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Preface 

This book is designed to supplement existing textbooks on fracture 
mechanics with material related to the analytical solution of partial dif- 
ferential equations that pertain to its theory. It concentrates mainly on the 
near crack-tip region, on which most current research is being focused. 
Further, it contains a collection of problems that are drawn from recent 
research in the fields of elastoplastic and environmentally assisted fracture 
mechanics. In the course of solving these problems, several different 
solution techniques are demonstrated. 

The Introduction presents a systematic development of fracture me- 
chanics theory. It begins with the equations of continuum mechanics and 
follows with descriptions of general elastic and plastic theory. Subsequent 
to these general topics, linear elastic fracture mechanics, plastic strip 
models, and mode III elastoplastic solutions are presented. Following 
these, failure criteria, slip line theory, and finite element solutions of the 
mode I problem are discussed. The Introduction provides the necessary 
background for understanding the subjects covered in the remainder of the 
book. 

In Chapter 1, an initial value problem for the plastic stress function is 
solved and corresponding displacements of a mode I elastoplastic problem 
under plane stress loading conditions are obtained. The prescribed 
elastic-plastic boundary is found by substituting the elastic small-scale- 
yielding stresses into the Tresca yield condition. If the properties of the 
governing Monge-Ampere equation (a second-order and nonlinear partial 
differential equation) are exploited, then it is possible to reduce the 
problem to a nonlinear, first-order partial differential equation. The plastic 
stress function is subsequently obtained through the use of differential 
geometry theory by finding an integral surface that circumscribes the 
known elastic (Airy) stress function. Unlike in the analogous mode III 
problem (Hult and McClintock, [HM 56]), whose solution is also pre- 

xi 
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sented, a disequilibrated stress discontinuity is found in the trailing portion 
of the plastic zone of the mode I problem. This discontinuity indicates that 
an elastic unloading and a redistibution of stress must occur if equilibrium 
is to be established. Despite the appearance of the stress discontinuity, this 
solution might still approximate the plastic stress field ahead of the crack 
tip, where unloading is likely to be minimal. Currently, there are no other 
analytical elastoplastic solutions available for mode I problems involving 
finite-dimensional plastic zones. 

In Chapter 2, an elastoplastic solution is obtained for a mode III 
problem that is related to a transition in plastic zone shape through 
changes in the eccentricity of the elliptical plastic region. One can recover 
from this solution, as special cases, the Cherepanov plastic strip solution 
and the Hult and McClintock small-scale-yielding solution. Also discussed 
in this chapter, in connection with the transition model, are an equivalent 
crack length, energy dissipation rate, and fracture assessment diagram. 
This model has important implications regarding failure curves on the 
fracture assessment diagram. 

Chapter 3 investigates two different mathematical models that are 
related to environmentally assisted crack growth. The first model is an 
incremental approach to crack growth, whereas the second model assumes 
a continuous growth process. Both series and asymptotic expansions are 
employed in the solution of the equations of the first model for the onset 
of hydrogen-assisted cracking. Numerical solutions for the secondary and 
tertiary phases of environmental crack propagation are then examined. In 
connection with the second model, a modified Stefan problem is proposed 
and solved for a certain class of transport-controlled stress corrosion 
cracking problems. Of particular note is the elegant mathematical solution 
of the moving boundary value problem that is associated with this problem. 
This solution resolves the seemingly paradoxical situation that external 
transport of corrodant can lead to uniform rather than decreasing crack 
growth rates. The decreasing crack growth rates that are predicted by the 
conventional Stefan problem are not observed experimentally. This ex- 
plains why this classic moving boundary value problem for diffusion-con- 
trolled phenomena has not been applied previously to fracture problems. 

In Chapter 4, a Westergaard formulation of the three principal modes 
of fracture is provided. Exact linear elastic solutions are presented for 
infinite plates subject to remote tractions. A quantitative comparison 
between the exact linear elastic solutions and the small-scale-yielding 
approximations for stresses, displacements, and elastic-plastic boundaries 
is then given. Chapter 4 is designed to provide insight into the assumptions 
and limitations of small-scale yielding. 
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Introduction 

The purpose of this introduction is to acquaint the reader with some of 
the fundamental equations and theorems of mechanics that govern elastic 
and plastic material behavior. Some fundamental problems pertaining to 
fracture mechanics, along with their associated partial differential equa- 
tions and solution techniques, will also be discussed. 

1.1 EQUATIONS OF CONTINUUM MECHANICS 

The term continuum in this section's title refers to a body that is 
continuous at an infinitesimal scale as opposed to a discretized model, i.e., 
one that is represented by a collection of individual masses with space 
between them, as in an atomic lattice. Other terms that one commonly 
encounters in mechanics literature are homogeneous and isotropic. A 
homogeneous body is one whose material properties do not change 
abruptly, as in an aggregate such as concrete, which is composed of cement 
and gravel. An isotropic body is one whose material properties do not vary 
with direction, as in wood, whose properties change with the orientation of 
the grain. We will restrict our discussion to isotropic and homogeneous 
bodies. 

Equilibrium 
All of the problems discussed in this text will neglect inertia (i.e., high 

acceleration) and the effects of body forces (e.g., weight is negligible in 
comparison to applied forces on the body). Thus the body will be in a state 
of equilibrium such that the following system of equations are satisfied for 



2 Introduction 

an isotropic, homogeneous body when expressed in a rectangular Carte- 
sian coordinate system (x, y, z): 

O'x, x + Tyx ,  y -'l- Tzx ,  z = 0 (I.1-1) 

O'y,y  '1- Txy ,  x + Tzy ,  z " - - 0  (I.1-2) 

O'z , z 'q- Tx z , x -'1- Ty z , y = 0 (I.1-3) 

where ~r i represents a normal stress in the i direction (i = x, y, z), Tij 
represents a shear stress in the ij plane ( j  = x, y, z), and the variables 
following a comma designate partial differentiation with respect to those 
variables; e.g., 

0~  
~ri i -  etc. (I 1-4) 

' o ~ / '  

(Note, as in (I1-4), that the commonly used Einstein summation conven- 
tion for repeated index ( j  = i) on an arbitrary second-order tensor Aij will 
not be employed in this text; i.e., A ii 4= A xx + A yy + A ~ z . )  

Equilibrium also requires that shear stresses be symmetrical in the 
absence of a body couple (true in most applications, with the exception of 
strong magnetic fields); i.e., 

Lj = ~'ji. (I.1-5) 

This assumption reduces the number of stresses to be determined in 
(I . l- l)-(I .1-3) from nine to six. 

The actions of individual stresses on a cube of material are shown 
pictorially in Fig. I.l-1. 

On the surface of a body, the stresses produce a force per unit area 
called traction t i (i = x ,y ,  z). The components of the traction may be 
expressed in matrix form as follows: 

Itxl I  zllnx I 
ty = Txy % Ty z ny 

t z Txz Ty~ ~r~ n~ 

(I.1-6) 

where n i (i = x ,y ,  z) are the components of an outward normal unit 
vector of the surface. The directions of the vectors relative to the inclined 
surface of a tetrahedron are shown in Fig. 1.1-2. 

The axes of the Cartesian coordinate system can always be rotated at 
any point of a body such that all shear stresses disappear from the surface 
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Y 

Z 

FIGURE 1.1-1 
Positive stresses acting on various planes of a cube of material in equilibrium. 

of  the  stress cube.  T h e  m a g n i t u d e  of  s t ress  at this given po in t  is t hen  
cha r ac t e r i z ed  by t h r e e  n o r m a l  s t resses  ( 0  1 , tr 2 , 0"3), which  are  r e f e r r e d  to 

as the  pr inc ipal  s tresses.  
T h e  m a g n i t u d e  of  the  m a x i m u m  shea r  s tress  Irmaxl tha t  a body  sus ta ins  

at a po in t  is r e l a t ed  to the  pr inc ipal  s t resses  by the  f o r m u l a  

Irmaxl : maxl~r~ - ~ , 1 / 2 ,  ( I .1-7)  

t 

ryx 

Oy 

X 

FIGURE 1.1-2 
Normal and traction vectors on the inclined surface of a tetrahedron. 
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where m a x l % -  ot~l represents the greatest difference between the princi- 
pal stresses % ( a  = 1, 2, 3) and ot3 (/3 = 1, 2, 3). 

S train- Displacem en t 
Small geometric changes of a deforming body are assumed in this text. 

Consequently, the familiar linearized strain-displacement relationships 
hold true: 

E_ x - -  blx,  x ,  E.y - -  U y , y ,  E z - -  Hz ,  z (I.1-8) 

")/xy = 2Gy = H x , y  -'[- Hy ,  x (I.1-9) 

Y~z = 2Gz = ux,~ + u~,x (I . l-10) 

"Yyz = 2e'yz = Uy, z + Uz, y '  ( I . l - l l )  

where u i is the displacement in the i direction, E i is the normal strain in 
the i direction, Yij is the engineering shear strain in the ij plane, and % is 
the shear strain in the ij plane. 

Shear strains are symmetrical with respect to the coordinates, i.e., 

Y i j - -  a / j i ,  ~ ' i j - -  E f t ,  i = x , y , z , j - x , y , z , i : / : j ,  (I.1-12) 

as can be seen from their relationships with displacement (I.1-9)-(I.1-11). 
Analogous to shear stresses, it is always possible to rotate the orienta- 

tion of the Cartesian axes at a given point in the body so that all shear 
strains (I.1-12)vanish. The normal strains that remain at this point in the 
body after this rotation of axes are called the principal strains E 1 , E 2, and 
E 3, where the subscripts 1,2, 3 denote the new Cartesian axes. 

Change of Volume 
The change of volume of a material, AV per unit volume of material V, 

is referred to as the dilatation O. The dilatation is related to the normal 
strains as follows: 

O =  A V / V =  G + Ey + E z = E 1 + ~2 + E3. (I.1-13) 

Compatibility of Strains 
In general, six equations of strain compatibility must be satisfied in 

order to obtain a single-valued displacement field. Mathematically, this 
situation occurs because specifying strain without restriction overdeter- 
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mines the possible displacement field. These compatibility relationships 
are 

~ ' x , y z  = Exy ,  x z  + E'zx, xy  

~-y, x z  "-- ~ - yx , y z  -+- ~.yz, x y  

~'z, xy  = ~ ' z x , y z  + f -yz ,  x z  

'~xy, x y  --- F'x, yy  -'t-" F.y, x x  

Yxz, xz = e'z,xx + ex ,~z  

"Yyz, y z  = E.y, z z  + E'z, y y  " 

q ~ ' y z ,  X X  

ff'zx, yy  

E.xy, z z 

(I.1-14) 

(I.1-15) 

(I.1-16) 

(I.1-17) 

(I.1-18) 

(I.1-19) 

1.2 EQUATIONS OF ELASTICITY 

The following stress-strain relationships hold true for linear elasticity: 

,r~ = ( E / [ ( 1  + v)(1- 2 e ) ] ) [ ( 1 -  u)e X 

% = (E / [ (1  + v)(1- 2 e ) ] ) [ ( 1 -  u)% 

o'z = ( E / [ ( 1  + v ) ( 1 -  2 u ) ] ) [ ( 1 -  v)e~ 

+ V(ey + ez)] (I.2-1) 

+ v(e~ + e~)] (I.2-2) 

+ v(e~ + ey)], (I.2-3) 

where E is Young's modulus and u is Poisson's ratio (both assumed 
constant). 

Alternatively, we may write strain in terms of stress as 

E x = ( a l E ) [ o -  x - v(O-y + ~r~)] (I.2-4) 

Ey-- ( 1 / E ) [ o ' y -  p(o" x + O'z) ] (I.2-5) 

e z = (1 /E) [c r  z - v(o" x + O'y)]. (I.2-6) 

There are only two independent parameters of linear elasticity for an 
isotropic material. One alternative parameter, called the shear modulus G, 
is related to Young's modulus and Poisson's ratio as follows: 

G = E/J2(1  + v)]. (I.2-7) 

This parameter is useful in describing the elastic shear stress and shear 
strain relationships compactly: 

"rij = G y  U, i = x ,  y ,  z ,  j = x ,  y ,  z ,  i 4= j .  (I.2-8) 

For an incompressible material Poisson's ratio v -  1/2. 
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1.3 EQUATIONS OF PLASTICITY 

The two most commonly applied criteria of plastic yield for the model- 
ing of metals are the Mises yield condition and the Tresca yield condition. 
The Mises yield condition predicts that plastic behavior is initiated in a 
material when its maximum distortion energy reaches a critical value (see 
[Men 68]). On the other hand, the Tresca yield condition predicts yield 
when the maximum shear stress reaches a critical value. 

In Cartesian coordinates, the Mises yield condition for incipient plastic 
flow assumes the form 

__ )2 )2 (0-x- %)2 .+. (~y 0-z q- (0-z -- 0-x 

+ 6(7"2y + "rx2z + T2z) = 20", 2 , (1.3-1) 

where 0"0 is the yield stress in simple tension. The relationship between 0"o 
and the yield stress in pure shear k for the Mises criterion is 

Mises: 0"o = 31/2k ~ k -~ 0.5770" o . (1.3-2) 

This can be deduced from (I.3-1) by setting all of the stresses equal to zero 
msave  one shear stress, which is given the symbol k. 

The Mises yield condition can also be expressed in terms of the three 
principal stresses (0"~, 0"2, 0"3 ) by an equivalent form (4.2-1). One advan- 
tage of using (4.2-1) instead of (I.3-2) is that a surface representing (4.2-1) 
can be visualized in conventional three-dimensional space, with the princi- 
pal stresses serving as Cartesian coordinates whose base vectors point in 
the direction of the principal stresses (the Haigh-Westergaard  space), 
whereas (I.3-2) can be visualized only in a generalized sensemas  a surface 
in six-dimensional hyperspace (o"x, o"y, o"z, r,y, r,,z, rye). 

In the Haigh-Westergaard  principal stress space (o-~, 0-2,0-3), the Mises 
yield criterion appears as a cylindrical surface of radius R = (2/3)1/20- 0 by 
virtue of a geometric interpretation of Eq. (4.2-1). However, this surface 
appears as a circle in Fig. 1.3-1, as the line of sight is along the central axis; 
i.e., the generators of the cylinder are perpendicular to the plane of the 
paper. 

In contrast to the Mises yield condition, the Tresca yield condition can 
be deduced from (I.1-7) as 

maxl0-~ - 0-81/2 = k, c~ = 1 ,2 ,3 , /3  = 1 ,2 ,3 ,  (1.3-3) 

where k is again defined as the yield stress in pure shear, as it was for the 
Mises yield condition. Using (I.3-3), by setting all but one of the principal 
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stresses equal to zero and setting one principal stress equal to tr 0, we 
come to the conclusion that 

Tresca: k = 0.5 tr 0 . (I .3-4) 

Notice the difference in the relationships between the tensile yield stress 
and the yield stress in pure shear, (1.3-2) and (I.3-4), that occurs between 
the two yield criteria. 

The planes that define the Tresca yield condition in the Haigh-West -  
ergaard space are, by (1.3-3) and (I.3-4), 

O" 1 - -  0" 2 - -  ~ O r O ,  0" 2 - -  0" 3 ~ -  ~ O V o ,  0" 3 - o" 1 = _+ o" 0 . ( 1 . 3 - 5 )  

Equations (1.3-5) define six planes, which intersect to form the sides of a 
hexagonal prism whose sides comprise the yield surface of the Tresca yield 
condition. They appear edge-on in Fig. 1.3-1 as a regular hexagon because 
they are viewed from the vantage point of the prism's centerline. 

For both the Mises and Tresca yield conditions, the addition of an 
arbitrary pressure p to all the normal stresses of a given stress state 
(O'x, O'y, O'z, Txy , Txz , Ty z) to yield a new stress state (O-x + , o f ,  o-~ + , Txy , Txz , 

~'yz), i.e., 

O-x += o- x + p ,  O-y= O-y + p ,  O-z += o-~ + p ,  (I.3-6) 

does not affect the yield status. This reflects the experimental observation 
that pressure p has little effect on the yielding of metals, except at 
extremely high levels. This is not necessarily true of other materials, such 
as soils, which are modeled by different yield criteria (Mohr-Coulomb,  
Drucker-Prager)  that incorporate pressure dependence into the yield 
condition. 

0 2 

R = 

~ 01 
F I G U R E  1.3-1 

Mises and Tresca yield conditions. 
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We will assume that total strain in a body is always decomposable into 
the sum of elastic components  and plastic components  as follows: 

e i - -  E?i E -~- E?i P , i = X, y, Z, (1.3-7) 

E P i X, , z , j  X, , , i 4 = j ,  (1.3-8) Yij = Tij  + Y i j ,  - -  y = y z 

where e/ is the total normal strain, %j is the total engineering shear strain, 
and the superscripts E and P on strain tensors denote the elastic and 
plastic components  of the total strain tensor, respectively. The relationship 

E will be related to the stresses as in (I.2-4)-(I.2-6), between ei E and %j 
E take the place of e i and %j. General  relationships where •i E and Yij 

between plastic strains and stresses cannot be given, as plastic strains are 
path-dependent .  Special relationships between incremental plastic strain 
and stress will be derived later for the Mises and Tresca yield criteria. 
Under  special circumstances, called proportional  loading, relationships 
between stress and strain can be given for materials that have undergone 
yield. These will also be discussed later. 

In Fig. 1.3-2, idealized stress-strain behavior is shown for a bar of 
material subject to a tensile load. In the elastic range, e < e 0, the slope of 
the stress-strain curve has the value of Young's modulus E. Three 
different responses are depicted for materials that have experienced yield 
at the stress level o- 0, with corresponding strain e 0 in the direction of the 
load. 

% 

stra 

plastic 

E l i E  / I E  

1 11 11 

I i' y 
Co el p el~ 

FIGURE 1.3-2 
Stress versus strain for tensile test specimens. 
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If the slope of the stress-strain curve remains positive at strains beyond 
e0, the material is said to harden. If the slope becomes negative, the 
material is said to soften. A horizontal line beyond the strain level e 0 is a 
perfectly plastic response. 

Strain softening is exhibited only by unstable plastic materials, and they 
will not be considered. However, typical structural materials may exhibit 
what appears to be strain softening when softening does not, in fact, occur. 
This is due to plotting nominal stress versus strain, instead of true stress 
versus strain. Nominal stress uses the original cross-section of the test 
specimen, rather than the reduced cross-section under load, which may be 
significantly smaller due to necking. When the nominal stresses are con- 
verted to true stresses, stable material properties are observed [GT 84, pp. 
10-12]. 

If the load is reduced on the specimen, the material will unload 
elastically along a stress-strain line with slope E. The residual strain that 
remains when o-= 0 (e E =  0) is the plastic strain e P attained at the 
maximum elongation of the test specimen. Two different unloadings are 
shown in Fig. 1.3-2. One is associated with point 1 of the perfectly plastic 
response and the other is associated with point 2 of the strain hardening 
curve. The residual strains e~ and e2 P for ~r = 0 may also be interpreted 
as the plastic strains at points 1 and 2, respectively. 

Strain Hardening 
Post-yield behavior of a material is characterized by what is called strain 

or work hardening. When increased stress is required for increased plastic 
strain to occur, the material is said to harden. Another  measure of 
material hardening is the amount of plastic work (per unit volume) U P , 

+ f'rxy d~/P + + (1.3-9) 

that the specimen undergoes. Only for special cases can these two differ- 
ent hardening criteria be shown to be equivalent. When the yield criterion 
on stress does not change at all with respect to the amount of plastic strain 
or work that the material undergoes, the material is considered a perfectly 
plastic or non-work-hardening material. 

Two principal types of strain or work hardening exist: isotropic harden- 
ing and kinematic hardening. Real materials often exhibit both types of 
hardening. 
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ID 

% ~ 

FIGURE 1.3-3 

Isotropic hardening for the Mises yield condition. 

Isotropic hardening involves a simple expansion of the yield surface 
with plastic strain or work, as shown in Fig. 1.3-3 for the Mises yield 
criterion. In this figure, the yield surface expands for the radius R = 
(2/3)1/2tr0 to the larger radius R* = (2/3)1/2o ", ,  where or, > o- 0. In the 
case of isotropic hardening for the Tresca yield condition, a larger regular 
hexagon with the same center and the same orientation relative to the 
principal stress axes would be obtained. Figure 1.3-2 shows a mechanical 
response to isotropic hardening for a specimen subject to uniaxial tension; 
see the curve labeled strain hardening. 

Kinematic hardening involves a translation of the yield surface with 
plastic strain or work, as shown in Fig. 1.3-4 for the Mises yield condition. 
(No rotation of the yield surface is permitted for cases such as the Tresca 
yield condition.) This local anisotropy induced in the material by plastic 
strain is called the Bauschinger effect in materials science literature. 
Kinematic hardening is very important for modeling material behavior 
under cyclic loads. 

FIGURE 1.3-4 

Kinematic hardening for the Mises yield condition. 
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FIGURE 1.3-5 
Convex surface. 
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Material Stability 
Convexity of the yield surface in Haigh-Westergaard space is a neces- 

sary requirement of Drucker's criteria (see [Men 68, Kac 74]) for modeling 
stable plastic materials (real materials). Materials that exhibit strain soft- 
ening (see Fig. 1.3-2) are not considered, as they are unstable where the 
slope of the stress-strain curve becomes negative. 

A typical convex surface is shown in Fig. 1.3-5. The heavy line drawn 
across the surface represents a test of convexity. Nowhere will this line 
cross the boundary of the surface, regardless of where the two endpoints 
are positioned. In Fig. 1.3-6, a concavity of that particular surface is 
demonstrated by the intersection of the heavy line with the boundary of 
that surface. 

A second consequence of Drucker's definition of a stable plastic mate- 
rial is the normality of differential plastic strain relative to the yield 
surface in the Haigh-Westergaard stress space. This situation is repre- 
sented in Fig. 1.3-7 by the symbol de P, which always points in the outward 
normal direction at a given point on the yield surface. Notice at point A of 

FIGURE 1.3-6 
Concavity on a surface. 
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dl; P 

~ ~._~ d~; P 

FIGURE 1.3-7 
Orthogonal i ty  of plastic strains to yield surface. 

the yield surface in Fig. 1.3-7 that the outward normal is indeterminate, as 
the yield surface is not smooth at this particular point. In such cases, as at 
the corners of the Tresca yield condition, the direction of the plastic strain 
is not unique, but is instead bounded by the two outward normal directions 
of the adjacent smooth sides of the yield surface. 

Incremental Strain-Stress Relationships 
The normality of the differential strain relative to the yield surface 

imposes certain conditions on the increment of plastic strain and the state 
of stress. Let us define a function h ( ~ ) ,  which represents the equation of 
a yield surface in the Haigh-Westergaard  principal stress space for a 
perfectly plastic material response 

h ( c r )  = C, (I.3-10) 

where argument r denotes that h is a function of the principal stresses, 
and C is a constant. By taking the gradient of (I.3-10), where q, are 
treated as Cartesian coordinates, we obtain a vector in the Haigh-West-  
ergaard space that is orthogonal to the yield surface in the outward 
direction. Since Drucker's postulate on stable plastic materials requires 
that the differential strain in the principal stress directions be orthogonal 
to the yield surface in the outward sense, we may infer that 

d e ,  P = (Oh/c~tr ,~)  dA, ce = 1 ,2 ,3 ,  (I.3-11) 

where d A is an incremental loading function to be determined. 
A basic property of plasticity in metals is that the incremental change 

in volume for plastic strains is zero. Since strain is simply a geomet- 
ric relationship, equation (I.1-13) holds independently of the material 
response. 
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This imposes the additional condition on h(0"~) for metals that the 
dilatation (I.1-13) of plastic strain is zero (dO P = 0), or 

d e  P + d e  P + d e  P = 0 ---) d A ( a h / a 0 "  1 + a h / a 0 "  2 + a h / a 0 "  3) = 0 

(I.3-12) 

by way of (I.1-13). 
Let us now associate the Mises yield condition for a perfectly plastic 

material with relationship (I.3-10). For this particular yield condition, we 
may identify h(0"~) and C as follows: 

)2 __ )2 )2 
Mises" h( 0"a ) = ( 0"1 - -  0"2 + ( 0"2 0"3 -Jr- ( 0"3 - -  0"1 ' (1.3-13) 

C = 20" 2 , (I.3-14) 

through the use of (4.2-1). Thus by (I.3-11), we obtain 

Mises: de P = 2 dA[2o" 1 - ( 0 "  2 -~- 0"3) ] (1.3-15) 

de~' = 2 dA[20" 2 - (0"1 + 0-3)] (1.3-16) 

de P = 2 dA[20" 3 - (0"1 + 0 " 2 ) ] -  (1.3-17) 

Equations (I.3-15)-(1.3-16) are referred to collectively as a plastic flow 
rule. 

One may readily determine that the incompressibility relationship (I.3- 
13) is satisfied by (I.3-15)-(I.3-17) without further restriction. This occurs 
geometrically because in the Haigh-Westergaard  principal stress space, 
the circular cylindrical surface of the Mises yield condition has its genera- 
tors parallel to the line through points (0, 0, 0) and (1, 1, 1). (A generator is 
a straight line whose motion traces out the surface of a ruled surface, e.g., 
a cylinder). We can also generalize this statement to include all cylinders 
(those with different shapes for cross-sections) having the same orientation 
of generators. This includes the prismatic yield surface of the Tresca yield 
condition. 

In Fig. 1.3-8, we observe the motion of a point P to P'  along a 
generator of the Tresca yield surface. This motion corresponds to a change 

+ 0-+), while maintaining of the stress state from ( 0 - 1 '  0-Z '  0"3) to (0-~, 0-2 , 3 
yield, due to a change in pressure p; i.e., 

+ ~ 0 "+ --- 0 -~- - -  0-1 + P, 0"2 -'- 0"2 -~- P 3 0"3 + P. (1.3-18) 

The reason point P stays on the yield surface despite the increase in 
pressure is that the Tresca yield equations (I.3-6) involve only differences 
in the principal stresses, and the common pressure term added to all 
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F I G U R E  1.3-8 

Pressure-induced motion of point P to P'  along generator of the Tresca yield surface. 

principal stresses in (1.3-18) cancels out. Viewed from the perspective of 
Fig. 1.3-1, the point P on the Tresca yield surface would not appear to 
move at all. 

To prove that the plastic strain incompressibility equation is satisfied for 
the Tresca yield condition, let us define a unit vector n that is parallel to 
the line through (0, 0, 0) and (1, 1, 1). Elementary analytical geometry gives 
this unit vector as 

n = (i I + i 2 + i3) /31/2,  (I.3-19) 

where i~, i2, and i 3 are defined as unit base vectors in the principal stress 
directions (o-~, or 2, and tr 3, respectively). Referring to Fig. 1.3-8, we see 
that n is perpendicular to the plastic strain vector de e, 

d e  e = de,i, + de~i 2 + de~i 3, (I.3-20) 

as n is parallel to the generators of the cylinder. Thus the inner product 
between n and de r is zero; i.e., 

n .  de. e = 0 ~ d e ~  + d e ~  + de P = 0 (I.3-21) 3 " 

This proves that the incompressibility equation (I.3-12) is satisfied for 
plastic strains related to the Tresca yield surface. This result can easily be 
extended to the arbitrary convex cylinder, as n will remain parallel to the 
generators and d e  v will remain perpendicular to them. One should also 
note that the incompressibility equation holds true even at sharp corners 
of yield surfaces. Although a unique strain vector does not exist in these 
cases (see Fig. 1.3-7), all of the possible strains remain perpendicular to n. 
Therefore,  the inner product of (I.3-21) remains zero. 

The concept of the gradient of the yield surface can be generalized to 
include the six-dimensional hyperspace ( o  x ,  try, o" z , ~'xy, ~'xz, ~'yz) such that 
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Drucker 's  definition of a stable plastic material implies the following flow 
rule: 

dE.i P = ( , g H / o ~ o "  i )  d A ,  i = x, y, z, (1.3-22) 

dyi~ = ( O H / O ' r i j )  d A ,  i = x ,  y ,  z ,  j = x ,  y ,  z ,  i 4= j ,  (I.3-23) 

where d A is a differential of a loading function. In (I.3-22) and (I.3-23) the 
yield surface is represented by the function 

H = H(o- i y )  = C ,  (I.3-24) 

where C is a constant, and the argument  O-iy denotes an arbitrary stress in 
the Cartesian coordinate system (x, y, z). Because it is a function only of 
the stresses and not the plastic strains or plastic work, we have limited 
H(o-iy)  in our discussion to perfectly plastic materials. 

The incompressibility condition is, by (I.1-13), 

d e  e + dE~  + d e  P = 0 - +  d A  ( a H / 3 c r  x + 3 H / 3 o ' y  + 0 H / 0 o ' ~ )  = O. 

(I.3-25) 

For use with (I.3-22) and (I.3-23), the alternative form of the Mises yield 
condition (I.3-1) should be used to give 

)2 __ )2 )2 
H(o-~j)  = ( t r  x - O'y + (Ory O" z + (0" z -- O" x 

+ 6(r2y + r2~ + r2~), (1.3-26) 

C = 2o'~ 2 . (1.3-27) 

By taking partial derivatives of H(o-~j) as in (I.3-22) and (I.3-23), we find 

Prandt l -Reuss"  de P = 2 dA [2tr x - (try + try)] (1.3-28) 

d e  P = 2 dA [2O'y - ( o  x + o" z)] (1.3-29) 

d e  P = 2 d a  [2tr~ - (~r x + try)] (1.3-30) 

d') tP = 12 dt~  Txy (1.3-31) 

dy P = 12 dArx~  (1.3-32) 

dy P = 12 dA Ty z . (1.3-33) 

The differential relationships (I.3-30)-(I.3-33) are called the Prandt l -  
Reuss equations. By dropping the superscript P on the Prand t l -Reuss  



16 Introduction 

equations and by interpreting the differential strains as total strain incre- 
ments, i.e., neglecting elastic deformations, we obtain the equations of the 
Saint Venant-von Mises theory of plasticity. 

Flow Theory versus Deformation Theory 
There are two distinct approaches to modeling plastic strains--flow 

(incremental) theories and deformation theories. The former is a path-de- 
pendent theory and the latter is a path-independent theory. Flow theories 
account for the loss of energy due to plastic deformation which is nonre- 
coverable. Deformation theories do not. 

The flow rules for a perfectly plastic material under the Mises yield 
condition have already been derived for plastic strain increments in the 
principal directions (I.3-15)-(I.3-17) and for plastic strain increments in 
Cartesian coordinates (I.3-28)-(I.3-33). In the principal strain derivation 
there are no shear strains and hence no incremental rules for shear. In the 
Cartesian system shear strains exist and shear strain increments are 
derived. Plastic strain increments for the Tresca yield condition in the 
principal directions are given later as equations (1.3-5)-(1.3-7). 

Under conditions termed proportional or radial loading, the 
PrandtI-Reuss equations may be integrated to yield 

Hencky: e ex = A[2o- x - ((r v + ~r~)] (I.3-34) 

I, [2~r v (~r,. ~r. % = A - + .)1 (I.3-35) 

e~ = A . - ( + ~rv) ] (I.3-36) 

P y~y = 6 A r~y (1.3-37) 

e Yx~ = 6A'r~: (I.3-38) 

"yyP --- 6 A 'ry z , (1.3-39) 

where A = A(x, y, z). The above plastic relationships between stress and 
strain, together with the linear elastic relationships between stress 
and strain, the Mises yield condition, and the total strain relationships 
(I.3-7)-(I.3-8), constitute what is termed the Hencky deformation theory. 
The Hencky deformation theory of plasticity represents a nonlinearly 
"elastic" material. 

1.4 PLANE PROBLEMS OF ELASTICITY THEORY 

The plane problems of elasticity [TG 70, Sok 56] are generally desig- 
nated as plane strain problems and generalized plane stress problems. 
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Plane strain conditions are typically met by thick plates that are loaded in 
the plane; generalized plane stress conditions are typically met by thin 
plates. In all of our plane problems, the coordinate z will be perpendicular 
to the plane of symmetry, be it Cartesian (x, y), polar (r, 0), or some other 
orthogonal two-dimensional system (u, v). Generalized plane stress prob- 
lems require an averaging of stress and displacement across the plate 
thickness so that they become truly two-dimensional [Lov 44, Lit 73]. We 
will henceforth refer to them simply as plane stress problems in this text. 

Cartesian Coordinates 
Common to both plane problems is the stress function th(x, y), whose 

second partial derivatives are related to an equilibrated state of stress. 
This function can be interpreted as a surface 

z = oh(x, y) (I.4-1) 

in the Cartesian system (x, y, z). The second derivatives of oh(x, y) will be 
related to the stresses as follows [TG 70]: 

crx = r yy, % = r xx, rxy = -r (I.4-2) 

The two remaining shear stresses are zero for both plane problems: 

rx~ = ry Z = 0. (I.4-3) 

The normal stress in the z direction crz differs between the two classes of 
plane problems; namely, 

crz = 0 for plane stress, crz = u(crx + cry) for plane strain, (I.4-4) 

where u is Poisson's ratio. In light of the simplified stress states the 
equilibrium equations (I.l-1)-(I.1-3) reduce to 

crx, x + rxy, y = 0, Cry, y + rxy ,x  = 0, (I.4-5) 

which are satisfied automatically by stresses (I.4-2) derived from the stress 
function oh(x, y). In (I.4-5), body forces have been neglected. 

The compatibility equation of strain for both plane problems is 

EE + EyE, E = 2 E (I.4-6) 
x ,  y y  x x  ~-  ~ x y ,  x y  E-xy, x y  , 

where the superscript E denotes an elastic state. 
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o r  

o r  

The stress-strain relationships for p l a n e  s tress  [HG 64] are 

o" x = [ E / ( 1 -  V2)](eff + v 4 )  

try = [ E / ( 1  - v 2 ) ] ( 4  + veff) 

rx y = G yX~ 

~ = 5 ~ = 5 ~ = 0 ,  

(1.4-7) 

(I.4-8) 

(1.4-9) 

(I.4-10) 

e ff = (1 /E)(~r  x - V~ry) 

e E = ( l / E ) ( %  - ucr x)  

e f f  = - ( v / E ) (  ~r x + try ) 

E Yxy = ( 1 / G ) r . y  

~x~ = ~y~ = o. 

The  s t ress -s t ra in  re la t ionsh ips  fo r  plane strain are 

% = { E / [ ( 1  + v ) (1  - 2 v ) ] } [ ( 1  - v)e E + Vey E] 

% = rE / [ (1  + v)(1 - 2v)]}[(1 - v)e~ + ue~] 

(r~ = r u E / t ( 1  + v)(1 - 2u) ] ) [e~  + eyE] 

T x y  = GT.Ey 

r .z  = ry~ = O, 

(I4-11) 

(I.4-12) 

(I.4-13) 

(I.4-14) 

(I.4-15) 

(I.4-16) 

(I.4-17) 

(I.4-18) 

(I.4-19) 

(I.4-20) 

e E = [(1 + u ) / E ] [ ( 1 -  v ) o -  x - VO-y] 

,E = t(l + , , ) / E ] [ ( 1 -  , , ) , , y -  ,,,,~] 

E 
"}txy = (1/G)rxy 
~E = ~ = ~E = o. 

(I.4-21) 

(I.4-22) 

(I.4-23) 

(I.4-24) 

By substituting the relationships for stress in terms of the function 
4~(x, y) into the relationships for strain and then substituting the resulting 
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equations for strain into the compatibility equation, we obtain for either 
plane stress or plane strain the same governing equation" 

(~,xxxx 4- 2 ~ , x x y y  4- ~ ,yyyy  - - O .  (1.4-25) 

This is called the biharmonic equation and is represented symbolically by 

where 

va~b = 0 (I.4-26) 

V 4 (  ) ~ V 2 ( V 2 ( ) ) ,  

with V2( ) being the usual Laplacian operator 

(1.4-27) 

V 2 (  ) ~ ( ) ,xx  4- ( ) ,yy .  (I.4-28) 

A stress function ~b(x, y) that satisfies the biharmonic equation is called 
an Airy stress function. This function ~b(x, y) represents a plane solution 
that satisfies both equilibrium (I.4-5) and the compatibility equation (I.4-6). 

Polar Coordinates 
The standard transformation between Cartesian (x, y) and polar coordi- 

nates (r, O)is 

x = r cos 0, y = r sin 0. (I.4-29) 

Some useful partial derivatives between the two systems are [TG 70] 

r x = cos 0, r y = sin 0 (I.4-30) 

0 x = - sin O/r, 0 y = COS O/r. (I.4-31) 

These can be used to generate the following relationships between the first 
and second partial derivatives between the two coordinate systems for an 
arbitrary function ~b (such as the Airy stress function). 

For the first partial derivative with respect to x, we have 

dp, x = dp, r r, x 4- dp, 0 O, x (1.4-32) 

--- (]),rCOS 0 -  ~b, 0sin O/r. (1.4-33) 

Similarly, for y we find 

~,y = ~,rSin 0 + ~,0cos O/r. (1.4-34) 
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For  the second partial  derivative with respect  to x, we have 

oh, xx = ( oh, x ), r r, x + ( Oh,, ), 0 O, , (I.4-35) 

= (4',rCOS 0 -- 4', 0 sin O / r ) , r r ,  x + (4',rCOS 0 -- 4), 0 sin O / r ) ,  oO, x 

(I.4-36) 

= 05 rrCOS20 + ~b, 0 2 sin 0 cos O / r  2 

- OS, r02Sin 0 cos O / r  + Ch, rs inZO/r  + qb, oosinZO/r 2 (I.4-37) 

- - f ~ , r r C O S 2 0  J r - [ q ~ , o o / r  2 + qb, r / r ] s i n 2 0  

+ 2 sin 0 cos 0[ 4', o / r2  -- 49, ro / r]  �9 (1.4-38) 

Similarly, 

~t9 , x y = sin 0 cos O[ q~, r r - -  r . r / r - -  r o o / r 2 ] 

+ (cos20 - sin20)[ dP, ro / r  -- ~, o / r 2 ] ,  (I.4-39) 

~, yY --- r rrSin20 + COS20 [ 4), r / r  + tip, oo /r  2 ] 

+ 2 sin 0 cos 0[ Cbro/r  - cb, o / r 2 ] .  (I.4-40) 

The sign conventions for stresses expressed in a polar coordinate  system 
are shown in Fig. 1.4-1. The formulas between a stress function 4,(r, 0) and 
the stresses in polar coordinates  are [TG 70] 

(r r = dP oo/r  2 + dP, r / r  

~rO= 4' ,.r 

fro = - ( dP o / r  ), r = - dP, o r / r  + ~, o / r  2. 

(1.4-41) 

(I.4-42) 

(I.4-43) 

u 

Tro 

Tr 0 o0 

x 

FIGURE 1.4-1 
Polar coordinates and sign conventions for stresses. 
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The conversion of stresses between the two coordinate systems is 

trx = G c~ + tr0 sin20 - 2 sin 0 cos 0 %  

try = Gsin20 + tr0cos20 + 2 sin 0 cos 0 %  

"rxy = [ trr - tr0 ]sin 0 cos 0 + [cos20 - sin20 ]'fro 

o r  

trr -- trx cOS20 "4-" trySin20 + 2 s in  0 co s  OTxy 

tr0 -- trx sin20 + try cOs20 - 2 sin 0 c o s  OTxy 

% = [ try -- trx ]sin 0 cos 0 + [cos20 -- sin20 ]'rxy. 

The equilibrium equations in polar coordinates [TG 70] are 

trr , r "4- Tr O ' o / r + (trr -- ~ ) / r = 0 

%,  o / r  + "rro,r + 2"rro/r = O. 
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(I.4-44) 

(1.4-45) 

(I.4-46) 

(I.4-47) 

(I.4-48) 

(I.4-49) 

(I.4-50) 

(I.4-51) 

The Laplacian operator  V2( ) in polar coordinates is expressible as 

V2( ) = ( ),rr + ( ) , r / r  + ( ) , o o / r  2. (I.4-52) 

Equation (I.4-52) can be used successively as in (I.4-27) to generate  the 
biharmonic operator  in polar coordinates. 

S t ra in-d isp lacement  relationships in polar coordinates for small geo- 
metric changes are [TG 70] 

e r = Ur, r (I.4-53) 

ff'O ~--- ( U O, 0 -4- H r ) / r  (I .4-54) 

")'rO = 2erO = (Ur, O -  U o ) / r  + UO,r, (I.4-55) 

where E r and e 0 are normal strains in the r and 0 directions, respectively, 
and Yro and erO are the engineering shear strain and the shear strain, 
respectively, in the rO plane. These equations are applicable to both elastic 
strains and total strains. 

Kolosov Equations 
The Kolosov formulation of plane problems of elasticity [Sok 56, TG 70] 

follows: 

tr x + try = 2[~P'(z) + ~P'(2)] (I.4-56) 

try - trx + 2iZxy = 212r + ~ ' ( z ) ]  (I.4-57) 

2 G ( u  x + iUy) = Kq~(z) - zCb'(~) - ~ ( 5 )  (I.4-58) 
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where the complex variable z and its complex conjugate 2 are defined by 

z = x + / y  and ~. = x - / y ,  (I.4-59) 

where i is the imaginary number ( -  1) 1/2. The functions ~ ( z )  and ~ ( z )  in 
(I.4-56)-(I.4-58) and their first ( )' and second derivatives ( )" are arbitrary 
complex functions of z. The functions ~ ( 2 )  and ~(.~) are determined 
from ~ ( z )  and ~ ( z )  by replacing i by - i  [TG 70], e.g., 

�9 ( z )  = i s i n  z = i s i n ( x  + / y )  ~ ~ ( 2 )  -- - i  sin(x - / y )  = - i s i n  2,. 

(I.4-60) 

The material parameter K (kappa) is a function of Poisson's ratio v and 
the type of plane problem addressed, as designated below [Sok 56]: 

( 3 -  v ) / ( 1  + v) 
K =  3 - 4 v  

plane stress 
(I.4-61) 

plane strain. 

The Kolosov equations result from the integrability of the biharmonic 
equation (I.4-26), after a coordinate transformation is performed from 
Cartesian coordinates (x, y) to complex variables (z, 2), i.e., 

x = (z + 2,)/2, y = (z - Y . ) / ( 2 i ) .  (I.4-62) 

The biharmonic operator and the biharmonic equation become, respec- 
tively, 

V45 = 8~b z~z~, V% = 0 ~ q5 z ~  = 0. (I.4-63) 

The fourth-order partial differential equation in (I.4-63) can now be 
integrated to yield a real function ~b of the form 

oh(z, 2) = ~.F(z) + zF(Y.) + G(z )  + G(Y.), (I.4-64) 

where F(z)  and G(z) are arbitrary functions. This result was first obtained 
by E. Goursat in 1898 [Sok 56]. 

In terms of the Kolosov potentials of (I.4-56)-(I.4-58), F(z)  and G(z)  of 
(I.4-64) are 

1 i f  F ( z )  = 5dO(z), G ( z )  -- -~ ~ ( z )  dz. (I.4-65) 
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A related representation of a solution of the biharmonic equation in 
Cartesian coordinates is [Sne 57] 

dp(x, y) = x~l(x ,  y) + y~z(X, y) + ~b3(x, y) (I.4-66) 

where 4,1(x, y), 4,2(x, y), and 4,3(x, y) are harmonic functions, i.e., 

V2~bi(x, y) = 0, i = 1,2, 3. (1.4-67) 

Boundary Conditions 
There are two fundamental types of boundary value problems in elastic- 

ity. The first is specifying traction on the boundary, and the second is 
specifying displacement on the boundary. 

With respect to the Airy stress function ~b(x, y) and the accompanying 
solution of the biharmonic equation, one finds that prescribing traction on 
a boundary 81-1 requires specifying either both partial derivatives [Sok 56] 

~b,x(S) and C~,y(S) on 81~, (I.4-68) 

where s is a parameter defining the functions on 8 ~ ,  or specifying the 
stress function itself and its partial derivative normal to the boundary 
8~/8n ,  i.e., 

4,(s) and (Sdp/On)ls = (Vd~. n)[.~ on 81~, (I.4-69) 

where n is an outward unit vector to the boundary and V( ) is the gradient 
operator. These two methods may be shown to be equivalent. 

1.5 LINEAR ELASTIC FRACTURE MECHANICS 

There are three distinct ways of loading a plate containing a crack, and 
each load orientation has its own designation. The problems associated 
with these different loading configurations are commonly referred to as 
modes I, II, and III. Mode I is the principal mode of fracture that occurs 
when two surfaces of a crack are being separated by tensile forces which 
are applied perpendicularly to the plane of the crack. This type of loading 
is shown in Fig. 1.5-1a. Mode II is sometimes called the sliding mode of 
fracture and occurs when in-plane shear forces are applied to a body 
containing a crack as in Fig. 1.5-1b. Mode III is often referred to as the 
tearing mode of fracture or the antiplane crack problem. This mode of 
fracture has out-of-plane shear forces acting on a plate the same manner 
that one uses to tear a sheet of paper. This mode's load orientation is 
shown in Fig. 1.5-1c. 
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F 
a 

F 

F 

b 

FIGURE 1.5-1 

Three principal modes of fracture with applied forces F. 

We will now investigate linear elastic solutions corresponding to the 
three fundamental modes of fracture for infinite plates. The Cartesian 
coordinate system to be used is shown in Fig. 1.5-2. the origin of the 
coordinates 0 is located at the center of the crack. The length of the crack 
is 2a, which spans from - a  to +a  along the x-axis. The plate has an 
arbitrary thickness. The crack width, i.e., the distance between the crack's 
parallel surfaces, is mathematically idealized to be zero before loading. 

The boundary condition along the crack surfaces for all three modes of 
fracture is that they are traction-free. The implications of these traction- 

f ~  

crack ~C 
~ _ _  

~- a - ~ 0  a 4 
| 

j 

FIGURE 1.5-2 

Infinite plate coordinates, boundaries, and crack (length 2a). 
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less surfaces on the in-plane stresses along the crack faces O C (Fig. 1.5-2) 
are for the plane modes of fracture (I and II): 

OC: - a  < x  < a, y = 0, (I.5-1) 

t x = ty = 0 --, Cry = O, Txy = 0. (I.5-2) 

The implications of the traction-free crack surfaces on stresses for the 
antiplane crack problem (mode III) are given as (I.5-64)-(I.5-65). 

The boundary condition at infinity depends on the mode of fracture to 
be investigated. The far-field tractions of the three principal modes of 
fracture are shown in Figs 1.5-3a to 1.5-3c. 

Mode I 
For mode I we will assign a biaxial tensile traction tr~ at infinity 3 N :  

3 N "  / x  --~ - t -a ,  t x = try, ty = 0 ~ Or x - -  0 " ~ ,  Txy = 0 (1.5-3) 

y ~ + ~ ,  t x = 0, ty - -  0"~ ~ O'y - -  0 " ~ ,  Txy = 0. (I.5-4) 

Notice that we have applied a constant tensile load in the x direction at 
infinity, which has no corresponding forces in Fig. 1.5-1a. This particular 
traction is introduced to simplify the boundary condition at infinity to a 
uniform state of tension try. An additional stress tr~ will be produced in 
the x direction by this specific traction. This stress is constant because it 
acts in the plane of the crack and is therefore unaffected by the internal 
boundary condition that the crack surfaces would otherwise impose. This 
extraneous stress can be subtracted out of the solution later if desired. 

"t"~ 

"[,,  

Om 

1"** 

Ow 

a b c 

FIGURE 1.5-3 
Far-field tractions for the three principal modes of fracture. 
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The elastic solution to the mode I problem can be obtained by substitut- 
ing the following complex functions into the Kolosov equations (I.4- 
56)-(I.4-58) [Sne 57, PM 78]" 

1 t 
1 (Z)  Xlf'(Z) ~- - ~ Z Z l ( Z )  , (1.5-5) �9 '(z) = ~Z, , 

where Zl(z) is given by (4.1-6) and called a Westergaard function. 
Note that the following relationship results from integrating (1.5-5) by 

parts: 
1 1 �9 ( z )  = -~Z~{(z) - ~ z Z i ( z )  (I.5-6) 

where Z~{(z)  is the integral of Z ~ ( z )  with respect to z, as given by (4.1-8). 
These substitutions result in the following linear elastic solution, which 

meets the boundary conditions (I.5-1)-(I.5-4): 

~r x + % = Z ~ ( z )  + Z I ( 2 ) =  2 Re  Z ~ ( z )  (I.5-7) 

% - ~r x + 2iZxy = ( 2 -  z ) Z ' ~ ( z )  = - 2 y i Z ' ~ ( z )  

= 2y[Im Z'~(z )  - i Re Z'~(z)] (I.5-8) 

2 G ( u  x + iUy) - �89 - 1)Re Z~' - y Im Z l 

1 + i[2(K + 1)Im Z{ - y  Re Zi] ,  (I.5-9) 

where Re and Im denote the real and imaginary parts of a complex 
function, and the parameter K is defined individually for plane stress and 
plane strain by (I.4-61). 

Notice that this particular Westergaard formulation restricts solutions 
to those that have the property o- x =o-y and Zxy- 0 along the x-axis 
(y - 0). Thus the boundary condition of biaxial tension at infinity o-~ - o-y 
- o'~ (see Fig. 1.5-3a) is a necessity in order to apply the Westergaard 
technique to the mode I problem. 

The exact linear elastic solution for the stresses and the displacements 
for plane strain which meet the boundary conditions at infinity are given in 
Chapter 4. Around the crack tip x - a, y - 0, the functions ZI,  Z'~, and 
Z~ assume the asymptotic forms (4.1-26), (4.1-29), and (4.1-32), respec- 
tively, where r and 0 are redefined about the crack tip as shown in Fig. 
4.1-1a. The associated asymptotic solution for stresses, which is valid for 
both plane stress and plane strain for mode I, is 

~r x = [ K ~ / ( 2 7 r r ) ~ / 2 ] c o s (  O/2){1  - s in(0/2)s in(30/2)}  (1.5-10) 

~ry = [ K i / ( Z T r r ) ' / Z ] c o s (  O/2 ) {1  + sin(0/Z)sin(30/2)} (I.5-11) 

~'xy = [ K l / ( Z T r r ) ' / 2 ]  c ~ 1 7 6  (1.5-12) 
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where the parameter K~, called the mode I stress intensity factor, is for 
the infinite plate with an internal crack of length 2a subject to a remotely 
applied uniform tensile traction try: 

K I = tro~('n'a) 1/2. (1.5-13) 

We can now subtract the constant stress o-~ from the tr x stress distribu- 
tion (I.5-10) in order to eliminate the extraneous boundary condition at 
infinity in the x direction of t x =tr~ that we had introduced earlier to 
facilitate solution. However, since tr x and all of the other stresses have a 
1 / r  1/2 singularity at the crack tip, this extraneous stress has little effect 
near the crack tip and as such is usually neglected from the mode I 
asymptotic solution for the infinite plate. 

Similarly, the asymptotic displacements around the crack tip for mode I 
plane stress and plane strain are found from (I.5-9) to be [KP 85] 

u x = [ K i / ( 2 G ) ] [ r / ( 2 7 r ) ] l / Z c o s ( O / 2 ) { K -  1 + 2sin2(0/2)} (I.5-14) 

Uy - [ K l / ( 2 G ) ] [ r / ( 2 7 r ) ] l / Z s i n ( O / 2 ) { K  + 1 - 2cos2(0/2)} ,  (I.5-15) 

where K is defined as in (I.4-61). 
Under plane stress loading conditions, the mode I displacements are 

explicitly 

u x = ( K l / E ) ( 2 r / T r ) l / 2 c o s ( O / 2 ) { 2  - (1 + v ) c o s 2 ( O / 2 ) }  (1.5-16) 

Uy "-- ( K i / E ) ( 2 r / T r ) i / Z s i n ( O / 2 ) { 2  - (1 + v ) c o s 2 ( O / 2 ) } ,  (I.5-17) 

where relationship (I.2-7)was used to relate G to E. 
The mode I plane strain asymptotic displacements for an infinite plate 

are given explicitly as (4.1-36) and (4.1-37), and the exact mode I displace- 
ments for an infinite plate are given by (4.1-19) and (4.1-20). These exact 
solutions are fairly complicated algebraically, unlike the asymptotic (first- 
term) solutions. 

For geometries other than the infinite plate, and for different types of 
loads, only the stress intensity factor K~ changes from the form (I.5-13). 

For example, the stress intensity factor for an edge crack of length a in 
a semi-infinite plate with a remotely applied tensile stress tr~ is approxi- 
mately [Koi 65] 

K I = 1.12o'~('n'a) 1/2. (1.5-18) 

An edge crack in a plate of finite dimensions with concentrated forces is 
illustrated in Fig. 1.5-1a. 
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The state under which the stress intensity factor is sufficient to charac- 
terize the stress distribution around the neighborhood of the crack tip is 
called small-scale yielding. 

Regardless of the geometry of the specimen or the type of load, the 
strength of the singularity for all stresses at the crack tip (r  = 0) remain 
1 / r  1/2 for all linear elastic problems. This is not true, however, for 
deformation theories of plasticity, which may be interpreted as nonlinear 
elastic theories. We will examine crack problems for these types of 
nonlinear materials later. 

Mode II 
Like the mode I solution, the elastic solution to the mode II problem 

can be obtained by substituting the Westergaard function (4.1-44) into the 
Kolosov equations (I.4-56)-(I.4-58) [Sne 57, PM 78]: 

�9 ' ( z )  = - � 8 9  ~ ' ( z )  = ~" ' , ~ t z Z i i ( z )  + i Z l i ( z ) .  (I.5-19) 

These Westergaard potentials differ from the previous functions (I.5-5) in 
that they generate solutions that have the property % = 0 and ~'xy- 0 
along the x-axis, and satisfy the following boundary conditions at infinity 
(Fig. 1.5-3): 

( x ~  +o0, t x = 0 ,  ty = r~ ~ o-x = 0 ,  ~~v = r~ (I.5-20) 
,~N" 

y ~ _+~, t~ = ~-~, t v = 0  ~ % = 0 ,  ~-~y = r~:. (1.5-21) 

The potentials (I.5-19) also satisfy the boundary conditions (I.5-1) and 
(I.5-2) and produce the linear elastic solution 

" [  ( 2 ) - Z  (z)]  = 2 I m Z , l ( Z )  (I.5-22) o- x + % = ~t Zll ii 

% - ~r~ + 2i~xy = i ( z  - 2 ) Z ] l ( z )  + 2 i Z l i ( z )  

= - 2 y  Re Z ] l ( z )  - 2Im Z l l ( Z )  

+ 2 i [ - - y  Im Z ] i ( z )  + Re Zi i (z ) ]  (I.5-23) 

1 2 G ( u  x + iuy)  - 3(K + 1)Im Z~ + y Re ZII 

1 - i[~(K - 1)Re Z~ - y  Im Zll],  (I.5-24) 

where parameter  K is defined individually by (I.4-61) for plane stress and 
plane strain. The exact linear elastic solution for the stresses and the 
displacements for plane strain that meet the boundary conditions at 
infinity are given in Chapter 4. Around the crack tip x -  a, y = 0 the 
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function ZII a s s u m e s  the from (4.1-52). The functions Ztll and Z~' I follow 
analogously from (4.1-29) and (4.1-32) by replacing tr~ with ~'o~. 

The asymptotic solution for stresses near the crack tip are for mode II 
under plane stress or plane strain loading conditions: 

~r~ = - [ Ki i / (27rr ) l /2]s in(  O/2){2 + cos(0/2)cos(30/2)} (I.5-25) 

O'y -- [ Kii / (ZTrr) l /2]cos(  O/Z)sin( O/Z)cos(30 /2)  (1.5-26) 

rxy = [ K~/ (27rr )~ /Z]c~  - sin(0/2)sin(30/2)},  (I.5-27) 

where the parameter KII is called the mode II stress intensity factor. 
For an infinite plate with an internal crack of length 2a subject to a 

remotely applied in-plane shear traction ~'~ (see, Fig. 1.5-3b), the stress 
intensity factor is 

KII = "r~(Tra) 1/2. (1.5-28) 

Similarly, the asymptotic displacements around the crack tip for mode 
II plane stress and plane strain loading conditions are [KP 85] 

u~ = [ K l l / ( 2 G ) ] [ r / ( 2 7 r ) ] i / Z s i n ( O / 2 ) { K +  1 + 2cos2(0/2)} (1.5-29) 

Uy = [K i i / (2G)] [ r / (27r ) ] l / e cos (O/2 ) {1  - K + 2sin2(0/2)} (I.5-30) 

where K is again defined by (I.4-61). 
For plane stress loading conditions, the mode II displacements are 

x )1/2 u = ( K l l / E ) ( 2 r / T r  sin(0/2){2 + (1 + v)cos2(O/2)}  (I.5-31) 

Uy = ( K i l / E ) ( 2 r / T r ) l / e c o s ( O / 2 ) { 2 v -  (1 + v)cos2(O/2)} .  (1.5-32) 

The plane strain mode II asymptotic displacements for an infinite plate 
are given explicitly as (4.1-56) and (4.1-57). Exact mode II displacements 
for an infinite plate are given by (4.1-48) and (4.1-49). 

A general method of solving plane problems through a complex variable 
mapping scheme and the Kolosov equations was developed by N. I. 
Muskhelishvili [Mus 63]. This method of solution is very powerful for 
solving linear elastic fracture mechanics problems. Brief introductions to 
this technique may be found in [TG 70, Sok 56]. 

Mode III 
The mode III problem differs from the two previous modes in that it is 

not a true plane elasticity problem, as shear forces perpendicular to the 
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plane of the plate (x, y) exist (Fig. 1.5-3c). It is sometimes called an 
antiplane deformation problem, and it is related to torsion problems in 
elasticity theory, in areas far removed from the boundary of the cylinder 
[AC 88]. In the mode III problem, only two stresses "rxz(X, y ) ,  r y z ( X  , y )  and 
one displacement u~ - w ( x ,  y )  are present. 

The equilibrium equation is obtained from (I.1-3) by setting o-~,~ equal 
to zero, i.e., 

T x z , x  -'1- Tyz, y = O. (1.5-33) 

We now introduce a stress function ~b(x, y), (similar to the Prandtl stress 
function in elastic torsion theory [TG 70, p. 295]), 

Txz - -  (~, y ,  Ty z = -- 05, x, (I.5-34) 

such that stresses derived from it automatically satisfy equilibrium (1.5-33). 
Strains follow immediately from Hooke's law (1.2-8): 

Yx~ = 2e-x~ = ( 1 / G ) r x z ,  yy~ = 2ey  z = ( 1 / G ) r y ~ .  (I.5-35) 

The nontrivial compatibility equations are from (I.1-14) and (I.1-15), 

e~ ,~y  - e y~ ,~  = 0 ~ ( e~z,. v - ey~,~) = 0 (I.5-36) 
,X  

%z,xy - e xz,yy = 0 --, (ev:,x - ex~,y),y = 0. (I.5-37) 

These two equations are satisfied provided that 

Txz, y - -  Tyz, x = 0 --) ~ , x x  + ~b, yy = 0 .  (I.5-38) 

Using the Laplacian operator symbol (I.4-8), we may rewrite the second 
equation in (I.5-38) as 

v26 = o. (~.5-39) 

This equation is known as Laplace's equation and its solutions 4~(x, y) are 
referred to as harmonic functions. 

Under transformation from Cartesian coordinates to complex variables 
(I.4-62), the Laplacian operator and equation become, respectively, 

V2(~ --  4~b,~e, vz~b = 0 ~ ~b~ = 0. (1.5-40) 

By integrating the last equation in (I.5-40), we find 

49(z ,~ . )  = F ( z )  + G ( 2 ) ,  (I.5-41) 

respectively: 
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where F ( z )  and G(2) are arbitrary functions of z and 2, respectively. By 
limiting our solution ~b(z, 2) to real functions, we must restrict G(2) [or 
F(z)] such that 

d~(z, 2) - F ( z )  + F ( 2 ) ,  (I.5-42) 

where F (2 )  is defined in terms F ( z )  in an analogous fashion to ~ ( ~ )  and 
�9 (z) as in (I.4-60). 

Equation (I.5-42) may also be interpreted as 

4~ = 2 Re F ( z ) ,  (I.5-43) 

where Re is the real part of F ( z )  and Im is the imaginary part of F(z) ,  i.e., 

F ( z )  = Re F + i Im F. (1.5-44) 

Both the real and imaginary parts of any analytical complex function will 
individually satisfy Laplace's equation [Chu 60]. 

The displacement w(x,  y)  is related to the engineering shear strains by 
(I.l-lO), (I.l-11) 

')/xz --" W , x '  Y y z  --- W y .  (1.5-45) 

Therefore, from (I.5-35), we find 

"r x~ = Gw x, "ry~ = Gw y. (I.5-46) 

By substituting (I.5-46) into the equilibrium equation (I.5-33), we see that 
the displacement w(x,  y)  also satisfies Laplace's equation 

V2w(x, y) = 0, (I.5-47) 

in addition to the stress function ~b(x, y). 
The relationship between - 4'(x, y) and Gw(x ,  y)  is similar to the 

functions u(x,  y)  and v(x, y) appearing in the Cauchy-Riemann equations 

U , x  --" U, y , U, y = --U,x , (1.5-48) 

where u(x,  y)  and v(x,  y)  are arbitrary functions. Functions that satisfy 
(1.5-48) also satisfy Laplace's equation (provided second partial derivatives 
exist), i.e., 

V2U -- 0 ,  V2U = 0. (1.5-49) 

The functions u and v are known as conjugate harmonic functions [Chu 
60], and lines of u and v intersect orthogonally when plotted in Cartesian 
coordinates (Figs. 1.5-4a and 1.5-4b)~except at singularities. 
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A conformal mapping of the Cartesian plane involving u and v can be 
obtained in the following fashion [Chu 60, p. 177]: 

f ( z )  = u + iv ,  (I.5-50) 

where f ( z )  is an arbitrary analytical function of the complex variable z 
(I.4-59). In a conformal mapping, angles in the Cartesian plane (x, y) are 
preserved when mapped onto the (u, v) plane, where u and v form a new 
rectangular Cartesian coordinate system. The coordinates (u, v), as defined 
by (I.5-50), will satisfy both (I.5-48) and (I.5-49). As a consequence of the 
inverse mapping of (I.5-50), lines of constant u and v will also intersect 
perpendicularly in the original Cartesian plane (x, y), where they form an 
orthogonal curvilinear coordinate system. These properties are indicated 
in Figs. 1.5-4a and 1.5-4b, where the symbols e, and e,, designate unit 
vectors in the u and v directions, respectively. 

The first derivatives of f ( z )  with respect to z is related to partial 
derivatives of u and v as follows [Chu 60, p. 35]: 

f ' ( z )  = u x + it'~ x (I.5-51) 

iu = ~, - t l . ~ - ~ z )  
, Y , Y �9 

Now that several fundamental properties of analytical function theory 
have been discussed, let us formulate the mode III problem in terms of a 
Westergaard function Z l i l ( Z ) ,  which is analogous to the two Westergaard 
functions defined previously for the two other modes of fracture. 

A f(z) B ,~.-~ 
z=x+iy u+iv 

Ul 

u2 

~,v 
eu 

Vl 

v2 

Vl 

u2 

X U 

FIGURE 1.5-4 
Conformal mapping. Reprinted from [UA 83] by permission of Springer-Verlag. 
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Let us first associate the function f ( z )  of (I.5-50) with the first integral 
of the Westergaard function Z ~ i ( z ) w i t h  respect to z" 

f ( z )  = Z~ i ( z )  = Re Z ~ l  I --t- i Im Z~I .  (I.5-53) 

Let us now assign the stress function qS(x, y) and displacement w ( x ,  y )  as 
follows" 

Re Z~I = - 05(x, y) ,  Im Z ~ i  I = G w ( x ,  y ) .  (1.5-54) 

Because they are related to the real and imaginary parts of an analytical 
function of z (I.5-52), both the stress function and displacement will satisfy 
Laplace's equation. However, it remains to be seen if the additional 
relationships involving ~b and w are properly satisfied. 

These additional relationships can be verified by identifying u(x ,  y )  and 
v(x, y) of (I.5-50) with 4>(x, y) and w(x, y) as follows: 

u ( x , y )  = - c h ( x , y ) ,  v ( x ,  y )  = G w ( x ,  y ) .  (1.5-55) 

By (I.5-51)-(I.5-54) we see that (I.5-34) and (I.5-46) are satisfied, after 
equating real and imaginary parts of f ' ( z ) ;  i.e., 

f ' ( z ) = R e  Zil I + i Im Zll I = [Re Z~]l(z)] x 

----  n t J )  X 

= [Im Z'~li(z)].y 

= Gw 
, Y  

- -  T y  z 

+ i[Im Z ~ ( Z ) ] x  (I.5-56) 

+ iGw x (I.5-57) 

- / [ R e  Z ' ~ ( Z ) ] y  (I.5-58) 

+ i q~ y (I.5-59) 

+ i ~'xz. (1.5-60) 

Thus from (I.5-60), the stresses of the mode III fracture problem are 
expressible in terms of the Westergaard function by the relations 

Zxz = Im Zii  I , ry z = Re Zll I , (I.5-61) 

where Z l ~ ( z )  is the function given by (4.1-60). Equation (4.1-60) satisfies 
the boundary conditions of an infinite plate with an internal crack of 
length 2a with tractionless surfaces 0C: 

OC" - a  < x < a, y = 0, (I.5-62) 

t z = 0 ~ Ty z = 0, (I.5-63) 

and a remotely applied traction r~ at infinity ON as shown in Fig. 1.5-3c: 

ON: { x ~  +w,  t x - t y  = t  z = 0  ~ Zxz=0  (I.5-64) 

y ~  _+~, t x = 0 ,  ty = 0 ,  tz = ~'~ --* ~'yz= r~. (I.5-65) 
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The exact linear elastic solution for the stresses and the displacements 
that meet the boundary conditions at infinity are given in Sections 4.1 and 
4.3. Around the crack tip x = a, y = 0 the function ZII I assumes the 
simplified form (4.1-64). The functions Z'II I and Z~'II follow analogously 
from (4.1-29) and (4.1-32) by replacing o-~ with r~. 

The asymptotic solution for stress around the crack tip is, from (I.5-61), 

~xz = - [ KIII/(27rr)l /2] s in(O/2)  (1.5-66) 

ryz = [ KI~/(27rr) l /2]  c~ 0 /2) ,  (I.5-67) 

where the stress intensity factor for the infinite plate with an internal crack 
of length 2a subject to a remotely applied shear traction r~, as shown in 
Fig. 1.5-3c, is 

K i l  I = 7"~(Tra) 1/2. (I.5-68) 

Similarly from (I.5-54), the asymptotic displacement around the crack 
tip for mode III is 

w = ( K i l l / G ) ( 2 r / r r ) l / 2 s i n ( O / 2 ) .  (I.5-69) 

The exact displacement for the infinite plate is given as (4.1-66). 

1.6 STRIP MODELS OF CRACK TIP PLASTICITY 

As we mentioned in the previous section, all stresses predicted by linear 
elastic fracture mechanics possess an r - l /2  singularity at the crack tip. 
However, in real metals a plastic enclave forms around the crack tip to 
relieve the stresses from their predicted elastic state. Efforts to find 
analytical solutions to elastic-plastic fracture problems for plastic zones of 
finite dimensions have proved successful only for mode III problems. In 
this section, we explore alternatives to fully developed plastic zones in the 
form of infinitesimally thin plastic lamina ahead of the crack tip. These 
plastic strips serve mathematically as boundary conditions in otherwise 
purely elastic problems. 

The prototype plastic strip model is the Dugdale model [Dug 60] for the 
mode I fracture mechanics problem of an infinite plate with a far-field 
biaxial traction of magnitude ~r~. The Dugdale model has a constant 
traction ty = o- 0 applied ahead of the crack tip (Fig. 1.6-1) from x = _+ a to 
x = _+c, y = 0. The crack is treated mathematically as if it spanned from 
- c  < x < c, whereas it is treated physically as if it spanned only from 
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FIGURE 1.6-1 
Coordinate system and crack regions of plastic strip model. 
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- a  < x < a. By mathematically, we mean that there is a discontinuity in 
the continuum that would allow the single line - c  < x < c to separate 
into two different curves upon loading. Thus crack tip plasticity is treated 
merely as a boundary condition for a linear elastic crack problem having a 
distributed load over a portion of the crack. 

The rationale behind the Dugdale model is that the infinite stress of the 
purely elastic solution is physically unrealistic. The stress must be limited 
to a finite value. Since stresses generated at the crack tips by the remote 
traction tr~ are infinite, the only way to counter  them is to generate 
opposing stresses with the same order  of singularity and magnitude. 

To this end, we note the added contribution to the Westergaard 
potential Z [ ( z )  for two pairs of opposed concentrated forces (see Fig. 
1.6-2) of magnitude tr 0 ( force /p la te  thickness) applied along the crack 
surfaces of an internal crack of length 2c at x = + b  [Irw 58, BS 66], 

= - r r ( z  - c )  - z ) .  (I.6-1) 

y 

I tr, , 
I 
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- b  ! b - - - - ) ~  
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FIGURE 1.6-2 
Applied forces on near-crack tip regions. 
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This additional contribution to the Westergaard function (1.6-1) would by 
itself add 1 / r  stress singularities at the points of application of the 
concentrated forces, i.e., x = + b. However, if we integrate Z (  over the 
lengths of the plastic zones, these particular singularities disappear and we 
obtain 

Z 0 = 20rozLC(c 2 -  b2) l /2 /[Tr(z  2 -  c2)1/2(b 2 -  Z2)] db, (1.6-2) 

= 2 ( ~ o / T r ) ( c o t - l [ ( a / z ) [ ( z  2 -  c2) / (c  2 -  a2)] 1/2] 

[Z//[(Z 2 C2)] 1/2] -1 ), - cos ( a / c )  (I.6-3) 

which is a Westergaard function Z 0 of distributed load o- 0 (units are now 
those of stress as we have absorbed the division of length of the plastic 
zone into the original o- 0) which has r -~/2 stress singularities at the two 
crack tips (Fig. 1.6-3). 

It is the second term of (I.6-3) that produces these r -~/2 singular 
stresses at the crack tips, not the first. We now need to adjust the length of 
the plastic zone so that the magnitude of the stress caused by the load at 
infinity is equal to opposing stress induced by the distributed load. From 
(4.1-6) we see that the form of the Westergaard function for the purely 
elastic problem Z! differs from the second term of (I.6-3) only by a 
constant multiplier. 

t 
I 
i 

FIGURE 1.6-3 
Dugdale strip model of crack tip plasticity. 
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The addition of (4.1-6) to (I.6-3) produces the Westergaard function 
ZIDug for the combined loads as 

ZiDug - -  Z I -k- Z 0 - -  2 ( O r o / T r ) c o t - l [ ( a / z ) [ ( z  2 - r  - a2)] 1/2] 

+{or~ -- 2(Orol'rr)cos- l ( a / c ) ) [  z / [ ( z  2 -- c2)11/2], 

(I.6-4) 

where in deriving (1.6-4) we substituted c for a in equation (4.1-6). 
In order for the second term of Z 0 to cancel Z I, we need 

o-~/ o- o = ( 2 /  Tr )cos-  l ( a / c  ). (1.6-5) 

Thus from (1.6-4) and (I.6-5), the Westergaard potential for Dugdale 
model Zioug is [BS 66] 

Zioug __ 2 ( O r o / r r ) c o t - l [ ( a / z ) [ ( z 2  _ r162  _ a2)] 1/2] . (1.6-6) 

Let us now call the length of one of the two plastic zones d (Fig. 1.6-1); 
i.e., 

d - c - a. (I.6-7) 

Then by simple algebra we find from (I.6-5) and (I.6-7) that 

d / a  = sec[(Tr/2)(~r~/o'0)] - 1. (I.6-8) 

For small values of 6r~/o" 0, we can expand (I.6-8) in a Maclaurin series to 
obtain 

d / a  (1 /8)(7ro '~/o0)  2 = , o '~/o 0 ,~ 1, (I.6-9) 

)2 o~/  -~ 1 (I.6-10) d = (Tr/8) ( K l/~ , ~ , 

where K~ is the stress intensity factor for an infinite plate with a crack of 
length 2a. 

Note that the length d could not be expressed in terms of K~ alone for 
large-scale yielding (I.6-8), as in the case of small-scale yielding (I.6-10). 

To obtain the displacements, we need the integral of Z~Dug with respect 
to z, i.e., 

= f l l o u g  dz. (1.6-11) Z~oug 

Burdekin and Stone [BS 66] give the result as 

Z~Dug = (2~ro/Tr)[zO 1 - aO 2] (1.6-12) 
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where 

cot 01 = ([1 - ( c / z ) 2 ] / [ ( c / a )  2 -  1]} 1/2 

cot 02 = [(z 2 - c2) / (c  2 - a2)] 1/2. 

The imaginary part Z~D.g is given by [BS 66] as 

I m  Z~Dug--" ( 2 % / r r ) ( a c o t h - ' [ [ ( c  2 -  z 2 , / ( c  2 -  a2)] '/2] 

- z c o t h - ' [ ( a / z ) [ ( c  2 - z 2 ) / ( c  2 - a2)]'/2] }, 

(I.6-13) 

(I.6-14) 

] z l<a  

(I.6-15) 

From (I.5-9), we find the displacement in the y direction as 

. ( 1 . 6 - 1 6 )  2Guy(X, y) = ~(K + 1)Im Z~'Dug -- Y Re Zioug 

Along the x-axis, y -- 0, so (I.6-16) assumes the form 

1 2Guy(X, 0) = ~(K + 1)Im Z~D~g. (I.6-17) 

At the physical crack tip, x --, a. From (I.6-15) and (I.6-17), we find [BS 66] 

! ( I . 6 - 1 8 )  2Guy(a, 0) = ~-( K + 1)Im Z~D~g]l~ I ~ ,  

= (K + 1)(aoo/Tr)ln(c/a) .  (I.6-19) 

The crack tip opening displacement 6, is defined as the relative distance 
between the crack surfaces at the crack tip (Fig. 1.6-3), i.e., 

6, = 2Uy(a,O) = (K + 1)(ao-o/G~)ln(c/a) .  (I.6-20) 

By (I.6-5), ~, can also be written as 

6 t -'- (K + 1)(aoo/G~') lnsec[(~o~)/ (2%)] .  (I.6-21) 

For plane stress, we obtain from (I.2-7), (I.4-61), and (I.6-21) 

6, = [8aoo/( TrE)]ln sec[(Tr~r~)/(2~r0)]. (I.6-22) 

For small-scale yielding, we can expand (I.6-22) in a Maclaurin series to 
obtain 

plane stress" (~t = KZ/ (E~  (I.6-23) 

A. A. Wells [Wel 63] proposed the use of the crack tip opening 
displacement as a criterion of ductile fracture. See also [BS 66]. 
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Mode I Small-Scale Yielding Strip Model 
Cherepanov presented in [Cher 79], the small-scale yielding solution to 

the Dugdale model. The function ~ (z )  of equation (4-97) in [Cher 79] may 
be interpreted as one-half of the mode I Westergaard potential for the 
Dugdale model under conditions of small-scale yielding Zssy. From this 
reference, we obtain 

Zssy = f r o ( 1 -  ( T r i ) - l l n [ [ i d l / 2  _ ( z - d ) l / 2 ] / [ i d  1/2 + ( z  - d)l/2]]}, 

(1.6-24) 

where the coordinate z has been moved (see Fig. 1.6-4), so that the origin 
of the complex plane now coincides with the crack tip of Fig. 1.6-1 on the 
right. The parameter d is again the length of the plastic zone. 

Using the complex identity, 

2i t an- lz  = lnl(1 + i z ) / ( 1  - iz)], (I.6-25) 

one may rewrite (1.6-24) is an equivalent form as 

Zssy ~- O ' 0 [ l -  (2/Tr)tan-'{[(z/d)- 111/2}]. (I.6-26) 

From (1.6-26), we discover through simple mathematical manipulations 
that 

z / d - -  1 + tane[(Tr/2)(1-/ssy/O-())] ,  (I.6-27) 

which then becomes, through the use of elementary trigonometric identi- 
ties, 

sin[TrZ~,,y/(2tr,,)] = ( d / z )  ~/2. (1.6-28) 

Because 

sin- I z-  1 / 2  Ilz[ ~ o~ "~ Z -  1 / 2 ,  (I.6-29) 

it follows that, at a sufficiently large distance from the crack tip, (1.6-28) 
becomes asymptotically 

7"/'Zssyllzl__,~ ~ 2 t r o ( d / z )  1/2. (1.6-30) 

Notice that (1.6-30) has a similar form to the mode I small-scale yielding 
Westergaard potential (4.1-25), which differs only by a multiplicative 
constant (if s r is identified as z). This provides a means to relate the 
constants as follows: 

d = ( a / 8 ) ( T r t r ~ / ~ r o )  2 = ( T r / 8 ) ( K i / t r o )  2. (1.6-31) 
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Equations (I.6-31) prove to be identical to the previous relationships (I.6-9) 
and (I.6-10), which were obtained directly from the exact Dugdale solution 
under the assumption of small-scale yielding. 

Now, through the Euler relationship, 

r exp(i 0) = r cos 0 + ir sin 0, (I.6-32) 

and the definitions of the real and imaginary parts of a complex function, 
we find that (I.6-28) is equal to 

sin[~r(Re/ssy + i Im Zssy)/(2o-0) ] = d ' / Z r  - ' /2[cos(0/2)  - i s i n (O/2 ) ] .  

(I.6-33) 

Expanding the argument of sin( ) in (I.6-33), we deduce that 

sin['rr Re Z~y/(2o-0)] cos [ i-n" Im Z~y/(2 o-0) ] 

- cos['n" Re Z~y/ (2cro)]s in[ iTr  Im Z~.~y/(2o-0) ] 

= d l / 2 r  - 1/2[cos(0/2) - i s in(0/2)] .  (I.6-34) 

Through the complex relationships, 

cos/z = cosh z, sin/z = i sinh z, (I.6-35) 

and by equating the real the imaginary parts of equation (I.6-34), we find 

sin[vr Re Z~y / (2~ro) ]cosh[rr  Im Z~y/(2o-o) ] = d t /2 r  ' /2cos(0/2)  

(I.6-36) 

cos['n" Re Z~y/(2o-0)]sinh['n" Im gssy/(2or0) ] = d ' / 2 r  - ' / 2 s i n ( 0 / 2 ) .  

(I.6-37) 

Eliminating the terms containing I m  Zssy in (I.6-37) through the use of the 
hyperbolic trigonometric relationship 

we obtain 

cosh2( ) __ sinh2( ) = 1, (I.6-38) 

r / d  = cos2(0/2) /s in2[  7r Re gssy/(2oro) ] 

- sin2( 0 /2) /cos2  [ 7r Re gssy/(2o-0) ] . (I.6-39) 
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Using trigonometric identities, we may rewrite (1.6-39) in the equivalent 
form 

COS2(q7" Re Zssy/Or 0) + ( 2 d / r ) c o s ( T r  Re Zssy/O- 0) -~- ( 2 d / r ) c o s  0 - 1 = O. 

(I �9 

Solving for the quadratic term in (I.6-40), we find 

cos(Tr Re Zssy/O'0) = - ( a / r )  + [ ( d / r )  2 - ( 2d / r ) cos  0 + 1] 1/2. 

Along the x-axis, the stresses are, via (4.1-1) and (4.1-2), y = 0: 

O" x --- Cry - -  Re Z s s y  , T xy - -  0 .  

Substituting % from (1.6-42) for the Re Zssy in (I.6-41), we get 

cos(Tr%/~r0) = - ( d / r )  + [(d/r)  2 -  (2d / r ) cos  0 + 1] 1/2 

For 0 - -  0, (1.6-43) becomes 

cos(Tr%/o'0)lo:o = - ( d / r )  +_ I ( d / r )  - iI, 0 < r < 

-- - 1 ,  0 < x  < d ~ Oy = o', = oo,  

= 1 - 2 d / x ,  d < x < ~ ~ ~ry lx-~  

(I.6-41) 

(1.6-42) 

�9 (1.6-43) 

(I.6-44) 

(1.6-45) 

= ~rxlx_~ = O .  

(1.6-46) 

Mode III Small-Scale Yielding Strip Model 
One can observe the similarity of the Westergaard function for the 

three principal modes of fracture (4.1-6), (4.1-44), and (4.1-60). One need 
only replace the traction at infinity to obtain one particular Westergaard 
function from another. An analogous relationship exists among the West- 

For 0 = 7r, (I.6-43) becomes 

cos(Tr%/~r0)10=~ = - ( d / r )  + ] ( d / r )  + II, 0 < r < ~ (I.6-47a) 

= 1, - ~  < x < 0 ~ O-y = ~r x = 0. (I.6-47b) 

Thus by (I.6-42), (I.6-45), and (I.6-47b), we find that the boundary 
conditions along the crack axis, - ~  < x < d, are satisfied. By (I.6-46), we 
see that the stresses approach the small-scale yielding solution (1.5- 
10)-(1.5-11) along the crack axis as x ~ ~. 
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ergaard functions for the Dugdale model and the plastic strip models 
proposed by Bilby, Cottrell, and Swinden [BSC 63] for modes II and III. 

In the case of small-scale yielding, the plastic strip model for mode III 
has a Westergaard function analogous to the mode I function given by 
Cherepanov (1.6-24) or its equivalent (1.6-26). The Bilby-Cottrell-Swinden 
(BCS) plastic strip model for small-scale yielding will therefore follow from 
(I.6-26) as 

ZBCSssy = k[1 - ( 2 / T r ) t a n - l { [ ( z / d ) -  111/2}]. (1.6-48) 

d = (Tr/8)(Kiii /k)2,  (1.6-49) 

where k is the yield in pure shear, d is the length of the plastic zone, and 
K~I ~ is the mode III stress intensity factor. Opposing shear tractions 
t~ = ~'y~ = + k  act along the plastic zone d in analogy to the Dugdale 
model's tensile tractions ty = +_ ~r o . 

Equation (I.6-48) may also be expressed in a fashion similar to (I.6-28), 
i.e., 

sin[ 7rZBscssy/(2k )] = ( d / z )  '/2. (I.6-50) 

We further note from the mode III Westergaard relationship (I.5-61) that 

Z B S C s s y  - -  Ty z + i~'xz . (I.6-51) 

Thus the shear stresses follow from (I.6-50) and (I.6-51) as 

sin[Tr(ry z + i r x z ) / ( 2 k )  ] = ( d / z )  ~/2. (I.6-52) 

Upon solving (I.6-52) for z / d ,  we find 

z / d  = C S C 2 [ 7 1 " ( T y z  -+- i r~z ) / (2k )  ] (I.6-53) 

= secZ[Tr(~'y~ + i~'~ - k ) / ( 2 k ) ] .  (I.6-54) 

Aside from a phase shift of rr /2 inside the argument of the sec() ,  this 
relationship between z and the shear stresses (I.6-54) represents a confor- 
real mapping of the form 10.7 of Kober's Dictionary of  Conformal Represen- 
tations [Kob 52, p. 101]. A depiction of this particular mapping is shown in 
Figs 1.6-4 and 1.6-5. 

From Figs 1.6-4 and 1.6-5 we see that ~'y~ has a constant magnitude k 
along the plastic zone A B D  in analogy to the Dugdale model's O'y "-- O" 0 . 
However, we also note an infinite stress rxz at the crack tip, which does not 
appear in the Dugdale model. This infinite stress in rx~ is also present in 



Strip Models of Crack Tip Plasticity 43 
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FIGURE 1.6-4 
Small-scale yielding coordinate system for strip models. 

the exact Bilby-Cottrel l -Swinden solution (2.4-9), and is therefore not 
indicative of small-scale yielding. (Note that in Section 2.4 the symbols c 
and a are interchanged from their use in the Introduction.) Consequently, 
this infinite stress must cast some doubt on the validity of the Bilby- 
Cottrel l-Swinden model as a physically meaningful solution (see Section 
2.4). This singularity is not found in the Dugdale model because the 
imaginary part of the Westergaard function is not used. 

Nonetheless, the Bilby-Cottrel l -Swinden solution does predict a crack 
tip opening displacement for mode III that is completely analogous to the 
plane stress Dugdale model [BS 66]. To calculate the crack tip opening 

' I"xz 

.A.  . . . . . . . . . . . . . . . . . .  

I ~yz 
k 

.................... Ix 

D D 

FIGURE 1.6-5 

Conformal map of a mode III plastic strip model. 
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displacement, we need the integral of ZBSCssy (I.6-48), i.e., 

/~3SCssy  ~ f ZBscssydz = k f [ 1  - ( 2 / r r ) t a n - l { [ ( z / d ) -  1]'/2}1 dz 

(I.6-55) 

= kz - ( 2 k / r r ) { z  t a n - ' [ [ ( z / d ) -  1] '/2] - d [ ( z / d ) -  1] 1/2} 

(I.6-56) 

--" Z Z B C S s s y  q- ( 2 k d / r r ) [ ( z / d )  - 1] 1/2. (I.6-57) 

From (I.6-51), (I.6.54), and (I.6-57), we may express Z* BSCssy as a function of 
the stresses, i.e., 

Z~scssy(ry z , rxz) = d(ry z + irx~)Sec2{rr(ryz + i r x z -  k ) / ( 2 k ) }  

+(2kd /rr ) tan{rr ( ry  z + i r , ~ -  k ) / ( 2 k ) } .  (I.6-58) 

From Figs 1.6-4 and 1.6-5, we see that evaluating (I.6-58) at the crack tip 
requires ry~ = k; i.e., 

Zi*~S(,ssy(k, rxz)  = d(k  + ir~:)sec2{irrr,: /(2k )} 

+ ( 2 k d / r r ) t a n { r r i r , : / ( 2 k ) }  (I.6-59) 

= d(k  + ir ,~)sech2{rrr,: / (2k)} 

+ ( 2 k d / r r ) i  tanh{rrr ,~/ (2k)} .  (I.6-60) 

To find the crack tip opening displacement, we need to evaluate ZBCS~,~y at 
points A and D, i.e., to find the relative displacement of the crack surfaces 
at the crack tip. It follows from Figs 1.6-4 and 1.6-5, that we need the limit 
of the function Z~cs,~,~y(k, r,~) as rx~ --* +_ ~, i.e., 

lim r,~ --, +~:ZBsc,~y(k , rx~) = + i ( 2 k d / r r ) .  (I.6-61) 

The crack tip opening displacement 6Be s is therefore, from (I.5-54) and 
(I.6-61), 

BCSssy = W I x = O , y = O  ~ - W I x = O , y = ( I  

= ( 2 / G ) [ I m  Z* (k ~) - Im Z* (k - ~ ) ]  B(TSssy , BCSssy , 

= 8 k d / ( v r G )  

= K2,/(Gk). 

(1.6-62) 

(I.6-63) 

(I.6-64) 

(I.6-65) 
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This result (I.6-65) is the mode III counterpart to the mode I small-scale 
yielding crack trip opening displacement for plane stress (I.6-23). An 
alternative mode III plastic strip model by Cherepanov [Cher 79] is 
discussed in Chapter 2. 

Barenblatt [Bar 59] and Panasyuk [Pan 60] also introduced models that 
are mathematically similar to the Dugdale model. An interesting discus- 
sion of the history of process zones and plastic strip models of crack tips 
may be found in [NA 87a]. 

1.7 EXACT ELASTOPLASTIC SOLUTIONS FOR MODE III 

In this section we present true elastoplastic solutions involving linear 
elastic and perfectly plastic materials or linear elastic and isotropic strain 
hardening materials for mode III fracture mechanics problems. Unlike 
those in Section 1.6, the plastic zones in this section have finite dimensions. 

Mode III is the only mode of fracture for which complete analytical 
elastoplastic solutions have been found. In the case of small-scale yielding, 
the solution for elastic-perfectly plastic materials is particularly simple. 
We will begin our discussion with this case, which is referred to subse- 
quently as the small-scale yielding Hult-McClintock solution [HM 56]. 

The elastoplastic boundary for this problem can be found by substitut- 
ing the small-scale yielding, linear elastic solution for stresses (I.5-66) and 
(I.5-67) into the Mises yield condition 

~.2y + ~.y2 z = k 2, (I.7-1) 

which is obtained from (1.3-1) and (I.3-2) under the assumption that these 
are the only two stresses that exist from mode III problems. In general, 
one cannot guarantee that substituting an elastic solution into a yield 
condition will generate an elastoplastic boundary that will allow a corre- 
sponding statically admissible plastic solution. In many cases it will not. 

We will find that the prescribed elastic-plastic boundary 0f~ is circular, 
as shown in Fig. 1.1-1. The origin of the polar coordinate system (r, 0) is 
located at the center of this circle. The crack for the purely elastic solution 
would extend to the origin of this coordinate system. This is counterindi- 
cated by Fig. 1.1-1, which is for the elastic-perfectly plastic case. We will 
find that solving the initial value problem (Cauchy problem) for the plastic 
region produces stresses that do not fulfill the boundary condition of a 
traction-free surface along OS of Fig. 1.1-1. They are, instead, continuous 
and represent part of the plastic continuum. The ramifications of this shift 
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of elastic stress, relative to the crack tip in terms of the failure criterion for 
ductile materials, is discussed in Chapter 2. 

The elastic-plastic boundary R is from (I.5-66), (I.5-67), and (I.7-1): 

R -- rloa = K 2 I i / ( 2 r r k 2 ) .  (I.7-2) 

The elastic stress function 4~E(r, 0) of (I.5-34) for the mode III problem is 
given by (1.1-1) and its partial derivatives with respect to x and y by (1.1-2) 
and (1.1-3). 

In terms of the plastic stress function &(x, y), 

~,2 x + ~,2 = k 2 or p2 + q2 = k 2, (1.7-3) 

where p and q are the first partial derivatives of & with respect to x and y 
(I.7-5). Equation (I.7-3) is referred to as the e i c o n a l  equation in mathemat- 
ical physics literature. 

The method of solution will be by characteristic strip equations [Zwi 89, 
She 57, CH 62]. This solution technique converts the partial differential 
equation and its initial data into a system of ordinary differential equa- 
tions. In this theory, a first-order partial differential equation 

F ( x , y ,  &, p ,  q )  = O, (I.7-4) 

is to be solved, where 

P - &,x, q - &,y. (1.7-5) 

The strip equations (or Charpit's equations) are 

x ,  = F p (1.7-6) 

y , ,  = F,q (I.7-7) 

p , ,  = - F x - p F  ,~ (I.7-8) 

q , ,  = - F  y - q F  ~ (I.7-9) 

4 ) ,  = pF ,  p + q F  q (I.7-10) 

where all of the variables are assumed to be functions of two parameters, s 
and t. 

In our case, 

F ( x ,  y ,  &, p ,  q )  = p2  + q2 _ k 2. (I.7-11) 
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Therefore  f rom (I.7-6)-(I .7-11) it follows that  

X,s  = F , p  = 2 p  (I .7-12) 

Y,s  = F q - -  2 q  (I .7-13) 

P , s  = - F , x  - p F ,  6 = 0 (I .7-14) 

q,s  = - F ,  y - qF ,  4 , - 0 (I .7-15) 

dp, s = p F ,  p + qF ,  q = 2 ( p  2 + q2).  (I .7-16) 

The initial data  (s = 0) are found from the elastic stress funct ion ~b E, 
whose derivatives are evaluated on the boundary ,  and the Car tes ian 
coordinates  of R. One  part icular  paramet r iza t ion  is provided by (1.1- 
9)-(1.1-11). In the nota t ion of the Int roduct ion,  we simply replace the 
pa ramete r  a by t in (1.1-9)-(1.1-11). The pa rame te r  t represents  the 
s in (0 /2 )  on the boundary.  

We find 

= R ( 1  - 2 t  2) (I .7-17) 

33 - 2Rt(1  - /2) 1'/2 

19 = - k ( l  - t2) 1/2 

(I .7-18) 

(I.7-19) 

= - k t  (I.7-20) 

q~ = - 2 k R ( 1  - t2) 1/2, (I .7-21) 

where  the caret  above a variable indicates evaluat ion on ~f~. We now 
integrate ( I .7-12)- ( I .7-16)wi th  respect  to s to obtain 

x = 2 p s  + c 1 (I.7-22) 

y = 2 q s  + c 2 (I.7-23) 

p = c 3 (I.7-24) 

q = c 4 (I.7-25) 

q~ = 2 ( p  2 + q Z ) s  + c 5 (I.7-26) 
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where  the constants  of in tegrat ion c i (i = 1-5)  are evaluated  f rom data  on 
the boundary  (1.7-17)-(1.7-21) with s = 0 in (1.7-22)-(1.7-26); i.e., 

c I = R(1 - 2t 2) 

C 2 - -  2Rt (1  - t 2 )  1 /2  

c3  = - k ( 1  - t 2 )  1 /2  

c a = - k t  

c 5 = - 2 k R ( 1  - /2) 1/2 

By substi tut ing (1.7-27)-(I.7-31) into (1.7-22)-(1.7-26), we 
paramet r ized  solution (I.7-36) of the initial value problem;  i.e., 

(I .7-27) 

(I .7-28) 

( I . 7 -29 )  

(I .7-30) 

(I .7-31) 

find a 

The stresses follow immedia te ly  by partial  different ia t ion of (I.7-39) 
with respect  to the coordinates  or by the subst i tut ion of t f rom (I.7-38) 

4~(x y ) =  -k[(xr + R )  2 + yZ],/2, , . (I .7-39) 

This allows us to give the following explicit solution (expressed entirely in 
coordinates)  ra ther  than an implicit one (expressed in terms of pa rame-  
ters): 

s : + y 2 ) j / t . : 2 , ) t . x , ' .  + + - (I .7-37) 

t = y / [ ( x  + R )  2 + y2] 1/2. (I.7-38) 

In our problem,  it is possible to solve for the pa rame te r s  s and t from 
the Cartes ian coordinate  equat ions  (I.7-32) and (I.7-33): 

x = 2ps  + R(1 - 2t 2) -- 2c3s  + R(1 - 2t 2) 

- 2 k ( 1  t2)  1/2 - - - s + R(1 - 2t 2) (I .7-32) 

y = 2qs  + 2Rt(1  - t 2 )  1/2-- 2r + 2Rt(1  - t 2 )  ~/2 

= - 2 k t s  + 2Rt(1 - t 2 )  ~/2 (I.7-33) 

p = - k ( 1  - / 2 )  1/2 (I.7-34) 

q = - k t  (I.7-35) 

d~ = 2 (P  2 + q2)  s - 2kR(1 - / 2 )  1/2= 2 k e s -  2kR(1 - / 2 )  1/2. (I.7-36) 
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FIGURE 1.7-1 
Coordinates for the mode III elastoplastic problem. 
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into (I.7-34) and (I.7-35), i.e., 

'rxz = dl), y = - k y / [ ( x  --~ R )  2 -~-y2] '/2 (I.7-40) 

ry z = -dp, x = k ( x  + R ) I [ ( x  + R) 2 + y2] 1/2. (I.7-41) 

Equations (I.7-39)-(I.7-41) may be expressed more compactly in the 
polar coordinate system (p ,  c~) (Fig. 1.7-1.): 

p=_ [(x + R)2 + y2] I/2, =- tan-  ~[ y / ( x  + R)].  (I.7-42) 

The coordinate p is the radius from the crack tip S in the elastoplastic 
problem, and c~ is the angle a slip line makes relative to the x-axis (Fig. 
1.7-2). A slip line represents a plane of maximum shear stress rm, x -- k. In 
Fig. 1.7-1 several slip lines emanat ing from the polar origin S are shown. A 
slip line is also a characteristic of the partial differential equation (I.7-3). 

'r max=k "ryz 

(x 

line 

FIGURE 1.7-2 
Slip line and shear stresses for the mode III plastic region. 
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In this system, we find 

ck = - k p (1.7-43) 

rxz = - k  sin a ,  ~'y~ = k cos c~. (1.7-44) 

Having found a statically admissible solution for stresses, we will now 
find the associated strains and displacements.  The compatibility equation 
for mode III is by (I.1-10)-(I.1-11) and (1.5-36)-(1.5-37): 

"Yx z , y - -  "Yy z , x ,  (I.7-45) 

where Yij is total strain. 
The elastic strains are, from (I.2-8), 

TX E = ( 1 / G ) T x ~  ' yyE = ( 1 / G ) r y ~ .  (I.7-46) 

The plastic strains, as determined from Hencky's  deformation theory of 
plasticity (I.3-38)-(I.3-39), are 

yx P = 6Ar~z, ')re P = 6Aryz, (I.7-47) 

where A = A(x, y). 
Thus from (I.3-8), (I.7-46), and (I.7-47), the total strains are 

Yx~ = A(x, y)r~z, Yyz = A(x, Y)~v~ (I.7-48) 

where 

A ( x , y )  = ( l / G )  + 6 A ( x , y ) .  

Now by (I.7-44) and (I.7-48), we have 

"Yxz = - k A ( x ,  y)sin a ,  yyz = k A ( x ,  y)cos c~. 

Thus the compatibility equation (I.7-45) becomes 

(Acos a ) ,x  + (Asin c~),y = 0 

or in expanded form 

A x cos a -  A sin c~c~ x , 

Now by (I.7-42) 

P,x = C O S  O~ p,y = sin a ,  

C~,x = - s i n  o l / p  a y = cos a / p ,  

(I.7-49) 

(I.7-50) 

(I.7-51) 

+ A,ysin a + A c o s  o~O~,y = 0. (I.7-52) 

(I.7-53) 

(I.7-54) 
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so that (1.7-52) becomes 

pA, p + A = 0, (1.7-55) 

i.e., independent of a. 
Separating variables and integrating (I.7-55)with respect to p, we find 

that the compatibility equation of strain is satisfied provided 

A = F ( a ) / p ,  (1.7-56) 

where F ( a )  is an arbitrary function of a. The determination of F ( a )  
follows from the continuity of displacement at the elastic-plastic boundary 

The strain-displacement relationships (I.5-45) are valid for both elastic 
and plastic regions for mode III, i.e., 

W,x = Yxz, W,y = yyz.  (I.7-57) 

From (I.7-50), (I.7-56), and (I.7-57) it follows that 

w, x = - k F ( a ) s i n  a / p ,  w, y = k F (  a ) c o s  a / p .  (I.7-58) 

Converting (I.7-58) to polar coordinates, we find 

w pcos a - w~s in  a / p  = - k  sin a cos a F ( a ) / p  (I.7-59) 

w psin a + w ~cos a / p  = k sin a cos a F ( a ) / p .  (I.7-60) 

Solving for w p from the simultaneous equations (I.7-59) and (I.7-60), 
we obtain 

w t , = 0 ~ w = f ( a ) .  (I.7-61) 

By substituting (I.7-61) into (I.7-59) and (I.7-60), we deduce that 

= k F ( a )  --o f = kfF(,~)d~ + cons t .  (I.7-62) f,o 

The displacement w at the elastic-plastic interface is, by (I.5-69), 

)1/2 
c~1~" w = ( K I I I / G ) ( 2 R / z r  s in(0 /2) .  (I.7-63) 

By plane geometry (Fig 1.7-3), the relationship between 0 of a point on 
01~ and a is 

1 
a = -~Olan. (1.7-64) 

Thus (I.7-63) becomes 

)1/2 
O~)" w = f ( a )  = ( K i x l / G ) ( 2 R / ' t r  sin a ,  (1.7-65) 
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$ 

O x I 

FIGURE 1.7-3 
Relationship between coordinate angles for points on the elastoplastic boundary. 

which by (I.7-2) is also equal to 

w p = wla~ = f ( a )  = [KZ~,/(~rkG)]sin a. (I.7-66) 

Equation (I.7-66) may be continued into the plastic zone to provide the 
displacements w P in this region, which are a function only of a.  

By (I.7-62) and (I.7-66), 

F( a ) = [ K2 , / (Trk2G)]cos  a. (I.7-67) 

The total strains in the plastic region follow from (I.7-50), (I.7-56), and 
(I.7-67) as 

Yxz = -K~l lc~ a sin a / (~rkGp) ,  yyz = K(llcos2a/(TrkGp).  (I.7-68) 

Thus, the strains remain singular at the crack tip ( p  = 0) for the 
elastoplastic solution, although the order of singularity changes from the 
purely elastic solution ( l / r l /2 ) .  

Isotropic Hardening 
We now introduce strain hardening into the mode III elastoplastic 

problem. We assume an isotropic, power law hardening material in the 
plastic region. This problem was first solved by Rice in 1967 [Ric 67]. 
Additional discussions of it may be found in [Ric 68a, Hut 79, Chef 79, KP 
85], and other sources. 

The plastic stress field is again composed of two shear stresses, ~'xz and 
~yz, which can solve equilibrium equation (I.5-33), provided they are 
derived from the stress function (I.5-34). Although equations (I.5-33) and 
(I.5-34) are introduced in the section dedicated to linear elastic fracture 
mechanics, the same equilibrium equation applies regardless of the mate- 
rial's constitutive equations. 
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For our present problem, a linear elastic response is assumed for 
materials that have not reached yield. A deformation theory of plasticity 
which relates plastic strains to stresses by a power law (Fig. 1.7-4) is 
assumed for the plastic region: 

Elastic for T < k :  F / y  o = T / k ,  or FG = T. (I.7-69) 

Plastic for T >  k" F / y  o = ( T / k )  n, 1 < n < ~, (I.7-70) 

3'0 - k / G ,  (I.7-71) 

r -  (z2z + ~.2 ) ' /2, (I.7-72) 

F ~ (~/x2z --[- '~y2z)1/2, (I.7-73) 

where n is the material hardening exponent, Y0 is the engineering yield 
strain in pure shear, k is the corresponding yield stress in pure shear, T is 
the stress intensity--also called the equivalent s t ress--and F is the strain 
intensity or equivalent strain. The empirical exponent n may be deter- 
mined experimentally from torsion tests which provide data in the form of 
T versus F (Fig. 1.7-4), for which a power law regression analysis may be 
performed. 

Components of the stress and strain tensors are related as follows: 

"rx~/ ~,, = ( T / k  )"-  ~ ( Zx~/k ), 

yy~/  ~,,, = ( T / k  )" - ~ ( Zy~/k ). 

(I.7-74) 

(I.7-75) 

For n = 1, (I.7-74) and (I.7-75) reduce to Hooke's law. 

n=l 
I <n<o~ 

T 

k - n=oc 

~0 F 

F I G U R E  1.7-4 

Power law strain hardening behavior in shear. 
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The prescribed elastic-plastic boundary is found as in the previous 
problem. The material first yields when T = k, which is identical to (1.7-1). 
So, by substituting the small-scale yielding mode III elastic stresses (1.5- 
66)-(1.5-67) into (I.7-1), we find the same radius R as in the case of the 
elastic-perfectly plastic material (1.7-2). 

By substituting (1.7-74) and (1.7-75) into the compatibility equation for 
mode III (I.7-45), we find for the isotropic, strain hardening material 

( n -  1)T,y'rxz + Trx~,y = ( n -  1)T, xry ~ + Try~, x . (I.7-76) 

By further substituting (I.7-72) for T into (I.7-76), followed by the substitu- 
tion of the stresses rxz and ry z in terms of the stress function ~b from 
(I.5-34), we obtain 

(nch Zx + chZy)ch, xx + 2(n - 1)Chx4~yCh, xy + (nch Zy + chZx)ch, yy = O. 

(I.7-77) 

Equation (I.7-77) is a nonlinear, second-order partial differential equa- 
tion. It may also be referred to as a quasilinear equation, where quasilinear 
refers to linearity in the highest order of partial derivatives. For n = 1, it 
reduces to Laplace's equat ionma linear equation. The material in this 
case behaves as a linear elastic solid. As n ~ ~, the material response 
approaches that of a perfectly plastic material. 

Lieberstein [Lie 72] presents an analysis for classifying the general 
quasilinear partial differential equations of the second order, 

a(x ,  y,  oh, p ,  q)Ch xx + 2 b ( x ,  y,  oh, p ,  q)ch, xy 

= d ( x ,  y,  ch, p ,  q) ,  

+ c ( x ,  y,  oh, p ,  q)Chyy 

(I.7-78) 

where coefficients a, b, c, and d are at most functions of the two 
independent variables (x, y), the dependent variable ~b(x, y), and its first 
partial derivatives p(x ,  y), q(x ,  y ) w i t h  respect to x and y as in (I.7-5). 

The three classes of quasilinear, second-order equations follow: 

hyperbolic type" b 2 - ac > 0 (I.7-79) 

parabolic type" b 2 - ac = 0 (1.7-80) 

elliptic type- b 2 - ac < 0. (1.7-81) 
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Dividing (I.7-77)through by n~b, 2 + ~b, 2 and substituting the notation p 
and q for the partial derivatives of 4~, we obtain 

C~,xx + [2(n - 1 ) p q / ( n p  2 + q2)]~P,  xy + [(nq 2 + p 2 ) / ( n p 2  -+- q2 ) ]~p ,  yy ___ O. 

(I.7-82) 

For equation (1.7-82), we determine 

b 2 - a c  = - n ( p  + q ) 2 / [ n p 2  + q2] 2, where n _> 1. (1.7-83) 

Thus by (1.7-81) and (1.7-83), equation (1.7-77) is elliptic for all finite values 
of n >  1. 

However, in the limit as n ---, ~, equation (1.7-83) becomes 

b 2 - a c  = 0, (I.7-84) 

which indicates that, as the material approaches the perfectly plastic state, 
the partial differential equation tends toward the parabolic. 

Characteristic curves can be viewed as carriers of data which are 
initialized on the boundary of a given problem (initial value problem). For 
hyperbolic equations, there are two families of characteristic curves. For 
parabolic equations, there is only one family of characteristics. For elliptic 
equations, there are no real characteristic curves, and as such initial value 
problems are ill-posed for them. For elliptic partial differential equations, 
boundary value problems are formulated in their place. A well-posed 
problem, in the classical sense of J. Hadamard [Lie 72, TA 77], is one for 
which a solution exists such that the solution is unique and has continuous 
dependence on the data on its boundary. By the last statement, we mean 
that a small change in the boundary data does not cause an enormous 
change in its solution. This is not to say that all ill-posed problem are 
unimportant. Ill-posed problems may result when modeling certain physi- 
cal phenomena, particularly those exhibiting unstable behavior. 

The slip lines (mentioned in the previous subsection on the elastic-per- 
fectly plastic problem) physically represent traces of planes of maximum 
shear force. They are also characteristic lines (curves) of the governing 
quasilinear, first-order partial differential equation, the eiconal equation. 

In the limit as n ~ ~, (1.7-77) becomes the parabolic equation 

~t),2x ~ ,  x x + 2 (~, x ~t), y (~, x y + ~,2y ~, Y Y __. O . (1.7-85) 
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What connection, if any, does this equation have with eiconal equation? It 
is not immediately obvious. However, we may rewrite (I.7-85) as 

or 

((~, 2x -~- t~,2y),x (]),x + ((~,2 + (j~,2), y t~, y =  0 (1.7-86) 

V~b-V(V~b. V~b) = 0, (I.7-87) 

where V is the gradient operator and �9 represents the inner product of two 
vectors. But (I.7-86) may be further represented by 

((])2 ._1._ (~,2y_ k 2 ) (]), _~_ (t~,2x + (j~,2y_ k 2 ) yf f ) ,y  = O. (I.7-88) ,X ,X X , 

Thus an eiconal kernal is embedded in (I.7-85). 
Returning to elliptic equations, the Laplace equation is the prototype, 

i.e., 

Laplace equation" ~bx x + t ~ y y  - -  0 or V2t~ = 0. (I.7-89) 

There are two fundamental classes of boundary value problems for 
Laplace's equation" the Dirichlet problem and the Neumann problem" 

Dirichlet problem: On a boundary c ~ ,  05(x, y) is specified. 
Neumann problem: On a boundary c~ll, cgch/On is specified [see (I.4-69)]. 

(Solution ~b(x, y) unique to within an arbitrary con- 
stant.) 

Lacking real-valued characteristics, elliptic equations tend to at:erage 
data on the boundary, in some sense, in the interior, rather than propagate 
it along characteristics as hyperbolic and parabolic equations do. In the 
case of Laplace's equation, the formalization of this simplistic idea is 
called the mean value theorem [ZT 76, p. 194]. When employing a finite- 
difference scheme to solutions of Laplace's equation th in the plane, one 
can arithmetically average the four neighboring values in a square mesh at 
a position ij, i.e., 

t~ i j : ( t~ i + l , j + ff) i , j + 1%.  i f ) i - l , j  + ff) i , j - 1 )  / 4 . (I.7-90) 

The general equation for isotropic hardening for mode III is the elliptic 
equation (I.7-77). Owing to its nonlinear, second-order character, it re- 
quires a special solution technique that will reduce it to a linear equation. 
The technique employed will be the Legendre transformation, which is one 
of the class of transformations [Zwi 89, p. 169] called contact transforma- 
tions [Ste 89]. 
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The Legendre transformation in the plane is as follows [Zwi 89, CH 62]" 

w +  ch = x ~  + yTq 

4,,x = ~ ,  4,,~ = n 

w,~ = x ,  {o,n = y  

C ~ t~,xxt~,yy- t~,2xy-'- 1/(O-),s%r r 7/- q -- r :# 0 .  

Under the Legendre transformation, (I.7-77)becomes 

(I.7-91) 

(I.7-92) 

(I.7-93) 

(I.7-94) 

(I.7-95) 

(n ' r /2  + ~ 2)tO,~ + 2(1 - n)w,r  + (n~ :2 + "O2)to)rl~ = 0, (I.7-96) 

which is linear in to. The form of (I.7-96) may be simplified further by the 
introduction of polar coordinates ( p, a )  in the s 77 plane, 

= - - p C O S  a = - - ' r yz ,  7/= - p  sin a = Zxz. (I.7-97) 

The relationships with the shear stresses in (I.7-97) follow from (I.7-92) 
and the definitions of the stress function for stresses in the plastic region 
(I.7-40) and (I.7-41). Note that p and a differ from their previous 
definitions for the perfectly plastic material; however, an analogy exists 
between k and p via a by (I.7-44) and (I.7-97). Inverting (I.7-97), we find 

= t a n - l ( r l / s  ~) = - tan- l (zxz/Zyz)  = t a n - l ( C h y / C h x ) .  (I.7-99) 

Equation (I.7-96) becomes, in polar coordinates (I.7-97), 

P Zt~ t,t, + n P t~ t, + n to, ~ = O. (I.7-100) 

Solutions to (I.7-100) (an Euler equation) will be sought in the form 

w (  p ,  a )  = p m f ( a ) ,  

where m is a rational constant and f ( a )  is an arbitrary function. 
Upon substituting (I.7-101) into (I.7-100), we obtain 

(I.7-101) 

n f " ( a )  + m ( m  + n - 1 ) f ( a )  = 0, (1.7-102) 

where the double prime on f ( a )  indicates the second derivative with 
respect to a. 
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Solutions to the ordinary differential equation (1.7-102) are of the form 

f ( a )  = c l s i n ( c a )  + c 2 c o s ( c a ) ,  (1.7-103) 

c 2 =  m{1 + [ ( m -  1)/n]},  (1.7-104) 

where c 1 and c2 are arbitrary constants. Therefore, by (I.7-101), solutions 
to partial differential equation (1.7-100) are 

to(  p ,  o l )  = p m [ c l s i n ( c o t )  + c2cos(co~)], (1.7-105) 

where the relationship between c and m, n is given by (I.7-104). 
We note that (I.7-100) is an equation of the form (I.7-78), and the 

standard quasilinear, second-order classifications should apply. The coef- 
ficients of (I.7-100) may be interpreted in terms of those of (I.7-78) as 
follows: 

a = p 2 ,  b = O, c = n ,  d = - n p t O o .  (I.7-106) 

Thus 

b 2 - a c  = - n p  2 < 0, as n > 1, (I.7-107) 

and the transformed equation is elliptic by (I.7-81), as was the original 
equation. Because it is an elliptic equation, a boundary value problem 
representing the elastic-plastic interface in the transformed plane (s 77) 
needs to be formulated. 

The crack tip in the elastic-perfectly plastic problem shifted a distance 
R to the left in Fig. 1.7-1 from the purely elastic solution. The location of 
the crack tip for the case of isotropic hardening is unknown beforehand. 
Let us position the origin O of a Cartesian coordinate system at the tip of 
the crack, as shown in Fig. 1.7-5. The distance from the center of the 
circular elastoplastic boundary to the crack tip is thus an arbitrary distance 

�9 O 

F I G U R E  1.7-5 

Coordinates for isotropic strain hardening for the mode III problem. 
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fiR to the left, where /3 is to be determined as part of the solution of the 
problem. 

Let us now formulate the analogy of the Dirichlet problem for the 
transformed equation of the isotropic hardening problem. For n = 1, this 
boundary value problem reduces to the true Dirichlet problem, as the 
governing equation becomes Laplace's equation. 

A parametrization of the circular interface, which was given previously 
for the perfectly plastic solution, is also applicable for isotropic hardening. 
One change is needed, however, as the Cartesian coordinate system for the 
previous problem was at the center of the circular boundary, whereas ours 
is now at the crack tip. Accounting for this shift in origin, which affects 
only 2, we have 

= R ( 1  - 2t 2) + f i R ,  

~:10n = # = - k ( 1  - t2) 1/2 

q~ = - 2 k R ( 1  - / 2 )  1/2.  

31 = 2Rt(1 - t2) 1/2 (I.7-108) 

~ 1 ~  - ~ - - k t  (I.7-109) 

(I.7-110) 

Further, by the above, we see that 

t = -wl.~/k, (1 - -  / 2 )  1/2 = -El.~/k. (I.7-111) 

We now infer by (I.7-91) and (I.7-108)-(I.7-111) that 

oJ]a~ - 2kR(1 - t 2 )  1/2 = - k [  f i R  + R(1 - 2t2)](1 - t 2 )  

- 2 k R t 2 ( 1  - /2) 1/2 

tOla~ = k R ( 1  - /3)(1 - t2) 1/2 

We note by (I.7-98) that 

pl,~n = k .  

(I.7-112) 

1/2 

(I.7-113) 

(I.7-114) 

(I.7-115) 

(I.7-116) 

In polar coordinates (p ,  c~), (1.7-115) assumes the form 

to]~ = (1 - f l )Rplancos  a 

= ( 1 -  f l ) k R c o s a .  

(I.7-117) 

(I.7-118) 
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Solutions (I.7-105) of the governing partial differential equation reduce to 
(I.7-118), on the boundary, p = k, provided 

C 1 = 0, C 2 = (1 -- /3)Rk l+ ' ,  c = 1 ---) m = - n .  (1.7-119) 

So a solution to this boundary value problem is of the form 

to( p, c~) = (1 - ~ ) R k l + ~ p - n c o s  or, (I.7-120) 

where /3 is a constant yet to be determined. Let us now revert to the 
Cartesian coordinates (~, r/) in the transformed plane, so that solution 
(I.7-120) becomes 

w( s c, r/) = (/3 - 1)Rkl +"( ~:2 + 7~2)- 1/2(1-n)~. (I.7-121) 

By (I.7-93) and (I.7-121), we obtain 

x = t o ~ =  ( ~ -  1 ) R k l + n ( ~  2 + ~2) -1/2(l+n) 

• {1 - -  [ ( 1 +  n ) s  ~2q._ .02)-1]} (I.7-122) 

= ( ~ -- 1 ) R k l + " p - t l + ~ ) [ s i n 2 a  - n cosZa]. (I.7-123) 

= ( / 3 -  1 ) R k ' + " ( r ~  + ~ 'y2~)- '"+3' /2[r~- nrv2~]. (I.7-124) 

Similarly, we find from (1.7-121) 

y -  w ,  7 = (1 - /3)(1 + n ) R k l ~ " ( ~  2 + 772) ~"~3) /2~r  I (I.7-125) 

= (1 - /3)(1 + n ) R k l + ~ p  tl +")cos c~ sin c~ (I.7-126) 

1)(l +  y2) - - r,~5~. (I.7-127) 

At the leading edge of the plastic zone x p, whose position relative to 
the crack tip is shown in Fig. 1.7-5, the stresses may be determined from 
the linear elastic solution as 

p o i n t P "  Xp = (1 + /3)R, yp = 0 ;  rx~ = 0 ,  rv~ = k .  (I.7-128) 

Substituting these values into (I.7-124), we may evaluate the constant /3 as 

/3 = (n - 1 ) / ( n  + 1). (I.7-129) 

Expressing x p in standard polar coordinates (I.4-29), situated at the crack 
tip, and using relationship (I.7-129), we find the distance rp to the leading 
edge of the plastic zone as 

r e - 2 n R / ( n  + 1), 1 < n < oo. (1.7-130) 
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As n --* ~, we see from (1.7-130) that rp ~ 2R,  which is the same result 
obtained for the Hult  and McClintock small-scale yielding solution. 

Although we obtain an elast ic-plast ic  interface, rp = R, from (I.7-130) 
for n = 1, nothing mathematical ly distinguishes the elastic region from the 
plastic region for this case. This s ta tement  is consistent with the behavior 
shown in Fig. 1.7-4, which shows that the elastic s t ress-s t ra in  line contin- 
ues into the plastic region. 

The relationship between r and the stresses are, in general, obtained 
from (I.7-124), (I.7-127), and (I.7-130): 

(r /rp)  2 -2 2(n + 1) -(n + 2)( --F/ k (gx2z -+- 7"2z) gx2z -11--F/27"/z). (I.7-131) 

By substituting (1.7-97) into (I.7-131) and solving for p, we obtain 

P = k(re/r)~/r +n)[(1/n)(sin2c ~ + n2cos2ee)l/2] ~/{~ +~). (I.7-132) 

Substituting into p from (I.7-132) (I.7-97), we find that the stresses are 

rxz = k(rp/r)l/(l+n)[(1/n)(sin2a + n2cos2ot)l/2] l/(l+n) -- sin a (I.7-133) 

~'yz k(re/r)l/ ' l+n)[(1/n)(sinzce + rl2COS2og)l/2] '/(l+n) = cos ce. (I.7-134) 

Notice that the singularity in stress varies with the strain hardening 
exponent n. For n = 1, we obtain the elastic r - 1 / 2  behavior of linear 
elastic fracture mechanics. 

A relationship between c~ and 0 may obtained by dividing (I.7-126) by 
(I.7-123) to obtain 

sin 0 /cos  0 = (1 + n)sin c~cos ~/[n  cosec~ - sin2c~] (I.7-135) 

= sin 2 c~/[cos 2 c~ + 13 ]. (I.7-136) 

Thus, 

s i n 0 ( / 3 + c o s 2 a )  = c o s 0 s i n 2 a ,  (I.7-137) 

/3 sin 0 = sin 2c~ cos 0 - cos 2c~ sin 0 (I.7-138) 

= sin(2c~ - 0) .  (I.7-139) 

Therefore,  

2 a  = 0 + s i n - l ( / 3  sin 0) ,  (I.7-140) 

where /3 is given in terms of n by (I.7-129). Upon substituting c~ from 
(I.7-140) into (I.7-133) and (I.7-134), we obtain an explicit solution for the 
stresses in polar coordinates for the isotropic hardening mode III problem. 
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We can now see explicitly that the traction-free boundary condition 
along the crack surfaces in the plastic zone (OS in Fig. 1.7-5) is satisfied by 
substituting 0 = _+ 7r into (I.7-140), followed by substituting the resulting 
a = + 7r/2 into (I.7-134), which gives "i'yz ~ -  O. 

The strains follow by substituting the stresses into (I.7-74) and (I.7-75) 
to obtain 

Yxz/YO = - ( r p / r ) n / ( l + n ) [ (  1 + n ) s i n ( 2 a ) / ( 2 n  sin o)]n/(l+n)sin t~ 

(I.7-141) 

Tyz/TO = (rp/r)n/( l+n)[  (1 + n ) s i n ( 2 a ) / ( 2 n  sin 0)] n/(l+n) COS O~ 

(1.7-142) 

where a is given in terms of 0 by (I.7-140). Solutions (I.7-133)-(I.7-134) 
and (I.7-141)-(I.7-142) for stress and strain agree with those presented in 
[Hut 79]. 

A generalization of the Dirichlet problem was formulated and solved 
for the isotropic hardening mode III elastoplastic problem. Alternatively, a 
generalized Neumann problem could have been proposed and solved in its 
place. Let us briefly examine this problem. 

For the Neumann problem, we specify a to /an  on the boundary a ~ .  
Since the boundary ,gf~ is circular in the transformed space (p ,  a) ,  we 
have: 

Neumannproblem:  al~ (transformed): pli~ = k. Given to t, l ,~,  find 
to( p, c~) that satisfies (I.7-96). 

Now by the chain rule 

to, p = to Csc t, + to ,Tr/,p = - w  r a -  to ,Tsin a .  (I.7-143) 

Therefore,  

w t, la~ = - w  Cliff, cos a - to,Tl,~sin a = - 2  cos a - )3  sin cr (I.7-144) 

-- - [ R ( 1 - 2 t  2) + f i R ] c o s c r -  2Rt(1 - t 2 )  l/2sm" a (I.7-145) 

= - t  t [ R [ 1 - 2 ( r / / k ) 2 1 a n  I , _  . _.  , + / 3 R ] c o s c ~ - 2 R ( s C r / / k 2 ) l a n s i n c ~  
1 

= - [ R  - (2R/k2)p2 la~s inZa  + fiR]cos a 

- ( 2 R / k Z ) p 2 l a ~ c o s  a sinZa 

= - ( 1  + /3)R cos a .  

(I.7-146) 

(I.7-147) 

(I.7-148) 
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Using (I.7-105), we calculate 

tO, p = m p m - l [ c l s i n ( c a )  + c2cos(ca)]. (1.7-149) 

Thus by (I.7-116), (I.7-149) evaluated on the boundary becomes 

toplan = m k  m- l [Cls in(ca)  + c2cos(ca)] .  (I.7-150) 

Setting c 1 = 0, m = - n  (c - 1), we determine from (I.7-148) and (I.7-150) 
that 

m k m - l c 2  = - ( 1  + f iR)  ~ c 2 = (1 + f l ) ( R / n ) k  l+n, (1.7-151) 

which differs in form from c2 determined earlier for the generalized 
Dirichlet problem (I.7-119). However, once we set /3 equal to its relation- 
ship with n (I.7-129) in both expressions for c 2, we get identical results: 

c 2 = 2 R k l + n / ( n  + 1). (1.7-152) 

1.8 PLANE STRAIN PROBLEMS INVOLVING PLASTIC THEORY 

As we mentioned in Section 1.4, there are two principal types of plane 
problems of elasticity theory--plane  strain and plane stress problems. In 
addition to these two classifications in plasticity theory, we also consider 
individually the two most commonly used yield cr i ter ia-- the Mises and the 
Tresca yield conditions. As plane strain is the simpler of the two plane 
problems to describe (because the governing equations for the Mises and 
Tresca yield conditions are similar and do not vary from one part of the 
yield surface to another as in plane stress), we begin our discussion there. 

Plane  Stra in  
In plane strain, we make the assumption that the displacements Ux(X, y), 

Uy(X,y), and u z ( x , y )  are functions only of the plane of symmetry's 
Cartesian coordinates x, y [Kac 74]. It follows from the third equation of 
(1.1-8) that 

G = O, (1 .8-1)  

which is, of course, the earmark plane strain condition. We now make the 
assumption that all elastic strains are negligible. Therefore, (1.8-1) repre- 
sents not only the plastic strain, but the total strain. From Hencky 
deformation theory (I.3-36), equation (1.8-1) implies 

1 = ~(~r x + %). (I.8-2) 
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Fur the rmore ,  the stresses ~'zz and Zyz are zero f rom Hencky theory,  
because no corresponding shear  strains exist by (I.3-38)-(I.3-39),  due to 
equat ions (I.8-1) and (I.1-18)-(I.1-19), with the added assumpt ion that  the 
displacements  are functions only of x and y. Thus the stress tensor  
reduces to the form 

O" x Txy 0 

r~y try 0 . 

0 0 o" z 

(I .8-3) 

If we set ~-~ and Zy~ equal to zero in the Mises yield condi t ion (I.3-1) 
and then substi tute (I.8-2) for o- z and (I.-13) for o" 0, we find the plane 
strain yield cri terion as 

)2 4zZy 4 k  2 (o-~ - % + = . (I .8-4) 

The Cay ley -Hami l t on  theory [SC 92] allows the de te rmina t ion  of the 
principal stresses o" i of the general  stress tensor  by evaluating the follow- 
ing de te rminan t  and setting the result equal to zero: 

r  r i Zxy Zx~ 

z, v <rv - <r i Zyz = o. ( I . 8 - 5 )  

In our  part icular  case (I.8-3), we have 

cr x - o- i zxy 0 

Z~y % - ~r~ 0 = 0 (! .8-6) 

0 0 (r~ - er~ 

+ (O~x - o-  i ) (  O-y - o-  i ) (  o-  z - o-  i )  - T } y (  o" z - -  o-  i )  - -  0 ( I . 8 - 7 )  

--+ (~; - ~)[  ~,2 - ( ~ x  + ~ y ) ~ ,  + ~ - G ]  = 0 .  ( I . 8 - 8 )  

The three roots r (i = l, 2, 3) of the cubic equat ion (I.8-8) follow as 

I l 
~rz = 5(~rx + ~ry) via (I .8-2),  (I .8-9) 

Or/ -- 1 1[ )2 2] 1/2 
5(o-x + G )  + 5 (o-~ - o-y + 4zxy . (1.8-10) 

Thus 07 is a principal stress by (I.8-9). By fur ther  substituting (I.8-9) into 
(I.8-10), we show it to be the in termedia te  principal stress. 
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Since the maximum shear stress is always one-half of the greatest 
difference in principal stresses, it follows from (1.8-9)-(1.8-10) that 

= 1 )2 47.2y ] 1/2 
"rma x -~[( Or x --  O'y + . ( I . 8 - 1 1 )  

Setting Tma x --  k in (I.8-11) and squaring the result, we find the same form 
for the Tresca yield condition in plane strain as in the Mises condition 
(I.8-4). Do note, however, that they will not assume identical forms if o- 0 is 
used rather than k in expressing the plane strain yield criteria, as the 
relationships between k and ~r 0 differ, i.e., (I .3-2)versus (I.3-4). 

Note further that Hencky deformation relationships were used in deriv- 
ing (I.8-4), and therefore the result should hold true only for the Mises 
yield condition. Nevertheless, if we start with (I.8-4) and derive the plane 
strain flow rule for the Tresca yield condition, we obtain similar plane 
strain flow equations, and subsequently a deformation theory similar to 
that of the plane strain Mises yield condition. 

For example, from (I.8-10) we deduce that 

h ( < )  - 1 ( 0 . 2  _ 0.3)  . (I.8-12) 

Now in general 

d G = dA{[ Oh( O ' i ) / a O "  1 1[ O~O'l/aO" x ] 

-+- [ O h (  0"i) /0~0" 2 ][ 0~0"2/O0" x ] 

-+-[ O h (  0 - i ) / a o v 3  ] [ c)0-3/c)o-  x 1}, (I.8-13) 

and by (I.8-12) for the Tresca yield condition we have 

1 
Oh( o - i ) / ao  1 = O, Oh( o))/Oo- 2 = 7, 1 ( I . 8 - 1 4 )  3h( ~ ) / Ocr3 = 2 "  

From (I.8-10), we determine for plane strain that 

! , _ [ _ ] &r2 / &r . = 5 + 5 ( o .  ~ ) / ( ~r. ~v ) 2 + 4 r2 1/2 (I.8-15) 

O~O'3/O~O'x = 2 ,3(O" x -- ~Ty) /  (O" x --  ~Ty + ~'-~l (I.8-16) 

By further substituting (I.8-11) and (I.8-14)-(I.8-16) into (I.8-13), we obtain 
the plane strain Tresca flow rule in the x direction as 

, )2 47.2y ] l / 2  dex = dA ~(m - o y ) / [ ( m  - ~ry + (I.817) 

= dA(~r, - % ) / 4 k .  (I.8-18) 
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This has the same form as the P rand t l -Reuss  (Mises) flow rule (1.3-28), 
once (1.8-2) is substituted for o-z. One can show that d e.y and d T x y  have 
similar relationships with stress for the two different yield criteria (Mises, 
Tresca) under  plane strain loading conditions. 

From (I.8-9)-(I.8-10), we found one principal direction, which was in the 
z direction. Let us now find the other  two principal directions that 
correspond to the principal stresses (1.8-10). These directions will be in the 
x, y plane, as principal directions are mutually orthogonal.  

In general, the principal directions n of a stress tensor can be found 
through the matrix equation llnxl (o} 

Tx  y O'y - -  Or i Ty  z ' n y = 0 , 

"r~ z "ry ~ o" z - t r  i n z 0 

(I.8-19) 

where the components  ( n  x ,  etc.) of the principal directions (direction 
cosines) fulfill the condition of a unit vector: 

2 ~.. 2 + n 2 1 (I.8-20) n x n y  z ~ " 

By setting 

nx = cos to, ny - -  sin to, n~ = 0 (I.8-21) 

in (I.8-19), we fulfill the unit vector condition (I.8-20) for an in-plane 
principal stress direction in terms of a local cylindrical coordinate to. 
Equation (I.8-19) reduces to the following when (I.8-21) and ~'xz = ~'yz = 0 
are substituted into it: 

o/cos to = OrxCOS to + ~'xySin to (1.8-22) 

oisin to = TxyCOS to d -  trySin to. (I.8-23) 

Eliminating o- i between equation (I.8-22) and (I.8-23), we find through the 
use of elementary trigonometric relationships that 

tan 2w = 2~'xy/(O" x - O-y) (I.8-24) 

where w represents two different angles that correspond to the in-plane 
principal stresses (I.8-10) measured counterclockwise from the positive 
x-axis. These principal directions lie 90 ~ apart in the xy plane. 
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Let us now seek stresses of the form 

tr x = o" - k sin 2 X (1.8-25) 

try = o" + ksin 2 X (1.8-26) 

Txy -~- k cos 2 X, (1.8-27) 

so that the yield condition (1.8-4) is automatically satisfied. 
The function of tr of (1.8-25)-(1.8-26) is shown to be the hydrostatic 

stress. The hydrostatic stress is in general one-third of the trace tr( ) of the 
stress tensor, ~r~j, i.e., 

hydrostatic stress = ( 1 / 3 ) t r  o-ij = (tr  x + try + trz)/3.  (1.8-28) 

In our case, we may further substitute (1.8-1) for o- z and (1.8-25)-(1.8-26) 
for tr x, try to obtain 

( l / 3 ) t r  o- u = [o- x + O-y + (o-  x + O - y ) / 2 ] 1 3  = (o -  x + % ) / 2  = G. (1.8-29) 

Thus or in (I.8-25)-(I.8-26) may be interpreted as the hydrostatic stress. 
The planes of maximum shear stress k always bisect the orthogonal 

planes of principal stresses (normal stresses) [SC 92]. We will now show 
that X in (1.8-25)-(1.8-27) is related to these shear planes. 

By substituting (1.8-25)-(1.8-27) into (I.18-24), we find 

tan 2 to = - cot 2 X (1.8-30) 

---, cos 2 to cos 2 X + sin 2 X sin 2 to = 0 (I .8-31) 

---, cos2( to  - X) = 0 ~ 2 ( t o -  X) = •  ~ X = to -T zr/4. 

(I .8-32) 

We now arbitrarily assign to to correspond to the largest principal stress 
direction and X to the upper sign of (I.8-32), i.e., 

X = t o -  zr/4. (1.8-33) 

The other maximum shear plane (it is also perpendicular  to the xy plane) 
will be 90 ~ counterclockwise to the X plane. These planes are shown 
edge-on in Fig. 1.8-1 in connection with the maximum shear stresses k. 

The equilibrium equations of plane strain plasticity, in terms of stress, 
are identical to those for plane strain elasticity (1.4-5) because the corre- 
sponding stresses vanish. 
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Plane strain slip lines, stresses, and associated angles. 

Thus, by substituting (I.8-25)-(I.8-27) into the equilibrium equations 
(I.4-5), we find the simultaneous partial differential equations for o- and X 
of a stress field that will satisfy both equilibrium and the yield condition 
(I.8-4), i.e., 

ox  -- 2 k ( x , ~ c o s 2 x  + X, y S i n 2 x )  = 0 

O ' , y  - -  2k( X, xsin 2 X -  X, yCOS2X) = O. 

(I.8-34) 

(I.8-35) 

A natural orthogonal coordinate system exists for (I.8-34) and (I.8-35), 
which is based on its two families of orthogonal characteristics. (This 
system of equations can be shown to be hyperbolic.) One of these coordi- 
nates is tangent to X, and the other is 90 ~ counterclockwise. We will 
designate these plane coordinates as (c~,/3). Since c~ and /3 align them- 
selves with planes of shear stress k, they may also be interpreted physically 
as slip lines (Fig. 1.8-1). 

Let us first define the symbol S for simplicity in notation of what is to 
follow: 

S = o-/(2k) .  (I.8-36) 

With this definition, the system of partial differential equations (1.8- 
34)-(I.8-35) can be rewritten as 

X,x )(,y 
-X,y X,x 

(cos2x  (Sx) 
sin 2 X = S' y 

(I �9 
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Solving for cos 2 X and sin 2 X, we find 

2 c o s 2 x  = (S, xX, x -  S, yX ,  y ) / (  X,2x -}- X,y) (1.8-38) 

2 s i n 2 x  = (S, yX, x -  S xX, y ) / (  X, 2 + X,y). 

Now using the trigonometric identity 

cos 22 X + sin2 2 X = 1 (1.8-40) 

and (I.8-38)-(I.8-39), we obtain 

2 (1.8-41) S 2 --}- 8 2  "-- ,)(,2 x -I-- ,)(,y 
, x  , 

This can also be expressed as 

VS.  VS = VX" VX. (I.8-42) 

Let us now assume that 

S = S( a , / 3  ), X = X ( a , / 3  ) (I.8-43) 

with 

a + i~ = F (x  + iy), (I.8-44) 

where F( ) is a function amenable to a particular initial value problem. 
Equation (I.8-44) is similar in form to the conformal mapping transforma- 
tion (I.5-50). Because a and /3 are the real and imaginary parts of a 
complex function of z, i.e., F(z) ,  they form an orthogonal coordinate 
system and hence a slip line network ( a ,  13). 

The Cauchy-Riemann  equations associated with (I.8-44) follow as 

a ,  = /3 y a y = - / 3  x- (I.8-45) 

Thus by (I.8-45) a and /3 are solutions of Laplace's equation 

Ol.,x x -Jr- Ol, yy --" O, J~,xx + ~ , y  y --  0 o r  V20r --  O, V2/3 --  O. 

(1.8-46) 

We can also establish the following relationships from analytic function 
theory: 

V a - V a  = V]3. V/3 (I.8-47) 

Va.  V/3 = 0 (orthogonality).  (I.8-48) 

Using the chain rule, we can further prove that 

VS( a , / 3  ) = S .  Va + S, ~ V]3 (1.8-49) 

VX( a , / 3  ) = X, ,, Va + X, t3 V/3. (1.8-50) 

(1.8-39) 
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With the help of (1.8-49) and (1.8-50), we can now express (1.8-42) as 

2 v . .  v . [ s ? o  + s S ]  = v~ .  v~[  x?. + x, ,] .  (I.8-51) 

Because of (1.8-47), this equation is equivalent to 

2 v . .  v . [ s ~  + s 5  - x,~ - x,~] = o ~0~ (I.8-52) 

or provided Va- Va 4: O, then 

$2,,~ + $2j3 - X, 2 - X,~ = O. (1.8-53) 

Partial differential equation (1.8-53) can also be put in an alternative form 
by factoring it, as follows: 

( S  + X ) , , ( S  - X),t3 + ( S  - X ) , , ( S  + X ) , ,  = O. (I.8-54) 

We see that (I.8-54)will be satisfied if 

S + X = f ( a ) ,  S - X = g( /3 ), (I.8-55) 

where f ( )  and g ( )  are functions that are determined for a given 
boundary and initial conditions. 

Therefore, by (I.8-55) and simple algebra, we obtain a class of solutions 
(I.8-41 ) as 

I 
S = ~ [ f ( a )  + g( /3) ] ,  i 

X = 7 [ f ( a )  - g ( # ) ] .  (I.8-56) 

As (I.8-56) stands, we know that it solves (I.8-42) and that it is a 
necessary condition that it solves the original system of equations (1.8- 
34)-(I.8-35). We will now check that (I.8-56) is also sufficient to solve the 
original system of equations. (We may have introduced extraneous solu- 
tions by using the trigonometric identity (1.8-40) alone, which employs the 
squares of the functions cos 2X and sin 2X.) 

We first express the cos 2 g in terms of the functions f ( a )  and g(/3).  
The numerator of (1.8-38) is 

S,x X,x - S, yX, y 

)2 g, , x -  : ( ~ / 4 ) [ i ' ( .  + ( ~ ) ~ ] ( . ~  .~y). 

~:x)] (I.8-57) 

(1.8-58) 
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Similarly, 

cos 2 2' = ( a, 2 - a, 2 ) / (  c~, 2 + ce, 2)- (I.8-61) 

sin 2 X = 2 a ,  x Ol, y / (  Ol2, x + ~ ) . (1.8-62) 

Using the half-angle formulas from trigonometry, we also find that 

COS ,It" = O~ x / (  012 
, , x  

sin X -  a y I (  o~,2x 

which will be used later. 

q--  ,2y) 1/2 

+ 

(I.8-63) 

(I.8-64) 

Now by substituting (I.8-56) and (I.8-61)-(I.8-62) into (I.8-34)we derive 
that 

f ' ( a ) [ 0 ]  + 2 g ' ( ~ ) O e  x[Oe, x ~ , x  + Ol, y~,y]  -~ O. (1.8-65) 

By substituting (I.8-45) into (I.8-65), the second bracketed term also 
becomes zero, and hence (I.8-34) is satisfied. Similarly, (I.8-35) can also be 
shown to be satisfied. 

Having shown that (I.8-56) is sufficient to solve both equilibrium and 
the yield condition, we come to the conclusion from (I.8-55) that 

or - 2 k x  = constant l along an a line (/3 const) (1.8-66) 

tr + 2 k x  = constant2 along a /3 line ( a  const). (1.8-67) 

These relationships were obtained independently by H. Hencky [Hen 23] 
and more general relationships for soils were obtained by F. K6tter [K6t 
03]. 

whereas the denominator of (I.8-38) is 

~ = ( 1 / 4 )  f ' ( ~ ) 2 ( ~  x X,~ +X,y 

- 2 f ' ( a ) g ' ( ~ ) ( c ~  x ~,x + c~ y ~ , y )  

+g' ( /3 )2( /3 2 +/3,2)] (1.8-59) 

= ( 1 / 4 ) [ f t ( ~ ) 2  "+ - g ' (  /~)2] ( ~ ,  2 q- 0r ( I . 8 -60 )  

using the Cauchy-Riemann equations. Thus, the primed quantities (de- 
rivatives of f and g) cancel when the ratio of (I.8-58) to (I.8-59) is taken to 
calculate the cos 2 X as 
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There  are three fundamental  statically determinate  initial value prob- 
lems for plane strain (see [Kac 74]): 

(1) specifying o- and ,t' on a noncharacterist ic curve, 
(2) specifying o- and g on two intersecting slip lines (characteristics) a 

and /3, 
(3) specifying o- and X on a slip line and the angle 2' on a noncharacteris-  

tic curve. 

Returning to the strain field, we have from the P rand t l -Reuss  equa- 
tions and the plane strain relationship (I.8-2) 

d E  x = 2 dA[2o- x - (O-y + o-z) ] = 3 dA(o-~ - O-y)  (1.8-68) 

dEy  = 2 dA[2O-y  - (~r x + cr z )]  = 3 dA(o'y - c 5)  (I.8-69) 

d y x y  = 12 dA ~'xy. (I.8-70) 

Subtracting (I.8-69) from (I.8-68) and then dividing by (I.8-70), we find 

( d e ~  - d E y ) / d y ~ y  = (o-~ - %)/(2~-~y). (I.8-71) 

Equation (I.8-71) and the incompressibility equation of plastic strain 
increments (dez = 0), 

d e~ + d ey = 0, (I .8-72) 

comprise the governing equations of incremental  strain for perfectly plas- 
tic slip line theory. 

We may also divide through by a differential element of time d t  to 
obtain 

(i~x - i~y)/~/~y = (~r~ - ~ r y ) / ( 2 ~ ' x y )  (I.8-73) 

~ + ~y = 0, (I.8-74) 

where 

i~ x - d E x / d t ,  etc. (I.8-75) 

For small deformation theory, these equations may be expressed in terms 
of velocities u~, Uy in the x and y directions, respectively, as 

(Ux, x - V y , y ) / ( U x , y  + Uy ,x )  = (o" x - %)/(2T~y)  (I.8-76) 

Ux, x + Uy,y = 0, (I.8-77) 
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where 

v x = d u x / d t ,  etc. (1.8-78) 

There are now five unknowns (~r x , % ,  Txy ,  v x ,  Vy} and five equations to 
solve: (I.8-4), (I.8-34), (I.8-35), (I.8-76), and (1.8-77). The first three to- 
gether with initial conditions on stress comprise what is called the statically 
determinate problem. Having solved these, we can then proceed to find a 
kinematically admissible velocity field for the remaining two equations, 
together with their initial conditions on velocity. 

It is interesting to note that, when problems are solved in this order, the 
remaining two equations for velocity are linear partial differential equa- 
tions. However, depending on the initial conditions, it is not always 
possible to uncouple the five equations. 

We can rewrite equation (1.8-76) in the following fashion by substituting 
the stresses (1.8-25)-(1.8-27) into it: 

( U y , y  --  Ux, x ) / ( U x , y  + Uy, x )  --  t an2x .  (I.8-79) 

Using the chain rule for partial derivatives and the Cauchy-Riemann 
equations, we can establish that 

Ux,x = Ux, a Ot, x -k- Ux, ~ ~ , x  = Ux, a Og, x --  Ux, ~ 0l, y (1.8-80) 

Ux,y = Ux, otOg, y + U x , ~ , y  = Ux, o~Ol, y + Ux, flOl, x (1.8-81) 

Uy, x --- Uy, o~OL, x + U y , [ 3 ~ , x  --" Uy, o~Ol, x --  Uy,[3Ol, y (I.8-82) 

Vy,y  = V y , , ~ a  y + Uy,~ [3 y = Vy,,~O~ y + Vy,~O~ x .  (I.8-83) 

Also, because of (I.8-61) and (I.8-62), 

t a n 2 x  2a  C~y/(a 2 -- ,x , ,x --  O~,2y) (I.8-84) 

Therefore, by (I.8-80)-(I.8-84), (I.8-79) can be expressed as 

[ (U  x , ~  -- Uy, f l )Ol ,  x - - ( U x f l ,  + Uy, a )Og, y]  ( Og,2y __ , 2 ) , x  

--  2 C ~ x a y [ ( V x ,  t3 + V y , ~ ) ~ x  + (Vx, ~ - Uy, f l )Ol ,  y ] .  ( I . 8 - 8 5 )  

Several terms in (1.8-85) cancel, leaving 

Vx, . a x + Vx, t3 a y + V y , , a  y - Vy, t3 a x = 0. (1.8-86) 

The incompressibility equation (1.8-77) can likewise be expressed with the 
aid of (1.8-80) and (1.8-83) as 

Ux, ot Ol, x - Ux, fl Ol, y -I- U y, a Ol, y + U y, fl Og, x - O. (I.8-87) 
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The system of equations (1.8-86) and (1.8-87) can now be added and 
subtracted to give the algebraically simpler system 

Ux, ot Ol, x + Uy, a Ol, y --" 0 

Vx ,  fl Ol, y - -  U y, [3 Ol, x - -  O.  

(1.8-88) 

(I.8-89) 

Let us now define two velocity components  in the slip line mesh. 
One, v~,, points in the c~ direction while the other, v~, points in the /3 

direction, as shown in Fig. 1.8-2. Resolving an arbitrary velocity vector v 
into components,  we find the following relationships between Cartesian 
and characteristic coordinates: 

v x = v ~  cos X -  v, sin X 

Uy : v~sin X + v~ cos X. 

(I.8-90) 

(I.8-91) 

Substituting (1.8-90), (I.8-91) into (1.8-88), (I.8-89) and differentiating, we 
have, respectively, 

[ (v~, ~ - v s X,. )cos X - ( us , .  + us X, ~ )sin X ] a, x 

+ [(v.,~, - v~x , . ) s in  X + (v~, .  + v. X, . )cos  X] O~,y--0 (I.8-92) 

[ (v~, ,  - v , X , , ) c o s  X -  ( v , , ,  + v,, X, , )s in  X] Ot, y 

- [ (v~, ~ - v~ X, ~ )cos X + (v~, ~ - v s X ~ )sin X ] c~, x = 0. (I.8-93) 

13 slip line N I ~  r slip line 

~ t  ,., • 

FIGURE 1.8-2 
Plane strain velocity components along slip lines. 
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By further expressing cos X and sin X into terms of the partial derivatives 
of a with respect to the Cartesian coordinates (1.8-63) and (I.8-64), we 
determine 

v,~, ,~ - v~ X, ,~ = 0 (1.8-94) 

vt3, t3 + v~ X, ~ = O. (I.8-95) 

We conclude from (1.8-94) and (1.8-95), respectively, that 

d v , J d  x -  vt3 = 0 

d v t J d  x + v,~ = 0 

along an a slip line ( fl const) 

along a fl slip line ( a  const). 

(1.8-96) 

(I.8-97) 

These equations are known as Geiringer's equations after [Gei 53]. 

PrandtI-Hil l  Solution 
L. Prandtl [Pra 21] derived a plane strain slip line network for a 

lubricated punch pressing against a semi-infinite plate with an otherwise 
traction-free boundary for a elastic, rigid-perfectly plastic material. A 
similar slip line net may also be applied to a mode I crack problem [Oro 
45]. The original punch problem differs from the mode I crack geometry, 
shown in Fig. 1.8-3, in that the plate is semi-infinite rather than infinite. 
The two semi-infinite cuts in the plate comprising the mode I problem are 
separated by the distance 2a, as shown in Fig. 1.8-3. The material is 
assumed to be rigidly elastic outside the slip lines. 

We can solve the plane strain mode I crack problem for a perfectly 
plastic material, beginning with the tractionless crack surface EQ on the 
upper left-hand side of Fig. 1.8-3. The initial value problem along EQ is 
essentially type 1, where tr and X are specified on a noncharacteristic 
boundary. The functions a and X, however, are not given explicitly and 
must be obtained from equations (I.8-25)-(I.8-27) or these equations in 
combination with (I.8-4). 

This surface is tractionless, so by (I.8-27) we have 

along EQ" Txy = 0 -~ cos 2 X = 0 -~ X = I r /4  or 37r/4. (1.8-98) 

We can add 7r (and integer multiplies of 7r) to or subtract 7r from these 
two possible values of g to obtain additional values of X that will also 
satisfy r,y = 0. However, there are only two distinct axes (perpendicular to 
each other) associated with all of these angles. These axes are represented 
by those in (I.8-98), and as such, only those two values of X are consid- 
ered. 



76 Introduction 

FIGURE 1.8-3 
PrandtI-Hill slip line mesh for the mode I problem. 

A problem arises because traction and the assumption of yield do not 
allow a unique determinat ion of cr and X on EQ. We may infer that 
rxy = Cry - 0 because the surface is traction-free; however, two possibilities 
exist for o" x, i.e., _+ 2k, assuming that the material has yielded. The positive 
value of 2k corresponds to X = 37r/4, and the negative value to X = ~ / 4 .  

Either of these two values for crx will satisfy yield (I.8-4) for the known 
values of cry and ~'xy. Physical intuition tells us that the correct choice is 
2k, because the tensile forces F at infinity (Fig. 1.8-3)will induce tension 
rather than compression in the slip line network. However, since the 
assumption of a rigid elastic region is made for the region above EFG (and 
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one cannot determine stress in a rigid region), there is no direct way to 
prove this choice. 

With the assumption that o- x = 2k, the hydrostatic stress is calculated 
as k along EQ by (I.8-29)with the substitution o'y = 0. Having determined 
o" and O'y o n  EQ, the angle g of (1.8-98) is found from (1.8-26) as 37r/4. In 
summary, we have 

along EQ: 

o" x = 2k, % - -  0 ,  "l'xy = 0, X = 37r/4, or -- k .  

(I.8-99) 

The choice of the X is always arbitrarily to the extent that it can be 
associated with either of two opposing directions that lie along the same 
axis. For example, if we chose X to be 37r/4 along EQ, then the /3 
direction is 90 ~ counterclockwise to it (57r/4). Alternatively, we could 
choose X as - 7 r / 4 ,  in which case the /3 direction makes an angle of 7r/4 
with the x-axis. The substitution of either X = 37r/4 or X--  - 7 r / 4  in 
(I.8-25)-(I.8-27) naturally gives the same numerical results for the stresses, 
as each trigonometric function gives identical values for the two different 
choices of X- 

The Hencky equations (I.8-66)-(I.8-67) may now be employed to deter- 
mine the stresses interior to the boundary EQ. 

Since the angle X does not change in region EFQ, the state of stress 
does not change from the surface EQ by Hencky's equations. In general, 
any region composed of two families of straight slip lines has a uniform 
state of stress; see slip line properties due to Hencky in [Kac 74]. 

Along FQ the slip line network changes from a rectangular grid to a fan 
of slip lines and arcs of concentric circles. We thus establish a local polar 
coordinate system (r, 0 )wi th  the origin at the crack tip Q (Fig. 1.8-4). A 
side note is needed, however, to justify the use of the polar coordinate 
system. 

L O 0 

F I G U R E  1.8-4 

Polar coordinates for the slip line fan. 
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In deriving the Hencky equations, the assumption was made that a and 
/3 are the real and imaginary parts of the complex function of z, i.e., 
(1.8-44). This assumption was just a convenient was to introduce an 
arbitrary orthogonal coordinate system into the derivation. Many of the 
common orthogonal coordinates in the plane do satisfy this requirement: 
Cartesian, elliptic, parabolic, and bipolar are examples. However, polar 
coordinates do not satisfy this restriction as r does not satisfy the two-di- 
mensional Laplace equation, i.e., the operator (1.4-52) set equal to zero. 

However, this restriction is easy to overcome by using circular cylindri- 
cal coordinates in the plane ( a , / 3 )  [MS 71] rather than polar coordinates 
(r, 0). We define the coordinate system (c~,/3) for use in FGQ as 

a + i/3 = In z = ln(r  exp i 0) (1.8-100) 

---> a = In r, /3 = 0. (I.8-101) 

The function In r satisfies Laplace's equation in the plane, unlike the 
coordinate r by itself. Therefore, along a particular /3 slip line in the fan, 
c~ = c~ ~ r = c c'. Along a given c~ slip line in the fan the coordinate /3 is 
constant and equal to the local polar coordinate angle, /3 = c 2 = 0. Thus 
the slip line network FGQ shown in Fig. 1.8-3 is justified. 

Along FQ, the constant 3 of (I .8-67)equals k + 37rk/2 by its initializa- 
tion along EQ. Therefore, we have in 

fan FGQ: o + 2kO = k[1 + (37r/2)]. (I.8-102) 

The stresses in the fan follow immediately by substituting o- from (I.8-102) 
and X = 0 into (I.8-25)-(I.8-27). 

At line GQ, 0 =  7r/4; therefore, from (I.8-102), o-= (1 + 7r)k. In 
GOQ, we again have a uniform state of stress, which is determined by the 
state of stress along GQ. Using equations, (I.8-25)-(I.8-27), we find in 

region GOQ: tr x = 7rk, Ory = (2 + 7r)k, "l'xy-" 0 

as X =  7 r /4and  o ' =  (1 + 7r)k. (I.8-103) 

A different solution to the punch problem was given later by R. Hill [Hil 
50]. Hill's solution differs from the Prandtl solution, as far as stress is 
concerned, only where the rigid elastic-perfectly plastic boundary is lo- 
cated. In Hill's solution, the location of the elastic-plastic boundary 
is along LMPO rather than Prandtl 's EFG of Fig. 1.8-3. The Hill 
elastic-plastic boundary is shown in all four quadrants of this figure as a 
heavy line. Inside LMPO, Hill's stress field is identical to Prandtl's. 

The forces F at infinity must be carried by the plastic material between 
the two crack t ipsma  distance 2a in both Prandtl and Hill solutions. 
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Between the crack tips the plastic stresses are constant in both solutions. 
This allows us to calculate easily the magnitude of the force F in terms of 
the yield stress in shear. 

In the Prandtl and Hill solutions, t r y -  k(2 + ~r) along the crack axis 
between the two crack tips. Therefore the force F per unit plate thickness 
required for equilibrium is 

F = 2ka(2 + 7r). (I.8-104) 

Although the Prandtl and Hill solutions have a common stress field, 
there are differences between velocities. We will begin our discussion of 
velocity with the Prandtl solution. 

First of all, the boundary conditions on velocity must be discussed. The 
normal component of velocity across the elastic-plastic boundary must 
always be continuous; otherwise, we would have cracks appearing along 
the interface [Kac 74]. The tangential component of velocity, nevertheless, 
may be discontinuous. 

For the Prandtl mode I problem, let us assume that the upper and lower 
elastic regions are moving in opposite directions (up and down, respec- 
tively) with a speed V, as rigid bodies in translation (Fig. 1.8-5). 

In the region containing GOQ, we have two orthogonal families of 
straight slip lines. In any region having this property, the stresses are 
uniform and the velocities are related to rigid body motion. This is easily 
verified using the Hencky and Geiringer equations, taking g constant. 

Through symmetry arguments, the diamond-shaped region surrounded 
by the broken lines must remain motionless. 

V 
Rigid �9 V f V cos .0 
Elastic T ,4~'.f",,,... ~" v stn u 
Material / / ~  V . . . . . .  

,, F .- ~ V[(1/V'2)-cos O] " ~,,I ,.~ i ~ . ,  . . . . .  '" .,. 
v / ~ . . _ _ ~  , - ~ -  ~ x _  veloci ty " , ,  

- " \  .- "~ \ I f ~ / / ~ ~  D i s c o n t i n u i t i e s ~ , ,  
_~. I ,>,<, X \ LJ_Jvsin O: .  , , ,  / \ 

V/%/'2 "1,4" " ~  \ ~ I /"7,,.," \ / \ _  / Plastic \ \ 
/ / " ~ .  / " , .  , \ \ \ I / / . "~  /'~, /'~ / Block x 

E z, Vl~v/~.<~/2~/~ "~'~'/~." X2a/,., X2a / \> / undergoing \ \  
" ~ /  " , , , , /  \ / ~ I E  / ~ ~ w / "  ~ \~__./ Rigid Body Motion \ 

Q .. Rigid Plastic Block / 
\ / 

,, Motionless / 

V 2  aK'\ / /  
\ / 

\ I 
\ /  

V 

FIGURE 1.8-5 
Prandtl solution--mode I velocities. 
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In the fan FGQ, the normal component of velocity must be continuous 
across the elastic-plastic boundary FG, which is V sin 0 in the a direction 
(see Fig. 1.8-3 for ( a , / 3 )  directions), i.e., 

fan FGQ" v,~ = V sin 0. (1.8-105) 

By Geiringer's equation (1.8-96), the velocity v~ does not change with the 
radius r in the fan (Fig. 1.8-4) because, in this particular case, X = /3  = 0; 
therefore dx  = d/3 = dO = 0 along an a line (in general /3 = constant 
along any a line). 

Therefore, there is a velocity discontinuity separating the fan from the 
diamond-shaped region. (Velocity discontinuities are designated by broken 
lines in Fig. 1.8-5.) 

In general, velocity discontinuities occur tangentially either across slip 
lines or envelopes of slip lines [Kac 74]. 

The velocity normal to slip line GQ must be continuous, and it is 
therefore zero as it borders the motionless plastic block. The component 
of velocity in the /3 direction of the fan FGQ is determined by (1.8-105) 
and Geiringer's equation (I.8-97)where X is the polar coordinate 0 (Fig. 
1.8-4): 

dvt~ + v, ,dO= O ~ dv~ = - V  sin O dO (I.8-106) 

-~ ,,. = - v f  sin 0 dO --, t~t3 = V cos 0 + c~. (I.8-107) 

The boundary condition across GQ (0 = 7r/4) is t~'t~ = 0. Therefore, the 
constant of integration Cl of (I.8-107) is evaluated and vt~ is obtained as 
follows: 

fan FGQ" V c o s T r / 4 + c  ! = 0 ~ v t 3 =  V [ c o s 0 -  (1/21/2)].  (I.8-108) 

In EFQ the component of velocity across the elastic-plastic boundary 
EF is continuous; therefore, 

region EFQ" v~ = I/'/21/2. (I.8-109) 

This velocity is constant in EFQ because of the mutually perpendicular 
straight slip lines in this region. The velocity in the /3 direction in EFQ is 
obtained from (I.8-108)with 0 = 37r/4. This initializes vt3 in Geiringer's 
equation (1.8-97) along FG for use in region EFQ. As X does not change 
in EFQ ( g  = 37r/4), we have 

region EFQ" v~ = - 2 1 / 2 V .  (I.8-110) 
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FIGURE 1.8-6 
Hill solution--mode I velocities. 
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The Hill velocity field differs from the Prandtl in that there is no 
diamond-shaped motionless block separating crack tips (Fig. 1.8-6). Sym- 
metry arguments again rule out a velocity vy in the two connecting plastic 
regions--one  of which is designated OPQ. However, these two plastic 
blocks, touching the origin O of the Cartesian system, can now move 
incrementally toward each other, as the rigid plastic material above OP 
has been replaced with rigid elastic material which is moving in the vertical 
direction. 

Across OP the velocity is continuous so that 

region OPQ" v,  = V/21 / 2. (1.8-111 ) 

From the lower side perpendicular to OP a similar argument yields 

region OPQ" uts -- - V/21/2.  (I.8-112) 

These two components of the velocity in region OPQ add as vectors to give 
(see Fig. 1.8-6) 

region OPQ" v x = V, Vy = 0. (I.8-113) 

Note also that, unlike the Prandtl solution, there is no velocity discontinu- 
ity tangential to PQ in the Hill solution. 

Along PQ the normal velocity is given by (I.8-112). The Hill velocity in 
the fan is obtained in a fashion similar to the Prandtl velocity to give 

f a n  MPQ" vts = V ( c o s  0 -  2 1 / 2 ) .  (I.8-114) 

The a component in the Hill fan is obtained as in the Prandtl fan: 

fan MPQ" v,  = V sin 0. (I.8-115) 
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Using 0 = 37r/4 in (1.8-114)-(1.8-115), we find that along MQ 

line MQ" v,~ = I//21/2, vt~ = -31/'/21/2. (1.8-116) 

Continuing the velocity component v~ across L M  and the second equation 
of (I.8-116) allows us to determine that in 

region LMQ" v,~ = I 7 / 2 1 / 2 ,  U/3 = - 3 V / 2 1 / 2 .  (1.8-117) 

The Hill mode I stress and velocity fields may also be found in [Kac 74, 
pp. 189-190]. Note that Kachanov takes his a and /3 lines in the opposite 
sense to ours. This shows their arbitrary nature with respect to signs. 

Failure Criteria 
The Griffith criterion [Gri 20] of brittle fracture relates the release of 

stored elastic energy (linear elastic theory) to the breaking of bonds 
between atoms and the creation of a new surface. Orowan [Oro 50] 
extended this idea to include ductile materials. The rate of release of 
stored elastic energy ,~, which can also be used as a critical parameter for 
crack growth with limited plasticity [Irw 49], can be related to the stress 
intensity factor by the formulas (see [Her 76]) 

Plane strain" K ! = [ f iE / ( 1 - v 2 ) ]1 / 2 (I .8-118) 

Plane stress" K l = ( f iE ) 1 / 2, (I .8-119) 

where E and v are Young's modulus and Poisson's ratio, respectively. 
Because of the relationships between ~' and Ki, the concept of a critical 
-~'Ic is equivalent to a critical stress intensity factor K~c. In experiments, 
K~c in plane strain (thick plates) is conservative relative to the critical 
stress intensity factor for plane stress (thin plates) for identical values of 
stress intensity fac tor - -an  exception being extremely thin plates (e.g., 
foils) [Kno 73, AM 88]. The stress intensity factor K~c is a material 
parameter called the fracture toughness. A critical stress intensity factor 
can likewise be defined for modes II and III. 

If the fracture toughness is not constant, but instead varies with the 
change in crack length 5a ,  the question of stability arises. This problem is 
addressed by use of the resistance curve or R curve (see [Hut 79, p. 19; 
Her 76, p. 288]. 

The concept of ff can be extended to potential energy involving 
nonlinear elastic materials (e.g., deformation theories of plasticity) through 
use of the J integral [Ric 68b, Cher 67]: 

Jv  -- f F W d y  - t'U,x ds (1.8-120) 
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D 

FIGURE 1.8-7 
Path-independent J integral. 

where F is a closed path ABCDEA surrounding the crack tip (Fig. 1.8-7), s 
is an arc length along F (having an outward normal n) upon which a 
traction t acts and displacements u are evaluated. The symbol W in 
(I.8-120) is the strain energy density, 

+ fr dyxy + f**z dyxz + dyyz, (I.8-121) 

where each integral is evaluated from zero strain to the maximum strain. 
The J integral may be applied to all three modes of fracture. 

It can be shown that [Ric 68b] 

Jl"-- 0, (I.8-122) 

for any closed path (counterclockwise) involving an elastic material (linear 
or nonlinear) that does not encompass a singularity. There are no contri- 
butions to Jr along the flat surfaces AE and CD because dy = 0 and 
t = 0. Therefore, 

Jl', + Ji'2 = 0, (I.8-123) 

where F~ is the path ABC and F 2 is the path DE, i.e., along the blunted 
notch. Along the rounded crack tip t = 0; thus Jl'2 reduces to 

J~'2 = fDE Wdy" (I.8-124) 
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We define the J integral as 

J - Jr2 = - J r , .  (1.8-125) 

Since the choice of F 1 is arbitrary, the evaluation of J is related to a 
path-independent integral. For a true crack rather than rounded notch, F 2 
needs to be approached in the limit as the curve DE degenerates to a 
point. 

If the mode I small-scale yielding solution for plane strain is substituted 
into (I.8-125), we obtain 

j = K 2 / [ E ( 1 -  1,2)] =.~ .  (I.8-126) 

Taking into account all three modes of failure simultaneously, we find that 
for small-scale yielding under plane strain loading conditions 

J = (K  2 + K2~)/[E(1 - /22)]  -+.- K2~,/(2G). (I.8-127) 

If the potential energy per unit volume is defined as H, then J may be 
interpreted as 

J = - a l l / a a ,  (I.8-128) 

that is, the energy release rate for crack growth, where a is the crack 
length. (See [Her 76, Hut 79] for a discussion of the experimental determi- 
nation of J.) 

Equation (I.8-127) assumes that the elastic strain energy released goes 
toward the creation of new crack surfaces. This ignores another possibility 
of failure in the form of plastic collapse. This type of failure, applied to 
crack problems, is quite distinct from the J-integral or ~ approach. An 
attempt to combine these two failure c r i te r ia - - the  fracture assessment 
d iagram-- is  discussed in Section 2.4. 

There are two theorems of plasticity theory that are useful in establish- 
ing bounds of loads regarding failure by plastic collapse [Cal 85, Men 68]. 
They are 

LOWER BOUND THEOREM: A body in equilibrium with its" external forces 
such that all stresses are at or below yield is either safe from plastic collapse or, 
at worst, has collapse impending. 

UPPER BOUND THEOREM: A body for which the rate of external forces do 
work equals or exceeds the rate at which energy is being dissipated internally 
must experience plastic collapse, provided a kinematically admissible velocity 
field is possible. 
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Let us now examine some simple cases of the upper and lower bound 
theorems. Our first example will be the lower bound theorem applied to 
the same geometry used for the plane strain Prandtl-Hil l  mode I crack 
problem involving an elastically rigid-perfectly plastic material. 

The stress distribution chosen is shown in Fig. 1.8-8. This has an 
extremely simple stress distribution. Between the crack tips B and C, 
plastic material exists. Two stress discontinuities pass through the crack 
tips and extend to infinity. Normally, stresses in a rigidly elastic region 
cannot be determined; however, in this special case, it is possible. Across 
the elastic-plastic boundaries no force is transferred. Thus we may take 
the normal and shear stresses across the interface to be zero. Because the 
crack surfaces are also tractionless, we may assume further, that the elastic 
stresses are zero everywhere. 

The resultant forces F per unit plate thickness at infinity, as shown in 
Fig. 1.8-3, would have, in this case, the magnitude 

FLB ' -- 4ka. (1.8-129) 

The subscript LB~ on F in (I.8-129) designates it as lower bound (number 
one). The conditions of the lower bound theorem are met because we have 
found a stress distribution that is everywhere at or below yield and in a 
state of equilibrium. 

We may apply an arbitrarily pressure to the plastic stresses shown in 
Fig. 1.8-8 without changing the yield status. Let us apply a pressure 
p = - 2 k  to the previous plastic stresses to obtain the new state shown in 
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First lower bound stress distribution for the mode I crack problem. 
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FIGURE 1.8-9 
Second lower bound stress distribution for the mode I crack problem. 

Fig. 1.8-9. To reestablish equilibrium, we must now change the yield status 
of the previously elastic region to that of a plastic state. A uniaxial tension 
2k will maintain equilibrium across the elastic-plastic boundary, while 
meeting the tractionless boundary condition across the crack surfaces. This 
will give us a new lower bound of 

FLu 2 = 8 k a ,  (I.8-130) 

which is higher than the previous value. 
A more complicated geometry involving several stress discontinuities for 

the punch problem by Shield and Drucker [SD 53] gives, in the analogous 
mode I crack problem (Fig. 1.8-10), a still higher lower bound of 

F I . B 3 - -  lOka. (I.8-131) 

The first two lower bound values represent applied forces F on infinite 
plates that would be safe from plastic collapse, as they both have values 
lower than the third. The third lower bound force, however, might corre- 
spond to the limit load, which is defined as the load at which plastic 
collapse occurs. 

Let us now turn to problems related to the upper bound theorem. We 
use the Prandtl and Hill velocity fields to calculate the rate of dissipation 
of energy for the mode I problem. Neither of these two solutions could 
have been used earlier for the lower bound theorem, because we cannot 
guarantee that the rigid elastic material did not violate yield, as the 
stresses are indeterminate in the elastic regions. 
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FIGURE 1.8-10 
Third lower bound stress distribution for the mode I crack problem. 
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There are two distinct ways that energy is dissipated: One is through the 
plastic deformation itself, and the other  is through friction generated 
between adjacent surfaces having relative motion. 

Mathematically,  the upper bound theorem may be written as 

where 

f tvdS + f f ' v d V  >_ f udv + f t/~" AvdS (I.8-132) 
S V V St~ 

0 ~ O'x~. x -] O'yEy + O'z~. z + Txy~/xy Jr- Txz~/xz Jr- Tyz~/yz, ( I . 8 - 1 3 3 )  

and where t is a traction acting on a surface S of the body, f is a body 
force, V is volume, Av is the relative velocity between surfaces S p which 
dissipate energy through a traction t o.  

For the mode I upper bound analyses, we will assume that body forces 
(such as weight) are negligible, i.e., f = 0. 

The first integral on the left-hand side of equation (1.8-132) will be 
designated P for external power supplied. The first integral of the right- 
hand side will be designated D 1 , and the second integral D 2. 

We begin our analysis with the Prandtl  velocity field. Because of 
symmetry we consider only one quadrant  of the plate. For the rigid plastic 
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blocks, the integral b I is zero. This leaves only the fans for the determina- 
tion of b 1 . It is convenient to use polar coordinates in the fan F G Q .  The 
polar strain rates ~r, ~0, and ~rO are analogous to the polar strains 
(I.4-53)-(I.4-55), after we make the substitution v r for Ur and v o for u o. 
The transformations between the slip line velocities and polar velocities in 
the fan F G Q  are u r = l)(~ and v o = vr The evaluation of ")/rO follows from 
analogy to (I.4-55) as 

~/rO = 2i~rO = V / ( 2 1 / 2 r ) .  (1.8-134) 

All other strain rates are zero. The integral /91 reduces to the contribu- 
tions of the four fans, where for one fan F G Q  we have 

�9 = f3~/4f 2'/2~ 
DFGQ~ ~ 7r/4 ~0 7"r~176 (1.8-135) 

With the substitutions (I.8-134) and the following stress into (I.8-135), 

~'rO = k (I.8-136) 

we find for fan F G Q  

DF~;O l = r r a k V / 2 .  (I.8-137) 

The calculation of b 2 is related to three different surfaces for each 
quadrant. For the upper left quadrant we have the boundaries between the 
elastic and plastic regions (EF,  F G )  and the boundary between the plastic 
fan and the motionless plastic block ( G Q ) .  These are, respectively, 

D~F, 2 = fr.F t" Av d S  = k V ( 2 1 / 2  - 2 - 1 / 2 ) ( 2 1 / 2 a )  

= k V a  (I.8-138) 

DFG2 = fp'Gt" A v d S  = kf37r/4V(cos., 7r/4 0 -k- 2 -1/2 -- COS O ) ( 2 1 / 2 a ) d O  

= 7 r k V a / 2  (I.8-139) 

= f(;  t -Av  d S  = k ( V 2 - 1 / z ) ( 2 1 / 2 a )  = k V a .  (I.8-140) DGQ2 Q 

The total rate of work done P by the two external forces F is, by 
(I.8-104), 

P = 2 F V =  4ka(2 + 7r)V. (I.8-141) 
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In order for the upper bound theorem to be satisfied, we need to prove 
that (considering only one-fourth of the total power because of the 
previous symmetry considerations) 

P / 4  > DFGO, -t- DEF 2 + DFG 2 -'l- DGQ 2 ( I .8 -142)  

ka(2  + r r ) V  > r r k V a / 2  + kVa + r r k V a / 2  + kVa (1.8-143) 

0 > 0. QED (I.8-144) 

Thus the load F of the Prandtl stress and velocity fields (I.8-104) provides 
an upper bound for the limit load FuB. 

We now examine the Hill mode I problem and compare its upper bound 
with Prandtl's. 

The greatest difference between the Hill and Prandtl problems is the 
elimination of friction between the two plastic regions. This would reduce 
the dissipation rate were it not for the addition of new friction at the 
boundary OP between the rigid elastic material and plastic region OPQ.  

The contributions to 151 are again related to the fan. In M P Q ,  we have 

�9 = f3~/4f"/2 ' /2Tro~/rordrdO" 
DMI'Q~ " rr/4 JO 

With the substitution of (I.8-136) for fro and 

~/rO = 21/21/ /r  

for ~/r0, we find 

15vpQ, = r r k V a / 2 .  

(I.8-145) 

(I.8-146) 

(I.8-147) 

The losses due to fr ic t ion b 2 are along OP, MP,  and L M .  They are, 
respectively, 

D o t ,  = fo  t . Av dS = k V ( 2  -1/2 _+_ 2 - ' / 2 ) ( a 2 - 1 / 2 )  = kVa (I.8-148) 

15Me'- = fMt't" AV dS = f f~Tf4kV[2  '/2 - cos 0 + cos 0 ] (a2-1 /2)dO 

= k V ( 2 1 / 2 ) ( a 2 - 1 / 2 ) ( r r / 2 )  = r r k V a / 2  (I.8-149) 

Ol. M 2 fz Mt . Av dS  = k V [ ( 3 / 2 1 / 2 )  - ( 1 / 2 1 / 2 ) ] ( a 2 - 1 / 2 )  = kVa.  

(I.8-150) 
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The external power term for Hill's solution will be the same as that for 
Prandtl's solution. Thus, in order for the lower bound to be satisfied for 
the Hill solution, we must have 

P / 4  > bMpQ, -I- Oop  2 --1- OMp 2 + DLM 2 (I.8-151) 

ka(2 + 7r)V > 7rkVa/2  + kVa + ~rkVa/2  + kVa (I.8-152) 

0 > 0. QED (1.8-153) 

Therefore, by (I.8-44), the Hill solution also satisfies the upper bound 
theorem. 

Because the external forces F are the same for the Prandtl and Hill 
solutions, they provide the same upper bound FUB. 

Through the use of the Shield-Drucker stress field for a lower bound 
FLB~ and the Prandtl-Hill  slip line fields for an upper bound FUB, we have 
now bracketed the actual limit load F* to a narrow margin, 

FLB 3 < F* _< FUB (I.8-154) 

lOka <_ F* <_ 2ka(2 + 7r) (I.8-155) 

lOka <_ F* <_ 10.2832ka, (I.8-156) 

for this particular crack geometry. 
As a final comment on the dissipation rates, one must discard analyses 

if they contain a negative rate of dissipation. Under such circumstances, 
energy would have been created by plastic deformation. This is unaccept- 
able physically because energy is lost through heat during plastic flow. 

The author is indebted to Professor R. T. Shield for bringing to his 
attention the analogous Prandtl-Hill punch limit load analysis. 

Power Law Hardening Materials under Plane Strain 
Several investigators have obtained power law hardening solutions of 

the mode I crack problems involving plastic deformation theory [Hut 68a, 
RR 68, Cher 67]. This type of solution, together with its associated stress 
and strain fields, has acquired the abbreviation HRR in the literature. 

This problem has the same homogeneous boundary conditions along 
the semi-infinite crack seen in the small-scale yielding mode I solution for 
linear elasticity. At large distances from the crack tip, the stress and strain 
decay to zero in a manner that resembles the small-scale yielding linear 
elastic solution; they do so, however, at different rates, which are deter- 
mined by the power exponent n of the hardening law. 

The material response, which is determined from uniaxial tensile test 
data, is assumed to be nonlinear elastic. Alternatively, it may be viewed as 
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a plastic material obeying a deformation theory satisfying the Mises yield 
condition (J2 deformation theory) with isotropic hardening of the form 
(Ramberg-Osgood model without a linear elastic contribution) 

IE/IE 0 --  Of(O'/O'0 )n, 1 < n < ~ (1.8-157) 

where a, n are material constants; E, cr are the strain and stress in the 
direction of the uniaxial load; e 0, o- 0 are the yield strain and yield stress, 
respectively; and ~r 0 = EE 0, where E is Young's modulus. 

Following the procedure described in [Hut 68a, Hut 68b, Hut 79], an 
equivalent stress is defined as follows: 

~-- 3 [ )2 2 ]  O'e2 = 3J 2 X[ (~  - o" 0 + 4ZrO l plane strain (polar), (I.8-158) 

where J2 is the second invariant of the deviatoric stress (see, e.g., [Men 
68]). For our purposes, it is sufficient to note that the second invariant of 
the deviatoric stress is equal to 

J2 = (1 /6)H(o- i : ) ,  (1.8-159) 

where H(o-ij) is given explicitly by (I.3-26) in Cartesian coordinates. 
The stress-strain relationships used for plane strain are 

er/ff()-- ( 3 / 4 ) a ~ , " - l ( ~ -  %)/~r(~ (I.8-160) 

e0/% = (3 /4 )  act,,"- l(ob _ ~ ) / o .  d, (I.8-161) 

e r O / e ( )  - ' -  (3/2)art,,"-ITr0/Or(~ , (I.8-162) 

which represent an incompressible material. 
A semi-analytical solution to the mode I crack problem is possible. The 

solution in polar coordinates has the form 

o r  r "- -  K o o r  - l / ("  + 1)6"r( O, n )  

o- o = K o . o r - 1 / ( , , +  l)d.o( O , n )  

% = K o . o r - I / ( , , + l ) d . r o ( O , n  ) 

o- e = K o . o r - l / ( , , + l ) d . e ( O , n )  

e r = a e o K , , r - , , / (  ,,+ l)g-r(O,n ) 

% = a e o K " r  - ' / ( n -  1)go(O, n )  

ero = a % K n r - n / (  n+ l Y r o ( O , n  ) 

(I.8-163) 

(I.8-164) 

(I.8-165) 

(I.8-166) 

(I.8-167) 

(I.8.168) 

(I.8-169) 
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where r and 0 are measured relative to the crack tip in a manner  
analogous to the mode I small-scale yielding solution, and K is a constant 
called the plasticity intensity factor, which is to be determined. The 
functions &i(0, n) and gi(0, n) need to be evaluated numerically such that 
equilibrium, stress-strain relationships, compatibility of strains, the yield 
condition, and tractionless boundary conditions (homogeneous) along the 
crack faces are satisfied. In [Hut 68a], a stress function approach was used. 

Now the J integral can be expressed in the form [Ric 68b] 

f 
Tr  

J = ( W n  x - t . u ~ ) r d O ,  (I.8-170) 
- -  T r  

where the path of integration is any radius r. If the J integral is to be 
nonzero and path-independent,  the term inside parentheses in (I.8-167) 
needs to be of the form 

W n  x - t .  u x = f ( O ) / r ,  (I.8-171) 

where n x = cos 0. This is necessary because the choice of r is arbitrary, 
and we can take the limit as r ~ 0; this makes the integrand of (I.8-170) 
zero, which in turn makes J zero. 

This type of reasoning was used to determine the power law structure 
for stress, strain, and displacement fields in the H R R  solution such that 
(I.8-171) is satisfied. 

We note that the units of (I.8-171) are those of stress times strain. If we 
multiply the stress r  r (I.8-163) by the strain e r (I.8-167), we find 

K "+ - - ; (I.8-172) Ore r - olo-oe, o l O r ( O , n ) ~ . r ( O , n ) r  ' 

i.e., it is a function of 1 / r  regardless of the exponent n. Similarly, the ~, e 0 
and fro ero products are of the form 1/ r .  

We also know that, in the small-scale yielding linear elastic solution, the 
individual stresses and strains are separable into the form 1 / r  ~/2 times a 
function of 0. Thus their product is likewise proportional to 1 / r  and 
resembles the behavior of (I.8-172). 

In fact, for n = 1, the H R R  solution becomes an incompressible linear 
elastic material. At the other extreme, as n --. w, the behavior of the H R R  
solution approaches the Prandtl perfectly plastic solution. This behavior is 
analogous to that of the mode III strain hardening material. However, in 
the H R R  field, there is no counterpart  to the linear elastic region and 
hence no elastic-plastic boundary as in the mode III problem. 
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FIGURE 1.8-1 la 
0-Variations of stress and strains at the tip of a tensile crack for plane strain. Reprinted (with 
correction--hardening exponent mislabeled on lower strain distribution) from J. Mech. Phys. 
Solids, 16, J. W. Hutchinson, Singular behavior at the end of a tensile crack in a hardening 
material, 13-31 (1968), and J. Mech. Phys. Solids, 16, J. W. Hutchinson, Plane stress and 
strain fields at the crack tip, 337-347 (1968), with kind permission from Elsevier Science Ltd., 
The Boulevard, Langford Lane, Kidlington OX5 IGB, UK. 

The governing equation for the stress function in the HRR solution is 
elliptic for finite values of n [Ric 68a, Hut 68b]. As n ~ ~, the equation 
becomes hyperbolic as in plane strain slip line theory. 

The plasticity intensity factor K is determined by the assumption that as 
r ~ ~, the J integral approaches g/ of small-scale yielding linear elastic 
theory [Hut 68a]. Thus J is evaluated in the power law region and then 
equated to ~' to determine a relationship between K and cr~ (the tensile 
traction at infinity). 

A comparison between the HRR stresses and the Prandtl stresses is 
given in Figs 1.8-11a and 1.8-11b. These graphs, taken from [Hut 68b], are 
also in [Hut 79]. Values for the various functions of (0, n) of the solution 
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F I G U R E  1.8-11b 

Stress characteristics and stress distribution at the tip of a tensile crack in a perfectly plastic 
material for plane strain. Reprinted from J. Mech. Phys. Solids', 16, J. W. Hutchinson, 
Singular behavior at the end of a tensile crack in a hardening material, 13-31 (1968), and J. 
Mech. Phys. Solids, 16, J. W. Hutchinson, Plane stress and strain fields at the crack tip, 
337-347 (1968), with kind permission from Elsevier Science Ltd., The Boulevard, Langford 
Lane, Kidlington OX5 IGB, UK. 

(I.8-63)-(I.8-69) are also plotted in Fig. 1.8-1 la. Between the values n = 3 
and n = 13, we see a convergence of 6-~ toward the yield stress (normal- 
ized to ~ = 1) in Fig. 1.8-1 la. We also see how the three polar stresses are 
converging toward their counterparts in the Prandtl solution between Figs 
1.8-1 la and 1.8-1 lb. 

1.9 PLANE STRESS PROBLEMS INVOLVING PLASTIC MATERIAL 

Plastic problems involving plane stress loading conditions are more 
difficult to handle than those involving plane strain, because the governing 
equations's characteristics change from one portion of the yield surface to 
another. In our plane stress analysis the plane of symmetry is again the xy 
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plane. Plane stress loading conditions require that o-z, rxz, and ~-yz vanish. 
Thus the Cayley-Hami l ton  equation (I.8-5) reduces to 

0-x-- 0-i Txy 0 

Txy 0-y -- 0-i 0 = 0 (1 .9-1)  

0 0 -0-; 

o-i [ "J'}y - (0-x - 0-i ) ( 0-y - 0-i)] = 0 (I.9-2) 

0-i[0-i 2 -  (0-x + 0-y ) 0-i + 0-x 0-y - ~.2y] = 0. (1.9-3) 

The principal stresses for plane stress are the three roots of the simple 
cubic equation in 0-; (I.9-3). They are, respectively (i = 1, 2, 3), 

0 - 1 - - ( 0 - x  -+- 0 -y ) /2  "+-[(0-x -- 0-y)2 + 4 T } y ) ] ' / 2 / 2  (1 .9 -4)  

)2 47.2y)] 1/2 0-2 = (0-x + % ) / 2  - [ (0-x - % + / 2  (I.9-5) 

0-3 = 0-~ = 0. (I.9-6) 

The above stresses are ordered so that 0-1 > 0-2- For regions on the yield 
surface where 0-2 >-~ 0-1, the subscripts on 0-~ and 0-2 in equations (I.9-4) 
and (I.9-5) need to be interchanged. 

Tresca Yield Condition 
We begin our specific discussion of yield criteria with the Tresca 

criterion. Under  the Tresca yield criterion, stresses reach yield when the 
maximum shear stress reaches magnitude k, which is the yield stress in 
pure shear: 

Tresca: 

Tma x --- maxl t r~ -  o ~ 1 / 2 -  0-o/2 = k; i =  1 ,2 ,3 ,  j =  1 ,2 ,3 .  

(1.9-7) 

The Tresca yield surface for plane stress is shown in Fig. 1.9-1 as six line 
segments L M ,  M N ,  N P ,  PQ,  Q R ,  and R L .  

For region M N ,  we have the maximum shear stress as 

region M N  : 

0-1 > 0-2 > 0, Tma x = ( O "  1 - -  0 " 3 ) / 2  = o'1/2 = k (I.9-8) 

)2 47.}y)] 1/2 0-x + try + [(o- x - try + = 4k. (I.9-9) 

At point N, we have a uniaxial state of tension 0-~ = 2k, 0- 2 : 0. 



96 Introduction 

o 2 

[ ~ - - ~ , ~ ( o o ,  Oo) 
L M 

B 

01 

(- oo ,- ~o 

FIGURE 1.9-1 

Plane stress Tresca and Mises yield surfaces. 

For region NP, we have a change in the form of the yield condition 
because o- 3 = 0 is now larger than o-2, i.e., 

region NP: o-I > 0 > o-2, Tmax "-- (o-I -- o '2) /2  = k (1.9-10) 

)2 1 2 % +4 2)1 - _  

At point M, a state of negative pressure p = - 2 k  exists, i.e., 

point M: o.l = o.2, rm,,x = (o-l - o.3)/2 = o.I /2 = k (1.9-12) 

- . = (), o.x + o.v = 4k (I.9-13) 

try = o.v = 2k, 7xy = 0. (I.9-14) 

The other regions of the yield surface are analogous to one of the above 
cases. 

We have already studied the governing equations for stress in regions 
NP and RL, because they are similar in form to those of plane strain. To 
see this, compare equations ( I .9-11)with  (I.8-4). One need only square 
(1.9-11) to obtain (I.8-4). Because of this, the planes of maximum shear 
stress coincide with those of plane strain, and consequently the slip lines 
are similar to those of plane strain for regions NP and RL of the plane 
stress Tresca yield condition. See Fig. 1.9-2a for two slip planes for plane 
strain under a uniaxial load o-. 

Strain rates for region NP are also the same as for plane strain. To 
prove this, let us first reorder the Tresca (or Mises) plane strains (I.8- 
9)-(I.8-10), so that o-l > o-2 ~ 0"3" So by (1.8-9)-(1.8-10) and (I.9-4)-(I.9-6), 
Table 1.9-1 is deduced. 
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FIGURE 1.9-2 
Slip planes for (A) plane strain and (B) plane stress. 
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W e  see f rom this table that,  if we take o- z = 0, then the three  pr incipal  
stress re la t ionships  b e c o m e  identical  for p lane  strain and p lane  stress 
(region NP) .  H e n c e  for region NP,  u n d e r  the Tresca  yield condi t ion,  
p lane stress appea r s  to be a special case of  p lane  strain where  0-z = 0. 

F u r t h e r m o r e ,  since the re la t ionship  

h ( ~ )  = maxlcri - o).1/2 = (~r I - 0"2)/2 (I .9-15) 

is valid for bo th  plane stress (region N P )  and plane strain unde r  the 
Tresca  yield condi t ion,  we have similar flow rules 

dE~ = d A  c~h( 0-i)/00- ~ = d A / 2  (I .9-16) 

dE~ = d A  c~h( 0 - i ) / c ) 0 -  2 - -  - d A / 2  (I .9-17) 

de.~ = d A  c)h( 0-i)/c)0- 3 = O. (I .9-18) 

where  dA is an incrementa l  loading funct ion.  

TABLE 1.9-1 
Tresca Plane Stress (region NP) Compared to Plane Strain 

Tresca plane stress 
(region NP ) 

Plane strain 
(where 0"1 >- 0"2 >~ 0"3 ) 

0-1 ~ 0 0-1 ~ O'z 

0" 2 < 0 0"2 < 0"z 
0"3 = 0 0"3 --  0"z 



9 8  I n t r o d u c t i o n  

For the Mises yield condition, we have a different form for h, i.e., 
1.3-13, which we will distinguish from the Tresca condition by calling it h*" 

) 2  __ )2  )2  h*(o'ij) = ( 0 - 1  - 0" 2 -~- ( 0 "  2 or  3 - ( O r  3 - -  131" 1 . (1.9-19) 

The flow rule for the Mises condition in the first principal stress direction 
will be 

de  P = dA Oh* ( orij)/OOrl , (1.9-20) 

where A is an incremental loading function. 
The partial derivative in (I.9-20) is evaluated from (I.9-19) as 

Oh*/Ooq = 2(2o- 1 - o r  2 - 0 " 3 ) .  (1.9-21) 

Now a plane strain relationship for o- 3 is obtained from (I.8-2) and (I.8-10), 
a s  

0-  3 --- ( o-  1 + o 2 ) / 2 .  (1.9-22) 

Substituting (I.9-22) into (I.9-21), we find the following: 

Oh*(orij)/Oo" 1 = 3(o" 1 - o r 2 ) .  (I.9-23) 

Next, we introduce Oh*(o-~j)/c~o-~ from (I.9-23) into (I.3-20) to obtain 

dE P = 3(or ! - o" 2) dA. (I.9-24) 

By subtracting (I.9-5) from (1.9-4), we find an alternative expression for 
(I.9-24) as 

del P = 3 (o-~ Cry + 4 dA. (I.9-25) 

Finally, by replacing the radical in (I.9-25) by (I.9-11), we deduce that 

Mises plane strain" de~ = 6 k d A .  (I.9-26) 

We observe that flow rule (I.9-26) has the same form as (I.9-16) and differs 
only by a multiplicative constant. It becomes identical to it, if we set 

dA = 12kdA. (I.9-27) 

The form of plane strain Prandt l -Reuss  equations for de~ and de~ 
may be obtained from (I.9-17) and (I.9-18) by substituting dA from 
(I.9-27). 

The flow rules between the Tresca and Mises yield criteria for plane 
strain are also similar in Cartesian coordinates, as they are in the 
Haigh-Westergaard  space. The plane strain Tresca flow rule can be 
obtained from the Prandt l -Reuss  equations (I.8-68)-(I.8-70) through the 
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use of (1.9-27). On can observe this for de. x by comparing (1.8-18) to 
(I.8-68). 

The classification of the governing equations for plane strain is hyper- 
bolic for both the Tresca and Mises yield criteria. Therefore, the same 
must be true of the two plane stress regions NP and RL under the Tresca 
yield condition, as they have the same governing equations. 

Relationship (I.9-18) may seem disturbing to those familiar with linear 
elasticity's 

E~ = - (  v /E)[  trxx + r (I.9-28) 

for plane stress, which predicts deformation in the z direction. Neverthe- 
less, for this region of the Tresca yield surface, there is no deformation in 
the antiplane direction. This is not true, however, of the adjoining regions 
of the Tresca yield surface MN and PQ where d E~ exists. 

Region M N  and, by analogy, regions LM, PQ, QR have governing 
equations of the parabolic class. In this case, the planes of maximum shear 
stress make 45 ~ angles with the xy plane. The families of slip lines, which 
coincide with the number of characteristics of the governing equations, 
reduce from two to one going from MN to NP. 

In Fig. 1.9-2b, two slip planes are shown which correspond to a plate 
under a uniaxial load ~r and plane stress loading conditions for a specimen 
subject to the Tresca yield condition. The intersection of the two slip 
planes leaves one trace in the center plane of the plate, i.e., a single slip 
line. This region of the Tresca yield condition is discussed in detail in 
Section 1.1, in connection with the analytic continuation of stress across a 
mode I elastoplastic boundary, and thus is not be repeated here. Strains 
and displacements for region MN are also discussed later in Sections 1.3 
and 1.4, respectively. 

For additional information regarding the Tresca yield condition under 
plane stress loading conditions (see [Kac 74]). There, stress discontinuities, 
velocity discontinuities, and behavior at the sharp corners of the yield 
surface are discussed in detail. Kachanov also describes a method of 
solution different from that presented in Chapter 1. 

Mises Yield Condition 
The Mises yield condition with no work hardening can be obtained from 

(I.3-24), (I.3-26), and (I.3-27) as 

)2 2 )2 (~rx-% +(%-~r~) +(~r~-~r x 

+ 6(~-2y + ~'2~ + ~'2~) = 20"o 2 . (I.9-29) 
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For  plane stress, the following stresses are zero, 

tr z = Zx~ = Zy~ = 0, (I .9-30) 

so that (I.9-29) reduces to the form 

O'x 2 -  O" x Ory q-- O'y 2 -~- 3zZy = o-02 . (I .9-31) 

Similarly, using the principal stress form of the Mises yield condi t ion 
(4.2-1) by substituting o- 3 = 0 into it, we obtain 

trl z -  O'lO" 2 + tr 2 = o "2 . (1.9-32) 

V. V. Sokolovsky investigated solutions satisfying (I.9-32) and equilib- 
r ium (I.-45) of the form [Kac 74] 

o- 1 = 2k c o s ( T -  zr /6) ,  Or 2 = 2k cos (y  + zr /6) ,  (I .9-33) 

where  3' is a function (x, y)  related to the hydrostatic stress tr (I.8-28), 

O" ~ (O" 1 "k- (1" 2 -~- 0 " 3 ) / 3  = (O" 1 ~- O ' 2 ) / 3  for plane stress, (I .9-34) 

by the formula 

cos 3' = 3 ~ / 2 o / ( 2 k )  �9 (I .9-35) 

Transforming ( I .9 -33) in to  Cartesian coordinates,  we find, through the 
use of the strength of materials  formulas 

2r = tr I + Or 2 -+- ( O" 1 - -  trY" 2 ) C O S  213 (I.9-36) 

2 cry = r I + r 2 - ( ~! - ~ )cos 213 (I .9-37) 

2Z~y = ( tr I - cr 2 ) s in  2/3, (I .9-38) 

that 

O x / k  = 31/2cos 3 /+  sin 3' cos 2/3 (I .9-39) 

O y / k  = 3~/Zcos 3 / -  sin 3' cos 2/3 (I .9-40) 

L y / k  = sin 3' sin 2/3, (I .9-41) 

where  /3 is the angle to the direction of the largest principal stress o-~. 
Substituting these into the equil ibrium equat ions  (I.4-5), we obtain 

(31/2sin 3/cos 2/3 - cos Y)Y,x 

+ 3~/2sin y sin 2/3y, y - 2sin y /3y  = 0 (I .9-42) 

(31/2sin y cos 2/3 + c o s  y ) y , y  

-- 3 ~ / 2 s i n y s i n 2 ~ Z x -  2sin T/3 x = 0 .  (I .9-43) 
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Solution techniques vary for solving (I.9-42) and (I.9-43) because the 
classification of partial differential equations depends upon where the 
state of stress falls on the Mises yield surface [Kac 74]. The angle y starts 
at point M in Fig. 1.9-1 and moves clockwise from 0 to 27r, passing 
through points M B N C P D Q E R F L A M  at 7r/6 intervals. See Table 1.9-2 for 
the regions of hyperbolicity, parabolicity, and ellipticity in terms of y. 

With respect to the characteristics of the partial differential equations 
(I.9-42) and (I.9-43), there are two families in a hyperbolic region, as there 
are in plane strain. However, unlike the characteristics of plane strain, 
they are not orthogonal to each other, nor do they correspond to slip lines. 
In a parabolic region, there is only one family of characteristics, and in the 
elliptic regions there are no real characteristics. 

Kachanov [Kac 74] considers in detail every region of the yield surface, 
including stress discontinuities and example problems. We, however, can- 
not undertake the task of examining every region of the Mises yield 
surface, as we do not use the material beyond this section. Instead, we 
limit our discussion to the plane stress equivalent of the Prandtl mode I 
crack problem, which was solved by Hutchinson [Hut 68b, Hut 79] and 
used for comparison with a power law hardening material as n ---> ~. 

Hutchinson's solution is given in terms of the polar coordinate 0. For 
stresses that are independent of the coordinate r, the equilibrium equa- 
tions (I.4-50)-(I.4-51) reduce to the following: 

%o,o+ (rr - ~ = 0 (I.9-44) 

~ . o  + 2'rro = O. (I.9-45) 

TABLE 1.9-2 
Partial Differential Equation Classification for Plane Stress (Mises) 

Region System Eqs. (I.9-42)-(1.9-43) y (range) 

Arc MB Elliptic 0--, 7r/6 
Point B Parabolic 7r/6 
Arc BNCPD Hyperbolic 77-/6 --, 57r/6 
Point D Parabolic 57r/6 
Arc DQE Elliptic 5~'/6 --* 77r/6 
Point E Parabolic 7~'/6 
Arc ERFLA Hyperbolic 77r/6 --* 117r/6 
Point A Parabolic 117r/6 
Arc AM Elliptic 117r/6 ~ 27r 
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In polar coordinates, the yield condition (1.9-31) transforms to, using 
equations (I.4-44)-(I.4-46), 

G 2 -  G %  + %2 + 3r  2 = cr 2 .  (I .9-46) 

Hutchinson normalizes his stresses such that o 0 in (I.9-46) is 1 and uses 
the notation Go for fro. 

In Figs 1.9-3a and 1.9-3b, we see plots of the solution that Hutchinson 
[Hut 68b, Hut 79] presents for a perfectly plastic material and a power law 
hardening material. The perfectly plastic solution below corresponds to the 
regions marked alphabetically in Fig. 1.9-3b: 

1.5" 

~e .7 - 
1.o ,_,.6 

0.5 

0 

-0.5 
- .  n=3 1 
-.2 0 ~/2 e "rr 0 "rr/2 0 

1 . 0 ~ -  ~e _] _ 1 8 ~  "It 
~- e.6 - 

,r �9 4I- / \ ' % "  
0 dr, : ~ f /  ~- - - - -~ n-13 -" 

0 'rr/2 e ~ 0 ~/2 e 'rr 
F I G U R E  1.9-3a 

0-Variations of stress and strains at the tip of a tensile crack for plane stress. Reprinted from 
J. Mech. Phys. Solids, 16, J. W. Hutchinson, Singular bchavior at the end of a tensile crack in 
a hardening material, 13-31 (1968), and J. Mech. Phys. Solids', 16, J. W. Hutchinson, Plane 
stress and strain fields at the crack tip, 337-347 (1968), with kind permission from Elsevier 
Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 IGB, UK. 
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b 
t t t t  ., C 
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O _ 
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1.0 ~ ' ' " ~  ~0 err - 
o" I 
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-1.0 
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FIGURE 1.9-3b 

Stress characteristics and stress distribution at the tip of a tensile crack in a perfectly plastic 
material for plane stress. Reprinted from J. Mech. Phys. Solids, 16, J. W. Hutchinson, 
Singular behavior at the end of a tensile crack in a hardening material, 13-31 (1968), and J. 
Mech. Phys. Solids, 16, J. W. Hutchinson, Plane stress and strain fields at the crack tip, 
337-347 (1968), with kind permission from Elsevier Science Ltd., The Boulevard, Langford 
Lanc, Kidlington OX5 I GB, UK. 

r eg ion  A B O :  
1 1 

O ' r / O "  0 = - 3 ( 1  + c o s 2 0 ) ,  ~ J o "  0 = - 3 ( 1  - c o s 2 0 ) ,  

1 
TrO / or() ' -  ~ s i n  2 0 (1.9-47) 

r eg ion  B C O  : 
1 1 

~ / o "  0 = ~ ( - 1  + 3 s i n 2 0 o R )  + z(1  + cos 0on)COS2(0  - 0on)  

1 
+ ~ sin 20oBsin  2 ( 0  - 0oR) 

1 
o 0 / o  0 = - t r r / O "  0 + ~ ( -  1 + 3 c o s 2 0 o n )  (1.9-48) 

I I 
~'ro/tro = - Z ( 1  + c o s 2 0 o R ) s i n 2 ( 0 -  0oR) + ~ s i n 2 0 c o s 2 ( 0 -  0oR) 

fan ( C D O ,  first de r i ved  by [Hil  52]) :  

t r 0 / o  0 = 2trr/O" 0 = ( 2 / 3 1 / 2 ) c o s  0, TrO/Or 0 = ( 1 / 3 1 / 2  )sin 0. (1.9-49) 
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Regions A B O  and BCO,  where both families of characteristics are 
straight lines, have uniform states of stress. 

The angles 0oB and Ooc correspond to the lines separating the three 
distinct regions shown, i.e., 

0oB = 151.4 ~ Ooc = 79.7 ~ (1.9-50) 

These angles were found numerically, subject to the boundary conditions 
of a continuous state of stress across OC and a discontinuous tangential 
stress ~ across OB. No continuous stress field could be found. 

One interesting aspect of this stress discontinuity is that it separates 
regions of tension and compression. Stresses (1.9-47)-(1.9-48) transform 
into a Cartesian system as follows: 

region A B O  : 

O'x/O" 0 --- - - 1 ,  O'y --~ O, Txy = 0. (1.9-51) 

region B C O  : 

Crx/~r o = 0.012, ~ry / ~r o = 0.301, T x y / O "  0 --" --0.552. 

(I.9-52) 

We can see clearly now that there is a uniform state of compression in 
A B O  and of tension in BCO. Across the stress discontinuity, we find by 
substituting Oot ~ from (I.9-50) into (I.9-47) and (1.9-48), respectively, 

~ - / o -  0 = - 0 . 7 7 1 ,  o-0/o- 0 = - 0 . 2 2 9 ,  TrO/O" 0 =-0.420,  (I.9-53) 

O'r+/O'0 = 0.542, ~JO" 0 = --0.229, rro/~r o = --0.420, (I.9-54) 

where the superscripts designate the compressive ( - )  and tensile ( + )  
regions. There is a jump in ~ ,  i.e., A ~ = I O'r + - o" r I, of magnitude 1.313 o- 0 
across OB. 

We can find neither a corresponding compressive region in the Prandtl 
plane strain solution nor a stress discontinuity. Physically, stress disconti- 
nuities represent the last remnants of elastic regions in perfectly plastic 
solutions. This would seem to imply that in an elastoplastic solution of the 
plane stress problem, under the Mises yield condition, there would be a 
narrow elastic region separating two plastic regions [Hut 68b]. 

In the analytic continuation of stresses across a prescribed elastic-plas- 
tic boundary for the Tresca yield condition in plane stress (Section 1.1), the 
presence of a disequilibrated stress discontinuity in this region suggests 
that an elastic unloading is necessary for equilibrium to be established. 

Returning to the plane stress Mises solution, we find that ahead of the 
crack, i.e., along line OD, the two families of characteristics run together 
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to form a single characteristic. This region is parabolic by Table 1.9-2, as 
opposed to the rest of the stress field which is hyperbolic. 

To prove this we determine, by substituting 0 -  0 into (I.9-49), that 

line OD" 

o-0/o 0 = 2/31/2,  O ' r / O r  0 = 1/31/2, TrO - ' -  0 

O'/O'0 -- 1/31/2 ~ (TOD = ~r/6 ~ point B on yield surface. 

(1.%55) 

Similarly, we find that regions ABO and BCO are hyperbolic: 

region ABO" (Y,4Bo = 2rr /3  ~ point P on yield surface 

region BCO" (YBco ~ 21/2 --~ point between N and C. 

(I.9-56) 

(I.9-57) 

Power Law Hardening Materials under Plane Stress 
Let us now examine the H R R  solution for plane stress. The stress-strain 

relationships change from (I.8-160)-(I.8-162) to the following: 

n l 
E r / e  0 - -  OgO" e - l ( o "  r - -  5 0 " 0 ) / 0 " 1 ~  (1.9-58) 

n 1 
f rO/CO = C~Gr e 1( (~_  5 ~ ) / ~ r ~  (I.9-59) 

3 n n e,o/~ o = -~aq, -1%/o" o . (I.9-60) 

The form of the effective stress ~, is given by (I.9-46), where ~, replaces 
o- 0 . The functions of 0 and n, i.e., 6"r(O, n), ~ ( 0 ,  n), 6"ro(O, n), 6"e(O, n), and 
~r(O,n), ~o(O,n), ~.ro(O,n), are analogous to their definitions for plane 
strain, (I.8-163)-(I.8-169). 

In Figs. 1.9-3a and 1.9-3b, we see these functions plotted. The discontin- 
uous stress o r, which we observed in the perfectly plastic case at 0oB, 
appears to be approached by the work hardening material as n ~ ~. This 
lends strong support for its acceptance in the perfectly plastic state. 

1.10 NUMERICAL SOLUTIONS OF THE MODE I 
ELASTOPLASTIC PROBLEM 

In Section 1.7 we examined analytical elastoplastic solutions of the 
mode III problem. No corresponding solutions have been found for the 
other two principal modes of fracture. In this section, we examine solu- 
tions of the mode I problem by numerical methods. Mode I is by far the 
most important mode of fracture from a practitioner's point of view, and 
thus we limit our discussion to this case. 



First, let us examine the shapes that are predicted for mode I 
elastic-plastic boundaries by the small-scale yielding, linear elastic solu- 
tion. In Fig. 1.10-1a and 1.10-1b, we see curves plotted by Broek [Bro 82] 
that represent approximate locations of the elastoplastic boundaries of the 
mode I problem for both plane stress and plane strain under the Mises and 
Tresca yield criterion, respectively. 

The curves in Fig. 1.10-1a for the Mises yield condition can be obtained 
by substituting the small-scale yielding stresses (1.5-10)-(1.5-12) into either 
(1.8-4) for plane strain or (1.9-31) for plane stress. For plane strain, 

1 Poisson's ratio was taken to be v = 3. The locations of these curves in 
polar coordinates (r, 0), with the origin at the crack tip, are given below: 

Mises yield condition ( - T r  < 0 < rr): 
plane stress: 

rp -- [ 1 / ( 2 7 r ) ] ( K i / ( r o ) 2 C O S 2 ( O / 2 ) [ 1  + 3sin2(O/2)] .  (I.10-1) 

plane strain: 

# p--'~ plane 
.0.5 ~ s t r e s s  

' p l a n e .  \ 
strain 

d 

= C0S2(0/2)[(1 -- 2v + 3s in2(O/2)] .  (I.10-2) rp [ 1 / ( 2 1 r ) ] ( K l / c r o )  2 )2 
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FIGURE 1.10-1 

Prescribed elastic-plastic boundaries according to Mises and Tresca yield criteria and 
small-scale yielding linear elastic stress: (a) Mises, (b) Tresca. Reprinted from [Bro 82] by 
permission of Kluwer Academic Publishers. 
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In the figures, the radius to the plastic zone r e has been normalized 
according to the relationship provided in Fig. 1.10-1a (o-ys = o-0). 

For the Tresca yield condition, we substitute (I.5-10)-(I.5-12) into 
(I.9-9) for plane stress (o-0 = 2k). For  plane strain (Tresca), we use either 

(o-1 - o 2 ) / 2  = k, IOI < 2 s i n - l ( 1  - 2v )  (I.10-3) 

o r  

(o" 1 - o '3) /2  = k, [0] > 2 s i n - l ( 1  - 2v )  (I.10-4) 

where o" 1 and o- 3 are defined as in (I.9-4)-(I.9-5), and o'z as in the second 
equation of (I.4-4). Thus for the 

Tresca yield condition ( - r r  < 0 < rr): 
plane stress: 

= COS2(0/2)[1 + Isin( 0/2)1] 2. rp [ 1 / ( 2 r r ) ] ( K l / o - o )  2 

plane strain: 

= )2 
rp, [ 1 / ( 2 r r ) ] ( K i / o -  o cos2(0/2)[1  - 2~, + ]sin(0/2)l] 2, 

(I.10-5) 

Iol < 0~. 

(I.10-6) 

)2 20, rp, = [ 1 / ( 2 r r ) ] ( K i / o -  o sin IOI > Ol. (I.10-7) 

where the magnitude of the angle 0 that divides contours rp, 
defined as follows (see [CZ 91]): 

and rp2 is 

0 t - 2 s i n - l ( 1  - 2u) .  (I.10-8) 

The plane strain curve is plotted as a solid line, which is the outermost  
envelope of its two constituents (I.10-6) and (I.10-7), which are shown 
extended into the plastic region as broken lines [Bro 82]. 

We recall that no change of plane on the Tresca yield surface occurs for 
plane strain slip line theory, as is evident in the plane strain elastic-plastic 
locus for the mode I elastic solution, (I.10-3) and (I.10-4). Because plastic 
material is incompressible, the counterpart  of Poisson's ratio is 1 /2 ,  as can 
be seen by comparing (I.8-2) to the second equation of (I.4-4). Upon 
substituting u = 1 / 2  in (I.10-8), we also see that for an incompressible 
elastic material, the yield locus is restricted to a single region of the Tresca 
yield surface, i.e., rp: of (I.10-7) governs the whole field. 

For incompressible elastic material, we also see for plane strain that the 
Mises and Tresca yield loci assume identical forms, after we substitute 
v = 1 / 2  and replace o- 0 by its equivalent in terms of k, i.e., (I.3-2), (I.3-4). 
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If we plot the plane strain elastic-plastic locus for an incompressible 
material (Fig. 1.10-2), we find that the leading edge of the plastic zone 
touches the crack tip; i.e., there is no finite plastic region directly ahead of 
the crack. In [RJ 70], it is mentioned that this may be true as well in 
elastoplastic solutions solved numerically, as in [LMOR 71] with u = 1/2.  
The curve shown in Fig. 1.10-2 may be identified as a conchoid [Law 72] of 
the quadrifolium (four-leaf rose), when rewritten in the form 

r p  = [ 1 / 4 7 r ] ( K I / ~ r o ) 2 ( 1  - c o s 2 0 ) .  (1.10-9) 

For a comparison of boundaries determined from the small-scale yield- 
ing solution to an exact linear elastic solution for an infinite plate subject 
to biaxial tensile tractions at infinity cr~ under the Mises yield condition 
and plane strain loading (u = 0.3), see Section 4.2. 

Numerical Solutions 
Let us now compare the prescribed elastic-plastic boundaries with 

curves determined through solutions of the mode I elastoplastic problem 
through numerical means. 

y 

8~ 

Crack Elastic 

f ~ Region 

FIGURE 1.10-2 
Prescribed plane strain elastic-plastic boundary for incompressible materials. 
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In Fig. 1.10-3, we see mode I elastic-plastic boundaries that were found 
numerically using the finite element method in [KPPC 70a, KPPC 70b], 
with further discussions in [AC 88, PM 78, Cher 79], for a linear 
e las t ic /non-work-hardening plastic material under the Mises yield condi- 
tion. These curves for both plane strain (Poisson's ratio v = 0.46) and 
plane stress (incompressible ~,-- 1 / 2 ) w e r e  obtained for a material that 
used as far-field displacements the small-scale yielding solution. (The use 
of the small-scale yielding solution as a source for far-field boundary 
conditions has become known in the literature as the boundary layer 
method.). The finite elements used were constant strain triangles. The 
outermost boundary was rectangular. 

The x* and y* coordinates are nondimensionalized with respect to the 
stress intensity factor K~ and yield stress ~r 0, as follows: 

X* ( 8 /  Tr )( O'o/Kl ) 2 * - x, y - ( 8 / ' r r ) ( o o / K  I)2y. (I.10-10) 

These solutions were obtained by minimizing the potential energy in 
both the exclusively linear elastic region and the yielded region where both 
linear elastic and perfectly plastic components (a non-work-hardening 
material) contribute. Yield was determined by calculating strains from the 
displacement field. When the material's equivalent strain exceeded the 
yield strain, a plastic contribution to the strain energy was included. As a 
deformation theory was being applied, no possibility of residual plastic 
strains resulting from material that had undergone linear elastic relaxation 
was considered. 

1.0 Y" 

3 2 5  Noda l  Po in ts  

P l a n e  S t r a i n / ' ~ , / ' ~ " T " ~  
0 - - 0 .  

P l a n e  St ressl) 

U 

\ . 
X 

- 1 .0  - 0 . 5  0 0 .5  1.0 

FIGURE 1.10-3 
Mode I elastic-plastic boundaries determined numerically for the Mises yield condition. 
After Kudryavtsev, Parton, Peskov, and Cherapanov [KPPC 70a, KPPC 70b]. 
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As the authors noted, the plastic zone of the plane stress solution 
somewhat resembles the elongated shape of the Dugdale model's plastic 
zone. The plane stress plastic zone also extends farther ahead of the crack 
tip than the plane strain plastic zone, in agreement with the behavior we 
observed for the purely elastic, small-scale yielding approximation. How- 
ever, the extent of the numerical elastic-plastic boundary perpendicular to 
the crack is smaller in plane stress than in plane strain, unlike the purely 
elastic approximation. 

Analytical expressions were fitted to the numerical curves in [KPPC 70a, 
KPPC 70b] of the elastic-plastic boundaries (see also [Cher 79]), which can 
assume the following forms: 

plane stress: 

r~ = 0.25 (Tr -  0) - O.15sin(30/2)], 0 ~  0 ~  ~,  (I.10-11) 

plane strain: 

r~ = 0.55(1 + 24 COS20)-1/2, elliptically shaped, (I.10-12) 

where 

r~ = [(x* )2 + (y,)2] 1/2, 0 = t a n - l ( y * / x *  ). (I.10-13) 

It was found that, as the number of nodes in the finite element scheme 
increased, the elastic-plastic boundaries decreased in size, while the 
imposed displacements at the outermost boundary were held constant. The 
curves given here are somewhat smaller than the curves shown in Fig. 
1.10-3, which were taken from data generated with the same number of 
nodes, 325. The analytical expressions reflect a refinement of the maxi- 
mum number of nodes employed in each case. Note that in the case of 
plane stress, the leading edge of the analytical boundary is rounded by 
(I.10-1), unlike that shown in Fig. 1.10-3. In the case of plane strain, the 
elliptical boundary given by (I.10-12) is symmetrical with respect to the 
y*-axis, unlike that shown in Fig. 1.10-3. 

Another finite element analysis for a linear elastic/non-work-harden- 
ing material under the Mises yield condition and plane strain loading 
conditions was discussed in [LMOR 71]. There, Poisson's ratio was taken 
to be 0.3 and flow theory was used rather than a deformation theory of 
plasticity. The smoothed shape of the elastic-plastic boundary from this 
study is shown in Fig. 1.10-4b for the upper half-plane. The finite elements 
employed were polar, resembling the geometry shown in Fig. 1.4-1. Figure 
1.10-4a shows the yielded elements as a function of the load increment. A 
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Growth of the plastic zone. (a) Outlines of yielded finite element elements after 10, 20, and 
30 elastic-plastic load increments with coordinates made dimensionless by radius % of the 
innermost elements. (b) Smoothed estimates of the elastic-plastic boundary, plotted in terms 
of similarity parameter (K/o-0) 2 for small-scale yielding (K is the stress intensity factor.) 
Reprinted from [LMOR 71] by permission of Kluwer Academic Publishers. 
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boundary layer approach was used for far-field boundary conditions on 
stress. 

Perhaps the feature that most distinguishes the plastic zones obtained 
by finite element analyses from the plastic zones predicted by linear elastic 
fracture mechanics is that the crack tip is completely engulfed by the 
plastic zone in the former case. In the latter case, the trailing portion of 
the plastic zone just touches the crack tip of the purely elastic problem, 
which seems to imply that the crack surfaces do not extend a finite 
distance into the plastic region. This was not the case in the mode III 
analytical solution, where the crack tip predicted by the purely elastic 
solution (the small-scale yielding solution) was completely surrounded by 
plastic material for both perfectly plastic material and power law harden- 
ing materials. 

Another feature prominent in the numerical governed solution of the 
plane strain problems involving plastic material governed by incremental 
plasticity (flow theory) is that the wings of the butterfly shape of the plastic 
zone lean forward. This forward lean can be measured as the angle to the 
radius of the plastic zone at its greatest extent from the crack tip. In Fig. 
1.10-4b this angle to rp. max is approximately 70 ~ [LMOR 71], unlike the 
plastic zones predicted by linear elastic fracture mechanics, i.e., Figs 
1.10-1a, 1.10-2, and 4.2-1. Furthermore, it was observed in a numerical 
analysis by Tuba [Tub 66] at 69 ~ . This type of behavior was also displayed 
in a finite element elastoplastic solution obtained in [TF 89] for cracklike 
flaws having a rounded edge (Mises yield condit ion/non-work-hardening 
material). This particular solution is discussed in Section 1.5 in connection 
with elastic unloading in the trailing portion of the plastic zone. 

Following Du and Hancock [DH 91], the lean of the lobes of the plastic 
zones is a function of the side tractions which are applied parallel to the 
crack axis in a plate. In terms of the notation of Rice [Ric 74], the related 
stress is called the T stress, and in the case of linear elastic fracture 
mechanics, it is tied to the nonsingular second term of a Williams asymp- 
totic expansion [Wil 57] of a linear elastic solution of the form 

~r x = A ( O ) / r  I/2 + B ( O )  + C ( O ) r  1/2 + .--. (I.10-14) 

Let us now define the general T stress for linear elastic fracture 
mechanics as a finite uniaxial stress parallel to the crack axis. This is 
expressed in matrix form as 

,xy O,] o I 
Txy O'y [fxy( 0 ) L y (  0 ) "[- 0 0 ' " 

where fig are the functions of the angle 0 as defined in (I.5-10)-(I.5-12). 
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For the Griffith crack [Gri 20] of length 2a subject to a uniaxial load o'~ 
in the y direction, the Williams expansion along the x-axis (0 = 0) is [Han 
92] 

Orx/~r  ~ = 2 - 1 1 2 [ ( r / a )  -1 /2  -- 21/2 + ( 3 / 4 ) ( r / a )  1/2 - ( 5 / 3 2 ) ( r / a )  3/2 

+ ( 7 / 1 2 8 ) ( r / a )  5/2 + O ( r / a )  7/2 ... (1.10-16) 

%/~r~ = O-x/O-~ + 1 (I.10-17) 

~xy = O. (I.10-18) 

Thus the T stress in the case of a uniaxial load is, by (I.10-15) and 
(I.10-16), 

T = -o-~. (1.10-19) 

For the biaxial load, as shown in Fig. 1.5-3a, T would be 

T = O, (I.10-20) 

as the tensile t rac t ion  simply adds a c o n s t a n t  stress O-x+= o-~ to the 
previous stress state. 

In [DH 91], the predictions of the effect of the T stress on the shape of 
the plastic zone determined by an e las top las t i c  finite e lement  analysis of a 
non-work-harden ing  material under  the Mises yield condition is shown in 
Fig. 1.10-5. The T stress was incorporated through a boundary layer 
approach for the far-field displacement using a biaxial loading with differ- 

T 
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0"-6 " - 0 . t , t .  3 
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FIGURE 1.10-5 
The effect T stress on the plastic zone shapes. Reprinted from J. Mech. Phys. Solids, 39, 
Z.-Z. Du and J. W. Hancock, The effect of non-singular stresses on crack-tip constraint, 
555-567 (1991), with kind permission from Elsevier Science Ltd., The Boulevard, Langford 
Lane, Kidlington OX5 1GB, UK. 
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ent magnitudes in the x and y directions. The outer boundary itself was 
circular and the mesh was composed of polar elements, as shown in Fig. 
1.4-1. The loading conditions were plane strain with Poisson's ratio taken 
as 0.3 for most computations, although a few runs were performed at 0.49 
to investigate incompressibility. The symbol ~r o in these figures represents 
the yield stress, and K is the stress intensity factor. 

We see in Fig. 1.10-5 that if T is compressive, the butterfly wings 
expand and swing forward of the leading edge of the crack. If T is tensile, 
the plastic zone shrinks and moves backward. The shapes of these curves 
agree with the work of [LC 73], which were discussed in this context in [Ric 
74]. 

Let us now observe the effect of these side forces T on the predictions 
of elastic-plastic boundaries from linear elastic fracture mechanics alone 
by observing Fig. 4.2-1. The curves composed of broken lines are the plane 
strain small-scale yielding loci as predicted by the Mises yield criterion for 
u = 0.3 at various load levels indicated in the figure. The solid lines 
represent the elastic-plastic loci as predicted by the exact linear elastic 
solution for a plate with an internal crack of length 2a subject to a biaxial 
load cry. The solid-line loci reflect a greater T stress than the broken-line 
loci, as the approximate loci ignore any term beyond r - ~ / e  in the Williams 
expansion. Thus the exact loci move backward in conformity with one of 
the predictions of Du and Hancock in their finite element solutions. Du 
and Hancock also mention that the maximum rp should decrease with 
greater T stress, but this is not observed in our purely elastic solution. 
Both of these analyses, however, indicate that nonsingular stresses do have 
a pronounced effect on the shape of plastic zones. 

The Du and Hancock solutions also show that the T stresses affect the 
sectors around the crack tip for which the Prandtl stress field applied. We 
will examine this aspect of their solution in Section 1.5 

1.11 MISCELLANEOUS MATHEMATICAL TOPICS 

Complete Solutions 
A complete solution of a first-order nonlinear partial differential equa- 

tion [Sne 57] is one that satisfies the governing equation and contains two 
arbitrary constants (a, b). As an example of a nonlinear first-order equa- 
tion, let us choose the governing equation of the mode III problem in the 
plastic region in terms of the stress function ~b(x, y) which has been 
normalized with respect to yield stress in pure shear k, i.e., 

bz,x + r = 1 . (I.11-1) 
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One complete  solution (they are not unique) is 

4~ = x cos a + y sin a + b. (1.11-2) 

It is easily confirmed that (1.11-2) satisfies (I.11-1) by taking the partial 
derivatives of ~b, i.e., 

~b,x = cos a ,  ~,y = sin a,  (I.11-3) 

and then substituting them into (I.11-1). 
Let us now assume that constant b cannot be chosen independently of 

constant a, but is instead a function of a; i.e., 

~ b = x c o s a  + y s i n a  + b ( a ) .  (I.11-4) 

Equat ion (I.11-4) is now called one-parameter  subfamily of the complete 
solution. 

Taking a partial derivative of ~b(x, y) with respect to a while holding ~b, 
x, and y constant, we obtain the following relationship: 

0 =  - x s i n a  + y c o s a  + b ' ( a ) .  (I.11-5) 

where the prime denotes differentiation with respect to a. 
Let us now relax the condition that pa ramete r  a be held constant and 

assume instead that it is a function of x and y; i.e., a = a(x ,  y).  If we then 
take partial derivatives of (I .11-4)with respect to x and y, we find in place 
of (I.11-4) 

q~,x = cos a - x sin a a ~  + y cos a a , x  + b ' ( a ) a x  

= cos a + [ - x  sin a + y cos a + b ' ( a ) ] a x  

4~y = - x s i n  a a  y + sin a + + y cos aa , y  + b ' ( a ) a , y  

(I.11-6) 

(I.11-7) 

(I.11-8) 

= sin a + [ - x  sin a + y cos a + b ' ( a ) ] a y .  (I.11-9) 

Notice that the bracketed terms in both (I.11-7) and (I.11-9) have the same 
form as relationship (I.11-5). If we impose (I.11-5) on both (I.11-7) and 
(I.11-9), we find 

4~,x = cos a,  ~,y = sin a, (I.11-10) 

which are the same partial derivatives of ~b with respect to x and y that 
are obtained from (I .11-2)with both a and b held constant (I.11-3). 

Equat ion (I.11-5) represents the projection of the characteristics of the 
surface ~b(x, y) onto the xy plane. They are often called simply the 
characteristics. For other  partial differential equations the characteristics 
may be a family of curves rather than the straight lines found for the 
eiconal equation. 
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Now consider a particular function for b(a), for example, 

b(a) = - c o s  a. (I.11-11) 

Thus (I.11-5), with (I.11-11) substituted for b(a), becomes, after taking the 
derivative of b(a)with respect to a, 

0 =  - x s i n a - y c o s a  + s i n a ,  (I.11-12) 

from which we can solve for parameter a = a(x, y), as 

a = t a n - l [ y / ( x -  1)]. (I.11-13) 

The solution of the partial differential equation is therefore obtained by 
substituting a(x, y) from (I.11-13) into (I.11-11) and from there substitut- 
ing both of them into (I.1 1.4); i.e., 

05= ( x -  1 ) cos tan - l [ y / ( x -  1)] + y s i n t a n - l [ y / ( x -  1)]. (1.11-14) 

It is readily verified that (I.11-14)solves the original partial differential 
equation; however, to simplify calculations and to gain further insight into 
this solution, we will first express it in an alternative form. 

Let us introduce a new Cartesian coordinate system (X, Y) which is a 
translation of the original Cartesian axes (x ,y )  along the x-axis a unit 
distance to the right. The standard polar coordinates (p ,  c~) relative to the 
new Cartesian system (X, Y) are then 

X = x -  1 = pcosc~,  Y = y = p sin c~. (I.11-15) 

Our supposed solution ~h of (I.1 1-14) becomes, by applying (I.1 1-13) and 
(I.1 1-15) to it, 

~b = p cos2a  + p s in2a = p (I.1 1-16) 

_ [ X  ~ + y ~ ] l / 2  
- = : ( I . l  1 - 1 7 )  

= [ ( X -  1) 2 +y2]  1/2. (I.11-18) 

By taking the partial derivatives of (I.1 1-18) with respect to x and y, it is 
now simple to prove that the original partial differential equation (I.1 1-1) 
is indeed satisfied. It is interesting to note that we obtained (I.l 1-18) from 
(I.1 1-2) despite the fact that it cannot be obtained directly by choosing a 
and b to be any particular set of constants. 

If ~b of (I.1 1-2) is interpreted as a surface, where a and b are arbitrary 
constants, it represents a family of planes that have a slope of magnitude 1 
relative to the xy plane. The one-parameter subsystem, on the other hand, 
is a family of planes with a slope of magnitude 1, each of which touches 
surface (I.11-18), and may therefore be interpreted geometrically as a 
cone. 
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Cones, as well as cylinders and other ruled surfaces, may be generated 
in space by the motion of a straight line. The individual traces of lines that 
are left by the moving line are called generators. By choosing a and b, as 
we have in (I.11-4) and (I.11-11), the planes intersect for different values of 
a in such a way that the lines of intersection comprise the generators of 
the cone (I.11-18). The elimination of the parameter  a from equations 
(I.11-4), (I.11-11), and (I.11-12) forms the envelope of the one-parameter  
family of solutions. The analytical expression for the envelope, in this case, 
also solves the partial differential equation. 

By introducing polar coordinates (I.11-15), we have actually thrown 
away half of the solution of (I.11-14); i.e., a second cone exists which is a 
reflection of the first cone relative to the xy plane in the negative 
direction. This situation occurs because we assume in (I.11-16) that p, 
being a polar radius, is positive. If we accept instead that p can be 
negative, then 4~ can also be negative an the second cone is generated. 
This second cone of (I.11-14) can be accounted for by placing a _+ sign 
before the radical sign in (I.11-18). 

In general, there are three categories of solutions [Sne 57] that can be 
found from a complete solution 4~ of a first-order nonlinear equation of 
arbitrary form: 

f(ch,  x,  y , a , b )  = O. (I.11-19) 

These categories are 

Case 1: Set a and b equal to particular constant values. 
Case 2: Take a partial derivative of a one-parameter  subsystem of the 

complete solution with respect to one of the parameters and set 
the result equal to zero: 

f (  qb, x,  y,  a, b (a ) )  = 0 

a f (  $ ,  x ,  y,  a, b ( a ) ) / a a  = O. 

(I.11-20) 

(I.11-21) 

The function 4~ determined from the elimination of a between 
(I.11-20) and (I.11-21) constitutes a solution, which represents the 
envelope of the one-parameter  subsystem. It may be impossible in 
specific cases to eliminate a from the simultaneous equations 
(I.11-20)-(I.11-21), as we were able to do in the case of (I.11-18), 
which is termed an explicit solution. Nonetheless, a parametrized 
solution involving a and the two simultaneous equations may 
prove very useful in itself. Probably, case 2 is the most common 
occurrence of the three types for solving initial value problems. 
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Case 3: Take partial derivatives of the complete solution with respect to 
both independent parameters (a, b) and set those results equal to 
zero: 

f(4~, x, y, a, b) = 0 (I.11-22) 

Of(oh, x,  y,  a, b ) / O a  = 0 (I.11-23) 

of(oh, x,  y,  a, b ) / O b  = 0. (I.11-24) 

The function 4, is obtained from the elimination of a and b from 
the system of three equations. In the case of the complete 
solution (I.11-2) to the eiconal equation (I.11-1), such an envelope 
does not exist. 

In addition to these three cases, given one complete solution of a partial 
differential equation, other complete solutions of the same equation can 
be derived from it (see [Sne 57]). 

The general solution of first-order partial differential equations is an 
alternative type of solution that contains an arbitrary function f ( ) ,  rather 
than arbitrary parameters as in a complete solution. The following is an 
example of a general solution, 

cb(x , y )  = f ( x  - y ) ,  

to partial differential equation 

(I.11-25) 

ff),x -'[- ff),y -- 0 .  (I.11-26) 

General solutions may be found for first-order partial differential equa- 
tions only if the equations are linear. 

Monge-Ampere Family of Partial Differential Equations 
A Monge-Ampere equation is a second-order, nonlinear partial differ- 

ential equation that has special integrability properties [CH 62]. The most 
general form of Monge-Ampere equation is 

n 6 ,  xx -Jr- S 6 ,  xy -'k T6,  yy + U(6,xxCh, yy - 6,2xy) = V, (I.11-27) 

where R, S, T, U, and V are functions of variables x, y, 4~, 4 ~, x, and 4~ y. A 
simple technique for solving a limited version of the Monge-Ampere 
equation, applicable to plane stress plasticity, where R , S , T ,  U, V are 
constants is discussed in this subsection. Techniques for solving more 
general Monge-Ampere equations can be found in [Ayr 52, Sne 57, For 
591. 

Let us assume that solutions of the restricted Monge-Ampere equation 
can be found in the form 

Ach, x + Bqb, y + Cx + Dy = F (ach x + f l~ ,y  + "}Ix + 6 y ), (I.11-28) 
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where A, B, C, D and a, /3,  y, 6 are constants and F( ) is an arbitrary 
function. Taking a partial derivative of (I.11-28) with respect to x, we find 

A dP, xx + BdP, xy + C 

= (acb,,,x + ~ch,,,y + y)F'(aCh,  x + r y + y x  + 6y ) .  (I.11-29) 

Similarly, taking a partial derivative of (I.11-28)with respect to y, we get 

A oh, xy + Bob, yy + D 

= (Ol~) ,xy  -[- [3(~,yy "-[- 6 )F ' (ach ,~  + ~4',y + y x  + 6y ) .  (I.11-30) 

Now eliminate F'(ach, x + BCh, y + y x  + 6y)  from the simultaneous equa- 
tions (I.11-29) and (I.11-30) to find 

A ch, xx + B@,xy + C A d),xy + Bff),yy + D 

~4' ,~ + #4,,~y + y a4,~y +/34, yy + a 
(I.11-31) 

Multiplying the means and extremes of (I.11-31) and collecting terms, we 
find an equation that has the form of the Monge-Ampere  equation 
(I.11-27): 

( 6 A  - aD)ch xx + ( a C  + 6 B -  ~ D -  yA),/) xy + ( ~ C -  yB)qS, yy 

+ (  ~ A  - aB)[OS,  xxdP, yy - ~,2xy ] -- y D -  C6.  (I.11-32) 

Let us now explore the possibilities of using the intermediate integral 
(I.11-28) of (I.11-32) for solving the governing equations of plasticity 
theory, which are second-order, nonlinear equations in terms of a stress 
function. If we find a governing equation of the form (I.11-32), we can 
immediately reduce it to a first-order equation by (I.11-28). From there we 
might be able to apply a standard solution technique for finding complete 
solutions of first-order equations. Ordinarily, a second-order nonlinear, 
partial differential equation is insoluble by analytical means. 

We find by substituting a stress function of the form (I.4-2) into the 
plane strain yield condition for a perfectly plastic material (Mises or 
Tresca) that 

( ~ ,  xx _ ~p, yy)2 + 4 ~ 2 x y _ _ 4 k  2 (1.11-33) 

-9 ~ b2, xx - 2d~ xx ~b, yy + ~b,zy + 4~b2xy = 4k 2, (I.11-34) 

which is obviously not a Monge-Ampere  equation. As (1.11-33) also 
applies to the plane stress regions NP and RL of the Tresca yield surface 
(Fig. 1.9-1), the Monge-Ampere  equation does not apply there as well. 
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For the Mises plane stress equation, by (I.9-31)we have 

(~ ,2xx -  if), x x (~, y y + (~,2y -Jr- 3ff) ,2xy-- 0"(?, (I.11-35) 

which is again not of the Monge-Ampere  classification. 
The only stress function for a perfectly plastic material that has the 

form of a Monge-Ampere  equation for plane problems involving the two 
most commonly used yield criteria is the plane stress Tresca for regions 
LM, MN, PQ, and RQ of the yield surface (Fig. 1.9-1); and even in this 
case it is not immediately obvious. 

From (I.9-9), we infer for region MN 

]1/2 
if), xx '}- ~), yy + ( (~, yy -- (~, xx)2 + 4~,2xy - -  4k. ( I . 1 1 - 3 6 )  

Squaring this equation to remove the radical, one obtains 

__ __ ( / ) 2 )  = 4k 2 (1.11-37) 2k ch xx + 2k ch yy ( (~, xx (~, yy , xy 

which is a Monge-Ampere  equation, where 

R = T = 2k, S = 0, U = - 1, V = 4k 2. (I.11-38) 

Perhaps the easiest way to identify a set of coefficients for the interme- 
diate integral (I.11-28) is to note that (I.11-37) is factorable into 

~ , * * - 2 k  ~,,v 
= . (I.11-39) 

(]), x y  IJ), y y  - -  2k 

By comparing (I.1-39) with (I.11-31), we can choose 

A = / 3 =  1, B = D = a = y = O ,  C = ~ =  - 2 k .  

Thus one intermediate integral of (I.11-37) is 

qSx - 2kx = F(~ ,y  - -  2ky). 

( I. 11-40) 

(1.11-41) 

The choice of coefficients (I.11-40) is by no means unique. For example, 
we can replace all the nonzero coefficients of (I.11-40) by their negatives 
and have a slightly different form of intermediate integral. 

Order Symbols 
There are two symbols O( ) and o( ) that are commonly used to 

characterize the order of singularities and of powers in general. The 
definitions of these as x ~ 0 are [BH 86]" 

function f ( x )  is of O(g(x))  provided limx---, 0 I f(x)l / lg(x)l  
constant 

function f ( x )  is of o(g(x))  provided lim x ~ 0 [ f (x) l / lg(x)[  = O. 



1 
I 

On the Continuance of an 
Analytical Solution across 

the Elastic-Plastic 
Boundary 

of a Mode I Fracture 
Mechanics Problem 

Analytical elastoplastic solutions involving linear elastic and finite-di- 
mensional plastic regions have been found only for mode III fracture 
mechanics problems. Under conditions of small-scale yielding, the 
elastic-plastic boundary for the mode III problem can be determined by 
substituting the stresses from linear elastic fracture mechanics into the 
Mises/Tresca yield condition. In contrast, numerical studies for mode I 
problems involving the Mises yield condition [Tub 66, LMOR 71, KPPC 
70a, KPPC 70b, PM 78, Cher 79] have shown boundaries that differ in 
shape from loci determined from linear elastic fracture mechanics in 
general (see Sections 1.10 and 4.2). Here, we will analytically investigate a 
mode I elastoplastic problem for the Tresca yield criterion under plane 
stress loading conditions. 

In this study, the mode I small-scale yielding stresses are substituted 
into the Tresca yield condition to obtain a prescribed elastoplastic bound- 

121 
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ary. A plastic stress function for a perfectly plastic material is sought m 
a function that satisfies both equilibrium and the yield condition across the 
elastic-plastic interface. An intermediate integral is found for the gov- 
erning partial differential equation, which is a nonlinear, second-order 
equation of the Monge-Ampere  class. From a complete solution of the 
intermediate integral, the initial value problem is solved analytically as in 
[Ung 90a]. 

The plastic stress field that is determined from this function exhibits a 
discontinuity in the trailing portion of the plastic zone. Physical implica- 
tions of this solution together with possible applications are discussed in 
the Preface and Section 1.5. 

In the course of investigating this mode I problem, we develop a 
method of solving elastoplastic problems based on concepts from differen- 
tial geometry. The solution technique finds an integral plastic surface that 
circumscribes a known elastic surface. This method of solution can also be 
applied to mode III problems, as well as other elastoplastic problems 
where a complete solution can be found to the governing partial differen- 
tial equation of the plastic stress function. 

We first demonstrate the solution process for a mode III problem that 
has a simple solution. This problem has been solved previously by other 
investigators using different techniques. Once insight is gained from work- 
ing the mode III problem, we can apply a modified version of the solution 
scheme to the mode I problem, which has a higher-order partial differen- 
tial equation. 

1.1 ELASTOPLASTIC STRESS ANALYSES FOR 
M O D E S  I AND III 

Mode III 
The stress function 4'E of small-scale yielding and its relationship to the 

elastic antiplane shear stresses rx E and ry E for the mode III fracture 
mechanics problem with a stress intensity factor K~ I follow: 
mode III: 

4) E = - ( 2 r / r r )  1/2 Knlcos (0 /2 )  
rx ~ E - 1 = 4) y = - ( 2 r r r )  / 2 K i i i s i n ( O / 2 )  

ryE = _' 4),Ex = (2rrr)  -1 /2 Kill COS(0/2) 
r r <  0 <  rr 

(1.1-1) 

(1.1-2) 

(1.1-3) 

where the commas in (1.1-2) and (1.1-3) denote partial differentiation. The 
relationships between the polar coordinates ( r , O )  and the rectangular 
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Cartesian coordinates (x, y) employed in (1.1-1)-(1.1-3) are 

x = rcos  0 = r[1 - 2 s in2 (0 /2 ) ] ,  y = r s in  0 = 2rs in (O/2)cos(O/2) ,  

(1.1-4) 

where the trigonometric identities involving 0 / 2  in (1.1-4) are cited for 
later use. 

The potential r is a harmonic function and the stresses (1.1-2)-(1.1-3) 
derived from it satisfy equilibrium equation (2.1-3). 

The notation for the first partial derivatives of the plastic stress function 
4~(x, y ) w i t h  respect to x and y is 

P - 4~,x, q ~ t~,y. (1.1-5) 

In the mode III problem all stresses are zero except for the antiplane 
stresses. Consequently, the Tresca or Mises yield condition for a perfectly 
plastic material takes the following form [Hut 79]: 

~.2 + Tf = k 2 or p2 + q 2 =  k 2, (1.1-6) 

where k is the yield stress in pure shear. 
If the elastic mode III stresses (1.1-2)-(1.1-3) are substituted into yield 

condition (1.1-6), the locus of points that satisfy this relationship is a circle 
of radius R where 

g = K2~/(27rk2).  (1.1-7) 

This circle, which is shown in Fig. 1.1-1, is the assumed elastic-plastic 
interface c~ II. 

Let us now parametrize the elastic stress function (~) ,  its first partial 
derivatives (/3, ~), and the Cartesian coordinates (.~,)~) on the elastoplastic 
interface in terms of the parameter  a; i.e., 

c?l~" a = s in (0 /2 )  -~ cos (0 /2 )  = (1 - a2) 1/2. (1.1-8) 

When (1.1-7) and (1.1-8) are substituted in (1.1-1)-(1.1-4), we obtain 

- - 2 k R ( 1  - a2) 1/2 ] (1.1-9) 

/ 3 -  - k ( 1  - a 2 )  1/2, ~ -  - k a  t - 1  _<a_< 1. (1.1-10) 
- R(1 - 2a2),  .9 - 2Ra(1 - a2) 1/2 (1.1-11) 

Interior to o91), the definitions of the functions ~ , /3 ,  ~, 2, and .9 in terms 
of the parameter  a remain the same as in (1.1-9)-(1.1-11), but the 
relationship between a and the coordinates differs from that in (1.1-8). 
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CRACK ~ 1 FR 

FIGURE 1.1-1 

Mode III plastic zone. Reprinted from Eng. Fract. Mech. 36, D. J. Unger, Analytic Continua- 
tion of stresses across a mode I elastoplastic interface, 763-776 (1990), with permission from 
Pergamon Press Ltd., Headington Hill Hall, Oxfl)rd O X 3 0 B W ,  UK. 

Methods for finding complete solutions of nonlinear, first-order equa- 
tions are detailed in [Sne 57]. It is easily verified that the following 
relationship for ~b is a solution to partial differential equation (1.1-6): 

~b k(1 a 2 )  I/2 = - - x -  k a y  + b ( 1 . 1 - 1 2 )  

provided a and b are constants. Equation (1.1-12) is a complete solution to 
(1.1-6) as it involves two arbitrary parameters a and b. 

Sneddon [Sne 57] describes a method of finding an integral surface of a 
first-order, nonlinear partial differential equation that circumscribes a 
given surface. This procedure finds the envelope of a one-parameter 
subsystem of a complete solution. An imposed condition is 

c~ll" P -  q - 1. (1.1-13) 
p 

In our analysis the prescribed surface is related to the elastic stress 
function 4~ E. The governing equation is (1.1-6), and the surface that 
circumscribes ~b E is related to the plastic stress function ~b. The imposed 
condition (1.1-13) suits our purpose as it ensures that the antiplane 
stresses will be continuous across the elastic-plastic boundary. This fulfills 
an equilibrium requirement. 

The technique described in [Sne 57] requires the elimination of the 
parameters a, b from relationships corresponding to (1.1-9)-(1.1-13). The 
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first step is to reduce the two-parameter complete solution to a one- 
parameter subsystem such that 4) equals 4)E on the elastic-plastic bound- 
ary. This is accomplished by setting b = b(a)where  

^ 

b ( a )  = 4, - ~ - ~q. (1.1-14) 

Thus (1.1-12) assumes form (1.1-15) after the substitution of (1.1-10) and 
( 1 . 1 - 1 4 ) ,  i .e . ,  

4) = ~ + ( x -  2)/3 + (y - . 9 )~ .  (1.1-15) 

On the elastic-plastic boundary 4)= q~ as x = .~ and y = .9. 
In (1.1-12) a and b were assumed to be constants; however, in (1.1-15) 

the parameter a must be a function of (x, y) as it varies with 0 on the 
^ 

boundary by (1.1-8). Consequently 4),/3, q), 2, and )3, which are functions of 
a, must also be functions of the coordinates. This implies that (1.1-15) 
cannot satisfy (1.1-6) with the parameter a as a function of the coordinates 
without some additional condition. This restriction may be found by taking 
the derivative of (1.1-15)with respect to the parameter a while treating x, 
y, and (h as constants; i.e., 

~, ,  - 2 . / 3  + ( x  - 2 - ) / 3 .  - 3 3 . 4  + ( y  - 33 )~ , .  = 0.  ( 1 . 1 - 1 6 )  

Equation (1.1-16) may be interpreted as the family of characteristic lines of 
(1.1-6) and (1.l-15). 

We now prove that ( 1. l- 1 5) is a solution of (1.1-6) provided that (1.1-1 6) 
is satisfied. Taking the partial derivative of (1.1-15) with respect to x and 

^ 

using a chain rule for differentiations of 4), /3, ~, 2, and v, which are 
functions of the parameter a, we find 

(h,x = ~,,,a,x + (1 -2", , ,ax)/3 + ( x -  2)p,, ,a x - ,9 , ,a ,x  ~ + ( y -~3 )~ , ,a~  

= ~  + [~,,~ - 2 , , f i  + ( x - 2 ) f i , , ,  - Y , , O  + ( Y - . 9 ) 0 , , ] a  x. (1.1-17) 

By substituting (1.1-16) into (1.1-17), we obtain 

Similarly, we can prove that 

6~ =~. (1.1-18) 

(by = q .  (I .I-19) 

Thus any exclusive relationship that exists between partial derivatives of 4' 
on the boundary is also satisfied in the region interior to c)~; i.e., 

= f ( ~ )  ~ p = f ( q ) .  (1.1.20) 
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The function f is determined by eliminating a between equations (1.1-10). 
This procedure yields 

/32 + ~2 = k 2 ~ p 2  + q2 = k 2, (1.1-21) 

which proves our original assertion about (1.1-6), (1.1-15), and (1.1-16). 
We now seek the explicit form of our solution ~b(x, y). Substituting the 

relationships for ~, /3,  ~, .f, and )3 from (1.1-9)-(1.1-11) into (1.1-16) and 
taking derivatives with respect to a as indicated, we find 

y / ( x  + R) = a/(1 a2) 1/2 / [  ] - -  o r  a(x,  y )  = y (x + R )  2 + y 2  1/2. 
(1.1-22) 

Equation (1.1-22) provides the parameter a as a function of (x, y) in the 
region interior to Ol'~, i.e., the plastic region. It will naturally reduce to 
(1.1-8) on the boundary o~1~. By substituting a(x,y) from (1.1-22) into 
(1.1-9)-(1.1-11), we infer from (1.1-15) that 

oh(x, y) - k [ ( x  + R) 2 + y2] 1/2 = . (1.1-23) 

Solution (1.1-23) is the required envelope of the one-parameter subsystem 
(1.1-15) of the complete solution (1.1-12). It represents geometrically a 
surface that circumscribes the elastic surface defined by (1.1-1). 

The stresses can be obtained from (1.1-23) by differentiating ~b(x,y) 
with respect to x and y in a fashion analogous to (1.1-2) and (1.1-3) where 
,f(x, y), rx~, and ~'y~ replace ~b , ~'x, . ~  E, and ~..E. Alternatively, they can be 
found by substituting a(x, y) from (1.1-22~ into (1.1-10), (1.1-18), and 
(1.1-19); i.e., 

"I'X P = ~/), y = ~ ( a( x, y ) ) 

ky/[(x + R) 2 + y2] '/2 = - , r < R, (1.1-24) 

mode III" 
ry P = - ~, x = - /5 (a (x ,  y))  

- - k ( x  + R ) / [ ( x  + R) 2 + y2] 1/2 - . ( 1 . 1 - 2 5 )  

Equations (1.1-24) and (1.1-25) are identified as the plastic stress field of 
the small-scale yielding elastoplastic solution. Typical slip lines such as ST 
are shown in Fig. 1.1-1. This family of slip lines corresponds to the family 
of characteristics defined by (1.1-16). 

For the statically admissible stress solution, i.e., (1.1-24) and (1.1-25), 
compatible strains and displacements have been found previously for 
Hencky deformation theory. See Section 1.7 and [Ric 68a, Hut 79]. 
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Mode I 
There are fundamental differences between stress functions found in 

mode III analyses and stress functions found in mode I analyses. First of 
all there are two types of plane problems: plane stress and plane strain. In 
addition, the two most commonly used yield criteria, Mises and Tresca, 
have different governing equations for the plane stress problem. This 
differs from the antiplane problem where both criteria assume the same 
form, (1.1-6). Most importantly, the governing equations in the plane 
problems are nonlinear, second-order equations, rather than the nonlin- 
ear, first-order equation of the antiplane problem. 

The technique developed in the previous section relied on finding a 
complete solution of the governing first-order equation from which an 
integral surface could be found that circumscribed the elastic stress 
surface. This process cannot be directly applied to plane problems as they 
require solutions of second-order equations. However, reducing a nonlin- 
ear, second-order equation to a first-order equation is sometimes possible. 
The equation that results from such a reduction is called the intermediate 
integral. Unfortunately, these kinds of integrations are performable only 
for special classes of second-order equations. One important class is the 
Monge-Arnpere family of equations [Sne 57]. 

Of the types of plane problems mentioned earlier, only the plane stress 
problem for the Tresca yield condition has a governing equation of the 
Monge-Ampere  class. We will find in the subsequent analysis an interme- 
diate integral to this second-order equation. From a complete solution of 
the intermediate integral, a plastic stress function that circumscribes the 
Airy stress function for the mode I problem will be determined. We will 
also discover that the intrinsic geometric requirements for finding a plastic 
stress function that circumscribes an elastic surface guarantees equilibrium 
across the elastic-plastic interface. 

The Airy stress function q~E [biharmonic vat~ E ~ V2(V2t~ E) -- 0] for the 
mode I fracture problem, under conditions of small-scale yielding, has the 
following form: 

mode I" ~b E = (4/3)cr3/2cos3(O/2) ,  - 7r < 0 < 7r, (1.1-26) 

c =- K i / (27r )  1/2, (1 .1-27) 

where K~ is the mode I stress intensity factor. Taking the first derivatives 
of ~b E with respect to x and y, we find 

flp,E x -- 2 c r l / 2 c 0 s 3 ( 0 / 2 ) ,  (1.1-28) 

~,E __ 2cr l /ZcosZ(  O /2 ) s in (  O /2 ) .  (1.1-29) 
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The  second derivatives of 4)E are re la ted to the elastic stresses as follows: 
mode  I: 

o.x E = ch,~y = c r - 1 / Z c o s ( O / 2 ) [ 1  - s i n ( 0 / 2 ) s i n ( 3 0 / 2 ) ] ]  (1.1-30) 

%E = Ch,~x = c r - 1 / 2 C O S ( 0 / 2 ) [ 1  + s i n ( 0 / 2 ) s i n ( 3 0 / 2 ) ] )  (1.1-31) 

~';~ = - ch,~y = c r - 1 / Z c o s (  O / 2 ) s i n (  O / 2 ) c o s ( 3 0 / 2 )  (1.1-32) 

- ~ ' <  0 <  7r 

where  o.x and o.y are the normal  stresses in the x and y directions,  
respectively, and ~'xy is the shear  stress in the xy plane.  All o ther  stresses 
have zero magni tudes .  The  relat ionships be tween  Car tes ian  and polar  
coordina tes  are identical to those given in (1.1-4). 

Yield occurs for the Tresca  condit ion when the max imum shear  stress 
reaches  the critical value k, i.e., the yield stress in pure  shear.  The  Tresca  
yield surface is shown schematical ly in Fig. 1.1-2 in te rms of the principal  
stresses o.~ and o- z (o- 3 = 0 for plane stress). The  algebraic relat ionships 
be tween stresses for o.~ > o.2 are 

2o.~ = o.x + ~v + (o-~ - o-y + 4T~ s (1.1-33) 

[ 1~/2 20"2 = o.x + o . v -  ( o . x -  o.v )2 + 4TrEy (1.1-34) 

0- 3 = O. (1.1-35) 

2 
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FIGURE 1.1-2 
Tresca yield surface. Adapted from Eng. Fract. Mech. 36, D. J. Unger, Analytic continuation 
of stresses across a mode I elastoplastic interface, 763-776 (1990), with permission from 
Pergamon Press Ltd., Headington Hill Hall, Oxford OX30BW, UK. 
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From the subst i tut ion of the m o d e  I stresses (1.1-30)-(1.1-32) into (1.1- 
33)-(1.1-34),  we find that  0"1 > 0"2 ~ 0. Thus  the mode  I stresses m e e t  the 
yield condit ion along side M N  (Fig. 1.1-2) of the yield surface where  
0"1 = 2k; i.e., 

Side M N  of yield surface" 

O" 1 -- 2k ,  0" 1 ~ 0" 2 ~___ 0. (1.1-36) 

We  may there fore  infer f rom (1.1-33) and (1.1-36) that  

[ 4 :y] (0-x - 0-y + - 4k - (0-x + o-y) for 0-1 ~ 0-2 ~ 0. (1.1-37) 

By substi tuting the stresses (1.1-30)-(1.1-32) in (1.1-37), we obtain  the 
following locus of the assumed elastoplast ic boundary  c ~ "  

c9~" cr-1 /2cos(O/2)[1  + Isin(O/2)l] = 2k.  (1.1-38) 

The  shape of this curve O A B C D  is shown in Fig. 1.1-3 for the half-plane,  
y > 0. A similar curve has appea red  in [Bro 82]. 

The  relat ionships be tween the partial  derivatives of the plastic stress 
function and the plastic stresses are analogous  to those for the Airy stress 

B 

A ~ C 

CnACK 

0 X 1 

FIGURE 1.1-3 

Mode I plastic zone. Adapted from Eng. Fract. Mech. 36, D. J. Unger, Analytic continuation 
of stresses across a mode I elastoplastic interface, 763-776 (1990), with permission from 
Pergamon Press Ltd., Headington Hill Hall, Oxford OX30BW, UK. 
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function, i.e., (1.1-30)-(1.1-32). If we substitute these general relationships 
for stresses from (1.1-30)-(1.1-32) into the yield criteria (1.1-37) and 
square both sides, we find the following nonlinear, second-order equation 
of the Monge-Ampere  class: 

t ~ , 2 y  - t~, x x ff), y y "-~ 2 k ( ch, x x + t~, y y ) = 4k 2. (1.1-39) 

A plastic stress function ~b that is a solution of (1.1-39) produces stresses 
that satisfy equilibrium and the yield condition 0.1 = 2k o r  equilibrium 
and the yield condition 0 2 = 2k. The extraneous solution (0"2 = 2k) 
comes from squaring yield condition (1.1-37) to eliminate the radical. We 
shall see, however, that the uniqueness of the initial value problem for the 
Monge-Ampere  equation eliminates this extraneous solution in practice. 

Techniques for finding intermediate integrals of the Monge-Ampere  
class of equations are discussed in [Sne 57, For 59]. One intermediate 
integral to (1.1-39) is 

2 y k  - q = F ( 2 x k  - p ) ,  (1.1-40) 

where F( ) is an arbitrary function and p, q are the first partial derivatives 
of ~b with respect to x and y, as in (1.1-5). It is readily verified that any 
solution to (1.1-40) also satisfies (1.1-39). To show this, we take partial 
derivatives of (1.1-40)with respect to x and y. We obtain 

- -  t ~ , x y  - -  F ' ( 2 x k  - p) (2k  - oh, xx )  ~ F ' ( 2 x k  - p )  

- -  f f ) , x y / (  ff) xx  - 2k) ,  (1.1-41) 

- = F ' ( 2 x k  - p ) ( -  ff) x y )  ~ F ' ( 2 x k  - p )  2 k  t~, yy  

= ( f f ) , y y  - -  2k)/dPxy. (1.1-42) 

After eliminating the function F ' ( 2 x k  - p )  from (1.1-41) and (1.1-42), we 
recover equation (1.1-39). 

The parametric equations for r, ~b, p, q, x, and y on the elastoplastic 
boundary c ~  for y > 0 are, respectively, 

P =- ( c / 2 k ) 2 ( 1  - a)(1 + a )  3 

= ( 1 / 6 ) ( c 4 / k 3 ) ( 1  - a)3(1 + a) 6 

t3 - (c2 /k) (1  + a)(1 - a2) 2 
=- ( c 2 / k ) a ( 1  + a)(1 - a2) 3/2 

2 =- ( 1 / 4 ) ( c / k ) 2 ( 1  - a)(1 + a)3(1 - 2a 2) 
= ( 1 / 2 ) ( c / k ) Z a ( 1  + a)2(1 - -  a 2 )  3 /2  

0 < a < l ,  

(1.1-43) 

(1.1-44) 

(1.1-45) 

(1.1-46) 

(1.1-47) 

(1.1-48) 
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where a has the same relationship to 0 on 0f~ as in (1.1-8). These 
parametrizations were obtained by substituting a into the relationships 
(1.1-4), (1.1-26), (1.1-28), (1.1-29), and (1.1-38). Because of the variables 
that appear in intermediate integral (1.1-40), the following parametrized 
relationships are also evaluated [from (1.1-45)-(1.1-48)]: 

2.~k - ~  = ( 1 / 2 ) ( c 2 / k ) ( 1  + a)2(1 - a2)(2a - 1 - 2a2), (1.1-49) 

2 9 k  - ~ = ( c 2 / k ) ( 1  + a)a2(1 --  a2) 3/2. (1.1-50) 

The terms 2 k - / 3  and 2)3k-  ~ on the boundary 01~ determine the 
function F( ) of (1.1-40). Through F( ) the specific form of the governing 
first-order equation for the mode I problem can be obtained in principle. 
The function F( ) o f  mode I resembles the function f( ) o f  mode III. 

In order to find an explicit expression for F ( ) ,  we must solve for a from 
either (1.1-49) or (1.1-50). We subsequently substitute this expression for a 
into the remainder of the two equations to obtain F ( ) .  However, the 
order of algebraic equation that one must solve in order to obtain 
parameter a exceeds four, which is the maximum order for which a general 
solution exists (for roots expressed as radicals, proved by Abel and Galois). 

To circumvent this, we seek a complete solution of (1.1-40) such that 
parametric relationships established between variables on the boundary 
are satisfied interior to Olq; i.e., 

2 x k  - p = 2. fk  - ~ ,  2 y k  - q = 29k  - ~. (1.1-51) 

These relationships (1.1-51)ensure that partial differential equation (1.1- 
40) is satisfied without the need for an explicit determination of F ( ) .  

The total derivative of ~b(x, y) is 

dch = p d x  + q d y .  (1.1-52) 

By substituting (1.1-51) into (1.1-52), we get 

dch- -  [ h + 2 k ( x -  ~)]dx + [~ + 2 k ( y  - ~ ) ] d y .  (1.1-53) 

If we treat /3, ~, .f, and )3 as constants and integrate (1.1-53), the result is 

ck = k ( x  2 + y2) + (/3 - 2/o~)x + ( ~ -  2/93)y + b, (1.1-54) 

where b is a constant of integration. Equation (1.1-54) is a complete 
solution to the equation (1.1-40), provided a and b are constants and 
relationships (1.1-44)-(1.1-48) are enforced. 

As in the mode III example, we now seek from the complete solution a 
surface that circumscribes the elastic surface. First, we define b as a 
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function of a such that 4, equals ~ on the boundary 0 l l ,  i.e., 

b = b ( a )  = ~ - 2 ~ - y q + k ( 2 2 + . v 2 )  �9 (1.1-55) 

By the substitution of (1.1-55) into (1.1-54), the complete solution is 
reduced to the following one-parameter system: 

(~-- ~)n t- ( X -  .~)p -Jr- ( y --.y)q -k- k ( x -  ~)2  nt - k( y -.~)2. ( 1 . 1 - 5 6 )  

As (1.1-56) stands, the parameter a must be treated as a constant in order 
for the original partial differential equation to be satisfied. Nevertheless, 
the parameter a must be a function of (x ,y )  in order to fulfill the 
boundary conditions. Equation (1.1-56) will solve (1.1-40) if we relax the 
condition that a be held constant, provided the following relationship is 
satisfied: 

+ 2 k ( 2 -  x ) 2 , ,  + 2k(~3-  y).v,,, = 0. (1.1-57) 

Equation (1.1-57) is obtained from (1.1-56) by its differentiation with 
respect to a while holding x, y, and (b constant. It is the family of 
characteristic lines of (1.1-40) and (1.1-56). Taking a partial derivative of 
(1.1-56) with respect to x, we find 

p - cb,~ = g, , ,a ,x  + (1 - 2  . . . .  ,,a ~)~) + ( x -  2 ) ~ , , a  ~ - . 9 , a  xq 

+ ( y  - ~ ) ~ , , a  x + 2 k ( x  - 2 " ) ( 1  - 2 , , a x )  + 2 k ( 3 3 - y ) ) 3 , a x  

(1.1-58) 

which by factoring a x becomes 

p = ~ + 2 k ( x  - 2 )  + [~h,,, - 2 , ,~)  + ( x  - 2 )~ , , ,  

+ 2 k ( 2  - x ) 2  , + 2k(33 - y ) ) 3 , ] a x .  

- y.o,  + ( y -  

(1.1-59) 

By applying condition (1.1-57), we reduce equation (1.1-59) to 

p = ~  = 2 k ( x - . f ) .  (1.1-60) 

Similarly, we can show that 

q - Ch, y = ~ + 2 k ( y - . 9 ) .  (1.1-61) 
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Thus by the imposition of (1.1-57), the first derivatives of 4~ with respect to 
x and y in (1.1-56) behave operationally as if q~, /3, ~, .f, and )3 were 
constants. One should be forewarned, however, that second derivatives of 
~b with respect to x and y do not behave in this operational fashion. 

Because (1.1-60) and (1.1-61) have the same form as (1.1-51), we have 
proved that (1.1-56) is a solution of (1.1-40) with a = a ( x ,  y )  provided that 
condition (1.1-57) is fulfilled. 

On the elastic-plastic boundary, we see from (1.1-60) and (1.1-61) that 

aD~" p = t3 and q = c) (1.1-62) 

as x = .~ and y = )3. Equation (1.1-62) shows that the first partial deriva- 
tives of the elastic and plastic stress functions agree on the elastic-plastic 
boundary. We note that (1.1-62)satisfies an equilibrium requirement  that 
the tractions be continuous across an interface (see the subsection on 
uniqueness and continuity of stress). 

For convenience, let us define the following functions of a" 

P ( a )  =-~ - 2k~  = ( 1 / 2 ) ( c 2 / k ) ( 1  - a)(1 + a)3(2a 2 + 1 - 2a) ,  

(1.1-63) 

Q ( a )  = ~ - 2k~ = - ( c 2 / k ) ( 1  + a)a2(1 - a2) 3/2, (1.1-64) 

qJ (a ) - -  ~ - k ( ~ 2  +332) 

= ( c 4 / k 3 ) ( 1  - a)2(1 + a )" [ (1 /6) (1  - a) - (1 /16) ] ,  (1.1-65) 

2 P ( a )  = ( 1 / 8 ) ( c 4 / k 3 ) ( 1  - a)2(1 + a)~'(1 - 2a2) (2a  - 2a 2 - 1), 

(1.1-66) 

6 - ~ Q ( a )  - ( 1 / 2 ) ( c 4 / k 3 ) a 3 ( 1  - a)3(1 + a  , (1.1-67) 

H ( a )  - ~ ( a )  - . f P ( a )  - . f Q ( a )  

-- ( 1 / 4 8 ) ( c 4 / k 3 ) ( 1  - a)2(1 + a)~'(4a - 1). (1.1-68) 

With the substitution of (1.1-63), (1.1-64), and (1.1-68) into solution (1.1-56), 
we get 

= x P ( a )  + y Q ( a )  + H ( a )  + k ( x  2 + y2). (1.1-69) 

Differentiating (1 .1-69)wi th  respect to a while treating ~b, x, y as 
constants, we obtain an alternative form of characteristic equation (1.1-57) 
in terms of P ' ( a ) ,  Q ' ( a ) ,  and H ' ( a )  as 

x P ' ( a )  + y Q ' ( a )  + H ' ( a )  = 0. (1.1-70) 
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By taking derivatives of P(a),  Q(a), and H ( a )  from (1.1-63), (1.1-64), and 
(1.1-68) with respect to a, we find 

P ' ( a )  = ( c 2 / k ) a ( 1  - 2a)(3a  - 2)(1 + a) 2, (1.1-71) 

Q ' ( a )  = ( c 2 / k ) a ( 1  + a)(1 + 2a) (3a  - 2)(1 - a2) 1/2, (1.1-72) 

H ' ( a )  = ( 1 / 4 ) ( c 4 / k 3 ) a ( 1  - a)(2 - 3a)(1 + a) 5. (1.1-73) 

After substitution of (1.1-71), (1.1-72), and (1.1-73) into (1.1-70), we obtain 
the explicit form of the characteristic equation" 

( c 2 / k ) a ( 1  + a)(2-3a)[(1 + a)(1 2 a ) x  + (1 + 
a 2 )  1/2 

- 2 a ) ( 1  - y 

~ ( 1 / 4 ) ( c / k ) 2 ( 1  - a ) ( 1  + a )  4] = 0 .  (1.1-74) 

Dividing both sides of (1.1-74) by the factor ( c 2 / k ) a ( 1  + a)(2 - 3a) and 
rearranging the equation, we derive that, for y >_ 0, 

(1 + a)(1 - 2 a ) x  + (1 - a2)1/2(1 + 2 a ) y  

= ( 1 / 4 ) ( c / k ) 2 ( 1  - a)(1 + a )  4 0 < a < 1 a 4: 2 /3 .  (1.1-75) 

The singular characteristic a = 0 corresponds to slip line D G  of Fig. 1.1-3. 
Along this line the stresses do not vary. Instead a biaxial state of stress 
~r~ = O'y = 2k exists (corner N of the Tresca yield surface of Fig. 1.1-2.). 
The singular characteristic a = 2 / 3  is tangent to the elastic-plastic 
boundary (point B of Fig. 1.1-3). 

We now express p and q from (1.1-60) and (1.1-61) in terms of P ( a )  

and Q ( a )  through the use of definitions (1.1-63) and (1.1-64): 

p = P ( a )  + 2kx, (1.1-76) 

q = Q ( a )  + 2ky. (1.1-77) 

Using (1.1-76), (1.1-77), and the chain rules of differentiation, we conclude 
that 

= Q ' ( a ) a  + 2k (1.1-78) Orx P = q, y , Y ' 

try P = P,x = P ' ( a ) a , x  + 2 k ,  (1.1-79) 

T x y  = --p,  y = - P ' ( a ) a ,  y . (1.1-80) 

The expressions a, y and a, y in (1.1-78)-(1.1-80) are obtained by the partial 
differentiation of the characteristic equation (1.1-75)with respect to x and 
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y. T h e y  are  respect ively  

a,x = (1 - 2 a ) ( 1  + a ) / D ,  (1 .1-81)  

a,y = (1 + 2 a ) ( 1  - a 2 ) l / Z / D ,  (1 .1-82)  

w h e r e  the  d e n o m i n a t o r  D in (1.1-81) and  (1.1-82) is def ined  as 

D - x(1 + 4 a )  + y ( 4 a  2 + a - 2)(1 - a2) -1/2 

)3 + ( 1 / 4 ) ( c / k ) 2 ( 3  - 5a) (1  + a . (1 .1-83)  

W e  now in t roduce  the  no rma l i zed  Car t e s i an  coo rd ina t e s  ( X ,  Y)  and  the  
P ~ normalized stresses Sex, Sy , TxPy, S1,  5 2 

X = 4 k 2 x / c  2, Y = 4 k 2 y / c  2, 

P Sex = cr~r'/k, Sy ~ o'yr'/k, 

S 1 - cr l /k ,  S 2 = o-2/k. 

(1.1-84) 

T~ =- ~-~/k, (1.1-85) 

(1.1-86)  

T h e  no rma l i zed  coo rd ina t e s  are so def ined  tha t  a unit  d is tance  spans  the  
tip of  the crack to the end  of the  plastic zone  on the  crack axis, i.e., the  
d is tance  of DO of Fig. 1.1-3. T h e  s tresses  a s sume  the  following fo rm in the  
no rma l i zed  no ta t ion  upon  subs t i tu t ion  of  (1.1-84)-(1.1-85)  into (1.1- 
78)-(1.1-83):  

N o r m a l i z e d  m o d e  I plastic stresses,  Y > 0, with 0 < a < 1, a 4= 2 / 3 :  

Sxe = 2 + 
4a(1  + a ) ( 3 a  - 2)(1 + 2a)2(1 - a 2) 

X(1  + 4 a )  + Y(4a  2 4- a - 2)(1 - a 2) - 1 / 2  
+ (3 - 5a ) (1  + a)  3 '  

(1.1-87) 

4 a ( 3 a  - 2)(1 - 2a)2(1 4- a)  3 
P Sy = 2 +  

X(1  + 4 a )  + Y(4a  2 + a - 2)(1 - a2)  - 1/2 + (3 - 5a ) (1  + a)  3 '  

(1.1-88) 

)2 2 1/2 
4 a ( 2 - 3 a ) ( 1  + a  ( 1 - 4 a  2)(1 - a  ) 

X(1  + 4 a )  + Y(4a  2 + a - 2)(1 - a2) -1/2 + (3 - 5a ) (1  + a)  3" 

(1.1-89)  
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The characteristic equation (1.1-75) becomes, in normalized coordinates, 

(1 + a)(1 - 2 a ) X  + (1 - a2)1/2(1 + 2a)Y  = (1 + a)4(1 - a),  

0 < a  < 1, a 4: 2 /3 .  (1.1-90) 

Several characteristic lines, including A H  and CE, are shown in the 
normalized Cartesian plane (Fig. 1.1-3). The slip planes are oriented at an 
angle of ~r/4 to the xy plane [Kac 74]. The stress o-1 is perpendicular to 
the characteristic lines, and the stress o- 2 i s  parallel to the characteristic 
lines. 

If it were possible to analytically solve (1.1-90) for a, then the parameter  
a could be eliminated from the stresses (1.1-87)-(1.1-89). We were able to 
do this in the analogous equations of mode III. 

The principal stresses in normalized notation for the upper half-plane 
for a 4= 2 / 3  are 

S l = 2, (1.1-91) 

8a(3a - 2)(1 + a )  2 

$ 2 = 2 +  
X(1 + 4a) + Y(4a 2 + a - 2)(1 - a 2)  

.... 1 / 2  + (3 - 5a)(1 + a) s" 

(1.1-92) 

Parabolic-Hyperbolic Plastic Boundary 
The characteristic lines of (1.1-90) terminate when the stresses no 

longer satisfy yield condition (1.1-37). This locus of points occurs where ~r: 
equals zero. At these points, the stresses move from region MN on the 
yield surface to region NP on the yield surface (Fig. 1.1-2). 

We should also mention that the partial differential equations are 
different in regions MN and NP. In region MN a parabolic equation of 
the Monge-Ampere  class governs. In region NP a nonlinear, second-order 
hyperbolic equation outside the Monge -Ampere  class applies. This change 
from a parabolic equation to a hyperbolic equation is accompanied by a 
change in the number of characteristics at each point. In the parabolic 
case, a single characteristic goes through each point of the domain. In the 
hyperbolic case, two characteristics pass through each point of the domain. 
The number of slip lines that correspond to the number of characteristics 
also changes in a similar fashion. 

It is curious that in region NP of the plane stress Tresca condition, the 
governing equation and the family of characteristics are identical to those 
found in plane strain Tresca and plane strain Mises criteria [Kac 74]. 

Let us call the boundary between the parabolic plastic zone and the 
hyperbolic plastic zone c~00. The locus of Ow is found in parametric form 
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by solving for X and Y from the simultaneous equations (1.1-90) and 
(1.1-92), where in (1.1-92) the stress $2 is set equal to zero. The result is 

0w: 0-1 = 2k,  0-2 = 0, 0-3 = 0, y > 0 (1.1-93) 

X = (1 + a)2(1 - a)[1 + a - ( 2 / 3 ) ( 1  - a)(1 + 2 a ) ( 9 a  2 - 4a + 2 ) ] /  

(1 - 2a) ,  

0 < a  < 1, a 4: 2 / 3 ,  a 4: 1 / 2 ,  

X =  15/32,  a = 1 /2 ,  

Y = (2 /3 ) (1  - a)(1 + a)2(1 - a 2) 1 / 2 ( 9 a 2 -  4a + 2), 

0 < a  < 1, a 4: 2 / 3 .  

(1.1-94) 

(1.1-95) 

(1.1-96) 

Note that l 'Hospital 's  rule is required to generate  (1.1-95) from (1.1-94). 
The boundary 0o~ is shown in Fig. 1.1-3 as curve OHGFBEF. A port ion of 
0w that passes through node F is omit ted in the figure for clarity. 

Example Let us evaluate the normalized stresses along the characteris-  
tic CE of Fig. 1.1-3 using the formulas developed here. Characteristic CE 
begins at 0 = 7r/6 on the boundary OiL. Therefore,  from (1.1-8), a = 
sin(Tr/12). By substituting this value for a into (1.1-90), a linear relation- 
ship between X and Y is established. Then by choosing arbitrary values of 
X, we can calculate corresponding values of Y for the fixed paramete r  a. 
The limits on X are found by substituting this value for a into (1.1-47) for 
0 ~  and (1.1-94) for O~o. Once values of a, X, and Y are set, the 
normalized stresses are obtained from (1.1-87)-(1.1-89) and (1.1-92). Spe- 
cific evaluations are given in Table 1.1-1. 

Uniqueness and Continuity of Stress 
Courant  and Hilbert [CH 62] prove that solutions of the initial value 

problem for the general M o n g e - A m p e r e  equation are unique. Our  partic- 
ular initial value problem is defined as follows: 

Find a twice-differentiable function oh(x, y) that is a solution of 
equation (1.1-39) which has initial values oh, ~, and ~ on bound- 
ary 0 ~ of arc length s which satisfy the strip condition 

d ~ / d s  = ~ d~/ds + 4 d~/ds. (1.1-97) 

If we prove that the strip condition is satisfied for our initial data, then by 
invoking Courant  and Hilbert 's theorem we know that solution (1.1-56) is 
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TABLE 1.1-1 
Normal ized Mode I Stresses  along the Slip Line CE, a = s in(xt  / 12), S 1 = 2  

P X Y S P Sy T P S 2 

0.203 1.186 (oto) 0.293 1.707 0.707 0 
0.3 1.141 0.488 1.741 0.626 0.229 
0.4 1.104 0.647 1.768 0.560 0.415 
0.5 1.062 0.776 1.790 0.507 0.566 
0.6 1.021 0.883 1.808 0.463 0.691 
0.7 0.980 0.972 1.824 0.426 0.796 
0.8 0.938 1.048 1.837 0.394 0.885 
0.9 0.897 1.114 1.848 0.367 0.962 
1.0 0.855 1.171 1.858 0.343 1.029 
1.1 0.814 1.221 1.866 0.323 1.088 
1.2 0.773 1.266 1.874 0.304 1.140 
1.280 0.739 (c~II) 1.298 1.880 0.291 1.177 

unique. By multiplying (1.1-97) by d s / d a ,  we bring equation (1.1-97) into 
the form 

~' =/5.f' + ~ '  (1.1-98) 

where the prime on each variable in (1.1-98) denotes differentiation with 
A 

respect to a. The quantities ~b', 2', and )3' are determined from (1.1-44), 
(1.1-47), and (1.1-48) to be 

~'  = ( 1 / 2 ) ( c 4 / k 3 ) ( 1  - 3a)(1 - a)2(1 + a) 5 (1.1-99) 

.f' = ( 1 / 2 ) ( c / k ) 2 ( 1  + a)2(6a 3 - 2a 2 - 4a + 1) (1.1-100) 

~' = ( 1 / 2 ) ( c / k ) 2 ( 1  + a)2(1 + 2a - 6a2)(1 - a2) 1/2 �9 ( 1 . 1 - 1 0 1 )  

Through the substitution of (1.1-45), (1.1-46), and (1.1-99)-(1.1-101) into 
(1.1-98), we find that the strip condition is satisfied and hence solution 
(1.1-56) is unique. 

It should come as no surprise that the strip condition is fulfilled, as ~, 
[3, and ~ are derived from the Airy potential 4, E. 

Let us now investigate the consequences of uniqueness on possible 
stresses at the elastoplastic boundary. We introduce a procedure similar to 
the one employed by Courant  and Hilbert  in their proof of uniqueness of 
the initial value problem for the general M o n g e - A m p e r e  equation. 
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Higher-order differential relationships that exist on 811 are 

6,xx cls + ~,xy dlp/as = d p / d s  (1.1-102) 

6, xy d~ /ds  + ~h, yy d~ /d s  = d ~ / d s  (1.1-103) 

where a caret over a second derivative of ~b signifies that the value on the 
boundary is function of a. By multiplying by ds /da ,  these equations 
become 

~,xx "~' -[- 6, xy)3' = p ' ,  (1.1-104) 

~b, xyX"' + ~b, yyY"' = ~'. (1.1-105) 

The variables /3' and ~' in (1.1-104) and (1.1-105) are found by differenti- 
ating (1.1-45) and (1.1-46)with respect to a; i.e., 

)2 /3' - (cZ/k)(1 - a)(1 - 5a)(1 + a (1.1-106) 

~' = ( c 2 / k ) ( 1  + a)(1 - a2)1/2(1 + a - 5a2). (1.1-107) 

If we divide (1.1-104) and (1.1-105) by .~', we find 

qb, x ~ = a ( a )  - "y(a)~,xy (1.1-108) 

~,xy-- f l ( a ) -  ) t (a )~ ,yy  (1.1-109) 

where known quantities on the boundary a(a) ,  ~(a) ,  and y (a )  are defined 
as  

a ( a )  = ~ ' /~ ' ,  ~ ( a )  - ~ ' / . f ' ,  y ( a )  - p ' /2 ' .  (1.1-110) 

By eliminating dP.xy from (1.1-108) and (1.1-109), we obtain 

)2 
~,x~ = r (a  ~) y y  - ~(a)~,(a) + a(a) .  (1.1-111) 

From (1.1-109) and (1.1-111) and the Monge-Ampere equation (1.1-39), 
we deduce 

= )2 / ~, , ,  [4k 2 -  ~ ( a  + 2 k C t ( a ) y ( a ) -  2kc~(a)] 

[ )2 1 [2k + 2 k y ( a  - ~ ( a ) y ( a )  - c~(a) 1. (1.1-112) 

"2 Notice that terms containing 4~,yy (generated by the MongeTAmpere 
equation) have canceled to produce (1.1-112), which is linear in 4~yy. Had 

139  
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^ 

quadratic terms in 4~,yy remained, there would be a second possible stress 
distribution on the boundary that would satisfy the initial value problem as 
ox P =  4~,yy. Because 4~,xy and ~ , ~  vary linearly with ~,yy via (1.1-109) 
and (1.1-111), they too have unique values on the boundary 01I. Thus for 
any particular initial value problem only one possible stress distribution 
may be associated with it on a given elastic-plastic boundary as o-y P - 4~, xx 
and ~'~ = - 4~, xy. 

By the use of relationships (1.1-100), (1.1-101), (1.1-106), (1.1-107), and 
(1.1-110), equation (1.1-112) becomes 

~,yy - 2k(1 - 3a 2 + 4 a 4 ) / ( 1  + a). (1.1-113) 

Similarly, from (1.1-109), (1.1-110), (1.1-111), and (1.1-113), we find ~,xy 
and 4~,~x to be 

dp,~y = 2 k a ( 4 a  2 -  1 ) ( 1 -  a 2 ) 1 / 2 / ( 1  + a ) ,  (1.1-114) 

~ , ~  = 2k(1 - a ) ( 1  + 4a2).  (1.1-115) 

Using the trigonometric identities 

s in(30/2)  = 3 s in (0 /2 )  - 4 s in3(0/2) ,  

cos(30/2)  = 4 cos3(0 /2)  - 3 c o s ( 0 / 2 )  (1.1-116) 

and (1.1-8), (1.1-30)-(1.1-32), (1.1-43), and (1.1-113)-(1.1-116), we find that 
all stresses are continuous on the elastic-plastic boundary: 

oiL: 

~r.~ p = ~,ry = ~v,,  (1.1-117) 

'rv" - dP, xx = ~ E , (1.1-118) 

p 
= = ( 1 . 1 - 1 1 9 )  

Therefore the uniqueness theorem rules out the possibility of a second 
solution, i.e., a solution with a discontinuous stress field across the elasto- 
plastic interface. 

Although we have proved that for a particular initial value problem the 
stresses are uniquely determined on a given boundary, the converse of this 
statement is not true. There is an ambiguity in a stress function ~b, be it 
elastic [Mal 69] or plastic, that is inherent to having the stresses derived 
from its second derivatives. 

To illustrate this ambiguity, let us define n x and n y as components  of a 
unit outward normal vector to the boundary c)l;l such that 

n x = d y / d s ,  ny  = - d x / d s .  (1.1-120) 
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Now by substituting (1.1-120) into (1.1-102) and (1.1-103) and employing 
the relationships between partial derivatives of 4, and the stresses, we find 

o'xPrtx + 7"Prty = d ~ / d s  = t x (1.1-121) 

~'xeyn~ + oyPrty = - d p / d s  = ty (1.1-122) 

where t x and ty are interpreted as the tractions on the boundary in the x 
and y directions, respectively. Integrating (1.1-121) over the arc length ds, 
we deduce 

= - f t y  ds + c , ,  ~ = f t x  ds + c2,  (1.1-123) 

where c 1 and C 2 are constants of integration. Consequently, if tx and ty 
are specified on the boundary `91"~, then /3 and ~ are determined to within 
arbitrary constants. 

If we substitute (1.1-123) into the strip condition (1.1-97) and integrate 
over the arc length, we find that a third arbitrary constant c 3 is introduced 
into the initial data, i.e., 

(1.1-124) 

Thus the initial value problem is not unique for prescribed tractions on 

Let us now find the most general solution ~h* of our problem for 
prescribed tractions on `9~1. 

For the tractions tx and ty on ,91), we infer from (1.1-121)-(1.1-122) 
that 

tx = d ~ * / d s  = d ~ / d s ,  - t y  = d ~ * / d s  = d ~ / d s ,  (1.1-125) 

where/3* and ~* are the first partial derivatives of ~b* on `911 and t3 and 
are given by (1.1-45) and (1.1-46). By integrating equations (1.1-125) over 

ds, we find 

/3* = i6 + c~, q* = q + c~', (1.1-126) 

where c] ~ and c~ are arbitrary constants. 
The strip condition for 4,*, which is analogous to (1.1-98), is 

~*' =/3* s + ~* )Y, (1.1-127) 
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where the prime indicates differentiation with respect to a. From (1.1-126) 
and (1.1-127), we obtain the relationship 

^ 

4~ * ' =  (t3 + c~)2'  + (~ + c~))3'. (1.1-128) 

By substituting ~' from (1.1-98) into (1.1-128) and integrating over da, we 
determine the initial condition for the function 4~* to be 

8" = 8 + + + (1.1-129) 

where c~ is an arbitrary constant and ~, 2, and ,9 are given by (1.1-44), 
(1.1-47), and (1.1-48). 

We find the following solution 4~* of the initial value problem defined 
by (1.1-39), (1.1-126), and (1.1-129) by the technique used earlier for 
(1.1-39) and (1.1-44)-(1.1-46): 

oh* = ch + c~x + c~y + c* (1.1-130) 3 , 

where ~b is the function defined by (1.1-56). 
The derived stresses using the generalized solution ~* from (1.1-130) 

are identical to those derived from the original solution ~b from (1.1-56). 
We conclude that the plastic stress field is unique and continuous across 

the elastoplastic boundary for prescribed tractions on o~ll. 

Stress Discontinuities 
If two families of parabolic characteristics meet at angles other than 0 

or 7r to one another, then a state of discontinuous stress is generated 
across the curve of intersection. Kachanov [Kac 74] proves that stress 
discontinuities within region MN of the yield surface are statically admissi- 
ble only for parallel characteristics (o- 1 - 2k, discontinuous ~r2). 

Point B of Fig. 1.1-3 is a location on the elastic-plastic interface where 
a characteristic is tangent to the boundary. This point occurs for 0 -  
2sin-m(2/3).  By the statements of the previous paragraph, we may infer 
that equilibrium cannot exist where the range of influence of the initial 
data of side DCB overlaps the range of influence from side OAB. This 
region begins along curve GF of Fig. 1.1-3. 

Therefore, without having to determine the stresses in regions FBEF 
and OHGDO, we can conclude that the solution ~b*, which was deter- 
mined in the previous subsection, must be rejected on the basis of 
equilibrium. 

A different solution that has the same tractions on boundary c~l is 
ruled out by the uniqueness theorem. 
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We have therefore proved that the small-scale yielding stresses do not 
provide a mode I elastic-plastic boundary for a well-posed elastoplastic 
problem involving the Tresca yield condition under plane stress loading 
conditions. 

1.2 DEVELOPABLE SURFACES 

A necessary and sufficient condition that a surface be developable is 
that its Gaussian curvature vanishes over its entirety [Str 88]. All devel- 
opable surface are classified as ruled surfaces, i.e., surfaces that can be 
generated by the motion of a straight line. Not all ruled surfaces, however, 
are developable surfaces. A ruled surface with nonzero Gaussian curvature 
is sometimes called a skew surface or a scroll. 

Any developable surface in three-dimensional space can be cut and 
then flattened into a plane in a manner that preserves distance on its 
contiguous surface. Because of this property, a model of a developable 
surface can be made by distorting a plane sheet of paper. As cones and 
cylinders can be formed from paper in this fashion, they serve as examples 
of simple developable surfaces. 

Gaspard Monge [Kli 72] derived the following nonlinear, second-order 
partial differential equation for a developable surface z - ~(x, y): 

~ll xx  ~ ,  yy  -'- ~ ,2xy  " ( 1 . 2 - 1 )  

The only developable surfaces that do not satisfy (1.2-1) are cylinders 
whose generators are perpendicular to the xy plane. 

Equation (1.2-1) is parabolic in the usual classification of second-order 
partial differential equations, and as such it has only one family of 
characteristics. The parabolic nature of equation (1.2-1)can be demon- 
strated in a novel fashion. Under a transformation of coordinates from 
real to complex variables ( z  = x + i y  and ~: = x - i y ) ,  equation (1.2-1) 
maps into an identical form 

~ ,  zz  ~, ~'~" "-- 1//,2z,~ �9 (1.2-2) 

In contrast to this result, if z and ,~ are substituted into a second-order 
elliptic equation for x and y, then a hyperbolic equation, and vice versa 
[CH 62, pp. 499-501]. 

An intermediate integral to equation (1.2-1) has the following represefi- 
tation [CH 62, p. 10]: 

~,x = G( lit, y) (1.2-3) 
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where G( ) is an arbitrary function. By taking partial derivatives of (1.2-3), 
i.e., 

qJ, xx = G'(q(y)qJ, xy, qJ, xy = G ' (  qJ, y)tp, yy (1.2-4) 

and eliminating G'(qJ, y) between equations (1.2-4), we obtain (1.2-1). 
It is evident that the governing equation (1.1-6) for the plastic stress 

function 4~(x, y) of the mode III fracture mechanics problem has the form 
(1.2-3); hence any solution to (1.2-3) represents a surface that is devel- 
opable. 

The functions ~)E(x, y) and 4~(x, y) of (1.1-1) and (1.1-23) for the mode 
III problem are shown in Fig. 1.2-1 for y >_ 0, where (~E is represented by 
a grid, and 4~ by a ruled surface (the conical fan of straight lines). The 
elastoplastic boundary is shown both in space and as a projection on the xy 
plane (circle of radius R). 

The governing equation for the plastic stress function 4~(x, y) of the 
mode I elastoplastic fracture problem for plane stress under the Tresca 
yield condition for a perfectly plastic material is 

~), -+- (jb yy-~-[((~t~ (~) yy)2 [_ 4(~t~2xy] 1/2 ~ ~x - = 4 k ,  (1.2-5) 

< x 

<, 

@ 

FIGURE 1.2-1 
Mode Ill elastic-plastic stress functions. Adapted from [Ung 91] by permission of Kluwcr 
Academic Publishers. 
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provided O" 1 ~ O" 2 ~ 0, 0" 3 = 0 w h e r e  0-1, 0-2, a n d  0- 3 a r e  t h e  principal 
stresses. 

Because (1.2-5) is not of the form (1.2-1), 4' is not a developable 
surface. However, if we make the substitution 

, , )2 )2 
ch(x y)  = ~O(x y) + #/o + k ( x - x  o + k( y - y o  (1.2-6) 

where (x0, Y0, q~0) are constants, we can bring (1.2-5) into the form of the 
developable equation (1.2-1). This is accomplished by moving the variables 
under the radical in (1.2-5) to one side of the equals sign, squaring the 
expression, and simplifying the result. 

It is easily verified that the projection of characteristics of q~(x, y) on 
the xy plane are identical to those for the projections of 4~(x, y); i.e., the 
individual slip lines of Fig. 1.1-3 do not change when qJ is introduced in 
place of ~b, as (1.1-90) does not change. In space, however, the characteris- 
tics of 05 are curves, whereas the characteristics of 0 are straight lines (the 
generators of the ruled surface). 

Whether or not the mode I plastic solution obtained previously (1.1-130) 
can approximate the stress field of a well-posed mode I problem over a 
particular region has not been determined. It is open to investigation both 
numerically and analytically. 

In this connection, we mention that because q~0 + k ( x -  xo) 2 + k(y  - 
y0) 2 satisfies the biharmonic equation, the elastic portion of a mode I 
elastoplastic problem can be transformed as follows: 

O E ( x ,  Y) - thE( x ,  Y) - q'o 

v46 = 0, 

)2 2 
- k ( x - x  0 - k ( y - y 0 )  --, V4q, E = O. 

(1.2-7) 

Through the formulation of an elastic-plastic problem with q,E and qJ 
instead of ~b E and ~b, we eliminate the inhomogeneous equation (1.2-5) 
and substitute in its place the simpler homogeneous equation (1.2-1). 

The alternative stress functions OW(x,y), d/(x ,y)  for the mode I 
elastoplastic problem [Ung 91] for the solutions ~bE(x, y), OS(x, y) obtained 
in Section 1.1 are plotted in Fig. 1.2-2 for the half-plane y > 0. The elastic 
function ~0(x, y) is represented by a grid, and the plastic function 0(x,  y) 
is represented by ruled surface. The elastic-plastic boundary (intersection 
of surfaces qJ E and q,) is marked by a space curve and by its projection on 
the xy plane. The origin of the characteristics is also marked with a space 
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FIGURE 1.2-2 

Mode I alternative elastic-plastic stress functions. Adapted from [Ung 91] by permission of 
Kluwer Academic Publishers Ltd. 

curve and it represents the parabol ic-hyperbol ic  plastic interface, (1.1- 
94)-(1.1-96). The arbitrary constants x 0, Y0, and qJ0 were set equal to zero 
for this analysis. 

As a final exercise, let us substitute ~b from (1.2-6) into (1.1-56) and set 
the arbitrary constants x 0 and Y0 equal to zero. We find 

g~ = ~ + ( x - . f ) P ( a )  + ( y -  ~)Q(a) ( 1.2-8) 

where ~ is the value of qJ on the elast ic-plastic boundary and P(a) and 
Q(A) are defined by (1.1-63) and (1.1-64). The functions P(a) and Q(a) 
are the first partial derivatives of q~ with respect to x and y on the 
elastic-plastic boundary. Hence the solution for 4~ of the mode III 
problem (1.1-15) is similar in form (along a slip line) to the solution for q~ 
of the mode I problem (1.2-8). This similarity occurs because surfaces with 
generators of constant slope (1.1-15) are a subfamily of developable 
surfaces (variable-slope generators).  We need only compare the governing 
first-order equations (1.1-6)with (1.2-3) to prove this assertion. 

Equation (1.1-6) can be interpreted as the governing equation of a 
surface ~b of constant slope with respect to the xy plane by the following 
reasoning: 

p2 + q2 = k 2 ~ Vq~-Vqb = k 2 ~ IV~l = k, (1.2-9) 

where I I represents the magnitude of the gradient of 4~ (i.e., V4~). 
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1.3 STRAIN RATES F O R  P L A N E  S T R E S S  U N D E R  T H E  
T R E S C A  YIELD C O N D I T I O N  

In this section we derive the expressions for the plastic strain rates for a 
perfectly plastic material under plane stress loading conditions for region 
M N  of the Tresca yield condition (Fig. 1.1-2). 

The maximum shear stress rma x for any stress field is equal to one-half 
of the greatest difference in the principal stresses; i.e., 

'/'max - -  (O'max - -  O V m i n ) / 2 ,  (1.3-1) 

where O'ma x and 00mi, are the maximum and minimum principal stresses, 
respectively. A plastic potential h(o- i) is now defined that represents the 
maximum shear stress in the Haigh-Westergaard principal stress space 
(~ For a perfectly plastic material the plastic potential for the 
Tresca yield condition is e q u a l t o  the yield stress in pure shear k. For 
region M N  of the yield surface in Fig. 1.1-2 we have 

h(00i) = (001 - 0 0 3 ) / 2  maximum shear stress on M N  (1.3-2) 

h( o- i) = k Tresca yield condition (1.3-3) 

003 = 00z = 0 plane stress condition (1.3-4) 

where the symbol 00i denotes a function of principal stresses. 
Incremental plastic strains dE~, dE~', and dE e3 in the principal stress 

directions must be orthogonal to the plastic yield surface defined by (1.3-3) 
by Drucker's postulate of a stable plastic material [Kac 74]. They can be 
found from the gradient of the plastic potential (1.3-2) as follows [Men 68]: 

i dE~ = [ c)h( 00~)/c~00~ ] dA = ~dA, (1.3-5) 

dE~ = [ c)h( 00i)/c)002 ] dA = O, (1.3-6) 

dE P [ c) h ( 00~ ) / c)003 ] d A = 3 = . - ~ d A  (1.3-7) 

where d A is defined as the incremental loading parameter (flow theory). 
If we employ the notation that a dot over a variable means differentia- 

tion ( d / d t )  with respect to time t (or some other loading parameter), we 
can deduce the plastic strain rates from (1.3-5)-(1.3-7) as 

�9 1~ E P = ~  , 

~ '  - 0 ,  

~P _ ,,~ 
3 ~ ~ 2  �9 

(1.3-8) 

(1.3-9) 

(1.3-10) 
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Relationships (1.3-8) and (1.3-9) are consistent with the strain rate direc- 
tion shown in Fig. 1.1-2 along side M N  of the Tresca yield condition. 

The incompressibility condition for plastic flow (1.3-11), 

~P + ~P + ~( = O, (1.3-11) 

is also satisfied by strain rates (1.3-8)-(1.3-10). 
From (1.3-3) we show that components of the plastic strain rate tensor 

in Cartesian coordinates (x, y) are proportional to the second derivatives 
of the alternative stress function @ with respect to those coordinates. We 
must first note, however, the following relationships between ~, defined by 
(1.2-6) in terms of oh, and the following stresses: 

O" x "-- t~,  y y  --- I[I, y y  Jr- 2k, (1.3-12) 

Cry = 4~,xx = q~,xx + 2k, (1.3-13) 

T x y  - "  - -  t ~ , x y  --- - -  I]lxy . (1.3-14) 

The strain rate in the x direction is 

i~ = ~[ ah( ,r~)/a,r~)] (1.3-15) 

3 

= }t Y'~ [ah(,ri)/a~ri](acri/a,r X) (1.3-16) 
i=1 

= ~[ (Oh/&r , ) (a , r , / a , rx )  

+ ( ah / a~r2 )(ar 

+ ( ah / ar ar (1.3-17) 

The evaluation of the various partial derivatives that appear in (1.3-17) 
follow from (1.1-33) and (1.3-2)-(1.3-4). Only those contributions that are 
necessary to evaluate (1.3-17) are given below: 

1 Oh / aO"  l --- -~, a h / a ( r  2 = O, 0o-3/air, = O, ( 1.3-18) 

0o-~/0o-~ = 5 + 5(~ - %) (c5 Cry + 4~'2y . (1.3-19) 

The radical appearing in (1.3-19) can be eliminated through (1.1-37) to 
yield a simpler expression, 

l l 
c 9 o ' 1 / c 9 o "  x = -y + 5 ( t rx  - -  t ry  ) / [ 4 k - t r  x - try],  ( 1 . 3 - 2 0 )  

= (2k - r - o x - %). (1.3-21) 
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Through the use (1.3-12) and (1.3-13), equation (1.3-21) can be expressed 
entirely in terms of partial derivatives of qJ, i.e., 

030"1/030" x --  I]t, x x / (  l[I,x x + I[t, y y ) .  (1.3-22) 

By substituting (1.3-18) and (1.3-22) into (1.3-17), we obtain ~ff as given in 
(1.3-25). 

Similarly, the other two strain rates in the plane can be determined 
form the convexity of the yield surface as 

and 

(1.3-23) 

But 
/ n 

( I]l, yy --  ~ , x x ) / ( 2 ~ , x y )  = ~ e y  -- ~ v ) / ( 2 ~ _ x V y ) ,  (1.3-30) 

via (1.3-25)-(1.3-27). Thus the principal stress and strain rate directions 
coincide, i.e., 

- c o t 2 a  = ( O - y -  O x ) / ( 2 " r x y ) =  (~yP - ~ff)/(2~xPy). (1.3-31) 

Furthermore, the principal strain rates (1.3-8) and (1.3-9) can be recov- 
ered from the Cartesian strain rates (1.3-25)-(1.3-27) through the use of 

. p  
~xy = 2ePxy = ~ . [ c ) h ( o ' i ) / O r x y ] .  (1.3-24) 

We omit the details of the evaluation and give the results below. 
The three in-plane strain rates in terms of A and the second partial 

derivatives of qJ are 

ex P" = 7' '~qJ, xx/(~ 0, x~ + ~byy), (1.3-25) 

EP. __ 21 ~1]i y y / ( 1[1 x x -{- 1[!, y y ) , ( 1.3-26) 

e = -i~ ~ q~, ~ y / ( 4'. x x + qJ y y ) . ( 1 . 3 - 2 7 )  

If we now call a the angle that a principal direction makes relative to 
the x-axis in the xy plane, then the general plane stress relationship 

-co t2c~  = (% - Ox)/(2'rxy) (1.3-28) 

exists between the principal directions of stress. By substituting (1.3- 
12)-(1.3-14) into (1.3-28), we also find that 

- c o t 2 a  = (l~t, yy - ~,xx)/(2~,xy). (1.3-29) 
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tensor formulas found in any elementary strength of materials text. The 
principal strain rates 4~ and ~ '  can be obtained from the relationships 

= " " _ - " + 4 4 L  2 , i =  1,2. (1.3-32) 

We employ a Laplacian operator  symbol in the subsequent analysis in 
deriving the principal strain rates from (1.3-32), 

V2~ - ~ , ~  + ~,yy. (1.3-33) 

By substituting (1.3-25)-(1.3-27) and (1.3-33) into (1.3-32), we find 

2ei e =  (X/2V21]-t){V2~-+-[(~,xx- ~,yy)2+ 4~,2y] 1/2} ( 1 . 3 - 3 4 )  

_ _ + 4(qj xy _ qj qJ. ) ] , /z  

Through the use of (1.2-1), equation (1.3-35) reduces to 

2~i e = (A/zvZ0){VzqJ + Vzq~}. (1.3-36) 

Thus we recover (1.3-8) and (1.3-9) from (1.3-36), as indicated below: 

"P = ' A, ~P = 0 (1.3-37) e i Jr(1 + 1 ) / 4  ~ ~P = ~ 

The last equality in (1.3-37)suggests that no plastic strain rate exists in 
the direction of a slip line. Thus the component  of velocity for a perfectly 
plastic material is constant in the direction of a slip line along that slip 
line. 

For a general discussion of plane stress relationships for the Tresca 
yield condition, the reader is directed to [Kac 74]. 

1.4 MODE I DISPLACEMENTS 

We now analytically continue the linear elastic displacements of the 
mode I fracture mechanics problem of Section 1.1 for an incompressible 
body into the plastic region. A deformation theory of plasticity is assumed 
involving small displacements and a perfectly plastic material. 

A normalized polar coordinate system (R, 0) is first introduced. It is 
defined in terms of the dimensionless Cartesian coordinates ( X , Y )  of 
(1.1-84) as 

R - ( X  2 -k- Y 2 )  1/2 = 27rr(~ro/Kl) 2, tan 0 - Y / X  = y / x ,  (1.4-1) 

where o- 0 is the yield stress in tension (2k for the Tresca yield condition). 
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From the elementary strength of materials formula (1.3-28) and the 
elastic, small-scale yielding stresses (1.1-30)-(1.1-32), the following rela- 
tionship can be established between a ,  the angle a slip line makes relative 
to the x-axis (Figs. 1.4-1 and 1.4-2), and the polar coordinate angle 0 on 
the elastic-plastic boundary 01~ for the upper half plane: 

a = 3(0 + 7r ) /4 ,  0 < 0 < 7r. (1.4-2) 

A caret above a variable in this section signifies a function of a that lies 
on the elastic-plastic boundary. From (1.4-2)we can determine the follow- 
ing relationship between the function a and the angle a :  

a - sin 0 / 2  = - c o s 2 a / 3 .  (1.4-3) 

We now develop a natural coordinate system ( a , / 3 )  which is composed of 
the slip lines a and their orthogonal trajectories /3. The reason for 
introducing this new coordinate system is that a simple solution for plastic 
strain is admissible within it. The strain field we propose is compatible with 
a deformation theory of plasticity. We assume that the only component of 
strain that exist in the xy plane is a normal strain in the a direction. This 
assumption reduces considerably the complexity of the mathematics needed 
to determine the displacement field, as the strain-displacement equations 
become integrable as a consequence. We need only apply the boundary 
condition of continuous displacement at the elastic-plastic interface to 
determine two arbitrary functions that result from the integration of the 
partial differential equations that relate displacement to strain. 

The family of the orthogonal trajectories /3 that we seek must meet the 
slip lines at a slope (dY/dX)which is the negative reciprocal of the slope 
of the characteristics (tan a),  i.e., 

dY/dX = - c o t  a .  (1.4-4) 

Through the use of trigonometric identities and (1.4-3), the equation of the 
characteristics (1.1-90)may be rewritten in terms of a as 

X sin a - Y cos a = lq ( a ), (1.4-5) 

where I I ( a )  is defined as 

H ( a )  - 16cosZce/3 sinTce/3. (1.4-6) 

The function II(ce) can be identified as the normalized distance (OV in 
Fig. 1.4-1) between a given slip line a (UVW in Fig. 1.4-1) and the origin 
of the Cartesian coordinate system O. (In the subsequent analysis, we 
occasionally drop the argument symbol on H ( a ) w h e n  its dependence on 
a is inconsequential.) 
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FIGURE 1.4-1 
Plastic zone angles and radii. 

Relationship (1.4-5) is transformed into 

R s i n ( a -  0) = H ( a ) ,  (1.4-7) 

when expressed in polar coordinates. This can also be inferred from the 
geometry shown in Fig. 1.4-1. 

The normalized distance between the common origin of the polar and 
Cartesian coordinate systems O and the point (U of Fig. 1.4-1) where a 
given characteristic a intersects the elastic-plastic boundary a D, is desig- 
nated by the symbol p(a) .  This distance has the following relationship to 
previously defined parameters: 

p( a ) = H( c~ ) csc a / 3 ,  (1.4-8) 

as can be easily deduced from trigonometry and Fig. 1.4-1. 
The polar equivalent of (1.4-4) is 

dR~R= - t a n ( a -  0 ) d 0 .  (1.4-9) 

We then multiply (1.4-7) by (1.4-9) to obtain 

cos(a  - 0) dR = - I I ( a )  dO. (1.4-10) 
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Now the differential form of (1.4-7) is 

d R s i n ( a -  O) + R c o s ( a -  O ) ( d a -  dO) - d H .  (1.4-11) 

By substituting R from (1.4-7) and dR from (1.4-9) into (1.4-11), we find 

dO = c o s ( a -  0 ) [ c o s ( a -  O ) d a -  s i n ( a -  O ) d H / I I ] .  (1.4-12) 

Now we eliminate dO from (1.4-9) and (1.4-12) to obtain 

d R / R  = -T-s in(a-  0)[1 - s i n 2 ( a -  0)] 
1/2 

dc~ + s i n Z ( a -  O ) d I I / H .  

(1.4-13) 

Note that in the derivation of (1.4-13) an elementary trigonometric identity 
was used to replace the c o s ( a -  0) with s i n ( a -  0). Accompanying this 
substitution was the introduction of a p lus /minus  sign. The upper sign is 
chosen when ]a - 0[ < 7r/2 and the lower sign is chosen when ]a - 0] > 
7r/2. Eventually this p lus /minus  sign convention will be replaced by the 
re-introduction of the c o s ( a -  0) in (1.4-18), which occurs after the 
integration of a simple algebraic integrand that was generated by this 
procedure. 

From (1.4-13) we eliminate sin(a - 0) via (1.4-7) to infer 

Jn/n ' / 2  = - dc~ + I I / R  2d l I .  (1.4-14) 

Equation (1.4-14) can also be rewritten in a way that separates variables 
for the purpose of integration, i.e., 

-T-d(R 2 - H 2 ) / ( R  2 - 112) 1/2= 2 I I ( a )  dc~. (1.4-15) 

Integrating (1.4-15), we find 

+ ( R  2 H2) 1/2 f - + II(o~) d a  = B -- 2"nC3o(Z/K 2 , (1.4-16) 

where B is a dimensionless constant of integration. The indefinite integral 
appearing in (1.4-16) is evaluated using equation (2.510 5) of [GR 65] as 

f I I ( a )  d a  = 16/3 cos a / 3 { s i n S a / 3  - 1/7[sin~'a/3 + 2/5 (3  sin4a/3 

+4  sinZa/3 + 8)]}. (1.4-17) 

Alternatively, B may be interpreted as the dimensionless counterpart of /3  
in an orthogonal coordinate system (a , /3 ) ,  where /3 is defined in terms of 
B by the second equality in (1.4-16). 
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We now substitute II(c~) from (1.4-7) into (1.4-16) for II to obtain 

R c o s ( a -  0) = B -  f I I ( c ~ ) d a .  (1.4-18) 

Reverting to Cartesian coordinates, we determine that (1.4-18) becomes 

Xcos  c~ + Ysin c~ = B - fH( )dc . (1.4-19) 

By solving the simultaneous equations (1.4-5) and (1.4-19) for X and Y, we 
determine the transformation from the Cartesian coordinates to the newly 
defined orthogonal system as 

X =  cos a ( B - f H ( = ) d ~ )  + I I ( a ) s in  a (1.4-20) 

Y = sin ot ( B - f tI ( o~ ) d o~ ) - H ( o~ )cos ot . (1.4-21) 

It can be shown that lines of constant a and curves of constant /3 are 
geodesics [Str 88] on the surface ~O of (1.2-6); i.e., they are the shortest 
paths between two points on the surface. 

We note that previous representations for stress from Section 1.1 can 
now be expressed explicitly in terms of two coordinates ( a ,  13) rather than 
parametrically in terms of a by the substitution of (1.4-20) and (1.4-21) for 
X and Y, and (1.4-3) for a. We further note that the principal stresses 
(1.1-91) and (1.1-92) are the normal stresses ~ = 0-1 and % = 0 2 in the 
(a ,  fl) coordinate system. 

The coordinate system ( a , / 3 )  is depicted in Fig. 1.4-2 in dimensionless 
form (a ,  B). It should be pointed out that the ( a , / 3 )  coordinate system is 
right-handed for slip lines that originate from points D to B on c~1~ in Fig. 
1.4-2; however, the coordinate system becomes left-handed for slip lines 
that originate from O to B. The behavior is shown explicitly at points K 
and I of Fig. 1.4-2 by unit vectors t~ and [~ which point in the directions of 
increasing a or/3.  

The change from right-handedness to left-handedness occurs at point B 
on 01~. This is the location where a slip line is tangent to the elastic-plas- 
tic boundary. The numerical value of a at this inflection point is 
(3/2)cos-  1 ( -  2/3).  
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Characteristic coordinate system. 
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Geometrically a curve of constant fl is an involute of the curve labeled 
"edge of regression" in Fig. 1.4-2, i.e., the curve LMBNPO. This edge of 
regression has cusps at points M and N. It is also the evolute (envelope) of 
the slip lines. 

Physically, the involutes mentioned above are generated as traces of 
points on line QBT that QBT leaves in the plane as it rolls without slip 
along the stationary edge of regression. A clockwise rotation of QBT 
generates the right-handed coordinates ( a ,  fl), while a counterclockwise 
rotation of QBT generates the left-handed coordinates (~ ,  fl). 

Note the curve B = - 1  which is plotted in Fig. 1.4-2. The solid portion 
of curve B = - 1 and the dotted portion of curve B = - 1 meet the upper 
portion of the edge of regression orthogonally. This behavior is related to 
the generation of /3 curves through the clockwise or counterclockwise 
motion of line QBT on the edge of regression. 
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The term edge of  regression comes from differential geometry terminol- 
ogy concerning developable surfaces. We recall from Section 1.2 that the 
stress function 4~(x, y) is related to a developable surface q~(x, y) through 
a simple transformation. We have also mentioned that the projection of 
characteristics on the xy plane (slip lines) of 4,(x, y) and qJ(x, y) are 
identical. The edge of regression is formed in space as the locus of the 
intersection of "neighboring" generators of the developable surface. In 
Fig. 1.4-2 we are viewing the projection of this space curve, which touches 
qJ(x, y), on the xy plane. The edge of regression can be described in 
Cartesian coordinates in parametric form provided the equation of the 
developable surface is known as a one-parameter family of planes [Sne 57, 
p. 314]. For us, its locus is where the metric coefficient g,~ = 0. 

The relationship for the square of differential arc length in the two 
coordinate systems, (x, y) and (a , /3 ) ,  is determined from (1.1-84), (1.4-20), 
(1.4-21), and the second equality in (1.4-16) as 

__ - )4 )2 ( K x )  2 -+- (dy) 2 (2w) 2 ( K I / o "  0 [ (dX + (dY) 2] 

[ : 1 )4 -- H '  - )2 = (2r r ) -2(Ki /o"  0 B ( a )  H ( a ) d a  ( d a  

+ (d/3 )2 ( 1.4-22) 

g .... ( d a ) 2  )2 
= + (g,,t~ + gt~,, ) ( d a ) ( d f l )  + gt~t3(dfl 

( 1.4-23) 

where gij are metric coefficients. By comparing (1.4-22) and (1.4-23), we 
can conclude that 

g,~,~ = ( 2 7 7 - ) - 2 ( K i / r r . )  4 B -  H ' ( a )  - fn(a)da gt3t~ = 1 

(1.4-24) 

g ~  + g~,~ = 0 (1.4-25) 

where the function I I ' ( a )  is evaluated by differentiating (1.4-6)with 
respect to a,  i.e., 

I I ' ( a )  -- 16cos a / 3 s i n ~ a / 3 ( 7 / 3  - 3 sinZa/3). (1.4-26) 

Condition (1.4-25) above verifies that the ( a , / 3 )  system is orthogonal. 
The normal strains G,~ and @t3 and the engineering shear strain 

Y,~t3 = 2Gt3 in the ( a , / 3 )  coordinates are readily expressed in terms of 
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displacements in that system (u4, ur by the following expressions [Sok 56]: 

Ec~ ~ = (b/a - 1 / 2  

+ (1 /2)  g~-I {g2~/Zu~ g~ ,~  + g~/Zur  g ~ ,  t~ } (1.4-27) 

+ (1/2)g~t ~ {g;~/Zu~g~r162 + g2l/Zu~gr162 (1.4-28) 

Y~ ( g ~ g ~ ) - l / 2 {  ) = g~ (u~ -1/2 g ~  ),t~ + gr162  (1.4-29) 

where the positive square root of the metric coefficient g ~  is given by 

l/2 = +(27r ) - l (K1/o .0)  2 B - II'(c~) - fn( )dc  (1 4-30) 
O ( ~  - -  

= +_(27r)- l(Kl/~ro)Z[B- B 0] = + [ / 3 - / 3  o ] (1.4-31) 

= I/3 - /3,,I, (1.4-32) 

and the value of/3 for g,,~ = 0 (edge of regression) is 

/3,1 = ( 2 r r ) - l ( K l / ( r 0 )  2 BI, (1.4-33) 

with 

B o -= II'(oe) + fII(c~) dc~ 

= 32 cos a/3{  - 4 / 3  sinaa/3 

+ 1/7[8 sin~'c~/3 - 1/15(3 sinac~/3 + 4 sinZc~/3 + 8)]}. (1.4-34) 

The function /30 (and correspondingly B 0 in dimensionless form)is  the /3 
coordinate of the edge of regression for a particular value of c~. 

The following sign convention for _+ and -T- is employed in (1.4-30) 
and in the remainder of this section. The upper sign is chosen for 
3 / 2  cos -1(_  2 /3)  < c~ < 3Ir/2, and the lower sign is chosen for 3~r/4 < c~ 
< 3 / 2 c o s - 1 ( - 2 / 3 ) .  This change in sign is necessary due to the right- 
handed to left-handed transition in the coordinate system (c~,/3). 

By substituting the metric coefficients (1.4-24) and (1.4-30) into (1.4- 
27)-(1.4-29), we find that they reduce to 

- ! / 2  e , , ~ = g ~  [u,,,~ +_ut3 ] 

e ~  = u~. ~ 

")lot. = g~l/2[gotot( l ' lo~ - 1 / 2  ] g,~,~ ),t~ + ut~,,, �9 

(1.4-35) 

(1.4-36) 

(1.4-37) 
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We now propose the ansatz that plastic strain develops only for G,, in the 
c~/3 plane. This assumption is admissible within the restrictions imposed by 
(1.3-5) and (1.3-6), where the first principal direction is the c~ direction and 
the second principal direction is the /3 direction. 

We then integrate (1.4-36) to obtain the result that the displacement in 
the /3 direction is a function only of c~, i.e., 

@t3 - 0 ~ ut~ = t~r ( c~ ). (1.4-38) 

This arbitrary function of c~, however, is subject to the physically moti- 
vated boundary condition of continuous displacement at the elastic-plastic 
interface, which is determined from the linear elastic solution. We desig- 
nate the displacement in the /3 direction at the elastic-plastic boundary, 

The assumption of no engineering shear strain in the c~/3 plane implies 
the following: 

y,,r = 0 ~ g ~ ( u , g ~ , l / 2 )  t 3 + ut~., , = 0. (1.4-39) 

We conclude from (1.4-38) and (1.4-39) that 

( u, ,  g,-,,~ /2 ), 13 =- -- ~l~ ( Ol ) / g  .... (1.4-40) 

where the prime in (1.4-40) denotes differentiation with respect to a. 
Now (1.4-40) can be integrated with respect to /3, i.e., 

u,,g,,,~/2 = - f i ~ ( a ) f ( / 3 - / 3 , , )  -2 d ~  + h ( a ) ,  (1.4-41) 

where h(c~) is an arbitrary function of c~. The evaluation of the indefinite 
integral in (1.4-41) is elementary. Upon integration this relationship yields 

1/2 " u,~ = g,,,, [u~(c~) / (  13-  /3,,) + h(c~)]. (1.4-42) 

We may determine the specific form of the function h(cr) from the second 
component of displacement at the elastic-plastic interface t/,,(c~). 

The elastic, small-scale yielding solution for an incompressible material 
(Poisson's ratio v = 1/2)  is, from [Ric 78, Cher 79, KP 85], 

E ( K i / 3 G ) ( r / 2 7 r ) l / 2  u x = cos 0/2(1 + 3 sin20/2) 

E = ( K l / 3 G ) ( r / 2 7 r ) l / 2 s i  n 0/2(1 + 3sin20/2) Uy 

(1.4-43) 

(1.4-44) 
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where G is the shear modulus. The elastic-plastic boundary is from 
(1.1-38) 

o1~" r -  (27r) - l (Kl / t ro)2COS20/2(1  + sin 0 /2 )  2, 

0_< 0 <  7r. (1.4-45) 

By substituting r from (1.4-45) into (1.4-43) and (1.4-44) and employing 
(1.4-3), we obtain 

Ux = ( K Z / 6 z r G ~  1 - a2)(1 + a)(1 + 3a2), (1.4-46) 

~y = (KZ/67rGo 'o )a (1  - a2)1/2(1 + a)(1 + 3a2). (1.4-47) 

Resolving the x and y components  of displacement on a ~  into the a and 
/3 directions, we find 

t~,~ = -Y-t~xSin a _+/~yCOS o~, (1.4-48) 

t~/3 -- t~xCOS ce + t~ySin ce. (1.4-49) 

Differentiating (1.4-49), we obtain by using the chain rule 

t h ~ ( a )  = f ix(a)c~  a - ~xSin a + ~y(a ) s in  a + fiyCOS a (1.4-50) 

= ( d h ~ / d a ) ( d a / d a ) c o s  a - h~sin a 

+ ( d h y / d a ) ( d a / d o ~ ) s i n  ot + hyCOS c~. (1.4-51) 

Since 

a = - c o s  2 a / 3  ~ d a / d a  = (2 /3)s in  2 a / 3 .  (1.4-52) 

By differentiating (1.4-46) and (1.4-47)with respect to a, we deduce 

d~x /da  = (K2/6"rrGoo)(1  + a)[1 + 3a + 3a 2 -  15a3], (1.4-53) 

d~ty,/da = (K2/67rGo'o)[(1  + a ) / ( 1  - a)]l/2[1 + a + 6a 2 + 3a 3 - 15a4]. 

(1.4-54) 

Now by (1.4-31), (1.4-42), (1.4-50), and (1.4-51) the undetermined function 
h ( a )  becomes 

h ( a )  = [+t~,~(a)  - f i ; ( a ) ] / ( / 3  - /30) (1.4-55) 

= - ( d a / d a ) [ ( d f i x / d a ) c o s  a + (dCty/da)sin a ] / (  f ] - / 3 0 )  

(1.4-56) 
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where the value o f /3  on the elastic-plastic boundary is given below 

/3 --= (277") -1 /3(Ki /o '0)  2, /} = - H ( a ) c o t  c~/3 + fn( ) d a .  

(1.4-57) 

The variable /3 in (1 .4-57)was  found by substituting R = p ( a )  from 
(1.4-8) into (1.4-16). Note that on the elastic-plastic boundary 7r/2 < c~ - 
(9 < 37r/4 by (1.4-2), and therefore the lower sign on the radical in (1.4-16) 
is used. 

Now 

/ 3 -  /3 o = ( 2 r r ) - ' ( K , / o ' 0 ) 2 ( / ~  - B0) (1.4-58) 

where /~ - B 0 is evaluated from (1.4-6), (1.4-34), and (1.4-57) as 

/3 - B0 = 3 2 / 3  cos c~/3 sin6c~/3(1 - 6 cos2c~/3), 37r/4 < c~ < 37r/2. 

(1.4-59) 

Through the use of (1.4-42), (1.4-55), (1.4-56), and (1.4-58), we have 

u,, = + ( d a / d ~ ) [ c o . ,  ~ ( d h x / d a )  + sin ~ ( d h y / d a ) ]  

= _ + ( 2 / 3 ) s i n Z a / 3 [ c o s  oe(d f ix /da)  + sin o~(dfi:. /da)] 

Resolving the components  of displacement from the (c~,/3) system into the 
Cartesian system, we find 

U x ( a ,  ,8) = -T-u,~(o~, fl)sin c~ + h/j(c~)cos c~, (1.4-62) 

Uy( c~,/3 ) = + u~( c~,/3 )cos c~ + fit~ ( c~)sin c~. (1.4-63) 

For the purpose of comparison, let us define the normalized displace- 
ments 

Ux P =- 6 r r G o ( ) u x / K  2 , Uy P - 6 r r G o ' o u y / K  2 (1.4-64) 

(U~)~.~y,. - 6rrGo'()uV'/K , (UyE).~y = 6 r r G o ( ) u V / K 2  . (1.4-65) 

We now compare in tabular form the perfectly plastic displacement field 
versus the linear elastic, small-scale yielding displacement field along two 
particular slip lines CE and A H  of Fig. 1.4-2. Note that we have chosen 
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TABLE 1.4-1 

Comparison of Normalized Mode I Displacements along Slip Line CE, 
~ = 7 T t / 8  
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(UxE)ssy U P (uyE)ssy Uy P 

- 2.678 ( c )  1.411 1.411 0.378 0.378 
- 2.6 1.419 1.422 0.413 0.406 
- 2.4 1.457 1.451 0.524 0.476 
- 2.2 1.522 1.481 0.673 0.547 
- 2 . 0  1.613 1.510 0.872 0.618 
- 1.8 1.722 1.539 1.127 0.688 
- 1.6 1.835 1.568 1.437 0.759 
- 1.512 (E)  1.884 1.581 1.588 0.790 
- 1.4 1.941 1.598 1.790 0.830 
- 1.2 2.031 1.627 2.168 0.900 
- 1.0 2.102 1.656 2.553 0.971 

slip l ines  w h i c h  e m a n a t e  f r o m  two  d i s t inc t  r e g i o n s  o f  t he  e l a s t i c - p l a s t i c  

b o u n d a r y ,  i.e., r e g i o n s  DCB a n d  OAB. T h e s e  r e g i o n s  a r e  c h a r a c t e r i z e d  by 

r i g h t - h a n d e d  a n d  l e f t - h a n d e d  (c~ , /3 )  c o o r d i n a t e  sys t ems ,  r e spec t i ve ly .  C o r -  

r e s p o n d i n g l y ,  t he  l o w e r  s igns (o f  _+ o r  T-) a r e  u s e d  in all d i s p l a c e m e n t  

f o r m u l a s  r e l a t e d  to  slip l ine CE, a n d  the  u p p e r  s igns a r e  c h o s e n  fo r  all 

f o r m u l a s  r e l a t e d  to  slip l ine AH. 
F r o m  T a b l e s  1.4-1 a n d  1.4-2, w e  o b s e r v e  t ha t  g e n e r a l  t r e n d s  o f  g r o w t h  

o r  d e c a y  b e t w e e n  e las t ic  and  p las t i c  c o m p o n e n t s  o f  d i s p l a c e m e n t  a r e  

TABLE 1.4-2 
Comparison of Normalized Mode I Displacements along Slip Line AH, 

~x = 5 x r / 4  

( Ux F )ssy Ox P ( Uv E )ssy Ov p 

- 0.471 (A) 1.516 1.516 2.626 2.626 
- 0.485 1.530 1.530 2.603 2.612 
- 0.5 1.545 1.544 2.580 2.598 
- 0.535 1.578 1.578 2.525 2.564 
-0 .567 ( H )  1.606 1.608 2.477 2.534 
- 0.6 1.634 1.640 2.430 2.502 
- 0 . 7  1.711 1.736 2.296 2.406 
- 0 . 8  1.777 1.832 2.179 2.310 
- 0 . 9  1.835 1.928 2.078 2.214 
- 1.0 1.887 2.024 1.992 2.118 
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similar as one moves away from the elastic-plastic boundary, although the 
magnitudes themselves vary considerably. 

The plastic displacement field, (1.4-64) and (1.4-65), is multi-valued in 
the region where slip lines originating from opposite sides of the 
elastic-plastic boundary cross. The region begins on curve GF of Fig. 
1.1-3. By comparing analyses for stress and displacement, we find that 
where a disequilibrated stress discontinuity exists, a multiplicity of dis- 
placement also exists. 

The presence of a O(1/r ) strain singularity at a crack tip is indicative of 
deformation theory for a perfectly plastic material. It is observed in the 
Prandtl perfectly plastic solution for mode I [Ric 68a] and in the Hult and 
McClintock elastoplastic solution for mode III [Ric 68a]. The possibility of 
a plastic strain singularity O(1/r)  at the crack tip in our analysis (point O 
of Fig. 1.4-2) is implied by (1.4-31) and (1.4-35). 

This singularity would appear to propagate along the edge of regression 
provided the bracketed term in (1.4-35) is finite. However, assuming that 
the Tresca yield condition governs, we infer from the locus of the 
parabolic-hyperbolic plastic boundary ~o (Fig. 1.1-3) that there are only 
two possible locations for this singularity. One position is the crack tip and 
the other position is the point of tangency of the slip line QBT to the 
elastic-plastic interface ~ (point B of Fig. 1.4-2), which is where a cusp 
in a /3 curve occurs. A strain singularity of order O(1 / r )  is also found at 
the cusp of an analogous /3 curve for a mode III problem in Section 2.2 
(Refer specifically to equation (2.2-16) and the paragraph that follows it.) 

Most of the results that were obtained in Chapter 1 for the Tresca yield 
condition are equally valid for the Rankine (maximum principal stress) 
yield condition. 

The Rankine yield surface for plane stress is shown schematically as 
LMNOPQRSL in Fig. 1.4-3. It is depicted superposed over the Tresca yield 
surface LMNPQRL. We note that the two yield surfaces coincide along 
side MN. Therefore, the predicted elastic-plastic boundary 31~1 for mode I 
is identical for Tresca and Rankine yield conditions because the elastic 
stresses reach yield along MN. This has been reported previously in [CZ 
91]. 

However, the parabolic-hyperbolic plastic boundary c~w, which is found 
in the Tresca analysis, would not exist under the Rankine yield criterion as 
there is no hyperbolic region. The slip lines found under the Tresca yield 
condition would extend beyond 3w under the Rankine yield condition. 
This is due to the absence of side NP (a hyperbolic region) and the 
addition of side NO to side MN to form side MNO (a parabolic region) on 
the Rankine yield surface. 
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FIGURE 1.4-3 
Rankine yield condition superposed over Tresca yield condition. 

As a final note on the (c~, fl) coordinate system, we observe that the 
solution for q,(x, y), given as (1.2-8), assumes a particularly simple form in 
it, i.e., 

t3)= (t3- ( 1.4-66) 

where the value of the partial derivative of q, with respect to fl on the 
elastic-plastic boundary ,91~ is 

( dqt/dfl )]aa -- P(  a )cos c~ + Q( a )sin a .  (1.4-67) 

The functions P(c~) and Q ( a )  that appear in (1.4-67)were defined for 
equation (1.2-8). They were also given explicitly in terms of a by (1.1-63) 
and (1.1-64). 

1.5 SPECULATIONS CONCERNING AN ANALYTICAL 
MODE I ELASTOPLASTIC SOLUTION 

Until a few years ago no analytical solutions were available for mode I 
elastoplastic fracture problems. Previous analytical solutions were confined 
either to completely elastic problems or to completely plastic problems. 
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With the publication of [Ung 90a], however, the stresses of the mode I, 
small-scale yielding, linearly elastic solution under plane stress loading 
conditions, were continued across the elastic-plastic boundary into the 
plastic region. The locus of the prescribed elastoplastic interface was found 
by substituting the stress field of the purely elastic problem into the Tresca 
yield condition for a perfectly plastic material. The initial value problem 
for the plastic stress function was then obtained analytically by exploiting 
the exceptional properties of the governing Monge-Ampere  equation. 
This technique used a complete solution of an intermediate integral of the 
nonlinear, second-order equation of the plastic stress function. From a 
one-parameter subsystem of the complete solution, a plastic stress function 
was found which, if interpreted geometrically as a surface, circumscribed 
the elastic stress surface (Airy function) of the small-scale yielding, mode 
I solution. By differentiating the plastic stress function, the stresses were 
determined in parametric form. These analyses have been reproduced here 
as Section 1.1. 

This mode I solution scheme extended a technique used to solve the 
analogous mode III problem of Chapter 1. The elastoplastic mode III 
problem was, of course, previously solved by Hult and McClintock, using a 
different method. Unlike the Hult and McClintock solution, however, the 
mode I elastoplastic solution exhibits a disequilibrated stress discontinuity 
in the trailing portion of the plastic zone. This discontinuity indicates that 
the mode I, small-scale yielding solution cannot be used as the elastic 
solution of the elastoplastic problem. This situation is in contrast to the 
mode III small-scale yielding solution where the linear elastic stress field, 
found for the purely elastic problem, can serve as the elastic solution of 
the elastoplastic problem. The mode I solution of the plastic, initial value 
problem indicates that probable elastic unloading occurs in the vicinity of 
the stress discontinuity. However, the extent of the unloading and its effect 
on the stress field ahead of the crack tip is unknown. It is conceivable that 
the plastic stress field may remain virtually intact in a particular region of 
the plastic zone. There is some evidence to suggest that the leading edge 
of a plastic zone might be less susceptible to unloading than the trailing 
portion. 

For example, in steady-state crack propagation for mode III, the Hult 
and McClintock plastic stress field is no longer valid in the trailing portion 
of the plastic zone (plastic wake). However, the plastic stress field ahead of 
the crack tip, as predicted by the stationary Hult and McClintock solution, 
is a good approximation of the actual stress field, as indicated by both 
numerical and asymptotic solutions [CM 71]. 

Another demonstration of the susceptibility of the trailing portion of 
the plastic zone to unloading comes from a perfectly plastic, plane strain, 



Speculations Concerning an Analytical Mode I Elastoplastic Solution 165 

mode I problem [RDS 80]. This problem involves the Prandtl stress field as 
a model of crack tip plasticity (Section 1.8). For the stationary crack 
problem, the Prandtl stress field is a statically admissible solution. How- 
ever, for steady-state crack propagation the same stress distribution pre- 
dicts negative plastic work in a trailing portion of the plastic zone, which is 
physically unrealistic as plastic flow dissipates energy. It was shown subse- 
quently that unloading must occur in a sector that lies in the trailing 
portion of the plastic zone. This sector separates two active plastic regions 
whose stresses can be approximated by the Prandtl field. 

For a stationary crack, a finite-element analysis [DH 91], which was 
discussed in Section 1.9, found that the sector under which the Prandtl 
solution was valid, in their elastoplastic analysis, varied with the T stress 
(stresses parallel to the crack faces). However, for all loads investigated, 
the state of yield of the plastic material ahead of the crack tip, which has a 
uniform state of stress in the Prandtl solution (o- x = 7rk, O'y = (2 + 7r)k, 
rxy = 0)was  shown to be unaffected by the T stress. Somewhat similar to 
this situation, in Fig. 1.4-2, a state of uniform pressure ~r 0 is shown as the 
continuance of the stress field across DP, albeit for plane stress rather 
than plane strain loading conditions. 

Two criteria were used by Du and Hancock to determine where the 
Prandtl field applied to their non-work-hardening material. In the fan of 
the Prandtl solution, the slip lines coincide with the coordinates (r, 0) and 
the polar shear stress fro has the value k. This was the first criterion used 
by Du and Hancock to find the extent of the Prandtl solution in their 
finite-element elastoplastic analysis. These loci are indicated in Fig. 1.5-1 
(reproduced from [DH 91], also in [Han 92]) by where the radial slip line of 
the fans terminate as a function of the T stress (see Section 1.9 for the 
definition of T stress). It is seen from the figure that as the T stress 
decreases, the region over which the Prandtl field applies (the active 
plastic region) also decreases. Their finite-element solution indicates that 
for T/~r o < 0.446 the stresses around the crack faces are elastic, i.e., those 
sectors of Fig. 1.5-1 that have no slip line meshes shown. 

Now the plastic yield criterion for plane strain of a non-work-hardening 
material in polar coordinates is 

)2 1/2 
[ (6r  r -- % + 4"rr 2] = 2k, (1.5-1) 

and the hydrostatic or mean stress is 

1 
~r = 5(o'r + % ) .  (1.5-2)  
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FIGURE 1.5-1 
A slip line field representation of thc crack tip stresses for various ratios of T stress (strcss 
parallel to crack) to tensile yield stress ~r 0. Rcprintcd from J. Mech. Phys'. Solids', 39. Z.-Z. 
Du and J. W. Hancock, The effect of non-singular stresses on crack-tip constraint, 555-567 
(1991), with kind pcrmission from Elsevier Science Ltd., The Boulevard, Langford Lane, 
Kidlington OX5 IGB, UK. 

Du and Hancock discovered that the stresses within the plastic zone were 
tensile. In order for the principal stresses o- i to be tensile, the hydrostatic 
stress o- must be greater than or equal to k. The rationale behind this 
assumption is given below: 

The principal stresses in the plane o- i (i = 1, 2) in polar form are 

, ,[  _ )2 l'J 
ori = 5 (  ~rr + Go) -F 5 ( G  % + 4"rr 2 . ( 1 . 5 - 3 )  

This implies by (1.5-1)-(1.5-2) substituted into (1.5-3) that 

o + _ k > O ~ o - > k .  (1.5-4) 
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This was the second criterion that Du and Hancock used to determine the 
Prandtl field limits. These loci are given in terms of an angle (measured as 
0 in Fig. 1.8-4) as broken radial lines in Fig. 1.5-1. We see similar behavior 
by this criterion to the previous criterion in Fig. 1.5-1, except at low levels 
of T stress. Again we note that the leading edge of the plastic zone is less 
susceptible than the trailing portion of the plastic zone to unloading. 

It is also known from a numerical analysis of an e las t ic /non-work-  
hardening plastic material involving a U-shaped notch that unloading 
occurs in the trailing portion of the plastic zone [TF 89]. These results 
were obtained from the monotonic tensile loading of a cracklike flaw 
having a semicircular tip. In Fig. 1.5-2 (taken from figure 6 of reference 
[TF 89]), the active plastic zone behind the crack tip is shown to decrease 
as a remotely applied tensile traction is applied from 0.14 of the yield 
stress to 0.28 of the yield stress (in the figures T is the far-field load ~r~ 
and Y is the tensile yield stress o-0). Yield was determined for this mode I 

PLASTIC ZONE T=.14Y PLASTIC ZONE T=.28Y 

F I G U R E  1.5-2 

Plastic zones at the end of U-tipped flaws at two load levels. At T = 0.28Y, the active plastic 
zone does not extend to the arrows, as it does at T = 0.14Y, which indicates that unloading 
occurs at the flaw tip during monotonic increase in T. (T applied load; Y tensile yield stress). 
Reprinted from [TF 89] by permission of the American Society for Testing and Materials. 
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problem using the Mises condition under plane strain loading conditions. 
The general topic of crack tip blunting for perfectly plastic and power-law 
hardening materials is addressed in [RJ 70]. The strain ahead of crack tips 
for blunted cracks is focused and results in high strain levels, unlike the 
Prandtl solution. 

As another indication of elastic unloading in the trailing portion of the 
plastic zone, a stress discontinuity appears in the trailing portion of the 
plastic zone for the perfectly plastic plane stress crack problem analyzed by 
Hutchinson under the Mises yield criteria (see Section 1.9.). We recall that 
a stress discontinuity in a perfectly plastic solution indicates the last 
remnant of an elastic zone. In Section 1.1, we encountered a disequili- 
brated stress discontinuity in the trailing portion of the plastic zone for the 
mode I elastoplastic problem, under the Tresca yield criterion and plane 
stress loading conditions. 

Thus there are some indications that the stress field obtained in 
Chapter 1 may prove to be a satisfactory approximation for the leading 
edge of a mode I elastic-plastic boundary for a static or steadily moving 
crack, provided a non-work-hardening model is an appropriate description 
of the material behavior. As previous mode I numerical analyses have used 
the Mises yield condition under predominantly plane strain loading condi- 
tions, new computations that employ the Tresca yield condition under 
plane stress loading conditions are needed to confirm or negate this 
conjecture. 

Color Plates 
Plates 1 and 2 represent the mode III stress functions &~(x,y)of 

equation (1.1-1) and 4~(x, y) of (1.1-23) for y < 0. The blue-violet grid is 
the elastic function and the magenta ruled surface is the plastic function. 
The xy plane is marked by a brown outline. The elastic-plastic boundary 
of the surfaces is shown as a yellow space curve. Plate 2 shows the same 
surfaces in profile. Notice that at the elastic-plastic boundary the height 
and slope of each function are continuous. One can also observe that the 
magenta surface forms an envelope for the blue-violet surface. In all color 
plates the elastic surface is continued into the plastic region and vice versa. 
For the location of Cartesian axes, compare Plate 1 with Fig. 1.2-1. 

It is curious to note that when ~hE(x, y) of mode III is expressed in 
parabolic coordinates (u ,v)  [LSU 79], it assumes the simple form &E = 
-Iconst • ul. 

Plates 3 and 4 show the mode I functions &W(x,y) and ch(x,y) of 
(1.1-26) and (1.1-56) for y > 0. The elastic surface is blue-violet and the 
plastic surface is magenta. The elastic-plastic boundary is green and the 
parabolic-hyperbolic plastic interface is yellow. One may find it interesting 
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to note that when (~E(x, y) of mode I is expressed in parabolic coordi- 
nates, it assumes the form 4~ E = [const x ul 3", i.e., it is proportional to the 
cube of the magnitude of the mode III stress function. 

Plates 5, 6, 7, and 8 represent the alternative mode I stress functions 
q~(x, y) and q~P(x, y) which respectively correspond to (1.2-6) and (1.2-7). 
The plastic strain rates are proportional to the second partial derivatives of 
q~(x, y) with respect to the Cartesian coordinates by (1.3-25)-(1.3-27). The 
elastic surface is represented by a grid and the plastic surface is repre- 
sented by a ruled surface. The color scheme is similar to that in Plates 3 
and 4. Notice how the magenta characteristic curves of Plates 3 and 4 
transform into the magenta generators of the ruled surfaces in Plates 5-8, 
through use of the relationship oh(x, y ) =  q~(x, y) + k(x  2 + y2). For the 
position of the Cartesian coordinate system, cross-reference Plate 5 with 
Fig. 1.2-2. 
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2 

Plastic Zone Transitions 

In this chapter an analytical solution for mode III cracking is obtained 
for a finite-width plastic zone model. This model recovers as special cases 
the small-scale yielding elastic-perfectly plastic solution obtained by Hult 
and McClintock and a plastic strip model for mode III proposed by 
Cherepanov, which is analogous in shape to the Dugdale plastic strip 
model of mode I. The model presented here represents a transitional 
phase of mode III cracking where the elastic-plastic boundary assumes an 
elliptical form. The stress, strain, and displacement fields are given for 
both the elastic and plastic regions. Applications of the model are also 
discussed. 

An infinitesimally thin plastic strip model for the mode I fracture 
mechanics problem was proposed by Dugdale [Dug 60]. This model as- 
sumes the existence of a very narrow region of perfectly plastic material 
ahead of the crack tip, while material outside of the plastic strip is 
assumed to be linear elastic. Experiments indicate that the Dugdale model 
approximates the actual shape of the plastic zone for cracks in thin steel 
plates subject to plane stress loading conditions. Similar plastic strip 
models for mode III fracture mechanics problems were later proposed by 
Cherepanov [Cher 79] and Bilby, Cottrell, and Swinden [BCS 63]. 

In an elastoplastic problem, there are elastic and plastic domains of 
finite dimensions. In the elastic domain, the stresses satisfy equilibrium, 
while the strains satisfy the compatibility equations. In the plastic domain, 
the stresses satisfy equilibrium and a yield condition, while the strains 
satisfy either a flow rule in an incremental theory of plasticity or a 
proportional relationship with stresses in a deformation theory of plastic- 
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ity. Across the elastic-plastic interface, boundary conditions related to 
equilibrium and continuous displacement are met. 

Hult and McClintock [HM 56] were the first to obtain an analytical 
mode III elastoplastic solution for an edge crack in a semi-infinite plate. 
Under the assumptions of small-scale yielding, the shape of the Hul t -Mc-  
Clintock elastic-plastic boundary is circular. 

In the problem addressed in this chapter, we obtain an analytical 
elastoplastic solution for a transitional mode III crack problem, under the 
assumptions of small-scale yielding. The shape of the transition model's 
plastic zone is an elliptical cylinder. As limiting cases of the transition 
model, we can recover the Cherepanov plastic strip solution and the 
Hult-McClintock small-scale yielding elastoplastic solution. 

2.1 A FINITE-WIDTH DUGDALE ZONE MODEL FOR 
MODE III 

Schematic representations of various crack tip models are shown in 
Figs. 2.1-1a-2.1-1d. Figure 2.1-1a represents the Cherepanov model, where 
the crack tip corresponds to the hollow circle and the end of the plastic 
zone corresponds to the solid circle. The crack faces are parallel lines to 
the left of the hollow circle. Figures 2.1-1 b and 2.1- lc are representations 
of the transition model for different ratios of elliptical axes, which corre- 
spond to the dimensions of the plastic zone. The semimajor axis is A and 
the semiminor axis is B. The crack tip is at the hollow circle, and the solid 
circle is the location of a strain singularity to be discussed later. The 
inclined lines in the figures represent slip lines. Figure 2.1-1d corresponds 
to the Hult-McClintock small-scale yield solution, where the elastic-plas- 
tic boundary is circular. In this case the crack tip and the aforementioned 
strain singularity coincide. 

Elastic Solution 
For the mode III problem, only the antiplane displacement w is 

nonzero. In addition, all stresses are zero except for the antiplane shear 
stresses r,z and ryz. 

The linear elastic stress-strain relationships assume the following form 
in the Cartesian coordinate system (x, y, z)" 

a w E ( x , y )  
rE(x ,  y)  -- G ay = GyyEz(x' y) '  (2.1-2) 

awry(x, y) 
r~(x ,  y)  = G = GyxE(x, y) ,  (2.1-1) 

c~x 
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Plastic zone transition. Reprinted from Eng. Fract. Mech., 34, D. J. Unger, A finite-width 
Dugdale zone model for mode Ill, 977-987 (1989), with permission from Pergamon Press 
Ltd., Headington Hill Hall, Oxford O X 3 0 B W ,  UK. 

where rxz, ryz are shear stresses and yx~, yy~ are engineering shear strains, 
the superscript E denotes a linear elastic state, and G is the shear 
modulus. All other stresses and strains are zero. 

Equilibrium requires that 

+ - 0 ,  ( 2 . 1 - 3 )  
3x 3y 

and by (2.1-1) and (2.1-2), equation (2.1-3) implies that 

c92WE(X, y) O2wE(x, y) 
+ = 0, (2.1-4) 3X 2 3y 2 

i.e., w~(x ,  y )  satisfies Laplace's equation. 
An alternative formulation [PM 78] of the mode III problem using 

complex variables is 

w E = ( 1 / G ) I m  Z ~ I I ( Z )  , (2.1-5) 

~'x~ = Im Zi i i (z) ,  Zy~ -- Re Zi i i (z)  (2.1-6) 

where the argument z is a complex number z = x + iy, Zni(z)  is the 
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Westergaard potential for mode III, and Z ~ ( z )  denotes integration of the 
function Z ~ (  z )  with respect to the complex variable z. Unfortunately, the 
traditional symbols for the third Cartesian axis and the complex number  
have the same symbol z. When z is used as a subscript in this chapter, it 
will refer to the Cartesian coordinate. When z appears as an argument,  it 
will refer to the complex number. 

We can infer from the Westergaard relationship (2.1-6) that 

/ I l l (Z )  = "ry E + i"rE 
X Z  " 

(2.1-7) 

Because ry E, "rx E are the real [Re Ziil(z)] and imaginary [Im ZIII(Z) ] parts 
of an analytic function of z, respectively, they are conjugate harmonic 
functions. This suggests that an orthogonal coordinate system (ry E , "rx E) can 
be defined. It then follows that the z plane can be conformally mapped 
onto the Z ~  plane. Other researchers [Cher 79, HM 56, Ric 68a] have 
used conformal mapping techniques to obtain mode III solutions. 

On the elastic-plastic boundary the stresses satisfy a yield condition. 
We choose the Mises yield criterion for a perfectly plastic material, i.e., 

"r2z + "r/z = k 2 or IZz~(z)l = k, (2.1-8) 

where k is the yield stress in pure shear, and the symbol [ [denotes  the 
magnitude of a complex function. From (2.1-8) we can infer that in the 
Z ~ ( z )  plane the elastic-plastic boundary has the shape of a circular arc. 

The elastic-plastic boundary ,)ll for the plastic strip model given by 
Cherepanov [Cher 79] is a straight line. The elastic-plastic boundary a l l  
for the small-scale yielding solution of Hult and McClintock [HM 56] is 
circular. A convenient coordinate system that allows a smooth transition 
between these two limiting cases is the elliptic coordinate system (u, c) 
shown in Fig. 2.1-2 [LSU 79]. In this coordinate system the coordinates 
(u, c) are defined as follows: 

z - a c o s h ( u  + ic ) ~ x = a cosh u cos c, y = a sinh u sin t~, (2.1-9) 

where 2a is the length between loci. 
For convenience, let us introduce the following normalized variables 

and yield condition: 

X - x / a  = cosh u cos v, Y =- y / a  = sinh u sin ly (2.1-10) 

X + iY  = cosh( u + ic ) (2.1-11) 

w E ( X ,  Y )  = wt':(x, y ) / a  (2.1-12) 

T~ = "r~ / k , Ty~ = "r~ / k (2.1-13) 

Z , , / k  = Ty~ + iT~ (2.1-14) 

01~" T2z + TZz = 1, or IZ l , , / k l  = 1. (2.1-15) 
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Y 

/ l \ L / v - - a  
V=,--~/12 v=_rl/2 v==- :/12 

F I G U R E  2.1-2 

Elliptical coordinate system. Reprinted from Eng. Fract. Mech., 34, D. J. Unger, A finite-width 
Dugdale zone model for mode III, 977-987 (1989), with permission from Pergamon Press 
Ltd., Headington Hill Hall, Oxford O X 3 0 B W ,  UK. 

The elliptical elastic-plastic boundary c~i). for the transition model in 
the XY plane, u = u 0, is shown in Fig. 2.1-3a. 

The region exterior to this ellipse ABCC'B'A in Fig. 2.1-3a is the elastic 
region. From (2.1-4), (2.1-10), and (2.1-12), we can deduce that the normal- 
ized displacement in this plane w R ( x ,  Y) is a harmonic function of X and 
Y. 

The interior of the ellipse c ~  is the plastic region and is subject to the 
yield condition (2.1-15). 

A conformal transformation of the form [Spi 64] 

X + iY= ( - 1 / 2 ) [ S  e x p ( - u  0) + (1/S)exp(uo)] (2.1-16) 

maps the exterior of the ellipse in the X + iY plane to the interior of a 
circle in the complex S plane (Fig. 2.1-3b). 

An additional transformation of the form 

O r2 = S (2.1-17) 
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FIGURE 2.1-3 

Conformal mapping sequence. Adapted from Eng. Fract. Mech., 34, D. J. Unger, A finite-width 
Dugdale zone model for mode III, 977-987 (1989), with permission from Pergamon Press 
Ltd., Headington Hill Hall, Oxford OX30BW,  UK. 

maps the circle in the S plane onto the semicircle in the complex o- plane 
(Fig. 2.1-3c). It is transformation (2.1-17) that gives the elastic stresses 
~.xE E , T the characteristic asymptotic behavior of small-scale yielding; i.e., 
T.~Ez yz E 7y z "~ O ( r - 1 / 2 )  as r ---, oo. 

The final transform 

Z , , , ( z ) / k  = - i t r  = Ty E + iTExz (2.1-18) 

rotates the semicircle in the tr plane 90 ~ clockwise into the normalized 
stress plane. This rotation allows the elastic solution to satisfy the traction- 
less boundary condition along the assumed crack faces CD and C'D' 
which are shown in Fig. 2.1-3a. Points D and D' are at infinity. 

In Fig. 2.1-3d the yield condition (2.1-15) is satisfied along a semicircu- 
lar boundary, which corresponds to the elliptical boundary in the original 
Cartesian plane (Fig. 2.1-3a). As a sequence of conformal transformations 
occurred between Figs. 2.1-3a and 2.1-3d, the displacement in the elastic 
region of the stress plane, w<E>(zyz, Txz)-  w E ( x ,  Y), will continue to 
satisfy Laplace's equation under the transformation of coordinates (X, Y) 
to (Ty~, T~). 

Through the series of conformal transformations (2.1-16)-(2.1-18), we 
obtain the following relationship between the Cartesion coordinates (X, Y), 

TXz), and the elliptic boundary u 0 the elastic s t resses  (Ty E, E 

X + i Y =  z / a  = (1/2)[(Ty~ + i T ~ ) 2 e x p ( - u o ) +  (Ty~ + iT~)-2exp(uo)] .  

(2.1-19) 

Solving the quadratic equation (2.1-19) for (Ty E + iTE)2exp(--Uo), we find 

(Ty E + iTE)2exp(--Uo) = ( z / a ) +  [ ( z /a )  2 1] 1/2 _ - . (2.1-20) 
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By substituting the expression for z from (2.1-9) into (2.1-20), we obtain 

(Ty E + iTxZ~)2exp(-uo) = cosh(u + iv) +_ sinh(u - iv) = e x p [ + ( u  + iv)]. 

(2.1-21) 

The negative sign in relationship (2.1-21) is chosen so that the sign of u0 
agrees with the sign of u along the elastic-plastic boundary. Therefore 
from (2.1-21)we obtain 

�9 E = exp(u 0 - u - iv).  (2.1-22) (ry E + trXz) 2 

Taking the square root of both sides of (2.1-22) and equating real and 
imaginary parts of the result, we obtain 

7", E = r;~E/k = - e x p [ ( u  0 -- u ) / 2 ] s i n ( v / 2 )  I (2.1-23) 

TyE= E - -  ) / 2 ] c o s ( v / Z ) .  I (2.1-24) rsz /k  = exp[(u o u 

u >__uo, --rr<_u <_ 77". 

a second stress field, -T~ E and -Ty  E , can also be found from (2.1-22). 
This additional solution reflects the quadratic nature of the yield condi- 
tion, and it corresponds to an antiplane loading which is opposite to the 
loading used to generate the stresses in (2.1-23) and (2.1-24). To avoid the 
introduction of ambiguous signs ( + ,  -T- ) throughout this chapter, we limit 
our analysis to strains and displacements associated with solution (2.1- 
23)-(2.1-24). 

The elastic strains follow immediately from (2.1-23) and (2.1-24) by 
substitution into (2. l - l )  and (2.1-2). 

In order to obtain the elastic displacement, we need to obtain the 
function Z~l ( z ) .  From (2.1-18), (2.1-23), and (2.1-24) we can determine 
that 

Zl l l (Z)  = k e x p [ ( u 0 -  u - iv ) /2 ] .  (2.1-25) 

Employing the chain rule and using (2.1-9), we find 

d Z ~ I ( z )  d(u  + iv) dZ~i l (z)  1 
Z l i I ( z )  = d(u  + iv) dz - d (u  + iv) a sinh(u + iv)"  (2.1-26) 

Equating (2.1-25) and (2.1-26), separating variables, and integrating, we 
obtain 

Z ~ i ( z )  = ak exp (uo /2 ) (exp[ (u  + iv)~2] + ( 1 / 3 ) e x p [ - 3 ( u  + iv)~2]) .  

(2.1-27) 
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F r o m  (2.1-5), (2.1-12), and (2.1-27), we de t e rmine  the elastic d i sp lacement  
as 

W E = (k /G)exp(uo /2)[exp(u /2)s in (v /2 )  

- ( 1 / 3 ) e x p (  - 3u/2)sin(3v/2)],  for u > u0, --Tr < v < -tr. 

(2.1-28) 

Plas t i c  S o l u t i o n  
We seek stresses in the plastic region of the form 

TXe~ = ~xez/k = - s i n  a ( X ,  Y) ,  Ty~ - z ~ / k  = cos a ( X ,  Y)  (2.1-29) 

so that  the Mises yield condit ion (2.1-15) is satisfied. 
F rom the subst i tut ion of the stresses f rom (2.1-29) into (2.1-3), we find 

the following equi l ibr ium equat ion  in te rms  of a(X ,  Y): 

P + Q tan a ( X ,  Y) = 0, (2.1-30) 

where  

3 a ( X , Y )  3 a ( X , Y )  
P - , Q - . (2.1-31) 

3X 3Y 

For cont inuous  stresses across the e las t ic -p las t ic  border ,  (2.1-23), (2.1- 
24), and (2.1-29) require  

v = 2 a  on 3~1 or a = vo/2 (2.1-32) 

where  the subscript 0 denotes  a variable on the elastoplast ic interface.  
The  solution of (2.1-30) for a ( X , Y )  subject to the initial condi t ion 

(2.1-32) is 

Y0(a )  - y 

X 0 ( a )  - X 
= tan a ( X , Y ) ,  (2.1-33) 

where  X o ( a )  and Y0(a)  are the normal ized  coordina tes  of the e l a s t i c -  
plastic boundary  (Fig. 2.1-4). These  coord ina tes  are found by subst i tut ing 
the expression for v from (2.1-32) into (2.1-10) to yield 
311" 

X 0 ( a )  = A c o s 2 a ,  Yo( a ) = B sin 2 a ,  (2.1-34) 

where  

A =- cosh u o , B = sinh u o , (2.1-35) 
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FIGURE 2.1-4 

Plastic zone parameters. Reprinted from Eng. Fract. Mech., 34, D. J. Unger, A finite-width 
Dugdale zone model for mode III, 977-987 (1989), with permission from Pergamon Press 
Ltd., Headington Hill Hall, Oxford OX3 OBW, UK. 

and u 0 is the elliptical coordinate of the elastic-plastic boundary. From 
Fig. 2.1-4 we observe that A and B are the semimajor and semiminor axis, 
respectively, of the elliptical plastic zone in the normalized Cartesian 
plane. 

We now prove that the relationship to a of (2.1-33)satisfies the Cauchy 
problem as defined by (2.1-30) and (2.1-34). 

After taking partial derivatives of (2.1-33) with respect to X and Y, we 
find 

and 

(X o -X)Y(;P + ( Y -  Yo)(X~)P- 1) 

( X  - X0 )2 
= P sec2a (2.1-36) 

( X , , -  X)(Y~;Q- 1) + ( Y -  Yo)X~Q 
(X - xo) 2 = Q sec2a' (2.1-37) 

where the prime denotes differential with respect to a. Now by eliminating 
(X - X0)2sec2a between (2.1-36) and (2.1-37), we obtain 

Y o -  Y 
P + O = O. (2.1-38) 

X0 - X 

Notice that the primed quantities of (2.1-36) and (2.1-37), XD and Yr 
cancel. Finally, by substituting (2.1-33) into (2.1-38), we recover the origi- 
nal partial differential equation (2.1-30) to complete the proof. 

A line of constant a (Fig. 2.1-4) comprises a characteristic of partial 
differential equation (2.1-30). We obtain the following equation of a 
characteristic line (slip line) from (2.1-33) and (2.1-34): 

Y =  IX + 2B - A  + 2(A - B)sinZa]tan a ,  (2.1-39) 

where A and B are defined in terms of u 0 by (2.1-35). 
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We deduce from (2.1-29) and (2.1-39) that there is a stress discontinuity 
in Tfz on the X-axis starting at X = A - 2B and continuing to the crack 
tip at X = - A .  A similar discontinuity exists in the Cherepanov model 
(u 0 = B = 0). As Ty P is an even function of a,  equilibrium is satisfied 
across the line of discontinuous stress. 

The Hencky deformation theory of plasticity requires that the total 
strains (elastic plus plastic) be proportional to the stresses. This assump- 
tion requires that 

OwP(x, y)  
yx~) - = h(x,  y)rP~(x, y) = - h ( x ,  y ) k  sin a ,  (2.1-40) 

3x 

3 w P ( x , y )  
yy~ - = h(x,  y)zyP(x, y)  = h(x,  y ) k  cos a (2.1-41) 

3y 

where A(x, y) is the function of proportionality. In (2.1-40) and (2.1-41) the 
superscript f~ denotes total quantities within the plastic region, i.e., the 
sum of the elastic contribution plus the plastic contribution, as opposed to 
the plastic component alone. 

Dividing yx~ by Y~v.- we find that, in normalized notation, 

where 

o~W P 3 W  P 
+ t a n  a - O, ( 2 . 1 - 4 2 )  

c~X O Y 

W P - wP/a.  (2.1-43) 

Partial differential equation (2.1-42) is a compatibility requirement be- 
tween a statically admissible stress field [reflected by a through eq. 
(2.1-29)] and a complementary displacement. The displacement across the 
elastic-plastic boundary c~ll must be continuous. From (2.1-28) and (2.1-32) 
we find that the normalized interfacial displacement W is 

W( a)  = (k /G)[exp(uo)s in  a - ( 1 / 3 ) e x p ( - u 0 ) s i n  3a  ]. (2.1-44) 

As the displacement on the elastic-plastic interface is a function only of 
a ,  it is natural to seek displacements interior to 01~ of the form 

W P = F ( a ) .  (2.1-45) 
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When (2.1-45) is substituted into (2.1-42), we find 

3 a  

F ' ( a )  c)X + tan a - -  
3 a  

8 Y  
= 0 or F ' ( a ) [ P  + Q t a n  a ]  = 0. 

(2.1-46) 

From the equilibrium equation (2.1-30), we see that (2.1-46) is satisfied for 
any plastic displacement that is a function only of a,  where a is defined in 
terms of Cartesian coordinates by (2.1-39). 

As the displacement on the elastic-plastic interface is solely a function 
of the coordinate a,  we can continue (2.1.-44) into the plastic zone; i.e., 

w P ( a )  = F ( a )  = W ( a )  

= ( k / G ) [ e x p ( u o ) s i n  a - ( 1 / 3 ) e x p ( - u 0 ) s i n  3a ] ,  

- r  r /2  < a < zr/2. (2.1-47) 

Equation (2.1-47) indicates a displacement discontinuity on the X-axis 
from X = - A  to X = A - 2B, as there is in the Cherepanov strip model 
for mode III (u 0 = B = 0). The relative displacement associated with this 
discontinuity at the crack tip is termed the crack tip opening displacement 

~t- 
A similar discontinuity exists in the Dugdale model for mode I and in 

the mode III strip model by Bilby, Cottrell, and Swinden [BCS 63]. The 
Bilby-Cottrell-Swinden model is a predecessor of the Cherepanov model. 
Originally derived from dislocation theory, it has a different solution, 
which will be discussed toward the end of this chapter. 

Profiles of normalized displacement are shown in Fig. 2.1-5 as a func- 
tion of a for different values of u(). Notice the change in the shape of the 
profiles as the transition is made from the Cherepanov model (u,  = 0) to 
the Hult-McClintock model (the elliptical boundary u0 = 3 is nearly 
circular and hence approximates the Hult-McClintock elastic-plastic 
boundary). The value of W related to the crack tip opening displacement 
appears in Fig. 2.1-5 at a = 90 ~ 

Having found the total displacement (2.1-47), we may now obtain the 
total strains. Equations (2.1-40), (2.1-41), (2.1-43), and (2.1-47) imply that 

c ) w P ( a )  
yy~ = = F ' (  a ) Q  (2.1-49) 

3Y 

( ? w P ( a )  
yX~ = = F ' (  a ) P ,  (2.1-48) 

O X  
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FIGURE 2.1-5 
Normalized displacement versus characteristic angle. Reprinted from Eng. Fract. Mech., 34, 
D. J. Unger, A finite-width Dugdale zone model fi)r mode Ill, 977-987 (1989), with 
permission from Pergamon Press Ltd., Headington Hill Hall, Oxfi)rd OX30BW, UK. 

w h e r e  the funct ion,  

F ' ( a )  = ( k / G ) [ e x p ( u o ) c o s  a - e x p ( - u o ) c o s 3 a ] ,  (2.1-50) 

is ob ta ined  by d i f fe ren t ia t ing  (2 .1 -47)wi th  respec t  to a .  
F r o m  (2.1-33), (2.1-36), and (2.1-37) we solve for  P and Q to ob ta in  

tan a 
P = (2.1-51) 

( X  0 - X ) s e c Z a  + X/~tan a - Y()' 

and  

w h e r e  

Q = (2.1-52) 
Y(; - x 0tan a + ( x  - x 0 ) s e c z a '  

X() = - 2A  sin 2 a ,  Y~I = 2 B  cos 2 a .  (2.1-53) 

F r o m  (2.1-40), (2.1-41), and (2.1-48)-(2.1-53) ,  we can ob ta in  the  p ropor -  
t ionali ty funct ion  A. 
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When a equals zero, we find from (2.1-49), (2.1-50), and (2.1-52) that 

2 ( k / G ) s i n h  u o 2 ( k / G )  B 
TyPic=0= X + 2 s i n h u  0 - c o s h u  0 - X + 2 B - A "  (2.1-54) 

Equation (2.1-54) indicates that a strain singularity of order  O ( 1 / r ) ,  r ~ 0 
exists at the point X = A - 2B, Y = 0 for u 0 > 0. The only exception is 
for the case u 0 = 0, which is the Cherepanov plastic strip model. In this 
special case the strain is finite throughout  the entire domain, as it is for 
the Dugdale model of mode I. For  the limiting case A equals B (the 
Hul t -McCl in tock  small-scale yielding solution), the strain singularity is 
coincident with the crack tip [Hut 79]. Notice the movement  of the strain 
singularity (solid circle) to the left in Figs. 2.1-1b-2.1-1d with an increase 
of the ratio B / A .  

Recovery of Previous Solutions 
For large u, the following asymptotic relationships hold true: 

cosh u ~ sinh u ~ (1 /2 )exp  u, as u ---> ~. (2.1-55) 

Equations (2.1-9) and (2.1-55) then imply, in Cartesian coordinates, that 

x ~ ( a / 2 ) e x p  u cos v, y ~ ( a / 2 ) e x p  u sin t:, as u ~ w, (2.1-56) 

while in polar coordinates (r, 0), z = r exp(i0),  they imply 

r ~ ( a / 2 ) e x p  u, 0 ~ t:, as u ~ ~. (2.1-57) 

Therefore,  for large u, we can substitute (2.1-57) into (2.1-23) and 
(2.1-24) to obtain 

TX~ ~ - e x p ( u o / 2 ) [ a / ( 2 r ) ] l / 2 s i n ( O / 2 ) , ]  (2.1-58) 
as r ----> ~. 

Ty E -~ e x p ( u o / 2 ) [ a / ( 2 r ) ] l / 2 c o s (  O/2) .  (2.1-59) 

Equations (2.1-58) and (2.1-59) provide a means of determining the param- 
eter product, a exp u 0, of the elliptic coordinate system in terms of the 
stress intensity factor and the shear yield stress k. We know from [PM 78] 
that the small-scale yielding solution for mode III is 

(ZxE)ssy = (7xEz/k)ssy = - ( g ~ / k ) ( 2 7 r r ) - ~ / 2 s i n ( O / 2 ) ,  (2.1-60) 

(TyE)ssy = (7"yE/k)ssy = ( K , , , / k ) ( Z T r r ) - l / Z c o s ( O / 2 ) ,  (2.1-61) 

where KII ~ is the mode III stress intensity factor. 
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Assuming, as we have, that (2.1-58) and (2.1-59) approach the smal l -  
scale yielding solution at a sufficiently large distance from the crack tip, we 
can identify the elliptic coordinate pa ramete r  a in terms of K~I ~ , k, and u 0 
as 

a = ( K i l l / k ) Z / [ z r  exp u0]. (2.1-62) 

We infer from (2.1-62) that as u 0 ~ 0% the loci of the elliptic coordinate 
system coalesce, i.e., a ~ 0. 

Now in elliptic coordinates the eccentricity e of an ellipse for a given 
dimension u 0 is 

e = sech u 0 . (2.1-63) 

Therefore  as u 0 ~ ~ (e ~ 0), the elliptic elast ic-plast ic boundary u 0 
approaches a circular shape. In view of (2.1-57), we can replace exp(u 0) in 
(2.1-62) by 

exp u o ~ ( 2 / a ) r  o , as u 0 ~ ~, (2.1-64) 

to find 

r o = ( K l l l / k ) 2 / ( 2 7 r ) ,  lim E ---, 0 for 3~1. (2.1-65) 

This expression is identical to the Hul t -McCl in tock  radius r 0 for the 
elastic-plastic boundary. The elastic stresses and strains of the H u l t -  
McClintock solution can be recovered from our elastic solution by sub- 
stituting asymptotic relationships (2.1-57), (2.1-64), and (2.1-65) into the 
corresponding relationships prcsented in this section. 

The total stresses, strains, and displacements of the Hul t -McCl in tock  
solution in the plastic region can be obtained by making the following 
substitution for a:  

a = t a n - ~ [ Y / ( X  + A)] (2.1-66) 

into the corresponding formulas of this section. Equat ion (2.1-66) is 
obtained from (2.1-39) by the substitution B = A. 

In the case of the Cherepanov solution, the elast ic-plast ic boundary can 
be specified in terms of the elliptic coordinate parameter  a. This boundary, 
~)~l, can be defined so that it spans the distance X = - 1 to X = 1 on the 
Cartesian axis Y = 0. This line segment corresponds to the elliptic coordi- 
nate u = 0. 

To recover Cherepanov's  solution, we substitute u 0 = 0 into (2.1-23) 
and (2.1-24). Under  a translation of axes x* - z + a and the introduction 
of the notation " r / k  TX E _ �9 E =-- t T y z ,  we obtain equation (4-248) of [Cher 79]. 
Cherepanov did not choose to use elliptic coordinates, nor did he present 
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an explicit solution for the stresses; however, his stresses would take the 
form of (2.1-23) and (2.1-24) with u0 = 0. Similarly, the strains and 
displacements of Cherepanov's solution can be determined by the substitu- 
tion u 0 = 0 into their appropriate elastic counterparts. 

Crack Tip Opening Displacement 
The model presented in this proposal thus far is underdetermined; i.e., 

the stresses, strains, and displacements cannot be uniquely determined 
from the imposed boundary conditions. It is this additional degree of 
freedom, however, that allows us to develop a transition model that 
accounts for changes in shape of the plastic zone. 

A change of shape in the plastic zone may be related to an internal 
variable such as temperature, or it may be related to a three-dimensional 
effect such as plate thickness. 

If the elastic-plastic boundary u0 can be specified in terms of a known 
parameter, then the elastoplastic problem becomes determinate. In this 
regard, the crack tip opening displacement can serve as a suitable parame- 
ter. 

The crack tip opening displacement 6 t is obtained from the relative 
displacement of the crack surfaces at the crack tip, i.e., 

6 t = a [ W P ( . n - / 2 )  - w P ( - T r / 2 ) ] .  (2.1-67) 

With the substitution of the parameter a from (2.1-62) and the evaluation 
of W E'(c~) at the angles a = + 7r/2, we find from (2.1-67) that 

a t = [ 2 K ~ , / ( ' r r G k ) ] [ 1  - ( 1 / 3 ) e x p ( - 2 u , , ) ] ,  u,, > 0. (2.1-68) 

In principle, we can use (2.1-68) to determine experimentally the parame- 
ter u 0 from values of 6 t, KI~, G, and k. This procedure naturally assumes 
that the Hult-McClintock to Cherepanov plastic zone transition is repre- 
sentative of the material behavior of the specimen. 

Because the J integral is related to the stress intensity factor of 
small-scale yielding [Hut 79] by the formula 

J = K ~ , / ( 2 G ) ,  (2.1-69) 

equation (2.1-68) may be rewritten as 

6 t = [ 4 J / ( ' r r k ) ] [ 1  + ( 1 / 3 ) e x p ( - 2 u 0 ) ] .  (2.1-70) 

For u 0 = 0, (2.1-70) gives the value of the crack tip opening displacement 
for the Cherepanov plastic strip model 6ch, 

6Ch = 1 6 J / ( 3 ' r r k ) .  (2.1-71) 
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In the limit as u 0 ---> ~, we recover from (2.1-70) the Hult-McClintock 
crack tip opening displacement 6HM [Hut 79] in terms of the correspond- 
ing J integral, i.e., 

6HM = 4J/(Trk). (2.1-72) 

We see by comparing (2.1-70) and (2.1-72) that for identical values of J 
and k, the crack tip opening displacement for the transition model 6 t is 
always higher than for the Hult-McClintock model 6aM. 

It is curious to note the the Bilby-Cottrell-Swinden plastic strip model 
for mode III has a crack tip opening displacement 6BC s [KP 85] that is 
lower than the Hult-McClintock, the transition, and the Cherepanov crack 
tip opening displacements for the same values of J and k, i.e., 

6BC s = J/k. (2.1-73) 

Comments 
While our mode III elastoplastic solution is not directly applicable to 

other modes of fracture, it is anticipated that general trends can be 
established through its analysis. In [McC 58] and as a commentator to an 
addendum to [Irw 60], McClintock discusses insights that can be gained 
about mode I from a mode III elastoplastic solution. An analogy for the 
plane strain to plane stress transition of mode I is given for mode III in the 
latter reference. 

The model presented in this section provides a new analytical tool for 
the investigation of transition phenomena associated with changes of 
plastic zone shape ahead of a crack tip. While the solution itself is based 
on elastoplastic fracture mechanics, additional constitutive equations are 
required for the transition effect. As the shape of the plastic zone can be 
related to the crack tip opening displacement, the development of consti- 
tutive relationships from standard test procedures is possible. 

2.2 AN ENERGY-DISSIPATION ANALYSIS FOR THE 
TRANSITION MODEL 

In this section an exact relationship is obtained for the rate of energy 
dissipation [Ung 92a] due to plastic work for the transition model of mode 
III crack propagation. It is found that the rate of energy dissipation 
increases monotonically as the transition in plastic zone shape changes 
from the infinitesimally thin line segment of the Cherepanov plastic strip 
solution to the circular shape of the Hult-McClintock elastoplastic solu- 
tion. 
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This analysis might serve as an aid for investigating irreversible fracture 
processes. 

The following equation of a slip line can be determined from (2.1- 
33)-(2.1-35): 

y - a sinh u0sin 2 a 
= tan a .  (2.2-1) 

x - a cosh u0cos 2 a 

As part of the energy-dissipation analysis, it is convenient to develop an 
orthogonal coordinate system ( a , / 3 )  where /3 is the family of orthogonal 
trajectories to the slip lines a.  A procedure for finding orthogonal trajec- 
tories is given in [Cha 87]. The slope d y / d x  of a trajectory /3 must be 
perpendicular to the slip line a ,  i.e., 

ay 
= - cot a (2.2-2) 

dx 

where the relationship between a and ( x , y )  is given by (2.2-1). By 
differentiating (2.2-1), we may eliminate either dx or dy from (2.2-2). Then 
by separating variables we may integrate the result over da and one of the 
Cartesian coordinates. Upon substituting this relationship into (2.2-1), we 
find the second coordinate in terms of a. The procedure yields 

x = /3  cos a - a e - U " [ ( 1 / 3 ) c o s n a  + sinna ] - a sinh u 0 (2.2-3) 

y = /3  sin a -  ( 4 / 3 ) a e - " " s i n  a cos3a (2.2-4) 

where/3 is a constant of integration. Equations (2.2-3) and (2.2-4) may also 
be interpreted as the definition of an orthogonal coordinate system (a , /3 ) .  

The (c~,/3) coordinate system is shown in Fig. 2.2-1 for the particular 
parameter  value listed on the figure. The ratio B / A  corresponds to the 
case of the transition model which is shown in Fig. 2.1-1c, i.e., where the 
strain singularity coincides with the origin of the Cartesian coordinate 
system (x, y). 

The differential arc length ds in three-dimensional coordinates (ce,/3, z) 
is derived by differentiating (2.2-3)-(2.2-4) and by substituting the results 
for dx, dy, and dz into (2.2-5); i.e., 

where 

( d s )  2 -- (d,lf) 2 q- ( d y )  2 -ff ( d z )  2 

__ )2 )2 )2 
- g , , , , ( d a  + gt3t3(d,8 + gz~( dz 

(2.2-5) 

(2.2-6) 

g~,~ = { r - ( 4 / 3 ) a e - U o c o s 3 a }  2 (2.2-7) 

gt3t~ = 1, g~z = 1. (2.2-8) 
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Characteristic coordinate system. Reprinted from E n g .  Fract .  M e c h . ,  41, D. J. Unger, An 
energy dissipation analysis for a transitional model of crack tip plasticity, 457-462 (1992), 
with permission from Pergamon Press Ltd., Headington Hill, Oxford, O X 3 0 B W ,  UK. 

It was assumed in [Ung 89b] that  all d isp lacements  u/ are zero except 
for those in the z direction; i.e., 

u ,  = ut~ = 0, u.  = w e ( a ) .  (2.2-9) 

(Notat ion:  the subscripted elliptic coordina te  u 0 is not a d isplacement . )  
The  relat ionships be tween normal  strains E~ (no sum for r epea ted  

index) and small d isp lacements  in or thogonal  coordina tes  are as follows 
[Sok 56]: 

" / ~  (2.2-10) Eli = ( U i / g i l i / ' ) , i  + [ 1 / ( 2 g i i ) ] ~ g i i , k U k / 6 k k  �9 
k 

In our  case i = u , /3 ,  z; k = c~,/3, z; where  the componen t s  of the metr ic  
tensor  gii are given in (2.2-7)-(2.2-8). Similarly, the relat ionships be tween 
engineer ing shear  strains %j and small d isp lacements  are 

"Yij = 2ei] = ( g i i g j j ) - ' / e [ g i i ( u i / g i l i / 2 ) ]  + gjj(lgj/g;/2),,], i :r j ,  

(2.2-11) 

for i =  c~,/3, z; j = c~,/3, z. 
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In [Ung 89b], no explicit expression was given for the plastic strain as 
the expression would have been unwieldy in Cartesian coordinates or 
elliptic coordinates. However, in (c~,/3, z) coordinates the plastic strain 
was readily determined [Ung 92a]. 

Using (2.2-10) and (2.2-11), we find that the only nonzero strain in the 
plastic region yd~. This strain is composed of an elastic (recoverable) 
component yd~ and plastic (inelastic) component Y~z, such that 

Y~ = Yo;~ + Y~z. (2.2-12) 

From Hooke's  law, we may write 

Yd~ = r ~ z / G  = k / G .  (2.2-13) 

The purely plastic component of strain may be obtained from (2.2- 
11)-(2.2-13) as 

y~ = g,~,-1/2 W P - -  k / G  (2.2-14) 
, o (  ~ 

By substituting (2.1-43), (2.1-47) and (2.2-7) into (2.2-14) and differentiat- 
ing w P with respect to a as indicated, we find 

= - , / 2  ) ] { c o s  - e  2 g,~, [ K ( ~ , / ( T r k G  c~ - ""cos3c~} - k / G  (2.2-15) 

KZll[cos c~ -- e 2""cos 3c~ ] 
= - k , / G .  (2.2-16) 

7rkG{ ~ - ( 4 / 3 ) a e - " " c o s  3c~} 

We note from (2.2-16) that a strain singularity of order O ( 1 / r )  exists at 
c~ = O, ~ = ( 4 / 3 ) a e " " ,  u 0 4: 0. The location of this singularity is indicated 
in Figs. 2.1-1 b-2.1-1 d by the solid circle on the crack axis. Other potential 
strain singularities exist at /3 = (4 /3 )ae -" , ' cos3c~ ,  c~ ~ 0; however, these 
points do not fall in the physical plane of the plastic zone. Two of these 
points correspond to the cusps of the dotted coordinate curves of Fig. 
2.2-1. The denominator of (2.2-16) is also equation to zero at c~ = 7r/2, 
/3 = 0, which is the intersection of the crack with the plastic zone; but in 
this case the numerator is also equal to zero. Using l'Hospital's rule, we 
find a finite strain at this position. In the special case u 0 = 0 (the 
Cherepanov model), there is no strain singularity anywhere in the field. 

Let us now choose the stress intensity factor as the loading parameter 
with which the strain rates will be calculated. Partial derivatives of func- 
tions with respect to K ~  are designated by the following: 

. ~ (  ) 
- . (2.2-17) 
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Consequently, the function 

r P = [2Klli /(TrkG)][sin ~ -  (1/3)e-Z~0sin 3c~] (2.2-18) 

is obtained by the partial differentiation of (2.1-47) with respect to KII I . 
The inelastic component of the total strain rate is determined in a 

fashion analogous to (2.2-14) and (2.2-15); i.e., 

~Pz -- - 1/21~P [c/G (2.2-19) 
gofof  ~ Of 

-1/2 = g,~,~ [2Kli i / (~ 'Gk)][cos a - e-2U"cos 3 a ]  (2.2-20) 

where the substitution /c = 0 is made in (2.2-19). 
The rate of energy, dissipation is related to two distinct components. 

The first component D l is the work done internally by the stress field, and 
as such it is related to the volume of plastic material. The second 
component /92 is related to work done by the tractions on the discontinu- 
ous surfaces in the plastic stress field (the region on the crack axis between 
the solid and hollow circular markers of Fig. 2.1-1). The total rate of 
energy dissipation b will therefore be the sum of these two components: 

D -- O, q- D 2 . (2.2-21) 

The first component of the rate of energy dissipation per unit plate 
thickness is 

D, = [ rPz ~/P~ dS, (2.2-22) 

where dS is the differential area of plate surface. In (c~,/3) coordinates, 
dS becomes 

dS = g~/2 da  d~.  (2.2-23) 

If we substitute k for rP~, define the limits of integration, in the (c~,/3) 
plane, and make use of symmetry for the upper and lower half-planes, we 
find that (2.2-22) and (2.2-23) assume the form 

101 2k f()zr/2 f~"(a)" P ~ 1/2 = y ~ o ~  d/3 dee (2.2-24) 
J ~ i  ( ~ ) 

where /3~ and /30 are the inner and outer limits of the coordinate /3, as 
shown in Fig. 2.2-2. 

Now by substituting (2.2-20) for ~ ,  and (2.2-7) for g:/2 into (2.2-24), 
we find 

f)l  = [4KllI/(TrG)] fo~r/2 /3,,(a)( -2 f/3i(a cos O f  - -  e ~"cos3a)  d~ da .  (2.2-25) 



An Energy-Dissipat ion Analysis for the Transi t ion Model  191 

~t3 

, I 

r 

Ix  i , O l  x 

FIGURE 2.2-2 
Integration limits. Reprinted from Eng. Fract. Mech., 41, D. J. Unger, An energy dissipation 
analysis of a transitional model of crack tip plasticity, 457-462 (1992), with permission from 
Pergamon Press Ltd., Headington Hill, Oxford, OX30BW, UK. 

T h e  inner  in tegral  of  (2.2-25) is trivial. Its eva lua t ion  yields 

w h e r e  

D1 [ 4 K I l l / ( T r G ) ]  f~)=/2P ( = a ) ( c o s  a - e-2U"cos 3 a )  d a  (2.2-26)  

p(  a ) -- /3o( a ) - /3i( a ). (2 .2-27)  

F r o m  the g e o m e t r y  shown in Fig. 2.2-2, we can d e d u c e  the  fol lowing 

x , , -  x i = p cos a ,  y , , - -  p sin a (2 .2-28)  

)2 2 . (2 .2-29)  p =  [(xo _ x i + y , , ] l / 2  

E q u a t i o n s  (2.2-30) can be es tab l i shed  by using (2.1-9) and  (2.1-32): 

x,, = a cosh u0cos  2 a ,  Y0 = a sinh u0sin 2 a .  (2 .2-30)  

T h e  c o o r d i n a t e  x~ is f o u n d  by se t t ing y = 0 in (2.2-1) and  solving for  x. 
W e  ob ta in  

x i = ( a / 2 ) [ e - U , , ( 3  - 4s inZa)  - eU,,]. (2 .2-31)  

T h e  addi t iona l  r e la t ionsh ip  (2 .2-32)-(2 .2-33)  are  de r ived  f rom (2 .2-28)-  
(2.2-31), 

Xo - xi = 2a  sinh UoCOS2a (2.2-32)  

p ( a )  - 2a  sinh UoCOS a .  (2 .2-33)  
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Through (2.2-26) and (2.2-33), we find 

/91 = [8a sinh u o K i l l / ( ' r r G ) ] f t f r / 2 ( c o s  a - e-2U~ ce dc~. 

(2.2-34) 

We substitute (2.1-62) for a in (2.2-34) and integrate to yield 

/)1 = (1 -- e - 2 U ~  (2.2-35) 

This relationship constitutes the first component of the rate of energy 
dissipation. 

We will now proceed to evaluate the second component of /~. The 
extent of the stress/displacement discontinuity along the crack axis is, 
from Section 2.1, - A  < x / a  < A -  2B.  In this region, a one-to-one 
correspondence exists between a and x. We can deduce this relationship 
between x and a from the characteristic equation (2.2-1) by setting y = 0. 
It follows that 

x / a  = A - 2 B + 2 ( B - A ) s i n 2 a ,  y = 0 , - A  < x / a  < A - 2 B .  

(2.2-36) 

The rate of energy dissipation per unit thickness of the plate due to the 
traction on the faces of the discontinuity is 

f a ( A  - 2 B) p /~2 = 2 _ a A  Tyz ~'Pdx (2.2-37) 

where the factor 2 in front of the integral accounts for both lower and 
upper discontinuities. The term dx in (2.2-37) may be found in terms of c~ 
by differentiating (2.2-36). This produces 

d x =  - 2 a e  ""sin2o~do~, - A  < x / a  < A  - 2B, y = 0 .  (2.2-38) 

P Now by substituting (2.2-18), (2.2-38), and ~'yz = k cos c~ into (2.2-37), we 
find 

f0 ~/2 D 2 = [ 8 a K , i i / ( T r G ) ] e " "  cos a[sin c~ - ( 1 / 3 ) e  2",,sin3o~]sin2o~do~. 

(2.2-39) 

By evaluating integral (2.2-39) and substituting a from (2.1-62) into the 
result, we come to the conclusion that 

[ )2  = [ K ~ , / ( ' t r G k 2 ) ] e - 2 U " {  1 - (1 /3 )e -2~" }  �9 (2.2-40) 
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Therefore, by (2.2-21), (2.2-35), and (2.2-40), the total rate of energy 
dissipation per unit thickness of plate is 

= [ K 3 I , / ( , n - G k 2 ) ] { 1  - (1/3)e-au,,}. (2.2-41) 

We note that if we set u0 = 0 in (2.2-41), then we recover the value of b 
for the Cherepanov model [Cher 79]; and if we take the limit of (2.2-41) as 
u 0 ~ ~, then we recover b for the Hult-McClintock model [Cher 79]. 
Equation (2.2-41) also gives intermediate values of b for the transition 
between these two limiting cases. We can see that the reate of energy 
dissipation increases uniformly with u 0. 

It is intended that the energy dissipation analysis presented here be 
useful to researchers interested in plastic zone transitions in fracture 
mechanics. 

In the case of mode I, we know that the thickness of the specimen 
affects the shape of the plastic zone and the fracture toughness. In the 
case of plane stress, the Dugdale plastic strip model, which is similar in 
shape to the Cherepanov strip mode of mode III, can serve as a reasonable 
model of crack tip plasticity. However, no mode I counterpart exists for the 
Hult-McClintock solution. 

As there are no exact elastoplastic solutions available for mode I 
fracture problems with finite-dimensional plastic zones (without a disequi- 
librated stress discontinuity; see Chapter 1), the relationships provided 
here may give some insight into this other mode of fracture by analogy. 
Possible applications include temperature transition phenomena (lower- 
shelf to upper-shelf transitions). 

2.3 EFFECTIVE CRACK LENGTH FOR THE TRANSITION MODEL 

Irwin proposed an effective crack length for use in brittle fracture 
criteria in order to extend the utility of linear elastic fracture mechanics to 
ductile materials (see [Hel 84, p. 87]). This concept was based in part on an 
elastoplastic analysis of the mode III fracture mechanics problem by Hult 
and McClintock. 

Under conditions of small-scale yielding, Hult and McClintock's solu- 
tion predicts an elastic-plastic boundary that is circular. The locus of the 
elastoplastic boundary can be determined by substituting the stresses from 
the purely elastic mode III solution into the Mises yield criterion. The 
plastic stress field that satisfies equilibrium across the elastic-plastic 
interface requires the crack tip to move from its original position in the 
purely elastic solution (the center of the circular elastoplastic boundary) to 
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the edge of the plastic zone. The elastic stress field in the elastoplastic 
problem is consequently equivalent to stresses generated in a purely elastic 
problem by a crack with an effective length Cef f equal to the physical crack 
length c plus the radius of the plastic zone R p, i.e., 

Cef f = C q-- R p .  (2.3-1) 

A stress intensity factor that is calculated using the equivalent crack length 
rather than the actual crack length is called the effective stress intensity 
factor. 

The following relationship has been derived for the Hult-McClintock 
plastic zone radius Rp (see Chapter 1); 

Rp = (K i i i / k )2 / (2r r )  (2.3-2) 

where KI~ ~ is the mode III stress intensity factor and k is the yield stress 
in pure shear. 

There are no exact elastoplastic solutions available for the other two 
modes of fracture from which analogous expressions can be derived for the 
lengths L of the plastic zones along the crack axes (L = 2Rp). However, a 
simple approximation involving equilibrium in one dimension and an 
assumed translation of a singular elastic stress field of order O(r -1/2) can 
produce the following result for the plane stress mode I problem (see [Hel 
84, p. 18]) 
Irwin plane stress: 

L = 2Rp = ( K l / O r o ) z / T r - ~  0.318(Ki/o '0)  2 (2.3-3) 

where K I is the mode I stress intensity factor and o- 0 is the tensile yield 
stress. Irwin suggested the following correction for a plane strain mode I 
problem on the basis of the Tresca yield condition [Hel 84, p. 18]: 
Irwin plane strain: 

= )2 
L = 2Rp (Ki/~ro)Z/(37r) = 0.106(Kl/o" 0 . (2.3-4) 

On the other hand, the Dugdale plastic strip model for plane stress 
gives the following expression for the length of the plastic zone [Hel 84, p. 
20]: 
Dugdale plane stress: 

)2 
L = ( y r / 8 ) ( K l / O r o ) 2  ~ 0.393(Ki/o" 0 . (2.3-5) 

We see that the two plane stress expressions (2.3-3) and (2.3-5) are 
comparable in length. 
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Unger [Ung 89b] proposed a different mode III model in which the 
elastic-plastic boundary assumes the shape of an ellipse (Fig. 2.3-1). This 
model can recover as a limited case the small-scale yielding Hul t -McClin-  
tock solution as the eccentricity of the elliptic elastic-plastic boundary 
goes to zero. In addition, the Cherepanov [Cher 79] plastic strip model for 
mode III can also be recovered as a special case by allowing the elliptic 
elastic-plastic boundary to generate to a slit. In all cases the elastic 
stresses have the characteristic behavior of small-scale yielding; i.e., they 
are of the order O(r -1/2) as r ---> ~. 

Following [Ung 89b] and Section 2.1, let us establish an elliptic coordi- 
nate system with the origin O at the center of the plastic zone (Fig. 2.3-1). 
The relationships between Cartesian (x, y) and elliptic coordinates (u, v) 
are given by (2.1-9). 

Curves of constant stress intensity T, 

T = (r~zz + r2~) '/2, (2.3-6) 

fall on the ellipses u, where rxz and ry z 
the x and y directions, respectively. 

are the antiplane shear stresses in 

el l ipt ical  
boundary 

crack  X ! - ~ - - - 2  

Rp-~ 

FIGURE 2.3-1 
Crack tip geometry of the transition model. Reprinted from [Ung 90b] by permission of 
Kluwer Academic Publishers. 
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For higher values of u, a curve of constant T becomes circular (cf. Fig. 
2.1-2 and Fig. 2.3-1, locus r~). For sufficiently large u, the solution is 
indistinguishable from the purely elastic small-scale yielding solution which 
has concentric circles of stress intensity. Thus the far-field stresses are 
equivalent to those generated by a crack that has been extended the length 
of the broken lines in Fig. 2.3-1. 

The semimajor axis of the plastic zone Rp (Fig. 2.3-1) can be deter- 
mined from equation (2.1-9) as 

R p  = Ix lu=~, , , , ,=~ = la cosh uocos 7rl = a cosh u o . (2.3-7) 

By substituting the value of a from (2.1-62) into (2.3-7), we find 

Rp = (Klll/k)2[1 + e x p ( - 2 u 0 ) ] / ( 2 1 r ) ,  0 < u  0 < ~ .  (2.3-8) 

For large u 0 the elliptic elastic-plastic boundary asymptotically ap- 
proaches a circular shape (centered at O). In the limit as u() ~ ~ the value 
of the Hult-McClintock elastic-plastic radius (2.3-2) is obtained from 
(2.3-8). 

In the Cherepanov model, the plastic zone reduces to line segment AA' 
of Fig. 2.3-1. We can obtain the Cherepanov plastic strip value of Rp from 
(2.3-8) by setting u 0 - 0. 

We note that the plastic zone length of the Cherepanov model is twice 
the length of the Hult-McClintock plastic zone along the x-axis (for 
identical values of k and K~) .  Any intermediate value of u~ gives a value 
of R p between these limits. 

We observe that the Dugdale model of mode I has a value of L that is 
longer than the length for plane strain. In a way, this resembles the 
relationship between the plastic zones of Cherepanov and of Hult and 
McClintock. However, no analogous expression exists for R p that allows a 
smooth transition from plane stress to plane strain. 

The effective stress intensity factor K~l~ff for a central crack of length 
2ccff in an infinite plate is 

Ktilcff = Tzc("ffCcff) 1/2--" T~[Tr(c --{- Rp)] 1/2, (2.3-9) 

where ~ is a remotely applied antiplane stress. By substituting R p from 
(2.3-8) into (2.3-9), we find 

Klileff-- T~('Ti'C ~- (K,~tcff/k)2[1 -4- e x p ( - 2 u o ) l / 2 )  1/2. (2.3-10) 
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By solving equation (2.3-10) for gl l l e f f  , w e  deduce that the effective stress 
intensity factor for an infinite plate with an internal crack of length 2c is 

gl l le f f  7"~('n'C)1/2/{1 (1 /2) ( ' r~ /k)2[1  + exp ( -2u0 ) ]}  1/2 = - . (2.3-11) 

We can employ equation (2.3-11) for mode III in a way similar to Irwin's 
use of the effective stress intensity factor of mode I for predicting critical 
loads [Hel 84, p. 87]. We can calculated the value of r~ related to failure 
by substituting a known value of the fracture toughness Ki~c into (2.3-11) 
for K~icff together with a corresponding value for u 0. An experimental 
technique for determining u0 from the crack tip opening displacement is 
discussed in [Ung 89b] and in Section 2.1. 

We may find experimentally that Ki~c is a function of temperature, 
specimen geometry, and phase composition. In mode I, we observe pro- 
nounced changes in fracture toughness with temperature (the lower-shelf 
to upper-shelf transition) and plate thickness (the plane stress to plane 
strain transition). 

As a final comment, we mention that the length of the plastic zone for 
the Bilby-Cottrel l-Swinden plastic strip model [BCS 63, eq. (21)] is 
Bilby-Cottrell-Swinden: 

L = (Tr/8)(Kll l /k)2 = 0.393(Kill /k)2.  (2.3-12) 

We infer from (2.3-8) and (2.3-12) that this model produces a plastic zone 
that falls between the lower limit (L  = 0 .318KZ~/k  2) and the upper limit 
(L  =, 0 .637K2~/k 2) of plastic zone length L = 2Rp of the transition 
model. This model [BCS 63] has a stress ~'yz = k on the plastic strip; 
however, the stress intensity T violates yield (T > k) along most of the 
plastic strip as ~'xz 4:0 except at the forward tip of the plastic zone. See 
(2.4-9) in Section 2.4. 

2.4 FRACTURE ASSESSMENT DIAGRAMS 

The fracture (or failure) assessment diagram [DT 75, and HLM 76] is an 
attempt at combining failure criteria based on linear elastic fracture 
mechanics and plastic collapse. This failure criterion is a function of two 
parameters K r and S r, which respectively quantify the elastic fracture 
component and the plastic collapse component. A curve that represents a 
limit of safe design is plotted in the coordinate system (Kr ,Sr ) .  The 
ordinate of the graph K r is the ratio of the stress intensity factor K I to the 
toughness K,.. The abscissa of the graph S r is the ratio of the applied 
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tensile traction o'= to the limit load stress ~r L . A particular design is 
considered safe provided g r and Sr fall below the failure curve on the 
fracture assessment diagram. 

It has been generally assumed that a curve based on the Dugdale model 
(plane stress) of crack tip plasticity provides a reasonable lower bound for 
design loads. The Dugdale model has a plastic zone in the shape of a strip 
ahead of the crack tip [Dug 60]. In the plastic strip a biaxial state of stress 
o- 0 (yield) exists. The failure curve (called R6) based on the Dugdale 
model [HLM 76] predicts that 

K r = S r [ ( 8 / ' n ' 2 ) l n s e c ( ' r r S r / 2 ) ]  - 1 / e ,  (2.4-1) 

provided we interpret the limit load ~r L as ~r 0 . The locus of points based 
on equation (2.4-1) is plotted in Fig. 2.4-1. 

As has been previously observed, there are cases when the R6 criterion 
proves nonconservative. To show this, a plot of experimental data by Chell 
[Chel 79] is reproduced here as Fig. 2.4-2. We can see from this figure that 
some of the experimental data fall below the R6 curve, which is shown as a 
solid line. To compensate for this, Chell proposed a more conservative 
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Mode I and mode Ill fracture assessment diagrams. Reprinted from Eng. Fract. Mech., 34, 
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failure curve which is reduced by 15%. Its locus is also shown on Fig. 2.4-2 
as a broken line. Materials represented on this diagram were chosen from 
titanium alloys, aluminum alloys, and steels. These data come from a 
number of sources, which are listed below the figure. A key that identifies 
the references listed by Chell with those contained in this text is provided 
in Table 2.4-1. 

For a comparison of the Dugdale model (R6) with other failure criteria, 
additional failure curves proposed by different individuals and agencies are 
given in Table 2.4-2 and plotted in Fig. 2.4-3 [McC 94]. These comparisons 
were originally made by McCabe [McC 89]. 

Let us now examine a particular failure curve. When the Irwin failure 
criterion for plane stress (Oz. - o" 0) 

[I- 
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TABLE 2.4-1 
Key to Cheil's References in Fig. 2.4-2. 

Chell [Chel 79] This text 

[1] [DT 751 
[2] [Chel 77] 
[29] [BL 72] 
[30] [LY 58] 
[31] [CS 77] 

is compared to the Dugdale failure locus, the Irwin model falls below the 
Dugdale over a particular region. This behavior is depicted in both Figs. 
2.4-1 and 2.4-3. The Irwin model of crack tip plasticity represents a 
finite-width plastic zone for plane stress, as opposed to the Dugdale plastic 
strip model, which is infinitesimally thin. 

TABLE 2.4-2 
Example of Elastic-Plastic Calibrations after [McC 89]. 
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By analogy, the Irwin model for mode I crack propagation is supported 
by the predictions of the Hult-McClintock [HM 56], small-scale yielding, 
elastoplastic solution for mode III crack propagation. However, this in 
itself makes it difficult to judge precisely the effect of plastic zone develop- 
ment on failure criteria, as one curve is based on an exact mode I solution 
(Dugdale) and the other is supported by an exact mode III solution 
(Hult-McClintock). It would be desirable to compare two analytical solu- 
tions with these dissimilar types of plastic zones for the same mode of 
fracture. This is impossible for mode I as no counterpart to the Hul t -  
McClintock solution has been found. There are, however, plastic strip 
solutions available for mode III to compare with the Hult-McClintock 
solution. 

Two different plastic strip models for mode III have already been 
mentioned in this text: one by Cherepanov [Cher 79] and the other by 
Bilby, Cottrell, and Swinden [BSC 63]. Although both of these mode III 
models have plastic zones similar in shape to that of the Dugdale model, 
their stresses and failure predictions differ. 

Unger [Ung 89b] has obtained an analytical elastoplastic solution for 
mode III in a related problem, that models a transition in plastic zone 
shape from a strip to a circular cylinder (see Sections 2.1 and 2.3). 
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Correspondingly, the Cherepanov solution and the Hul t -McClintock solu- 
tion can be recovered from the transition mode, which has a plastic zone in 
the shape of an elliptical cylinder. 

Unger [Ung 90b] has also developed an effective crack length, similar to 
Irwin's, for the transition model, which was presented in the previous 
section as (2.3-1) and (2.3-8). This allows us to model in a continuous 
fashion the theoretical change between a strip model and a finite-width 
plastic zone model for the mode III counterpart  of the fracture assessment 
diagram [Ung 92b]. 

The ratio B / A  of the semiminor axis to the semimajor axis of the 
elliptic plastic zone satisfies the following relationship by (2.1-35): 

B / A  = tanh u 0 . (2.4-3) 

Therefore we can rewrite (2.3-11) as 

7" (7rr  1/2 

g l l l e f f - -  ( 1 -  [ ( 7 ~ / k ) 2 / ( 1  + B / A ) ] )  1/2' 0<_ B / A  < 1. (2.4-4) 

To obtain the failure criterion for the transition model from (2.4-4), we 
first redefine K r and S r as 

K r = KIll~KIll,: , S r = ~'~/Tt. (2.4-5) 

where K ~  is a mode III stress intensity factor, K~c  is the corresponding 
toughness, ~'~ is the applied shear traction, and ft. is the collapse stress in 
shear. 

Then by setting ~'L = k, Klllcff = Killc, and 7~(rrc) ~/2= KII l, we infer 
from (2.4-4)-(2.4-5) that the failure criterion for the transition model is 

K r = 1 - (Sr )2 / (1  + B / A )  , 0 < B / A  < 1. (2.4-6) 

We note that if B / A  = 1, then (2.4-6) produces a result that corre- 
sponds to the Hul t -McClintock solution. We also see that (2.4-6)with 
B / A  = 1 is analogous to the Irwin failure criterion (2.4-2), and represents 
the upper bound for any ratio of B / A .  For B / A  = 0, equation (2.4-6) 
predicts the lower bound of the transition model. This locus is a circular 
arc and it is based on the Cherepanov model of crack tip plasticity. For all 
other values of B / A ,  the shape of the failure curve on the fracture 
assessment diagram is elliptic. This family of elliptic curves expands 
uniformly on the fracture assessment diagram from the lower bound 
B / A  = 0 to the upper bound B/14 = 1. 
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We should mention that the second plastic strip model (Bilby- 
Cottrell-Swinden) is often regarded as the mode III equivalent of the 
Dugdale model because the crack tip opening displacement is completely 
analogous to its mode I counterpart [BS 66]. For small-scale yielding, 
compare equations (I.6-23) to (I.6-65) to see this. It follows that a failure 
criterion for mode III based on the Bilby-Cottrel l -Swinden model has the 
same form as (2.4-1) provided we change the definitions of ( K  r, Sr)  to 
(2.4-5). 

We notice in Fig. 2.4-1 that the Bi lby-Cott re l l - -Swinden failure curve 
lies on or above the Cherepanov curve. Therefore, the Bi lby-Cot t re l l -  
Swinden model is not the most conservative mode III failure criterion 
available from a plastic strip model. 

The fact that the Cherepanov curve lies below the Bi lby-Cot t re l l -  
Swinden curve on the fracture assessment diagram might be explained by 
analyzing the stress fields, the yield condition, and the lower bound 
theorem of plasticity. 

The Bilby-Cottrel l-Swinden model has a constant shear traction 

~'y~ = k (2.4-7) 

applied ahead of a crack tip as a boundary condition representing a plastic 
strip in an otherwise purely elastic problem. Now the elastic solution for 
~x~ along the plastic strip is obtained from the imaginary part of the 
Westergaard complex function Z(z)  from [BS 66], i.e., 

Z ( z )  = ( 2 k / v r ) c o t - ' { ( c / z ) [ ( z  2 - a 2 ) / ( a  2 - C2)]1/2}, (2.4-8) 

where 2c is the crack length and (a - c) is the length of one of the two 
plastic zones. (Note that the definitions of a and c have been interchanged 
from those of Section 1.6.) Taking the imaginary part of (2.4-8), we find 
that, along the plastic strip (y = 0), 

~'xz = - ( 2 k / r r ) t a n h -  ~ { ( c / x ) [ (  a2 - x 2 ) / (  a2 - c2)] ' /2} ,  c < x < a .  

(2.4-9) 

We further note that the Mises or Tresca yield condition for a perfectly 
plastic material has the form of (2.1-8). 

It follows from (2.4-7) and (2.4-9) that stresses that exceed yield (2.1-8) 
must exist along the plastic strip, because ry z = k alone satisfies yield and 
any nonzero contribution for ~'xz pushes it over the limit. This implies that 
the limit load of plastic collapse may have been exceeded. Therefore, the 
Bilby-Cottrel l-Swinden model is inappropriate as a lower limit on the 
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fracture assessment diagram, as it violates the lower bound theorem of 
plasticity. 

On the other  hand, the transition solution, which includes the 
Cherepanov solution and the Hu l t -McCl in tock  solution as limiting cases, 
does not have stresses for any ratio of B / A  that exceeds yield. Thus the 
Cherepanov solution, which is the most conservative limit of the transi- 
tional model  solution, can serve as a model  for a failure curve known to 
satisfy the conditions of the lower bound theorem of plasticity. 

A similar s ta tement  cannot be made about  the Dugdale model (see 
Section 1.6) for the mode I fracture assessment diagram because the 
Dugdale model  does not have stresses that exceed yield, as is the case for 
the Bi lby-Cot t re l l -Swinden  model. 

The Dugdale model has as its far-field stresses a biaxial state of stress 
o', = ~ry -- o~. Lu and Chow [LC 90] have also proposed a different mode I 
plastic strip model that does not restrict the normal stresses at infinity to 
equality with one another;  i.e., 
Lu-Chow:  

cr,(_+m, y)  = co'~, %(x ,  +_ ~) = o'~ (2.4-10) 

Dugdale: 

Cr,,(_+~, y)  = o~, cry(x, + :~) = Cr~, (2.4-11) 

where c is a constant of proportionality between the imposed tractions in 
the x and y directions at infinity. 

Along the plastic strip, the Dugdale model 's  state of stress is repre- 
sented by point M on the plane stress yield surfaces of Fig. 1.9-1. 
Dugdale model: 

Crx(x,O) = %(x ,O)  = oo, r~y(X, 0) = 0. (2.4-12) 

Using the plane stress Mises yield criterion (I.9-31), we find a more 
general state of yield for use with the L u - C h o w  model of the form, 

O'x(X , 0) 2 -+- O~y(X, 0)  2 - ~ r ~ ( x , O ) % ( x , O )  = (r~ ,  r~y (X ,O)  = O, 

(2.4-13) 

where the shear stress r,y has been set equal zero due to the symmetry of 
the mode I problem. This yield condition can be visualized in the principal 
stress space of Fig. 1.9-1 as the Mises ellipse where o-~ - o- x and o 2 = O'y. 
To justify this, we compare (I.9-31) with rxy = 0 to (I.9-32). 
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Notice that the Dugdale model stresses along the plastic strip trx(X, O) 
= O-y(X, 0) = o- 0 also satisfy (2.4-13). 

The crack tip opening displacement for the Lu-Chow model [LC 90] is 
Lu-Chow: 

where 

6LC = [8ao~/(rrE)lln[sec(rro~)/(2o'~)],  (2.4-14) 

/4 ) (1  - c)2(o'm/o'o) 2] 1/2 + (1 - c)o-~/(2tr0) ) .  

(2.4-15) 

If we compare (2.4-15) to (I.6-22), we find the crack tip opening displace- 
ment of the Lu-Chow model to be analogous to the Dugdale model's, 
where its effective yield stress trt~ replaces the yield stress tr 0 in the 
Dugdale model. 

Let us now set c = 0 in the Lu-Chow model to obtain the solution for a 
uniaxial load tr~ in the y direction. The analogy between (2.4-14) and 
(I.6-22) allows us to conclude that 
Lu-Chow (c = 0): 

, + (Sr/2)} gr  -- Sr( [1 - (3/4)Sr] '/2 

• { (8 / r r2) ln  sec -- 3/4 S21' 2 + (Sr/2)}]}  --1/2. 

(2.4-16) 

Notice from its plot in Fig. 2.4-4 that the Lu-Chow uniaxial load 
(2.4-16) is conservative relative to the Dugdale model (2 .4-1)with  its 
biaxial load. As the Lu-Chow model represents a more realistic loading 
and a more conservative yield locus, it seems appropriate that this curve 
should replace the R6 curve as the standard theoretical model for mode I. 

Another feature of the fracture assessment diagram is the reserve stress 
of the material. The reserve stress, or safety factor, is the ratio of length of 
the line segment going from the origin O through the design state point P 
and continuing until it reaches the assigned failure locus point Q, divided 
by the length of the line segment from the origin to point P. In Fig. 2.4-4, 
for the Lu-Chow failure curve, the reserve stress is the ratio of length OQ 
divided by length OP. 

We can tell from the mode I data provided by Chell in Fig. 2.4-2, that 
some experimental data still fall below the theoretical L u - C h o w  failure 
curve. Perhaps a more practical yield locus to adopt in its place is a 
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FIGURE 2.4-4 
Failure curves related to uniaxial and biaxial loadings and the radii of the reserve stress 
(OQ/OP) of point P relative to the uniaxial load curve. 

circular arc in analogy to the mode  III C h e r e p a n o v  locus. Much of the 
exper imenta l  data  by Chell will fall above this arc. A reduced  circle could 
also be used, similar to Chell 's  reduced  curve in Fig. 2.4-2, to ensure  that  
all data fall safely above the reduced  arc. F u r t h e r m o r e ,  the reserve stress 
of the mater ia l  would be particularly convenient  to calculate using a 
circular failure locus, because  it is the ratio of two radii. 
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Environmental Cracking 

Naturam expellas furca tamen usque recurret. ~ 

Materials under applied loads in aggressive environments often suffer 
from some form of subcritical crack growth. Crack propagation can initiate 
under adverse environmental conditions at relatively small loads. Common 
materials such as aluminum alloys, ceramics, and steels are subject to 
environmental cracking through the action of water. All told, environmen- 
tal cracking is a phenomenon that afflicts many different engineering 
materials through numerous reactive agents. Brass is adversely affected by 
ammonia, for example, and titanium alloys are subject to hydrogen-as- 
sisted cracking. 

Variables that affect environmental crack growth rates include viscous 
fluid and molecular transport (external), physical and chemical adsorption, 
chemical reactions, film deposits, and internal diffusion (which is in turn 
affected by stress, trapping mechanisms, and mobile dislocations). 

Common experimental trends can be observed for materials subject to 
degradation by either stress corrosion cracking (scc) or hydrogen embrit- 
tlement. One of these features is the threshold stress intensity factor KL~cc 
(or Kth) below which crack propagation is not observed for fixed environ- 
mental conditions. For values of the stress intensity factor above KL~cc, 
three stages of steady-state crack propagation are typically observed. 

In Sections 3.1 and 3.2 we discuss the modeling of hydrogen-assisted 
crack growth. In this model stage I and stage III crack propagation is 

1Roman proverb: "Though you drive out nature with a pitchfork, it will always return" 
(recorded by Horace). 
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clearly observed. In Section 3.3 we solve a moving boundary value problem 
for stage II stress corrosion cracking that is transport-controlled. Section 
3.3 describes what is possibly the first true moving boundary value problem 
that has been solved analytically for environmental crack propagation, 
aside from steady-state solutions in Galilean frames of reference and 
quasi-static solutions. 

3.1 HYDROGEN-ASSISTED CRACKING 

Hydrogen-assisted cracking is a phenomenon that afflicts both high- 
strength steels and titanium alloys. Subcritical crack growth can initiate in 
metals susceptible to hydrogen embrittlement at load levels far below 
those required for rapid fracture in inert environments. As a consequence, 
an otherwise conservatively designed steel structure or mechanism can fail 
when exposed to hydrogen due to the slow growth of a crack that 
ultimately attains a critical length. 

Exposure to hydrogen can take different forms. Direct exposure to 
hydrogen gas occurs in pipelines and in pressure vessels. Indirect exposure 
to hydrogen can occur from any physical contact of the metal with liquid 
water or water vapor. In the latter case a chemical reaction between steel 
and water produces hydrogen gas, which subsequently enters the metal 
and embrittles it. Hydrogen can also be introduced into a material during 
the manufacturing process or by electrochemical charging. 

In the case of an aqueous environment, a hydrogen-free specimen can 
pass through a substantial incubation period before crack propagation 
begins. This incubation time, as well as the crack velocity itself, ~, is a 
function of the environment, specimen geometry, crack length, and load 
[Her 76]. The last three parameters can be recorded through the stress 
intensity factor K~, provided small-scale yielding criteria are met. 

Two special values of the stress intensity factor exist: a threshold stress 
intensity factor Kth, below which subcritical (slow and incremental) crack 
propagation is not observed, and a critical stress intensity factor K~c 
where instantaneous failure occurs. 

Laboratory experiments are conducted under both steady-state (time-in- 
dependent) and unsteady (time-dependent) conditions. In steady-state 
experiments, the investigator avoids sudden changes in K~ as impulsive 
changes produce velocity transients and correspondingly time-dependent 
behavior. In unsteady experiments, transients in velocity are intentionally 
induced by step or other sudden changes in load. Unsteady data must be 
recorded as a function of both the stress intensity factor and time. In most 
investigations steady-state conditions have been assumed, but this assump- 



Hydrogen-Assisted Cracking 209 

tion can prove false, depending on the magnitude of the initial stress 
intensity factor relative to Kth- 

To elaborate on this, we see in Fig. 3.1-1 a plot of experimental data 
[HW 71] which shows a crack velocity versus time for 4340 steel in distilled 
water at 298 K (Kelvins) [WNW 72, HW 81]. A special kind of specimen, 
known as the tapered double-cantilevered beam (DCB), was used for these 
experiments. A small schematic of one of these is provided in the figure 
(uniform plate thickness). This type of specimen has the unusual property 
of maintaining a constant stress intensity factor for constant load. This is 
achieved by the specimen's unconventional shape, which differs from most 
others which have rectangular cross sections with uniform plate thick- 
nesses. These data show clearly that transient behavior does occur, but 
they also show that steady-state velocities are eventually reached for a 
given stress intensity factor. 

The data of Fig. 3.1-1 may now be cross-referenced with data [LW 73] in 
Fig. 3.1-2 from [WNW 72, LW 73, HW 81], which were obtained from 
more conventional specimens (center cracked panel)whose stress intensity 
factors vary under constant load. The tapered DCB specimen's data fall on 
the solid curve, which corresponds to the envelope of the conventional 
specimen data, initiated at different stress intensity factors but exposed to 
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FIGURE 3.1-1 
Static load crack growth rates under constant stress intensity factor conditions showing 
transient and steady-state behavior. Reprinted from [WNW 72] by permission of ASTM and 
from Int. J. Pressure Vessels Piping, 9, S. J. Hudak, Jr., and R. P. Wei, Considerations of 
non-steady-state crack growth in materials evaluation and design, 63-74 (1981), with permis- 
sion from Elsevier Science, Ltd., Pergamon Imprint, The Boulevard, Langford Lane, Kidling- 
ton OX5 1GB, UK. 
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FIGURE 3.1-2 
Dependence of static load crack growth kinetics on initially applied stress intensity factor K I . 
Reprinted from [LW 73] by permission of Kluwer Academic Publishers, [WNW 72] by ASTM, 
and from Int. J. Pressure Vessels Piping, 9, S. J. Hudak, Jr., and R. P. Wei, Considerations of 
non-steady-state crack growth in materials evaluation and design, 63-74 (1981), with permis- 
sion from Elsevier Science, Ltd., Pergamon Imprint, The Boulevard, Langford Lane, Kidling- 
ton, OX5 IGB, UK. 

common environments. We can see clearly in this example that stage I 
growth is not steady-state, as there is no one-to-one-correspondence 
between stress intensity factor and crack velocity. However, it should also 
be pointed out that most of the specimens had experienced initial crack 
growth at stress intensity factors well above K~t h, so steady-state condi- 
tions should not prevail immediately. 

Graphs of crack velocity versus stress intensity factor (Fig. 3.1-3) typi- 
cally show three stages of steady-state crack propagation. The first stage (I) 
of crack growth, which is the stage nearest to Kth, is the region exhibiting 
an exponential growth of ~i in relation to K~. The second stage (II) of 
crack growth is a region in which the crack velocity is less dependent on 
the stress intensity factor. In the case depicted in Fig. 3.1-3, the crack 
velocity is virtually independent of the stress intensity factor. The third 
stage (III) of crack growth is a region close to the critical stress intensity 
factor. Here the crack velocity increases significantly and is again strongly 
dependent on K I. Rapid fracture occurs in hydrogen environments near 
the same K~c as that found under inert environmental conditions. 

Kinetic Processes 
A number of kinetic processes may be operating simultaneously in 

subcritical cracking associated with hydrogen embrittlement. Any one 
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FIGURE 3.1-3 

Average crack velocity versus stress intensity factor. Reprinted from Eng. Fract. Mech., 31, S. 
L. Lee and D. L. Unger, A decohesion model for hydrogen assisted cracking, 647-660 (1988), 
with permission from Pergamon Press Ltd., Headington Hill Hall, Oxford OX30BW, UK. 

process or combination of processes can be rate-limiting and produce the 
stage II growth noted earlier. For example, fluid transport can be a 
rate-limiting process. A deleterious substance must migrate from its envi- 
ronmental reservoir to a region near the crack tip. If the supply is slower 
than the embrittling process itself, then the overall cracking process is 
rate-limited by transport. 

Chemical reactions that occur near the crack tip to produce hydrogen 
gas can also be rate-limiting. For example, in the case of water and AISI 
4340 steel, a chemical reaction associated with the oxidation of metal and 
release of hydrogen gas has been identified in [SPW 78] for stage II crack 
propagation. In Fig. 3.1-4, the experimental data for a 4340 steel in water 
of various temperatures, obtained by [LW 73, HM 75] and discussed in this 
context in [SPW 78], are reproduced here. 

In Fig. 3.1-5, a new set of data reported in [SPW 78] is shown for the 
same steel as that in Fig. 3.1-4, but subjected to hydrogen gas rather than 
water. This would, of course, eliminate the oxidation stage of metal with 
the accompanying release of hydrogen gas as a controlling mechanism of 
crack growth rates. Fractographic evidence, which was obtained in this 
study, indicated that the mechanism responsible for fracture was identical 
to that of the previous study, thereby implicating hydrogen as the underly- 
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ing cause of crack growth in both cases. We observe in Fig. 3.1-5 that stage 
II growth is again present in the experimental data despite the absence of 
the previous rate-controlling mechanism. It was hypothesized in [SPW 78] 
that the new controlling mechanism could be one of a number of mecha- 
nisms: surface reactions, hydrogen entry, transport to the fracture site, or 
the fracture process itself. 

Figure 3.1-6, a schematic diagram from [GW 77] shows the sequence of 
events that occurs when exposure to an environment of hydrogen gas 
causes crack growth in high-strength steels. In this diagram C H stands for 
hydrogen concentration, 6 is the distance to the region where embrittle- 
ment takes place, cr represents an applied stress, and FPZ is the fracture 
process zone. 

Once hydrogen reaches the surface of the crack tip from an external 
source (1 in Fig. 3.1-6), it must enter the metal by an adsorption process. 
Two different adsorption processes exist. The first type is a physical 
adsorption (2) of hydrogen gas, where diatomic molecules, as opposed to 
ions, are adsorbed. The second stage, called chemical adsorption or 
chemisorption (3-4), occurs after the molecules dissociate into atoms 
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The kinetics of sustained-h)ad crack growth in AISI 4340 steel (tempered at 204~ in 
dehumidified hydrogen at 133 Pa. Reprinted from [SPW 78] by permission of ASM Interna- 
tional. 

under the influence of strong crystal fields [Fuj 85]. At low temperatures 
the first type can be rate-limiting, and at room temperature the second can 
be rate-limiting as indicated by studies involving hydrogen gas and 4340 
steel [SF 81]. Upon entering the material (5), the hydrogen diffuses under 
the influence of hydrostatic stress gradients (6). 

In [LPWSW 81], crack growth controlled by the internal diffusion of 
hydrogen in 4340 steel exposed to hydrogen sulfide gas has been reported. 
Data from their study are shown in Fig. 3.1-7 and 3.1-8. At high pressure, 
the rate-limiting mechanism is believed to be internal hydrogen diffusion. 
At the low pressure, the rate-limiting mechanism changes to external 
transport, where hydrogen sulfide gas from the environment reaches the 
crack tip through Knudsen diffusion. (This kind of diffusion is discussed in 
Section 3.3.) The change of rate-limiting mechanisms, between two pres- 
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Schematic illustration of the processes involved in gaseous hydrogen embrittlement. Reprinted 
from [GW 77] by permission of ASM International. 

sure extremes of 133 Pa and 2660 Pa, is implied by the change of slope in 
Fig. 3.1-8, where the log of crack growth rate is plotted inversely propor- 
tional to the absolute temperature. 

Hydrogen introduced internally into the matrix of the metal during the 
forming process or by charging [SG 73] can also diffuse to the neighbor- 

STRESS INTENSITY FACTOR (ksi- in k=) 
3 0  4 0  5 0  6 0  7 0  

P.== = 2713 Po - 
oooooO~176176 o o o o i O - I  

10 "3_ oem �9 o~176176 ._ 
-..-, _ O 0  e 

,,, _ ~ 
I - -  < 133 - - I 0  "= oc 

& && -- _ - Z 

z 0 "  - �9 = w ' . . = � 9  7 0 . 5  _ v- l-- I " "  " - -  ==�9 
_ n,.  

OC (.9 
(.9 - � 9  13.3 

�9 0 0 0 0 0 0 0  O0 - I 0  "~ ' - "  
- o O o  o 

o rr 
I:Z:: i 0  "a _ u 

AISI 4 3 4 0  S T E E L  
AT ROOM TEMPERATURE 

1 = I , 1 i 1 = 1 = 10-4 
3 0  4 0  5 0  6 0  70  

STRESS I N T E N S I T Y  FACTOR (MPo-~  ~) 

F I G U R E  3.1-7 
The kinetics of sustained-load crack growth in AISI 4340 steel to hydrogen sulfide at room 
temperature and at different pressures. Reprinted from [LPWSW 81] by permission of ASM 
International. 



Hydrogen-Assisted Cracking 215 

TEMPERATURE ( 'C)  
2 0 0  160120 80  4 0  0 - 4 0  

�9 I I I 1 1 1 
I0  " s -  A IS !  4 3 4 0  STEEL IN HzS 

"~ - t 95  p c t  c o n f i d e n c e  i n t o r v o l  

~. - A H = 4 .6 ,3 .6  kJ/mole (0  90pet ) 

/ 
i0 -a 

f - '~"  ,33~ : 
~: I 
I: I0-4_ I // 

< I I l- 
v) - I i 

l l l l l  1 , I , I 
LO 2.5 3.0 3.5 4.0 

I 0 0 0 / T  (~ K "i ) 

FIGURE 3.1-8 

.F. 
w 

K~) "a n,' 

,v, 

IO'Z 

I::1 
- bJ 

(.9 
- I -  (,/1 

10 .3 
4.5 

The effect of temperature on the mean stage II crack growth rate at hydrogen sulfide 
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hood of the crack tip under the influence of hydrostatic stress gradients to 
cause cracking. The diffusion process is accelerated by mobile dislocations 
that carry hydrogen (Cottrell) clouds [HL 82, CJ 49]. The local concentra- 
tion of hydrogen can also be affected by traps such as voids, dislocations, 
grain boundaries, and foreign atoms. 

M o d e l s  
The model of hydrogen embrittlement presented here is based on the 

concept of a degrading cohesive force. This mechanism was originally 
proposed by Troiano [Tro 60] and his co-workers. It was later applied by 
Oriani and Josephic [OJ 77] to the modeling of threshold data for 4340 
steel in hydrogen gas. In that particular analysis it was assumed that the 
cohesive force between atoms is lowered in a linear fashion with the 
hydrogen concentration. The concentration was then related to the stress 
by an equilibrium relationship. 

A different decohesion model of hydrogen embrittlement that is appli- 
cable beyond the threshold stage was proposed by Neimitz and Aifantis 
[NA 85, NA 87a, NA 87b]. These investigators suggested a Barenblatt zone 
of cohesive force that degrades with time due to the presence of hydrogen. 
Subcritical crack initiation and arrest criteria are based on the crack tip 
opening displacement. The crack tip opening displacement is assumed to 
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be a function of the average concentration of hydrogen which is, in turn, a 
function of time. When a critical average concentration of hydrogen is 
reached, a discrete jump in the crack length less than or equal to the 
length of the process zone occurs. Average crack velocities can thus be 
determined by dividing the increment of crack growth by the increment of 
time between subcritical initiations. 

The model analyzed here is a particular case of a model proposed in 
[Ung 86]. Assuming a linear degradation between the cohesive force and 
hydrogen concentration, it incorporates subcritical fracture criteria based 
on crack tip opening displacement. This model differs most significantly 
from previous models in that it incorporates a pointwise degradation of 
cohesive force in relation to hydrogen concentration over the length of the 
cohesive force zone. The crack tip opening displacement is calculated 
directly from the degraded cohesive force profile, thus making the distribu- 
tion of hydrogen in the cohesive zone important as well as the total 
content of hydrogen. As no attempt was made to solve a specific problem 
in [NA 85, NA 87a, NA 87b], the relative performance of these two 
decohesion models cannot be compared. 

For a description of some other models of environmental cracking 
phenomena, the reader is directed to the subsection on previous models. 

Growth of the Cohesive Zone 
Our first task will be to establish the growth process of the cohesive 

zone. In the next subsection, we demonstrate that this growth is concur- 
rent with an increase in the crack tip opening displacement, which ulti- 
mately provides a measure of the damage due to the presence of hydrogen 
in the metal. Although a specific boundary value problem for a particular 
initial condition is analyzed in this section, the model can readily accom- 
modate other initial and boundary conditions. The kinetic model for a 
propagating crack proposed in the next subsection is consistent with the 
model presented here for the growth of the cohesive zone. The rate-limit- 
ing kinetic processes, which were mentioned earlier, can also be incorpo- 
rated into this model. 

In a Barenblatt model [SL 69], the cohesive force provides an additional 
contribution to the stress intensity factor so that the total stress intensity 
factor remains zero. This assumption is based on the physical assumption 
that stresses at the crack tip remain finite. If we denote this additional 
contribution due to the cohesive force with the symbol K 0, then this 
condition reads 

K l = K 0 (3.1-1) 
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where K~ is identified as the usual stress intensity factor. To determine K 0 
we must substitute an expression for the cohesive force (traction) Oc(X, t) 
into the following integral [SL 69]: 

fa C K o = 2(c/ ,n-)  1/2 O'c(X , t ) / ( c  2 - -  X2) 1/2 dx (3.1-2) 

where x is the coordinate shown in Fig. 3.1-9, a is the crack length, t is 
time, and c = a + d where d is the length of the cohesive zone. 

The cohesive force is, in general, a function of the distance between 
atoms (idealized as surfaces) between a and c. However, in order  to 
simplify the analysis, we assume that the cohesive force is independent  of 
the displacement of the crack surfaces. This should be sufficient to 
demonstrate  hydrogen's quantitative effect on the cohesive force. Thus the 
cohesive force before the introduction of hydrogen is uniform. 

The cohesive force is assumed to degrade linearly with the concentra- 
tion of hydrogen C(x, t), i.e., 

crc(x,t)  = ~r~o- y C ( x , t ) ,  (3.1-3) 

where ~rc0 is the cohesive force in the absence of hydrogen and 3' is a 
constant. We assume that the initial concentration of hydrogen C(x,  0) is 
zero. Thus we are modeling hydrogen that is introduced from the environ- 
ment, rather than hydrogen initially present in the specimen. At time 
t = 0 + a constant concentration of hydrogen Co is imposed at the crack 
tip. The concentration of hydrogen is governed by the heat equation 

O C ( x , t )  0 2 C ( x , t )  
= D , (3.1-4) 

o9t o~X 2 

-X~ d -l 
FIGURE 3.1-9 

Crack length, cohesive zone, and coordinate. Reprinted from Eng Fract. Mech, 31, S. L. Lee 
and D. L. Unger, A decohesion model for hydrogen assisted cracking, 647-660 (1988), with 
permission from Pergamon Press Ltd., Headington Hill Hall, Oxford, OX30BW, UK. 
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where D is the diffusivity. The use of the heat equation in (3.1-4) 
represents the simplest possible model of hydrogen diffusion, although the 
model itself is not inherently restricted to this equation. Equation (3.1-4) 
can be replaced by a stress-assisted diffusion equation such as that 
proposed in [Aif 80]. Here we are trying to establish only qualitative 
behavior due to the decohesion mechanism. As such, D in (3.1-4) should 
be understood as representing an apparent  or effective diffusivity. In the 
same light, C(x ,  t ) s h o u l d  be interpreted as a quantity representing the 
total damage due to hydrogen and not necessarily the actual concentration 
of hydrogen. 

The solution of the heat equation in one dimension for an initial 
hydrogen concentration of zero and a constant boundary condition C o is 

C ( x , t )  - C o e r f c [ ( x  - a ) / ( 4 D t ) ' / 2 ] ,  (3.1-s) 

where erfc[ ] is the complementary error function, which is related to the 
error function ertI ] by erfc[ ] = 1 - ertI ]. 

For this particular analysis, let us assume that the stress intensity factor 
is that of an infinite plate subject to a tensile traction o-~ with an internal 
crack of length 2c; i.e., 

K I = ~r~(Trc) I/2. (3.1-6) 

Note that in our notation a is one-half of the crack length and c is the 
length a plus the length of the cohesive zone d. Mathematically, however, 
the Barenblatt model treats the crack as if it were physically of length 2c 
with tractions due to the cohesive forces applied over the crack surfaces 
from x =  _ + a t o x =  _+c. 

The substitution of equations (3.1-2), (3.1-3), (3.1-5), and (3.1-6) into 
(3.1-1) gives the Barenblatt condition as 

6rco - 7Coerfc ( x  - a ) / ( 4 D t )  1/2 (c 2 - x 2 )  1/2 dx = (rr/2)tr , , .  

(3.1-7) 

Now the first part of integral (3.1-7) may be readily evaluated to yield 

[ O.c0CO s- l ( a / c )  - y C  o erfc ( 

= (7r/2) cr~. 

x - a ) / ( 4 D t ) l / 2 ] / ( c 2  - x 2 )  1/2 dx 

(3.1-8) 
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Cohesive zone length versus time. Reprinted from Eng Fract. Mech, 31, S. L. Lee and D. L. 
Unger, A decohesion model for hydrogen assisted cracking, 647-660 (1988), with permission 
from Pergamon Press Ltd., Headington Hill Hall, Oxford O X 3 0 B W ,  UK. 

The remaining integral in (3.1-8) can be approximated by the quadrature 
formula (25.4.37) of [AS 64] to give the first-order approximation. 

o c , , c o s - ' ( a / c )  - 27C,,[3(c - a ) / ( 5 c  + a)] ' /2er fc[ (c  - a ) / ( 9 D t )  '/2] 

= (7r/2) ~&. (3.1-9) 

A comparison [LU 88] between this one-term approximation, a ten-term 
approximation, and a twenty-term approximation can be found in Fig. 
3.1-10 for the representative coefficient values appearing in Table 3.1-1 
with the crack length a = 1.016 x 10 -2 m. We can see that a twenty-term 
expansion is virtually indistinguishable from a ten-term expansion. We can 
also see that a one-term approximation is adequate for analyzing qualita- 
tive behavior. In all cases the accuracy of the approximations improves 
with time. 

TABLE 3.1-1 

Parameters 

D = 6.45 x 10 - l ~  m 2 / s  
0% = 1.72 x 10 s Pa 

O-c0 = 1.31 x 109 Pa 

7 C  0 = 0.9O-c0 
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Table 3.1-2 shows how closely two different functions appearing in 
(3.1-9) agree for c/a. Therefore, in (3 .1-9)we can replace the second 
function appearing in the table by the first with little loss in accuracy. This 
leads to the following convenient form, which replaces (3.1-9): 

cos-l(a/c)=(.rc/2)~/{~o-yCoerfc[(c-a)/(9Dt)l/2]}.  (3.1-10) 

Taking the cosine of both sides of (3.1-10), we obtain 

Let us now define an effective cohesive force O'cEFF" 

O'~EFF = O'~,,- yC,,erfc[(c -a)/(9D,)'/2]. (3.1-12) 

By rearranging (3.1-11) and substituting (3.1-12) into (3.1-11), we find 

c/a = sec[(Tr/2)(o~/o-,:wvv)]. (3.1-13) 

Equation (3.1-13) has the form familiar in fracture mechanics literature. 
An expression similar to (3.1-13) has been used to determine the length of 
a plastic zone d (Dugdale model [Dug 60]), where the t ime-dependent  
~r~l:~.. is replaced by a constant yield stress ~r 0. Being a function of time, 
however, (3.1-13) predicts a monotonically increasing cohesive zone in- 
stead of a constant length as in the Dugdale model. 

Crack Propagation 
In the previous subsection, we described a decohesion model of hydro- 

gen embrit t lement in which a Barenblatt zone of cohesive force degrades 

TABLE 3.1-2 
A Comparison of Two Functions Appearing in (3.1-9) 

c/a cos-'(a/c) 213(C - a)/(5c + a)] 1/: 

1.00 0.000000 0.000000 
1.01 0.140836 0.140836 
1.05 0.309845 0.309839 
1.10 0.429700 0.429669 
1.20 0.585686 0.585540 
2.00 1.047198 1.044466 

10.00 1.470629 1.455214 
1.570796 1.549193 
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linearly with the concentration of hydrogen. In this model, the cohesive 
zone grows to compensate for the loss of cohesion subject to the Baren- 
blatt (finite-stress) condition. We now introduce criteria for crack initiation 
and arrest into the model. We also discuss the incorporation of various 
rate-limiting kinetic processes, and the model's multistage crack growth 
capability. 

Figure 3.1-11a shows a schematic representation of the initial conditions 
of a specimen exposed to hydrogen: an initial crack length a 0, an initial 
cohesive zone length do, and a constant cohesive force o- c. The specimen 
is assumed to be initially free of hydrogen with a boundary condition of 
hydrogen concentrations C 0 imposed at the crack tip. 

Figure 3.1-11b represents an early stage of material degradation. The 
material has been damaged by hydrogen diffusing from the crack tip. The 
cohesive zone extends due to the degraded cohesive force subject to the 
Barenblatt condition (3.1-1). 

The crack tip opening displacement 6 may now be used as the damage 
criterion for this model. 

In general, the crack tip opening displacement can be calculated numer- 
ically using equation (2.3.13) found in [SL 69], i.e., a double integration 
over the cohesive force ~r~. Accordingly, we have 

Cx/( f,~ Afa x2 g/2) 1/2 O-c( x t ) / ( x  2 ~ 2) I/2 = - - , - d~'dx + al.: (3.1-14) 

with A = 8 ( 1 -  u 2 ) / ( r c E )  for plane strain and A = 8 / ( ~ ' E )  for plane 
stress, where E is Young's modulus, u = Poisson's ratio, x is the spatial 
coordinate, t is time, and c = a + d. The term 6~.~ in (3.1-14) is the elastic 
contribution to the crack tip opening displacement whose form is depen- 
dent on the geometry of the specimen and load. For example, an infinite 
plate with a crack of length 2a subject to a tensile force Cr~ has 

-~ a2 1/2 
6~ = A(~r /2 )~r~ (c"  ) . (3.1-15) 

Refer to (3.2-12) and (3.2-14) for the evaluation of the integral used to 
generate (3.1-15). 

At the early stage of degradation represented in Fig. 3.1-1 lb (defined by 
the broken-line region (b) in Fig. 3.1-12), the cohesive zone has extended 
to the length d~, but the crack tip opening displacement is below a 
postulated critical value 6 c where subcritical crack propagation begins. For 
us, it is assumed that 6c is constant, i.e., free of environmental and 
material effects. However, variable criteria can be readily introduced into 
the model. 
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Crack propagation sequence. Reprinted from Eng Fract. Mech, 31, S. L. Lee and D. L. 
Unger, A decohesion model for hydrogen assisted cracking, 647-660 (1988), with permission 
from Pergamon Press Ltd., Headington Hill Hall, Oxford OX30BW, UK. 

In Fig. 3.1-11c (point c of Fig. 3.1-12), the degrada t ion  of the cohesive 
force has reached a state where  crack propaga t ion  initiates, i.e., where  the 
crack tip opening d isp lacement  has grown to the critical value, 6 = 6 c . The  
t ime it takes to reach this state f rom the cor responding  state shown in Fig. 
3.1-11a may be in te rpre ted  as the incubat ion time, which is observed 
experimental ly.  
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We know that as the crack tip advances, it moves from very damaged 
material into much "healthier" material over a short distance. In the 
healthy material, the cohesive force is near its original strength; conse- 
quently, subcritical growth is initially accompanied by a drop in 6 as the 
material undergoes a large effective increase in cohesive force. However, 
the crack tip opening displacement cannot fall indefinitely with crack 
advance. Once the bulk of the hydrogen damage has been passed, the 
effective cohesive force becomes essentially constant and any increase in 
crack length is subsequently accompanied by an increase in 6, as is 
normally observed under inert environmental conditions. This transition, 
shown by a solid line in Fig. 3.1-12, represents a natural lower bound for 6, 
which we term 6 A. 

Figure 3.1-11d (point d of Fig. 3.1-12) show a crack that has arrested. It 
is proposed that the crack arrests when the crack tip opening displacement 
falls to 6 A. To find the new crack length a l and the new cohesive zone 
length d 3, subject to the Barenblatt condition and (3.1-1) requires a 
numerical procedure. 

It is assumed that the time it takes to go from crack initiation shown in 
Fig. 3.1-11c to crack arrest shown in Fig. 3.1-11d is very short. As no 
significant time passed between crack initiation and arrest, the hydrogen 
concentration profile in Fig. 3.1-11d is the same as that in Fig. 3.1-11c. 
However, only the hydrogen beyond the new crack tip a~ contributes to the 
subsequent degradation of the material, i.e., the initial concentration of 
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hydrogen for the second increment of crack growth. For the most part, it is 
believed that this remnant of hydrogen is small. 

We are now faced with the problem of imposing a new boundary 
condition of hydrogen concentration at the new crack tip at x = a l. If we 
assume that the kinetic processes that supply the hydrogen to the crack tip 
are not rate-limiting, then imposing the same concentration C 0 as before is 
not an unreasonable assumption. As we are concentrating on the decohe- 
sion mechanism for the present, let us assume that this particular assump- 
tion holds. 

In Figure 3.1-11e (point e in Fig. 3.1-12), we observe a state in which 
the cohesive zone and crack tip opening displacement are again expanding 
due to hydrogen decohesion following the first increment of crack advance. 
The hydrogen from the state shown in Fig. 3.1-11d remains as the initial 
concentration profile, and the boundary condition C 0 has been imposed at 
the new crack tip a I . The crack is not currently moving, as 6 is temporar- 
ily below 6 c. 

A cycle of subcritical crack initiation and arrest then follows until the 
crack grows to a length where the lower bound 6 A coincides with 6c. At 
this point, the crack tip opening displacement is forced to rise above 6~ 
and instantaneous failurc occurs. This is point f on Fig. 3.1-12. 

Average crack velocities can be calculated by dividing the increment of 
crack growth by the increment of time between subcritical crack initia- 
tions. The shortening path shown in Fig. 3.1-12 causes higher crack 
velocities. 

Computer codes were developed independently to test the qualitative 
bchavior of the model dcscribcd previously [LU 88] followed by [SU 88]. 

The computer programs used analytic solution (3.1-5) of the diffusion 
cquation (3.1-4) to quantify the evolution of hydrogen in the specimen. 
After each increment of crack growth, the time and initial concentration of 
hydrogen were reset to zero for the next increment of crack growth. This is 
a reasonable assumption provided the crack advances into virtually undam- 
aged material with each increment of crack growth. 

As the hydrogen content in the specimen increases with time, the code 
calculates corresponding cohesive zone lengths and crack tip opening 
displacements. The cohesive zone must be determined using (3.1-1), fol- 
lowed by the crack tip opening displacement using (3.1-14). The numerical 
integrations of (3.1-1) and the inner integral of (3.1-14) employed equation 
(25.4.37) of [AS 64] and ten Gaussian weights. This numerical integration 
scheme was chosen as it allows naturally for the square-root singularities 
encountered in the integrations. A Romberg integration scheme was used 
for the outer integration of (3.1-14). 
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Comparison of arrest and hydrogen-free crack tip opening displacement. Reprinted from Eng 
Fract. Mech, 31, S. L. Lee and D. L. Unger, A decohesion model for hydrogen assisted 
cracking, 647-660 (1988), with permission from Pergamon Press Ltd., Headington Hill Hall, 
Oxford OX30BW, UK. 

The  c o m p u t e r  code used an incrementa l ,  p a t h - d e p e n d e n t  p rocedure .  
Using small increments  of  time, the p rogram de t e rmines  when the crack 
tip open ing  d i sp lacement  first reaches  6,. from its initial state. The  crack 
length a is then al lowed to grow in small increments .  The  cohesive zone  
length and crack tip open ing  d i sp lacement  are calcula ted for each incre- 
menta l  increase in crack length. W h e n  the crack tip open ing  d i sp lacement  
falls to 6 A, the crack arrests.  The  value 6 A is d e t e r m i n e d  numerical ly  and 
occurs  when  6 begins to increase with the crack length.  It was verified 
numerical ly  that  6c app roaches  the hydrogen- f ree  crack tip open ing  dis- 
p l acemen t  6~ v : 

611~: = Aao'c01n{sec[Tro~/(2~0)]} .  (3.1-16) 

A representative comparison [LU 88] between 6 A and 6Hv is shown in Fig. 
3.1-13 for the parameters in Tables 3.1-1 and 3.1-3. The close proximity of 

TABLE 3.1-3 
Parameters 

E = 2.01 • l0 II Pa KI(. = 4.62 • 107 Pa m 1/2 -- 1.016 • 10 -2 m an 
v=0 .25  ~,: = 7.60• 10-6 m 
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these two curves suggests that little residual hydrogen remains after each 
increment of crack growth to affect subsequent crack growth. 

Average crack velocities are calculated by dividing increments of crack 
growth by increments of time between critical events. Only the time 
between the previous arrest and the new initiation is considered. The 
extremely short period of time that passes during the actual propagation is 
neglected. 

The external load o-= was held constant in the computer programs to 
model steady-state crack growth. The stress intensity factor for an infinite 
plate subject to an external tensile traction o-= was used. 

In Figs. 3.1-14 and 3.1-15 crack tip opening displacements are plotted as 
functions of time and displacement, respectively, for the first increment of 
crack growth using the parameters of Tables 3.1-1 and 3.1-3. As expected, 
6 increases with time before attaining the critical value 6 c (Fig. 3.1-14), 
and 6 decreases with the crack length following the attainment of 6 c (Fig. 
3.1-15). The markers on the various graphs represent numerical data 
points. 

In Fig. 3.1-16, computed average crack velocities are plotted for a 
variation of temperature (270-377 K) on a semilog scale. Here yC 0 was 
chosen as 0.65O-c0 and 6~ was chosen as 159 MPa. We also assume that 
the apparent diffusivity allows an Arrhenius representation 

(3.1-17) 
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Crack tip opening displacement versus time for a stationary crack [SU 88]. 
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Crack tip opening displacement versus crack length during propagation [SU 88]. 
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T A B L E  3.1-4 

P a r a m e t e r s  

D O = 6.45 x 10 -2 m 2 / s  
Q = 4.94 • 104 J / m o l  

o'c0 = 1.31 • 109 Pa 
R = 8.32 J / ( m o l  K) 

where Q is the activation energy, R is the gas constant, T is absolute 
temperature, and D o is a constant. A compilation of the other parameters 
used in this analysis is found in Tables 3.1-3 and 3.1-4. 

We note that the curves in Figs. 3.1-16, 3.1-17, and 3.1-18 show the 
characteristic three stages of steady-state crack growth for all tempera- 
tures. The changes that occur in Figs. 3.1-16 to 3.1-18 with temperature are 
consistent with experimental trends. For mechanisms that do not follow an 
Arrhenius representation, alternative relationships between apparent dif- 
fusivity and temperature can be substituted in place of (3.1-17). 

We have chosen a value of initial cohesive traction that is approximately 
the yield stress of high-strength steel. With this stress, and the calculation 
of a critical crack tip opening displacement based on a plane strain 
Dugdale model, we can obtain stage III growth as we approach Kj(,. 
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Naturally, this "cohesive force" must be interpreted as an effective rather 
than an actual cohesive force as it is about 15 times less than the 
theoretical value E/I(I. As we are ignoring the details of the process zone, 
which are to a large extent unknown, this is a reasonable phenomenologi- 
cal approach. 

The stage II growth exhibited in Figs. 3.1-16 to 3.1-18 is not a plateau 
variety as shown in Fig. 3.1-3. This might be expected as that type of stage 
II growth is often attributed to rate-limiting kinetic processes that are not 
incorporated into the computer code. (See the section on the Stefan 
problem in this text for transport-controlled stress corrosion cracking.) 

In some cases a change in the activation energy Q can occur as the 
crack grows. For example, this change could occur if the activation energy 
were a function of the state of stress. The effect of such changes on crack 
velocity can be shown qualitatively by using a variable Q [LU 88]. The 
appearance of plateau regions in these curves demonstrates that stage II 
growth can occur from activation energy changes. 

We might also add that plateau stage II crack growth can result from 
changes in the boundary condition C 0. These numerical results were 
documented in [Lee 86] for a boundary condition that decreases with crack 
length. Physically a decrease in the boundary condition of hydrogen can 
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occur if the supply is being limited by transport along the outer crack 
surfaces, a chemical reaction at the crack tip, or an adsorption process. 

It is possible to determine the parameter  product y C  0 from a knowl- 
edge of the threshold stress intensity factor Kth. The following analysis 
explains the procedure. 

As time goes to infinity, the cohesive force o- c becomes the constant 
oc0 - y C0, provided crack propagation does not occur. As the cohesive 
force becomes constant, the integral in (3.1-1) may be readily evaluated 
analytically to give the Barenblatt  condition as 

a / c  = cos{(Tr/2)[ o-~/(O-c0 - yC0)]}. (3.1-18) 

Similarly the integral in (3.1-14) may be evaluated analytically (the sym- 
bolic computer program MACSYMA 2 was used) to give the crack tip 
opening displacement as 

8~ A(~ , ,  y C o ) [ a l n ( c / a )  (C 2 a2) 1/2 - '  ] . . . .  cos ( a / c )  + 6 E. 

(3.1-19) 

Now if we substitute (3.1-15) and (3.1-18) into (3.1-2) assume further that 
6~ -~ 6 c , then we find 6~ is approximately 

6~: = A "rr Zo'~2 a / [ 8 ( oc o - y C o ) ] . (3.1-20) 

If d is small compared to a, and if we assume plane strain conditions, then 
(3.1-20) becomes 

6~ = (1 -- u 2 ) K Z / [ E ( o ' c o -  y C o ) ] .  (3.1-21) 

The crack tip opening displacement 6~ represents the largest value of 6 
that a stationary crack can attain. If 6~ is less than 8 c, the crack will never 
propagate. If 8~ is greater than 6 c, the crack will begin to propagate 
before ~ is reached. The special case 6~ = 8c corresponds to the thresh- 
old condition. 

We note that given Kth from experimental data, we can, in principle, 
solve for T C  o from (3.1-21) as all other parameters are assumed known 
from data collected under inert environmental conditions. Extreme care 
and patience are required to obtain a Kth that is truly the lowest possible 
value; i.e., the crack will grow for that particular value of stress intensity 
factor only as time approaches infinity. In light of this, published values of 
Kth may not be appropriate for use in (3.1-21) to find y C o .  

2 Macsyma, Inc., Arlington, MA. 
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Overview of Some Previous Models of Environmental Cracking 
The work of Charles and Hilig [CHi 62] was an early attempt to quantify 

steady-state crack velocity as a function of the applied stress in the 
presence of an aggressive environment. These investigators assumed an 
Eyring rate relationship of the form 

~i = V0exp(/3o ), (3.1-22) 

where ti is the velocity of the crack tip, V 0 and /3 are phenomenological 
coefficients, and tr is the applied stress. This relationship (3.1-22)was 
based on the assumption that activation energy is proportional to stress. 
Experimentally, a relationship of this form fits data very well for stress 
corrosion crack of glass in water. For temperature variations, the coeffi- 
cient V 0 can be assumed to change in an Arrhenius fashion 

V 0 = const exp[ - Q / ( R T )  ], (3.1-23) 

where Q is the activation energy, R is the gas constant, and T is absolute 
temperature. This assumption also fits data well for temperature variations 
in glass subjected to water or water vapor. 

Other investigators have developed relationships similar in form to 
(3.1-22) through various justifications. For example, Liu [Liu 70] solved a 
steady-state stress-assisted diffusion equation to obtain the concentration 
of a degrading solute of the form 

C = C0exp(/3o) ,  (3.1-24) 

where /3 and C 0 are constants and o. is the hydrostatic stress. He then 
proposed that crack velocity was proportional to C to produce a relation- 
ship similar to (3.1-22) for stress corrosion cracking problems. 

Gerberich et al. [GCS 75] proposed a relationship similar to (3.1-23) for 
hydrogen-assisted cracking by using an equilibrium solution like (3.1-24). 
Terms related to grain and plastic zone size were then incorporated into 
the model. 

Oriani [Ori 72] proposed a decohesion model of hydrogen embrittle- 
ment, based on ideas due to Troiano [Tro 60], that cohesive forces between 
atoms are reduced by hydrogen. Oriani and Josephic [OJ 77] proposed that 
the cohesive force o.c is reduced by hydrogen concentration as follows: 

o.,. = const - kC, (3.1-25) 

where k is a constant and C has the form of (3.1-24)with o. being the 
applied traction. They then applied this relationship to threshold data for 
4340 steel subjected to hydrogen gas. 
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In general, a relationship like (3.1-22)will model steady-state environ- 
mental cracking data if stage II and stage III growth are absent. Various 
glasses [WB 70] subjected to water have this characteristic, but many 
materials do not. 

Lawn and Wilshaw [LW 75] discuss a model based on Knudsen diffusion 
and reaction rates. They were able to model both stage I and II crack 
growth for water and glass. 

Krausz [Kra 79] and Brown [Bro 79] independently proposed theories 
employing systems of parallel and series rate relationships of the form 
(3.1-22). It was shown that individual relationships of this type could be 
combined to fit all three stages of steady-state crack growth. 

Cherepanov [Cher 79] proposed a simple steady-state model of continu- 
ous crack growth based on the diffusion of hydrogen. He assumed a 
constant flux of protons located at the crack tip. Cherepanov [Cher 79] also 
proposed a quasi-static incremental model based on the diffusion of 
hydrogen. Crack propagation was assumed to initiate when a critical 
concentration of hydrogen was reached. 

Van Leeuwen [vLe 75] proposed a different quasi-static model of 
incremental crack growth where stress gradients were included in the 
diffusion equation of the form 

C ~ = D V 2 C  - M Vcr.  V C  - M C  V2r (3.1-26) 

where D and M are constants. An approximate solution was obtained. 
Note that a solution of the form (3.1-24) will solve (3.1-26) under 

steady-state conditions; i.e., C t---' 0, provided /3 = M / D  and 72~r = 0. 
The latter relationship is true of all hydrostatic stresses determined from 
linear elastic stress fields neglecting body forces and inertia. 

Hirose and Mura [HM 84] proposed a fracture model for stress corro- 
sion cracking that employs a stress-assisted diffusion equation similar to 
(3.1-26) with a hydrostatic stress related to a dislocation pile-up. 

Rice [Ric 78] proposed a thermodynamic foundation for stress corrosion 
cracking. 

Stevens et al. [SDP 74] proposed a theory of the chemical potential of 
defects, and Puls et al. [PDS 74] applied this theory to obtain the velocity 
of a crack growing by the diffusion of vacancies. 

Raj and Varadan [RV 77] proposed a model of hydrogen embrittlement 
based on the growth of a small secondary crack ahead of a primary crack. 

Unger and Aifantis [UA 83] proposed a model applicable to hydrogen- 
assisted crack propagation based on an equilibrium solution of a steady- 
state, stress-assisted diffusion equation of the form [Air 80] 

(D + Nor)V2C - (M - N)Vcr. VC = 0, (3.1-27) 
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where D, M, and N are constants and tr is the hydrostatic stress of the 
mode I crack problem. They predicted a power law between crack velocity 
and stress intensity factors of the form 

fi = VoK{', (3.1-28) 

where n is the ratio of the two diffusion coefficients M/N and V 0 is a 
constant. 

Neimitz and Aifantis [NA 85, NA 87a, NA 87b] proposed an incremen- 
tal model of hydrogen-assisted cracking with crack tip opening displace- 
ment as a damage criterion. The additional crack tip opening displacement 
due to the presence of hydrogen 6H was related to the average concentra- 
tion of hydrogen C m in the process zone as follows 

6rt = const C3(6 o + 6c), (3.1-29) 

where 6 o is the arrest crack tip opening displacement and 6 c is the critical 
crack tip opening displacement. 

Markworth and McCoy [MMc 88] explored a model of hydrogen deco- 
hesion at the atomic level. They incorporated the idea of a chaotic motion 
of atoms at the crack tip. This motion is induced by a slight reduction of 
cohesive strength between atoms. Ultimately, separation occurs between 
atoms, thereby resulting in crack growth. 

Creager and Paris [CP 67] discuss the effect of crack tip blunting on 
stress corrosion cracking and provide a linear elastic solution for the 
blunted crack. 

Sofronis and McMeeking [SM 89] solved numerically a large deforma- 
tion elastic-plastic problem coupled to a nonlinear diffusion equation for 
hydrogen. Their conclusion was that hydrostatic stresses are less important 
than traps and plastic straining insofar as hydrogen concentration is 
concerned around the mode I crack tip. 

Garud [Gar 91] discusses corrosion fatigue and creep fatigue modeling 
together with damage accumulation. 

3.2 ANALYSIS FOR IMPENDING HYDROGEN-ASSISTED 
CRACK PROPAGATION 

An analytic solution [Ung 89a] is obtained for the initial phase of crack 
propagation for the decohesion model of hydrogen embrittlement dis- 
cussed in Section 3.1. Error bounds are set on certain simplifications of 
integrals of the theory. Benchmarks are established for comparison with 
numerical solutions. 



234 Environmental Cracking 

The integrand in (3.1-2) can be factored to obtain 

) 1 / 2  f a  c - - K o = 2 ( c / 7 r  O'c(X, t ) ( c  + x )  1/2(c - x) 1/2 dx. (3.2-1) 

We can approximate the integral in (3.2-1) in two simple ways be substitut- 
ing either 

( C  q- X )  - 1 / 2  - 1 / 2  - - 1 / 2  --- ( c + c )  or ( c + x )  1 /2= ( c + a )  . 

(3.2-2) 

Both of these relationships produce good approximations for integral 
(3.2-1), as these two functions vary little over the interval a to c. The first 
relationship in (3.2-2), when substituted in (3.2-1), gives a lower bound for 
that integral. Similarly, the second relationship of (3.2-2) gives an upper 
bound for integral (3.2-1). From these substitutions, we can infer the 
following about K0: 

(2/17-) 1/2 L c Crc(X, t ) ( c  - x )  I/2 KX 

L 
C 

< K o < 2 ( c / [ 7 r ( c  + a)]} 1/2 o c ( x , t ) ( c  --X) -1/2 dx, (3.2-3) 

provided ~ (x ,  t) is positive and finite. Equation (3.2-3) can be rewritten as 
the following inequality by employing c = a + d: 

K 0 _ . 
1 < < [1 - d / ( 2 c ) ]  1/2 (3.2-4) 

(2/77") 1/2 "jr ~ r ~ ( x , t ) ( c  - x )  ~/2 dx 

We now expand the right side of (3.2-4) in a Taylor series to obtain 

[ 1 -  d / ( 2 c ) ]  - ~ / 2 =  1 + d / ( 4 c )  + ... 

= 1 + O ( d / c )  as d / c  ~ O. (3.2-5) 

The series is convergent provided d / ( 2 c )  < 1. The order symbol O( ) in 
(3.2-5) has the usual meaning [DeB 81]. From (3.2-5) we can come to the 
conclusion that 

Ko 

(2/7r)  1/2 L c Crc(X, t ) ( c  - x )  1/2 KX 
- 1 = O ( d / c )  as d / c  ~ O. 

(3.2-6) 
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Therefore, we can approximate integral (3.2-1) by [LW 75] 

)1/2 fa c K o = (2/'rr trc(X,t)(c --X) 1/2 dX, for d -~ c. (3.2-7) 

The advantage of using (3.2-7) over (3.1-2) is that it is generally easier to 
evaluate (3.2-7) analytically. 

We now assume that the initial concentration of hydrogen is zero. At 
time t = 0 § a concentration of hydrogen Co is imposed at the crack tip. 
The hydrogen then diffuses into the material and causes damage in the 
form of a reduction in cohesive force. We assume here the simplest 
possible model of diffusion, i.e., Fick's law. This law has the heat equation 
as the governing partial differential equation. The solution to the heat 
equation for the semi-infinite boundary value problem with zero initial 
concentration was given as (3.1-5). 

When (3.1-6), (3.2-7), (3.1-3), and (3.1-5) are substituted into the Baren- 
blat t /Dugdale condition (3.1-1), we obtain 

fa C tr~('n'c) 1/2 = (2/7r)1/2(OcO- TC o) (c - x )  -I/2 dr 

) 1/2 fa c + ( 2 / r r  yC() erf[c~(x - a)](c - x) 1/2 KX. (3.2-8) 

The first integral appearing in (3.2-8) is easily evaluated as 2d 1/2. The 
second integral in (3.2-8) is evaluated in terms of the function g,(c, a, c~) of 
(3.2-41). Evaluating the first integral and substituting q,(c, a, cr) in place of 
the second integral in (3.2-8), we obtain 

ooc(T/c) 1/2 = 2(2rrd)l/2(O'c0- TC 0) + (2/rr)l/2TCodd(c,a, ~) (3.2-9) 

where 

fa C ~ ( c , a , a )  - e r f [ ~ ( x - a ) ] ( c - x ) - l / Z d x .  

From (3.2-40) we see that q,(c, a, c~) is related to the generalized hyperge- 
ometric function 2F2(1 /2 ,1 ;5 /4 ,7 /4 ; -~2d2) .  By substituting (3.2-40) 
into (3.2-9), we obtain 

o-rr(c/2) 1/2 = dl/2{2(O-c0 - TC0) 

+(8/3)oldrr-l /ZyCozF2(1/2 , 1; 5 /4 ,  7 /4 ;  - oeZd2)}. 

(3.2-10) 
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The generalized hypergeometric function in (3.2-10) can be expanded in a 
series to obtain 

~ = dl/2{ 2(%o - )'Co) 

+(8/3)cedTr-1/2)'Co[1 - (8/35)ce2d 2 + (64/1155)ce4d 4 

- (512/45,045) a 6d6 -]- (4096/2,078,505) a 8dS . . . .  ]} 

(3.2-11) 

where a -- (4Dt)-1/2.  
For long times t ~ ~, i.e., a -~ 0, only a few terms of (3.2-11) need be 

retained. For short times t --, 0, i.e., a -~ o0, an asymptotic expression for 
O(c,a, ~), equation (3.2-58), can be substituted in place of (3.2-40) in 
(3.2-9). The first few terms of this expression can then be used for short 
times. 

In the schematic diagram Fig. 3.1-11b, we can see the cohesive zone 
expanding, due to loss of cohesion, in relation to the increasing hydrogen 
concentration. This process is assumed to continue until the degradation is 
severe enough to cause crack propagation. The degradation parameter  
used to determine this critical state is the crack tip opening displacement 
6 c. The evaluation of the crack tip opening displacement a will be 
discussed shortly. 

The time it takes for the specimen to go from the initial condition 
shown in Fig. 3.1-11a to the time corresponding to 6 c in Fig. 3.1-11c may 
be interpreted as the incubation period, which is observed experimentally. 
As time goes to infinity, (3.1-3) and (3.1-5) predict that the cohesive force 
becomes the constant ~rc0 - ),C 0. If a critical 6 cannot be obtained with 
this degraded value of cohesive force, the crack will never propagate. In 
Section 3.1 and [LU 88] it is described how the material parameter  )'C0 
can be obtained from an experimental value of the threshold stress 
intensity factor Kth. 

In our model the value of d must be obtained from the Barenbla t t /  
Dugdale condition (3.2-11). In general, for a given set of material parame- 
ters, a specific time t, and crack length a, this value of d must be obtained 
by an iterative root scheme such as Newton's method or the bisection 
method. For t - ~  ~, however, truncating the hypergeometric series in 
(3.2-11) after one term can allow an explicit algebraic solution for d (from 
a cubic equation in d~/2), provided we make the assumption c ~ a in the 
left side of (3.2-11). A similar explicit solution for short times t ---, 0 can be 
obtained by substituting the asymptotic formula for O(c, a, ~)(3.2-57) into 
(3.2-9) and then limiting the series to the first two or three terms of 
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y(c ,a ,  a )  (a quadratic or quartic equation in d l / 2 ) ,  again provided the 
assumption c ~ a is made in the formula for stress intensity factor K I . 

Crack Tip Opening Displacement 
The crack tip opening displacement is used as the criterion for crack 

initiation and crack arrest in this model. The crack initiates when the crack 
opening displacement reaches the critical value 6 c. This condition corre- 
sponds to that shown in Fig. 3.1-11c, which is a schematic representation of 
the crack tip, and to point c in Fig. 3.1-12, which is a plot of the crack tip 
opening displacement versus crack length. As the crack propagates, the 
crack tip opening displacement initially drops as the crack advances out of 
the damaged region of the material. However, this drop in 6 does not 
continue indefinitely. 

We have shown that the arrest value 6 A approaches the hydrogen-free 
curve of crack opening displacement versus crack length, which is theoreti- 
cally a straight line. The fact that 6 A is very close to the hydrogen-free 
curve means that almost all hydrogen-damaged material is left behind 
after each increment of crack growth; i.e., the residual hydrogen shown in 
Fig. 3.1-11d is negligible as the initial condition for the next increment of 
crack propagation, thereby making the problem self-similar. Average crack 
velocities are then determined in the model by dividing the increment of 
crack growth by the increment of time between critical events, i.e., when 
6 -  6 c . 

The analysis discussed in this section is restricted to the threshold stage 
of crack growth; i.e., crack growth is confined to conditions represented in 
Figs. 3.1-1 la through 3.1-1 lc, and to regions a, b, and c shown in Fig. 
3.1-12. 

The crack opening displacement for the problem we are addressing can 
be obtained from the following double integral [SL 69]: 

ff " - 1/2 f()r 1/2 6 -'- A 0"~ X ( X  2 __ a 2) (X 2 __ ~ 2) d{: dx 

ALCx(x 2 a2)-'/2fa x _ o.c( ~:,t)(x 2 _ ~ 2 )  !/2 ds r dx (3.2-12) 

where 

A = 8(1 - v2)/('n'E) for plane strain 

= 8 / ( ~r E)  for plane stress. (3.2-13) 

The first integral appearing in (3.2-12) is elementary and can be easily 
evaluated to give the expression we previously called 6 E , which is defined 
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as (3.1-15). Two terms in the second double integral of (3.2-12) may be 
factored to give the following expression for 6: 

where 

r --  a E --  I ~ L C x ( x  -'l- a ) - l / 2 ( x  --  a) -1/2 

X 

•  ~ t ) (x  + s c ) - l / 2 ( x -  sc)-1/2 d~: dx, (3.2-14) 

aE ---- A(,rr/2)(c 2 a2) 1/2 - o-~. (3.2-15) 

We can find an approximation for (3.2-14) analogously to the approxima- 
tion in the previous section for K 0. To this end, we can use the following 
approximations for the double integral appearing in (3.2-14): 
Inner integral: 

(X "[- ~ )  1/2 - 1/2 -1/2 - -- ( x + x )  = ( 2 x )  (3.2-16) 

(X + ~ ) - i / 2  - i / 2  -- ( x + a )  (3.2-17) 

Outer integral: 

x / ( x  + a) ~ a / ( a  + a) = 1 /2  (3.2-18) 

x / ( x  + a) ~ c / ( c  + a) = (1/2)[1 - d / ( 2 c ) ] .  (3.2-19) 

There are four possible combinations of approximations: {(3.2-16), (3.2-18)}, 
{(3.2-17), (3.2-18)}, {(3.2-17), (3.2-19)}, and {(3.2-16), (3.2-19)}. The combina- 
tions {(3.2-16), (3.2-18)} and {(3.2-17), (3.2-19)} give redundant results. From 
these approximations of the functions appearing in (3.2-14), we can infer 
the following inequalities: 

1 < 
2(6 E - 6) 

C ALex a, 'J2Lx - ~r~(~, t ) (x  -- ~ )  1/2 d~dx 

d ] - ! / 2  

< 1--  (2C-----~ 
d], 

1 -  (2 c-----~ " (3.2-20) 

Because 

[1 - d / ( 2 c ) ]  -1 ~ 1 + d / ( 2 c )  + . . . .  1 + O ( d / c )  (3.2-21) 
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we can establish 

2(6E -- 6)  ( d )  
- 1 = O  - -  

c c ( 
Afa (x a) -1/2 _ Crc(sC, t ) (  x -  sc ) 1/2dsCd x 

as d / c  ~ O. (3.2-22) 

As indicated by (3.2-22), we can approximate (3.2-14) by the following 
expression: 

C X  Aj2,fa X a, lJ2  lj2 -~ - - Crc(~,t)(x - s c)  d ~ d x  for d -~ c. 

(3.2-23) 

The advantage of using (3.2-23) instead of (3.2-14) is that it is usually 
easier to evaluate analytically the double integral appearing in (3.2-23). 

We now substitute (3.1-3) and (3.1-5) into (3.2-23) to find 

fa  C 6 = 6 E - A ( x -  a) 1/2 

• f X{oc~ - yC0 + yC0erf[ c~( ~ - a) ]}(x  - ~ ) - 1 / 2  d~ dx. (3.2-24) 

The constant term in (3.2-24) is easy to evaluate. The term containing the 
error  function may be expressed in terms of the function q~(x, a, a ) ,  which 
is defined as (3.2-31). In place of (3.2-24), we obtain 

6 = 6 E - A(o'c0 - y C o ) d  - ( A / 2 ) T C  0 ( x  - a) -1/2 qj( x ,  a, a )  dx. 

(3.2-25) 

Now substituting into (3.2-25) the expression for qJ(x,a, a )  given in 
(3.2-40), we find 

6 = •E -- A ( ~  Y C o ) d -  ( 4 A / 3 ) a y C o  7r-I/2 

C 
• fa (X - a ) z F 2 ( 1 / 2 ' l ; 5 / 4 ' 7 / 4 ;  - a Z ( x  - a)Z) dx" (3.2-26) 

We define a new variable 

X - [ ( x - a ) / d  ]2. (3.2-27) 
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Substitution of (3.2-27) into (3.2-26) leads to 

6 = 6 E - A(o'cO - y C o ) d -  (2A/3)ced2yCorr -1/2 

f01 • 2 F 2 ( 1 / 2 , 1 ; 5 / 4 , 7 / 4 ;  - o e 2 d 2 x ) d x  . (3.2-28) 

Evaluating the integral in (3.2-28) with the aid of the tabulated integral 
(7.512 12) found in [GR 65], we get the following: 

6 = 6 E - A(o ' c0 -  yCo)d  

-(2A/3)~ "n'-1/23 F3(1 , 1 / 2 ,  1"2, , 5 / 4 ,  7 / 4 ; - c e 2 d  2), (3.2-29) 

where 3F3(,, ; , ,  ;) is a generalized hypergeometric function. 
The first five terms of the series associated with the generalized hyper- 

geometric function in (3.2-24) are given explicitly as follows: 

6 = 6 E - A(o ' c0 -  yCo)d  

- ( 2 A / 3 ) a d 2 y C o T r  -- 1/211 _ ( 4 / 3 5 ) a 2 d  2 + (64/3465)ce4d 4 

- (128/45,045)cet 'd  ~' + (4096/10,392,525)c~8d 8 . . . .  ], (3.2-30) 

where c~ - (4Dt)-  ~/2. 

Function ~ ( c ,  a, at ) 
The function qJ(c,a, a )  is an important function in our model of 

hydrogen-assisted cracking. It appears first in connection with the growth 
of the cohesive zone. The function qJ(x, a, a )  is also used to determine the 
crack tip opening displacement. As such, it is convenient to dedicate a 
separate subsection for its evaluation. 

The function qJ(c, a, a )  is not immediately recognizable as a standard 
special function. However, we show in this subsection that it is related to 
the generalized hypergeometric series. We also find an asymptotic series to 
represent the function ~0(c, a, a )  for large values of a. 

The function ~(c, a, a )  is defined as follows: 

fa C q J ( c , a , a )  = e r f [ a ( x - a ) ] ( c - x )  l /2dx.  (3.2-31) 

To facilitate the evaluation of (3.2-31), we first integrate the expression by 
parts, where 

u(x )  = e r f [ a ( x  - a)],  d r ( x )  - (c - x )  -1/2 dx (3.2-32) 
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which gives 

fa c c ~b(c,a,  a )  = u ( x ) v ' ( x )  dx = U(X)V(X)Ia -- CV(X)U'(X) dr (3.2-33) 

where the prime in (3.2-33) denotes differentiation with respect to x. From 
(3.2-33) we find that the expression u ( x ) v ( x ) e v a l u a t e d  from x = a to 
x = c disappears, except for the degenerate case, a = ~. From (3.2-33) we 
find 

c 
qJ(c, a, ol) = 4aTr-1/2 fa (c - x ) l / 2 e x p [ - o t 2 ( x  - a)2] dx, 

Changing the variable x in (3.2-34) to 

we obtain 

O ~ ~ .  

(3.2-34) 

O ( c , a ,  a )  = 4 a ~ r  1 / 2  f~'l(d _ X)I/2(1 _ o f 2 X  2 . . .  ) dX.  (3.2-37) 

Upon integrating the first two terms, we find 

q~(c,a,  a )  = 4a'rr- ~ / 2 { - ( 2 / 3 ) ( d  - X)3/21,~ 

+ ( 2 / 1 0 5 ) a 2 ( 1 5 X  2 + 12dX  + 8 d 2 ) ( d -  X)3/21o + " .  

(3.2-38) 

which becomes 

qJ(c,a,  a )  = (8/3)o~d3/2"n'-l/2{1 - ( 8 / 3 5 ) a 2 d  2 + -.. }. (3.2-39) 

The recursion relationship for higher order terms in (3.2-39) is not imme- 
diately obvious; however, Gradshteyn and Ryzhik [GR 65] provide an 
expression for the evaluation of integral (3.2-36). This yields 

qJ(c, a, a )  = ( 8 / 3 ) o t d 3 / 2 7 r - 1 / 2 2 F 2 ( l / 2  , 1 ; 5 / 4 , 7 / 4 ;  - c e 2 d  2) (3.2-40) 

O ( c , a ,  a )  = 4ceTr -1/2 Jo"(d - X ) l / 2 e x p ( - a 2 g  2) dX .  (3.2-36) 

Now expanding the exponential term in (3.2-36) in a Taylor series, it 
follows that 

X - x - a, (3.2-35) 
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where 2F2 ( ,;  ,; ) is a generalized hypergeometric function. The integral 
used is listed as (3.478 3) in [GR 65]. 

The expansion of the generalized hypergeometric function as a series 
follows: 

(1 /2 )k (1)k[ - -  a2d2] k 
d/(C, a, a )  = (8/3)ad3/Z'rr -1/2 ~ , (3.2-41) 

k=0 ( 5 / 4 ) k ( 7 / 4 ) k k !  

where 

( ~ ) 0 =  1, (/x)k - / x ( / x  + 1)(/x + 2) . . .  (/x + k -  1). (3.2-42) 

We note that the first two terms of this series are identical to those 
appearing in (3.2-39). 

The series (3.2-41), however, can be slowly converging for large values 
of a ,  i.e., (t---> 0). For these cases it is better to use an asymptotic 
expansion of q~(c, a, a )  rather than (3.2-41). This expansion is derived in 
the subsequent subsection. 

Asymptotic Expansion 
By noting that erf(~) = 1, we can see from (3.2-31) that 

fa C l i m a  ---> ~ q l ( c , a ,  a )  = (c -- X )  1/2 dx = 2(c - a) 1/2 = 2d ~/2. 

(3.2-43) 

In order to find a general relationship for qs(c, a, a )  for large but finite 
values of a ,  we expand the function in (3.2-36) to find 

1 1 
[1 -- ( X / d ) ]  1/2 -- 1 ~ ( X / d )  - 2----~(X/d)2 

1-3  1 "3"5  
~ ( X / d )  3 - ( X / d )  4 
2 . 4 - 6  2 . 4 - 6 - 8  

(2k)! 
-- E )2 [ X / ( 4 d ) ] k "  

k=0 (1 - 2k) (k !  
(3.2-44) 

Series (3.2-44) is convergent for 0 < X < d. A discussion of the technique 
we use in this section to develop an asymptotic series for $(c,  a, a )  is 
given in Section 4.4 of [DeB 81]. This is a Laplace method that applies to 
series expansions which are convergent over a limited domain, as in the 
case of the power series in (3.2-44). 
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If truncated after N terms, the series (3.2-44) has a remainder R N of 
the following order: 

[1  - (X/d) ]  1/e 
N (2k)! 
E )2 [X/(4d)]k 

k=o (1 - 2k ) (k !  
+ RN, (3.2-45) 

where 

RN = O([X/d]N+ 1). (3.2-46) 

Upon substitution of (3.2-45) into (3.2-36), we obtain 

N (2k)! 
qJ(c,a, a) = 4a(d/rr) -1/2 Y'~ 

k=o (1 - 2k)(k!)2(4d) t' 

f0 d 2X2 • X k e x p ( - a  )dX 

+ o ( f t d [ x / d ] N +  l e x p [ - a 2 X  2 ] dX). (3.2-47) 

Let us now note the following two identities: 

Xkexp[-a2XZ]dX = Xkexp[-aZXZ]dX - Xkexp[-aZX2]d X 

(3.2-48) 

and 

ot~ o c  

fd Xkexp[-a2X2ldX= fd X k e x p ( - X 2 ) e x p [ ( 1  - a2)X2ldX" (3.2-49) 

It follows from the inequality 

that 

0 < d  < X  -~ d 2 __<X 2 (3.2-50) 

ot~ 

fa Xkexp(-XZ)exp[(1 - ot2)X2] dX 

o o  

< exp[(1 - ot2)d2]f d X k e x p ( - X  2) dX (3.2-51) 
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provided a > 1. Changing the limits of integration from d to 0 on the 
lower limit of the right side of (3.2-51) increases the value of the integral; 
therefore, 

o o  

fd Xkexp(-XZ)exp[(1 - og2X2)] dX 

o 0  

< exp[(1 - a2)d2]f0 X k e x p ( - X  2) dX. (3.2-52) 

The integral on the right side of (3.2-52) can be evaluated to obtain 

fa Xkexp(-X2)exp[(1 - ot2X2)]dX < exp[(1 - a2)d2]F([k + 112)/2. 

(3.2-531 

We can see from (3.2-53) that the integral on the left will be of order 
O(exp[-aed2]) as a ~ m. Therefore, we can infer from (3.2-48), (3.2-49), 
and (3.2-53) that 

fl d 2X2 f{}~c X k e x p [ - a  ]dX-- e x p [ - a Z X 2 ] d X  + O(exp[-aZd2]) .  

(3.2-54) 

A similar technique to that used to generate (3.2-54) was discussed in [Wil 
781. 

By substituting (3.2-54)into (3.2-47), we obtain 

{ k ~  (2k)~ 
tp(c,a, a) = 4a(d/rr) 1/2 

-= ~(1 - 2k)(k!)2(4d) k 

• Xkexp(-a2X 2) dX + O(exp[-a2d2]) 

+ 0  d -N-I x N + l e x p [ - o t 2 X 2 ] d X  

+ O(exp[ - a2d2 ])] ) } . (3.2-55) 
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Performing the definite integrations and making use of a relationship from 
[BH 86], i.e., O(O(e) )  = O(e),  we find that (3.2-55) reduces to 

N ( 2 k ) I F [ ( k  + 1) /2]  
ql(c, a, a)  = 2(d/Tr)  1/2 

k=0 (1 - 2k)(k!)Z(4ad)  k 

+ O ( a  exp[ - a 2 d  2 ] ) .  

+ O  
(1)  

(ced) N+I 

(3.2-56) 

The first four terms of (3.2-56) are explicitly 

1 1 1 
~(c ,a ,  c~)l~--,~ ~ 2d 1/2 1 - 27r1/Zad 16aZd2 16~1/2a3d3 

(3.2-57) 

Letting N go to infinity in (3.2-56), we find that the asymptotic series for 
$(c,a,  a) is 

qJ(c,a, a ) [ , _ ~  ~ 2(d/Tr)  1/2 ~ ( 2 k ) ! F [ ( k +  1) /2]  
1,=0 (1 - 2k)(k!)Z(4~d) k (3.2-58) 

where a - (4Dt) -  l/2. 

Discuss ion  
In Unger and co-authors [LU 88, SU 88], numerical studies employing 

both Gauss-Chebyshev and Romberg integration schemes were used to 
evaluate (3.1-2) and (3.2-12) for the cohesive force o-c(x, t) given by (3.1-3) 
and (3.1-5). As no previous analytical solution existed for use as a bench- 
mark, the accurancy of these schemes remained to some degree uncertain. 
In the present study, we have obtained analytic results in the form of 
generalized hypergeometric functions for simplifications of the two inte- 
grals involved: namely, (3.2-7) and (3.2-23). Error bounds are also provided 
from these simplifications in the form of (3.2-4) and (3.2-20), from which 
the possible error can be estimated. We can then obtain solutions to the 
problem, which are given in the form of series, i.e., (3.2-11) and (3.2-30), to 
within the numerical precision of the machine. 

Tables 3.1-1 and 3.1-3 contain parameters that were used in [LU 88, SU 
88]. We can see from Tables 3.2-1 and 3.2-2 that values obtained from 
numerical integrations do not differ appreciably from values obtained from 
the series expansion of d and 6 using (3.2-11) and (3.2-30), respectively. In 
this analysis the first ten terms of the series were used. 

Of course there is intrinsic value in having an analytic solution. For 
example, it permits us to see better how various parameters affect the 
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TABLE 3.2-1 
Comparison of Cohesive Zone Values d 

d 
t (mm) 

(sec) Lee and Unger [LU 88] a Seo and Unger [SU 88] Eq. (3.2-11) 

10 0.33 0.30 0.31 
50 0.44 0.43 0.44 

100 0.53 0.51 0.52 
200 0.64 0.61 0.63 
300 0.71 0.69 0.70 
400 0.77 0.75 0.76 
500 0.82 0.80 0.82 
600 0.87 0.84 0.86 
700 0.91 0.88 0.90 

a The value of D in this publication was erroneously tabulated as 2.26 • 10 -1~ m2/sec 
instead of 6.45 x 10 -l~ mZ/sec. 

solution to the problem. In addition, the iterative schemes required to 
solve (3.2-11) for the cohesive zone length d execute faster on the 
computer if the analytic solution rather than numerical integration is used. 

For further discussions about metallurgical aspects of process zones 
with respect to hydrogen embritt lement,  the reader is directed to [GCLL 
87, Ger 87]. 

3.3 A MODIFIED STEFAN P R O B L E M  RELATED TO 
STRESS CORROSION CRACKING 

We noted previously that three stages of steady-state crack propagation 
exist for hydrogen-assisted crack propagation. This is true for most forms 
of environmental cracking. 

In stage I crack growth, subcritical crack velocity increases exponen- 
tially with an increase in the stress intensity factor K I . We can see this for 
the data shown in Fig. 3.3-1, which is taken from a study involving the 
stress corrosion cracking of glasses [Fre 74]. The glasses 1-4 have various 
compositions of S i O 2 - N a z O - C a O  with the exception of glass 5, which has 
a composition of SiO2-BaO. In this first example, the corrodant is water. 
We recall that data exhibiting exponential behavior appear as a straight 
line when plotted on semilog paper. Represented by straight lines in the 
figure, the crack growth rates v may be approximated by the expression, 
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TABLE 3.2-2 
Comparison of Crack Tip Opening Displacements 

247 

6 
t (mm) 

(see) Lee and Unger [LU 88] a Seo and Unger [SU 88] Eq. (3.2-30) 

2.5 0.0045 0.0045 0.0045 
5.0 0.0048 0.0048 0.0049 
7.5 0.0050 0.0051 0.0052 

12.5 0.0053 0.0054 0.0055 
22.0 0.0058 0.0058 0.0059 
32.5 0.0061 0.0061 0.0063 
40.0 0.0063 0.0063 0.0064 
50.0 0.0065 0.0065 0.0066 
60.0 0.0067 0.0067 0.0068 
70.0 0.0068 0.0068 0.0070 
80.0 0.0070 0.0069 0.0071 
90.0 0.0071 0.0070 0.0072 

100.0 0.0072 0.0071 0.0073 
110.0 0.0073 0.0072 0.0074 
120.0 0.0074 0.0073 0.0075 
130.0 0.0074 0.0074 0.0076 

"The value of D in this publication was erroneously tabulated as 2.26 • 1() -11 m2/sec 
instead of 6.45 • 10-l0 m-/sec. 

v = c l e x p ( c 2 K i ) ,  with c~, c 2 being constants. Stage II and stage III growth 
were not recorded for this particular environment.  (Interested readers may 
find a useful account of the physics and chemistry of the fracturing of glass 
in water in the popular press [MB 87].) 

In stage II steady-state crack propagation, the crack velocity becomes 
relatively insensitive to the stress intensity factor. In cases where the crack 
velocity becomes virtually independent  of the stress intensity factor, the 
second stage is referred to as the plateau stage. We find in Fig. 3.3-2, 
which was taken from [Spe 84], experimental data for the stress corrosion 
cracking of aluminum alloys in humidified air. These data were chosen as 
an example on the basis of their pronounced plateau stage II crack growth 
behavior. 

This intermediate stage of growth is followed by stage III crack propa- 
gation where the crack velocity is again strongly influenced by the stress 
intensity factor. Stage III growth occurs for loading conditions near the 
fracture toughness of the specimen, as measured in an inert environment.  
In Fig. 3.3-3, again drawn from [Fre 74], we see the same five glasses as 
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FIGURE 3.3-1 
Effect of glass composition on crack propagation behavior in water. Reprinted from S. W. 
Freiman, Effect of alcohols on crack propagation in glass, J. Am.  Ceram. Soc. 57, 350-353 
(1974), by permission of The American Ceramic Society. 

those in Fig. 3.3-1, subjected to octanol rather than water. In Fig. 3.3-3, we 
see all three stages of steady-state crack propagation represented. 

Different rate-controlling mechanisms can be dominant in each of the 
three distinct stages of steady-state crack propagation. In this section, we 
concentrate on the second stage of crack growth for those cases where the 
controlling mechanism is related to mass transport (Knudsen diffusion). 
We do not attempt to incorporate into this model the parameters that 
control stages I and III. Thus the model predicts neither the threshold 
value of stress intensity factor K~cc nor the toughness K c shown in Fig. 
3.3-4. 

A moving boundary value problem is proposed and analytically solved 
[Ung 90c] for environmental crack propagation where the transport of the 
deleterious species is the controlling mechanism of the plateau stage of 
subcritical crack growth. The concentration of the corrodant diffuses along 
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high-strength aluminum alloys in air. Reprinted from [Spe 84] by permission of ASM 
International. 

the surfaces of the crack from a stationary environmental reservoir to the 
moving crack tip. A minimum concentration of gas at the crack tip is 
required to sustain crack propagation at a given temperature. The magni- 
tude of the crack velocity is proportional to the mass flux at the crack tip, 
while the diffusivity of the gas is theoretically related to the evolving crack 
tip opening displacement. Under a transformation of coordinates, this 
moving boundary value problem is mapped onto the classic Stefan problem 
and solved. Because the theory is based primarily on gas transport and the 
mechanical response of the specimen to an applied load, it should be 
applicable to a wide class of materials and environments. 
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(1974), by permission of The American Ceramic Society. 

Analysis 
The flux j(x,t)  of a deleterious species that migrates from a fixed 

external reservoir (x = 0) down the crack surfaces is assumed to follow 
Fick's first law, i.e., 

j ( x , t )  = - D ( a ( t ) ) - -  
a o ( x , t )  

3x 
(3.3-1) 

where x is the Cartesian coordinate shown in Fig. 3.3-5, t is time, p is the 
density of the diffusing species, D is the diffusivity, and a is the crack 
length. It is further assumed that the diffusivity in (3.3-1) is a function of 
the crack length. This is a logical assumption as crack growth is accompa- 
nied by an increase in crack surface separation. Consequently, this wider 
conduit permits faster mass transport which is reflected through the 
diffusivity D(a(t)) in (3.3-1). 
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FIGURE 3.3-4 

Crack velocity versus stress intensity factor. Reprinted from Eng. Fract. Mech., 37, D. J. 
Unger, A modified Stephan problem for transport-controlled stress corrosion cracking, 
101-106 (1990), with permission from Pergamon Press, Ltd., Headington Hill Hall, Oxford 
OX3 OBW, UK. 
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FIGURE 3.3-5 

Crack geometry and parameters. Reprinted from Eng. Fract. Mech., 37, D. J. Unger, A 
modified Stephan problem for transport-controlled stress corrosion cracking, 101-106 (1990), 
with permission from Pergamon Press, Ltd., Headington Hill Hall, Oxford O X 3 0 B W ,  UK. 



252 Environmental Cracking 

Conservation of mass requires equation (3.3-2) be satisfied: 

Op( x ,  t ) Oj( x ,  t ) 
+ = 0. (3.3-2) 

Ot Ox 

Then the substitution of (3.3-1) into (3.3-2) produces the following diffu- 
sion equation (Fick's second law): 

Op( x ,  t ) o ep( x ,  t ) 
= D ( a ( t ) )  (3.3-3) 

c)t Ox e " 

Equation (3.3-3) ignores diffusion in the antiplane direction, i.e., normal to 
the plate. This approximation of the diffusion process improves with plate 
thickness. 

We assume that a sufficiently large reservoir of fluid exists to impose a 
constant concentration of corrodant P0 at the entry point to the specimen 
(x = 0), i.e., 

p(0, t) = P0. (3.3-4) 

A critical concentration of gas at the crack tip p,, (which is related to 
pressure by an equation of state) is proposed as a necessary condition for 
crack propagation. For sustained crack growth, the boundary concentra- 
tion P0 must be greater than the critical value. These two conditions are 
expressed mathematically as 

p ( a ( t ) , t )  = p , ,  Po > P~. (3.3-5) 

We take our initial crack length to be zero in a mathematical sense, i.e., 

a(0) = 0. (3.3-6) 

Physically, (3.3-6) models a very small surface flaw, i.e., a crack length that 
is negligible in comparison to the length, width, and thickness of the 
specimen. 

The solution obtained using relationship (3.3-6) can also be applied to 
problems involving finite initial crack lengths as a( t )  grows large; i.e., the 
two solutions should converge with sufficient crack growth. 

The continuity equation of mass at a moving interface x = a( t )  requires 
[Jos 60] 

da( t ) c)p( x ,  t )  I 
P~ dt - j ( x ,  t)lx=~<t) = - D ( a ( t ) ) ~  I (3.3-7) 

x=a(l) 

We might note the similarity between (3.3-3)-(3.3-7) and the tempera- 
ture-formulated Stefan problem [Rub 71, Hil 87]. However, the diffusivity 
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appearing in (3.3-3) and (3.3-7) is a function of the interface, whereas the 
analogous coefficient in the standard Stefan problem is constant. 

A transformation of coordinates allows us to map our original moving 
boundary value problem onto the standard Stefan problem (for which an 
analytical solution is known) and hence solve it. 

To this end, let us define the variable r as 

r -- s ~ )) d~, (3.3-8) 

and make a transformation of coordinates from t to r in (3.3-3)-(3.3-7): 
i.e., 

ah(x, ~) a2a(x, ~) 
= (3.3-9) Or 3 X  2 ' 

13(0, r )  = P0, (3.3-10) 

t3(a(r) ,  r )  = Pa, PO > & ,  (3.3-11) 

P a - -  

a ( r  0) = 0, (3.3-12) 

da(r)dr - - a~(X,ax r ) ] ,  a~,~' (3.3-13) 

where ~ is the crack length,/3 is the concentration, and % is the value of r 
at t = 0 i.e., zero by (3.3-8). By introducing r into the formulation, we map 
our original problem, defined by (3.3-3)-(3.3-7), onto the classic Stefan 
problem, (3.3-9)-(3.3-13). The analytic solution to the Stefan problem 
follows [Jos 60]: 

~ ( x ,  r )  = P o -  rrl/2yp, expyZerf(x/[4r]l/2), 

~ ( r )  = 2 y r  1/2 

(3.3-14) 

(3.3-15) 

where the constant y is determined by iteration from the expression 

PO/Pa = 1 + 771/27 exp(y2)e r fy .  (3.3-16) 

Returning to our original notation, we find from (3.3-8) and (3.3-15) that 

a ( t ) =  2Y[foD(a(~))d~ 
1/2 

(3.3-17) 



254 Environmental Cracking 

Now by differentiating (3.3-17)with respect to t, we obtain the crack 
velocity as 

dt = y D ( a ( t ) )  D(a (  ~ )) d~ = 2 y Z D ( a ( t ) ) / a ( t ) .  (3.3-18) 

In order for plateau steady-state crack propagation to occur, we infer 
from (3.3-18) that the diffusivity must be proportional to a(t); otherwise, 
d a / d t  is a function of the crack length. 

Now plateau stage II growth is observed for wide classes of materials 
and corrodants using a variety of conventional specimens where K~(a) is 
approximately proportional to a s/2. It is also observed for hydrogen-as- 
sisted cracking which is considered chemically distinct from stress corro- 
sion cracking (opposite rate response to an applied potential). 

One possible explanation for the appearance of the plateau crack 
propagation in diverse materials and environments is external fluid trans- 
port. 

As crack surfaces converge, ordinary viscous flow is impeded. Eventu- 
ally, viscous flow ceases and molecular diffusion or Knudsen flow begins. 
As we are modeling small surface cracks, the entire transport process 
might be considered Knudsen flow as a first approximation. 

In [LPWSW 81], the stage II crack propagation for 4340 steel exposed 
to hydrogen sulfide gas at a pressure of 133 Pa was reported to be 
controlled by Knudsen diffusion. In [WSHW 80], these researchers incor- 
porated Knudsen diffusion into their environmental cracking model which 
could be applied to both transport-controlled and surface-reaction-con- 
trolled growth. Lawn and Wilshaw [LW 75] modeled the data of Wieder- 
horn [Wie 69] for sapphire in moistened nitrogen gas. This model com- 
bined reaction-controlled crack growth, which dominates in stage I crack 
propagation, with Knudsen-diffusion-controlled growth, which dominates 
in stage II. 

Returning to our problem, the theoretical relationship for Knudsen 
diffusivity in a circular cylinder [SS 63] is 

D r = ( 4 r k / 3 ) [ 2 R T / ( ~ r M ) ]  z/2 (3.3-19) 

where r is the pore radius, R is the universal gas constant, T is absolute 
temperature, M is the molecular weight of the diffusing species, and k is a 
phenomenological constant (k = 1 for ideal Knudsen flow). For pore 
geometries other than circular cylinders, an equivalent pore radius r e [SS 
63] is defined for use in (3.3-19). 



A Modified Stefan Problem Related to Stress Corrosion Cracking 255 

The ratio of the volume of a cylindrical pore V to its surface area S 
(neglecting the two endsmone  of which would be equal to "n'r 2) is 

r = 2 V / S .  (3.3-20) 

If we approximate the crack geometry as a rectangular channel, where the 
width of the channel is equal to the crack tip opening displacement 6 t, 
then we have a volume V and area S (neglecting the endsmeach  of area 
B 6 )  equal to 

V = 8 t B a ,  (3.3-21) 

S = 2a(6  t + B) (3.3-22) 

where B is the thickness of the specimen. By substituting (3.3-21) and 
(3.3-22) into (3.3-20) and defining an equivalent pore geometry r e , we find 

B6t  
6 t for 6 t -~ B. (3.3-23) 

re = 6t + B 

The crack tip opening displacement for large-scale yielding [BS 66] (for 
an infinite plate, with a crack of length 2a, subject to a tensile traction o-~) 
is 

where 

6 t = 8 (A / ' n ' ) o0a  In sec(Tro'~/[2o'0]), (3.3-24) 

A = [ (1 - v Z ) / E  for plane strain, (3.3-25) 
1 / E  for plane stress, (3.3-26) 

o" 0 is the yield stress, v is Poisson's ratio, and E is Young's modulus. For 
small-scale yielding this expression (3.3-24) reduces to 

6 t = A or~c2"l~ " a / o" o = A K  2 / o.0. (3.3-27) 

We see from (3.3-24) and (3.3-27) that the crack tip opening displace- 
ment for the most fundamental fracture problem is proportional to the 
crack length for both large- and small-scale yielding. The edge crack (of 
length a) in our moving boundary problem, has a K~ value that is 1.12 
times higher than the K~ of the internal crack (of length 2a), by (I.5-18). 
For small-scale yielding, we can replace or~('n'a) 1/2 by 1.12o'~('n'a) 1/2 in 
(3.3-27) to obtain 6 t for the edge crack. Therefore, 6 t for the edge crack of 
length a is approximately equal to 5 / 4  (because (1.12) 2 -~ 1.25 = 5 /4 )  of 
the value of 6 t of the internal crack of length 2a. 

An equivalent pore geometry for Knudsen diffusion coupled to the 
crack tip displacement was first used for a model of environmental crack- 
ing in [WSHW 80]; however, no moving boundary value problem was 
solved there. 
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By substituting (3.3-27) into (3.3-19)via (3.3-23) and multiplying the 
result by 5 /4 ,  we find the Knudsen diffusion 

D K = V o a ( t )  (3.3-28) 

where the parameter  V 0 is defined for small-scale yielding as 

V o =_ 5 k [ 2 7 r R T / M ] l / Z A o - 2 / ( 3 O ' o ) .  (3.3-29) 

When (3.3-28) is substituted into (3.3-18), the predicted velocity u is 
constant, i.e., 

da 
u -- -- 2TZv0, (3.3-30) 

dt 

where y is related to the ratio P o / P ,  by (3.3-16). Relationship (3.3-30) is 
consistent with a state of plateau crack propagation where the crack 
velocity is independent of the stress intensity factor for a constant load. 
Other types of diffusion processes may give similar results. 

Small  and Large Values of v / V  0 
If we solve for y in terms of crack velocity u from (3.3-30) and then 

substitute this relationship for y into (3.3-16), we obtain 

p , ) /p ,  = 1 + [ ' r r u / ( 2 ~ ) ) ] i / 2 e x p [ t ~ / ( 2 ~ ) ) ] e r f ( [ t ~ / { 2 ~ ) } ] ~ / 2 ) .  (3.3-31) 

A plot of (p()/p,,) versus u / (2V( ) )  on a semilog scale is given in Fig. 3.3-6. 
Upon expanding (3.3-31) in a series, we find 

p( ) /p ,  = 1 + [ 'n ' t~/ (2Vo)]l /2(1 + "'" ) ( 2 / ' t r l / 2 ) { [ t ~ / ( 2 V o ) ]  1/2 . . . .  } 

= 1 + u / V  o + " " .  (3.3-32) 

By retaining only the first term of the series expansion, we find for small 
values of the ratio u / V  0, 

c ~- I I " o ( p o / p , -  1) f o r t ~ / V  0 ~ 1. (3.3-33) 

For Knudsen flow [SS 63], concentration is proportional to gas pressure p 
(ideal gas, p = p M / R T ) .  Therefore, for small values of u / V  o our theory 
predicts a velocity u that is a linear function of the reservoir's concentra- 
tion P0 and hence its pressure. 

For large values of c/V0 we can see on Fig. 3.3-6 that P o / P ,  ap- 
proaches an inclined line on the semilog scale. This is the exponential term 
(3.3-31) dominating the expression for large values of u / V  0. We can 
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FIGURE 3.3-6 
Plot of function (3.3-31), the ratio of boundary values for deleterious species density Po/P, 
versus normalized stage II crack velocity t,/(2Vo). 

approx imate  Po/P,, of (3.3-31) for large values of  the a r g u m e n t  v / ( 2 V  0) by 
the following: 

Po/Pa ~ c l e x p [ c 2 v / ( 2 V o ) ]  (3.3-34) 

where  c l and C 2 are constants .  
Let  us select a region of  Fig. 3.3-6 where  the exponent ia l  te rm out-  

weighs the others .  By using the values  in Table  3.3-1 and re la t ionship  
(3.3-34), we find that  c~ = 1.999 and  c 2 = 1.137 approx imate  the curve 
(3.3-31) be tween  values of  2 < v / ( 2 V  o) < 5. 

TABLE 3.3-1 
Exact Values from Equation (3.3-32) 

v/(2V0) Po/Pa 
2 19.435 
5 589.21 
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Even though the line in Fig. 3.3-6 appears nearly straight between the 
two values of v/(2V o) given in Table 3.3-1, we should not extrapolate the 
curve beyond the value of v/(2V o) = 5. There is still a weak distortion of 
the exponential function due to the leading term ['trv/(2Vo)] 1/2 of (3.3-32) 
which has a significant effect. (The only other term involving the error 
function ---, 1.) Therefore, we may interpolate only between the limits on 
v/(2Vo) that were used to determine c 1 and c 2 . Furthermore, the smaller 
the interval between the limits on v/(2V o) chosen to determine c 1 and c 2 , 
the better the approximation of PO/Pa will be between those limits. 

Discussion 
Our moving boundary value problem was formulated for a virtual initial 

crack length. However, our moving boundary value problem should still 
model the pressure dependence of plateau velocity data, regardless of the 
initial crack length, as the material response in this stage is independent of 
crack length (stress intensity factor for constant load). 

On the other hand, stage I and stage III data are highly dependent on 
crack length, and our model should never be applied to these regions, 
irrespective of the initial condition. In Sections 3.1 and 3.2, a decohesion 
model of hydrogen-assisted cracking, which is applicable to stages I and 
III, was analyzed. It was found that behavior similar in shape to regions I 
and III in Fig. 3.3-4 could be found, but that plateau stage II growth was 
absent, as no rate-limiting external transport mechanism was incorporated 
into the computer code. 

Temperature may affect several of the parameters of our model simul- 
taneously. One theoretical relationship between temperature and crack 
velocity is given by (3.3-29). This expression predicts that crack velocity is 
proportional to T 1/2. But the parameter pa, which is related to y and 
hence v, may have a stronger temperature dependence than the Knudsen 
diffusivity owing to the thermally activated process to which it is related. 
For instance, the parameter p, might be associated with a chemical 
reaction. 

Now thermally activated processes often allow an Arrhenius representa- 
tion of the form 

Pa = pcexp(Q/[ RT ]), (3.3-35) 

where Q is the activation energy, and Pc is a weak function of temperature 
(often approximated as a constant). By knowing the activation energy of 
the process involved, we can in principle determine the temperature-de- 
pendent Pa through (3.3-34) and thus predict crack velocities as functions 
of temperature. 
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As with all models of environmental crack propagation, this model has 
its simplifications. The geometry is two-dimensional rather than three, and 
the transport mechanism is restricted to Knudsen flow, to name just two. 

Nevertheless, the author believes that it is still a significant achievement 
because a true moving boundary value problem has never before been 
solved analytically for transport-controlled environmental crack growth. 
This one could serve as a benchmark for numerical studies involving more 
complicated models. 

Although the classic moving boundary value problem, the Stefan prob- 
lem, would seem to find a natural application for transport-controlled 
crack propagation, it has not been used in this way. The reason is that the 
unmodified version of the Stefan problem predicts crack velocities that 
decay proportionately to 1/t 1/2, which are not typically observed. In our 
modified Stefan problem, however, by coupling the diffusivity to the crack 
tip opening displacement, we strike a balance between the increasing path 
of the corrodant from its external reservoir (due to increased crack length) 
with faster transport of corrodant (due to the widening channel, which 
increases diffusivity). Thus plateau crack velocities can be sustained. 
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4 

Small-Scale Yielding versus 
Exact Linear Elastic 

Solutions 

4.1 THE FUNDAMENTAL MODES OF FRACTURE 

In this chapter we discuss the differences between exact linear elastic 
solutions for crack problems and small-scale yielding solutions, using as 
examples the solutions of the three fundamental  modes of fracture for 
infinite plates. Westergaard potentials are used in the derivation of the 
solutions [Cot 72]. 

Westergaard [Wes 39] proposed the following linear elastic solution to 
the plane strain, mode I crack problem for an infinite plate subjected to a 
biaxial tensile traction o-~ applied at an infinite distance from an internal 
crack of length 2a: 

o-~ = Re Z ! - y  Im Z' l (4.1-1) 

% = Re Z~ + y Im Z'~ (4.1-2) 

~xy = - y  Re Z'~ (4.1-3) 

u = (1 + v)[(1 - 2 v ) R e  Z~ - y  Im Z~]/E (4.1-4) 

v = (1 + v)[2(1 - v) Im Z~' - y Re Z~]/E (4.1-5) 

where o- x and O-y are the normal stresses in a Cartesian coordinate system 
(x, y); ~'xy is the shear stress in the xy plane; u, v are displacement in the 
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X and y directions, respectively; E is Young's modulus; and u is Poisson's 
ratio. The potential Z I , which appears in (4.1-1)-(4.1-5), is defined in 
terms of the complex variable z - x  + iy by the relationship 

Z I ( Z )  "- orooz//(Z 2 -- a2) 1/2. (4.1-6) 

The derivative and antiderivative of Zi (z )wi th  respect to z are designated 
by 

Z '  I - d Z l / d Z  = - o r  a 2 / ( z  2 - a2)  3/2 , (4.1-7) 

z'~ - f Z i d z  = o-~( z 2 _ _  a2) 1/2. (4.1-8) 

The symbols Re and Im in (4.1-1)-(4.1-5) denote respectively the real and 
imaginary parts of complex functions of z. 

The following complex variable identity [AS 64, AG 78, UGA 83] allows 
the separation of the square root of a complex number into real and 
imaginary parts: 

(c + id)  ' / 2 =  +_ tc  + (c 2 + d Z ) l / Z j / 2  

+ i s g n ( d )  - c  + (c 2 + d2)  1/2 2 , (4.1-9) 

where the symbol _+ denotes the positive square root and the negative 
square root of the complex number, and the function sgn( ) is defined by 

- 1 ,  b < O  
sgn(b) = O, b = 0 

1, b > O  
(4.1-10) 

where b is a real number. 
The substitution of (4.1-9) into (4.1-6)-(4.1-8)yields for X > 0, Y > 0 

Z l = t r ~ 2 - 1 / 2 { [ X ( A  + B )  1/2 + Y ( - A  + B) 1/2] 

+ i [ Y ( A  + B )  1/2 - X ( - A  + B ) l / 2 ] } / B  (4.1-11) 

Z'  I = t r ~ ( 2 1 / 2 a ) - l { - A ( A  + B )  1/2 + 2 X Y ( - A  + 0 )  1/2 

+ i [ A ( - A  + B )  1/2 + 2XY(A + B ) 1 / 2 ] } / 0  3 

Z~ = aor~2-1/2[(A + B )  1/2 + i ( - A  + B) 1/2] 

(4.1-12) 

(4.1-13) 
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with the functions A and B defined by the following: 

A ~ X 2 -  y 2  1 (4.1-14) 

B = [(X 2 -  yZ 1) 2 ]1/2 -- + 4 x Z Y  2 . (4.1-15) 

The substitution of (4.1-11)-(4.1-13) into (4.1-1)-(4.1-5) gives an explicit 
form of the linear elastic solution of the fundamental  mode  I fracture 
problem for the first quadrant:  
F o r X > 0 ,  Y>_0:  

T x = [ X ( A  + B )  1/2 + Y ( - A  + B ) 1 / 2 ] / B  

- Y [ A ( - A  + B) 1/2 + 2 X Y ( A  + B ) 1 / 2 ] / B  3 (4.1-16) 

Ty = [ X ( A  + B )  1/2 + Y ( - A  + B ) 1 / 2 ] / B  

+ Y [ A ( - A  + B )  1/2 + 2 X Y ( A  + O)1/2]/O3 (4.1-17) 

T~y = Y [ A ( A  + B )  1/2 - 2 X Y ( - A  - B ) 1 / 2 ] / B 3  (4.1-18) 

U = (1 + v){[(1 - 2 v ) B  - Y2](A + B) 1/2 + XY( - A  + B)1/2}/B 
(4.1-19) 

V = (1 + v){[2(1 - v ) B  - Y 2 ] ( - A  + B) 1/2 X Y (  A + B)I/2}/B 
(4.1-20) 

where the dimensionless stress Tx, Ty, Txy and displacements U, V are 
defined by 

T~ = 21/2~rx/~r~, Ty - 2'/2O'y/O~, T~y = 21/2'rxy//Or~ (4.1-21) 

X - x / a ,  Y =- y / a ,  U -- 2 1 / 2 u E / ( a o ' ~ ) ,  V =- 2 1 / 2 v E / ( a o ' ~ ) .  

(4.1-22) 

In the case of small-scale yielding, only the first term of a series 
expansion about one of the crack tips is retained for Z~ and its derivatives. 
Let us define s r as a complex variable whose origin is posit ioned at the 
crack tip z = a. Polar coordinates (r, 0) that are established at the crack 
tip z = a are then related to ~" through the following coordinate transfor- 
mation: 

s r - z - a - r exp i O. (4.1-23) 
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In view of (4.1-23), the complex function Z I may be rewri t ten as 

Zx = o2( s r + a ) / [ (  s r + 2 a ) s  r ]1/2. (4.1-24) 

Wes te rgaa rd ' s  potent ia l  assumes asymptot ical ly  the following form as s r 
approaches  zero: 

Zlll~.l+ ~ ~ o. [ a / ( 2 s r  )]1/2 (4.1-25) 

which by (4.1-23) and Euler ' s  re lat ionship r exp i0 = r(cos 0 + i sin 0) 
becomes  

ZIII~I~ 0 ~ ~ r ~ [ a / ( 2 r ) ] l / Z [ c o s ( O / 2 )  - i s i n ( O / 2 ) ] .  (4.1-26) 

Similarly, 

and 

Z',ll~l+,, 

Z'  I = - o - ~ a 2 / [ (  ~" + 2a)~" ]3/2 (4.1-27) 

~ - ( o ' ~ / 2 ) ( a / 2 )  1/2 ~'- 3/2 (4.1-28) 

~ - ( ~ r ~ / 2 ) ( a / 2 ) n / Z r - 3 / Z [ c o s ( 3 0 / 2 )  - i s i n ( 3 0 / 2 ) ]  (4.1-29) 

Z~ = ~r~[(sr + 2a)~" ]!/2 (4.1-30) 

Z~II ; I~ 0 ~ o'~(2a~" )1/2 (4.1-31) 

~ ~ r ~ ( 2 a r ) l / Z [ c o s ( O / 2 )  + i s i n ( 0 / 2 ) ] .  (4.1-32) 

Upon  substi tut ing (4.1-26), (4.1-29), and (4.1-32) into (4.1-1)-(4.1-5), we 
obtain the mode  I, small-scale yielding, elastic solution as follows. 
For  - T r  < 0 < 7r: 

T x = R - 1 / 2 c o s ( 0 / 2 ) [ 1  - s i n ( 0 / 2 ) s i n ( 3 0 / 2 ) ]  (4.1-33) 

Ty = R - l / 2 c o s ( O / 2 ) [ 1  + s i n ( 0 / 2 ) s i n ( 3 0 / 2 ) ]  (4.1-34) 

Txy -- R -  I / 2 c o s ( 0 / 2 ) s i n ( 0 / 2 ) c o s ( 3 0 / 2 )  (4.1-35) 

U = 2(1 + v ) R l / Z c o s ( O / 2 ) [ 1  - 2 v  + s i n 2 ( 0 / 2 ) ]  (4.1-36) 

V = 2(1 + v ) R l / Z s i n ( O / 2 ) [ 2  - 2v - cos2(0/2) ]  (4.1-37) 

where  the dimensionless  stresses, d isplacements ,  and coordina tes  are de- 
fined by (4.1-21)-(4.1-22) and by 

R =- r / a .  (4.1-38) 

The  two coordina te  systems are shown in Figs. 4.1-1a and 4 . l - lb .  
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FIGURE 4.1-1 
Cartesian and polar coordinate systems. Adapted from Eng. Fract. Mech., 10, E. C. Aifantis 
and W. W. Gerberich, A new form of exact solutions for mode I, II, III crack problems and 
implications, 95-108 (1978), with permission from Pergamon Press Ltd., Headington Hill 
Hall, Oxford OX30BW, UK. 

Plots of  compar i sons  be tween  the small-scale yielding (approx imate )  
stresses and exact l inear  elastic stresses appea r  in Figs. 4.1-2 th rough  4.1-4. 
C o r r e spond ing  compar i sons  are m a d e  for d i sp lacements  in Figs. 4.1-5 
th rough 4.1-7. 

It can be seen that  the devia t ions  be tween  the exact and app rox ima te  
solut ions increase  with dis tance f rom the crack tip. For  the stresses, the 
exact solut ion tends  toward the r e m o t e  t ract ion o'~, whereas  the small-scale 
yielding solut ion tends toward  zero as r ~ ~. Nea r  the crack tip, a 
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FIGURE 4.1-2 
Dimensionless stress field for mode I, 0 = 0 ~ 
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singularity O(r -]/2) dominates the stress field in both solutions. In the 
case of nonzero displacements, both solutions tend toward the infinite as 
the distance from the crack increases, but they do so at different rates. 
Consequently, for brittle materials the small-scale yielding solution is valid 
only near the crack tip. In the case of a ductile material, it is valid only 
within an annulus surrounding the crack tip due to formation of a plastic 
zone. If the plastic deformation is extensive, the purely linear elastic 
solutions may not characterize the problem at all, owing to elastic unload- 
ing and a redistribution of the stresses. 

We note that the exact solution requires two parameters (a, o'~) to fully 
characterize the stress field. On the other hand, the small-scale yielding 
solution requires only one parameter,  a]/Z~r~, to characterize the stress 
field in the neighborhood of the crack tip. [Compare the separability of 
this product in (4.1-25) as opposed to (4.1-6).] It is customary to multiply 
this term a]/Z~r= by the square root of 7r, and refer to it as the stress 
intensity factor, K I = (7ra)1/2o'~. 
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T h e  W e s t e r g a a r d  po ten t i a l  can also be appl ied  to the  m o d e  II p r o b l e m  
[PS 65, P M  78] for an infinite p la te  with an in terna l  c rack  of  length  2a  
which is sub jec ted  to a r emote ly  app l ied  shea r ing  t rac t ion  ~-~. T h e  solut ion 
for p lane  s t rain is 

~r x = 2 Im Z~I + y R e  Z'll (4.1-39) 

% = - y  Re  Z'~I (4.1-40) 

~'xy - Re  Zil  - y Im Z'II (4.1-41) 

u = (1 + u)[2(1 - v ) I m  Z~  + y Re  ZII]/E (4.1-42) 

v - - ( 1  + v) [ (1  - 2 u ) R e  Z~  + y Im ZII]/E. (4.1-43) 
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The complex potential Z,~ is identical to its mode I counterpart ZI, except 
that tr~ is replaced by a remotely applied, in-plane shearing traction r~; 
i.e., 

Z l  I = TocZ/( Z2 _ a2)1/2. (4.1-44) 

Through use of the complex identity (4.1-9), we obtain by (4.1-39)-(4.1-43) 
the exact solution for the fundamental mode II problem as follows. 
F o r X >  0, Y > 0 :  

T x = 2[Y(A + B) ~/2 - X ( - A  + B)I/2]/B 

- Y [ A ( A  + B )  1/2 - 2 X Y ( - A  + B)I/2]/B3 (4.1-45) 
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2 6 9  

Ty = Y[ A ( A  + B )  1/2 - 2 X Y ( - A  + B ) I / 2 ] / B 3  (4.1-46) 

Txy = [ X ( A  + B)  I/2 + Y ( - A  + B ) I / 2 ] / B  

- Y [ A ( - A  + B)  1/2 + 2 X Y ( A  + B ) i / 2 ] / B  3 (4.1-47) 

U = (1 + u){[2(1 - u ) B  + Y 2 ] ( - A  + B)  1/2 + X Y ( A  + B ) l / 2 } / B  

(4.1-48) 

V =  (1 + u ) { - [ ( 1  - 2 v ) B  + Y 2 ] ( A  + B)  1/2 + X Y ( - A  + B ) l / 2 } / B  

(4.1-49) 

where  d imensionless  quant i t ies  for m o d e  II are given by 

T~ - 21/2O'x/'r~ , Ty =- 21/2Oy/'r~ , Txy = 21/2"rxy/'r~ (4.1-50) 

U - 2 1 / 2 u E / ( a % ) ,  V =- 2] /2vE/(a ' r~) .  (4.1-51) 
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The normalized stress and displacement definitions (4.1-50) and (4.1-51) 
for mode II are identical to the mode I definitions (4.1-21) and (4.1-22) 
except that r~ replaces cry. 

Near the crack tip z = a, the small-scale yielding mode II potential 
approaches asymptotically the following form: 

Z I i ] I K I _ ,  0 ~ r~[a/ (2~ ) ] 1 / 2 ,  ~" = z - a = r exp iO. (4.1-52) 

The functions Z'~ and Z~! are obtained analogously to (4.1-29) and 
(4.1-32). After the asymptotic relationships for Z~ ,  Z'~, and Z~ as ~" --, 0 
are substituted into (4.1-39)-(4.1-43), we find the mode II small-scale 
yielding solution for plane strain as follows: 
For -Tr  < 0 < 7r: 

T x = - R - 1 / 2 s i n ( 0 / 2 ) [ 2  + c o s ( 0 / 2 ) c o s ( 3 0 / 2 ) ]  

Ty - R - 1 / 2 c o s ( 0 / 2 ) s i n ( 0 / 2 ) c o s ( 3 0 / 2 )  

Txy = R -l /2cos( 0/2)[1 - s i n (0 /2 ) s i n (30 /2 ) ]  

U = 2(1 + u)R1/Zsin(O/2)[2 - 2u + cos2(0 /2) ]  

V =  2(1 + v ) R l / a c o s ( O / 2 ) [ - 1  + 2 u +  s in2(0/2) ] .  

(4.1-53) 

(4.1-54) 

(4.1-55) 

( 4 . 1 - 5 6 )  

(4.1-57) 
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Comparisons of the mode II small-scale yielding solutions and the exact 
linear elastic solutions are shown in Figs. 4.1-8 through 4.1-13. 

For the third mode of fracture, the Westergaard relationships in terms 
of the potential  Z ~ ( z )  are [PA 65, PM 78] 

' ~ X Z  = Im Zi! I , ~'yz = Re ZIi I (4.1-58) 

w = ( 1 / G ) I m  Z~I ~ (4.1-59) 

where ~'xz and 7y z are the antiplane shear stresses, w is the displacement 
in the z direction, and G is the shear modulus. All other  stresses and 
displacements are zero. The Westergaard function for mode III assumes 
the same form as the mode II potential  Z~I except that ~'~ represents a 
remotely applied, out-of-plane (antiplane) shear stress rather  than the 
in-plane shear stress; i.e., 

Z I I  I = 7 ~ z / ( z  2 - a2) 1/2. (4.1-60) 

The exact linear elastic solution follows from (4.1-58)-(4.1-60) and (4.1-9). 
F o r X > 0 ,  Y > 0 :  

Txz - [ Y ( A  + B )  1/2 - X ( - A  + B ) ~ / 2 ] / B  ( 4 . 1 - 6 1 )  

Ty z = [ X ( A  + B) 1/2 + Y ( - A  + B) I /Z] /B  (4.1-62) 
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Dimensionless  stress field for mode II, 0 = 60 ~ 

where for mode III, the normalized relationships are defined by 

Txz = 21/2"rxz/'r~, Ty z =- 21/2"ryz/'r~. (4.1-63) 

The small-scale yielding potential is analogous to the two previous 
modes, i.e., 

Zillll;i ~ 0 ~ ~'~[a/(2~" )]1/2, s r = z - a = r exp iO (4.1-64) 

and the small-scale yielding solution follows from (4.1-58). 
For -Tr  < 0 < 7r: 

Txz = - R - l / Z s i n ( 0 / 2 ) ,  Ty z = R - l / Z c o s ( 0 / 2 )  (4.1-65) 

where Txz and Tyz are defined by (4.1-63). 
A comparison between the small-scale yielding solution (4.1-65) and the 

exact linear elastic solution (4.1-61)-(4.1-62) is given in Tables 4.1-1 and 
4.1-2. These tables are adapted from data reported in [AG 78]. 
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The exact mode III linear elastic displacement can be obtained from 
(4.1-59). 
F o r X >  0, Y >  0: 

w = ( r ~ / G ) a [ ( - A  + B ) / 2 ]  1/2. (4.1-66) 

The small-scale yielding displacement for mode III follows: 
For - r r  < 0 < rr: 

w = ( T ~ / G ) a ( 2 R ) l / Z s i n ( O / 2 ) .  (4.1-67) 

One final note on the elastic mode III problem: The solution for an 
edge crack of length a in a semi-infinite plate with a tractionless edge is 
identical to the solution discussed here for a crack of length 2a in an 
infinite plate [Ric 66]. 
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4.2 ELASTIC-PLASTIC LOCI AS PREDICTED BY LINEAR 
ELASTIC FRACTURE MECHANICS 

The Mises yield condition for a perfectly plastic material takes the form 

)2 __ )2 )2 
(0"1 -- 0"2 -']'- (0"2 0"3 + (0"3 - 0"1 = 2 0 " 2 ,  (4.2-1) 

where 0-1,0-2, and 0-3 are the principal stresses and 0"0 is the tensile yield 
stress. 

Fundamental  relationships among stresses for plane strain are 

0-3 -- 0-z--  p (  0-x -'t'- % )  -- P(  0"1 q'- 0"2 ) ' (4.2-2) 

w h e r e  0-1 ~-- 0"3, 0"2 ~-- 0-3" 
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By making use of (1.1-33), (1.1-34), (4.2-1), and (4.2-2), we can deter- 
mine the elastic-plastic boundaries for modes I and II, as predicted by the 
Mises yield condition for plane strain" 

and 

, I  = 3yZlZl + (1 - 2 u)Z(Re Z I)2 (4.2-3) 

3[IZ,,/2 + y21Zi,I 2 + 2y( Im Z , ,Re  Z], - Re Zi , Im Z'~,)] 

+ (1 - 2 u)2(Im ZII )2 = 0(2. (4.2-4) 

The relationship between the tensile yield stress and the shear yield 
stress k for the Mises yield condition is 

0"(2 = 3k 2. (4.2-5) 

In light of (4.2-2), the plane stress (~r z = 0) loci for the Mises yield 
condition for modes I and II can be respectively obtained by setting u = 0 
in formulas (4.2-3) and (4.2-4). (Note that the substitution ~, = 0 does not 
work for conversions of displacement from plane strain to plane stress.) 
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Dimensionless displacement field for mode II, 0 = 180 ~ 

The purely elastic estimates of the elastic-plastic boundaries for small- 
scale boundaries for small-scale yielding for plane strain are (upon substi- 
tuting u = 0 in (4.2-6) and (4.2-7) to obtain plane stress) 
mode I" 

Rp ( 1 / 2 ) ( o - ~ / o ' 0 )  2 2 = cos ( 0 / 2 ) [ 3 s i n 2 ( 0 / 2 )  + (1 - 2 v )  2] (4 .2 -6 )  

TABLE 4.1-1 

Comparison of Mode III Stresses (0 = 0 ~ 

Txy Tyz 

R Exact Approximate Exact Approximate 

0.000101 0 0 99.951 99.504 
0.000501 0 0 44.693 44.677 
0.001001 0 0 31.631 31.607 
0.005001 0 0 14.194 14.141 
0.010001 0 0 10.074 9.9995 
0.050001 0 0 4.6381 4.4721 
0.100001 0 0 3.3947 3.1622 
0.200001 0 0 2.5584 2.2942 
0.500001 0 0 1.8974 1.4142 
0.990001 0 0 1.6357 1.0050 
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Txz Tyz 

R Exact Approximate Exact Approximate 

0.000101 -497.48 -497.52 86.179 86.173 
0.000501 -22.330 -22.338 38.706 38.691 
0.001001 - 15.792 - 15.803 27.393 27.372 
0.005001 - 7.0439 - 7.0704 12.292 12.246 
0.010001 -4.9624 -4.9998 8.7248 8.6598 
0.050001 -2.2361 -2.4262 4.0182 3.8730 
0.100001 - 1.4674 - 1.5811 2.9439 2.7386 
0.200001 -0.9638 - 1.1180 2.2262 1.9365 
0.500001 -0.49174 -0.7071 1.6773 1.2247 
0.990001 -0.25276 -0.5025 1.4868 0.8904 

m o d e  II: 

Rp = ( 1 / 6 ) ( ~ - ~ / k ) 2 { 3 -  s i n Z ( 0 / 2 ) 1 9 c o s 2 ( 0 / 2 ) -  ( 1 -  2 u ) 2 ] )  (4.2-7) 

where  the d imens ionless  plastic radius R p is m e a s u r e d  f rom the crack tip, 

Rp = rp /a .  (4.2-8) 

Compar i sons  be tween  "exact"  and small-scale yielding (approx imate )  
e las t ic -p las t ic  boundar i e s  for m o d e s  I and II are shown in Figs. 4.2-1 and 
4.2-2. The  exact boundar i e s  were  found  numerical ly  [ U G A  83] using 
stresses (4.1-16)-(4.1-18) and (4.1-45)-(4.1-47) in (4.2-1). The  app rox ima te  
boundar i e s  were  ob ta ined  f rom (4.2-6) and (4.2-7). Poisson 's  rat io v was 
taken to be 0.3 in all of  the calculations.  

For  m o d e  III the exact e las t ic -p las t ic  bounda ry  can be ob ta ined  [AG 
78] f rom (4.1-61), (4.1-62), and (1.1-6) as 

R 2 + 2 R p c o s  0 + 1 =  (k/~-~)Z[R~ + 4R 2 + 4R3cos  0] '/2 �9 (4.2-9) 

This locus is geometr ica l ly  an inverse Cassinian oval with the origin of  the 
Car tes ian  axes as the site of  the cen te r  of  inversion [Ung 93]. 

The  small-scale yielding solut ion for m o d e  III reduces  the e las t i c -p las -  
tic bounda ry  to a circle. 

Rp = ~-2a/(2k2).  (4.2-10) 
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This result was given previously in terms of the stress intensity factor as 
(1.1-7). (We note that for mode III the Mises and Tresca yield conditions 
assume a similar form in relationship to the yield stress in pure shear k.) 

The exact and small-scale yielding elastic-plastic loci for mode III are 
shown in Fig. 4.2-3, which was adapted from a figure published in [AG 78]. 

The boundaries obtained in this section for modes I and II (both exact 
and small-scale yielding) may be regarded only as gross approximations for 
elastic-plastic boundaries as determined by numerical elastoplastic solu- 
tions (due to elastic unloading). Only the mode III elastic solution (for 
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small-scale yielding) provides an elastic-plastic boundary for the statically 
admissible elastoplastic problem. 

The plastic solution associated with the exact elastic-plastic boundary 
(4.2-9) is not, however, the large-scale yielding Hult-McClintock solution. 
These investigators [HM 56] imposed the condition that the slip lines 
should focus at the crack tip, as Fig. 2.1-1d shows for the small-scale 
yielding solution. The slip lines that are initialized on the boundary (4.2-9) 
do not focus to a point. Instead, they generate a line of discontinuous 
stress in a manner that resembles the slip line pattern of Fig. 2.1-1b or 
2.1-1c. The Hult-McClintock elastic-plastic boundary must be determined 
through the use of a contact transformation [HM 56, Ric 66], which is a 
technique that places no reliance on the completely elastic solution. 
Nevertheless, the exact linear elastic stress field for the purely elastic 
problem and its predicted elastic-plastic boundary (4.2-9) might serve as 
approximations to the Hult-McClintock solution for intermediate levels of 
~'~/k [Ung 93]. 

For additional small-scale yielding estimates of the elastic-plastic 
boundaries for mode I and II (see [CZ 91]). There, plane strain and plane 
stress elastoplastic boundaries are determined for the Mises, Tresca, 
Rankine, Mohr-Coulomb, and Drucker-Prager yield conditions. 
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4.3 INVERSE CASSINIAN OVAL COORDINATES FOR 
MODE III 

An analytical elastoplastic solution of the mode III fracture problem for 
the semi-infinite plate was first obtained by Hult and McClintock [HM 56]. 
These investigators used a contact transformation and a conformal map- 
ping scheme to solve the linear elastic portion of the elastoplastic problem 
for an arbitrary wedge-shaped notch on the elastic-plastic boundary. The 
entire elastic solution, however, was not provided. 

The complete elastic solution of the small-scale yielding approximation 
of this problem for a notch reduced to a crack may be found in a number 
of sources, including Chapters 1 and 2. On the other hand, the large-scale 
yielding equivalent of this crack problem [Ric 68a, AC 88] is seldom 
discussed in textbooks because of its complex form and the difficulty of 
interpreting its physical significance. For example, the exact elastic stresses 
of this elastoplastic problem for a mode III edge crack are determined 
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implicitly in [AC 88] as 

z + a o = (2/ 'n ')[( ' r  2 + C2)(T 2 -4- C-2)]  -1/2 

• {ao'r(1 - T 2 ) [ - - ( C T ) - 2 E ( T r / 2 ;  C 2) 

q - C T - 2 ( C  - 2  - - C  2 --  7 - - 2  - 7 -2 - 1 )  

•  2) + c ( 1  - T 2 ) - I ( c  - 2  %- C 2 -+- T - 2  -[- T 2 )  

• {H(~-/2;--C2T-2"C2)- " r - 2 H ( ' n ' / 2  �9 - c 2 , ' / ' 2 "  c 2 ) } ] )  

0 < c  < 1, (4.3-1) 

where F ( ; ) ,  E ( ; ) ,  and I I ( ; ; )  are elliptic integrals [GR 65] of the first, 
second, and third types, respectively; a 0 is the crack length; and 

~ - -  (~-~ - i z y ~ ) / k ,  c - z ~ / k ,  (4.3-2) 

where r is a complex function that is linear in the shear stresses. 
These authors [AC 88] readily admit that the above representation is 

impractical for determining the elastic-plastic boundary directly, and give 
instead an asymptotic expansion which is valid only for small to intermedi- 
ate values of c. This asymptotic expansion predicts the length of the plastic 
zone L t, ahead of the crack tip to be 

LF, ~ aoC2[1 + (3 /4 )c  2 + O(c4)].  (4.3-3) 

For comparison, an exact expression for Lp was determined in [BCS 63, 
Ric 66] as 

L e - a(,{(2/Tr)[(1 + c2) / (1  - c 2 ) ] E ( T r / 2 ;  2c / [1  + c2]) - 1}, (4.3-4) 

where 

f 'tr/2 2 1/2 
E(Tr/2; E) - (1 - e sin20) 

"0 
dO, 0 < E < 1. (4.3-5) 

It is not surprising that the elastic stress field (4.3-1) of the elastoplastic 
problem is complicated, considering the complexity of the exact solution 
for the completely elastic plate (4.1-61)-(4.1-63). Nevertheless, the 
elastic-plastic boundary as predicted by linear elastic fracture mechanics 
is relatively simple [AG 78]; i.e., 

r + y2) 2 (y2 X 2 -k-a2) 2 2y2 = -- + 4x , (4.3-6) 
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where a is the crack length for the purely elastic problem. The equivalent 
of (4.3-6) is given in polar coordinates by (4.2-9), when expressed in 
Cartesian coordinates (4.1-23), which are shown pictorially in Fig. 4.1-1. 
One should be aware that a shift in origin occurs between the two 
coordinate systems (4.1-23) and (4.2-9) and that the usual relationships 
between Cartesian and polar coordinates do not apply. 

To the best of the author's knowledge, the shape of (4.3-6) had not been 
identified geometrically as an inverse Cassinian oval prior to [Ung 93]. 
Since an inverse Cassinian oval coordinate system is available [MS 71], it 
would seem only natural to attempt an approximate solution of the mode 
III elastoplastic problem in this coordinate system as the elastic-plastic 
boundary will fall on a particular value of one of these coordinates. 

Following [MS 71], we define the transformation from Cartesian (x, y)  
to inverse Cassinian oval coordinates (u, u) as 

z - a[ 1 + exp(u + i u ) ]  - 1/2, (4.3-7) 

where u is a family of inverse Cassinian ovals. We note in [MS 71] that 
their inverse Cassinian oval coordinates are defined in terms of ~. --  x - iy  

rather than z = x + iy as in (4.3-7). This system differs from ours only by a 
reflection about the axis y = 0. We use z rather than 2 in ours because 
the coordinate transformation is applied to the Westergaard potential 
(4.1-60), which is defined in terms of z. 

We find from (4.1-58) and (4.3-7) that the Westergaard potential and 
the exact linear elastic stresses assume particularly simple representations 
in the inverse Cassinian oval coordinate system; i.e., 

Zil I = i~-~exp[-(u + i u ) / 2 ]  (4.3-8) 

"rxz = " r - ~ e - U / 2 c o s ( u / 2 ) ,  ~'yz = "r~e-U/2sin(u/2), - ~  < u < ~. 

(4.3-9) 

The utility of the compact solution (4.3-9) for the exact linear elastic 
stresses should be obvious when compared to (4.1-61)-(4.1-62). We may 
easily apply (4.3-9) to problems involving the semi-infinite or infinite elastic 
plates when we desire more accuracy than the small-scale yielding solution 
provides away from the crack tip. Unlike the small-scale yielding solution, 
(4.3-9) meets the boundary condition on traction at infinity. In the case of 
the edge crack in a semi-infinite plate, it also reflects the influence of 
traction-free boundary along x -- 0. 
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Now the Mises /Tresca  yield condition for a perfectly plastic material is 
given by (1.1-6) for mode III. Employing (4.3-7) and (4.3-9), we deduce that 
elastic stresses (4.3-9) may be rewritten as 

7"~ = k e ( U " - u ) / 2 c o s ( v / 2 ) ,  "ry z = ke  <"',-u ) / z s i n (  v / 2 ) ,  U 0 < t/ < oo, 

(4.3-10) 

where the coordinate u 0 of the prescribed elastic-plastic boundary, as 
determined by linear elastic fracture mechanics, is given below: 

u 0 =21n(~ '~ /k )  = 2 1 n c ,  0 < c  < 1 ~ - ~  < u  0 < 0 .  (4.3-11) 

The conversion formulas from inverse Cassinian oval coordinates (u, v) 
to Cartesian coordinates (x, y) are for the first quadrant  (x > 0, y > 0) 

x = ( a / p l ) 2 - 1 / 2 [  Pl + ( e u c ~  + 1)] 1/2 

y = ( a / P l )  2 -  1 / 2 [  P l  - -  (e"cos v + 1)] 1/2 

where 01 = [ ezu + 2e"cos v + 1] 1/2 

'rr < v < 2"rr. 
(4.3-12) 

(4.3-13) 

(4.3-14) 

A geometric representation of the coordinates is shown in Fig. 4.3-1. At 
the origin of the xy coordinate system the value of u ---, ~. A heavy line is 

,~t, ~'*, \ 
' "" ~ L.~ . . . . .  ~ 7 0  \ /  

\ u . < o  l.. 

:/ 

FIGURE 4.3-1 
Inverse Cassinian oval coordinates. Adapted from copyrighted material [MS 71] by permission 
of Springer-Verlag. 
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TABLE 4.3-1 
M o d e  III  R a t i o  o f  P l a s t i c  Z o n e  L e n g t h  to C r a c k  L e n g t h  

( L p / a o) v e r s u s  c = -~  / k 

c (4.3-2) LEFM (4.3-17) Approximate E-P (4.3-3) Exact E-P (4.3-4) 

0.05 0.00250 0.00251 0.00251 
0.1 0.01005 0.01008 0.01013 
0.2 0.04083 0.04120 0.04208 
0.3 0.09444 0.09608 0.10113 
0.4 0.17514 0.17920 0.19811 
0.5 0.29099 0.29688 0.35425 

drawn along the positive x-axis from the origin (0,0)  to the point  (a, 0) 
where  u ---, - ~ .  The physical crack in the elastoplastic problem in Car te-  
sian coordinates  spans from the origin (0, 0) to the point  (a 0, 0) where  u 0 
intersects the positive x-axis. This coordina te  x c is de te rmined  from 
(4.3-12) by substituting u 0 from (4.3-11) and v = 27r into it; i.e., 

a o = x c ( u l l  ,27r)  = a(1 + exp u0) -1 /2  __ a( l  + c 2 )  .... 1/2. (4.3-15) 

Thus the algebraic relat ionship between a and a o is a = ao(1 + c 2 )  1 / 2 .  

Similarly, the x coordinate  of the leading edge of the plastic zone X p is 
evaluated as 

Xp(Uo, "rr) = a ( 1  - exp u o) 1 / 2  = a(1 - c 

= ao[(1 + c 2 ) / ( 1  - C2)] 1/2, 

2) - 1 / 2  

(4.3-16) 

and the plastic zone length L p along the crack axis is obta ined as follows: 

Lp = x F - x c = a,,{[(1 + c 2 ) / ( 1  - c2)] ~/2 - 1}. (4.3-17) 

As can be seen in Table 4.3-1, the length of the plastic zone (4.3-17) 
from linear elastic fracture mechanics  ( L E F M )  is comparable  to the 
asymptotic expansion (4.3-3) of the elastoplastic ( E - P )  problem and the 
exact E - P  solution (4.3-17) for the range of values of c provided. 
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Plastic strip model, s e e  a l s o  Cohesive 

force, model 
mode I 

Dugdale model, 34-41 
exact, 34-38 
small-scale yielding, 39-41 

Lu-Chow, load variation, 205-206 
mode II 

Bilby-Cottrell-Swinden model, 42 
mode III 

Bilby-Cottrell-Swinden model, 
41-45, 203 

exact, 203 
small-scale yielding, 41-45 

Cherepanov model, 172, 174, 181, 
183, 186, 189, 193, 195-196, 
198, 201-204 

transition model, 171-206 
Plastic zones, s e e  Elastoplastic bound- 

ary of crack problem; Plastic strip 
model 

Poisson's ratio, defined, 5 
Polar coordinates, 19-21 
Pore radius, s e e  Equivalent pore radius 
Potential energy, 82, 84, 109 
Prandtl-Reuss equations, s e e  Flow rule, 

plastic theory, Prandtl-Reuss equa- 
tions 

Prandtl solution, mode I, 75-81, 87-89, 
114, 164, 167 

Principal strain, defined, 4 
Principal stress, s e e  a l s o  Cayley-Ham- 

ilton theorem 
defined, 3 

Puls, M. P., 232 

Quadrifolium, s e e  Conchoid of quadri- 
folium 

Quasilinear equation, defined, 54 

Raj, R., 232 
Ramberg-Osgood model, s e e  Strain 

hardening, isotropic, power law, 
Ramberg-Osgood 
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Rice, J. R., 52, 112, 232 
Romberg numerical integration, 224, 

245 
Ryzhik, I. M., 241 

Saint Venant-von Mises theory of plas- 
ticity, 16 

Seo, Y., 246-247 
Series expansion, s e e  Asymptotic series; 

Taylor Series 
Shear modulus, defined, 5 
Shear stress, s e e  Stress, shear 
Shield, R. T., 90 
Shield-Drucker solution, mode I, 86-87 
Sliding mode, s e e  Mode of crack growth 
Slip line 

antiplane 
Hult-McClintock model, 49, 126, 

146, 172-173, 279 
transition model, 172-173, 179, 187, 

279 
plane strain, 68-69, 72, 74-80, 88, 90, 

107, 165-166 
plane stress 

Mises, characteristics not aligned 
to slip lines, 101 

Tresca, 99, 134, 136, 138, 145-146, 
150-151, 154-156, 160-162 

Slip planes, plane problem, 97 
Small-scale yielding 

defined, 28, 266 
Sofronis, P., 233 
Sokolovsky, V. V., 100 
Steel, 171, 199, 207 

environmental crack growth, hydro- 
gen embrittlement, 207 

gas, diatomic, 208, 211-214 
hydrogen sulfide gas, 213-215, 254 
water 

liquid, 208-212 
vapor, 208 

fracture assessment diagram, 199 
Stefan problem, 253 

modified, 246-259 
Stevens, R. N., 232 
Stone, D. E. W., 37 

Strain, s e e  a l s o  Flow rule, plastic the- 
ory; Stress-strain relationship 

as related to displacement 
Cartesian coordinates, 4 
polar coordinates, 21 

Strain hardening, 8-10 
isotropic, 10 

power law, 52-63, 90-94, 105 
Ramberg-Osgood model, 91 

kinematic, 10 
Strain rates, s e e  Flow rule, plastic the- 

ory 
Stress, s e e  a l s o  Yield stress 

discontinuity, 85-86, 101,103-105, 
122, 140, 142-143, 162, 164, 168, 
180, 192-193, 279 

nominal stress versus true stress in 
tensile test, 9 

normal stress, defined, 2 
shear stress, defined, 2 

Stress corrosion cracking, s e e  a l s o  spe- 
cific materials, 231-233, 246-249 

Stress function, s e e  a l s o  Westergaard 
formulation 

antiplane 
elastic, 30-31, 33 
plastic, 46-50, 54-63 

plane 
elastic, Airy, 19, 1-20, 23 

plastic, alternative 143-150, 154, 163, 
169 

Stress intensity, 53, 195-196 
Stress intensity factor 

mode I 
edge crack, 27 
internal crack, 27 

mode II, internal crack, 29 
mode III 

edge crack, 273 
internal crack, 34 

Stress-strain relationship 
linear elastic, 5 
plastic, s e e  Deformation theory of 

plasticity; Flow rule, plastic the- 
ory 

Strip model, s e e  Plastic strip model 
Summation convention for repeated in- 

dices, not used, 2 
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Taylor series, s e e  a l s o  Asymptotic se- 
ries, 37-38, 234, 236, 240-242, 257 

Tearing mode, s e e  Mode of crack 
growth 

Titanium alloys, 199, 207-208 
Torsion problems, antiplane deforma- 

tion related to, 30 
Traction, 2, 23-25, 27, 29, 33-35, 41-42, 

45, 62, 75-76, 83, 85-87, 92-93, 
108, 112-113, 133, 141-142, 167, 
176, 190, 192, 198, 202-204, 
217-218, 226, 228, 231, 255, 261, 
265, 267-268, 273, 282 

Transition model, 171-204 
Tresca yield condition, s e e  Yield condi- 

tion, Tresca 
Troiano, A. R., 215, 231 
True stress, s e e  Stress, nominal stress 

versus true stress in tensile test 

Unger, D. J., 195, 201-202, 232, 246 
Uniqueness, 130, 133, 137-142 
Upper bound theorem, 84-90 

van Leeuwen, H. P., 232 
Varadan, V. K., 232 
Velocity, 72-75, 79-82 

discontinuity, 79-81, 99 

Weight, s e e  Body force 
Well-posed problem, 55, 143, 145 
Wells, A. A., 38 
Westergaard formulation, s e e  a l s o  

Kolosov formulation, relationship 
with Westergaard stress functions 

mode I, 26 
Dugdale model stress function, 37, 

39 
exact stress function, 262 
small-scale yielding stress function, 

264 

mode II, 28 
exact stress function, 268 
small-scale yielding stress function, 

270 
mode III, 32-33 

Bilby-Cottrell-Swinden model 
stress function, 42, 203 

exact stress function, 271 
inverse Cassinian oval coordi- 

nates, 282 
small-scale yielding stress function, 

272 
transition model stress function, 

177 
Williams expansion, 112, 114 
Wilshaw, T. R., 232 
Work hardening, s e e  Strain hardening 

Yield condition, s e e  a l s o  Yield stress; 
Yield surface 

Drucker-Prager, 7, 279 
Mises, 6 
Mohr-Coulomb, 7, 279 
pressure effects, 13-14 
Rankine, 162-163, 279 
Tresca, 6-7 

Yield stress 
normal, 6, 8 
relationship between normal and 

shear 
Mises, 6 
Tresca, 7 

shear, 6, 53 
Yield surface 

convex, 11 
isotropic hardening, 10 
kinematic hardening, 10 
Mises, 7, 10, 95 
orthogonality of strains to, 11-12 
pressure effects, 13-14 
Rankine, 163 
Tresca, 7, 14, 95, 128, 163 

Young's modulus, defined, 5 
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