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Preface 
There are two mistakes one can make on the road to truth…not going all the way, and not 
starting. 

Buddha 

This is a book about a new way to solve an old set of problems that are persistent as 
well as fundamental, but not always well understood: How should you boot a com-
puter? What sits at the reset vector? What can the operating system count on when it 
is loaded and initially receives control? What should the internal structures be be-
tween these two endpoints? How can the same basic structure work for handhelds 
and megaservers? How do we convince ourselves today’s design will work 10 or 20 
years from now? How much will it cost to switch? How much will it cost steady 
state? What comes after BIOS (Basic Input/Output System)? 

Beyond BIOS is a book about a largely invisible subject. The general user, if they 
have any view of BIOS at all, tends to view it as ten unnecessary seconds on the way 
to booting the operating system or as setup. The community that knows and uses 
the BIOS has tended to view it as an uncontrolled place of kludge, myth, bug, and 
legend. The very small community of BIOS developers has viewed their code not 
only as highly mutable and embodying much of the compatibility that has made the 
PC and its offspring so successful, but also as their livelihood. 

This is a book that is about what comes after BIOS, which we call the Unified Ex-
tensible Firmware Interface (UEFI) and Platform Initialization (PI). In doing so, it 
must also be a book at least partly about what a BIOS or its replacement is called 
upon to do. It is not a cookbook on how to port the PI from platform to platform. It is 
not a rehash of the specifications. Instead, it tries to fit in the middle ground be-
tween specifications and cookbook. It tries to focus on the concepts and constructs 
that are cross-platform and implied, if not stated, by the architecture. It is supposed 
to help to get to some of the “why” behind the specs and make the porting work 
make some sense. 

This book is a child of its time. Both the UEFI and the PI are under the control of 
the UEFI Forum, an industry-wide group in which you are encouraged to partici-
pate. Beyond BIOS mainly focuses on the current state of the PI and UEFI since the 
2005 formation of the Forum, its working groups, and its sub-teams. This is not to 
say that this is only a history book or a simple summary of the standard. Instead, we 
believe it remains valuable as an introduction to the newer versions of the specifica-
tions no matter who “has the pen.” 

If you find this book to be useful, then we encourage you to obtain Harnessing the 
UEFI Shell: Moving the Platform beyond DOS by Rothman, Zimmer and Lewis,  De|G 
Press, February 2017. 
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The Chapters 

Chapter 1 provides a description of the evolution. 

The rest of the book is organized into two major sections. The earlier chapters pre-
sent an introduction to UEFI, and the later chapters cover the Platform Initialization. 

Chapter 2 provides an overview of the basic UEFI architecture. This is a must-read 
for anyone seeking an understanding of the Unified Extensible Firmware Interface 
(UEFI). 

Chapter 3 describes the UEFI driver model. This is important for vendors writing 
device drivers for output devices (such as video), input devices (such as keyboards 
or mice), networking adapters, and block devices. These drivers can be stored in the 
host-bus adapter, the platform ROM, or loaded from the UEFI system partition. 

Chapter 4 describes of series of commonly used UEFI protocols. This chapter com-
plements the earlier two chapters and includes data on additional boot services 
application interfaces. 

Chapter 5 includes information on the UEFI runtime operational environment. This 
chapter is important for operating system vendors who need to interact with the 
platform during the operating system execution. 

Chapter 6 describes UEFI input and output console services. This chapter provides 
details on the particular capabilities, interfaces, and relationships of the console 
services. 

Chapter 7 includes a list of different platforms and the Platform Initialization-based 
implementations. This chapter demonstrates the flexibility of the Platform Initializa-
tion by mapping the infrastructure to widely varying hardware platforms. 

Chapter 8 describes the basics of the Platform Initialization Driver Execution Envi-
ronment (DXE). This is important to read for anyone working on the phase of execu-
tion prior to UEFI service availability but after early pre-EFI initialization (PEI).  

Chapter 9 describes some common UEFI interfaces. This chapter includes infor-
mation on interfaces that are important for both UEFI and DXE development. 
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Chapter 10 describes UEFI and platform initialization issues around security and 
platform trust. This is important because beyond the basic UEFI and Platform Ini-
tialization specifications, which describe mechanism, further discussion is included 
on composition and construction of technology.  

Chapter 11 describes Boot Device Selection (BDS). This includes the policy by which 
Framework platforms decide look-and-feel, in addition to how to boot. 

Chapter 12 describes the various boot flows that can occur within a platform. These 
include power-event restarts, and so on. 

Chapter 13 describes the Pre-EFI Initialization environment. This is the phase of 
execution that occurs after reset and is responsible for the early hardware state and 
memory initialization. 

Chapter 14 includes information on emulation of a firmware environment within an 
operating system. 

Chapter 15 describes mechanisms and capabilities for reducing platform boot time. 
Since “visible” firmware is often broken firmware, decreasing time for a system 
restart is key. 

Chapter 16 describes the application of firmware for an embedded boot solution. 
The bulk of shipping systems are embedded computing environments, so the use of 
UEFI and Platform Initialization for this class of system is becoming more im-
portant. 

Chapter 17 includes details on manageability. The platform and firmware play a 
pivotal role in both bare-metal, OS-absent scenarios and also as a complement to OS 
runtime manageability usages. 

The Appendixes include source code data types and commonly-used interfaces. 
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Chapter 1 – Introduction 
The suddenness of the leap from hardware to software cannot but produce a period of anarchy 
and collapse, especially in the developed countries. 

—Marshall McLuhan 

This chapter provides an overview of the evolution of the Extensible Firmware Inter-
face (EFI) to the Unified Extensible Firmware Interface (UEFI) and from the Intel 
Framework specifications to the UEFI Platform Initialization (PI) specifications. Note 
the omission of the word “Framework” from the title of the present volume. Some of 
the changes that have occurred since the first edition of this book include the migra-
tion of much of the Intel Framework specification content into the five volumes of the 
UEFI Platform Initialization (PI) specifications, which are presently at revision 1.5 and 
can be found at the Web site www.uefi.org. In addition to the PI evolution from 
Framework, additional capabilities have evolved in both the PI building-block speci-
fications and in the UEFI specification. The UEFI specification itself has evolved to 
revision 2.6 in the time since the first edition of this text, as well. 

When we discuss UEFI, we need to emphasize that UEFI is a pure interface spec-
ification that does not dictate how the platform firmware is built; the “how” is rele-
gated to PI. The consumers of UEFI include but are not limited to operating system 
loaders, installers, adapter ROMs from boot devices, pre-OS diagnostics, utilities, and 
OS runtimes (for the small set of UEFI runtime services). In general, though, UEFI is 
about booting, or passing control to a successive layer of control, namely an operating 
system loader, as shown in Figure 1.1. UEFI offers many interesting capabilities and 
can exist as a limited runtime for some application set, in lieu of loading a full, shrink-
wrapped multi-address space operating system like Microsoft Windows†, Apple OS 
X†, HP-UX†, or Linux, but that is not the primary design goal.  
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Figure 1.1: Where EFI and UEFI Fit into the Platform Boot Flow 

PI, on the other hand, should be largely opaque to the pre-OS boot devices, operating 
systems, and their loaders since it covers many software aspects of platform construc-
tion that are irrelevant to those consumers. PI instead describes the phases of control 
from the platform reset and into the success phase of operation, including an envi-
ronment compatible with UEFI, as shown in Figure 1.2. In fact, the PI DXE component 
is the preferred UEFI core implementation.  

 

Figure 1.2: Where PI and Framework Fit into the Platform Boot Flow 
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Within the evolution of Framework to PI, some things were omitted from inclusion in 
the PI specifications. As a result of these omissions, some subjects that were dis-
cussed in the first edition of Beyond BIOS, such as the compatibility support module 
(CSM), have been removed from the second edition in order to provide space to de-
scribe the newer PI and UEFI capabilities. This omission is both from a scope perspec-
tive, namely that the PI specification didn’t want to codify or include the CSM, but 
also from a long-term perspective. Specifically, the CSM specification abstracted boot-
ing on a PC/AT system. This requires an x86 processor, PC/AT hardware complex (for 
example, 8254, 8259, RTC). The CSM also inherited other conventional BIOS boot lim-
itations, such as the 2.2-TB disk limit of Master Boot Record (MBR) partition tables. 
For a world of PI and UEFI, you get all of the x86 capabilities (IA-32 and x64, respec-
tively), ARM†, Itanium®, and future CPU bindings. Also, via the polled driver model 
design, UEFI APIs, and the PI DXE architectural protocols, the platform and compo-
nent hardware details are abstracted from all consumer software. Other minor omis-
sions also include data hub support. The latter has been replaced by purpose-built 
infrastructure to fill the role of data hub in Framework-based implementations, such 
as SMBIOS table creation and agents to log report status code actions. 

What has happened in PI beyond Framework, though, includes the addition of a 
multiprocessor protocol, Itanium E-SAL and MCA support, the above-listed report-
status code listener and SMBIOS protocol, an ACPI editing protocol, and an SIO pro-
tocol. With Framework collateral that moved to PI, a significant update was made to 
the System Management Mode (SMM) protocol and infrastructure to abstract out var-
ious CPU and chipset implementations from the more generic components. On the 
DXE front, small cleanup was added in consideration of UEFI 2.3 incompatibility. 
Some additions occurred in the PEI foundation for the latest evolution in buses, such 
as PCI Express†. In all of these cases, the revisions of the SMM, PEI, and DXE service 
tables were adjusted to ease migration of any SMM drivers, DXE drivers, and PEI mod-
ule (PEIM) sources to PI. In the case of the firmware file system and volumes, the 
headers were expanded to comprehend larger file and alternate file system encod-
ings, respectively. Unlike the case for SMM drivers, PEIMs, and DXE drivers, these 
present a new binary encoding that isn’t compatible with a pure Framework imple-
mentation.  

The notable aspect of the PI is the participation of the various members of the 
UEFI Forum, which will be described below. These participants represent the con-
sumers and producers of PI technology. The ultimate consumer of a PI component is 
the vendor shipping a system board, including multinational companies such as Ap-
ple, Dell, HP, IBM, Lenovo, and many others. The producers of PI components include 
generic infrastructure producers such as the independent BIOS vendors (IBVs) like 
AMI, Insyde, Phoenix, and others. And finally, the vendors producing chipsets, CPUs, 
and other hardware devices like AMD, ARM, and Intel would produce drivers for their 
respective hardware. The IBVs and the OEMs would use the silicon drivers, for exam-
ple. If it were not for this business-to-business transaction, the discoverable binary 
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interfaces and separate executable modules (such as PEIMs and DXE drivers) would 
not be of interest. This is especially true since publishing GUID-based APIs, marshal-
ling interfaces, discovering and dispatching code, and so on take some overhead in 
system board ROM storage and boot time. Given that there’s never enough ROM 
space, and also in light of the customer requirements for boot-time such as the need 
to be “instantly on,” this overhead must be balanced by the business value of PI mod-
ule enabling. If only one vendor had access to all of the source and intellectual prop-
erty to construct a platform, a statically bound implementation would be more effi-
cient, for example. But in the twenty-first century with the various hardware and 
software participants in the computing industry, software technology such as PI is 
key to getting business done in light of the ever-shrinking resource and time-to-mar-
ket constraints facing all of the UEFI forum members. 

There is a large body of Framework-based source-code implementations, such as 
those derived or dependent upon EDK I (EFI Developer Kit, which can be found on 
www.tianocore.org. These software artifacts can be recompiled into a UEFI 2.6, PI 1.5-
compliant core, such as UDK2015 (the UEFI Developer Kit revision 2015), via the EDK 
Compatibility Package (ECP). For new development, though, the recommendation is 
to build native PI 1.5, UEFI 2.6 modules in the UDK2015 since these are the specifica-
tions against which long-term silicon enabling and operating system support will oc-
cur, respectively. 

Terminology 

The following list provides a quick overview of some of the terms that may be encoun-
tered later in the book and have existed in the industry associated with the BIOS 
standardization efforts. 
■ UEFI Forum. The industry body, which produces UEFI, Platform Initialization 

(PI), and other specifications. 
■ UEFI Specification. The firmware-OS interface specification. 
■ EDK. The EFI Development Kit, an open sourced project that provides a basic im-

plementation of UEFI, Framework, and other industry standards. It, is not how-
ever, a complete BIOS solution. An example of this can be found at www.tiano-
core.org. 

■ UDK. The UEFI Development Kit is the second generation of the EDK (EDK II), which 
has added a variety of codebase related capabilities and enhancements. The inau-
gural UDK is UDK2015, with the number designating the instance of the release. 

■ Framework. A deprecated term for a set of specifications that define interfaces 
and how various platform components work together. What this term referred to 
is now effectively replaced by the PI specifications. 

■ Tiano. An obsolete codename for an Intel codebase that implemented the Frame-
work specifications.  
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Short History of EFI 

The Extensible Firmware interface (EFI) project was developed by Intel, with the ini-
tial specification released in 1999. At the time, it was designed as the means by which 
to boot Itanium-based systems. The original proposal for booting Itanium was the 
SAL (System Architectural Layer) SAL_PROC interface, with an encapsulation of the 
PC/AT BIOS registers as the arguments and parameters. Specifically, the means to 
access the disk in the SAL_PROC proposal was “SAL_PROC (0x13, 0x2, …)”, which is 
aligned with the PC/AT conventional BIOS call of “int13h.” 

Given the opportunity to clean up the boot interface, various proposals were pro-
vided. These included but were not limited to Open Firmware and Advanced RISC 
Computing (ARC). Ultimately, though, EFI prevailed and its architecture-neutral in-
terface was adopted. 

The initial EFI specification included both an Itanium and IA-32 binding. EFI 
evolved from the EFI 1.02 interface into EFI1.10 in 2001. EFI1.10 introduced the EFI 
Driver model.  

With the advent of 64-bit computing on IA-32 (for example, x64) and the indus-
try’s need to have a commonly owned specification, the UEFI 2.0 specification ap-
peared in 2005. UEFI 2.0 was largely the same as EFI 1.0, but also included the mod-
ular networking stack APIs for IPv4 and the x64 binding. 

In Figure 1.3 we illustrate the evolution of the BIOS from its legacy days through 2016. 

 

Figure 1.3: BIOS Evolution Timeline 
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EFI Becomes UEFI—The UEFI Forum 

Regarding the UEFI Forum, there are various aspects to how it manages both the UEFI 
and PI specifications. Specifically, the UEFI forum is responsible for creating the UEFI 
and PI specifications.  
When the UEFI Forum first formed, a variety of factors and steps were part of the cre-
ation process of the first specification:  
■ The UEFI forum stakeholders agree on EFI direction 
■ Industry commitment drives need for broader governance on specification 
■ Intel and Microsoft contribute seed material for updated specification 
■ EFI 1.10 components provide starting drafts 
■ Intel agrees to contribute EFI test suite 

As this had established the framework of the specification material that was pro-
duced, which the industry used, the forum itself was formed with several thoughts in 
mind:  
■ The UEFI Forum is established as a Washington non-profit Corporation 

– Develops, promotes and manages evolution of Unified EFI Specification 
– Continue to drive low barrier for adoption 

■ The Promoter members for the UEFI forum are: 
– AMD, AMI, Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, Microsoft, Phoenix 

■ The UEFI Forum has a form of tiered Membership:  
– Promoters, Contributors and Adopters 
– More information on the membership tiers can be found at: www.uefi.org  

■ The UEFI Forum has several work groups:  
– Figure 1.4 illustrates the basic makeup of the forum and the corresponding 

roles. 
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Figure 1.4: Forum group hierarchy 

■ Sub-teams are created in the main owning workgroup when a topic of sufficient 
depth requires a lot of discussion with interested parties or experts in a particular 
domain. These teams are collaborations amongst many companies who are re-
sponsible for addressing the topic in question and bringing back to the 
workgroup either a response or material for purposes of inclusion in the main 
working specification. Some examples of sub-teams that have been created are 
as follows as of this book publication: 
– UCST – UEFI Configuration Sub-team 

□ Chaired by Michael Rothman 
□ Responsible for all configuration related material and the team 

has been responsible for the creation of the UEFI configuration 
infrastructure commonly known as HII, which is in the UEFI 
Specification.  

– UNST – UEFI Networking Sub-team 
□ Chaired by Vincent Zimmer 
□ Responsible for all network related material. The team has been 

responsible for the update/inclusion of the network related ma-
terial in the UEFI specification, most notably the IPv6 network 
infrastructure. 
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– USHT – UEFI Shell Sub-team 
□ Chaired by Michael Rothman 
□ Responsible for all command shell related material. The team 

has been responsible for the creation of the UEFI Shell specifi-
cation and continue to maintain the contents as technology 
evolves. 

– USST – UEFI Security Sub-team 
□ Chaired by Vincent Zimmer 
□ Responsible for all security related material. The team has been 

responsible for the added security infrastructure in the UEFI 
specification.  

PIWG and USWG 

The Platform Initialization Working Group (PIWG) is the portion of the UEFI forum that 
defines the various specifications in the PI corpus. The UEFI Specification Working 
Group (USWG) is the group that evolves the main UEFI specification. Figure 1.5 illus-
trates the layers of the platform and what the scope that the USWG and PIWG cover. 

 

Figure 1.5: PI/UEFI layering 

Over time, these specifications have evolved. Below we enumerate the recent history 
of specifications and the work associated with each: 
■ UEFI 2.1 

– Roughly one year of Specification work 
□ Builds on UEFI 2.0 
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– New content area highlights: 
□ Human Interface Infrastructure 
□ Hardware Error Record Support 
□ Authenticated Variable Support 
□ Simple Text Input Extensions 
□ Absolute Pointer Support 

■ UEFI 2.2 
– Follow-on material from existing 2.1 content 

□ Backlog that needed more gestation time 

– Security/Integrity related enhancements 
□ Provide service interfaces for UEFI drivers that want to operate 

with high integrity implementations of UEFI 

– Human Interface Infrastructure enhancements 
□ Further enhancements pending to help interaction/configura-

tion of platforms with standards-based methodologies. 

– Networking 
□ IPv6, PXE+, IPsec 

– Various other subject areas possible 
– More boot devices, more authentication support, more networking updates, 

etc. 
■ UEFI 2.3 

– ARM binding  
– Firmware management protocol 

■ UEFI 2.4  
– Disk IO2 was added as symmetry to Block IO2 
– AIP Protocol (FCoE/Image/iSCSI) 
– Timestamp Protocol 
– RNG/Entropy Protocol 
– FMP delivery via capsule 
– Capsule on Disk 

■ UEFI 2.5  
– HASH2 Protocol 
– ESRT 
– Smart Card Reader 
– IPV6 for UNDI 
– Inline Cryptographic Interface Protocol 
– Persistent Memory Types 
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– PKCS7 Signature Verification Services 
– AArch64 
– NVMe Pass-through Protocol 
– HTTP Boot 
– Bluetooth Support 
– REST Protocol 
– Smartcard Edge Protocol 
– Regular Expression Protocol 
– x-UEFI Keyword Support 
– Transport Layer Security(TLS) support 

■ UEFI 2.6  
– SD/eMMC Pass-through Protocol 
– FontEx/Font Glyph Generator protocol 
– Wireless MAC Connection Protocol 
– RAM Disk Protocol 

 
To complement the layering picture in Figure 1.5, Figure 1.6 shows how the PI ele-
ments evolve into the UEFI. The left half of the diagram with SEC, PEI, and DXE are 
described by the PI specifications. BDS, UEFI+OS Loader handshake, and RT are the 
province of the UEFI specification. 

 

Figure 1.6: Where PI and Framework Fit into the Platform Boot Flow 

In addition, as time has elapsed, the specifications have evolved. Figure 1.7 is a time-
line for the specifications and the implementations associated with them. 
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Figure 1.7: Specification and Codebase Timeline 

Platform Trust/Security 

Recall that PI allowed for business-to-business engagements between component 
providers and system builders. UEFI, on the other hand, has a broader set of partici-
pants. These include the operating system vendors that built the OS installers and 
UEFI-based runtimes; BIOS vendors who provide UEFI implementations; platform 
manufacturers, such as multi-national corporations who ship UEFI-compliant 
boards; independent software vendors who create UEFI applications and diagnostics; 
independent hardware vendors who create drivers for their adapter cards; and plat-
form owners, whether a home PC user or corporate IT, who must administer the UEFI-
based system. 

PI differs from UEFI in the sense that the PI components are delivered under the 
authority of the platform manufacturer and are not typically extensible by third par-
ties. UEFI, on the other hand, has a mutable file system partition, boot variables, a 
driver load list, support of discoverable option ROMs in host-bus adapters (HBAs), 
and so on. As such, PI and UEFI offer different issues with respect to security. Chapter 
10 treats this topic in more detail, but in general, the security dimension of the respec-
tive domains include the following: PI must ensure that the PI elements are only up-
dateable by the platform manufacturer, recovery, and PI is a secure implementation 
of UEFI features, including security; UEFI provides infrastructure to authenticate the 
user, validate the source and integrity of UEFI executables, network authentication 
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and transport security, audit (including hardware-based measured boot), and admin-
istrative controls across UEFI policy objects, including write-protected UEFI varia-
bles.  

A fusion of these security elements in a PI implementation is shown in Figure 1.8. 

 

Figure 1.8: Trusted UEFI/PI stack 

Embedded Systems: The New Challenge 

As the UEFI took off and became pervasive, a new challenge has been taking shape 
in the form of the PC platform evolution to take on the embedded devices, more spe-
cifically the consumer electronic devices, with a completely different set of require-
ments driven by user experience factors like instant power-on for various embedded 
operating systems. Many of these operating systems required customized firmware 
with OS-specific firmware interfaces and did not fit well into the PC firmware eco-
system model. 
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The challenge now is to make the embedded platform firmware have similar ca-
pabilities to the traditional model such as the being OS-agnostic, being scalable 
across different platform hardware, and being able to lessen the development time to 
port and to leverage the UEFI standards. 

How the Boot Process Differs between a Normal Boot and an Optimized/Embedded 
Boot 

Figure 1.9 indicates that between the normal boot and an optimized boot, there are 
no design differences from a UEFI architecture point of view. Optimizing a platform’s 
performance does not mean that one has to violate any of the design specifications. It 
should also be noted that to comply with UEFI, one does not need to encompass all 
of the standard PC architecture, but instead the design can limit itself to the compo-
nents that are necessary for the initialization of the platform itself. Chapter 2 in the 
UEFI 2.6 specification does enumerate the various components and conditions that 
comprise UEFI compliance. 

SEC Phase

Pre-memory early initialization, microcode 
patching, and MTRR programming.

PEI Phase

Dispatches various PEI drivers.  Pre-memory early 
initialization, microcode patching, and MTRR programming.

Are we in an 
S3 Boot mode?

O/S Resume Vector

Yes

DXE + BDS Phase

Discover all drivers available to the platform.  
Dispatch all drivers encountered.

No

SEC Phase

Pre-memory early initialization, microcode 
patching, and MTRR programming.

PEI Phase

Dispatches only minimal PEI drivers.  
Pre-memory early initialization, microcode 

patching, and MTRR programming.

Are we in an 
S3 Boot mode?

O/S Resume Vector

Yes

DXE + BDS Phase

Discover the drivers available to the platform.  
Dispatch only the minimal drivers required to 

boot the target

No

Normal Boot Optimized Boot  

Figure 1.9: Architectural Boot Flow Comparison 
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Summary 

We have provided some rationale in this chapter for the changes from Beyond BIOS: 
Implementing the Unified Extensible Firmware Interface with Intel’s Framework to 
Beyond BIOS: Implementing UEFI – the Unified Extensible Firmware Interface. These 
elements include the industry members’ ownership and governance of the UEFI spec-
ification. Beyond this sea change, the chapter describes the migration of Framework 
to PI and the evolution of PI over the former Framework feature set. In addition, the 
section describes the evolution of UEFI to UEFI 2.6 from UEFI 2.0 matter in the first 
edition. Finally, some of the codebase technology to help realize implementations of 
this technology was discussed.  

So fasten your seatbelt and dive into a journey through industry standard firmware. 
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Chapter 2 – Basic UEFI Architecture 
I believe in standards. Everyone should have one. 

—George Morrow 

The Unified Extensible Firmware Interface (UEFI) describes a programmatic interface 
to the platform. The platform includes the motherboard, chipset, central processing 
unit (CPU), and other components. UEFI allows for pre-operating system (pre-OS) 
agents. Pre-OS agents are OS loaders, diagnostics, and other applications that the 
system needs for applications to execute and interoperate, including UEFI drivers and 
applications. UEFI represents a pure interface specification against which the drivers 
and applications interact, and this chapter highlights some of the architectural as-
pects of the interface. These architectural aspects include a set of objects and inter-
faces described by the UEFI Specification. 

The cornerstones for understanding UEFI applications and drivers are several UEFI 
concepts that are defined in the UEFI 2.6 Specification. Assuming you are new to UEFI, 
the following introduction explains a few of the key UEFI concepts in a helpful frame-
work to keep in mind as you study the specification: 
■ Objects managed by UEFI-based firmware - used to manage system state, includ-

ing I/O devices, memory, and events 
■ The UEFI System Table - the primary data structure with data information tables 

and function calls to interface with the systems 
■ Handle database and protocols - the means by which callable interfaces are reg-

istered 
■ UEFI images - the executable content format by which code is deployed 
■ Events - the means by which software can be signaled in response to some other 

activity 
■ Device paths - a data structure that describes the hardware location of an entity, 

such as the bus, spindle, partition, and file name of an UEFI image on a formatted 
disk. 

Objects Managed by UEFI-based Firmware 

Several different types of objects can be managed through the services provided by 
UEFI. Some UEFI drivers may need to access environment variables, but most do not. 
Rarely do UEFI drivers require the use of a monotonic counter, watchdog timer, or 
real-time clock. The UEFI System Table is the most important data structure, because 
it provides access to all UEFI-provided the services and to all the additional data 
structures that describe the configuration of the platform.  
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UEFI System Table 

The UEFI System Table is the most important data structure in UEFI. A pointer to the 
UEFI System Table is passed into each driver and application as part of its entry-point 
handoff. From this one data structure, an UEFI executable image can gain access to 
system configuration information and a rich collection of UEFI services that includes 
the following: 
■ UEFI Boot Services 
■ UEFI Runtime Services 
■ Protocol services 

The UEFI Boot Services and UEFI Runtime Services are accessed through the UEFI Boot 
Services Table and the UEFI Runtime Services Table, respectively. Both of these tables 
are data fields in the UEFI System Table. The number and type of services that each 
table makes available is fixed for each revision of the UEFI specification. The UEFI Boot 
Services and UEFI Runtime Services are defined in the UEFI 2.6 Specification.  

Protocol services are groups of related functions and data fields that are named 
by a Globally Unique Identifier (GUID), a 16-byte, statistically-unique entity defined 
in Appendix A of the UEFI 2.6 Specification. Typically, protocol services are used to 
provide software abstractions for devices such as consoles, disks, and networks, but 
they can be used to extend the number of generic services that are available in the 
platform. Protocols are the mechanism for extending the functionality of UEFI firm-
ware over time. The UEFI 2.6 Specification defines over 30 different protocols, and 
various implementations of UEFI firmware and UEFI drivers may produce additional 
protocols to extend the functionality of a platform.  

Handle Database 

The handle database is composed of objects called handles and protocols. Handles 
are a collection of one or more protocols, and protocols are data structures that are 
named by a GUID. The data structure for a protocol may be empty, may contain data 
fields, may contain services, or may contain both services and data fields. During 
UEFI initialization, the system firmware, UEFI drivers, and UEFI applications create 
handles and attach one or more protocols to the handles. Information in the handle 
database is global and can be accessed by any executable UEFI image. 
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The handle database is the central repository for the objects that are maintained by 
UEFI-based firmware. The handle database is a list of UEFI handles, and each UEFI 
handle is identified by a unique handle number that is maintained by the system firm-
ware. A handle number provides a database “key” to an entry in the handle database. 
Each entry in the handle database is a collection of one or more protocols. The types 
of protocols, named by a GUID, that are attached to an UEFI handle determine the 
handle type. An UEFI handle may represent components such as the following: 
■ Executable images such as UEFI drivers and UEFI applications 
■ Devices such as network controllers and hard drive partitions 
■ UEFI services such as UEFI Decompression and the EBC Virtual Machine 

Figure 2.1 below shows a portion of the handle database. In addition to the handles 
and protocols, a list of objects is associated with each protocol. This list is used to 
track which agents are consuming which protocols. This information is critical to the 
operation of UEFI drivers, because this information is what allows UEFI drivers to be 
safely loaded, started, stopped, and unloaded without any resource conflicts.  
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Agent HandleProtocol
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Controller Handle
Attributes

Agent Handle
Controller Handle
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Attributes
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Protocol
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Figure 2.1: Handle Database 
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Figure 2.2 shows the different types of handles that can be present in the handle da-
tabase and the relationships between the various handle types. All handles reside in 
the same handle database and the types of protocols that are associated with each 
handle differentiate the handle type. Like file system handles in an operating system 
context, the handles are unique for the session, but the values can be arbitrary. Also, 
like the handle returned from an fopen function in a C library, the value does not 
necessarily serve a useful purpose in a different process or during a subsequent re-
start in the same process. The handle is just a transitory value to manage state. 

Handles

Service
Handles

Controller Handles

Agent
Handles

Image
Handles

Driver
HandlesDriver Image

Handles

Physical 
Controller 
Handles

Virtual 
Controller 
Handles

 

Figure 2.2: Handle Types Handle 

Protocols 

The extensible nature of UEFI is built, to a large degree, around protocols. UEFI driv-
ers are sometimes confused with UEFI protocols. Although they are closely related, 
they are distinctly different. A UEFI driver is an executable UEFI image that installs a 
variety of protocols of various handles to accomplish its job. 

A UEFI protocol is a block of function pointers and data structures or APIs that 
have been defined by a specification. At a minimum, the specification must define a 
GUID. This number is the protocol’s real name; boot services like LocateProtocol uses 
this number to find his protocol in the handle database. The protocol often includes 
a set of procedures and/or data structures, called the protocol interface structure. The 
following code sequence is an example of a protocol definition. Notice how it defines 
two function definitions and one data field. 
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Sample GUID 
#define EFI_COMPONENT_NAME2_PROTOCOL_GUID \ 
{0x6a7a5cff, 0xe8d9, 0x4f70, 0xba, 0xda, 0x75, 0xab, 
0x30, 0x25, 0xce, 0x14} 

Protocol Interface Structure 
typedef struct _EFI_COMPONENT_NAME2_PROTOCOL { 
 EFI_COMPONENT_NAME_GET_DRIVER_NAME 
  GetDriverName; 
 EFI_COMPONENT_NAME_GET_CONTROLLER_NAME 
  GetControllerName; 
 CHAR8 
  *SupportedLanguages; 
} EFI_COMPONENT_NAME2_PROTOCOL; 
 
Figure 2.3 shows a single handle and protocol from the handle database that is pro-
duced by an UEFI driver. The protocol is composed of a GUID and a protocol interface 
structure. Many times, the UEFI driver that produces a protocol interface maintains 
additional private data fields. The protocol interface structure itself simply contains 
pointers to the protocol function. The protocol functions are actually contained 
within the UEFI driver. An UEFI driver might produce one protocol or many protocols 
depending on the driver’s complexity.  

Handle

GUID

First Handle

Protocol Interface

. . .

Function Pointer 1

Function Pointer 2

. . .

. . .

EFI Driver

GUID 1

Function 1

Function 2

. . .

GUID 2

. . .

. . .

Private Data

Access 
Device or 
Services 

Produced by 
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Figure 2.3: Construction of a Protocol 
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Not all protocols are defined in the UEFI 2.6 Specification. The EFI Developer Kit II 
(EDKII) includes many protocols that are not part of the UEFI 2.6 Specification. This 
project can be found at http://www.tianocore.org. These protocols provide the wider 
range of functionality that might be needed in any particular implementation, but 
they are not defined in the UEFI 2.6 Specification because they do not present an ex-
ternal interface that is required to support booting an OS or writing an UEFI driver. 
The creation of new protocols is how UEFI-based systems can be extended over time 
as new devices, buses, and technologies are introduced. For example, some protocols 
that are in the EDK II but not in the UEFI 2.6 Specification are:  
■ Varstore – interface to abstract storage of UEFI persistent binary objects 
■ ConIn – service to provide a character console input 
■ ConOut – service to provide a character console output 
■ StdErr – service to provide a character console output for error messaging 
■ PrimaryConIn – the console input with primary view 
■ VgaMiniPort – a service that provides Video Graphics Array output 
■ UsbAtapi – a service to abstract block access on USB bus 

The UEFI Application Toolkit also contains a number of UEFI protocols that may be 
found on some platforms, such as:  
■ PPP Daemon – Point-to-Point Protocol driver 
■ Ramdisk – file system instance on a Random Access Memory buffer 
■ TCP/IP – Transmission Control Protocol / Internet Protocol 
■ The Trusted Computing Group interface and platform specification, such as: 

– EFI TCG Protocol – interaction with a Trusted Platform Module (TPM). 

The OS loader and drivers should not depend on these types of protocols because they 
are not guaranteed to be present in every UEFI-compliant system. OS loaders and 
drivers should depend only on protocols that are defined in the UEFI 2.6 Specification 
and protocols that are required by platform design guides such as Design Implemen-
tation Guide for 64-bit Server. 

The extensible nature of UEFI allows the developers of each platform to design 
and add special protocols. Using these protocols, they can expand the capabilities of 
UEFI and provide access to proprietary devices and interfaces in congruity with the 
rest of the UEFI architecture. 

Because a protocol is “named” by a GUID, no other protocols should have that 
same identification number. Care must be taken when creating a new protocol to de-
fine a new GUID for it. UEFI fundamentally assumes that a specific GUID exposes a 
specific protocol interface. Cutting and pasting an existing GUID or hand-modifying 
an existing GUID creates the opportunity for a duplicate GUID to be introduced. A 
system containing a duplicate GUID inadvertently could find the new protocol and 
think that it is another protocol, crashing the system as a result. For these types of 
bugs, finding the root cause is also very difficult. The GUID allows for naming APIs 
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without having to worry about namespace collision. In systems such as PC/AT BIOS, 
services were added as an enumeration. For example, the venerable Int15h inter-
face would pass the service type in AX. Since no central repository or specification 
managed the evolution of Int15h services, several vendors defined similar service 
numbers, thus making interoperability with operating systems and pre-OS applica-
tions difficult. Through the judicious use of GUIDs to name APIs and an association 
to develop the specification, UEFI balances the need for API evolution with interop-
erability. 

Working with Protocols 

Any UEFI code can operate with protocols during boot time. However, after Exit-
BootServices() is called, the handle database is no longer available. Several 
UEFI boot time services work with UEFI protocols.  

Multiple Protocol Instances 

A handle may have many protocols attached to it. However, it may have only one 
protocol of each type. In other words, a handle may not have more than one instance 
of the exact same protocol. Otherwise, it would make requests for a particular proto-
col on a handle nondeterministic. 

However, drivers may create multiple instances of a particular protocol and at-
tach each instance to a different handle. The PCI I/O Protocol fits this scenario, where 
the PCI bus driver installs a PCI I/O Protocol instance for each PCI device. Each in-
stance of the PCI I/O Protocol is configured with data values that are unique to that 
PCI device, including the location and size of the UEFI Option ROM (OpROM) image. 

Also, each driver can install customized versions of the same protocol as long as 
they do not use the same handle. For example, each UEFI driver installs the Compo-
nent Name Protocol on its driver image handle, yet when the EFI_COMPO-
NENT_NAME2_PROTOCOL.GetDriverName() function is called, each handle 
returns the unique name of the driver that owns that image handle. The EFI_COM-
PONENT_NAME2_PROTOCOL.GetDriverName() function on the USB bus 
driver handle returns “USB bus driver” for the English language, but on the PXE 
driver handle it returns “PXE base code driver.” 

Tag GUID 

A protocol may be nothing more than a GUID. In such cases, the GUID is called a tag 
GUID. Such protocols can serve useful purposes such as marking a device handle as 
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special in some way or allowing other UEFI images to easily find the device handle by 
querying the system for the device handles with that protocol GUID attached. The ED-
KII uses the HOT_PLUG_DEVICE_GUID in this way to mark device handles that rep-
resent devices from a hot-plug bus such as USB. 

UEFI Images 

All UEFI images contain a PE/COFF header that defines the format of the executable 
code as required by the Microsoft Portable Executable and Common Object File Format 
Specification (Microsoft 2008). The target for this code can be an IA-32 processor, an 
Itanium® processor, x64, ARM, or a processor agnostic, generic EFI Byte Code (EBC). 
The header defines the processor type and the image type. Presently there are three 
processor types and the following three image types defined:  
■ UEFI applications – images that have their memory and state reclaimed upon 

exit. 
■ UEFI Boot Service drivers – images that have their memory and state preserved 

throughout the pre-operating system flow. Their memory is reclaimed upon in-
vocation of ExitBootServices() by the OS loader. 

■ UEFI Runtime drivers – images whose memory and state persist throughout the 
evolution of the machine. These images coexist with and can be invoked by an 
UEFI-aware operating system. 

The value of the UEFI Image format is that various parties can create binary executables 
that interoperate. For example, the operating system loader for Microsoft Windows† and 
Linux for an UEFI-aware OS build is simply an UEFI application. In addition, third par-
ties can create UEFI drivers to abstract their particular hardware, such as a networking 
interface host bus adapter (HBA) or other devices. UEFI images are loaded and relocated 
into memory with the Boot Service gBS->LoadImage(). Several supported storage 
locations for UEFI images are available, including the following: 
■ Expansion ROMs on a PCI card 
■ System ROM or system flash 
■ A media device such as a hard disk, floppy, CD-ROM, or DVD 
■ A LAN boot server 

In general, UEFI images are not compiled and linked at a specific address. Instead, 
the UEFI image contains relocation fix-ups so the UEFI image can be placed anywhere 
in system memory. The Boot Service gBS->LoadImage() does the following: 
■ Allocates memory for the image being loaded 
■ Automatically applies the relocation fix-ups to the image 
■ Creates a new image handle in the handle database, which installs an instance of 

the EFI_LOADED_IMAGE_PROTOCOL 

www.ebook3000.com

http://www.ebook3000.org


 UEFI Images | 23 

  

This instance of the EFI_LOADED_IMAGE_PROTOCOL contains information about 
the UEFI image that was loaded. Because this information is published in the handle 
database, it is available to all UEFI components. 
After an UEFI image is loaded with gBS->LoadImage(), it can be started with a 
call to gBS->StartImage(). The header for an UEFI image contains the address 
of the entry point that is called by gBS->StartImage(). The entry point always 
receives the following two parameters: 
■ The image handle of the UEFI image being started 
■ A pointer to the UEFI System Table 

These two items allow the UEFI image to do the following: 
■ Access all of the UEFI services that are available in the platform. 
■ Retrieve information about where the UEFI image was loaded from and where in 

memory the image was placed.  

The operations that the UEFI image performs in its entry point vary depending on the 
type of UEFI image. Figure 2.4 shows the various UEFI image types and the relation-
ships between the different levels of images. 
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Figure 2.4: Image Types and Their Relationship to One Another 
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Table 2.1: Description of Image Types 

Type of Image Description 

Application A UEFI image of type EFI_IMAGE_SUBSYSTEM_EFI_APPLICA-
TION. This image is executed and automatically unloaded when the image 
exits or returns from its entry point. 

OS loader A special type of application that normally does not return or exit. Instead, it 
calls the UEFI Boot Service gBS->ExitBootServices() to transfer 
control of the platform from the firmware to an operating system. 

Driver A UEFI image of type EFI_IMAGE_SUBSYSTEM_BOOT_SER-
VICE_DRIVER or EFI_IMAGE_SUBSYS-
TEM_RUNTIME_DRIVER. If this image returns EFI_SUCCESS, then 
the image is not unloaded. If the image returns an error code other than 
EFI_SUCCESS, then the image is automatically unloaded from system 
memory. The ability to stay resident in system memory is what differentiates a 
driver from an application. Because drivers can stay resident in memory, they 
can provide services to other drivers, applications, or an operating system. 
Only the services produced by runtime drivers are allowed to persist past 
gBS->ExitBootServices(). 

Service driver A driver that produces one or more protocols on one or more new service han-
dles and returns EFI_SUCESS from its entry point. 

Initializing driver A driver that does not create any handles and does not add any protocols to 
the handle database. Instead, this type of driver performs some initialization 
operations and returns an error code so the driver is unloaded from system 
memory. 

Root bridge driver A driver that creates one or more physical controller handles that contain a 
Device Path Protocol and a protocol that is a software abstraction for the I/O 
services provided by a root bus produced by a core chipset. The most common 
root bridge driver is one that creates handles for the PCI root bridges in the 
platform that support the Device Path Protocol and the PCI Root Bridge I/O 
Protocol. 

EFI 1.02 driver A driver that follows the EFI 1.02 Specification. This type of driver does not use 
the UEFI Driver Model. These types of drivers are not discussed in detail in this 
document. Instead, this document presents recommendations on converting 
EFI 1.02 drivers to drivers that follow the UEFI Driver Model. 

UEFI Driver Model 
driver 

A driver that follows the UEFI Driver Model that is described in detail in the 
UEFI 2.6 Specification. This type of driver is fundamentally different from ser-
vice drivers, initializing drivers, root bridge drivers, and EFI 1.02 drivers be-
cause a driver that follows the UEFI Driver Model is not allowed to touch hard-
ware or produce device-related services in the driver entry point. Instead, the 
driver entry point of a driver that follows the UEFI Driver Model is allowed only 
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Type of Image Description 

to register a set of services that allow the driver to be started and stopped at a 
later point in the system initialization process. 

Device driver A driver that follows the UEFI Driver Model. This type of driver produces one or 
more driver handles or driver image handles by installing one or more in-
stances of the Driver Binding Protocol into the handle database. This type of 
driver does not create any child handles when the Start() service of the 
Driver Binding Protocol is called. Instead, it only adds additional I/O protocols 
to existing controller handles. 

Bus driver A driver that follows the UEFI Driver Model. This type of driver produces one or 
more driver handles or driver image handles by installing one or more in-
stances of the Driver Binding Protocol in the handle database. This type of 
driver creates new child handles when the Start() service of the Driver 
Binding Protocol is called. It also adds I/O protocols to these newly created 
child handles. 

Hybrid driver A driver that follows the UEFI Driver Model and shares characteristics with 
both device drivers and bus drivers. This distinction means that the 
Start() service of the Driver Binding Protocol will add I/O protocols to ex-
isting handles and it will create child handles. 

Applications 

A UEFI application starts execution at its entry point, then continues execution until 
it reaches a return from its entry point or it calls the Exit() boot service function. 
When done, the image is unloaded from memory. Some examples of common UEFI 
applications include the UEFI shell, UEFI shell commands, flash utilities, and diag-
nostic utilities. It is perfectly acceptable to invoke UEFI applications from inside other 
UEFI applications. 

OS Loader 

A special type of UEFI application, called an OS boot loader, calls the Exit-
BootServices() function when the OS loader has set up enough of the OS infra-
structure to be ready to assume ownership of the system resources. At Exit-
BootServices(), the UEFI core frees all of its boot time services and drivers, 
leaving only the run-time services and drivers. 
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Drivers 

UEFI drivers differ from UEFI applications in that the driver stays resident in memory 
unless an error is returned from the driver’s entry point. The UEFI core firmware, the 
boot manager, or other UEFI applications may load drivers. 

EFI 1.02 Drivers 
Several types of UEFI drivers exist, having evolved with subsequent levels of the spec-
ification. In EFI 1.02, drivers were constructed without a defined driver model. The 
UEFI 2.6 Specification provides a driver model that replaces the way drivers were built 
in EFI 1.02 but that still maintains backward compatibility with EFI 1.02 drivers. 
EFI 1.02 immediately started the driver inside the entry point. Following this method 
meant that the driver searched immediately for supported devices, installed the nec-
essary I/O protocols, and started the timers that were needed to poll the devices. How-
ever, this method did not give the system control over the driver loading and connec-
tion policies, so the UEFI Driver Model was introduced in Section 10.1 of the UEFI 2.6 
Specification to resolve these issues. 

The Floating-Point Software Assist (FPSWA) driver is a common example of an 
EFI 1.02 driver; other EFI 1.02 drivers can be found in the EFI Application Toolkit 
1.02.12.38. For compatibility, EFI 1.02 drivers can be converted to UEFI 2.6 drivers that 
follow the UEFI Driver Model. 

Boot Service and Runtime Drivers 
Boot-time drivers are loaded into area of memory that are marked as 
EfiBootServicesCode, and the drivers allocate their data structures from 
memory marked as EfiBootServicesData. These memory types are converted 
to available memory after gBS->ExitBootServices() is called.  

Runtime drivers are loaded in memory marked as EfiRuntimeServices-
Code, and they allocate their data structures from memory marked as Efi-
RuntimeServicesData. These types of memory are preserved after gBS->Ex-
itBootServices() is called, thereby enabling the runtime driver to provide 
services to an operating system while the operating system is running. Runtime driv-
ers must publish an alternative calling mechanism, because the UEFI handle data-
base does not persist into OS runtime. The most common examples of UEFI runtime 
drivers are the Floating-Point Software Assist driver (FPSWA.efi) and the network 
Universal Network Driver Interface (UNDI) driver. Other than these examples, 
runtime drivers are not very common. In addition, the implementation and validation 
of runtime drivers is much more difficult than boot service drivers because UEFI sup-
ports the translation of runtime services and runtime drivers from a physical address-
ing mode to a virtual addressing mode. With this translation, the operating system 
can make virtual calls to the runtime code. The OS typically runs in virtual mode, so 
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it must transition into physical mode to make the call. Transitions into physical mode 
for modern, multiprocessor operating systems are expensive because they entail 
flushing translation look-up blocks (TLB), coordinating all CPUs, and other tasks. As 
such, UEFI runtime offers an efficient invocation mechanism because no transition is 
required. 

Events and Task Priority Levels 

Events are another type of object that is managed through UEFI services. An event can 
be created and destroyed, and an event can be either in the waiting state or the sig-
naled state. A UEFI image can do any of the following: 
■ Create an event. 
■ Destroy an event. 
■ Check to see if an event is in the signaled state. 
■ Wait for an event to be in the signaled state.  
■ Request that an event be moved from the waiting state to the signaled state.  

Because UEFI does not support interrupts, it can present a challenge to driver writers 
who are accustomed to an interrupt-driven driver model. Instead, UEFI supports polled 
drivers. The most common use of events by an UEFI driver is the use of timer events that 
allow drivers to periodically poll a device. Figure 2.5 shows the different types of events 
that are supported in UEFI and the relationships between those events.  

Events

Wait
Events

Signal
Events

Timer
Events

Periodic 
Timer

Events

One-Shot 
Timer

Events

Exit Boot 
Services
Events

Set Virtual 
Address Map 

Events

 

Figure 2.5: Event Types and Relationships 
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Table 2.2: Description of Event Types 

Type of Events Description 

Wait event An event whose notification function is executed whenever the event is 
checked or waited upon. 

Signal event An event whose notification function is scheduled for execution whenever 
the event goes from the waiting state to the signaled state. 

Exit Boot Services 
event 

A special type of signal event that is moved from the waiting state to the 
signaled state when the UEFI Boot Service ExitBootServices() 
is called. This call is the point in time when ownership of the platform is 
transferred from the firmware to an operating system. The event’s notifica-
tion function is scheduled for execution when Exit-
BootServices() is called. 

Set Virtual Address 
Map event 

A special type of signal event that is moved from the waiting state to the 
signaled state when the UEFI Runtime Service SetVirtualAd-
dressMap() is called. This call is the point in time when the operating 
system is making a request for the runtime components of UEFI to be con-
verted from a physical addressing mode to a virtual addressing mode. The 
operating system provides the map of virtual addresses to use. The event’s 
notification function is scheduled for execution when SetVirtu-
alAddressMap() is called. 

Timer event A type of signal event that is moved from the waiting state to the signaled 
state when at least a specified amount of time has elapsed. Both periodic 
and one-shot timers are supported. The event’s notification function is 
scheduled for execution when a specific amount of time has elapsed. 

Periodic timer event A type of timer event that is moved from the waiting state to the signaled 
state at a specified frequency. The event’s notification function is sched-
uled for execution when a specific amount of time has elapsed. 

One-shot timer event A type of timer event that is moved from the waiting state to the signaled 
state after the specified timer period has elapsed. The event’s notification 
function is scheduled for execution when a specific amount of time has 
elapsed. 

 
The following three elements are associated with every event:  
■ The Task Priority Level (TPL) of the event 
■ A notification function 
■ A notification context 

The notification function for a wait event is executed when the state of the event is 
checked or when the event is being waited upon. The notification function of a signal 
event is executed whenever the event transitions from the waiting state to the signaled 
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state. The notification context is passed into the notification function each time the no-
tification function is executed. The TPL is the priority at which the notification function 
is executed. Table 2.3: lists the four TPL levels that are defined today. Additional TPLs 
could be added later. An example of a compatible addition to the TPL list could include 
a series of “Interrupt TPLs” between TPL_NOTIFY and TPL_HIGH_LEVEL in order to 
provide interrupt-driven I/O support within UEFI. 

Table 2.3: Task Priority Levels Defined in UEFI 

Task Priority Level Description 

TPL_APPLICATION The priority level at which UEFI images are executed. 

TPL_CALLBACK The priority level for most notification functions. 

TPL_NOTIFY The priority level at which most I/O operations are per-
formed. 

TPL_HIGH_LEVEL The priority level for the one timer interrupt supported in 
UEFI. 

 

TPLs serve the following two purposes:  
■ To define the priority in which notification functions are executed 
■ To create locks 

For priority definition, you use this mechanism only when more than one event is in 
the signaled state at the same time. In these cases, the application executes the noti-
fication function that has been registered with the higher priority first. Also, notifica-
tion functions at higher priorities can interrupt the execution of notification functions 
executing at a lower priority. 
For creating locks, code running in normal context and code in an interrupt context 
can access the same data structure because UEFI does support a single-timer inter-
rupt. This access can cause problems and unexpected results if the updates to a 
shared data structure are not atomic. An UEFI application or UEFI driver that wants 
to guarantee exclusive access to a shared data structure can temporarily raise the task 
priority level to prevent simultaneous access from both normal context and interrupt 
context. The application can create a lock by temporarily raising the task priority level 
to TPL_HIGH_LEVEL. This level blocks even the one-timer interrupt, but you must 
take care to minimize the amount of time that the system is at TPL_HIGH_LEVEL. 
Since all timer-based events are blocked during this time, any driver that requires pe-
riodic access to a device is prevented from accessing its device. A TPL is similar to the 
IRQL in Microsoft Windows and the SPL in various Unix implementations. A TPL de-
scribes a prioritization scheme for access control to resources. 
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Summary 

This chapter has introduced some of the basic UEFI concepts and object types. These 
items have included events, protocols, task priority levels, image types, handles, 
GUIDs, and service tables. Many of these UEFI concepts, including images and proto-
cols, are used extensively by other firmware technology, including the UEFI Platform 
Initialization (PI) building blocks, such as the DXE environment. These concepts will 
be revisited in different guises in subsequent chapters. 
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Chapter 3 – UEFI Driver Model 
Things should be made as simple as possible—but no simpler.  

—Albert Einstein 

The Unified Extensible Firmware Interface (UEFI) provides a driver model for support 
of devices that attach to today’s industry-standard buses, such as Peripheral Compo-
nent Interconnect (PCI) and Universal Serial Bus (USB), and architectures of tomor-
row. The UEFI Driver Model is intended to simplify the design and implementation of 
device drivers, and produce small executable image sizes. As a result, some complex-
ity has been moved into bus drivers and to a greater extent into common firmware 
services. A device driver needs to produce a Driver Binding Protocol on the same im-
age handle on which the driver was loaded. It then waits for the system firmware to 
connect the driver to a controller. When that occurs, the device driver is responsible 
for producing a protocol on the controller’s device handle that abstracts the I/O oper-
ations that the controller supports. A bus driver performs these exact same tasks. In 
addition, a bus driver is also responsible for discovering any child controllers on the 
bus, and creating a device handle for each child controller found.  

The combination of firmware services, bus drivers, and device drivers in any 
given platform is likely to be produced by a wide variety of vendors including Original 
Equipment Manufacturers (OEMs), Independent BIOS Vendors (IBVs), and Independ-
ent Hardware Vendors (IHVs). These different components from different vendors are 
required to work together to produce a protocol for an I/O device than can be used to 
boot a UEFI compliant operating system. As a result, the UEFI Driver Model is de-
scribed in great detail in order to increase the interoperability of these components.  

This chapter gives a brief overview of the UEFI Driver Model. It describes the entry 
point of a driver, host bus controllers, properties of device drivers, properties of bus 
drivers, and how the UEFI Driver Model can accommodate hot plug events. 

Why a Driver Model Prior to OS Booting? 

Under the UEFI Driver Model, only the minimum number of I/O devices needs to be 
activated. For example, with today’s BIOS-based systems, a server with dozens of 
SCSI drives needs to have those drives “spun-up” or activated. This is because the 
BIOS Int19h code does not know a priori which device will contain the operating sys-
tem loader. The UEFI Driver Model allows for only activating the subset of devices 
that are necessary for booting. This makes a rapid system restart possible and pushes 
the policy of which additional devices need activation up into the operating system. 
With the more aggressive boot time requirements more along the lines of consumer 
electronics devices being pushed to all open platforms, this capability is imperative. 



32 | Chapter 3 – UEFI Driver Model 

  

Driver Initialization 

The file for a driver image must be loaded from some type of media. This could include 
ROM, flash, hard drives, floppy drives, CD-ROM, or even a network connection. Once 
a driver image has been found, it can be loaded into system memory with the Boot 
Service LoadImage(). LoadImage() loads a Portable Executable/Common File 
Format (PE/COFF) formatted image into system memory. A handle is created for the 
driver, and a Loaded Image Protocol instance is placed on that handle. A handle that 
contains a Loaded Image Protocol instance is called an Image Handle. At this point, 
the driver has not been started. It is just sitting in memory waiting to be started. Figure 
3.1 shows the state of an image handle for a driver after LoadImage() has been 
called. 

Image Handle 

 

Figure 3.1: Image Handle 

After a driver has been loaded with the Boot Service LoadImage(), it must be 
started with the Boot Service StartImage(). This is true of all types of UEFI appli-
cations and UEFI drivers that can be loaded and started on an UEFI compliant system. 
The entry point for a driver that follows the UEFI Driver Model must follow some strict 
rules. First, it is not allowed to touch any hardware. Instead, it is only allowed to in-
stall protocol instances onto its own Image Handle. A driver that follows the UEFI 
Driver Model is required to install an instance of the Driver Binding Protocol onto its 
own Image Handle. It may optionally install the Driver Configuration Protocol, the 
Driver Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver 
wishes to be unloadable it may optionally update the Loaded Image Protocol to pro-
vide its own Unload() function. Finally, if a driver needs to perform any special 
operations when the Boot Service ExitBootServices() is called, it may option-
ally create an event with a notification function that is triggered when the Boot Ser-
vice ExitBootServices() is called. An Image Handle that contains a Driver 
Binding Protocol instance is known as a Driver Image Handle. Figure 3.2 shows a pos-
sible configuration for the Image Handle from Figure 3.1 after the Boot Service 
StartImage() has been called.  
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Figure 3.2: Driver Image Handle 

Host Bus Controllers 

Drivers are not allowed to touch any hardware in the driver's entry point. As a result, 
drivers are loaded and started, but they are all waiting to be told to manage one or 
more controllers in the system. A platform component, like the UEFI Boot Manager, 
is responsible for managing the connection of drivers to controllers. However, before 
even the first connection can be made, some initial collection of controllers must be 
present for the drivers to manage. This initial collection of controllers is known as the 
Host Bus Controllers. The I/O abstractions that the Host Bus Controllers provide are 
produced by firmware components that are outside the scope of the UEFI Driver 
Model. The device handles for the Host Bus Controllers and the I/O abstraction for 
each one must be produced by the core firmware on the platform, or an UEFI Driver 
that may not follow the UEFI Driver Model. See the PCI Host Bridge I/O Protocol de-
scription in Chapter 13 of the UEFI 2.6 specification for an example of an I/O abstrac-
tion for PCI buses. 

A platform can be viewed as a set of CPUs and a set of core chip set components 
that may produce one or more host buses. Figure 3.3 shows a platform with n CPUs, 
and a set of core chipset components that produce m host bridges. 
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Figure 3.3: Host Bus Controllers 

Each host bridge is represented in UEFI as a device handle that contains a Device Path 
Protocol instance, and a protocol instance that abstracts the I/O operations that the 
host bus can perform. For example, a PCI Host Bus Controller supports the PCI Host 
Bridge I/O Protocol. Figure 3.4 shows an example device handle for a PCI Host Bridge.  

Device Handle 

EFI_DEVICE_PATH_PROTOCOL 

EFI_PCI_HOST_BRIDGE_IO_PROTOCOL 
 

Figure 3.4: Host Bus Device Handle  

A PCI Bus Driver could connect to this PCI Host Bridge, and create child handles for 
each of the PCI devices in the system. PCI Device Drivers should then be connected to 
these child handles, and produce I/O abstractions that may be used to boot a UEFI 
compliant OS. The following section describes the different types of drivers that can 
be implemented within the UEFI Driver Model. The UEFI Driver Model is very flexible, 
so not all the possible types of drivers are discussed here. Instead, the major types are 

CPU 1 CPU 2 CPU n

Core Chipset Components

HB 1 HB 2 HB m

Front Side Bus
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covered that can be used as a starting point for designing and implementing addi-
tional driver types. 

Device Drivers 

A device driver is not allowed to create any new device handles. Instead, it installs 
additional protocol interfaces on an existing device handle. The most common type 
of device driver attaches an I/O abstraction to a device handle that has been created 
by a bus driver. This I/O abstraction may be used to boot an UEFI compliant OS. Some 
example I/O abstractions would include Simple Text Output, Simple Input, Block I/O, 
and Simple Network Protocol. Figure 3.5 shows a device handle before and after a 
device driver is connected to it. In this example, the device handle is a child of the 
XYZ Bus, so it contains an XYZ I/O Protocol for the I/O services that the XYZ bus sup-
ports. It also contains a Device Path Protocol that was placed there by the XYZ Bus 
Driver. The Device Path Protocol is not required for all device handles. It is only re-
quired for device handles that represent physical devices in the system. Handles for 
virtual devices do not contain a Device Path Protocol. 

Start() 

Stop() 

Device Handle 

EFI_DEVICE_PATH_PROTOCOL 

EFI_XYZ_IO_PROTOCOL 

Device Handle 

EFI_DEVICE_PATH_PROTOCOL 

EFI_XYZ_IO_PROTOCOL 

EFI_BLOCK_IO_PROTOCOL 
 

Figure 2.5: Connecting Device Drivers 

The device driver that connects to the device handle in Figure 3.5 must have installed 
a Driver Binding Protocol on its own image handle. The Driver Binding Protocol con-
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tains three functions called Supported(), Start(), and Stop(). The Sup-
ported() function tests to see if the driver supports a given controller. In this ex-
ample, the driver will check to see if the device handle supports the Device Path Pro-
tocol and the XYZ I/O Protocol. If a driver's Supported() function passes, then the 
driver can be connected to the controller by calling the driver’s Start() function. 
The Start() function is what actually adds the additional I/O protocols to a device 
handle. In this example, the Block I/O Protocol is being installed. To provide sym-
metry, the Driver Binding Protocol also has a Stop() function that forces the driver 
to stop managing a device handle. This causes the device driver to uninstall any pro-
tocol interfaces that were installed in Start(). 

The Support(), Start(), and Stop() functions of the UEFI Driver Binding 
Protocol are required to make use of the new Boot Service OpenProtocol() to get 
a protocol interface and the new Boot Service CloseProtocol() to release a pro-
tocol interface. OpenProtocol() and CloseProtocol() update the handle da-
tabase maintained by the system firmware to track which drivers are consuming pro-
tocol interfaces. The information in the handle database can be used to retrieve 
information about both drivers and controllers. The new Boot Service OpenProto-
colInformation() can be used to get the list of components that are currently 
consuming a specific protocol interface. 

Bus Drivers 

Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s 
point of view. The only difference is that a bus driver creates new device handles for 
the child controllers that the bus driver discovers on its bus. As a result, bus drivers 
are slightly more complex than device drivers, but this in turn simplifies the design 
and implementation of device drivers. There are two major types of bus drivers. The 
first creates handles for all the child controllers on the first call to Start(). The 
second type allows the handles for the child controllers to be created across multiple 
calls to Start(). This second type of bus driver is very useful in supporting a rapid 
boot capability. It allows a few child handles or even one child handle to be created. 
On buses that take a long time to enumerate all of their children (such as SCSI), this 
can lead to a very large time savings in booting a platform. Figure 3.6 shows the tree 
structure of a bus controller before and after Start() is called. The dashed line 
coming into the bus controller node represents a link to the bus controller's parent 
controller. If the bus controller is a Host Bus Controller, then it does not have a parent 
controller. Nodes A, B, C, D, and E represent the child controllers of the bus controller. 

www.ebook3000.com

http://www.ebook3000.org


 Bus Drivers | 37 

  

Start()Bus Controller Bus Controller

A B C D EStop()

 

Figure 3.6: Connecting Bus Drivers 

A bus driver that supports creating one child on each call to Start() might choose 
to create child C first, and then child E, and then the remaining children A,B, and D. 
The Supported(), Start(), and Stop() functions of the Driver Binding Proto-
col are flexible enough to allow this type of behavior. 

A bus driver must install protocol interfaces onto every child handle that is creates. 
At a minimum, it must install a protocol interface that provides an I/O abstraction of the 
bus's services to the child controllers. If the bus driver creates a child handle that rep-
resents a physical device, then the bus driver must also install a Device Path Protocol 
instance onto the child handle. A bus driver may optionally install a Bus Specific Driver 
Override Protocol onto each child handle. This protocol is used when drivers are con-
nected to the child controllers. A new Boot Service ConnectController() uses ar-
chitecturally defined precedence rules to choose the best set of drivers for a given con-
troller. The Bus Specific Driver Override Protocol has higher precedence than a general 
driver search algorithm, and lower precedence than platform overrides. An example of 
a bus specific driver selection occurs with PCI. A PCI Bus Driver gives a driver stored in 
a PCI controller's option ROM a higher precedence than drivers stored elsewhere in the 
platform. Figure 3.7 shows an example child device handle that has been created by the 
XYZ Bus Driver that supports a bus specific driver override mechanism. 
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Optional

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_IO_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

 

Figure 3.7: Child Device Handle with a Bus Specific Override 

Platform Components 

Under the UEFI Driver Model, the act of connecting and disconnecting drivers from 
controllers in a platform is under the platform firmware's control. This will typically 
be implemented as part of the UEFI Boot Manager, but other implementations are 
possible. The new Boot Services ConnectController() and Discon-
nectController() can be used by the platform firmware to determine which 
controllers get started and which ones do not. If the platform wishes to perform sys-
tem diagnostics or install an operating system, then it may choose to connect drivers 
to all possible boot devices. If a platform wishes to boot a pre-installed operating sys-
tem, it may choose to only connect drivers to the devices that are required to boot the 
selected operating system. The UEFI Driver Model supports both of these modes of 
operation through the new Boot Services ConnectController() and Discon-
nectController(). In addition, since the platform component that is in charge 
of booting the platform has to work with device paths for console devices and boot 
options, all of the services and protocols involved in the UEFI Driver Model are opti-
mized with device paths in mind. 

The platform may also choose to produce an optional protocol named the Plat-
form Driver Override Protocol. This is similar to the Bus Specific Driver Override Pro-
tocol, but it has higher priority. This gives the platform firmware the highest priority 
when deciding which drivers are connected to which controllers. The Platform Driver 
Override Protocol is attached to a handle in the system. The new Boot Service Con-
nectController() will make use of this protocol if it is present in the system. 

Hot Plug Events 

In the past, system firmware has not had to deal with hot plug events in the pre-boot 
environment. However, with the advent of buses like USB, where the end user can 
add and remove devices at any time, it is important to make sure that it is possible to 
describe these types of buses in the UEFI Driver Model. It is up to the bus driver of a 
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bus that supports the hot adding and removing of devices to provide support for such 
events. For these types of buses, some of the platform management is going to have 
to move into the bus drivers. For example, when a keyboard is added hot to a USB bus 
on a platform, the end user would expect the keyboard to be active. A USB Bus driver 
could detect the hot add event and create a child handle for the keyboard device. 
However, since drivers are not connected to controllers unless ConnectControl-
ler() is called the keyboard would not become an active input device. Making the 
keyboard driver active requires the USB Bus driver to call ConnectController() 
when a hot add event occurs. In addition, the USB Bus driver would have to call Dis-
connectController() when a hot remove event occurs.  

Device drivers are also affected by these hot plug events. In the case of USB, a 
device can be removed without any notice. This means that the Stop() functions of 
USB device drivers must deal with shutting down a driver for a device that is no longer 
present in the system. As a result, any outstanding I/O requests must be flushed with-
out actually being able to touch the device hardware.  

In general, adding support for hot plug events greatly increases the complexity 
of both bus drivers and device drivers. Adding this support is up to the driver writer, 
so the extra complexity and size of the driver must be weighed against the need for 
the feature in the pre-boot environment. 

The two example code sequences below provide guidance on how a device driver 
writer might discover if it in fact manages the candidate hardware device.  These 
mechanisms include looking at the controller handle in the first example and exam-
ining the device path in the second example.  

extern EFI_GUID              
gEfiDriverBindingProtocolGuid; 
EFI_HANDLE                   gMyImageHandle; 
EFI_HANDLE                   DriverImageHandle; 
EFI_HANDLE                   ControllerHandle; 
EFI_DRIVER_BINDING_PROTOCOL  *DriverBinding; 
EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath; 
 
// 
// Use the DriverImageHandle to get the Driver Binding 
Protocol 
// instance 
// 
Status = gBS->OpenProtocol ( 
                  DriverImageHandle,   
                  &gEfiDriverBindingProtocolGuid,  
                  &DriverBinding, 
                  gMyImageHandle, 
                  NULL, 
                  EFI_OPEN_PROTOCOL_HANDLE_PROTOCOL 
                  ); 
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if (EFI_ERROR (Status)) { 
  return Status; 
} 
 
// 
// EXAMPLE #1 
// 
// Use the Driver Binding Protocol instance to test to 
see if  
// the driver specified by DriverImageHandle supports the  
// controller specified by ControllerHandle 
// 
Status = DriverBinding->Supported ( 
                          DriverBinding,  
                          ControllerHandle,  
                          NULL 
                          );  
if (!EFI_ERROR (Status)) { 
  Status = DriverBinding->Start ( 
                            DriverBinding,  
                            ControllerHandle,  
                            NULL 
                            );  
} 
 
return Status; 
 
// 
// EXAMPLE #2 
// 
// The RemainingDevicePath parameter can be used to 
initialize  
// only the minimum devices required to boot. For 
example, 
// maybe we only want to initialize 1 hard disk on a SCSI  
// channel. If DriverImageHandle is a SCSI Bus Driver, 
and  
// ControllerHandle is a SCSI Controller, and we only 
want to  
// create a child handle for PUN=3 and LUN=0, then the 
// RemainingDevicePath would be SCSI(3,0)/END. The 
following  
// example would return EFI_SUCCESS if the SCSI driver 
supports 
// creating the child handle for PUN=3, LUN=0. Otherwise 
it  
// would return an error. 
// 
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Status = DriverBinding->Supported ( 
                          DriverBinding,  
                          ControllerHandle,  
                          RemainingDevicePath 
                          );  
if (!EFI_ERROR (Status)) { 
  Status = DriverBinding->Start ( 
                            DriverBinding,  
                            ControllerHandle,  
                            RemainingDevicePath 
                            );  
} 
 
return Status; 

Pseudo Code 

The algorithms for the Start() function for three different types of drivers are pre-
sented here. How the Start() function of a driver is implemented can affect how 
the Supported() function is implemented. All of the services in the 
EFI_DRIVER_BINDING_PROTOCOL need to work together to make sure that all 
resources opened or allocated in Supported() and Start() are released in 
Stop().  

The first algorithm is a simple device driver that does not create any additional 
handles. It only attaches one or more protocols to an existing handle. The second is a 
simple bus driver that always creates all of its child handles on the first call to 
Start(). It does not attach any additional protocols to the handle for the bus con-
troller. The third is a more advanced bus driver that can either create one child han-
dles at a time on successive calls to Start(), or it can create all of its child handles 
or all of the remaining child handles in a single call to Start(). Once again, it does 
not attach any additional protocols to the handle for the bus controller. 

Device Driver 

1. Open all required protocols with OpenProtocol(). If this driver allows the 
opened protocols to be shared with other drivers, then it should use an Attrib-
ute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver does not allow the 
opened protocols to be shared with other drivers, then it should use an Attrib-
ute of EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTO-
COL_EXCLUSIVE. It must use the same Attribute value that was used in 
Supported(). 
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2. If any of the calls to OpenProtocol() in Step 1 returned an error, then close 
all of the protocols opened in Step 1 with CloseProtocol(), and return the 
status code from the call to OpenProtocol() that returned an error. 

3. Ignore the parameter RemainingDevicePath. 
4. Initialize the device specified by ControllerHandle. If an error occurs, close 

all of the protocols opened in Step 1 with CloseProtocol(), and return 
EFI_DEVICE_ERROR. 

5. Allocate and initialize all of the data structures that this driver requires to manage 
the device specified by ControllerHandle. This would include space for 
public protocols and space for any additional private data structures that are re-
lated to ControllerHandle. If an error occurs allocating the resources, then 
close all of the protocols opened in Step 1 with CloseProtocol(), and return 
EFI_OUT_OF_RESOURCES. 

6. Install all the new protocol interfaces onto ControllerHandle using In-
stallProtocolInterface(). If an error occurs, close all of the protocols 
opened in Step 1 with CloseProtocol(), and return the error from In-
stallProtocolInterface(). 

7. Return EFI_SUCCESS. 

Bus Driver that Creates All of Its Child Handles on the First Call to Start() 

1. Open all required protocols with OpenProtocol(). If this driver allows the 
opened protocols to be shared with other drivers, then it should use an Attrib-
ute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver does not allow 
the opened protocols to be shared with other drivers, then it should use an At-
tribute of EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTO-
COL_EXCLUSIVE. It must use the same Attribute value that was used in 
Supported(). 

2. If any of the calls to OpenProtocol() in Step 1 returned an error, then close 
all of the protocols opened in Step 1 with CloseProtocol(), and return the 
status code from the call to OpenProtocol() that returned an error. 

3. Ignore the parameter RemainingDevicePath. 
4. Initialize the device specified by ControllerHandle. If an error occurs, close 

all of the protocols opened in Step 1 with CloseProtocol(), and return 
EFI_DEVICE_ERROR. 

5. Discover all the child devices of the bus controller specified by Controller-
Handle. 

6. If the bus requires it, allocate resources to all the child devices of the bus control-
ler specified by ControllerHandle. 

7. FOR each child C of ControllerHandle 
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8. Allocate and initialize all of the data structures that this driver requires to manage 
the child device C. This would include space for public protocols and space for 
any additional private data structures that are related to the child device C. If an 
error occurs allocating the resources, then close all of the protocols opened in 
Step 1 with CloseProtocol(), and return EFI_OUT_OF_RESOURCES. 

9. If the bus driver creates device paths for the child devices, then create a device 
path for the child C based upon the device path attached to ControllerHan-
dle. 

10. Initialize the child device C. If an error occurs, close all of the protocols opened 
in Step 1 with CloseProtocol(), and return EFI_DEVICE_ERROR. 

11. Create a new handle for C, and install the protocol interfaces for child device C. 
This may include the EFI_DEVICE_PATH_PROTOCOL. 

12. Call OpenProtocol() on behalf of the child C with an Attribute of 
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER. 

13. END FOR 
14. Return EFI_SUCCESS. 

Bus Driver that Is Able to Create All or One of Its Child Handles on Each Call to 
Start(): 

1. Open all required protocols with OpenProtocol(). If this driver allows the 
opened protocols to be shared with other drivers, then it should use an Attrib-
ute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver does not allow the 
opened protocols to be shared with other drivers, then it should use an Attrib-
ute of EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTO-
COL_EXCLUSIVE. It must use the same Attribute value that was used in 
Supported(). 

2. If any of the calls to OpenProtocol() in Step 1 returned an error, then close 
all of the protocols opened in Step 1 with CloseProtocol(), and return the 
status code from the call to OpenProtocol() that returned an error. 

3. Initialize the device specified by ControllerHandle. If an error occurs, close 
all of the protocols opened in Step 1 with CloseProtocol(), and return 
EFI_DEVICE_ERROR. 

4. IF RemainingDevicePath is not NULL, THEN 
5. C is the child device specified by RemainingDevicePath. 
6. Allocate and initialize all of the data structures that this driver requires to manage 

the child device C. This would include space for public protocols and space for 
any additional private data structures that are related to the child device C. If an 
error occurs allocating the resources, then close all of the protocols opened in 
Step 1 with CloseProtocol(), and return EFI_OUT_OF_RESOURCES. 
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7. If the bus driver creates device paths for the child devices, then create a device path 
for the child C based upon the device path attached to ControllerHandle. 

8. Initialize the child device C. 
9. Create a new handle for C, and install the protocol interfaces for child device C. 

This may include the EFI_DEVICE_PATH_PROTOCOL. 
10. Call OpenProtocol() on behalf of the child C with an Attribute of 

EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER. 
11. ELSE 
12. Discover all the child devices of the bus controller specified by Controller-

Handle. 
13. If the bus requires it, allocate resources to all the child devices of the bus control-

ler specified by ControllerHandle. 
14. FOR each child C of ControllerHandle 
15. Allocate and initialize all of the data structures that this driver requires to manage 

the child device C. This would include space for public protocols and space for 
any additional private data structures that are related to the child device C. If an 
error occurs allocating the resources, then close all of the protocols opened in 
Step 1 with CloseProtocol(), and return EFI_OUT_OF_RESOURCES. 

16. If the bus driver creates device paths for the child devices, then create a device 
path for the child C based upon the device path attached to ControllerHan-
dle. 

17. Initialize the child device C.  
18. Create a new handle for C, and install the protocol interfaces for child device C. 

This may include the EFI_DEVICE_PATH_PROTOCOL. 
19. Call OpenProtocol() on behalf of the child C with an Attribute of 

EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER. 
20. END FOR 
21. END IF 
22. Return EFI_SUCCESS. 

Listed below is sample code of the Start() function of device driver for a device on 
the XYZ bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This 
driver does allow the EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and 
just the presence of the EFI_XYZ_IO_PROTOCOL on ControllerHandle is 
enough to determine if this driver supports ControllerHandle. This driver in-
stalls the EFI_ABC_IO_PROTOCOL on ControllerHandle. The gBS and 
gMyImageHandle variables are initialized in this driver’s entry point.  

The following code sequence provides a generic example of what a driver can do 
in its start routine in the hope of particularizing the guidance listed above. 
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extern EFI_GUID          gEfiXyzIoProtocol; 
extern EFI_GUID          gEfiAbcIoProtocol; 
EFI_BOOT_SERVICES_TABLE  *gBS; 
EFI_HANDLE               gMyImageHandle; 
 
EFI_STATUS 
AbcStart ( 
  IN EFI_DRIVER_BINDING_PROTOCOL  *This, 
  IN EFI_HANDLE                   ControllerHandle, 
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  
OPTIONAL 
) 
 
{ 
  EFI_STATUS           Status; 
  EFI_XYZ_IO_PROTOCOL  *XyzIo; 
  EFI_ABC_DEVICE       AbcDevice; 
 
  // 
  // Open the Xyz I/O Protocol that this driver consumes 
  // 
  Status = gBS->OpenProtocol ( 
                  ControllerHandle,   
                  &gEfiXyzIoProtocol,  
                  &XyzIo, 
                  gMyImageHandle, 
                  ControllerHandle, 
                  EFI_OPEN_PROTOCOL_BY_DRIVER 
                  ); 
  if (EFI_ERROR (Status)) { 
    return Status; 
  } 
 
  // 
  // Allocate and zero a private data structure for the 
Abc  
  // device. 
  // 
  Status = gBS->AllocatePool ( 
                  EfiBootServicesData, 
                  sizeof (EFI_ABC_DEVICE), 
                  &AbcDevice 
                  ); 
  if (EFI_ERROR (Status)) { 
    goto ErrorExit; 
  } 
  ZeroMem (AbcDevice, sizeof (EFI_ABC_DEVICE)); 
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  // 
  // Initialize the contents of the private data 
structure for  
  // the Abc device. This includes the XyzIo protocol 
instance  
  // and other private data fields and the 
EFI_ABC_IO_PROTOCOL  
  // instance that will be installed. 
  // 
  AbcDevice->Signature       = EFI_ABC_DEVICE_SIGNATURE; 
  AbcDevice->XyzIo           = XyzIo; 
 
  AbcDevice->PrivateData1    = PrivateValue1; 
  AbcDevice->PrivateData1    = PrivateValue2; 
  . . . 
  AbcDevice->PrivateData1    = PrivateValueN; 
 
  AbcDevice->AbcIo.Revision  = 
EFI_ABC_IO_PROTOCOL_REVISION; 
  AbcDevice->AbcIo.Func1     = AbcIoFunc1; 
  AbcDevice->AbcIo.Func2     = AbcIoFunc2; 
  . . . 
  AbcDevice->AbcIo.FuncN     = AbcIoFuncN; 
 
  AbcDevice->AbcIo.Data1     = Value1; 
  AbcDevice->AbcIo.Data2     = Value2; 
  . . . 
  AbcDevice->AbcIo.DataN     = ValueN; 
 
  // 
  // Install protocol interfaces for the ABC I/O device. 
  // 
  Status = gBS->InstallProtocolInterface ( 
                  &ControllerHandle,  
                  &gEfiAbcIoProtocolGuid,  
                  EFI_NATIVE_INTERFACE,  
                  &AbcDevice->AbcIo 
                  ); 
  if (EFI_ERROR (Status)) { 
    goto ErrorExit; 
  }  
 
  return EFI_SUCCESS; 
 
ErrorExit: 
  // 
  // When there is an error, the provate data structures 
need  
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  // to be freed and the protocols that were opened need 
to be  
  // closed. 
  // 
  if (AbcDevice != NULL) { 
    gBS->FreePool (AbcDevice); 
  } 
  gBS->CloseProtocol ( 
         ControllerHandle,  
         &gEfiXyzIoProtocolGuid,  
         gMyImageHandle,    
         ControllerHandle    
         ); 
  return Status; 
}  

Additional Innovations 

In addition to the basic capabilities for booting, such as support for the various buses, 
there are other classes of feature drivers that provide capabilities to the platform. 
Some examples of these feature drivers include security, manageability, and net-
working. 

Security 

In addition to the bus driver-based architecture, the provenance of the UEFI driver 
may be a concern for some vendors. Specifically, if the UEFI driver is loaded from a 
host-bus adapter (HBA) PCI card or from the UEFI system partition, the integrity of 
the driver could be called into question. As such, the UEFI 2.6 Specification describes 
a means by which to enroll signed UEFI drivers and applications. The particular sig-
nature format is Authenticode, which is a well-known usage of X509V2 certificates 
and PKCS#7 signature formats. The use of a well-known embedded signature format 
in the PE/COFF images of the UEFI drivers allows for interoperable trust, including 
the use of Certificate Authorities (CAs), such as Verisign, to sign the executables and 
distribute the credentials. More information on the enrollment can be found in Chap-
ter 27 of the UEFI 2.6 Specification. Information on the Windows Authenticode Porta-
ble Executable Signature Format can be found at http://www.microsoft.com/whdc/
winlogo/drvsign/Authenticode_PE.mspx. 

Other security features in UEFI 2.6 include the User Identity (UID) infrastructure. 
The UID allows for the inclusion of credential provider drivers, such as biometric de-
vices, smart cards, and other authentication methods, into a user manager frame-
work. This framework will allow for combining the factors from the various credential 
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providers and assigning rights to different UEFI users. One use case could include 
only the administrator having access to the USB devices in the pre-OS, whereas other 
users could only access the boot loader on the UEFI system partition. More infor-
mation on UID can be found in Chapter 31 of the UEFI 2.6 Specification. 

Manageability 

The UEFI driver model has also introduced the Driver Health Protocol.  The Driver 
Health Protocol exposes additional capabilities that a boot manager might use in con-
cert with a device. These capabilities include EFI_DRIVER_HEALTH_PROTOCOL. 
GetHealthStatus() and EFI_DRIVER_HEALTH_PROTOCOL.Repair() services. The former 
will allow the boot manager to ascertain the state of the device, and the latter API will 
allow for the invocation of some recovery operation. An example of the usage may in-
clude a large solid-state disk cache or redundant array of inexpensive disks (RAID). If 
the system were powered down during operating system runtime in an inconsistent 
state, say not having the RAID5 parity disk fully updated, the driver health protocol 
would allow for exposing the need to synchronize the cache or RAID during the pre-OS 
without “disappearing” for a long period during this operation and making the user 
believe the machine had failed. More information on the Driver Health Protocol can be 
found in Chapter 10 of the UEFI 2.6 Specification. In addition to the firmware healthy 
protocol, there have been evolutions in the firmware management protocol (FMP), as 
described in Chapter 22 of the UEFI 2.6 specification. This protocol allows for host pro-
cessing of capsule updates by devices. As such, it works in blended scenarios with the 
EFI System Resource Table (ESRT) that exposes updatable elements and the existing 
UpdateCapsule runtime service.  This scenario is shown below. 
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{ Camera GUID1, VersionInfo }
{ G-Sensor GUID2, VersionInfo }

{ System Firmware GUID3, 
VersionInfo }

…...

UEFI Firmware Resource Table
(ESRT)

Camera G-Sensor System 
firmware

Updated Data
(Op�onal)

Update UEFI 
driver

(Op�onal)

UPDATE

Rou�ngInfo

FMP Capsule

 

Figure 3.8: ESRT, Capsule, FMP 

Networking 

The UEFI driver model has also evolved to support complex device hierarchies, such 
as a dual IPV4 and IPV6 modular network stack. Figure 3.8 is a picture of the Internet 
Small Computer Systems Interface (iSCSI) network application atop both the IPV4 
and IPV6 network stack. 
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Figure 3.9: ISCSI on IPV4 and IPV6 

In addition to the ISCSI usage above, the UEFI standard now has support for HTTP boot. 
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Figure 3.10: HTTP software stack 

Both of these implementations can be found in on the Tianocore website located at 
http://www.tianocore.org/. HTTP builds upon the same TCP protocol found in ISCSI, 
but unlike the earlier PXE based upon UDP and TFTP, HTTP provides a connection-
oriented download experience.  Beyond the connection-oriented nature of HTTP boot, 
the scenario adds DNS support so that named octets like aa.bb.cc.dd are not needed 
for entering the boot server, but instead human-readable names like http://myserver.
com/bootloader.efi can be used. And finally, HTTP boot allows for being routable 
over Port 80.  In the past TFTP-based PXE used ports that were typically blocked on 
enterprise routers. In summary, HTTP boot makes the boot, deployment, and recov-
ery scenarios from UEFI truly wide area network and internet-wide capable. 

A common use-case for booting includes the following: 
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DHCP Server DNS Server HTTP(S) Server
EFI HTTPBoot 

Client

 

Figure 3.11: HTTP network boot 

One notable infrastructure element precipitated by this modular design includes the 
Service Binding Protocol (SBP). The EFI_DRIVER_BINDING_PROTOCOL allows for 
producing a set of protocols related to a device via simple layering, but for more com-
plex relationships like graphs and trees, the driver binding protocol was found to be 
deficient. For this reason, the SBP provides a member function to create a child han-
dle with a new protocol installed upon it. This allows for the more generalized via as 
shown in Figure 3.8.  

Summary 

This chapter has introduced the UEFI driver model and some sample drivers. The 
UEFI driver model allows for support of modern bus architectures in addition to the 
lazy activation of devices needed by boot for today’s platforms and designs in the 
future. The support for buses is key because most of the storage, console, and net-
working devices are attached via an industry-standard bus like USB, PCI, and SCSI. 
The architecture described is general enough to support these and future evolutions 
in platform hardware. In addition to access to boot devices, though, there are other 
features and innovations that need to be surfaced in the platform. UEFI drivers are 
the unit of delivery for these types of capabilities, and examples of networking, secu-
rity, and management feature drivers were reviewed. 
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Chapter 4 – Protocols You Should Know 
Common sense ain’t common. 

—Will Rogers 

This chapter describes protocols that everyone who is working with the Unified Exten-
sible Firmware Interface (UEFI), whether creating device drivers, UEFI pre-OS applica-
tions, or platform firmware, should know. The protocols are illustrated by a few exam-
ples, beginning with the most common exercise from any programming text, namely 
“Hello world.” The test application listed here is the simplest possible application that 
can be written. It does not depend upon any UEFI Library functions, so the UEFI Li-
brary is not linked into the executable that is generated. This test application uses the 
SystemTable that is passed into the entry point to get access to the UEFI console 
devices. The console output device is used to display a message using the Out-
putString() function of the SIMPLE_TEXT_OUTPUT_INTERFACE protocol, 
and the application waits for a keystroke from the user on the console input device 
using the WaitForEvent() service with the WaitForKey event in the SIM-
PLE_INPUT_INTERFACE protocol. Once a key is pressed, the application exits. 

/*++ 
 
Module Name: 
helloworld.c 
 
Abstract:  
This is a simple module to display behavior of a 
basic UEFI application. 
 
Author: 
Waldo 
 
Revision History 
--*/ 
 
#include "efi.h" 
 
EFI_STATUS 
InitializeHelloApplication ( 
    IN EFI_HANDLE           ImageHandle, 
    IN EFI_SYSTEM_TABLE     *SystemTable 
    ) 
{ 
    UINTN Index; 
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    // 
    // Send a message to the ConsoleOut device. 
    // 
 
    SystemTable->ConOut->OutputString ( 
      SystemTable->ConOut,  
      L"Hello application started\n\r"); 
 
    // 
    // Wait for the user to press a key. 
    // 
 
    SystemTable->ConOut->OutputString ( 
      SystemTable->ConOut,  
      L"\n\r\n\r\n\rHit any key to exit\n\r"); 
 
    SystemTable->BootServices->WaitForEvent ( 
      1, 
      &(SystemTable->ConIn->WaitForKey), 
      &Index); 
 
    SystemTable->ConOut->OutputString ( 
      SystemTable->ConOut,L"\n\r\n\r"); 
 
    // 
    // Exit the application. 
    // 
 
    return EFI_SUCCESS; 
} 

To execute an UEFI application, type the program’s name at the UEFI Shell command 
line. The following examples show how to run the test application described above 
from the UEFI Shell. The application waits for the user to press a key before returning 
to the UEFI Shell prompt. It is assumed that hello.efi is in the search path of the 
UEFI Shell environment. 

Example 

Shell> hello 
 
Hello application started 
 
 
 
Hit any key to exit this image 
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EFI OS Loaders 

This section discusses the special considerations that are required when writing an 
OS loader. An OS loader is a special type of UEFI application responsible for transi-
tioning a system from a firmware environment into an OS environment. To accom-
plish this task, several important steps must be taken: 
1. The OS loader must determine from where it was loaded. This determination al-

lows an OS loader to retrieve additional files from the same location. 
2. The OS loader must determine where in the system the OS exists. Typically, the 

OS resides on a partition of a hard drive. However, the partition where the OS 
exists may not use a file system that is recognized by the UEFI environment. In 
this case, the OS loader can only access the partition as a block device using only 
block I/O operations. The OS loader will then be required to implement or load 
the file system driver to access files on the OS partition. 

3. The OS loader must build a memory map of the physical memory resources so 
that the OS kernel can know what memory to manage. Some of the physical 
memory in the system must remain untouched by the OS kernel, so the OS loader 
must use the UEFI APIs to retrieve the system’s current memory map.  

4. An OS has the option of storing boot paths and boot options in nonvolatile stor-
age in the form of environment variables. The OS loader may need to use some of 
the environment variables that are stored in nonvolatile storage. In addition, the 
OS loader may be required to pass some of the environment variables to the OS 
kernel. 

5. The next step is to call ExitBootServices(). This call can be done from ei-
ther the OS loader or from the OS kernel. Special care must be taken to guarantee 
that the most current memory map has been retrieved prior to making this call. 
Once ExitBootServices() had been called, no more UEFI Boot Services 
calls can be made. At some point, either just prior to calling Exit-
BootServices() or just after, the OS loader will transfer control to the OS 
kernel. 

6. Finally, after ExitBootServices() has been called, the UEFI Boot Services 
calls are no longer available. This lack of availability means that once an OS ker-
nel has taken control of the system, the OS kernel may only call UEFI Runtime 
Services.  

A complete listing of a sample application for an OS loader can be found below. The 
code fragments in the following sections do not perform any error checking. Also, the 
OS loader sample application makes use of several UEFI Library functions to simplify 
the implementation.  

The output shown below starts by printing out the device path and the file path 
of the OS loader itself. It also shows where in memory the OS loader resides and how 
many bytes it is using. Next, it loads the file OSKERNEL.BIN into memory. The file 
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OSKERNEL.BIN is retrieved from the same directory as the image of the OS loader 
sample of Figure 4.1. 
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Figure 4.1: EFI Loader in System Diagram 

The next section of the output shows the first block of several block devices. The first 
one is the first block of the floppy drive with a FAT12 file system. The second one is 
the Master Boot Record (MBR) from the hard drive. The third one is the first block of a 
large FAT32 partition on the same hard drive, and the fourth one is the first block of a 
smaller FAT16 partition on the same hard drive. 

The final step shows the pointers to all the system configuration tables, the sys-
tem’s current memory map, and a list of all the system’s environment variables. The 
very last step shown is the OS loader calling ExitBootServices(). 

Device Path and Image Information of the OS Loader 

The following code fragment shows the steps that are required to get the device 
path and file path to the OS loader itself. The first call to HandleProtocol() gets 
the LOADED_IMAGE_PROTOCOL interface from the ImageHandle that was 
passed into the OS loader application. The second call to HandleProtocol() gets 
the DEVICE_PATH_PROTOCOL interface to the device handle of the OS loader im-
age. These two calls transmit the device path of the OS loader image, the file path, 
and other image information to the OS loader itself. 

www.ebook3000.com

http://www.ebook3000.org


 Accessing Files in the Device Path of the OS Loader | 57 

  

 

BS->HandleProtocol( 
        ImageHandle,  
        &LoadedImageProtocol,  
        LoadedImage  
       ); 

 

BS->HandleProtocol( 
        LoadedImage->DeviceHandle,  
        &DevicePathProtocol,  
        &DevicePath 
      ); 

 

Print ( 
   L"Image device : %s\n",  
   DevicePathToStr (DevicePath) 
  );  

Print ( 
    L"Image file   : %s\n",  
    DevicePathToStr (LoadedImage->FilePath) 
  ); 

Print ( 
    L"Image Base   : %X\n",  
    LoadedImage->ImageBase 
  ); 

Print ( 
    L"Image Size   : %X\n",  
    LoadedImage->ImageSize 
  ); 

Accessing Files in the Device Path of the OS Loader 

The previous section shows how to retrieve the device path and the image path of the 
OS loader image. The following code fragment shows how to use this information to 
open another file called OSKERNEL.BIN that resides in the same directory as the OS 
loader itself. The first step is to use HandleProtocol() to get the FILE_SYS-
TEM_PROTOCOL interface to the device handle retrieved in the previous section. 
Then, the disk volume can be opened so file access calls can be made. The end result 
is that the variable CurDir is a file handle to the same partition in which the OS 
loader resides. 
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BS->HandleProtocol( 
   LoadedImage->DeviceHandle,  
   &FileSystemProtocol,  
   &Vol 
); 
 

Vol->OpenVolume ( 
        Vol,  
        &RootFs 
       ); 
 

CurDir = RootFs; 

The next step is to build a file path to OSKERNEL.BIN that exists in the same direc-
tory as the OS loader image. Once the path is built, the file handle CurDir can be 
used to call Open(), Close(), Read(), and Write() on the OSKERNEL.BIN 
file. The following code fragment builds a file path, opens the file, reads it into an 
allocated buffer, and closes the file. 
 

StrCpy(FileName,DevicePathToStr(LoadedImage-
>FilePath)); 
for(i=StrLen(FileName);i>=0 && FileName[i]!='\\';i-
-); 
 
FileName[i] = 0; 
 
StrCat(FileName,L"\\OSKERNEL.BIN"); 
 CurDir->Open (CurDir, &FileHandle, FileName, 
EFI_FILE_MODE_READ, 0); 
Size = 0x00100000; 
BS->AllocatePool(EfiLoaderData, Size, 
&OsKernelBuffer); 
 
FileHandle->Read(FileHandle, &Size, 
OsKernelBuffer); 
 
FileHandle->Close(FileHandle); 

Finding the OS Partition 

The UEFI sample environment materializes a BLOCK_IO_PROTOCOL instance for 
every partition that is found in a system. An OS loader can search for OS partitions by 
looking at all the BLOCK_IO devices. The following code fragment uses LibLo-
cateHandle() to get a list of BLOCK_IO device handles. These handles are then 
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used to retrieve the first block from each one of these BLOCK_IO devices. The 
HandleProtocol() API is used to get the DEVICE_PATH_PROTOCOL and 
BLOCK_IO_PROTOCOL instances for each of the BLOCK_IO devices. The variable 
BlkIo is a handle to the BLOCK_IO device using the BLOCK_IO_PROTOCOL in-
terface. At this point, a ReaddBlocks() call can be used to read the first block of a 
device. The sample OS loader just dumps the contents of the block to the display. A 
real OS loader would have to test each block read to see if it is a recognized partition. 
If a recognized partition is found, then the OS loader can implement a simple file sys-
tem driver using the UEFI API ReadBlocks() function to load additional data from 
that partition. 
 

NoHandles = 0; 

HandleBuffer = NULL; 

LibLocateHandle(ByProtocol, &BlockIoProtocol, NULL, 
&NoHandles, &HandleBuffer); 

for(i=0;i<NoHandles;i++) { 

    BS->HandleProtocol ( 
            HandleBuffer[i],  
            &DevicePathProtocol,  
            &DevicePath 
           ); 

    BS->HandleProtocol ( 
            HandleBuffer[i],  
            &BlockIoProtocol,  
            &BlkIo 
           );  

    Block = AllocatePool (BlkIo->BlockSize); 

    MediaId = BlkIo->MediaId; 

    BlkIo->ReadBlocks( 
             BlkIo,  
             MediaId,  
             (EFI_LBA)0,  
             BlkIo->BlockSize,  
             Block  
            ); 

    Print( 
        L"\nBlock #0 of device 
%s\n",DevicePathToStr(DevicePath)); 

    DumpHex(0,0,BlkIo->BlockSize,Block); 

} 
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Getting the Current System Configuration 

The system configuration is available through the SystemTable data structure that 
is passed into the OS loader. The operating system loader is an UEFI application that 
is responsible for bridging the gap between the platform firmware and the operating 
system runtime. The System Table informs the loader of many things: the services 
available from the platform firmware (such as block and console services for loading 
the OS kernel binary from media and interacting with the user prior to the OS drivers 
are loaded, respectively) and access to industry standard tables like ACPI, SMBIOS, 
and so on. Five tables are available, and their structure and contents are described in 
the appropriate specifications. 
 

LibGetSystemConfigurationTable( 
               &AcpiTableGuid,&AcpiTable 
              ); 

LibGetSystemConfigurationTable( 
               &SMBIOSTableGuid,&SMBIOSTable 
              ); 

LibGetSystemConfigurationTable( 
               &SalSystemTableGuid,&SalSystemTable 
              ); 

LibGetSystemConfigurationTable( 
               &MpsTableGuid,&MpsTable 
              ); 

   

Print( 
    L"  ACPI Table is at address           :    
    %X\n",AcpiTable 
    ); 

Print( 
    L"  SMBIOS Table is at address         :  
    %X\n",SMBIOSTable 
    ); 

Print( 
    L"  Sal System Table is at address     :  
    %X\n",SalSystemTable 
   ); 

Print( 
    L"  MPS Table is at address            : 
    %X\n",MpsTable 
   ); 
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Getting the Current Memory Map 

One UEFI Library function can retrieve the memory map maintained by the UEFI en-
vironment. While the loader is running, the memory has been managed by the plat-
form firmware. It has allocated memory for both firmware usage (boot services 
memory) and other memory that needs to persist into the OS runtime (runtime 
memory). Until the loader passes final control to the OS kernel and invokes Exit-
BootServices(), the UEFI platform firmware manages the allocation of memory. 
The means by which the OS loader and other UEFI applications can ascertain the al-
location of memory is via the memory map services. The following code fragment 
shows the use of this function to ascertain the memory map, and it displays the con-
tents of the memory map. An OS loader must pay special attention to the MapKey 
parameter. Every time that the UEFI environment modifies the memory map that it 
maintains, the MapKey is incremented. An OS loader needs to pass the current 
memory map to the OS kernel. Depending on what functions the OS loader calls be-
tween the time the memory map is retrieved and the time that Exit-
BootServices() is called, the memory map may be modified. In general, the OS 
loader should retrieve the memory map just before calling ExitBootServices(). 
If ExitBootServices() fails because the MapKey does not match, then the OS 
loader must get a new copy of the memory map and try again. 

MemoryMap = LibMemoryMap( 
              &NoEntries, 
              &MapKey, 
              &DescriptorSize, 
              &DescriptorVersion 
             ); 
 
Print( 
   L"Memory Descriptor List:\n\n" 
  ); 
 
Print( 
   L"  Type        Start Address     End Address       
Attributes      \n" 
    ); 
Print( 
  L"  ==========  ================  
================  ================\n"); 
 
MemoryMapEntry = MemoryMap; 
 
for(i=0;i<NoEntries;i++) { 
    Print(L"  %s  %lX  %lX  %lX\n", 
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          OsLoaderMemoryTypeDesc[MemoryMapEntry-
>Type], 
          MemoryMapEntry->PhysicalStart, 
          MemoryMapEntry->PhysicalStart +  
              LShiftU64(  
                    MemoryMapEntry->NumberOfPages, 
                    PAGE_SHIFT)-1, 
                    MemoryMapEntry->Attribute 
                    ); 
    MemoryMapEntry = NextMemoryDescriptor( 
                           MemoryMapEntry,  
                           DescriptorSize 
                          ); 
} 

Getting Environment Variables 

The following code fragment shows how to extract all the environment variables 
maintained by the UEFI environment. It uses the GetNextVariableName() API 
to walk the entire list.  
 

VariableName[0] = 0x0000; 
 
VendorGuid = NullGuid; 
 
Print( 
   L"GUID                                Variable 
Name             
   Value\n"); 
Print( 
    L"=================================== 
====================  
    ========\n"); 
do { 
  VariableNameSize = 256; 
  Status = RT->GetNextVariableName( 
                 &VariableNameSize, 
                 VariableName, 
                 &VendorGuid 
               ); 
  if (Status == EFI_SUCCESS) { 
    VariableValue = LibGetVariable( 
                        VariableName, 
                        &VendorGuid 
                       ); 
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    Print( 
      L"%.-35g %.-20s  
      %X\n",&VendorGuid,VariableName,VariableValue 
     ); 
  } 
} while (Status == EFI_SUCCESS); 

Transitioning to an OS Kernel 

A single call to ExitBootServices() terminates all the UEFI Boot Services that 
the UEFI environment provides. From that point on, only the UEFI Runtime Services 
may be used. Once this call is made, the OS loader needs to prepare for the transition 
to the OS kernel. It is assumed that the OS kernel has full control of the system and 
that only a few firmware functions are required by the OS kernel. These functions are 
the UEFI Runtime Services. The OS loader must pass the SystemTable to the OS 
kernel so that the OS kernel can make the Runtime Services calls. The exact mecha-
nism that is used to transition from the OS loader to the OS kernel is implementation-
dependent. It is important to note that the OS loader could transition to the OS kernel 
prior to calling ExitBootServices(). In this case, the OS kernel would be re-
sponsible for calling ExitBootServices() before taking full control of the sys-
tem. 

Summary 

This chapter has provided an overview of some common protocols and their demon-
stration via a sample operating system loader application. Given that UEFI has been 
primarily designed as an operating system loader environment, this is a key chapter 
for demonstrating the usage and capability of the UEFI service set. 
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Chapter 5 – UEFI Runtime 
Adding manpower to a late software project makes it later. 

—Brook’s Law 

This chapter describes the fundamental services that are made available in an UEFI-
compliant system. The services are defined by interface functions that may be used 
by code running in the UEFI environment. Such code may include protocols that man-
age device access or extend platform capabilities. In this chapter, the runtime services 
will be the focus of discussion. These runtime services are functions that are available 
both during UEFI operation and when the OS has been launched and running.  

During boot, system resources are owned by the firmware and are controlled through 
a variety of system services that expose callable APIs. In UEFI there are two primary 
types of services: 
■ Boot Services – Functions that are available prior to the launching of the boot 

target (such as the OS), and prior to the calling of the ExitBootServices() 
function. 

■ Runtime Services – Functions that are available both during the boot phase prior 
to the launching of the boot target and after the boot target is executing. 

Figure 5.1 illustrates the phases of boot operation that a platform evolves through. 

Early 
Platform

Initialization

Launch
EFI

Infrastructure

Transient 
System Load

(TSL)

After 
Life
(AL)

Power on [ . . Platform initialization . . ] [ . . . . OS boot . . . . ] Shutdown

Run Time
(RT)

?

OS-Present
App

Final OS 
Environment

Final OS 
Boot Loader

OS-Absent
App

Transient OS 
Environment

Transient OS 
Boot Loader

Boot Manager

CPU
Init

Chipset 
Init

Board 
Init

Device,  
Bus, or 
Service  
Driver

Exposed
Runtime
Interface

Reset 
Vectpr

Reset
Vector

Boot Services API Availability
Runtime Services API Availability

 

Figure 5.1: Phases of Boot Operation 



66 | Chapter 5 – UEFI Runtime 

  

In Figure 5.1, it is clearly evident that the two previously mentioned forms of services 
(Boot Services and Runtime Services) are available during the early launch of the 
UEFI infrastructure and only the runtime services are available after the remainder of 
the firmware stack has relinquished control to an OS loader. Once an OS loader has 
loaded enough of its own environment to take control of the system’s continued op-
eration it can then terminate the boot services with a call to ExitBootSer-
vices().  

In principle, the ExitBootServices() call is intended for use by the operat-
ing system to indicate that its loader is ready to assume control of the platform and 
all platform resource management. Thus, boot services are available up to this point 
to assist the OS loader in preparing to boot the operating system. Once the OS loader 
takes control of the system and completes the operating system boot process, only 
runtime services may be called. Code other than the OS loader, however, may or may 
not choose to call ExitBootServices(). This choice may in part depend upon 
whether or not such code is designed to make continued use of UEFI boot services or 
the boot services environment. 

Isn’t There Only One Kind of Memory? 

When UEFI memory is allocated, it is “typed” according to certain classifications 
which designate the general purpose of a particular memory type. For instance, one 
might choose to allocate a buffer as an EfiRuntimeServicesData buffer if it 
was desired that a buffer containing some data remained available into the runtime 
phase of platform operations. When allocated memory, one might think “Why not 
allocate everything as a runtime memory type ‘just in case’?” Such activity is hazard-
ous because when the platform transitions from Boot Services phase into Runtime 
phase, all of the buffers which might have been allocated as runtime as now frozen 
and unavailable to the OS. Since there is an implicit assumption that items which 
request runtime-enabled memory know what they are doing, one can imagine a pro-
liferation of memory leaks if we simply assumed a single type of memory usage. With 
this situation in mind, UEFI establishes a certain set of memory types with certain 
expected usage associated with each. 
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Table 5.1: UEFI Memory Types and Usage Prior to ExitBootServices() 

Mnemonic Description 

EfiReservedMemoryType Not used. 

EfiLoaderCode The code portions of a loaded application. (Note that UEFI 
OS loaders are UEFI applications.)  

EfiLoaderData The data portions of a loaded application and the default 
data allocation type used by an application to allocate pool 
memory.  

EfiBootServicesCode The code portions of a loaded Boot Services Driver. 

EfiBootServicesData The data portions of a loaded Boot Serves Driver, and the 
default data allocation type used by a Boot Services Driver 
to allocate pool memory.   

EfiRuntimeServicesCode The code portions of a loaded Runtime Services Driver. 

EfiRuntimeServicesData The data portions of a loaded Runtime Services Driver and 
the default data allocation type used by a Runtime Services 
Driver to allocate pool memory.  

EfiConventionalMemory Free (unallocated) memory. 

EfiUnusableMemory Memory in which errors have been detected. 

EfiACPIReclaimMemory Memory that holds the ACPI tables.  

EfiACPIMemoryNVS Address space reserved for use by the firmware.  

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped 
IO region be mapped by the OS to a virtual address so it can 
be accessed by UEFI runtime services.  

EfiMemoryMappedIOPortSpace System memory-mapped IO region that is used to translate 
memory cycles to IO cycles by the processor. 

EfiPalCode  Address space reserved by the firmware for code that is part 
of the processor.  

Table 5.1 lists memory types and their corresponding usage prior to launching a boot 
target (such as an OS). The memory types that would be used by most runtime drivers 
would be those with the keyword “runtime” in them.  

However, to better illustrate how these memory types are used in the runtime 
phase of the platform evolution, Table 5.2 illustrates how these UEFI Memory types 
are used after the OS loader has called ExitBootServices() to indicate the tran-
sition from the pre-boot, to the runtime phase of operations. 
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Table 5.2:UEFI Memory Types and Usage after ExitBootServices() 

Mnemonic Description 

EfiReservedMemoryType Not used.    

EfiLoaderCode The Loader and/or OS may use this memory as they see fit. 
Note: the OS loader that called Exit-
BootServices() is utilizing one or more Efi-
LoaderCode ranges. 

EfiLoaderData The Loader and/or OS may use this memory as they see fit. 
Note: the OS loader that called Exit-
BootServices() is utilizing one or more Efi-
LoaderData ranges.  

EfiBootServicesCode Memory available for general use. 

EfiBootServicesData Memory available for general use. 

EfiRuntimeServicesCode The memory in this range is to be preserved by the loader 
and OS in the working and ACPI S1–S3 states. 

EfiRuntimeServicesData The memory in this range is to be preserved by the loader 
and OS in the working and ACPI S1–S3 states. 

EfiConventionalMemory Memory available for general use. 

EfiUnusableMemory Memory that contains errors and is not to be used. 

EfiACPIReclaimMemory This memory is to be preserved by the loader and OS until 
ACPI is enabled. Once ACPI is enabled, the memory in this 
range is available for general use. 

EfiACPIMemoryNVS This memory is to be preserved by the loader and OS in the 
working and ACPI S1–S3 states. 

EfiMemoryMappedIO This memory is not used by the OS. All system memory-
mapped IO information should come from ACPI tables. 

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-
mapped IO port space information should come from ACPI 
tables. 

EfiPalCode  This memory is to be preserved by the loader and OS in the 
working and ACPI S1–S3 states. This memory may also 
have other attributes that are defined by the processor im-
plementation. 

In Table 5.2, one can see how the runtime memory types are preserved, and the 
BootServices type of memory is available for the OS to reclaim as its own.  
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How Are Runtime Services Exposed? 

In UEFI, firmware services are exposed through a set of UEFI protocol definitions, a 
series of function pointers in some special purpose service tables, and finally in the 
UEFI configuration table. Of these mechanisms that are used to expose firmware 
APIs, only the following two are persistent into the runtime phase of computer oper-
ations. 
■ Runtime Services Table - The UEFI Runtime Services Table contains pointers to 

all of the runtime services. All elements in the UEFI Runtime Services Table are 
prototypes of function pointers that are valid after the operating system has taken 
control of the platform with a call to ExitBootServices(). 

■ UEFI Configuration Table - The UEFI Configuration Table contains a set of 
GUID/pointer pairs. The number of entries in this table can easily grow over time. 
That is why a GUID is used to identify the configuration table type. This table may 
contain at most one instance of each table type. 

The runtime services that are exposed in the UEFI Runtime Services Table at mini-
mum define the core required runtime API capabilities of an UEFI-compliant plat-
form. These functions include services that expose time, virtual memory, and variable 
services at a minimum.  

The information exposed through the UEFI Configuration Table is going to vary 
widely between platform implementations. One key thing to note, however, is that 
the GUID associated with the GUID/pointer pair defines how one interprets the data 
to which the pointer is pointing. The content to which the pointer is pointed could be 
a function/API, a table of data, or practically anything else. Some examples of the 
type of information that can be exposed through this table are SMBIOS, ACPI, and 
MPS tables, as well as function prototypes for an UNDI-compliant network card. Fig-
ure 5.2 is an example diagram of the interactions between the UEFI Configuration Ta-
ble and an example function prototype. 

 

Figure 5.2: Interactions between the UEFI Configuration Table and a Function Prototype 
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Time Services 

This section describes the core UEFI definitions for time-related functions that are 
specifically needed by operating systems at runtime to access underlying hardware 
that manages time information and services. The purpose of these interfaces is to pro-
vide runtime consumers of these services an abstraction for hardware time devices, 
thereby relieving the need to access legacy hardware devices directly. The functions 
listed in Table 5.3 reside in the UEFI Runtime Services table. 

Table 5.3: Time-based Functions in the UEFI Runtime Services Table 

Name Type Description 

GetTime Runtime Returns the current time and date, and the time-keeping capa-
bilities of the platform.  

SetTime Runtime Sets the current local time and date information. 

GetWakeupTime Runtime Returns the current wakeup alarm clock setting. 

SetWakeupTime Runtime Sets the system wakeup alarm clock time. 

Why Abstract Time? 

For a variety of reasons one might choose to abstract the access to the platform 
RealTime Clock (RTC). First, very poor standard mechanisms (if any) exist to access 
the platform’s RTC. A variety of legacy interrupts might serve some purposes, but typ-
ically might not abstract sufficient information to be particularly useful. If a user 
wanted to talk to the RTC directly, the user would not typically know how to with the 
exception of using some of the standard IBM CMOS directives. Ultimately, how one 
might gain access to this fundamental piece of information (“What time is it?”) could 
change over time. With that in mind, one needed the platform to provide a set of ab-
stractions so that the caller would not have to worry about the vagaries of varying 
programming some RTC to acquire time information or to depend on some poorly 
documented and completely nonstandard set of legacy interrupts to abstract this 
same data.  

Get Time 

Even though this function is called “GetTime”, it is intended to return the current time 
as well as the date information along with the capabilities of the current underlying 
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time-based hardware. This service is not intended to provide highly accurate timings 
beyond certain described levels. During the Boot Services phase of platform initiali-
zation, there are other means by which to do accurate time stall measurements (for 
example, see the Stall() boot services function in the UEFI specification).  

Even though Figure 5.3 shows the smallest granularity of time measurement in 
nanoseconds, this is by no means intended as an indication of the accuracy of the 
time measurement of which the function is capable. The only thing that is guaranteed 
by the call to this function is that it returns a time that was valid during the call to the 
function. This guarantee is more understandable when one thinks about the pro-
cessing time for the call to traverse various levels of code between the caller and the 
service function actually talking to the hardware device and this data then being 
passed back to the caller. Since this is a call initiated during the runtime phase of 
platform operations, the highly accurate timers that are needed for small granularity 
timing events would be provided by alternate (likely OS-based) solutions.  
 

//******************************************************* 

//EFI_TIME 

//******************************************************* 

// This represents the current time information 

typedef struct { 
      UINT16            Year;             // 1998 -- 20XX 
      UINT8             Month;            // 1 -- 12 
      UINT8             Day;              // 1 -- 31 
      UINT8             Hour;             // 0 -- 23 
      UINT8             Minute;           // 0 -- 59 
      UINT8             Second;           // 0 -- 59 
      UINT8             Pad1; 
      UINT32            Nanosecond;    // 0 -- 999,999,999 
      INT16             TimeZone;      // -1440 to 1440 or 2047 
      UINT8             Daylight; 
      UINT8             Pad2; 
} EFI_TIME;  

Figure 5.3 Example Time Definition 

Set Time 

This function provides the ability to set the current time and date information on the 
platform.  
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Get Wakeup Time 

This function provides the abstraction for obtaining the alarm clock settings for the 
platform. This is often used to determine if a platform has been set for being woken 
up, and if so, at what time it should be woken up. 

Set Wakeup Time 

Setting a system wakeup alarm causes the system to wake up or power on at the set 
time. When the alarm fires, the alarm signal is latched until acknowledged by calling 
SetWakeupTime() to disable the alarm. If the alarm fires before the system is put 
into a sleeping or off state, since the alarm signal is latched the system will immedi-
ately wake up.  

Virtual Memory Services 

This section contains function definitions for the virtual memory support that may be 
optionally used by an operating system at runtime. If an operating system chooses to 
make UEFI runtime service calls in a virtual addressing mode instead of the flat phys-
ical mode, then the operating system must use the services in this section to switch 
the UEFI runtime services from flat physical addressing to virtual addressing. Table 
5.4 lists the virtual memory services functions that UEFI provides. 

Table 5.4: Virtual Memory Services 

Name Type Description 

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical address-
ing to virtual addressing. 

ConvertPointer Runtime Used by UEFI components to convert internal pointers 
when switching to virtual addressing. 

 
By using these functions, the platform provides a mechanism by which components 
that will exist during the runtime phase of operations can adjust their own data ref-
erences to the new virtual addresses that the runtime caller has supplied. This makes 
it possible for the underlying firmware component(s) to adjust from a physical ad-
dress mode to virtual address mode entity.  

This conversion applies to all functions in the runtime services table as well as 
the pointers in the UEFI System Table. However, this is not necessarily the case for 
the UEFI Configuration Table. In the UEFI Configuration Table, one is dealing with 
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GUID/pointer pairs, and since the pointers are all physical to start with in the firm-
ware, one might think that the pointers are converted during the transition to the 
runtime phase of platform operations, right? In this particular case, you would be 
wrong. 

The GUID portion of the GUID/pointer pair defines the state of the pointer itself. 
In theory, one might have a particular GUID that during runtime has a virtual address 
pointer paired with it, but the next GUID’ in the table might very well be a physical 
pointer. This is because the UEFI Configuration Table can often be used to advertise 
certain pieces of information and the consumer of this information might have reason 
for interpreting the pointer as a physical pointer even though the OS has converted 
all other pertinent data to virtual addresses. In addition, the UEFI Configuration Table 
often might be pointing to a runtime enabled function prototype. In most cases, the 
pointers for this function would be converted, while other items that might be pointed 
at by the UEFI Configuration Table (Data Tables, for instance) might have no reason 
to have any data be converted.  

Set Virtual Address Map 

By calling this service, the agent that is the owner of the system’s memory map (the 
component that called ExitBootServices()) can change the runtime address-
ing mode of the underlying UEFI firmware from physical to virtual. The inputs of 
course are the new virtual memory map which shows an array of memory descriptors 
that have mapping information for all runtime memory ranges.  

When this service is called, all runtime-enabled agents will in turn be called 
through a notification event triggered by the SetVirtualAddressMap() function.  

ConvertPointer 

The ConvertPointer function is used by an UEFI component during the Set-
VirtualAddressMap() operation. When the platform has passed control to an 
OS loader and it in turn calls SetVirtualAddressMap(), a function is called in 
most runtime drivers that responds to the virtual address change event that is trig-
gered. This function uses the ConvertPointer service to convert the current physical 
pointer to an appropriate virtual address pointer. All pointers that the component has 
allocated should be updated using this mechanism. 
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Variable Services 

Variables are defined as key/value pairs that consist of identifying information, at-
tributes, and some quantity of data. Variables are intended for use as a means to store 
data that is passed between the UEFI environment implemented in the platform and 
UEFI OS loaders and other applications that run in the UEFI environment. 

Although the implementation of variable storage is not specifically defined for a 
given platform, variables must be able to persist across reboots of the platform. This 
implies that the UEFI implementation on a platform must arrange it so that variables 
passed in for storage are retained and available for use each time the system boots, at 
least until they are explicitly deleted or overwritten. Provision of this type of nonvol-
atile storage may be very limited on some platforms, so variables should be used spar-
ingly in cases where other means of communicating information cannot be used. Ta-
ble 5.5 lists the variable services functions that UEFI provides. 

Table 5.5:  Variable Services 

Name Type Description 

GetVariable Runtime Returns the value of a variable. 

GetNextVariableName Runtime Enumerates the current variable names.  

SetVariable Runtime Sets the value of a variable. 

GetVariable 

This function returns the value of a given UEFI variable. Since a fully qualified UEFI 
variable name is composed of both a human-readable text value paired with a GUID, 
a vendor can create and manage its own variables without the risk of name conflicts 
by using its own unique GUID value. For instance, one can easily have three variables 
named “Setup” that are wholly unique assuming that each of these “Setup” variables 
has a different numeric GUID value.  

One of the key items to note in the definition of an UEFI variable is that each one 
has some attributes associated with it. These attributes are treated as a bit field, which 
implies that none, any, or all of the bits can be activated at any given time. In the case 
of UEFI variables, however, there are three defined attribute bits to be aware of: 
■ Nonvolatile – a variable that has this attribute activated is defined to be persis-

tent across platform resets. It should also be noted that the explicit absence of 
this bit being activated indicates that the variable is volatile, and is therefore a 
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temporary variable that will be absent once the system resets or the variable is 
deleted. 

■ BootService – a variable that has this attribute activate provides read/write ac-
cess to it during the BootService phase of the platform evolution. This simply 
means that once the platform enters the runtime phase, the data will no longer 
be able to be set through the SetVariable service. 

■ Runtime – a variable that has this attribute activated must also have the 
BootService attribute activated. With this, the variable is accessible during all 
phases of the platform evolution. 

GetNextVariableName 

Since the UEFI variable repository is very similar in concept to a file system, the ability 
to parse the repository is provided by the GetNextVariableName service. This service 
enumerates the current variable names in the platform, and with each subsequent 
call to the service the previous results can be passed into the interface, and on output 
the interface returns the next variable name data. Once the entire list of variables has 
been returned, a subsequent call into the service providing the previous “last” varia-
ble name will provide the equivalent of a “Not Found” error. 

It should be noted that this service is affected by the phase of platform operations. 
Variables that do not have the runtime attribute activated are allocated typically from 
some type of BootServices memory. Since this is the case, once Exit-
BootServices() is performed to signify the transition into the runtime phase, 
these variables will no longer show up in the search list that GetNextVariableName 
provides.  

One other behavior that should be noted is that one might conceive that if a vari-
able has the ability to be named the same human-readable name (such as “Setup”) 
and the only thing that differs is the GUID, one could seed the search mechanism for 
this service by walking a common GUID-based list of variables. This is not the case. 
The usage of this service is typically initiated with a call that starts with a pointer to a 
Null Unicode string as the human-readable name; the GUID is ignored. Instead, the 
entire list of variables must be retrieved, and the caller may act as a filter if you choose 
to have it do so.  

SetVariable 

UEFI variables are often used to provide a means by which to save platform-based 
context information. For instance, when the platform initializes the I/O infrastructure 
and has probed for all known console output devices, it will likely construct a 
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ConOutDev global variable. These global variables have a unique purpose in the plat-
form since they have a specific architectural role to play with a specific purpose. Table 
5.6 shows some of the defined global variables. 

Table 5.6:Global Variables 

Variable Name Attribute Description 

LangCodes BS, RT The language codes that the firmware supports. This 
value is deprecated. 

Lang NV, BS, RT The language code that the system is configured for. 
This value is deprecated. 

Timeout NV, BS, RT The firmware boot manager’s timeout, in seconds, be-
fore initiating the default boot selection. 

PlatformLangCodes BS, RT The language codes that the firmware supports. 

PlatformLang NV, BS, RT The language code that the system is configured for. 

ConIn NV, BS, RT The device path of the default input console. 

ConOut NV, BS, RT The device path of the default output console. 

ErrOut NV, BS, RT The device path of the default error output device. 

ConInDev BS, RT The device path of all possible console input devices. 

ConOutDev BS, RT The device path of all possible console output devices. 

ErrOutDev BS, RT The device path of all possible error output devices. 

The examples in Table 5.6 show some of the common global variables, their descrip-
tions, and their attributes. Some of the noted differences are the presence or absence 
of the NV (nonvolatile) attribute. This simply means that the values associated with 
these variables are not persistent across platform resets and their values are deter-
mined during the initialization phase of platform operations. Unlike variables that 
are persistent, robust implementations of UEFI enable the setting of volatile variables 
in memory-backed store, and do not necessarily have the storage size sensitivities 
that the other variables have that are stored in a fixed hardware with often very lim-
ited storage capacity.  

Software should only use a nonvolatile variable when absolutely necessary. It 
should be noted that a variable has no concept of a zero-byte data payload. All varia-
bles must contain at least 1 byte of data, since the service definition stipulates that 
the means by which you delete a target variable is by calling the SetVariable() service 
with a zero byte data payload. 
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There are certain rules that should definitely be noted when it comes to the use of the 
attributes: 
■ Attributes are only applied to a variable when the variable is created. If a preex-

isting variable is rewritten with different attributes, the result is indeterminate 
and may vary between implementations. The correct method of changing the at-
tributes of a variable is to delete the variable and recreate it with different attrib-
utes.  

■ Setting a data variable with no access attributes or a zero size data payload causes 
it to be deleted.  

■ Runtime access to a data variable implies boot service access. 
■ Once ExitBootServices() is performed, data variables that did not have the 

runtime access attribute set are no longer visible. This simply enforces the para-
digm that once in runtime phase, variables without the runtime attribute are not 
to be read from. 

■ Once ExitBootServices() is performed, only variables that have the runtime and 
the nonvolatile access attributes set can be set with a call to the SetVariable() 
service. In addition, variables that have runtime access but that are not nonvol-
atile are now read-only data variables. The reason for this situation is that once 
the platform firmware has handed off control to another agent (such as the OS), 
it no longer controls the memory services and cannot further allocate services 
that might be backed by memory. Since the SetVariable service typically uses 
memory to spill content to store a volatile variable, this capability is no longer 
available during the runtime phase of operations.  

By providing a mechanism for shared data content such as an UEFI variable, the use 
of variables can be seen as a fairly flexible and highly available mechanism for firm-
ware components to communicate. The variables shown in Table 5.6 are some of the 
architectural variables that steer the behavior of a platform. In this case aspects of the 
platform configuration can be seen in the data reflected by these variables. Another 
usage of the variable services can be to use the volatile (one must stress volatile, and 
not nonvolatile) variable as means by which two disparate components can have a 
common repository that is independent of a nonvolatile backing store (such as a hard 
disk), yet can act as a temporary repository of data such as registry content that is 
discovered by one agent and retrieved by another. This infrastructure provides for a 
lot of flexibility in implementation. 

Miscellaneous Services 

This section contains the remaining function definitions for runtime services that 
were not talked about in previous sections but are required to complete a compliant 
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implementation of an UEFI environment. The services that are in this section are as 
listed in Table 5.7. 

Table 5.7: Miscellaneous Services 

Name Type Description 

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s 
monotonic counter. 

ResetSystem Runtime Resets the entire platform. 

UpdateCapsule Runtime Pass capsules to the firmware. The firmware 
may process the capsules immediately or re-
turn a value to be passed into Reset-
System() that will cause the capsule to be 
processed by the firmware as part of the reset 
process. 

QueryCapsuleCapabilities Runtime Returns if the capsule can be supported via 
UpdateCapsule() 

Reset System  

This service provides a caller the ability to reset the entire platform including all pro-
cessors and devices, and reboots the system. This service provides the ability to stip-
ulate three types of rests: 
■ Cold Reset – A call to the ResetSystem() service stipulating a cold reset will cause 

a system-wide reset. This sets all circuitry within the system to its initial state. 
This type of reset is asynchronous to system operation and operates without re-
gard to cycle boundaries. This is tantamount to a system power cycle.  

■ Warm Reset – Calling the ResetSystem() service stipulating a warm reset will also 
cause a system-wide initialization. The processors are set to their initiate state, 
and pending cycles are not corrupted. This difference should be noted, since 
memory is not typically reinitialized and the machine may be rebooting without 
having cleared memory that previously existed. There are a lot of examples of 
this usage model, and implementations vary on exactly what platforms choose 
to do with this type of feature. If the system does not support this reset type, then 
a Cold Reset must be performed. 

■ Reset Shutdown – Calling the ResetSystem() service stipulating a Reset Shutdown 
will cause the system to enter a power state equivalent to the ACPI G2/S5 or G3 
states. If the system does not support this reset type, then when the system is re-
booted, it should exhibit the same attributes as having booted from a Cold Reset.  
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Get Next High Monotonic Count 

The platform provides a service to get the platform monotonic counter. The platform’s 
monotonic counter is comprised of two 32-bit quantities: the high 32 bits and the low 
32 bits. During boot service time the low 32-bit value is volatile: it is reset to zero on 
every system reset and is increased by 1 on every call to GetNextMonotonicCount(). 
The high 32-bit value is nonvolatile and will be increased by 1 whenever the system 
resets or whenever the low 32-bit count overflows.  

Since the GetNextMonotonicCount() service is available only at boot services time, 
and if the operating system wishes to extend the platform monotonic counter to 
runtime, it may do so by utilizing the GetNextHighMonotonicCount() runtime service. 
To do this, before calling ExitBootServices() the operating system would call Get-
NextMonotonicCount() to obtain the current platform monotonic count. The operat-
ing system would then provide an interface that returns the next count by: 
■ Adding 1 to the last count. 
■ Before the lower 32 bits of the count overflows, call GetNextHighMonotonic-

Count(). This will increase the high 32 bits of the platform’s nonvolatile portion 
of the monotonic count by 1.  

This function may only be called at runtime. 

UpdateCapsule 

This runtime function allows a caller to pass information to the firmware. UpdateCap-
sule is commonly used to update the firmware FLASH or for an operating system to have 
information persist across a system reset. Other usage models such as updating plat-
form configuration are also possible depending on the underlying platform support. 

A capsule is simply a contiguous set of data that starts with an EFI_CAP-
SULE_HEADER. The CapsuleGuid field in the header defines the format of the capsule. 

The capsule contents are designed to be communicated from an OS-present envi-
ronment to the system firmware. To allow capsules to persist across system reset, a 
level of indirection is required for the description of a capsule, since the OS primarily 
uses virtual memory and the firmware at boot time uses physical memory. This level 
of abstraction is accomplished via the EFI_CAPSULE_BLOCK_DESCRIPTOR. The 
EFI_CAPSULE_BLOCK_DESCRIPTOR allows the OS to allocate contiguous virtual ad-
dress space and describe this address space to the firmware as a discontinuous set of 
physical address ranges. The firmware is passed both physical and virtual addresses 
and pointers to describe the capsule so the firmware can process the capsule imme-
diately or defer processing of the capsule until after a system reset. 
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Depending on the intended consumption, the firmware may process the capsule 
immediately. If the payload should persist across a system reset, the reset value re-
turned from QueryCapsuleCapabilities must be passed into ResetSystem() and will 
cause the capsule to be processed by the firmware as part of the reset process. 

QueryCapsuleCapabilities 

This runtime function allows a caller to check whether or not a particular capsule can 
be supported by the platform prior to sending it to the UpdateCapsule routine. Many 
of these checks are based on the type of capsule being passed and their associated 
flag values contained within the capsule header. 

Summary 

This chapter has introduced some of the basic UEFI runtime capabilities. These are 
unique in that they are the few aspects of the firmware that will reside in the system 
even when the target software (such as the operating system) is running. These are 
the functions that can be leveraged any time during the platform’s evolution from pre-
OS through the runtime phases. 
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Chapter 6 – UEFI Console Services 
Never test for an error condition you don’t know how to handle. 

—Steinbach’s Guideline for Systems Programming 

This chapter describes how UEFI extends the traditional boundaries of console sup-
port in the pre-boot phase and provides a series of software layering approaches that 
are commonly used in UEFI-compliant platforms. Most platforms, at minimum, 
would have a text-based console for a user to either locally or remotely interact with 
the system. A variety of mechanisms can accomplish this communication in UEFI. 
Whether it is through a remote interface, through a local keyboard and monitor, or 
even a remote network connection, each has a common root that can be thought of as 
the basic UEFI console support. This support is used to handle input and output of 
text-based information intended for the system user during the operation of code in 
the UEFI boot services environment. These console definitions are split into three 
types of console devices: one for input, and one each for normal output and errors. 

These interfaces are specified by function call definitions to allow maximum flex-
ibility in implementation. For example, a compliant system is not required to have a 
keyboard or screen directly connected to the system. As long as the semantics of the 
functions are preserved, implementations may direct information using these inter-
faces in any way that succeeds in passing the information to the system user. 

The UEFI console is built out of two primary protocols: UEFI Simple Text Input 
and UEFI Simple Text Output. These two protocols implement a basic text-based con-
sole that allows platform firmware, UEFI applications, and UEFI OS loaders to present 
information to and receive input from a system administrator. The UEFI console con-
sists of 16-bit Unicode characters, a simple set of input control characters known as 
scan codes, and a set of output-oriented programmatic interfaces that give function-
ality equivalent to an intelligent terminal. In the UEFI 2.1 specification, an extension 
to the Simple Text Input protocol was introduced (now referred to as Simple Text In-
put Ex), which greatly expanded the supportable keys as well as state information 
that can be retrieved from the keyboard. This text-based set of interfaces does not 
inherently support pointing devices on input or bitmaps on output. 

To ensure greatest interoperability, the UEFI Simple Text Output protocol is rec-
ommended to support at least the printable basic Latin Unicode character set to ena-
ble standard terminal emulation software to be used with a UEFI console. The basic 
Latin Unicode character set implements a superset of ASCII that has been extended 
to 16-bit characters. This provides the maximum interoperability with external termi-
nal emulations that might otherwise require the conversion of text encoding to be 
down-converted to a set of ASCII equivalents. 
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UEFI has a variety of system-wide references to consoles. The UEFI System Table 
contains six console-related entries: 
■ ConsoleInHandle – The handle for the active console input device. This han-

dle must support the UEFI Simple Text Input protocol and the UEFI Simple Text 
Input Ex protocol.  

■ ConIn – A pointer to the UEFI Simple Text Input protocol interface that is asso-
ciated with ConsoleInHandle. 

■ ConsoleOutHandle – The handle for the active console output device. This 
handle must support the UEFI Simple Text Output protocol.  

■ ConOut – A pointer to the UEFI Simple Text Output protocol interface that is 
associated with ConsoleOutHandle. 

■ StandardErrorHandle – The handle for the active standard error console 
device. This handle must support the UEFI Simple Text Output protocol.  

■ StdErr – A pointer to the UEFI Simple Text Output protocol interface that is 
associated with StandardErrorHandle. 

Other system-wide references to consoles in UEFI are contained within the global var-
iable definitions. Some of the pertinent global variable definitions in UEFI are: 
■ ConIn – The UEFI global variable that contains the device path of the default 

input console. 
■ ConInDev – The UEFI global variable that contains the device path of all possi-

ble console input devices. 
■ ConOut – The UEFI global variable that contains the device path of the default 

output console. 
■ ConOutDev – The UEFI global variable that contains the device path of all pos-

sible console output devices. 
■ ErrOut – The UEFI global variable that contains the device path of the default 

error console. 
■ ErrOutDev – The UEFI global variable that contains the device path of all pos-

sible console output devices. 

Figure 6.1 illustrates the software layering discussed so far. An UEFI application or 
driver that wants to communicate through a text interface can use the active console 
shown in the UEFI System Table to call the interface that supports the appropriate 
text input or text output protocol. During initialization, the system table is passed to 
the launched UEFI application or driver, and this component can then immediately 
start using the console in question.  
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Figure 6.1: Initial Software Layering 

To further describe these interactions, it is necessary to delve a bit deeper into what 
these text I/O interfaces really look like and what they are effectively responsible for.  

Simple Text Input Protocol 

The Simple Text Input Protocol defines the minimum input required to support a spe-
cific ConIn device. This interface provides two basic functions for the caller: 
■ Reset – This function resets the input device hardware. As part of the initializa-

tion process, the firmware/device makes a quick but reasonable attempt to verify 
that the device is functioning. This hardware verification process is implementa-
tion-specific and is left up to the firmware and/or UEFI driver to implement. 

■ ReadKeyStroke – This function reads the next keystroke from the input de-
vice. If no keystroke is pending, the function returns a UEFI Not Ready error. If a 
keystroke is pending, a UEFI key is returned. A UEFI key is composed of a scan 
code as well as a Unicode character. The Unicode character is the actual printable 
character or is zero if the key is not represented by a printable character, such as 
the control key or a function key. 
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When reading a key from the ReadKeyStroke() function, an UEFI Input Key is 
retrieved. In traditional firmware, all PS/2 keys had a hardware specific scan code, 
which was the sole item firmware dealt with. In UEFI, things have been changed a bit 
to facilitate the reasonable transaction of this data both with local and remote users. 
The data sent back has two primary components: 
■ Unicode Character – The Simple Text Input protocol defines an input stream that 

contains Unicode characters. This value represents the Unicode-encoded 16-bit 
value that corresponds to the key that was pressed by the user. A few Unicode 
characters have special meaning and are thus defined as supported Unicode con-
trol characters, as described in Table 6.1. 

Table 6.1: UEFI-supported Unicode Control Characters 

Mnemonic Unicode Description 

Null U+0000 Null character ignored when received. 

BS U+0008 Backspace. Moves cursor left one column. If the cursor is 
at the left margin, no action is taken. 

TAB U+0x0009 Tab. 

LF U+000A Linefeed. Moves cursor to the next line. 

CR U+000D Carriage Return. Moves cursor to left margin of the current 
line. 

 
■ Scan Code - The input stream supports UEFI scan codes in addition to Unicode 

characters. If the scan code is set to 0x00 then the Unicode character is valid and 
should be used. If the UEFI scan code is set to a value other than 0x00, it repre-
sents a special key as defined in Table 6.2. 

Table 6.2: UEFI-supported Scan Codes 

UEFI Scan Code Description 

0x00 Null scan code. 

0x01 Move cursor up 1 row. 

0x02 Move cursor down 1 row. 

0x03 Move cursor right 1 column. 

0x04 Move cursor left 1 column. 
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UEFI Scan Code Description 

0x05 Home. 

0x06 End. 

0x07 Insert. 

0x08 Delete. 

0x09 Page Up. 

0x0a Page Down. 

0x0b Function 1. 

0x0c Function 2. 

0x0d Function 3. 

0x0e Function 4. 

0x0f Function 5. 

0x10 Function 6. 

0x11 Function 7. 

0x12 Function 8. 

0x13 Function 9. 

0x14 Function 10. 

0x17 Escape. 
 
The ReadKeyStroke function provides the additional capability to signal an UEFI 
event when a key has been received. To leverage this capability, one must use either 
the WaitForEvent or CheckEvent services. The event to pass into these services 
is the following: 
■ WaitForKey – The event to use when calling WaitForEvent() to wait for a 

key to be available. 

The activity being handled by the Simple Text Input protocol is very similar to the INT 
16h services that were available in legacy firmware. Some of the primary differences 
are that the legacy firmware service returned only the ASCII equivalent 8-bit value for 
the key that was pressed along with the hardware-specific (such as PS/2) scan codes. 
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Simple Text Input Ex Protocol 

The Simple Text Input Ex protocol provides the same functionality that the Simple 
Text Input protocol produced and adds a series of additional capabilities. This inter-
face provides a few new basic functions for the caller: 
■ ReadKeyStrokeEx – This function reads the next keystroke from the input de-

vice. It operates in a fashion similar to the ReadKeyStroke from the Simple 
Text Input protocol, except it has the ability to extract a series of extended key-
strokes that were not previously possible (See Table 6.3 and Table 6.4). This in-
cludes both shift state (for example, Left Control key pressed, Right Shift pressed, 
and so on), and toggle information (for example, Caps Lock is turned on). If no 
keystroke is pending, the function returns an EFI Not Ready error. If a keystroke 
is pending, a UEFI key is returned.  

■ Key Registration Capabilities – This set of functions provides for the ability to reg-
ister and unregister a set of keystrokes so that when a user hits the same key-
stroke, a notification function is called. This is useful in the case where there is a 
desire to have a particular hot-key registered and then associated with a particu-
lar piece of software. This capability is often associated with the KEY#### UEFI 
global variable, which associated a key sequence with a particular BOOT#### 
variable target. 

■ SetState – This function allows the settings of certain state data for a given 
input device. This data often encompasses information such as whether or not 
Caps Lock, Num Lock, or Scroll Lock are active. 

Table 6.3: Simple Text Input Ex Keyboard Shift States 

Key Shift State Mask Value Description 

0x80000000 If high bit is on, then the state value is valid. For devices that are 
not capable of producing shift state values, this value will be off. 

0x01 Right Shift key is pressed 

0x02 Left Shift key is pressed 

0x04 Right Control key is pressed 

0x08 Left Control key is pressed 

0x10 Right Alt key is pressed 

0x20 Left Alt key is pressed 

0x40 Right logo key is pressed 

0x80 Left logo key is pressed 
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Key Shift State Mask Value Description 

0x100 Menu key is pressed 

0x200 System Request (SysReq) key is pressed 
 

Table 6.4: Simple Text Input Ex Keyboard Toggle States 

Keyboard Toggle 
State Mask Value 

Description 

0x80 If high bit is on, then the state value is valid. For devices that are not capa-
ble of representing toggle state values, this value will be off. 

0x01 Scroll Lock is active 

0x02 Num Lock is active 

0x04 Caps Lock is active 
 

Simple Text Output Protocol 

The Simple Text Output protocol is used to control text-based output devices. It is the 
minimum required protocol for any handle supplied as the ConOut or StdOut device. 
In addition, the minimum supported text mode of such devices is at least 80  25 char-
acters.  

A video device that supports only graphics mode is required to emulate text mode 
functionality. Output strings themselves are not allowed to contain any control codes 
other than those defined in Table 6.1. Positional cursor placement is done only via the 
SetCursorPosition() function. It is highly recommended that text output to 
the StdErr device be limited to sequential string outputs. That is, it is not recom-
mended to use ClearScreen() or SetCursorPosition() on output mes-
sages to StdErr, so that this data can be clearly captured or viewed. 

The Simple Text Output protocol also has a pointer to some mode data, as shown 
in Figure 6.2. This mode data is used to determine what the current text settings are 
for the given device. Much of this information is used to determine what the current 
cursor position is as well as the given foreground and background color. In addition, 
one can stipulate whether a cursor should be visible or not. 
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typedef struct {       
    INT32                           MaxMode;       
    // current settings       
    INT32                           Mode;       
    INT32                           Attribute;       
    INT32                           CursorColumn;       
    INT32                           CursorRow;       
    BOOLEAN                         CursorVisible;       
} SIMPLE_TEXT_OUTPUT_MODE; 

Figure 6.2: Mode Structure for UEFI Simple Text Output Protocol 

The Simple Text Output protocol also has a variety of text output related functions; 
however, this chapter focuses on some of the most commonly used ones: 
■ OutputString – Provides the ability to write a NULL-terminated Unicode 

string to the output device and have it displayed. All output devices must also 
support some of the basic Unicode drawing characters listed in the UEFI 2.1 Spec-
ification. This is the most basic output mechanism on an output device. The string 
is displayed at the current cursor location on the output device(s) and the cursor 
is advanced according to the rules listed in Table 6.3. 

Table 6.5: Cursor Advancement Rules 

Mnemonic Unicode Description 

Null U+0000 Ignore the character, and do not move the cursor. 

BS U+0008 If the cursor is not at the left edge of the display, then move the cur-
sor left one column. 

LF U+000A If the cursor is at the bottom of the display, then scroll the display 
one row, and do not update the cursor position. Otherwise, move the 
cursor down one row. 

CR U+000D Move the cursor to the beginning of the current row. 

Other U+XXXX Print the character at the current cursor position and move the cursor 
right one column. If this moves the cursor past the right edge of the 
display, then the line should wrap to the beginning of the next line. 
This is equivalent to inserting a CR and an LF. Note that if the cursor 
is at the bottom of the display, and the line wraps, then the display 
will be scrolled one line.  

By providing an abstraction that allows a console device, such as a video driver, to 
produce a text interface, this can be compared to legacy firmware support for INT 10h. 
The producer of the Simple Text Output interface is responsible for converting the 
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Unicode text characters into the appropriate glyphs for that device. In the case where 
an unrecognized Unicode character has been sent to the OutputString() API, the 
result is typically a warning that indicates that these characters were skipped. 
■ SetAttribute – This function sets the background and foreground colors for 

both the OutputString() and ClearScreen() functions. A variety of fore-
ground and background colors are defined by the UEFI 2.1 Specification. The color 
mask can be set even if the device is in an invalid text mode. Devices that support 
a different number of text colors must emulate the specified colors to the best of 
the device’s capabilities. 

■ ClearScreen – This function clears the output device(s) display to the cur-
rently selected background color. The cursor position is set to (0,0). 

■ SetCursorPosition – This function sets the current coordinates of the cur-
sor position. The upper left corner of the screen is defined as coordinate (0,0). 

Remote Console Support 

The previous sections of this chapter described some of the text input and output pro-
tocols, and used some examples that were generated through local devices. UEFI also 
supports many types of remote console. This support leverages the pre-existing local 
interfaces but enables the routing of this data to and from devices outside of the plat-
form being executed.  

When a remote console is instantiated, it typically results from UEFI constructing 
an I/O abstraction that a console driver latches onto. In this case, the discussion ini-
tially concerns serial interface consoles. A variety of console transport protocols, such 
as PC ANSI, VT-100, and so on, describe the format of the data that is sent to and from 
the machine.  

The console driver responsible for producing the Text I/O interfaces acts as a filter 
for the I/O. For example, when a remote key is pressed, this might require a variety of 
pieces of data to be constructed and sent from the remote device and upon receipt, 
the console driver needs to interpret this information and convert it into the corre-
sponding UEFI semantics such as the UEFI scan code and Unicode character. The 
same is true for any application running on the local machine that prints a message. 
This message is received by the console driver and translated to the remote terminal 
type semantics.  

Table 6.6 gives examples of how an UEFI scan code can be mapped to ANSI X3.64 
terminal, PC-ANSI terminal, or an AT 101/102 keyboard. PC ANSI terminals support 
an escape sequence that begins with the ASCII character 0x1b and is followed by the 
ASCII character 0x5B, “[“. ASCII characters that define the control sequence that 
should be taken follow the escape sequence. The escape sequence does not contain 
spaces, but spaces are used in Table 6.6 for ease of reading. For additional infor-
mation on UEFI terminal support, see the latest UEFI Specification.  
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Table 6.6:  Sample Conversion Table for UEFI Scan Codes to other Terminal Formats 

EFI  
Scan Code 

 
Description 

ANSI X3.64 
Codes 

PC ANSI 
Codes  

AT 101/102 Keyboard 
Scan Codes 

0x00 Null scan code N/A N/A N/A 

0x01 Move cursor up 1 row CSI A ESC [ A 0xe0, 0x48 

0x02 Move cursor down 1 row CSI B ESC [ B 0xe0, 0x50 

0x03 Move cursor right 1 column CSI C ESC [ C 0xe0, 0x4d 

0x04 Move cursor left 1 column CSI D ESC [ D 0xe0, 0x4b 

0x05 Home CSI H ESC [ H 0xe0, 0x47 

0x06 End CSI K ESC [ K 0xe0, 0x4f 

0x07 Insert CSI @  ESC [ @ 0xe0, 0x52 

0x08 Delete CSI P ESC [ P 0xe0, 0x53 

0x09 Page Up CSI ? ESC [ ? 0xe0, 0x49 

0x0a Page Down CSI / ESC [ / 0xe0, 0x51 

Table 6.7 shows some of the PC ANSI and ANSI X3.64 control sequences for adjusting 
display/text display attributes for text displays. 

Table 6.7: Example Control Sequences that Can Be Used in Console Drivers 

PC ANSI 
Codes  

ANSI X3.64 
Codes  

 
Description 

ESC [ 2 J CSI 2 J Clear Display Screen. 

ESC [ 0 m CSI 0 m Normal Text. 

ESC [ 1 m CSI 1 m Bright Text. 

ESC [ 7 m CSI 7 m Reversed Text. 

ESC [ 30 m CSI 30 m Black foreground, compliant with ISO Standard 6429. 

ESC [ 31 m CSI 31 m Red foreground, compliant with ISO Standard 6429. 

ESC [ 32 m CSI 32 m Green foreground, compliant with ISO Standard 6429. 

ESC [ 33 m CSI 33 m Yellow foreground, compliant with ISO Standard 6429. 

ESC [ 34 m CSI 34 m Blue foreground, compliant with ISO Standard 6429. 
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Figure 6.3 illustrates the software layering for a remote serial interface with Text I/O 
abstractions. The primary difference between this illustration and one that exhibits 
the same Text I/O abstractions on local devices is that this one has one additional 
layer of software drivers. In the former examples, the local device was discovered by 
an agent, launched, and it in turn would establish a set of Text I/O abstractions. In 
the remote case, the local device is a serial device, which has a console driver that is 
layered onto it, and it in turn would establish a set of Text I/O abstractions. 

 

Figure 6.3: Remote Console Software Layering 
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Console Splitter 

The ability to describe a variety of console devices poses interesting new possibilities. 
In previous generations of firmware, one had a single means by which one could de-
scribe what the Text I/O sources and targets were. Now the UEFI variables that specify 
the active consoles are specified by a device path. In this case, these device paths are 
multi-instance, meaning that more than one target device could be the active input 
or output. For instance, if one wanted to be able to have an application print text to 
the local screen as well as to the screen of a remote terminal, it would be highly im-
practical for anyone to customize their software to accommodate that particular sce-
nario. In the solution that UEFI provides with its console splitting/merging capability, 
an application can simply use the standard text interfaces that UEFI provides and the 
console splitter routes the text requests to the appropriate target or targets. This works 
for both input as well as output streams. 

This is how it works: when the UEFI-compliant platform initializes, the console 
splitter installs itself in the UEFI System Table as the primary active console. In doing 
so, it can then proceed to monitor the platform as other UEFI text interfaces get in-
stalled as protocols and the console splitter keeps a running tally of the user selected 
devices for a given console variable, such as ConOut, ConIn, or ErrOut.  

Figure 6.4 illustrates a scenario where an application is calling UEFI text inter-
faces, which in turn calls the UEFI System Table console interfaces. These interfaces 
belong to the console splitter, and the console splitter then sends the text I/O requests 
from the application to the platform-configured consoles.  
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Figure 6.4: Software Layering Description of the UEFI Console Splitter 

Network Consoles 

UEFI also provides the ability to establish data connections with remote platforms 
across a network. Given the appropriate installed drivers, one could also enable an 
UEFI-compliant platform to support a text I/O set of abstractions. Similar to previ-
ously discussed concepts where the hardware interface (for example, serial device, 
keyboard, video, network interface card) has an abstraction, other components build 
on top of this hardware abstraction to provide a working software stack. 
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Some network components that UEFI might include are as follows: 
■ Network Interface Identifier – This is an optional protocol that is produced by the 

Universal Network Driver Interface (UNDI) and is used to produce the Simple Net-
work Protocol. This protocol is only required if the underlying network interface 
is a 16-bit UNDI, 32/64-bit software UNDI, or hardware UNDI. It is used to obtain 
type and revision information about the underlying network interface. 

■ Simple Network Protocol – This protocol provides a packet level interface to a 
network adapter. It additionally provides services to initialize a network inter-
face, transmit packets, receive packets, and close a network interface. 

To illustrate what a common network console might look like, you could describe an 
initial hardware abstraction that talks directly to the network interface controller 
(NIC) produced by an UNDI driver. This in turn has a Simple Network Protocol that 
layers on top of UNDI. It provides basic network abstraction interfaces such as Send 
and Receive. On top of this, a transport protocol might be installed such as a TCP/IP 
stack. As with most systems, once an established transport mechanism is provided, 
one can build all sorts of extensions into the platform such as a Telnet daemon to 
allow remote users to log into the system through a network connection. Ultimately, 
this daemon would produce and be responsible for handling the normal Text I/O in-
terfaces already described in this chapter.  

Figure 6.5 illustrates an example where a remote machine is able to access the 
EFI-compliant platform through a network connection. Providing the top layer of the 
software stack (EFI_SIMPLE_TEXT_IN and EFI_SIMPLE_TEXT_OUT) as the interoper-
able surface area that applications talk to allows for all standard UEFI applications to 
seamlessly leverage the console support in a platform. Couple this with console split-
ting and merging as inherent capabilities and you have the ability to interact with the 
platform in a much more robust manner without requiring a lot of specially tuned 
software to enable it. 
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Figure 6.5: Example of Network Console Software Layering 

Summary 

In conclusion, UEFI provides a very robust means of describing the various possible 
input and output console possibilities. It can also support console representations 
through a gamut of protocols such as terminal emulators (such as ANSI/VT100) as 
well as remote network consoles leveraging wider variations of the underlying UEFI 
network stack. 
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Chapter 7 – Different Types of Platforms 
Variety's the very spice of life, that gives it all its flavor. 

—William Cowper 

This chapter describes different platform types and instantiations of the Platform In-
itialization (PI), such as embedded system, laptop, smart phone, netbook, tablet, 
PDA, desktop, and server. In addition to providing a “BIOS replacement” for plat-
forms that are commonly referred to as the Personal Computer, the PI infrastructure 
can be used to construct a boot and initialization environment for servers, handheld 
devices, televisions, and so on. These sundry devices may include the more common 
IA-32 processors in the PC, but also feature the lower-power Intel Atom® processor, 
or the mainframe-class processors such as the Itanium®-based systems. This chapter 
examines the PEI modules and DXE drivers that are necessary to construct a standard 
PC platform. Then a subset of these modules used for emulation and Intel Atom-based 
netbooks and smart phones is described.  

Figure 7.1 is a block diagram of a typical system, showing the various compo-
nents, integrating the CPU package, south bridge, and super I/O, beyond other pos-
sible components. These blocks represent components manufactured on the system 
board. Each silicon and platform component will have an associated module or driver 
to handle the respective initialization. In addition to the components on the system 
board, the initial system address map of the platform has specific region allocations. 
Figure 7.2 shows the system address map of the PC platform, including memory allo-
cation. The system flash in this platform configuration is 1 megabyte in size. The sys-
tem flash appears at the upper end of the 32-bit address space in order to allow the 
Intel® Core i7™ processor to fetch the first opcodes from flash upon reset. The reset 
vector lies 16 bytes from the end of the address space. In the SEC, the initial opcodes 
of the SEC file allow for initial control flow of the PI-based platform firmware. From 
the SEC, a collection of additional modules is executed. The Intel Core i7 processor 
has both the central processing unit (CPU), or core, and portions of the chipset, or 
uncore. The latter elements include the integrated memory controller (IMC) and the 
system bridge, such as to PCI. 
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Figure 7.1: Typical PC System 

 

Figure 7.2: System Address Map 

Before going through the various components of the PC firmware load, a few other 
platforms will be reviewed. These include the wireless personal digital assistant, 
which can be a low-power x64 or IA-32 CPU or an Intel Atom processor/system-on-a-
chip (SoC). The platforms then scale up to a server. This is shown in Figure 7.3. 
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Figure 7. 3: Span of Systems 

Figure 7.4 shows a series of non-PCs, such as tablets and smart phones. The former 
includes a touch screen and integrated peripherals, such as 3G, Wi-Fi† and LTE/Wi-
MAX† radios. The latter devices, namely the smart phones, are highly integrated de-
vices with GPS, several radios, touch screens, accelerometers, and some NAND stor-
age. Within all of these devices, an Intel Atom-based system on a chip and a specific 
collection of PEI modules (PEIMs) and DXE drivers execute to initialize the local hard-
ware complex. Then the DXE-based UEFI core would boot a UEFI-aware version of an 
embedded operating system, such as MeeGo† or VxWorks†. This demonstrates how 
the platform concept can span many different topologies. These topologies include 
the classical, open-architecture PC and the headless, closed embedded system of an 
I/O board. 

 

Figure 7.4: An Intel Atom®-based System 

System Flash

Desktop/Server PC
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Now let’s examine the components for the PC in Figure 7.1 in greater detail. The PEI 
phase of execution runs immediately after a restart event, such as a power-on reset, 
resume from hibernate, and so on. The PEI modules execute in place from the flash 
store, at least until the main memory complex (such as DRAM) has been initialized.  

Figure 7.5 displays the collection of PEIMs for the PC platform. Different business 
interests would supply the modules. For example, in the platform codenamed Lake-
port, Intel would provide the Intel™ Core™ i7 CPU with an integrated Memory Con-
troller Hub Memory Controller PEIM and the PCH (Platform Controller Hub) PEIM. The 
PCH is also known as the “South Bridge.” In addition, for the SMBUS (System man-
agement bus) attached to the PCH, there would be a PCH-specific SMBUS PEIM. The 
status code PEIM would describe a platform-specific means by which to emit debug 
information, such as an 8-bit code emitted to I/O port 80-hex 

 

Figure 7.5: Components of PEI on PC 

The SMBUS PEIM for the PCH listed in Figure 7.5 provides a standard interface, or 
PEIM-to-PEIM interface (PPI), as shown in Figure 7.6. This allows the memory con-
troller PEIM to use the SMBUS read command in order to get information regarding 
the dual-inline memory module (DIMM) Serial Presence Detect (SPD) data on the 
memory. The SPD data includes the size, timing, and other details about the memory 
modules. The memory initialization PEIM will use the EFI_PEI_SMBUS_PPI so that 
the GMCH-specific memory initialization module does not need to know which com-
ponent provides the SMBUS capability. In fact, many integrated super I/O (SIO) com-
ponents also provide an SMBUS controller, so this platform could have replaced the 
PCH SMBUS PEIM with an SIO SMBUS PEIM without having to modify the memory 
controller PEIM. 
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typedef
EFI_STATUS
(EFIAPI *PEI_SMBUS_PPI_EXECUTE_OPERATION) (

IN      EFI_PEI_SERVICE           **PeiServices,
IN      struct EFI_PEI_SMBUS_PPI  *This,
IN      EFI_SMBUS_DEVICE_ADDRESS  SlaveAddress,
IN      EFI_SMBUS_DEVICE_COMMAND  Command,
IN      EFI_SMBUS_OPERATION       Operation,
IN      BOOLEAN                   PecCheck,
IN OUT  UINTN                     *Length,
IN OUT  VOID                      *Buffer
);

typedef struct {
PEI_SMBUS_PPI_EXECUTE_OPERATION  Execute;
PEI_SMBUS_PPI_ARP_DEVICE         ArpDevice;

} EFI_PEI_SMBUS_PPI;  

Figure 7.6: Code Fragment for a PEIM PPI 

Many implementations are possible beyond the EFI_PEI_SMBUS_PPI shown earlier. 
Figure 7.7 shows a code fragment that implements the SMBUS read operation for the 
PCH component listed earlier. Note the use of the CPU I/O abstraction for performing 
the I/O operations against the PCH component. The fact that the logic is written in C 
means that this same PCH on an Intel Atom or Itanium-based system could reuse the 
same source code through a simple compilation for the target microarchitecture. 

#define SMBUS_R_HD0  0xEFA5
#define SMBUS_R_HBD  0xEFA7

EFI_PEI_SERVICES          *PeiServices;
SMBUS_PRIVATE_DATA        *Private;
UINT8  Index, BlockCount *Length;
UINT8                     *Buffer;

BlockCount = Private->CpuIo.IoRead8 (
*PeiServices,Private->CpuIo,SMBUS_R_HD0);

if (*Length < BlockCount) {
return EFI_BUFFER_TOO_SMALL;

} else {
for (Index = 0; Index < BlockCount; Index++) {

Buffer[Index] = Private->CpuIo.IoRead8 (
*PeiServices,Private->CpuIo,SMBUS_R_HBD);

}
}  

Figure 7.7: Code Fragment of PEIM Implementation 

Beyond the PEI phase, the DXE core requires a series of platform-, CPU-, and chipset-
specific drivers in order to provide a fully-instantiated set of DXE/EFI services. Figure 
7.8 lists the collection of architectural protocols that are necessary for the PC platform 
under study.  
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Figure 7.8: Architectural Protocols 

The fact that the DXE Foundation does not presume anything about the timekeeping 
logic, interrupt controller, instruction set, and so on, means that the DXE Foundation 
C code can be retargeted for a large class of platforms without reengineering the Foun-
dation code itself. Instead, a different collection of the architectural protocols (APs) 
can affect the Foundation port.  

One aspect of the system that needs to be abstracted is the management of time. 
The timekeeping hardware on a PC/AT compatible chipset, such as the 8254 timer, 
differs from the CPU-integrated timer-counter (ITC) on the Itanium processor or the 
timekeeping logic specific to the Intel Atom processor. As such, in order to have a 
single implementation of the DXE Foundation watchdog-timer logic, the access to 
CPU/chipset-specific timing hardware is implemented via the Timer Architectural 
Protocol. This AP has a series of services, such as getting and setting the time period. 
The setting of the time period will be reviewed across our reference class of platforms.  

To begin, Figure 7.9 provides an instance of the set timer service for the NT32 
platform. NT32 is a virtual PI platform that executes upon a 32-bit Microsoft Windows 
system as a user-mode process. It is a “soft” platform in that the platform capabilities 
are abstracted through Win32 services. As such, the implementation of this AP service 
doesn’t access an I/O controller or chipset control/status registers. Instead, the AP 
invokes a series of Win32 services to provide mutual exclusion and an operating sys-
tem thread to emulate the timer action. 
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EFI_STATUS
TimerDriverSetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL  *This,
IN UINT64                   TimerPeriod
)

{
. . .
gWinNt->EnterCriticalSection (&mNtCriticalSection);
mTimerPeriod = TimerPeriod;
mCancelTimerThread = FALSE;
gWinNt->LeaveCriticalSection (&mNtCriticalSection);
mNtLastTick = gWinNt->GetTickCount ();
mNtTimerThreadHandle = gWinNt->CreateThread (

NULL, 
0, 
NtTimerThread,
&mTimer, 
0, 
&NtThreadId);

. . .
}  

Figure 7.9: NT32 Architectural Protocol 

The NT32 implementation is radically different from a bare-metal PI implementation. An 
instance of a hardware implementation can be found in Figure 7.10. Herein the memory-
mapped registers of an Intel Atom system on a chip are accessed by the same AP set timer 
interface. The DXE Foundation cannot discern the difference between the virtual NT32 
platform service and the actual hardware instance for an Intel Atom processor.  

EFI_STATUS
TimerDriverSetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL  *This,
IN UINT64                   TimerPeriod
)

{
UINT64  Count;
UINT32  Data;
. . .
Count = DivU64x32 (MultU64x32 (TimerPeriod, APBT_CRYSTAL_FREQ) + 5000000, 

10000000, NULL);
mCpuIo->Mem.Read (mCpuIo,EfiWidthUint32,APBT_BASE_PHYSICAL,1,&Data);
Data += (UINT32)Count;
mCpuIo->Mem.Write (mCpuIo,EfiWidthUint32,APBT_BASE_PHYSICAL,1,&Data);
Data ~= APBT_MSFT;
mCpuIo->Mem.Write (mCpuIo,EfiWidthUint32,APBT_BASE_PHYSICAL,1,&Data);
mCpuIo->Mem.Read (mCpuIo,EfiWidthUint32,APBT_PHYSICAL,1,&Data);
Data |= (UINT32)(1 << APBT_SHIFT);
mCpuIo->Mem.Write (mCpuIo,EfiWidthUint32,APBT_PHYSICAL,1,&Data);
. . .
}  

Figure 7.10: AP from Intel® Atom™ 

Finally, for the PC/AT and the circa mid-1980s ISA I/O hardware, there is an addi-
tional implementation of the AP service. Figure 7.11 shows the same set timer service 
when accessing the 8254 timer-counter and then registering an interrupt with the 
8259 Programmable Interrupt Controller (PIC). This is often referred to as a PC/AT ver-
sion of the AP since all PCs since the PC-XT have supported these hardware interfaces. 
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For the PC example in this chapter, these ISA I/O resources are supported by the PCH 
component, versus discrete components in the original PC. 

EFI_STATUS
TimerDriverSetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL  *This,
IN UINT64   TimerPeriod
)

{
UINT64  Count;
UINT8   Data;
. . .
Count = DivU64x32 (MultU64x32(119318, (UINTN) TimerPeriod) + 500000, 

1000000, NULL); 
Data = 0x36;
mCpuIo->Io.Write(mCpuIo,EfiCpuIoWidthUint8,TIMER_CONTROL_PORT, 1, &Data);
mCpuIo->Io.Write(mCpuIo,EfiCpuIoWidthFifoUint8,TIMER0_COUNT_PORT,2,&Count);
mLegacy8259->EnableIrq (mLegacy8259, Efi8259Irq0, FALSE);
. . .
}

Fig7.11: AP for PC/AT

Beyond the many implementation options for an AP to provide the breadth of plat-
form porting, additional capabilities in DXE support various platform targets. In 
UEFI, the interaction with the platform occurs through the input and output console 
services. The console input for a PC is typically a PS/2 or USB keyboard, and the out-
put is a VGA or enhanced video display. But the I/O card studied earlier has no tradi-
tional “head” or display. These deeply embedded platforms may only have a simple 
serial interface to the system. Interestingly, the same PC hardware can also run with-
out a traditional display and interact with the user via a simple serial interface. Figure 
7.12 displays a console stack for an UEFI system built upon a serial interface.  

PCI Root Bridge 
I/O Protocol

PCI Host Bridge Resource 
Allocation Protocol

PCI I/O Protocol

ISA I/O Protocol

Serial I/O Protocol

Simple Input 
Protocol

Simple Text
Output Protocol

BDS / EFI Shell

Simple Input 
Protocol

Simple Text
Output Protocol

ISA ACPI Protocol

Physical 
Console

Virtual
Console

Figure 7.12: Console Stack on a PC
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In order to build out this stack, the boot-device selection (BDS) or the UEFI shell pro-
vides an application or command line interface (CLI) to the user. The Simple Input 
and output protocols are published via a console driver that layers upon the Serial 
I/O protocol. For the PCI-based PC, a PCI root bridge protocol allows access to the 
serial port control and status registers; for the Intel Atom platform with an internally-
integrated UART/serial port, an alternate low-level protocol may exist to access these 
same registers.  

For this platform layering, the components listed in Figure 7.13 describe the DXE 
and UEFI components needed to build out this console stack. Just as in the case of the 
PEI modules, different interests can deliver the DXE and UEFI drivers. For example, 
the Super I/O vendor may deliver the ISA ACPI driver, the silicon vendor PCI root 
bridge (such as the GMCH in this PC), a platform console driver, and then a set of 
reusable components based upon the PC/AT ISA hardware.  

 

Figure 7.13: Components for Console Stack 

Beyond the console components, several other PEI modules and DXE components 
need to be included into the firmware volume. These other components, listed in Fig-
ure 7.14, provide for other capabilities. These include the platform-specific means by 
which to store UEFI variables, platform policy for security, and configuration.  
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Figure 7.14: DXE Drivers on a PC 

The UEFI variables can be stored in various regions of the flash part (or a service pro-
cessor on a server), so a driver needs to abstract this store. For security, the vendor 
may demand that field component updates be signed or that modules dispatched be 
hash-extended into a Trusted Platform Module (TPM). The security driver will ab-
stract these security capabilities.  

A final feature to describe the component layering of DXE drivers is support for 
the disk subsystem, namely the Integrated Device Electronics (IDE) and a UEFI file 
system. The protocol layering for the disk subsystem up to the file system instance 
are shown in Figure 7.15.  
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Figure 7.15: IDE Stack 
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The same UEFI shell or BDS resides at the top of the protocol layering. Instances of 
the simple file system (FS) protocol provide the read/write/open/close capability to 
applications. The FS protocols layer atop disk I/O protocol. A disk I/O provides byte-
level access to a sector-oriented block device. As such, disk I/O is a software-only 
driver that provides this mapping from hardware-specific block I/O abstractions. The 
disk I/O layer binds to a series of block I/O instances. The block I/O protocol is pub-
lished by the block device interest, such as the PCH driver in DXE that abstracts the 
Serial AT-Attachment (SATA) disk controller in the PCH. The disk driver uses the PCI 
Block I/O protocol to access the control and status registers in the PCH component.  

The components that provide these capabilities in the file system stack can be 
found in Figure 7.16. The file system components include the File Allocation Table 
(FAT) driver, a driver that provides FAT12/16/32 support. FAT is the original file sys-
tem for MS-DOS on the original PC that has been extended over time, culminating in 
the 32-bit evolution of FAT in Windows95 as FAT32. In addition, providing different 
performance options of the storage channel can be abstracted via the IDE Controller 
Initialization component. This provides an API so that a platform setup/configuration 
program or diagnostic can change the PCH settings of this feature. 

 

Figure 7.16: Components for IDE Init 

This same console stack for the serial port and file system stack for the SATA con-
troller only depends upon the PCH components, a PCI abstraction, and appropriate 
support components. As such, putting this same PCH, or a logically-equivalent ver-
sion of this chip integrated into another application-specific integrated circuit 
(ASIC), will admit reuse of these same binaries on other like systems (such as an 
x64 desktop to an x64 server). Beyond this binary reuse across IA32 and x64 plat-
form classes, the C code allows for reuse. The use of this PCH, whether the literal 
component or the aforementioned logical integration, on the Itanium Processor, 
can occur via a recompilation of the component C code with the Itanium Processor 
as the target for the binary. 
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Figure 7.17: Intel ® FSP 

Beyond the platforms listed above, there is an increasing focus on open source. This 
open source of a UEFI conformant core, such as one based upon the EFI Developer Kit 
II, must be tempered with the need to preserve intellectual property. As such, one 
approach to deployment to open source core plus closed source binary includes lev-
eraging the Intel ® Firmware Support Package, or Intel FSP. The idea behind the Intel 
FSP is to encapsulate low-level flows, such as the memory initialization PEIM’s, into 
a well-defined binary. 

This is the familiar layering diagram with the Green H of the generic EDKII UEFI 
core, the yellow line designating the UEFI API conformance, the newly introduced 
element of the Intel FSP at the bottom, and finally, the platform drivers. The platform 
drivers include board specific PEIM’s and DXE drivers that encapsulate board specific 
details like GPIO programming, ACPI tables, and silicon drivers based upon public 
documentation.  

The Intel FSP will allow for a work flow wherein a developer can take an open 
source set of schematics, such as the Minnow Board Max for the Intel® Atom® E3800-
series CPU, and combine with the EDKII core and platform code from GitHub, along 
with the Intel ® FSP binary from an alternate public repository. These elements can 
be combined together to provide a full platform bootable solution.  

The original Intel FSP was used by several open source boot environments, such 
as coreboot, U-Boot, and EDKII. There was inconsistency in the interface implemen-
tation that was retrospectively locked down into what was called Intel FSP 1.0. This 
entailed separating out the generic interfaces to the Intel FSP from the system on a 
chip (SOC) specific details. From 1.0 the architecture was evolved slightly to 1.1 to ease 
integration.  
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Figure 7.18: Intel ® FSP1.0 versus 1.1
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Figure 7.19: Intel ® FSP 2.0

Finally, the need for memory-mapped tables in 1.0 and 1.1, and dependency upon 
memory-mapped SPI-attached SPI NOR, led to decoupling the header. This led to the 
definition of the Intel FSP 2.0 now seem in the market. 

From a code re-use, the Intel FSP re-uses the PI Firmware Volume (FV) and inter-
nal PEI Modules. So even though the aggregate Intel FSP is a large binary, the internal 
contents are PI-based art, as shown below. 
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Figure 7.20: Intel ® FSP binary 

Intel FSP2.0 comprehends a world of source plus binary. This is not the only path to 
implementation, of course. The Intel Galileo Quark-based EDKII firmware is fully 
open source, for example.  

Summary 

This chapter has provided an overview of some platforms that are based upon UEFI 
and PI firmware technology. The power of the abstractions of the interfaces comes 
into play as the firmware can be implemented on a PC/AT system, Itanium, and non-
PC/AT system on a chip (SoC). In addition to the portability of the abstractions, this 
chapter has also shown have various modules are integrated in order to provide a full 
console and storage stack. It is through these detailed platform realizations that the 
composition of the industry APIs and their interoperation comes into light. 
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Chapter 8 – DXE Basics: Core, Dispatching, and 
Drivers 

I do not fear computers. I fear the lack of them. 
—Isaac Asimov 

This chapter describes the makeup of the Driver Execution Environment (DXE) and 
how it operates during the platform evolution. In addition, it describes some of the 
fundamental concepts of how information is handed off between phases of the plat-
form boot process and how the underlying components are launched. The launching 
description also provides some insight into how launch orders are constructed, since 
they do deviate from what is commonly referred to as POST tables in legacy firmware.  

The DXE phase contains an implementation of UEFI that is compliant with the PI 
(Platform Initialization) Specification. As a result, both the DXE Core and DXE drivers 
share many of the attributes of UEFI images. The DXE phase is the phase where most 
of the system initialization is performed. The Pre-EFI Initialization (PEI) phase is re-
sponsible for initializing permanent memory in the platform so the DXE phase can be 
loaded and executed. The state of the system at the end of the PEI phase is passed to 
the DXE phase through a list of position-independent data structures called Hand-Off 
Blocks (HOBs). The DXE phase consists of several components: 
■ DXE Core 
■ DXE Dispatcher 
■ DXE Drivers 

The DXE Core produces a set of Boot Services, Runtime Services, and DXE Services. 
The DXE Dispatcher is responsible for discovering and executing DXE drivers in the 
correct order. The DXE drivers are responsible for initializing the processor, chipset, 
and platform components as well as providing software abstractions for console and 
boot devices. These components work together to initialize the platform and provide 
the services required to boot an OS. The DXE and Boot Device Selection (BDS) phases 
work together to establish consoles and attempt the booting of operating systems. 
The DXE phase is terminated when an OS successfully begins its boot process—that 
is, when the BDS phase starts. Only the runtime services provided by the DXE Core 
and services provided by runtime DXE drivers are allowed to persist into the OS 
runtime environment. The result of DXE is the presentation of a fully formed UEFI 
interface. 
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Figure 8.1 shows the phases that a platform with UEFI compatible firmware goes 
through on a cold boot. This chapter covers the following: 
■ Transition from the PEI to the DXE phase 
■ The DXE phase 
■ The DXE phase’s interaction with the BDS phase 

 

Figure 8.1: Platform Boot Phases 

DXE Core 

The DXE Core is designed to be completely portable with no processor, chipset, or 
platform dependencies. This portability is accomplished by incorporating several fea-
tures: 
■ The DXE Core depends only upon a HOB list for its initial state. This single de-

pendency means that the DXE Core does not depend on any services from a pre-
vious phase, so all the prior phases can be unloaded once the HOB list is passed 
to the DXE Core. 

■ The DXE Core does not contain any hard-coded addresses. As a result, the DXE 
Core can be loaded anywhere in physical memory, and it can function correctly 
no matter where physical memory or where firmware volumes are located in the 
processor’s physical address space. 

■ The DXE Core does not contain any processor-specific, chipset-specific, or plat-
form-specific information. Instead, the DXE Core is abstracted from the system 
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hardware through a set of architectural protocol interfaces. These architectural 
protocol interfaces are produced by a set of DXE drivers that are invoked by the 
DXE Dispatcher. 

Below is an illustration showing how data is handed off between the PEI and DXE 
phases. 

 

Figure 8.2: Early Initialization Illustrating a Handoff between PEI and DXE 

The DXE Core produces the EFI System Table and its associated set of EFI Boot Ser-
vices and EFI Runtime Services. The DXE Core also contains the DXE Dispatcher, 
whose main purpose is to discover and execute DXE drivers stored in firmware vol-
umes. The order in which DXE drivers are executed is determined by a combination 
of the optional a priori file (see the section on the DXE dispatcher) and the set of de-
pendency expressions that are associated with the DXE drivers. The firmware volume 
file format allows dependency expressions to be packaged with the executable DXE 
driver image. DXE drivers utilize a PE/COFF image format, so the DXE Dispatcher 
must also contain a PE/COFF loader to load and execute DXE drivers. 

The DXE Core must also maintain a handle database. A handle database is a list 
of one or more handles, and a handle is a list of one or more unique protocol GUIDs. 
A protocol is a software abstraction for a set of services. Some protocols abstract I/O 
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devices, and other protocols abstract a common set of system services. A protocol typ-
ically contains a set of APIs and some number of data fields. Every protocol is named 
by a GUID, and the DXE Core produces services that allow protocols to be registered 
in the handle database. As the DXE Dispatcher executes DXE drivers, additional pro-
tocols are added to the handle database including the DXE Architectural Protocols 
that are used to abstract the DXE Core from platform-specific details. 

Hand-Off Block (HOB) List 

The HOB list contains all the information that the DXE Core requires to produce its 
memory-based services. The HOB list contains information on the boot mode, the pro-
cessor’s instruction set, and the memory that was discovered in the PEI phase. It also 
contains a description of the system memory that was initialized by the PEI phase, 
along with information about the firmware devices that were discovered in the PEI 
phase. The firmware device information includes the system memory locations of the 
firmware devices and of the firmware volumes that are contained within those firm-
ware devices. The firmware volumes may contain DXE drivers, and the DXE Dis-
patcher is responsible for loading and executing the DXE drivers that are discovered 
in those firmware volumes. Finally, the HOB list may contain the I/O resources and 
memory-mapped I/O resources that were discovered in the PEI phase. 

Figure 8.3 shows an example HOB list. The first entry in the HOB list is always the 
Phase Handoff Information Table (PHIT) HOB that contains the boot mode. The rest 
of the HOB list entries can appear in any order. This example shows the different types 
of system resources that can be described in a HOB list. The most important ones to 
the DXE Core are the HOBs that describe system memory and the HOBs that describe 
firmware volumes. A HOB list is always terminated by an end-of-list HOB. The one 
additional HOB type that is not shown in Figure 8.3 is the GUID extension HOB that 
allows a PEIM to pass private data to a DXE driver. Only the DXE driver that recognizes 
the GUID value in the GUID extension HOB can understand the data in that HOB. The 
HOB entries are all designed to be position-independent. This independence allows 
the DXE Core to relocate the HOB list to a different location if it is not suitable to the 
DXE Core. 

 

Figure 8.3: HOB List 
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DXE Architectural Protocols 

The DXE Core is abstracted from the platform hardware through a set of DXE Archi-
tectural Protocols. The DXE Core consumes these protocols to produce the EFI Boot 
Services and EFI Runtime Services. DXE drivers that are loaded from firmware vol-
umes produce the DXE Architectural Protocols. This design means that the DXE Core 
must have enough services to load and start DXE drivers before even a single DXE 
driver is executed. 

The DXE Core is passed a HOB list that must contain a description of some amount 
of system memory and at least one firmware volume. The system memory descriptors 
in the HOB list are used to initialize the UEFI services that require only memory to 
function correctly. The system is also guaranteed to be running on only one processor 
in flat physical mode with interrupts disabled. The firmware volume is passed to the 
DXE Dispatcher, which must contain a read-only FFS driver to search for the a priori 
file and any DXE drivers in the firmware volumes. When a driver is discovered that 
needs to be loaded and executed, the DXE Dispatcher uses a PE/COFF loader to load 
and invoke the DXE driver. The early DXE drivers produce the DXE Architectural Pro-
tocols, so the DXE Core can produce the full complement of EFI Boot Services and EFI 
Runtime Services. Figure 8.4 shows the HOB list being passed to the DXE Core. The 
DXE Core consumes the services of the DXE Architectural Protocols shown in the fig-
ure and then produces the EFI System Table, EFI Boot Services Table, and the EFI 
Runtime Services Table. 

 

Figure 8.4: DXE Architectural Protocols 
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Figure 8.4 shows all the major components present in the DXE phase. The EFI Boot 
Services Table and DXE Services Table shown on the left are allocated from UEFI boot 
services memory. This allocation means that the EFI Boot Services Table and DXE Ser-
vices Table are freed when the OS runtime phase is entered. The EFI System Table and 
EFI Runtime Services Table on the right are allocated from EFI Runtime Services 
memory, and they do persist into the OS runtime phase.  

The DXE Architectural Protocols shown on the left in Figure 8.4 are used to pro-
duce the EFI Boot Services. The DXE Core, DXE Dispatcher, and the protocols shown 
on the left are freed when the system transitions to the OS runtime phase. The DXE 
Architectural Protocols shown on the right are used to produce the EFI Runtime Ser-
vices. These services persist in the OS runtime phase. The Runtime Architectural Pro-
tocol in the middle is special. This protocol provides the services that are required to 
transition the runtime services from physical mode to virtual mode under the direc-
tion of an OS. Once this transition is complete, these services can no longer be used. 

The following is a brief summary of the DXE Architectural Protocols: 

■ Security Architectural Protocol: Allows the DXE Core to authenticate files stored 
in firmware volumes before they are used. 

■ CPU Architectural Protocol: Provides services to manage caches, manage inter-
rupts, retrieve the processor’s frequency, and query any processor-based timers. 

■ Metronome Architectural Protocol: Provides the services required to perform very 
short calibrated stalls. 

■ Timer Architectural Protocol: Provides the services required to install and enable 
the heartbeat timer interrupt required by the timer services in the DXE Core. 

■ BDS Architectural Protocol: Provides an entry point that the DXE Core calls once 
after all of the DXE drivers have been dispatched from all of the firmware vol-
umes. This entry point is the transition from the DXE phase to the BDS phase, and 
it is responsible for establishing consoles and enabling the boot devices required 
to boot an OS. 

■ Watchdog Timer Architectural Protocol: Provides the services required to enable 
and disable a watchdog timer in the platform. 

■ Runtime Architectural Protocol: Provides the services required to convert all 
runtime services and runtime drivers from physical mappings to virtual map-
pings. 

■ Variable Architectural Protocol: Provides the services to retrieve environment 
variables and set volatile environment variables. 

■ Variable Write Architectural Protocol: Provides the services to set nonvolatile en-
vironment variables. 

■ Monotonic Counter Architectural Protocol: Provides the services required by the 
DXE Core to manage a 64-bit monotonic counter. 
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■ Reset Architectural Protocol: Provides the services required to reset or shutdown 
the platform. 

■ Status Code Architectural Protocol: Provides the services to send status codes 
from the DXE Core or DXE drivers to a log or device. 

■ Real Time Clock Architectural Protocol: Provides the services to retrieve and set 
the current time and date as well as the time and date of an optional wakeup 
timer. 

EFI System Table 

The DXE Core produces the EFI System Table, which is consumed by every DXE driver 
and executable image invoked by BDS. It contains all the information that is required 
for these components to use the services provided by the DXE Core and any previously 
loaded DXE driver. Figure 8.5 shows the various components that are available 
through the EFI System Table. 

 

Figure 8.5: EFI System Table and Related Components 

The DXE Core produces the EFI Boot Services, EFI Runtime Services, and DXE Services 
with the aid of the DXE Architectural Protocols. The EFI System Table provides access 
to all the active console devices in the platform and the set of EFI Configuration Ta-
bles. The EFI Configuration Tables are an extensible list of tables that describe the 
configuration of the platform including pointers to tables such as DXE Services, the 
HOB list, ACPI, System Management BIOS (SMBIOS), and the SAL System Table. This 
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list may be expanded in the future as new table types are defined. Also, through the 
use of the Protocol Handle Services in the EFI Boot Services Table, any executable 
image can access the handle database and any of the protocol interfaces that have 
been registered by DXE drivers. 

When the transition to the OS runtime is performed, the handle database, active 
consoles, EFI Boot Services, and services provided by boot service DXE drivers are 
terminated. This termination frees more memory for use by the OS and leaves the EFI 
System Table, EFI Runtime Services Table, and the system configuration tables avail-
able in the OS runtime environment. You also have the option of converting all of the 
EFI Runtime Services from a physical address space to an operating system specific 
virtual address space. This address space conversion may only be performed once. 

EFI Boot Services Table 

The following is a brief summary of the services that are available through the EFI 
Boot Services Table: 
■ Task Priority Services: Provides services to increase or decrease the current task 

priority level. This priority mechanism can be used to implement simple locks 
and to disable the timer interrupt for short periods of time. These services depend 
on the CPU Architectural Protocol. 

■ Memory Services: Provides services to allocate and free pages in 4 KB increments 
and allocate and free pool on byte boundaries. It also provides a service to re-
trieve a map of all the current physical memory usage in the platform. 

■ Event and Timer Services: Provides services to create events, signal events, check 
the status of events, wait for events, and close events. One class of events is timer 
events, which supports periodic timers with variable frequencies and one-shot 
timers with variable durations. These services depend on the CPU Architectural 
Protocol, Timer Architectural Protocol, Metronome Architectural Protocol, and 
Watchdog Timer Architectural Protocol. 

■ Protocol Handler Services: Provides services to add and remove handles from the 
handle database. It also provides services to add and remove protocols from the 
handles in the handle database. Additional services are available that allow any 
component to look up handles in the handle database and open and close proto-
cols in the handle database. 

■ Image Services: Provides services to load, start, exit, and unload images using 
the PE/COFF image format. These services depend on the Security Architectural 
Protocol. 

■ Driver Support Services: Provides services to connect and disconnect drivers to 
devices in the platform. These services are used by the BDS phase to either con-
nect all drivers to all devices, or to connect only the minimum number of drivers 
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to devices required to establish the consoles and boot an OS. The minimal con-
nect strategy is how a fast boot mechanism is provided. 

EFI Runtime Services Table 

The following is a brief summary of the services that are available through the EFI 
Runtime Services Table: 
■ Variable Services: Provides services to lookup, add, and remove environment 

variables from nonvolatile storage. These services depend on the Variable Archi-
tectural Protocol and the Variable Write Architectural Protocol. 

■ Real Time Clock Services: Provides services to get and set the current time and 
date. It also provides services to get and set the time and date of an optional 
wakeup timer. These services depend on the Real Time Clock Architectural Pro-
tocol. 

■ Reset Services: Provides services to shut down or reset the platform. These ser-
vices depend on the Reset Architectural Protocol. 

■ Status Code Services: Provides services to send status codes to a system log or a 
status code reporting device. These services depend on the Status Code Architec-
tural Protocol. 

■ Virtual Memory Services: Provides services that allow the runtime DXE compo-
nents to be converted from a physical memory map to a virtual memory map. 
These services can only be called once in physical mode. Once the physical to 
virtual conversion has been performed, these services cannot be called again. 
These services depend on the Runtime Architectural Protocol. 

DXE Services Table 

The following is a brief summary of the services that are available through the DXE 
Services Table: 
■ Global Coherency Domain Services: Provides services to manage I/O resources, 

memory-mapped I/O resources, and system memory resources in the platform. 
These services are used to dynamically add and remove these resources from the 
processor’s Global Coherency Domain (GCD). 

■ DXE Dispatcher Services: Provides services to manage DXE drivers that are being 
dispatched by the DXE Dispatcher. 
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Global Coherency Domain Services 

The Global Coherency Domain (GCD) Services are used to manage the memory and 
I/O resources visible to the boot processor. These resources are managed in two dif-
ferent maps: 
■ GCD memory space map 
■ GCD I/O space map 

If memory or I/O resources are added, removed, allocated, or freed, then the GCD 
memory space map and GCD I/O space map are updated. GCD Services are also pro-
vided to retrieve the contents of these two resource maps. 

The GCD Services can be broken up into two groups. The first manages the 
memory resources visible to the boot processor, and the second manages the I/O re-
sources visible to the boot processor. Not all processor types support I/O resources, 
so the management of I/O resources may not be required. However, since system 
memory resources and memory-mapped I/O resources are required to execute the 
DXE environment, the management of memory resources is always required. 

GCD Memory Resources 

The Global Coherency Domain (GCD) Services used to manage memory resources in-
clude the following: 
■ AddMemorySpace() 
■ AllocateMemorySpace() 
■ FreeMemorySpace() 
■ RemoveMemorySpace() 
■ SetMemorySpaceAttributes() 

The GCD Services used to retrieve the GCD memory space map include the following: 
■ GetMemorySpaceDescriptor() 
■ GetMemorySpaceMap() 

The GCD memory space map is initialized from the HOB list that is passed to the entry 
point of the DXE Core. One HOB type describes the number of address lines that are 
used to access memory resources. This information is used to initialize the state of the 
GCD memory space map. Any memory regions outside this initial region are unavail-
able to any of the GCD Services that are used to manage memory resources. The GCD 
memory space map is designed to describe the memory address space with as many 
as 64 address lines. Each region in the GCD memory space map can begin and end on 
a byte boundary. Additional HOB types describe the location of system memory, the 
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location memory mapped I/O, the location of firmware devices, the location of firm-
ware volumes, the location of reserved regions, and the location of system memory 
regions that were allocated prior to the execution of the DXE Core. The DXE Core must 
parse the contents of the HOB list to guarantee that memory regions reserved prior to 
the execution of the DXE Core are honored. As a result, the GCD memory space map 
must reflect the memory regions described in the HOB list. The GCD memory space 
map provides the DXE Core with the information required to initialize the memory 
services such as AllocatePages(), FreePages(), AllocatePool(), 
FreePool(), and GetMemoryMap(). 

A memory region described by the GCD memory space map can be in one of several 
different states: 
■ Nonexistent memory 
■ System memory 
■ Memory-mapped I/O 
■ Reserved memory 

These memory regions can be allocated and freed by DXE drivers executing in the DXE 
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a 
memory region. Figure 8.6 shows the possible state transitions for each byte of memory 
in the GCD memory space map. The transitions are labeled with the GCD Service that 
can move the byte from one state to another. The GCD services are required to merge 
similar memory regions that are adjacent to each other into a single memory descriptor, 
which reduces the number of entries in the GCD memory space map. 
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Figure 8.6: GCD Memory State Transitions 

GCD I/O Resources 

The Global Coherency Domain (GCD) Services used to manage I/O resources include 
the following: 
■ AddIoSpace() 
■ AllocateIoSpace() 
■ FreeIoSpace() 
■ RemoveIoSpace() 

The GCD Services used to retrieve the GCD I/O space map include the following: 
■ GetIoSpaceDescriptor() 
■ GetIoSpaceMap() 

The GCD I/O space map is initialized from the HOB list that is passed to the entry point 
of the DXE Core. One HOB type describes the number of address lines that are used to 
access I/O resources. This information is used to initialize the state of the GCD I/O 
space map. Any I/O regions outside this initial region are not available to any of the 
GCD Services that are used to manage I/O resources. The GCD I/O space map is de-
signed to describe the I/O address space with as many as 64 address lines. Each re-
gion in the GCD I/O space map can begin and end on a byte boundary. 
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An I/O region described by the GCD I/O space map can be in several different 
states. These include nonexistent I/O, I/O, and reserved I/O. These I/O regions can be 
allocated and freed by DXE drivers executing in the DXE environment. Figure 8.7 
shows the possible state transitions for each byte of I/O in the GCD I/O space map. 
The transitions are labeled with the GCD Service that can move the byte from one state 
to another. The GCD Services are required to merge similar I/O regions that are adja-
cent to each other into a single I/O descriptor, which reduces the number of entries 
in the GCD I/O space map. 

 

Figure 8.7: GCD I/O State Transitions 

DXE Dispatcher 

After the DXE Core is initialized, control is handed to the DXE Dispatcher. The DXE 
Dispatcher is responsible for loading and invoking DXE drivers found in firmware vol-
umes. The DXE Dispatcher searches for drivers in the firmware volumes described by 
the HOB list. As execution continues, other firmware volumes might be located. When 
they are, the DXE Dispatcher searches them for drivers as well. 

When a new firmware volume is discovered, a search is made for its a priori file. 
The a priori file has a fixed file name and contains the list of DXE drivers that should 
be loaded and executed first. There can be at most one a priori file per firmware vol-
ume, although it is acceptable to have no a priori file at all. Once the DXE drivers from 
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the a priori file have been loaded and executed, the dependency expressions of the 
remaining DXE drivers in the firmware volumes are evaluated to determine the order 
in which they will be loaded and executed. The a priori file provides a strongly or-
dered list of DXE drivers that are not required to use dependency expressions. The 
dependency expressions provide a weakly ordered execution of the remaining DXE 
drivers. Before each DXE driver is executed, it must be authenticated with the Security 
Architectural Protocol. This authentication prevents DXE drivers with unknown ori-
gins from being executed. 

Control is transferred from the DXE Dispatcher to the BDS Architectural Protocol 
after the DXE drivers in the a priori file and all the DXE drivers whose dependency 
expressions evaluate to TRUE have been loaded and executed. The BDS Architectural 
Protocol is responsible for establishing the console devices and attempting the boot 
of operating systems. As the console devices are established and access to boot de-
vices is established, additional firmware volumes may be discovered. If the BDS Ar-
chitectural Protocol is unable to start a console device or gain access to a boot device, 
it reinvokes the DXE Dispatcher. This invocation allows the DXE Dispatcher to load 
and execute DXE drivers from firmware volumes that have been discovered since the 
last time the DXE Dispatcher was invoked. Once the DXE Dispatcher has loaded and 
executed all the DXE drivers it can, control is once again returned to the BDS Archi-
tectural Protocol to continue the OS boot process. Figure 8.8 illustrates this basic flow 
between the Dispatcher, its launched drivers, and the BDS. 

 

Figure 8.8: The Handshake between the Dispatcher and Other Components 
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The a priori File 

The a priori file is a special file that may be present in a firmware volume. The rule is 
that there may be at most one a priori file per firmware volume present in a platform. 
The a priori file has a known GUID file name, so the DXE Dispatcher can always find 
the a priori file. Every time the DXE Dispatcher discovers a firmware volume, it first 
looks for the a priori file. The a priori file contains the list of DXE drivers that should 
be loaded and executed before any other DXE drivers are discovered. The DXE drivers 
listed in the a priori file are executed in the order that they appear. If any of those DXE 
drivers have an associated dependency expression, then those dependency expres-
sions are ignored. 

The purpose of the a priori file is to provide a deterministic execution order of 
DXE drivers. DXE drivers that are executed solely based on their dependency expres-
sion are weakly ordered, which means that the execution order is not completely de-
terministic between boots or between platforms. Some cases, however, require a de-
terministic execution order. One example would be to list the DXE drivers that are 
required to debug the rest of the DXE phase in the a priori file. These DXE drivers that 
provide debug services might have been loaded much later if only their dependency 
expressions were considered. By loading them earlier, more of the DXE Core and DXE 
drivers can be debugged. Another example is to use the a priori file to eliminate the 
need for dependency expressions. Some embedded platforms may require only a few 
DXE drivers with a highly deterministic execution order. The a priori file can provide 
this ordering, and none of the DXE drivers would require dependency expressions. 
The dependency expressions do have some amount of firmware device overhead, so 
this method might actually conserve firmware space. The main purpose of the a priori 
file is to provide a greater degree of flexibility in the firmware design of a platform. 

Dependency Grammar 

A DXE driver is stored in a firmware volume as a file with one or more sections. One 
of the sections must be a PE/COFF image. If a DXE driver has a dependency expres-
sion, then it is stored in a dependency section. A DXE driver may contain additional 
sections for compression and security wrappers. The DXE Dispatcher can identify the 
DXE drivers by their file type. In addition, the DXE Dispatcher can look up the de-
pendency expression for a DXE driver by looking for a dependency section in a DXE 
driver file. The dependency section contains a section header followed by the actual 
dependency expression that is composed of a packed byte stream of opcodes and op-
erands. 

Dependency expressions stored in dependency sections are designed to be small 
to conserve space. In addition, they are designed to be simple and quick to evaluate 
to reduce execution overhead. These two goals are met by designing a small, stack-
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based instruction set to encode the dependency expressions. The DXE Dispatcher 
must implement an interpreter for this instruction set to evaluate dependency expres-
sions. Table 8.1 gives a summary of the supported opcodes in the dependency expres-
sion instruction set. 

Table 8.1:  Supported Opcodes in the Dependency Expression Instruction Set 

Opcode  Description 

0x00 BEFORE <File Name GUID> 

0x01 AFTER <File Name GUID> 

0x02 PUSH <Protocol GUID> 

0x03 AND 

0x04 OR 

0x05 NOT 

0x06 TRUE 

0x07 FALSE 

0x08 END 

0x09 SOR 
 
Because multiple dependency expressions may evaluate to TRUE at the same time, 
the order in which the DXE drivers are loaded and executed may vary between boots 
and between platforms even though the contents of their firmware volumes are iden-
tical. This variation is why the ordering is weak for the execution of DXE drivers in a 
platform when dependency expressions are used. 

DXE Drivers 

DXE drivers have two subclasses: 
■ DXE drivers that execute very early in the DXE phase 
■ DXE drivers that comply with the UEFI Driver Model 

The execution order of the first subclass, the early DXE drivers, depends on the pres-
ence and contents of an a priori file and the evaluation of dependency expressions. 
These early DXE drivers typically contain processor, chipset, and platform initializa-
tion code. They also typically produce the DXE Architectural Protocols that are re-
quired for the DXE Core to produce its full complement of EFI Boot Services and EFI 
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Runtime Services. To support the fastest possible boot time, as much initialization as 
possible should be deferred to the second subclass of DXE drivers, those that comply 
with the UEFI Driver Model. 

The DXE drivers that comply with the UEFI Driver Model do not perform any hard-
ware initialization when they are executed by the DXE Dispatcher. Instead, they reg-
ister a Driver Binding Protocol interface in the handle database. The set of Driver 
Binding Protocols are used by the BDS phase to connect the drivers to the devices 
required to establish consoles and provide access to boot devices. The DXE Drivers 
that comply with the UEFI Driver Model ultimately provide software abstractions for 
console devices and boot devices but only when they are explicitly asked to do so. 

All DXE drivers may consume the EFI Boot Services and EFI Runtime Services to 
perform their functions. However, the early DXE drivers need to be aware that not all 
of these services may be available when they execute because not all of the DXE Ar-
chitectural Protocols might have been registered yet. DXE drivers must use depend-
ency expressions to guarantee that the services and protocol interfaces they require 
are available before they are executed. 

The DXE drivers that comply with the UEFI Driver Model do not need to be con-
cerned with this possibility. These drivers simply register the Driver Binding Protocol 
in the handle database when they are executed. This operation can be performed 
without the use of any DXE Architectural Protocols. The BDS phase will not be entered 
until all of the DXE Architectural Protocols are registered. If the DXE Dispatcher does 
not have any more DXE drivers to execute but not all of the DXE Architectural Proto-
cols have been registered, then a fatal error has occurred and the system will be 
halted. 

Boot Device Selection (BDS) Phase 

The Boot Device Selection (BDS) Architectural Protocol executes during the BDS 
phase. The BDS Architectural Protocol is discovered in the DXE phase, and it is exe-
cuted when two conditions are met: 
■ All of the DXE Architectural Protocols have been registered in the handle data-

base. This condition is required for the DXE Core to produce the full complement 
of EFI Boot Services and EFI Runtime Services. 

■ The DXE Dispatcher does not have any more DXE drivers to load and execute. 
This condition occurs only when all the a priori files from all the firmware vol-
umes have been processed and all the DXE drivers whose dependency expression 
have evaluated to TRUE have been loaded and executed. 

The BDS Architectural Protocol locates and loads various applications that execute in 
the pre-boot services environment. Such applications might represent a traditional 
OS boot loader or extended services that might run instead of or prior to loading the 
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final OS. Such extended pre-boot services might include setup configuration, ex-
tended diagnostics, flash update support, OEM services, or the OS boot code. 

Vendors such as IBVs, OEMs, and ISVs may choose to use a reference implemen-
tation, develop their own implementation based on the reference, or develop an im-
plementation from scratch. 

The BDS phase performs a well-defined set of tasks. The user interface and user inter-
action that occurs on different boots and different platforms may vary, but the boot 
policy that the BDS phase follows is very rigid. This boot policy is required so OS in-
stallations will behave predictably from platform to platform. The tasks include the 
following: 
■ Initialize console devices based on the ConIn, ConOut, and StdErr environ-

ment variables. 
■ Attempt to load all drivers listed in the Driver#### and DriverOrder en-

vironment variables. 
■ Attempt to boot from the boot selections listed in the Boot#### and BootOr-

der environment variables. 

If the BDS phase is unable to connect a console device, load a driver, or boot a boot 
selection, it is required to reinvoke the DXE Dispatcher. This invocation is required 
because additional firmware volumes may have been discovered while attempting to 
perform these operations. These additional firmware volumes may contain the DXE 
drivers required to manage the console devices or boot devices. Once all of the DXE 
drivers have been dispatched from any newly discovered firmware volumes, control 
is returned to the BDS phase. If the BDS phase is unable to make any additional for-
ward progress in connecting the console device or the boot device, then the connec-
tion of that console device or boot selection fails. When a failure occurs, the BDS 
phase moves on to the next console device, driver load, or boot selection. 

Console Devices 

Console devices are abstracted through the Simple Text Output and Simple Input Pro-
tocols. Any device that produces one or both of these protocols may be used as a con-
sole device on a UEFI-based platform. Several types of devices are capable of produc-
ing these protocols, including the following: 
■ VGA Adapters: These adapters can produce a text-based display that is abstracted 

with the Simple Text Output Protocol. 
■ Video Adapters: These adapters can produce a Graphics Output Protocol (GOP) 

which is a graphical interface that supports Block Transfer (BLT) operations. A 
text-based display that produces the Simple Text Output Protocol can be simu-
lated on top of a GOP display by using BLT operations to send Unicode glyphs 
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into the frame buffer. GOP is also the means by which graphics is typically ren-
dered to the local video device. 

■ Serial Terminal: A serial terminal device can produce both the Simple Input and 
Simple Text Output Protocols. Serial terminals are very flexible, and they can sup-
port a variety of wire protocols such as PC ANSI, VT-100, VT-100+, and VTUTF8. 

■ Telnet: A telnet session can produce both the Simple Input and Simple Text Out-
put Protocols. Like the serial terminal, a variety of wire protocols can be sup-
ported including PC ANSI, VT-100, VT-100+, and VTUTF8. 

■ Remote Graphical Displays (HTTP): A remote graphical display can produce both 
the Simple Input and Simple Text Output Protocols. One possible implementation 
could use HTTP, so standard Internet browsers could be used to manage a UEFI-
based platform. 

Boot Devices 

Several types of boot devices are supported in UEFI: 
■ Devices that produce the Block I/O Protocol and are formatted with a FAT file 

system 
■ Devices that directly produce the File System Protocol 
■ Devices that directly produce the Load File Protocol 
■ Disk devices typically produce the Block I/O Protocol, and network devices typi-

cally produce the Load File Protocol. 

A UEFI implementation may also choose to include legacy compatibility drivers. 
These drivers provide the services required to boot a traditional OS, and the BDS 
phase could then also support booting a traditional OS. 

Boot Services Terminate 

The BDS phase is terminated when an OS loader is executed and an OS is successfully 
booted. An OS loader or an OS kernel may call a single service called Exit-
BootServices() to terminate the BDS phase. Once this call is made, all of the boot 
service components are freed and their resources are available for use by the OS. 
When the call to ExitBootServices() returns, the Runtime (RT) phase has been 
entered. 
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Summary 

In conclusion, the DXE phase encompasses the establishing of the entire infrastruc-
ture necessary for UEFI compliant components to operate. This includes the estab-
lishment of the service tables and other requisite architectural protocols. As the DXE 
phase completes and passes control to the BDS, the platform then proceeds to com-
plete any initialization required to launch of boot target. 
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Chapter 9 – Some Common UEFI and PI Functions 
Never let the future disturb you. You will meet it, if you have to, with the same weapons of reason 
which today arm you against the present. 

—Marcus Aurelius Antoninus 

UEFI provides a variety of functions that are used for drivers and applications to com-
munication with the underlying UEFI components. Many of the designs for interfaces 
have historically been short-sighted due to their inability to predict changes in tech-
nology. An example of such shortsightedness might be where a disk interface as-
sumed that a disk might never have more than 8 gigabytes of space available. It is 
often hard to predict what changes technology might provide. Many famous state-
ments have been made that fret about how a personal computer might never be prac-
tical, or assure readers that 640 kilobytes of memory would be more than anyone 
would ever need. With these poor past predictions in mind, one can attempt to learn 
from such mistakes and design interfaces that are robust enough for common prac-
tices today, and make the best attempt at predicting how one might use these inter-
faces years from today. 

This chapter describes a selection of common interfaces that show up in UEFI as well 
as the PI specifications: 
■ Architectural Protocols: These are a set of protocols that abstract the platform 

hardware from the UEFI drivers and applications. They are unusual only in that 
they are the protocols that are going to be used by the UEFI compatible firmware 
implementation. These protocols in their current form were introduced into the 
PI specifications. 

■ PCI Protocols: These protocols abstract all aspects of interaction with the under-
lying PCI bus, enumeration of said bus, as well as resource allocation. These in-
terfaces were introduced for UEFI, and would be present in both UEFI and PI im-
plementations. 

■ Block I/O: This protocol is used to abstract mass storage devices to allow code 
running in the EFI Boot Services environment to access them without specific 
knowledge of the type of device or controller that manages the device. This inter-
face was introduced for UEFI, and would be present in both UEFI and PI imple-
mentations. 

■ Disk I/O: This protocol is used to abstract the block accesses of the Block I/O pro-
tocol to a more general offset-length protocol. The firmware is responsible for 
adding this protocol to any Block I/O interface that appears in the system that 
does not already have a Disk I/O protocol. File systems and other disk access code 
utilize the Disk I/O protocol. This interface was introduced for UEFI, and would 
be present in both UEFI and PI implementations. 
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■ Simple File System: This protocol allows code running in the EFI Boot Services 
environment to obtain file-based access to a device. The Simple File System pro-
tocol is used to open a device volume and return an EFI_FILE handle that pro-
vides interfaces to access files on a device volume. This interface was introduced 
for UEFI, and would be present in both UEFI and PI implementations. 

Architectural Protocol Examples 

A variety of architectural protocols exist in the platform. These protocols function just 
like other protocols in every way. The only difference is that these protocols are con-
sumed by the platform’s core services and the remainder of the drivers and applica-
tions in turn call these core services to act on the platform in various ways. Generally, 
the only users of the architectural protocols are the core services themselves. The ar-
chitectural protocols abstract the hardware and are the only agents in the system that 
would typically talk directly to the hardware in the pre-boot environment. Everything 
else in the system would communicate with a core service to communicate any sort 
of requests to the hardware. Figure 9.1 illustrates this high-level software handshake.  

 

Figure 9.1: Platform Software Flow Diagram 

To show more clearly how some of these architectural protocols are designed and how 
they operate, several key examples will be examined in further detail. Note that the 
following examples are not the full set of architectural protocols but are used to illus-
trate some of their functionality. For the full set, please refer to the appropriate DXE 
specifications.  
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CPU Architectural Protocol 

The CPU Architectural Protocol is used to abstract processor-specific functions from 
the DXE Foundation. This includes flushing caches, enabling and disabling inter-
rupts, hooking interrupt vectors and exception vectors, reading internal processor 
timers, resetting the processor, and determining the processor frequency. This proto-
col must be produced by a boot service or runtime DXE driver and may only be con-
sumed by the DXE Foundation and DXE drivers that produce architectural protocols. 
By allowing this protocol to be produced by a boot service driver, it is evident that this 
abstraction will not persist when the platform has the boot services terminated by 
launching a boot target such as an operating system. 

The GCD memory space map is initialized by the DXE Foundation based on the 
contents of the HOB list. The HOB list contains the capabilities of the different 
memory regions, but it does not contain their current attributes. The DXE driver that 
produces the CPU Architectural Protocol is responsible for maintaining the current 
attributes of the memory regions visible to the processor. 

This means that the DXE driver that produces the CPU Architectural Protocol 
must seed the GCD memory space map with the initial state of the attributes for all 
the memory regions visible to the processor. The DXE Service SetMemorySpaceAttrib-
utes() allows the attributes of a memory range to be modified. The Set-
MemorySpaceAttributes() DXE Service is implemented using the SetMemoryAttrib-
utes() service of the CPU Architectural Protocol. 

To initialize the state of the attributes in the GCD memory space map, the DXE 
driver that produces the CPU Architectural Protocol must call the DXE Service Set-
MemorySpaceAttributes() for all the different memory regions visible to the processor 
passing in the current attributes. This, in turn, will call back to the SetMemoryAttrib-
utes() service of the CPU Architectural Protocol, and all of these calls must return 
EFI_SUCCESS, since the DXE Foundation is only requesting that the attributes of the 
memory region be set to their current settings. This forces the current attributes in the 
GCD memory space map to be set to these current settings. After this initialization is 
complete, the next call to the DXE Service GetMemorySpaceMap() will correctly show 
the current attributes of all the memory regions. In addition, any future calls to the 
DXE Service SetMemorySpaceAttributes() will in turn call the CPU Architectural Pro-
tocol to see if those attributes can be modified, and if they can, the GCD memory space 
map will be updated accordingly. 

The CPU Architectural Protocol uses the following protocol definition: 
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Protocol Interface Structure 

typedef struct _EFI_CPU_ARCH_PROTOCOL { 

  EFI_CPU_FLUSH_DATA_CACHE              FlushDataCache; 

  EFI_CPU_ENABLE_INTERRUPT              EnableInterrupt; 

  EFI_CPU_DISABLE_INTERRUPT             DisableInterrupt; 

  EFI_CPU_GET_INTERRUPT_STATE           GetInterruptState; 

  EFI_CPU_INIT                          Init; 

  EFI_CPU_REGISTER_INTERRUPT_HANDLER    RegisterInterruptHandler; 

  EFI_CPU_GET_TIMER_VALUE               GetTimerValue; 

  EFI_CPU_SET_MEMORY_ATTRIBUTES         SetMemoryAttributes; 

  UINT32                                NumberOfTimers; 

  UINT32                                DmaBufferAlignment; 

} EFI_CPU_ARCH_PROTOCOL; 

■ FlushDataCache - Flushes a range of the processor’s data cache. If the processor 
does not contain a data cache, or the data cache is fully coherent, then this func-
tion can just return EFI_SUCCESS. If the processor does not support flushing a 
range of addresses from the data cache, then the entire data cache must be 
flushed. This function is used by the root bridge I/O abstractions to flush data 
caches for DMA operations. 

■ EnableInterrupt - Enables interrupt processing by the processor. See the Enable-
Interrupt() function description. This function is used by the Boot Service 
RaiseTPL() and RestoreTPL(). 

■ DisableInterrupt - Disables interrupt processing by the processor. See the Disable-
Interrupt() function description. This function is used by the Boot Service 
RaiseTPL() andRestoreTPL(). 

■ GetInterruptState - Retrieves the processor’s current interrupt state.  
■ Init - Generates an INIT on the processor. This function may be used by the Reset 

Architectural Protocol depending upon a specified boot path. If a processor can-
not programmatically generate an INIT without help from external hardware, 
then this function returns EFI_UNSUPPORTED. 

■ RegisterInterruptHandler - Associates an interrupt service routine with one of the 
processor’s interrupt vectors. This function is typically used by the 
EFI_TIMER_ARCH_PROTOCOL to hook the timer interrupt in a system. It can also 
be used by the debugger to hook exception vectors. 

■ GetTimerValue - Returns the value of one of the processor’s internal timers.  
■ SetMemoryAttributes - Attempts to set the attributes of a memory region. 
■ NumberOfTimers – Gives the number of timers that are available in a processor. 

The value in this field is a constant that must not be modified after the CPU Ar-
chitectural Protocol is installed. All consumers must treat this as a read-only 
field. 
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■ DmaBufferAlignment – Gives the size, in bytes, of the alignment required for DMA 
buffer allocations. This is typically the size of the largest data cache line in the 
platform. This value can be determined by looking at the data cache line sizes of 
all the caches present in the platform, and returning the largest. This is used by 
the root bridge I/O abstraction protocols to guarantee that no two DMA buffers 
ever share the same cache line. The value in this field is a constant that must not 
be modified after the CPU Architectural Protocol is installed. All consumers must 
treat this as a read-only field. 

Real Time Clock Architectural Protocol 

The Real Time Clock Architectural Protocol provides the services required to access a 
system’s real time clock hardware. This protocol must be produced by a runtime DXE 
driver and may only be consumed by the DXE Foundation. 

The DXE driver that produces this protocol must be a runtime driver. This driver 
is responsible for initializing the GetTime(), SetTime(), GetWakeupTime(), and 
SetWakeupTime() fields of the EFI Runtime Services Table. See the section “Time Ser-
vices” in Chapter 5 for details on these services. After the four fields of the EFI Runtime 
Services Table have been initialized, the driver must install the Real Time Clock Ar-
chitectural Protocol on a new handle with a NULL interface pointer. The installation 
of this protocol informs the DXE Foundation that the real time clock-related services 
are now available and that the DXE Foundation must update the 32-bit CRC of the EFI 
Runtime Services Table. 

Timer Architectural Protocol 

The Timer Architectural Protocol provides the services to initialize a periodic timer 
interrupt and to register a handler that is called each time the timer interrupt fires. It 
may also provide a service to adjust the rate of the periodic timer interrupt. When a 
timer interrupt occurs, the handler is passed the amount of time that has passed since 
the previous timer interrupt. This protocol enables the use of the SetTimer() Boot Ser-
vice. This protocol must be produced by a boot service or runtime DXE driver and may 
only be consumed by the DXE Foundation or DXE drivers that produce other DXE Ar-
chitectural Protocols. By allowing this protocol to be produced by a boot service 
driver, it is evident that this abstraction will not persist when the platform has the 
boot services terminated by launching a boot target, such as an operating system. 
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Protocol Interface Structure 

typedef struct _EFI_TIMER_ARCH_PROTOCOL { 
  EFI_TIMER_REGISTER_HANDLER          RegisterHandler; 
  EFI_TIMER_SET_TIMER_PERIOD          SetTimerPeriod; 
  EFI_TIMER_GET_TIMER_PERIOD          GetTimerPeriod; 
  EFI_TIMER_GENERATE_SOFT_INTERRUPT   
GenerateSoftInterrupt; 
} EFI_TIMER_ARCH_PROTOCOL; 

 
■ RegisterHandler - Registers a handler that is called each time the timer interrupt 

fires. TimerPeriod defines the minimum time between timer interrupts, so Tim-
erPeriod is also the minimum time between calls to the registered handler. 

■ SetTimerPeriod - Sets the period of the timer interrupt in 100 nanosecond units. 
This function is optional and may return EFI_UNSUPPORTED. If this function is 
supported, then the timer period is rounded up to the nearest supported timer 
period. 

■ GetTimerPeriod - Retrieves the period of the timer interrupt in 100 nanosecond 
units.  

■ GenerateSoftInterrupt - Generates a soft timer interrupt that simulates the firing 
of the timer interrupt. This service can be used to invoke the registered handler if 
the timer interrupt has been masked for a period of time. 

Reset Architectural Protocol 

The Reset Architectural Protocol provides the service required to reset a platform. This 
protocol must be produced by a runtime DXE driver and may only be consumed by 
the DXE Foundation. This driver is responsible for initializing the ResetSystem() field 
of the EFI Runtime Services Table. After this field of the EFI Runtime Services Table 
has been initialized, the driver must install the Reset Architectural Protocol on a new 
handle with a NULL interface pointer. The installation of this protocol informs the 
DXE Foundation that the reset system service is now available and that the DXE Foun-
dation must update the 32-bit CRC of the EFI Runtime Services Table. 
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Boot Device Selection Architectural Protocol 

The Boot Device Selection (BDS) Architectural Protocol transfers control from DXE to 
an operating system or a system utility, as illustrated in Figure 9.2. This protocol must 
be produced by a boot service or runtime DXE driver and may only be consumed by 
the DXE Foundation. By allowing this protocol to be produced by a boot service 
driver, it is evident that this abstraction will not persist when the platform has the 
boot services terminated by launching a boot target such as an operating system. 

If not enough drivers have been initialized when this protocol is used to access the 
required boot device(s), then this protocol should add drivers to the dispatch queue and 
return control back to the dispatcher. Once the required boot devices are available, then 
the boot device can be used to load and invoke an OS or a system utility.  

 

Figure 9.2: Basic Dispatch and BDS Software Flow 

Protocol Interface Structure 

typedef struct _EFI_BDS_ARCH_PROTOCOL { 
  EFI_BDS_ENTRY             Entry; 
} EFI_BDS_ARCH_PROTOCOL; 

 

■ Entry - The entry point to BDS. See the Entry() function description. This call does 
not take any parameters, and the return value can be ignored. If it returns, then 
the dispatcher must be invoked again, if it never returns, then an operating sys-
tem or a system utility have been invoked. 
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Variable Architectural Protocol 

The Variable Architectural Protocol provides the services required to get and set en-
vironment variables. This protocol must be produced by a runtime DXE driver and 
may be consumed only by the DXE Foundation. This driver is responsible for initial-
izing the GetVariable(), GetNextVariableName(), and SetVariable() fields of the EFI 
Runtime Services Table. See the section “Variable Services” in Chapter 5 for details 
on these services. After the three fields of the EFI Runtime Services Table have been 
initialized, the driver must install the Variable Architectural Protocol on a new handle 
with a NULL interface pointer. The installation of this protocol informs the DXE Foun-
dation that the read-only and the volatile environment variable related services are 
now available and that the DXE Foundation must update the 32-bit CRC of the EFI 
Runtime Services Table. The full complement of environment variable services is not 
available until both this protocol and Variable Write Architectural Protocol are in-
stalled. DXE drivers that require read-only access or read/write access to volatile en-
vironment variables must have this architectural protocol in their dependency ex-
pressions. DXE drivers that require write access to nonvolatile environment variables 
must have the Variable Write Architectural Protocol in their dependency expressions. 

Watchdog Timer Architectural Protocol 

The Watchdog Timer Architectural Protocol is used to program the watchdog timer 
and optionally register a handler when the watchdog timer fires. This protocol must 
be produced by a boot service or runtime DXE driver and may be consumed only by 
the DXE Foundation or DXE drivers that produce other DXE Architectural Protocols. 
If a platform wishes to perform a platform-specific action when the watchdog timer 
expires, then the DXE driver containing the implementation of the BDS Architectural 
Protocol should use this protocol's RegisterHandler() service. 

This protocol provides the services required to implement the Boot Service 
SetWatchdogTimer(). It provides a service to set the amount of time to wait before 
firing the watchdog timer, and it also provides a service to register a handler that is 
invoked when the watchdog timer fires. This protocol can implement the watchdog 
timer by using the event and timer Boot Services, or it can make use of custom hard-
ware. When the watchdog timer fires, control will be passed to a handler if a handler 
has been registered. If no handler has been registered, or the registered handler re-
turns, then the system will be reset by calling the Runtime Service ResetSystem(). 
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Protocol Interface Structure 

typedef struct _EFI_WATCHDOG_TIMER_ARCH_PROTOCOL { 
  EFI_WATCHDOG_TIMER_REGISTER_HANDLER  RegisterHandler; 
  EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD  SetTimerPeriod; 
  EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD  GetTimerPeriod; 
} EFI_WATCHDOG_TIMER_ARCH_PROTOCOL; 

 
■ RegisterHandler - Registers a handler that is invoked when the watchdog timer 

fires. 
■ SetTimerPeriod - Sets the amount of time in 100 nanosecond units to wait before 

the watchdog timer is fired. If this function is supported, then the watchdog timer 
period is rounded up to the nearest supported watchdog timer period. 

■ GetTimerPeriod - Retrieves the amount of time in 100 nanosecond units that the 
system will wait before the watchdog timer is fired. 

PCI Protocols 

This section describes a series of protocols that are all related to abstracting various 
aspects of PCI related interaction such as resource allocation and I/O.  

PCI Host Bridge Resource Allocation Protocol 

The PCI Host Bridge Resource Allocation Protocol is used by a PCI bus driver to pro-
gram a PCI host bridge. The registers inside a PCI host bridge that control configura-
tion of PCI root buses are not governed by the PCI specification and vary from chipset 
to chipset. The PCI Host Bridge Resource Allocation Protocol implementation is there-
fore specific to a particular chipset.  

Each PCI host bridge is composed of one or more PCI root bridges, and hardware 
registers are associated with each PCI root bridge. These registers control the bus, I/O, 
and memory resources that are decoded by the PCI root bus that the PCI root bridge 
produces and all the PCI buses that are children of that PCI root bus. 

The PCI Host Bridge Resource Allocate Protocol allows for future innovation of 
the chipsets. It abstracts the PCI bus driver from the chipset details. This design al-
lows system designers to make changes to the host bridge hardware without impact-
ing a platform independent PCI bus driver. 

Figure 9.3 shows a platform with a set of processors (CPUs) and a set of core chip-
set components that produce n host bridges. Most systems with one PCI host bus con-
troller contain a single instance of the PCI Host Bridge Allocation Protocol. More com-
plex systems may contain multiple instances of this protocol. 
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Figure 9.3: Example Host Bus Controllers 

Figure 9.4 shows how the PCI Host Bridge Resource Allocation Protocol is used to 
identify the associated PCI root bridges. After the steps shown in Figure 9.4 are com-
pleted, the PCI Host Bridge Resource Allocation Protocol can then be queried to iden-
tify the device handles of the associated PCI root bridges. 

 

Figure9.4: Producing the PCI Host Bridge Resource Allocation Protocol 
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Sample Desktop System with One PCI Root Bridge 
Figure 9.5 shows an example of a PCI host bus with one PCI root bridge. This PCI root 
bridge produces one PCI local bus that can contain PCI devices on the motherboard 
and/or PCI slots. This setup would be typical of a desktop system. In this system, the 
PCI root bridge needs minimal setup. Typically, the PCI root bridge decodes the fol-
lowing: 
■ The entire bus range on Segment 0 
■ The entire I/O space of the processor 
■ All the memory above the top of system memory 

The firmware for this platform would produce the following: 
■ One instance of the PCI Host Bridge Resource Allocation Protocol 
■ One instance of PCI Root Bridge I/O Protocol 

 

Figure 9.5: Desktop System with One PCI Root Bridge 

Sample Server System with Four PCI Root Bridges 
Figure 9.6 shows an example of a larger server with one PCI host Bus with four PCI 
root bridges (RBs). The PCI devices that are attached to the PCI root bridges are all 
part of the same coherency domain, which means they share the following: 
■ A common PCI I/O space 
■ A common PCI memory space 
■ A common PCI pre-fetchable memory space 

As a result, each PCI root bridge must get resources out of a common pool. Each PCI 
root bridge produces one PCI local bus that can contain PCI devices on the mother-
board or PCI slots. The firmware for this platform would produce the following: 
■ One instance of the PCI Host Bridge Resource Allocation Protocol 
■ Four instances of the PCI Root Bridge I/O Protocol 
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Figure 9.6: Server System with Four PCI Root Bridges 

Sample Server System with 2 PCI Segments 
Figure 9.7 shows an example of a server with one PCI host bus and two PCI root 
bridges (RBs). Each of these PCI root bridges is on a different PCI segment, which al-
lows the system to have up to 512 PCI buses. A single PCI segment is limited to 256 PCI 
buses. These two segments do not share the same PCI configuration space, but they 
do share the following, which is why they can be described with a single PCI host bus: 
■ A common PCI I/O space 
■ A common PCI memory space 
■ A common PCI pre-fetchable memory space 

The firmware for this platform would produce the following: 
■ One instance of the PCI Host Bridge Resource Allocation Protocol 
■ Two instances of the PCI Root Bridge I/O Protocol 

 

Figure 9.7: Server System with 2 PCI Segments 
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Figure 0.8: Sample Server System with Two PCI Host Buses 

Figure 9.8 shows a server system with two PCI host buses and one PCI root bridge (RB) 
per PCI host bus. Like the server system with 2 PCI segments, this system supports up 
to 512 PCI buses, but the following resources are not shared between the two PCI root 
bridges: 
■ PCI I/O space 
■ PCI memory space 
■ PCI pre-fetchable memory space 

The firmware for this platform would produce the following: 
■ Two instances of the PCI Host Bridge Resource Allocation Protocol 
■ Two instances of the PCI Root Bridge I/O Protocol 

PCI Root Bridge I/O 

The interfaces provided in the PCI Root Bridge I/O Protocol are for performing basic 
operations to memory, I/O, and PCI configuration space. The system provides ab-
stracted access to basic system resources to allow a driver to have a programmatic 
method to access these basic system resources. 

The PCI Root Bridge I/O Protocol allows for future innovation of the platform. It 
abstracts device-specific code from the system memory map. This allows system de-
signers to make changes to the system memory map without impacting platform-in-
dependent code that is consuming basic system resources. 

PCI Root Bridge I/O Protocol instances are either produced by the system firmware 
or by an UEFI driver. When a PCI Root Bridge I/O Protocol is produced, it is placed on a 
device handle along with an EFI Device Path Protocol instance. The PCI Root Bridge I/O 
Protocol does not abstract access to the chipset-specific registers that are used to man-
age a PCI Root Bridge. This functionality is hidden within the system firmware or the 
UEFI driver that produces the handles that represent the PCI Root Bridges. 
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Protocol Interface Structure 

typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL { 
  EFI_HANDLE                                       
ParentHandle; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM      
PollMem; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM      
PollIo; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS           Mem; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS           Io; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS           Pci; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM         
CopyMem; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP              Map; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP            Unmap; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER  
AllocateBuffer; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER      
FreeBuffer; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH            Flush; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES   
GetAttributes; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES   
SetAttributes; 
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION    
Configuration; 
  UINT32                                           
SegmentNumber; 
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL; 

 
■ ParentHandle – Gives the EFI_HANDLE of the PCI Host Bridge of which this PCI 

Root Bridge is a member. 
■ PollMem - Polls an address in memory mapped I/O space until an exit condition 

is met, or a timeout occurs. 
■ PollIo - Polls an address in I/O space until an exit condition is met, or a timeout 

occurs. 
■ Mem - Allows reads and writes for memory mapped I/O space.  
■ Io - Allows reads and writes for I/O space. 
■ Pci - Allows reads and writes for PCI configuration space. 
■ CopyMem - Allows one region of PCI root bridge memory space to be copied to 

another region of PCI root bridge memory space.  
■ Map - Provides the PCI controller–specific addresses needed to access system 

memory for DMA.  
■ Unmap - Releases any resources allocated by Map().  
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■ AllocateBuffer - Allocates pages that are suitable for a common buffer mapping. 
■ FreeBuffer – Frees pages that were allocated with AllocateBuffer().  
■ Flush - Flushes all PCI posted write transactions to system memory.  
■ GetAttributes - Gets the attributes that a PCI root bridge supports setting with 

SetAttributes(), and the attributes that a PCI root bridge is currently using.  
■ SetAttributes - Sets attributes for a resource range on a PCI root bridge.  
■ Configuration - Gets the current resource settings for this PCI root bridge.  
■ SegmentNumber - The segment number that this PCI root bridge resides. 

PCI I/O 

The interfaces provided in the PCI I/O Protocol are for performing basic operations to 
memory, I/O, and PCI configuration space. The system provides abstracted access to 
basic system resources to allow a driver to have a programmatic method to access 
these basic system resources. The main goal of this protocol is to provide an abstrac-
tion that simplifies the writing of device drivers for PCI devices. This goal is accom-
plished by providing the following features: 
■ A driver model that does not require the driver to search the PCI busses for de-

vices to manage. Instead, drivers are provided the location of the device to man-
age or have the capability to be notified when a PCI controller is discovered. 

■ A device driver model that abstracts the I/O addresses, Memory addresses, and 
PCI Configuration addresses from the PCI device driver. Instead, BAR (Base Ad-
dress Register) relative addressing is used for I/O and Memory accesses, and de-
vice relative addressing is used for PCI Configuration accesses. The BAR relative 
addressing is specified in the PCI I/O services as a BAR index. A PCI controller 
may contain a combination of 32-bit and 64-bit BARs. The BAR index represents 
the logical BAR number in the standard PCI configuration header starting from 
the first BAR. The BAR index does not represent an offset into the standard PCI 
Configuration Header because those offsets will vary depending on the combina-
tion and order of 32-bit and 64-bit BARs. 

■ The Device Path for the PCI device can be obtained from the same device handle 
that the PCI I/O Protocol resides. 

■ The PCI Segment, PCI Bus Number, PCI Device Number, and PCI Function Num-
ber of the PCI device if they are required. The general idea is to abstract these 
details away from the PCI device driver. However, if these details are required, 
then they are available. 

■ Details on any nonstandard address decoding that are not covered by the PCI de-
vice’s Base Address Registers. 

■ Access to the PCI Root Bridge I/O Protocol for the PCI Host Bus for which the PCI 
device is a member. 

■ A copy of the PCI Option ROM if it is present in system memory.  



146 | Chapter 9 – Some Common UEFI and PI Functions 

  

■ Functions to perform bus mastering DMA. This includes both packet based DMA 
and common buffer DMA. 

Protocol Interface Structure 

typedef struct _EFI_PCI_IO_PROTOCOL { 
  EFI_PCI_IO_PROTOCOL_POLL_IO_MEM        PollMem; 
  EFI_PCI_IO_PROTOCOL_POLL_IO_MEM        PollIo; 
  EFI_PCI_IO_PROTOCOL_ACCESS             Mem; 
  EFI_PCI_IO_PROTOCOL_ACCESS             Io; 
  EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS      Pci; 
  EFI_PCI_IO_PROTOCOL_COPY_MEM           CopyMem; 
  EFI_PCI_IO_PROTOCOL_MAP                Map; 
  EFI_PCI_IO_PROTOCOL_UNMAP              Unmap; 
  EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER    AllocateBuffer; 
  EFI_PCI_IO_PROTOCOL_FREE_BUFFER        FreeBuffer; 
  EFI_PCI_IO_PROTOCOL_FLUSH              Flush; 
  EFI_PCI_IO_PROTOCOL_GET_LOCATION       GetLocation; 
  EFI_PCI_IO_PROTOCOL_ATTRIBUTES         Attributes;  
  EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES 
GetBarAttributes ; 
  EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES 
SetBarAttributes; 
  UINT64                                 RomSize; 
  VOID                                   *RomImage; 
} EFI_PCI_IO_PROTOCOL; 

 
■ PollMem - Polls an address in PCI memory space until an exit condition is met, or 

a timeout occurs.  
■ PollIo - Polls an address in PCI I/O space until an exit condition is met, or a 

timeout occurs.  
■ Mem - Allows BAR relative reads and writes for PCI memory space.  
■ Io - Allows BAR relative reads and writes for PCI I/O space.  
■ Pci - Allows PCI controller relative reads and writes for PCI configuration space. 
■ CopyMem - Allows one region of PCI memory space to be copied to another region 

of PCI memory space.  
■ Map - Provides the PCI controller–specific address needed to access system 

memory for DMA. 
■ Unmap - Releases any resources allocated by Map().  
■ AllocateBuffer - Allocates pages that are suitable for a common buffer mapping. 
■ FreeBuffer - Frees pages that were allocated with AllocateBuffer().  
■ Flush - Flushes all PCI posted write transactions to system memory.  
■ GetLocation - Retrieves this PCI controller’s current PCI bus number, device num-

ber, and function number.  
■ Attributes - Performs an operation on the attributes that this PCI controller sup-

ports. The operations include getting the set of supported attributes, retrieving 
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the current attributes, setting the current attributes, enabling attributes, and dis-
abling attributes.  

■ GetBarAttributes - Gets the attributes that this PCI controller supports setting on 
a BAR using SetBarAttributes(), and retrieves the list of resource descriptors for a 
BAR.  

■ SetBarAttributes - Sets the attributes for a range of a BAR on a PCI controller.  
■ RomSize – Gives the size, in bytes, of the ROM image. 
■ RomImage – Returns a pointer to the in memory copy of the ROM image. The PCI 

Bus Driver is responsible for allocating memory for the ROM image, and copying 
the contents of the ROM to memory. The contents of this buffer are either from the 
PCI option ROM that can be accessed through the ROM BAR of the PCI controller, 
or from a platform-specific location. The Attributes() function can be used to deter-
mine from which of these two sources the RomImage buffer was initialized. 

Block I/O 

The Block I/O Protocol is used to abstract mass storage devices to allow code running 
in the UEFI boot services environment to access them without specific knowledge of 
the type of device or controller that manages the device. Functions are defined to read 
and write data at a block level from mass storage devices as well as to manage such 
devices in the UEFI boot services environment.  

The Block interface constructs a logical abstraction of the storage device. Figure 
9.9 shows how a typical device that has multiple partitions will have a variety of Block 
interfaces constructed on it. For example, a partition that is a logical designation of 
how a disk might be apportioned will have a block interface for it. It should be noted 
that a particular storage device will have a block interface that has a scope that spans 
the entire storage device, and the logical partitions will have a scope that is a subset 
of the device. For instance, in the example shown in Figure 9.8, Block I/O #1 has ac-
cess to the entire disk, while Block I/O #2 has its first LBA starting at the physical 
location of the partition it is associated with.  
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Fig. 9: Software Layering of the Storage Device 

Protocol Interface Structure 

typedef struct _EFI_BLOCK_IO_PROTOCOL { 
  UINT64                  Revision; 
 
  EFI_BLOCK_IO_MEDIA      *Media; 
 
  EFI_BLOCK_RESET         Reset; 
  EFI_BLOCK_READ          ReadBlocks; 
  EFI_BLOCK_WRITE         WriteBlocks; 
  EFI_BLOCK_FLUSH         FlushBlocks; 
 
} EFI_BLOCK_IO_PROTOCOL; 

 
— Revision - The revision to which the block IO interface adheres. All future 

revisions must be backward compatible. If a future version is not backward 
compatible it is not the same GUID. 

— Media - A pointer to the EFI_BLOCK_IO_MEDIA data for this device. Type 
EFI_BLOCK_IO_MEDIA is defined in the next code sample. 

— Reset - Resets the block device hardware.  
— ReadBlocks - Reads the requested number of blocks from the device.  
— WriteBlocks - Writes the requested number of blocks to the device.  
— FlushBlocks - Flushes and cache blocks. This function is optional and only 

needs to be supported on block devices that cache writes. 
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Protocol Interface Structure 

typedef struct { 
  UINT32              MediaId; 
  BOOLEAN             RemovableMedia; 
  BOOLEAN             MediaPresent; 
 
  BOOLEAN             LogicalPartition; 
  BOOLEAN             ReadOnly; 
  BOOLEAN             WriteCaching; 
 
  UINT32              BlockSize; 
  UINT32              IoAlign; 
 
  EFI_LBA             LastBlock; 
} EFI_BLOCK_IO_MEDIA; 

 

Disk I/O 

The Disk I/O protocol is used to abstract the block accesses of the Block I/O protocol 
to a more general offset-length protocol. The firmware is responsible for adding this 
protocol to any Block I/O interface that appears in the system that does not already 
have a Disk I/O protocol. File systems and other disk access code utilize the Disk I/O 
protocol. 

The disk I/O functions allow I/O operations that need not be on the underlying 
device’s block boundaries or alignment requirements. This is done by copying the 
data to/from internal buffers as needed to provide the proper requests to the block 
I/O device. Outstanding write buffer data is flushed by using the Flush() function of 
the Block I/O protocol on the device handle. 

The firmware automatically adds a Disk I/O interface to any Block I/O interface that 
is produced. It also adds file system, or logical block I/O, interfaces to any Disk I/O 
interface that contains any recognized file system or logical block I/O devices. UEFI 
compliant firmware must automatically support the following required formats: 
■ The UEFI FAT12, FAT16, and FAT32 file system type. 
■ The legacy master boot record partition block. (The presence of this on any block 

I/O device is optional, but if it is present the firmware is responsible for allocating 
a logical device for each partition). 

■ The extended partition record partition block. 
■ The El Torito logical block devices. 
■ The Disk I/O interface provides a very simple interface that allows for a more gen-

eral offset-length abstraction of the underlying Block I/O protocol. 
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Protocol Interface Structure 

typedef struct _EFI_DISK_IO_PROTOCOL { 
  UINT64              Revision; 
  EFI_DISK_READ       ReadDisk; 
  EFI_DISK_WRITE      WriteDisk; 
} EFI_DISK_IO_PROTOCOL; 

 
■ Revision - The revision to which the disk I/O interface adheres. All future revisions 

must be backwards compatible. If a future version is not backwards compatible, 
it is not the same GUID. 

■ ReadDisk - Reads data from the disk.  
■ WriteDisk - Writes data to the disk. 

Simple File System 

The Simple File System protocol allows code running in the UEFI boot services envi-
ronment to obtain file-based access to a device. The Simple File System protocol is 
used to open a device volume and return an EFI File Handle that provides interfaces 
to access files on a device volume. This protocol is a bit different from most, since its 
use exposes a secondary protocol that will directly act on the device on top of which 
the Simple File System was layered. Figure 9.10 illustrates this concept. 

 

Figure 9.10: Simple File System Software Layering 
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Protocol Interface Structure 

typedef struct { 
     UINT64             Revision; 
     EFI_VOLUME_OPEN    OpenVolume; 
} EFI_SIMPLE_FILE_SYSTEM_PROTOCOL; 

■ Revision - The version of the EFI Simple File System Protocol. The version speci-
fied by this specification is 0x00010000. All future revisions must be backward 
compatible. If a future version is not backward compatible, it is not the same 
GUID. 

■ OpenVolume - Opens the volume for file I/O access.  

EFI File Protocol 

On requesting the file system protocol on a device, the caller gets the instance of the 
Simple File System protocol to the volume. This interface is used to open the root di-
rectory of the file system when needed. The caller must Close() the file handle to the 
root directory and any other opened file handles before exiting. While open files are 
on the device, usage of underlying device protocol(s) that the file system is abstract-
ing must be avoided. For example, when a file system is layered on a DISK_IO / 
BLOCK_IO protocol, direct block access to the device for the blocks that comprise the 
file system must be avoided while open file handles to the same device exist. 

A file system driver may cache data relating to an open file. A Flush() function is 
provided that flushes all dirty data in the file system, relative to the requested file, to 
the physical medium. If the underlying device may cache data, the file system must 
inform the device to flush as well. 
Protocol Interface Structure 

typedef struct _EFI_FILE { 
  UINT64                  Revision; 
  EFI_FILE_OPEN           Open; 
  EFI_FILE_CLOSE          Close; 
  EFI_FILE_DELETE         Delete; 
  EFI_FILE_READ           Read; 
  EFI_FILE_WRITE          Write; 
  EFI_FILE_GET_POSITION   GetPosition; 
  EFI_FILE_SET_POSITION   SetPosition; 
  EFI_FILE_GET_INFO       GetInfo; 
  EFI_FILE_SET_INFO       SetInfo; 
  EFI_FILE_FLUSH          Flush; 
} EFI_FILE; 

 

■ Revision - The version of the EFI_FILE interface. The version specified by this 
specification is 0x00010000. Future versions are required to be backward com-
patible to version 1.0. 
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■ Open - Opens or creates a new file.  
■ Close - Closes the current file handle.  
■ Delete - Deletes a file.  
■ Read - Reads bytes from a file.  
■ Write - Writes bytes to a file.  
■ GetPosition - Returns the current file position.  
■ SetPosition - Sets the current file position.  
■ GetInfo - Gets the requested file or volume information.  
■ SetInfo - Sets the requested file information.  
■ Flush - Flushes all modified data associated with the file to the device.  

Configuration Infrastructure 

The modern UEFI configuration infrastructure that was first described in the UEFI 2.1 
specification is known as the Human Interface Infrastructure (HII). HII includes the 
following set of services: 
■ Database Services. A series of UEFI protocols that are intended to be an in-

memory repository of specialized databases. These database services are focused 
on differing types of information: 
— Database Repository – This is the interface that drivers interact with to ma-

nipulate configuration related contents. It is most often used to register data 
and update keyboard layout related information. 

— String Repository – This is the interface that drivers interact with to manipu-
late string-based data. It is most often used to extract strings associated with 
a given token value. 

— Font Repository – The interface to which drivers may contribute font-related 
information for the system to use. Otherwise, it is primarily used by the un-
derlying firmware to extract the built-in fonts to render text to the local mon-
itor. Note that since not all platforms have inherent support for rendering 
fonts locally (think headless platforms), general purpose UI designs should 
not presume this capability. 

— Image Repository – The interface to which drivers may contribute image-re-
lated information for the system to use. This is for purposes of referencing 
graphical items as a component of a user interface. Note that since not all 
platforms have inherent support for rendering images locally (think headless 
platforms), general purpose UI designs should not presume this capability. 

■ Browser Services. The interface that is provided by the platform’s BIOS to interact 
with the built-in browser. This service’s look-and-feel is implementation-specific, 
which allows for platform differentiation. 

■ Configuration Routing Services. The interface that manages the movement of con-
figuration data from drivers to target configuration applications. It then serves as 
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the single point to receive configuration information from configuration applica-
tions, routing the results to the appropriate drivers. 

■ Configuration Access Services. The interface that is exposed by a driver’s configu-
ration handler and is called by the configuration routing services. This service 
abstracts a driver’s configuration settings and also provides a means by which 
the platform can call the driver to initiate driver-specific operations. 

Using the Configuration Infrastructure 

The overview introduced the components of the UEFI configuration infrastructure. 
This section discusses with a bit more detail how one goes about using aspects of this 
infrastructure. The following steps are initiated by a driver that is concerned with us-
ing the configuration infrastructure: 
■ Initialize hardware. The primary job of a device driver is typically to initialize the 

hardware that it owns. During this process of physically initializing the device, 
the driver is also responsible for establishing the proper configuration state in-
formation for that device. These typically include doing the following: 
— Installing required protocols. Protocols are interfaces that will be used to 

communicate with the driver. One of the more pertinent protocols associated 
with configuration would be the Configuration Access protocol. This is used 
by the system BIOS and agents in the BIOS to interact with the driver. This is 
also the mechanism by which a driver can provide an abstraction to a pro-
prietary nonvolatile storage that under normal circumstances would not be 
usable by anyone other than the driver itself. This is how configuration data 
can be exposed for add-in devices and others can send configuration update 
requests without needing direct knowledge of that device. 

— Creating an EFI device path on an EFI handle. A device path is a binary de-
scription of the device and typically how it is attached to the system. This 
provides a unique name for the managed device and will be used by the sys-
tem to refer to the device later. 

■ Register Configuration Content. One of the latter parts of the driver initialization 
(once a device path has been established) is the registration of the configuration 
data with the underlying UEFI-compatible BIOS. The configuration data typically 
consists of sets of forms and strings that contain sufficient information for the 
platform to render pages for a user to interact with. It should also be noted that 
now that the configuration data is encapsulated in a binary format, what was 
previously an opaque meaningless set of data is now a well-known and exporta-
ble set of data that greatly expands the configurability of the device by both local 
and remote agents as well as BIOS and OS-present components. 

■ Respond to Configuration Event. Once the initialization and registration functions 
have completed, the driver could potentially remain dormant until called upon. 
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A driver would most often be called upon to act on a configuration event. A con-
figuration event is an event that occurs when a BIOS component calls upon one 
of the interfaces that the driver exposed (such as the Configuration Access proto-
col) and sends the driver a directive. These directives typically would be some-
thing akin to “give me your current settings” or “adjust setting X’s value to a 5”. 

Much more detail on this particular infrastructure is covered later in the book. 

Driver Model Interactions 

The drivers that interact with the UEFI configuration infrastructure are often compli-
ant with the UEFI driver model, as the examples shown in Figure 9.11 and Figure 9.12. 
Since driver model compliance is very common (and highly recommended) for device 
drivers, several examples are shown below that describe in detail how such a driver 
would most effectively leverage the configuration infrastructure.  

 

Figure 9.11: A Single Driver that Is Registering Its Configuration Data and Establishing Its Environ-
ment in a Recommended Fashion 

■ Step 1. During driver initialization, install services on the controller handle. 
■ Step 2. During driver initialization, discover the managed device. Create a 

device handle and then install various services on it. 
■ Step 3. During driver initialization, configuration data for the device is regis-

tered with the HII database (through the NewPackageList() API) using the 
device’s device handle. A unique HII handle is created during the registra-
tion event.  

www.ebook3000.com

http://www.ebook3000.org


 Provisioning the Platform | 155 

  

■ Step 4. During system operation, when a configuration event occurs, the sys-
tem addresses (through the Configuration Access protocol) the configuration 
services associated with the device.  

 

Figure 9.12: A Single Driver that Is Managing Multiple Devices, Registering Its Configuration Data, 
and Establishing Its Environment in a Recommended Fashion 

■ Step 1. During driver initialization, install services on the controller handle. 
■ Step 2. During driver initialization, discover the managed device(s). Create 

device handle(s) and then install various services on them. 
■ Step 3. During driver initialization, configuration data for each device is reg-

istered with the HII database (through the NewPackageList() API) using each 
device’s device handle. A unique HII handle is created during the registra-
tion event.  

■ Step 4. During system operation, when a configuration event occurs, the sys-
tem addresses (through the Configuration Access protocol) the configuration 
services associated with the driver. In this example, the configuration ser-
vices will be required to disambiguate references to each of its managed de-
vices by the passed in HII handle. 

Provisioning the Platform 

Figure 9.13 is an illustration that builds on the previously introduced concepts and 
shows how the remote interaction would introduce the concept of bare-metal provi-
sioning (putting content on a platform without the aid of a formal operating system). 
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This kind of interaction could be used in the manufacturing environment to achieve 
the provisioning of the platform or in the after-market environment where one is re-
motely managing the platform and updating it. 

 

Figure 9.13: Remote Interaction Occurs with a Target System; the System in Turn Accesses the Con-
figuration Abstractions Associated with a Device or Set of Devices 

■ Step 1. Remote administrator sends a query to a target workstation. This 
query could actually be a component of a broadcast by the administrator to 
all members of the network. 

■ Step 2. Request received and an agent (possibly a shell-based one) proxies 
the request to the appropriate device.  

■ Step 3. The agent responds based on interaction with the platform’s under-
lying configuration infrastructure.  

MAR – X-UEFI Config and Redfish 

Summary 

In conclusion, this chapter describes a series of the common protocols one would en-
counter in a UEFI enabled platform, and also highlights the common scenarios where 
one would leverage their use. With these protocols, one should be armed well for the 
future environments (both hardware and software) that will be encountered as the 
platform ecosystem evolves. 
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Chapter 10 – Platform Security and Trust 
We will bankrupt ourselves in the vain search for absolute security. 

—Dwight D. Eisenhower 

The Unified Extensible Firmware Interface (UEFI) and Platform Initialization (PI) 
specifications describe the platform elements that take control of the system across 
the various restart events. These elements are also responsible for ceding control to 
hypervisors, operating systems, or staying in the UEFI boot services environment as 
the “runtime.” These modules and drivers can provide support for various secure boot 
and trusted computing scenarios. 

Beyond the feature drivers and boot flow, the UEFI and PI specifications describe 
interfaces and binary image encoding of executable modules for purposes of interop-
erability. This allows for business-to-business engagements, such as a chipset or CPU 
vendor providing drivers to a system board vendor for purposes of building a whole 
solution. This is the positive side of the extensibility. The darker side of extensibility, 
though, entails the need to have some assurance that the final system board design 
meets various security goals, such as integrity, availability, and confidentiality. In 
other words, how can the platform manufacturer who ships a system board have con-
fidence that the UEFI and PI modules have been safely composed? 

This chapter describes some of the security and trusted computing capabilities. 
Then it discusses how to construct and integrate elements. 

Trust Overview 

We begin the discussion of trusted platforms with some background on trust—specif-
ically, the definition of trust, and some related concepts, measurement and security: 
■ Trust. An entity can be trusted if it always behaves in the expected manner for the 

intended purpose.  
■ Measurement. The process of obtaining the identity of an entity. 
■ Security. Maintenance that ensures a state of inviolability from hostile acts or in-

fluences (from http://www.thefreedictionary.com/security). 

In fact, trust is an amalgam of several elements of the platform that span the enter-
prise to consumer, including reliability, safety, confidentiality, integrity, and availa-
bility, as illustrated in Figure 10.1. 
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Figure 10.1: The Elements of Trust 

Where should the solution reside, given the problems to be solved and some of the 
capabilities like security, trust, and measurement to help effect the solution? 

In fact, the implementation of trust and security entail a security architecture that 
spans the entire system, starting at the base with hardware and spanning all of the 
way to the end-user application. 

Figure 10.2 shows all of the layers of a security architecture. The network layer is 
broken out with a few examples, such as protocols (SSL, IPSec); this chapter does not 
delve too deeply into this layer. The firmware layer is highlighted to show that a sin-
gle-layer of security is not sufficient. 
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Figure 10.2: All Layers of a Security Architecture 

In fact, the scope of this chapter largely addresses firmware. Some description of 
hardware elements and interaction are provided. Figure 10.3 highlights the area that 
this chapter discusses in more depth. 

 

Figure 10.3: Layers Examined in this Chapter 

As seen in Figure 10.3, all layers are important, but if you do not have firmware/hard-
ware assurance, you cannot have a security architecture. As the logicians would say, 
it’s “necessary but not sufficient” to have appropriate design in these layers. And as 
will be described later, the layer of hardware and firmware provide a “root of trust” 
for the rest of the security architecture. 
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So now that we have trust, security, measurement, and a layered picture of the 
security architecture, the goals of the security architecture and assets that are pro-
tected are as follows. 

The first security goal is integrity, and this entails the protection of content and in-
formation from unauthorized modification. The next goal is authenticity, and this pro-
vides guarantee or assurance in the source of the code or data. Another important goal 
is availability, or the ability to ensure behavior and the responsiveness of the system. 
Availability also protects from destruction or denial of access. And finally, another goal 
is confidentiality, or the protection of information from unauthorized access. 

Through the subsequent discussion of trusted platforms and UEFI, some of these 
integrity, authenticity, and availability goals will be discussed in more detail. 

It is outside the scope of this chapter to describe confidentiality since this is typ-
ically a concern of higher-level applications, but errors in lower layers of the trusted 
platform may imperil this goal. Specifically, this relates to the introduction of vulner-
ability via a flaw in integrity or authenticity implementations of a layer that wants to 
provide confidentiality (say an application) when the hardware or firmware or net-
work underneath is errant. 

A final item that will be discussed in this chapter is a final goal that spans all of 
the above, namely assurance. By assurance we mean having some guarantee of the 
correctness of an implementation. And for this study, assurance will be treated in de-
tail for the case when platform firmware and trusted computing hardware elements 
are the embodiment of the platform. 

And given the trust definition above, we see that these features are especially im-
portant in the enterprise, such as a high-end server, where reliability and safety goals 
are co-equal to the other concerns like integrity and confidentiality.  

Trusted Platform Module (TPM) and Measured Boot 

In building out the hardware layer of the security architecture, one problem with open 
platforms is that there hasn’t been a location on the system to have a root of trust. The 
trusted platform module (TPM) and the infrastructure around this component are an 
industry attempt to build a series of roots of trust in the platform. 

The maintenance and evolution of the capabilities of the TPM are managed 
through an industry standards body known as the Trusted Computing Group (TCG). 
The TCG members include systems manufacturers, TPM manufacturers, CPU and 
chipset vendors, operating system vendors, and other parties that contribute hard-
ware and software elements into a trusted platform. HP and IBM are examples of ven-
dors that span many of these categories. Intel also participates in the TCG as CPU and 
chipset vendor. 

To begin, what is a trusted platform module? It features a series of protected re-
gions and capabilities. Typically, a TPM is built as a microcontroller with integrated 

www.ebook3000.com

http://www.ebook3000.org


 Trusted Platform Module (TPM) and Measured Boot | 161 

  

flash/storage that is attached to the LPC bus on PC, but it can also be a virtual device 
or more deeply integrated in the platform chipset complex. The TPM interacts with 
system through a host interface. The TPM Interface Specification (TIS) in the TCG PC 
Client working group describes the memory-mapped I/O interfaces; the TIS is just one 
such interface. The TPM main specification describes the ordinals or the byte stream 
of commands that are sent into the TPM. These commands are the required actions 
that a TPM must carry out in service of the host. Figure 10.4 shows some of the speci-
fications that describe the TPM and its integration into the platform. 

 

Figure 10.4: TCG Specification Hierarchy 

The interoperability of the Trusted Computing elements is managed through the 
Trusted Computing Group (TCG) and a series of specifications. For purposes of this 
review, the TPM main specification, platform design guides, protection profiles, and 
the UEFI collateral will be of interest, as highlighted above.  

Figure 10.6 shows an instance of a TPM diagrammatically. Given the existence of 
the specifications mentioned earlier, multiple vendors can provide conformant in-
stances of this technology with the ability to differentiate their implementations. 
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Figure 10.5: TPM Overview 

Figure 10.6 is a picture of the elements that are typically found within a TPM. The 
protected execution and storage of the TPM allow for hosting the RSA asymmetric key 
pairs, such as the endorsement key (EK), the attestation identity key (AIK), and stor-
age root keys (SRKs). Recall that in RSA cryptography, the public key can be known 
to all, but the private key must be shrouded from users. The TPM and its isolated ex-
ecution can both host the key-pairs and keep the private RSA keys away from at-
tacks/errant agents on the host. In today’s platforms without a TPM, only a custom 
hardware security module (HSM) or other additional hardware can be used for host-
ing key-pairs. But in these latter solutions, there is no guarantee on construction of 
platform, surety of the host interface, and so on. The Trusted Computing Group at-
tempts to both describe the requirements on the TPM and the binding into the plat-
form in order to have a trusted building block (TBB) via design guides, protection pro-
files, conformance tests, and so on.  
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Figure 10.6: TPM Block Diagram 

What Is a Trusted Building Block (TBB)? 

The TBB includes the components that make up the platform. These can include the 
TPM, how the TPM is bound to the platform, flash with the system board firmware, 
and portions of the firmware that must be trusted. The TBB goes beyond TPM ordinals. 
It leads into prescriptions on the construction of the physical platform. As such, it is 
not just an issue at one layer of the stack. 

A S-CRTM is a “static core root of trust for measurement.” The S-CRTM is the por-
tion of the platform firmware that must be “implicitly trusted.” The S-CRTM makes 
the first measurements, starts TPM, and detects physical presence per the TCG privacy 
model. 

And it is where the S-CRTM portion of the TBB intersects with the platform firm-
ware and other roots-of-trust in the platform. S-CRTM, CRTM, and SRTM are used in-
terchangeably later in the section. 

Following is a quick overview to clarify the roots-of-trust in the platform and 
which business entity delivers them. 
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Taxonomy of terms in the platform: 
■ RTM 

— Generic term for “Root of Trust for Measurement” 
— SRTM is the static root of trust for measurement (SRTM) – CRTM + unbreak-

able measurement chain to OS 
— DRTM is the dynamic root of trust for measurement (DRTM) 

■ CRTM 
— Static CRTM (S-CRTM) or CRTM. Portion of platform firmware that must be 

implicitly trusted. 
■ RTR 

— Root of trust for reporting 
— These are the Platform Configuration Registers (PCRs) in the TPM 
— 20-byte non-resettable registers to store the state or measurements of code + 

data 
— Typically SHA1 (new info || former PCR value), where “||” is the catenation of 

data 
■ RTS 

— Root of trust for storage 
— Endorsement key (EK) – unique per TPM 
— Storage root keys (SRKs) – used by OS and others to build key hierarchies 

■ TPM Owner  
— Applies the authentication value 
— Several commands are “owner authorized” 

■ SRTM 
— Static root of trust for measurement 
— CRTM (CRTM) + platform firmware measuring all code and data prior to boot 
— Records information into non-resettable or “static” PCRs (0-15); these static 

PCRs zeroed only across platform reset 
— Described by TCG BIOS and UEFI specifications 

■ DRTM 
— Dynamic root of trust for measurement 
— Initiative the measurement later in boot. Includes resettable PCRs 16 and 

above; these resettable PCRs zeroed upon initiation of the DRTM launch 
■ Physical presence 

— Administrative model of the TPM. Assertion by operator of presence in order 
to perform privacy or administrative activities with the TPM. 

In general, a hardware instantiation of the trusted platform module (TPM) is a passive 
hardware device on the system board. It serves as the root of trust for storage (RTS) 
and root of trust for reporting (RTR). The former is the use of the storage root key (SRK) 
and the Platform Configuration Registers (PCRs). Figure 10.7 shows the synthesis of 
the various roots in the platform.  
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Figure 10.7: Functions of a TPM 

The active agent on the platform is the root of trust for measurement (RTM). The RTM 
can be either static or dynamic (SRTM versus DRTM, respectively). The SRTM, on the 
other hand, entails a trust chain from the platform reset vector going forward. 

The definition of the SRTM for UEFI is defined in the UEFI TCG Protocol Specifi-
cation and the TCG UEFI Platform Specification. The flow of the SRTM into the oper-
ating system is shown in Figure 10.8. 

 

Figure 10.8: Boot Flow that Includes a Static Root of Trust 
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There needs to be UEFI APIs available so that the UEFI OS loader can continue to 
measure the operating system kernel, pass commands to the TPM to possibly unseal 
a secret, and perform other TPM actions prior to the availability of the OS TPM driver. 
In addition, this API can be installed at the beginning of DXE to enable measurement 
of the DXE and UEFI images. Figure 10.9 shows where the UEFI TCG APIs would ap-
pear relative to the other interfaces. 

 

Figure 10.9: UEFI API Layering 

The UEFI specifications are cross-listed in the TCG PC and Server Working Groups 
such that both consumer and enterprise-class operating systems can participate in 
this boot flow behavior.  

The UEFI TCG Platform specification describes which objects to measure in an 
UEFI system, such as the images, on-disk data structures, and UEFI variables. Figure 
10.10 shows which objects in a UEFI system correspond to measures in PCRs. 
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Figure 10.10: Measured Objects in UEFI 

Prior to the UEFI phase of platform execution, the PI describe the PEI and DXE phases. 
In these phases the CRTM is mapped to the PEI phase and what is thought of as BIOS 
POST is mapped to DXE. There are interfaces in PEI (namely, the PEIM-to-PEIM inter-
face, or PPI) to allow for fine-grain measurement in that phase of execution, too. Fig-
ure 10.11 shows one possible PEI-based CRTM and the flow into the operating system. 

 

Figure 10.11: SRTM boot flow 
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What Is the Point of Measurements? 

The process of measurements records the state of the platform, for both executable 
code and data hashes, into the TPM’s platform configuration registers (PCRs). These 
PCRs are write-only and cleared upon a platform reset (at least the static PCRs for 
SRTM). The PCRs reflect the platform state. They are used such that software, when 
installed upon the platform, can “seal” some information to the platform. A Seal op-
eration is like an encryption that also includes PCRs. There is a corresponding Unseal 
operation, which is a decryption that also uses the PCRs 

What this means practically is that if the state of the platform changes between 
the installation of some software (and the Seal operation) and successive invocations 
of software on later restarts (and the use of Unseal operation), unauthorized changes 
to the platform in the interim will be detected (that is, PCRs changed).  

This is sort of the Resurrecting Duckling security model wherein the initial state 
of the platform (that is, PCR values upon installing application) is considered safe or 
acceptable. 

UEFI offers an opportunity here. PI and UEFI have specification-based compo-
nents written in a high-level language (for example, C). The software development 
lifecycle (SDL) for drivers and other system software can be applied, as can static 
analysis tools (such as Klockwork† and Coverity†). Later in the chapter we’ll talk 
about additional practices to complement the SDL that address domain-specific is-
sues with platform firmware. 

With all these elements of security and protections in place how the CRTM is up-
dated becomes critical and much more challenging. Since the CRTM is the root, and 
is itself inherently trusted, it must be a very controlled and secure process. The TCG 
describes CRTM maintenance in the Trusted Building Block (TBB) protection profile. 
Either the CRTM is immutable, or never changed in the field, or appropriate crypto-
graphic techniques need to be employed in order to update the CRTM.  

Regarding the cryptographic-based update, Figure 10.12 shows a possible imple-
mentation where the firmware volume (FV) update is enveloped using an RSA-
2048/SHA-256-based update. This is just one possible UEFI PI implementation that 
leverages the UEFI PI-based firmware volume construct and the WIN_CERT that can 
be found in the UEFI 2.0 specification.  
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Figure 10.12: Firmware Volume Update 

As noted above, a signed capsule is one implementation path. The system flash is not 
directly updated by a flash utility but instead the CRTM update capsule is stored in a 
staging area. The next time the CRTM gains control of the system (at reset), it will 
check for any pending updates. If updates are found, they will be validated and then 
cryptographically verified. If they are valid, the CRTM update can be applied. It’s im-
portant to note that when validating the update this all must be done by using only 
CRTM code and data. Code or data outside the CRTM cannot be trusted until verified.  

UEFI Secure Boot 

There are several terms that will be introduced in the context of UEFI and trust. These 
include executable verification, driver signing, user identification, network authentica-
tion, and network security. 

To begin, the UEFI evolution described below appear as elements of the UEFI 
main specification in version 2.6. These features entail updates to the boot behavior 
and the features briefly treated will include image verification, networking enhance-
ments such as IPSec, and user identification. 

Figure 10.13 shows where in the stack the emergent UEFI features described in 
this chapter exist, namely in the UEFI Services and boot manager.  
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Fig10.13: UEFI Software Stack 

UEFI Executable Verification 

The first feature from UEFI to discuss is driver signing or executable verification. 
Driver signing: 
■ Expands the types of signatures recognized by UEFI 

— SHA-1, SHA-256, RSA2048/SHA-1, RSA2048/SHA-256 and Authenticode 
■ Standard method for configuring the “known-good” and “known-bad” signature 

databases. 
■ Provides standard behavior when execution is denied to provide policy-based up-

dates to the lists. 

One evolution beyond the SRTM described in earlier chapters, is that UEFI can pro-
vide “verification.” Recall that the SRTM records the state of the code and data in the 
platform such that a later entity may assess the measurements. For verification, or 
enforcement, of some policy, the UEFI firmware can act as a root-of-trust-for-enforce-
ment (RTE) or root-of-trust-for-verification (RTV) wherein the boot process can 
change as part of policy. This policy can include the UEFI image verification using 
Authenticode-signed images, for example. 
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Figure 10.14 shows the steps necessary for signing of UEFI images. The signing 
can include RSA asymmetric encryption and the hash function a member of the secu-
rity hash algorithm family. 

 

Figure 10.14: Driver signing 

This preparation would happen at the manufacturer facility or could be facilitated by 
a third party, such as VeriSign† Certificate Authority (CA). 

Once the signed images are deployed in the field, whether loaded across the net-
work, from a host-bus adapter card, or via the UEFI system partition, the UEFI 2.6 
firmware verifies the image integrity, as illustrated in Figure 10.15. 
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Fig10.15: Verification of UEFI images 

The figure above shows a single logical firmware volume from the system board man-
ufacturer. The characters on the left can either be the manufacturer provisioning and 
enrolling the keys during system constructor, or the platform owner updating the da-
tabase (DB) of the keys during the one-touch provisioning.  

The UEFI Secure boot flow has the DB and DBX for the allowed and disallowed 
UEFI images, respectively, but it does not talk about boot time verification of the un-
derlying PEI and DXE FV. For that a hardware verifier that runs prior to the PEI FV 
can be used. This logically maps to the PI SEC phase. One embodiment of this hard-
ware verification of the system board vendor PI code is shown below. 
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Fig. 16: Verification of OEM flow 

This flow above shows the UEFI 2.6 chapter 30 UEFI Secure boot flow on the right 
hand side, along with a hardware verification of the initial block on the left hand side, 
including reference to Intel® Device Protection with Boot Guard Technology. There 
are many other hardware implementations beyond Intel Boot Guard for Intel ® 
Atom® class SOC’s and other vendor SOC’s. The ‘middle’ of the diagram shows how 
the verification action must be continued, with one embodiment including signed 
firmware volumes.  

The combination of robust UEFI implements and interoperable trust infrastruc-
ture will allow for evolving the extensibility of UEFI in a safe, robust fashion. 

UEFI Networking 

Another element that appears in UEFI entails additional network security, including 
IPsec support. Trusted hardware like the TPM can be used to help store the IPsec cre-
dentials, but to be stronger, assurance around the UEFI firmware implementation of 
the IPsec cryptography and the networking code will need to follow the guidelines in 
the preceding chapter. IPSec can be used for platform network boot to harden scenar-
ios such as ISCSI-based provisioning. 

Figure 10.17 shows the EFI IPsec implementation using the UEFI IPsec protocol 
and IPV6 network stack, including a pre-deployed security association (SA). 
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Figure 10.17: UEFI IPsec 

IPsec in the platform will allow for performing both an IPV4 and IPV6-based ISCSI 
boot and provisioning. Figure 10.18 shows an iSCSI layering on top of the UEFI net-
work stack, for example. 

 

Figure 10.18: An iSCSI Application with UEFI Network Stack 
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Beyond the IP6 and IPsec UEFI interfaces, the wire-protocol for network booting 
has commensurate evolution to the UEFI APIs. Specifically, in the DHCPv6 extensions 
for IPV6 network booting, the boot file information is sent as a Uniform Resource 
Locator (URL); the network boot option details are described in both the UEFI 2.6 
specification and in IETF Request For Comment (RFC) 5970. As such, the UEFI client 
machine and the boot server can negotiate various types of downloads, including 
TFTP, FTP, HTTP, NFS, or ISCSI. This allows the network capabilities to track the 
needs of the market and the machine’s firmware capabilities. 

Beyond IPSec, the Transport Layer Security (TLS) has been added to the UEFI 
Specification. A layering of this new protocol for purposes of secured HTTP, namely 
HTTP-S, is shown below. 

H�pDxeH�pDxe

TcpDxeTcpDxe TlsDxeTlsDxe

TLS_PROTOCOLTLS_PROTOCOL TLS_CONFIGRATION
_PROTOCOL

TLS_CONFIGRATION
_PROTOCOLTCP_PROTOCOLTCP_PROTOCOL

comsume

Produce Produce

  

Figure 10.19: UEFI TLS 

TLS allows for confidentiality on HTTP boot via HTTP-S, but it can be used for other 
usages. These other usages include support for EAP-TLS for a WIFI supplicant, as 
shown in the following diagram of the UEFI 2.6 WIFI stack. 
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Figure 10.20: UEFI WIFI 

Wherein the ‘supplicant driver’ would produce the EFI_EAP_CONFIGURATION_PRO-
TOCOL, with the embodiment can include EAP-TLS. 

More details on the EFI_TLS_PROTOOCL can be found in chapter 27 of the UEFI 
2.6 specification. More details on the UEFI WIFI support can be found in chapter 25 of 
the UEFI 2.6 specification, too. 

UEFI User Identification (UID) 

A final ingredient in UEFI includes the user identity support. This is infrastructure 
that allows for loading drivers from token vendors to abstract authentication of the 
user, including many factors, and a policy engine to assign rights to certain users. 
This can include limiting service access for certain users. Figure 10.21 shows this ca-
pability. 
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Figure 10.21: User Identity 

Implementation of these UEFI features would also build upon and require the assur-
ance/best practices in firmware discussed earlier. More information on the UEFI-
based features can be found in the UEFI main specification. 

Hardware Evolution: SRTM-to-DRTM 

As a final element getting introduced into the platform going forward is the dynamic 
root of trust for measurement, or D-RTM. The D-RTM provides platform hardware ca-
pabilities to support a measured launch environment (MLE). An S-RTM and D-RTM 
feature set can exist on the same platform, or each feature can exist independently. 
Figure 10.22 compares the two RTMs and their temporal evolution and features. 
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Figure 10.22: DRTM Boot Flow 

A DRTM implementation can also include a root-of-trust for verification (RTV), too. 
More information on Intel’s D-RTM implementation can be found in the following 
book by David Grawrock, Dynamics of a Trusted Platform from Intel Press. 

Platform Manufacturer 

There are several terms that will be introduced in order to facilitate the following dis-
cussion. The first includes the entity that produces the final system board that in-
cludes the collection of UEFI and PI modules shown in Figure 10.23. This will be called 
the platform manufacturer or PM. The authority to perform updates or changes to the 
configuration of the UEFI and PI modules that ship from the factory are mediated by 
PM_AUTH or Platform Manufacturer Authority. PM_AUTH essentially describes the 
administrative roles that an entity who authenticates or proves itself to be the PM or 
delegate of the PM can perform. These actions can include but are not limited to the 
update of modules, firmware, or early PI settings. PM_AUTH typically is used to en-
sure the integrity of the PI and UEFI modules, and this integrity, or ensuring that the 
modules came from the manufacturer, can be accomplished via cryptographic up-
dates of modules or signed UEFI capsules, for example. 

As noted above, integrity forms one of the key security goals of the platform. If a 
third party can replace or impersonate a PI module without the PM’s knowledge, 
there is an opportunity to introduce a vulnerability into the system. 
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Figure 10.23: Overall View of Boot Time Line 

When we refer to PM_AUTH, we mean “components that are under the authority of 
the Platform manufacturer.” This can include provenance of the PI code and data at 
rest (in the system board ROM container) and also the temporal state of the code in 
memory during system boot and runtime. The PM_AUTH can include the PEI and DXE 
driver dispatch responsive to an S5 restart, the SMM code running during the operat-
ing system runtime x64, and data at rest in the ROM after field updates. 

The PM_AUTH really means that we do not have arbitrary third party extensibil-
ity. Arbitrary third party code could include an operating system loader deposited on 
the EFI System Partition during a post-ship OS install or upgrade, a PC/AT option 
ROM from a host bus adapter plugged into a system. 

So for this model of integrity analysis, PM_AUTH = {SEC, PEI Core, PEIMs, DXE 
core, DXE drivers, firmware volumes, UEFI variables used only by PEI + DXE, BDS, 
PMI, SMM, UEFI runtime, ACPI tables, SMBIOS tables}.  

Non-PM_AUTH is non-signed UEFI drivers from a host-bus adapter (HBA), non-
signed UEFI OS loaders.  
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Vulnerability Classification 

There are several terms that will be introduced in this section. These include spoofing, 
tampering, repudiation, information disclosure, denial of service, and elevation of 
privilege. 

In order to talk about platform security, some terms will be introduced. Specifically, 
a vulnerability in a software or firmware product can subject the computer on which 
it is running to various attacks. Attacks may be grouped in the following categories: 
■ Spoofing. An attacker pretends that he is someone else, perhaps in order to inflict 

some damage on the person or organization impersonated. 
■ Tampering. An attacker is able to modify data or program behavior. 
■ Repudiation. An attacker, who has previously taken some action, is able to deny 

that he took it.  
■ Information Disclosure. An attacker is able to obtain access to information that he 

is not allowed to have. 
■ Denial of Service. An attacker prevents the system attacked from providing ser-

vices to its legitimate users. The victim may become bogged down in fake work-
load, or even shut down completely. 

■ Elevation of Privilege. An attacker, who has entered the system at a low privilege 
level (such as a user), acquires higher privileges (such as those of an administra-
tor). 

Roots of Trust/Guards 

When discussing integrity, a more formal model helps define some of the terms. A 
popular commercial integrity model includes that defined by Clark-Wilson (CW). In 
the CW model, there are controlled data items (CDIs) and uncontrolled data items 
(UDIs). The former must have some administrative control for changes, whereas the 
latter do not. 

An example of a UDI can include a UEFI variable like the language code, whereas 
a CDI can include authenticated variables such as the signature data base used for 
managing the x509V3 certificates. Figure 10.24 shows an example of a CDI, such as 
UEFI variables, and the Guard. Typically the caller would be a UEFI or OS application, 
the “request” would be the “set variable,” the Guard would be the UEFI implementa-
tion of the variable services, and the variable itself could include the EFI_VARIA-
BLE_AUTHENTICATED_WRITE_ACCESS bit set. 
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Figure 10.24: Example of a CDI 

Summary 

This chapter has reviewed the static root of trust for measurement, or trusted boot, 
and the associated trusted computing hardware, including the TPM. It then described 
other preventive security technology, such as UEFI secure boot.  

This chapter then described some background and guidance on how to prepare 
and integrate components that meet the platform assurance goals and also realize the 
purported capabilities of the security and trusted computing elements. This includes 
the concepts of trust and security. It also reviewed trusted computing technology, 
such as the Trusted Platform Module, SRTM, CRTM, and the TBB. Finally, the tech-
nology in the UEFI 2.6 specification for security, such as driver signing, network au-
thentication, and user identification was treated. 



  

 

 

www.ebook3000.com

http://www.ebook3000.org


  

DOI 10.1515/9781501505690-013 

Chapter 11 – Boot Device Selection  
I just invent, then wait until man comes around to needing what I invented. 

—R. Buckminster Fuller 

UEFI has over time evolved a very basic paradigm for establishing a firmware policy 
engine. The concept was developed from the concept of a single boot manager whose 
sole purpose was exercising the policy established by some architecturally defined 
global NVRAM variables. As the firmware design evolved, and several distinct boot 
phases such as SEC, PEI, DXE, BDS, Runtime, and Afterlife were defined, the BDS 
(Boot Device Selection) phase became a distinct boot manager-like phase. In this 
chapter, the architectural components that steer the policy of the boot manager are 
reviewed. This content forms the architectural basis for what eventually became the 
BDS phase.  

In fact, the differences between what is known as the boot manager in earlier 
firmware designs and what is known as the BDS in PI-based solutions is easy to illus-
trate. Figure 11.1 shows the software flow in an early firmware design environment, 
and Figure 11.2 shows one that is PI-compatible. 
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Figure 11.1: Earlier Firmware Designs with a Boot Manager Component 
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Figure 11.2: PI-based Solution with a BDS Component 

As you can see from comparing the two figures, there is much overlap. The BDS phase 
subsumes the direction described in this chapter and is further explained in Chapter 8. 

The UEFI boot manager is a firmware policy engine that can be configured by 
modifying architecturally defined global NVRAM variables. The boot manager at-
tempts to load UEFI drivers and UEFI applications (including UEFI OS boot loaders) 
in an order defined by the global NVRAM variables. The platform firmware must use 
the boot order specified in the global NVRAM variables for normal boot. The platform 
firmware may add extra boot options or remove invalid boot options from the boot 
order list. 

The platform firmware may also implement value-added features in the boot 
manager if an exceptional condition is discovered in the firmware boot process. One 
example of a value-added feature would be not loading an UEFI driver if booting 
failed the first time the driver was loaded. Another example would be booting to an 
OEM-defined diagnostic environment if a critical error was discovered during the boot 
process. 

The boot sequence for UEFI consists of the following: 
■ The platform firmware reads the boot order list from a globally defined NVRAM 

variable. The boot order list defines a list of NVRAM variables that contain infor-
mation about what is to be booted. Each NVRAM variable defines a Unicode name 
for the boot option that can be displayed to a user. 
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■ The variable also contains a pointer to the hardware device and to a file on that 
hardware device that contains the UEFI image to be loaded. 

■ The variable might also contain paths to the OS partition and directory along with 
other configuration-specific directories. 

The NVRAM can also contain load options that are passed directly to the UEFI image. 
The platform firmware has no knowledge of what is contained in the load options. 
The load options are set by higher level software when it writes to a global NVRAM 
variable to set the platform firmware boot policy. This information could be used to 
define the location of the OS kernel if it was different than the location of the UEFI OS 
loader. 

Firmware Boot Manager 

The boot manager is a component in the UEFI firmware that determines which UEFI 
drivers and UEFI applications should be explicitly loaded and when. Once the UEFI 
firmware is initialized, it passes control to the boot manager. The boot manager is 
then responsible for determining what to load and any interactions with the user that 
may be required to make such a decision. Much of the behavior of the boot manager 
is left up to the firmware developer to decide, and details of boot manager implemen-
tation are outside the scope of this specification. Likely implementation options 
might include any console interface concerning boot, integrated platform manage-
ment of boot selections, possible knowledge of other internal applications or recovery 
drivers that may be integrated into the system through the boot manager.  

Programmatic interaction with the boot manager is accomplished through glob-
ally defined variables. On initialization, the boot manager reads the values that com-
prise all of the published load options among the UEFI environment variables. By us-
ing the SetVariable() function the data that contain these environment 
variables can be modified. 

Each load option entry resides in a Boot#### variable or a Driver#### vari-
able where the #### is replaced by a unique option number in printable hexadecimal 
representation using the digits 0–9, and the uppercase versions of the characters A–
F (0000–FFFF). The #### must always be four digits, so small numbers must use 
leading zeros. The load options are then logically ordered by an array of option num-
bers listed in the desired order. There are two such option ordering lists. The first is 
DriverOrder that orders the Driver#### load option variables into their load 
order. The second is BootOrder that orders the Boot#### load options variables 
into their load order. 

For example, to add a new boot option, a new Boot#### variable would be 
added. Then the option number of the new Boot#### variable would be added to 
the BootOrder ordered list and the BootOrder variable would be rewritten. To 
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change boot option on an existing Boot####, only the Boot#### variable would 
need to be rewritten. A similar operation would be done to add, remove, or modify 
the driver load list. 

If the boot via Boot#### returns with a status of EFI_SUCCESS the boot man-
ager stops processing the BootOrder variable and presents a boot manager menu 
to the user. If a boot via Boot#### returns a status other than EFI_SUCCESS, the 
boot has failed and the next Boot#### in the BootOrder variable will be tried 
until all possibilities are exhausted. 

The boot manager may perform automatic maintenance of the database varia-
bles. For example, it may remove unreferenced load option variables, any unpar-
seable or unloadable load option variables, and rewrite any ordered list to remove 
any load options that do not have corresponding load option variables. In addition, 
the boot manager may automatically update any ordered list to place any of its own 
load options where it desires. The boot manager can also, based on its platform-spe-
cific behavior, provide for manual maintenance operations as well. Examples include 
choosing the order of any or all load options, activating or deactivating load options, 
and so on. 

The boot manager is required to process the Driver load option entries before the 
Boot load option entries. The boot manager is also required to initiate a boot if the 
boot option specified by the BootNext variable as the first boot option on the next 
boot, and only on the next boot. The boot manager removes the BootNext variable 
before transferring control to the BootNext boot option. If the boot from the Boot-
Next boot option fails, the boot sequence continues utilizing the BootOrder vari-
able. If the boot from the BootNext boot option succeeds by returning EFI_SUC-
CESS, the boot manager will not continue to boot utilizing the BootOrder 
variable. 

The boot manager must call LoadImage(), which supports at least SIM-
PLE_FILE_PROTOCOL and LOAD_FILE_PROTOCOL for resolving load options. If 
LoadImage() succeeds, the boot manager must enable the watchdog timer for 5 
minutes by using the SetWatchdogTimer() boot service prior to calling 
StartImage(). If a boot option returns control to the boot manager, the boot man-
ager must disable the watchdog timer with an additional call to the SetWatchdog-
Timer() boot service. 

If the boot image is not loaded via LoadImage(), the boot manager is required 
to check for a default application to boot. Searching for a default application to boot 
happens on both removable and fixed media types. This search occurs when the de-
vice path of the boot image listed in any boot option points directly to a SIM-
PLE_FILE_SYSTEM device and does not specify the exact file to load. The file discov-
ery method is explained in the section “Default Behavior for Boot Option Variables” 
later in this chapter. The default media boot case of a protocol other than SIM-
PLE_FILE_SYSTEM is handled by the LOAD_FILE_PROTOCOL for the target device 
path and does not need to be handled by the boot manager. 
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The boot manager must also support booting from a short-form device path that 
starts with the first element being a hard drive media device path. The boot manager 
must use the GUID or signature and partition number in the hard drive device path to 
match it to a device in the system. If the drive supports the GPT partitioning scheme 
the GUID in the hard drive media device path is compared with the UniqueParti-
tionGuid field of the GUID Partition Entry. If the drive supports the PC-AT MBR 
scheme the signature in the hard drive media device path is compared with the 
UniqueMBRSignature in the Legacy Master Boot Record. If a signature match is made, 
then the partition number must also be matched. The hard drive device path can be 
appended to the matching hardware device path and normal boot behavior can then 
be used. If more than one device matches the hard drive device path, the boot man-
ager picks one arbitrarily. Thus, the operating system must ensure the uniqueness of 
the signatures on hard drives to guarantee deterministic boot behavior. 

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte-
packed buffer of variable-length fields. Since some of the fields are of variable length, 
an EFI_LOAD_OPTION cannot be described as a standard C data structure. Instead, 
the fields are listed here in the order that they appear in an EFI_LOAD_OPTION de-
scriptor: 
■ UINT32              Attributes; 

UINT16              FilePathListLength; 
CHAR16              Description[]; 
EFI_DEVICE_PATH     FilePathList[]; 
UINT8               OptionalData[]; 
 

■ Attributes - The attributes for this load option entry. All unused bits must be zero 
and are reserved by the UEFI specification for future growth. See “Related Defini-
tions.” 

■ FilePathListLength - Length in bytes of the FilePathList. OptionalData starts at off-
set sizeof(UINT32) + sizeof(UINT16) + StrSize(Description) + FilePathListLength 
of the EFI_LOAD_OPTION descriptor. 

■ Description - The user readable description for the load option. This field ends 
with a Null Unicode character. 

■ FilePathList - A packed array of UEFI device paths. The first element of the array 
is an UEFI device path that describes the device and location of the Image for this 
load option. The FilePathList[0] is specific to the device type. Other device paths 
may optionally exist in the FilePathList, but their usage is OSV specific. Each el-
ement in the array is variable length, and ends at the device path end structure. 
Because the size of Description is arbitrary, this data structure is not guaranteed 
to be aligned on a natural boundary. This data structure may have to be copied 
to an aligned natural boundary before it is used. 
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■ OptionalData - The remaining bytes in the load option descriptor are a binary data 
buffer that is passed to the loaded image. If the field is zero bytes long, a Null 
pointer is passed to the loaded image. The number of bytes in OptionalData can 
be computed by subtracting the starting offset of OptionalData from total size in 
bytes of the EFI_LOAD_OPTION. 

Related Definitions 

The load option attributes are defined by the values 
below. 

// 
// Attributes 
// 
#define LOAD_OPTION_ACTIVE          0x00000001 
#define LOAD_OPTION_FORCE_RECONNECT 0x00000002 

Calling SetVariable() creates a load option. The size of the load option is the 
same as the size of the DataSize argument to the SetVariable() call that cre-
ated the variable. When creating a new load option, all undefined attribute bits must 
be written as zero. When updating a load option, all undefined attribute bits must be 
preserved. If a load option is not marked as LOAD_OPTION_ACTIVE, the boot man-
ager will not automatically load the option. This provides an easy way to disable or 
enable load options without needing to delete and reload them. If any Driver#### 
load option is marked as LOAD_OPTION_FORCE_RECONNECT, then all of the UEFI 
drivers in the system will be disconnected and reconnected after the last 
Driver#### load option is processed. This allows an UEFI driver loaded with a 
Driver#### load option to override an UEFI driver that was loaded prior to the ex-
ecution of the UEFI Boot Manager. 

Globally-Defined Variables 

This section defines a set of variables that have architecturally defined meanings. In 
addition to the defined data content, each such variable has an architecturally de-
fined attribute that indicates when the data variable may be accessed. The variables 
with an attribute of NV are nonvolatile. This means that their values are persistent 
across resets and power cycles. The value of any environment variable that does not 
have this attribute will be lost when power is removed from the system and the state 
of firmware reserved memory is not otherwise preserved. The variables with an attrib-
ute of BS are only available before ExitBootServices() is called. This means 
that these environment variables can only be retrieved or modified in the preboot en-
vironment. They are not visible to an operating system. Environment variables with 
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an attribute of RT are available before and after ExitBootServices() is called. 
Environment variables of this type can be retrieved and modified in the preboot envi-
ronment, and from an operating system. All architecturally defined variables use the 
EFI_GLOBAL_VARIABLE VendorGuid: 

 

#define EFI_GLOBAL_VARIABLE \ 
        {8BE4DF61-93CA-11d2-AA0D-00E098032B8C} 

To prevent name collisions with possible future globally defined variables, other in-
ternal firmware data variables that are not defined here must be saved with a unique 
VendorGuid other than EFI_GLOBAL_VARIABLE. Table 11.1 lists the global variables. 

Table 11. 1:  Global Variables 

Variable Name Attribute Description 

LangCodes BS, RT The language codes that the firmware supports. 

Lang NV, BS, RT The language code that the system is configured for. 

Timeout NV, BS, RT The firmwares boot manager’s timeout, in seconds, 
before initiating the default boot selection. 

ConIn NV, BS, RT The device path of the default input console. 

ConOut NV, BS, RT The device path of the default output console. 

ErrOut NV, BS, RT The device path of the default error output device. 

ConInDev BS, RT The device path of all possible console input devices. 

ConOutDev BS, RT The device path of all possible console output de-
vices. 

ErrOutDev BS, RT The device path of all possible error output devices. 

Boot#### NV, BS, RT A boot load option, where #### is a printed hex 
value. No 0x or h is included in the hex value. 

BootOrder NV, BS, RT The ordered boot option load list. 

BootNext NV, BS, RT The boot option for the next boot only. 

BootCurrent BS, RT The boot option that was selected for the current boot. 

Driver#### NV, BS, RT A driver load option, where #### is a printed hex 
value. 

DriverOrder NV, BS, RT The ordered driver load option list. 
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The LangCodes variable contains an array of 3-character (8-bit ASCII characters) 
ISO-639-2 language codes that the firmware can support. At initialization time the 
firmware computes the supported languages and creates this data variable. Since the 
firmware creates this value on each initialization, its contents are not stored in non-
volatile memory. This value is considered read-only. 

The Lang variable contains the 3-character (8-bit ASCII characters) ISO-639-2 
language code for which the machine has been configured. This value may be 
changed to any value supported by LangCodes; however, the change does not take 
effect until the next boot. If the language code is set to an unsupported value, the 
firmware chooses a supported default at initialization and sets Lang to a supported 
value. 

The Timeout variable contains a binary UINT16 (unsigned 16-bit value) that 
supplies the number of seconds that the firmware waits before initiating the original 
default boot selection. A value of 0 indicates that the default boot selection is to be 
initiated immediately on boot. If the value is not present, or contains the value of 
0xFFFF, then firmware waits for user input before booting. This means the default 
boot selection is not automatically started by the firmware. 

The ConIn, ConOut, and ErrOut variables each contain an EFI_DE-
VICE_PATH descriptor that defines the default device to use on boot. Changes to these 
values do not take effect until the next boot. If the firmware cannot resolve the device 
path, it is allowed to automatically replace the value(s) as needed to provide a console 
for the system. 

The ConInDev, ConOutDev, and ErrOutDev variables each contain an 
EFI_DEVICE_PATH descriptor that defines all the possible default devices to use on 
boot. These variables are volatile, and are set dynamically on every boot. ConIn, 
ConOut, and ErrOut are always proper subsets of ConInDev, ConOutDev, and 
ErrOutDev. 

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### var-
iable is the name “Boot” appended with a unique four-digit hexadecimal number. For 
example, Boot0001, Boot0002, Boot0A02, and so on. 

The BootOrder variable contains an array of UINT16s that make up an ordered 
list of the Boot#### options. The first element in the array is the value for the first 
logical boot option, the second element is the value for the second logical boot option, 
and so on. The BootOrder order list is used by the firmware’s boot manager as the 
default boot order. 

The BootNext variable is a single UINT16 that defines the Boot#### option 
that is to be tried first on the next boot. After the BootNext boot option is tried the 
normal BootOrder list is used. To prevent loops, the boot manager deletes this var-
iable before transferring control to the preselected boot option. 

The BootCurrent variable is a single UINT16 that defines the Boot#### op-
tion that was selected on the current boot. 
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Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option 
variable is appended with a unique number, for example Driver0001, 
Driver0002, and so on. 

The DriverOrder variable contains an array of unsigned 16-bit values that 
make up an ordered list of the Driver#### variable. The first element in the array 
is the value for the first logical driver load option, the second element is the value for 
the second logical driver load option, and so on. The DriverOrder list is used by 
the firmware’s boot manager as the default load order for UEFI drivers that it should 
explicitly load. 

Default Behavior for Boot Option Variables 

The default state of globally defined variables is firmware vendor specific. However, 
the boot options require a standard default behavior in the exceptional case that valid 
boot options are not present on a platform. The default behavior must be invoked any 
time the BootOrder variable does not exist or only points to nonexistent boot op-
tions. 

If no valid boot options exist, the boot manager enumerates all removable UEFI 
media devices followed by all fixed UEFI media devices. The order within each group 
is undefined. These new default boot options are not saved to nonvolatile storage. 
The boot manager then attempts to boot from each boot option. If the device supports 
the SIMPLE_FILE_SYSTEM protocol, then the removable media boot behavior (see the 
section “Removable Media Boot Behavior”) is executed. Otherwise the firmware at-
tempts to boot the device via the LOAD_FILE protocol. 

It is expected that this default boot will load an operating system or a mainte-
nance utility. If this is an operating system setup program it is then responsible for 
setting the requisite environment variables for subsequent boots. The platform firm-
ware may also decide to recover or set to a known set of boot options. 

Boot Mechanisms 

UEFI can boot from a device using the SIMPLE_FILE_SYSTEM protocol or the 
LOAD_FILE protocol. A device that supports the SIMPLE_FILE_SYSTEM protocol 
must materialize a file system protocol for that device to be bootable. If a device does 
not support a complete file system, it may produce a LOAD_FILE protocol that allows 
it to create an image directly. The boot manager will attempt to boot using the SIM-
PLE_FILE_SYSTEM protocol first. If that fails, then the LOAD_FILE protocol will be 
used. 
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Boot via Simple File Protocol 

When booting via the SIMPLE_FILE_SYSTEM protocol, the FilePath parameter will start 
with a device path that points to the device that “speaks” the SIMPLE_FILE_SYSTEM 
protocol. The next part of the FilePath will point to the file name, including subdirecto-
ries that contain the bootable image. If the file name is a null device path, the file name 
must be discovered on the media using the rules defined for removable media devices 
with ambiguous file names (see the section "Removable Media Boot Behavior"). 

The format of the file system specified by UEFI is contained in the UEFI specifica-
tion. While the firmware must produce a SIMPLE_FILE_SYSTEM protocol that under-
stands the UEFI file system, any file system can be abstracted with the SIM-
PLE_FILE_SYSTEM protocol interface. 

Removable Media Boot Behavior 
On a removable media device, it is not possible for the FilePath to contain a file name 
including subdirectories. The FilePath is stored in nonvolatile memory in the platform 
and cannot possibly be kept in sync with a media that can change at any time. A 
FilePath for a removable media device will point to a device that “speaks” the SIM-
PLE_FILE_SYSTEM protocol. The FilePath will not contain a file name or subdirectories. 

The system firmware will attempt to boot from a removable media FilePath by 
adding a default file name in the form \EFI\BOOT\BOOT{machine type short-
name}.EFI. Where machine type short-name defines a PE32+ image format architec-
ture. Each file only contains one UEFI image type, and a system may support booting 
from one or more images types. Table 11.2 lists the UEFI image types. 

Table 11.2: UEFI Image Types 

Architecture File name convention PE Executable machine type* 

IA-32 BOOTIA32.EFI 0x14c 

x64 BOOTx64.EFI 0x8664 

Itanium® architecture BOOTIA64.EFI 0x200 

ARM† architecture BOOTARM.EFI 0x01c2 
 
Note: The PE Executable machine type is contained in the machine field of the COFF 
file header as defined in the Microsoft Portable Executable and Common Object File 
Format Specification, Revision 6.0. 

A media may support multiple architectures by simply having a \EFI\BOOT\
BOOT{machine type short-name}.EFI file of each possible machine type. 
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Non-removable Media Boot Behavior 
On a non-removable media device, it is possible for the FilePath to contain a file name 
including subdirectories. The FilePath will be used for the boot target and the plat-
form will launch the target according to normal system policy. 

The platform policy will leverage the BOOT#### variables referenced by the 
BootOrder variable in the system.  These BOOT#### variables are the ones which con-
tain the FilePath data for the boot target and are what typically are used for the boot 
process to occur. 

Boot via LOAD_FILE Protocol 

When booting via the LOAD_FILE protocol, the FilePath is a device path that points 
to a device that “speaks” the LOAD_FILE protocol. The image is loaded directly from 
the device that supports the LOAD_FILE protocol. The remainder of the FilePath con-
tains information that is specific to the device. UEFI firmware passes this device-spe-
cific data to the loaded image, but does not use it to load the image. If the remainder 
of the FilePath is a null device path it is the loaded image's responsibility to imple-
ment a policy to find the correct boot device. 

The LOAD_FILE protocol is used for devices that do not directly support file sys-
tems. Network devices commonly boot in this model where the image is materialized 
without the need of a file system. 

Network Booting 
Network booting is described by the Preboot eXecution Environment (PXE) BIOS Sup-
port Specification that is part of the Wired for Management Baseline specification. 
PXE specifies UDP, DHCP, and TFTP network protocols that a booting platform can 
use to interact with an intelligent system load server. UEFI defines special interfaces 
that are used to implement PXE. These interfaces are contained in the 
PXE_BASE_CODE protocol defined in the UEFI specification. 

Future Boot Media 
Since UEFI defines an abstraction between the platform and the operating system and 
its loader it should be possible to add new types of boot media as technology evolves. 
The OS loader will not necessarily have to change to support new types of boot. The 
implementation of the UEFI platform services may change, but the interface will re-
main constant. The operating system will require a driver to support the new type of 
boot media so that it can make the transition from UEFI boot services to operating 
system control of the boot media. 
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Summary 

In conclusion, this chapter indicates the mechanism by which a UEFI compliant sys-
tem determines what the boot target(s) is and in what order such execution would 
occur. This methodology also provides a cooperative mechanism that is highly exten-
sible and that third parties (such as an OS vendor) can use for their own installation 
and execution. 
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Chapter 12 – Boot Flows 
Two roads diverged in a wood…. 

—Robert Frost, “The Road Less Taken” 

The restart of a system admits to many possibilities, or paths of execution. The restart 
of a CPU execution for a given CPU can have many causes and different environment 
states that impinge upon it. These can include requests to the firmware for an update 
of the flash store, resumption of a power management event, initial startup of the 
system, and other possible restarts. This chapter describes some of these possible 
flows and how the UEFI PI handles the events.  

To begin, the normal code flow in the UEFI PI passes through a succession of phases, 
in the following order: 
1. SEC 
2. PEI  
3. DXE  
4. BDS 
5. Runtime  
6. Afterlife  

This chapter describes alternatives to this ordering, which can also be seen in 
Figure 12.1. 
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Figure 12.1: Ordering of UEFI PI Execution Phases 
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The PEI Foundation is unaware of the boot path required by the system. It relies on the 
PEIMs to determine the boot mode and to take appropriate action depending on the 
mode. To implement this determination of the boot mode, each PEIM has the ability 
to manipulate the boot mode using the PEI Service SetBootMode() described in 
the discussion of PEI in Chapter 13. Note that the PEIM does not change the order in 
which PEIMs are dispatched depending on the boot mode. 

Defined Boot Modes 

The list of possible boot modes and their corresponding priorities is shown in the fol-
lowing section. UEFI PI architecture avoids defining an upgrade path specifically, 
should new boot modes need be defined. This is necessary as the nature of those ad-
ditional boot modes may work in conjunction with or may conflict with the previously 
defined boot modes. 

Priority of Boot Paths 

Within a given PEIM, a priority of the boot modes must be observed, as shown in Fig-
ure 12.2. The priority ordering of the sources of boot mode should be as follows (from 
highest priority to lowest): 
 
1. BOOT_IN_RECOVERY_MODE    
2. BOOT_ON_FLASH_UPDATE    
3. BOOT_ON_S3_RESUME    
4. BOOT_WITH_MINIMAL_CONFIGURATION    
5. BOOT_WITH_FULL_CONFIGURATION    
6. BOOT_ASSUMING_NO_CONFIGURATION_CHANGES    
7. BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS    
8. BOOT_WITH_DEFAULT_SETTINGS    
9. BOOT_ON_S4_RESUME    
10. BOOT_ON_S5_RESUME    
11. BOOT_ON_S2_RESUME    
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Figure 12.2: Priority of the Boot Modes 

Table 12.1 lists the assumptions that can and cannot be made about the system for 
each sleep state. 

Table 12.1:  Boot Path Assumptions 

System State Description Assumptions 

R0 Cold Boot Cannot assume that the previously stored 
configuration data is valid. 

R1  Warm Boot May assume that the previously stored 
configuration data is valid. 

S3  ACPI Save to RAM Resume The previously stored configuration data 
is valid and RAM is valid. RAM configura-
tion must be restored from nonvolatile 
storage (NVS) before RAM may be used. 
The firmware may only modify previously 
reserved RAM. There are two types of re-
served memory. One is the equivalent of 
the BIOS INT15h, E820 type-4 memory 
and indicates that the RAM is reserved 
for use by the firmware. The suggestion 
is to add another type of memory that al-
lows the OS to corrupt the memory during 
runtime but that may be overwritten dur-
ing resume. 
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System State Description Assumptions 

S4,  
S5 

Save to Disk Resume, 
“Soft Off” 

S4 and S5 are identical from a PEIM's 
point of view. The two are distinguished 
to support follow-on phases. The entire 
system must be reinitialized but the 
PEIMs may assume that the previous con-
figuration is still valid. 

Boot on Flash Update  This boot mode can be either an INIT, S3, 
or other means by which to restart the 
machine. If it is an S3, for example, the 
flash update cause will supersede the S3 
restart. It is incumbent upon platform 
code, such as the Memory Initialization 
PEIM, to determine the exact cause and 
perform correct behavior (that is, S3 
state restoration versus INIT behavior). 

Reset Boot Paths 

The following sections describe the boot paths that are followed when a system en-
counters several different types of reset. 

Intel® Itanium® Processor Reset 

Intel® Itanium® architecture contains enough hooks to authenticate PAL-A and PAL-
B code that is distributed by the processor vendor. The internal microcode on the pro-
cessor silicon, which starts up on a PowerGood reset, finds the first layer of processor 
abstraction code (called PAL-A) that is located in the Boot Firmware Volume (BFV) 
using architecturally defined pointers in the BFV. It is the responsibility of this micro-
code to authenticate that the PAL-A code layer from the processor vendor has not 
been tampered with. If the authentication of the PAL-A layer passes, control then 
passes to the PAL-A layer, which then authenticates the next layer of processor ab-
straction code (called PAL-B) before passing control to it. In addition to this microar-
chitecture-specific authentication, the SEC phase of UEFI PI is still responsible for lo-
cating the PEI Foundation and verifying its authenticity. 

In an Itanium-based system, it is also imperative that the firmware modules in 
the BFV be organized such that at least the PAL-A is contained in the fault-tolerant 
regions. This processor-specific PAL-A authenticates the PAL-B code, which is usu-
ally contained in the regions of the firmware system that do not support fault-tolerant 
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updates. The PAL-A and PAL-B binary components are always visible to all the pro-
cessors in a node at the time of power-on; the system fabric should not need to be in-
itialized. 

Non-Power-On Resets 

Non-power-on resets can occur for many reasons. Some PEI and DXE system services 
reset and reboot the entire platform, including all processors and devices. It is im-
portant to have a standard variant of this boot path for cases such as the following: 
■ Resetting the processor to change frequency settings 
■ Restarting hardware to complete chipset initialization  
■ Responding to an exception from a catastrophic error 

This reset is also used for Configuration Values Driven through Reset (CVDR) config-
uration. 

Normal Boot Paths 

A traditional BIOS executes POST from a cold boot (G3 to S0 state), on resumes, or in 
special cases like INIT. UEFI covers all those cases but provides a richer and more 
standardized operating environment 

The basic code flow of the system needs to be changeable due to different circum-
stances. The boot path variable satisfies this need. The initial value of the boot mode 
is defined by some early PEIMs, but it can be altered by other, later PEIMs. All systems 
must support a basic S0 boot path. Typically a system has a richer set of boot paths, 
including S0 variations, S-state boot paths, and one or more special boot paths.  

The architecture for multiple boot paths presented here has several benefits: 
■ The PEI Foundation is not required to be aware of system-specific requirements 

such as multi-processor capability and various power states. This lack of aware-
ness allows for scalability and headroom for future expansion. 

■ Supporting the various paths only minimally impacts the size of the PEI Founda-
tion. 

■ The PEIMs required to support the paths scale with the complexity of the system. 

Note that the Boot Mode Register becomes a variable upon transition to the DXE 
phase. The DXE phase can have additional modifiers that affect the boot path more 
than the PEI phase. These additional modifiers can indicate if the system is in manu-
facturing mode, chassis intrusion, or AC power loss or if silent boot is enabled.  
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In addition to the boot path types, modifier bits might be present. The recovery-
needed modifier is set if any PEIM detects that it has become corrupted. 

Basic G0-to-S0 and S0 Variation Boot Paths  

The basic S0 boot path is boot with full configuration. This path setting informs all 
PEIMs to do a full configuration. The basic S0 boot path must be supported.  

The UEFI PI architecture also defines several optional variations to the basic S0 boot 
path. The variations that are supported depend on the following: 
■ Richness of supported features 
■ If the platform is open or closed 
■ Platform hardware 

For example, a closed system or one that has detected a chassis intrusion could sup-
port a boot path that assumes no configuration changes from last boot option, thus 
allowing a very rapid boot time. Unsupported variations default to basic S0 operation. 
The following are the defined variations to the basic boot path: 
■ Boot with minimal configuration: This path is for configuring the minimal amount 

of hardware to boot the system. 
■ Boot assuming no configuration changes: This path uses the last configuration 

data. 
■ Boot with full configuration plus diagnostics: This path also causes any diagnos-

tics to be executed. 
■ Boot with default settings: This path uses a known set of safe values for program-

ming hardware. 

S-State Boot Paths 

The following optional boot paths allow for different operation for a resume from S3, 
S4, and S5: 
■ S3 (Save to RAM Resume): Platforms that support S3 resume must take special 

care to preserve/restore memory and critical hardware.  
■ S4 (Save to Disk): Some platforms may want to perform an abbreviated PEI and 

DXE phase on a S4 resume. 
■ S5 (Soft Off): Some platforms may want an S5 system state boot to be differenti-

ated from a normal boot—for example, if buttons other than the power button can 
wake the system. 
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An S3 resume needs to be explained in more detail because it requires cooperation 
between a G0-to-S0 boot path and an S3 resume boot path. The G0-to-S0 boot path 
needs to save hardware programming information that the S3 resume path needs to 
retrieve. This information is saved in the Hardware Save Table using predefined data 
structures to perform I/O or memory writes. The data is stored in a UEFI equivalent of 
the INT15 E820 type 4 (firmware reserved memory) area or a firmware device area that 
is reserved for use by UEFI. The S3 resume boot path code can access this region after 
memory has been restored. 

Recovery Paths 

All of the previously described boot paths can be modified or aborted if the system 
detects that recovery is needed. Recovery is the process of reconstituting a system’s 
firmware devices when they have become corrupted. The corruption can be caused 
by various mechanisms. Most firmware volumes on nonvolatile storage devices 
(flash, disk) are managed as blocks. If the system loses power while a block, or se-
mantically bound blocks, are being updated, the storage might become invalid. On 
the other hand, the device might become corrupted by an errant program or by errant 
hardware. The system designers must determine the level of support for recovery 
based on their perceptions of the probabilities of these events occurring and their 
consequences. 

The following are some reasons why system designers may choose not to support re-
covery: 
■ A system’s firmware volume storage media might not support modification after 

being manufactured. It might be the functional equivalent of ROM. 
■ Most mechanisms of implementing recovery require additional firmware volume 

space, which might be too expensive for a particular application. 
■ A system may have enough firmware volume space and hardware features that 

the firmware volume can be made sufficiently fault tolerant to make recovery un-
necessary. 

Discovery 

Discovering that recovery is required may be done using a PEIM (for example, by 
checking a “force recovery” jumper) or the PEI Foundation itself. The PEI Foundation 
might discover that a particular PEIM has not validated correctly or that an entire 
firmware has become corrupted. 



202 | Chapter 12 – Boot Flows 

  

General Recovery Architecture 

The concept behind recovery is to preserve enough of the system firmware so that the 
system can boot to a point where it can do the following: 
■ Read a copy of the data that was lost from chosen peripherals. 
■ Reprogram the firmware volume with that data. 

Preserving the recovery firmware is a function of the way the firmware volume store 
is managed, which is generally beyond the scope of this book. For the purpose of this 
description, it is expected that the PEIMs and other contents of the firmware volumes 
required for recovery are marked. The architecture of the firmware volume store must 
then preserve marked items, either by making them unalterable (possibly with hard-
ware support) or must protect them using a fault-tolerant update process. Note that a 
PEIM is required to be in a fault-tolerant area if it indicates it is required for recovery 
or if a PEIM required for recovery depends on it. This architecture also assumes that 
it is fairly easy to determine that firmware volumes have become corrupted. 

The PEI Dispatcher then proceeds as normal. If it encounters PEIMs that have 
been corrupted (for example, by receiving an incorrect hash value), it itself must 
change the boot mode to recovery. Once set to recovery, other PEIMs must not change 
it to one of the other states. After the PEI Dispatcher has discovered that the system is 
in recovery mode, it will restart itself, dispatching only those PEIMs that are required 
for recovery. A PEIM can also detect a catastrophic condition or a forced-recovery 
event and inform the PEI Dispatcher that it needs to proceed with a recovery dispatch. 
A PEIM can alert the PEI Foundation to start recovery by OR-ing the BOOT_IN_RE-
COVERY_MODE_MASK bit onto the present boot mode. The PEI Foundation then re-
sets the boot mode to BOOT_IN_RECOVERY_MODE and starts the dispatch from the 
beginning with BOOT_IN_RECOVERY_MODE as the sole value for the mode.  

It is possible that a PEIM could be built to handle the portion of the recovery that 
would initialize the recovery peripherals (and the buses they reside on) and then to 
read the new images from the peripherals and update the firmware volumes.  

It is considered far more likely that the PEI will transition to DXE because DXE is 
designed to handle access to peripherals. This transition has the additional benefit 
that, if DXE then discovers that a device has become corrupted, it may institute recov-
ery without transferring control back to the PEI. 

If the PEI Foundation does not have a list of what it is to dispatch, how does it 
know whether an area of invalid space in a firmware volume should have contained 
a PEIM or not? It seems that the PEI Foundation may discover most corruption as an 
incidental result of its search for PEIMs. In this case, if the PEI Foundation completes 
its dispatch process without discovering enough static system memory to start DXE, 
then it should go into recovery mode. 
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Special Boot Path Topics 

The remaining sections in this chapter discuss special boot paths that might be avail-
able to all processors or specific considerations that apply only for Intel Itanium pro-
cessors. 

Special Boot Paths 

The following are special boot paths in the UEFI PI architecture. Some of these paths 
are optional and others are processor-family specific. 
■ Forced recovery boot: A jumper or an equivalent mechanism indicates a forced 

recovery. 
■ Intel Itanium architecture boot paths: See the next section. 
■ Capsule update: This boot mode can be an INIT, S3, or some other means by 

which to restart the machine. If it is an S3, for example, the capsule cause will 
supersede the S3 restart. It is incumbent upon platform code, such as a memory 
initialization PEIM, to determine the exact cause and perform the correct behav-
ior—that is, S3 state restoration versus INIT behavior. 

Special Intel Itanium® Architecture Boot Paths 

The architecture requires the following special boot paths: 
■ Boot after INIT: An INIT has occurred. 
■ Boot after MCA: A Machine Check Architecture (MCA) event has occurred. 

Intel Itanium processors possess several unique boot paths that also invoke the dis-
patcher located at the System Abstraction Layer entry point SALE_ENTRY. The pro-
cessor INIT and MCA are two asynchronous events that start up the SEC code/dis-
patcher in an Itanium-based system. The UEFI PI security module is transparent 
during all the code paths except for the recovery check call that happens during a 
cold boot. The PEIMs or DXE drivers that handle these events are architecture-aware 
and do not return the control to the core dispatcher. They call their respective archi-
tectural handlers in the OS. 

Intel Itanium® Architecture Access to the Boot Firmware Volume 

Figure 12.3 shows the reset boot path that an Intel Itanium processor follows. Figure 
12.4 shows the boot flow. 
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Figure 12.3: Intel® Itanium® Architecture Resets 

 

Figure 12.4: Intel® Itanium® Processor Boot Flow (MP versus UP on Other CPUs) 

In Intel Itanium architecture, the microcode starts up the first layer of the PAL code, 
provided by the processor vendor, which resides in the Boot Firmware Volume (BFV). 
This code minimally initializes the processor and then finds and authenticates the 
second layer of PAL code (called PAL-B). The location of both PAL-A and PAL-B can 
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be found by consulting either the architected pointers in the ROM near the 4-gigabyte 
region or by consulting the Firmware Interface Table (FIT) pointer in the ROM. The 
PAL layer communicates with the OEM boot firmware using a single entry point called 
SALE_ENTRY.  

The Intel Itanium architecture defines the initialization described above. In addition, 
however, Itanium-based systems that use the UEFI PI architecture must do the fol-
lowing:  
■ A “special” PEIM must be resident in the BFV to provide information about the 

location of the other firmware volumes.  
■ The PEI Foundation will be located at the SALE_ENTRY point on the BFV. The 

Intel Itanium architecture PEIMs may reside in the BFV or other firmware vol-
umes, but a special PEIM must be resident in the BFV to provide information 
about the location of the other firmware volumes.  

■ The BFV of a particular node must be accessible by all the processors running in 
that node. 

■ All the processors in each node start up and execute the PAL code and subse-
quently enter the PEI Foundation. The BFV of a particular node must be accessi-
ble by all the processors running in that node. This distinction also means that 
some of the PEIMs in the Intel Itanium architecture boot path will be multi-pro-
cessor-aware. 

■ Firmware modules in a BFV must be organized such that PAL-A, PAL-B, and FIT 
binaries are always visible to all the processors in a node at the time of power-on.  

■ These binaries must be visible without any initialization of the system fabric. 

//******************************************************* 
// EFI_BOOT_MODE 
//******************************************************* 
typedef UINT32     EFI_BOOT_MODE; 
 
#define  
BOOT_WITH_FULL_CONFIGURATION                         0x00 
#define 
BOOT_WITH_MINIMAL_CONFIGURATION                      0x01 
#define  
BOOT_ASSUMING_NO_CONFIGURATION_CHANGES               0x02 
#define  
BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS        0x03 
#define  
BOOT_WITH_DEFAULT_SETTINGS                           0x04 
#define  
BOOT_ON_S4_RESUME                                    0x05 
#define  
BOOT_ON_S5_RESUME                                    0x06 
#define  
BOOT_ON_S2_RESUME                                    0x10 
#define  
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BOOT_ON_S3_RESUME                                    0x11 
#define  
BOOT_ON_FLASH_UPDATE                                 0x12 
#define  
BOOT_IN_RECOVERY_MODE                                0x20 
 
0x21 -- 0xF..F Reserved Encodings 

Table 12.2 lists the values and descriptions of the boot modes.   

Table 12.2: Boot Mode Register 

REGISTER BIT(S) VALUES DESCRIPTIONS 

MSBit-0 000000b Boot with full configuration 

000001b Boot with minimal configuration 

000010b Boot assuming no configuration changes from last 
boot 

000011b Boot with full configuration plus diagnostics 

000100b Boot with default settings 

000101b Boot on S4 resume 

000110b Boot in S5 resume 

000111b-001111b Reserved for boot paths that configure memory 

010000b Boot on S2 resume 

010001b Boot on S3 resume 

010010b Boot on flash update restart 

010011b-011111b Reserved for boot paths that preserve memory con-
text 

100000b Boot in recovery mode 

100001b-111111b Reserved for special boots 
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Architectural Boot Mode PPIs 

In the PEI chapter the concept of an PEIM-to-PEIM interface (PPI) is introduced as the 
unit of interoperability in this phase of execution. PEI modules can ascertain the boot 
mode via the GetBootMode service once the module is dispatched, but a system 
designer may not want a PEIM to even run unless in a given boot mode. A possible 
hierarchy of boot mode PPIs abstracts the various producers of the boot mode. It is a 
hierarchy in that there should be an order of precedence in which each mode can be 
set. The PPIs and their respective GUIDs are described in Required Architectural PPIs for 
the PEI phase that can be found in the PEI Core Interface Specification and Optional Architectural 
PPIs. The hierarchy includes the master PPI, which publishes a PPI depended upon by 
the appropriate PEIMs, and some subsidiary PPI. For PEIMs that require that the boot 
mode is finally known, the Master Boot Mode PPI can be used as a dependency. 

Table 12.3 lists the architectural boot mode PPIs. 

Table 12.3: Architectural Boot Mode PPIs 

PPI Name Required or Optional? PPI Definition in Section... 

Master Boot Mode PPI Required Architectural PPIs: Required 
Architectural PPIs 

Boot in Recovery Mode PPI Optional Architectural PPIs: Optional 
Architectural PPIs 

Recovery 

This section describes platform firmware recovery. Recovery is an option to provide 
higher RASUM (Reliability, Availability, Serviceability, Usability, Manageability) in 
the field. Recovery is the process of reconstituting a system’s firmware devices when 
they have become corrupted. The corruption can be caused by various mechanisms. 
Most firmware volumes (FVs) in nonvolatile storage (NVS) devices (flash or disk, for 
example) are managed as blocks. If the system loses power while a block, or seman-
tically bound blocks, are being updated, the storage might become invalid. On the 
other hand, an errant program or hardware could corrupt the device. The system de-
signers must determine the level of support for recovery based on their perceptions 
of the probabilities of these events occurring and the consequences. 
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Discovery 

Discovering that recovery is required may be done using a PEIM (for example, by 
checking a “force recovery” jumper) or the PEI Foundation itself. The PEI Foundation 
might discover that a particular PEIM has not validated correctly or that an entire 
firmware has become corrupted. 

 

Note At this point a physical reset of the system has not occurred. The PEI Dispatcher has 
only cleared all state information and restarted itself. 

 
It is possible that a PEIM could be built to handle the portion of the recovery that 
would initialize the recovery peripherals (and the buses they reside on) and then to 
read the new images from the peripherals and update the FVs.  

It is considered far more likely that the PEI will transition to DXE because DXE is 
designed to handle access to peripherals. This has the additional benefit that, if DXE 
then discovers that a device has become corrupted, it may institute recovery without 
transferring control back to the PEI. 

Since the PEI Foundation does not have a list of what to dispatch, how does it 
know if an area of invalid space in an FV should have contained a PEIM or not? The 
PEI Foundation should discover most corruption as an incidental result of its search 
for PEIMs. In this case, if the PEI Foundation completes its dispatch process without 
discovering enough static system memory to start DXE, then it should go into recov-
ery mode.  

Summary 

This chapter has described the various boot modes that the UEFI PI firmware can sup-
port. This concept is important to understand as both a provider of PEI modules and 
DXE drivers, along with platform integrators. The former constituency needs to de-
sign their code to handle the boot modes appropriately, whereas the latter group of 
engineers needs to understand how to compose a set of modules and drivers for the 
respective boot paths of a resultant system. 
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Chapter 13 – Pre-EFI Initialization (PEI) 
Small is Beautiful 

—E.F. Schumacher 

The UEFI Platform Initialization (PI) pre-EFI initialization (PEI) phase of execution 
has two primary roles in a platform’s life: determine the source of the restart and pro-
vide a minimum amount of permanent memory for the ensuing DXE phase. Words 
such as small and minimal are often used to describe PEI code because of hardware 
resource constraints that limit the programming environment. Specifically, the Pre-
EFI Initialization (PEI) phase provides a standardized method of loading and invok-
ing specific initial configuration routines for the processor, chipset, and system 
board. The PEI phase occurs after the Security (SEC) phase. The primary purpose of 
code operating in this phase is to initialize enough of the system to allow instantiation 
of the Driver Execution Environment (DXE) phase. At a minimum, the PEI phase is 
responsible for determining the system boot path and initializing and describing a 
minimum amount of system RAM and firmware volume(s) that contain the DXE Foun-
dation and DXE Architectural Protocols. As an application of Occam’s razor to the 
system design, the minimum amount of activity should be orchestrated and located 
in this phase of execution; no more, no less. 

Scope 

The PEI phase is responsible for initializing enough of the system to provide a stable 
base for subsequent phases. It is also responsible for detecting and recovering from 
corruption of the firmware storage space and providing the restart reason (boot-
mode). 

Today’s PC generally starts execution in a very primitive state, from the perspec-
tive of the boot firmware, such as BIOS or the UEFI PI. Processors might need updates 
to their internal microcode; the chipset (the chips that provide the interface between 
processors and the other major components of the system) require considerable ini-
tialization; and RAM requires sizing, location, and other initialization. The PEI phase 
is responsible for initializing these basic subsystems. The PEI phase is intended to 
provide a simple infrastructure by which a limited set of tasks can easily be accom-
plished to transition to the more advanced DXE phase. The PEI phase is intended to 
be responsible for only a very small subset of tasks that are required to boot the plat-
form; in other words, it should perform only the minimal tasks that are required to 
start DXE. As improvements in the hardware occur, some of these tasks may migrate 
out of the PEI phase of execution. 
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Rationale 

The design for PEI is essentially a miniature version of DXE that addresses many of 
the same issues. The PEI phase consists of several parts:  
■ A PEI Foundation  
■ One or more Pre-EFI Initialization Modules (PEIMs) 

The goal is for the PEI Foundation to remain relatively constant for a particular pro-
cessor architecture and to support add-in modules from various vendors for particu-
lar processors, chipsets, platforms, and other components. These modules usually 
cannot be coded without some interaction between one another and, even if they 
could, it would be inefficient to do so. 

PEI is unlike DXE in that DXE assumes that reasonable amounts of permanent system 
RAM are present and available for use. PEI instead assumes that only a limited 
amount of temporary RAM exists and that it could be reconfigured for other uses dur-
ing the PEI phase after permanent system RAM has been initialized. As such, PEI does 
not have the rich feature set that DXE does. The following are the most obvious exam-
ples of this difference: 
■ DXE has a rich database of loaded images and protocols bound to those images. 
■ PEI lacks a rich module hierarchy such as the DXE driver model. 

Overview 

The PEI phase consists of some Foundation code and specialized drivers known as 
PEIMs that customize the PEI phase operations to the platform. It is the responsibility 
of the Foundation code to dispatch the plug-ins in a sequenced order and provide 
basic services. The PEIMs are analogous to DXE drivers and generally correspond to 
the components being initialized. It is expected that common practice will be that the 
vendor of the component will provide the PEIM, possibly in source form so the cus-
tomer can quickly debug integration problems. 

The implementation of the PEI phase is more dependent on the processor archi-
tecture than any other UEFI PI phase. In particular, the more resources that the pro-
cessor provides at its initial or near initial state, the richer the PEI environment will 
be. As such, several parts of the following discussion note requirements for the archi-
tecture but are otherwise left less completely defined because they are specific to the 
processor architecture.  

PEI can be viewed from both temporal and spatial perspectives. Figure 13.1 pro-
vides the overall UEFI PI boot phase. The spatial view of PEI can be found in Figure 
13.2. This picture describes the layering of the UEFI PI components. This figure has 
often been referred to as the “H”. PEI compromises the lower half of the “H”. The 
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temporal perspective entails “when” the PEI foundation and its associated modules 
execute. Figure 13.3 highlights the portions of Figure 13.1 that include PEI. 
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Figure 13.1:  Overall Boot Flow 
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Figure 13.2: System Components 
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Figure 13.3: Portion of the Overall Boot Flow and Components for PEI 

Phase Prerequisites 

The following sections describe the prerequisites necessary for the successful com-
pletion of the PEI phase. 

Temporary RAM 

The PEI Foundation requires that the SEC phase initialize a minimum amount of 
scratch pad RAM that can be used by the PEI phase as a data store until system 
memory has been fully initialized. This scratch pad RAM should have access proper-
ties similar to normal system RAM—through memory cycles on the front side bus, for 
example. After system memory is fully initialized, the temporary RAM may be recon-
figured for other uses. Typical provision for the temporary RAM is an architectural 
mode of the processor’s internal caches. 

Boot Firmware Volume 

The Boot Firmware Volume (BFV) contains the PEI Foundation and PEIMs. It must 
appear in the memory address space of the system without prior firmware interven-
tion and typically contains the reset vector for the processor architecture.  

The contents of the BFV follow the format of the UEFI PI flash file system. The PEI 
Foundation follows the UEFI PI flash file system format to find PEIMs in the BFV. A 
platform-specific PEIM may inform the PEI Foundation of the location of other firm-
ware volumes in the system, which allows the PEI Foundation to find PEIMs in other 
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firmware volumes. The PEI Foundation and PEIMs are named by unique IDs in the 
UEFI PI flash file system. 

The PEI Foundation and some PEIMs required for recovery must either be locked 
into a non-updateable BFV or be able to be updated using a fault-tolerant mechanism. 
The UEFI PI flash file system provides error recovery; if the system halts at any point, 
either the old (pre-update) PEIM(s) or the newly updated PEIM(s) are entirely valid 
and the PEI Foundation can determine which is valid. 

Security Primitives 

The SEC phase provides an interface to the PEI Foundation to perform verification 
operations. To continue the root of trust, the PEI Foundation will use this mechanism 
to validate various PEIMs. 

Concepts 

The following sections describe the concepts in the PEI phase design. 

PEI Foundation 

The PEI Foundation is a single binary executable that is compiled to function with 
each processor architecture. It performs two main functions:  
■ Dispatching PEIMs  
■ Providing a set of common core services used by PEIMs   

The PEI Dispatcher’s job is to transfer control to the PEIMs in an orderly manner. The 
common core services are provided through a service table referred to as the PEI Ser-
vices Table. These services do the following: 

n Assist in PEIM-to-PEIM communication. 
■ Abstract management of the temporary RAM. 
■ Provide common functions to assist the PEIMs in the following: 

– Finding other files in the FFS 
– Reporting status codes 
– Preparing the handoff state for the next phase of the UEFI PI 

When the SEC phase is complete, SEC invokes the PEI Foundation and provides the 
PEI Foundation with several parameters: 
■ The location and size of the BFV so that the PEI Foundation knows where to look 

for the initial set of PEIMs.  
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■ A minimum amount of temporary RAM that the PEI phase can use 
■ A verification service callback to allow the PEI Foundation to verify that PEIMs 

that it discovers are authenticated to run before the PEI Foundation dispatches 
them 

The PEI Foundation assists PEIMs in communicating with each other. The PEI Foun-
dation maintains a database of registered interfaces for the PEIMs, as shown in Figure 
13.4. These interfaces are called PEIM-to-PEIM Interfaces (PPIs). The PEI Foundation 
provides the interfaces to allow PEIMs to register PPIs and to be notified (called back) 
when another PEIM installs a PPI. 

GUID Pointer
PPI Pointer

Flags

GUID

PPI

PPI Descriptor

PPI Descriptor Ptr A

PPI Descriptor Ptr B

PPI Descriptor Ptr C1

PPI Descriptor Ptr D

PPI Descriptor Ptr C2

NULL

Example Foundation Database
 

Figure 13.4: How a PPI Is Registered 

The PEI Dispatcher consists of a single phase. It is during this phase that the PEI Foun-
dation examines each file in the firmware volumes that contain files of type PEIM. It 
examines the dependency expression (depex) within each firmware file to decide if a 
PEIM can run. A dependency expression is code associated with each driver that de-
scribes the dependencies that must be satisfied for that driver to run. The binary en-
coding of dependency expressions for PEIMs is the same as that of dependency ex-
pressions associated with a DXE driver. 

Pre-EFI Initialization Modules (PEIMs) 

Pre-EFI Initialization Modules (PEIMs) are executable binaries that encapsulate pro-
cessor, chipset, device, or other platform-specific functionality. PEIMs may provide 
interface(s) that allow other PEIMs or the PEI Foundation to communicate with the 
PEIM or the hardware for which the PEIM abstracts. PEIMs are separately built binary 
modules that typically reside in ROM and are therefore uncompressed. A small subset 
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of PEIMs exist that may run from RAM for performance reasons. These PEIMs reside 
in ROM in a compressed format. PEIMs that reside in ROM are execute-in-place mod-
ules that may consist of either position-independent code or position-dependent code 
with relocation information. 

PEI Services 

The PEI Foundation establishes a system table named the PEI Services Table that is 
visible to all PEIMs in the system. A PEI service is defined as a function, command, or 
other capability that is manifested by the PEI Foundation when that service’s initial-
ization requirements are met. Because the PEI phase has no permanent memory avail-
able until nearly the end of the phase, the range of services created during the PEI 
phase cannot be as rich as those created during later phases. Because the location of 
the PEI Foundation and its temporary RAM is not known at build time, a pointer to 
the PEI Services Table is passed into each PEIM’s entry point and also to part of each 
PPI. The PEI Foundation provides the following classes of services: 
■ PPI Services: Manages PPIs to facilitate inter-module calls between PEIMs. Inter-

faces are installed and tracked on a database maintained in temporary RAM. 
■ Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, 

and so on) of the system. 
■ HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that are 

used to pass information to the next phase of the UEFI PI. 
■ Firmware Volume Services: Scans the FFS in firmware volumes to find PEIMs and 

other firmware files in the flash device. 
■ PEI Memory Services: Provides a collection of memory management services for 

use both before and after permanent memory has been discovered. 
■ Status Code Services: Common progress and error code reporting services, that is, 

port 080h or a serial port for simple text output for debug. 
■ Reset Services: Provides a common means by which to initiate a restart of the sys-

tem. 

PEIM-to-PEIM Interfaces (PPIs) 

PEIMs may invoke other PEIMs through interfaces named PEIM-to-PEIM Interfaces 
(PPIs). The interfaces themselves are named using Globally Unique Identifiers 
(GUIDs) to allow the independent development of modules and their defined inter-
faces without naming collision. A GUID is a 128-bit value used to differentiate services 
and structures in the boot services. The PPIs are defined as structures that may con-
tain functions, data, or a combination of the two. PEIMs must register their PPIs with 
the PEI Foundation, which manages a database of registered PPIs. A PEIM that wants 
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to use a specific PPI can then query the PEI Foundation to find the interface it needs. 
The two types of PPIs are:  
■ Services  
■ Notifications 

PPI services allow a PEIM to provide functions or data for another PEIM to use. PPI 
notifications allow a PEIM to register for a callback when another PPI is registered 
with the PEI Foundation.  

Simple Heap 

The PEI Foundation uses temporary RAM to provide a simple heap store before per-
manent system memory is installed. PEIMs may request allocations from the heap, 
but no mechanism exists to free memory from the heap. Once permanent memory is 
installed, the heap is relocated to permanent system memory, but the PEI Foundation 
does not fix up existing data within the heap. Therefore, a PEIM cannot store pointers 
in the heap when the target is other data within the heap, such as linked lists. 

Hand-Off Blocks (HOBs) 

Hand-Off Blocks (HOBs) are the architectural mechanism for passing system state in-
formation from the PEI phase to the DXE phase in the UEFI PI architecture. A HOB is 
simply a data structure (cell) in memory that contains a header and data section. The 
header definition is common for all HOBs and allows any code using this definition 
to know two items:  
■ The format of the data section  
■ The total size of the HOB 

HOBs are allocated sequentially in the memory that is available to PEIMs after perma-
nent memory has been installed. A series of core services facilitate This sequential list 
of HOBs in memory is referred to as the HOB list. This first HOB in the HOB list must 
be the Phase Handoff Information Table (PHIT) HOB that describes the physical 
memory used by the PEI phase and the boot mode discovered during the PEI phase, 
as illustrated in Figure 13.5.  

www.ebook3000.com

http://www.ebook3000.org


 Operation | 217 

  

System
Memory

System
Memory

System
Memory

I/O
Resources

System
Memory
MMIO

Resources

System
Memory

Firmware
Devices

System
Memory

Firmware
Volumes

System
Memory
DXE

Drivers

System
Memory
DXE

Drivers
PHIT
HOB HOB HOB HOB HOB HOB. . .

HOB List

 

Figure 13.5: The HOB List 

Only PEI components are allowed to make additions or changes to HOBs. Once the 
HOB list is passed into DXE, it is effectively read-only for DXE components. The ram-
ifications of a read-only HOB list for DXE is that handoff information, such as boot 
mode, must be handled in a unique fashion; if DXE were to engender a recovery con-
dition, it would not update the boot mode but instead would implement the action 
using a special type of reset call. The HOB list contains system state data at the time 
of PEI-to-DXE handoff and does not represent the current system state during DXE. 
DXE components should use services that are defined for DXE to get the current sys-
tem state instead of parsing the HOB list. 

As a guideline, it is expected that HOBs passed between PEI and DXE will follow 
a one producer–to–one consumer model. In other words, a PEIM will produce a HOB 
in PEI, and a DXE Driver will consume that HOB and pass information associated with 
that HOB to other DXE components that need the information. The methods that the 
DXE Driver uses to provide that information to other DXE components should follow 
mechanisms defined by the DXE architecture. 

Operation 

PEI phase operation consists of invoking the PEI Foundation, dispatching all PEIMs 
in an orderly manner, and discovering and invoking the next phase, as illustrated in 
Figure 13.6. During PEI Foundation initialization, the PEI Foundation initializes the 
internal data areas and functions that are needed to provide the common PEI services 
to PEIMs. During PEIM dispatch, the PEI Dispatcher traverses the firmware volume(s) 
and discovers PEIMs according to the flash file system definition. The PEI Dispatcher 
then dispatches PEIMs if the following criteria are met: 
■ The PEIM has not already been invoked. 
■ The PEIM file is correctly formatted. 
■ The PEIM is trustworthy. 
■ The PEIM’s dependency requirements have been met. 

After dispatching a PEIM, the PEI Dispatcher continues traversing the firmware vol-
ume(s) until either all discovered PEIMs have been invoked or no more PEIMs can be 
invoked because the requirements listed above cannot be met for any PEIMs. Once 
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this condition has been reached, the PEI Dispatcher’s job is complete and it invokes 
an architectural PPI for starting the next phase of the UEFI PI, the DXE Initial Program 
Load (IPL) PPI. 
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Figure 13.6: PEI Boot Flow 

Dependency Expressions 

The sequencing of PEIMs is determined by evaluating a dependency expression asso-
ciated with each PEIM. This Boolean expression describes the requirements that are 
necessary for that PEIM to run, which imposes a weak ordering on the PEIMs. Within 
this weak ordering, the PEIMs may be initialized in any order. The GUIDs of PPIs and 
the GUIDs of file names are referenced in the dependency expression. The depend-
ency expression is a representative syntax of operations that can be performed on a 
plurality of dependencies to determine whether the PEIM can be run. The PEI Foun-
dation evaluates this dependency expression against an internal database of run 
PEIMs and registered PPIs. Operations that may be performed on dependencies are 
the logical operators AND, OR, and NOT and the sequencing operators BEFORE and 
AFTER. 
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Verification/Authentication 

The PEI Foundation is stateless with respect to security. Instead, security decisions 
are assigned to platform-specific components. The two components of interest that 
abstract security include the Security PPI and a Verification PPI. The purpose of the 
Verification PPI is to check the authentication status of a given PEIM. The mechanism 
used therein may include digital signature verification, a simple checksum, or some 
other OEM-specific mechanism. The result of this verification is returned to the PEI 
Foundation, which in turn conveys the result to the Security PPI. The Security PPI 
decides whether to defer execution of the PEIM or to let the execution occur. In addi-
tion, the Security PPI provider may choose to generate an attestation log entry of the 
dispatched PEIM or provide some other security exception.  

PEIM Execution 

PEIMs run to completion when invoked by the PEI Foundation. Each PEIM is invoked 
only once and must perform its job with that invocation and install other PPIs to allow 
other PEIMs to call it as necessary. PEIMs may also register for a notification callback 
if it is necessary for the PEIM to get control again after another PEIM has run. 

Memory Discovery 

Memory discovery is an important architectural event during the PEI phase. When a 
PEIM has successfully discovered, initialized, and tested a contiguous range of sys-
tem RAM, it reports this RAM to the PEI Foundation. When that PEIM exits, the PEI 
Foundation migrates PEI usage of the temporary RAM to real system RAM, which in-
volves the following two tasks: 
■ The PEI Foundation must switch PEI stack usage from temporary RAM to perma-

nent system memory.  
■ The PEI Foundation must migrate the simple heap allocated by PEIMs (including 

HOBs) to real system RAM.  

Once this process is complete, the PEI Foundation installs an architectural PPI to no-
tify any interested PEIMs that real system memory has been installed. This notifica-
tion allows PEIMs that ran before memory was installed to be called back so that they 
can complete necessary tasks—such as building HOBs for the next phase of DXE—in 
real system memory. 
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Intel® Itanium® Processor MP Considerations  

This section gives special consideration to the PEI phase operation in Intel Itanium 
processor family multiprocessor (MP) systems. In Itanium-based systems, all of the 
processors in the system start up simultaneously and execute the PAL initialization 
code that is provided by the processor vendor. Then all the processors call into the 
UEFI PI start-up code with a request for recovery check. The start-up code allocates 
different chunks of temporary memory for each of the active processors and sets up 
stack and backing store pointers in the allocated temporary memory. The temporary 
memory could be a part of the processor cache (cache as RAM), which can be config-
ured by invoking a PAL call. The start-up code then starts dispatching PEIMs on each 
of these processors. One of the early PEIMs that runs in MP mode is the PEIM that 
selects one of the processors as the boot-strap processor (BSP) for running the PEIM 
stage of the booting.  

This BSP continues to run PEIMs until it finds permanent memory and installs the 
memory with the PEI Foundation. Then the BSP wakes up all the processors to deter-
mine their health and PAL compatibility status. If none of these checks warrants a 
recovery of the firmware, the processors are returned to the PAL for more processor 
initialization and a normal boot.  

The UEFI PI start-up code also gets triggered in an Itanium-based system when-
ever an INIT or a Machine Check Architecture (MCA) event occurs in the system. Un-
der such conditions, the PAL code outputs status codes and a buffer called the mini-
mum state buffer. A UEFI PI-specific data pointer that points to the INIT and MCA code 
data area is attached to this minimum state buffer, which contains details of the code 
to be executed upon INIT and MCA events. The buffer also holds some important var-
iables needed by the start-up code to make decisions during these special hardware 
events. 

Recovery 

Recovery is the process of reconstituting a system’s firmware devices when they have 
become corrupted. The corruption can be caused by various mechanisms. Most firm-
ware volumes on nonvolatile storage devices are managed as blocks. If the system 
loses power while a block or semantically bound blocks are being updated, the stor-
age might become invalid. On the other hand, the device might become corrupted by 
an errant program or by errant hardware. Assuming PEI lives in a fault-tolerant block, 
it can support a recovery mode dispatch.  

A PEIM or the PEI Foundation itself can discover the need to do recovery. A PEIM 
can check a “force recovery” jumper, for example, to detect a need for recovery. The 
PEI Foundation might discover that a particular PEIM does not validate correctly or 
that an entire firmware volume has become corrupted. 
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The concept behind recovery is that enough of the system firmware is preserved 
so that the system can boot to a point that it can read a copy of the data that was lost 
from chosen peripherals and then reprogram the firmware volume with that data. 

Preservation of the recovery firmware is a function of the way the firmware vol-
ume store is managed. In the UEFI PI flash file system, PEIMs required for recovery 
are marked as such. The firmware volume store architecture must then preserve 
marked items, either by making them unalterable (possibly with hardware support) 
or protect them using a fault-tolerant update process. 

Until recovery mode has been discovered, the PEI Dispatcher proceeds as normal. 
If the PEI Dispatcher encounters PEIMs that have been corrupted (for example, by 
receiving an incorrect hash value), it must change the boot mode to recovery. Once 
set to recovery, other PEIMs must not change it to one of the other states. After the PEI 
Dispatcher has discovered that the system is in recovery mode, it will restart itself, 
dispatching only those PEIMs that are required for recovery. It is also possible for a 
PEIM to detect a catastrophic condition or to be a forced-recovery detect PEIM and to 
inform the PEI Dispatcher that it needs to proceed with a recovery dispatch. The re-
covery dispatch is completed when a PEIM finds a recovery firmware volume on a 
recovery media and the DXE Foundation is started from that firmware volume. Drivers 
within that DXE firmware volume can perform the recovery process. 

S3 Resume 

The PEI phase on S3 resume (save-to-RAM resume) differs in several fundamental 
ways from the PEI phase on a normal boot. The differences are as follows: 
■ The memory subsection is restored to its pre-sleep state rather than initialized.  
■ System memory owned by the OS is not used by either the PEI Foundation or the 

PEIMs. 
■ The DXE phase is not dispatched on a resume because it would corrupt memory. 
■ The PEIM that would normally dispatch the DXE phase instead uses a special 

Hardware Save Table to restore fundamental hardware back to a boot configura-
tion. After restoring the hardware, the PEIM passes control to the OS-supplied 
resume vector. 

■ The DXE and later phases during a normal boot save enough information in the 
UEFI PI reserved memory or a firmware volume area for hardware to be restored 
to a state that the OS can use to restore devices. This saved information is located 
in the Hardware Save Table. 
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The “Terse Executable” and Cache-as-RAM 

The flash storage where the PEI modules and core execute has several constraints. 
The first is that the amount of flash allocated for PEI is limited. This stems both from 
the economics of system board design and from the fact that the PEI phase supports 
critical operations, such as crisis recovery and early memory initialization. These ro-
bustness requirements mean that many systems have two instances of PEI: a backup 
and/or truly read-only one that never changes and may only be used for recovery and 
a security root-of-trust, and a second PEI block used for normal boots that is the dual 
of the former one. Also, the execute-in-place (XIP) nature of code-fetches from flash 
means that PEI is not as performant as DXE modules that are loaded into host 
memory. In order to minimize the amount of space occupied by the PEI firmware vol-
ume (FV), the Terse Executable (TE) image format was designed. The TE image format 
is a strict subset of the Portable Executable/Common File Format (PE/COFF) image 
used by UEFI applications, UEFI drivers, and DXE drivers. 

The advantages of having TE as a subset of PE include the ability to use standard, 
available tools, such as linkers, which can be used during the development process. 
Only during the final phases of the FV image creation does the tool chain need to 
convert the PE image into a TE. This similarity extends to the headers and the reloca-
tion records. In order to have an in-situ agent, such as a debugger nub, distinguish 
between the PE and TE images, the signature field has been slightly modified. For the 
PE, the signature is “MZ” for Mark Zbikowski, the designer of the Microsoft DOS† im-
age format, the origin of the PE/COFF image. For the TE image, the signature is “VZ”, 
as found at the end of Volume 1 of the UEFI PI specification: 

 

#define EFI_TE_IMAGE_HEADER_SIGNATURE 0x5A56 // “VZ” 

This one character difference allows for sharing of debug scripts and code that only 
need to distinguish between the PE and TE via this one character of the signature 
field. Although the development and design team eschewed use of proper names in 
code or the resultant binaries, the “VZ” and “Vincent Zimmer” association appeared 
harmless, especially given the interoperability advantages. 

In addition to the TE image, the “temporary memory” used during PEI is another 
innovation on Intel architecture platforms. Recall that the goal of PEI is to provide a 
basic system fabric initialization and some subset of memory that will be available 
throughout DXE, UEFI, and the operating system runtime. In order to program a mod-
ern CPU, memory controller, and interconnect, thousands of lines of C code may be 
required. In the spirit of using standard tools to write this code, though, some memory 
store prior to the permanent Dynamic RAM (DRAM) needed to be found. 

Other approaches to this challenge in the past include the Coreboot use of the 
read-only-memory C compiler (romcc), or a compiler that uses processor registers as 
the “temporary memory.” This approach has proven difficult to maintain and entails 
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a custom compiler. The other approach is to have dedicated memory on the platform 
immediately available after reset. Given the economics of modern systems and the 
transitory usage of this store, the use of discrete memory as a scratchpad has proven 
difficult to provide in anything other than the high-end system or extremely low-end, 
nontraditional systems. The approach taken for the bulk of Intel architecture systems 
is to use the processor cache as a memory store, or cache-as-RAM (CAR). Although 
the initialization sequence is unique per architecture instance (for example, Ita-
nium® versus Core2® versus Core i7®), the end result is some directly addressable 
memory after exiting the SEC phase and entering PEI. As a result, PEIMs and a PEI 
core can be written in C using commonly available C compilers, such as Microsoft 
cl.exe in Visual Studio† and the GNU C compiler (GCC) available in the open source 
community. The UEFI Developer Kit, such as the PEI core in the Module Development 
Environment (MDE) module package at www.tianocore.org provides such as example 
of a generic PEI Core source collection. 

Example System 

All of the concepts regarding PEI can be synthesized when reviewing a specific plat-
form. The following list represents an 865 system with all of the associated system 
components. This same system is also shown in Figure 13.7, which includes the actual 
silicon components. Figure 13.8 provides an idealized version of this same system. 
The components in the latter figure have corresponding PEIMs to abstract both the 
initialization of and services by the components. For each of these components, one 
to several PEI Modules can be delivered that abstract the specific component’s behav-
ior. An example of these components can include:  
■ Pentium® 4 processor PEIM: Initialization and CPU I/O service 
■ PCI Configuration PEIM: PCI Configuration PPI 
■ ICH PEIM: ICH initialization and the SMBUS PPI 
■ Memory initialization PEIM: Reading SPD through the SMBUS PPI, initialization 

of the memory controller, and reporting memory available to the PEI core 
■ Platform PEIM: Creation of the flash mode, detection of boot mode 
■ DXE IPL: Generic services to launch DXE, invoke S3 or recovery flow 
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Figure 13.7: Specific System 
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Figure 13.8: Idealization of Actual System 

typedef 
EFI_STATUS 
(EFIAPI *PEI_SMBUS_PPI_EXECUTE_OPERATION) ( 
  IN      EFI_PEI_SERVICE           **PeiServices, 
  IN      struct EFI_PEI_SMBUS_PPI  *This, 
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  IN      EFI_SMBUS_DEVICE_ADDRESS  SlaveAddress, 
  IN      EFI_SMBUS_DEVICE_COMMAND  Command, 
  IN      EFI_SMBUS_OPERATION       Operation, 
  IN      BOOLEAN                   PecCheck, 
  IN OUT  UINTN                     *Length, 
  IN OUT  VOID                      *Buffer 
  ); 
 
typedef struct { 
  PEI_SMBUS_PPI_EXECUTE_OPERATION  Execute; 
  PEI_SMBUS_PPI_ARP_DEVICE         ArpDevice; 
} EFI_PEI_SMBUS_PPI; 

Figure 13.9:  Instance of a PPI 

What is notable about a PPI is that it is like an EFI protocol in that it has member 
services and/or static data. The PPI is named by a GUID and can have several in-
stances. The SMBUS PPI, for example, could be implemented for SMBUS controllers 
in the ICH, in another vendor’s integrated Super I/O (SIO), or other component. Figure 
13.10 illustrates an instance of an SMBUS PPI for an Intel ICH. 

#define SMBUS_R_HD0  0xEFA5 
#define SMBUS_R_HBD  0xEFA7 
 
EFI_PEI_SERVICES          *PeiServices; 
SMBUS_PRIVATE_DATA        *Private; 
UINT8  Index, BlockCount  *Length;  
UINT8                     *Buffer; 
 
BlockCount = Private->CpuIo.IoRead8 ( 
               *PeiServices,Private->CpuIo,SMBUS_R_HD0); 
if (*Length < BlockCount) { 
  return EFI_BUFFER_TOO_SMALL; 
} else { 
  for (Index = 0; Index < BlockCount; Index++) { 
    Buffer[Index] = Private->CpuIo.IoRead8 ( 
                      *PeiServices,Private-
>CpuIo,SMBUS_R_HBD); 
  } 
} 

Figure 13.10:  Code that Supports a PPI Service 
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Summary 

This chapter has provided an overview of the PEI phase of the UEFI PI environment. 
PEI provides a unique combination of software modularity so that various business 
interests can provide modules, while at the same time have purpose-built technolo-
gies to support the robustness and resource constraints of such an early phase of ma-
chine execution. Aspects of PEI discussed in this chapter include the concept of tem-
porary memory, the PEI Core services, PEI relative to other UEFI PI components, 
recovery, and some sample PEI modules. 
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Chapter 14 – Putting It All Together—Firmware 
Emulation 

An expert is a man who has made all the mistakes which can be made in a very narrow field. 

—Niels Bohr 

In the preceding chapters, various stages of the firmware initialization process were 
described. In addition, various possible usage models have been described that can 
be implemented on a target hardware platform. By now it should have become evi-
dent that many of the UEFI firmware interfaces do not in and of themselves talk di-
rectly to hardware; instead they actually talk to underlying components that are re-
sponsible for talking to hardware. Traditionally, firmware development has not been 
an activity that could be performed without an in-circuit emulator (ICE) or other hard-
ware debug facility. Taking into consideration UEFI’s design and the fact that very 
few components in the firmware actually have direct interaction with hardware de-
vices, it is possible to introduce a mechanism that allows the emulation of vast 
amounts of the firmware in a standard deployment operation system environment. 

In the UEFI sample implementation, a new target platform was introduced called 
NT32. This environment features the ability to run much of the firmware code as an 
application running from the operating system, and provides the ability to establish 
a robust development and debug environment. Much of the firmware codebase was 
developed initially using the emulation environment with off-the-shell compilers and 
debuggers, and without the need of a real hardware debugger. Of course, this emula-
tion has its limitations, since some components of the firmware must talk to hard-
ware. It is much more difficult to emulate such components, though later in this chap-
ter, some possibilities are discussed to alleviate some of this issue. Figure 14.1 shows 
an example of a firmware emulation environment running the UEFI shell within an 
operating system context. 
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Figure 14.1: An Emulation Environment Contained within an Operating System Environment 

Virtual Platform 

This NT32 platform can be described as a hardware-agnostic platform in that it uses 
operating system APIs for its primary hardware abstractions. Figure 14.2 shows how 
the firmware emulation environment gets launched. It is part of a normal boot pro-
cess, and will essentially launch a firmware emulation environment as an application 
running from the operating system. For most developers, this simply means launch-
ing a standard platform, loading an operating system, and then building and execut-
ing the NT32 emulation environment as a native operating system application. This 
application effectively executes the firmware that was built, and emulates the launch 
of a new system. 
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Figure 14.2: The Normal Boot Process Launching an Operating System that Will Launch the Emula-
tion Environment 

In Figure 14.3, the timeline is actually intended to illustrate the emulated firmware 
timeline. It has the capability of processing all of the firmware evolution stages, yet 
of course certain operations are emulated due to lack of direct hardware initialization. 
An example would be the direct initialization of memory, which would be somewhat 
different in this environment, whereas in a real platform, this process would be much 
more involved.  

 

Figure 14.3: The Firmware Emulation Environment Itself 
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Emulation Firmware Phases 

It should be noted that the emulation environment has several distinct phases: 
■ Establishing a WinNtThunk capability for the emulation environment. 
■ This phase constructs a means by which firmware components can make refer-

ence to some “hardware” components. This is done by associating firmware-vis-
ible constructs that will then be associated with operating system native API 
calls. 

■ Figure 14.4 is an example where several firmware constructs are being associated 
with operating system native APIs. For example, to create a file, we establish a 
firmware calling mechanism (such as WinNtCreateFile) to call an operating sys-
tem API known as CreateFile. The following examples illustrate a mechanism of 
associating firmware calls to Windows APIs, but this could just as easily happen 
for any underlying operation system. 

 

typedef struct { 
 UINT64               Signature; 
 
 // 
 // Win32 Process APIs 
 // 
 WinNtGetProcAddress         GetProcAddress; 
 WinNtGetTickCount          GetTickCount; 
 WinNtLoadLibraryEx         LoadLibraryEx; 
 WinNtFreeLibrary          FreeLibrary; 
 WinNtSetPriorityClass        SetPriorityClass; 
 WinNtSetThreadPriority       SetThreadPriority; 
 WinNtSleep             Sleep; 
 WinNtSuspendThread         SuspendThread; 
 WinNtGetCurrentThread        GetCurrentThread; 
 WinNtGetCurrentThreadId       GetCurrentThreadId; 
 WinNtGetCurrentProcess       GetCurrentProcess; 
 WinNtCreateThread          CreateThread; 
 WinNtTerminateThread        TerminateThread; 
 WinNtSendMessage          SendMessage; 
 WinNtExitThread           ExitThread; 
 WinNtResumeThread          ResumeThread; 
 WinNtDuplicateHandle        DuplicateHandle; 
 
 // 
 // Wint32 Mutex primitive 
 // 
 WinNtInitializeCriticalSection   InitializeCriticalSection; 
 WinNtEnterCriticalSection      EnterCriticalSection; 
 WinNtLeaveCriticalSection      LeaveCriticalSection; 
WinNtDeleteCriticalSection     DeleteCriticalSection; 
WinNtTlsAlloc            TlsAlloc; 
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WinNtTlsFree            TlsFree; 
WinNtTlsSetValue          TlsSetValue; 
WinNtTlsGetValue          TlsGetValue; 
WinNtCreateSemaphore        CreateSemaphore; 
WinNtWaitForSingleObject      WaitForSingleObject; 
WinNtReleaseSemaphore        ReleaseSemaphore; 
 
// 
// Win32 Console APIs 
// 
WinNtCreateConsoleScreenBuffer   CreateConsoleScreenBuffer; 
WinNtFillConsoleOutputAttribute   FillConsoleOutputAttribute; 
WinNtFillConsoleOutputCharacter   FillConsoleOutputCharacter; 
WinNtGetConsoleCursorInfo      GetConsoleCursorInfo; 
WinNtGetNumberOfConsoleInputEvents GetNumberOfConsoleInputEvents; 
WinNtPeekConsoleInput        PeekConsoleInput; 
WinNtScrollConsoleScreenBuffer   ScrollConsoleScreenBuffer; 
WinNtReadConsoleInput        ReadConsoleInput; 
WinNtSetConsoleActiveScreenBuffer  SetConsoleActiveScreenBuffer; 
WinNtSetConsoleCursorInfo      SetConsoleCursorInfo; 
WinNtSetConsoleCursorPosition    SetConsoleCursorPosition; 
WinNtSetConsoleScreenBufferSize   SetConsoleScreenBufferSize; 
WinNtSetConsoleTitleW        SetConsoleTitleW; 
WinNtWriteConsoleInput       WriteConsoleInput; 
WinNtWriteConsoleOutput       WriteConsoleOutput; 
 
// 
// Win32 File APIs 
// 
WinNtCreateFile           CreateFile; 
WinNtDeviceIoControl        DeviceIoControl; 
WinNtCreateDirectory        CreateDirectory; 
WinNtRemoveDirectory        RemoveDirectory; 
WinNtGetFileAttributes       GetFileAttributes; 
WinNtSetFileAttributes       SetFileAttributes; 
WinNtCreateFileMapping       CreateFileMapping; 
WinNtCloseHandle          CloseHandle; 
WinNtDeleteFile           DeleteFile; 
WinNtFindFirstFile         FindFirstFile; 
WinNtFindNextFile          FindNextFile; 
WinNtFindClose           FindClose; 
WinNtFlushFileBuffers        FlushFileBuffers; 
WinNtGetEnvironmentVariable     GetEnvironmentVariable; 
WinNtGetLastError          GetLastError; 
WinNtSetErrorMode          SetErrorMode; 
WinNtGetStdHandle          GetStdHandle; 
WinNtMapViewOfFileEx        MapViewOfFileEx; 
WinNtReadFile            ReadFile; 
WinNtSetEndOfFile          SetEndOfFile; 
WinNtSetFilePointer         SetFilePointer; 
WinNtWriteFile           WriteFile; 
WinNtGetFileInformationByHandle   GetFileInformationByHandle; 
WinNtGetDiskFreeSpace        GetDiskFreeSpace; 
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WinNtGetDiskFreeSpaceEx       GetDiskFreeSpaceEx; 
WinNtMoveFile            MoveFile; 
WinNtSetFileTime          SetFileTime; 
WinNtSystemTimeToFileTime      SystemTimeToFileTime; 
 
// 
// Win32 Time APIs 
// 
WinNtFileTimeToLocalFileTime    FileTimeToLocalFileTime; 
WinNtFileTimeToSystemTime      FileTimeToSystemTime; 
WinNtGetSystemTime         GetSystemTime; 
WinNtSetSystemTime         SetSystemTime; 
WinNtGetLocalTime          GetLocalTime; 
WinNtSetLocalTime          SetLocalTime; 
WinNtGetTimeZoneInformation     GetTimeZoneInformation; 
WinNtSetTimeZoneInformation     SetTimeZoneInformation; 
WinNttimeSetEvent          timeSetEvent; 
WinNttimeKillEvent         timeKillEvent; 
 
// 
// Win32 Serial APIs 
// 
WinNtClearCommError         ClearCommError; 
WinNtEscapeCommFunction       EscapeCommFunction; 
WinNtGetCommModemStatus       GetCommModemStatus; 
WinNtGetCommState          GetCommState; 
WinNtSetCommState          SetCommState; 
WinNtPurgeComm           PurgeComm; 
WinNtSetCommTimeouts        SetCommTimeouts; 
 
WinNtExitProcess          ExitProcess; 
WinNtSprintf            SPrintf; 
WinNtGetDesktopWindow        GetDesktopWindow; 
WinNtGetForegroundWindow      GetForegroundWindow; 
WinNtCreateWindowEx         CreateWindowEx; 
WinNtShowWindow           ShowWindow; 
WinNtUpdateWindow          UpdateWindow; 
WinNtDestroyWindow         DestroyWindow; 
WinNtInvalidateRect         InvalidateRect; 
WinNtGetWindowDC          GetWindowDC; 
WinNtGetClientRect         GetClientRect; 
WinNtAdjustWindowRect        AdjustWindowRect; 
WinNtSetDIBitsToDevice       SetDIBitsToDevice; 
WinNtBitBlt             BitBlt; 
WinNtGetDC             GetDC; 
WinNtReleaseDC           ReleaseDC; 
WinNtRegisterClassEx        RegisterClassEx; 
WinNtUnregisterClass        UnregisterClass; 
 
WinNtBeginPaint           BeginPaint; 
WinNtEndPaint            EndPaint; 
WinNtPostQuitMessage        PostQuitMessage; 
WinNtDefWindowProc         DefWindowProc; 
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WinNtLoadIcon            LoadIcon; 
WinNtLoadCursor           LoadCursor; 
 WinNtGetStockObject         GetStockObject; 
 WinNtSetViewportOrgEx        SetViewportOrgEx; 
 WinNtSetWindowOrgEx         SetWindowOrgEx; 
 WinNtMoveWindow           MoveWindow; 
 WinNtGetWindowRect         GetWindowRect; 
 WinNtGetMessage           GetMessage; 
 WinNtTranslateMessage        TranslateMessage; 
 WinNtDispatchMessage        DispatchMessage; 
 WinNtGetProcessHeap         GetProcessHeap; 
 WinNtHeapAlloc           HeapAlloc; 
 WinNtHeapFree            HeapFree; 
} EFI_WIN_NT_THUNK_PROTOCOL; 

 
Figure 14.4:  Thunk Protocol that Associates Some Firmware Names with Operating System APIs 

■ Construct an UEFI hardware API handler that will be specific to the emulation 
platform. 

■ In Figure 14.5, the EFI_SERIAL_IO_PROTOCOL interface is being seeded with a 
variety of information associated with platform specific function data. In this 
case, these platform-specific functions are tuned to the emulation environment. 

 

SerialIo.Revision   = SERIAL_IO_INTERFACE_REVISION; 
SerialIo.Reset     = WinNtSerialIoReset; 
SerialIo.SetAttributes = WinNtSerialIoSetAttributes; 
SerialIo.SetControl  = WinNtSerialIoSetControl; 
SerialIo.GetControl  = WinNtSerialIoGetControl; 
SerialIo.Write     = WinNtSerialIoWrite; 
SerialIo.Read     = WinNtSerialIoRead; 
SerialIo.Mode     = SerialIoMode; 

 
Figure 14.5:  Establishing an UEFI API to Call Platform-Specific Operations 

■ Platform-specific functions (such as emulation platform) that are handling the 
calls to UEFI interfaces and in turn will call the established WinNtThunk APIs 
that will end up making operating specific API calls. 

Figure 14.6 features several calls that could occur from within an API handler to ac-
complish several tasks.  
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// 
// Example of reading from a file 
// 
Result = WinNtThunk->ReadFile ( 
           NtHandle,  
           Buffer,  
           (DWORD)*BufferSize,  
           &BytesRead,  
           NULL 
           ); 
 
// 
// Example of resetting a serial device 
// 
WinNtThunk->PurgeComm ( 
       NtHandle,  
       PURGE_TXCLEAR | PURGE_RXCLEAR 
       ); 
// 
// Example of getting local time components 
// 
WinNtThunk->GetLocalTime (&SystemTime); 
WinNtThunk->GetTimeZoneInformation (&TimeZone); 

Figure 14.6:  Example Calls to the WinNtThunk Protocol 

In summary, Figure 14.7 shows the software logic contained within the operating sys-
tem, firmware emulation component, and their associated interaction logic. It should 
be noted that this logical software flow has three primary components: 
■ Firmware component under development 
■ Basic firmware codebase 
■ Firmware-to-Operating System thunk code 
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Figure 14.7: Firmware Emulation Software Logic Flow 

Hardware Pass-Through 

As is evident through the previous examples, the underlying firmware can enable 
calling to several operating system APIs. However, since the firmware emulation en-
vironment is essentially an operating system application, certain functions are not 
going to be available. This is true since most operating systems have the concept of 
separating a user space from a more privileged kernel space to prevent applications 
from inadvertently crashing the entire operating system. Using this type of separation 
allows for the operating system to detect an error and simply kill the user session 
without perturbing the remaining portions of the operating system.  

It is possible to introduce several extensions to what is currently defined in the 
sample implementations that enable even further capabilities. An operating system 
kernel driver could be constructed to facilitate access to even more functions than 
would otherwise be available. This of course circumvents some of the inherent safety 
of the operating system and can introduce inadvertent crashes when care is not taken. 
By constructing a kernel driver that can reserve certain hardware resources and is 
able to advertise an interface that the emulation environment can call, the emulation 
environment can allow for an enhanced penetration into the hardware. 

Figure 14.8 shows the logic flow associated with the various components and how 
they interact.  
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Figure 14.8: Software Flow for Hardware Enhanced Firmware Emulation 

Summary 

This chapter illustrated how the majority of the UEFI code can be run in an em-
ulated environment so that development can occur on some modules even in the 
absence of physical hardware that would otherwise have been necessary. This emu-
lation, which is publicly available, advances the accessibility of the overall UEFI 
programming infrastructure. It can also facilitate a wider distribution of its use due 
to the relative simplicity of establishing such a development environment. 
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Chapter 15 – Reducing Platform Boot Times  
All problems are either kernel or BIOS problems depending on which context you are running in! 

—Rothman’s Axiom 

This chapter presents a series of methods that should enable a BIOS engineer to opti-
mize the underlying platform firmware so that it can reduce a platform’s boot speed. 
However, it should be noted that the intent of this chapter is to illustrate how various, 
seemingly unrelated product requirements can greatly affect the resulting platform 
boot performance. That being said, this section also illustrates how the platform de-
sign based on marketing requirements, coupled with a properly constructed UEFI-
compliant firmware, can greatly affect the performance characteristics of a platform. 
Some of the key points are: 
■ How specific marketing requirements affect boot performance 
■ Suggestions on what firmware engineering choices can be made to optimize for a 

given platform requirement. 
■ Provide a realistic view of what performance enhancements can be done in a pro-

duction firmware. 
■ Establish viable next steps. 

This chapter focuses on specific aspects of a platform’s pre-O/S boot behavior and 
leverages concepts that are based on the UEFI firmware architecture. 

Some of the fundamental things that need to be understood are different phases 
of platform initialization and how they are exercised as part of the platform boot pro-
cess. The following flow diagrams, Figures 15.1, 15.2, and 15.3, illustrate the evolution 
of the platform initialization from the first moment that power is applied until the 
point where the BIOS hands-off to the target O/S: 
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Switch to protected mode

Transition to a non-paged flat-model protected mode

Initialize MTRRs for BSP

Set cache states for various memory ranges to a known state.

Microcode Patch Update

Execute Microcode Patch Update for all of the present CPUs.  
(Common process, but an optional behavior in closed-box 

controlled configuration systems)

Initialize No-Eviction Mode (NEM)

Prior to the discovery of memory on the platform, a data area will 
be established within the CPU cache so that a stack-based 

programming language can be used early in the initialization.

Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs

Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

Hand-off to PEI entry point

Reset Vector

Flush cache and jump into main initialization 
routine in the ROM.

 

Figure 15.1: SEC Phase 
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Are we in an 
S3 Boot mode?

PEI Dispatcher

Loads a series of PEI modules (PEIM) based on a series of criterion.  Dispatching starts with modules which have no 
prerequisites and proceed through other modules which have more complex dependencies.  This is typically a loop which 

is exhausted when there are no further modules that need dispatching and there are no newly discovered modules.  

CPU PEIM

Module which exposes a series of CPU-related functions.  
Some of these functions are the CPU Cache interface (Set/

Reset), and CPU Frequency Select Interface.

Hand-off to DXE entry point

Establish use of “memory”

Transfer services from being ROM-based to data running from early 
memory (e.g. CPU cache).  This includes the presence of PEI 

services such as memory, PEI module interfaces, and security.

Miscellaneous Platform PEIM

Executes a series of early hardware initialization such as 
memory controller hub (MCH) init, I/O controller hub (ICH) 
init, initialize built-in platform interfaces (e.g. Stall, SMBUS 

Policy, Reset, etc).   Also determines what the boot mode is 
we are currently booting with (e.g. Normal, Recovery, S3, 
etc.).  This is also where the platform exposes the boot 
mode so that subsequent modules can potentially have 

boot mode based behavior.

MCH Init

Programs some key 
aspects of the MCH such 
as the base address of 

several key components.

ICH Init

Do absolute minimal ICH 
programming.  This includes 

basic ACPI/GPIO initialization, 
and programming Flash map 

access into ICH

Hand-off from SEC to PEI Core

Memory Initialization PEIM

Execute Memory Initialization for the platform.  Assign memory for remainder of PEI and subsequent boot 
phases.  In this case, some optimizations are enabled for performance such as eliminating memory test 

during S3 resume or re-programming captured memory reference code state in S3 resume mode.

Multiprocessor CPU PEIM For S3 Boot Mode

Initializes a variety of components within the CPU domain with optimizations 
associated with S3.  Basic initialization of CPU to establish various CPU-specific 

settings (e.g. VMX, SMRR, Thermal Throttling settings, MTRR Synchronization, etc.)

Yes

No

O/S Resume Vector

S3 Boot Script Executor

Executes the S3 Boot Script to re-establish hardware 
programming in a very low-overhead manner.

Dashed Boxes or lines 
are informational.

 
 

Figure 15.2: PEI Phase 
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Establish DXE infrastructure

The Driver eXecution Environment (DXE) is established based on the discovered 
resources described by the prior PEI phase of operations.  This includes DXE core 
callable interfaces, event services, and the eventual launch of the DXE dispatcher.

Hand-off from PEI to DXE CoreDashed Boxes or lines 
are informational.

DXE Dispatcher

The dispatcher is tasked with the job of discovering the FV (firmware volume) 
components that are available and processing them.  Each of the discovered drivers 
within the FV is scheduled to be launched if and when their dependencies are met.  

Once a driver is scheduled to run, the dispatcher will proceed to launch the 
scheduled drivers and continue to do so until there are no more scheduled drivers.

Boot Device Select Phase

Based on the programmed boot variable, the Boot Device Select (BDS) phase ultimately will 
attempt to connect the boot devices required to load and invoke the selected boot target 

(e.g. O/S).  This usually encompasses a recursive search for additional FVs and content to 
dispatch from them.  

Can the boot target 
be loaded?

Architectural Protocols

Some of the key drivers 
needed for the core to 

operate.  Some of these are 
the BDS, CPU, Timer, etc.

Discovered Components

During the search for FVs, 
various drivers can be 

discovered and potentially 
launched.  Some of these 

drivers are components such 
as network drivers, I/O drivers 
(e.g. USB/PCI), and any OEM 

or platform specific drivers.

Dispatch new DXE drivers

Dispatch content from 
discovered FVs.

Are there more 
boot options to try?

NoYes

Yes
Hand-off to the Boot Target

Load new boot option

Yes
Have we made 

progress since last 
attempt?

No

Yes

Platform Policy

When no viable boot options exist, the platform 
will have some built-in boot behavior that is 
specific to the manufacturer of that platform.

  

Figure 15.3: DXE and BDS Phase 

Given the above information, the remainder of the chapter focuses on the important 
elements when considering how to best optimize some of the aforementioned behav-
ior so a platform meets both its technical and marketing requirements yet achieves 
an optimal boot speed. 

Proof of Concept 

In the proof of concept for this chapter, the overall performance numbers used are 
measured in microseconds and the total boot time is described in seconds. Total boot 
time is measured as the time between the CPU first having power applied and the 
transferring of control to the boot target (which is typically the OS). This chapter does 
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not focus on the specifics of the hardware design itself since the steps that are de-
scribed are intended to be platform-agnostic. However, for those who absolutely must 
know from what type of platform some of the numbers are derived, they are: 
■ 1.8-GHz Intel® Atom™-based netbook design 
■ 1 GB DDR2 memory  
■ 2 MB flash 
■ Western Digital† 80-GB Scorpio Blue 5400-RPM drive (normal configuration) 
■ Intel® Solid State Drive X25-E (Intel® X25E SSD) (in optimized configuration) 

It should also be noted that this proof of concept was intended to emulate real-world 
expectations of a BIOS, meaning that nothing was done to achieve results that could 
not reasonably be expected in a mass-market product design. The steps that were 
taken for this effort should be easily portable to other designs and should largely be 
codebase-independent.  

Figure 15.4 shows the performance numbers achieved while maintaining all of 
the various platform/marketing requirements for this particular system. 

SEC   Phase Duration :      26419 (us)
PEI   Phase Duration :     763315 (us)
DXE   Phase Duration :     443021 (us)
BDS   Phase Duration :     766778 (us)
Total       Duration :   1.999533 (s)

SEC   Phase Duration :      26342 (us)
PEI   Phase Duration :    1230905 (us)
DXE   Phase Duration :     998234 (us)
BDS   Phase Duration :    7396050 (us)
Total       Duration :   9.651531 (s)

Normal Boot Optimized Boot  

Figure 15.4: Performance Measurement Results (Before/After) 

The next several sections detail the various decisions that were made for this proof of 
concept and how they improved the boot performance. 

Marketing Requirements 

Admittedly, marketing requirements are not the first thing that comes to mind when 
an engineer sits down to optimize a BIOS’s performance. However, the reality is that 
marketing requirements form the practical limits for how the technical solution can 
be adjusted.  

The highlighted requirements are the pivot points in which an engineer can make 
decisions that ultimately affect performance characteristics of the system. Since this 
section details the engineering responses to marketing-oriented requirements, it does 
not provide a vast array of code optimization “tricks.” Unless there is a serious set of 
implementation bugs in a given codebase, the majority of boot speed improvements 
are achieved from following the guidelines provided in this section. Not to worry 
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though, there are codebase independent “tricks” included that provide additional 
help. 

What Are the Design Goals? 

How does the user need to use the platform? Is it a “closed box” system? Is it a tradi-
tional desktop? Is it a server? How the platform is thought of ultimately affects what 
the user expects. Making conscious design choices to either enable or limit some of 
these expectations is where the platform policy can greatly affect the resulting per-
formance characteristics.  

Platform Policy 

One of the first considerations when looking at a BIOS and the corresponding require-
ments is whether or not an engineer can limit the number of variables associated with 
what the user can do “to” the system. For instance, it might be reasonable to presume 
that in a platform with no add-in slots, a user will not be able to boot from a RAID 
controller since the user cannot physically plug one in.  

This is where a designer enters the zone of platform policy. Even though a plat-
form may not expose a slot, the platform might expose a USB connection. A conscious 
decision needs to be made for how and when these components are used. A good 
general performance optimization statement would be: 

“If you can put off doing something in BIOS that the OS can do—then put it off!” 

Since a user can connect anything from a record player to a RAID chassis via USB, the 
user might think that they would be able to boot from a USB-connected device if phys-
ically possible. Though this is physically possible, it is within the purview of the plat-
form design to enable or disable such a behavior.  

In this particular platform, the decision was made to not support booting from 
USB media and to not support the user interrupting the boot process. This means that 
during the DXE/BDS phase, the BIOS was able to avoid initializing the USB infrastruc-
ture to get keystrokes and this resulted in a savings of nearly 0.5 second in boot time.  
 

Note Even though 0.5 second of boot time was saved by eliminating late BIOS USB initiali-
zation, upon launching the platform OS, the OS was able to interact with plugged-in 
USB devices without a problem. 

 
Platform policy ultimately affects how an engineer responds to the remaining ques-
tions.  
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What Are the Supported OS Targets? 

Understanding the requirements of a particular platform-supported OS greatly affects 
what optimization paths can be taken in the BIOS. Since many “open” platforms (plat-
forms without a fixed software or hardware configuration) have a wide variety of op-
erating systems that they choose to support, this limits some of the choices available. 
In the case of the proof-of-concept platform, only two main operating systems were 
required to be supported. This enabled the author to make a few choices that allowed 
the codebase to save roughly 400 ms of boot time by avoiding the reading of some of 
the DIMM SPD data for creating certain SMBIOS records since they weren’t used by 
the target operating systems. 
 

Note Changes in the BIOS codebase that avoided the unnecessary creation of certain ta-
bles saved roughly 400 ms in the boot time. 

 

Do We Have to Support Legacy Operating Systems? 

The main consideration was whether a particular OS target was UEFI-compliant or 
not. If all the OS targets were UEFI-compliant, then the platform could have saved 
roughly 0.5 second in the underlying initialization of the video option ROM. In this 
case, we had conflicting requirements: one was UEFI-compliant and one was not. 
There are a variety of tricks that could have been achieved by the platform BIOS when 
booting the UEFI-compliant OS but for purposes of keeping fair measurement num-
bers, the overall boot speed numbers reflect the overhead of supporting legacy oper-
ating systems as well. 

To save an additional 0.5 second or more of boot time when booting a UEFI-com-
pliant OS, the BDS could analyze the target BOOT#### variable to determine if the 
target were associated with an OS loader and thus it is a UEFI target. The platform in 
this case at least has the option to avoid some of the overhead associated with the 
legacy compatibility support infrastructure. 

Do We Have to Support Legacy Option ROMs? 

Whether or not to launch a legacy option ROM depends on several possible variables: 
■ Does the motherboard have any devices built in that have a legacy option ROM? 
■ Does the platform support adding a device that requires the launch of a legacy 

option ROM? 
■ If any of the first two are true, does the platform need to initialize the device as-

sociated with that option ROM? 
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One reason why launching legacy option ROMs is fraught with peril for boot perfor-
mance is that there are no rules associated with what a legacy option ROM will do 
while it has control of the system. In some cases, the option ROM may be rather in-
nocuous regarding boot performance, but not always. For example, the legacy option 
ROM could attempt to interact with the user during launch. This normally involves 
advertising a hot-key or two for the user to press, which would delay the BIOS in fin-
ishing its job for however long the option ROM pauses waiting for a keystroke. 

For this particular situation, we avoided the launching of all of the drivers in a 
particular BIOS and instead opted to launch only the drivers necessary for reaching 
the boot target itself. Since the device we were booting from was a SATA device for 
which the BIOS had a native UEFI driver, there was no need to launch an option ROM. 
This action alone saved approximately three seconds on the platform. More details 
associated with this trick and others are in the section “Additional Details.” 

Are We Required to Display an OEM Splash Screen? 

This is often a crucial element for many platforms, especially from a marketing point 
of view. The display of the splash screen itself typically does not take that much time. 
Usually initializing the video device to enable such a display takes a sizable amount 
of time. On the proof-of-concept platform, it would typically take 300 ms. An im-
portant question is how long does marketing want the logo to be displayed? The an-
swer to this question will focus on what is most important for the OEM delivering the 
platform. Sometimes speed is paramount (as it was with this proof of concept), and 
the splash screen can be eliminated completely. Other times, the display of the logo 
is deemed much more important and all things stop while the logo is displayed. An 
engineer’s hands are usually tied by the decisions of the marketing infrastructure.  

One could leverage the UEFI event services to take advantage of the marketing-
driven delay to accomplish other things, which effectively parallelizes some of the 
initialization.  

What Type of Boot Media Is Supported? 

In the proof of concept platform description, one element was a bit unusual. There 
was a performance and a standard configuration associated with the drive attached 
to the system. Though it may not be obvious, the choice of boot media can be a sig-
nificant element in the boot time when you consider that some drives require 1–5 sec-
onds (or much more) to spin up. The characteristics of the boot media are very im-
portant since, regardless of whatever else you might do to optimize the boot process, 
the platform still has to read from the boot media and there are some inherent tasks 
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associated with doing that. Spin-up delays are one of those tasks that are unavoidable 
in today’s rotating magnetic media. 

For the proof of concept, the boot media of choice was one which incurs no spin-
up penalty; thus a solid state drive (SSD) was chosen. This saved about two seconds 
from the boot time. 

What Is the BIOS Recovery/Update Strategy? 

How a platform handles a BIOS update or recovery can affect the performance of a 
platform. Since this task may be accomplished in many ways, this may inevitably be 
one of those mechanisms that has significant platform variability. There are a few 
very common ways a BIOS update is achieved from a user’s perspective: 
■ A user executes an OS application, which they likely downloaded from the OEM’s 

Website. This will eventually cause the machine to reboot. 
■ A user downloads a special file from an OEM’s Website and puts it on a USB don-

gle and reboots the platform with the USB dongle connected. 
■ A user receives or creates a CD or floppy with a special file and reboots the plat-

form to launch the BIOS update utility contained within that special file. 

These user scenarios usually resolve into the BIOS, during the initialization caused 
by the reboot, reading the update/recovery file from a particular location. Where that 
update/recovery file is stored and when it is processed is really what affects perfor-
mance.  

When Processing Things Early 

Frequently during recovery one cannot presume that the target OS is working. For a 
reasonable platform design, someone would need to design a means by which to up-
date or recover the BIOS without the assistance of the OS. This would lead to user 
scenarios #2 or #3 listed above. 

The question an engineer should ask themselves is, how do you notify the BIOS 
that the platform is in recovery mode? Depending on what the platform policy pre-
scribes, this method can vary greatly. One option is to always probe a given set of 
possible data repositories (such as USB media, a CD, or maybe even the network) for 
recovery content. The act of always probing is typically a time-consuming effort and 
not conducive to quick boot times. 

There is definitely the option of having a platform-specific action, which is easy 
and quick to probe that “turns on” the recovery mode. How to turn on the recovery 
mode (if such a concept exists for the platform) is very platform-specific. Examples of 
this are holding down a particular key (maybe associated with a GPIO), flipping a 
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switch (equivalent of moving a jumper), which can be probed for, and so on. These 
methods are highly preferable since they allow a platform to run without much bur-
den (no extensive probing for update/recovery.) 

Is There a Need for Pre-OS User Interaction? 

Normally the overall goal is to boot the target OS as quickly as possible and the only 
expected user interaction is with the OS. That being said, the main reason for people 
today to interact with the BIOS is to launch the BIOS setup. Admittedly, some settings 
are within this environment that are unique and cannot be properly configured out-
side of the BIOS. However at least one major OEM (if not more) has chosen to ship 
millions of UEFI-based units without exposing what is considered a BIOS setup. It 
might be reasonable to presume for some platforms that the established factory de-
fault settings are sufficient and require no user adjustments. Most OEMs do not go 
this route. However, it is certainly possible for an OEM to expose “applets” within the 
OS to provide some of the configurability that would have otherwise been exposed in 
the pre-OS timeframe. 

With the advent of UEFI 2.1, and more specifically the HII (Human Interface In-
frastructure) content in that specification, the ability for configuration data in the 
BIOS to be exposed to the OS was made possible. This makes it possible for many of 
the BIOS settings to have methods exposed and configured in nontraditional (pre-OS) 
ways. 

If it is deemed unnecessary to interact with the BIOS, there is very little reason 
(except as noted in prior sections) for the BIOS to probe for a hot key. This only takes 
time from a platform boot without being a useful feature of the platform. 

Additional Details 

When it comes time to address some codebase issues, the marketing requirements 
clearly define the problem space an engineer has to design around. With that infor-
mation, several methods can help that are fairly typical of a UEFI-based platform. 
These are not the only methods, but they are the ones that most any UEFI codebase 
can use.  

Adjusting the BIOS to Avoid Unnecessary Drivers 

It is useful to understand the details of how we avoided executing some of the extra 
drivers in our platform. It is also useful to reference the appropriate sections in the 
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UEFI specification to better understand some of the underlying parts that cannot, for 
conciseness, be covered in this chapter. 

The BDS phase of operations is where various decisions are made regarding what 
gets launched and what platform policy is enacted. That being said, this is the code 
(regardless of which UEFI codebase you use) that will frequently get the most atten-
tion in the optimizations. If we refer again to the boot times for our proof of concept, 
it should be noted that the BDS phase was where the majority of time was reduced. 
Most of the reduction had to do with optimizations as well as some of the design 
choices that were made and the phase of initialization where that activity often takes 
place. 

At its simplest, the BDS phase is the means by which the BIOS completes any 
required hardware initialization so that it can launch the boot target. At its most com-
plex, you can add a series of platform-specific, extensive, value-added hardware ini-
tializations that are not required for launching the boot target. 

What Is the Boot Target? 

The boot target is defined by something known as an EFI device path (see UEFI spec-
ification). This device path is a binary description of where the required boot target is 
physically located. This gives the BIOS sufficient information to understand what 
components of the platform need to be initialized to launch the boot target. 
Below is an example of just such a boot target:  

Acpi(PNP0A03,0)/Pci(1F|1)/Ata(Primary,Master)/HD(Part3,Si
g00110011)/’’\EFI\Boot’’/’’OSLoader.efi’’ 

Steps Taken in a Normal and Optimized Boot 

Figure 15.5 indicates that between the non-optimized boot and an optimized boot, 
there are no design differences from a UEFI architecture point of view. In addition, 
Figure 15.6 shows how significantly the behavior of the platform might be in each of 
the contrasting scenarios, however optimizing a platform’s boot performance does 
not mean that one has to violate any of the design specifications.   
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SEC Phase

Pre-memory early initialization, microcode 
patching, and MTRR programming.

PEI Phase

Dispatches various PEI drivers.  Pre-memory early 
initialization, microcode patching, and MTRR programming.

Are we in an 
S3 Boot mode?

O/S Resume Vector

Yes

DXE + BDS Phase

Discover all drivers available to the platform.  
Dispatch all drivers encountered.

No

SEC Phase

Pre-memory early initialization, microcode 
patching, and MTRR programming.

PEI Phase

Dispatches only minimal PEI drivers.  
Pre-memory early initialization, microcode 

patching, and MTRR programming.

Are we in an 
S3 Boot mode?

O/S Resume Vector

Yes

DXE + BDS Phase

Discover the drivers available to the platform.  
Dispatch only the minimal drivers required to 

boot the target.

No

Non-Optimized Boot Optimized Boot
  

Figure 15.5: Architectural Boot Flow Comparison 

 

Figure 15.6: Functional Boot Flow Comparison 

Loading a Boot Target 

The logic associated with the BDS optimization focuses solely on the minimal behav-
ior associated with initializing the platform and launching the OS loader. When cus-
tomizing the platform BDS, you can avoid calling routines that attempt to connect all 
drivers to all devices recursively, such as BdsConnectAll(), and instead only 
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connect the devices directly associated with the boot target. Figure 15.7 illustrates an 
example of that logic. 

 

Figure 15.7: Deconstructing the BDS launch of the Boot Target 

Organizing the Flash Effectively 

In a BIOS that complies with the PI specification, there is a flash component concept 
known as an firmware volume (FV). This is typically an accumulation of BIOS drivers. 
It would be reasonable to expect that these FVs are organized into several logical col-
lections that may or may not be associated with their phase of operations or functions. 
There are two major actions that the core initiates associated with drivers. The first 
one is when a driver is dispatched (loaded into memory from flash), and the second 
one is when a driver is connected to a device. Platform policy could dictate that the 
DXE core avoids finding unnecessary drivers. For instance, if the USB device boot is 
not needed, the USB-related drivers could be segregated to a specific FV, and material 
associated with that FV would not be dispatched.  

Minimize the Files Needed 

Since one of the slowest I/O resources in a platform is normally the flash part on 
which the BIOS is stored, it is a very prudent idea to minimize the amount of space 
that a BIOS occupies. The less space a BIOS occupies, the shorter the time is for rou-
tines within the BIOS to read content into faster areas of the platform (such as 
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memory). This can be done by minimizing the drivers that are required by the plat-
form, and pruning can typically be accomplished by a proper study of the marketing 
requirements. 

Summary 

Ultimately, the level of performance optimization that is achievable is largely subject 
to the requirements of the platform. Given sufficient probing, there are almost always 
methods to achieve boot speed gains using some of the techniques highlighted in this 
chapter. Here are some of the highlights of items to focus on and areas within each 
BIOS codebase that deserve further investigation. 

The Primary Adjustments 

Based on various conditions in a platform, the boot behavior can be adjusted to speed 
up the boot process. Much of this occurs in the BDS, but some areas of optimization 
may vary per each individual codebase. 
■ Focus on the marketing requirements 

— Based on the marketing requirements, many decisions that affect boot per-
formance can be made. Open dialog between marketing and engineering 
helps with this. 

■ Minimize the use of slow media  
— Scanning for firmware component in a flash device can be very slow. Opti-

mize routines that touch slow media. 
■ No need to poll for setup pages or even initialize a console in some cases.  

— Polling for keys or user interaction can be minimized in the BDS. 
■ Not all hardware needs to be initialized. Often only the hardware directly associ-

ated with the valid boot target needs to be initialized. 
■ Tweaks 

— Only initiate activity that the BIOS must do; the OS is often going to repeat 
what the BIOS just did. 

— If no hardware changes are detected there is no need to re-enumerate vari-
ous subcomponents. 

— It may not be a need to probe boot options if we cache the last known valid 
boot option. 
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Suggested Next Steps 

Some common procedures can be applied to all platforms: 
■ Make full use of platform cache  

— Especially in PEI phase where the code is XIP (eXecute-In-Place), caching 
the flash region can contribute significantly to code fetch and execution im-
provements. 

■ Minimize the use of slow media  
— Scanning for a firmware component in a flash device can be very slow. 

Optimize routines that touch slow media. For instance, the variable re-
gion is normally stored in flash and it is very time-consuming to traverse 
the whole flash region for each variable search. It would be a reasonable 
optimization to use memory-based cache to store the whole variable re-
gion or just the variable index to speed up the variable search time.  

■ Analyze drivers that spend time blocking the boot progress. More often than not, 
these drivers can gain improvements in performance with minor adjustments.  

— If hard disk spin-up time is a blocking factor in the platform boot times, 
the BIOS owner could adjust some of the logic to initiate the disk spin-
up in an earlier stage of the boot logic to mitigate some of this slow-
down and avoid a blocking behavior. Using an EFI event for such an 
optimization may be very reasonable. 

First focus optimization work on the components that the BIOS spends the most time 
on. Usually more optimization results can be achieved in these components. 
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Chapter 16 – Embedded Boot Solution 
Unless you try to do something beyond what you have already mastered, you will never grow 

—Ralph Waldo Emerson  

The expected market segment opportunity beyond 2012 for embedded systems will be 
over 10 billion USD. Some examples of this focused segment, as shown in Figure 16.1, 
include: in-vehicle infotainment (IVI) for automotive use, print imaging (enterprise 
printing solutions), industrial control, residential or premise service gateways (PSG), 
home control, media phones (MPs), set top boxes, mobile Internet devices (MIDs) and 
physical security/digital security and surveillance (video analytics systems and IP 
cameras).  

 

Figure 16.1: Embedded Usage Examples 

This chapter describes the boot firmware challenges and solutions for these market 
segments. The primary focus is to cover the platform boot solution, which includes 
standard PC BIOS, bootloaders (also known as steploaders), initial program loaders 
(IPLs, also known as second-stage bootloaders), and OS boot driver components for 
running a shrinkwrap and/or industry standard embedded OS. 

CE Device Landscape 

The Intel® Atom™ processor family of low power embedded processors are making 
their way into many lower power platforms, the key being MIDs (mobile Internet de-
vices), netbooks and a variety of embedded markets as enumerated above. Some of 
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these segments are targeted towards consumers, following the Consumer Electronics 
(CE) device model paradigm. One of the key attributes of a CE device is the positive 
end-user experience, which is of paramount importance. The user experience is based 
on such factors as:  
■ Battery life/low thermal dissipation for fanless device operation 
■ Small device form factor/footprint for portability 
■ Ease of use 
■ Low bill of material (BOM) resulting in lower end-user cost 
■ Interoperability with other CE devices 
■ The time between power-on and the user interface becoming active, also known 

as boot latency to user interface/human machine interface (UI/HMI) 

CE Device Boot Challenges 

Traditional CE devices from OEMs were fully customized solutions with OEM specific 
hardware and software components that were uniquely tuned for a particular use 
model such as smart phones or MIDs. In this case, custom platforms were developed 
top-down from scratch for pre-determined usage models with customized applica-
tions, middleware, device drivers, OS, system boot firmware and tightly coupled com-
panion boot devices/hardware. With each new platform development, the software 
solution had to be recreated. 

The use of Intel® architecture would help reduce this re-development, reducing 
time to market and cost. One of the value propositions and advantages of using both 
Intel architecture based processor family System on a Chip (SoC) solutions and plat-
forms is the wide availability of standard platform building blocks from Intel and ex-
ternal ecosystem suppliers providing hardware, software, BIOS, applications, devel-
opment tools, and so on.  

As many of these platform building blocks migrated from a standard PC to em-
bedded SoC segments, they posed some interesting challenges to directly map to the 
top-down CE device use model. It takes optimization of more than a dozen system 
hardware and software components across the system stack to achieve the desired CE 
goals, with the boot firmware being a key component of it. Figure 16.2 identifies some 
of the components in the boot path that contribute to the overall system boot latency 
as needed for the CE devices. 

The following is a short list of some key components that contribute to the overall 
boot latency to UI active time. 
■ Platform power sequencing latencies, such as stabilization of PLL/Clocks, volt-

age regulators, and power rails 
■ Speed of bus interface to boot device, such as Serial Peripheral Interface (SPI) 

and Low Pin Count (LPC) 
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■ Access latency of storage device for firmware, such as NOR/NAND Flash 
■ Access latency of mass storage device, such as HDD, SSD, MMC/SD 
■ Splash screen latency 
■ Latencies associated with boot firmware or bootloader execution 
■ Initial program load latencies, such as second stage OS boot loader (also known 

as IPL) 
■ Partitioning of the firmware and OS boot components across the storage device, 

such as NOR, SDD, HD, and MMC 
■ Use of file system type for storing the boot image, such as ROM, FAT, and EXT3 
■ Latency of graphics and audio device startup if required 

Figure 16.2 shows various boot components across the system stack that need to be 
optimized and aligned to get to the end goal of low boot latency as desired by a CE 
device user. Moreover, many of these components have interdependencies for them 
to function effectively. For example: the fast splash screen needs to provide a seam-
less handoff to the graphics driver, and the block storage device must power-on early 
in firmware before a handoff to IPL. 

 

Figure 16.2: End-to-End Boot Latency Dependency Components 

A case study of one of the CE device usages for IVI with typical boot requirements 
follows. The fast boot requirements for most other CE segments are considered to be 
a subset of IVI, which has the most stringent requirements of all. 
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In-Vehicle Infotainment 

An IVI user expects an instant power-on experience, similar to that of most consumer 
appliances like TVs. To meet this same expectation, one of the key requirements of 
the IVI platform is the sub-second cold boot time, which helps facilitate the user ex-
perience when the ignition key/button is turned on. The typical boot latency require-
ments are as illustrated in Figure 16.3. 

 

Figure 16.3: Typical CE Device Boot Latency Requirements 

Within the requirements highlighted above, there are multiple key latency check-
points where the boot firmware plays a key role. These include: 
■ Power-on to splash screen active. The time between hardware power-on and 

splash screen active is key because it helps improve the user perception with an 
early audio/visual experience. This is accomplished by displaying a static image 
bitmap or a logo on the display device. The pre-OS boot environment is where 
this typically gets activated, immediately after the memory initialization is done. 
Several of the initialization functions are needed to enable the display to occur 
in parallel while the boot firmware is busy performing its other unrelated boot 
functions in the background, such as memory and chipset initialization. Once the 
splash screen is enabled, the firmware typically does a handshake with the OS 
environment for a seamless handoff of the splash screen display status and re-
lated information, such as frame buffer physical address and display mode. If the 
firmware can hand-off to the OS in less than 50–100 ms, it is possible to leave this 
function for the OS to enable, thereby making it a post-OS boot feature. 
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■ Power-on to rear view camera active. This is another operation that may have to 
get activated in the background and be presented to the user with a motion image 
from the rear view camera. This function is typically used when backing up an 
automobile and the function needs to be activated upon entering reverse (“R” 
gear). In some use cases, video from an embedded camera may be preferred in 
place of a static splash screen image. The initialization and activation of the cam-
era interface can be done in parallel with bootloader flows through hardware 
state machine assist. The event generation and notification mechanism (“R”) 
also needs to be enabled early on in the boot sequence. 

■ Power-on to the boot storage device active. The time between these functions im-
pacts the speed at which the OS can be shadowed and launched by the Initial 
Program Load. This is typically done in the early firmware boot sequence as part 
of the chipset initialization, to hide the boot device ready latency such as hard 
disk spin-up, eMMC/SD device ready, and so on. 

■ Power-on to OS handoff (IPL). This function is done in the background and is a 
measure of overall firmware latency of the boot firmware. All actions beyond this 
fall into the OS boot domain for a typical bootloader.  

■ OEM-specific functions. Other OEM device-specific functions such as Controller 
Area Network (CAN)/Media Oriented Systems Transport (MOST) interface activa-
tion, FM radio activation, and TPM measured boot, are orthogonal to the core 
platform functions and are managed by OEM-specific hardware/firmware. Typi-
cally the events from CAN and data over MOST can be used as trigger events for 
operation of functions such as rear view camera activation. 

All other boot latency checkpoints illustrated are outside the scope of the boot firm-
ware and have a dependency on the kernel components and device drivers that are 
associated with the key boot devices: storage (such as NAND), audio, graphics, video, 
and so on. 

Other Embedded Platforms 

As noted above, IVI is just one of the many embedded segments with rapid boot time 
requirements. The interesting thing to note is that when all the segments are taken 
into consideration, the fundamental common denominator across all of them is the 
boot firmware, which needs to work with a variety of operating systems including 
Fedora Linux†, QNX†, Microsoft XP Embedded†, Microsoft WinCE†, WindRiver Auto-
motive Grade Linux†, Microsoft Automotive† (based on Win CE), WindRiver 
VxWorks†, Microsoft Windows XP†, Microsoft Vista Embedded†, 4690/DOS†, 
MeeGo†, SuSe†, Microsoft Windows for Point-of-Sales (WEPOS) †, Win7e†, and Win8. 
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For a typical CE platform, the boot firmware must support interoperability with mul-
tiple types of OS IPLs as follows: 
■ ACPI-compliant UEFI BIOS with an UEFI OS IPL (such as eLilo): this is typically 

used with aftermarket products that may run an embedded version of a shrink-
wrap OS such as Standard Embedded Linux or Window XPe that requires PC com-
patibility and is readily available from the BIOS vendors or original device man-
ufacturers (ODM). 

■ Embedded OS IPL: this solution is meant to work with an OS that does not rely on 
the PC BIOS compatibility such as an embedded OS and some variants of Linux. 
This approach requires specialized IPL that is customized for the platform topol-
ogy and the nonstandard secondary storage device such as managed NAND (also 
known as an eMMC device). 

 

Note Reducing the bill of material cost of a CE platform is quite critical, hence consolidating 
the SPI Flash (NOR) and NAND storage to one device like eMMC is beneficial. However, 
this comes with some challenges for Intel boot architecture and the firmware flow that 
depends on various aspects such as execute in place ROM (XIP), secure and write-
protected regions offered by SPI flash controllers, and so on. 

Generic Requirements 

Traditional platforms typically have boot latencies to UI active times that average 10–
40 seconds. Getting this UI active latency down to below 5–6 seconds, with an active 
splash screen in less than 500 ms is a big challenge. To reduce time to market and 
product development costs, it is highly desired to develop one boot firmware and OS 
solution that can scale across different CE device platforms from each of the OEMs 
with varying topologies, but based on the same SoC core. Many optimizations were 
done to both the BIOS and bootloader solutions to fit into the IVI platform and the 
same can be easily extended to any CE device. The key being the reordering and early 
initialization of user-visible I/O like display activation, initial program load (IPL) boot 
menus, enabling processor cache usage at boot as high speed RAM (CAR), and so on. 

The basic or generic bootloader for any CE device model requires the following attrib-
utes: 
■ Low Boot Latency. The generic boot requirements for a CE device can be summa-

rized as: power-on to OS handoff in less than one second and splash screen in 
less than 500 ms. 

■ Footprint. The firmware code size needs to be small, reusable, and portable across 
all platforms using the same SoC without modifications, such as a size of less than 
384 KB. 
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■ Reliability. The bootloader must provide interoperability across a variety of oper-
ating systems, including shrinkwrap, embedded real-time operating systems, 
and so on. 

■ Cost optimization. The solution must minimize the platform bill of material cost 
through consolidation of multiple storage devices like SPI Flash and Secure Dig-
ital Input Output (SDIO) managed NAND. 

■ Lifecycle. The bootloader should have a typical lifecycle of 5 years. 

Figure 16.4 illustrates the common initialization flows encountered in a typical plat-
form initialization. 

 

Figure 16.4: Typical Intel® Architecture CE Device Firmware Boot Flow 

Boot Strategies 

To fit most of the usage models described above, different CE device boot strategies 
are adopted, namely Fixed Topology Systems, Binary Modules model and Simplified 
bootloader, as described below: 
■ Fixed Topology Systems. This strategy uses standard ACPI-compliant UEFI BIOS 

with a fixed platform topology and a compliant IPL, such as eLilo. This is typically 
used with aftermarket products that may run an embedded version of a shrink-
wrap OS, but with varying I/O devices that are chosen by the end customer (such 
as Standard Embedded Linux or Window XPe). The BIOS is required to provide 
PC compatibility and is readily available from independent BIOS vendors (IBV) 
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or Original Device Manufacturers (ODM). This solution provides the most flexibil-
ity for seamless addition of I/O for each of the OEM machine topologies, but at 
the expense of higher boot latencies. Many of the initialization sequences in the 
boot path are optimized to reduce the latencies significantly in the order of 5–10 
seconds. Some of the noncritical PC BIOS functions such as PCIe device enumer-
ation, OptionROM scanning, memory testing, POST, and video BIOS usage may 
be eliminated or simplified during the boot sequence. The disabling of these and 
other functions helps reduce boot latencies significantly. Refer to the white paper 
on one such implementation and the optimizations done for it: 

■ http://download.intel.com/design/intarch/papers/320497.pdf 
■ Binary Modules with Configuration. This is the most highly optimized solution for 

the CE platform for low boot latencies and is tightly coupled to the functions on 
the SoC. Since the functions of the SoC do not change across different OEM im-
plementations, one single firmware image compiled from a set of object libraries 
would suffice to boot all platforms built around the SoC. The OEM may use a de-
velopment kit, which would allow customization facilitated through a set of ex-
posed application programming interfaces (APIs) in the objects. These object 
API’s could perform basic and advanced initialization and control tasks like the 
following: 
– Processor initialization (including multiprocessor support, cache configura-

tion, and control) 
– Chipset and memory initialization 
– Core libraries for I/O initialization such as PCI resource allocation, and IDE 

HD initialization. 
– Flash Storage (NOR, NAND), Super I/O support 
– Pre-boot graphics (splash screen) support where available 

This solution is primarily meant to work with an OS, which does not rely on the PC 
BIOS compatibility, such as an embedded OS and some variants of Linux. The boot 
latencies achieved are deterministically optimized for a fixed CE device model built 
around the same SoC. The goal of this approach is to allow the OS to enable other 
standard non-boot and OEM-specific I/O device enabling through the use of loadable 
device drivers in the OS. Refer to the white paper on one such approach and the opti-
mizations done for it: 

http://download.intel.com/design/intarch/papers/323246.pdf 
■ Simplified Bootloader. This is the third category of firmware bootloader that has a 

subset of functionality of the above two mechanisms. In this type of implementa-
tion, the bootloader firmware consists of the basic initialization functionality of 
the CPU, flash, and the DRAM subsystem. The subsequent portion of chipset 
hardware and I/O device initialization is left for the OS hardware abstraction 
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layer (HAL) to deal with, essentially moving much of the firmware platform ini-
tialization function to the OS. This gives the OS more control to optimize the boot 
latencies by allowing it to touch or initialize devices on a demand basis, thereby 
eliminating the latency associated with non-boot related platform device initiali-
zation. The major disadvantage of this approach is that for every new SoC and 
platform topology, the HAL component for each OS needs to be rewritten and this 
is a major undertaking.  

Power Management 

Traditional Intel architecture platforms support various power management capabil-
ities to conserve power of battery powered devices and to reduce thermal dissipation 
for AC powered devices. The CE device will leverage from the same power states as 
defined in the ACPI specification (Sx) and (Dx), but with or without ACPI support in 
the firmware. A simplified ACPI table or its equivalent, with a capability to communi-
cate standby (S3) state wake-up vector information between the OS and the firmware 
is the minimum requirement for this usage model. 

As highlighted earlier, one of the key design goals of the CE device is a fast boot 
in the order of seconds. Typically, any resumption from Suspend/Hibernate back to 
active state involves restoring the previous state. In certain CE device use cases, the 
Resume from Sleep (suspend to RAM) could be used for sub-second fast boot pur-
poses. However, Sleep mode is undesirable for some CE device use cases like IVI, due 
to the battery drain from DRAM leakage current in an extended park scenario or a 
need to avoid inadvertently restoring one user context for another for a rental car sce-
nario. This makes the fast cold boot with a completely fresh state on every power-on 
a key requirement for the CE device architecture.  

Boot Storage Devices 

Another factor that plays a significant role in helping reduce the overall boot latency 
is the choice of the boot storage device and the system interconnect to it, such as LPC 
and IDE. 

Firmware is typically stored on a flash device, which can take the form of NOR, 
Raw NAND or Managed NAND (MMC-NAND). Each of these is connected through dif-
ferent system interfaces like LPC/SPI, Open NAND Flash Interface (ONFI), or SDIO. 
Depending on the combination of the bus interface and storage device used, the read 
throughputs can vary anywhere from 1.5 MB/s to 52 MB/s at the time of writing of this 
book. It is to be noted that to satisfy the Intel architecture platform boot sequence and 
legacy compatibility, XIP flash (NOR) is best. NAND is a block storage device and does 
not lend itself very well as the XIP memory. The mitigation to overcome this NAND 
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limitation is to use SRAM caches in the path to the processor or the NAND accesses 
redirected in hardware to DRAM, where the firmware is shadowed ahead of time. The 
look-ahead shadowing of NAND content to DRAM does introduce additional latencies 
in the boot path. 

In the case of software partitioning, an IPL which is part of the OS and includes 
the kernel may be stored on a secondary block storage device, such as a hard disk 
(HD), solid state drive (SSD) or a managed/unmanaged NAND. There are spin-up 
times associated with HD and power-on to device ready latencies associated with 
SSD/NAND and these contribute to the boot latencies as well. 

To help keep the platform BOM cost low, it is highly desirable to consolidate the 
storage device used for the boot firmware, OS, and user applications/data. While NOR 
flash does offer some speed advantages, the NAND flash offers both a cost and per-
formance advantage that is well balanced. The latest managed NAND version based 
on the MMC 4.4 specification offers quite a few capabilities to allow the unified stor-
age use case, such as boot block for firmware storage, user Storage, and security fea-
tures. It is quite possible to achieve this unified boot storage CE device use model with 
some changes in the Intel architecture platform hardware and firmware flows. This is 
illustrated in Figure 16.5. 
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Figure 16.5: Typical Intel® Architecture Storage Device Consolidation Model 
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Security 

Different embedded segments have varying security requirements collectively cate-
gorized as Security. These security requirements apply to two different usage models, 
which are orthogonal to each other: 
■ Security as it relates to platform defense against attacks from hackers and mal-

ware. 
■ Security as it relates to encryption/decryption of network packets (example: IP-

Sec/SSL, Voice SRTP) 

SoC-based embedded platforms are targeted to support “open and closed device” us-
age models. This means that the user will be able to download and install any native 
application on the device. This puts these devices on par with the standard PC as far 
as threats from viruses and malware are concerned. This is where the security for de-
fense against attacks becomes a key platform feature, with the boot firmware playing 
a key role in establishing a chain of trust. 

Since the CE platforms are targeted to support “open and closed device” usage 
models, it requires special attention for two key aspects of security. First, the system 
must have a tamper-resistant software environment to protect against malicious at-
tacks, and second, it must offer the ability to playback DRM protected content such 
as Blu-ray† without being compromised. Table 16.1 shows the usage and threat model 
of a typical CE device. 

Table 16.1: Usage Model and Security Threats 

CE Usage Model Threats 

Internet Connectivity  Malware attack, DoS Attacks, packet replay/reuse, etc. 

Secure Internet Transaction Steal privacy sensitive data 

DRM Content Usage  Steal DRM protected content 

Browser Usage Malware attack, phishing 

Software Downloads/Updates Change OS/software stack 

Device Management DoS attack, Illegal device connections 

ID Management Dictionary attacks, stolen privacy data 

One Time Provisioning Steal OEM data, unauthorized activation 

Full Featured OS All of the above 

Biometrics (Finger print sensor) Steal user data, authentication credentials 
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Based on the usage model described in Table 16.1, the assets on the platform that need 
to be protected from a hacker are as follows: 
■ Platform resources including: CPU, memory, and network (3G, WiMax, Wi-Fi) 
■ Privacy sensitive data including: ID, address book, location, e-mails, DRM pro-

tected copyrighted content such as music and video 
■ Trusted services including: financial, device management and provisioning, 

trusted kernel components 

Based on the techniques needed for threat mitigation, one of the fundamental mech-
anisms to achieve security is to make the software tamper-resistant (TRS). TRS goal is 
achieved by having platform and software mechanisms in place to check for software 
integrity, both at system boot and runtime. The high level overview of this is as fol-
lows: 
■ Boot Time. This is typically accomplished through a mechanism called measured 

boot, where the core platform software components (firmware or OS) are checked 
for unauthorized changes.  

■ Runtime. This runtime security protection is typically achieved by having soft-
ware agents monitoring the system against attacks (for example, anti-virus soft-
ware) and also by securing through application sandboxing, which restricts the 
application accesses to limited resources and contains the malware attack impact 
to the restricted domain. 

In addition, any runtime software updates or patching will be limited to trusted soft-
ware from trusted entities, which may be digitally signed for authenticity. 

The mitigation against the security threats requires the embedded platform security 
architecture to use a combination of hardware and software security ingredients such 
as: 
■ Measured boot with TPM coupled with appropriate hardware-based Root of Trust 

(RoT); examples: Intel® Trusted Execution Technology (Intel TXT) or BootROM 
as Root of Trust. 

■ DRM content protection based on commercial media players executing on Intel 
architecture 

■ Application isolation through OS-based mechanisms 
■ Trusted domains and isolation through OS-based mechanism 
■ OEM/OSV trusted binaries, which are digitally signed by an authentic source 
■ Secure storage and key management through TPM assist 
■ Anti-virus through third party software libraries and application design 
■ Device management/provisioning through industry standard mechanisms 

BootROM RoT: To provide Measured Boot functionality, an embedded platform can 
support BootROM as hardware RoT and a trusted platform module (TPM) can be used 
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to securely store measurements. Some SPI-Flash controllers support write-protection 
of the flash device at reset through hardware based auto configuration. Additionally, 
SPI Flash devices from various vendors allow for boot block write protection through 
strap pin configuration. Any of these techniques can be used to protect the firmware 
boot block from being tampered by malware. 

In compliance with the TCG specification, the boot firmware is divided into two 
parts. The first part is the boot block, which is a very small firmware component that 
includes the minimal platform initialization firmware and TPM driver. The rest of the 
boot firmware is contained in the subsequent portions of the flash. 

The Intel architecture CE device can include other platform-specific firmware that 
is outside the context of the core BIOS or firmware. An example of this is the p-Unit 
(microcontroller) that is used for smart power management for the SoC device. This is 
configured as the first entity where the platform execution begins after reset. Other 
CE devices may have similar processing elements. Any measured boot mechanism 
must assure the integrity of such firmware and make it part of the overall trust 
chain. Figure 16.6 is an example of the trust boundary for a typical Intel architecture 
CE device. 

Trust Boundary

BootloaderBootloader
/BIOS/BIOS OS LoaderOS Loader OSOS

CRTM inCRTM in
BootROMBootROM
(HW RoT)(HW RoT) AppApp

pp--Unit Unit 

 

Figure 16.6: Typical Intel® Architecture CE Device Trust Boundary 

The BootBlock can be burned into ROM so that it cannot be modified and hence can 
act as a hardware RoT. Core Root of Trust for Measurement (CRTM) is the root of trust 
from which integrity measurements begin within a trusted CE device platform. The 
platform manufacturer provides CRTM logic for each trusted platform. The CRTM 
logic can be changed, but only under controlled conditions by the OEM. 
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The OS loader, kernel, and drivers will be measured as part of the CE device measured 
boot flow. The details of a typical chain of trust for measurement with a TPM device 
and PCRx is as illustrated in Figure 16.7 and are outlined as follows: 
■ CRTM measures firmware (bootloader or BIOS) 

— Stores the measurement in PCR-0 
— Standard OS handoff tables like ACPI, E820, and EFI measurements are 

stored in PCR-1 
— Any option ROM measurements are stored in PCR-2 

■ Bootloader/BIOS measures OS Initial Program Load (IPL) 
— Stores the measurement in PCR-4 

■ OS loader measures kernel, including kernel command line and drivers 
— Stores the measurement in PCR-8 
— Each OS can use different implementations 
— If the measurements are changed, the OS may fail to boot or alert the user. 

Coming out of 
System reset

p-Unit fetches 2K boot block code from  BIOS Flash 
through SPI interface in Legacy unit

p-Unit initializes non-CPU part of North Complex 
(i.e. H/A/B/D) and DDR RCOMP

p-Unit de-asserts IA CPU reset and Security 
Processor reset & Awaits for IA Wakeup

IA CPU comes out of reset and executes 
BIOS code from SPI Flash CRTM

• Firmware initializes DDR controller and DRAM.
• Firmware measures and shadows  x86 firmware into DDR 

memory.
• Firmware measures and shadows p-Unit firmware into a 

portion of the DDR memory.
• Firmware switches to execute from DRAM memory.
• Firmware programs p-Unit address redirection to DDR
• Firmware initiates p-Unit wakeup to fetch its code from DDR 
• Etc.

IA CPU downloads codes to Security Processor
(i) Blu-ray application codes, 

(ii) Firmware Patches

Security Processor coming out of reset, 
and starts program execution from 

masked ROM

Security Processor does the followings:
• Initialize all hardware and software 

version number soft copies
• Clear all maskable interrupts
• Initialize owners of IPC shared 

memory (SEC initially owns the IPC 
shared memory)

• Invalidate all keys in hardware and 
software key ladders

• Set all internal devices to idle states 
(AES, DES, HASH, RNG, EAU)

• Initialize all DMA channels
• Initialize all SRAM, including EAU, 

SeP Timers
• Read SOC chip unique ID (64-bit 

serial number) and store locally
• Decrypt PSK or SSK if necessary
• Initialize the RNG and CTRDRBG
• Enable maskable interrupt

Security Processor asserts Input ready 
and wait for host commands

 

Figure 16. 7: Typical Intel® Architecture CE Device Measured Boot Flow 
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Measured Boot Latency: Measured boot introduces latencies in the boot path of a CE 
device due to the following: 
■ TPM initialization 
■ Calculation of SHA1 checksum of various binaries 
■ Appending the checksum in TPM PCR 

The measure boot components of the TPM are distributed across the standard firm-
ware boot flow The CRTM algorithm would play a key role in optimizing for the CE 
device fast boot. It is beyond the scope of this chapter to describe the various tech-
niques that can be used for this optimization. However, a carefully designed CRTM 
might use a combination of the following: 
■ Execute-in-place (out of flash) with processor caches enabled 
■ Measure only portions of firmware after it is shadowed into memory or before 

Manageability 

The manageability framework, also known as the Device Management (DM) frame-
work, provides services on the client platform for use by IT personnel remotely. These 
services facilitate key device management functions such as provisioning, platform 
configuration changes, system logs, event management, software inventory, and 
software/firmware updates. The actual services enabled on a particular platform are 
a CE OEM choice. The following sections describe the two key frameworks in use for 
a CE device, namely OMA-DM and AMT. 

Open Mobile Alliance - Device Management (OMA-DM) is one of the popular pro-
tocols that would allow manufacturers to cleanly build DM applications that fit well 
into the CE device usage model. Many of the standard operating systems support 
OMA-DM or a variation of it with enhanced security. The data transport for OMA-DM 
is typically over a wireless connectivity such as WiMax, 3G/4G, and so on. This proto-
col can run well on top of the transport layers such as HTTPS, OBEX, and WAP-WSP. 
The CE device platform would be able to support this, as long as the OEM supports 
the connectivity and the client services.  

The other possible framework for manageability is Intel® Active Management 
Technology (Intel AMT). Intel AMT provides a full featured DASH-compliant manage-
ability solution that can discover failures, proactively alert, remotely heal-recover, 
and protect. Intel AMT Out of Band (OOB) device management allows remote man-
agement regardless of device power or OS state. Remote troubleshooting and recovery 
could significantly reduce OEM service calls. Proactive alerting decreases downtime 
and minimizes time to repair.  

In the manageability space, making DASH-compliant manageability on CE plat-
form is opportunity that allows OEM differentiation and provides a much richer man-
ageability features.  
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Summary 

The need for a boot solution that is low cost, has a small footprint, offers low boot 
latencies, and is platform-agnostic provides an exciting opportunity to ISVs and 
OSVs to develop and deliver such tool kits. This also creates opportunities for CE 
device OEMs to provide creative solutions of their own, making their products more 
competitive and unique. In addition, device vendors can take advantage of oppor-
tunities to provide hardware IP (Intellectual Property) that are self-initializing, 
thereby relieving the boot software from doing the same and giving back some time 
to improve latencies.  

The challenge that remains to be addressed is a single boot firmware solution that 
can boot both shrinkwrap operating systems that require PC compatibility and em-
bedded operating systems. There are multiple challenges to be addressed with inno-
vative solutions like supporting security features, manageability, and a unified stor-
age device like an eMMC, all with the key low boot latency attribute. Finally, there are 
opportunities for the OS vendors to come up with innovative optimizations within the 
OS boot flows to achieve faster boots. 
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Chapter 17 – Manageability 
I came, I saw, I conquered 

—Julius Caesar 

RAS is a critical requirement for enterprise class servers, which includes high availa-
bility server platforms. System uptime is measured against the goal of “five nines,” 
which represents 99.999 percent availability. One of the key aims of manageability 
software is to help achieve this goal, by implementing functions like dynamic error 
detection, correction, hardware failure prediction, and the taking of corrective ac-
tions like replacing or turning off failing components before the failure actually hap-
pens. In addition, other noncritical manageability functions enable IT personal to re-
motely manage a system by performing such operations as remote power up/down, 
diagnostics, and inventory management. Manageability software can be part of the 
inline system software (the SMI handler in BIOS and OS) or inline OS user-level appli-
cation software running on the local processor or on a remote system. 

This chapter describes the enhanced Intel® architecture platform dynamic error 
handling framework, a system-level error management infrastructure that is now an 
integral part of most industry standard server class operating systems. In addition to 
the above framework, different remote manageability standards are introduced, by 
comparing and contrasting various aspects and their interoperability at a platform 
level in achieving the five nines goal.  

Overall Management Framework 

A robust reporting of platform errors to the OS and a remote management of the plat-
form are considered fundamental building blocks that enable OS-level decision mak-
ing for various error types and possible actions by remote IT personnel upon notifica-
tion of the associated events. The framework encompasses a collection of com-
ponents internal to the OS, platform chipset fabric, and more specifically an en-
hanced firmware interface for communicating hardware error information between 
the OS and the platform.  

By standardizing the interfaces and error reporting through which hardware er-
rors are presented to, configured for, signaled to, and reported through the frame-
work, the management software would be presented with a myriad of opportunities. 
The two categories of error/event types that need active management in a platform 
are illustrated in Figure 17.1 and can be enumerated as in-band and out-of-band mech-
anisms.   
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AMTAMT IPMIIPMIEFIEFI

WSWS--MANMAN

InIn--Band ErrorsBand Errors OutOut--ofof--Band ErrorsBand Errors

Standard IA Platform HWStandard IA Platform HW Manageability HWManageability HW

Local Manageability ApplicationLocal Manageability Application Remote Manageability ApplicationRemote Manageability Application

Operating SystemOperating SystemWHEAWHEA

 

Figure 17.1: Manageability Domains 

The various classes of manageability implementations handing these two classes of 
errors/events are as follows: 
■ Traditional UEFI/BIOS power-on self tests/diagnostics (POST) 
■ UEFI/BIOS based dynamic error functions coupled with SMI/PMI1 for dynamic er-

ror management 
■ Server baseboard management controllers (BMC) Out-Of-Band (OOB) Intelligent 

Platform Management Interface (IPMI) implementations 
■ Client/Mobile Intel® Active Management Technology (Intel AMT) OOB imple-

mentations 
■ OS based dynamic error management 

Dynamic in-band errors like 1xECC, 2xECC on memory or PCIe† corrected/uncorrected 
impact the running system and its uptime attribute in the near to immediate future 
depending on the severity, while out-of-band errors due to peripheral system compo-
nents like fan failure, thermal trips, intrusion detection, and so on are not fatal. While 
in-band errors need immediate system attention and error handling to maintain the 
uptime, most out-of-band errors would need the attention of manageability software 
for deferred handling. However, over a period of time both categories of errors/
events, if not handled properly, will impact the system uptime. 

|| 
1 SMI: System Management Interrupt of x86 processor; PMI: Platform Management Interrupt of Ita-
nium® processor 
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Dynamic In-Band 

In-Band error management is typically handled by software that is part of the stand-
ard system software stack consisting of system BIOS (SMI/PMI), operating system, 
device drivers/ACPI control methods, and user mode manageability applications run-
ning on the target system. The key technologies that are covered in this context are as 
follows: 
■ Standardized UEFI error format 
■ Various platform error detection, reporting, and handling mechanisms 
■ Windows Hardware Error Architecture (WHEA) as an example that leverages 

UEFI standards. 

Out-of-Band 

Out-of-band error management is handled by out-of-band firmware such as, for ex-
ample, firmware running on BMCs conforming to IPMI standards. The key technolo-
gies that are covered in this space are: 
■ IPMI 
■ Intel AMT 
■ DMTF and DASH as they relate to IPMI and Intel AMT 

IPMI is prevalent on server class platforms through the use of an industry standard 
management framework or protocol like WS-MAN. The following section focuses 
more on the in-band error domain and the most recent advancements, followed by 
out-of-band error management technology domain(s) and a way to bridge the two in 
a seamless way at the target platform level: servers, desktop client, mobile, and so on.  

The other domain of management for client and mobile system is through the In-
tel AMT feature, which allows IT to better discover, heal, and protect their networked 
client and desktop computing assets using built-in platform capabilities and popular 
third-party management and security applications. Intel AMT today is primarily 
based on the out-of-band implementations as explained above and allows access to 
information on a central repository stored in the platform nonvolatile memory (NVM). 

Distributed Management Task Force (DMTF) 

The DMTF is an industry organization that is leading the development, adoption, and 
promotion of interoperable management initiatives and standards. Further details on 
this will be covered later in this chapter. 
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UEFI Error Format Standardization 

In this section, we delve into the first level details of the in-band errors and their han-
dling based on the UEFI standard.  

On most platforms, standard higher level system software like shrink-wrap oper-
ating systems directly log available in-band system dynamic error information from 
the processor and chipset architectural error registers to a nonvolatile storage. These 
errors are signaled at system runtime through various event notification mechanisms 
like machine check exception on Intel® architecture processors (example: int-18) or 
NMI, system management interrupt (SMI) or standard interrupts like ACPI defined 
SCI. The challenge is and always has been to get non-architectural information from 
the platform, which is typically not visible to a standard OS, but to the system-specific 
firmware only. Partial platform error information from the architectural sources (such 
as Machine Check Bank machine specific registers (MSR) as in x86 processor or as 
returned by the processor firmware PAL on Itanium®) alone is not sufficient for de-
tailed and meaningful error analysis or corrective action. Moreover, neither the OS 
nor other third party manageability software has knowledge about how to deal with 
raw information from the platform, or how to parse and interpret it for meaningful 
error recovery or manageability healing actions.  

The Figure 17.2 illustrates a typical dynamic error handling on most platforms 
with shrink-wrap OS implementations, for two different error-handling components 
of notification/signaling and logging. In this model, a component of the OS kernel 
directly logged the error information from the processor architectural registers, while 
platform firmware logged non-architectural error information to a nonvolatile storage 
for its private usage, with no way to communicate this back to the OS and vice versa. 
Both the platform events (SMI) and processor events (MCE) are decoupled from each 
other. 
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Figure 17.2: Traditional OS Error Reporting Stack 

To make the system error reporting solution complete, the manageability software 
will have to be provided with the following: 
■ Processor error logs 
■ Implementation-specific hardware error logs, such as from platform chipset 
■ Industry Standard Architecture hardware error logs, such as PCIe Advance Error 

Reporting registers (AER) 
■ System event logs (SELs) as logged by BMC-IPMI implementations 

As can be seen in Figure 17.3, there is a coordination challenge between different sys-
tem software components managing errors for different platform hardware functions. 
Some of the error events (such as interrupts, for example) managed by platform enti-
ties not visible to the OS may eventually get propagated to the OS level, but with no 
associated information. Therefore, an OS is also expected to handle an assortment of 
hardware error events from several different sources, with limited information and 
knowledge of their control path, configuration, signaling, error log information, and 
so on. This creates synchronization challenges across the platform software compo-
nents when accessing the error resources, especially when they are shared between 
firmware and OS, such as in the case of I/O devices like PCI or PCIe. For example when 
the OS does receive a platform-specific error event/interrupt like NMI, it would have 
no clue about what caused it and how to deal with it. 
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Figure 17.3: Traditional OS Error Reporting Stack 

Based on this state of OS error handling and the identified needs for future enhance-
ments, a new architecture framework has been defined. This framework is based on 
the top-down approach, with the OS usage model driving various lower level system 
component behaviors and interfaces.  

Error management includes two different components, namely error notifica-
tion/signaling and error logging/reporting, for all system errors. The fundamental 
component of this architecture is a model for error management, which includes an 
architected platform firmware interface to the OS. This interface was defined to facil-
itate the platform to provide error information to the OS in a standardized format. This 
firmware-based enhanced error reporting will coexist with legacy OS implementa-
tions, which are based on direct OS access to the architected processor hardware error 
control and status registers, such as the processor machine check (MC) Banks. 

The architected interface also gives the OS an ability to discover the platform’s 
error management capabilities and a way to configure it for the chosen usage model 
with the help of standardized error objects. This enables the OS to make the overall 
system error handling policy management decisions through appropriate system con-
figuration and settings. 
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To facilitate abstracted error signaling and reporting for most common platform in-
band errors, namely those emanating from the processor and chipset, a new 
UEFI/ACPI Error Interface extension was defined with the following goals: 
■ Achieve error reporting abstraction for architectural and non-architectural plat-

form functional hardware 
■ An access mechanism for storage/retrieval of error records to the platform NVM, 

for manageability software use 
■ Allowing freedom of platform implementation, including firmware based prepro-

cessing of errors 
■ Allow discovery of platform error sources, its capabilities and configurability 

through firmware assist 
■ Standardized error log formats for key hardware 

Figure 17.4 illustrates various components with UEFI extensions to satisfy the above 
goals. 

Processor Platform

Machine Check 
Exception

OS Error Handling Components

Industry Standard Technology Interface (API)

UEFI

Interface
SMI 

Firmware

IPMI
Error 

Handler

Manageability

Software

AMT

 

Figure 17.4: OS Error Reporting Stack with UEFI Standardization 

Non-Goals: The UEFI specification did not cover the following: 
■ Details of the platform hardware design or signal routing 
■ OS or other system software error handling implementations or error handling 

policies 
■ Usage model of this interface 
■ Standardized error log formats for all hardware 
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UEFI Error Format Overview 

The error interface consists of a set of OS runtime APIs implemented by system firm-
ware accessed through UEFI or a SMI runtime interface mechanisms. These standard-
ized APIs will provide the following capabilities: 
■ Error reporting to OS through standardized error log formats as defined by other 

specifications 
■ The ability to store OS and OEM specific records to the platform nonvolatile stor-

age in a standardized way and manage these records based on an implementa-
tion-specific usage model 

■ Ability to discover platform implementation capabilities and their configuration 
through standardized platform specific capability record representation 

This specification only covers the runtime API details. It is based on coordination be-
tween different system stack components through architected interfaces and flows. It 
requires cooperation between system hardware, firmware, and software components. 
The platform nonvolatile storage services are the minimum required features for this 
error model. 

Error Record Types 

The API provides services to support different predefined record types. Each record 
type being acessed is identified by an architected unique Record ID, which is man-
aged by the interface. These Record IDs will remain constant across all implementa-
tions, allowing different software implementations to interoperate in a seamless way. 
Record types can include GUIDs representing records belonging to different catego-
ries as follows: 
1. Notification Types. Standard GUIDs as defined in the common error record format 

for each of the error record types, which are associated with information returned 
for different event notification types (examples: NMI, MCE, and so on). 

2. Creator Identifier. This can correspond to the CreatorID GUID as specified in the 
common error record format or other additional vendor defined GUID. 

3. Error Capability. This is a GUID as defined by the platform vendor for platform 
implemented error feature capability discovery and configuration record types. 

Error Notification Type 
Error notification type records are based on notification types that are associated with 
standard event signaling/interrupts, each of which is identified by an architecturally 
assigned GUID and are defined below: 
■ Corrected Machine Check (CMC)  
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■ Corrected Platform Error (CPE) 
■ Machine Check Exception (MCE)  
■ PCI Express error notification (PCIe) 
■ Initilization (INIT) 
■ Non-Maskable Interrupt (NMI) 
■ Boot 
■ DMAr 

Recently enhancements to the UEFI includes ARM64 processor and platform specific 
error notification types with the associated error records & section as follows: 
■ Synchronous External Abort (SEA)  
■ Asynchronous Error Interrupt (SEI) 
■ Platform Error Interrupt (PEI) 

Creator Identifier 
Creator ID record types are associated with event notification types, but the actual 
creator of the error record can be one of the system software entities. This creator ID 
is a GUID value pre-assigned by the system software vendor. This value may be over-
written in the error record by subsequent owners of the record than the actual crea-
tors, if it is manipulated. The standard creator IDs defined are as follows: 
■ Platform Firmware as defined by the firmware vendor 
■ OS vendor 
■ OEM 

An OS saved record to the platform nonvolatile storage will have an ID created by the 
OS, while platform-generated records will have a firmware creator ID. The creator ID 
has to be specified during retrival of the error record from platform storage. Other 
system software vendors (OS or OEM) must define a valid GUID.  

Error Capability 
The error capability record type is associated with platform error capability reporting 
and configuration. Error capability is reserved for discovering platform capabilities 
and its configuration. 

For further details on the APIs to get/set/clear error records from the non-volatile 
storage on the platform through UEFI, refer to the UEFI 2.3 or above specification. 

Windows Hardware Error Architecture and the Role of UEFI 

Prior to the UEFI common error format standardization, most of the operating systems 
supported several unrelated mechanisms for reporting hardware errors. The ability to 
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determine the root cause of hardware errors was hindered by the limited amount of 
error information logged in the OS system event log. These mechanisms provided lit-
tle support for error recovery and graceful handing of uncorrected errors. 

The fundamental basis for this architecture is the reporting of platform error log 
information to the OS in a standardized format, so that it is made available to man-
ageability software. In addition, a standard access mechanism to this error infor-
mation through UEFI and ACPI has also been defined, both for Itanium and x86 plat-
forms as a runtime UEFI API Get/Set Variable. This enabled all OS implementations 
such as Windows, Linux, HP-UX and platform BIOS implementations to conform to 
one standard for easier coordination and synchronization during an error condition. 
This is the fundamental building block that has enabled interoperability across dif-
ferent manageability software, written either by the OS vendors, BIOS vendors, or 
third party application vendors by allowing them to understand and speak the same 
language to communicate error source discovery, configuration, and data format rep-
resentation. 

The Windows Hardware Error Architecture (WHEA), introduced with Windows 
Vista, extends the previous hardware error reporting mechanisms and brings them 
together as components of a coherent hardware error infrastructure. WHEA takes ad-
vantage of the additional hardware error information available in today’s hardware 
devices and integrates much more closely with the system firmware, namely the UEFI 
standardized error formats. 

WHEA can be summarized in a nutshell as: 
■ UEFI Standardized Common error record format 

— Management applications benefit 
— Pre-boot and out-of-band applications 
— Architecturally defined for processor, memory, PCIe, and so on. 

■ Error source discovery 
— Fine-grained control of error sources 

■ Common error handling flow 
— All hardware errors processed by same code path 

■ Hardware error abstractions became operating system first-class citizens 
— Enables error source management 

■ Firmware first error model 
— Some errors may be handled in firmware before the OS is given control, like 

errata management and error containment 

As a result, WHEA provides the following benefits: 
■ Allows for more extensive error data to be made available in a standard error rec-

ord format for determining the root cause of hardware errors.  
■ Provides mechanisms for recovering from hardware errors to avoid bugchecking 

the system when a hardware error is nonfatal.  
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■ Supports user-mode error management applications and enables advanced com-
puter health monitoring by reporting hardware errors via Event Tracing for Win-
dows (ETW) and by providing an API for error management and control.  

■ Is extensible, so that as hardware vendors add new and better hardware error 
reporting mechanisms to their devices, WHEA allows the operating system to 
gracefully accommodate the new mechanisms. 

The UEFI standard has now defined error log formats for the most common platform 
components like processor, memory, PCIe, and so on, in addition to error source 
based discovery and configuration through ACPI tables. These error formats provide 
a higher level of abstraction. It is beyond the scope of this book to get into the details, 
but an overview of error log format is illustrated in Figure 17.5. Each of the error events 
is associated with a record, consisting of multiple error sections, where the sections 
conforms to standard platform error types like processor, memory, PCIe, and so on, 
identified by a pre-assigned GUID. The definition of the format is scalable and allows 
for the support of other nonstandard OEM-specific formats, including the IPMI SEL 
event section. 
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Platform-Specific Hardware Error Driver
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LLHEH LLHEH

WMI Management InterfaceWMI Management Interface ETW Error NotificationsETW Error Notifications
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Figure 17.5: WHEA Overview 

The layout of the UEFI standardized error record format used by WHEA is illustrated 
in Figure 17.6. 
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Figure 17.6: UEFI Standard Error Record Format 

Some of the standard error sources and global controls covered by WHEA/UEFI are as 
described in Table 17.1. 

Table 17.1: Standard Error Sources and Global Controls Covered by WHEA/UEFI 

Error Sources System Interrupts and Exceptions: NMI, MCE, MCA, CMCI, PCIe, CPEI, SCI, 
INTx, BOOT 

Standard Error For-
mats 

Processor, Platform Memory, PCIe, PCI/PCI-X Bus, PCI Component 

 

It is beyond the scope of this chapter to go into the details of the dynamic error han-
dling flow. However, Figure 17.7 provides an overview of the error handling involving 
the firmware and OS components. 
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Figure 17. 7: Generic Error Handling Flow 

Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN 

The following sections delve into various other management technologies that relate 
to UEFI and how these all can interoperate. 

Intelligent Platform Management Interface (IPMI) 

IPMI is a hardware level interface specification that is “management software neu-
tral” providing monitoring and control functions for server platforms, that can be 
exposed through standard management software interfaces such as DMI, WMI, 
CIM, SNMP, and HPI. IPMI defines common, abstracted, message-based interfaces 
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between diverse hardware devices and the CPU. IPMI also defines common sensors 
for describing the characteristics of such devices, which are used to monitor out-of-
band functions like fan/heat sink failures, and intrusion detection. Each platform 
vendor offers differentiation through their own platform hardware implementation 
to support IPMI, typically implemented with an embedded baseboard microcontrol-
ler (BMC) and the associated firmware with a set of event sensors, as shown in Fig-
ure 17.8. 

 

Figure 17.8: Typical IPMI Platform Implementation 

IPMI has defined a set of standard sensors, which would monitor different platform 
functions and generate events and report them through the system event log interface 
(SEL) as 16-byte error log entries. Each of the sensors in turn is associated with Senor 
Data Record (SDR), which describes the properties of the sensor, to let the managea-
bility software discover its capability, configurability and controllability and the error 
record associated with it. A set of predefined controls for use by manageability soft-
ware is also defined by the IPMI specification, in addition to other OEM-defined con-
trols through SDR. The standard sensors along with the standard controls do allow a 
level of standardization for managing these out-of-band errors. Some of the standard 
sensor and global controls are captured below in Table 17.2. 
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Table 17.2:  IPMI Standard Sensor and Global Controls 

Sensors Temp, Voltage, Current, Processor, Physical Security, Platform Security, Proces-
sor, Power Supply, Power Unit, Cooling, Memory, Drive Slot, BIOS POST, Watch 
Dog, System Event, Critical Interrupt, Button/Switch, Add in Card, Chassis, Chip-
set, FRU, Cable, System Reboot, Boot Error, OS Boot, OS Crash, ACPI Power State, 
LAN, Platform Alert, Battery, Session Audit 

Global Control Cold Reset, Warm Reset, Set ACPI State 
 

Intel® Active Management Technology (Intel AMT) 

Intel AMT can be viewed as an orthogonal solution to IPMI and was originally devel-
oped with capabilities for client system manageability by IT personnel in mind, as 
opposed to server manageability. However, Intel AMT is making its way into the em-
bedded and network appliance market segments like point of sale terminals, print 
imaging, and digital signage. Intel AMT is a hardware- and firmware-based solution 
connected to the system’s auxiliary power plane, providing IT administrators with 
“any platform state” access. Figure 17.9 provides an illustration of Intel AMT’s archi-
tecture. Intel AMT enables secure, remote management of systems through unique 
built-in capabilities, including: 
■ OOB management that provides a direct connection to the Intel AMT subsystem, 

either through the operating system’s network connection or via its TCP/IP firm-
ware stack. 

■ Nonvolatile memory that stores hardware and software information, so IT staff 
can discover assets even when end-user systems are powered off, using the OOB 
channel. 

■ System defense featuring inbound and outbound filters, combined with presence 
detection of critical software agents, protects against malware attacks, and so on. 

The most recent versions of the Intel AMT are DASH-compliant and facilitate interop-
erability with remote management consoles that are DASH-compliant. 
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Figure 17.9: Intel® AMT Architecture Stack 

Intel AMT offering includes Manageability Engine hardware with the associated firm-
ware, which is integrated onto silicon as building blocks such as IOH or PCH. Intel 
AMT allows users to remotely perform power functions, launch a serial over LAN ses-
sion to access a system's BIOS and enable IDE-Redirect to boot a system from a floppy, 
image, or CD/DVD device installed within the central monitor. Some of the key ser-
vices provided through Intel AMT are as shown in Table 17.3. 

Table 17.3: Key Services Provided through Intel® AMT 

Services Security Administration Interface, Network Administration Interface, Hardware 
Asset Interface, Remote Control Interface, Storage Interface, Event Manage-
ment Interface, Storage Administration Interface, Redirection Interface, Local 
Agent Presence Interface, Circuit Breaker Interface, Network Time Interface, 
General Info. Interface, Firmware Update Interface 

Global Control Cold Reset, Warm Reset, Power Up and Down, Set Power/ACPI State, Change 
ACL, Retrieve Hardware/Software Inventory, Firmware Update, Set Clock, Set 
Firewall Configuration, Configure Platform Events for Alert and Logging 

 

Like IPMI, one of the key interfaces of Intel AMT is event management, which allows 
configuring hardware and software events to generate alerts and to send them to a 
remote console and/or log them locally.  
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Web Services Management Protocol (WS-MAN) 

The growth and success of enterprise businesses hinges heavily on the ability to con-
trol costs while expanding IT resources. WS-Management addresses the cost and 
complexity of IT management by providing a common way for systems to access and 
exchange management information across the entire IT infrastructure. By using Web 
services to manage IT systems, deployments that support WS-Management will ena-
ble IT managers to remotely access devices on their networks—everything from sili-
con components and handheld devices to PCs, servers, and large-scale data centers. 
WS-Management is an open standard defining a SOAP-based protocol for the man-
agement of remote systems, as illustrated in Figure 17.10. 

 

Figure 17.10:  WS-MAN Management Build Blocks Overview 

All desktop, mobile, and server implementations that are compliant with DASH and 
support WS-MAN can be remotely managed over the same infrastructure like the 
management console applications.  

Other Industry Initiatives 

The Distributed Management Task Force, Inc. (DMTF) is the industry organization 
leading the development, adoption, and promotion of interoperable management in-
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itiatives and standards. DMTF management technologies include the Common Diag-
nostic Model (CDM) initiative, the Desktop Management Interface (DMI), the System 
Management BIOS (SMBIOS), the Systems Management Architecture for Server Hard-
ware (SMASH) initiative, Web-Based Enterprise Management (WBEM)—including 
protocols such as CIM-XML and Web Services for Management (WS-Management)—
which are all based on the Common Information Model (CIM). Information about the 
DMTF technologies and activities can be found at www.dmtf.org. 

The UEFI/IPMI/Intel® AMT/WS-MAN Bridge 

This part of the analysis brings out the way these different management technologies 
and interfaces can be bridged together, either with the already available hooks in 
them or with some yet-to-be-defined extensions, as illustrated in Figure 17.11. 

The previous section discussed the UEFI industry standard specification covering 
the common error formats for in-band errors and how manageability software run-
ning on top of the OS can take immediate corrective action through the abstracted 
interface. However, the common event log format for out-of-band errors is not cov-
ered by UEFI, but is left to the individual platform vendors to implement through ei-
ther IPMI or Intel AMT interfaces.  

 

Figure 17.11: Management Build Blocks Linking IPMI, HPI, UEFI, and WHEA 
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IPMI Error Records to UEFI 

UEFI can act as a conduit for all the SEL event log information for out-of-band errors 
logged by IPMI and provide it to UEFI, encapsulated as a UEFI standardized OEM-
specific error format to the OS. This requires a private platform-specific interface be-
tween UEFI and the IPMI firmware layers for exchange of this information. It is also 
possible for the UEFI to extend and define yet another error format for IPMI SEL logs 
identified with a new GUID. This way, an OS or manageability application would be 
able to get complete platform errors for in-band and out-of-band errors in a standard-
ized format through one single UEFI-based interface. UEFI can intercept the IPMI sen-
sor events through the firmware first model as defined by Microsoft WHEA and pro-
vide the SEL logs to the OS. This type of extension can be modeled along the Itanium 
Processor Machine Check Architecture specification for IPMI error logging and is an 
area of opportunity of future standardization effort. 

UEFI Error Records to IPMI 

The IPMI has already defined standard event sensors like Processor, Memory, System 
Event, Chipset and Platform Alert. It is also possible to define a new UEFI or WHEA 
sensor type for IPMI and channel the UEFI defined standard error formatted infor-
mation over to IPMI, encapsulated as OEM-specific data of a variable size. IPMI SEL 
log size is currently defined to be 16-bytes and hence would require a change in IPMI 
specification to support variable size SEL log size. This way, a remote or local man-
ageability application would be able to get complete in-band and out-of-band error 
information through one single IPMI. 

Intel® AMT and IPMI 

These two interfaces, which were defined with different usage models in mind, do 
have an overlap in functionality. Intel AMT defines an entire hardware and firmware 
framework for client system management, while IPMI only defined the firmware in-
terface without any hardware support for server system manageability. IPMI can be 
implemented on the hardware needed for Intel AMT if the ME hardware becomes a 
standard feature on all Intel solutions or chipsets.  
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Future Work 

Table 17.4 shows the four areas of potential work for standardization that offers inter-
esting possibilities: 
■ Bridge over the Intel AMT/IPMI functionality over to the UEFI-OS error reporting 
■ Bridge over of the OS-UEFI error management over to the Intel AMT/IPMI func-

tionality 
■ Manageability application leveraging from WS-MAN or other similar abstracted 

interfaces with a unified error reporting and management for the entire platform, 
either obtained through the OS or Intel AMT/IPMI 

Table 17.4: Manageability and error management standards and possible future work. 

Error Management Feature UEFI/WHEA IPMI AMT WS-MAN 

Bridging Over Possibilities IPMI/AMT AMT IPMI UEFI/WHEA 

Configuration Namespace 

The UEFI platform configuration infrastructure has been designed to facilitate the ex-
traction of meaningful configuration data whether manually or via a programmatic 
(script-based) mechanism. By discerning meaning from what might otherwise be 
opaque data objects, the UEFI platform configuration infrastructure makes it possible 
to manage the configuration of both motherboard-specific as well as add-in device 
configuration settings.  

Associating meaning with a question 
To achieve programmatic configuration each configuration-related IFR op-code must 
be capable of being associated with some kind of meaning (e.g. “Set iSCSI Initiator 
Name”). 

Below is an illustration that depicts an EFI_IFR_QUESTION_HEADER. Each con-
figuration-related IFR op-code is preceded with such a header, and the 3rd byte in the 
structure is highlighted because it becomes the lynchpin upon which meaning can be 
associated to the op-code. 
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Figure 17.12: Sample IFR Op-code encoding 

Prompt Token and a new language 
Given that for every configurable registered item in the HII Database (see EFI_HII_DA-
TABASE_PROTOCOL) there will at least exist a set of IFR forms and a corresponding 
set of strings. Think of the IFR forms as a web page, each of which is represented by 
an IFR op-code. These pairs of op-codes and strings are sufficient to contain all the 
metadata required for a browser or a programmatic component (e.g. driver, script, 
etc.) to render a UI or configure a component in the platform. 

Since another inherent feature of the UEFI configuration infrastructure is localiza-
tion, each of the IFR op-codes make references to their related strings via a Token ab-
straction. This allows a reference to a string (e.g. Token #22) to be language agnostic. 

Within the HII database, multiple sets of strings can be registered such that any 
given component might support one or more languages. These languages typically 
are associated with user-oriented translations such as Chinese, English, Spanish, etc. 
Given this inherent capability to associate op-codes with strings, it should also be 
mentioned that for a registered HII component (handle), each of the Prompt Token 
numbers are required to be unique if they are to be correctly managed or script-ena-
bled. To be clear, this doesn’t mean that each Prompt Token must be globally unique 
across the entire HII database, it must be unique within the scope of the HII handle 
being referenced. 

There is a concept introduced in 29.2.11.2 (Working with a UEFI Configuration 
Language) that speaks of a language that isn’t intended to be displayed or user visi-
ble. This is a key concept that allows data to be seamlessly introduced into the HII 
database content without perturbing the general flow or design of any existing IFR. 

Below is an illustration which demonstrates the use of the x-UEFI-ns language. It 
is defined as the platform configuration language used by this specification and the 
keyword namespace further defined in this registry. 

In the example, we have an English (as spoken in the US) string, a Spanish (as 
spoken in Mexico) string, and a UEFI platform configuration string. The latter string’s 
value is “iSCSIInitiatorName” and this keyword is an example of what would be the 
interoperability used to manage and extract meaning from the configuration 
metadata in the platform. 
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Figure 17.13 

For example, a utility (or administrator) may query the platform to determine if a plat-
form has exposed “iSCSIInitiatorName” within the configuration data. Normally, 
there would be no programmatic way of determining whether this platform contained 
this data object by simply examining the op-codes. However, with a namespace defi-
nition in place, a program can do the following to solve this issue: 
1. Collect a list of all of the HII handles maintained by the HII database. 
2. For each of the registered HII database entries, look to see if any strings are reg-

istered within the x-UEFI-ns language name. 
a. If so, look for a string match of “iSCSIInitiatorName” in any of the strings for 

a particular HII handle 
i. If none are found, go to the next HII handle and execute 2a again. 
ii. If there are no more HII handles, then this platform doesn’t currently ex-

pose “iSCSIInitiatorName” as a programmatically manageable object. 
3. If a match is found, then note the String Token value (e.g. 4). 
4. Proceed to search through that HII handle’s registered IFR forms for a configura-

tion op-code that has a matching Prompt Token value (e.g. 4). 
5. Once discovered, the configuration op-code contains all of the information need-

ed to understand where that iSCSI Initiator Name information is stored. 
a. This allows a program to optionally extract the current settings as well as op-

tionally set the current settings. 

Even though the above steps are an illustration of what one might have to do to ex-
tract the information necessary to match a Keyword to its associated value, there are 
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facilities defined in the EFI_HII_CONFIG_ROUTING_PROTOCOL, and more specifi-
cally the ExtractConfig() and RouteConfig() functions to facilitate the getting and set-
ting of keyword values. 

Software Layering 
Below is an illustration which shows a common sample implementation’s interaction 
between agents within a UEFI-enabled platform. Some implementations may vary on 
the exact details. 
1. Any application which wants to get or set any of the values abstracted by a key-

word can interact with the API’s that are defined within the UEFI specification. It 
would be the responsibility of this application to construct and interpret keyword 
strings that are passed or returned from the API’s. 

2. An agent within the system will expose the EFI_CONFIG_KEYWORD_HANDLER_
PROTOCOL interface with its GetData() and SetData() functions. These services 
will interact both with the application that called it and the underlying routing 
routines within the system. 

3. The EFI_HII_CONFIG_ROUTING_PROTOCOL is intended to act as a mechanism 
by configuration reading or writing directives are proxied to and from the appro-
priate underlying device(s) that have exposed configuration access abstractions. 

4. Configurable items in the platform will expose an EFI_HII_CONFIG_ACCESS_
PROTOCOL interface that allows the setting or retrieving of configuration data. 

5. The component in the platform which has exposed configuration access abstrac-
tions. 
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Figure 17.14 

Namespace Entries 

This document establishes the UEFI Platform Configuration language as: 

x-UEFI-ns 
The keywords defined in this UEFI Configuration Namespace registry should all be 
discoverable within the platform configuration language of “x-UEFI-ns”. 

Alternate Storage and Namespaces 
Although this namespace registry deals solely with the keywords associated with the 
x-UEFI-ns platform configuration namespace, the underlying configuration infra-
structure supports abstractions that encompass alternate x-UEFI-* namespace us-
ages. 

x-UEFI-CompanyName 
If a company wanted to expose some additional keywords for their own private use, 
they must use one of the ID’s referenced in the PNP and ACPI ID Registry. 

For example, if Intel wanted to expose some additional settings, they would use: 
x-UEFI-INTC. 
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Handling Multi-instance values 
There are some keywords which may support multiple instances. This simply means 
that a given defined keyword may be exposed multiple times in the system. Since in-
stance values are exposed as a “:#” (# is a placeholder for a one to four digit decimal 
number) suffix to the keyword, with the “#” holding the place of an instance value, 
we typically use that value as a means of directly addressing that keyword. However, 
if there are multiple agents in the system exposing a multi-instance keyword, one 
might see several copies of something like “iSCSIInitiatorName:1” exposed. 

Under normal circumstances, an application would interact with the keyword 
handler protocol to retrieve the keyword it desired via the GetData() function. What 
is retrieved would be any instances that match the keyword request. 

For instance, when retrieving the iSCSIInitiatorName:1 keyword, the keyword 
protocol handler will search for any instances of the keyword and return to the caller 
what it found. 

The illustration below shows an example of the returned keyword string frag-
ments based on what the keyword protocol handler discovered. 

In the case of iSCSIInitiatorName:1, the illustration shows how multiple control-
lers exposed the same keyword and even the same instance values. The response frag-
ments below illustrate how the “PATH=” value would correspond to the device path 
for a given device and each of those device paths uniquely identify the controller re-
sponding to the request. This gives the caller sufficient information to uniquely adjust 
a keyword [via a SetData() call] by specifying the appropriate device path for the con-
troller in the keyword string. 

 

Figure 17.15 

Summary 

In the case of manageability, the UEFI framework will help make platforms more ro-
bust and reliable through remote management interfaces like Intel AMT, and WS-
MAN, to meet the RAS goal of five nines. This unified approach would be a win-win 
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to all (OEM, IBV, OSV), to deliver a great end user value and experience with a com-
plete solution for in-band and out-of-band error and event management. 

The net result of the level of abstraction provided by UEFI/WHEA and Intel 
AMT/IPMI technologies in security and manageability space will now enable many 
vendors to develop OS-agnostic unified tools and application software for all embed-
ded/client/server platforms. This would allow them to spend their efforts on innova-
tion with a rich set of features at the platform level rather than on developing multiple 
platform-specific implementations for the same manageability functionality.  
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Appendix A – Data Types 

Table A.1 contains the set of base types that are used in all UEFI applications and EFI 
drivers. Use these base types to build more complex unions and structures. The file 
EFIBIND.H in the UDK 2010 located on www.tianocore.org contains the code re-
quired to map compiler-specific data types to the UEFI data types. If you are using a 
new compiler, update only this one file; all other EFI related sources should compile 
unmodified. Table A.2 contains the modifiers you can use in conjunction with the 
UEFI data types. 

Table A.1: Common EFI Data Types 

Mnemonic Description 

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other 
values are undefined. 

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium®-based 
operations) 

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium®-based 
operations) 

INT8 1-byte signed value. 

UINT8 1-byte unsigned value. 

INT16 2-byte signed value. 

UINT16 2-byte unsigned value. 

INT32 4-byte signed value. 

UINT32 4-byte unsigned value. 

INT64 8-byte signed value. 

UINT64 8-byte unsigned value. 

CHAR8 1-byte Character. 

CHAR16 2-byte Character. Unless otherwise specified all strings are stored in the UTF-
16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards. 

VOID Undeclared type. 

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise speci-
fied, aligned on a 64-bit boundary. 

EFI_STATUS Status code. Type INTN. 
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Mnemonic Description 

EFI_HANDLE A collection of related interfaces. Type VOID *. 

EFI_EVENT Handle to an event structure. Type VOID *. 

EFI_LBA Logical block address. Type UINT64. 

EFI_TPL Task priority level. Type UINTN.  

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Control address. 

EFI_IPv4_ADDRESS 4-byte buffer. An IPv4 Internet protocol address.  

EFI_IPv6_ADDRESS 16-byte buffer. An IPv6 Internet protocol address. 

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 Internet protocol 
address.   

<Enumerated Type> Element of an enumeration. Type INTN.  

sizeof (VOID *)  4 bytes on supported 32-bit processor instructions.  
8 bytes on supported 64-bit processor instructions. 

 

Table A.2: Modifiers for Common EFI Data Types 

Mnemonic Description 

IN Datum is passed to the function. 

OUT Datum is returned from the function. 

OPTIONAL Datum is passed to the function is optional, and a NULL may be passed if 
the value is not supplied. 

STATIC The function has local scope. This replaces the standard C static key word, 
so it can be overloaded for debugging. 

VOLATILE Declare a variable to be volatile and thus exempt from optimization to re-
move redundant or unneeded accesses. Any variable that represents a 
hardware device should be declared as VOLATILE. 

CONST Declare a variable to be of type const. This is a hint to the compiler to ena-
ble optimization and stronger type checking at compile time. 

EFIAPI Defines the calling convention for EFI interfaces. All EFI intrinsic services 
and any member function of a protocol must use this modifier in the func-
tion definition. 
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Appendix B – Status Codes 

Most UEFI interfaces return an EFI_STATUS code. Table B.1 lists the status code ranges. 
Tables B.2, B.3, and B.4 list these codes for success, errors, and warnings, respec-
tively. Error codes also have their highest bit set, so all error codes have negative val-
ues. The range of status codes that have the highest bit set and the next to highest bit 
clear are reserved for use by UEFI. The range of status codes that have both the high-
est bit set and the next to highest bit set are reserved for use by OEMs. Success and 
warning codes have their highest bit clear, so all success and warning codes have 
positive values. The range of status codes that have both the highest bit clear and the 
next to highest bit clear are reserved for use by UEFI. The range of status code that 
have the highest bit clear and the next to highest bit set are reserved for use by OEMs. 

 

Table B.1:  EFI_STATUS Code Ranges 

IA-32 Range Intel® Itanium® Architecture 
Range  

Description 

0x00000000
-
0x1fffffff 

0x0000000000000000-
0x1fffffffffffffff 

Success and warning codes reserved for 
use by UEFI main specification. See Tables 
B.2 and B.4 for valid values in this range. 

0x20000000
- 
0x3fffffff 

0x2000000000000000- 
0x3fffffffffffffff 

Success and warning codes reserved for 
use by the Platform Initialization Architec-
ture Specification. 

0x40000000
-
0x7fffffff 

0x4000000000000000-
0x7fffffffffffffff 

Success and warning codes reserved for 
use by OEMs. 

0x80000000
-
0x9fffffff 

0x8000000000000000-
0x9fffffffffffffff 

Error codes reserved for use by the UEFI 
main specification. See Table B.3 for valid 
values for this range. 

0xa0000000
- 
0xbfffffff 

0xafffffffffffffff- 
0xbfffffffffffffff 

Error codes reserved for use by the Plat-
form Initialization Architecture Specifica-
tion. 

0xc0000000
-
0xffffffff 

0xc000000000000000-
0xffffffffffffffff 

Error codes reserved for use by OEMs. 
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Table B.2:  EFI_STATUS Success Codes (High Bit Clear) 

Mnemonic Value Description 

EFI_SUCCESS 0 The operation completed successfully. 

 

Table B.3: EFI_STATUS Error Codes (High Bit Set) 

Mnemonic Value Description 

EFI_LOAD_ERROR 1 The image failed to load. 

EFI_INVALID_PARAMETER 2 A parameter was incorrect. 

EFI_UNSUPPORTED 3 The operation is not supported. 

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the re-
quested data. The required buffer size is re-
turned in the appropriate parameter when this 
error occurs. 

EFI_NOT_READY 6 There is no data pending upon return. 

EFI_DEVICE_ERROR 7  The physical device reported an error while at-
tempting the operation. 

EFI_WRITE_PROTECTED 8 The device cannot be written to. 

EFI_OUT_OF_RESOURCES 9 A resource has run out. 

EFI_VOLUME_CORRUPTED 10 An inconsistency was detected on the file system 
causing the operation to fail. 

EFI_VOLUME_FULL 11 The file system has no more space. 

EFI_NO_MEDIA 12 The device does not contain any medium to per-
form the operation. 

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the 
last access. 

EFI_NOT_FOUND 14  The item was not found. 

EFI_ACCESS_DENIED 15 Access was denied. 

EFI_NO_RESPONSE 16  The server was not found or did not respond to 
the request. 
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Mnemonic Value Description 

EFI_NO_MAPPING 17 A mapping to a device does not exist. 

EFI_TIMEOUT 18 The timeout time expired. 

EFI_NOT_STARTED 19 The protocol has not been started. 

EFI_ALREADY_STARTED 20 The protocol has already been started. 

EFI_ABORTED 21 The operation was aborted. 

EFI_ICMP_ERROR 22 An ICMP error occurred during the network oper-
ation. 

EFI_TFTP_ERROR 23 A TFTP error occurred during the network opera-
tion. 

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network op-
eration. 

EFI_INCOMPATIBLE_VERSION 25 The function encountered an internal version 
that was incompatible with a version requested 
by the caller. 

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security 
violation. 

EFI_CRC_ERROR 27 A CRC error was detected. 

EFI_END_OF_MEDIA 28 Beginning or end of media was reached. 

EFI_END_OF_FILE 31 The end of the file was reached. 

EFI_INVALID_LANGUAGE 32 The language specified was invalid. 
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Table B.4: EFI_STATUS Warning Codes (High Bit Clear) 

Mnemonic Value Description 

EFI_WARN_UNKNOWN_GLYPH 1 The Unicode string contained one or more 
characters that the device could not render 
and were skipped. 

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not 
deleted. 

EFI_WARN_WRITE_FAILURE 3  The handle was closed, but the data to the 
file was not flushed properly. 

EFI_WARN_BUFFER_TOO_SMALL 4  The resulting buffer was too small, and the 
data was truncated to the buffer size. 
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