, ðu2: another unit vector), then the same
couple (magnitude-wise) but applied about u2 (i.e., C2 ¼ C u2Þ will produce an angular
velocity about u1, !1, magnitude-wise equal to !2 (i.e., x1 ¼ !1u1 ¼ !2u1, !1 ¼ !2Þ;
or, the angular velocity !2 about axis 2 due to an angular impulse C about axis 1 is
equal to the angular velocity !1 about axis 1 due to an angular impulse C about axis 2.

PROOF

Choosing ( just for algebraic simplicity, no loss of generality) principal axes at the

body’s mass center G, with corresponding (principal) moments of inertia Ix;y;z, we

will have (using, for example, the impulsive form of the Eulerian equations, }1.17)

x2 ¼ ðCu1x=Ix;Cu1y=Iy;Cu1z=IzÞ � ð!2x; !2y; !2zÞ; ðl1Þ
x1 ¼ ðCu2x=Ix;Cu2y=Iy;Cu2z=IzÞ � ð!1x; !1y; !1zÞ; ðl2Þ
) !2 ¼ x2 � u2 ¼ !1 ¼ x1 � u1

¼ Cðu1xu2x=Ix þ u1yu2y=Iy þ u1zu2z=IzÞ; ðl3Þ
the symmetry of which in u1x;1y;1z;2x;2y;2z proves our proposition. For a treatment

based on the Bertrand–Delaunay theorem, see Pöschl (1928, p. 510) and Smart

(1951, p. 382). Similar theorems exist in other areas of physics. For further applica-

tions and insights, see, for example, Lamb (1929, pp. 276–281) and references cited

therein.
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Example 4.6.9 Let us consider a system of impulses acting on various points of an

arbitrarily moving set of bodies, in such a way that each impulse is perpendicular to

the (preimpact) velocity of its point of application. We will show that, as a result, the

kinetic energy is increased [Routh, 1905(a), pp. 308–309]. Indeed, because of the

above perpendicularity, the power of the impulses on the preimpact velocities

vanishes: T 0 � T � T01 ¼ Q̂Q v ¼ 0, and so eq. (f1) of ex. 4.6.7 immediately yields

T 0 � T ¼ T01 > 0 ) T 0 > T ; Q:E:D:

Example 4.6.10 Let us consider an initially motionless system. If acted on by two

different sets of impulses, say A and B, it will take two different postimpact motions.

We will show that the power of the impulses A on the velocities B equals the power

of the impulses B on the velocities A [Routh, 1905(a), p. 309, example 6].

Indeed, since T ¼ 0, we will have T 0 ¼ T01 and T 00 ¼ T02. Then, the earlier

T 0 � T � T12 þ T02 ¼ Q̂Q v 00 � Q̂Q 0v 00; ðaÞ

and a completely analogous one with T 0 replaced by T 00, and so on; that is,

T 00 � T � T12 þ T01 ¼ Q̂Q 00v 0; ðbÞ

immediately yield Q̂Q 0v 00 ¼ Q̂Q 00v, Q.E.D. (a result analogous to a well-known recipro-
cal work proposition in linear elasticity).

Example 4.6.11 Let us, next, extend the above results to the collisions of inelastic
(but smooth, i.e. frictionless) systems. Here, we introduce the following convenient

notation (slightly different from that of ex. 4.6.7):

v: preimpact velocities;

v 0: velocities at instant of maximum compression=contact;

v 00: postimpact velocities ði:e:; just after the conclusion of the

period of restitutionÞ;

and let the corresponding kinetic energies be denoted by T , T 0, T 00; and the relative
kinetic energies at any two of these instances (with some easily understood notation)

be denoted by T01, T12, T02. Because of the smoothness of the colliding surfaces,

reasoning à la Carnot (first theorem), we have

Mðv 0 � vÞv 0 ¼ Q̂Q v 0 ¼ 0 and Mðv 00 � vÞv 0 ¼ Q̂Q v 0 ¼ 0; ða; bÞ

and since the ratio of the total impulse to the impulse until the instant of maximum
compression equals (1þ eÞ=1 (where e � coeRcient of restitution), taking the powers

of these impulses over the same velocities (first the preimpact v, and then the post-

impact v 00); that is, reasoning as in (e1–3) of ex. 4.6.7, we can write

Mðv 00 � vÞv ¼ ð1þ eÞMðv 0 � vÞv; ðcÞ
Mðv 00 � vÞv 00 ¼ ð1þ eÞMðv 0 � vÞv 00: ðdÞ
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In terms of the relative kinetic energies, T01, T12, T02, (a–d) can be rewritten, respec-

tively, as

T 0 � T ¼ �T01; T 00 � T 0 ¼ T12; ðe; fÞ
T 00 � T 0ð1þ eÞ þ eT ¼ T02 � ð1þ eÞT01; ðgÞ
T 00 � T 0ð1þ eÞ þ eT ¼ eT02 � ð1þ eÞT12: ðhÞ

Now:

(i) Eliminating the three relative kinetic energies, we obtain

T 00 � T 0 ¼ � e2ðT 0 � TÞ; ðiÞ
that is, the kinetic energy increase due to the restitution (or explosion) is e2 times the
kinetic energy decrease due to the compression.

(ii) Eliminating the three T 0 ’s, we obtain

T01 ¼ T02=ð1þ eÞ2 ¼ T12=e
2: ðjÞ

(iii) Finally, eliminating T 0, T01, and T12, we obtain

T 00 � T 0 ¼ ��ð1� eÞ=ð1þ eÞ�T02; ðkÞ

thus extending Carnot’s ‘‘third’’ theorem to inelastic (but frictionless) systems

[discussion after (4.6.1j)]. See also Whittaker (1937, pp. 234–235), for alternative

derivations.

For an extension of the above theorems to the collision of inelastic and rough
solids (i.e., case where, throughout the impact, the contacting surfaces slide on each

other and the accompanying friction preserves its direction/sense), see, for example,

Routh 1905(a), p. 310).

Example 4.6.12 Gauss’ Principle of Least Impulsive Compulsion (or Constraint). To

examine the relation of Gauss’ impulsive principle, (4.6.5a–f ) with the above, let

T : actual preimpact kinetic energy;

T 0: actual postimpact kinetic energy;under the existing constraints and

given impulses;

T 00: comparison postimpact kinetic energy; under additional constraints
and given impulses;

T 000: postimpact kinetic energy under zero constraints ði:e:; free motionÞ
and given impulses:

Now, by Bertrand’s theorem: (i) since the T 000-motion is less constrained than both

the T 0-motion and T 00-motion, we will have (with some easily understood notations)

T 000 ¼ T 0 þ T13 ð) T 000 > T 0Þ and T 000 ¼ T 00 þ T23 ð) TF > T 00Þ; ðaÞ
and (ii) since the T 0-motion is less constrained than the T 00-motion, we will have

(fig. 4.31)

T 0 ¼ T 00 þ T12 ) T 0 > T 00: ðbÞ
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From (a–b) it follows at once that

T23 ¼ T13 þ T12 ) T23 > T13; i:e:; minðT23Þ ¼ T13; ðcÞ
and this, since

2T13 ¼Mðv 000 � v 0Þðv 000 � v 0Þ ¼Mðv 0 � v 000Þðv 0 � v 000Þ; ðdÞ
) ẐZ ¼ T13 � Q̂Q v 0 þ � � � ) DẐZ ¼ DT13 > 0; ðeÞ

(where. . . ‘‘Gauss constant’’ terms) constitutes the impulsive Gauss(/Hertz) theorem:

Make 2T13 minimum for all variations of the v 0; the additional constraints are taken

into account by attaching their Pfaffian forms to (d) via Lagrangean multipliers,

as is well known from the finite motion case (chaps. 3, 5, 6) (see also Pars, 1965,

pp. 239–241).
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5

Nonlinear Nonholonomic
Constraints

If I have had any success in mathematical physics, it is, I think,

because I have been able to dodge mathematical difficulties.

(J. W. Gibbs, 1870s)

Experiment never responds with a ‘‘yes’’ to theory. At best, it

says ‘‘maybe’’ and, most frequently, simply ‘‘no.’’ When it agrees

with theory, this means ‘‘maybe’’ and, if it does not, the verdict

is ‘‘no.’’

Einstein

Nowadays people who for their equations and other statements

about nature claim exact and eternal verity are usually dismissed

as cranks or lunatics. Nevertheless we lose something in this

surrender to lawless uncertainty: Now we must tolerate the

youth who blurts out the first, untutored, and uncritical thoughts

that come into his head, calls them ‘‘my model’’ of something,

and supports them by five or ten pounds of paper he calls ‘‘my

results,’’ gotten by applying his model to some numerical

instances which he has elaborated by use of the largest machine

he could get hold of, and if you say to him, ‘‘Your model violates

NEWTON’s laws,‘‘ he replies ‘‘Oh, I don’t care about that, I

tackle the physics directly, by computer.’’

(Truesdell, 1987, p. 74)

Here, as in other important areas of analytical mechanics, English language refer-

ences are far and few. For concurrent reading, we recommend:

(i) The masterful expositions of Hamel (1938; 1949, pp. 495–507, 524, 782–789);

(ii) The original articles of Johnsen (1936, 1937(a), (b), 1938, 1939, 1941);

(iii) The excellent textbooks/monographs/treatises of Mei (1985; 1987), Mei and

Liu (1987), and Mei et al. (1991);

(iv) The compact and clear treatments of Novoselov (1966; 1979);

(v) Also, the fundamental monograph of Neimark and Fufaev (1967 and 1972,

pp. 212–237), for a detailed treatment of the controversy over the realizability of

nonlinear nonholonomic constraints (NNHC), and the validity of some related limit-

ing processes. On this thorny issue, we, further, recommend the rare and very

instructive paper of Bahar (1998);

(vi) Journal of Applied Mathematics and Mechanics (PMM, Soviet! Russian);

(vii) Journal of Applied Mathematics and Mechanics (Chinese).
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5.1 INTRODUCTION

In what follows, we extend Lagrangean kinematics (chap. 2) and kinetics (chap. 3) to

mechanical systems originally described by n Lagrangean coordinates

q � ðq1; q2; . . . ; qnÞ, and subsequently subjected to mð< nÞ independent nonlinear
and, generally, nonintegrable � nonholonomic constraints of the form

fDðt; q; _qq; €qq; €qq_; . . .Þ ¼ 0 ½D ¼ 1; . . . ;m ð< nÞ�: ð5:1:1Þ
[Here, as in the preceding chapters and the rest of the book, and unless specified

otherwise, Latin indices range from 1 to n (¼ number of original Lagrangean/global
positional coordinates); D ðdependentÞ;D 0;D 00; . . . range from 1 to m (¼ number of
additional constraints, of any kind); I ðindependentÞ; I 0; I 00; . . . range from m þ 1 to

n; f � n�m (¼ number of independent �q’s ¼ number of independent kinetic equa-
tions).]

In this chapter we concentrate, almost exclusively, on nonlinear nonholonomic

velocity constraints

fDðt; q; _qqÞ ¼ 0

rankð@fD=@ _qqkÞ ¼ m; in some domain of t; q; _qq; ð5:1:2Þ
while the more general case (5.1.1) is described briefly later, and is treated more fully

in chapter 6. But, once one understands the mechanics of the first-order case (5.1.2),

the higher order case (5.1.1) follows without much additional difficulty.

A certain controversy has existed since the early 1910s regarding the mechanical
realizability of constraints like (5.1.2), let alone (5.1.1), since all known velocity

constraints, resulting out of the passive rolling among rigid bodies, are linear/
Pfaffian in the _qq’s (or the quasi velocities !). However, there are important physical
and analytical reasons for studying such nonlinear nonholonomic constraints

(NNHC).

� Physically, we can view them as kinematico-physical conditions arising out of

nonrolling sources; for example, servoconstraints (}3.17). Consider, for instance, a

planar multiple pendulum consisting of n particles connected to a fixed point (say, a

ceiling) and to each other via n identical and massless rods, oscillating under gravity;

that is, a generalization of the well-known planar double pendulum (ex. 3.5.7). No

ordinary springs and/or dampers are attached to the n pendulum joints, but the

angles of the first m rods with the vertical, �D, satisfy the n control constraints

�D ¼ �Dð _��mþ1; . . . ; _��nÞ, where �Dð. . .Þ ¼ nonlinear functions of their arguments;

for example, �1 � ð _��2Þ3, in a double pendulum. These NNHC can be realized either

by internal means at the relevant pendulum joints, or by external noncontact means

(e.g., electromagnetic action).

� Analytically, as pointed out by Johnsen and Hamel (late 1930s–early 1940s), the

general NNHC formalism can help simplify the solution of the equations of motion;

that is, even if the constraints are ultimately Pfaffian (nonholonomic or holonomic),

they may be analytically easier to handle when in nonlinear form.

REMARK

Some authors view first integrals of the equations of motion, known in advance, as

NNHC-like constraints; for example, the integral of energy [either T þ V ¼
constant, or h � T2 þ ðV0 � T0Þ ¼ constant (}3.9)], or of linear and angular momen-
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tum, or (5.1.2)-like combinations of them [and, conversely, consider (5.1.2)-like

constraints as first integrals, not calculated but observed]; and use the formalism

of this chapter to reduce the number of the kinetic equations of motion. However,

there are important qualitative differences between, say, energy constraints and inde-

pendent (5.1.2)-like constraints: (i) If energy conservation holds, then it is implicitly

contained in the equations of motion, and therefore does not need to be imposed

separately; whereas, clearly, if those independent constraints are not imposed, the

motion will be markedly different. (ii) Energy conservation, being an integral of

motion, represents a surface in velocity space, with the coordinates as parameters.

Further, since that integral will be quadratic but, generally, nonhomogeneous in the

velocities, the shape of the energy constraint surface will be an ‘‘ellipsoid’’ (three-

dimensional or generalized), which, again, is different from the shape of, say, holo-

nomic constraint surfaces. For example, for a single particle, the energy

constraint surface is a sphere centered at the origin; and hence the particle velocity

is codirectional to the sphere normal; while (}2.7), for a holonomic scleronomic

constraint applied to that particle, the velocity vector is perpendicular to the

constraint surface normal vector. (iii) Last, if a certain set of velocities satisfies a

homogeneous holonomic constraint, so will their multiples by an arbitrary scalar

constant; something that, clearly, does not happen with energy conservation con-

straints. [These remarks are due to Professor D. T. Greenwood (private communica-

tion, 1996).]

Be that as it may, we believe that, from a practical viewpoint, familiarity with the
general NNHC formalism helps us to understand better the underlying mathematical
structure of the various kinematical and kinetic equations of the linear/Pfaffian theory,
chapters 2 and 3; that is, their similarities, differences, special cases, and so on. The

reader may find such a nonutilitarian viewpoint quite beneficial.

5.2 KINEMATICS; THE NONLINEAR TRANSITIVITY EQUATIONS

System Kinematics

Equations (5.1.2) imply that out of the n _qq’s, only n�m are independent; or,

equivalently, the n _qq’s can be expressed in terms of n�m independent (i.e., uncon-

strained) velocity parameters, or nonlinear quasi velocities !I � ð!mþ1; . . . ; !nÞ:
_qqk ¼ Fkðt; q; !IÞ � _qqkðt; q; !I Þ: ð5:2:1Þ

In complete analogy with the linear/Pfaffian case (} 2.9), we select the following

natural, or ‘‘equilibrium,’’ set of !’s (choice of Johnsen and Hamel, 1930s):

!D � fDðt; q; _qqÞ ¼ 0 ½D ¼ 1; . . . ;m ð< nÞ� ð5:2:2aÞ
!I � fIðt; q; _qqÞ 6¼ 0 ½I ¼ mþ 1; . . . ; n� ð5:2:2bÞ
!nþ1 � !0 � _qqnþ1 � _qq0 ¼ dt=dt ¼ 1: ð5:2:2cÞ

The n�m functions fIð. . .Þ are arbitrary, except that when the equations of

the system (5.2.2a, b) are solved for the n _qq’s in terms of the n !’s! n�m !I ’s,

as in (5.2.1) [assuming, of course, that the Jacobian determinant of the matrix

ð@fk=@ _qqlÞ � ð@!k=@ _qqlÞ does not vanish] and these values are inserted back into
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(5.1.2), they satisfy them identically. Analytically, this translates to the compatibility

conditions

@!k=@ql þ
X
ð@!k=@ _qqrÞ ð@ _qqr=@qlÞ ¼ 0; ð5:2:3aÞ

@ _qqk=@ql þ
X
ð@ _qqk=@!rÞ ð@!r=@qlÞ ¼ 0; ð5:2:3bÞ

andX
ð@fk=@ _qqrÞ ð@ _qqr=@!lÞ �

X
ð@!k=@ _qqrÞ ð@ _qqr=@!lÞ ¼ @!k=@!l ¼ �kl ; ð5:2:4aÞX

ð@Fk=@!rÞ ð@!r=@ _qqlÞ �
X
ð@ _qqk=@!rÞ ð@!r=@ _qqlÞ ¼ @ _qqk=@ _qql ¼ �kl: ð5:2:4bÞ

Now, in order to be able to either adjoin or embed (build in) the constraints (5.2.2a)

into Lagrange’s principle (LP, }3.2), which involves �qk’s and/or the virtual varia-
tions of quasi coordinates, or virtual displacement parameters, ��k, where d�k=dt � !k,

we must define these ��’s anew and relate them to the �q’s via linear and homogeneous
transformations:

�qk ¼
X

MkI��I ; MkI ¼MkI ðt; q; !Þ; ð5:2:5Þ

which would be the virtual counterpart of (5.2.1). But what are the coefficients MkI ?

ð5:2:6Þ

would be meaningless, and unhelpful. So far, the sole requirement is, by (5.2.4a), as

in the Pfaffian case,X
ð@fD=@ _qqrÞ ð@ _qqr=@!IÞ � @f *D=@!I ¼ �DI ¼ 0; ð5:2:7Þ

where, and this is a general notation,

fD ¼ fDðt; q; _qqÞ ¼ fD½t; q; _qqðt; q; !Þ� � fD*ðt; q; !Þ � fD*: ð5:2:8Þ

It is shown in the next chapter (on ‘‘Differential Variational Principles’’) that the

physical requirement of compatibility between the principles of Lagrange and Gauss,

since there is only one mechanics, leads to the m (nontrivial and nonobvious)

‘‘Maurer�Appell�Chetaev�Johnsen�Hamel conditions’’:X
ð@fD=@ _qqkÞ �qk ¼ 0; ð5:2:9Þ

among the n �q’s; instead of the mathematically correct (from the viewpoint of

�fD ¼
X
½ð@fD=@qkÞ �qk þ ð@fD=@ _qqkÞ �ð _qqkÞ� ¼ 0: ð5:2:10Þ

To guarantee the identical satisfaction of (5.2.9), under (5.2.7), we introduce n�m
independent virtual displacement parameters ��I � ð��mþ1; . . . ; ��nÞ, and set

�qk ¼
X
ð@ _qqk=@!IÞ ��I : ð5:2:11Þ
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To conclude, from (5.2.1) and (5.2.2), that in the nonlinear case

variational calculus), but physically inconsistent, result

δqk = Fk(t, q, δθ) and δθk = fk(t, q, δq)



Indeed, inserting (5.2.11) into (5.2.9), we obtain

0 ¼
X
ð@fD=@ _qqkÞ

X
ð@ _qqk=@!I Þ ��I

� �
¼
X X

ð@fD=@ _qqkÞ ð@ _qqk=@!I Þ
� �

��I ¼
X
ð@f *D=@!I Þ ��I ; ð5:2:12Þ

from which, since the ��I are independent, eqs. (5.2.7) follow. Then, the virtual form

of the constraints (5.1.2), or (5.2.2a), is simply

��k ¼
X
ð@!k=@ _qqlÞ �ql : ��D ¼ 0; ��I 6¼ 0: ð5:2:13Þ

The Maggi-like representation (5.2.11) and its inverse (5.2.13) are fundamental to all
subsequent NNHC developments; for Pfaffian constraints, clearly, they reduce to the

forms given in chapter 2. The constraints (5.2.2a, b) establish, in configuration space,

a one-to-one correspondence between the !’s and the kinematically admissible _qq’s;
while (5.2.11, 13) do the same thing for the virtual displacements �q and ��. [The

nonvanishing Jacobian of (5.2.2a, b) is the nonvanishing determinant of (5.2.13):

j@!k=@ _qql j:]

ð5:2:14aÞ

ð5:2:14bÞ

In what follows, for algebraic convenience, we shall allow the �� and ! indices to run

from 1 to n (like those of the �q’s and _qq’s). The satisfaction of the constraints

��D ¼ 0; !D ¼ 0 (and corresponding restrictions on those indices to run only over

have been carried out. In that case, we may also use the helpful notation

ð. . .Þo � ð. . . ; !D ¼ 0; . . .Þ.

Particle Kinematics

So far we have involved system variables. Let us now express the above results in

The (inertial) virtual displacement, velocity, and acceleration of a typical system

particle, whose (inertial) position is expressed as r ¼ rðt; qÞ, are, respectively,

ðiÞ �r ¼
X
ð@r=@qkÞ �qk ¼

X
ð@r=@qkÞ

X
ð@ _qqk=@!lÞ��l

� �
¼
X X

ð@r=@qkÞ ð@ _qqk=@!lÞ
� �

��l

�
X
ð@r*=@�lÞ ��l �

X
el ��l � �r*; ð5:2:15Þ

where

el ¼
X
ð@r=@qkÞ ð@ _qqk=@!lÞ �

X
ð@ _qqk=@!lÞek; ð5:2:16aÞ

ek ¼
X
ð@r*=@�lÞ ð@!l=@ _qqkÞ �

X
ð@!l=@ _qqkÞel ; ð5:2:16bÞ
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the independent range m + 1, . . . , n) can be done at any time after all differentiations

From the preceding, we readily conclude that (to be used shortly):

˙ ˙

δq̇k = δFk =
∑[

(∂Fk/∂ql)δql + (∂Fk/∂ωl)δωl
]
,

δθ̇k ≡ δωk = δfk =
∑[

(∂fk/∂ql)δql + (∂fk/∂ql)δql
]
.

particle/elementary vector variables.



that is,

@ð. . .Þ=@�l �
X
½@ð. . .Þ=@qk� ð@ _qqk=@!lÞ; ð5:2:16cÞ

@ð. . .Þ=@qk �
X
½@ð. . .Þ=@�l � ð@!l=@ _qqkÞ ð5:2:16dÞ

½nonlinear symbolic ði:e:; nonvectorial=tensorialÞ quasi chain rules�;

ðiiÞ m ¼ mðt; q; _qqÞ ¼ dr=dt ¼
X
ð@r=@qkÞ _qqk þ @r=@t

�
X

_qqkðt; q; !Þek þ e0 ½t � qnþ1�; ð5:2:17aÞ
¼
X

!kðt; q; _qqÞek þ e0 � m*ðt; q; !Þ � m*; ð5:2:17bÞ

where e0 is defined either by (5.2.17b) or, equivalently, extending (5.2.16a–d) for

qk ! qnþ1 � t,

e0 � enþ1 � @r=@�nþ1 �
X
ð@r=@q�Þ ð@ _qq�=@!nþ1Þ ½� ¼ 1; . . . ; nþ 1�

¼
X
ð@r=@qkÞ ð@ _qqk=@!nþ1Þ þ ð@r=@tÞ ð@ _qqnþ1=@!nþ1Þ

¼
X
ð@ _qqk=@!nþ1Þek þ e0

¼
X
ð _qqkek � !kekÞ þ e0 ½by ð5:2:17a; bÞ�

¼ e0 þ
X

_qqkek �
X

!k

X
ð@ _qql=@!kÞel

� �
¼ e0 þ

X
_qqk �

X
ð@ _qqk=@!lÞ!l

� �
ek; ð5:2:17cÞ

and, inversely,

e0 � enþ1 � @r=@t �
X
ð@r=@��Þ ð@!�=@ _qqnþ1Þ ½� ¼ 1; . . . ; nþ 1�

¼
X
ð@r=@�kÞ ð@!k=@ _qqnþ1Þ þ ð@r=@�nþ1Þ ð@!nþ1=@ _qqnþ1Þ

¼
X
ð@!k=@ _qqnþ1Þek þ e0

¼
X
ð!kek � _qqkekÞ þ e0 ½by ð5:2:17a; bÞ�

¼ e0 þ
X

!kek �
X

_qqk
X
ð@!l=@ _qqkÞel

� �
¼ e0 þ

X
!k �

X
ð@!k=@ _qqlÞ _qql

� �
ek: ð5:2:17dÞ

The above suggest the following definitions, for any function f * ¼ f *ðt; q; !Þ [in

addition to (5.2.16c, d)],

@f *=@�nþ1 �
X
ð@f *=@qkÞ _qqk �

X
ð@ _qqk=@!lÞ!l

� �
þ @f *=@t; ð5:2:18aÞ

which, in the Pfaffian case, reduces to (2.9.32 ff.)

@f *=@�nþ1 ¼
X
ð@f *=@qkÞAk þ @f *=@t � @f *=@ðtÞ þ @f *=@t: ð5:2:18bÞ
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In particular, for f * ¼ qr we find

@qr=@�s ¼ @ _qqr=@!s; ð5:2:18cÞ

@qr=@�nþ1 ¼ @ _qqr=@!nþ1 ¼ _qqr �
X
ð@ _qqr=@!lÞ!l

¼ _qqr �
X

Arl !l ¼ Ar; in the PfaMan case
h i

; ð5:2:18dÞ

and, inversely,

@!k=@ _qqnþ1 ¼ @�k=@t ¼ !k �
X
ð@!k=@ _qqlÞ _qql: ð5:2:18eÞ

ðiiiÞ a � dm=dt ¼
X
ð@m=@ _qqkÞ€qqk þ � � �

½. . . � Terms containing neither €qq nor _!!�

¼
X
ð@m=@ _qqkÞ

X
ð@ _qqk=@!lÞ _!!l þ � � �

� �
þ � � �

¼
X X

ð@m=@ _qqkÞ ð@ _qqk=@!lÞ
� �

_!!l þ � � �

�
X
ð@m*=@!lÞ _!!l þ � � �

¼
X

el _!!l þ � � � ¼
X
ð@a*=@ _!!lÞ _!!l þ � � �

� a*ðt; q; !; _!!Þ � a*; ð5:2:19aÞ

where, since mðt; q; _qqÞ ¼ m*ðt; q; !Þ,

@m*=@!l ¼
X
ð@m=@ _qqkÞ ð@ _qqk=@!lÞ; i:e:; ð5:2:16a; bÞ el ¼

X
ekð@ _qqk=@!lÞ;

ð5:2:19bÞ

which is a vectorial transformation equation, and not some chain rule, like

(5.2.16c, d).

The preceding results readily lead to the fundamental, and purely kinematical,

particle–system identities

Holonomic variables: @r=@qk ¼ @m=@ _qqk ¼ @a=@€qqk ¼ � � � ¼ ek; ð5:2:20aÞ
Nonholonomic variables: @r*=@�k � @m*=@!k ¼ @a*=@ _!!k ¼ � � � ¼ ek; ð5:2:20bÞ

and their system counterparts

ð5:2:20cÞ
@�l=@qk � @!l=@ _qqk ¼ @ _!!l=@€qqk ¼ � � � : ð5:2:20dÞ

With the help of the above, next, we obtain the following basic kinematical result:

applying symbolic and real chain rule to m ¼ mðt; q; _qqÞ ¼ m*ðt; q; !Þ ¼ m*, we find,
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∂qk/∂θl ≡ ∂q̇k/∂ωl = ∂q̈k/∂ω̇l = · · · ,



successively,

ðaÞ @m*=@�k ¼
X
ð@m*=@qlÞ ð@ _qql=@!kÞ

¼
X

@m=@ql þ
X
ð@m=@ _qqrÞ ð@ _qqr=@qlÞ

h i
ð@ _qql=@!kÞ

¼
X
ð@m=@qlÞ ð@ _qql=@!kÞ þ

X
ð@m=@ _qqlÞ ð@ _qql=@�kÞ; ð5:2:21aÞ

ðbÞ d=dtð@r*=@�kÞ ¼ d=dtð@m*=@!kÞ ¼ d=dt
X
ð@m=@ _qqlÞ ð@ _qql=@!kÞ

� �
¼
X�

d=dt ð@m=@ _qqlÞ
� ð@ _qql=@!kÞ þ

X
ð@m=@ _qqlÞ

�
d=dtð@ _qql=@!kÞ

�
:

ð5:2:21bÞ

Therefore, subtracting (5.2.21a, b) side by side, while recalling (5.2.19b), we get

ck � Ek*ðm*Þ � d=dtð@m*=@!kÞ � @m*=@�k � dek=dt� @m*=@�k
¼
X �

d=dtð@m=@ _qqlÞ � @m=@ql
� ð@ _qql=@!kÞ

þ
X �

d=dtð@ _qql=@!kÞ � @ _qql=@�k
� ð@m=@ _qqlÞ

¼
X

ElðmÞ ð@ _qql=@!kÞ þ
X

Ek*ð _qqlÞ ð@m=@ _qqlÞ
¼ 0þ

X
Ek*ð _qqlÞ ð@m=@ _qqlÞ

½ElðmÞ ¼ 0; since the q’s are holonomic coordinates ð}2:9Þ�

¼
X

Ek*ð _qqlÞel ¼
X

Ek*ð _qqlÞ
X
ð@!s=@ _qqlÞes

� �
; ð5:2:21cÞ

or finally, and compactly (and in anticipation of later results),

ck � Ek*ðm*Þ ¼
X

Vl
kel ¼

XX �ð@!s=@ _qqlÞVl
k

�
es

¼ �
XX �ð@ _qql=@!sÞHs

k

�
el ¼ �

X
Hs

kes:

Nonholonomic deviation; ð5:2:21dÞ
where

Vl
k � d=dtð@ _qql=@!kÞ � @ _qql=@�k � Ek*ð _qqlÞ:

Nonlinear Voronets�Chaplygin coeycients; ð5:2:21eÞ

Hs
k � �

X
ð@!s=@ _qqlÞVl

k:

Nonlinear Hamel coeycients; ð5:2:21fÞ

, Vl
k ¼ �

X
ð@ _qql=@!sÞHs

k ½using ð5:2:4a; bÞ�
n o

; ð5:2:21gÞ

also (see prob. 5.2.1, below),

Hk
s �

X
ð@ _qql=@!sÞ

�ð@!k=@ _qqlÞ:� @!k=@ql
� �X ð@ _qql=@!sÞElð!kÞ: ð5:2:21hÞ

[Clearly, since j@!k=@ _qql j 6¼ 0, if the Hs
k vanish, so do the Vs

k; and vice versa.]
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These nonintegrability relations [actually due to Johnsen and Hamel (in the late

1930s)] result from the nonholonomicity of the ‘‘coordinates’’ �, and have nothing to
do with constraints. Further, as these definitions show, in Vl

k, l is holonomic, and k is

nonholonomic; while, in Hl
k, both l and k are nonholonomic; that is, Vl

k is mixed,
while Hl

k is purely nonholonomic.

The Nonlinear Transitivity Equations

d=dtð��kÞ � �ðd�k=dtÞ � ð��kÞ:� �!k

¼ d=dt
X
ð@!k=@ _qqlÞ �ql

� �
� �!kðt; q; _qqÞ

¼
X �ð@!k=@ _qqlÞ: �ql þ ð@!k=@ _qqlÞ ð�qlÞ:

�
�
X �ð@!k=@qlÞ �ql þ ð@!k=@ _qqlÞ �ð _qqlÞ

�
¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ�

þ
X �ð@!k=@ _qqlÞ:� @!k=@ql

�
�ql ;

that is, [recalling (5.2.11) and invoking (5.2.21e–h)]

ð��kÞ:� �!k ¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ�

þ
XX �ð@!k=@ _qqlÞ:� @!k=@ql

� ð@ _qql=@!rÞ ��r
¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ�

�
XX �ð@ _qqs=@!rÞ:� @ _qqs=@�r

� ð@!k=@ _qqsÞ ��r
¼
X
ð@!k=@ _qqlÞ

�ð�qlÞ: � �ð _qqlÞ�
�
XXX �ð@ _qqs=@!rÞ:� @ _qqs=@�r

� ð@!k=@ _qqsÞ ð@!r=@ _qqlÞ �ql ;
ð5:2:22aÞ

or, compactly,

ð��kÞ: � �!k ¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ� þ

X
Elð!kÞ �ql

¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ� þ

X
Hk

r ��r

¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ� þ

XX
Hk

rð@!r=@ _qqlÞ �ql
¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ� �

XX
Er*ð _qqlÞ ð@!k=@ _qqlÞ ��r

¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ� �

XX
Vl

r ð@!k=@ _qqlÞ ��r
¼
X
ð@!k=@ _qqlÞ ½ð�qlÞ:� �ð _qqlÞ�

�
XXX

ð@!k=@ _qqsÞ ð@!r=@ _qqlÞVs
r �ql : ð5:2:22bÞ

[Under the m constraints ��D ¼ 0; ��r ! ��I ðr! I ¼ mþ 1; . . . ; nÞ:�
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By d/dt(. . .)-differentiating (5.2.13), δ(. . .)-varying (5.2.2a–c) [i.e., (5.2.14b)], and then
subtracting side by side, we find, successively,



d=dtð�qlÞ � �ðdql=dtÞ � ð�qlÞ:� �ð _qqlÞ

¼ d=dt
X
ð@ _qql=@!kÞ ��k

� �
� � _qqlðt; q; !Þ

¼
X �ð@ _qql=@!kÞ: ��k þ ð@ _qql=@!kÞ ð��kÞ:

�
�
X �ð@ _qql=@qkÞ �qk þ ð@ _qql=@!kÞ �!k

�
¼
X �ð@ _qql=@!kÞ: ��k þ ð@ _qql=@!kÞ ð��kÞ:

�
�
X �ð@ _qql=@�kÞ ��k þ ð@ _qql=@!kÞ �!k

�
¼
X
ð@ _qql=@!kÞ ½ð��kÞ:� �!k�

þ
X �ð@ _qql=@!kÞ:� @ _qql=@�k

�
��k;

that is, [recalling (5.2.13) and invoking (5.2.21e–h)]

ð�qlÞ:� �ð _qqlÞ ¼
X
ð@ _qql=@!kÞ ½ð��kÞ: � �!k�

þ
XX �ð@ _qql=@!kÞ: � @ _qql=@�k

� ð@!k=@ _qqsÞ �qs
¼
X
ð@ _qql=@!kÞ ½ð��kÞ: � �!k�

�
XX �ð@!k=@ _qqsÞ: � @!k=@qs

� ð@ _qql=@!kÞ �qs
¼
X
ð@ _qql=@!kÞ ½ð��kÞ: � �!k�

�
XXX �ð@!k=@ _qqsÞ: � @!k=@qs

� ð@ _qql=@!kÞ ð@ _qqs=@!rÞ ��r;
ð5:2:23aÞ

or, compactly (with some dummy-index changes),

ð�qlÞ:� �ð _qqlÞ ¼
X
ð@ _qql=@!kÞ ½ð��kÞ:� �!k� þ

X
Ek*ð _qqlÞ ��k

�
X
ð@ _qql=@!kÞ ½ð��kÞ:� �!k� þ

X
Vl

k ��k

¼
X
ð@ _qql=@!kÞ ½ð��kÞ:� �!k� þ

XX
Ek*ð _qqlÞ ð@!k=@ _qqsÞ �qs

�
X
ð@ _qql=@!kÞ ½ð��kÞ:� �!k� þ

XX
Vl

k ð@!k=@ _qqsÞ �qs
¼
X
ð@ _qql=@!kÞ ½ð��kÞ:� �!k�

�
XXX

ð@ _qql=@!rÞ ð@!k=@ _qqsÞHr
k �qs

¼
X
ð@ _qql=@!kÞ ½ð��kÞ:� �!k� �

XX
ð@ _qql=@!rÞHr

k ��k: ð5:2:23bÞ

[Under the m constraints ��D ¼ 0; ��k ! ��I ðk! I ¼ m þ 1; . . . ; nÞ:�
As the above show, and since j@!k=@ _qql j 6¼ 0, if the Hr

k vanish, so do the Vr
k; and

vice versa. The relations between the Vl
k and Hl

k can also be found from the equiva-

lence of the transitivity equations (5.2.22) and (5.2.23). Indeed, substituting
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Similarly, d/dt(. . .)-differentiating (5.2.11), δ(. . .)-varying (5.2.1) [i.e., (5.2.14a)],
with I → r = 1, . . . , n, and then subtracting side by side, we find, successively,



ð�qlÞ:� �ð _qqlÞ from (5.2.23a, b) into (5.2.22a, b), simplifying, and invoking (5.2.4a),

we get

X X
ð@!k=@ _qqlÞVl

r þHk
r

� �
��r ¼ 0; ð5:2:24Þ

from which we obtain the earlier (5.2.21f, g).

Example 5.2.1
We have, successively,

ck � Ek*ðm*Þ � d=dtð@m*=@!kÞ � @m*=@�k � dek=dt� @m*=@�k
¼ d=dt

X
ð@ _qql=@!kÞel

� �
�
X
ð@m*=@qlÞ ð@ _qql=@!kÞ

¼
X
ð@ _qql=@!kÞ:el þ

X
ð@ _qql=@!kÞ ðdel=dtÞ

�
X

ð@=@qlÞ
X

_qqr er þ e0

� �h i
ð@ _qql=@!kÞ ½since m* ¼ m�

¼
X
ð@ _qql=@!kÞ: el þ

X
ð@ _qql=@!kÞ ðdel=dtÞ

�
X X �ð@ _qqr=@qlÞer þ _qqrð@er=@qlÞ

�þ @e0=@ql

n o
ð@ _qql=@!kÞ

¼
X
ð@ _qql=@!kÞ:el þ

X
ð@ _qql=@!kÞ ðdel=dtÞ

�
XX

ð@ _qqr=@qlÞ ð@ _qql=@!kÞer �
XX

_qqrð@ _qql=@!kÞð@er=@qlÞ

�
X
ð@ _qql=@!kÞ ð@e0=@qlÞ

¼
X
ð@ _qql=@!kÞ:el þ

X
ð@ _qql=@!kÞ ðdel=dtÞ

�
X X

_qqrð@el=@qrÞ þ ð@el=@tÞ
� �

ð@ _qql=@!kÞ

�
X
ð@ _qqr=@�kÞer

½since the q’s are holonomic: @er=@ql ¼ @el=@qr; @e0=@ql ¼ @el=@t�
¼
X
ð@ _qql=@!kÞ:el þ

X
ð@ _qql=@!kÞ ðdel=dtÞ

�
X
ð@ _qql=@!kÞ ðdel=dtÞ �

X
ð@ _qqr=@�kÞer

½the second and third sums cancel; and we replace r with l in the last term�
¼
X �ð@ _qql=@!kÞ:� @ _qql=@�k

�
el ; ðaÞ

that is, eqs. (5.2.21c, d), as before.

Problem 5.2.1 Show, with the help of (5.2.4a, b), that (5.2.21f, g)

Hk
r ¼ �

X
ð@!k=@ _qqlÞVl

r , Vl
r ¼ �

X
ð@ _qql=@!kÞHk

r ðaÞ
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lead to the following useful kinematical identities:

Elð!kÞ ¼ �
XX

ð@!r=@ _qqlÞ ð@!k=@ _qqsÞEr*ð _qqsÞ; ðbÞ
Er*ð _qqsÞ ¼ �

XX
ð@ _qql=@!rÞ ð@ _qqs=@!kÞElð!kÞ

i:e:; Vs
r ¼ �

X
ð@ _qqs=@!kÞHk

r

h i
: ðcÞ

Problem 5.2.2 Show that in the Pfaffian case (}2.9) — that is, when

!l �
P

ald _qqd þ al — the nonlinear Hamel coefficients

Hl
s �

X �ð@!l=@ _qqdÞ:� @!l=@qd
� ð@ _qqd=@!sÞ �

X
ð@ _qqd=@!sÞEdð!lÞ ðaÞ

reduce to their Pfaffian counterparts (with � ¼ 1; . . . ; nþ 1; and the rest of the

notations of }2.10):

hls ¼
X

�ls� !� ¼
X

�lsr !r þ �ls;nþ1: ðbÞ

Problem 5.2.3 Show that, for a general function f * ¼ f *ðt; q; !Þ, the following

noncommutativity relations hold:

@=@�l ð@f *=@�kÞ � @=@�k ð@f *=@�lÞ
¼
XXX�ð@2 _qqd=@qs@!kÞ ð@ _qqs=@!lÞ

� ð@2 _qqd=@qs@!lÞ ð@ _qqs=@!kÞ
� ð@!p=@ _qqdÞ ð@f *=@�pÞ: ðaÞ

Then show that in the Pfaffian case (}2.9); that is,

!s �
X

asd _qqd þ as; _qqd ¼
X

Ads !s þ Ad ; ðbÞ

eq. (a) reduces to the noncommutativity equation (2.10.20).

Problem 5.2.4 (i) Show that in the Pfaffian case (}2.9), the nonlinear coefficients

Elð!kÞ � ð@!k=@ _qqlÞ: � @!k=@ql ðaÞ
reduce to X

ð@akl=@qr � @akr=@qlÞ _qqr þ ð@akl=@t� @ak=@qlÞ: ðbÞ
(ii) Hence show that, in such a case, Elð!kÞ � 0 translates to the exactness con-

ditions:

@akl=@qr ¼ @akr=@ql and @akl=@t ¼ @ak=@ql : ðcÞ
(iii) Similarly, show that in the Pfaffian case — that is, _qql ¼

P
Alk!k þ Al — the

conditions

Vl
k � Ek*ð _qqlÞ � ð@ _qql=@!kÞ:� @ _qql=@�k � 0 ðdÞ
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become

@Alk=@qr ¼ @Alr=@qk and @Alk=@t ¼ @Al=@qk: ðeÞ

Example 5.2.2 Special Choices of the Quasi Velocities, and Forms of the Constraints.
Frequently we choose, as in the Pfaffian case, the last n�m _qq’s as the independent
quasi velocities. Then (5.2.2a, b) specialize to

!D � fDðt; q; _qqÞ ¼ 0; ðaÞ
!I � fIðt; q; _qqÞ ¼ _qqI 6¼ 0: ðbÞ

Solving (a) for the first m (dependent) _qq’s! _qqD in terms of the remaining n�m
(independent) _qq’s ! _qqI , assuming that @ð f1; . . . ; fmÞ=@ð _qq1; . . . ; _qqmÞ 6¼ 0, we obtain

_qqD ¼ _qqDðt; q; _qqI Þ � �Dðt; q; _qqI Þ: ðcÞ

In view of the above, the system virtual displacement equation (5.2.11) specializes to

�qk: �qD ¼
X
ð@�D=@ _qqIÞ �qI ; ðdÞ

�qI ¼
X
ð@ _qqI=@ _qqI 0 Þ �qI 0 ¼

X
ð�II 0 Þ �qI 0 ¼ �qI ; ðeÞ

while the corresponding constraint conditions (5.2.9) become

0 ¼
X
ð@fD=@ _qqkÞ �qk ¼

X �ð@fD=@ _qqD 0 Þ �qD 0 þ ð@fD=@ _qqI Þ �qI �
¼
X

ð@fD=@ _qqD 0 Þ
X
ð@�D 0=@ _qqIÞ �qI

� �
þ ð@fD=@ _qqI Þ �qI

n o
¼
X

@fD=@ _qqI þ
X
ð@fD=@ _qqD 0 Þ ð@�D 0=@ _qqI Þ

h i
�qI

�
X
½@fD=@ð _qqIÞ� �qI : ðfÞ

The particle virtual displacement equation (5.2.15) reduces to

�r ¼
X
ð@r=@qkÞ �qk ¼

X
ð@r=@qDÞ �qD þ

X
ð@r=@qIÞ �qI

¼
X
ð@r=@qDÞ

X
ð@�D=@ _qqIÞ �qI

� �
þ
X
ð@r=@qIÞ �qI

�
X
½@r=@ðqIÞ� �qI �

X
BI �qI ; ðgÞ

where

BI � @r=@ðqIÞ � @r=@qI þ
X
ð@r=@qDÞ ð@�D=@ _qqIÞ

� eI þ
X
ð@�D=@ _qqIÞeD;
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and, in general,

@BI=@qI 0 6¼ @BI 0=@qI ði:e:; the BI are nongradient vectorsÞ; ðhÞ
which is a specialization of the quasi chain rule (5.2.16c) for . . .! r and �I ! ðqIÞ.

Similarly, we can show that

m! mo ¼
X

BI _qqI þNo other _qq terms; ðiÞ
a! ao ¼

X
BI €qqI þNo other €qq terms; ðjÞ

and hence

@r=@ðqIÞ � @mo=@ _qqI � @ao=@€qqI � � � � � BI ; ðkÞ
which is a specialization of (5.2.20b).

Example 5.2.3 Special Forms of the Nonlinear Transitivity Equations. Let us find

the form of the transitivity relations for the special quasi-velocity choice of the

preceding example. There we saw that [eqs. (c, d)]

�qD ¼
X
ð@�D=@ _qqIÞ �qI and _qqD ¼ _qqDðt; q; _qqI Þ � �Dðt; q; _qqI Þ: ðaÞ

By ð. . .Þ:-differentiating the first of them, and �ð. . .Þ-varying the second, and then

subtracting side by side, we obtain, successively,

ð�qDÞ:� �ð _qqDÞ ¼
X �ð@�D=@ _qqIÞ: �qI þ ð@�D=@ _qqI Þ ð�qIÞ:�
�
X

@�D=@qI þ
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ

h i
�qI

�
X
ð@�D=@ _qqI Þ �ð _qqIÞ

¼
X
ð@�D=@ _qqI Þ ½ð�qIÞ: � �ð _qqIÞ�

þ
X �ð@�D=@ _qqIÞ: � @�D=@ðqIÞ� �qI ; ðbÞ

where

@�D=@ðqIÞ � @�D=@qI þ
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ: ðcÞ

Alternatively, applying (5.2.16c), we find, successively,

@ _qqD=@�I �
X
ð@ _qqD=@qkÞ ð@ _qqk=@!IÞ

¼
X
ð@�D=@qD 0 Þ ð@ _qqD 0=@!IÞ þ

X
ð@�D=@qI 0 Þ ð@ _qqI 0=@!IÞ

� �
!¼ _qq

¼
X
ð@�D=@qD 0 Þ ð@ _qqD 0=@ _qqIÞ þ

X
ð@�D=@qI 0 Þ ð@ _qqI 0=@ _qqIÞ

¼
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqI Þ þ

X
ð@�D=@qI 0 Þ ð�I 0I Þ

¼ @�D=@qI þ
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ

� @�D=@ðqI Þ ½by ðcÞ�; ðdÞ
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that is,

@ _qqD=@!I ¼ @�D=@ _qqI
) !I can be identiIed with _qqI ;

@ _qqD=@�I ¼ @�D=@ðqIÞ 6¼ @�D=@qI
) �I is not to be identiIed with qI ; hence; the new notation ðqIÞ: ðeÞ

In sum: for this special quasi-variable choice, we can replace in the general expres-

sions

@ð. . .Þ=@!I with @ð. . .Þ=@ _qqI ;
and

@ð. . .Þ=@�I with @ð. . .Þ=@ðqI Þ � @ð. . .Þ=@qI þ
X
½@ð. . .Þ=@qD� ð@�D=@ _qqIÞ:

ðfÞ
If we now adopt the so-called Suslov viewpoint — that is, ð�qDÞ:� �ð _qqDÞ 6¼ 0,

ð�qI Þ:� �ð _qqIÞ ¼ 0 [prob. 2.12.5; 3.8.14a ff.] — then (b) leads immediately to the

following nonlinear Suslov transitivity relations:

ð�qkÞ:� �ð _qqkÞ: ð�qDÞ:� �ð _qqDÞ ¼
X

WD
I �qI ; ðgÞ

ð�qI Þ:� �ð _qqI Þ ¼ 0 ði:e:; WI 0
I ¼ 0Þ; ðhÞ

where

WD
I � ð@�D=@ _qqI Þ:� @�D=@qI �

X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqI Þ

� EIð�DÞ �
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ

� ð@�D=@ _qqI Þ:� @�D=@ðqIÞ
� EðIÞð�DÞ:
Special nonlinear Voronets coeycients ½specialization of ð5:2:21eÞ�: ðiÞ

If the second of equations (a) have the special form

_qqD ¼ _qqDðqI ; _qqIÞ � �DðqI ; _qqIÞ: nonlinear Chaplygin system; ðjÞ
then @�D=@qD 0 ¼ 0, and so (h) reduces to the nonlinear Chaplygin (or Tsaplygin)
coefficients

WD
I ! TD

I � ð@�D=@ _qqIÞ:� @�D=@qI � EIð�DÞ: ðkÞ

5.3 KINETICS: VARIATIONAL EQUATIONS/PRINCIPLES;

GENERAL AND SPECIAL EQUATIONS OF MOTION (OF JOHNSEN, HAMEL, ET AL.)

To derive Lagrangean-type equations, we will use both the central equation (}3.6)

in system variables, and Lagrange’s principle (}3.2) in both particle and system

variables.
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The NNHC Central Equation

As discussed in }3.6, the latter is, with the usual notations and assuming that

dð�rÞ=dt� �ðdr=dtÞ � ð�rÞ:� �m ¼ 0 ) ð�qkÞ:� �ð _qqkÞ ¼ 0 (for all holonomic vari-

ables, constrained or not),

d=dtð�PÞ � �T ¼ � 0W ; ð5:3:1Þ
where

�P �Sdm m � �r ¼
X
ð@T=@ _qqkÞ �qk �

X
pk �qk

¼
X
ð@T*=@!kÞ ��k �

X
Pk ��k; ð5:3:1aÞ�

) pk ¼
X
ð@!l=@ _qqkÞPl , Pl ¼

X
ð@ _qqk=@!lÞpk;

i:e:; @T=@ _qqk ¼
X
ð@!l=@ _qqkÞ ð@T*=@!lÞ

, @T*=@!l ¼
X
ð@ _qqk=@!lÞ ð@T=@ _qqkÞ

�
; ð5:3:1bÞ

�T � � S ð1=2Þ dm m � m
� �

¼
X �ð@T*=@�kÞ ��k þ ð@T*=@!kÞ �!k

�
; ð5:3:1cÞ

T ¼ Tðt; q; _qqÞ ¼ T ½t; q; _qqðt; q; !Þ� � T*ðt; q; !Þ � T*; ð5:3:1dÞ
� 0W �SdF � �r ¼

X
Qk �qk �

X
Yk ��k�

) Qk ¼
X
ð@!l=@ _qqkÞYl , Yl ¼

X
ð@ _qqk=@!lÞQk

�
: ð5:3:1eÞ

Substituting (5.3.1a–e) into (5.3.1), and regrouping appropriately, we obtain the

Central equation in NNH variables:X
ðdPk=dtÞ ��k �

X
ð@T*=@�kÞ ��k þ

X
Pk½ð��kÞ:� �!k�
¼PYk ��k; ð5:3:2Þ

and from this, invoking the transitivity equations (5.2.22a, b) [under the Hamel

viewpoint; i.e., ð�qkÞ: ¼ �ð _qqkÞ for all holonomic variables, constrained or not], we

finally obtain

Lagrange’s principle in NNH variables:X
dPk=dt� @T*=@�k þ

X
Hs

kPs �Yk

� �
��k ¼ 0: ð5:3:3Þ

These variational equations are fundamental to all subsequent kinetic considerations.

REMARK

As in the Pfaffian case (}3.6), eq. (5.3.3) (and, hence, the equations of motion result-

ing from it) is independent of any assumptions regarding dð�rÞ � �ðdrÞ or
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dð�qkÞ � �ðdqkÞ. To confirm this, we begin with the most general central equation

(3.6.4)

d=dtð�PÞ � �T � �D ¼ � 0W ; ð5:3:4Þ
instead of (5.3.1); where, successively,

�D �Sdm m � ½ð�rÞ: � �m� ¼Sdm m �
X
½ð�qkÞ:� �ð _qqkÞ�ek

n o
¼
X

pk½ð�qkÞ:� �ð _qqkÞ�
¼
XX

pk ð@ _qqk=@!lÞ ½ð��lÞ:� �!l �
�
XXX

pkð@ _qqk=@!sÞHs
l ��l ½by ð5:2:23bÞ�

¼
X

Pl½ð��lÞ:� �!l � �
XX

Hs
lPs ��l ½by ð5:3:1bÞ�: ð5:3:4aÞ

As a result of (5.3.4a) and (5.3.1a–e), eq. (5.3.4) becomesX
½ðdPk=dtÞ ��k þ Pkð��kÞ:� �

X �ð@T*=@�kÞ ��k þ ð@T*=@!kÞ �!k

�
�
X

Pk½ð��kÞ:� �!k� þ
XX

Hs
kPs ��k ¼

X
Yk ��k; ð5:3:4bÞ

which, when simplified, as the reader can easily confirm, is none other than (5.3.3).

Equations of Motion

In the presence of mð< nÞ constraints, in the virtual form (5.2.13): ��D ¼ 0, applica-

tion of the method of Lagrangean multipliers to (5.3.3), in exactly the same fashion

as in }3.5–3.7, readily produces the following two groups of equations of motion:

Kinetostatic: dPD=dt� @T*=@�D þ
X

Hk
DPk ¼ YD þ 
D ðD ¼ 1; . . . ;mÞ;

ð5:3:5aÞ

Kinetic: dPI=dt� @T*=@�I þ
X

Hk
IPk ¼ YI ðI ¼ m þ 1; . . . ; nÞ:

ð5:3:5bÞ

Equations (5.3.5b) are due to Johnsen and Hamel (1936–1941).

In extenso, the kinetic group (5.3.5b) reads

ð@T*=@!IÞ:� @T*=@�I

þ
XX �ð@!l=@ _qqsÞ:� @!l=@qs

� ð@ _qqs=@!I Þ ð@T*=@!lÞ ¼ YI ; ð5:3:5cÞ

or

EI ðT*Þ þ
XX

Esð!lÞ ð@ _qqs=@!I Þ ð@T*=@!lÞ ¼ YI ; ð5:3:5dÞ

and similarly for the kinetostatic group (5.3.5a). Equations (5.3.5b–d) constitute the

legitimate generalization of the original Hamel equations (1903–1904, }3.5) to the

nonlinear nonholonomic variable and constraint case.
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� Using (5.2.21f, h), we easily obtain a second form of these equations. Indeed, the

kinetic such group is

Equations (5.3.5b–d, 8d) and (5.3.8a–c) constitute the legitimate nonlinear general-

izations of the original ‘‘Pfaffian equations’’ of Hamel (}3.5) and Chaplygin–

Voronets (}3.8), respectively. [Although Hamel (1938, p. 48) seems to view

(5.3.6a–c), rather than (5.3.5b–d), as the genuine nonlinear generalization of his

equations of 1903–1904.] Comparing these two basic kinds of equations we notice

the following: The Hamel forms (5.3.5b–d), as well as (5.3.6a–c), contain both @!=@ _qq
and @ _qq=@! derivatives; and (5.3.5b–d) contain both €qq and _!!-proportional terms;

whereas (5.3.8a–c) involve only @ _qq=@! derivatives. On the other hand, the former

involve only T*, while the latter involve both T and T*. But these differences are

superficial: in view of (i) the nonlinear transformation equations _qq, !, (ii) the fact

that the matrices ð@ _qq=@!Þ and ð@!=@ _qqÞ are mutually inverse [i.e., by Cramer’s rule

applied to the ‘‘inverseness relations’’ (5.2.4a, b), the coefficients @!l=@ _qqk appearing

in (5.3.6a–c) equal the minors of the determinant of the matrix ð@ _qq=@!Þ divided by
Detð@ _qq=@!Þ, and can, therefore, be also expressed as functions of t; q; ! without

further use of the equations _qq, !; and similarly for expressing the @ _qqk=@!l appear-

ing in (5.3.8a–c) in terms of t; q; _qq] and that, in analogy to (5.3.7), (iii)

Pl � @T*=@!l ¼
P ð@ _qqk=@!lÞ ð@T=@ _qqkÞ ¼ � � � ¼ Plðt; q; _qqÞ, we can express all
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or, in operator form,

EI*ðT*Þ �
XX

EI*ð _qqkÞ ð@!l=@ _qqkÞ ð@T*=@!lÞ ¼ YI : ð5:3:6cÞ

� Also, sinceX
ð@!l=@ _qqkÞPl ¼ pk ¼ pkðt; q; _qqÞ ¼ pk½t; q; _qqðt; q; !Þ�

� pk* � ð@T=@ _qqkÞ*; ð5:3:7Þ

we can rewrite equations (5.3.6a–c) in the following mixed form (i.e., containing both

T and T*):

dPI=dt� @T*=@�I �
X

Vk
I pk* ¼ YI ; ð5:3:8aÞ

ð@T*=@!IÞ:� @T*=@�I �
X �ð@ _qqk=@!I Þ:� @ _qqk=@�I

� ð@T=@ _qqkÞ* ¼ YI ; ð5:3:8bÞ

or, further, with T*jconstraints enforced � T*o;

ð@T*o=@!I Þ:� @T*o=@�I �
X

Vk
I ð@T=@ _qqkÞ*o ¼ YI : ð5:3:8cÞ

Similarly, (5.3.5b–d) can be replaced by their ‘‘constrained’’ form:

ð@T*o=@!IÞ: � @T*o=@�I þ
X

Hk
I ð@T*=@!kÞo ¼ YI : ð5:3:8dÞ

ð@T*=@!IÞ: � @T*=@�I �
XX �ð@ _qqk=@!IÞ:� @ _qqk=@�I

� ð@!l=@ _qqkÞ ð@T*=@!lÞ ¼ YI ;

ð5:3:6bÞ

dPI=dt� @T*=@�I �
XX

ð@!l=@ _qqkÞVk
IPl ¼ YI ; ð5:3:6aÞ

or, in extenso,

REMARKS



terms of these two kinds of equations (including the symbols Vl
k and Hl

k) in terms of

either t; q; _qq; €qq or t; q; !; _!!, although, in particular problems, such a choice is condi-

tioned by practical considerations (e.g., amount of labor involved). Finally, reason-

ing as in }3.4, we see that the Lagrangean multipliers 
D, in the kinetostatic of the

above equations, equal the (covariant) nonholonomic components of the system

constraint reactions: LD � S dR � eD, where (}3.2) dm a ¼ dF þ dR. Indeed, assum-

ing that Lagrange’s principle (LP) also holds for the reactions enforcing our non-

linear constraints (5.2.2a), we have

� 0WR �SdR � �r ¼
X

Rk �qk ¼
X

Lk ��k ð¼ 0Þ; ð5:3:9aÞ

from which we immediately obtain the transformation equations

Lk �SdR � ek ¼
X
ð@ _qql=@!kÞRl :

LD 6¼ 0 ð��D ¼ 0Þ and LI ¼ 0 ð��I 6¼ 0Þ; ð5:3:9bÞ
Rl �SdR � el ¼

X
ð@!k=@ _qqlÞLk

¼
X
ð@!D=@ _qqlÞLD ¼

X
ð@�D=@ _qqlÞLD; ð5:3:9cÞ

and comparing with the constitutive equation Rl ¼
P


D ð@fD=@ _qqlÞ, obtained via

application of the method of multipliers to LP, we conclude that LD ¼ 
D.

Lagrange’s Principle (LP)

As detailed in }3.2–3.5, LP postulates that

�I ¼ � 0W ; ð5:3:10Þ
where

�I �Sdm a � �r ¼
X

Ek �qk ¼
X

Ik ��k; ð5:3:10aÞ
Ek �Sdm a � ek ¼ EkðTÞ; ð5:3:10bÞ
Ik �Sdm a � ek ¼ Ek*ðT*Þ þ

X
Hl

kPl; ð5:3:10cÞ
� 0W �SdF � �r ¼

X
Qk �qk ¼

X
Yk ��k; ð5:3:10dÞ

Qk �SdF � ek; Yk �SdF � ek: ð5:3:10eÞ

Holonomic Coordinates

Applying the method of Lagrangean multipliers to (5.3.10) in holonomic system

variables: X
Ek �qk ¼

X
Qk �qk; ð5:3:11aÞ

under the m constraints (5.1.2; 5.2.2a), in the virtual form (5.2.9)X
ð@fD=@ _qqkÞ �qk ¼ 0; ð5:3:11bÞ
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we immediately obtain the nonlinear (generalization of the) Routh–Voss equations:

ð@T=@ _qqkÞ:� @T=@qk ¼ Qk þ
X


D ð@fD=@ _qqkÞ; ð5:3:11cÞ

or, compactly,

EkðTÞ ¼ Qk þ Rk; ð5:3:11dÞ
which, along with the m constraints fD ¼ 0 constitute a determinate system of n þm
equations for the nþ m unknown functions 
DðtÞ; qkðtÞ. [Equations (5.3.11c) are due

to Routh (1877, 3rd ed. of the Elementary part of his classic Rigid Dynamics).
However, he never applied them to any NNHC problem. It seems certain that he

chose that form as a memorable way of writing the equations of motion under

Pfaffian [or (5.3.13a)-like] constraints (3.5.15) rather than with the full understanding

that equations (5.3.11c) hold for the most general nonlinear first-order (possibly

nonholonomic) constraints.]

� In view of the purely kinematico-inertial identity EkðTÞ ¼ @S=@€qqk, where

S ¼ Sðt; q; _qq; €qqÞ is the (unconstrained) Appellian of the system [(3.3.16a)], we will

also have the Appellian form of the nonlinear Routh–Voss equations:

@S=@€qqk ¼ Qk þ
X


D ð@fD=@ _qqkÞ: ð5:3:12Þ

� If the constraints have the (holonomic) form gD � gDðt; qÞ ¼ 0 — that is, if

they do not contain the _qq’s — it does not mean that, since @gD=@ _qqk ¼ 0, we will

have Rk ¼ 0. It means, instead, that to apply (5.3.11c) correctly we have to create
a _qq-containing constraint from gD ¼ 0. Indeed, ð. . .Þ:-differentiating gDðt; qÞ ¼ 0, we

obtain

0 ¼ dgD=dt ¼ @gD=@tþ
X
ð@gD=@qkÞ _qqk � fDðt; q; _qqÞ � fD; ð5:3:13aÞ

from which it follows that

@fD=@ _qqk ¼ @gD=@qk; ð5:3:13bÞ
so that (5.3.11c) become

EkðTÞ ¼ Qk þ
X


D ð@gD=@qkÞ; ð5:3:13cÞ

in complete agreement with earlier results; for example, ex. 3.5.14.

Nonholonomic Coordinates

Applying Lagrangean multipliers to LP, (5.3.10), in nonholonomic variables:X
Ik ��k ¼

X
Yk ��k; ð5:3:14aÞ

under the m constraints ��D ¼ 1 � ��D ¼ 0 (and 0 � ��I ¼ 0 for the rest), we

immediately obtain the following two groups of equations:

Kinetostatic: ID ¼ YD þ 
D ½D ¼ 1; . . . ;m ð< nÞ�; ð5:3:14bÞ
Kinetic: II ¼ YI ½I ¼ mþ 1; . . . ; n�: ð5:3:14cÞ
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With the Ik’s, Yk’s, 
D’s defined by (5.3.10c, e, 9b), respectively, the above constitute

the so-called ‘‘raw’’ forms of the equations of motion. As in the Pfaffian case (}3.5,

}3.8), special choices of the fundamental nonholonomic ‘‘accompanying vectors’’ ek
in them, as in (5.2.20b) and ex. 5.2.2, yield special forms of the nonlinear equations

of motion (Maggi, Schaefer, Hamel, Appell, et al.). Let us examine them in detail, in

order of increasing difficulty.

(i) The choice ek ¼ @a*=@ _!!k in (5.3.10c) yields, successively,

Ik ¼Sdm a* � ð@a*=@ _!!kÞ ¼ @S*=@ _!!k; ð5:3:15aÞ
where

S* �S ð1=2Þ dm a* � a* ¼ S*ðt; q; !; _!!Þ: Nonlinear Appellian; ð5:3:15bÞ
and so (5.3.14b, c) assume the form of the nonlinear Appell equations

@S*=@ _!!D ¼ YD þ 
D; @S*=@ _!!I ¼ YI ; ð5:3:15cÞ
respectively. If we are not interested in the constraint forces, then, as already

explained for the Pfaffian case (}3.5), we can replace in the kinetic equations (second

of 5.3.15c), the unconstrained Appellian S* with the constrained one:

S*o � S*ðt; q; !D ¼ 0; !I ; _!!D ¼ 0; _!!IÞ � S*oðt; q; !I ; _!!IÞ; ð5:3:15dÞ
and similarly for the YI (although we shall still denote them as YI ),

@S*o=@ _!!I ¼ YI : ð5:3:15eÞ
Also, in concreteproblemswedonothave tofirst computeS*and thenfind@S*=@ _!!I !
ð@S*=@ _!!IÞo ¼ @So

*=@ _!!I but, instead, we can use Ik in the form of (5.3.15a).

(ii) The choice ek ¼ @r*=@�k � @r=@�k (symbolic gradient) in (5.3.10c) yields,

successively,

Ik ¼Sdm a* � ð@r*=@�kÞ ¼Sdm a* �
X
ð@ _qql=@!kÞel

� �
¼
X

Sdm a* � el

� �
ð@ _qql=@!kÞ

¼
X �ð@T=@ _qqlÞ:� @T=@ql� ð@ _qql=@!kÞ ½by Lagrange’s identity ð}3:3Þ�

�
X

ElðTÞ ð@ _qql=@!kÞ �
X

El ð@ _qql=@!kÞ; ð5:3:16aÞ

and so (5.3.14b, c) yield the nonlinear Maggi equationsX
ð@ _qqk=@!DÞEk ¼

X
ð@ _qqk=@!DÞQk þ 
D; ð5:3:16bÞX

ð@ _qqk=@!IÞEk ¼
X
ð@ _qqk=@!I ÞQk: ð5:3:16cÞ

[Equations (5.3.16c) are due to Hamel (1938, p. 45); see also Przeborski (1933) for a

particle and component form.] Also, since Ek ¼ @S=@€qqk, we can replace in both

(5.3.16b, c) Ek with @S=@€qqk, and thus obtain the Appellian form of the nonlinear
Maggi equations:

(iii) The choice ek ¼ @m*=@!k ! @m*=@!I in (5.3.10c) yields immediately the

Schaefer equations (1951):

Sdm a* � ð@m*=@!IÞ ¼SdF � ð@m*=@!IÞ; ð5:3:17Þ
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which, as we show immediately below, constitute a raw form of the earlier nonlinear

Johnsen–Hamel equations (5.3.5a ff.). Indeed, Ik transforms, successively, as follows:

Ik �Sdm a* � ek ¼Sdm ðdm*=dtÞ � ð@m*=@!kÞ

¼ d=dt S dm m* � ð@m*=@!kÞ
� �

�Sdm m* � ð@m*=@!kÞ:

adding and subtracting Sdm m* � ð@m*=@�kÞ
h i

¼ d=dt S dm m* � ð@m*=@!kÞ
� �

�Sdm m* � ð@m*=@�kÞ

�Sdm m* �
�ð@m*=@!kÞ:� @m*=@�k

�
½if the � were holonomic coordinates; the last ðthirdÞ sum would vanish!�

¼ d=dt @=@!k S ð1=2Þ dm m* � m*
� �h i

� @=@�k S ð1=2Þ dm m* � m*
� �h i

�Sdm m* �Ek*ðm*Þ
¼ ð@T*=@!kÞ:� @T*=@�k � Gk; ð5:3:18aÞ

where

T ¼ Tðt; q; _qqÞ ¼ T ½t; q; _qqðt; q; !Þ�
� T*ðt; q; !Þ ¼ T* �S ð1=2Þ dm m* � m*; ð5:3:18bÞ

Gk �Sdm m* �
�ð@m*=@!kÞ:� @m*=@�k

�
¼Sdm m* �

�
d=dt ð@r*=@�kÞ � @=@�k ðdr*=dtÞ

� ð6¼ 0Þ
�Sdm m* �Ek*ðm*Þ:

Nonlinear nonholonomic correction ðor supplementaryÞ term: ð5:3:18cÞ

Further, recalling the earlier (5.2.21c–h) and the definitions

pl � @T=@ _qql �Sdm m � el; Pl � @T*=@!l �Sdm m* � el ;

we obtain the following mutually equivalent forms in system variables:

Gk ¼Sdm m* �
X

Ek*ð _qqlÞel
� �

¼Sdm m* �
X

Vl
kel

� �
¼ �Sdm m* �

XX
Hs

kð@ _qql=@!sÞel
� �

¼
X

Vl
k pl

�
X �ð@ _qql=@!kÞ:� @ _qql=@�k

� ð@T=@ _qqlÞ*n o
¼ �

XX
ð@ _qql=@!sÞHs

k pl

� �
XXX �ð@!s=@ _qqbÞ:� @!s=@qb

� ð@ _qqb=@!kÞ ð@ _qql=@!sÞ ð@T=@ _qqlÞ*
n

¼ �
XX �ð@!s=@ _qqbÞ:� @!s=@qb

� ð@ _qqb=@!kÞ ð@T*=@!sÞ
o
; ð5:3:18dÞ
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and

Gk ¼Sdm m* �
XX

Ek*ð _qqlÞ ð@!s=@ _qqlÞes
� �

¼Sdm m* �
XX

ð@!s=@ _qqlÞVl
kes

� �
¼ �Sdm m* �

X
Hs

kes

� �
¼
XX

ð@!s=@ _qqlÞVl
kPs

�
XX �ð@ _qql=@!kÞ:� @ _qql=@�k

� ð@!s=@ _qqlÞ ð@T*=@!sÞ
n o

¼ �
X

Hs
kPs

� �
XX �ð@!s=@ _qqlÞ:� @!s=@ql

� ð@ _qql=@!kÞ ð@T*=@!sÞ
n o

; ð5:3:18eÞ

where

pl ¼ plðt; q; _qqÞ ¼ pl ½t; q; _qqðt; q; !Þ� ¼ pl*ðt; q; !Þ � ð@T=@ _qqlÞ*:
holonomic ðlÞth component of systemmomentum; but expressed in nonholonomic

variables ½also note that pl* 6¼ Pl ; while @T*=@ _qq is undeIned�: ð5:3:18fÞ

In view of the above, the Schaefer equations (5.3.17) assume the earlier found

Lagrangean form of Johnsen–Hamel (5.3.5b ff.):

ð@T*=@!IÞ:� @T*=@�I � GI ¼ YI : ð5:3:19Þ

Below we summarize, for convenience, the various available general particle and

system representations of the nonlinear nonholonomic inertia ‘‘force’’ Ik, in operator

forms:

Ik �Sdm a* � ek ðDeInition; raw or particle formÞ

¼ @S*=@ _!!k ¼
X
ð@S=@€qqlÞ ð@€qql=@ _!!kÞ ¼

X
ð@S=@€qqlÞ ð@ _qql=@!kÞ;

h
where 2S* �Sdm a* � a* ¼Sdm a � a � 2S ðAppell formÞ

i
¼
X
ð@ _qql=@!kÞElðTÞ ðMaggi formÞ

¼ Ek*ðT*Þ þ
XX

Esð!rÞ ð@ _qqs=@!kÞ ð@T*=@!rÞ
¼ Ek*ðT*Þ þ

XXX
Esð!rÞ ð@ _qqs=@!kÞ ð@ _qql=@!rÞ ð@T=@ _qqlÞ*

¼ Ek*ðT*Þ �
XX

Ek*ð _qqlÞ ð@!r=@ _qqlÞ ð@T*=@!rÞ
¼ Ek*ðT*Þ �

X
Ek*ð _qqlÞ ð@T=@ _qqlÞ* ðJohnsen�Hamel formsÞ: ð5:3:20Þ

Also, recalling (5.3.10a), we have the transformation equations between the holo-

nomic and nonholonomic components of the inertia ‘‘force’’:

Ik ¼
X
ð@ _qql=@!kÞEl , El ¼

X
ð@!k=@ _qqlÞIk; ð5:3:21aÞ
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and, of course, the identity:

El � ElðTÞ � @S=@€qql : ð5:3:21bÞ
The above show that, as in the Pfaffian case (}3.2 ff.), Ek*ðT*Þ does not transform as

a (covariant) vector under transformations �q , ��; it is Ik � Ek*ðTÞ � Gk that

does!

equations (5.3.11c, d):

EkðTÞ ¼ Qk þ
X


D ð@fD=@ _qqkÞ ¼ Qk þ
X


D ð@!D=@ _qqkÞ;

through multiplication with @ _qqk=@!l, summation over k, and subsequent utilization

of (5.2.4a): X
ð@ _qqk=@!lÞEkðTÞ ¼

X
ð@ _qqk=@!lÞQk þ Al ;

where

Al �
XX


Dð@!D=@ _qqkÞ ð@ _qqk=@!lÞ ¼
X


D �Dl ¼ 
l
¼ 
D; if l ! D ¼ 1; . . . ;m;

¼ 
I ¼ 0; if l ! I ¼ mþ 1; . . . ; n; Q:E:D: ð5:3:22Þ
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REMARKS

(i) Maggi’s equations (5.3.16b, c) can also be deduced from the nonlinear Routh–Voss

(ii) The preceding show clearly under what conditions Γk → 0; then Ik = Ek
∗(T ∗)

(nonlinear counterpart of pp. 421ff.).

Example 5.3.1 Holonomic and Nonholonomic Inertial Forces and their
Transformation Properties. Let us find by direct differentiations the relations

between the holonomic and nonholonomic inertia ‘‘forces’’ Ek ¼ EkðTÞ and

Ik ¼ Ek*ðT*Þ � Gk, respectively.

(i) Applying chain rule to

T ¼ Tðt; q; _qqÞ ¼ T*ðt; q; !Þ � T*; ðaÞ
we find

@T*=@ql ¼ @T=@ql þ
X
ð@T=@ _qqrÞ ð@ _qqr=@qlÞ

) @T=@ql ¼ @T*=@ql �
X
ð@T=@ _qqrÞ ð@ _qqr=@qlÞ; ðbÞ

and, therefore [recalling the symbolic quasi chain rule (5.2.16c)],X
ð@T=@qlÞ ð@ _qql=@!kÞ ¼

X
ð@T*=@qlÞ ð@ _qql=@!kÞ

�
XX

ð@T=@ _qqrÞ ð@ _qqr=@qlÞ ð@ _qql=@!kÞ
¼ @T*=@�k �

X
ð@T=@ _qqrÞ ð@ _qqr=@�kÞ; ðcÞ

and (ii) By ð. . .Þ� -differentiation of the momentum transformation

@T*=@!k ¼
X
ð@T=@ _qqlÞ ð@ _qql=@!kÞ; ðdÞ

we obtain

ð@T*=@!kÞ: ¼
X ½ð@T=@ _qqlÞ: ð@ _qql=@!kÞ þ ð@T=@ _qqlÞ ð@ _qql=@!kÞ:�;



from which, rearranging,X �ð@T=@ _qqlÞ: ð@ _qql=@!kÞ
� ¼ ð@T*=@!kÞ:�

X �ð@T=@ _qqlÞ ð@ _qql=@!kÞ:
�
: ðeÞ

Subtracting (c) from (e) side by side, we obtain the following fundamental kinema-

tico-inertial identity:X �ð@T=@ _qqlÞ: � @T=@ql� ð@ _qql=@!kÞ
¼ ð@T*=@!kÞ:� @T*=@�k �

X �ð@ _qql=@!kÞ:� @ _qql=@�k
� ð@T=@ _qqlÞ;

or, compactly, while recalling (5.3.18d),X
ð@ _qql=@!kÞElðTÞ ¼ Ek*ðT*Þ � Gk ð¼ IkÞ; ðfÞ

an equation that, as mentioned earlier, shows that although, individually, neither

Ek*ðT*Þ nor Gk transform as (covariant) vectors under �q , ��, taken together as

Ik � Ek*ðT*Þ � Gk they do; that is, Ik ¼
P ð@ _qql=@!kÞEl , El ¼

P ð@!k=@ _qqlÞIk.
The above allow us to find the transformation properties of Gk under a local

quasi-velocity change:

! ¼ !ðt; q; ! 0Þ , ! 0 ¼ ! 0ðt; q; !Þ: ðgÞ

We begin with the invariant virtual work of the inertia ‘‘forces’’:

�I ¼
X

Ik ��k ¼
X

Ik 0 ��k 0 ; ðhÞ

where

��k ¼
X
ð@!k=@!k 0 Þ ��k 0 , ��k 0 ¼

X
ð@!k 0=@!kÞ ��k; ðiÞ

!k � d�k=dt and !k 0 � d�k 0=dt; ðjÞ

Ik ¼ ð@T*=@!kÞ:� @T*=@�k � Gk � Ek*ðT*Þ � Gk � Ek*� Gk; ðkÞ

Ik 0 ¼ ð@T*=@!k 0 Þ:� @T*=@�k 0 � Gk 0 � Ek 0*ðT* 0Þ � Gk 0 � Ek 0*
0 � Gk 0 ; ðlÞ

T* ¼ T*ðt; q; !Þ; T* 0 ¼ T*ðt; q; ! 0Þ: ðmÞ

From the above, we readily obtain the (covariant) vector transformation equations

Ik 0 ¼
X
ð@!k=@!k 0 ÞIk , Ik ¼

X
ð@!k 0=@!kÞIk 0 : ðnÞ

Let us find how the constituents of Ik;Ek*, and Gk, transform individually; that is,

how they relate to their accented counterparts.

(a) First, the Ek*’s. Applying chain rule to

T* ¼ T*ðt; q; !Þ ¼ T*½t; q; !ðt; q; ! 0Þ� ¼ T* 0ðt; q; ! 0Þ � T* 0; ðoÞ
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we find

ðiÞ @T* 0=@!k 0 ¼
X
ð@T*=@!kÞ ð@!k=@!k 0 Þ;

) ð@T* 0=@!k 0 Þ: ¼
X �ð@T*=@!kÞ: ð@!k=@!k 0 Þ

þ ð@T*=@!kÞ ð@!k=@!k 0 Þ:
�
; ðpÞ

ðiiÞ @T* 0=@�k 0 ¼
X
ð@T* 0=@qlÞ ð@ _qql=@!k 0 Þ

¼
X �

@T*=@ql þ
X
ð@T*=@!kÞ ð@!k=@qlÞ

� ð@ _qql=@!k 0 Þ

¼
X X

ð@T*=@�kÞ ð@!k=@ _qqlÞ
� �

ð@ _qql=@!k 0 Þ

þ
X
ð@T*=@!kÞ

X
ð@!k=@qlÞ ð@ _qql=@!k 0 Þ

� �
¼
X �ð@T*=@�kÞ ð@!k=@!k 0 Þ þ ð@T*=@!kÞ ð@!k=@�k 0 Þ

�
: ðqÞ

Subtracting (q) from (p) side by side, we finally obtain

ð@T* 0=@!k 0 Þ:� @T* 0=@�k 0 ¼
X �ð@T*=@!kÞ:� @T*=@�k

� ð@!k=@!k 0 Þ
þ
X �ð@!k=@!k 0 Þ:� @!k=@�k 0

� ð@T*=@!kÞ;

or, compactly,

Ek 0*ðT* 0Þ ¼
X
ð@!k=@!k 0 ÞEk*ðT*Þ þ

X
ð@T*=@!kÞEk 0*ð!kÞ; ðrÞ

which is the general law of transformation of the nonholonomic Euler–Lagrange

operator applied to the corresponding kinetic energy (or any other function of

t; q; !Þ.
In particular, if

Ek 0*ð!kÞ � ð@!k=@!k 0 Þ:� @!k=@�k 0 ¼ 0 ðsÞ
(in which case, ! and ! 0 are called relatively holonomic), Ek*ðT*Þ transforms as a

vector.

(b) Next, to the Gk’s (see also next example). In view of (k, l, n), we have

Ek 0*� Gk 0 ¼
X
ð@!k=@!k 0 Þ ðEk*� GkÞ; ðtÞ

or rearranging, and then using (r),

Gk 0 ¼ Ek 0*�
X
ð@!k=@!k 0 ÞEk*

h i
þ
X
ð@!k=@!k 0 ÞGk

¼
X
ð@T*=@!kÞEk 0*ð!kÞ þ

X
ð@!k=@!k 0 ÞGk;

or, in extenso,

Gk 0 ¼
X
ð@!k=@!k 0 ÞGk þ

X �ð@!k=@!k 0 Þ:� @!k=@�k 0
� ð@T*=@!kÞ: ðuÞ

As the above shows, if ! and ! 0 are relatively holonomic, Gk transforms as a

(covariant) vector. [In tensor calculus, nonvectorial (nontensorial) quantities like
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Ek* and Gk are called geometrical objects. Other such examples are the Christoffel

symbols (}3.10).] In particular, if !k ¼ _qqk — that is, if the ! are holonomic

velocities — then T*! T ;Ek*ðT*Þ ! EkðTÞ, and Gk ! 0, and so (u) reduces to

Gk 0 ¼
X �ð@ _qqk=@!k 0 Þ: � @ _qqk=@�k 0

� ð@T=@ _qqkÞ 0 �X Vk
k 0pk

0; ðvÞ

where Vk
k 0 ¼ nonlinear Voronets coefficients for _qq ¼ _qqðt; q; ! 0Þ , ! 0 ¼ ! 0ðt; q; _qqÞ,

and @T=@ _qqk � pk � pkðt; q; _qqÞ ¼ pk½t; q; _qqðt; q; ! 0Þ� ¼ pk
0ðt; q; ! 0Þ � ð@T=@ _qqkÞ 0.

Example 5.3.2 Alternative, Particle Vector–Based Derivation of the Transformation
Formula (u). Additional Constraints. By definition (recalling (5.3.18c)

Gk 0 �Sdm m* 0 �
�ð@m* 0=@!k 0 Þ:� @m* 0=@�k 0

�
; ðaÞ

where

m ¼ mðt; q; _qqÞ ¼ m*ðt; q; !Þ ¼ m*½t; q; !ðt; q; ! 0Þ� ¼ m* 0ðt; q; ! 0Þ � m* 0: ðbÞ
But:

ðiÞ ek 0 � @m* 0=@!k 0 ¼
X
ð@m*=@!kÞ ð@!k=@!k 0 Þ �

X
ð@!k=@!k 0 Þek;

) ð@m* 0=@!k 0 Þ: � dek 0=dt

¼
X ½ð@!k=@!k 0 Þ:ek þ ð@!k=@!k 0 Þ ðdek=dtÞ�; ðcÞ

and

ðiiÞ @m* 0=@�k 0 �
X
ð@m* 0=@qlÞ ð@ _qql=@!k 0 Þ

�
X

@m*=@ql þ
X
ð@m*=@!kÞ ð@!k=@qlÞ

h i
ð@ _qql=@!k 0 Þ

¼
X
ð@m*=@�kÞ

X
ð@!k=@ _qqlÞ ð@ _qql=@!k 0 Þ

� �
þ
X
ð@m*=@!kÞ

�ð@!k=@qlÞ ð@ _qql=@!k 0 Þ
�

�
X
ð@m*=@�kÞ ð@!k=@!k 0 Þ þ

X
ð@m*=@!kÞ ð@!k=@�k 0 Þ: ðdÞ

Inserting the expressions (c, d) in (a), we obtain, successively [recalling that

m* 0 ¼ m*; ek ¼ @m*=@!k, and the definitions of Gk and @T*=@!k],

Gk 0 ¼
X
ð@!k=@!k 0 Þ Sdm m* �

�ð@m*=@!kÞ:� @m*=@�k
�n o

þ
X ½ð@!k=@!k 0 Þ:� @!k=@�k 0 � Sdm m* � ð@m*=@!kÞ

� �
;

which is none other than eq. (u) of the preceding example.

Additional Constraints

These transformation equations may prove useful if the hitherto independent n�m
quasi velocities !I � ð!mþ1; . . . ; !nÞ are, later, subjected to the m 0 ð< n�mÞ new
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constraints

cdðt; q; !IÞ ¼ 0 ðd ¼ 1; . . . ;m 0Þ: ðeÞ
Then, to incorporate (e) to our description, and following the earlier Johnsen–Hamel

approach, we may introduce n� m new quasi velocities ! 0 � ð!1
0; . . . ; ! 0n�mÞ:

!d
0 � cdðt; q; !IÞ ¼ 0; ðf1Þ

!i
0 � ciðt; q; !I Þ 6¼ 0 ði ¼ m 0 þ 1; . . . ; n�mÞ; ðf2Þ

where, as in the Pfaffian case (}3.11) the ðn�mÞ �m 0 cið. . .Þ are arbitrary, except

that when the system (f1, 2) is solved for the !I ; !I ¼ !Iðt; q; ! 0Þ, and these expres-

sions are inserted back into (e), they satisfy them identically in the ! 0. In this case,

Lagrange’s principle yieldsX
½ð@T*=@!IÞ: � @T*=@�I � GI �YI � ��I ¼ 0; ðgÞ

where the n�m ��I � ð��mþ1; . . . ; ��nÞ are subjected to the virtual form of the

constraints (e, f1):

��d
0 �

X
ð@cd=@!IÞ ��I ¼ 0: ðhÞ

From here on, we proceed in well-known ways; that is, either we adjoin (h) to (g) via

new Lagrangean multipliers (! Routh–Voss equations in T*; !I ), or we embed them

via the quasi variables �� 0=! 0 (! Maggi equations in T*; !I ; @!I=@!
0; or Hamel

equations in T* 0 ¼ T* 0ðt; q; ! 0Þ; ! 0;G 0, etc.).

Finally, under !$ ! 0, Appell’s equations (say, under no constraints) becomeX
ð@S*=@ _!!kÞ ð@ _!!k=@ _!!k 0 Þ ¼

X
ð@ _!!k=@ _!!k 0 ÞYk; ðiÞ

that is,

@S* 0=@ _!!k 0 ¼ Yk 0 ; ðjÞ
where

S* ¼ S*ðt; q; !; _!!Þ ¼ S*
�
t; q; !ðt; q; ! 0Þ; _!!ðt; q; ! 0; _!! 0Þ�

¼ S* 0ðt; q; ! 0; _!! 0Þ ¼ S* 0; ðkÞ
also,

@ _!!k=@ _!!k 0 ¼ @!k=@!k 0 ; @ _!!k 0=@ _!!k ¼ @!k 0=@!k:

Example 5.3.3 Special Forms of the Equations of Motion: Nonlinear Equations of
Hadamard. Let us specialize the nonlinear Maggi equations to the following quasi-

variable choice (recall ex. 5.2.2):

!D � fDðt; q; _qqÞ ¼ _qqD � �Dðt; q; _qqIÞ ¼ 0; ðaÞ
!I � fIðt; q; _qqÞ ¼ _qqI 6¼ 0; ðbÞ

and its inverse

_qqD ¼ !D þ �Dðt; q; _qqI Þ ¼ !D þ �Dðt; q; !I Þ; ðcÞ
_qqI ¼ !I : ðdÞ
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With the notation EkðTÞ �Qk � Ek �Qk ¼ @S=@€qqk �Qk �Mk, and (c, d), we

obtain, successively,X
ð@ _qql=@!kÞMl ¼

X
ð@ _qqD=@!kÞMD þ

X
ð@ _qqI=@!kÞMI

¼
X
ð@ _qqD=@!D 0 ÞMD þ

X
ð@ _qqI=@!D 0 ÞMI

¼
X
ð�DD 0 ÞMD þ

X
ð0ÞMI ¼MD 0 ðD 0 ¼ 1; . . . ;mÞ; ðe1Þ

¼
X
ð@ _qqD=@!IÞMD þ

X
ð@ _qqI=@!I 0 ÞMI

¼
X
ð@�D=@!I ÞMD þ

X
ð�II 0 ÞMI

¼MI þ
X
ð@�D=@ _qqIÞMD ðI ¼ mþ 1; . . . ; nÞ: ðe2Þ

As a result of the above, Maggi’s equations (5.3.16b, c) reduce to the nonlinear
Hadamard equations.

Kinetostatic:

EDðTÞ �
�ð@T=@ _qqDÞ:� @T=@qD� ¼ @S=@€qqD

¼ QD þ 
D; ðf1Þ
Kinetic:

EI ðTÞ þ
X
ð@�D=@ _qqIÞEDðTÞ

� �ð@T=@ _qqI Þ:� @T=@qI �þX ð@�D=@ _qqIÞ
�ð@T=@ _qqDÞ:� @T=@qD�

¼ @S=@€qqI þ
X
ð@�D=@ _qqIÞ ð@S=@€qqDÞ

¼ QI þ
X
ð@�D=@ _qqI ÞQD: ðf2Þ

Equations (f2), plus the constraints (a), yield the motion; then (f1) give the constraint

reactions. [In terms of the constrained Appellian So, eqs. (f2) state simply that

@So=@€qqI ¼ QI þ
X
ð@�D=@ _qqIÞQD ð� QI ;o � QIoÞ; ðgÞ

where

S ¼ Sðt; q; _qq; €qqÞ ¼ � � � ¼ Soðt; q; _qq; €qqÞ ¼ So:�

Example 5.3.4 Special Forms of the Equations of Motion: Nonlinear Equations of
Chaplygin and Voronets. Continuing from the preceding example, let us derive the

specialization of the Johnsen–Hamel equations under (a–d) from that example.

First Method

Here, and recalling the notations and results of }3.8, and ex. 5.2.2 and ex. 5.2.3, we

have

!I ! _qqI ; �I ! ðqIÞ; T*! To ¼ Toðt; q; _qqIÞ
ði:e:; no kinetostatic equations; only kineticÞ;
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and

@T*=@!I ! @To=@ _qqI ; ðaÞ
@T*=@�I ! @To=@ðqI Þ � @To=@qI þ

X
ð@�D=@ _qqIÞ ð@To=@qDÞ; ðbÞ

VI 0
I ! VI 0

I ;o �WI 0
I ¼ 0 ðSuslov viewpointÞ; ðcÞ

VD
I ! VD

I;o �WD
I ¼ ð@�D=@ _qqI Þ:� @�D=@qI �

X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqI Þ

� EI ð�DÞ �
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ

� ð@�D=@ _qqI Þ: � @�D=@ðqI Þ
� EðIÞð�DÞ; ðdÞ

GI ! GI ;o �WI ¼
X

WD
I ð@T=@ _qqDÞo �

X
WD

I pD;o; ðeÞ

� 0W ! ð� 0WÞo ¼
X

Qk �qk

� �
o

¼ � � � ¼
X

QI þ
X
ð@�D=@ _qqIÞQD

� �
�qI �

X
QIo �qI : ðfÞ

�
For a general function f ¼ f ðt; q; _qqÞ ¼ f ½t; q; _qqD ¼ �Dðt; q; _qqIÞ; _qqI � ¼ foðt; q; _qqIÞ ¼ fo,

we notice the difference between the ordinary chain rule:

@fo=@qk ¼ @f =@qk þ
X
ð@f =@ _qqDÞ ð@�D=@qkÞ;

and the quasi chain rule specialization (i.e., notation— recall (2.11.15a ff.)):

@fo=@ðqIÞ � @fo=@qI þ
X
ð@fo=@qDÞ ð@�D=@ _qqIÞ:

�
As a result of the above, eqs. (5.3.18a–20) yield what should, legitimately, be called

the nonlinear Voronets equations:

ð@To=@ _qqI Þ: � @To=@qI þ
X
ð@�D=@ _qqI Þ ð@To=@qDÞ

h in o
�
X

WD
I ð@T=@ _qqDÞo

� �ð@To=@ _qqIÞ:� @To=@ðqIÞ
��X WD

I ð@T=@ _qqDÞo
� EI ðToÞ �

X
ð@�D=@ _qqI Þ ð@To=@qDÞ �WI

� EðIÞðToÞ �WI

¼ QIo: ðgÞ

In the Chaplygin case, _qqD ¼ _qqDðqI ; _qqI Þ � �DðqI ; _qqIÞ and To ¼ ToðqI ; _qqI Þ, and so

@�D=@qD 0 ¼ 0; @To=@qD ¼ 0;

) @�D=@ðqIÞ ¼ @�D=@qI ;

)WD
I � EðIÞð�DÞ ! EIð�DÞ � ð@�D=@ _qqIÞ:� @�D=@qI � TD

I ;

) GI ;o �WI ! TI �
X

TD
Ið@T=@ _qqDÞo; ðhÞ
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and, accordingly, (g) reduces to what we will be calling the nonlinear Chaplygin
equations:

ð@To=@ _qqI Þ: � @To=@qI �
X

TD
I ð@T=@ _qqDÞo

� ð@To=@ _qqIÞ:� @To=@qI � TI ¼ QIo: ðiÞ
It is not hard to see that in the Pfaffian case, eqs. (g) and (i) reduce, respectively, to

the original Voronets and Chaplygin forms (}3.8).

Second Method (By Direct Differentiation)

Here, we have

@T*=@!I ¼
X
ð@T=@ _qqkÞ ð@ _qqk=@!IÞ

¼
X
ð@T=@ _qqDÞ ð@ _qqD=@!I Þ þ

X
ð@T=@ _qqI 0 Þ ð@ _qqI 0=@!I Þ

¼
X
ð@T=@ _qqDÞ ð@ _qqD=@ _qqIÞ þ

X
ð@T=@ _qqI 0 Þ ð�I 0I Þ

¼ @T=@ _qqI þ
X
ð@ _qqD=@ _qqI Þ ð@T=@ _qqDÞ ¼ @To=@ _qqI ; ðjÞ

@T*=@!D �
X
ð@T=@ _qqkÞ ð@ _qqk=@!DÞ

¼
X
ð@T=@ _qqD 0 Þ ð@ _qqD 0=@!DÞ þ

X
ð@T=@ _qqIÞ ð@ _qqI=@!DÞ

¼
X
ð@T=@ _qqD 0 Þ ð�D 0DÞ þ

X
ð@T=@ _qqI Þ ð0Þ

¼ @T=@ _qqD ! ð@T=@ _qqDÞ*! ð@T=@ _qqDÞo; ðkÞ
@T*=@�I �

X
ð@T*=@qkÞ ð@ _qqk=@!I Þ

¼
X
ð@T*=@qDÞ ð@ _qqD=@!IÞ þ

X
ð@T*=@qI 0 Þ ð@ _qqI 0=@!IÞ

¼
X
ð@T*=@qDÞ ð@�D=@!I Þ þ

X
ð@T*=@qI 0 Þ ð�I 0IÞ

¼
X
ð@To=@qDÞ ð@�D=@ _qqIÞ þ @To=@qI

� @To=@ðqIÞ; ðlÞ
HD

I ¼
X �ð@!D=@ _qqkÞ:� @!D=@qk

� ð@ _qqk=@!I Þ ½by ð5:2:21hÞ�
¼
X �ð@!D=@ _qqD 0 Þ:� @!D=@qD 0

� ð@ _qqD 0=@!I Þ
þ
X �ð@!D=@ _qqI 0 Þ:� @!D=@qI 0

� ð@ _qqI 0=@!I Þ
¼
X �ð�DD 0 Þ: � ð�@�D=@qD 0 Þ

� ð@�D 0=@!IÞ
þ
X �ð�@�D=@ _qqI 0 Þ:� ð�@�D=@qI 0 Þ� ð�I 0I Þ

¼ � ð@�D=@ _qqI Þ:� @�D=@qI þ
X
ð@�D=@�D 0 Þ ð@�D 0=@ _qqIÞ

h in o
¼ ��ð@�D=@ _qqI Þ:� @�D=@ðqIÞ�
� �EðIÞð _qqDÞ ¼ �WD

I ; ðmÞ
Vk

I ¼ ð@ _qqk=@!I Þ:�
X
ð@ _qqk=@qlÞ ð@ _qql=@!IÞ ½by ð5:2:21eÞ�; ðnÞ
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or, proceeding directly from (5.2.21f),

HD
I ¼ �

X
ð@!D=@ _qqkÞVk

I

¼ �
X
ð@!D=@ _qqD 0 ÞVD 0

I �
X
ð@!D=@ _qqI 0 ÞVI 0

I

¼ �
X
ð�DD 0 ÞVD 0

I �
X
ð�@�D=@ _qqI 0 Þ ð0Þ

¼ �VD
I �! �WD

I ðoÞ
[Either from the Suslov viewpoint, or by direct application of (5.2.21f) to our

special case, we easily find VI 0
I !WI 0

I ¼ 0, and, therefore,

HI 0
I ¼ �

X
ð@!I 0=@ _qqkÞVk

I ¼ � � � ¼ 0�;

YI ¼
X
ð@ _qqk=@!I ÞQk

¼
X
ð@ _qqD=@!IÞQD þ

X
ð@ _qqI 0=@!IÞQI 0

¼
X
ð@�D=@!I ÞQD þ

X
ð�I 0I ÞQI 0

¼ QI þ
X
ð@�D=@ _qqIÞQD � QIo: ðpÞ

Substituting all these special results into (5.3.19), we recover (g), as expected.

Problem 5.3.1 (i) Using the definitions Gk ¼
P

Vl
k pl ¼ �

P
Hb

kPb, and (5.2.21e–

g) in the G transformation equation (exs. 5.3.1 and 5.3.2), show that under

!ðt; q; ! 0Þ , ! 0ðt; q; !Þ the nonlinear Voronets and Hamel coefficients Vl
k and Hb

k

transform as

Vl
k 0 ¼

X
ð@!k=@!k 0 ÞVl

k

þ
X �ð@!k=@!k 0 Þ:� @!k=@�k 0

� ð@ _qql=@!kÞ; ðaÞ

Hb 0
k 0 ¼

X
ð@!k=@!k 0 Þ ð@!b 0=@!bÞHb

k

�
X �ð@!k=@!k 0 Þ:� @!k=@�k 0

� ð@!b 0=@!kÞ; ðbÞ
that is, in general, neither Vl

k nor Hb
k transform as vectors, tensors.

(ii) Then show that the new (transformed) Voronets and Hamel symbols are

related to each other as are the old ones; that is,

Hb 0
k 0 ¼ �

X
ð@!b 0=@ _qqlÞVl

k 0 , Vl
k 0 ¼ �

X
ð@ _qql=@!b 0 ÞHb 0

k 0 ; ðcÞ
where !r 0 ¼ !r 0 ðt; q; _qqÞ , _qql ¼ _qqlðt; q; ! 0Þ:

For alternative, equivalent, expressions to (a, b), see Novoselov (1979, pp. 120–

121).

Example 5.3.5 (Mei, 1985, pp. 89–90). Let us obtain the Routh–Voss equations of

motion of a particle P of mass m moving under the constraint

ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2 ¼ constant � c2; ðaÞ
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that is, square of velocity m of P ¼ constant, where q1;2;3 ¼ x; y; z: rectangular

Cartesian coordinates of P. Here, with the usual notations,

2T ¼ m½ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2�; ðbÞ
f � ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2 � c2 ¼ 0

) @f =@ _qqk ¼ 2 _qqk ðk ¼ 1; 2; 3Þ; ðcÞ
and, therefore, the nonlinear Routh–Voss equations, under impressed forces Qk, are

m €qqk ¼ Qk þ 2
 _qqk; ðdÞ
and along with (a) they constitute a determinate system for the qkðtÞ and 
ðtÞ.

To eliminate the multiplier 
, we multiply each of (d) by its _qqk and add them

together, thus obtaining the power equation

mð _qq1€qq1 þ _qq2€qq2 þ _qq3€qq3Þ
¼ Q1 _qq1 þ Q2 _qq2 þQ3 _qq3 þ 2
 ½ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2�
¼ Q1 _qq1 þ Q2 _qq2 þQ3 _qq3 þ 2
c2; ðeÞ

from which, invoking the constraint (c) f ¼ 0 and its ð. . .Þ:-derivative

_ff ¼ 2 ð _qq1€qq1 þ _qq2€qq2 þ _qq3€qq3Þ ¼ 0;

we readily get the multiplier


 ¼ �ðQ1 _qq1 þQ2 _qq2 þQ3 _qq3Þ=2c2: ðfÞ

type of) equations

m€qqk ¼ Qk �
�ðQ1 _qq1 þQ2 _qq2 þQ3 _qq3Þ=c2

�
_qqk: ðgÞ

[Recall examples 3.2.6, 3.5.5, and 3.10.2. The general methodology for obtaining

such reactionless equations seems to have originated with Jacobi [1842–1843, publ.

1866; p. 51 ff. (esp. p. 55) and p. 132 ff.]; while a more general, tensor calculus-based

approach is due to Synge (1926–1927, pp. 53–55).]

Let us examine this problem from the elementary Newton–Euler viewpoint. In

view of (a), v ¼ c, and so the intrinsic equations of motion of P (}1.2):

mv2=	 ¼ Fn þ Rn; m _vv ¼ Ft þ Rt ðhÞ
(	: radius of curvature of trajectory of P;Fn;t=Rn;t: normal and

tangential components of total impressed/reaction force on P),

reduce to

mc2=	 ¼ Fn þ Rn;

0 ¼ Ft þ Rt

) Rt ¼ �Ft ¼ �F � ðm=vÞ ¼ �ðF � mÞ=c

¼ �
X

Qk _qqk

� �
=c ¼ 2c
: ðiÞ

For additional details, see Hamel (1949, pp. 709–710).
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Example 5.3.6 (Mei, 1985, pp. 91–93). Let us obtain the Routh–Voss equations of

motion of a particle P of mass m moving in a uniform gravitational field and subject

to the Appell–Hamel constraint

ð _xxÞ2 þ ð _yyÞ2 ¼ ða=bÞ2ð _zzÞ2 ða; b: given; say; positive constantsÞ ðaÞ

where, x; y; z: rectangular Cartesian coordinates of P.

Since here

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2�;
Qx ¼ 0; Qy ¼ 0; Qz ¼ �mg ðwith þ z vertically upwardÞ; ðbÞ

and with

f � ð _xxÞ2 þ ð _yyÞ2 � ða=bÞ2ð _zzÞ2 ¼ 0; ðcÞ

the Routh–Voss equations are

m €xx ¼ 2
 _xx; m €yy ¼ 2
 _yy; m €zz ¼ �mg� 2
ða=bÞ2 _zz; ðdÞ

and with (a) they constitute a determinate system for xðtÞ; yðtÞ; zðtÞ; 
ðtÞ. To

obtain reactionless ‘‘Jacobi–Synge’’ equations [like (g) of the preceding example],

we ð. . .Þ:-differentiate the constraint (a):

€zz ¼ ðb=aÞ2½ð _xx€xxþ _yy€yyÞ= _zz�; ðeÞ

and then substitute it into the third of (d), while using (a) rewritten as

_zz ¼ ðb=aÞ ½ð _xxÞ2 þ ð _yyÞ2�1=2 ½ _zz; a; b > 0�; ðfÞ

that is, the ratio of vertical velocity to horizontal velocity equals b=a. The result is

2
 ¼ �mðb=aÞ2ð _xx€xxþ _yy€yyÞ=½ð _xxÞ2 þ ð _yyÞ2�
�mgðb=aÞ=½ð _xxÞ2 þ ð _yyÞ2�1=2; ðgÞ

and when this is substituted back into the first two of (d), it yields the reactionless

equations

€xxþ ðb=aÞ2ð _xx€xxþ _yy€yyÞ _xx=½ð _xxÞ2 þ ð _yyÞ2�
¼ �gðb=aÞ _xx=½ð _xxÞ2 þ ð _yyÞ2�1=2; ðhÞ

€yyþ ðb=aÞ2ð _xx€xxþ _yy€yyÞ _yy=½ð _xxÞ2 þ ð _yyÞ2�
¼ �gðb=aÞ _yy=½ð _xxÞ2 þ ð _yyÞ2�1=2: ðiÞ

From these two equations, we readily obtain the equivalent, but simpler, system

_yy €xx� _xx €yy ¼ 0;

_xx €xxþ _yy €yy ¼ �ðg a bÞ ða2 þ b2Þ�1 ½ð _xxÞ2 þ ð _yyÞ2�1=2: ðjÞ
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The first of the above, assuming _yy 6¼ 0, can be rewritten as ð _xx= _yyÞ: ¼ 0, and integrates

immediately to _yy ¼ c _xx (c: integration constant), or further to

y� yo ¼ cðx� xoÞ ½xo ¼ xð0Þ; yo ¼ yð0Þ�; ðkÞ

while the second, with the help of the auxiliary variable, v2 ¼ ð _xxÞ2 þ ð _yyÞ2, can be

rewritten as _vv ¼ �ðg a bÞ ða2 þ b2Þ�1
, and integrates readily to

v� vo ¼ �½ðg a bÞ ða2 þ b2Þ�1� t ½vo ¼ vð0Þ�: ðlÞ

In view of this result, the constraint (f) becomes (assuming _zz > 0)

_zz ¼ ðb=aÞv ¼ ðb=aÞvo � ½ðg b2Þ ða2 þ b2Þ�1�t;

and, upon integrating, yields

z ¼ zo þ ðb=aÞvo t� ½ðg b2Þ=2 ða2 þ b2Þ�t2: ðmÞ

Finally, with the help of the earlier integral _yy ¼ c _xx; v becomes

v ¼ ½ð _xxÞ2 þ ð _yyÞ2�1=2 ¼ _xxð1þ c2Þ1=2 ¼ ð _yy=cÞ ð1þ c2Þ1=2; ðnÞ

and so (l) transforms to the following equivalent x; y-equations:

ð1þ c2Þ1=2 _xx ¼ vo � ½ðg a bÞ=ða2 þ b2Þ�t; ðoÞ
ð1þ c2Þ1=2ð _yy=cÞ ¼ vo � ½ðg a bÞ=ða2 þ b2Þ�t; ðpÞ

from which, integrating, we get

ð1þ c2Þ1=2ðx� xoÞ ¼ vo t� ½ðg a bÞ=2ða2 þ b2Þ�t2; ðqÞ
c�1ð1þ c2Þ1=2ðy� yoÞ ¼ vo t� ½ðg a bÞ=2ða2 þ b2Þ�t2: ðrÞ

Comparing the above with (m), we see that we can rewrite all three of them as

ð1þ c2Þ1=2ðx� xoÞ ¼ c�1ð1þ c2Þ1=2ðy� yoÞ ¼ ða=bÞðz� zoÞ; ðsÞ

where c can be found from c ¼ _yyo= _xxo.
Substituting from the above into (g), we can find the constraint reaction


 ¼ 
ðt; vo;m; g; a; bÞ, if needed.

Example 5.3.7 (Mei, 1985, pp. 245–246). Let us obtain the kinetic Appellian

equations of a particle P of mass m moving under the action of impressed forces

Qk ðk ¼ 1; 2; 3Þ and subject to the Appell–Hamel constraint

ð _qq1Þ2 þ ð _qq2Þ2 ¼ ð _qq3Þ2 ðq1;2;3: rectangular Cartesian coordinates of PÞ; ðaÞ

that is, vertical velocity equals ðÞ of horizontal velocity.
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In view of the constraint (a), we introduce the following quasi velocities:

2!1 � ½ð _qq3Þ2 � ð _qq1Þ2 � ð _qq2Þ2� ¼ 0; ðbÞ
!2 � arctanð _qq2= _qq1Þ 6¼ 0; ðcÞ

2!3 � ½ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2� ð¼ 2T=m 6¼ 0Þ: ðdÞ

Adding and subtracting (b) and (d) side by side we obtain, respectively,

ð _qq3Þ2 ¼ !1 þ !3 ) _qq3 ¼ ð!1 þ !3Þ1=2; ðeÞ

ð _qq1Þ2 þ ð _qq2Þ2 ¼ !3 � !1; ðfÞ

and from these and (c), we are readily led to the inverse of (b–d):

_qq1 ¼ ð!3 � !1Þ1=2 cos!3; _qq2 ¼ ð!3 � !1Þ1=2 sin!3;

_qq3 ¼ ð!1 þ !3Þ1=2: ðgÞ

Now, since we are interested only in the kinetic Appellian equations, we can
enforce the constraint (b) right at this point; that is, we can work with (g) and its

ð. . .Þ:-derivatives evaluated at !1 ¼ 0; that is (skipping special notations, such as

ð. . .Þo, for simplicity),

_qq1 ¼ ð!3Þ1=2 cos!2; _qq2 ¼ ð!3Þ1=2 sin!2; _qq3 ¼ ð!3Þ1=2; ðhÞ

€qq1 ¼ ½ _!!3=2 ð!3Þ1=2� cos!2 � ð!3Þ1=2 _!!2 sin!2;

€qq2 ¼ ½ _!!3=2 ð!3Þ1=2� sin!2 þ ð!3Þ1=2 _!!2 cos!2;

€qq3 ¼ _!!3=2 ð!3Þ1=2: ðiÞ

Hence, the constrained Appellian, S* for !1 ¼ 0; _!!1 ¼ 0 [denoted for convenience by

S*, instead of a more precise notation, such as S*o] equals:

2S=m ¼ ½ð€qq1Þ2 þ ð€qq2Þ2 þ ð€qq3Þ2�

¼ � � � ¼ ð _!!3Þ2=2!3 þ !3ð _!!2Þ2 ¼ S*ð!3; _!!2; _!!3Þ; ðjÞ

and therefore the (constrained) nonholonomic kinetic inertia ‘‘forces’’ are

I2 � @S*=@ _!!2 ¼ m!3 _!!2; I3 � @S*=@ _!!3 ¼ m _!!3=2!3: ðkÞ

REMARK

However, as the above and the chain rule show, we could have stopped at the first

line of (j) and not completed the squares. Indeed, we have
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@S*=@ _!!2 ¼ ð@S=@€qq1Þ ð@€qq1=@ _!!2Þ þ ð@S=@€qq2Þ ð@€qq2=@ _!!2Þ
þ ð@S=@€qq3Þ ð@€qq3=@ _!!2Þ

¼ ð@S=@€qq1Þ ð@ _qq1=@!2Þ þ ð@S=@€qq2Þ ð@ _qq2=@!2Þ
þ ð@S=@€qq3Þ ð@ _qq3=@!2Þ

¼ ðm€qq1Þ ½�ð!3Þ1=2 sin!2� þ ðm€qq2Þ ½ð!3Þ1=2 cos!2�
þ ðm€qq3Þ ð0Þ

¼ � � � ¼ m!3 _!!2 ½using ðiÞ�; ðlÞ
@S*=@ _!!3 ¼ ð@S=@€qq1Þ ð@ _qq1=@!3Þ þ ð@S=@€qq2Þ ð@ _qq2=@!3Þ

þ ð@S=@€qq3Þ ð@ _qq3=@!3Þ
¼ ðm€qq1Þ ½cos!2=2ð!3Þ1=2� þ ðm€qq2Þ ½sin!2=2ð!3Þ1=2�
þ ðm€qq3Þ ½1=2ð!3Þ1=2�

¼ � � � ¼ m _!!3=2!3; ðmÞ

as before.

From the above, it follows that the kinetic Appellian equations are

I2 ¼
X
ð@ _qqk=@!2ÞQk ð¼ Y2Þ; I3 ¼

X
ð@ _qqk=@!3ÞQk ð¼ Y3Þ; ðnÞ

or, explicitly,

m!3 _!!2 ¼ ½�ð!3Þ1=2 sin!2�Q1 þ ½ð!3Þ1=2 cos!2�Q2; ðoÞ
and

m _!!3=2!3 ¼ ½cos!2=2ð!3Þ1=2�Q1 þ ½sin!2=2ð!3Þ1=2�Q2 þ ½1=2ð!3Þ1=2�Q3; ðpÞ

or, equivalently,

2mð ffiffiffiffiffi!3

p Þ: ¼ ðcos!2ÞQ1 þ ðsin!2ÞQ2 þQ3: ðqÞ

In the special case of a uniform gravitational field — that is,

Q1 ¼ 0; Q2 ¼ 0; Q3 ¼ �mg; ðrÞ
eqs. (o) and (q) specialize, respectively, to

m!3 _!!2 ¼ 0 and 2mð ffiffiffiffiffi!3

p Þ: ¼ �mg; ðsÞ

and have the obvious integrals

!2 ¼ !2o and
ffiffiffiffiffi
!3

p ¼ ffiffiffiffiffiffiffi
!3o

p � gt=2 ½!2o ¼ !2ð0Þ; !3o ¼ !3ð0Þ�: ðtÞ

In the q-variables, the above become [recalling (h)]

_qq1 ¼ ð�gt=2þ
ffiffiffiffiffiffiffi
!3o

p Þ cos!2o; _qq2 ¼ ð�gt=2þ
ffiffiffiffiffiffiffi
!3o

p Þ sin!2o;

_qq3 ¼ �gt=2þ
ffiffiffiffiffiffiffi
!3o

p
; ðuÞ
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and integrate readily to

q1 � q1o ¼ ð�gt2=4þ ffiffiffiffiffiffiffi
!3o

p
tÞ cos!2o; q2 � q2o ¼ ð�gt2=4þ ffiffiffiffiffiffiffi

!3o

p
tÞ sin!2o;

q3 � q3o ¼ �gt2=4þ
ffiffiffiffiffiffiffi
!3o

p
t ½qko ¼ qkð0Þ; k ¼ 1; 2; 3�: ðvÞ

Example 5.3.8 (Hamel, 1938, pp. 49–50; 1949, pp. 499–501; Mei, 1985, pp. 178–

181). Let us derive the kinetic Johnsen–Hamel equations of the preceding example.

We saw there that (no constraint enforcement yet!)

2!1 � ½ð _qq3Þ2 � ð _qq1Þ2 � ð _qq2Þ2� ¼ 0; ðaÞ
!2 � arctanð _qq2= _qq1Þ 6¼ 0; ðbÞ

2!3 � ½ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2� ð¼ 2T=m 6¼ 0Þ; ðcÞ

_qq1 ¼ ð!3 � !1Þ1=2 cos!3; ðdÞ

_qq2 ¼ ð!3 � !1Þ1=2 sin!3; ðeÞ

_qq3 ¼ ð!1 þ !3Þ1=2: ðfÞ

With the help of the above, we readily find

2T ¼ m½ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2� ) T* ¼ m!3; ðgÞ

and, therefore,

P1 � @T*=@!1 ¼ 0; P2 � @T*=@!2 ¼ 0;

P3 � @T*=@!3 ¼ m ) _PP3 ¼ 0;

@T*=@qk ¼ 0 ) @T*=@�I ¼ 0 ½k ¼ 1; 2; 3; I ¼ 2; 3�; ðhÞ

and so, as eqs. (5.3.5b) show, we only need to calculate H3
2 and H3

3.

Indeed, invoking (5.2.21h) and remembering to set !1 ¼ 0 after all differentia-

tions have been carried out, we find

H3
2 �

X �ð@!3=@ _qqkÞ: � @!3=@qk
� ð@ _qqk=@!2Þ

¼ ½ð@!3=@ _qq1Þ: � 0� ð@ _qq1=@!2Þ þ ½ð@!3=@ _qq2Þ: � 0� ð@ _qq2=@!2Þ
¼ � � � ¼ � ffiffiffiffiffi

!3

p ½ðsin!2Þ ð ffiffiffiffiffi!3

p
cos!2Þ: � ðcos!2Þ ð ffiffiffiffiffi!3

p
sin!2Þ:�; ðiÞ

H3
3 �

X �ð@!3=@ _qqkÞ:� @!3=@qk
� ð@ _qqk=@!3Þ

¼ ½ð@!3=@ _qq1Þ:� 0� ð@ _qq1=@!3Þ þ ½ð@!3=@ _qq2Þ:� 0� ð@ _qq2=@!3Þ
þ ½ð@!3=@ _qq3Þ: � 0� ð@ _qq3=@!3Þ

¼ � � � ¼ ð1=2 ffiffiffiffiffi
!3

p Þ ½ðcos!2Þ ð
ffiffiffiffiffi
!3

p
cos!2Þ:þ ðsin!2Þ ð

ffiffiffiffiffi
!3

p
sin!2Þ:þ ð

ffiffiffiffiffi
!3

p Þ:�; ðjÞ
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and [recalling the right sides of eqs. (o, p) of the preceding example]

Y2 ¼ ð� ffiffiffiffiffi
!3

p
sin!2ÞQ1 þ ð ffiffiffiffiffi!3

p
cos!2ÞQ2; ðkÞ

Y3 ¼ ðcos!2=2
ffiffiffiffiffi
!3

p ÞQ1 þ ðsin!2=2
ffiffiffiffiffi
!3

p ÞQ2 þ ð1=2 ffiffiffiffiffi
!3

p ÞQ3: ðlÞ

Let the reader verify that by inserting all these expressions into (5.3.5b) we obtain,

after some simple manipulations, eqs. (o) and (p)¼ (q) of the preceding example; as

we should.

REMARK

As pointed out earlier in this section, the Jacobian gradients @ _qq=@! ½@!=@ _qq� can also

be found via Cramer’s rule from the compatibility conditions (5.2.4a, b), once the

@!=@ _qq ½@ _qq=@!� have been calculated from (a–c) [(d–f)]; that is, it is not necessary to

invert the nonlinear (a–c) [(d–f)] to obtain (d–f) [(a–c)].

Example 5.3.9 (Dobronravov, 1970, pp. 250–253; Mei, 1985, pp. 241–242; San,

1973, pp. 332–333). Let us derive the kinetic Appellian equations of a particle P
of mass m moving in the central Newtonian gravitational field of another (much

larger) origin O of mass M; and also subject to the constraint

2f � ð _rrÞ2 þ ðr2 cos2 �Þð _��Þ2 þ r2ð _��Þ2 ¼ constant � c2; ðaÞ

that is, square of velocity of P ¼ c; where r; �; �: (inertial) spherical coordinates of P
relative to O (with � measured from the plane O�xy toward Oz).

The (unconstrained) Appellian of the system is

2S ¼ mðar2 þ a�
2 þ a�

2Þ; ðbÞ

where ar;�;� are the (physical) components of the acceleration of P in spherical

coordinates (e.g., recalling }1.2, or prob. 3.5.15, with �! �=2� �Þ:

ar ¼ €rr� r½ð _��Þ2 þ ð _��Þ2 cos2 ��; ðcÞ
a� ¼ r €�� cos �þ 2 _rr _�� cos �� 2r _�� _�� sin �; ðdÞ
a� ¼ r €��þ 2 _rr _��þ rð _��Þ2 sin � cos �: ðeÞ

In view of (a), we choose as independent q’s: q2 ¼ r and q3 ¼ �, and use that con-

straint to express the dependent q1 ¼ � in terms of r; �, and so on.

Indeed, solving (a) for _��, we obtain

ð _��Þ2 ¼ ½c2 � ð _rrÞ2 � r2ð _��Þ2�=r2 cos2 �; ðfÞ
) €�� ¼ �ð _rr€rrþ r2 _��€��Þ=r2 _�� cos2 � ðþAppell-nonimportant termsÞ; ðgÞ

and, therefore,

@ _��=@ _rr ¼ @ €��=@€rr ¼ � _rr=r2 _�� cos2 �; ðhÞ
@ _��=@ _�� ¼ @ €��=@ €�� ¼ � _��= _�� cos2 �: ðiÞ
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Applying chain rule to

S ¼ Sðar; a�; a�Þ ¼ S½arð€rr; €��; €��; . . .Þ; . . .�

� S 0ð€rr; €��; €��; . . .Þ ¼ S 0½€rr; €��ð€rr; €��; . . .Þ; €��; . . .�

� Soð€rr; €��; . . .Þ � So ½where . . . � no €rr; €��; €�� terms�; ðjÞ

we easily find [no need to complete the squares in (b–e)]

@So=@€rr ¼ ½ð@S=@arÞ ð@ar=@€rrÞ þ ð@S=@a�Þ ð@a�=@€rrÞ
þ ð@S=@a�Þ ð@a�=@€rrÞ� ð@€rr=@€rrÞ

þ ½ð@S=@arÞð@ar=@ €��Þ þ ð@S=@a�Þ ð@a�=@ €��Þ

þ ð@S=@a�Þ ð@a�=@ €��Þ� ð@ €��=@€rrÞ

þ ½ð@S=@arÞð@ar=@ €��Þ þ ð@S=@a�Þ ð@a�=@ €��Þ

þ ð@S=@a�Þ ð@a�=@ €��Þ� ð@ €��=@€rrÞ

½¼ @S 0=@€rrþ ð@S 0=@ €��Þ ð@ €��=@€rrÞ þ ð@S 0=@ €��Þ ð@ €��=@€rrÞ�
¼ � � � ¼ m½€rr� rð _��Þ2 � rð _��Þ2 cos2 � � ð _rr= _��Þ €��

� 2ð _rrÞ2=rþ 2 _rr _�� tan ��; ðkÞ

@So=@ €�� ¼ ½ð@S=@arÞ ð@ar=@€rrÞ þ ð@S=@a�Þ ð@a�=@€rrÞ

þ ð@S=@a�Þ ð@a�=@€rrÞ� ð@€rr=@ €��Þ

þ ½ð@S=@arÞ ð@ar=@ €��Þ þ ð@S=@a�Þ ð@a�=@ €��Þ

þ ð@S=@a�Þ ð@a�=@ €��Þ� ð@ €��=@ €��Þ

þ ½ð@S=@arÞ ð@ar=@ €��Þ þ ð@S=@a�Þ ð@a�=@ €��Þ

þ ð@S=@a�Þ ð@a�=@ €��Þ� ð@ €��=@ €��Þ

½¼ ð@S 0=@€rrÞ ð@€rr=@ €��Þ þ ð@S 0=@ €��Þ ð@ €��=@ €��Þ þ @S 0=@ €���

¼ � � � ¼ m½r2 €��þ r2ð _��Þ2 sin � cos �

� r2ð _��= _��Þ €��þ 2r2ð _��Þ2 tan ��: ðlÞ
Next, here (with G denoting the well-known gravitational constant)

Qr ¼ �mMG=r2; Q� ¼ 0; Q� ¼ 0; ðmÞ
and therefore the independent impressed forces, QIo, are

Qro ¼ Qr þ ð@ _��=@ _rrÞQ� ¼ �mMG=r2; Q�o ¼ Q� þ ð@ _��=@ _��ÞQ� ¼ 0: ðnÞ
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As a result of the above, the kinetic Appellian equations are

@So=@€rr ¼ Qro:

€rr� rð _��Þ2 � rð _��Þ2 cos2 �� ð _rr= _��Þ €��
� 2ð _rrÞ2=rþ 2 _rr _�� tan � ¼ �MG=r2; ðoÞ

@So=@€�� ¼ Q�o:

r2€��þ r2ð _��Þ2 sin � cos �� r2ð _��= _��Þ €��þ 2r2ð _��Þ2 tan � ¼ 0; ðpÞ
and along with the constraint (a) these constitute a determinate system for

rðtÞ; �ðtÞ; �ðtÞ.

Example 5.3.10 (Mei, 1985, pp. 155–156). Let us derive the general kinetic

Voronets equations (5.3.8a, b) of the preceding example. We introduce the following

quasi velocities:

!1 � f � c2=2 � f½ð _rrÞ2 þ ðr2 cos2 �Þð _��Þ2 þ r2ð _��Þ2� � c2g=2 ð¼ 0Þ; ðaÞ
!2 � _rr ð6¼ 0Þ; ðbÞ
!3 � r _�� ð6¼ 0Þ; ðcÞ

and their inverses (with q1;2;3: r; �; �Þ:
_rr ¼ !2; ðdÞ
ð _��Þ2 ¼ ½ð2!1 þ c2Þ � ð _rrÞ2 � r2ð _��Þ2�=r2 cos2 �

¼ ½ð2!1 þ c2Þ � !2
2 � !3

2�=r2 cos2 �; ðeÞ
_�� ¼ !3=r: ðfÞ

Hence, the general Voronets symbols needed, Vk
I , eqs. (5.2.21e; with k ¼ 1; 2; 3;

I ¼ 2; 3Þ specialize to

V1
2 � ð@ _rr=@!2Þ:� @ _rr=@�2 � ð@ _rr=@!2Þ: �

X
ð@ _rr=@qkÞ ð@ _qqk=@!2Þ

¼ ð1Þ: � 0 ¼ 0; ðgÞ
V2

2 � ð@ _��=@!2Þ:� @ _��=@�2 � ð@ _��=@!2Þ:�
X
ð@ _��=@qkÞ ð@ _qqk=@!2Þ

¼ ð� _rr=r2 _�� cos2 �Þ:� ð� _��=rÞð1Þ; ðhÞ
V3

2 � ð@ _��=@!2Þ: � @ _��=@�2 � ð@ _��=@!2Þ: �
X
ð@ _��=@qkÞ ð@ _qqk=@!2Þ

¼ ð0Þ: � ð� _��=rÞð1Þ ¼ _��=r; ðiÞ
V1

3 � ð@ _rr=@!3Þ:� @ _rr=@�3 � ð@ _rr=@!3Þ: �
X
ð@ _rr=@qkÞ ð@ _qqk=@!3Þ

¼ ð0Þ: � 0 ¼ 0; ðjÞ
V2

3 � ð@ _��=@!3Þ:� @ _��=@�3 � ð@ _��=@!3Þ:�
X
ð@ _��=@qkÞ ð@ _qqk=@!3Þ

¼ ð� _��=r _�� cos2 �Þ:� ð _�� tan �Þ ðr�1Þ; ðkÞ
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V3
3 � ð@ _��=@!3Þ:� @ _��=@�3 � ð@ _��=@!3Þ:�

X
ð@ _��=@qkÞ ð@ _qqk=@!3Þ

¼ ðr�1Þ:� ð� _��=rÞð0Þ ¼ � _rr=r2; ðlÞ

while the (unconstrained) kinetic energy, in holonomic variables, becomes

2T ¼ m½ð _rrÞ2 þ ðr2 cos2 �Þð _��Þ2 þ r2ð _��Þ2�
ð¼ mc2; constrained kinetic energyÞ; ðmÞ

) @T=@ _rr ¼ m _rr; @T=@ _�� ¼ mr2 cos2 � _��; @T=@ _�� ¼ mr2 _��; ðnÞ

and, in nonholonomic variables,

2T* ¼ mð2!1 þ c2Þ; ðoÞ
) @T*=@!2 ¼ 0; @T*=@!3 ¼ 0;

@T*=@�2 �
X
ð@T*=@qkÞ ð@ _qqk=@!2Þ ¼ 0; @T*=@�3 ¼ 0; ðpÞ

and, finally, the corresponding nonholonomic impressed forces are

Y2 �
X
ð@ _qqk=@!2ÞQk ¼ � � � ¼ �mMG=r2; Y3 ¼ � � � ¼ 0: ðqÞ

Substituting all these special results into eqs. (5.3.8a, b) yields

!2: 0� ½V2
2ð@T=@ _��Þ þ V3

2ð@T=@ _��Þ� ¼ Y2; ðrÞ
!3: 0� ½V2

3ð@T=@ _��Þ þ V3
3ð@T=@ _��Þ� ¼ Y3; ðsÞ

and if these two equations are written out, in extenso, they, naturally, coincide with

the Appellian equations (o, p) of the preceding example.

Last, by substituting in the above _rr; _��; _�� in terms of !1ð¼ 0Þ; !2; !3, including

@T=@ _qqk ! ð@T=@ _qqkÞ*, via (d–f), we may, if needed, express (r, s) in terms of these

quasi variables, à la Hamel.

Example 5.3.11 Let us derive the special (kinetic) Chaplygin–Voronets equations

(ex. 5.3.4: g, i) for the system of ex. 5.3.5. Here, n ¼ 3 and m ¼ 1, and so with the

choice _qqD: _qq1 and _qqI : _qq2;3, the constraint

ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2 ¼ constant � c2 ðaÞ
yields

_qqD ! _qq1 ¼ ½c2 � ð _qq2Þ2 þ ð _qq3Þ2�1=2 � �1ð _qqIÞ: ðbÞ
Therefore, the kinetic energy becomes

2T ¼ m½ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2�

¼ m ½c2 � ð _qq2Þ2 þ ð _qq3Þ2� þ ð _qq2Þ2 þ ð _qq3Þ2
n o

¼ mc2 ¼ Toð _qqIÞ � To ðconstrained kinetic energyÞ; ðcÞ
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) @T=@ _qqD: @T=@ _qq1 ¼ m _qq1;

@To=@ _qqI ¼ 0;

@To=@ðqI Þ � @To=@qI þ
X
ð@To=@qDÞð@�D=@ _qqIÞ ¼ @To=@qI ; ðdÞ

the relevant nonlinear Voronets–Chaplygin coefficients VD
I !WD

I reduce to the

following nonlinear Chaplygin coefficients TD
I :

T1
2 � ð@�1=@ _qq2Þ: � @�1=@q2 ¼ ð� _qq2= _qq1Þ: � 0; ðeÞ

T1
3 � ð@�1=@ _qq3Þ: � @�1=@q3 ¼ ð� _qq3= _qq1Þ: � 0; ðfÞ

and the constrained impressed forces QIo become

Q2o ¼ Q2 þ ð@�1=@ _qq2ÞQ1 ¼ Q2 � ð _qq2= _qq1ÞQ1; ðgÞ
Q3o ¼ Q3 þ ð@�1=@ _qq3ÞQ1 ¼ Q3 � ð _qq3= _qq1ÞQ1: ðhÞ

Substituting all these special results into the nonlinear Voronets! Chaplygin

equations

ð@To=@ _qqIÞ:� @To=@qI �
X

TD
Ið@T=@ _qqDÞo ¼ QIo; ðiÞ

we find

�T1
2ð@T=@ _qq1Þ ¼ Q2o:

� ð� _qq2= _qq1Þ:ðm _qq1Þ ¼ Q2 � ð _qq2= _qq1ÞQ1; ðjÞ
�T1

3ð@T=@ _qq1Þ ¼ Q3o:

� ð� _qq3= _qq1Þ:ðm _qq1Þ ¼ Q3 � ð _qq3= _qq1ÞQ1; ðkÞ

or, simplifying,

m€qq2 ¼ Q2 þ ð _qq2= _qq1Þ ðm€qq1 �Q1Þ; ðlÞ
m€qq3 ¼ Q3 þ ð _qq3= _qq1Þðm€qq1 � Q1Þ; ðmÞ

respectively.

To show the equivalence of the above with (g) of ex. 5.3.5, we ð. . .Þ:-differentiate

(a),

ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2 ¼ c2 ) _qq1€qq1 þ _qq2€qq2 þ _qq3€qq3 ¼ 0;

solve the result for €qq1, and then, invoking (k, l) in it, we obtain, successively,

m €qq1 ¼ �ð _qq2= _qq1Þ ðm €qq2Þ � ð _qq3= _qq1Þ ðm €qq3Þ
¼ �ð _qq2= _qq1Þ ½Q2 þ ð _qq2= _qq1Þ ðm€qq1 �Q1Þ�
� ð _qq3= _qq1Þ ½Q3 þ ð _qq3= _qq1Þ ðm€qq1 �Q1Þ�;

or, reducing further and using (a),

m€qq1 ¼ Q1 � ðQ1 _qq1 þQ2 _qq2 þQ3 _qq3Þ=c2
� �

_qq1; ðnÞ
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and when this is inserted back into (l, m) it produces equations (ex. 5.3.5: g); as

expected, due to the symmetry of the problem in q1;2;3.

Problem 5.3.2 In ex. 5.3.9, we saw that

ð _��Þ2 ¼ ½c2 � ð _rrÞ2 � r2ð _��Þ2�=r2 cos2 �; i:e:; _qqD ¼ �Dð _qqI ; . . .Þ: ðaÞ

Substituting this into Tð _rr; _��; _��; . . .Þ, obtain Toð _rr; _��; . . .Þ, and then find the corre-

sponding special (kinetic) Voronets equations (ex. 5.3.4: g). Show that they coincide

with the special (kinetic) Appellian equations of ex. 5.3.9, and the general Voronets

equations of ex. 5.3.10.

Problem 5.3.3 Continuing from the system of exs. 5.3.9, and 5.3.10, ð. . .Þ:-differ-

entiate its constraint (a):

_ff ¼ _rr €rrþ ðr2 cos2 �Þ _�� €��þ r2 _�� €��þ no other €rr; €��; €��-terms; ðaÞ

and introduce the quasi accelerations

_!!1 � _ff ð¼ 0Þ; _!!2 � r2 _�� €�� ð6¼ 0Þ; _!!3 � _rr €rr ð6¼ 0Þ: ðbÞ

Show that the corresponding general (kinetic) Appellian equations

@S*o=@ _!!2 ¼ Y2 and @S*o=@ _!!3 ¼ Y3; ðcÞ

where

S ¼ Sð€rr; €��; €��; . . .Þ ¼ � � � ¼ S*ð _!!1 ¼ 0; _!!2; _!!3; . . .Þ
¼ S*oð _!!2; _!!3; . . .Þ � S*oðconstrained general AppellianÞ; ðdÞ

coincide with the special (kinetic) Appellian equations of ex. 5.3.9.

Problem 5.3.4 Consider the system of ex. 5.3.7; that is, a particle of mass m under

impressed forces Qk, and constrained by ð _qq1Þ2 þ ð _qq2Þ2 ¼ ð _qq3Þ2.
Obtain its special Voronets equations; and show that they coincide with those

found in ex. 5.3.7 (general Appell) and ex. 5.3.8 (Johnsen–Hamel).

Example 5.3.12 Tetherball (Kitzka, 1986; Fufaev, 1990; also Kuypers, 1993, pp.

66, 388–394). Let us consider a heavy particle P of mass m fastened at the end of a

massless (i.e., light) inextensible thread, the other end of which is fixed at a point on

the surface of a circular and vertical cylinder C of radius R. As P moves, the thread

can be wound up without slipping on the surface of C [fig. 5.1 (a)]. [This is an

idealization of a toy known as tetherball— itself an idealization of Huygens’ pendu-

lum, self-regulating its free (i.e., unwound) length.]
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Let

r ¼ ðx; y; zÞ: position vector of P at a generic time;

ro ¼ ðxo; yo; zoÞ: position vector of point of separation of thread from the

cylinder surface Po; at a generic time;

	: length of projection of PoP on plane O�xy ½ fig: 5:1ðbÞ�: ðaÞ

The constraints are:

(i) The constancy of the total thread length, as long as its unwound part is taut

and its wound part does not slip on C:ðt
0

jmoj dtþ jr� roj ¼ constant � lo; ðbÞ

that is, wound lengthþ unwound length ðlÞ ¼ lo.
(ii) Continuity of thread slope at Po [fig. 5.1(b)]:

ðr� roÞ=jr� roj ¼ mo=jmoj � mo=vo; ðcÞ
that is, unit vector along PoP ¼ unit vector along velocity of Po.

Also, from geometry, we have

x ¼ xo � 	 sin � ¼ R cos�� 	 sin�; ðd1Þ
y ¼ yo þ 	 cos� ¼ R sin�þ 	 cos�: ðd2Þ

Let us translate (b, c) into equivalent scalar forms:

(i) By ð. . .Þ:-differentiating (b), to get rid of the integral, we obtain

jmoj þ jr� roj: ¼ 0 ) vo ¼ �jr� roj: � �dl=dt; ðb1Þ
and so the ð. . .Þ:-derivative of (c), rearranged as

r� ro ¼ ½jr� roj=vo�mo ) r ¼ ro þ ðl=voÞmo; ðc1Þ
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Figure 5.1 (a) Particle P on a thread, wound up on a cylinder C; (b) geometrical details (top

view).
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becomes, successively (with m � _rr; ao � _mmoÞ,

m ¼ mo þ ðl=voÞao þ
�ðdl=dtÞ=vo�mo � �l ðdvo=dtÞ=vo2

�
mo

½by ðb1Þ; the Orst and third terms cancel�
¼ �ao � ½ðdvo=dtÞ=vo�mo�ðl=voÞ; ðc2Þ

and dotting this with mo, we get

m � mo ¼ ½mo � ao � ð _vvo=voÞvo2� ðl=voÞ ¼ 0; ðc3Þ
since ðmo � moÞ: ¼ ðvo2Þ:) 2mo � ao ¼ 2vo _vvo. With the help of the ð. . .Þ:-derivatives of

(d1, 2), the above assumes the form

m � mo ¼ R _��ð _		þ R _��Þ þ _zz _zzo ¼ 0: ðe1Þ
(ii) Dotting (c) with m and invoking (c3, 4) and (d1, 2), we easily obtain

m � ðr� roÞ ¼ 	ð _		þ R _��Þ þ _zzðz� zoÞ ¼ 0: ðe2Þ
Instead of the two constraints (e1, 2) for the four Lagrangean coordinates �; 	; z; zo,
we can eliminate zo (and _zzo) between them by ð. . .Þ:-differentiating (e2), multiplying

the outcome with _zz, and then using (e1, 2). The result is the single nonlinear second-

order (but linear in its second derivatives) constraint

fo � 	ð _		þ R _��Þ€zz� 	ð€		þ R €��Þ _zz
� ½ð _		þ R _��Þ2 þ ð _zzÞ2� _zz ¼ 0; ðfÞ

for the three coordinates �; 	; z.
At this point, we could form either (i) the two kinetic Appellian equations (here,

n ¼ 3;m ¼ 1),

@So=@ €�� ¼ Q�o and @So=@€		 ¼ Q	o; ðgÞ
where, using (f) (and the notation . . . � no €��; €		; €zz termsÞ,

S ¼ Sð €��; €		; €zz; . . .Þ ¼ S½ €��; €		; €zzð €��; €		; . . .Þ; . . .�
� Soð €��; €		; . . .Þ � So; ðg1Þ

and

� 0W ¼ Q� ��þ Q	 �	þQz �z ¼ � � � ¼ Q�o ��þQ	o �	; ðg2Þ
or (ii) the Appellian form of the three mixed (coupled) nonlinear Routh–Voss equa-

tions,

@S=@€qqk ¼ Qk þ 
ð@fo=@€qqkÞ; qk ¼ �; 	; z: ðhÞ
However, a simpler form of equations of motion results if, following Kitzka (1986),

we introduce the following quasi velocities:

!1 � R _��; ði1Þ
!2 � ð _		þ R _��Þ= _zz ¼ � _zzo=R _�� ¼ ðzo � zÞ=	 ½by ðe1; 2Þ�; ði2Þ
!3 � _zz; ði3Þ
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which invert readily to

_qq1 � _�� ¼ !1=R; ðj1Þ
_qq2 � _		 ¼ !2 !3 � !1; ðj2Þ
_qq3 � _zz ¼ !3: ðj3Þ

Eliminating zo from (i2) by ð. . .Þ:-differentiating it: _zzo � _zz ¼ ð	 !2Þ: ¼ _		!2 þ 	 _!!2,

and then using (i1, 2) and (j2) in it, we finally obtain the nonlinear (but linear in

its second derivative) constraint for !1;2;3:

f � 	 _!!2 þ ð1þ !2
2Þ!3 ¼ 0: ðkÞ

Now, let us form the corresponding kinetic Appellian equations

@S*o=@ _!!1 ¼ Y1 and @S*o=@ _!!3 ¼ Y3; ðlÞ

where (with the notation . . . � no _!!1;2;3 terms)

S* ¼ S*ð _!!1; _!!2; _!!3; . . .Þ ¼ S*½ _!!1; _!!2ð _!!1; _!!3; . . .Þ; _!!3; . . .�
� S*oð _!!1; _!!3; . . .Þ � S*o: ðl1Þ

Indeed, using (k) to eliminate _!!2 from a � _mm � €rr ¼ ð€xx; €yy; €zzÞ [(d1, 2) with (j1–3)] we

obtain, after some algebra,

€xx ¼ �½!2 _!!3 � !3
2ð1þ !2

2Þ=	� 	!1
2=R2� sin�

þ ð1=RÞ½!1ð!1 � 2!2 !3Þ � 	 _!!1� cos�; ðl2Þ
€yy ¼ ½!2 _!!3 � !3

2ð1þ !2
2Þ=	� 	!1

2=R2� cos�

þ ð1=RÞ½!1ð!1 � 2!2!3Þ � 	 _!!1� sin�; ðl3Þ
€zz ¼ _!!3; ðl4Þ

and, therefore,

S ¼ ðm=2Þ½ð€xxÞ2 þ ð€yyÞ2 þ ð€zzÞ2�

¼ � � � ¼ ðm=2Þ ð1þ !2
2Þ ð _!!3Þ2 � 2!2 _!!3 ½!3ð1þ !2

2Þ=	þ 	!1
2=R2�

n
þð	=R2Þ ½	ð _!!1Þ2 � 2!1 _!!1ð!1 � 2!2 !3Þ�

o
þ function of !1;2;3; 	 ð‘‘Appell constant’’ termsÞ ¼ S*o; ðl5Þ

also, by (l2–4),

Y1 �SdF � ð@a*=@ _!!1Þ ¼ ð�mgÞð@€zz=@ _!!1Þ ¼ 0; ðl6Þ
Y3 �SdF � ð@a*=@ _!!3Þ ¼ ð�mgÞð@€zz=@ _!!3Þ ¼ �mg: ðl7Þ
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As a result of the above, Appell’s equations (l) become

!1: 	 _!!1 � !1ð!1 � 2!2 !3Þ ¼ 0; ðm1Þ
!3: ð1þ !2

2Þ _!!3 � !2 ð1þ !2
2Þ!3

2=	þ ð	=R2Þ!1
2

� �þ g ¼ 0; ðm2Þ

and along with eqs. (j1–3, k) they constitute a determinate system for the six func-

tions of time: !1;2;3; �; 	; z.
Clearly, our system possesses the energy integral

E � T þ V ¼ ðm=2Þ ½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2� þmg z ½using ðd1; 2Þ and ðj1�3Þ�

¼ ðm=2Þ ð1þ !2
2Þ!3

3 þ ð	=RÞ2!1
2

h i
þmg z

� T*þ V ¼ constant � Eo; ðnÞ

which constitutes an indirect proof of the physical correctness of (m1, 2).

REMARKS

(i) Since

@S*=@ _!!1 ¼ ð@S=@€xxÞ ð@€xx=@ _!!1Þ þ ð@S=@€yyÞð@€yy=@ _!!1Þ
þ ð@S=@€zzÞ ð@€zz=@ _!!1Þ

¼ ð@S=@€xxÞ ð@ _xx=@!1Þ þ ð@S=@€yyÞ ð@ _yy=@!1Þ
þ ð@S=@€zzÞ ð@ _zz=@!1Þ

¼ ðm€xxÞ ð@ _xx=@!1Þ þ ðm€yyÞ ð@ _yy=@!1Þ þ ðm€zzÞ ð@ _zz=@!1Þ
¼ m½€xxð�	 cos�=RÞ þ €yyð�	 sin�=RÞ þ €zzð0Þ�
¼ � � � ¼ m	½	 _!!1 � !1ð!1 � 2!2 !3Þ�; ðo1Þ

@S*=@ _!!3 ¼ � � � ¼ ðm€xxÞ ð@€xx=@ _!!1Þ þ � � �
¼ m½€xxð�!2 sin�Þ þ €yyð!2 cos�Þ þ €zzð1Þ�

¼ m ð1þ !2
2Þ _!!3 � !2½!3ð1þ !2

2Þ=	þ ð	=R2Þ!1
2�

n o
; ðo2Þ

and

@S*=@ _!!1 ¼ @S*o=@ _!!1; @S*=@ _!!3 ¼ @S*o=@ _!!3; ðo3Þ

there is no need to find S*ð _!!1;2;3; . . .Þ or S*oð _!!1; _!!3; . . .Þ by expanding the squares of

€xx; €yy; €zz in (l5); we can leave it as Sð€xx; €yy; €zzÞ.
(ii) In terms of the alternative, convenient, quasi accelerations

_OO1 � 	 _!!2 þ ð1þ !2
2Þ!3 ¼ 0; ðp1Þ

_OO2 � _!!1 6¼ 0; ðp2Þ
_OO3 � _!!3 6¼ 0; ðp3Þ
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and the corresponding Appellian

S*! S** ¼ S**ð _OO1; _OO2; _OO3; . . .Þ ! S**o ¼ S**oð _OO2; _OO3; . . .Þ; ðp4Þ

and impressed forces Y2 ! Y2*;Y3 ! Y3*, the kinetic Appellian equations would

be

@S**o=@ _OO1 ¼ Y2*; @S**o=@ _OO3 ¼ Y3*: ðp5Þ

(iii) By looking at the constraints (f) and/or (k), one might conclude that they are

nonlinear. However, as Fufaev (1990) has pointed out, this is not the case. Indeed,

solving (e2) for _zz:

_zz ¼ 	ð _		þ R _��Þ ðzo � zÞ�1; ðq1Þ

and substituting this value in (e1), we obtain

ð _		þ R _��Þ ½R _��þ 	ðzo � zÞ�1 _zzo� ¼ 0; ðq2Þ

from which, since, in general, _		þ R _�� 6¼ 0, it follows that (e1) is replaced by its

equivalent,

R _��þ 	ðzo � zÞ�1 _zzo ¼ 0; ðq3Þ

which, just like (e2), is linear (Pfaffian) in the Lagrangean velocities _�� and _zzo.
Hence, the earlier nonlinearity is not of intrinsic/physical but analytical nature: it
resulted from the elimination of zo and _zzo between (e1, 2) and associated ð. . .Þ:-differ-
entiations of the first-order constraint (e2).

This justifies our attitude toward the subject of nonlinear nonholonomic con-

way, we may have to use them for analytical convenience.

For additional physical and numerical aspects, see the earlier given references

Kitzka (1986) and Kuypers (1993).

Problem 5.3.5 (Fufaev, 1990; Kitzka, 1986). Continuing from the preceding

example of the tetherball, we saw there that its two nonlinear constraints, in the

four Lagrangean coordinates q1;2;3;4 ¼ �; 	; z; zo, are

	ð _		þ R _��Þ þ ðz� zoÞ _zz ¼ 0; ða1Þ
R _��ð _		þR _��Þ þ _zz _zzo ¼ 0; ða2Þ

or, equivalently [solving (a1) for _zz: _zz ¼ 	ð _		þ R _��Þ ðzo � zÞ�1
and substituting the

result in (a2)], the two Pfaffian constraints are

ð	RÞ _��þ ð	Þ _		þ ðz � zoÞ _zz ¼ 0; ðb1Þ
Rðzo � zÞ _��þ 	 _zzo ¼ 0; ðb2Þ
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and, therefore, in virtual form:

ð	RÞ ��þ ð	Þ �	þ ðz� zoÞ �z ¼ 0; ðc1Þ
½Rðzo � zÞ��� þ ð	Þ �zo ¼ 0: ðc2Þ

Setting m ¼ 1, for convenience, but no loss in generality,

(i) Show that

L � T � V ¼ ð1=2Þ 	2ð _��Þ2 þ ð _		þ R _��Þ2 þ ð _zzÞ2
h i

� gz; ðd1Þ

and therefore the corresponding Routh–Voss equations,

EkðLÞ ¼ 
1a1k þ 
2a2k ðk ¼ 1; . . . ; 4Þ; ðd2Þ

are

�: R €		þ ðR2 þ 	2Þ €��� 2	 _		 _�� ¼ ðR	Þ
1 þ ½Rðzo � zÞ�
2; ðd3Þ
	: €		 þ R €��� 	ð _��Þ2 ¼ ð	Þ
1; ðd4Þ
z: €zzþ g ¼ ðz� zoÞ
1; ðd5Þ
zo: 0 ¼ ð	Þ
2 ) 
2 ¼ 0 ½since; in general; 	 6¼ 0�: ðd6Þ

(ii) By eliminating 
1;2 among (d3–6), show that we obtain the two kinetic Maggi

equations:

	 €��þ 2 _		 _��þ Rð _��Þ2 ¼ 0; ðe1Þ
ðzo � zÞ�€		þ R €��� 	ð _��Þ2�þ 	ð€zz þ gÞ ¼ 0; ðe2Þ

which, along with (b1, 2), constitute a determinate system for the four functions

�; 	; z; zo.
(iii) Show that for the quasi-velocity choice of the preceding example, eqs. (i1–3),

(j1–3),

!1 � R _��; ðf1Þ
!2 � ð _		þ R _��Þ= _zz ¼ � _zzo=R _�� ¼ ðzo � zÞ=	; ðf2Þ
!3 � _zz; ðf3Þ
_qq1 � _�� ¼ !1=R; ðf4Þ
_qq2 � _		 ¼ !2 !3 � !1; ðf5Þ
_qq3 � _zz ¼ !3; ðf6Þ
ð) _zzo ¼ �!1!2Þ; ðf7Þ

the above equations (e1, 2) coincide with the Appellian equations (m1, 2) found

there.
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Problem 5.3.6 Continuing from the preceding example of the tetherball, let us

consider its single nonlinear second-order constraint in the three Lagrangean

coordinates q1;2;3 ¼ �; 	; z, eq. (f):

fo � 	ð _		þ R _��Þ€zz� 	ð€		þ R €��Þ _zz
� ½ð _		þ R _��Þ2 þ ð _zzÞ2� _zz ¼ 0; ðaÞ

or, rearranged to show the second derivatives more clearly,

�ðR 	 _zzÞ€��� ð	 _zzÞ€		þ 	ð _		þ R _��Þ€zz
� ½ð _		þ R _��Þ2 þ ð _zzÞ2� _zz ¼ 0: ðbÞ

(i) Show that the corresponding Routh–Voss equations,

EkðLÞ ¼ 
ð@fo=@€qqkÞ ðk ¼ 1; . . . ; 3Þ; ðcÞ
are (again with m ¼ 1)

�: €		þ R €��þ ð	2=RÞ €��þ 2ð	=RÞ _		 _�� ¼ �ð	 _zzÞ
; ðd1Þ
	: €		þ R €��� 	ð _��Þ2 ¼ �ð	 _zzÞ
; ðd2Þ
z: €zzþ g ¼ 	ð _		þ R _��Þ
; ðd3Þ

and along with (b) they constitute a determinate system for the four functions

�; 	; z; 
.
(ii) From (b, d1–3), deduce that


 ¼ g	ð _		þ R _��Þ þ _zz½ð _		þ R _��Þ2 þ 	2ð _��Þ2 þ ð _zzÞ2�
ð _		Þ2½ð _		þ R _��Þ2 þ ð _zzÞ2�

¼ ðg	!2 þ 2Eo � 2gzÞ=!3	
2ð1þ !2

2Þ; ðeÞ
where Eo � T þ V is the constant total energy [recall eq. (n) of ex. 5.3.12].

(iii) With the help of (e), show that the (physical) constraint force equals

R ¼ 
½@f ðt; r; m; aÞ=@a� ¼
X



�
@foðt; q; _qq; €qqÞ=@€qqk

� ð@€qqk=@aÞ
¼ � � � ¼ �½ð1=lÞðv2 þ g 	!2Þ ðr� roÞ�=jr� roj
¼ �½ð1=lÞðv2 þ g 	!2Þ=l2� ðr� roÞ; ðfÞ

where l2 ¼ 	2 þ ðzo � zÞ2 ¼ 	2ð1þ !2
2Þ is the instantaneous length (squared) of the

unwound part of the thread.

(iv) By eliminating 
 among (d1–3), obtain the two kinetic Maggi equations of the

system; which, along with (a) or (b), will constitute a determinate system for �; 	; z.

Problem 5.3.7 (Fufaev, 1990). Continuing from the preceding example of the

tetherball:

(i) Show that if the cylinder surface is smooth, the system has the sole holonomic
constraint

ð	þ R�Þ2 þ z2 ¼ lo
2 ðlo: thread lengthÞ; ðaÞ
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or, in virtual form,

½ð	þ R�ÞR� �� þ ð	þ R�Þ �	þ z �z ¼ 0; ðbÞ

that is, it has only three Lagrangean coordinates (instead of the four of the rough-
surface case), but still n�m ¼ 3� 1 ¼ 2.

(ii) Show that, in this case, the Routh–Voss equations for q1;2;3 ¼ �; 	; z are

E�ðLÞ ¼ 
Rð	þ R�Þ; E	ðLÞ ¼ 
ð	þ R�Þ; EzðLÞ ¼ 
z; ðcÞ

where E�;	;zðLÞ can be found via prob. 5.3.5: (d1); and along with (a) these consti-

tute a determinate system for �; 	; z; 
.
(iii) By eliminating 
 among (c), show that we obtain the following two kinetic

(holonomic) Maggi equations:

	 €��þ 2 _		 _��þ Rð _��Þ2 ¼ 0; ðdÞ
z½€		þ R €��� 	ð _��Þ2� � ð	þ R�Þ ð€zzþ gÞ ¼ 0; ðeÞ

which, along with (a), constitute a determinate system for �; 	; z.
(iv) Compare eqs. (d, e), of this smooth case, with the corresponding Maggi

equations of the rough case of the preceding problems.

Example 5.3.13 Reduced, or Routh-like Form of the Equations of Motion of a
Nonholonomic and Cyclic/Ignorable System (Semenova, 1965). (To be studied in

connection with }8.4.) Let us consider a scleronomic system under the

mð< nÞ stationary Pfaffian constraintsX
aDk _qqk ¼ 0; where @aDk=@t ¼ 0 ½D ¼ 1; . . . ;m; k ¼ 1; . . . ; n�; ðaÞ

and, therefore, having the following Routh–Voss equations of motion:

EkðLÞ � ð@L=@ _qqkÞ:� @L=@qk ¼ Qk þ Rk; Rk ¼
X


DaDk: ðbÞ

In addition, let us assume that the first M ð< nÞ coordinates are cyclic or ignorable;
that is,

ðq1; . . . ; qMÞ � ðqiÞ � ð iÞ: @L=@qi � @L=@ i ¼ 0 ½i ¼ 1; . . . ;M�; ðcÞ

and the corresponding impressed and reaction forces vanish:

Qi ¼ 0 and Ri ¼ 0 ½e:g:; if aDi ¼ 0�: ðdÞ

Let us find the Routhian equations of the system; that is, Lagrange-type equations

involving only the remaining n�M noncyclic or palpable or positional coordinates

ðqMþ1; . . . ; qnÞ � ðqpÞ and corresponding velocities ð _qqMþ1; . . . ; _qqnÞ � ð _qqpÞ, instead of

all the _qq’s.
Due to (c, d), eqs. (b) yield

pi � @L=@ _qqi � @L=@ _  i ¼ constant � Ci; i:e:; Ci ¼ Ciðqp; _  i; _qqpÞ: ðeÞ
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Solving these M equations for the M ignorable (but, generally, variable) velocities

_qqi � _  i, in terms of the n�M palpable variables qp and _qqp, we obtain

_  i ¼ _  iðqp; _qqp; CiÞ; ðfÞ

which is essentially a Chaplygin-like form of the additional constraints (e).

REMARK

Since T is, at most, quadratic in the _qq, eqs. (e) are essentially linear in the _qq, and

pi ¼ Ci ¼
X

eik _qqk þ ei; eik; ei: functions of the qp; ðg1Þ

ðg2Þ
However, here we shall treat both (e) and (f) as additional linear and/or nonlinear

constraints, because then we can see more clearly the formal structure of the result-

ing equations.

Let Lo be the Lagrangean resulting from the elimination of the _  i from L via (f);

that is, by enforcing in it the constraints (e):

L ¼ Lðq; _qqÞ ¼ Lðqp; _qqi; _qqpÞ
¼ L

�
qp; _  iðqp; _qqp; CiÞ; _qqp

� � Loðqp; _qqp; CiÞ: ðhÞ

Applying chain rule to the above, we obtain

ðiÞ @Lo=@qp ¼ @L=@qp þ
X
ð@L=@ _  iÞð@ _  i=@qpÞ ¼ @L=@qp þ

X
ð@ _  i=@qpÞCi

) @L=@qp ¼ @Lo=@qp �
X
ð@ _  i=@qpÞCi; ði1Þ

ðiiÞ @Lo=@ _qqp ¼ @L=@ _qqp þ
X
ð@L=@ _  iÞ ð@ _  i=@ _qqpÞ

¼ @L=@ _qqp þ
X
ð@ _  i=@ _qqpÞCi

) @L=@ _qqp ¼ @Lo=@ _qqp �
X
ð@ _  i=@ _qqpÞCi; ði2Þ

and, therefore, since _CCi ¼ 0,

ð@L=@ _qqpÞ: ¼ ð@Lo=@ _qqpÞ:�
X

Cið@ _  i=@ _qqpÞ: : ði3Þ

In view of (i1–3), the equations of motion (b) for the qp; _qqp can be written in the

Chaplygin-like form

ð@Lo=@ _qqpÞ:� @Lo=@qp �
X

Ci ð@ _  i=@ _qqpÞ:� @ _  i=@qp

h i
¼
X


DaDp; ðj1Þ

or, compactly,

EpðLoÞ �
X

CiEpð _  iÞ ¼
X


DaDp � Rp; ðj2Þ
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therefore eqs. (f) are linear in the q̇p say,

from which we find (i = 1, . . . ,M; p = M + 1, . . . , n)

_qqi � _  i ¼
X

Eip _qqp þ Ei; Eip: functions of the qp, Ei: functions of the qp and Ci.



and along with the constraints (a):X
aDi _qqi þ

X
aDp _qqp ¼ 0

)
X
ð. . .ÞDp _qqp ¼ known function of the qp and Ci; ðj3Þ

they constitute a determinate system of ðn�MÞ þ m equations for the n�M qp
and the m 
D. Equations (j1) are coupled in the qp and 
D. To uncouple them into

kinetic and kinetostatic equations (assuming that m < n�M), we may view them as

the Routh–Voss equations of a nonholonomic system under the constraints (j3), and

then proceed to derive its uncoupled equations à la Maggi, Hamel, or Appell, as

elaborated in chapter 3 and } 5.3. The details are left to the reader.

Problem 5.3.8 (Semenova, 1965). Multiplying each of eqs. (j2) of the preceding

example:

EpðLoÞ �
X

CiEpð _  iÞ ¼ Rp ½i ¼ 1; . . . ;M; p ¼M þ 1; . . . ; n� ðaÞ

by _qqp and summing over p, obtain the ‘‘noncyclic Jacobi integral’’

Ho �
X
ð@Lo=@ _qqpÞ _qqp � Lo

� �
�
X

Ci

X
ð@ _  i=@ _qqpÞ _qqp � _  i

� �
:

Noncyclic generalized energy ¼ constant: ðbÞ

Problem 5.3.9 Nonlinear and Nonholonomic Power Equation.
(i) Starting with the kinetic Johnsen–Hamel equations of motion (5.3.5b or

5.3.19), show that the corresponding power equation is

d=dt
X
ð@T*=@!IÞ!I � T*

� �
¼ �@T*=@tþ

X
YI!I �

XX
Hk

I ð@T*=@!kÞ!I ; ðaÞ

where (symbolically)

dT*=dt �
X �ð@T*=@!I Þ _!!I þ ð@T*=@�IÞ!I

�þ @T*=@t; ðbÞX
ð@T*=@�IÞ!I �

XX
ð@T*=@qkÞð@ _qqk=@!IÞ!I ; ðcÞ

instead of the more ‘‘orthodox’’

dT*=dt ¼
X
ð@T*=@!IÞ _!!I þ

X
ð@T*=@qkÞ _qqk þ @T*=@t: ðdÞ

From these results conclude that:

(ii) If _qq , ! is linear and homogeneous in these velocities (e.g., catastatic case),

the definitions (b) and (d) coincide; and
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since the ∂T
∗/∂ωk are linear and homogeneous in the ω’s), the system will be nonconser-

vative, even if all the ΘI’s are potential and all constraints are stationary.

(iii) Unless −

∑∑
Hk

I(∂T ∗/∂ωk)ωI = 0 (e.g., by sign properties of Hk
I, and



5.4 SECOND- AND HIGHER-ORDER CONSTRAINTS

The foregoing theory can be easily extended to the following case of second-order,

generally nonholonomic, constraints:

fDðt; q; _qq; €qqÞ ¼ 0 ½D ¼ 1; . . . ;mð< nÞ�: ð5:4:1Þ
Here, compatibility among the various differential variational principles (chap. 6)

requires that the virtual displacements corresponding to (5.4.1) be constrained byX
ð@fD=@€qqkÞ �qk ¼ 0; ð5:4:2Þ

instead of (5.2.9). Hence, the virtual form of the constraints

_!!D � fDðt; q; _qq; €qqÞ ¼ 0 ½D ¼ 1; . . . ;mð< nÞ�; ð5:4:3aÞ
_!!I � fIðt; q; _qq; €qqÞ 6¼ 0 ½I ¼ m þ 1; . . . ; n� ð5:4:3bÞ

is

��D �
X
ð@ _!!D=@€qqkÞ �qk ¼ 0; ��I �

X
ð@ _!!I=@€qqkÞ �qk 6¼ 0: ð5:4:4Þ

It follows that all the previous results hold in this case, too, but with @ _qq=@! ð@!=@ _qqÞ
replaced with @€qq=@ _!! ð@ _!!=@€qqÞ. For example, the second-order counterparts of the,

say, kinetic Maggi and Hadamard equations will be

Maggi:X
ð@€qqk=@ _!!IÞEkðTÞ ¼

X
ð@€qqk=@ _!!IÞQk ðLagrangean formÞ; ð5:4:5aÞ

@S*=@ _!!I ¼
X
ð@€qqk=@ _!!IÞ ð@S=@€qqkÞ

¼
X
ð@€qqk=@ _!!I ÞQk ðAppellian formÞ; ð5:4:5bÞ

Hadamard:

EIðTÞ þ
X
ð@�D=@€qqIÞEDðTÞ

¼ QI þ
X
ð@�D=@€qqIÞQD ðLagrangean formÞ; ð5:4:6aÞ

@So=@€qqI ¼ @S=@€qqI þ
X
ð@�D=@€qqIÞ ð@S=@€qqDÞ

¼ QI þ
X
ð@�D=@€qqIÞQD ðAppellian formÞ; ð5:4:6bÞ

where

eqs: ð5:4:1Þ ! €qqD ¼ €qqDðt; q; _qq; €qqIÞ � �Dðt; q; _qq; €qqIÞ; ð5:4:7aÞ
Sðt; q; _qq; €qqÞ ¼ � � � ¼ S*ðt; q; !; _!!Þ ¼ � � � ¼ Soðt; q; _qq; €qqIÞ: ð5:4:7bÞ

Similarly, for the higher-order constraints:

fDðt; q; _qq; €qq; q€_; . . . ; q
ðsÞ
Þ ¼ 0

½D ¼ 1; . . . ;mð< nÞ; s ¼ 1; 2; 3; . . .�; ð5:4:8Þ
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eqs. (5.4.2–4) are replaced, respectively, by

X
@fD=@q

ðsÞ
k

� �
�qk ¼ 0; ð5:4:9Þ

!D

ðs�1Þ � fD t; q; _qq; €qq; q€_; . . . ; q
ðsÞ

� �
¼ 0; ð5:4:10aÞ

!I

ðs�1Þ � fI t; q; _qq; €qq; q€_; . . . ; q
ðsÞ

� �
6¼ 0; ð5:4:10bÞ

��D �
X

@!D

ðs�1Þ�
@qk
ðsÞ

� �
�qk ¼ 0; ð5:4:10cÞ

��I �
X

@!I

ðs�1Þ�
@qk
ðsÞ

� �
�qk 6¼ 0: ð5:4:10dÞ

In general, starting with _qqD ¼ _qqDðt; q; _qqI Þ we can easily verify that

@ _qqD=@ _qqI ¼ @€qqD=@€qqI ¼ @q€_D=@q€_I ¼ � � � ; ð5:4:11Þ

and similalry for identities involving @!D

ðs�1Þ
=@qk
ðsÞ

.

These topics are examined in detail in chapter 6.

Example 5.4.1 (Mei, 1987, pp. 273–274). Let us derive the equations of motion of

a rigid body moving (rotating) about a fixed point and subject to the acceleration

(second-order) constraint

ð!x _!!y � !y _!!xÞ þ ð!x
2 þ !y

2Þ!z � cð!x
2 þ !y

2Þ3=2 ¼ 0; ðaÞ

where !x;y;z are body-fixed components of (inertial) angular velocity of the body and

c is a constant. If �; �;  are the Eulerian angles between space-fixed and body-fixed

axes, then [recalling results from }1.12, and with sð. . .Þ � sinð. . .Þ; cð. . .Þ � cosð. . .Þ]

!x ¼ ðs� s Þ _��þ ðc Þ _��; !y ¼ ðs� c Þ _��þ ð�s Þ _��; !z ¼ ðc�Þ _��þ ð1Þ ; ðbÞ

and their inverses,

_�� ¼ ð1= sin �Þ ½ðs Þ!x þ ðc Þ!y�; _�� ¼ ðc Þ!x � ðs Þ!y;

_  ¼ !z � ½ðs Þ!x þ ðc Þ!y�cot �: ðcÞ

In view of (a), we choose the following quasi accelerations:

�1 � ð!x _!!y � !y _!!xÞ þ ð!x
2 þ !y

2Þ!z � cð!x
2 þ !y

2Þ3=2 ¼ 0; ðd1Þ

�2 � ð _!!xc � _!!ys Þ=ð!xc � !ys Þ 6¼ 0; ðd2Þ
�3 � _!!z 6¼ 0; ðd3Þ
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which, upon inverting and enforcing the constraint (d1) yield

_!!x ¼ ð!xÞ�2 þ no �-terms; ðe1Þ
_!!y ¼ ð!yÞ�2 þ no �-terms; ðe2Þ
_!!z ¼ ð1Þ�3 þ no �-terms: ðe3Þ

The Appellian of the body is (recalling the results of }3.14; and with A;B;C: princi-

pal moments of inertia of body at fixed point)

2S* ¼ Að _!!xÞ2 þ Bð _!!yÞ2 þCð _!!zÞ2 þ 2ðC � BÞ!y !z _!!x

þ 2ðA � CÞ!x !z _!!y þ 2ðB�AÞ!x !y _!!z þ no other _!! terms; ðfÞ

and, therefore, substituting into it (e1–3), we obtain the constrained Appellian:

2S*) 2S*o

¼ A!x
2�2

2 þ B!y
2�2

2 þ C �3
2

þ 2ðC � BÞ!x !y !z �2 þ 2ðA� CÞ!x !y !z �2 þ 2ðB� AÞ!x !y �3

þ no other � terms; ðgÞ

and from this we get the corresponding constrained inertial ‘‘forces’’:

@S*o=@�2 ¼ A!x
2�2 þ B!y

2�2 þ ðC � BÞ!x !y !z þ ðA� CÞ!x !y !z

¼ A!x _!!x þ B!y _!!y þ ðA� BÞ!x !y !z ½with ðd2Þ�; ðh1Þ
@S*o=@�3 ¼ C�3 þ ðB� AÞ!x !y

¼ Cð _!!zÞ þ ðB� AÞ!x !y ½with ðd3Þ�: ðh2Þ

Further, with Q�;�; : unconstrained holonomic components of impressed force, and

using (b), (c), and (e1–3), we obtain its constrained nonholonomic components:

Y2 ¼ Q�½ð@ _��=@!xÞ ð@ _!!x=@�2Þ þ ð@ _��=@!yÞ ð@ _!!y=@�2Þ þ ð@ _��=@!zÞ ð@ _!!z=@�2Þ�
þQ�½ð@ _��=@!xÞ ð@ _!!x=@�2Þ þ ð@ _��=@!yÞ ð@ _!!y=@�2Þ þ ð@ _��=@!zÞ ð@ _!!z=@�2Þ�
þQ ½ð@ _  =@!xÞ ð@ _!!x=@�2Þ þ ð@ _  =@!yÞ ð@ _!!y=@�2Þ þ ð@ _  =@!zÞ ð@ _!!z=@�2Þ�

¼ ðQ�= sin �Þ ð!x s þ !y c Þ þQ�ð!x c þ !y s Þ � Q ð!x s þ !y c Þ cot �

¼ _��Q� þ _��Q� � _��Q c�; ði1Þ
Y3 ¼ Q�ð. . .Þ þQ�ð. . .Þ þQ ð. . .Þ ¼ � � � ¼ Q : ði2Þ

As a result of (h1, 2), and (i1, 2), Appell’s kinetic equations @S*o=@�I ¼ YI ðI ¼ 2; 3Þ
become

2: A!x _!!x þ B!y _!!y þ ðA� BÞ!x !y !z ¼ _��Q� þ _��Q� � _��Q c�; ðj1Þ
3: C _!!z þ ðB� AÞ!x !y ¼ Q ; ðj2Þ

and along with (b) they constitute a determinate set of five equations for
_��; _��; _  ; !x; !y; !z.
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The remaining kinetostatic equation corresponding to �1, and based on the

relaxed Appellian, is

ð@S*=@�1Þo ¼ Y1 þ L1; ðkÞ
and, once the motion has been determined from (j1, 2), this yields the reaction L1

necessary to maintain the constraint (a). The details of (k) are left to the reader.

Finally, we remark that the above Appellian equations are simpler than those

based on _!!x; _!!y; _!!z; that is, @S*=@ _!!x, and so on. See, for example, San (1973).
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6

Differential Variational Principles

and Associated Generalized
Equations of Motion of Nielsen,
Tsenov, et al.

The incautious observer might then be tempted to remark: if all

mechanics problems can be solved by Newtonian mechanics, is

it really economical to introduce a flock of differently stated

principles which, after all, can accomplish no more? To this we

make a three-fold rejoinder. In the first place, the ease of solving

a given problem generally depends on the way in which it is

stated, and a method which solves it when it is stated one way

may be vastly simpler than that which handles it when the

statement is made in another form. In the second place, we can

fairly say that every restatement of the fundamental principles

deepens our appreciation of, and feeling for, the whole subject: two

methods of solving the same problem mean more in our

understanding than the solution of two problems by the same

method. More important in many respects than these answers is,

however, the third: it is, by no means, sure that the Newtonian

principles are actually competent to describe all phenomena in

which motion occurs . . . . It seems plausible that alternative

points of view may, themselves, suggest fundamental

modifications in mechanical principles which will lead to

successful attacks on the new problems.

(Lindsay and Margenau, 1936, p. 103, emphasis added)

6.1 INTRODUCTION

This chapter treats (i) the differential variational principles of constrained system

dynamics (of Lagrange, Jourdain, Gauss, Hertz, Mangeron–Deleanu, et al.) from a

simple and unified viewpoint, and (ii) the associated kinematico-inertial identities

and corresponding generalized equations of motion (of Nielsen, Tsenov,

Dolaptschiew, et al.).

These topics, until recently viewed by many as academic curiosities, have re-

emerged as powerful and versatile tools for the theoretical and numerical handling

of problems of nonlinear nonholonomic constraints in the velocities, accelerations,

and so on; and also, in impulsive motion and multibody dynamics.

and references cited therein; and the (Soviet!) Russian and Chinese journals of

Applied Mathematics and Mechanics.
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6.2 THE GENERAL THEORY

The differential variational principles of mechanics (DVP) are statements to the

effect that certain differential expressions, linear and homogeneous in the appropri-

ate kinematical variations from a kinetic state (or first variations of certain scalar

energetic functions from it), vanish. The principle of Lagrange (LP) is the simplest

and most fundamental of them: as shown below, excluding singular configurations of
the system, all other DVP derive from it. Here, as with most of the rest of the book,

the discussion is limited to bilateral and ideal constraints; that is, we assume that

(recalling }3.2 and the notations employed there)

SdR � �r ¼ 0 ) Sdm a � �r ¼SdF � �r; ð6:2:1Þ

where, as detailed earlier (}2.5),

�r ¼
X

ek �qk ¼
X

ek ��k�
¼
X

eI ��I ; I ¼ mþ 1; . . . ; n; m: number of additional PfaMan constraints

�
:

ð6:2:1aÞ
Now, ð. . .Þ:-differentiating (6.2.1) once, and recalling that S . . . and ð. . .Þ: commute,

we obtain

S ½ðdm a� dFÞ: � �r� þS ½ðdm a� dFÞ � ð�rÞ:� ¼ 0: ð6:2:2Þ

From this, we readily conclude that the equations of motion of the system can be

derived from the variational equation

S ðdm a� dFÞ � ð�rÞ: ¼ 0; ð6:2:3Þ

where the �r satisfy not only the familiar �t ¼ 0, but also �r ¼ 0; and since, as we

have already seen (}4.6; also, ex. 6.2.1 below), we can always take ð�rÞ: ¼ �ð_rrÞ � �v,
LP can be replaced by the following DVP:

S ðdm a� dFÞ � �v ¼ 0; with �t ¼ 0 and �r ¼ 0: ð6:2:4Þ
ðconstraints on �v 6¼ 0Þ:

Next, ð. . .Þ:-differentiating (6.2.4) once yields

S ½ðdm a� dFÞ: � �v� þS ½ðdm a� dFÞ � ð�vÞ:� ¼ 0; ð6:2:5Þ

and reasoning as earlier, and with ð�vÞ: ¼ �ð _vvÞ � �a, we see that the equations of

motion of the system can be obtained from the variational equation

S ðdm a� dFÞ � �a ¼ 0; with �t ¼ 0; �r ¼ 0; and �v ¼ 0 ð6:2:6Þ
ðconstraints on �a 6¼ 0Þ:

Continuing this process, inductively, we can easily generalize to the following DVP:

The equations of motion of an ideally constrained mechanical system derive from

S dm a� dFÞ � � r
ðsÞ

� �
¼ 0 ðs ¼ 0; 1; 2; . . .Þ; ð6:2:7Þ
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where the variations satisfy

�t ¼ 0 and �r ¼ 0; �ð _rrÞ ¼ 0; �ð€rrÞ ¼ 0; . . . ; �ð r
ðs�1Þ Þ ¼ 0 ðs� 1 	 0Þ: ð6:2:7aÞ

constraints on � r
ðsÞ � �ðdsr=dtsÞ 6¼ 0

� �
:

The DVP corresponding to s ¼ 0; 1; 2 are called, respectively, principles of Lagrange
[eq. (6.2.1)] Jourdain [eq. (6.2.4)], and Gauss (Gibbs) [eq. (6.2.6)]; while the case

corresponding to a general s, in (6.2.7), is referred to as the principle of

Mangeron–Deleanu [eqs. (6.2.7, 7a)]; that is, roughly, Jourdain’s principle (JP) is

Lagrange’s principle (LP) with �r! �v, and Gauss’ principle (GP) is LP with

�r! �a, and so on.

[According to Nordheim (1927, pp. 68–69), this unified and simple approach to

DVP (which, however, holds only under differentiable conditions!) seems to be due to

Leitinger (1913) and other members of the ‘‘Austrian school’’ (ca. 1910).]

REMARKS

(i) The equations associated with these variations are an instantaneous represen-

tation of the system. Otherwise, if, in JP, �rðtÞ ¼ 0 continuously, one might conclude,

incorrectly, that ð�rÞ: ¼ �ðdr=dtÞ ¼ 0. Rather, at each succeeding instant, �r is reset
equal to zero, in accordance with the instantaneous viewpoint. Clearly, this viewpoint

does not apply to equations involving time integrals; similarly for GP, and so on.

(ii) In the same spirit, we avoid the occasionally used term virtual power for

SdF � �v and the consequent term principle of virtual power for JP. Power means

work per unit time; that is, S dF � �r
	 


=�t, but since, here, �t ¼ 0, such a term could

be confusing.

The next step is to transform these DVP to system variables, and then to obtain

the corresponding equations of motion. By now, LP is well known (chap. 3), and so

we begin with the principle of Jourdain.

Example 6.2.1 The Significance of the Commutation Rule in Jourdain’s Principle
(JP). During the formulation of JP, (6.2.3, 4), we invoked the commutation rule:

dð�rÞ ¼ �ðdrÞ or ð�rÞ: ¼ ð�_rrÞ � �v: ðaÞ
However, since the derivation of the equations of motion [either from LP or from the

central equation (}3.5, }3.6 and }5.3)] is independent of any particular assumptions

about dð�rÞ � �ðdrÞ, and since the ultimate purpose and usefulness of JP — in fact,

of all DVP— is to produce correct equations of motion, it follows that JP, too,
should be independent of (a). Let us see in detail why this is so.

We begin with the most general expression for �r (recalling the relevant theory

and notations of }2.4–2.9):

�r ¼
X

ek �qk ¼
X

ek ��k ¼
X

eI ��I ðsince ��D ¼ 0Þ: ðbÞ

Since the n� m vectors eI are independent, the Jourdain requirement �r ¼ 0 applied

to (b) yields ��I ¼ 0; that is, in sum, here we have

��k ¼ 0 ðk ¼ 1; 2; 3; . . . ; nÞ: ðcÞ
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Next, ð. . .Þ:-differentiating (a) and then enforcing (c), we find

ð�rÞ: ¼
X
½ðdeI=dtÞ ��I þ eIð��IÞ:�

¼
X

eIð��IÞ: ¼
X
ð@v=@!I Þð��IÞ:: ðdÞ

Now, let us calculate �v) ð�vÞJourdain variation � � 0v [see also (6.3.5) below]. Assuming

for simplicity, but no loss of generality, a scleronomic system, we have (omitting

superstars on v etc., for simplicity)

v ¼
X

eI !I ; ðeÞ

and, therefore,

�v ¼
X
ð�eI !I þ eI �!I Þ ) � 0v ¼

X
eI �!I ; ðf Þ

since, at least for Pfaffian constraints, eI ¼ eIðqÞ ) � 0eI ¼ 0 [see ‘‘Remarks’’ (i)

below].

Subtracting (d) and (f) side by side, we obtain the following transitivity equation in
the sense of Jourdain:

ð�rÞ:� � 0v ¼
X

eI ½ð��IÞ:� �!I �
) ð�rÞ: ¼ � 0vþ

X
eI ½ð��I Þ:� �!I �: ðgÞ

Next, inserting (f) into the ð. . .Þ:-derivative of LP under �r ¼ 0; that is (6.2.3),

S ðdm a� dFÞ � ð�rÞ: ¼ 0; ðhÞ
we get

S ðdm a� dFÞ � � 0vþS ðdm a� dFÞ �
X

eI ½ð��I Þ: � �!I � ¼ 0;

or, rearranging,

S ðdm a� dFÞ � � 0vþ
X

S ðdm a� dFÞ � eI
� �

½ð��IÞ:� �!I � ¼ 0; ðiÞ

from which, and this is the key step in the entire discussion, since

S ðdm a� dFÞ � eI ¼ 0 [‘‘raw’’ form of LP in quasi variables; also (6.3.26)],

ð jÞ
we finally obtain the original (‘‘Jourdainian’’) form of JP (1909):

S ðdm a� dFÞ � � 0v ¼ 0; under �t ¼ 0 and �r ¼ 0 ½but ð�rÞ: 6¼ 0�: ðkÞ
In short, the transitivity condition ð�rÞ: ¼ �v is sufficient but not necessary for the
derivation of JP from LP. Finally, substituting (f) into (k), and since the n�m �!I

are independent, reproduces (j).

REMARKS

(i) Equation (g) can also result from the general transitivity equation (}2.10):

ð��kÞ:� �!k ¼
X

akl½ð�qlÞ:� �ð _qqlÞ� þ
XX

�krs !s ��r; ðl1Þ
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and its inverse

ð�qlÞ:� �ð _qqlÞ ¼
X

Alk½ð��kÞ:� �!k� �
XXX

Alk�
k
rs !s ��r: ðl2Þ

We have, successively,

ð�rÞ:� �v ¼
X

el½ð�qlÞ:� �ð _qqlÞ�

¼
X X

Alkel

� �
½ð��kÞ: � �!k� �

XXX X
Alkel

� �
�krs !s ��r

¼
X

ek½ð��kÞ:� �!k� �
XXX

ek�
k
rs !s ��r; ðmÞ

from which, due to (c) and since now �v) � 0v, we recover (g). Clearly, this deriva-

tion is not limited to Pfaffian constraints, and so it avoids the earlier restriction

eI ¼ eIðqÞ.
(ii) If we had assumed ð�rÞ: ¼ �v, then (g) and (l2) would have led us to

ð��kÞ: ¼ �!k and also to ð�qkÞ: ¼ �ð _qqkÞ, and vice versa. As (l1, 2) readily show, with-

out the Jourdain constraints, either ð�qkÞ: ¼ �ð _qqkÞ or ð��kÞ: ¼ �!k, but not both.
(iii) The above reasoning extends readily to higher-order constraints. For addi-

tional insights see also Bremer (1993).

6.3 PRINCIPLE OF JOURDAIN, AND EQUATIONS OF NIELSEN

As detailed in chapters 2 and 5, starting with the general position vector in the

Lagrangean variables q,

r ¼ rðt; qÞ; ð6:3:1Þ
we readily find

v ¼ dr=dt ¼
X
ð@r=@qkÞ _qqk þ @r=@t; ð6:3:2Þ

from which

@r=@qk ¼ @v=@ _qqk � @ _rr=@ _qqk � ek ðk ¼ 1; 2; . . . ; nÞ; ð6:3:3Þ
and

�v � �ð_rrÞ ¼
X
ð@r=@qkÞ �ð _qqkÞ þ

X
�ð@r=@qkÞ _qqk þ �ð@r=@tÞ

¼
X
ð@ _rr=@ _qqkÞ �ð _qqkÞ þ no other � _qq terms

�
X

ek �ð _qqkÞ þ no other � _qq terms

� � 0vþ no other � _qq terms; ð6:3:4Þ
where

� 0ð. . .Þ �
X
½@ð. . .Þ=@ _qqk� �ð _qqkÞ:

Jourdain variation of ð. . .Þ ½i:e:; �ð. . .Þ with �t ¼ 0 and �qk ¼ 0�: ð6:3:5Þ
Next, from (6.3.2), we easily obtain

@ _rr=@qk ¼
X
ð@2r=@qk@qlÞ _qql þ @2r=@qk@t; ð6:3:6aÞ
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and

a ¼ dv=dt ¼ €rr

¼
X
ð@r=@qkÞ€qqk þ

XX
ð@2r=@qk@qlÞ _qqk _qql þ 2

X
ð@2r=@qk@tÞ _qqk
þ @2r=@t2; ð6:3:6bÞ

) @a=@ _qqk � @€rr=@ _qqk ¼ 2
X
ð@2r=@qk@qlÞ _qql þ @2r=@qk@t

� �
;

and, comparing with (6.3.6a), we deduce the following kinematical identity:

@€rr=@ _qqk ¼ 2ð@ _rr=@qkÞ; or @a=@ _qqk ¼ 2ð@v=@qkÞ: ð6:3:7Þ

The above also reconfirm the already known basic result, extension of (6.3.3),

ek � @r=@qk ¼ @ _rr=@ _qqk ¼ @€rr=@€qqk ¼ � � �

or

@r=@qk ¼ @v=@ _qqk ¼ @a=@€qqk ¼ � � � ðk ¼ 1; 2; . . . ; nÞ: ð6:3:8Þ

Next, ð. . .Þ:-differentiating the kinetic energy

2T ¼Sdm v � v ¼Sdm _rr � _rr; ð6:3:9Þ

we readily obtain

dT=dt ¼Sdm v � a ¼Sdm _rr �€rr; ð6:3:10Þ

and, therefore, invoking (6.3.7) and (6.3.8), and since @T=@qk ¼Sdm _rr � ð@ _rr=@qkÞ;

@ _TT=@ _qqk ¼Sdm ð@ _rr=@ _qqkÞ �€rrþSdm _rr � ð@€rr=@ _qqkÞ
¼Sdm ð@ _rr=@ _qqkÞ �€rrþ 2Sdm _rr � ð@ _rr=@qkÞ
¼Sdm ð@ _rr=@ _qqkÞ �€rrþ 2ð@T=@qkÞ; ð6:3:11Þ

)Sdm €rr � ð@ _rr=@ _qqkÞ ¼Sdm a � ek ¼ @ _TT=@ _qqk � 2ð@T=@qkÞ; ð6:3:12Þ

and combining this with the, by now well-known, Lagrangean identity (}3.3)

Sdm a � ek ¼ ð@T=@ _qqkÞ:� @T=@qk � EkðTÞ; ð6:3:13Þ

we immediately obtain the Nielsen identity:

d=dtð@T=@ _qqkÞ ¼ @ _TT=@ _qqk � @T=@qk: ð6:3:14Þ

With its help, and (6.3.4, 5), and since SdF � ek � Qk (}3.4), Jourdain’s principle
(6.2.4), or

S ðdm a� dFÞ � � 0v ¼ 0; under � 0t ¼ 0 and � 0r ¼ 0; ð6:3:15Þ
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assumes the following form in general holonomic system variables:X
½EkðTÞ �Qk� �ð _qqkÞ ¼

X
½NkðTÞ �Qk� �ð _qqkÞ ¼ 0; ð6:3:16Þ

where the Nielsen operator Nkð. . .Þ, in holonomic coordinates (constrained or not), is

defined by

NkðTÞ � @ _TT=@ _qqk � 2ð@T=@qkÞ ¼ ð@T=@ _qqkÞ:� @T=@qk � EkðTÞ: ð6:3:17Þ
It is shown below that Nkð f Þ ¼ Ekð f Þ, for any sufficiently smooth function

f ¼ f ðt; q; _qqÞ. In particular, if the � _qq’s are independent (e.g., holonomic system

with n DOF) then (6.3.16) leads immediately to the Nielsen form of Lagrange’s
equations (of the second kind) (Nielsen, 1935, pp. 345–354):

@ _TT=@ _qqk � 2ð@T=@qkÞ ¼ Qk: ð6:3:18Þ
Here, too, as in the Lagrangean case (} 3.4 and }3.9), if part of Qk derives from a

potential V ¼ VðqÞ, then (6.3.18) still holds, but with T replaced with L � T � V ,

and Qk: nonpotential part of that force.

If, on the other hand, the �q’s are constrained by, say, the m Pfaffian (possibly

nonholonomic) constraintsX
aDk �qk ¼ 0 ðD ¼ 1; . . . ;m < nÞ; ð6:3:19Þ

or, ð. . .Þ:-differentiating and then � 0ð. . .Þ-varying them, to bring them to the Jourdain

form: X
_aaDk �qk þ

X
aDkð�qkÞ: ¼

X
_aaDk �qk þ

X
aDk �ð _qqkÞ ¼ 0;

)
X

aDk �
0ð _qqkÞ ¼

X
aDk �ð _qqkÞ ¼ 0; ð6:3:20Þ

then combining (‘‘adjoining’’) (6.3.20) to (6.3.16) via the m Lagrangean multipliers


D, we obtain

NkðTÞ ¼ Qk þ
X


DaDk: ð6:3:21Þ

Hence, the general rule: in any set of constrained system equations, in holonomic
variables— for example, equations of Maggi, Hadamard–Appell, Appell—we can

replace EkðTÞ (or its identically equal @S=@€qqk, S: Appellian) with NkðTÞ. Thus, it

is not hard to see that

(i) If eqs. (6.3.19) have the Hadamard form (}3.8)

�qD ¼
X

bDI �qI ðI ¼ m þ 1; . . . ; nÞ; ð6:3:22Þ

then the ‘‘Nielsen form of the corresponding (kinetic) Hadamard equations’’ is

@ _TT=@ _qqI � 2ð@T=@qIÞ þ
X

bDI

�
@ _TT=@ _qqD � 2ð@T=@qDÞ

� ¼ QI þ
X

bDIQD;

or, compactly,

½NIðTÞ �QI � þ
X

bDI ½NDðTÞ �QD� ¼ 0; ð6:3:23Þ
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and

(ii) In terms of the general quasi velocities ! ¼ !ðt; q; _qqÞ , _qq ¼ _qqðt; q; !Þ,
discussed in }5.1 and }5.2, the ‘‘Nielsen form of the corresponding kinetic Maggi
equations’’ isX �

@ _TT=@ _qqk � 2ð@T=@qkÞ
�ð@ _qqk=@!I Þ ¼

X
Qkð@ _qqk=@!IÞ;

or, compactly, X
½NkðTÞ �Qk�ð@ _qqk=@!IÞ ¼ 0; ð6:3:24Þ

and similarly for the kinetostatic Maggi equations.

An Application of Jourdain’s Principle in Quasi Variables

For such variables, the Jourdain variation requirements result in ��k ¼
0 ) ð��kÞ:� �ð _��kÞ ¼ 0 ) ð��kÞ: ¼ �!k [by the transitivity equations (}2.10,

}5.2)], and so eq. (6.3.4) yields the fundamental representation (omitting superstars

on v etc., for simplicity)

� 0v ¼
X
ð@v=@!I Þ ð��IÞ: ¼

X
ð@v=@!I Þ �!I : ð6:3:25Þ

Substituting the above into Jourdain’s principle, eq. (6.3.15), we immediately obtain

the n�m kinetic Schaefer equations:

Sdm a � ð@v=@!I Þ ¼SdF � ð@v=@!I Þ: ð6:3:26Þ

[These equations were given for the first time by the noted German engineering

scientist H. Schaefer, in 1951, for general nonlinear, possibly nonholonomic, velocity

constraints, in a very insightful and lucid manner via LP (}5.3, recall (5.3.17 ff.)).

Fifteen years later, they were reformulated for linear (i.e., Pfaffian) velocity con-

straints by Kane and Wang (1965), and without reference to the correct forms of

the principles of mechanics.]

Example 6.3.1 The Schieldrop–Nielsen Rule. The following is a systematization

of observations aiming at expediting the building of NkðTÞ. Let us take, for

convenience, but no loss of generality, a scleronomic system. By ð. . .Þ:-differentiating

its kinetic energy

2T ¼
XX

Mkl _qqk _qql ; Mkl ¼MklðqÞ: inertia coeycients; ðaÞ

we get

_TT ¼
XX

Mkl€qqk _qql þ
XXX

ð1=2Þð@Mkl=@qrÞ _qqr _qqk _qql : ðbÞ

Now, the _qq’s appearing in this _TT are divided in two groups: (i) those that were

already in T , and (ii) those created by the ð. . .Þ:-operation on the MklðqÞ. The latter

_qq shall, henceforth, be denoted by an underline: _qq.

Next, let us build NkðTÞ � @ _TT=@ _qqk � 2ð@T=@qkÞ. We readily find

2 ð@T=@qpÞ ¼
XX

ð@Mkl=@qpÞ _qqk _qql ; ðcÞ
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@ _TT=@ _qqp ¼
X

Mpk€qqk þ
XX

@Mpk=@ql þ ð1=2Þ ð@Mkl=@qpÞ
h i

_qqk _qql : ðdÞ

But due to the symmetry of the inertia coefficients, Mkl ¼Mlk,XX
ð@Mpk=@qlÞ _qqk _qql ¼

XX
ð@Mpl=@qkÞ _qqk _qql

¼
XX

ð1=2Þ ð@Mpk=@ql þ @Mpl=@qkÞ _qqk _qql; ðeÞ

and, therefore,

@ _TT=@ _qqp ¼
X

Mpk€qqk

þ
XX

ð1=2Þ ð@Mpk=@ql þ @Mpl=@qk þ @Mkl=@qpÞ _qqk _qql : ðf Þ

Hence, subtracting (c) from (f) side by side,

NpðTÞ � @ _TT=@ _qqp � 2ð@T=@qpÞ
¼
X

Mpk€qqk þ
XX

ð1=2Þð@Mpk=@ql þ @Mpl=@qk � @Mkl=@qpÞ _qqk _qql
½ ¼ EkðTÞ�: ðgÞ

These are standard steps in the derivation of explicit forms for EkðTÞ (}3.10). From

the viewpoint of Nielsen’s operator, however, they allow us to make the following

observations:

(i) @ _TT=@ _qqk derives from _TT when every term of it is multiplied by the number (or power)

of the _qqp terms in it, and then the factor _qqp is omitted from that term;

(ii) 2 ð@T=@qpÞ _qqp is twice of that _TT term which contains the _qqp generated by the ð. . .Þ:
differentiation.

So we have the following rule [due to E. B. Schieldrop (Nielsen, 1935, pp. 352–354)]:

First, we build _TT . Then, to obtain NpðTÞ for a particular p ¼ 1; 2; 3; . . . ; we

multiply each term of _TT either with an integer k ¼ 0; 1; 2; 3; . . . ; or with

k� 2 ¼ �2;�1; 0; 1; . . . ; depending on whether, from the k factors _qqp in that term,
none or one, respectively, were created by the _TT-differentiations— the underlined _qq’s
in _TT help us to keep track of that. Finally, in each term of the expression obtained

thus far, we omit a term _qqp or divide it by _qqp; which thus results in NpðTÞ. In other

words:

(i) The parts of _TT that are linear in _qq need no underlining and no sign change;

(ii) the parts of _TT that are cubic in the _qq’s do contain an underlined _qq; and so:

(a) If _qqp does not appear as a factor in that term, the latter makes no contribution to

NpðTÞ;
(b) If _qqp appears once, that term appears with changed or unchanged sign, according

as _qqp is underlined or not;
(c) If _qqp appears twice in a _TT -factor, that term is multiplied by k� 2 when none of

the _qqp is underlined, or is multiplied by k� 2 ¼ 2� 2 ¼ 0 when one of the _qqp is

underlined; then, there is no contribution from that _TT-term;

(d) If _qqp appears thrice in a _TT-factor, then one of them must be underlined, and so

that term is multiplied by k� 2 ¼ 3� 2 ¼ 1; and its sign remains unchanged.
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Example 6.3.2 Let us consider the plane motion of a particle of mass m, using

polar coordinates q1 ¼ r; q2 ¼ �. Here,

2T ¼ m ½ð _rrÞ2 þ r2 ð _��Þ2�; ðh1Þ
and, therefore,

_TT ¼ m ½ _rr €rrþ r2 _�� €��þ r _rr ð _��Þ2�; ðh2Þ
note the underlined _rr in the last term.

Then, applying the Schieldrop–Nielsen rule, we calculate NrðTÞ ¼ ErðTÞ and

N�ðTÞ ¼ E�ðTÞ. The details are shown in table 6.1.

No claims of universal calculational superiority of this clever rule are made here.

We do think, however, that this is something potentially useful, and, hence, worth
knowing. Perhaps, with proper systematization (symbolic programming), it could be

used to advantage in more complicated systems. An additional example of its use is

given in ex. 6.5.2.

6.4 INTRODUCTION TO THE PRINCIPLE OF GAUSS AND THE

EQUATIONS OF TSENOV

(Gauss’ principle, due to its fundamental importance, is given an independent exten-

sive treatment in }6.6.)

By ð. . .Þ:-differentiating (6.3.6b), we obtain the jerk vector [(1.7.19e)]:

j � da=dt � :::r
¼
X
ð@r=@qkÞ:::qk

þ
XX �ð@2r=@qk@qlÞ€qqk _qql þ ð@2r=@qk@qlÞ _qqk€qql þ ð@2r=@qk@qlÞ _qqk€qql

�
þ
X
ð@2r=@qk@tÞ€qqk þ 2

X
ð@2r=@qk@tÞ€qqk þ no other €qq;

:::
q terms; ð6:4:1aÞ

that is,

:::
r ¼

X
ð@r=@qkÞ:::qk

þ 3
X X

ð@2r=@qk@qlÞ€qqk _qql þ ð@2r=@qk@tÞ€qqk
� �

þ no other €qq;
:::
q terms ð6:4:1bÞ
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Table 6.1

_TT-terms: Nr ðTÞ N�ðTÞ
1. m _rr €rr k ¼ 1) ð1Þ ð. . .Þ k ¼ 0) ð0Þ ð. . .Þ

ð1Þ ðm _rr €rrÞ� _rr ¼ m €rr 0

2. m r2 _�� €�� k ¼ 0) ð0Þ ð. . .Þ k ¼ 1) ð1Þ ð. . .Þ
0 ð1Þ m r2 _�� €��

�
_�� ¼ m r2 €��

3. m r _rr ð _��Þ2 k ¼ 1) k � 2 ¼ �1) ð�1Þ ð. . .Þ k ¼ 2) ð2Þ ð. . .Þ
ð�1Þ ½m r _rr ð _��Þ2�� _rr ¼ �m r ð _��Þ2 ð2Þ ½m r _rr ð _��Þ2�� _�� ¼ 2 m r _rr _��

Totals Nr ðTÞ ¼ m €rr �m r ð _��Þ2 N�ðTÞ ¼ m r2 €�� þ 2 m r _rr _��



from which we easily deduce

which is an extension of (6.3.8).

Further, and in complete analogy with (6.3.4, 5), we have

�a � �€rr ¼ � � � ¼
X

ek �ð€qqkÞ þ no other �€qq terms

� � 00aþ no other �€qq terms; ð6:4:3Þ
where

� 00ð. . .Þ �
X
½@ð. . .Þ=@€qqk��ð€qqkÞ:

Gaussian variation of ð. . .Þ ½i:e:; �ð. . .Þ with �t ¼ 0; �q ¼ 0 and �ð _qqkÞ ¼ 0�: ð6:4:4Þ

Next, ð. . .Þ:-differentiating _TT , we find

€TT ¼Sdm €rr �€rrþSdm _rr �
:::
r

¼Sdm a � aþSdm v � j ¼ 2 S þSdm v � j ðS : AppellianÞ
h i

; ð6:4:5Þ

from which we readily obtain

@ €TT=@€qqk ¼ 2Sdm €rr � ð@€rr=@€qqkÞ þSdm _rr � ð@:::r=@€qqkÞ;
or, due to (6.4.2) and

@
:::
r=@€qqk ¼ 3

X X
ð@2r=@qk@qlÞ _qql þ @2r=@qk@t

� �
¼ 3ð@ _rr=@qkÞ ¼ 3ð@v=@qkÞ; ð6:4:6Þ

equivalently,

@ €TT=@€qqk ¼ 2Sdm a � ek þ 3Sdm v � ð@v=@qkÞ
¼ 2EkðTÞ þ 3ð@T=@qkÞ; ð6:4:7Þ

and rearranging this we finally get the kinematico-inertial identity:

EkðTÞ ¼ ð1=2Þ @ €TT=@€qqk � 3ð@T=@qkÞ
h i

� Ck
ð2ÞðTÞ; ð6:4:8Þ

where

Ck
ð2Þð. . .Þ � ð1=2Þ�@ð. . .Þ::=@€qqk � 3½@ð. . .Þ=@qk�

�
:

Tsenov (or Tzénoff, or Tzenov, or Cenov) operator of the second kind, in holonomic

variables. (6.4.9)

With the help of the above, Gauss principle readsX �
Ck
ð2ÞðTÞ �Qk

�
�€qqk ¼ 0; ð6:4:10Þ

and, as earlier, if the �q’s and hence also the �€qq’s are independent, the above leads to

Tsenov’s equations of the second kind, in holonomic variables:

Ck
ð2ÞðTÞ ¼ Qk; ð6:4:11Þ
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∂
...
r /∂

...
q k = ∂ r̈/∂q̈k = ∂r/∂qk = ek, (6.4.2)



[developed by the Bulgarian mechanician I. Tsenov (1885–1967), originally (in a

slightly different form) in 1924, and more systematically in the 1950s and later

(1953, 1962)] while, if the �€qq are constrained by the mð< nÞ Pfaffian constraintsX
aDk �qk ¼ 0; ð6:4:12aÞ

then, we first bring them to the Gaussian form:X
aDk �€qqk ¼ 0 ð6:4:12bÞ

[by ð. . .Þ::-differentiation and then application of (6.4.4)] and subsequently adjoin

(6.4.12b) to (6.4.10) via Lagrangean multipliers, thus obtaining the Tsenov form of
the Routh–Voss equations of motion:

Ck
ð2ÞðTÞ ¼ Qk þ

X

DaDk: ð6:4:12cÞ

Proceeding similarly to the next step — that is, to
:::
T , r
ð4Þ � ð:::r Þ:, and since, in this

case,

@
:::
T=@

:::
qk ¼ � � � ¼ 3EkðTÞ þ 4ð@T=@qkÞ; ð6:4:13aÞ

we easily obtain, for independent �q’s and hence also �
:::
q ’s, Tsenov’s equations of the

third kind, in holonomic variables:

EkðTÞ � Ck
ð3ÞðTÞ � ð1=3Þ �@:::T=@:::qk � 4ð@T=@qkÞ

� ¼ Qk: ð6:4:13bÞ
Proceeding inductively, from the above, we can easily show that the earlier

Mangeron–Deleanu principle (6.2.7, 7a), where, in analogy with (6.4.4),

� r
ðsÞ ¼

X
@ r
ðsÞ
=@ qk
ðsÞ

� �
� qk
ðsÞ ¼

X
ek � qk

ðsÞ
; ð6:4:14aÞ

becomes, in holonomic system variables,X
Ck
ðsÞðTÞ �Qk

h i
� qk
ðsÞ ¼ 0; ð6:4:14bÞ

where

Ck
ðsÞðTÞ � EkðTÞ �Sdm a � ek �Sdm a �ð@ r

ðsÞ
=@ qk
ðsÞ Þ

� ð1=sÞ @ T
ðsÞ
=@ qk
ðsÞ � ðsþ 1Þ ð@T=@qkÞ

� �
; ð6:4:14cÞ

is the general Mangeron–Deleanu operator (in holonomic variables) applied to T ,

and, in analogy with the Nielsen identity (6.3.14),

d=dtð@T=@ _qqkÞ ¼ ð1=sÞ @ T
ðsÞ
=@ qk
ðsÞ � @T=@qk

� �
: ð6:4:14dÞ

Again, for unconstrained �q’s, eq. (6.4.14b) yields the Tsenov-type equations of
Mangeron–Deleanu (1962) and Dolaptschiew (1966):

ð1=sÞ @ T
ðsÞ
=@ q
ðsÞ � ðsþ 1Þ ð@T=@qkÞ

� �
¼ Qk

ðk ¼ 1; . . . ; n; s ¼ 1; 2; 3; . . .Þ;
ð6:4:14eÞ

and analogously if the �q’s are constrained.
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In sum: in all equations of motion in holonomic variables, and whether the �q’s
are constrained or not, we can replace EkðTÞ � ð@T=@ _qqkÞ:� @T=@qk ðLagrangeÞ �
@S=@€qqk ðAppellÞ with any one of its equals:

NkðTÞ � @ _TT=@ _qqk � 2 ð@T=@qkÞ ðNielsenÞ; ð6:4:15aÞ
or

Ck
ð2ÞðTÞ � ð1=2Þ �@ €TT=@€qqk � 3 ð@T=@qkÞ

�
;

Ck
ð3ÞðTÞ � ð1=3Þ �@:::T=@:::qk � 4 ð@T=@qkÞ

� ðTsenovÞ; ð6:4:15bÞ

or

Ck
ðsÞðTÞ � ð1=sÞ @ T

ðsÞ
=@ qk
ðsÞ �� ðsþ 1Þ ð@T=@qkÞ

� �
ðMangeron��Deleanu��DolaptschiewÞ; ð6:4:15cÞ

[i.e., Ck
ð1ÞðTÞ ¼ NkðTÞ].

Summary

(i) Analytical Results

Since all the earlier variational principles are equivalent, we can utilize any of them
with any of the above kinematico-inertial expressions; although, historically, EkðTÞ
and NkðTÞ have been associated with Lagrange’s principle, and @S=@€qqk with Gauss’

principle. In practice, however, which variational principle and operator will be used

in a particular problem depends on the given form of the constraints; some are more

natural than others. Thus:

(a) If the constraints have the form fDðt; qÞ ¼ 0 ½D ¼ 1; . . . ;mð< nÞ�, then, since

�fD ¼
X
ð@fD=@qkÞ �qk ¼ 0; ð6:4:16aÞ

Lagrange’s principle, with EkðTÞ or NkðTÞ, is preferred.

(b) If the constraints have the form fDðt; q; _qqÞ ¼ 0, then, since

� 0fD ¼
X
ð@fD=@ _qqkÞ � _qqk ¼ 0; ð6:4:16bÞ

Jourdain’s principle, with EkðTÞ or NkðTÞ, is recommended. The formal (i.e., math-

ematical) �ð. . .Þ-variation of fD,

�fD ¼
X
ð@fD=@qkÞ �qk þ

X
ð@fD=@ _qqkÞ �ð _qqkÞ ¼ 0; ð6:4:16cÞ

X
½EkðTÞ �Qk� �qk ¼ 0;

to produce the correct equations of motion; that is,

EkðTÞ ¼ Qk þ
X


Dð@fD=@ _qqkÞ: ð6:4:16dÞ

)6.4 INTRODUCTION TO THE PRINCIPLE OF GAUSS AND THE EQUATIONS OF TSENOV 887

(as also explained in §5.2 ff.) cannot be combined with Lagrange’s principle,



Since � 00fD ¼
P ð@fD=@€qqkÞ �€qqk ¼ 0, Gauss’ principle, say with EkðTÞ:X

½EkðTÞ �Qk��€qqk ¼ 0; ð6:4:16eÞ

cannot be utilized either. But it can be applied to dfD=dt ¼ 0; indeed, since

dfD=dt ¼ @fD=@tþ
X
ð@fD=@qkÞ _qqk þ

X
ð@fD=@ _qqkÞ€qqk

½� gDðt; q; _qq; €qqÞ� ¼ 0;

we have

� 00ðdfD=dtÞ ¼
X
ð@ _ffD=@€qqkÞ �€qqk ¼

X
ð@fD=@ _qqkÞ �€qqk

� ¼
X
ð@gD

h i
¼ 0;

ð6:4:16f Þ

and this combined with Gauss’ principle yields the correct equations; that is,

(6.4.16d).

(c) Similarly, we can show that for constraints of the form fDðt; q; _qq; €qqÞ ¼ 0, to

insure compatibility among the principles of Lagrange, Jourdain and Gauss, we must

set

�fD ¼
X
ð@fD=@€qqkÞ �qk ¼ 0; ð6:4:16gÞ

� 0fD ¼
X
ð@fD=@€qqkÞ � _qqk ¼ 0; ð6:4:16hÞ

� 00fD ¼
X
ð@fD=@€qqkÞ �€qqk ¼ 0; ð6:4:16iÞ

in which case, the correct equations of motion are

EkðTÞ ¼ Qk þ
X


Dð@fD=@€qqkÞ: ð6:4:16jÞ

(ii) Geometrical Interpretation

If we think of the constraints fDðt; q; _qqÞ ¼ 0 as hypersurfaces in velocity space, with t
and the q’s as parameters (since the velocities can change instantaneously, but the

configuration and time cannot), (6.4.16b) states that the virtual velocity change � _qq
lies in the local tangent plane, just like the �q’s lie in the local tangent plane of the

surface fDðt; qÞ ¼ 0 (holonomic constraints) in configuration space. Analogously for

fDðt; q; _qq; €qqÞ ¼ 0, (6.4.16i) states the conditions. The above show that JP is a natural
for velocity constraints, while GP is a natural for acceleration constraints.

These results are summarized in tables 6.2 and 6.3.
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Table 6.2 Virtual Displacements Needed to Produce the Correct Equations of Motion

Constraints Lagrange Jourdain Gauss

f ðt; qÞ ¼ 0: @f=@q �f ¼ ð@f=@qÞ�q � 0f ¼ 0 � 00f ¼ 0,
� 0 _ff ¼ ð@f=@qÞ� _qq � 00 _ff ¼ 0

� 00€ff ¼ ð@f=@qÞ�€qq
f ðt;q; _qqÞ ¼ 0: @f=@ _qq — � 0f ¼ ð@f=@ _qqÞ� _qq � 00f ¼ 0

� 00 _ff ¼ ð@f=@ _qqÞ�€qq
f ðt;q; _qq; €qqÞ ¼ 0: @f=@€qq — — � 00f ¼ ð@f=@€qqÞ�€qq

δ′′gD =@€qqkÞ �€qqk



or, carrying out the variations and enforcing the Jourdainian constraints �qk ¼ 0,

ðsin�Þ � _xxþ ð� cos�Þ � _yy ¼ 0: ðf Þ
Eliminating, say, � _yy between (c) and (f), we obtain the unconstrained variational

equation

ðm €xx cos�þm €yy sin�Þ � _xxþ ðI €�� cos�Þ � _�� ¼ 0: ðgÞ
from which, since � _xx and � _�� are now independent, we get the two reactionless

equations of motion

€xx cos�þ €yy sin� ¼ 0; €�� ¼ 0: ðh; iÞ
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Table 6.3 Correct Equations of Motion

½Notation: Mk � EkðTÞ �Qk � NkðTÞ �Qk � @S=@€qqk �Qk;

Mechanical principle:
X

Mk �xk ¼ 0; �xk ¼ �qk ; � _qqk; �€qqk; . . .�

Constraints Virtual Displacements Equations of Motion

fDðt; qÞ ¼ 0 �fD ¼
P ð@fD=@qkÞ�qk Mk ¼

P

Dð@fD=@qkÞ

fDðt; q; _qqÞ ¼ 0 � 0fD ¼
P ð@fD=@ _qqkÞ� _qqk Mk ¼

P

Dð@fD=@ _qqkÞ

fDðt; q; _qq; €qqÞ ¼ 0 � 00fD ¼
P ð@fD=@€qqkÞ�€qqk Mk ¼

P

Dð@fD=@€qqkÞ

And analogously for higher-order constraints.

under the constraint (b), but brought to Jourdain form; that is,

f ðt; q; _qqÞ ¼ 0 ) � 0f ¼ ð@f =@ _qqÞ � _qq; ðdÞ
� 0 ðsin�Þ _xxþ ð� cos�Þ _yy½ �
¼ � ðsin �Þ _xxþ ð� cos�Þ _yy½ �


�x; �y; ��¼0

¼ ½ðsin�Þ � _xxþ ð� cos�Þ � _yy
þ ð _xx cos�Þ ��þ ð _yy sin �Þ ���


�x; �y; ��¼0

¼ 0; ðeÞ

Example 6.4.1 Let us derive the impressed force-free equations of motion of a

sled (or narrow boat, or skate, or knife, or stiff razor blade, etc.; recalling ex. 2.13.2,

ex. 3.18.1, and their notations; also exs. 7.3.2 and 7.3.3) of mass m, whose mass
center G coincides with its contact point C, on a smooth horizontal plane P, via

the various DVP.

(i) Via Jourdain’s principle. With Lagrangean coordinates q1;2;3 ¼ x; y; �, and

since here V ¼ 0, Qk;np ¼ 0, so that

2L ¼ 2T ¼ m½ð _xxÞ2 þ ð _yyÞ2� þ Ið _��Þ2; ðaÞ
and the constraint is (with n: unit vector perpendicular to sled, on P)

v � n ¼ ðsin�Þ _xxþ ð� cos�Þ _yy ¼ 0 ) ðsin�Þ �xþ ð� cos�Þ �y ¼ 0; ðbÞ
that is, n ¼ 3, m ¼ 1, JP yields the variational equation:X

EkðLÞ � _qqk ¼ 0: ðm€xxÞ � _xxþ ðm€yyÞ � _yyþ ðI €��Þ � _�� ¼ 0; ðcÞ

For the quasivariable versions of the preceding, see problem 6.5.6.



The first of them expresses the absence of force in the tangential direction, while the

second expresses the absence of moment, about C ¼ G, in the direction

perpendicular to P.

(ii) Via Gauss’ principle. Here, the variational equation isX
EkðLÞ �ð€qqkÞ ¼ 0 : ðm €xxÞ �€xxþ ðm €yyÞ �€yyþ ðI €��Þ � €�� ¼ 0; ð jÞ

under the constraint (b), but brought to Gaussian form; that is,

f ðt; q; _qqÞ ¼ 0 ) �00ðdf =dtÞ ¼ ð@f =@ _qqÞ �€qq; ðkÞ

�00 d=dt½ðsin�Þ _xxþ ð� cos�Þ _yy�
n o

� �½ðsin�Þ€xxþ ð� cos�Þ€yy

þ ð _xx cos�Þ _��þ ð _yy sin�Þ _���
�x; �y; ��¼0; � _xx; � _yy; � _��¼0

¼ 0; ðlÞ

or, carrying out the variations�ðsin �Þ �€xxþ ð� cos�Þ �€yy
þ ð� _xx cos�� _xx sin � ��þ � _yy sin�þ _yy cos� ��Þ _��
þ ð _xx cos�þ _yy sin�Þ � _���

�x; �y; ��¼0; � _xx; � _yy; � _��¼0
¼ 0; ðmÞ

and then enforcing the Gaussian constraints �qk ¼ 0, � _qqk ¼ 0,

ðsin�Þ �€xxþ ð� cos�Þ �€yy ¼ 0: ðnÞ
Similarly, eliminating �€yy between (j) and (n), we find again eqs. (h, i).

For a Gaussian treatment of the related problem of Prytz’s planimeter, see Brill

(1909, pp. 30–33).

Problem 6.4.1 (i)

dsr=dts � r
ðsÞ ¼

X
ð@r=@qkÞqk

ðsÞ

þ s
�XX

ð@2r=@qk @qlÞ qk
ðs�1Þ

_qql þ
X
ð@2r=@qk @tÞ qk

ðs�1Þ�
þ no other q

ðs�1Þ
; q
ðsÞ

terms;

¼
X
ð@r=@qkÞ qk

ðsÞ þ no other q
ðsÞ

terms; ðaÞ

and, therefore,

ðiiÞ � r
ðsÞ ¼

X
@ r
ðsÞ
=@ qk
ðsÞ

� �
� qk
ðsÞ ¼

X
ek � qk

ðsÞ
(Mangeron variation); ðbÞ

ðiiiÞ ek ¼ @r=@qk ¼ � � � ¼ @ r
ðsÞ
=@ qk
ðsÞ ¼ @ v

ðsÞ
=@ qk
ðsþ1Þ ¼ @ aðsÞ=@ qk

ðsþ2Þ
; ðcÞ
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Show that (where, as usual, k, l = 1, 2, . . ., n; and s = 1, 2, . . .)



ðivÞ @ r
ðsÞ
=@ qk
ðs�1Þ ¼ s

�X
ð@2r=@qk @qlÞ _qql þ @2r=@qk @t

�
¼ sð@ _rr=@qkÞ ¼ sð@v=@qkÞ ðdÞ

) @ v
ðsÞ
=@ qk
ðsÞ ¼ ðsþ 1Þð@v=@qkÞ; ðeÞ

ðvÞ v
ðsÞ ¼ ðsþ 1Þ

X
ð@v=@qkÞ qk

ðsÞ þ no other q
ðsÞ

terms: ðf Þ

Problem 6.4.2 (i) Starting with 2T �Sdm v � v, show that

T
ðsÞ
¼Sdm v � r

ðsþ1Þ þ sS dm a � r
ðsÞ þ no other r

ðsÞ
; r
ðsþ1Þ

terms;

¼Sdm r
ð1Þ

� r
ðsþ1Þ þ sS dm r

ð2Þ
� r
ðsÞ þ no other r

ðsÞ
; r
ðsþ1Þ

terms; ðaÞ

and from this deduce the following kinematico-inertial identities:

ðaÞ @T=@qk ¼Sdm _rr � ð@ _rr=@qkÞ ¼ ð1=sÞSdm _rr � @ r
ðsÞ
=@ qk
ðs�1Þ

� �
� ð1=sÞSdm v � @ r

ðsÞ
=@ qk
ðs�1Þ

� �
; ðbÞ

and, generally,

ðbÞ @T
ðsÞ
=@ qk
ðsÞ ¼Sdm _rr � @ r

ðsþ1Þ
=@ qk
ðsÞ

� �
þ sS dm €rr � @ r

ðsÞ
=@ qk
ðsÞ

� �
¼ ðsþ 1ÞSdm v � ð@v=@qkÞ þ sS dm a � ek

¼ ðsþ 1Þð@T=@qkÞ þ s EkðTÞ; ðcÞ
from which, rearranging, we obtain the earlier Mangeron–Deleanu identity:

EkðTÞ ¼ ð1=sÞ @T
ðsÞ
=@ qk
ðsÞ � ðsþ 1Þð@T=@qkÞ

� �
: ðdÞ

(s ¼ 1: Nielsen eqs., s ¼ 2: Tsenov eqs., etc.)

(ii) Prove the Mangeron–Deleanu recursive identity:

ð1=sÞ @T
ðsÞ
=@ qk
ðsÞ

� �
� ð1=rÞ @T

ðrÞ
= @qk
ðrÞ

" #
þ �ðs� rÞ�ðs rÞ�ð@T=@qkÞ ¼ 0;

ðeÞ
and with its help, and the rest, deduce the following identities:

ðaÞ �
1=ðs� rÞ� ðrþ 1Þ

�
@T
ðsÞ
=@ qk
ðsÞ
�
� ðsþ 1Þ

�
@T
ðrÞ
= @qk
ðrÞ �" #

¼ EkðTÞ;

ðfÞ

ðbÞ @T
ðsÞ
=@ qk
ðsÞ � @ T

ðs�1Þ
=@ qk
ðs�1Þ ¼ @T=@qk þ EkðTÞ; ðgÞ
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(s, r = 1, 2, . . . ; k = 1, 2, . . . ; n),

[
s, r = 1, 2, . . . , BUT (this form) s �= r; k = 1, 2, . . . , n

]
,



@ T
ðsÞ
=@ qk
ðsþ1Þ ¼ @ T

ðs�1Þ
=@ qk
ðsÞ ¼ � � � ¼ @T=@ _qqk ð¼ pkÞ; ðhÞ

ðcÞ � I
ðsÞ
�Sdm a � � r

ðsÞ

¼
X

@ T
ðsÞ
=@ qk
ðsÞ � @ T

ðs�1Þ
=@ qk
ðs�1Þ � @T=@qk

� �
� qk
ðsÞ
; ðiÞ

sometimes referred to as the Mićević Dušan–Rusov Lazar form of Lagrange’s identity

() principle, 1984); and for unconstrained �qk
ðsÞ

’s easily resulting in the equations of

motion:

@ T
ðsÞ
=@ qk
ðsÞ � @ T

ðs�1Þ
=@ qk
ðs�1Þ � @T=@qk ¼ Qk: ðjÞ

For further related results, see, for example, Shen and Mei (1987).

Example 6.4.2 Let us show, by direct differentiations, that for any sufficiently

differentiable function f ðt; q; _qqÞ: Ekðf Þ ¼ Nkðf Þ, or, in extenso,

ð@f =@ _qqkÞ:� @f =@qk ¼ @ _ff =@ _qqk � 2ð@f =@qkÞ: ðaÞ

We have, successively,

Nkðf Þ � @ _ff =@ _qqk � 2ð@f =@qkÞ

¼ @=@ _qqk @f =@tþ
X
ð@f =@qlÞ _qql þ

X
ð@f =@ _qqlÞ€qql

h i
� 2ð@f =@qkÞ

¼ @=@tð@f =@ _qqkÞ þ
X �

@=@qlð@f =@ _qqkÞ
�
_qql þ

X
ð@f =@qlÞ �lk

þ
X �

@=@ _qqlð@f =@ _qqkÞ
�
€qql � 2ð@f =@qkÞ:

But (i) the first, second, and fourth terms combine to ð@f =@ _qqkÞ: ; while (ii) the third
reduces to @f =@qk, and combines with the last term to �@f =@qk; that is, finally,

Nkðf Þ ¼ ð@f =@ _qqkÞ:� @f =@qk � Ekðf Þ; Q:E:D: ðbÞ

Example 6.4.3 Let us extend the result of the preceding example to nonholonomic
variables; namely, let us show that

Ek*ðf *Þ � ð@f *=@!kÞ:� @f *=@�k ¼ @ _ff *=@!k � 2ð@f *=@�kÞ � Nk*ðf *Þ; ðaÞ

where (recalling the notations of chaps. 2–5)

@ . . . =@�k �
X
ð@ . . . =@qlÞð@ _qql=@!kÞ , @ . . . =@ql ¼

X
ð@ . . . =@�kÞð@!k=@ _qqlÞ; ðbÞ

and

f ¼ f ðt; q; _qqÞ ¼ f ½t; q; _qqðt; q; !Þ� � f *ðt; q; !Þ � f *: ðcÞ
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Since _ff * � df *=dt is a function of t; q; !; _qqðt; q; !Þ, €qqðt; q; !; _!!Þ, we find, successively,

Nk*ðf *Þ � @ _ff *=@!k � 2ð@f *=@�kÞ

¼ @=@!k @f *=@tþ
X
ð@f *=@qlÞ _qql þ

X
ð@f *=@!lÞ _!!l

h i
� 2
X
ð@f *=@qlÞð@ _qql=@!kÞ

¼ @=@tð@f *=@!kÞ þ
X �

@=@qlð@f *=@!kÞ
�
_qql þ

X
ð@f *=@qlÞð@ _qql=@!kÞ

þ
X �

@=@!lð@f *=@!kÞ
�
_!!l � 2

X
ð@f *=@qlÞð@ _qql=@!kÞ

[the first, second, and fourth terms combine to ð@f *=@!kÞ: ;
while, recalling (b), the third and last add up to � @f *=@�k�

¼ ð@f *=@!kÞ:� @f *=@�k � Ek*ðf *Þ; Q:E:D: ðdÞ

For an alternative proof, see Mei (1983, pp. 630–631).

Example 6.4.4 Using the kinematico-inertial identities of the preceding examples,

let us find the Nielsen forms of the two general (say, kinetic) nonlinear

nonholonomic equations of Johnsen–Hamel (}5.3):

ð@T*=@!I Þ:� @T*=@�I �
X

ð@ _qqk=@ _!!IÞ:� @ _qqk=@�I
h i

ð@T=@ _qqkÞ* ¼ YI ; ðaÞ

where

ð@T=@ _qqkÞ* ¼
X
ð@T*=@!lÞð@!l=@ _qqkÞ; i:e:; pk ¼ pkðt; q; _qqÞ ¼ pk*ðt; q; !Þ; ðbÞ

or, compactly,

EI*ðT*Þ �
X

EI*ð _qqkÞð@T=@ _qqkÞ* ¼ YI ; ðcÞ

and

ð@T*=@!I Þ:� @T*=@�I þ
XX �ð@!l=@ _qqrÞ:� @!l=@qr

�ð@ _qqr=@!I Þð@T*=@!lÞ ¼ YI ;

ðdÞ
or, compactly,

EIðT*Þ þ
XX

Erð!lÞð@ _qqr=@!I Þð@T*=@!lÞ ¼ YI : ðeÞ

(i) Substituting NI*ðT*Þ ¼ EI*ðT*Þ and NI*ð _qqkÞ ¼ EI*ð _qqkÞ in (a, c), we readily

obtain their Nielsen forms:

@ _TT*=@!I � 2ð@T*=@�IÞ �
X

@€qqk=@!I � 2ð@ _qqk=@�I Þ
h i

ð@T=@ _qqkÞ* ¼ YI ; ðf Þ

or, compactly,

NI*ðT*Þ �
X

NI*ð _qqkÞð@T=@ _qqkÞ* ¼ YI : ðgÞ
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(ii) Substituting NI*ðT*Þ ¼ EI*ðT*Þ and Nrð!lÞ ¼ Erð!lÞ in (d, e), we readily

obtain their Nielsen forms:

@ _TT*=@!I � 2ð@T*=@�IÞ þ
XX �ð@ _!!l=@ _qqrÞ � 2ð@!l=@qrÞ

�ð@ _qqr=@!IÞð@T*=@!lÞ ¼ YI ;

ðhÞ
or, compactly,

NI*ðT*Þ þ
XX

Nrð!lÞð@ _qqr=@!IÞð@T*=@!lÞ ¼ YI : ðiÞ
And similarly for the kinetostatic equations.

Here, too, as in chapter 5, we remark that the importance of these equations lies

not so much in their ability to solve concrete nonholonomic problems more easily,

but in that they help us to understand better the formal kinematico-inertial structure

of analytical mechanics; also, they might prove useful in handling higher-order

constraints.

Problem 6.4.3 Show that in the Pfaffian case

_qqk ¼
X

Aklðt; qÞ!l þAkðt; qÞ ¼
X

AkIðt; qÞ!I þ Akðt; qÞ; ðaÞ
eqs. (f ) of the preceding example reduce to the Nielsen form of the general nonlinear
Voronets equations:

@ _TT*=@!I � 2ð@T*=@�IÞ
þ
X
ð@T=@ _qqkÞ*

�X
ð@AkI 0=@�I � @AkI=@�I 0 Þ!I 0 þ @Ak=@�I

�
X
ð@AkI=@qlÞAl � @AkI=@t

�
¼ YI : ðbÞ

Equivalent forms can be obtained from (h) of the preceding example, if, instead of

(a), we use

!l ¼
X

alkðt; qÞ _qqk þ alðt; qÞ: ðcÞ

Problem 6.4.4 (Mei, 1985, pp. 203–207, 211–214). Continuing from the pre-

ceding problem, show that if (a) of that problem are stationary (or scleronomic);

that is, if

_qqk ¼
X

AklðqÞ!l ¼
X

AkIðqÞ!I ; ðaÞ
then (b) of that problem reduce to the Nielsen form of the general nonlinear Chaplygin
equations:

@ _TT*=@!I � 2ð@T*=@�IÞ þ
XX

ð@T=@ _qqkÞ*
�ð@AkI 0=@�I � @AkI=@�I 0 Þ!I 0

� ¼ YI :

ðbÞ

6.5 ADDITIONAL FORMS OF THE EQUATIONS OF NIELSEN AND TSENOV

(i) Following Tsenov, we introduce the function

Rð1Þ � _TT � 2 _TTðoÞ; ð6:5:1Þ
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where TðoÞ is what results from T if we regard it as function of t and the q’s, but not the
_qq’s; that is, for fixed, or frozen, velocities,

TðoÞ ¼ TðoÞðt; qÞ ¼ Tðt; q; _qq ¼ constantÞ: ð6:5:2Þ

From the above it follows that

_TTðoÞ ¼
X
ð@T=@qkÞ _qqk þ @T=@tþ no other _qq terms; ð6:5:3Þ

and, therefore,

@ _TTðoÞ=@ _qqk ¼ @T=@qk: ð6:5:4Þ

Then, Nielsen’s equations, say (6.3.18), can be written in the Appellian form

@Rð1Þ=@ _qqk ¼ Qk; ð6:5:5Þ

which is slightly simpler than the corresponding Appell’s equations @S=@€qqk ¼ Qk.

Finally, introducing the new ‘‘Tsenov function’’

Kð1Þ � Rð1Þ �
X

Qk _qqk; ð6:5:6Þ

we can express (6.5.5) in the equilibrium form:

@Kð1Þ=@ _qqk ¼ 0; under the conditions @Ql=@ _qqk ¼ 0; ð6:5:7Þ

in words: the equations of motion result from the stationarity of the function
Kð1Þ ¼ Kð1Þð _qqÞ. Similarly, for constrained systems: for example, if the constraints are

_qqD ¼
X

bDI _qqI þ bD; bDI ¼ bDI ðt; qÞ; bD ¼ bDðt; qÞ
) �qD ¼

X
bDI �qI ; ð6:5:8aÞ

then it is not hard to see that the Nielsen–Tsenov equations of the system take the

‘‘Hadamard form’’:

@Kð1Þ=@ _qqI þ
X

bDI @Kð1Þ=@ _qqD
	 
 ¼ 0

ðD ¼ 1; 2; . . . ;m; I ¼ mþ 1; . . . ; nÞ; ð6:5:8bÞ

or, with Kð1Þ ¼ Kð1Þ½t; q; _qqDðt; q; _qqIÞ; _qqI � � Kð1Þoðt; q; _qqIÞ ¼ Kð1Þo (‘‘constrained Tsenov

function’’)

) @Kð1Þo=@ _qqI ¼ @Kð1Þ=@ _qqI þ
X
ð@Kð1Þ=@ _qqDÞð@ _qqD=@ _qqIÞ

¼ @Kð1Þ=@ _qqI þ
X

bDIð@Kð1Þ=@ _qqDÞ; ð6:5:8cÞ

simply,

@Kð1Þo=@ _qqI ¼ 0: ð6:5:8dÞ

Other ‘‘Maggi-like’’ forms are also possible.
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(ii) Again, following Tsenov, introducing the functions

Rð2Þ � ð1=2Þð €TT � 3 €TTðoÞÞ and Kð2Þ � Rð2Þ �
X

Qk€qqk; ð6:5:9aÞ

and then noting the kinematic identities

_TTðoÞ ¼
X
ð@T=@qkÞ _qqk þ no other _qq terms) €TTðoÞ ¼

X
ð@T=@qkÞ€qqk þ no €qq terms;

) @ €TTðoÞ=@€qqk ¼ @T=@qk; ð6:5:9bÞ

we can rewrite (6.4.11) in the following Appell-like and ‘‘equilibrium forms’’:

@Rð2Þ=@€qqk ¼ Qk; ð6:5:9cÞ
@Kð2Þ=@€qqk ¼ 0; under the conditions @Ql=@€qqk ¼ 0; ð6:5:9dÞ

respectively.

The above are particularly useful for constraints of the acceleration form:

fDðt; q; _qq; €qqÞ ¼ 0: ð6:5:10aÞ

Then, Gauss’ principle yieldsX
ð@Kð2Þ=@€qqkÞ �€qqk ¼

X
ð@Kð2Þ=@€qqDÞ�€qqD þ

X
ð@Kð2Þ=@€qqIÞ �€qqI ¼ 0; ð6:5:10bÞ

under the conditions (in Gaussian variation form)

�00fD ¼
X
ð@fD=@€qqDÞ �€qqD þ

X
ð@fI=@€qqIÞ �€qqI ¼ 0

) �€qqD ¼
X
ð@€qqD=@€qqIÞ �€qqI �

X
bDI �€qqI : ð6:5:10cÞ

Combining (6.5.10c) with (6.5.10b), in by now well-known ways, and since the n �m
�€qqI can now be taken as independent, we immediately obtain the Hadamard form of
the second-kind Tsenov equations:

@Kð2Þ=@€qqI þ
X

bDI ð@Kð2Þ=@€qqDÞ ¼ 0: ð6:5:10dÞ

A (6.5.8d)-like form is also readily available.

(iii) Finally, in the general case of a system subjected to the m ðsÞth order con-

straints

fD t; q; _qq; €qq;
:::
q; . . . ; q

ðsÞ� �
¼ 0; ð6:5:11aÞ

we can easily show that the Hadamard form of its Mangeron–Deleanu equations is

@KðsÞ=@ qI
ðsÞ þ

X
bDI @KðsÞ=@ qD

ðsÞ
� �

¼ 0; ð6:5:11bÞ

where

qD
ðsÞ ¼

X
bDI qI

ðsÞ þ no other q
ðsÞ

terms ) � qD
ðsÞ ¼

X
bDI � qI

ðsÞ
; ð6:5:11cÞ
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and

KðsÞ � RðsÞ �
X

Qk qk
ðsÞ
; under @Ql=@ qk

ðsÞ ¼ 0;

RðsÞ � ð1=sÞ T
ðsÞ
�� ðsþ 1Þ

X
ð@T=@qkÞ qk

ðsÞ
� �

þ no other q
ðsÞ

terms

¼ ð1=sÞ T
ðsÞ �� ðsþ 1ÞTðoÞ

ðsÞ� �
þ no other q

ðsÞ
terms; ð6:5:11dÞ

due to

TðoÞ
ðsÞ
¼
X
ð@T=@qkÞ qk

ðsÞ þ no other q
ðsÞ

terms ) @ TðoÞ
ðsÞ
=@ qk
ðsÞ ¼ @T=@qk: ð6:5:11eÞ

These higher-order Tsenov equations were presented, in a series of papers, by the

Romanian mechanicians D. Mangeron and S. Deleanu in the early 1960s. Finally,

(a) in terms of the constrained RðsÞo and corresponding impressed forces QIo, the

equations of motion take the Appellian form

@RðsÞo=@ qI
ðsÞ ¼ QIo; ð6:5:11f Þ

while (b) in terms of the constrained KðsÞo, they assume the equilibrium form

@KðsÞo=@ qI
ðsÞ ¼ 0: ð6:5:11gÞ

GENERAL REMARKS

(i) The relation between all these equations and the Lagrangean ones rests on the

key kinematico-inertial identity:

ð@T=@ _qqkÞ: ¼ ð1=sÞ @ T
ðsÞ
=@ qk
ðsÞ � @T=@qk

� �
ðs ¼ 1; 2; 3; . . .Þ: ð6:5:12Þ

(ii) The usefulness of these T
ðsÞ
-based equations lies in their ability to handle con-

straints of corresponding order in s. Symbolically,

f ðt; q; _qqÞ ¼ 0) _TT ðNielsenÞ;
f ðt; q; _qq; €qqÞ ¼ 0) €TT ðTsenov 2nd kindÞ;
f ðt; q; _qq; €qq;:::qÞ ¼ 0) :::

T ðTsenov 3rd kindÞ;
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
f t; q; _qq; €qq; . . . ; q

ðsÞ� �
¼ 0) T

ðsÞ
ðMangeron��DeleanuÞ:

For unconstrained systems (i.e., independent �q’s), these types of equations (as well

as those by Appell) do not seem to offer any particular advantage over the ordinary
Lagrangean equations.

(iii) By comparing the preceding T
ðsÞ

-equations with those by Appell, say for

unconstrained systems, we readily conclude that

@RðsÞ=@ qk
ðsÞ ¼ @ S

ðsÞ
=@ qk
ðsþ2Þ ðs ¼ 1; 2; 3; . . .Þ: ð6:5:13Þ
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(iv) It is not hard to show that, for Pfaffian constraintsX
aDk _qqk þ aD ¼ 0 )

X
aDk �qk ¼ 0; ð6:5:14aÞ

some of the earlier principles can be extended so that they hold for finite variations,

and not just �ð. . .Þ :

(a) If both _qqk and _qqk þ D _qqk are sets of kinematically admissible velocities, at the same

configuration and time; that is, if they both satisfy (6.5.14a):X
aDk _qqk þ aD ¼ 0;

X
aDkð _qqk þ D _qqkÞ þ aD ¼ 0: ð6:5:14bÞ

then subtracting them side by side yieldsX
aDk D _qqk ¼ 0; ð6:5:14cÞ

for Jourdain-like variations satisfying Dt ¼ 0 and Dq ¼ 0. This states that, in the

constraints (6.5.14a), we can replace the virtual �qk’s with the finite-velocity
Jourdain jumps D _qqk.

(b) By ð. . .Þ:-differentiating (6.5.14a), we obtainX
_aaDk _qqk þ aDk€qqkð Þ þ _aaD ¼

X
aDk€qqk þ no other €qq terms ¼ 0; ð6:5:15aÞ

and, therefore, if we consider the two admissible acceleration states €qq and €qqþ D€qq,
under the Gaussian restrictions Dt ¼ 0, Dq ¼ 0, D _qq ¼ 0, substitute them into

(6.5.15a), and subtract the resulting equations side by side, we obtainX
aDk D€qqk ¼ 0; ð6:5:15bÞ

that is, in (6.5.14a), we can replace the �qk’s with the finite acceleration Gauss jumps

D€qqk. The extension to higher-order constraints should be obvious.

(v) Let the impressed forces Qk be derivable, wholly or partly, from a generalized
potential V ¼ Vðt; q; _qqÞ [}3.9]; that is,

V ¼ Vðt; q; _qqÞ ¼ V0ðt; qÞ þ
X

�kðt; qÞ _qqk;
and

Qk; potential part ¼ EkðVÞ � ð@V=@ _qqkÞ: � @V=@qk
¼ �@V0=@qk þ

X
ð@�k=@ql � @�l=@qkÞ _qql þ @�k=@t: ð6:5:16aÞ

Then, it can be easily shown that V satisfies the ‘‘Dolaptschiew identities’’:

ð@V=@ _qqkÞ: ¼ ð1=sÞ @ V
ðsÞ
=@ qk
ðsÞ � @V=@qk

� �
; ð6:5:16bÞ

and, therefore, with L � T � V , the equations of motion, of, say, an unconstrained

system, can be rewritten as

ð1=sÞ @ L
ðsÞ
=@ qk
ðsÞ � ðsþ 1Þð@L=@qkÞ

� �
¼ Qk;np; ð6:5:16cÞ

Qk;np: nonpotential part of Qk: ð6:5:16dÞ
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Further, introducing LðoÞ � Lðt; q; _qq ¼ constantÞ, and since @ LðoÞ
ðsÞ
=@ qk
ðsÞ
¼ @L=@qk,

the equations of motion assume the following two equivalent forms:

Appell-like: @lðsÞ=@ qk
ðsÞ ¼ Qk;np; where lðsÞ � ð1=sÞ L

ðsÞ
�ðsþ 1ÞLðoÞ

ðsÞ� �
; ð6:5:16eÞ

Equilibrium: @kðsÞ=@ qk
ðsÞ ¼ 0; where kðsÞ � lðsÞ �

X
Qk;np qk

ðsÞ
: ð6:5:16f Þ

And analogously for constrained systems. For example, the equations of motion of a

system constrained by

qD
ðsÞ ¼

X
bDI qI

ðsÞ þ no other q
ðsÞ

terms ) � qD
ðsÞ ¼

X
bDI � qI

ðsÞ
; ð6:5:17aÞ

are

@lðsÞo=@ qI
ðsÞ ¼ ðQI ;npÞo or @kðsÞo=@ qI

ðsÞ ¼ 0; ð6:5:17bÞ

where lðsÞo; kðsÞo are, respectively, lðsÞ, kðsÞ from which the dependent rates qD
ðsÞ

have

been eliminated by means of the first of (6.5.17a), and ðQI ;npÞo � QI ;np þ
P

bDIQD;np.

Problem 6.5.1 Higher Forms of Appell’s Equations ½S ¼ Sðt; q; _qq; €qqÞ: Appellian

function]. Let

U
ðsÞ
� S
ðsÞ
�
X

Qk qk
ðsÞ þ f ðt; q; _qq; . . . ; q

ðs�1Þ Þ: ðaÞ

Show that

(i) Under the m ð< nÞ constraints

fDðt; q; _qq; . . . ; q
ðsþ2Þ Þ ¼ 0; ðbÞ

the equations of motion may be expressed in the ‘‘Routh–Voss’’ form:

@ S
ðsÞ
=@ qk
ðsþ2Þ ¼ Qk þ

X

D @fD=@ qk

ðsþ2Þ
� �

; ðcÞ

(ii) Under the m ð< nÞ constraints

qD
ðsþ2Þ ¼

X
bDI qI

ðsþ2Þ þno other qk
ðsþ2Þ

terms; ðdÞ

they may be expressed in the ‘‘Hadamard’’ form:

@ S
ðsÞ
=@ qI
ðsþ2Þ þ

X
bDI @ S

ðsÞ
=@ qD
ðsþ2Þ

� �
¼ QI þ

X
bDIQD; ðeÞ

and

(iii) Under the m ð< nÞ constraints

qD
ðsþ2Þ ¼ qD

ðsþ2Þ
t; q; _qq; . . . ; q

ðsþ1Þ
; �
ðsþ2Þ� �

; ðf Þ
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they may be expressed in the ‘‘Maggi’’ form:

X
ð@S=@€qqkÞ @ qk

ðsþ2Þ.
@ �I
ðsþ2Þ

� �
¼
X

Qk @ qk
ðsþ2Þ.

@ �I
ðsþ2Þ

� �
¼ YI : ðgÞ

In all these cases, it is assumed that the constraint forces satisfy the ‘‘ideal reactions’’

postulate (}3.2 ff.):

LI �SdR � eI ¼SdR � @ a
ðsÞ.

@ �I
ðsþ2Þ

� �
¼ 0: ðhÞ

Example 6.5.1 A charged particle moves in a homogeneous electromagnetic field

of intensities E (electric) and H (magnetic). It is shown in electrodynamics [see

any advanced book on the subject; e.g., Landau and Lifshitz (1971, }8, }16)] that

its Lagrangean is

L � T �V ¼ ð1=2Þmv2 � eFþ ðe=cÞðA � vÞ; ðaÞ
where e ¼ electric charge, c ¼ speed of light in vacuum,

F ¼ �E � r is the scalar potential of the (electric) weld, and ðb1Þ
A ¼ ðH � rÞ=2 is the vector potential of the (magnetic) weld. ðb2Þ

Let us choose axes O–xyz so that both fields lie on the O–yz plane, and H is

directed along the þOz axis; that is, E ¼ ð0;Ey;EzÞ and H ¼ ð0; 0;Hz � HÞ. Then L
assumes the form:

L ¼ ðm=2Þ ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2
h i

þ e yEy þ zEz

	 
þ ðeH=2cÞ x _yy� y _xxð Þ; ðc1Þ

and thus, following Tsenov’s concept,

L ) LðoÞ ¼ eðyEy þ z EzÞ þ ðeH=2cÞðx _yy� y _xxÞ þ constant; ðc2Þ

where _xx, _yy are viewed as fixed, or frozen, quantities.

Let us apply the Tsenov/Mangeron–Deleanu equations for s ¼ 1. Here,

Qk;np ¼ 0;

Rð1Þ ¼ Kð1Þ ¼ _LL� 2 _LLðoÞ

¼ m _xx €xxþ _yy €yyþ _zz €zzð Þ � eðEy _yyþ Ez _zzÞ
� ðeH=2cÞðx _yy� y _xxÞ þ function of x; y; €xx; €yy; ðdÞ

and, therefore, the equations of motion (6.5.16) are

@Kð1Þ=@ _xx ¼ m €xx� ðeH=cÞ _yy ¼ 0; ðeÞ
@Kð1Þ=@ _yy ¼ m €yy� eEy þ ðeH=cÞ _xx ¼ 0; ðf Þ
@Kð1Þ=@ _zz ¼ m €zz� eEz ¼ 0; ðgÞ

and, of course, these coincide with the equations obtained by other means.
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Example 6.5.2 (Dolaptschiew, 1969, pp. 181–182). Let us derive the Tsenov,

Nielsen, et al. equations of motion of a heavy homogeneous sphere (fig. 6.1), of

mass m and radius r, rolling on the rough inner wall of a fixed vertical circular

cylinder of radius R ð	 rÞ.

Kinematics, Constraints

Let us introduce the following five Lagrangean coordinates:

q1 ¼ �; q2 ¼ z; q3 ¼ �; q4 ¼ �; q5 ¼  ðEulerian anglesÞ: ðaÞ
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Figure 6.1 Geometry of rolling of a sphere on the rough

inner wall of a fixed vertical cylinder (top view).

G: center of mass and centroid of sphere, O: vertical

projection of center of typical normal section of cylinder,

C: point of contact of sphere with cylinder;

I ¼ ð2=5Þmr2 ¼ mk2: moment of inertia of sphere about

any axis through G;

O–xyz: fixed axes at ground level, with Oz pointing

towards the reader;

ðx; y; zÞ: coordinates of C;
Mobile (intermediate) ortho–normal–dextral basis

O–u1;2;3:

u1: radially outwards (i.e., toward C), making an

angle � with Ox,

u2: perpendicular to u1, in positive �-sense

(counterclockwise),

u3: so that u1;2;3 constitutes a dextral basis (points

toward the reader).



From fig. 6.1 and }1.12, we see that the components of the angular velocity of the

sphere, x, along the fixed axes ð!x;y; zÞ, and along the intermediate axes ð!1;2;3Þ, are

related by

!x ¼ _  s� s�þ _�� c� ¼ !1 c� � !2 s�; ðb1Þ
!y ¼ � _  s� c�þ _�� s� ¼ !1 s� þ !2 c�; ðb2Þ
!z ¼ _��þ _  c� ¼ !3 ; ðb3Þ

[where, as usual, sð. . .Þ � sinð. . .Þ, cð. . .Þ � cosð. . .Þ] and so, inverting, we obtain

!1 ¼ _�� cð�� �Þ þ _  s� sð�� �Þ; ðc1Þ
!2 ¼ _�� sð�� �Þ � _  s� cð�� �Þ; ðc2Þ
!3 ¼ _��þ _  c�: ðc3Þ

Clearly, !1;2;3 are quasi velocities; like !x;y; z.

The rolling constraint at C is

vC ¼ vG þ x� rC=G ¼ 0; ðdÞ

or, along u1;2;3, and with the notation R� r � 	,
vC ¼ d=dtðz u3 þ 	 u1Þ þ x � ðr u1Þ
¼ _zz u3 þ 	ðdu1=dtÞ½ � þ ð!1; !2; !3Þ � ðr; 0; 0Þ
¼ _zz u3 þ 	ð _�� u2Þ þ ð0; r!3; �r!2Þ
¼ ð	 _�� þ r!3Þu2 þ ð _zz� r!2Þu3 ¼ 0;

from which we obtain the two scalar constraints

	 _�� þ r!3 ¼ 0; _zz� r!2 ¼ 0; ðeÞ
or, thanks to (c2, 3), exclusively in holonomic variables,

vC; tangential direction � 	 _�� þ r _��þ r _  c� ¼ 0; ðf 1Þ
vC;axial ðverticalÞ direction � _zz� r _�� sð�� �Þ � r _  s� cð�� �Þ ¼ 0: ðf 2Þ

Next, let us calculate the kinetic and potential energies:

(i) By König’s theorem, we have

2T ¼ mvG
2 þ ðIx !x

2 þ Iy !y
2 þ Iz !z

2Þ
¼ m ð _zzÞ2 þ 	2ð _��Þ2

h i
þ ðmk2Þð!x

2 þ !y
2 þ !z

2Þ

¼ m ð _zzÞ2 þ 	2ð _��Þ2
h i

þ ðmk2Þ ð _��Þ2 þ ð _��Þ2 þ ð _  Þ2 þ 2 _�� _  cos �Þ
h i

ðg1Þ

[thanks to (b1–3), and recalling that Ix ¼ Iy ¼ Iz ¼ mk2]; and

ðiiÞ V ¼ mgz ) Qz ¼ �ð@V=@zÞ ¼ �mg (sole nonvanishing impressed force).

ðg2Þ
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Tsenov Equations

Now we are ready to obtain the Tsenov equations of motion:

(i) Tsenov’s function is

T ) TðoÞ ¼ ðmk2Þ _�� _  c� þ constant ¼ TðoÞð�Þ
[underlined velocities behave as constants], ðh1Þ

and so

_TTðoÞ ¼ �ðmk2Þ _�� _  _�� s�; ðh2Þ

(ii) By (g1),

_TT ¼ m _zz €zzþ m 	2 _�� €�� þ mk2
�
_�� €��þ _�� €��þ _  €  

þ ð _�� €  þ _  €��Þc�� _�� _�� _  s�
�
: ðh3Þ

Therefore, choosing _��, _��, _  as the independent velocities, in which case (f1, 2) yield

for the dependent ones :

_zz ¼ r _�� sð�� �Þ þ _  s� cð�� �Þ� � ¼ _zz _��; _  ; �; �; �
	 


; ði1Þ
_�� ¼ �ðr=	Þ _��þ _  c�

	 
 ¼ _�� _��; _  ; �
	 


; ði2Þ

and with the familiar notation ð. . .Þo � constrained ð. . .Þ we find

Kð1Þo � ð _TT � 2 _TTðoÞÞo �Qz _zz

¼ mð _zz €zzþ 	2 _�� €��Þ
þmk2 _�� €��þ _�� €��þ _  €  þ ð _�� €  þ _  €��Þ � _�� _�� _  s�

� �
þ 2ðmk2Þ _�� _  _�� s�þ mg _zz

¼ Kð1Þo _��ð _��; _  ; �Þ; _zzð _��; _  ; �; �; �Þ; _��; _��; _  ; �; �
� �

¼ Kð1Þoð _��; _��; _  ; �; �; �Þ (i.e., constrained Tsenov function). ði3Þ

Hence, the three kinetic Tsenov equations are

@Kð1Þo=@ _�� ¼ m 	2 €�� ð@ _��=@ _��Þ þmk2ð €��þ €  c�� _�� _  s�Þ ¼ 0; ð j1Þ
@Kð1Þo=@ _�� ¼ mð€zzþ gÞð@ _zz=@ _��Þ þmk2ð€��� _�� _  s� þ 2 _�� _  s�Þ ¼ 0; ð j2Þ
@Kð1Þo=@ _  ¼ mð€zzþ gÞð@ _zz=@ _  Þ þm 	2 €�� ð@ _��=@ _��Þ

þmk2ð €  þ €�� c�� _�� _�� s�Þ ¼ 0; ð j3Þ

or, since [by (i1, 2)]

@ _��=@ _�� ¼ �ðr=	Þ; @ _��=@ _  ¼ �ðr=	Þc�; ðk1Þ
@ _zz=@ _�� ¼ r sð�� �Þ; @ _zz=@ _  ¼ r s� cð�� �Þ; ðk2Þ
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finally (and dropping the underlines),

� r 	 €�� þ k2ð €��þ €  c�� _�� _  s�Þ ¼ 0; ðl1Þ
k2ð€��þ _�� _  s�Þ þ rð€zzþ gÞ sð�� �Þ ¼ 0; ðl2Þ
k2ð €  þ €�� c�� _�� _�� s�Þ � r 	 €�� c� þ rð€zzþ gÞ s� cð�� �Þ ¼ 0; ðl3Þ

which, along with (f1, 2) [or (i1, 2)], constitute a determinate system for �, z, �, �,  .

For its solution, and so on, see, for example, Neimark and Fufaev (1972, pp. 95–98)

and Ramsey (1937, pp. 157–158). It is not hard to realize that eqs. (l1–3) are none

other than the Chaplygin–Voronets equations of the problem.

Had we not enforced the constraints (f1, 2) or (i1, 2) in the Tsenov function, the

equations of motion would have the ‘‘Hadamard form’’:

@Kð1Þ=@ _qqI þ
X

bDI ð@Kð1Þ=@ _qqIÞ ¼ 0; ðm1Þ

_qqD ¼
X

bDI _qqI þ bD ½eqs: ði1; 2Þ�; ðm2Þ

where Kð1Þ ¼ Kð1Þð _��; _zz; _��; _��; _  ; �; z; �; �;  Þ: unconstrained Tsenov function,

instead of ( j1–3).

Nielsen Equations

Next, let us derive the Routh–Voss form of the Nielsen equations:

NkðTÞ ¼ Qk þ
X


D aDk ðD ¼ 1; 2; k ¼ 1; . . . ; 5Þ:

[We recall (a), (g2), and read oF the coeMcients aDk from (f1, 2)]. ðm3Þ

To calculate NkðTÞ, we apply the earlier Schieldrop–Nielsen rule [(ex. 6.3.1)]. We

have already seen [eq. (h3)] that

_TT ¼ m _zz €zzþm 	2 _�� €�� þmk2 _�� €��þmk2 _�� €��þmk2 _  €  

þ mk2 _�� €  c�þmk2 _  €�� c��mk2 _�� _  _�� s�; ðnÞ

that is, only the last term is underlined.

From this, we build table 6.4. Hence, the N...ðTÞ totals are

N�ðTÞ ¼ m 	2 €��; ðo1Þ
NzðTÞ ¼ m €zz ) NzðLÞ � NzðT � VÞ ¼ NzðT �mg zÞ ¼ mð€zzþ gÞ; ðo2Þ
N�ðTÞ ¼ mk2 €��þmk2 €  c��mk2 _�� _  s�

¼ mk2ð _��þ _  c�Þ:; ðo3Þ
N�ðTÞ ¼ mk2 €��þmk2 _�� _  s� ¼ mk2ð€��þ _�� _  s�Þ; ðo4Þ
N ðTÞ ¼ mk2 €  þmk2 €�� c��mk2 _�� _�� s�

¼ mk2ð _  þ _�� c�Þ:; ðo5Þ
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and, therefore, equations (m3) become

N�ðLÞ ¼ N�ðTÞ ¼ 	 
1; ðp1Þ
NzðLÞ ¼ NzðTÞ þ mg ¼ 
2; ðp2Þ
N�ðLÞ ¼ N�ðTÞ ¼ r
1; ðp3Þ
N�ðLÞ ¼ N�ðTÞ ¼ �r
2 sð�� �Þ; ðp4Þ
N ðLÞ ¼ N ðTÞ ¼ ðr c�Þ
1 � ½r s� cð�� �Þ�
2: ðp5Þ

Recalling the constraints (f1, 2), we see that the multipliers 
D are proportional to

the components of the force of rolling friction: along the tangential direction u2 ð
1Þ,
and along the vertical direction u3 ð
2Þ.

Eliminating 
1; 2 among (p1–5), we obtain the following three kinetic equations

(what might be called ‘‘Maggi form of the Nielsen equations,’’ or ‘‘Nielsen form of

the Maggi equations’’):

rN�ðTÞ � 	N�ðTÞ ¼ 0; ðq1Þ
N�ðTÞ þ rNzðLÞ sinð�� �Þ ¼ 0; ðq2Þ
	N ðTÞ � rN�ðTÞ cos � þ r 	 sin � cosð�� �ÞNzðLÞ ¼ 0: ðq3Þ

Finally, if we use the constraints (f1, 2), or (i1, 2), to eliminate _zz; _�� (and hence also

€zz; €��) from the above, we should get the earlier equations (l1–3).

Example 6.5.3 Let us verify the identity ðToÞ: ¼ ð _TTÞo, for a system with

2T ¼ ð _xxÞ2 þ ð _yyÞ2; y ¼ yðxÞ; ðaÞ
that is, q1 ¼ y; q2 ¼ x; n ¼ 2; m ¼ 1.

)6.5 ADDITIONAL FORMS OF THE EQUATIONS OF NIELSEN AND TSENOV 905

Table 6.4

_TT-terms N�ðTÞ NzðTÞ N�ðTÞ N�ðTÞ N ðTÞ
m _zz €zz k ¼ 0 k ¼ 1 k ¼ 0

0 m €zz 0 0 0

m 	2 _�� €�� k ¼ 1 k ¼ 0 k ¼ 0
m 	2 €�� 0 0 0 0

mk2 _�� €�� k ¼ 0 k ¼ 0 k ¼ 1
0 0 mk2 €�� 0 0

mk2 _�� €�� k ¼ 0 k ¼ 0 k ¼ 0
0 0 0 mk2 €�� 0

mk2 _  €  k ¼ 0 k ¼ 0 k ¼ 0
0 0 0 0 mk2 €  

mk2 _�� €  c� k ¼ 0 k ¼ 0 k ¼ 1
0 0 mk2 €  c� 0 0

mk2 _  €�� c� k ¼ 0 k ¼ 0 k ¼ 0
0 0 0 0 mk2 €�� c�

�mk2 _�� _  _�� s� k ¼ 0 k ¼ 0 k ¼ 1 1� 2 ¼ �1 1
0 0 �mk2 _  _�� s� mk2 _�� _  s� �mk2 _�� _�� s�



With the customary notations ð. . .Þ: � dð. . .Þ=dt; ð. . .Þ 0 � dð. . .Þ=dx, we have,

successively,

ðiÞ _TT ¼ _xx €xxþ _yy €yy

) ð _TTÞo ¼ _xx €xxþ ðy 0 _xxÞ ½y 00 ð _xxÞ2 þ y 0€xx�
¼ _xx €xxþ y 0 y 00 ð _xxÞ3 þ ðy 0Þ2 _xx €xx: ðbÞ

ðiiÞ To ¼ ð1=2Þ ½ð _xxÞ2 þ ðy 0 _xxÞ2� ¼ ð1=2Þ ½ð _xxÞ2 þ ðy 0Þ2 ð _xxÞ2�
) ðToÞ: ¼ _xx €xxþ y 0 ðy 0Þ: ð _xxÞ2 þ ðy 0Þ2 _xx €xx

¼ _xx €xxþ y 0 ðy 00 _xxÞ ð _xxÞ2 þ ðy 0Þ2 _xx €xx ¼ ð _TTÞo; Q:E:D: ðcÞ

Problem 6.5.2 (Mei, 1983, pp. 628–630). Consider a system under constraints

of the form

_qqD ¼ �Dðt; q; _qqIÞ ðD ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; nÞ; ðaÞ
and let, for any sufficiently smooth function f ,

f ¼ f ðt; q; _qqÞ ¼ f ½t; q; �Dðt; q; _qqI Þ; _qqI � ¼ fo ðt; q; _qqI Þ � fo: ðbÞ
Show that

@=@ _qqI ðdfo=dtÞ�2ð@fo=@qIÞ
¼ d=dtð@fo=@ _qqI Þ � @fo=@qI þ

X
ð@fo=@qDÞ ð@�D=@ _qqIÞ; ðcÞ

or, compactly,

NI ð foÞ ¼ EIð foÞ þ
X
ð@fo=@qDÞ ð@�D=@ _qqI Þ: ðdÞ

The above can be considered as an application of the earlier identity

Nk*ð f *Þ ¼ Ek*ð f *Þ to the special form of the constraints:

!D � _qqD � �Dðt; q; _qqIÞ ¼ 0; !I � _qqI : ðeÞ

Problem 6.5.3 (Mei, 1983, pp. 632–633; 1985, pp. 208–211). Using the kine-

matico-inertial identity (c, d) of the preceding problem, show that the Nielsen form
of the special nonlinear Voronets equations

ð@To=@ _qqIÞ:� @To=@qI

�
X
ð@�D=@ _qqI Þ ð@To=@qDÞ �

X
WD

I ð@T=@ _qqDÞo ¼ QIo; ðaÞ

where

QIo � QI þ
X
ð@�D=@ _qqIÞQD; ða1Þ

WD
I � ð@�D=@ _qqI Þ:� @�D=@qI �

X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ

� EIð�DÞ �
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ; ða2Þ
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is

@ _TTo

�
@ _qqI � 2 ð@To=@qIÞ �

X
ð@T=@ _qqDÞo ½@€qqD=@ _qqI � 2 ð@ _qqD=@qIÞ�

� 2
X
ð@T=@qDÞo ð@�D=@ _qqIÞ ¼ QIo; ðbÞ

or, compactly,

NI ðToÞ �
X
ð@T=@ _qqDÞo NI ð _qqDÞ � 2

X
ð@T=@ _qqDÞoð@�D=@ _qqIÞ ¼ QIo: ðcÞ

½If @T=@qD ¼ 0, then (b) reduces to what may be termed the Nielsen form of the
special nonlinear Chaplygin equations:

@ _TTo=@ _qqI � 2ð@To=@qIÞ
�
X
ð@T=@ _qqDÞo

�
@€qqD=@ _qqI � 2 ð@ _qqD=@qI Þ

� ¼ QIo�: ðdÞ

HINTS

By the kinematico-inertial identity of the preceding problem:

NIðToÞ ¼ EIðToÞ þ
X
ð@To=@qDÞ ð@�D=@ _qqI Þ; ðeÞ

NI ð _qqDÞ ¼ EI ð _qqDÞ þ
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ: ðf Þ

Problem 6.5.4 (Mei, 1985, pp. 196–203; 1987, pp. 397–402). Continuing from

the preceding problem, show that:

(i) If the constraints have the special Pfaffian form

_qqD ¼
X

bDIðt; qÞ _qqI þ bDðt; qÞ; ðaÞ

then the preceding Nielsen form of the special Voronets equations, eqs. (b, c), reduces

to

@ _TTo

�
@ _qqI � 2 ð@To=@qI Þ
�
X
ð@T=@ _qqDÞo

nX �
bDII 0 � 2 ð@bDI 0=@qI Þ

�
_qqI 0 þ

�
bDI � 2ð@bD=@qIÞ

�o
� 2

X
ð@T=@qDÞo bDI ¼ QIo; ðbÞ

where

bDII 0 �
X �ð@bDI=@qD 0 ÞbD 0I 0 þ ð@bDI 0=@qD 0 ÞbD 0I

�þ ð@bDI=@qI 0 þ @bDI 0=@qI Þ; ðc1Þ

bDI �
X �ð@bD=@qD 0 ÞbD 0I þ ð@bDI=@qD 0 ÞbD 0

�þ ð@bDI=@tþ @bD=@qIÞ; ðc2Þ

and, therefore,

(ii) If the constraints (a) have the Chaplygin form

_qqD ¼
X

bDIðqIÞ _qqI ; ðdÞ
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and @T=@qD ¼ 0 (recall discussion in }3.8), then (b) reduces to the Nielsen form of the
linear (i.e., Pfaffian) Chaplygin equations:

@ _TTo=@ _qqI � 2ð@To=@qIÞ
�
XX

ð@T=@ _qqDÞo ð@bDI=@qI 0 � @bDI 0=@qIÞ _qqI 0 ¼ QIo; ðeÞ

since in this case

bD ¼ 0; bDI ¼ 0; bDII 0 ¼ @bDI=@qI 0 þ @bDI 0=@qI : ðf Þ

Problem 6.5.5 Show that, for s ¼ 1; 2; 3; . . . ;

d=dt @ T
ðs�1Þ

o =@qI
ðsÞ

� �
� @T=@qI

¼ d=dt ð@T=@ _qqIÞ � @T=@qI þ
X

d=dt ½ð@T=@ _qqDÞ ð@qDðsÞ =@qIðsÞ Þ�: ðaÞ

HINTS

Recall that T
ðs�1Þ� �

o

¼ Toð Þðs�1Þ
, and show that

@ To

ðs�1Þ�
@qI
ðsÞ ¼ @ T

ðs�1Þ
=@qI
ðsÞ þ

X
ð@ T
ðs�1Þ�

@qD
ðsÞÞ ð@qD

ðsÞ�
@qI
ðsÞÞ: ðbÞ

Problem 6.5.6 Higher-Order Equations of Nielsen et al. in Holonomic and Quasi
Variables; and their Relation with the Equations of Lagrange, Hamel, et al.

(i) Let us define the (s)th-order holonomic operators of Nielsen:

Nk
ðsÞð. . .Þ � @ð. . .ðsÞ Þ�@ qkðsÞ �2 ½@ð . . .ðs�1ÞÞ�@ qk

ðs�1Þ�; ðaÞ
and Euler–Lagrange:

Ek
ðsÞð. . .Þ � d=dt ½@ð . . .ðs�1ÞÞ�@ qkðsÞ� � ½@ð . . .ðs�1ÞÞ�@ qk

ðs�1Þ�: ðbÞ
Show that, for any sufficiently differentiable function f ¼ f ðt; q; _qqÞ, and any

k ¼ 1; 2; . . . ; n; s ¼ 1; 2; 3; . . . ;

Nk
ðsÞð f Þ ¼ Ek

ðsÞð f Þ: ðcÞ
(ii) Let us define the (s)th-order nonholonomic operators of Nielsen:

Nk*
ðsÞð. . .Þ � @ð. . .ðsÞ Þ�@ �kðsÞ � 2 @ð . . .ðs�1ÞÞ�@ �k

ðs�1Þ
� �

; ðdÞ

and Euler–Lagrange:

Ek*
ðsÞð. . .Þ � d=dt @ð . . .ðs�1ÞÞ�@ �kðsÞ

� �
� @ð . . .ðs�1ÞÞ

�
@ �k
ðs�1Þ

" #
; ðeÞ
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where

@ð . . .ðs�1ÞÞ�@ �k
ðs�1Þ
�
X

@ð . . .ðs�1ÞÞ�@ ql
ðs�1Þ

� �
@ ql
ðsÞ�

@ �k
ðsÞ

" #
ðe1Þ

½ðsÞth-order quasi chain rule�:

Show that, for any sufficiently differentiable function f * ¼ f *ðt; q; !Þ, and any

k ¼ 1; 2; . . . ; n; s ¼ 1; 2; 3; . . . ;

Nk* f
ðsÞ

*

� �
¼ Ek* f

ðsÞ
*

� �
; ðf Þ

where

f ðt; q; _qqÞ ) _ff ) � � � f
ðs�1Þ
) f
ðsÞ
; ðgÞ

f *
ðs�1Þ
¼ f
ðs�1Þ
½t; q; _qq � q

ð1Þ
; . . . ; q

ðs�1Þ
; q
ðsÞðt; q; qð1Þ; . . . ; q

ðs�1Þ
; �
ðsÞ
Þ�

¼ f
ðs�1Þ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ� �

; ðhÞ

f *
ðsÞ
¼ f
ðsÞ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
;

�
q
ðsÞ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ� �

; q
ðsþ1Þ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ
; �
ðsþ1Þ� ��

¼ f
ðsÞ

t; q; q
ð1Þ
; . . . ; q

ðs�1Þ
; �
ðsÞ
; �
ðsþ1Þ� �

: ðiÞ

(a) Consider the earlier, say unconstrained, equations of Mangeron et al.

(6.4.14e):

ð1=sÞ @ T
ðsÞ
=@ qk
ðsÞ �ðsþ 1Þ ð@T=@qkÞ

� �
¼ Qk;

ðk ¼ 1; . . . ; n; s ¼ 1; 2; 3; . . .Þ: ð jÞ

Substituting into it s� 1 for s yields

@T=@qk ¼ ð1=sÞ @ T
ðs�1Þ

=@ qk
ðs�1Þ

� �
� ½ðs� 1Þ=s� Qk; ðkÞ

and then reinserting this expression into (j) results in the Nielsen form:

s @ T
ðsÞ�

@ qk
ðsÞ

� �
� ðsþ 1Þ @ T

ðs�1Þ�
@ q
ðs�1Þ

� �
¼ Qk; ðlÞ
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and, by (c): N
ðsÞ

k ðTÞ ¼ E
ðsÞ

k ðTÞ, also in the Lagrange form:

@ _TT*=@ _��I � 2ð@T*=@�I Þ
�
X

@€qqk=@ _��I � 2ð@ _qqk=@�IÞ
� � ð@T=@ _qqkÞ* ¼ YI ; ðr1Þ
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For s ¼ 1, the above yield, respectively,

ð@T*=@ _��IÞ:� @T*=@�I

ðq1Þ

ðsÞ @ T
ðs�1Þ

=@ q
ðsÞ

� �
�

� @ T
ðs�1Þ

=@ qk
ðs�1Þ ¼ Qk: ðmÞ

Hamel-type: ðsÞ d=dt @ T
ðs�1Þ

*
�
@ �I
ðsÞ

� �
� @ T

ðs�1Þ
*
�
@ �I
ðs�1Þ

� �

�
X

s @ qk
ðsÞ �

@ �I
ðsÞ

� �
:
� @ qk

ðsÞ �
@ �I
ðs�1Þ

� �
@ T
ðs�1Þ �

@ qk
ðsÞ

� �
*

¼
X

@ qk
ðsÞ �

@ �I
ðsÞ

� �
Qk � YI ; ðqÞ

and

Nielsen-type : ðsÞ @ T
ðsÞ

*
�
@ �I
ðsÞ

� �
� ðsþ 1Þ @ T

ðs�1Þ
*
�
@ �I
ðs�1Þ

 !

�
X

s @ qk
ðsþ1Þ�

@ �I
ðsÞ

 !
� ðsþ 1Þ @ qk

ðsÞ �
@ �I
s�1Þ

 !" #
@ T
ðs�1Þ �

@ qk
ðsÞ

� �
*

¼ YI : ðrÞ

(b) Next, if the system is subject to the m(< n) constraints

(s)

θD ≡

(s−1)
ωD ≡ fD

(
t, q, q̇, . . . ,

(s−1)
q ,

(s)
q

)
= 0 (D = 1, . . . ,m) (n1)

[
(s)

θI ≡
(s−1)
ωI =

(s−1)
ωI

(
t, q, q̇, . . . ,

(s−1)
q ,

(s)
q

)
�= 0 (I = m+ 1, . . . , n)

]
(n2)

⇒

(s)
qk =

(s)
qk

(
t, q, q̇, . . . ,

(s−1)
q ,

(s)

θ≡
(s−1)
ω

)
[k, l (below) = 1, . . . , n; s = 1, 2, . . .] (n3)

[
⇒ ∂

(s)
qk

/
∂
(s−1)
ωl = ∂

(s+1)
qk

/
∂
(s)
ωl = · · · , ∂

(s−1)
ωl

/
∂

(s)
qk = ∂

(s)
ωl

/
∂
(s+1)
qk = · · ·

]
(o)

(
for any given system (n1–n3)

)

[i.e., recalling (5.2.20c, d) and Tables 6.2, 6.3], then we either (i) add to the right (“force”)

side of the preceding equations of motion the constraint reaction term
∑

λD

(
∂fD

/
∂
(s)

qk

)
,

or (ii) utilize the above introduced quasivariables, in which case we readily obtain the
following, say kinetic, equations of motion (l → I):

⇒ δ
(s)
qk=

∑(
∂

(s)
qk
/
∂
(s−1)
ωl

)
δ
(s−1)
ωl ⇔ δ

(s)

θl ≡ δ
(s−1)
ωl =

∑(
∂

(s−1)
ωl

/
∂
(s)
qk

)
δ
(s)
qk (p)

−

∑
[(∂q̇k/∂θ̇I)

·

− ∂q̇k/∂θI](∂T/∂q̇k)
∗ = ΘI ,



and, for s ¼ 2,

2½@ _TT*=@ €��I �:� @ _TT*=@ _��I

�
X �

2 ð@€qqk=@ €��IÞ:� @€qqk=@ _��I
� ð@ _TT=@€qqkÞ* ¼ YI ; ðq2Þ

2ð@ €TT*=@€��I Þ � 3 ð@ _TT*=@ _��I Þ
�
X

2 ð@:::qk=@ €��IÞ � 3 ð@€qqk=@ _��IÞ
� � ð@ _TT=@€qqkÞ* ¼ YI : ðr2Þ

6.6 THE PRINCIPLE OF GAUSS (EXTENSIVE TREATMENT)

It is quite remarkable that Nature modifies free motions

incompatible with the necessary constraints in the same way in

which the calculating mathematician uses least squares to bring

into agreement results which are based on quantities connected

to each other by necessary relations.

(C. F. Gauss, 1829, On a New General Fundamental Principle of

Mechanics)

Gauss was not only a very eminent mathematician, but also an

astronomer and geodesist, and as such, a passionate calculator of

numerical results. It was he who founded the method of least

squares, which he evolved with successively greater depth in

three extensive treatises. If, as happened now and then, he was

asked (against his will) to deliver a lecture at the University of

Göttingen, his preferred topic was always the method of least

squares.

[A. Sommerfeld, 1964 (1940s), }48]

For complementary reading on Gauss’ principle, see (alphabetically): Brill (1909, pp.

45–51), Coe (1938, pp. 421–423), Dugas (1955, pp. 367–369), Lanczos (1970, pp.

106–108), Lindsay and Margenau (1936, pp. 112–115), Mach (1960, pp. 440–443),

MacMillan (1927, pp. 419–421), Volkmann (1900, pp. 355–357).

The Fundamental Theory

As was realized early in the 20th century, by Appell, Chetaev, Hamel, et al., the

equations of motion of systems subject to the m nonlinear first-order constraints

fDðt; r; vÞ ¼ 0 ðparticle formÞ or fDðt; q; _qqÞ ¼ 0 ðsystem formÞ; ð6:6:1Þ
let alone higher-order such constraints, cannot be derived from Lagrange’s principle

(LP); the reason being that (6.6.1) cannot be attached, or adjoined, to LP—we need
its virtual form, and it is not clear how that should be done, so as to get the correct

equations of motion. For this, we need either the principle of Jourdain or Gauss’

principle of least constraint, or least compulsion, or least constriction. The compulsion
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Z (from the German Zwang) of a generally constrained mechanical system, in actual

or kinematically possible motion, is defined as

Z � ð1=2ÞSdm ½a� ðdF=dmÞ�2 � ð1=2ÞS ð1=dmÞ ðdm a� dFÞ2

� ð1=2ÞS ðdRÞ2=dm ¼ ð1=2ÞS ð�dRÞ2=dm; ð6:6:2Þ

where, as usual (}3.2), for the actual motion

dm a ¼ dF þ dR ðdF : impressed force; dR : constraint reactionÞ: ð6:6:2aÞ

The above show clearly that Z 	 0; with the equal sign holding for unconstrained

motion; that is, dR ¼ 0. Further, expanding (6.6.2), we readily find

Z ¼ ð1=2ÞSdm a � a�SdF � aþ ð1=2ÞSdm ðdF=dmÞ2

¼ S �SdF � aþ � � � ; ð6:6:3Þ

where

S ¼ ð1=2ÞSdm a � a : Appellian function ð}3:3 ff :Þ; ð6:6:3aÞ

and . . . � terms not containing accelerations, like a; €qq; _!!; that is, a function of t; q; _qq
or !. Obviously, the factor 1/2 in (6.6.2) is unimportant, and is frequently omitted in

the literature; but, as (6.6.3) shows, it makes the connection between Z and S clearer.

Now, the principle of Gauss (GP) states that the (first) Gaussian variation of Z,

� 00Z, to be (re)defined below, vanishes, that is,

� 00Z ¼ 0; ð6:6:4Þ

for all variations of the accelerations from the actual motion, �a � � 00a, that are
compatible with all the constraints, at a given time and with given positions and velo-
cities (and impressed forces); that is, for

� 00t ¼ 0; � 00r ¼ 0; � 00v ¼ 0; � 00ðdFÞ ¼ 0; but � 00a 6¼ 0: ð6:6:5Þ

Since in classical mechanics dF ¼ dFðt; r; vÞ (see, for example, Pars, 1965, pp. 11–

12), we will have

� 00ðdFÞ ¼ 0 ðparticle force variationÞ and � 00Qk ¼ 0 ðsystem force variationÞ;
ð6:6:6Þ

and so GP reads

� 00Z ¼ ð1=2ÞSdm ð2Þ ½a� ðdF=dmÞ� � � 00a
¼S ðdm a� dFÞ � � 00a ¼ 0; ð6:6:7Þ

or, in terms of the reactions,

� 00Z ¼S ðdR=dmÞ � � 00ðdRÞ ¼S ðdR=dmÞ � � 00ðdm a� dFÞ
¼S ðdR=dmÞ � dm � 00a ¼SdR � � 00a ¼ 0: ð6:6:8Þ
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Principle of Gauss (GP) versus Principle of Lagrange (LP)

The relation between

LP : Sdm a � �r ¼SdF � �r ð6:6:9aÞ
and

GP : Sdm a � � 00a ¼SdF � � 00a; ð6:6:9bÞ
that is, the question of their mutual consistency and equivalence, is of cardinal impor-

tance to constrained system mechanics. Since there is only one mechanics, both LP
and GP must produce the same equations of motion. Therefore, let us begin by exam-

ining the derivation of such equations from these principles.

LP: substituting into (6.6.9a) the representation

�r ¼
X

ek �qk ¼
X

eI ��I ; ð6:6:10aÞ
and recalling the arguments expounded in chapters 3 and 5, we find the raw form of

the kinetic equations:

Sdm a � eI ¼SdF � eI : ð6:6:10bÞ
GP: We need � 00a. We have successively

v ¼ dr=dt ¼
X

ek _qqk þ no _qq terms ¼
X

eI !I þ no ! terms;

) a ¼ dv=dt ¼
X

ek €qqk þ no €qq terms ¼
X

eI _!!I þ no _!! terms;

) � 00a ¼
X

ek �€qqk ¼
X

eI � _!!I ½Gaussian counterpart of ð6:6:10aÞ�; ð6:6:11Þ

and, substituting this into (6.6.9b), we reobtain (6.6.10b).

Next, let us move to general system quasi variables. As seen in }5.2, for nonlinear

(possibly nonholonomic) velocity constraints

!D � fDðt; q; _qqÞ ¼ 0; ð6:6:12aÞ

_qqk ¼ _qqkðt; q; !Þ ¼ _qqkðt; q; !I Þ � Fkðt; q; !IÞ; ð6:6:12bÞ

(i) The nonholonomic system virtual displacements, ��, are linear and homogeneous

combinations of their holonomic counterparts, �q; and vice versa:

��l ¼
X
ð. . .Þlk �qk , �qk ¼

X
ð. . .Þkl ��l ; ð6:6:13Þ

so that we can attach (or adjoin) the constraints to LP; and

(ii) In the linear (Pfaffian) case, it reduces to the earlier results (chap. 2). This is accom-

plished by requiring compatibility between LP and GP.

(a) Indeed substituting (6.6.11) into (6.6.9b), we obtain the Gaussian form:X
S ðdm a� dFÞ � ek
� �

�€qqk ¼ 0; ð6:6:14aÞ
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we must define δθk; to replace in (6.6.12a, b) ω with δθ and q̇ with δq [i.e., δθ = f (t, q, δq)
and δq = F(t, q, δθ)] would be meaningless (useless). Instead, we are seeking a definition
in which:

ωI ≡ fI(t, q, q̇) �= 0;



or, since [ð. . .Þ:-differentiating (6.6.12b) and then varying it à la Gauss, and setting

� _!!D ¼ 0]

� 00ð€qqkÞ ¼ � 00
X
ð@ _qqk=@!lÞ _!!l þ no _!! terms

� �
¼
X
ð@ _qqk=@!lÞ � _!!l ¼

X
ð@ _qqk=@!I Þ � _!!I ; ð6:6:14bÞ

finally, XX
S ðdm a� dFÞ � ½ekð@ _qqk=@!IÞ�
n o

� _!!I

¼
X

S ðdm a� dFÞ � eI
� �

� _!!I ¼ 0;
ð6:6:14cÞ

(b) On the other hand, substituting (6.6.10a) into (6.6.9a), we obtain the

Lagrangean form: X
S ðdm a� dFÞ � ek
� �

�qk

¼
X

S ðdm a � dFÞ � eI
� �

��I ¼ 0: ð6:6:15Þ

Now, the Gaussian variational equation (6.6.14c) can be brought into agreement

�qk �
X
ð@ _qqk=@!lÞ ��l ; ð6:6:16Þ

from which, inverting, we find

��l �
X
ð@!l=@ _qqkÞ �qk ð6:6:17Þ

) ��D �
X
ð@!D=@ _qqkÞ �qk �

X
ð@fD=@ _qqkÞ �qk ¼ 0; ð6:6:17aÞ

��I �
X
ð@!I=@ _qqkÞ �qk �

X
ð@fI=@ _qqkÞ �qk 6¼ 0: ð6:6:17bÞ

Principle of Jourdain (JP) versus Principle of Lagrange (LP)

The same conclusion — namely, (6.6.17a) — can also be reached by requiring com-

patibility between LP and JP:

S ðdm a� dFÞ � � 0v ¼ 0; under �t ¼ 0 and �r ¼ 0: ð6:6:19Þ
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with the Lagrangean (6.6.15) via the following fundamental definition:

Then (recalling p. 825ff.)

(δθD).
= (∂ fD/∂q̇k).

δqk + (∂ fD/∂q̇k)(δqk).
, (6.6.18a)

δωD ≡ δ(θ̇D) = δ fD = (∂ fD/∂qk)δqk + (∂ fD/∂q̇k)δ(q̇k) etc. (6.6.18b)

X X
X X



System form: � 00ð _ffDÞ ¼ � 00 @fD=@tþ
X
½ð@fD=@qkÞ _qqk þ ð@fD=@ _qqkÞ€qqk�

n o
¼
X
ð@fD=@ _qqkÞ �€qq ð6:6:21bÞ

and, finally, adjoining the above to (6.6.9b) or to its system counterpart (6.6.20), via

Lagrangean multipliers, we obtain the general variational equation (unconstrained

variations):

� 00Z þ
X


D �
00ð _ff ð6:6:22Þ

Equations of Motion

We already have GP in its raw form; that is, eq. (6.6.9b). To obtain its system form,

we must transform (6.6.14a). Indeed, recalling standard kinematico-inertial identities

(chap. 3), we find

� 00Z ¼
X

S ðdm a� dFÞ � ek
� �

�€qqk

¼
X

Sdm a � ek �SdF � ek

� �
�€qqk

¼
X
½EkðTÞ �Qk��€qqk ¼ 0: ð6:6:20Þ

Next, to bring velocity constraints like (6.6.1) to Gaussian form—that is, to make

them exhibit accelerations explicitly—first we ð. . .Þ:-differentiate them and then we

vary them à la Gauss: � 00½ð. . .Þ:�. Thus, (6.6.1) yields

Particle form: � 00ð _ffDÞ ¼ � 00 @fD=@tþS ½ð@fD=@rÞ � vþ ð@fD=@vÞ � a�
n o

¼S ð@fD=@vÞ � �a ¼ 0; ð6:6:21aÞ

since (by §6.2, §6.3):
δq̇k → δ′q̇k =

∑
(∂q̇k/∂ωl)δωl, (6.6.19b)

δωl → δ′ωl =
∑

(∂ωl/∂q̇k)δq̇k, (6.6.19c)

Successively,

� 0v ¼ � 0
X

ek _qqk þ no _qq terms
� �

¼
X

ek �
0 _qqk

¼
X

ek
X
ð@ _qqk=@!lÞ�!l

� �
¼
XX

ekð@ _qqk=@!IÞ �!I ; ð6:6:19aÞ

k = 0 ,

D) = 0.

[
also, (δ′′fD)

· =
(∑

(∂fD/∂q̈k)δq̈k
)
·

=
(∑

(0) δq̈k
)
·

= 0
]
;

and, inserting this into (6.6.19), we find
∑∑(

S(dm a− dF) · ek(∂q̇k/∂ωI)
)
δωI = 0. (6.6.19d)

Again, this can be brought to the Lagrangean form (6.6.15) with the definitions
(6.6.16-17b).



From the above, all kinds of equations of motion, in holonomic variables flow; while

for kinetic equations in nonholonomic variables, they follow from (6.6.7) or (6.6.9b)

in connection with (6.6.11) (and similarly for kinetostatic equations). For example:

(i) Combining (6.6.7, 9b) with (6.6.21a), we get Lagrange’s equations of the first
kind:

dm a ¼ dF þ
X


D ð@fD=@vÞ; ð6:6:23Þ

(ii) While, combining (6.6.20) with (6.6.21b), we obtain Lagrange’s equations of

the second kind (Routh–Voss equations):

EkðTÞ � ð@T=@ _qqkÞ: � @T=@qk ¼ Qk þ
X


Dð@fD=@ _qqkÞ; ð6:6:24aÞ

or, since EkðTÞ ¼ @S=@€qqk, in their Appellian form:

@S=@€qqk ¼ Qk þ
X


Dð@fD=@ _qqkÞ: ð6:6:24bÞ

REMARK

If the constraints have the form fDðt; rÞ ¼ 0 ½ fDðt; qÞ ¼ 0�, it does not mean that we

should set, in the right side of (6.6.23) [(6.6.24a, b)] @fD=@v ¼ 0 ½@fD=@ _qqk ¼ 0�. It

means that, first, we bring these constraints to Gaussian form and then we

� 00ð. . .Þ-vary them; that is, for fDðt; rÞ, we have, successively,

fD ¼ 0) dfD=dt ¼ @fD=@tþS ð@fD=@rÞ � v
) d2fD=dt

2 ¼ ð@fD=@tÞ: þS
�ð@fD=@rÞ: � vþ ð@fD=@rÞ � a�

) � 00ð€ffDÞ ¼S ð@fD=@rÞ � � 00a ¼ 0; ð6:6:25Þ

and similarly for fDðt; qÞ ¼ 0: � 00ð €ffDÞ ¼
P ð@fD=@qkÞ � 00€qqk ¼ 0. Also, it is worth not-

ing that, since this constraint is holonomic, the right side of (6.6.25) would have

resulted even if we had reversed the order of differentiations:

�fD ¼S ð@fD=@rÞ � �r ¼ 0

) ð�fDÞ: ¼S
�ð@fD=@rÞ: � �rþ ð@fD=@rÞ � ð�rÞ:� ¼ 0;

) ð�fDÞ:: ¼S
�ð@fD=@rÞ:: � �rþ 2 ð@fD=@rÞ: � ð�rÞ:þ ð@fD=@rÞ � ð�rÞ::

� ¼ 0;

or, [invoking commutativity �ð_rrÞ ¼ ð�rÞ:, etc.]

ð�fDÞ:: ¼S
�ð@fD=@rÞ:: � �rþ 2 ð@fD=@rÞ: � �vþ ð@fD=@rÞ � �a

� ¼ 0; ð6:6:25aÞ
�ð. . .Þ ) � 00ð. . .Þ: ð� 00fDÞ:: ¼S ð@fD=@rÞ � �a ¼ 0: ð6:6:25bÞ

As a result of the above, equations (6.6.23, 24a, b) are replaced, respectively, by the

familiar (}3.5)

dm a ¼ dF þ
X


Dð@fD=@rÞ; ð6:6:26aÞ

ð@T=@ _qqkÞ:� @T=@qk ¼ @S=@€qqk ¼ Qk þ
X


Dð@fD=@qkÞ: ð6:6:26bÞ
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(iii) Appell’s equations in quasi variables via Gauss’ principle. By � 00ð. . .Þ-varying

(6.6.3), we obtain

� 00Z ¼ � 00S �SdF � � 00a ¼ 0: ð6:6:27aÞ

But, successively,

� 00S ¼ � 00 S ð1=2Þ dm a2
� �

¼Sdm a � � 00a

¼Sdm a �
X

ek � _!!k

� �
¼
X

Sdm a � ek

� �
� _!!k

¼
X
ð@S*=@ _!!kÞ � _!!k; ð6:6:27bÞ

and

SdF � � 00a ¼SdF �

X
ek � _!!k

� �
¼
X

SdF � ek

� �
� _!!k

¼
X

Yk � _!!k ðGaussian form of Appellian virtual workÞ; ð6:6:27cÞ

and so (6.6.27a) yields

� 00Z ¼
X
ð@S*=@ _!!k �YkÞ � _!!k ¼ 0; ð6:6:27dÞ

that is, among kinematically admissible accelerations, the actual (kinetic) ones make
the Gaussian compulsion Z:

Z ¼ S �
X

Yk _!!k þ no _!!-terms ¼ Z ð _!!Þ; ð6:6:28Þ

stationary (actually a minimum— see below).

Next, if the variations � _!! are independent, then (6.6.27d) yields the familiar

Appellian equations

@S*=@ _!!k ¼ Yk: ð6:6:29Þ
Similarly, in holonomic variables: there, eqs. (6.6.28, 27d, 29) read, respectively,

Z ¼ S �
X

Qk €qqk þ no €qq-terms ¼ Z ð€qqÞ; ð6:6:30aÞ

� 00Z ¼
X
ð@S=@€qqk �QkÞ �€qqk ¼ 0; ð6:6:30bÞ

@S=@€qqk ¼ Qk: ð6:6:30cÞ
If, on the other hand, the variations �€qq, � _!! are not independent, then either we

adjoin the constraints (in the proper form) via Lagrangean multipliers, or we embed
them via quasi variables (see below).
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Constraint Reactions (Kinetostatic Equations)

To calculate these reactions, we apply the relaxation principle (}3.7) to Z, just as in

the Appellian and Lagrangean cases; that is, we calculate the relaxed compulsion Z as

function of all n _!!’s, then differentiate it appropriately, and, finally, enforce in it the

constraints _!!D ¼ 0 (and, of course, !D ¼ 0). We note that here, too,

ð@Z=@ _!!I Þo ¼ @Zo=@ _!!I ð¼ 0; I ¼ mþ 1; . . . ; nÞ; ð6:6:31aÞ

where

Z ¼ Zð _!!D; _!!I Þ: relaxed compulsion; Zo ¼ Zð0; _!!I Þ: constrained compulsion;

ð6:6:31bÞ
and, as usual, ð. . .Þo � ð. . .Þ evaluated for _!!D ¼ 0. Hence, with the usual notations

(chaps. 3 and 5), the equations of motion are

Kinetostatic: ð@Z=@ _!!DÞo ¼ ð@S*=@ _!!DÞo �YD ¼ LD; ð6:6:32aÞ

Kinetic: ð@Z=@ _!!I Þo ¼ @Zo=@ _!!I

¼ ð@S*=@ _!!IÞo �YI ¼ @S*o=@ _!!I �YI ¼ 0; ð6:6:32bÞ

and, in view of (6.6.31a), if no reactions are sought, we can enforce the constraints

into Z right from the start, just like with S*.

The Minimality of the Compulsion

Here, we show that for the actual constrained motion, Z is not just stationary but

actually an extremum; specifically a minimum. (This can also be foreseen easily from

the mathematical structure of Z: a sum of essentially positive terms must have at least
one minimum, somewhere.)

From (6.6.2), we find

D 00Z � Zðaþ � 00aÞ � ZðaÞ
¼ ð1=2ÞSdm ½ðaþ � 00aÞ � ðdF=dmÞ�2 � ð1=2ÞSdm ½a� ðdF=dmÞ�2

¼ � 00Z þ ð1=2Þ � 00 2 Z 	 0; ð6:6:33Þ

where

� 00Z ¼S ðdm a� dFÞ � � 00a ð¼ 0Þ; ð6:6:33aÞ

� 00 2 Z ¼S ðdm � 00a � � 00aÞ ð	 0Þ: ð6:6:33bÞ

No particular physical significance is to be attached to this second-order property of

Z (as with other energetic functions of mechanics); it simply flows out of its math-

ematical structure.
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Least Compulsion and Theory of Errors

Equation (6.6.2) can be rewritten as

Z ¼S ð�dRÞ2
�
2 dm ¼S ðLost forceÞ2

�
2 dm: ð6:6:34Þ

In the theory of errors (also founded by Gauss), the dm’s are the ‘‘weights’’ of the

observations, and the lost forces are their ‘‘errors.’’

On this matter, let us quote in detail the well-known expert Lanczos:

Gauss was much attached to this principle because it represented a perfect physical

analogy to the ‘‘method of least squares’’ (discovered by him and independently by

Legendre), in the adjustment of errors. If a functional relation involves certain para-

meters which have to be determined by observations, the calculation is straightforward

so long as the number of observations agrees with the number of unknown

parameters. But if the number of observations exceeds the number of parameters, the

equations become contradictory on account of the errors of observation. The hypothe-

tical value of the function minus the observed value is the ‘‘error’’. The sum of the

squares of all the individual errors is now formed, and the parameters of the problem

are determined by the principle that this sum shall be a minimum. The principle of

minimizing the quantity Z is completely analogous to the procedure sketched above.

The 3N terms of the sum [the discretized (and rearranged but equivalent) version of our

(6.6.2)]

Z ¼
X
ðmk=2Þ ðak � Fk=mkÞ2 ¼

X
ð1=2mkÞ ðmkak � FkÞ2 ðk ¼ 1; . . . ;NÞ;

correspond to 3N observations. This number is in excess of the number of unknowns €qq
on account of the m given kinematical conditions. The ‘‘error’’ is represented by the

deviation of the impressed force Fk from the (negative of the) force of inertia ‘‘mass
times acceleration’’. Even the factor 1=mk in the expression for Z can be interpreted as a

‘‘weight factor’’, in analogy with the case of observations of different quality which are

weighted according to their estimated reliability. (1970, p. 108) [A similar property holds

for the center of mass G of N particles of masses mk with Cartesian coordinates

ðxk; yk; zkÞ: the coordinates of G ðx; y; zÞ minimize the expression

X
mk ðxk � xÞ2 þ ðyk � yÞ2 þ ðzk � zÞ2
h i

:�

Motivation for and Geometrical–Physical Meaning of
Gauss’ Principle

(i) Unconstrained versus Actual Constrained Motion

Let us consider a particle P of mass dm, possibly part of a larger system S, in actual

constrained motion along a curve c, under a total impressed force dF and a total

constraint reaction dR. Let P, at the generic neighboring instants t and tþ � , be at

the neighboring c-points M and C, respectively (fig. 6.2). Then, by Taylor’s theorem,

to the second �-order,

Dr � OC �OM ¼ ðOM þMAþ ACÞ �OM ¼MC

¼ rðtþ �Þ � rðtÞ ¼ v � þ ð1=2Þa �2: ð6:6:35aÞ
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On the other hand, if P was unconstrained or free—that is, if dR ¼ 0— then, even

if it started with the same initial conditions at M as in the actual constrained motion—

that is, rðtÞ ¼ r and _rrðtÞ ¼ v— since, then, a ¼ dF=dm, at time tþ � the particle

would end up somewhere outside c, say at B, where

OB ¼ OM þMAþ AB ¼ rþ v � þ ð1=2Þ ðdF=dmÞ�2: ð6:6:35bÞ

Therefore, the deviation vector, between the unconstrained and constrained motions,
during � , is

OC �OB ¼MC �MB ¼ AC �AB ¼ BC

¼ ð1=2Þ½a� ðdF=dmÞ��2 ¼ ð1=2Þ ðdR=dmÞ�2; ð6:6:35cÞ

and so [recalling (6.6.2)], the (elementary) compulsion of P, dZ, is

dZ � ðdm=2Þ ½a� ðdF=dmÞ�2 ¼ ðdm=2Þ ðdR=dmÞ2 ¼ ð2 dm=� 4Þ ðBCÞ2; ð6:6:35dÞ

and from this it follows that the (total) compulsion of S, Z, is

Z ¼SdZ

¼S ðdm=2Þ ½a � ðdF=dmÞ�2 ¼S ðdm=2Þ ðdR=dmÞ2

¼ ð2=�4ÞSdm ðBCÞ2 ð6:6:35eÞ

½¼ Sum of ðmassÞ weighted deviations between unconstrained and constrained motions

(to within an unimportant, ‘‘Gaussianly constant,’’ factor)].

Why up to the second order, in (6.6.35d, e)? To the first order, clearly, A ¼ C ¼ B;

that is, the deviation vanishes; while higher than second �-orders would have intro-

duced variations in the forces dF and dR— something undesirable in the derivation

of equations of motion at t; M.
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Figure 6.2 Geometrical interpretation of Gauss’ constraint-compulsion:

MA ¼ v s, MC ¼ v sþ ð1=2Þa s2, MB ¼ v sþ ð1=2ÞðdF=dmÞs2
) BC ¼ MC �MB ¼ ð1=2Þ½a � ðdF=dmÞ�s2 ¼ ð1=2Þ½ðdR=dmÞ�s2.



(ii) Kinematically Admissible Constrained versus Actual

Constrained Motion

Under a Gaussianly kinematically admissible acceleration aþ D 00a ¼ aþ � 00a � a 0,
the particle P, starting again from A [with the same initial conditions rðtÞ ¼ r and

_rrðtÞ ¼ v], would have ended at tþ � , say at C 0 (fig. 6.3).

Gauss’ principle states that, for the kinetically correct acceleration, C 0 ! C. Let us

examine the geometry of the ‘‘compulsion triangle’’ BCC 0. From fig. 6.3, we readily

obtain

BC 0 ¼ BC þ CC 0

) ðBC 0Þ2 ¼ ðBCÞ2 þ ðCC 0Þ2 þ 2BC �CC 0; ð6:6:36aÞ

the interpretations (6.6.35d, e),

Z 0 �S ðdm=2Þ ½a 0 � ðdF=dmÞ�2 ¼S ðdm=2Þ ½ðaþ � 00aÞ � ðdF=dmÞ�2
n o

¼ ð2=�4ÞSdm ðBC 0Þ2

¼ ð2=�4ÞSdm
�ðBCÞ2 þ ðCC 0Þ2 þ 2BC �CC 0

�
¼ ð2=�4ÞSdm

n
ð�2=2Þ ða� dF=dmÞ� �2þ ð�2=2Þ � 00a� �2

þ 2 ð�2=2Þ ða� dF=dmÞ� �
� ð�2=2Þ � 00a� �o

¼S ðdm=2Þ ða� dF=dmÞ2 þSdm ða� dF=dmÞ � � 00a
þS ðdm=2Þ ð� 00aÞ2

¼ Z þ DZ

¼ Z þ � 00Z þ ð1=2Þ � 00 2 Z ¼ Z þ 0þ ð1=2Þ � 00 2 Z; ð6:6:36bÞ
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Figure 6.3 Constrained compulsion: kinematically admissible (C 0) versus actual (C); and detail

of ‘‘compulsion triangle’’ BCC 0.

·

(2BC · CC ′ = 2|BC| |CC ′| cos(BC,CC ′) = −2|BC| |CC ′| cos θ) and, therefore, recalling

A(r + v) 



from which, since

DZ � Z 0 � Z ¼ ð1=2Þ � 00 2 Z ¼ ð1=2ÞSdm ð� 00aÞ2 	 0 ½¼ 0; for � 00a ¼ 0 �

we conclude that

Z 0 �Sdm ðBC 0Þ2 > Z �Sdm ðBCÞ2; ð6:6:36cÞ

that is, the actual acceleration minimizes the compulsion.

An additional, ‘‘minimum norm’’ interpretation of the above is known in the

largely self-explanatory fig. 6.4 [see texts on applied/numerical linear algebra: least

squares fitting of data; also, least squares derivation of Fourier series coefficients].

On the Uniqueness of the GP Solutions

The question of the uniqueness, or lack thereof, of the equations of motion obtained

from the minimization, or stationarization, of Z is, obviously, of practical and phy-

sical importance. This is answered by the following considerations: as long as rank
ð@fD=@ _qqkÞ ¼ m (regular case), eliminating the m dependent €qqD’s via the constraints,

we will be able to express the particle accelerations a as linear combinations of the
n�m independent €qqI ’s or _!!I ’s; and therefore Z will be a quadratic function in these

variables. Hence, differentiating Z with respect to the independent system accelera-

tions will result in a system of n� m linear equations in them, and that system will

have a unique solution. The dependent accelerations can then be determined uniquely

from the constraint conditions, properly differentiated.
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Figure 6.4 Minimum norm interpretation of minimality of Gaussian compulsion.

dm a ¼ dF þ dR,

Aðt; r ; vÞ: initial state, à la Gauss; AB ¼ dF (i.e., B: given);

Locus of C 0: virtual plane through Aðt; r ; vÞ;
AC 0 ¼ dm ða þ � 00aÞ � dma 0: kinematically admissible accelerations à la Gauss;

C 0B ¼ dF � dma 0 � �dR 0 (C 0: admissible position);

CB ¼ �dR ¼ dF � dma (C: actual position)

) CC 0 ¼ dm � 00a, AC ¼ dma;
jC 0Bj ¼ j � dR 0j: absolute value (norm) of admissible constraint reaction;

Gauss’ principle: jBC 0j ¼ jdR 0j ¼ minimum ) C 0 ¼ C (BC normal to virtual plane).

O



In sum, excluding singular cases, the positive definite function Z will have a

minimum at only one ‘‘point.’’

[The singular case, with its important consequence, seems to have been noticed

first by the distinguished German mathematician P. Stäckel (in 1919). As he put it: in

singular configurations, it is not possible to deduce the principle of Gauss from that

of d’Alembert. Rather, for singular configurations one must postulate Gauss’

principle. Then, the argument presented in (6.2.2 ff.) no longer holds! For examples

of the violation of this uniqueness of the minimum of Z in singular cases — that is,

where LP and Lagrange’s equations fail to determine the accelerations uniquely, but

GP does — see, for example, Nordheim (1927, pp. 65–66, and references therein),

Golomb (1961, pp. 69–72); and, for a comprehensive contemporary treatment,

Pfister (1995).]

On the History of GP

Gauss himself never gave a precise mathematical formulation of his principle; that is,

our equations (6.6.2–9). Instead, he stated it as follows:

The motion of a system of material points, connected with each other in an arbitrary

way and subjected to arbitrary influences takes place at every instant, in the most perfect

accordance possible with the motion that they would have if they became completely

free, that is to say, with the smallest possible constraint, taking as measure of the

constraint [that the system goes through] during an infinitesimally small instant, the

sum of the products of the mass of each point with the square of the quantity by which it

deviates from the position that it would have taken, if it had been free. [J. für

Mathematik (Crelle), 1829, vol. 4, p. 232]

Perhaps this lack of quantitative formulation of the principle may explain its

relative obscurity, compared with LP, throughout the 19th century and a fair part

of the early 20th—one imagines the fate of the original, highly qualitative and

primitive, principle of d’Alembert (of 1743) without Lagrange’s formulation (of

1764). The first analytical expression for Z, in rectangular Cartesian coordinates,

seems to have been given by Jacobi [1847–1848, lecture notes on Analytical

Mechanics (publ. 1996, pp. 96–100); see also Appell, 1953, pp. 497–498] and

Scheffler (in 1858). They wrote (with some obvious notations and without the factor

1=2)

Z ¼
X

mk

�ð€xxk � Xk=mkÞ2 þ ð€yyk � Yk=mkÞ2 þ ð€zzk � Zk=mkÞ2
�
: ð6:6:37Þ

However, the first precise formulation of GP as a minimum condition, with Z
expressed in general system coordinates qk, and with the explicit realization that

for this to happen only the accelerations should be varied, while the positions,

velocities, and time must be treated as constant, is due to Lipschitz (Crelle’s J.,
1877, vol. 82, p. 323); and, over the next 35 years or so (1877–1913), he and a few

other distinguished mechanicians/physicists/mathematicians (including Schering,

Gibbs, Mayer, Hertz, Voss, Brell, Schenkl, Wassmuth, Brill, and Mach) did for

GP what Lagrange did for d’Alembert’s principle. In particular, Gibbs (1879)

extended the principle to inequality (or unilateral) constraints:

� Sdm a2=2
� �

�SdF � �a 	 0 or � 00Z 	 0; ð6:6:38Þ
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while Appell (in the late 1890s) applied it successfully to the formulation of his

nonholonomic system equations. In most of the 20th century English language

literature, GP has been barely tolerated as a clever but essentially useless academic

curiosity, when it was mentioned at all. The only applications of it have appeared in

problems of impulsive motion (with accelerations replaced by velocities), in British

texts (} 4.6).

However, this short-sighted situation seems to be changing for the better: in

recent decades, GP has been experiencing a vigorous revival, in connection with

analytical/computational approximate methods in such diverse areas of mechanics

as nonlinear oscillations, multibody dynamics, heat transfer, structural analysis,

elastic/plastic buckling, shell theory, and so on. [See, for example, Girtler (1928),

Lilov and Lorer (1982), Lilov (1984), Vujanovic and Jones (1989, chap 7; this also

contains a ‘‘complementary’’ formulation of GP where the accelerations are kept
fixed and the impressed forces are varied), and Udwadia and Kalaba (1996). For

the continuum formulation of GP, see, for example, Brill (1909), Hellinger (1914,

pp. 633–635), and Truesdell and Toupin (1960, pp. 605–606).] Along with other

DVP, GP has the big advantage over time-integral variational principles that — for

discrete systems, at least — its application involves only ordinary differential calculus

on a quadratic function of the acceleration components, and not variational calcu-

lus.

Example 6.6.1 An ad hoc but Instructive Derivation of GP from LP (Nonsingular
Cases). Applying LP for tþ dt � tþ � , where � is an arbitrarily small time

interval, we have

Sdm aðtþ �Þ � �rðtþ �Þ ¼SdF ðtþ �Þ � �rðtþ �Þ: ðaÞ
Then, substituting into (a) the special variation (neglecting higher than �2-order

terms), we get

�rðtþ �Þ ¼ � 00rðtþ �Þ
¼ � 00 rðtÞ þ vðtÞ� þ ð�2=2ÞaðtÞ þ � � �� � ¼ ð�2=2Þ � 00aðtÞ; ðbÞ

and simplifying, and renaming � 00aðtÞ ¼ �aðtÞ, we obtain (the differential form of)

GP:

Sdm aðtÞ � �aðtÞ ¼SdFðtÞ � �aðtÞ; Q:E:D: ðcÞ

Example 6.6.2 Using Gauss’ principle, let us obtain the equations of motion of

the system shown in fig. 6.5. (All pulleys and cables are assumed massless.)

Here, n ¼ 3, m ¼ 1: q1;2;3 ¼ xA; xB; xC; and, clearly, the sole constraint among

them is

2xA þ xB þ xC ¼ constant; ðaÞ
or, in Gaussian form,

½eq: ðaÞ�€ ¼ 0: 2 €xxA þ €xxB þ €xxC ¼ 0: ðbÞ
Gauss’ principle requires that we minimize the system compulsion (with easily under-

Z ¼
X
ð1=2mkÞ ðXk � mk€xxkÞ2; under ðaÞ€ ¼ ðbÞ ¼ 0: ðcÞ
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stood notations, and k = 1, 2, 3 ⇒ A, B,C; i.e. Qk → Q1,2,3 = 3W, 2W,W):



This leads us readily to the constrained Gaussian variational equation

�Z ¼ 0: ½3W � ð3W=gÞ€xxA� �€xxA þ ½2W � ð2W=gÞ€xxB� �€xxB
þ ½W � ðW=gÞ€xxC� �€xxC ¼ 0; ðdÞ

under

� 00½eq: ðaÞ€� ¼ � 00½eq: ðbÞ� ¼ �½eq: ðbÞ�: 2 �€xxA þ �€xxB þ �€xxC ¼ 0: ðeÞ
Application of the multiplier rule to the above leads at once to the three Routh–Voss

equations of motion

ð3W=gÞ€xxA ¼ 3W � 2
; ðf1Þ

ð2W=gÞ€xxB ¼ 2W � 
; ðf2Þ

ð3W=gÞ€xxC ¼W � 
; ðf3Þ
which, along with (a) constitute a determinate system for the four unknowns

xA;B;C ðtÞ; 
ðtÞ. [Since �SA �xA ¼ �2
 �xA, and �SB �xB ¼ �
 �xB, �SC �xC ¼
�
 �xC, 
 equals either of the cable tensions SB or SC.]

Indeed, solving (f1–3) for €xxA;B;C in terms of 
 and substituting the results into

½eq: ðaÞ�€ ¼ eq: ðbÞ, we readily find 
 ¼ ð24=17ÞW . Then, (f1–3) yield immediately

€xxA ¼ ð1=17Þ g; €xxB ¼ ð5=17Þ g; €xxC ¼ ð7=17Þ g: ðgÞ
The solution of this problem via Jourdain’s principle should be obvious.
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Figure 6.5 Motion of a system of three constrained particles

A, B, C in a vertical plane [gravity: g (downward)].



Example 6.6.3 Using Gauss’ principle and the method of relaxation of the

constraints (}3.7), let us find the motion and reaction of a (plane) mathematical

pendulum, of mass m and length l.
In polar coordinates r; � (angle of pendulum’s thread with vertical), the (physical)

components of the acceleration of the pendulum’s bob P are

radial: ar ¼ €rr� r ð _��Þ2; tangential: a� ¼ 2 _rr _��þ r €��: ðaÞ
Therefore (and since these are orthogonal curvilinear coordinates), the relaxed sys-

tem compulsion is [recalling (6.6.3), with S ¼ Appellian function and T ¼ thread

tension]

Z ¼ S � ½ðQr þ RrÞar þ ðQ� þR�Þa��
¼ ðm=2Þ ½€rr� r ð _��Þ2�2 þ ð2 _rr _��þ r €��Þ2

n o
� ðm g cos�� TÞ ½€rr� r ð _��Þ2� þ ð�m g r sin�þ 0Þ ð2 _rr _��þ r €��Þ
n o

;

and so, to within Gauss-important terms,

Z ¼ Zð€rr; €��Þ
¼ ðm=2Þ ð€rrÞ2 � 2 r ð _��Þ2€rrþ r2 ð €��Þ2 þ 4 r _rr _�� €��

h i
� m g cos� €rrþm g r sin� €��þ T €rr: ðbÞ

Hence, the equations of motion are

Kinetostatic: ð@Z=@€rrÞr¼l ¼ 0: ½m €rr�m r ð _��Þ2 �m g cos��r¼l ¼ �T ;
) m l ð _��Þ2 ¼ �m g cos�þ T ; ðc1Þ

Kinetic: ð@Z=@ €��Þr¼l ¼ 0: ðm r2 €��þ 2 m r _rr _��þ m g r sin�Þr¼l ¼ 0;

) €��þ ðg=lÞ sin � ¼ 0: ðc2Þ
We notice that (c2) can also be obtained from

@Zo=@ €�� ¼ 0; ðdÞ
where Zo is the constrained system compulsion:

Zo ¼ Z

r¼l ¼ ðm l2=2Þ ð €��Þ2 þm g r sin� €��: ðeÞ

Example 6.6.4 (Hamel, 1949, pp. 787–789). Using Gauss’ principle (GP), let us

find the equations of motion of a rigid body that rotates about a fixed point O,

under a total impressed moment MO and, also, constrained by

f ðt;x; aÞ ¼ 0; x; a: angular velocity and acceleration of the body: ðaÞ
Substituting into GP, (6.6.9b), the well-known kinematical relation (}1.7)

a ¼ dv=dt ¼ d=dtðx� rÞ ¼ a� rþ x� ðx� rÞ; ðbÞ
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and its Gaussian variation

� 00a ¼ �a� r; ðcÞ
we get

Sdm a � ð�a� rÞ ¼SdF � ð�a� rÞ; ðdÞ

or, rearranging,

S r� dm a
� �

� �a ¼ S r� dF
� �

� �a; ðeÞ

or, finally (with the usual notations),

ðdHO=dtÞ � �a ¼MO � �a: ðf Þ
The above must hold for any variation �a satisfying (a):

� 00f ¼ 0 : ð@f =@aÞ � �a ¼ 0: ðgÞ
Adjoining (g) to (f) via the Lagrangean multiplier 
 and then setting the (total)

coefficient of �a equal to zero, we find

dHO=dt ¼MO þ 
ð@f =@aÞ: ðhÞ
For example, if

f ¼ a � ðx�HOÞ ¼ 0 ði:e:; if a; x; and HO are coplanarÞ; ðiÞ
then (h) yields

dHO=dt ¼MO þ 
ðx�HOÞ; ð jÞ
or, in components along body-fixed principal axes at O [with dHO=dt ¼
d 0HO=dtþ x�HO, and easily understood notations (}1.17)],

A ðd!x=dtÞ þ ðC � BÞ ð1� 
Þ !y !z ¼MO;x; ðk1Þ

B ðd!y=dtÞ þ ðA� CÞ ð1� 
Þ !x !z ¼MO;y; ðk2Þ

C ðd!z=dtÞ þ ðB� AÞ ð1� 
Þ !x !y ¼MO;z; ðk3Þ

while the constraint reads, since then HO ¼ ðA!x; B!y; C !zÞ,
d!x=dt d!y=dt d!z=dt

!x !y !z

A!x B!y C !z


 ¼ 0; ðlÞ

or, in extenso,

ðd!x=dtÞ ðC � BÞ !y !z þ ðd!y=dtÞ ðA� CÞ !z !x þ ðd!z=dtÞ ðB� AÞ !x !y ¼ 0:

ðmÞ
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Equations (k1–3) and (l or m) constitute a system of four equations for

!x; y; zðtÞ; 
ðtÞ.
For additional details on special cases, see Hamel (1949, pp. 788–789).

Example 6.6.5 Förster’s Principle (Förster, 1903; Whittaker, 1937, p. 262). Let

T and V denote the kinetic and potential energies of a dynamical system. Show

that

2ð €VV þ SÞ � 2 €VV þSdm ½ð€xxÞ2 þ ð€yyÞ2 þ ð€zzÞ2� ðaÞ

differs from

S ð1=dmÞ
�ðdm €xxþ @V=@xÞ2 þ ðdm €yy þ @V=@yÞ2 þ ðdm €zzþ @V=@zÞ2� ðbÞ

by a quantity that does not involve accelerations. Hence, deduce that

Y � €TT � S

� €TT �S ðdm=2Þ ½ð€xxÞ2 þ ð€yyÞ2 þ ð€zzÞ2� ðcÞ

is a maximum when the accelerations have the values corresponding to the actual

motion, as compared with all motions that are consistent with the constraints and

satisfy the same integral of energy, and that have the same values of the coordinates

and velocities at the instant considered, provided the constraints do no work.

Let us show that

2 Z � ð2 €VV þ 2 SÞ ¼ 2 ðZ � S � €VVÞ � �ðt; q; _qqÞ: ðdÞ
This follows immediately from (6.6.3), if we note that, since V ¼ VðqÞ,

_VV ¼
X
ð@V=@qkÞ _qqk ¼ �

X
Qk _qqk

) €VV ¼ �
X

_QQk _qqk �
X

Qk€qqk

¼ �
X

Qk€qqk þ no €qq terms ðeÞ

½Qk ¼ QkðqÞ ) _QQk ¼ _QQkðq; _qqÞ�:
Next, let us show that Y is a maximum, under the above-stated (Gaussian) restric-

tions. By ð. . .Þ:-differentiating the energy conservation equation: T þ V ¼ constant,
yields €TT ¼ � €VV , and therefore Y ¼ � €VV � S, or explicitly, since V ¼ VðrÞ,

�Y ¼S ð@V=@rÞ � aþ no a-terms½ � þS ð1=2Þ dm a � a

¼S ð1=2 dmÞ ½dm aþ @V=@r�2 þ no a-terms

¼S ðdm=2Þ ½aþ ð@V=@rÞ=dm�2 þ no a-terms

¼ Z þ no a-terms; ðf Þ
and, therefore, since Z is a minimum [eqs. (6.6.33–33b)], Y will be a maximum,

Q.E.D.

If, in Förster’s terminology, we call €TT acceleration of kinetic energy, and S kinetic
energy of accelerations, then we can formulate his principle as follows: among all
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motions that (i) are admissible in a Gaussian sense and (ii) preserve the total energy

of the system, the actual one maximizes the function ‘‘acceleration of the kinetic

energy minus kinetic energy of the accelerations.’’

HISTORICAL REMARK

This ‘‘principle’’ was formulated in 1903, in order to reduce to mechanical principles

(e.g., that of Gauss) another qualitative and ad hoc ‘‘principle’’ by the famous

physical chemist W. Ostwald. As such, Förster’s result, although today it may

appear as an academic curiosity, at its time represented another victory of the

molecular/atomistic viewpoint (of Boltzmann) over the phenomenological/energetic
viewpoint of Ostwald, Helm, Mach, et al.

Example 6.6.6 Explicit Form of the Gaussian Compulsion of a Scleronomic
System, in Lagrangean Coordinates. (This example requires some familiarity with

general tensors.) Substituting into (6.6.3) the acceleration expression

a � dv=dt ¼ d=dt
X

_qqkek

� �
¼
X

€qqk þ
XX

ckrs _qqr _qqs

� �
ek �

X
akek; ðaÞ

where

@er=@qs¼@es=@qr�
X

ckrs ek¼
X

cksr ek)ðand here is where tensors are neededÞ
h i

:

ð@er=@qsÞ � ek � ck;rs ¼ ck;sr: particle Christoffel symbols of the 1st kind;

and recalling that (}3.10)

Sdm ð@er=@qsÞ � ek �Sdm ck;rs ¼ Gk;rs ¼ Gk;sr and Gl;rs �
X

MlkG
k
rs;

ðbÞ

we find, successively (recall derivation in }3.11),

Z ¼ ð1=2ÞSdm
X

akek

� �
�

X
alel

� �
�SdF �

X
akek

� �
þ ð1=2ÞSdm ðdF=dmÞ2

¼ � � � ¼ ð1=2Þ
XX

Mkl €qqk €qql

þ
XXX

Gk;rs €qqk _qqr _qqs �
X

Qk €qqk þ no €qq terms; ðcÞ�
the second ðtripleÞ sum can also be written as

ð1=2Þ
XXX

ðGk;rs €qqk þ Gl;rs €qqlÞ _qqr _qqs

¼ ð1=2ÞPPPP
MklðGl

rs€qqk þ Gk
rs €qqlÞ _qqr _qqs

�
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and, therefore, varying this expression à la Gauss, we obtain

� 00Z ¼
X
ð@Z=@€qqkÞ �€qqk ¼

X
½EkðTÞ �Qk� �€qqk ¼ 0; ðdÞ

where

EkðTÞ ¼ ð@T=@ _qqkÞ: � @T=@qk ¼
X

Mkl€qql þ
XXX

MklG
l
rs _qqr _qqs

¼
X

Mkl €qql þ
XX

Gl
rs _qqr _qqs

� �
¼
X

Mkl €qql þ
XX

Gk;rs _qqr _qqs; ðeÞ

as expected.

REMARKS

(i) With the help of the definitions

�rs �
XX

MklG
ðklÞ

rs; ðf1Þ

2GðklÞrs � Gl
rs €qqk þ Gk

rs €qql : 2 ðsymmetric part of Gk
rs €qqlÞ; ðf2Þ

we can rewrite Z as follows:

Z ¼ ð1=2Þ
XX

Mkl €qqk €qql þ
XX

�kl _qqk _qql �
X

Qk €qqk þ no €qq terms

½quadratic in €qqþ linear in €qqþ constant in €qq �: ðgÞ
(ii) For a rheonomic system, the summations over the repeated Latin indices run

from 1 to nþ 1 (with qnþ1 � t ) _qqnþ1 ¼ 1 ) €qqnþ1 ¼ 0).

(iii) With the help of the above, the quantity Y of the preceding example becomes

Y ¼ €TT � ð1=2Þ
XX

mkl EkðTÞElðTÞ; ðhÞ

where the mkl [‘‘conjugate’’ of Mkl (3.10.4); and denoted in tensor calculus as Mkl]

are defined by X
mklMlr ¼ �kr: ðiÞ

6.7 THE PRINCIPLE OF HERTZ

If the impressed forces, though not necessarily the constraint reactions, vanish—that

is, in forceless but constrained motion, GP becomes Hertz’s principle (HZP) of the
straightest path, or least curvature:

Z ) S ¼ ð1=2ÞSdm a � a! minimum; ð6:7:1Þ

which is an actual minimum, since here Z ¼ S is a positive definite quadratic form.

Let us see the consequences of this; in particular, its connection with the concept of

curvature.
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We consider a scleronomic system, moving in a (Riemannian) configuration space

with the following kinetic energy-based metric [i.e., arc element formula — recall

(3.9.4o)] formulae

ds �
XX

Mkl dqk dql

� �1=2¼ ð2TÞ1=2dt; Mkl �Sdm ek � el ; ð6:7:2aÞ

) 2T �Sdm v � v ¼
XX

Mkl _qqk _qql � ðds=dtÞ2: ð6:7:2bÞ

[Other equivalent choices of system arc-parameter and metric are possible — see

‘‘Remarks’’ (i) below]. Then, since

v � dr=dt ¼ ðdr=dsÞ ðds=dtÞ; ð6:7:3aÞ

a � dv=dt ¼ ðd2r=ds2Þ ðds=dtÞ2 þ ðdr=dsÞ ðd2s=dt2Þ; ð6:7:3bÞ
the compulsion) Appellian becomes

S ¼ ð1=2ÞSdm a � a

¼ ð1=2Þ ðds=dtÞ4Sdm ðd2r=ds2Þ2 þ ð1=2Þ ðd2s=dt2Þ2Sdm ðdr=dsÞ2

þ ðd2s=dt2Þ ðds=dtÞ2Sdm ðdr=dsÞ � ðd2r=ds2Þ: ð6:7:4Þ

But since then (6.7.2b) becomes

T ¼ ð1=2Þ ðds=dtÞ2 ¼S ðdm=2Þ ðdr=dtÞ2 ¼S ðdm=2Þ ½ðds=dtÞ ðdr=dsÞ�2

¼ ð1=2Þ ðds=dtÞ2Sdm ðdr=dsÞ2; ð6:7:5Þ

it follows that, for this particular parametrization,

Sdm ðdr=dsÞ2 ¼ 1; ð6:7:6aÞ

and from the latter, by dð. . .Þ=ds-differentiation,

Sdm ðdr=dsÞ � ðd2r=ds2Þ ¼ 0; ð6:7:6bÞ

so that S, eq. (6.7.4), reduces to a sum of two positive terms:

S ¼ ð1=2Þ ðds=dtÞ4Sdm ðd2r=ds2Þ2 þ ð1=2Þ ðd2s=dt2Þ2: ð6:7:7Þ

Finally, with the help of the following definition of the system curvature K [guided by

the Frenet–Serret formulae (}1.2): At a generic point r of a curve with arc-length s,
we have d2r=ds2 ¼ n=	, where n = (first) local unit normal, and 	 = (first) local

radius of curvature]:

Sdm ðd2r=ds2Þ2 � 1=R2 � K2 ð6:7:8aÞ

(R ¼ system radius of curvature), the Appellian (6.7.7), assumes the form

S ¼ ð1=2Þ ½ðd2s=dt2Þ2 þ ðds=dtÞ4�R2� ¼ ð1=2Þ ½ðd2s=dt2Þ2 þ K2ðds=dtÞ4�: ð6:7:8bÞ
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[We remark that, since both s and K depend only on the system trajectories, and not

on the time needed to traverse them, the above expression exhibits a decoupling of the
spatial and temporal aspects of the motion.]

In view of (6.7.8b), HZP, eq. (6.7.1), becomes: In the impressed force-free motion
of a scleronomic ð) conservative) system, with momentarily given positions and velo-
cities, the acceleration is such that the system Appellian is a minimum; or, equivalently,

since then

T ¼ ð1=2Þ ðds=dtÞ2 ¼ constant

) ds=dt ¼ constant) d2s=dt2 ¼ 0;

) S ¼ ð1=2ÞK2ðds=dtÞ4; i:e:; S � K2; ð6:7:9Þ
the system curvature is a minimum:

K2 �Sdm ðd2r=ds2Þ2 ! minimum: ð6:7:10Þ

[Simply, S being the sum of two squares, it will be a minimum when each of these

terms becomes least; which, since ds=dt is a given constant, leads to d2s=dt2 ¼ 0 and

K ! minimum.]

In words: The inertial path of a system in configuration space is the ‘‘straightest’’
curve compatible with the given holonomic and/or nonholonomic, but stationary,
constraints; and it is traced at a uniform rate.

For example, in the case of a particle constrained to move on a smooth surface,

under no impressed forces, HZP states that its path curvature is the least among all

surface curvatures. We notice that HZP, like GP, holds for holonomic and non-

holonomic systems alike [unlike the integral variational principles (in both their time
or geodesic forms, like Jacobi’s) which, for nonholonomic systems, do not hold

without modifications (}7.7 ff.)].

REMARKS

(i) Had we defined the system arc-length s by

2T ¼ m ðds=dtÞ2; m �Sdm; ð6:7:11Þ

) m ðdsÞ2 ¼Sdm ðdr � drÞ ¼S ð
ffiffiffiffiffiffiffi
dm
p

drÞ � ð
ffiffiffiffiffiffiffi
dm
p

drÞ �Sdr 0 � dr 0

) ðdsÞ2 ¼S ðdr 0=
ffiffiffiffiffiffiffi
dm
p

Þ � ðdr 0=
ffiffiffiffiffiffiffi
dm
p

Þ �Sdr 00 � dr 00; ð6:7:11aÞ

dr 00 � dr 0=
ffiffiffiffiffiffiffi
dm
p

� ðdm=mÞ1=2 dr; ð6:7:11bÞ
it is not hard to see that, then, we would have

Sdm ðdr=dsÞ2 ¼ m; S ðdr 00=dsÞ2 ¼ 1; ð6:7:12Þ

and with the new definition [instead of (6.7.8a)]

Sdm ðd2r=ds2Þ2 ¼S ðd2r 0=ds2Þ2 ¼ m=R2 � mK2; ð6:7:13Þ

S would reduce to [instead of (6.7.8b)]
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S ¼ ðm=2Þ�ðd2s=dt2Þ2 þ ðds=dtÞ4�R2
� ¼ ðm=2Þ �ðd2s=dt2Þ2 þ K2ðds=dtÞ4�; ð6:7:14Þ

and, further [instead of (6.7.9)]

T ¼ constant ) ðds=dtÞ2 ¼ 2T=m ¼ constant; ð6:7:15aÞ

2S=m ðds=dtÞ4 ¼ K2 ¼S ðd2r 00
�
ds2Þ2: ð6:7:15bÞ

(ii) It is worth pointing out the formal similarity between HZP and the principle

of minimum strain energy of a thin linearly elastic, unloaded but constrained, beam in

plane bending.

HISTORICAL REMARKS

Hertz’s principle represents one of the highest, and admittedly quite elegant, pre-

relativistic (late 19th century) efforts to formulate a forceless/geometrical description
of motion, within classical mechanics; similar to the earlier attempts, by Kelvin et al.

to explain forces by the motion of concealed built-in spinning bodies [gyrostats (}8.4

ff.)]. As is well known, the solution to that problem of geometrization of mechanics
came about 20 years later with Einstein’s general theory of relativity (mid-1910s).

The restriction of HZP to vanishing impressed forces (though not to holonomic

constraints), makes it practically useless for applications; and this is in very sharp

contrast to GP, which seems to be free of any kind of limitations.

The best single reference on HZP is, probably, Brill (1909, pp. 5–55); also, Heun

[1902(c)], the thesis of Boltzmann’s famous student Ehrenfest (1904), and the

modern historical study by Lützen [1995(a), (b)]; and, of course, Hertz (1894, in

German; 1899, English transl.; 1956, English transl., paperback edition).
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7

As long as physical science exists, the highest goal to which it

aspires is the solution of the problem of embracing all natural

phenomena, observed and still to be observed, in one simple

principle which will allow all past and, especially, future

occurrences to be calculated. It follows from the nature of things,

that this object neither has been, nor ever will be, completely

attained. It is, however, possible to approach it nearer and

nearer, and the history of theoretical physics shows that already

an extensive series of important results can be obtained, which

indicates clearly that the ideal problem is not purely Utopian, but

that it is eminently practicable. Therefore, from a practical point

of view, the ultimate object of research must be borne in mind.

(Planck, 1960, p. 69; also, in German, in Wiechert, 1925, p. 772)

The variational principles of mechanics are firmly rooted in the

soil of that great century of Liberalism which starts with

Descartes and ends with the French Revolution and which has

witnessed the lives of Leibniz, Spinoza, Goethe, and Johann

Sebastian Bach. It is the only period of cosmic thinking in the entire

history of Europe since the time of the Greeks.

(Lanczos, 1970, p. x; emphasis added)

The germ of the idea of a minimum principle, coming when it

did, found a congenial environment. Both Euler and Lagrange

were infected with the virus early in life, and though they both

sloughed it in later years its effect can be seen on Gauss, through

to Hamilton and right down to Willard Gibbs and Castigliano.

Thus we find Euler saying (in Latin), ‘‘Since the plan of the

universe is the most perfect possible and the work of the wisest

possible creator, nothing happens which has not some maximal

or minimal property.’’ Nowadays this mental attitude is démodé

and we think more of the ‘‘uncertainty principle,’’ according to

which (if the quantum theorists are to be believed) Nature

cannot make up her mind which it is that is going to do what.

(Kilmister, 1964, pp. 50–51)
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7.1 INTRODUCTION

Time-integral theorems and the integral variational principles (IVP) derived from

them, as well as those of weighted residuals, occupy a central position in analytical

mechanics (AM), and applied mechanics in general. This is not only due to the fact

that they provide powerful analytical tools (for the derivation of global energetic

results, existence and uniqueness theorems, upper and lower bound estimates for

system eigenvalues and/or solutions, etc.) but also, primarily, because they constitute

the foundation of the so-called direct variational methods. These latter bypass the

equations of motion and proceed directly to the construction of approximate solu-

tions of the problem; whether initial and/or boundary value, linear or nonlinear,

conservative or not, holonomic or not.

The first part of this chapter (}7.2–5) derives all the important time-integral

propositions of AM; variational, energetic, and virial-like, for linearly and/or

nonlinearly constrained holonomic and/or nonholonomic systems, in both holo-

nomic and nonholonomic coordinates, all from a simple unifying viewpoint:

a general time-integral identity based on a few straightforward algebraic manip-

ulations of the corresponding equations of motion. This unambiguous ‘‘from first

principles (i.e., equations of motion) approach’’ will, hopefully, contribute to a

more rational, or perhaps demythologized, attitude toward IVP, because, historically

(since mid-18th century) these ‘‘principles’’ have been surrounded with super-

stition, mysticism, and ignorance (of the fine points of variational calculus and

mechanics).

[We remark that in continuum mechanics, where even the simplest kinetic varia-

tional problem leads to a partial differential equation (e.g., string: one-dimensional

wave equation), IVP have the additional and unique advantage that they supply both
the equations of motion of the problem and its boundary conditions. Also, such

infinite number of DOF systems may be discretized; that is, be approximated by

systems with a finite number of DOF; and then, some of the (single) integral

principles of this chapter may be applied to these systems to find their temporal

evolution.]

The second, larger, part of this chapter (}7.6–9, Appendices) examines these

IVP in some detail, especially in view of the fundamental (and yet frequently

overlooked and/or misunderstood) differences between the mathematically correct

and (generally different from it) mechanically correct variational formulations for

nonholonomic systems.

Finally, most IVP are first-order/stationarity requirements, that is, of the kind that

supplies only the equations of motion (the ‘‘laws of nature’’). For certain systems,

however, second-order/extremality conditions (not laws of nature) may be established,

which constitute alternative tests for the stability/instability of certain of their

motions. A summary of the relevant sufficiency variational theory and some appli-

cations is contained in an appendix, at the end of the chapter.

For complementary reading, we recommend the following general references

(alphabetically): Boltzmann (1904a, vol. 2, chaps. 1, 3, 4), Finzi (1949), Gelfand

and Fomin (1963), Lanczos (1970), Langhaar (1962), Logan (1977), Lovelock and

Rund (1975), Lur’e (1968, chap. 12), Neimark and Fufaev (1972, chap. 3, section 10),

Novoselov (1966; 1967), Papastavridis [1987(b)], Pars (1965, chaps. 26, 27), Polak

(1959; 1960 — a unique and delightful reference), Prange (1935), Rund (1966),

Tabarrok and Rimrott (1994, chap. 3, app. A), Vujanovic and Jones (1989, chaps.

1–6).
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Chapter notations (see also Introduction, }4, and chap. 8):

� IVP: Time-integral variational principles;

� All Latin indices run from 1 to n (¼ number of ‘‘original’’ positional coordinates);

except

D;D 0;D 00; . . . ; (dependent) which run from 1 to m

(¼ number of additional constraints, holonomic or not),

and

I ; I 0; I 00; . . . ; (independent) which run from mþ 1 to n.

�
ð
�
ðt2
t1

: The integration extends from t1 to t2 ðt1;2: arbitrary time instants), unless

specified otherwise.

� f. . .g21 � f. . .gt2t1 � f. . .gt2 �f. . .gt1 � BT ð1; 2 stand for t1;2; respectivelyÞ: Boundary

terms, where . . . ¼ integrated out part(s).

Time-Integral Theorems

7.2 TIME-INTEGRAL THEOREMS: PFAFFIAN CONSTRAINTS,

HOLONOMIC VARIABLES

Here, the starting point is the fundamental Routh–Voss equations (}3.5)

ð@T=@ _qqkÞ:� @T=@qk ¼ Qk þ
X


DaDk ½T ¼ Tðt; q; _qqÞ: unconstrained�: ð7:2:1Þ

Multiplying each of (7.2.1) with zk, where the fzk ¼ zkðtÞ; k ¼ 1; . . . ; ng are arbitrary

functions but as well behaved as needed, and summing them over k, we obtain

X �ð@T=@ _qqkÞ:zk � ð@T=@qkÞzk� ¼X Qk þ
X


DaDk

� �
zk;

or, rearranging with the help of the chain rule, and then integrating between the two

arbitrary time instants t1 and t2, we obtain the following generalized holonomic time-
integral (or virial-like) identity:

ð X
ð@T=@ _qqkÞ _zzk þ

X
@T=@qk þ Qk þ

X

DaDk

� �
zk

h i
dt

¼
X
ð@T=@ _qqkÞzk

n o2

1
: ð7:2:2Þ

As shown below, special choices of the zk’s in (7.2.2) yield all the important time

integral theorems and variational ‘‘principles’’ of mechanics.

Let us examine them in detail:

(i) zk ! �qk: Virtual displacement of qk (fig. 7.1). Then,

XX

DaDkzk !

X

D

X
aDk �qk

� �
¼ 0; ð7:2:3aÞ
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by the virtual form of the Pfaffian constraints, and so (7.2.2) yields Hamilton’s law of
vertically (virtually) varying action:ð

ð�T þ � 0WÞ dt ¼
X

pk �qk

n o2

1
; ð7:2:3bÞ

where

�T ¼
X �ð@T=@ _qqkÞ � _qqk þ ð@T=@qkÞ �qk�; pk � @T=@ _qqk; ð7:2:3cÞ

and

� _qqk � �ð _qqkÞ ¼ ð�qkÞ:: ð7:2:3dÞ

As will be detailed in the second part (}7.6 ff.): (a) in general, no stationarity of a

functional is implied by the integral equation (7.2.3b); and (b) the commutation rule
(7.2.3d) is a key assumption, or choice, without which it would have been impossible

to go from (7.2.2) to (7.2.3b).

(ii) zk ! Dqk ¼ �qk þ _qqk Dt: Noncontemporaneous, or skew, or oblique, variation of
qk (fig. 7.1). Then,

0 ¼
X

aDk �qk ¼
X

aDkðDqk � _qqk DtÞ ¼
X

aDk Dqk �
X

aDk _qqk

� �
Dt

¼
X

aDk Dqk � ð�aDÞDt )
X

aDk Dqk þ aD Dt ¼ 0; ð7:2:4aÞ

Figure 7.1 Variations of q in ðnþ 1Þ-dimensional extended configuration space: vertical ð�qÞ
and skew ðDqÞ.
Difference in velocity space (slope) between D and A: �ð _qqÞ ¼ ðqþ �qÞ:� _qq ¼ ð�qÞ::
Point coordinates: Aðt; qÞ; Bðt þ Dt; qþ _qqDtÞ, Cðt þ Dt; qþ DqÞ;Dðt; qþ �qÞ:
Mappings: A! A þ �A ¼ D (vertical); A! Aþ DA ¼ C (skew);

t ! t 0ðtÞ ¼ t þ DtðtÞ ) dt 0=dt ¼ 1þ ðDtÞ::
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that is, the Dqk and Dt are kinematically admissible; and so (7.2.2) yields Hamilton’s
law of skew-varying action:ð X

ð@T=@ _qqkÞðDqkÞ:þ
X
ð@T=@qk þQkÞDqk �

X

DaD Dt

h i
dt

¼
X

pk Dqk
n o2

1
: ð7:2:4bÞ

For aD ¼ 0 (i.e., catastatic constraints), the left sides of (7.2.3b) and (7.2.4b) look

similar, although in the latter Dt 6¼ 0. We also notice that, again assuming (7.2.3d),

since

ðDqkÞ: ¼ ð�qk þ _qqk DtÞ: ¼ ð�qkÞ:þ €qqk Dtþ _qqkðDtÞ:; ð7:2:4cÞ
Dð _qqkÞ ¼ �ð _qqkÞ þ ð _qqkÞ:Dt ¼ � _qqk þ €qqk Dt; ð7:2:4dÞ

) ðDqkÞ:� Dð _qqkÞ ¼ _qqkðDtÞ: ð7:2:4eÞ

[i.e., Dð. . .Þ and ð. . .Þ: do not commute, even when �ð. . .Þ and ð. . .Þ: do!], we can

replace in (7.2.4b) ðDqkÞ: with Dð _qqkÞ þ _qqkðDtÞ:. (Integral equations/principles based

on such noncontemporaneous variations are detailed in }7.9.)

(iii) zk ! qk: Actual system coordinate. Then (7.2.2) yields the nonvariational/
actual virial theorem [of Clausius, Szily, et al. (mid- to late 19th century)]:ð X

ð@T=@ _qqkÞ _qqk þ
X

@T=@qk þQk þ
X


DaDk

� �
qk

h i
dt ¼

X
pkqk

n o2

1
:

ð7:2:5Þ

Specialization

linear coordinates; and the ‘‘original’’ holonomic constraints are stationary, in

which caseX
ð@T=@ _qqkÞ _qqk ¼ 2T ½by the homogeneous function theorem�; ð7:2:5aÞ

then (7.2.5) specializes to the time-integral energetic theorem:ð
2T dt ¼ �

ð X
Qk þ

X

DaDk

� �
qk

h i
dt; ð7:2:5bÞ

where the integrals extend from t1 to t2 ¼ t1 þ � .
Additional special theorems result if, in (7.2.5b), Qk ¼ �@Vðt; qÞ=@qk, Vðt; qÞ:

potential function ¼ sum of homogeneous functions of the q’s of various degrees.

(iv) zk ! _qqk: Actual system velocity. Then, sinceX X

DaDk

� �
_qqk ¼

X X
aDk _qqk

� �

D ¼

X
ð�aDÞ
D; ð7:2:6aÞ

938 CHAPTER 7: TIME-INTEGRAL THEOREMS AND VARIATIONAL PRINCIPLES

If, in the above, {∑ pkqk}21 = 0, for example, as a result of periodicity
(t2 = t1 + τ , τ : period of oscillatory motion); ∂T/∂qk = 0, for instance, in recti-



eq. (7.2.2) transforms toð X
ð@T=@ _qqkÞ€qqk þ

X
ð@T=@qk þQkÞ _qqk �

X
aD
D

h i
dt ¼

X
pk _qqk

n o2

1
;

ð7:2:6bÞ
or, further, toð h
ðdT=dt� @T=@tÞ þ

X
Qk _qqk �

X
aD
D

i
dt ¼

ð X
ð@T=@ _qqkÞ _qqk

h i:
dt; ð7:2:6cÞ

or, finally, toð X
ð@T=@ _qqkÞ _qqk � T

h i:
� �@T=@tþ

X
Qk _qqk �

X

DaD

� �n o
dt ¼ 0; ð7:2:6dÞ

from which, since the limits t1 and t2 are arbitrary, we conclude that the integrand

must vanish identically; that is

d=dt
X
ð@T=@ _qqkÞ _qqk � T

h i
¼ �@T=@tþ

X
Qk _qqk �

X

DaD; ð7:2:6eÞ

and this is nothing but the earlier-found (}3.9) most general (nonpotential) form of

the generalized power theorem, for systems under Pfaffian constraints and in holo-

nomic variables.

Specialization

If, in (7.2.6e), some of the forces, or part of each Qk, derive from a potential function

V ¼ Vðt; qÞ, then we simply replace in there T with L � T � V : Lagrangean of the

system; and now Qk stands for all the nonpotential forces or parts of them. If, further,

@L=@t ¼ 0 (e.g., stationary original constraints) and aD ¼ 0 (i.e., additional Pfaffian

constraints catastatic), then, since ½P ð@L=@ _qqkÞ _qqk � L�: ¼ ½2T � ðT � VÞ�: ¼
ðT þ VÞ:, and so eq. (7.2.6e) reduces to the more familiar (multiplierless) power

equation

ðT þ VÞ: � _EE ¼
X

Qk _qqk: ð7:2:6fÞ

We should point out that @T=@t can vanish even for rheonomic holonomic con-

straints; that is, even if the position vectors of the system particles depend explicitly

on time.

Example 7.2.1 The Virial Theorem [of Clausius (1870) et al.]. Let us consider a

holonomic and conservative system with kinetic and potential energies Tðq; _qqÞ and

VðqÞ, respectively. We are going to relate their time averages for various system

motions; using both particle and system variables.

Let us define the (moment of inertia reminiscent) ‘‘second moment of the system’’

F �S ð1=2Þ dm r � r ¼S ð1=2Þ r2 dm: ðaÞ

By ð. . .Þ:-differentiating F twice, while noting that, by the Newton–Euler law of

motion (with the usual notations, chap. 1),

dm a ¼ df ¼ �@V=@r � �gradV; ðbÞ
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we find

dF=dt ¼ � � � ¼Sdm v � r � C; ðcÞ
d2F=dt2 ¼ � � � ¼Sdm v � vþSdm a � r

¼ 2T þSdf � r ¼ 2T �S ð@V=@rÞ � r ¼ dC=dt; ðdÞ
½ ¼ 2T þ V ; if V : homogeneous function of degree � 1 in the

components=coordinates of r ðcase of gravitational attractionÞ�:
Equation (d) is known in celestial mechanics as Lagrange’s identity.

Now, let us average the above; with the customary notation

h f i � ð1=�Þ
ð�

0

f ðtÞ dt:

Time average of a function f ðtÞ;between t1 ¼ 0 and t2 ¼ �; ðeÞ
and noting that

hdC=dti ¼ ð1=�Þ
ð�

0

½dCðtÞ=dt� dt ¼ ð1=�Þ½Cð�Þ �Cð0Þ�; ðfÞ

the averaged eq. (d) becomes

ð1=�Þ½ _FFð�Þ � _FFð0Þ� ¼ 2hTi � Sdf � r
D E

;

or

ð1=�Þ½Cð�Þ �Cð0Þ� ¼ 2hTi þ S ð@V=@rÞ � r
D E

: ðgÞ

Specializations

(i) If the system is periodic with period � , then Cð�Þ ¼ Cð0Þ, and (g) results in

2hTi ¼ S ð@V=@rÞ � r
D E

h
¼ � Sdf � r

D E
: General deEnition of virial of a system

i
: ðhÞ

(ii) If the system is nonperiodic, but moves in a finite spatial region with finite

velocities, then, as (c) shows, there is an upper bound to dF=dt � C, and eq. (h) still

holds, provided the averages are taken over a very long time (i.e., � !1); or, by

choosing � sufficiently large, we can make hdC=dti as small as possible:

hdC=dti ¼ lim ð1=�Þ
ð�

0

½dCðtÞ=dt� dt
� �

�!1

¼ lim
�ð1=�Þ½Cð�Þ �Cð0Þ��

�!1 ¼ 0: ðiÞ

If, further, V ¼ homogeneous of degree f in the r’s, then (by Euler’s theorem) eq. (h)

yields

2hTi ¼ f hVi; ðjÞ
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or, since hT þ Vi ¼ hTi þ hVi ¼ hEi ¼ E,

hTi ¼ fE=ð f þ 2Þ; hVi ¼ 2Eð f þ 2Þ: ðkÞ
In particular, if f ¼ 2— that is, V is quadratic (linear vibrations) — then ( j, k) yield

the equipartition theorem:

hTi ¼ hVi ¼ E=2: ðlÞ
Let the reader verify that in a central force field with V � r " (r ¼ distance of dm from

attracting origin) — that is, f ! "— the virial theorem results in

2hTi ¼ "hVi; ðmÞ
from which it follows that in the gravitational case — that is, " ¼ �1, then,

hTi ¼ �E ð> 0Þ; hVi ¼ 2E ð< 0Þ ) 2hTi ¼ �hVi; ðnÞ
which is in agreement with the general result that in such a Newtonian interaction

‘‘the motion takes place in a finite region of space only if the total energy is negative.’’
These and other similar virial theorems have interesting applications in the

mechanics of the very small (classical statistical mechanics) and of the very large
(astronomy). For example, with their help, we can derive the well-known gas law:

p v ¼ n k � (p; v; n; k; �: pressure, volume, number of molecules, Boltzmann’s constant,
absolute temperature, respectively).

[For further details and applications, see, for example: Corben and Stehle (1960,

pp. 164–166), Goldstein (1980, pp. 82–85, 96–97, 121, 477), Kurth (1960, pp. 64–74,

149–153), Pollard (1976, pp. 60–71); and books on the kinetic theory of gases; also,

for the Newtonian interaction/gravitational case, see Landau and Lifshitz (1960, pp.

35–39). For engineering applications (nonlinear oscillations and their stability), see,

for example, Papastavridis [1986(a)] and problems and example below.]

Problem 7.2.1 Virial Theorem (Jacobi ‘‘Instability Criterion’’). Consider a system

of N mutually attracted (gravitating) particles. As is well known, its potential energy

is a negative and homogeneous function of degree �1 in the 3N rectangular

Cartesian coordinates of the position vectors of these particles. By applying the virial

theorem for the case where the total energy E � T þ V is a positive constant, show

that

d2F=dt2 ¼ E þ T ¼ 2E � V ðTheorem of Lagrange�JacobiÞ: ðaÞ
[Recalling the definition of F from the preceding example: 2F � S dm r � r ¼
S r2dm, where r is the position vector of a typical particle relative to the system’s

(uniformly moving) mass center.]

Then deduce that

F > ð1=2ÞE t2 þ ðdF=dtÞo tþ Fo; ðbÞ
where ðdF=dtÞo, Fo: dF=dt, F evaluated at some initial instant t ¼ 0; and from this,

in turn, since E > 0, F becomes infinite, as t!1.

[A word of caution: from the above, however, it does not necessarily follow

that at least one of the nonnegative functions r2 dm, making up the sum F,
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becomes infinite; although it does follow that not every such term remains bounded,

otherwise F would stay bounded. For example, consider the function qðtÞ ¼ t cos2 tþ
t sin2 t ¼ t (sum of nonnegative functions, for t 	 0). As t!1, the sum q becomes

infinite, but neither of its ‘‘components’’ t cos2 t, t sin2 t does; instead, they become

large and small; that is, they become unbounded but do not tend to infinity! Hence,

the commonly stated conclusion: ‘‘if the total energy is positive, at least one particle
must escape from the system (i.e., if E > 0, then r!1 for at least one particle; and,

hence, the system is unstable)’’ is mathematically unproved; although, physically,

such reasoning may look like academic hair-splitting.]

For a generalization of (a, b) and applications to stellar systems, see Kurth (1957,

pp. 63–69).

Problem 7.2.2 Virial Theorem (Linear Undamped Oscillator). Consider the linear
(or harmonic), free (or unforced, or undriven), and undamped oscillator with

equation of motion: €qqþ !o
2q ¼ 0, where !o

2 � linear elasticity=mass � k=m and,

therefore, solution q ¼ a cosð!otþ �Þ, where a is a constant amplitude and � is

the initial phase.

(i) Show that

hTi ¼ hVi or m!o
2a2=4 ¼ ka2=4; ðaÞ

where h. . .i is time average of (. . .) over a period � ¼ 2�=!o; and, consequently,

E ¼ hEi ¼ hT þ Vi ¼ hTi þ hVi ¼ m!o
2a2=2: ðbÞ

(ii) Let the variance of a periodic function f ðtÞ, of period � , Df , be defined by

ðD f Þ2 � hð f � h f iÞ2i (measure of mean deviation of f from its average). It is not too

hard to see that ðD f Þ2 � h f 2i � h f i2. Show that, for the harmonic oscillator dis-

cussed here,

ðDqÞ2 ¼ hq2i ½Dðdq=dtÞ�2 ¼ hðdq=dtÞ2i: ðcÞ

Then, verify that (DqÞðDpÞ ¼ E=!o, where p � mðdq=dtÞ is the linear momentum of

the oscillator. (This constitutes a ‘‘constraint’’ between the root mean square devia-

tions of a pair of measurable quantities, q and p, from their average values; and that

is why it is called an uncertainty relation. Such conditions are important in quantum

mechanics.)

(iii) Show that hTi ¼ hVi over any time interval �* that is large relative to � ; that

is, even if �* is not an integral multiple of � .

HINTS

With  � !ot,  1 � !1t,  2 � !2t, show that

ðiÞ ð1=�*Þ
ð��

0

sin2  dt ¼ 1=2þ ð1=4�*!oÞ½1 � sinð2!o�*Þ� ½! 1=2; as �*!1�;
ðdÞ

and the same for the integral of cos2  ;
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ðiiÞ ð1=�*Þ
ð��

0

ðsin 1Þðcos 2Þ dt ¼ f1� cos½ð!1 � !2Þ�*�g
�
2ð!1 � !2Þ�*

þ f1� cos½ð!1 þ !2Þ�*�g
�
2ð!1 þ !2Þ�*

½! 0; as �*!1�; ðeÞ

ðiiiÞ ð1=�Þ
ð�

0

sin2ð!otþ �Þ dt ¼ 1=2; ðfÞ

and the same for the integral of cos2ð!otþ �Þ;

ðivÞ ð1=�Þ
ð�

0

sinð!otþ �Þ cosð!otþ �Þ dt ¼ 0: ðgÞ

Problem 7.2.3 Virial Theorem (Linear and Damped Oscillator). Consider the

linear, free, and damped oscillator with equation of motion (with the usual

notations)

m€qqþ f _qqþ kq ¼ 0 or €qqþ ð1=rÞ _qqþ !o
2q ¼ 0; ðaÞ

where 1=r � f =m [with dimensions (time)�1; and occasionally referred to as (relaxa-
tion time)�1].

(i) Show that for small damping, the latter defined precisely by

!or� 1 ½) !o � f =m; i:e:; roughly; elasticity� friction�; ðbÞ

an approximate solution of (a) is

qo ¼ ao expð�t=2rÞ sinð!otÞ; where ao � initial velocity ða constantÞ: ðcÞ

(ii) Then, show that in this case

hTi � ðm=4Þ½!o
2 þ ð f =2mÞ2�ao2 expð�t=rÞ � ðm=4Þ!o

2ao
2 expð�t=rÞ; ðdÞ

hVi � ðm=4Þ!o
2ao

2 expð�t=rÞ: ðeÞ

(iii) If hDi is the average rate of dissipation of the oscillation — that is, of ð f _qqÞ _qq—

over a single (undamped) period �o ¼ 2�=!o, then show that (again for small damp-

ing)

�hDi ¼ dhEi=dt ¼ dhTi=dtþ dhVi=dt
� �ð1=rÞ�ðm=2Þ!o

2ao
2 expð�t=rÞ� ¼ �EðtÞ=r: ðfÞ

HINT

If !or� 1, then, to a good approximation, we can take the factor expð�t=rÞ outside

the averaging integrals; that is, our energetic averages are to be understood as taken
over a period (or cycle) �o at, approximately, t (in the sense of the averaging

method — see examples/problems of }7.9); and that is why they are functions of t.
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Problem 7.2.4 Virial Theorem (Linear, Damped, and Forced Oscillator). Consider

the linear, damped, and harmonically forced oscillator with equation of motion

m€qqþ f _qqþ kq ¼ Qo cosð!tÞ; ðaÞ

where Qo, !: forcing amplitude and frequency (both specified constants).

(i) Show that the time average of the rate of energy dissipation by the oscillator

(i.e., of ð f _qqÞ _qqÞ, over a long period of time �*ð� 2�=!Þ equals

hDi ¼ ðQo
2=2f Þ cos2  cos � f ½ f 2 þ ðm!� k=!Þ2��1=2: ðbÞ

HINT

Use the steady-state (particular, periodic) solution: q ¼ ao cosð!t� �Þ, where ao is a

function of Qo, !, !o, f , m; tan� ¼ !f =ðk� m!2Þ, �: phase difference between force

and displacement; and ��  ¼ �=2, where  : phase difference between force and

velocity.

(ii) Then, conclude that

(a) If  ¼ 0 (resonance), then hDi ! hDimaximum ¼ Qo
2=2f ; and

(b) If force and displacement are either in phase or differ by � ði:e:; � ¼ 0)  ¼ ��=2,

or � ¼ � )  ¼ �=2Þ, then hDi ¼ 0.

(iii) Show that, in steady-state motion, the time average of the rate of working

(power) of the driving force, that is, of ½Qo cosð!tÞ�ðdq=dtÞsteady-state; hWi; equals hDi.
In words: Mean energy externally supplied to system, per unit time¼Mean energy

absorbed or dissipated by system ( friction), per unit time; and, hence, in such a forced

motion, the energy of the system remains unchanged.

(iv) From (ii) and (iii) conclude that at resonance (with the external force), both
hWi and its equal hDi are maxima.

Problem 7.2.5 Virial Theorem (Linear Damped and Forced Oscillator). Continuing

from the preceding problem,

(i) Show that

hWi � Pðx; f Þ ¼ Qo
2f
��
2 ð f 2 þ m2!o

2x2Þ; ðaÞ

where x � ð!=!oÞ � ð!o=!Þ: roughly, deviation of ! from !o; and, therefore, if x ¼ 0

(i.e., ! ¼ !o), then Pð0; f Þ ¼ maximum. (It is not hard to see that the graph of hWi
vs. x, with f as parameter, looks like a resonance curve; i.e., jaoj vs. !.)

(ii) Show that

@P=@x ¼ �Qo
2f m2!o

2x
��ð f 2 þm2!o

2x2Þ2; ðbÞ

and, therefore:

(a) If x > 0 (i.e., ! > !oÞ, then @P=@x < 0, and the smaller the f the larger j@P=@xj;
and similarly for x < 0; whereas

(b) If x ¼ 0 (i.e., ! ¼ !oÞ and f is small, then P is large.
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In words: the smaller (larger) the damping, the higher (lower) and sharper or peaked
(flatter) the resonance maximum: Pð0; f Þ ¼ ð1=2ÞðQo

2=f Þ (say, like a Dirac delta
function).

For further details on such dispersion relations (very important in several areas of

physics), see, for example, Falk (1966, pp. 37–43); also Landau and Lifshitz (1960,

p. 79).

Problem7.2.6 VirialTheorem (Linear,Damped, andForcedOscillator). Continuing

from the last two problems:

(i) Calculate and compare hTi and hVi; and

(ii) Find the forcing frequencies at which each of them becomes maximum.

Explain why these two maxima occur at different frequencies.

Example 7.2.2 Nonlinear Oscillations via the Virial Theorem.
1. Duffing oscillator. Let us find the amplitude versus frequency (‘‘resonance

curve’’) of the steady-state response of

m€qqþ kqþ hq3 ¼ Qo sin�; � � ! t; ðaÞ
where m is the mass of the oscillator (> 0), k is its linear stiffness (> 0), ! is the

forcing frequency (given), Qo is the forcing amplitude (given), and h is the non-

linearity constant.

Here, clearly,

2T ¼ mð _qqÞ2; V ¼ V2 þ V4; 2V2 � kq2; 4V4 � hq4; Q ¼ Qo sin�; ðbÞ
and therefore for the trial steady-state solution of (a)

q ¼ a sin�; where a ¼ að!Þ ðto be determinedÞ; ðcÞ
the virial equation (7.2.5), for this holonomic one-DOF system, with

@T=@q ¼ 0; aDk ¼ 0; and
X

pkqk

n o2

1
! fð@T=@ _qqÞqg2�=!0 ðdÞ

(and application of the homogeneous function theorem) givesð2�=!

0

�
2T � ð@V=@qÞqþQq

�
dt ¼

ð2�=!

0

�
2T � ð2V2 þ 4V4Þ þQq

�
dt

¼
ð2�=!

0

ðma2!2 cos2�� ka2 sin2�� h a4 sin4�þQoa sin2�Þ dt

¼ ð�=!Þðma2!2 � ka2 � 3h a4=4 þQoaÞ ¼ 0; ðeÞ

from which we obtain the well-known resonance equation (with !o
2 � k=m)

!2 ¼ !o
2 þ ð3=4Þðh=mÞa2 � ðQo=mÞa�1: ðfÞ

[For stability considerations of (a), via frequency derivatives of the virial equa-

tion, see Papastavridis (1986(b)).]
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2. Van der Pol oscillator. Let us find the asymptotic (‘‘limit cycle’’) amplitude of

€qqþ "ðq2 � 1Þ _qqþ q ¼ 0; ðgÞ
where "ð> 0Þ is such that the nonlinear damping term "ðq2 � 1Þ _qq remains absolutely

small relative to both inertia (€qq) and linear elasticity (q); that is, " is a very small

positive constant.

In the linear case — that is, for " ¼ 0— the solution of (g) is harmonic with

frequency ! ¼ 1 and amplitude and phase depending on the initial conditions.

Therefore, for " 6¼ 0, we try the (asymptotically) harmonic solution

q ¼ a sin�; � ¼ !t; ðhÞ
but with both frequency ! and amplitude a unknown. Here,

2T ¼ ð _qqÞ2; 2V ¼ q2; Q ¼ Qðq; _qqÞ ¼ �"ðq2 � 1Þ _qq; ðiÞ
and so the earlier virial equation yieldsð2�=!

0

½2T � ð@V=@qÞqþQq� dt

¼
ð2�=!

0

�ð _qqÞ2 � q2 � "ðq2 � 1Þq _qq� dt
¼ � � � ¼ ð�=!Þa2ð!2 � 1Þ ¼ 0 ) ! ¼ 1; ðjÞ

that is, if we insist on a harmonic solution, then the latter must have the undamped

frequency.

Problem 7.2.7 Virial Theorem (Nonlinear Oscillator) (Killingbeck, 1970). Consider

the unforced and undamped nonlinear (generalized Duffing) oscillator with

Lagrangean

L ¼ ð1=2Þðdq=dtÞ2 � ð1=2Þ!o
2q2 � " qk ½k: even integer�; ðaÞ

and, accordingly, equation of motion

€qqþ !o
2qþ " k qk�1 ¼ 0: ðbÞ

For small amplitudes q (to ensure stability; i.e., j"j � 1) the solution will be a sym-

metric anharmonic oscillation about the equilibrium position q ¼ 0. By applying

the virial theorem, and with h. . .i � time average of ð. . .Þ over the ðunknownÞ
period � ¼ 2�=!, show that

2hTi ¼ 2h!o
2q2=2i þ " khqki: ðcÞ

Then show that, for the trial solution qoðtÞ ¼ a sinð!t) ½qoð0Þ ¼ qoð2�=!Þ ¼ 0,

_qqoð0Þ ¼ a!], the above yields the approximate frequency

!2 ¼ !o
2 þ 2" k ak�2hsinkqi; ðdÞ

where the average of the last term is over 2�.
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Problem 7.2.8 Virial Theorem (Nonlinear Oscillator) (Killingbeck, 1970). Con-

tinuing from the preceding problem, and applying energy conservation to it, show

that the period of that oscillator has the following "-power representation:

� ¼ 2

ðþa
�a

�
!o

2ða2 � q2Þ þ 2"ðak � qkÞ��1=2
dq ½exact expression�

¼ 2�=!o � ð2" ak�2=!o
3ÞI þOð"2Þ; ðaÞ

where k is an even integer, and

I �
ðþ1

�1

ð1� y2Þ�3=2ð1� ykÞ dy ðb1Þ

¼
ð�

0

ð1� cosk xÞð1� cos2 xÞ�1 dx ðb2Þ

¼
ð�

0

ð1þ cos2 xþ � � � þ cosk�2 xÞ dx ðb3Þ

¼ � khsink xi ½average over 2��: ðb4Þ

Problem7.2.9 Virial Theorem (NonlinearOscillator) (Killingbeck, 1970). Referring

to the exact expression for � of the preceding problem, eq. (a), show that

@�=@" < 0 and @2�=@"2 > 0; ðaÞ
from which it follows that, for large ", the virially obtained value of !, to within

Oð"Þ terms, overestimates !, and therefore underestimates � .

Problem 7.2.10 Variational and Virial Theorems for Linear Gyroscopic Systems.
Consider the linear, free, and undamped motions of a gyroscopic system (or the

small such motions of a general system about steady motion or relative equilibrium).

They are governed by the following equations (}3.10, }3.16):

Ek � EkðLGÞ � ð@LG=@ _qqkÞ: � @LG=@qk ¼
X
ðMkr€qqr þ Gkr _qqr þVkrqrÞ ¼ 0; ðaÞ

where

2T ¼
XX

Mkr _qqk _qqr ðpositive definiteÞ; Mkr ¼Mrk: constant; ðb1Þ
2V ¼

XX
Vkrqkqr ðassumed positive definiteÞ; Vkr ¼ Vrk: constant; ðb2Þ

2G ¼
XX

Gkrqk _qqr ðno sign propertiesÞ; Gkr ¼ �Grk: constant; ðb3Þ

and

LG � T � V � G: gyroscopic Lagrangean: ðb4Þ
It can be shown that eqs. (a) can be brought to the partially decoupled form, in terms

of the following ‘‘quasi-principal’’ (or ‘‘normal’’) coordinates xr:

Er ! mr€xxr þ
X

grs _xxs þ krxr ¼ 0; ðcÞ
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where

2T ¼
X

mrð _xxrÞ2 ðpositive definite and diagonalÞ; ðd1Þ
2V ¼

X
krxr

2 ðpositive definite and diagonalÞ; ðd2Þ
2G ¼

XX
grsxr _xxs ðno sign propertiesÞ; grs ¼ �grs ðconstantÞ: ðd3Þ

(i) With the help of the ‘‘gyroscopic action’’ AG �
Ð
LG dt, show that the above

equations of motion can be derived from the following Hamilton-type variational

principle:

�AG ¼ Boundary Terms ½¼ 0; if ; e:g:; �qðt1Þ ¼ �qðt2Þ ¼ 0�: ðeÞ
(ii) Choosing in eq. (e) �q ¼ q (or �x ¼ xÞ, show that the following virial gyro-

scopic theorem results:

AG �
ð
LG dt �

ð
ðT � V � GÞ dt ¼ ð1=2Þ

X
ð@T=@ _qqrÞqr

n o2

1
: ðfÞ

(iii) Assuming the periodic free mode

xr ¼ ar cosð!tÞ þ br sinð!tÞ; ðgÞ
and choosing t2 � t1 ¼ � � 2�=!: period, show that (f) yields the gyroscopic general-
ization of the (virial !) equipartition theorem:

J � !2Tx þ !Gx � Vx ¼ 0 ð) ! ¼ � � �Þ; ðhÞ
where

2Tx �
X

mrðar2 þ br
2Þ; 2Vx �

X
krðar2 þ br

2Þ; Gx �
XX

grsarbs:

ðh1Þ
(iv) Assuming the mode (g) in (e), show that, for fixed-frequency variations,

�J � !2 �Tx þ ! �Gx � �Vx ¼ 0; ðiÞ
where

�xr ¼ �ar cosð!tÞ þ �br sinð!tÞ: ði1Þ
(v) In eq. (h), assume that the ar and br are functions of !, then form

DJ ¼
X
½ð. . .Þ �ar þ ð. . .Þ �br� þ ð. . .Þ �! ¼ 0; ðjÞ

and, combining it with (i), conclude that for that mode �! ¼ 0.

For applications of this interesting ‘‘gyroscopic Rayleigh-like theorem,’’ see, for

example, Lamb (1932, pp. 313–315, 328–330, 337–338).

7.3 TIME-INTEGRAL THEOREMS: PFAFFIAN CONSTRAINTS,

LINEAR NONHOLONOMIC VARIABLES

Here, the starting point is Hamel’s equations (}3.5)

d=dtð@T*=@!kÞ � @T*=@�k � Gk ¼ Yk þ Lk; ð7:3:1Þ
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where, we are reminded,

T* ¼ T ½t; q; _qqðt; q; !Þ� � T*ðt; q; !Þ; ð7:3:1aÞ
@ . . . =@�k �

X
ð@ . . . =@qrÞð@ _qqr=@!kÞ ¼

X
Arkð@ . . . =@qrÞ ½in Pfaffian case�;

ð7:3:1bÞ
� Gk �

XX
�bksð@T*=@!bÞ!s þ

X
�bk;nþ1ð@T*=@!bÞ!nþ1

�
XX

�bksð@T*=@!bÞ!s þ
X

�bkð@T*=@!bÞ
�
XX

�bksPb!s þ
X

�bkPb �
X

hbkPb; ð7:3:1cÞ

the Hamel coefficients �bks, �
b
k;nþ1 � �bk, hbk are defined by the transitivity relations

[}2.10; and, again, assuming that ð�qkÞ: ¼ �ð _qqkÞ�

ð��bÞ: � �!b ¼
XX

�bks !s ��k þ
X

�bk ��k

¼
X X

�bks !s þ �bk
� �

��k �
X

hbk ��k; ð7:3:1dÞ

and the YkðLkÞ are the nonholonomic impressed forces and constraint reactions; and,

of course, LD 6¼ 0, LI ¼ 0. Multiplying each of (7.3.1) with the earlier arbitrary zk’s,
and then summing over k, invoking chain rule, rearranging, and finally integrating

between t1 and t2, we obtain the generalized nonholonomic time-integral (or virial-
like) identity:ð X

ð@T*=@!kÞ _zzk þ
X
ð@T*=@�kÞzk �

XX
hbkð@T*=@!bÞzk

h
þ
X
ðYk þ LkÞzk

i
dt ¼

X
ð@T*=@!kÞzk

n o2

1
: ð7:3:2Þ

Again, let us examine the following special zk-choices:

(i) zk ! ��k [recalling that now the constraints are simply ��D ¼ 0 (and

��nþ1 � �t ¼ 0Þ; while ��I 6¼ 0]. Then (7.3.2) givesð X
ð@T*=@!kÞð��kÞ: þ

X
ð@T*=@�kÞ ��k �

XX
hbkð@T*=@!bÞ ��k

h
þ
X
ðYk þ LkÞ ��k

i
dt ¼

X
ð@T*=@!kÞ ��k

n o2

1
: ð7:3:3Þ

However, due to the transitivity equations (7.3.1d), the first and third integrand

terms combine to yieldX
ð@T*=@!kÞ �!k þ

X
hbkð@T*=@!bÞ ��k

h i
�
XX

hbkð@T*=@!bÞ ��k
¼
X
ð@T*=@!kÞ �!k; ð7:3:3aÞ

and, successively,X
ð@T*=@�kÞ ��k ¼

X X
Askð@T*=@qsÞ

� � X
akb �qb

� �
¼
XX

ð@T*=@qsÞð�sbÞ �qb ¼
X
ð@T*=@qsÞ �qs ð7:3:3bÞ
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[recalling that, since (akr) and (Ask) are inverse matrices,
P

Askakb ¼ �sb: Kronecker

delta], while, due to Lagrange’s principle (}3.2),X
ðYk þ LkÞ ��k ¼

X
Yk ��k ¼

X
YI ��I � � 0W*; ð7:3:3cÞ

and so, finally, (7.3.3) reduces to Hamilton’s law of virtual and nonholonomic action:ð
�T*þ

X
YI ��I

� �
dt ¼

X
PI ��I

n o2

1
; ð7:3:4Þ

where

�T* ¼ �T*ðt; q; !Þ ¼
X �ð@T*=@!kÞ �!k þ ð@T*=@qkÞ �qk

�
¼
X �ð@T*=@!kÞ �!k þ ð@T*=@�kÞ ��k

�
: ð7:3:4aÞ

Clearly, since (7.3.4) involves only the independent ��I ’s it can supply only the

n�m kinetic equations of motion. If we want all n equations — that is,

n�m kineticþm kinetostatic— then can we replace (7.3.4) with one or the other

of the following two equivalent formulations: eitherð
�T*þ

X
YD ��D þ

X
YI ��I

� �
dt ¼

X
PI ��I

n o2

1
; ð7:3:5Þ

under the constraints

1 ��1 ¼ 1 ��2 ¼ � � � ¼ 1 ��m ¼ 0 ðand 0 ��mþ1 ¼ 0 ��mþ2 ¼ � � � ¼ 0 ��n ¼ 0Þ;
ð7:3:5aÞ

or ð
�T*þ

X
ðYD þ LDÞ ��D þ

X
YI ��I

h i
dt ¼

X
PI ��I

n o2

1
; ð7:3:6Þ

under the constraints

0 ��1 ¼ 0 ��2 ¼ � � � ¼ 0 ��n ¼ 0 ði:e:;with all ��k unconstrainedÞ: ð7:3:6aÞ
(ii) zk ! _��k � !k (recalling that now the constraints are simply !D ¼ 0). Then

(7.3.2) givesð X
ð@T*=@!IÞ _!!I þ

X
ð@T*=@�I Þ!I �

XX
hbI ð@T*=@!bÞ!I þ

X
YI!I

h i
dt

¼
X
ð@T*=@!I Þ!I

n o2

1
: ð7:3:7Þ

However:

(a) recalling the @ . . . =@�k definition (7.3.1b) and that _qqk ¼
P

AkI!I þ Ak, we see that

the second integrand sum equals
P ð@T*=@qkÞð _qqk � AkÞ;

(b) recalling the h-definition (7.3.1d) and the antisymmetry of the �’s in their

subscripts — that is, �bkl ¼ ��blk [and (3.9.12 ff.)]—we see that the third inte-

grand (double) sum reduces to

�
XX

�bIPb !I ; ð7:3:7aÞ
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and

(c) rewriting the right-hand side as
Ð P ð@T*=@!I Þ!I �: dt½ , all these partial results allow

us to convert (7.3.7) toð X
ð@T*=@!I Þ!I � T

h in :

� �@T*=@t�
X
ð@T*=@qkÞAk �

XX
�bIPb !I þ

X
YI!I

h io
dt ¼ 0;

ð7:3:7bÞ

from which, since the limits t1 and t2 are arbitrary, we finally obtain the most general

(nonpotential) form of the generalized power theorem, for systems under Pfaffian

constraints and in nonholonomic variables:X
ð@T*=@!I Þ!I � T

h i:
¼ �@T*=@t�

X
ð@T*=@qkÞAk �

XX
�bIPb !I þ

X
YI !I

� �@T*=@�nþ1 þ Rþ
X

YI !I ; ð7:3:7cÞ

where, in the last line, we invoked the earlier helpful notations (3.9.12f ff.)

@T*=@�nþ1 � @T*=@tþ
X
ð@T*=@qkÞAk; R � �

XX
�bIPb !I : ð7:3:7dÞ

(iii) zk ! �k: This case is meaningless because there is no such thing as �k.
(iv) zk ! !k: This choice does not seem to lead to any recognizably useful result.

(v) zk ! D�k: Here, we must define D�k. We have, successively,

Dqk ¼ �qk þ _qqk Dt ¼
X

Akb ��b þ
X

Akb!b þ Ak

� �
Dt

¼
X

Akbð��b þ !b DtÞ þ Ak Dt �
X

Akb D�b þ Ak Dt; ð7:3:8aÞ

that is, we can define consistently

D�b � ��b þ _��b Dt � ��b þ !b Dt: ð7:3:8bÞ

Inverting (7.3.8a), we find

D�b ¼
X

abk Dqk þ ab Dt; D�D ¼ 0; D �I 6¼ 0: ð7:3:8cÞ

We also need commutation relations between (D�Þ: and Dð _��Þ; that is, the nonholo-

nomic counterpart of (7.2.4e). Indeed, (. . .Þ:-differentiating (7.3.8b) leads to

ðD�bÞ: � ð��bÞ:þ _!!b Dtþ !bðDtÞ:; ð7:3:8dÞ

while applying the definition (7.3.8d) to _��k � !k yields

Dð _��bÞ ¼ �ð _��bÞ þ €��b Dt; or D!b ¼ �!b þ _!!b Dt: ð7:3:8eÞ

Therefore, subtracting (7.3.8e) from (7.3.8d) side by side, while invoking the transi-

tivity relations (7.3.1d), we find

ðD�bÞ:� D!b ¼ ð��bÞ:� �ð _��bÞ þ !bðDtÞ: ¼
X

hbk ��k þ !bðDtÞ:: ð7:3:8fÞ
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Now, under zk ! D�k eq. (7.3.2) becomesð X
ð@T*=@!kÞðD�kÞ:þ

X
ð@T*=@�kÞD�k �

XX
hbkð@T*=@!bÞD�k

h
þ
X
ðYkþLkÞD�kÞ

i
dt ¼

X
ð@T*=@!kÞD�k

n o2

1
; ð7:3:9aÞ

or, invoking (7.3.8f ) for the first integrand sum, recalling that �bkl ¼ ��blk, and

renaming some dummy indices, we finally obtain Hamilton’s law of skew-varying
action in nonholonomic variables:ð X

ð@T*=@�kÞD�k þ
X
ð@T*=@!kÞD!k

n
þ
X
ð@T*=@!kÞ !kðDtÞ:�

X
�kb !b Dt

h i
þ
X
ðYk þ LkÞD�k

o
dt

¼
X
ð@T*=@!kÞD�k

n o2

1
: ð7:3:9bÞ

Here, too, we remember to set !D ¼ 0, !k ! !I ; and, regarding the worksP ðYk þ LkÞD�k, recalling the arguments leading to (7.3.4–6a):

(a) If we need only the kinetic equations from (7.3.9b), then we set in there

D 0W* �
X

Yk D�k �
X

Yk ��k þ
X

Yk !k

� �
Dt

¼
X

YI ��I þ
X

YI !I

� �
Dt ¼

X
YI D�I ; ð7:3:9cÞ

D 0WR* �
X

Lk D�k ¼ � � � ¼ 0; ð7:3:9dÞ

whereas

(b) If we want to obtain both the kinetic and kinetostatic equations from (7.3.9b), then,

either we set

D 0W* ¼
X

YD D�D þ
X

YI D�I and D 0WR* ¼ 0; ð7:3:9eÞ

under the constraints

1 ��D ¼ 0; 1!D ¼ 0 ) 1D�D ¼ 0; ð7:3:9fÞ
or

D 0W* ¼
X

YD D�D þ
X

YI D�I and D 0WR* ¼
X

LD D�D; ð7:3:9gÞ

with all ��k unconstrained. The details are left to the reader.

Finally, we notice that if we set in (7.3.9a,b) Dt ¼ 0, we recover the virtual equa-

tions ð7:3:3Þ ! ð7:3:4Þ, as expected.

This completes the discussion of time-integral theorems and variational principles

under Pfaffian constraints. In the next section, }7.4, these results are extended to

nonlinear (holonomic and/or nonholonomic) velocity constraints (chap. 5):

fDðt; q; _qqÞ ¼ 0 ½D ¼ 1; . . . ;mð< nÞ�: ð7:3:10Þ
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Example 7.3.1 The Maggi ! Chaplygin�Hadamard Form of Hamilton’s Principle;
that is, Hamilton’s principle for systems subject to the special Pfaffian constraints (in

virtual form)

�qD ¼
X

bDI �qI ; bDI ¼ bDIðt; qÞ; ðaÞ

with nonlinear counterpart bDI ! @�Dðt; q; _qqI Þ=@ _qqI (see also }7.8).

Adopting the Hölder–Voronets–Hamel viewpoint — that is, �ð _qqkÞ ¼ ð�qkÞ: for all
holonomic coordinates — with the convenient notation fP ð@T=@ _qqkÞ �qkg21 �
BBoundary; TTerms � BT , and (a), we find, successively,

ð
�T dt ¼

ð X �ð@T=@qkÞ �qk þ ð@T=@ _qqkÞ �ð _qqkÞ� dt
¼ � � � ¼ BT �

ð X
EkðTÞ �qk dt

¼ BT �
ð X

EDðTÞ �qD þ
X

EI ðTÞ �qI
h i

dt

¼ BT �
ð X

EIðTÞ þ
X

bDIEDðTÞ
h i

�qI dt; ðbÞ

and, similarly,

ð
� 0W dt �

ð X
Qk �qk ¼ � � � ¼

ð X
QI þ

X
bDIQD

� �
�qI dt

�
ð X

QIo �qI

� �
dt �

ð
� 0Wo dt: ðcÞ

Therefore,

ð
ð�T þ � 0WÞ dt ¼ BT �

ð X
EIðTÞ þ

X
bDIEDðTÞ �QIo

h i
�qI dt; ðdÞ

from which, since the �qI are unconstrained, we obtain the n�m kinetic (multi-

plierless) Chaplygin–Hadamard equations (not to be confused with the nonholo-

nomic Chaplygin equations)

EI ðTÞ þ
X

bDIEDðTÞ ¼ QI þ
X

bDIQD: ðeÞ

As already explained in }3.8, here all constraint enforcement occurs at the final level;

that is, in (e), not in T .

If we had used in (b, c) the general representations (}2.6)

�qk ¼
X

AkI ��I ; ��D ¼
X

aDk �qk ¼ 0; ��I ¼ 0; ðfÞ
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where the (akl) and (Akl) are inverse matrices, then Hamilton’s principle would have

led us to ð
ð�T þ � 0WÞ dt ¼ BT �

ð XX
½EkðTÞ �Qk�AkD ��D

n o
dt

�
ð XX

½EkðTÞ �Qk�AkI ��I

n o
dt; ðgÞ

and this, with the help of the m multipliers 
D, would have led us to the familiar

Maggi equations (}3.5)

Kinetostatic:
X

EkðTÞAkD ¼
X

QkAkD þ 
D; ðhÞ
Kinetic:

X
EkðTÞAkI ¼

X
QkAkI : ðiÞ

Example 7.3.2 The Torque-Free Case of the Sled Problem, via the preceding
Hamiltonian formulation of the Chaplygin–Hadamard Equations. (Recalling exs.

2.13.1, 2.13.2, and 3.18.1; also see Hamel, 1949, pp. 614–615.) We have seen there

that the constraint is

_xx sin �� _yy cos� ¼ 0 ) �y ¼ ðtan�Þ �x ðaÞ

(i.e., �qD � �y; �qI � �x, ��; n ¼ 3, m ¼ 1), while the unconstrained kinetic energy of

the sled is [with IContact point � IC � I �

2T ¼ m½ð _xxGÞ2 þ ð _yyGÞ2� þ Ið _��Þ2

¼ m½ð _xx� b _�� sin�Þ2 þ ð _yyþ b _�� cos�Þ2� þ Ið _��Þ2

¼ m½ð _xxÞ2 þ ð _yyÞ2� þ Ið _��Þ2 þ 2mb _��ð _yy cos�� _xx sin�Þ: ðbÞ

Applying Hamilton’s principle directly, with all impressed forces zero (i.e.,

� 0W* ¼ 0Þ, and the �q’s chosen so that BT ! 0, we obtain

0 ¼
ð
�T dt ¼

ð �ð@T=@ _xxÞ �ð _xxÞ þ ð@T=@ _yyÞ �ð _yyÞ þ ð@T=@�Þ ��þ ð@T=@ _��Þ �ð _��Þ� dt
¼ �ð@T=@ _xxÞ �xþ ð@T=@ _yyÞ �yþ ð@T=@ _��Þ ���2

1

�
ð �ð@T=@ _xxÞ: �xþ ð@T=@ _yyÞ: �yþ ½ð@T=@ _��Þ: � ð@T=@�� ��� dt

½and enforcing the second constraint of ðaÞ on the integrand variations; not on T �

¼ �
ð �ð@T=@ _xxÞ:þ tan�ð@T=@ _yyÞ:� �xþ ½ð@T=@ _��Þ:� @T=@�� ��� dt; ðcÞ

from which, since �x and �� can now be viewed as unconstrained, we obtain the two
kinetic Chaplygin–Hadamard equations

ð@T=@ _xxÞ:þ tan�ð@T=@ _yyÞ: ¼ 0: ð _xx� b _�� sin�Þ: þ tan � ð _yyþ b _�� cos�Þ: ¼ 0; ðdÞ
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and

ð@T=@ _��Þ: � @T=@� ¼ 0:

½I _��þmbð _yy cos�� _xx sin �Þ�: þmb _��ð _xx cos�þ _yy sin�Þ ¼ 0: ðeÞ

Since _yy ¼ _xx tan� � v sin �, _xx ¼ v cos� (v: velocity of C), eqs. (d, e) can be rewritten,

respectively, in the quasi-velocity (Hamel) form:

ðv cos�� b _�� sin�Þ:þ tan�ðv sin�þ b _�� cos�Þ: ¼ 0 ) _vv� bð _��Þ2 ¼ 0; ðfÞ
I €��þmb _�� v ¼ 0: ðgÞ

Let the reader repeat this procedure with the constraints in the form

�x ¼ ðcot�Þ �y; that is, with �qD ¼ �x, �qI ¼ �y, ��.

Example 7.3.3 The Sled via Hamel’s Form of Hamilton’s Principle. We have

already established the following kinematical results (recall ex. 2.13.2):

q1;2;3 ¼ x; y; �; ðaÞ
!I � ð� sin�Þ _xxþ ðcos�Þ _yyþ ð0Þ _��

ð¼ velocity of contact point C normal to sled ¼ 0Þ; ðb1Þ
!2 � ðcos�Þ _xxþ ðsin�Þ _yyþ ð0Þ _��

ð¼ velocity of C along sled ¼ v 6¼ 0Þ; ðb2Þ
!3 � ð0Þ _xxþ ð0Þ _yyþ ð1Þ _�� ¼ _�� ð6¼ 0Þ; ðb3Þ
_qq1 � _xx ¼ ð� sin�Þ!1 þ ðcos�Þ!2 þ ð0Þ!3; ðc1Þ
_qq2 � _yy ¼ ðcos�Þ!1 þ ðsin�Þ!2 þ ð0Þ!3; ðc2Þ
_qq3 � _�� ¼ ð0Þ!1 þ ð0Þ!2 þ ð1Þ!3; ðc3Þ
�!1 ¼ ð��1Þ:þ ð0Þ ��1 þ ð!3Þ ��2 þ ð�!2Þ ��3; ðd1Þ
�!2 ¼ ð��2Þ:þ ð�!3Þ ��1 þ ð0Þ ��2 þ ð!1Þ ��3; ðd2Þ
�!3 ¼ ð��3Þ:þ ð0Þ ��1 þ ð0Þ ��2 þ ð0Þ ��3; ðd3Þ

and so, recalling the results of the preceding example, the unconstrained kinetic

energy of the sled becomes

2T ! 2T* ¼ m!2
2 þ I!2

3 þmb!1!3: ðeÞ
Hence, varying the above and then enforcing the constraint !1 ¼ 0 (but not ��1 ¼ 0Þ,
we find

�T* ¼
X
ð@T*=@!kÞo �!k �

X
Pko �!k ½invoking ðd1�3Þ with !1 ¼ 0�

¼ P1ð��1Þ:þ ð�P2!3Þ ��1

þ P2ð��2Þ: þ ðP1!3Þ ��2

þ P3ð��3Þ: þ ð�P1!2Þ ��3 ½6¼ �ðT*oÞ; see also }7:7�; ðfÞ

)7.3 PFAFFIAN CONSTRAINTS, LINEAR NONHOLONOMIC VARIABLES 955



where

P1 ¼ mb!3; P2 ¼ m!2; P3 ¼ ðmb!1 þ I !3Þo ¼ I !3; ðgÞ

and

� 0W* �
X

Yk ��k ð� � 0WÞ: ðhÞ

Applying now Hamilton’s principle directly [integrating by parts, grouping terms

appropriately, and choosing the ��’s so that BT ! 0 (something that does no affect

the equations of motion)], we obtain

0 ¼
ð
ð�T*þ � 0W*Þ dt

¼ � � � ¼ �
ð �ð _PP1 þ P2 !3 �Y1Þ ��1 þ ð _PP2 � P1 !3 �Y2Þ ��2

þ ð _PP3 þ P1 !2 �Y3Þ ��3

�
dt; ðiÞ

and from this, invoking the familiar multiplier arguments ½��1 ¼ ð1Þ ��1 ¼ 0, ��2;3:

unconstrained], we finally get all three Hamel equations of the problem (recall

ex. 3.18.1):

Kinetostatic:

_PP1 þ P2 !3 ¼ Y1 þ 
1: mðb _!!3 þ !2 !3Þ ¼ Y1 þ 
1; ðj1Þ
Kinetic:

_PP2 � P1 !3 ¼ Y2: mð _!!2 � b!3
2Þ ¼ Y2; ðj2Þ

_PP3 þ P1 !2 ¼ Y3: I _!!3 þmb!2 !3 ¼ Y3; ðj3Þ

where

Y1 ¼ �X sin�þ Y cos�: total impressed force perpendicular to sled; ðk1Þ
Y2 ¼ X cos�þ Y sin �: total impressed force along sled; ðk2Þ
Y3 ¼M: total impressed couple along z-axis; ðk3Þ
ðX ;YÞ: rectangular Cartesian coordinates of total impressed force on sled; ðk4Þ

obtained from the invariant equation (as if no constraint ��1 ¼ 0 existed):

� 0W � X �xþ Y �yþM ��

¼ Xð� sin� ��1 þ cos� ��2Þ þ Yðcos� ��1 þ sin� ��2Þ þM ��3

¼ Y1 ��1 þY2 ��2 þY3 ��3 � � 0W*: ðk5Þ

Finally, since here all constraints are scleronomic, the power equation is

Holonomic variables: dT=dt ¼ X _xxþ Y _yyþM _��; ðl1Þ
Nonholonomic variables: dT*=dt ¼ Y2!2 þY3!3; ðl2Þ
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from which we conclude that if Y2;3 ¼ 0, then T* ¼ constant

) ð2T*Þo ¼ m!2
2 þ I !3

2 ¼ mv2 þ Ið _��Þ2 ¼ constant: ðl3Þ

7.4 TIME-INTEGRAL THEOREMS: NONLINEAR VELOCITY CONSTRAINTS,

HOLONOMIC VARIABLES

We recall (}5.1, }5.2) that the virtual displacements compatible with the constraints

(}7.3.10) must satisfy, not the formal �ð. . .)-variation of fDðt; q; _qqÞ ¼ 0— that is,X �ð@fD=@qkÞ �qk þ ð@fD=@ _qqkÞ �ð _qqkÞ� ¼ 0; ð7:4:1aÞ

but, instead, the Maurer–Appell–Chetaev–Johnson–Hamel conditions

��D �
X
ð@fD=@ _qqkÞ �qk ¼ 0; ð7:4:1bÞ

and, again,

dð�qkÞ ¼ �ðdqkÞ: ð7:4:1cÞ

Here, the starting point is the nonlinear Routh–Voss equations (5.3.11c)

EkðTÞ � ð@T=@ _qqkÞ: � @T=@qk ¼ Qk þ
X


Dð@fD=@ _qqkÞ; ð7:4:2Þ

that is, equations (7.2.1) with aDk replaced by @fD=@ _qqk.
Performing similar operations on (7.4.2) as on (7.2.1), we readily find the follow-

ing generalized nonlinear holonomic time integral (or virial-like) identity:ð X
ð@T=@ _qqkÞ _zzk þ

X
@T=@qk þQk þ

X

D ð@fD=@ _qqkÞ

h i
zk

n o
dt

¼
X
ð@T=@ _qqkÞzk

n o2

1
: ð7:4:3Þ

Next, from (7.4.3) we obtain the following group of special integral formulae:

(i) The choice zk ! qk yields the virial theoremð X
ð@T=@ _qqkÞ _qqk þ

X
@T=@qk þQk þ

X

D ð@fD=@ _qqkÞ

h i
qk

n o
dt

¼
X
ð@T=@ _qqkÞqk

n o2

1
: ð7:4:4Þ

If @T=@qk ¼ 0 and
P ð@T=@ _qqkÞ _qqk ¼ 2T , and the q-motion is periodic with period

� , then (7.4.4) reduces to:ð
2T dt ¼ �

ð X
Qk þ

X

D ð@fD=@ _qqkÞ

h i
qk dt; ð7:4:4aÞ

where the integrals extend from t1 to t2 ¼ t1 þ � .
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(ii) The choice zk ! _qqk yieldsð X
ð@T=@ _qqkÞ€qqk þ

X
@T=@qk þQk þ

X

D ð@fD=@ _qqkÞ

h i
_qqk

n o
dt

¼
X
ð@T=@ _qqkÞ _qqk

n o2

1
¼
ð X

½ð@T=@ _qqkÞ _qqk�: dt; ð7:4:5aÞ

from which, using earlier described arguments, we obtain the nonlinear (nonpoten-
tial) generalized power equation:X

ð@T=@ _qqkÞ _qqk � T
h i:

¼ �@T=@tþ
X

Qk _qqk þ
XX


D ð@fD=@ _qqkÞ _qqk: ð7:4:5bÞ

Specialization

If @T=@t ¼ 0 and
P ð@T=@ _qqkÞ _qqk ¼ 2T , the above reduces to

dT=dt ¼
X

Qk _qqk þ
XX


Dð@fD=@ _qqkÞ _qqk; ð7:4:5cÞ

a ‘‘kinetostatic’’ form which shows that, even if Qk ¼ �@VðqÞ=@qk and @fD=@t ¼ 0,

in general, nonlinear velocity constraints are nonconservative. However, it is not hard

to see that, if the constraints fD ¼ 0 are homogeneous (of any degree) in the _qq’s, and

the Qk’s derive from a potential VðqÞ, then the system is conservative.

(iii) The choice zk ! �qk yields again Hamilton’s law of varying action (7.2.3b):

by (7.4.1b) we will have

� 0WR �
XX


Dð@fD=@ _qqkÞ �qk ¼ 0 ðLagrange’s principleÞ: ð7:4:6Þ

(iv) The choice zk ! Dqk ¼ �qk þ _qqkDt, thanks to (7.4.6), yields Hamilton’s law of
skew-varying action:ð X

ð@T=@ _qqkÞ ðDqkÞ: þ
X
ð@T=@qk þ QkÞDqk þ

XX

Dð@fD=@ _qqkÞ _qqk

h i
Dt

n o
dt

¼
X
ð@T=@ _qqkÞDqk

n o2

1
: ð7:4:7Þ

Here, too, if the constraints are homogeneous in the _qq’s, then the last integrand

(double) sum vanishes; also, we may replace ðDqÞ: with Dð _qqÞ þ _qqðDtÞ:.

7.5 TIME-INTEGRAL THEOREMS: NONLINEAR VELOCITY CONSTRAINTS,

NONLINEAR NONHOLONOMIC VARIABLES

Here, the starting point is the Johnsen–Hamel equations of motion (}5.3)

d=dtð@T*=@!kÞ � @T*=@�k � Gk ¼ Yk þ Lk; ð7:5:1Þ
where, we are reminded (}5.2),

Gk ¼ �
X

Hb
kð@T*=@!bÞ ¼

X
Vb

kð@T=@ _qqbÞ*; ð7:5:1aÞ
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and the nonlinear coefficients Hb
k (Hamel) and Vb

k (Voronets) can be defined by

[assuming again that ð�qkÞ: ¼ �ð _qqkÞ]

also, the virtual variations are related by

and, of course, LD 6¼ 0;LI ¼ 0.

Now, to build corresponding integral theorems, and so on, we, again, multiply

(7.5.1) with the arbitrary set of functions zkðtÞ, sum over k, apply chain rule, and so

on, and, finally, integrate between t1 and t2. Below we show the details only for the

important case zk ! ��k; that is; for Hamilton’s principle of vertically varying action;
those of the other cases are left to the reader (see also }7.6–7.9). Invoking the

transitivity equations (7.5.1b) we find, successively,

�T* ¼
X
½ð@T*=@�kÞ ��k þ ð@T*=@!kÞ �!k�

¼
X

ð@T*=@�kÞ ��k þ ð@T*=@!kÞ ð��kÞ: �
X

Hk
b ��b

h in o
¼
X
ð@T*=@!kÞ ��k

h i:
�
X
ð@T*=@!kÞ: ��k

�
XX

Hk
bð@T*=@!kÞ ��b þ

X
ð@T*=@�kÞ ��k; ð7:5:2aÞ

and, therefore, integrating, we obtain the general kinematico-inertial transformationð
�T* dt ¼ �

ð X
ð@T*=@!kÞ: � @T*=@�k þ

X
Hb

kð@T*=@!bÞ
h i

��k dt

þ
X
ð@T*=@!kÞ ��k

n o2

1
; ð7:5:2bÞ

a result that shows the equivalence between the equations of motion (7.5.1, 1a)

[plus boundary conditions ��ðt1;2Þ] and the nonlinear counterpart of equations

(7.3.4–6): ð
ð�T*þ � 0W*Þ dt ¼

X
Pk ��k

n o2

1
; ð7:5:2cÞ

that is, the Hamiltonian variational equation has the same form for both Pfaffian

and nonlinear constraints.

Let us now proceed to a detailed study of these variational ‘‘principles.’’
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ð��bÞ:� �!b ¼
X

Esð!bÞ �qs ¼
XX

Esð!bÞ ð@ _qqs=@!kÞ ��k �
X

Hb
k ��k

¼ �
XX

Ek* ð _qqlÞ ð@!b=@ _qqlÞ ��k � �
XX

Vl
kð@!b=@ _qqlÞ ��k;

ð7:5:1bÞ

�qs ¼
X
ð@ _qqs=@!kÞ ��k , ��k ¼

X
ð@!k=@ _qqsÞ �qs; ð7:5:1cÞ



Time-Integral Variational Principles (IVP)

7.6 HAMILTON’S PRINCIPLE VERSUS CALCULUS OF VARIATIONS

(i) Mechanical Variational Problem

Let us take, without loss in generality for our purposes here, a system described

completely by the Lagrangean function L ¼ Lðt; q; _qqÞ � T � V , and subjected to the

nonlinear and possibly nonholonomic constraints (7.3.10)

!D � fDðt; q; _qqÞ ¼ 0 ðvelocity formÞ; ð7:6:1aÞ
��D �

X
ð@fD=@ _qqkÞ �qk ¼ 0 ðvirtual formÞ: ð7:6:1bÞ

Its equations of motion, (7.4.2),

EkðLÞ ¼
X


Dð@fD=@ _qqkÞ ¼
X


DaDk; in the Pfaffian case
h i

; ð7:6:2Þ

are obtained by combining Lagrange’s differential variational principle (LP):P
EkðLÞ �qk ¼ 0, with (7.6.1b), in, by now, well-understood ways; and, along with

the m constraints fD � !D ¼ 0, they form a determinate system of nþ m equations

for the functions qkðtÞ and 
DðtÞ. Next, assuming that ð�qkÞ: ¼ �ð _qqkÞ, we are readily

led (applying chain rule to LP, etc.) to the central equation:

�L �
X �ð@L=@qkÞ �qk þ ð@L=@ _qqkÞ �ð _qqkÞ� ¼ d=dt

X
ð@L=@ _qqkÞ �qk

h i
; ð7:6:3aÞ

then, integrating the above in time between t1;2, while assuming that

BT �
X
ð@L=@ _qqkÞ �qk

n o2

1
¼ 0 ðof no effect on the equations of motionÞ;

ð7:6:3bÞ
we obtain the constrained integral variational equationð

�Ldt ¼ 0; ð7:6:3cÞ

and, finally, attaching (or adjoining) (7.6.1b) to (7.6.3c) via the m Lagrangean multi-

pliers 
D, we obtain the following unconstrained integral variational equation:ð
�Lþ

XX

Dð@fD=@ _qqkÞ �qk

h i
dt ¼ 0: ð7:6:4Þ

Conversely, integrating (7.6.4) by parts [and then using (7.6.3b)], we are easily led

back to (7.6.2); that is, (7.6.2) and (7.6.4) are completely equivalent. Equation
(7.6.3c) under (7.6.1b), or (7.6.4), constitute the mechanical variational problem

for our system. Next, let us see the corresponding mathematical variational problem,

for the same system, and its relation with the above.

(ii) Mathematical Variational Problem

According to variational calculus [see any good text on this subject; for example, Fox

(1950/1987, pp. 94–102), Funk (1962, p. 253 ff.), Gelfand and Fomin (1963, chap. 2)]
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this would be ð
Ldt ¼ stationary; under ð7:6:1aÞ; ð7:6:5aÞ

or, equivalently,

�

ð
Ldt ¼ 0; under ð7:6:1aÞ ! �fD ¼ 0: ð7:6:5bÞ

Applying again the multiplier rule, but with the m Lagrangean multipliers �D (since

here fD � !D ¼ 0; and �!D ¼ 0) we are led, in well-known ways, to the uncon-

strained variational equation

0 ¼ �
ð

Lþ
X

�D fD

� �
dt ¼

ð
� Lþ

X
�D fD

� �
dt ðfor fixed time-endpointsÞ

¼
ð
�Lþ

X
ð��D fD þ �D �fDÞ

h i
dt ¼

ð
�Lþ

X
�D �fD

� �
dt

¼ . . . ¼ �
ð X

EkðLþ
P

�D fDÞ �qk dtþ
XX

�Dð@fD=@ _qqkÞ �qk
n o2

1
; ð7:6:5cÞ

which, since now the �q’s can be viewed as unconstrained, with (7.6.3b), immediately

yields the following n Euler–Lagrange equations [observing that Ekð. . .Þ is a linear
operator]:

Ek LþP �D fDð Þ ¼ EkðLÞ þ Ek

P
�D fDð Þ ¼ 0; ð7:6:5dÞ

or, in extenso,

ð@L=@ _qqkÞ:� @L=@qk ¼ �
X

�D
�ð@fD=@ _qqkÞ:� @fD=@qk��X ðd�D=dtÞð@fD=@ _qqkÞ;

ð7:6:5eÞ

or, again in operator form (recalling that fD � !D),

EkðLÞ ¼ �
X

�DEkð!DÞ �
X
ðd�D=dtÞð@!D=@ _qqkÞ: ð7:6:5fÞ

Now, comparing (7.6.2) and (7.6.5d–f) we immediately see that, even if we identify

the 
D with the �ðd�D=dtÞ, since, in general, Ekð!DÞ � Ekð fDÞ 6¼ 0 (nonholonomic

constraints), still these two sets of equations are different; that is, equations
(5d–f ) are mechanically/physically incorrect! However, for holonomic problems —

that is, Ekð fDÞ ¼ 0 — these equations, and, hence, corresponding integral variational

problems, are completely equivalent.

REMARKS

(i) As clarified below, this should not come as a surprise: The basic principle of

mechanics is not the integral principle/rule (7.6.5a, b), but the differential principle of

Lagrange (LP).

(ii) Note that, in the variational calculus literature, (7.6.5a, b) is also called

Lagrange’s problem!
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Source and Meaning of the Discrepancy

We begin with a fundamental actual path of the system, or simply an orbit, in the

physical or in configuration space. That is a dynamically or kinetically possible path

from an initial configuration P1 � Pðt1Þ to a final one P2 � Pðt2Þ, where P1;2 and t1;2
are fixed, or given (see next section for slight changes in these boundary data); that is,

an orbit satisfies (a) the equations of motion (of Lagrange, Routh–Voss, etc.) and

(b) the boundary conditions. Thus, for a holonomic system with no additional

Pfaffian constraints (i.e., m ¼ 0), the orbit is a curve

qk ¼ qkðtÞ; t1 � t � t2; ð7:6:6aÞ
of class C2 (i.e., with continuous derivatives of up to the second order, in that

t-region) satisfying Lagrange’s equations

EkðLÞ � ð@L=@ _qqkÞ:� @L=@qk ¼ 0; ð7:6:6bÞ
and the boundary conditions

qkðt1Þ ¼ qk1; qkðt2Þ ¼ qk2; qk; 1;2: given numbers: ð7:6:6cÞ
Let us see what happens under the additional (possibly nonholonomic) constraints

(7.6.1a, b).

(i) In the mechanical problem, (7.6.3c, 1b), we build, in accordance with

Lagrange’s principle, varied, or comparison, paths by adding to each point of the
fundamental orbit I, ½t; qkðtÞ�, the contemporaneous (or vertical) and constraint com-
patible— that is, virtual, displacement �qk ¼ �qkðtÞ, of class C2 — that vanishes at

t1;2. In short, the mechanical variations consist of kinematically admissible (or possi-
ble) displacements; that is, �q’s that satisfy (7.6.1b): ��D ¼ 0.

(ii) In the mathematical problem, (7.6.5a, 1a), on the other hand, we consider, in

accordance with the multiplier rule of variational calculus, the family, or class, of all

constraint compatible paths K that are of class C2 and coincide with I at t1;2 (i.e., I
belongs to K). In short, the mathematical variations consist of kinematically admis-

sible (or possible) neighboring paths; that is, paths that satisfy (7.6.1a): !D ¼ 0.

We express these differences, compactly, byð
�Ldt under ��D �

X
ð@fD=@ _qqkÞ �qk ¼ 0�mechanics

h i
6¼ �

ð
Ldt ½under !D � fDðt; q; _qqÞ ¼ 0�mathematics�; ð7:6:7Þ

with the equality sign holding for holonomic systems.

{As Capon puts it: ‘‘Whereas in the generally accepted method of the calculus of

variations [i.e., mathematics] the comparison paths are required to satisfy the con-

ditional equations [our !D ¼ 0], the displacements being free, in Hölder’s treatment

[i.e., mechanics] this is reversed: the displacements [our �qk] are to satisfy the condi-

tional equations [our ��D ¼ 0], and it follows from the theory of Pfaff equations [i.e.,

Frobenius’ theorem (}2.12)] that the comparison paths do not satisfy them]’’ (1952, p.

473, emphasis added).

As shown below (}7.7), this means that from ��DðtÞ ¼ 0 (admissible displace-
ments—mechanics), it does not follow that �!DðtÞ ¼ 0 (admissible paths— mathe-

matics), and vice versa, unless the constraints are holonomic.
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For these reasons, certain authors have modified the integrand of the mechanical

variational principle so as to produce a mathematical variational principle that yields

the correct equations of motion: for example, Borri (1994).}

Sufficiency of Hamilton’s Principle (HP)

Before discussing the quantitative consequences of the above, let us examine the

following important point: so far, both (7.6.3c, 5b) and (7.6.5a, 1a) have been

shown to be necessary conditions for an orbit. But the practical usefulness of HP

(and the other IVP, and of variational methods in general) lies largely in their

sufficiency: the solution(s) of these variational equations should be the orbit(s) of
the problem. Let us examine the nonholonomic case in more detail: clearly, the

numbers n and m (and, therefore, also f � n�m: #DOF) are system invariants;
that is, independent of the q’s chosen. Further, as shown below, starting from a

given point P1, of the configuration space Vn, the points P accessible from it by

kinematically admissible paths lie on an n-dimensional manifold Mn; that is, any

point P in Vn is kinematically accessible. However, the points accessible from P1 by

kinematically admissible paths (i.e., orbits through it) lie on an ðn �mÞ-dimensional

submanifold Mn�m (¼ a subspace of Vn). Hence, the sufficient part of the mathema-

tical variational problem cannot hold for nonholonomic systems: if both P1 and P2

are given, then P2 may not lie on Mn�m; eqs. (7.6.5a, 1a) will yield a path through P1

and P2, but that path will not be a mechanically correct motion, it will not be an

orbit. Still worse, even if P2 were kinematically accessible from P1, the orbit would

exist but it would not satisfy (7.6.5a, 1a); that is, it would not render
Ð
Ldt stationary

among K-curves. In sum: whether P2 lies on Mn�m or not, the variational equation

�
Ð
Ldt ¼ 0 under the multiplier rule does not produce the orbit through P1 and P2;

and, conversely, that orbit does not make
Ð
Ldt stationary among kinematically

admissible paths — the mathematical variational principle is not valid for nonholo-
nomic systems, and therefore it cannot be used as a foundation of (even conservative)

analytical mechanics!

If one still wants such a ‘‘principle’’ (better, integral energetic equation), uniformly
valid for both holonomic and nonholonomic systems, that can be done, but it must

be based on some time integral of Lagrange’s principle or the central equation; that is,

on mechanical principles (as detailed below }7.6, }7.7); then its application will

produce the orbits of the system.

Differential Equation Considerations

These differences can also be seen from the viewpoint of differential equations.

(i) Mechanical Problem

The general solution of the latter depends on 2n�m arbitrary constants, not on 2n.
Here is why: due to the constraint equations, we can express the m 
D’s as


 ¼ 
ðt; q; _qqÞ [no d
=dt occur in (7.6.2)] and then substitute them back into (7.6.2)

[recalling the ‘‘equations of Jacobi–Synge’’: exs. 3.2.6, 3.5.5, 3.10.2, 5.3.5, and 5.3.6];

that is, we can replace the latter by n multiplierless (kinetic) second-order equations in

the q’s; a system whose general solution will depend on 2n constants. Finally, since

these q’s should also satisfy the m constraints (7.6.1a), the general solution of (7.6.2)

would depend on 2n�m arbitrary constants; that is, the ‘‘path multiplicity’’ is

)7.6 HAMILTON’S PRINCIPLE VERSUS CALCULUS OF VARIATIONS 963



12n�m. [Or, we could argue on the following mechanical grounds: the kinetic (re-

actionless) equations of the system — e.g., those of Maggi, Hamel, etc. — constitute a

system of n�m second-order equations for the q’s and, therefore, they generate

2ðn�mÞ constants. On the other hand, the system of the m first-order constraints

generates m such constants. So the total number of arbitrary integration constants

will be 2ðn�mÞ þm ¼ 2n�m.]

These constants can be expressed, for example, in terms of the 2n�m initial
conditions (say, for t1 ¼ 0):

qkð0Þ ¼ qko: given ðn conditionsÞ; _qqIð0Þ ¼ _qqIo: given ðn�m conditionsÞ;
ð7:6:8Þ

while the remaining m such conditions, _qqDð0Þ ¼ _qqDo: given, can be found from (7.6.8)

and the m constraints fD ¼ 0 evaluated at t1 ¼ 0; that is, even though the qo can be

specified arbitrarily, the _qqo require consideration of the constraints.

In short: Orbits through a given point must be along constraint-compatible
directions. If, further, the system is holonomic, these directions define an ðn�mÞ-
dimensional submanifold, inside the original n-dimensional manifold of the q’s.
Hence, in such systems, an orbit cannot pass through two arbitrarily specified points

P1 (initial) and P2 (final) in configuration space; if we fix P1, then, for the arc P1P2 to

be an orbit, P2 cannot be specified arbitrarily, but must lie on an ðn�mÞ-dimen-

sional manifold through P1.

(ii) Mathematical Problem

The system (7.6.5d–f ) is of the second order in the q’s and first order in the �’s, and

therefore (since the fD ¼ 0 are nonholonomic ) Ekð fDÞ 6¼ 0) its general solution

depends on 2n arbitrary constants; whereas that of the mechanical system (7.6.2),

as explained above, depends on only 2n� m such constants. [This can also be seen as

follows: since the n q’s appear up to the second order and the m �’s up to the first
order, we have a maximum of 2nþm arbitrary constants; that is, initial conditions

for the q’s and �’s. But the q’s and _qq’s must also satisfy the constraints fDðt; q; _qqÞ ¼ 0,

and so the maximum number of such constants of the mathematical problem (the

‘‘multiplicity of its solutions’’) is ð2nþmÞ � m ¼ 2n.]
In conclusion:

� Through any given pair of points P1 and P2, these 2n constants define a path

uniquely;

� Through any point P1, and in any constraint-compatible direction, there is an 1m

multiplicity of paths; the position and (compatible) direction absorb 2n�m of the

constants, leaving m of them disposable ½ð2n�mÞ þm ¼ 2n�.

[It has been shown by Capon (1952, p. 476), that: (a) In the mechanical problem, if

the m constraints have rð< mÞ integrals, then the maximum multiplicity of the

mechanical paths is 1ð2n�mÞ�r ¼ 12n�ðmþrÞ; and if, in addition, there are M ignor-

able/cyclic coordinates—that is, @L=@q ¼ 0 (}8.4 ff.)—then the multiplicity is

1ð2n�mÞ�ðrþMÞ ¼ 12n�ðmþrþMÞ. (b) In the mathematical problem, if there are integrals

of the constraints then for each such integral the number of independent constants is

reduced by 2; that is, the corresponding multiplicities are, respectively, 12ðn�rÞ and

12ðn�rÞ�M.
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In other words, there are many paths in the mathematical problem that are not

mechanical paths; or, all mathematical solutions satisfy the stationarity condition;
while, in general, the mechanical paths (orbits) do not.]

Conditions under which the Mechanical and Mathematical
Problems Coincide

This means where the general or some particular solution(s) of these problems

coincide, for the same initial conditions. By comparing (7.6.2) and (7.6.5f ), we see

that for this to happen we must haveX
½
D þ ðd�D= dtÞ� ð@!D=@ _qqkÞ ¼ �

X
�D½ð@!D=@ _qqkÞ:� @!D=@qk�: ð7:6:9aÞ

Multiplying each of these n equations by �qk and summing over k, while observing

the constraints ��D ¼ 0, we find the alternative, virtual work form, of the necessary

condition:

� 0WR 0 � �
XX

�D
�ð@!D=@ _qqkÞ: � @!D=@qk

�
�qk � �

XX
�DEkð!DÞ �qk ¼ 0:

ð7:6:9bÞ
The above is also sufficient: assuming that some solution of the mathematical

problem satisfies (7.6.9b) for �q’s restricted by ��D ¼ 0, then multiplying (7.6.9a)

with �qk, and ��D with 
D, and summing, respectively, over k and D, while observing

(7.6.9b) and (7.6.5f ), we findX
EkðLÞ �

X

Dð@fD=@ _qqkÞ

h i
�qk ¼ 0; ð7:6:9cÞ

that is, that solution satisfies the mechanical problem and its constraints.

In terms of the following constraint reactions:

Rk �
X


Dð@fD=@ _qqkÞ; ð7:6:9dÞ
Rk
0 � �

X
�DEkð!DÞ; Rk

00 � �
X
ðd�D=dtÞ ð@fD=@ _qqkÞ; ð7:6:9eÞ

the ‘‘coincidence conditions’’ (7.6.9a, b) can be rewritten, respectively, as

Rk ¼ Rk
0 þ Rk

00; ð7:6:9fÞX
Rk �qk ¼

X
Rk
0 �qk þ

X
Rk
00 �qk: 0 ¼ 0þ 0: ð7:6:9gÞ

Additional forms of these coincidence conditions will be given later (}7.8).

We can summarize the developments of this section as follows: The differences

between the time-integral variational ‘‘principles’’ of analytical mechanics and

variational calculus result from different assumptions about variations; that is, com-

parison motions: in mechanics we assume admissible instantaneous displacements
ð��D ¼ 0Þ, while in mathematics we assume admissible paths, as a whole
ð�!D ¼ 0Þ. And since these assumptions result in different forms of the transitivity
equations, we must examine the precise effect of the latter both on the principles of

mechanics (i.e., Lagrange’s principle, or his central equation—which are variational

but differential) and on the corresponding Hamiltonian principles (which are also

variational but integral). This is detailed in the next section.
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7.7 INTEGRAL VARIATIONAL EQUATIONS OF MECHANICS

Mechanical Admissibility

The constraints (7.6.1a, b) must hold for a generic instant t, as well as for its adjacent

tþ dt; that is,

!DðtÞ ¼ 0 and !Dðtþ dtÞ ¼ 0; or ��DðtÞ ¼ 0 and ��Dðtþ dtÞ ¼ 0:

ð7:7:1Þ
Expanding the second and fourth of the above à la Taylor, and invoking the first and

third, we get, to the first order (omitting, for simplicity, the explicit time dependence),

the following requirements for the mechanical realizability of adjacent motions:

!D þ d!D ¼ 0 ) d!D ¼ 0;

or

��D þ dð��DÞ ¼ 0 ) dð��DÞ ¼ 0;

or

ð��DÞ: ¼ 0 ðevolution of displacement admissibility in timeÞ: ð7:7:2Þ
Then, the earlier general transitivity equations [}5.2, or (7.5.1b), but without the

special assumption ð�qkÞ: ¼ �ð _qqkÞ] yield

��!D ¼
X
ð@!D=@ _qqkÞ ½ð�qkÞ: � �ð _qqkÞ� þ

X
HD

I ��I

¼
X
ð@!D=@ _qqkÞ ½ð� _qqkÞ: � �ð _qqkÞ� �

XX
Vk

I ð@!D=@ _qqkÞ ��I ð7:7:3Þ

¼
X
ð@!D=@ _qqkÞ ½ð�qkÞ:� �ð _qqkÞ�

h
þ
XX

ð�DII 0!I 0 Þ ��I ; in stationary Pfaffian case
i
6¼ 0; in general:

ð7:7:3aÞ
From the above we conclude the following:

� We cannot assume that both ð�qkÞ: ¼ �ð _qqkÞ and �ðd�DÞ ¼ 0, or �!D ¼ 0, hold; it is

either one or the other.

� If we assume that ð�qkÞ: ¼ �ð _qqkÞ, then �ðd�DÞ; �!D 6¼ 0; unless HD
I ¼ 0 [which, in the

stationary Pfaffian case (chosen here just for algebraic simplicity), reduces to the

Frobenius integrability conditions: �DII 0 ¼ 0. Hence, by analogy, HD
I ¼ 0 become

the ‘‘Frobenius (necessary and sufficient) conditions’’ for the holonomicity of

the first-order nonlinear system !D � fDðt; q; _qqÞ ¼ 0].

These results, under ð�qkÞ: ¼ �ð _qqkÞ, are depicted in fig. 7.2(a).

Mathematical Admissibility

Here, the constraints (7.6.1a) hold for both the fundamental orbit, or arc, I , as well

as for its kinematically admissible adjacent arc II ¼ I þ �I ; that is,

!DðIÞ ¼ 0 and !DðIIÞ ¼ !DðI þ �IÞ ¼ 0; ð7:7:4aÞ
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or

d�DðIÞ ¼ 0 and d�DðIIÞ ¼ d�DðI þ �IÞ ¼ 0; ð7:7:4bÞ
from which, expanding as before, and so on, we obtain the following requirements

for the mathematical realizability of adjacent motions:

!D þ �!D ¼ 0 ) �!D ¼ 0;

or

d�D þ �ðd�DÞ ¼ 0 ) �ðd�DÞ ¼ 0 ðvirtual variation of path admissibilityÞ:
ð7:7:4cÞ

Then, the transitivity equations [again under ð�qkÞ: 6¼ �ð _qqkÞ] yield

ð��DÞ: ¼
X
ð@!D=@ _qqkÞ ½ð� _qqkÞ: � �ð _qqkÞ� þ

X
HD

I ��I

¼
X
ð@!D=@ _qqkÞ ½ð� _qqkÞ: � �ð _qqkÞ� �

XX
Vk

Ið@!D=@ _qqkÞ ��I ; ð7:7:5Þ

¼
X
ð@!D=@ _qqkÞ ½ð�qkÞ:� �ð _qqkÞ�

h
þ
XX

ð�DII 0!I 0 Þ ��I ; in stationary Pfaffian case
i
6¼ 0; in general:ð7:7:5aÞ

From the above we conclude the following:

� We cannot assume that both ð�qkÞ: ¼ �ð _qqkÞ and dð��DÞ ¼ 0, or ð��DÞ: ¼ 0, hold; it is

either one or the other.

� If we assume that ð�qkÞ: ¼ �ð _qqkÞ, then dð��DÞ; ð��DÞ: 6¼ 0; unless HD
I ¼ 0. These

results, under ð�qkÞ: ¼ �ð _qqkÞ, are depicted in fig. 7.2(b).

In sum: even assuming that ð�qkÞ: ¼ �ð _qqkÞ, due to the purely analytical transitivity

equations:

� We cannot assume that both �ðd�DÞ ¼ 0 (or �!D ¼ 0) and dð��DÞ ¼ 0 [or ð��DÞ: ¼ 0].
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� In mechanics ½dð. . .Þ�, assuming ð�qkÞ: ¼ �ð _qqkÞ, we have

dð��DÞ ¼ 0 or ð��DÞ: ¼ 0 ðand d!D ¼ 0Þ; ð7:7:6Þ
but �ðd�DÞ 6¼ 0 (or �!D 6¼ 0), even though d�D ¼ 0 (or !D ¼ 0); in fact,

�!D ¼ �
X

HD
I ��I ¼

XX
Vk

Ið@!D=@ _qqkÞ ��I
¼ �

X
Ekð!DÞ �qk � �

X
Ekð fDÞ �qk � �fD ½by ð5:2:22a; bÞ� ð7:7:7Þ

6¼ 0; for nonholonomic constraints;

¼ 0; for holonomic constraints:n
The reader may verify without much difficulty that in the Pfaffian case

!D �
X

aDk _qqk þ aD ¼ 0;

the above specialize to

�!D � �fD � �
X

aDk _qqk þ aD

� �
¼ � � � ¼ �

X X
ð@aDk=@qb � @aDb=@qkÞ _qqb þ ð@aDk=@t� @aD=@qkÞ

h i
�qk

¼ �
XX

ð�DII 0!I 0 Þ ��I ; in stationary Pfaffian case
h io

: ð7:7:7aÞ

Similarly, we obtain the corresponding independent transitivity equations:

�!I ¼ ð��I Þ: �
X

HI
I 0 ��I 0 ¼ ð��IÞ:þ

XX
Vk

I 0 ð@!I=@ _qqkÞ ��I 0 ð7:7:8Þ

¼ ð��IÞ:�
XX

ð�II 0I 00 !I 00 Þ ��I 0 ; in stationary Pfaffian case
h i

: ð7:7:8aÞ

[What happens in mechanics if we assume that ð�qkÞ: 6¼ �ð _qqkÞ, for some or all values

of k, is examined in }7.8. (Recall conclusions of prob. 2.12.5.)]

� In mathematics ½�ð. . .Þ�, assuming ð�qkÞ: ¼ �ð _qqkÞ, we have

�ðd�DÞ ¼ 0 or �!D ¼ 0;

but dð��DÞ 6¼ 0 (or ð��DÞ: 6¼ 0) and d!D 6¼ 0, even though ��D ¼ 0 (or !D ¼ 0).

In words: adjacent paths obtained by adding mechanically admissible variations to

every point of an orbit
�
d ½��DðtÞ� ¼ 0

�
are, in general, mathematically inadmissible�

�½d�DðtÞ� 6¼ 0
�
.

Next, to the various integral formulae of mechanics.

The Central Equation, its Integral Forms, and
Corresponding Equations of Motion

(i) Holonomic Variables

Let us now extend the above to the IVPs of the most general systems [nonpotential,

rheonomic, nonlinearly nonholonomic (chap. 5)] under vertical variations (i.e.,

Dt ¼ 0); we consider a system with kinetic energy T ¼ Tðt; q; _qqÞ, impressed forces
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Qk ¼ Qkðt; q; _qqÞ [some of which, or all, may be partially or completely potential; i.e.,

Qk ¼ �@Vðt; qÞ=@qk], subject to the mð< nÞ independent and generally nonholo-

nomic velocity constraints

fDðt; q; _qqÞ ¼ 0; rankð@fD=@ _qqkÞ ¼ m ½D ¼ 1; . . . ;m; I ¼ mþ 1; . . . ; n�;
ð7:7:9aÞ

or, equivalently, solving for the m _qqD in terms of the n�m _qqI :

_qqD ¼ �Dðt; q; _qqIÞ ½) fD � _qqD � �Dðt; q; _qqIÞ ¼ 0�; ð7:7:9bÞ
and whose virtual forms are, respectively,

��D �
X
ð@fD=@ _qqkÞ �qk ð¼ 0Þ; where _��D � !D � fD ¼ 0; ð7:7:9cÞ

�qD �
X
ð@�D=@ _qqI Þ �qI ð6¼ 0Þ: ð7:7:9dÞ

Here our discussion is based not on the equations of motion (}7.2–7.5), but on their

equivalent principle of Lagrange (LP, }3.2):X �½ð@T=@ _qqkÞ:� @T=@qk� �Qk

�
�qk �

X
½EkðTÞ �Qk� �qk ¼ 0; ð7:7:10Þ

where the n �q’s are restricted by the m conditions (7.7.9c).

Integrating (7.7.10) between the arbitrary times t1 and t2, then integrating by

parts, and so on, and using the familiar notation � 0W �P Qk �qk, we obtainð X �ð@T=@qkÞ �qk þ ð@T=@ _qqkÞ ð�qkÞ:�þ � 0Wn o
dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
;

ð7:7:11Þ
or, further, since by standard �-differential calculus,

�T ¼
X
½ð@T=@qkÞ �qk þ ð@T=@ _qqkÞ �ð _qqkÞ�; ð7:7:11aÞ

adding and subtracting to the integrand of (7.7.11)
P ð@T=@ _qqkÞ �ð _qqkÞ (in order to

create �T there), we finally transform it toð
�T þ � 0W þ

X
ð@T=@ _qqkÞ ½ð�qkÞ:� �ð _qqkÞ�

n o
dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
: ð7:7:12Þn

Equation (7.7.12) can also result, most simply, by integration of the general central

equation, in holonomic variables, (3.6.8):

�T þ � 0W þ
X
ð@T=@ _qqkÞ ½ð�qkÞ:� �ð _qqkÞ� ¼ d=dt

X
ð@T=@ _qqkÞ �qk

h io
: ð7:7:13Þ

This general integral equation is fundamental to all subsequent IVP considerations.

Now, and this is the crux of the matter, (7.7.12) makes clear that we must relate

the ð�qÞ:’s, with the �ð _qqÞ’s; that is, we must invoke some kind of transitivity equations.
This can also be seen as follows: since the �qðtÞ’s are well-defined functions of time,

so are the ð�qÞ:’s; but the �ð _qqÞ’s need defining, something which, again, is equivalent to

a choice of transitivity equations. There is no unique way to do this, but, since there

is only one mechanics, we should always end up with the same (correct) equations of
motion. As the virtual constraints (7.7.9c, d) show, since not all �q’s are specified
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uniquely, there is a certain freedom in defining �ð _qqÞ � � _qq; and this, historically, has

given rise to various seemingly contradictory IVPs. We shall return to this topic

in }7.8.

(ii) Nonholonomic Variables

To obtain the nonholonomic variable equivalent of this most general integral for-

mula, we substitute into it the most general transitivity equations (5.2.23a ff.):

ð�qkÞ: � �ð _qqkÞ ¼
X
ð@ _qqk=@!bÞ ½ð��bÞ: � �!b� þ

X
Vk

b ��b ð7:7:14aÞ
¼
X
ð@ _qqk=@!bÞ ½ð��bÞ: � �!b� �

XX
ð@ _qqk=@!lÞHl

b ��b; ð7:7:14bÞ

while recalling that, since T ¼ Tðt; q; _qqÞ ¼ T ½t; q; _qqðt; q; !Þ� � T*ðt; q; !Þ � T*,

�T ¼ �T* ¼
X
½ð@T*=@qkÞ �qk þ ð@T*=@!kÞ �!k�

¼
X
½ð@T*=@�kÞ ��k þ ð@T*=@!kÞ �!k�; ð7:7:14cÞ

also

Pb � @T*=@!b ¼
X
ð@T=@ _qqkÞ ð@ _qqk=@!bÞ ¼

X
ð@ _qqk=@!bÞpk; ð7:7:14dÞ

and

� 0W ¼ � 0W* �
X

Yk ��k ðdefinition of Yk’sÞ: ð7:7:14eÞ

Thus, we transform (7.7.12) into its nonholonomic counterparts (no constraint

enforcement yet!):ð
�T*þ � 0W*þ

X
Pk½ð��kÞ:� �!k� þ

XX
Vk

b pk ��b

n o
dt

¼
X
ð@T*=@!kÞ ��k

n o2

1
¼

X
ð@T=@ _qqkÞ �qk

n o2

1

� �
; ð7:7:15aÞð

�T*þ � 0W*þ
X

Pk½ð��kÞ:� �!k� �
XX

Hk
bPk ��b

n o
dt

¼
X
ð@T*=@!kÞ ��k

n o2

1
: ð7:7:15bÞ

As with (7.7.12), this can also be achieved (a) either by transforming (7.7.13) into

quasi variables, via (7.7.14a–d), and then integrating, or (b) by integrating the

earlier-found general central equation in quasi variables (3.6.9).

Next, to go from (7.7.15a, b) to the general nonlinear T*-based equations of

motion (}5.3), and thus establish the complete equivalence of the former with the

latter, we employ the following general kinematico-inertial transformation of

integral variational mechanics [obtained most easily by use of (7.7.14c, d) and
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integration by parts, and so on; also, recalling (7.5.2b)]:ð
�T*þ

X
Pk½ð��kÞ:� �!k�

n o
dt

¼
ð X �ð@T*=@!kÞ ð��kÞ:þ ð@T*=@�kÞ ��k

�
dt

¼ � � � ¼
X

Pk ��k

n o2

1
�
ð X �ð@T*=@!kÞ:� @T*=@�k

�
��k dt: ð7:7:15cÞ

As a result of this, (7.7.15a, b) are immediately transformed to the following time-
integral forms of the nonlinear Johnsen–Hamel nonholonomic equations of motion

(5.3.5a, b; 8a, b):

�
ðX�ð@T*=@!kÞ: � @T*=@�k �

XX
ð@T=@ _qqbÞ*Vb

k �Yk

�
��k dt ¼ 0; ð7:7:16aÞ

�
ðX�ð@T*=@!kÞ: � @T*=@�k þ

XX
ð@T*=@!bÞHb

k �Yk

�
��k dt ¼ 0; ð7:7:16bÞ

from which (and the method of Lagrangean multipliers) both kinetic and kineto-

static equations of mechanics follow at once.

REMARKS

(i) Had we assumed in (7.7.12, 13; 14a, b) that ð�qkÞ: ¼ �ð _qqkÞ, whether the �qk are
further constrained or not [what we shall, henceforth, call the viewpoint of Hölder
(1896)–Voronets (1901)–Hamel (1904)], then eqs. (7.7.12; 15a, b) would have led us to

the earlier form,ð
ð�T þ � 0WÞ dt ¼

ð
ð�T*þ � 0W*Þ dt ¼

X
ð@T*=@!kÞ ��k

n o2

1
; ð7:7:17Þ

where now

�T* ¼
X
½ð@T*=@�kÞ ��k þ ð@T*=@!kÞ �!k� ½invoking ð7:7:7�7:7:8aÞ�

¼
X

ð@T*=@�kÞ ��k þ ð@T*=@!kÞ ð��kÞ: �
X

Hk
b ��b

h in o
¼
X
ð@T*=@�kÞ ��k þ

X�½ð@T*=@!kÞ ��k�:� ½ð@T*=@!kÞ: ��k�
�

�
XX

Hb
kð@T*=@!bÞ ��k; ð7:7:17aÞ

so that, upon time integration, and so on,ð
�T* dt ¼ �

ðX
ð@T*=@!kÞ:� @T*=@�k þ

X
Hb

kð@T*=@!bÞ
h i

��k dt

þ
X

Pk ��k

n o2

1
; ð7:7:17bÞ

[which is none other than (7.5.2b)], and similarly in terms of the Vb
k; and these

results would have, obviously, transformed (7.7.17) into the earlier (7.7.16a, b);

that is, whether we assume that ð�qkÞ: ¼ �ð _qqkÞ or not, if we are internally consistent
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we will end up with the same equations of motion, just like in the derivation of the

equation of motion from the central equation (}3.6, }5.3).

In sum: To obtain the correct equations of motion of nonholonomic systems via a

Hamiltonian IVP, we must stick with mechanics (i.e., Lagrange’s principle) and

sacrifice mathematics (i.e., calculus of variations)!

(ii) The earliest explicit realization of this fact — that is, that mechanical varia-

tional principles do not have to coincide with mathematical variational principles,

and that in all cases of discrepancy the former override the latter, seems to be due to

Voss (1885, second footnote, p. 266): ‘‘Aber das Hamilton’sche Princip [i.e., our

mathematical variational principle] ist überhaupt kein eigentliches Princip der

Mechanik, sondern hat—wenigstens zunächst—für dieselbe nur den Charakter

einer analytischen Regel, welche auch die Differentialgleichungen der Bewegung

liefert.’’ Freely translated as ‘‘Hamilton’s principle [as originally and commonly

understood; i.e., as a mathematical variational principle] is not, generally, a proper

principle of mechanics [i.e., like LP], but—at least for the moment—only a mathe-

matical rule that also yields the equations of motion.’’ See also Maurer (1905).

This point cannot be emphasized enough. Most mechanics texts we are aware of,

including almost all contemporary ones in English, promote the false notion that

the basic principle of (at least) potential but possibly nonholonomic systems is

Hamilton’s mathematical variational principle, eqs. (7.6.5a, b), or some variant of

it (}7.9)! But even the few classy exceptions to this broad indictment, e.g., Rosenberg

(1977, pp. x, 171 ff.) do not pinpoint to the source of the discrepancy, which is the

transitivity equations (a topic absent from practically all English language texts on

mechanics!).

Constrained Forms of the Integral ‘‘Principles’’

Let us find the forms that (7.7.15a, b) (and hence, ultimately, the resulting equations

of motion) assume if, in there, we enforce both ��D ¼ 0 (admissible displacements)

and !D ¼ 0 (admissible paths); that is, let us express their integrands in terms of the

constrained kinetic energy

T* ¼ T*ðt; q; !D; !IÞ ! T*ðt; q; !D ¼ 0; !I Þ ¼ T*oðt; q; !IÞ ¼ T*o; ð7:7:18Þ

and its variations, and so on. Then, since ð@T*=@!IÞo ¼ @T*o=@!I [recalling (3.5.24a

ff.)], ð@T*=@qkÞo ¼ @T*o=@qk ) ð@T*=@�kÞo ¼ @T*o=@�k, and invoking (7.7.7) and

(7.7.7a), we find, successively,

�T* ¼
X
½ð@T*=@qkÞ �qk þ ð@T*=@!kÞ �!k�

¼
X
ð@T*=@qkÞ �qk þ

X
ð@T*=@!I Þ �!I

h i
þ
X
ð@T*=@!DÞ �!D

� �T*o þ
X
ð@T*=@!DÞo �!D ð7:7:18aÞ

¼ �T*o þ
X
ð@T*=@!DÞo �

X
HD

I ��I

� �
ð7:7:18bÞ

¼ �T*o þ
X
ð@T*=@!DÞo

XX
Vk

I ð@!D=@ _qqkÞ ��I
h i

¼ �T*o þ
XX

ð@T=@ _qqkÞoVk
I ��I ð7:7:18cÞ
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¼ �T*o þ
X
ð@T*=@!DÞo �

X
Ekð!DÞ �qk

h i
ð7:7:18dÞn

¼ �T*o þ
X
ð@T*=@!DÞo �

XX
ð�DII 0 !I 0 Þ ��I

h i
;

for stationary Pfaffian constraints
o
; ð7:7:18eÞ

where, invoking (7.7.8) and (7.7.8a),

�T*o � �ðT*oÞ �
X
ð@T*o=@qkÞ �qk þ

X
ð@T*o=@!IÞ �!I

�
X
ð@T*o=@�I Þ ��I þ

X
ð@T*o=@!IÞ �!I ð7:7:18f Þ

¼
X
ð@T*o=@�I Þ ��I þ

X
ð@T*o=@!IÞ ð��IÞ: �

X
HI

I 0 ��I 0
h i

ð7:7:18gÞ

¼
X
ð@T*o=@�I Þ ��I þ

X
ð@T*o=@!IÞ ð��IÞ: þ

XX
Vk

I 0 ð@!I=@ _qqkÞ ��I 0
h i

ð7:7:18hÞn
¼
X
ð@T*o=@�I Þ ��I þ

X
ð@T*o=@!IÞ ð��IÞ: �

XX
ð� I

I 0I 00 !I 00 Þ ��I 0
h i

;

for stationary Pfaffian constraints
o
; ð7:7:18iÞ

and so, inserting (7.7.18c) into (7.7.15a) and (7.7.18b, d) into (7.7.15b), we obtain,

respectively, the following general nonlinear/Pfaffian and constrained form of the
Hamilton-type ‘‘principles’’:ð

�T*o þ
XX

ð@T=@ _qqkÞ*oVk
I ��I þ � 0W*o

h i
dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
;

ð7:7:19aÞð
�T*o �

XX
ð@T*=@!DÞo HD

I ��I þ � 0W*o

h i
dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
;

ð7:7:19bÞð
�T*o �

XX
ð@T*=@!DÞo�DII 0 !I 0 ��I þ � 0W*o

h i
dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
;

ð7:7:19cÞ

where

� 0W ¼ � 0W* ¼
X

Yk ��k ¼
X

YI ��I � � 0W*o:

Let the reader verify that inserting (7.7.18g, h) into (7.7.19b, a) leads readily to the

n�m kinetic equations of motion (5.3.8d, 8c), respectively; and similarly for the

Pfaffian case [(3.5.24a ff.)].

REMARKS

(i) Equation (7.7.19c) is due to Hamel (1949, pp. 494–495; and references cited

therein).
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(ii) The form (7.7.19b) can also be obtained directly from (7.7.15b) if, following

Hamel (1949, p. 494 — Pfaffian case], we choose, in the latter,

ðaÞ ��D ¼ 0; dð��DÞ ¼ 0 ) ð��DÞ: ¼ 0; and ð��IÞ: ¼ �!I ; ð7:7:20aÞ
something that does not restrict the ��I but constitutes a suitable/permissible defini-
tion of the �!I (like a Suslov et al. second transitivity choice but in nonholonomic

variables— see next section). Indeed, then we have, successively,

ðbÞ �T*þ
X

Pk½ð��kÞ: � �!k� ¼ �T*þ
X

PD½ð��DÞ:� �!D�
¼ �T* þ

X
PD½0� �!D� ½invoking ð7:7:18aÞ�

� �T*o þ
X

PD �!D þ �
X

PD �!D

� �
¼ �T*o; ð7:7:20bÞ

and [recalling (7.7.8)]

ðcÞ �
XX

HI 0
IPI 0 ��I ¼ �

X
PI ½ð��I Þ:� �!I � ¼ 0: ð7:7:20cÞ

As a result of the above, (7.7.15b) (with b! I ; k! D), clearly, becomes (7.7.19b),

Q.E.D. And, similarly, for the reduction of (7.7.15a) to (7.7.19a).

7.8 SPECIAL INTEGRAL VARIATIONAL PRINCIPLES

(OF SUSLOV, VORONETS, et al.)

Occasionally, the constraints are given in the form

_qqD � �Dðt; q; _qqI Þ: ð7:8:1Þ
But this, as explained in }5.2, can be viewed as the following special case of

(7.6.1a, b):

!D � fDðt; q; _qqÞ � _qqD � �Dðt; q; _qqIÞ ¼ 0; !I � fDðt; q; _qqÞ � _qqI 6¼ 0; ð7:8:1aÞ
½) _qqD ¼ !D þ �D½t; q; _qqI ðt; q; !IÞ� ¼ !D þ �Dðt; q; !IÞ� ð7:8:1bÞ

��D ¼
X
ð@!D=@ _qqkÞ �qk ¼ � � � ¼ �qD �

X
ð@�D=@ _qqI Þ �qI ¼ 0; ð7:8:1cÞ

��I ¼
X
ð@!I=@ _qqkÞ �qk ¼ � � � ¼ �qI 6¼ 0; ð7:8:1dÞ

and, therefore,

�!D � �½ _qqD � �Dðt; q; _qqÞ� ¼ ? ð7:8:2Þ
The above shows that to make further progress (and as mentioned at the end of

}7.6), we must define the �ð _qqDÞ. From the many conceivable such transitivity choices,

the following two have dominated the literature:

(i) First transitivity choice of Hölder (1896)–Voronets (1901)–Hamel (1904). As

already seen, this is

ð�qkÞ: ¼ �ð _qqkÞ; for all �q’s; constrained or not; ð7:8:3aÞ
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(ii) Second transitivity choice of Suslov (1901) – Levi-Civita/Amaldi (1920s) –

Rumiantsev (1970s) –Greenwood (1990s). (See also Suslov, 1946, pp. 596–600;

and Rumiantsev, 1978, 1979.) This stipulates that

ð�qI Þ: ¼ �ð _qqI Þ; but ð�qDÞ: 6¼ �ð _qqDÞ: ð7:8:3bÞ

Let us find the corresponding transitivity equations and integral variational

‘‘principles.’’

First Transitivity Choice

With its help, and (7.8.1c), (7.8.2) yields, successively,

0 6¼ �!D � �ð _qqDÞ � ��D ¼ ð�qDÞ:� ��D
¼
X
ð@�D=@ _qqIÞ �qI

h i:
�
X
ð@�D=@qkÞ �qk þ

X
ð@�D=@ _qqIÞ �ð _qqIÞ

h i
¼
X �ð@�D=@ _qqIÞ: �qI þ ð@�D=@ _qqI Þ ð�qIÞ:�

�
X
ð@�D=@qI Þ �qI þ

X
ð@�D=@qD 0 Þ �qD 0 þ

X
ð@�D=@ _qqI Þ �ð _qqIÞ

h i
¼
X
½ð@�D=@ _qqIÞ:� @�D=@qI �

X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ� �qI

�
X
½ð@�D=@ _qqIÞ:� @�D=@ðqIÞ� �qI

�
X
½EI ð�DÞ �

X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ� �qI

�
X

EðIÞð�DÞ �qI ½recalling the special notations of ex: 5:2:3Þ
�
X

WD
I �qI ð7:8:4aÞh

¼
X

WD
I ��I ; WD

I : specialization of the VD
I ; for ð7:8:1aÞ

i
ð7:8:4bÞ

) �ð _qqDÞ ¼ ð� _qqDÞ ¼ ��D þ
X

EðIÞð�DÞ �qI � ��D þ
X

WD
I �qI : ð7:8:4cÞ

½In the Pfaffian specialization of (7.8.1):

_qqD ¼
X

bDIðt; qÞ _qqI þ bDðt; qÞ � �Dðt; q; _qqI Þ; ð7:8:4dÞ

the EðIÞð�DÞ �WD
I reduce to [ex. 2.12.1, probs. 2.12.2, 2.12.5; (3.8.14g, 14h)]

vDI �
X

wD
II 0 _qqI 0 þ wD

I

�
X

ð@bDI=@qI 0 � @bDI 0=@qI Þ þ
X
½ð@bDI=@qD 0 ÞbD 0I 0 � ð@bDI 0=@qD 0 ÞbD 0I �

n o
_qqI 0

þ ð@bDI=@t� @bD=@qI Þ þ
X
½ð@bDI=@qD 0 ÞbD 0 � ð@bD=@qD 0 Þ bD 0I �

n o
; ð7:8:4eÞ

where the wD
II 0 ;w

D
I are the Pfaffian (linear) Voronets coefficients.�

We remark that (i) these are none other than the earlier transitivity equations

(5.2.22a, b) (also, recall results of ex. 5.2.3); and (ii) as shown in prob. 2.12.5, the first
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choice implies that

0 ¼ ð��DÞ: 6¼ �!D ð6¼ 0Þ; but ð��IÞ: ¼ �!I : ð7:8:4fÞ

Let the reader verify that, as a result of the second of (7.8.4f), we can replace in the

earlier integral equations (7.7.19b, c), the index D (and corresponding summation

from 1 to m) with k (with summation from 1 to n). [Hint: Invoke (7.7.8); also, recall

remark (ii) at end of }7.7.]

Integral Variational Principle Corresponding to the First

Transitivity Choice

In this case, (7.7.12) reduces to the familiar (unconstrained) Hamiltonian form:ð
ð�T þ � 0WÞ dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
: ð7:8:5Þ

Let us find the constrained form of (7.8.5). Applying the chain rule to

T ¼ Tðt; q; _qqÞ ¼ T ½t; q; _qqI ; �Dðt; q; _qqI Þ� � Toðt; q; _qqIÞ � To; ð7:8:5aÞ

we readily get

@To=@qk ¼ @T=@qk þ
X
ð@T=@ _qqDÞ ð@�D=@qkÞ; ð7:8:5bÞ

@To=@ _qqI ¼ @T=@ _qqI þ
X
ð@T=@ _qqDÞ ð@�D=@ _qqI Þ; ð7:8:5cÞ

and so we find, successively,

�T ¼
X
½ð@T=@qkÞ �qk þ ð@T=@ _qqkÞ �ð _qqkÞ�

¼
X

@To=@qk �
X
ð@T=@ _qqDÞ ð@�D=@qkÞ

h i
�qk

þ
X

@To=@ _qqI �
X
ð@T=@ _qqDÞ ð@�D=@ _qqIÞ

h i
�ð _qqIÞ þ

X
ð@T=@ _qqDÞ �ð _qqDÞ

¼
X
ð@To=@qkÞ �qk þ

X
ð@To=@ _qqIÞ �ð _qqI Þ

þ
X
ð@T=@ _qqDÞ �ð _qqDÞ �

X
ð@�D=@qkÞ �qk þ

X
ð@�D=@ _qqI Þ �ð _qqI Þ

h in o
� �To þ

X
ð@T=@ _qqDÞ ½�ð _qqDÞ � ��D� ½where �To � �ðToÞ�

¼ �To þ
X
ð@T=@ _qqDÞ �ð _qqD � �DÞ ½invoking ð7:8:4aÞ�

¼ �To þ
X
ð@T=@ _qqDÞ �!D ðwhere �!D 6¼ 0Þ

¼ �To þ
XX

ð@T=@ _qqDÞoWD
I �qI ; ð7:8:5dÞ

and, similarly,

� 0W �
X

Qk �qk ¼ � � � ¼
X

QI þ
X
ð@ _qqD=@ _qqIÞQD

h i
�qI �

X
QIo �qI � � 0Wo;

ð7:8:5eÞ
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and, therefore, substituting these expressions into Hamilton’s principle (7.8.5), we

obtain Voronets’ (constrained form of Hamilton’s) principle [1901, for the special

Pfaffian constraints (7.8.4d)]:ð
�To þ

X
ð@T=@ _qqDÞo½�ð _qqDÞ � ��D� þ � 0Wo

n o
dt

¼
ð
�To þ

XX
ð@T=@ _qqDÞoWD

I �qI þ � 0Wo

n o
dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
; ð7:8:6Þ

that is, the middle term in the integrand equals the correction term:

�Tunconstrained� �Tconstrained � �T � �To:ð
�T dt ¼

ð
�To dtþ

ð
ð�T � �ToÞ dt ¼ � � � :

Let the reader verify that (7.8.6) also results as the (7.8.1a–2)-based specialization

of the earlier general nonholonomic variational equations (7.7.19a, b).

Second Transitivity Choice

In this case, (7.8.2) becomes

�!D ¼ �ð _qqDÞ � ��D ¼ 0 ) �ð _qqDÞ ¼ ��D ½definition of �ð _qqDÞ�; ð7:8:7aÞ

and so we obtain, successively,

ð�qDÞ:� �ð _qqDÞ ¼
X
ð@�D=@ _qqIÞ �qI

h i:
� ��D ½as in ð7:8:4aÞ; and with

first of ð7:8:3bÞ�
¼ � � � ¼

X
WD

I �qI ð6¼ 0; in generalÞ; ð7:8:7bÞ

that is,

ð�qDÞ: ¼ �ð _qqDÞ þ
X

WD
I �qI ¼ ��D þ

X
WD

I �qI : ð7:8:7cÞ

Again: (a) these are none other than the earlier transitivity equations (5.2.22a, b)

[also, recall results of ex. 5.2.3]; and (b) as shown in prob. 2.12.5, the second choice

implies that

ð��kÞ: ¼ �!k ð¼ 0Þ; ð7:8:7dÞ
that is, both mechanical admissibility ½ð��DÞ: ¼ 0� and mathematical admissibility

½�!D ¼ 0�.

Alternative Derivations of (7.8.7b)

(i) Enforcing the constraints ��D ¼ 0 into the general transitivity equations

(7.7.14a):

ð�qkÞ:� �ð _qqkÞ ¼
X
ð@ _qqk=@!bÞ ½ð��bÞ:� �!b� þ

X
Vk

b ��b; ð7:8:7eÞ
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we obtain

ð�qDÞ:� �ð _qqDÞ ¼
X
ð@ _qqD=@!kÞ ½ð��kÞ:� �!k� þ

X
VD

I ��I ½invoking ð7:8:7dÞ�
¼
X

VD
I ��I ¼

X
WD

I �qI ½recalling ð7:8:1dÞ; i:e:; ð7:8:7:bÞ�:
ð7:8:7fÞ

(ii) Varying !D � fDðt; q; _qqÞ ¼ 0 formally, we obtain

�fD ¼
X
ð@fD=@qkÞ �qk þ

X
ð@fD=@ _qqkÞ �ð _qqkÞ

¼
X
ð@fD=@qkÞ �qk þ

X
ð@fD=@ _qqIÞ �ð _qqI Þ þ

X
ð@fD=@ _qqD 0 Þ �ð _qqD 0 Þ

¼
X
ð@fD=@qkÞ �qk þ

X
ð@fD=@ _qqIÞ ð�qI Þ:þ

X
ð@fD=@ _qqD 0 Þ ½ð�qD 0 Þ:þ SD 0 �

½where �ð _qqDÞ � ð�qDÞ: � SD ðSuslov termÞ 6¼ 0�
¼
X
ð@fD=@qkÞ �qk þ

X
ð@fD=@ _qqkÞ ð�qkÞ:þ

X
ð@fD=@ _qqD 0 ÞSD 0

¼
X
ð@fD=@qkÞ �qk þ

X
½ð@fD=@ _qqkÞ �qk�:�

X
ð@fD=@ _qqkÞ: �qk

n o
þ
X
ð@fD=@ _qqD 0 ÞSD 0 ½by first of ð7:8:1cÞ; ð7:8:7dÞ; the second sum vanishes�;

or

0 ¼ �!D � �fD ¼ �
X �ð@fD=@ _qqkÞ:� @fD=@qk� �qk þX ð@fD=@ _qqD 0 ÞSD 0 ;

that is, finally, X
ð@fD=@ _qqD 0 Þ ½�ð _qqD 0 Þ � ð�qD 0 Þ:� ¼

X
Ekð fDÞ �qk: ð7:8:7gÞ

But, here, fD � _qqD � �Dðt; q; _qqIÞ, and so the left side of (7.8.7g) specializes toX
ð�DD 0 Þ ½�ð _qqD 0 Þ � ð�qD 0 Þ:� ¼ �ð _qqDÞ � ð�qDÞ:; ð7:8:7hÞ

while its right side reduces, successively, to (independently of any transitivity

assumptions)X
Ekð fDÞ �qk ¼

X
EIð fDÞ �qI þ

X
ED 0 ð fDÞ �qD 0

¼
X

EIð fDÞ �qI þ
X

ED 0 ð fDÞ
X
ð@�D 0=@ _qqI Þ �qI

h i
¼
X

EIð fDÞ þ
X

ED 0 ð fDÞ ð@�D 0=@ _qqIÞ
h i

�qI

¼
X

�EI ð�DÞ �
X
ð@�D=@qD 0 Þ ð@�D 0=@ _qqIÞ

h i
�qI

� �
X

EðIÞð�DÞ �qI � �
X

WD
I �qI ; ð7:8:7iÞ

recalling ex. 5.2.3; that is, eq. (7.8.7g) specializes to

ð�qDÞ� � �ð _qqDÞ ¼
X

EðIÞð�DÞ �qI �
X

WD
I �qI ; i:e: ð7:8:7bÞ: ð7:8:7jÞ
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Integral Variational Principle Corresponding to the Second

Transitivity Choice

In this case, due to the preceding results, (7.7.12) reduces to Suslov’s (unconstrained
form of Hamilton’s) principle [1901, for the special Pfaffian constraints (7.8.4d)]:ð

�T þ
X
ð@T=@ _qqDÞo½ð�qDÞ: � �ð _qqDÞ� þ � 0W

n o
dt

¼
ð

�T þ
XX

ð@T=@ _qqDÞoWD
I �qI þ � 0W

n o
dt ¼

X
ð@T=@ _qqkÞ �qk

n o2

1
: ð7:8:8Þ

[Suslov called the above ‘‘the modification of the d’Alembert principle’’; and added,

correctly, that our eq. (7.8.8) ‘‘in no way represents Hamilton’s principle’’ (i.e., a

principle of stationary action, à la variational calculus).]

Let us find the constrained form of (7.8.8); the ‘‘Suslovian counterpart of the

Voronetsian (7.8.6).’’ Invoking again (7.8.5a, b, c) and the second of (7.8.7a), con-

sequence of the second transitivity choice, we find, successively,

�T ¼
X
ð@T=@qI Þ �qI þ

X
ð@T=@qDÞ �qD þ

X
ð@T=@ _qqI Þ �ð _qqIÞ þ

X
ð@T=@ _qqDÞ �ð _qqDÞ

¼
X

@To=@qI �
X
ð@T=@ _qqD 0 Þ ð@�D 0=@qIÞ

h i
�qI

þ
X

@To=@qD �
X
ð@T=@ _qqD 0 Þ ð@�D 0=@qDÞ

h i
�qD

þ
X

@To=@ _qqI �
X
ð@T=@ _qqD 0 Þ ð@�D 0=@ _qqI Þ

h i
�ð _qqI Þ

þ
X
ð@T=@ _qqDÞ �ð _qqDÞ

¼
X
ð@To=@qIÞ �qI þ

X
ð@To=@qDÞ �qD

þ
X
ð@To=@ _qqIÞ �ð _qqIÞ þ

X
ð@T=@ _qqDÞ �ð _qqDÞ

�
X
ð@T=@ _qqD 0 Þ

X
ð@�D 0=@qIÞ �qI þ

X
ð@�D 0=@qDÞ �qD

h
þ
X
ð@�D 0=@ _qqI Þ �ð _qqIÞ

i
[by (7.8.7a), the fourth and last sum, which equals

�
X
ð@T=@ _qqD 0 Þ ��D 0 ; cancel with each other�

¼
X
ð@To=@qkÞ �qk þ

X
ð@To=@ _qqIÞ �ð _qqI Þ

¼ �To ð7:8:9Þ
[notice carefully the slightly different steps taken between the above and (7.8.5d), of

the Voronetsian case]. As a result of (7.8.9), and (7.8.5e), and so on, again, Suslov’s

principle (7.8.8) can be rewritten, in the definitive constrained form:ð
�To þ

X
ð@T=@ _qqDÞo

�ð�qDÞ:� �ð _qqDÞ�þ � 0Wo

n o
dt

¼
ð
�To þ

XX
ð@T=@ _qqDÞoWD

I �qI þ � 0Wo

n o
dt ¼

X
ð@T=@ _qqkÞo �qk

n o2

1
;

ð7:8:10Þ
which coincides with (7.8.6), as it should.
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REMARKS

(i) Thanks to (7.8.1c), �To can be transformed further as follows:

�To ¼
X

@To=@qI þ
X
ð@To=@qDÞ ð@�D=@ _qqI Þ

h i
�qI þ

X
ð@To=@ _qqIÞ �ð _qqI Þ

n o
h
�
X
ð@To=@qðIÞÞ �qI þ

X
ð@To=@ _qqIÞ �ð _qqIÞ

i
¼
X
ð@To=@ _qqIÞ �qI

h i:
�
X
½ð@To=@ _qqIÞ:� @To=@qI �

X
ð@To=@qDÞ ð@�D=@ _qqIÞ� �qI

�
X
ð@To=@ _qqIÞ �qI

h i:
�
X

EðIÞðToÞ �qI ; ð7:8:11Þ

and, substituting this expression in (7.8.10) or (7.8.6), we obtain at once the non-

linear equations of Voronets and Chaplygin (ex. 5.3.4).

(ii) The Suslov form (7.8.10) can also be derived directly from the fundamental

form (7.7.11) as follows. Invoking (7.8.7b) we find, successively,X
½ð@T=@qkÞ �qk þ ð@T=@ _qqkÞ ð�qkÞ:�
¼
X
ð@T=@qkÞ �qk þ

X
ð@T=@ _qqIÞ �ð _qqIÞ

þ
X
ð@T=@ _qqDÞ �ð _qqDÞ þ

X
WD

I �qI

h i
¼
X
ð@T=@qkÞ �qk þ

X
ð@T=@ _qqIÞ �ð _qqIÞ þ

X
ð@T=@ _qqDÞ �ð _qqDÞ

þ
XX

ð@T=@ _qqDÞWD
I �qI

¼ �T þ
XX

ð@T=@ _qqDÞoWD
I �qI ½then invoking ð7:8:9Þ�

¼ �To þ
XX

ð@T=@ _qqDÞoWD
I �qI ; Q:E:D:; ð7:8:12Þ

and analogously for the Voronets case (7.8.6).

(iii) In both the Voronets and Suslov principles,

T ! Toðt; q; _qqIÞ ! �To;

@T=@ _qqD ! ð@T=@ _qqDÞo ¼ pD½t; q; _qqI ; �Dðt; q; _qqIÞ� � pD;oðt; q; _qqIÞ � pDo;

and so the boundary term assumes the constrained formX
ð@T=@ _qqkÞ �qk

n o2

1
¼ � � � ¼

X
ð. . .ÞI �qI

n o2

1
:

(iv) The result of the indicated operations in these integral formulae (integrations

by parts, etc.) will have the formð
ð. . .Þ �qmþ1 þ � � � þ ð. . .Þ �qnf g dt ¼

X
ð. . .ÞI �qI

n o2

1
� BT ; ð7:8:13Þ

and setting each ð. . .ÞI term of its integrand equal to zero will yield the n� m kinetic

equations of Voronets–Chaplygin.

(v) From the special nonholonomic form (7.8.8), we can easily go to the general

nonholonomic forms (7.7.15a) 7.7.19a) by inserting into the former the following
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substitutions/transformations:

_qqk ¼ _qqkðt; q; !Þ; �qk ¼
X
ð@ _qqk=@!IÞ ��I ;

) ð�qDÞ:� �ð _qqDÞ ¼
X

WD
I �qI ¼

XX
WD

I 0 ð@ _qqI 0=@!IÞ ��I
�
X

BD
I ��I ðdefinition of special nonlinear Voronets

coefficients BD
IÞ; ð7:8:14Þ

noticing that �T ¼ �T*, and so on. (Remember the similar generalization in the

Pfaffian case: probs. 3.8.2 and 3.8.3.)

Summary

In nonholonomic systems, Hamilton’s variational equation is never
Ð ð�To þ � 0WoÞ

dt ¼ BT , but it is
Ð ½�To þ � 0Wo þ correction term involving ð�qÞ:� �ð _qqÞ� dt ¼ BT ;

and similarly in quasi variables, otherwise we lose the term �GI in the kinetic

equations of motion.

To transform the unavoidable expression [holonomic variable counterpart of

(7.7.15c)] ð
�T þ

X
ð@T=@ _qqkÞo½ð�qkÞ: � �ð _qqkÞ�

n o
dt; ð7:8:15aÞ

where

�T ¼ �To þ
X
ð@T=@ _qqDÞo �!D ¼ �To þ

X
ð@T=@ _qqDÞo �ð _qqD � �DÞ; ð7:8:15bÞ

which appears in the basic integral variational formula (7.7.12), and thus derive the

correct equations of motion in the variables involved there, we have the following

two viewpoints:

(i) Voronets, Hölder, Hamel, et al.

�T ¼ �To þ
XX

ð@T=@ _qqDÞoWD
I�qI ½) ð�TÞo 6¼ �To�;X

ð@T=@ _qqkÞ ½ð�qkÞ:� �ð _qqkÞ� ¼ 0;

that is,

0 6¼ �!D ¼ �ð _qqD � �DÞ ¼ �ð _qqDÞ � ��D ½assumption: �ð _qqDÞ ¼ ð�qDÞ:�

¼ ð�qDÞ:� ��D ¼
X
ð@�D=@ _qqIÞ �qI

h i:
� ��D ¼ � � � ¼

X
WD

I �qI ; ð7:8:16aÞ

(ii) Suslov (also Levi-Civita/Amaldi, Rumiantsev, Greenwood, et al.)

�T ¼ �To ½) ð�TÞo ¼ �To�;X
ð@T=@ _qqkÞo½ð�qkÞ:� �ð _qqkÞ� ¼

X
ð@T=@ _qqDÞo½ð�qDÞ:� �ð _qqDÞ�

¼
XX

ð@T=@ _qqDÞoWD
I �qI ;
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where

0 ¼ �!D ¼ �½ _qqD � �Dðt; q; _qqI Þ� ½i:e:; assumption: �ð _qqDÞ ¼ ��D�

) ð�qDÞ:� �ð _qqDÞ ¼
X
ð@�D=@ _qqI Þ �qI

h i:
� ��D ¼ � � � ¼

X
WD

I �qI : ð7:8:16bÞ

Both these viewpoints are internally consistent, and completely equivalent to each

other; that is, if applied correctly they yield the same equations of motion.

Resuming, next, our discussion from the last part of }7.6, let us present some

additional forms.

Additional Forms of the Coincidence Conditions

(i) First Transitivity Assumption (Hölder–Voronets–Hamel)

Comparing the integral forms (7.6.4) and (7.6.5c), we see that they coincide, pro-

vided that ð X
�D �fD dt ¼

ð X

D ��D dt ¼ 0; ð7:8:17aÞ

where

��D ¼
X
ð@fD=@ _qqkÞ �qk ¼ 0 ðvirtual variationsÞ: ð7:8:17bÞ

Since here ð�qkÞ: ¼ �ð _qqkÞ, and, therefore [recalling (7.7.7)],

�fD ¼ �
X

EkðfDÞ �qk � �
X

Ekð!DÞ �qk ¼ �ð _��DÞ � �!D 6¼ 0

ðmathematically nonadmissible variationsÞ; ð7:8:17cÞ

sufficient conditions for (7.8.17a) to hold are �fD ¼ 0; that is, the system be holo-

nomic.

{Condition (7.8.17a) [which, in view of (7.8.17c), is the same as (7.6.9b)], seems to be

due to Jeffreys [1954, eqs. (10, 11)].}

(ii) Second Transitivity Assumption

(Suslov–Levi-Civita–Rumiantsev–Greenwood)

In this case, as (7.8.6, 10) with � 0W ¼ � 0Wo ¼ 0 readily show, the coincidence con-

dition becomesð XX
ð@L=@ _qqDÞoWD

I �qI

h i
dt ¼ 0 )

X
ð@L=@ _qqDÞoWD

I ¼ 0: ð7:8:17dÞ

[Further, if the constraints have the special form (7.8.1), then, invoking (7.8.4a),

(7.8.7i), (7.8.17c) we deduce from (7.6.9b) ) (7.8.17a) the following (multiplier-

containing) conditions:X X
�DW

D
I

� �
�qI ¼ 0 )

X
�DW

D
I ¼ 0: ð7:8:17eÞ
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Conditions (7.8.17d) and (7.8.17e) seem to be due to Rumiantsev [1978, eqs. (3.5.6)].

Clearly, (7.8.7d), are easier to apply, since they do not involve (generally unknown)

multipliers.]

Then, the nonlinear Voronets equations (ex. 5.3.4) reduce to the ‘‘holonomic form’’:

EðIÞðLoÞ � ð@Lo=@ _qqIÞ:� @Lo=@qI þ
X
ð@�D=@ _qqIÞ ð@Lo=@qDÞ

h i
� ð@Lo=@ _qqIÞ:� @Lo=@ðqIÞ
� EI ðLoÞ �

X
ð@�D=@ _qqI Þ ð@Lo=@qDÞ ¼ 0: ð7:8:17fÞ

As expected, the ‘‘potentialness’’ conditions (7.6.9b) and (7.8.17d, e) are very rarely

satisfied, even for Pfaffian nonholonomic constraints. For the particular (or classes

of) motions where that happens, Hamilton’s principle becomes a stationarity

principle.

In closing, we urge the reader to ponder carefully over the similarities, differences,

internal consistency, and ultimate equivalence of these, and conceivably many more

(admittedly slippery and sometimes confusing), IVPs.

Example 7.8.1 Motion of a Particle of Mass m ¼ 1, on a Fixed Plane O–xy in a
Potential Field V ¼ Vðx; yÞ and Under the Pfaffian Constraint

t _xx� _yy ¼ 0 ) t �x� �y ¼ 0; ðaÞ

under the Suslov and Hölder–Voronets–Hamel Variational Principles (Mei, 1985, pp.

70–72; also Rosenberg, 1977, pp. 172–173).

(i) Suslov approach. With the choice qI ðIndependentÞ ¼ q1 ¼ x and qD ðDependentÞ ¼
q2 ¼ y, we shall have

_qqD ¼ �Dðt; q; _qqIÞ: _yy ¼ �ðt; _xxÞ ¼ t _xx; ðbÞ

and

ð�xÞ: � �ð _xxÞ ¼ 0; ðc1Þ
ð�yÞ: � �ð _yyÞ ¼ ðt �xÞ: � �ðt _xxÞ ¼ �xþ tð�xÞ: � t �ð _xxÞ ¼ �x; ðc2Þ

that is,

WD
I ! Wy

x ð� vyxÞ ¼ 1; ðc3Þ

or, applying the general theory,

�ð _yyÞ ¼ ð�yÞ:� �ð@�=@ _xxÞ:� @�=@x� ð@�=@yÞ ð@�=@ _xxÞ� �x
¼ ðt �xÞ:� ½ðtÞ:� 0� 0� �x ¼ t �ð _xxÞ � tð�xÞ:: ðc4Þ

Therefore, the Suslov variation of the unconstrained Lagrangean of the system

L ¼ ð1=2Þ ½ð _xxÞ2 þ ð _yyÞ2� � Vðx; yÞ; ðd1Þ

)7.8 SPECIAL INTEGRAL VARIATIONAL PRINCIPLES (OF SUSLOV, VORONETS, et al.) 983



is, successively,

�L ¼ _xx �ð _xxÞ þ _yy �ð _yyÞ � ð@V=@xÞ �x� ð@V=@yÞ �y ½then enforcing ða; b; c1�4Þ�
�L! ð�LÞo ¼ _xx �ð _xxÞ þ ðt _xxÞ �ðt _xxÞ � ½@V=@xþ tð@V=@yÞ� �x

¼ ð1þ t2Þ _xx �ð _xxÞ � ½@V=@xþ tð@V=@yÞ� �x
¼ ð1þ t2Þ _xxð�xÞ:� ½@V=@xþ tð@V=@yÞ� �x; ðd2Þ

and so the unconstrained Suslov principle (7.8.8), with

ð@L=@ _yyÞo ½ð�yÞ: � �ð _yyÞ� ¼ ðt _xxÞ �x; Boundary terms � BT ! 0; and � 0Wnp ¼ 0;

yields

0 ¼
ð
ð�LÞo þ ð@L=@ _yyÞo½ð�yÞ:� �ð _yyÞ�
� �

dt

¼
ð �ð1þ t2Þ _xxð�xÞ: � ½�ðt _xxÞ þ @V=@xþ tð@V=@yÞ�� dt: ðd3Þ

Had we enforced the constraint (a) into L right from the start [i.e., before

�ð. . .Þ-varying], then

L! Lo ¼ ð1=2Þ½ð _xxÞ2 þ ðt _xxÞ2� � Vðx; yÞ; ðe1Þ

and, accordingly,

�Lo ¼ _xx �ð _xxÞ þ t2 _xx �ð _xxÞ � ð@V=@xÞ �x� ð@V=@yÞ ð�yÞo
¼ ð1þ t2Þ _xx �ð _xxÞ � �@V=@xþ t ð@V=@yÞ� �x; ðe2Þ

that is, �L ¼ �Lo, as expected by (7.8.9); and, hence, (d3) is the same as that obtained

by applying (7.8.10). Integrating (d3) by parts, and so on, we readily find

0 ¼
ð �� ½ð1þ t2Þ _xx�:� ½�t _xxþ ð@V=@xþ t ð@V=@yÞÞ�� �x dt; ðf1Þ

and from this we get the following single (kinetic) Chaplygin–Voronets equation:

½ð1þ t2Þ _xx�: þ t _xx ¼ ��@V=@xþ t ð@V=@yÞ�; ðf2Þ

which, along with the constraint (a), constitute a determinate system for xðtÞ and

yðtÞ.
(ii) Hölder–Voronets–Hamel approach. Here

�ð _xxÞ ¼ ð�xÞ: and �ð _yyÞ ¼ ð�yÞ:; ðg1Þ

or, due to (a),

ð�yÞ: ¼ ðt �xÞ: ¼ �xþ tð�xÞ: ¼ �xþ t �ð _xxÞ ¼ �ð _yyÞ ð¼ �xþ ��; � ¼ t _xxÞ
) �ð _yyÞ � �� ¼ �x: ðg2Þ
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Therefore, varying L accordingly we find

�L ¼ _xx �ð _xxÞ þ _yy �ð _yyÞ � �V ½then enforcing ða; b; g1�2Þ�
�L! ð�LÞo ¼ _xx �ð _xxÞ þ ðt _xxÞ ½�xþ t �ð _xxÞ� � ð@V=@xÞ �x� ð@V=@yÞ �y

¼ ð1þ t2Þ _xx �ð _xxÞ � ½@V=@xþ t ð@V=@yÞ� �xþ ðt _xxÞ �x
¼ ð1þ t2Þ _xxð�xÞ:� ½�ðt _xxÞ þ @V=@xþ t ð@V=@yÞ� �x
¼ �Lo þ ðt _xxÞ �x

f ¼ �Lo þ ð@L=@ _yyÞo ½�ð _yyÞ � ���; in accordance with ð7:8:5dÞ;
6¼ �Lo ¼ ð1þ t2Þ _xx �ð _xxÞ � �V ; we notice diGerence from ðd2; e2Þg; ðh1Þ

and so the Hölder–Voronets principle (7.8.6), with BT ! 0 and � 0Wnp ¼ 0, yields

0 ¼
ð
�Ldt ¼

ð
ð�LÞo dt ¼

ð
�Lo þ ð@L=@ _yyÞo ½�ð _yyÞ � ��Þ�
� �

dt

¼
ð �ð1þ t2Þ _xxð�xÞ:þ ½t _xx� @V=@x� t ð@V=@yÞ� �x� dt; ðh2Þ

which, as an integration by parts of the first integrand term shows, coincides with the

Suslov results (f1, 2).

Generally, we have:

� Suslov–Rumiantsev–Greenwood approach:

ð�qDÞ: � �ð _qqDÞ ¼
X

bDI �qI

� �:
� �

X
bDI _qqI þ bD

� �
¼ � � � �

X
WD

I �qI

) �ð _qqDÞ ¼ ð�qDÞ: �
X

WD
I �qI : ði1Þ

� Hölder–Voronets–Hamel approach:

�fD ¼ �ð _qqDÞ � ��D ¼ ð�qDÞ:� ��D
¼

X
bDI �qI

� �:
� �

X
bDI _qqI þ bD

� �
¼ � � � �

X
WD

I �qI 6¼ 0

) �ð _qqDÞ ¼ ð�qDÞ: ¼ ��D þ
X

WD
I �qI : ði2Þ

Appendix: elementary solution. The Newton–Euler equation in the tangential
direction is

dv=dt ¼ �@V=@s ¼ �½ð@V=@xÞ ðdx=dsÞ þ ð@V=@yÞ ðdy=dsÞ� ðwhere v � ds=dtÞ
¼ �½ð@V=@xÞ ðdx=dsÞ þ ð@V=@yÞ ðdy=dxÞ ðdx=dsÞ�
¼ �ðdx=dsÞ ½ð@V=@xÞ þ ð@V=@yÞ ðdy=dxÞ�; ðjÞ
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and, since (with �: angle between Ox and path tangent),

dx=ds ¼ cos�; cos2 � ¼ ð1þ tan2 �Þ�1;

tan� ¼ _yy= _xx ¼ t ) dx= ds ¼ ð1þ t2Þ�1=2;

and ds ¼ dx= cos� ) v ¼ _xxð1þ t2Þ1=2;

( j) is easily seen to coincide with the earlier (f2).

Example 7.8.2 Rolling Disk via the Suslov and Voronets Principles. Let us describe

the application of the Suslov and Voronets forms of Hamilton’s principle to the

derivation of the equations of the rolling of a thin homogeneous circular disk of

mass m and radius r on a rough horizontal and fixed plane O–XY.

The kinematics and kinetics of this well-known problem have already been

detailed in }1.17, eqs. (1.17.17a) ff. (Eulerian treatment), ex. 2.13.7 (Lagrangean

kinematics), and ex. 3.18.5 (Lagrangean kinetics). It was found there that the con-

straints are [in terms of the coordinates of its contact point C ðX ;Y ;Z ¼ 0Þ along

space-fixed axes O–XYZ and with qD � q1;2: X ;Y , and qI � q3;4;5: �; �;  : Eulerian

angles of body-fixed axes at G relative to O–XYZ]

mC;tangent � f1 ¼ _XX þ ðr cos�Þ _  ¼ 0; mC;normal � f2 ¼ _YY þ ðr sin�Þ _  ¼ 0: ðaÞ

The unconstrained Lagrangean of the system (under gravity) is

L � T � V

¼ ðm=2Þ�½ðX � r cos � sin �Þ:�2 þ ½ðY þ r cos � cos�Þ:�2 þ ½ðr sin �Þ:�2�
þ ð1=2Þ ½Ixð _��Þ2 þ Iyð _�� sin �Þ2 þ Izð _  þ _�� cos �Þ2� �mgr sin �; ðbÞ

and the principal moments of inertia of the disk at G are Ix;y ¼ mr2=4; Iz ¼ mr2=2:
(i) Hölder–Voronets–Hamel approach. From (a) we find, successively,

�f1 � �!1 ¼ �ð _XXÞ þ ð�r sin� ��Þ _  þ r cos� �ð _  Þ
¼ ð�XÞ:� r _  sin� �� þ r cos�ð� Þ:

¼ ð�r cos� � Þ: � r _  sin� ��þ r cos�ð� Þ: ½by first ofðaÞ�
¼ � � � ¼ ð�r sin� _  Þ ��þ ðr sin� _��Þ � 6¼ 0; ðc1Þ

�f2 � �!2 ¼ � � � ¼ ðr cos� _  Þ ��þ ð�r cos� _��Þ � 6¼ 0; ðc2Þ

that is,

WZ
� ¼ �r sin � _  ; WZ

� ¼ 0; WZ
 ¼ r sin� _��; ðc3Þ

WY
� ¼ r cos� _  ; WY

� ¼ 0; WY
 ¼ �r cos� _��; ðc4Þ

and, accordingly [with _XX ¼ �Xð _��; _��; _  ; �; �;  Þ; _YY ¼ �Yð _��; _��; _  ; �; �;  Þ, from (a)],

�ð _XXÞ ¼ ð�XÞ: ¼ ��X þWX
� ��þWX

� ��þWX
 � ;
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that is,

ð�r cos� � Þ: ¼ �ð�r cos� _  Þ þ ð�r sin� _  Þ �� þ ð0Þ ��þ ðr sin� _��Þ � 
) �ð _XXÞ ¼ ðr _�� sin�Þ � þ ð�r cos�Þ �ð _  Þ; ðc5Þ
�ð _YYÞ ¼ ð�YÞ: ¼ ��Y þWY

� ��þWY
� ��þWZ

 � ;

that is,

ð�r sin� � Þ: ¼ �ð�r sin� _  Þ þ ðr cos� _  Þ ��þ ð0Þ ��þ ð�r cos� _��Þ � 
) �ð _YYÞ ¼ ð�r _�� cos�Þ � þ ð�r sin�Þ �ð _  Þ: ðc6Þ

Then, Voronets’ principle yields

0 ¼
ð
�Ldt ¼

ð �ð@L=@ _XXÞ �ð _XXÞ þ ð@L=@ _YYÞ �ð _YYÞ

þ ð@L=@ _��Þ �ð _��Þ þ ð@L=@ _��Þ �ð _��Þ þ ð@L=@ _  Þ �ð _  Þ
þ ð@L=@�Þ �� þ ð@L=@�Þ ��� dt

½integrating by parts; and using ðbÞ; and ðc5; 6Þ for �ð _XXÞ; �ð _YYÞ�

¼
ð
½ð. . .Þ ��þ ð. . .Þ ��þ ð. . .Þ � � dt; ðc7Þ

and the corresponding equations of motion will result by setting the coefficients of

��=��=� , in the above, equal to zero. These will be the kinetic equations of

Maggi ) Voronets of the problem [the latter resulting by eliminating _XX ; _YY , from

L via (a)]. The details are left to the reader.

(ii) Suslov approach. In this case,

�f1 ¼ 0; �f2 ¼ 0; ð��Þ: ¼ �ð _��Þ; ð��Þ: ¼ �ð _��Þ; ð� Þ: ¼ �ð _  Þ; ðd1Þ

and therefore, invoking (c3, 4),

ð�XÞ:� �ð _XXÞ ¼ ð�r cos� � Þ:� �ð�r cos� _  Þ
¼WX

� ��þWX
� ��þWX

 � 

¼ ð�r sin � _  Þ ��þ ð0Þ ��þ ðr sin� _��Þ � 
) �ð _XXÞ ¼ ð�XÞ: � ðWX

� �� þWX
� ��þWX

 � Þ
¼ ðr sin� _  Þ ��� r cos� �ð _  Þ ½compare with ðc5Þ�; ðd2Þ

ð�YÞ:� �ð _YYÞ ¼ ð�r sin � � Þ:� �ð�r sin� _  Þ
¼WY

� ��þWY
� ��þWY

 � 

¼ ðr cos� _  Þ ��þ ð0Þ ��þ ð�r cos� _��Þ � 
) �ð _YYÞ ¼ ð�YÞ:� ðWY

� ��þWY
� ��þWY

 � Þ
¼ ð�r cos� _  Þ ��þ ð�r sin �Þ �ð _  Þ ½compare with ðc6Þ�: ðd3Þ
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Then, the constrained Suslov principle (7.8.10) yields

0 ¼
ð
�Lo þ ð@T=@ _XXÞo½ð�XÞ: � �ð _XXÞ� þ ð@T=@ _YYÞo½ð�YÞ:�
� �

dt

¼ � � � ¼
ð
½ð. . .Þ ��þ ð. . .Þ ��þ ð. . .Þ � � dt; ðd4Þ

which results in Voronets-type equations, as explained earlier.

(iii) Stationarity (or coincidence) conditions. Let us, finally, examine whether the

above Hamilton-like variational expressions of Voronets and Suslov are genuine

stationarity conditions. Invoking the constraints (a) and (b) provides the constrained

momenta

ð@L=@ _XXÞo ¼ ð@T=@ _XXÞo
¼ mð _XX þ r _�� sin� sin �� r _�� cos� cos �Þo
¼ m½ð�r cos� cos �Þ _��þ ðr sin� sin �Þ _��þ ð�r cos�Þ _  �; ðe1Þ

ð@L=@ _YYÞo ¼ ð@T=@ _YYÞo
¼ mð _YY � r _�� cos� sin �� r _�� sin � cos �Þo
¼ m½ð�r sin� cos �Þ _��þ ð�r cos� sin �Þ _�� þ ð�r sin�Þ _  �; ðe2Þ

and so, invoking (c3, 4), the coincidence conditions (7.8.17d) give

�: ð@L=@ _XXÞoWX
� þ ð@L=@ _YYÞoWY

� ¼ � � � ¼ �mr2 _�� _  sin � ¼ 0; ðe3Þ
�: ð@L=@ _XXÞoWX

� þ ð@L=@ _YYÞoWY
� ¼ mð. . .Þ ð0Þ þmð. . .Þ ð0Þ ¼ 0; ðe4Þ

 : ð@L=@ _XXÞoWX
 þ ð@L=@ _YYÞoWY

 ¼ � � � ¼ mr2 _�� _�� sin � ¼ 0: ðe5Þ

Since, on physically nontrivial grounds sin � 6¼ 0, eqs. (e3–5) are satisfied either

when _�� ¼ 0) � ¼ constant ð6¼ 0Þ, or when _�� ¼ 0) � ¼ constant and
_  ¼ 0)  ¼ constant. The first possibility indicates rolling of the disk at a constant
nutation angle (to the vertical GZ or OZ); while the second indicates absence of

proper spin, in which case (a) yields _XX ¼ 0; _YY ¼ 0; that is, a motion of no further

physical interest. See also Capon (1952) and Rumiantsev (1978).

Example 7.8.3 Rolling Sphere via the Suslov Principle. Using Suslov’s principle,

let us derive the equations of motion of a homogeneous sphere of mass m and radius

r rolling on a rough horizontal and fixed plane O–XY.

The kinematics and kinetics of this classical problem have already been discussed in

exs. 2.13.5 and 2.13.6 (Lagrangean kinematics) and exs. 3.18.2 and 3.18.3 (Lagrangean

kinetics). It was found there that the constraints are (in terms of qD � q1;2;3:X ;Y ;Z:

inertial coordinates of center/center-of-mass of sphere G, and qI � q4;5;6: �; �;  :

Eulerian angles of body-fixed axes at G relative to fixed axes O–xyz)

_XX � r!Y ¼ 0; _YY þ r!X ¼ 0 ðnonholonomic constraintsÞ; ða1Þ
) �X � r ��Y ¼ 0; �Y þ r ��X ¼ 0; ða2Þ
Z ¼ r ) _ZZ ¼ 0 ðholonomic constraintÞ ) �Z ¼ 0; ða3Þ
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where (}1.12) (with d�X ;Y ;Z � !X ;Y ;Z dt)

!X ¼ ðcos�Þ _��þ ðsin� sin �Þ _  ) ��X ¼ ðcos�Þ ��þ ðsin� sin �Þ � ; ðb1Þ
!Y ¼ ðsin�Þ _��þ ð� cos� sin �Þ _  ) ��Y ¼ ðsin�Þ ��þ ð� cos� sin �Þ � ; ðb2Þ
!Z ¼ _��þ ðcos �Þ _  ) ��Z ¼ ��þ ðcos �Þ � ; ðb3Þ

with corresponding transitivity equations

ð��XÞ: � �!X ¼ !Y ��Z � !Z ��Y ; ðc1Þ
ð��YÞ:� �!Y ¼ !Z ��X � !X ��Z; ðc2Þ
ð��ZÞ:� �!Z ¼ !X ��Y � !Y ��X : ðc3Þ

Hence, following the Suslov viewpoint, we find

�sX � ð�XÞ:� �ð _XXÞ ¼ ðr ��YÞ:� �ðr _��YÞ ¼ � � � ¼ rð!Z ��X � !X ��ZÞ; ðd1Þ
�sY � ð�YÞ:� �ð _YYÞ ¼ ð�r ��XÞ: � �ð�r _��XÞ ¼ � � � ¼ �rð!Y ��Z � !Z ��Y Þ; ðd2Þ
�sZ � ð�ZÞ:� �ð _ZZÞ ¼ 0: ðd3Þ

The kinetic energy of the sphere is [with IG;X ;Y ;Z ¼ 2mr2=5 � I ]

T ¼ ðm=2Þ ½ð _XXÞ2 þ ð _YYÞ2 þ ð _ZZÞ2� þ ðI=2Þ ð!X
2 þ !Y

2 þ !Z
2Þ ðe1Þ

) To ¼ ðm=2Þ ½ðr!Y Þ2 þ ð�r!XÞ2 þ ð0Þ2� þ ð1=2Þ ð2mr2=5Þ ð!X
2 þ !Y

2 þ !Z
2Þ

¼ ð1=2Þ ð7mr2=5Þ ð!X
2 þ !Y

2Þ þ ð1=2Þ ð2mr2=5Þ ð!Z
2Þ; ðe2Þ

and so its Suslovian variation equals

�To ¼ ð7mr2=5Þ ð!X �!X þ !Y �!Y Þ þ ð2mr2=5Þ ð!Z �!ZÞ: ðe3Þ

Therefore, invoking the transitivity relations (c1–3) and integrating by parts, and so

on, we obtain ð
!X �!X dt ¼

ð
!X ½ð��XÞ:þ ð!Z ��Y � !Y ��ZÞ� dt

¼
ð
½ð� _!!XÞ ��X þ !Xð!Z ��Y � !Y ��ZÞ� dt; ðf1Þ

and, similarly,ð
!Y �!Y dt ¼

ð
½ð� _!!Y Þ ��Y þ !Yð!X ��Z � !Z ��XÞ� dt; ðf2Þð

!Z �!Z dt ¼
ð
½ð� _!!ZÞ ��Z þ !Zð!Y ��X � !X ��YÞ� dt: ðf3Þ
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Next, with the help of (a, d, e), the Suslov integrand term s �P ð@T=@ _qqDÞo �sD
becomes

s � ð@T=@ _XXÞo �sX þ ð@T=@ _YYÞo �sY þ ð@T=@ _ZZÞo �sZ
¼ ðm _XXÞo½rð!Z ��X � !X ��ZÞ� þ ðm _YYÞo½rð!Z ��Y � !Y ��ZÞ� þ 0

¼ � � � ¼ ðmr2!Y !ZÞ ��X þ ð�mr2!X !ZÞ ��Y ; ðg1Þ

while the total impressed virtual work is [with QX ;Y ;Z; �;�; � QX ;QY ;QZ;
Q�;Q�;Q �

� 0W ¼ QX �X þQY �Y þQZ �Z þQ� ��þ Q� ��þ Q � 

½by ða2Þ and the inverse of ðb1�3Þ see x1:12�
¼ � � � �MX ��X þMY ��Y þMZ ��Z ð¼ � 0W*oÞ; ðg2Þ

where [recalling (3.15.2a ff.)]

MX ¼ ð�rÞQY þ ð� cot � sin�ÞQ� þ ðcos�ÞQ� þ ðsin�=sin �ÞQ ; ðg3Þ
MY ¼ ðrÞQX þ ð� cot � cos�ÞQ� þ ðsin�ÞQ� þ ð� cos�=sin �ÞQ ; ðg4Þ
MZ ¼ Q�: ðg5Þ

Substituting all these results into Suslov’s variational formula (7.8.10), we obtainð �½�ð7mr2=5Þ _!!X þMX � ��X þ ½�ð7mr2=5Þ _!!Y þMY � ��Y

þ ½�ð2mr2=5Þ _!!Z þMZ� ��Z
�
dt ¼ 0; ðh1Þ

and this, since the ��X ;Y ;Z are independent (free), leads immediately to the following

three kinetic equations:

ð7mr2=5Þ _!!X ¼MX ; ð7mr2=5Þ _!!Y ¼MY ; ð2mr2=5Þ _!!Z ¼MZ; ðh2Þ

which, along with the two constraints (a1) and the three kinematical relations

(b1–3), constitute a determinate system for XðtÞ;YðtÞ; �ðtÞ; �ðtÞ;  ðtÞ; !XðtÞ,
!Y ðtÞ; !ZðtÞ:

Let the reader formulate this problem via Voronets’ principle (7.8.6); or even via

those of } 7.7.

7.9 NONCONTEMPORANEOUS VARIATIONS; ADDITIONAL IVP FORMS

The General Formulae

We begin with the following slightly modified version of the fundamental integral

variational equation (7.2.3b):ð
ð�Lþ � 0WnpÞ dt ¼

X
pk �qk

n o2

1
; ð7:9:1Þ
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where

L ¼ Lðt; q; _qqÞ � Tðt; q; _qqÞ � Vðt; qÞ: Lagrangean of the system;

� 0Wnp � � 0W � ð��VÞ: Total ðfirst-orderÞ virtual work of nonpotential
impressed forces;

pk � @T=@ _qqk ¼ @L=@ _qqk: Holonomic system ð‘‘generalized’’Þmomentum: ð7:9:1aÞ

Now, if in (7.9.1), � 0Wnp ¼ 0, the q’s and �q’s are chosen so that
P

pk �qkf g21�
BT ¼ 0 [e.g., by taking �qðt1Þ ¼ �qðt2Þ ¼ 0], and if no additional constraints are
imposed on the system (unless explicitly specified otherwise), then (7.9.1) yields the

customary form of Hamilton’s principle of stationarity:

�AH ¼ 0; ð7:9:2Þ
where

AH �
ð
ðT �VÞ dt �

ð
Ldt: Hamiltonian action ðfunctionalÞ: ð7:9:2aÞ

Let us express the above in terms of the earlier-introduced noncontemporaneous, or

skew, or oblique, or asynchronous, or nontautochronous, or nonsimultaneous varia-

tions (}7.2, fig.7.1):

Dqk ¼ �qk þ _qqkDt; ð7:9:3Þ
where, generally,

Dð. . .Þ � �ð. . .Þ þ ½dð. . .Þ=dt�Dt: noncontemporaneous variation operator; ð7:9:3aÞ
for example, Dt ¼ �tþ ðdt=dtÞDt ¼ 0þ ð1ÞDt ¼ Dt.

Our discussion is based on the following fundamental, purely analytical and

interrelated, formulae, obtained by applying Dð. . .Þ to
Ð ð. . .Þ dt and its integrand

(which is nothing but an application of the well-known theorem of differentiation

of a definite integral with respect to a general parameter that may appear in both its

limits of integration t1;2 and in its integrand, or ‘‘Leibniz’ rule’’):

� D
ð
ð. . .Þ dt ¼

ð
�ð. . .Þ dtþ ð. . .ÞDtf g21

¼
ð

Dð. . .Þ þ ð. . .Þ½dðDtÞ=dt�f g dt

¼
ð
½Dð. . .Þ dtþ ð. . .Þ dðDtÞ�; ð7:9:3bÞ

�
ð
Dð. . .Þ dt ¼

ð
�ð. . .Þ � ð. . .Þ½dðDtÞ=dt�f g dtþ ð. . .ÞDtf g21

¼
ð
½�ð. . .Þ dt� ð. . .Þ dðDtÞ� þ ð. . .ÞDtf g21; ð7:9:3cÞ

from which the (intuitively ‘‘obvious’’) D� Ð noncommutativity formula results:

� D
ð
ð. . .Þ dt�

ð
Dð. . .Þ dt ¼

ð
ð. . .Þ dðDtÞ ¼

ð �ð. . .Þ ½dðDtÞ=dt�� dt: ð7:9:3dÞ
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With the help of the above, Hamilton’s principle (7.9.1–2a) can be easily brought to

its following two equivalent noncontemporaneous forms:

� D
ð
T dtþ

ð
� 0W dt ¼

X
pkDqk þ T �

X
pk _qqk

� �
Dt

n o2

1

¼
X

pk �qk þ T Dt
n o2

1
; ð7:9:4aÞ

� DAH þ
ð
� 0Wnp dt ¼

X
pkDqk � hDt

n o2

1
¼

X
pk �qk þ LDt

n o2

1
; ð7:9:4bÞ

where (recalling }3.9)

h �
X

pk _qqk � L ¼ hðt; q; _qqÞ: Generalized energy

½or Hamiltonian; when expressed in terms of t; q; p ðchap: 8Þ�: ð7:9:4cÞ

Further, with the definitions

AL �
ð

2T dt: Lagrangean action ðfunctionalÞ; ð7:9:4dÞ

E � T þ V : Total energy of the system; ð7:9:4eÞ

it is not hard to see that we can rewrite (7.9.4a, b) as the following general principle of
noncontemporaneously varying, or varied, Lagrangean action:

� DAL �
ð
ð�E � � 0WnpÞ dt ¼

X
pkDqk �

X
pk _qqk � 2T

� �
Dt

n o2

1

¼
X

pk �qk þ 2TDt
n o2

1
; ð7:9:4fÞ

and, finally, adding and subtracting (7.9.4a, b) with the purely mathematical equa-

tion

D
ð
E dt ¼

ð
�E dt þ EDtf g21; ð7:9:4gÞ

side by side, produces the additional ‘‘symmetrical principles’’:

� D
ð

2T dt ¼
ð
ð�E � � 0WnpÞ dtþ

X
pkDqk þ 2T �

X
pk _qqk

� �
Dt

n o2

1
; ð7:9:4hÞ

� D
ð

2V dt ¼
ð
ð�E þ � 0WnpÞ dtþ �

X
pkDqk þ 2V þ

X
pk _qqk

� �
Dt

n o2

1
: ð7:9:4iÞ

An additional IVP can be obtained if we express the integrands of the above in terms
of Dð. . .Þ-variations: adding side by side (i) eqs. (7.9.4a, b), but with

D
ð
T dt replaced by

ð
½DT þ TðDtÞ:� dt ½applying ð7:9:3bÞ�; ð7:9:5aÞ
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and (ii) the obvious identity

TDtf g21 ¼
ð
ðTDtÞ: dt ¼

ð
½TðDtÞ:þ _TTDt� dt ð7:9:5bÞ

produces the alternative forms:ð
½DT þ 2TðDtÞ:þ _TTDt� dtþ

ð
� 0W dt

¼
ð �

DT dtþ 2T dðDtÞ þ dTDtþ � 0W dt
�

¼
X

pk �qk þ ð2TÞDt
n o2

1

¼
X

pkDqk �
X

pk _qqk � 2T
� �

Dt
n o2

1
: ð7:9:5cÞ

The above are usually associated with the names of O. Hölder, Voss, et al., and a

time when the differences between Dð. . .Þ and �ð. . .Þ were not clearly understood (late

19th to early 20th century). Unless one distinguishes carefully between these two

kinds of variation, notices the resulting integral noncommutativity formula (7.9.3d),

and states carefully the system properties and boundary conditions, the results are

very likely to be erroneous and extremely difficult to compare with those of other

authors. This is a tricky area (like }7.8) that has caused considerable confusion and

frustration; see, for example, Papastavridis [1987(d)].

Specializations

(i) If the following hold:

the ðholonomicÞ constraints are stationary; in which case
X

pk _qqk ¼ 2T ;

� 0Wnp ¼ 0;

Dqkðt1Þ ¼ Dqkðt2Þ ¼ 0;

and

�E ¼ �h ¼ 0; ð7:9:6aÞ
then (7.9.4f) reduces to the original principle of ‘‘least’’ action of Maupertuis !
Euler ! Lagrange (MEL):

DAL � D
ð

2T dt ¼ D
ð X

ð@L=@ _qqkÞ _qqk
� �

dt ¼ 0: ð7:9:6bÞ

Of course, other combinations of boundary conditions and system assumptions may

produce the same result. [An alternative derivation of (7.9.6b) is given below.]

(ii) For stationary constraints, the power equation (7.2.6e, f) reduces to

dT=dt ¼P Qk _qqk (where Qk is the total impressed force), so that

_TTDtþ � 0W ¼
X

Qk _qqk

� �
Dtþ

X
Qk �qk ¼

X
QkDqk � D 0W ;
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and therefore the left side of (7.9.5c) simplifies toð �
DT þ 2TðDtÞ:þ D 0W

�
dt ¼

ð �
DT dtþ 2T dðDtÞ þ D 0W dt

�
; ð7:9:7aÞ

whereas the right reduces toX
pkDqk

n o2

1
¼

X
pk �qk þ ð2TÞDt

n o2

1
: ð7:9:7bÞ

REMARKS ON MEL’S ACTION

(i) The AL-definition (7.9.4d) is not arbitrary. It constitutes the earliest of all such

action definitions (early 1740s); that is, of energetic functions/functionals of dimen-

sions

ðenergyÞ � ðtimeÞ ¼ ðmomentumÞ � ðlengthÞ:
(Originally, it was given by Euler for a special case, then generalized by Lagrange for

arbitrary holonomic and scleronomic systems, and fully justified later by modern

variational calculus.)

For a single, say unconstrained, particle of mass m, moving along a path of arc

length s with velocity m ¼ dr=dt ½) velocity component along path tangent � v ¼
ds=dt�, (7.9.4d) gives

AL ¼
ð
mv2 dt ¼

ð
ðm mÞ � m dt ¼

ð
ðm mÞ � dr ¼

ð
mv ds ð7:9:8aÞ

½¼ sum of elementary ‘‘works of the ðlinearÞ momentum’’ along the particle’s

path�;
and, for a material system (with the usual notations):

AL ¼
ð
S ðdm mÞ � dr
h i

¼
ð X

pk dqk: ð7:9:8bÞ

(ii) It is frequently claimed, in the variational mechanics literature, that starting

with (7.9.2, 2a) and substituting in there the energy conservation relation

�E ¼ 0) �T ¼ ��V, between the orbit(s) and other kinematically admissible

paths, one obtains the (contemporaneous variation ) fixed time-endpoints) MEL

principle (7.9.6b):

0 ¼
ð
½�T � ð��TÞ� dt ¼

ð
�ð2TÞ dt ¼ �

ð
ð2TÞ dt; i:e:; �AL ¼ 0: ð7:9:9Þ

However, such a reasoning would be incorrect for the following reasons: eq. (7.9.2)

yields the n Lagrangean equations EkðLÞ ¼ 0, the general solution of which contains

2n integration constants, to be determined from 2n boundary conditions such as

qkðt1;2Þ ¼ given, where t1;2 are also given. Hence, it will be impossible for the

resulting particular solution(s) to satisfy the additional energy constraint:

Tðq; _qqÞ þ VðqÞ ¼ E ¼ given constant (the same for all competing trajectories).

That the reasoning leading to (7.9.9) is incorrect can also be seen as follows: The

last condition implies that �E ¼ 0 (virtual form of constraint), and this, for given q’s
and �q’s, imposes restrictions on the corresponding velocities; that is, on the �ð _qqÞ’s;
and this, in particular, makes it impossible for the system to go from an initial
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position to a final one along the actual (kinetic) path and along a typical comparison

(adjacent) path, with the same energy and in the same time for both paths; hence, in

MEL’s principle, the energy constraint necessitates noncontemporaneous variations
(i.e., �q! Dq; �t ¼ 0! Dq 6¼ 0, and results in variable time limits). This can be

illustrated with the following simple example of a free particle in rectilinear motion.

Here (with q: rectilinear coordinate, and other notations standard),

V ¼ 0; 2T ¼ mv2 � mðdq=dtÞ2 ¼ 2E ¼ constant ð> 0Þ; ð7:9:10aÞ

and, therefore, along its orbit

v � _qq ¼ ð2E=mÞ1=2 ) �½ _qqðtÞ� ¼ �½ð2E=mÞ1=2� ¼ 0 ðsince �E ¼ 0Þ; ð7:9:10bÞ

from which, integrating and using the convenient initial conditions q1 ¼ qðt1Þ �
qð0Þ ¼ 0, we get

qðtÞ ¼ ð2E=mÞ1=2t; ð7:9:10cÞ

a straight line in rectangular Cartesian q versus t axes; and, therefore, any other

continuous comparison path with the same spatio-temporal endpoints as the orbit
(7.9.10c), ðt1 ¼ 0; q1 ¼ 0Þ and ½t2; q2 ¼ qðt2Þ�, so that �q1 ¼ �q2 ¼ 0 [as required by

(7.9.9)], would have to be nonrectilinear somewhere between t1; t2; that is, in there,

�½ _qqðtÞ� 6¼ 0, in clear contradiction to (7.9.10b); or, trivially, the actual path and its

comparison paths coincide. Hence, it is impossible to reach, by a (smooth) neighbor-
ing path of the same constant energy as the orbit, the endpoint q2 ¼ qðt2Þ, as

demanded by the boundary condition, in the same time t2 � t1 ¼ t2 � 0 ¼ t2; or, if

we insist on isoenergeticity, DE ¼ �E þ _EEDt ¼ �E ¼ 0, we cannot have �q2 ¼ 0 (and

vice versa), but we can have Dq2 ¼ �q2 þ _qqðt2ÞDt2 ¼ 0) �q2 ¼ � _qqðt2ÞDt2 6¼ 0

) Dt2 6¼ 0, since (here, and in general) _qqðt2Þ 6¼ 0. (As a way out of these difficulties,

some have suggested using virtual paths with discontinuous velocity reversals—that

is, _qq! � _qq—but this seems artificial and impractical.)

The preceding discussion leads us to the following correct formulation of MEL’s

principle: Among all sufficiently smooth kinematically admissible trajectories qðtÞ, in

configuration space, passing through the given initial point P1½qkðt1Þ ¼ qk1:
given; t1: given� and given final point P2½qkðt2Þ ¼ qk2: given; but t2: unknown, to be

determined from the stationarity condition] and satisfying the total energy constraint

T þV ¼ E: given constant, the actual (kinetic) motion(s), or orbit(s), satisfies

(satisfy) (7.9.6b); that is, contrary to the fixed time-endpoints Hamilton’s principle

(7.9.2), MEL’s principle (7.9.6b) is a variable upper time endpoint variational problem:

Dt1 ¼ 0 but Dt2 6¼ 0, and as such is fundamentally different from it; although, in both

principles, the total number of given data is ðnþ 1Þ þ ðnþ 1Þ ¼ 2nþ 2.

General Kinematico-Inertial Identities

The preceding results (7.9.1a, 2; 4a, b, f, h, i; 6b, etc.) hold for variations Dð. . .Þ,
�ð. . .Þ from an orbit; in fact, they were obtained from the equations of motion, or

LP, or the central equation. Let us now see the converse; that is, derive those IVP by

direct variations of, say, AH from a kinematically admissible path, and then specia-

lize to an orbit.
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Invoking (7.2.4c, d) and (7.9.3, 3b–d), and with the already familiar notations

Ekð. . .Þ � ½@ð. . .Þ=@ _qqk�:� @ð. . .Þ=@qk: Euler�Lagrange operator; ð7:9:11aÞ
hð. . .Þ �

X
½@ð. . .Þ=@ _qqk� _qqk � ð. . .Þ: Generalized energy operator; ð7:9:11bÞ

Dð. . .Þ �
X �½@ð. . .Þ=@qk�Dqk þ ½@ð. . .Þ=@ _qqk�Dð _qqkÞ�þ ½@ð. . .Þ=@t�Dt:

Noncontemporaneous ð first-orderÞ variation operator; ð7:9:11cÞ

we find, successively (recalling fig. 7.1),ð
¼
ð
L½tþ Dt; qþ Dq; _qqþ Dð _qqÞ� dðtþ DtÞ �

ð
Lðt; q; _qqÞ dt

�
ð
½Ldtþ LdðDtÞ þ DLdtþ DLdðDtÞ � Ldt�

�
ð
½DLdtþ LdðDtÞ� ½to the Orst order; and with Lðt; q; _qqÞ � L�

¼
ð
½DLþ LðDtÞ:� dt

¼
ð X �ð@L=@qkÞDqk þ ð@L=@ _qqkÞDð _qqkÞ�þ ð@L=@tÞDtþ LðDtÞ:
n o

dt

½replacing Dð _qqÞ with ðDqÞ:� _qqðDtÞ:�

¼
ð X �ð@L=@qkÞDqk þ ð@L=@ _qqkÞ ðDqkÞ:�þ ð@L=@tÞDtn

�
X
ð@L=@ _qqkÞ _qqk � L

h i
ðDtÞ:

o
dt

¼ �
ð X

EkðLÞDqk dt

þ
ð
ð@L=@tÞDt�

X
ð@L=@ _qqkÞ _qqk � L

h i
ðDtÞ:

n o
dt

þ
ð
d=dt

X
ð@L=@ _qqkÞDqk

h i
dt

¼ � � � ¼ �
ð X

EkðLÞDqk dtþ
ð X

ð@L=@ _qqkÞDqk � hðLÞDt
h i:

dt

þ
ð
½dhðLÞ= dtþ @L=@t�Dt dt; ð7:9:11dÞ

that is,

DAH þ
ð
� 0Wnp dt ¼

�
ð X

½EkðLÞ �Qk�Dqk dtþ
ð

dhðLÞ=dtþ @L=@t�
X

Qk _qqk

h i
Dt dt;

þ
X

pkDqk � hðLÞDt
n o2

1

996 CHAPTER 7: TIME-INTEGRAL THEOREMS AND VARIATIONAL PRINCIPLES

DAH � D
ð
Ldt �

ð
L½II ; arcðC1C2Þ� dt �

ð
L½I ; arcðA1A2Þ� dt



¼ �
ð X

½EkðLÞ �Qk� �qk dt�
ð X

EkðLÞ _qqk � dhðLÞ=dt� @L=@t
� �

Dt dt

þ
X

pkDqk � hðLÞDt
n o2

1
; ð7:9:11eÞ

or, due to the analytical identity (3.9.3b; with T replaced by L),

dhðLÞ=dt þ @L=@t ¼
X

EkðLÞ _qqk; ð7:9:11fÞ

finally [with hðLÞ renamed simply h],

D
ð
Ldt ¼ �

ð X
EkðLÞ ðDqk � _qqkDtÞ

h i
dt

þ
X
ð@L=@ _qqkÞDqk � hDt

n o2

1
; ð7:9:11gÞ

that is,

DAH ¼ �
ð X

EkðLÞ �qk dtþ
X

pkDqk � hDt
n o2

1
: ð7:9:11hÞ

Kinetic Specializations

(i) For variations from an orbit,
P

EkðLÞ �qk ¼ � 0Wnp, by LP, and so (7.9.11h)

reduces to (7.9.4a, b).

(ii) If, further, we assume that � 0Wnp ¼ 0, and choose ‘‘cotermini variations’’ in

space and time:

Dqkðt1Þ ¼ Dqkðt2Þ ¼ 0 and Dtðt1Þ ¼ Dtðt2Þ ¼ 0; ð7:9:12aÞ

then (7.9.11h) yields ‘‘Voss’ principle,’’ DAH ¼ 0.

(iii) If, again for variations from an orbit and Qk;np ¼ 0 ) � 0Wnp ¼ 0,

L ¼ Lðq; _qqÞ ) @L=@t ¼ 0 ) h �
X
ð@L=@ _qqkÞ _qqk � L ¼ constant; ð7:9:12bÞ

we choose spatially cotermini variations:

Dqkðt1Þ ¼ Dqkðt2Þ ¼ 0 but Dtðt1Þ ¼ Dtðt2Þ 6¼ 0; ð7:9:12cÞ

then (7.9.11h) also yields DAH ¼ 0:
If, instead of (7.9.12c), Dtðt1Þ ¼ 0, but Dtðt2Þ � Dt, then (7.9.11h) reduces to

DAH þ hDt ¼ 0; ð7:9:12dÞ

a form that has applications in nonlinear oscillations (ex. 7.9.13; see also } 8.11).
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(iv) Again, for variations from an orbit and Qk;np ¼ 0 ) � 0Wnp ¼ 0, and

L ¼ Lðq; _qqÞ ) h ¼ constant, we find, successively,

D
ð X

ð@L=@ _qqkÞ _qqk
h i

dt ¼ D
ð

2T dt � DAL

� �
�
ð X

ð@L=@ _qqkÞ _qqk
h i

II
dt �

ð X
ð@L=@ _qqkÞ _qqk

h i
I
dt

¼ D
ð
ðLþ hÞ dt

¼ D
ð
Ldtþ D½hðt2 � t1Þ�

¼ DAH þ D½hðt2 � t1Þ�

¼ � � � ¼
X

pkDqk
n o2

1
þ Dhðt2 � t1Þ ½invoking ð7:9:11hÞ�

¼
X

pkDqk þ ðtÞ Dh
n o2

1
ð7:9:12eÞ

[we notice that, here, Dh � �hþ _hh Dt ¼ �h ð¼ �E, for stationary constraints)], and

so, if in addition, we choose the spatially cotermini and isoenergetic variations

Dqkðt1Þ ¼ Dqkðt2Þ ¼ 0 and Dh ¼ 0; ð7:9:12fÞ
(7.9.12d) yields

D
ð X

ð@L=@ _qqkÞ _qqk
h i

dt ! DAL ¼ 0; ð7:9:12gÞ

which coincides with the earlier MEL principle (7.9.6b).

ANALYTICAL REMARK

(See also ex. 7.9.1 and prob. 7.9.1.) Clearly, (7.9.11d) is a general result holding for

any (well-behaved) function F ¼ Fðt; q; _qqÞ; that is,

D
ð
F dt ¼ � � � ¼ �

ð X
EkðFÞ Dqk dt

þ
ð
ð@F=@tÞDt�

X
ð@F=@ _qqkÞ _qqk � F

h i
ðDtÞ:

n o
dt

þ
ð
d=dt

X
ð@F=@ _qqkÞDqk

h i
dt

¼ � � � ¼ �
ð X

EkðFÞDqk dtþ
ð
½dhðFÞ=dtþ @F=@t�Dt dt

þ
X
ð@F=@ _qqkÞDqk � hðFÞDt

n o2

1
;

¼ � � � ¼ �
ð X

EkðFÞ �qk dtþ
X
ð@F=@ _qqkÞDqk � hðFÞDt

n o2

1

¼ �
ð X

EkðFÞ �qk dt : ð7:9:12hÞ
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A Generalization of MEL’s Principle; Jacobi’s Form

Let us consider a conservative system; that is, recalling (7.2.6e) and }3.9, one in which

@L=@t ¼ 0, all forces are either potential (included in L) or gyroscopic, and all

additional Pfaffian constraints are, at most, catastatic. Then, the power equation

reduces to the Jacobi–Painlevé integral

h ¼ L2 � L0 � T2 þ ðV � T0Þ ¼ constant ) ðL2Þ1=2 ¼ ðL0 þ hÞ1=2: ð7:9:13aÞ

It is then possible to replace the variable time-endpoint principle (7.9.6b, 12e) with a

simpler one with fixed time-endpoints. To this end, we first define the Jacobi action-

like functional:

AJ
0 �

ð
Ldt�

ð �ðL2Þ1=2 � ðL0 þ hÞ1=2�2 dt
� AH �

ð
½. . .�2 dth

¼ � � � ¼
ð �

2½L2ðL0 þ hÞ�1=2 þ L1 � h
�
dt
i
: ð7:9:13bÞ

For general contemporaneous variations around an admissible path, clearly, we will

have

�AJ
0 ¼ �AH �

ð
2½. . .� �½. . .� dt; ð7:9:13cÞ

and, therefore, for variations from an orbit — that is, an actual motion satisfying

(7.9.13a) (with the same h-value for both AJ
0 and AH) — we shall have

�AJ
0 ¼ �AH ð! 0; for vanishing endpoint variationsÞ; ð7:9:13dÞ

or, neglecting the constant last h-term in (7.9.13b), AJ
0 ! AJ :

AJ �
ð �

2½L2ðL0 þ hÞ�1=2 þ L1

�
dt �

ð
Jðq; _qqÞ dt; ð7:9:13eÞ

we arrive at the ‘‘least action’’-like (better, stationarity) condition

�AJ ¼ 0; ð7:9:13fÞ

Since the integrand of the above, J ¼ Jðq; _qqÞ, is positively homogeneous of the first
degree in the _qq’s (which means that, for any positive number 
; 
Jðq; _qqÞ ¼ Jðq; 
 _qqÞ;
i.e., J is not really a function of time t), we can write

AJ ¼
ð
Jðq; _qqÞ dt ¼

ð
Jðq; dqÞ ¼

ð
Jðq; q 0Þ d�; ð7:9:13gÞ

where t ¼ tð�Þ , � ¼ �ðtÞ are arbitrary (increasing) functions (and, therefore, the

integration limits are changed accordingly) and

ð. . .Þ: � dð. . .Þ=dt ¼ ½dð. . .Þ=d�� _�� � ð. . .Þ 0 _��; ð. . .Þ 0 � dð. . .Þ=d�; ð7:9:13hÞ
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for example, _qqk � qk
0 _��. Then, the stationarity condition (7.9.13e) leads to the follow-

ing n Euler–Lagrange equations:

ð@J=@qk 0Þ 0 � @J=@qk ¼ 0; ð7:9:13iÞ

and, conversely, the parameter t can be chosen so that

½L2ðq; _qqÞ�1=2 ¼ ½L0ðqÞ þ h�1=2

) t ¼
ð �

L2ðq; _qqÞ
�½L0ðqÞ þ h��1=2

d�; ð7:9:13jÞ

where the qð�Þ’s verify (7.9.13i). Then, from �AJ ¼ 0, it also follows that �AH ¼ 0.

Next, from (7.9.13i), and since J ¼P ð@J=@qk 0Þqk 0, we readily find the additional

equation,X �ð@J=@qk 0Þ 0 � @J=@qk�qk 0
¼
X
ð@J=@qk 0Þqk 0

h i 0
�
X �ð@J=@qk 0Þqk 00 þ ð@J=@qkÞqk 0�

¼ J 0 � J 0 ¼ 0; ð7:9:13kÞ

that is, only n� 1 of the n equations (7.9.13i) are independent (something to be

expected, due to the � arbitrariness). Hence if, following Jacobi, we choose as �
one of the q’s, say, q1, the orbit(s) of the system will be given by the following n� 1

Lagrangean equations in q2ðq1Þ; . . . ; qnðq1Þ:

d=dq1

�
@J=@ðdqk=dq1Þ

�� @J=@qk ¼ 0 ðk ¼ 2; . . . ; nÞ; ð7:9:13lÞ

whose general solution will depend on 2ðn� 1Þ þ 1 ¼ 2n� 1 integration constants

[one of them could be the h constant in (7.9.13a)].

Jacobi’s Form (early 1840s)

If, in addition to being conservative and holonomic, our system is also scleronomic
(and these restrictions severely limit the usefulness of the principle to engineering

dynamics problems) then, since in this case

L2 ¼ T2 ¼ T ¼
XX

ð1=2ÞMkl _qqk _qql ; Mkl ¼MklðqÞ; ð7:9:14aÞ
L1 ¼ T1 ¼ 0; L0 ¼ T0 �V ¼ �V ; V ¼ VðqÞ; ð7:9:14bÞ
h ¼ T þ V ¼ E ða positive constantÞ; ð7:9:14cÞ

the action AJ , (7.9.13f), reduces to

AJ ¼
ð

2½TðE � VÞ�1=2 dt: ð7:9:14dÞ
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But, recalling (3.9.4o) or (6.7.2a), we have

2TðdtÞ2 ¼
XX

Mkl dqk dql ¼ 2ðE � VÞ ðdtÞ2 � ds2; ð7:9:14eÞ
ds: elementary arc-length along orbit of figurative particle

representing the system in configuration space; ð7:9:14fÞ

and therefore we can rewrite (7.9.14d) as

AJ ¼
ð
½2ðE �VÞ�1=2½2TðdtÞ2�1=2

¼
ð

2ðE � VÞ
XX

Mkl dqk dql

� �h i1=2
¼
ð
½2ðE �VÞ�1=2 ds; ð7:9:14gÞ

or, in terms of the new function R (and the earlier parameter �) defined by

2ðE � VÞ
XX

Mkl dqk dql

� �
� Rðd�Þ2

) R ¼ Rðq; q 0Þ ¼ 2ðE � VÞ
XX

Mklqk
0ql
0

� �
; ð7:9:14hÞ

or, equivalently,

2T dt ¼
ffiffiffiffi
R
p

d� ¼ Jðq; q 0Þ d�; ð7:9:14iÞ
we can, finally, bring AJ to the Jacobi form (fixed time-endpoints):

AJ ¼
ð ffiffiffiffi

R
p

d� ¼ AL �
ð

2T dt

� �
ð7:9:14jÞ

with limits �1 and �2 corresponding to the initial and final system positions,

respectively.

Again, with the choice � ¼ q1 (and since Mkl ¼Mlk), and with upper-case

subscripts running from 2 to n, we find, successively,

ds2 �
XX

Mkl dqk dql ¼
XX

Mkl ðdqk=dq1Þ ðdql=dq1Þ ðdq1Þ2

¼ M11 þ
X

MK1 ðdqK=dq1Þ
h

þ
X

M1L ðdqL=dq1Þ þ
XX

MKL ðdqK=dq1ÞðdqL=dq1Þ
i
ðdq1Þ2

¼ M11 þ 2
X

MK1 ðdqK=dq1Þ þ
XX

MKL ðdqK=dq1Þ ðdqL=dq1Þ
h i

ðdq1Þ2;

and, therefore,

R ¼ � � � ¼ 2ðE � VÞ M11 þ 2
X

M1L qL
0 þ
XX

MKL qK
0qL
0

� �
; ð7:9:14kÞ

and

AJ ¼ AL ¼
ð ffiffiffiffi

R
p

dq1; ð7:9:14lÞ
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and, of course, the orbits are defined by the Euler–Lagrange equations of �AJ ¼ 0

[(7.9.13l) with J ! ffiffiffiffi
R
p

]:

d=dq1 ð@
ffiffiffiffi
R
p

=@qK
0Þ � @

ffiffiffiffi
R
p

=@qK ¼ 0 ðK ¼ 2; . . . ; nÞ: ð7:9:14mÞ

Also, since by (7.9.14e, f) and (7.9.14h)

dt ¼
XX

Mkl dqk dql

.
2ðE � VÞ

� �1=2

¼ ½
ffiffiffiffi
R
p �

2ðE � VÞ� d�; ð7:9:14nÞ

we can find time by the quadrature:

t� t1 ¼
ð � ffiffiffiffi

R
p �

2ðE �VÞ� dq1: ð7:9:14oÞ

Here, the general solution involves a total of 2n constants: 2ðn� 1Þ from the inte-

gration of the n� 1 equations (7.9.14m), plus E and t1.
In closing, we should point out that if the initial and final orbit points, P1 and P2

respectively, are close to each other, then that orbit is unique; and, further, for that

orbit, AL is a minimum or least; in Hertz’s terminology, arcðP1P2Þ ¼ shortest or

straightest path, in configuration space (and, for holonomic systems, coincides

with the geodesic through these points). The quantification of these ideas constitutes

the extremum theory of variational calculus, and is summarized in this chapter’s

appendix.

Example 7.9.1 Alternative Derivations of D
Ð
Ldt [recall (7.9.3b ff.)]. To avoid

variable time-endpoints variations, we may introduce the ‘‘arc parameter’’ � via

t ¼ tð�Þ [similar to that of the Jacobi form of MEL’s principle (7.9.13g ff.)] for
both the fundamental (kinetic) path and its D-variation, so that

tð�1Þ ¼ t1; tð�2Þ ¼ t2; and dt ¼ ðdt=d�Þ d� � t 0 d� ½ð. . .Þ 0 � dð. . .Þ=d��:
ðaÞ

Then, and since _qqk � dqk=dt ¼ ðdqk=d�Þ ðd�=dtÞ ¼ qk
0=t 0;

AH �
ð
Ldt ¼

ð
L� d�; ðb1Þ

L� � Lðdt=d�Þ ¼ Lðt; q; _qqÞt 0 ¼ Lðt; q; q 0=t 0Þt 0 � L�ðt; t 0; q; q 0Þ
½function of the 2nþ 2 functions of �: t; q; t 0; q 0�: ðb2Þ
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By D-varying AH , we obtain, successively (since now D� ¼ 0),

DAH ¼
ð
DL� d�

¼
ð X �ð@L�=@qkÞDqk þ ð@L�=@qk 0ÞDðqk 0Þ�þ ð@L�=@tÞDtþ ð@L�=@t 0ÞDt 0n o

d�

½integrating the Dq 0 and Dt 0-proportional terms by parts; while noting that;
since D� ¼ 0; the path points Pðt; qÞ and Pþ DPðtþ Dt; qþ DqÞ correspond
to the same value of �; and; therefore;D½dð. . .Þ=d�� ¼ dDð. . .Þ=d� ---- see Remark

below:�

¼ �
ð X �

d=d� ð@L�=@qk 0Þ � ð@L�=@qkÞ
�
Dqk d�

�
ð �

d=d� ð@L�=@t 0Þ � ð@L�=@tÞ
�
Dt d�

þ
X
ð@L�=@qk 0ÞDqk

n o2

1
þ ð@L�=@t 0ÞDt
� �2

1
: ðcÞ

But, by chain rule:

ðiÞ @L�=@qk
0 ¼ t 0

�ð@L=@ _qqkÞ ð@ _qqk=@qk 0Þ�
¼ t 0 ð@L=@ _qqkÞ ½ð@ðqk 0=t 0Þ=@qk 0Þ�
¼ t 0 ð@L=@ _qqkÞ ð1=t 0Þ ¼ @L=@ _qqk � pk; ðc1Þ

ðiiÞ @L�=@t
0 ¼ Lþ t 0

X
ð@L=@ _qqkÞ ð@ _qqk=@t 0Þ

h i
¼ Lþ t 0

X
ð@L=@ _qqkÞ

�
@ðqk 0=t 0Þ=@t 0

�n o
¼ Lþ t 0

X
ð@L=@ _qqkÞ

�ð�qk 0Þ ðt 0Þ�2
�n o

¼ L�
X
ð@L=@ _qqkÞ ðqk 0=t 0Þ

¼ L�
X
ð@L=@ _qqkÞ _qqk ¼ �h ðgeneralized energy=HamiltonianÞ; ðc2Þ

and so (c) reduces to

DAH ¼ �
ð X �

d=d� ð@L�=@qk 0Þ � @L�=@qk
�
Dqk

n
þ �d=d� ð@L�=@t 0Þ � @L�=@t�Dto d�

þ
X

pkDqk � hDt
n o2

1
: ðdÞ

If, at �1; �2, the Dqk and Dt vanish (generally, if the boundary term vanishes, say, by

periodicity), then the single variational equation DAH ¼ 0 leads to the following

nþ 1 differential equations:

d=d� ð@L�=@qk 0Þ � @L�=@qk ¼ 0 ðk ¼ 1; . . . ; nÞ; ðd1Þ
d=d� ð@L�=@t 0Þ � @L�=@t ¼ 0: ðd2Þ
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Let us find the power (energy rate) equation associated with eqs. (d1): multiplying

each one of them with qk
0 and summing over k yields, successively,

0 ¼
X �ðqk 0Þ d=d�ð@L�=@qk 0Þ � ð@L�=@qkÞqk 0�

¼ d=d�
X
ð@L=@qk 0Þqk 0

h i
�
X �ð@L�=@qk 0Þqk 00 þ ð@L�=@qkÞ qk 0�

¼ d=d�
X
ð@L�=@qk 0Þqk 0

h i
� ½dL�= d�� ð@L�=@t 0Þt 00 � ð@L�=@tÞt 0�;

from which, rearranging, and invoking (b2, c2), we obtain the ‘‘parametric power

equation’’:

dh�=d� ¼ �ð@L�=@t 0Þt 00 � ð@L�=@tÞt 0 ¼ h t 00 � ð@L=@tÞ ðt 0Þ2; ðeÞ

where the parametric generalized energy h� is defined as

h� �
X
ð@L�=@qk 0Þqk 0 � L�

¼
X

pkð _qqkt 0Þ � ðL t 0Þ ¼
X

pk _qqk � L
� �

t 0 ¼ h t 0: ðe1Þ

On the other hand, by (b2, c2) again, eq. (d2) is rewritten as

� dh=d�� t 0 ð@L=@tÞ ¼ 0

) dh=d� ¼ ðdh=dtÞt 0 ¼ �t 0 ð@L=@tÞ ) dh=dt ¼ �@L=@t; ðe2Þ

as expected; and, hence, dð. . .Þ= d�-differentiating (e1), we obtain

dh�=d� ¼ ðdh=d�Þt 0 þ h t 00 ¼ �ð@L=@tÞ ðt 0Þ2 þ h t 00; ðe3Þ

that is, eq. (e).

In sum: eq. (d2) is not independent from eqs. (d1), but results from them as their

power equation. [For further related results, see Frank (1927, pp. 13–16, 23–24) and

Nevzgliadov (1959, pp. 371–375).]

REMARK

In view of the earlier ‘‘�-commutativity’’: D½dð. . .Þ=d�� ¼ dDð. . .Þ=d�, the former

noncommutativity relation (7.2.4e) for a typical coordinate qkðtÞ, or simply qðtÞ,
generalizes as follows:

Dð _qqÞ ¼ D
�ðdq=d�Þ��ðdt=d�Þ� ¼ ðdt=d�ÞDðdq=d�Þ � ðdq=d�ÞDðdt=d�Þðdt=d�Þ2

¼ ðdt=d�Þ½dðDqÞ=d�� � ðdq=d�Þ½dðDtÞ=d��ðdt=d�Þ2

¼ ðDqÞ 0=t 0 � _qq½ðDtÞ 0=t 0� ½since q 0=t 0 ¼ _qq�
¼ ðDqÞ:� _qqðDtÞ:: ðfÞ

The above can be viewed as a general definition of Dðdq=dtÞ.
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Problem 7.9.1 Continuing from the preceding example, show that for an arbitrary

(but as well behaved as needed) function F ¼ Fðt; q; _qqÞ:

F ! F� � F ðdt=d�Þ ¼ Fðt; q; _qqÞ t 0 ¼ Fðt; q; q 0=t 0Þ t 0 � F�ðt; t 0; q; q 0Þ; ðaÞ

the following integral variational identities hold:

D
ð
F dt ¼

ð
DF� d�

¼
ð X �ð@F�=@qkÞDqk þ ð@F�=@qk 0ÞDðqk 0Þ�þ ð@F�=@tÞDtþ ð@F�=@t 0ÞDt 0n o

d�

¼
ð X �ð@F=@qkÞDqk þ ð@F=@ _qqkÞ 	@ðqk 0=t 0Þ=@qk 0
 ðDqkÞ:t 0�t 0n

þ ð@F=@tÞt 0Dtþ
X �ð@F=@ _qqkÞ 	@ðqk 0=t 0Þ=@t 0
t 0 þ F

� ðDtÞ: t 0o d�

¼
ð X �ð@F=@qkÞDqk þ ð@F=@ _qqkÞ ðDqkÞ:�n

þ ð@F=@tÞDt�
X
ð@F=@ _qqkÞ _qqkðDtÞ: þ FðDtÞ:

o
t 0 d�

¼
ð X �ð@F=@qkÞDqk þ ð@F=@ _qqkÞ 	ðDqkÞ:� _qqkðDtÞ:


�n
þ ð@F=@tÞDtþ FðDtÞ:

o
dt; ðbÞ

that is,

D
ð
F dt ¼

ð
DF� d� ¼

ð
½DF þ FðDtÞ:� dt: ðcÞ

Problem 7.9.2 Consider the following four possible definitions of the total noncon-
temporaneous variation of the Hamiltonian action AH � A :

DTA �
ðt2þDt2
t1þDt1

ðLþ �LÞ dt�
ðt2
t1

Ldt; ðaÞ

DTA �
ðt2
t1

ðLþ DLÞ dðtþ DtÞ �
ðt2
t1

Ldt; ðbÞ

DTA �
ðt2þDt2
t1þDt1

ðLþ DLÞ dðtþ DtÞ �
ðt2
t1

Ldt; ðcÞ

DTA �
ðt2þDt2
t1þDt1

ðLþ �LÞ dðtþ DtÞ �
ðt2
t1

Ldt: ðdÞ
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Examine them carefully, and determine which ones of them, to the first order (i.e.,

D1A � DA), lead to the correct expression; that is,

DA ¼ D
ð
Ldt ¼

ð
�Ldt þ fLDtg21

¼
ð �

DLþ L½dðDtÞ=dt�� dt ¼ ð ½Dð. . .Þ dtþ ð. . .Þ dðDtÞ�: ðeÞ

HINT

Consult any good text on variational calculus; for example, Elsgolts (1970, pp. 341–

364), Fox (1950 –1963/1987), Gelfand and Fomin (1963, pp. 54–66).

ANSWERS

Yes: a, b; No: c, d.

Problem 7.9.3 O. Hölder and Voss forms of the action principle (may be omitted in

a first reading).

(i) By invoking the noncommutativity equation (7.2.4e): ðDqkÞ:� Dð _qqkÞ ¼ _qqkðDtÞ:,
show thatð
DLdt ¼

ð
ð@L=@tÞDtþ

X
ð@L=@qkÞDqk þ

X
ð@L=@ _qqkÞDð _qqkÞ

h i
dt

¼
ð
ð@L=@tÞDt�

X
ð@L=@ _qqkÞ _qqk

h i
ðDtÞ:

n o
dt�

ð X
EkðLÞDqk dt

þ
X
ð@L=@ _qqkÞDqk

n o2

1
: ðaÞ

Next, consider the special case where Dq, although still noncontemporaneous (i.e.,
Dt 6¼ 0), equals numerically the virtual displacement at time t, �q [fig. 7.3(a)]:

Dqðtþ DtÞ ¼ �qðtÞ; ðbÞ
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and, accordingly, the point ðt; qÞ of the fundamental path ! orbit I is mapped to the

neighboring point ðtþ Dt; qþ Dq ¼ qþ �qÞ, and the totality of the latter constitutes

the varied path in the sense of O. Hölder IIH ¼ I þ DHI (symbolically). It follows

that, in this case, Dt is not necessarily zero at the path endpoints t1;2, even if the �q
are.

Then, and assuming � 0Wnonpotential ¼ 0, the second integral vanishes, and so (a)

reduces to O. Hölder’s variational ‘‘principle’’ (1896):ð
DLþ

X
ð@L=@ _qqkÞ _qqk

� �
ðDtÞ:� ð@L=@tÞDt

n o
dt

¼
X
ð@L=@ _qqkÞDqk

n o2

1

½¼ 0; e:g:; if Dqkðt1;2Þ ¼ 0�: ðcÞ

(ii) For nonholonomic systems, the so-varied path will not satisfy the constraints;

that is, the Hölder-varied path is not kinematically possible, unless the constraints are

holonomic. For this reason, Voss (in 1990) chose:

qþ Dq: kinematically possible at tþ Dt; _qq: kinematically possible at t

) Dq� _qqDt ¼ �q ðvirtual; recalling L2:5 ff :Þ; ðdÞ

that is, the I-point ðt; qÞ is mapped to the neighboring point ðtþ Dt; qþ Dq ¼
qþ �qþ _qqDtÞ, and the totality of the latter constitutes the varied path in the sense
of Voss IIV ¼ I þ DVI [symbolically, fig. 7.3(b)]. This is how the variation

Dð. . .Þ ¼ �ð. . .Þ þ ð. . .Þ:Dt was created; and, of course, it yields the integral D-theo-

rems already detailed in }7.9.

[See also Pars, 1965, p. 533 ff.; with a slightly different (confusion-prone) notation;

and Lützen, 1995(b), p. 55 ff., for the history of these variations, etc.]

Example 7.9.2 Least Action as a Constrained Variational Problem. Let us formu-

late MEL’s principle (7.9.6b) as a variable (second) endpoint variational problem

under the energy constraint

E � Tðq; _qqÞ þ VðqÞ ¼ h ¼ constant � C; ðaÞ

and then deduce from it the correct Lagrangean equations of motion; that is,

EkðLÞ ¼ 0.

We recall that, for a holonomic, scleronomic, and potential system, MEL’s prin-

ciple of ‘‘least’’ action (or Lagrange’s problem of variational calculus) states that

AL �
Ð

2T dt is stationary for the orbit in the class of admissible paths that satisfy (i)

the constraint (a), where C is a given constant along the orbit; the same for all

admissible paths (i.e., Dh ¼ �hþ _hhDt ¼ 0 þ 0 ¼ 0Þ, and (ii) the 2n þ 1 boundary

conditions: t1; qkðt1Þ ¼ qk1; qkðt2Þ ¼ qk2, given; but t2 not given. Due to constraint

(a), we will not work with AL, but with the unconstrained variation functional

F ¼
ð
f dt; where f ¼ f ðt; q; _qq; 
Þ � 2T þ 
ðT þ V � CÞ: ðbÞ
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Then, by (7.9.12g) applied to (b), we see that the stationarity condition

0 ¼ DF ¼ D
ð
f dt

¼ �
ð X

Ekð f Þ �qk dtþ
X
ð@f =@ _qqkÞDqk � hð f ÞDt

n o2

1
ðcÞ

leads to: (i) the differential equations

Ekð f Þ ¼ 0

) ð2þ 
Þ ½d=dt ð@T=@ _qqkÞ � @ðT �VÞ=@qk�
� 2ð1þ 
Þ ð@V=@qkÞ þ ðd
=dtÞ ð@T=@ _qqkÞ ¼ 0; ðdÞ

and (ii) the boundary or transversality conditionX
ð@f =@ _qqkÞDqk � hð f ÞDt

n o2

1
¼ 0; ðeÞ

from which, since t1; qkðt1Þ; qkðt2Þ are given, we conclude that

Dt1 ¼ 0; Dqkðt1Þ ¼ �qkðt1Þ ¼ 0;

Dqkðt2Þ ¼ �qkðt2Þ þ _qqkðt2ÞDt2 ¼ 0 ) �qkðt2Þ ¼ � _qqkðt2ÞDt2 6¼ 0; ðe1Þ
and, since Dt2 6¼ 0,

hð f ; evaluated at t2Þ �
X
ð@f =@ _qqkÞ _qqk � f

n o
2
� hð f2Þ ¼ 0 ðe2Þ

) 2Tð1þ 
Þf g2 ¼ 0 ) 
ðt2Þ � 
2 ¼ �1: ðe3Þ
On the other hand, applying the purely analytical result (7.9.11f, with L replaced by

f ) to (b), while recalling (a), we find

dhð f Þ=dtþ @f =@t ¼
X

Ekð f Þ _qqk ¼ 0 ½by ðdÞ� ðf1Þ
) dhð f Þ=dt ¼ �@f =@t ¼ �ðd
=dtÞ ðT þV � CÞ ¼ 0

) hð f Þ ¼ 2Tð1þ 
Þ ¼ constant along the orbit; ðf2Þ

and, combining this with (e3), we conclude that


 ¼ 
ðtÞ ¼ �1; everywhere on the orbit: ðgÞ
Then, (b) yields

f ¼ 2T � ðT þV � CÞ ¼ Lþ C ) Ekð f Þ ¼ EkðLÞ ¼ 0: ðhÞ
In sum: the stationarity condition DF ¼ 0 yields the correct Lagrangean equations of

motion. The unknown (not necessarily unique) t2, corresponding to the given data of

our orbit, is determined from the nþ 1 equations

qkðt1; c1; . . . ; c2nÞ ¼ qk1; qkðt2; c1; . . . ; c2nÞ ¼ qk2; ði1Þ
Tðq; _qqÞ þ VðqÞ ¼ C; ði2Þ

where qk ¼ qkðt; c1; . . . ; c2nÞ is the general solution of (h).
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See also Papastavridis [1986(c)], which also contains a study of the extremality of

F via the study of its second variation D2F .

Example 7.9.3 Whittaker’s Variational Principle: ‘‘Show that the principle of Least

Action can be extended to systems for which the integral of energy does not exist, in

the following form. Let the expression
P ð@L=@ _qqkÞ _qqk � L be denoted by h; then the

integral [our terminology]

AWhittaker � AW �
ð X

ð@L=@ _qqkÞ _qqk þ tðdh=dtÞ
� �

dt; ðaÞ

has a stationary value for any part of an actual trajectory (i.e., an orbit) as compared

with other paths between the same terminal points for which h has the same terminal

values’’ (Whittaker, 1937, p. 248).

This constitutes the extension of MEL’s ‘‘least action,’’ (7.9.6b), to potential but

nonconservative systems (i.e., @L=@t 6¼ 0), where, as a result, no Jacobi–Painlevé

integral exists. The most general such Lagrangean is

Lðt; q; _qqÞ ¼ L1ðt; q; _qqÞ þ
X

QkðtÞqk ðbÞ

(e.g., forced autonomous vibrations), in which case the power theorem reduces to

dh=dt ¼ �@L=@t ¼ �@L1=@t�
X
ðdQk=dtÞqk 6¼ 0: ðcÞ

Whittaker’s theorem states that

DAW ¼ 0; ðdÞ

under

Dqkðt1Þ ¼ Dqkðt2Þ ¼ 0 and Dhðt1Þ ¼ Dhðt2Þ ¼ 0: ðd1Þ

To prove (d, d1), first, invoking the h-definition, we transform AW to

AW ¼
ð �

Lþ hþ tðdh=dtÞ� dt
¼
ð
Ldtþ ft hg21

¼ AH þ ft hg21: Hamilton’s characteristic function ðsee also L8:11Þ: ðeÞ

Then, operating on (e) with Dð. . .Þ, while recalling (7.9.3b, c; 11f, g, h), we obtain

DAW ¼ DAH þ Dft hg21
¼ �

ð X
EkðLÞ �qk dtþ

X
pkDqk � hDt

n o2

1
þ Dft hg21

¼ �
ð X

EkðLÞ �qk dtþ
X

pkDqk þ tDh
n o2

1
¼ 0; ðfÞ
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by (d1) and LP for the orbit, Q.E.D. Of course, other boundary conditions (e.g.,

periodic ones) could have nullified the boundary term. For an investigation of the

extremality of AW via the study of the sign of D2AW , see Papastavridis [1985(b)].

Example 7.9.4 Projectile Motion via Jacobi’s Form of Least Action. Let us study

the motion of a particle of mass m in the vertical plane under constant gravity, and

neglecting air resistance, via the geodesic form of Jacobi’s principle, (7.9.14a ff.).

Here, with q1 ¼ x (horizontal), q2 ¼ y (positive upward; y ¼ 0: ground), and

2T ¼ mð _xx2 þ _yy2Þ; V ¼ mgy; ðaÞ
the energy equation is

ðm=2Þ ð _xx2 þ _yy2Þ þmgy ¼ E: total energy; a positive constant: ðbÞ
As a result, the integrand of the Jacobi functional, (7.9.14h), becomes

R ¼ 2ðE �mgyÞ ½mþ 0þm ðdy=dxÞ2�
¼ 2mðE �mgyÞ ½1þ ðy 0Þ2� ¼ Rðy; y 0Þ; ðcÞ

from which we obtain

@
ffiffiffiffi
R
p �

@y 0 ¼ ½2m ðE � mgyÞ�1=2½1þ ðy 0Þ2��1=2
y 0; ðd1Þ

@
ffiffiffiffi
R
p �

@y ¼ �fm2g ½1þ ðy 0Þ2�g f2mðE � mgyÞ ½1þ ðy 0Þ2�g�1=2; ðd2Þ
and so the Euler–Lagrange equations of the Jacobi functional AJ , eqs. (7.9.14m), are

Eyð
ffiffiffiffi
R
p
Þ ¼ 0: 2ðE �mgyÞy 00 þmg½1þ ðy 0Þ2� ¼ 0: ðd3Þ

To integrate (d3), we ð. . .Þ 0-differentiate it once more, thus obtaining

2ðE � mgyÞyF ¼ 0; ðe1Þ
from which, since E 6¼ mgy, it follows that

yF ¼ 0 ) y ¼ c1x
2 þ c2xþ c3 ðc1;2;3: constants of integrationÞ: ðe2Þ

To find the three constants of this parabolic orbit, we apply the two boundary

conditions

yðx1Þ ¼ y1 ðgivenÞ and yðx2Þ ¼ y2 ðgivenÞ; ðf1Þ
and the equation of motion (d3). Choosing, for simplicity, xð0Þ ¼ x1 ¼ 0 and

yð0Þ ¼ y1 ¼ 0, we immediately find c3 ¼ 0. Then, substituting the resulting

y ¼ c1x
2 þ c2x into (d3) and setting x ¼ 0, we obtain, after some simple algebra,

c1 ¼ �mgð1 þ c2
2Þ=4E < 0; ðf2Þ

that is, the parabolic orbit opens downward. Finally, substituting (f2) into the second

of (f1): y2 ¼ c1x2
2 þ c2x2, yields the second-degree equation for c2:

c2
2 � ð4E=mgx2Þc2 þ ½ð4Ey2=mgx2

2Þ þ 1� ¼ 0: ðf3Þ
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Since, on physical grounds, c2 must be real, the discriminant of (f3) must be non-

negative; and this leads directly to the condition 4EðE �mgy2Þ 	 ðmgx2Þ2 ð> 0Þ,
from which we get the upper bound:

y2 < E=mg; or E > mgy2 ¼ VðP2Þ: ðf4Þ
The two (real) values of c2 obtained from (f3) yield the two parabolic orbits reaching

P2ðx2; y2Þ from P1ð¼ O: origin of coordinates); one high and one low.

REMARK

Between P1 and P2, both these orbits satisfy the same equations of motion and

boundary conditions; that is, both satisfy the first-order (stationarity) condition

�AJ ¼ 0: namely, Jacobi’s principle. Their differences appear in the second-order
(extremality) conditions: the sign of �2AJ . It can be shown that, for motion between

P1 and P2, only the low orbit minimizes AJ : �
2AJ > 0, whereas the high orbit does

not; and for motion beyond P2, even the low orbit does not minimize AJ . [For

further details, see (alphabetically): Koschmieder (1962, pp. 45–46), Lur’e (1968,

pp. 752–754), Papastavridis [1986(a)], Peisakh (1966, and references cited therein).]

GENERALIZATION

We leave it to the reader to show, using again �AJ ¼ 0) Eyð
ffiffiffiffi
R
p Þ ¼ 0, that if our

particle moves freely in a plane O–xy under a general potential V ¼ Vðx; yÞ, its

orbits are given by

2ðE �VÞy 00 þ ½1þ ðy 0Þ2� ðVy � y 0VxÞ ¼ 0; ðgÞ
where subscripts denote partial derivatives. (See, e.g., Kauderer, 1958, p. 599 ff.)

Example 7.9.5 Uniqueness of a Lagrangean. Let us examine the variations of the

Hamiltonian action functionals of two (holonomic) systems, AH and AH
0, whose

corresponding Lagrangeans, L and L 0, differ by the total time derivative of an

arbitrary ‘‘gauge’’ function of the coordinates and time F ¼ Fðt; qÞ; that is,

L 0ðt; q; _qqÞ � Lðt; q; _qqÞ ¼ dFðt; qÞ=dt: ðaÞ
Since �ð _FFÞ ¼ ð�FÞ:, we find, successively,

�AH
0 ¼ �

ð
L 0 dt ¼

ð
�L 0 dt ¼

ð
½�Lþ �ð _FFÞ� dt

¼ �AH þ
X
ð@F=@qkÞ �qk

n o2

1
; ðbÞ

and, therefore, if �qkðt1Þ ¼ �qkðt2Þ ¼ 0, the conditions �AH
0 ¼ 0 and �AH ¼ 0 are

equivalent; that is, both yield the same equations of motion:

�AH ¼ 0 ) EkðLÞ ¼ 0; �AH
0 ¼ 0 ) EkðL 0Þ ¼ EkðLÞ ¼ 0: ðcÞ

This simple variational argument shows that L is nonunique; it is defined only to
within the total time derivative of an arbitrary function of the coordinates and time,
at most. Accordingly, constant terms, or pure functions of time terms, may be safely
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omitted from a Lagrangean. Finally, we point out that we always have

EkðL 0Þ ¼ EkðLþ FÞ ¼ EkðLÞ þ EkðFÞ ¼ EkðLÞ; ðdÞ

even if
P ð@F=@qkÞ �qkf g21 ¼ f�Fg21 6¼ 0 (recalling ex. 3.5.13); but then the arrows in

(c) cannot be reversed.

Example 7.9.6 Routh’s Problem I: ‘‘If the period of complete recurrence of a

dynamical system is not altered by the addition of energy, prove that this additional

energy is equally distributed into potential and kinetic energies’’ [Routh, 1905(b),

p. 315; also Papastavridis, 1985(a)].

Choosing in the fundamental equations (7.9.4h, i): t1 ¼ 0;Dt1 ¼ 0; t2 ¼ � (period

of ‘‘complete recurrence’’), Dqkðt1Þ ¼ Dqkðt2Þ (say, 0) and assuming that the system is

potential ð� 0Wnp ¼ 0Þ and scleronomic
P

pk _qqk ¼ 2Tð Þ, we get, respectively,

D
ð�

0

2T dt ¼
ð�

0

�E dt; ðaÞ

D
ð�

0

2V dt ¼
ð�

0

�E dtþ 2Eð�ÞD�: ðbÞ

If, further, the addition of energy �E does not alter the period of oscillation (i.e., if

D� ¼ 0), the above yield immediately the equipartition theorem:

D
ð�

0

T dt ¼ D
ð�

0

V dt ¼
ð�

0

ð�E=2Þ dt; Q:E:D: ðcÞ

Example 7.9.7 Routh’s Problem II: ‘‘A dynamical system passes freely from one

configuration to another in time i [our � ] with constant energy E; with energy E þ �E
its time of free passage between the same configurations is i þ �i, verify that on a

time average the increment of the mean kinetic energy Tm [our hTi] of the system

throughout its path is less than half of �E by the amount Tmð�i=iÞ. Show that in case

there are two adjacent paths that take the same time, their mean potential and

kinetic energies differ by equal amounts’’ [Routh, 1905(b), p. 315; also

Papastavridis, 1985(a)].

Here, as in the preceding example, let us choose t1 ¼ 0;Dt1 ¼ 0; t2 ¼ � � i (period

of oscillation), Dt2 ¼ D� � Di, and assume that the system is potential ½h� 0Wnpi ¼ 0�
and scleronomic

P
pk _qqk ¼ 2T½ �. Then, since

D
ð�

0

T dt ¼ DðhTi�Þ ¼ ðDhTiÞ� þ hTiD�; ða1Þ

D
ð�

0

V dt ¼ DðhVi�Þ ¼ ðDhViÞ� þ hViD�; ða2Þ

eqs. (7.9.4h, i) specialize to

DhTi ¼ �E=2� hTiðD�=�Þ; ðb1Þ
DhVi ¼ �E=2� �hVi � E

� ðD�=�Þ ¼ �E=2þ hTi ðD�=�Þ; Q:E:D: ðb2Þ
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Theorems like this and the one of the preceding example arose during the late 19th

century in connection with the (partially successful) attempts of Clausius, Szily,

Boltzmann, et al. to supply analytical mechanics–based explanations of thermomecha-
nical phenomena; see, for example, the papers by Bierhalter [1981(a), (b), 1982, 1983,

1992], and the monograph and original papers by Polak (1959, 1960)].

Problem 7.9.4 Time Integral Theorems for Periodic Systems (Williamson and

Tarleton, 1900, pp. 457–458). For the system described in the preceding examples,

show that ‘‘When the entire state of a moving system recurs at the end of equal

intervals of time whose common magnitude is � , if the total energy E receive a small

change, the corresponding variation of the mean Lagrangean function, Lm [our hLi],
is given by the equation

DLm ¼ �2TmðD�=�Þ:’’ ðaÞ

Problem 7.9.5 Time Integral Theorems for Periodic Systems (continued) [Routh,

1905(b), pp. 314–315; Williamson and Tarleton, 1900, p. 458]. Continuing from the

preceding examples and problem, show that ‘‘If the total energy of a recurring

system, . . . , receive a series of variations at intervals of time which are large com-

pared with the period of recurrence of the system, and if finally the system return to

its original state, show that
Ð ðdE=TmÞ taken from the beginning to the end of the

cycle is zero.’’

HINT

E þ L ¼ 2T ) dE þ dLm ¼ 2 dTm ) dE=Tm ¼ perfect ðor exactÞ differential (by

the preceding problem).

These two problems are important in connection with the (late 19th century)

attempts at a mechanical explanation of the second law of thermodynamics

(entropy).

Example 7.9.8 Pendulum of Slowly Varying Length; Adiabatic Invariance. We

consider a mathematical pendulum, consisting of a bob (particle) of mass m and a

constraining light thread of length l, performing small (linear), free and undamped

oscillations under gravity (fig. 7.4). If � is the instantaneous inclination of the thread

to the vertical, then

2T ¼ m l2ð _��Þ2; V ¼ �mg l cos �þ C � ð1=2Þmg l�2 þ C 0

ðfor small angular motions;C;C 0: constantsÞ; ðaÞ
L � T � V ¼ ð1=2Þm l2ð _��Þ2 þmg l cos�� C

� ð1=2Þm l2ð _��Þ2 � ð1=2Þmg l�2 � C 0 ð‘‘small Lagrangean’’Þ; ðbÞ
and, accordingly, Lagrangean equation of (small) motion:

E�ðLÞ � ð@L=@ _��Þ:� @L=@� ¼ 0:

€��þ ðg=lÞ sin� ¼ 0 ) €��þ ðg=lÞ� ¼ 0; ðcÞ
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and total energy

E � T þ V ¼ h � ð@L=@ _��Þ _��� L: ð1=2Þm l2ð _��Þ2 � mg l cos� ¼ constant;

) ð1=2Þm l2ð _��Þ2 þ ð1=2Þmg l�2 ¼ constant ð‘‘small energy equation’’Þ: ðdÞ

Equation (d) shows that as long as the pendulum parameters, m and l, remain

constant in time so does E ¼ h. Now, let us assume that some external (energy-

supplying) agency acts to change these parameters, say, the length l; for example,

we can imagine the thread held between the fingers of one hand and shortened/

lengthened by drawing it up/down with the fingers of the other; or, the bob picks

up dust and, thus, its mass changes. Then, the power equation yields

dE=dt ¼ dh=dt ¼ �@L=@t ¼ �ð@L=@lÞ ðdl=dtÞ 6¼ 0; ðeÞ

that is, the system is no longer conservative.

Let us now examine the special case where the above length change, from l to

l þ dl, is spread over several (to and fro) oscillations; that is, let us assume that dl
takes a very large number of periods, and, therefore, within any one of them, l can be

considered constant. Since the pendulum still oscillates under these very slow, or

adiabatic, variations, henceforth denoted by �l (like the virtual variations), both its

new frequency and period,

!þ �! and � þ �� ¼ ð2�=!Þ þ ð�2�=!2Þ �!; ðf Þ

will be functions of �l. Mathematically, we are dealing here with a differential equa-

tion, (c), whose coefficients (parameters) are explicit functions, not of the ordinary
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(or ‘‘fast’’) time t, but of an adiabatic (or ‘‘slow’’) time t 0 � "t; ": small number; that

is, l ¼ lðt 0Þ.
Now we ask the following fundamental question: Are there any energetic quan-

tities that, in spite of these adiabatic (nonconservative) changes of l, remain constant,

not in t but in t 0; that is, to the first "-order?

As we explain below, one such constant, or adiabatic invariant, is the time average
of twice the kinetic energy of the system, divided by its frequency, 2hT i=!; which, to

within a constant factor, equals the Lagrangean action AL. If, further, V is homo-

geneous quadratic in the coordinates (i.e., linear oscillations) then, since by the virial

theorem (ex. 7.2.1 ff.) hT i ¼ hV i, that invariant becomes 2hT i=! ¼ E=!. [This is a

famous problem: It was posed at the Solvay Congress (Brussels, 1911) by the great

physicist H. A. Lorentz, and was answered (for the small motion case) by the . . .

greater physicist A. Einstein!] Other special variations of the system parameters

produce other special invariants (‘‘integrals’’); see, for example, Kronauer and

Musa (1966), Kronauer (1983), Papastavridis [1982(b)].

Let us establish this adiabatic invariant directly, by elementary considerations. As

(c) shows, the small motion frequency (squared) equals !2 ¼ g=l, and so, for small

variations,

ð2! �!Þl þ !2 �l ¼ 0 ) ð�!=!Þ ¼ �ð�l=2lÞ: ðgÞ

Next, by kinetics (equation of motion of bob along the thread direction), the tension

of the thread S equals

S ¼ m lð _��Þ2 þmg cos�

� mgþm lð _��Þ2 � mg�2=2 ðfor small motionsÞ; ðhÞ

where, as (c) shows [under the initial conditions, say, �ð0Þ ¼ �o and _��ð0Þ ¼ 0�,
�ðtÞ ¼ �o cosð!tÞ. Therefore, the elementary work of S during a �l change,

� 0Wexternal � � 0W , averaged over several oscillation periods, will be

h� 0Wi ¼ �hS �li ¼ ��l½hmgi þ hm lð _��Þ2i � hmg�2=2i�
¼ ��l½hmgi þ hm l �o

2!2 sin2ð!tÞi � hmg�o
2 cos2ð!tÞ=2i�

¼ � � � ¼ ��l½mgþ m l �o
2!2ð1=2Þ �mg�o

2ð1=4Þ�
¼ �mgð1þ �o2=4Þ �l ¼ �hSi �l ½since !2l ¼ g�: ðiÞ

Further, recalling (a),

hT i ¼ hð1=2Þm l2ð _��Þ2i ¼ hð1=2Þm l2!2�o
2 sin2ð!tÞi

¼ ð1=4Þm l2!2�o
2 ¼ mg l�o

2=4; ðjÞ
hV i ¼ hC � mg l½1 � ð�2=2Þ�i
¼ C �mg l

�
1 � ð�o

2=2Þhcos2ð!tÞi�
¼ C �mg lð1� �o2=4Þ: ðkÞ
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With the help of the above results, the averaged energy equation

h� 0W i ¼ h�Ei ¼ �hEi ¼ �ðhT þ V iÞ ¼ �hT i þ �hV i ðlÞ
yields

�mgð1þ �o
2=4Þ �l ¼ �ðmg l�o

2=4Þ þ ��C �mg lð1� �o
2=4Þ�

) 3�o �l þ 4l ��o ¼ 0; ðmÞ

from which, integrating adiabatically, we find

l3�o
4 ¼ constant or l

ffiffi
l
p

�o
2 ¼ constant: ðnÞ

Hence,

2hT i=! ¼ ðmgl�o
2=2Þ�ðg=lÞ1=2 ¼ ðm ffiffiffi

g
p

=2Þ ðl
ffiffi
l
p

�o
2Þ ¼ constant; ðoÞ

and

AL �
ð�

0

2T dt ¼ 2hT i� ¼ 2�
	
2hT i=!
 ¼ constant; Q:E:D: ðpÞ

For further details see Papastavridis [1985(a)] and }8.15.

Problem 7.9.6 Adiabatic Invariance (Linear Pendulum). In connection with the

adiabatic pendulum of the preceding example, ex. 7.9.8 (i.e., particle P of mass m,

suspended by a light and inextensible thread of slowly and randomly varying length

l, and instantaneous tension S) under gravity, show that

S ¼ @L=@l ½¼ m lð _��Þ2 þmg cos�; exactly�; ðaÞ
and therefore its averaged energy equation is

h� 0W i ¼ �hhi ¼ �hSi �l ¼ �h@L=@li �l

� �ð!=2�Þ
ð2�=!

0

ð@L=@lÞ �l dt

¼ � � � ¼ �mgð1þ �o2=4Þ�l ðlinear pendulum caseÞ: ðbÞ

[Equation (b) is, essentially, the adiabatic and averaged version of the holonomic and

potential power equation: dh=dt ¼ �@L=@t.]

Problem 7.9.7 Adiabatic Invariance (The Rayleigh Pendulum). Continuing from

the preceding problem of the adiabatic mathematical pendulum under gravity, let us

examine the case where, at the suspension point, there is a small ring R constrained

to slide up and down the smooth, vertical, and fixed line AB (otherwise the pendulum

would be a nonconservative system).

(i) Show that if R is kept fixed, in which case RP is an ordinary (i.e., constant

parameter) pendulum, the vertical force tending to push R upward, F, equals

F ¼ Sð1� cos�Þ � mg cos� ð1� cos�Þ: ‘‘vibration pressure’’ ðaÞ
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(disregarding an unessential centripetal force contribution to S—explain); and since

V ¼ mgl ð1� cos�Þ, deduce that, for small vibrations (recall virial theorem),

2F � mg�2 ) hF i ¼ hV=li ¼ � � � ¼ ð1=2Þ ðE=lÞ; ðbÞ
where E is the total energy of the pendulum (a constant); that is, the average force on
the ring is proportional to the pendulum’s energy density (¼ energy per unit length)

[a result which, as Rayleigh has pointed out (1902), has a close analog in electro-

magnetism (vibration pressure ! ‘‘radiation pressure’’]. Also, verify that the

horizontal force on R is S sin� ¼ mg cos� sin�, and its average vanishes.

(ii) Next, assume that while P oscillates with frequency ! ¼ ðg=lÞ1=2;R is let slide

adiabatically upward; that is, �l > 0. Then, clearly, the (positive) work done on R by

F comes at the expense of the oscillatory energy of the pendulum. Show that, in such

a case,

�E ¼ �hF i �l ¼ �ðE=2Þ ð�l=lÞ; ðcÞ
from which, by ‘‘adiabatic integration,’’ it follows that

E
ffiffi
l
p
¼ constant; ðdÞ

and from this we conclude that as l !1; E ! 0; that is, the entire energy of P is

then expended as work done on R.

Problem 7.9.8 Adiabatic Invariance (The Rayleigh Pendulum). Continuing from

the preceding problem,

(i) By averaging Lagrange’s equation of motion for a typical positional co-

ordinate l:

Ql ¼ ð@T=@ _llÞ:� @T=@l þ @V=@l; ðaÞ
over a very long time interval � , show that, since pl � @T=@ _ll is finite,

hQli � ðl=�Þ
ð�

0

Ql dt ¼ ð1=�Þ
ð�

0

ð@V=@l � @T=@lÞ dt

¼ �ð1=�Þ
ð�

0

ð@L=@lÞ dt � �h@L=@li: ðbÞ

(ii) Show that, in the case of our ringed pendulum (i.e., _ll ¼ 0Þ,

@V=@l ¼ mgð1� cos�Þ ¼ V=l; @T=@l ¼ m lð _��Þ2 ¼ 2T=l; ðcÞ
and, therefore, since hV i ¼ hT i ¼ E=2 (by the virial theorem, for small vibrations),

eq. (b) yields

hQli ¼ ð1=�Þ
ð�

0

�ðV � 2TÞ=l� dt ¼ � � � ¼ �ð1=2Þ ðE=lÞ ¼ �hF i; ðdÞ

that is, the average force necessary to hold the ring must be directed downward (so as

to tend to diminish l).
This ‘‘ringed pendulum’’ problem seems to be the earliest simple and concrete

example of adiabatic invariance. For additional examples and insights, see Rayleigh
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(1902); also Bakay and Stepanovskii (1981, pp. 100–107), Tomonaga (1962, pp. 290–

294), and Thomson (1888, chaps. 4, 9).

Example 7.9.9 Rayleigh’s Principle via the Principle of Least Action. Let us con-

sider a holonomic and scleronomic system with n DOF undergoing small (linear)

free and undamped vibrations about a configuration of stable equilibrium defined by

qk ¼ 0. Then, to within our approximations, its kinetic and potential energies are,

respectively,

2T ¼
XX

Mkl _qqk _qql ; 2V ¼
XX

Vklqkql ; ðaÞ

where ðMklÞ and ðVklÞ are constant, symmetric, and positive definite matrices of

inertia (mass) and total potential (stiffness), respectively, and the q’s give the small

motion from equilibrium. Next, let us assume that the system oscillates in its (M)th
mode ðM ¼ 1; . . . ; nÞ; that is, each qk varies as

qk
ðMÞ � qk;M � AkMðCM sin MÞ;  M � !Mtþ �M ; ðbÞ

where CM ; �M , and !M are, respectively, the amplitude, phase, and frequency of that

mode (the first two to be determined from the initial conditions of that mode); and

the AkM are the ‘‘normal mode coefficients’’ or ‘‘direction cosines’’ of the modal

vector CM sin M , in q-space, and depend on Mkl ;Vkl , and !M
2 [they are the minors

of the characteristic or secular determinant jVkl � !M
2Mkl j; assuming that all !M’s

are different. The practically much rarer case of multiple or degenerate frequencies

introduces some very minor modifications; see, e.g., Greenwood (1988, pp. 497–498),

Lamb (1929, pp. 230–232).]

From (b) we immediately find

dqk;M= dt ¼ AkMCM !M cos M ; ðcÞ

and so the (double) kinetic and potential energies of that mode are, respectively,

2TM ¼ ðCM!M cos MÞ2KM ; 2VM ¼ ðCM sin MÞ2PM ; ðdÞ
where

KM �
XX

MklAkMAlM ; PM �
XX

VklAkMAlM : ðd1Þ

[Had we included CM
2=2 in KM ;PM, the latter would be, respectively, the maximum

kinetic and potential energies of the system, at the ðMÞth mode.]

Below, using the general ‘‘least’’ action equation (7.9.4f ), we derive Rayleigh’s
principle; that is,

!M
2 �KM � �PM ¼ 0 or �ðPM=KMÞ ¼ 0; ðeÞ

where

�KM � 2
XX

MklAkM �AlM ; �PM � 2
XX

VklAkM �AlM ; ðe1Þ

and the �AkM are small variations about the ðMÞth mode. The qualitative and

physical interpretation of (e) is given later.
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By �ð. . .Þ-varying the qk;M, eqs. (b), around the ðMÞth mode, we find

�qk;M ¼ ðCM sin MÞ �AM þ ðAkM sin MÞ �CM þ ðAkMCM cos MÞ � M; ðf1Þ
� M ¼ t �!M þ ��M ; ðf2Þ

and so the corresponding boundary terms of (7.9.4f) becomeX
pkM �qkM

n o2

1
¼

XX
MklðdqlM= dtÞ �qkM

n o2

1

¼ ½ðCM
2!M=2

� 

�KM þ ðCM !MKMÞ �CM� sin M cos M

þ ðCM
2!MKMÞ cos2  M � Mg21; ðg1Þ

2TMDtMf g21¼ ðCM
2!MKMÞ cos2  MDtM

� �2

1
: ðg2Þ

To eliminate both (g1) and (g2) we make the following (clearly nonunique) choices:

ð MÞ1 ¼ �=2 ) !Mt1 þ �M ¼ �=2;
ð MÞ2 ¼ ð MÞ1 þ 2� ) !Mt2 þ �M ¼ 5�=2;

) �M ¼ t2 � t1 ¼ 2�=!M : ðMÞth principal period: ðg3Þ

With these time limits, and since here � 0Wnp ¼ 0, equation (7.9.4f) reduces to

DAL;M �
ð
�EM dt ¼ D

ð
2TM dt�

ð
ð�TM þ �VMÞ dt ¼ 0: ðhÞ

Let us implement (h): a series of straightforward trigonometric integrations, with use

of (a–d, f1, 2) and t2 ¼ t1 þ �M, yields

AL;M �
ð

2TM dt

¼
ð
ðCM

2!M
2KMÞ cos2  M dt ¼ ð�=!MÞ ðCM

2!M
2KMÞ; ði1Þ

) DAL;M ¼ ð�=!MÞ ½ð2CM!M
2KMÞ �CM þ ðCM

2!MKMÞ �!M þ ðCM
2!M

2Þ �KM �;ði2Þð
�TM dt ¼

ð �ðCM!M
2KM �CMÞ cos2  M þ ðCM

2!MKM �!MÞ cos2  M

� ðCM
2!M

2KM � MÞ sin M cos M þ ðCM
2!M

2�KM=2Þ cos2  M

�
dt;ði3Þð

�VM dt ¼
ð �ðCMPM �CMÞ sin2  M þ ðCM

2PM � MÞ sin M cos M

þ ðCM
2 �PM=2Þ sin2  M

�
dt; ði4Þ

)
ð
ð�TM þ �VMÞ dt ¼

ð
�EM dt

¼ � � � ¼ ð�=!MÞ ½ð!M
2KM þPMÞCM �CM

þ ðCM
2!MKMÞ �!M

þ ð1=2Þ ð!M
2 �KM þ �PMÞCM

2�: ði5Þ
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Hence, substituting (i2) and (i5) into (h), while noting that due to the linearity of the

system (in the equations of motion), we have equipartition of its kinetic and potential
energies over �M ; that is, ð

TM dt ¼
ð
VM dt; ðjÞ

or, since ð
TM dt ¼ ð�=!MÞ!M

2
XX

ð1=2ÞMklðAkMCMÞ ðAlMCMÞ
h i

¼ ð�=!MÞ!M
2CM

2KM=2 � ð�=!MÞ!M
2TM;max; ðj1Þð

VM dt ¼ ð�=!MÞ
XX

ð1=2ÞVklðAkMCMÞ ðAlMCMÞ
h i

¼ ð�=!MÞCM
2PM=2 � ð�=!MÞVM;max; ðj2Þ

Equation ðjÞ ) !M
2 ¼ PM=KM ¼ VM;max=TM;max ðj3Þ

[and this is a key step in the proof of Rayleigh’s theorem, which shows why (j3) and

the theorem do not hold for nonlinear oscillations], we finally find

ð�=!MÞ ð1=2Þ ðCM
2!M

2 �KM � CM
2 �PMÞ ¼ 0

) !M
2 �KM � �PM ¼ 0 ) !M

2 ¼ �PM=�KM ¼ �VM;max=�TM;max; Q:E:D: ðkÞ
This can also be written as

�RM ¼ 0; where RM � !M
2TM;max � VM;max ðor VM;max � !M

2TM;maxÞ;
ðk1Þ

and that variation does not affect !M ; or, due to ( j3), as

0 ¼ �!M
2 ¼ �ðVM;max=TM;maxÞ

¼ ð1=TM;max
2Þ ðTM;max �VM;max � VM;max �TM;maxÞ

¼ ð1=TM;maxÞ
�
�VM;max � ðVM;max=TM;maxÞ �TM;max

�
¼ ð1=TM;maxÞ ð�VM;max � !M

2 �TM;maxÞ: ðk2Þ

REMARKS

(i) A Hamilton principle-based derivation of (k–k3) would utilize expressions (i3–

5) with �!M ¼ 0 [i.e., fixed endpoints, since

�!M ¼ �ð2�=�MÞ ¼ �ð2�=�M2Þ ��M ¼ �ð2�=�M2ÞDðt2 � t1Þ�: ðlÞ
Then,

0 ¼ �
ð
ðTM � VMÞ dt ¼

ð
ð�TM � �VMÞ dt

¼ ð�=!MÞ
�ð!M

2KM �PMÞCM �CM þ ð1=2Þ ð!M
2 �KM � �PMÞCM

2
�
; ðmÞ

from which, again thanks to ( j3), eq. (k) follows.
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Such a derivation does not exactly coincide with those found in the literature;

there, one sets

qk;M ¼ BkM sin M ; BkM � AkMCM; ðm1Þ
from which

�qk;M ¼ �BkM sin M; ðm2Þ
and so Hamilton’s principle yields

0 ¼ �
ð
ðTM � VMÞ dt ¼ �

�ð�=!MÞð!M
2TM;max � VM;maxÞ

�
¼ ð�=!MÞ�ð!M

2TM;max � VM;maxÞ ¼ ð�=!MÞð!M
2�TM;max � �VM;maxÞ; ðm3Þ

because, here, �ð. . .Þ implies !M ¼ constant. Again, we notice the indispensability of

( j3).

(ii) As eqs. (h) and (i5) show, even if �AL;M ¼ 0 and �!M ¼ 0, still

ð
�EM dt 6¼ 0; ðnÞ

whereas the customary formulation of ‘‘least’’ action, eq. (7.9.6b), requires that

�EM ¼ 0 for the admissible varied paths.

For a derivation of Rayleigh’s principle based on the Hamiltonian action, eq.

(7.9.4b), see Lur’e (1968, pp. 689–694).

More on Rayleigh’s Principle (RP)

The stationary property (k) had already been noticed by Lagrange; and is indeed

referred to by some authors as Lagrange’s theorem. But Rayleigh (1870s) revealed

the following, additional, extremum property: If we imagine the system reduced to

one with a single degree of freedom, say, by the imposition of n � 1 frictionless (ideal)

constraints so that the ratios q1 : q2 : . . . : qn have any given values, then the (square of

the) frequency of the so-constrained system !2 will lie between the (squares of the)

least and greatest natural frequencies of the unconstrained system:

!2
min � !1

2 � !2 � !2
max � !n

2: ðoÞ
To understand these results better we need some ‘‘normal mode theory’’. [See any

good vibrations text; or Gantmacher (1970, pp. 202–222), Synge and Griffith (1959,

pp. 483–505).]

As shown there, the most general qk-variation is a superposition of n simple
harmonic, or principal, independent oscillations,

xM ¼ CM sin M: ðMÞth principal mode;  M ¼ !Mtþ �M ; ðp1Þ
where the amplitudes CM and phases �M are to be determined from the 2n initial

conditions xMð0Þ and dxMð0Þ=dt [or from the qkð0Þ and dqkð0Þ=dt], each of which

contributes to qk proportionately to the coefficient AkM ; that is, recalling (b),

qk ¼
X

qk;M ¼
X

AkMxM ¼
X

AkMCM sin M : ðp2Þ
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This expresses D. Bernoulli’s principle of the superposition of linear vibrations (1753).

The great advantage of such Lagrangean coordinates is that in them the equations of
motion decouple to the n independent equations

d2xM=dt
2 þ !M

2xM ¼ 0 ) eq: ðp1Þ: ðp3Þ

Next, it is physically (though not mathematically) clear, that

T ¼
X

TM ¼
X
ð1=2ÞmMðdxM=dtÞ2; V ¼

X
VM ¼

X
ð1=2ÞkMxM

2; ðp4Þ
mM : principal coeRcients of inertia ð> 0Þ;
kM : principal coeRcients of stability ð> 0; since V > 0Þ; ðp5Þ

that is, in such coordinates, T and V can be expressed in sum of squares, or diagonal,
forms; and, when comparing them with (p3), we easily conclude that

!M
2 ¼ kM=mM ð> 0Þ: ðp6Þ

[Some authors define normalðizedÞ coordinates, as opposed to principal coordinates,

so that the inertia matrix ðMklÞ is the unit matrix, while the stiffness! stability
matrix ðVklÞ is the diagonal matrix of the !M

2; that is, such coordinates are principal

and inertially normalized.]

In terms of these principal coordinates, any n� 1 geometrical constraints

imposed on our system, (which in effect reduce it to a one-DOF system) will be

given by the linear relations

x1 ¼ X1 �; x2 ¼ X2 �; . . . ; xn ¼ Xn �; ðq1Þ
where the X1;...;n are constants and � ¼ �ðtÞ is any of the xM’s or qk’s. Then T and V ,

eqs. (p4, 5) take the constrained values

T� ¼ ð1=2Þðm1X1
2 þ � � � þmnXn

2Þðd�=dtÞ2 � T�;oðd�=dtÞ2; ðq2Þ
V� ¼ ð1=2Þðk1X1

2 þ � � � þ knXn
2Þ �2 � V�;o �

2; ðq3Þ

and, due to equipartition over the period of �, �� ¼ 2�=!� — that is,ð
ðT� � V�Þ dt ¼ 0 ) ð�=!�Þð!�2T�;max � V�;maxÞ ¼ 0; ðq4Þ

we find that the so-constrained frequency is given by Rayleigh’s quotient:

!�
2 ¼ V�;max=T�;max

¼ ðk1X1
2 þ � � � þ knXn

2Þ�ðm1X
2
1 þ � � � þmnXn

2Þ ¼ V�;o=T�;o; ðq5Þ

and since we have numbered our frequencies so that

minðkM=mMÞ ¼ k1=m1 � !1
2 and maxðkM=mMÞ ¼ kn=mn � !n

2; ðq6Þ
the (extremal) RP states that

!1
2 � !�2 � !n

2; for arbitrary sets of real numbers X1;...;n; that is; eq: ðoÞ; ðrÞ
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in words: the approximate (constrained) value of Rayleigh’s quotient is never lower

than the actual !1
2, and thus furnishes an upper bound for it.

[For an algebraic derivation of RP, based on the solutions of the corresponding

(constrained) Routh–Voss equations, see, for example, Chirgwin and Plumpton

(1966, pp. 376–379), Ramsey (1937, pp. 267–269), Smart (1951, pp. 399–401);

while for extensions to the higher frequencies, see any good book on linear algebra

(eigenvalue problem), or Gantmacher (1970, pp. 216–222).]

As for the earlier-proved stationary property of Rayleigh’s quotient (Lagrange’s

theorem), the above results allow us to reformulate it as follows: If n� 1 of the

X ’s, eqs. (q1), are very small (of the first order) relative to any particular XM — that

is, if the constraints (q1) force the system to oscillate very closely to the ðMÞth mode
— then !� � !M (to the second order); or, if all X ’s, except XM, become very small

(first order), then !�
2 will differ from !M

2 by second-order quantities; and, of course,

if all X ’s, except XM , vanish, then !�
2 ¼ !M

2.

In sum: The frequency (squared) of the constrained system is stationary for those

constraints that make the oscillation a normal one of the natural (i.e., unconstrained)

system; and these stationary values are the (squares of the) system’s natural frequen-

cies.

Finally, we point out that in concrete applications of RP there is no need to

employ normal coordinates; if there was, in view of the work needed to find the

latter, RP would be practically useless. Both stationarity and extremality of

Rayleigh’s quotient are intrinsic system properties, and, as such, are independent

of any particular q’s used. Thus, if, in general coordinates, the constraints are

qk ¼ Bk �ðtÞ, or qk ¼ Bk sinð!�tÞ, where the Bk’s are constants and � is any one of

the qk’s or xM’s, then (r) is replaced by

!1
2 � !�

2 ¼
X

VklBkBl

.X
MklBkBl � !n

2;

for an arbitrary set of real numbers B1;...;n: ðsÞ

In particular, for a two-DOF system, equations (q5, s) yield, respectively [fig.

7.5(a, b)],

!�
2 ¼ ðk1X1

2 þ k2X2
2Þ�ðm1X1

2 þm2X2
2Þ;

or

!2ð
Þ ¼ ðk1 þ k2

2Þ�ðm1 þ m2


2Þ; ðs1Þ

where


 � X2=X1; ðs2Þ
!�

2 ¼ ðV11B1
2 þ 2V12B1B2 þ V22B2

2Þ�ðM11B1
2 þ 2M12B1B2 þM22B2

2Þ

or

!2ð�Þ ¼ ðV11 þ 2V12�þ V22�
2Þ�ðM11 þ 2M12�þM22�

2Þ; ðs3Þ

where

� � B2=B1: ðs4Þ
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An Illustration

Let us consider three particles of equal masses m attached at equal intervals l to a

light and flexible string fixed at its ends, and stretched with a tension S (practically

unaffected by the small deflections of the particles) (fig. 7.6). Here, to within quad-
ratic terms in the q’s,

2T ¼ m½ð _qq1Þ2 þ ð _qq2Þ2 þ ð _qq3Þ2�; ðt1Þ
V ¼ S½ðl1 � lÞ2 þ ðl2 � lÞ2 þ ðl3 � lÞ2 þ ðl4 � lÞ2� � SðDl1 þ Dl2 þ Dl3 þ Dl4Þ

½no factor 1=2 needed; due to the assumed constancy of S�
� ðS=2lÞ½q1

2 þ ðq2 � q1Þ2 þ ðq3 � q2Þ2 þ q3
2�

¼ ðS=lÞ½q1
2 þ q2

2 þ q3
2 � q1q2 � q2q3�: ðt2Þ

Let us now assume the 3� 1 ¼ 2 symmetric mode constraints: q1 ¼ q2 ¼ � q3. Then,

2T ¼ mð2�2 þ 1Þð _qq2Þ2; 2V ¼ ðS=lÞð4�2 � 4�þ 2Þq2
2; ðu1Þ

and so [with q2 � sinð!tÞ, or � cosð!tÞ� Rayleigh’s quotient becomes

!2 ¼ !2ð�Þ ¼ �½ð4�2 � 4�þ 2Þ=ð2�2 þ 1Þ�; where � � S=ml: ðu2Þ
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By the stationarity part of RP, the roots of d!2=d� ¼ 0, for � to produce a

principal symmetric mode, are �1 ¼ �1=
p

2, and �3 ¼ þ1=
p

2; and the correspond-

ing (exact) values of the frequencies squared are [fig. 7.6(a, b)]

!1
2 � !min

2 ¼ ð2�p2Þ� � 0:5858� ðsigns of q1; q2; q3 the sameÞ; ðu3Þ
!3

2 � !max
2 ¼ ð2þp2Þ� � 3:4142� ðsign of q2 opposite to those of q1; q3Þ; ðu4Þ

while by the extremality part of RP

!min
2 � 0:5858� � !2 � !max

2 � 3:4142�; ðv1Þ

for example, assuming q1 ¼ q3 ¼ ð3=4Þq2 (parabolic shape), we find

!2 ¼ 0:5882� > 0:5858� ¼ !min
2; ðv2Þ

and assuming q1 ¼ q3 ¼ ð
p

2=2Þq2 (sine curve of ‘‘period’’ 8l), we find

!2 ¼ 0:5970� > 0:5858� ¼ !min
2: ðv3Þ
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Figure 7.6 Symmetric and antisymmetric modes of three equal masses on a taut string.

(a) Dl1 � l1 � l ¼ ðq12 þ l2Þ1=2 � l ¼ lf½1 þ ðq1=lÞ2�1=2 � 1g � ð1=2lÞq12;
Dl2 � l2 � l � ð1=2lÞðq2 � q1Þ2; Dl3 � l3 � l � ð1=2lÞðq2 � q3Þ2; Dl4 � l4 � l � ð1=2lÞq32:



Let the reader show that the antisymmetric mode q1 ¼ �q3, q2 ¼ 0, or

q1 ¼ �q3 ¼ � q2; has the (intermediate) frequency: !2
2 ¼ 2�; that is, �! �2 ¼ 0.

Problem 7.9.9 Rayleigh’s Principle. By using the stationarity property of

Rayleigh’s quotient, find (exactly) the two natural frequencies and corresponding

mode ratios of the small (linear) oscillations of a double pendulum, consisting of two

identical homogeneous bars, AB and BC, each of mass m and length l, under gravity

[A: hinge of AB with fixed point (‘‘ceiling’’), B: hinge connecting AB and BC].

ANSWER

!2 ¼ ð3g=lÞð1 2=
p

7Þ. With �: angle of AB (upper bar) with vertical, and �: angle

of BC (lower bar) with vertical, we have �=� ¼ ð1=3Þð�1p28):

for !2
�: ð�=�Þþ � þ1:43 ðlower modeÞ; for !2

þ: ð�=�Þ� � �2:10 ðhigher modeÞ:

Problem 7.9.10 Rayleigh’s Principle. Consider a system consisting of a small bead

B of mass m sliding on a smooth circular hoop H, also of mass m, and radius r. The

hoop can turn freely about a fixed point O in its circumference, on a vertical plane. By

using the stationarity property of Rayleigh’s quotient, find (exactly) the two natural

frequencies and corresponding mode ratios of its small oscillations, under gravity.

ANSWER

Let C be the center of the hoop. With �: angle of OC with vertical, and �: angle of

CB with vertical, we have

Lower mode: !min
2 ¼ ð1=2Þðg=rÞ; �=� ¼ þ1; Higher mode: !max

2 ¼ 2ðg=rÞ; �=� ¼ �2:

Problem 7.9.11 Lagrangean Action. Show that the Lagrangean action functional

AL [(7.9.4d)] can also be expressed asð X
pk _qqk � hþ E

� �
dt; ðaÞ

where, as usual, pk � @L=@ _qqk, h �
P ð@L=@ _qqkÞ _qqk � L:

Example 7.9.10 Hamiltonian Action in Nonlinear Oscillations; Van der Pol and
Rayleigh Oscillators. Here, the starting point is the general Hamiltonian variational

equation (7.9.4b)

D
ð
Ldtþ

ð
� 0Wnp dt ¼

X
pk �qk þ LDt

n o2

1
: ðaÞ

We will specialize (a) to periodic motions: choosing �qkðt1Þ ¼ �qkðt2Þ (not necessarily

zero), where t2 � t1 ¼ � (common) period of oscillation, and since, in such a case,X
pk �qk

n o2

1
¼ 0; Lðt1Þ ¼ Lðt2Þ � Lo; ðbÞ
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and Dt ¼ D� ¼ Dð2�=!Þ ¼ �ð2�=!2Þ �!, eq. (a) reduces to

D
ð2�=!

0

Ldtþ
ð2�=!

0

� 0Wnp dtþ ð2�=!2ÞLo �! ¼ 0: ðcÞ

1. Van der Pol Oscillator

Let us apply (c) to [recalling ex. 7.2.2: (g) ff.]

€qqþ "ðq2 � 1Þ _qqþ q ¼ 0: ðdÞ

For the reasons given earlier, we try the (asymptotically) harmonic ‘‘limit cycle’’

solution:

q ¼ a sin�; � ¼ ! t: ðeÞ

Varying both a and ! (since they are both unknown), we obtain

�q ¼ �a sin�þ ða tÞ cos� �!; ðfÞ

and so the periodicity condition

fp �qg21 ¼ f _qq �qg21 ¼ fða �aÞ sin� cos�þ ða2 �!Þt cos2�g21 ¼ 0

supplies the time endpoints t1 ¼ �=2!, t2 ¼ 3�=2! or 5�=2! ) � ¼ 2�=! or �=!;

which, in turn, yield

�qð�=2!Þ ¼ �qð5�=2!Þ ¼ �a ð6¼ 0Þ;
Lð�=2!Þ ¼ Lð5�=2!Þ � Lo ¼ �ða2=2Þ: ðgÞ

From the above, we find, successively,

AH ¼
ð
ðT � VÞ dt ¼

ð
ð1=2Þ½ð _qqÞ2 � q2� dt

¼
ð
½ð1=2Þa2!2 cos2 � � ð1=2Þa2 sin2 �� dt

¼ ð�=!Þ½a2ð!2 � 1Þ=2� ¼ AHða; !Þ; ðh1Þ
) DAH ¼ ð@AH=@aÞ �aþ ð@AH=@!Þ �!

¼ ð�=!Þ�að!2 � 1Þ �aþ ða2=2Þð!þ !�1Þ �!�; ðh2Þ
Lðt1ÞDðt2 � t1Þ ¼ Lo Dð2�=!Þ ¼ �ða2=2Þ½�ð2�=!2Þ �!� ¼ ð�=!2Þa2 �!; ðh3Þ

ð
� 0Wnp dt ¼

ð
Q �q dt ¼ �

ð
"ðq2 � 1Þ _qq �q dt

¼
ð
ð�" a3! sin2 � cos�þ " a! cos�Þ½�a sin�þ ða tÞ cos� �!� dt

¼ � � � ¼ ð�=!Þ2ð3" a2!=2Þð1� a2=4Þ: ðh4Þ

)7.9 NONCONTEMPORANEOUS VARIATIONS; ADDITIONAL IVP FORMS 1027



Substituting (h2–4) into (c), and simplifying, yields

½að!2 � 1Þ� �a þ �ða2=2Þð!þ !�1Þ � ða2=!Þ þ ð3�=2Þ"a2ð1� a2=4Þ� �! ¼ 0; ðiÞ

from which, since �a and �! are independent, we find !2 ¼ 1, and thanks to it,

1� a2=4 ¼ 0) jaj ¼ 2; values that agree with those found by other means in the

oscillations literature; for example, Kauderer (1958, p. 343 ff.).

Also, we note that for jaj ¼ 2, eq. (h4) yieldsð
� 0Wnp dt ¼

ð
Q �q dt: virtual nonpotential work ðdampingÞ ¼ 0: ð jÞ

For better approximations to (d), than (e), see Papastavridis [1986(b)].

2. Generalizations

Let us now extend the above to the periodic solutions of the general quasi-linear
equation

€qqþ q ¼ " f ðq; _qqÞ; ðkÞ
where, again, f ð. . .): nonlinear in q, _qq, and " f ðq; _qqÞ is very small compared with €qq
and q (all taken absolutely).

With the periodic solution (e) [viewed as the first term of the Fourier series

representation of the assumed periodic solution of (k)], eqs. (h2, 3), and the notation

ðlÞ
we find ð2�=!

0

� 0Wnp dt ¼
ð2�=!

0

Q �q dt ¼ "
ð2�=!

0

Fða; �Þ �q dt

¼ " �a

ð2�=!

0

F sin� dtþ ða �!Þ
ð2�=!

0

F t cos� dt

" #
: ðmÞ

Substituting (h2, 3, m) into (c) yields"
ð�=!Þð!2 � 1Þaþ "

ð2�=!

0

F sin� dt

#
�a

þ a ð�=2Þð1� !�2Þaþ "
ð2�=!

0

F t cos� dt

" #
�! ¼ 0; ðnÞ

from which, since �a and �! are independent, we obtain the following system for a
and !:

ð�=!Þð!2 � 1Þaþ "
ð2�=!

0

Fða; �Þ sin� dt ¼ 0; ðo1Þ

ð�=2Þð1� !�2Þaþ "
ð2�=!

0

Fða; �Þt cos� dt ¼ 0: ðo2Þ
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f(a sinχ, aω cosχ) ≡ F(a, χ) ≡ F ,



The earlier Van der Pol case (d) corresponds to f ¼ �ðq2 � 1Þ _qq. Then, sinceð2�=!

0

F sin� dt ¼ ð�a3!Þ
ð2�=!

0

sin3 � cos� dtþ ða!Þ
ð2�=!

0

sin� cos� dt ¼ 0; ðp1Þ

eq. (o1) yields !2 ¼ 1 and this, in turn, simplifies (o2) toð2�=!

0

Fða; �Þt cos� dt ¼ 0

) a2 ¼
ð2�=!

0

t cos2 � dt

 !, ð2�=!

0

t sin2 � cos2 � dt

 !
¼ ½ð3=2Þð�=!Þ2��½ð3=8Þð�=!Þ2� ¼ 4; ðp2Þ

as before.

Next, let us consider the Rayleigh equation

€qqþ q ¼ "½ _qq � ð _qqÞ3�; ": very small positive constant: ðqÞ

t2 ¼ 5�=2!Þ

"

ð
F sin� dt ¼ "

ð
) !2 ¼ 1 ½by ðo1Þ�; ðq1Þ

and so (o2) reduces to

"

ð
F t cos� dt ¼ "

ð �ða!Þt cos2�� ða3!3Þt cos4�
�
dt ¼ 0

) ð3�2"a=2Þð1� 3a2!2=4Þ ¼ 0 ) jaj ¼ 2=
ffiffiffi
3
p

: ðq2Þ

Pars (1965, pp. 388–389) shows that by an appropriate change of variables, (q) can

be transformed back to the Van der Pol equation (d); see also Panovko (1971,

pp. 209–213) for a small-parameter (perturbation) treatment.

Also, the above extend to the case where

f ð. . .Þ ¼ f ðt; q; _qqÞ ¼ f ðO t; q; _qqÞ: ð2�=OÞ-periodic in time; O: given:

Finally, on the connection between the above results,
Ð
Q �q dt ¼ 0 and eqs. (o1,

2), and the method of slowly varying parameters, see ex. 7.9.14 and Bogoliubov and

Mitropolskii (1974, }21).

Example 7.9.11 Lagrangean ‘‘least’’ action in Nonlinear Oscillations; Nonlinear
Pendulum and Van der Pol Oscillators. Here, the basic variational equation (7.9.4a,

or 4h)

D
ð

2T dt ¼
ð
ð�T þ �V � � 0WnpÞ dtþ BT ; ðaÞ
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[(aω) sinχ cosχ− (a3ω3) cos3 χ sinχ]dt = 0

With q, δq, τ as before, and F = aω cosχ − a3ω3 cos3 χ, we find (with t1 = π/2ω,



where

BT �
X

pk Dqk þ 2T �
X

pk _qqk

� �
Dt

n o2

1

¼
X

pk Dqk þ ðT1 þ 2ToÞDt
n o2

1

¼
X

pk �qk þ 2T Dt
n o2

1h
¼

X
pk Dqk

n o2

1
� ðBTÞscl; for scleronomic systems

i
; ðbÞ

will be applied to the approximate solution of one-DOF (hence, holonomic) non-

linear and/or nonconservative oscillations.

For periodic motions and variations, with period � ¼ t2 � t1 ¼ 2�=!:

(i) If periodicity means �qkðt1Þ ¼ �qkðt2Þ, pkðt1Þ ¼ pkðt2Þ, then

BT ¼ 2Tðt1ÞDð2�=!Þ ¼ �2Tðt1Þð2�=!2Þ �!; ðc1Þ
whereas (ii) If periodicity means Dqkðt1Þ ¼ Dqkðt2Þ, pkðt1Þ ¼ pkðt2Þ, then

ðBTÞscl ¼ 0: ðc2Þ
In sum: whenever BT ¼ 0, the fundamental equation (a) becomes

D
ð

2T dt�
ð
ð�T þ �V � � 0WnpÞ dt ¼ 0: ðdÞ

The single but variational equation (d) [or (a), if needed] can produce as many

independent algebraic equations as the number of the unknown parameters (ampli-

tudes and/or frequencies) entering the assumed trial solution(s).

Illustrations

1. Free and Undamped Nonlinear (Plane) Pendulum

Oscillations

Here, to within a constant factor and with dimensionless time ðg=lÞ1=2t substituted

for t (g: constant acceleration of gravity, l: length of pendulum), the kinetic and

potential energies and Lagrangean equation of its (free and undamped) motion are,

respectively,

2T ¼ ð _��Þ2; V ¼ 1� cos� � �2=2� �4=24; ðe1Þ
E�ðT � VÞ ¼ 0: €��þ �� �3=6 ¼ 0; ðe2Þ

where � is the angle of the pendulum with the vertical. [Equation (e2) is referred to as

a soft Duffing oscillator, because its frequency decreases when the amplitude

increases (absolutely).] Following Lur’e (1968, pp. 702–703), we will calculate the

approximate oscillatory solution of (e2) for the initial conditions

�ð0Þ ¼ �o ðgivenÞ; _��ð0Þ ¼ 0; ðf1Þ
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and trial solution

� ¼ �ðtÞ ¼ ð�o þ �Þ cos�� � cosð3�Þ; � ¼ ! t; ðf2Þ

where � and ! are unknown. We notice that (f2) satisfies (f1), just like the solution of

the linearized version of (e2): � ¼ �o cos t (i.e. � ¼ 0, ! ¼ 1Þ.
Varying (f2) in its unknowns gives

�� ¼ ð@�=@�Þ �� þ ð@�=@!Þ �!
¼ ½cos�� cosð3�Þ� ��þ t ½�ð�o þ �Þ sin�þ 3� sinð3�Þ� �!; ðg1Þ

also

_�� ¼ p� � @T=@ _�� ¼ �!ð�o þ �Þ sin�þ 3!� sinð3�Þ: ðg2Þ

Then, the periodicity condition fp� ��g21 ¼ 0 yields t1 ¼ 0, t2 ¼ �=! ¼ �=2. With this

choice, Tðt1Þ ¼ Tðt2Þ ¼ 0, and so f2T Dtg2�=!0 ¼ 0.

From the above, we readily find

AL �
ð�=!

0

2T dt ¼
ð�=!

0

ð _��Þ2 dt ¼ ð�=2Þ!ð�o2 þ 2�o�þ 10�2Þ; ðh1Þ

) DAL ¼ ð@AL=@�Þ ��þ ð@AL=@!Þ �!
¼ ð�=2Þ½2!ð�o þ 10�Þ ��þ ð�o

2 þ 2�o�þ 10�2Þ �!�; ðh2Þ
E � T þ V ¼ ð _��Þ2=2þ �2=2� �4=24; ðh3Þ
�E ¼ _�� �ð _��Þ þ � ��� ð�3=6Þ ��; ðh4Þ

and, therefore, after several straightforward integrations [and noting that

�ð _��Þ ¼ ð��Þ:�ð�=!
0

�E dt ¼ ð�=4Þf2!ð�o þ 10�Þ þ !�1½ð2�o � �o3=6Þ þ ð4� 3�o
2=4Þ�� 3�o�

2=2�g ��

þ ð�=4Þfð�o2 þ 2�o�þ 10�2Þ þ !�2½ð�o2 � 5�o
4=48Þ

þ ð�2�o þ �o3=6Þ�þ ð�2þ 3�o
2=8Þ�2�g �!: ðh5Þ

Substituting (h2) and (h5) into (d) [with
Ð
� 0Wnp dt ¼ 0�, and regrouping terms, we

obtain

I ��þ II �! ¼ 0; ðiÞ

where

I � ð�=4Þf2!ð�o þ 10�Þ
� !�1½2�o þ 4�� �o3=6� 3�o

2�=4� 3�o�
2=2�g; ði1Þ

II � ð�=4Þfð�o2 þ 2�o�þ 10�2Þ
� !�2½�o2 � 2�o�� 5�o

4=48þ �o3�=6 þ ð�2þ 3�0
2=8Þ�2�g: ði2Þ
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Setting I and II equal to zero, since �� and �! are independent, and neglecting

terms proportional to �2 and ��o
2 (last two terms in I , and third and last three

terms in II ) yields the following two algebraic equations:

�o þ 10�� !�2ð�o þ 2�� �o3=12Þ ¼ 0; ð j1Þ
�o

2 þ 2�o �� !�2ð�o2 � 2�o �� 5�o
4=48Þ ¼ 0: ð j2Þ

To the required degree of approximation, the above give

� ¼ �o3=192; ! ¼ 1� �o
2=16; ðkÞ

which agree with the values of Lur’e.

2. Free van der Pol Oscillator with Nonlinear Elastic Term

(i.e., van der PolþDuffing). Here, the equation of motion is

€qqþ "ðq2 � 1Þ _qqþ qþ " � q3 ¼ 0; ðlÞ
where "� is the nonlinear stiffness constant [like h=m in ex. 7.2.2: (a)]; and from it we

easily deduce that

2T ¼ ð _qqÞ2; 2V ¼ q2 þ " � q4=2; Q ¼ "ð1� q2Þ _qq: ðl1Þ
Guided by our knowledge of the ‘‘linear elasticity Van der Pol equation’’, that is, (l)

with � ¼ 0 [ex. 7.2.2: (g) ff.; ex. 7.9.10: (d) ff.] we assume the following trial function,

independent of the initial conditions (see, e.g., Kauderer, 1958, pp. 343–347),

q ¼ 2 sin�þ "�� cosð3�Þ þ � � sinð3�Þ�; � � ! t; ! ¼ 1þ �ð"�Þ; ðmÞ
where �, �, � are first-order correction constants, to be determined.

From (m) we readily find

_qq ¼ p ¼ 2! cos�þ "½�3�! sinð3�Þ þ 3� �! cosð3�Þ�; ðn1Þ
�q ¼ ½" cosð3�Þ� ��þ ½" � sinð3�Þ� ��

þ ½2 cos�� 3� " sinð3�Þ þ 3� " � cosð3�Þ�t �!; ðn2Þ
�! ¼ ð"�Þ ��; ðn3Þ

and so

p �q ¼ _qq �q ¼ � � � ¼ ð. . .Þ ��þ ð. . .Þ �� þ ð. . .Þ ��;
) fp �qg�=!0 ¼ ð2þ 3� " �Þ2� �!;

and since

Tðt1 ¼ 0Þ ¼ Tðt2 ¼ �=!Þ � T0

) f2T Dtg�=!0 ¼ �2T0ð�=!2Þ �! ¼ �ð2þ 3� " �Þ2� �!;
finally,

fp �qg�=!0 þ f2T Dtg�=!0 ¼ fpDqg�=!0 ¼ 0: ðn4Þ
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With the help of the above we find, after a long series of elementary integrations,

AL �
ð�=!

0

2T dt ¼ � � � ¼ ð�=2Þ! ð4þ 9�2"2 þ 9�2"2�2Þ;

from which we obtain, by variation,

DAL ¼ �½ð9� "2!Þ ��þ ð9� "2�2!Þ ��
þ ð2þ 9�2"2=2 þ 9�2"2�2!=2Þ �!�; ðo1Þ

and, upon neglecting all terms proportional to �2, �2, ��,ð�=!
0

�T dt ¼
ð�=!

0

_qq �ð _qqÞ dt

¼ ð9�� "2!=2Þ ��þ ð9�� "2�2!=2Þ �� þ ð3�þ 6�� "�Þ �!; ðo2Þð�=!
0

�V dt ¼
ð�=!

0

ðqþ " � q3Þ �q dt

¼ �ð"2=2þ 3"3�Þ�!�1 ��

þ �ð�=2� 1þ 3� "�Þ"2�2!�1 ��

þ �ð�1� 3" �=2þ � "2�2Þ!�2 �!; ðo3Þð�=!
0

Q �q dt ¼ "
ð�=!

0

ð1� q2Þ _qq �q dt

¼ �ð1� 3� " �=2Þ"2 ��þ �ð3� "3�=2Þ ��
þ �ð5�=6þ 2�� �Þ!�1"2 �!: ðo4Þ

Inserting all these results into eq. (d) and regrouping terms [while recalling (n3)],

yields

A ��þ B �� þ G �� ¼ 0; ðpÞ
where

A � �½9� "2!� 9� "2!=2� ð"2=2þ 3"3�Þ�!�1 þ "2ð1� 3� " �=2Þ�; ðp1Þ
B � �½9� "2�2!� 9� "2�2!=2� ð�=2� 1þ 3� " �Þ"2�2!�1 þ 3� "3�=2�; ðp2Þ
G � �½2þ 9�2"2=2þ 9�2"2�2=2� ð3þ 6� " �Þ
� ð�1� 3" �=2þ � "2�2Þ!�2 þ ð5�=6þ 2�� �Þ!�1"2�: ðp3Þ

To the lowest order, the three independent equations A, B, G ¼ 0 yield, successively:

(i) A ¼ 0: 9�!=2� ð1=2þ 3" �Þ�!�1 þ 1� 3� "�=2 ¼ 0, or, substituting into it the

third of (m), ! ¼ 1þ �"�, and omitting all higher order terms in ", we obtain

9�=2� �=2þ 1 ¼ 0 ) � ¼ �1=4; ðq1Þ
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(ii) B ¼ 0: 9� !=2� � !�1=2þ !�1 ¼ 0, or, setting ! ¼ 1þ � " �, and so on,

9�=2� �=2þ 1 ¼ 0 ) � ¼ �1=4; ðq2Þ
(iii) G ¼ 0: with !�2 � 1� 2� " �, we find

� 1� 6� " �þ ð1� 2� " �Þð1þ 3" �=2Þ ¼ 0

) �6� "�� 2� " �þ 3" �=2 ¼ 0 ) � ¼ 3=2: ðq3Þ

Hence, the trial solution (m), correct to the first order in � (and in agreement with

Kauderer) is

q ¼ 2 sin�� ð"=4Þ½cosð3�Þ þ � sinð3�Þ�; � � !t; ! ¼ 1þ 3"�=2: ðrÞ
For additional related examples, see Papastavridis and Chen (1986).

Example 7.9.12 The ‘‘Direct’’ Variational Methods of Galerkin and Ritz in
Nonlinear Oscillations.

1. Galerkin (1915)

Let us consider a one-DOF (hence, holonomic) system described by the, generally,

nonlinear differential equation of motion

E ¼ Eðt; q; _qq; €qqÞ � Eðt; qÞ � €qq� Fðt; q; _qqÞ ¼ 0: ðaÞ
Here, of particular interest is the case where Fð. . .Þ is a periodic function of given

period � � 2�=! (! ¼ frequency). Suppose then that we are seeking periodic solu-

tions to (a), of period � , that satisfy the initial conditions

qðt1Þ ¼ qðt1 þ �Þ; _qqðt1Þ ¼ _qqðt1 þ �Þ; for any t1: ðbÞ
Let us assume the approximate solution to qðtÞ:

qðtÞ � qoðtÞ ¼
X

ak kðtÞ ½k ¼ 1; . . . ;N; or; sometimes; k ¼ 0; . . . ;N�; ðcÞ

where the ak are unknown constant parameters (to be determined by a ‘‘Galerkin

criterion’’ — see below), and the  kðtÞ are known and preferably orthogonal (or,

better, orthonormal) ‘‘coordinate functions’’ that satisfy (b):

 ðt1Þ ¼  ðt1 þ �Þ; _  ðt1Þ ¼ _  ðt1 þ �Þ; for any t1: ðc1Þ
For example, we may choose as qo a Fourier series defined in the interval (t1; t1 þ �)
and having period � outside it:

qo ¼ a0=2þ
X �

ak cosð2�kt=�Þ þ bk sinð2�kt=�Þ� ðk ¼ 1; . . . ; nÞ; ðd1Þ

where, as is (hopefully) well known,

ak ¼ ð2=�Þ
ðt1þ�
t1

qoðtÞ cosð2�kt=�Þ dt; bk ¼ ð2=�Þ
ðt1þ�
t1

qoðtÞ sinð2�kt=�Þ dt; ðd2Þ

ðk ¼ 0; . . . ;N; frequently t1 ¼ 0 or � �=2Þ:
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Then the ak are selected so that Eo � Eðt; qoÞ ¼ 0 holds, if not identically, at least, in
a weighted average over a period, sense; that is,ðt1þ�

t1

Eo wðtÞ dt ¼ 0; where wðtÞ is some weighting function: ðeÞ

If we choose N different such functions, w1ðtÞ; . . . ;wNðtÞ, then we can obtain from (e)

N algebraic equations for the N ak’s, contained in Eo. As such, we usually pick the

 kðtÞ’s appearing in (c); then (e) yields the N weighted residual or Galerkin equations:ðt1þ�
t1

E t;
X

as sðtÞ
h i

 kðtÞ dt ¼ 0 ½k; s ¼ 1; . . . ;N�: ðfÞ

If Fð. . .Þ is non-periodic, we may choose as qo the following power series

qo ¼ a0 þ a1tþ a2t
2 þ � � � þ aNt

N : ðd3Þ

Interpretations of Equations (e, f )

(i) In the theory of ordinary differential equations, (f) appear as the conditions for

the vanishing of the coefficients of the generalized Fourier series expansion of

Eðt; qoÞ ¼ 0. (ii) With w! �qo ¼
P

�ak kðtÞ, eq. (e) and then eq. (f ), essentially,

constitute the time integral of Lagrange’s principle; and thus can be viewed as

requiring that the error, or ‘‘residual force,’’ e � Eo � E ¼ Eoð6¼ 0Þ do zero virtual

work on w! �qo over � . Other ‘‘error residual’’ versions of (e) exist in the literature.

In view of these interpretations, it should be clear that Galerkin’s method holds for
any mechanical system; that is, with several DOF, or continuous (such as beams,

plates, shells) undergoing any type of motion and not just a periodic one; although

for periodic motions the algebra is manageable.

2. Ritz (1908, 1909)

Let us consider a one-DOF (hence, holonomic) system, that is completely described

by Hamilton’s principle; that is, with L ¼ Lðt; q; _qq) and �qðt1Þ ¼ �qðt2Þ ¼ 0,

�AH ¼ �
ð
Ldt ¼ � � � ¼ �

ð
E �q dt ¼ 0; E ¼ EðLÞ � ð@L=@ _qqÞ:� @L=@q ¼ 0;

ðgÞ

where the last (Lagrangean) equation coincides with the earlier equation (a), when-

ever both refer to the same problem.

In view of the approximation (c), we will have

AH ¼ AH ½qðtÞ� ) AH ½qoðtÞ� ¼ AHða1; . . . ; aNÞ � AH;o; ðhÞ

and so the variational equation (g) is replaced by one of ordinary differential

calculus:

�AH;o ¼
X
ð@AH;o=@akÞ �ak ¼ 0; ðiÞ
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from which, since the N ak are independent (otherwise we introduce Lagrangean

multipliers), we obtain the N Ritz equations:

@AH;o=@ak ¼ 0 ½k ¼ 1; . . . ;N�: ð jÞ

In the presence of nonpotential forces Q ¼ Qðt; q; _qq), in which case the second

equation of (g) is replaced by EðLÞ ¼ Q, eqs. ( j) are replaced by

Pkða1; . . . ; aNÞ � @AH;o=@ak þ
ðt1þ�
t1

Q ð@qo=@akÞ dt ¼ 0: ðkÞ

In particular, if Q is very small, and the exact solution of the unperturbed problem —

that is, of EðLÞ ¼ 0— is qðoÞðt; a1; . . . ; aNÞ, we may reasonably assume that qo ¼ qðoÞ.
Then,

@AH;o=@ak ¼ 0; independently; and ðkÞ reduces to

ðt1þ�
t1

Qð@qðoÞ=@akÞ dt ¼ 0:

Let us calculate ( j) explicitly: recalling (b, c), and since now Lðt; q; _qqÞ !
Lðt; qo; _qqoÞ, we find

@AH;o=@ak ¼
ðt1þ�
t1

�ð@L=@ _qqoÞð@ _qqo=@akÞ þ ð@L=@qoÞð@qo=@akÞ� dt
¼
ðt1þ�
t1

�ð@L=@ _qqoÞ _  k þ ð@L=@qoÞ k

�
dt

¼ �
ðt1þ�
t1

Eo k dtþ  kðt1Þ
�ð@L=@ _qqoÞt1þ� � ð@L=@ _qqoÞt1� ¼ 0; ðlÞ

where

Eðt; q; _qqÞ ! Eðt; qo; _qqoÞ ¼ E t;
X

as sðtÞ
h i

� ð@L=@ _qqoÞ:� @L=@qo � Eo: ðl1Þ

If the integrated out (boundary) term in (l) vanishes — for example, if @L=@ _qq is

periodic with period � — (l) reduces to the first, or minimizing, Ritz (! Galerkin)
equation:

@AH;o=@ak ¼ �
ðt1þ�
t1

Eo k dt ¼ 0; ðm1Þ

However, if the  k are not periodic, then ( j) leads to the second, or minimizing, Ritz
(! Galerkin) equation (t1; t2: arbitrary time limits):

@AH;o=@ak ¼ �
ðt2
t1

Eo k dtþ
�ð@L=@ _qqoÞ k

�2

1
¼ 0; ðm2Þ

and if, instead of (c), we use the more general trial function

qoðtÞ ¼
X

qkðak1; . . . ; akN ; tÞ; ðm3Þ
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then (m2) are replaced by the N �N equations:

�
ðt2
t1

Eoð@qo=@aksÞ dtþ
�ð@L=@ _qqoÞð@qo=@aksÞ�2

1
¼ 0 ðk; s ¼ 1; . . . ;NÞ: ðm4Þ

3. Galerkin versus Ritz

Let us, next, compare the methods of Galerkin and Ritz. These two, although

theoretically equivalent for periodic systems—that is eq. (f)¼ eqs. (m1)—differ in

fundamental ways; and the principles of analytical mechanics help us to understand

that:

(i) Not every problem’s equations of motion derive from a Lagrangean and therefore

from a stationarity variational principle (in the sense of variational calculus); and

even if they happen to do that, finding the corresponding Lagrangean may be quite

a mathematical task in itself. Thus, Galerkin’s method, since it does not depend on

Lagrangeans, is more general than Ritz’s. [On how to find the Lagrangean of a

given equation of motion (which is known as the inverse problem of variational

calculus), there exists an extensive literature; see, for example, Santilli (1978, 1980).]

(ii) On the other hand, wherever both methods apply, the method of Ritz requires less

accuracy in the trial function qo—that is, the  kðtÞ—than that of Galerkin. The

reason for this is that Ritz’s method involves energetic functions that entail lower-

order derivatives than the force/acceleration functions of Galerkin’s method.

(iii) Finally, in both methods, the accuracy of the solution depends on the number of

terms taken in eq. (c) and the judicious choice of the  k’s.

Sometimes, advance qualitative knowledge of the behavior of the solution can

restrict qo to a single term and still provide a good approximation.

For nonperiodic initial value problems, eqs. (m2, 4), with nonhomogeneous condi-

tions [e.g., qðt1Þ ¼ q1 (given), qðt2Þ ¼ q2 (given), with at least one of them nonzero],

we can choose the following trial function:

qo ¼  0ðtÞ þ
X

ak kðtÞ; ðn1Þ

where  0ðt1Þ ¼ q1,  0ðt2Þ ¼ q2, and  kðt1Þ ¼ 0,  kðt2Þ ¼ 0; for example, for  0 we

can try the linear function

 0ðtÞ ¼
�ðq2 � q1Þ=ðt2 � t1Þ

�ðt� t1Þ þ q1: ðn2Þ

4. An Illustration

Let us apply these methods to the earlier-discussed (ex. 7.2.2), undamped but

periodically forced, Duffing’s oscillator:

m€qqþ kqþ hq3 �Qo sin� ¼ 0; � � !t; ðoÞ

or, with !o
2 � k=m: natural frequency of corresponding linear oscillator

[i.e., (o) for h ¼ 0], (o1)
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" � h=m: measure of elastic nonlinearity

ðif > 0: hard or overlinear spring; if < 0: soft or underlinear springÞ; ðo2Þ
!: given forcing frequency; ðo3Þ
fo � Qo=m: forcing amplitude per unit mass; ðo4Þ

€qqþ !o
2qþ " q3 � fo sin� ¼ 0; � � ! t: ðpÞ

Let us investigate the forced response of (p) of the same frequency !. Since eqs. (o, p)

are ‘‘symmetric’’ about t ¼ 0, we try the single parameter solution

qo ¼ a sin�; a ¼ að!Þ: ðp1Þ

Then, Galerkin’s equation (f ) yields

ð2�=!

0

ð€qqo þ !o
2qo þ "qo3 � fo sin�Þ sin� dt ¼ 0; ðp2Þ

and from this, after some simple integrations, we obtain the earlier equation [ex.

7.2.2: (f )]

ð3"=4Þa3 þ ð!o
2 � !2Þa� fo ¼ 0

) !2 ¼ !2ða; foÞ ¼ !o
2 þ 3" a2=4� fo=a: ðp3Þ

This equation constitutes the resonance curve; that is, it gives the response amplitude

jaj as function of ! and the specified system parameters h and fo (fig. 7.7). For

fo ¼ 0 (free vibration) (p3) reduces to

!2 ¼ !o
2 þ ð3=4Þ"a2 ) ! ¼ !oð1þ 3"a2=4!o

2Þ1=2: ðp4Þ

As for the Ritz method, since here

2T ¼ mð _qqÞ2; V ¼ V2 þ V4; 2V2 � k q2; 4V4 � h q4; Q ¼ Qo sin�; ðq1Þ

and qo ¼ a sin� ) �qo ¼ �a sin�, eqs. (g, j) give, with t1 ¼ 0 and t2 ¼ 2�=!,

�AH ¼ �
ð2�=!

0

�ðm=2Þðdqo=dtÞ2 � ðk qo2=2þ h qo
4=4Þ þQðtÞ qo

�
dt

¼ �ðm _qqoÞ �qo
�2�=!

0
�
ð2�=!

0

�ðmðd2qo=dt
2Þ þ k qo þ h qo

3 �QðtÞ� �qo dt
¼ 0� ð�ma!2 þ k a� QoÞ

ð2�=!

0

sin2 � dtþ ðh a3Þ
ð2�=!

0

sin4 � dt

" #
�a

¼ ð�=!Þð�ma!2 þ k aþ 3h a3=4�QoÞ �a; ðq2Þ

from which (p3) follows.
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[For a treatment of the stability of this oscillator via the second variation of AH ,

�2AH � �ð�AHÞ, see Papastavridis [1983(a)].

5. A Generalization of Galerkin’s Method

(See Chen, 1987.) The conventional Galerkin’s method, presented above, assumes

that the frequency ! is given, and so there is no need to vary it. Indeed, as already
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pointed out, with

�qo ¼
X
ð@qo=@akÞ �ak ¼

X
 kðtÞ �ak; ðr1Þ

the variational equation
Ð
Eo �qo dt ¼ 0 (time integral of Lagrange’s principle) leads

to the Galerkin equations (f ). However, in some problems, ! is unknown and also
unrelated to the amplitude; for example, limit cycle oscillations (van der Pol equa-

tion); then �qo must be augmented by �!-proportional terms. Indeed, let the trial

solution be (only periodic solutions are of interest here)

qo ¼
X

ak kðt; !Þ ¼
X

ak kð!tÞ;  kð!tþ 2�Þ ¼  kð!tÞ; ðr2Þ

and its variation

�qo ¼
X
ð@qo=@akÞ �ak þ ð@qo=@!Þ �! ¼

X
 k �ak þ O �!; ðr3Þ

where

O � Oðt; !t; akÞ � @qo=@! ¼
X

akð@ k=@!Þ
¼
X

akt
�
d k=dð!tÞ

�
: secular coordinate function: ðr4Þ

Substituting (r2–4) into
Ð
Eo �qo dt ¼ 0 (with t1 ¼ 0, t2 ¼ t1 þ 2�=! ¼ 2�=!, or

t1 þ �=! ¼ �=!Þ and setting, in the resulting variational equation, the coefficients

of both �ak and �! equal to zero, we obtain the N þ 1 generalized Galerkin equations,

ð
Eoð@qo=@akÞ dt ¼

ð
Eo k dt ¼ 0 ðk ¼ 1; . . . ;NÞ; ðr5Þð

Eoð@qo=@!Þ dt ¼
ð
Eo O dt ¼ 0: ðr6Þ

[Equation (r6) is the Galerkin equivalent of secular term suppression of, say, the

perturbation method.]

An Illustration

Let us apply the above to determine both the (limit cycle) amplitude and frequency

of the earlier van der Pol equation (exs. 7.2.2, 7.9.10, and 7.9.11):

E ¼ Eðq; _qq; €qqÞ ¼ €qqþ "ðq2 � 1Þ _qqþ q¼ 0: ðs1Þ
With the trial solution

qo ¼ a cos�; � � ! t; ðs2Þ
we find

�qo ¼ ðcos�Þ �aþ ð�a t sin�Þ �!; ðs3Þ
and

E ! Eo ¼ ð1� !2Þa cos�þ a " !ð1� a2 cos2�Þ sin� 6¼ 0; ðs4Þ
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and therefore (r5, 6) yield the two Galerkin equations

ð2�=!

0

Eoð@qo=@aÞ dt ¼
ð2�=!

0

Eo cos� dt ¼ 0 :

að1� !2Þð�=2!Þ ¼ 0 ) ! ¼ 1; ðs5Þð2�=!

0

Eoð@qo=@!Þ dt ¼
ð2�=!

0

Eoð�a t sin�Þ dt ¼ 0:

að1� !2Þð��=4!2Þ þ a " !ð�2=4!2Þ � a3" !ð�2=16!2Þ ¼ 0

) a2 ¼ 4 ) jaj ¼ 2; ðs6Þ

in agreement with the values found by the earlier methods.

In a several-DOF system, eqs. (r2–6) are replaced, respectively, by

qk;o ¼
X

akk 0 k 0 ð!tÞ
) �qk;o ¼

X
 k 0 �akk 0 þ Ok �!; Ok �

X
akk 0 t ½d k 0=dð!tÞ�; ðt1; 2Þð

Ek;o k 0 dt ¼ 0 ðn�N eqs:Þ;
ð X

Ek;oOk

� �
dt ¼ 0 ð1 eq:Þ; ðt3Þ

where

k ¼ 1; . . . ; n is the number of independent coordinates; k 0 ¼ 1; . . . ;N is

the number of independent coordinate functions, and coefficients; ! is the

assumed common frequency to all q’s. (t4)

If each qk is known to have a frequency !k, then the first of (t3) are replaced by

the n�N equations

ð2�=!k

0

Ek;o k 0 dt ¼ 0; ðt5Þ

where  k 0 ðtþ 2�=!kÞ ¼  k 0 ðtÞ.
For further insights and examples, see, for example, Chen (1987), Fischer and

Stephan [1972, pp. 150–151; good compact discussion of one and several DOF

systems, both ‘‘autonomous’’ (no explicit time dependence) and ‘‘heteronomous’’

(explicit time dependence; e.g., forced vibrations); pp. 217–229: fully solved example;

also 1984, pp. 267–268], Kosenko (1995).

Problem 7.9.12 Lagrange–Ritz Method (General Considerations). Consider a

one-DOF conservative oscillatory system of period � . Let qo be an approximate

periodic trial solution to its exact motion q: q � qo ¼ qoðt; ! � 2�=�; a1; . . . aNÞ,
where both its frequency ! and ‘‘amplitude parameters’’ ak are unknown.

Show that the latter can be determined from the following N þ 1 ‘‘Lagrange–

Ritz’’ stationarity (of AL) equations:

@AL;o=@ak ¼ 0; @AL;o=@! ¼ 0 ðk ¼ 1; . . . ;NÞ; ðaÞ
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where

ALðqÞ ¼
ð

2T dt ¼
ð
ðLþ EÞ dt! ALðqoÞ � AL;o; ðbÞ

L ¼ Lðq; _qqÞ ! Lo: Lagrangean; E � T þ V ! Eo: total energy: ðcÞ

HINT

Set ! t � x. Then, qo ¼ qoð! tÞ ¼ qoðxÞ, and with ð. . .Þ 0 � dð. . .Þ=dx,

AL;o ¼ !�1

ð2�

0

�
L½qoðxÞ; ! qo 0ðxÞ� þ Eo

�
dt: ðdÞ

Problem 7.9.13 Lagrange–Ritz Method. Continuing from the preceding problem,

show that if V is an even function of q ¼ qð!t) (symmetric potential), and qð0Þ ¼ 0,

then the most general harmonic trial function qo becomes a linear combination of

sines with arguments odd multiples of !t; that is,

qo ¼ a1 sinð!tÞ þ a3 sinð3!tÞ þ � � � ¼
X

ak sinðk!tÞ ðk ¼ 1; 3; 5; . . .Þ: ðaÞ

HINT

Here, _qqð!t ¼ �=2Þ ¼ 0.

Problem 7.9.14 Lagrange–Ritz Method (A Theoretical Result). Continuing from

the preceding two problems, show that for a trial function

qo ¼ qoð!t; a1; . . . ; aNÞ; ðaÞ
the following stationarity condition results:

dAL;o=dE ¼ � � � ¼ @AL;o=@E ¼ � � � ¼ 2�=! ¼ �; ðbÞ
where AL ! AL;oða1; . . . ; aN ;!;EÞ:

Problem 7.9.15 Lagrange–Ritz Method. Consider the harmonic oscillator with

equation of motion €qqþ q ¼ 0 (i.e., of unit mass and frequency), and corresponding

(double) Lagrangean 2L ¼ ð _qqÞ2 � q2, and assume the trial solution qo ¼ a sinð!tÞ.
Show that, then,

AL;o ¼ ð�=2Þa2ð!� !�1Þ þ 2�E=!; ðaÞ
and thus the earlier stationarity conditions yield

@AL;o=@a ¼ 0 ) ! ¼ 1; @AL;o=@! ¼ 0 ) E ¼ a2=2: ðbÞ

Problem 7.9.16 Lagrange–Ritz Method (Linear Oscillator). In the oscillator of

the preceding problem, assume the quadratic trial function

qo ¼ aðx� x2=�Þ; x � ! t: ðaÞ
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Show that, then,

AL;o ¼ �! a2=3þ 2�E=!� �3a2=30!; ðbÞ

and thus the earlier stationarity conditions yield

@AL;o=@a ¼ 0 ) !2 ¼ �2=10 � 0:987;

@AL;o=@! ¼ 0 ) E ¼ ð�2=30Þa2 � 0:33a2: ðcÞ

Problem 7.9.17 Lagrange–Ritz Method. Consider the nonlinear Duffing oscilla-

tor with equation of motion €qqþ !o
2qþ 2c q3 ¼ 0 ð!o

2; c > 0; c: small) and corre-

sponding (double) Lagrangean 2L ¼ ð _qqÞ2 � ð!o
2q2 þ c q4Þ. Show that for the trial

solution qo ¼ a sinð!tÞ,

AL;o ¼ �! a2=2þ 2�E=!� �!o
2a2=2!� 3�c a4=16!: ðaÞ

Then, set @AL;o=@a ¼ 0 and @AL;o=@! ¼ 0, and find the relations among !, a, E.

ANSWER

!2 ¼ ð!o
2=3Þ�1þ 2½1þ ð9cE=!o

2Þ�1=2�: ðbÞ

Problem 7.9.18 Lagrange–Ritz Method. Consider a mathematical pendulum of

mass m ¼ 1 and length l in general plane motion, under gravity. Here, with the

usual notations,

2T ¼ lð _��Þ2 and V ¼ g lð1� cos�Þ: ðaÞ
Show that

(i) In the new variable x � sinð�=2Þ, the Lagrangean of the pendulum becomes

L ¼ �2l2=ð1� x2Þ�ðdx=dtÞ2 � 2g l x2 ¼ Lðx; _xxÞ; ðbÞ

and then

(ii) The trial solution xo ¼ a sinð!tÞ yields

AL;o ¼ 2�E=!þ 4�! l2½1� ð1� a2Þ1=2� � 2�g l a2=!: ðcÞ

Then, set @AL;o=@a ¼ 0 and @AL;o=@! ¼ 0, and find the relations among !, a, E.

For further details, see Luttinger and Thomas (1960); and for a generalization to

systems with Lagrangeans L ¼ Lðt; q; _qqÞ, see Buch and Denman (1976).

Problem 7.9.19 Hamilton–Ritz Method. Consider the earlier Duffing oscillator

with equation of motion €qqþ !o
2qþ c q3 ¼ 0, and boundary conditions

qð0Þ ¼ qð�=!Þ ¼ 0. Show that the method of ‘‘Hamilton–Ritz,’’ applied here for

the trial solution qo ¼ a sinð!tÞ, yields either a ¼ 0 or !2 ¼ !o
2 þ ð3=4Þa2c; that is,

given a we find !, and vice versa; while applied for the trial solution
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qo ¼ a sinð!tÞ þ b sinð3!tÞ, the method yields

a2 � a bþ 2b2 � ð4=3Þð!2 � !o
2Þ=c ¼ 0; ðaÞ

3b3 � a3 þ 6a2bþ 4bð!o
2 � 9!2Þ=c ¼ 0; ðbÞ

that is, given a (or b) we find b (or a), and !.

Further, with the help of the dimensionless quantities x � b=a, y � a2c=!o, and

z � ð!=!oÞ2 � 1, eqs. (a, b) can be rewritten, respectively, as

yð6x2 � 3xþ 3Þ � 4z ¼ 0; yð3x3 þ 6x� 1Þ � xð36zþ 32Þ ¼ 0; ðcÞ
and, finally, eliminating z between them, we obtain

y ¼ �32xð51x3 � 27x2 þ 21xþ 1Þ�1: ðdÞ
Plot and discuss this curve [i.e., given a we find y and, via (d), we find x].

For a two-DOF example, see Schräpel (1988).

Problem 7.9.20 Galerkin Method. Consider the forced and nonlinearly damped

oscillator

€qqþ !o
2q þ f1 _qqþ f3 ð _qqÞ3 ¼ Qo sinð!tÞ; ðaÞ

where !o
2, f1, f3, Qo, ! are specified positive constants (with the usual and/or easily

understood meanings). Show that the Galerkin method applied to (a) for the trial

steady-state solution

q ¼ a sinð! tÞ þ b cosð! tÞ; ðbÞ
yields the following algebraic system for the unknown amplitudes a, b:

a ð!o
2 � !2Þ � b f1!� ð3=4Þ f3 !3b ða2 þ b2Þ �Qo ¼ 0; ðcÞ

a f1!þ b ð!o
2 � !2Þ þ ð3=4Þ f3 !3 a ða2 þ b2Þ ¼ 0: ðdÞ

Discuss these results for various limiting cases.

Example 7.9.13 The Variational Principles of Gray–Karl–Novikov (GKN, 1996).
Quite generally, we obviously haveð

ðT � VÞ dt ¼
ð
ð2TÞ dt�

ð
ðT þ VÞ dt;

or, recalling earlier definitions (}7.9), and with the still general but convenient time-

integration limits t1 ¼ 0, t2 ¼ t ) t2 � t1 ¼ t,

AH ¼ AL � AE � AL � thEi; ðaÞ
where

AE �
ðt

0

ðT þ VÞ dt �
ðt

0

ðEÞ dt � t hEi: ða1Þ
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Therefore, D-varying the above, we obtain the following basic relation:

DAH ¼ DAL � Dt hEi � tDhEi ) DAH þ hEiDt ¼ DAL � tDhEi: ðbÞ
Now, and recalling, again, the general results of (3.9.11b ff.; 7.2.6e, f; and 7.9.4a ff.),

let us see how (b) specializes for a holonomic, scleronomic, and potential system;

that is, one completely describable by the Lagrangean: L ¼ Lðq; _qqÞ ) @L=@t ¼ 0)
dh=dt ¼ �@L=@t ¼ 0) h �P ð@L=@ _qqkÞ _qqk � L ¼ 2T � ðT � VÞ ¼ T þ V � E (i.e.,

generalized energy ¼ ordinary energy) ¼ constant) hðt2Þ ¼ hðt1Þ ¼ hhi ¼ hEi
[recalling (7.9.12b)], and for fixed endpoint variations (i.e., Dq1;2 ¼ 0, and with no

loss in generality, Dt1 ¼ 0, Dt2 ¼ Dt) from an actual trajectory (orbit; i.e.,

EkðLÞ ¼ 0). We easily see that, then, (7.9.4b, 11h) reduce to (7.9.12d):

DAH ¼ � hDtf g21¼ �hDt ¼ �hEiDt ) DAH þ hEiDt ¼ 0 ðHamiltonianÞ ðc1Þ
) DAL � tDhEi ¼ 0 ðLagrangeanÞ; ðc2Þ

that is, for such systems and variations, both the left and right sides of (b) vanish
independently.

Next, a little reflection (with invocation of the reasoning of the theory of con-

strained stationarity conditions and method of Lagrangean multipliers) will convince

us that the two unconstrained variational equations (c) lead to the following four
constrained GKN variational principles:

ðiÞ ðDAHÞt¼constant ¼ 0 ðHamiltonÞ; ðd1Þ
ðiiÞ ðDtÞHamiltonian action¼constant ¼ 0 ð‘‘Reciprocal Hamilton’’Þ; ðd2Þ

ðiiiÞ ðDALÞhEi¼constant ¼ 0 ð‘‘Reformulated MEL’’Þ; ðd3Þ

ðivÞ ðDhEiÞLagrangean action¼constant ¼ 0 ð‘‘Reciprocal MEL’’Þ: ðd4Þ

[We notice that (a) eq. (d1) is a specialization of the method presented in the earlier

probs. 7.9.12 and 7.9.13; and that (b) eq. (d3), with hEi ¼ constant, is slightly more

general than the ordinary MEL principle (E ¼ constant).] The following applications

to simple problems of nonlinear oscillations illustrate the use of the above, especially

(d3) and (d4) [one of the main contributions of GKN (1996)]:

(i) One-dimensional quartic oscillator, with 2T ¼ m ð _qqÞ2 (m: mass), 4V ¼ c q4 (c:
positive constant). With trial trajectory solution, q ¼ a sinð!tÞ ) _qq ¼ a! cosð!tÞ,
where ! (frequency, and � � 2�=!: period) and a (amplitude) are the hitherto

unknown parameters to be determined by the above variational principles, and

with the simpler notation AL �W (from the German Wirkung ¼ action), and inte-

gration limits t1 ¼ 0, t2 ¼ 2�=!, we find

W �
ð�

0

2T dt ¼
ð2�=!

0

½m ð _qqÞ2� dt ¼
ð2�=!

0

½m a2 !2 cos2ð!tÞ� dt ¼ m a2 �!; ðe1Þ

) a2 ¼W
�
m�!; ðe2Þ

hEi � ð1=�Þ
ð�

0

ðT þ VÞ dt ¼ ð1=�Þ
ð2�=!

0

�ð1=2Þm ð _qqÞ2 þ ð1=4Þ c q4
�
dt

¼ � � � ½and utilizing ðe2Þ� ¼W !
�
4�þ ð3=32ÞðcW2

�
�2m2!2Þ: ðe3Þ
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Then, applying (d4) [which, in view of the above results, is the easiest among (d1–4)

to implement], we obtain the frequency that makes (e3) stationary (and, here, a

minimum):

0 ¼ ð@hEi�@!ÞW¼constant ¼ ðW=4�Þ 1� ð3=4Þ cW
�
�m2!3

	 
� �
; ðe4Þ

) ! ¼ ð3 cW=4 �m2Þ1=3; ðe5Þ
) hEi ¼ ð1=2Þðc=m2Þ1=3 ð3AL

�
4�Þ4=3 ¼ ð1=2Þðm2=cÞ!4; ðe6Þ

) � ¼ 2�=! ¼ 2� ðm2=2chEiÞ1=4: ðe7Þ

Since the exact value of � is {see Gray et al. [1996(a)], or books on nonlinear

oscillations}:

�exact ¼
�
Gð1=2Þ Gð1=4Þ�Gð3=4Þ� ðm2=c hEiÞ1=4 ½Gð. . .Þ : Gamma function�; ðe8Þ

) �=�exact ¼ ð2�=21=4Þ �Gð3=4Þ�Gð1=2Þ Gð1=4Þ� ¼ 1:0075; ðe9Þ

the error committed is less than 1%.

The reader is urged to verify that these results can also be obtained by applying

(d1) — in which case, the constraint t ¼ constant implies � ¼ constant ) ! ¼
constant, in our trial solution; that is, AH ¼ AHða; !Þ, and so (d1) translates to

dAH=da ¼ 0. (Compare with the more general method discussed in probs. 7.9.12

and 7.9.13.)

(ii) Anharmonic oscillator, with 2T ¼ m ð _qqÞ2, V ¼ ð1=2Þm!o
2 q2 þ ð1=4Þ
 q4

[which can be viewed as the quartic approximation to the potential energy of a

plane mathematical pendulum, Vexact ¼ m l2 !o
2 ð1� cos �Þ, where, as usual, m, l, �

are the mass, length, and angle with vertical, of the pendulum; !o � ðg=lÞ1=2 (fre-

quency in quadratic approximation of cos � to Vexact), q � l �, and 
 � �m!o
2=6l2].

Again, with trial solution, q ¼ a sinð!tÞ ) _qq ¼ a! cosð!tÞ, where ! (frequency) and

a (amplitude) are the hitherto unknown parameters to be determined by the GKN

variational principles, and integration limits t1 ¼ 0, t2 ¼ 2�=!, we find

W ¼
ð2�=!

0

½m ð _qqÞ2� dt ¼
ð2�=!

0

½m a2!2 cos2ð!tÞ� dt ¼ m a2�! ðf 1Þ

) a2 ¼W=m �!; ðf 2Þ
hEi � ð1=�Þ

ð�
0

ðT þ VÞ dt

¼ ð1=�Þ
ð2�=!

0

�ð1=2Þm ð _qqÞ2 þ ð1=2Þm !o
2 q2 þ ð1=4Þ
 q4

�
dt

¼ � � � ½and utilizing ðf2Þ� ¼ ðAL=4�Þ !þ !o
2=!þ ð3
W=8�m2!2Þ� �

: ðf 3Þ

Here, too, applying (d4) with ! as variational parameter, we get

0 ¼ ð@hEi=@!ÞW¼constant

) !2 ¼ !o
2 þ ð3
W=4�m2!Þ ¼ !o

2 þ ð3
=4mÞ a2; ðf 4Þ
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which agrees with earlier-found approximate values (exs. 7.9.11, probs. 7.9.17 and

7.9.18; also exs. 8.16. and 8.16.2). For the pendulum, (f4), with 
 � �m!o
2=6l2 and

a=l � �max, gives

! ¼ !o ð1� �max
2=8Þ1=2 ¼ !o ð1 � �max

2=16 � �max
4=512 þ � � �Þ; ðf 5Þ

and, hence, corresponding period �ð�maxÞ � � (with �o � 2�=!o):

� ¼ 2�=! ¼ �o ð1� �max
2=8Þ�1=2 ¼ �oð1þ �max

2=16 þ 3�max
4=512 þ � � �Þ; ðf 6Þ

which is correct to �max
2 (since the trial solution is correct to the zeroth order in 
,

and our variational principle makes sure that first-order such errors vanish). A better

approximation to the exact expansion (the latter obtained through integration of the

well-known nonlinear equation of motion, via an elliptic integral)

�exact ¼ �o
�
1þ �max

2=16 þ ð11=18Þð3�max
4=512Þ þ � � � �; ðf 7Þ

is obtained by keeping the �6=6! term in the cos � expansion, in Vexact ! V ; also by

adding to the trial solution higher harmonics: for example, b sinð3!tÞ (b: correspond-

ing amplitude) (recall ex. 7.9.11, prob. 7.9.19). For further examples and insights, see

Gray et al. [1996(a),(b)].

Example 7.9.14 Method of Slowly Varying Parameters (Amplitude and Phase) in
Weakly Nonlinear (Quasi-linear) Oscillators. Let us consider the general equation

[recalling ex. 7.9.10: k ff.)]

€qqþ !o
2 q ¼ " f ðq; _qqÞ; ðaÞ

where

!o : natural ðconstantÞ frequency of ðaÞ when " f ðq; _qqÞ ¼ 0;

f ð. . .Þ : arbitrary nonlinear ðbut integrableÞ function of its arguments; and

" : very small positive constant; so that ðaÞ diGers by very little from a linear

equation ðhence the name quasilinearÞ:

Due to the presence of damping — namely, _qq-proportional terms — the solutions of

(a) are, in general, no longer periodic and, accordingly, the earlier-described methods

of Hamilton/least action and Ritz/Galerkin do not apply, except asymptotically, as

in the limit cycle case (e.g., van der Pol oscillator) — that is, they need modification to
account for the generally nonvanishing boundary terms (see also the remarks at end of

this example).

Below, we describe an approximate averaging method for the solution of (a),

originated by van der Pol (in the early 1920s) and thoroughly extended and perfected

by a host of distinguished Soviet scientists: Krylov, Bogoliubov, Mitropolskii,

Andronov, Vitt, Mandelstam, Papaleksi, Malkin et al. (between the two World

Wars), in connection with problems of electrical and mechanical engineering. In

fact, this area of asymptotic methods in nonlinear oscillations was fairly considered

as a Soviet (!Russian) specialty.

[That eq. (a) may, under certain conditions, have some periodic solutions (e.g.,

limit cycles) is far from obvious — in fact, it took a giant of mathematics, H. J.
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Poincaré (late 19th century), to show that. A small change in the form of a (linear or

nonlinear) differential equation may change radically the qualitative nature of its

solutions; for example, the equation €qqþ !o
2 q ¼ 0 possesses only periodic solutions,

but the equation €qqþ � _qqþ !o
2 q ¼ 0 does not possess any such solutions, no matter

how small (but nonzero) the friction/damping coefficient � is!]
As is well known, the solution of the undamped problem — that is, (a) with

" ¼ 0— is

q ¼ a cos�; � � !o tþ �; ðbÞ

where, a is the constant amplitude, � is the constant phase, (both determined from

the initial conditions), !o is the natural linear frequency (a given constant), and � is

the total phase.

For the damped nonlinear equation (a), we apply the Lagrangean method of
variation of constants or parameters (for a general discussion of this, in terms of

both Lagrangean and Hamiltonian variables, see }8.7): we try a solution of the
same form as the ‘‘generating solution’’ (b) but with a and � replaced by unknown

functions of time; that is,

q ¼ a ðtÞ cos�ðtÞ; �ðtÞ ¼ !o tþ �ðtÞ: ðcÞ

By ð. . .Þ:-differentiating eqs. (b) and (c) we find, respectively,

ðbÞ: : _qq ¼ �a!o sin�; ðdÞ
ðcÞ: : _qq ¼ �a!o sin�þ ð _aa cos�� a _�� sin�Þ: ðeÞ

Now, to determine aðtÞ and �ðtÞ, we impose the first (‘‘arbitrary’’) requirement: the

‘‘nonlinear’’ velocity _qq, eq. (e), should have the same form as the ‘‘linear’’ velocity,

eq. (d); that is,

_aa cos�� a _�� sin� ¼ 0; �ðtÞ ¼ !o tþ �ðtÞ: ðf Þ

The second equation for aðtÞ, �ðtÞ is obtained by inserting (c) and (e) [under (f)]

back into (a): since

ðeÞ: : €qq ¼ � _aa!o sin�� a!o
2 cos�� a!o

_�� sin�

¼ � _aa!o sin�� a!o
2 cos�� _aa!o cos� ½by the first of ðfÞ�;

we obtain

_aa sin�þ a _�� cos� ¼ �ð"=!oÞ f ða cos�;�a!o sin�Þ � �ð"=!oÞFða; �Þ: ðgÞ

Solving the system of the first of (f ) and (g) for _aa and _�� yields the first-order
coupled nonlinear equations

_aa ¼ �ð"=!oÞFða; �Þ sin�; _�� ¼ �ð"=a!oÞFða; �Þ cos� ð¼ _��� !oÞ: ðhÞ

So far, no approximations have been involved: the exact solution of the system (h), if

available, would be the exact solution of its equivalent original equation (a) for any

value of "; conditions (f) and (g) may be arbitrary but they are consistent.
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[A geometrical interpretation: In terms of the ‘‘canonical’’ variables q and p � _qq,
the original equation (a) becomes the first-order system

_pp ¼ �!o
2 qþ " f ðq; pÞ � Pðq; pÞ ðequation of motionÞ; ðh1Þ

_qq ¼ p � Qðq; pÞ ðkinematical equationÞ: ðh2Þ

Then, eqs. (c) are simply a transformation among dependent variables — from the old

q, p to the new a; � or a; � — and (h1, 2) transforms to (h). Geometrically, if (q, p)
are viewed as the rectangular Cartesian coordinates of a point in a (fixed) q, p-plane

(called ‘‘phase space’’; see chap. 8) then, as eqs. (c) show, for !o ¼ 1 (which can

always be accomplished by an independent variable change) ða; �Þ become its polar

coordinates in that plane, and ða; �Þ become its polar coordinates in the (rotating)

‘‘van der Pol plane.’’]

Equations (h) are, usually, quite complicated and cannot be solved exactly. To

make some headway toward their solution we now introduce the smallness assump-

tion: if the nonlinear term " f ð. . .Þ remains small, absolutely, relative to both €qq
(inertia) and !o

2q (linear elasticity), then _aa and _�� are also small; that is, a and �
change very slowly during a (linear) period �o ¼ 2�=!o; � will increase, approxi-

mately, by 2�. Mathematically, we assume that " is small enough that

jda=dtj � jaj��o ) ð2�=!oÞj _aa=aj � 1; ði1Þ
jd�=dtj � 2�

�
�o ) j _��j=!o � 1; ði2Þ

and analogously for the higher derivatives:

jd2a=dt2j � j _aaj��o � j _aajð!o=2�Þ
) jd2a=dt2j � jajð!o=2�Þ2: ði3Þ

This key assumption allows us to proceed from (h) as follows:

(i) First, and since the nonlinear right sides of (h) are periodic in � with period

2�, we expand them into Fourier series in �:

Fða; �Þ sin� ¼ AoðaÞ þ
X �

AkðaÞ cosðk�Þ þ BkðaÞ sinðk�Þ
�
; ð j1Þ

Fða; �Þ cos� ¼ FoðaÞ þ
X �

FkðaÞ cosðk�Þ þCkðaÞ sinðk�Þ
�
; ð j2Þ

where k ¼ 1; 2; 3; . . . ; and the expansion coefficients (‘‘amplitudes’’) Ao, Fo; Ak, Bk;

Fk, Ck are determined in well-known ways [recall ex. 7.9.12: (d2), (d3)]. In particular,

it is known that the first terms (constant in �) equal the average (mean value) of the

corresponding expanded functions, over 2�:

AoðaÞ ¼ ð1=2�Þ
ð2�

0

Fða; �Þ sin� d�; FoðaÞ ¼ ð1=2�Þ
ð2�

0

Fða; �Þ cos� d�: ð j3Þ

(ii) Next, substituting the series ( j1, 2) back into (h) and integrating both sides

between 0 and 2�, while invoking ( j3) and noting that all integrals containing
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trigonometric terms vanish, we obtain the (still exact) systemð2�

0

_aa d� ¼ �ð"=!oÞ 2�AoðaÞ;
ð2�

0

_�� d� ¼ �ð"=a!oÞ 2�FoðaÞ: ð j4Þ

(iii) Last, we use the smallness (slowness) assumption to transform the left sides

of ( j4). We have, successively (since 2� ¼ !o �o ¼ ! � ) d� ¼ ! dt ¼ ð2�=�Þ dt,
! � _�� ¼ !o þ _��),ð2�

0

_aa d� ¼ ð2�=�Þ
ð�

0

_aa dt ¼ 2�
�½aðtþ �Þ � aðtÞ����

¼ 2�
�½aðtþ �oÞ � aðtÞ���o�; ð j5Þ

and similarly for the integral of _��. But, since a and � do not change appreciably

during � or �o, Da � aðtþ �Þ � aðtÞ and D� � �ðtþ �Þ � �ðtÞ are small, and also �
and �o are small relative to the total process duration, which involves several periods

(i.e., � ! D�), and so (j4, 5) are replaced by the (finite difference) equations

Da=D� ¼ �ð"=!oÞAoðaÞ; D�=D� ¼ �ð"=a!oÞFoðaÞ; ð j6Þ
which, in the limit, produce the first approximation (differential) equations

da=dt ¼ �ð"=!oÞAoðaÞ; d�=dt ¼ �ð"=a!oÞFoðaÞ: ð j7Þ
Comparing the above with the exact equations (h), we see that the former result from

the latter by averaging over a period, and while doing that regard a as a constant;

that is, eqs. ( j6, 7) do not describe the instantaneous physical behavior of the system,

but, rather, its evolution over the several cycles of the duration of the process; what the

distinguished nonlinear mechanics expert N. Minorsky calls ‘‘the behavior of the

envelope of modulation.’’
Substituting ( j3) into ( j7), we finally obtain the famous van der Pol/Krylov/

Bogoliubov equations, or slowly varying equations (SVE):

da=dt ¼ �ð"�2�!oÞ
ð2�

0

Fða; �Þ sin� d� � "AðaÞ; ðk1Þ

d�=dt ¼ �ð"�2�a!oÞ
ð2�

0

Fða; �Þ cos� d� � "FðaÞ: ðk2Þ

The first of these equations gives the variation of a in time [also, the solutions of

_aa ¼ 0) AðaÞ ¼ 0 yield the stationary amplitude oscillations (possible limit cycles)];

while the second of them yields the corresponding frequency correction: then,

� ¼ !otþ �ðtÞ : total phase angle

) _�� � ! ¼ !o þ _�� : instantaneous frequency: ðk3Þ

Finally, and this is quite useful, we note that if f ðq; _qqÞ ¼ f1ðqÞ þ f2ð _qqÞ [nonlinear
in their corresponding arguments; e.g., f1 contains powers of q like q2, q3; . . . ;
and f2 contains powers of _qq like ð _qqÞ2, ð _qqÞ3; . . .], then, due to the identitiesð2�

0

f1ða cos�Þ sin� d� ¼ 0;

ð2�

0

f2ð�a!o sin�Þ cos� d� ¼ 0; ðk4Þ
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� da=dt is unaffected by the nonlinear additions to the linear elastic force, f1ðqÞ, but

d�=dt is affected:

� d�=dt is unaffected by the nonlinear additions to the linear damping force, f2ð _qqÞ, but

da=dt is affected. For example, if f1 ¼ 0, then _�� ¼ 0 ) _�� � ! ¼ !o for any small but

nonzero nonlinear damping f2ð _qqÞ.

In sum, for small " (first approximation), nonlinear restoring (spring) terms affect the

frequency but not the amplitude; while nonlinear damping terms affect the amplitude
but not the frequency. [For larger ", however, this is no longer true: either type of

terms affects both amplitude and frequency.]

REMARK

The above-described method constitutes the first approximation of a general asymp-

totic scheme due to Bogoliubov and Mitropolsky. For extensions to periodically

forced oscillators [i.e., " f ð. . .Þ ¼ " f ðt; q; _qqÞ ¼ " f ðOt; q; _qqÞ ¼ ð2�=OÞ— periodic

function of time, O: specified] and to several degrees of freedom, see Bogoliubov

and Mitropolsky (1974), which is the undisputable ‘‘bible’’ on the subject; also

Fischer and Stephan (1972, pp. 144–150, 217–229). For combinations of the method

of slowly varying parameters, and averaging in general, (a) with the method of

Galerkin, see, for example, Chen and Hsieh (1981), and (b) with the various D-

forms of Hamilton’s principle (this section), as well as the methods of perturbations,

strained coordinates, and multiple time scales, see Rajan and Junkins (1983). The

combinations among these methods seem endless, but as Rajan and Junkins aptly

remark ‘‘On the average, it appears algebraic misery may be conserved; we do not

claim that the above processes (for a given problem) will result in less algebraic

effort. On the other hand, the developments offer numerous insights and exceptional

latitude in solution procedures (through the infinity of possible choices for the gen-

erators of the variations)’’ (1983, p. 350). See also ‘‘Closing General Remarks,’’

below.

Illustrations

1. Nonlinearly Damped Duffing Oscillator

Let us solve, approximately,

€qqþ " � _qqj _qqj þ !o
2 qþ " � q3 ¼ 0; ðl1Þ

oppositely directed to _qq (hence the use of j _qqj); and � is a damping coefficient; this

is frequently called ‘‘turbulence damping.’’ Here,

f ðq; _qqÞ ¼ �� q3 � � _qqj _qqj
) Fða; �Þ ¼ �� a3 cos3�þ � a2!o

2 sin� j sin�j; ðl2Þ
and so (k1, 2) yield the averaged system

da=dt ¼ �ð4=3�Þ" � !o a
2 ði:e:; da=dt is affected by the nonlinear dampingÞ; ðm1Þ

d�=dt ¼ ð3=8Þ" �ða2=!oÞ ði:e:; d�=dt is affected by the nonlinear elasticityÞ: ðm2Þ
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The first of these equations integrates readily to

a ¼ ao 1þ ½ð4" ��3�Þ!o ao�t
� ��1

; a0 : initial displacement; ðm3Þ

and so the second becomes (to the first "-order)

d�=dt ¼ ð3=8Þ" �ðao2=!oÞ; ðm4Þ
and integrates easily to

� ¼ �ð3=8Þ" �ðao2=!oÞ
�
tþ �o; �0 : initial phase; ðm5Þ

and, therefore,

qð0Þ ¼ að0Þ cos�ð0Þ ¼ ao cos�o ¼ ao ) �o ¼ 0: ðm6Þ
The above show that the bigger the ao, the faster the amplitude decreases; also,

for � ¼ 0 (undamped oscillator), a ¼ ao and !2 ¼ ð _��Þ2 ¼ ð!o þ _��Þ2 ¼
!o

2 þ ð3=4Þ" � a2 þ ð _��Þ2, or, to the first "-order, !2 � !o
2 þ ð3=4Þ" � a2.

For a generalization of (l1) that includes linear and cubic damping (problem of

rolling of a ship equipped with a gyrostabilizer), see, for example, McLachlan (1956/

1958, pp. 92–94).

2. Van der Pol Equation

Here, the equation of motion is

€qqþ "ðq2 � 1Þ _qqþ !2
o q ¼ 0; ðn1Þ

that is,

f ðq; _qqÞ ¼ ð1� q2Þ _qq
) Fða; �Þ ¼ �a!o sin�� ð�a!o sin�Þða2 cos2�Þ

¼ ð1� a2 cos2�Þð�a!o sin�Þ; ðn2Þ

and so eqs. (k1, 2) yield

da=dt ¼ �ð"�2�!oÞ
ð2�

0

ð1� a2 cos2�Þð�a!o sin�Þ sin� d�

¼ ð"a=2Þð1� a2=4Þ; ðo1Þ

d�=dt ¼ �ð"�2�a!oÞ
ð2�

0

ð1� a2 cos2�Þð�a!o sin�Þ cos� d� ¼ 0

) � ¼ !otþ �o; ðo2Þ

that is, to the first "-order, the nonlinearity does not change the frequency: ! ¼ !o.

With the arbitrary initial conditions að0Þ ¼ ao, �ð0Þ ¼ �o ¼ �ð0Þ, and the well-

known ‘‘energy identity’’ 2 a _aa ¼ dða2Þ=dt, eq. (o1) transforms to

dða2Þ=dt ¼ " a2ð1� a2=4Þ ½i:e:; _bb ¼ " b ð1� b=4Þ; with b � a2�; ðo3Þ
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and integrates readily to

a ¼ ao expð"t=2Þ 1þ ðao2=4Þ ½expð"tÞ � 1�� ��1=2

) qðtÞ ¼ aðtÞ cosð!otþ �oÞ: ðpÞ

The stationary, or steady-state, amplitude solutions of the problem, obtained from

(o1) for _aa ¼ 0, are (i) a ¼ 0 (equilibrium), and (ii) a ¼ 2 (limit cycle).

This can also be seen from the transient amplitude equation (p): by rewriting it as

a ¼ aðtÞ ¼ 2
�
1� expð�"tÞð1� 4=ao

2Þ��1=2
; ðqÞ

we can readily see that for t!1, a! 2 always; that is, this is so, no matter how

small (but nonzero) or large ao may be, even if ao > 2. If ao ¼ 0, then aðtÞ ¼ 0 (no

oscillation) — the oscillation must be initiated by external means. [For additional

examples and questions on (limit cycle) stability, see standard texts on nonlinear

mechanics, for example, Kauderer (1958, pp. 295–304), Stoker (1950); also Butenin

et al. (1985, pp. 485–491).]

Problem 7.9.21 Method of Slowly Varying Parameters (SVP). By applying SVP

to the linear damped oscillator:

€qqþ 2 f _qqþ !o
2 q ¼ 0 ð f : small friction constantÞ; ðaÞ

with initial conditions qð0Þ ¼ A, _qqð0Þ ¼ 0, show that the ‘‘slowly varying equations’’

(SVE) [ex. 7.9.14: (k1), (k2)], yield

_aa ¼ �f a ) a ¼ ao expð�f tÞ; _�� ¼ 0) � ¼ constant; ðbÞ

from which, and the small friction requirement f =!o � 1, we find

q ¼ A expð�f tÞ cosð!ot� f =!oÞ; ðcÞ

that is, here, damping causes a change in the amplitude, not in the frequency.

Then show that, here, the smallness requirement [ex. 7.9.14: (i1)], j _aa=aj
ð2�=!oÞ � 1, leads to the sharper restriction

2 f � !o=� ¼ 2=�o ðphysical meaning and dimensions of ‘‘small friction’’Þ: ðdÞ

Finally, compare the approximate solution (c) with the well-known exact solution

of this problem,

q ¼ �A!o=ð!o
2 � f 2Þ1=2� expð�f tÞ cos

�ð!o
2 � f 2Þ1=2t� tan�1ð f =!oÞ

�
; ðeÞ

and show that under f =!o � 1 the above solution reduces to the approximate one.

Problem 7.9.22 Method of Slowly Varying Parameters. By applying SVP to the

quadratically damped and unforced oscillator

€qqþ !o
2 qþ 2f ð _qqÞ2 ¼ 0; ðaÞ
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with (the usual notations, and) initial conditions qð0Þ ¼ A, _qqð0Þ ¼ 0, show that the

SVE yield

da=dt ¼ �ð8=3Þ f !o a
2 ) a ¼ ao½1þ ð8=3Þ f !o ao t��1; að0Þ ¼ ao ¼ A; ðbÞ

d�=dt ¼ 0 ) � ¼ constant: ðcÞ
Compare this result with the preceding case of linear damping: 2 f _qq.

Problem 7.9.23 Method of Slowly Varying Parameters. By applying SVP to the

undamped and unforced Duffing oscillator

€qqþ !o
2 qþ c q3 ¼ 0; ðaÞ

with initial conditions qð0Þ ¼ A, _qqð0Þ ¼ 0, show that the SVE yield

da=dt ¼ 0 ) a ¼ constant � ao ¼ A; ðbÞ
d�=dt ¼ 3 c a2=8!o ) � ¼ ð3 c a2=8!oÞ tþ constant ) ! ¼ !o þ _��: ðcÞ

Then show that, here, the smallness requirement j _��j � !o leads to c� 8!o
2=3ao

2.

Problem 7.9.24 Method of Slowly Varying Parameters. By applying SVP to the

nonlinearly damped and unforced Rayleigh oscillator (e.g., electrically driven tuning

fork)

€qq� 2 f _qqþ g ð _qqÞ3 þ !o
2 q ¼ 0; ðaÞ

where f , g are small positive constants, and �2 f _qq is effective negative damping
(equivalent to a driving force), show that the SVE yield

da=dt ¼ a ½ f � ð3=8Þ g!o
2 a2�; d�=dt ¼ 0: ðbÞ

and, therefore, (i) for a stationary (or steady-state) amplitude,

da=dt ¼ 0 ) a ¼ ð2=!oÞð2 f =3 gÞ1=2 � ast; ðcÞ
while (ii) for a transient one,

a ðtÞ ¼ ao expð f tÞ
n
1þR2 ao

2½expð2 f tÞ � 1�
o�1=2

; ðdÞ

where R2 � 3 g!o
2=8 f , að0Þ ¼ ao.

Hence, if ao ¼ 0, then aðtÞ ¼ 0; and if ao 6¼ 0, then a! ast, as t!1. Compare

with the van der Pol oscillator. For further details, see, for example, McLachlan

(1956/1958, pp. 90–91).

Problem 7.9.25 Method of Slowly Varying Parameters. By applying SVP to the

linearly damped Duffing oscillator (with the usual notations and smallness assump-

tions, and !o
2 > f 2)

€qqþ 2 f _qqþ !o
2 qþ c q3 ¼ 0; ðaÞ
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with initial conditions qð0Þ ¼ A, _qqð0Þ ¼ 0, show that the SVE yield

da=dt ¼ � f a; d�=dt ¼ 3 c a2=8!o: ðbÞ

Integrate these equations and discuss their results.

Closing General Remarks on Time-Integral and Variational Methods
in Nonlinear Oscillations

1. All these methods assume that the degree of the nonlinearity is not too large.

2. The accuracy (error) of the so-obtained approximate solutions is, often, difficult to

assess.

3. As mentioned earlier, the method of ‘‘Hamilton–Ritz’’ works best for periodic solu-

tions; for example, steady states in forced systems —otherwise, we must include the

boundary terms, and this increases the computational difficulty of the problem. The

method of Galerkin, in general, does not have that drawback, but both methods (i.e.,

Ritz and Galerkin) require a good knowledge of the physical meaning of the equa-

tions and the qualitative behavior of their solutions so as to make a successful

(‘‘optimal’’) choice in the trial functions.

4. For slowly varying (nonperiodic) solutions— for example, transients in self-excited or

damped systems, and limit cycles/points (if they exist) — the methods of van der Pol,

Bogoliubov and Mitropolskii, work best. However, as the reader will have noticed,

their mathematical operations are less simple than those of Ritz and Galerkin (and,

worse, for higher-order approximations, these methods are, in general, cost-ineffec-
tive; that is, additional small corrections require disproportionately long and arduous

calculations).

The moral of the above is that, as in most other areas of science, no single

approach is uniformly best: in view of the (unknown) approximations involved, it

is wiser, in dealing with a particular equation, to use several complementary strate-
gies/techniques: those described here and the many more available in the enormous

nonlinear mechanics literature, such as perturbations, harmonic balance (or equiva-

lent linearization), and so on. For comprehensive and readable overviews of these

classical methods, we refer the reader to (alphabetically): Blekhman (1979),

Bogoliubov and Mitropolskii (1974), Klotter (1955), Magnus (1957).

APPENDIX 7.A

EXTREMAL PROPERTIES OF THE HAMILTONIAN ACTION

(IS THE ACTION REALLY A MINIMUM; NAMELY, LEAST?)

7.A1 Introduction

The following is restricted to holonomic systems that can be completely described by

a Lagrangean L ¼ Lðt; q; _qqÞ. Therefore, the discussion can be safely limited, for
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algebraic simplicity, to a one-DOF system S. Let

AH ¼ AHðqÞ ¼ AHðIÞ

�
ð
L dt : Hamiltonian action of S; evaluated along an orbit I ;

qðtÞðfrom t1 to t2Þ: ð7:A1:1Þ

Then, as we have seen in this chapter, Hamilton’s principle states that AH is
stationary (or critical) for small (or first-order) variations around I, �q ¼ �qðtÞ,
that nullify the boundary terms; that is, with p � @T=@ _qq ¼ @L=@ _qq and boundary

conditions, say, �q1 � �qðt1Þ ¼ 0 and �q2 � �qðt2Þ ¼ 0, this ‘‘principle’’ states that

�AH ¼
ð
�L dt ¼ � � � ¼ p �qf g21 �

ð
EðLÞ �q dt

¼ 0�
ð
EðLÞ �q dt ¼ 0; ð7:A1:2Þ

from which we find

EðLÞ � ð@L=@ _qqÞ: � @L=@q
¼ ð@2L=@ _qq2Þ€qqþ ð@2L=@q@ _qqÞ _qq þ @2L=@t @ _qq� @L=@q ¼ 0: ð7:A1:3Þ

As in the ordinary calculus (of functions), the first-order equation �AH ¼ 0, in �q and

�ð _qqÞ ¼ ð�qÞ:, is only a stationarity condition — not an extremality one. That is, it

does not tell us whether AHðqÞ is a maximum: AHðqþ �qÞ > AHðqÞ, or a minimum:

AHðqþ �qÞ < AHðqÞ, or neither. Again, as in calculus, the answer to that comes

(usually) from the study of the second variation of AH , �2AH � �ð�AHÞ: quadratic
and homogeneous functional in �q and �ð _qqÞ ¼ ð�qÞ: (defined precisely below).

Now, the study of �2AH , and corresponding extremal — namely, maximum/mini-

mum — properties of AH , has received little attention in the literature (it is con-

spicuously absent from most texts on advanced dynamics), primarily for the

following reason: the laws of nature for S — namely, its ever valid equations of

motion (7.A1.3) — result from (7.A1.2), or from the vanishing of some other equiva-

lent first-order functional equation. On the other hand, the (possible) extremum

properties of its AH are not laws of mechanics, but only particular conditions that

may hold for some orbits of S and not for others, or hold only along a certain part(s)

of an orbit and not for all of it. Such second (and possibly higher)-order properties of

AH have been associated with kinetic stability/instability of S in some sense; that is,

both stable and unstable orbits satisfy �AH ¼ 0, but the stable ones among them, if

such exist, give �2AH one sign, and the unstable ones the opposite — pretty much like

the theorems of the minimum of the total potential energy in static stability/buck-

ling, and so on [Dirichlet (1846)!Bryan (1890s) !Trefftz (1930s)!Koiter

(1940s)].

For detailed and readable treatments of the relevant sufficiency variational theory,
see, for example (alphabetically): Elsgolts (1970), Fox (1950/1963), Funk (1962),

Gelfand and Fomin (1963); also Hussein et al. (1980), Levit and Smilansky (1977);

and for the connection with kinetic stability (stability of motion), see the works of

some of the older masters of mechanics, for example, Joukovsky (1937, pp. 110–208),

Thomson and Tait (1912, pp. 416–439), Routh (1877, pp. 103–108); also Lur’e (1968,
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pp. 651–667, 749–754), Routh [1898, pp. 399–405; 1905(b), pp. 308–310], Watson

and Burbury (1879, pp. 72–99), Whittaker (1937, pp. 250–253).

For the second variation of AH of nonholonomic systems, see Novoselov (1966,

pp. 26–49, and references cited therein).

7.A2 The Fundamental Minimum Theory (of Jacobi and A. Mayer)

Let us summarize the problem of the extremality, say, minimality of AH . The neces-
sary conditions for this are eqs. (7.A1.1) and (7.A1.2). The sufficient conditions come

from the study of the sign of �2AH . The latter is defined, equivalently, either as:

(i) The quadratic and homogeneous part in �q and �ð _qqÞ in the Taylor-like expan-

sion of the total contemporaneous variation of AH around I , �TAH ,

�TAH � AH ðqþ �qÞ � AH ðqÞ ¼ �AH þ ð1=2Þ �2AH þ � � � ; ð7:A2:1aÞ

i.e., �2AH ; or by

(ii) The �-variation of �AH :

�2AH � �ð�AHÞ ¼
ð
�2L dt

¼ � � � ¼ �
ð
Jð�qÞ �q dt þ �p �qf g21; ð7:A2:1bÞ

where

�2L � �ð�LÞ ¼ �ð@=@qÞ �qþ ð@=@ _qqÞ �ð _qqÞ�2L
¼ � � � ¼ ð@2L=@ _qq2Þð� _qqÞ2 þ 2ð@2L=@q @ _qqÞ �q �ð _qqÞ þ ð@2L=@q2Þð�qÞ2 :

Second variation of the Lagrangean; ð7:A2:1cÞ

and [invoking �ð _qqÞ ¼ ð�qÞ:�

Jð�qÞ ¼ �d=dt ½@ . . . =@ð� _qqÞ� � ½@ . . . =@ð�qÞ�� ð1=2Þ �2L
¼ ð@2L=@ _qq2Þ �ð€qqÞ þ ð@2L=@ _qq2Þ: �ð _qqÞ þ �ð@2L=@q@ _qqÞ: � ð@2L=@q2Þ� �q ¼ 0 :

Jacobi’s variational equation ða linear and homogeneous but; generally;

variable coefficient differential equationÞ: ð7:A2:1dÞ

REMARKS

(i) �TAH is frequently denoted as DAH ; but here (}7.9) Dð. . .Þ has been reserved

for the first noncontemporaneous variation. For the total such variation, we could use

DT ð. . .Þ; that is,

DTAH ¼ DAH þ ð1=2Þ D2AH þ � � � ; ð7:A2:2Þ

in variable time-endpoints problems (see, e.g., Santilli, 1978, pp. 41–43).

APPENDIX 7.A 1057



(ii) Jð�qÞ equals the first-order virtual variation of EðLÞ ¼ E½Lðt; q; _qqÞ�; or,

Jð�qÞ ¼ 0 is the Euler–Lagrange equation for �q of �2AH :

E½Lðt; qþ �q; _qqþ �ð _qqÞÞ� � E½Lðt; q; _qqÞ�
� �Eðq; �q; �ð _qqÞÞ ½to first order in �ð. . .Þ�
¼ Jð�q; qÞ � Jð�qÞ; ð7:A2:3aÞ

where, successively,

Jð�qÞ ¼ �½ð@L=@ _qqÞ:� @L=@q�
¼ ½�ð@L=@ _qqÞ�:� �ð@L=@qÞ
¼ ½ð@2L=@q@ _qqÞ �qþ ð@2L=@ _qq2Þ �ð _qqÞ�:

� ½ð@2L=@q2Þ �qþ ð@2L=@q@ _qqÞ �ð _qqÞ�
½invoking �ð _qqÞ ¼ ð�qÞ:�

¼ ð@2L=@ _qq2Þ ð�qÞ::þ ð@2L=@ _qq2Þ:ð�qÞ:

þ �ð@2L=@q@ _qqÞ:� ð@2L=@q2Þ� �q
¼ �ð@2L=@ _qq2Þ ð�qÞ:�:� �ð@2L=@q2Þ � ð@2L=@q@ _qqÞ:� �q
ðSturm�Liouville formÞ; ð7:A2:3bÞ

and all partial derivatives are evaluated along the solution(s) of (7.A1.2, 3), Q.E.D.

Now, the relevant extremum results are contained in the following fundamental

theorem.

THEOREM

For the action functional AH to attain a minimum in the class of piecewise smooth

functions qðtÞ that join the points ½t1; qðt1Þ � q1� and ½t2; qðt2Þ � q2�, and for nearby

variations such that both j�qj and j�ð _qqÞj ¼ jð�qÞ:j are small (i.e., for a relative and

strong minimum), it is sufficient that:

(i) qðtÞ satisfies the Euler–Lagrange equations (7.A1.3), �AH ¼ 0) EðqÞ ¼ 0;

that is, qðtÞ be an orbit, say I ; (7.A2.4a)

(ii) The strengthened Legendre–Weierstrass condition holds: along I , for

t1 � t � t2 and for any _qq in its neighborhood:

@2L=@ _qq2 > 0; ð7:A2:4bÞ
(iii) The strengthened Jacobi condition holds: let t1* be the first root, to the right

of t1, of the solution �q ¼ �qðtÞ to the following initial-value problem:

Jð�qÞ ¼ 0; �qðt1Þ ¼ 0; � _qqðt1*Þ ¼ arbitrary nonzero constant � �; ð7:A2:4cÞ
that is, �qðt1Þ ¼ 0 and �qðt1*Þ ¼ 0, t1* > t1. The root t1* is called conjugate to t1;
and q1 and qðt1*Þ � q1*, along I , are known [after Thomson and Tait (1860s)] as

mutually conjugate kinetic foci. Jacobi’s criterion states that, for a minimum of AH ,

t1* > t2 or Dt � t2 � t1 < t1*� t1 � Dt*; ð7:A2:4dÞ
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that is, the interval ðt1; t2Þ should not contain any roots conjugate to t1. [For a max-
imum, the inequality signs in (7.A2.4d) must be reversed.]

It can be shown that t1* is independent of the value of �, eq. (4c), but does depend

on the partial derivatives/coefficients of the �q’s in Jð�qÞ, eqs. (7.A2.1d, 3b); that is,

on the orbit I .
If t1* ¼ t2, then �2AH is positive semidefinite — that is, it may vanish for a

�qðtÞ 6¼ 0 — in which case, we have to resort to higher-order variations. If

t1* < t2, then �2AH is sign-indefinite — that is, it is negative for one class of varia-

tions and positive for another — AHðqÞ has a minimax (or saddle-point); that is, there

is no extremum.

REMARKS

(i) The Euler–Lagrange test supplies the orbit equation; its solution(s) require(s)

integration of the equation of motion and then utilization of the given boundary

conditions.

(ii) The Legendre–Weierstrass test means that locally — that is, for very small
t2 � t1 — AH is always a minimum; that is, for any potential force field.

Let us show this for stationary constraints. Since �qðt1Þ ¼ 0, we have

j�qðtÞj ¼
 ðt

t1

�ð _qqÞ dt
 � "ðt� t1Þ; ð7:A2:5aÞ

where " � max j�ð _qqÞj in ðt1; t2Þ; and, therefore, for very small t2 � t1, the �ð _qqÞ-terms
always dominate over the �q-terms. Hence, for such constraints,

�2L ¼ ð1=2Þð@2L=@q2Þð�qÞ2 þ ð@2T=@q @ _qqÞ �q �ð _qqÞ þ ð1=2Þð@2T=@ _qq2Þð�ð _qqÞÞ2

¼ ð1=2Þð@2L=@q2Þð�qÞ2 þ ð@2T=@q @ _qqÞ �q �ð _qqÞ þ T ½�ð _qqÞ�
� T ½�ð _qqÞ� > 0 ð7:A2:5bÞ

[where Tð� _qqÞ signifies what becomes of Tð _qqÞ, which is positive definite in _qq, if we

replace in it _qq with �ð _qqÞ], and, accordingly,

�2AH ¼
ð
�2L dt �

ð
T ½�ð _qqÞ� dt > 0 ) AHðqÞ : minimum; Q:E:D: ð7:A2:5cÞ

(iii) The Jacobi test imposes a limit on the length of the orbit; that is, on the t2 � t1
range (as long as t1* is finite). [The sum of two minimal orbits will be a minimal orbit

if the ‘‘sum orbit’’ does not exceed its Jacobi limit.]

Ideally, and very rarely, the conjugate root(s) to t1 are found as follows: the

general solution of the second-order Lagrangean equation EðqÞ ¼ 0 has the form:

q ¼ qðt; c1; c2Þ; c1; c2 : integration constants: ð7:A2:6aÞ

Now, the orbit I corresponds to fixed values of c1 and c2 [to be determined from the

boundary conditions: qðt1; c1; c2Þ ¼ q1 (given), qðt2; c1; c2Þ ¼ q2 (given)], whereas

typical neighboring paths II ¼ I þ �I correspond to the values c1 þ �c1 and

c2 þ �c2. On such adjacent paths,

�q ¼ ð@q=@c1Þ �c1 þ ð@q=@c2Þ �c2; ð7:A2:6bÞ
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and therefore the boundary conditions for t1; t1* become [with the notation ð. . .Þ� �
ð. . .Þ evaluated at �]

�qðt1Þ ¼ ð@q=@c1Þ1 �c1 þ ð@q=@c2Þ1 �c2 ¼ 0; ð7:A2:6cÞ

�qðt1*Þ ¼ ð@q=@c1Þ� �c1 þ ð@q=@c2Þ� �c2 ¼ 0: ð7:A2:6dÞ

This linear and homogeneous system, in the �q’s, expresses the fact that the slightly
differing paths I and II cross at t1 and then again at t1*; or, they are traversed in the
same time t1*� t1; q1 and q1� are (mutually) conjugate kinetic foci on I .

For nontrivial solutions (i.e., �c1; �c2 6¼ 0), the system of equations (7.A2.6c, d)

leads, in well-known ways, to the determinantal equation

Dðt1; t1*Þ �
ð@q=@c1Þ1 ð@q=@c2Þ1
ð@q=@c1Þ� ð@q=@c2Þ�


 ¼ 0: ð7:A2:7Þ

The first, or smallest, of its (real) roots to the right of t1 is what enters the Jacobi

condition (7.A2.4d).

Example 7.A2.1 As an illustration, let us consider the linear harmonic oscillator:

m €qqþ k q ¼ 0) €qqþ !2q ¼ 0; ! � ðk=mÞ1=2 : frequency ða positive constantÞ: ðaÞ
Here, as is well known,

2T ¼ m ð _qqÞ2 ðm : massÞ; 2V ¼ k q2 ðk : positive constantÞ ðbÞ

) Q ¼ �dV=dq ¼ �k q ) dQ=dq ¼ �d2V=dq2 ¼ �k < 0; ðcÞ
and so the general solution of (a) and its variation are, respectively,

q ¼ c1 sinð! tÞ þ c2 cosð! tÞ; �q ¼ ½sinð! tÞ� �c1 þ ½cosð! tÞ� �c2: ðdÞ
Therefore, with t1 ¼ 0, eq. (7.A2.7) gives

Dð0; t1*Þ �
0 1

sinð! t1*Þ cosð! t1*Þ


 ¼ � sinð! t1*Þ ¼ 0; ðeÞ

and, clearly, its first root to the right of t1 ¼ 0 is

t1* ¼ �=! ¼ �=2 : half period of oscillation: ðfÞ
Since @2L=@ _qq2 ¼ @2T=@ _qq2 ¼ m > 0, always, the corresponding action

AH ¼
ðt2

0

ð1=2Þ ½m ð _qqÞ2 � k q2� dt; ðgÞ

is a minimum as long as t2 < �=2 (generally, for t2 � t1 < �=2).

For an n DOF linear oscillatory system (expressing its T and V in principal

coordinates, and noting that its n characteristic frequencies !1 � !2 � � � � � !n are

intrinsic system properties), it is not hard to show that the corresponding Jacobi
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minimum action condition is

t2 < t1* ¼ �min=2 ¼ �n=2 � �=!n : smallest half period of oscillation. ðhÞ
(See also Aizerman, 1974, pp. 276–279.) From the above, we conclude that:

(i) For n!1 (i.e., continuum; e.g., oscillating string), !n !1 and, therefore,

t1*! 0, AH is never a minimum.

(ii) Under constant or repulsive (nonoscillatory) forces — that is, dQ=dq ¼
�d2V=dq2 	 0, t1*!1 — such forces always minimize AH .

n DOF

Finally, the entire argument for the determination of kinetic foci, namely eqs.

(7.A2.6a–7), carries over to the n DOF case. There, eqs. (7.A2.6a, b) are replaced,

respectively, by

qk ¼ qkðt; c1; . . . ; c2nÞ ) �qk ¼
X
ð@qk=@c�Þ �c�

ðk ¼ 1; . . . ; n; � ¼ 1; . . . ; 2nÞ ð7:A2:8aÞ
and eqs. (7.A2.6c, d) and (7.A2.7) byX

ð@qk=@c�Þ1 �c� ¼ 0;
X
ð@qk=@c�Þ� �c� ¼ 0; ð7:A2:8bÞ

and the 2n� 2n determinantal equation

Here too, the smallest root of (7.A2.8c) to the right of t1, t1*, is what enters Jacobi’s

minimum condition: .

[This argument and equations are due to the noted German mathematician

A. Mayer (1866 and subsequently); one of the founders of the sufficiency variational

theory, for both fixed and variable endpoint problems.]

The problem of the extremum of the Hamiltonian action can be summarized as

follows:

� AH , along an orbit I , is never a maximum; it is either a minimum (from an initial

configuration C1 up to any other configuration C2 located before the first kinetic focus

of C1, C1*; all on I), or a minimax (saddle-point) (from C1 to a C2 beyond C1*).

� Limiting cases: If C1*! C1, then AH is a minimax for any t2 > t1 ¼ t1*; if C1*!1,

then AH is a minimum for any t2.

Such tests have also been obtained for the Lagrangean action AL; see Papastavridis

[1985(b), 1986(a), 1986(c): general variable endpoints form], Peisakh [1966: Jacobi’s

geodesic (fixed endpoints) form].

Dðt1; t1*Þ ¼

ð@q1=@c1Þ1 . . . ð@q1=@c2nÞ1
ð@qn=@c1Þ1 . . . ð@qn=@c2nÞ1
ð@q1=@c1Þ� . . . ð@q1=@c2nÞ�
ð@qn=@c1Þ� . . . ð@qn=@c2nÞ�




¼ 0: ð7:A2:8cÞ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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7.A3 Averaged Action

As we have just seen, the stationary (or critical) ‘‘points’’ of AH are, in general (i.e.,

for extended periods of time), saddle-points. Therefore, if we are to develop reliable

AH-based extremum criteria, similar to those of static stability, we must introduce

some other energetic functions or functionals. Following the valuable lessons of the

method of averaging of nonlinear oscillations (ex. 7.9.7), we choose as such function

the time average of the system’s Lagrangean. Indeed, with t2 � t1 � � , we have, for a

general motion,

hLi � lim½AHð�Þ=� ��!1 ¼ lim ð1=�Þ
ð
L dt

� �
�!1

ð7:A3:1Þ

(for periodic motions, no limiting process is needed). hLi is no longer a function of

time, and its stationarity/extremality becomes a problem of ordinary differential

calculus. For example, and again guided by nonlinear oscillations, we may try in

AH the Fourier series expansion of the trial solution (say, in complex form, for

compactness; see also }8.14):

qðtÞ � qoðtÞ ¼
X

cs expði !s tÞ; cs ¼ ð1=�Þ
ðþ�=2
��=2

qoðtÞ expð�i !s tÞ dt; ð7:A3:2Þ

s ¼ �1; . . . ;þ1; !s � s! ¼ ð2�=�Þs: ð7:A3:2aÞ
Then hLi becomes a function of the Fourier coefficients (amplitudes), and

‘‘Hamilton’s averaged principle’’ takes the discrete form

�hLi ¼ 0 ) @hLi�@cs ¼ 0 ðs ¼ 0; 1; 2; . . .Þ; ð7:A3:3Þ
while the type of the stationarity of hLi is determined from the study of the sign

properties of its ‘‘Hessian matrix’’ (@2hLi�@cr@cs), every element of which is an

algebraic function of the Fourier coefficients. For the use of hLi in general nonlinear

dynamics, see the earlier-mentioned (ex. 7.9.13) highly readable and informative

papers by Gray et al. [1996(a), (b); and references cited therein]; also Helleman

(1978); and for applications to the stability of nonlinear oscillations, see

Baumgarte (1987).

Problem 7.A3.1 Show that the averaged Lagrangean of the undamped and forced

linear oscillator €qqþ !o
2q ¼ Qo cosð! tÞ, where Qo; ! are, respectively, the forcing

amplitude and frequency, and

AHð�Þ ¼
ð�

0

�ð1=2Þð _qqÞ2 � ð1=2Þ !o
2 q2 þQo cosð! tÞ q� dt ðaÞ

has a minimum for !o < !, and a maximum for !o > ! (both for all time).

7.A4 The Integral Stability Criterion
[of Blekhman–Lavrov and Valeev-Ganiev (1960s)]

To dispel any possible impressions that the extrema of the averaged Lagrangean are

somehow only of ‘‘academic’’ interest, we sketch below their application to the
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theory of synchronization of oscillating mechanical objects. For a complete treatment

of this theoretically and practically important subject (that is conspicuously absent

from almost all Western references), see the fundamental and extensive works of its

key exponent, Blekhman (1971, 1979, 1981/1988; and Blekhman and Malakhova,

1990).

Following Valeev and Ganiev (1969), we consider the oscillations of an n DOF

weakly nonlinear, or quasi-linear, potential system with Lagrangean [say, in the prin-

cipal coordinates of the corresponding linear (i.e., unperturbed), constant coefficient

system; that is, for " ¼ 0]:

L ¼ Lð!t; q; _qq; "Þ � T � V

¼
X
ð1=2Þ ½ð _qqkÞ2 � !k

2qk
2� þ "L1ð!t; q; _qq; "Þ; ð7:A4:1Þ

where !k are the natural frequencies of the system (given constants), 0 < "� 1

(hence the name quasi-linear), and L1ð. . .Þ is periodic in the forcing (external) fre-

quency !; that is,

L1ð!tþ 2�; q; _qq; "Þ ¼ L1ð! t; q; _qq; "Þ: ð7:A4:1aÞ
Below we examine the case where ! is, approximately, in rational ratios to the !k’s

(frequently referred to as near-resonance case):

!k=! � ik=N or ik ! � !kN; and �k=! ¼ ik=N or ik ! ¼ �kN;
ð7:A4:2Þ

where

!k
2 � �k2 ¼ Oð"Þ; ð7:A4:2aÞ

ik : nonnegative integer; N : suHciently large positive integer; ð7:A4:2bÞ
[and Oð. . .Þ � Of order ð. . .Þ has its usual meaning: f ð"Þ ¼ O½gð"Þ�, for two general

functions f ð. . .Þ and gð. . .Þ, means that for "! 0: lim j f ð"Þ=gð"Þj <1; e.g.,

sinð6"Þ ¼ Oð"Þ, cosð3"Þ ¼ Oð"0Þ ¼ Oð1Þ]. Then (7.A4.1) can be re-expressed as

L ¼
X
ð1=2Þ ð _qqkÞ2 � �k2qk

2
h i

þ " L1ð!t; q; _qq; "Þ þ ð1="Þ
X
ðqk2=2Þð�k2 � !k

2Þ
h i

�
X
ð1=2Þ ð _qqkÞ2 � �k2qk

2
h i

þ "Lð1Þð!t; q; _qq; "Þ: ð7:A4:3Þ

The above show that the unperturbed system [i.e., (7.A4.3) for " ¼ 0: qk ! qko:
generating function] has equations of motion d2qko=dt

2 þ �k2qko ¼ 0, and, therefore,

general solutions

qko ¼ qkoðtÞ ¼ ak cosð�ktÞ þ ðbk=�kÞ sinð�ktÞ;
ak ¼ qkoð0Þ and bk ¼ _qqkoð0Þ : initial conditions: ð7:A4:4Þ

We notice that since the �k are rationally commensurate to !— that is, �k ¼ ðik=NÞ!
— the qko have the common period

� � ð2�=!ÞN ¼ 2�ðN=!Þ ¼ 2�ðik=�kÞ ¼ ð2�=�kÞik � �kik: ð7:A4:5Þ
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Let us now examine the perturbed system (" 6¼ 0). Its equations of motion are

EkðLÞ � ð@L=@ _qqkÞ: � @L=@qk ¼ 0 :

€qqk þ �k2qk ¼ �"
�ð@Lð1Þ=@ _qqkÞ:� @Lð1Þ=@qk� � "Fkð!t; q; _qq; "Þ;

ð7:A4:6Þ

where Fkð!t; q; _qq; "Þ ¼ Fkð2�þ !t; q; _qq; "Þ.
Applying, next, the well-known method of variation of constants (ex. 7.9.14 and

}8.7) to these perturbed (nonhomogeneous) equations, based on the general solutions

of the corresponding unperturbed (homogeneous) equations (7.A4.4), we find

qkðtÞ ¼ qkoðtÞ þ ð"=�kÞ
�

sinð�ktÞ
ðt

0

Fkð!x; qko; _qqko; 0Þ cosð�kxÞ dx

� cosð�ktÞ
ðt

0

Fkð!x; qko; _qqko; 0Þ sinð�kxÞ dx
�
þOð"2Þ;
ð7:A4:7Þ

(a result reminiscent of the well-known ‘‘Duhamel’s superposition integral’’ formula

of forced linear vibrations); or, further, with some standard manipulations and

recalling eqs. (7.A4.4–6),

qkðtÞ ¼ ak cosð�ktÞ þ ðbk=�kÞ sinð�ktÞ

� ð"=�kÞ
ðt

0

�ð@Lð1Þ=@ _qqkÞ:� @Lð1Þ=@qk�o sin �kðt� xÞ½ � dx
� �

þOð"2Þ;ð7:A4:8Þ

where ½. . .�o � ½. . .� evaluated for the generating solution qkoðxÞ, where x is a dummy

variable of integration. This allows us to calculate the new initial values ak1 and bk1

after the period � : from (7.A4.8) [or, more easily, (7.A4.7)] with t! � , we find

qkð�Þ ¼ qkoð�Þ þ ð"=�kÞ
ð�

0

½. . .�o sinð�kxÞ dxþOð"2Þ ðwith t1 ¼ 0; t2 ¼ �Þ;
ð7:A4:9Þ

or

ak1 ¼ ak þ "�Pk þ Oð"2Þ; ð7:A4:9aÞ

Pk ¼ Pkðal ; blÞ � ð1=�k�Þ
ð�

0

�ð@Lð1Þ=@ _qqkÞ: � @Lð1Þ=@qk�o sinð�kxÞ dx: ð7:A4:9bÞ

Similarly, ð. . .Þ:-differentiating (7.A4.8), or (7.A4.7), and so on, we find

_qqk ð�Þ ¼ _qqko ð�Þ � "
ð�

0

½. . .�o cosð�kxÞ dxþOð"2Þ; ð7:A4:10Þ

or

bk1 ¼ bk þ "�Qk þOð"2Þ; ð7:A4:10aÞ

Qk ¼ Qkðal ; blÞ � �ð1=�Þ
ð�

0

�ð@Lð1Þ=@ _qqkÞ:� @Lð1Þ=@qk�o cosð�kxÞ dx: ð7:A4:10bÞ
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Next, integrating the d=dxð. . .Þ-term of the integrand of both Pk and Qk by parts,

and noting that the integrated-out terms vanish (due to periodicity), we find

Pk ¼ �ð1=�Þ
ð�

0

�ð@Lð1Þ=@ _qqkÞ cosð�kxÞ þ ð@Lð1Þ=@qkÞ ½sinð�kxÞ=�k�
�
o
dx

¼ �ð1=�Þ
ð�

0

ð@Lð1Þ=@bkÞo dx; ð7:A4:11aÞ

Qk ¼ �ð1=�Þ
ð�

0

�ð@Lð1Þ=@ _qqkÞ ½�k sinð�kxÞ� þ ð@Lð1Þ=@qkÞ cosð�kxÞ
�
o
dx

¼ ð1=�Þ
ð�

0

ð@Lð1Þ=@akÞo dx: ð7:A4:11bÞ

A final simplification of the above occurs with the help of the following function:

L ¼ Lðak; bkÞ � ð1=�Þ
ð�

0

L
�
!x; qkoðxÞ; dqkoðxÞ=dx; "

�
dx :

Average of perturbed Lagrangean; but evaluated along the ðknownÞ
unperturbed solution ð6¼ hLiÞ; ð7:A4:12Þ

or, recalling (7.A4.3), and noting that due to (7.A4.4)ð�
0

ð1=2Þ�½dqkoðxÞ=dx�2 � �k2qkoðxÞ2
�
dx ¼ 0 ðVirial theorem for qkoÞ;

ð7:A4:12aÞ
finally,

L ¼ ð"=�Þ
ð�

0

½Lð1Þ�o dx ¼ Oð"Þ: ð7:A4:12bÞ

Then, and recalling (7.A4.11a, b), eqs. (7.A4.9a, 10a) reduce, respectively, to

Dak � ak1 � ak ¼ ��ð@L=@bkÞ þOð"2Þ

¼ �" @=@bk

ð�
0

½Lð1Þ�o dx
� �

þOð"2Þ; ð7:A4:13aÞ

Dbk � bk1 � bk ¼ þ �ð@L=@akÞ þOð"2Þ

¼ þ " @=@ak

ð�
0

½Lð1Þ�o dx
� �

þOð"2Þ: ð7:A4:13bÞ

Now Valeev and Ganiev (1969), reasoning as in the method of slowly varying para-

meters, have demonstrated that this finite difference system can be replaced by the

following Hamiltonian, or canonical, differential system (}8.2):

dak=dt ¼ �@L=@bk þOð"2Þ; dbk=dt ¼ þ @L=@ak þ Oð"2Þ: ð7:A4:14Þ
These equations readily show that the periodic solutions of (7.A4.3, 6) — that is,

Dak ¼ 0, Dbk ¼ 0, or dak=dt ¼ 0, dbk=dt ¼ 0 — to the first "-order, are determined

from the following 2n conditions of stationarity, or ‘‘equilibrium,’’ of L:

@L=@ak ¼ 0; @L=@bk ¼ 0 ðk ¼ 1; . . . ; nÞ; ð7:A4:15Þ
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and also provide the ‘‘energy’’ integral

dL=dt ¼
X �ð@L=@akÞ _aak þ ð@L=@bkÞ _bbk

� ¼ Oð"2Þ;
) Lðak; bkÞ ¼ constantþOð"2Þ: ð7:A4:16Þ

Next, let ðako; bkoÞ be a solution of (7.A4.15); that is, a stationary point of L. To

examine its stability in the first "-approximation, we expand eqs. (7.A4.14) around

that equilibrium solution, and linearize them in the deviations from it, Ak � ak � ako
and Bk � bk � bko, while invoking (7.A4.15). In this way, we obtain the following

linear variational equations (Poincaré’s ‘‘équations aux variations’’):

dAk=dt ¼ �
X

ð@2L=@bk @alÞ Al þ ð@2L=@bk @blÞ Bl

� �
; ð7:A4:17aÞ

dBk=dt ¼ þ
X

ð@2L=@ak @alÞ Al þ ð@2L=@ak @blÞ Bl

� �
; ð7:A4:17bÞ

where all partial derivatives are calculated at (ako; bko).
Assuming, as usual, time-exponential solutions for Ak and Bk [i.e., � expð
tÞ],

and substituting them into the (7.A4.17a, b), we are readily led at the following

2n-degree characteristic equation for 
:

D ¼ Dð
Þ � �ð@2L=@bk @alÞ � 
 �kl �ð@2L=@bk @blÞ
@2L=@ak @al ð@2L=@ak @blÞ � 
 �kl


 ¼ 0: ð7:A4:18Þ

For (asymptotic) stability of the point (ako; bko): All 
-roots of D ¼ 0 must have

negative real parts (}3.10); if the real part of even one such root is positive, that point

is unstable; while if it is zero, that point is stable in the first "-approximation.

Therefore, the conditions for a ‘‘coarse’’ extremum of Lðak; bkÞ [i.e., a strict

extremum detected by analysis of the second-order terms in the expansion

Lðako þ Ak; bko þ BkÞ � Lðako; bkoÞ— the term is due to Blekhman] at (ako; bko)
also represent the sufficient conditions for a stable periodic solution, to the first

"-order; and for " ¼ 0 reducing to the generating solution (7.A4.4). Hence, L plays

the role that the total potential energy plays, in the static stability analysis of poten-

tial systems. Let us examine (7.A4.17a, b, 18) further. With the help of the notations

@2L=@ak @al � �kl ¼ �lk; @2L=@bk @bl � �kl ¼ �lk;
@2L=@bk @al ¼ @2L=@al @bk � �kl 6¼ �lk � @2L=@bl @ak ¼ @2L=@ak @bl ; ð7:A4:19Þ

equations (7.A4.17a, b) can be written, respectively,

dAk=dt ¼ �
X
ð�kl Bl þ �kl AlÞ; ð7:A4:20aÞ

dBk=dt ¼ þ
X
ð�lk Bl þ �kl AlÞ; ð7:A4:20bÞ

while in terms of the Lagrange-like function K [see also (8.3.12 ff.)]

2K ¼
XX

ð�kl Bk Bl þ 2�kl Bk Al þ �kl Ak AlÞ; ð7:A4:21Þ

they can be brought to the Hamiltonian form (}8.2)

dAk=dt ¼ � @K=@Bk; dBk=dt ¼ þ @K=@Ak: ð7:A4:22Þ
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In view of the above, the characteristic equation (7.A4.18) can also be rewritten,

successively, as follows (partitioned in subdeterminants):

Dð
Þ ¼
j�lk � 
 �lkj j�kl j
j � �klj j � �kl � 
 �kl j




¼ ð�1Þn
j�lk � 
 �lkj j�kl j
j�klj j�kl þ 
 �kl j




¼ ð�1Þn
j�kl j j�kl þ 
 �kl j

j�lk � 
 �lkj j�kl j




½after swapping the first n rows with the last n rows�

¼ ð�1Þn
j�kl þ 
 �kl j j�kl j
j�kl j j�lk � 
 �lkj




½after swapping the first n columns with the last n columns�

¼ ð�1Þn
j�kl þ 
 �kl j j�kl j
j�kl j j�lk � 
 �lkj




½after transposing the determinant about its main diagonal�; ð7:A4:23Þ

and comparing the second and last of these forms of Dð
Þ, we readily see that

Dð
Þ ¼ Dð�
Þ: ð7:A4:24Þ
In words: if 
 is a root of the characteristic equation (and hence an eigenvalue of the

variational equations), then so is �
; that is, Dð
Þ ¼ 0 can contain only even powers

of 
. Therefore, if such a root is complex with negative real part, or a negative real

number () asymptotic stability), its negative will also be a root with positive real

part, or a positive real number () exponential, or flutteral, instability). Hence (and

since asymptotic stability cannot occur in our conservative system), for stability, all

’s must be purely imaginary, and then they appear in mutually conjugate pairs: ia
(a: real). In this case [recall discussion following eq. (3.10.18a)] we say that the system

possesses critical or nonsignificant behavior, i.e., its stability cannot be safely con-

cluded from its linear perturbation equations (7.A4.17a, b; 20a, b); in such cases, we

must consider the nonlinear A and B terms of Oð"2Þ. However, if no such higher-

order terms are present, which is the quasi-linear (first "-approximation) case dis-

cussed here, then purely imaginary roots of Dð
Þ ¼ 0 do signify stability.
[For detailed discussions of this very important problem of the stability of

motion, including the fundamental contributions of Liapunov on it, see, for example

(alphabetically): Chetayev (1955), Hughes (1986, pp. 480–521), Kuzmin (1973),

Meirovitch (1970, chap. 6), Pars (1965, chap. 23), Pollard (1976, pp. 117–131).]
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Our discussion of the integral stability criterion can be summarized as follows: Let

L be the time average of the Lagrangean of the original quasi-linearly perturbed
system, eqs. (7.A4.6), but calculated along the periodic solutions of the unperturbed
linear system, eqs. (7.A4.4), as a function of the initial values of the generating
solution (ak; bk). Next, consider the stationary points of L, (ako; bko): if these points

are also extrema (maxima or minima) of L, then, to the first "-approximation, they

constitute stable (periodic) solutions of the original system. Nonextremum stationary

points require special consideration.

Example 7.A4.1 Let us consider a system with (exact) Lagrangean

L ¼ ð _qqÞ2=2� q2=2þ "½�� q2 þ q _qq sinð2tÞ� ð0 < "� 1Þ; ðaÞ

and, therefore, equation of motion, the linear Mathieu equation

€qqþ q ¼ �"½�þ 2 cosð2tÞ� q;

or

€qqþ ½1þ "�þ 2" cosð2tÞ� q ¼ 0: ðbÞ

Here, clearly, n ¼ 1, �k ¼ 1, ! ¼ 2 ) � ¼ �N, �k ¼ 2�, and the unperturbed system

(" ¼ 0): €qq þ q ¼ 0 has generating solution

qo ¼ qoðtÞ ¼ a cos tþ b sin t ða; b : initial values of qo; _qqoÞ: ðcÞ

The average of L evaluated along (c) (i.e., between t1 ¼ 0 and t2 ¼ 2�) equals, after

(7.A4.12, 12b),

L ¼ ð1=2�Þ
ð2�

0

L
�
qoðxÞ; dqoðxÞ=dx; x

�
dx

¼ � � � ¼ �ð"=4Þ �ð�þ 1Þ a2 þ ð�� 1Þ b2
� � Lða; bÞ: ðdÞ

Using subscripts to denote partial derivatives relative to a; b, we readily see that the

sole root of La ¼ 0, Lb ¼ 0 is (ao ¼ 0, bo ¼ 0); that is, the equilibrium state

qoðtÞ ¼ 0. At that point, since

Laa ¼ �ð"=2Þð�þ 1Þ : > 0 for � < �1;

< 0 for � > �1; ðe1Þ

Lbb ¼ �ð"=2Þð�� 1Þ : > 0 for � < 1;

< 0 for � > 1; ðe2Þ

Lab ¼Lba ¼ 0; ðe3Þ
) D � LaaLbb � Lab ¼ "2ð�2 � 1Þ�4 :

> 0; for � > 1 or � < �1; i:e:; for j�j > 1;

< 0; for � 1 < � < 1; i:e:; for j�j < 1 ðe4Þ
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(using ordinary theory of extrema of a function of two variables), we easily conclude

that

D > 0 and Laa ðor LbbÞ > 0 : � < �1) L : minimum;

D > 0 and Laa ðor LbbÞ < 0 : � > 1) L : maximum;

D < 0 : j�j < 1) L : min=max ðsaddle-pointÞ: ðe5Þ
Therefore, the equilibrium solution of (b) is stable for j�j > 1, and unstable for

j�j < 1; while for � ¼ 1) D ¼ 0, the equilibrium point is defined ambiguously,

and this implies the existence of periodic solutions — we are exactly on top of the

famous stability/instability boundaries of Mathieu’s equation, which emanate from

the (usually) horizontal axis of the ‘‘Strutt chart’’ at 1; that is, for " ¼ 0. These results

coincide with those found by other methods; see, for example, Cunningham (1958,

pp. 270–273), Papastavridis [1981, 1982(b)].

Finally, let us examine the equivalence between the above, extremum of L-based

approach, with that based on the study of the eigenvalues of the variational equa-

tions (7.A4.17a, b; 20a, b). We have

_aa ¼ �Lb ) _AA ¼ �LbaA� LbbB; ðf1Þ
_bb ¼ Lb ) _BB ¼ LaaAþ LabB; ðf2Þ

and so the corresponding characteristic equation is

Dð
Þ ¼
�ðLab þ 
Þ �Lbb

Laa Lab � 



 ¼ 0; ðg1Þ

from which we readily get


2 ¼ Lab
2 � LaaLbb ) 
2 ¼ �D: ðg2Þ

For stability, clearly, 
2 < 0 ) D > 0; as in the first two of eqs. (e5). Then 
 is

purely imaginary, and therefore, A, B are harmonically oscillatory.

If 
2 > 0 ) D < 0, as in the third of eqs. (e5), then 
 is real, and therefore, A, B
increase exponentially; that is, instability. If 
2 ¼ �D ¼ 0, the linear stability criter-

ion fails.

Thus, we have affirmed the equivalence between the extremum of (d) and the

stability of (f1, 2).
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8.1 INTRODUCTION

The independent variables of Lagrangean mechanics (holonomic and/or nonholo-

nomic) are t, q, and _qq (or !). In this chapter, we introduce the reader to a very

important alternative formulation of analytical mechanics, known as Hamiltonian

mechanics (HM), where the independent dynamical variables are t, q, and

1070
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Introduction
to

Equations of Hamilton and Routh;
Canonical Formalism

This is the celebrated ‘‘canonical form’’ of the equations of

motion of a system, though why it has been so called it would

be hard to say.

(Thomson and Tait, 1912, no. 319, p. 307)

We recognize two purposes in the study of general methods in

dynamics. First, the practical purpose, to increase our power in

solving specific problems by developing standard techniques

with a wide range of applicability. Secondly, the intellectual

purpose, to understand the mathematical structure of dynamics.

. . . Historically [general dynamical theory] has been suggested

by, and developed in terms of, the Newtonian dynamics of

particles and rigid bodies. But we feel an urgent need to give it a

wider scope, presenting it as a consistent mathematical theory

applicable to any physical system the behaviour of which can be

expressed in Lagrangian or Hamiltonian form.

(Synge, 1960, pp. 99–100)

Hamiltonian mechanics is the description of a mechanical system

in terms of generalized coordinates qi and generalized momenta

pi ; . . . the Hamiltonian formulation . . . is far better suited for the

formulation of quantum mechanics, statistical mechanics, and

perturbation theory. In particular, the use of Hamiltonian phase

space provides the ideal framework for a discussion of the

concepts of integrability and nonintegrability and the description

of the chaotic phenomena that can be exhibited by

nonintegrable systems.

(Tabor, 1989, p. 48)

Hamiltonian/Canonical Methods



p

HISTORICAL

Hamiltonian mechanics was originated by Lagrange himself (1810–1811), and also

Poisson (1809), in connection with perturbation methods for celestial mechanics

problems; was duly noted and generally formulated by Cauchy (1819); but was

brought to prominence by Hamilton (1834–1835); and was extended to nonstation-

ary constraints by Ostrogradskii (1848–1850), and Donkin (1854).

Briefly, in HM, the n system positions q and associated n system momenta p
become the system coordinates in a 2n-dimensional phase, or state, space; and the

corresponding n Lagrangean equations of motion of the system (in the q’s) are

replaced by 2n first-order symmetrical, or canonical, Hamiltonian equations of

motion (in the q’s and p’s).
That a _qq, p transformation is ‘‘always’’ possible, is easily seen as follows: by

(@=@ _qq)-differentiating the kinetic energy (recalling expressions in }3.9),

2T ¼
XX

Mkl _qqk _qql þ 2
X

Mk _qqk þM0

¼ 2Tðt; q; _qqÞ ð¼ 2T2 þ 2T1 þ 2T0Þ; ð8:1:1Þ

ðMkl ;Mk;M0: functions of the q’s and t; k; l ¼ 1; . . . ; nÞ; ð8:1:1aÞ

we obtain the p’s as linear and independent functions in the _qq’s (and t; q’s):

pk � @T=@ _qqk ¼
X

Mkl _qql þMk � pkðt; q; _qqÞ; ð8:1:2Þ

while inverting (8.1.2) [assuming that Det ðMklÞ � Det ð@2T=@ _qqk @ _qqlÞ 6¼ 0; that is,

assuming that the Hessian of T (or L) does not vanish identically; and viewing t and

the q’s as parameters; see also MacMillan (1936, pp. 358–360)], we obtain the _qq’s as

linear functions of the p’s:

_qql ¼
X

M 0
lk pk þM 0

l � _qqlðt; q; pÞ; ð8:1:3Þ

ðM 0
lk;M

0
l : functions of the q’s and t; k; l ¼ 1; . . . ; nÞ: ð8:1:3aÞ

Thus, Lagrange’s equations, say,

ð@T=@ _qqlÞ:� @T=@ql ¼ Ql ; ð8:1:4Þ
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p ≡ ∂T/∂q̇ = system (or generalized) momenta (or, sometimes, p ≡ ∂L/∂q̇).
Hamiltonian mechanics and its associated equations of motion constitute a powerful
and fertile version of theoretical mechanics. It represents the last and most abstract/
mathematical stage of classical mechanics, and is the one that played a crucial role in
the latter’s eventual replacement by quantum mechanics (1920s) as a fundamental physical
theory. Although, historically, of primary interest to physicists and astronomers/celestial
mechanicians, over the past few decades HM has been becoming increasingly relevant, if
not indispensable, to engineers; for example, in optimization, robotics, and, most impor-
tantly, for the understanding of modern nonlinear dynamics [which includes prominently
(deterministic) chaos].



(}3.5) have been transformed into the completely equivalent system of 2n first-order
equations:

dpl=dt ¼ ð@T=@qlÞj _qq¼ _qqðt;q;pÞ þQlðt; qÞ � dplðt; q; pÞ=dt; ð8:1:5Þ
dql=dt ¼

X
M 0

lkpk þM 0
l � dqlðt; q; pÞ=dt ðlinear in the p’sÞ; ð8:1:5aÞ

and this is the essence of the Hamiltonian formalism.

In general, any function of the Lagrangean variables f ¼ f ðt; q; _qqÞ, becomes,

upon substitution of (8.1.5a) in it, a certain ‘‘associated’’ function of the

Hamiltonian variables:

f ¼ f ðt; q; _qqÞ � fðq _qqÞ ¼ f ½t; q; _qqðt; q; pÞ� � f ðt; q; pÞ � fðqpÞ; ð8:1:6Þ

ciated f ðt; q; _qqÞ. [The elaborate notations fðq _qqÞ and fðqpÞ will be used only in potentially

ambiguous situations.] A detailed treatment of HM, comparable to that of

Lagrangean mechanics presented so far, is beyond the scope and limits of this

book. Instead, in this chapter, we concentrate on topics of more or less engineering

The literature on Hamiltonian mechanics is, expectedly, very extensive and varied.

For concurrent (and further) reading we recommend (alphabetically):

Born (1927): Masterful and readable exposition by a very famous and wise theoretical

physicist.

Chertkov (1960): Applications of Jacobi’s method to rigid-body dynamics.

Frank (1935, pp. 59–65, 72–136, 191–239): Encyclopedic classical treatment.

Fues (1927, pp. 131–177): Classical Hamiltonian perturbation theory.

Gantmacher (1970, pp. 71–87, 98–165, 242–258): Compact classical treatment; excellent.

Hagihara (1970): Advanced and comprehensive treatise, primarily for celestial mechan-

icians.

Lanczos (1970, pp. 125–130, 161–290): Extensive classical coverage; highly recommended.

Lichtenberg and Lieberman (1992): Warmly recommended for further study of non-

linear/chaotic dynamics.

McCauley (1997): Modern, mature, insightful treatment; most highly recommended.

Nordheim and Fues (1927, pp. 91–130): General and compact encyclopedic treatment.

Prange (1935, pp. 570–785): Extensive and authoritative classical coverage; highly recom-

mended.

Tabor (1989): One of the most readable modern accounts of nonlinear dynamics; very

highly recommended for further study.

Whittaker (1937, pp. 54–57, 193–208, 263–338): Mature and insightful classical treatment.

Winkelmann and Grammel (1927, pp. 469–483): Outstanding engineering reference.

Additional special references will be given in later sections.
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significance; for example, (i) equations of Routh [a mixed formulation that uses as inde-
pendent variables some of the p’s and the remaining q̇’s (and, of course, t and the q’s); and
as such is “halfway” between the methods of Lagrange and Hamilton], and their applica-
tion to the study of steady motion and its stability; and (ii) applications of the canonical
formalism to the approximate analytical solution of the equations of motion (canonical
perturbation theory).

and conversely, any f (t, q, p) becomes, upon substitution of (8.1.2) in it, an asso-

Hamel (1949, pp. 281–312, 317–361, 653–709): Insightful and masterful presentation, as
usual.



8.2 THE HAMILTONIAN, OR CANONICAL, CENTRAL EQUATION

AND HAMILTON’S CANONICAL EQUATIONS OF MOTION

To obtain equations in the canonical variables t, q, p, we proceed, as in the

Lagrangean case, from the invariant differential principle of Lagrange (LP), but in

the central equation form (}3.6):

�I ¼ � 0W :
X

pk �qk

� �:
� �T ¼

X
Qk �qk; ð8:2:1Þ

or, after carrying out the differentiations indicated [and assuming that, as in (8.2.1),

ð�qÞ: ¼ �ð _qqÞ], X
ðdpk=dtÞ �qk þ

X
pk �ð _qqkÞ � �T ¼ � 0W : ð8:2:1aÞ

Now, combining the second and third terms of the left side of the above, so as to

create a total �ð. . .Þ-variation:X
pk �ð _qqkÞ � �T ¼ �

X
pk _qqk � T

� �
�
X

_qqk �pk; ð8:2:1bÞ

and introducing the new function (and this is the key step!)

T 0 �
X

pk _qqk � T
� �

_qq¼ _qqðt;q;pÞ

¼
X

pk _qqkðt; q; pÞ � T ½t; q; _qqðt; q; pÞ� �
X

pk _qqkðt; q; pÞ � TðqpÞ

� T 0ðt; q; pÞ: Conjugate ðto TÞ kinetic energyh
¼
X
ð@T=@ _qqkÞ _qqk � T ¼ ð2T2 þ T1Þ � ðT2 þ T1 þ T0Þ ¼ T2 � T0;

i:e:; if T ¼ T2 ðe:g:; stationary ‘‘initial’’ constraintsÞ; then T 0 ¼ T
i
; ð8:2:2Þ

we can rewrite (8.2.1a) asX
ðdpk=dtÞ �qk þ

X �ð@T 0=@qkÞ �qk þ ð@T 0=@pkÞ �pk��X ðdqk=dtÞ �pk ¼ � 0W ;

or, collecting ð. . .Þ �q and ð. . .Þ �p terms, finally,X
ðdpk=dtþ @T 0=@qk �QkÞ �qk þ

X
ð�dqk=dtþ @T 0=@pkÞ �pk ¼ 0: ð8:2:3Þ

This (differential) variational equation, holding for all virtual �q’s and �p’s—that is,

constrained or not—and known (after Winkelmann, 1909, 1930, p. 39 ff.; also

Hamel, 1949, p. 286 ff.) as the canonical, or Hamiltonian, central equation, is funda-

mental to all subsequent considerations.

1. �q and �p Unconstrained

Now, if the �q and �p are unconstrained, then (8.2.3) leads immediately to the famous

canonical, or Hamiltonian, equations of motion:

dpk=dt ¼ �@T 0=@qk þQk; ð8:2:4Þ
dqk=dt ¼ @T 0=@pk ½¼ linear in the p’s; recall ð8:2:2Þ�: ð8:2:4aÞ
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� Clearly, the second set, eqs. (8.2.4a), must coincide with the earlier, purely

kinematico-inertial equations (8.1.5a); it is the canonical counterpart of the

Lagrangean pk ¼ @T=@ _qqk.
� It is the first set, eqs. (8.2.4), that expresses the equations of motion, in a manner

almost identical to that of the Lagrangean method; but, unlike the latter, eqs. (8.2.4,

4a) are already expressed directly and linearly in the ð. . .Þ:-derivatives of the 2n
‘‘coordinates’’ q and p involved.

The 2n first-order equations (8.2.4, 4a) allow us to determine the values of the q’s
and p’s at any time, once their values at some initial time are known. They constitute

the equations of motion of the representative system ‘‘particle’’ in the (symbolical/

mathematical) 2n-dimensional phase space of q’s and p’s; and, through each (admis-

sible) point of that space, there passes only one such mechanical trajectory (orbit),

if the system is scleronomic; or more if the system is rheonomic. In extended
phase space ðt; q; pÞ, however, only one orbit can pass through a point. Compar-

ing the Hamiltonian equations (8.2.4) with their Lagrangean counterparts:

dpk=dt ¼ @T=@qk þQk, we readily obtain the additional kinematico-inertial result

@T=@qk ¼ �@T 0=@qk: ð8:2:5Þ
If Qk ¼ �@Vðt; qÞ=@qk, then (8.2.4, 4a) assume the purely antisymmetrical form

dpk=dt ¼ �@H=@qk; dqk=dt ¼ @H=@pk; ð8:2:6Þ
where

H � T 0 þ V ¼
X

pk _qqk � T þ V
� �

_qq¼ _qqðt;q;pÞ

¼
X

pk _qqkðt; q; pÞ � ðTðqpÞ � VÞ

¼
X

pk _qqk � L
� �

_qq¼ _qqðt;q;pÞ

¼
X

pk _qqkðt; q; pÞ � L½t; q; _qqðt; q; pÞ� �
X

pk _qqkðt; q; pÞ � LðqpÞ

¼
X
ð@L=@ _qqkÞ _qqk � L

� �
_qq¼ _qqðt;q;pÞ

� Hðt; q; pÞ ðfunction of 2nþ 1 argumentsÞ; ð8:2:7Þ

is the Hamiltonian function of the system, or, simply, its Hamiltonian; and, similarly,

Lðt; q; _qqÞ ¼
X

pkðt; q; _qqÞ _qqk �H½t; q; pðt; q; _qqÞ�
�
X

pkðt; q; _qqÞ _qqk �Hðq _qqÞ

¼
X
ð@L=@ _qqkÞ _qqk �H

� �
p¼pðt;q; _qqÞ

: ð8:2:7aÞ

� If both potential and nonpotential forces ðQkÞ are present, eqs. (8.2.6) are

replaced by

dpk=dt ¼ �@H=@qk þQk; dqk=dt ¼ @H=@pk; ð8:2:8Þ
while (8.2.5) becomes

@H=@qk ¼ �@L=@qk: ð8:2:9Þ
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� Also if we view time t, and/or any other number of system parameters
ðc1; . . . ; cn 0 Þ, on which T , T 0 and L, H might depend, as additional system coordi-

nates (i.e., qnþ1 � t, qnþ2 � c1; . . . ; qnþn 0 � cn 0), then from the above we easily deduce

the following two sets of kinematico-inertial identities (with * ¼ nþ 1; . . . ; n 0):

@T=@t ¼ �@T 0=@t; @T=@c� ¼ �@T 0=@c�; ð8:2:10aÞ
and

@L=@t ¼ �@H=@t; @L=@c� ¼ �@H=@c�: ð8:2:10bÞ
(See also Landau and Lifshitz, 1960, pp. 132–133.)

� In the presence of a generalized potential (3.9.8c)

V ¼ Vðt; q; _qqÞ ¼ V1ðt; q; _qqÞ þ V0ðt; qÞ ¼
X

�kðt; qÞ _qqk þ V0ðt; qÞ; ð8:2:11Þ

the momenta pk are redefined by the [slightly more general than (8.1.2)] relation

pk � @L=@ _qqk ¼ @ðT � VÞ=@ _qqk ¼ @T=@ _qqk � �k ¼
XX

Mkl _qql þ ðMk � �kÞ;
ð8:2:11aÞ

and the Hamiltonian takes the explicit form (recalling that L ¼ L2 þ L1 þ L0),

H ¼
X

pk _qqk � L
� �

_qq¼ _qqðt;q;pÞ
ð� L 0Þ

¼
X
ð@L=@ _qqkÞ _qqk � L

� �
_qq¼ _qqðt;q;pÞ

¼ �ð2L2 þ L1Þ � ðL2 þ L1 þ L0Þ
�
_qq¼ _qqðt;q;pÞ ¼ ðL2 � L0Þ _qq¼ _qqðt;q;pÞ

¼ ½T2 þ ðV0 � T0Þ� _qq¼ _qqðt;q;pÞ

¼ T 0 þ V0 ½¼ hðt; q; _qqÞ; when expressed in Lagrangean variables�; ð8:2:11bÞ
that is, just like (8.2.7), but with V ¼ V0; while the canonical equations of motion

retain their forms (8.2.6, 8). For stationary (holonomic) constraints, clearly,

T ¼ T2ð) T0 ¼ 0Þ and so the above reduces to

H ¼ Tðt; q; pÞ þ V0ðt; qÞ � Eðt; q; pÞ ¼ total energy; in Hamiltonian variables:

ð8:2:11cÞ
Henceforth, only ordinary potentials V ¼ Vðt; qÞ will be considered; then

pk ¼ @L=@ _qqk ¼ @T=@ _qqk. In sum, in all cases, the following kinematico-inertial iden-

tities hold:

@T 0=@t ¼ �@T=@t; @T 0=@qk ¼ �@T=@qk; @T 0=@pk ¼ dqk=dt; ð8:2:12aÞ
and

@H=@t ¼ �@L=@t; @H=@qk ¼ �@L=@qk; @H=@pk ¼ dqk=dt: ð8:2:12bÞ
In both (8.2.12a, b):

(i) The last (third) group is essentially the Hamiltonian counterpart of the Lagrangean

definition @T=@ _qqk ¼ pk.
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(ii) The first two groups are mathematically equivalent, if we think of time as an

ðnþ 1Þth system coordinate (i.e., qnþ1 � t), but the first group is useful in energy

rate/power theorems (see below); it states that if L does not involve the time

explicitly, neither does H.

(iii) The key group is the second: combining it with a(ny) Lagrangean kinetic

equation(s), we obtain the corresponding Hamiltonian equation(s) of motion; for

example, combining it with the Lagrangean equation ð@T=@ _qqkÞ:� @T=@qk ¼ Qk,

we obtain the Hamiltonian equation dpk=dt ¼ �@T 0=@qk þQk.

� Finally, the common derivations of the canonical equations found in the lit-

erature are based on Legendre’s transformation (see below) and Donkin’s theorem
(see, e.g., Crandall et al., 1968, pp. 13–22, 402–406; Gantmacher, 1970, pp. 73–76;

Rosenberg, 1977, pp. 279–285). However, the central equation–based derivation pre-

sented here, due to Winkelmann and Hamel, is far simpler and motivated; it clearly

separates the kinematico-inertial from the kinetical aspects of the Lagrangean
!Hamiltonian transition, and thus makes its extensions to more general coordinates

and/or constraints easier; some expositions falsely imply that the canonical formal-

ism applies only to potential systems!

Legendre’s Transformation (LT)

In general, a LT transforms a function Yðy; xÞ (assumed convex; i.e., @2Y=@y2 > 0,

like T in the _qq’s) into its ‘‘conjugate’’ function

Zðz; xÞ: Z þ Y ¼ y z

) y ¼ @Z=@z ¼ yðz;xÞ; z ¼ @Y=@y ¼ zðy; xÞ;
that is, Zðz; xÞ � z y� Yðy; xÞ ¼ z yðz; xÞ � Y ½ yðz; xÞ; x�, and similarly for Yðy; xÞ
[(fig. 8.1)].

Here, in dynamics, we have the following identifications:

x! q; t; y! _qq; z! p; Yð. . .Þ ! L; Zð. . .Þ ! H; ð8:2:13aÞ
z ¼ @Y=@y! p ¼ @L=@ _qq; y ¼ @Z=@z! _qq ¼ @H=@p: ð8:2:13bÞ
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REMARKS ON LT

(i) For an alternative geometrical interpretation, see Tabor (1989, pp. 79–80).

(ii) Such transformations also appear in other areas of engineering/physics; for

instance,

Thermodynamics: ðY ; ZÞ ! ðenergy; free energyÞ;
Elasticity: ðY ; ZÞ ! ðstrain energy; complementary energyÞ;

see, for example, Langhaar (1962, pp. 119–121, 133–136, 244–245); also Hamel

(1949, pp. 368–375).

To understand the connection of H to the power theorems of }3.9, let us calculate

dH=dt and then invoke the earlier canonical equations. Thus, we obtain, succes-

sively,

dH=dt ¼
X �ð@H=@qkÞðdqk=dtÞ þ ð@H=@pkÞðdpk=dtÞ�þ @H=@t

¼
X �ð@H=@qkÞð@H=@pkÞ þ ð@H=@pkÞðQk � @H=@qkÞ

�þ @H=@t
¼
X
ð@H=@pkÞQk þ @H=@t ¼ @H=@tþ

X
Qk _qqk; ð8:2:14Þ

and, therefore, if @H=@t ¼ 0 (e.g., stationary constraints) and Qk ¼ 0 (e.g., wholly

potential forces), then the Hamiltonian energy of the system is conserved:

H ¼ Hðq; pÞ ¼ constant: ð8:2:14aÞ

2. �q Constrained, �p Unconstrained

If the �q’s are restricted by the (additional) m Pfaffian constraints

��D �
X

aDk �qk ¼ 0 ½rankðaDkÞ ¼ m; D ¼ 1; . . . ;mð< nÞ�; ð8:2:15aÞ

while, in spite of (8.1.2, 3, 5a), the �p’s are still viewed as free, then application of the

method of Lagrangean multipliers to the canonical central equation (8.2.3) readily

yields the 2n canonical Routh–Voss equations:

dpk=dt ¼ �@T 0=@qk þQk þ
X


D aDk ðwhere Qk ¼ total impressed forceÞ
¼ �@H=@qk þ Qk þ

X

D aDk ðwhere Qk ¼ nonpotential impressed forceÞ;

ð8:2:15bÞ
dqk=dt ¼ @T 0=@pk ð¼ @H=@pkÞ; ð8:2:15cÞ

which, along with the m constraints (8.2.15a) (in velocity form)

!D �
X

aDk _qqk þ aD ¼ 0 ð8:2:15dÞ

constitute a determinate system for the 2nþm functions fqkðtÞ; pkðtÞ; 
DðtÞg.
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To uncouple the first set of (8.2.15b) into kinetic and kinetostatic equations, we

proceed as in the Lagrangean variable case (}4.5); that is, we introduce the n�m
additional !I ’s by

!I �
X

aIk _qqk þ aI ð6¼ 0; velocity formÞ or ��I �
X

aIk �qk ð6¼ 0; virtual formÞ;
ð8:2:15eÞ

then invert the system (8.2.15d, e), thus obtaining

_qqk ¼
X

AkI !I þ Ak ðvelocity formÞ or �qk �
X

AkI ��I ðvirtual formÞ;
ð8:2:15fÞ

and inserting this �q-representation into the central equation (8.2.3), we finally

obtain the canonical Maggi equations:

Kinetostatic equations:
X

AkD ðdpk=dtþ @T 0=@qkÞ ¼
X

AkD Qk þ 
D;
ð8:2:15gÞ

Kinetic equations:
X

AkI ðdpk=dtþ @T 0=@qkÞ ¼
X

AkI Qk;

ð8:2:15hÞ

while (8.2.15c) remain unchanged.

Similarly, if the Pfaffian constraints have the special form

�qD ¼
X

bDI �qI ; ð8:2:15iÞ

then (8.2.3) easily yields the canonical Hadamard equations [special case of (8.2.15g,

h)]:

Kinetostatic equations: dpD=dtþ @T 0=@qD ¼ QD þ 
D; ð8:2:15jÞ
Kinetic equations: dpI=dtþ @T 0=@qI þ

X
bDIðdpD=dtþ @T 0=@qDÞ

¼ QI þ
X

bDI QD: ð8:2:15kÞ

[The multipliers in (8.2.15b) and (8.2.15g) are the same, but they are different in

value from those in (8.2.15j).]

3. Nonholonomic Variables

The canonical formalism can be easily extended to quasi variables. We set

Pk � @T*=@!k ¼ Nonholonomic system momentum;

where

T* ¼ T*ðt; q; !Þ � T*ðq!Þ ¼ T*½t; q; !ðt; q;PÞ� ¼ T*ðt; q;PÞ � T*ðqPÞ; ð8:2:16aÞ
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and build the nonholonomic counterpart of T 0:

T* 0 �
X

Pk !kðt; q;PÞ � T*ðt; q;PÞ � T* 0ðt; q;PÞ:
Nonholonomic conjugate to T* kinetic energy: ð8:2:16bÞ

It is not hard to show that:

(i) the nonholonomic counterparts of the Legendre–Donkin identities are

@T* 0=@�k �
X
ð@T* 0=@qlÞð@ _qql=@!kÞ ¼

X
Alkð@T* 0=@qlÞ ¼ �@T*=@�k;

ð8:2:16cÞ

@T* 0=@Pk ¼ !k ðcanonical counterpart of the Lagrange��Hamel: @T*=@!k ¼ PkÞ;
ð8:2:16dÞ

and with

H* � T* 0 þ Vðt; qÞ ¼
X

Pk !kðt; q;PÞ � L*ðt; q;PÞ
� H*ðt; q;PÞ � H*ðqPÞ ¼ Nonholonomic Hamiltonian: ð8:2:16eÞ

(ii) The nonholonomic canonical equations (most likely due to Pöschl, 1913) are

[assuming no further constraints; and for algebraic simplicity stationary !, _qq rela-

tionships: dql=dt ¼
P

Alk !k ¼
P

Alkð@H*=@PkÞ]

dPk=dt ¼ �@T* 0=@�k �
XX

�skl Psð@T* 0=@PlÞ þYk

ðwhere Yk ¼ total impressed forceÞ; ð8:2:16f Þ
¼ �@H*=@�k �

XX
�skl Psð@H*=@PlÞ þYk

ðwhere Yk ¼ nonpotential impressed forceÞ: ð8:2:16gÞ

In the case of m Pfaffian constraints !D ¼ 0, the indices in (8.2.16f, g), for the kinetic
equations, are s; k ¼ m þ 1; . . . ; n; l ¼ mþ 1; . . . ; n, nþ 1; and analogously for the

kinetostatic equations. These equations will not be pursued any further here. For

additional details, see, for example, Chetaev (1989, pp. 340–341), Corben and Stehle

(1960, pp. 256–257); and for a multibody dynamics application, see Maißer (1982).

Example 8.2.1 Direct Derivation of the Hamiltonian Kinematico-inertial Identities.
By dð. . .Þ-differentiating T 0 �P pk _qqk � Tðt; q; _qqÞ, and with pk � @T=@ _qqk, we find

dT 0 ¼
X
½ pkdð _qqkÞ þ _qqk dpk� � ð@T=@tÞ dtþ

X
½ð@T=@qkÞ dqk þ ð@T=@ _qqkÞ dð _qqkÞ�

n o
½the Orst and last ðfourthÞ sums cancel each other�

¼ �ð@T=@tÞ dt�
X
ð@T=@qkÞ dqk þ

X
_qqk dpk: ðaÞ

But also, since T 0 ¼ T 0ðt; q; pÞ, we have

dT 0 ¼ ð@T 0=@tÞ dtþ
X �ð@T 0=@qkÞ dqk þ ð@T 0=@pkÞ dpk�: ðbÞ
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Equating these two general dT 0 expressions, (a) and (b), we immediately obtain the

1þ nþ n ¼ 1þ 2n Hamiltonian kinematico-inertial identities (8.2.12a):

@T 0=@t ¼ �@T=@t; @T 0=@qk ¼ �@T=@qk; @T 0=@pk ¼ dqk=dt: ðcÞ
[This is another opportunity to show the advantages of (total) differentials over

derivatives!] Repeating the above argument for H �P pk _qqk � Lðt; q; _qqÞ, and with

pk � @L=@ _qqk, we obtain the earlier identities (8.2.12b):

@H=@t ¼ �@L=@t; @H=@qk ¼ �@L=@qk; @H=@pk ¼ dqk=dt: ðdÞ

Example 8.2.2 Another Direct Derivation of the Hamiltonian Kinematico-inertial
Identities.

(i) Applying chain rule to H �P pk _qqk � Lðt; q; _qqÞ, we find

@H=@pk ¼ dqk=dtþ
X

plð@ _qql=@pkÞ �
X
ð@L=@ _qqlÞð@ _qql=@pkÞ

¼ dqk=dtþ
X
ðpl � @L=@ _qqlÞð@ _qql=@pkÞ ¼ dqk=dtþ 0 ¼ dqk=dt:

Hence, we obtained the ‘‘reciprocal’’ relationships

@L=@ _qqk ¼ pk and @H=@pk ¼ dqk=dt: ðaÞ
(ii) By dð. . .Þ-varying LþH �P pk _qqk ¼ 0 ð¼ function of t; q; _qq; pÞ, we find

0 ¼ dLþ dH �
X

dðpk _qqkÞ ¼
X
½ð@L=@qk þ @H=@qkÞ dqk þ ð@L=@ _qqk � pkÞ dð _qqkÞ
þ ð@H=@pk � dqk=dtÞ dpk� þ ð@L=@tþ @H=@tÞ dt;

and from this, due to (a) and the arbitrariness of the dq’s and dt, we obtain the

remaining Hamiltonian identities:

@L=@qk ¼ �@H=@qk and @L=@t ¼ �@H=@t: ðbÞ

Example 8.2.3 Still Another Direct Derivation of Hamilton’s Equations. By

ð@=@qkÞ- and ð@=@pkÞ-differentiating the invariant equation

LðqpÞ � Lðt; q; pÞ ¼ Lðt; q; _qqÞ � Lðq _qqÞ; ðaÞ

we obtain, respectively,

@LðqpÞ=@qk ¼ @Lðq _qqÞ=@qk þ
X
ð@Lðq _qqÞ=@ _qqlÞð@ _qql=@qkÞ

¼ @Lðq _qqÞ=@qk þ
X

plð@ _qql=@qkÞ ¼ @Lðq _qqÞ=@qk þ @=@qk
X

pl _qql

� �
; ðbÞ

ðsince q and p are treated as independentÞ

@LðqpÞ=@pk ¼
X
ð@Lðq _qqÞ=@ _qqlÞð@ _qql=@pkÞ ¼

X
plð@ _qql=@pkÞ

¼ @=@pk
X

pl _qql

� �
� _qqk; ðcÞ

1080 CHAPTER 8: INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS



from which, rearranging (collecting the q; p functions on the left sides and the rest

on the right), we obtain the kinematico-inertial identities:

@=@qk LðqpÞ �
X

pl _qql

� �
¼ @Lðq _qqÞ=@qk; ðdÞ

@=@pk LðqpÞ �
X

pl _qql

� �
¼ �dqk=dt: ðeÞ

Finally, (i) introducing the Hamiltonian Hðt; q; pÞ �P pl _qqlðt; q; pÞ � Lðt; q; pÞ, and

(ii) expressing in (d) @Lðq _qqÞ=@qk via Lagrange’s equations, say dpk=dt ¼ @Lðq _qqÞ=@qk,
we readily obtain the corresponding canonical equations: dpk=dt ¼ �@H=@qk and

dqk=dt ¼ @H=@pk.

Example 8.2.4 A Lagrangean Derivation of Hamilton’s Equations. We consider

an additional (fictitious) system with 2n Lagrangean coordinates: q � ðq1; . . . ; qnÞ
and p � ðp1; . . . ; pnÞ, and Lagrangean function

Lðt; q; p; _qq; _ppÞ �
X

pk _qqk �Hðt; q; pÞ; ðaÞ

that is, we solve the Hamiltonian definition for the Lagrangean. Now:

(i) The Lagrangean equations for the n coordinates q are, say,

0 ¼ ð@L=@ _qqkÞ:� @L=@qk ¼ dpk=dt� ð�@H=@qkÞ; or dpk=dt ¼ �@H=@qk;
ðbÞ

while

(ii) The Lagrangean equations for the n ‘‘coordinates’’ p are

0 ¼ ð@L=@ _ppkÞ:� @L=@pk ¼ ð0Þ: � ðdqk=dt� @H=@pkÞ; or dqk=dt ¼ @H=@pk:
ðcÞ

And similarly for systems with more general Lagrangean equations.

Problem 8.2.1 Let 2T ¼PP
Mkl _qqk _qql ð¼ homogeneous quadratic in the n _qq), in

which case

pk � @T=@ _qqk ¼
X

Mkl _qql ½assume that: Mn � Det ðMklÞ 6¼ 0�; ðaÞ

and, therefore, by inversion,

_qql ¼
X

M 0
lk pk ð¼ velocities due to given impulses applied to system; when at rest

in a given conEguration; hence the name coeRcients of mobility

for the M 0
lkÞ;

where

M 0
lk � ðminor of element Mkl in determinant MnÞ

�
Mn

¼ ð1=MnÞð@Mn=@MklÞ: ðbÞ
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Show that, then,

2T 0 ¼
X

pk _qqk ¼
XX

M 0
kl pk pl ¼

XX �ð1=MnÞð@Mn=@MlkÞ
�
pk pl�

¼
X
ð@T=@ _qqkÞ _qqk ¼ 2T ) T 0 þ T ¼

X
pk _qqk;

i:e:; T in the _qq’s ¼ T 0 in the p’s: Tðt; q; _qqÞ ¼ T 0ðt; q; pÞ
�
; ðcÞ

and, conjugately to (a),

dqk=dt ¼ @T 0=@pk: ðdÞ
Also, show that:

ðiÞ @pk=@ _qql ¼ @pl=@ _qqk ¼ � � � and @ _qqk=@pl ¼ @ _qql=@pk ¼ � � � : ðeÞ

ðiiÞ MnM
0
n ¼ 1; where M 0

n � DetðM 0
klÞ ð6¼ 0Þ: ðf Þ

Problem 8.2.2 Continuing from prob. 8.2.1, let

2T ¼M11ð _qq1Þ2 þ 2M12 _qq1 _qq2 þM22ð _qq2Þ2; ðaÞ
that is, n ¼ 2. Show that, then,

2T 0 ¼M 0
11 p1

2 þ 2M 0
12 p1 p2 þM 0

22 p2
2; ðbÞ

where

M 0
11 ¼M22=M; M 0

22 ¼M11=M; M 0
12 ¼ �M12=M;

M �M2 � Det ðMklÞ ¼M11M22 �M12
2; ðcÞ

and thus verify directly the Hamiltonian identities

dq1=dt ¼ @T 0=@p1; dq2=dt ¼ @T 0=@p2;

and

@T=@q1 ¼ �@T 0=@q1; @T=@q2 ¼ �@T 0=@q2: ðdÞ

Problem 8.2.3 Reciprocal Theorem. Consider the following two states of motion

of a scleronomic mechanical system through the same configuration:

State 1 ðqkÞ: _qqk; pk ¼
X

Mkl _qql ; State 2 ðqkÞ: _qq 0k; p
0
k ¼

X
Mkl _qq

0
l: ðaÞ

Show that X
pk _qq

0
k ¼

X
p 0k _qqk: ðbÞ

For further details and applications to impulsive motion, see, for example, Lamb

(1929, pp. 184–187, 206); also, the discussion in ex. 4.6.8, and Rayleigh (1894, pp. 91

ff.).
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Example 8.2.5 Let us derive the Hamiltonian equations of a spherical pendulum,

of mass m and length l. With the þOz axis taken vertically downward (recall

prob. 3.5.16, fig. 3.8), and since x ¼ ðl sin �Þ cos�; y ¼ ðl sin �Þ sin�; z ¼ l cos �,
we readily find

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2� ¼ � � � ¼ ml 2½ð _��Þ2 þ sin2 �ð _��Þ2� ð¼ 2T2Þ; ðaÞ

V ¼ �mgl cos � ð¼ V0; V ¼ 0 on plane z ¼ 0Þ; ðbÞ
and, therefore,

p� � @T=@ _�� ¼ ðml 2 sin2 �Þ _��
ð¼ angular momentum about the vertical axis through the originÞ;

p� � @T=@ _�� ¼ ðml 2Þ _��
ð¼ angular momentum about horizontal; and perpendicular to instantaneous

meridian plane axis through the originÞ: ðcÞ

Inverting (c) we immediately obtain the second set of the canonical equations:

d�=dt ¼ p�
�
ml 2 sin2 � ð¼ @H=@p�Þ; d�=dt ¼ p�

�
ml 2 ð¼ @H=@p�Þ: ðdÞ

Hence, the Hamiltonian of the system is

H ¼ p� _��þ p� _��� ðT � VÞ ¼ 2T � ðT � VÞ ¼ T þ V ¼ Tðt; q; pÞ þ V

¼ ð1�2 ml 2Þ ½ðp�2
�

sin2 �Þ þ p�
2� �mgl cos � ¼ Hð�; �; p�; p�Þ; ðeÞ

and accordingly the first set of its canonical equations (of motion) are

dp�=dt ¼ �@H=@�: dp�=dt ¼ 0 ) p� ¼ constant � c; ðf Þ

or, thanks to the first of (d),

d�=dt ¼ c
�
ml 2 sin2 �; ðgÞ

dp�=dt ¼ �@H=@�: dp�=dt ¼ ðcos �
�
ml 2 sin3 �Þp�2 �mgl sin �; ðhÞ

or, thanks to (f, g),

dp�=dt ¼ cos � c2
�
ml 2 sin3 �� mgl sin � ½¼ ðml 2Þ€���: ðiÞ

To integrate (i), we multiply both its sides with p�= _�� ¼ ðdt=d�Þp� ¼ ðdt=d�Þðml 2 _��Þ ¼
ml 2:

p�ðdp�=d�Þ ¼ ðcos �
�

sin3 �Þ c2 � m2gl 3 sin �;

and from this, by a �-integration, we obtain the energy integral

[H ¼ Tðt; q; pÞ þ V ¼ constant]:

p�
2
�
2 ¼ ð�1= sin2 �Þðc2=2Þ þm2gl 3 cos � þ constant: ð jÞ
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Of course, since here Q�;� ¼ 0 and @H=@t ¼ 0, by (8.2.14, 14a) the integral ( j) could

have been written down immediately.

Problem 8.2.4 Show that the conjugate kinetic energy T 0 of a particle of mass m
moving in space equals

2mT 0 ¼ px
2 þ py

2 þ pz
2 ðrectangular Cartesian coordinatesÞ ðaÞ

¼ pr
2 þ ðp�=rÞ2 þ pz

2 ðcylindrical coordinatesÞ ðbÞ

¼ pr
2 þ ðp�=rÞ2 þ ðp�=r sin �Þ2 ðspherical coordinatesÞ: ðcÞ

HINT

Recall that (prob. 3.5.15)

2T=m ¼ ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2 ¼ ð _rrÞ2 þ ðr _��Þ2 þ ð _zzÞ2 ¼ ð _rrÞ2 þ ðr _��Þ2 þ ðr sin � _��Þ2:
½Caution: rcylindrical coordinates ð2nd expressionÞ 6¼ rspherical coordinates ð3rd expressionÞ:�

Problem 8.2.5 Show that the Hamiltonian of a particle of mass m moving on a

uniformly rotating frame of reference (of constant inertial angular velocity X is,

with the usual notations,

H ¼ p2=2m � p � ðX � rÞ þ VðrÞ ¼ Hðt; r; pÞ
¼ vrelative

2=2m� mðX� rÞ2=2þ VðrÞ ¼ Hðt; r; vrelativeÞ: ðaÞ

HINT

L ¼ vrelative
2=2mþm vrelative � ðX � rÞ þ mðX � rÞ2=2� VðrÞ; ðbÞ

H � @L=@vrelativeð Þ � vrelative � L ¼ � � � ; p ¼ @L=@vrelative ) vrelative ¼ � � � :
[Recall problems of Lagrangean treatment of particles in uniformly rotating turn-

tables (}3.16).]

Problem 8.2.6 Unified Treatment of Auxiliary Forms of Lagrange’s Inertia Terms.
Let

2T ¼
XX

MklðqÞ _qqk _qql ¼ 2Tðq; _qqÞ � 2T _qq _qq

¼
X

pk _qqk ¼ 2Tð _qq; pÞ � 2T _qqp � 2Tp _qq

¼
XX

M 0
klðqÞpk pl ¼ 2Tðq; pÞ � 2Tpp ð¼ 2TðqpÞ � 2T 0Þ; ðaÞ

with all Latin indices ranging from 1 to n, and where, as we have seen,

pk ¼ @T _qq _qq=@ _qqk and _qqk ¼ @Tpp

�
@pk: ðbÞ
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Show that:

ðiÞ 2T _qq _qq ¼
X
ð@T _qq _qq

�
@ _qqkÞ _qqk; ðcÞ

2Tp _qq ¼
X
ð@T _qq _qq

�
@ _qqkÞð@Tpp

�
@pkÞ; ðdÞ

2Tpp ¼
X
ð@Tpp

�
@pkÞpk; ðeÞ

and

ðiiÞ @Tpp

�
@qk ¼ �@T _qq _qq

�
@qk; ðf Þ

@T _qqp

�
@ _qqk ¼ ð1=2Þð@T _qq _qq

�
@ _qqkÞ ¼ ð1=2Þpk; ðgÞ

@T _qqp

�
@pk ¼ ð1=2Þð@Tpp

�
@pkÞ ¼ ð1=2Þ _qqk; ðhÞ

and, therefore,

EkðTÞ � ð@T=@ _qqkÞ: � @T=@qk � ð@T _qq _qq

�
@ _qqkÞ:� @T _qq _qq

�
@qk

� dpk=dt� @T _qq _qq

�
@qk ðLagrangeÞ

¼ ð@T _qq _qq

�
@ _qqkÞ:þ @Tpp

�
@qk � dpk=dtþ @Tpp

�
@qk ðHamiltonÞ

¼ 2ð@T _qqp

�
@ _qqkÞ:� @T _qq _qq

�
@qk

¼ 2ð@T _qqp

�
@ _qqkÞ:þ @Tpp

�
@qk: ðiÞ

HINT

First, using (a–e), verify that

Tpp ¼ �T _qq _qq þ 2T _qqp ¼ �T _qq _qq þ
X

pk _qqk ) Tpp þ T _qq _qq � 2T _qqp ¼ 0; ðjÞ

then differentiate the above totally, and then equate the coefficients of its differentials

to zero.

[See Weinstein (1901, pp. 95–97, 186–189) (earliest publication: 1882); also Budde

(1890, Vol. 1, pp. 397–401), and Watson and Burbury (1879, pp. 14–22). Such

‘‘mixed’’ equations have been used by Maxwell et al. in electromechanical investiga-

tions; see, for example, Maxwell (1877 and 1920, pp. 127–136, 158–161).]

Problem 8.2.7 As a simple application of the preceding problem, consider a

particle of mass m described by spherical polar coordinates. In this case, and with

the usual notations,

2T ¼ m½ð _rrÞ2 þ ðr _��Þ2 þ ðr sin � _��Þ2� ¼ 2T _qq _qq: ðaÞ
Show that:

ðiÞ pr ¼ m _rr; p� ¼ mr2 _��; p� ¼ mr2 sin2 � _��; ðbÞ

ðiiÞ 2T _qqp ¼ _rr pr þ _�� p� þ _�� p�; ðcÞ

ðiiiÞ 2Tpp ¼ ð1=mÞ ½ pr2 þ ðp�
�
rÞ2 þ ðp�

�
r sin �Þ2�: ðdÞ
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Hence, verify that, for example,

@T _qq _qq

�
@ _�� ¼ 2ð@T _qqp

�
@ _��Þ ¼ � � � ; ðeÞ

@T _qq _qq

�
@� ¼ �@Tpp

�
@� ¼ � � � ; ðf Þ

@Tpp

�
@p� ¼ 2ð@T _qqp

�
@p�Þ ¼ � � � : ðgÞ

Problem 8.2.8 Let the general solution of Hamilton’s equations be

qk ¼ qkðt; c1; . . . ; c2nÞ � qkðt; cÞ; pk ¼ pkðt; c1; . . . ; c2nÞ � pkðt; cÞ; ðaÞ
where c � ðc1; . . . ; c2nÞ ¼ 2n constants of integration; and we assume that the

Jacobian of the q’s and p’s relative to the c’s nowhere vanishes. Then,

H ¼ Hðt; q; pÞ ¼ H½t; qðt; cÞ; pðt; cÞ� � Hðt; cÞ: ðbÞ
(i) Show that

@H=@c� ¼ d=dt
X
ð@pk=@c�Þqk

h i
� @=@c�

X
_ppk qk

� �
ð� ¼ 1; . . . ; 2nÞ: ðcÞ

(ii) Show that eqs. (c) are equivalent to the Hamiltonian equations:

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk; ðdÞ
that is, if (d) hold, so do (c); and vice versa.

HINT

Note the identity

d=dt
X
ð@pk=@c�Þqk

h i
� @=@c�

X
_ppk qk

� �
¼
X �ð@pk=@c�Þ _qqk � ð@qk=@c�Þ _ppk�:

Problem 8.2.9 Consider the linear differential form (Pfaffian form) in the

variables x ¼ ðx1; . . . ; xnÞ:

df �
X

Xk ðxÞ dxk: ðaÞ

By definition, its bilinear covariant is (recall }2.8)

d2ðd1 f Þ � d1ðd2 f Þ �
X
ðd2Xk d1xk � d1Xk d2xkÞ

¼ � � � ¼
XX

ð@Xk=@xl � @Xl=@xkÞ d2xl d1xk: ðbÞ

Show that Hamilton’s equations, as well as the power theorem (for Qk ¼ 0Þ, result

from the vanishing of the bilinear covariant of

dA �
X

pk dqk �H dt

¼
X

p�dq� ð� ¼ 1; . . . ; nþ 1Þ; with pnþ1 � �H and qnþ1 � t
h i

; ðcÞ
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)8.3 THE ROUTHIAN CENTRAL EQUATION AND ROUTH’S EQUATIONS OF MOTION 1087

under arbitrary variations d1(. . .) and d2(. . .); that is, from

0 = d2(d1A)− d1(d2A)

= d2

(∑
pk d1qk − Hd1t

)
− d1

(∑
pk d2qk − Hd2t

)

=
∑

(d2pk d1qk − d1pk d2qk)− (d2Hd1t− d1Hd2t). (d)

Problem 8.2.10 Consider a potential (but possibly rheonomic) system described
by n Lagrangean coordinates.

(i) Define the Hamiltonian-like function

Show that the corresponding equations of motion are

qk = ∂H′/∂ṗk and dqk/dt = ∂H′/∂pk [⇒ (∂H′/∂ṗk)
·
− ∂H′/∂pk = 0]. (b)

(ii) Similarly, define the Hamiltonian-like function

H′′
≡

∑
ṗkqk − L = · · · =

∑
(ṗkqk − pkq̇k) + H = H′′(t, q̇, ṗ). (c)

Show that the corresponding equations of motion are

qk = ∂H′′/∂ṗk and pk = −∂H′′/∂q̇k. (d)

(iii) Discuss possible theoretical and practical advantages/disadvantages of (b)
and (d) over the equations of Hamilton; and verify that L+ H− H′ + H′′ = 0.

Problem 8.2.11 Show, by means of general considerations and/or concrete
examples, that the 2n first-order Hamiltonian equations of a problem, in general, do
not coincide with the first-order equations (or state-space) version of its n second-
order Lagrangean equations.

The method of Routh (1877) constitutes an ingenious combination of the methods of
Hamilton and Lagrange that results in two sets of equations of motion:

(i) One Hamiltonian-like for t and, say the first M q’s and corresponding p’s, to be
henceforth denoted for notational clarity by ψ’s and Ψ ’s, respectively; that is,

(q1, . . . , qM) ≡ (ψ1, . . . , ψM) ≡ (ψi) ≡ ψ, (8.3.1a)

and
(p1, . . . , pM) ≡ (Ψ1, . . . , ΨM) ≡ (Ψi) ≡ Ψ ; (8.3.1b)

8.3 THE ROUTHIAN CENTRAL EQUATION AND ROUTH’S

EQUATIONS OF MOTION

H′
≡

∑
(pkqk)

·

− L = · · · =
∑

ṗkqk + H = H′(t, p, ṗ). (a)

REMARK

This has important consequences in nonlinear dynamics (including chaos): The Hamiltonian first-order version
of a Lagrangean (second-order) problem may be divergenceless ⇒ “volume/area preserving” or incompressible
(by analogy with continuum fluid mechanics), in the phase space (p, q), i.e. for a one degree-of-freedom system
for simplicity,

div(q̇, ṗ) = ∂q̇/∂q+ ∂ṗ/∂p = ∂/∂q(∂H/∂p) + ∂/∂p(−∂H/∂q) = 0, (a)

a fundamental property of conservative/non-dissipative Hamiltonian systems, known as Liouville’s theorem
(§8.9, p. 1183; §8.12, p. 1236); BUT, the first-order version of the same problem in the “Lagrangean phase/state
space” (q, dq/dt ≡ v) [§3.12], may not be, i.e. (with some simple self-explanatory notations):

div(q̇, v̇) ≡ ∂q̇/∂q+ ∂ v̇/∂v = · · · �= 0, v ≡ q̇, (b)

in general. See e.g. Tabor (1989, pp. 49–52); also, McCauley (1993, pp. 9–12).



and

(ii) One Lagrange-like for t and the remaining n�M q’s and corresponding _qq’s,
to be henceforth denoted by q’s and _qq’s, respectively; that is,

ðqMþ1; . . . ; qnÞ � ðqpÞ � q and ð _qqMþ1; . . . ; _qqnÞ � ð _qqpÞ � _qq; ð8:3:2a; bÞ

where the subscripts i and p stand for ignorable (or cyclic) and palpable (or positional,
or essential), respectively. Such a mixed approach combines the best of both

Hamilton and Lagrange, and proves particularly useful in problems of latent (or

cyclic) and steady motions. (All these terms/concepts are detailed in the following

sections.) With this idea in mind, we begin by rewriting the most general Lagrangean

expression for the kinetic energy of a system as follows:

T ¼ Tðt; q1; . . . ; qn; _qq1; . . . ; _qqnÞ
¼ Tðt; q1; . . . ; qM ; qMþ1; . . . ; qn; _qq1; . . . ; _qqM ; _qqMþ1; . . . ; _qqnÞ
� Tðt;  1; . . . ;  M; qMþ1; . . . ; qn; _  1; . . . ; _  M ; _qqMþ1; . . . ; _qqnÞ
� Tðt;  ; q; _  ; _qqÞ; ð8:3:3aÞ

and, in there, replace _  � ð _  1; . . . ; _  MÞ in terms of their momenta

C � ðC1; . . . ;CMÞ, and so on, à la Hamilton; that is, _  i ¼ _  i ðt;  ; q; C; _qqÞ. The

result is

T ¼ T ½t;  ; q; _  ðt;  ; q; C; _qqÞ; _qq�
¼ Tðt;  1; . . . ;  M ; qMþ1; . . . ; qn; C1; . . . ;CM ; _qqMþ1; . . . ; _qqnÞ
¼ Tðt;  ; q; C; _qqÞ � T C: ð8:3:3bÞ

Next, with the help of the new (conjugate-like, to within a minus sign) function

T 00 � T �
X

Ci
_  i ¼ T �

X
Ci

_  i

� �
_  ¼ _  ðt; ;q;C; _qqÞ

¼ T 00ðt;  ; q; C; _qqÞ; ð8:3:3cÞ

we transform the fundamental central equation (8.2.1; with k ¼ 1; . . . ; n)

�I ¼ � 0W : d=dt
X

pk �qk

� �
� �T ¼

X
Qk �qk; ð8:3:4aÞ

or, [assuming that ð�qkÞ: ¼ �ð _qqkÞ]X �
_ppk �qk þ pk �ð _qqkÞ

�� �T ¼X Qk �qk; ð8:3:4bÞ

and since �T ¼ �T C, toX�
_ppk �qk þ pk �ð _qqkÞ

�� �T 00 �X �Ci
_  i þCi �ð _  iÞ

� � ¼X Qk �qk; ð8:3:4cÞ

or, carrying out the �T 00-variation (with i ¼ 1; . . . ;M; p ¼M þ 1; . . . ; n):X �
_ppk �qk þ pk �ð _qqkÞ

��X �ð@T 00=@ iÞ � i þ ð@T 00=@CiÞ �Ci

�
�
X �ð@T 00=@qpÞ �qp þ ð@T 00=@ _qqpÞ �ð _qqpÞ��X �

_  i �Ci þCi �ð _  iÞ
� ¼X Qk �qk;

ð8:3:4dÞ
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or, collecting �q; � ; �ð _qqÞ, and �C-proportional terms [while recalling that

qi �  i ) �qi � � i; �ð _qqiÞ � �ð _  iÞ, and pi � Ci], we finally obtain the Routhian
central equation:X

ðdpk=dt� @T 00=@qk �QkÞ �qk þ
X
ðpp � @T 00=@ _qqpÞ �ð _qqpÞ

�
X
ðd i=dtþ @T 00=@CiÞ �Ci ¼ 0; ð8:3:4eÞ

which holds for all �qk, �ð _qqpÞ, and �Ci (again, with k ¼ 1; . . . ; n; p ¼M þ 1; . . . ; n;
i ¼ 1; . . . ;M) and, as expected, is fundamental to all subsequent developments.

Now, as with (8.2.3):

1. If the �qk, �ð _qqpÞ, and �Ci are mutually independent, then (8.3.4e) leads imme-

diately to the equations of Routh [1877 — not to be confused with the earlier Routh–

Voss equations (}3.5)!]:

ðiÞ dpk=dt ¼ @T 00=@qk þ Qk: dCi=dt ¼ @T 00=@ i þ Qi ði ¼ 1; . . . ;MÞ; ð8:3:5aÞ

dpp=dt ¼ @T 00=@qp þQp ðp ¼M þ 1; . . . ; nÞ; ð8:3:5bÞ
ðiiÞ d i=dt ¼ �@T 00=@Ci ði ¼ 1; . . . ;MÞ; ð8:3:5cÞ

ðiiiÞ pp ¼ @T 00=@ _qqp ðp ¼M þ 1; . . . ; nÞ: ð8:3:5dÞ

d) are kinematico-inertial identities. The Hamilton-like equations (8.3.5a, c) (with

�T 00 playing the role of our earlier T 0), are Routh’s equations for  and C; while

the Lagrange-like equations (8.3.5b, d) (with T 00 playing the role of T) are Routh’s

equations for q and _qq; that is, rearranging:

Hamilton-like Routh equations:

dCi=dt ¼ �@ð�T 00Þ=@ i þQi; d i=dt ¼ @ð�T 00Þ=@Ci; ð8:3:6aÞ
Lagrange-like Routh equations:

dpp=dt ¼ @T 00=@qp þQp; pp ¼ @T 00=@ _qqp
) ð@T 00=@ _qqpÞ: � @T 00=@qp ¼ Qp: ð8:3:6bÞ

� If M ¼ 0 — that is, if no velocities _  i are eliminated through _  iðt;  ; q; C; _qqÞ— then

the group of equations (8.3.6a) drops; while the group (8.3.6b) coincide with

Lagrange’s equations for T (since then T 00 ¼ T ).

� If, on the other hand, M ¼ n— that is, if all _  i are eliminated through
_  iðt;  ; q; C; _qqÞ—then the situation is reversed: group (8.3.6b) drops (since then

T 00 ¼ �T 0), while group (8.3.6a) coincides with Hamilton’s equations. Schematically,

M: 0 ðLagrangeÞ  � � � � � � ! n ðHamiltonÞ:

Finally, comparing the above with the corresponding Lagrangean equations

dpk=dt ¼ @T=@qk þQk, we immediately obtain the additional Routhian kinema-
tico-inertial identities

@T=@qk ¼ @T 00=@qk: @T=@ i ¼ @T 00=@ i ði ¼ 1; . . . ;MÞ; ð8:3:7aÞ
@T=@qp ¼ @T 00=@qp ðp ¼M þ 1; . . . ; nÞ; ð8:3:7bÞ
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Of these equations, (8.3.5a, b) are kinetic (i.e., equations of motion), whereas (8.3.5c,

(= ∂T/∂q̇p)



which can be utilized in any set of Hamiltonian- or Lagrangean-type equations of

motion.

In sum, we have the following two groups of such kinematico-inertial identities:

@T 00=@ i ¼ @T=@ i and @T 00=@Ci ¼ �d i=dt; ð8:3:8aÞ

@T 00=@qp ¼ @T=@qp and @T 00=@ _qqp ¼ @T=@ _qqp ð¼ ppÞ; ð8:3:8bÞ

see also examples on direct derivations, below.

If pk � @L=@ _qqk, then (8.3.6a, b) are replaced, respectively, by the Routhian equa-

tions:

Hamilton-like Routh equations:

dCi=dt ¼ @R=@ i þ Qi; d i=dt ¼ �@R=@Ci; ð8:3:9aÞ
Lagrange-like Routh equations:

dpp=dt ¼ @R=@qp þQp; pp ¼ @R=@ _qqp ð¼ @L=@ _qqpÞ
) EpðRÞ � ð@R=@ _qqpÞ:� @R=@qp ¼ Qp; ð8:3:9bÞ

where

R � L�
X

Ci
_  i

� �
_  ¼ _  ðt; ;q;C; _qqÞ

¼ Rðt;  ; q; C; _qqÞ:

Routhian function;or ModiOed Lagrangean; ð8:3:9cÞ

and

L ¼ Lðt;  ; q; C; _qqÞ � T C � V � L C:

Lagrangean expressed in Routhian variables; ð8:3:9dÞ

and the nonpotential forces Qk have also been expressed in the Routhian variables

t,  , q, C, _qq; while (8.3.7a, b) and (8.3.8a, b) are replaced, respectively, by

@L=@ i ¼ @R=@ i and @L=@qp ¼ @R=@qp; ð8:3:9eÞ

and

@R=@ i ¼ @L=@ i and @R=@Ci ¼ �d i=dt; ð8:3:9fÞ

@R=@qp ¼ @L=@qp and @R=@ _qqp ¼ @L=@ _qqp ð¼ ppÞ; ð8:3:9gÞ

that is, the Routhian is a Hamiltonian [times (�1)] for the  i, and a Lagrangean for
the qp.

HISTORICAL

The Routhian was also introduced, independently, by Helmholtz (in 1884), who

called it ‘‘new kinetic potential’’; that is, (negative of) new Lagrangean ¼ (negative

of ) Routhian. See, for example, Helmholtz [1898, pp. 361–369, eq. (200a)], Webster

(1912, pp. 176–179).
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To find the relation between the Routhian and the Hamiltonian (or generalized

energy), we proceed as follows:

H �
X

pk _qqk � L

¼
X

_  ið@L=@ _  iÞ þ
X

_qqpð@L=@ _qqpÞ � L ½invoking ð8:3:9gÞ�

¼
X

_qqpð@R=@ _qqpÞ � L�
X

_  iCi

� �
½invoking ð8:3:9cÞ�

¼
X

_qqpð@R=@ _qqpÞ � R;

from which we immediately conclude that

R ¼
X

_qqpð@R=@ _qqpÞ �H ¼
X

pp _qqp �H

� H �
X

pp _qqp

� �
¼ L�

X
Ci

_  i: equivalent deEnitions of the Routhian
h i

:

ð8:3:10Þ

REMARK

Some authors define the Routhian as the negative of ours; that is, as

R �
X

_  ið@L=@ _  iÞ � L �
X

Ci
_  i � L:

In such a case, all the above results hold intact, but with R replaced with �R; then

(8.3.9a) look exactly like Hamiltonian equations for the  ’s, C’s. That definition

would be ‘‘Hamiltonian’’ in spirit — that is, Routhian ¼ Hamiltonian�P pp _qqp;
ours, being closer to engineering, is ‘‘Lagrangean’’ — that is, Routhian ¼
Lagrangean�P Ci

_  i.

2. If the n �qk are restricted by the m Pfaffian constraints

��D �
X

aDk �qk ¼ 0 ½rankðaDkÞ ¼ m; D ¼ 1; . . . ;mð< nÞ�; ð8:3:11aÞ

while the n�M �ð _qqpÞ and M �Ci are still viewed as independent, then application

of the method of Lagrangean multipliers to the Routhian central equation (8.3.4e)

readily yields the constrained Routhian equations:

dpk=dt ¼ @T 00=@qk þQk þ
X


D aDk;

or, split in two groups (assuming that m <M and m < n�M):

dCi=dt ¼ @T 00=@ i þQi þ
X


D aDi; dpp=dt ¼ @T 00=@qp þQp þ
X


D aDp;

ð8:3:11bÞ
and the earlier kinematico-inertial identities

d i=dt ¼ �@T 00=@Ci; pp ¼ @T 00=@ _qqp: ð8:3:11cÞ

The formulation of the above in terms of the Routhian, whenever the impressed

forces are partly or wholly potential, does not offer any difficulties and will be left to

the reader.
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3. For an extension of these results to quasi variables, see, for example, Chetaev

(1989, pp. 339–346).

Example 8.3.1 Direct Derivation of the Routhian Kinematico-inertial Identities. By

dð. . .Þ-differentiating T 00 � ðT �P Ci
_  iÞ ¼ T 00ðt;  ; q; C; _qqÞ, we find

dT 00 ¼ ð@T=@tÞ dtþ
X �ð@T=@qkÞ dqk þ ð@T=@ _qqkÞ d _qqk�

�
X �

dCi
_  i þCi d _  i

�
¼ � � � ¼ ð@T=@tÞ dtþ

X �ð@T=@ iÞ d i � _  i dCi

�
þ
X �ð@T=@qpÞ dqp þ ð@T=@ _qqpÞ d _qqp

�
: ðaÞ

But also, since T 00 ¼ T 00ðt;  ; q; C; _qqÞ, we will have

dT 00 ¼ ð@T 00=@tÞ dtþ
X �ð@T 00=@ iÞ d i þ ð@T 00=@CiÞ dCi

�
þ
X �ð@T 00=@qpÞ dqp þ ð@T 00=@ _qqpÞ d _qqp

�
: ðbÞ

Therefore, equating the coefficients of these two general dT 00 expressions, (a) and (b),

since the differentials involved are arbitrary, we immediately obtain the following

1þ 2M þ 2ðn�MÞ ¼ 2nþ 1 Routhian kinematico-inertial identities:

@T 00=@t ¼ @T=@t; ðcÞ
@T 00=@ i ¼ @T=@ i; @T 00=@Ci ¼ � _  i; ðdÞ

@T 00=@qp ¼ @T=@qp; @T 00=@ _qqp ¼ @T=@ _qqp ð¼ ppÞ: ðeÞ
Let us resummarize our findings:

(i) Equations (c), first of (d), and first of (e) are fundamentally equivalent, if we think

of time as the ðnþ 1Þth Lagrangean coordinate: qnþ1 � t;

(ii) The first of eqs. (d) are, essentially, Hamiltonian in nature, while the first of eqs. (e)

are Lagrangean; and both sets are used in the corresponding kinetic equations;

(iii) The second of eqs. (d) are the Hamiltonian counterpart of the Lagrangean identity

@T=@ _  i ¼ Ci (with T 00 replaced with �T 00); while

(iv) The second of eqs. (e) are purely Lagrangean.

Repeating this procedure for the Routhian R ¼ L�P Ci
_  i, with pk ¼ @L=@ _qqk,

we similarly obtain the following identities:

@R=@t ¼ @L=@t; ðf Þ
@R=@ i ¼ @L=@ i; @R=@Ci ¼ �d i=dt; ðgÞ
@R=@qp ¼ @L=@qp; @R=@ _qqp ¼ @L=@ _qqp ð¼ ppÞ; ðhÞ

or, compactly,

@R=@qk ¼ @L=@qk ðk ¼ 1; . . . ; n and nþ 1Þ; ðiÞ
@R=@ _qqp ¼ @L=@ _qqp ðp ¼M þ 1; . . . ; nÞ; ðjÞ
@R=@Ci ¼ �d i=dt ði ¼ 1; . . . ;MÞ: ðkÞ
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Last, since by (8.2.10b), @H=@t ¼ �@L=@t, eq. (f ) shows that if a Lagrangean is

explicitly independent of time, then so are the corresponding Routhian and

Hamiltonian; and for potential systems [since, then, dH=dt ¼ @H=@t, by (8.2.14)],

the latter is also a constant.

Example 8.3.2 Another Direct Derivation of the Routhian Kinematico-inertial
Identities. Applying chain rule, carefully, to the Routhian definition R ¼
L�P Ci

_  i, where

R ¼ Rðt;  ; q;C; _qqÞ; L ¼ Lðt;  ; q; _  ; _qqÞ; and _  i ¼ _  iðt;  ; q;C; _qqÞ; ðaÞ

we obtain (with i; j ¼ 1; . . . ;M; p ¼M þ 1; . . . ; n):

ðiÞ @R=@t ¼ @L=@tþ
X
ð@L=@ _  iÞð@ _  i=@tÞ

h i
�
X

Cið@ _  i=@tÞ ¼ @L=@t; ðbÞ

ðiiÞ @R=@qp ¼ @L=@qp þ
X
ð@L=@ _  iÞð@ _  i=@qpÞ

h i
�
X

Cið@ _  i=@qpÞ ¼ @L=@qp;
ðcÞ

ðiiiÞ @R=@ _qqp ¼ @L=@ _qqp þ
X
ð@L=@ _  iÞð@ _  i=@ _qqpÞ

h i
�
X

Cið@ _  i=@ _qqpÞ ¼ @L=@ _qqp;
ðdÞ

ðivÞ @R=@ i ¼ @L=@ i þ
X
ð@L=@ _  jÞð@ _  j=@ iÞ

h i
�
X

Cjð@ _  j=@ iÞ ¼ @L=@ i;

ðeÞ

ðvÞ @R=@Ci ¼
X
ð@L=@ _  jÞð@ _  j=@CiÞ � _  i þ

X
Cjð@ _  j=@CiÞ

h i
¼ � _  i; ðf Þ

which are indeed the earlier Routhian identities.

Clearly, the method of the preceding example (total differentials) seems simpler

and safer than this one (derivatives), as in the earlier derivations of the Hamiltonian

equations (exs. 8.2.1–3).

Analytical Structure of the Routhian

Let us consider (with no loss of generality, just algebraic simplicity) a scleronomic
system whose kinetic energy T is, therefore, a homogeneous quadratic function in its

chosen n Lagrangean velocities _qqk’s (k ¼ 1; . . . ; n). First, we decompose T into the

following three parts:

T ¼ T _qq _qq þ T _qq _  þ T _  _  ¼ Tð ; q; _  ; _qqÞ; ð8:3:12Þ

where

2T _qq _qq �
XX

apq _qqp _qqq ¼ homogeneous quadratic in the _qq’s
ðapq ¼ aqp; positive deOniteÞ;
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T _qq _  �
XX

bpi _qqp _  i ¼ homogeneous bilinear in the _qq’s and _  ’s

ðin general; bpi 6¼ bip; sign indeOniteÞ; ð8:3:12bÞ

2T _  _  �
XX

cij _  i
_  j ¼ homogeneous quadratic in the _  ’s

ðcij ¼ cji; positive deOnite; otherwise the cyclic
kinetic energy T _  _  would not be positive deEniteÞ; ð8:3:12cÞ

with i; j ¼ 1; . . . ;M; p; q ¼M þ 1; . . . ; n; and the coefficients are functions of all n
qk’s. [It is not hard to see that, in the most general case, T _  _  , T _qq _  , and T _qq _qq contain,

respectively (with g � n�m), M þ ð1
2
ÞMðM � 1Þ, Mg, and gþ ð1

2
Þgðg � 1Þ terms;

that is, a total of ð1
2
ÞðM þ gÞðM þ gþ 1Þ ¼ ð1

2
Þnðnþ 1Þ terms, as expected.]

Now, solving the linear system

Ci � @T=@ _  i ¼
X

cji _  j þ
X

bpi _qqp )
X

cji _  j ¼ Ci �
X

bpi _qqp; ð8:3:12dÞ

for the _  j , via Cramer’s rule [i.e., inverting (8.3.12d), which, since (cji) is nonsingular,
is possible], we obtain

_  j ¼
X

Cji Ci �
X

bpi _qqp

� �
; ð8:3:12eÞ

where

Cji ¼ ½cofactor of element cji in DetðcjiÞ�
�
DetðcjiÞ ¼ Cij

ð¼ known function of the q’s and  ’sÞ;

and then substituting these expressions for the _  j into (8.3.12–8.3.12c), and using

well-known properties of inverse matrices, we obtain

T ¼ T2;0 þ T0;2 ¼ Tð ; q;C; _qqÞ ð� T _qqCÞ; ð8:3:12f Þ

where

2T2;0 �
XX

apq �
XX

Cjibpjbqi

� �
_qqp _qqq; ð8:3:12gÞ

2T0;2 �
XX

CjiCjCi; ð8:3:12hÞ

that is, T ¼ Tð ; q;C; _qqÞ does not contain any bilinear terms in the _qq’s and C’s!

With the help of the above, the modified kinetic energy T 00 becomes, successively,

T 00 � T �
X

Ci
_  i ¼ T �

X
Ci

X
Cij Cj �

X
bpj _qqp

� �h i
¼ T2;0 þ T 001;1 � T0;2 � T 002;0 þ T 001;1 þ T 000;2
¼ T 00ð ; q;C; _qqÞ; ð8:3:12iÞ

where

2T 002;0 �
XX

apq �
XX

Cjibpjbqi

� �
_qqp _qqq �

XX
rpqðqÞ _qqp _qqq

¼ 2T2;0 ð¼ positive deOnite in the _qq’sÞ; ð8:3:12jÞ
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T 001;1 �
XX X

Cjibpi

� �
Cj _qqp �

X
rpðq;CÞ _qqp;

½No counterpart in T ¼ Tð ; q;C; _qqÞ; i:e:; T1;1 ¼ 0; sign indeOnite�; ð8:3:12kÞ

2T 000;2 � �
XX

CjiCjCi ¼ 2T 000;2ðq;CÞ
¼ �2T0;2 ð¼ negative deOnite in the C’sÞ: ð8:3:12lÞ

Conversely, if T 00 ¼ T 002;0 þ T 001;1 þ T 000;2, then (by Routh’s identities and the

homogeneous function theorem),

T � T 00 þ
X

Ci
_  i ¼ T 00 �

X
Cið@T 00=@CiÞ

¼ ðT 002;0 þ T 001;1 þ T 000;2Þ � ðT 001;1 þ 2T 000;2Þ
¼ T 002;0 � T 000;2 ¼ Tð ; q;C; _qqÞ ½Compare this with ð8:3:12fÞ and ð8:3:12Þ�:

ð8:3:12mÞ
In view of these results, the Lagrangean and Routhian assume, respectively, the

following forms:

L ¼ T � V ¼ ðT2;0 þ T0;2Þ � V ¼ T2;0 � ðV � T0;2Þ
¼ ðT 002;0 � T 000;2Þ � V ¼ T 002;0 � ðV þ T 000;2Þ ¼ Lð ; q;C; _qqÞ; ð8:3:13Þ

R ¼ L�
X

Ci
_  i ¼ Lþ

X
ð@T 00=@CiÞCi

¼ ðT 002;0 � T 000;2 � VÞ þ ð2T 000;2 þ T 001;1Þ
� R2 þ R1 þ R0 ¼ Rð ; q;C; _qqÞ; ð8:3:14Þ

where

R2 � T 002;0 ¼ T2;0; R1 � T 001;1; R0 � T 000;2 � V ¼ �T0;2 � V : ð8:3:14aÞ
These remarkable identities seem to be due to Routh (also, Kelvin and Helmholtz),

and are very useful in the theory of cyclic systems (}8.4).

[For additional explicit expressions of the Routhian, and so on, see, for example:

Gantmacher [1970, pp. 242–252 (}48)], Lur’e [1968, pp. 340–351 (}7.15–7.17); also

contains the decomposition into Routhian variables in the general nonstationary/
rheonomic T case], Merkin (1974, pp. 24–36), Routh [1877 and 1975, pp. 63–64, 93–

94; 1905(b), pp. 341–342], Winkelmann and Grammel (1927, pp. 470–474); also

Easthope (1964, pp. 382–383), Grammel (1950, Vol. 1, pp. 255–258), Heun (1914,

pp. 454–457).]

Problem 8.3.1 Continuing from the above, let

T ¼ T _qq _qq þ T _qq _  þ T _  _  ¼ Tð ; q; _  ; _qqÞ: ðaÞ

Using the homogeneous function theorem, show that its modified kinetic energy

T 00 ¼ T �
X

Ci
_  i ¼ T �

X
ð@T=@ _  iÞ _  i; ðbÞ

equals

T 00 ¼ T _qq _qq � T _  _  ¼ T 00ð ; q; _  ; _qqÞ; ðcÞ
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that is, T 00 ¼ T 00ð ; q; _  ; _qqÞ does not contain any bilinear terms in the variables _qq
and _  !

Problem 8.3.2 Continuing from the above, show that Routh’s nonkinetic

equations (i.e., his kinematico-inertial identities) transform further to

d i=dt ¼ �@T 00=@Ci ¼ � � � ¼ @T0;2=@Ci � @K2;2=@�i; ðaÞ
where

2T0;2 ¼ �2T 000;2 �
XX

CjiCjCi; ðbÞ

and

2K2;2 �
XX

Cji

X
bpj _qqp

� � X
bqi _qqq

� �
�
XX

Cji�j�i: ðcÞ

Example 8.3.3 (May be omitted in a first reading). Here, we carry out a matrix
derivation of the above results on the structure of the Routhian, for the benefit of

those more comfortable with that currently popular notation.

With the notations ð. . .ÞT � transpose of matrix ð. . .Þ; ð. . .Þ�1 � inverse of matrix

ð. . .Þ, and

_qqT ¼ ð _qqMþ1; . . . ; _qqnÞ; _ttT ¼ ð _  1; . . . ; _  MÞ; )T ¼ ðC1; . . . ;CMÞ; ðaÞ

a ¼ ðapqÞ ¼ ðaqpÞ ¼ a
T; b ¼ ðbipÞ 6¼ ðbpiÞ ¼ b

T; c ¼ ðcijÞ ¼ ðcjiÞ ¼ c
T; ðbÞ

we have the following correspondences with the earlier indicial equations:

ð8:3:12��8:3:12cÞ: 2T ¼ _qqT
a _qqþ 2 _ttT

b
T _qqþ _ttT

c _tt; ðcÞ

ð8:3:12dÞ: @T=@ _tt ¼ b
T _qqþ c _tt ¼ ); ðdÞ

ð8:3:12eÞ: _tt ¼ c
�1ð)� b

T _qqÞ � Cð) � b
T _qqÞ ) _ttT ¼ ð)T � _qqT

bÞC; ðeÞ

½since c is symmetric; so is its inverse C � ðCjiÞ: C � c
�1 ¼ ðc�1ÞT � C

T�

ð8:3:12f ��hÞ: T ¼ . . . ½since )T
Cb

T _qq ¼ _qqT
bC)

ðeasily proved by indicial notationÞ�
¼ ð1=2Þ _qqTða� bC bTÞ _qqþ ð1=2Þ)TC)

� T2;0 þ T0;2 ¼ T 002;0 � T 000;2; ðf Þ

ð8:3:12i��8:3:14aÞ: )T _tt ¼ � � � ¼ )T
C)�)T

Cb
T _qq ¼ �2T 000;2 �)T

Cb
T _qq; ðgÞ

R ¼ ðT � VÞ �)T _tt ¼ � � � ¼ R2 þ R1 þ R0; ðhÞ
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R2 � T 002;0 ¼ T2;0 ¼ ð1=2Þ _qqTða� bC b
TÞ _qq; ðh1Þ

R1 � T 001;1 ¼ )T
Cb

T _qq; ðh2Þ
R0 � T 000;2 �V ¼ �ðV þ T0;2Þ ¼ �ð1=2Þ)T

C)� V : ðh3Þ
If b ¼ 0 — that is, if the _qq’s and _  ’s are uncoupled in the original T , eq. (c) — then R
reduces to

The coordinates  , and corresponding velocities _  , are called cyclic (Helmholtz), or

absent (Routh), or kinosthenic, or speed (J. J. Thomson), or ignorable (Whittaker);

for example, the angular coordinates of flywheels of frictionless gyrostats, included

in a system of bodies (‘‘housings’’), relative to their housings, are such cyclic coor-

dinates. [The term ignorable seems, in general, more appropriate since such coordi-

nates may occur in nonspinning systems; e.g., the kinetic energy of a translating rigid

body contains only the ð. . .Þ:-derivatives of the coordinates of its center of mass, but

not these coordinates themselves.]
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Let us begin with the holonomic, possibly rheonomic, system whose configurations

are determined by the n Lagrangean coordinates q1; . . . ; qn. The system will be called

cyclic, or gyrostatic, if the following conditions apply:

(i) A number of these coordinates, say (as in }8.3) the first M (� n):

ðq1; . . . ; qMÞ � ð 1; . . . ;  MÞ � ð iÞ �  ; ð8:4:1aÞ
do not appear explicitly in either its kinetic energy or its impressed forces; only the

corresponding Lagrangean velocities

ð _qq1; . . . ; _qqMÞ � ð _  1; . . . ; _  MÞ � ð _  iÞ � _  ð8:4:1bÞ
appear there, and, of course time t and the remaining coordinates and/or velocities

ðqMþ1; . . . ; qnÞ � ðqpÞ � q and ð _qqMþ1; . . . ; _qqnÞ � ð _qqpÞ � _qq; ð8:4:1cÞ
respectively; that is,

@T=@ i ¼ 0 but; in general; @T=@ _  i 6¼ 0 ) T ¼ Tðt; q; _  ; _qqÞ: ð8:4:2aÞ
(ii) The corresponding impressed forces vanish; that is,

Qi ¼ 0; but Qp ¼ QpðqÞ 6¼ 0: ð8:4:2bÞ
If all impressed forces are wholly potential, then the above requirements are replaced,
respectively by

∂L/∂ψi = 0 and ∂L/∂ψ̇i �= 0 ⇒ L = L(t; q, ψ̇, q̇) (8.4.2c)
[
⇒ the ψ do not appear explicitly in the corresponding Lagrangean equations of motion
Eq(L) = 0, Eψ(L) = 0

(
⇒ ∂L/∂ψ̇i = constant — recall (3.12.12c) and see below

)]

R ¼ ð1=2Þ _qqTa _qq� ð1=2Þ)TC)� V : ðh4Þ
For an extension of the above to general nonstationary systems, see, for example,

Otterbein (1981, pp. 31–35).



The remaining coordinates q, and corresponding velocities _qq, are called palpable,
or positional, since in many problems they are the only ones directly visible, or

manifest; for example, the angle of nutation of a spinning gyroscope.

Below, we apply Routh’s method and relations (}8.3) to obtain equations of

motion for such cyclic systems, in terms of their positional coordinates alone.

Thanks to (8.4.2a–b), the Lagrangean equations corresponding to the cyclic coordi-

nates/variables, become

ð@T=@ _  iÞ:� @T=@ i ¼ Qi: ð@T=@ _  iÞ: ¼ 0 ) @T=@ _  i � Ci ¼ constant � Ci;

ð8:4:3Þ
that is, the momenta Ci corresponding to the cyclic coordinates  i are constants of
the motion. [Conversely, however, if @T=@ _  i ¼ 0, then @T=@ i ¼ 0, and as a result

T ¼ Tðt; q; _qqÞ; that is, the evolution of the  ’s does not affect that of the q’s at all!]

Therefore, by }8.3, the Routhian of a cyclic system is a function of t; q; _qq and

C � ðCiÞ; indeed, by (8.3.9c) and with C � ðCiÞ,

R � L�
X

Ci
_  i

� �
_  ¼ _  ðt;q; _qq;CÞ

½after solving the linear equations ð8:4:3Þ for the _  in terms of t; q; _qq;C�
¼ L½t; q; _qq; _  ðt; q; _qq;CÞ;C� �

X
Ci

_  iðt; q; _qq;CÞ
¼ Rðt; q; _qq;CÞ
) L ¼

X
Ci

_  iðt; q; _qq;CÞ þ Rðt; q; _qq;CÞ
h i

; ð8:4:4Þ

which shows that, since the  have been completely eliminated (or ignored), our

system has been reduced to one with only n�M Lagrangean coordinates, new

reduced Lagrangean R, and therefore, Lagrange-type Routhian equations for the

positional coordinates (8.3.9b):

ð@R=@ _qqpÞ: � @R=@qp ¼ Qp; ð8:4:5Þ

where the Qp are nonpotential impressed positional forces. [As Kilmister and Reeve

aptly put it (our notation): ‘‘we may in R put Ci ¼ Ci before differentiation and thus

consider the motion of the subsystem (qp) conjugate to the ignorable system ( i)’’

(1966, p. 294).]

Solving these equations, we obtain the palpable motion qpðtÞ. Then, as (8.4.4)

shows,

R ¼ known function of time

) @R=@Ci ¼ known function of time � �fiðt;CÞ; ð8:4:6Þ

from which, since d i=dt ¼ �ð@R=@CiÞ,

 i ¼ �
ð
ð@R=@CiÞ dtþ constant ¼

ð
fi ðt;CÞ dtþ constant

¼  iðt;CÞ þ constant; ð8:4:6aÞ

that is, the problem has been reduced to the n�M equations (8.4.5) and the M
quadratures (8.4.6a); or, equivalently [since every ignorable coordinate generates
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two integrals (}3.12)], the order of the system has been reduced by 2M. [Since

d i=dt ¼ @H=@Ci, similar results hold in terms of the Hamiltonian of cyclic systems;

see, for example, McCuskey (1959, p. 208 ff.).]

REMARK

Kilmister (1964, pp. 43, 46) and others have suggested an alternative handling of

cyclic systems via Hamel’s method of quasi variables and equations (chaps. 2 and 3).

According to this method, we choose the following quasi velocities:

!i � @L=@ _  i � Ci ð¼ 0Þ ði ¼ 1; . . . ;MÞ; ð8:4:7aÞ
!p � _qqp ð6¼ 0Þ ðp ¼M þ 1; . . . ; nÞ: ð8:4:7bÞ

The resulting n�M kinetic equations (Hamel! noncyclic Routhian) plus the M
‘‘cyclicity’’ constraints (8.4.7a) constitute a determinate system of n equations for the

n velocities ( _  i; _qqp). After solving these equations, we can then proceed to the M
kinetostatic equations (Hamel! cyclic Routhian) and determine the reaction forces

associated with these constraints. For a rare implementation of these ideas, see, for

example, Vujanovic (1970); also, ex. 8.4.2, below.

Example 8.4.1 Routhian Method in Problem of Central Motion. Let us consider

a particle P, of mass m, in plane motion under a radial force. Here,

2T ¼ m½ð _rrÞ2 þ ðr _��Þ2� ðr; �: inertial plane polar coordinatesÞ; ðaÞ

Qr ¼ QrðrÞ and Q� ¼ 0: ðbÞ
From the obvious ignorability of �, we obtain the (area) integral

p� � @T=@ _�� ¼ mr2 _�� � C� ¼ constant � mC

) _�� ¼ C
�
r2 ð6¼ constantÞ: ðcÞ

Hence, the modified kinetic energy equals

T 00 ¼ �T � _��ð@T=@ _��Þ� _��¼ _��ðr;CÞ ¼ ðm=2Þ ½ð _rrÞ2 þC2=r2� �mðC2=r2Þ
¼ ðm=2Þ ½ð _rrÞ2 � C2=r2� ¼ T 00ðr; _rr;CÞ; ðdÞ

and so the Lagrangean equation of motion of the nonignorable coordinate r is

ð@T 00=@ _rrÞ:� @T 00=@r ¼ Qr: mð€rr� C2
�
r3Þ ¼ Qr: ðeÞ

Multiplying (e) with _rr, and then integrating, we easily obtain the energy integral

ðm=2Þ �ð _rrÞ2 þ C2=r2
� ¼ ðQr drþ constant: ðf Þ

Example 8.4.2 Direct Elimination of Ignorable Coordinates from the Lagrangean
Equations of Motion; and Some General Theoretical Conclusions. Let us consider,

with no loss of generality, a holonomic, scleronomic, and potential system with M
ignorable coordinates  � ð 1; . . . ;  MÞ, and n�M nonignorable, or positional,
coordinates q � ðqMþ1; . . . ; qnÞ, so that L ¼ Lðq; _qq; _  Þ. Below, we show, quite
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generally and with no recourse to Routh’s method, that the  ’s can be eliminated
from the n�M Lagrangean equations for the q’s. For concreteness, let us take

two ignorable coordinates,  1,  2, and two positional coordinates, q3, q4; that is,

M ¼ 2, n�M ¼ 4� 2 ¼ 2. Then we will have, with the usual notations,

T ¼ ð1=2ÞðM33 _qq3 _qq3 þM44 _qq4 _qq4 þ 2M34 _qq3 _qq4Þ
þ ðM13 _qq3 þM14 _qq4Þ _  1 þ ðM23 _qq3 þM24 _qq4Þ _  2

þ ð1=2ÞðM11
_  1

_  1 þM22
_  2

_  2 þ 2M12
_  1

_  2Þ; ðaÞ
where the inertia coefficients Mkl ¼Mlkðk; l ¼ 1; . . . ; 4Þ and the potential energy V
are functions of q3; 4 only. From the above it follows easily that:

(i) Lagrange’s equations for the q’s are (with p ¼ 3; 4):

ðMp3€qq3 þMp4€qq4 þMp1
€  1 þMp2

€  2Þ
þ ½ð@Mp3=@q3Þ _qq3 þ ð@Mp3=@q4Þ _qq4� _qq3

þ ½ð@Mp4=@q3Þ _qq3 þ ð@Mp4=@q4Þ _qq4� _qq4

þ ½ð@Mp1=@q3Þ _qq3 þ ð@Mp1=@q4Þ _qq4� _  1

þ ½ð@Mp2=@q3Þ _qq3 þ ð@Mp2=@q4Þ _qq4� _  2 ¼ � @V=@qp; ðbÞ
(ii) Lagrange’s equations for the  ’s are (with i ¼ 1; 2)

ð@L=@ _  iÞ: ¼ 0 ) Ci � @L=@ _  i ¼ constant � Ci; ðcÞ
or, using (a) and rearranging,

M11
_  1 þM12

_  2 ¼ C1 � ðM13 _qq3 þM14 _qq4Þ; ðc1Þ
M21

_  1 þM22
_  2 ¼ C2 � ðM23 _qq3 þM24 _qq4Þ: ðc2Þ

Now, solving the system (c1, 2), we obtain _  1 and _  2 in terms of C1, C2; q3, q4; _qq3, _qq4;

and, then, ð. . .Þ:-differentiating these expressions we obtain €  1 and €  2 in terms of the

same variables and their ð. . .Þ:-derivatives. [Here, _CCi ¼ 0, but this procedure applies,

in principle, to noncyclic systems too.]

Next, substituting the so-found expressions for _  1, _  2; €  1, €  2 into eqs. (b), we

obtain, finally, two Lagrangean equations containing only q3 and q4 and their ð. . .Þ:-
derivatives; that is, as far as the equations of motion are concerned,  1 and  2 have

been ‘‘ignored’’—the system has been reduced to one with only n �M ¼ 2

Lagrangean coordinates. Solving these two nonignorable equations, we find the

palpable motion q3ðtÞ and q4ðtÞ; and, then, substituting these solutions back into

(c1, 2), and integrating, we obtain the cyclic motion  1ðtÞ and  2ðtÞ. As one might

expect, finding q3; 4ðtÞ is, in general, considerably harder than finding  1; 2ðtÞ.

General Conclusions

(i) The difference between this approach and the earlier general Routhian method-

ology is that here we eliminated the _  and €  from each of the q-equations of motion;

whereas there (}8.3) this elimination was done in one step, right at the beginning —

that is, by replacing the Lagrangean with the Routhian. For few-degree-of-freedom

systems, the two approaches are practically equivalent, but for larger systems, as well
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as for theoretical arguments and insights, the general Routhian approach is much

preferable.

This is analytically identical with the difference between the following:

(a) Enforcing Pfaffian (and generally nonholonomic) constraints, like (c, c1, 2), not in

L but in each Lagrangean equation of motion; and

(b) Enforcing such constraints directly in L; that is, replacing the ‘‘relaxed’’

Lagrangean L with the ‘‘constrained’’ one Lo or L* (chap. 3), and then applying

it to ‘‘modified’’ equations of motion.

Actually, Routh’s method modifies the Lagrangean (replaces it with the Routhian,
which incorporates the constraints), and then applies it to ordinary Lagrangean equa-
tions of motion. In sum, in such approaches: Either we still operate with the
Lagrangean (L! Lo or L*), and modify the form of the equations of motion
(Lagrange!Voronets or Hamel); or we modify the Lagrangean (!Routhian),
and leave the form of the equations of motion unchanged.

(ii) The simple example below shows why if we enforce (c)-like constraints into

the Lagrangean, then, in general, the ordinary Lagrangean equations for the inde-

pendent coordinates (here the q’s), do not hold. Let us consider, for algebraic

simplicity, a potential system with the single ignorable coordinate  (i.e., M ¼ 1)

and, hence, Lagrangean L ¼ Lðt; q; _qq; _  Þ. Enforcing the Pfaffian cyclicity constraint

@L=@ _  ¼ constant � C ) _  ¼ _  ðt; q; _qq;CÞ � f ðt; q; _qq;CÞ ðdÞ
into L, we obtain the ‘‘constrained’’ Lagrangean Lo:

L ¼ Lðt; q; _qq; _  Þ ¼ L½t; q; _qq; _  ðt; q; _qq;CÞ� � Loðt; q; _qq;CÞ ¼ Lo: ðeÞ
Applying chain rule to this equality, carefully, we find (with p ¼ 2; . . . ; n)

@Lo=@qp ¼ @L=@qp þ ð@L=@ _  Þð@f =@qpÞ ¼ @L=@qp þCð@f =@qpÞ; ðf1Þ
@Lo=@ _qqp ¼ @L=@ _qqp þ ð@L=@ _  Þð@f =@ _qqpÞ ¼ @L=@ _qqp þCð@f =@ _qqpÞ; ðf2Þ

and therefore the Lagrangean expression for Lo becomes

ð@Lo=@ _qqpÞ:� @Lo=@qp ¼ ½ð@L=@ _qqpÞ: � @L=@qp� þ C½ð@f =@ _qqpÞ:� @f =@qp�
¼ 0þ CEpð f Þ 6¼ 0; ðgÞ

that is, in general, EpðLoÞ 6¼ 0, even though EpðLÞ ¼ 0! However, using the above

results, it is not hard to verify that�
@ðLo � C _  Þ�@ _qqp�:� @ðLo � C _  Þ�@qp ¼ 0; ðhÞ

or EpðLo � C _  Þ � EpðRÞ ¼ 0; that is, if we want to keep the form of the

Lagrangean equations of motion (for the independent coordinates) unchanged, we

must take as new Lagrangean not the constrained Lagrangean Lo, but the modified
Lagrangean Lo � C _  � RðouthianÞ.
Example 8.4.3 Routhian of a Three-DOF Cyclic System; Effects of Cyclicity on
the Visible Motions. Let us examine a scleronomic and cyclic system with one
ignorable coordinate, q1 �  1, and two positional coordinates, q2, q3; that is,
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M ¼ 1, n�M ¼ 3� 1 ¼ 2. This is the simplest system that shows clearly the

gyroscopic, and other, effects of ignorable coordinates. Its kinetic energy is

2T ¼M11ð _  1Þ2 þM22ð _qq2Þ2 þM33ð _qq3Þ2

þ 2ðM12
_  1 _qq2 þM13

_  1 _qq3 þM23 _qq2 _qq3Þ; ðaÞ

where all the inertia coefficients Mkl ðk; l ¼ 1; 2; 3Þ are independent of  1, and

Q1 � Q ¼ 0. Then, the cyclicity constraint is

p1 � C1 � @T=@ _  1 ¼M11
_  1 þM12 _qq2 þM13 _qq3 ¼ constant � C1: ðbÞ

Solving it, we obtain

_  1 ¼ ðC1 �M12 _qq2 �M13 _qq3Þ
�
M11 ð6¼ constantÞ ðcÞ

½ ¼ function of q; _qq;C1; and the coupling inertia coeHcients M12; M13�;

and, inserting this expression back into (a), we obtain

T ¼ T 002;0 � T 000;2 ¼ Tðq; _qq;C1Þ
where

2T 002;0 ¼ ½ðM11 M22 �M12
2Þ�M11� ð _qq2Þ2

þ ½ðM11 M33 �M13
2Þ�M11� ð _qq3Þ2

þ 2½ðM11 M23 �M12 M13Þ
�
M11� _qq2 _qq3

�M 00
22ð _qq2Þ2 þM 00

33ð _qq3Þ2 þ 2M 00
23 _qq2 _qq3 ðpositive deEnite in the _qq’sÞ; ðd1Þ

�2T 000;2 ¼ C1
2=M11 ðpositive deEnite in C1Þ; ðd2Þ

the bilinear terms in the _qq’s and C1 having canceled, as expected by the general

theory [(8.3.12m)]. As a result of the above, the modified kinetic energy T 00 (to be

used as kinetic energy in the Routhian–Lagrangean equations for the q’s), becomes

T 00 � T � _  1C1 ¼ � � � ¼ T 002;0 þ T 001;1 þ T 000;2 ¼ T 00ðq; _qq;C1Þ; ðeÞ
where

T 002;0 ¼ T 002;0ðq; _qqÞ: given by ðd1Þ; ðe1Þ

T 000;2 ¼ T 000;2ðq;C1Þ: given by ðd2Þ; ðe2Þ

T 001;1 ¼ ðC1M12=M11Þ _qq2 þ ðC1M13=M11Þ _qq3

¼ r2 _qq2 þ r3 _qq3 ¼ T 001;1ðq; _qq;C1Þ; ðe3Þ
and

r2 � ðM12=M11ÞC1 � 	21C1; r3 � ðM13=M11ÞC1 � 	31C1: ðe4Þ
The equations of motion for the q’s (i.e., the equations of the reduced, or apparent, or

visible, or palpable system) are

ð@T 00=@ _qqpÞ: � @T 00=@qp ¼ Qp ðp ¼ 2; 3Þ: ðf Þ
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Upon carrying out the operations indicated in (f), with the expressions (e–e4), we

notice that the cyclic coordinate(s)  1 (through its constant momentum C1), and the

coupling coefficients M12 and M13, have the following triple effect on the palpable

motion:

(i) T 002;0: The original coefficients of inertia Mkl have been replaced by the ‘‘reduced

coefficients of inertia’’ M 00
kl , unless M12 and M13 vanish.

(ii) T 001;1: The effect of C1 and M12, M13, appears in the coefficients of _qq2 and _qq3; and

their contribution to (f ) is

ð@T 001;1=@ _qq2Þ:� @T 001;1=@q2 ¼ C1

�
@=@q3ðM12=M11Þ � @=@q2ðM13=M11Þ

�
_qq3; ðg1Þ

ð@T 001;1=@ _qq2Þ:� @T 001;1=@q2 ¼ C1

�
@=@q2ðM13=M11Þ � @=@q3ðM12=M11Þ

�
_qq2; ðg2Þ

that is, a coupling of the nonignorable (visible) motions, generated by the ignorable

(invisible) ones, through C1 and M12; M13.

(iii) T 000;2 ¼ �C1
2=2M11 ¼ T 000;2ðq;C1Þ: this term behaves like an additional negative

potential energy; and since

EpðT 000;2Þ � ð@T 000;2=@ _qqpÞ: � @T 000;2=@qp ¼ 0� ð1=2ÞðC1=M11Þ2ð@M11=@qpÞ;

it gives rise to an additional inertial ‘‘force’’

�EpðT 000;2Þ ¼ @T 000;2=@qp ¼ ðC1
2=2M11

2Þð@M11=@qpÞ; ðhÞ

which is indistinguishable, in its mechanical effects, from the ordinary potential

force �@V=@qp. [During the late 19th century, this remarkable situation prompted

several famous scientists (notably Hertz), to try to do the reverse; that is, explain V

as a T 000;2-like term of some concealed, or latent, motions! Such a ‘‘forceless’’

approach did not go very far in classical mechanics, but its conceptual implications

proved helpful, a little later (in the 1910s), in the development of the (also force-

less) general theory of relativity.]

These results are systematized and extended to the general case below, which may

also include, with slight modifications, systems with no ignorable coordinates.

The Kelvin–Tait Equations

(Thomson and Tait, 1912, art. 319, ex. G.) Continuing from the preceding example,

let us now find the explicit form of Routh’s equations for the palpable motion of a

general holonomic, scleronomic (no real loss in generality), and cyclic system with M
ignorable coordinates  � ð i; i ¼ 1; . . . ;MÞ and n�M nonignorable coordinates

q � ð _qqp; q ¼M þ 1; . . . ; nÞ— what is referred to as the Kelvin–Tait equations. Here,

T ¼ Tðq; _qq; _  Þ ¼ homogeneous quadratic in the _  ’s and _qq’s; ð8:4:8Þ
and, therefore, as shown in (8.3.12 ff.) and the preceding example, the Routhian will

equal

R ¼ R2 þ R1 þ R0; ð8:4:9Þ
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where

R2 � T 002;0 ¼ ð1=2Þ
XX

rpqðqÞ _qqp _qqq ð¼ T2;0Þ ¼ R2ðq; _qqÞ:
homogeneous quadratic in the nonignorable velocities _qq; ð8:4:9aÞ

R1 � T 001;1 ¼
X

rpðq;CÞ _qqp ¼ R1ðq; _qq;CÞ:
homogeneous linear in the nonignorable velocities _qq;

with rp ¼
X

	piCi

h
	pi �

X
Cijbpj ¼ 	piðqÞ; by ð8:3:12kÞ

i
; ð8:4:9bÞ

R0 � T 000;2 � V ¼ �ðV � T 000;2Þ � �ð1=2Þ
XX

CjiCj Ci � V ½¼ �ðV þ T0;2Þ�
¼ R0ðq;CÞ: homogeneous quadratic in the constant ignorable momenta C ¼ C:

ð8:4:9cÞ
The above indicate that even in an originally scleronomic system, the Routhian elim-

ination of the ignorable velocities, in favor of their constant momenta, produces an

additional apparent potential energy T 000;2 ¼ �T0;2ð< 0Þ, and (possibly) an additional

apparent kinetic energy T 001;1; and, therefore, the situation is mathematically identical
to that of relative motion (}3.16). Hence, utilizing the expressions (8.4.9–9c) in the

Lagrangean equation of the palpable motion (8.4.5):

ð@R=@ _qqpÞ: � @R=@qp ¼ Qp; ð8:4:5Þ

where Qp ¼ nonpotential impressed positional forces, and proceeding as in }3.16, we

obtain the Kelvin–Tait equations (with p; p 0 ¼M þ 1; . . . ; nÞ:
EpðRÞ � EpðR2 þ R1 þ R0Þ ¼ EpðR2Þ þ EpðR1Þ þ EpðR0Þ ¼ Qp;

or

EpðR2Þ ¼ Qp � EpðR1Þ � EpðR0Þ;

or

ð@R2=@ _qqpÞ:� @R2=@qp ¼ Qp þ @R0=@qp �
�ð@R1=@ _qqpÞ:� @R1=@qp

�
¼ Qp � @ðV � T 000;2Þ

�
@qp þ

X
ð@rp 0=@qp � @rp=@qp 0 Þ _qqp 0

¼ Qp � @ðV � T 000;2Þ
�
@qp þ Gp; ð8:4:10Þ

where

Gp �
X
ð@rp 0=@qp � @rp=@qp 0 Þ _qqp 0 �

X
Gpp 0 _qqp 0 :

Gyroscopic Routhian ‘‘force,’’ since Gpp 0 ¼ �Gp 0p ½¼ Gpp 0 ðq;CÞ�: ð8:4:10aÞ

These are the equations of motion of a fictitious scleronomic system (sometimes

referred to as ‘‘conjugate’’ to the original system, or reduced system) with n�M
positional coordinates q, and subject, in addition to the impressed forces Qp (non-

potential) and �@V=@qp (potential), to two special constraint forces: a centrifugal-
like one, @T 000;2

�
@qp, and a gyroscopic one, Gp. Once the palpable motion qpðtÞ has
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been determined by solving (8.4.10), then substituting it into the Routhian equations

for the ignorable motion, eqs. (8.3.6a, 9a):

d i=dt ¼ �@R=@Ci ¼ �@R1=@Ci � @R0=@Ci ¼ �@T 000;2=@Ci �
X

	pi _qqp; ð8:4:11Þ

and carrying out a quadrature, we find the  iðtÞ.

Gyroscopic Uncoupling

If all the Gpp 0 ’s vanish, then the gyroscopic forces disappear, and so the equations of

the reduced system take the gyroscopically uncoupled form:

EpðR2Þ � ð@R2=@ _qqpÞ:� @R2=@qp ¼ Qp þ @R0=@qp; ð8:4:12Þ
that is, the centrifugal forces express the entire effect of cyclicity on that system.

Since Gp � �½ð@R1=@ _qqpÞ:� @R1=@qp�, and reasoning as in the case of integrabil-

ity of Pfaffian constraints (chap. 2, also chap. 5), we may state with Pars (1965,

p. 172) that: a system is gyroscopically uncoupled if, and only if,

R1dt �
X

rpðq;CÞ dqp
is an exact, or total, differential. Obviously, this holds always if there is only one
nonignorable coordinate [recall (prob. 3.16.3)]. A similar uncoupling occurs, of

course, if all Ci’s vanish ½) rp ¼ 0) R1 ¼ 0; and R0 ¼ �VðqÞ�.
REMARKS

(i) It should be pointed out that the nonignorable coordinates do not fix the

position of every system particle: in general, to one set of values of the q’s there

correspond more than one set of values of the  ’s; or, if the system, by suitable forces,

is brought back to its original q’s, after an arbitrary type of motion, its cyclic  will

not, in general, return to their original values.

(ii) Also, the gyroscopic ð� _qqpÞ terms in (8.4.10) are irreversible (i.e., they change

sign under dt! �dt); while in the absence of friction (i.e., only configuration-depen-

dent forces), the other terms are not. This means that in order to reverse the motion

of a cyclic system, we must reverse both the _qq’s and the _  ’s; reversing only the _qq’s will

not suffice! For example, the precessional motion of a top (gyroscope) is not reversed

unless we also reverse its (cyclic) intrinsic spin _  .

A Cyclic Power Theorem

Multiplying each of (8.4.10) with _qqp and then adding them together, while noting

that
P

rpp 0 _qqp 0 _qqp ¼ 0 (gyroscopicity), we readily obtain the cyclic energy rate/power
theorem:

dhR=dt ¼
X

Qp _qqp; ð8:4:13Þ

where [recalling (8.3.13–14a)]

hR � R2 � R0 ¼ T 002;0 þ ðV � T 000;2Þ
¼ T2;0 þ ðV þ T0;2Þ � hRðq; _qq;CÞ
¼ modiOed ðor cyclicÞ generalized energy; ð8:4:13aÞ
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from which, if
P

Qp _qqp ¼ 0, we are immediately led to the (Routhian counterpart of

the Jacobi–Painlevé) conservation theorem:

hR � T 002;0 þ ðV � T 000;2Þ ¼ constant: ð8:4:14Þ
Alternatively, we may transform the energy equation of the original system as

follows:

H �
X
ð@L=@ _qqkÞ _qqk � L ð¼ constant; if Qp ¼ 0 and @L=@t ¼ @R=@t ¼ 0Þ

¼ �Rþ
X
ð@R=@ _qqpÞ _qqp ½recalling ð8:3:10Þ�

¼ �ðR2 þ R1 þ R0Þ þ ð2R2 þ R1Þ
¼ R2 �R0 ¼ hRðq; _qq;CÞ: ð8:4:13bÞ

Extensions of the above to rheonomic cyclic systems — that is, to the case where

L ¼ Lðt; q; _qq;CÞ
) R ¼ Lðt; q; _qq;CÞ �

X
Ci

_  iðt; q; _qq;CÞ ¼ Rðt; q; _qq;CÞ; ð8:4:14aÞ

can be easily obtained; see, for example, Kil’chevskii (1977, pp. 350–352), Merkin

(1974, chap. 1).

Example 8.4.4 Energetics of a Simple Cyclic System. Let us consider a potential

system with Lagrangean

L ¼ ð1=2Þða _  2 þ 2e _  _qqþ b _qq2Þ � VðqÞ; ðaÞ
where a; e; b ¼ constant inertial coefficients;  =q ¼ ignorable=nonignorable coordi-

nates (i.e., n ¼ 2, M ¼ 1); and initial conditions at t ¼ 0:  ¼ q ¼ 1, _  ¼ _qq ¼ 0.

Since  is ignorable,

@L=@ _  ¼ a _  þ e _qq ¼ constant � C; ðbÞ
from which, applying the initial conditions, we find e ¼ C. Hence, solving (b) for _  ,

we obtain _  ¼ ðC � e _qqÞ=a ¼ ðe=aÞð1� _qqÞ, and so the Routhian becomes

R ¼ Lðq; _qq;C ¼ e; a; bÞ � C _  ¼ � � �
¼ ð1=2Þ ½b� ðe2=aÞ� ð _qqÞ2 þ ðe2=aÞ _qq� ðe2=2aÞ � VðqÞ
¼ R2ð _qq; a; b; eÞ þ R1ð _qq; a; eÞ þ R0ðq; a; eÞ: ðcÞ

This yields the following Routhian equation of motion for q:

ð@R=@ _qqÞ:� @R=@q ¼ 0: ðe2=aÞ þ ½b� ðe2=aÞ� _qq� �: þ dV=dq ¼ 0; ðdÞ
or, solved for €qq:

€qq ¼ ��a�ðb a� e2Þ�ðdV=dqÞ: ðeÞ
Clearly, if e ¼ 0, the motions of  and q decouple.

Now, if VðqÞ ¼ known, then (e) supplies qðtÞ; its two integration constants are

determined from the earlier initial conditions for q.

1106 CHAPTER 8: INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS



On the other hand, the Routhian form of the energy theorem for this system is [by

(8.4.13b)]

hR ¼ H ¼ R2 � R0 ¼ ð1=2Þ½b� ðe2=aÞ�ð _qqÞ2 þ ðe2=2aÞ þ VðqÞ
¼ Hð _qq; a; b; eÞ ¼ constant � h: ðf Þ

Solving (f) for _qq, we get

_qq ¼ ½A � BVðqÞ�1=2; ðg1Þ

where

A � ð2h a� e2Þ�ðb a� e2Þ; B � 2a
�ðb a� e2Þ; ðg2Þ

and then separating variables and integrating, while using the initial conditions for

q, we finally obtain qðtÞ:

t ¼
ð
½A � BVðqÞ��1=2 dq; ðg3Þ

where the integral extends from 1 to q. Then,  ðtÞ can be found by the following

quadrature:

 ¼
ð
�ð@R=@CÞ dtþ 1 ¼ 1þ

ð
ðe=aÞð1� _qqÞ dt; ðhÞ

where both integrals extend from 0 to t.

Example 8.4.5 Hamiltonian and Routhian Treatments of the Top. Let us con-

sider a top (i.e., an axially symmetrical, or uniaxial, body) moving about a fixed

point of its axis O under gravity (fig. 8.2). Using intermediate axes O��xyz, we find

(with principal inertias there: Ix ¼ Iy � A; Iz � C)

x ¼ ð _��; _�� sin �; _  þ _�� cos �Þ ¼ inertial angular velocity of top; ða1Þ
L ¼ T � V ;

2T ¼ Ix !x
2 þ Iy !y

2 þ Iz!z
2 ¼ A

�ð _��Þ 2 þ ð _��Þ2 sin2 �
�þ Cð _  þ _�� cos �Þ2;

V ¼ mg l cos � ðl � OG; G ¼ center of mass of topÞ; ða2Þ

and, therefore, the system momenta are

p� � @T=@ _�� ¼ @L=@ _�� ¼ A _�� sin2 �þ Cð _  þ _�� cos �Þ cos �

� A _�� sin2 �þ C n cos � ¼ constant � C�

½since; clearly; � is an ignorable coordinate�
¼ component of angular momentum of top about the vertical axis through O

ði:e:; OZÞ; ðb1Þ
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p� � @T=@ _�� ¼ @L=@ _�� ¼ A _��

¼ component of angular momentum of top about axis through O

perpendicular to plane of �; ðb2Þ
p � @T=@ _  ¼ @L=@ _  ¼ Cð _  þ _�� cos �Þ � C n ¼ constant � C 

½since; clearly;  is an ignorable coordinate�
¼ component of angular momentum of top about the symmetry axis Oz

ði:e:; the Exed line with which the top axis instantaneously coincidesÞ: ðb3Þ

(i) From the above, it follows easily that the Lagrangean equations of the top are

ð@L=@ _��Þ:� @L=@� ¼ 0: ½A _�� sin2 �þ Cð _  þ _�� cos �Þ cos ��: ¼ 0; ðc1Þ
ð@L=@ _��Þ:� @L=@� ¼ 0: ðA _��Þ:� ½Að _��Þ2 sin � cos �

� Cð _  þ _�� cos �Þ _�� sin �þ mg l sin �� ¼ 0; ðc2Þ
ð@L=@ _  Þ:� @L=@ ¼ 0: ½Cð _  þ _�� cos �Þ�: ¼ 0: ðc3Þ

The first and last of these equations express the constancy of p� and p , respec-

tively; and so we can rewrite the first and second, as follows:

�: A _�� sin2 �þ C cos � ¼ C�; ðd1Þ
�: A €��� Að _��Þ2 sin � cos �þ C 

_�� sin � ¼ mg l sin �: ðd2Þ
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These two equations allow us, among other things, to study the small (linearized)

motion of the top about its vertical axis OZ — that is, � ¼ 0 — and its stability/

instability. Indeed, setting in (d1, 2), approximately, sin � � � and cos � �
1� �2=2, we obtain

�: �2 _�� ¼ constant; ðe1Þ
�: €��� ð _��Þ2� ¼ �½ðC � 4Amg lÞ�4A2��; ðe2Þ

where

� � �� ðC =2AÞt ) _�� ¼ _��� ðC =2AÞ: ðe3Þ

Now, due to the form of equations (e1, 2) we may view � and � as the polar coordi-
nates of the horizontal projection of a point on the top axis Oz, relative to a line that

revolves around OZ with (constant) angular velocity _��� _�� ¼ C =2A. It follows that

the relative motion of such a point will be elliptic harmonic with period

4�AðC 
2 � 4Amg lÞ�1=2

, as long as C 
2 > 4Amg l (stability condition; see also sta-

bility of sleeping top, ex. 8.4.6 below).

(ii) Hamiltonian equations. Solving (b1–3) for the velocities in terms of the

momenta, we get

_�� ¼ ð p� � p cos �Þ�A sin2 �; ðf1Þ
_�� ¼ p�=A; ðf2Þ
_  ¼ p =C � ð p� � p cos �Þ cos �

�
A sin2 �: ðf3Þ

Accordingly, the Hamiltonian becomes

H ¼ ð1=2Þð p� _��þ p� _��þ p _  Þ þ V

¼ ð1=2AÞ � p�2 þ ð p� � p cos �Þ2� sin2 �
�þ ð1=2CÞ p 2 þmg l cos �; ðgÞ

and leads easily to the following pairs of Hamilton’s equations:

�: _pp� ¼ �@H=@� ¼ 0 ð� ¼ ignorable coordinateÞ ðh1Þ
_�� ¼ @H=@p� ¼ ð p� � p cos �Þ�A sin2 �; ðh2Þ

�: _pp� ¼ �@H=@� ¼ �ð p� � p cos �Þð p � p� cos �Þ�A sin3 �þmg l sin �; ðh3Þ
_�� ¼ @H=@p� ¼ p�

�
A; ðh4Þ

 : _pp ¼ �@H=@ ¼ 0 ð ¼ ignorable coordinateÞ ðh5Þ
_  ¼ @H=@p ¼ �ð p� � p cos �Þ cos �

�
A sin2 �þ p 

�
C: ðh6Þ

Equations (h2, 4, 6) are kinematico-inertial, and coincide with the earlier (f1–3);

while (h1, 3, 5) are the kinetic equations.

(iii) Routhian equations. Since, here, the ignorable coordinates are  1 ¼ � and

 2 ¼  , and corresponding constant momenta C1 ¼ p� ¼ C� and C2 ¼ p ¼ C 

(i.e., n ¼ 3, M ¼ 2), the Routhian is

R ¼ L� p� _��� p _  ¼ � � � ¼ R2 þ R1 þ R0; ðiÞ
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where

R2 ¼ T 002;0 ¼ ð1=2ÞA ð _��Þ2; ði1Þ
R1 ¼ 0 ðwe need at least two nonignorable q’s to have gyroscopicity!Þ; ði2Þ
R0 ¼ T 000;2 � V

¼ �½ðC� �C cos �Þ2�2A sin2 �þ ð1=2CÞC 
2� �mg l cos �; ði3Þ

and therefore Routh’s equation for the nonignorable coordinate � is

Aðd2�=dt2Þ þ ½ðC� � C cos �ÞðC �C� cos �Þ��A sin3 � ¼ mg l sin �: ð jÞ

The second left-side (centrifugal-like) terms, equal to E�ðT 000;2Þ ¼ �@T 000;2=@�,
represents the contribution of the apparent potential energy T 000;2ð< 0Þ; there are

no gyroscopic terms.

Equation ( j) can also be rewritten as

Aðd2�=dt2Þ þ ð1=2AÞ d=d��ðC� � C cos �Þ2� sin2 �
� ¼ mg l sin �; ð j1Þ

The nonlinear equations ( j, j1) can be used, just like the earlier Lagrangean equa-

tions (d1, 2), to study the small motion of the top about a given precessional motion,

say one with constant nutation �ðtÞ ¼ �o [i.e., set in, say ( j), � ¼ �o þ D�ðtÞ, keep up
to linear terms in D� and its ð. . .Þ:-derivatives; and then find conditions so that the

resulting linear second-order D� equation has harmonic solutions. The details are left

to the reader.]

Finally, either from the general theory, or directly from ( j1) (i.e., multiply it with

2 _��, etc.), we can easily show that the system has the following cyclic generalized

integral:

R2 � R0 � T 002;0 � ðT 000;2 � VÞ ¼ constant:

ð1=2ÞAð _��Þ2 þ �ðC� �C cos �Þ2�2A sin2 �þ ð1=2CÞ C 
2
�

þmg l cos � ¼ constant; ðk1Þ

or

Að _��Þ2 þ ðC� � C cos �Þ2�A sin2 �þ 2mg l cos � ¼ constant � h; ðk2Þ

or, setting x � cos � ) _xx ¼ � _�� sin � ) ð _xxÞ2 ¼ ð1� x2Þð _��Þ2, finally,

Aðdx=dtÞ2 þ ðC� � C xÞ2
�
Aþ ð2mgl x� hÞð1� x2Þ ¼ 0; ðk3Þ

which has the form ð _xxÞ2 ¼ known function of x � f ðxÞ ) dx=½ f ðxÞ�1=2 ¼ dt, and

upon integration yields x � cos � as an elliptic function of t. The cyclic motions

�ðtÞ and  ðtÞ can then be found from the corresponding Routhian equations

(8.4.11), or (b1, 3), by quadratures.

A Generalization

If Q� 6¼ 0, then only  is cyclic. Solving (b3) for _  , we obtain

_  ¼ p =C � _�� cos � � n� _�� cos �; ðlÞ
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and so, in this case, the Lagrangean and Routhian of the top become, respectively,

L � T � V ¼ ðA=2Þ ½ð _��Þ2 þ ð _��Þ2 sin2 �� þ ðC=2Þ ½ðn� _�� cos �Þ þ _�� cos ��2 � mgl cos �

¼ ðA=2Þ ½ð _��Þ2 þ ð _��Þ2 sin2 �� þ ðC=2Þn2 � mg l cos �

¼ T 002;0 � T 000;2 � V ¼ Lð�; _��; _��;C ¼ C nÞ; ðm1Þ

R ¼ L� p _  ¼ ðT � p _  Þ � V ¼ R2 þ R1 þ R0; ðm2Þ
where

R2 ¼ T 002;0 ¼ ðA=2Þ ½ð _��Þ2 þ ð _��Þ2 sin2 ��:
Kinetic energy of a thin homogeneous bar; of transverse moment of

inertia A about O; moving about that point; ðm3Þ

R1 ¼ T 001;1 ¼ ðC n cos �Þ _��
½� r� _�� � ð	� C Þ _�� ) r� ¼ ðcos �ÞC n; 	� ¼ cos ��; ðm4Þ

R0 ¼ T 000;2 � V ¼ �½ðC=2Þ n2 þmg l cos ��
½the constant term T 000;2 ¼ �ðC=2Þn2 does not enter the Routhian equations of

motion; but it does enter the corresponding energy rate equation�; ðm5Þ
and therefore Routh’s equations for the nonignorable coordinates � and � are

ð@R=@ _��Þ:� @R=@� ¼ Q�:

ð@R2=@ _��Þ:� @R2=@� ¼ Q� � ½ð@R1=@ _��Þ:� @R1=@��;
or

A €�� sin2 �þ 2A _�� _�� sin � cos � ¼ Q� þ ðC n sin �Þ _��; ðn1Þ

ð@R=@ _��Þ: � @R=@� ¼ Q�:

ð@R2=@ _��Þ:� @R2=@� ¼ �ð�@R0=@�Þ þQ� � ½ð@R1=@ _��Þ:� @R1=@��;
or

A €��� Að _��Þ2 sin � cos � ¼ mg l sin �þQ� � ðC n sin �Þ _��: ðn2Þ
Notice that (i) the impressed forces Q�; Q� do not include gravity; (ii) the terms

ðC n sin �Þ _�� are the gyroscopic ‘‘forces’’; and (iii) these are the Lagrangean equa-

tions of the earlier-mentioned fictitious bar rotating about O under the action of (a)

gravity, (b) Q�, Q�, and (c) the gyroscopic couple M 0
G �MG sin �, where (with some

standard notations)

MG ¼ �d=dt ðangular momentum about OzÞ
¼ �d=dtðC n kÞ ¼ �C nðxO��xyz � kÞ ½¼ �C nðx� kÞ�
¼ �C n½ð _��K þ _�� iÞ � k� ¼ �C n

�
_��ðþiÞ þ _��ð�jÞ�

¼ ð�C n _��Þi þ ðC n _��Þj ¼ MG;x; MG;y

	 

: ðn3Þ
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Finally, if Q�, Q� ¼ 0, the system has the modified generalized energy integral

hR � R2 � R0 � T 002;0 þ ðV � T 002;0Þ
¼ ðA=2Þ �ð _��Þ2 þ ð _��Þ2 sin2 �

�þ �ðC=2Þn2 þmg l cos �
� ¼ constant;

or, simply,

ðA=2Þ �ð _��Þ2 þ ð _��Þ2 sin2 �
�þmg l cos � ¼ constant: ðn4Þ

Example 8.4.6 Sleeping Top. Continuing from the preceding example, let us

study the motion (and linear stability) of the top under gravity, when its spin axis

OG is nearly vertical; that is, in the vicinity of OZ [fig. 8.3(a)]. The inertial

coordinates X , Y of the projection of G on the horizontal plane O��XY are

[fig. 8.3(b)]

X ¼ ðl sin �Þ sin � and Y ¼ �ðl sin �Þ cos�: ðaÞ

Below, using these coordinate transformations, we express the Lagrangean and

Routhian of the top in terms of X , Y and their ð. . .Þ:-derivatives (instead of the

earlier �, �), and keep only up to quadratic terms in these variables, so that the

corresponding equations of motion be linear in them; which is the mathematical

meaning of near verticalness, or ‘‘sleepingness’’ of the top. Then, we study the

stability/instability of these small motions.

Indeed, ð. . .Þ:-differentiating (a), and then solving for _�� and _��, while noting that

X2 þ Y2 ¼ l2 sin2 �, we obtain

_�� ¼ ð _XX cos�þ _YY sin�Þ�l sin �; _�� ¼ ð _XX sin�� _YY cos�Þ�l cos �; ðbÞ
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projection of center of mass G of (sleeping) top, G 0, on horizontal plane O–XY .



and so, to the second order,

ð _��Þ2 þ ð _��Þ2 sin2 � ¼ �ð _XXÞ2 þ ð _YYÞ2��l2;
_�� cos � ¼ ðX _YY � Y _XXÞ�ðX2 þ Y2Þ�1 � ð2l2Þ�1

� ¼ ðX _YY � Y _XXÞ�2l2;
cos � ¼ 1 � ðX2 þ Y2Þ�2l2: ðcÞ

Hence, recalling the relevant expressions of the preceding example [and that

Cð _  þ _�� cos �Þ � C n ¼ constant � C ], we find

L ¼ ðA=2Þ �ð _��Þ2 þ ð _��Þ2 sin2 �
�þ ðC=2Þð _  þ _�� cos �Þ2 � mg l cos �

¼ ð1=2Þ A½ð _XXÞ2 þ ð _YYÞ2��l2 þ C ðX _YY � Y _XXÞ½ðX2 þ Y2Þ�1 � ð2l2Þ�1� þ C 
_  

n o
�mg l½1� ðX2 þ Y2Þ�2l2� ¼ LðX ; Y ; _XX ; _YY ; _  ; C Þ; ðd1Þ

and (since we are seeking the X , Y equations, we will ignore only  ; not both �
and  !)

R ¼ L� p _  ¼ R2 þ R1 þ R0

¼ ðA=2Þ½ð _��Þ2 þ ð _��Þ2 sin2 �� þ C 
_�� cos �� ½ðC 

2
�
2CÞ þmg l cos ��

¼ A½ð _XXÞ2 þ ð _YYÞ2��2l2 � ðC 

�
2l2ÞðX _YY � Y _XXÞ

þ ðmg l
�
2l2ÞðX2 þ Y2Þ þ constant terms

¼ RðX ; Y ; _XX ; _YY ; C Þ: ðd2Þ

From these expressions, we obtain the following Routhian equations:

ð@R=@ _XXÞ:� @R=@X ¼ 0: €XX ¼ k2X � � _YY ; ðe1Þ

ð@R=@ _YYÞ:� @R=@Y ¼ 0: €YY ¼ k2Y þ � _XX ; ðe2Þ

where

k2 � mg l
�
A; � � C 

�
A � ðC�AÞ n: ðe3Þ

These coupled equations are the equations of motion of a fictitious particle of unit

mass moving on the inertial plane O��XY under (i) a (centrifugal-like) radial repulsive
force F ¼ k2ðX ; YÞ (i.e., along OP, from O toward P, proportional to the distance

from the origin); and (ii) a gyroscopic (Coriolis-like) force G ¼ �ð� _YY ; _XXÞ [fig.

8.3(b)].

Energy Integral

Multiplying (e1) by _XX and (e2) by _YY , and then adding them together, while noting

that G � v ¼ �ð� _YY _XX þ _XX _YYÞ ¼ 0, we readily obtain the generalized energy integral:

ð1=2Þ ½ð _XXÞ2 þ ð _YYÞ2� � ðk2=2ÞðX2 þ Y2Þ ¼ constant; ðf Þ

as also expected from the general theory.
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Stability

Equations (e) describe the evolution of small deviations (and their rates) of the axis

of the top OG from a fundamental state of vertical spinning (� ¼ 0). They show

that the projection of G, G 0, on the one hand tends to get away from

O ½� k2 terms ðgravityÞ�, and on the other turns around the origin [� � terms

(spinning)], clockwise or counterclockwise, depending on the sign of �.
As an introduction to }8.6, let us examine the stability of that motion; that

is, investigate whether G 0 ðOGÞ remains in the neighborhood of O ðOZÞ, under

arbitrary initial conditions of disturbance from these fundamental states. To this

end, we set in (e) (since it is a constant coefficient system)

X ¼ Xo expð
tÞ and Y ¼ Yo expð
tÞ; ðg1Þ
where Xo; Yo ¼ constant amplitudes and �
2 ¼ !2 ¼ square of frequency of

motion (if stable), and thus obtain the following homogeneous system for these

amplitudes:

ð
2 � k2ÞXo þ ð
�ÞYo ¼ 0; ð�
�ÞXo þ ð
2 � k2ÞYo ¼ 0: ðg2Þ
The requirement for nontrivial solutions of the above leads us, in well-known ways,

to the determinantal (or secular) equation

whose solutions are readily found to be


 ¼ ð1=2Þ ½i�  ð4k2 � �2Þ1=2�: ðg4Þ
From this, we conclude that:

ðiÞ If �2 > 4k2 ½i:e:; recalling ðe1Þ; if n2 > 4Amg l
�
C2�; ðg5Þ

then 
 will be purely imaginary, and therefore X , Y will be harmonic (bounded); that

is, the vertically spinning state will be stable; but

ðiiÞ If �2 < 4k2 ½i:e:; if n2 < 4Amg l
�
C2�; ðg6Þ

then there will be two pairs of conjugate complex roots, one with positive real part,

and one with negative. As a result, in general, a part of X , Y will be exponentially

unbounded; that is, the vertically spinning state will be unstable. [Since for small �
and very high _  :

n2 ¼ ð _  þ _�� cos �Þ2 ¼ ð _  Þ2 þ ð _�� cos �Þ2 þ 2 _�� _  cos � � ð _  Þ2;
the condition (g5) can then be replaced by ð _  Þ2 > ð4A=C2Þmg l; and analogously for

(g6).]

For additional details of the stable case, see, for example, McCuskey (1959, p.

181); also Routh (1877, pp. 64–66, 94–96), Smart (1951, vol. 2, pp. 409–412), and

Whittaker (1937, pp. 206–207). For a general discussion of the sleeping top, includ-

ing a method for the uncoupling of (e) and associated conservation laws/integrals, see

Bahar (1992).
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Problem 8.4.1 Show that the linearized equations of the sleeping top, in terms of

the angular variables � and �, are:

A
	
€��� _��2�Þ þ C n � _�� ¼ mg l�; A

	
� €��þ 2 _�� _��Þ � C n _�� ¼ 0: ðaÞ

Then show that (a) also lead to the earlier stability condition _  2 > ð4A=C2Þmg l.

HINT

Assume steady precession around the vertical, i.e., � ¼ constant ð6¼ 0Þ. Then require

that the resulting quadratic equation in _�� ð¼ constantÞ have real roots. (This argu-

ment also works for stability of steady precession about any nutation angle.)

REMARK

Since for small � the angles � and  are not necessarily small (and for � ¼ 0, _��, _  
become indeterminate, }1.12), other angles, free of this drawback, have been used;

e.g., the Eulerian sequence 1! 2! 3. For a treatment of the sleeping top via such

singularity-free parameters, see e.g., Beghin (1967, pp. 503–504) and Berezkin (1968,

pp. 261–262).

8.5 STEADY MOTION (OF CYCLIC SYSTEMS)

Continuing from }3.10, we define as steady motion of a general (not necessarily cyclic)
system, relative to a given set of Lagrangean coordinates, ðqkÞ, one in which all
corresponding velocities are constant; that is, ð _qqkÞ ¼ constant. Hence, if that system

is also cyclic, relative to a particular set of ignorable coordinates, saying that it is in a

state of steady (or isocyclic) motion means that, during the latter, the velocities
corresponding to both its ignorable and nonignorable coordinates remain constant;
that is, and in the notation of }8.3 and }8.4 (with i ¼ 1; . . . ;M; p ¼M þ 1; . . . ; n),
a motion of that system is steady if during it

_  i ¼ constant � ci ðin addition to Ci ¼ constant � CiÞ; ð8:5:1aÞ
and

qp ¼ constant � sp ð) _qqp ¼ 0Þ; ð8:5:1bÞ
that is, all system velocities are constant (and, hence, all corresponding accelerations

vanish); and, for scleronomic such systems, the Lagrangean has the form

system called) steady motions relative to the ignorable coordinates ð iÞ are equilibrium

states of the conjugate subsystem ðqpÞ. [Recall ‘‘bracketed comment’’ following

(8.4.5).]

Clearly, steadiness is a coordinate-dependent property, like cyclicity; and outside of

uniform translation and rotation about a fixed axis, constitutes one of the simplest

kinds of motion. Thus, the spinning top of the preceding examples is in a state of

steady motion if its ignorable velocities _�� (precession rate) and _  (intrinsic, or

proper, spin), and its nonignorable coordinate � (nutation) remain constant.

To find the conditions for such a state of motion, of, say, a scleronomic and

holonomic system (extensions to more general systems, even quasi variables and
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noncyclic systems, do not offer any theoretical difficulties), we take the earlier

Kelvin–Tait equations (8.4.10; with p, p 0 ¼M þ 1; . . . ; n):

ð@R2=@ _qqpÞ:� @R2=@qp ¼ Qp þ @R0=@qp þ Gp

¼ Qp þ ð@T 000;2=@qp � @V=@qpÞ þ Gp; ð8:5:2Þ

where

Gp �
X

@rp 0=@qp � @rp=@qp 0
	 


_qqp 0 �
X

Gpp 0 _qqp 0 ; ð8:5:2aÞ

R1 � T 001;1 ¼
X

rp _qqp; ð8:5:2bÞ

and in there apply the (equilibrium-like) equations (8.5.1a, b). We, thus, obtain the

following conditions of steady motion:

Qp þ @R0

�
@qp � Qp þ ð@T 000;2

�
@qp � @V=@qpÞ ¼ 0; ð8:5:3aÞ

or, if the system is wholly potential,

@R0=@qp ¼ 0; or @T 000;2
�
@qp ¼ @V=@qp: ð8:5:3bÞ

Equivalently, since [recalling (8.3.12 ff.)]

R ¼ R2 ðhomogeneous quadratic in the _qq’sÞ þ R1 ðhomogeneous bilinear in the C’s and _qq’sÞ
þ R0 ðhomogeneous quadratic in the C’sÞ; ð8:5:3cÞ

and by Routh’s kinematico-inertial identities

@R=@qp ¼ @L=@qp; ð8:5:3dÞ

the above ‘‘equilibrium’’ conditions can be rewritten as

ð@R=@qpÞo ¼ ð@L=@qpÞo ¼ 0 ½ð. . .Þo � ð. . .Þ _  ¼c; q¼s; _qq¼0�: ð8:5:3eÞ

These n�M equations, expressing the hitherto unknown q’s � s’s in terms of the

arbitrarily chosen C’s � C’s, are the necessary and sufficient conditions for the steady

motion of the original system; or, equivalently, for the equilibrium of the reduced

system. The _  ’s can then be found from the second (Hamiltonian) group of

Routh’s equations:

d i=dt ¼ �ð@R=@CiÞo ¼ �ð@R0=@CiÞo ¼ �ð@T 000;2=@CiÞo
¼
X

CijCj ¼ constant � ci ½by ð8:3:12d; eÞ; with _qqp ¼ 0�
¼ Function of the s’s ½roots of ð8:5:3bÞ; ð8:5:3eÞ� and the ðarbitrarily

chosenÞ Cj ’s ½as ð8:3:12lÞ show; once ð8:5:3a; bÞ have been solved; the

Cji change; from known functions of the q’s; to known functions

of the C’s�; ð8:5:4aÞ
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which, upon integration, yields the  ’s:

 iðtÞ ¼ �ciðt� tinitialÞ þ  i;initial:

Function of the s’s and the ðnowÞ arbitrarily chosen ci’s and  initial’s; ð8:5:4bÞ

that is, in steady motion, the cyclic coordinates vary linearly with time.
As stated above, if we initially choose arbitrarily the C’s, then eqs. (8.5.3b) relate

them to the q’s. If, on the other hand, we initially choose arbitrarily the _  ’s � c’s,
then, to relate them directly to the q’s, we must modify (8.5.3b) somewhat. To this

end, we take, first, T 000;2, which is homogeneous quadratic in the C’s, and, using

Ci ¼
P

cji _  j, we change it to a homogeneous quadratic function in the _  ’s. Indeed,

we have, successively (with i, j, j 0, j 00: 1; . . . ;M),

2T 000;2 � 2T 00CC � �
XX

CjiCjCi ½recalling ð8:3:12lÞ�

¼ �
XX

Cji

X
cj 0j _  j 0

� � X
cj 00 i _  j 00

� � h
recalling that

X
Cji cj 0j ¼ �ij 0 ; etc:

i
¼ � � � ¼ �

XX
cij _  i

_  j � 2T 00 _  _  ¼ �2T _  _  ½recalling ð8:3:12c; lÞ�:
ð8:5:5aÞ

Next, applying the results of (probs. 8.2.1 and 8.2.6) to the conjugate functions T 00CC
and T 00 _  _  , we find that

@T 00CC=@qp ¼ �@T 00 _  _  =@qp ¼ @T _  _  =@qp; ð8:5:5bÞ

and so, finally, we can replace the steady motion conditions (8.5.3b) by

�@T 00 _  _  =@qp ¼ @V=@qp or @T _  _  =@qp ¼ @V=@qp; ð8:5:5cÞ

which relate the unknown q’s to the arbitrarily chosen _  ’s; and using Ci ¼
P

cji _  j

we can relate both sets to the C’s.

Example 8.5.1 Let us apply eqs. (8.5.5b, c) to the spinning top described earlier.

Here, C1 � C� and C2 � C , and

2T ¼ A½ð _��Þ2 þ ð _��Þ2 sin2 �� þ Cð _  þ _�� cos �Þ2; V ¼ mg l cos �; ða1Þ

R2 � T 002;0 ¼ ð1=2ÞAð _��Þ2; ða2Þ

R1 � T 001;1 ¼ 0; ða3Þ

R0 � T 000;2 � V � T 00CC � V

¼ �½ðC� � C cos �Þ2�2A sin2 �þ ð1=2CÞC 
2� �mg l cos �: ða4Þ

Therefore, (8.5.4a) yield

_�� ¼ �ð@T 00CC=@C�Þo ¼ ðC� �C cos �Þ�A sin2 �; ðb1Þ
_  ¼ �ð@T 00CC=@C Þo ¼ �ðC� � C cos �Þ cos �

�
A sin2 �þ C =C: ðb2Þ
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Solving these two equations for C� and C , we obtain

C� ¼ ðA sin2 �þ C cos2 �Þ _��þ ðC cos �Þ _  ¼ constant; ðc1Þ
C ¼ ðC cos �Þ _��þ ðCÞ _  ¼ constant; ðc2Þ

and, inserting these representations in T 00CC, (a4), we find

�2T 00 _  _  ¼ 2T _  _  ¼ Að _��Þ2 sin2 �þ Cð _  þ _�� cos �Þ2; ðc3Þ

something that could have also been written down immediately from (a1) and the

general result (8.5.5a)! With these expressions, we readily confirm that

@T 00CC=@� ¼ �ð@T 00 _  _  =@�Þ ¼ @T _  _  =@�

¼ Að _��Þ2 sin � cos �� Cð _  þ _�� cos �Þ _�� sin �; ðc4Þ
and so the condition of steady motion (here, steady precession) (8.5.5c) becomes

[assuming that sin � 6¼ 0 and recalling that Cð _  þ _�� cos �Þ � C ]

@T 00 _  _  =@� � �ð@T _  _  =@�Þ ¼ �ð@V=@�Þ: Að _��Þ2 cos � � C 
_��þmg l ¼ 0; ðd1Þ

which is an equation relating the noncyclic coordinate � with the cyclic velocities _��
and _��, at that state. Solving this quadratic algebraic equation for _��, we find

d�=dt ¼ �C  ðC 
2 � 4Amg l cos �Þ1=2��2A cos �; ðd2Þ

from which it follows that if C 
2 > 4Amg l cos �, there will be two distinct values of

_�� for which � ¼ constant. (The reader can compare this approach with those of the

preceding examples.) Of course, the same equations and conditions would result by

implementation of (8.5.3b), (8.5.3e); their details are left to the reader.

Problem 8.5.1 Consider the steady precession of the spinning top; that is, the

special motion where _�� ¼ constant, _  ¼ constant, and � ¼ constant. Using the

results of ex. 8.4.5:

(i) Show that, in this case,

mg l sin � ¼ ½ðC� � C cos �Þ�A sin �� ½C sin2 � � ðC� � C cos �Þ cos ��� sin2 �
� �

¼ ð1=AÞðA _�� sin �ÞðC � A _�� cos �Þ: ðaÞ
(ii) Further, and since C ¼ C n � Cð _  þ _�� cos �Þ, show that

mg l ¼ _��ðC n� A _�� cos �Þ; ðbÞ
which is a functional relation of the form

F ½�ðnutationÞ; nðtotal spinÞ; _��ðrate of precessionÞ� ¼ 0) � ¼ �ðn; _��Þ:
(iii) Finally, show that for high total spins condition (b) can be approximated by

mg l ¼ C _�� n; ðcÞ
that is, roughly, in the case of ‘‘equilibrium’’ known as steady precession, the desta-

bilizing effect of gravity is balanced by the stabilizing (¼ restoring) effect of spinning.
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Problem 8.5.2 Consider the cyclic system of our general theory; that is,

@L=@ i ¼ 0.

(i) Show that under the (local and time-independent) coordinate transformation

 !  0 ¼  and q! q 0 ¼ f ðqÞ; ðaÞ

the  0 remain ignorable.

(ii) Show that the steady motion conditions remain invariant under (a); that is,

if _  ¼ constant and q ¼ constant; then also _  0 ¼ constant and q 0 ¼ constant: ðbÞ

HINT

Apply chain rule to Lð _  ; q; _qqÞ ¼ Lð _  0; q 0; _qq 0Þ.

Example 8.5.2 Let us examine the total energy of our original (holonomic,

stationary, potential, and cyclic) system at steady motions. Varying H ¼ T þ V ¼
Hðq; pÞ around such a state, we find, successively [with Dð. . .Þ denoting generic

variations of ð. . .Þ],

DH ¼
X
½ð@H=@qkÞDqk þ ð@H=@pkÞDpk� ½invoking the Hamiltonian identities�

¼
X
½ð�@L=@qkÞDqk þ ð _qqkÞDð@L=@ _qqkÞ� ½recalling that @L=@ i ¼ 0�

¼
X
½ð�@L=@qpÞDqp þ ð _qqpÞDð@L=@ _qqpÞ� þ

X
_  i DCi

½invoking ð8:5:1bÞ; ð8:5:3eÞ�
¼
X
½ð0ÞDqp þ ð0ÞDð@L=@ _qqpÞ� þ

X
_  iDCi

¼ 0; if DCi ¼ 0: ðaÞ

Hence, the following theorem.

THEOREM

At a state of steady motion, the energy of the original system is stationary, for

vanishing variations of the cyclic momenta around that state.

Since, here, the Dq’s and Dp’s are viewed as independent, it is not hard to show

that the converse is also true; that is, if DH ¼ 0, for DCi ¼ 0, then the state con-

sidered is one of steady motion— namely, there, _qqp ¼ 0 and @L=@qp ¼ 0.

[This theorem is important in the Hamiltonian treatment of the stability of steady

motion, along lines similar to the study of the stability of equilibrium via the

stationarity/extremality of the total potential energy; see }8.6.]

8.6 STABILITY OF STEADY MOTION (OF CYCLIC SYSTEMS)

Continuing from the preceding section, we consider, again, a holonomic, sclero-

nomic (no real loss in generality), potential, and cyclic system S in a so-called
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fundamental state of steady motion I , described by

_  i ¼ constant � ci and qp ¼ constant � sp

) Ci ¼ constant � Ci and pp � @T=@ _qqp ¼ constant � Sp:

½i ¼ 1; . . . ;M ðnumber of ignorable coordinatesÞ; p ¼M þ 1; . . . ; n

ðn�M ¼ g: number of nonignorable coordinatesÞ�:
ð8:6:1Þ

Next, we also consider S in an adjacent state of (generally, nonsteady) motion

II ¼ I þ DðIÞ, caused by arbitrary disturbances, and, hence, specified by the follow-

ing general variations:

qp ! qp þ Dqp � sp þ Dsp � sp þ zpðtÞ ðzp: relative coordinatesÞ
½) pp ! pp þ Dpp � Sp þ DSp � Sp þ ZpðtÞ�;

Ci ! Ci þ DCi � Ci þ DCi ¼ constant ðsince S is cyclic in both I and IIÞ
½) _  i ! _  i þ D _  i � ci þ DciðtÞ � ci þ iðtÞ�: ð8:6:2Þ

Here is why: since our system S remains cyclic, the kinematico-inertial equations

(8.3.12d, e; 8.5.4a)

_  i ¼
X

CijðqÞ Cj �
X

bpjðqÞ _qqp
h i

;

will hold in both states I and II . Therefore,

I : ci ¼
X

CijðsÞ Cj �
X

bpjðsÞ _ssp
h i

¼
X

CijðsÞCj �
X

CijCj

ðsince sp: constantÞ;

II : ci þ iðtÞ ¼
X

Cij sþ zðtÞ½ � ðCj þ DCjÞ �
X

bpj sþ zðtÞ½ � _zzp
n o

�
X

CijðsÞ þ DCijðz; sÞ
� � ðCj þ DCjÞ �

X
½bpjðsÞ þ Dbpjðz; sÞ� _zzp

n o
�
X
ðCij þ DCijÞ ðCj þ DCjÞ �

X
ðbpj þ DbpjÞ _zzp

h i
�
X

CijCj þ
X

Cij DCj þ DCijCj �
X
ðCijbpjÞ _zzp

h i
ð8:6:2aÞ

[to the first order in the DðIÞ-deviations: zp, _zzp, DCi; DCji �
P ð@Cji=@qpÞI zp]

) iðtÞ ¼
X

Cij DCj þ Cj DCijðtÞ �
X

Cijbpj _zzpðtÞ
h i

; ð8:6:2bÞ

that is,

D _  ðtÞ ¼ Function of DC; DqðtÞ; C; q: ð8:6:2cÞ
From the above, it follows that: (a) The specification of DðIÞ, or II , requires n
quantities: M DCi’s, and n�M DqpðtÞ’s.

(b) D _  i � iðtÞ 6¼ 0, even if we assume that DCj � DCj ¼ 0.
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(c) After finding the palpable/noncyclic perturbations zpðtÞ ! _zzpðtÞ ! DCijðtÞ, we

can calculate those of the cyclic velocities iðtÞ, from (8.6.2b), without any difficulty.

Important Clarifications

(i) Usually, but not always, we consider perturbations DðIÞ that preserve the

values of the ignorable momenta; that is, DCi � CiðIIÞ �CiðIÞ ¼ DCi ¼ 0. [As

shown in ex. 8.5.2, such equimomental deviations are also isoenergetic; that is, the

total energy is also preserved: HðIÞ ¼ HðIIÞ.]
(ii) By adjacent state, we mean one that can be adequately described by

linear(ized) equations in the above nonignorable deviations qpðtÞ [and ppðtÞ] and

their ð. . .Þ:-derivatives.

Now, if, as t!1, these perturbations remain bounded— for example, if they

vary harmonically about the steady state I , or if they approach it asymptotically —

then we say that I is stable; if not, then it is unstable. [As (8.5.4a) and (8.5.2b) show, a

small change in the I -values qðIÞ, pðIÞ, CðIÞ produces a small change in the _  ðIÞ’s:
_  i ! _  i þ D _  iðtÞ. But in view of the linear variation of the ignorable coordinates with
time, eq. (8.5.4b), a small change in the _  ðIÞ’s produces, after sufficient time, an

arbitrarily large change in the  ðIÞ’s. Therefore, steady motions cannot be stable
relative to their ignorable coordinates.]

To study such perturbed motions, either:

� We substitute qp ! sp þ Dsp � sp þ zpðtÞ [and _  i ! ci þ DciðtÞ � ci þ _  iðtÞ] in

the Lagrangean equations of motion of the original system, or (8.6.2) (with

Ci ! Ci þ DCi � Ci, since we assumed that DCi ¼ 0) in the Routhian equations

of motion [i.e., the Lagrangean equations of the reduced, or conjugate, (sub)system];

and then keep only up to first-order/linear terms in the Dsp � zpðtÞ, Dci � iðtÞ and

their ð. . .Þ:-derivatives. Since the fundamental state is assumed steady, the so-result-

ing linear perturbation equations will have coefficients that will be known functions

of the (assumed known) constant I-values Ci, sp (or ci, sp), and so will be themselves

known constants; or

� We substitute (2) in the exact Routhian Rðqp; _qqp;CiÞ expand it à la Taylor

around I [i.e., in powers of the DqpðtÞ � zpðtÞ and their ð. . .Þ:-derivatives], keep

only up to second-order/quadratic terms in them, while evaluating all derivatives at

I , and then form Routh’s equations for the nonignorable perturbations zpðtÞ. Indeed,

with p, p 0 ¼M þ 1; . . . ; n and ð. . .Þo � ð. . .Þevaluated at I (to be used now and then for

extra clarity), we obtain, successively,

R � RðIIÞ � R½I þ DðIÞ� � RðIÞ þ DR

or

Rðq; _qq;CÞ ¼ R sþ zðtÞ; _ssþ _zzðtÞ;C þ DC½ � ¼ R sþ zðtÞ; _zzðtÞ;C½ �
� Rð0Þ þ Rð1Þ þ Rð2Þ; ð8:6:3Þ

where

Rð0Þ � RðIÞ ¼ Rðs;C Þ ¼ constant; ð8:6:3aÞ
Rð1Þ �

X �ð@R=@qpÞo zp þ ð@R=@ _qqpÞo _zzp�: linear homogeneous in z; _zz

¼
X

ð0Þzp þ ð@R=@ _qqpÞo _zzp
� �

[invoking (8.5.3e)] ð8:6:3bÞ
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2Rð2Þ �
XX �ð@2R=@qp @qp 0 Þo zp zp 0 þ 2ð@2R=@qp @ _qqp 0 Þo zp _zzp 0

þ ð@2R=@ _qqp @ _qqp 0 Þo _zzp _zzp 0
�
:

quadratic homogeneous in z; _zz; ð8:6:3cÞ
and, therefore {assuming QpðIÞ ¼ QpðIIÞ ¼ 0, and since ð@R=@ _qqpÞo ¼ constant)
½ð@R=@ _qqpÞ:�o ¼ 0}, the linearized equations of state II

@ðDRÞ=@ _zzp
	 
: � @ðDRÞ=@zp ¼ ð@Rð2Þ=@ _zzpÞ:� @Rð2Þ=@zp ¼ 0; ð8:6:3dÞ

become X
�pp 0 €zzp 0 þ �pp 0 _zzp 0 þ �pp 0 zp 0
	 
 ¼ 0; ð8:6:4Þ

where the constant coefficients �, �, � are

�pp 0 � ð@2R=@ _qqp @ _qqp 0 Þo ð¼ �p 0p: positive deOniteÞ; ð8:6:4aÞ
�pp 0 � �ð@2R=@qp @qp 0 Þo ð¼ �p 0p; note minus signÞ; ð8:6:4bÞ
�pp 0 � ð@2R=@qp 0 @ _qqp � @2R=@qp @ _qqp 0 Þo ¼ @=@ _qqpð@R=@qp 0 Þ � @=@ _qqp 0 ð@R=@qpÞ

� �
o

ð¼ ��p 0p: sign indeOniteÞ: ð8:6:4cÞ

REMARKS

(i) The �- and �-terms represent, respectively, inertia and ‘‘elasticity,’’ as in ordin-

ary linear vibration theory; the �-terms, however, do not represent dissipation, but

gyroscopicity; that is, they are powerless (}3.9):X X
�pp 0 _zzp 0

� �
_zzp ¼ 0: ð8:6:4dÞ

For example, for n�M ¼ 2 (¼ minimum number of nonignorable coordinates for

appearance of gyroscopicity; then p, p 0 ¼ 1; 2), eqs. (8.6.4) read, in extenso,

�11€zz1 þ �12€zz2 þ �12 _zz2 þ �11z1 þ �12z2 ¼ 0; ð8:6:4eÞ
�21€zz1 þ �22€zz2 þ �21 _zz1 þ �21z1 þ �22z2 ¼ 0; ð8:6:4f Þ

that is, they involve seven distinct coefficients [three inertial ð�11, �12 ¼ �21, �22Þ þ
one gyroscopic ð�12 ¼ ��21Þ þ three elastic ð�11, �12 ¼ �21, �22Þ].

(ii) Neither Rð0Þ nor Rð1Þ enter the equations of adjacent motion [recall mathe-

matically similar situation in derivation of (3.10.12)].

(iii) The constancy of all coefficients in the expansions (8.6.3–8.6.3c), and there-

fore also in the perturbation equations (8.6.4–8.6.4c), has been used by Routh as the

mathematical definition of steady motion. The physical characteristic of such a

motion is, in his words, ‘‘that . . . the same oscillations follow from the same dis-

turbance of the same [nonignorable] coordinate at whatever instant the disturbance

may be applied to the motion’’ [Routh (1905(b), p. 77].

To study the nature of the solutions of (8.6.4) with an eye toward their stability,

and so on, and guided by the linear and unforced vibration case (i.e., linear homo-

geneous systems with constant coefficients), we substitute in (8.6.4)

zp ¼ zpo expð
tÞ; zpo ¼ constant amplitude; ð8:6:5aÞ
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and, proceeding in well-known ways, we find that, for nontrivial zpo’s, the (constant)


’s must be roots of the following determinantal (or secular, or characteristic) equa-

tion:

Dð
Þ �

�11

2 þ �11 �12


2 þ �12
þ �12 � � � �1g

2 þ �1g
þ �1g

�21

2 þ �21
þ �21 �22


2 þ �22 � � � �2g

2 þ �2g
þ �2g

�g1

2 þ �g1
þ �g1 �g2


2 þ �g2
þ �g2 � � � �gg

2 þ �gg




¼ 0;

ð8:6:5bÞ
¼ 2g-degree polynomial in 
 ðg � n�M ¼ # nonignorable coordinatesÞ:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

The complete (or general) solution of (8.6.4) will equal the linear superposition of the

2g (8.6.5a)-like solutions; one for each of the 2g roots of (8.6.5b).

The stability/instability of the fundamental state I is determined by the nature

(and/or sign) of these roots; which, in turn, are determined by the coefficients �, �, �,
whose values depend on that state. In general (recall summary in }3.10), roots that

are:

� real and positive, or complex with positive real parts signal instability (i.e., solutions

increase exponentially with time);

� real and negative, or complex with negative real parts signal (asymptotic) stability (i.e.,

solutions decrease exponentially with time);

� purely imaginary signal stability (i.e., constant amplitude oscillations. This case is

called critical: actually, our linearized stability analysis is inconclusive; we need non-
linear perturbation equations for DðIÞ to safely ascertain the stability/instability of I ).

Hence, to test stability: either

(i) We find all roots of (8.6.5b) and then check to see if their real parts are negative; or

(ii) We apply any one of a number of existing criteria that does not actually find the

roots, but checks the sign of their real parts; for example, Routh–Hurwitz test

(}3.10, Method of Small Oscillations).

As in ordinary linear vibration theory, the reason that (8.6.5b) is not so easy to

study is because equations (8.6.4) are coupled. An important simplification occurs if

we choose new DðI Þ-coordinates zp ! x � ðx1; . . . ;xgÞ, via an ever-existing linear,

real, and nonsingular transformation that diagonalizes (i.e., uncouples) simulta-

neously both matrices (�pp 0 : positive definite) and ð�pp 0 Þ, and thus reduces the ‘‘per-

turbation kinetic and potential energies’’

2Rð2ÞT �
XX

ð@2R=@ _qqp @ _qqp 0 Þo _zzp _zzp 0 �
XX

�pp 0 _zzp _zzp 0 ; ð8:6:6aÞ
2Rð2ÞV � �

XX
ð@2R=@qp @qp 0 Þo zp zp 0 �

XX
�pp 0 zp zp 0 ; ð8:6:6bÞ

respectively, to sums of squares:

2Rð2ÞT ¼
X

�pð _xxpÞ2 and 2Rð2ÞV ¼
X

�p xp
2: ð8:6:6cÞ
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[Note minus sign in Rð2ÞV , to give Rð2Þ the form of a Lagrangean; see also (8.6.10b).]

However, then, the ‘‘gyroscopic energy’’

Rð2ÞG �
XX

ð@2R=@qp @ _qqp 0 Þo zp _zzp 0 �
XX

Ep 0p zp _zzp 0 ðEp 0p 6¼ Epp 0 Þ
ð8:6:6dÞ

(which does not exist in linear, unforced, and undamped vibrations about

equilibrium) transforms, in general, to another nondiagonal form,

Rð2ÞG ¼
XX

"p 0p xp _xxp 0 �
X X

"p 0p xp

� �
_xxp 0

h i
: ð8:6:6eÞ

As mentioned above, since Rð2ÞT (but not necessarily Rð2ÞV ) is positive definite, such a

partially decoupling transformation is always possible; but it must be borne in mind

that because the ‘‘elastic’’ coefficients �pp 0 , in general, depend on the _  , C’s, [or, in

the mathematically equivalent case of small motion around relative equilibrium

(recall }3.16), they depend on the constant angular velocity of the rotating frame]

the x’s may also depend on them as parameters. [The x’s are sometimes called

principal coordinates, just like the (completely decoupling) principal/normal coordi-

nates of ordinary (i.e., nongyroscopic) vibration theory.]

In these coordinates, the Lagrange-type equations of perturbed motion

ð@Rð2Þ=@ _xxpÞ:� @Rð2Þ=@xp ¼ 0; ð8:6:7aÞ

where Rð2Þ ¼ Rð2ÞT þ Rð2ÞG � Rð2ÞV , assume the simpler form

�p€xxp þ
X

gpp 0 _xxp 0 þ �pxp ¼ 0; ð8:6:7bÞ

where gpp 0 � "pp 0 � "p 0p ¼ �gp 0p; and upon substituting xp ¼ xpo expð
tÞ into them,

and so on, we are led to the simpler characteristic equation

Dð
Þ �

�1

2 þ �1 g12
 � � � g1g


g21
 �2

2 þ �2 � � � g2g


gg1
 gg2
 � � � �g

2 þ �g

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �




¼ 0: ð8:6:8Þ

Now, the determinant Dð
Þ is nonsymmetric [unlike the corresponding determi-

nant of the nongyroscopic case (undamped vibration around absolute equilibrium)

which, as is well known, is symmetric], but its off-diagonal elements are antisym-

metric: gpp 0 ¼ �gp 0p. Hence, reversing the sign of 
 in Dð
Þ simply interchanges its

rows and columns [or, the rows (columns) of Dð
Þ equal the columns (rows) of

Dð�
Þ] and so, by determinant theory,

Dð
Þ ¼ Dð�
Þ; ð8:6:8aÞ
in words, eq. (8.6.8) [as well as its completely uncoupled version (8.6.5b), and the

nongyroscopic case] is independent of the sign of 
. Therefore all odd 
-powers are
absent from it:

0 ¼ Dð
Þ � Agð
2Þg þ Ag�1ð
2Þg�1 þ � � � þ A1ð
2Þ þ A0

½ðgÞth degree polynomial in 
2�: ð8:6:8bÞ
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Next, as algebra teaches, since the coefficients �, �, g are real, the g 
2-roots of

(8.6.8b) will, in general, be either real or complex conjugate pairs, like


2 ¼ � i� ð�; �: real ) 
 ¼ ð"  i�Þ ð"; �: realÞ: ð8:6:8cÞ
and such 
’s will produce x’s of the following general (real) form:

C expð"tÞ cosð�tþ cÞ þD expð�"tÞ cosð�tþ dÞ; ð8:6:8dÞ
where C, c; D, d are real constants, and, therefore, unless " ¼ 0, the amplitudes

C expð"tÞ, D expð�"tÞ will increase indefinitely, that is, the state I will be unstable.

Hence the rule.

RULE

For the fundamental state of steady motion I to be stable, in the above sense, all


2-roots of the characteristic equation (8.6.8–8.6.8b) must be real and negative,
that is,


2-roots ¼ �
p2 ) 
-roots ¼ i 
p ð
p: real; p ¼ 1; . . . ; gÞ: ð8:6:8eÞ

Algebraic Detour

The theory of algebraic (polynomial) equations allows us to relate the roots of

(8.6.8b) with its coefficients Ag, Ag�1; . . . ;A1, A0. According to the fundamental

theorem of algebra (see books on algebra, or handbooks of engineering, mathematics,

etc.), if L1; . . . ;L2g are the 2g roots of (8.6.8b) (i.e., L1 ¼ þi
1, L2 ¼ �i
1, etc.), then

Dð
Þ ¼ Agð
� L1Þð
� L2Þ � � � ð
� L2gÞ ðalwaysÞ; ð8:6:9aÞ
and, therefore,

Dð0Þ ¼ Agð�1Þ2gL1L2 � � �L2g ¼ þAgL1L2 � � �L2g

¼ �1�2 � � ��g ¼ A0 ½by ð8:6:8Þ�; ðalwaysÞ; ð8:6:9bÞ
and

½lim Dð
Þ�
!1 � Dð1Þ > 0 ðalwaysÞ: ð8:6:9cÞ
Hence in the case of stability— namely (8.6.8e) — and since then to each stable pair

of 
-roots, i 
p, there corresponds in Dð
Þ a factor ½
� ðþi
pÞ�½
� ð�i 
pÞ� ¼

2 � ð�
p2Þ ¼ 
2 þ 
p2, eq. (8.6.9a) must have the following form (Ag > 0, with

no loss in generality):

Dð
Þ ¼ Agð
2 þ 
1
2Þ . . . ð
2 þ 
g2Þ ðstability caseÞ; ð8:6:9dÞ

that is, be a polynomial with all its coefficients positive; and so in this case

Dð0Þ ¼ Agð
1
2
2

2 . . .
g
2Þ > 0 ðstability caseÞ: ð8:6:9eÞ

Further, according to Viète’s rules (and counting k-ple roots k times),

L � L1L2 � � �L2g ¼ ð�1Þ2gðA0=AgÞ ¼ A0=Ag ðalwaysÞ ð8:6:9f Þ
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and so in the case of stability we must have

L ¼ ½ð�i 
1Þðþi 
1Þ� . . . ½ð�i 
gÞðþi 
gÞ� ¼ 
1
2
2

2 . . .
g
2

½also: ð�
1
2Þð�
2

2Þ . . . ð�
g2Þ ¼ ð�1Þgð
1
2
2

2 . . .
g
2Þ ¼ ð�1ÞgðA0=AgÞ�

) 
1
2
2

2 . . .
g
2 ¼ A0=Ag > 0 ðstability caseÞ: ð8:6:9gÞ

Last, to express this necessary condition for gyroscopic stability in terms of the

nongyroscopic parameters of our system in state I (i.e., in terms of the �p’s and the

�p’s), we expand the determinant (8.6.8) and compare it with (8.6.8b) [or use math-

ematical induction, i.e., confirm it for g! 2, then assume it holds for g! g, and

finally prove it for g! gþ 1]. Thus we get

A0 � �1�2 . . .�g ¼ Det ð�pp 0 Þ ¼ Det ð�pÞ ½6¼ 0; if all �p 6¼ 0�:
Product of coeRcients of ðnongyroscopic; or irrotationalÞ stability of Rð2ÞV ;

ðalwaysÞ; ð8:6:9hÞ
Ag � �1�2 . . .�g ¼ Det ð�pp 0 Þ ¼ Det ð�pÞ 6¼ 0:

Product of coeRcients of inertia ð� massesÞ of positive deOnite Rð2ÞT ;

ðalwaysÞ: ð8:6:9iÞ
In view of the above, the essential stability condition (8.6.9g) translates to


1
2
2

2 . . .
g
2 ¼ ð�1�2 . . .�gÞ=ð�1�2 . . .�gÞ > 0 ðstability caseÞ; ð8:6:9jÞ

or, equivalent, since Ag � �1�2 . . .�g > 0, to

Dð0Þ ¼ A0 ¼ �1�2 . . .�g > 0 ðstability caseÞ: ð8:6:9kÞ
These results lead us to the following stability criteria [Kelvin and Tait (1860s)]:

Criteria of Gyroscopic Stabilization

Consider a fundamental state of steady motion (ignored coordinates) I, of a cyclic

system [or a state of relative equilibrium (rheonomic constraints — }3.16) of a

general system], and let (8.6.7b) be the equations of linearized perturbations from

I (i.e., no friction taken into account). Then

� If all �p’s are positive ½) Rð2ÞV : positive definite ) Rð2ÞV ðIÞ: minimum, and

all 
2-roots are negative ¼ �
p2 < 0], then I is stable, both nongyroscopically (i.e.,

with all gpp 0 ’s absent) and gyroscopically (i.e., with at least one pair of gpp 0 ’s present).

If even one �p vanishes while the rest remain positive [Rð2ÞV : positive semidefinite],

then I is unstable both nongyroscopically and gyroscopically. [For alternative proofs

including the well-known stability arguments of Dirichlet and Kelvin, see, e.g., Lamb

(1943, pp. 245–248; 1932, pp. 310–313), also discussion following (8.6.10).]

� If all �p’s are negative ½) Rð2ÞV : negative definite ) Rð2ÞVðIÞ: maximum], then

I is nongyroscopically unstable. However, if the number of these negative �p’s is even
[) Dð0Þ ¼ A0 > 0 and Dð1Þ > 0], then I can always be stabilized gyroscopically —

at least temporarily (see destabilizing effect of ever-present friction, below); but if

their number is odd [) Dð0Þ ¼ A0 < 0 and Dð1Þ > 0, i.e., at least one 
-root is

positive], then gyroscopic stabilization of I is impossible— in this case, gyroscopic
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effects cannot save I from instability. If even one �p vanishes while the rest remain

negative [) Rð2ÞV : negative semidefinite], then I is unstable both nongyroscopically

and gyroscopically.

� If some �p’s are positive, some are negative, and some are zero [) Rð2ÞV :

indefinite) Rð2ÞVðIÞ: min/max (‘‘saddle point’’)], then state I can, sometimes, be

stabilized gyroscopically; specifically, if no vanishing �p’s are present, and if the

number of negative �p’s is even.

[The case of equal, or multiple, roots in Dð
Þ ¼ 0, as in the nongyroscopic case, is

due to accidental properties of the system’s physical and geometrical parameters,

and, therefore, does not create any real complications; see, e.g., Routh (1905(b),

p. 82); also Frank (1935, pp. 136–138).] These conclusions can, of course, also be

reached by application of the Routh–Hurwitz theorem to (8.6.8b); see references

given in }3.10, and Bellet (1988, pp. 311–327), Grammel (1950, vol. 1, pp. 258–

262), Winkelmann and Grammel (1927, pp. 481–483), Merkin (1987, pp. 168–184).

In sum:

� Gyroscopic effects cannot destabilize a state of steady motion, but sometimes they

can stabilize it.

� If the number of nonignorable freedoms is even (and no �p vanishes), then either I is

stable or it can always be stabilized; or, if g is even, gyroscopic stabilization is always

possible.

In view of these results, it has become necessary to distinguish stability/instability,

in the context of cyclic systems and relative equilibrium, into one based on the 
p
2’s

and one based only on the �p’s [equivalently, on the extremum–min/max properties

of Rð2ÞV . We have just seen that (a) if Rð2ÞV is positive definite, then I is stable, both
nongyroscopically and gyroscopically; (b) if it is nonpositive definite, then I is non-
gyroscopically unstable; and (c) if it is semidefinite, whether positive or negative (e.g.,

Rð2ÞV � 0Þ, then I is gyroscopically unstabilizable.] Let us elaborate on these concepts.

� Stability ascertained on the basis of the above-presented method of small oscil-
lations (i.e., of conditions for the roots of the associated characteristic equation,

which includes gyroscopic effects, to be either purely imaginary or have negative
real parts) is called ordinary, or temporary (due to the eventual destabilization by

damping — see below), or dynamical (since it is based on equations of motion), and is

associated with Lagrange and Routh.

� A second stability method, for holonomic and potential systems, called prac-
tical, or permanent, or secular (due to its application to problems of celestial

mechanics; e.g., stability of rotating liquid masses), and associated with the names

of Kelvin, Poincaré, et al., is based on the extremum properties of the system’s total

potential energy at the fundamental state I , here the negative of R0; that is,

�R0 � �ðT 000;2 � VÞ ¼ V � T 000;2 ¼ V þ T0;2

� ð1=2Þ
XX

CjiðqÞCjCi þ VðqÞ
h i

I
� reduced ðtotalÞ potential; ð8:6:10Þ

and this, in turn, is based on the earlier (Jacobi–Painlevé) energy integral (8.4.13a, b,

14):

hR � R2 � R0 ¼ T 002;0 þ ðV � T 000;2Þ ¼ constant ðR2 ¼ positive deOniteÞ;
ð8:6:10aÞ
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(i.e., it takes into account the rotation ð�Þ but not its gyroscopic effects (g)!) and a

reasoning identical to that used in the stability of ordinary (i.e., inertial) equilibrium

via the well-known equation T þV � E ¼ constant [what is, generally, referred to as

theorem of Dirichlet (1846); see e.g., Lamb (1943, pp. 214–215)]. Equivalently, since

the earlier linear perturbation equations (8.6.3d, 4) can be rewritten, with the help of

the general quadratic/bilinear forms (8.6.6a–d), as

ð@Rð2ÞT=@ _zzpÞ:� @Rð2ÞT=@zp
� �þ ð@Rð2ÞG=@ _zzpÞ:� @Rð2ÞG=@zp� �

� ð@Rð2ÞV=@ _zzpÞ:� @Rð2ÞV=@zp
� � ¼ 0;

or

ð@Rð2ÞT=@ _zzpÞ: þ ð@Rð2ÞG=@ _zzpÞ: � @Rð2ÞG=@zp
� �þ @Rð2ÞV=@zp ¼ 0; ð8:6:10bÞ

and [by multiplication of each with _zzp, summation over p ¼M þ 1; . . . ; n, and then

invocation of (8.6.4)] readily yield the perturbational energy integral:

Rð2ÞT þ Rð2ÞV ¼ constant

ðRð2ÞT ¼ positive deOnite;no Rð2ÞG present; as in relative motionÞ; ð8:6:10cÞ

for these reasons, we may, in our practical stability investigation, replace �R0 with its
quadratic approximation Rð2ÞV :

2Rð2ÞV � �
XX

ð@2R=@qp @qp 0 Þo zp zp 0 �
XX

�pp 0 zp zp 0 ¼
X

�pxp
2:

ð8:6:10dÞ

According to this criterion, the fundamental state I is called practically stable if

�R0 > 0 ) R0 < 0; or Rð2ÞV > 0: ð8:6:10eÞ

Since, by (8.5.3b), ð@R0=@qpÞo ¼ 0, or ð@Rð2Þ=@qpÞo ¼ �ð@Rð2ÞV=@zpÞo ¼ 0, the above

mean that I is stable, in that sense, if R0ðRð2ÞVÞ is a strict maximum (minimum) there.
For then, arguing à la Dirichlet, the integral (8.6.10c) will yield

Rð2ÞT þ ð1=2Þ
X

�pxp
2 ¼ small positive constant � c; ð8:6:11aÞ

from which, since Rð2ÞT is positive definite, we conclude that no xp can ever exceed a

certain small value; for example, jx1j � ð2c=�1Þ1=2. Hence, in the absence of friction,
the system oscillates around I , as in stability about ordinary equilibrium. This is the

sufficiency part of the theorem. The necessity part is most easily established by taking

into account the always present friction during every motion from I . Then (8.6.10c,

11a) are replaced by the power equation

d=dtðRð2ÞT þ Rð2ÞVÞ ¼ negative quantity; ð8:6:11bÞ

which implies that, as long as even one _xxp is nonzero, the perturbational energy

Rð2ÞT þ Rð2ÞV decreases monotonically until, eventually, both Rð2ÞT and Rð2ÞV vanish;

that is, all x’s and _xx’s vanish simultaneously. [It can be shown that this stability

criterion also holds if we vary the cyclic momenta; that is, even for CiðI Þ � Ci,

CiðII Þ � Ci þ DCi; see, for example, Gantmacher (1970, pp. 255–256).]
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Since the criteria of practical stability (being energetic and not involving the

gyroscopic terms) are easier to apply than those of ordinary stability (which are

algebraic and do involve the gyroscopic terms), it is important to know when

these two approaches are completely equivalent.

The foregoing discussion allows us to summarize this comparison in the following

complementary statements:

(i) If state I is practically stable (PS; i.e., all �p > 0) Rð2ÞV ¼ positive definite), it
is also ordinarily stable (OS; i.e., all 
2 roots real and negative); that is, a non-

gyroscopically stable state remains stable upon addition of gyroscopic effects to it.

Accordingly, if I is ordinarily unstable, it is also practically unstable.
(ii) If state I is practically unstable (say, at least one �p < 0) Rð2ÞV 6¼ positive

definite), it may or may not be ordinarily unstable, depending on whether the number

of negative �p’s is odd (instability) or even (stability); that is, a nongyroscopically

unstable state may become stable upon addition of gyroscopic effects to it (Kelvin’s

stabilization theorem); and if it is OS, it may or may not be PS, depending on

whether no �p is negative or zero (stable) or at least one of them is (unstable).

In sum: PS is sufficient but not necessary for OS. [For additional details, see, for

example (alphabetically): Greenwood (1977, pp. 125–128), Lamb (1943, chap. 11),

Langhaar (1962, chap. 1), Thomson and Tait (1912), Ziegler (1968, chaps. 1, 2, 4);

for Hamiltonian treatments, see, for example, Gantmacher (1970, pp. 252–256),

Frank (1935, pp. 129–133), Synge (1960, pp. 191–195).]

Finally, let us examine the effect of (light) damping on the nature of these in-

stabilities. We will restrict ourselves to the common case where, say, the Rayleigh

dissipation function of the system, in the n�M � g nonignored coordinate perturba-

tions z or x, is positive definite [i.e., if z, x 6¼ 0, then ðRð2ÞT þ Rð2ÞVÞ: < 0, also known

as complete damping — to be distinguished from the, more general, pervasive damp-

ing where Rayleigh’s dissipation function is positive but semidefinite in z, x]; while

the M ignored coordinates  will be assumed to remain undamped.

(i) Let state I be ordinarily stable but practically unstable. In the absence of fric-

tion, as already stated, any small disturbance will simply result in oscillations about

I . In the presence of friction, on the other hand, due to (8.6.11b), and since then

Rð2ÞT ðI Þ ¼ 0 while Rð2ÞVðI Þ ¼ maximum, we will have, initially,

Rð2ÞT þRð2ÞV ¼ �ðsmall positive constantÞ � �c; ð8:6:12aÞ

and so, later, either Rð2ÞT or Rð2ÞV , or both, will be nonzero; that is, the system will
move away from I , regardless of any gyroscopic effects. But then Rð2ÞT þ Rð2ÞV will

decrease further, so that, after a short time t,

Rð2ÞT þ Rð2ÞV ¼ �c� kt ðk > 0Þ; ð8:6:12bÞ

which means that, since Rð2ÞT is positive definite, Rð2ÞV will keep decreasing further.

As a result, the system will move further away from I ; that is, the deviation ampli-

tude(s) will increase indefinitely with time, but at a rate depending on the friction

present: the larger the friction, the faster the deviation, and vice versa. Such un-

avoidable destabilization can be slowed down either by decreasing friction or by

countering its effect with some other, external, influences.

For example, a spinning gyroscope stabilized against gravity by its spinning, but

destabilized by the friction at its support (vertex) and aerodynamic forces, slows

down (i.e., its nutation angle gets larger and larger, and its spin decreases) and

eventually hits the ground and comes to rest.
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(ii) Let state I be ordinarily unstable; that is,

x � expð "tÞ; " ¼ real: ð8:6:13Þ
In the absence of friction, the system moves quickly away from I . In the presence of

friction, the system still moves away from I , but less quickly, until it reaches another

state of steady motion or relative equilibrium. In sum: (complete) damping changes

stability (Rð2ÞV : positive definite) to the slightly stronger asymptotic stability, but it

does not change instability (Rð2ÞV : nonpositive definite); that is, such damping does

not alter the nature of a state of motion in any significant/critical way. Last, we

should always remember that our perturbation equations (8.6.4), (8.6.7b) only show

the nature of the initial motion away from I ; to find other such states we need the

exact, and generally nonlinear, perturbation equations. (See, e.g., articles in

Mikhailov and Parton, 1990, and references cited therein.)

In the light of the above, the practical conclusions of Kelvin’s theorem can be

summed up as follows:

(i) Only systems with an even number of unstable nonignorable coordinates can be

stabilized gyroscopically.

(ii) In the absence of friction, such a stabilization can always be achieved via appro-

priately oriented and sufficiently fast-spinning gyroscopes (one fixed point, relative

to the housing) and/or gyrostats (two fixed points, relative to the housing) built

into the system.

(iii) In the presence of damped nonignorable coordinates, to counter the destabilizing

frictional losses and thus stabilize our system, we must supply it with external

energy.

For extensive and authoritative treatments of the effects of friction on gyroscopic

systems, see the earlier-mentioned texts of Merkin (1987) and Ziegler (1968); also

Klotter (1960/1981, pp. 186–199, 241–253).

Example 8.6.1 Let us consider a system with kinetic and potential energies

2T ¼ A _xx2 þ 2G _xx _yyþ B _yy2; V ¼ VðxÞ; ðaÞ
where A, B, G are functions of x only (and such that T remains positive definite);

and examine the possible existence of steady motions: x ¼ constant � s,
_yy ¼ constant � cy � c, and their stability.

(i) Steady motion: since y is ignorable, we will have

@T=@ _yy ¼ G _xxþ B _yy ¼ constant � Cy � C

) _yy ¼ ðC � G _xxÞ=B; and so, for a steady motion, c ¼ C=B; ðbÞ
and therefore the Routhian function becomes, successively,

R ¼ ðT � VÞ � ð@T=@ _yyÞ _yy
¼ ðA=2Þð _xxÞ2 þ G _xx ðC � G _xxÞ=B½ � þ ðB=2Þ ðC � G _xxÞ=B½ �2

� C ðC � G _xxÞ=B½ � � VðxÞ
¼ � � � ¼ T 002;0 þ T 001;1 þ T 000;2 � VðxÞ ¼ Rðx; _xx;C Þ; ðcÞ
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where

T 002;0 ¼ ð1=2Þ A� ðG2=BÞ� �� �ð _xxÞ2;
T 001;1 ¼ ðG=BÞC _xx;

T 000;2 ¼ �ð1=2BÞC2: ðc1Þ
For steady motion, and with the notation ð. . .Þo � ð. . .Þx¼s; _yy¼c, the above yield

ð@R=@xÞo ¼ @ðT 000;2 � VÞ=@x� �
o
¼ ðC2=2B2ÞðdB=dxÞ � ðdV=dxÞ� �

o
¼ 0;

or, due to (b),

ðc2=2ÞðdB=dxÞo ¼ ðdV=dxÞo: ðdÞ
This algebraic (equilibrium-like) equation connects the values of the palpable coor-

dinate (s) and ignorable velocity (c) at steady motion(s), and allows us to find one in

terms of the other.

(ii) Stability. Substituting into R: x ¼ sþ zðtÞ, expanding à la Taylor, and keep-

ing only up to quadratic q-powers, since we are seeking linear perturbation equations,

we obtain

R ¼ ð1=2Þ�½A� ðG2=BÞ�oð _zzÞ2 þ 2CðG=BÞo _zz� C2=Bo

þ C2½B�2ðdB=dxÞ�o zþ ðC2=2Þ½d=dxðB�2ðdB=dxÞÞ�o z2
�

� ½Vo þ ðdV=dxÞo zþ ð1=2Þðd 2V=dx2Þo z2�
¼ Rðz; _zz;C; sÞ [by (d), the (. . .) z-terms cancel each other], ðeÞ

and therefore the z-equation of motion ð@R=@ _zzÞ:� @R=@z ¼ 0 becomes

A� ðG2=BÞ� �
o
€zzþ ðd 2V=dx2Þo � ðC2=2Þ d=dxðB�2ðdB=dxÞÞ� �

o

� �
z ¼ 0: ðf Þ

Since, here, n�M ¼ 2� 1 ¼ 1, no � _zz (gyroscopic) terms appear in (f). Clearly, the

z-motion is harmonic ()stable) if

ðd 2V=dx2Þo � ðC2=2Þ d=dxðB�2ðdB=dxÞÞ� �
o

� �.
A� ðG2=BÞ� �

o
> 0; ðgÞ

or, equivalently, since A� ðG2=BÞ > 0 (due to the positive definiteness of T in _xx, _yy)
and by (b) cB ¼ C,

Bðd 2V=dx2Þo þ c2 ðdB=dxÞo
� �2�ðc2=2Þ Bðd 2B=dx2Þ� �

o
> 0: ðhÞ

Problem 8.6.1 Continuing with the system described by (a) of the preceding

example, but with G ¼ 0, consider its fundamental steady state I : x ¼ s and _yy ¼ c,
and the adjacent to it I þ DðI Þ:x ¼ sþ zðtÞ and _yy ¼ cþ ðtÞ.

(i) Show that the (linearized) equations of DðI Þ are

Ao €zz� ðc2=2Þðd 2B=dx2Þo z� cðdB=dxÞo  þ ðd 2V=dx2Þo z ¼ 0; ðaÞ

Bo _ þ cðdB=dxÞo _zz ¼ 0: ðbÞ
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(ii) Verify that by eliminating  between (a, b) we recover (f), with G ¼ 0.

(iii) Show that state I of that system (e.g., rotation at the rate c), is stable if�ðd2V=dx2Þ�ðdV=dxÞ�
o
>
�½Bðd2B=dx2Þ � 2ðdB=dxÞ2��½BðdB=dxÞ��

o
: ðcÞ

Example 8.6.2 General Solution of the Frictionless Gyroscopic Equations.
Assuming xp ¼ xpo expð
tÞ for the solutions of the characteristic equation (8.6.8),

Dð
Þ ¼ 0, then, for a particular root 
* ð� ¼ 1; . . . ; 2gÞ, we will have

x*1o=D*1 ¼ � � � ¼ x*go=D*g ¼ constant � C* ; ðaÞ
where

D*p ¼ minors of any row of Dð
*Þ ¼M*p þ i N*p ; ða1Þ

since, in general, these minors contain both odd and even powers of 
* : Therefore,

the ð�Þth ‘‘natural mode’’ of oscillation, around the fundamental state I , can be

written as

x*p ¼ x*po expð
*tÞ ¼ C*ðM*p þ i N*pÞ expð
*tÞ; ðbÞ

or, setting C* ¼ X* expði �*Þ, where X*, �* ¼ real constants, and taking real parts,

x*p ¼ X* M*p cosð!* tþ �*Þ �N*p sinð!* tþ �*Þ
� �

: ðb1Þ

Hence, in the stable case, the oscillations corresponding to a particular (negative) 
*
2

have the same frequency but do not move in phase; that is, the latter varies with the

coordinates. Such a natural mode is referred to as ‘‘elliptic harmonic’’ to distinguish

it from the ‘‘circular harmonic’’ of the nongyroscopic oscillations.

In the case of distinct roots, the general solution is found by superposition of the

various modes:

xp ¼
X

x*p ¼
X

D*p C* expð
* tÞ� � ðp ¼ 1; . . . ; g; � ¼ 1; . . . ; 2gÞ; ðcÞ

where the 2g (real or complex conjugate) C* are determined from the 2g initial

conditions.

Example 8.6.3 Ordinary versus Practical Stability for a Two-DOF System—No
Friction. For such a system (i.e., p, p 0 ¼ 1; 2), the fundamental perturbational

equations (8.6.7b) become

�1 €xx1 � � _xx2 þ �1x1 ¼ 0; �2 €xx2 þ � _xx1 þ �2x2 ¼ 0; ða1; 2Þ
where

g12 ¼ �g21 � ��; and �1; �2 > 0:

Setting in there

x1 ¼ x1o expð
tÞ; x2 ¼ x2o expð
tÞ; ðbÞ
and eliminating the amplitude ratio x1o=x2o, we are readily led to the characteristic

equation

ð�1�2Þ
4 þ ð�1�2 þ �2�1 þ �2Þ
2 þ �1�2 ¼ 0: ðcÞ
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By elementary algebra, the two 
2-roots of (c) will be real if

ð�1�2 þ �2�1 þ �2Þ2 � 4ð�1�2Þð�1�2Þ > 0; ðdÞ
or, expanding and rearranging in �-powers,

�4 þ 2ð�1�2 þ �2�1Þ�2 þ ð�2�1 � �1�2Þ2 > 0: ðd1Þ
Now we have to consider the following three cases:

(i) �1 and �2 are both positive. Then, clearly, (d1), all three of its left-side terms

being positive, is fulfilled for any �; and since, from algebra,


1
2
2

2 ¼ ð�1Þ2ð�1�2Þ=ð�1�2Þ ) 
1
2
2

2 > 0; ðe1Þ


1
2 þ 
2

2 ¼ �ð�1�2 þ �2�1 þ �2Þ=ð�1�2Þ ) 
1
2 þ 
2

2 < 0; ðe2Þ
we conclude that, then, both 
1

2 and 
2
2 are negative; that is,


1 ¼ i �1 and 
2 ¼ i �2 : ðe3Þ
where �1

2 and �2
2 are the roots of

ð�1�2Þ�4 � ð�1�2 þ �2�1 þ �2Þ�2 þ �1�2 ¼ 0: ðe4Þ
In this case, the solutions of (a1, 2) are simple harmonic oscillations, and so the
fundamental state I is stable, both ordinarily (negative 
2-roots) and practically
ð�1; �2 > 0Þ.

(ii) �1 and �2 have opposite signs. Then, clearly, (d), both its left-side terms being

positive, still holds for any �; but, by the first part of (e1), the roots 
1
2, 
2

2 now have

opposite signs; that is,


1
2
2

2 < 0; ðf Þ
and the positive of them leads to expð"tÞ-proportional factors in the perturbations

xpðtÞ, and hence ordinary instability (and, of course, practical instability).

(iii) �1 and �2 are both negative. If 
1
2 and 
2

2 are real, which, by (d), can happen
if �2 is large enough; that is, if, successively,

�1�2 þ �2�1 þ �2 	 4ð�1�2Þð�1�2Þ½ �1=2 ð¼ positiveÞ
) �2 	 �ð�1�2 þ �2�1Þ þ 2 ð�1�2Þð�1�2Þ½ �1=2

¼ ½ð��1�2Þ1=2 þ ð��2�1Þ1=2�2

) � 	 ð��1�2Þ1=2 þ ð��2�1Þ1=2; ðg1Þ

then, as in (e1, 2),


1
2
2

2 ¼ ð�1Þ2ð�1�2Þ=ð�1�2Þ ) 
1
2
2

2 > 0; ðg2Þ


1
2 þ 
2

2 ¼ �ð�1�2 þ �2�1 þ �2Þ=ð�1�2Þ ) 
1
2 þ 
2

2 < 0; ðg3Þ
that is, as in (i), both 
1

2 and 
2
2 are negative, and hence the system is ordinarily

stable, although practically unstable ðRð2ÞV ¼ negative definite ) maximum, or
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R0 ¼ minimum)! But, as explained earlier, such a gyroscopic stabilization is gradually

lost due to friction. (See next example; also Thomson and Tait, 1912, pp. 395–396,

Gray, 1918, pp. 439–440.)

Example 8.6.4 Ordinary versus Practical Stability for a Two-DOF System—
Friction. Continuing from the preceding example, let us now examine the effect

of small _xx-proportional friction terms in case (iii) (i.e., both �1 and �2 negative )
ordinary stability but practical instability). Here, the perturbation equations are

�1€xx1 þ f11 _xx1 þ ð f12 � � Þ _xx2 þ �1x1 ¼ 0; ða1Þ

�2€xx2 þ f22 _xx2 þ ð f21 þ � Þ _xx1 þ �2x2 ¼ 0; ða2Þ
where

f11, f12 ¼ f21, f22 are the small constant coefficients of the dissipation function (}3.9)

2F ¼ f11ð _xx1Þ2 þ 2 f12 _xx1 _xx2 þ f22ð _xx2Þ2

[assumed positive deOnite; i.e., during every motion from I, F does negative

work and hence reduces the perturbational energy Rð2ÞT þ Rð2ÞV �; ðb1Þ
) f11 > 0; f22 > 0; Detðfpp 0 Þ ¼ f11 f22 � f12

2 > 0: ðb2Þ

In this case, the characteristic equation, the counterpart of (c) of the preceding

example, becomes

ð�1�2Þ
4 þ ð�2 f11 þ �1 f22Þ
3 þ ð�1�2 þ �2�1 þ �2 þ f11 f22 � f12
2Þ
2

þ ð�2 f11 þ �1 f22Þ
þ �1�2 ¼ 0: ðcÞ

Assuming that the roots of the previous frictionless case are i �1 and i �2 (ordin-

ary stability; from which, as explained earlier, it follows that �1 and �2 have the same
sign), we try for the roots of (c) the modified forms


1;2 ¼ "1  i �1 and 
3;4 ¼ "2  i �2 ; ðc1Þ

where "1, "2 are first-order (i.e., � fpp 0 ) corrections to �1, �2; and the latter are, of

course, determined from (e4) of ex. 8.6.3. Now, from algebra (see texts on algebra, or

handbooks of mathematics, etc.) we know that

� 
1 þ 
2 þ 
3 þ 
4 ¼ �ð�2 f11 þ �1 f22Þ=ð�1�2Þ < 0; ðc2Þ
and this, thanks to (c1), yields, to the first order,

2ð"1 þ "2Þ ¼ � ð f11=�1Þ þ ð f22=�2Þ½ � < 0; ðc3Þ

� 
1
�1 þ 
2

�1 þ 
3
�1 þ 
4

�1

¼ ð
2
3
4 þ 
1
3
4 þ 
1
2
4 þ 
1
2
3Þ
�ð
1
2
3
4Þ

¼ �ð�2 f11 þ �1 f22Þ
�ð�1Þ4ð�1�2Þ; ðc4Þ
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from which, and (c1), and noting further that


1
�1 þ 
2

�1 þ 
3
�1 þ 
4

�1 ¼ ð
1
�1 þ 
2

�1Þ þ ð
3
�1 þ 
4

�1Þ
¼ 2½"1ð"1

2 þ �1
2Þ�1 þ "2ð"2

2 þ �2
2Þ�1�; ðc5Þ

we obtain, again to the first order,

2 ð"1=�1
2Þ þ ð"2=�2

2Þ� � ¼ � ð f11=�1Þ þ ð f22=�2Þ½ �: ðc6Þ

Hence:

(i) If both �1 and �2 are positive (practical stability), then both "1 and "2 are

negative ) expð"tÞ-terms; that is, we also have ordinary damped stability.

(ii) If both �1 and �2 are negative (practical instability), then "1 and "2 must have

opposite signs; which means that, then, one of the two oscillations dies away, while

the other increases exponentially at an fpp 0-proportional rate; that is, we have ordin-

ary damped instability. To find what happens where, we solve (c3, 6) for, say "1, and

thus obtain

"1ð�2
�2 � �1

�2Þ ¼ �ð1=2�2
2Þ ð f11=�1Þ þ ð f22=�2Þ½ � þ ð1=2Þ ð f11=�1Þ þ ð f22=�2Þ½ � < 0;

) "1ð�1
2 � �2

2Þ < 0; ðc7Þ

from which we conclude that if �1 < �2, then "1 > 0; and, of course, "2 < 0; and

analogously if �1 > �2. In words: the exponentially increasing oscillation (say "1 > 0)

corresponds to the smaller of the two frictionless frequencies (here,

�1Þ ) longer period; while the damped oscillation (here, "2 < 0) corresponds to the

larger frequency (here, �2Þ ) smaller period.

Example 8.6.5 The Monorail. Let us consider a car (or wagon) K of mass M
supported by one (or more, but aligned) wheels W rolling on a single fixed

horizontal rail OY (+away from the reader—fig. 8.4). Inside K there is a gimbal

G 0 of negligible mass that can rotate freely about a K-fixed axis G1
0G2
0; and inside

G 0 there is a heavy gyroscope G of mass m that can rotate about a G 0-fixed axis

G1G2—that is, on the car’s plane of symmetry O��yz (Oy � OY), at a constant

rate !0. In addition, G0 carries at its top, above and around G1, a heavy particle P
of mass �, so that (in accordance with Kelvin’s theorem of stabilization of an even
number of nongyroscopically unstable freedoms) both such freedoms � and � (see

below) are unstable; or, equivalently, we may skip P but make sure that the center

of mass of G, C 0 is above the axis G1
0O 0G2

0. The rotation of G 0 about its housing

K (axis G1
0G2

0Þ is measured by the ‘‘precession’’ angle � between the gyro axis

G1G2 and Oz ðO��yz ¼ plane of symmetry of K Þ, while the rotation (‘‘nutation’’)

of the entire K about OY � Oy is measured by the angle � between O��yz and the

vertical OZ. All other kinematico-inertial parameters of the system are shown in

the figure, and will be identified below as needed. Let us find the equations of

small motion of this two-DOF system around the ‘‘normal attitude’’ �, � ¼ 0,

when K travels at a uniform rate along OY ; and examine their stability.

Let TK=VK , TG=VG, and TP=VP, be the (inertial) kinetic/potential energies of the

car ðKÞ, gyro ðGÞ, and particle ðPÞ, respectively. Then, to the second order in � and �
and their rates (since we are only interested in linear equations of motion in them),
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and to within inconsequential constant terms, we have

ðiÞ TK ¼ ð1=2ÞIð _��Þ2 ðI ¼ moment of inertia of K about Oy � OYÞ; ða1Þ
VK ¼Mgh cos � � �Mgh �2=2þ constant; ða2Þ

ðiiÞ TG ¼ ð1=2ÞmvG
2 þ ð1=2Þ Að!�2 þ !2Þ þ C !�

2
� �

½O 0 ����:G 0-Exed axes;

A=C: transverse/axial principal moments of inertia of G at O 0�
¼ ð1=2Þmðh1

_��Þ2 þ ð1=2Þ�A½ð _��Þ2 þ ð _�� cos�Þ2� þ Cð!o � _�� sin�Þ2�
� ð1=2Þmh1

2ð _��Þ2 þ ð1=2Þ�A½ð _��Þ2 þ ð _��Þ2� þ Cð!o � _���Þ2�
� ð1=2Þmh1

2ð _��Þ2 þ ð1=2Þ�A½ð _��Þ2 þ ð _��Þ2� þ Cð!o
2 � 2!0� _��Þ�;

VG ¼ mgh1 cos � � �Mgh1�
2=2þ constant: ða3; 4Þ

(iii) The inertial coordinates and velocities of P ðXP; YP; ZPÞ equal

XP ¼ ðh1 þ h2 cos�Þ sin � � ðh1 þ h2Þ� ) _XXP � ðh1 þ h2Þ _��; ða5Þ
YP ¼ �h2 sin� � �h2� ) _YYP � �h2 _��; ða6Þ
ZP ¼ ðh1 þ h2 cos�Þ cos � � ð�1=2Þ ðh1 þ h2Þ�2 þ h2�

2
� �

) _ZZP � �ðh1 þ h2Þ� _��þ h2� _�� ) ð _ZZPÞ2 � 0; ða7Þ
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Figure 8.4 Kinematico-inertial parameters of the monorail. C, C 0 � O 0: centers of mass of K and

G, respectively; both along Oz. [In some treatments, C 0 is above O 0; e.g., Cabannes (1968,

pp. 276–277). Here, we achieve the same result with P]; h2 ¼ G1O, h1 ¼ O 0O, h ¼ CO; O–xyz:

car–fixed axes, O–yz: car plane of symmetry, O–XYZ: inertial axes with which O–xyz coincide in

the normal attitude configuration.



and therefore, to the second order,

2TP ¼ �½ð _XXPÞ2 þ ð _YYPÞ2 þ ð _ZZPÞ2� ¼ � � � � �½ðh1 þ h2Þ2ð _��Þ2 þ h2
2ð _��Þ2�; ða8Þ

VP ¼ � gZP � �ð� g=2Þ½ðh1 þ h2Þ�2 þ h2�
2� þ constant: ða9Þ

In view of the above results, the ‘‘quadratisized’’ system Lagrangean equals

L ¼ ðTK þ TG þ TPÞ � ðVK þ VG þ VPÞ � L2 þ L1 þ L0; ðb1Þ
where

2L2 �M11ð _��Þ2 þM22ð _��Þ2 ðInertial partÞ;
M11 � I þmh1

2 þ Aþ �ðh1 þ h2Þ2; M22 � Aþ �h2
2; ðb2Þ

L1 � M1� _�� ðGyroscopic partÞ;
M1 � C!o; ðb3Þ

2L0 � k11�
2 þ k22�

2 ðPotential partÞ;
k11 ¼Mhþmh1 þ �ðh1 þ h2Þ ð> 0Þ; k22 ¼ � h2 ð> 0Þ; ðb4Þ

or, in the new normalized Lagrangean coordinates x1 � ðM11Þ1=2� and

x2 � ðM22Þ1=2�:

2L ¼ ½ð _xx1Þ2 þ ð _xx2Þ2� � 2�x2 _xx1 � ð�1x1
2 þ �2x2

2Þ;
where

�1 � �ðk11=M11Þ ð< 0Þ; �2 � �ðk22=M22Þ ð< 0Þ;
� �M1=ðM11M22Þ1=2 � C !o=ðM11M22Þ1=2: ðcÞ

Hence, the linear(ized) Lagrangean equations of motion for x1ð�Þ and x2ð�Þ are

€xx1 � � _xx2 þ �1x1 ¼ 0; €xx2 þ � _xx1 þ �2x2 ¼ 0; ðdÞ
and, by (ex. 8.6.3: g1), for ordinary (¼ asymptotic) stability their coefficients must

satisfy

� 	 ð��1Þ1=2 þ ð��2Þ1=2; ðeÞ
that is, recalling (c), the spin !o must be sufficiently high to counter the destabilizing
effect of gravity.

Problem 8.6.2 Continuing from the preceding example, in the presence of small

_xx-proportional damping, the normalized monorail equations of motion (ex. 8.6.5: d)

are, generally, replaced by (recall ex. 8.6.4):

€xx1 þ f11 _xx1 þ ð f12 � � Þ _xx2 þ �1x1 ¼ 0; ða1Þ
€xx2 þ f22 _xx2 þ ð f21 þ � Þ _xx1 þ �2x2 ¼ 0: ða2Þ

(i) Show that the characteristic equation of this system is

Dð
Þ ¼ 
4 þ a1

3 þ a2


2 þ a3
þ a4 ¼ 0 ða0 ¼ 1Þ; ða3Þ
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where

a1 � f11 þ f22; ða4Þ
a2 � �1 þ �2 þ �2 þ f11 f22 � f12

2; ða5Þ
a3 � �1 f22 þ �2 f11; ða6Þ
a4 � �1�2: ða7Þ

(ii) By applying the Routh–Hurwitz stability criterion (}3.10, and its examples/

problems), investigate the possibility/impossibility of gyroscopic stabilization of the

damped monorail. [For practical insights, see, e.g., Grammel (1950, Vol. 2, pp. 230–

247); also Merkin (1987, pp. 182–184; 1974, pp. 232–234).]

Problem 8.6.3 Consider a cyclic system with one nonignorable coordinate, q,
whose Routhian equation of motion is

ð@R=@ _qqÞ:� @R=@q ¼ 0; ðaÞ

or, explicitly, since R ¼ Rðq; _qq; constant cyclic momenta � CÞ,

ð@2R=@ _qq2Þ€qqþ ð@2R=@q @ _qqÞ _qq� @R=@q ¼ 0: ðbÞ

Let the small motion of the system around a steady state I : q ¼ constant � s, be

sþ zðtÞ. By expanding (b) à la Taylor around I , and keeping up to linear terms in the

perturbation zðtÞ and its ð. . .Þ:-derivatives, show that the latter satisfies the following

equation:

ð@2R=@ _qq2Þo €xx� ð@2R=@q2Þo x ¼ 0; ðcÞ

where ð. . .Þo � ð. . .Þ evaluated at I ; and hence for stability of that state [i.e., harmonic

zðtÞ], and since ð@2R=@ _qq2Þo > 0, we must have

ð@2R=@q2Þo < 0: ðdÞ

HINT

The value(s) of state I satisfy the equation ð@R=@qÞo ¼ 0; and hence, by (d),

R0 ¼ maximum.

Problem 8.6.4 Consider a particle P of mass m that can slide on a smooth

circular hoop H of radius r and moment of inertia about any diameter I (fig. 8.5).

H spins about a fixed vertical axis with constant angular velocity ! � _��.

(i) Show that, since � is ignorable ½) p� � @T=@ _�� ¼ ðI þmr2 sin2 �Þ _�� ¼
constant � C, with solution(s) � ¼ � 0], the Routhian equals

R � L� p� _�� ¼ L� C! ¼ R2 þ R1 þ R0 ¼ Rð�; _��;C Þ; ðaÞ
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where

R2 ¼ ðmr2=2Þð _��Þ2 ð� T 002;0Þ; ðbÞ
R1 ¼ 0 ð� T 001;1Þ; ðcÞ
R0 ¼ mg r cos �� C 2=2ðI þmr2 sin2 �Þ� � ð� �V þ T 002;0Þ: ðdÞ

(ii) Show that the steady motion condition:

@R0=@� ¼ �mg r sin � þ ðC2 mr2 sin � cos �ÞðI þmr2 sin2 �Þ�2 ¼ 0; ðeÞ

leads, further, to the following two algebraic equations (with corresponding roots � 0

and � 00):

�mg rðI þmr2 sin2 � 0Þ2 þ C 2 mr2 cos � 0 ¼ 0; sin � 00 ¼ 0 ð) � 00 ¼ 0; etc:Þ:
ðe1; 2Þ

(iii) Show that

ð@2R0=@�
2Þj�¼� 0 ¼ �mg r cos � 0 þmr2 !2½cosð2� 0Þ �mr2ðI þmr2 sin2 � 0 Þ�1

sin2ð2� 0Þ�
¼� � �¼�½ðmr2!2 sin2 � 0Þ=ðI þmr2 sin2 � 0Þ�½I þmr2ð1þ 3 cos2 � 0Þ�< 0;

ðf Þ

namely, � 0 is stable: and that

ð@2R0=@�
2Þj�¼� 00¼0 ¼ mg r½ðC 2r=I 2gÞ � 1� [or, eliminating C via the first of (e)]

¼ mg r
�½ð!2r=gÞ � 1�
þ ð!2r=I 2gÞð2mr2I sin2 � 0 þm2r4 sin4 � 0Þ� > 0; ðgÞ

since !2r > g (explain); namely, � 00 ¼ 0 is unstable.
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HINT

Since ðI þmr2 sin2 �Þ! � C 6¼ 0, the first of (e) yields

�mg rþmr2!2 cos � 0 ¼ 0 ð) cos � 0 ¼ g=!2r < 1Þ: ðhÞ

Problem 8.6.5 Continuing from the preceding problem, show that the equation

of small (linearized) oscillations of P around the steady state � 0— that is,

� ¼ � 0 þ zðtÞ— is

€zzþ O z ¼ 0; ðaÞ
where

O � ! sin � 0
�½I þmr2ð1þ 3 cos2 � 0Þ��ðI þmr2 sin2 � 0Þ�1=2

: ðbÞ
Show that the stability condition obtained from (a, b) coincides with prob. 8.6.4: (f ).

Problem 8.6.6 Stability of Steady Precession of Top. Method of Perturbations.
As seen in exs. 8.4.5 and 8.5.1, in this case the exact Routhian of the top equals

R ¼ R2 þ R1 þ R0 ¼ Rð�; _��;C�;C Þ; ðaÞ
R2 � T 002;0 ¼ ð1=2ÞAð _��Þ2; ða1Þ
R1 � T 001;1 ¼ 0; ða2Þ
R0 � T 000;2 � V

¼ ��½ðC� � C cos �Þ2=2A sin2 �� þ ð1=2CÞC 
2
��mg l cos �: ða3Þ

Therefore, the Routhian equation for the sole nonignorable coordinate � becomes

ð@R=@ _��Þ: � @R=@� ¼ 0:

A €��þ ðC� � C cos �ÞðC � C� cos �Þ=A sin3 �
� � ¼ mg l sin �: ðbÞ

(i) Setting in (b) � ¼ �o þ zðtÞ, where �o is the (constant) root(s) of the steady

motion condition ð@R=@�Þo ¼ 0, expanding in powers of z and its ð. . .Þ:-derivatives,

and keeping only up to linear such terms, show that we eventually [after using ex.

8.5.1: (d1), or (c) of prob. 8.6.7 to eliminate C� and C ] obtain the perturbation

equation,

€zzþ O z ¼ 0; ðcÞ
where

O � c�
2 þ ðmg l=Ac�Þ2 � 2mg l cos �o: ðdÞ

This equation determines zðtÞ (a harmonic oscillation, if O > 0) in terms of the

steady-state values �o and _�� ¼ constant � c�; or, equivalently, �o and C�, C .

(ii) Show that the same equation results if we set into the Routhian (a–a3)

� ¼ �o þ zðtÞ, expand it in powers of z and its ð. . .Þ:-derivatives, keep only up to

quadratic such terms, and then write down the equation for z:

ð@R=@ _zzÞ:� @R=@z ¼ 0:
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Problem 8.6.7 Stability of Steady Precession of Top. Method of Extremum of
Reduced Potential Energy. Continuing from the preceding problem, we saw there

that

�R0 � V � T 000;2 ¼ ðC� � C cos �Þ2=2A sin2 �þ ð1=2C ÞC 
2 þmg l cos �

� f ð�;C�;C Þ � �(Routhian, or reduced, potential), ðaÞ
where [recall results of (ex. 8.5.1)]

C� ¼ ðA sin2 �þ C cos2 �Þ _��þ ðC cos �Þ _  
� A sin2 � _��þ C n cos � � constant; ða1Þ

C ¼ ðC cos �Þ _��þ ðCÞ _  � C n ¼ constant; ða2Þ
and, therefore, inversely,

_�� ¼ ðC� � C cos �Þ=A sin2 � ð¼ constant � c�; in steady precession), ðb1Þ
_  ¼ � ðC� � C cos �Þ cos �=A sin2 �

� �þ ðC =C Þ
ð¼ constant � c ; in steady precession). ðb2Þ

Setting df ð�Þ=d� ¼ 0, and assuming � 6¼ 0, we obtain the steady motion condition

[(ex. 8.5.1: d1), with _�� ¼ constant � c�]:

Ac�
2 cos �o � C c� þmg l ¼ 0;

or

Ac�
2 cos �o þmg l ¼ Cðc� cos �o þ c Þc�: ðcÞ

(i) Calculate d2f ð�Þ=d�2 and show that the condition for the minimum of �R0, or

the maximum of R0, for small changes of the nonignorable coordinate � from the

steady state (c): �o, c�, C , is

C ðC � C� cos �oÞ þ C�ðC� � C cos �oÞ
� ��

A sin2 �o > 4mg l cos �o: ðdÞ
(ii) For �o ¼ 0, the cyclicity conditions (a1, 2) reduce to C� ¼ C ¼ C n ¼

Cðc� þ c Þ � constant � D. Show that for small �o, the stability condition (d)

approximates to

2D2ð1� cos �oÞ= sin2 �o > 4Amg l cos �o; ðeÞ
or, in the limit of vanishingly small �o’s,

D2 > 4Amg l (‘‘sleeping top’’ stability). ðf Þ
These results have been obtained earlier by other means. For additional examples

and details, see, for example, Merkin (1987, pp. 88–95; 1974, pp. 318–321, 323–324),

Gantmacher (1970, pp. 256–258).

Problem 8.6.8 Stability of Steady Precession of Top. Relations among the
Perturbations. Continuing from the preceding problem, show that the three

(time-dependent!) perturbations

� ¼ �o þ zðtÞ; _�� ¼ c� þ ðtÞ; _  ¼ c þ �ðtÞ; ðaÞ
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are related by

ðA sin �oÞ ¼ Cðc� cos �o þ c Þ � 2Ac� cos �o
� �

z; ðbÞ
ðcos �oÞ þ � ¼ ðc� sin �oÞz: ðcÞ

These equations, assuming sin �o 6¼ 0 (i.e., no sleeping top), yield the hitherto

unknown functions  and � in terms of z and the steady precession values; that is,

in terms of quantities already determined in previous problems:

 ¼  zðtÞ; �o; c�; c ;C�;C 

� �
; � ¼ � zðtÞ; �o; c�; c ;C�;C 

� �
: ðdÞ

A final integration of these known functions of time, right-sides of (d), yields the time

behavior of � and  , if desired.

Problem 8.6.9 Stability of Steady Precession of Top. Relations among the
Perturbations (continued). Continuing from the preceding problem, show that

ðtÞ and �ðtÞ can be obtained by inserting (a) in the earlier steady precession

relations (prob. 8.6.7: b1, 2)

_�� ¼ ðC� � C cos �Þ=A sin2 �; ða1Þ
_  ¼ � ðC� � C cos �Þ cos �=A sin2 �

� �þ ðC =C Þ; ða2Þ
(which hold for both the fundamental state and the disturbed one), expanding à la

Taylor, and keeping up to linear terms in the (equimomental) perturbations.

REMARKS

(i) Also, one could calculate the Routhian, expand and keep up to quadratic
terms, and then apply Routh’s ‘‘Hamiltonian’’ equations @R=@Ci ¼ �d i=dt.

(ii) As pointed out in the explanatory remarks following (8.6.2), the above are

special cases of application of the general kinematico-inertial relations (8.3.12d, e):

Ci � @T=@ _  i ¼
X

cji _  j þ
X

bpi _qqp , _  j ¼
X

Cji Ci �
X

bpi _qqp

� �
; ðbÞ

to both states I and II ¼ I þ DðI Þ, with subsequent expansion and equation of their

first-order terms in D _  , Dq, D _qq, DC, DCji �
P ð. . .Þjip Dqp. For given C’s and _qqðtÞ’s it

supplies the _  ðtÞ’s.

Problem 8.6.10 Stability of Steady Precession of Top. Relations among the Per-
turbations (continued). Show that the results of the preceding problems can be

obtained by substituting (prob. 8.6.6: a) in the Lagrangean equations of the top,

then linearizing, and so on.

For additional similar problems, see, for example, Chirgwin and Plumpton (1966,

pp. 282–305) and Wells (1967, pp. 239–255).

This concludes the treatment of Routh’s method of the ‘‘modified Lagrangean.’’

The rest of this chapter deals with the applications and ramifications of the method

of Hamilton.
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8.7 VARIATION OF CONSTANTS (OR PARAMETERS)

In order to solve the exact problem approximately, we first solve

an approximate problem exactly.

(T. E. Sterne, quoted in Garfinkel, 1966, p. 67)

Since the equations of motion, in either Lagrangean or Hamiltonian variables, are

intrinsically nonlinear (}3.10), general methods for obtaining their exact solutions are

out of the question, and being able to solve exactly the equations of an actual

physical system is the rare exception rather than the rule (}3.12). For these reasons,

some kind of approximation (analytical, numerical/computational, graphical, or

combination thereof) is needed. In this section we develop one of the most impor-

tant, general and systematic such approximation methods (originated by Lagrange

himself in connection with problems of celestial mechanics, which, although uncon-

strained, lead to complicated equations of motion), known as the method of varia-
tion of ‘‘constants’’, and associated calculus of perturbations. Either Lagrangean

ðq; _qqÞ or Hamiltonian ðq; pÞ variables can be used; but the latter, since they lead to

first-order equations, are the preferred ones.

Theorem of Lagrange–Poisson

Let us consider a general system S, in Hamiltonian variables, with equations of
motion

dpk=dt ¼ fkðt; q; pÞ and dqk=dt ¼ gkðt; q; pÞ; ð8:7:1Þ

and corresponding general solution

pk ¼ pkðt; cÞ and qk ¼ qkðt; cÞ; ð8:7:2Þ

where

c � ðc1; . . . ; c2nÞ � ðc�; � ¼ 1; . . . ; 2nÞ: constants of integration; ð8:7:3Þ

and, unless specified otherwise Greek (Latin) indices run from 1 to 2n ðnÞ. Each

particular set of c�’s defines a particular dynamical trajectory, or orbit, say I , in

phase space. Therefore, varying these constants slightly— that is, c! cþ �c—

we obtain an adjacent such trajectory, say II ¼ I þ �ðI Þ, given by the first-order

(virtual-like; i.e., contemporaneous) changes of (8.7.2):

�pk ¼
X
ð@pk=@c�Þ �c� and �qk ¼

X
ð@qk=@c�Þ �c�; ð8:7:4Þ

where the derivatives are evaluated at I . As a result, II is governed by the following

linear variational, or perturbational, equatons:

ð�pkÞ: ¼ �ð _ppkÞ ¼
X
ð@fk=@plÞ �pl þ ð@fk=@qlÞ �ql½ �; ð8:7:5aÞ

ð�qkÞ: ¼ �ð _qqkÞ ¼
X
ð@gk=@plÞ �pl þ ð@gk=@qlÞ �ql½ �: ð8:7:5bÞ
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Now, let us carry out two distinct c-variations from I , �1c and �2c:

c! cþ �1c; resulting in the adjacent orbit II1 ¼ I þ �1ðI Þ; ð8:7:6aÞ
c! cþ �2c; resulting in the adjacent orbit II2 ¼ I þ �2ðI Þ: ð8:7:6bÞ

Then, in view of the above, we obtain, successively,

ð�1 pk �2qk � �2 pk �1qkÞ: ¼ ð�1 pkÞ: �2qk � ð�2pkÞ: �1qk þ �1 pkð�2qkÞ:� �2 pkð�1qkÞ:

¼
X
ð@fk=@plÞ �1 pl þ ð@fk=@qlÞ �1ql½ � �2qk

�
X
ð@fk=@plÞ �2 pl þ ð@fk=@qlÞ �2ql½ � �1qk

þ
X
ð@gk=@plÞ �2 pl þ ð@gk=@qlÞ �2ql½ � �1 pk

�
X
ð@gk=@plÞ �1 pl þ ð@gk=@qlÞ �1ql½ � �2 pk

¼
X
ð@fk=@plÞð�1 pl �2qk � �2 pl �1qkÞ þ

X
ð@fk=@qlÞð�1ql �2qk � �2ql �1qkÞ

þ
X
ð@gk=@plÞð�1 pk �2 pl � �1 pl �2 pkÞ þ

X
ð@gk=@qlÞð�1 pk �2ql � �1ql �2pkÞ;

and, therefore, summing these ð. . .Þ:-derivatives of bilinear covariants over k, and

ofter some ‘‘dummy’’-index changes, we finally obtain the fundamental result:

d=dt
X
ð�1 pk �2qk � �2 pk �1qkÞ

h i
¼
XX

ð@fk=@pl þ @gl=@qkÞð�1pl �2qk � �2 pl �1qkÞ
þ ð1=2Þ

XX
ð@fk=@ql � @fl=@qkÞð�1ql �2qk � �2ql �1qkÞ

þ ð1=2Þ
XX

ð@gk=@pl � @gl=@pkÞð�1 pk �2pl � �2 pk �1 plÞ: ð8:7:7Þ

Specializations

(i) If the original equations (8.7.1) are Hamilton’s canonical equations— that is, if

(}8.2)

fk ¼ �@H=@qk þQk and gk ¼ @H=@pk; ð8:7:8Þ

then, since,

ðaÞ @fk=@pl þ @gl=@qk ¼ ð�@2H=@pl @qk þ @Qk=@plÞ þ ð�@2H=@qk @plÞ
¼ @Qk=@pl ½¼ 0; assuming Qk ¼ Qkðt; qÞ�; ð8:7:8aÞ

ðbÞ @fk=@ql � @fl=@qk ¼ ð�@2H=@ql @qk þ @Qk=@qlÞ
� ð�@2H=@qk @ql þ @Ql=@qkÞ

¼ @Qk=@ql � @Ql=@qk ð6¼ 0; in generalÞ; ð8:7:8bÞ

ðcÞ @gk=@pl � @gl=@pk ¼ @2H=@pl @pk � @2H=@pk @pl ¼ 0; ð8:7:8cÞ
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equation (8.7.7) reduces to

d=dt
X
ð�1 pk �2qk � �2 pk �1qkÞ

h i
¼ ð1=2Þ

XX
ð@Qk=@ql � @Ql=@qkÞð�1ql �2qk � �2ql �1qkÞ

¼
X
ð�1Qk �2qk � �2Qk �1qkÞ; ð8:7:9Þ

where

��Qk ¼
X
ð@Qk=@qlÞ ��ql ð* ¼ 1; 2Þ:

(ii) If all forces are potential— that is, if Qk ¼ 0, or @Qk=@ql ¼ @Ql=@qk, for all k,
l ¼ 1; . . . ; n— then (8.7.9) immediately yields the Theorem of Lagrange–Poisson: in a

holonomic and potential (but possibly rheonomic) system, the expression

I �
X
ð�1 pk �2qk � �2 pk �1qkÞ ð8:7:10Þ

is time-independent; that is, it is a constant of the motion.

[For applications of (8.7.10) to the ‘‘reciprocal theorems’’ of mechanics and

optics, see, for example, Lamb (1910, p. 763; 1943, pp. 227–281).]

Lagrange Brackets

With the help of (8.7.4), this important quantity can be rewritten as follows:

I ¼
X X

ð@pk=@c�Þ �1c�
h i X

ð@qk=@c�Þ �2c�
h in

�
X
ð@pk=@c�Þ �2c�

h i X
ð@qk=@c�Þ �1c�

h io
¼
XX X

ð@pk=@c�Þð@qk=@c�Þ � ð@pk=@c�Þð@qk=@c�Þ
� �n o

�1c� �2c�; ð8:7:11Þ

or, finally,

I ¼
XX

c�; c�
� �

�1c� �2c�; ð8:7:12Þ

where

½c�; c�� �
X �ð@pk=@c�Þð@qk=@c�Þ � ð@pk=@c�Þð@qk=@c�Þ�:

¼ �½c�; c�� ðprob: 8:7:1; belowÞ:
Lagrange bracket of c�; c� ð1808Þ: ð8:7:13Þ

The above show that if I ¼ constant, for all �1c and �2c, then all Lagrange brackets
must be constant. (For an alternative proof, see ex. 8.11.3.)

Example 8.7.1 Second, Lagrangean, Proof of the Lagrange–Poisson Theorem. By

�1ð. . .Þ-varying (i) the definition pk ¼ @L=@ _qqk and then (ii) Lagrange’s equations,
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say dpk=dt ¼ @L=@qk þQk, we get

�1 pk ¼ �1ð@L=@ _qqkÞ ¼
X

ð@2L=@ql @ _qqkÞ �1ql þ ð@2L=@ _qql @ _qqkÞ �1ð _qqlÞ
� �

; ðaÞ
�1ð _ppkÞ ¼ ð�1pkÞ: ¼ �1ð@L=@qk þQkÞ

¼
X

ð@2L=@ql @qkÞ �1ql þ ð@2L=@ _qql @qkÞ �1ð _qqlÞ
� �þ �1Qk; ðbÞ

respectively, and therefore [assuming �½dð. . .Þ� ¼ d½�ð. . .Þ� for both q’s and p’s], we

obtain, successively,

X
ð�1pk �2qkÞ:

¼
X
ð�1pkÞ: �2qk þ

X
�1 pkð�2qkÞ:

¼
XX

ð@2L=@ql @qkÞ �1ql �2qk þ ð@2L=@ _qql @qkÞ �1ð _qqlÞ �2qk
� �þX �1Qk �2qk

þ
XX

ð@2L=@ql @ _qqkÞ �1ql �2ð _qqkÞ þ ð@2L=@ _qql @ _qqkÞ �1ð _qqlÞ �2ð _qqkÞ
� �

:ðcÞ

Now, in (c), we interchange the variation subscripts 1 and 2, thus creatingP ð�2pk �1qkÞ: ¼ � � �, and then subtract it from (c), while renaming some summation

(‘‘dummy’’) indices. It is not hard to see that, then,

d=dt
X
ð�1 pk �2qk � �2 pk �1qkÞ

� �
¼
X
ð�1Qk �2qk � �2Qk �1qkÞ; Q:E:D: ðdÞ

More general Lagrangean equations lead, naturally, to more general forms of (d).

Example 8.7.2 Third, Hamiltonian, Proof of the Lagrange–Poisson Theorem.
Since H ¼ Hðt; q; pÞ, we have

�1H ¼
X�ð@H=@qkÞ �1qk þ ð@H=@pkÞ �1 pk�

¼
X�ð� _ppk þQkÞ �1qk þ ð _qqkÞ �1 pk

�
[by Hamilton’s equations]

¼
X�ð _qqkÞ �1 pk � ð _ppk �QkÞ �1qk

�
; ðaÞ

and, therefore, �2ð. . .Þ-varying the above, we obtain

�2ð�1H Þ ¼
X�

�2ð _qqkÞ �1 pk � �2ð _ppkÞ � �2Qk½ � �1qk
�

þ
X�

_qqk �2ð�1 pkÞ � ð _ppk �QkÞ �2ð�1qkÞ
�
: ðbÞ

Similarly, reversing the order of �1ð. . .Þ and �2ð. . .Þ, we obtain

�1ð�2HÞ ¼
X�

�1ð _qqkÞ �2 pk � �1ð _ppkÞ � �1Qk½ � �2qk
�

þ
X

_qqk �1ð�2 pkÞ � ð _ppk �QkÞ �1ð�2qkÞ½ �: ðcÞ
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Subtracting (c) from (b), while noting that for all genuine functions/variables ð. . .Þ,
�1½�2ð. . .Þ� ¼ �2½�1ð. . .Þ�, we obtain

0 ¼ �2ð�1H Þ � �1ð�2H Þ
¼
X�

�2ð _qqkÞ �1 pk � �1ð _qqkÞ �2 pk½ � � �2ð _ppkÞ � �2Qk½ � �1qk þ �1ð _ppkÞ � �1Qk½ � �2qk
�

¼
X
ð�1pk �2qk � �2 pk �1qkÞ

h i:�X ð�1Qk �2qk � �2Qk �1qkÞ; Q:E:D: ðdÞ

Here, too, more general Hamiltonian equations lead to more general forms of (d).

Example 8.7.3 Let us consider a system with Hamiltonian

H ¼ ð1=2Þðp2 þ 
2q2Þ; ðaÞ
and general solution of its equations of motion, as can be easily verified by the reader,

q ¼ c1 cosð
tÞ þ ðc2=
Þ sinð
tÞ; p ¼ �c1
 sinð
tÞ þ c2 cosð
tÞ ðbÞ
(i.e., free vibration of a linear harmonic and undamped oscillator of unit mass and

frequency equal to 
). Hence, the (sole) Lagrange bracket of the system equals

½c1; c2� ¼ �½c2; c1� ¼ ð@p=@c1Þð@q=@c2Þ � ð@p=@c2Þð@q=@c1Þ
¼ ½�
 sinð
tÞ�½
�1 sinð
tÞ� � ½cosð
tÞ�½cosð
tÞ�
¼ �½sin2ð
tÞ þ cos2ð
tÞ� ¼ �1; a constant; ðcÞ

which, in the language of }8.9, means that (b) is a canonical transformation.

Problem 8.7.1 Show that Lagrange’s brackets satisfy the following identities:

ðiÞ ½c�; c�� ¼ 0; ðaÞ

ðiiÞ ½c�; c�� ¼ �½c�; c��; ðbÞ

ðiiiÞ @½c�; c� �=@c
 þ @½c�; c
�=@c� þ @½c
; c��=@c� ¼ 0: ðcÞ

HINT

[For (iii)]: Notice that

½c�; c�� ¼ @=@c�
X

qkð@pk=@c�Þ
h i

� @=@c�
X

qkð@pk=@c�Þ
h i

: ðdÞ

Perturbation Equations

Next, we apply the above formalism to the theory of perturbations. Let the canonical

equations and corresponding general solution of the unperturbed problem be

dpk=dt ¼ �@H=@qk and dqk=dt ¼ @H=@pk; ð8:7:14aÞ

pk ¼ pkðt; cÞ and qk ¼ qkðt; cÞ; ð8:7:14bÞ
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respectively, and let the equations of the slightly perturbed problem be

dpk=dt ¼ �@H=@qk þ Xk and dqk=dt ¼ @H=@pk; ð8:7:15aÞ
where

Xk ¼ Xkðt; q; pÞ ¼ given function of its arguments

� Xk
ð1Þðt; cÞ [Erst-order approximation, upon substitution of unperturbed

solution (8.7.14b) in it]. ð8:7:15bÞ

Let us solve (8.7.15a) by treating the c’s as variable; that is, c� ¼ c�ðtÞ. Indeed,

ð. . .Þ:-differentiating (8.7.14b), we obtain

dpk=dt ¼ @pk=@tþ
X
ð@pk=@c�Þðdc�=dtÞ;

dqk=dt ¼ @qk=@tþ
X
ð@qk=@c�Þðdc�=dtÞ: ð8:7:16aÞ

But since @qk=@t ð@pk=@tÞ ¼ unperturbed velocities (accelerations), while _qqk ð _ppkÞ ¼
perturbed velocities (accelerations), we can rewrite (8.7.14a) and (8.7.15a) as follows:

@pk=@t ¼ �@H=@qk and @qk=@t ¼ @H=@pk; ð8:7:16bÞ

dpk=dt ¼ �@H=@qk þ Xk and dqk=dt ¼ @H=@pk; ð8:7:16cÞ
and, comparing these with (8.7.16a), we are readily led to the 2n first-order differ-

ential equations for the c�ðtÞ:X
ð@pk=@c�Þðdc�=dtÞ ¼ Xk

ð1Þ;
X
ð@qk=@c�Þðdc�=dtÞ ¼ 0: ð8:7:17Þ

To understand the motivation behind these key arguments, let us pause to examine

briefly the physical problem that led Lagrange et al. to the method of variation of

constants: finding the orbit of Earth (E) around the Sun (S). As is well known: in this

case, the solution to the unperturbed, or two-body, problem (i.e., when only the

gravitational pull of S on E is included, whereas the small such influences of the

other solar system planets on the orbit of E are neglected) are Keplerian elliptical

orbits, I , with S at one of their foci, defined at every generic instant by the constants,

or ‘‘orbit elements’’ c�. Here, the perturbed problem consists in calculating the small

time-dependent deviations of E’s orbit from ellipticity; that is, the dc�=dt, due to the

gravitational pull of the other planets. Our conditions (8.7.17) amount to stating

that, at every instant, E has the same coordinates and velocity (! momentum) in both
the unperturbed (two-body) and perturbed (many-body) orbits (fig. 8.6).

As the famous Victorian mechanician Tait puts it (see also Lagrange’s summary

in ex. 8.7.4):

[T]he disturbing forces are, at any instant, small in comparison with the forces regulat-

ing the motion; so that, during any brief period, the motion is practically the same as if

no disturbing cause had been at work. But in time, the effects of the disturbance may

become so great as entirely to change the dimensions and form of the orbit described.

The character of the path is not, at any particular instant, affected by the disturbance;

but its form and dimensions are in a state of slow, and usually progressive change.

Hence, as the first depends upon the form of the equations which represent it, while the

latter depend upon the actual and relative magnitudes of the constants involved in the
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integrals, we settle, once for all, the form of the equation as if no disturbing cause had

acted. But we are thus entitled to assume that the constants which the solution involves

are quantities which vary with the time in consequence of the slight, but persistent,

effects of the disturbance. And, . . . , if at any moment the disturbance were to cease, the

motion would forthwith go on for ever in the orbit then being described, it follows that in

the expressions for the components of the velocity no terms occur depending on the rate

of alteration of the values of the constants. (1895, p. 174)

The above help us to understand the differences between partial and total time

derivatives:

� Partial derivatives refer to the unperturbed (or osculating) orbit; that is, constant orbit

elements.

� Total derivatives refer to the perturbed (or true) orbit; that is, variable orbit elements.

Two additional forms of the perturbation equations are obtained as follows:

(i) Multiplying the first of (8.7.17) with �2qk ¼
P ð@qk=@c�Þ �2c� and summing

over k, and multiplying the second of (8.7.17) with �2 pk ¼
P ð@pk=@c�Þ �2c� and

summing over k, and then subtracting the so-resulting expressions, we obtainXXX �ð@pk=@c�Þðdc�=dtÞ��ð@qk=@c�Þ �2c��
�
XXX �ð@qk=@c�Þðdc�=dtÞ��ð@pk=@c�Þ �2c��

¼
XX

Xk
ð1Þ�ð@qk=@c�Þ �2c��; ð8:7:18aÞ

or, recalling the Lagrange bracket definition (8.7.13),XX
½c�; c��ðdc�=dtÞ �2c� ¼

XX
Xk
ð1Þ�ð@qk=@c�Þ �2c��; ð8:7:18bÞ

and from this, since the �2c� are arbitrary, we finally obtain the Lagrangean form of
the perturbation equations:X

½c�; c��ðdc�=dtÞ ¼
X

Xk
ð1Þð@qk=@c�Þ: ð8:7:19Þ
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In particular, if the perturbations are potential— that is, if Xk ¼ �@O=@qk — then,

since qk ¼ qkðt; cÞ, (8.7.19) specializes toX
½c�; c��ðdc�=dtÞ ¼ �@O=@c�: ð8:7:20Þ

Also, since, here, the fundamental state I is time-independent, the brackets depend

only on the c’s.
(ii) Inverting the general solution (8.7.2), or (8.7.14b), we obtain

c� ¼ h�ðt; q; pÞ ¼ Orst integral ðconstantÞ of the unperturbed problem; ð8:7:21aÞ
and, therefore, treating them as variable, we get

dc�=dt ¼ @h�=@tþ
X

ð@h�=@qkÞðdqk=dtÞ þ ð@h�=@pkÞðdpk=dtÞ
� �

: ð8:7:21bÞ

But invoking the perturbation conditions (8.7.17), we find

dpk=dt ¼ @pk=@tþ
X
ð@pk=@c�Þðdc�=dtÞ ¼ @pk=@tþ Xk

ð1Þ; ð8:7:21cÞ
dqk=dt ¼ @qk=@tþ

X
ð@qk=@c�Þðdc�=dtÞ ¼ @qk=@t; ð8:7:21dÞ

and so, inserting these expressions back into (8.7.21b), we have

dc�=dt ¼ @h�=@tþ
X

ð@h�=@qkÞð@qk=@tÞ þ ð@h�=@pkÞð@pk=@tÞ
� �

þ
X
ð@h�=@pkÞXk;

or, since the first two summands vanish, because they represent the ð. . .Þ:-derivative

of the unperturbed constant c�, we obtain, finally,

dc�=dt ¼
X
ð@h�=@pkÞXk ¼

X
ð@c�=@pkÞXk

ð1Þ: ð8:7:22Þ

Poisson Brackets

In particular, if the perturbations are potential— that is, if

Xk ¼ �@O=@qk ¼ �
X
ð@O=@c�Þð@c�=@qkÞ; ð8:7:22aÞ

(8.7.22) becomes

dc�=dt ¼ �
X X

ð@O=@c�Þð@c�=@qkÞ
h i

ð@c�=@pkÞ; ð8:7:22bÞ

or, if (as is commonly the case)

0 ¼ @O=@pk ¼
X
ð@O=@c�Þð@c�=@pkÞ

)
X X

ð@O=@c�Þð@c�=@pkÞ
� �

ð@c�=@qkÞ ¼ 0; ð8:7:22cÞ

adding a zero [i.e., (8.7.22c)] to the right side of (8.7.22b) we finally obtain the

potential perturbation equations in the following convenient form:

dc�=dt ¼ �
X
ð@O=@c�Þðc�; c�Þ; ð8:7:23Þ
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where

ðc�; c�Þ �
X �ð@c�=@pkÞð@c�=@qkÞ � ð@c�=@qkÞð@c�=@pkÞ�:
Poisson bracket of c�; c� ½¼ �ðc�; c�Þ�: ð8:7:24Þ

[See also }8.9. On the history of Poisson’s brackets, and so on, see Dugas (1955,

p. 384 ff.)].

Equations (8.7.23) have the advantage over (8.7.20) that they are already solved

for the dc=dt; but, in return, eqs. (8.7.20) contain Lagrange’s brackets, which do not

require solving the p’s and q’s for the c’s, as Poisson’s brackets do.

Now, since these two perturbation forms, (8.7.20) and (8.7.23), are equivalent, the

brackets of Lagrange and Poisson must satisfy certain consistency requirements.

Indeed, substituting dc�=dt! dc�=dt from (8.7.23) into (8.7.20), we getXX
½c�; c��ðc�; c
Þð@O=@c
Þ ¼ �@O=@c�;

from which, since the @O=@c
 are arbitrary, we obtain the inverse matrix-like rela-

tions: X
½c�; c��ðc�; c
Þ ¼ ��
 ¼ �
�: Kronecker delta
½¼ 1 or 0; according as � ¼ 
 or � 6¼ 
�: ð8:7:25Þ

These compatibility conditions readily show that:

� If Lagrange’s brackets are constant, then so are Poisson’s brackets, and vice versa.

� If we know Lagrange’s brackets, then using (8.7.25) we can find Poisson’s brackets,

and vice versa; that is, these two behave as if they were elements of two inverse

2n� 2n matrices.

REMARK

Equations (8.7.23) are exact, but they are expressed in terms of perturbed quantities.

Let us formulate them in terms of the known unperturbed quantities and their first-
order corrections. Setting in (8.7.23): c� ¼ c�o þ c�1, where c�o ¼ unperturbed values

and c�1 ¼ corresponding first-order corrections, we readily find that the differential

equations of the latter are

dc�1=dt ¼ �
X
ð@Oo=@c�oÞðc�o; c�oÞ; where Oo � OðcoÞ: ð8:7:23aÞ

Example 8.7.4 Canonical Form of Lagrange’s Perturbation Equations [1810; see

Lagrange, 1965, Vol. 1, pp. 299–320].

HISTORICAL

In the second edition of his Mécanique Analytique, Lagrange summarizes the gist of

his method as follows:

Dans les problèmes de Mécanique qu’on ne peut résoudre que par approximation, on

trouve ordinairement la première solution en n’ayant égard qu’aux forces principales

qui agissent sur les corps; et pour étendre cette solution aux autres forces qu’on peut

appeler perturbatrices, ce qu’il y a de plus simple, c’est de conserver la forme de la
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première solution, mais en rendant variables les constantes arbitraires qu’elle renferme;

car, si les quantités qu’on avait négligées, et dont on veut tenir compte, sont très-petites,

les nouvelles variables seront à peu près constantes, et l’on pourra y appliquer les

méthodes ordinaires d’approximation. Ainsi la difficulté se reduit à trouver les équa-

tions entre ces variables. [1965, p. 299]

Let qk ¼ qkðtÞ and pk ¼ pkðtÞ be represented by the following power series in time t:

qk ¼ qk0 þ qk1 tþ qk2 t
2 þ � � � ; pk ¼ pk0 þ pk1 tþ pk2 t

2 þ � � � : ðaÞ

Let us find the form of the Lagrangean perturbational equations, say the potential

case (8.7.20), when we choose as constants the initial conditions; that is,

ck ¼ qk0 and cnþs ¼ ps0 ðk; s ¼ 1; . . . ; nÞ: ðbÞ

Then, since

½c�; c� � ¼ ½c�; c��t¼0 ¼ constant; ðcÞ

we obtain:

(i) For �; � ¼ 1; . . . ; n:

½c�; c�� ¼
X
½ð@pk0=@c�Þð@qk0=@c�Þ � ð@pk0=@c�Þð@qk0=@c�Þ�

¼
X
½ð0Þð�k�Þ � ð0Þð�k�Þ� ¼ 0: ðdÞ

(ii) For �! nþ s; s ¼ 1; . . . ; n; � ¼ 1; . . . ; n:

½cnþs; c�� ¼
X
½ð@pk0=@cnþsÞð@qk0=@c�Þ � ð@pk0=@c�Þð@qk0=@cnþsÞ�

¼
X
½ð�ksÞð�k�Þ � ð0Þð0Þ� ¼

X
ð�ksÞð�k�Þ ¼ �s�; ðeÞ

from which we also get

½c�; cnþs� ¼ �½cnþs; c�� ¼ ��s� ¼ ���s: ðf Þ

(iii) For �! nþ r; � ! nþ b; r; b ¼ 1; . . . ; n:

½cnþr; cnþb� ¼
X �ð@pk0=@cnþrÞð@qk0=@cnþbÞ � ð@pk0=@cnþbÞð@qk0=@cnþrÞ

�
¼
X �ð�krÞð0Þ � ð�kbÞð0Þ� ¼ 0: ðgÞ

Therefore, the perturbation equations (8.7.20):X
½c�; c��ðdc�=dtÞ ¼ �@O=@c�; ðhÞ

become

(i) � ¼ 1; . . . ; n:X
½cnþs; c��ðdcnþs=dtÞ ¼

X
�s�ðdcnþs=dtÞ ¼ �@O=@c�; ðiÞ

or (renaming � as k)

dcnþk=dt ¼ �@O=@ck ðk ¼ 1; . . . ; nÞ: ð jÞ
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(ii) � ¼ nþ 1; . . . ; 2n; or � ¼ nþ s; s ¼ 1; . . . ; n:X
½ck; cnþs�ðdck=dtÞ ¼

X
ð��skÞðdck=dtÞ ¼ �@O=@ck; ðkÞ

or (renaming s to k)

dck=dt ¼ @O=@cnþk ðk ¼ 1; . . . ; nÞ: ðlÞ
Hence Lagrange’s result: If we choose as our constants the initial values of q and p,
then (provided the perturbative forces are potential) the perturbation equations are
canonical; with O as the perturbation Hamiltonian (see also }8.10).

Example 8.7.5 Variation of Constants: The Forced Linear Oscillator. Let us

consider a system with Lagrangean equation of motion

€qqþ !2q ¼ f ðtÞ; ðaÞ
that is, a linear and undamped oscillator of (constant) natural frequency ! acted

upon by the disturbing external force f ðtÞ. As is well known, the general solution of

the unperturbed problem [i.e., (a) with f ðtÞ ¼ 0] is

q ¼ c1 sinð!tÞ þ c2 cosð!tÞ; c1; c2 ¼ arbitrary constants: ðbÞ

Elementary Method

To solve the perturbed problem (a), and following the well-known method of varia-

tion of constants (see any text on ordinary differential equations), we try a solution

of the same form as (b) but with c1 and c2 unknown functions of time:

q ¼ c1ðtÞ sinð!tÞ þ c2ðtÞ cosð!tÞ; ðcÞ
where c1ðtÞ and c2ðtÞ are the coefficients of the instantaneous simple harmonic motion
(i.e., the arbitrary constants of the motion that would result, at a generic instant, if

f ðtÞ suddenly vanished) and they will be determined by the following two require-

ments:

(i) Both unperturbed and perturbed velocities _qq, obtained by ð. . .Þ:-differentiation of

(b) and (c), respectively, will have the same form;

(ii) The so-perturbed motion (c) will satisfy the perturbed equation (a).

Indeed:

(i) By ð. . .Þ:-differentiating (c), we obtain

_qq ¼ _cc1 sinð!tÞ þ _cc2 cosð!tÞ þ !½c1 cosð!tÞ � c2 sinð!tÞ�; ðdÞ
and so the first requirement leads to the condition

_cc1 sinð!tÞ þ _cc2 cosð!tÞ ¼ 0; ðeÞ
and

(ii) By ð. . .Þ:-differentiating (d), invoking (e), and then inserting the result in (a),

we find the second condition:

€qqþ !2q ¼ � � � ¼ !½ _cc1 cosð!tÞ � _cc2 sinð!tÞ� ¼ f ðtÞ: ðf Þ
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Solving the system (e, f) for _cc1; _cc2, we readily obtain

_cc1 ¼ !�1f ðtÞ cosð!tÞ; _cc2 ¼ �!�1f ðtÞ sinð!tÞ: ðgÞ
Integrating (g) for a given f ðtÞ, we obtain a particular solution of (a). The reader

should compare this method with that of the slowly varying parameters, in (weakly)

nonlinear oscillations (see next example, and also examples in } 7.9).

Generalization. In the variable coefficient case

€qqþ aðtÞ _qqþ bðtÞq ¼ f ðtÞ ½aðtÞ; bðtÞ ¼ known functions of time�; ðhÞ
(b) and (c) are replaced, respectively, by

q ¼ c1 q1ðtÞ þ c2 q2ðtÞ: general solution of ðhÞ when f ðtÞ ¼ 0; ði1Þ
q ¼ c1ðtÞ q1ðtÞ þ c2ðtÞ q2ðtÞ; q1ðtÞ ¼ sinð!tÞ; q2ðtÞ ¼ cosð!tÞ; ði2Þ

while the conditions (e, f ) are replaced, respectively, by

_cc1 q1ðtÞ þ _cc2 q2ðtÞ ¼ 0; ðj1Þ

_cc1 _qq1ðtÞ þ _cc2 _qq2ðtÞ ¼ f ðtÞ: ðj2Þ
Solving ( j1, 2) for _cc1; _cc2, we obtain the generalization of (g):

_cc1 ¼ � f ðtÞ q2ðtÞ½ ��W and _cc2 ¼ f ðtÞ q1ðtÞ½ ��W ; ðkÞ
where

W ¼W ½q1ðtÞ; q2ðtÞ� � ½q1ðtÞ _qq2ðtÞ � q2ðtÞ _qq1ðtÞ� �WðtÞ:
Wronskian determinant of q1ðtÞ; q2ðtÞ
½6¼ 0; since q1ðtÞ; q2ðtÞ are linearly independent; i:e:; ðq2=q1Þ: 6¼ 0�; ðk1Þ

and, integrating the above and inserting the result in (c)/(i2), we obtain a particular

solution of (h).

Via Lagrange’s Brackets

We begin with (c):

q ¼ c1ðtÞ sinð!tÞ þ c2ðtÞ cosð!tÞ ¼ q½t; c1; c2�: ðlÞ
Equations (d, e) can be rewritten, respectively, as

dq=dt ¼ ½c1! cosð!tÞ � c2 ! sinð!tÞ� þ ½sinð!tÞ _cc1 þ cosð!tÞ _cc2�
¼ @q=@tþ ½ð@q=@c1Þ _cc1 þ ð@q=@c2Þ _cc2�; ðm1ÞX

ð@q=@c�Þðdc�=dtÞ ¼ ½sinð!tÞ� _cc1 þ ½cosð!tÞ� _cc2 ¼ 0; ðm2Þ

while, since

d2q=dt2 ¼ ½�c1!
2 sinð!tÞ � c2 !

2 cosð!tÞ� þ ½ _cc1 ! cosð!tÞ � _cc2 ! sinð!tÞ�
¼ @2q=@t2 þ �ð@2q=@t @c1Þ _cc1 þ ð@2q=@t @c2Þ _cc2

�
; ðm3Þ
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condition (f ) becomes

ð@2q=@t @c1Þ _cc1 þ ð@2q=@t @c2Þ _cc2 ¼ f ðtÞ: ðm4Þ
But, and this is a general result,

@=@c1ð@q=@tÞ ¼ @=@c1ð _qqÞ ¼ ! cosð!tÞ ¼ @=@tð@q=@c1Þ ¼ @=@t½sinð!tÞ�; ðn1Þ

@=@c2ð@q=@tÞ ¼ @=@c2ð _qqÞ ¼ �! sinð!tÞ ¼ @=@tð@q=@c2Þ ¼ @=@t½cosð!tÞ�; ðn2Þ
and, therefore, the system (e, f ) can be rewritten as

ð@p=@c1Þ _cc1 þ ð@q=@c2Þ _cc2 ¼ 0; ð@ _qq=@c1Þ _cc1 þ ð@q=@c2Þ _cc2 ¼ f ðtÞ: ðo1; 2Þ
To solve this system for _cc1; _cc2, we multiply (o2) with @q=@c� (where � ¼ 1; 2) and

(o1) with @ _qq=@c�, and then subtract from each other, thus obtaining�ð@q=@c�Þð@ _qq=@c1Þ � ð@q=@c1Þð@ _qq=@c�Þ
�
_cc1

þ �ð@q=@c�Þð@ _qq=@c2Þ � ð@q=@c2Þð@ _qq=@c�Þ
�
_cc2 ¼ ð@q=@c�Þ f ðtÞ;

that is, in the Lagrangean form (8.7.19) (recalling that here p ¼ _qq):

½c1; c�� _cc1 þ ½c2; c�� _cc2 ¼ ð@q=@c�Þ f ðtÞ; ðpÞ
from which, due to the antisymmetry of the Lagrangean brackets (problem 8.7.1) —

that is,

½c1; c1� ¼ ½c2; c2� ¼ 0; ½c1; c2� ¼ ! ) ½c2; c1� ¼ �!; ðqÞ
we finally obtain (g) in the following general form:

dc1=dt ¼
	ð@q=@c2Þ f ðtÞ


�½c1; c2� dc2=dt ¼
	ð@q=@c1Þ f ðtÞ


�½c2; c1�: ðrÞ
Comparing (g, k) with (r) we immediately conclude that

½c2; c1� ¼ ð f WÞ
	ð@q=@c1Þ

�
W2



; ½c1; c2� ¼ ð f WÞ

	ð@q=@c2Þ
�
W1



; ðr1; 2Þ

where

W1 � � f q2; W2 � f q1: ðr3Þ
Let the reader express the solution of the more general equation (h) via Lagrangean

brackets.

This completes the fundamentals of classical canonical perturbation theory. We

shall return to such approximation methods in }8.14. Now, using the insights gained

in Hamiltonian variables, let us make a small detour to discuss the following.

Perturbation Equations in Lagrangean Variables

The most general Lagrangean-type perturbed equations of motion in these variables

have the form (}3.10 and }3.11):X
Mkl€qql þ fkðt; q; _qqÞ ¼ Qk þ Xk; ð8:7:26Þ
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where

fkðt; q; _qqÞ: known function of its arguments;

Xk ¼ Xkðt; q; _qqÞ: small ðtotal impressedÞ perturbative force: ð8:7:26aÞ

Let the general solution of the corresponding unperturbed problem be

qk ¼ qkðt; cÞ: ð8:7:27aÞ

We have seen earlier (8.7.16a, 21d) that by demanding equality between the un-
perturbed and perturbed velocities, @qk=@t and

dqk=dt ¼ @qk=@tþ
X
ð@qk=@c�Þðdc�=dtÞ;

respectively, we arrive at the n conditions (8.7.17) for the dc=dt’s:X
ð@qk=@c�Þðdc�=dtÞ ¼ 0: ð8:7:27bÞ

The additional n conditions will result by substituting the perturbed accelerations

d2qk=dt
2 ¼ @2qk=@t

2 þ
X
ð@2qk=@t @c�Þðdc�=dtÞ ½after invoking ð8:7:27bÞ�;

ð8:7:27cÞ

in (8.7.26), and then subtracting from it the unperturbed equation; that is, eq.

(8.7.26) with Xk ¼ 0 and d2qk=dt
2 ¼ @2qk=@t

2: unperturbed accelerations. Thus, we

obtain the following Lagrangean perturbational equations of motion:XX
Mklð@2ql=@t @c�Þðdc�=dtÞ ¼ Xk

ð1Þ; ð8:7:28Þ

or, in extenso,X �
Mk1ð@2q1=@t @c�Þ þ � � � þMknð@2qn=@t @c�Þ

� ðdc�=dtÞ ¼ Xk
ð1Þ: ð8:7:28aÞ

These are the Lagrangean counterpart of the first of (8.7.17), and together with

(8.7.27b) they constitute a system of 2n linear equations for the 2n dc=dt’s.
Indeed, with the abbreviations

Lk� �
X

Mklð@2ql=@t @c�Þ ¼
X

Mklð@2ql=@c� @tÞ; Pk� � @qk=@c�;
ð8:7:29aÞ

the system (8.7.27b, 28) can be rewritten asX
Lk� _cc� ¼ Xk

ð1Þ;
X

Pk� _cc� ¼ 0; ð8:7:29bÞ

and, by Cramer’s rule, its solution is

_cc� ¼
X
ð�1Þkþ�Dk�Xk

ð1Þ�D ðsummation on k ¼ 1; . . . ; nÞ; ð8:7:29cÞ
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D �

L11 . . . L1;2n

Ln1 . . . Ln;2n

P11 . . . P1;2n

Pn1 . . . Pn;2n

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �




� DetðLk�; Pl�Þ ð6¼ 0; assumedÞ; ð8:7:29dÞ

and ð�1Þkþ�Dk� ¼ cofactor (i.e., signed minor) of Lk� in D. Integrating (8.7.29c), we

obtain the 2n c�ðtÞ, and afterwards the perturbed solution qk ¼ qk½t; cðtÞ�.

Example 8.7.6 Variation of Constants: Quasi-Linear Oscillator. Let us consider

a system with equation of motion

m €qqþ k q ¼ " f ðq; _qqÞ; ðaÞ

where the generally nonlinear force " f ðq; _qqÞ [": constant, such that " f ð. . .Þ has the

dimensions of force] is assumed small compared with inertia (m€qq; m: constant mass)

and elasticity (�k _qq; k: constant modulus); this is the meaning of the adjective quasi-
linear.

Lagrangean Variables

Here,

2T ¼ mð _qqÞ2 ) M11 ¼ m: ðbÞ

The general solution of the unperturbed equation [i.e., (a) with " f ðq; _qqÞ ¼ 0] is

q ¼ c1 sinð!otÞ þ c2 cosð!otÞ; !o
2 � k=m: ðcÞ

Therefore, since n ¼ 1 ) � ¼ 1; 2, we obtain, successively,

P11 � @q=@c1 ¼ sinð!otÞ; P12 � @q=@c2 ¼ cosð!otÞ;
L11 ¼M11ð@2q=@t @c1Þ ¼ m½!o cosð!otÞ�;
L12 ¼M11ð@2q=@t @c2Þ ¼ m½�!o sinð!otÞ�;
D ¼ L11P12 � L12P11 ¼ � � � ¼ m!o½cos2ð!otÞ þ sin2ð!otÞ� ¼ m!o; ðdÞ

_cc1 ¼ ð�1Þ1þ1D11X1

�
D ¼ P12X1

�
D ¼ ðm!oÞ�1" f ðq; _qqÞ cosð!otÞ; ðe1Þ

_cc2 ¼ ð�1Þ1þ2D12X1

�
D ¼ P11X1

�
D ¼ �ðm!oÞ�1" f ðq; _qqÞ sinð!otÞ: ðe2Þ

In the theory of nonlinear oscillations, it is customary and convenient to work, not

with c1 and c2, but with the following variables:

c1 ¼ qo sin � and c2 ¼ qo cos�: ðfÞ
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By ð. . .Þ:-differentiating the above, we obtain

_cc1 ¼ _qqo sin�þ qo _�� cos� and _cc2 ¼ _qqo cos�� qo _�� sin �; ðgÞ
) f ðq; _qqÞ

unperturbed q; _qq

¼ f ½c1 sinð!otÞ þ c2 cosð!otÞ; c1!o cosð!otÞ � c2!o sinð!otÞ�
¼ f ½qo cosð!ot� �Þ; �qo !o sinð!ot� �Þ� � f ½. . . ; . . .�; ðhÞ

and so (e1, e2) translate, respectively, to

_qqo sin �þ qo _�� cos� ¼ ð"=m!oÞ f ½. . . ; . . .� cosð!otÞ; ði1Þ
_qqo cos�� qo _�� sin � ¼ �ð"=m!oÞ f ½. . . ; . . .� sinð!otÞ: ði2Þ

Solving this system for _qqo and qo _��, we get

_qqo ¼ �ð"=m!oÞ f ½. . . ; . . .� sin�; qo _�� ¼ ð"=m!oÞ f ½. . . ; . . .� cos�; ði3Þ

where � � !ot� �ðtÞ � �ðtÞ.
These equations for qo and � are exact; but since they are still nonlinear, they are

not very useful. They become useful when qo and � change very little during the

unperturbed period �o � 2�=!o. Then, we can replace the exact equations (i3) with a

new set whose right sides are the averages of the right sides of (i3) over �o:

dqo=dt ¼ �ð"=2�mÞ
ð
f ½. . . ; . . .� sin� dt

¼ �ð"=2�!omÞ
ð
f ½qo cos�; �qo !o sin�� sin� d�; ðj1Þ

qoðd�=dtÞ ¼ ð"=2�mÞ
ð
f ½. . . ; . . .� cos� dt

¼ þð"=2�!omÞ
ð
f ðqo cos�; �qo !o sin�Þ cos� d�; ðj2Þ

where the dt-integrals extend from 0 to 2�=!o, while the d�-integrals extend from

0 to 2�.
For a general and masterful treatment of such averaging techniques, see, for

example, Bogoliubov and Mitropolskii (1974, chap. 5, pp. 355–429); also ex. 7.9.14 ff.

Hamiltonian Variables

Here,

p ¼ @T=@ _qq ¼ m _qq ) _qq ¼ p=m; ðk1Þ
) H ¼ p _qq� ðT � VÞ ¼ pðp=mÞ � ðm=2Þðp=mÞ2 þ ðk=2Þp2

¼ p2=2m þ kq2=2 ¼ Hðq; pÞ: unperturbed Hamiltonian: ðk2Þ
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(a) The unperturbed canonical equations and their general solution are, respectively,

_pp ¼ �@H=@q: _pp ¼ �kq; ðl1Þ
_qq ¼ @H=@p: _qq ¼ p=m; ðl2Þ
p ¼ pðt; cÞ ¼ m !o½c1 cosð!otÞ � c2 sinð!otÞ�; ðm1Þ
q ¼ qðt; cÞ ¼ c1 sinð!otÞ þ c2 cosð!otÞ: ðm2Þ

(b) The perturbed canonical equations are

_pp ¼ �@H=@qþ X ¼ �kqþ X

¼ �kqþ "f ðq; p=mÞ � �kqþ "Fðq; pÞ; ðn1Þ
_qq ¼ @H=@p: _qq ¼ p=m: ðn2Þ

(i) Let us, first, apply the Lagrangean form (8.7.19):X
½c�; c��ðdc�=dtÞ ¼ Xð@q=@c�Þ ð� ¼ 1; 2Þ: ðo1Þ

We have

@q=@c1 ¼ sinð!otÞ; @q=@c2 ¼ cosð!otÞ; ðo2Þ

½c1; c1� ¼ 0; ½c2; c2� ¼ 0 ðsince these brackets are antisymmetricÞ;
½c1; c2� ¼ ð@p=@c1Þð@q=@c2Þ � ð@p=@c2Þð@q=@c1Þ

¼ ½m !o cosð!otÞ�½cosð!otÞ� � ½�m !o sinð!otÞ�½sinð!otÞ� ¼ m !o;

½c2; c1� ¼ �½c1; c2� ¼ �m!o; ðo3Þ
and hence (o1) reduce to

½c2; c1� _cc2 ¼ Xð@q=@c1Þ: ð�m !oÞ _cc2 ¼ "Fðq; pÞ sinð!otÞ; ðo4Þ
½c1; c2� _cc1 ¼ Xð@q=@c2Þ: ðm !oÞ _cc1 ¼ "Fðq; pÞ cosð!otÞ; ðo5Þ

that is, the earlier (e1), (e2).

(ii) Finally, let us apply the form (8.7.22):

dc�=dt ¼
X
ð@c�=@pÞX : ðp1Þ

Solving (m1), (m2) for c1 and c2, we obtain

c1 ¼ ½sinð!otÞ�qþ ½cosð!otÞ=m !o�p; ðp2Þ
c2 ¼ ½cosð!otÞ�qþ ½� sinð!otÞ=m !o�p; ðp3Þ

and so (p1) yield

dc1=dt ¼ ð@c1=@pÞX ¼ ½cosð!otÞ=m !o�"Fðq; pÞ; i:e:; ðe1Þ=ðo5Þ; ðp4Þ
dc2=dt ¼ ð@c2=@pÞX ¼ ½� sinð!otÞ=m !o�"Fðq; pÞ; i:e:; ðe2Þ=ðo4Þ: ðp5Þ

Example 8.7.7 Variation of Constants: Effect of Small Air Resistance (Drag) on
Projectiles. Let us consider a particle P of mass m in free motion on a fixed
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vertical plane O–xy (Ox: horizontal, þOy: upward) under the action of constant

gravity g and small air resistance (perturbation) equal to

D ¼ �"ðv=vÞ f ðvÞ; ðaÞ
where v ¼ velocity of P ¼ ð _xx; _yyÞ, " ¼ small parameter (> 0), f ðvÞ ¼ experimentally

determined function of jvj � v ¼ ½ð _xxÞ2 þ ð _yyÞ2�1=2 ð> 0Þ. Here, n ¼ 2, and so, with

q1 ¼ x and q2 ¼ y, we have

2T ¼ m½ð _xxÞ2 þ ð _yyÞ2�; V ¼ mgyþ constant; Qk ¼ 0; ðbÞ

X1 � X ¼ D � i ¼ �"ð _xx=vÞ f ðvÞ; X2 � Y ¼ D � j ¼ �"ð _yy=vÞ f ðvÞ; ðcÞ

and so the perturbed equations of motion are

Horizontal: m€xx ¼ �"ð _xx=vÞ f ðvÞ; ðd1Þ
Vertical: m€yy ¼ �mg� "ð _yy=vÞ f ðvÞ: ðd2Þ

Since the general solution of the unperturbed problem [i.e., (d1, d2) with " ¼ 0] is

x ¼ c1tþ c2; y ¼ �ðg=2Þt2 þ c3 tþ c4; ðe1; 2Þ
we readily find

P11 ¼ @x=@c1 ¼ t; P12 ¼ @x=@c2 ¼ 1; P13 ¼ @x=@c3 ¼ 0; P14 ¼ @x=@c4 ¼ 0;

@2x=@t @c1 ¼ 1; @2x=@t @c2 ¼ 0; @2x=@t @c3 ¼ 0; @2x=@t @c4 ¼ 0; ðf1Þ

P21 ¼ @y=@c1 ¼ 0; P22 ¼ @y=@c2 ¼ 0; P23 ¼ @y=@c3 ¼ t; P24 ¼ @y=@c4 ¼ 1;

@2y=@t @c1 ¼ 0; @2y=@t @c2 ¼ 0; @2y=@t @c3 ¼ 1; @2y=@t @c4 ¼ 0; ðf2Þ

L11 ¼M11ð@2x=@t @c1Þ þM12ð@2y=@t @c1Þ ¼ ðmÞð1Þ þ ð0Þð0Þ ¼ m

L12 ¼M11ð@2x=@t @c2Þ þM12ð@2y=@t @c2Þ ¼ ðmÞð0Þ þ ð0Þð0Þ ¼ 0;

L13 ¼M11ð@2x=@t @c3Þ þM12ð@2y=@t @c3Þ ¼ ðmÞð0Þ þ ð0Þð1Þ ¼ 0;

L14 ¼M11ð@2x=@t @c4Þ þM12ð@2y=@t @c4Þ ¼ ðmÞð0Þ þ ð0Þð0Þ ¼ 0; ðg1Þ

L21 ¼M21ð@2x=@t @c1Þ þM22ð@2y=@t @c1Þ ¼ ð0Þð1Þ þ ðmÞð0Þ ¼ 0;

L22 ¼M21ð@2x=@t @c2Þ þM22ð@2y=@t @c2Þ ¼ ð0Þð0Þ þ ðmÞð0Þ ¼ 0;

L23 ¼M21ð@2x=@t @c3Þ þM22ð@2y=@t @c3Þ ¼ ð0Þð0Þ þ ðmÞð1Þ ¼ m;

L24 ¼M21ð@2x=@t @c4Þ þM22ð@2y=@t @c4Þ ¼ ð0Þð0Þ þ ðmÞð0Þ ¼ 0; ðg2Þ

D � DetðLk�

�
Pl�Þ ¼ � � � ¼ �m2 ðk; l ¼ 1; 2; �; � ¼ 1; 2; 3; 4Þ;

D11 ¼ �m; D12 ¼ �m t; D13 ¼ 0; D14 ¼ 0;

D21 ¼ 0; D22 ¼ 0; D23 ¼ m; D24 ¼ m t: ðg3Þ
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Hence, the perturbation equations (8.7.29c) yield

dc1=dt ¼
X
ð�1Þkþ1 Dk1Xk

ð1Þ�D ðk ¼ 1; 2Þ
¼ ½ð�1Þ1þ1D11X1

ð1Þ þ ð�1Þ2þ1D21X2
ð1Þ��D

¼ ½ð�1Þ2D11X
ð1Þ þ ð�1Þ3D21Y

ð1Þ��D
¼ �ð�1Þ2ð�mÞ½�"ð _xx=vÞ f ðvÞ� þ ð�1Þ3ð0Þ½�"ð _yy=vÞ f ðvÞ���ð�m2Þ
¼ �ð"=mÞð _xx=vÞ f ðvÞjunperturbed

¼ �ð"=mÞðc1=vunperturbedÞ f ðvunperturbedÞ � �ð"=mÞðc1=voÞ f ðvoÞ;
dc2=dt ¼ � � � ¼ ð"=mÞðc1=voÞ f ðvoÞ t;
dc3=dt ¼ � � � ¼ �ð"=mÞ½ðc3 � g tÞ�vo� f ðvoÞ;
dc4=dt ¼ � � � ¼ ð"=mÞ½ðc3 � g tÞ�vo� f ðvoÞ t; ðhÞ

where

vunperturbed ¼ ½ð _xxÞ2 þ ð _yyÞ2�1=2

unperturbed

¼ ½ðc1Þ2 þ ðc3 � g tÞ2�1=2 � vo: ðh1Þ

Integrating the four expressions (h), while (since the drag is small) replacing in their

right sides c1; 2; 3; 4 with the corresponding integration constants c1o; 2o; 3o; 4o using � as

(dummy) variable of integration, and the notation f ðvunperturbedÞ � f ðvoÞ � fo, we

obtain, finally,

c1 ¼ c1o � ð"=mÞ
ðt

0

ðc1=voÞ fo d * � c1o � ð"=mÞc1o

ðt
0

ð fo=voÞ d *; ði1; 2; 3; 4Þ

c2 ¼ c2o þ ð"=mÞ
ðt

0

ðc1=voÞ fo * d * � c2o þ ð"=mÞc1o

ðt
0

ð fo=voÞ * d *;

c3 ¼ c3o � ð"=mÞ
ðt

0

½ðc3 � g*Þ=vo� fo d * � c3o � ð"=mÞ
ðt

0

ðc3o � g *Þð fo=voÞ d *;

c4 ¼ c4o þ ð"=mÞ
ðt

0

½ðc3 � g*Þ=vo� fo * d * � c4o þ ð"=mÞ
ðt

0

ðc3o � g *Þð fo=voÞ * d *;

where vo � ½ðc1oÞ2 þ ðc3o � g *Þ2�1=2 ) fo: known function of *, c1o, c3o.

Last, substituting (i1–4) into (e1, 2), we obtain a particular solution of the per-

turbed problem (d1, 2) in terms of t and c1o; 2o; 3o; 4o, correct to the first-order in ".
For the Hamiltonian perturbation treatment — that is, via (8.7.19) or (8.7.22),

including special f ðvÞ cases, see, for example, Hamel (1949, pp. 309–311; and

pp. 689–691 for the plane linear elastic and isotropic oscillator under small air

resistance); also Lur’e (1968, pp. 569–571).

8.8 CANONICAL TRANSFORMATIONS (CT)

We have already seen (ex. 3.5.11) that a key advantage of the Lagrangean-type

equations, say

Ek � EkðLÞ � ð@L=@ _qqkÞ:� @L=@qk ¼ Qk; ð8:8:1Þ
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over those of Newton–Euler, is their form invariance under the group of frame-of-

reference transformations, or point transformations, defined by

G: qk ¼ qkðt; qk 0 Þ $ qk 0 ¼ qk 0 ðt; qkÞ ðk; k 0 ¼ 1; . . . ; nÞ; ð8:8:2Þ

qkð. . .Þ: twice diGerentiable; and J � j@q=@q 0j 6¼ 0; ð8:8:2aÞ
that is, under G,

Ek ! Ek 0 ðL 0Þ � ð@L 0=@ _qqk 0 Þ:� @L 0=@qk 0 ¼ Qk 0 ; ð8:8:3Þ
where

L! L½t; qðt; q 0Þ; _qqðt; q; _qq 0Þ� � L 0ðt; q 0; _qq 0Þ ¼ L 0; ð8:8:3aÞ

Ek 0 ¼
X
ð@qk=@qk 0 ÞEk , Ek ¼

X
ð@qk 0=@qkÞEk 0 ; ð8:8:3bÞ

Qk 0 ¼
X
ð@qk=@qk 0 ÞQk , Qk ¼

X
ð@qk 0=@qkÞQk 0 : ð8:8:3cÞ

When it comes to Hamiltonian type of equations, since they are mathematically

equivalent to the Lagrangean ones, we expect similar form invariance under G.

However, if we define

pk 0 � @L 0=@ _qqk 0 ¼
X
ð@L=@ _qqkÞð@ _qqk=@ _qqk 0 Þ ¼

X
ð@L=@ _qqkÞð@qk=@qk 0 Þ

¼
X
ð@ _qqk=@ _qqk 0 Þpk ¼

X
ð@qk=@qk 0 Þ pk

¼ pk 0 ðt; q 0; pÞ ¼ pk 0 ½t; q 0ðt; qÞ; p� ¼ pk 0 ðt; q; pÞ ð8:8:4Þ

(i.e., the new momenta depend on both the old momenta and the old coordinates and

time), and the Hamiltonian equations corresponding to (8.8.1)

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk þ Qk; ð8:8:5Þ
are transformed to

dqk 0=dt ¼ @H 0=@pk 0 ; dpk 0=dt ¼ �@H 0=@qk 0 þQk 0 ; ð8:8:6Þ
the new Hamiltonian H 0 ¼ H 0ðt; q 0; p 0Þ, unlike L ¼ L 0, may no longer equal the old
one H; that is, in general,

H 0 ¼ H 0ðt; q 0; p 0Þ 6¼ Hðt; q; pÞ ¼ H: ð8:8:6aÞ
Indeed, assuming (8.8.5) to hold, we have, successively,

H 0 �
X

pk 0 _qqk 0 � L 0

¼
X

pk 0 _qqk 0 � L ¼
X

pk 0 _qqk 0 �
X

pk _qqk �H
� �

¼
X X

ð@qk=@qk 0 Þ pk
� �

_qqk 0 �
X

pk _qqk �H
� �

¼
X X

ð@qk=@qk 0 Þ _qqk 0 � _qqk

� �
pk þH

¼ �
X
ð@qk=@tÞpk þH; ð8:8:7Þ
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that is, in general, H 0 defined as above, or equivalently by

L ¼ L 0:
X

pk 0 _qqk 0 �H 0 ¼
X

pk _qqk �H; ð8:8:7aÞ

does not equal H (recalling probs. 3.16.11 and 3.16.12); but it does if @qk=@t ¼ 0,

that is whenever (8.8.2) specializes to the geometrical (non–frame-of-reference trans-

formations)

qk ¼ qkðqk 0 Þ , qk 0 ¼ qk 0 ðqkÞ: ð8:8:7bÞ
Hence, in the Hamiltonian case, it is necessary to widen the meaning of invariance.

Specifically, and since here the independent variables are the q’s and p’s, we are

seeking the most general transformations in (the phase space of) these variables;
that is,

q ¼ qðt; q 0; p 0Þ , q 0 ¼ q 0ðt; q; pÞ; ð8:8:8aÞ
p ¼ pðt; q 0; p 0Þ , p 0 ¼ p 0ðt; q; pÞ ð8:8:8bÞ

[with nonvanishing Jacobian j@ðq 0; p 0Þ=@ðq; pÞj] that leave Hamilton’s equations

form invariant, as in (8.8.5). Such transformations are called canonical.

REMARK ON NOTATION

A number of authors denote our (qk 0 ; pk 0) as (Qk; Pk). Our notation was chosen to

avoid confusion with the holonomic components of Lagrangean impressed forces

and nonholonomic momenta, respectively (chap. 3); also, it is in line with the more

precise tensorial notations.

Problem 8.8.1 Show that under point transformations:

ðiÞ @H 0=@pk 0 � dqk 0=dt ¼
X
ð@pk=@pk 0 Þð@H=@pk � dqk=dtÞ ð¼ 0Þ; ðaÞ

ðiiÞ @H 0=@qk 0 þ dpk 0=dt ¼
X
ð@qk=@qk 0 Þð@H=@qk þ dpk=dtÞ ð¼ 0Þ: ðbÞ

Problem 8.8.2 Show that

@pk=@pk 0 ¼ @qk=@qk 0 ; @pk 0=@pk ¼ @qk 0=@qk: ðaÞ

Whence the Significance of Canonical Transformations (CT)

The reason that such transformations are important in theoretical mechanics is their

ability to transform an original set of Hamiltonian equations, in (unprimed) q’s and

p’s, into a simpler set of Hamiltonian equations in the new (primed) variables q 0’s
and p 0’s.

In particular, we are seeking transformations in which one or more (or even all)
of the coordinates are ignorable. In such q 0’s!  0’s (and with L 0=R 0=H 0 �
New Lagrangean=Routhian=Hamiltonian)

@L 0=@ i 0 ¼ @R 0=@ i 0 ¼ �@H 0=@ i 0 ¼ 0 ði 0 ¼ 1; . . . ;M � nÞ; ð8:8:9aÞ
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that is, these three mutually equal partial derivatives vanish simultaneously (which is

the definition of these coordinates, }8.2–8.4); and, as a result, assuming, as in }8.4 ff.,

that Qi 0 ¼ 0,

dCi 0=dt ¼ @L 0=@ i 0 ¼ �@H 0=@ i 0 ¼ 0 ) Ci 0 ¼ constant � Ci 0 ; ð8:8:9bÞ
) H 0 ¼ H 0ðt; q 0; p 0; CÞ; ð8:8:9cÞ

where the 2ðn�MÞ q 0’s and p 0’s are the remaining nonignorable coordinates and

momenta. {In order to benefit from the new ignorable coordinates [as in }8.4 and

}8.10 (Hamilton–Jacobi’s method)], a number of authors set Qk ¼ 0 from the outset.

Then, clearly, Qk 0 ¼ 0.}

Solving the Hamiltonian equations of such a system — that is,

dqp 0=dt ¼ @H 0=@pp 0 ; dpp 0=dt ¼ �@H 0=@qp 0 ðp 0 ¼M þ 1; . . . ; nÞ; ð8:8:9dÞ

we find

qp 0 ¼ qp 0 ðt; Ci 0 ; �p 0 ; �p 0 Þ; pp 0 ¼ pp 0 ðt;Ci 0 ; �p 0 ; �p 0 Þ;
ð�p 0 ; �p 0 Þ ¼ 2ðn�MÞ: constants of integration of ð8:8:9dÞ; ð8:8:9eÞ

then, substituting (8.8.9e) into (8.8.9c), we obtain

H 0 ¼ H 0ðt; Ci 0 ; �p 0 ; �p 0 Þ; ð8:8:9f Þ

and so, finally, we can calculate the  0’s from their equations of motion via a

quadrature:

d i 0=dt ¼ @H 0=@Ci 0 )  i 0 ¼
ð
ð@H 0=@Ci 0 Þ dtþ  i 0;o; ð8:8:9gÞ

where  i 0;o = integration constants, to be determined from the initial conditions, as

in the Routhian case (}8.3, 8.4). In particular, if all new coordinates are ignorable,

and @H 0=@t ¼ 0, then

H 0 ¼ H 0ðCk 0 ; �l 0 ; �m 0 Þ ) d i 0=dt ¼ @H 0=@Ci 0 ¼ constant � ci 0 ; etc: ð8:8:9hÞ

Hence, CT can simplify the equations of motion considerably, and supply integrals

of motion, as in (8.8.9b). Of course, other, noncanonical transformations may achieve

additional simplifications.

Definition of, and Conditions for, Canonicity;
Generating Function

In view of (8.8.3a) and the fact that a Lagrangean is defined only to within the

total derivative of an arbitrary function of the coordinates and time (ex. 3.5.13) —

that is, two such Lagrangeans yield the same equations of motion— we, following

(the eminent Norwegian mathematician) S. Lie, introduce the following

general definition: an (8.8.8a, b)-like transformation ðq; pÞ ! ðq 0; p 0Þ is called
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canonical (CT) if

L dt ¼ L 0 dtþ dF

)
X

pk dqk �H dt ¼
X

pk 0 dqk 0 �H 0 dtþ dF ; ð8:8:10Þ
)
X

pk dqk �
X

pk 0 dqk 0 ¼ ðH �H 0Þ dtþ dF ; ð8:8:11Þ

where F called (after Jacobi) the generating, or substitution, function of the transfor-

mation, is an arbitrary differentiable function of the coordinates, momenta, and

time; and H 0 satisfies the Hamiltonian equations in the new variables.

Equivalently, we may call an (8.8.8a, b)-like transformation canonical ifX
pk dqk �H dt

� �
�

X
pk 0 dqk 0 �H 0 dt

� �
¼

X
pk dqk �

X
pk 0 dqk 0

� �
� ðH �H 0Þ dt ¼ dF ði:e:; integrableÞ; ð8:8:11aÞ

even though
P

pk dqk: nonintegrable, and
P

pk 0 dqk 0 : nonintegrable. For

dt! �t ¼ 0 and dq, dp! �q; �p, the above yield the virtual form of a canonical

transformation: X
pk �qk �

X
pk 0 �qk 0 ¼ �F ; ð8:8:12Þ

a form that is, sometimes, taken as the primitive CT definition.

In view of its so-revealed importance, F deserves a detailed examination.

Although, due to (8.8.8a, b), F ¼ Fðt; q; pÞ ¼ Fðt; q 0; p 0Þ, yet it turns out that the

resulting equations are simpler if F (and the corresponding phase space points) is
expressed as a combination of old ðq; pÞ and new ðq 0; p 0Þ ‘‘coordinates’’; that is, if F
has one of the following four forms:

F1ðt; q; q 0Þ; F2ðt; q; p 0Þ; F3ðt; p; q 0Þ; F4ðt; p; p 0Þ; ð8:8:13Þ

depending on the problem at hand, and our choice of which 2nðþtimeÞ of these

4nðþtimeÞ variables to consider as independent. Let us examine the consequences

of these four choices:

(i) If F ¼ Fðt; q; q 0Þ � F1, then

dF1=dt ¼ @F1=@tþ
X
ð@F1=@qkÞðdqk=dtÞ þ

X
ð@F1=@qk 0 Þðdqk 0=dtÞ: ð8:8:14Þ

Substituting (8.8.14) in (8.8.10) and equating the coefficients of the 2nþ 1 indepen-

dent dq=dq 0=dt, we obtain

pk ¼ @F1=@qk; pk 0 ¼ �@F1=@qk 0 ; H 0 ¼ H þ @F1=@t; ð8:8:15Þ

from which it follows that if @F1=@t ¼ 0, then H ¼ H 0. Solving the first of (8.8.15)

for the q’s we obtain

qk 0 ¼ qk 0 ðt; q; pÞ; ð8:8:15aÞ

and substituting this into the second of (8.8.15) we get

pk 0 ¼ pk 0 ðt; q; pÞ: ð8:8:15bÞ
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Equations (8.8.15a, b) express the transformations among the old and new canonical

variables. These operations require that j@2F1=@qk @qk 0 j 6¼ 0, and so we will hence-

forth assume this to hold; and similarly for the corresponding Hessian determinants

of F2, F3, F4.

(ii) Let F ¼ Fðt; q; p 0Þ � F2. Here, as well as in the cases of F3, F4 (see below), we

cannot proceed as in the case of F1 [i.e., via (8.8.10, 11)], because we do not have _qqk
and _qqk 0 . However, in view of the second of (8.8.15), the transition from the ðt; q; q 0Þ
of F1 to the ðt; q; p 0Þ of F2 can be effected by the following Hamilton (Legendre)-

type of transformation (}8.2):

F2ð. . . p 0 . . .Þ ¼
X

pk 0 qk 0 � ½�F1ð. . . q 0 . . .Þ�; ð8:8:16Þ

where F2, pk 0 , qk 0 , �F1 play, respectively, the roles of Hamiltonian, momenta,

‘‘velocities,’’ and Lagrangean. Substituting from (8.8.16)

F1ðt; q; q 0Þ ¼ F2ðt; q; p 0Þ �
X

pk 0 qk 0 ð8:8:16aÞ

into (8.8.10), we findX
pk dqk �H dt

¼
X

pk 0 dqk 0 �H 0 dtþ dF1

¼
X

pk 0 dqk 0 �H 0 dtþ dF2ðt; q; p 0Þ � d
X

pk 0 qk 0
� �

¼ �
X

qk 0 dpk 0 �H 0 dtþ dF2ðt; q; p 0Þ
¼ ð�H 0 þ @F2=@tÞ dtþ

X
ð@F2=@qkÞ dqk þ

X
ð@F2=@pk 0 � qk 0 Þ dqk 0 ;

and, comparing coefficients, we immediately conclude that

pk ¼ @F2=@qk; qk 0 ¼ @F2=@pk 0 ; H 0 ¼ H þ @F2=@t: ð8:8:17Þ

To obtain the old/new variable transformation equations, we solve the first of

(8.8.17) for the p 0, thus obtaining

pk 0 ¼ pk 0 ðt; q; pÞ; ð8:8:17aÞ

and then substitute the result in the second of (8.8.17), thus getting

qk 0 ¼ qk 0 ðt; q; pÞ: ð8:8:17bÞ

(iii) Let F ¼ Fðt; p; q 0Þ � F3. In view of the first of (8.8.15), or �pk ¼ @ð�F1Þ=@qk,
the transition from the (t; q; q 0) of F1 to the (t; p; q 0) of F3 can be effected by the

following Hamilton-type transformation:

F3ð. . .� p . . .Þ ¼
X
ð�pkÞðqkÞ � ½�F1ð. . . q . . .Þ�; ð8:8:18Þ

where F3, �pk, qk;�F1 play, respectively, the roles of Hamiltonian, momenta,

‘‘velocities,’’ and Lagrangean. Substituting from (8.8.18)

F1ðt; q; q 0Þ ¼ F3ðt; p; q 0Þ þ
X

pkqk ð8:8:18aÞ

1166 CHAPTER 8: INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS



into (8.8.10), we findX
pk dqk �H dt ¼

X
pk 0 dqk 0 �H 0 dtþ dF1

¼
X

pk 0 dqk 0 �H 0 dtþ dF3ðt; p; q 0Þ þ d
X

pkqk

� �
;

or

�
X

qk dpk �H dt ¼
X

pk 0 dqk 0 �H 0 dtþ dF3ðt; p; q 0Þ;

or, expanding dF3 and collecting dt=dp=dp 0 terms,

ð�H 0 þH þ @F3=@tÞ dtþ
X
ð@F3=@pk þ qkÞ dpk þ

X
ð@F3=@qk 0 þ pk 0 Þ dqk 0 ¼ 0;

and setting the differential coefficients equal to zero, we immediately obtain

qk ¼ �@F3=@pk; pk 0 ¼ �@F3=@qk 0 ; H 0 ¼ H þ @F3=@t: ð8:8:19Þ
To obtain the old/new variable transformation equations, we solve the first of

(8.8.19) for the q 0, thus obtaining

qk 0 ¼ qk 0 ðt; q; pÞ; ð8:8:19aÞ
and then substitute the results in the second of (8.8.19), thus getting

pk 0 ¼ pk 0 ðt; q; pÞ: ð8:8:19bÞ
(iv) Finally, let F ¼ Fðt; p; p 0Þ � F4. By repeating the above arguments twice, we

can show that the transition from the ðt; q; q 0Þ of F1 to the ðt; p; p 0) of F4 can be

effected by the following double Hamilton-type transformation:

F4ð. . .� p; p 0 . . .Þ ¼
X
ð�pkÞðqkÞ þ

X
pk 0qk 0 � ½�F1ð. . . q; q 0 . . .Þ�; ð8:8:20Þ

where F4;�pk; pk 0 ; qk; qk 0 ;�F1 play, respectively, the roles of Hamiltonian, old

momenta, new momenta, old ‘‘velocities,’’ new ‘‘velocities,’’ and Lagrangean.

Repeating similar steps as in the previous cases [i.e., from (8.8.20) to (8.8.10) etc.]

and setting the coefficients of dt=dp=dp 0 equal to zero, we find

qk ¼ �@F4=@pk; qk 0 ¼ @F4=@pk 0 ; H 0 ¼ H þ @F4=@t: ð8:8:21Þ
Finally, to obtain the old/new variable transformation equations, we solve the first of

(8.8.21) for the p 0’s, and thus acquire

pk 0 ¼ pk 0 ðt; q; pÞ; ð8:8:21aÞ
and then substitute (8.8.21a) into the second of (8.8.21), thus getting

qk 0 ¼ qk 0 ðt; q; pÞ: ð8:8:21bÞ
All these interrelated formulae are summarized, for convenience, in table 8.1.

In Sum

A canonical transformation can be created from a generating function. As such, we

can choose any differentiable function of half of the old variables (either the qk’s or
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the pk’s) and half of the new (either the qk 0 ’s or the pk 0 ’s), and time; a total of 2nþ 1

independent variables. Once a generating function has been selected, table 8.1 gives

the transformation relations between the (remaining half of the chosen) old and new

variables.

REMARKS

(i) In all four cases, we have H 0 �H ¼ @F=@t; and therefore if @F=@t ¼ 0, the

new Hamiltonian results by simply substituting, in the old Hamiltonian, the old

variables in terms of the new variables:

H ¼ Hðt; q; pÞ ¼ H½t; qðt; q 0; p 0Þ; pðt; q 0; p 0Þ� ¼ H 0ðt; q 0; p 0Þ ¼ H 0:

(ii) From the above derivations and results we are gradually led to the realization

that, in the rarified atmosphere of Hamiltonian mechanics, the terms coordinate (q)
and momentum (p) have lost a lot of their original physical meaning; as (8.8.8a, b)

show, each q 0 and each p 0 may relate to all the q’s and the p’s. In view of this blurring

of the nomenclature (in both Hamiltonian mechanics and, especially, in its famous

heir quantum mechanics) we call the q’s and p’s canonically conjugate variables. For

example, the CT: qk ¼ �pk 0 and pk ¼ qk 0 , with generating functions

F ¼ q1q1 0 þ � � � þ qnqn 0 ¼ F1 (or F ¼ p1p1 0 þ � � � þ pnpn 0 ¼ F4Þ swaps coordinates

and momenta, to within a sign. (Strictly speaking, these should have been written

as qk ¼ �
P

�kk 0pk and pk ¼
P

�kk 0qk 0 , respectively.)

Example 8.8.1 Let us show that all point transformations (8.8.2)

qk ¼ qkðt; qk 0 Þ , qk 0 ¼ qk 0 ðt; qkÞ ðk; k 0 ¼ 1; . . . ; nÞ ðaÞ

are canonical.
Choosing as generating function

F ¼
X

qk 0pk 0 ¼
X

qk 0 ðt; qÞpk 0 ¼ Fðt; q; p 0Þ � F2; ðbÞ
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Table 8.1 Types of Generating Functions

F ¼ F1ðt; q;q 0Þ: pk ¼ @F1=@qk, pk 0 ¼ �@F1=@qk 0 ; H 0 ¼ H þ @F1=@t
F ¼ F2ðt; q;p 0Þ: pk ¼ @F2=@qk, qk 0 ¼ @F2=@pk 0 ; H 0 ¼ H þ @F2=@t
F ¼ F3ðt; p;q 0Þ: qk ¼ �@F3=@pk, pk 0 ¼ �@F3=@qk 0 ; H 0 ¼ H þ @F3=@t
F ¼ F4ðt; p;p 0Þ: qk ¼ �@F4=@pk, qk 0 ¼ @F4=@pk 0 ; H 0 ¼ H þ @F4=@t

F2 ¼ F1 þ
X

pk 0qk 0 ;

F3 ¼ F1 �
X

pkqk ,

F4 ¼ F1 þ
X

pk 0qk 0 �
X

pkqk ¼ F2 �
X

pkqk ¼ F3 þ
X

pk 0qk 0



and, therefore, applying (8.8.17), we obtain

pk ¼ @F2=@qk ¼
X
ð@qk 0=@qkÞpk 0 ½i:e:; ð8:8:4Þ with k and k 0 swapped�; ðcÞ

qk 0 ¼ @F2=@pk 0 ¼ qk 0 ðt; qÞ ½i:e:; ð8:8:2Þ�; ðdÞ
H 0 ¼ H þ @F2=@t ¼ H þ

X
ð@qk 0=@tÞpk 0

¼ �
X
ð@qk=@tÞpk þH ½i:e:; ð8:8:7Þ; prove the last step�; Q:E:D: ðeÞ

For example, if F2 ¼
P

qk 0 ðqÞpk 0 þ f ðqÞ ¼ linear in the p 0, the above reduce to the

general point transformation

pk ¼
X
ð@qk 0=@qkÞpk 0 þ @f =@qk; qk 0 ¼ qk 0 ðqÞ: ðfÞ

Similarly, choosing

F ¼ �
X

pk qkðt; q 0Þ ¼ Fðt; p; q 0Þ � F3; ðgÞ

and, therefore, applying (8.8.19), we obtain

qk ¼ �@F3=@pk ¼ qkðt; q 0Þ; ðhÞ
pk 0 ¼ �@F3=@qk 0 ¼

X
ð@qk=@qk 0 Þpk; ðiÞ

H 0 ¼ H þ @F3=@t ¼ H �
X
ð@qk=@tÞpk; Q:E:D: ðjÞ

In particular, if, in (g), qkðt; q 0Þ ¼ qk 0 , we obtain the identity transformation.

Example 8.8.2 Let us check the following transformations for canonicity:

ðiÞ q 0 ¼ �p; p 0 ¼ q: ðaÞ

We have, successively,

p �q� p 0 �q 0 ¼ p �q� ðqÞð��pÞ ¼ �ðp qÞ ¼ �F ; ðbÞ

and, therefore, by (8.8.12), (a) is canonical. Similarly, we can show that

qk 0 ¼ �pk; pk 0 ¼ qk and qk 0 ¼ pk; pk 0 ¼ �qk; ðcÞ

are canonical. This example makes clear that the Hamiltonian form of the equations

of motion is unaffected even if we take as new coordinates the old momenta, and vice
versa!

ðiiÞ q 0 ¼ ðqÞ1=2 cosð2pÞ; p 0 ¼ ðqÞ1=2 sinð2pÞ ðdue to H: Poincar�eeÞ: ðdÞ

Inverting (d), we find

q ¼ ðq 0Þ2 þ ðp 0Þ2; tanð2pÞ ¼ p 0=q 0; ðeÞ
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and, therefore, successively,

p �q� p 0 �q 0 ¼ p �q

� ½ðqÞ1=2 sinð2pÞ��½cosð2pÞ=2ðqÞ1=2� �q � ½2ðqÞ1=2 sinð2pÞ� �p�
¼ ½p� ðsinð2pÞ cosð2pÞ=2Þ� �qþ ½2q sin2ð2pÞ� �p
¼ ��q½p� ðsinð4pÞ=4Þ�� ¼ �F ; ðfÞ

that is, by (8.8.12), (d) is canonical.

ðiiiÞ q 0 ¼ ln½sinðpÞ=q�; p 0 ¼ q cotðpÞ: ðgÞ
We have, successively,

q 0 ¼ �lnðqÞ þ ln½sinðpÞ� ) �q 0 ¼ �ð�q=qÞ þ ½cotðpÞ� �p; ðhÞ
and, therefore,

p �q� p 0 �q 0 ¼ p �q� ½q cotðpÞ��� ð�q=qÞ þ ½cotðpÞ� �p�
¼ ½pþ cotðpÞ� �q� ½q cot2ðpÞ� �p � Q �qþ P �p: ðiÞ

The necessary and sufficient conditions for the integrability (i.e., canonicity) of (i) are

@Q=@p ¼ @P=@q:
@=@p½pþ cotðpÞ� ¼ 1� ½1= sin2ðpÞ� ¼ �cot2ðpÞ;
@=@q½�q cot2ðpÞ� ¼ �cot2ðpÞ;

that is, (g) is indeed canonical.

Example 8.8.3 Let us determine the values of � and � so that the transformation

q 0 ¼ q� cosð�pÞ; p 0 ¼ q� sinð�pÞ ðaÞ
is canonical. From the first of them, we obtain

�q 0 ¼ ½�� q� sinð�pÞ� �pþ ½� q��1 cosð�pÞ� �q; ðbÞ
and, therefore,

p �q� p 0 �q 0 ¼ �p� ð1=2Þ� q2��1 sinð2�pÞ� �qþ �� q2� sin2ð�pÞ� �p � Q �qþ P �p:

Again, for integrability, we must have @Q=@p ¼ @P=@q:
@=@p

�
p� ð1=2Þ� q2��1 sinð2�pÞ� ¼ @=@q�� q2� sin2ð�pÞ�; ðcÞ

from which we obtain the condition

�� q2��1 ¼ 1; ðdÞ
and since this equation must hold for all values of q, we are led to the system

2�� 1 ¼ 0 and �� ¼ 1; ðeÞ
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whose roots are � ¼ 1=2 and � ¼ 2. Hence, (a) becomes

q 0 ¼ ðqÞ1=2 cosð2pÞ; p 0 ¼ ðqÞ1=2 sinð2pÞ; ðfÞ
that is, the Poincaré transformation of the preceding example.

Example 8.8.4 Canonicity via the Central Equation:

�T þ � 0W ¼
X

pk �qk

� �:
)

X
pk �qk

� �:
� �T ¼ � 0W : ðaÞ

If the impressed forces are wholly potential forces — that is, � 0W ¼
��V ) �ðT � VÞ ¼ �L— then, in view of the fundamental definition (8.8.12), we

can transform (a) to X
pk 0 �qk 0

� �:
� ½�L� ð�FÞ:� ¼ 0: ðbÞ

But since ð�FÞ: ¼ �ð _FFÞ, this new central equation has the old form (a) if we define as
new Lagrangean:

L 0 ¼ L� dF=dt; L 0 ¼ L 0ðq 0; p 0Þ: ðcÞ
Then, standard transformations, as in the old variables (}8.2) lead us to the new

Hamiltonian equations:

dqk 0=dt ¼ @H 0=@pk 0 ; dpk 0=dt ¼ � @H 0=@qk 0 ; ðdÞ
where

H 0 �
X

pk 0 _qqk 0 � L 0 ½invoking ð8:8:12Þ�

¼
X

pk _qqk � ðdF=dt� @F=@tÞ
h i

� ðL� dF=dtÞ

¼
X

pk _qqk � L
� �

þ @F=@t ¼ H þ @F=@t; ðeÞ

as before. Hence, the fundamental result: under a canonical transformation, the cano-
nical equations preserve their form.

Example 8.8.5 Canonical Transformation: The Harmonic Oscillator. Let us con-

sider a linear harmonic oscillator of mass m and stiffness constant k, and, therefore,

Lagrangean: L ¼ ð1=2Þ½mð _qqÞ2 � kq2� ) p � @L=@ _qq ¼ m _qq ) _qq ¼ p=m; ðaÞ
Hamiltonian: H ¼ p _qq� L ¼ � � � ¼ p2=2mþ kq2=2; ðbÞ
and, therefore, Hamiltonian equations of (free and undamped) motion:

_qq ¼ @H=@p ¼ p=m; _pp ¼ �@H=@q ¼ �kq; ðcÞ
whose solution is well known [eliminating p between (c) we obtain the Lagrangean

equation m€qqþ kq ¼ 0�: Instead, let us here consider the canonical transformation

with generating function

F ¼ F1ðq; q 0Þ ¼ c q2 cotðq 0Þ ðc ¼ a constantÞ; ðdÞ
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and, therefore, by (8.8.15), transformation equations

p ¼ @F1=@q ¼ 2c q cotðq 0Þ; p 0 ¼ �@F1=@q
0 ¼ c q2 cosec2ðq 0Þ;

H 0 ¼ H þ @F1=@t ¼ H; ðeÞ
or, solving them for the old variables in terms of the new variables,

p ¼ ð4c p 0Þ1=2 cosðq 0Þ; q ¼ ðp 0=cÞ1=2 sinðq 0Þ; ðfÞ
H 0 ¼ ð1=2Þðp2=mþ kq2Þ ¼ � � � ¼ ð1=2Þ�ð4cp 0=mÞ cos2ðq 0Þ þ ðkp 0=cÞ sin2ðq 0Þ�
¼ ðkp 0=2cÞ� sin2ðq 0Þ þ ð4c2=mkÞ cos2ðq 0Þ� ½choosing 4c2 ¼ mk�
¼ kp 0=2c ¼ ðk=mÞ1=2p 0 � ! p 0 ½!2 � k=m: oscillation frequency�: ðgÞ

Hence, the Hamiltonian equations in these new variables are

dp 0=dt ¼ �@H 0=@q 0 ¼ 0 ) p 0 ¼ constant � c 0 ðq 0 is ignorableÞ; ðhÞ
dq 0=dt ¼ þ@H 0=@p 0 ¼ ! ) q 0 ¼ ! tþ c 00 ðc 00: integration constantÞ: ðiÞ
Substituting (h, i) back in (f ) we, naturally, obtain the (well-known) old variable

solution.

Geometrical Interpretation of these Solutions in Phase Space

(i) in the old variables (q; p) the representative point describes an ellipse whose

dimensions and sense of traverse are determined by the system constants and initial

conditions ð) energy � E ¼ H ¼ ! p 0 ¼ constant; fig. 8.7).

(ii) In the new variables ðq 0; p 0) the corresponding system point moves on the

straight line

p 0 ¼ E=! ¼ constant: ðjÞ
The ellipse points (1; 2; 3; 4) are mapped into the straight line points (1 0; 2 0; 3 0; 4 0).
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This procedure — that is, the search for new canonical variables in which one or

more (or all!) of the coordinates are ignorable— is systematized in }8.10. These

investigations show that every holonomic, scleronomic, and potential system with n
DOF can be transformed by a canonical transformation into one with Hamiltonian
2H ¼P ðpk 0 Þ2; and, therefore, equations of motion: pk 0 ¼ constant � Ck 0 ,
qk 0 ¼ Ck 0 tþ constant; a fundamental result that is behind such important concepts

as action–angle variables and complete separability/integrability (}8.14).

Example 8.8.6
(i) Generalized Canonical Transformations (GCT) are CT that, in addition to the

fundamental definition (8.8.12):

�F ¼
X

pk �qk �
X

pk 0 �qk 0 ; ðaÞ

also satisfy, say, holonomic constraints like

CDðq; q 0Þ ¼ 0 ½D ¼ 1; . . . ;m: rank of corresponding Jacobian ¼ mð� nÞ� ðbÞ

or, in virtual form,

�CD ¼
X
ð@CD=@qkÞ �qk þ

X
ð@CD=@qk 0 Þ �qk 0 ¼ 0: ðcÞ

Applying the Lagrangean multiplier method, we readily see that, in this case,

ðF ! F1Þ, eqs. (8.8.15) must now be replaced by

which, along with (b), constitute a system of 2nþm equations for the 2nþm q’s,
p’s, 
’s (multipliers), in terms of the q’s, p’s.

(ii) For the point transformation, for which [recalling (8.8.2) and (8.8.4)]

qk ¼ qkðqk 0 Þ; pk 0 ¼
X
ð@qk=@qk 0 Þpk; ðeÞ

the definition (8.8.12), (a) givesX
pk �qk �

X
pk 0 �qk 0

¼
X

pk
X
ð@qk=@qk 0 Þ �qk 0

� �
�
X

pk 0 �qk 0

¼
X X

ð@qk=@qk 0 Þpk � pk 0
h i

�qk 0 ¼ 0; ðfÞ

that is, for such a transformation, F ! F1ðq; q 0Þ � 0 (however, F ! F2, F3; . . . 6¼ 0).

Such transformations can be viewed as the following choices of the earlier GCT case

(b):

CD � qD � �Dðqk 0 Þ ¼ 0; 
D ¼ pD: ðgÞ

For additional related results, see, for example, Whittaker (1937, pp. 294–296),
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Hamel (1949, pp. 292, 666).



Example 8.8.7 Time Transformation. The general transformation ðt; q; pÞ !
ðt 0; q 0; p 0Þ:

qk ¼ qkðt 0; q 0; p 0Þ; pk ¼ pkðt 0; q 0; p 0Þ; t ¼ tðt 0; q 0; p 0Þ ðaÞ
is called canonical if:

(i) Jacobian: @ðt; q; pÞ=@ðt 0; q 0; p 0Þ 6¼ 0, and

(ii) There exist three functions Hðt; q; pÞ, H 0ðt 0; q 0; p 0Þ, F 0ðt; q; pÞ, such thatX
pk dqk �H dt ¼

X
pk 0 dqk 0 �H 0 dt 0 þ dF 0; ðbÞ

identically, upon utilization of (a) in it.

It is not hard to show that such a generalized CT also leaves the form of the

Hamiltonian equations unaltered. Here, we have treated only the special case

t 0 ¼ t; for a fuller discussion, see books on partial differential equations, for example,

Carathéodory (1935).

Problem 8.8.3 Point Transformation: Polar Cylindrical Coordinates. With the help

of (8.8.4), show that under a (point) transformation from rectangular Cartesian

coordinates qk: ðx; y; zÞ to polar cylindrical ones qk 0 : ðr; �; zÞ, the corresponding

momenta transform from the rectangular Cartesian pk: px;y;z to the following

polar pk 0 : pr;�;z:

pr ¼ ½x=ðx2 þ y2Þ1=2�px þ ½y=ðx2 þ y2Þ1=2�py; ðaÞ
p� ¼ ð�yÞpx þ ðxÞpy; ðbÞ
pz ¼ pz: ðcÞ

Problem 8.8.4 Show that the transformation

q ¼ p 0 sinðq 0Þ; p ¼ p 0 cosðq 0Þ ðaÞ
is not canonical, but that the following, is:

q ¼ ð2p 0Þ1=2 sinðq 0Þ; p ¼ ð2p 0Þ1=2 cosðq 0Þ: ðbÞ

Problem 8.8.5 Show that the following generating functions produce the canonical

transformations indicated:

ðiÞ F ¼
X

qkqk 0 : pk ¼ qk 0 ; pk 0 ¼ �qk; ðaÞ
ðiiÞ F ¼

X
qkpk 0 : pk ¼ pk 0 ; qk 0 ¼ qk: ðbÞ

[This identity transformation can also be achieved with F ¼ �P pkqk 0 :�
ðiiiÞ F ¼

X
pkqk 0 : qk ¼ �qk 0 ; pk 0 ¼ �pk: ðcÞ
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[This spatial inversion, or reflection, transformation can also be achieved with

F ¼ �P qkpk 0 :]

ðivÞ F ¼
X

pkpk 0 : qk ¼ �pk 0 ; qk 0 ¼ pk: ðdÞ

HINTS

(i) All these F ’s have the form
P

xkyk 0 , where xk, yk 0 are any of the four possible

pairs of ðq; p; q 0; p 0Þ. (ii) The first and fourth cases coincide. (iii) In all cases, H 0 ¼ H.

Problem 8.8.6 We have already seen (ex. 3.5.11) that the two Lagrangeans

L and L 0 ¼ Lþ df ðt; qÞ=dt ðaÞ
[where f ðt; qÞ ¼ arbitrary differentiable function] produce the same Lagrangean

equations of motion, that is, EkðLÞ ¼ EkðL 0Þ. Show that under such a ‘‘gauge’’

transformation, the corresponding Hamiltonians

H �
X
ð@L=@ _qqkÞ _qqk � L and H 0 �

X
ð@L 0=@ _qqkÞ _qqk � L 0 ðbÞ

are related by

H 0 ¼ H � @f =@t: ðcÞ

Problem 8.8.7 (Butenin, 1971, pp. 149–150). Consider a particle P of mass m
whose kinetic and potential energies, in polar cylindrical coordinates

r; �; z ¼ q1;2;3, are, respectively,

2T ¼ m½ð _qq1Þ2 þ q1
2ð _qq2Þ2 þ ð _qq3Þ2�; V ¼ mgq3 ðg ¼ gravitational constantÞ: ðaÞ

Show that:

(i) Its Hamiltonian in these variables (i.e., q’s, plus corresponding momenta p’s) is

H ¼ Hðq; pÞ ¼ ð1=2mÞ�p1
2 þ ð1=q1

2Þp2
2 þ p3

2
�þmgq3: ðbÞ

(ii) Under a canonical transformation with generating function

F ¼ p1 0 q1 cosðq2Þ þ p2 0 q1 sinðq2Þ þ p3 0 q3 ¼ Fðq; p 0Þ � F2; ðcÞ
the new Hamiltonian H 0ð¼ H) is

H 0 ¼ H 0ðq 0; p 0Þ ¼ ð1=2mÞ�ðp1 0 Þ2 þ ðp2 0 Þ2 þ ðp3 0 Þ2
�þmgq3 0 : ðdÞ

Interpret the q’s and p’s geometrically.

Problem 8.8.8 We have already seen that the transformation

qk 0 ¼ qk 0 ðq; pÞ; pk 0 ¼ pk 0 ðq; pÞ ðaÞ
is canonical if, and only if, the differential form

�F1 ¼
X

pk �qk �
X

pk 0 �qk 0 ; ðbÞ
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after replacement of pk and �qk from (the inverse of ) (a), is exact in the q 0 and p 0; or

similarly, if, after replacement of p 0 and �q 0 from (a), it is exact in the q, p.
Show that, instead of �F1, we may choose — to test for exactness — any of the

following three interrelated differential forms:

�F2 ¼
X

pk �qk þ
X

qk 0 �pk 0 ¼ �F1 þ �
X

pk 0qk 0
� �h i

; ðcÞ

�F3 ¼ �
X

qk �pk �
X

pk 0 �qk 0 ¼ �F1 � �
X

pkqk

� �h i
; ðdÞ

�F4 ¼ �
X

qk �pk þ
X

qk 0 �pk 0 ¼ �F1 � �
X

pkqk �
X

pk 0qk 0
� �h i

; ðeÞ

that is, (a) is canonical if, and only if, any one of (b–e) is exact in the new (old)

variables after replacement of the old (new) variables and their variations, from (a),

in terms of the new (old) variables and their variations.

HINT

Recall table 8.1.

8.9 CANONICITY CONDITIONS VIA POISSON’S BRACKETS (PB)

Here, we show that these brackets, already introduced in }8.7 in connection with the

method of variations of constants, appear naturally in the formulation of alternative

conditions for canonicity. Let us, therefore, summarize their relevant theory.

Poisson Brackets; Theorem of Poisson–Jacobi

Let f ¼ f ðt; q; pÞ be an arbitrary differentiable dynamical quantity. Then, we have,

successively,

df =dt ¼ @f =@tþ
X �ð@f =@qkÞðdqk=dtÞ þ ð@f =@pkÞðdpk=dtÞ�

½invoking Hamilton’s equations�
¼ @f =@tþ

X �ð@f =@qkÞð@H=@pkÞ þ ð@f =@pkÞð�@H=@qk þ QkÞ
�

¼ @f =@tþ ðH; f Þ þ
X
ð@f =@pkÞQk; ð8:9:1Þ

where

ðH; f Þ �
X �ð@H=@pkÞð@f =@qkÞ � ð@H=@qkÞð@f =@pkÞ�:

Poisson bracket of H and f : ð8:9:2Þ
Hence, for f to be an integral of the motion (i.e., df =dt ¼ 0), we must have

@f =@tþ
X
ð@f =@pkÞQk þ ðH; f Þ ¼ 0;

or, assuming that f ¼ f ðq; pÞ and Qk ¼ 0,

ðH; f Þ ¼ 0; ð8:9:3Þ
that is, its PB with the Hamiltonian of its variables must be zero (in this case, df =dt
can be expressed without explicit reference to time).
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The PB of any two variables, f and g, defined in complete analogy to (8.9.2) by

ð f ; gÞ �
X �ð@f =@pkÞð@g=@qkÞ � ð@f =@qkÞð@g=@pkÞ�

�
X �

@ð f ; gÞ=@ðpk; qkÞ
�
; ð8:9:4Þ

has the following, easily verifiable, properties:

� ð f ; gÞ ¼ �ðg; f Þ ¼ ð�g; f Þ ðantisymmetryÞ; (8.9.5a)

) ð f ; f Þ ¼ 0; (8.9.5b)

� ð f ; cÞ ¼ 0 ðc ¼ a constantÞ; (8.9.5c)

� ð f1 þ f2; gÞ ¼ ð f1; gÞ þ ð f2; gÞ ðdistributivityÞ; (8.9.5d)

� ð f1 f2; gÞ ¼ f1ð f2; gÞ þ f2ð f1; gÞ (8.9.5e)

) ðc f ; gÞ ¼ cð f ; gÞ ðc ¼ a constantÞ;
) if f ¼

X
ck fk; then ð f ; gÞ ¼

X
ckð fk; gÞ ðck ¼ constantsÞ;

� @=@tð f ; gÞ ¼ ð@f =@t; gÞ þ ð f ; @g=@tÞ ð‘‘Leibniz rule’’Þ: (8.9.5f)

½Actually; @=@xð f ; gÞ ¼ ð@f =@x; gÞ þ ð f ; @g=@xÞ; x ¼ any variable:� (8.9.5g)

REMARKS ON NOTATION

(i) Unfortunately, here too, no uniformity of notation for these brackets exists. A

number of famous authors, such as (alphabetically): Appell, Gantmacher, Hagihara,

Lanczos, Lur’e, Synge, Whittaker, et al. define PB as the opposite of ours, that is, as

ð f ; gÞ �
X �ð@f =@qkÞð@g=@pkÞ � ð@f =@pkÞð@g=@qkÞ�: ð8:9:6Þ

Our choice (8.9.4) follows the practices of such (equally famous) authors as: S. Flügge,

Hamel, Landau/Lifshitz, Lindsay/Margenau, Prange, Schaefer/Päsler, Routh,

Scheck, Spiegel, Tabor, et al., including Poisson himself (1809)! Therefore, a certain

caution should be exercised when comparing various references.

(ii) Also, certain authors (especially those in quantum mechanics; e.g., Dirac)

denote our Lagrangean brackets, [. . .], by f. . .g; and our Poisson brackets, (. . .),
by ½. . .�.

With the help of the above properties, we can easily prove the following useful

theorems (by taking as f =g one of the coordinates/momenta):

� ð f ; qkÞ ¼ @f =@pk; (8.9.7a)

� ð f ; pkÞ ¼ �@f =@qk; (8.9.7b)

� ðqk; qlÞ ¼ 0; (8.9.7c)

� ðpk; plÞ ¼ 0; (8.9.7d)

� ðpk; qlÞ ¼ �kl ð¼ Kronecker deltaÞ: (8.9.7e)

The last three types of brackets are called fundamental, or basic, PB.
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Identity of Poisson–Jacobi

Below we prove that, for any three variables f , g, h (at least twice continuously

differentiable), the following important identity holds:	
f ; ðg; hÞ
þ 	g; ðh; f Þ
þ 	h; ð f ; gÞ
 ¼ 0; ð8:9:8aÞ

or, equivalently [invoking (8.9.5a)],	ð f ; gÞ; h
þ 	ðg; hÞ; f 
þ 	ðh; f Þ; g
 ¼ 0: ð8:9:8bÞ

(i) First Proof

Using the earlier definitions, we have, successively (with k; l ¼ 1; . . . ; n),	ð f ; gÞ; h
 ¼X �ð@ð f ; gÞ=@pkÞð@h=@qkÞ � ð@ð f ; gÞ=@qkÞð@h=@pkÞ�
¼
XX �

@=@pk
�ð@f =@plÞð@g=@qlÞ � ð@f =@qlÞð@g=@plÞ�ð@h=@qkÞ

� @=@qk½ð@f =@plÞð@g=@qlÞ � ð@f =@qlÞð@g=@plÞ�ð@h=@pkÞ
�

¼
XX �ð@2f =@qk@qlÞð@g=@plÞð@h=@pkÞ þ ð@f =@qlÞð@2g=@qk@plÞð@h=@pkÞ

� ð@2f =@qk@plÞð@g=@qlÞð@h=@pkÞ � ð@f =@plÞð@2g=@qk@qlÞð@h=@pkÞ
� ð@2f =@pk@qlÞð@g=@plÞð@h=@qkÞ � ð@f =@qlÞð@2g=@pk@plÞð@h=@qkÞ
þ ð@2f =@pk@plÞð@g=@qlÞð@h=@qkÞ þ ð@f =@plÞð@2g=@pk@qlÞð@h=@qkÞ

�
;

ð8:9:8cÞ

and cyclically for the other 2� 8 terms of
	ðg; hÞ; f 
 and

	ðh; f Þ; g
. Then, it is not

hard to see that all 24 terms cancel in pairs. This is a straightforward proof, but since

it is long and visually tedious, we present below a shorter alternative.

(ii) Second Proof

We have, successively,	
f ; ðg; hÞ
� 	g; ð f ; hÞ

¼ f ;

X �ð@g=@pkÞð@h=@qkÞ � ð@g=@qkÞð@h=@pkÞ�� �
� g;

X �ð@f =@pkÞð@h=@qkÞ � ð@f =@qkÞð@h=@pkÞ�� �
½invoking properties ð8:9:5Þ and then regrouping terms�

¼
X �� ð@h=@pkÞ½ð@f =@qk; gÞ þ ð f ; @g=@qkÞ�
þ ð@h=@qkÞ½ð@f =@pk; gÞ þ ð f ; @g=@pkÞ�

�
þ
X �ð@g=@pkÞð f ; @h=@qkÞ � ð@g=@qkÞð f ; @h=@pkÞ

� ð@f =@pkÞðg; @h=@qkÞ þ ð@f =@qkÞðg; @h=@pkÞ
�
: ð8:9:8dÞ
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Now: (a) by (8.9.5g) the first sum transforms toX �� ð@h=@pkÞ @=@qkð f ; gÞ þ ð@h=@qkÞ @=@pkð f ; gÞ� ¼ �	h; ð f ; gÞ
;
while (b) the second sum can be shown (by direct expansion) to vanish. Therefore,	

f ; ðg; hÞ
� 	g; ð f ; hÞ
 ¼ �	h; ð f ; gÞ
;
or, rearranging, while using (8.9.5a, c, e),	

f ; ðg; hÞ
þ 	g; ðh; f Þ
þ 	h; ð f ; gÞ
 ¼ 0; Q:E:D: ð8:9:8eÞ
[For alternative, indirect proofs, see, for example, Appell (1953, pp. 445–447; and

references cited therein), Landau and Lifshitz (1960, pp. 136–137).]

The above Poisson–Jacobi identity allows us to prove the following fundamental

theorem.

Theorem of Poisson–Jacobi

If f and g are any two integrals of the motion, so is their PB; that is, if f ¼ c1 and

g ¼ c2, then ð f ; gÞ ¼ c3 ðc1;2;3 ¼ constantsÞ:
We distinguish two cases:

(i) @f =@t ¼ 0 and @g=@t ¼ 0. Then, by (8.9.1–3),

ð f ;HÞ ¼ 0; ðg;HÞ ¼ 0 ðidenticallyÞ; ð8:9:9aÞ
and, therefore, also	ð f ;HÞ; h
 ¼ 0;

	ðg;HÞ; f 
 ¼ 0 ðidenticallyÞ; ð8:9:9bÞ
and substituting the above in the Poisson–Jacobi identity (8.9.8b), with h! H, we

immediately obtain	ð f ; gÞ;H
 ¼ 0 ) ð f ; gÞ ¼ constant ½invoking ð8:9:5cÞ�; Q:E:D: ð8:9:9cÞ
(ii) @f =@t 6¼ 0 and @g=@t 6¼ 0. Then, by (8.9.1),

df =dt ¼ @f =@tþ ðH; f Þ � 0; dg=dt ¼ @g=@tþ ðH; gÞ � 0; ð8:9:9dÞ
and as a result the Poisson–Jacobi identity (8.9.8a), with h! H, yields, successively,

0 ¼ 	H; ð f ; gÞ
þ 	 f ; ðg;HÞ
þ 	g; ðH; f Þ

¼ 	H; ð f ; gÞ
þ ð f ; @g=@tÞ � ðg; @f =@tÞ
¼ 	H; ð f ; gÞ
þ ð f ; @g=@tÞ þ ð@f =@t; gÞ
¼ 	H; ð f ; gÞ
þ @=@tð f ; gÞ; ð8:9:9eÞ

that is, by (8.9.3), ð f ; gÞ is also an integral. This presents us with two possibilities: (a)

either ð f ; gÞ ¼ function of f ¼ c1 and g ¼ c2, and therefore does not constitute a

new integral; or (b) ð f ; gÞ ¼ new function, not depending on c1 and c2, and does

constitute a new, third, integral.

However, frequently, such new integrals are trivial; for example, using

f ; g ¼ constant, pk; pl ¼ constant, we simply obtain 0 ¼ constant. As MacMillan
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puts it: ‘‘Notwithstanding the fact that Poisson’s theorem gives an interesting rela-

tion among integrals, it cannot be said that it has led to integrals that were not

already known. As a matter of fact it has been singularly sterile’’ (1936, p. 383).

COROLLARY

Let @H=@t ¼ 0, then H ¼ c1 (energy integral). If f ðt; q; pÞ ¼ c2 is a second integral,

then, by the Poisson–Jacobi theorem, ð f ;HÞ ¼ c3 is also an integral. But, in this

case,

df =dt ¼ @f =@tþ ðH; f Þ ) dc2=dt ¼ @f =@t� c3 ¼ 0; ð8:9:9fÞ

that is, if f ¼ c2 is a time-containing integral, so is @f =@t ¼ c3; and, similarly,

@2f =@t2 ¼ c4, and so on; however, if @f =@t ¼ 0, then c3 ¼ 0 and ð f ;HÞ ¼ 0.

For group-theoretic aspects of this theorem (Lie) and its relation to the famous

Theorema Gravissimum of Jacobi (1842–1843, publ. 1866), see, for example, Hamel

(1949, pp. 297–299, 301–302); also Frank (1935, p. 61 ff.).

Poisson Brackets (PB) and Canonical Transformations (CT)

Here, with the help of PB, we (i) show that these brackets are invariant under CT,

and then (ii) obtain conditions for the transformation (8.8.8a,b) to be canonical
[alternative to (8.8.10–12)].

(i) Let us prove that

ð f ; gÞq; p ¼ ð f ; gÞq 0; p 0 ¼ � � � ; ð8:9:10Þ

where f and g keep their value but not necessarily their form in the various

canonical coordinates involved.

We begin by proving it for the fundamental PB (8.9.7e):

ðpk 0 ; ql 0 Þq; p ¼ ðpk 0 ; ql 0 Þq 0; p 0 ¼ � � � ¼ �k 0l 0 : ð8:9:10aÞ

Using the generating function F ¼ F1 ¼ F1ðt; q; q 0Þ and corresponding equations

(8.8.15), we readily find

@pk=@qk 0 ¼ @=@qk 0 ð@F1=@qkÞ ¼ @=@qkð@F1=@qk 0 Þ ¼ �@pk 0=@qk; ð8:9:10bÞ

and, similarly, using F2, F3, F4 and (8.8.17, 19, 21), we obtain

@qk=@qk 0 ¼ @pk 0=@pk; @qk=@pk 0 ¼ �@qk 0=@pk; @pk=@pk 0 ¼ @qk 0=@qk:
ð8:9:10cÞ

With the help of these results, we find

ðpk 0 ; ql 0 Þq; p �
X �ð@pk 0=@qkÞð@ql 0=@qkÞ � ð@pk 0=@qkÞð@ql 0=@pkÞ�

¼
X �ð@pk 0=@pkÞð@pk=@pl 0 Þ � ð@pk 0=@qkÞð�@qk=@pl 0 Þ�

¼ @pk 0=@pl 0 ¼ �k 0l 0 ; ð8:9:10dÞ
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and

ðpk 0 ; ql 0 Þq 0; p 0 �
X �ð@pk 0=@pr 0 Þð@ql 0=@qr 0 Þ � ð@pk 0=@qr 0 Þð@ql 0=@pr 0 Þ�

¼
X �ð�k 0r 0 Þð�l 0r 0 Þ � ð0Þð0Þ� ¼ �k 0l 0 ; Q:E:D: ð8:9:10eÞ

Similarly, we show that

ðqk 0 ; ql 0 Þq; p ¼ ðqk 0 ; ql 0 Þq 0; p 0 ¼ 0; ð8:9:10fÞ
ðpk 0 ; pl 0 Þq; p ¼ ðpk 0 ; pl 0 Þq 0; p 0 ¼ 0: ð8:9:10gÞ

Now to the demonstration of (8.9.10). We have, successively,

ð f ; gÞq 0; p 0 �
X �ð@f =@pr 0 Þð@g=@qr 0 Þ � ð@f =@qr 0 Þð@g=@pr 0 Þ�

¼
XX �ð@f =@pr 0 Þ�ð@g=@qrÞð@qr=@qr 0 Þ þ ð@g=@prÞð@pr=@qr 0 Þ�

� ð@f =@qr 0 Þ
�ð@g=@qrÞð@qr=@pr 0 Þ þ ð@g=@prÞð@pr=@qr 0 Þ��

¼
X �ð@g=@qrÞð f ; qrÞq 0; p 0 þ ð@g=@prÞð f ; prÞq 0; p 0�: ð8:9:10hÞ

Applying the above, first for f ! qr and g! f , and then for f ! qr and g! f ,
while invoking (8.9.10e–g), we get, respectively,

ðqr; f Þq 0; p 0 ¼
X �ð@f =@qlÞðqr; qlÞq 0; p 0 þ ð@f =@plÞðqr; plÞq 0; p 0�

¼
X �ð@f =@qlÞð0Þ þ ð@f =@plÞð��lrÞ� ¼ �ð@f =@prÞ; ð8:9:10iÞ

ðpr; f Þq 0; p 0 ¼
X �ð@f =@qlÞðpr; qlÞq 0; p 0 þ ð@f =@plÞðpr; plÞq 0; p 0�

¼
X �ð@f =@qlÞð�rlÞ þ ð@f =@plÞð0Þ� ¼ @f =@qr: ð8:9:10jÞ

Finally, substituting (8.9.10i, j) back in (8.9.10h), while invoking the antisymmetry of

PB, we find

ð f ; gÞq 0; p 0 ¼
X �ð@f =@prÞð@g=@qrÞ � ð@f =@qrÞð@g=@prÞ� � ð f ; gÞq; p Q:E:D:

ð8:9:10kÞ

[For an alternative derivation, see also Landau and Lifshitz (1960, p. 145); and ex.

8.9.1 below, with direct proof.]

In view of this fundamental theorem, the PB subscripts become unnecessary, and
will, henceforth, be omitted.

(ii) Let us now express the conditions for the canonicity of the transformations

(8.8.8a, b)

q 0 ¼ q 0ðt; q; pÞ; p 0 ¼ pðt; q; pÞ; ð8:9:11aÞ
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via PB. The fundamental relevant definition/requirement (8.8.12) yields, successively,X
pk �qk �

X
pk 0 �qk 0

¼
X

pk �qk �
X

pk 0
X �ð@qk 0=@qkÞ �qk þ ð@qk 0=@pkÞ �pk�n o

¼
X

pk �
X

pk 0 ð@qk 0=@qkÞ
h i

�qk �
X

pk 0 ð@qk 0=@pkÞ �pk
n o

¼
X �ð. . .Þk �qk þ ð. . .Þk �pk�: ð8:9:11bÞ

As is well-known (}2.3 ff.), for this differential expression to be an exact (virtual)

differential, the following three groups of necessary and sufficient conditions must

hold [identically, and for all values of their free (¼ unsummed) indices]:

ðaÞ �p0s: @=@pl �
X

pk 0 ð@qk 0=@pkÞ
h i

¼ @=@pk �
X

pk 0 ð@qk 0=@plÞ
h i

; ð8:9:11cÞ

or, carrying out the differentiations and recalling the earlier definitions of

Lagrangean brackets (8.7.13),X �ð@pk 0=@plÞð@qk 0=@pkÞ � ð@pk 0=@pkÞð@qk 0=@plÞ� � ½pl ; pk� ¼ 0; ð8:9:11dÞ

and

ðbÞ �q 0s: @=@ql pk �
X

pk 0 ð@qk 0=@qkÞ
h i

¼ @=@qk pl �
X

pk 0 ð@qk 0=@qlÞ
i
; ð8:9:11eÞ

h
or, carrying out the differentiations and noting that the q’s and p’s are mutually

independent,X �ð@pk 0=@qlÞð@qk 0=@qkÞ � ð@pk 0=@qkÞð@qk 0=@qlÞ� � ½ql ; qk� ¼ 0; ð8:9:11fÞ

and

ðcÞ �q0s and �p0s: @=@ql �
X

pk 0 ð@qk 0=@pkÞ
h i

¼ @=@pk pl �
X

pk 0 ð@qk 0=@qlÞ
h i

;

ð8:9:11gÞ
orX �ð@pk 0=@qlÞð@qk 0=@pkÞ � ð@pk 0=@pkÞð@qk 0=@qlÞ� ¼ ½ql ; pk� ¼ �ð@pl=@pkÞ ¼ ��kl

) ½pk; ql � ¼ �kl : ð8:9:11hÞ

Similarly, the exactness conditions ofX
pk �qk �

X
pk 0 �qk 0 ¼

X �ð. . .Þk 0 �qk 0 þ ð. . .Þk 0 �pk 0�; ð8:9:11iÞ

lead to

½pl 0 ; pk 0 � ¼ 0; ½ql 0 ; qk 0 � ¼ 0; ½pl 0 ; qk 0 � ¼ �l 0k 0 : ð8:9:11jÞ
Although these canonicity conditions are in terms of the Lagrangean brackets, yet

noting that in there the roles of q’s, p’s and q 0’s, p 0’s can be exchanged, and that [due
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to (8.9.10) and (8.7.25)] both Poisson and Lagrange brackets are canonically invariant,
we easily deduce the earlier PB conditions (8.9.10a, f, g):

ðpl 0 ; pk 0 Þ ¼ 0; ðql 0 ; qk 0 Þ ¼ 0; ðpl 0 ; qk 0 Þ ¼ �l 0k 0 : ð8:9:11kÞ

Equations (8.9.11j, k) have the following interesting geometrical interpretation. Let

us consider, for simplicity, a one-DOF system. Under the canonical transformation

ðq; pÞ ! ðq 0; p 0Þ, the region of allowable values of q and p— namely, R— is trans-

formed into a region R 0 for the corresponding values of q 0 and p 0. If all these

coordinates are assumed rectangular Cartesian, the areas of R and R 0 are, respec-

tively (for a fixed time, if the transformation is explicitly time-dependent),

AR � A ¼
ð ð

dq dp and AR 0 � A 0 ¼
ð ð

dq 0 dp 0: ð8:9:12aÞ

But, by well-known theorems of advanced (or vector) calculus, we have, successively,

A 0 ¼
ð ð

dq 0 dp 0 ¼
ð ð �

@ðq 0; p 0Þ=@ðq; pÞ� dq dp
¼
ð ð �ð@q 0=@qÞð@p 0=@pÞ � ð@q 0=@pÞð@p 0=@qÞ� dq dp

¼
ð ð
ðp 0; q 0Þq; p dq dp ¼

ð ð
ð1Þ dq dp ðsince �11 ¼ 1Þ

¼
ð ð
½p; q� dq dp ¼

ð ð
ð1Þ dq dp ¼ A; ð8:9:12bÞ

and, similarly,

A ¼
ð ð

dq dp ¼
ð ð �

@ðq; pÞ=@ðq 0; p 0Þ� dq 0 dp 0
¼
ð ð
ðp; qÞq 0; p 0 dq 0 dp 0 ¼

ð ð
ð1Þ dq 0 dp 0

¼
ð ð
½ p 0; q 0� dq 0 dp 0 ¼

ð ð
ð1Þ dq 0 dp 0 ¼ A 0: ð8:9:12cÞ

In words: canonical transformations are area-preserving, among their various repre-

sentations. Similarly, for the n-DOF case, but with areas replaced by volumes
(Liouville’s theorem); see also ‘‘Integral Invariants’’ (}8.12).

Example 8.9.1 Direct Proof of the Canonical Invariance of PB. Under a canonical

transformation ðq; pÞ ! ðq 0; p 0Þ, an arbitrary (differentiable) function f ¼ f ðq; pÞ
becomes another function of q 0; p 0:

f ¼ f ðq; pÞ ¼ f ½qðq 0; p 0Þ; pðq 0; p 0Þ� � f 0ðq 0; p 0Þ ¼ f 0; ðaÞ
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and similarly for the function g ¼ gðq; pÞ ¼ � � � ¼ g 0. Hence, by chain rule we find,

successively,

ð f ; gÞq; p ¼
X �ð@f =@prÞð@g=@qrÞ � ð@f =@qrÞð@g=@prÞ�
¼
XXX��ð@f 0=@pk 0 Þð@pk 0=@prÞþð@f 0=@qk 0 Þð@qk 0=@prÞ��ð@g 0=@pl 0 Þð@pl 0=@qrÞ

þ ð@g 0=@ql 0 Þð@ql 0=@qrÞ�
� ½ð@f 0=@pk 0 Þð@pk 0=@qrÞþð@f 0=@qk 0 Þð@qk 0=@qrÞ�½ð@g 0=@pl 0 Þð@pl 0=@prÞ
þ ð@g 0=@ql 0 Þð@ql 0=@prÞ�

�
¼
XXX �ð@f 0=@pk 0 Þð@g 0=@pl 0 Þ½ð@pk 0=@prÞð@pl 0=@qrÞ�ð@pk 0=@qrÞð@pl 0=@prÞ�

þ ð@f 0=@qk 0 Þð@g 0=@ql 0 Þ½ð@qk 0=@prÞð@ql 0=@qrÞ�ð@qk 0=@qrÞð@ql 0=@prÞ�
þ ð@f 0=@pk 0 Þð@g 0=@ql 0 Þ½ð@pk 0=@prÞð@ql 0=@qrÞ�ð@pk 0=@qrÞð@ql 0=@prÞ�
þ ð@f 0=@qk 0 Þð@g 0=@pl 0 Þ½ð@qk 0=@prÞð@pl 0=@qrÞ�ð@qk 0=@qrÞð@pl 0=@prÞ�

�
[recalling the PB definition,ð. . .Þq; p; and then invoking ð8:9:10a f ; gÞ=ð8:9:11kÞ]

¼
XX �½ð@f 0=@pk 0 Þð@g 0=@pl 0 Þ�ðpk 0 ; pl 0 Þ þ ½ð@f 0=@qk 0 Þð@g 0=@ql 0 Þ�ðqk 0 ; ql 0 Þ

þ ½ð@f 0=@pk 0 Þð@g 0=@ql 0 Þ � ð@f 0=@qk 0 Þð@g 0=@pl 0 Þ�ðpk 0 ; ql 0 Þ
�

¼
XX �½ð@f 0=@pk 0 Þð@g 0=@pl 0 Þ�ð0Þ þ ½ð@f 0=@qk 0 Þð@g 0=@ql 0 Þ�ð0Þ

þ ½ð@f 0=@pk 0 Þð@g 0=@ql 0 Þ � ð@f 0=@qk 0 Þð@g 0=@pl 0 Þ�ð �k 0l 0 Þ
�

¼
XX �ð@f 0=@pk 0 Þð@g 0=@ql 0 Þ � ð@f 0=@qk 0 Þð@g 0=@pl 0 Þ�ð�k 0l 0 Þ

¼
X �ð@f 0=@pk 0 Þð@g 0=@qk 0 Þ � ð@f 0=@qk 0 Þð@g 0=@pk 0 Þ� � ð f ; gÞq 0; p 0 ; Q:E:D: ðbÞ

Example 8.9.2 Relations among the Fundamental Brackets of Poisson and Lagrange.
Let the transformation

qk 0 ¼ qk 0 ðt; q; pÞ; pk 0 ¼ pk 0 ðt; q; pÞ ðaÞ
be canonical. Then,

½pk 0 ; pl 0 � ¼ 0; ½qk 0 ; ql 0 � ¼ 0; ½pk 0 ; ql 0 � ¼ �k 0l 0 : ðbÞ
Now, if in the earlier-found compatibility conditions (8.7.25, with �! k 0, 
! l 0)X

½c�; ck 0 �ðc�; cl 0 Þ ¼ �k 0l 0 ð� ¼ 1; . . . ; 2nÞ; ðcÞ

we substitute ck 0 ! pk 0 , cl 0 ! pl 0 ; c1 ¼ p1 0 ; . . . ; cn ¼ pn 0 ; cnþ1 ¼ q1 0 ; . . . ; c2n ¼ qn 0 , we

obtain X
½pr 0 ; pk 0 �ðpr 0 ; pl 0 Þ þ

X
½qr 0 ; pk 0 �ðqr 0 ; pl 0 Þ ¼ �k 0l 0 ;

or, due to (b),X
ð0Þðpr 0 ; pl 0 Þ þ

X
ð��r 0k 0 Þðqr 0 ; pl 0 Þ ¼ �k 0l 0 ) �ðqr 0 ; pl 0 Þ ¼ �k 0l 0 : ðd1Þ
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Similarly:

(i) Substituting ck 0 ! pk 0 , cl 0 ! ql 0 we obtain

ðqk 0 ; ql 0 Þ ¼ 0; ðd2Þ

(ii) Substituting ck 0 ! qk 0 , cl 0 ! pl 0 we obtain

ðpk 0 ; pl 0 Þ ¼ 0; ðd3Þ

(iii) Substituting ck 0 ! qk 0 , cl 0 ! ql 0 we obtain

ðpk 0 ; ql 0 Þ ¼ �k 0l 0 : ðd4Þ

Hence, starting with (b), and using (c), we proved (d1–4). Let the reader verify the

converse; that is, use (c) to show that if (d1–4) hold, so do (b).

Example 8.9.3 Area Preservation in Phase Space under Canonical Transformations.
Under the two distinct virtual variations �1ð. . .Þ and �2ð. . .Þ, the fundamental cano-

nical transformation definition (8.8.12),

�F ¼
X

pk �qk �
X

pk 0 �qk 0 ;

yields

�1F ¼
X

pk �1qk �
X

pk 0 �1qk 0 ; �2F ¼
X

pk �2qk �
X

pk 0 �2qk 0 : ðaÞ

Now, �2ð. . .Þ-varying �1F and �1ð. . .Þ-varying �2F , and then subtracting side by

side, while noting that �2ð�1qkÞ ¼ �1ð�2qkÞ and �2ð�1qk 0 Þ ¼ �1ð�2qk 0 Þ, we obtain

0 ¼ �1ð�2FÞ � �2ð�1FÞ
¼
X
ð�1pk �2qk � �2pk �1qkÞ �

X
ð�1pk 0 �2qk 0 � �2pk 0 �1qk 0 Þ; ðbÞ

that is,

I �
X
ð�1pk �2qk � �2pk �1qkÞ ¼

X
ð�1pk 0 �2qk 0 � �2pk 0 �1qk 0 Þ � I 0 ðcÞ

[recall (8.7.10)]. Geometrically, and for a one-DOF system, the Lagrangean invariant

(bilinear covariant) I , a generalization of the Wronskian determinant, equals the

area of the elementary parallelepiped with (rectangular Cartesian) sides

�s1 ¼ ð�1q; �1p) and �s2 ¼ ð�2q; �2p), emanating from ðq; pÞ in phase space:

Area ¼ ð�s2 � �s1Þz ¼ �1p �2q� �2p �1q ¼ �1p 0 �2q 0 � �2p 0 �1q 0 ¼ constant: ðdÞ

Example 8.9.4 Angular Momentum and Poisson’s Brackets.
(i) The components of the angular momentum of a particle P of mass m relative

to the origin of rectangular Cartesian axes O–xyz � O�123 are (with

px � m _xx ! p1 ¼ m _xx1, etc.)
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hx ¼ ypz � zpy ! h1 ¼ x2p3 � x3p2;

hy ¼ zpx � xpz ! h2 ¼ x3p1 � x1p3;

hz ¼ xpy � ypx ! h3 ¼ x1p2 � x2p1: ðaÞ

Hence, their PB are

ðh1; h2Þ �
X �ð@h1=@prÞð@h2=@xrÞ � ð@h1=@xrÞð@h2=@prÞ

�
¼ � � � ¼ �ðx1p2 � x2p1Þ ¼ �h3; ðbÞ

and, similarly,

ðh1; h3Þ ¼ h2; ðh2; h3Þ ¼ �h1; ðcÞ

or, compactly, with the help of the well-known Levi–Civita permutation symbol

"krs ½¼ þ1=�1=0, according as k, r, s are an even/odd/no permutation of 1, 2, 3

(}1.1)]:

ðhk; hlÞ ¼ �
X

"klrhr ¼
X

"krlhr: ðdÞ

(ii) With the help of the above [and ð8:9:5dÞ ! ð8:9:5eÞ ! ð8:95aÞ], we find,

successively (with h � jhj),

ðhk; h2Þ ¼ hk;
X

hr
2

� �
¼
X
ðhk; hr2Þ

¼
X �

hrðhk; hrÞ þ hrðhk; hrÞ
� ¼X 2hrðhk; hrÞ

¼
X

2hr �
X

"krlhl

� �
¼ �2

XX
"krlhrhl ¼ 0; ðeÞ

since "krl ¼ �"klr (as in the case of gyroscopicity!).

These results are important in the extension of the Hamiltonian formalism to

quantum mechanics.

Example 8.9.5 Canonicity via Symplectic (or Simplicial) Matrices. (May be

omitted in a first reading.) Here, we summarize a more algebraic approach to cano-

nicity. Let J, or J2n, be the following block matrix

J � J2n �
0n 1n

�1n 0n

� �
ðaÞ

where 0n ¼ n� n zero matrix, and 1n ¼ n� n (diagonal) unit, or identity, matrix.

We can readily confirm that

J
2 ¼ �12n and J ¼ �J�1; ðbÞ

and, therefore,

DetðJ2Þ ¼ ðDetJÞ2 ¼ Det 12n ¼ 1 ) DetJ 6¼ 0: ðcÞ
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Next, a 2n� 2n matrix M2n, or simply M, is called symplectic if

MTJM ¼ J ½ð. . .ÞT: Transpose of ð. . .Þ�: ðdÞ
Since Det ðMT

JMÞ ¼ ðDetMTÞ ðDet JÞ ðDetMÞ ¼ DetJ, then due to DetMT ¼
DetM and (c), we readily conclude that ðDetMÞ2 ¼ 1 ) DetM ¼ 1 (it can be

shown that DetM ¼ 1). Hence, M is invertible. Indeed, from (d), we find that

M
�1 ¼ �JMT

J: ðeÞ
Now, we introduce the following fundamental definition.

DEFINITION

The one-to-one (invertible) transformation ðp; qÞ ! ðp 0; q 0Þ, in the 2n-dimensional
phase space, is called canonical if the corresponding 2n� 2n Jacobian matrix

@pk=@pl 0 @pk=@ql 0

@qk=@pl 0 @qk=@ql 0

� �
ðfÞ

is symplectic. The equivalence of this definition with those based on the Poisson

brackets is established as follows:

(i) Using the fact that the transpose of the block matrix

A B

C D

� �
ðgÞ

equals

A
T

C
T

B
T

D
T

 !
ðhÞ

where A, B, C, D are arbitrary n� n matrices, we can show that

M � A B

C D

� �
ðiÞ

is symplectic if, and only if

� A
T
C and B

T
D are symmetric (i.e., equal to their transposes),

� D
T
A� B

T
C ¼ 1.

(ii) Applying these results to the Jacobian (f ); that is

A ¼ ð@pk=@pl 0 Þ; B ¼ ð@pk=@ql 0 Þ; C ¼ ð@qk=@pl 0 Þ; D ¼ ð@qk=@ql 0 Þ; ð jÞ
we see that it is symplectic, and hence the transformation ðp; qÞ ! ðp 0; q 0Þ is cano-

nical, if, and only if,

½pk 0 ; pl 0 � ¼ 0; ½qk 0 ; ql 0 � ¼ 0; ½pk 0 ; ql 0 � ¼ �k 0l 0 ; ðkÞ
which are, of course, the earlier-found Lagrangean bracket conditions.
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Example 8.9.6 Evolution of a Mechanical System via PB. Let f ¼ f ðq; pÞ and

H ¼ Hðq; pÞ. Then, by (8.9.1), and assuming only potential forces,

df =dt ¼ ðH; f Þ; ðaÞ
and again by (8.9.1), with f ! df =dt:

d2f =dt2 ¼ ðH; df =dtÞ ¼ 	H; ðH; f Þ
; ðbÞ
and similarly for d3f =dt3; . . . : As a result, the MacLaurin expansion,

f ½qðtÞ; pðtÞ� � f ðtÞ ¼ f ð0Þ þ ðdf =dtÞo tþ ð1=2Þðd2f =dt2Þo t2 þ � � � ; ðcÞ
becomes

f ðtÞ ¼ f ð0Þ þ t
	
H; f ð0Þ
þ ðt2=2Þ�H; 	H; f ð0Þ
�

þ ðt3=6Þ
�
H; ðH; 	H; f ð0Þ
Þ�þ � � �

� f ð0Þ exp½tðH; . . .Þ� ½symbolically� ðdÞ
This expresses the earlier-described (}3.12) doctrine of determinism: if all q’s and p’s,
and hence all system functions, like f ðq; pÞ, are known at an ‘‘initial’’ instant t ¼ 0,

then the state of the system at any later time t can be determined with the help of its

known (constant) Hamiltonian Hðq; pÞ, from (d), to any degree of accuracy.

Example 8.9.7 Infinitesimal Canonical Transformations. A general transformation

qk ! qk 0 ¼ qk þ " fkðq; pÞ; pk ! pk 0 ¼ pk þ " gkðq; pÞ ðaÞ
is called infinitesimal (IT) if " can be viewed as an infinitesimal parameter, indepen-

dent of the q’s and p’s, whose higher powers can, therefore, be neglected. Under

such a transformation, a general function Fðq 0; p 0Þ becomes

Fðq 0; p 0Þ ¼ Fðqþ " f ; pþ " gÞ
¼ Fðq; pÞ þ "

X �ð@F=@qkÞfk þ ð@F=@pkÞgk�: ðbÞ

Examples of such IT are (i) the infinitesimal rotations of a rigid body about a fixed

point (} 1.9ff.); and, of course, (ii) the general (first-order) virtual displacement (}2.5)

�r ¼P ð@r=@qkÞ �qk.
If the transformation (a) is also canonical (infinitesimal canonical transformation,

ICT) then, by the definition (8.8.12), we must have

�F ¼
X

pk �qk �
X

pk 0 �qk 0

¼
X

pk �qk �
X
ðpk þ " gkÞð�qk þ " �fkÞ

¼ �"
X
ðpk �fk þ gk �qkÞ ½to the Orst order in "�

¼ �"
X

pk
X �ð@fk=@plÞ �pl þ ð@fk=@qlÞ �ql�� �

þ gk �qk

n o
¼ �"

X
gl þ

X
pkð@fk=@qlÞ

h i
�ql þ

X
pkð@fk=@plÞ

� �
�pl

n o
; ðcÞ
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and from this, setting F � "Wðq; pÞ and equating virtual differential coefficients, we

obtain

gl þ
X

pkð@fk=@qlÞ ¼ �@W=@ql ;
X

pkð@fk=@plÞ ¼ �@W=@pl ; ðdÞ

or, since here the q’s and p’s are considered independent,

gl þ @=@ql
X

pk fk

� �
¼ �@W=@ql; @=@pl

X
pk fk

� �
� fl ¼ �@W=@pl ;

or, finally, with the help of the new generating function: G �W þP pk fk,

fl ¼ @G=@pl ; gl ¼ �@G=@ql: ðeÞ

Hence, the original transformations (a) become

qk 0 � qk � �k ¼ "ð@G=@pkÞ; pk 0 � pk � k ¼ �"ð@G=@qkÞ; ðfÞ

that is, Hamilton’s equations can be viewed as an ICT with generating function the
system Hamiltonian:

"! dt; G! H: dqk ¼ ð@H=@pkÞ dt; dpk ¼ �ð@H=@qkÞ dt; ðgÞ

a result admirably summed up by Whittaker in the following words: ‘‘The whole
course of a dynamical system can thus be regarded as the gradual self-unfolding of a
contact transformation’’ (1937, p. 304), with time merely as a parameter of that

transformation.

[Some authors, including Whittaker, by contact transformations mean our cano-

nical transformations — see next example. Others, however, use that term to signify

homogeneous canonical (or Mathieu) transformations; see, for example, Rund

(1966).]

Finally, substituting (e, f ) in (b), we obtain

DF ¼
X �ð@F=@qkÞ�k þ ð@F=@pkÞk�

¼ "
X �ð@F=@qkÞð@G=@pkÞ � ð@F=@pkÞð@G=@qkÞ�

¼ "ðG;FÞ; ðhÞ

thus providing another interpretation of Poisson’s brackets.

REMARKS

(i) Equations (f ) can also be obtained by adding the infinitesimal "Gðq; p 0Þ to the

identity transformation [generated by
P

qkpk 0 , or by �P pkqk 0 (}8.8)]; that is, if we

take as generating function

F ¼
X

qkpk 0 þ "Gðq; p 0Þ � F2ðq; p 0Þ; ðiÞ

then, recalling (8.8.17),

qk 0 ¼ @F2=@pk 0 ¼ qk þ "ð@G=@pk 0 Þ; ðj1Þ
pk ¼ @F2=@qk ¼ pk 0 þ "ð@G=@qkÞ; ðj2Þ
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that is, to the first order,

�k ¼ "ð@G=@pk 0 Þ � "ð@G=@pkÞ; ðk1Þ
k ¼ �"ð@G=@qkÞ; Gðq; p 0Þ � Gðq; pÞ: ðk2Þ

(ii) That the transformation of the q’s and p’s from their initial values to their

values at any later time is canonical can also be seen from the group property of these

transformations; that is, from that, (a) the result of two successive canonical trans-
formations is also canonical, and (b) the inverse of a canonical transformation, from the
new variables to the old ones, is also canonical.

Example 8.9.8 Contact Transformation. If
P

pk �qk ¼ total virtual differential

� �f , then, by the fundamental definition (8.8.12),X
pk 0 �qk 0 ¼

X
pk �qk � �F ¼ �ð f � FÞ; ðaÞ

that is,
P

pk 0 �qk 0 is also a total virtual differential.

Let us see if the converse is also true. For
P

pk 0 �qk 0 ¼ �f 0 to follow fromP
pk �qk ¼ �f , we must haveX

pk 0 �qk 0 � �f 0 ¼ �
X

pk �qk � �f
� �

: ðbÞ

Now:

(i) If � � 1, then, clearly, we are dealing with a canonical transformation with gener-

ating function F ¼ f � f 0;
(ii) If � 6¼ 1, then (b) represents a so-called general contact transformation (Lie). We will

not pursue such transformations any further here, but the reader should be aware

that, in a number of expositions, the terms canonical and contact transformations

are used synonymously.

Problem 8.9.1 Canonicity Conditions.
(i) Show that the linear homogeneous transformation

qk 0 ¼
X

Qk 0k qk; pk 0 ¼
X

Pk 0k pk; ðaÞ

where Qk 0k, Pk 0k are constant coefficients, is canonical if, and only if,X
Qk 0kPk 0l ¼ �kl ; ðbÞ

that is, Pk 0k: cofactor of Qk 0k in DetðQk 0kÞ � Q, divided by Qð6¼ 0Þ.
(ii) Then show that, as a result of (b), we haveX

pk 0qk 0 ¼
X

pkqk: ðcÞ

HINT

For canonicity, we must have ðpk 0 ; ql 0 Þ ¼ �k 0l 0 .
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Problem 8.9.2 Properties of Poisson’s Brackets. Show that, for a general function

f ¼ f ðt; q; pÞ, and with t, q, p regarded as independent variables,

ð f ; qkÞ ¼ @f =@pk; ð f ; pkÞ ¼ �@f =@qk; ð f ; tÞ ¼ 0: ðaÞ

Problem 8.9.3 Properties of Poisson’s Brackets. Using the results of the preceding

problem, show that

@2f =@qk @ql ¼
	
pl ; ðpk; f Þ



: ðaÞ

Obtain similar expressions for @2f =@qk @pl and @2f =@pk @pl .

Problem 8.9.4 Equations of Motion via Poisson’s Brackets.
(i) Show that Hamilton’s equations

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk þ Qk ðaÞ
can be rewritten, with the help of PB, as

dqk=dt ¼ ðH; qkÞ; dpk=dtþ ðH; pkÞ þQk: ðbÞ
(ii) Then show that, if @H=@t ¼ 0 and Qk ¼ 0,

d2pk=dt
2 ¼ ðH; 	H; pkÞ
: ðcÞ

Problem 8.9.5 Power Theorem via Poisson’s Brackets. Consider a system whose

motion is governed by the Hamiltonian equations

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk þQk: ðaÞ
Using the dynamical identity (8.9.1), show that its power equation is

dH=dt ¼ @H=@tþ
X

Qkðdqk=dtÞ: ðbÞ

HINT

In (8.9.1), set f ! H.

Problem 8.9.6 Angular Momentum and Poisson’s Brackets. Continuing from ex.

8.9.3, show that:

ðiÞ ðxk; hlÞ ¼ �
X

"klrxr ¼
X

"krl xr; ðaÞ
ðiiÞ ðpk; hlÞ ¼ �

X
"klrpr ¼

X
"krl pr: ðbÞ

Problem 8.9.7 Infinitesimal Canonical Transformations (ICT). Show that if

G ¼ constant is an integral of the canonical equations of motion of a system

dqk=dt ¼ @H=@pk and dpk=dt ¼ �@H=@qk, then all trajectories created by the ICT
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with G as generating function satisfy its canonical variational equations of Jacobi (or

Poincaré’s équations aux variations):

d�k=dt ¼
X �ð@2H=@pk @qlÞ�l þ ð@2H=@pk @plÞl

�
; ðaÞ

dk=dt ¼
X �ð@2H=@qk @qlÞ�l þ ð@2H=@qk @plÞl

�
; ðbÞ

where all partial derivatives are evaluated at the system’s fundamental trajectory
(i.e., for " ¼ 0).

HINT

Show that (a, b) are satisfied by the G-generated perturbations

�k ¼ "ð@G=@pkÞ; k ¼ �"ð@G=@qkÞ; ðcÞ

where dG=dt ¼ @G=@tþ ðH;GÞ ¼ 0:
For additional related results, see, for example, Hamel (1949, pp. 301–303).

8.10 THE HAMILTON–JACOBI THEORY

In this section we are carrying out the ultimate objective of canonical transformation

(CT) theory: to provide a systematic way of finding CT that simplify the

Hamiltonian equations of motion as much as possible, by which we mean CT that
render: (i) all new coordinates q 0, or (ii) all new momenta p 0, or (iii) both (q 0, p 0),
constant in time.

Then, and assuming Qk 0 ¼ 0, the new Hamiltonian equations

dqk 0=dt ¼ @H 0=@pk 0 ; dpk 0=dt ¼ �@H 0=@qk 0 ; ð8:10:1Þ

yield, successively:

ðiÞ dqk 0=dt ¼ 0 ) qk 0 ¼ constant � �k; ð8:10:2aÞ
@H 0=@pk 0 ¼ 0 ði:e:; all p 0 ignorableÞ; ð8:10:2bÞ
) H 0 ¼ H 0ðt; q 0Þ ¼ H 0ðt; �1; . . . ; �nÞ � H 0ðt; �Þ: ð8:10:2cÞ

[We hope no confusion will arise from the (tensorially nonrigorous) fact that in this,

and similar equations, quantities with accented indices are equated to quantities with

nonaccented indices!]

If, further, @H 0=@t ¼ 0 ) H 0 ¼ H 0ðq 0Þ ¼ H 0ð�Þ: constant total energy � E,

then, by the second of (8.10.1),

dpk 0=dt ¼ �@H 0=@�k ¼ constant ) pk 0 ¼ linear function of time: ð8:10:2dÞ

ðiiÞ dpk 0=dt ¼ 0 ) pk 0 ¼ constant � �k; ð8:10:3aÞ
@H 0=@qk 0 ¼ 0 ði:e:; all q 0 ignorableÞ; ð8:10:3bÞ
) H 0 ¼ H 0ðt; p 0Þ ¼ H 0ðt; �1; . . . ; �nÞ � H 0ðt; �Þ: ð8:10:3cÞ
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If, further, @H 0=@t ¼ 0 ) H 0 ¼ H 0ðp 0Þ ¼ H 0ð�Þ: constant total energy � E, then,

by the first of (8.10.1Þ,
dqk 0=dt ¼ @H 0=@�k ¼ constant � !k

) qk 0 ¼ linear function of time � !ktþ �k ¼ ð@E=@�kÞtþ �k: ð8:10:3dÞ
Cases (ii) and (i) can be summed up, respectively, in the following theorem.

THEOREM

If all coordinates (momenta) are ignorable, then the conjugate momenta (coordi-

nates) are constant and the coordinates (momenta) vary linearly with time.

ðiiiÞ dqk 0=dt ¼ @H 0=@pk 0 ¼ 0 ) qk 0 ¼ constant � �k; ð8:10:4aÞ
dpk 0=dt ¼ �@H 0=@qk 0 ¼ 0 ) pk 0 ¼ constant � �k; H 0 ¼ H 0ðtÞ: ð8:10:4bÞ

Theorem of Jacobi

The simplest (of course, arbitrary) choice satisfying (8.10.4a, b) is H 0 � 0. The

particular generating function accomplishing this we shall call (Hamiltonian) action:
AH , or, simply, A. [This function is frequently denoted by S (also W , usually for the

Lagrangean action; from the German Wirkung ¼ action � work� time; not as in

action/reaction of Newton’s ‘‘third law’’); but here that letter has been appropriated

for the Appellian function; see also }8.11. Such action functions! functionals play a

prominent role in chapter 7.]

It is expedient to assume that A has the following functional representation:

A ¼ Aðt; q; p 0Þ ð¼ F2; recall }8:8Þ: ð8:10:5aÞ
Then, by (8.8.17) and the earlier requirement H 0 � 0;

pk ¼ @A=@qk; qk 0 ¼ @A=@pk 0 ; ð8:10:5bÞ
H 0 ¼ Hðt; q; pÞ þ @A=@t ¼ 0 ) Hðt; q; @A=@qÞ þ @A=@t ¼ 0; ð8:10:5cÞ

or, since (prob. 8.2.1)

H � T 0ðt; q; pÞ þ Vðt; qÞ
¼ ð1=2ÞðM 0

11 p1
2 þM 0

22 p2
2 þ � � � þ 2M 0

12 p1p2 þ � � �Þ þ V � Hðt; q; pÞ;�
M 0

lk ¼M 0
kl � ½minor of element Mklð¼MlkÞ in determinant Mn � ðMklÞ�=Mn

�
;

explicitly;

@A=@tþ ð1=2Þ�M 0
11ð@A=@q1Þ2 þM 0

22ð@A=@q2Þ2

þ � � � þ 2M 0
12ð@A=@q1Þð@A=@q2Þ þ � � �

�þ V ¼ 0: ð8:10:6Þ
This first-order nonlinear partial differential equation for A is the famous Hamilton–
Jacobi (HJ) equation. Hence, the problem of bringing the Hamiltonian equations of

motion to their simplest (integrable) form, by an appropriate canonical transforma-

tion, has been reduced to that of the integration of (8.10.6).
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On this equation we can state the following: Since it depends on the nþ 1 in-
dependent variables t (time), q (space/coordinates), and the n constants p 0 ¼ �, aðnyÞ
complete integral (CI) of it must contain an equal number of independent arbitrary
constants; say, �1; . . . ; �n; �nþ1. [A CI of a first-order PDE is to be distinguished from

its general integral (GI), which depends on an arbitrary function, and is not as

important to dynamics as are the CIs. On how to obtain the GI from CIs, see ex.

2, below.] However, since (8.10.6) does not contain A explicitly, but only its deriva-

tives (and, therefore, if A is a solution of it, so is A þ � 0), identifying �nþ1 with the

additive (and dynamically inconsequential) constant � 0, we can finally state that

aðnyÞ complete integral of the HJ equation of an n-DOF system contains n non-

trivial, or essential, constants; that is, any such A has the form:

A ¼ Aðt; q; �Þ; � � ð�1; . . . ; �nÞ: ð8:10:7Þ
Thus, for this special generating function, the new momenta p 0, by (8.10.4b), can be

identified with the constants �:

pk 0 ¼ �k; ð8:10:8aÞ
while, by (8.10.4a) and the second of (8.10.5b),

qk 0 ¼ @A=@pk 0 ¼ @Aðt; q; �Þ=@�k ¼ �k ðarbitrary constantsÞ: ð8:10:8bÞ
From these algebraic equations, we can express the q’s in terms of t and the 2n
essential arbitrary constants ð�; �):

qk ¼ qkðt;�1; . . . ; �n; �1; . . . ; �nÞ � qkðt;�; �Þ
¼ general integral of original problem: ð8:10:9aÞ

The old momenta can then be found from the first of (8.10.5b):

pk ¼ @A=@qk ¼
	
@Aðt; q; �Þ=@qk



q¼qðt;�;�Þ ¼ � � � ¼ pkðt;�; �Þ

¼ general integral of original problem: ð8:10:9bÞ
Finally, evaluating (8.10.9a, b) for an initial time to, we can express �, � in terms of

the 2n (arbitrary) initial values of the old coordinates and momenta, qo, po [assuming

that the corresponding Jacobian, @ðq; pÞ=@ð�; �Þ, does not vanish; otherwise, since

the �; � would not be independent, the solution qðt;�; �Þ, pðt;�; �), would not be

general]; and then, reinserting these expressions back into (8.10.9a, b), we can have

q, p as functions of time t and the qo’s, po’s. This completes, in principle, the HJ

procedure for solving/simplifying canonical equations of motion. [For a proof that

(8.10.8b), (8.10.9b) satisfy the canonical equations (8.10.10a), see ex. 8.10.1, below.]

REMARK

Incomplete HJ integrals — that is, expressions satisfying (8.10.6) but depending on

fewer than n constants — cannot furnish the general integral (8.10.9a, b); but it can

help us find it. Thus, from the known ‘‘incomplete integral’’ A ¼ Aðt; q; �1; . . . ; �mÞ
ðm < nÞ, we obtain the m (8.10.8b)-like equations: @A=@�D ¼ ðconstantÞD
ðD ¼ 1; . . . ;m).

The general integral (8.10.9a, b), thanks to the preceding theory, constitutes a

canonical transformation from the �, � to the q, p with generating function

1194 CHAPTER 8: INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS



Aðt; q; �). However, every other general integral, say qkðt; �; �Þ, pk ¼ pkðt; �; �Þ, where

� � ð�1; . . . ; �nÞ, � � ð�1; . . . ; �nÞ are arbitrary constants, is not a canonical transfor-

mation; and therefore knowledge of such an integral does not allow the construction

of the complete integral of the HJ equation. That can happen only if the �’s and �’s
equal, respectively, the initial positions and momenta.

The above results constitute the famous theorem of Jacobi (1842–1843). Let us

restate it compactly:

(i) The integration of the canonical equations

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk; ð8:10:10aÞ

is reduced to the integration of the Hamilton–Jacobi equation:

Hðt; q; @A=@qÞ þ @A=@t ¼ 0: ð8:10:10bÞ

(ii) If we have a complete solution of (8.10.10b) — that is, a solution of the form

A ¼ Aðt; q1; . . . ; qn;�1; . . . ; �nÞ � Aðt; q; �Þ; ð8:10:10cÞ

where � � ð�1; . . . ; �nÞ ¼ n essential arbitrary constants, and j@2A=@q@�j 6¼ 0 (non-
vanishing Jacobian), then the solution of the algebraic system:

@A=@�k ¼ �k

[Finite equations of motion, �: new arbitrary constants ) qk ¼ qkðt; �; �Þ],
(8.10.10d)

@A=@qk ¼ pk

[) pk ¼ pkðt; �; �Þ: canonically conjugate (finite) equations of motion];
(8.10.10e)

constitutes a complete solution of (8.10.10a). For a proof, see ex. 8.10.1.

Schematically:

Hamilton: Differential equations of motion: dq=dt ¼ @H=@p, dp=dt ¼ �@H=@q
(If these equations can be integrated, an Action function can be obtained),

Hamilton–Jacobi: Hðt; q; @A=@qÞ þ @A=@t ¼ 0 ) A ¼ Aðt; q; �Þ,
Jacobi: Finite equations of motion: @A=@� ¼ � ) q ¼ qðt; �; �Þ,

@A=@q ¼ p ) p ¼ pðt; �; �Þ
(If an Action function can be obtained, then Hamilton’s equations can be integrated).

Special Cases

Obtaining the complete integral of the HJ equation is, in general, quite complicated;

but, frequently, simpler than solving the corresponding Hamiltonian equations; and

if that can be done, either exactly (e.g., via quadratures) or approximately (e.g., via

perturbations), it constitutes one of the most straightforward methods of solution of

mechanical problems.
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1. Conservative Systems

In this case, the Hamiltonian form of the power theorem yields

dH=dt ¼ @H=@tþ
X

Qkðdqk=dtÞ ¼ 0

) @H=@t ¼ 0 ðsince we have assumed Qk ¼ 0Þ
) H ¼ Hðq; pÞ ¼ Hðq; @A=@qÞ ¼ E � constant ðtotal energyÞ; ð8:10:11aÞ

and so, from (8.10.10b), we conclude that, for such systems, A must be (to within an

additive constant) a linear function of time:

Aðt; q; p 0Þ ¼ �E tþ Aoðq; p 0Þ; ð8:10:11bÞ

where Ao is the abbreviated, or reduced, action. As a result of (8.10.11a, b), the HJ

equation (8.10.10b) assumes the abbreviated, or reduced, form:

Hðq; @Ao=@qÞ ¼ E: ð8:10:11cÞ

or, explicitly,

ð1=2Þ�M 0
11ð@Ao=@q1Þ2 þM 0

22ð@Ao=@q2Þ2

þ � � � þ 2M 0
12ð@Ao=@q1Þð@Ao=@q2Þ þ � � �

�þ V ¼ E: ð8:10:11dÞ

Now, the complete integral of the above must contain E as an essential constant. On

the other hand, the action

A ¼ Aðt; q; p 0Þ ¼ Aðt; q; �Þ ¼ Aoðq; �Þ � E t ð8:10:11eÞ

can contain only n essential independent constants. Hence, it follows that E and the

n�’s must be connected functionally:

E ¼ Eð�1; . . . ; �nÞ � Eð�Þ; ð8:10:11fÞ

that is, we can identify E with any one of the �’s, say E ¼ �1 (or, we need a Ao that

contains only n� 1 essential constants). Then, (8.10.11e) becomes

Aðt; q; �Þ ¼ Aoðq; �Þ � Eð�Þt
¼ Aoðq; �1; . . . ; �nÞ � �1t ¼ Aoðq;E; �2; . . . ; �nÞ � E t; ð8:10:11gÞ

and, provided that

@2A=@E@q1 � � � @2A=@E@qn

� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
@2A=@�n@q1 � � � @2A=@�n@qn



 6¼ 0; ð8:10:11hÞ

the finite equations of motion (8.10.8b, 10d) yield:

(i) For k 0, k ¼ 1: q1 0 ¼ @A=@�1 ¼ @A=@E ¼ @Ao=@E � t ¼ �1, or

@Ao=@E ¼ tþ �1 � f ðq; �Þ ) �1 ¼ �tþ @Ao=@E; ð8:10:11iÞ
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(ii) For

k 0; k ¼ 2; . . . ; n: qk 0 ¼ @A=@�k ¼ @Ao=@�k ¼ �k � gðq; �Þ ðk > 1Þ; ð8:10:11jÞ
also

@A=@t ¼ �E; and; of course; pk ¼ @Ao=@qk: ð8:10:11kÞ
The n� 1 equations (8.10.11j), @Ao=@�k ¼ �k, connect the q’s with the constants

�1; . . . ; �n; �2; . . . ; �n, and thus specify the form of the sequence of configurations the

system goes through during its motion — that is, the shape of its trajectory (orbit);

while the remaining equation (8.10.11i), @Ao=@�1 ¼ tþ �1, yields the time it takes

the system to arrive at each of these configurations. Since this implies that �1 must

have temporal dimensions, setting �1 ¼ �to (some ‘‘initial’’ instant) in (8.10.11i), we

find

@Ao=@E ¼ t� to � f ðq; �Þ; ð8:10:11lÞ
again a total of 2n arbitrary constants: �1 ¼ E; �2; . . . ; �n and �1 ¼ �to, �2; . . . ; �n.

From these equations we can have the n q’s in terms of t� to and either the n �’s

or the n �’s.

[If the total energy is a function of a certain variable, say u: u ¼ uðEÞ , E ¼ EðuÞ,
then

Ao ¼ Ao½q;EðuÞ; �2; . . . ; �n� � A 0oðq; u; �2; . . . ; �nÞ;
and, accordingly, (8.10.11i, l) is replaced by

@Ao=@E ¼ ð@A 0o=@uÞðdu=dEÞ ¼ tþ �1 ) @A 0o=@u ¼ ðdE=duÞðtþ �1Þ:�
ð8:10:11mÞ

In sum, for a conservative system:

qk ¼ qkðt� to; c1; . . . ; c2n�1Þ; pk ¼ pkðt� to; c1; . . . ; c2n�1Þ; ð8:10:11nÞ
where c 0 ¼ ðc1; . . . ; c2n�1Þ: 2n� 1 constants of integration.

2. Separation of Variables

This is a method of finding complete integrals of the HJ equation in the special but

important case where a particular coordinate, say q1, and corresponding derivative

@A=@q1 do not appear in the Hamilton–Jacobi equation (8.10.10b), except in the

separable combination f1ðq1; @A=@q1Þ, so that the latter takes the form

F
�
t; qR; @A=@qR; @A=@t; f1ðq1; @A=@q1Þ

� ¼ 0; ð8:10:12aÞ
where qR denotes the remaining coordinates, here q2; . . . ; qn. In this case, we seek a

complete integral in the following separable, or sum, form:

A ¼ ARðt; qRÞ þ A1ðq1Þ: ð8:10:12bÞ
Substituting (8.10.12b) in (8.10.12a), we obtain

F
�
t; qR; @AR=@qR; @AR=@t; f1ðq1; dA1=dq1Þ

� ¼ 0; ð8:10:12cÞ
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which, since it must be an identity in q1 [and the latter affects only f1ð. . .Þ�, leads us to

the following: (i) ordinary differential equation,

f1ðq1; dA1=dq1Þ ¼ arbitrary constant � �1; ð8:10:12dÞ
from which, by a simple quadrature, we obtain A1; and (ii) the partial differential

equation,

Fðt; qR; @AR=@qR; @AR=@t; �1Þ ¼ 0; ð8:10:12eÞ
which contain fewer independent variables than the original equation (8.10.12a).

If it is possible to carry out this separation process for all n q’s and t, then the

complete integral of the HJ equation will have been reduced to quadratures. In

particular, for a conservative system, complete separation of its variables allows us

to express its action integral (8.10.11e–g) as

A ¼ Ao � E t �
X

Akðqk;�1; . . . ; �nÞ � Eð�1; . . . ; �nÞt; ð8:10:12fÞ

that is, Ak ¼ function of qk only, and all the �’s; and the constant energy E ¼ Eð�Þ is
found from (8.10.11c) with Ao ¼

P
Akðqk; �Þ. Then, pk ¼ @Ao=@qk ¼ @Ak=@qk and

the HJ equation for Ao separates to n equations of the form (8.10.12d)

fkðqk; @Ak=@qk;�Þ ¼ �k; or fkðqk; @Ak=@qkÞ ¼ Ekð�1; . . . ; �nÞ; ð8:10:12gÞ
from which the sought Akðqk; �Þ can be obtained by quadratures.

Hence, it is very important to know whether a given Hamiltonian Hðq; p) is

(completely or partially) separable or not. It has been shown that the necessary

and sufficient conditions for such separability are the following nðn� 1Þ=2 equations:

0 @H=@qk @H=@pk

@H=@ql @2H=@qk@ql @2H=@pk@ql

@H=@pl @2H=@qk@pl @2H=@pk@ql


 ¼ 0; ð8:10:12hÞ

for k, l ¼ 1; . . . ; n ðk 6¼ n). [See, for example, Hagihara (1970, p. 77 ff.); who also

‘‘translates’’ (8.10.12h) into conditions in terms of the kinetic and potential energies.]

Alternatively, it can be shown that (8.10.12f)-type of separability occurs if (i) the

HJ equation does not contain mixed products of ð@Ao=@qkÞð@Ao=@qlÞ, k 6¼ l, but

only pure squares ð@Ao=@qkÞ2, that is, if the Hamiltonian has the so-called Stäckel
(or orthogonal) form:

H ¼ ð1=2Þ
X

vkðqÞpk2 þ VðqÞ; vkðqÞ: functions of the q’s ðas in ex: 3:12:4Þ;
ð8:10:12iÞ

and (ii) if, in addition, H satisfies certain necessary and sufficient ‘‘Stäckel condi-

tions.’’

[For detailed treatments of separability, see, for example (alphabetically):

Dobronravov (1976, pp. 117–129), Frank (1935, pp. 83–90), Goldstein (1980, pp.

449–457, 613–615), Lur’e (1968, pp. 538–548), Nordheim and Fues (1927, pp. 122),

Pars (1965, pp. 320–348), Prange (1935, pp. 644–657); and books on celestial
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Stäckel theorem/conditions, including proof and examples, see, for example, Greenwood
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3. Ignorable Coordinates

Finally, in the case of an ignorable coordinate, say q1 �  1, since the latter does not

appear explicitly in either the Hamiltonian or the HJ equation, eqs. (8.10.12d) and

(8.10.12b), with the slight indicial change R! P, p ¼ 2; . . . ; n (in conformity with

}8.3 ff.), reduce, respectively, to

dA1=dq1 ¼ �1 � C1 ) A1 ¼ C1 1 þ ðadditiveÞ constant; ð8:10:13aÞ

A ¼ ARðt; qRÞ þC1 1 � APðt; qpÞ þC1 1; ð8:10:13bÞ

where C1 ¼ @A=@ 1 ¼ constant momentum, corresponding to  1. Then, the HJ

equation

H
	
t; q2; . . . ; qn; @A=@q1 ¼ C1; @A=@q2; . . . ; @A=@qn


þ @A=@t ¼ 0; ð8:10:13cÞ

simplifies to

H
	
t; q2; . . . ; qn;C1; @AP=@q2; . . . ; @AP=@qn


þ @AP=@t ¼ 0; ð8:10:13dÞ

and has as complete solution

AP ¼ APðt; q2; . . . ; qn;C1; �2; . . . ; �nÞ � APðt; qp;�1 ¼ C1; �pÞ; ð8:10:13eÞ

) A ¼ C1 1 þ APðt; qp;C1; �pÞ: ð8:10:13fÞ

Hence, the finite equations of motion become

@A=@C1 ¼  1 þ @AP=@C1 ¼ �1; @A=@�k ¼ @AP=@�k ¼ �k ðk ¼ 2; . . . ; nÞ:
ð8:10:13gÞ

In a conservative system, q1 ! t (time as an ignorable and separable ‘‘coordinate’’),

and �1q1 ! �E tð�E as corresponding constant ‘‘momentum’’). For extensions of

the above special cases to more than one variable, see ex. 8.10.5, below.

The inclusion of both ignorable and nonignorable coordinates under the general

roof of separation of variables makes the HJ method one of the most powerful tools

for integrating the Hamiltonian equations of motion. [The most prominent applica-

tions of this method are to be found not so much in earthly engineering as in celestial

mechanics and modern nonlinear dynamics (and its transition to quantum

mechanics); see, for example, Born (1927), Hagihara (1970), Tabor (1989). For

extensive applications to rigid-body dynamics, see, for example, Chertkov (1960).]

Example 8.10.1 Proof of Theorem of Jacobi. Here, we show that the following

equations

@A=@�k ¼ �k; @A=@qk ¼ pk; ðaÞ

where A ¼ A½t; qðtÞ, �1; . . . ; �n� � A½t; qðtÞ; ��, constitute a complete integral of the

HJ equation

Hðt; q; @A=@qÞ þ @A=@t ¼ 0; ðbÞ
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or, explicitly,

@A=@tþ ð1=2Þ�M 0
11ð@A=@q1Þ2 þM 0

22ð@A=@q2Þ2

þ � � � þ 2M 0
12ð@A=@q1Þð@A=@q2Þ þ � � �

�þ V ¼ 0; ðb1Þ

and j@2A=@�k@qlj 6¼ 0 [so that eqs. (a) are independent], satisfy the canonical equa-

tions

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk; ðcÞ

identically.

PROOF

Since the �k are constant, ð. . .Þ:-differentiating the first of (a), we obtain

0 ¼ d�k=dt ¼ ð@A=@�kÞ: ¼ @2A=@t @�k þ
X
ð@2A=@ql @�kÞðdql=dtÞ: ðdÞ

Now we can either (i) solve the system (d) for the _qql and show that the solution

satisfies the first of (c) identically; or, conversely, (ii) insert the _qqk from the first of (c)

into (d) and show that they satisfy it identically. Indeed:

(i) Equations (b, b1) hold identically in the �’s. Therefore, comparing their

@ð. . .Þ=@�k-derivative

@2A=@�k @tþ
X �

M 0
1lð@A=@q1Þ þ � � � þM 0

1nð@A=@qnÞ
�ð@2A=@�k @qlÞ ¼ 0 ðe1Þ

with (d), we conclude that

dql=dt ¼M 0
1lð@A=@q1Þ þ � � � þM 0

nlð@A=@qnÞ: ðe2Þ

[Equations (d) determine the _qql uniquely as linear functions of the @2A=@�k @t; and,

similarly, (e1) determine the right sides of (e2) as the same functions of them.] Hence,

by prob. 8.2.1, pk ¼ @A=@qk; and, accordingly, the Hamiltonian first of (c) hold;

also, from (b), we conclude that H ¼ �@A=@t. To prove the second of (c), we

@ð. . .Þ=@qk-differentiate (b), since the latter is an identity in the q’s thus obtaining,

successively,

@2A=@qk @t ¼ �@H=@qk �
X
ð@H=@plÞð@pl=@qkÞ

¼ �@H=@qk �
X
ð@H=@plÞð@2A=@qk @qlÞ

¼ �@H=@qk �
X
ð@2A=@qk @qlÞðdql=dtÞ ½by Erst of ðcÞ�; ðf1Þ

or, rearranging,

@2A=@qk @tþ
X
ð@2A=@qk @qlÞðdql=dtÞ ¼ �@H=@qk; ðf2Þ

or, finally,

ð@A=@qkÞ: ¼ dpk=dt ¼ �@H=@qk; Q:E:D: ðf3Þ

Hence, in the assumed motion, both Hamiltonian equations hold.
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(ii) Due to the first of (c), (d) becomes

@2A=@t @�k þ
X
ð@2A=@ql @�kÞð@H=@plÞ ¼ 0: ðgÞ

We will show that (g) holds identically. By @ð. . .Þ=@�k-differentiating (b), since the

latter is satisfied for arbitrary �’s (i.e., identically), we obtain

@H=@�k þ @2A=@�k @t ¼ 0: ðh1Þ
But, since H depends on the �k through the @A=@qk and these, in turn, depend on

the �k through A ¼ A½t; qðtÞ; ��,

@H=@�k ¼
X �

@H=@ð@A=@qlÞ
�ð@2A=@ql @�kÞ; ðh2Þ

and so, comparing (h1) with (h2), we find

@2A=@�k @tþ
X �

@H=@ð@A=@qlÞ
�ð@2A=@ql @�kÞ ¼ 0;

or, thanks to the second of (a),

@2A=@�k @tþ
X
ð@H=@plÞð@2A=@ql @�kÞ ¼ 0; ðh3Þ

that is, eqs. (g). Therefore, the first of (a) is indeed a solution of the first of (c).

Similarly, we can show that the second of (a) is a solution of the second of (c):

ð. . .Þ:-differentiating the second of (a) and combining the so-resulting (d)-like system

for the pk with the second of (c), we are led to a (g)-like equation, and so on. (See also

MacMillan, 1936, pp. 371–375.)

Example 8.10.2 HJ Equation: From a Complete Integral (CI) to the General
Integral (GI) (Landau and Lifshitz, 1960, p. 148, footnote). Even though the GI

is not needed in dynamics, it can be obtained from a CI as follows: we begin with

the CI

A ¼ A 0ðt; q1; . . . ; qn; �1; . . . ; �nÞ þ �nþ1 � A 0ðt; q; �Þ þ � 0; ðaÞ
but now we view its ðnþ 1Þth additive constant � 0 as an arbitrary function of the n
�’s:

� 0 ¼ � 0ð�1; . . . ; �nÞ � � 0ð�Þ ) A ¼ Aðt; q; �Þ: ðbÞ
Then, the GI of the HJ equation (8.10.10b) is found by replacing the �k in (b) by

their functional expressions obtained from the following n conditions

@A=@�k ¼ 0 ) �k ¼ �kðt; qÞ ) � 0 ¼ � 0ðt; qÞ: ðcÞ
Indeed, applying chain rule to

A ¼ A½t; q; �ðt; qÞ� ¼W 0½t; q; �ðt; qÞ� þ � 0½�ðt; qÞ� � aðt; qÞ; ðdÞ
and then invoking (d), we find

@a=@qk ¼ @A=@qk þ
X
ð@A=@�lÞð@�l=@qkÞ ¼ @A=@qk; ðeÞ
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that is, since the @A=@qk satisfy the HJ equation (A being a CI), so do the @a=@qk,
Q.E.D.

Example 8.10.3 Particle in a Conservative Force Field; Harmonic Oscillator. Let

us consider the free motion of a particle P of mass m in a potential field

V ¼ Vðx; y; zÞ, where ðx; y; zÞ ¼ rectangular Cartesian and inertial coordinates of

P. Then, since

H ¼ E � T þ V ¼ mv2=2þ V ¼ p2=2mþ V

¼ ð1=2mÞðpx2 þ py
2 þ pz

2Þ þ V ; ðaÞ
where v2 ¼ _xx2 þ _yy2 þ _zz2, and recalling (8.10.10e), px ¼ @A=@x ¼ @Ao=@x ¼ x-com-

ponent of linear momentum of P, and so on, cyclically, the ‘‘abbreviated’’ HJ equa-

tion of the system (8.10.11c) becomes

ð@Ao=@xÞ2 þ ð@Ao=@yÞ2 þ ð@Ao=@zÞ2 ¼ 2m½E � Vðx; y; zÞ�: ðbÞ
If P undergoes one-dimensional motion, say V ¼ VðqÞ, where q ¼ single Lagrangean

coordinate, then (b) reduces to the ordinary differential equation

ðdAo=dqÞ2 ¼ 2m½E � VðqÞ�; ðcÞ
and this leads readily to the quadrature

Aoðq;EÞ � Aoðqo;EÞ ¼
ðq
qo

�
2m½E � VðqÞ��1=2

dq; ðdÞ

from some initial value qo to q. From this, by (8.10.11l), we obtain

@Ao=@E ¼ ðm=2Þ1=2
ðq
qo

½E � VðqÞ��1=2dq � f ðq;EÞ ¼ t� to; ðeÞ

) q ¼ qðt� to;EÞ: ðe1Þ

Specialization

One-Dimensional Linear Harmonic Oscillator. Here,

2T ¼ mð _qqÞ2; 2V ¼ kq2 ðk ¼ constant coeHcient of elasticityÞ; ðfÞ
from which

p ¼ @L=@ _qq ) _qq ¼ p=m

) T ¼ p2=2m ) H ¼ p2=2mþ kq2=2

) dq=dt ¼ @H=@p ¼ p=m; dp=dt ¼ �@H=@q ¼ �kq: ðgÞ
Accordingly, the HJ equation (8.10.10b) and its conservative specialization

(8.10.11c) become

ð1=2mÞð@A=@qÞ2 þ kq2=2þ @A=@t ¼ 0; ðhÞ
ð1=2mÞð@Ao=@qÞ2 þ kq2=2 ¼ E; ðiÞ
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respectively, where

A ¼ Aðt; q; �Þ ¼ Aðt; q;EÞ ¼ Aoðq;EÞ � Et: ðjÞ

The solution of (i) is, to within an inessential additive constant, the quadrature

Aoðq;EÞ ¼ ðkmÞ1=2
ð �ð2E=kÞ � q2

�1=2
dq; ðkÞ

and, consequently,

Aðt; q;EÞ ¼ ðkmÞ1=2
ð �ð2E=kÞ � q2

�1=2
dq� E t: ðlÞ

As a result, (8.10.10e) becomes (there is no need to evaluate the above integral yet)

� ¼ @A=@� ¼ @A=@E ¼ ðm=kÞ1=2
ð �ð2E=kÞ � q2

��1=2
dq� t

¼ ðm=kÞ1=2 arccos½ðk=2EÞ1=2q� � t ðto within an arbitrary constantÞ; ðmÞ

and solving for q

q ¼ ð2E=kÞ1=2 cos
�ðk=mÞ1=2ðtþ �Þ� ¼ qðt;E; �Þ: ðnÞ

To express q in terms of t and the initial values qo, po, we apply (8.10.10e):

po ¼ ð@A=@qÞinitial values ¼ ðkmÞ1=2
�ð2E=kÞ � qo

2
�1=2

¼ ð2mÞ1=2ðE � kqo
2=2Þ1=2 ¼ ð2mÞ1=2ðE � VoÞ1=2 ¼ � � � ¼ mvo; ðoÞ

from which, solving for E, we get

po
2=2mþ kqo

2=2 ¼ E ¼ H: ðpÞ

Next, evaluating (m), or (n), at the initial instant to:

qo ¼ ð2E=kÞ1=2 cos½ðk=mÞ1=2ðto þ �Þ� ½) � ¼ �ðqo;E; toÞ�; ðqÞ

then, solving (p) and (q) for E and � in terms of qo and po, and inserting these values

in (n), we obtain q ¼ qðt; qo; poÞ.
For example, choosing to ¼ 0, qo ¼ 0, po 6¼ 0 (i.e., impact), and with

!o
2 � k=m ¼ ð frequencyÞ2, we obtain from (p, q)

E ¼ po
2=2m; 0 ¼ ð2E=kÞ1=2 cosð!o�Þ ) � ¼ ð�=2!oÞ; ðrÞ

and so (n) becomes

q ¼ ðpo2=kmÞ1=2 cosð!ot �=2Þ ¼ ð�=þÞðpo2=kmÞ1=2 sinð!otÞ: ðsÞ

This yields, further,

p ¼ m _qq ¼ � � � ¼ ð�=þÞmðpo2=kmÞ1=2ðk=mÞ1=2 cosð!otÞ; ðtÞ
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and since for t ¼ 0: p ¼ po, only the þ sign applies in (s); that is, finally,

q ¼ ðpo2=kmÞ1=2 sinð!otÞ ð) qo ¼ 0Þ: ðuÞ

Geometrical Interpretation

(i) In the phase space of the old variables (i.e., the retangular Cartesian qp-plane),

the representative system point describes an ellipse (with center at the origin O�qp,
and Oq, Op as its principal axes) whose dimensions are determined from the initial

conditions qo, po ! E.

(ii) In the phase space of the new variables q 0 ¼ �, p 0 ¼ � ¼ E; however, the
representative point does not vary with time— that is, it is fixed on that plane (compare

with ex. 8.8.5). The properties of Ao, for this periodic system, are detailed in ex.

8.14.1.

Example 8.10.4 HJ Equation of a Heavy Axisymmetric Gyroscope, Moving about a
Fixed Point O. For this well-known problem, we have already seen that (ex. 8.4.5;

with the transverse moment of inertia denoted by B, instead of A, to avoid confusion

with the action)

2T ¼ B½ð _��Þ2 þ ð _��Þ2 sin2 �� þ Cð _  þ _�� cos �Þ2;
V ¼ mgl cos � ðl � OG;G ¼ center of mass of gyroscopeÞ; ða1Þ
) p� � @T=@ _�� ¼ B _�� sin2 �þ Cð _  þ _�� cos �Þ cos �

� B _�� sin2 �þCn cos � ¼ constant � C�; ða2Þ
p� � @T=@ _�� ¼ B _��; ða3Þ
p � @T=@ _  ¼ Cð _  þ _�� cos �Þ � C n ¼ constant � C ; ða4Þ
_�� ¼ ðp� � p cos �Þ=B sin2 �; ða5Þ
_�� ¼ p�=B; ða6Þ
_  ¼ p =C � ðp� � p cos �Þ cos �=B sin2 �; ða7Þ
) H ¼ ð1=2BÞ½p�2 þ ðp� � p cos �Þ2= sin2 �� þ ð1=2CÞp 2 þmg l cos �: ða8Þ

Accordingly, the HJ equation of this conservative system becomes

ð1=2Þ�B�1ð@Ao=@�Þ2 þ C�1ð@Ao=@ Þ2

þ ðB sin2 �Þ�1½@Ao=@�� cos �ð@Ao=@ Þ�2
�þmgl cos � ¼ E ð¼ �1Þ: ðbÞ

But, since � and  are ignorable coordinates, we also have the two integrals

p� ¼ @Ao=@� ¼ constant � C� � B�2; ðc1Þ
p ¼ @Ao=@ ¼ constant � C � B�3; ðc2Þ
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and, accordingly, (b) simplifies to

ð1=2Þ�B�1ð@Ao=@�Þ2 þ C�1ðB�3Þ2

þ ðA= sin2 �Þð�2 � �3 cos �Þ2�þmg l cos � ¼ E; ðdÞ

from which, solving for @Ao=@�, we find

B�1ð@Ao=@�Þ2 ¼ 2E � B2�3
2=C � 2mg l cos �� ðB= sin2 �Þð�2 � �3 cos �Þ2

� B f ð�; �1 ¼ E; �2; �3Þ � B f ð�Þ: ðeÞ

Therefore, it follows from the general results (8.10.11b, e) that (to within an additive

constant)

A ¼ Ao � E t ¼ B

ð
½ f ð�Þ�1=2 d�þ Bð�2�þ �3 Þ � E t: ðfÞ

Hence, the three finite equations of motions of the gyroscope are

@A=@E ¼ �tþ
ð
½ f ð�Þ��1=2 d� ¼ �to ð¼ �1Þ; ðg1Þ

@A=@�2 ¼ B ��
ð
½ð�2 � �3 cos �Þ= sin2 ��½ f ð�Þ��1=2 d�

� �
¼ B�o ð¼ �2Þ; ðg2Þ

@A=@�3 ¼ B  þ
ð
½�ðB�3=CÞ þ ð�2 � �3 cos �Þ cos �= sin2 ��½ f ð�Þ��1=2 d�

� �
¼ B o ð¼ �3Þ; ðg3Þ

where to, �o,  o are three new constants. Equation (g1) yields � as a function of

time, while (g2, 3) yield, respectively, � and  as functions of �. These results, of

course, coincide with those found by other means. See also MacMillan (1936, pp.

378–380).

Example 8.10.5 Separation of Variables, Ignorable Coordinates, Conservative
Systems.

(i) Separation of Variables

Let the system Hamiltonian have the form

H ¼ H
�
f1ðq1; p1Þ; . . . ; fMðqM ; pMÞ; qMþ1; . . . ; qn; @A=@qMþ1; . . . ; @A=@qn; t

�
; ðaÞ

that is, the first Mð< nÞ variables are separable. Then, the HJ equation becomes

H
�
f1ðq1; @A=@q1Þ; . . . ; fMðqM ; @A=@qMÞ; qMþ1; . . . ; qn; @A=@qMþ1; . . . ; @A=@qn; t

�
þ @A=@t ¼ 0: ðbÞ

Assuming the following partially separable action:

A ¼ A1ðq1Þ þ � � � þ AMðqMÞ þ ARðqR; tÞ; ðcÞ
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where qR � ðqMþ1; . . . ; qnÞ ¼ remaining (nonseparable) coordinates, reduces (b) to

H
�
f1ðq1; dA1=dq1Þ; . . . ; fMðqM ; dAM=dqMÞ; qMþ1; . . . ; qn; @AR=@qMþ1; . . . ; @AR=@qn; t

�
þ @AR=@t ¼ 0; ðdÞ

and from this, reasoning as in the derivation of (8.10.12d, e) from (8.10.12c), we are

readily led to the M uncoupled ordinary differential equations:

f1ðq1; dA1=dq1Þ ¼ �1; . . . ; fMðqM ; dAM=dqMÞ ¼ �M ; ðeÞ

from which we can determine A1; . . . ;AM by quadrature; and the partial differential

equation

H
�
�1; . . . ; �M ; qMþ1; . . . ; qn; @AR=@qMþ1; . . . ; @AR=@qn; t

�þ @AR=@t ¼ 0; ðfÞ

which is still coupled, but in fewer variables than the original (b).

(ii) Ignorable Coordinates

Next, let q1 �  1; . . . ; qM �  M be ignorable (recall }8.4). Then, the corresponding

momenta are constant:

p1 ¼ @A=@ 1 ¼ �1 � C1; . . . ; pM ¼ @A=@ M ¼ �M � CM ; ðgÞ

Setting in the corresponding HJ equation

Hðqp; C; @A=@qp; tÞ þ @A=@t ¼ 0 ðhÞ

the action

A ¼
X

Ci  i þ APðqp; tÞ ði ¼ 1; . . . ;MÞ; ðiÞ

where qp � ðqMþ1; . . . ; qnÞ, C � ðC1; . . . ;CMÞ � ðCiÞ, reduces (h) to the simpler

form:

Hðqp;C; @AP=@qMþ1; . . . ; @AP=@qn; tÞ þ @AP=@t ¼ 0; ð jÞ

AP depends on fewer independent variables than A: the M � n qp and t.

(iii) Conservative Systems

Continuing, we consider a conservative system with completely separable
Hamiltonian

H ¼ H
�
f1ðq1; p1Þ; . . . ; fnðqn; pnÞ

�
; ðkÞ

and, therefore, by (8.10.11c), HJ equation

H
�
f1ðq1; @Ao=@q1Þ; . . . ; fnðqn; @Ao=@qnÞ

� ¼ E ðconstantÞ: ðlÞ

Substituting in it the completely separable reduced action

Ao ¼
X

AkðqkÞ ðmÞ
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transforms it to

H
�
f1ðq1; dA1=dq1Þ; . . . ; fnðqn; dAn=dqnÞ

� ¼ E; ðnÞ

and this, reasoning as in the derivation of (8.10.12d), leads us to the n ordinary

differential equations:

f1ðq1; dA1=dq1Þ ¼ �1; . . . ; fnðqn; dAn=dqnÞ ¼ �n; ðoÞ

which can be solved by quadratures.

In view of these results, the fundamental HJ relations (8.10.11e ff., 10d) reduce to

E ¼ Hð�1; . . . ; �nÞ � Hð�Þ; ðpÞ
A ¼ Ao � E t ¼

X
Akðqk; �kÞ � E t; ðqÞ

�k ¼ @A=@�k ¼ @Ak=@�k � ð@E=@�kÞt ) @Ak=@�k ¼ �k þ ð@E=@�kÞt: ðrÞ

(iv) Conservative Systems with Ignorable Coordinates

Finally, for a conservative system with Mð< nÞ ignorable coordinates

 � ð 1; . . . ;  MÞ � ð iÞ, the reduced HJ equation (8.10.11c) becomes (with the

earlier notations)

Hðqp; C; @Ao=@qpÞ ¼ E: ðsÞ

Substituting into it, as in (h),

Ao ¼
X

Ci  i þ APðqp; @AP=@qMþ1; . . . ; @AP=@qnÞ; ðtÞ

we are led to the simpler than (s) HJ equation

Hðqp; C; @AP=@qMþ1; . . . ; @AP=@qnÞ ¼ E ðuÞ

(since AP is a function of only n�M independent variables, the qp), whose solution

is, to within an inessential additive constant,

AP ¼ APðqMþ1; . . . ; qn; �Mþ1; . . . ; �n; Ci ¼ �iÞ � APðqp; �p; CÞ; ðvÞ
) A ¼ Ao � E t ¼

X
Ci  i þ APðqp; �p;CÞ � E t: ðwÞ

Hence, the fundamental HJ relations (8.10.11i, j, l) reduce to

�i ¼ @A=@�i � @A=@Ci ¼ @Ao=@Ci ¼  i þ @AP=@Ci ðhere; �i ¼ CiÞ;
) @AP=@Ci ¼ �i �  i ði ¼ 1; . . . ;MÞ; ðxÞ

�Mþ1 ¼ @A=@�Mþ1 � @A=@E ¼ @Ao=@E � ð@E=@EÞt ¼ @AP=@E � ð1Þt ¼ �to;
) @AP=@E ¼ t� to ðhere; �Mþ1 ¼ EÞ; ðyÞ

�p 0 ¼ @A=@�p 0 ¼ @Ao=@�p 0 ¼ @AP=@�p 0 ðp 0 ¼M þ 1; . . . ; nÞ: ðzÞ

Below, we discuss a few elementary applications of the foregoing theory.
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Example 8.10.6 Two-Dimensional Linear and Isotropic Oscillator (Butenin, 1971,

pp. 163–165). Here, the kinetic and potential energies of this conservative system

are (using standard notations)

2T ¼ m½ð _qq1Þ2 þ ð _qq2Þ2�; 2V ¼ kðq1
2 þ q2

2Þ; ðaÞ

respectively, and therefore the Hamiltonian and reduced HJ equations are

H ¼ ð1=2mÞðp1
2 þ p2

2Þ þ ðk=2Þðq1
2 þ q2

2Þ; ðbÞ�ð1=2mÞð@Ao=@q1Þ2 þ ðk=2Þq1
2
�þ �ð1=2mÞð@Ao=@q2Þ2 þ ðk=2Þq2

2
� ¼ E: ðcÞ

Substituting into the completely separable equation (c) the equally separable reduced

action

Ao ¼ A1ðq1Þ þ A2ðq2Þ; ðdÞ

we are immediately led to the two uncoupled ordinary differential equations

ð1=2mÞðdA1=dq1Þ2 þ ðk=2Þq1
2 ¼ �1; ð1=2mÞðdA2=dq2Þ2 þ ðk=2Þq2

2 ¼ �2; ðeÞ

where

�1 þ �2 ¼ E: ðfÞ

The above readily lead to the quadratures (omitting inessential additive constants)

Ar ¼
ð �

mð2�r � kqr
2Þ�1=2dqr ðr ¼ 1; 2Þ; ðgÞ

and from these we obtain, by differentiation and elementary integrations,

dAr=d�r ¼ ðm=kÞ1=2 arcsin
�
qr=ð2�r=kÞ1=2

�
; ðhÞ

and when these results are compared with the corresponding finite equations of

motion [equations (r) of preceding example, and (8.10.10e)]:

dAr=d�r ¼ �r þ ð@E=@�rÞt ¼ �r þ t; ðiÞ
dAr=dqr ¼ pr ð¼ m _qqrÞ; ðjÞ

they yield, respectively,

arcsin
�
qr=ð2�r=kÞ1=2

� ¼ ðk=mÞ1=2ðtþ �rÞ ) qr ¼ ð2�r=kÞ1=2 sin
�ðk=mÞ1=2ðtþ �rÞ

�
;

ðkÞ
pr ¼

�
mð2�r � kqr

2Þ�1=2: ðlÞ

For the initial conditions at t ¼ 0: q1 ¼ a, _qq1 ¼ 0, q2 ¼ 0, _qq2 ¼ vo, (k, l) give

a ¼ ð2�1=kÞ1=2 sin½ðk=mÞ1=2�1�; 0 ¼ ð2�2=kÞ1=2 sin½ðk=mÞ1=2�2�;�
mð2�1 � ka2Þ�1=2 ¼ 0; ½mð2�2Þ�1=2 ¼ mvo; ðmÞ
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or, upon solving for the �’s and �’s,

�1 ¼ ka2=2; �2 ¼ mvo
2=2; �1 ¼ ð�=2Þðm=kÞ1=2; �2 ¼ 0; ðnÞ

and so, finally, the motion (k, l) specializes to

q1 ¼ a cos½ðk=mÞ1=2t�; q2 ¼ voðm=kÞ1=2 sin½ðk=mÞ1=2t�: ðoÞ

Example 8.10.7 Plane Motion of a Particle in a Uniform Gravitational Field. Here,

the kinetic and potential energies of this system are (using standard notations)

2T ¼ m½ð _qq1Þ2 þ ð _qq2Þ2�; V ¼ mgq2; ðaÞ
respectively ½O� q1q2: inertial rectangular Cartesian coordinates of particle,

q1: horizontal, q2: vertical (positive upward)], and therefore the Hamiltonian and

HJ equations are

H ¼ ð1=2mÞðp1
2 þ p2

2Þ þmgq2; ðbÞ
ð1=2mÞ�ð@A=@q1Þ2 þ ð@A=@q2Þ2

�þmgq2 þ @A=@t ¼ 0: ðcÞ
Since q1 is also ignorable, in addition to the system being conservative, following the

theory of (8.10.13a ff.) and the preceding example, we try the Action function (with

q1 �  1; p1 � C1 ¼ �1):

A ¼ �1 1 þ A2ðq2Þ � Et � Ao � E t: ðdÞ

First Solution

Substituting (d) into (c), we readily find

�1
2=2mþ ð1=2mÞðdA2=dq2Þ2 þmgq2 ¼ E; ðeÞ

and this leads us, easily, to the following two equations:

ð1=2mÞðdA2=dq2Þ2 þ mgq2 ¼ �2; �2 þ �1
2=2m ¼ E: ðfÞ

Hence, the finite equations of motion are

@A=@�1 ¼ q1 � ð@E=@�1Þt ¼ q1 � ð�1=mÞt ¼ �1

) q1 ¼ ð�1=mÞtþ �1; ðgÞ
@A=@�2 ¼ dA2=d�2 � ð@E=@�2Þt ¼ dA2=d�2 � ð1Þt ¼ �2

) dA2=d�2 ¼ tþ �2: ðhÞ
But, from the first of (f ), we find

dA2=dq2 ¼ ½2mð�2 �mgq2Þ�1=2; ðiÞ

) A2 ¼
ð
½2mð�2 �mgq2Þ�1=2 dq2 þ constant; ð jÞ
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and, therefore

dA2=d�2 ¼
ð
m
�
2mð�2 �mgq2Þ

��1=2
dq2 ¼ �ð1=mgÞ�2mð�2 �mgq2Þ

�1=2
: ðkÞ

Equating the right sides of (h) and (k), and then solving for q2, we get

q2 ¼ �ðg=2Þðtþ �2Þ2 þ �2=mg: ðlÞ

Finally, applying the remaining finite equations

@A=@q1 ¼ �1 ¼ p1 ¼ m _qq1; @A=@q2 ¼ dA2=dq2 ¼ tþ �2 ¼ p2 ¼ m _qq2; ðmÞ

for the common initial conditions at t ¼ 0: q1 ¼ 0, _qq1 ¼ vo, q2 ¼ h, _qq2 ¼ 0, we find

�1 ¼ mvo; �2 ¼ mgh; �1 ¼ 0; �2 ¼ 0; ðnÞ

and so, finally, the motion (g, l) specializes to the well-known solution

q1 ¼ vot; q2 ¼ h� ð1=2Þgt2: ðoÞ

Second Solution

The reduced HJ equation is

ð1=2mÞ�ð@Ao=@q1Þ2 þ ð@Ao=@q2Þ2
�þmgq2 ¼ �2; ðpÞ

or

ð@Ao=@q1Þ2 þ ð@Ao=@q2Þ2 þ 2m2gq2 ¼ 2m�2: ðqÞ

By Hamilton’s equations: @H=@q1 ¼ dp1=dt ¼ 0 ) p1 ¼ constant � �1 ¼ @Ao=@q1,

and so (q) gives

ð@Ao=@q2Þ2 ¼ 2m�2 � 2m2g q2 � ð@Ao=@q1Þ2 ¼ 2m�2 � �1
2 � 2m2g q2:

Hence, q1, q2 are separable and

Ao ¼
ð
ð@Ao=@q1Þ dq1 þ

ð
ð@Ao=@q2Þ dq2

¼ �1q1 þ
ð
ð2m�2 � �1

2 � 2m2gq2Þ1=2 dq2: ðrÞ

The particle trajectory is given by @Ao=@�1 ¼ �1:

q1 �
ð
�1ð2m�2 � �1

2 � 2m2g q2Þ�1=2 dq2 ¼ �1

) q1 þ ð�1=gm
2Þð2m�2 � �1

2 � 2m2gq2Þ1=2 ¼ �1 ða parabolaÞ; ðsÞ
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and the corresponding time by @Ao=@�2 ¼ tþ �2:ð
mð2m�2 � �1

2 � 2m2gq2Þ�1=2 dq2 ¼ tþ �2

) �ð1=mgÞð2m�2 � �1
2 � 2m2g q2Þ1=2 ¼ tþ �2 ðtime at which height is q2Þ:

ðtÞ

Example 8.10.8 Theorem of Liouville (Recall ex. 3.12.4). This generalizes the

results of the preceding examples, 8.10.6 and 8.10.7. Let us consider a Liouville
system; that is, one whose kinetic and potential energies have the following forms:

2T ¼ u
�
v1ðq1Þð _qq1Þ2 þ � � � þ vnðqnÞð _qqnÞ2

� � u
�
v1ð _qq1Þ2 þ � � � þ vnð _qqnÞ2

�
; ðaÞ

V ¼ �w1ðq1Þ þ � � � þ wnðqnÞ
�
=u � ðw1 þ � � � þ wnÞ=u; ðbÞ

respectively, where u � u1ðq1Þ þ � � � þ unðqnÞ � u1 þ � � � þ un ð> 0Þ.
Since pk � @T=@ _qqk ¼ u vk _qqk, it is not hard to see that the corresponding

Hamiltonian function and reduced HJ equation of this conservative system are

H ¼ T þV ¼ ð1=2Þ u
X

vkð _qqkÞ2 þ u�1
X

wk ¼ u�1
X
ðpk2=2vk þ wkÞ ð� EÞ;X �ð1=2vkÞð@Ao=@qkÞ2 þ wk � E uk

� ¼ 0: ðcÞ

Setting in this completely separable equation the following similarly separable

reduced action:

Ao ¼ A1ðq1Þ þ � � � þ AnðqnÞ; ðdÞ

yields X �ð1=2vkÞðdAk=dqkÞ2 þ wk � E uk
� ¼ 0; pk ¼ dAk=dqk; ðeÞ

and from this, reasoning as in the derivation of (8.10.12d), we obtain the following

n ordinary differential equations:

ð1=2vkÞðdAk=dqkÞ2 þ wk � E uk ¼ �k; ðfÞ

where the n constants �k are subject to the condition

�1 þ �2 þ � � � þ �n ¼ 0 ) �1 ¼ �ð�2 þ � � � þ �nÞ ¼ �1ð�2; . . . ; �nÞ: ðgÞ

[Recall equivalent condition ( j4) of ex. 3.12.4.]

From (f ), we are readily led to the quadratures (to within inessential additive

constants)

Ak ¼
ð �

2vkð�k þ E uk � wkÞ
�1=2

dqk ¼
ð
pk dqk ¼ Akðqk; �;EÞ

� �
: ðhÞ

Due to the constraint (g), only n of the constants E, �1, �2; . . . ; �n appearing in the

integrals (h) are independent; and therefore the reduced action built from the latter
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via (d), as containing n independent essential constants, will indeed be a complete

integral; that is,

A0 ¼
X

Akðq;E; �1; �2; . . . ; �nÞ ¼
X

Ak

�
q;E; �1ð�2; . . . ; �nÞ; �2; . . . ; �n

�
� Aooðq;E; �2; . . . ; �nÞ ¼ Aoo: ðiÞ

In view of these results, the finite equations of motion reduce to the following

quadratures:

ðiÞ @Aoo=@E ¼ @Ao=@E ¼ t� to:X ð
ðvkÞ1=2

�
2ð�k þ E uk � wkÞ

��1=2
uk dqk ¼ t� to; ðjÞ

ðiiÞ @Aoo=@�r ¼ @Ao=@�r þ ð@Ao=@�1Þð@�1=@�rÞ
¼ @Ao=@�r þ ð@Ao=@�1Þð�1Þ ¼ @Ao=@�r � @Ao=@�1 ¼ �r ðr ¼ 2; . . . ; 2nÞ:ð

ðvrÞ1=2½2ð�r þ E ur � wrÞ��1=2 dqr �
ð
ðv1Þ1=2½2ð�1 þ E u1 � w1Þ��1=2 dq1 ¼ �r: ðkÞ

[Compare with their equivalent equations (k1, 2) of ex. 3.12.4.] Equation ( j) and the

n� 1 equations (k) supply the n independent constants �1 ¼ �to; . . . ; �n, which,

along with the earlier n� 1 independent �’s and the energy (i.e., E; �2; . . . ; �nÞ,
constitute the 2n constants of integration of our system (a, b).

For additional details on these systems [including generalizations originally

studied by Goursat, Di Pirro, Stäckel et al. (late 19th century)] see, for example

(alphabetically): Appell (1953, vol. 2, pp. 439–440), Hamel (1949, pp. 302–303,

358–361), Lur’e (1968, pp. 538–548), Whittaker (1937, pp. 335–336); and, especially,

texts on celestial mechanics, for example, Hagihara (1970).

Example 8.10.9 Hamiltonian Form of Lagrangean Method of Variation of
Constants/Parameters. Let us consider a system with canonical equations of

motion

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk ðk ¼ 1; . . . ; nÞ ðaÞ

and such that

H ¼ Ho þH1; H1: small relative to Ho: ðbÞ

For example, in a planetary motion problem, Ho would be the Sun–Earth (two-body

problem) Hamiltonian, while H1 would be the Hamiltonian of the perturbative

action of the remaining planets of our solar system on Earth [recall discussion

following eq. (8.7.17)]. Let us assume that the solution of the unperturbed problem

dqk=dt ¼ @Ho=@pk; dpk=dt ¼ �@Ho=@qk ðcÞ

is known — that is, an action function

A ¼ Aðt; q; �Þ; � � ð�1; . . . ; �nÞ; ðdÞ
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has been (or can be) found that satisfies the unperturbed Hamilton–Jacobi (HJ)

equation

@A=@tþHoðt; q; @A=@tÞ ¼ 0; ðeÞ

and can, therefore, supply the integrals of (c) via the finite equations

pk ¼ @A=@qk; �k ¼ @A=@�k; ðfÞ

that is, the solutions of (f ):

qk ¼ qkðt; �; �Þ; pk ¼ pkðt; �; �Þ; � � ð�1; . . . ; �nÞ ðgÞ

when substituted back into (c), satisfy them identically.

Here, however, we will view (g) not as solutions of (c) but as equations of a
canonical transformation from the old variables ðq; pÞ to the new ‘‘variables’’
ð�; �Þ � ðq 0; p 0Þ, with generating function A ¼ Aðt; q; �Þ � Aðt; q; � ¼ p 0Þ ¼
F2ðt; q; p 0Þ (}8.8). In this interpretation, the (no longer constant) � ¼ q 0 and

� ¼ p 0, satisfy the perturbation canonical equations

d�k=dt ¼ @H 0=@�k ¼ @=@�kðH þ @A=@tÞ
¼ @=@�kðHo þH1 þ @A=@tÞ ¼ @H1=@�k ½invoking ðeÞ�; ðhÞ

d�k=dt ¼ �@H 0=@�k ¼ � � � ¼ �@H1=@�k; ðiÞ

where we have used the unperturbed solutions (g) in H1 to express it in terms of the �
and �, and t. Substituting the solutions of ðh; iÞ in the unperturbed solutions for q; p,
we obtain the solutions of the perturbed problem.

We notice that equations (h, i) coincide with the earlier ( j, l) of ex. 8.7.4, with the

following identifications: ck ! �k, cnþl ! �l , O! H1.

An Application

Let the unperturbed Hamiltonian be

Ho ¼ ð1=2Þp2; e:g:; free rectilinear motion of particle of unit mass: ð jÞ

The corresponding HJ equations is

ð1=2Þ ð@Ao=@qÞ2 ¼ � ð¼ total energyÞ; ðkÞ

and its solution is

Ao ¼ ð2�Þ1=2q ½A ¼ Ao � �t ¼ F1ðt; q; q 0Þ�: ðlÞ

Hence, the complete unperturbed solution is

p ¼ @F1=@q ¼ @Ao=@q ¼ ð2�Þ1=2; ðmÞ
� ¼ �@A=@� ¼ �@Ao=@� þ t ) t� � ¼ @Ao=@� ¼ ð2�Þ�1=2q

) q ¼ ð2�Þ1=2ðt� �Þ; i:e:; rectilinear motion with uniform velocity ð2�Þ1=2: ðnÞ
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Next, let us add to the system the perturbative (linear elastic) force �q, so that its

complete perturbed Hamiltonian is

H ¼ ð1=2Þp2 þ ð1=2Þq2 � Ho þH1; ðoÞ
and view the perturbed solution as having the same form as the unperturbed solution

(m, n), but with � and � as variables satisfying the perturbation equations (h, i), with

k ¼ 1 and

H1 ¼ ð1=2Þq2junperturbed solution ðnÞ ¼ �ðt� �Þ2 ¼ H1ðt; �; �Þ; ðpÞ
d�=dt ¼ @H1=@� ¼ �2�ðt� �Þ; d�=dt ¼ �@H1=@� ¼ �ðt� �Þ2: ðqÞ

Integrating (p, q) we readily find

� ¼ �o cos2ðt� �oÞ; � ¼ t� tanðt� �oÞ; �o; �o: integration constants; ðrÞ
and hence the perturbed solution is

q ¼ ð2�oÞ1=2 sinðt� �oÞ; p ¼ ð2�oÞ1=2 cosðt� �oÞ; ðsÞ
that is, a simple harmonic motion of amplitude: (2�oÞ1=2, frequency: 1 (period: 2�),
and phase (or ‘‘epoch of origin passage’’): �o. It is not hard to verify that (s) does

indeed satisfy the canonical perturbed [(o)-based] equations:

dq=dt ¼ @H=@p ¼ p; dp=dt ¼ �@H=@q ¼ �q: ðtÞ

Example 8.10.10 A Simplification of the Perturbation Equations. Continuing

from the preceding example, let �ko, �ko denote the parts of �k, �k that are constant
in the perturbed motion. Then we can write

�k ¼ �ko þ xkðtÞ; �k ¼ �ko þ ykðtÞ; ðaÞ
and, therefore, to the same degree of accuracy [since the Hamiltonian equations,

unlike the Lagrangean equations (}3.10), are of the first order], and with some easily

understood notations,

H1 ¼ H1ð�; �Þ ¼ H1ð�o þ x; �o þ yÞ
¼ H1ð�o; �oÞ þ

X �ð@H1=@�kÞoxk þ ð@H1=@�kÞoyk
�

� H1o þ
X �ð@H1o=@�koÞxk þ ð@H1o=@�koÞyk

�
: ðbÞ

Substituting the above into eqs. (h, i) of the preceding example, we obtain

dxk=dt ¼ @H1=@�ko; dyk=dt ¼ �@H1=@�ko; ðcÞ
or, again, to the first order,

dxk=dt ¼ @H1o=@�ko; dyk=dt ¼ �@H1o=@�ko: ðdÞ

An Application

Let us apply these results to the (weakly) quadratically nonlinear oscillator:

€qq þ !o
2qþ " q2 ¼ 0 ½!o ¼ frequency for " ¼ 0; a constant�: ðeÞ
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Here, clearly,

Ho ¼ ð1=2Þ ðp2 þ !o
2q2Þ; H1 ¼ ð1=3Þ"q3; ðfÞ

and since the solution of the unperturbed problem (i.e., " ¼ 0, H1 ¼ 0) is

q ¼ qo cosð!otÞ þ ðpo=!oÞ sinð!otÞ; p ¼ _qq ¼ . . . ; ðgÞ

where qo=po ¼ initial position/momentum of unperturbed problem (i.e., �o ¼ qo,
�o ¼ po), we will have

H1 ! H1o ¼ ð"=3Þ½qo cosð!otÞ þ ðpo=!oÞ sinð!otÞ�3 � ð"=3Þ½. . .�3: ðhÞ

As a result, the perturbation equations (d) yield

dx=dt ¼ @H1o=@po ¼ "½. . .�2 ½sinð!otÞ=!o�; ðiÞ
dy=dt ¼ �@H1o=@qo ¼ �"½. . .�2 cosð!otÞ: ð jÞ

Integrating (i, j), and then adding the results to (g), we obtain the solution of (e),

correct to "-proportional terms. The details are left to the reader (see, e.g.,

Kilmister, 1967, p. 118).

Example 8.10.11 Hamiltonian Form of Variation of Constants/Parameters (con-
tinued): Combination with Method of Averaging. Continuing from the last two

examples, if the solution of the unperturbed equations is �-periodic, then we still

solve the approximate perturbation equations (h, i) of ex. 8.10.9, but with H 0 ¼ H1

replaced with its average over � , that is, by

hH1i � ð1=�Þ
ð�

0

H1ð�; �; tÞ dt; ðaÞ

and �, � treated as constants. Let us apply this ‘‘averaged method of variation of
parameters’’ to the well-known Duffing’s oscillator:

€qqþ !o
2qþ "q3 ¼ 0 ½!o ¼ frequency for " ¼ 0; a constant�: ðbÞ

Its Hamiltonian is easily found to be

H ¼ Ho þH1;

Ho ¼ ð1=2Þðp2 þ !o
2q2Þ; H1 ¼ ð1=4Þ" q4 ¼ small perturbation: ðcÞ

The corresponding reduced and unperturbed HJ equation ð" ¼ 0Þ is

ðdAo=dqÞ2 þ !o
2q2 ¼ 2� ½where A ¼ AoðqÞ � � t�; ðdÞ

and so its solution is

Ao ¼
ð
ð2� � !o

2q2Þ1=2 dq ) A ¼
ð
ð2� � !o

2q2Þ1=2 � � t: ðeÞ
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As a result, the equation of finite unperturbed motion becomes

� ¼ @A=@� ¼
ð
ð2� � !o

2q2Þ�1=2 dq� t ¼ ð1=!oÞ arcsin
�
!oq=ð2�Þ1=2

�� t;

) q ¼ ½ð2�Þ1=2=!o� sin½!oðtþ �Þ�: unperturbed solution; � ¼ 2�=!o: ðfÞ

Therefore, the perturbation Hamiltonian equals

H1 ¼ ð1=4Þ"q4 ¼ ð"�2=!o
4Þ sin4½!oðtþ �Þ� ¼ H1ðt; �; �Þ

¼ � � � ¼ ð"�2=!o
4Þ�ð3=8Þ � ð1=2Þ cos½2!oðtþ �Þ� þ ð1=8Þ cos½4!oðtþ �Þ�

�
;

and so its average over � is

hH1i � ð!o=2�Þ
ð2�=!o

0

H1 dt ¼ � � � ¼ 3"�2=8!o
4: ðgÞ

Hence, the averaged perturbation equations give

d�=dt ¼ �@hH1i=@� ¼ 0 ) � ¼ constant; ðhÞ
d�=dt ¼ @hH1i=@� ¼ 3"�=4!o

4 ) � ¼ ð3"�=4!o
4Þtþ �o; ðiÞ

where �o is the integration constant. Finally, substituting (h, i) back into (f ), we

obtain the first "-order correction:

q ¼ ½ð2�Þ1=2=!o� sin
�
!o½1þ ð3"�=4!o

4Þ�tþ !o�o

�
; ð jÞ

and the constants �, �o are to be determined from the initial conditions. This agrees

with the expressions obtained by other asymptotic methods (e.g., Krylov, Bogoliubov,

Mitropolskii; see also chap. 7). For additional problems, see, for example, Nayfeh

(1973, pp. 183–189).

Problem 8.10.1 Show that the HJ equation of a particle of mass m in a potential

field V ¼ Vðparticle position; timeÞ in the following common systems of coordinates

(with standard notations) is:

(i) rectangular Cartesian:

@A=@tþ ð1=2mÞ�ð@A=@xÞ2 þ ð@A=@yÞ2 þ ð@A=@zÞ2�þ Vðx; y; z; tÞ ¼ 0; ðaÞ

(ii) polar cylindrical:

@A=@tþ ð1=2mÞ�ð@A=@rÞ2 þ r�2ð@A=@�Þ2 þ ð@A=@zÞ2�þ Vðr; �; z; tÞ ¼ 0; ðbÞ

(iii) spherical coordinates:

@A=@tþ ð1=2mÞ�ð@A=@rÞ2 þ r�2ð@A=@�Þ2 þ ðr sin �Þ�2ð@A=@�Þ2�þ Vðr; �; �; tÞ ¼ 0:

ðcÞ

Recall that r has different meanings in (b) and (c).
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Problem 8.10.2 Consider the following action function, A ¼ Aðt; q; q 0Þ, that satis-

fies the HJ equation

Hðt; q; @A=@qÞ þ @A=@t ¼ 0: ðaÞ
Show that any solution of (a) of the form

A ¼ Aðt; q; �Þ; � � ð�1; . . . ; �nÞ: n arbitrary and independent constants; ðbÞ
solves the dynamical problem through the 2n finite equations

pk ¼ @A=@qk; ��k ¼ @A=@�k; ðcÞ
where

q 0 ! � and p 0 ! � ½� ð�1; . . . ; �nÞ: n new arbitrary and independent constants�
are, respectively, the new constant canonical coordinates and momenta.

HINT

Recall (8.8.15), with Aðt; q; �Þ ! F1ðt; q; q 0Þ.

Problem 8.10.3 Continuing from the preceding problem, show that if @H=@t ¼ 0,

then the HJ equation assumes the special form

Hðq; @Ao=@qÞ ¼ E; ðaÞ
where A ¼ Aoðq; �Þ � E t, and the solution of the dynamical problem is given by the

following 2n finite equations:

@Ao=@qk ¼ pk; ðbÞ
@Ao=@E ¼ t� �1; ðcÞ
@Ao=@�r ¼ ��r ðr ¼ 2; . . . ; nÞ; ðdÞ

where �1 ¼ E and ð�2; . . . ; �nÞ: n� 1 constants of integration of (a).

HINT

�1 ¼ �@A=@�1 ¼ �
�
@Ao=@�1 � ð@E=@�1Þt

� ¼ � � � :
Problem 8.10.4 Hamiltonian Form of Variation of Constants/Parameters: Non-
potential Forces.

(i) By applying (8.7.22 ff.) with

Xk ! Xk
ð1Þ ¼ �@H1=@qk þQk; ðk ¼ 1; . . . ; nÞ ðaÞ

Qk ¼ small nonpotential perturbative forces; ðbÞ
ck ! �k; cnþl ! �l ðk; l ¼ 1; . . . ; nÞ; ðcÞ
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and (8.9.10 ff.), show that, in the presence of forces — that is, for perturbed

Hamiltonian equations: dqk=dt ¼ @H=@pk, dpk=dt ¼ �@H=@qk þQk, H ¼ Ho þH1

— the fundamental perturbation equations (ex. 8.10.9: h, i) generalize to

d�k=dt ¼ @H1=@�k þ
X
ð@�k=@plÞQl ¼ @H1=@�k �

X
ð@ql=@�kÞQl ; ðdÞ

d�k=dt ¼ �@H1=@�k þ
X
ð@�k=@plÞQl ¼ �@H1=@�k þ

X
ð@ql=@�kÞQl: ðeÞ

The advantage of the second forms of (d, e) over their corresponding first forms lies

in that the former do not require inversion of the general solution of the unperturbed
problem: q ¼ qðt; �; �Þ, p ¼ pðt; �; �Þ.

(ii) Verify that if Qk ¼ QkðtÞ— for example, if the perturbative forces are

constant — then (d, e) can be rewritten, respectively, in the canonical form:

d�k=dt ¼ @1=@�k; d�k=dt ¼ �@1=@�k; ðfÞ
where

1 � H1 �
X

Qkqk ¼ generalized Hamiltonian perturbation: ðgÞ

[Under such forces, the perturbed Hamiltonian equations can, similarly, be written

as

dqk=dt ¼ @=@pk; dpk=dt ¼ �@=@qk; ðhÞ
where

 � H �
X

Qkqk ¼ generalized Hamiltonian:� ðiÞ

HINTS

To prove the second forms of (d, e), we proceed as follows: from the table of the

various types of generating functions of }8.8 (table 8.1) by equating the second mixed

partial F1;2;3;4-derivatives, we readily find the following equalities:

@2F1=@qk@qk 0 ¼ @pk=@qk 0 ¼ �@pk 0=@qk; ð jÞ
@2F2=@qk@pk 0 ¼ @pk=@pk 0 ¼ @qk 0=@qk; ðkÞ
@2F3=@pk@qk 0 ¼ �@qk=@qk 0 ¼ �@pk 0=@pk; ðlÞ
@2F4=@pk@pk 0 ¼ �@qk=@pk 0 ¼ @qk 0=@pk; ðmÞ

and then, as described in ex. 8.10.9, we view [in (l, m)] the q 0, p 0 as �, �.

For an alternative derivation of (d, e) along with several advanced and detailed

applications of them, see Lur’e (1968, pp. 560–562, ff.].

8.11 HAMILTON’S PRINCIPAL AND CHARACTERISTIC FUNCTIONS,

AND ASSOCIATED VARIATIONAL PRINCIPLES/

DIFFERENTIAL EQUATIONS

In this section, we examine the connection between the Hamilton–Jacobi (HJ) equa-

tion and Hamilton’s integral variational principle (chap. 7). Let us assume that,
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somehow, we have obtained the general solution of the canonical equations

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk ðk ¼ 1; . . . ; nÞ; ð8:11:1Þ

that is, we have found the expressions

qk ¼ qkðt; cÞ; pk ¼ pkðt; cÞ; c � ðc1; . . . ; c2nÞ ¼ constants of integration:

ð8:11:1aÞ

Substituting (8.11.1a) in the system Hamiltonian H ¼ Hðt; q; pÞ, we obtain

H ¼ Hðt; q; pÞ ¼ H½t; qðt; cÞ; pðt; cÞ� � Hðt; cÞ; ð8:11:2Þ

and, therefore, applying chain rule to the above, we find, successively (with

� ¼ 1; . . . ; 2nÞ;

@H=@c� ¼
X �ð@H=@qkÞð@qk=@c�Þ þ ð@H=@pkÞð@pk=@c�Þ�

¼
X �ð@pk=@c�Þðdqk=dtÞ � ð@qk=@c�Þðdpk=dtÞ� ½by ð8:11:1Þ�

¼ @=@c�
X

pk _qqk

� �
� d=dt

X
pkð@qk=@c�Þ

� �
ð8:11:2aÞ

½due to the identity: @ _qqk=@c� ¼ @=@c�ð@qk=@tÞ ¼ @=@tð@qk=@c�Þ ¼ ð@qk=@c�Þ:�;

or, since

@=@c�
X

pk _qqk

� �
� @H=@c� ¼ @L=@c� ¼ @ðT � VÞ=@c�; ð8:11:3Þ

we finally obtain the following [special form of the central equation (}3.6)]:

@L=@c� ¼ d=dt
X

pkð@qk=@c�Þ
� �

: ð8:11:4Þ

Integrating the above, from an initial instant to to a current one t [and noting that

@ð. . .Þ=@ck and
Ð ð. . .Þ dt commute], we get

@=@c�

ðt
to

L dt ¼
X �

pkð@qk=@c�Þ � pkoð@qko=@c�
�
; ð8:11:5Þ

where qkoðpkoÞ are the values of qkðpkÞ at t ¼ to. The function (}7.9)

AH �
ðt
to

L dt ¼
ðt
to

ðT � VÞ dt � A ð8:11:6Þ

is called, after Hamilton (1834–1835), the principal function of the motion of the

system, because, in his words, ‘‘The variation of this definite integral S [our A] has

therefore the double property, of giving the differential equations of motion for any

transformed coordinates when the extreme positions are regarded as fixed, and of

giving the integrals of those differential equations when the extreme positions are

treated as varying.’’ (Quoted in MacMillan, 1936, p. 367.) To understand these
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statements better, we need to examine A more closely. In view of (8.11.1a) and

(8.11.6), we will have

qk ¼ qkðt; cÞ ) qko ¼ qkðto; cÞ ð8:11:7aÞ
) A ¼ Aðt; to; cÞ; ð8:11:7bÞ

and, therefore, arbitrary variations of the 2n integration constants, c! cþ �c, cause

the following (first-order in the �c, and fixed-time) variations in the q’s and A:

�qk ¼
X
ð@qk=@c�Þ �c�; �A ¼

X
ð@A=@c�Þ �c�: ð8:11:8Þ

Hence, multiplying (8.11.5) with �c� and summing over � ¼ 1; . . . ; 2n, we arrive at

the fundamental variational equation

�A ¼
X
ðpk �qk � pko �qkoÞ: ð8:11:9Þ

To obtain differential equations from the above, we, first, solve the 2n equations

(8.11.7a) for the 2n constants c in terms of the 2n q’s and qo’s (and time):

c� ¼ c�ðt; q; qoÞ, and then substitute this result in (8.11.7b)

A ¼ Aðt; to; q; qoÞ: ð8:11:10Þ

This expresses the action functional along the actual path (or orbit) as a function of

the coordinates of its lower (initial) and upper (final) limits of integration. More

important: (i) from the mathematical point of view, the transition from (8.11.7b) to

(8.11.10) is one from an initial-value problem [c given, or equivalently, due to

(8.11.1a), qo and po given] to a boundary-value problem (qo and q given); while (ii)

physically, it signifies a transition from motion determined by the initial positions

and velocities (or momenta) to motion determined by the initial and final positions

(provided, of course, that the latter are achievable from the former).

Varying (8.11.10), for fixed t, we obtain

�A ¼
X �ð@A=@qkÞ �qk þ ð@A=@qkoÞ �qko�; ð8:11:11Þ

and, therefore, comparing this with (8.11.9), while recalling that the �q and �qo are
arbitrary, we obtain the equations

@A=@qk ¼ pk; @A=@qko ¼ �pko: ð8:11:12Þ

Solving the second group of (8.11.12) for the q’s in terms of t and qo’s, po’s, and then

substituting these expressions into the first group, we obtain the p’s as functions of t,
qo’s, po’s:

qk ¼ qkðt; qo; poÞ; pk ¼ pkðt; qo; poÞ; ð8:11:13Þ

that is, eqs. (8.11.12) constitute a complete set of integrals of the equations of motion
(8.11.1): knowledge of A provides a complete solution to the problem. Indeed, A
satisfies the Hamilton–Jacobi equation (HJ, }8.10), and, hence, can be identified with
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the there-introduced action function A. Here is why: (. . .)
:
-differentiating (8.11.10),

we find, successively,

dA=dt ¼ @A=@tþ
X
ð@A=@qkÞðdqk=dtÞ ¼ @A=@tþ

X
pk _qqk

½by the first of ð8:11:12Þ�;
and from this, since dA=dt ¼ L ð¼ T � VÞ [by (8.11.6)] and

P
pk _qqk ¼ LþH [by

the Hamiltonian definition], we readily conclude that

@A=@tþHðt; q; pÞ ¼ @A=@tþHðt; q; @A=@qÞ ¼ 0; Q:E:D: ð8:11:14Þ

Hamilton’s Principle

Substituting L ¼P pk _qqk �H in (8.11.6), and then taking its (first and fixed-end-

point) variation �A, we find, successively,

�A ¼ �
ð
Ldt ¼ �

ð X
pk _qqk �H

� �
dt

¼
ð X �

pk �ð _qqkÞ þ _qqk �pk
�� �Hn o

dt

¼
ð X

pk �qk

� �: �X _ppk �qk þ
X

_qqk �pk

h in
�
X �ð@H=@qkÞ �qk þ ð@H=@pkÞ �pk�o dt

½assuming that �ðdqÞ ¼ dð�qÞ; or �ð _qqÞ ¼ ð�qÞ:�;
or, after integrating out the ð. . .Þ: term:

�A ¼
ð X �ðdqk=dt� @H=@pkÞ �pk �X ðdpk=dtþ @H=@qkÞ �qk

�
þ
X
ðpk �qk � pko �qkoÞ: ð8:11:15Þ

Now, if

dqk=dt ¼ @H=@pk; dpk=dt ¼ �@H=@qk; ð8:11:16Þ
and �qk ¼ �qko ¼ 0 (or some other combination that nullifies the last (‘‘boundary’’)

terms, then �A ¼ 0; and, conversely, if �A ¼ 0, for all variations of the q’s and p’s
that vanish at the temporal endpoints, then (8.11.16) follow. This is Hamilton’s

principle in canonical variables (and for contemporaneous variations).

In sum:

(i) Given the function H ¼ Hðt; q; pÞ and the differential equations dqk=dt ¼
@H=@pk, dpk=dt ¼ �@H=@qk, the principal function A � Ð Ldt ¼ Ð ðP pk _qqk �HÞ dt
¼ Ð ðP pk dqk �H dtÞ satisfies the partial differential equation @A=@t þ
Hðt; q; @A=@qÞ ¼ 0.

(ii) Hamilton: if A ¼ Aðt; to; q; qoÞ, then a complete integral of the equations of

motion can be obtained from pk ¼ @A=@qk, pko ¼ @A=@qko.
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(iii) Jacobi: If A ¼ Aðt; q; �Þ is a complete solution of @A=@tþHðt; q; @A=@qÞ ¼ 0,

then a complete integral of the equations of motion can be obtained from

pk ¼ @A=@qk, �k ¼ @A=@�k.

Action as a Function of the Coordinates and Time

Comparing the earlier dA=dt ¼ L with dA=dt ¼ @A=@tþP ð@A=@qkÞ ðdqk=dtÞ ¼
@A=@tþP pk _qqk, we immediately obtain

@A=@t ¼ L�
X

pk _qqk ¼ �H; ð8:11:17Þ

which also follows from the HJ equation (8.11.14). Hence, if A is considered as a
function of the current coordinates and upper (current) time limit in (8.11.6), its total

differential equals

dA ¼ ð@A=@tÞ dtþ
X
ð@A=@qkÞ dqk ¼

X
pk dqk �H dt: ð8:11:18Þ

Generally, if A is considered as a function of both initial and final coordinates and

time, then

dA ¼
X

pk dqk �H dt
� �

�
X

pko dqko �Ho dto

� �
; ð8:11:19Þ

which can be rewritten in terms of variational calculus notation as

DA ¼
X

pkDqk �HDt
� �

�
X

pko Dqko �Ho Dto
� �

¼
X

pkDqk �
X

pkoDqko �HDðt� toÞ ½if H ¼ constant� ð8:11:20Þ

[where Dð. . .Þ ¼ �ð. . .Þ þ ð. . .Þ:Dt ¼ noncontemporaneous variation (}7.2, }7.9)], from

which (8.11.12) and (8.11.17) follow. If ð@L=@t ¼ 0 )Þ H ¼ constant, then the latter

can be rewritten as

@A=@� ¼ �H; � � t� to ¼ time of transit; ð8:11:21Þ

whereas if H 6¼ constant, then we have @A=@to ¼ Ho; @A=@t ¼ �H. Equation

(8.11.20) is referred to as Hamilton’s principle of varying, or varied, action.
The above show that the final (or current) state of the system cannot be an

arbitrary function of its initial state; the right side of (8.11.19) must be an exact

differential, no matter what the impressed (potential) forces are. These results are of

interest in geometrical optics.

Specializations

(i) If @L=@t ¼ �@H=@t ¼ 0, then Hðq; pÞ ¼ constant � E ðtotal energyÞ. Then we

can write

A ¼
ð X

pk dqk �H dt
� �

¼ Ao � Eðt� toÞ; ð8:11:22Þ
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where

Ao �
ð X

pk dqk ¼
ð X

pk _qqk

� �
dt ¼

ð
2T dt

¼ Abbreviated action ðor characteristic function Ao of }8:10; and the

Lagrangean action AL of }7:9; also; frequently denoted by WÞ: ð8:11:23Þ

In this case, and for variations satisfying ðDto !Þ dto ¼ 0; ðDqko !Þ dqko ¼ 0, and

ðDqk !Þ dqk ¼ 0 but ðDt!Þ dt 6¼ 0 (i.e., given initial coordinates and time, and

given final coordinates but not time) eqs. (8.11.19), (8.11.20) reduce, respectively, to

dA ¼ �H dt ¼ �E dt; DA ¼ �EDt; ð8:11:24Þ

and, therefore, comparing with (8.11.22), we conclude that, for such isoenergetic
variations,

DAo ¼ 0: ð8:11:25Þ

This is the ‘‘principle’’ of Maupertuis!Euler!Lagrange (MEL; recalling discus-

sion in }7.9): The abbreviated, or Lagrangean, action has a stationary value for the

actual path of the system, among all comparison paths that satisfy conservation of

energy (and all have the same energy constant as the actual path), pass from the

given initial configuration at a given time, and from the given final configuration at

an unspecified time.

Generally, and in variational calculus notation,

DAo ¼
X

pkDqk �
X

pkoDqko
� �

þ DHðt� toÞ; ð8:11:26Þ

from which, if we regard Ao as a function of the initial and final coordinates and the
energy— that is, Ao ¼ Aoðqo; q;EÞ— we obtain the differential relations

pk ¼ @Ao=@qk; pko ¼ �@Ao=@qko; � � t� to ¼ @Ao=@E: ð8:11:27Þ

Here, too, knowledge of Ao determines the motion: the nþ 1 equations, second and

third of (8.11.27), plus qo; po determine the energy H and the q’s; then the first of

(8.11.27) gives the p’s.
If the system Lagrangean has the common form

L ¼ ð1=2Þ
XX

MklðqÞ _qqk _qql � VðqÞ; ð8:11:28Þ

then, since pk ¼ @L=@ _qqk ¼
P

MklðqÞ _qql, and by energy conservation:

E ¼ ð1=2Þ
XX

Mkl _qqk _qql þV ) ðdtÞ2 ¼
XX

Mkl dqk dql

� �.
2ðE � VÞ;
ð8:11:29Þ

the corresponding Ao is expressed in terms of the coordinates q and their

differentials dq, and with the energy as a constant parameter, in the generalized
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Jacobi form (}7.9):

Ao �
ð X

pk dqk ¼
ð XX �

Mklðdql=dtÞ
�
dqk ½by ð8:11:29Þ: dt ¼ � � ��

¼
ð

2ðE � VÞ
XX

Mkl dqk dql

h i1=2
: ð8:11:30Þ

Clearly, since pk ¼ @Lðq; _qqÞ=@ _qqk and E ¼ Hðq; _qqÞ ¼ Eðq; _qqÞ, this method can be

extended to systems with more general Lagrangeans than (8.11.28).

(ii) If, in (8.11.22), we vary both E and t, we obtain (again in variational notation,

and recalling (8.11.24)]

DA ¼ DAo � ðt� toÞ DE � EDt ¼ �EDt; ð8:11:31Þ
from which we easily conclude that

@Ao=@E ¼ t� to: ð8:11:32Þ
(a) If, further, Ao has the form (8.11.30), then (8.11.32) leads to the integral [of

(8.11.29)]:

t� to ¼
ð XX

Mkl dqk dql
�
2ðE � VÞ

� �1=2
; ð8:11:33Þ

which, along with the path equation, determines the motion.

(b) If the system undergoes periodic motion with the (single) period � ¼ t� to ¼ 2�=!,

then its frequency ! is found from

! ¼ 2�ð@Ao=@EÞ�1: ð8:11:34Þ

Additional related results are given in the examples and problems of }7.9.

Extension to Cyclic/Ignorable Systems
(Larmor, 1884)

In such a case, A and Ao are replaced, respectively, by (recalling eq. (8.3.3c)):

AR �
ð
ðT 00 � VÞ dt �

ð
T �

X
Ci

_  i

� �
� V

h i
dt �

ð
L�

X
Ci

_  i

� �
dt

�
ð
Rðt; q; _qq;C � CÞ dt �

ð
Rdt:

Function of the initial and final values of the nonignorable (or positional)
coordinates q and time of transit � � t� to; with the cyclic momenta C as
constant parameters, (8.11.35)

Ao;R �
ð

2T �
X

Ci
_  i

� �
dt:

Function of the initial and final values of the nonignorable coordinates q,
and the total energy H under constant cyclic momenta. (8.11.36)

All previous variations and differential equations hold for AR and Ao;R, provided only
the nonignorable coordinates and velocities are varied. Indeed:
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(i) Varying AR, we obtain, successively,

DAR ¼ �
ð
Rdtþ ðRDt� Ro DtoÞ

¼ � � � ¼ �
ð X

EpðRÞ �qp dtþ
X
ðpp �qp � ppo �qpoÞ þ ðRDt� Ro DtoÞ

¼ �ð0Þ þ
X �

ppðDqp � _qqp DtÞ � ppoðDqpo � _qqpo DtoÞ
�þ ðRDt� Ro DtoÞ;

or, since R ¼ T 00 � V ; T þ V ¼ H ¼ constant; and

2T ¼
X

pp _qqp þ
X

Ci
_  i

)
X

pp _qqp ¼ 2T �
X

Ci
_  i ¼ T þ T �

X
Ci

_  i

� �
¼ T þ T 00;

finally,

DAR ¼
X
ð pp Dqp � ppo DqpoÞ �H Dðt� toÞ: ð8:11:37Þ

� If Dqp ¼ 0;Dqpo ¼ 0;Dðt� toÞ � D� ¼ 0, then the above yields DAR ¼ 0; which is the

Routhian generalization of Hamilton’s principle.

� If both initial and final configurations as well as time of transit are variable, then

(8.11.37) leads us to

pp ¼ @AR=@qp; ppo ¼ �@AR=@qpo; H ¼ �@AR=@� ðp ¼M þ 1; . . . ; nÞ;
ð8:11:38Þ

which are the Routhian versions of (8.11.12) and (8.11.17).

(ii) For Ao;R, we find, similarly,

Ao;R ¼
ð X

pp _qqp

� �
dt ¼ � � � ¼

ð
ðT þ T 00Þ dt

¼ AR þ
ð
ðT þ VÞ dt ¼ AR þH� ; ð8:11:39Þ

that is, here, the independent variable is the total energy, not the transit time. Hence,

varying this generally, we obtain

DAo;R ¼ DAR þ � DH þH D� ½invoking ð8:11:37Þ�
¼
X
ðpp Dqp � ppo DqpoÞ þ � DH; ð8:11:40Þ

and from this we get the equations

pp ¼ @Ao;R=@qp; ppo ¼ �@Ao;R=@qpo; � ¼ @Ao;R=@H ð p ¼M þ 1; . . . ; nÞ;
ð8:11:41Þ

which constitute the Routhian versions of (8.11.27).

Example 8.11.1 The Characteristic Function, or Abbreviated Action, of a One-DOF
System. Application of the energy equation to such a system yields

p ¼ pðq;EÞ ð� ¼ E; n ¼ 1Þ; ðaÞ
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and therefore its characteristic function becomes

Ao ¼
ð
pðq;EÞ dq; ðbÞ

with the integral extending from an initial configuration, qo, to a current one, q.
Hence, by (8.10.11l):

t� to ¼ @Ao=@E ¼ @=@E
ð
pðq;EÞ dq

� �
¼
ð
½@pðq;EÞ=@E� dq: ðcÞ

Specialization

For a single particle of mass m, the energy equation

H ¼ p2=2m þVðqÞ ¼ E; ðdÞ
yields the (a)-like representation

p ¼ �2m½E � VðqÞ��1=2 ¼ pðq; EÞ; ðeÞ
and hence the (b)-like action

Ao ¼ ð2mÞ1=2
ð �

E � VðqÞ�1=2 dq: ðfÞ

From (e), we obtain

@p=@E ¼ ðm=2Þ1=2�E �VðqÞ��1=2
; ðgÞ

and, from this, the (c)-like equation of motion

t ¼ ðm=2Þ1=2
ð �

E � VðqÞ��1=2
dqþ to: ðhÞ

In particular, if V ¼ mgq (i.e., vertical motion of particle in constant field of

gravity), then (h) gives

t ¼ ðm=2Þ1=2
ð
ðE �mgqÞ�1=2 dqþ to ¼ to � ð1=gÞ ½2ðE �mgqÞ=m�1=2;

and if we choose the q-origin so that mgqo ¼ E, the above reduces to the well-

known q ¼ qo � ðg=2Þ ðt� toÞ2.
It is not hard to see that the above also apply to an n-DOF system with only one

nonignorable coordinate: qn ¼ q. Then, since all momenta except pn ¼ p are constant,

the energy equation and characteristic function reduce, respectively, to

Hðq; p; �1; . . . ; �n�1Þ ¼ E; Ao ¼
ð
pðq; �1; . . . ; �n�1; �n ¼ EÞ dq: ðiÞ

Example 8.11.2 On Hamilton’s Principal Function and Associated Differential
Equations.
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(i) Let

L ¼ T � V ¼ ðm=2Þ ½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2�; ðaÞ

that is, free motion of particle P of mass m. Then, as is well known,

x ¼ xo þ _xxo t; y ¼ yo þ _yyo t; z ¼ zo þ _zzo t ðlaw of inertiaÞ; ðbÞ

where xo; yo; zo= _xxo; _yyo; _zzo ¼ rectangular Cartesian components of initial position/

velocity of P, at time to ¼ 0. As a result of (b), the corresponding action (principal

function) becomes, successively,

A ¼
ð
Ldt ¼

ð
ðm=2Þ ½ð _xxÞ2 þ ð _yyÞ2 þ ð _zzÞ2� dt

¼ � � � ¼ ðm=2Þ �ð _xxoÞ2 þ ð _yyoÞ2 þ ð _zzoÞ2� ðt� toÞ � ðmvo
2=2Þt

½by ðbÞ: _xxo ¼ ðx� xoÞ=t ¼ _xx; _yyo ¼ ðy� yoÞ=t ¼ _yy; _zzo ¼ ðz� zoÞ=t ¼ _zz�
¼ ðm=2tÞ �ðx� xoÞ2 þ ðy� yoÞ2 þ ðz� zoÞ2

�
¼ Aðt; to; x; y; z; xo; yo; zoÞ; ðcÞ

and from this expression we readily find

@A=@x ¼ ðm=2tÞ ½2ðx� xoÞ� ¼ mðx� xoÞ=t ¼ m _xx � px; etc:; cyclically; ðdÞ
@A=@xo ¼ �ðm=2tÞ ½2ðx� xoÞ� ¼ � � � ¼ �m _xxo � �pxo; etc:; cyclically; ðeÞ

@A=@t ¼ �ðm=2t2Þ ½ðx� xoÞ2 þ � � �� ¼ �ðm=2Þ
�½ðx� xoÞ=t�2 þ � � �

�
¼ �ðmvo

2=2Þ ¼ �ðenergyÞ � �E; as expected: ðfÞ

(ii) Let the equations of motion of a particle P be

€xx ¼ �!2x; €yy ¼ �!2y; ðgÞ

that is, isotropic harmonic oscillator of (constant) frequency !; x; y ¼ rectangular

Cartesian coordinates. The general solution of (g) is

x ¼ a sinð!tþ �oÞ; y ¼ b sinð!tþ  oÞ; ðhÞ

where a; b; �o;  o ¼ four constants of integration. From the above, we readily

obtain the system Lagrangean:

L ¼ T � V ¼ ðm=2Þ ½ð _xxÞ2 þ ð _yyÞ2� � ðm!2=2Þ ðx2 þ y2Þ
¼ � � � ¼ ðm!2=2Þ�a2 cos½2ð! tþ �oÞ� þ b2 cos½2ð!tþ  oÞ�

�
; ðiÞ
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and, from the latter, the following system action:

A ¼
ð
Ldt ¼ ðm!=4Þ�a2 sin½2ð!tþ �oÞ� þ b2 sin½2ð!tþ  oÞ� � a2 sinð2�oÞ � b2 sinð2 oÞ

�
½introducing the initial positions: xð0Þ � xo ¼ a sin�o; yð0Þ � yo ¼ b sin o�
¼ ðm!=2Þ �½a x cosð!tþ �oÞ þ b y cosð!tþ  oÞ� � a xo cos�o � b yo cos o

��
since by ðhÞ; a cos�o ¼ ½x� xo cosð!tÞ�=sinð!tÞ; b cos o ¼ ½y� yo cosð!tÞ�=sinð!tÞ�
¼ ðm!=2Þ �a x½cosð!tÞ cos�o � sinð!tÞ sin�o� þ b y½cosð!tÞ cos o � sinð!tÞ sin o�

� axo cos�o � byo cos o

�
¼ ½m!=2 sinð!tÞ� ½ðx2 þ y2 þ xo

2 þ yo
2Þ cosð!tÞ � 2ðxxo þ yyoÞ�

¼ ½m!=2 sinð!tÞ� �½ðx� xoÞ2 þ ðy� yoÞ2� cosð!tÞ � 2½1� cosð!tÞ� ðxxo þ yyoÞ
�
: ð jÞ

From this expression, we readily obtain

@A=@x ¼ ½m!=2 sinð!tÞ� ½2x cosð!tÞ � 2xo�
½x ¼ a sinð!tþ �oÞ ) xo ¼ a sin �o�

¼ am! cosð!tþ �oÞ ¼ m _xx ¼ px; etc:; cyclically; ðkÞ
@A=@xo ¼ ½m!=2 sinð!tÞ� ½2xo cosð!tÞ � 2x�

¼ �½am!=sinð!tÞ� sinð!tÞ cos�o ¼ �m _xxo ¼ �pxo; etc:; cyclically: ðlÞ

Let the reader verify that @A=@t ¼ �ðT þ VÞ ¼ �E.

Example 8.11.3 Second Proof of the Constancy of Lagrange’s Brackets (8.7.11 ff.).
The expression following eq. (8.11.2) can be successively rewritten as follows:

@H=@c� ¼ @=@c�
X

pk _qqk

� �
� d=dt

X
pkð@qk=@c�Þ

� �
ðexpanding and simplifyingÞ
¼
X

_qqkð@pk=@c�Þ �
X

_ppkð@qk=@c�Þ
ðadding and subtracting the second and fourth summands belowÞ
¼
X �

_qqkð@pk=@c�Þ þ qkð@ _ppk=@c�Þ
��X �

_ppkð@qk=@c�Þ þ qkð@ _ppk=@c�Þ
�

¼ d=dt
X

qkð@pk=@c�Þ
h i

� @=@c�
X

qk _ppk

� �
; ðaÞ

or, after slight rearrangement and use of dpk=dt ¼ �@H=@qk,

d=dt
X

qkð@pk=@c�Þ
� �

¼ @=@c� H �
X

qkð@H=@qkÞ
� �

� @H 0=@c�; ðbÞ

and, similarly, with c� ! c�, we obtain

d=dt
X

qkð@qk=@c�Þ
� �

¼ @=@c� H �
X

qkð@H=@qkÞ
� �

� @H 0=@c�: ðcÞ
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Now, differentiating (b) relative to c� and (c) relative to c�, and then subtracting side

by side, we readily obtain

d=dt @=@c�
X

qkð@pk=@c�Þ � @=@c�
X

qkð@pk=@c�Þ
h i
¼ @2H 0=@c�@c� � @2H 0=@c�@c� ¼ 0; ðdÞ

that is,

d=dt
X
ð@qk=@c�Þ ð@pk=@c�Þ �

X
ð@qk=@c�Þ ð@pk=@c�Þ

� �
� ½c�; c� �: ¼ 0 ðeÞ

) ½c�; c�� ¼ constant; Q:E:D: ðfÞ

Problem 8.11.1 By carrying out the two distinct (fixed time) variations �1ð. . .Þ and

�2ð. . .Þ on the Hamiltonian equations

pko ¼ �@A=@qko; pk ¼ @A=@qk;where A ¼ Aðt; to; q; qoÞ; ðaÞ
prove the earlier Lagrange–Poisson theorem (8.7.10):

I �
X
ð�1pk �2 qk � �2 pk �1qkÞ ¼

X
ð�1pko �2qko � �2 pko �1qkoÞ � Io; ðbÞ

that is, I ¼ constant in time, namely, dI=dt ¼ 0. (For relevant applications, see, e.g.,

Lamb, 1943, pp. 277–281.)

Problem 8.11.2 Assume that after the action-like integral (functional)

A 0 �
ð

T þ V þ
X

qk _ppk

� �
dt ðaÞ

is evaluated along an actual path, it becomes a function of the initial and final

momenta and time of transit � � t� to: A
0 ¼ A 0ðp; po; �Þ. Show that

DA 0 ¼ ð@A 0=@�ÞD� þ
X �ð@A 0=@pkÞDpk þ ð@A 0=@pkoÞDpko�

¼ HD� þ
X
ðqk Dpk � qko DpkoÞ; ðbÞ

that is,

@A 0=@� ¼ H; @A 0=@pk ¼ qk; @A 0=@pko ¼ �qko:

Problem 8.11.3 Alternative Variational Formulation of the Routhian Formalism.

Show that the variational problem (say, with vanishing endpoint variations, and

the usual notations)

�

ð
L dt ¼ 0; ðaÞ

where

L � Rðt; q; _qq;  ;CÞ þ
X

_  i Ci ¼ Lðt; q; _qq;  ; _  ;C; _CCÞ; ðbÞ
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yields Routh’s equations for the system described by the ‘‘Lagrangean’’ L; that is,

verify that

ð@L=@ _qqpÞ:� @L=@qp ¼ 0 gives Routh’s equations of motion

ði:e:;R: Lagrangean for the q’sÞ;
ð@L=@ _  iÞ: � @L=@ i ¼ 0 gives dCi=dt ¼ @R=@ i

ð) Ci ¼ constant; if @R=@ i ¼ @L=@ i ¼ 0Þ;
ð@L=@ _CCiÞ:� @L=@Ci ¼ 0 gives d i=dt ¼ @R=@Ci:

8.12 INTEGRAL INVARIANTS

We have already seen (}8.8) that canonical transformations leave the Hamiltonian

equations form invariant, and they also have the same effect on Hamilton’s principle;

that is, if ð X
pk _qqk �Hðt; q; pÞ

� �
dt! stationary; ð8:12:1aÞ

and the transformation ðq; pÞ ! ðq 0; p 0Þ is canonical, thenð X
pk 0 _qqk 0 �H 0ðt; q 0; p 0Þ

� �
dt! stationary: ð8:12:1bÞ

[In this case, the difference of the integrands of (8.12.1a, b) equals the ð. . .Þ:-deriva-

tive of a function of 2n of the old and new variables, and time (i.e., the generating

function F); and so, under fixed endpoint ðq; pÞ variations, that difference vanishes.]

Now, Poincaré, E. Cartan, et al. have shown that not only differential, but also

certain integral forms exist that remain invariant under canonical transformations.

Such quantities, named by them integral invariants, are the object of study of this

section.

We begin by considering the fundamental equation of varied action (8.11.20),

rewritten as

DA ¼
X

pk Dqk �H Dt
� �

Final time
�

X
pk Dqk �HDt

� �
Initial time

; ð8:12:2Þ

where (fig. 8.8), and to the first order in Dq;Dt:

DA ¼ A ð from a1
0 to a2

0; along C 0Þ ��A ð from a1 to a2; along CÞ: ð8:12:3Þ
Let us assume that not only the fundamental path C, but also its adjacent C 0 are

actual mechanical trajectories (or integral curves) of the system; that is, both are

To study these changes analytically, we begin with the following, easy to under-

stand, parametric representation of the Hamiltonian variables:

qk ¼ qkðs; cÞ; pk ¼ pkðs; cÞ; t ¼ tðs; cÞ; ð8:12:4aÞ
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or, equivalently,

qk ¼ qk½s; t1; qð1Þ; pð1Þ�; pk ¼ pk½s; t1; qð1Þ; pð1Þ�; t ¼ t½s; t1; qð1Þ; pð1Þ�;
ð8:12:4bÞ

where s is an ‘‘arc-length’’ parameter in the ð2nþ 1Þ-dimensional extended phase space
of ðt; q; pÞ, and c � ðc1; . . . ; c2nþ1Þ are 2nþ 1 constants of integration; while t1; q

ð1Þ �
ðq1
ð1Þ; . . . ; qn

ð1ÞÞ; pð1Þ � ðp1
ð1Þ; . . . ; pn

ð1ÞÞ are the initial values of t; q; p, respectively.

Now, let us assume that these 2nþ 1 initial values (corresponding to the initial

value s1 of s) are all functions of a single parameter �, independent of s:

qk
ð1Þ ¼ qk

ð1Þð�Þ; pk
ð1Þ ¼ pk

ð1Þð�Þ; tð1Þ ¼ tð1Þð�Þ; ð8:12:5Þ
so that as � varies between the finite values �1(initial ) and �2( final ) ð�1 � � � �2Þ,
the initial (left) endpoint of the system trajectories goes around the simple closed

curve �1 in ðt; q; pÞ-space:

a1ð�1Þ ! a1
0 ! a1

00 ! � � � ! a1ð�2Þ: ð8:12:6Þ
Then, substituting (8.12.5) into (8.12.4b), we obtain the following parametric re-

presentation of the system trajectories:

qk ¼ qk½s; t1ð�Þ; qð1Þð�Þ; pð1Þð�Þ� ¼ qkðs;�Þ;
pk ¼ pk½s; t1ð�Þ; qð1Þð�Þ; pð1Þð�Þ� ¼ pkðs;�Þ;
t ¼ t½s; t1ð�Þ; qð1Þð�Þ; pð1Þð�Þ� ¼ tðs;�Þ: ð8:12:7Þ
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Coordinates of points involved: a1ðt1; q1Þ ! a1
0ðt1 þ Dt1; q1 þ Dq1Þ,

a2ðt2; q2Þ ! a2
0ðt2 þ Dt2; q2 þ Dq2Þ.

Figure 8.8 Trajectories C and C′ satisfy the same equations of motion, but
have different initial conditions and times (only q vs. t shown here; see also Fig. 8.9).



These equations show that as the left endpoint traces �1, the right (final) endpoint

traces a similar closed curve �2, and a generic in-between point traces a closed curve �
(fig. 8.9); that is, as � varies from �1 to �2, a closed tube of trajectories (as its genera-

trices) is created in ðt; q; pÞ-space. We assume that the closed curves �1; . . . ; �; . . . ; �2 are

nowhere tangent to the trajectories C;C 0;C 00; . . . ;C, and are intersected only once

by them. The above translate to the following �-periodicity relations:

�1: qk
ð1Þð�1Þ ¼ qk

ð1Þð�2Þ ½or qkðs1; �1Þ ¼ qkðs1;�2Þ�;
pk
ð1Þð�1Þ ¼ pk

ð1Þð�2Þ ½or pkðs1; �1Þ ¼ pkðs1;�2Þ�;
t1ð�1Þ ¼ t1ð�2Þ ½or tðs1; �1Þ ¼ tðs1;�2Þ�; ð8:12:8Þ

and similarly for �2 and �.
From (8.12.7) we immediately see that the most general variations/differentials of

t; q; p along �1; �2; �—that is, from trajectory to trajectory by varying the initial

conditions (with a slight, easily understood, notational change to conform with

calculus and the integrations below)—are

Dqk ! dqk ¼
�
ð@qk=@t1Þðdt1=d�Þ

þ
X �ð@qk=@ql ð1ÞÞðdql ð1Þ=d�Þ þ ð@qk=@plð1ÞÞðdplð1Þ=d�Þ�� d�;

Dpk ! dpk ¼
�
ð@pk=@t1Þðdt1=d�Þ

þ
X �ð@pk=@ql ð1ÞÞðdql ð1Þ=d�Þ þ ð@pk=@plð1ÞÞðdplð1Þ=d�Þ�� d�;

Dt! dt ¼
�
ð@t=@t1Þðdt1=d�Þ

þ
X �ð@t=@ql ð1ÞÞðdql ð1Þ=d�Þ þ ð@t=@plð1ÞÞðdplð1Þ=d�Þ�� d�: ð8:12:9Þ
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Figure 8.9 As the parameter � varies from �1 to �2, a closed

tube of trajectories is created.



With these analytical preliminaries, let us now integrate the fundamental equation
(8.12.2) for a complete variation of �; that is, �1 ! �2. Since, here,

A ¼
ð
Lðt; q; _qqÞ dt

¼
ðt2ð�Þ
t1ð�Þ

L½tðs;�Þ; qðs;�Þ; pðs;�Þ� ½ð@t=@sÞ ds� ¼ Að�Þ; ð8:12:10Þ

[where the integrand is taken along a trajectory; i.e., for a fixed �],

the total change of A equals zero:þ
dA �

ð�2

�1

dA �
ð�2

�1

A 0ð�Þ d� ¼ Að�2Þ � Að�1Þ ¼ 0; ð8:12:11Þ

and therefore the integral of (8.12.2) (slightly rewritten in simplified standard

calculus notation, now that we understand the situation better) becomes

0 ¼
þ
dA ¼

þ
�

2

X
pk
ð2Þð�Þ dqkð2Þð�Þ �Hð2Þð�Þ dt2ð�Þ

� �
�
þ
�1

X
pk
ð1Þð�Þ dqkð1Þð�Þ �Hð1Þð�Þ dt1ð�Þ

� �
; ð8:12:12aÞ

where

Hð�Þð�Þ � H½t� ð�Þ; qð�Þð�Þ; pð�Þð�Þ�; qð�Þð�Þ � qðs�;�Þ; pð�Þð�Þ � pðs�; �Þ;
dqð�Þð�Þ; dt�ð�Þ: as given by ð8:12:9Þ; at s� ð* ¼ 1; 2Þ;

or, after another easily understood notational simplification,þ
�1

X
pk dqk �H dt

� �
¼
þ
�2

X
pk dqk �H dt

� �
¼
þ
�

X
pk dqk �H dt

� �
;

ð8:12:12bÞ
that is,

I �
þ X

pk dqk �H dt
� �

¼ constant: ð8:12:13Þ

In words: The integral I (around an arbitrary closed curve that encircles the tube of

system trajectories and intersects them only once) is constant along these trajectories;

as we say, I is a (Poincaré–Cartan) relative integral invariant. [If the domain of

integration is closed (open), like �, the integral invariant is called relative (absolute).]
For t ¼ constant ð) dt ¼ 0; i.e., � consists of simultaneous system states), I

reduces to the first-order (Poincaré) relative integral invariant:

I ! I1 �
þ X

pk dqk ¼ constant: ð8:12:14Þ

I1 is also called circulation integral, due to its formal similarity with the integrals that

appear in the Helmholtz–Thomson theorems of continuum kinematics.

)8.12 INTEGRAL INVARIANTS 1233



REMARK

If we, formally, set qnþ1 � t, then, since @A=@t ¼ �H, the corresponding canonical

‘‘momentum’’ equals �H; that is, pnþ1 ¼ @A=@qnþ1 ¼ @A=@t ¼ �H, and therefore

(8.12.13) can be rewritten in the following (i)-form for nþ 1 q’s:

I �
þ X

p� dq� ¼ constant ð� ¼ 1; . . . ; nþ 1Þ: ð8:12:13aÞ

Now, the simple closed curve � [a one-dimensional manifold in either the ðnþ 1Þ-
dimensional extended configuration space, or the ð2nþ 1Þ-dimensional extended

phase space] can be viewed as the boundary of a two-dimensional (simply connected)
surface there, �, described by the two Gaussian (curvilinear) coordinates u, v. Hence,

when the system point varies over �, we can write

qk ¼ qkðu; vÞ ! dqk ¼ ð@qk=@uÞ duþ ð@qk=@vÞ dv; ð8:12:15aÞ

and similarly for pk; dpk. Then, say (8.12.14) becomes

I1 ¼
þ X

pkð@qk=@uÞ
h i

duþ
X

pkð@qk=@vÞ
h i

dv
n o

; ð8:12:15bÞ

or, applying the (two-dimensional) Kelvin–Stokes theorem to it:

þ
�

½ð*Þ duþ ð**Þ dv� ¼
ð ð

�

�½@ð*Þ=@v� � ½@ð**Þ=@u�
�
du dv; ð8:12:15cÞ

I1 ¼
ð ð

�

@=@v
X

pkð@qk=@uÞ
h i

� @=@u
X

pkð@qk=@vÞ
h in o

du dv;

½where � ¼ region in uv-plane bounded by image of � there�

¼
ð ð

�

X �ð@pk=@vÞ ð@qk=@uÞ � ð@pk=@uÞ ð@qk=@vÞ�n o
du dv

�
ð ð

�

X �
@ðqk; pkÞ=@ðu; vÞ

�
du dv; ð8:12:15dÞ

or, finally, recalling that @ðqk; pkÞ=@ðu; vÞ is none other than the Jacobian of the

transformation ðqk; pkÞ ! ðu; vÞ, where the q’s and p’s are rectangular Cartesian

coordinates in phase space, and the earlier definition of Lagrangean brackets

(8.7.9), we can rewrite I1 ¼ constant as

I1 ¼ I2 ¼
ð ð

S2

X
dqk dpk ¼

ð ð
�2

½u; v� du dv ¼ constant; ð8:12:16Þ

where S2 ¼ two-dimensional subspace in phase space corresponding to �2 via

(8.12.16). Alternatively, invariance of I2 under a canonical transformation
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ðq; pÞ ! ðq 0; p 0Þ requires that (here, for constant time, but the argument can be

extended to variable time):

I2
0 �

ðð
S2

X
dqk 0 dpk 0 ¼

ðð
�2

X �
@ðqk 0 ; pk 0 Þ=@ðu; vÞ

�
du dv

¼ I2 ¼
ððX

dqk dpk ¼
ððX �

@ðqk; pkÞ=@ðu; vÞ
�
du dv;

)
X �

@ðqk 0 ; pk 0 Þ=@ðu; vÞ
� ¼X �

@ðqk; pkÞ=@ðu; vÞ
�

or

½u; v�q 0; p 0 ¼ ½u; v�q; p; ð8:12:17Þ

which is the earlier-proved canonical invariance property of the Lagrange’s (and

Poisson’s) brackets (}8.9).

Similarly, we can prove the integral invariance of

I4 �
ðððð XX

dqk dql dpk dpl ; ð8:12:18aÞ

I6 �
ðððððð XXX

dqk dql dqr dpk dpl dpr; ð8:12:18bÞ

and, generally, of

I2n �
ð
� � � ð2n timesÞ � � �

ð X
� � � ðn sumsÞ � � �

X
dqk dqk 0 � � � dpk dpk 0 : ð8:12:18cÞ

The last integral of this series:ð
� � � ð2n timesÞ � � �

ð
dq1 � � � dqn dp1 � � � dpn; ð8:12:19aÞ

represents the volume of the corresponding region in ðq; pÞ phase space. Hence, such
volumes are invariant under canonical transformations; that is,ð

� � � ð2n timesÞ � � �
ð
dq1 � � � dqn dp1 � � � dpn

¼
ð
� � � ð2n timesÞ � � �

ð
dq1 0 � � � dqn 0 dp1 0 � � � dpn 0 ; ð8:12:19bÞ

and this (by the earlier-mentioned theorem of multiple integral calculus) shows that

the corresponding Jacobian @ðq; pÞ=@ðq 0; p 0Þ equals þ1.

This theorem leads to an important conclusion in phase space: we have already

seen (ex. 8.9.6) that ð _qqk; _ppkÞ, or ðdqk; dpkÞ, can be viewed as an infinitesimal cano-

nical transformation with the Hamiltonian as generating function. Therefore, all
invariants of canonical transformations are also invariants of the motion. This

means, geometrically, that the corresponding 2n-dimensional phase space points

can be viewed as representative points of a corresponding manifold of identical

mechanical systems with differing initial state conditions. As a result of the motion

of these systems, the initial domain of integration of ðq; pÞ is carried over to another

one of equal volume.
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In the extended phase space of ðt; q; pÞ, the world lines of such systems build a

tube of constant cross-section. This constitutes the celebrated theorem of Liouville of

statistical mechanics. As mentioned earlier, the above integral invariants are called

absolute, because no special assumptions were made about their region of integra-

tion. However, with the help of the multidimensional generalization of Stokes’

theorem, they can be transformed to relative invariants; that is, invariants over

closed areas of lower order (¼ fewer integrations). For example, the absolute integral

invariant I1 can be transformed into the following relative integral invariant:

I1 ¼
þ X

pk dqk; over a closed curve in ðq; pÞ-space;

which lies on the plane t ¼ constant; in ðt; q; pÞ-space:

As an application of the above, it follows that if we choose as range of integration

the elementary parallelogram spanned by the two infinitesimal ðq; pÞ-space vectors;	
d1qk ¼ ð@qk=@uÞ du; d1pk ¼ ð@pk=@uÞ du



;

and 	
d2qk ¼ ð@qk=@vÞ dv; d2pk ¼ ð@pk=@vÞ dv



;

for a constant time t, then

I2 ¼
ð ð X �ð@pk=@uÞ du��ð@qk=@vÞ dv� ð@pk=@vÞ dv��ð@qk=@uÞ du�n o

¼
ð ð X

ðd1pk d2qk � d2pk d1qkÞ ¼ integral invariant; ð8:12:20Þ

from which it follows that the Lagrangean bilinear covariant (8.7.10 ff.)X
ðd1pk d2qk � d2pk d1qkÞ ¼

XX
½c�; c�� �1c� �2c�; ð8:12:21Þ

of the differential form
P

pk dqk, is invariant; and, conversely, its invariance is
sufficient for the corresponding transformation to be canonical (with no recourse to

generating functions, as in }8.8). [For alternative proofs see examples below, and

Whittaker (1937, pp. 272–274).]

In sum:

� Direct: The quantity
Þ
p dq is a relative integral invariant of any Hamiltonian system

of differential equations (‘‘the circulation in any circuit moving with the fluid does not

change with time’’).

� Converse: If a system of equations dq=dt ¼ Q; dp=dt ¼ �P possesses the relative

integral invariant
Þ
p dq, then its equations of motion have the Hamiltonian form:

Q ¼ @H=@p, P ¼ �@H=@q.

REMARKS

(i) The invariance of the circulationþX
pk dqk ¼

ð ð X �ð@pk=@vÞ ð@qk=@uÞ � ð@pk=@uÞ ð@qk=@vÞ�n o
du dv ð8:12:22Þ
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should not come as a complete surprise; after all, the fundamental definition of

canonical transformations (8.8.12):X
pk �qk �

X
pk 0 �qk 0 ¼ �F ; ð8:12:22aÞ

looks like a requirement that ‘‘the work’’ of the left side of the above be potential; or,

equivalently, that, for any closed path in phase space,
Þ
dF ¼ 0; and this leads

immediately to þ X
pk dqk ¼

þ X
pk 0 dqk 0 : ð8:12:22bÞ

(ii) If we also vary the time, then it is not (8.12.21) that is invariant, but the

extended bilinear covariant of the extended differential form
P

pk dqk �H dt:X
ðd1pk d2qk � d2pk d1qkÞ � ðd1H d2t� d2H d1tÞ: ð8:12:23Þ

(See also Routh, 1905(b), }479, pp. 325–326.)

Incidentally, this theorem of Lagrange signals a basic difference between

Lagrangean and Hamiltonian mechanics. Restricting ourselves to the common

scleronomic case, we may remark that:

(a) In the former (Lagrangean), due to the geometrical structure of its configuration
space, the fundamental invariant under point transformations q! q 0 is the

Riemannian line element ds (}3.9):

ðdsÞ2 � 2TðdtÞ2 ¼
XX

Mkl dqk dql ¼
XX

Mk 0l 0 dqk 0 dql 0 ¼ � � � ; ð8:12:24Þ

whereas

(b) In the latter (Hamiltonian), due to the geometrical structure of its phase space, the

fundamental invariant under canonical transformations ðq; pÞ ! ðq 0; p 0Þ is the also

quadratic and homogeneous form in the dq’s and dp’s expression (8.12.21); but since

it is associated with two, rather than one, infinitesimal displacements, d1ð. . .Þ and

d2ð. . .Þ, it is a bilinear form in them and hence represents an area, rather than a line,

element d12A:

I � d12A �
X
ðd1pk d2qk � d2 pk d1qkÞ ¼

X
ðd1pk 0 d2qk 0 � d2 pk 0 d1qk 0 Þ ¼ � � � :

ð8:12:25Þ

These remarks can be extended, with some precautions, to the rheonomic case.

[The literature on integral invariants is quite extensive and varied. For further

details and insights, we recommend (alphabetically): Aizerman (1974, pp. 289–308),

Cartan (1922: a classic in the field), Gantmacher (1970, pp. 119–127), Kilmister

(1964, pp. 128–140), Lovelock and Rund (1975, pp. 207–213), Prange (1935, pp.

657–689).]

Example 8.12.1 Let us calculate the Poincaré–Cartan invariant

I �
þ X

pk dqk �H dt
� �

; ðaÞ
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for a system with Hamiltonian

H ¼ ð1=2Þ ðp2 þ q2Þ; ðbÞ
that is, a one-DOF linear oscillator (of unit mass and stiffness).

We will evaluate (a) along (i) the initial closed curve �1 � OABO ðs ¼ s1Þ, which

has the following parametric representation [(fig. 8.10); since there is only one DOF,

we use subscripts throughout: 1 for initial values and 2 for final values]:

�1: OAðs1Þ: t1 ¼ �; q1 ¼ 0; p1 ¼ 0;

ABðs1Þ: t1 ¼ �2; q1 ¼ 0; p1 ¼ 0;

BOðs1Þ: t1 ¼ �; q1 ¼ 0; p1 ¼ �;
½�1 ¼ 0 � � � �2�; ðcÞ

and (ii) along the intermediate closed curve � ðs ¼ sÞ. Since the solution of the

Hamiltonian equations of motion of (b), with initial conditions: t1; q1; p1, is

t ¼ t1 þ f ; q ¼ q1 cos f þ p1 sin f ; p ¼ _qq ¼ �q1 sin f þ p1 cos f ;

f � f ðs; q1; p1Þ ¼ monotonic function in s; and such that f ðs1; q1; p1Þ ¼ 0; ðdÞ
the parametric representation of � will be

�: OAðsÞ: t ¼ �þ f ðs; 0; 0Þ; q ¼ 0; p ¼ 0;

ABðsÞ: t ¼ �2 þ f ðs; 0; �Þ; q ¼ � sin f ðs; 0; �Þ; p ¼ � cos f ðs; 0; �Þ;
BOðsÞ: t ¼ �þ f ðs; 0; �Þ; q ¼ � sin f ðs; 0; �Þ; p ¼ � cos f ðs; 0; �Þ;

½�1 ¼ 0 � � � �2�: ðeÞ
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Hence, we find, successively:

(i) Along �1 ðs ¼ s1Þ:

Ið�1Þ ¼
þ
�1

ðp1 dq1 �H1 dt1Þ

¼
ð
½along OAðs1Þ� þ

ð
½along ABðs1Þ� þ

ð
½along BOðs1Þ�

¼ 0þ 0þ
ð
½along BOðs1Þ�

¼
ð0

�2

�ðp1
2=2Þ dt1 ¼ þð1=2Þ

ð�2

0

�2 d� ¼ �2
3=6: ðfÞ

(ii) Along � ðs ¼ sÞ:

Ið�Þ ¼
þ
ðp dq �H dtÞ ¼

ð
½along OAðsÞ� þ

ð
½along ABðsÞ� þ

ð
½along BOðsÞ�

¼ 0þ
ð�2

0

�ð� cos f Þ ðd� sin f Þ � ð1=2Þ ð�2 sin2 f þ �2 cos2 f Þ ½ð@f =@�Þ d���
þ
ð0

�2

�ð� cos f Þ ðd� sin f Þ � ð1=2Þ ð�2 sin2 f þ �2 cos2 f Þ ½d�þ ð@f =@�Þ d���
¼
ð�2

0

�
� sin f cos f � ð�2=2Þ ð@f =@�Þ� d�

�
ð�2

0

�
� sin f cos f � ð�2=2Þ ½1þ ð@f =@�Þ�� d�

¼ �
ð�2

0

½�ð�2=2Þ� d� ¼ �2
3=6; ðgÞ

that is, Iðs1Þ ¼ IðsÞ, Q.E.D.; I is indeed constant along the trajectories of (b).

Example 8.12.2 Integral Variants for Nonpotential ð! NonconservativeÞ Holonomic
Systems. Starting with Hamilton’s principle of varying action for systems under

nonpotential forces ðQk; k ¼ 1; . . . ; nÞ (chap. 7), and proceeding as in the potential

case discussed earlier, it is not hard to show that, here, the Poincaré–Cartan and

Poincaré invariant equations must be replaced, respectively, by the following integral

variant relations:

dI=dt � d=dt

þ
�

X
pk dqk �H dt

� �� �
¼
þ
�

X
Qk dqk; ða1Þ

dI1=dt � d=dt

þ
�

X
pk dqk

� �� �
¼
þ
�

X
Qk dqk: ða2Þ
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For these variants to become invariants— namely, in order that I ¼ constant,
I1 ¼ constant— we must have þ

�

X
Qk dqk ¼ 0: ðbÞ

Application of the generalized theorem of Stokes:þ
�

X
As dxs ¼

ðð
�

XX
ð@As=@xr � @Ar=@xsÞ dxs dxr ðcÞ

[where s; r ¼; . . . ; on the right side (double) summation r < s; and � is the bound-

ary of the diaphragm-like surface �, locus at time t of points that were initially

located on another surface bounded by the initial position of �] to eq. (b), with

the identifications

Ak ¼ Qk; Anþk ¼ 0; xk ¼ qk; xnþk ¼ pk ðs; r ¼ 1; . . . ; n; . . . ; 2n; k ¼ 1; . . . ; nÞ;
ðdÞ

shows that the necessary and sufficient conditions for it to occur (for arbitrary �
and independent dxs; dxr) are

@As=@xr � @Ar=@xs ¼ 0 ðs; r ¼ 1; . . . ; 2n; r < sÞ:
@Qk=@ql ¼ @Ql=@qk and @Qk=@pl ¼ 0 ðk; l ¼ 1; . . . ; nÞ; ðeÞ

that is, the Qk must be derivable from a potential function, say V ¼ Vðt; qÞ:
Qk ¼ �@V=@qk. Hence, no Poincaré–Cartan/Poincaré invariants exist for nonpoten-
tial forces.

An Application of Equation (a2) to

the Method of Slowly Varying Parameters

However, equations (a1, 2) can become useful in approximate calculations. Let us

apply (a2) to such a solution of the quasi-linear oscillator equation

€qqþ !o
2q ¼ " f ðq; _qqÞ; ðfÞ

where " f ð. . .Þ ¼ small relative to €qq (inertia) and !o
2q (elasticity). Here, clearly,

L ¼ ð1=2Þ ð _qqÞ2 � ð1=2Þ!o
2q2; Q ¼ " f ðq; _qqÞ � " f ð. . .Þ; ðgÞ

and therefore the corresponding canonical equations are

_qq ¼ p; _pp ¼ �!o
2qþ " f ð. . .Þ: ðhÞ

Let us seek a solution of the above in the form

q ¼ aðtÞ sin�ðtÞ ) p ¼ _qq ¼ aðtÞ!o cos�ðtÞ; ðiÞ
where �ðtÞ ¼ !otþ �ðtÞ and aðtÞ; �ðtÞ ¼ unknown functions to be determined.

By �-varying the first of (i), we obtain

�q ¼ ð@q=@aÞ �aþ ð@q=@�Þ �� ¼ sin� �aþ a cos� ��; ð jÞ
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and, therefore
�
returning to the �-notation, �ð. . .Þ � ½@ð. . .Þ=@�� ��, to avoid possi-

ble confusion with dð. . .Þ � ½@ð. . .Þ=@s� ds�,
I1 �

þ
�

p �q ¼
þ
�

½a!o cos� ðsin� �aþ a cos� ��Þ�; ðkÞ
þ
�

Q �q ¼
þ
�

" f �q ¼
þ
�

½" f ð. . .Þ ðsin� �aþ a cos� ��Þ�; ðlÞ

where � ¼ arbitrary closed curve encircling simultaneously ðdt ¼ 0Þ the closed tube

of trajectories.

Now, proceeding as in the method of slowly varying parameters (ex. 7.9.14 ff.), we

average equations (k, l) over �, from 0 to 2�, thus obtaining (skipping the factor 1=2
in both equations)

hI1i ¼
ð2�

0

d�

þ
�

p �q

� �
¼
þ
�

ð2�

0

a!o cos�ðsin� �aþ a cos� ��Þ
� �

d�

¼
þ
�

a!o �a

ð2�

0

sin� cos� d�

� �
þ a2!o ��

ð2�

0

cos2� d�

� �� �
d�

½the second ðinnerÞ integral vanishes; while the second equals ��

¼
þ
�

�a2!o ��; ðmÞ

hQi ¼
ð2n

0

d�

þ
�

Q �q

� �
¼
þ
�

ð2�

0

" f ð. . .Þ ðsin� �aþ a cos� ��Þ
� �

d�; ðnÞ

and then apply to them the integral variant equation (a2); or, equivalently, we

average (a2) over � from 0 to 2�; that is,

hdI1=dti ¼ hQi ) dhI1i=dt ¼ hQi: ðoÞ

In this way, we find

d=dt

þ
�

�a2!o ��

� �
¼ �!o

þ
�

�ða2Þ: ��þ ða2Þð��Þ:�� �
[in the second term, we assume that ð��Þ: ¼ �ð _��Þ, then integrate it

by parts (for t ¼ constant)]

¼ �!o

þ
�

ð2a _aaÞ ��þ ða2 _��Þ

�
�
ð
_�� �ða2Þ

� �
½by periodicity; the integrated out boundary=endpoints term vanishes�

¼
þ
�

�ð2�!oa _aaÞ �� � ð2�!oa _��Þ �a�
¼ hQi ¼

þ
�

ð2�

0

" f ð. . .Þ sin� d�

� �
�aþ

ð2�

0

" f ð. . .Þa cos� d�

� �
��

� �
; ðpÞ
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and, from this, since � is arbitrary and the �a; �� are independent (and a 6¼ 0), we

obtain the well-known van der Pol/Krylov/Bogoliubov equations:

da=dt ¼ ð"=2�!oÞ
ð2�

0

f ð. . .Þ cos� d�; ðqÞ

d�=dt ¼ �ð"=2�a!oÞ
ð2�

0

f ð. . .Þ sin� d�: ðrÞ

Example 8.12.3 Alternative Proof of Relation between Integral Invariance and
Canonicity of Equations of Motion. Here, we show, by direct calculation, that if

I �
þ
�

X
pk dqk �H dt

� �
¼ constant; ðaÞ

then

dpk=dt ¼ �@H=@qk; dqk=dt ¼ @H=@pk; dH=dt ¼ @H=@t: ðbÞ

For extra clarity, we introduce the following special notations:

d1ð. . .Þ ¼ ½@ð. . .Þ=@s� ds ¼ differential along an integral curve; ðc1Þ
d2ð. . .Þ ¼ ½@ð. . .Þ=@�� d� ¼ differential along closed curve � encircling tube

of integral curves: ðc2Þ

Clearly, since the parameters s and � are independent, d1½d2ð. . .Þ� ¼ d2½d1ð. . .Þ�; and

so (a) can be rewritten as

I � IðsÞ �
þ
�

X
pk d2qk �H d2t

� �
¼ constant: ðdÞ

We have, successively,

d1I � d1IðsÞ ¼ d1

þ
�

ð. . .Þ

¼
þ
�

X �
d1pk d2qk þ pk d1ðd2qkÞ

�� �d1H d2t�H d1ðd2tÞ
�n o

¼
þ
�

X �
d1pk d2qk þ pk d2ðd1qkÞ

�� �d1H d2t�H d2ðd1tÞ
�n o

½integrating the second and fourth terms by parts relative

to d2ð. . .Þ; i:e:; along ��

¼
þ
�

X
d1pk d2qk þ

X
pk d1qk

� �
�
�
þ
�

X
d2pk d1qk

�
þ
�

d1H d2t�
X

H d1t
� �

�
þ
þ
�

d2H d1t
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[due to the α-periodicity, the integrated out (second and fifth sums) vanish]

=

∮

γ

[(∑
d1pk d2qk −

∑
d2pk d1qk

)
− (d1Hd2t − d2Hd1t)

]

[
setting d2H =

∑
[(∂H/∂qk)d2qk + (∂H/∂pk)d2pk]

+ (∂H/∂t)d2t, and regrouping terms
]

=

∮

γ

(∑
{[d1pk + (∂H/∂qk)d1t]d2qk + [−d1qk + (∂H/∂pk)d1t]d2pk}

+ [−d1H+ (∂H/∂t)d1t]d2t
)
. (e)

Therefore, if d1I(s) = 0, since γ is arbitrary and the α-differentials d2q, d2p, d2t are inde-
pendent, it follows that, along each trajectory [with s = t⇒ d1( . . . ) = ( . . . )·dt = dt]

d1pk + (∂H/∂qk)d1t = 0 ⇒ dpk/dt = −∂H/∂qk, (f1)

−d1qk + (∂H/∂pk)d1t = 0 ⇒ dqk/dt = ∂H/∂pk, (f2)

−d1H+ (∂H/∂t)d1t = 0 ⇒ dH/dt = ∂H/∂t; (f3)

that is, the Hamiltonian equations of motion and energy (b) hold. Hence, the importance of
the integral invariant I = I(s) to mechanics. The converse theorem can be shown similarly.

In sum: • If I = constant, then the system satisfies Hamilton’s equations.
• If the system satisfies Hamilton’s equations, then I = constant.

§8.13 NOETHER’S THEOREM (E. Noether, 1918)

This famous and conceptually elegant theorem — much more useful to physicists (classical and quantum field
theory) than to engineers — uncovers the consequences of the invariance of the, say, Lagrangean action functional
of a system S

A =

∫
L(t, q,

·
q)dt (with arbitrary time limits, say from t1 to t2) (8.13.1)

not under the customary, and hitherto examined (ch.7) (first-order special kinematically admissible changes known as)
virtual variations δq, from a “fundamental” kinetic trajectory q (i.e. a solution of S’s Lagrangean equations of motion),
BUT under the special, “narrower”, finite continuous/Lie group of transformations

t→ t′ = t′(t; ε) [or even t′ = t′(t, q; ε)] and qk → qk′ or q′k = q′k (t, q; ε):

coordinate system, or “extended point, transformations” (or, simply, “point transformations” if t′ = t), in con-
figuration space (or collection of system trajectories, i.e. solutions of the system’s Lagrangean equations of
motion) generated/evolved from t, q by the continuous variation of the parameter ε, and assumed: (a) as many
times continuously differentiable in ε as needed, and uniquely invertible t, q ⇔ t′, q′ (i.e. each ε-value defines
a different coordinate system q′), AND with (b) the group parameter ε chosen so that

t′(t; 0) = t [or t′(t, q; 0) = t], q′k(t, q; 0) = qk: identity transformation. (8.13.2, 2a)

In other words, under such “Lie-Noether changes” both q = q′(0) and q′ = q′(ε) are different coordinate descriptions
of the same dynamics! [Remark: As with orthogonal matrices/tensors (§1.11), both active and passive interpretations
of q and q′ are available: either our physical system stays fixed in space while the coordinate system (“laboratory”) is
transformed, i.e. the same system configuration viewed from two different coordinate systems (passive interpretation);
or our system is transformed (moved) while the coordinate system stays fixed in space (active i.)]
Now: that the finite transformation (8.13.2) t′(ε), q′(ε) results, or can be generated, by a continuous sequence of
“infinitesimal/elementary” transformations, i.e. by a continuous variation of ε, from the identity transformation t =
t′(0), q = q′(0), allows us to replace A-invariance under the finite ε coordinate change (8.13.2) with invariance under
the first-order ε-change, that is, with (∂ . . ./∂ε)ε=0 ≡ (∂ . . . /∂ε)o, under:

t → t′ = t′(t; ε) ≈ t′(t; 0) + (∂t′/∂ε)o ε ≡ t+Δt, (8.13.3a)

qk → q′k = q′k(t, q; ε) ≈ q′k(t, q; 0) + (∂q′k/∂ε)o ε ≡ qk +Δqk, (8.13.3b)

[⇒ q′k − qk ≈ Δqk: a kinetic variation, i.e. from one system trajectory to another, not a kinematic one];

also, (∂q′k/∂ql)o = δkl (Kronecker delta), (∂q′k/∂t)o = 0; (∂t′/∂qk)o = 0, (∂t′/∂t)o = 1, (8.13.3c)

and (∂2 . . ./∂ε ∂ql)o = ∂/∂ql[(∂ . . ./∂ε)o]; (8.13.3d)

As a result of these, ε-induced, transformations the system Lagrangean becomes:

L(t, q, dq/dt) = L
{
t(t′, q′; ε), q(t′, q′; ε), d/dt [q(t′, q′; ε)]

}
≡ L′(t′, q′, dq′/dt′; ε) (8.13.4)
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in words: If A is invariant under the one-parameter (finite) continuous/Lie group of transformations [8.13.2 (finite) →
8.13.3 (first-order)], the n equations Ek(L) = 0 imply the single conservation equation N = constant; or, every family
of such transformations that leaves the action functional invariant leads to a first integral of the equations of motion;
and inversely, given the equation N = constant, the n equations Ek(L) = 0 ensure the existence of a one-parameter
continuous transformation (8.13.3) that leaves A invariant.
Noether’s theorem (NT): (i) Can be generalized in the following ways: (i.a) From first to higher derivatives of the q s
(of minor physical interest); (i.b) From one to several, say m, group parameters (in which case we obtain m distinct
constants/integrals, along any system trajectory — of great physical interest; see examples below); and (i.c) From
one to several independent variables (of great interest in field theory). These, and “Invariance under Gauge Transfor-
mations” (below), lead to additional invariance theorems (see references at this section’s end); and (ii) Along with
the concepts of closed/open systems and Routh’s method for “ignorable coordinates” {§3.12 (esp. pp. 573-574),
§8.3, §8.4}, the latter seen now as a specialization of NT [i.e. (8.13.6e) with (∂t′/∂ε)o = 0, (∂q′k/∂ε)o = 1 (explain)],
reveal the following fundamental idea of theoretical dynamics (and physics):

SYMMETRIES (of Lagrangean, Hamiltonian etc; invariance under a transformation group, a geometrical idea)
→ INVARIANCE properties (of Action, Langrangean; an algebraic/analytical idea expressing these symmetries)
→ CONSERVATION quantities, or integrals/constants of motion (of momentum, energy, etc).

or, in common “Noetherian notation”,

N = L(∂t′/∂ε)o +
∑

(∂L/∂ ·qk) [(∂q
′

k/∂ε)o −
·qk (∂t

′/∂ε)o] = constant (along any system trajectory/orbit)

=
∑

(∂L/∂
·
qk)(∂q

′

k/∂ε)o −
(∑

(∂L/∂
·
qk)

·
qk−L

)
(∂t′/∂ε)o (Lagrangean form)

≡

∑
pk(∂q

′

k/∂ε)o − h(L)(∂t′/∂ε)o (Hamiltonian form); (8.13.6e)

(left side independent of ε). The above expresses the numerical invariance of the scalar function L; no surprises
here: such invariance holds not only under the smaller/restricted Lie-Noether transformations (8.13.2, 2a), but under
arbitrary (differentiable) point transformations q = q(t′, q′) ⇔ q′ = q′(t, q) (ex. 3.5.12, and §8.8); however, in the
latter L′ is, generally, a different function of t′, q′, dq′/dt′ than L is of t, q, dq/dt! For example, the kinetic energy of a
particle of mass m, T, in plane rectangular Cartesian and polar coordinates, (x, y) and (r, φ): x = r cosφ, y = r sinφ,
is:

2T(ẋ, ẏ)/m = (dx/dt)2 + (dy/dt)2 = (dr/dt)2 + r2(dφ/dt)2 = 2T ′(ṙ, φ̇)/m, (8.13.4a)

i.e. T(ẋ, ẏ) = T ′(ṙ, φ̇): same numerical value, BUT T(. . .) is a different function (-al form) of ẋ, ẏ than T ′(. . .) is of ṙ,
φ̇, i.e. T ′(ṙ, φ̇) �= T(ṙ, φ̇) and T ′(ẋ, ẏ) �= T(ẋ, ẏ)! Here, since we are interested in discovering the consequences of the
symmetry(-ies) of L (⇒ invariance of A), we require, in addition to the “same number” invariance (8.13.4), that:

L(t, q, dq/dt) = L(t′, q′, dq′/dt′), or simply L(q) = L(q′), (8.13.5)

[briefly: L(q) = L′(q′) = L(q′) — need for precise notation here!]; (8.13.5a)

in words, that, under (8.13.2), the Lagrangean be also form invariant, i.e. that it retains its original functional form
in both the original and the Noetherianly transformed variables; or, that the new Lagrangean be the same function in
the new variables as the old one was in the old. In the above example, such narrower transformation → Noetherian
invariance occurs, for instance, under

q = (x, y) → q′ = (x′ = x′(x, y; ε) = x cos ε+ y sin ε, y′ = y′(x, y; ε) = −x sin ε+ y cos ε):

i.e., say, a rigid rotation of “old” rectangular Cartesian axes x, y by an angle ε to “new/transformed”,
also rectangular Cartesian, axes x′, y′(passive interpretation); (8.13.4b)

then 2T(dx/dt, dy/dt)/m = (dx/dt)2 + (dy/dt)2 = · · · = (dx′/dt)2 + (dy′/dt)2

= 2T ′(dx′/dt, dy′/dt)/m (same number, i.e. numerical invariance/equality)
= 2T(dx′/dt, dy′/dt)/m (same function, i.e. form invariance). (8.13.4c)

Hence, under Noetherian transformations, not just the general form of the system’s Lagrangean equations of motion
is preserved, i.e.

Ek(L) ≡ (∂L/∂ ·qk)
·
− ∂L/∂qk = 0, Ek′(L

′) or E′

k(L
′) ≡ (∂L′/∂ ·q′k)

·
− ∂L′/∂q′k = 0,

but so is their explicit form, i.e. these equations are the same in the q s and q′s. Now we are ready to find the con-
sequences of our initial A-invariance assumption, under (8.13.2), for any ε, and arbitrary integration limits t′1,2, t1,2,
respectively, i.e.

A(ε)− A(0) ≡
∫
L′(t′, q′, dq′/dt′)dt′ −

∫
L(t, q, dq/dt)dt =

∫
L(t′, q′, dq′/dt′)dt′ −

∫
L(t, q, dq/dt)dt = 0 (8.13.6a)

[⇒ L(t′, q′, dq′/dt′)(dt′/dt) = L(t, q, dq/dt) (necessary and sufficient)] ; (8.13.6b)

indeed, utilizing the preceding in the earlier general integral identities (7.9.11a-h)ff., we find successively,

ΔA = · · · =

∫ {
d/dt

[
LΔt+

∑
(∂L/∂

·
qk)(Δqk−

·
qkΔt)

]
−

∑
Ek(L)(Δqk−

·
qkΔt)

}
dt = 0, (8.13.6c)

[or, equivalently, ε-differentiating (8.13.6b), while noting that its right side is independent of ε], (8.13.6d)

from which, since Ek(L) = 0, and the integration limits (and ε) are arbitrary, Noether’s theorem follows:

N ≡ LΔt+
∑

(∂L/∂ ·qk)(Δqk−
·qk Δt) =

∑
(∂L/∂ ·qk)Δqk −

(∑
(∂L/∂ ·qk)

·qk−L
)
Δt = constant,



(i) The action functional

A ¼
ðt2
t1

Lðq; _qqÞ dt ½i:e:; @L=@t ¼ 0� ðaÞ

is, clearly, invariant under the one-parameter group of transformations:

t 0 ¼ tþ "; qk 0 ¼ qk ½temporal translation�: ðbÞ

Since, in this case, ð@t 0=@"Þo ¼ 1 and ð@qk 0=@"Þo ¼ 0, the Noetherian expressions

(8.13.4, 5) yield the generalized energy integral

ðcÞ

an already well-known result. Hence, invariance under time-translation leads to
energy conservation.

(ii) The action functional [with x; y; z: rectangular Cartesian coordinates; and

K ;L ¼ 1; . . . ;N (# of particles)]

A ¼
ð X

ð1=2ÞmK ½ð _xxK Þ2 þ ð _yyKÞ2 þ ð _zzKÞ2� �
XX

VKLðjrK � rLjÞ
n o

dt; ðdÞ

where K 6¼ L (or K < L) and rK ¼ ðxK ; yK ; zKÞ, is, clearly, invariant under the one-

parameter rigid spatial translations in the x-direction:

xK 0 ¼ xK þ "; yK 0 ¼ yK ; zK 0 ¼ zK ; ðand t 0 ¼ tÞ: ðeÞ

Therefore, by (8.13.4, 5), the system possesses the integral ðK ¼ 1; . . . ; 3NÞ

N ¼
X
ð@L=@ _xxKÞð@xK 0=@"Þo �

X
ð@L=@ _qqkÞ _qqk � L

h i
ð@t 0=@"Þo

¼
X
ð@L=@ _xxKÞð1Þ �

X
ð@L=@ _qqkÞ _qqk � L

h i
ð0Þ

¼
X

@L=@ _xxK ¼
X

mK _xxK � pX

¼ x-component of total linear momentum ¼ constant; ðfÞ

and similarly for the y- and z-directions.

Hence, invariance under rigid translations leads to conservation of the linear
momentum vector.

(iii) If the above action (d) is invariant under the one-parameter rigid rotations of

ðgÞ
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N =
∑

pk(0)− h(1) = −h = constant,

xK′ = xK′(xK, yK; ε) = xK cos ε− yK sin ε ≈ xK − εyK,

yK′ = yK′(xK, yK; ε) = xK sin ε+ yK cos ε ≈ yK + εxK,

zK′ = zK (and t′ = t),

Example 8.13.1

the system about, say the z-axis, through an angle ε (say, under the active interpretation,
§1.11):



then, again by (8.13.4, 5), the system has the integral

N ¼
X �ð@L=@ _xxKÞ ð@xK 0=@"Þo þ ð@L=@ _yyKÞ ð@yK 0=@"Þo

þ ð@L=@ _zzKÞ ð@zK 0=@"Þo
�

¼
X �ð@L=@ _xxKÞ ð�yKÞ þ ð@L=@ _yyKÞ ðþxKÞ þ ð@L=@ _zzKÞ ð0Þ�

¼
X �ðxKÞ ð@L=@ _yyKÞ � ðyKÞ ð@L=@ _xxKÞ�

¼
X �ðxKÞðmK _yyKÞ � ðyKÞ ðmK _xxKÞ

� � Hz

¼ z-component of total angular momentum about origin O ¼ constant; ðhÞ

and similarly for its x- and y-components.

[The reader may verify that the passive interpretation of rotation (as well as of the

earlier translation) leads to the same result!]

Extension of Noether’s Theorem to m-Parameter
Family of Transformations

If the action A is invariant under the m-parameter continuous group of transforma-

tions

ð8:13:7Þ
where " � ð"1; . . . ; "mÞ ¼ group parameters, and, again, such that

ð8:13:7aÞ
then, along each system trajectory, the following m distinct quantities ð�: 1; . . . ;mÞ:

N� �
X
ð@L=@ _qqkÞð@qk 0=@"�Þo �

X
ð@L=@ _qqkÞ _qqk � L

� �
ð@t 0=@"�Þo

¼ Lð@t 0=@"�Þo þ
X
ð@L=@ _qqkÞ

�ð@qk 0=@"�Þo � _qqkð@t 0=@"�Þo
�

½Lagrangean form�; ð8:13:8Þ
ð8:13:9Þ

are constant. In words: every m-parameter family of transformations that leaves the
action functional invariant leads to m distinct first integrals of the equations of motion.

[For readable proofs, see, for example, Lovelock and Rund (1975, pp. 201–207),

Mittelstaedt (1970, pp. 138–160); or, one could extend the previous one-parameter

proof to the m-parameter case.]

Invariance under Gauge Transformations

L ¼ Lðt; q; _qqÞ and L 0 ¼ Lþ df ðt; qÞ=dt ½ f ð. . .Þ ¼ arbitrary function of t and the
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− h(∂t′/∂ε)o

− h(0)

t→ t′ = t′(t, q; ε), qk → qk′ = qk′(t, q; ε),

=
∑

pk(∂qk′/∂ε•)o − h(∂t′/∂ε•)o [Hamiltonian form],

Recalling the nonuniqueness of the Lagrangean (ex’s. 3.5.13 and 7.9.5)—namely, that

Hence, invariance under rigid rotations, about a point, leads to conservation of the
angular momentum vector about that point.

t′(t, q; 0) = t, qk′(t, q; 0) = qk [identity transformations];



ðt 02
t 01
Lðt 0; q 0; dq 0=dt 0Þ dt 0 ¼

ðt2
t1

�
Lðt; q; _qqÞ þ df ðt; q; "Þ=dt� dt; ð8:13:10aÞ

or, equivalently, by

L½t 0; q 0; dq 0ðt 0Þ=dt 0�ðdt 0=dtÞ ¼ L½t; q; dqðtÞ=dt� þ df ðt; q; "Þ=dt ð8:13:10bÞ

(again, from action integrals to their Lagrangean integrands), then the Noetherian

N 0 ¼ N � ð@f =@"Þo
¼
X
ð@L=@ _qqkÞð@qk 0=@"Þo �

X
ð@L=@ _qqkÞ _qqk � L

h i
ð@t 0=@"Þo � ð@f =@"Þo

¼ Lð@t 0=@"Þo þ
X
ð@L=@ _qqkÞ

�ð@qk 0=@"Þo � _qqkð@t 0=@"Þo
�� ð@f =@"Þo

¼ constant; ½Lagrangean form�; ð8:13:11Þ

¼ constant; ½Hamiltonian form�: ð8:13:12Þ

This follows easily if we notice that, in this case, the first "-order action variation

(8.13.6c) must be replaced by

DA ¼ "
X

pkð@qk 0=@"Þo �
X

pk _qqk � L
� �

ð@t 0=@"Þo
h i

¼ D
ð
ðdf =dtÞ dt ¼ D½ f � ¼ �ð@f =@"Þo�": ð8:13:13Þ

The rest of the details are left to the reader.

Example 8.13.2 Continuing from the conservation theorems of the preceding

example, let us consider the motion of our system in two inertial frames, ðO;FÞ
and ðO 0;F 0Þ, in relative motion with constant velocity mo � mF=F 0 , and let us assume,

for simplicity but no loss in generality, that V ¼ 0 and Qk ¼ 0 (inertial motion).

The system Lagrangean in F 0 is (with P ¼ 1; . . . ;N ¼ # system particles):

L 0 ¼
X
ð1=2ÞmPðdr 0P=dtÞ � ðdr 0P=dtÞ

¼
X
ð1=2ÞmP

�ðdrP=dtÞ þ mo
�
�

�ðdrP=dtÞ þ mo
�

¼ Lþ df =dt; ðaÞ
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q’s] yield the same equations of motion — we, now, generalize Noether’s theorem as
follows: If the invariance equation (8.13.6a), under (8.13.2), is replaced by

integrals (8.13.6a, b) are replaced by

=
∑

pk(∂qk′/∂ε)o − h(∂t′/∂ε)o − (∂f/∂ε)o



where

L ¼
X
ð1=2ÞmPðdrP=dtÞ � ðdrP=dtÞ ¼ system Lagrangean in F ; ðbÞ

f ¼
X

mP rP � mo þ
X
ð1=2ÞmPðmo � moÞ

h i
t:

Galilean gauge; function of time; coordinates; and group parameter "! mo;

) df =dt ¼
X

mPðdrP=dtÞ � mo þ
X
ð1=2ÞmPðmo � moÞ: ðcÞ

Choosing, for mathematical convenience, in these two frames, rectangular Cartesian

coordinates F : ðO; x; y; zÞ and F 0: ðO 0; x 0; y 0; z 0Þ, such that

x 0 ¼ xþ vot ð) _xx 0 ¼ _xxþ voÞ; y 0 ¼ y; z 0 ¼ z; t 0 ¼ t; ðdÞ

reduces (b, c) to

L ¼
X
ð1=2ÞmP _xxP _xxP; f ¼

X
mP xP vo þ

X
ð1=2ÞmP vo

2
h i

t; ðeÞ

and, therefore, with parameter " the relative frame velocity vo, the Noetherian

expressions (8.13.10, 11) yield the integral

or, since
P

mP _xxP � px ¼ constant � cx (by ex. 8.13.1) and
P

mP xP ¼
ðtotal massÞ ðx� coordinate of mass centerÞ � mx,

N 0 ¼ cxt�mx ¼ c ) mx ¼ cxt� c;

) _xx ¼ cx=m ðmass center moves with constant velocityÞ; ðg1Þ
or; if cx ¼ 0; x ¼ �c=m ðmass center at restÞ; ðg2Þ

and similarly for the y- and z-directions (recall ex. 3.12.3).

THEOREM

Let us consider a system of N particles moving under their mutual (Newtonian)

gravitational attractions [‘‘N-body problem’’ of classical (celestial) mechanics], and

therefore having equations of motion

mP €rrP ¼
X

DPP 0GðmP mP 0=rPP 0
3ÞrPP 0 ; ðhÞ

where DPP 0 � 1� �PP 0 ¼ complementary Kronecker delta;G ¼ gravitational constant
(not gauge function!), rPP 0 � jrPP 0 j � jrP 0 � rPj ¼ j � rP 0Pj ¼ rP 0P 6¼ 0, and P, P 0 ¼ 1;
. . . ;N ¼ number of particles.
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N′ = N− (∂f/∂ε)o

=
∑

pP(∂x
′

P/∂ε)o − h(∂t′/∂ε)o − (∂f/∂ε)o

=
∑

pP(∂x
′

P/∂vo)o − h(∂t′/∂vo)o − (∂f/∂vo)o

=
∑

(mP ẋP)(t)− h(0)−
∑

mPxP = constant = c, (f)

These results can be summed up in the following theorem.



From the Noetherian invariance of its action under the ten-parameter Galilean

group [between two inertial frames
	
xkðtÞ; t



;
	
xk 0 ðt 0Þ; t 0



, in arbitrary mutual orien-

tation]

xk 0 ðt 0Þ ¼
X

ak 0kð"1; "2; "3Þxk þ bkð"4; "5; "6Þtþ ckð"7; "8; "9Þ;�ðak 0kÞ ¼ ðak 0kð"1; "2; "3ÞÞ: proper orthogonal matrix ½eqs: ð1:1:19a ff :Þ
andð1:5:1a; bÞ�; with k; l ¼ 1; 2; 3

�
; ðiÞ

t 0 ¼ tþ "10; ð jÞ
we obtain the following ten integrals:

(i) Temporal translation ð1Þ ! energy conservation:

T þ V �
X
ð1=2ÞmPð _rrP � _rrPÞ �

XX
ð1=2ÞDPP 0GðmP mP 0=rPP 0 Þ ¼ constant; ðkÞ

(ii) Spatial translation ð3Þ ! linear momentum conservation:X
mP _rrP ¼ m mmass center ¼ constant � b ¼ ðb1; b2; b3Þ; ðlÞ

(iii) Spatial rotation ð3Þ ! angular momentum conservation:X
rP � ðmP _rrPÞ ¼ constant: ðmÞ

(iv) Galilean transformation ð3Þ ! center of mass theorem [integral of (l)]:X
mP rP ¼ m rmass center ¼ btþ c ½c ¼ ðc1; c2; c3Þ�: ðnÞ

For a detailed Noetherian treatment, see, for example, Funk [1962, pp. 442–445;

after the original derivation of Bessel–Hagen (1921)]. For an alternative derivation

(via symmetrical infinitesimal canonical transformations), see Schmutzer (1989,

pp. 438–445); also Meirovitch (1970, pp. 413–416).

Closing Remarks

Noether’s theorem, in spite of its conceptual beauty and simplicity, has not been very

successful in producing new and nontrivial integrals of the equations of motion. The

systematic search for infinitesimal transformations that leave the Hamiltonian action

functional invariant leads to a system of first-order partial differential equations

(Killing’s equations), the solution of which is a taxing problem in itself. The theorem

seems to have fared better in field theory (i.e., invariance of multiple integrals under

continuous groups of transformations).

For detailed treatments of these topics, and applications to the search for system

symmetries/conservation theorems, we recommend (alphabetically):
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(a) Mathematics oriented: Funk (1962, pp. 437–452 — best overall treatment), Logan (1977),

(b) Mechanics–physics oriented: Bahar and Kwatny (1987), Dobronravov (1976, pp. 139–
163), Hill (1951 — primarily for physicists), Kuypers (1993, pp. 281–295), Saletan

Lovelock and Rund (1975, pp. 201–207, 226–231), Rund (1966, pp. 208–322); and, of
course, Noether’s original paper (1918).



8.14 PERIODIC MOTIONS; ACTION–ANGLE VARIABLES

Outside of equilibrium, periodic motion is one of the most important and interesting

physical states; for example, planets revolving around the Sun; penduli; parts of

engines; the building blocks of molecular and atomic systems; and so on. Also, the

One DOF

Such a system undergoes periodic motion with period � , if, after a time interval � , it

always returns to where it was before; that is, analytically, its Lagrangean coordinate

q ¼ qðtÞ satisfies the condition

q ¼ qðtÞ ¼ qðtþ �Þ; ð8:14:1Þ
and can, therefore, under mild continuity conditions, be represented by the Fourier

series (in complex form, for algebraic compactness):

qðtÞ ¼
X

cs expðis! tÞ ¼
X

cs expð2�is �tÞ; ð8:14:2Þ

where expð. . .Þ � e: : :,

s ¼ �1; . . . ;þ1;
! � 2�=� ¼ fundamental angular; or circular; frequency;

i:e:; number of oscillations or rotations ðsee belowÞ in 2� seconds;

� � 1=� ¼ !=2� ¼ fundamental ðtrueÞ frequency; i:e:; number of oscillations or

rotations in 1 second ; ð8:14:2aÞ
and the amplitudes cs, which depend on the motion during a single period, are given

by the well-known formula (which also makes it clear how it was obtained)

cs ¼ ð1=�Þ
ð�

0

qðtÞ expð�is!tÞ dt ðc�s � cs* ¼ complex conjugate of csÞ: ð8:14:3Þ

From the above, it follows that _qq and any function of q and _qq is also a Fourier series

with the same fundamental frequency (period) �ð�Þ. Other system properties, or

variables, may also be periodic; for example, periodic system momentum

p � @T=@ _qq means that pðtÞ ¼ pðtþ �Þ. However, this natural and simple concept

can be obscured by the use of the wrong, that is, nonperiodic coordinates. For

example, the uniform circular motion of a particle (or, of a rigid body about a

fixed axis) is, clearly, periodic; but its description in terms of its angle of rotation

� (from a fixed radius):

� ¼ c1tþ c2 ðc1;2: constantsÞ; ð8:14:4Þ

1250 CHAPTER 8: INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS

close connection between periodicity (aperiodicity) and stability (instability) of motion is
well known. Hence, such a state deserves a closer examination. This section constitutes a
modest introduction to this vast and fascinating topic, using the earlier-developed concepts
and theorems of Hamiltonian mechanics.

and Cromer (1971, pp. 60–87, 219–226, 345–348), Sudarshan and Mukunda (1974),
Vujanovic and Jones (1989, pp. 74–151; and references given therein).



is a monotonically increasing (nonperiodic!) function of time; also, the correspond-

ing angular momentum p � _�� is constant; that is, trivially periodic.

In view of these possibilities, we classify periodic motions (according to their

trajectories) in phase space into two kinds:

This is the case where the coordinate q is a single-valued function of the system’s

position (i.e., it is not an angle that can have different values for the same config-

uration), and it remains between fixed limits; say, q1; q2; q3; q4; q1 (fig. 8.11).

Both q and p are bounded, continuous and periodic in time, with the same

period; say, � . As a result, the corresponding ðq; pÞ-curve, in phase space, is closed,
and repeats itself after every time interval � . Since the system integral

Hðq; pÞ ¼ constant � C (usually equal to the total energy of the system E) is

single-valued, different values of C produce a family of closed and nonintersecting
phase space trajectories; in fact, by decreasing C appropriately, we may reduce the

trajectory to the fixed libration center qo, so that the motion degenerates to small

oscillations about the stable equilibrium position qo. The libration limits are the roots

of dq=dt ¼ @H=@p ¼ 0 and they appear always in pairs (e.g., q3 and q4); the point

where they coincide (or, coalesce; e.g., q�) signifies an unstable equilibrium config-

uration. In particular, if p appears quadratically in the Hamiltonian H ¼ Hðq; pÞ, the
system path in phase space p ¼ pðq; EÞ, obtained from its energy surface Hðq; pÞ ¼ E,

is symmetric about the q-axis (fig. 8.11).

For example, if H ¼ p2=2mþ VðqÞ ¼ E, then, to within a sign,

p ¼ ð2mÞ1=2½E � VðqÞ�1=2

) dp=dq ¼ �ðm=2Þ1=2½E � VðqÞ��1=2 ðdV=dqÞ: ð8:14:5Þ
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Figure 8.11 Phase plane trajectory of libratory periodic motion (1 DOF ), and example of

harmonic oscillator. [The energy curve Hðq; pÞ ¼ E (outer contour, left figure, for general q; p is

not necessarily quadratic in p; that is why there are four possible values of p for q3 < q < q4. If

Hðq; pÞ was quadratic in p, there would be only two.]

(i) Libration [from Latin verb librare = to balance (libra = scales), to sway]



Therefore, for libration, the equation E � VðqÞ ¼ 0 must have two simple zeros:

qmin; qmax; and between them be positive; at qmin =max; dp=dq! 1. Then, the curve

is traversed completely and in the same sense. [Since p _qq ¼ 2T ) p dq > 0, the curve

is traveled outward ðdq > 0Þ in its upper branch ðp > 0Þ, and in its lower branch

ðp < 0Þ on its return ðdq < 0Þ.]

(ii) Rotation (or circulation, or revolution)

If, however, the coordinate q is angle-like, then since q and qþ kqo (k ¼ arbitrary

integer — fig. 8.12) describe the same system configuration, the unique determination

of the integral constant C by the system’s state of motion requires either that the

curve Hðq; pÞ ¼ C is closed, or that p ¼ pðqÞ is a periodic function of q, with mini-

mum period qo (frequently, qo ¼ 2�). In the second case, q takes the full range of

values; that is, it is neither bounded nor periodic (timewise) — this kind of motion is

called rotation. In particular, the uniform rectilinear motion can be viewed as the

limiting case of a periodic motion, indeed as a rotation on a circle of infinite radius.

REMARK

In HM, we always seek coordinates in which the motion appears as rotation; then

(as with ignorable coordinates) q ¼ linear in time, p ¼ constant (see ‘‘action-angle’’

variables, below).

The libration–rotation difference can be summed up, mathematically, as follows:

(i) In a libration, q! qL can be represented by a Fourier series;

(ii) In a rotation, q! qR cannot be so represented. But for periodic motion, the

new function: qR � 2��t � qR � !t, can be represented by a Fourier series with

fundamental frequency �. For example, if qR ! � ¼ 2��t (i.e., uniform rotation)

! �� 2��t ¼ 0; and the latter can be represented by a Fourier series with all its

coefficients zero. Thus, whether a periodic motion will be classified as libration or as

rotation depends on the chosen positional coordinates. Also, one and the same

physical system may, under different initial conditions () different initial energy

constant) exhibit both libration and rotation. (The limiting case separating libration

1252 CHAPTER 8: INTRODUCTION TO HAMILTONIAN/CANONICAL METHODS

Figure 8.12 Phase plane trajectory of rotatory periodic motion (1 DOF).



from rotation is sometimes called limitation; that is, one where the points of motion

reversal are reached in infinite time.)

The classic example here is the planar mathematical pendulum with fixed support O
(fig. 8.13):

(i) Its to and fro oscillatory motion is a libration; whereas

(ii) Its full rotation around O, if its energy is sufficient, is a rotation.

Here,

2T ¼ m l2ð _��Þ2; V ¼ mg lð1� cos�Þ; ð8:14:6aÞ
) T þ V ¼ Tinitial þ Vinitial ¼ mg lð1� cos�oÞ � E ð�o � �maximumÞ; ð8:14:6bÞ
H � ð1=2AÞp2 �D cos� ¼ C � E ðenergy equationÞ; ð8:14:6cÞ
) p ¼ ð2AÞ1=2ðE þD cos�Þ1=2 ¼ ðm lÞ ð2g lÞ1=2ðcos�� cos�oÞ ð8:14:6dÞ
½A � m l2; D � mg l�:

We distinguish the following four cases:

(a) If E ¼ �mg l � �Dð< 0Þ, the ðq; pÞ-trajectory contracts to the libration center qo.

(b) If �D < E < D, then we have libration only for j�j < �max. [The libration limits

are given by dq=dt ¼ @H=@p ¼ 0 ) p ¼ 0: cos�o ¼ �ðE=mg lÞ � �ðE=DÞ; there,

p ¼ 0. Hence oscillation/libration will occur between ��max � � arccosð�D=EÞ and

�max � arccosð�D=EÞ.]
(c) If E > D, we have rotation (always in the same direction).

(d) If E ¼ D, we move on a stability/instability boundary, or asymptotic orbit; and

approach the highest point q ¼ � very slowly (‘‘in infinite time’’). (See also Born,

1927, pp. 48–52.)

However, in general, and for reasons that will appear gradually below (also, recalling

rationale for canonical transformations, }8.8), we seek new ignorable coordinates q 0
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Figure 8.13 Phase plane trajectories of a planar mathematical pendulum.



in which our periodic motion appears as a rotation (angle variables, q 0 � w), and

new constant momenta p 0 (action variables p 0 � J) which are the sole ‘‘variables’’ of

the system Hamiltonian (which, here, equals the total energy); that is, recalling }8.10

(fig. 8.14),

ðq; pÞ ! ðq 0; p 0Þ:
dq 0=dt ¼ @H 0ðp 0Þ=@p 0 ¼ constant � c1

) q 0 ¼ c1tþ c2 ðc2: integration constantÞ; ð8:14:7aÞ
dp 0=dt ¼ �@H 0ðp 0Þ=@q 0 ¼ 0 ) p 0 ¼ constant � c3: ð8:14:7bÞ

Let us quantify these concepts:

(i) The phase integral [with physical dimensions of ðmass� velocityÞ � ðlengthÞ;
that is, angular momentum, or action]:
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Figure 8.14 Canonical transformation to action–angle variables: ðq; pÞ ! ðq 0 ¼ w; p 0 ¼ JÞ.



J �
þ
pðq; �Þ dq or; equivalently;

þ
pðq;EÞ dq

� �
:

Libration: the integration extends over the closed path;
and thus takes care of the multiple-valuedness of the momentum;
due to its quadratic appearance in ð8:14:5; 6dÞ: p ¼  . . .
ðintegral equal to the shaded area in Eg: 8:11Þ;
Rotation: the integration extends over a single period qo of q
ðintegral equal to the shaded area in Eg: 8:12Þ; ð8:14:8Þ

is called action variable.
In a constant parameter (closed) system, J is independent of time. Therefore

(recalling the Hamilton–Jacobi method, }8.10), for such systems, J can be taken

as one of the two integration constants of motion (here, n ¼ 1); or, in the action

function of our problem, Aðt; q; �Þ ¼ Aoðq; �Þ � Eð�Þt, we can take J as the new

momentum p 0 ¼ � (with a constant value for each particular periodic motion); that

is, � ¼ J, and consider the total energy E as a function of it:

J �
þ
p dq ¼

þ
ð@Ao=@qÞ dq ¼ JðEÞ ) E ¼ EðJÞ

) Aðt; q; JÞ ¼ Aoðq; JÞ � EðJÞt: ð8:14:9aÞ

From the foregoing, it follows that the first of the Hamilton–Jacobi (HJ) transfor-

mation equations, and corresponding HJ equation are

ð@Ao=@qÞE¼constant ¼ ð@Ao=@qÞJ¼constant ¼ p; ð8:14:9bÞ
Hðq; @Ao=@qÞ ¼ constant ¼ E: ð8:14:9cÞ

(ii) The corresponding new coordinate q 0 � w, of the canonical transformation

ðq; pÞ ! ðq 0 ¼ w; p 0 ¼ JÞ with generating function F ¼ F2ðq; p 0Þ ¼ Aoðq; JÞ, is

q 0 ¼ @F2=@p
0: w ¼ @Aoðq; JÞ=@J: ð8:14:10Þ

To find its properties, we need the Hamiltonian equations of motion in these vari-

ables. Since H 0 ¼ H þ @Ao=@t ¼ H ¼ EðJÞ ¼ constant (i.e., w is ignorable, and

therefore J is a constant) these equations are

dq 0=dt ¼ @H 0ðp 0Þ=@p 0: dw=dt ¼ @HðJÞ=@J ¼ constant � �ðJÞ � �
) w ¼ �tþ �; ð8:14:11Þ

(� is to be identified later with the fundamental frequency of the system and � with a

phase constant)

dp 0=dt ¼ �@H 0ðp 0Þ=@q 0: dJ=dt ¼ �@HðJÞ=@w ¼ 0

) J ¼ constant: ð8:14:12Þ

From the above, it follows that w increases linearly with time; and during a period � it

increases by

Dw � wðtþ �Þ � wðtÞ ¼ � � � ¼ ½@HðJÞ=@J �� � � �: ð8:14:13aÞ
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But also, from the earlier definitions, as q goes through a complete cycle of libration

or rotation, we have, successively,

Dw ¼
þ
ð@w=@qÞ dq ¼

þ
ð@2Ao=@J @qÞ dq ¼ @=@J

þ
ð@Ao=@qÞ dq

� �
¼ @=@J

þ
p dq

� �
¼ @J=@J ¼ 1; ð8:14:13bÞ

that is, the state of the system is periodic in w with period 1. (For a full justification of

the commutation rule employed here, see ex. 8.14.13.) Comparing (8.14.13a, b), we

immediately conclude that

� � 1=� � !=2� ¼ @HðJÞ=@J ¼ @EðJÞ=@J; ð8:14:14Þ

that is, by differentiating the (constant) total energy with respect to the (constant)
action variable, as soon as it becomes available in that form [without finding qðtÞ from
the equations of motion!], we obtain the fundamental frequency of the periodic motion.
Thus, the difficulty of solving the equations of motion has been transferred to that of

calculating the action integrals J � Þ p dq; and in this lies the importance of action

and angle variables.

The geometrical meaning of these transformations, and resulting advantage of

action–angle variables, for systems with Hamiltonian H ¼ p2=2mþ VðqÞ are shown

in fig. 8.15.
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Libration: JðEÞ ¼
þ
pðq; EÞdq ¼ 2

ðqmax

qmin

ð2mÞ1=2½E � VðqÞ�1=2 dq ¼ ðJÞð1Þ ¼ J;

Rotation: JðEÞ ¼
ðqo
0

pðq; EÞdq; where Hðq; pÞ ¼ E ) p ¼ pðq; EÞ:

[Two solutions in opposite directions; from two actions corresponding to each

direction of motion.]

Figure 8.15 Libration and rotation in general and in angle–action variables,

in phase space (1 DOF system).



REMARK

Some authors define J as ð1=2�Þ Þ p dq. Then,

w ¼ ½@HðJÞ=@J�tþ constant ¼ ! tþ constant ) Dw ¼ ! � ¼ 2�;

that is,

! � 2�� ¼ @HðJÞ=@J ¼ fundamental circular frequency: ð8:14:15aÞ
Others define J as

Þ
p dq, but w as 2�ð@Ao=@JÞ. Then,

w ¼ 2�
�½@HðJÞ=@J �tþ �� � 2�ð�tþ �Þ ) Dw ¼ 2�� � ¼ 2�;

that is, again,

� ¼ @HðJÞ=@J ¼ fundamental frequency: ð8:14:15bÞ
(And similarly for the general n-DOF case.)

In view of the w-periodicity, eq. (8.14.13b), and recalling (8.14.2–3), we can write

(again, with s ¼ �1; . . . ;þ1)

ðiÞ Libration:
q ¼ qðwÞ ¼

X
cs expð2�iswÞ ¼

X
cs exp½2�isð�tþ �Þ�

�
X

ds expð2�istÞ;

cs ¼
ð1

0

qðwÞ expð�2�iswÞ dw ¼ csðJÞ; ð8:14:16aÞ

ðiiÞ Rotation:
q ¼ qowþ

X
cs expð2�iswÞ ¼ qoð�tþ �Þ þ

X
cs exp½2�isð�tþ �Þ�

�
X

ds expð2�istÞ;

cs ¼
ð1

0

ðq� qowÞ expð�2�iswÞ dw ¼ csðJÞ: ð8:14:16bÞ

It is not hard to see, from the above, that any single-valued function f ðq; pÞ when

expressed in terms of the corresponding action ðJÞ and angle ðwÞ variables, becomes

a periodic function of w with period 1.

THEOREM

The reduced action Aoðq; JÞ is a multiple-valued function of the coordinate q. Every

time q varies over a cycle once— that is, during each period � — the reduced action

Ao ¼ Aoðq; JÞ increases by

DAo � Aoðtþ �Þ � AoðtÞ ¼
þ
ð@Ao=@qÞ dq ¼

þ
p dq ¼ J; ð8:14:17aÞ

and hence the name modulus of periodicity of Ao for J. From the above, it follows

that

DðAo � wJÞ ¼ DAo � DwJ ¼ J � J ¼ 0; ð8:14:17bÞ
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that is, the new action function

Aoo � Ao � wJ ¼ Aooðq;wÞ; ð8:14:17cÞ
is periodic in w, while Aoðq; JÞ is not. Also, for two distinct but neighboring motions,

with corresponding action variable values J and J þ DJ, eq. (8.14.14) yields

DE ¼ � DJ ð8:14:17dÞ
(an equation that constituted the starting point of the famous correspondence prin-

ciple of the older quantum theory of N. Bohr, late 1910s–early 1920s).

REMARK

Instead of the canonical transformation ðq; pÞ ! ðw; JÞ, with generating function

Aoðq; JÞ and new Hamiltonian H 0 ¼ HðJÞ ¼ EðJÞ, we can, equivalently, consider

the canonical transformation ðq; pÞ ! ð�; JÞ with generating function Aðt; q; JÞ and,

hence, new Hamiltonian H 0 ¼ H þ @A=@t ¼ 0, so that

p ¼ @A=@q;
� ¼ @A=@J ¼ @Ao=@J � tð@E=@JÞ ¼ w� ð@E=@JÞt ¼ phase constant

) w ¼ ð@E=@JÞtþ � ¼ �tþ �; ð8:14:18aÞ
and new Hamiltonian equations

d�=dt ¼ @H 0=@J ¼ 0 ) � ¼ constant; ð8:14:18bÞ
dJ=dt ¼ �@H 0=@� ¼ 0 ) J ¼ constant: ð8:14:18cÞ

Hence, in the new phase space ðq 0 ¼ �; p 0 ¼ JÞ, the system motion is specified by the

point ð� ¼ constant; J ¼ constantÞ.�
Strictly speaking, it is not w � @Ao=@J that is canonically conjugate to J, but

ðq 0 !Þ� � @A=@J ¼ @Ao=@J � ð@E=@JÞt ¼ w� �t ) w ¼ �tþ �.�
HISTORICAL

Action–angle variables were introduced to dynamics by the French engineering

scientist C. Delaunay, in connection with astronomical perturbation problems

(1846: Sur une nouvelle théorie analytique du mouvement de la lune; 1860: Théorie
du mouvement de la Lune) and were also used by the German mathematician

P. Stäckel (1891) and the Swedish astronomer C. L. Charlier (1907: Die Mechanik
des Himmels); although the term ‘‘action–angle variables’’ seems to have been intro-

duced by the German (astro)physicist K. Schwarzschild (1916; in German:

Wirkungs–Winkel Variable). They became very important again in both the old

and new quantum mechanics (1910s, early 1920s), where they proved indispensable

in several key theoretical developments and analytical tools; for example, quantum
conditions (Sommerfeld, Bohr), adiabatic invariants (Ehrenfest, Burgers; see }8.15),

canonical perturbation theory (Born, Heisenberg, Jordan, Pauli, Epstein, Brody,

Fues, et al.; see }8.16).

Example 8.14.1 Action–Angle Variables for the Harmonic Oscillator (Recall ex.

8.10.3). From the energy conservation equation

Hðq; pÞ ¼ p2=2mþ kq2=2 ¼ E; ðaÞ
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where m ¼ mass; q ¼ amplitude; k ¼ stiffness, so that !2 ¼ k=m ) k ¼ m!2 ¼
mð2��Þ2, we obtain the momentum:

p ¼ @Ao=@q ¼ ð2mE � mkq2Þ1=2 ¼ pðq;E; k;mÞ; ðbÞ
and therefore the corresponding action variable becomes

J ¼
þ
p dq ¼

þ
ð@Ao=@qÞ dq ¼

þ
ð2mE �mkq2Þ1=2 dq

½In this case of libration; q extends ðoscillatesÞ between the roots of dq=dt¼ @H=@p¼ 0

) p ¼ 0: qmin � �ð2E=kÞ1=2 and qmax � þð2E=kÞ1=2;
this also guarantees that p ¼ ð2mE �mkq2Þ1=2 remains real�

¼ 4

ðqmax

0

½2mðE � kq2=2Þ�1=2 dq ¼ area of ellipse in ðq; pÞ-space

½utilizing the standard trigonometric substitution q ¼ ð2E=kÞ1=2 sin x; etc:�

¼ ð2EÞ ðm=kÞ1=2
ð2�

0

cos2x dx

� �
¼ ð2�EÞ ðm=kÞ1=2: ðcÞ

From (c), we obtain

E ¼ ðJ=2�Þ ðk=mÞ1=2 ¼ EðJÞ ¼ H 0

) � ¼ @E=@J ¼ ð1=2�Þ ðk=mÞ1=2 ¼ !=2�: ðdÞ
Next, by calculating how Ao changes during a complete period of oscillation— that is,

as q varies from qmin to qmax and then back to qmin — we will verify that Aoðq;EÞ, or

Aoðq; JÞ, is indeed a multiple-valued function of q. Integrating (b) [or ex. 8.10.3: (k)],

while suppressing the resulting inessential constant, we obtain (fig. 8.16):

Ao ¼ Aoðq;EÞ ¼ Eðm=kÞ1=2�arcsin½ðk=2EÞ1=2q� þ ðk=2EÞ1=2q½1� ðk=2EÞq2�1=2�:
ðeÞ
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Figure 8.16 Graph of Aoðq; EÞ, eq. (e). Its slope is the momentum of the particle: p ¼ @Ao=@q.



Now, clearly, the second term of (e) is single-valued, and so, during one such period,

contributes nothing toAo (in fact, at its beginning and ending, qmin, it vanishes); but its

first term is multiple-valued, and since, during qmin ! qmax ! qmin, the argument of

arcsinð. . .Þ changes from �1! þ1! �1; arcsinð. . .Þ itself changes by 2�. Hence,

DAo ¼ Eðm=kÞ1=2ð2�Þ ¼ E=� � E� ½� ð2�ÞE=!�
¼ J ðmodulus of periodicity of AoÞ; ðfÞ

and, further, replacing in (e) E with J�, we obtain

Ao ¼ Aoðq; JÞ
¼ ðJ=2�Þ� arcsin½ðk=2�JÞ1=2q� þ ðk=2�JÞ1=2q½1� ðk=2�JÞq2�1=2�
¼
ð
pðq; JÞ dq ¼ ð1=2��Þ

ð
ð2k�J � k2q2Þ1=2 dq

� �
: ðgÞ

The above shows that in one complete period of q, the new coordinate w (canonically

conjugate to J) changes by þ1:

w � @Ao=@J ¼ ð1=2�Þ arcsin
�ðk=2�JÞ1=2q� ¼ �tþ �; ðhÞ

) Dw ¼ ð1=2�Þ ð2�Þ ¼ þ1;

like an angle � � 2�w, hence the name angle variable. Finally, inverting (h), we

obtain

q ¼ ð2�J=kÞ1=2 sinð2�wÞ ¼ ðJ=2�2�mÞ1=2 sin½2�ð�tþ �Þ�; ðiÞ
) p ¼ m _qq ¼ ðkJ=2�2�Þ1=2 cosð2�wÞ; ð jÞ

that is, both q and p are periodic in w, with period 1. Incidentally, eqs. (i, j) are the

equations of canonical transformation from ðw; JÞ to ðq; pÞ.
This simple example may, hopefully, begin to show the advantages of the action–

angle variables: in the ðq; pÞ-space, the system trajectory for a given constant energy

E is the two-valued function (b); whereas in ðw; JÞ-space, the system trajectory is

characterized uniquely by the constant J, J ¼ JðEÞ, and each such curve is character-

ized by a single-valued function of w.

Finally, we note the close relation of the above results to those of ex. 8.10.8.

Each of the latter’s equations (h) is of the harmonic oscillator type (b)! (g):

Ao ¼
Ð ð2mE � mkq2Þ1=2 dq; that is, each qk varies between a qk;min to qk;max and

then back to qk;min, with frequency �k. However, even though these qk’s are

uncoupled (Liouville system), this does not guarantee that the system is periodic as
a whole; namely, that it returns to its original configuration. Such questions of

periodicity in several DOF systems are treated below.

Several DOF, Multiply Periodic Motion

Here, we shall restrict ourselves to systems that are completely separable in all their

nþ 1 variables ðq1; . . . ; qn; tÞ � ðq; tÞ (which, for all practical purposes is the only

case where the Hamilton–Jacobi equation can be solved), and periodic in at least one
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set of canonical variables. This (recalling }8.10) means that

A ¼ Aoðq1; . . . ; qn; �1; . . . ; �nÞ � Eð�1; . . . ; �nÞt
� Aoðq; �Þ � Eð�Þt
¼
X

Aokðqk; �Þ � Eð�Þt; ðk ¼ 1; . . . ; nÞ ð8:14:19aÞ

from which it follows that

dAo ¼
X
ð@Ao=@qkÞ dqk ¼

X
ð@Aok=@qkÞ dqk ¼

X
pk dqk; ð8:14:19bÞ

or, by (indefinite) qk-integration,

Ao ¼
ð X

ð@Ao=@qkÞ dqk ¼
ð X

ð@Aok=@qkÞ dqk ¼
X ð

ð@Aok=@qkÞ dqk
� �

¼
X ð

pkðqk; �Þ dqk
� �

�
X ð

½ fkðqk; �Þ�1=2 dqk ð8:14:19cÞ

[where the Aok ¼ Aokðq; JÞ are multiple-valued functions of the q’s]; and the projec-

tion of the system trajectory in phase space on every ðqk; pkÞ-subplane, pk ¼ pk ðqk; �Þ
(since now each pk depends only on qk, and the �’s) is also periodic (libration or

rotation).

However this does not necessarily mean that all such projected ðqk; pkÞ-subtrajec-

tories have the same fundamental frequency — that is, periodicity in the sense that,
after the passage of a certain finite time interval, all q’s and p’s return to their initial
values, in general, does not exist— due to coordinate coupling; after the passage of a

time interval �k, only the pair ðqk; pkÞ returns to its initial values, but not the other

pairs (The reader, probably, recalls a similar situation in linear multi-DOF vibra-

tions: each normal mode is periodic in time but their superposition, in general, is

not.)

Such a motion (and system), is n-ply, or multiply, periodic. It can become truly

periodic, in the earlier sense of the system as a whole, when certain special conditions

of proportionality, or commensurability, exist among its partial frequencies

�k ¼ 1=�k ðk ¼ 1; . . . ; nÞ. According to this definition, a two-dimensional oscillator

is a periodic system even when its xy-plane trajectory (Lissajous’ figure) is an open
curve. These fundamental concepts are examined in detail below. [For an excellent

summary of the basic underlying theory of multiply periodic functions, see Born

(1927, pp. 71–76).]

As a result of the complete separability of the system: (i) once Aðt; q; �Þ has been

found (as explained in }8.10), the individual qkðtÞ and pkðtÞ are determined by the

finite Hamilton–Jacobi equations

@A=@�k ¼ �k; @A=@qk ¼ @Ao=@qk ¼ @Aok=@qk ¼ pk ð8:14:20aÞ

[provided that Detð@2Ao=@qk@�lÞ 6¼ 0]; that is, the motion has been reduced to one-

variable integrations; and (ii) the constant energy equation

Hðq1; . . . ; qn; p1; . . . ; pnÞ � Hðq; pÞ ¼ Hðq; @Ao=@qÞ
¼ E ¼ Eð�1; . . . ; �nÞ � Eð�Þ ¼ constant ð8:14:20bÞ
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[a ð2n� 1Þ-dimensional energy hypersurface in ðq; pÞ-phase space] separates to the n
one-to-one first integrals

Hkðqk; pkÞ ¼ Ekð�Þ � Ek; ð8:14:20cÞ
where E1 þ � � � þ En ¼ E is the value of the new Hamiltonian H 0, so that the

projections of the phase-space trajectory of the system on the individual ðqk; pkÞ-
planes look just like the previous 1-DOF trajectories; that is, each individual qk
either librates between two fixed limits ðqmin and qmax); or increases boundlessly,

but its corresponding pk periodically returns to its original value (rotation).

Now, for such a completely separable system, with individually periodic (libratory

or rotatory) qk’s, we define the action variable Jk corresponding to qk by the phase

integral

Jk �
þ
pk dqk ¼

þ
pkðqk; �Þ dqk ¼ Jkð�1; . . . ; �nÞ � Jkð�Þ

¼
þ
ð@Ao=@qkÞ dqk ¼

þ �
@Aokðqk; �Þ=@qk

�
dqk; ð8:14:21Þ

where the integrations extend over the complete periods on the ðqk; pkÞ-plane, for

fixed �k’s ) fixed Ek’s ) fixed E. In the case of libration, this means integration

over the closed ðqk; pkÞ paths — something that takes care of the multiple-valuedness

of the momenta, due to their quadratic appearance in (8.14.20c): pk ¼  . . . ; while in

the case of rotation, the integration extends over a single period qko of qk. Hence,

each Jk equals the corresponding shaded area of its trajectory in its ðqk; pkÞ-plane

(figs. 8.11, 8.12); that is, the area contained within the closed trajectory (libration), or

under a single qk-cycle (rotation).

REMARK

Comparison of (8.14.19c) with (8.14.21) shows that the former is an indefinite inte-

gral, while the latter is the closed line integral of the partial derivative @Aok=@qk in

the ðqk; pkÞ-plane, as explained above. Since Jk 6¼ 0, we conclude that Aok is a multi-
ple-valued function of its coordinate. In general, the calculation of the numbers Jk via

(8.14.21) is very laborious; but since these are two-dimensional contour integrals, the

application of complex variables (Cauchy integration) can be utilized to great advan-

tage; see, for example, Born (1927; appendix II), Sommerfeld (1931, vol. 1); also

Goldstein (1980, p. 472 ff.), Pars (1965, pp. 344–346).

In the case where neither the motion as a whole, nor each qk, have a periodic

variation in time, the integrals in (8.14.21) are understood as extending over the

entire range of qk values. See equations (8.14.24i, j) and subsequent discussion;

and conditional periodicity and degeneracy below.

Solving the n independent functions (8.14.21), Jk ¼ Jkð�Þ, for the �’s, we obtain

�k ¼ �kðJ1; . . . ; JnÞ � �kðJÞ; ð8:14:21aÞ
that is, the n Jk’s can replace the n �k’s as the new constant momenta. Then Ao takes

the following functional form:

Ao ¼ Aoðq; �Þ ¼ Ao½q; �ðJÞ� ¼ Aoðq; JÞ ¼
X

Aokðq; JÞ ð8:14:21bÞ
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Below, we show that the constants � � ð�1; . . . ; �nÞ are the fundamental frequencies
of each DOF of this multiply periodic motion— the main advantage of the action–angle
method—while the � � ð�1; . . . ; �nÞ are its phase constants.

)8.14 PERIODIC MOTIONS; ACTION–ANGLE VARIABLES 1263

[¼ generating function of the old coordinates (q) and the new momenta (J); i.e.,

F2ðq; p 0Þ], and therefore the canonical transformation equations ðq; pÞ ! ðq 0; p 0Þ ¼
ðw; JÞ become

pk ¼ @F2=@qk: pk ¼ @Aokðqk; �Þ=@qk ¼ @Aokðqk; JÞ=@qk ¼ pkðqk; JÞ; ð8:14:21cÞ
qk 0 ¼ @F2=@pk 0 : wk ¼ @Aoðqk; JÞ=@Jk ¼

X
½@Aolðql; JÞ=@Jk� ¼ wkðq; JÞ;ð8:14:21dÞ

and show that each pk depends only on the corresponding qk (separation) and all

the Jk’s; and each wk depends on all the q’s (coupling) and all the Jk’s.
The new coordinates w � ðw1; . . . ;wnÞ, canonically conjugate to the new momenta

J � ðJ1; . . . ; JnÞ, are called angle variables. Let us find the corresponding equations

of motion. Since the new Hamiltonian H 0 ¼ H 0ðw; JÞ equals

(

H 0 ¼ H þ @Ao=@t ¼ H ¼ Eð�Þ ¼ E½�ðJÞ� � EðJÞ ¼ H 0ðJÞ ð8:14:22aÞ
(i.e., all the w’s are ignorable), the canonical equations are

dwk=dt ¼ @EðJÞ=@Jk ¼ constant � �kðJÞ ¼ �k ) wk ¼ �ktþ �k; ð8:14:22bÞ

recalling (8.10.3a–d) and the discussion following them.

BRIEF REMARKS ON COMPLETE INTEGRABILITY IN HAMILTONIAN SYSTEMS

(i) (Cont’d from §3.12, but now in canonical variables) We will call a, say (for concreteness but no loss of generality) Hamiltonian
n – degree-of-freedom (DOF) holonomic system S, i.e. one of total order 2n, completely integrable (CI), or simply integrable, if it
possesses 2n (functionally independent/distinct, analytic, global) first integrals:

f
α
(t, q, p) = Cα: constant/time invariant/conserved, for all finite times, along any system trajectory/orbit/

“streamline/flow”, i.e. evaluated along any solution of S’s canonical equations of motion
[with Greek (Latin) subsripts running from 1 to 2n(n)].

Among a system’s integrals, those that isolate → determine the 2n variables in terms of the (2n+1)th variable, say as qk =
qk(t;C1, . . . ,C2n), pk = pk(t; C1, . . . ,C2n), known as isolating integrals, or separation constants, are the most useful; the preced-
ing 2n constant momenta/actions Jk and phase constants/shifts γk [eq’s (8.14.22b, c)] constitute an example of 2n such integrals.
Physically: “As in the noncanonical case, an integrable canonical Hamiltonian flow is one where the interactions can be transformed
away: there is a special system of generalized coordinates and canonical momenta where the motion consists of n independent global
translations wk = νkt+ γk along n axes, with both the νk and Jk constant. Irrespective of the details of the interactions, all integrable
canonical flows are geometrically equivalent by a change of coordinates to n hypothetical free particles moving one-dimensionally
at constant velocity in the (w, J) coordinate system.” McCauley (1997, pp. 158 ff., 192 ff; our notations, his italics).

(ii) However, Hamiltonian system integrability should not be confused with either separability (CI systems may exist that are
not separable in any canonical coordinate system), or with “exact solubility (or solvability)” = closed algebraic form solution; the
latter may be completely chaotic, i.e. its phase space may be completely (“densely”) filled with unstable (periodic or non-periodic)
initial condition-sensitive orbits, while CI systems are either stable periodic (= all frequency ratios rational – commensurability) or
stable-quasiperiodic (= at least one irrational frequency ratio – incommensurability), on tori. The central point of this specialized
(group-theory based) iuntegrability is the following fundamental:

Theorem of Liouville [1850, e.g. Whittaker (1937, pp. 307-308, 322-325) and its specialization known as theorem of
Liouville-Arnold]: (a) A CI n-DOF Hamiltonian system S is one that possesses n (functionally independent, analytic, global)
first integrals f1, . . . , fn in involution: (fk, fl) = 0, for all k, l (mutually commuting integrals); i.e. to integrate S we need only
n (not 2n) such integrals; (b) Once the latter have been found (e.g. the Jk), the remaining n integrals (e.g. the γk) follow au-
tomatically; (c) In such involutive systems, a canonical trsnsformation can be found such that, in the new (q, p) coordinates,
the n fk yield constant system momenta, also in involution: p → Jk = constant (isolating integrals: each constant isolates one
independent DOF), (Jk, Jl) = 0; and (d) S’s motion in phase space is confined to a (smooth n-dimensional closed surface that
is topologically equivalent to a) torus, and is either stable-periodic or stable-quasiperiodic; i.e. the ratios of the n independent
frequencies determine the nature of the system’s motion; or: integrable motions in q, p space are, irrespective of the details
of their Hamiltonians (i.e. “of their interactions”), not more complex than collections of independent translations or simple
harmonic oscillators!

IN SUM: Completely integrable (CI) systems cannot be (classically or deterministically) chaotic, i.e. such chaos cannot occur in
CI systems, only among non-CI ones. CI systems exhibit stable, multiply periodic behavior: all their localized (bound) orbits are
confined to an n-dimensional manifold (inside their 2n phase space) that is geometrically equivalent to an n-dimensional torus; the
conditions for the preservation of such tori under nontrivial perturbations [although in disturbed form (-s)] constitute the famous
KAM theorem (§8.16).

For details, including the basic question of CI, or lack thereof, of a system’s equations of motion, and ways to ascertain this –
topics well beyond the scope of this book – see (alphabetically): Gallavotti (1983, pp. 287-289, 361-362), Lichtenberg and Lieberman
(1992), McCauley (1993), (1997, pp. 158 ff., 192 ff., 311 ff., 316 ff., 409 ff.), Tabor (1989, pp. 68-79), Wintner (1941, pp. 68, 144);
also, encyclopaedic summary in our forthcoming Elementary Mechanics (Part I, “20th century”).

dJk/dt = −∂E(J)/∂wk = 0 ⇒ Jk = constant, (8.14.22c)



Let us consider a special, kinematically admissible or possible, motion in which

each ql ðl ¼ 1; . . . ; nÞ goes through a complete (libratory or rotatory) cycle an

integral number of times il ð¼ 0; 1; 2; . . .Þ. Then, recalling (8.14.21d), and that the

J remain constant here, we find that wk changes by the following amount;

Dwk ¼
þ
dwk ¼

þ X �
@wkðq; JÞ=@ql

�
dql ¼

þ X
ð@2Ao=@Jk@qlÞ dql

¼
X

@=@Jk

þ
ð@Ao=@qlÞ dql

� �
¼
X

@=@Jk

þ
ð@Aol=@qlÞ dql

� �
�
X

@=@Jk

þ
plðql ; JÞ dql

� �
¼
X

@ðil JlÞ=@Jk

¼
X

il �kl ¼ ik: ð8:14:23Þ

(For complete justification of the commutation step used in this derivation, see ex.

8.14.13 below.)

In words: the mapping (8.14.21d) from the q-space to the w-space has the follow-

ing properties:

� If, starting from a certain configuration, a particular qk is allowed to complete ik
cycles— that is, either vary ‘‘from here to there and back’’ (libration), or revolve

(rotation), an integral number of times ik — then only wk changes by ik, all other

w’s do not; in other words, wkðq; JÞ is a multiple-valued function of the q’s, periodic in

ql ðl 6¼ kÞ and monotonically increasing in qk; for each cycle of the latter, wk increases

by 1.

� Inverting (8.14.21d), we also conclude that if wk increases by ik while the other w’s do

not change, only qk goes through ik complete cycles. Any other ql ðl 6¼ kÞ depending on

wk would have varied, but would have returned to its original value without complet-

ing its cycles; otherwise wl would have increased by the number of those cycles.

Hence, in general, each q depends on all the w’s and J ’s; and is periodic in each w
with fundamental period unity. (If a particular q does not depend on all the w’s, then,

of course, it will not be periodic in all of them; but the totality of q’s depends on the

totality of the w’s.)

In addition, since:

(i) the Aokðq; JÞ are also multiple-valued functions of the q’s, every time qk varies

over a cycle once (ik times), while all other q’s remain unchanged, the reduced action

Ao increases by the amount Jk ðikJkÞ:

DAo � Aoðtþ �Þ � AoðtÞ ¼
þ
ð@Ao=@qkÞ dqk

¼ DAok ¼
þ
ð@Aok=@qkÞ dqk ¼

þ
pk dqk ¼ Jk; ð8:14:23aÞ

and since, then,

(ii) wk increases by 1, while the other w’s do not change, the sum
P

wkJk also

increases by Jk; therefore, it follows that the new function

Aoo � Ao �
X

wkJk; ð8:14:23bÞ
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remains unchanged; that is, Aoo is multiply periodic in the w’s with fundamental period
1 in each of them.

[Recalling }8.8, we see that this is a Legendre transformation, from a F2ðq; p 0Þ-
type generating function, Aoðq; JÞ, to a F1ðq; q 0Þ-type, Aoo ¼ Aooðq;wÞ. Indeed ð. . .Þ:-
differentiating Ao ¼ Aoðq; JÞ and then invoking (8.14.21c, d) and (8.14.23b), we

obtain

dAo=dt ¼
X �ð@Ao=@qkÞ ðdqk=dtÞ þ ð@Ao=@JkÞ ðdJk=dtÞ

�
¼
X

pkðdqk=dtÞ þ
X

wkðdJk=dtÞ
)
X

pkðdqk=dtÞ ¼ �
X

wkðdJk=dtÞ þ dAo=dt

)
X

pkðdqk=dtÞ �
X

Jkðdwk=dtÞ ¼ dAoo=dt

) pk ¼ @Aooðq;wÞ=@qk; Jk ¼ �@Aooðq;wÞ=@wk:� ð8:14:23cÞ
The foregoing analysis is summarized in the following rule.

Frequency Rule

To calculate the fundamental frequencies of a completely separable multiply periodic

system, we proceed as follows:

� Using the Hamilton–Jacobi theory (}8.10), we first determine its reduced character-

istic function

Ao ¼ Aoðq; �Þ ¼
X

Aokðqk; �1; . . . ; �nÞ:

� Then, using the definition (8.14.21) Jk �
Þ
pk dqk, we calculate its action variables

Jk ¼ Jkð�Þ; and this is the main difficulty of the method.

� Next, we express its Hamiltonian as function of the Jk’s: H
0ðJÞ ¼ Hðq; pÞ ¼ EðJÞ.

� Finally, we calculate its fundamental frequencies from �k ¼ @EðJÞ=@Jk.

Analytically, the above are expressed as follows:

(i) Libration: The q’s (and p’s) are multiply periodic functions of the w’s with

fundamental period 1:

qkðw1 þ i1; . . . ;wn þ in; JÞ ¼ qkðw1; . . . ;wn; JÞ � qkðw; JÞ: ð8:14:24aÞ
(ii) Rotation. If qk has period qko, then

qkðw1 þ i1; . . . ;wn þ in; JÞ ¼ qkðw1; . . . ;wn; JÞ þ ikqko: ð8:14:24bÞ
The rotation case can be brought to the libration form in the new coordinates qR;k
defined by

qR;k � qkðw; JÞ � wkqko � qR;kðw; JÞ ð8:14:24cÞ
) qR;kðw1 þ i1; . . . ;wn þ in; JÞ ¼ qR;kðw1; . . . ;wn; JÞ � qR;kðw; JÞ: ð8:14:24dÞ

[Clearly, conditions (8.14.24a–d) still hold, trivially, even for the w’s absent from a

particular qk.] Other (nonseparable) arbitrary coordinates related to our (separable
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q’s) by one-to-one and well-behaved transformations — for example, from the q’s
and/or qR’s to, say rectangular Cartesian coordinates

xk ¼ xkðqÞ , qkðxÞ; ð8:14:24eÞ
will be representable by the following multiple-frequency Fourier series (for general-

ity, we keep the same notation as for the hitherto separable q’s):X
���n-ple sum���

X
ck;sðJÞ expð2�i s �wÞ

¼ qkðw; JÞ ðLibrationÞ
¼ qkðw; JÞ � wkqko � qR;kðw; JÞ ðRotationÞ; ð8:14:24fÞ

where

s � ðs1; . . . ; snÞ ¼ positive or negative integers; or zero; ranging from�1 toþ1;
w � ðw1; . . . ;wnÞ;
s �w � s1w1 þ � � � þ snwn ð‘‘dot product’’ of ‘‘vectors’’ s and wÞ; ð8:14:24gÞ

and

ck;sðJÞ ¼
ð1

0
���n-ple���

ð1

0

qkðw; JÞ expð�2�i s �wÞ dw1; . . . ; dwn: ð8:14:24hÞ

[For a simple proof of (8.14.24f–h) see ex. 8.14.2, below; and for a discussion of the

significance of such series, in the context of general vibration theory, see the appen-

dix at the end of this section.]

Since wk ¼ �ktþ �k, the above yield the following multiply periodic temporal
variation of qk: X

���n-ple sum���
X

ck;sðJÞ exp½2�i ðs � mtþ s � cÞ�
¼
X

���n-ple sum���
X

dk;sðJ; cÞ expð2�i s � mtÞ
¼ qkðt; JÞ ðLibrationÞ
¼ qkðt; JÞ � wkqko � qR;kðt; JÞ ðRotationÞ; ð8:14:24iÞ

where

m � ð�1; . . . ; �nÞ; c � ðc1; . . . ; cnÞ;
s � m � s1�1 þ � � � þ sn�n; s � c � s1�1 þ � � � þ sn�n;

and

dk;sðJ; �Þ � ck;sðJÞ expð2�i s � cÞ: ð8:14:24jÞ

Since in separable systems, by (8.14.21c), pk ¼ pkðqk; JÞ, we will have similar Fourier

expansions for the momenta pk; and, in fact, any single-valued function f ðq; pÞ when
expressed in terms of the corresponding action ðJÞ and angle ðwÞ variables, becomes a
periodic function of the w’s with period 1 in each of them; for example, the earlier-

mentioned rectangular Cartesian coordinates.
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ik ¼ 1: ð8:14:27bÞ
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�l ¼ il �k: il ¼ positive integer ðl 6¼ kÞ; ð8:14:27aÞ
(iii) The other fundamental frequencies are integral multiples of �k:

that is, Jk occurs only in Aok, not in Aol ðl 6¼ kÞ. Here, too, Dwk ¼ �k�k ¼ 1)
�k ¼ 1=�k. General functions of them, say f ðq1; . . . ; qnÞ, will be multiply periodic
functions of the w’s and, hence, nonperiodic functions of time, unless the �k are

mutually commensurate [see (iii), (iv) below].

wk ¼ @Aoðqk; JÞ=@Jk ¼ @Aokðqk; JkÞ=@Jk ¼ wkðqk; JkÞ; ð8:14:26Þ

(ii) The motion of qk is not influenced by the other coordinates (separability of

variables: generalization of the uncoupled normal coordinates of linear vibration

theory): in (8.14.24i, j) only the coefficient dk; 0...sðkÞ...0ðJ; �Þ survives; that is, the

Fourier expansion looks like (8.14.25a). As a result, qk ¼ qkðwk; JÞ , wk ¼
wkðqk; JÞ; and also [recalling (8.14.21d)]

Dwk � wkðtþ �kÞ � wkðtÞ ¼ �k�k ¼ 1

) �k ¼ 1=�k ¼ @EðJÞ=@Jk ¼ fundamental frequency: ð8:14:25bÞ

and from (8.14.22b–23) for one cycle (i.e., ik ¼ 1), we obtain

¼ qkðt; JÞ ðLibrationÞ
¼ qkðt; JÞ � wkqko � qR;kðt; JÞ ðRotationÞ; ð8:14:25aÞ

X
dk;sðJ; �Þ expð2�i s�ktÞ

THEOREM

The motion of qkðtÞ and pkðtÞ, given by (8.14.24f–j), is periodic in time with funda-

mental frequency �k in the first three of the following cases:

(i) The motion is one-dimensional; that is, only the pair ðqk; pkÞ varies. Then,

(8.14.24i, j) becomes

Now, the series (8.14.24i) decomposes the qk-motion into a sum of periodic motions
(harmonic vibrations), each with frequency |s · v| ≡ |s1ν1 + · · · + snνn|; but since, in
general, these frequencies are not in rational ratios to each other (i.e., they are not mutually
commensurate, or commensurable— see (8.14.27a) ff. below), their sum is not periodic in
time; no common period τ exists that contains every “component period” an integral num-
ber of times; and similarly for the momenta, even though pk = pk(qk) is closed (libration)
or periodic (rotation).

Hence, the system motion (as a whole) is nonperiodic, i.e. the system does not return
to any of its initial states in finite time (although, given sufficient time, it passes arbitrarily
close to those states); or geometrically, the system trajectory, in the 2n-dimensional phase

called Lissajous figures (ex.8.14.4)] [Since all irrational numbers can be approximated to
any desired accuracy with rational ones, we can approximate a nonperiodic function with
a periodic one, for a given time. The latter is called almost periodic function. Also, recall
discussion in §7.A4, and see “remark” below; and McCauley (1997, ch. 4: pp. 126–147).]
For these reasons, such multiply, or quasi-periodic motions [since, for sufficiently short
times and within finite accuracy, they may appear to be periodic (“mimic clockwork”)]
they have also been termed conditionally periodic (O. Staude, 1887); that is, they can be-
come truly periodic (i.e., singly periodic) only under certain conditions among the system
frequencies νk (k = 1, . . . , n). These conditions are summarized in the following theorem.

space, does not close on itself [in the n-dimensional configuration space, such orbits are



Then, (8.14.24i, j), with

i � ði1; . . . ; inÞ; ð8:14:27cÞ
s � i ¼ s1i1 þ � � � þ snin ¼ integer; ð8:14:27dÞ

becomes

qkðtÞ ¼
X

���n-ple sum���
X

dk;sðJ ; �Þ exp½2�i ðs � iÞ�kt�
¼ periodic function of time;with fundamental frequency ðperiodÞ
�k ð�kÞ; ð8:14:27eÞ

and, of course, after a time interval �k ¼ 1=�k ¼ il=�l :

Dwl ¼ �l�l ¼ il ð�k�kÞ ¼ il ðl 6¼ kÞ; ð8:14:27fÞ
Dwk ¼ �k�k ¼ ik ¼ 1; ð8:14:27gÞ

and ql returns to its initial value, after performing il complete cycles.

(iv) If none of the above three conditions hold, the motion of the system as a
whole is periodic if all its fundamental frequencies are commensurate (or commensur-
able); that is, they are in rational ratios to each other— namely, for all
k; l ¼ 1; . . . ; n ðk 6¼ lÞ, and for arbitrary values of the J’s, integers ik; il exist such that

�k=�l ¼ ik=il ð� !k=!lÞ ) �l=�k ¼ ik=il ; ð8:14:28aÞ
or, equivalently ðn� 1 relations),

�k=ik ¼ �l=il: �1=i1 ¼ �2=i2 ¼ � � � ¼ �n=in � � ð� 1=�Þ; ð8:14:28bÞ
�kik ¼ �l il: �1i1 ¼ �2i2 ¼ � � � ¼ �n in � � ð� 1=�Þ; ð8:14:28cÞ

where � ¼ common/system frequency, � ¼ common/system period.
Then, the particular coordinate qk ðk ¼ 1; . . . ; nÞ becomes

qkðtÞ ¼
X

���n-ple sum���
X

dk;sðJ; �Þ exp½2�i ðs � iÞ�t�:
periodic function of time;with fundamental frequency

ðnot �k ¼ ik�; butÞ �; ð8:14:28dÞ
and

Dwk � wkðtþ �kÞ � wkðtÞ ¼ �k� ¼ �k=� ¼ ik; ð8:14:28eÞ
after a time � ¼ 1=� ¼ ik=�k, each qk returns to its initial value (after performing ik
complete cycles).

REMARK

Let qk be a general multiply periodic function of all the w’s. Now, assume that during
a time interval �; qk performs ik complete cycles plus a fraction of a cycle. Then, it has

been shown by Vinti (1961), via number-theoretic tools (Dirichlet’s theorem), that

as � !1: limðik=�Þ ¼ �k; ð8:14:29Þ
that is, even when qk is not a singly periodic function with frequency �k, still its ‘‘mean
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frequency’’ [as defined by the left side of (8.14.29)] equals �k (see, e.g., Garfinkel,

1966, pp. 57–58).

Example 8.14.2 (Mathematical Appendix) Fourier’s Theorem for Multiply Periodic
Functions. Here, we prove (8.14.24f–h) for n ¼ 2. The extension to the general case

n ¼ n should then be obvious.

Let the function f ¼ f ðwÞ be periodic in w with period 1 (a function with arbitrary

period can easily be brought to this case — see any text on Fourier series). Then, by

Fourier’s theorem in complex form:

f ðwÞ ¼
X

cs expð2�i swÞ ðs ¼ �1; . . . ;þ1Þ;
where

cs ¼
ð1

0

f ðwÞ expð�2�i swÞ dw: ðaÞ

Next, let us consider the function F ¼ Fðw;w 0Þ, periodic in both w and w 0, with

period 1 in each of them. Since F is periodic in w 0, by (a), we will have

Fðw;w 0Þ ¼
X

cs 0 expð2�i s 0w 0Þ ðs 0 ¼ �1; . . . ;þ1Þ;

where

cs 0 ¼
ð1

0

Fðw;w 0Þ expð�2�i s 0w 0Þ dw 0 ¼ cs 0 ðwÞ: ðbÞ

Now, it is not hard to see that cs 0 ðwÞ is periodic in w with period 1. Therefore, again

by (a), we can write

cs 0 ¼
X

cs;s 0 expð2�i swÞ ðs ¼ �1; . . . ;þ1Þ;

where

cs;s 0 ¼
ð1

0

cs 0 expð�2�i swÞ dw ða constantÞ: ðcÞ

From the above, it follows immediately that

Fðw;w 0Þ ¼
XX

cs;s 0 exp½2�i ðs wþ s 0w 0Þ� ðs; s 0 ¼ �1; . . . ;þ1Þ;

where

cs;s 0 ¼
ð1

0

ð1

0

Fðw;w 0Þ exp½�2�i ðs wþ s 0w 0Þ� dw dw 0; Q:E:D: ðdÞ

If the function Fðw;w 0Þ is real, as assumed here, the Fourier coefficients cs;s 0 and

c�s;�s 0 are complex conjugate numbers; and similarly for the general n-variable case.

Geometrical Interpretation of Multiple Periodicity;
Degeneracy

To understand the above results better, let us examine the system motion, neither in

phase space ðPnÞ nor in configuration space ðQnÞ, but in the earlier-introduced, via

(8.14.21d), wk ¼ wkðq; JÞ, space of the angle variables; or w-space Wn.

)8.14 PERIODIC MOTIONS; ACTION–ANGLE VARIABLES 1269



Let us view the q’s as rectangular Cartesian coordinates, spanning an n-dimen-

sional Euclidean space Qn. Then, since these coordinates have been assumed

separable and periodic, the system motion in Qn will be restricted to the interior

of an n-dimensional finite rectangular prism, with sides parallel to the q-axes and

size determined by the initial conditions on the q’s. If we also assume that Wn is

an n-dimensional Euclidean space spanned by the rectangular Cartesian coordinates

fwk; k ¼ 1; . . . ; ng, then, due to (8.14.23) and its consequences, the earlier Qn-prism

will be mapped onto an infinity of unit cubes, in Wn, such that corresponding points

in any two or more such cubes correspond to the same Qn-space point. It follows that

the entire system motion in Wn-space can be described by the motion of a figurative

system point in a single representative fundamental unit cube Cn, one corner of

which is taken at the origin of the w-axes ðt ¼ 0Þ. Then partial motions in any

other Wn-cube can be transferred to their corresponding segment in Cn. Indeed,

eliminating the time t among the n equations wn ¼ �ktþ �k ðk ¼ 1; . . . ; nÞ, we see

that the system motion in Cn is a uniformly traversed straight line whose direction

cosines with the w-axes, lk, satisfy the following n� 1 relations:

l1: l2: . . . : ln ¼ dw1: dw2: . . . : dwn ¼ �1: �2: . . . : �n: ð8:14:30Þ

In view of the w-periodicity, there is no need to examine that line in its entire length,

only its portions inside Cn; every other part of it is transferred there by translation

parallel to the w-axes. In conclusion, the system path in Wn consists of well-defined
parallel straight-line segments inside Cn; and this is far simpler than the correspond-

ing path in Qn (or in real space) which, in general, is a complicated ‘‘Lissajous

figure.’’

Let us examine, for concreteness, a two-dimensional such case (fig. 8.17(a)). Let the

C2-origin O coincide with the initial system position wkðt ¼ 0Þ ¼ �k ¼ 0. When the

system path meets the right C2-boundary at O1 it is reflected horizontally back to the

left boundary, which it meets at O2, and with that as new origin continues again

along a straight line segment parallel to OO1. The reflection, or jump, at O1, and so

on, is the mathematical equivalent of transferring all w-motion inside C2, and, as

such, has no particular physical significance. The motion continues, similarly,
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through O2 ! O3 ! O4 ! O5 ! O6 ! O7, where it is reflected vertically down-

wards to O8, and from there on to O9 ! O10 ! � � � . That is why Cn has been

aptly described by Lanczos (1970, p. 249) as a small cubic room with doorless

reflecting walls; a ‘‘mirror-cabinet.’’

Here, the following fundamental questions arise: will the system path ever return

to its initial position O, and from there on repeat itself ad infinitum (in which case,

C2 is laced by a finite number of parallel straight-line segments); or, will it keep going

indefinitely, gradually filling C2 completely?

The answer to these questions involves the key concept of degeneracy. Let us

summarize it here. A system whose frequencies satisfy the m ð0 � m � n� 1Þ linear,

homogeneous, and independent commensurability relations (i.e., special ‘‘frequency

constraints’’): X
idk�k ¼ 0 ðd ¼ 1; . . . ;mÞ; ð8:14:31Þ

where the idk are integers, or zero, but at least two of them (in each such equation)

are nonzero, for arbitrary values of its actions, Jk is called m-ply (or m-fold)

degenerate. Only an ðn�mÞ-dimensional submanifold of the system’s Cn cube is

filled up densely; that is, only a finite number of equidistant and parallel planes

[fig. 8.17(b): n ¼ 3;m ¼ 1]. The system point comes, infinitely often, arbitrarily

close to any chosen point there. Similarly, its motion in Qn-space is confined to an

ðn�mÞ-dimensional submanifold there, which it also fills up completely: straight

lines ðCnÞ ! curves ðQnÞ, plane subspace ðCnÞ ! curved subspace ðQnÞ, and so on,

but with the same number of dimensions. Due to (8.14.31), the Fourier series

(8.14.24i, j), is reduced from an n-ply periodic function of time to an ðn�mÞ-ply

periodic function of time. (See pp. 1287–1289.)

In sum: an m-ply degenerate n-DOF system is ðn�mÞ-ply periodic; compactly,

#DOF � degree of degeneracy � n� m ¼ # periods:

Special Cases

(i) If m ¼ 0 ð) n�m ¼ nÞ, the system is called nondegenerate. Then, there exist n
independent fundamental frequencies, and therefore the corresponding Fourier series

is genuinely n-ply periodic. The system orbit, in Qn or Cn, is open, but, in time,

fills the entire n-dimensional q=w-region densely; that is, given sufficiently long

time ð� !1Þ, the orbit will pass as near as we want (‘‘arbitrarily close’’) to any

arbitrarily chosen initial q=w-region point. In particular, Cn will, eventually, fill up

completely by parallel, equally spaced (a nonobvious fact!) and uniformly traversed

straight-line segments; and similarly for the Qn-prism.

(ii) On the other extreme, if m ¼ n� 1 ð) n�m ¼ 1Þ, for example,

�1 ¼ �2 ¼ � � � ¼ �n, which is completely equivalent to the earlier case described by
eqs. (8.14.28a–e) (since any �k can be expressed as a rational fraction of any other
�l), the system is called completely, or fully, degenerate. In this case, eqs. (8.14.24i, j)

become a purely (or singly, or genuinely) periodic function of time; and, hence, the

system motion is confined to a one-dimensional submanifold — that is, a straight line

ðCnÞ or curve ðQnÞ. In the C2-square of the earlier example, the line O O1 . . .O10 . . .
returns to O after a finite time � (fundamental period); and from there on it

repeats itself; while, in the corresponding configuration plane Q2, the system trajec-

tory becomes a ‘‘Lissajous figure’’ that, depending on the values of the phase con-

stants, either closes or retraces itself between an initial and a final point, again with
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fundamental period � . Finally, such single-frequency motions have a single angle

variable and corresponding action variable equal to J ¼ Þ P pk dqk.
The situation is summarized in the following diagram:

Extreme cases of degeneracy

m ¼ 0 ) n�m ¼ n  � � � ! m ¼ n � 1 ) n�m ¼ 1

No degeneracy Complete degeneracy

Motion manifold: n-dimensional Motion manifold: one-dimensional

Orbit: open curve Orbit: closed curve ðor flattened curveÞ

Effects of Degeneracies

The latter, in addition to reducing the number of independent frequencies of a

system, also:

(i) Reduce the number of its independent (and constant) action variables; and so

restrict the forms in which the latter appear in the energy EðJ1; . . . ; JnÞ � EðJÞ.
Thus, if �k and �l ðk; l ¼ 1; 2; . . . ; k 6¼ lÞ are such that

ik�k ¼ il�l ) ik�l ¼ il �k; or ikð@E=@JlÞ ¼ ilð@E=@JkÞ; ð8:14:32Þ
where ik; il ¼ integers, then Jk, Jl may appear in E only in the form:

J � ikJk þ ilJl ½�k ¼ @E=@Jk ¼ ð@E=@JÞ ð@J=@JkÞ ¼ ð@E=@JÞik;
�l ¼ � � � ¼ ð@E=@JÞil ) ik�l ¼ il �k�;

or, equivalently, if they are such that

ik�l ¼ il�k ) ik�k ¼ il�l ; or ikð@E=@JkÞ ¼ ilð@E=@JlÞ; ð8:14:32aÞ
then Jk; Jl may appear in E only in the form J 0 � ikJl þ ilJk.

(ii) Increase the number of its single-valued integrals of motion over that number

for the corresponding ‘‘same’’ but nondegenerate system. Indeed, a general nonde-
generate conservative system has, outside of the energy integral, 2n � 1 integrals of

motion, of which only n are single-valued; for example, the n J’s; the remaining

ð2n� 1Þ � n ¼ n� 1 integrals can be written as

wkð@E=@JlÞ � wlð@E=@JkÞ ¼ wk�l � wl�k ¼ ð�ktþ �kÞ�l � ð�ltþ �lÞ�k
¼ �k�l � �l�k ½¼ �kð@E=@JlÞ � �lð@E=@JkÞ�
¼ constant; but multiple-valued ; since the angle variables are also
multiple-valued: ð8:14:33aÞ

Now, in the case of degeneracy, as (8.14.32a) shows, the integral

wkik � wlil ¼ ð�ktþ �kÞik � ð�l tþ �lÞil
¼ ðik�k � il�lÞtþ ð�kik � �l ilÞ
¼ �kik � �l il ¼ constant; ð8:14:33bÞ

is multiple-valued, but to within an arbitrary multiple integral of 2�; and, therefore,

by taking a trigonometric function of it, we obtain an additional single-valued integral
of motion.
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Also, this increase in the number of single-valued integrals allows for complete
separability for more than one choice of coordinates: before the degeneracy, the n Jk’s
(k ¼ 1; . . . ; n) are single-valued integrals of the corresponding separable coordinates.

Upon imposition of a degeneracy, however, since then the number of single-valued

integrals exceeds n, the choice of the new n Jk’s among them becomes nonunique. [On

the connection between degeneracy (nondegeneracy) of motion and nonuniqueness

(uniqueness) of separation of variables in its Hamilton–Jacobi equation, see, for

example, Born (1927, pp. 76–95), Goldstein (1980, pp. 469–470).]

Nonseparable Systems

Lastly, let us outline the properties of finite motion of a general n-DOF conservative

but nonseparable system. Here, contrary to the separable case where the single-

valued integrals are the n Jk’s, the single-valued integrals are only those obtained

from the homogeneity of space (linear momentum), isotropy of space (angular

momentum), and isotropy of time (energy).

Now, generally, the representative system point in phase space can traverse

regions defined by the specified constant values of its single-valued integrals.

(i) For separable systems with n single-valued integrals, these n constants define an n-

dimensional hypersurface in phase space; given sufficient time, the system can pass

arbitrarily close to every other chosen point on that hypersurface.

(ii) For nonseparable systems (degenerate systems), however, which possess fewer

(more) than n single-valued integrals, the system point occupies, in phase space, a

subspace with more (less) than n dimensions.

If the Hamiltonian of a nonseparable system differs by a very small amount from

that of a separable (conditionally periodic) system, then we may reasonably suppose

that the motion of the former will be very close to that of the latter; and that the

difference between these two motions is much smaller than that of their

Hamiltonians.

The systematic quantitative discussion of these topics belongs squarely to the

frontier of contemporary nonlinear dynamics; and such Hamiltonian deep waters

are, most definitely, beyond the scope of this introductory treatment (and the present

state of knowledge of this writer!). For these advanced topics, and their connections

to both classical chaotic/stochastic and quantum dynamics, we recommend the

following readable and capable references (alphabetically): Dittrich and Reuter

(1994), Hagihara (1970), Lichtenberg and Liebermann (1992), McCauley (1997),

Pars (1965), Tabor (1989).

Action–Angle Variables and Atomic Physics

As mentioned earlier, action–angle variables have played a decisive part in the older
quantum theory of Sommerfeld, Bohr, et al. (in the 1910s). According to this theory,

the actual motions of an atomic system obey the quantization rule:

Jk ¼
þ
pk dqk ¼ nkh ðnk: integer; h: Planck’s action constantÞ: ð8:14:34aÞ
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However, this theory led to the appearance of the harmonics �k, 2�k, 3�k; . . . ; and so

on, in the Fourier series expansion of its variables; and this contrasted sharply with

experimental facts that indicated that the frequencies of the atomic spectra are not

harmonics of some fundamental frequency but, instead, obey the ‘‘Ritz combination

principle,’’ according to which these frequencies result from a series of energy levels

Ek, El satisfying

�kl ¼ ðEk � ElÞ=h ðk; l: integersÞ: ð8:14:34bÞ
The resolution of these difficulties was carried out in the mid-1920s by W. Heisenberg
(with some help from his teacher M. Born and his classmate P. Jordan, at Göttingen,

Germany), and constitutes the matrix form of quantum mechanics— one of the great-

est triumphs (‘‘revolutions’’) of 20th century theoretical physics. Heisenberg (1925)

replaced the Fourier series of, say q with the set

fcss 0 expð2�i�ss 0 tÞ; s; s 0: integersg; ð8:14:34cÞ
that is, he replaced the frequencies �k, 2�k, 3�k; . . . ; (and amplitudes cs) with the
matrices

�ðs; s 0Þ � �ss 0 ðand css 0 Þ; ð8:14:34dÞ
and introduced the algebra of these new ‘‘matrix coordinates’’ and functions of

them. Born recognized that these were none other than the rules of matrix algebra,

for the addition and multiplication of the q’s, and formulated the following famous

noncommutative (Poisson bracket-like, }8.9) rules, for pairs of canonically conjugate

variables:

pk ql � ql pk ¼ ðh=2� iÞ �kl ; pk pl � pl pk ¼ 0; qk ql � ql qk ¼ 0: ð8:14:34eÞ
For readable accounts of those epoch-making developments, see, for example, Hund

(1972), Simonyi (1986), and references cited therein; also Heisenberg (1930, p. 105 ff.).

Example 8.14.3 Action for Cyclic Systems. Let the coordinate qi, of a separable

group of q’s, be ignorable. Then (}8.4) pi ¼ constant � Ci, and therefore the corre-

sponding action variable equals:

Ji ¼
þ
pi dqi ¼ Ci

þ
dqi

� �
¼ Ci½qið2�Þ � qið0Þ�

¼ 0 ðLibrationÞ; ðaÞ
¼ qioCi ðRotation; qio: fundamental period; e:g:; qio ¼ 2�Þ: ðbÞ

Example 8.14.4 Two-DOF Conditionally Periodic System.

(i) Equal frequencies. Let us examine a particle P performing planar harmonic

oscillations along the rectangular Cartesian axes O�x, O�y [fig. 8.18(a)]. Let us

assume that the displacements q1 ¼ x, q2 ¼ y are

x ¼ a cosð!tÞ; y ¼ b cosð!t� �Þ; ðaÞ
where a, b ¼ constant amplitudes, ! ¼ 2�� ¼ common circular frequency, � ¼ phase

difference.
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Depending on the values of �, the tip of the vector OP ¼ ðx; yÞ describes very

different curves. Thus:

(a) If � ¼ 0 ½¼ 0ð�=2Þ�, P describes the straight line

y=x ¼ b=a ðdiagonal of rectangle with sides a and bÞ: ðbÞ

(b) If � ¼ �=2 ½¼ 1ð�=2Þ�, eqs. (a) reduce to

x ¼ a cosð!tÞ; y ¼ b cosð!tÞ; ðcÞ

which are the parametric equations of an ellipse with semiaxes a, b:

ðx=aÞ2 þ ðy=bÞ2 ¼ 1; ðdÞ

traversed in a counterclockwise sense.

y=x ¼ �b=a; ðeÞ

which is the straight line of case (a), but reflected about the axis Oy.

(d) If � ¼ 3�=2 ½¼ 3ð�=2Þ�, P describes the ellipse of eqs. (c, d), but traversed in a clock-
wise sense.

(e) If � ¼ 2� ½¼ 4ð�=2Þ�, P describes the straight line of eq. (b).

(f) If a ¼ b, P traces a circle (clockwisely/counterclockwisely).

(ii) Unequal frequencies. Let us, next, assume that the displacements are

Now we must distinguish the following two cases:

(a) If !x, !y are commensurate (degenerate case) — that is, if

�xix ¼ �yiy � � ) !x=!y ¼ ix=iy ¼ rational ðix;y: integersÞ ðgÞ

(e.g., the earlier !x ¼ !y ¼ !Þ— then eqs. (f ) become

x ¼ a cosð!xtÞ; y ¼ b cosð!ytÞ ¼ b cos
�ðiy=ixÞ!xt

�
; ðhÞ

Figure 8.18 Path of a two-DOF system: (a) equal frequencies, (b) unequal (incommensurate

case) frequencies (Lissajous figures).
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the motion has a single period —namely, it is periodic as a whole— and so the orbit

of P is a closed curve.

(b) If !x, !y are incommensurate (nondegenerate case) — that is, if !x=!y ¼ irrational —
the orbit of P is a continuous Lissajous curve that never closes [fig. 8.18(b)] but

forms a very dense web; that is, given sufficient time, it practically covers all points

of the 2a� 2b rectangle ABCD. Multiply periodic (or conditionally periodic) orbits

are, in general, of that type: a certain space portion (the range of their q’s) is densely

filled, even though the orbit is not closed, and the motion is not singly periodic in

time.

In sum:

� If !x ¼ !y (special commensurate/degenerate case), the orbit of P is a straight line/
ellipse/circle, depending on the phase constant, and the relative size of the amplitudes.

� If !x=!y ¼ rational (degeneracy), the orbit of P is a closed curve.

� If !x=!y ¼ irrational (nondegeneracy), the orbit of P is an open curve that gradually

fills up the whole rectangle (range of its variables).

Example 8.14.5 Two-DOF Linear Anisotropic Oscillator; Degeneracy. Here, using

standard notation (x; y ¼ rectangular Cartesian coordinates):

H ¼ ð1=2mÞðpx2 þ py
2Þ þ ð1=2Þðkx2x2 þ ky

2y2Þ
¼ ð1=2mÞðpx2 þ py

2Þ þ ðm=2Þð!x
2x2 þ !y

2y2Þ; ðaÞ
!x

2 � kx=m, and so on. Using the results of ex. 8.10.6 [slightly modified notationally,

and also to take into account the anisotropy of (a)] we obtain, successively,

A1 ! Aox ¼
ð
px dx ¼

ð �
mð2�x � kxx

2Þ�1=2 dx
¼ ðx=2Þð2m�x � kxmx2Þ1=2 þ �xðm=kxÞ1=2arcsin½ðkx=2�xÞ1=2x�
½multiple-valued function of the x-coordinate�; etc: ðbÞ

Jx ¼
þ
px dx ¼

ð
ð@Aox=@xÞ dx ¼ Aoxð�xÞ � Aoxð0Þ

½after a period �x; the term ð2m�x � kxmx2Þ1=2 returns to its

original value; while arcsinð. . .Þ increases by 2��
¼ 2��xðm=kxÞ1=2 � ð2�=!xÞ�x; etc:; ðcÞ

E ¼ �x þ �y ¼ total energy ð¼ sum of ‘‘partial energies’’Þ; ðdÞ
) E ¼ ðJx=2�Þðkx=mÞ1=2 þ ðJy=2�Þðky=mÞ1=2 ¼ EðJx; JyÞ; ðeÞ
) �x ¼ @E=@Jx ¼ ð1=2�Þðkx=mÞ1=2; �y ¼ @E=@Jy ¼ ð1=2�Þðky=mÞ1=2; ðfÞ

�x ¼ @A=@�x ¼ @Ao=@�x � t ¼ @Aox=@�x � t

¼ �tþ ðm=kxÞ1=2 arcsin½ðkx=2�xÞ1=2x�; etc: ðgÞ
) x ¼ ð2�x=kxÞ1=2 sin

�ðkx=mÞ1=2ðtþ �xÞ
�

¼ ðJx=�!xmÞ1=2 sinð2�wxÞ ¼
�
Jx=�ðkx mÞ1=2

�1=2
sinð2�wxÞ; ðhÞ
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) px ¼ ð!xmJx=�Þ1=2 cosð2�wxÞ; ðiÞ
) y ¼ ð2�y=kyÞ1=2 sin½ðky=mÞ1=2ðtþ �yÞ�

¼ ðJy=�!ymÞ1=2 sinð2�wyÞ ¼ ½Jy=�ðky mÞ1=2�1=2 sinð2�wyÞ; ðjÞ
) py ¼ ð!ymJy=�Þ1=2 cosð2�wyÞ; ðkÞ

where

wx ¼ �xtþ �x
) 2�wx ¼ 2�ð�xtþ �xÞ � 2��xðtþ �xÞ � !xtþ �x; etc: ðlÞ

To represent the above graphically in their rectangular Cartesian wx;y-axes, we

eliminate t between wx, wy in (l), and thus obtain the curves (straight lines)

wy ¼ ð�y=�xÞwx þ ½�y � ð�y=�xÞ�x�: ðmÞ

As discussed in the preceding example, we must distinguish the following two general

cases:

(i) �y=�x ¼ rational (commensurability, or complete degeneracy): the motion as a

whole is (singly) periodic, which means that the representative system point traces

a (n� number of commensurability relations ¼ 2� 1 ¼Þ one-dimensional manifold;

that is, in our xy-axes, a closed and always retraceable Lissajous curve. [If that

curve has an endpoint (e.g., flattened, open-looking, path), the motion reverses itself

at that point (i.e., it does a very flat U-turn there) and proceeds in the opposite

direction until it reaches the next endpoint; and then the whole process repeats itself

periodically.] The corresponding w-curve, inside the system’s ‘‘unit square’’ C2, con-

sists of straight-line segments, as explained earlier in this section.

Figures 8.19 and 8.20 show the following special such cases (in both figures, the

left column shows the x, y (Lissajous) curves, while the right column shows the

corresponding wx;y straight lines):

(a) Figure 8.19:

frequency ratio: �y=�x ¼ 1; 2; 3; 5=3; phase constants: �x; �y ¼ 0; ðnÞ
ðh; jÞ: x ¼ �Jx=�ðkxmÞ1=2�1=2 sinð2��xtÞ; y ¼ �Jy=�ðkymÞ1=2�1=2 sinð2��ytÞ; ðoÞ
ðmÞ: wy ¼ ð�y=�xÞwx ðstraight lines through the wx;y-originÞ; ðpÞ

(b) Figure 8.20 [same frequency ratios as (a), but different phase constants]:

frequency ratio: �y=�x ¼ 1; 2; 3; 5=3; phase constants: �x ¼ 0; �y ¼ 1=4; ðqÞ
ðhÞ: x ¼ �Jx=�ðkx mÞ1=2�1=2 sinð2��xtÞ; ðrÞ
ð jÞ: y ¼ �Jy=�ðky mÞ1=2�1=2 sin½ð2��y þ �=2Þt� ¼

�
Jy=�ðky mÞ1=2

�1=2
cosð2��y tÞ; ðsÞ

ðmÞ: wy ¼ ð�y=�xÞwx þ 1=4 ðstraight lines not through the wx;y-originÞ: ðtÞ

(ii) �y=�x 6¼ rational ðincommensurability, or nondegeneracy): the motion as a

whole is not periodic, which means that the representative system point traces a

ðn� 0 ¼ 2� 0) two-dimensional manifold; that is, in our xy-axes an open and non-
retraceable curve, which eventually ðt!1) covers the entire finite area formed by
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Figure 8.19 System paths in x; y-space (Lissajous curves) and in wx;y -space;

for �y=�x ¼ 1;2;3;5=3, and �x ¼ 0, �y ¼ 0.



Figure 8.20 System paths in x; y-space (Lissajous curves) and in wx;y -space;

for �y=�x ¼ 1;2; 3;5=3, and �x ¼ 0, �y ¼ 1=4.
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the tangents bounding the motion (analogous to the rectangle ABCD of the preced-

ing example); and similarly for the unit square wx;y

Finally, for complicated but rational ratios �y=�x, the system path comes close to

covering the corresponding xy-plane region and unit square wx;y completely, that is,

such ratios approximate the nonrational ratio case.

Example 8.14.6 Coupled Penduli via Action–Angle Variables (Butenin, 1971, pp.

173–176). Let us consider a system consisting of two thin homogeneous bars,

O1A1 and O2A2 of masses/lengths/moments of inertia about their pivots O1 and

O2: m1=l1=I1 and m2=l2=I2, respectively (fig. 8.21), oscillating about O1 and O2,

and connected at C1, C2 ðO1C1 ¼ O2C2 � c) by a light linear spring of constant

stiffness k. Let us calculate the two natural frequencies of its free (small amplitude)

oscillations under gravity, via the method of action–angle variables.

The kinetic and potential energies of the system are, respectively,

2T ¼ I1ð _��1Þ2 þ I2ð _��2Þ2; ðaÞ
V ¼ m1gðl1=2Þð1� cos�1Þ þm2 gðl2=2Þð1� cos�2Þ þ ðk=2Þðe� eoÞ2
½using the second-order approximations: cos�k � 1� �k2=2 ðk ¼ 1; 2Þ;
and

e� eo � c�1 � c�2�
� ð1=2Þ�½m1gðl1=2Þ þ kc2��1

2 � 2kc2�1�2 þ ½m2 gðl2=2Þ þ kc2��2
2
�
; ðbÞ

or, after choosing, for algebraic convenience, l1 ¼ l2 ¼ l, m1 ¼ m2 ¼ m, I1 ¼ I2 ¼ I :

2T ¼ I ½ð _��1Þ2 þ ð _��2Þ2�; ðcÞ
2V ¼ ½Kð�1

2 þ �2
2Þ � 2kc2�1�2�; K � mgðl=2Þ þ k c2; ðdÞ
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Figure 8.21 Coupled double penduli, oscillating under gravity.



or, in terms of the (easily noticeable) new uncoupling coordinates:

�1 ¼ q1 þ q2; �2 ¼ q1 � q2 ) 2q1 ¼ �1 þ �2; 2q2 ¼ �1 � �2;

T ¼ I ½ð _qq1Þ2 þ ð _qq2Þ2�; V ¼ K1q1
2 þ K2q2

2; ðeÞ

where K1 � mgl=2, K2 � K1 þ 2kc2 � K þ kc2:
Since p1 ¼ 2I _qq1 and p2 ¼ 2I _qq2, the time-independent (reduced) Hamilton–Jacobi

equation of the system is�ð1=4IÞð@Ao=@q1Þ2 þ K1q1
2
�þ �ð1=4IÞð@Ao=@q2Þ2 þ K2q2

2
� ¼ E; ðfÞ

and separates, in by now well-understood ways, to the two HJ equations

ð1=4IÞð@Ao1=@q1Þ2 þK1q1
2 ¼ �1; ð1=4IÞð@Ao=@q2Þ2 þ K2q2

2 ¼ �2; ðgÞ
where Ao ¼ Ao1ðq1Þ þ Ao2ðq2Þ, �1 þ �2 ¼ E. Hence, the finite HJ equations become

p1 ¼ @Ao=@q1 ¼ @Ao1=@q1 ¼ 2ðIK1Þ1=2
�ð�1=K1Þ � q1

2
�1=2

; ðhÞ
p2 ¼ @Ao=@q2 ¼ @Ao2=@q2 ¼ 2ðIK2Þ1=2

�ð�2=K2Þ � q2
2
�1=2

; ðiÞ

and, from these expressions, it follows that the corresponding action variables are

J1 ¼ 2ðIK1Þ1=2
þ �ð�1=K1Þ � q1

2
�1=2

dq1; ðjÞ

J2 ¼ 2ðIK2Þ1=2
þ �ð�2=K2Þ � q2

2
�1=2

dq2: ðkÞ

With the help of the convenient transformation of variables:

q1 � ð�1=K1Þ1=2 sin x; q2 � ð�2=K2Þ1=2 sin x; ðlÞ
(and, accordingly, x-limits of integration: 0, 2�) eqs. ( j, k) integrate readily to

J1 ¼ 2�ðI=K1Þ1=2�1; J2 ¼ 2�ðI=K2Þ1=2�2; ðmÞ
and so the total energy assumes the following form, in terms of the action variables:

E ¼ �1 þ �2 ¼ ðJ1=2�ÞðK1=IÞ1=2 þ ðJ2=2�ÞðK2=IÞ1=2 ¼ EðJ1; J2Þ: ðnÞ
From this expression (and recalling the definitions of K1, K2, and that 3I ¼ ml2), we

readily obtain the system frequencies:

�1 ¼ @E=@J1 ¼ ð1=2�ÞðK1=IÞ1=2 ¼ ð1=2�Þð3g=2lÞ1=2; ðoÞ
�2 ¼ @E=@J2 ¼ ð1=2�ÞðK2=IÞ1=2 ¼ ð1=2�Þ

�ð3g=2lÞ þ ð6kc2=ml2Þ�1=2; ðpÞ

which, of course, coincide with the values found by ordinary linear vibration theory.

Example 8.14.7 Action–Angle Formulation for Partially Separable Systems. Let us

consider a system in motion, and such that the projection of its orbit on the parti-

cular phase space subplane (qk; pk) is a periodic (libratory or rotatory) curve. This
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can occur if the system action has the separable form in q1 (}8.10):

A ¼ AoRðq2; . . . ; qn; �2; . . . ; �nÞ þ Ao1ðq1; �1Þ � E t: ðaÞ

Here, as in the completely separable case, we replace throughout the constant �1

with the constant action variable (with the usual notations):

J1 �
þ
p1 dq1 ¼

þ
ð@Ao1=@q1Þ dq1 ¼ Ao1ð�1Þ � Ao1ð0Þ; ðbÞ

and similarly for E ¼ Eð�1Þ ¼ EðJ1Þ.
Then, the corresponding (ignorable) canonical angle variable w1 equals

w1 ¼ @Ao=@J1 ¼ @Ao1ðq1; J1Þ=@J1 ¼ ð@E=@J1Þtþ @A=@J1; ðcÞ

and, from this, it follows that during a cycle with (fundamental) period �1, it changes

by

) Dw1 � w1ðtþ �1Þ � w1ðtÞ ¼ �1ð@E=@J1Þ: ðdÞ

Comparing (d) with the general result:

Dw1 ¼
þ
ð@w1=@q1Þ dq1 ¼

þ
ð@2Ao1=@q1 @J1Þ dq1

¼ @=@J1

þ
ð@Ao1=@q1Þ dq1

� �
¼ @=@J1

þ
p1 dq1

� �
¼ @J1=@J1 ¼ 1; ðeÞ

we readily conclude that

@E=@J1 ¼ frequency of ðq1; p1Þ-motion � �1 ¼ 1=�1: ðfÞ

Finally, q1 is a periodic function in w1 with period 1, and can therefore be repre-

sented by a single Fourier series à la (24f–j). The extension of the above to partially

separable systems in two, three, . . . ; periodic coordinates should be obvious.

Example 8.14.8 An Alternative Expression for the Frequencies. Since wk ¼
@Aoðq; JÞ=@Jk ¼ wkðq; JÞ, and the Jk’s remain constant during the motion, any

changes in the wk’s can arise only from changes in the q’s. Indeed, from the preced-

ing, we find, successively,

dwk ¼
X
ð@wk=@qlÞ dql ¼

X �
@=@qlð@Ao=@JkÞ

�
dql

¼
X �

@=@Jkð@Ao=@qlÞ
�
dql

¼
X
ð@pl=@JkÞ dql ; where pl ¼ plðql ; JÞ; ðaÞ

and, since wk ¼ �ktþ �k ) dwk ¼ �k dt and dql ¼ _qql dt, we finally obtain the alter-

native frequency expression

�k ¼
X
ð@pl=@JkÞðdql=dtÞ: ðbÞ
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Example 8.14.9 (Born, 1927, p. 82). Let

K �
X

pk _qqk ð¼ 2T ; for stationary constraintsÞ: ðaÞ

Below we show that

hKi �
X

�kJk; ðbÞ

where h. . .i � time-average of ð. . .Þ over a long period of time � , including a large

number of w-periods. With the help of the earlier (8.14.23b, c):

Aoo � Ao �
X

wk Jk; _AAoo ¼
X

pk _qqk �
X

Jk _wwk; ðcÞ

we obtain, successively,

hKi � ��1

ð�
0

X
pk _qqk

� �
dt

¼ ��1

ð�
0

X
Jk _wwk þ _AAoo

� �
dt

� �
¼ ��1

ð�
0

X
Jk �k þ _AAoo

� �
dt

� �
¼
X

wkJk þ fAoo=�g�0 ðsince both the �k’s and Jk’s are constantÞ; ðdÞ

from which, since Aoo is w-periodic and � contains a large number of periods of the

w’s, and therefore Aooð0Þ ¼ Aooð�Þ, the proposition (b) follows.

Example 8.14.10 (Bohr, 1918). Here, we show that for an n-DOF but completely

degenerate (i.e., singly periodic) system

DE ¼ � DJ: ðaÞ

Let us consider the system in a fundamental oscillatory state I of period � . Then, its

(sole) action variable is

J ¼
ð�

0

X
pk _qqk

� �
dt: ðbÞ

Now, let us consider a small noncontemporaneous variation from that state to the

neighboring, also oscillatory and singly periodic, state II ¼ I þ DðIÞ with period

� þ D� . Using the results of }7.9, we obtain, successively,

DJ ¼
ð�

0

�
X

pk _qqk

� �
dtþ

X
pk _qqk

� �
Dt

n o�
0

¼
ð�

0

X
ð�pk _qq

k
þ pk � _qqk

Þ dtþ
X

pk _qqk

� �
Dt

n o�
0

[integrating the p �ð _qqÞ terms by parts, and using Hamilton’s equations with

Qk ¼ 0; while recalling that Dq ¼ �qþ _qqDt]
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¼
ð�

0

X �ð@H=@pkÞ �pk � ð�@H=@qkÞ �qk� dtþ X
pk Dqk

n o�
0

¼
ð�

0

�H dt ½the integrated-out ‘‘boundary’’ term vanishes by periodicity�

¼
ð�

0

�E dt: ðcÞ

If the adjacent motion II corresponds to slightly different initial conditions, then

�E ¼ constant ð) DE ¼ �E þ _EE Dt ¼ �EÞ, and so (b) yields immediately

DJ ¼ ðDEÞ� ) DE ¼ DJ=� ¼ � DJ; Q:E:D: ðdÞ

Example 8.14.11 Let us show that

DE ¼
X

�k DJk: ðaÞ

Since H ¼ HðJÞ, we have

DH ¼
X
ð@H=@JkÞDJk ¼

X
�k DJk ¼ DE; Q:E:D: ðbÞ

Example 8.14.12 (Born, 1927, pp. 94–95). According to (8.14.23a) and (8.14.23b),

the function

Ao ¼ Aoo þ
X

wkJk ðaÞ

increases by Jk whenever wk increases by 1, while the remaining w’s and J ’s remain
constant. This is expressed mathematically by

Jk ¼
ð1

0

�
@Aoðw; JÞ=@wk

�
dwk

¼
ð1

0

X �
@Aoðq; JÞ=@ql

�ð@ql=@wkÞ
n o

dwk

¼
ð1

0

X
plð@ql=@wkÞ

� �
dwk; ðbÞ

and its usefulness consists in yielding the action variables from a knowledge of the q’s
and p’s in terms of the w’s.

Example 8.14.13 Proof of Commutativity of @=@Jk½
Þð. . .Þ dq� ¼ Þ ð@ . . . =@JkÞ dq,

eqs. (8.14.13b, 23) (Kuypers, 1993, pp. 345–346, 533–534). In the derivation of

(8.14.13b, 23), we assumed thatþ
ð@2Ao=@Jk@qlÞ dql ¼ @=@Jk

þ
ð@Ao=@qlÞ dql

� �
; ðaÞ

in spite of the fact that the integration limits do depend on Jk. Let us justify this

point. The proof is based on the well-known ‘‘Leibniz formula’’ (using standard
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calculus notations):

@=@�

ðl2ð�Þ
l1ð�Þ

f ðx;�; . . .Þ dx

¼
ð l2ð�Þ
l1ð�Þ

�
@f ðx;�; . . .Þ=@�� dx
þ f ðx; l2; . . .Þ½@l2ð�Þ=@�� � f ðx; l1; . . .Þ½@l1ð�Þ=@��: ðbÞ

With the identifications:

�! Jk; x! ql; f ðx;�; . . .Þ ! @Aoðq; JÞ=@ql ; ðcÞ
eq. (b) yields

@=@Jk

ðql;2ðJÞ
ql;1ðJÞ

�
@Aoðq; JÞ=@ql

�
dql

¼
ðql;2ðJÞ
ql;1ðJÞ

�
@=@Jkð@Ao=@qlÞ

�
dql

þ �ð@Ao=@qlÞ2½@ql;2ðJÞ=@Jk� � ð@Ao=@qlÞ1½@ql;1ðJÞ=@Jk�
�
; ðdÞ

where the subscripts 1, 2 refer to the limits of integration.

Now we apply (d) to our two periodic cases:

(i) Case of libration. Then,þ
ð@Ao=@qlÞ dql ¼ 2

ðql;maxðJÞ

ql;minðJÞ
ð@Ao=@qlÞ dql ; ðeÞ

where the integration limits qmax=min are the turning points of the oscillation. But,

there, we also have pl ¼ @Ao=@ql ¼ 0, and therefore the boundary terms in (d)

vanish individually; that is, (a) holds for libration.

(ii) Case of rotation. Here,þ
ð@Ao=@qlÞ dql ¼

ðql;iðJÞþqlo
ql;iðJÞ

ð@Ao=@qlÞ dql ; ðf Þ

where ql;i ¼ arbitrary initial position of ql , qlo ¼ fundamental period of ql . However,

since @Ao=@ql ¼ pl ¼ periodic function of ql, and

@=@Jk
�
ql;iðJÞ þ qlo

� ¼ @=@Jk�ql;iðJÞ�; ðgÞ

the boundary terms in (d) taken together vanish; that is, (a) also holds for rotation,

and so it holds for periodic motions in general.

Example 8.14.14 Independent Action–Angle Variables in the Case of Degeneracy.
Whenever the frequency constraints (8.14.31)X

idk �k ¼ 0 ðd ¼ 1; . . . ;mÞ ðaÞ
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hold [and following the Lagrange–Hamel method of constrained coordinates/velo-

cities (chaps. 2 and 3), with which this theory of degenerate systems bears some

unmistakable mathematical similarities!], we may replace the old action–angle vari-

ables (w; J) with new action–angle variables ðw 0; J 0Þ, defined through the following

special equations:

w 0k: w 0d �
X

idkwk ¼ 0 ðd ¼ 1; . . . ;mÞ; ðbÞ
w 0i � wi 6¼ 0 ði ¼ mþ 1; . . . ; nÞ; ðcÞ

and generating function [recalling }8.8, with F1 ¼ 0, and the correspondences:

q! w, p 0 ! J 0, F2ðq; p 0Þ ! F2ðw; J 0)]

F2ðw; J 0Þ ¼
X

w 0k J
0
k ¼

X
wkJk

� �
¼
X

w 0d J
0
d þ

X
w 0i J

0
i

¼
XX

idkwk J
0
d þ

X
wi J

0
i ¼

X
wi J

0
i

� �
: ðdÞ

Then, the old and new action variables will be related by [recalling (8.8.17)]

pk ¼ @F2=@qk: Jk ¼ @F2=@wk ¼
X

idk J
0
d þ

X
�ik J

0
i ð�ik: Kronecker deltaÞ;

ðeÞ
) Jd 0 ¼

X
idd 0J

0
d ðd 0 ¼ 1; . . . ;mÞ; ðe1Þ

) Ji 0 ¼ J 0i 0 þ
X

idi 0J
0
d ði 0 ¼ mþ 1; . . . ; nÞ; ðe2Þ

qk 0 ¼ @F2=@pk 0 : w 0k ¼ @F2=@J
0
k ½i:e:; eqs: ðb; cÞ�: ðfÞ

From the above, it follows that

(i) The new frequencies will be

� 0k ¼ dw 0k=dt: dw 0d=dt ¼
X

idkðdwk=dtÞ ¼
X

idk �k ¼ 0; i:e:; � 0d ¼ 0; ðg1Þ
dw 0i=dt ¼ dwi=dt ¼ �i; i:e: � 0i ¼ �i; ðg2Þ

with the zeroes among them (� 0d ) yielding constant factors in the corresponding

Fourier series expansions; while

(ii) Since the H 0ðJ 0Þ ¼ HðJÞ ¼ EðJÞ ¼ E 0ðJ 0Þ, the Hamiltonian equations in the

new variables will be

dw 0k=dt ¼ @H 0=@J 0k ¼ � 0k:
) @H 0=@J 0d ¼ � 0d ¼ 0 ) E: independent of the J 0d ; ðh1Þ
) @H 0=@J 0i ¼ � 0i ¼ �i 6¼ 0; ðh2Þ

dJ 0k=dt ¼ �@H 0=@w 0k ¼ 0 ) J 0k ¼ constant: ðh3Þ

Hence, in a completely degenerate system (m ¼ n� 1) H 0 ¼ H 0ðJ 0nÞ; that is, the

Hamiltonian can depend on only one new action variable.
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We leave it to the reader to show that the newcoordinates obtainedby the generating

function Aoðq; �Þ ¼ Aoðq; JÞ ¼ Aoðq; J 0Þ are indeed the new angle variables w 0, that

is, w 0k ¼ @Ao=@J
0
k. For further details and insights, see, for example, Frank (1935,

pp. 97–99), Fues (1927, p. 142 ff.).

Problem 8.14.1 Show that equation (a) of the preceding example implies that

�k ¼
X

i 0ki �
0
i ¼ 0 ði ¼M þ 1; . . . ; nÞ; ðaÞ

where i 0ki ¼ integers; that is, the old frequencies are linear/homogeneous/integral

combinations of the n �m independent quantities � 0i (the new frequencies).

REMARK

If we analogize the n old frequencies with n constrained virtual displacements (the

�q’s of chap. 2) and the n�m new ones with n �m independent virtual variations of

quasi coordinates (the ��I ’s of chap. 2, or any other group of n�m independent

‘‘parameters’’), then (a) is the analog of none other than Maggi’s projection idea

(} 3.5)!

Problem 8.14.2 Extend the results of ex. 8.14.13 for the case where its equations

(b, c) are replaced by

w 0k: w 0d �
X

idkwk ¼ 0 ðd ¼ 1; . . . ;mÞ; ðaÞ
w 0i �

X
iikwk 6¼ 0 ði ¼ mþ 1; . . . ; nÞ; ðbÞ

REMARK

This is the frequency analog of the general Hamel choice of quasi velocities (chap. 2).

Problem 8.14.3 Let H 0 ¼ H ¼ E ¼ EðJÞ have the special form

EðJÞ ¼ Fð f ; J4; J5; . . . ; JnÞ; ðaÞ
where f � i1J1 þ i2J2 þ i3J3, i1;2;3 are given integers. Show that the first three

system frequencies are given by

�r ¼ irð@F=@f Þ ðr ¼ 1; 2; 3Þ; ðbÞ
and then show that they also satisfy the two degeneracy conditions

i2�1 � i1�2 ¼ 0; i3�1 � i1�3 ¼ 0: ðcÞ

Appendix: On Multiply Periodic Functions/Motions

To help the reader to understand better the meaning of multiple Fourier series, like

(8.14.24f–j), we point out the following facts from linear and nonlinear vibrations of

discrete systems with constant coefficients (for extra clarity in real forms):
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(i) The free vibrations of a linear, 1-DOF system [e.g., particle with kinetic

and potential energies mð _qqÞ2=2 and kq2=2, respectively (m: mass, k: elasticity

constant > 0)], have the following form:

qk ¼
X

. . .
X

ck;s cos
�ðs1!1 þ � � � þ sr!rÞtþ �s

� ð8:14:38aÞ
¼ � � �
¼
X

. . .
X �

Ak;s cos
�
2�ðs1w1 þ � � � þ srwrÞ

�
þ Bk;s sin

�
2�ðs1w1 þ � � � þ srwrÞ

�� ð8:14:38bÞ
¼
X

. . .
X �ð1=2ÞðAk;s � iBk;sÞ exp

�
2�iðs1w1 þ � � � þ srwrÞ

�
þ ð1=2ÞðAk;s þ iBk;sÞ exp

�� 2�iðs1w1 þ � � � þ srwrÞ
�� ð8:14:38cÞ

¼
X

. . .
X

Ck;s exp
�
2�iðs1w1 þ � � � þ srwrÞ

� ð8:14:38dÞ
¼
X

. . .
X

Dk;s exp
�
2�iðs1�1 þ � � � þ sr�rÞt

� ð8:14:38eÞ
¼
X

. . .
X

Dk;s exp
�
iðs1!1 þ � � � þ sr!rÞt

�
: ð8:14:38fÞ

Here:

. In (8.14.38a–c), the summations extend over all possible positive and

negative but integral values of the integers s � ðs1; . . . ; srÞ, from 0 to þ1; while in
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Motion: simply harmonic and multiply periodic; an n-dimensional Lissajous figure in

q-space.

(iv) The free vibrations of a nonlinear, n-DOF system (one whose elastic potential

contains terms of the third and higher order in the qk’s) have the following mutually

equivalent forms of multiple Fourier series [infinite r-ple sums s � ðs1; . . . ; srÞ�:

q ¼ a sinð!tÞ þ b cosð!tÞ ¼ c cosð!tþ �Þ
ð!2 ¼ k=m; a; b; c: constant amplitudes; � ¼ ‘‘phase’’ constantÞ: ð8:14:35Þ

Motion: simply harmonic and singly periodic.
(ii) The free vibrations of a nonlinear, 1-DOF system [e.g., elastic potential equal

to kq2=2þ k 0q3 þ k 00q4 þ � � � ðk; k 0; k 00; . . .: constants)] have the single Fourier series

form: q ¼ c0 þ c1 cosð!tþ �1Þ þ c2 cosð2!tþ �2Þ þ � � �
(periodic but non-simply harmonic due to the presence of higher harmonics, or
overtones: ω, 2ω, 3ω, . . .; ω depends on both the physical constitution (parameters)
of the system [as in (i) and (iii), below] and on the initial conditions of its motions
[as in (iv), below]). (8.14.36)

qk ¼
X

ckl cosð!l tþ �lÞ ½ckl ¼ amplitudes; �l ¼ phase constants; k; l ¼ 1; . . . ; n�
ðsimply harmonic but with n intrinsic ðnaturalÞ frequencies;or ‘‘modes of

vibration’’ !l ; i:e:; no overtonesÞ: ð8:14:37Þ

Motion: multiply harmonic and singly periodic.
(iii) The free vibrations of a linear, n-DOF system [one with elastic potential equal

to ð1=2Þðk11q1
2 þ 2k12q1q2 þ k22q2

2 þ � � � þ knnqn
2Þ: positive definite] have the form

(assuming no degeneracies!):



(8.14.38d–f) they extend from �1 to þ1. [We may assume, with no loss of

generality, that f � s1!1 þ � � � þ sr!r > 0; because a term in f , in (8.14.38), can

be combined with one with �f , and therefore the number of terms for which

f < 0 can be reduced by half.]

. r � n�m � n ½m ¼ number of degeneracies ð� n� 1Þ, r ¼ number of indepen-

dent frequencies].

. The series of equations (8.14.38) combine the structures of both (8.14.36)

(nonlinearity! overtones: sk!k) and (8.14.37) (several DOFs! combination tones:
s1!1 þ � � � þ sr!rÞ; and that is why they consist of an (r) ple-infinity of terms.

. The !’s, known as ‘‘intrinsic vibration frequencies,’’ are constants whose values

depend on both the physical constitution of the system and the initial conditions of its

in (8.14.35), (8.14.36): the system does not return to its original configuration after a

time �k ¼ 2�=!k ðk ¼ 1; . . . ; n).
Motion: multiply harmonic and multiply (or conditionally, or occasionally) periodic;

that is, superposition of r periodic motions of different frequencies, each consisting

of an infinite number of overtones; an n-dimensional Lissajous figure in q-space. If,

for certain values of the constants of integration (initial conditions) and/or the

coefficients (parameters) of the equations of motion, m ¼ n� 1) r ¼ 1, the motion

(8.14.38a–f) degenerates into the multiply harmonic and singly periodic case (ii), eq.

(8.14.36); and that is the reason for the adjective ‘‘conditionally.’’

Finally, if, in eqs. (8.14.38), we replace ðs1!1 þ � � � þ sr!rÞ t with s1x1 þ � � � þ srxr,
we obtain the generalization of a Fourier series to a function qk ¼ qkðx1; . . . ;xrÞ,
where the x’s range over a generalized unit cube in x-space.

In sum: (i) the adjective Fourier series refers to the presence of a, generally, infinite

number of higher harmonics, originating from the same fundamental frequency; and

it is the result of the nonlinearity; (ii) whereas the adjectives singly/multiply periodic

series refer to the number of independent frequencies present, and are the result of

the number of DOFs; that is

linear ðnonlinearÞ ! harmonic ðovertonesÞ
one DOF ðseveral DOFÞ ! singly ðmultiplyÞ periodic;

and the corresponding frequencies are

fundamental frequency � ¼ @E=@Jk ð8:14:39aÞ
overtones � ¼ skð@E=@JkÞ ð8:14:39bÞ
combination tones � ¼

X
skð@E=@JkÞ: ð8:14:39cÞ

The systems encountered in celestial mechanics and the old quantum theory were

both nonlinear and had several DOFs; that is why their periodic motions (orbits)

were expressed as multiple Fourier series.

HISTORICAL

It was N. Bohr who, with his famous ‘‘principle of correspondence’’ (late 1910s – early

1920s), established the quantum counterparts of eqs. (8.14.39) for the frequencies of

the spectra of atomic systems, and thus prepared the way for Heisenberg’s invention

of modern quantum mechanics that followed soon thereafter (1925–1927).
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motions; but they are not frequencies in the ordinary sense of the term, that is like ω



8.15 ADIABATIC INVARIANTS

Historical Background

Roughly, adiabatic invariants (AI), or parameter invariants, of a periodic system, are

quantities that remain essentially constant, or invariant, when the system parameters
change very slowly relative to its periods. These quantities have played a key role in

both classical (Boltzmann) and older quantum (Ehrenfest, Burgers, et al.) mechanics

{see, for example, Bierhalter [1981(a), (b), 1982, 1983, 1992], Papastavridis [1985(a)],

Polak (1959, 1960); also, recall introductory examples/problems on this topic in }7.9

of this book.} But also, recently, AI have become important in problems of charged

particles in magnetic fields, and modern nonlinear dynamics. [See, for example,

Lichtenberg (1969), Lichtenberg and Lieberman (1992), Percival and Richards

(1982). For a detailed treatment, see Bakay and Stepanovskii (1981).]

Let us consider, with no loss in generality, a mechanical system S that is com-

pletely describable by the Hamiltonian

H ¼ Hðq; p; cÞ; ð8:15:1Þ

where, with the usual notations, q � ðq1; . . . ; qnÞ, p � ðp1; . . . ; pnÞ; and the additional

special parameters c ¼ cðtÞ � 	c1ðtÞ; . . . ; cmðtÞ

 � ðc1; . . . ; cmÞ � ðc�Þ characterize the

external and/or internal kinematico-inertial structure of S (e.g., length or mass of

bob of a mathematical pendulum), and/or strength of the external field(s) of force in

which S may be immersed.

REMARK

From a mechanistic viewpoint of thermodynamics, system coordinates are divided

into two distinct kinds: (i) macroscopic, or controllable, whose variations produce

visible changes to the system and flows of mechanical energy DWc in/out of it

(see below); and (ii) molecular, or uncontrollable, whose unceasing changes become

perceptible only as energy going in/out of the system in the form of heat DQ (see

below). [See also Brillouin (1964, pp. 231–245) and Bryan (1891–2, 1903).]

The earlier m c’s classify as controllable and are treated as additional Lagrangean

coordinates, constrained to remain constant during certain motions and vary in

certain ways in others. Now, since, in general [recalling (8.2.14); see also (8.15.5)

below],

dH=dt ¼ @H=@t ¼
X
ð@H=@c�Þðdc�=dtÞ ð� ¼ 1; . . . ;mÞ; ð8:15:2Þ

if the c� are constant (‘‘turned off ’’), the system is closed and its generalized energy

H is conserved; whereas if they are variable (‘‘turned on’’), the system has become

open and H is no longer constant. In the latter case [i.e., H ¼ Hðt; q; pÞ], no general

and exact methods are available for the analysis of motion. However, for some

special cases of variation of the c’s it is possible to find other energetic quantities

that are conserved, exactly or approximately. Among the most interesting such cases

are the two extremes of very slow (adiabatic) and very fast (or parametric) variations

of the c’s, relative to some characteristic time interval of the unperturbed (here,

conservative) system. Below, we examine in some detail the adiabatic case; for the

rapid case, see, for example, Forbat (1966, pp. 189–193), Landau and Lifshitz (1960,

pp. 93–95), Percival and Richards (1982, pp. 153–157, 161–162).
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We assume that initially the c� are turned off and the system oscillates with the

single frequency �ð¼ 1=�; � ¼ period). Then, as a result of some external energy-

supplying agency, the c� are turned on and begin to vary (i) erratically, or randomly

(i.e., their variations are not systematically correlated to the oscillation of the system;

namely, they are not in phase with that motion—no resonances), and (ii) very slowly
relative to � :

dc=dt� c=�; or �ðdc=dtÞ � c; ð8:15:3Þ
or

dc=dt ¼ ðdc=d�Þðd�=dtÞ � c 0" ¼ ðOniteÞ ðsmallÞ ¼ small; ð8:15:3aÞ
that is, the parameter changes, being small fractions of their original constant values,

are spread over a large number of oscillations; or, equivalently, within a period �
these parameters may be considered constant; for example, the mass of the bob of an

oscillating mathematical pendulum varying slowly by picking up dust from its envir-

onment. [In the earlier-mentioned rapid case, the period (frequency) of the external

disturbance is small (large) relative to the period (frequency) of the undisturbed

system; or, generally, relative to a time interval during which the motion of the latter

changes appreciably.] If the system can still oscillate (an example to the contrary is

an axially loaded and transversely oscillating ‘‘beam–column’’ whose adiabatically

varying axial load reaches the critical value for buckling, and hence reduces the

fundamental frequency of the beam to zero; i.e., no motion), our task consists in:

(i) Calculating its new frequency (frequencies) � þ D�, or period(s):

� þ D� ¼ 1=� þ Dð1=�Þ ¼ 1=� þ ð�1=�2ÞD�; ð8:15:4Þ
in terms of these c! cþ Dc changes; and, since its energy is no longer constant,

(ii) Finding out if there exist new ‘‘adiabatic constants of motion,’’ or adiabatic
invariants. That such quantities occur can be argued as follows: by (8.15.2) we have

dH � dc, and so there exists some combination(s) of H and the c’s that remains
constant during the motion, replacing the energy integral of the constant parameter

system.

The classic example here is the oscillating mathematical pendulum whose length l
(and/or mass m) is varied very slowly by some external agency. It turns out that, for

small (linear) and undamped oscillations, the ratio of the pendulum’s energy to its

frequency is an adiabatic invariant; and this also allows us to relate the adiabatic

change Dl to the amplitude and period changes D� .

The Fundamental Theory

Let us quantify these ideas. Below, we present three treatments, in increasing order

of difficulty: (i) Energetic (one DOF, single frequency), (ii) integral variational (n
DOF; first singly periodic, then multiply/conditionally periodic motion), and (iii)

action–angle variables (n DOF, multiply/conditionally periodic motion).

(i) Energetic Derivation

Let us assume here, for algebraic simplicity, that m ¼ 1 (i.e., c1 � c), and that the

kinetic energy is homogeneous quadratic in _qq (or p), so that H ¼ total energy � E.
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If H ¼ H½qðtÞ; pðtÞ; cðtÞ� � Hðq; p; cÞ, then we obtain, successively,

dH=dt ¼ ð@H=@qÞðdq=dtÞ þ ð@H=@pÞðdp=dtÞ þ ð@H=@cÞðdc=dtÞ
¼ ð@H=@qÞð@H=@pÞ þ ð@H=@pÞð�@H=@qÞ þ ð@H=@cÞðdc=dtÞ

ðby Hamilton’s equationsÞ

that is,

dE=dt ¼ ð@H=@cÞðdc=dtÞ ð¼ @H=@tÞ: ð8:15:5Þ

Averaging (8.15.5) over a complete cycle (of libration or rotation), while noting that,

by (8.15.3), we can treat dc=dt as a constant, we obtain [with the customary

notation h. . .i � time average of ð. . .Þ�

hdE=dti ¼ ��1

ð�
0

ð@H=@cÞðdc=dtÞ dt; ð8:15:6Þ

or, since

dq=dt ¼ @H=@p ) dt ¼ dq
�ð@H=@pÞ ) � ¼

ð�
0

dt ¼
þ
dq
�ð@H=@pÞ;

we obtain

hdE=dti ¼
�þ
ð@H=@cÞ=ð@H=@pÞ dq

�þ
½1�ð@H=@pÞ� dq�ðdc=dtÞ: ð8:15:7Þ

Let us transform (8.15.7) further. Solving the energy equation

Hðq; p; cÞ ¼ E ð¼ constant; if c ¼ constantÞ; ð8:15:8Þ

for the momentum p, we obtain

p ¼ pðq;E; cÞ; ð8:15:8aÞ

and, inserting this back into (8.15.8), we can rewrite the latter in the convenient form

H
�
q; pðq;E; cÞ; c� ¼ E: ð8:15:8bÞ

Next, differentiating (8.15.8b) partially with respect to c and E, which for the inte-

grations involved in (8.15.6, 7) must be considered as two independent and constant
parameters, we obtain, respectively,

ð@H=@pÞð@p=@cÞ þ @H=@c ¼ @E=@c ¼ 0 ) @p=@c ¼ �ð@H=@cÞ�ð@H=@pÞ;
ð8:15:8cÞ

ð@H=@pÞð@p=@EÞ ¼ @E=@E ¼ 1 ) @p=@E ¼ 1
�ð@H=@pÞ: ð8:15:8dÞ

As a result of (8.15.8c, d), eq. (8.15.7) transforms to

hdE=dti ¼ �
� þ
ð@p=@cÞ dq

�þ
ð@p=@EÞ dq

�
ðdc=dtÞ; ð8:15:8eÞ
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and, rearranging this, we obtainþ �ð@p=@EÞhdE=dti þ ð@p=@cÞðdc=dtÞ� dq ¼ 0; ð8:15:8fÞ

and this, recalling the action variable definition (}8.14), states simply that

dJ=dt ¼ 0; J �
þ

pðq;E; cÞ dq

givenE;c

¼ JðE; cÞ: ð8:15:9Þ

In words: If the oscillatory motion of a system is altered very slowly relative to its

period, either by gradually varying the external field of force or by slowly modifying

the system’s physical constitution, then, during such adiabatic changes, the action
variable remains constant; it is an adiabatic invariant. [Or, equivalently, the ratio of
twice its average kinetic energy divided by its frequency remains constant — see

(8.15.16 –19) and ex. 8.15.1.] The preceding arguments indicate that for an adiabatic

invariant to exist, the period (frequency) must remain finite (nonzero); if
� !1 ð� ! 0), the argument fails.

One might have thought that, under such an external influence, J would depend

on the precise moment at which c ceased to vary — that is, dc=dt ¼ 0 (and the system

became, again, truly periodic) — but, as shown below, the change of the action over

a (possibly very long) time interval Dt, during which c changes adiabatically (but

without causing a resonance), is DJ � hdc=dti2 Dt.
From the above, it also follows that

@J=@E ¼
þ
ð@p=@EÞ dq ¼

þ
dq
.
ð@H=@pÞ ¼

ð�
0

dt ¼ � ¼ 1=�; ð8:15:10Þ

in complete agreement with }8.14.

Geometrical Interpretation. Let us assume, for concreteness, that the periodic

motion of the system is a libration. Then, as explained in }8.14, the action variable

J equals the area enclosed by the closed curve representing that motion, in (q, p) space

(fig. 8.22).
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Figure 8.22 Geometrical interpretation of adiabatic invariance in phase space (1 DOF,

libration): p ¼ ð2mÞ1=2½E � Vðq; cÞ�1=2 ¼ pðq; E; cÞ. In the adiabatic case, the area enclosed

by the open path of each cycle (say, 1! 2! 3Þ remains constant; although it changes

shape. Then, J equals the area enclosed by a hypothetical closed trajectory obtained by

fixing c at the beginning of each cycle.



J ¼
þ
p dq ¼ �

þ
q dp ¼

ðð
dq dp ¼ adiabatic invariant: ð8:15:11Þ

[Generally, if I ¼ f ðq; p; c; tÞ is a first integral of the equations of motion, then its

total change over the duration of the adiabatic variation process, say from t1 to t2,
will be

DI ¼
ðt2
t1

ð@f =@cÞðdc=dtÞ dt ¼ h@f =@ciDc; ð8:15:11aÞ

were, due to the adiabaticity, the time average can be taken over the unvaried
motion. Hence, if the integral I ¼ f is independent of c, it is an adiabatic invariant.

See also action–angle variable proof below.]

(ii) Integral Variational Derivation

L ¼ Lðq; _qq; cÞ; ð8:15:12Þ
in the following two continuous and finite (but not yet assumed periodic) motions:

by q ¼ qðtÞ and c ¼ constant along I � cðIÞ; and

(b) A neighboring orbit II ¼ I þ DðIÞ, lasting from t1 þ Dt1 to t2 þ Dt2, and character-

ized by qþ Dq and c þ Dc ¼ constant along II � cðIIÞ.

Now, using the analytical results and notation of }7.9, and treating the parameters

c�ð� ¼ 1; . . . ;mÞ as additional Lagrangean coordinates, it is not hard to show that,

under such a I ! II variation, and since, along both these orbits, Lagrange’s equa-

tions of motion for the q’s hold, to the first noncontemporaneous order,

(notice the additional Dc-sum) where (}3.9)

h �
X
ð@L=@ _qqkÞ _qqk � L ¼ generalized energy ðHamiltonianÞ in Lagrangean

variables

¼ hðcÞ ¼ hðIÞ ¼ constant � h; ð8:15:13aÞ
¼ hðcþ DcÞ � hðIIÞ ¼ constant � hþ Dh: ð8:15:13bÞ
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[The following is due to Boltzmann (late 19th century, classical case) and his student
Ehrenfest (1910s, classical → quantum case). We follow Schaefer (1937, pp. 58–66);

(a) A fundamental orbit I lasting from an initial time t1 to a final t2, and characterized

∫ t2

t1

L dt

=

∫ t2

t1

∑
(∂L/∂cα)Δ cα dt+

{∑
pk Δ qk − hΔ t

}t2

t1
(8.15.13)

Δ AH ≡ Δ 

Hence, by the well-known plane Green–Stokes theorem, also:

see also Brillouin (1964, pp. 231–243), De Donder (1924, 1925), Jeans (1925, pp. 409–
417), and Juvet (1926, pp. 134–144).] Let us reconsider the earlier system with Hamilto-
nian given by (8.15.1) and, hence, Lagrangean of the same form:



Next, let I be a completely degenerate periodic motion, with the single period �
and frequency �, and let, in eq. (8.15.13), t1 ¼ 0, t2 ¼ � (the multiply/conditionally

periodic case is discussed later). With

@L=@c� � C�: Lagrangean force with which the system reacts to a change of its
parameter c�; ð8:15:14aÞ

and, hence,

�C� � �@L=@c�: External force that; at every instant; must be acting on the system
to keep c� constant; ð8:15:14bÞ

so thatX
ð@L=@c�ÞDc� ¼

X
C� Dc� � DWc: First-order work done by the system to its

environment; during a c! cþ Dc change;

ð8:15:14cÞ

and analogously for �DWc, and with the notation
Ð �
0
. . . � Þ . . . , eq. (8.15.13)

becomes

D
þ
Ldt ¼

þ
DWc dtþ

X
pk Dqk � hDt

n o�
0
: ð8:15:14dÞ

If, further, the neighboring orbit II is also (singly) periodic with period

� þ D� ¼ � þ Dð1=�Þ ¼ � þ ð�1=�2ÞD� ð8:15:14eÞ
(a fact that clearly indicates why we need a variable time-endpoints treatment),

then choosing, with no loss in generality, Dt1 ¼ 0, and since, then, Dt2 ¼ D� ,
hðIÞ ¼ constant � h, fP pk Dqkg�0 � 0 (due to periodicity), reduces (8.15.14d) to

D
þ
Ldt ¼

þ
DWc dt� hD�; ð8:15:14fÞ

or, equivalently, in terms of mean/averaged values of their integrands,

DðhLi�Þ ¼ hDWci� � hD�

for; adding and subtracting � Dh � � ½hðIIÞ � hðIÞ� � � ½hðcþ DcÞ � hðcÞ�g
� hDWci� � Dðh �Þ þ � Dh; ð8:15:14gÞ

or, rearranging,

D
�ðhLi þ hÞ�� ¼ 	Dh þ hDWci



�: ð8:15:14hÞ

But, (i) hLi ¼ hT � Vi ¼ hTi � hVi, and (assuming T : quadratic homogeneous in _qq
or p)

h ¼ T þ V ¼ hT þ Vi ¼ hTi þ hVi ¼ constant; ð8:15:14iÞ
so that

hLi þ h ¼ 2hTi; ð8:15:14jÞ
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and (ii) by the first law of thermodynamics: if

DQ ¼ Heat added to the system during the transition I ! II ; ð8:15:14kÞ
then

DQþ ð�DWcÞ ¼ Dh; ð8:15:14lÞ
that is,

Heat supplied to systemþWork done to system to violate its constraint

ðc ¼ constantÞ ¼ Increase of energy of system:

As a result of (8.15.14j, l), eq. (8.15.14h) assumes the Boltzmann–Clausius form:

D
�
2hTi�� ¼ � DQ: ð8:15:15Þ

This result is exact. If we, now, assume that the transition I ! II is adiabatic (i.e.,

DQ ¼ 0), then (8.15.15) immediately leads us to the famous adiabatic theorem of
Ehrenfest:

D
�
2hTi�� ¼ D

�
2hTi=�� ¼ 0: ð8:15:16Þ

[Physically the process must be (i) fast enough so that our system cannot exchange

heat with its environment (i.e., it remains thermally insulated); and (ii) slow com-

pared with other processes that lead to thermal equilibrium. For example, in order

that the expansion of a gas in a cylinder be adiabatic, the velocity of its outward

moving piston must be slow only relative to the velocity of sound in the gas; that is,

the piston may move quite fast!

For a precise definition of adiabaticity, see books on thermal physics, and so on:

for example, Landau and Lifshitz (1980, pp. 38–41).]

Other, equivalent, forms of the theorem are

½2hTi=��I ¼ ½2hTi=��II : Adiabatic invariant; ð8:15:17Þ

J � 2hTi=� ¼ 2

þ
T dt ¼

þ X
pk _qqk

� �
dt

¼
X ð1=�

0

ðpk _qqkÞ dt
 !

: Adiabatic invariant: ð8:15:18Þ

Specialization. If 2hTi ¼ h ¼ E (i.e., if hTi ¼ hVi; e.g., linear harmonic oscilla-

tions), eqs. (8.15.16, 17) reduce to the ‘‘Planck form’’:

E=�: adiabatic invariant: ð8:15:19Þ

Multiply/Conditionally Periodic System

So far, we have assumed that our n-DOF system is completely separable and com-
pletely degenerate (}8.14) and has the single period � ; that is, there exist n� 1 inde-

pendent equations of the form (8.14.31)

i 01�1 þ i 02�2 þ � � � þ i 0n �n ¼ 0; ð8:15:20Þ
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where the i 0k are integers and the �k are the fundamental frequencies of its individual

DOFs; or, equivalently,

i1ð1=�1Þ ¼ i2ð1=�2Þ ¼ � � � ¼ inð1=�nÞ ¼ 1=v � �; ð8:15:21Þ

or, with �k ¼ 1=�k,

i1�1 ¼ i2�2 ¼ � � � ¼ in�n ¼ �; ð8:15:21aÞ

where the ik are positive integers (naturals). Then, (8.15.18) reduces further to

X ðik=�k
0

ðpk _qqkÞ dt
 !

¼
X

ik

ð1=�k

0

ðpk _qqkÞ dt
 !

¼
X

ik Jk: adiabatic invariant; ð8:15:22Þ

or, since ik ¼ �k=� ¼ � �k ð� 6¼ 0), finally,X
�kJk: adiabatic invariant; ð8:15:23Þ

in agreement with ex. 8.14.9.

If, however, our system is only conditionally/multiply periodic— that is, if at least

one or more of (8.15.20, 21) do not hold, and, instead, are replaced with equations of

the form

I1�1 þ I2�2 þ � � � þ In�n ¼ "; ð8:15:24Þ

where the Ik are, generally, large integers and " is arbitrarily small, then a ‘‘quasi

period’’ � can be defined by

� ¼ 1=� ¼ i1=�1 þ "1 ¼ i2=�2 þ "2 ¼ � � � ¼ in=�n þ "n; ð8:15:25aÞ
¼ i1�1 þ "1 ¼ i2�2 þ "2 ¼ � � � ¼ in�n þ "n; ð8:15:25bÞ

where the "k are arbitrarily small (in order to achieve any required degree of

accuracy) and the boundary terms fP pk Dqkg�0 can be made as small as needed.

Hence, a conditionally periodic system can also be brought as close as desired to a
purely (singly) periodic one, so that (8.15.22, 23) still hold. [More precisely:P ðÐ t2t1 ðpk _qqkÞ dtÞ ¼ adiabatic invariant, where t2 ¼ ik=�k þ "k; t1 ¼ 0:�
� If the original system is completely separable, then it is reduced to n subsystems,

each with one DOF and one frequency. If, further, these frequencies, �1; . . . ; �n, are

incommensurate— that is, independent — then our non-degenerate system has n
independent adiabatic invariants:

Jk �
þ
pk dqk ¼ adiabatic invariant ðk ¼ 1; . . . ; nÞ: ð8:15:26aÞ

. But if our system is m-fold degenerate, or ðn�mÞ-periodic, then it has only

n�m independent adiabatic invariants; namely, certain combinations of its n Jk’s.
Hence the rule: There exist as many independent adiabatic invariants as there are

independent (incommensurate) frequencies; that is, n�m ð0 � m � n� 1Þ. For

example, the spatial linear and isotropic oscillator has three mutually equal frequencies
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(i.e., n ¼ 3, and since �x ¼ �y ¼ �z, m ¼ 2) and, therefore, only one adiabatic in-

variant:

Jx þ Jy þ Jz ¼
þ
px dqx þ

þ
py dqy þ

þ
pz dqz ¼ adiabatic invariant: ð8:15:26bÞ

(iii) Action–Angle Variables Derivation

[The following is due to Burgers (1917) and Krutkow (1919); also Bohr (1918, who

calls it theorem of mechanical transformability). Here, we follow the excellent

summary of these proofs given by Birtwistle (1926, pp. 76–78). See also Born

(1927, pp. 56–59, 95–98), Haar (1971, pp. 139–144), Saletan and Cromer (1971,

pp. 259–263). It may be omitted in a first reading.]

To simplify the discussion, let us assume, with no loss in generality, that our

n-DOF system contains only one adiabatically varying parameter, c ¼ cðtÞ. As we

have seen in }8.10, in the constant parameter case, the generating function of the

canonical transformation (q; pÞ ! ðq 0 ¼ w, p 0 ¼ J) is Aoðq; JÞ ½¼ F2ðq; p 0Þ�. In the

adiabatic case, we can think of c as an additional system coordinate unrelated to

the motion; that is, unrelated to the q’s. Hence, the reduced action Ao becomes the
explicitly time-dependent function Ao½q; J; cðtÞ�, so that

wk ¼ @Aoðq; J ; cÞ=@Jk; pk ¼ @Aoðq; J; cÞ=@qk: ð8:15:27aÞ

Here, the Hamiltonian transformation H ! H 0ð6¼ HÞ is

H ¼ HðJ; cÞ ¼ EðJ; cÞ ! H 0 ¼ H þ @Ao=@t ¼ E þ ð@Ao=@cÞðdc=dtÞ; ð8:15:27bÞ

and, therefore, with Ao ¼ Ao½qðw; J; cÞ; J; c� � Aoðw; J; cÞ ½) H 0 ¼ H 0ðw; J; cÞ�, the

Hamiltonian equations of motion of the wk’s and Jk’s are

dwk=dt ¼ @H 0=@Jk ¼ @H=@Jk þ @=@Jkð@Ao=@tÞ
¼ @H=@Jk þ @=@Jk

�ð@Ao=@cÞðdc=dtÞ
�

¼ �k þ
�
@=@wkð@Ao=@cÞ

�ðdc=dtÞ; ð8:15:27cÞ
dJk=dt ¼ �@H 0=@wk ¼ �@H=@wk � @=@wkð@Ao=@tÞ

¼ 0� @=@wk

�ð@Ao=@cÞðdc=dtÞ
� ¼ ��@=@wkð@Ao=@cÞ

�ðdc=dtÞ: ð8:15:27dÞ

Equivalently, instead of the above choice Aoðq; JÞ ! Ao½q; J; cðtÞ� for generating

function, we try the form Wðq;w; tÞ � Aðq;w; tÞ ½¼ F1ðt; q; q 0Þ�. Indeed, recalling

(8.14.23b, c), we have

�Aoo � � Ao �
X

wkJk

� �
¼
X �ð@Ao=@qkÞ �qk þ ð@Ao=@JkÞ �Jk

��X �ðwk JkÞ
¼
X
ðpk �qk þ wk �JkÞ �

X
ð�wkJk þ wk �JkÞ

¼
X
ðpk �qk � Jk �wkÞ

) pk ¼ @Aoo=@qk; Jk ¼ �@Aoo=@wk; ð8:15:28aÞ
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and therefore (by the theory of }8.8 and }8.10) the Hamiltonian equations of wk and

Jk are

dwk=dt ¼ @H 0=@Jk; dJk=dt ¼ �@H 0=@wk; where H 0 ¼ H þ @Aoo=@t:

ð8:15:28bÞ

But since H ¼ HðJ; cÞ and Aoo ¼ Aoo½q;w; cðtÞ� � Aooðq;w; tÞ, and therefore

@Aoo=@t ¼ ð@Aoo=@cÞðdc=dtÞ, the above yield, further,

dwk dt ¼ @H=@Jk þ @=@Jk
�ð@Ao=@cÞðdc=dtÞ

� ¼ �k þ �@=@wkð@Ao=@cÞ
�ðdc=dtÞ;
ð8:15:28cÞ

½) wk ¼ �kðJ ; cÞtþ �kðJ; cÞ ¼ ð�kotþ �koÞ þ ð�k1t
2 þ �k1tÞðdc=dtÞ þ � � ��

dJk=dt ¼ �@H=@wk � @=@wkð@Aoo=@tÞ
¼ 0� @=@wk

�ð@Aoo=@cÞðdc=dtÞ
� ¼ ��@=@wkð@Aoo=@cÞ

�ðdc=dtÞ; ð8:15:28dÞ

or, finally, with the simplifying notation F � @Aoo=@c ¼ F½qðw; J; cÞ; J; c� ¼
Fðw; J; cÞ;

dJk=dt ¼ �ð@F=@wkÞðdc=dtÞ: ð8:15:28eÞ

Integrating, next, (8.15.28d, e) over a long time interval Dt � t2 � t1, we obtain

DJk � Jkðt2Þ � Jkðt1Þ ¼ �
ðt2
t1

ð@F=@wkÞðdc=dtÞ dt: ð8:15:29aÞ

Now, since Aoo is periodic in each of the wk’s with period 1 [(8.14.23b ff.)], so is

@Aoo=@c; that is, F ¼ Fðw; J; cÞ ½ ! Fðw; J; tÞ�. Therefore, we can represent it as

the following multiply periodic Fourier series [(8.14.24f–j), with a single
P

sign

standing for all summations, for simplicity]:X
Dk;sðJ; cÞ expð2�is �wÞ; ð8:15:29bÞ

where, as earlier, s � ðs1; . . . ; snÞ are positive or negative integers, or zero; ranging

from �1 to þ1,

w � ðw1; . . . ;wnÞ; s �w � s1w1 þ � � � þ snwn; ð8:15:29cÞ

and from this we readily conclude that

@F=@wk ¼ �
X 0

Ek;s expð2�i s �wÞ ¼ �
X 0

Fk;s expð2�i s � mtÞ ð8:15:29dÞ
ð ¼ a multiply periodic Fourier series but without the constant termÞ;

such terms having been removed, from each of these series, by the @=@wk-differentia-

tions. This key step in our proof is designated by the accent (prime) on the summa-
tion sign. We have also made the related assumption (see below) that

s � m � s1�1 þ � � � þ sn�n 6¼ 0 ði:e:; no degeneracies!Þ: ð8:15:29eÞ
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As a result of the above, (8.15.29a) becomes, successively,

DJk ¼ �
ðt2
t1

ðdc=dtÞ �
X 0

Fk;s expð2�i s � mtÞ
h i

dt

¼ �hdc=dti
ðt2
t1

�
X 0

Fk;s expð2�i s � mtÞ
h i

dt

� �hdc=dti
ðt2
t1

Gðc; tÞ dt; ð8:15:29fÞ

since both the Fk;s’s and �k’s depend on c. [The condition of erratic or unsymmetric

variation of cðtÞ can be satisfied by taking, for example, dc=dt ¼ constant.] Next, to

study the precise dependence of the above integral on c, we expand its integrand à la

Taylor around c1 � cðtÞ, and thus obtainðt2
t1

Gðc; tÞ dt ¼
ðt2
t1

�
Gðc1; tÞ þ ðc� c1ÞG 0ðc1; tÞ þ � � �

�
dt: ð8:15:29gÞ

Now:

(i) The first term of the integrand is periodic in the constant �k’s (i.e., the frequen-

cies before c began to vary). Therefore, if Dt is long enough to contain a large

number of the corresponding periods, since G is periodic in time (and does not

contain a constant term), ðt2
t1

Gðc1; tÞ dt ¼ 0: ð8:15:29hÞ

(ii) The second term, ðt2
t1

ðc� c1ÞG 0ðc1; tÞ dt; ð8:15:29iÞ

is of the same order (of magnitude) asðt2
t1

�ðdc= dtÞt�G 0ðc1; tÞ dt; ð8:15:29jÞ

and that, in turn, is of the order of

hdc=dtiðt2 � t1Þ � hdc=dtiDt � Dc ð¼ OniteÞ: ð8:15:29kÞ
From the above, we conclude that

DJk ¼ �hdc=dti ðTerm of order DcÞ � hdc=dtiDc ¼ hdc=dti2Dt;
or, equivalently, since DJk ¼ hdJk=dtiDt;

hdJk=dti � hdc=dti2; ð8:15:29lÞ
and hence even if Dc is finite (after a very long period of time), it is possible to make

DJk as small as desired by decreasing dc=dt; that is, the Jk’s are adiabatic invariants.

[The extension of this proof to several c’s does not offer any difficulties; (8.15.28d)
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is replaced by dJk=dt ¼ �
P ½ð@2Aoo=@wk@clÞ� ðdcl=dtÞ, where l ¼ 1; 2; . . . ;m, and

so on.]

Effect of Degeneracies on Adiabatic Invariance. The no degeneracy requirement

(8.15.29e) is crucial. If an (8.14.31)-like relation

i � m � i1�1 þ � � � þ in�n ¼ 0 ½i � ði1; . . . ; inÞ: integers�; ð8:15:30aÞ
exists among the original frequencies (and/or occurs at some stage of the subsequent

adiabatic variation), then, for s ¼ i, the Fourier series

Gðc1; tÞ ¼ �
X 0

Fk;s expð2�i s � mtÞ
h i

c¼c1

; ð8:15:30bÞ

will contain a constant term, say C; and, accordingly, eq. (8.15.29h) will be replaced

by ðt2
t1

Gðc1; tÞ dt ¼ CDt: ð8:15:30cÞ

Then we will have, instead of (8.15.29l),

DJk ¼ �hdc=dti ðCDtþ Term of order DcÞ
¼ �CDc� hdc=dti ðTerm of order DcÞ
¼ �CDc ¼ Onite change; as hdc= dti2 ! 0; ð8:15:30dÞ

that is, the Jk will no longer be adiabatic invariants. In such degenerate cases, as

stated earlier, the number of independent adiabatic invariants equals the number of

independent frequencies ðn�mÞ.
[If m (8.15.30a)-like relations hold identically— that is, for all J’s, for a certain c,

then, following the method of (ex. 8.14.14), we introduce new w’s and J’s such that

the first n�m of the new frequencies ð� 0d ; d ¼ 1; . . . ;mÞ are equal to zero, while the

remaining m of them ð� 0 i; i ¼ n�m; . . . ; nÞ are independent (i.e., incommensurate).

Then, the constant exponents appearing in the Fourier series for Aoo involve only the

‘‘dependent’’ angle variables ðw 0dÞ, and, upon differentiation with respect to the

‘‘independent’’ such variables ðw 0iÞ, they disappear. It follows that at such ‘‘places

of degeneration’’ the ‘‘independent’’ actions ðJ 0iÞ remain invariant; while, in general,

the ‘‘dependent’’ ones ðJ 0iÞ do not.

If, in addition to the above cases of identical degeneration, (8.15.30a)-like

relations hold for particular values of the employed J ’s — a case known as accidental
degeneration— these action variables need not be invariant; unless the amplitude

corresponding to (8.15.30a) also vanishes from its (8.15.29g)-like series. On this

delicate topic, see also Fues (1927, p. 150; and references given therein).]

Example 8.15.1 Adiabatic Invariant of Linear 1-DOF Oscillator. Here, with the

customary notations,

H ¼ p2=2mþm !2q2=2 ¼ Hðq; pÞ; ðaÞ
and therefore the energy curve in phase space, Hðq; pÞ ¼ E (libration), is�

p=ð2mEÞ1=2�2 þ �q�ð2E=m!2Þ1=2�2 ¼ 1; ðbÞ
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that is, an ellipse with semiaxes: ð2E=m !2Þ1=2 along q, and ð2mEÞ1=2 along p. Hence,

J ¼ area of ellipse ¼ ��ð2E=m !2Þ1=2 � ð2mEÞ1=2�
¼ �ð2E=!Þ ¼ 2�ðE=!Þ ¼ E=� ¼ adiabatic constant; ðcÞ

that is, as long as � 6¼ 0, under adiabatic changes, the oscillator energy is proportional
to its frequency; as predicted by the general theory.

Example 8.15.2 Effect of Light Damping on the Adiabatic Invariant. Let us con-

sider the linear 1-DOF spring–mass–damper system with equation of motion

m €qqþ d _qqþ k q ¼ 0; ðaÞ
where m; d ; k ¼ mass, viscous damping coefficient (constant), spring constant, respec-

tively. Since (a) has no periodic solutions, it has no adiabatic invariants. However,

as is well known from second-order differential equations, the change of variables

q! q 0 ¼ q exp½ðd=2mÞt� ) q ¼ q 0 exp½�ðd=2mÞt�; ðbÞ
transforms (a) to the linear dampingless equation (for the fictitious system described

by q 0):

m 0ðq 0Þ::þ k 0q 0 ¼ 0; ðcÞ
where m 0 ¼ m,

ð! 0Þ2 � k 0=m 0 ¼ k=m� ð1=4Þðd=mÞ2 ¼ !2½1� ðd2=4mkÞ�;

!2 � k=m: ðdÞ

Clearly, (c) has periodic solutions with the single frequency � 0 � ! 0=2�, and there-

fore adiabatically invariant action {with a 0 ¼ amplitude of (b, c) ¼ a exp½ðd=2mÞt�g:
J 0 ¼ E 0=� 0 ¼ V 0max=�

0

¼ �ð1=2Þk 0ða 0Þ2� ¼ �ð1=2Þm 0ð! 0Þ2ða 0Þ2��ð! 0=2�Þ
¼ �m 0! 0�a exp½ðd=2mÞt��2

¼ �m�!½1� ðd2=4mkÞ�1=2��a2 exp½ðd=mÞt��
¼ ��ma2!½1� ðd2=4mkÞ�1=2� exp½ðd=mÞt� ¼ constant

¼ ��ma2!½1� ðd2=4mkÞ�1=2� ði:e:; J 0jt¼0Þ: ðeÞ

Hence, for the adiabatically noninvariant action of (a), we will have the following

exponential decay variation:

Jðt 0Þ ¼ Jð0Þ expð�kt 0=mÞ; ðfÞ
where

t 0 � " t ¼ slow time � ðd=kÞt; �ðd=mÞt ¼ �ðk=mÞ ð" tÞ � �ðk=mÞt 0: ðgÞ
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For an alternative treatment of a more general case, see Kevorkian and Cole (1981,

pp. 271–272).

Example 8.15.3 Let us consider a particle, of mass m, in rectilinear horizontal and

perfectly elastic collisional motion between two perfectly elastic and infinitely mas-

sive walls of width l, one fixed (say, the left) and one movable (the right).

(i) If both walls are fixed (stationary), and the particle moves with velocity v, then,

clearly, its energy (neglecting gravity) and ‘‘period of collision’’ are, respectively,

E ¼ T ¼ ð1=2Þmv2; � ¼ 2l=v: ðaÞ

(ii) If the right wall moves with velocity _ll, assumed unaffected by the repeated

particle collisions, (i.e., to the right, if _ll > 0), then, after the particle has collided

with both walls, once, its velocity has changed from v to v� 2 _ll [recalling definition of

restitution coefficient, (4.4.1), e; here e ¼ 1]; i.e., Dv ¼ �2 _ll. Assuming now that
_ll � v; that is, the right wall moves very slowly relative to the particle, let us calculate

the adiabatic invariant of this periodic system.

From First Principles

Choosing a time interval Dt that is very large relative to the collision period of the

fixed wall case, and very small relative to the l= _ll — that is,

2l=v� Dt� l= _ll; ðbÞ

it is not hard to see that if one pair of such collisions changes the velocity of the

particle by �2 _ll; ðv=2lÞ Dt pairs will change it by

Dv ¼ �ðv _ll=lÞ Dt ða decrease if the right wall moves outwardÞ: ðcÞ

Integrating (c), we readily obtain the adiabatic invariant

v l ¼ constant; ðdÞ

or, due to (a),

E l2 ¼ constant: ðeÞ

From the General Adiabatic Theory

We readily find

J ¼
þ
p dq ¼

ð�
0

ðmvÞ ðv dtÞ ¼ 2mvl ¼ constant: ðf Þ

These results are shown graphically in fig. 8.23.

For alternative treatments of this popular example, see, for example, Kuypers

(1993, pp. 346, 535–536), Matzner and Shepley (1991, pp. 198–199), Percival and

Richards (1982, pp. 142–144).

)8.15 ADIABATIC INVARIANTS 1303



Problem 8.15.1 Adiabatic Motion of a Planar Mathematical Pendulum
(Ol’khovskii, 1970, p. 430 ff.). Consider the small angular amplitude adiabatic

motions of a planar mathematical pendulum of mass m, length l, and angle with

the vertical �.

(i) Show that its reduced Hamilton–Jacobi equation is (with E ¼ total energy of

pendulum)

ðdAo= d�Þ2 þm2g l3�2 ¼ 2m l2E: ðaÞ
(ii) Show that the complete solution of (a) is

Ao ¼ ðm2g l3Þ1=2�ð�=2Þ ½ð2E=mg lÞ � �2�1=2 þ ðE=mg lÞ arcsin
�
�
�ð2E=mg lÞ1=2��;

ðbÞ
and, therefore, during a complete libratory cycle of the pendulum,

DAo ¼ E=� ¼ J ) EðtÞ ¼ J�ðtÞ; where !2 ¼ g=l
	 ¼ ð2��Þ2
: ðcÞ

(iii) Show that the average of the total energy of the pendulum, over a cycle,

equals

hEi ¼ ðm l2=2Þhð _��Þ2i þ ðmg l=2Þh�2i; ðdÞ
that is,

E ¼ hT þ Vi ¼ hTi þ hVi: ðeÞ
(iv) Show that

h�2i ¼ �o
2=2; hð _��Þ2i ¼ ð�o2=2Þ!2 ðfÞ

(�o ¼ maximum angular amplitude), and, therefore,

hEi ¼ mg l�o
2=2 ð¼ EÞ: ðgÞ

(v) Show that

l3=4�o ¼ adiabatic invariant; or l3�o
4 ¼ adiabatic invariant; ðhÞ

or �o � l�3=4; that is, if l is reduced adiabatically by 50%, �o increases by 68%.
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(vi) Show that under adiabatic variations,

dE ¼ �ðE=2lÞ dl: ðiÞ

Problem 8.15.2 Consider the linear oscillations of a mathematical pendulum of

mass m and length l on a smooth inclined plane of angle with the horizontal �. Show

that under adiabatic changes of �,

�o � ðsin�Þ�1=4; ðaÞ
where �o ¼ angular amplitude.

HINT

In the equation of motion of the ordinary mathematical pendulum (i.e., when

� ¼ �=2), replace g with g sin �. Then, the frequency becomes

� ¼ ð1=2�Þðg=lÞ1=2ðsin�Þ1=2;
and

E ¼ maximum potential energy � mgl sin��o
2: ðbÞ

Problem 8.15.3 Consider a linear and undamped spring–mass oscillator of

frequency

� ¼ ð1=2�Þ ðk=mÞ1=2 ðaÞ
ðk ¼ spring ‘‘constant,’’ m ¼ mass). Show that under adiabatic variations of k:

ðiÞ E2=k ¼ adiabatic invariant ðE ¼ total energyÞ; ðbÞ
ðiiÞ ka4 ¼ adiabatic invariant ða ¼ oscillation amplitudeÞ: ðcÞ

HINT

E ¼ maximum potential energy ¼ ka2=2:

For additional examples on adiabatic invariance, see, for example, Kotkin and Serbo

[1971, chap. 13; too compact; to be read in conjunction with the mechanics volume

of Landau and Lifshitz (1960)], Morton (1929), Pöschl (1949, pp. 161–163); and the

examples/problems of }7.9 in this book.

8.16 CANONICAL PERTURBATION THEORY IN ACTION–ANGLE

VARIABLES

[For the writing of this section, we owe a big debt to the following excellent refer-

ences: Born (1927, pp. 107–110, 249–261), Dittrich and Reuter (1994, pp. 109–136),

Saletan and Cromer (1971, pp. 241–247, 251–258), Tabor (1989, pp. 96–105).]

This section constitutes a concise introduction to canonical perturbation theory;

that is, an asymptotic approximation technique based on canonical transformations
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and action–angle variables (}8.14). We have already treated perturbation problems

via general canonical variables [variation of constants and associated averaging

(}8.7, examples in }8.10)]. But, it turns out that action–angle variables, due to

their special properties, are particularly well suited here; and this may explain why

this topic has been so central to both the genesis of the new quantum mechanics

(1920s) and modern (classical) nonlinear dynamics (1960s to the present).

One DOF

Let us begin with the first-order perturbation of a one-DOF conservative system;

that is, @H=@t ¼ 0 (time-independent, or stationary state, perturbation theory). We

will assume that both its undisturbed and disturbed motions are periodic, and that

the undisturbed one of them is known exactly; that is, after solving its unperturbed

Hamilton–Jacobi (HJ) equation, say by separation of its (unperturbed) variables, we

have expressed the latter ðqo; poÞ in terms of (unperturbed) action and angle variables

ðJo;woÞ. Its Hamiltonian Ho will, then, depend only on Jo:Ho¼ Hoðqo; poÞ ¼ HoðJoÞ;
so that its (constant) frequency equals �o ¼ @Ho=@Jo and, therefore, wo ¼ �otþ �o.

Let the disturbed problem be described by the perturbed Hamiltonian

H ¼ Ho þ "H1 þ "2H2 þ � � �, or, more precisely, after substituting in it the unper-

turbed variables,

H ¼ Hðwo; Jo; "Þ ¼ HoðJoÞ þ "H1ðwo; JoÞ þ "2H2ðwo; JoÞ þ � � �
ð ¼ unperturbed Hamiltonianþ Orst-order perturbation Hamiltonian

þ second-order Hamiltonian þ � � �Þ; ð8:16:1aÞ
where

" ¼ parameter; or strength; of the perturbation

ðof the order of the ratio of the disturbing agency

to that already in actionÞ � 1; ð8:16:1bÞ
and Hðwo; Jo; 0Þ ¼ HoðJoÞ. Since H is a known function of wo and Jo, all the

‘‘perturbation components’’ Hp ðp ¼ o � 0; 1; 2; 3; . . .Þ are known.

The series (8.16.1a) is assumed to converge for a sufficiently large domain of

values of the coordinates and momenta used; and, the resulting motions are assumed

to remain periodic for all values of " in an interval of interest containing " ¼ 0.

By solution of the perturbed problem, we will understand the finding of a

generating function Wo � Ao � G [new notation is introduced in this section to

avoid having too many subscripts (see below)] that transforms the original

Hamiltonian coordinates into new angle–action variables

ðqo; poÞ ! ðw; JÞ: po ¼ @G=@qo; w ¼ @G=@J; ð8:16:1cÞ
[recall }8.8, case: F2ðq; p 0Þ ! Gðqo; JÞ] or, if the original coordinate and momentum

are wo and Jo, respectively [i.e., F2ðq; p 0Þ ! Gðwo; JÞ ) �G ¼ Jo �wo þ w �J �, then

ðwo; JoÞ ! ðw; JÞ: Jo ¼ @G=@wo; w ¼ @G=@J; ð8:16:1dÞ
and, also, is such that:

� For " ¼ 0; ðw; JÞ reduce to ðwo; JoÞ;
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� The perturbed (new) coordinate q is periodic in the new angle variable w with period 1;

� The perturbed (new) Hamiltonian depends only on the new action variable:
H ¼ HðJÞ; that is,

Hðqo; po; 0Þ ¼ HoðJoÞ ¼ EðJo; 0Þ ! Hðq; p; "Þ ¼ HðJÞ ¼ EðJ; "Þ: ð8:16:1eÞ
Then,

� ¼ @HðJÞ=@J ¼ @EðJÞ=@J ¼ new ðconstantÞ frequency; ð8:16:1fÞ
) w ¼ �tþ � ¼ new angle variable: ð8:16:1gÞ

Since @G=@t ¼ 0, the corresponding (perturbed) HJ equation is

Hðwo; JoÞ ¼ Hðwo; @G=@woÞ ¼ EðJÞ: ð8:16:2aÞ

REMARK

The undisturbed motion variables wo; Jo remain canonical in the perturbed motion;

but without their usual angle–action behavior. Indeed, here, the corresponding equa-

tions of motion are

dJo=dt ¼ �@H=@wo ¼ �"ð@H1=@woÞ 6¼ 0; ð8:16:2bÞ
dwo=dt ¼ @H=@Jo ¼ @Ho=@Jo þ "ð@H1=@JoÞ 6¼ constant; ð8:16:2cÞ

that is, Jo is no longer constant, and wo is no longer a linear function of time.
Let us find the perturbational consequences of the basic equation (8.16.2a), or,

more precisely,

H
�
woðw; JÞ; Joðw; JÞ; "

� ¼ EðJ ; "Þ: ð8:16:2dÞ

Expanding all functions involved there in "-powers, we obtain

Hðwo; JoÞ ¼ HoðJoÞ þ "H1ðwo; JoÞ þ � � �
¼ Hoð@G=@woÞ þ "H1ðwo; @G=@woÞ þ � � � ; ð8:16:3aÞ

EðJ; "Þ ¼ EoðJÞ þ "E1ðJÞ þ � � � ; ð8:16:3bÞ
Gðwo; JÞ ¼ Goðwo; JÞ þ "G1ðwo; JÞ þ � � �

¼ wo J þ "G1ðwo; JÞ þ � � � ; ð8:16:3cÞ

since for " ¼ 0 the function G must reduce to the identity transformation

wo J ðJo ¼ @G=@wo ¼ J; w ¼ @G=@J ¼ woÞ; and where all its ‘‘perturbation compo-

nents’’ G1;G2; . . . ; are periodic in wo with fundamental period 1.

[To prove this, it suffices to prove the wo-periodicity of

G 0ðwo; JÞ � Gðwo; JÞ � wo J ¼ "G1ðwo; JÞ þ � � � :
Indeed, since (}8.12) after j cycles of q the action function increases by j J, we

will have

G 0ðwo þ j; JÞ ¼ Gðwo þ j; JÞ � ðwo þ jÞJ ¼ ½Gðwo; JÞ þ j J� � ðwo J þ j JÞ
¼ Gðwo; JÞ � wo J ¼ G 0ðwo; JÞ; Q:E:D:
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Then, as eq. (8.16.3e) shows, w ¼ wo þ periodic function of wo, with fundamental
period 1); and so q is periodic in both w and wo.]

Next, to be able to compare the various "-order terms of H and E [i.e., implement

(8.16.2d)], we must express (8.16.3a) in terms of J, instead of Jo. To this end, first, we

introduce (8.16.3c) in (8.16.1d) and expand in ":

Jo ¼ @Gðwo; JÞ=@wo ¼ J þ " ½@G1ðwo; JÞ=@wo� þ � � � ; ð8:16:3dÞ
w ¼ @Gðwo; JÞ=@J ¼ wo þ " ½@G1ðwo; JÞ=@J� þ � � � ; ð8:16:3eÞ

and then insert these series into (8.16.3a) and, again, expand in ". Thus, we find, to

the first order,

Hðwo; JoÞ ¼ Ho

�
J þ "ð@G1=@woÞ

�þ "H1

�
wo; J þ " ð@G1=@woÞ

�
¼ �HoðJÞ þ "ð@G1=@woÞ ½@HoðJÞ=@J�

�þ "H1ðwo; JÞ
¼ HoðJÞ þ "

�
H1ðwo; JÞ þ ð@G1=@woÞ ½@HoðJÞ=@J�

�
; ð8:16:3fÞ

where

HoðJÞ ¼ ½HoðJoÞ�Jo¼J ; H1ðwo; JÞ ¼ ½H1ðwo; JoÞ�Jo¼J : ð8:16:3gÞ

Substituting the above results into (8.16.2a, d) we obtain, to the first order,

HoðJÞ þ "
�
H1ðwo; JÞ þ ½@HoðJÞ=@J�½@G1ðwo; JÞ=@wo�

�
¼ EoðJÞ þ "E1ðJÞ; ð8:16:4aÞ

and, equating the coefficients of like powers of ", we get

"0: HoðJÞ ¼ EoðJÞ; ð8:16:4bÞ
"1: H1ðwo; JÞ þ ½@HoðJÞ=@J � ½@G1ðwo; JÞ=@wo� ¼ E1ðJÞ: ð8:16:4cÞ

Now:

� Equation (8.16.4b) yields the zeroth approximation to the energy Eo: we find it by

replacing Jo with J in the energy of the unperturbed motion.

� Equation (8.16.4c) is a differential equation that yields the first approximation to the

energy E1; and, at first sight, it gives the impression that to do this we need not only

H1, but also G1, both functions of wo, and the unknown but constant J.

However, things are not that complicated:

(i) Since [recalling (8.16.3g)]

@HoðJÞ=@J ¼
�
@HoðJoÞ=@Jo

�
Jo¼J ¼ @=@J

�½HoðJoÞ�Jo¼J
� ¼ �oðJÞ ð8:16:5aÞ

[i.e., �oðJÞ is obtained from the frequency of the unperturbed motion �oðJoÞ, by

replacing in it Jo with J], (8.16.4c) can be rewritten as

H1ðwo; JÞ þ �o
�
@G1ðwo; JÞ=@wo

� ¼ E1ðJÞ; ð8:16:5bÞ
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(ii) E1 is constant, and H1 is periodic in wo with constant term; and

(iii) G1 is periodic in wo with constant term; that is, it is representable by the

Fourier series:

G1ðwo; JÞ ¼
X

gsðJÞ expð2�i s woÞ ðs ¼ �1; . . . ;þ1Þ; ð8:16:5cÞ

and so its derivative @G1=@wo is also periodic in wo, but contains no constant term.

Hence, averaging (8.16.5b) over one unperturbed period �o ¼ 1 (or over the unper-

turbed time variation), and noting that

h@G1=@woi ¼ 0; ð8:16:5dÞ

a consequential result in our perturbation scheme, we obtain the first-order energy

correction:

E1ðJÞ ¼ hH1ðwo; JÞi
	 ¼ hE1ðJÞi



; ð8:16:5eÞ

where

hH1ðwo; JÞi � ð1=1Þ
ð1

0

H1ðwo; JÞ dwo ¼ function of J : ð8:16:5fÞ

Then, (8.16.3b) becomes

EðJÞ ¼ EoðJÞ þ "E1ðJÞ ¼ HoðJÞ þ " hH1ðwo; JÞi; ð8:16:5gÞ

in words: to a first approximation, the energy of the perturbed motion equals the energy
of the unperturbed motion plus the average of the first-order part of the perturbation
Hamiltonian taken over the unperturbed motion.

The perturbed frequency is then given, to the first order, by

� ¼ @EðJÞ=@J ¼ �o þ "
�
@E1ðJÞ=@J

� ¼ �o þ "�@hH1i=@J
�
J¼Jo : ð8:16:5hÞ

Next, we turn to the calculation of the first-order correction of the motion. As

(8.16.3d, e) show, this requires finding G1: due to (8.16.5e), eq. (8.16.5b) can be

written as the following (linear and constant coefficient partial differential) equation

for G1:

�o½@G1ðwo; JÞ=@wo� ¼ known function of wo and J ¼ �DH1ðwo; JÞ; ð8:16:5iÞ

where

H1ðwo; JÞ � hH1ðwo; JÞi ¼ H1ðwo; JÞ � E1ðJÞ � DH1ðwo; JÞ
¼ oscillatory part; or periodic component; of H1 ðof zero average=mean;

and a known function of wo and the constant JÞ; ð8:16:5jÞ

and so it is expressible as a Fourier series without constant term (a fact denoted, as in

}8.15, by a prime on the summation sign):

DH1ðwo; JÞ ¼
X 0

hsðJÞ expð2�i s woÞ ðs ¼ �1; . . . ;þ1; 6¼ 0Þ: ð8:16:5kÞ

)8.16 CANONICAL PERTURBATION THEORY IN ACTION–ANGLE VARIABLES 1309



Utilizing (8.16.5c) and (8.16.5k) in (8.16.5i) and then equating coefficients of like

harmonics, we express the unknown amplitudes gs in terms of the known ones

hs: gs ¼ �½2�ið�osÞ��1hs, and so

G1ðwo; JÞ ¼ �
X 0 ½2�ið�osÞ��1hs expð2�i s woÞ

¼
X 0 ð!o sÞ�1 ði hsÞ expð2�i s woÞ

½ ¼ InOnite sum of Onite terms ðassuming; of course �o 6¼ 0;
and since s 6¼ 0�: ð8:16:5lÞ

[The general solution of (8.16.5i) is G1ðwo; JÞ þ f ðJÞ, where f ðJÞ is an arbitrary

function of J. But as (8.16.3d, e) show, f ðJÞ does not affect the J � Jo relation, and

simply adds a term " ½df ðJÞ=dJ� to w� wo. However, since J ¼ constant, this

amounts to the addition of an inconsequential constant to w� wo; w and wo being

angle variables, their difference at the ‘‘initial’’ angle wo ð¼ 0, for convenience) is

arbitrary. In view of this freedom, we will henceforth set f ðJÞ ¼ 0.]

Then, using (8.16.3d, e), we obtain the new action–angle variables to the first order;

that is, eq. (8.16.3e) yields the small oscillations, superimposed on the unperturbed

motion, with amplitude of order ", and analogously for (8.16.3d). Hence, in this per-

turbation scheme, no secular perturbations occur; that is, quantities that are constant in

the unperturbed motion do not undergo changes of their own order of magnitude.

REMARK

A word of caution is needed here: if �o is very small, then, as (8.16.5k) shows, the

effect of this first-order perturbation may be pretty substantial— the convergence of

our perturbation series cannot be guaranteed for very long time intervals (i.e., for all

time). (Similarly, it can be shown that the effect of the ( p)th perturbation will be

proportional to �o
�p.) As a rule, ‘‘small �o’’ situations occur near a separatrix— that

is, a boundary that separates phase space curves of very different properties; for

example, a curve that separates libration from rotation (fig. 8.13). As shown below,

such mathematical difficulties become far greater in n ð	 2Þ DOF systems: there, not

just small frequencies, but also finite/large ones, may combine among themselves

(i.e., in near-degeneracy conditions) to produce very small denominators in the coeffi-

cients of the corresponding perturbational series; and, thus, may call into question its

convergence. More on this famous problem of ‘‘small divisors’’ later.

Several DOF

Here, we extend our perturbation method in a twofold way: (i) to systems with n
DOF, and (ii) to include up to second-order terms in ". The basic assumptions of

the one-DOF case are also made here:

� For " ¼ 0, the new (perturbed) angle–action variables

w � ðw1; . . . ;wnÞ � ðwk; k ¼ 1; . . . ; nÞ; ð8:16:6aÞ
J � ðJ1; . . . ; JnÞ � ðJk; k ¼ 1; . . . ; nÞ; ð8:16:6bÞ

reduce to the old (unperturbed) ones

wo � ðw1o; . . . ;wnoÞ � ðwko; k ¼ 1; . . . ; nÞ; ð8:16:6cÞ
Jo � ðJ1o; . . . ; JnÞ � ðJko; k ¼ 1; . . . ; nÞ: ð8:16:6dÞ
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� The solution of the unperturbed problem in the ðwo; JoÞ is assumed known and non-

degenerate.
� Both unperturbed and perturbed Hamiltonians depend only on the corresponding

action variables: Ho ¼ HoðJoÞ and H ¼ HðJÞ, and

� The perturbed coordinates are periodic in both thewko andwk, with fundamental period 1.

As in the one-DOF case, we are seeking the perturbative solution of the new HJ

equation

Hðwo; JoÞ ¼ Hðwo; @G=@woÞ ¼ EðJÞ; ð8:16:6eÞ
where G ¼ Gðwo; JÞ is the generating function of the canonical transformation

ðwo; JoÞ ! ðw; JÞ: Jko ¼ @Gðwo; JÞ=@wko; wk ¼ @Gðwo; JÞ=@Jk: ð8:16:6fÞ
Expanding H;E, and G in "-powers, we obtain

Hðwo; JoÞ ¼ HoðJoÞ þ "H1ðwo; JoÞ þ "2H2ðwo; JoÞ þ � � �
¼ Hoð@G=@woÞ þ "H1ðwo; @G=@woÞ þ "2H2ðwo; @G=@woÞ þ � � � ; ð8:16:7aÞ

EðJ; "Þ ¼ EoðJÞ þ "E1ðJÞ þ "2E1ðJÞ þ � � � ; ð8:16:7bÞ
Gðwo; JÞ ¼ Goðwo; JÞ þ "G1ðwo; JÞ þ "2G2ðwo; JÞ þ � � �

¼
X

wkoJk þ "G1ðwo; JÞ þ "2G2ðwo; JÞ þ � � � : ð8:16:7cÞ

Then, (8.16.6f ) become

Jko ¼ Jk þ "ð@G1=@wkoÞ þ "2ð@G2=@wkoÞ þ � � � ; ð8:16:8aÞ
wk ¼ wko þ "ð@G1=@JkÞ þ "2ð@G2=@JkÞ þ � � � ; ð8:16:8bÞ

and this allows us to rewrite (8.16.7a) to the second order as follows:

Hðwo; JoÞ ¼ Ho

�
J þ "ð@G1=@woÞ þ "2ð@G2=@woÞ

�
þ "H1ðwo; J þ � � �Þ þ "2H2ðwo; J þ � � �Þ

¼ HoðJÞ þ
X �

"ð@G1=@wkoÞ þ "2ð@G2=@wkoÞ
�ð@Ho=@JkÞ

þ ð1=2Þ
XX

ð@2Ho=@Jk @JlÞ
�
"ð@G1=@wkoÞ

��
"ð@G1=@wloÞ

�
þ "H1ðwo; JÞ þ "2

X
ð@G1=@wkoÞð@H1=@JkÞ þ "2H2ðwo; JÞ;

ð8:16:8cÞ
where, as in (8.16.5a),

@Ho=@Jk � ½@HoðJoÞ=@Jko�Jo¼J ¼ @=@Jk ½HoðJoÞjJo¼J �; ð8:16:8dÞ

and similarly for the other H-derivatives.

Next, inserting the power series (8.16.8c, 7b) into (8.16.6e), and equating coeffi-

cients of like powers of ", while noting that [recall (8.16.5a)]

@Ho=@Jk ¼ �koðJÞ ½) @�ko=@Jl ¼ @�lo=@Jk�; ð8:16:9aÞ
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we obtain the following group of differential equations:

"0: HoðJÞ ¼ EoðJÞ; ð8:16:9bÞ
"1 � ": H1ðwo; JÞ þ

X
�koð@G1=@wkoÞ ¼ E1ðJÞ; ð8:16:9cÞ

"2: K2ðwo; JÞ þ
X

�koð@G2=@wkoÞ ¼ E2ðJÞ; ð8:16:9dÞ
where

K2ðwo; JÞ � H2ðwo; JÞ þ
X
ð@G1=@wkoÞð@H1=@JkÞ

þ ð1=2Þ
XX

ð@2Ho=@Jk@JlÞð@G1=@wkoÞð@G1=@wloÞ:
ð8:16:9eÞ

Next, as in the 1-DOF case, it can be shown that all Gp’s in (8.16.7c) are periodic in

the wko’s; that is,

Gpðwo; JÞ ¼
X

gp;sðJÞ expð2�i s �woÞ; ð8:16:10aÞ

where p ¼ 1; 2; . . . ; s � ðs1; . . . ; snÞ ¼ integers ranging from �1 to þ1, wo � ðw1o;
. . . ;wnoÞ � wo, and so their wo-derivatives @Gp=@wko contain no constant terms;
that is, s 6¼ ð0; . . . ; 0Þ. Therefore, averaging (8.16.9b–e) over a complete unperturbed

period wo — that is, over the unit wo-cube (}8.14), since h@Gp=@wkoi ¼ 0 and the last/

double sum group of terms in (8.16.9e) is periodic in the wo’s (the @2Ho=@Jk@Jl
depend only on the J’s) — we obtain

HoðJÞ ¼ EoðJÞ; ð8:16:10bÞ
hH1ðwo; JÞi ¼ E1ðJÞ; ð8:16:10cÞ

hK2ðwo; JÞi ¼ H2ðwo; JÞ þ
X
ð@G1=@wkoÞð@H1=@JkÞ

D E
¼ E2ðJÞ; ð8:16:10dÞ

that is, to the second order, the energy is

E ¼ Ho þ hH1i þ
D
H2 þ

X
ð@G1=@wkoÞð@H1=@JkÞ

E
: ð8:16:10eÞ

Due to the above [and recalling (8.16.5j)], we can rewrite the perturbation equations

(8.16.9c, d), respectively, asX
�koð@G1=@wkoÞ ¼ �½H1ðwo; JÞ � hH1ðwo; JÞi� � �DH1ðwo; JÞ; ð8:16:11aÞX
�koð@G2=@wkoÞ ¼ �½K2ðwo; JÞ � hK2ðwo; JÞi� � �DK2ðwo; JÞ; ð8:16:11bÞ

and, from these, G1;G2 can be determined (see below). Then, equations (8.16.8a, b)

yield the new action–angle variables, correct to second order.

The above show that (i) knowledge of K2 ð! hK2i ¼ E2Þ requires knowledge of

G1; then G2 can be calculated; and (ii) in a one-DOF system, both G1 and G2 can be

found by direct quadrature:

@G1=@wo ¼ ð1=�oÞðhH1i �H1Þ ¼ known function of wo and J; ð8:16:11cÞ
@G2=@wo ¼ ð1=�oÞðhK2i � K2Þ ¼ known function of wo and J; ð8:16:11dÞ

and can be easily extended to higher "-orders.
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Finally, by (8.16.10b–d), the perturbed frequencies equal, to the second order,

�k ¼ @E=@Jk ¼ @Eo=@Jk þ "ð@E1=@JkÞ þ "2ð@E2=@JkÞ
� �ko þ "ð@hH1i=@JkÞ þ "2ð@hK2i=@JkÞ; ð8:16:11eÞ

in agreement with (8.16.5h).

[For the extension of this perturbation scheme to the (p)th order; that is, the

differential equation that results by equating the coefficients of "p in (8.16.6e), see

Born (1927, p. 254 ff.); also prob. 8.16.3. It is not hard to see that finding Ep requires

knowledge of Gp�1; then Gp can be calculated.]

Small Divisors

Now, let us resume the calculation of G1;G2. To express the (unknown) Fourier

coefficients of the left sides of (8.16.11a, b) in terms of the (known) Fourier coeffi-

cients of their right sides, we proceed as follows. The right side of (8.16.11a) is a

known periodic function of the wo’s without constant term, and so we can write

�DH1ðwo; JÞ ¼ �
X 0

h1;sðJÞ expð2�i s �woÞ: ð8:16:12aÞ

Similarly, by (8.16.10a) with p ¼ 1, we have

G1ðwo; JÞ ¼
X

g1;sðJÞ expð2�i s �woÞ; ð8:16:12bÞ

and therefore the left side of (8.16.11a) can be expressed asX
�koð@G1=@wkoÞ ¼

X 0 ½2�iðs � moÞg1;sðJÞ� expð2�i s �woÞ; ð8:16:12cÞ

where sk 6¼ 0 (i.e., no constant term) and s � mo �
P

sk�ko 6¼ 0 ðk ¼ 1; . . . ; nÞ.
Hence, equating coefficients of equal harmonics of (8.16.12a) and (8.16.12c), as

required by (8.16.11a), we immediately obtain the sought relations for the Fourier

coefficients:

g1;sðJÞ � g1ðs; JÞ ¼ �½2�iðs � moÞ��1h1;sðJÞ; ð8:16:12dÞ

and so, finally, (8.16.12b) becomes

G1ðwo; JÞ ¼ �
X 0 ½2�iðs � moÞ��1h1;sðJÞ expð2�i s �woÞ: ð8:16:12eÞ

Similarly, expanding both sides of (8.16.11b) à la Fourier, and equating coefficients,

we determine G2. This, as (8.16.9e) shows, requires knowledge of G1. Continuing in

this way, we can determine G3;G4; . . . , and hence G to any accuracy desired.

Now, it is not too hard to see that for the representation (8.16.12e) to be mean-

ingful, not only the unperturbed frequencies �ko should be nondegenerate (i.e.,P
sk �ko 6¼ 0; unless the coefficients h1; . . . obtained from all sets of integers that

cause degeneracies also vanish), but also, since by an appropriate choice of the

integers sk the sum
P

sk�ko may come arbitrarily close to zero (and, worse, such a

near-degeneracy situation may occur an infinite number of times, as the sk roam from

�1 to þ1), for all these very unpleasant reasons the amplitudes h1;s must converge
very rapidly. Hence, from a rigorous mathematical viewpoint, the series (8.16.12b, e)
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does not converge; and this inescapable fact casts serious reservations on the uncon-

ditional validity of the entire method of canonical perturbations.

REMARKS

(i) This is the Hamiltonian version of the famous problem of small divisors (or

resonant denominators), first recognized by Poincaré in his epoch-making researches

on the nonlinear ordinary differential equations of celestial mechanics [late 19th

century, culminating in his classic three-volume work: Les Méthodes Nouvelles de
la Mécanique Céleste (1890s)]; and on which, understandably, there exists an enor-

mous (astronomical size) literature!

Briefly, Poincaré has shown that the series (8.16.12b) is semiconvergent; that is, if
it is truncated (discontinued) after a certain finite number of terms, it represents the
motion of the perturbed system very accurately; not for long periods of time, but long
enough for many practical purposes. It is theoretical reasons like this that had made it

so difficult to prove the stability of our solar system; that is, to show that the mutual

distances among the planets and the sun remain bounded for infinitely long time

intervals. (And, of course, it should not be forgotten that a realistic stability inves-

tigation of this problem must include nonmechanical causes, such as electromagnetic

and thermal interactions.) Several decades later, it was shown that the situation is

not fatal: Kolmogorov (mid-1950s)/Arnold/Moser (early 1960s) (KAM theorem)

demonstrated that if the �ko are ‘‘very irrational,’’ then the series (8.16.12b) converges
for all time.

(ii) For in-depth analyses of these fundamental difficulties [for a long time viewed

as mathematically insuperable, but whose resolution in the 1960s led straight up to

the frontier of contemporary nonlinear dynamics (regular and stochastic, or chaotic,

motion) and the threshold with quantum mechanics], we can do no more than refer

the reader to the following excellent references: Dittrich and Reuter (1994, chaps.

H ¼ p2=2ml2 þmglð1� cos�Þ ¼ p2=2ml2 �mgl cos�þ constant ðaÞ
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Finally, we recall that our discussion of perturbation theory has been limited not

only to nondegenerate cases, but also to time-independent Hamiltonians. For classical

(pre-KAM) treatments of the effects of degeneracies and/or time-dependence, with

an eye toward their older quantum-mechanical applications, we recommend Born

(1927, pp. 261–286; best reference in English) and Fues (1927, pp. 161–177; compre-

hensive handbook exposition); also Birtwistle (1926, pp. 216–217) and Haar (1971,

pp. 160–162).

11–14: pp. 137–171), Lichtenberg and Lieberman (1992), McCauley (1997), Stoker (1950,
pp. 112–114, 235–239; elementary but enlightening introduction to the problem of small
divisors), Straumann (1987, chap. 10: pp. 259–307), Tabor (1989, chap. 3: pp. 89–117);
also Born (1927, pp. 255–256), and our Elementary Mechanics [under production, Part I

cians) may wish to consult (the not so readable) Arnold (1976, chap. 10: pp. 269–299,
appendix 8: pp. 405–423).]

Example 8.16.1 Weakly Nonlinear Planar Mathematical Pendulum; First-Order
Perturbation (Dittrich and Reuter, 1994, pp. 113–115). Let us consider a plane

mathematical pendulum of mass m and length l undergoing (free and undamped)

small but nonlinear angular oscillations �, under gravity, about a fixed point O.

Expanding its exact Hamiltonian

(20th cent.): an encyclopaedic summary]. Mathematically oriented readers (or mathemati-



in powers of �, and keeping only up to the first term after its quadratic ones, we find

H ¼ p2=2ml2 þ mgl
�ð�2=2Þ � ð�4=24Þ� � Ho þ "H1; ðbÞ

Ho � p2=2Aþ ðA!o
2=2Þ�2; "H1 � �ðA!o

2=24Þ�4; ðcÞ

where A � m l2 ¼ moment of inertia of pendulum bob about O; !o
2 � g=l ¼ circular

frequency (squared) of unperturbed ¼ linearized problem. We have already seen

(ex. 8.14.1) that the solution of the latter in action–angle variables is (with

m! A; q! �Þ

� ¼ ðJo=A�!oÞ1=2 sinð2�woÞ; p ¼ ðA!o Jo=�Þ1=2 cosð2�woÞ; ðdÞ

and so H, eq. (b), assumes the action–angle variable form

H ¼ ð!o=2�ÞJo � ð1=24ÞðJo2=A�2Þ sin4ð2�woÞ
¼ �oJo � ðJo2=24A�2Þ sin4ð2�woÞ ¼ Ho þ "H1: ðeÞ

Choosing as perturbation parameter " the square of the maximum angular ampli-

tude of the unperturbed problem �o
2, and applying (8.16.5e), we obtain

E1ðJÞ ¼ hH1ðwo; JÞi ¼ �ðJ2=24A�2�o
2Þhsin4ð2�woÞi; ðf Þ

or, since by simple trigonometry and calculus

sin4ð. . .Þ ¼ �½expði . . .Þ � expð�i . . .Þ�=2i�4

¼ � � � ¼ ð1=8Þ ½cosð4 . . .Þ � 6 cosð2 . . .Þ þ 3�

) hsin4ð2�woÞi ¼
ð1

0

sin4ð2�woÞ dwo ¼ � � � ¼ 3=8; ðgÞ

we get

E1ðJÞ ¼ �J2
�
64A�2�o

2: ðhÞ

Hence, by (8.16.5i), the first-order change of the fundamental frequency is

D� � � � �o ¼ "½@E1ðJÞ=@J� ¼ �J=32A�2 � �Jo=32A�2; ðiÞ

or, since

Jo ¼ ð2�=!oÞEo ¼ ð2�=!oÞTmax ¼ ð2�=!oÞðA!o
2�o

2=2Þ
¼ �A!o�o

2 ¼ 2�2A�o
2�o; ðjÞ

finally,

D� ¼ �ð�o2=16Þ�o; ðkÞ

which agrees with the first-order correction found by other means (e.g., Lur’e, 1968,

pp. 702–703) for a derivation based on integral variational calculus; see also

examples/problems in }7.9 of this book.

)8.16 CANONICAL PERTURBATION THEORY IN ACTION–ANGLE VARIABLES 1315



Example 8.16.2 One-DOF Nonlinear Oscillator; Second-Order Perturbation.
(Birtwistle, 1926, pp. 213–216; with co ¼ 0 and !! �Þ. Let us consider a one-

DOF oscillator, with mass m and unperturbed circular frequency !o ¼ 2��o, and

perturbed Hamiltonian, to second "-order:

H ¼ Ho þ "H1 þ "2H2; ðaÞ
where

Ho ¼ p2=2mþm!o
2q2=2; ða1Þ

H1 ¼ h1q
3; H2 ¼ h2 q

4 ðh1; h2: known physical constantsÞ: ða2Þ

We already know that the unperturbed solution is (ex. 8.14.1)

qo ¼ ðJo=�!o mÞ1=2 sinð2�woÞ; po ¼ ð!o m Jo=�Þ1=2 cosð2�woÞ; ðbÞ

and so the perturbed Hamiltonian H can be expressed in terms of the unperturbed

variables ðwo; JoÞ as follows:

Ho ¼ �oJo; ðc1Þ

H1 ¼ h1ðJo=�!o mÞ3=2 sin3ð2�woÞ; ðc2Þ

H2 ¼ h2ðJo=�!o mÞ2 sin4ð2�woÞ: ðc3Þ

Now, let us apply the perturbation equations (8.16.10b–11b):

(i) Since, here,

E1ðJÞ ¼ hH1ðwo; JÞi � hsin3ð2�woÞi ¼ � � � ¼ 0; ðd1Þ

we will have

@G1=@wo ¼ �ð1=�oÞH1ðwo; JÞ ¼ �ð1=�oÞDH1ðwo; JÞ
¼ �ðh1=�oÞðJ=�!o mÞ3=2 sin3ð2�woÞ; ðd2Þ

that is, the "-order perturbation does not change the energy ðE1 ¼ 0Þ, but does

change the action–angle variables ðG1 6¼ 0Þ.
(ii) To find the "2-order energy correction equation, we employ the equations

K2 þ �oð@G2=@woÞ
¼ H2 þ ð@G1=@woÞð@H1=@JÞ þ �oð@G2=@woÞ ¼ E2; ðe1Þ

hK2i ¼ hH2i þ hð@G1=@woÞð@H1=@JÞi ¼ E2: ðe2Þ

Using (c2, 3) and (d2) in (e2), and carrying out the indicated wo-averagings, we

obtain, after some algebra (since hsin4ð2�woÞi ¼ 3=8 and hsin6ð2�woÞi ¼ 5=16Þ,

E2 ¼ �ð15=4Þh1
2½J2=ð2�Þ6�o4m3� þ ð3=2Þh2½J2=ð2�Þ4�o2m2�: ðe3Þ
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Then, to the second order, the perturbed energy and frequency are, respectively,

EðJÞ ¼ Eo þ "E1 þ "2E2 ¼ �oJ þ "2E2 ¼ � � � ; ðe4Þ
�ðJÞ ¼ �o þ "ð@hH1i=@JÞ þ "2ð@hK2i=@JÞ

¼ �o þ "2ð@E2=@JÞ ¼ � � � ; ðe5Þ

and then set in them J ¼ Jo � "ð@G1=@woÞ ¼ � � � (see below). We notice the weak

dependence of the frequency on the amplitude.

(iii) To find the "-order effect on the motion— that is, on q— first we integrate

(d2), thus finding

G1 ¼ ½h1=ð2�Þ4�o� ð2J=�o mÞ3=2
�ð1=3Þ sin2ð2�woÞ cosð2�woÞ þ ð2=3Þ cosð2�woÞ

�
; ðf 1Þ

then, applying the old/new variable perturbation equations, we get

Jo ¼ J þ "ð@G1=@woÞ ¼ J � "ðh1=�oÞðJ=2�2�omÞ3=2 sin3ð2�woÞ; ðf 2Þ
w ¼ wo þ "ð@G1=@JÞ
¼ wo þ "½h1=ð2�Þ42J�o�ð2J=�omÞ3=2

�
sin3ð2�woÞ cosð2�woÞ þ 2 cosð2�woÞ

�
; ðf 3Þ

and, finally, solving (f3) for wo and substituting that result, and Jo from (f2), into the

unperturbed form of motion of the first of (b):

qo ¼ ðJo=�!omÞ1=2 sinð2�woÞ ¼ ðJo=2�2�omÞ1=2 sinð2�woÞ; ðf4Þ

we obtain

qo ! q ¼ qo þ "q1

¼ ðJ=2�2�omÞ1=2 sinð2�wÞ � "h1 ½J=ð2�Þ4�o3m2� ½3þ cosð4�wÞ�; ðf5Þ

that is, the nonlinearity ðh1Þ produces oscillatory overtones ð4�wÞ. These results agree

with those found by quadrature (since this is a one-DOF system) for h2 ¼ 0 (see, e.g.,

Born, 1927, pp. 66–70). Proceeding similarly, we may obtain the "2-order effect on

ðwo; JoÞ [after finding G2 from (e1)] and hence on q. The details are left to the reader

(for confirmation of those results, see, e.g., Haar, 1971, pp. 157–158).

Example 8.16.3 Two-DOF Nonlinear Oscillator; First-Order Perturbation. Let us

consider an oscillating system with perturbed Hamiltonian

Hðq; p; "Þ ¼ ð1=2Þðp1
2 þ p2

2Þ þ ð1=2Þðk1q1
2 þ k2q2

2Þ þ " k1k2q1
2q2

2

¼ Ho þ "H1; ðaÞ

where

Ho ¼ Hoðq; p; 0Þ ¼
X
ð1=2Þðpl2 þ kl ql

2Þ ðl ¼ 1; 2Þ; ða1Þ

H1 ¼ H1ðq; p; 0Þ ¼ k1k2q1
2q2

2; ða2Þ

)8.16 CANONICAL PERTURBATION THEORY IN ACTION–ANGLE VARIABLES 1317



that is, the unperturbed Hamiltonian represents two uncoupled harmonic oscillators,

each of unit mass and stiffness kl ð> 0Þ, and hence unperturbed circular frequency

(squared) !lo
2 ¼ kl . As we already know (exs. 8.14.1 and 8.14.6), the unperturbed

solutions are

qko ¼ ðJko=�!koÞ1=2 sinð2�wkoÞ; ðb1Þ
pko ¼ ð!ko Jko=�Þ1=2 cosð2�wkoÞ ðk ¼ 1; 2Þ; ðb2Þ

and so the perturbed Hamiltonian H, (a–a2), can be expressed in terms of the

unperturbed variables ðwo; JoÞ as follows:

Ho ¼ ð1=2�Þ
X

!ko Jk ¼
X

�koJk ¼ Eo; ðc1Þ
H1 ¼ ð1=�2Þ!1o !2o J1o J2o sin2ð2�w1oÞ sin2ð2�w2oÞ
¼ 4�1o �2o J1o J2o sin2ð2�w1oÞ sin2ð2�w2oÞ; ðc2Þ

where �lo ¼ !lo=2� ¼ unperturbed frequencies. Hence, the first-order energy correc-

tion yields

E1ðJÞ ¼
�
H1ðwo; JÞ

� � ð1

0

ð1

0

H1ðw1o;w2o; J1; J2Þ dw1o dw2o

¼ � � � ¼ ð1=4�2Þ!1o !2o J1J2 ¼ �1o �2o J1J2; ðd1Þ
) EðJÞ ¼ EoðJÞ þ "E1ðJÞ ¼ �o1J1 þ �o2 J2 þ " �1o �2o J1J2; ðd2Þ

(w-integration limits from 0 to 1) and so, to the same accuracy, the perturbed

frequencies are (whether the system is degenerate or not)

�1 ¼ @E=@J1 ¼ �1o þ " �1o �2oJ2; ðd3Þ
�2 ¼ @E=@J2 ¼ �2o þ " �1o �2oJ1; ðd4Þ

and these show clearly the coupling of the two oscillators and the effect of the

amplitudes (initial conditions) on the frequencies.

Next, to express the perturbed coordinates and momenta in terms of the new

action–angle variables ðw; JÞ, we must calculate G1:

(i) On one hand, in view of (c2), (d1), we have�
H1ðwo; JÞ

��H1ðwo; JÞ � �DH1ðwo; JÞ
¼ �1o �2o J1J2½1� 4 sin2ð2�w1oÞ sin2ð2�w2oÞ�

� ð�1o �2o J1J2=4Þ
XX 0

h1;s exp½2�iðs1w1o þ s2w2oÞ� ðe1Þ

(where s � ðs1; s2Þ ¼ nonzero integers ranging from �1 to þ1); from which we

readily conclude that the sole nonvanishing Fourier coefficients of �DH1,

h1;... � h1; ...;..., are

h1; 2;2 ¼ h1; 2;�2 ¼ h1;�2;2 ¼ h1;�2;�2 ¼ �1; ðe2Þ
h1; 2;0 ¼ h1; 0;2 ¼ h1; 0;�2 ¼ h1;�2;0 ¼ 2: ðe3Þ
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(ii) On the other hand, recalling (8.16.12b, c), we can write

G1ðwo; JÞ ¼
X

g1;sðJÞ expð2�is �woÞ;

)
X 0

�koð@G1=@wkoÞ

¼
XX 0 �ð2�iÞ ðs1�1o þ s2�2oÞ

�
g1;s exp

�
2�iðs1w1o þ s2w2oÞ

�
: ðe4Þ

Hence, substituting these Fourier series into the first-order averaged equation

(8.16.11a):X 0
�koð@G1=@wkoÞ ¼

�
H1ðwo; JÞ

��H1ðwo; JÞ � �DH1ðwo; JÞ; ðe5Þ

and equating coefficients of like harmonics, we find [with h � �1o �2oJ1J2=4]

g1;... � g1; ...;... ¼
�
h=ð2�iÞðs1�1o þ s2�2oÞ

�
h1; ...;... :

g1; 0;2 ¼ �g1; 0;�2 ¼ ð2�i�2oÞ�1h; ðe6Þ
g1; 2;0 ¼ �g1;�2;0 ¼ ð2�i�1oÞ�1h; ðe7Þ
g1; 2;2 ¼ �g1;�2;�2 ¼ �½4�ið�1o þ �2oÞ��1h; ðe8Þ
g1; 2;�2 ¼ �g1;�2;2 ¼ �½4�ið�1o � �2oÞ��1h: ðe9Þ

Hence, to the first order, the generating function equals

G ¼
X

wkoJk þ ð"=4�ÞJ1J2

�
�2o sinð4�w1oÞ þ �1o sinð4�w2oÞ

� ½2�1o�2o=ð�1o þ �2oÞ� sin½4�ðw1o þ w2oÞ�
� ½2�1o�2o=ð�1o � �2oÞ� sin½4�ðw1o � w2oÞ�

�
; ðe10Þ

and from this the wk and Jk follow:

wk ¼ wko þ "ð@G=@JkÞ ) wko ¼ wk � " ð function of w and JÞ; ðf1Þ
Jko ¼ Jk þ "ð@G=@wkoÞ ) Jk ¼ Jko þ " ð function of w and JÞ ðf2Þ

(because, replacing wo with w in the "-terms causes an "2-error), where Jk ¼ constant
and wk ¼ �ktþ �k; and then inserting (f1, 2) into (b1, 2) yields the perturbed motion

qkðw; JÞ; pkðw; JÞ. The details are left to the reader.

REMARKS ON DEGENERACIES

As (e10) shows, if �1o ¼ �2o (degeneracy, or internal resonance), this approach

fails —G diverges; then we have to develop special methods. In view of (e2, 3,

6–9), other degeneracies do not seem to create problems; for example, that would

happen to the degeneracy �1o ¼ 2�2o [i.e., ð1Þ�1o þ ð�2Þ�2o ¼ 0� if h1; s;�2s 6¼ 0, for

some integer s. However, such difficulties may arise in the higher "-order terms; that

is, Gl ðl 	 2Þ; and for their full treatment, we recommend the earlier-given references

on small divisors.
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Problem 8.16.1 For a 1-DOF system, the earlier-given general n-DOF second-
order formalism specializes to

EoðJÞ ¼ HoðJÞ; ða1Þ
E1ðJÞ ¼ H1ðwo; JÞ þ �oðJÞ ð@G1=@woÞ ¼ H1ðwo; JÞ þ ð@Ho=@JÞ ð@G1=@woÞ; ða2Þ
E2ðJÞ ¼ H2ðwo; JÞ þ ð@H1=@JÞ ð@G1=@woÞ þ ð@Ho=@JÞ ð@G2=@woÞ

þ ð1=2Þð@2Ho=@J
2Þð@G1=@woÞ2: ða3Þ

We have already seen that since

h@G1=@woi �
ð1

0

ð@G1=@woÞ dwo ¼ 0; ðbÞ

eq. (a2) averages to

E1ðJÞ ¼ hH1i ) @G1=@wo ¼ ð1=�oÞ
	hH1i �H1


 ¼ �ð1=�oÞ DH1: ðcÞ

Show that:

(i) The second-order correction (a3) averages, similarly, to

E2ðJÞ ¼ hH2i þ
�ð@H1=@JÞð@G1=@woÞ

�þ ð1=2Þð@2Ho=@J
2Þ�ð@G1=@woÞ2

�
¼ hH2i þ ð1=�oÞ

�hð@H1=@JÞi hH1i � hð@H1=@JÞH1i
�

þ ð1=2�o2Þð@�o=@JÞ
�hH1

2i � hH1i2
�
; ðdÞ

and, therefore,

(ii)

@G2=@wo ¼ ð1=�oÞðE2 � K2Þ
¼ ð1=�oÞ

�
E2 �H2 � ð@H1=@JÞð@G1=@woÞ � ð1=2Þ ð@2Ho=@J

2Þð@G1=@woÞ2
�

¼ ð1=�oÞðhH2i �H2Þ
þ ð1=�o2Þ�h@H1=@JihH1i � hð@H1=@JÞH1Þi

� ð@H1=@JÞhH1i þ ð@H1=@JÞH1

�
þ ð1=2�o3Þð@�o=@JÞ

�hH1
2i � 2hH1i2 þ 2H1hH1i �H1

2
�
; ðeÞ

and, by integration, yields G2. Thus, ðw; JÞ can be expressed in terms of ðwo; JoÞ, and

so on.

(iii) Using the above, show that, to the second order, the perturbed energy equals

(with no need to calculate G first)

EðJÞ ¼ HoðJÞ þ "hH1i
þ "2

�hH2i þ ð1=�oÞ
�h@H1=@JihH1i � hð@H1=@JÞH1i

�
þ ð1=2�o2Þð@�o=@JÞ½hH1

2i � hH1i2�
�
; ðf Þ

and readily supplies the perturbed frequencies via � ¼ @E=@J ¼ � � �.
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Problem 8.16.2 (Dittrich and Reuter, 1994, pp. 112–113). Consider a nonlinear

mass–spring oscillator, of mass m and linearized circular frequency !o � ðk=mÞ1=2,
with perturbed Hamiltonian

H ¼ Ho þ "H1; ðaÞ
Ho � p2=2mþ ðm!o

2=2Þq2; H1 � ðm=6Þq6: ða1Þ

As shown in the preceding examples,

Ho ¼ �oJo ¼ ð!o=2�ÞJo; wo ¼ �otþ �o; ða2Þ
qo ¼ ðJo=�m!oÞ1=2 sinð2�woÞ; po ¼ ðm!o Jo=�Þ1=2 cosð2�woÞ: ða3Þ

(i) Show that

E1ðJÞ ¼ hH1i ¼ � � � ¼ ð5=16Þðm=6ÞðJ=�m!oÞ3: ðbÞ

(ii) Show that

D� � � � �o ¼ "ð5=64�2Þðqmax
4=�oÞ; ðcÞ

where qmax ¼ maximum amplitude of unperturbed (harmonic) oscillator.

HINTS

(i) Verify that

sin6ð. . .Þ � �� expði . . .Þ � expð�i . . .Þ��2i�6

¼ � � � ¼ �ð2=64Þ � cosð6 . . .Þ � 6 cosð4 . . .Þ þ 15 cosð2 . . .Þ � 10
�
; ðdÞ

(ii)

J ! Jo ¼ Eo=�o ¼ � � � ¼ �m!oqmax
2 ðexplainÞ: ðeÞ

Problem 8.16.3 (Born, 1927, pp. 254–255). Continuing the perturbation scheme

to the (p)th order in ":
(i) Show that, then,

ð@Ho=@JÞ ð@Gp=@woÞ ¼ EpðJÞ � Rpðwo; JÞ; ðaÞ

where Rpðwo; JÞ stands for a term involving only results of the preceding orders of

perturbation; that is, only up to those obtained in the ðp� 1Þth order, and is periodic

in the wo’s.

(ii) Verify that averaging (a) yields

EpðJÞ ¼
�
Rpðwo; JÞ

�
; ðbÞ

from which it follows that (with the usual notations)

@Gpðwo; JÞ=@wo ¼ �
	
1=�oðJÞ



DRpðwo; JÞ: ðcÞ
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Equation (c) is solved by expanding both sides in Fourier series and then equating

the same harmonic coefficients, thus expressing the unknown coefficients of the left

side in terms of the known coefficients of the right side.
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For additional related examples and problems, see, for example (alphabetically): Born
(1927, pp. 259–261), Frank (1935, pp. 203–209, 214–218), Meirovitch (1970, pp. 376–
377), Saletan and Cromer (1971, pp. 252–256), Straumann (1987, pp. 271–273).



Additional comparable and complementary lists, for further and deeper study, can be found in:

Leimanis (1965)—analytical rigid-body dynamics until the mid-1960s

Mikhailov and Parton (1990)—advanced topics in analytical mechanics and stability of
equilibrium/motion; complements and updates the list of Neimark and Fufaev

Neimark and Fufaev [1967 (1972)]—analytical mechanics, theory and applications;

includes most Soviet/Russian works until the early 1960s

Roberson and Schwertassek (1988)—multibody and computational dynamics; see also

Stäckel (1905)—elementary and intermediate theoretical dynamics until the early 1900s
Voss (1901)—principles of theoretical mechanics until 1900
Ziegler (1985)—geometrical methods in rigid-body mechanics

Abbreviations used below:

AIAA: American Institute of Aeronautics and Astronautics (U.S.)
PMM: Journal of Applied Mathematics and Mechanics (English translation from the

Russian)

Springer: Springer-Verlag
ZAMM: Zeitschrift für angewandte Mathematik und Mechanik (German)
ZAMP: Zeitschrift für angewandte Mathematik und Physik (Swiss)

For a steady supply of worthwhile material from the frontier of (classical) theoretical/analy-
tical dynamics, including archival papers, discussions, and book reviews, we recommend the
following journals:

American Journal of Physics
Applied Mathematics and Mechanics (English translation from the Chinese)

Archive of Applied Mechanics (German, formerly Ingenieur-Archiv)
International Journal of Non-Linear Mechanics (U.S.)
PMM
ZAMM

ZAMP

Also:

Journal of Applied Mechanics (ASME)
Journal of the Astronautical Sciences

Journal of Guidance, Control, and Dynamics (AIAA)
Nonlinear Dynamics

Archive for History of Exact Sciences
Centaurus (International Magazine of the History of Mathematics, Science, and

Technology; Munksgaard, Copenhagen)

Physics Today
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Köningl. Techn. Hochsch. (Royal Institute of Technology), Stockholm.

Alt, H. 1927. ‘‘Geometrie der Bewegungen,’’ pp. 178–232 in vol. 5 of Handbuch der Physik.
Berlin: Springer.

Altmann, S. L. 1986. Rotations, Quaternions, and Double Groups. Oxford, U.K.: Clarendon

Press.

Ames, J. S., and F. D. Murnaghan. 1929. Theoretical Mechanics, An Introduction to
Mathematical Physics. Boston, MA: Ginn (reprinted 1958 by Dover, New York).

Amirouche, F. M. L. 1992. Computational Methods in Multibody Dynamics. Englewood Cliffs,

NJ: Prentice Hall.

Andelic (Angelitch), T. P. 1954. ‘‘Ueber die Bewegung starrer Körper mit nichtholonomen

Bindungen in einer inkompressiblen Flüssigkeit,’’ pp. 314–316 in vol. 2 of Proc. Int. Congr.

Math. (Amsterdam, 1954). Groningen and Amsterdam, Holland: Noordhoff.

Angeles, J. 1988. Rational Kinematics. New York: Springer.
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David l’aı̂né, 1743 1st ed. (186 pp); 1758 2nd ed. (272 pp.); 1796 3rd ed. (identical to the

1332 REFERENCES AND SUGGESTED READING



2nd). (German translation in 1899. 1st ed. reprinted 1967 by ‘‘Culture et Civilisation,’’

Bruxelles; 2nd ed. reprinted 1921 by Gauthier-Villars, Paris, and 1968 by Johnson Reprint

Corporation, New York.)
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Destouches, J. L. 1948. Principes de la Mécanique Classique. Paris: Centre National de la

Recherche Scientifique.
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(1898, 1st ed.); vol. 4: Dynamik (1899, 1st ed.); vol. 6: Die wichtigsten Lehren der höheren
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of Encyklopädie der Mathematischen Wissenschaften. Leipzig: Teubner.

Hertz, H. 1899. The Principles of Mechanics, presented in new form. London: Macmillan

(original in German, 1894; English translation reprinted in paperback, 1956, by Dover,

New York).

Hestenes, D. 1986. New Foundations for Classical Mechanics. Dordrecht: Reidel-Kluwer.

Heun, K. 1901. ‘‘Die kinetischen Probleme der wissenschaftlichen Technik,’’ Jahresbericht der

Deutschen Mathematiker-Vereinigung, 9(2), 1–123.

Heun, K. 1902(a). ‘‘Die Bedeutung des D’Alembertschen Prinzipes für starre Systeme und

Gelenkmechanismen,’’ Archiv der Mathematik und Physik, Dritte Reihe, 2, 57–77 and 298–

326.

Heun, K. 1902(b). ‘‘Review of A. Foeppl’s book: Vorlesungen über Technische Mechanik,’’

Zeitschrift für Mathematik und Physik (Bücherschau), 47, 270–279.
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Heun, K. 1908. ‘‘Die Grundgleichungen der Kinetostatik der Körperketten mit Anwendungen

auf die Mechanik der Maschinen,’’ Zeitschrift für Mathematik und Physik, 56, 38–77.

Heun, K. 1914. ‘‘Ansätze und allgemeine Methoden der Systemmechanik,’’ art. 11, pp. 357–
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José, J. V., and E. J. Saletan. 1998. Classical Dynamics; A Contemporary Approach.

Cambridge, U.K.: Cambridge University Press.
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der Mathematischen Wissenschaften. Leipzig: Teubner (article completed in March 1903).

Junkins, J. L., and Y. Kim. 1993. Introduction to Dynamics and Control of Flexible Structures.

Washington, DC: AIAA Education Series.

Junkins, J. L., and M. D. Shuster. 1993. ‘‘The Geometry of the Euler Angles,’’ J. Astronautical
Sciences, 41, 531–543.

Junkins, J. L., and J. D. Turner. 1986. Optimal Spacecraft Rotational Maneuvers. Amsterdam:

Elsevier.

Kalaba, R. E., and F. E. Udwadia. 1994. ‘‘Lagrangian Mechanics, Gauss’s Principle,

Quadratic Programming, and Generalized Inverses: New Equations for Nonholon-

omically Constrained Discrete Mechanical Systems,’’ Quart. Appl. Mathematics, 52, 229–

241.

Kampen, N. G. van, and J. J. Lodder. 1984. ‘‘Constraints,’’ Am. J. Physics, 52, 419–424.

Kane, T. R. 1961. ‘‘Dynamics of Nonholonomic Systems,’’ J. Appl. Mechanics (ASME), 28,

574–578. [Discussion in 29, 606–607, 1962.]

Johnsen, L. 1939. “Calcul Symbolique des Pseudo-coordonées,” Arch. for Math. og

Jeffreys, H. 1954. “What is Hamilton’s Principle?” Quart. J. Mech. and Appl. Math., 7, 335–337.

Jungnickel, C., and R. Mc Cormmach. 1986. Intellectual Mastery of Nature, Theoretical Physics
from Ohm to Einstein, vol. 1: The Torch of Mathematics 1800-1870; vol. 2: The Now
Mighty Theoretical Physics 1870-1925. Chicago and London: University of Chicago Press.

Jeans, J. H. 1947. The Growth of Physical Science. Cambridge, U.K.: Cambridge University

Press.

Kalaba, R. E., and F. E. Udwadia. 1993. “Equations of Motion for Nonholonomic, Con-
strained Dynamical Systems via Gauss’s Principle,” J. Appl. Mechanics (ASME), 60, 662–668.
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Berechnung nichtlinearer Schwingungen,’’ ZAMM, 37, 471–485.

Magnus, K. 1970. ‘‘Der Einfluß verschiedener Kräftearten auf die Stabilität linearer Systeme,’’
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Richter, M. 1887. ‘‘Über die Bewegung eines Körpers auf einer horizontal-Ebene,’’ Inaugural

Dissertation (57 pages). Leipzig: Metzger and Wittig.
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Rumiantsev, V. V. 1975. ‘‘On the Compatibility of Two Basic Principles of Dynamics and on

Chetaev’s Principle,’’ pp. 258–267 in Problems of Analytical Mechanics, Theory of Stability
and Control (in Russian). Moscow: Nauka (Acad. Sci. U.S.S.R.).

Rumiantsev, V. V. 1976. ‘‘On the Motion of Controllable Mechanical Systems,’’ PMM, 40,

719–729 (original in Russian, 771–781).

Rumiantsev, V. V. 1978. ‘‘On Hamilton’s Principle for Nonholonomic Systems,’’ PMM, 42,

407–419 (original in Russian, 387–399).

Rumiantsev, V. V. 1979. ‘‘On the Lagrange and Jacobi Principles for Nonholonomic

Systems,’’ PMM, 43, 625–632 (original in Russian, 583–590).

Rumiantsev, V. V. 1981. ‘‘Certain Variational Principles of Mechanics,’’ pp. 36–52 in

Advances in Theoretical and Applied Mechanics, edited by A. Y. Ishlinsky and F. L.

Chernousko. Moscow: Mir (original in Russian, 1978).

Rumiantsev, V. V. 1982(a). ‘‘On Some Nonlinear Problems of Analytical Mechanics and

Theory of Stability,’’ pp. 869–881 in Nonlinear Phenomena in Mathematical Sciences, edited

by V. Lakshmikantham. New York: Academic Press.

1360 REFERENCES AND SUGGESTED READING

Rose, N. V. 1938. Lectures on Analytical Mechanics, part I (in Russian). Leningrad: Leningrad



Rumiantsev, V. V. 1982(b). ‘‘On Integral Principles for Nonholonomic Systems,’’ PMM, 46,

1–8 (original in Russian, 3–12).

Rumiantsev, V. V. 1983. ‘‘On Some Problems of Analytical Dynamics of Nonholonomic

Systems,’’ pp. 697–716 in vol. 2 of Proc. IUTAM–ISIMM Symp. Modern Developments
in Analytical Mechanics. Acad. Sc. Torino (June 1982).

Rumiantsev, V. V. 1984. ‘‘The Dynamics of Rheonomic Lagrangian Systems with

Constraints,’’ PMM, 48, 380–387 (original in Russian, 540–550).

Rumyantsev, V. V. 1990. ‘‘On the Principal Laws of Classical Mechanics,’’ pp. 257–273 in vol.

1 of General and Applied Mechanics of Mechanical Engineering and Applied Mechanics,

edited by V. Z. Parton. New York: Hemisphere Publishing.

Rumyantsev, V. V. 1994. ‘‘On the Poincaré–Chetayev Equations,’’ PMM, 58, 373–386
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Holonomes,’’ Math. Annalen, 91, 161–168. [Also in J. Math. Pures Appl., 4, 193–207, 1925.]
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Boltzmann, L., x, xv, xxiii, 11, 13, 247, 313,

316, 935, 1290,
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axiom (i.e., symmetry of stress tensor), 111
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Bouligand, G., 718, 724, 797

Bouquet, J. C., 269

Brach, R. M., 718
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Brill, A., 890, 911, 923, 924, 933
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960 ff.
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form of equations of motion, 1073 ff.,

1079

perturbations, 1151 ff.

transformation(s), 1161–1176

generalized, 1173

infinitesimal, 1188 ff.
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variables), 1071 ff.
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Capon, R. S., 962, 964, 988
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Carnot’s theorems on impulsive motion,

785 ff.
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Cartan, E., 299, 337, 1237
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Cauchy, A. L., 1071

Cauchy’s theorem (continuum kinematics),
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Cayley–Hamilton theorem, 82
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gravity/mass/centroid, 103 ff.
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of zero acceleration, 151 ff.

of zero velocity, 150 ff.

Central axis (of a screw displacement), 143,

148

Central equation (or principle, the

Zentralgleichung of

Lagrange–Heun–Hamel)

Hamiltonian form, 1073

integral forms, 968 ff.

Lagrangean form, 461 ff., 506–507,

832–833, 1219

Routhian form, 1089
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force, 128, 221–222
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potential, 616, 620, 625

Centripetal acceleration, 121

Centroid, 103–104

Chaplygin, S. A., 11, 497, 705

Chaplygin coefficients, 339, 824, 831
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Characteristics of vectors, 72

Charlier, C. V. L., 8, 1258
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Chen, G., 1034, 1039, 1041
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Chetaev, N. G., 12, 299, 553, 1067, 1079

Chirgwin, B. H., 785, 788, 1023, 1142

Chorlton, F., 228, 770, 772

Christoffel symbols

of first kind, 538 ff., 543 ff., 929

of second kind, 540 ff.
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Clifford, W. K., 279
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Coe, C. J., 13, 140, 155, 170, 176, 263, 283,

714, 911

Coefficient(s) of

Chaplygin, 339, 824, 831

friction, 238–239

Hamel, 313 ff., 321 ff., 342 ff., 824
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Voronets, 339, 824

Cole, J. D., 1303

Collision(s), elastic/inelastic, 725, 726,

734–736

Combination tones and overtones,

1288–1289

Commensurable (or commensurate)

frequencies, 1261, 1267 ff., 1271 ff.
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of tensors, 75 ff.

of vectors, 72 ff.

physical, 95 ff.

vs. projections (nonorthogonal axes),

598–602

Composition of (finite) rotations, 168 ff.
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canonicity of a transformation, 1164 ff.,

1180 ff.
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Jacobi (of sufficiency variational theory),

1058–1061

Legendre–Weierstrass (of sufficiency

variational theory), 1058–1059

Maurer–Appell–Chetaev–Johnsen–Hamel

(in nonlinear constraints), 820–821,

957 ff.
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1269 ff., 1287 ff.
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space, 291 ff.
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variational theory), 1058–1061
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energy, 522, 575 ff.
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momentum

angular, 107 ff.

generalized (i.e., system), 573 ff.

linear, 107
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gravitational, 1248

of the motion, 569

spring (i.e., stiffness), 440

Constitutive postulate, Lagrange’s principle

as, 388–393

Constrained motion, 244 ff.

Constraint reactions (forces and/or

moments), 382 ff.
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acatastatic/catastatic, 247, 249

addition/relaxation of, 273–275

bilateral (or equality, or reversible)/

unilateral (or inequality, or

irreversible), 248–249, 388, 410,

484 ff., 604

classifications of, 243

control (or servo-), 636–650

definitions of, 249

external/internal, 249

forces of (or reactions of), 382 ff.

geometrical interpretation of, 291 ff.,

331 ff.

holonomic (or finite, or geometric, or

integrable, or positional), 245

impulsive (Appellian classification),

724 ff.

inequality (or unilateral, or irreversible),

248, 388

linearly independent, 301 ff.

nonholonomic (or nonintegrable

motional), 246

nonideal, 397–398

nonlinear, 818 ff.

Pfaffian, 245, 257 ff., 262, 287–288, 294,

323 ff.

rheonomic (or nonstationary)/scleronomic

(or stationary), 247

second-order, 871

semiholonomic, 264

servo- (or control), 636–650

sudden rupture of, 726, 733

system forms of, 270 ff., 286 ff.

transitivity equations, 334 ff.

virtually workless, 386 ff.

Contact

of rigid bodies

kinematics, 153 ff.

kinetics, 237 ff.

transformation(s), 1190

Coordinate system vs. frame of reference

transformation, 87 ff.

Coordinates

Cartesian, 72

controllable (or macroscopic)/

uncontrollable (molecular), 1290 ff.

curvilinear, 271

cylindrical/spherical, 95 ff., 97 ff.

equilibrium (or adapted), 275

excess, 276

generalized (or curvilinear), 271 ff.

holonomic, 271 ff., 305 ff.

ignorable (or cyclic, or absent, or

kinosthenic, or speed), 1097 ff., 1199

inertial/noninertial, 272, 608 ff.
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304 ff.
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spherical, 95, 97

system, 270 ff., 272

Corben, H. C., xi, 14, 323, 446, 527, 537, 941,
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Coriolis

acceleration, 121

force, 128 ff.

Correction/deviation, nonholonomic, 402,

824, 838

transformation properties, 508 ff., 840 ff.

Cotton, E., 421

Coulomb–Morin law of friction, 238 ff., 384,

397, 425

Couple, gyroscopic, 621–622, 1111

Coupling/uncoupling

gyroscopic, 1105, 1124

inertial (or dynamical), 539

of penduli, 430 ff., 1280–1281

Crandall, S. H., xi, 13, 155, 218, 1076

Cromer, A. H., 8, 572, 1249, 1298, 1305,

1322
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principle), 930–933

radius of, 91 ff., 125 ff.

Cut principle (free-body diagrams),

392–393

Cyclic (or ignorable, or absent, or

kinosthenic, or speed) coordinates/

systems, 1097 ff.

Cylindrical coordinates, 95, 97

D
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D’Alembert, J. Le Rond, 4, 10

D’Alembert’s

force decomposition (‘‘ansatz’’), 384

principle, in Lagrange’s form, 386, 637

Damping, 519 ff.

forces (viscous), 519–520, 549–550

Darboux, G., 163

Darboux vector, 126

Davis, P. J., xiii, xiv

Deahna, H. W. F., 269

De Donder, T., 1294

Degeneracy, 1269 ff.

Degrees of freedom, global (geometrical)/

local (motional), 246, 264

Delassus, E., 12, 701

Delaunay, C., 385, 1258

Delaunay’s theorem on impulsive motion,

788 ff.

De la Vallée Poussin, Ch.-J., 269, 299

Delta of Kronecker, 73, 1248

Denman, H. H., 1043

Density of matter, 99

Derivative (or rate of change), absolute/

relative/transport, 114

Desloge, E. A., xi, 323, 713

Determinant, characteristic, 82

Determinism, 570 ff., 1188

Deviation/correction, nonholonomic, 402,

824, 838

Dextral basis, 73

Differential

form(s) (or Pfaffian)/equations, 257 ff.

integrability (or holonomicity) of, 257

ff., 265 ff., 268 ff., 334 ff., 343 ff.

variational principles, 875–933

Direct variational methods of Galerkin and

Ritz, 1034 ff.

Direction, cosines, 84, 178 ff.

Dirichlet, P. G. L., 1128, 1268

Disk (or coin, or ring, or hoop), rolling of,

235 ff., 351 ff., 359 ff., 590–591, 680 ff.,

986 ff.

Displacement(s)

actual, 278 ff.

classification of, 280 ff.

infinitesimal, 144 ff.

irreversible (or one-sided)/reversible (or

two-sided), 248, 388, 484 ff.

kinematically admissible (or possible),

280 ff.

of a particle, 278 ff.

of a rigid body, 138 ff., 140 ff., 155 ff.,

177 ff.

plane (or planar), 140–141

screw, 143, 147–148

vector, 155 ff., 177 ff.

virtual, �-operator, 280 ff., 290–291

Dissipation function, of Rayleigh, 519–520,

549–550

Dissipative forces, 519
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323, 382, 497, 529, 656, 855, 1198,
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Donkin, W. F., 1071, 1076
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Duffing’s equation, 945, 1030 ff., 1037 ff.,

1051 ff.

Dugas, R., 12, 231, 911, 1151

Duhamel’s superposition integral, 1064

Duhem, P. M. M., 626

Dühring, E., 12

Dyad (-ic, i.e., second-order/rank tensor),

75 ff.

Dyname (or torsor) of a vector system,

148

Dynamic (or inertial) coupling, 539

Dysthe, K. B., 443

E

Easthope, C. E., 13, 219, 718, 785, 1095

Ehrenfest, P., 705, 933, 1290,
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Einstein, A., xiv, xxiii, 7, 9, 88, 90, 817,

1015

Ellipsoid of inertia, or momental ellipsoid,

218 ff.

Elsgolts, L., 1006, 1056

Embedding/adjoining of constraints, 410 ff.,

425, 707

Energy

conservation of, 522

generalized, 521

in cyclic systems, 1105–1106

gyroscopic, 1124

in relative motion, 631, 1084

integral(s) of, 522, 524, 567 ff.

kinetic

of a rigid body, 582 ff., 585 ff.

of a system, 511 ff.

of acceleration (or Appellian), 403–405,

594–597

potential, 515 ff.

rate theorem, 520 ff., 938–939

relation to frequency (frequency rule),

1256 ff.

variation from a steady motion, 1119

Equality (or bilateral, or reversible)

constraints, 248, 348

Equation(s) of

Appell, 418, 493, 563 ff., 704 ff., 755, 837

Boltzmann, 704 ff.

central, 461 ff., 506–507, 832 ff., 1073,

1089, 1219

Chaplygin, 495–497, 845, 847, 907

generalized, 497–498

Chaplygin–Hadamard, 491 ff.

constitutive (in Lagrange’s principle),

383 ff.

Dolaptsiew, 886–887

Euler (gyro–equations), 230

Euler (impulse–momentum principles),

106 ff., 228 ff.

Ferrers, 702 ff.

geometrical interpretation, 427–428

Gibbs, 595

Greenwood, 704

Hadamard, 844

Hamel (or Lagrange–Euler), 419, 421 ff.,

503–505

Hadamard form of, 503

mixed Hamel–Voronets, 505–508

special, 503–505

Hamilton (canonical), 1073 ff.

Hamilton–Jacobi, 1193 ff.

impulse–momentum, 718–720

Jacobi (of sufficiency variational theory),

1057

Jacobi–Synge, 562–563

Johnsen (–Hamel), 833

Kelvin–Tait, 1103 ff.

Korteweg, 494

Lagrange, 418 ff.

explicit forms, 537–563

of first kind, 411 ff.

of second kind, 418 ff.

special forms, 486–510

Maggi, 418 ff., 752, 837

Mangeron–Deleanu, 886–887, 891–892,

897

Mathieu, 442 ff., 1068–1069

mixed, of Hamel–Voronets, 505–508

motion, 409 ff., 418 ff., 486 ff.

first integral(s), 567 ff.

integration and conservation theorems,

566 ff., 1249

Neumann, 497

Nielsen, 881, 894–895

perturbations (Hamiltonian), 1147 ff.

Poincaré, 1066

Quanjel, 495

1376 INDEX

1294, 1296



Routh, 1089

Routh–Voss (i.e., Lagrange’s equations

with multipliers), 419, 730, 836

special (Hamel), 503–505

Tzénoff, 885, 894 ff.

van der Pol–Krylov–Bogoliubov, 1050,

1242

variations

of Jacobi, 1057–1058

of Poincaré, 1066

Volterra, 419

Voronets, 498–500, 845

generalized, 501–503

work–energy rate, 520 ff.

Equilibrium, 387, 602–604

astatic, 604

Euclidean geometry/manifold(s)/space(s),

89–90, 269, 291 ff.

Euler, L., xviii, 4, 10, 102, 107

Euler–Lagrange

differential equation (of variational

calculus), 962, 1056, 1058

operator, 280, 311, 615

Eulerian

angles [precession, nutation, proper

(or eigen) spin], 192 ff.

equations (kinetic), 230

rigid-body formula, 144 ff.

Event/event space, 90, 293 ff.

Exactness conditions (of a Pfaffian form),

305

Extended configuration (or event, or film)

space(s), 293

External/internal forces, 102–103, 108–109,

384–385, 392

Extremal properties of Hamiltonian action,

1055–1062

F

Falk, G., 945

Ferrarese, G., 176, 333

Ferrers, N. M., 10, 11, 702 ff.

Fetter, A. L., 451

Finch, J. D., 704

Finite rotation, 155 ff.

as an eigenvalue problem, 167–168

composition of, 168 ff.

tensor, 161 ff.

‘‘vector(s)’’ (of Gibbs et al.), 156 ff.

Finzi, B., 935

First

integrals, 567 ff.

law of thermodynamics, 1296

Fischer, U., 323, 1041

Focus kinetic (in sufficiency variational

theory), 1058–1061

Fomin, S. V., 935, 960, 1006, 1056

Föppl, A., 3

Forbat, N., 1290

Force function, 522

Force(s)

apparent (i.e., frame-dependent, or

relative), 127 ff.

arguments of the, 101–102, 385–386

centrifugal, 128, 221–222

circulatory, 548

classification, 102–103, 382 ff., 548 ff.

constraint (reactions), 382 ff.

contact, 237 ff.

Coriolis, 128 ff.

damping (dissipative), 519–520, 549

elastic (potential), 548

equipollent/equivalent, 603, 709

external/internal (or mutual), 108, 384 ff.,

392

friction (Coulomb–Morin, i.e., solid/solid),

238–240, 384–385, 397, 425–426

generalized (i.e., system), 405 ff.

given (physically, or impressed), 382 ff.

gravitational, 103 ff., 1248

gyroscopic, 454, 517 ff., 549, 1104–1105

impressed (or physical, i.e., physically

given), 382 ff.

impulsive, 719–723

inertial, 128 ff.

internal (or mutual), 108, 384 ff.

Lagrangean (or system, or generalized),

405 ff.

in relative motion (of translation,

centrifugal, rotational, gyroscopic/

Coriolis), 615 ff., 618–619

lost (in Lagrange’s form of d’Alembert’s

principle), 386

momental (or associated), 400

motional, 548

of constraint (or constraint reactions),

382 ff.

passive/servoreactions, 382, 636 ff.

positional, 548

potential, 515 ff.

reactions (of constraint), 382 ff.

reduction of a system of, 148

system (or Lagrangean, or generalized),

405 ff.

Form/equation, linear (Pfaffian), differential,

257 ff., 265 ff., 287–288, 296 ff.
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Forsyth, A. R., 260, 266, 270, 299, 343

Fourier, J. B., 604

Fourier series, 1034, 1049, 1250, 1266–1267,

1269, 1288–1289

Fox, C., 1006, 1056

Fox, E. A., 1, 13, 71, 99, 170, 237, 242, 704,

960

Frame(s) of reference, 87 ff., 90

effect on

impulsive motion, 731–732

Routh–Voss equations, 451–452

inertial (or fixed, or Newtonian), 90

noninertial/rotating (or moving), 113 ff.,

622–634

Frank, P., 1004, 1072, 1127, 1129, 1180, 1198,

1287, 1322

Free-body diagram (Euler’s ‘‘cut principle’’),

392–393

Free vector, 72

Freedom, degrees of, 246, 264

French, A. P., 5

Frenet–Serret (or Serret–Frenet) formulae,

125 ff.

Frequency (-ies)

circular, 1250

combination tones and overtones, 1287 ff.

commensurable (or commensurate)/

noncommensurable (or

noncommensurate), 1261, 1267 ff.,

1271 ff.

relation to energy, 1256 ff.

rule, 1265 ff.

Friction (Coulomb–Morin, i.e., solid/solid),

238–240, 384–385, 397, 425–426

Frobenius, G., 298, 299

Frobenius

bilinear covariant, 297, 304–305

theorem, 298

geometrical interpretation of, 344–345

Hamel form of, 335 ff.

Fues, E., 14, 1072, 1198, 1287, 1301, 1314

Fufaev, N. A., viii, x, xi, 7, 12, 13, 14, 242,

255, 265, 315, 323, 382, 497 ff., 505,

688, 689, 714, 715, 817, 860, 865, 867,

904, 935

Function

conjugate (in Legendre’s transformation),

1076

dissipation (of Rayleigh), 519–520,

549–550

generating, 1164 ff.

Hamiltonian, 1074 ff.

Hamilton’s characteristic, 1222 ff.

Hamilton’s principal, 1218 ff.

Lagrangean (or kinetic potential), 516

Routhian (or modified Lagrangean), 1090

Funk, P., 214, 323, 960, 1056, 1249

G

Galilean

group/transformation, 104 ff., 1249

reference frame, 106

relativity/law of inertia, 104 ff., 455

Galileo, G., 10

Gallavotti, G., 458, 1263

Ganiev, R. F., 1063

Gantmacher, F. R., x, xi, 13, 248, 382, 390,

411, 512, 517, 553, 1021, 1023, 1072,

1076, 1095, 1128, 1129, 1141, 1237

Garfinkel, B., 1163, 1269

Garnier, B., 140

Gauss, C. F., xviii, 10, 11, 911, 923

Gauss’ principle of least constraint (or

compulsion), 877, 911–930

Gelfand, I. M., 935, 960, 1006, 1056

General variational equation of dynamics

(Lagrange’s principle), 386–387, 392,

409 ff., 418 ff.

Generalized (i.e., system)

accelerations

holonomic, 279

nonholonomic, 308, 310

coordinates (i.e., system or Lagrangean

coordinates, or positional

parameters), 271 ff.

energy integral, 522 ff.

forces, 406 ff.

impulsive, 723

impulse, 724

momentum

holonomic, 400

nonholonomic, 402

potential, 453 ff., 516 ff.

speeds, 715

velocities

holonomic, 279

nonholonomic, 304 ff.

Generating function/solution, 1048, 1063 ff.,

1164 ff., 1168

Geodesics, 932, 1001–1002

Geometric (or holonomic, or finite, or

integrable, or positional) constraint,

245

Geometrical object (Hamel coefficients, etc.),

322
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rotation), 156 ff.
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Given (i.e., physically given, or impressed)

forces, 382 ff.
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Goldsmith, W., 718
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Group(s), 164, 318, 1249

Grübler, M., 127, 140
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Gutowski, R., 323

Gyration, ellipsoid of, 219

Gyroscope, 373–374, 633–634; see also

Cardan suspension; Top

servo-gyroscope, 647–648

Gyroscopic

coefficients/terms, 540 ff., 549, 1104,

1122

couple, 621–622, 1111

coupling/uncoupling, 1105, 1124

energy, 1124

forces, 454

stability in the presence of, 549 ff.,

1122 ff.

systems, variational and virial theorems,

947–948
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689, 697, 709, 715, 718, 736, 817, 819,

825, 833, 834, 837, 849, 854, 926, 928,
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coefficients, 313 ff., 824

transformation properties of, 321–322,

342–343, 824, 848

equations of, 419 ff., 752, 833

transitivity equations of, 312 ff., 825 ff.

Hamel–Lagrange principle of relaxation of

the constraints (Befreiungsprinzip),
398–399, 469–486, 732–733

Hamilton, W. R., 10, 1071, 1219

Hamilton–Jacobi theory, 1192–1218
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action (functional), 991

extremal properties of, 1055–1062

central equation (i.e., in canonical

variables), 1073

function

holonomic, 1074 ff.

nonholonomic, 1079

mechanics, 1070

(or canonical) form of equations of

motion, 1073 ff.
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canonical equations of motion, 1073 ff.
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Hertz (of least curvature, or of straightest

path), 930–933

Hölder (of stationary action under

nonholonomic constraints), 981–982,

1006–1007

Jacobi (of stationary action, in ‘‘geodesic’’

form), 1224

Jourdain (differential variational),

781–782, 877 ff.

Lagrange (or Lagrange’s form of

d’Alembert’s principle), 386, 637,

835 ff.

in impulsive motion, 722 ff., 728

least action (MEL), 993 ff.

linear momentum, 107, 392

in impulsive motion, 722

Mangeron–Deleanu (generalization of

Lagrange’s principle), 877

Maupertuis–Euler–Lagrange (MEL),

993 ff., 1223

Rayleigh (in linear, undamped,

nongyroscopic vibrations), 1018 ff.

relaxation of the constraints (Hamel’s

Befreiungsprinzip), 398–399, 469 ff.

in impulsive motion, 732–733

rigidification, 392

Ritz (of combination of frequencies of

atomic spectra), 1274

Suslov, Voronets et al. (of stationary

action under nonholonomic

constraints), 974 ff., 977, 979,

981–982

varied (or varying) action, 937, 959, 992 ff.,

1222

virtual work(s) (in statics), 394–397, 604

Voss, 997

Whittaker, 1009 ff.

Principles of classical mechanics

(Newton–Euler), 106 ff.

Problem of

Lagrange, 961

Liouville–Stäckel, 578 ff., 1211–1212

N-bodies, 1248–1249

two-body, 1148

Product(s) of inertia, 216 ff.

Projection operator, 160

Projections vs. components of vectors

(nonorthogonal axes), 598–602
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Prange, G., x, xi, 12, 14, 242, 294, 323, 333,
382, 446, 505, 935, 1072, 1198, 1237

Power theorem(s)
in cyclic systems, 1105–1106
in relative motion, 129 ff., 635–636
for a rigid body, 231–232
mechanical, 520 ff., 549, 627, 635–636
thermal (first law of thermodynamics),



Proper (or intrinsic) Eulerian angle of

rotation (or eigen spin), 194–195 (fig.

1.26)

Przeborski, A., 837

Pure rolling, 153–154

Q

Quadratures, 571

Quanjel, J., 495

Quantum mechanics, 1273–1274

Quasi chain rule, 308 ff.

Quasi coordinates, 212 ff., 301 ff.

particle kinematics, 307 ff.

Quasi-linear system, 1028 ff., 1047 ff., 1063

ff., 1157 ff., 1240

Quasi- (or conditionally, or multiply)

periodic motion, 1260 ff., 1267–1268,

1269 ff., 1287 ff.

R

Radetsky, P., 713

Radius (-i) of curvature, 91 ff., 125 ff.

Raher, W., 778

Rajan, M., 1051

Ramsey, A. S., x, 233, 458, 766, 785, 791, 811,

904, 1023

Rasband, S. N., 265

Rational (or theoretical) mechanics, 5 ff.

Rayleigh, Lord (J. W. Strutt), 811, 813, 1017,

1021, 1082

Rayleigh

dissipation function, 519–520, 549–550

pendulum, 1016 ff.

principle, 1018 ff.

quotient, 1022 ff.

Reaction

forces (/moments) of constraints, 382 ff.

law of Action and, 108–109

Rectifying plane, 92 (fig. 1.1)

Reduced (cyclic) system, 1104

Reduction of a vector system (to a torsor),

148

Reeve, J. E., 101, 237, 248, 718, 778, 785, 811

Reference frame

astronomical, 90, 104 ff.

inertial (or fixed, or Newtonian), 104 ff.

noninertial (or moving), 113 ff.

rotating, 113 ff.

Relative

acceleration, 121

motion, 120 ff., 37

Lagrangean treatment, 533 ff., 606–636

velocity, 120

Relativity, principle of Galilean, 106, 455

Relaxation of constraints (Lagrange–Hamel

Befreiungsprinzip), 398–399, 469 ff.,

732–733

Renteln, M. von, 11

Resonance curve, 1038–1039

Restitution, coefficient of, 725, 726

Resultant of a vector system (torsor), 148

Reuter, M., 14, 1273, 1305, 1314, 1321

Rheonomic (or nonstationary)/scleronomic

(or stationary) constraints, 247

Richards, D., 1290, 1303

Richardson, D. L., 138

Riemannian manifold(s)/space(s), 269, 292

Rigid body

acceleration, 149

Appellian (or Gibbs–Appell) function,

594–597

collisions, 725 ff., 733 ff.

contact

kinematics, 153 ff.

kinetics (friction, etc.), 237 ff.

degrees of freedom, 139 ff.

displacement, 140 ff.

equations in matrix form, 233–234

equilibrium conditions, 602 ff.

Eulerian equations, 229 ff., 604–605

general displacement/motion, 177 ff.

geometry of motion/kinematics, 140 ff.

Hamel-type equations, 610 ff.

inertia tensor, 215 ff.

kinematico-inertial identities

Appellian, 594–597

Lagrangean–Eulerian, 581–594

kinematics, 140 ff.

kinetic energy, 214–215, 225 ff.

kinetics (Newton–Euler), 228 ff.

Lagrange-type equations, 614 ff.

momentum (linear/angular), 228 ff.

power theorem, 231–232

quasi coordinates, 212 ff.

transformation matrices/angular velocity

components, for all Eulerian angle

sequences, 205–212

transitivity equations, 212 ff., 368 ff.,

374 ff.

velocity, 144 ff.

virtual work, 597–606

Rimrott, F. P. J., 935

Roberson, R. E., viii, xiii, 14, 264, 265, 1323

Robin’s theorem on impulsive motion, 791 ff.
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Rodrigues

formula for finite rotation, 157 ff.

parameters, 156

vector, 157

Rolling, of a coin (or disk), 235 ff., 351 ff.,

359 ff., 680 ff., 986 ff.

Rose, N. V., x, 14, 323, 704

Roseau, M., 622

Rosenberg, R. M., ix, xi, 13, 129, 363, 386,

411, 689, 696, 724, 791, 972, 983, 1076

Rotating

reference frame, 113 ff., 622 ff.

ring, 1138–1140

shaft, 554–558

Rotation(s)

about a fixed axis (centrifugal forces/

moments), 221–222, 225

composition (or resultant) of, 168 ff.

finite, about a fixed point, 155 ff., 224–225

in periodic motion, 1252

infinitesimal (small), 171 ff.

instantaneous axis of, 144

matrix of, 161 ff.

successive, 168 ff., 182 ff.

tensor, 161 ff.

Rotational motion of a rigid body, 140 ff.,

155 ff.

Roth, B., 140

Routh, E. J., x, 10, 11, 233, 417, 495, 552,

548, 688, 704, 713, 715, 718, 814, 1012,

1056, 1057, 1087, 1095, 1114, 1122,

1127, 1237

Routh–Hurwitz criterion, 552 ff.

Routh–Voss equations (i.e., Lagrange’s

equations with multipliers), 419, 730,

836

for a rigid body, 605

Routhian

analytical structure of, 1093 ff.

matrix form of, 1096–1097

function (or modified Lagrangean),

1090 ff., 1098 ff.

identities, 1089–1090, 1092–1093

Routh’s

equations, 1089 ff.

method of ignoration of coordinates,

1087 ff.

problems (in mechanical theory of heat),

1012

Roy, M., 659, 720, 724

Rule of Schieldrop–Nielsen, 882 ff.

Rumiantsev, V. V., 12, 372, 385, 975, 983,

988

Rund, H., 299, 935, 1189, 1237, 1246, 1249

Rusov, L., 892

Rutherford, D. E., 355

S

Saint-Germain, A. L. de, 403

Saletan, E. J., 8, 572, 1249, 1298, 1305, 1322

San, D., 855, 874

Santilli, R. M., 14, 1057

Scalar

invariants of a second-order tensor, 82

product, 73, 76 ff.

Schaefer, C., 715, 1294

Schaefer, H., xv, 323, 715, 882

Scheffler, H., 923

Schell, W., 439

Schering potential, 620

Schiehlen, W. O., 14, 714

Schieldrop, E., 883

Schild, A., 783

Schmutzer, E., 1249

Schönflies, A., 127, 140

Schouten, J. A., 246, 294, 306, 312, 317, 322,

323, 421, 505

Schräpel, H. D., 1044

Schwartz, B., xii, xxiii

Schwarzschild, K., 1258

Schwertassek, R., viii, xiii, 14, 264, 265, 1323

Scleronomic (/rheonomic) constraints, 247

Screw, axis/displacement/motion, 143, 147 ff.

Second variation of (Hamiltonian) action,

1056–1061

Secular (or characteristic) equation, 550,

1018, 1123, 1124

Segner, J., 222

Semenova, L. N., 868, 870

Separable system, 1197 ff.

Separation of variables/separability,

Hamilton–Jacobi equation, 1197 ff.

Serbo, V. G., 1305

Serret–Frenet (or Frenet–Serret) formulae,

125 ff.

Serrin, J., 470

Shabana, A. A., 14, 265

Shepley, L. C., 1303

Shuster, M. D., 155

Simonyi, K., 12, 1274

Simply (or singly) periodic motion, 1271 ff.,

1288 ff.

Skate (or knife, or narrow boat, or pizza

cutter, or razor blade, or sled)

problem, 345 ff., 650 ff., 889–890,

954 ff.
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Skew- (or anti-) symmetric tensor, 76 ff.

Sleeping top, 1112–1113

stability of, 1114–1115, 1141

Small

(or resonant) denominators (or divisors),

444, 1310, 1313–1314

oscillation(s) method, 545 ff.

Smart, E. H., x, 718, 766, 773, 785, 811, 813,

1023, 1114

Smilansky, U., 1056

Smith, C. E., 13

Sneddon, I. N., 263

Sokolnikoff, I. S., 269, 783

Sommerfeld, A., 8, 13, 264, 383, 911,

1262

Somoff, J., 279

Space

axioms, 89–90

configuration, 291 ff.

constrained, 293 ff.

Euclidean, 292

event, 293

extended, 293

homogeneous/isotropic, 89, 577

phase, 1071, 1074

Riemannian, 292

Speed, 91, 95

angular, 173

Sphere, 353 ff., 648 ff., 658 ff., 988 ff.

Spherical

coordinates, 95, 97

pendulum, 445 ff., 1083

Spiegel, M. R., vii, 13, 219, 633

Spin

proper (or intrinsic) Eulerian angle of

rotation (or eigen spin), 194–195

(fig. 1.26)

total, 634, 1108, 1118

Spring, linear/nonlinear, 440 ff., 1288

Stability

asymptotic (Lyapounov’s theorems),

550 ff., 1067, 1123 ff.

gyroscopic (in steady motion), 1122 ff.

integral criterion of, 1062–1069

linear(-ized)/nonlinear, 550 ff.

of steady motion, 447–448, 550 ff.,

1119–1142

of (steady precession, etc., of) top, 1109,

1114–1115, 1140 ff.

ordinary (or temporary, or dynamical) vs.

practical (or permanent, or secular),

1127 ff.

Stäckel, P., 7, 13, 225, 231, 385, 683, 791, 923,

1258

Stäckel

conditions, 1198

form of Hamiltonian, 1198

Stadler, W., xvii

Steady (or stationary)

motion, 548 ff., 1115 ff., 1122

stability of, 447 ff., 550 ff., 1119–1142

precession of top, 1118

stability of, 1140 ff.

Stehle, P., 14, 323, 446, 527, 537, 941, 1079

Stepanovskii, Yu. P., 14, 1018, 1290

Stephan, W., 323, 1041

Stieltjes integral, 101, 103

Stoker, J. J., 1053, 1314

Stoneking, C. E., 708

Straumann, N., 14, 1322

Struik, D. J., 13, 312

Stückler, B., xv, 242, 323, 368, 421

Sturm–Liouville form (of Jacobi’s

variational equation), 1058

Sturm’s theorem on impulsive motion,

788

Sudarshan, E. C. G., 1250

Suggestions to reader for background,

concurrent, and further reading,

13–14

Summary of formulae, notations, etc., 15–70

Summation convention (for Cartesian

vectors and tensors), 73

Superposition

integral (of Duhamel), 1064

of linear vibrations (theorem of Daniel

Bernoulli), 1022

Suslov, G. K., x, 11, 13, 341, 590, 718, 975

Symbol(s) of

Christoffel

of first kind, 538 ff., 543 ff., 929

of second kind, 540 ff.

Hamel (or coefficients of )

linear (Pfaffian), 313 ff., 321 ff., 342–343

nonlinear, 824

Symmetric, matrix/tensor, 76

Symplectic matrix, 1187

Synge, J. L., x, 6, 13, 14, 71, 72, 221, 242, 312,

317, 322, 333, 337, 382, 562, 775, 783,

1021, 1070, 1129

System

acatastatic/catastatic, 247, 249

closed/open, 572 ff.

conservative/nonconservative, 520 ff.

coordinates (or positional parameters),

271 ff.

holonomic/nonholonomic, 245

nonseparable, 1273
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System (cont.)

of Liouville, Stäckel et al., 578–580

quasi coordinates, 304 ff.

reduced (or apparent, or palpable, or

visible), 1102

rheonomic (or nonstationary)/scleronomic

(or stationary), 247

separable, 1197 ff., 1260 ff.

System of coordinates (orthogonal

curvilinear), 94 ff.

Szabó, I., 12, 101, 323, 440, 446, 621

T

Tabarrok, B., 935

Tabor, M., 14, 571, 1072, 1087, 1199, 1263,

1273, 1305, 1314

Tait, P. G., x, 10, 106, 271, 272, 381, 439, 539,

788, 1056, 1070, 1129, 1134, 1148 ff.

Tangent vector, to a curve, 91 ff. (fig. 1.1),

94–95, 125 ff.

Tarleton, F. A., 1013

Taylor’s theorem on impulsive motion,

790–791

Tchapligine, S. A., or Tchaplygine, S. A., see

Chaplygin, S. A.

Tetherball, 860 ff.

Tensor

algebra, 75 ff.

alternating (Levi–Civita "-symbol), 73

antisymmetric (or skew-symmetric), 76 ff.

Cartesian, 75

eigenvalues/eigenvectors of a, 81 ff.

notations, 87

orthogonal (proper), 84 ff.

active/passive interpretations of a, 178 ff.

symmetric, 76 ff.

transformation, 84 ff.

unit (or identity), 78

zero, 78

Tensor of

angular momentum, 234

angular velocity, 234

inertia, 215 ff.

moment, 234

(finite) rotation, 161 ff.

second order (or dyadic), Cartesian, 75 ff.

Test of canonicity of a transformation, 1164

ff., 1180 ff.

Theorem(s) of

Bertrand (and Delaunay), 788 ff.

Carnot, 785 ff.

Chasles (geometry of rigid motion), 143

cyclic power, 1105 ff.

Dirichlet, 1126, 1128, 1268

Ehrenfest, 1296

energy rate (or power), 520 ff., 670–674

in relative motion, 129 ff., 623, 627, 631,

635–636

equipartition, 941, 948, 1012, 1065

Euler (geometry of rigid motion), 141

extremum in impulsive motion, 784 ff., 794

Frobenius, 298 ff., 335 ff.

Gauss, 793 ff., 815 ff.

Hamilton–Jacobi, 1192–1218

Huygens–Steiner (generalized parallel axis

theorem), 217–218

Jacobi, 1193 ff.

Kelvin, 787–788

König, 225 ff. [eq. (1.17.3d)], 583

Lagrange–Jacobi, 941

Lagrange–Poisson, 1143 ff.

Liouville, 1211–1212, 1236

mechanical transformability, 1298

moving axes, 86–87, 113 ff.

Mozzi (rigid-body kinematics), 145 ff.

Noether, 1243–1250

Poisson–Jacobi, 1179–1180

Robin, 791 ff.

spectral decomposition (of second-order

tensors), 81 ff.

Stokes (–Kelvin), 1234, 1240

Taylor, 790–791

Vinti, 1268–1269, 1296–1297

virial, 939 ff.

work–energy in impulsive motion, 720

Thermodynamics, first law of, 1296

Thomas, R. B., Jr., 1043

Thomson, J. J., 7, 1018

Thomson, W. (Lord Kelvin), x, 7, 10, 106,

271, 272, 381, 439, 539, 635, 788, 1056,

1070, 1103, 1129, 1134

Time

absolute (and homogeneous), 89–90,

104 ff., 575

as canonical variable conjugate to energy,

1075–1076, 1165 ff.

as (n+1)th Lagrangean coordinate,

535–537

-dependent potential, 515 ff.

-derivative(s), 113 ff.

Timerding, H. E., 14, 140, 155

Timoshenko, S. P., 439, 440, 766

Tiolina, I. A., 12

Tomonaga, S.-I., 1018

Top (gyroscope)

Hamilton–Jacobi equation, 1204 ff.
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Hamiltonian and Routhian treatments,

1107 ff.

heavy symmetrical, 1107 ff.

sleeping, 1109, 1112–1113

stability of, 1109, 1114–1115, 1141

stability of, 1109

steady precession of, 1140–1142

Torsor (or dyname), of a vector system,

148

Toupin, R., 103, 192, 244, 269, 924

Trace, of a matrix, 77

Transformation

canonical, 1161 ff.

contact, 1190

coordinate (geometrical) vs. frame of

reference (kinematical/physical), 87 ff.

Galilean, 104 ff.

infinitesimal (canonical), 1188 ff.

Legendre, 1076–1077

matrices (all possible Eulerian sequences),

205–212

orthogonal, 83 ff.

orthonormal, 84

point, 116

proper orthogonal, 84

Transfer theorem for angular momentum,

109 ff.

Transitivity (or noncommutativity, or

transpositional) relations

for a rigid body, 368 ff., 374 ff.

linear (Pfaffian), 312 ff.

nonlinear, 825 ff.

Translation, of a body, 141, 143, 177 ff.

Transposed matrix, 77

Triple vector product, scalar/vector, 74

Truesdell, C. A., xiii, xiv, xviii, xxiii, 7, 13,

101, 103, 192, 242, 244, 269, 817, 924

Tsenov (or Tzénoff), I. V., 886

Turner, J. D., 14, 192

U

Udwadia, F. E., 714, 924

Unilateral (or inequality, or irreversible)/

bilateral (or equality, or reversible)

constraint(s), 248–249, 388, 410,

484 ff., 604

Uniqueness of Lagrangean, 452 ff., 1246 ff.

Unit

dyadic/matrix/tensor, 78

vector(s), binormal/normal/tangent, 91, 92

(fig. 1.1), 125 ff.

Unstable vs. stable, state of motion, 550 ff.

V

Vagner, V. V., 312, 313

Valeev, K. G., 1063

Variables, action–angle, 1254 ff.

Variation

admissible/possible/virtual, 280 ff.,

290–291, 936 ff.

contemporaneous (or vertical), 936 ff.

Lagrangean action, 1056 ff.

noncontemporaneous (or skew), 937–938,

991 ff.

of constants (or parameters), 1143–1161,

1212 ff.

theorem of Lagrange–Poisson, 1143 ff.,

1145

of kinetic energy, 528–529, 937, 950, 959,

972 ff., 976 ff., 979 ff.

of potential energy/work, 515 ff.,

528–529

Variational

calculus and mechanics, 960 ff.

equations

of Jacobi, 1057 ff.

of Poincaré, 1066

methods in oscillations, 1034 ff.

principles

differential, 875–933

integral, 960 ff., 990, 1007, 1221 ff.

for cyclic systems, 1224–1225

theorems for gyroscopic systems, 947–948

Vector(s)

algebra, 72 ff.

axial/polar, 79 ff., 84 ff.

bound/free, etc., 72

cross (or vector) product of, 74

Darboux (of angular velocity of

Frenet–Serret triad), 126

dot (or scalar) product of, 73

of second-order (antisymmetric) tensor,

79 ff.

tensor product of, 74 ff.

unit, 72 ff.

Velocity

absolute/relative/transport, 120 ff.

angular, 114

-dependent (or generalized) potential,

453–454, 516 ff.

in orthogonal curvilinear coordinates,

94 ff.

in a rigid body, 144 ff.

in system variables

holonomic (or Lagrangean, or

generalized), 278 ff.
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Velocity (cont.)

nonholonomic (or quasi variables),

306 ff.

initial (in initial conditions), 566 ff.

instantaneous center of zero, 150 ff.

linear (of a particle), 91 ff.

relative (of a particle), 120

Vesselovskii, I. N., 12

Vibration pressure (in adiabatic pendulum),

1016

Vibrations (or oscillations)

about (absolute) equilibrium, 429 ff.

stationary/extremum properties via

Rayleigh’s principle, 1018 ff.

about steady motion (or relative

equilibrium), 548 ff., 1122 ff.

Vierkandt, A., 11

Vinti, J. P., 1268

Virial (of a force system), 939 ff.

Virtual

change of kinetic energy, 528–529, 937,

950, 959, 972 ff., 976 ff., 979 ff.

displacement

particle form, 280 ff., 290–291, 304,

821 ff.

system form, 708 ff., 820–821

velocity, 512

work(s), 386

in impulsive motion, 722, 723

of a force, 386 ff., 405 ff., 597 ff.

of a gyroscopic force, 518

of inertial forces, 399 ff.

principle of (in statics), 394–397, 604

Volkmann, P., 911

Volterra, V., 11, 313, 404, 419, 706 ff.

Voronets, P., 11, 974

Voronets coefficients, 339

Voss, A., 13, 413, 417, 704, 715, 972

Vranceanu, G., 312, 317, 322, 323, 333, 337

Vujanovic, B., 14, 924, 935, 1099, 1250

W

Walecka, J. D., 451

Walton, W., 416

Wang, C. C., 323

Wang, J. T., 882

Wassmuth, A., 923

Watson, H. W., 1057, 1085

Webster, A. G., x, 3, 232, 316, 385, 446, 689,

1090

Weinstein, B., 1085

Wells, D., 13, 228, 1142

Weyl, H., 101

Wheeler, L. P., 13

Whittaker, E. T., x, 6, 14, 305, 323, 408, 562,

570, 575, 578, 580, 713, 815, 928, 1057,

1072, 1114, 1173, 1189, 1212, 1236,

1263

Wiechert, E., 934

Williamson, B., 1013

Winkelmann, M., x, xv, 14, 72, 230, 232, 323,

590, 635, 689, 1072, 1073, 1095, 1127

Winner, L., x

Wintner, A., 8, 13, 1263

Wittenburg, J., 14

Woodhouse, N. M. J., xi, 411

Work

admissible/possible vs. virtual, 388 ff.

of forces, 388 ff.

rate of, 520 ff.

virtual, 386 ff., 405–409, 597 ff.

Woronetz, P., see Voronets, P.

Wrench (of a force system; or screw, of a

velocity field), 148

Y

Young, D. H., 439, 440, 766

Yushkov, M. P., xvii

Z

Zegzhda, S. A., xvii

Zhuravlev, V. F., 486

Ziegler, H., 426, 528, 558, 1129, 1130

Ziegler, R., 13
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