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If p be the distance to O

Mr. Newton said he could show,
That the force of attraction
Behaves like the fraction

Of one over the square of rho.

R.MR.



Preface

This book is to serve as a text for engineering students at the senior or
beginning graduate level in a second course in dynamics. It grew out of
many years experience in teaching such a course to senior students in
mechanical engineering at the University of California, Berkeley. While
temperamentally disinclined to engage in textbook writing, I nevertheless
wrote the present volume for the usual reason—I was unable to find a
satisfactory English-language text with the content covered in my inter-
mediate course in dynamics.

Originally, I had intended to fit this text very closely to the content
of my dynamics course for seniors. However, it soon became apparent that
that course reflects too many of my personal idiosyncracies, and perhaps it
also covers too little material to form a suitable basis for a general text.
Moreover, as the manuscript grew, so did my interest in certain phases
of the subject. As a result, this book contains more material than can be
studied in one semester or quarter. My own course covers Chapters 1 to 5
(Chapters 1, 2, and 3 lightly) and Chapters 8 to 20 (Chapter 17 lightly).
Insofar as the preparation of the student is concerned, the demands are
satisfied by present-day methods of teaching mathematics, physics, and
mechanics during the first three undergraduate years of an engineering
curriculum. Students are expected to have studied kinematics and kinetics
in a first course at the sophomore or junior level by the methods now current,
and to be familiar with the fundamental principles of Newtonian mechanics
and their applications in two and three dimensions. Their preparation in
mathematics should include the elements of determinant and matrix theory,
the calculus, and a first course in ordinary differential equations, and they
must know how to manipulate, multiply, and differentiate vectors. It may
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viii Preface

be of some slight help to them to be familiar with set-theoretical symbols,
but the demands in this respect are so modest that they can easily acquire
this familiarity while studying its application.

In my opinion, a first course in dynamics should do more than only im-
part to the student the techniques needed to solve problems. Similarly, a sec-
ond course in dynamics should do more than help the student learn new
techniques more sophisticated than those he or she knows already; it should
also deepen his or her understanding of the fundamentals. And so, a con-
siderable portion of this text is devoted to a new, a longer, and a more
penetrating look at a familiar subject—Newtonian mechanics. Not only
does this seem to me to be one of the proper functions of a second course
in dynamics, but it becomes altogether unavoidable when the transition is
made from the Newtonian to the Lagrangean® point of view.

In the review of Newtonian mechanics some attention is paid to the
foundations of that discipline, the problem of classical mechanics is defined
with some precision, and much care is devoted to the theory of constraints.
In all this I have stressed geometric interpretations not only because they
appeal to me, but because I have found that they appeal to the student
as well.

Rigid body mechanics has been touched lightly, as has motion relative
to moving frames, because these subjects are usually discussed in a first
course in dynamics. The theory of rotations has been treated as an illustra-
tion of orthogonal matrix transformations because, to my knowledge, that
theory is almost never included in a first course in mechanics; Poinsot’s
representation is included for the same reason.

This book is intended for the student unfamiliar with Lagrangean
mechanics; the theory and application of that theory forms the major
portion new to him.

I regard Lagrangean mechanics not primarily as a mechanical process
for producing equations of motion, but as a bold departure from Newtonian
viewpoints, as the crowning touch to a development begun by Bernoulli
and d’Alembert. Its formulation of the general theory of a constrained
dynamical system is a subtle and aesthetically satisfying product. I have
attempted to describe it that way.

Almost every chapter contains solved problems illustrating the theory
in it. For one thing, I regard the application of theories as an important

t This spelling is phonetically equivalent to the more common “Lagrangian.” It reflects
my reluctance to mutilate Lagrange’s name and was agreed to by the publisher to please
me.
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learning aid; for another, it is essential that knowledge of a way to solve a
problem (or merely one’s faith in the possession of this knowledge) not be
confused with actually producing the solution.

Every author setting out to write a textbook must make certain decisions
with respect to notation. Whatever they are, he is sure not to please everyone.
In this respect, his position is perhaps not unlike that of the elected official,
judged in a public-opinion poll; some readers will approve, some will
disapprove, and some will have no opinion.

In general, 1 have followed conventional, and perhaps old-fashioned,
notation. | have not used the double index summation convention even
though it would have resulted in more compact formulas. It seems to me
that the added burden placed on the student by its use should be reserved
for fields in which most of the quantities dealt with are tensors, and in which
tensor transformations form an essential part of the theory. Also, I have not
used special symbols to differentiate between a function and the value of a
function at a point. Thus, having defined a function f on some domain
X, I say that the value of f at x is f(x). On the rare occasions where the
distinction is important T write: f(x;) is the value of fat x; € X.

Perhaps the only departure in my notation from that commonly used
in elementary texts on dynamics is that I do not use bold print to denote a
vector, and I use unit vectors sparingly. Thus, an n vector is usually written
as x = (xy, Xy, ..., Xx,). When unit vectors are useful, I use the symbol
é, for the unit vector in the r direction; thus,

n
x =) x@.
=1
When the space is & and Cartesian coordinates are used I write xi+yj+zk
without explanatory phrases.

On some occasions the same symbol is used in different places in the
text to denote different quantities. Where this has been done intentionally,
some explanatory text has been added pointing to this change. If it has
also occurred unintentionally, I apologize in advance, and I would be
grateful to readers who call my attention' to it.

It is evident that a new text on an old and well-established subject
can contain little that is new. This book is no exception; many of the
problems treated here are classical, and much of the contents can also be
found elsewhere. I hope, nevertheless, that some of the material will be
novel to many readers.

In writing this book, I owe a great deal to others. Some of the excellent
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books which I found of great help are’: An Introduction to the Use of
Generalized Coordinates in Mechanics and Physics by W. E. Byerly, Classical
Mechanics by H. Goldstein, Mechanics by L. D. Landau and E. M. Lifshitz,
Analytical Mechanics (in Russian) by A. I. Lur’e, Classical Dynamics
by J. L. Synge, The Dynamics of Particles by A. G. Webster, and A Treatise
on the Analytical Mechanics of Particles and Rigid Bodies by E. T. Whittaker.
There are, however, two books without which the present volume could
not have been written. One of these is a truly great and an altogether ad-
mirable book by L. A. Pars: A Treatise on Analytical Dynamics; the other
is a very deep book (in German) by G. Hamel entitled Theoretische
Mechanik.

Many of the examples in this book have originated with one of the
sources listed above. Where this is the case, the source has been acknowl-
edged. However, the treatment here is never a direct quotation and it is
usually done differently as well as more extensively than in the quoted
source. \

Undoubtedly, this book owes more to Pars’ treatise than to any other
source. I have learned much from his careful and clear definitions and
from his unambiguous treatment of concepts which emerge from most
books as somewhat nebulous and indistinct shapes.

My love of dynamics came initially from a study of Hamel’s inspiring
book. It is from him that I first learned that the comparison arcs in Hamil-
ton’s principle are not, in general, possible paths, and that therefore
Hamilton’s is not, in general, a variational principle. Hamel had a very
thorough understanding of dynamics and he had the rare ability of com-
bining analytical skill with physical insight. Moreover, his book contains
one of the most interesting collections of problems to be found anywhere.
Many of the problems in this text are due to Hamel. His book is not easily
read, his notation is often cumbersome and rarely conventional, and the
organization of its content could be improved. Nevertheless, it makes
rewarding reading for those who make the effort.

Unfortunately, neither Pars’ nor Hamel’s book is suitable as an under-
graduate text. Pars’ treatise is too comprehensive for this purpose (as he
says, it gives “a reasonably complete account of the subject [the entire
subject of dynamics] as it now stands”) and it lacks the problem collection
expected in such texts. Hamel’s book not only has the disadvantage (to
English-speaking students) of being written in German, but it is perhaps

t Books which are frequently referred to are listed in the bibliography. Where only rare
references are made to a source, it is given in a footnote.
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more suitable for the student who already has an acquaintance with the
subject matter.

It gives me great pleasure to acknowledge my debt to many. First and
foremost, I want to thank the students who have attended my second course
of dynamics; I have learned much from them.

My special thanks go to my colleagues Professors C. S. Hsu and G.
Leitmann, and to my teaching assistants Messrs. Wen-Fan Lin and James
Casey; they have read the manuscript critically and have made many
suggestions which have materially improved it. In particular, Messrs. Lin
and Casey have checked all formulas, equations, and examples. Without
their devoted effort, this book would contain a myriad of errors which are
not now in it.

Finally, I wish to acknowledge with gratitude aid from the National
Science Foundation, which has supported my work in the geometry of
dynamics, some of which is published here for the first time.

Reinhardt M. Rosenberg
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1

Introduction

In looking back on the history of the development of particle mechanics
to its present state of near perfection one can hardly fail to notice that,
rather than having evolved in a steady progression, bursts of exciting ac-
tivity were preceded by more or less barren periods. For instance, few
important discoveries in mechanics were made between the lifetimes of
Aristotle and Archimedes on the one hand, and those of Kepler and Galileo
on the other. However, Galileo’s epochal recognition of the importance of
acceleration initiated one of the most fruitful periods of discovery, brought
to a temporary conclusion in Newton’s Philosophiae naturalis principia
mathematica (1687). The theory of particle mechanics which was, in a sense,
concluded by Newton is what we call today Newtonian particle mechanics.
It comprises that method of dynamical analysis in which the fundamental
problem of particle mechanics is formulated by means of Newton’s second
law, i.e., by the Newtonian equations of motion.

The next epoch of important discoveries is intimately linked with the
names of Johann Bernoulli, Euler, d’Alembert, and Lagrange. It was
summarized a hundred years after the appearance of Newton’s Principia
in Lagrange’s monumental Mécanique Analytique (1788), and its subject
matter is called today Lagrangean mechanics. Here, the formulation of the
fundamental problem of particle mechanics requires the notion of the
virtual displacement, and it is formulated by Lagrange’s equations of motion.

Subsequent developments in the analytical methods™ of classical

t The term “analytical” is not taken to mean “nongeometrical,” rather it has here its
original meaning of the structure of an entire science, based on a few fundamental
principles.
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mechanics are in large measure due (among others) to Poisson, Hamilton,
Jacobi, and Gauss. While no contemporary treatise summarizing these
new ideas was ever written by any of their discoverers, they are nevertheless
associated with a single name—that of Hamilton—because, here, the funda-
mental problem of particle mechanics is formulated by the so-called Hamil-
tonian canonical equations, and this branch of mechanics is called today
Hamiltonian mechanics.

It is often said (and in a restricted sense it is true) that one may for-
mulate the problems of particle mechanics by the fundamental postulates
of any one of these three theories. Nevertheless, it is inconceivable that the
sequence of their discovery could have been different from that of their
historical emergence. The reason for this opinion is that the only basic
postulate of classical mechanics which can be tested experimentally, i.e.,
which is accessible to verification in the real world of observable events, is
Newton’s second law. It is this law on which Newtonian particle mechanics
relies. The other two theories require the abstract notion of virtual displace-
ments, i.e., imagined configuration changes not involving time. Clearly,
such principles, resting on a thought experiment as they do, cannot be
tested experimentally. Moreover, the mathematical apparatus required to
deal with these theories increases in sophistication as we ascend the historical
sequence of developments of particle mechanics. Many of the required
mathematical tools emerged only as they were needed in the solution of
dynamics problems. Thus, these mathematical discoveries were often
motivated, not merely utilized, by the requirements of dynamical analysis.

In the last hundred and fifty years, nothing has appeared in the develop-
ment of classical particle mechanics that can be compared in fundamental
importance to the enunciation of Newton’s second law. Nevertheless, these
were not idle years. Not only were refinements added to the existing theory
but, more important, the emerging trend toward generalization in math-
ematics permitted much deeper insight into what one may call the “inner
connections between the functional relations of dynamical analysis.” In
consequence, classical particle dynamics is one of the aesthetically most
satisfying scientific structures modeling observable events of the real world,
and at the same time it is one of the most completely evolved theories.
Today, there exists a very complete and internally consistent science of
particle mechanics (and of rigid bodies, which are special systems of
particles); the practitioner (i.e., the physical scientist concerned with solving
specific problems of particle mechanics) has a formidable array of methods
and tools available, whether he or she is interested in problems of space
flight, variable-mass systems, or problems of impact.
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It is natural that a science which is in such a state of near perfection
should have stimulated activity toward its axiomatic foundation. The
axiomatic method consists in setting forth certain basic statements or
axioms about the concepts to be studied, and to deduce from them theorems
by the methods of logical inference and deduction.

The famous mathematician David Hilbert once said, “I think that
everything that can be an object of scientific thought at all, as soon as it is
ripe for the formation of a theory, falls into the lap of the axiomatic
method.”" If Hilbert’s opinion is justified, it is clear that classical particle
mechanics is a suitable object for the application of the axiomatic method.

Here, Hilbert echoed Newton’s viewpoint on this question, because
the structure of Newton’s Principia was modeled on Euclid’s axiomatic
Elements of Geometry. Both are divided into “books,” both begin with
“definitions” followed by “axioms,” and these are followed in both works
by “propositions,” which are classified in both either as “theorems” or as
“problems.” Newton began with eight definitions of such concepts as
matter, quantity of motion (i.e., momentum), force, etc., and with the
assertion that words like time, space, place, and motion are “well known
to all” and are only in need of certain refinements, not of definition. Then
follow the three famous axiomata sive leges motus (laws of motion); the
major portion of the Principia is taken up by 193 propositions, of which
111 are theorems and the remaining ones problems.

While Newton attempted an application of the axiomatic method in his
presentation of the science of mechanics, one must conclude that by modern
standards of logic this attempt was not successful. For instance, it is clear
that the second law contains the first. The second law states:

The change of motion (in the modern idiom: of momentum) is proportional
to the impressed force. . .

Thus, it implies that, if no impressed force is present, the motion remains
unchanged. But this last statement is the same as that contained in the
first law (the law of inertia). Hence, the first law is, in fact, not an axiom
but rather a theorem. Moreover, Newton’s definition (IV) states:

An impressed force is an action exerted upon a body in order to change
its state, either of rest or of uniform motion in a straight line.

Thus, the second law is anticipated by the definition. One sees, then, that

t Quoted from Richard von Mises, Positivism: A Study in Human Understanding, Harvard
University Press, Cambridge, Massachusetts, 1951.
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Newton’s axioms are not independent of each other, nor of his definitions.
This fault in Newton’s axiomatic presentation was basically due to the ideas
of logic which existed in his and earlier times and which were not resolved
until it was realized that the fundamental concepts are defined by the axioms,
not independently of them.

With the clarification of the fundamentals of logic (brought about
largely by Mach and Hilbert), many post-Newtonian studies of the axiomatic
foundations of classical particle mechanics have been made. Those which
appeared around the turn of the century are largely connected with the
names of Mach, Kirchhoff, Poincaré, Hertz, and, somewhat later, Hamel.
More recent contributions to the axiomatization of classical particle
mechanics were made by Pendse, Simon, McKinsey, Sugar, Suppes, Bunge,
and others.

The science of dynamics is the science of “motion,” and motion can be
“represented” in different ways. For instance, we might ask: What is the
position of every particle of a system when the position of one of them is
given? or: What is the velocity of every particle when the position of all
of them is known? There are other questions, similar to the above two,
that might be asked. The answer to each leads to a different “representation”
of the motion. We are, thus, led naturally to the consideration of spaces
in which the motion is representable by a point, or by a curve (called a
trajectory) traced by a point. The spaces which will be considered here are:
the configuration space, the event space, the state space, and the state-time
space. It is surprising how much information about the general character
of the trajectories in these spaces is deducible from the axioms alone, and
without doing any computations.

Perhaps the most useful application of these geometrical representa-
tions is to “constraints.” These can always be interpreted by means of and,
in most cases, as surfaces or surface elements in these spaces. The notion
of constraints must be introduced before the dynamics problem can be
formulated. Therefore, we shall classify and examine constraints before
carefully formulating the two problems of particle mechanics most fre-
quently encountered.

There is a basic difference between Newtonian problems in which un-
bounded forces occur and in which they are excluded. It turns out that
unbounded forces can be made to fit into the framework of Newtonian
mechanics provided their impulse is bounded. Most of this book is devoted
to a study of dynamics when the forces are bounded. However, in the last
chapter we consider systems in which unbounded forces of bounded
impulse act.
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This book is aimed at a treatment of Lagrangean mechanics and that
branch of mechanics could not exist without the central concept of the
“virtual displacement” and the “‘virtual velocity.” Moreover, the transition
from the Newtonian to the Lagrangean points of view could not be made
without the much maligned and often misunderstood principle of d’Alem-
bert, nor without a careful and unambiguous classification of forces as
internal or external, and as given or constraint forces.

There are basic differences between Newtonian and Lagrangean
mechanics. Not only is Lagrangean mechanics formulated in terms of
generalized coordinates while the Newtonian formulation requires that
the coordinates be defined at the outset, but it turns out that there are two
quite different types of mechanics problems (even when all forces are
bounded): the holonomic and the nonholonomic, and their basically
different natures cannot be fully appreciated without the structure of
Lagrangean mechanics.

No matter which fundamental principles of mechanics are utilized as
the points of departure, the formulation of the dynamics problem either
results in, or can be reduced to, a set of differential equations. The desired
solution is usually found by integrating these equations. Thus, it is only
natural that certain aspects of the theory of integration should be discussed
here.

Two applications of dynamical theory are of particular interest. One
is the problem of planetary motion, the other is the problem of gyroscopics.
The former has done more to advance the science of particle mechanics
than any other, and it has a fascinating history besides. The latter has not
only furnished a rational explanation of phenomena that seem to the
uninitiated to border on the miraculous, but it is one of the more sophisti-
cated applications of dynamical theory, and renewed interest in it has been
shown in recent years because of the applications of gyroscopics to space-
flight problems. It is for all these reasons that both these topics have been
included in special chapters in this second course in dynamics.
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Dynamical Systems

2.1. Particles

Classical particle mechanics deals with particle motion resulting from forces
acting on particles. It is satisfying to have an axiomatic foundation for
this discipline. However, the axiomatization of a science is certainly not
essential for its comprehension, and so we do not treat this subject in the
book.

Here, we want to give some fairly precise descriptions of particles and
systems of particles, of Newton’s second law in the form

Impulse = Momentum change,

and of the quantities occurring in that law. We also want to expose the
difference between that law and the more familiar form

Force — Mass x Acceleration.

Therefore, we will be looking at a familiar subject, but not in a familiar
way.

Because of the economy of space which they afford, we will use some
set-theoretical symbols in these descriptions, but their use is not really
essential; it is merely convenient. These symbols are defined where they
are first introduced.

A particle P, is a point in three-dimensional Euclidean space &
such that each P, carries with it permanently a “label” m, called the mass
of P,. For this reason, the term “point mass” is frequently used in place of
“particle.” Every m, (r = 1,2, ...,s) is a positive, real constant for all

7
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Fig. 2.1.1. Schematic representation of the impenetrability property.

time' 1€ &, where & is defined on the set of real numbers by!

& = {t: —o0 < t < o0} 2.1.1)

The position vector x"(t) of P, with respect to some fixed point in &3
is, for all f€ @ and for everyr = 1,2, ..., s, a single-valued, continuous
vector function of ¢. This statement is equivalent to saying that every particle

t re® is read: ¢ belongs to the set &.
I {r: — 00 <t < co}isread: the set of all 7 such that ¢ lies in the interval — co < t < oo,
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occupies one and only one position in space at any given instant of time.
In addition, all P, have the so-called “impenetrability property,” which
we state as follows: If there exists a single t, € @ at which any two particles
P, and P, have the same position, e.g., x"'(f,) = x""(t,), then their positions
coincide permanently, i.e., x"'(¢) = x*"'(¢t) for all te &. If there exists a
single t, € & at which any two points P,. and P, have different positions,
e.g., x"'(t,) 7 x""(t,), then their positions never coincide, i.e., x”'(t) 7 x*'(¢)
for all t€ &. In the first case, the two points are indistinguishable from,
and therefore equivalent to, a single particle of mass m, = m, + m,..
Hence, the impenetrability property is equivalent to the observation that
one and only one particle can occupy a given position at any given instant
of time. The above definition of impenetrability is illustrated in Figs. 2.1.1(a)
and (b).

While the position vectors x7(¢) are everywhere continuous, this is not
necessarily true of the velocities. The velocities dx'/dt = X" (r = 1,2, ..., s)
may have (at most) isolated, finite discontinuities at instants #; € & ; where'

& ;= {t;: %"(t;) not defined foroneormorerinr=1,2,...,s; j=1,2,...}.
(2.1.2)

2.2, Systems of Particles

To define the meaning of the phrase “system of particles” we proceed
basically as follows: We specify a closed surface %7 in &3 called the
“boundary.” The points within and on the boundary are the “living space.”
Then the particles in the living space are called the “particles of the system.”

Let the boundary &7 be the spherical surface!

3
e {x: x e &3, Z X2 = Rz}, (2.2.1)
=1
where R is a real constant.
The living space <(R) is the set of points

A(R) = {x: xe &3, g x2 < R2}. 2.2.2)

t The symbol ; in (2.1.2) is read: moreover.

1 In more general cases, & is a closed surface (or several closed surfaces) bounding a finite
domain of &?3. The surface 5 has been chosen here as spherical to illustrate the idea
of the boundary in a simple way.
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The set of particles whose position belongs to <(R) is defined by?
llg = {P,[(x"(1)), m]: x* € L(R);r = 1,2, ..., n(t) <oo}. (22.3)

The totality of the members of this set is called the population of the
living space, or the particles of the system, or the system of particles. We
assume that /1 is not empty, i.e., there is at least one particle in the living
space.

The number of particles of the system n(¢t) may change in time. If it
does, particles must necessarily be acquired or lost by the system by passing
through the boundary. Dynamical systems (within the compass of Newto-
nian particle mechanics) which acquire or lose particles by passage through
the boundary are called “variable-mass™ dynamical systems.

2.3. Forces and Laws of Motion

We postulate the existence of a Galilean or inertial reference frame
g = (é,, é,, é;), where the é; are linearly independent unit vectors? im-
mersed in &3, and the existence of a “universal” or absolute time & *
such that the velocity vectors x"(¢) = dx"/dt with reference to that frame
and time satisfy for all £ € &* and for all x"(¢) = x,7(t)é, -+ x,7(t)é, -+ x57(t)é,
the system of integral equations

t
xX(t) = mLJ Frixt, x2, ..., x" XL X2 ..., X% 1)de + x7(t,)  (2.3.1)
T Jiy

forallr =1, 2, ..., n The X"(t,) are arbitrary constant vectors of bounded
magnitude; they are called initial velocities. The function F7 is called the
resultant of the forces acting on P,; its time integral over [t,, 1] = t, < 1 < ¢
is called the impulse of F in that time interval. It follows from the properties
of X" that the resultant forces must be integrable with respect to time over
any time interval, i.e., over any connected subset of & *.

Equation (2.3.1) states that the change of linear momentum m,[X"(¢t) —
X*(t,)] of every particle P, during any time interval [z,, t] is equal to the
impulse of the resultant force over the same time interval. One sees that
(2.3.1) is not Newton’s second law, but rather the integrated form of that

t PI(x"(¢)), m,] is read: The points P, having position vector x"(t) and mass m,.
1 The vectors é; (i =1, 2, ..., n) are said to be linearly independent if one cannot find n
scalar constants 1;, not all zero, such that X7 4,6, = 0.
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law. We prefer “impulse equals momentum change” to “force equals the
product of mass and acceleration” because we noted earlier that velocities
may have isolated, finite discontinuities. When the velocity has a discon-
tinuity, the acceleration is not defined or, at such instants, Newton’s second
law is not an equation; however, (2.3.1) is valid at these instants.

Particle velocities can be discontinuous only at instants z; when “im-
pulsive forces” act. We define the set of these instants as'

t
%’j:{zjea*:alimj Frdr=£0; /=12, } (2.3.2)

t>t; J t;

A force F is called “impulsive” if the bounded quantity P satisfies

P = lim t F(r)dv£0. (2.3.3)

t>t; J ty

But that equation implies that | F(¢#;) | = oo, i.e., impulsive forces have
infinite magnitude. Such forces are frequently treated in dynamical problems,
for instance, when an object is struck a blow, or when it impinges on a rigid
surface.

The complement of Z; in #* is denoted by

%ﬂc* - %e* - %d] (2'3'4)

Therefore, & is the set of instants when the velocities are continuous.
From (2.3.1) one finds directly (by differentiation)

Newton’s second law of motion: mx"(t) = Fr(x', x%, ...,
x*; XU X2, ..., &% t) holds for all t € &, for all X" € &3,
and for all r = 1,2, ..., n(t). (2.3.5)

When a property holds always except on a set of times of measure zero, it
is said, to hold “almost always.” Therefore, the law (2.3.5) states that
Newton’s second law holds almost always.

One also hast:

If and only if ©; = (%5, Newton’s second law holds for all
te ©*, for all x € &3, and for all r =1,2, ..., n(). (2.3.6)

t 3 lim is read: The limit # — #; exists.
t—)tj

1 @ is the empty set.
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Expressed differently, when no impulsive forces act, Newton’s second law
holds always. Because of these theorems, we use the following terminology:

When @ ; = (3, the system of particles is called “strictly
Newtonian,” and it is denoted by (SN). When & ; # (J,
the system is called “Newtonian” (N). 2.3.7)

2.4. Galilean Transformations

We postulated the existence of a Galilean frame g = (é,, é,, é;)
immersed in & in which the axiom of bounded momentum (2.3.1) holds.
The set of all reference frames in which (2.3.1) is valid is denoted by

Z = {g). (2.4.1)

In other terms, we admit the existence of more than one Galilean reference
frame, and the totality of these is the set &.

If a transformation (x7,?)— (x™,t’) from one set of space-time
coordinates to another leaves the left-hand side of the axiom of bounded
momentum (2.3.1), or of Newton’s second law (2.3.5), form-invariant, it is
called a Galilean transformation. The most general form of such a trans-
formation is

x" =at + b+ Ox,

vt (2.4.2)

where a and b are arbitrary constant vectors, @ is an arbitrary constant
rotation matrix," and « and g are arbitrary constant scalars.
From the first of equations (2.4.2) one finds by direct differentiation

(1) = a + D¥(t),

243
X'(t) = Ox'(¢). ( )

It follows from the first of equations (2.4.3) that, when the time is left
unchanged (¢ = t') in a Galilean transformation, the velocity measurements
involve only a shift in origin and a scale change. The physical interpretation
of such a transformation is that the frame g’ = (é,/, é,’, &), in which the
velocity is X, moves with uniform constant velocity (it does not accelerate)

t The theory of rotations is treated in Section 10.3-10.8, where the rotation matrix is denoted
by (b;), and where it is shown that this matrix is nonsingular.
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with respect to the frame g = (é,, é,, é;), in which the velocity is X". In
addition, a different scale is used in measuring these velocities.

When the transformation involves also a time change in accordance
with the second of Egs. (2.4.2), one finds from that equation

d
dt’

d
dt’

1
Ca

or
dx”’ a D dx

at’ T« " a dr’
dzxr’ D dix

dar’r @@ dr?

(2.4.4)

These are identical in form to (2.4.3) because a, «, and @ are all constant
and arbitrary. One concludes that Galilean transformations consist in
introducing a new frame of reference and a new time. The measuring scales
in the new quantities may differ from those in the old, and the new frame
moves with uniform, constant velocity with respect to the old. The new
time differs from the old by a change in origin, and a scale change.

A Galilean transformation (2.4.2) does not necessarily leave the equa-
tion of bounded momentum or Newton’s second law form-invariant. We
have already seen how it transforms the acceleration terms of this law.
However, it also transforms the remaining terms. In order to leave Newton’s
second law form-invariant, the transformation must be such that one has
after the transformation

mE = Fr(xV, x¥, ..., x"; XV, %, ..., %" t)
(where dots denote d/dt’) if one had originally
mXT = Fr(xl, x2%, ..., x", x1, X% ..., x"%1)

(where dots denote d/dt, and the F" are the same functions of their respective
arguments). A similar set of requirements could have been written for the
law of bounded momentum.

When the equations of motion remain form-invariant under a Galilean
transformation, the forces are said to possess the property of “objectivity.”
Hence we ask: What must be the form of the forces and/or their arguments
such that the forces possess the objectivity property? One way of answering
the question is to say that the forces must depend only on “relative displace-
ments” and “‘relative velocities” and on time. As an example consider a
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particle in rectilinear motion; assume it is immersed in a fluid and its velocity
relative to this fluid produces a force on the particle which is proportional
to that relative velocity. Let an observer note the velocity of the particle
(relative to himself) to be X, and that of the fluid to be u. Then the equation
of motion is

mx = k(x — u).

If we introduce, for example, the Galilean transformation in which @ is
the identity matrix, « = 1, and § = 0, we find

x' =at+ b+ x,
t'=1.
From the first of these
X' =a+ x;
hence
U =a-+u,

where u’ is the fluid velocity relative to the observer in the new Galilean
frame,

s/

X =%,
and from the second

dldt' = d|dt.
Therefore, the transformed equation of motion is

mi =k(a+ X —a—u)

=k —u'),

and hence is form-invariant.

Another way of illustrating the required properties which ensure
objectivity is suggested by Synge (p. 9). He considers a system of four
particles (for instance) forming a tetrahedron, as shown in Fig. 2.4.1.
Each has a force F; acting on it, and each has the velocity v; relative to a
a Galilean frame. This configuration at some instant ¢, is shown in Fig. 2.4.1.
If the displacement dependence of the force is completely determined by
the tetrahedron configuration only, it involves relative positions only.
If, moreover, the force and velocity vectors are rigidly attached to the
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Fig. 2.4.1. Synge’s schematic illustrating the objectivity property.

tetrahedron itself, i.e., they translate and rotate with the tetrahedron, then
the forces have the objectivity property, or the laws of motion are form-
invariant under a Galilean transformation.

2.5. Arguments of the Forces

The forces F” in the laws of motion (2.3.1), (2.3.3), and (2.3.5) have
been considered to depend on relative positions, relative velocities, and time,
but not on accelerations. In the dynamics of rigid bodies, it is sometimes
convenient to regard the resultant force acting on the body as a function
of the acceleration of that body. This situation occurs for instance when
the motion of a ship in water is considered. As the ship moves, it also moves
some of the surrounding water, and the force exerted by that water on the
hull is the product of its mass and acceleration, the latter being that of the
body. The total mass of the ship and of the water carried with it is called
by naval architects the ‘“apparent mass.” It is, therefore, of interest to
inquire whether the resultant force acting on a particle can also be a function
of the particle’s acceleration. Pars (p. 11) has shown by a very simple
argument that this cannot be the case in Newtonian particle mechanics if
the initial position and velocity and the force acting on a particle determine
its future position uniquely for all time.
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Example 2.5.1. Consider the rectilinear motion of a single particle on which
three experiments are conducted. In the first, the particle is subjected to a force
which is a function ¢ of the acceleration; in the second it is subjected to a force
which is a function y of the acceleration, and v is independent of ¢; finally, in the
third experiment the particle is subjected to a force of the form ¢ + y. Thus, in
the first case, the force may be written as

Fl = m‘p('xl), (a)
in the second as

Fy = my(%,) (®)
and in the third as

Fy = mlp(xs) + p(Xs)]. (©

The equations of motion are, respectively,

X, = (X)) (d)
Xy = y(¥,) ()
Xy = 'P()'C'a) + p(X3). ()

But, in Newtonian mechanics, when two forces act simultaneously on a particle,
their effect is the same as that of the action of their vector sum. Thus, we must
have

¥g = X1 + X, (2

and the substitution of (g) in (f) gives

X1+ Xy = (P(x'x + -’Ez) + 'l’(il + xz) (h)
One sees readily that (h) is not consistent with (d) and (e) because the sum of (d)
and (e) is

X1+ X = o) + p(X2). (i)

Since ¢ and y are independent, a comparison between (h) and (i) shows that (d)
and (e) would be consistent with (h) if and only if one had

(X)) = p(X; + X2),

Y(Xa) = (¥ + X2). 0

Thus, the two first experiments are not independent of each other, which con-
tradicts the statement that they are independent.

We conclude that:

In Newtonian particle mechanics, the forces acting on the particles
may not, in general, depend on the particle accelerations.
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The resultant force acting on the particle P, is written as

n s A
Fr=0;+ ) o5+ ¥ (r=12...,n). 2.5.1)
a=1 B=n+1 Jj=1
aftT
The forces 6, are of the form

07 =07 x%) = K(x —x* )% _£0,  (25.2)
EREd
where K is a scalar function of the distance | x™ — x*| = 0 between P,
and P,; it depends on no other arguments. From (2.5.2) one has
O, (x", x*) = —0.2(x*, x7). (2.5.3)
The @, are the interaction forces between the particles of the system,

and they cancel in pairs. They are called the internal forces. In consequence
of (2.5.2) and (2.5.3), they satisfy

0, =0, (2.5.4)

o

Mx
M=

r=1

i

1
r

R R
w0

Equation (2.5.3) is, in fact, Newton’s third law.

The forces @4 are of the same form as the 6,7, i.e., they also satisfy
(2.5.2) and (2.5.3) when « is replaced by . Therefore, they are the interac-
tions which exists between the particles that belong to the system and
those outside it.

The forces ¥/;” are forces other than interaction forces between particles;
they will not be further specified until later on. We call 33 @5 + 3 ; ¥y
the external forces.

2.6. The Problems of Particle Mechanics

While it is difficult to distinguish between, or to classify, all problems
of particle mechanics, two problems occur frequently. These may be stated
loosely as follows:

Problem 1. It is desired to have the particles of a system move in a
specified manner. What forces are required to achieve this motion?

and

Problem II. Completely specified forces act on the particles of a system.
How will the particles move?
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The first problem includes the problems of statics because the specified
motion of the statics problem is rest with respect to an inertial frame.
In this way, the statics problem is regarded as one of finding forces such
that no motion takes place when they act.

The second problem is, in general, the more interesting of the two.
However, to formulate it completely and with precision, we need additional
concepts, which will be introduced in the next sections. Here, we only
observe that the second problem is regarded as completely solved when the
number of particles in the system at every instant of time and the position
of each particle at each instant of time are known.



3
Representations of the Motion

3.1. The Configuration Space

In a system having » particles P, (r = 1, 2, ..., n), where the position vector
of the rth particle at the time ¢ is
X(1) = (x,7(1), X (1), x57(1)), G.L1)

the 3n = N numbers x,7(t), x,7(¢), x57(¢) (r = 1,2, ..., n) specify uniquely
the positions of all » particles at the time ¢. The set of numbers

C= {x/(t), x, (1), xy(t): x€ &% teC;r=1,2,...,n} (3.1.2)
is called the configuration of the system; in (3.1.2)

& = {t: —oo <t < oo} (3.1.3)

is the time space.

If we construct a 3n-dimensional Euclidean space with orthogonal basis
such that the x/ (r = 1,2, ..., n;i = 1,2, 3) are scalars giving the com-
ponents of the positions of the particles P,, then a given configuration of
the system corresponds to a unique point in this space and, conversely,
a given point in this space corresponds to a unique configuration. This
space is called the configuration space.

The configuration space is homogeneous and isotropic.'

t If the distance between two points in a space is defined in terms of their coordinates, the
space is said to be homogeneous if the distance is invariant under a coordinate translation,

points x = (x;, X, x;) and y = (y;, ¥, yy) in Euclidean 3-space &2 is defined by
d(x,y) = | x — y|, it is very easy to show &2 is homogeneous and isotropic.

19



20 Chap. 3 e Representations of the Motion

This follows from the properties of &2,

It is evident that, in the configuration space, all coordinates become
equivalent, i.e., the distinction between their being components along
the x,", x,7, or x5 axes is submerged. Therefore, it is convenient to denote
these coordinates by u; (i=1,2,...,3n = N) in order to avoid un-
necessary super- and subscript notation. One could, for instance, establish
the following correspondence between the x;/ (j =1, 2, 3) and u; coor-
dinates (i =1,2, ..., N):

— 1 1 — —
Xt = Uy, X =y, xgt = Uy, X2 = uy, ..., X" = uy.

Then, the configuration space is &%, and

u= (uy,uy, ..., uy)€ &N, (3.1.4)

When the number n(t) > 1 of particles remains constant in time (variable-
mass problems of Newtonian mechanics are excluded) the configuration
space is useful for the representation of the motion of the entire system of
particles.

The configuration at any instant ¢ is given by a point in &%, and the
sequence of configurations, as time changes, results in a curve in the con-
figuration space, traced by this point. We shall call this point the rep-
resentative point in &%, and the curve which it traces is called a C
trajectory.

Below we list some general properties of C trajectories:

(i) C trajectories are continuous. This is obvious because every u;(¢)
is one of the x7(¢), and these are all continuous.

(ii) C trajectories may have multiple points. A multiple point is one
which is crossed more than once by a given trajectory. Thus, a
multiple point corresponds to a configuration which is attained
by the motion more than once. This is certainly possible as, for
instance, in periodic motion.

(iii) C trajectories may have corners. The direction of a trajectory at
a point, i.e., at a value of t when the configuration is u(¢), is given
by its unit tangent vector at that point:

d= (u19u29"'saN) =1
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A C trajectory can have a corner only where the direction is not
defined.

(a) When there exists a ¢t = t* such that w;(t*) =0 for all
i=1,2,..., N, the direction is not defined. An instant #*
for which all 4; vanish is called an instant of rest, and the
corresponding configuration u(¢*) is called a rest point.

(b) When there exists a ¢ = t** such that some velocity com-
ponent u, is discontinuous at #**, then

d(t** — 0) #d(1** + 0),

where

d(t** 4 0) = lim d(¢t** + &),

>0

and again, the direction is not defined. This may occur when
an impulsive force acts at the time £**, and only then. We
call this a true corner.

3.2. The Event Space

The combination of a given configuration and the time at which it is
attained is called an event. Hence, an event is the set

E={x",x ,xs, t:r =12, ...,n,t€@}. (3.2.1)

If we construct the (3n + 1)-dimensional Euclidean space with orthog-
onal basis such that the x;7 (r = 1,2, ..., n; j=1,2,3) and ¢ are scalars
giving the positions of the particles P, and the time at which they occupy
these positions, then a given event corresponds to a unique point in this
space and, conversely, a given point in this space corresponds to a unique
event. This space is called the event space. Following the same procedure
of replacing the x; by the u; as was done in connection with (3.1.4), the

event space is & ¥+! and
U, t) = (U, ty, ...,uy,t)e &N+, te?. (3.2.2)

The event space is homogeneous, but not isotropic.

This is easily seen from the following example.
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Example 3.2.1. Consider the event space of a planar problem. If this three-
dimensional (x, y, t) space were isotropic, one would have under a rotation of
the x, y, t system

x=5Lx"+ Ly + Lt
Yy =mx' + myy' + myt’, @
t =mx' 4+ ny' + ngt',

where the /;, m;, and n; are constant. But, then, a simple calculation shows that,
for instance,

dx’ dy’'
dx hgr Tl Th ®)
dt_n dx'+n dy' N ’
v Mg T

This does not have the form of (2.4.3) and, hence, does not leave Newton’s second
law form-invariant.

This example shows that the acceleration would not satisfy the second of
equations (2.4.3) under a rotation of the ¢ axis, and, in consequence, New-
ton’s second law would not hold. Thus, all linear transformations of the
event space are permitted provided the ¢ axis remains parallel to itself.

When the number n(t) of particles of the system remains constant
(variable-mass problems are excluded) the event space is useful for the
representation of the motion of a system of particles. (Note that when
N =1, the event space is the familiar time-displacement plane.)

We shall denote as the representative point in &Y+ the point defining
an event of a given motion; the sequence of events is a curve traced by the
representative point and is called an E trajectory.

Below we list some general properties of E trajectories. The demonstra-
tion of these properties is frequently identical to that made for C trajectories;
hence, not all proofs will be given.

(i) E trajectories are continuous.

(ii) E trajectories cannot have multiple points.

This second property is actually a consequence of the following property:

(i) E trajectories are strictly monotone in time. If a scalar function
(or a curve) is monotone in its scalar argument, it either never
decreases as the argument increases, or else it never increases as the
argument increases. If it is strictly monotone, it either always
increases with increasing argument, or else it always decreases
with increasing argument. Property (iii) states that the latter is
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the case. We prove it first for the case (a) that the E trajectory is
everywhere smooth. Next, we shall assume (b) that it has isolated
corners.

(@)

(b)

The direction (if it exists) of an E trajectory is the unit tangent
vector

=l (3.2.3)

where the é; (i = 1, 2, ..., N) are the unit vectors along the
u; axes, and é; is the unit vector along the ¢ axis. We shall
show that this unit tangent vector can never lie in a plane
normal to the ¢ axis. This is equivalent to the observation
that smooth E trajectories are always strictly monotone in ¢.
For, if the trajectory first rises along ¢ and then falls (or if it
first falls along ¢ and then rises) the ¢ component of the
tangent vector in E space must pass through zero and, hence,
is not strictly monotone. A unit vector in E space, in a plane
normal to the ¢ axis, is necessarily of the form

d= —Tv“—i/T’ 3.24)
|3 @]
=1
where the g, are scalar quantities. But, by (3.2.3), the com-
ponent of d along the ¢ axis is

(> @]

i=1

and not zero. Thus, (3.2.4) can never be of the form (3.2.3).

Assume that at ¢**, the E trajectory has an isolated corner.
[Obviously, this is the only type of corner than can occur
(why?).] In fact, it may occur when an impulsive force acts
at t**. Now, if the FE trajectory is not strictly monotone in ¢,
then the corner is such that the E trajectory reverses its
direction along the ¢ axis. But, in that case, there exists an
instant (in fact, a time interval) near t** when the system
has two different configurations at the same instant, as il-
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b4
E
[
" Time = t**
l" ‘\\
/

\
/ \.‘ /4ime=t<t**

Cor S per o202 SoTCe

Fig. 3.2.1. E trajectories are strictly monotone in time.

lustrated in Fig. 3.2.1.' This contradicts the fundamental
property that every x;7(t) [and hence every u;(¢)] is a single-
valued function of time. Note that property (iii) implies
property (ii) because, if an E trajectory is to have multiple
points, it must return down (or up) the ¢ axis, and we have
shown that this cannot be the case.

(iv) E trajectories can have a direction parallel to the t axis. The proof
is left as an exercise. Note that instants at which E trajectories
have directions parallel to the ¢ axis are instants of rest.

(v) E trajectories may have corners. Note that the existence of a true
corner on a C trajectory requires that the E trajectory have a corner
since the C trajectory is simply the projection of an E trajectory
on the configuration space.

3.3. The State Space

The combination of a given configuration x(r) = (x,"(t), x,’(), X,"(¢))
(r=1,2,...,N) at a time ¢ and of the velocities

#(t) = (/(1), X7 (1), %57(1))

t The exceptional case where the representative point stops at £** and then retraces the E
trajectory does not invalidate our argument because, in that case, trajectories like the
one in Fig. 3.2.1 exist in the neighborhood of the exceptional case because of the con-
tinuity of E trajectories in initial conditions and parameter values.
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at the same value of ¢ defines the so-called state of a system of particles at ¢.
Hence, the state is the set of numbers

S = {x/", x5!, X7 X/, X, X% r = 1,2, ..., n} 3.3.1)

If we construct the 6a-dimensional Euclidean space with orthogonal
basis such that the x;” and the X/ (r = 1,2, ..., n; j = 1, 2, 3) are scalars
giving the positions and velocities of the particles P,, then a given state of
the system corresponds to a unique point in that space and, conversely,
a given point in that space corresponds to a unique state of the system.
This space is called the state space.

The state space is homogeneous and isotropic.

Following the same procedure of replacing the x;” by the u; and writing
xj = u;, the state space is &2¥ and

(, 1) = (U, thyy -yl Uy Gy - . s ly) € T2V (3.3.2)

When the number n(t) of particles of the system is constant, the state
space is useful for the representation of the motion of the system.

The sequence of states through which the system passes in time defines
a curve in the state space traced by a representative point in &2¥; it is called
an S trajectory. Hence, the S trajectory is the locus of states of the system
for a given motion.

Below, some general properties of S trajectories are given. Their
demonstration is only made in nonobvious instances, and where it does not
follow immediately from previous demonstrations of the properties of C
and FE trajectories.

(i) S trajectories are continuous for all t € & where ©° =& — & ; and
& = {t: —oo <t < o0},&; = {t;: one or more u;(t;) not defined }.
S trajectories are piecewise continuous and piecewise smooth for
all te @.

(ii) S trajectories may have multiple points.

(iii) No two or more distinct S trajectories of a given system may cross
or touch at the same instant. If they did, the same initial conditions
would result in distinct motions.
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3.4. The State—Time Space

The combination of a given state
S = (x,7(1), %,7(1), x57(2); %,7(1), X,7(), %7(1))  (r=1,2,...,n)
and the time ¢ at which the state is attained is the set of numbers
T = {x X7, xs"s X", X, XT3 t:t €@ yr = 1,2, ..., n}. 3.4.1)

If we construct the (6n + 1)-dimensional Euclidean space with orthog-
onal basis such that the x;7, the X/ (r=1,2,...,n;j=1,2,3), and ¢
are scalars giving the positions and velocities of the particles at the time ¢,
then a given point in that space defines uniquely a given state and time,
and a given state and time defines a unique point in that space. This space
is called the state-time space.

Replacing again the x;” by the u;, with X7 = u,, the state-time space
is &2N+1 apd

(u, 1:1, t) = (ul, Uyy ..., UyN, 1,'41, 122, ceey l’lN, t)E g2N+l. (3.4.2)

Again, when variable-mass problems of Newtonian mechanics are excluded,
the state-time space is useful for the representation of the motion of a
system.

The state-time space is homogeneous but not isotropic.

The sequence of states and corresponding times defines a curve traced
by a representative point in &2¥+1; it is the locus of states and corresponding
times of the system in a given motion and is called a T trajectory.

Some of the general properties of T trajectories are listed below:

(1) T trajectories are piecewise continuous and piecewise smooth.
(ii) T trajectories cannot have multiple points.

(iii) T trajectories are strictly monotone in time.

The demonstration of these properties either follows directly from earlier
results, or is done in a similar manner.
3.5. Notions on the Concept of Stability

The idea of “stability” or “instability” of a motion is closely connected
with the representation of motions as trajectories in the spaces just discussed.
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Consider a given motion of some system as the T trajectory T* in the
state-time space. Let the same system also have another motion, whose
trajectory is T**; such a motion could be produced by initial conditions
which are different from those of T*. Let us also suppose that at some
arbitrary point along T%*, the trajectory T** lies near T*. Then, if T**,
having been once near 7*, remains everywhere near T*, the motion T*
is said to be stable in the sense of Liapunov.

Consider next the motion of some system as the S trajectory S* in
state space. Then, if we denote by S** the S trajectory of another motion
of the same system, the motion S* is said to be stable in the sense of Poincaré
if $**, having been once near S*, remains everywhere near it.

These two definitions of stability are not equivalent, as is shown in
Fig. 3.5.1. In it, we show the trajectory T* inside a small tube of radius .
The projection of T* along the ¢ axis is the S* trajectory. Of course, it lies
inside the projection of the ¢ tube. In (a) we show a motion which is both
Liapunov and Poincaré-stable, in (b) the motion is Liapunov-unstable but
Poincaré-stable, and in (c), the motion is unstable in both senses.

A case which is frequently of interest in dynamics is motion in the
neighborhood of an equilibrium position. Equilibrium is the special
“motion” in which the configuration remains the same for all times. Hence,
one may represent equilibrium as an E trajectory which is a straight line
in the event space parallel to the ¢ axis. Stable motion in the neighborhood
of an equilibrium position is an E trajectory which remains for all 7 in an
¢ tube parallel to the ¢ axis that is centered in an equilibrium position;

t t t
T*\* * ™ ™
™ Ny

: |

]

! 1

| |

| ]

S* s* st
Sl S S
Conrrguration Sooce Conriguration Sooce ConFrgurotion Sooce

L - Stable L-Unstable L-Unstable
P - Stable P - Stable P- Unstable

Fig. 3.5.1. Schematic representation of Liapunov and Poincaré stability in event space.
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El* .
\ E* trajectory of
stable equilibrium

\—/

Fig. 3.5.2. The notion of stable
x/ Con’rguwrotion Sooce equilibrium in event space.

this is illustrated in Fig. 3.5.2. We shall return to this problem later on
(see Chapter 17).

3.6. Problems

In the next six problems, study the curves in the x, y plane and examine them for
possible corners and/or multiple points. The quantities a, 4, and b are real constants;
¢ is the time. Can these curves be C trajectories? Give reasons. If your answer is
conditional, state the conditions.

3. x=12 P+ =a¥(t —»?); 0<th <t <T < oo,

3.2. x = AcosV?bt; (¥ + A2 cos bt)® = a(A? cos bt — y?).

33. x = Asinbt; (02 + ay + A®sin® br)? = a*(4%sin® bt + y*); a > 0.
34. x = Asinbt; (3 + ay + A*sin® br)? = 4a*(A%sin® bt + y?); a > 0.
3.5. x = Asinbt; (2 + 2ay + A%sin? br)? = a*(A%sin® bt + y*); a > 0.
36 x=1t;, y=1@r—2)? —1<1r<3.

In the next four problems, determine whether the given curves can be E trajectories;
b is a real constant.

3.7. x =sin"!bht.

3.8. x =cos~' bt

39. x =sinh! bz

3.10. x = cosh~! bz.

3.11. Discuss the T trajectory of x = A sin at + Bcos at; A, B, and « are real
constants.

3.12. Discuss the C, E, S, and T trajectories of x = eft(A sin az + Bcos at) for
the cases 8 <0, =0, 8 >0; A, B, o, and p are real constants.
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Constraints

4.1. General Observations

In most problems of particle mechanics, the motion of the particles is
“constrained” in some way. This is the term used to denote the condition
that some motions or configurations are not admitted. One has, in fact,
the rarely verbalized theorem:

In a system of two or more particles, unconstrained motion does not exist.

Proof. Particle motion has the property of impenetrability, i.e., the
motion is constrained so that no more than one particle can occupy any
one position in 3-space at any given instant of time.

While this constraint does not seem to be a strong limitation on the
motion, it may in fact limit it severely.

Example 4.1.1. Consider two particles moving along a straight line, and let
their positions at any instant of time be given by their distance from some fixed
point on that line (see Fig. 4.1.1). At the instant shown, the particles do not
coincide. Hence, by impenetrability, they can never coincide, i.e., the line x; = x,
in configuration space is a forbidden line, as shown in Fig. 4.1.2.

It follows that half of the configuration space is here inaccessible to C trajecto-
ries because they must not touch or pierce the forbidden line.

X=0 m, m2
+ @— = 3 X axis
T X —“I
Xz 1

Fig. 4.1.1. Two particles moving on a straight line.

29
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Forbidden line

Possible g

C trajectory

A
A .

C trajectory

Fig. 4.1.2. Some possible C trajectories of two particles moving on a straight line.

Exercise. Determine the portion of the configuration space accessible to the
C trajectory when three particles move on a line. (Ans. 1/6).

Besides the impenetrability constraint, there are many instances of
constrained motion where the constraint is not usually introduced explicitly,
but merely mentioned verbally. For instance, when it is mentioned that a

problem of rectilinear motion is to be treated, the problem is usually
formulated by the equation of motion

mx = X(x, x, t),

where X(x, x, t) is a force acting in the direction of motion x. However, to
formulate the problem fully, one must write

mi = F(r, F, t)
where, for instance,
r=xi+ yj+ zk,
F=Xi+ Yj+ Zk,
and the equations of constraint are
y=0, z=0.
Writing the vector equation of motion in component form, one has

mx = X(x,y,z; X, 9, 2; t),
my = Y(x,y,z; X, y, Z; 1),

miz=Z2Z(x,y,2;,X,9,2; ).
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The constraints y =z =0 imply y = j= 2= 7=0, and these imply,
in turn, Y = Z = 0. Thus the formulation becomes simply

mi = X(x,0,0; x,0,0;¢),

identical with the original one.
Constraints like y = 0 are special cases of a constraint of the form

fx,,2) =0. 4.1.1)

Equations of constraint may be explicit functions of time. Consider,
for instance, a particle which is constrained to move on a plane that moves
parallel to itself in a prescribed way. The constraint on this particle may
be put in the form

Z_g(t):(),

where g(t) is a given function. But this is a special case of a constraint of
the form

fx, p,2,1) = 0. 4.1.2)

4.2. Holonomic Constraints

Equation (4.1.1) is a special case of an equation of the form
f(x111 le, X31, x12’ R} xln, x2n1 x3n) = 0 (421)

If we use the notation introduced in the section on configuration space,
(4.2.1) is written as

f(ulau21 "-9uN):0 (422)
and, if we generalize (4.1.2) in a similar manner, we have
S, uy, ... uy, t)=0. 4.2.3)

A constraint of the form (4.2.3), or reducible to that form, is called a
holonomic constraint. Every constraint not of the form (4.2.3), or not
reducible to it, is called nonholonomic.

Among holonomic constraints we distinguish between those that depend
explicitly on time and those that do not:

A holonomic constraint of the form (4.2.2), or reducible to it, is called
scleronomic. Every holonomic constraint not of the form (4.2.2), or not
reducible to it, is called rheonomic.
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These names come from the Greek. The word “holonomic” means “al-
together lawful,” the word ‘‘scleronomic” means “rigid,” and the word
“rheonomic” means “flowing.” The reasons for this terminology will
become apparent shortly.

To lend meaning to the concept of constraints let us begin by con-
sidering (4.1.1) written as

Sy, uy, us) = 0. 4.2.4)

This equation defines a surface in the u,, u,, u; space; imposing the con-
straint (4.2.4) on the motion of a particle is equivalent to saying that the
particle whose position coordinates are u,(t), u,(¢), us(t) must for all time
move in the surface f = 0 defined by (4.2.4). If we should say instead, the
uy, Uy, Uz space is the configuration space (of the single particle), then the
constraint (4.2.4) defines a surface in the configuration space, and the
C trajectory must lie in that surface for every admissible motion. With this
terminology, we can now readily interpret (4.2.2). That equation defines
an N-1-dimensional surface in the configuration space &V given in (3.1.4),
and the C trajectory of every motion of that system must lie in this surface.

The surface defined by (4.2.2) is a rigid surface in &7 i.e., it does not
change, warp, or deform with time, hence, the term scleronomic.

With a similar interpretation, we may regard (4.2.3) as a surface in
&N which changes or deforms in time; hence, the term rheonomic.

It is worthwhile to note that a changing surface in &~ defines a rigid
surface in the event space & ¥+! given in (3.2.2), but the changing surface
in &% has N-1 dimensions while the corresponding surface in &%+ has N
dimensions. It is also clear that a holonomic scleronomic constraint defines
a surface in &%+ which is cylindrical, i.e., its projection on the configuration
space &V is the same for every value of t.

us

] )
‘C trajectory ‘

N

C trajectory

)

uy

(a)

Fig. 4.2.1. Examples of a holonomic scleronomic constraint.
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t flu,u) =0

E trajectory

Fig. 4.2.2. Holonomic scleronomic constraint
in event space is a cylindrical surface. uj

These interpretations of holonomic constraints are illustrated in Figs.
4.2.1 and 4.2.2. Figure 4.2.1 illustrates (holonomic) scleronomic constraints
in configuration space: In (a) the surface defined by the constraint is
connected; in (b) it is not. In Fig. 4.2.2, a (holonomic) scleronomic con-
straint is shown in the event space, and in Fig. 4.2.3, a (holonomic) rheo-
nomic constraint in the event space is illustrated.

Equations like (4.2.2) and (4.2.3) impose conditions on finite displace-
ments, i.e., every u;(¢) (i = 1,2, ..., N) must be such as to satisfy one of
these equations. Now, it is interesting to inquire what conditions are im-
posed on infinitesimal displacements by these equations of constraint.

This question is difficult to answer in all generality. However, if the
surface is smooth (i.e., all first partial derivatives of the function f with
respect to all arguments exist and are continuous everywhere) one finds
from (4.2.2) by differentiation

N af
L 5 =0, 4.2.5)
and from (4.2.3)
& of af
L Gy e+ At =0, (4.2.6)
t f(uy, up t1=0
E trajectory
vz

Fig. 4.2.3. Holonomic rheonomic constraint
y in event space is not a cylindrical surface.
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Hence, infinitesimal displacements du, (s =1,2, ..., N) of (holo-
nomic) scleronomic constraints must satisfy (4.2.5), and those of rheonomic
constraints must satisfy (4.2.6).

Every C trajectory lying in the surface of constraint is a possible
trajectory, but it is evident that not every one of them corresponds to an
actual motion because actual motions must also satisfy dynamical laws,
and these have not been invoked.

It may be worthwhile to note that the phrase “or reducible to that
form” was put into the definitions of holonomic constraints because (4.2.5)
and (4.2.6) are not of the forms (4.2.2) or (4.2.3) but are reducible to them.
For instance, (4.2.5) can be integrated to give

f(ul’ Uy oo uN) =G,
where ¢ is a constant, and this may be written as
g(”l) Uy ooy uN) = 0’

where g = f — c; the latter is of the form (4.2.2).
It is not difficult to give (4.2.5) and (4.2.6) a geometrical inter-

pretation. Consider, for instance, the surface (4.2.2) at the point
u* = (u*, u*, ..., uy*). Let us use the notation

il = ()

du,
In other terms, (0 fJdu,)* is the derivative df/du, evaluated at the point u*.
Then, the equation

N af * _
% () @ =0

defines all points in the tangent plane of the surface /= 0 at »*. But this
last equation is an equation of constraint on the possible trajectories passing
sufficiently near the point u*. Expressed differently, in a sufficiently small
neighborhood of u*, the constraint equation requires that all possible
trajectories must lie, not in the surface of constraint, but in its fangent plane,
because a smooth surface and its tangent plane are identical within first-
order terms in infinitesimals in a sufficiently small neighborhood. Thus,
a smooth surface is then modeled by its tangent plane, as shown in
Fig. 4.2.4.
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Constraint surface

Normal ot u* T
,l ’/z/——Tongent surface at u*

*

Fig. 4.2.4. A smooth sur-
face in the neighborhood of
a point is modeled by its
tangent plane at that point.

Example 4.2.1. A spherical pendulum is a particle which moves under the
gravitational force in a frictionless spherical surface. What are the constraints on
finite and on infinitesimal displacements?

Let R = const be the radius of the sphere, and let the origin of the x, y, z triad
coincide with the center of the sphere. The configuration (x, y, z) must satisfy

X2+yz+22— 2:0’
and infinitesimal configuration changes must satisfy

xdx +ydy +zdz=0.

Example 4.2.2. (Hamel, p. 618). A gutter is created by a parabola which
remains parallel to itself while its apex translates and descends in a prescribed
manner. Find the finite and infinitesimal constraints.

Let the parabola remain in a plane parallel to the y, z plane with the parabola
open in the direction of positive z. Let the curve along which the apex moves be
given by z,(x). The finite constraints are

z — zy(x) — }ay® = 0.
The infinitesimal constraints are
—zy'(x)dx —aydy +dz=0 (' = d/dx).
Example 4.2.3. Let a constraint on infinitesimal displacements be given by
dy —g(2)dx =0

where g(z) # const is a given function of z. Find the constraint on the finite
displacements implied by the given constraint.

None exists. If one were to assume that finite and infinitesimal constraints
satisfy the same constraint, one would have

y — g(z)x = const.
But that equation implies

dy — g(2) dx = xg'(2) dz,
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and this last equation agrees with the given constraint only if g(z) = const. [It
can in fact be shown by the methods of Section 4.5 that g'(z) = 0 is the necessary
and sufficient condition such that the given constraint on infinitesimal displace-
ments implies a constraint on finite displacements.]

Example 4.2.4. The support of a simple pendulum is moved horizontally
in a prescribed manner as time progresses. What are the finite and infinitesimal
constraints?

Let the x axis be horizontal and let f(¢) be the distance of the point of sus-
pension from the origin of the x, y plane. Moreover, let [ be the length of the
pendulum. The finite constraint is

[x —fOF +y* -1 =0.
The infinitesimal constraint is
Ix —f()1dx +ydy — [x — f()]fdt = 0.

Note that this is an example of a rheonomic constraint.

We examine now the question of the possible existence of more than
one constraint. Suppose we deal with the problem of a particle constrained
to move on a curve in 3-space. This curve may be regarded as the inter-
section of two surfaces

fl(ul » Uz, u3) =0, fz(ul , Ugs u3) =0 (427)

such that their normals do not coincide anywhere along the curve. Therefore,
two holonomic constraints in 3-space may be used to define a curve. Sup-
pose, now, that we have three equations of constraint for the motion of a
particle, i.e., we impose on the configuration the conditions

ﬁ(ul > Us, u3) =0, f2(u1 > Ugs u3) = 0’ f3(u1 > Ug,s u3) =0,

such that the first two define a curve, and the third is a surface intersected
by this curve. But this intersection defines a single point, thus, these three
constraints impose the condition of no motion whatever with respect to the
u,, Uy, us triad. Two intersecting constraint surfaces will always define a
curve, and three a point, if the functions defining the surfaces are linearly
independent. [The functions f.(u,, us, ..., uy,t), r=12,...,L, are
said to be linearly independent if one cannot find L quantities 4, not all
zero such that

L
Yo A Soluy, ty,y o Uy, t) =0.
r=1

See also the definition of linearly independent vectors, Section 2.4.]
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If the three constraints had been rheonomic instead, they would have
defined a point which moves in 3-space in a manner prescribed by the con-
straints, but it does so independently of dynamical considerations. Thus, we
see that the number of independent constraints must be less than the dimen-
sion of the configuration space if the motion of the particles of the system
is to be a function of the forces acting on them. We use then definition

The number N — L > 0 is called the number of degrees of freedom
of a system of particles, where L is the number of independent equations
of constraint.

Then a dynamical system consisting of N/3 particles may have the holo-
nomic constraints

filuuy, o uy, 1) =20 r=12,...,L<N) 4.2.8)
and, if these constraints are all scleronomic, they are of the form
fillug, uyy oo suy) =0 (r=1,2,...,L<N). 4.2.9)

It should be noted that it may occur easily that some constraints are sclero-
nomic while others are not.

The holonomic rheonomic constraints imposed on infinitesimal dis-
placement are of the form

v of, of,
;f f,

d+a

=0 (r=1,2...,0L). (4.2.10)

When they are scleronomic, they are

i af' d (r=12,...,L). (4.2.11)

Both are linear forms of differentials. However, these constraints may be
written equally well as linear forms of derivatives. Thus, if the u, and ¢ are
considered as functions of some parameter «, we could write (with ' = d/da)

Soaf . of
Lo w1 =0

N af‘r ,
LG W =0

The most frequently met parameter is ¢ itself, in which case we find, in
place of (4.2.10),

Yof, . Of _ B
3;1 ou, to =0 (=12..1) (4.2.12)
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and, instead of (4.2.11),

of . _ _
Gu =0 =120 (4.2.13)

M=

§

Constraints in the form (4.2.10) and (4.2.11) involving differentials rather
than derivatives are said to be in the Pfaffian form. One sees from the non-
Pfaffian forms (4.2.12) and (4.2.13) that holonomic constraints imply
conditions on the velocities as well as on the displacements.

Having introduced the possible existence of more than one equation of
constraint, we now examine the question whether or not constraints on
finite displacements always imply the same constraints on infinitesimal
displacements.

Consider the scleronomic constraints (4.2.11). It is assumed that these
equations are linearly independent of each other, i.e., none is implied by
any of the others. Then, if we write, for short, df,/0u, = A,,, these equations
may be written in the matrix form

Ay A oo Ay - Awy du,
Ay Az -+ Ay, - Aoy du,
. ' ' =0 4.2.14
Ay Ape -+ Ay -+ Ay duy, ( )
dMN

and, in virtue of the assumption of independence of the equations of con-
straint, the L XN matrix in (4.2.14) has maximum rank. This condition
implies the nonvanishing of at least one of the following determinants:

A1,p+1 Al,p+2 e A1,p+L
Az,p+1 Az,p+2 e A2,z)+L

. . (»=0,1,2,...,N—L).
AL,p+1 AL,p+2 e AL,p+L

This is the condition necessary and sufficient for the infinitesimal displace-
ments to be constrained by

N oaf, _ B
Yo =0 =121 (4.2.15)

s=1
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Fig. 4.2.5. The truss of
Example 4.2.5.

if the finite displacements are constrained by

fluy, ttyy oo yuy) =0  (r=1,2,...,L). (4.2.16)

Example 4.2.5. (Hamel p. 86). Consider the linkage shown in Fig. 4.2.5.
We examine the position of the point P. The equations constraining if from moving
are

x? + y2 - llz =Y,
(x — D +y8 — 1 =0,
and, for the links to meet, we must have
l1 + lz > 1.
The infinitesimal constraints are
xdx +ydy =0,
(x —Ddx +ydy =0.
The value of the determinant is given by

X y
x—1y

‘ = yl.

Hence, if y # 0, the only solutions are dx = dy = 0, i.e., finite as well as infini-
tesimal displacements of P are prevented by the constraints.

However, the special case /; + l; = I corresponds to collinear links /; and /,
and implies y = 0. Thus, finite displacements of P are still impossible, but the
infinitesimal displacement dy is now possible.

4.3. Nonholonomic Constraints

As stated, every constraint that is not holonomic is nonholonomic.
One will readily understand that it is not possible to give a general discussion
of nonholonomic constraints such as can be done for holonomic ones
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because the latter is a narrowly circumscribed class while the former is not.
(Thus, bananas are readily discussed, while nonbananas are not.) Never-
theless, some classification of frequently encountered nonholonomic con-
straints is possible.

First we observe that there are nonholonomic constraints which are of
either of the two forms

f(ul’u2’ "'auN)S.O,

4.3.1
fluy, uyy .o uy, t) <0, ( )

or reducible to them, but not reducible to (4.2.2) or (4.2.3).
Note that

f(u19u2’ -"’uN):ca

where ¢ is a nonzero, real constant easily reduced to the form of (4.2.9);
hence it is holonomic. However, the constraint

flug,uy, . yuy) <c (4.3.2)

is not reducible to that form. An example of such a constraint is the ad-
missible motion of a lion in a circular cage of radius R; the lion’s position
satisfies for all time

x2 4 y2 — R®2<<0.

Similarly, if the radius of the cage changes in a prescribed manner with
time one has
x2+y2— R()*<0.

If an object may rest on a table or rise above it, but cannot penetrate
it, the constraint can be put into the form

z>0.

The constraint imposed by the impenetrability property is nonholo-
nomic because it is an inequality. Hence, we might have put the earlier
theorem into the startling form

Every dynamical system of two or more particles is subject to at least
one nonholonomic constraint.

The examples of nonholonomic constraints mentioned here have in
common that they are finite relations (not differential) involving only the
coordinates of the configuration space (and possibly ¢), and they are in-
equalities.
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Consider the inequality constraints

f(ulau23 ---auNst)<0,

433
fluy, s, ... uy, t) <0, (4.33)

Every nonholonomic constraint of the forms (4.3.3) or reducible to them
is called a configuration constraint.

Again, we distinguish between those that depend explicitly on time, and
those that do not.

Every nonholonomic configuration constraint that does not depend
explicitly on time t is called scleronomic. Every nomholonomic con-
figuration constraint that is not scleronomic is rheonomic.

Evidently, the constraint

f(u17u27 "-7uN7t)ZC,

where ¢ is a real constant, is easily brought into the form (4.3.3) if one
subtracts ¢ from both sides, and then multiplies by —1.

The geometrical interpretation of these constraints is simple. In general,
the surface

f(ulau27~--:uNat):0

divides the configuration space into at least two open domains; in one
f >0, and in the other f < 0. This surface changes with time if ¢ occurs
explicitly in f, otherwise it is rigid and fixed. Then, the first of equations
(4.3.3) states that the C trajectory must remain in that domain of the
configuration space where f is negative. The second admits C trajectories
that may stay on the side f<C 0, or they may touch, but not pierce, the
surface f = 0; these situations are illustrated in Fig. 4.3.1.

Quite another type of nonholonomic constraint arises when one gener-
alizes the Pfaffian form of holonomic constraints; the nonholonomic
constraints generated in this way are equality constraints.

Let us write L independent holonomic constraints

filug, uyy . Uy, t) = ¢, r=12,...,L), 4.34)

where the c, are real constants, in their differential form

2 ‘9f’ du, + afdz_o r=12,..., L) (4.3.5)
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C trajectory
C trojectory

u2

uz

U| ul

(a) (b)

Fig.4.3.1. a) Ctrajectory satisfying the constraint f(u, , 4, , u5) < 0; b) C trajectory satisfying
the constraint f(u;, us, uz) < 0.

Then, these last equations are, in fact, a set of L first-order differential
equations, and (4.3.4) are their integrals. For this relation to exist between
L first-order differential equations and their integrals, it is not necessary
that the differential equations be exact differentials. For instance, we may
multiply each of (4.3.5) by an arbitrary function

& =g, u, ..., uy,t) r=12,...,L)

and then form L independent linear combinations of the resulting equations.
They will have the general form

N
Y Ay du,+ A, dt =0  (r=1,2,...,L) (4.3.6)
s=1

where the 4,; and 4, are functions of u;, u,, ..., uy, t, and these equations
will still have (4.3.4) as their integrals because (4.3.5) and (4.3.6) are
completely equivalent, the only difference between them being that (4.3.5)
are exact differentials while (4.3.6) are not.

The generalization of (4.3.6) to nonholonomic constraints consists in
considering constraint equations of the form (4.3.6) which are, however,
not integrable. Expressed more precisely:

If a system of L independent equations of constraint of the form (4.3.6)
does not possess L integrals of the form (4.3.4), the system of constraints
is nonholonomic.

We have already encountered a nonholonomic constraint of this type in
Example 4.2.3.
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4.4. The Pfaffian Forms

The general form of equality constraints considered in classical me-
chanics is

N
Y Apdu,+ A, dt =0  (r=1,2,...,L), (4.4.1)
s=1

in which the 4,, and A4, are (at least once piecewise differentiable) functions
of the u, (s = 1,2, ..., N) and of ¢. They are L linear differential forms
in more variables than there are equations, i.e., N + 1 > L. If the number
of equations and variables were equal, the set (4.4.1) would always be
integrable under very broad conditions on the A4,, and A4,, i.e., this system
would then be holonomic, in general. The constraint equations are said to
be in Pfaffian form because the German mathematician Pfaff was the first
to explain the meaning of nonintegrable differential forms that are fewer
in number than that of the variables involved. However, the term “Pfaffian
form” is used whether the system (4.4.1) is holonomic or not.

Obviously, the exact differentials (4.2.10) and (4.2.11) are Pfaffian
forms. The first was obtained from a rheonomic set, the second from a
scleronomic set. It may, therefore, seem entirely reasonable to retain the
terms ‘“rheonomic” and “scleronomic” for the Pfaffian forms (4.2.10)
and (4.2.11), respectively. This is, in fact, done by many authors. They
call a general Pfaffian form (4.4.1) scleronomic when ¢ does not occur
explicitly in it, and rheonomic otherwise, and they apply this nomenclature
whether the system is holonomic, or not.

However, for reasons which will become evident later, it is more useful
to distinguish between the two cases: A, =0 for all r = 1,2, ..., L, and
A, # 0 for one or more than one r, rather than between scleronomic and
rheonomic Pfaffian forms. We shall say:

A constraint equation of the form (4.4.1) is called catastatic when
A, = 0; otherwise it is acatastatic. Whenevery A, =0(r = 1,2, ...,L)
the system is catastatic, otherwise it is acatastatic.

The word ““catastatic” comes from the Greek and means “orderly.”

The geometric interpretation of catastatic and acatastatic constraints
is quite interesting. It is best illustrated by means of an example with two
spatial coordinates only. Consider the catastatic constraint

a(x,y, t)dx + b(x,y, t)dy =0 (4.4.2)
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Fig. 4.4.1. Schematic representation of a
catastatic constraint.

and the acatastatic constraint

a(x, y, t)dx + b(x, y, t) dy + c(x, y, t) dt =0, (4.4.3)
where ¢ £ 0.
From (4.4.2), one has
dy _  alxpt)
dx b,y 1) (44.9)

so that for fixed x, y, the slope dy/dx changes with time (¢ is treated as a
parameter). In the x, y, ¢ space the tangent plane at (x, y, ¢) defined by the
constraint changes with time; this is shown in Fig. 4.4.1. It is the essential

Fig. 4.4.2. Schematic representation of an
acatastatic constraint.
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property of the catastatic constraint that the tangent plane turns about a
line parallel to the ¢ axis for all .

The tangent plane in the x, y, ¢ space represented by an acatastatic
constraint is shown in Fig. 4.4.2. The essential property distinguishing it
from catastatic constraints is that, for fixed x, y, the tangent plane no
longer rotates about a line parallel to the ¢ axis as ¢ is varied.

4.5. When is a System of Constraints Holonomic?

In holonomically constrained dynamical systems, the constraints are
usually given in the finite form

[y usy o Uy, ) =c r=12,...,L <N), 4.5.1)

where the ¢, are constants. However, when they are given in the form

M=

Agi, + A4, =0 (=12 ...,0L), (4.5.2)

1

I

8

or in the Pfaffian form
¥
Z A, du, + A, dt =0 r=12,...,L), (4.5.3)
s=1

it may be very difficult, in general, to decide whether or not these constraints
are holonomic or, expressed differently, whether or not there exist integrals
of the form (4.5.1) of the differential equations (4.5.2).

Let us suppose that we are given a single constraint in the Pfaffian form

Adx + Bdy + Cdz =0, 4.5.4)

where A, B, and C are functions of x, y, and z. If (4.5.4) is an exact differen-
tial, there must exist a function f such that

A = df]ox, B = 0f]dy, C = 0f]0z, (4.5.5)

and the necessary and sufficient conditions for this to be true is that the
first partial derivatives of 4, B, and C with respect to x, y, and z exist,
and that

04 0B 0A aC 0B aC

dy T ox 9z ox’ 9z dy (4.5.6)




46 Chap. 4 e Constraints

These last conditions are readily demonstrated by utilizing (4.5.5) and
forming the indicated derivatives.

However, while (4.5.6) is necessary for the constraint to be an exact
differential, it is not necessary for that constraint to be integrable. In fact,
it is shown in elementary calculus books that the integrability condition for
(4.5.4) is that the equation

0B 9C ic o4 04 0B
A( e ay)—l—B( o )+c(~ay_—w)_o 45.7)

be satisfied identically. If one defines a vector
V= (4, B, C)
equation (4.5.7) takes on the easily remembered form

V.curl V=0.

It is obvious that (4.5.7) is satisfied when the conditions (4.5.6) hold, i.e.,
when the constraint equation is an exact differential. However, the following
example shows that the converse is not necessarily true.

Example 4.5.1. Show that the constraint
yz(y + z)dx + zx(z + x)dy + xy(x + y)dz =0

is holonomic.
Equating coefficients of the differentials between the given constraint and
(4.5.4) and forming the first partial derivatives one finds

04 04
—b—=2(y+2)+yz, ——=y(y +2) +yz
y 0z
0B

oB
—— =z(z + x) + zx, —— =x(z + x) + zx,
ox 0z

C
=x(x +y) + xp.

C
= y(x + y) + xy, e
y

ox
Obviously, (4.5.6) are not satisfied because, for instance, d4/dy contains y but

not x, and 0B/dx contains x, but not y. However, if one substitutes in (4.5.7),
one finds

yz2(y + 2){x(z + x) + zx — [x(x + y) + xy]}
+ zx(z + ) {y(x +y) + xy — DO + 2) + yzI}
+ xy(x + {z(y + 2) + yz — [2(z + x) + zx]} =0,

as one sees readily by expanding the above expression.
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When there exists a single constraint equation in N variables (one
of which may be the time ¢), i.e., when the equation of constraint is of the
form

N
N Ag(uy, vy, ..., uy) dug =0 (4.5.8)

s=1

it can be shown' that the necessary and sufficient condition for the existence
of an integral of (4.5.8) of the form

f(u19u29 ,uN) = const

is that the set of equations

94; 04, 94, 04,
AV( ou, N Oug >+ Aﬂ( ou, ou, )

04, 04,

Oug ou,

+A4 ):0 @hy=1,2...,N) (459)

be simultaneously and identically satisfied. There are N(N — 1)(N — 2)/6
such equations, of which (N — 1)(N — 2)/2 are independent. If (4.5.8)
is an exact differential one has

A, = 0f]0u, (s=12,...,N)
and these require that
0Ay|0us = 0Agl0u, (,f=1,2,...,N).

In that case, the equations (4.5.9) are seen to be trivially satisfied.
Finally, when there are L independent constraint equations of the form

Y Ap(uy, iy, ..., uy) duy =0 r=12,...,L<N), (45.10)
s=1

where one of the u, may be the time ¢, it was shown by Frobenius! that
the necessary and sufficient condition for the existence of L independent
integrals of (4.5.10) of the form

filug, uyy . uy) = ¢, r=12,...,L)

t See Ince, E. L., Ordinary Differential Equations, Dover Publications, Inc., New York
(1953), p. 54.
1 Frobenius, F. G., Gesammelte Abhandlungen, Springer, Gottingen (1968), pp. 249-334.
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with the ¢, constants, is that the bilinear forms

Sk aA"ﬂ aATaz _ .
; l,;( ou,  Ou )xayﬁ_o (r=12,...,L) (4511)

be satisfied simultaneously and identically, where the x, and y; are any two
sets of solutions of the algebraic equations

N
Y Ax, =0 (r=1,2,...,L) 4.5.12)

As there are fewer equations (4.5.12) then there are variables, (4.5.12) will
in general have more than one set of solutions. The Frobenius condition is
difficult to apply, in general, because the test for integrability must be
preceded by the computationally difficult task of finding two sets of solutions
of (4.5.12); however, we do utilize it in Section 9.5.

Again, if each of the equations (4.5.10) is an exact differential, one
must have

A, = 0f,/0u,

and this requires that
0A,5/0u, = 0A,,/0ug (e, p=12,...,N;r=1,2,...,L).

When this is the case, the Frobenius conditions are trivially satisfied.

4.6. Accessibility (of the Configuration Space)

In Chapter 3, the motion of a system is represented as a sequence
of configurations or in terms of a C trajectory in configuration space.
In Chapter 4, holonomic constraints are interpreted as surfaces, and the
imposition of these constraints is interpreted to mean that the C trajectory
must lie in the intersection of the surfaces defined by the holonomic con-
straints. Hence, only the configurations lying in this intersection of surfaces
are “accessible.” In fact, it is evident that when L < N independent holonomic
constraints are imposed on a system whose configuration space has N
dimensions, the dimensionality of the space of accessible configurations
is N— L.

We have also examined the effect of nonholonomic configuration con-
straints, which are, in general, inequality constraints, and we noted that
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the dimensionality of the space of accessible configurations is the same as
that of the configuration space. However, certain domains of the con-
figuration space are not accessible, as illustrated for example in Fig. 4.3.1.
It remains to study the effect on the accessibility of configurations
produced by nonholonomic equality constraints. We state the result:

All configurations accessible in the absence of nonholonomic equality
constraints of the form (4.4.1) are also accessible in their presence.

Pfaff has shown that the general nonintegrable Pfaffian equation of the
form (4.4.1) can be reduced to a system of equations of the form?

dy —zdx = 0. (4.6.1)

Let it be required to reach the arbitrary configuration x = x;, y = y,,
z = z; from the origin of the configuration space. This can evidently be
done by following the path

y = f(x), z=dfldx, (4.6.2)
where f(x) is any once-differentiable function that satisfies
fO)=f©0)=0, flx)=p», [f&x)=2z, (4.6.3)

with " = d/dx. Substitution of (4.6.2) in (4.6.1) shows that the constraint
is identically satisfied, and of (4.6.3) in (4.6.2) that, when x = x;, the
configuration (x,, y,, z,) is indeed reached; this is illustrated in Fig. 4.6.1.

The result quoted here is intuitively appealing by considering the
classical nonholonomic problem of the skate, or the knife edge. The con-
straint on the skate is that it should always be directed tangent to its path, or

cos O dy — sin 0 dx = 0,

where (x, y) is the point of contact of the skate with the ice, and 8 is the
angle between the direction of the skate and the x axis. Thus, the constraint
on the skate is of the form (4.6.1). Now, it is evident to any one who has
skated that one may skate to any prescribed point (x, y) on the ice. Then,
one merely need rotate the skate about the point of contact until it has any

t Quoted from Pars, p. 17.
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Fig. 4.6.1. Demonstration that under nonholonomic equality constraints, every configu-
ration is accessible.

prescribed direction 6; in this way, any arbitrary configuration (x, y, )
may be attained even though the problem is subject to a nonholonomic
equality constraint.

We emphasize here one of the characteristic and important differences
between holonomic and nonholonomic constraints:

The dimension of the space of accessible configurations is reduced by
holonomic constraints, but not by nonholonomic constraints.

It is reasonable, therefore, to suppose that holonomic constraints permit
a reduction of the number of coordinates needed to formulate a given
problem, but nonholonomic constraints do not. This will, indeed, be found
to be the case; this least number of coordinates is called a set of generalized
coordinates (see Chapter 11).



Sec. 4.7. e Problems 51

4.7. Problems

4.1.

4.2.

4.3.

44.

4.5.

4.6.

4.7.

4.8.

Two particles having Cartesian coordinates (x,, y;, z;) and (x;, y:, 2zs),
respectively, are attached to the extremities of a bar whose length /(¢) changes
with time in a prescribed fashion. Give the equations of constraint on the
finite and infinitesimal displacements of the Cartesian coordinates.

What are the equations of constraint on the finite and infinitesimal coor-
dinates (x;, y1, z1) and (x., y., z;) of the bobs of a double spherical pen-
dulum of lengths /; and /;, respectively?

A thin bar of length / < 2r can move in a plane in such a way that its
endpoints are always in contact with a circle of radius r. If the Cartesian coor-
dinates of its endpoints are (x,, ;) and (x., y.), respectively, what constraints
on finite and infinitesimal displacements must these coordinates satisfy?

Answer the same questions as in Problem 4.3 if the circle is replaced by
an ellipse having major axis 2a and minor axis 2b, and / < 2b. Are these
constraints holonomic?

Discuss the changes in the answer to Problem 4.4 if 2b < [ < 2a. Is this
constraint holonomic?

The motion of an otherwise unconstrained particle is subject to the condi-
tions z = xp. Discuss the constraint on the infinitesimal and finite dis-
placements.

A disk of radius r is permanently in the vertical plane and rolls without slid-
ing on a given profile g(x), as shown. A rod of length / remains in the same
vertical plane as the disk. One of its extremities is attached to, and can
rotate about, the disk center; the other extremity is moved on a straight line
parallel to the x axis in a prescribed fashion f(¢). Express the wheel angular
velocity as a function of [, r, g(x), and f(¢). Classify this constraint equation.

— f(t)

g(x)

A particle moving in the xy plane is connected by an inextensible string of
length / to a point P on the rim of a fixed disk of radius r, as shown. The line
PO makes the angle 6 with the x axis. What are the constraints on the
finite and infinitesimal displacements of the point at the free end of the
string having the position (x, y)?
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4.9.

4.10.

4.11.

4.12.
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IV
/

/

A circular shaft of variable radius r(x) rotates with angular velocity w(t)
about its centerline, as shown. The shaft is translated along its centerline in
a prescribed fashion f(z). Two disks of radii r; and r., respectively, roll without
slipping on the shaft. A mechanism permits the disks to rise and fall in such
a way that the disk rims never lose contact with the shaft. Show that the
relation, free of , between the angular displacements ¢; and ¢, of the disks
is in general nonholonomic. State the general condition that must be
satisfied in the exceptional case that the constraint is holonomic and give
an example.
r2

The position of a point P moving in a plane is given by the polar coordinates
r and @, where r is measured with respect to some fixed point O, and ¢ with
respect to some fixed line L passing through O. We chose to express the
position of P by means of the coordinates r, ¢, and A4, where 4 is double of
the area swept out by the vector r, and 4 = 0 when ¢ = 0. Evidently, r, ¢,
and A must satisfy a constraint between them because two coordinates are
sufficient to give the position of P. Find and classify this constraint.

A particle moving in the vertical plane is steered in such a way that the
slope of its trajectory is proportional to its height. Formulate this constraint
mathematically and classify it.

Write down and classify the equation of constraint of a particle moving in
a plane if its slope is always proportional to the time.
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4.13.

4.14.

A particle P moving in 3-space is steered in such a way that its velocity is di-
rected for all time toward a point O which has a prescribed motion in
space and time. Formulate and classify the equation(s) of constraint of the
particle motion under the assumption that the positions of P and O never
coincide.

A particle P can move on the bottom of a massless two-dimensional cage of
width 2a and height b as shown. Let the position of the particle from the
middle of the cage bottom be &. The cage is hinged at the middle of the top
with a massless bar of length /, and the angle which the top of the cage
makes with the normal to / is denoted by ¢. Finally, the angle which the bar
I makes with the vertical y axis is 0. The particle position may either be given

0]

by its x and y components, or by the three coordinates 0, ¢, and £. Establish
the relation between 0, ¢, and & on the one hand and x and y on the other.
Since the position of the particle can be described by the two coordinates x and
y, or by the three coordinates 0, ¢, and &, it seems that the latter must satisfy
a constraint relation between them. Can you find that relation? How many
degrees of freedom does the particle have?



5

The Strictly Newtonian
Mechanics Problem

5.1. General Remarks

In this section we define with some precision the problem of classical
particle mechanics. As observed in Section 2.3, Newtonian systems have
been divided into those called “strictly Newtonian” (SN), in which im-
pulsive forces are excluded, and those called “Newtonian’ (N), in which
unbounded forces of bounded impulse are admitted. The strictly New-
tonian systems are the more common; they are the ones on which a first
course in dynamics is usually centered. Thus, we begin with formulation
of (SN). Systems (N) which are not (SN) will be treated later in a chapter
on impulsive motion (see Chapter 21).

5.2. The Given Quantities and Relations

We assume that a real number R is given which defines in &2 a sphere
called the living space:

A(R) = {x: x€ &3, i x2 < R2}. 5.2.1)

i=1
At the time ¢ the living space contains a nonzero particle population

Hg(l, R) = {P,.[(Xr(l)), mr]: X' = (xlry X, x37) € ='C?(R)a m, € ‘%’
te@;r=12,...,n()<s}, (5.2.2)

55
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where s and » are integers, and where the sets

M= {m,:0 < m, < oo},
(5.2.3)
& = {t: —co <t < o0}

are defined on the line of reals. There are given, moreover, n distinct ar-
bitrary vectors

xr(O) = (x17(0)9 XZT(O)’ xar(o)) (r = 19 2, L) n)’ (524)
called initial positions, and » vectors that may or may not be distinct:
xT(O) = (X‘IT(O), xzr(o)’ x37(0)) (r = 1’ 2’ v n)’ (525)

called the initial velocities.
There are given K > 1 inequality relations

P XY L, X, X 1) << 0 (p=0,1,2,...,K—1) (526)

with f° =0, and L equalities,

e
M=

frdd+ fidt=0 (¢=0,1,2,...,L—1)  (527)

j=1 r=1
with fj = f°= 0. The f;# and f?¢ are everywhere continuous functions
of the x;7, and they may depend on ¢ as well.

The K relations (5.2.6) are nonholonomic configuration constraints.
The L relations (5.2.7) are holonomic constraints if and only if the system
(5.2.7) is integrable; otherwise they are nonholonomic equality constraints.

There are given, moreover, the n differential vector equations
mx = Fr(xbxb ..., xx%h ., x%Mt) r=12,...,n), (528)
where
X' = (xlry x27’ x3r),
)'ci’ = dxi"/dt,
FT = (Flr9 Fzr’ F3T)'

The FT are bounded, piecewise continuous, and Lipschitzian functions in
the x;” and X, and they may depend on ¢ as well."

tLet |Fll=XN,|F|and lull = Z¥, | u, |. Moreover, let u' = (u.}, u5', ..., uy') and
u® = (u?, u?, ..., uy?) be any two distinct points in a domain U € &%, and let every
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5.3. The First Problem

Given every x"(t) (r = 1,2, ..., n) having initial values (5.2.4) and
initial time derivatives (5.2.5), satisfying all relations (5.2.6) and (5.2.7)
as well as

(L) #x(t)  (pg=12,...,n,pFq) (5.3.1)

for every t,€ & : Find every F.

The most common example of the first problem is the statics problem
in which x"(¢) = x"(0) (r = 1,2, ..., n). In other words, in the statics
problem the prescribed motion is rest; it is desired to find forces such
that rest persists for all time. One sees immediately that the statics problem
must necessarily be subject to constraints, for an unconstrained particle
will always accelerate with respect to an inertial frame when it is acted on
by nonvanishing forces.

There are many meaningful problems of the first type which do in-
volve motion rather than rest. An illustration of the first problem is fur-
nished by:

Example 5.3.1. The ram of a metal shaper is to have a quick-return mech-
anism. Let its motion during the work-stroke and during the return-stroke be
sinusoidal, but the return-stroke is twice as fast as the work-stroke. What force
on the ram will achieve this if the load is constant during the work-stroke and
zero during the return stroke, and if Coulomb friction acts?

In Fig. 5.3.1, whe show the time history of the motion of the ram with the
midway position as the reference point. Then, the motion is given by

x:—lcosit:x1 for x > 0,
(a)

2n
)c:lcos—T~t=)c2 for x < 0.

This may be combined into a single equation by means of the sgn function. The
function sgn # is +1 or —1 according as u is positive or negative. Its graph
is shown in Fig. 5.3.2. With the aid of this function we may write (a) as

x = 3(x; — xz)sgn x + 3(x; + x,)
F7 be of the form F(uy, u,, ..., uy,t) = F'(u, t). Then, F is said to be Lipschitzian on

U in the variable u if
WF@? t) — Fut, )| < K lu? — ut|l,

where K is the “Lipschitz constant.”
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>t

—-“p———

312

Example 5.3.1.
or, after substitution and some simplification,
l n l 2n
x=— 7(1 +sgnx)cos7t—|—7(l —sgnx)cos—?t.
From (a), the acceleration is
oo l n 2 n t I f . > 0
X = T COS_T'—_ — ] X3 = X or x =20,
e (N T (VL e ot i<o
X = —T‘- COS"—-—— T Xg = Xg or x < v,
or, using the sgn function,

T 2

l 7 \?2 24 l 27 \2 27
X =——-<T) a —I—san)cos——-t——(—) a ——sgnx)cosTt.

This may also be written, from (d), as
. n 2 .
X = —2‘—' (T) (3 sgn x — S)X.

The work load is
W=C#0 for x >0,

W=0 for x <0,

sgnu

Fig. 5.3.1. Time history of the motion of

(b)

©

@

(e

Fig. 5.3.2. The signum function used in
Example 5.3.1.
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or, using the sgn function,
W = }C(1 + sgn x). ()

The friction force always opposes the velocity, or

f= —csgnx. ()

If P is the desired force,
mi=P+f—W

or, after some algebraic manipulations,

1 : 1
P:-Z“m(—;;) Gsgnit — Sx +esgnk +—C +sgnd. ()

This is the required answer.

A more involved example is that of finding the forces which must act
on an airplane such that it moves on a given path and with prescribed time
history of the motion from the take-off position in San Francisco to the
terminal at Kennedy Airport in New York. One sees that problems of the
first type may be very complex.

5.4. The Second Problem

Given every F7 satisfying the above properties (5.2.8), find every
vector function x"(¢) satisfying the initial conditions (5.2.4) and (5.2.5),
the constraints (5.2.6) and (5.2.7), the impenetrability conditions (5.3.1),
and which satisfy the set of differential equations (5.2.8) for all 1€ &.

The second problem is by far the more difficult and the more interesting
of the two. It is essentially one of prediction, e.g., one wishes to find the
particle motion for all future times when the initial state of each particle
is given.

5.5. Other Problems

There exist many fascinating problems of dynamics not included among
the above two. One of these is the so-called “identification problem.”
In it, all external forces acting on an unknown or partially known system
are given. Certain features of the motion of the system are observed.
Identify the entire system.
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Another problem often encountered deals with systems “with memory.”
Here, the behavior of the system depends not only on its state at the time ¢
but also on past states. In these systems, the forces are of the form
Frix, ..., x" % ..., X" ¢ 1), where 0 < 7 < t.

Still another, and a very timely problem of dynamics, related remotely
to the first problem, is the so-called “optimization problem.” In it one
wishes to determine forces such that the system will behave in an optimal
manner. A typical example is this: The initial and terminal states of a
particle are prescribed. The force acting on the particle is arbitrary except
that its magnitude may not exceed some given amount. Find the force
magnitude and direction for every value of ¢ such that the system will
attain the prescribed terminal state in the shortest possible time if it starts
from the prescribed initial state.

5.6. Concluding Remarks
It is clear that the formulation of the first two problems is not ex-

haustive, nor does the list become complete when the other problems are
added to it. In this book, we center our attention on the second problem.
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Some Rigid Body Kinematics

6.1. The Rigid Body

Rigid bodies are, by definition, systems of particles in which the distance
between any two particles remains constant for all time and for all con-
figurations. In other words, the particles of a rigid body do not move with
respect to a coordinate system fixed in it. For this reason it is sometimes
convenient to fix a coordinate system in a moving body, and to describe
the motion in terms of the components along the axes of this moving
coordinate system. As the coordinate system may then not be a Galilean
frame, the resulting expressions for the acceleration components along the
axes of the moving frame, but relative to an inertial frame, may become
quite complicated.

The system is called rigid if, and only if, the distance between any two
particles remains constant for all time when nonvanishing forces act on
some or all particles of a system. One can easily verify that there exist
precisely n(n — 1)/2 distinct distances between n particles. Therefore, a
rigid system of n particles satisfies n(n — 1)/2 holonomic constraints.

In the absence of these constraints, 3n coordinates are required to fix
the configuration of the n particles. Nevertheless, the rigid system cannot
have 3n — n(n — 1)/2 degrees of freedom (see Section 4.2) because that
number is positive only for » << 7. One concludes that the n(n — 1)/2
constraints are not all independent. In Fig. 6.1.1 a two-dimensional rigid
system of four particles is shown. While there exist six distinct rigid connec-
tions between them, it is easily seen that any one of the six may be removed
without destroying the rigidity, but, if more than one is removed, the system
is no longer rigid.
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P P3

Fig. 6.1.1. Two-dimensional rigid system of four
Pa particles.

If the number of rigid connections exceeds that necessary for the system
to be rigid, we call the system over-rigid. If the number of rigid connections
is such that the removal of one of them destroys the rigidity of the system,
we call the system just-rigid.

It is easy to see that a just-rigid system of two particles has one rigid
connection, and a just-rigid system of three noncollinear particles has three
rigid connections. A just-rigid system of n particles, with n > 3, requires
3n — 6 rigid connections. This is readily demonstrated. Let m be the number
of particles in excess of 3, or n = 3 4 m. Each particle which is added to
a rigid system requires, in general, three additional connections to be just-
rigidly attached. Therefore, the m particles in excess of three require 3m
rigid connections, while the original three particles have three connections.
Thus, the least number of rigid connections between n = 3 4+ m particles
of a rigid system is 3 + 3m. Since m = n — 3, the least number of connec-
tions is 3 + 3(n — 3) = 3n — 6, as claimed.

If the particles are not on a straight line, the number of degrees of
freedom of a just-rigid system of any number of particles is 6, i.e., it is
3n — (3n — 6). This result is unchanged for over-rigid systems because
redundant rigid connections do not decrease the degrees of freedom of the
system. Now, nine coordinates are necessary and sufficient to fix the con-
figuration of three points, and if their distance is fixed, three constraints
exist between them. Thus, the six degrees of freedom may be derived from
the coordinates of three noncollinear points in a rigid body.

If all particles of a rigid system lie on a straight line, the configuration
of the system is given by the position of two of its points; this requires six
numbers. But there exists one constraint between these two points. Hence,
a rigid system of particles on a straight line has only five degrees of freedom.

We have seen that a rigid system of particles has in general six degrees
of freedom, regardless of the number of particles. Thus, the constraints
have been utilized to reduce the dimensions of the configuration space from
3n to six. We know from an elementary study of mechanics that there exists



Sec. 6.2. o Finite Rotation 63

a wide choice as to which six quantities may be used to describe the con-
figuration. For instance, we may use the position of three points, as sug-
gested above, but the most common method of defining the motion of a
rigid body is based on Chasle’s theorem:

The general motion of a rigid body may be described by a translation
along a line and a rotation about that line.

With that description, the motion of a rigid body is given by three trans-
lational and three rotational components of the motion. The question of
the best choice of coordinates to describe the motion of rigid bodies will be
examined in more detail later on (see Chapter 11).

6.2. Finite Rotation

We wish to examine the motion of a rigid system of particles, called
hereafter a rigid body, relative to an inertial reference frame. Let this
inertial frame be given by the Cartesian triad of unit vectors £, J, K with
origin at O. A convenient way to study this motion is to fix in the rigid
body a Cartesian triad of unit vectors £, j, k with origin at O’. Then, the
motion of the rigid body is that of the body-fixed Cartesian frame, and it
in turn may be described by the translation of O’ and by the rotation about
a line through O. One sees, then, that if O’ is fixed relative to the inertial
frame, the only remaining motion is the rotation of the body-fixed triad
about O'. For such a motion, one may fix O’ at O without loss of generality.

Now, the concept of rotation is always studied in a first course in
mechanics, but that study is usually carried out on an elementary level.
In the balance of this chapter we study rotation in more general terms and
by more advanced concepts and methods than commonly used in a first
course in mechanics.

We first demonstrate the well-known fact that:

Finite rotation is not a vector quantity.

The three properties of vector quantities are:

(i) A vector has magnitude;
(ii) A vector has direction;
(ili) A vector may be added to another vector by the parallelogram law.

Finite rotation fails with respect to the third property, as we shall now show.
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0 @p
Fig. 6.2.1. Translation of P due to rotation about 7.  Fig. 6.2.2. The calculation of 4r.

Consider Fig. 6.2.1. Let a rigid body with point O fixed rotate about
a line having the direction of the unit vector A. Consider a point P on the
body whose position vector with respect to O is r before rotation. Due to
a rotation in the amount 0, the point is translated to P’ with position vector
r’, and the change in the position of P is Ar. We denote the component of r
normal to 7 by g, and that of r' by ¢’, and the angle between 7 and r we
call a. The vector Ar is decomposed into a component along g, and one
normal to it (see Fig. 6.2.2). The component normal to g is Q_P’ and is
normal to the plane OSP defined by the vectors 7 and r; hence, it has the
direction of 7 xr. An easy calculation shows this component to be equal
to (/i xr) sin 6. The component in the direction of o is PQ and is normal
to 7i X r, and it is also normal to 7 because it lies in the plane PSP’. Therefore,
it has the direction of 7 x (A xr). It is readily computed to be

A x (Aixr)(l —cosl)=24ix (A X r)sinZ%.
It follows that
Ar =sin0(A x r) + 2 sinzg [A x (A X r)]. (6.2.1)
Expanding (6.2.1) up to and including second-order terms in 6, one finds

2
Ar:0r‘1><r—|~—6§~[r‘1><(ﬁ><r)]+---. (6.2.2)

Let us now consider two consecutive rotations 0,7, and 0,7,, one in
the amount 6, about a line of direction #, and a second in the amount 0,
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about a line of direction A,, where 7, 7% iy, and neither 7, nor #, are
parallel to r, i.e., A, Xxr 70, and 7, Xr 7~ 0. Then the position of P after
the first rotation is

2
1

. ]
Fo=r+ 0,4, Xr+

3= Uiy (B X P+ -+ (6.2.3)

and its position after the second rotation is
. 0,2 .
Py =1y + O/, X ry + 5 [y X (Ay X r)]+ --- . (6.2.4)

Substituting (6.2.3) in (6.2.4) one finds up to and including second-order
terms

6.2
(ry — Py = O, X r -+ 0,8, X r+ 21 [A, x (A, % r)]
0.2
+ ; [y X (Aiy X r)] + 0,0,[A, x (A X )]+ --- .

(6.2.5)

The subscript 1, 2 on the left-hand side of (6.2.5) indicates that 0,74, was
performed first, and 0,7, subsequently. If this order of the rotations were
reversed one would have (simply by exchanging subscripts 1 and 2)

6 2
(ry — P)oy = Ogfiy X r + 0,/ X r + Tz [y x (A, X 1)]
6,2
2

+ [y X (A, X r)] 4 0,0,[A; X (A, x r)] 4 -+ .

(6.2.6)

For rotations to add like vectors, it is necessary that (r, —r,); o = (ra—ry)a 1
Comparing (6.2.5) and (6.2.6), this requires that

Ay X (Ay X r) = Ay X (A X r). (6.2.7)

But, by supposition 7, Xr # 0, iy Xr % 0, and #, 7~ A,. Therefore, (6.2.7)
is false, and the final position of P after two rotations does depend on the
sequence in which they are made. A simple and well-known example where
a change is the sequence of two 90° rotations leads to different end con-
figurations is shown in Figs. 6.2.3 and 6.2.4.

While finite rotation is not a vector quantity, it turns out that

Infinitesimal rotation is a vector quantity

because when the second-order terms are deleted in (6.2.5) and (6.2.6),
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! | ’
e

Original Position After 90° Rotation About z  After 90° Rotation About y

Fig. 6.2.3. Terminal configuration after two 90° rotations about two normal axes.

the equations become equal. In consequence, we also have:

Angular velocity is a vector quantity

because, if df is a vector, then d/dt is a vector.

6.3. The Direction Cosines

Let #, j, k be a Cartesian reference triad with origin O, and let ', ', &’
be another Cartesian reference triad whose origin coincides with O. This is

shown in Fig. 6.3.1.
Let o, be the angle between x" and x, a, that between x’ and y, and «,
that between x" and z. Then, the quantities

I, = cos a; = cos(x’, x),
I, = cos a, = cos(x’, y), (6.3.1)

Iy, = cos a; = cos(x’, z),

X X/ X//
1%

Original Position After 90° Rotation After 90° Rotation
About y About z
Fig. 6.2.4. Terminal configuration when the order of the rotations is reversed.
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Fig. 6.3.1. Illustrations of the direc-
tion cosines.

are called the direction cosines of x' with respect to x, y, z. One has

=1 -4
L=1-], (6.3.2)
l=1 -k

In a similar way we denote the direction cosines of y" with respect to x, y, z
by m,, m,, my and those of z’' by n,, n,, n;. Then

my = j -1
my=7j"-j (6:3.3)
my=j' -k,

and )
n ==k -1i
n,=k'- j (6.3.4)
ng=k' - k.

It follows that the primed vectors may be written in the unprimed

system as
i = L7+ L] + Lk,

J =mi+mj+ m3I€3 (6.3.5)
k' = ni+ nyj + ngk.

Now, the cosine is an even function of its argument, or cos(x’, x) = cos(x, x’).
This is also clear because i’ - i = i - i’. Thus, if we wish to express the
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unprimed unit vectors in the primed system, we also have

i=0Li"+mj + nllé’
= Li" + myf" + nk' (6.3.6)
12 =Ll +myj + n3k’.

These equations are useful to determine the vector components of any
vector in one coordinate system when its components in the other are
known. Thus, if, for a vector r,

r=xi+yj+ zk
=X +y] + 2K, (6.3.7)

one has

x =r-i =lx+ Ly + Iy,
y =r- ] =mx+ my + myz, (6.3.8)
2 =r-k' =nx+ ny+ ns.

If we consider i/, j', k' to be fixed in the rigid body, one of its points with
position (x, ', z') has the position (x, y, z) relative to the i, j, k system,
and the nine quantities /;, m;, n; (i = 1, 2, 3) fix that position. But, clearly,
these nine quantities cannot be independent because a body with one point
fixed has only three degrees of freedom; therefore, three quantities must be
sufficient to specify the position of one of its points. Indeed, the nine
quantities given in (6.3.2) to (6.3.4) satisfy six relations between them.
Three of these arise because, in each coordinate system, the unit vectors
are orthogonal, and three more emerge from the fact that the vectors
i, j,k (or i, j’, k') have unit magnitude. These relations are

I
S

-k
f

Il

0’
(6.3.9)

~

i
-k

Py

I .

I
x>

f
~-

and similar relations hold for the i’, j’, k' system. If we form all possible
dot products (6.3.9) for the #’, j', k', substitute (6.3.6), and make use in that
result of the relations (6.3.9), we find

17;1]' -+ m,m; + hn; = 6L'j (l, j =1, 2, 3), (63.10)

where Kronecker’s delta d;; = 1 for i = j, and d;; = 0 for i j. These
are the six relations satisfied by the nine direction cosines.
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6.4. Orthogonal Transformations

The equations (6.3.8), which relate the quantities x, y, z to the quantities
x', ¥y, z', constitute a group of transformation equations, called a linear
vector transformation:

3
Xi, == Z aijx]' (l = 1, 2> 3) (6'4'1)
j=1

J

with x" = x;/, ' == x,/, 2’ = x;/ and similar relations for the unprimed
symbols.

Now, the length of the vector r, given in (6.3.7), is independent of
the coordinate system in which it is considered, or

3 3
Z xit =Y xS (6.4.2)

3
Z ai]'aik>x]'xk. (6.4.3)

If we substitute this quantity back into (6.4.2) we find

3

S5

3
aijaik>xjxk = Z xiz. (6.4.4)
1 =1

If (6.4.4) is to be an identity, one must have

e

ajag =0 (U k=1,23). (6.4.5)

=1

If we make the change of notation

I, = ay, l, = ay, Iy = a3,
my = ay, my = dyy, mg = Gy,

ny = s, ny = asy, Ny = Q33,

Eq. (6.4.5) is identical with (6.3.10).
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We shall write, for short,

A=lay ay ay

(6.4.6)

and call A the matrix of the linear vector transformation. The a;; are called

the matrix elements.

Example 6.4.1. Consider a vector r in the plane. We represent it in the x;, x,
coordinate system and in the x,’, x;' system, which is rotated by an angle 6 with re-
spect to x;, x,. This is shown in Fig. 6.4.1. We deduce from this diagram that

X1 = x,¢€080 + x;sin0,
Xy = — x;8in 0 + x,cos 6.

This is a linear vector transformation with transformation matrix

A:[au 012]’

dg1 Az
where
a;; =cos 0, ay; =sin0,
a, = —sin0, dss = cos 0.

Equations (6.4.5) for i, j, k = 1, 2 become

audy + anan =1,
12y -+ 2232 = 1,
anays + anas =0,

and, substituting the values of the a;; into these relations, one has

cos? 0 + sin? 0 =1,
sin? 6 + cos? 6 =1,
cos0sin® —sinf cos0 = 0.

These are obviously true relations.

=

X
|

b
N
-

X

kel

Fig. 6.4.1. Axis rotation of Example 6.4.1.
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6.5. The Matrix Notation

Consider again the linear vector transformation (6.4.1), but written
in expanded form

1A

Xy = Xy + GgeXs + Qy3X3,

!

Xy = dopXq T ApeXy + dg3X3, (6.5.1)

!
Xy = g Xy + A3Xy + A33X3.

This set of equations is frequently written as the single matrix equation

X1 ayp Gy Qg3 %
’

Xy | = |Gy Gga Qos|]|Xa]. (6.5.2)
!

X3 Qs dzs Qgg||Xs

A matrix which contains only a single row, or only a single column is
called a vector and, indeed, the elements of the first column in (6.5.2)
are the components of the vector

x' = (xy, x3', x3); (6.5.3)

those in the last column are the components of the vector
x = (X1, X5, X3). (6.5.4)
Then, in view of (6.4.6) we may write (6.5.2) in the abbreviated form
x" = Ax. (6.5.5)

Since the left-hand side of (6.5.5) is a vector, so is the right-hand side.
Moreover, two vectors are equal if and only if their components are equal.
These components are the relations (6.5.1). Therefore, one has

r

X1 Xy + X + 3%

Xo' | = |@g1X; + @aaXs + AagX5). (6.5.6)
!

X3 A31X1 + A39X5 1 A33X5

A comparison between (6.5.2) and (6.5.6) shows by what rules the matrix
product Ax is computed.

A vector may either be written as a row or as a column matrix. How-
ever, when products are to be computed we always write x as a row vector
if we want to calculate xA, and we always write it as a column vector when
calculating Ax. The first is called pre-multiplication, and the second post-
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multiplication by the vector. Matrix multiplication does not commute;
in fact, we would have expected that xA 7= Ax because we know that
vector multiplication does not commute, i.e., for two vectors r, R, we have,
rXxR=# Rxr.

We define the unit matrix

0
= of, (6.5.7)
1

OO =
O = O

and the rules of matrix multiplication show that a square matrix A and
a vector x are unchanged when multiplied by the unit matrix. Thus,

Al=1A=A,

(6.5.8)
xl=1Ix =x.

We now ask whether a square matrix B exists such that BA = AB = 1.
Such a matrix, if it exists, is called the inverse of A and it is written as
A~ Thus,

AA'=A"A=1 (6.5.9)

(It is in general very laborious to compute the inverse of a matrix when that
inverse exists.)

Next, we define the matrix which is obtained when the rows and
columns are exchanged in A. It is called the franspose of A and is denoted
by A. Thus, if A is as defined as in (6.4.6), the transpose is

ap 4y A4y
A=la, ayp ay|. (6.5.10)
i3 Qyg QA

The matrix A is called orthogonal, if the transpose of A is equal to the
inverse of A. Therefore, if A is an orthogonal matrix,

A=A (6.5.11)

We notice that, while it may be very laborious to calculate the inverse
of a matrix A in general, it is certainly easy in the case of orthogonal
matrices; all one needs to do is to exchange rows and columns in A.

Combining (6.5.9) and (6.5.11), one sees that, if A is an orthogonal
matrix,

AA =AA =1 (6.5.12)



Sec. 6.6. o Properties of the Rotation Matrix 73

The elements of matrices need not be real; they may be complex.
Then, the conjugate complex of a matrix is found by changing each element
to its conjugate complex. The conjugate complex of a matrix is denoted
by an asterisk. Thus, if

-au + by ay +ibyy ay + ib13-
A = |ay + by ay + ibyy ayy + ibys|, (6.5.13)
@51 + ibgy  agy + ibgy  agg + iby)
then one has

[ay — by @y, — ibyy,  ayy — iby]
A* = |ay, — by, Gy — ibyy @y — ibys]. (6.5.14)

1931 — iby, agy — ibgy ag; — ’b33_

It is clear that if A is real, A = A* (because all b;; = 0).
Finally, when a matrix A has complex elements, the conjugate complex
of its transpose is called the adjoint matrix, denoted by A', or

At = A*, (6.5.15)
When

A=A (6.5.16)
the matrix is called self-adjoint. When

A'A =1
which is the same as writing

Al = A, (6.5.17)

A is said to be a unitary matrix.

6.6. Properties of the Rotation Matrix

We show here that the transformation matrix A of (6.5.5) defined
in (6.4.6) is orthogonal. Thus, we must show in accordance with (6.5.11)
that the inverse of that matrix is equal to its transpose.

Let the elements of the inverse A~! of A be denoted by «;;, or

Oy Qe O3
1
A1 = oy oy o). (6.6.1)

*31 Ogp O3
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Now pre-multiply (6.5.5) by A-!; then
x = A, (6.6.2)
and the elements of x are
3
=Y oyx; i=1273), (6.6.3)
P
while the elements of x' are, from (6.5.6),

3
' =Y ax;  (i=1,23). (6.6.4)
1=1

Therefore (6.6.4) must be the explicit solution of (6.6.3) for the x;". If we
substitute (6.6.3) in (6.6.4) we may regard this as having transformed x’
first into x, and then transformed x back into x’; thus we must get an
identity. The substitution gives

- i ( S U) (6.6.5)

Since this must be an identity, the coefficient of x;" must be zero for j # k,
and unity for j = k; in equation form,

3
Z A5 = 6kj' (66.6)
i=1

But, this equation is nothing more than the definition of the inverse in terms
of the identity; written in matrix form, it is simply

AA-! = | (6.6.7)

where | is the unit matrix defined in (6.5.7).
Consider now the double sum

3 3
Y Y Gl
k=1 s

we may write it in the two forms:

aklakiaij =

'MW
e

It
-

IIMw

aklaki)aij

akiaij)akl . (668)

I
-

(3

<k.

I
N
/—\‘M%

B
I
-
<
Il
-
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Substituting the relation (6.4.5) in the first form, we find

3

3
aklaki>aij = ) duw; = ay, (6.6.9)
1 =1
whereas, substituting (6.6.6) into the second form, we have

py

3

3
akﬂi;‘)akl = kz Oritis = ajy. (6.6.10)
1 =1

Since (6.6.9) and (6.6.10) are merely two different forms of the same
quantity, we have
o = aj (U, 1=1,2,3). (6.6.11)

In words: Consider the element a); of the matrix A. The corresponding
element of its inverse is by definition «;;; the above relation (6.6.11) states
that element is the same as that of A with the position of the indices reversed,
or it is the corresponding element of the transpose of A. Therefore (6.6.11)
leads to the matrix equation

A=A, (6.6.12)

which was to be shown.
This result has an important consequence. It implies that, if a linear
orthogonal vector transformation x’ — x is given by

x" = Ax, (6.6.13)
we may solve that system for x by writing
x = Ax'. (6.6.14)

Not every square matrix A possesses an inverse, but every such matrix
possesses a transpose. Thus, our result shows that the transformation
(6.6.13) is one-to-one. Moreover, we have now a very simple method for
solving a set of equations like (6.6.3) for the x;'.

6.7. The Composition of Rotations

Let us suppose that a rigid body is subjected to two successive rotations.
Let the first be that from x to x’, so that

3
X, = Z bi;x; (k=1,2,3) (6.7.1)
Jj=1
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or, in matrix notation,
x" = Bx. (6.7.2)

The second rotation is from x' to x'/, or
3
x('=Y apxy (=123) (6.7.3)
=

or, in matrix notation,
x'"" = Ax'. 6.7.4)

Substituting (6.7.1) in (6.7.3) gives

3 3 3 3
x;' = Zl aix Zl bij]- = Z (Z aikbkj>x]- (l = 1, 2, 3) (67.5)
j=

k= Jj=1 \k=1

In matrix form, the substitution of (6.7.2) in (6.7.4) gives

x" = ABx. (6.7.6)

If we denote the product of the transformation matrices by C, or
AB = C, 6.7.7)

we find that its elements are

3

cii=) agby  (G,Jj=1,23), (6.7.8)

in agreement with (6.7.5). Therefore:

The composition of two successive linear vector transformations with
transformation matrices A and B, respectively, is equivalent to a simple
linear vector transformation with transformation matrix C = AB.

It is evident that this result is easily extended to the composition of more
than two rotations.

6.8. Applications

Consider a rigid body, one of whose points is fixed at the origin of
some x, y, z coordinate system; that coordinate system is not fixed in the
body. Then a sequence of rotations of the body produces a sequence of
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displacements of every one of its points (except those lying on the axes of
rotation). Thus, after the rotations are completed, every general point is
in a new position. The position change has components x, y,z in the
coordinate system which is not fixed in the body. We now fix an x', y’, 2’
coordinate system in the body, and we ask: What are the components of
the position change relative to some fixed frame along the body-fixed axes?
The preceding theory has yielded that answer in terms of a transformation
matrix whose elements are the direction cosines of the body-fixed axes with
respect to the axis-system which is not fixed in the body. We have found
two results:

(i) The transformation matrix is orthogonal;

(ii) the transformation matrix of a sequence of several rotations is
equal to the product of the individual transformation matrices,
multiplied together in the inverse sequence of that in which the
rotations were made. Since rotations do not add like vectors, a
different sequence results in general in a different transformation
matrix.

We shall now apply this theory to two well-known descriptions of a
rotation which is the composition of a sequence of three rotations. It is
clear that a general displacement of a point on a rigid body with one point
fixed is describable by three independent rotations since a rigid body with
one point fixed has three degrees of freedom.

These applications differ only in the manner in which the rotation is
decomposed into three components, and the quantities to be determined are
the direction cosines of the body-fixed axes. The best-known description
of a rotation is that in terms of the Euler angles.

(a) The Euler Angles

The reader who has met the Euler angles in his or her first course in
mechanics may have been frustrated by the fact that the final formulas are
not the same in all books on mechanics. The Euler angles themselves are
the same in all of them, and the symbols used to denote them are usually
the same as well. But, the sequence of carrying out the Euler rotation is
not always the same and, to date, no standard sequence has been agreed
upon. We shall follow the most widely adopted sequence, which is that
given in Goldstein (pp. 107-109). At first, consider an x,, x,, x; coordinate
system not fixed in the body, and an x,’, x,’, x," system fixed in the body, as
shown in Fig. 6.8.1. Before rotation, these systems coincide. Now, let
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X3, X3

X2
!
X, X

Fig. 6.8.1. First Euler angle, ¢.

Fig. 6.8.2. Second Euler angle, 0. Fig. 6.8.3. Third Euler angle, .

there be a right-handed rotation in the amount ¢ about the x; axis. By our
theory, we have

x' = Dx (6.8.1)
and D is the matrix of the direction cosines

dyy, = cos(x,’, x;) = cos @,
dy, = cos(x,’, x,) = sin ¢,
dy3 = cos(x,’, x3) = 0,

dy; = cos(x,’, x;) = —sin ¢,
dyy = cos(x,’, X,) = cos @,
dyz = cos(x,', x3) = 0,

dy; = cos(x;’, x;) = 0,

dss = cos(xy, x,) = 0,

dss = cos(x,, x3) = 1.
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Therefore,
cosp sing O
D= |—sing cosp Of. (6.8.2)
0 0 1

Next we consider the x,’, x,’, x;” system as not fixed in the body,
and we call the body-fixed system the x;', x;’, x3' system, as shown in
Fig. 6.8.2. Before rotation, the two systems coincide. Then we execute a
right-handed rotation 0 about the x,” axis as shown; that axis lies in the
“line of nodes.” The transformation is

x"" = Cx'. (6.8.3)
By the method used above, we find

1 0 0
C=1|0 cosO sin0]. (6.8.4)
0 —sinf cos0

Finally, we consider the x;’, x3’, x5 system not fixed in the body while
the x;"’, x3'’, x;'" system is fixed in the body. Before rotation, the two systems
coincide. We now produce a right-handed rotation g about the x5 axis

as shown in Fig. 6.8.3. The transformation is
x"" = Bx", (6.8.5)
and the transformation matrix is

cosyp singy 0
B=|—siny cosy O0f. (6.8.6)
0 0 1

By the rule of the composition of rotations, the transformation from

rrr

x to x" is

x""" = Ax, 6.8.7)
where

A = BCD, (6.8.8)

and the matrix multiplication results in

cospcosp —cosOsingpsiny  cosysin g + cos b cos psiny sinysinf
A =|—sinycosp —cosOsinpcosy —siny sin @ + cos cos p cosy cosysinb
sin 0 sin @ —sin 0 cos ¢ cos @

(6.8.9)
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If we write

the elements of the vector x''' are

x" = (cos y cos ¢ — cos 0 sin g sin p)x
+ (cos p sin @ + cos 0 cos @ sin p)y + (sinysinB)z,  (6.8.10)

y" = (—sin y cos ¢ — cos 0 sin ¢ cos p)x
+ (—sinysing + cosf cosp cos )y + (cosysinf)z,  (6.8.11)

z' = (sin 0 sin ¢)x — (sin 0 cos @)y + (cos 0)z. (6.8.12)

Infinitesimal rotations cannot be described by three independent Euler
angle rotations. This is seen by expanding (6.8.10) to (6.8.12) to first-
order terms in infinitesimal quantities. They reduce to

X,:x+(¢+7/))y,
y=—(@+yx+y+iz
z'= —0y + z

These transformations involve only the two angles 6 and ¢ + vy, rather
than three angles. A geometrical interpretation of this result evolves from
Figs. 6.8.1 to 6.8.3. When the angle 0 in Fig. 6.8.2 is infinitesimal, a small
rotation ¢ (Fig. 6.8.1) and a subsequent small rotation y (Fig. 6.8.3) have
the same effect as a single rotation ¢ + .

The interpretation of (6.8.10) to (6.8.12) is this: Consider a rigid body
one of whose points O is fixed in some reference frame. Let (x, y, z) be
a triadt with origin at O; this is also fixed in the reference frame. Finally,
let x',y’,z" be a body-fixed triad which initially coincides with x, y, z.
Now, let the body execute a rotation dn about a line of direction 7 which
passes through O. Then a general point P of the body has coordinates
(x,y, z) in the fixed triad, and (x',y’, z') in the body-fixed triad. If the
rotation about 7 is decomposed into the three Euler rotations ¢, 6, and v,
the equations (6.8.10) to (6.8.12) give the transformation of coordinates
from x, y,z to x',y', z'.

t In 6.3, we used the term triad to denote the set of orthogonal unit vectors 7, /, k. We now
extend the use of this term to the orthogonal x, y, z system of axes, as is usually done.
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Fig. 6.8.4. Angular velocity unit vectors

of the Euler angles. Line of nodes

Suppose the body-fixed coordinate system has an orientation given
by the Euler angles ¢, 0, and y. If the body is now given an infinitesimal
rotation dn, what will be the changes dp, df, dy in Euler angles?

In Fig. 6.8.4 we show the body-fixed x’, y’, z" axes and the unit vectors
of the Euler rotations.

The vector ¢, lies in the z axis. Therefore its components on the body-
fixed coordinates are found from the transformation A of (6.8.8), e.g.,
from the last column of (6.8.9). If we write

dpk = dpi’ + dy.j' + dg
we have, therefore,
dep, = sin 0 sin y dp,
dp,, = sin 0 cos y dp,

dp, = cos 0 dp.

The vector é; lies in the line of nodes. Consequently, its components
on the body-fixed axes are those of x;’, formed from the transformation B,
defined in (6.8.5). They are [see the first column of (6.8.6)]
db,. = cos yp db,
db,, = —sin y db,
db, = 0.

The unit vector ¢, lies in the body-fixed z axis so that

dy, = dy, =0,
dy, = dy.
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Combining these,

dn = (sin 0 sin y dp + cos v df)i’ -+ (sin 6 cos y dp — sin y df);”
+ (cos 0 dp + dyp)k'. (6.8.13)

Example 6.8.1. A rigid body rotates about a point with angular velocity
o = fi(d8/dr). What are the components of w on a body-fixed x', y’, z' coordinate
system in terms of the Euler angles if the origin of the body-fixed triad lies at the
fixed point?
From (6.8.13) we have
w, = ¢sin O sinp + 6 cos p,
w, = @sinbcosy — fsiny, (6.8.14)

wy = ¢cosd + .

If the x, y, z system is that from which the Euler angle displacements were executed,
one can show in a similar way that the angular velocity components of » along these
axes are

w, = Psin0sin ¢ + 0 cos ¢,

w, = —sin 0 cos ¢ + 0sin @,

w, =pcosb + ¢.

The third of these may be deduced by inspection from Fig. 6.8.4. The demon-
stration of these formulas is left as an exercise.

A certain lack of symmetry is evident in these formulas. For instance,
in examining the matrix A in (6.8.9), it is evident that the diagonal elements
a;; are very unlike each other. While the elements g;;, for i, j =1, 2,
are similar in structure, those of the last row and column are quite different.
This lack of symmetry is due to the particular choice of component rotations
@, 0, and y. These rotations were chosen by Euler in order to discuss the
gyroscope, where g is called the precession, 0 the nutation, and y the spin.
There exist other descriptions of rotation which do not have this lack of
symmetry. One of these is called the Rodrigues formulas. We shall discuss
them next.

(b) The Rodrigues Formulas

The derivation of the Rodrigues formulas begins with the (exact)
formula (6.2.1):

Ar=sin0( X r) + 2 sin2—§ [A x (7 x r)]. (6.8.15)
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We now introduce the parameter (vector)

A = tan % 7. (6.8.16)

Then
6 2 tan(6/2) 2|2

i 0*2s'nz 0S8 — = =
S = 2SI S O S = T tan?(02) 11 22

and similarly
0 tan%(6/2) A2

sin? — = =

2 11 tan20p2) 14 A2

In this way, (6.8.15) becomes

, 2
Ar—r'—r = X E X X DL (6817)

But, we also may write the triple vector product in (6.8.17) as
AX@AXr)y=2M-r)y— 2. (6.8.18)

Therefore, the relation between r’ and r is

2 12
r=———m1MRxr+ A -]+ -—-= 1+12

T (6.8.19)

This formula gives the position of P after rotation, i.e., r’ in terms of the
position r before rotation, and of the parameter A.
Let us now write
r=x :x1f+x2j+x3]€,
r=x=x'T+x'] + x'k, (6.8.20)
A= i+ A + Ask.

The substitution of these formulas in (6.8.19) gives the transformation
equations, whose matrix form is

, 1
X = W Ax (6.8.21)
with
1 + 112 - )“22 - )*32 2(}“1}“2 - 13) 2(11}“3 + 12)
A= 2(AAs + 43) 1 — A2+ A2 — A2 2(AA5 — Ay)
2(02s — 4y) 225 + A1) 1 — 22— A2+ A2

(6.8.22)
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This transformation matrix has the symmetries which are lacking in that
of the Euler angles.

Still another representation, of particular interest in quantum mech-
anics, is that of the so-called Cayley—Klein parameters. It shows the same
dissymmetries as the Euler angle transformation, and it is a complex
representation utilizing the Neumann sphere. The main difference between
the Cayley-Klein parametric representation and the two given here is that
the former uses four parameters, i.e., one more than the number of degrees
of freedom. Hence, the Cayley-Klein parameters must satisfy a holonomic
equation of constraint. The reader interested in the Cayley—Klein parameters
is referred to Goldstein (pp. 109-118).

6.9. Problems

6.1. Let
0 1 -1 0
A*{l 0]’ B"[o 1]
Show that
AB +# BA.
6.2. Let
A = (o] = 0 1
— My ‘[—1 0]'

Determine by computing A-* whether A is orthogonal. (Note: The inverse
is A= = € = [c;;], where ¢;; = ay;/a, where ay; is the cofactor of a;;, and
where a = | a;; | is the determinant of A.)

6.3. Let A = [ayl, i,j = 1, 2, 3, be a rotation matrix. Prove that B = A — A
is skew-symmetric (i.e., b;; = 0, b;; = — b;;). Is B a rotation matrix?

6.4. Prove that, if C = AB, then € = BA.

6.5. Show that the sum of two orthogonal matrices is not, in general, an orthogonal
matrix but their product is.

6.6. Consider rotation matrices € and B given in (6.8.4) and (6.8.6), respectively,
with |6 | and | v | so small that terms of second order in small quantities
can be ignored. Show that the composite rotation BC is a skew matrix.

6.7. Show that the rotations in Exercise 6.6 may be regarded as vectors, i.e., show
that BC = CB in Exercise 6.6.

6.8. Show that under the assumption of Exercise 6.6, the elements off the diagonal
of BC are the same as those of B 4 C, and the elements on the diagonal of
BC and B + C differ by a factor of 2.
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6.9. Starting with the left-handed coordinate system shown, consider the follow-
ing sequence of rotations: (i) a rotation 6 about the y axis into the x’, y’, z’
system; (ii) a rotation ¢ about the x' axis into the x", y"', z' system; (iii) a

y

z

rotation y about the z'* axis into the x'”, y'"', z'’’ system. Construct the
rotation matrix of the composite rotation analogous to (6.8.9).

6.10. Calculate the vector dr for Problem 6.9 above analogous to (6.8.13).
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Some Rigid Body Kinetics

7.1. Introductory Remarks

The subject of rotation of rigid bodies and of mass moments and products
of inertia is usually treated in a first course of mechanics. The inertial
parameters arise in the following way:

Let a rigid body be composed of n particles m; (i=1,2,...,n)
with position vectors

>

ri = (X5 Yi» 2;) (7.1.1)

where x, y, z is a triad fixed in the rigid body. If the angular velocity vector
of the body is

o = (0,,0,,0,), (7.1.2)

i.e., the body rotates about a line with angular velocity w, then the angular
momentum of the ith particle of mass m; and position r;, denoted by the
vector

is, by definition,
Li == ri X mi’",i

= m[r; X (0 X r)]
or, using the expansion formula of the triple vector product,
Ly = m[(r; - r)o — (r; - 0)r;]. (7.1.4)

87
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The angular momentum L of the entire body is then simply the sum
n

L=o) mr2— Y mr; - o), (7.1.5)
b}

=1

and the Cartesian components of the momentum in the direction of the
body-fixed axes are found by substituting (7.1.1) and (7.1.3) in (7.1.5);
they are

L, = w,l,, + o, + o.l,,

L, = w1, + o1, + o1, (7.1.6)
Lz = wz[zx + wylzy + szzz s
where

n n n
Ly = 21 my(y® + z;%), Iyy = Z,l mi(x?+z32), IL,= Z,l my(y® + x;%)
= - = (7.1.7)

are called the moments of inertia of the body relative to the x, y, z system
of coordinates, and

n n n
L,=— Z mx;yi, IL,= — z mx;z;, l,= — Z m;y;z;  (7.1.8)
=1 i= =1

=1
are called the products of inertia.? As is evident from (7.1.8),

Ly=1,, L,=1IL,, I,=1,. (7.1.9)

The array

is called the inertia tensor of the rigid system of particles.

If the rigid body is a continuous solid, the summations are replaced
by integrations over the volume and, provided p = dm/dv exists, the particle
masses m; are replaced by

dm = g dv, (7.1.10)

where o(x, y, z) is the local density, and dv is the volume of the mass element

t Our departure from the usual notation is to call I, what is normally denoted by
—I,,,; this has simplifying effects in later developments.
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dm having the position vector (x, y, z). Thus, for instance, the first of equa-
tions (7.1.7) becomes the Riemann integral

I, = J (0 + %o dv (7.1.11)
14
and the first of equations (7.1.9) becomes
Iy, = — J xyo dv. (7.1.12)
14

To establish the validity of the procedures used in replacing sums like
those in (7.1.7) and (7.1.8) by integrals like those in (7.1.11) and (7.1.12)
we shall now show that both the limit of the finite sum and the integral
which replaces it are equal to (so-called) Stieltjes integrals of the form

I= J f(x, y, 2) dm(x, y, z). (7.1.13)
v

Before proceeding with this demonstration, a few words regarding
Stieltjes integrals may be in order. Consider a real-valued, bounded, non-
decreasing function F(¢) defined on the closed interval

[a,b] =a<t<b.

We call P a partition of [a, b] if P is a finite collection of nonoverlapping
subintervals whose union is [a, b]. Denoting a partition by the partition

points we write
P=(t;,ty, ..., 1),

(7.1.14)
ty <ty
Now, let &, be intermediate points, or
h < & < fri- (7.1.15)
Then, Q is also a partition of [a, b] where
Q=(t,8,t,8&, ..., &y, ty). (7.1.16)

We say that Q is a refinement of P, or Q is finer than P, because every
subinterval of Q is contained in some subinterval of P; this implies that
every partition point of P is also a partition point of Q.

Let ¢(¢) be a continuous, real-valued, bounded function defined on
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[a, b]. Then it can be shown' that the Stieltjes sum
S(Pig.F) = 3. (e Fltn) — Fe) (1.1.17)
converges to the Stieltjes integral
I=Jb<p(t)dF(t) (7.1.18)
a

as the partition is made finer and finer in the sense that

max | tp,, — 4 | — 0. (7.1.19)

Usually, ¢(¢) is called the integrand, and F(z) the integrator.

Consider now the real-valued, bounded function m(x) > 0, defined
only at a finite number of distinct points xzx (K= 1,2, ..., N) on [a, b].
Then, we may also regard m(x) as a nonnegative function defined every-
where on [a, b] whose value is zero for every x 7= xx, and equal to m(xg)>0
for every x = x;z. We denote the sum of the m(xg) by

M= ﬁ m(xg). (7.1.20)
k=1

Our problem is resolved if we can show that M is also given by a
Stieltjes integral

z=b
M= J dF(x). (7.1.21)

Tz=a

To do this, consider the Stieltjes sum

S(P; 1, F) = kz [Ftiy) — F(t)] (7.1.22)

with the partition
P=(t;,ty, ..., 1,)

such that #, = x; for all k and K, and at most one xx can be interior to any
subinterval [#, t;,,]. Moreover, let F(¢) be given by
F(t) =) m(xg). (7.1.23)

rg<t

t For a proof of this statement refer to any text on real analysis. See, for instance, Bartle,
R. G., The Elements of Real Analysis, John Wiley and Sons, Inc., New York (1964),
pp. 275-271.
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This function is called a ‘““discrete distribution corresponding to m(x)
and xg.” Evidently, F(¢) is defined everywhere on [a, b]; it is bounded
and nondecreasing; it has a jump of value m(xg) at each xx and it is constant
between these values.

The differences are given by

F(ty1) — F(t) = m(xg),

7.1.24
o (1.124)

according as the interval [#,, t;,,] does or does not include a point xg.
It follows that the Stieltjes sum

n N
kz,l [F(trs1) — F()] = KZ=:1 m(xg). (7.1.25)

In view of the properties of F(t) [and of ¢(¢) = 1], the Stieltjes sum con-
verges to the Stieltjes integral, or

N o=
Y. m(xg) :J dF(x), (7.1.26)

K=1

which was to be shown.
Now, if we wish to consider a continuous function m(x) defined on
[a, b], we have
z=b
M= J dm(x), (7.1.27)
r=a
which is a Stieltjes integral. If o = dm/dx exists on [a, b], (7.1.27) may be
replaced by the Riemann integral

b
M= f o(x) dx. (7.1.28)

Example 7.1.1. A homogeneous solid cube of edge length a and density ¢
is constrained so that one vertex is fixed. Calculate the angular momentum compo-
nents under an angular velocity o = (1, 2, 3).

The cube and the coordinate system are shown in Fig. 7.1.1. By direct inte-
gration we obtain

L, = L, = L. = §9,a5 = $Ma®,
—Izy = - Izz = - Iyz = i’@as = iMaa,

where M = ga® is the cube mass.
Then,

L, = — & Ma?, L, = Ma’, L, = $Ma.
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N

~

/ a
X Fig. 7.1.1. Cube of Example 7.1.1.

7.2. The Inertial Parameters in Rotated Axes

From the previous section it is clear that the magnitudes of the inertial
parameters depend on the orientation of the body-fixed axes and will
change when this orientation changes. As is well known, for every choice
of origin of body-fixed axes, there exists one preferred orientation for which
the products of inertia of the body vanish, and the moments of inertia are
stationary with respect to neighboring orientations. These preferred direc-
tions are called the “principal axes”; they are preferred because the vanishing
of the products of inertia greatly simplifies the equations of rotational
motion.

In order to find the principal axes, one must study the effect of axis
rotation on the inertial parameters. This study is brought into conformity
with Sections 6.4-6.6 when x, y, and z are replaced by x,, x,, and Xx;,
respectively. Also, we use the notation

[x Ii]'

&y

because it does not give rise to confusion.
Now, a moment of inertia such as 7, in (7.1.11) may be written as

I,= J (r* — x®)dm
14
because of the Pythagorean theorem. Hence, in general, the moment of

inertia is
I; = J (r® — x;x;) dm, (7.2.1)
4
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and the product of inertia is
I = — fvxixj dm (=)
Therefore, we may write for all i, j =1, 2, 3,
l; = JV (r? d;; — x;x;) dm,

where d,; is Kronecker’s delta, defined in connection with (6.3.10). Now,
if the coordinates after rotation are x;/ (i = 1,2, 3), then the inertial
parameters with respect to these rotated coordinates are evidently, from
(7.2.1),

1 :j (r? b, — x{x/) dm. (722)
V

But the new axes are related to the old ones by (6.6.4), which are (with a
suitable change of index notation)

4

X; =

e

3
Xy, X = lZ apx;. (7.2.3)
=1

k=1

I

The substitution of these in (7.2.2) gives

3 3
Ij; = %j ridm -3 Y ai,caﬂj Xpx; dm., (7.2.4)
v o 14

The inertial parameter /;; after rotation is related to the one before axis-
rotation in a simple way. From (7.2.1), the quantity

J XX dm = 6,J,J r2dm — I,
14 14
and the substitution of this expression in (7.2.4) gives
3 3
15,]' = 6UJ‘ r2 dm + Z Z a”caﬂ<1k, — 6“J rzdm>.
v e | 14

The last term contains the coefficient

3
)
=1

e

3
ayaj Oy = Z Ay = 50"
=

I=1

where the last equality is the result of (6.6.6) and (6.6.11). Therefore, the
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inertial parameters with respect to rotated coordinate systems in terms of
those before rotation are simply

L]

e

aikajllkl . (725)

!/ —_
Iy =

=
Il
-
-~
I
Jui

Moreover, as the rotation matrix is orthogonal (i.e., its inverse is its trans-

pose) we also find
3

z akialjlk’l. (726)

1 I=1

DM

Iij -
k

7.3. Angular Momentum and Principal Axes

Let us write the angular momentum equations (7.1.6) in the matrix
form

e

Lx Ixz Izy Ixz
Lyl =l Ly 1
L, L, L, I

r74

e 8
<

1, (1.3.1)

2

and let us suppose that the angular momentum vector L and the angular
velocity vector w have the same direction, or

L = Io, (1.3.2)

where [ is a scalar constant of proportionality.
When (7.3.2) is written in matrix form, one finds

L, I 0 0O||lw
Lf=10 I O}|o (7.3.3)
L, 0 0 Jl|low

It follows that, when the directions of angular momentum and angular

velocity coincide, (7.1.6) becomes

L0, + Ixywy + Lw, = lo,,
I,0, 4 Lo, + Lo, = lo,, (7.3.4)
Lo, + Lyw, + Lo, = lov,.

Nontrivial solutions of (7.3.4) require that the determinant of the coefficients
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of the w,, w,, w, vanish, or that

[Iar — 1 Izy ]xz
I, IL,—1 I, |=o0. (7.3.5)
Izz Izy Izz —1I

This is a cubic equation in I which can be shown to have always three
real roots I,, I, and I,. [The proof of this statement is not given here.
It is based on the fact that the matrix of the inertia tensor is self-adjoint,
as defined in (6.5.16).]

By comparing (7.3.1) and (7.3.3) it is evident that the latter corresponds
to the former when the products of inertia vanish, and this means that the
three roots 1., I, and I, of (7.3.5) are the principal moments of inertia.

It is, of course, not true in general that, for any rotational motion,
the angular velocity and momentum vectors coincide in direction, and our
method for finding principal moments of inertia did not suppose that they
always do. Rather, we made use of the invariance of a vector under co-
ordinate rotation. Explained more fully, we utilized the fact that a given
vector does not change in magnitude or direction when the coordinate
system is rotated; all that changes is the magnitude and direction of the
components. Therefore, if angular velocity and momentum vectors do
coincide, that fact is not altered by a rotation of the coordinate system.
This observation together with the one that the angular momentum vector
is always given by (7.3.1) regardless of the direction of the coordinate
system establishes our procedure.

If the x, y, z system is any coordinate system fixed in the body, its
origin O fixed in some point in the body, then the principal moments of
inertia are found as the roots /., I,, and I, of the determinantal equation
(7.3.5).

The directions of the principal axes are found as follows:

If we substitute a root I; (i = x, y, z) in (7.3.4) we obtain the three
equations

(e =T + Lo+ Lo =0,
Lo®  + (I, — Lo + Lo® =0, (1.3.6)
Loy  + LW 4 (I, — o =0.

For every i, there are three equations in the three unknowns o, o, {®.

Then, a point P having coordinates x; = 0%, y; = o, z; = 0 lies on

that principal axis passing through the origin about which the (principal)

moment of inertia is /;.
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Example 7.3.1. Calculate the principal moments of inertia of the cube of
Example 7.1.1 about a vertex.
Substitution in (7.3.5) gives

84—-1 —34 —34
—34 84—-1 —34 |[=0
—34 —34 84-1

where A = Ma?/12. Expansion gives
P — 2447 + 16541 — 2424° = 0,

which has the roots
I, =24, L=1I=11A4.

Therefore, the principal moments of inertia are
I, = iMa®, I, =1, = $Ma®.

To find the direction of the principal axis about which the moment of inertia is
I, substitute I = I, and the other inertial parameters in (7.3.6). One finds y,/x, = 1
and z,/x; = 1, or the x, axis is the diagonal passing through the fixed vertex. The
other two principal axes are orthogonal to the x, axis and to each other. Their orien-
tation in the plane normal to the x, axis is immaterial because I, = I,.

7.4. The Ellipsoids of Cauchy and Poinsot

A geometrical interpretation of principal axes, frequently discussed in
a first course in mechanics, is provided by Cauchy’s ellipsoid of inertia.
Suppose the inertial parameters of a rigid body with respect to an
X, y, z triad are given; let them have the magnitudes I, 1, I,, I, I, .
Then, if an x” axis passing through the origin of the x, y, z triad has direction
cosines a,, a;;, @5, the moment of inertia I,,,, about that axis is, from

(1.2.5),

e
e

Lyrr = a; iy

k

T

1 1

or, written out (with j =1,2,3;k,/=1,2,3, and/or k, ] = x, y, z),

Ly = Iy = a1, + a%2[yy + asl,, + 2aualzlxy + 2aya55l,; + 2“12“13Iyz-
(7.4.1)

In Fig. 7.4.1(a) an x, y, z triad is shown as well as the line Ox’. If this
line subtends the angles «, 8, and y with the x, y, and z axes, respectively,
we have

cosa = ay, cosf = a, COS y = dy;3.
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(a)

Fig. 7.4.1. Arbitrary triad and Cauchy’s ellipsoid.

On the x’ axis, we mark a point P whose distance OP from O is numerically
equal to 1/(I,)"2, as calculated from (7.4.1). Then, it is evident from that
diagram that the coordinates of P are

X = au(ﬁ = ay/(Iz)"%,
y = apf (L)%, (74.2)

z = ay/ (L)

If we solve these equations for the a;; and substitute them into (7.4.1),
that equation becomes

Ix2+ 1,y* + Lz 4 2L,xy + 2Lxz + 21,yz = 1. (7.4.3)

This is the equation of an ellipsoid centered on the origin of the x, y, z
triad, called Cauchy’s ellipsoid of inertia. Therefore, for any rigid body:

Cauchy’s ellipsoid defined by (7.4.3) is the locus of points P such that
the square of the distance between O and P is inversely proportional to
the mass moment of inertia about the line connecting O and P.

This observation is illustrated in Fig. 7.4.1(b). In that figure, the x*, y*,
and z* axes are also shown. These are the principal axes of the ellipsoid
as well as those of the rigid body. In this way, the principal axes of inertia
have been interpreted in a simple geometrical way.

Related to Cauchy’s ellipsoid is Poinsot’s ellipsoid, which gives a
geometrical interpretation of torque-free rotation of rigid bodies.
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The angular momentum components of a rigid body with one point
fixed in inertial space were calculated in (7.1.6). It is important to remember
that these components are along the axes of a coordinate system fixed in
the moving body and, hence, not fixed in inertial space, in general. Therefore,
the time derivative of the momentum vector is

‘Z—It‘ =Li+L,j+Lk+wxL, (7.4.4)

in which w is the angular velocity of the rotating body and, hence, of the
X, y, z axes relative to a Galilean frame.
If the rigid body is acted on by a torque

M= (M, M, M), (7.4.5)
Newton’s law for its rotation is

dL

— = M, (7.4.6)

When (7.4.4) and (7.4.5) are substituted in (7.4.6), the components
of this equation are found to be

L,+wlL, —w,L, =M,
L,+wlL, — oL, =M, (7.4.7)
L, + w,L, — w,L, = M,,
where the momentum components are given in (7.1.6). Evidently, their
substitution in (7.4.7) will result in lengthy equations. However, when the

x, y, z axes are the principal axes (so that the products of inertia all vanish),
there results

Izd’x - ([y - Iz)wywz = Mz’

Lo, — (I, — L)w,w, = M,, (7.4.8)

Lo, — (I, — L)wo,w, = M,.

These are the well-known Euler equations of rotation of a rigid body
about a point. Their simplicity is due to the use of principal axes, and this is,
in fact, the main advantage accruing from principal axes.
Under torque-free motion, the Euler equations are
Lo, — (I, — L)w,w, =0,
Lo, — (I, — L)w,w, = 0, (7.4.9)
Lo, — (I, — I)w,w, = 0.
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But, when no torque acts, it follows from (7.4.6) that the momentum vector
L is a constant, both in magnitude and direction; its direction, evidently
fixed in inertial space, is the so-called “invariable line.” The magnitude of
the momentum vector is given by

L-L=L= o2+ Lo+ L2 (7.4.10)

Moreover, when no torque acts, it is simple to integrate Euler’s equa-
tions of motion. Multiplying the first of (7.4.9) by w,, the second by w,,
the third by w,, and adding them gives

Lo,0, + Loyw, + Li,w, =0,
and this integrates to
Lo2 + Lw,? + Lo? = 2T = const, (7.4.11)

where T is the kinetic energy of rotation.
If we let the end point of the angular velocity vector have the position
(x, y, z), (7.4.10) and (7.4.11) become

12x* + L2y* + L2z = L* = const,

(7.4.12)
Lx* + Ly* + 1,22 = 2T = const.

Both of these are seen to be the equations of ellipsoids referred to principal
coordinates, and both ellipsoids are rigidly attached to the rotating body.
Evidently, both equations must be satisfied by torque-free rotation, or the
end point of the angular velocity vector must lie on the intersection of these
two ellipsoids, i.e., a curve. If an observer were fixed in the body (and he
could actually see the angular velocity vector) he would observe its end
point moving along this curve; it is called the “polhode.”

We will now show that the angular velocity vector w, fixed at some
point O on the line of action of the momentum vector L, terminates on a
plane which is fixed in inertial space.

In Fig. 7.4.2 we show the constant angular momentum vector L and
the angular velocity vector w; the endpoint of w is the point P. The line OQ
is the invariable line. Now, let the normal from P on the invariable line
intersect it at R, as shown. Then, OR is the component of w along the
invariable line, or

OR=w - L|| L], (7.4.13)

where L/| L| is the unit vector along L. But

2 4 i
0 = o, + o,] + vk,
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Invariable line

Invariable plane

o Fig. 7.4.2. Moment vector and invariable plane.

and

L = Lo, + Lw,] + Lok
when principal axes are used. Therefore,
o - L=Lw!+ [+ Lo?= 2T = const (7.4.14)

in virtue of the second equation of (7.4.12). The substitution of (7.4.14)
into (7.4.13) gives

OR = 2T]| L | = const. (7.4.15)

It follows that R is a fixed point in inertial space, i.e., it does not move up and
down along the invariable line during the motion. But then, any perpendicular
to OQ meeting the invariable line at R must lie in a plane which is also
fixed in inertial space; this is what we wished to show. This plane is called
the “invariable plane,” and it is perpendicular to the invariable line.

The second equation of (7.4.12) is the equation of the so-called ‘“Poinsot
ellipsoid.” As we saw, this ellipsoid is the locus of the endpoints of the
angular velocity vector. But, if that vector terminates both on the surface
of the Poinsot ellipsoid and on the invariable plane, then, during the motion,
the Poinsot ellipsoid (fixed in the rotating body) must roll on the invariable
plane, which is fixed in inertial space. Therefore, the polhode is the locus
of points on the ellipsoid which have contact with the invariable plane
during this rolling. The locus of contact points on the invariable plane is
called the “herpolhode”; it is the locus of the endpoints of the angular
velocity vector seen by an observer who is fixed in inertial space.

The interpretation of the rotation of rigid bodies in terms of the Poinsot
ellipsoid rolling on the invariable plane is called Poinsot’s representation.
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Example 7.4.1.t Discuss the motion of a homogeneous circular disk sup-
ported at its center on a needle point when it is set spinning about a line of known
orientation.

Let the radius of the disk be r, its mass M, locate an x, y, z triad in the disk
so that the origin is at the disk center, and k is normal to the disk, let the initial
angular velocity be w,, and let the vector w, make an angle « with the normal
to the disk. Let the angular velocity of the disk be w (so that ® = w, when ¢ = 0).
This is shown in Fig. 7.4.3.

Clearly, the /, j, k triad lies in the principal axes, and the principal moments
of inertia are

I=1,= M, [, =2[ = M

Let us now fix the 7, / system in the disk such that o, lies in the y, z plane. Thus, if
W = gl + w,f + w0k,

we have at t = 0

w,(0) =0, 0,(0) = w,sin a, ,(0) = w, cos a.
The motion is torque-free; hence, (7.4.9) are applicable, and the third of these is
Lw,=0

because I, = I,. This equation implies
w, = const = w, COoS a.

The remaining two equations are

®, + w, cos a w, =0,

M, — W, COS @ w, =0,

because I, = 21,.

Fig. 7.4.3. Disk of Example 7.4.1.

T Synge, J. L., and Griffith, B. A., Principles of Mechanics, 3rd ed., McGraw-Hill Book
Company, Inc., New York (1959), pp. 316-317.



102 Chap. 7 e Some Rigid Body Kinetics

These equations are easily uncoupled and integrate to

w; = — , sin a sin[(w, cos a)¢],

w, =  ,sin «cos[(w, cos a)t].

Example 7.4.2. (Lainé, E., p. 47). A homogeneous lamina under no forces
has the form of an isosceles triangle OAB, as shown in Fig. 7.4.4. The line OH,
which bisects the angle at O, has the length 4, and the base 4B has the length 6'/2h.
The lamina can turn freely about the fixed point O. Initially, it has the angular
velocity 2w about a line whose projection on the OAB plane falls on OH, and which
makes an angle of 30° with OH. Discuss the motion and determine the polhode
and herpolhode.

Let a right-handed x, y, z triad be fixed in the lamina at O. The x axis is parallel
to AB and positive in the direction of B, the y axis is along OH positive in the direc-
tion of H, and the z axis is normal to the x and y axes. It follows from sym-
metry that the y and z axes are principal axes and, hence, the same is true
for the x axis. The principal mass moments of inertia are easily found to be

I, = §Mh?, y, = MR, . = iMP’, (a)

where M is the lamina mass.
As the motion is force-free, the integrals (7.4.10) and (7.4.11) apply. We write
them as
IIZwIZ + Iy2wy2 + IszZZ J— D2k2,

(b)
Lw,? + Lw,}2 + Lw,* = Dk,

Fig. 7.4.4. Triangular lamina of Example 7.4.2.
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where D and k are constants that are determined from the initial conditions
0,0) =0,  ©,0) =30, 0,0 =o ©
with o > 0.
Substituting (a) and (c) in (b), one finds
iIMh*w? = Dk?, iMh'w? = D%,
from which the constants are found to be
D = MR, k? = 3w (d)
Then, the first of the Euler equations (7.4.9) and the two integrals (b) constitute the
system of equations
W, + w0, =0,
202 4+ 0,2 4 30,* = 602, (e)
4o, + 02 + %0, = 120
where use was made of (a) and (d). These equations are sufficient to determine

the three components of the angular velocity.
From the last two equations of (e) one finds

0, = 3w® — 02 0 = 3(3w® — 0.?),

which shows that these velocity components both become zero when w,? = 3w
Hence, the angular velocity can never exceed 32w in magnitude.

It is evident from Fig. 7.4.4 and from (c) that, initially, v, and w, are positive;
thus, they remain positive during some time interval and are given by

0, = B — w2V, w,[Bw* — w,?)[3]V2. )

The substitution of (f) in the first equation of (e) shows that, during this time inter-
val, w, satisfies

3%, + 3w? — w,? =0,
which integrates under »,(0) = 0 to

1/2
320 — w,

— eZwt
30 + w,

Solving this equation for w, and substituting it in (f), one finds

w, = — 32y tanh wt,
o, = 3Y*w/cosh wt, (g)
w, == w/cosh wt.

These equations give the angular velocity components along the moving axes.
They show that, as 1 — oo, | w, | - 3"%w and w,, w, - 0.

To determine the velocity components relative to an inertial X, Y, Z system
with origin at O, let us choose the Z axis to lie in the direction of the angular mo-
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mentum vector L, i.e., in the direction of the invariable line. The orientation
of the X and Y axes will be left open for the present.

We denote by 0 the Euler angle between the positive z and Z axis, and by
the angle which the projection of the Z axis on the xy plane makes with the positive
y axis. Then, the angular momentum vector has the length Dk, and its components
Lo,, I,w,, and I,», along the moving axis are, respectively,

Lw, = Dk sin 0 sin v,
I,w, = Dk sin 6 cos y,
Lw, = Dk cos 6.

Combining this with (d) and (g), one has

sin 0 sin y = — tanh wt,
sin 6 cos y = 1/(2 cosh wt), (h)
cos 0 = 312/(2 cosh wt).

From the last of (h) one sees that cos 6(0) = 3v2/2, so that we may choose
6(0) = =/6. Hence, 0(¢) increases from its initial value =/6 to n/2 as t — oo,

As one may rewrite (h) in the form
cos 0 = 3¥2/(2 cosh wt), sin 0 = HY?/(2 cosh wt), 0
siny = — 2sinh wt/HY?, cosy =1/HY?,

where
H(t) =1 + 4sinh? ot,

it is evident that the Euler angles 6 and y are now fully determined as functions of
time.
To find the third Euler angle we utilize the first two equations of (6.8.14):
w, = ¢sin 0 sin y + 6 cos yp,
w, = ¢sinfcosy — Osinyp.

Eliminating 6 between them, one has
¢sin 6 = w, sin p + w, cos y

or, substituting (g) and (i) into this relation, one finds the differential equation

for ¢ as
_ 2(3)2w(2 sinh?wt + 1) _ 3 4 3112qy
H

It follows that
312¢) dt

144 1+ 4sinh?wr

= 3%y | J 3V dt

¢ = 320t 4+

cosh? wt + 3 sinh? wt

312¢) dt

= 312¢y
Vet + cosh? wt(1 + 3 tanh® wt)




Sec. 7.4. o The Ellipsoids of Cauchy and Poinsot 105

and this last form is readily integrated by the substitution tanh? wt = u. There results

@ = 320t + tan—'(3V2 tanh wt) + ¢(0), 6))

where the value of ¢(0) depends on the choice of orientation of the X axis. Since
tanh wt increases from O to 1 as ¢ goes from 0 to + oo, the arctangent increases
from O to /3 as t — oo. Equations (i) and (j) determine the time history of the three
Euler angles.

Since 6 — /2 with ¢t — oo, the z axis tends to the X, Y plane, or the lam-
ina tends to a plane containing the Z axis; at the same time, the lamina tends
to a uniform angular velocity of magnitude 3*/2w.

To find the polhode, we observe that the endpoint P = P(x, y, z) of the an-
gular velocity vector relative to the moving triad is, because of (g),

x = — 3% tanh wt,
y = 3Y2w/cosh wt, (k)
z = w/cosh wt.

The last two of (k) may be combined to give
— 32,

for all £. Thus, the polhode must lie in the plane defined by this equation. As it must
also lie on the Poinsot ellipsoid, it is, in fact, an arc of the ellipse which is formed
by the intersection of the Poinsot ellipsoid with this plane.

To discuss the herpolhode, we note that this curve lies in the invariable plane
and is the locus of the endpoint of the angular velocity vector. Thus, the herpolhode
is the translation of the locus of the point (X, Y) from the plane Z = 0 into the
invariable plane.

Now, the locus of the endpoint P of the angular velocity vector relative to the
inertial axes is defined by (see Example 6.8.1)

X = ysin0sin ¢ + 6 cos ¢,
Y = — ¢sin 0 cos ¢ -+ 0 sin p,
Z =ypcosbl + ¢.

Let us rewrite the first two as

< sin 0
X:O(cosq)—}- Ld sin q)),
. )
. y sin 0
Y:0<sm @ — ; cos<p)-
Now, from (i) we have by direct differentiation
. 2wcoshot
Yy H s
(m)

g 32¢ tanh wt
= Hl/Z
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Then, if we define an angle « by

tan psinf
o = —
9 b
we find with the aid of (i) and (m)
tan ¢ = 1/(3V% tanh wt). (n)

Thus, as ¢ grows from zero to oo, tan « decreases from + oo to 3-V2, or «
may be regarded as decreasing from =/2 to z/6.
Consistent with (n), we may write

sin @ = cosh wt/H'?,
cos o = 3V2gsinh wt/H?,

which permits us to rewrite () as

6
¥ = cos(p + a)
cos a

_ 6 sin(p + a) ©)

Ccos a

Y

where 0, ¢, and « are all functions of time.
To find X and Y explicitly as functions of time consider (j) with the initial
value ¢(0) = — =/2. Then,

@ = 32wt — [#/2 — tan—'}(3'/? tanh w?)],

or because of (n),
@ = 310t — a,

so that the argument of the trigonometric functions in (o) is
P+ =3t ®
Therefore, the substitution of (m) and (p) in (o) gives the desired result:

w cos(3V2wt)
cosh wt

w sin(3Y2wt)

@

cosh wt

The herpolhode is found by translating the curve defined by (q) from the plane
Z = 0 into the invariable plane Z = const.
If we write
¢ = w/cosh wt, f = 3wt

we find
o = w/cosh(B/32).

Thus we find for the herpolhode a sort of spiral tending to zero as ¢ — co.
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7.5. The General Motion of Rigid Bodies

It was shown in Section 6.1 that an unconstrained rigid body has six
degrees of freedom, i.e., it requires six numbers to specify its configuration.
One of the more common ways to define the sequence of its configurations
is to give the motion of the mass center, and the motion about the mass
center, all relative to a Galilean frame. If F is the resultant of the external
forces acting on the body, and M is the moment of these forces about the
mass center, the motion of the strictly Newtonian problem is governed by

m—dL:F,
dt
(7.5.1)
dL Y
a

where v is the velocity of the mass center relative to the Galilean frame,
L is the angular momentum relative to the same frame, and m is the total
mass of the rigid body; it is necessarily constant.

If we fix in the rigid body a triad of principal axes with origin at the
mass center we may write the vector equations of motion (7.5.1) in com-
ponent form along the body-fixed, and hence not Galilean, reference frame.
If the velocity of the mass center is

v = v+ v,j + vk,
the angular velocity of the body is
o = 0, + w,f + wk,
the angular momentum is
L=Lji+ L,j+ Lk,

the force is
F = F,i+ F,j + Fk,

and the moment is
M= M+ M,j+ MK,
we find for the derivatives

—Z't’ = i,0 + 0] + 0.k + © X v,

dL . . . .
-—at—ZLzl—I—Ly]—}—sz—{-wa,
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where the cross products arise because of the motion of the unit vectors
i, j, and k. The substitution of all these in (7.5.1) gives
m[bz - (Uywz - Uzwy)] = Fz’
m[vy - (vzwz - vxw;)] = Fy,
m[l}z - (v:cwy - vywx)] =F,
de)x - (Iy - ]z)wywz = Mx’
Iy(by - (Iz - Ix)wzwz = My)
Iz(bz - (Ix - Iy)wxwy = Mz-

(1.5.2)

These are the six component equations of motion of a rigid body parallel
to body-fixed principal coordinates with origin at the mass center.

Example 7.5.1. Formulate the dynamical problem of a heavy, homogeneous
disk which rolls without slipping on an inclined plane in such a way that the plane of
the disk remains always perpendicular to the inclined plane. This is the condi-
tion of a wheel on a carriage with two or more wheels.

Let us chose coordinate systems as shown in Fig. 7.5.1. The X, Y, Z system is
inertial. The X axis is inclined by « to the horizontal and points down the
plane, while the Y axis is horizontal; hence, the X, Y plane is the inclined plane.
The x, y, z coordinates are not fixed in intertial space. The origin of the x, y, z sys-

Fig. 7.5.1. Rolling disk on inclined plane of Example 7.5.1.
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tem is at the center of the disk. The disk is always in the x, z plane, and the
x, y plane is always parallel to the X, Y plane. It is evident that x, y, z are
principal axes. Let ¢ be the angle through which the disk has rotated about the y
axis, and let 0 be the angle from the positive X axis to the tangent to the trajec-
tory of the disk contact point P. Let the disk have mass m and radius r.

The external forces acting on the disk are the reaction at P, the gravitational
force, and the forces which keep the disk plane normal to the inclined X, Y plane.
We write for the reaction at P

F = Fi + F,j + Fik, (@)

where the i, j, k are the unit vectors along the x, y, z axes, and the gravitational
force at the disk center is

W = mga sin a sin 8/ — mga sin « cos 0 — mga cos ok. (b)

Let the forces which keep the disk plane normal to the inclined plane be forces
Fi and — F,, both in the y, z plane parallel to the y axis, and acting a unit
distance from the disk center. Thus, their sum is zero, and their moment about
the disk center is

M, =k xFj + (—k)yx(— F)f = — 2F. ©
If the position vector of the disk center is given by
R=XI+YJ+rkK,

where 1, J, K are unit vectors along the X, Y, and Z axes respectively, the vector
equation of translation of the mass center is

m(XI + YJ) = (F, + mgasin «sin 0){
+ (F, — mgasin a cos 0);
+ (F, — mga cos o)k.

But ) )
i = cos 01 - sin 6J,
j = —sin 0 + cos 6.,
k=K.

Therefore, the equations of mass center translation in component form are

mX = F,cos 0 — F,sin 0 + 2 mga sin «sin 0 cos 0,
mY = F,sin0 -+ F,cos 6 + mgasin a(sin® 0 — cos? 0),
0=F, —mgacos«a
or, utilizing well-known trigonometric identities,
mX = F,cos 0 — F, sin 0 -+ mga sin « sin 20,
mY = F,sin0 + F, cos § — mga sin « cos 26, (d)

0 =F, — mgacos a.

These are the first three equations of (7.5.2) applied to the present problem.
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To obtain the other three we note that

w = wzf -+ wyf + wz/%

_gj+ Ok, (e)
and ) .
j=—0i, k=0 )
The principal moments of inertia of the disk are
L =1, = tmr?, I, = smr. (g)
The angular momentum is, in view of (e),
L = L¢j + Lok,
and the time rate of change of the momentum is, because of (f),
L= — L9 + Lij + Lbk. (h)
The moment of the applied forces about the disk center is, in view of (c),
M = —2F{ 4+ (— nNkx(FJ{ + F,j + F.k)
= (— 2F, + rF,))i — rF,j. @)

Equating (h) and (i) and utilizing (g), the equations of rotation about the disk
center are

— 3mr*gd = — 2F, + rF,,
%mrz(.ﬁ = _rFx’ (J)
tmrid = 0.

These are the second three equations of (7.5.2) for this particular problem.
. The condition of pure rolling is that the contact point of the disk be at rest, or
R = o xrk. Thus
XTI + YT = (¢f + 6k) xrk
= rgf = rg(cos 0 + sin 0.),
or in component form

X =rgcos0, Y = r¢sin 0. k)

Equations (d), (j), and (k) formulate the problem and constitute the required
answer. Equations (k) imply

sin 0 dX = cos 0 dY,

which is of the form (4.6.1) and, hence, nonholonomic. Nevertheless, the problem
is readily soluble. From the last of (j) we obtain

6 =4 =const, 0= At+ B, (8]

where B is also a constant. Next, we eliminate F, between the first two equations
of (d). This gives

m(X cos 0 + Ysin0) = F, + mgasin «sin 6. (m)
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We can now eliminate F, by means of the second equation of (j), X and ¥ by means
of (k), and 0 by the second equation of (). This results in

¢ = Csin(At + B), (n)
where
C = (2¢g sin «)/3r.

Equation (n) integrates to

C
= — 7cos(At + B) + ¢,

! (0)
g = — 7Fsin(At + B) + ¢t + @0,

where ¢, and ¢, are constants. The substitution of the second equation of (I) and
the first equation of (o) into (k) permits the computation of X and Y as functions
of ¢, (m) is then used to compute F,, and the first or second equation of (d) to com-
pute F,, both as functions of ¢, F. is known from the third relation of (d) and is
constant, and the first equation of (j) is used to find F;.

7.6. Problems

7.1. Show that the kinetic energy of a uniform, straight rigid rod of mass m is
given by
T=tmu-u+u-v+v-v),

where u is the velocity of one of its extremities and v is that of the other extre-
mity.

7.2. Five particles of mass m, 2m, 3m, 4m, and 5m respectively are interconnected
by eight rigid, massless bars of equal length a, as shown, so as to form
a pyramid. A right-handed Cartesian coordinate system is fixed in the rigid
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7.3.

7.4.

7.5.

7.6.
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body with origin at the vertex of the pyramid ; the x axis is parallel to the line
connecting m and 2m, and the y axis is parallel to the line connecting m and
4m. The pyramid rotates with angular velocity  about a line connecting 5m
and 4m, as shown. Calculate the x, y, and z components. of the angular
momentum of the pyramid.

A homogeneous rectangular lamina of mass per unit area m has sides a and
2a. If the origin of the x, y system of Cartesian coordinates is at one cor-
ner, and the axes are parallel to the sides of the rectangle, as shown, calculate

y

29

X

0 [¢]

the inertial parameters relative to the x and y axes and the principal mo-
ments of inertia about O. Give the directions -of the principal axes relative
to the positive x axis.

Show that if a point O lies in a plane of mass symmetry of a rigid body, then
one of the principal axes through O must lie in that plane of mass symmetry.
In consequence, the principal moments of inertia are found by solving a
quadratic equation.

A homogeneous solid has the form of a tetrahedron as shown. The angles
AOB, AOC, and BOC are all right angles; the distances of A, B, and C from
O are, respectively, 04 = a, OB = b, OC = c. If the total mass of the solid
is M, find the ellipsoid of inertia with respect to O and calculate the prin-
cipal moments of inertia with respect to O when a = b = c.

z

A homogeneous solid of mass M has the form of a right cone of revolution
of base radius R and height h as shown. Find (a) the principal moments
of inertia relative to O, (b) the moment of inertia relative to a side, and (c)
the moment of inertia relative to a base diameter.
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1.7.

7.8.

7.9.

X

A homogeneous tetrahedron of mass density ¢ is bounded by the faces ABC,

ACD, BCD, and ABD, as shown. The coordinates of 4 are (— a/2, 0, 0),

those of B are (a/2, 0, 0), those of C are (0, 0, 3/2/2), and those of D

are (0, 3'%a/2, 0). Find the principal axes and moments of inertia about O.
bd

X

A homogeneous, right circular cylinder of radius R and height R rests with a
flat side on a plane. Find the principal axes and moments of inertia of the
cylinder with respect to a point on the circle of intersection between the
cylinder surface and the plane.

A homogeneous, right circular cone with vertex half-angle « rolls without slip-
ping on a horizontal plane, as shown. The angular speed of the cone about
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7.10.

7.11.

7.12.
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an axis through the apex and normal to the base is w = const.

(a) Write down the equations of motion.

(b) Compute the angular velocity of the cone about the Z axis.
(c) Compute the total angular momentum of the cone.

(d) Find the forces and moments required to maintain the motion.

A homogeneous rod has its midpoint fixed. Find the force-free motion of the
rod under arbitrary initial conditions.

A heavy rod is so oriented that at some instant ¢, its mass center is higher
than one of its extremities. Show that one can always move the lower extremity
in a horizontal plane such that the mass center of the rod remains above
the lower extremity.

A heavy, homogeneous sphere of mass m and radius r rolls on a perfectly
rough, horizontal turntable that rotates with constant angular velocity o
about a fixed, vertical line. Find the equations of motion of the center of
the sphere in an inertial coordinate system and show that every trajectory of
the center of the sphere is a circular arc with center and radius dependent
on initial conditions.
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The Nature
of Lagrangean Mechanics

8.1. General Remarks

In the preceding chapters, the basic concepts underlying Newtonian
mechanics have been discussed. Thus, these chapters constitute essentially
a review of the material treated in a first course of mechanics. We now
sketch in broad outline the essential generalizations made by Lagrange.

8.2. The Generalizations by Lagrange

Lagrangean mechanics extends and generalizes Newtonian mechanics
in two basic ways:

(i) Lagrangean mechanics is a general dynamical theory of discrete,
constrained systems, provided only that the constraints belong to
the class defined in (4.3.4) and (4.3.6). In particular, one need
not know the precise form of the constraints before formulating
the problem completely.

(ii) The introduction of “generalized coordinates™ (also often called
Lagrange coordinates) reduces both the number of equations of
motion and the number of equations of constraint to the smallest
possible number. Yet, one need not know any particular set of
generalized coordinates in order to formulate the problem com-
pletely.

115
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Lagrange himself wrotet:

I have set out to reduce the theory of that science [mechanics], and the art of solving
problems in that domain, to general formulas whose simple development yields all
equations necessary for the solution of every problem... Those who love analysis
will note with pleasure that mechanics has now become one of its branches and
will be grateful to me for having thus extended its domain.

Historically, Lagrangean mechanics evolved in a natural way as a
consequence of extending the notions of “virtual displacement” and
“virtual work” from the domain of statics to that of dynamics. These
concepts are not essential to the derivation of the Lagrangean equations
of motion for holonomic systems; however, the Lagrangean equations of
nonholonomic systems cannot be derived without introducing either the
notion of virtual work or some equivalent concept.

The introduction of the notion of virtual work into Lagrangean mech-
anics arises from the manner in which forces are classified in that theory.
In Lagrangean mechanics every bounded force is either a ‘‘constraint
force” or it is not (in the latter case it is called a “given force,””), and con-
straint forces are systems of forces which do no work in a virtual displace-
ment or, simply, which do no virtual work. In Newtonian mechanics, on
the other hand, forces are either internal or external to the system of par-
ticles, and this distinction is intrinsic to Newtonian mechanics because the
internal forces satisfy the third law while the external forces do not. Either
of them may include both constraint forces and given forces, so that the
classifications of forces in the Newtonian and Lagrangean mechanics are
not equivalent.

An entirely separate, but equally important feature of Lagrangean
mechanics is the notion of generalized coordinates and generalized forces.
Every set of coordinates just large enough to describe the configuration
of a dynamical system is called a set of generalized coordinates.t
These have the property of satisfying all holonomic constraints. Thus,
only nonholonomic constraints remain in the problem formulation when
generalized coordinates are used. The Lagrangean formulation of the
dynamics problem is made in terms of an undefined set of generalized
coordinates; no prior selection of a specific set is necessary to formulate
the problem. It is this feature which has given rise to the name ‘“‘generalized”
coordinates.

t Author’s translation of excerpt from Lagrange, J. L., Mécanique analytique, new edition,
Mme. Ve. Courcier, Paris, 1811.
{ This definition will be made precise later on.
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Similarly, the given forces are expressed in components along the
generalized coordinates and are called “generalized” forces. These are
generalized in quite another sense as well: For instance, a generalized
coordinate may be an angle; in that case, the corresponding generalized
force component is, in physical terms, a moment, not a force.

Finally, in Lagrangean mechanics, the so-called inertia terms, those
which arise from the acceleration of massive elements, are derived entirely
from the kinetic energy. This obliterates the essential distinction between
rigid systems of particles on the one hand and rigid, continuous bodies on
the other (see Section 7.1). Thus, if one knows how to compute the kinetic
energy of rigid, continuous bodies in terms of any coordinate system de-
scribing its configuration, one can readily incorporate it in the framework
of the Lagrangean equations of motion.

It should not be concluded from the observations relative to generalized
coordinates that Newtonian mechanics is restricted to the use of Cartesian
coordinates. In fact, we showed in Section 2.3 that any set of coordinates
defined by a Galilean frame g —= (é,, é,, é;) may be utilized, where the ¢,
are unit vectors spanning Euclidean 3-space. However, when the equations
of motion are written down from Newton’s laws, it is necessary to specify
at the outset which coordinates are to be used in the problem formulation.

The introduction of generalized coordinates leads directly to the so-
called Lagrangean equations of motion. Some scientists feel, therefore,
that Lagrangean mechanics consists of no more than the derivation of these
equations. It is our view that such an interpretation does injustice to
Lagrange’s monumental contribution. While Lagrange was not the dis-
coverer of the concept of virtual displacements, we owe to him the bold
step of lifting it from the domain of statics and introducing it into dynamics
by utilizing d’Alembert’s principle. Once this was accomplished, the general
theory of constraints and that of generalized coordinates followed in a
natural way.
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Virtual Displacement
and Virtual Work

9.1. General Observations

The central concepts permitting the extension of mechanics from the
Newtonian point of view to the Lagrangean are the notions of virtual
displacement and of virtual work. These concepts were formulated early
in the development of mechanics insofar as their application to statics
is concerned. Johann Bernoulli (1667-1748) discovered them (1717) for
the case of holonomic configuration constraints, and Gabriel Fourier
extended them in 1798 to inequality constraints.

In the problems of statics, the configuration does not change with
time; hence, virtual displacements do not involve time. But, dynamics is
the science of motion, i.e., of configuration changes in time. Nevertheless,
a virtual displacement does not involve time in dynamics either. This has
led to the unfortunate phrase that virtual displacements “‘take place in
zero time.”” However, even if one abandons that phrase, it must be ex-
plained how one can obtain information useful in the science of dynamics
from the concept of a displacement not involving time. The rationale for this
procedure will be found in d’Alembert’s principle.

9.2. Classification of Displacements

The strictly Newtonian (second) problem of classical particle me-
chanics, subject to equality constraints only, is one of finding continuous

119
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scalar functions u(t) (s=1,2,..., N) which have prescribed initial
values u,(0), 4,(0), and which satisfy the set of differential equations

mgtiy = Fy(Uy, Usy ..y Uy g, Uy ooy Uys E) (s=12,...,N)
9.2.1)

as well as the constraint equations

Aydu,+ A, dt =0 (r=12...,L<N). (9.2.2)

M=

Il
Jui

8

We now define three different classes of displacements: actual, possible,
and virtual displacements.

Actual displacements, as the name implies, give the actual motion.
Thus:

The class of functions uy(t), piecewise of class C% which satisfy the
equations of motion and the equations of constraint is called the class
of actual displacements. The vector u(t) = (uy(t), u(t), ..., uy(t))
is called an actual displacement vector.

If displacements satisfy all equations of constraint but not necessarily
the equations of motion they are called “possible”; in other words:

The set of infinitesimal quantities du, (s = 1,2, ..., N) which satisfy
the system of equations

N
Y Aydu,+ A, dt=0  (r=1,2,...,L<N) (9.2.3)
s=1

are called the class of possible displacements. The vector
du = (du,, du,, ..., duy)

is called a possible displacement vector.

It is clear that the infinitesimals of the actual displacements are members
of the class of possible displacements, but the converse is not necessarily
true. The above definition states that every vector of infinitesimal length
which lies in the tangent plane defined by the constraint equations is a
possible displacement vector.

Finally, we define “virtual” displacements which play such a central
role in Lagrangean mechanics:
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The set of infinitesimal quantities du, (s = 1,2, ..., N) which satisfy
the system of equations

N
Y Aydu,=0 (r=1,2...,L<N) 9.2.4)

are called the class of virtual displacements. The vector
ou = (0uy, Ou,, ..., duy)

is called a virtual displacement vector.

In other terms, every vector of infinitesimal length which lies in the tangent
plane defined by (9.2.4) is a virtual displacement vector. Since the tangent
plane (9.2.3) is different from (9.2.4), the class of possible displacements
and the class of virtual displacements have, in general, no members in
common. However, when all constraints are catastatic, these two classes
are identical.

9.3. D’Alembert’s Principle

D’Alembert’s principle is often said to reduce the problem of dynamics
to one of statics; in a certain sense, about to be explained, this statement
is true.

In (2.5.1), the forces acting on the particle P, were written as
Fr=%07+% &5+ ¥/, 9.3.1)
where

Fir = Z @aT

is the resultant of the internal forces, and
EEIL IR
8 j

is the resultant of the external forces. While the division of forces into
internal and external ones is intrinsic to Newtonian mechanics because of
the third law of motion [see (2.5.4)], it is nevertheless known that among
both the internal and the external forces, there are some which arise from
the constraints, and others which do not.
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It is clear that constraints give rise to forces. We prove this assertion
as follows: The presence of constraints either changes the motion, or it
does not. If it does not, the constraints may be altogether ignored in the
problem formulation. If it does, the constraints must give rise to forces
because, by Newton’s second law, forces are the only agents which can
change the motion of particles. Thus, we either have no constraints, or
we have constraints and forces due to them. We call the latter constraint
forces, and we denote the resultant of the constraint forces acting on the
rth particle by

F'=Y Ct 9.3.2)

where C,’ is the force from the yth constraint acting on the rth particle.
The above definition does not tell us how to recognize constraint
forces. The property which distinguishes them from other forces will be
stated a little further on, and that property will then serve as a precise,
formal definition of the notion of “constraint force.”
All forces which are not constraint forces are called given forces,
and the resultant of the given forces acting on the rth particle is denoted by

D
Fr=Y A7 (9.3.3)
61
With this notation, Newton’s second law for the motion of the n particles
may be written as
mxr — Fr = F' r=1,2,...,n), 9.3.4)
or, in component form,
myi, — F, = F,/ s=12...,N=3n). (9.3.5)

When these equations are summed, one has in vector form

S (m3 — Fry =3 F", (9.3.6)

r=1

or, in component form,
N N
Y (mii —F)=7Y F/. 9.3.7)
s=1 s=1

D’Alembert’s principle states:

The totality of the constraint forces may be disregarded in the dynamics
problem of systems of particles.
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This principle is of far-reaching importance in Lagrangean mechanics. It
is, in fact, the counterpart to the third law in the Newtonian mechanics
of systems of particles. There, the separation of forces into external and
internal ones gave rise to a special axiom with respect to the internal forces.
Similarly, in the Lagrangean mechanics of constrained systems, the separa-
tion of forces into given and constraint forces requires a special axiom
with respect to the latter. That axiom is d’Alembert’s principle.

This principle will be interpreted here in terms of the geometrical
significance of constraints (only equality constraints will be considered
for the present). These define either a surface or a tangent plane in the
configuration space. D’Alembert’s principle states that the totality of the
constraint forces does not contribute to the acceleration of the particles
of the system. Because these forces are lost to this effort, they are sometimes
referred to as “lost forces.”

D’Alembert’s principle can be given an interesting dynamical inter-
pretation. Let us write (9.3.6) in components in and normal to the tangent
plane or surface defined by the constraints, i.e.,

M=

n n n
(m,)‘C'T - Fr)norm + Z (mrk.r - Fr)tan = Z (Fr,)norm + Z (Frr)tan'
r=1 r=1 r=1

r=1

Then, because the motion is constrained to the tangent plane, the normal
component of X" relative to the surface vanishes, and we find the two equa-
tions

Z (mrjér — F)tan = Z (FT’)tan, (a)
r=1 r=1

(Fr)norm + Z (Fr,)norm =0. (b)
r=1 r=1

But, by d’Alembert’s principle, the right-hand side of (a) is set equal to
zero. Hence, d’Alembert’s principle may be stated in two parts:

(a) The force components of the given forces tangent to the constraint
surface (or in the tangent plane) are the only ones which contribute
to the particle acceleration, or

i [mrjér - (F')tan] =0 (9.3.83)
and )

(b) The normal components of the given forces are in equilibrium with
the constraint forces, or

i [(Fnorm + F7'] = 0. (9.3.8b)
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Comparing (a) and (9.3.8a) we find
Y, (F)tan = 0, ()
r=1

and that result could also have been deduced from (9.3.8b). We see that
d’Alembert’s principle may be expressed in terms of (c), from which (9.3.8a)
and (9.3.8b) emerge as consequences. But (9.3.8b) and (c) are equations
of forces in static equilibrium. In our view, this is the rationale for the
statement that d’Alembert’s principle reduces a problem in dynamics to
one in statics.

If we had carried out the above considerations on (9.3.7) we would
have found instead of (9.3.8a) and (9.3.8b) the equations

i [msﬁs - (Fs)tan] =0, (9380)

and

D=

[(F)norm + F'] = 0. (9.3.8d)

$=1

[Because of a widespread misunderstanding of d’Alembert’s principle,
it is necessary to add some critical remarks.

One frequently finds d’Alembert’s principle “applied” to the uncon-
strained motion of a single particle. Authors who do this proceed as follows:
They rewrite Newton’s second law for a single particle

mi=F (@)

in the form
F—mi =0, (b)

where F is the resultant of all forces acting on the particle, and they call
(a) Newton’s principle, and (b) d’Alembert’s principle. They argue that,
if Fin (b) is a force and it may be added to —mf#, then it follows from
homogeneity requirements that —mf# is also a force (usually called the
“reversed effective force” while m# is called the “inertia force™). Thus,
(b) states that the sum of two forces vanishes. This is the statement of a
statics problem; hence, the dynamics problem (a) has been reduced to the
statics problem (b).

Now, it is evident that (a) and (b) are the same equations, their only
difference being that in (b) all nonzero terms have been transferred to the
same side of the equal sign. Certainly, (b) does not involve any new “prin-
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ciple” not contained in (a). Hamel (p. 220) called this interpretation of
d’Alembert’s principle an insult to d’Alembert.]

Bernoulli is the originator of the principle of virtual work in statics.
Let us consider (with Bernoulli) a problem of statics in which a concurrent
force system is in equilibrium, or 3*; F" = 0. Then, Bernoulli introduced
“imagined displacements not violating the constraints.” He called them
“virtual displacements,” and we shall denote them here by dx”. Bernoulli
called the inner product F7 - dx" the work done by the force F” in a virtual
displacement 0x", or briefly, the virtual work done by F”. His principle of
virtual work states that

i Fr.6x =0

r=1
or a force system in static equilibrium is one which does no work in a virtual
displacement.

[Bernoulli’s vocabulary is unfortunate because no actual displacements
occur, and no real work is being done. We retain it here out of respect for
tradition and for the masters of the past. However, Crandall, Karnopp,
Kurtz and Pridmore-Brown in their excellent book' have departed from
this tradition. They call dx” an “admissible variation,” and F’ - dx" the
“variational indicator.”]

It was Lagrange, following the ideas of Bernoulli, who utilized the
fact that the totality of the constraint forces does no- virtual work. Multi-
plying (9.3.4) by 6x", or (9.3.5) by du,, and summing over the index, one
obtains

S (mir — Fry - oxr =Y Fr' - ox, (9.3.9)
r=1 r=1

or
N N
Y, (myii, — F)) du, = Y F, bu,. (9.3.10)
s=1 s=1

Then, by the principles of d’Alembert and Bernoulli, the constraint forces
do no virtual work, or

Y (m&r — Fr) - x7 =0, (9.3.11)
r=1

or v
Y (myii, — F,) duy = 0. (9.3.12)
$=1

t S. H. Crandall, D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown, Dynamics
of Mechanical and Electromechanical Systems, McGraw-Hill Book Co., New York
(1968).
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These equations are usually referred to in the literature as “Lagrange’s
form of d’Alembert’s principle.”” They are so fundamental to the develop-
ment of Lagrangean mechanics that Pars refers to either as the fundamental
equation.

A word may be in order concerning the difference between the forces
occurring in (9.3.9) and (9.3.10), respectively. They are of the forms

— 1 - vl - .
Fr=Fr(xt, x2, ..., x%; Xt x2 ..., X" 1)

and
F3:F8(ul’u25 "-,uN;ul’u2, "~,uN; t)‘

There is a fundamental difference between these; F7 is a vector in 3-space
while F, is the component, in the direction of the unit vector é,, of a vector
in N-space. Expressed differently, F7 is a force acting on a particle of mass
m, having position vector x’; both the force and position vectors have, in
general, three Cartesian components in physical space. Therefore, we shall
call F* a “physical force.” F,, on the other hand, is defined by means of the
vector sum

M=

F:(FI’F2,"-’FN): Fsﬂs’

$=1

{l

where the N-space has three times as many coordinates (or base vectors)
as the system has particles. Hence, when there is more than one particle
in the system, the N-dimensional configuration space has no counterpart
in the world of observables.

We use the definition:

The virtual work W done by a force
F=(F,,F,...,Fy)
in a virtual displacement
ou = (Ouy, Ou,, ..., duy)

is the inner product

N
OW =F - u=Y F,du,.
8=1

As stated heretofore, Lagrangean mechanics utilizes the classification of
forces into those doing, and not doing, virtual work. We shall say:
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If one can find forces acting on the n = N3 particles of the system which
have the resultant

and which satisfy the relation
F' - du=20

for all ug, u;, and t, where Ou is an arbitrary virtual displacement,
then the component forces of F' are constraint forces. All forces which
are not constraint forces are called given forces.

One immediate consequence of this definition is:
If a physical force F" does no virtual work it is a constraint force.

It is interesting to note that the Lagrangean separation of forces into
given and constraint forces does not obliterate the Newtonian separation
into internal and external ones. To see this, consider a constraint force
which is an internal force in the Newtonian sense. For each such force
there exists an equal and opposite force because, by Newton’s third law,
internal forces vanish in pairs. Hence, each such pair is a force system in
equilibrium and, by Bernoulli’s principle, that force system can do no
virtual work. However, each individual force of such a pair may do virtual
work, as seen from

Example 9.3.1.t Consider two particles m, and m., connected by a rigid
massless bar of length /. They are constrained to move in the x axis. Let the
position of m, be x!, and that of m, be x2. Let the force exerted by m, on m; be F'',
and that exerted by m;, on m, be F?'. By Newton’s third law we have

FYV = — F*. (a)
The constraint is
(x* — xB)E =P
or
(xt — x?)(0xt — 0x?) = 0. (b)

Since x' # x2, (b) implies
oxt = Ox2. (©)

The virtual work of this pair of forces is

SW = F" . ox' + F* - dx. (@

t Leitmann, G., personal communication.



128 Chap. 9 e Virtual Displacement and Virtual Work

Substituting (a) into (d), one has
SW = FV(éx" — dx?),

and this vanishes because of (c). However, F* - éx! 0 and F? - dx*#0
because the Fi' are neither zero nor normal to the dxt

Next, consider a constraint force which is external. In Lagrangean
mechanics the only forces contemplated are those acting on particles;
hence, this force is exerted by a surface on the particle. By the principles
of statics, the particle exerts an equal and opposite force on the surface, so
that these two forces are also a force system in equilibrium and, hence, do
no virtual work. But the force exerted on the surface is not a member of
the set of forces exerted on the particles of the system; therefore, it does
not contribute to the sum of forces which occur in the fundamental equation
(9.3.9). It follows that no external constraint force can do virtual work.

9.4. The Nature of the Forces of Constraint

We have defined forces of constraint as forces which do no work in
a virtual displacement, but we have not discussed their existence, nor have
we explained the choice of the words “constraint force” used to name them.
An equality constraint has been interpreted as a surface in which the
C, E, S, or T trajectory of every motion lies.
For simplicity, let us begin by considering a single particle moving in
the smooth surface
Sluy, uy, uy) = 0. 9.4.1)

The word “smooth” implies that all first partial derivatives of f are defined
everywhere.

Suppose the particle tends to move out of the surface. Then, a force
intrinsic to the surface must exist which prevents this motion. This force
which ensures that the constraint is satisfied must be completely determined
by the geometry of the surface; in particular, the direction of this force
should coincide with a preferred direction of the surface.

Surfaces may, in general, have more than one preferred direction, but
spherical surfaces and planes have one and only one such direction at
every point—the normal. Since the constraint force direction must be defined
for any surface (including plane and spherical ones) the only reasonable
assumption for the constraint force direction is that it coincide with the
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direction of the gradient of the surface, i.e. with

af . of . of .
grad f = aufli a;:j+ /i 9.4.2)

Oug

where £, f, and k are the unit vectors along the u,, u,, and u; axes, respec-
tively. This assumption is, in fact, implicit in d’Alembert’s principle, as is
evident from (9.3.8b) and (9.3.8d).

Then, if we write the constraint force as

F' = F/i+ F'j+ F/'k,

we must have
F' = —J grad f, 9.4.3)

where the parameter A is an undetermined scalar quantity; it is called a
Lagrangean multiplier (because this formulation of F' is due to Lagrange).
Now, every virtual displacement

du = duyi + Ouyj + Sugk

lies in a tangent plane of the surface f= 0, while grad f is normal to it.
It follows that

OW = —Agrad f- du =0, 9.4.4)

or the virtual work done by the constraint force in a virtual displacement
vanishes.

Consider, next, a particle which is constrained to move along a smooth
space curve. As before (see Section 5.2) we consider the curve as the inter-
section of two smooth surfaces:

Siluy, uy, ug) =0,
Soluy, uy, ug) =0,

such that grad f; and grad f, exist but are not collinear anywhere.

One would expect that the constraint force intrinsic to the curve is in
a plane normal to that curve, but it is clear that that condition does not
fix its direction; there are forces of infinitely many directions lying in this
plane. This expectation is borne out by analysis.

In Fig. 9.4.1 we show two intersecting surfaces f; =0 and f, = 0,
and the curve C which is formed by their intersection. The two vectors
—A; grad f; and — A, grad f; are, in general, oblique vectors, the first normal
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Fig. 9.4.1. Gradient vectors of
intersecting surfaces.

to the surface f; = 0, and the second to f, = 0. The constraint force F’
is the vector sum of these oblique vectors, or

F = —) grad f; — A, grad f;.

This force lies in a plane defined by the two gradient vectors which is
normal to the curve, but its direction is not fixed unless the ratio 4,/4,
of the Lagrange multipliers 4, and 4, is known.

It will be readily seen how this concept of the constraint forces, pro-
duced by holonomic configuration constraints, is extended, both to 3n = N
dimensions, and to L << N equations of constraint. Moreover, the extension
of these notions to differential equations of constraint (catastatic, or not)
follows readily if one replaces “surface” by “element of a tangent plane
to the surface.”

A word may be in order regarding the treatment of forces that arise
from the presence of equality constraints (i.e., surfaces or tangent surfaces),
but that do virtual work. An example of such a force is Coulomb friction.
This is a force which is proportional to the normal force to the surface,
i.e., it is a function of a constraint force, but its line of action lies in the
tangent plane to the surface; thus, it does virtual work.

When forces are present which are produced by surfaces but which
do virtual work, they are usually due to properties of surfaces other than
their geometries such as surface “lubrication” or “‘roughness,” etc.

When the given forces include some which are independent of the
presence of surfaces, and others which exist only because of the existence
of these surfaces, it is also necessary to divide the constraint forces into
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two subclasses: Those that exist only because of the existence of the surfaces,
and those which would continue to act even if the surfaces were made to
disappear. This subject is discussed more fully at the end of this chapter
(see Sections 9.9 and 9.10).

The foregoing discussion of constraint forces has left open the question
whether there exist forces not due to surfaces which do no virtual work.
Let us suppose that such forces exist. In that case, they are certainly normal
to every virtual displacement. Thus, we may assume the existence of a
surface normal to these forces in which the virtual displacements lie, and
this supposition has no influence on the problem formulation. It is for this
reason that all forces doing no virtual work are called constraint forces.

If there are L constraints, the virtual work done by all constraint
forces is

N L
oW =—3 3 A4A, ou, 9.4.5)
s=1 r=1
(where the
A,, = 0f,/0u, (9.4.6)

if the rth constraint is holonomic, but not otherwise). Also, by definition,
OW = 0. One sees from (9.4.5) that the total constraint force components
in the u, direction arising from all constraints is

F/ ==Y iA,. 9.4.7)

myii, — Fy= — 3 LA, (s=1,2,...,N). (9.4.8)

Each of these equations contains, in general, N 4- L unknowns: the
u, (N in number) and the A, (L in number). There are N 4 L equations
which these unknowns must satisfy; they are the N equations (9.4.8) and
the L constraint equations

N
Y Ay, +4,=0 (=12 ...,L). (9.4.9)

Let us now consider an arbitrary vector

Su = (8uy, Suy, . .., Suy), (9.4.10)
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whose components need not satisfy the relations
N
Y, Ay bu, =0 r=12,...,L). 9.4.11)
s=1

Then, multiplying each of the equations (9.4.8) with its corresponding
component of (9.4.10) and adding them, one finds

N L
5 (mu —F+ Y A,A,s) du, — 0. (9.4.12)
s=1 r=1

It is instructive to compare (9.4.12) with the fundamental equation
(9.3.12). In (9.3.12) the term YX, 4.4, is absent, and the du, must be
virtual displacements, e.g., they must satisfy (9.2.4), while in (9.4.12) the
du, are completely arbitrary. This leads to the so-called:

Lagrange Multiplier Rule. The equation
N
Z (msﬁs - Fs) 6”3 = 0’

s=1

in which the du, must satisfy
N
Y A, du,=0 r=12,...,L),
s=1

is completely equivalent to the equation

N

L
5 (mu —F 4ty l,A,s) Su, — 0,
r=1

s=1

in which the du, are arbitrary.

The Lagrange multiplier rule will be discussed in greater detail in Sec-
tion 13.2.
Because of the arbitrariness of the du, in (9.4.12), we have

L
myii, — F, + Y LA4,,=0 (s=1,2,...,N), (9.4.13)
r=1

and this is, in fact, (9.4.8), from which (9.4.12) was obtained. Thus, it is
not a new conclusion.

We shall now give some examples of the preceding theory. Some of
these involve rigid bodies rather than particles. This will present no dif-
ficulty to the reader who has taken a first course in dynamics.
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The first example is a problem of static equilibrium of a constrained
system of two particles.

Example 9.4.1. One end of a massless rigid rod of length 2a carries a heavy
mass m,; a second heavy mass m, is fixed at the center of the rod. The mass m,
is constrained to move on a smooth quarter-circle of radius r in the vertical plane,
and the other end of the rod moves on a smooth horizontal line a distance 4 below
the center of the circle and lying in the same vertical plane. Find the equilibrium
positions or, stated differently, when is the motion that of rest?

Let x, y be the vertical plane with origin of the coordinate system at the center
of the circle, as shown in Fig. 9.4.2(a). Let the coordinates of m, be x,, yo,
and those of m, be x,, y,. The constraint which ensures that m, moves on the
circle is

X A+ y? —rt=0. (a)

The constraint which ensures that the distance between the two masses is a is
(xl — Xo)? + (J’1 —yo) —a*=0. (b)

The constraint that the lower end of the rod moves on the horizontal line a distance
h below the y axis is

Xo + 2(x1 — x,) —h = 0. ©

Bl ) 1 —> Y

gTTTTT 727777 777777777777
v Y

X (@) X

.

(b)

VIT7777 77777

X
(c) (d)

Fig. 9.4.2. Massless rigid rod carrying two masses of Example 9.4.1.
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From these, the constraints on the virtual displacements are found as

Xo 0xg + o 8y, = 0,
(xo — x1) 6xy + (X1 — Xo) 0xo + (Yo — y1) Oy + Or—y)oy=0, (@
—5x0+2(5x1=0.

The given forces on m, and m,, respectively, are

Xo = Mo, Yo = 0,

5
Xlzmlg, Y1:0 ( )

In writing down (9.4.12) for this example, all acceleration terms vanish because
we seek the state of rest. Using Lagrange multipliers 4, x, and », we find

— mog 0xo — mug 0x, -+ Ax, 6x4 + Yo O¥o) + pl(xe — x1) 0x0 + (X1 — Xo) Ox1
+ o — ¥1) 00 + (11 — o) 1] + v(— 0xo + 2 8x1) = 0. )

Since the dx,, 9x1, dy,, dy, in (f) are completely arbitrary their coefficients must
vanish, or

— myg + Axy + u(xo — x1) —v =0,
iyo + u(yo — y1) =0,

—mg + p(x; — x0) + 2v =0, ©
#(r — yo) = 0.
In view of the last of these, the second may be rewritten as
Ay, = 0. (h)
From the last equation of (g) we find, when u # 0,
y1—yo=0. @)

This means that the massless rod is vertical, which is, therefore, one of the equi-
librium configurations; it is shown in Fig. 9.4.2(b). We find from (b)

X1 — Xo = % aq, )]
and substituting this into (c),
Xo = h — 2a, k)

which shows that the plus sign must be chosen in (j). Then, substituting (j) in (k),
we obtain
X1 = h — a, (1)

and, substituting (k) in (a),
Yo = [r* — (h — 2a)*]"%, (m)

which is also the value of y, because of (i). Hence, all coordinates are determined.
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The Lagrange multipliers are now also determined. Substituting the equilibrium
coordinates in (g), we find

— myg + Ah —2a) — pa —v =0,
Alrt — (h — 2a)*1"2 =0,
—mg + pa+2v =0.
Since [r? — (h — 2a)*]** # 0 in general, A = 0, and the above equations become
—myg —ua—v =0,
—mg + pa+2v=0.
When these are added, we find
v = (my + mi)g (n)
and, subsequently,

n=— Qmy, + my)(gla). (o)

Thus, the multipliers are also determined. The exceptional case when r* — (& — 2a?)
= 0 will be discussed later.
A second equilibrium configuration is found from (h). When 4 # 0, we have

o = 0. (D)
This means that m, is at the lowest point on the circle, or from (a)

Xo= tr, @

and from (c)
x; = 3(h +r); )

this implies that the plus sign must be chosen in (q). Finally, we find from (b)
yi={a@ — [$(h — )P} )

Thus, the coordinates of the equilibrium configuration are again completely de-
termined. This case is shown in Fig. 9.4.2(c).

The Lagrange multipliers are readily found by substituting the equilibrium
configuration coordinates into (g). They are

v=1tmg,  *=(mo + m)g/r). ®
The exceptional case for the first equilibrium position occurs when
r2 — (h — 2a)* =0,
and for the second equilibrium position when
at — [¥h—r)]=0.

One sees from (m) that in the first exceptional case y, = 0, which means that the
rod stands vertically in the x axis, and from (s) that in the second exceptional



136 Chap. 9 e Virtual Displacement and Virtual Work

case y; = 0, which also means that the rod stands vertically in the x axis; this
case is shown in Fig. 9.4.2(d). For that case, equations (g) become

— meg + Ah — 2a) — pa — v =0,
— mg + pa + 2v =0,

and these are two equations in the three multipliers 4, 1, and ». Thus, these multi-
pliers cannot be determined uniquely. The reason is that this configuration is
statically indeterminate, i.e., it is not possible to determine how much of the grav-
ity force is resisted at the bottom of the circle, and how much by the horizontal
line at the bottom of the rod.

Example 9.4.2. (Hamel, in part, p. 83). Under what forces is there no motion
of the hatchet in a hatchet planimeter?

The hatchet of a hatchet planimeter behaves like a curved knife edge, as shown
in Fig. 9.4.3(a). It can move in the direction of the knife edge, and this direction can
change because the knife edge can rotate about the normal to the xy plane through
its point of contact P. The hatchet or knife edge is a continuous solid, not a rigid
system of a finite number of particles. Therefore, we shall model the hatchet by a
“dumbbell” consisting of two masses m, and m,, interconnected by a rigid mass-
less rod of length a, as shown in Fig. 9.4.3(b). This dumbbell is subjected to the same
constraint as the hatchet: It can slide only in the direction of the massless con-
nection.

Let the coordinates of m, be (x,, y,), and let those of m, be (x,, ). Further,
let the x and y components of the force on m, be X,, Y,; those of the force
on m, are X;, Y;. If the massless connection makes the angle § with the x axis
we have

X1 = Xxo + acosf,

. a

y1=Yo + asinb, @

and these satisfy the constraint that the distance between the masses is a, or
(x1 — x0)* + (31 — »)* = a®.

Hence, we use the coordinates x,, y,, and 0 to describe the configuration. The con-
dition that the displacement must be in the direction of the massless connection

2
A y

mo Xo

(a) (b)
Fig. 9.4.3. Knife edge and its mathematical model of Example 9.4.2.
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may now be written as
dx,sin — dy,cos 0 =0, (b)

and this is a nonholonomic, catastatic constraint. Therefore, the virtual dis-
placement components satisfy

sin 0 dx, — cos 0 dy, = 0, (©)

and from (a),
dx1 = 0xo — asin 0 60,

Y (d)
0y, = 0y, + acos 0 46.

Inasmuch as we seek equilibrium, the acceleration terms in (9.4.12) vanish, and that
equation is here

— X, 0x, — Yo 8y, — X1 0x; — Yy 8y, + A(sin 0 dx, — cos 0 dy,) =0  (e)

or, when (d) are substituted in (e) and the coefficients of dx,, dy, and 66 are com-
bined,

(— X, — X1 + Asin0) dx, + (— Y, — Y1 — Acos 0) dy,
-+ (Xyasin — Y,acos ) d0 = 0. )

But dx,, 6y,, and 80 in (f) are completely arbitrary. Therefore, the conditions for
equilibrium are
— Xy — X; + Asinf =0,
—Yy— Y, —4icos0 =0, (2)
Xwasin0 — Yiacos 6 =0.

Eliminating 1 between the first two gives

X+ X

1 tan 6 h
AT tan 0, (h)

and this equation states that the resultant of the forces (X,, Y,) and (X;, Y1) must
be normal to the rigid connection. The last equation of (g) states that the mo-
ment of the force (X, Y,) about the point (x,, y,) must vanish. These are the
conditions on the forces (X,, Y,) and (X;, Y,) for which the system will not move.

We have already shown that the Stieltjes integral can be utilized to make the
transition from rigid systems of a finite number of particles to continuous, rigid
solids. We shall now show how (9.4.12) can be used to discuss the equilibrium
of the knife edge regarded as a continuous solid. The general theory of this proce-
dure will be discussed in a section on generalized coordinates.

We describe the configuration of the knife edge by the x, y coordinates of the
contact point P, and the inclination 9 of the knife edge to the positive x axis. Then,
the constraint on the virtual displacements is

cos 6 dy — sin 0 6x = 0.

If the force components and the moment about P are denoted by X, Y, and M,
we find in place of (e)

— X6x — Y8y — M0 + A(sin 6 dx — cos 0 dy) = 0.
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Proceeding as before, we find
— X+ Axin6 =0, — Y —Acosh =0, M=0.
On eliminating A between the first two equations, we obtain
— X/Y = tan 6.

Hence, the conclusions are as before.

Example 9.4.3. The point of suspension of a simple plane pendulum is
moved smoothly in the horizontal direction in a prescribed manner. Find the
equations of motion.

Let the given horizontal motion of the point of suspension of the pendulum
be the twice differentiable function f(¢), let its length be /, the mass of the bob m,
and let the position of the bob be given by (x, y) with y positive vertically down, as
shown in Fig. 9.4.4. The equation of constraint is

[x — fOF +y* — 1 = 0.

Evidently, this is a holonomic, rheonomic constraint. The possible infinitesimal
displacements satisfy

[x —f()]dx + ydy — [x — f(t)] fdt = 0.
This constraint is seen to be acatastatic. Hence, the virtual displacements satisfy

[x —f()]6x +ydy =0,

The given forces are
X=0, Y =mg.

We apply (9.4.12) and find
(mi — X) 6x + (my — mg) oy — mA{[x — f(t)] 6x + y 6y} =0,

where mA is the Lagrange multiplier.

x(t)

e f(t) —-1

y(t)

—
e

\} Fig. 9.4.4. Pendulum with moving
y suspension point of Example 9.4.3.
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This last equation results in the two equations

¥ —Ax — ()] =0, (a)
y—g—4y=0. (b)

These equations, together with

[x —/OF +y*—F =0, (©
determine x(¢), y(¢), and A(¢). From (b) one finds
) =@ — 8y (@

It is typical of rheonomic constraints that the multipliers associated with them
are not constants, but, are time dependent.
If one notices that the equations

x = f(t) + Isin 6,

y =1lIcos@ ©

satisfy the constraint (c) for every value of 6, the problem can be greatly simplified.
From (e) .
% =10cos 6 — [6%sin 0 + f,

$ = — Ifi sin 6 — 16 cos 0. ®

These equations are readily used to combine (a) and (b) into the single equation
éz—?sinez—%cosﬂ ®

and the multiplier becomes
A= —08tan6 — 62 — g/(I cos 6). (h)

The equation (g) could have been found directly ; however, we wished to apply the
preceding theory.

9.5. The Virtual Velocity

Formally, the virtual velocity éu may be introduced by writing
d du .
o (ou) = 5(7) — ou. 9.5.1)
One may argue in defense of (9.5.1) that d/dt and é symbolize two different

operations and the sequence of these operations may be exchanged, or

d d
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If certain conditions (which are derived below) are fulfilled, that argument
is entirely correct; however, it poses some questions. If a virtual displace-
ment is believed to “take place in zero time” or, as we prefer to put it, if
time is not involved in a virtual displacement, it is entirely unclear what is
meant by the quantity d(du)/dt; there is no evident reason to suppose that
this derivative exists or, if it exists, why it does not vanish identically.
Moreover, one may of course write, in consequence of (9.5.1),

dou = 6 du, (9.5.3)

and that equation indicates that we are dealing with a differential of second
order. Thus, if du and é du (or if éu and ddu) occur in the same equation,
one might suppose that the term of second order is negligible compared
to that of first order. What then is the meaning of equations like (9.5.3)?

We establish now the conditions necessary and sufficient for (9.5.3)
to be true, and interpret its meaning. For simplicity, consider a holonomic,
catastatic constraint in the Pfaffian form, and let the constraint surface
(or rather, an element of its tangent plane) contain two neighboring curves
C, and C,; one is a sequence of possible configurations, and the other is a
different sequence of possible configurations neighboring on the first, as
shown in Fig. 9.5.1. The points P and Q are simultaneous possible con-
figurations at the time ¢, and the points P and Q are simultaneous possible
configurations at a different time 7 = ¢ 4 dr. Thus, the curves connecting
P with Q and P with Q are the loci of possible simultaneous states; we
shall call them “isochrones.” From the definitions of possible and virtual
displacements, it is clear that the arc from P to P is a possible configuration

Fig. 9.5.1. Possible displacement du
and virtual displacement du.
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a2

Qg B=B|

Fig. 9.5.2. Possible trajectories and isochrones.

change du, and that from P to Q is a virtual configuration change du, i.e.,
the du lie along the possible configurations, and the du along the isochrones.
Now, in general, the virtual displacement at 7 (i.e., the arc from P to Q)
is different from that at . Thus, this diagram makes it evident that du is a
function of time; it is therefore reasonable to consider the rate of change
with time of that quantity.

Let us now generalize Fig. 9.5.1. Instead of only two curves C, and C,,
we construct a one-parameter family of such curves, the parameter being o,
and instead of only two isochrones C, and C, we construct a one-parameter
family of these curves also, the parameter being 8. Thus, we consider the
net of curves shown in Fig. 9.5.2.

Consider a fixed point (not necessarily in the plane of this net of
curves) and let u be the position vector of any point of this net with respect
to the fixed point. Then

u = u(a, p), (9.5.4)

and the arc between two neighboring points on a curve « = const is of
length

ou
while that along any curve f = const is of length
ou— 2% 56, (9.5.6)

Jo
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These last two equations imply the operator equations

d = dp %, 8 = aa%. 9.5.7)

It follows from (9.5.5) and (9.5.7) that
0%u
(S du = W 6“ dﬂ, (9.5.8)
and from (9.5.6) and (9.5.7) that
0%u

d 611 = W dﬂ 6(1. (9.5.9)

Now, the conditions necessary and sufficient for

u 0%
dadp 0P Oc

to be an equality are that one of the second derivatives of u with respect
to « and f exist and be continuous, and that both first derivatives of u
with respect to « and f exist and be continuous. When these conditions are
fulfilled (9.5.3) holds, and (9.5.1) follows directly.

It is interesting to give a geometrical interpretation of catastatic and
acatastatic systems. In Fig. 9.5.2, the curves « = const are possible C
trajectories, and elemental lengths along them are the du. The curves
f = const are the loci of possible, simultaneous configurations, and ele-
mental lengths along them are the du. Now, in catastatic systems the class
of the du and du is the same. This means that, in catastatic systems, the
role of the curves @ = const and § = const may be interchanged, e.g., the
curves = const also belong to the class of possible C trajectories, and
the curves a = const also belong to the class of isochrones. In acatastatic
systems, each family of one-parameter curves belongs to only one of these
classes.

With the introduction of virtual displacements and virtual velocities
it is now possible to define virtual changes in state. The “‘state of a system”
has been defined in (3.3.2) as the point

(u9u):(u1’u29 ---auN;I'.ll’dZ’ -'-’l'.lN)

in state space. We define a change of the system to a new state a “‘virtual
change of state” if the new state is

(u + Ou, u + 6u) = (uy + Ouy, ..., uy + Ouy; tt; + 8ty, ..., uy + duy),
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where ou = (duy, du,, ..., duy) is a virtual displacement, and du =
(0w, du,, ..., duy) is a virtual velocity.

Moreover, if the displacements and velocities of a system satisfy the
kinematical constraint equations (9.4.9), we say that the state of the system
is a “possible state.”

We shall now demonstrate the unexpected result that:

Virtual changes from a possible state do not, in general, lead to another
possible state.

One might have imagined that this statement would be true in acatastatic
systems because, in them, virtual and possible displacements do not satisfy
the same equations. However, when virtual displacements do lead from one
possible state to another, they do so whether the constraints are catastatic
or not. In fact, when the system is nonholonomic, virtual displacements
never lead from one possible state to another, and when the system is
holonomic they always do. These conclusions are independent of whether
the Pfaffian form of the constraints is catastatic or not.

To prove these statements we note that a possible state is one for which
the displacements and velocities satisfy

N
Z Ars(”l:”z: auAV’t)L‘ls + Ar(u15u23 cees Uy, t) =0
- (r=12...,L). (9.5.10)

Then, a virtual displacement leads to another possible state if and only
if the new state satisfies

N
Y Ap(uy + Ouy,uy + Ouy, .., uy + Suy, £)(1, + i)
s=1

+ A (uy + Ouy, uy + Suy, ..., uy + Suy, 1) =20 9.5.11)

foreveryr = 1,2, ..., L, where du, = d(du,)/dt foreverys = 1,2, ..., N
in accordance with (9.5.1).

We shall suppose that the A4,, and the A, possess continuous first
partial derivatives with respect to the u, and to t. Then, we may write
(9.5.11) as

N

Z (A, + 04, )(u, + b)) + (A, + 64,) =0 r=12,...,L),

5=t (9.5.12)
where

Y 94, Y 94,
6/1“ = Z 8 ou Uy, (SA = Z 81,{ 6uk
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and the A,, and A4, are those of (9.5.10). Expanding (9.5.12) to first order
in infinitesimal quantities and utilizing (9.5.10), we find that the new state
will be a possible one if and only if

N
S (OAptly + Ay 0) + 04, =0  (r=1,2,...,L)
s=1

or, in expanded form, if

> Y (G

s=1 a=1

uaus + Ars (Sus + —%%T_

6us) =0 (9.5.13)

forevery r=1,2,..., L.
Now, the virtual displacements satisfy for all time
N
Y Ay ou, =0 (r=12,...,L); (9.5.14)

s=1

therefore one also has
d 1¥ 5
dr L; % us] =0 (r=12,...,0) (9.5.15)

or, in expanded form,

Z z [( 3A,s .m + agtrs > 6115 + Ars 6as] =0 (9.516)

for every r=1,2, ..., L.
If the indices s and « in the double sum in (9.5.16) are exchanged
and the resulting equation is subtracted from (9.5.13), one finds

NN (04, 94, N (04, AN\
py ;( " o, )“86”“_;( o aus>5“s*° ©.5.17)

for all r. It is now convenient to rewrite (9.5.17) as

N N aArra aATs . aAr aATS _
Z{Z( Ou, O, )““*(a‘u:‘ a1 )}‘3“3—0

a=1

or, in Pfaffian form,

N(X (04, 04, 04, 04, N
Z{;ﬁ(aus N Oua>d +(8u3 ot )dt}éu*_o'

s=1

This equation takes on a more symmetrical form if one defines

L= Uyys Ar - Ar,N+1;
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it becomes, then,

Y ]V+1 aAT(l aATS o _
) ;( e~ )du16u8~0 r=1,2...,0). (9.5.18)

But this is precisely the Frobenius integrability condition given in (4.5.11)
and (4.5.12) because the du, and du, admitted here are those which satisfy,
and hence are the solutions of, the algebraic equations

N+1

N
Y, A, dug =0, Y Ay ou, =0  (r=12,...,L).
s=1 s$=1

This proves the contention that virtual displacements do not lead from one
possible state to another unless all constraints are holonomic.

9.6. The Variation

In the last section we saw that it is convenient to give the symbol §
an operational definition. This operational definition will now be made
precise.

Consider a function of class C* of m + n + 1 independent arguments

S =S000, Xay ooy Xy Xy Xy ooy Xy ). 9.6.1)
Then, we define the operator 4 in the usual manner as

o Of e Of o Of
df: ;l axr dx,—|~ ;] axs d +—5‘t—dt

9.6.2)

Thus, the operator d is the familiar differential operator, and df is called
the differential of f.
We define in an analogous manner

B m 0 n af' .
AP P .63

and we call df'the variation of f. This definition is in accord with our previous
notions that the & operation is restricted to simultaneous states. The
verbalization of (9.6.3) is that, in the § operation, the x, (r = 1,2, ..., m)
and the x, (s == 1,2, ..., n) are “varied,” but ¢ is not.
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Consider now a function
W:W(.xl,X2,...,xn;xl,X2,...,xn;t). (9.6.4)
Then, the variation of W is

L)% n oW
W= o T Lo,

r=1

8%,. 9.6.5)

Let us suppose that the point of application of a force
Fro=Fr(xy, Xoy oooy X3 X1y Koy ovv s Xp5 1) (9.6.6)

moves through a displacement dx”. Then, the work done by the force in
this displacement is, by definition, the inner product

dwr = Fr . dx". 9.6.7)

If the dx” are increments of length along a trajectory (of the point of applica-
tion of the force) which connects two distinct configurations C, and C,

(e.g., the curve is a possible C trajectory from C; to C,), the total work
done is

Wr = J Fr . dx, (9.6.8)
c

and this is a function of the form (9.6.4) because the force F” depends
in general on position, velocity, and time. Therefore, the variation of W
contains not only terms linear in the dx”, but terms linear in the %" as
well, as shown in (9.6.5).

But, in analogy with (9.6.7), the virtual work is defined as

SWT = Fr . §x (9.6.9)

and this quantity contains no terms in 6x”, regardless of whether F” depends
on the X" or not. We conclude:

The virtual work OW is not, in general, the variation of the work W.

Confusion may arise when it is not clearly realized that the virtual work
cannot be found, in general, by constructing the variation of the work
function. To avoid mistakes, it must be remembered that 6/ is merely
a shorthand notation for the quantity ¥, F” - dx"; it is not, in general,
the variation of the work.
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9.7. Possible Velocities and Accelerations

In order to understand clearly the concepts to be introduced, it is
useful to recall that possible displacements du satisfy

N

Z Aydu,+ A, dt=0 (r=12,...,L) 9.7.1)

and, under the same constraints, virtual displacements satisfy
N
Z = r=12,...,L). (9.7.2)

The time rates of change of the virtual displacements, denoted by du =
(0w, Oty ..., Ouy), are the virtual velocities.

Possible velocities # = (i, t,, ..., uy), on the other hand, are
defined as those satisfying the constraints

N
S Aty + 4, =0 (r=1,2...,L). (9.7.3)
5=1

Thus, the #, are the components of possible velocities at a configuration
u= (u;,u,, ...,uy) and at a time ¢, these being the arguments of the
A,; and 4, in (9.7.3). Let us now consider another possible velocity u# + Au,
where Au = (duy, Ay, ..., Adiy) is not necessarily small. Nevertheless,
it satisfies by definition

N

Z A, (i + Auy) + A, =0 r=12,...,L). (9.7.4)

Now, if the possible velocities are both from the same configuration and

time (or, in other words, from the same event), the difference between
(9.7.3) and (9.7.4) is

i = r=1,2...,L) 9.7.5)

On comparing (9.7.2) and (9.7.5), we have the result:

Possible velocity changes (which need not be small) from the same event
satisfy the same constraints as virtual displacements.

These possible velocity changes are not the virtual velocity changes defined
earlier because the latter are always infinitesimals.
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The idea which was just developed can be carried one step further.
Differentiating (9.7.3) with respect to time (since it must hold for all ¢)
one finds

é (A”ﬁ* + dgtn “) T d;r =0 (=12...,L), (976
where
We define as a possible acceleration ii the vector i = (i, , ily, . . ., ily), whose

components i, satisfy (9.7.6) when the #, are possible velocity components.

Let us now consider some other possible acceleration i + Aii with
Aii = (Aiiy, Ay, . .., Aiiy), not necessarily small. Then, by definition,
it satisfies

d dA,

N
Z A, (i, + Aiiy) + ﬁ u | + =0 (r=12,...,L), (9.7.7)
s=1 dt dt

where the #, are possible velocity components. If the two possible accelera-
tions are from the same configuration, velocity, and time (or, in other
words, from the same state-time) the difference between (9.7.7) and (9.7.6) is

N
Y A, di, =0 (r=1,2...,L). (9.7.8)
s=1

Expressed in words, this is:

Possible acceleration changes (which need not be small) from the same
state-time satisfy the same constraints as virtual displacements.

The most interesting application of possible large velocity changes is
to impulsive motion because we saw that impulsive forces lead to velocity
discontinuities, hence, to velocity changes that are large.

The most obvious application of possible large acceleration changes
is to problems in which the acceleration is discontinuous, such as in the
case of a marble rolling off a table. We remark here that one of the in-
teresting applications of (9.7.8) is Gauss’ principle of least constraint;
however, in that principle, only small changes in possible accelerations
are contemplated. (Gauss’ principle is not discussed in this book.)
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9.8. The Fundamental Equation

In (9.3.11) we wrote the fundamental equation as
Y, (mxr — F7) - 6x" =0,
r=1
and when the x;” were replaced by the u, it took on the form
N
Y, (myii, — F,) du, = 0. (9.8.1)
s=1

This equation states that, in a system of particles, the virtual work of the
given forces balances the work done by the inertia forces. Pars calls this the
first form of the fundamental equation.

In view of the equations (9.7.2) and (9.7.5) one may also write
N
Y, (myii; — F,) Adu, = 0, (9.8.2)
s=1

where Au, is a possible (not necessarily small) velocity change. This is
called by Pars (p. 40) the second form of the fundamental equation; actually,
it is a new principle.

Finally, because of (9.7.8) we could also write
N
Y. (mgii, — F)) Aii, = 0, (9.8.3)
s=1

where Aii, is a possible (not necessarily small) acceleration change. Pars
calls (9.8.3) the third form of the fundamental equation (p. 41). We shall
meet still other forms later on.

In the literature, the first form is often called “Lagrange’s form of
d’Alembert’s principle.” However, regardless of the name attached to
(9.8.1), that equation has not only far-reaching consequences, but it may
be regarded as occupying a central position in the theory of classical
dynamics because all known principles of mechanics can be derived from it.
For instance, Newton’s second law is obviously an immediate consequence
of the fundamental equation. However, it is not possible to derive the
fundamental equation by invoking Newton’s second law only.



150 Chap. 9 e Virtual Displacement and Virtual Work

9.9, The Nature of the Given Forces

The forces which remain in the fundamental equation (9.8.1) are the
given forces (or rather their components)

F,=F(u,uy, ..., uy; Uy, Uy, ..., Uy; t). (9.9.1)

Using the Newtonian viewpoint, one would separate these into internal
and external forces. In Lagrangean mechanics, it is more useful to separate
the given forces into potential and nonpotential forces. We begin with the
definition:

If there exists a scalar function UP = UP(uy, uy, ..., uy) of class C*
such that a given force

FP:(FIT),F2I),”_’FNP)

satisfies the relation
F?P = grad U?

we call UP a potential function and F? a potential force.

Every given force F which does not satisfy this definition is a nonpotential
force.

Potential forces are sometimes called ‘“‘conservative” because in certain
circumstances, to be described later, when all given forces acting on the
particles of a system are potential, the total energy of the system is “con-
served,” i.e., it remains constant in time. However, the circumstances
required for energy conservation are not always met, even when all forces
are potential, and they are almost never met when some forces are non-
potential; yet, the concept of the potential force is useful even in these
instances. Therefore, we shall use the term “potential” rather than “con-
servative” to describe them.

We also define:

The negative of a potential function
yp — P

is called a potential energy.
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The force components of a potential force are, thus,

d
ng = - aus [Vp(ul’ Upy ooy uN)]' (99'2)

One sees then that potential forces, as defined here, are functions of the
configuration only, while forces in general are functions of displacements,
velocities, and time (see Section 2.5).
Then, if F7 in (9.6.9) is a potential force F?, one has
N N P
Y FPou,=— Y %L du,, (9.9.3)
s=1

s=1 us
where du, is a component of the virtual displacement

ou = (Ouy, Oy, ..., Ouy).

The left-hand side of (9.9.3) is, by definition, the virtual work dW?
done by the potential force FP in a virtual displacement du, and it is in
general not zero because the FP are given forces, not constraint forces.
The right-hand side is, by definition, the negative of the variation of the
potential energy and, physically, it is the negative of the change 6V? of
the potential energy in a virtual displacement. Therefore, (9.9.3) may be
written as

WP = — VP, (9.9.4)

The most significant result to be deduced from (9.9.4) is obtained
when that equation is integrated. Suppose C; and C, are two distinct
points in configuration space satisfying the constraints, i.e., they both lie
in the surface defined by the constraints. Then one can, of course, find an
infinity of different sequences of configurations, starting with the configura-
tion C, such that all lead to the configuration C,, and such that the path
element, in going from one configuration to a neighboring one of the same
sequence, is a virtual displacement. If we wish to integrate (9.9.4) along
such a sequence of virtual displacements, we find for the right-hand side

Swmwszqy—wwg (9.9.5)
Cy

The symbol S is to the operator 6 what the integral symbol f is to the
differential operator d. Thus, it is defined by the operator equation

85:L (9.9.6)
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where I is the identity operator, i.e.,
Iu = u. 9.9.7)
One sees, therefore, that:

The total virtual work done by potential forces in a sequence of virtual
displacements leading from a configuration C, to another configuration
C, depends on the end points C, and C, only, but not on the path.

In the special case when the path is closed, it follows from (9.9.5) that

C1
SWP — @ SWP = 0, (9.9.8)

Cy

9.10. Given Forces Which Are Functions of Constraint Forces

Up to this point we have only considered forces which are functions
of position, velocity, and/or time (and possibly of certain constants), and
all were either given, or constraint® forces. One consequence of these
considerations has been that the constraint forces are absent from the
fundamental equation.

However, given forces which are functions of the constraint forces
are occasionally encountered in dynamical systems. The best known example
of such a force is the Coulomb friction force. Let a particle slide on an
imperfectly rough horizontal surface. Then, the Coulomb friction force is

Fy = —uNvf| v/,

where u is the coefficient of sliding friction, N is the normal force exerted
by the surface on the particle, and v/| v | is the unit vector in the direction
of the particle velocity relative to the surface.

Evidently, in this example, the gravitational force as well as the normal
force N is a constraint force because neither does work in a virtual displace-
ment. However, there are two important differences between them: One
of these is that the normal force disappears when the constraint is removed,
while the gravitational force does not; it acts whether the constraint is
present or absent. The presence of the constraint merely transforms the
gravitational force from the class of given to that of constraint forces.

t The constraint forces are functions of position and time only.
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The other is that the gravitational force is known; it is one of the given
elements when the problem is posed. The normal force is not known at the
outset; if we wish to determine its magnitude, we must invoke some principle
of mechanics. It becomes evident, therefore, that we shall have to consider
two distinct subclasses of constraint forces: the class F’, which acts whether:
the constraints are present or absent, and the class F'’, which acts only in
the presence of the constraints. We shall write for the resultant of the latter

N L
— ) ) AAe (9.10.1)
s=1 r=1
when the constraints are given by
N
Y Ay, + A, =0 r=12,...,L). (9.10.2)
s=1

We shall also have to consider two distinct classes of given forces:
the class FI, which is independent of the constraints, and the class F1I,
which is a function of the constraints. Among the latter we only admit
forces which vanish in the absence of constraints; hence we have

FII = FIY(F'"),

FII(0) = 0. (9.10.3)
Then, the é; component of the totality of the given forces is
F,=F!+ FH< zl Z 2 Am>, (9.10.4)
and the é, component of the totality of the constraint forces is
F/ + F/ =F/ + i MA,y. (9.10.5)

It follows that Newton’s second law becomes here

.. I e 3 / z _
msus—Fs _Fs Z ZlAru Fs ‘Jf'zerrs_‘

=1

s=1,2...,N).  (9.10.6)

These N equations together with the L equations (9.10.2) are sufficient
to determine the N variables u; and the L parameters 4,. If we define an
arbitrary displacement by

ou = (0uy, Ouy, ..., Ouy)
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(not necessarily a virtual displacement), multiply each of the equations
(9.10.6) by the corresponding component of du, and then add them, we
find, similar to (9.4.12),

N 1 L N L
5 [mu _Fl_F! (2 A,Am) CF =S A4, 0u, =0, (9.107)
8=1 r=1 a=1 r=1

but the left-hand sum is zero because each relation of (9.10.6) equals zero,
not because the constraint forces do no virtual work.

As they must, either (9.10.6) or (9.10.7) satisfy the requirement that,
if the constraints are removed, the unconstrained problem emerges. We
may remove the constraint by setting all 4, and 4, equal to zero. Then,
(9.10.7) becomes

(m,ii, — F} — F,') du, = 0. (9.10.8)

=

1

&

The force component F;" is now no longer a constraint force because
there are no constraints. But it does not cease to act; instead it now belongs
to the class of given forces.

The system of equations defining the dynamical system comprises
(9.10.2) and (9.10.6). Now, (9.10.6) is simply a statement of Newton’s
second law because it states that the acceleration is proportional to the sum
of all forces. One may well wonder whether the dynamical representation
given here does not, therefore, belong to the domain of Newtonian rather
than Lagrangean mechanics. It is our opinion that the representation is
Lagrangean, not Newtonian. Newtonian mechanics of systems of more
than one particle necessarily divides the forces into those external and
internal to the system because one of its essential axioms is the third law,
which utilizes a special property of internal forces. In fact the third law
may be regarded as defining internal forces. Thus, any representation of the
dynamics of systems of particles which does not utilize Newton’s third
law cannot be “Newtonian,” in our view. The dynamical representation
given here has retained the Lagrangean classification of forces into given
and constraint forces; hence, we regard it as Lagrangean. But, when dealing
with forces which are functions of constraints we must also introduce the
notion that there are forces which are always present but which may belong
to one or the other of the Lagrangean classes depending on the circum-
stances.

While the above treatment of given forces that depend on constraint
forces is Lagrangean in ‘its approach, Lagrangean mechanics is not a
convenient vehicle for dealing with them. For one, it is necessary to com-
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plicate the simple division of forces into two classes by creating two sub-
classes for each. For another, the elegance of the fundamental equation in
the beautiful and simple form (9.3.12) is lost. This loss becomes particularly
evident, if the problem is stated in the form

S [mi, — F} — Fgl( Ll i A,AM)] su, = 0, (9.10.9)
5=1 oms Roms
where the du, must satisfy
iArs ouy=0 (r=12,...,L) (9.10.10)
when the constraints are
% A, + A, = 0. (9.10.11)

s=1

Let us utilize (9.10.10) to solve for L of the du, in terms of the N — L
remaining ones and substitute the result in (9.10.9). This is a process called
“embedding” of constraints, and it is treated in greater detail in Chapter 14.
The N — L remaining du, are now arbitrary and, hence, their coefficients
in (9.10.9) are arbitrary, and each must be equal to zero. This yields N — L
equations, and together with the L equations (9.10.11) we have only N
equations to solve for N + L unknowns, which is not a properly posed
problem. Therefore, when given forces occur which are functions of con-
straint forces, the latter must be adjoined by the multiplier rule; embedding
of constraints is, then, not a possible technique for solving the problem.

Nevertheless, problems of the class discussed here can be- dealt with by
the methods described above, as we shall now demonstrate on a simple
example.

Example 9.10.1. A heavy particle of unit mass slides under Coulomb friction
on an imperfectly rough, horizontal surface. The magnitude of the friction force
is u times that of the constraint force, and its direction is opposite that of the
particle velocity relative to the surface. Discuss the motion,

Let the xy-axes of a right-handed x, y, z-system of cartesian coordinates be
fixed in the surface, and let the z-axis be positive in the up-direction. Let the unit
vectors along the axes be /, f and £, respectively.

The single constraint is

f =z—-Cc= 0> (a)
where ¢ is a constant, and the constraint force is

F" = Agrad f = ik,
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Hence, the magnitude of F" is

|F'"| = A (b)
The particle velocity relative to the surface is
F= x4y + ik,

and the unit vector in the direction of the velocity is

P X+
R ©
Therefore, the Coulomb friction force is
X+ yf
FU! = — ui ——————(xz Ty . (d)
The force F' is here i
F' = — gk, (e)

and this is a force which is a constraint force in the presence of the constraint,
and a given force when the constraint is absent. If we introduce an arbitrary dis-
placement

or =0oxi{+8yf+ozk ()

we find that
Xt + pf

[)'c'f+yj+z'ic—gic+,mw+zk] ~(Oxi+8yj+0zk)y=0

and in view of the arbitrariness of dr,

. nAx

X+ ()&2 +yz)1/2 :0’

" uiy

RGNS ®
Z—g+1=0.

These equations together with (a) determine the motion.
Introducing (a) in the third equation of (g) gives

A=g (h)

and the substitution of (h) in the first two equations of (g) results in

du _ nAu

dt - W + )2 ’ @
1

dv uiv

ar - @ + )2’
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where u = X, v = p. From (i), one has

dv v
du u’
which integrates to
v = Cu, )]

where C is a constant. Equation (j) states that the trajectory is a straight line of in-
clination « to the x axis, where tan « = C.
The substitution of (j) into (i) gives

4 ) ngC

X == (I_I__Cz)l/z’ y=- (1 + Ccrye”

(h)
Hence, the particle moves under constant deceleration until it stops.

It should be noted that, when the constraint is removed (A = 0), equations (g)
state, as they should, that the horizontal component of the velocity is zero, and
the vertical acceleration is the acceleration of gravity.

9.11. Problems

9.1. A heavy, uniform, smooth ladder of length / stands on a horizontal floor
and leans against a wall of height 2 < [ as shown. Let the coordinates of its
lower extremity be (x;, ¥1) and those of its upper (x., y.) with y vertical,
positive in the up direction. What are the equations of constraint on finite,
possible, and virtual displacements for the cases y, > k& and & > y, > 0?

I T

h

|

9.2. A particle of mass m is attached to one end of a massless inextensible string
of length /. The particle and string are placed on a smooth horizontal table
so that the string is straight. At the time ¢,, the free end of the string is set
in motion with uniform velocity v, in the plane of the table and normal
to the string; this velocity is maintained constant for all ¢+ > ¢,. Give the
equations of constraint on finite, possible, and virtual displacements of the
particle position in Cartesian coordinates, write down the fundamental equa-
tion and the equations of motion, and discuss the C, E, and S trajectories.

177

9.3. The smooth ends of a rigid, heavy, uniform rod of length 2a are always in
contact with the parabola y = x2, which lies in a vertical plane, open in the
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9.4.

9.5.

9.6.

9.7.

9.8.

Chap. 9 e Virtual Displacement and Virtual Work

up direction. Find the equilibrium positions; in particular, show that there is
only one such position if 2a < 1, but there are three for 2a > 1. (Hint: Use
the angle 6 subtended by the rod and the positive x axis to describe the con-
figuration.)

Show that, when the virtual displacements satisfy the knife edge constraint
sin 6 dx = cos 6 dy, virtual displacements from a possible state do not lead
to another possible state.

Show that, when the virtual displacements satisfy sin 6, dx = cos 0, dy
where 0, is a nonzero constant, virtual displacements from a possible state
do lead to another possible state.

Below are given the Cartesian components X, Y, Z of certain forces. Which
of these are potential?

(a) X = 4a1x® + 3axx?y + 2asxy? + a)?,
Y = a.x® + 2asx*y + 3axy® + 4as)®,
Z=0,

where the a; are constants (i = 1, 2, ..., 5).

(b) X =cosy + zsec?x,
Y = x cos y + sin z,
Z = tan x.

() X =siny + zsec?x,

Y =xcosy +sinz,
Z = ycos z + tan x.

@ X=fx), Y=g0) Z=h).
Let
X :fl(x’ y) + gl(x’ Z)’
Y =f2(x’ y) + hl(y’ Z),
Z = gﬂ(xs Z) + hg(y, Z)s
where fi,2, g1,2, and h,, are analytic functions. What are the necessary
and sufficient conditions for F = (X, Y, Z) to be a potential force?
A particle of mass m is subjected to a force whose Cartesian components are
2 2 __ 2 __ 2
- _Birp-t-d
(x2 + y2)3/2
Y= B x2+y2_22_a2 y’
(x2 + y2)8/2
. 2z
- x® + 22 .
(a) Show that the force is potential and discuss the equipotential curve
V = const.

Z =
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9.9.

9.10.

9.11.

(b) Suppose the particle is constrained to move on a smooth sphere centered
at the origin of the Cartesian coordinate system. Write the fundamental
equation and the equations of motion. Find the equilibrium positions.

A particle of mass m is constrained to move on the curve defined by
x = cos 0, y =sin 0, z =2,
It is subjected to a force whose Cartesian components are

N ZZHyE B 2y N x2;y2
(x +y)’ x+z’ (x + 2

(a) Calculate the work done by this force when the particle moves on the
arc corresponding to 0 < 0 < =#/2.

(b) Answer the same question when the curve is defined by
x = 2sin20, y =cos 20, z = 2cos?0.

An unconstrained particle is acted upon by a force whose Cartesian com-
ponents are

X N y z

2 | 4,2 2 ? Y = 2 2 2 ? Z = 2 2 2 "
xt-byt 4z x2+yP+z X2+ P4z

Find the equilibrium positions.

Answer the same question as in Problem 9.10 when the spherical compo-
nents of the force are

— 2acosf —asin0

(a) R: @:H_"a (D:O’

)
r3

1
(b) R:—e*’”<7+7>, ©=0 ®=0.
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Hamilton’s Principle

10.1. The Kinetic Energy

If a particle P, of mass m, moves with velocity X" relative to an inertial
reference frame, the quantity

T = Im - X = ym (%7)? (10.1.1)

is called its kinetic energy. Evidently, 77 is a scalar quantity; thus, in a
system of particles in which m, moves with the velocity X" (r = 1,2, ..., n),
the total kinetic energy of the particles in the system is

—

D=

(372, (10.1.2)

r=1 2 r=1

The double of this quantity was formerly called the “living force” (French:
force vive; German: lebendige Kraft), and in modern French texts, T is
still sometimes referred to as the “demi force vive’).

Equations (10.1.1) and (10.1.2) are completely general provided the
velocity exists (i.e., they hold at all times for which the velocity is defined).

If we proceed from the x;7 (r = 1,2, ...,n;i=1,2,3) to the u, (s =1,
2, ..., N), the expression for the kinetic energy of a system of particles
becomes
1 N
T= > Y, maik. (10.1.3)
s=1

In certain circumstances to be described, the kinetic energy becomes
an important dynamic property of the motion of a system of particles.

161
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10.2. Kinetic Energy in Catastatic Systems

In catastatic systems, but only in catastatic systems, we may write the
fundamental equation as

M=

(m,ii, — F,) du, = 0, (10.2.1)

I
-

8
where the du, are the components of possible displacements
du = (du,, du,, ..., duy);

(10.2.1) follows from (9.3.12) because the class of virtual and possible
displacements coincides in catastatic systems. It may also be written as

N N
Y. mgiign, = Y Fyig, (10.2.2)
s=1 $=1

where the #, are the components of possible velocities ¢ = (u,, t,, ..., iy),

i.e., the u, satisfy the equations
N
Y, Aptt, =0 r=12,...,L). (10.2.3)
8=1

It is readily ascertained that the left-hand side of (10.2.2) is the time
rate of change of the kinetic energy because

dTr d (1 X ) N
— ==Y maz2) =Y miiu,.
dt dt(ZSZ‘l 3; 5

Here, the ii, are the time rates of change of the components of the possible
velocities. Thus, they belong to the class of possible acceleration com-
ponents. We may write (10.2.2) as
dr y
—_— F ) N s
7 2, U (10.2.4)

§

The product F-u = YN, F, is called the power. Equation (10.2.4)
states:

The time rate of change of the kinetic energy of a catastatic system
equals the power of the given forces under possible velocities.
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10.3. The Energy Relations in Catastatic Systems

Under certain conditions listed below, (10.2.4) may be integrated;
one finds then

y N
T:J;Fsusdt+h:JS;Fsdus+h, (10.3.1)

where 4 is a constant of integration. The conditions under which this
integration may be carried out are:

(i) The velocity components #, must be defined for every value of
the configuration, i.e., there may be no velocity discontinuities
during the interval of integration. This condition is insured if the
system is strictly Newtonian (SN).

(i) N is a constant, i.e., no particles may be acquired or lost by the
system during the interval of integration. This stipulation implies
that rmass is conserved.

Let us now suppose that some of the given forces are potential forces
F?, and some are nonpotential forces F”. For generality, we assume that
every particle of the system is subjected to given forces of each kind. Thus,
(10.3.1) becomes

T:ji ¥ F;’du8+J§: S Frdu+h  (1032)

s=1 n=1,2,...

But, we saw in (9.9.2) that every

j4
Fr = — aaz (s=12,...,N; p=12,...). (10.3.3)
Thus, if we define the total potential energy of the system as
= ) v (10.3.4)
p=1,2,...
we find
N
T+ V= J Y Y Frdug+ h (10.3.5)
s=1 n=1,2,...
When only potential forces act, i.e., F?=0forall s=1,2,...,N
and for all n =1, 2, ..., (10.3.5) reduces to one of the most celebrated

equations of classical dynamics. That equation is known as the energy
integral; it is
T+ V=h (10.3.6)
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It states:

In catastatic systems of particles in which the total mass is conserved
the total energy is a constant of the motion provided all given forces are
potential forces.

Systems which possess a first integral of the form (10.3.6) are called con-
servative, or closed systems.

It is clear that the constant 4 is a constant of the motion, not of the
system. For suppose that two experiments are conducted on the same
system. In both, the system is given the same configuration at the time
t = t. Thus, the initial potential energy is the same in both. In the first
experiment, the system is released from rest, or the initial kinetic energy is
zero. In the second experiment, the system is given a nonvanishing velocity
at t = t,; thus, the initial kinetic energy is positive. Then, the total energy
is different in the two motions at ¢t = t, and, therefore, for all time. The
constant 4 is called the energy level of the motion.

The energy integral has an interesting geometric interpretation. By
definition T is nonnegative. Thus, if the system is closed T=h — V' > 0,
or V < h. The surface

V(ug, ty, ..., uy) =nh (10.3.7)

is called the maximum equipotential surface. 1t divides the configuration
space into domains where ¥ < h and those where V > h. Therefore, the
C trajectories of the motion of closed systems must remain in the domain
where V < h, except that they may intercept, but not pierce, the surface
V = h. Expressed differently, C trajectories of closed systems satisfy the
nonholonomic configuration constraint

Vi, s, ..., uy) < h. (10.3.8)

The maximum equipotential surface is the locus of rest points of the
motion of closed systems because, when V' =h, T=0 in view of the
energy integral, and 7 = 0 implies #, =0 forall s = 1,2, ..., N.

The general energy integral for nonclosed, catastatic systems is (10.3.5).
In it, we shall put

Y Fp=F, (10.3.9)

n=1,2,...

[This represents actually a slight change in nomenclature because, up to
this point, we have used the symbol F, to denote all given forces, both
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potential and nonpotential, while the F, in (10.3.9) are nonpotential. Thus,
we shall introduce the following rule: when the symbols F, and ¥ occur
in the same equations, F, refers to nonpotential forces only.]

The equation corresponding to the energy integral then becomes

N
T+V—J2ﬂm%:h (10.3.10)
s=1

This important equation states:

In catastatic systems of constant total mass, the total energy diminished
by the work done by the nonpotential forces is a constant of the motion.

The companion to this equation is
d N
v (T+ V)= Fu,, (10.3.11)
s=1

which may be obtained either by differentiating (10.3.10), or directly from
(10.2.4) if one separates the given forces in that equation into potential
and nonpotential ones.

All relations given here which involve energies are more general than
is often supposed. Since they apply to all catastatic systems, they are in
fact valid for constrained systems in which the constraints may be functions
of time. Pars given an interesting example of a nonholonomic system of
this type.

Example 10.3.1. (Pars, p. 32). Let a particle move under the action of gravity
and let it be steered in such a way that the slope of its trajectory varies as the
time. The particle is projected horizontally with initial velocity «. Choose the y
axis vertical, positive in the downward direction, and let the x axis be horizontal,
positive in the direction of the initial velocity u. The steering control is such that
dyl/dx =t or dy — t dx = 0; this is a nonholonomic constraint. Then, the fun-
damental equation is

mi dx + (mj — mg) oy + mh (dy — t6x) =0, (a)
where mA is a Lagrange multiplier. From (a) one finds the two equations

X — =0,

j—g+i=0. ®)

These equations, together with the catastatic time-dependent constraint

y’“t)C:O, (c)
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are sufficient to find x(¢), y(¢), and A(z). Eliminating 4 from (b), one has
X=—jt+ gt (d)
and, on differentiating (c), one finds
J—x—ti=0. ()
When j is eliminated between (d) and (e) there results the following equation in x:
XA+ )+ xt—gt=0. (3}

The first and second integrals of (f) satisfying the initial conditions x(0) = 0,
x(0) = u are
$=g+ @—o)ll + ey,

x=gt+ (u—g)sinh—*¢. ®
In view of (c),
=tk =gt + (u— /(1 + ),

h
y=1gt* + (u—- I + )" —1]. ®)

These satisfy y(0) = y(0) = 0.
Then, from the first equations of (g) and (h) the double of the kinetic energy
per unit mass is

X+t =g+ 1°) + 28 — g)(1 + )2 + (u — g)* ®

Moreover, from the second equation of (h), the double of the potential energy per
unit mass with respect to the origin is

— 2y = —gt— 28— Il + /)2 —1], 6))
and the sum of the double of kinetic and potential energies becomes
X+ —2gy =ut. &)

Thus, the total energy is a constant, equal to the initial energy. This last result
(k) is the same as would have been found if there had been no steering. However,
under the identical initial conditions, but without steering, the trajectory equations
would have been

X = ut, y = gt

One also sees that A is not a constant since, from the first equation of (b) and with
the aid of the first equation of (g),

M) = Eft = — (u — )I(1 + 17y,

The difference between a steered and an unsteered trajectory having the same
energy integral is shown in Fig. 10.3.1.
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Fig. 10.3.1. The steered trajectory of Example 10.3.1. and the “unsteered” trajectory under
the same initial conditions. Both have the same total energy.

10.4. The Central Principle

The relations established in the preceding two sections are valid for
catastatic systems only, for only in them can one deduce (10.2.1) from the
fundamental equation. It was with the aid of (10.2.1) that we found relations
for the time rate of the kinetic energy or, when integrating with respect to
time, for the kinetic energy. In this section, we establish a relation which
was called by Hamel (p. 233, after Heun) “Zentralgleichung,” and which
is valid for acatastatic systems as well. We translate Hamel’s term as
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“central principle” because the literal translation ‘““central equation’ sounds
so much like “fundamental equation™ as to invite confusion.
We begin with the fundamental equation

(m, i — Fr) - 6x" =0, (10.4.1)

D=

r=1

where the F are given forces.
OQur attention is centered on the term

n
Y mX" - Ox". (10.4.2)
r=1

Consider the time derivative of Y0, m X" - 0x7; it is

d v or r| v sy, r < o7 i r
—zl,-t—(r:zlmrx 6x)—rglm,x ox +§1m,x 7 (6x7).

If we exchange the operations d/dt and d (see Section 9.5) we find
d

(i m,x" - 6x’) = i mJx - 0x" + i mx" - 0X7,
dt r=1 r=1 r=1

so that the quantity of interest is

n

ilm,)'c" - OxT = —gt— (Z mx" - 5x’) — i mx" - OX.
r= r=1

r=1

But, the last sum in this equation can be further transformed. The kinetic
energy (10.1.2) is

1 n
T=—=Y m(i).
2.4
Therefore, the variation of T is
0T = mysr - ox, (10.4.3)
r=1
and (10.4.2) becomes
n d n
Y mXr - 0x" = 7 Y mx" - 6x" — OT. (10.4.4)
r=1 r=1

This is the equation called by Hamel the central principle. It states:

The virtual work done by the inertia forces is equal to the time rate of
change of the work done by the momentum, diminished by the virtual
change in kinetic energy.
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It is difficult to give (10.4.4) a readily comprehensible physical interpreta-
tion. Hamel’s reason for regarding this equation as having great importance
is that it establishes a relation between an invariant (under a Galilean
transformation) of second order and one of first order.

To us, its importance is twofold: First, it is valid for catastatic and
acatastatic systems, and second, it is in fact very nearly the differential
form of Hamilton’s principle.

10.5. The Principle of Hamilton

Hamilton’s principle is one of the best known integral principles of
mechanics. We derive it from (10.4.1) and (10.4.4). From the first of these,
one has

S i oxt = Fr - ox = OW. (10.5.1)
r=1 r=1

It follows that (10.4.4) may be written as

n

d

—= ), mx" - 0x" = 0T + dW.
dt r=1

On integrating this last relation with respect to time over the interval from

t, to t; one finds

t t
_ J (6T + oW) d1. (10.5.2)

to

n
[Z mx" - Ox"
r=1

to

This equation is Hamilton’s principle in its most general form.
Usually, this equation is written for virtual displacements satisfying

0x"(ty) = ox"(t;) = 0 r=12,...,n). (10.5.3)

The meaning of (10.5.3) is this: Let the actual motion have the time sequence
of configurations (i.e., the C trajectory) x"(t) (r =1, 2, ..., n), with end-
configurations x"(¢,) and x7(¢,), respectively. Let neighboring, simultaneous
configurations be x"(t) = x7(¢t) + dx"(¢t). Then, at ¢, and ¢,, ¥ = x, or
all paths of the C trajectories ¥ and x" coincide at the end points. During
the open time interval (¢,, f,), simultaneous configurations are such that
the Ox" xatisfy the constraint equations which result from putting all
A, = 0. Under (10.5.3), Hamilton’s principle becomes

Jtl (6T + W) dr — 0. (10.5.4)

to



170 Chap. 10 e Hamilton’s Principle

In (10.5.4), the term 6T is the virtual change in kinetic energy which
results from virtual displacements, and W is the work done by the given
forces in ihis displacement. Therefore, Hamilton’s principle states:

The time integral over any interval of the sum of virtual kinetic energy
change and virtual work vanishes when the virtual displacements are
made from configurations of the actual motion and when the end con-
figurations are given.

Essentially, the use of Hamilton’s principle is this: If one computes the
expressions for 6T and dW from any arbitrary configuration sequence and
then sets the time integral of their sum equal to zero, one imposes thereby
the condition that the virtual displacements were made from the actual
sequence of configurations; hence, one has a condition on this actual C
trajectory which may permit its determination.

When all given forces are potential, we saw that

SW = —oV. (10.5.5)

However, it will be recalled that W is not, in general, the variation of W
while 8V is the variation of ¥V, as is evident from (9.9.3) and (10.3.4).
Moreover, 6T is the variation of T as seen from (10.4.3). Therefore,

OT — OV = &(T — V),

or, in closed systems it is always true that

J" 5(T — V)dt — 0. (10.5.6)

to

This form of Hamilton’s principle is frequently written in terms of the so-
called Lagrangean function

L=T—V. (10.5.7)

Thus, we may write instead of (10.5.6)

t
J “oLdt— 0 (10.5.8)

to
when the system is closed. The meaning of this principle is this:

The time integral of the variation of the Lagrangean function vanishes
along the actual T trajectory connecting two points C, and C, in state-
time space.
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We point out that, in holonomic systems, one may write

t t
j SL dt — aj L, (10.5.9)

to to

but in nonholonomic systems

t t
J SLdt # & J "L, (10.5.10)

to to

In these equations, the expression

t
6J Ldi=0

to

defines the problem in the calculus of variations of finding stationary values
of the integral
t
J "L
to

The meaning of equations (10.5.9) and (10.5.10) is that, in holonomic
systems, Hamilton’s principle formulates a problem in the calculus of
variations, but in nonholonomic systems it does not. Thus:

Hamiltor’s principle is not, in general, a variational principle.

This question will be more fully discussed (in Section 13.5) after the intro-
duction of generalized coordinates. Here, we merely state that the only
difference between Hamilton’s principle and variational problems lies in
the treatment of the side conditions, and in dynamical problems the side
conditions are the equations of constraint. Briefly, the side conditions to be
satisfied in variational problems are the kinematical constraints, i.e., all
states must be possible, while in Hamilton’s principle the side conditions
to be satisfied are those which define the virtual displacements. Now, we
showed in Section 9.5 that virtual displacements from possible states lead
to possible states in holonomic problems, but not in nonholonomic ones.
It is for this reason that (10.5.9) is true only for conservative, holonomic
systems. For them, Hamilton’s principle may be written in the frequently
seen form

t
aj Ldt—0. (10.5.11)

to

The meaning of (10.5.11) is very different from that of (10.5.8). We note
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from the definition of the d and § operators that df = 0 defines the stationary
value of f when ¢ is varied, and Jf = 0 defines the stationary value of f
when ¢ is not varied. Therefore, the meaning of (10.5.11) is:

The time integral of the Lagrangean function is stationary along the
actual path relative to all other possible comparison paths having the
same endpoints and differing from the actual one by virtual displacements
lying in an open, small neighborhood of the actual path.

Example 10.5.1. A particle, subjected to the gravitational force only, is
constrained to move in a smooth surface. What is Hamilton’s principle in this
case?

Let z be vertical, positive up. The particle has kinetic energy

T = im(3* + y* + 2°).

The gravitational force is potential, the potential energy being

V = mgz.
The constraint of the surface
z = f(x, »)
is holonomic. Thus (10.5.11) is applicable.
Since , o
z= af: X + 7})— ¥,

Hamilton’s principle is

" ) 0 2
o[ 5l e (e e+ 5] | -2erenfar=o

ty

Example 10.5.2. Let a particle of unit mass be acted on by a potential force,
derivable from ¥V = V(x, y), and let it be constrained in such a way that the slope
of its trajectory is proportional to the time. (This is a slight generalization of
Example 10.3.1. where we had V = gy.)

The constraint is

tx —y =0,

which is not holonomic. Hence, the applicable form of Hamilton’s principle is
(10.5.8). The kinetic energy is

T = 3(x* + %),

so that
0T = x 0x + y oy,
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and
oV oV
oV=——39§ — 4
d 0x X dy ¥
B 6V+t aV)(S
~\Tox ay )
Thus,
oV oV
6L:x6x'+y'6y—(—+t—)6x,
ox dy

where the constraint equation has been used. Hence, Hamilton’s integral is

! oV ov
J {xax+y6y—<—~+t—)6x]dt=0.
to 0x ay

The quantities dy, dy, and y may be eliminated by means of
y =1tx, dy =t dx, 0y = dx + t 6X,

where the third results from differentiating the second. Substitution in Hamilton’s

integral gives
51 oV oV
[(1 +2)xox +(th — —— — t——) 6x] dt = 0;
t 0x ay

0

this is the required answer.
It is important to note that the following procedure is incorrect and leads to
wrong results: Substitute y in the kinetic energy to give

Tt = (1 + ¥)x2
Hence,
OT* = (1 + #?)x 6x.
Substitute in

5%
J (0Tt — 6V) dt = 0,
¢

0
resulting in

: 9 Y%
' {(1 remypsr— (2 4 t—) 6x] dt = 0.
t ox oy

It is obvious that this last equation cannot be the correct answer because it dif-
fers from the earlier one found by correct methods. The error arose because it was
implicitely assumed that

oT*t = 0T,

but this is not in general true.
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Example 10.5.3. Let a particle having a single degree of freedom be subjected
to a force which depends linearly on the velocity, to another force which depends
linearly on the displacement, and to a time-dependent force F(z). What is
Hamilton’s principle in this case?

Let

F, = — cx, F, = — kx, F; = F(1),

where x is the degree of freedom. The only force which is potential is
— kx = d(— kx?/2) dx.

Hence V = kx*/2. The kinetic energy is T = mx?/2. The work done by F; and F;
in a virtual displacement dx is [— ¢x + F(¢)] 6x. Thus, Hamilton’s principle is

t

Jtl (ms 0% — [kx + % — F(£)] 6x} dt = 0.

0

Note, that we could introduce a slight generalization by considering a time-
dependent potential function. Consider the same problem with ¢ = 0. Then, we
may define a potential energy

V = tkx® — xF(t).
In consequence, we would have
8V = kx 6x — F(¢) dx,

and the applicable form for Hamilton’s principle is (10.5.6). One finds

rg (ms 0% — [kx — F(t)] dx}dt — 0

identical with the previous answer if one sets ¢ = 0. One could also have used
(10.5.11). For ¢ # 0, one could rot have written

V = tkx® + cxx — xF(t)
because the variation of this quantity is

OV = kx dx + ¢x 6x + cx 6x — F(t) dx.

Thus, the answer would have been incorrect.

10.6. Noncontemporaneous Variations

The principle of Hamilton is stated in order of decreasing generality
in (10.5.2), (10.5.4), (10.5.8), and (10.5.11). In all but the first of these,
the end configurations are supposed given and fixed for all trajectories
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admitted to the competition. Moreover, Hamilton’s principle contemplates
that the departure time £, and the arrival time #;, and hence the transit
time t, — f, are also fixed. However, cases arise where the transit time
cannot be the same for varied neighboring trajectories passing through the
same end configurations. This is most easily demonstrated by considering
the force-free motion of a holonomic, scleronomic system. Evidently, we
may regard this system as conservative with

V =0. (10.6.1)

For that system, Hamilton’s principle (10.5.11) reduces to

2
aj “Tdr— 0. (10.6.2)

to

But, since energy is conserved throughout the motion and V=0, T is
a constant, so that (10.6.2) becomes

8(t, — o) = 0. (10.6.3)

This equation shows that the transit time must be varied in this case, if
varied paths under constant energy are admitted. We are thus led to con-
sider “noncontemporaneous variations,” i.e., variations in which time is
varied as well as the state variables. We denote such a variation by the
operator symbol 6,.

To carry out the o, variation, we introduce an ‘“auxiliary time” =z,
and we suppose that ¢ is a function of 7. To be more precise, let ¢ be a
once differentiable, monotonically increasing function of 7 on the interval
0<z<1, or

t — (1), ;ii — >0, (10.6.4)

and with boundary values

t(0) = t,, (1) =1,. (10.6.5)
Then, the noncontemporaneous variation of a function F(u,, ..., u,;
Upy oo Uy 1) 18
n QF n oF u,’ oF
0F = ¥ g b+ 3 5 ‘”(7) b (1066)
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where the prime denotes differentiation with respect to 7. But,

(us’) t' o —u O,
6, — | =

t' t'?
O/(du,jdv) — dufdv  0,(di/dr)
- difdr dt/dv dt/dx
_ dQuydr p d(d,t)/dr
- dijdv ' dtlde

d . d
= (Ou,) — 1y T (6:2)
d . d
= 7 (aus) — U —E— (6tt)
. .od
= 6u3 — U gt— (a[t), (10.6.7)

where we have utilized

Oy = du, (10.6.8)
because time is not involved in the variation of a configuration variable;
hence, the d and &, variations are identical in that case. The substitution of
(10.6.7) and (10.6.8) in (10.6.6) together with the definition of the § operator

results in

OF d OF
b0 dr (0,) + e Oyt (10.6.9)

.
0 F = 0F — ) u,
s=1
This equation shows that the ¢ and J, variations become identical when
t is not varied.

10.7. Lagrange’s Principle of Least Action

The variational principle (10.6.2) which holds for force-free motion
is due to Leibnitz. It is frequently attributed to Maupertuis, who, without
knowledge of Leibnitz’s work, announced in 1747 his “principle of least
action” in rather vague terms. He defended it with a teleological argument
concerning the frugality of nature in dispensing “action” but he was unable
to explain why it was the action rather than some other dynamical quantity
that nature wished to minimize.

Both Euler and Lagrange considered the generalization of Leibnitz’s
principle to the holonomic case possessing an energy integral, and in which
V #£ 0. All trajectories pass through the same, fixed end configurations,
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and the energy level is the same for all varied trajectories. This problem
leads to Lagrange’s principle of least action.

It should be clearly understood that the type of variation contemplated
in Hamilton’s principle is contemporaneous while that in Lagrange’s
principle of least action is not. Both lead to virtual displacements within
the meaning of definition (9.2.4); nevertheless, the variations leading to
them are different. In Hamilton’s principle, virtual displacements from a
possible configuration are considered at equal times, i.e., the variation is
made under fixed time. In Lagrange’s principle of least action, virtual
displacements from a possible configuration are considered at equal energy
levels, i.e., the variation is made under fixed energy level, not time. A
formalization of these observations is that, if

T+ V=h,
then a contemporaneous variation of this equation gives

0T + 0V = oh

where 6k % 0 in general, while the noncontemporaneous variation in
Lagrange’s principle of least action gives

8T + 8,V =0.

Here, we derive Lagrange’s principle from that of Hamilton in the
applicable form (10.5.8). The substitution of T in place of F in (10.6.9)
gives

6TA6T—2T = (0u1) (10.7.1)

because

mau? = 2T,

D=

N T,
D

l
—

s

and in the scleronomic problem considered here,

oT
5 0
Hence
6T:¢T+2r%%mm (10.7.2)
Moreover,

oV =8,V (10.7.3)
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because V is a function of the configuration variables only, and not time-
dependent. Then, the substitution of (10.7.2) and (10.7.3) in (10.5.8) gives

t
J ' [a,T + 2157 (8,:) — 8,V dr = 0. (10.7.4)
to

Since the energy level is the same for all trajectories and is

T 4+ V = h = const,
we find
6,V = —4,T. (10.7.5)
This last relation gives in place of (10.7.4)

le 2[8,T dt + Td(3,4)] = 0. (10.7.6)

to

But from (10.6.4) and (10.6.5) we have
dt =t' dr, d(os') = ’Zid? (0,8) dr = 0,(1t') dv.
These relations transform (10.7.6) into
J; 20t 8,T + T 8,'] dv — J::z 5.Tt') dr = 0.

Finally, if we exchange the variational and integral operators, which we
may do in holonomic systems [see (10.5.11)], we obtain

1 t
5,J 2T dr — atj 2T dt — 0. (10.7.7)
0 to
This is Lagrange’s principle of least action, which is also frequently written as
t
8, j ‘Tdi =0, (10.7.8)
to

The meaning of (10.7.8) is this:

In holonomic systems possessing an energy integral in which the energy
level is fixed in moving from a prescribed initial to a prescribed terminal
configuration, the time integral of the kinetic energy is stationary under
noncontemporaneous.- variations.

It should be noted that the transit times are different for different trajectories.
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10.8. Jacobi’s Principle of Least Action

Jacobi’s principle of least action is readily obtained from (10.7.7);
however, its meaning is quite different from Lagrange’s principle.

If we write 7= (T?)"2 and utilize T = h — V, we find in place of
(10.7.7)

i
5JJ 20T(h — V)2 dt = 0
to

or

4 N 1/2
a,j [2 Y ma2h — V)| dt=0. (10.8.1)
r=1

ly

The solution to the dynamical problem may be represented as a
C trajectory in N-dimensional configuration space, and the arc length s
along the C trajectory, measured from some fixed point on the trajectory,
may be used as a parameter to describe the configuration; thus, one writes

u, = u,(s) r=12,...,N)

Introducing the parameters s in (10.8.1), that equation becomes
$1 N 1/2 dS
5J [2 > mazth— |5 =0, (10.8.2)
So r=1

where s, and s, are the values of s at the initial and terminal configurations,
and the operator 4, has been replaced by & because the limits of the integral
in (10.8.2) are fixed, and time is not being varied. We now introduce
the transformations

g, = (m)u, (r=1,2,...,N); (10.8.3)
this is merely a scale change. Then, (10.8.2) becomes

81 N ) 1/2 dS
0 [2 Y. 4 h — V)] — =0 (10.8.4)
r=1

S0

But, the line element ds and the velocity § are given in terms of the g, by

N 1/2 N
ds — (Z dq,?) , 82=Y 43 (10.8.5)
r=1 r=1
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and the substitution of these in (10.8.4) gives that equation its final form:

8" b=V gus o oanlprds =0 (1086)
or
'3 N 1/2
o[ ot~V qur - oam S g2 =0, 108
do r=1
where

qO = ((110, (120’ ) leO),

(10.8.8)
ql = (qlla qzl, AR qu)
are the initial and terminal configurations, respectively. In contradistinction
to Hamilton’s principle or to Lagrange’s principle of least action, the Jacobi
principle (10.8.7) or (10.8.8) is geometrical, not dynamical, i.e., the in-
dependent variables are the configuration coordinates, not time.

If we define the action integral as

A— J 200 — V)2 ds, (10.8.9)

So
we may verbalize Jacobi’s principle of least action as follows:

In holonomic systems possessing an energy integral in which the energy
level is fixed in moving from a prescribed initial to a prescribed terminal
configuration, the action integral along the actual C trajectory connecting
initial and terminal configurations is stationary relative to all other
trajectories connecting the same end configurations and which differ from
the actual trajectory by virtual displacements lying in an open neighbor-
hood of the actual C trajectory.

This last provision is a general requirement in variational problems;
however, it is stressed here because in the case of Jacobi’s principle one
can sometimes find trajectories for which Jacobi’s action integral is a
global minimum, but where these trajectories are inadmissible because
they do not possess an open neighborhood. We shall now demonstrate
this fact.

Consider the surface

V(q1>Gzs -5 qn) = h, (10.8.10)
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and suppose that the terminal configurations ¢° and ¢’ lie in it. Since
T -+ V = h, the surface (10.8.10) is the locus of points on which the kinetic
energy vanishes, i.e., the locus of rest points. It separates the ¢ space into
open domains in which the potential energy is less than the total energy
and where it is larger. But, the potential energy of conservative systems
can never exceed the total energy; hence, C trajectories of these systems
can exist only in the domai

V(gys Gas > qn) < h. (10.8.11)

It follows that trajectories lying partly or entirely in the surface V = h
do not possess everywhere an open neighborhood in which comparison
trajectories can lie; hence, they are inadmissible. Now, the action integral
is nonnegative by definition, and one sees from (10.8.9) that its value is
zero for trajectories lying entirely in the surface V' = A. It is also intuitively
clear that a trajectory consisting only of rest points (i.e., no motion) is an
absurdity.
An interesting interpretation of Jacobi’s principle of least action results
from writing
[2(h — V)]V2 ds = do. (10.8.12)

Then, (10.8.9) becomes
5 j do =0, (10.8.13)

%o

where o, = o(s,) and o, = o(s;). If we regard do as a distance function
defining a metric space, the Jacobi principle becomes a problem of finding
the stationary ¢ distance between the points ¢, and o, in that space, i.e.,
geodesics in a Riemann space.

10.9. Problems

10.1. A weight of mass 4m is attached to a massless, inextensible string which
passes over a frictionless, massless pulley, as shown on page 182. The
other end of this string is attached to the center of a frictionless, homoge-
neous pulley of mass m. A second massless inextensible string having
masses m and 2m attached to its extremities passes over the pulley of
mass m. Gravity is the only force acting on this system.

(a) Give the kinetic energy for this system;
(b) give the energy integral, if one exists;
(c) write down Hamilton’s principle.
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1447 1L 44 L 4L LY

10.2. A homogeneous disk of mass M, constrained to remain in a vertical plane,
rolls without sliding on a horizontal line as shown. A massless horizontal,
linear spring of rate k is attached to the center of the disk and to a fixed
point. If the free length of the spring is /, and the disk radius is R,

(a) Give the kinetic energy for this system;
(b) give the energy integral, if one exists;
(c) write down Hamilton’s principle.

r
k

-

10.3. Give the same answers as in Problem 10.2 when the configuration is
changed so that the line is inclined by the angle « to the horizontal,
as shown.

10.4. Five masses m,, m,, ms, m,, and m; are connected by massless, inextensible
strings passing over massless, frictionless pulleys as shown. The vertical
distance between the center of the top pulley and a fixed datum is given
by the prescribed, smooth function f(¢).

(a) Give the kinetic energy for this system;
(b) give the energy integral, if one exists;
(c) write down Hamilton’s principle.
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10.5.

10.6.

10.7.

10.8.

10.9.

LILLLLL L L L]

f(t)

“J

Three particles of mass m,, m,, and ms, respectively, are constrained to
move so that they lie for all time on a straight line passing through a
fixed point. For the force-free problem in Cartesian coordinates:

(a) Give the kinetic energy;
(b) give the energy integral, if one exists;
(c) write down Hamilton’s principle.

Three particles of mass m,, m,, and m;, respectively, are constrained to
move in a vertical plane under their mutual mass attraction and under the
force of gravity (assumed constant).

(a) Give the energy integral, if one exists;
(b) write down Hamilton’s principle;
(c) write down the fundamental equation.

What is Hamilton’s principle for the motion of the knife edge under no
forces? (See Example 9.4.2.)

A heavy, homogeneous inextensible string of given length remains for all
time in a vertical plane. It lies in part on a smooth, horizontal table, and
in part, it hangs vertically down over the table edge. What is Hamilton’s
principle?

A particle of mass m moves in the x, y plane under a force which is derivable
from a potential energy. The particle velocity is directed for all time toward
a point P which moves along the x axis so that its distance from the origin
is given by the prescribed function £(¢).

(a) How many degrees of freedom does the particle have?

(b) What is Hamilton’s principle?

(c) Give the energy integral, if one exists.
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10.10.

10.11.

Chap. 10 e Hamilton’s Principle

One point of a rigid body is constrained to move on a smooth, warping
space curve defined by f(x,, y., zs, £) = 0. If the forces and moments acting
on the body are potential, give Hamilton’s principle. Does an energy inte-
gral exist? If so, write it down. If none exists, explain why.

Two rigid bodies moving in 3-space are constrained by a massless rigid
rod which connects a given point of one of the bodies with a given
point on the other. The extremities of the rod are smoothly hinged to the
bodies so that it can turn freely in any direction relative to the bodies.
One of the bodies rolls on a given, perfectly rough surface. How many
degrees of freedom does the system have?
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Generalized Coordinates

11.1. Introductory Remarks

In our treatment of systems of » particles we have, in general, considered
the configuration to be fixed by 3n = N Cartesian coordinates in configura-
tion space. If the system is constrained by equality constraints we conclude
that these constraints define either surfaces or elements of tangent planes
to surfaces, and the point defining the configuration in the configuration
space (or the point defining the state in state space) must lie in these surfaces.
To mention a concrete example, a simple spherical pendulum consists of a
particle that moves on the surface of a sphere. Therefore, three Cartesian
coordinates define its position, but that position must be a point in the
spherical surface.

We have not examined in a systematic way whether or not a constraint
can be utilized to reduce the number of coordinates needed to define the
configuration uniquely. Yet, it is well known that such is the case. For
instance, the position of the bob of a plane, simple pendulum is defined
by two numbers x and y, but a single angle is sufficient to specify its con-
figuration. Similarly, three Cartesian coordinates define the position of the
bob of a spherical pendulum, but two angles are sufficient to do this. The
configuration of a rigid system of any number n of particles is defined by
3n Cartesian coordinates, but we saw that six numbers are sufficient to
define the configuration uniquely.

It is of great advantage to reduce the number of configuration co-
ordinates to their minimum, because a dynamical system (SN) is governed
by as many second-order differential equations as there are configuration
coordinates. The study of generalized coordinates is a systematic study of

185
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the least number of coordinates needed to specify uniquely the configuration
of constrained systems of particles. Obviously, the case of rigid bodies
is included; we treat an example of a rigid body in Example 11.3.3.

11.2. The Theory of Generalized Coordinates

Consider a system of N/3 particles in the configuration space having
Cartesian coordinates u; , #,, ..., uy. Let it be constrained by L independent
equations of constraint:

N
N Ay du,+ A, dt=0  (r=1,2,...,L) (11.2.1)
=1

We saw in Section 4.3 that all admissible equality constraints may be
written in the form (11.2.1) whether they are holonomic or not.

We also defined the notion of “degrees of freedom” by saying that
the number of degrees of freedom of a system of N/3 particles, constrained
by L equality constraints, is equal to N — L. Let us suppose that L’ of
the constraints are holonomic (L' << L), i.e., they are of, or can be put
into, the form

N
)
s=1

ofi ofi . _ .m n.
g G =0 (=12...,1% (1122

the remaining L — L’ constraints are nonholonomic. These are the con-
straints

N
Y Adjduy+ A;dt=0 (=L +1,L'+2,...,L). (11.2.3)
8=1

We shall now show that the L’ holonomic constraints may be utilized to

reduce to n = N — L' the number of configuration coordinates’ which are

needed to specify uniquely the configuration of a system of N/3 particles.
We define “coordinates” as follows:

Any set of real numbers {q,, qs, ..., q,} which can be used to describe
the configuration of a system is called a set of coordinates.

t Here, n is not the number of particles. Henceforth, we use n to denote the quantity
N-—-L'.
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Then, we can define further:

Any set of coordinates {q, q, ..., q,} is called a set of generalized
coordinates of a system if and only if the number n of its members is
necessary and sufficient to define the configuration of the system uniquely.

Thus, in colloquial language, any smallest set of coordinates is a set
of generalized coordinates.

Consider the holonomic equations of constraint (11.2.2). Each is a
perfect differential:

dfi(uy, uy, ..., uy,t)=0 (i=12,...,L"). (11.2.4)
Therefore, each may be integrated to give
f,i(ul,uz,...,uN,t):ai, (11.2.5)

where the «; are constants that are determined from the initial conditions
uy(to) = u®, up(fy) = 5", ..., uy(t) = uy’.
Let us now introduce transformations

qu(Ps(ul’uZa'-'auN)t) (s:I,Z,...,N), (1126)

where the ¢, are single-valued functions of their arguments. Moreover,
we select the first L’ of these functions to be the f; defined in (11.2.5).
The remaining N — L’ functions are linearly independent, arbitrary func-
tions which are at least of class C! in their arguments.

We may regard the ¢, as mapping functions which map the point
(uy, Uy, ..., uy) in the u space into a point (g,, ¢, ..., gy) in the g space;
this mapping is done under fixed ¢. Obviously, it is unique because of the
single-valuedness of all ¢,.

We suppose moreover that there exists a domain D in the u space
on which the Jacobian

g 9
du, Ouy

P © | 9@, o)
. . O(uy, Uy, ..., uy)
Ovy . Oy
ou, Ouy

is not zero for any bounded ¢. Then, it is known from the implicit function
theorem that the mapping is locally one-to-one, i.e., it is not only true that
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to every point u in D there belongs one and only one point ¢ in a corre-
sponding domain A of the ¢ space, but to every point ¢ in 4 there belongs
one and only one point # in D. This means that there exists an inverse
mapping from 4 into D defined by the transformations

Uy = u(qy, Gos ... > qns 1) (s=12,...,N). (11.2.7)
Combining (11.2.5) and (11.2.6), we find that the first L' of the g, are
q; = filthy, Us, ... Uy, t) = i=12,...,L, (11.2.8)

where the «; are constants that are fixed once for all time by the surfaces
f; = a;. Hence, the inverse mapping (11.2.7) is

uszus(al’az’ e O qrigns qrr4as ---9qN’t) (S: 1’2’ ,N)
(11.2.9)

In words, the N quantities u, are determined uniquely by the L' constants,
and by the N — L' variables ¢; (=L +1,L'+2,...,N). Hence,
only N — L' = n coordinates ¢, (k=1,2,...,n) are required to fix
uniquely the N coordinates u, when these satisfy L’ holonomic constraints.
Moreover, the g, (k =1,2,...,n) are now no longer subject to the
holonomic constraints.

From (11.2.9) the differential displacements are

:f sd,c+%3dt =12 ...,N). (11.2.10)

The virtual displacements du, are formed by using the ¢ operator (see
Section 9.6) on (11.2.9) rather than the d operator. Hence, since time is not
involved in the & operation, one sees from (11.2.10) that

f S(Sk =12 ...,N). (11.2.11)

It is evident that the nonholonomic constraints (11.2.3) cannot be
utilized to reduce the number of g, to less than n because, not being in-
tegrable, they do not admit constants of integration. Thus we have:

The number of generalized coordinates q;, (k = 1,2, ..., n) of a system
of NJ3 particles, subject to L' independent, holonomic constraints is
precisely n= N — L',
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In consequence of this theorem and of the definition of “degrees of freedom”
we note that, in general, the number of generalized coordinates exceeds
that of the degrees of freedom. In fact, the number of generalized co-
ordinates is equal to the number of degrees of freedom if, and only if,
all constraints are holonomic, or if the system is unconstrained.

It is now simple to find an expression for possible infinitesimal displace-
ments dq,. The possible du, satisfy the constraints

Ahdu +Adt=0 (r=12...,0). (11212

Ile

Substituting (11.2.10) in that equation, we find

N n u, aus
Z{ ,,é[z Pa dg, + o dt]}—}—Ardt:O

or, exchanging the sequence of summing,

n N N
Z(ZATS Ou, ) qk+<2Am%+A,)dt=O.
i= aq;. = ot

If we now introduce the notation

y ou,
Br = Ars_é"
k s;l aqk
) (11.2.13)
— i PRy
~ rs at ro
the nonholonomic constraint equations become
Y B, dg,+ B, dt =0 r=12,...,0), (11.2.14)
s=1
where [/ = L — L’'. This may also be written as
Y. B4, + B, =0 r=12,...,0D. (11.2.15)

s=1

Then, the possible displacements satisfy (11.2.14), the possible velocities
satisfy (11.2.15), and the virtual displacements satisfy

Y B, og, =0 (r=1,2,...,10). (11.2.16)
s=1
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These formulas for the g, resemble the corresponding ones for Cartesian
coordinates. However, one evident difference is that, when generalized
coordinates are used, all constraint equations (11.2.14) are nonholonomic;
when Cartesian coordinates u, are used, this is not necessarily so.

One may be tempted to conclude that the two formulations are always
identical when the system is holonomic; nevertheless, in general there
remain significant differences. When the system is holonomic, the minimum
number of Cartesian coordinates is, in fact, one set of generalized co-
ordinates, but it is not the only one. When one chooses in a holonomic
system a set of generalized coordinates g, 7 u,, (11.2.10) and (11.2.11)
cause a significant change in the form of the kinetic energy (discussed in
Section 12.1).

11.3. The Nature of Generalized Coordinates

The essential nature of generalized coordinates is that they are
“general,” i.e., they are undefined except as a class of C! functions of the
Cartesian coordinates having an inverse given in (11.2.9). In particular,
their dimension is not specified. While Cartesian coordinates always have
the dimension of length, this need not be the case with generalized co-
ordinates. For instance, in the set

X=¢,C08q,, y=q,sing,,

¢, has the dimension of length, and g, is usually nondimensional. Simi-
larly, in

x = 2lq,q,, y = lg® — ¢5%), Z=4q3

where / has the dimensions of length, ¢, and ¢, are dimensionless, but g
has the dimensions of length. Thus, the notion of generalized coordinates
obliterates the distinction between angles and lengths or nondimensional
coordinates.

It is evident from the theory of generalized coordinates that L’ of
the ¢, are the constants defined by the holonomic constraints, and the
remaining ones are the generalized coordinates; they are so chosen that the
holonomic constraints are satisfied by the inverse functions (11.2.9). In
many cases, the choice of suitable generalized coordinates becomes evident
from the problem under consideration. This is best illustrated by some
examples.
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Example 11.3.1. We consider first the well-known case of the plane, simple
pendulum. The configuration is specified by the Cartesian coordinates x, y of the
pendulum bob, and this bob moves on a circle of radius /, the length of the
pendulum. Let the circle be centered on the origin of the x, y plane. Then, x and y
must satisfy the holonomic constraint

x4y =P =0, (@)
and this constraint shows that one must always have

lxl, lyl<L

As two Cartesian coordinates satisfy one holonomic constraint, there is a single
generalized coordinate g,, the other being replaced by /2. We write ¢, = 0, and
chose for the inverse functions (11.2.9) the pair

x = fi(l3, 0) = [ cos 0,

y = fo(l%, 0) = Isin 0. (b)

These satisfy the constraint (a) for every | x|, | y| < I The Jacobian

o  Oh
Wfi,f) | ol 00
a0y | oy 0fs
ol a0

=10,

which is the sufficient condition for one-to-one mapping from /, 6 to x, y.
We could also choose g, = x, the other g being equal to /%, and we choose
for (11.2.9) the set of functions

x = fi(l’, x) = x

2 2 2\1/2 (C)

y=fl x) = + (F = x)2
These satisfy the constraint (a) for every value of x in — / < x < [, and for every
yin 0 < y < L Thus, x is a suitable generalized coordinate on this domain of the
x, y plane. If we chose, instead of (c),

x = fi(l*, x) = x,

(@
y = Al x) = = (= ),
the domain of x would be — I < x < as before, but for y we would have
—I<y<0.
Another possible choice of generalized coordinate is ¢, = ¢, with a choice of
(11.2.9) as
x = [cosh ¢,

= (= 1.
y:ilsinhq),} == ©

In fact, once a generalized coordinate ¢, and a pair of inverse functions (11.2.9)
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have been selected which satisfy the constraint on the domain | x |, | y | </, any
arbitrary, once differentiable, monotonic function g = f(q.) furnishes another
generalized coordinate. The question as to which is the best choice of generalized
coordinate is determined from the form which the differential equation of motion
takes on for any given coordinate. Consideration of this problem of the choice
of generalized coordinates will be delayed until the Lagrangean equations of motion
have been introduced.

Example 11.3.2. As a generalization of the problem just discussed, consider
a system of N/3 particles whose Cartesian coordinates are u,, us, ..., 4y. Let the
position vector # = (i1, 4s, ..., uy) of a configuration in the configuration space
be subject to the holonomic constraint

N
Y up =1 (2)
s=1

In words, the configuration of the system is a point in the surface of an N-dimen-
sional sphere of radius /, centered on the origin of the configuration space. Since
there are N Cartesian coordinates and one holonomic constraint, this system has
N — 1 generalized coordinates ¢, (s =1,2,...,n =N —1). Let g, = 0;, and
choose for the functions (11.2.9) the set

N-s
Uy = Isin Oy 1 cos 0, ¢=12...,N),
1

Oy = m/2. " ®)

These are spherical coordinates in N-space, and they satisfy the constraint (a)
for all | u, | < I They reduce to the familiar spherical coordinates of 3-space for
N =3, and to the polar coordinates of the previous example when N = 2.

The two examples treated so far are of systems subject to holonomic
constraints only. A more instructive example is one in which the system is
subject to holonomic constraints as well as to nonholonomic ones. In this
case, one seeks generalized coordinates which satisfy the holonomic con-
straints, and then one must find the form which the nonholonomic con-
straints take.

Example 11.3.3. Consider a sphere of radius r which rolls without sliding
inside a rough sphere of radius R + r. Let the origin of the X, Y, Z space coincide
with the center of the fixed sphere of radius R -+ r. Then, the center of the rolling
sphere has the position (X, Y, Z) and that position satisfies the holonomic con-
straint

X'+ Y4 20 =R @)

Let a be the latitude of the center of the rolling sphere below the equator, and let
B be the longitude, measured from the X axis, as shown in Fig. 11.3.1. These are two
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Fig. 11.3.1. Sphere rolling inside fixed sphere of Example 11.3.3.

generalized coordinates for the center of the rolling sphere, and the functions

X = R cos acos f,
Y = Rcos asin B, (b)
Z = — Rsina

satisfy (a) for every value of « and B, and for every | X|, | Y|, | Z]| <R
Next, we write the equation of pure rolling. Let v be the velocity of the
point on the rolling sphere which is in contact with the fixed sphere. Then, the
condition of pure rolling (or of no slipping) is v = 0.
If we denote by v,, the velocity of the center of the rolling sphere, we have

V=10p +oXr, (©)

where r is the position vector of the contact point relative to the center of the
rolling sphere, and w is the angular velocity of the rolling sphere.

We now construct a Cartesian triad of unit vectors 7, , k with origin at the con-
tact point such that / points north, / points east, and £ points toward the cen-
ter of the fixed sphere. Then,

r= —rk,
o = wi + o,/ + ok, @)
vm = — Rof 4 RB/.

Substituting (d) in (c) and setting v = 0, the conditions of pure rolling are found
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to be
Ro. 4 rw, =0,

RS + ro, = 0. ©

We express the components of the vector w in terms of the Euler angles [see (6.8.14)].
Then, the nonholonomic constraints become

Ro: + r(¢sinfcos p — fsiny) =0,

. f
RB + r(¢sin 0sin ¢ + 6 cos p) = 0. ®

We note that this system has five generalized coordinates «, f, 0, ¢, and v,
but it has only three degrees of freedom because the five generalized coordinates
must satisfy the two nonholonomic constraints (f). We may visualize the three
degrees of freedom as follows: Two of them define the position of the contact
point in the fixed sphere, and the third is a rotation of the rolling sphere about a
line connecting the contact point with the center of the fixed sphere, i.e., the
third is a rotation of the sphere about the contact point.

11.4. The & Operator for Generalized Coordinates

In Section 9.5 we saw that

d du= 8 du, (11.4.1)

where u is the vector (i, s, ..., uy). A similar result holds for the vector
qg=1(q,9s, --.,9,)- With a change in subscript notation, (11.2.10)
becomes

n . Ou, ou, _
du'_;la_ql,dq”+?7dt (r—1,2,...,N), (11.4.2)
and (11.2.11) becomes
2 du,
ou, =y, dq, (r=12,...,N). (11.4.3)
o=1 aqu

If we write (11.4.1) for the rth component and substitute (11.4.2) and
(11.4.3) in it, we find

0= dou, — ddu, Y g;, (ddq,—édq,,)—FZd(z;’r)éqa

-y 5( g;” ) dq, — 6( %”;' ) dr. (11.4.4)

Now, it is easy to show that the sum of the last three terms on the right-hand
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side of (11.4.4) is zero. These terms are
ou, ou, ou,
;d<a )6qa—26<—a———)dq0— a( a )dt

Zaqa q, qﬁ—{»z 88 dt dq,

02 u, 2,
Z a dqﬂwgwaq”dt'

a3

The second and fourth terms on the right-hand side are identical and, hence,
cancel so that there remains

Zau

—_r 601
& 9q,0q, M Za 8qﬂ 9o Up-

In the second sum, we exchange the indices « and B, in which case the
two sums become identical, because we showed that (11.4.1) itself is only
correct if

u, 0%,

09,095  0450q, "

It follows from (11.4.4) that

% Ou,
L%

(d dq, — ddq,) =0, (11.4.5)

and this must hold for all g and for any transformations u = u(g). Hence,
(11.4.5) implies

ddq,— ddq, =0 (c=1,2,...,n). (11.4.6)
It follows that
ddq = ddq, (11.4.7)
where g is the vector (¢,, ¢;, ..., q,).

11.5. Exceptional Cases

In Section 11.2, it was stated that, in the theory of generalized co-
ordinates, the transformation from some coordinate system to generalized
coordinates must be one-to-one.
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A
f(8,6,, 6;) = const

——»0;

»q

Fig. 11.5.1. One-to-one mapping from {0,, 0,, 05} into {g,, g-}-

Suppose we have described the configuration of a system by the three
coordinates 6,, 0,, and 05, but two generalized coordinates ¢, and ¢, are
sufficient to define the configuration. Then, if the system is holonomic,
there exists some surface f(0,,0,,0;) = const, as shown in Fig. 11.5.1,
which constitutes a constraint between the 0,. If the transformation between
the 6; and the g; is one-to-one on some domain D of the 6,, 6,, 6; space
[evidently, this domain belongs to the surface f(0,, 0,, 6;) = const], then
there exists a corresponding domain A of the ¢,, ¢, space such that every
point in D maps into a unique point in 4, and vice versa. This is illustrated
in Fig. 11.5.1.

We want to show now by means of an example that the theory described
above fails when the mapping is not one-to-one, and that it is not always
obvious on inspection that the theory is not applicable; in fact, Problem
4.14 is a case in point.

Example 11.5.1. Consider a chain of three bars of lengths /;, /,, /5, respec-
tively, constrained to move in a plane. One end of this chain is attached to the
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origin O of a q,, g, system of Cartesian coordinates, as shown in Fig. 11.5.2; the
other end carries a particle P.

Let the angles which the bars make with the ¢, axis be 0, , 6, and 6, respectively.
It is evident that the position of P is uniquely described either by its Cartesian coor-
dinates ¢, and ¢, or by the angles 0,, 0, 0,. Since two coordinates are sufficient
to define the configuration of P, there must exist a constraint equation

f(0,, 0, 6;) = const

between the 6;. Find that constraint.

No such constraint exists. In fact, the mapping between the 6; and the g, is
not one-to-one, and the theory of transformation to generalized coordinates is not
applicable. To see this consider the mapping (0., 0;, 0;) = (41, ¢2), given by

3
q, = Z liSiIlei,
i=1
\ (a)
g: =) licos 0.
i=1

Let us now examine the mapping of a point (410, 420) into the 6, 6, 6, space. From
(11.5.1) we have

3
F(g10,0:,0:,05) = q10 — Zli sinf; =0, (b)
i=1
and
3
G(gz0,01,0,, 03) = gao — Z licos6; = 0. (©)
iz1

Evidently, (b) defines a surface in 6, , 0, , 0, space with g, as a parameter, and to each
value of ¢, there belongs one such surface. A similar statement holds for (c) with

o) Qo

6 \{,

Fig. 11.5.2. Three linked bars of Ex- \
ample 11.5.1. %
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63
! F(Qygr 8, 85, B5) = const
G(ay0, ), 6,,6,)= const
—8,
6
(o)
az
Ao ———— 1
|
|
—
i |
9%

(b)

Fig. 11.5.3. The mapping from {0,, 0,, 05} into {g,, g.} of Example 11.5.1. It is not
one-to-one.

gz0 as a parameter. As both equations (b) and (c) must be satisfied these surfaces
must intersect. Therefore, the point (g,,, g20) maps in the 0, , 0, , 0, space into a curve
C formed by the intersection of the surfaces defined by (b) and (c) as shown in
Fig. 11.5.3(a). Conversely, every point of the curve C maps into the point
(qw » q20).

It is easy to show that the transformation matrix for the infinitesimal displace-
ments (db,, db,, d9;) — (dyg., dg.) has, in general, maximum rank unless 6, = 0,
= 0;. Moreover, the intersection of the surfaces (b) and (c) is, in general, a curve
of finite length, and it reduces to a point when the transformation matrix does not
have maximum rank. The proof of these statements is left as an exercise for the
reader.

It is also physically clear that the three angles 6, , 0,, and 6, define the location
of P uniquely, but a given location of P does not define the three angles unique-
ly. For, consider the point P fixed; then, since the other end of the chain of
links is fixed at O, the three links may be given many different orientations without

violating the constraint | OP | < ¥2_, | ;| (unless the equal sign holds, in which
case 0; = 0, = 0,, and the links form the straight line between O and P).
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11.6. Problems

11.1.

11.3.

11.4.

11.5.

11.8.

11.9.

A particle moves on the surface of a three-dimensional sphere.

(a) Choose suitable generalized coordinates for the motion.
(b) What are the equations (11.2.7) for this case?
(¢) Examine the Jacobian.

A particle moves on the surface of a right circular cylinder whose radius
expands according to the law r = f(¢) while its axis remains stationary.
Answer the same questions as in Problem 11.1.

A sphere of radius r rolls without sliding on the outside of a sphere of
radius R. Answer the same questions as in Problem 11.1.

A rod of length 2/ moves in the x, y plane on the inside of a smooth
circle of radius r with r >/ so that its ends are always in contact with
the circle. Answer the same questions as in Problem 11.1.

A rod of length 2/ moves so that its ends are always in contact with an
ellipse having major and minor axes 2a and 2b, respectively. Answer the
same questions as in Problem 11.1 when / < b.

Choose suitable generalized coordinates for the simple plane pendulum.
What are the equations (11.2.7) for your choice?

Choose parabolic coordinates to express the motion of an unconstrained
particle in the plane.

(a) What are the equations (11.2.7) for this case?
(b) Examine the Jacobian of the transformation.

A bar of fixed length / moves in the plane so that each of its endpoints
is for all time in contact with one of two concentric circles of radii r, and
ry, respectively, and [ > r, — r, > 0.

(a) Show that the bar has one degree of freedom.

(b) It is clear that to each position of one of the endpoints there cor-
respond two possible positions of the other. This appears to contra-
dict (a) above. Explain this contradiction.

(¢) Choose suitable generalized coordinates and construct equations
(11.2.7) for your choice.

A bar of fixed length / moves in the plane so that each of its endpoints is for
all time in contact with one of two equal nonintersecting circles which are
“side by side,” i.e., the center of neither lies within the finite area sur-
rounded by the other, and D > [ > d, where D and d are the maximum
and minimum distances between the circles.

(a) Answer the same questions as in Problem 11.8.
(b) Give the boundary of the configuration space.
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11.10. A centrifugal governor has the configuration shown. If unconstrained,
six coordinates would be required to define the configurations of the flyballs.

J

How many constraints must the Cartesian coordinates satisfy? What are
they? Choose suitable generalized coordinates to describe the position of
the flyballs. Construct equations (11.2.7) for this problem.



12

The Fundamental Equation
in Generalized Coordinates

12.1. The Kinetic Energy

For a system of N/3 particles, the kinetic energy is given by

1 ¥
T==Y mi? (12.1.1)
2 r=1
and we have from (11.4.2)
L N) (12.1.2)
Zaqs 6t — Ly Ly s -ey . B

It follows that the kinetic energy in terms of generalized coordinates is

1 X L TR ou, 12
But, we may write
ou, i c’)u, & Ou, ou, [ & Ou, ou,
Z 9, " o ] _[; ag, T Hﬁ; dg, ¥ ]
& & (Ou, 8u,>
N ;1 ;3;1 ( 8% 5615 99
* Ou, Ou, Ou, \?
+2o;18qa ot a—}_(at)
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Therefore, the kinetic energy is

1 n n n
T==73 Y agdds+ ) bada+c, (12.1.3)
a=1 f=1 a=1
where
N Qu, Ou,
0= 5" g, By
N o Ou, Ou,
= A,
b, ;m 50 1 (12.1.4)
1 ¥ ou, \?
‘=34 m’( a1 )
One sees that
N Ou, Ou,
gy = m, ,
= 2 dq; 9q,

and comparing this with the first equation of (12.1.4) one finds the im-
portant relation
Qup = QB - (1215)

If the u, did not depend explicitly on time, i.e., du,/0t were absent from
(12.1.2), one would have

1 2 n
T: 7 Z Z aalgq.aq.ﬂ, (1216)
a=1 p=1

and this must be positive-definite because it is equal to (12.1.1). It follows
that the first term in (12.1.3) is a positive quadratic form in the velocities.
Moreover, the third term in that equation is necessarily nonnegative because
of the definition of ¢ in (12.1.4), and the sum of all three terms in (12.1.3)
is also necessarily nonnegative because it equals (12.1.1). Therefore, while
2. b.4, may be negative for some values of ¢,, g,,and 7, fors = 1,2, ..., n,
it can never render T itself negative.

Evidently, the general form of the kinetic energy in generalized co-
ordinates is much more complex than that in Cartesian coordinates. This
is the price we must pay for using non-Cartesian generalized coordinates.
We pay it for the benefit that comes from reducing the number of con-
figuration coordinates to the least possible and the most suitable to the
problem, and for the great generality that is achieved by a formulation that
holds for the entire class of generalized coordinates without having to
specify in advance which particular set is to be used.
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Equation (12.1.6) is the kinetic energy of catastatic systems; it resembles
(12.1.1), i.e., the kinetic energy in terms of Cartesian coordinates. However,
appearances are deceiving here. Not only does (12.1.6) contain, in general,
all mixed products of the velocities, rather than their squares only as in
(12.1.1) but, more important, the coefficients a,4 are, in general, functions
of the ¢, and ¢ for s = 1,2, ..., n, while the m, of (12.1.1) are constants.

Some simple examples will illustrate these points.

Example 12.1.1. The kinetic energy of an unconstrained particle of mass m

in terms of the Cartesian coordinates x, y, z is given by T = im(x? + y? + 22).
Let us change to the spherical coordinates r, 0, ¢ by using

x = rsin 0 sin ¢,

¥y = rsin 0 cos ¢,

z =rcosf.
Then, differentiating these and adding their squares, we find

T = 3m(F* + r*0® + r2sin? 6¢?).

In this example, only squares of the velocity components occur, but the coefficient
of the second is a function of r, and that of the third is a function of r and 6.

Example 12.1.2. As asecond example we choose an acatastatic system. Con-
sider a plane, simple pendulum whose point of suspension is moved in the x direc-
tion with the prescribed motion f(¢), as shown in Fig. 12.1.1 (see Example 9.4.3).

The generalized coordinate chosen is the angle which the pendulum makes with
the y axis. We have

x =f(t) + Isin 0, y =1Ilcos0;

the kinetic energy in Cartesian coordinates is T = 3m(x? + y*), and the holonomic
constraint is [x — f(¢)]* + y? = I°. Here

T = m{I?6 + 216 cos 6f(r) + [f(D)]*}.
In this example, the quantities (12.1.4) are

a,; = yml?, by = ml cos 0f(z), ¢ = m[f(O].

{-—f(t)——*‘

Fig. 12.1.1. Pendulum with moving sus- Y
pension point of Example 12.1.2. y (x,y)
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12.2. Two Equalities

Starting with the equations

U, = u(q1, o> - > Gn>t) r=1,2,...,N), (12.2.1)
and
n ou, ou,
= ;1 aqg qs + —E— (1222)

we wish to demonstrate, for later use, the two equalities

du,  Ou,
9, ~ 2, (12.2.3)
and
du, d (0u,
T —( 72, ) (12.2.4)

The first of these follows immediately from differentiating (12.2.2) with
respect to ¢,. To demonstrate the second, we substitute (12.2.2) into the
left-hand side of (12.2.4), or

ou, 0 2 Ou, du,
dq,  dq, (; 9g, &= T ar )
We find
6u, o o%u,
z1 aqa aqs + at aqs
& 0w, n 0%u,
= £70q,0q, " Bg,01

and this is precisely the formula for d(du,/dq,)/dt, which was to be shown.

12.3. The Fundamental Equation

The fundamental equation in Cartesian coordinates has been derived
in Section 9.3, It is (with a change of index notation)

N
S (myii, — F,) éu, = 0. (12.3.1)

r=1
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Substituting (11.2.11) for du, in this equation we have

n /N ) du,
Z (Z (m,ii, — F,) ) dq, = 0. (12.3.2)
=1\ dq,
Consider the time derivative
d <u _8&)_“ __8uf 4+ u i(%)
dr \""9q, )~ " oq, " " ar \aq, )

If we substitute (12.2.3) and (12.2.4) in this last equation and solve it for
ii, Ou,/0q, we find

O, 7i(. %)_u ot, (12.3.3)

“oq,  ar \""33,) " aq,°

The substitution of (12.3.3) in (12.3.2) results in

o I I P AL ou,
;{; ) (i 4, )~ )~ 54, Jo =0 1234
But, from (12.1.1) we see that
y . Ou oT
m,u, = A
T; aq? aqs
: (12.3.5)
i . du,  OT
r=1 o aqs aqé ’

Therefore, (12.3.4) is

i {[_j,— (‘aT_) s ] i } o, =0.  (12.3.6)

a4,

Finally, we define the generalized force
Q = (Ql > QZ’ ] Qn), (123.7)

where the sth component is

N
Z g aqg (12.3.8)

This gives the fundamental equation the celebrated form, due to Lagrange,

;[ (aT ) wg—i— 0.| 89,0, (12.3.9)
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In it, the quantity Q, dq, is the work done by the generalized force com-
ponent Q, in the dg, component of a generalized virtual displacement dq.

The generalized form (12.3.9) has more far-reaching importance than
the earlier forms (9.3.11) and (9.3.12), for the following reasons:

(a) We have already noted that, in a formal sense, generalized co-
ordinates which are angles (for instance) are indistinguishable from others
having the dimension of length. The only requirements imposed by (12.3.9)
with respect to dimensions are that:

(i) for a given s = k, the terms d(9T/dqg;)/dt, and Q; must have the
same dimension, and

(i) the terms Q,dq, must have the same dimension for all
s=1,2,...,n.

For instance, if Q, is a force and dg, has the dimension of length, their
product has the same dimension as Q, dg, if Q, is a moment and dg, is
nondimensional. This property was already mentioned in the second part
of Example 9.4.2, where it was pointed out that a general discussion would
be given later on.

(b) The form (12.3.9) of the fundamental equation greatly enhances its
utility over the earlier formulations, in which the coordinates were Cartesian
(either in 3-space or in N-space). This becomes particularly evident in the
case of rigid body dynamics. We saw earlier what benefits are gained from
describing the configuration of an unconstrained rigid body in terms of
displacement components along body-fixed principal axes, and of three
rotational components about them. These benefits are now accessible to the
Lagrangean formulation.

(c) Even when nonrigid systems of constrained particles are considered,
the advantages of (12.3.9) over (9.3.12) are rewarding. For instance, the
motion of a particle on a fixed circle of radius R is much more easily de-
scribed in terms of an angle than in terms of Cartesian coordinates satisfying
the constraint x® + y% = R2

12.4. Generalized Potential Forces

We saw in Section 9.9 that the component F,? of a potential force is
derivable from a potential energy V7 as

oy
ou,

Fp = (12.4.1)
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We show now that this property is preserved if one proceeds to generalized
coordinates, i.e., the generalized force component Q,” of a potential force
is related to the potential energy V7, given in generalized coordinates, by

ove

P —
Q; a0

(12.4.2)

Inasmuch as the u, are functions of the g, in accordance with (11.2.8),

one has
ave N B ave  du, N ou

- re — » s »
0‘]7 ‘,;1 Bus aqr SZI FS aqr Qr > (1243)

which was to be shown. In (12.4.3) we have utilized (12.4.1) to obtain the
second equality, and the definition (12.3.8) of the generalized force to ob-
tain the third.

12.5. Velocity-Dependent Potentials

The Lagrangean form (12.3.9) of the fundamental equation suggests
a generalization of the potential function to the form derived below.

Let us suppose that there exist some potential forces Q,» whose resul-
tant is

Yoy — “aﬂ-~—g—; =12 ...,n. (1251

Then, if we agree to denote by Q, all nonpotential forces, (12.3.9) may be
written as
»[d (0T oL
o) o
where L is the Lagrangean function defined in (10.5.7).
Heretofore, we have assumed that the potential energy V is a function

of the coordinates and possibly of time (see Example 10.5.3) but not of the
velocities. In consequence of that assumption

- Qs:l 6‘]5 = 0:

oL oT
—8‘[#-@ s=12,...,n),

so that the fundamental equation may be written as

td (0L oL
4 [7 (797) "o, Qs] 0q, =0 (12.5.2)
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and the virtual work done by the potential forces is
— Y, (0V/q,) dq,.
s=1

The generalization to be introduced consists in admitting velocity-
dependent potentials which are such that the virtual work done the force
derivable from them is

aV) _ —81} 5q,. (12.5.3)

n d
ow =% | o)~ %

The substitution of (12.5.3) in (12.3.9) gives (12.5.2) again. Hence, forces
derivable from

d (aw)_ 0Vp} d <3V)_ W (1254

P — _ _ = — —— —_—
L0 ;[ i\ ) " aq, ) " @ \3g) "
preserve the form (12.5.2) of the fundamental equation. Consequently,
potential energies V(q1, s> --- > qpn> 415 Gss - - - » a3 t) Which give rise to
forces calculated by means of (12.5.4) are admitted.

When the first term on the right-hand side of (12.5.4) is differentiated
out, there results

d 8V)_" eV & eV
dt( o

. : et Y s 12.5.5
04, a;l 94, 0q, * ﬂ; 34,04, ( )

But it was shown in Example 2.5.1 that forces acting on particles may
not be functions of any particle accelerations. This requires that

eV
aqa aqﬁ
for all « and B, or velocity-dependent potentials may at most be linear func-

tions of the velocities, i.e., velocity-dependent potentials of systems ac-
cessible to Newtonian mechanics must be of the form

n
V=23 ag,+ Vo, (12.5.6)
s=1
where the g, and ¥, may be functions of the g; (i = 1, 2, ..., n) and possibly

of time. This observation is due to Pars (p. 82).
An application of a potential depending linearly on the velocity occurs
in the motion of an electrically charged particle in a magnetic field.
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12.6. Problems

12.1.

12.2.

12.3.

12.4.

12.5.

12.6.

12.7.

A system of # particles is so constrained that the ktA particle having position
(xx, &, zi) moves on the surface of a fixed sphere of radius r;, cen-
tered at the point (&, 7, {x). What is the total kinetic energy of the
system in generalized coordinates?

How does the answer to Problem 12.1 change if each sphere expands accord-
ing to the law r, = ri(z), where r.(¢) is a given, smooth function?

How does the answer to Problem 12.1 change if the radius r; is fixed, but each
sphere moves according to the law & = fi,(¢), m = far(®), Tx = fa(2),
where the f;(¢) are given, smooth functions?

A particle of mass m moves on a smooth surface of revolution about the z
axis.

(a) What is the kinetic energy in cylindrical coordinates?

(b) Specialize this result for the cases in which the surface is a cone and
a sphere.

A body rotates about a fixed axis. Show that if the mass moment of inertia
is being reduced while the angular momentum remains unchanged, the ki-
netic energy increases.

A heavy particle of mass m is constrained to move on a circle of radius r
which lies in the vertical plane, as shown. It is attached to a linear spring of
rate k, which is anchored at a point on the x axis a distance @ from the
origin of the x, y system, and a > r. The free length of the spring is a — r.
Using the angle 0 as generalized coordinate, utilize (12.3.8) to calculate
the generalized forces raising from the gravitational and the spring force.
Does the answer change if @ < r and, if so, how?

A heavy particle of mass m is attached to one extremity of a linear, mass-
less spring of rate k, and of free length /. The other extremity of the spring
is free to rotate about a fixed point. This system is, therefore, an elastic,
spherical pendulum. Using spherical coordinates, calculate the generalized
forces acting on the particle.
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12.8.

12.9.

12.10.

12.11.

12.12.

12.13.

Chap. 12 e Fundamental Equation in Generalized Coordinates

The Cartesian components of a force are

X =2ax(y + 2),
Y =2ay(x + z),
Z =2az(x + y).

Calculate the generalized forces for cylindrical and spherical coordinates.

A heavy monkey M climbs up a massless, inextensible rope which passes
over two smooth, fixed pegs as shown. The other end of the rope carries
a weight W. Give the kinetic energy in terms of generalized coordinates.
(This problem is known as ‘““The monkey on the counterpoise.”)

A particle is constrained to move in a plane. What is its kinetic energy in
elliptic coordinates &, n, where x = /cosh écosn, y = Isinh &sinz. Is
this transformation one-to-one?

Answer the same question as in Problem 12.10 for biaxial coordinates &,

n, where
[sinh & Ising

"~ cosh& +cosn’ y—cosh§+cosn'

Answer the same question as in Problem 12.10 for parabolic coordinates
&, n, where

x = I(&* — n?), y = 2lén.

How do the answers in Problem 12.10 to 12.12 change when the plane trans-
lates according to the law f(¢) and remains always parallel to itself, where

() is a once-differentiable function of time.
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Lagrange’s Equations

13.1. The Dynamical Problem

The fundamental equation in generalized coordinates has been found in
(12.3.9) as

r(d dT oT
; (7 A Qs> dg, =0, (13.1.1)

where the kinetic energy 7 and the generalized forces Q, are, in general,
functions of all the ¢, and ¢, (s = 1,2, ..., n) and of ¢.

The actual velocities ¢, belong to the class of possible ones, and the
latter satisfy the linearly independent system of constraint equations

(NgE

By, + B, =0 (r=12,...,0). (13.1.2)

s=1

I

Therefore, among all the ¢, ¢, = dg,/dt which satisfy (13.1.2) we seek
those satisfying (13.1.1) as well. The dq, in (13.1.1) are the virtual, gener-
alized displacements which satisfy the set of equations

=

B,og, =0 (r=12..,1. (13.1.3)

1

S

From the linear independence of (13.1.2) it follows that the equations
(13.1.3) are linearly independent as well.

211
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13.2. The Multiplier Rule
Let us temporarily denote by R, the quantity
R=— —————0, (=12, ...,n). (13.2.1)

Then, if we regard R as the n-dimensional vector
R=(R,R,,...,R) (13.2.2)
and dq as the n-dimensional vector
dq = (041, 0qs, ..., 0q,), (13.2.3)
we may write the fundamental equation (13.1.1) as
R - 8g=0. (13.2.4)

This equation states that the inner product of R and dq vanishes, i.e.,
R and dq are orthogonal vectors.
Let us now denote by B, the vectors

B =By, Ba,....B,) (r=12..,D. (13.2.5)

Then, it follows from the linear independence of the constraint equations that
the B, are linearly independent vectors. The mathematical meaning of “linear
independence” is that one cannot find multipliers 4, (r = 1,2, ..., /) not
all zero such that the equation (see also Sections 2.3 and 4.2)

1
Y LB, =0 (13.2.6)
r=1

can be satisfied.

Now, the equations (13.1.3) may be written in the form

B -dg=0 (r=12...,0D), (13.2.7)

rY

and these state that dg must also be orthogonal to every vector B,
r=1.,2...,D.

The multiplier rule was given in Section 9.4. In terms of generalized
coordinates it states that, if the g, and ¢, satisfy the fundamental equation
as well as the constraints, then one may write

1
(R + Y w,) L 8g =0 (13.2.8)
r=1
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Fig. 13.2.1. Schematic diagram illustrating the
Lagrange multiplier rule.

and in that equation the dq are completely arbitrary, i.e., they are no longer
subject to the constraints (13.1.3).

To prove this rule we shall use geometrical arguments. We begin by
supposing temporarily that n == 3 and / = 1. In other terms, R and dq
are 3-vectors, and there is only a single constraint, or there is only a single
B, #0. In that case, one cannot find a multiplier A, %0 such that
A,B, = 0. Now, (13.2.7) states that d¢ must liec in a plane normal to B,,
as shown in Fig. 13.2.1. Expressed differently, among all possible 3-vectors
dq, the constraint implies that only those are admitted which lie in a plane
normal to B,. However, beyond this requirement, the dg are arbitrary;
in particular, the direction of dq is not prescribed. Now, (13.2.4) requires
that R be always orthogonal to dq. We claim that, in consequence, R
must have the same direction as B,. For, suppose that R had a component
R in the plane normal to B,, as shown by the dotted vector in Fig. 13.2.1.
Then, R would have to be normal to dq, as shown, in order to satisfy (13.2.4).
But the direction of d¢ in the plane normal to B, is arbitrary. Thus, we
could then rotate &g so as to destroy its orthogonality to R, and this would
violate (13.2.4). Hence, R must have the same direction as B,. In that case,
R may be expressed as a multiple of B,, or one may write

R—= —AB,. (13.2.9)

If we now form the scalar product of (13.2.4) with any completely arbitrary
3-vector dg we find

(R+ 1,B) - 8¢ =0 (13.2.10)
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and in this equation the components of dg are no longer subject to the
constraints (13.1.3).

This result is readily extended to any » and to any / << n. From the
linear independence of the vectors B, (r = 1,2, ..., ) it follows that one
can find an /-dimensional subspace of the n-space for which the vectors
B, B,, ..., B, are base vectors; we denote this /-dimensional subspace
by &;. Then, (13.2.7) states that dg must lie in the space #%;L which is
orthogonal to &;; however, except for that restriction, the direction of dq
is not prescribed. We now show that R cannot have a component R be-
longing to &;L for, if it did, that component would have to be orthogonal
to dq. But then, one could rotate dg in &;L so as to destroy this orthog-
onality, thereby violating (13.2.4). It follows that R belongs to &; and must
be expressible as a linear combination of the base vectors B,, or

1
R=—Y 15,. (13.2.11)
r=1

Then, forming the scalar product of (13.2.10) with any completely arbitrary
n-vector dq, one finds (13.2.8).

13.3. Derivation from the Fundamental Equation

If one writes (13.2.8) in component form and restores to R, its meaning
as defined in (13.2.1) one has

!
P e URID) /l,B,S] g, =0  (133.1)
and in (13.3.1), the dg, are completely free. In a purely formal manner,
one may therefore construct (13.3.1) from the fundamental equation and
the constraint equations (13.1.3) by multiplying each B,, dg, by a multiplier
1., and by adding their sum to the fundamental equation. When this is
done, the dq, are completely free.

From (13.3.1), one may deduce directly the Fundamental Theorem of
Lagrange’s Mechanics:

For (13.3.1) to be satisfied, it is necessary and sufficient that

d 9T 9T !
& 9 dg 05 + ; LB, =0 (13.3.2)

for every s =1,2, ..., n.
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The proof that the condition is necessary is very simple. Suppose one,

several, or all of the quantities in the brackets of (13.3.1) are different

from zero. Then, since the d¢, are arbitrary, we may always choose for

each such nonzero term a dg, having the same sign as the nonzero term.

Then the sum (13.3.1) is necessarily positive, which contradicts the require-

ment that it be zero. This proves the necessity; the sufficiency is obvious.
The equations

0, +Y 4B, =0 (s=1,2,...,n) (13.3.3)

are called Lagrange’s equations of motion. They are n equations in n + /
unknowns, the unknowns being the ¢, (s=1,2,...,n) and the 2,
(r=1,2,...,1). The n equations (13.3.3) together with the / equations
of constraint (13.1.2) furnish precisely the right number of equations to
solve for these unknowns. The quantities A, (r = 1,2, ..., /), are called
Lagrangean multipliers.

[Lagrange’s equations (13.3.3) may also be applied when the number of
coordinates used exceeds the minimum number, i.e., when the coordinates
are not a set of generalized ones or, which is the same thing, when the
problem is subject to holonomic as well as nonholonomic constraints.

Suppose the number of coordinates v, (¢ = 1,2, ..., 1) exceeds the
minimum number # by I, and that there are / constraints. Then, there are [’
holonomic constraints

fi(y, 00y oo, 05,8) =0 (x=1,2,...,1

whose Pfaffian form is
n

B, dv,+ B, dt =0 (x=1,2,...,1),
1

it=

and there are / — /” nonholonomic constraints

S

By dv, + Bydt—=0 (B=1+1,0'+2,...,1).
1

[

Hn

The method of the Lagrange multipliers used to adjoin the constraints
to the problem does not depend on the integrability of the constraint
equations. Therefore, Lagrange’s equations are now

d orT aT U ! _
E—W—Q—%‘Q“+21131”+ Y ABy =0 (0=12,...,7).

a=1 g=l"+1
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This can, of course, be written as

d 0T aT !

- AB,_ =0 c=12,...,#7),
a5 o %t L A ( )
which is identical in form to (13.3.3). However, it is rarely advisable to
use Lagrange’s equations with more coordinates than necessary because

it results in an excessive number of equations of motion.]

13.4. Derivation from the Central Principle

The central principle was derived in (10.4.4). It is the relation

N/3

N3
Y mxr - 0xT = %(Z mx" - 6x’> — OT. (13.4.1)
r=1

r=1

Written in terms of the u,, it becomes

N d /¥
Y, myii; ug = = (Z mii, 6us) — oT. (13.4.2)
s=1 s=1

We shall derive Lagrange’s equations here with the aid of the central prin-
ciple. For simplicity, we assume that the system is holonomic; if it is non-
holonomic, one merely adds the appropriate term >\, 4,B,, to the equations
of motion.

We fix our attention on the first term of the right-hand side of (13.4.2).
Inasmuch as

n Qu,
oy f:zl q, %
one has

N N " Ou
Y, mgig du, =Y mgi, Y —— g,
s=1 s=1 r=1 a r

n N . Ou,

=5 X (ma ) oo

>
N

2i,)
4r

where the last equality results from (12.2.3). Then, by (12.3.5), we obtain

s

~
]
—
»
I
L

I
M=
,,Mz
R
=
D

D=

mgilg Oug = ) _6_T_ 8q, . (13.4.3)
= 04,

w
Il
-
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Also, from the definition of the & operation,
no 9T nooT
0T = Y —— — dq,. 4.
);1 aq, %+ TZI aq, e (13.4.4)

When (13.4.3) and (13.4.4) are substituted in (13.4.2) one finds
oT

y d (& OT n 9T "
e..969:m< —6r>_ —67'__‘ 0g,.
s; sty Ot dt /; 1 7; aq; 1 r=1 aqr 9

In this equation, the first term on the right is differentiated out, which

results in

n 0T

r=1 r

N N - n d aT
Z mgu, 5”8 - ;}71' a—

s=1

i

This expression is now substituted in the fundamental equation

N
myii; oug — Y. Fy ouy = 0, (13.4.6)
s=1

1

il

where we note that, by (11.2.11),

L Ouy

N N "
X F ou = Y Y 504, = 3, 0 O, (13.4.7)
s=1 s=1 r r=1

and the last equality results from (12.3.8). Thus, we find

d or or

,; ( dt 9¢, 9q, Qr) o, = 0, (13.4.8)

identical with (13.1.1). Hence, Lagrange’s equations follow by (13.3.2).

Inasmuch as the fundamental equation was central in this derivation,
it does not differ essentially from the previous one. However, it proceeded
relatively smoothly because of the convenient relations offered by the
central principle.

13.5. Derivation from Hamilton’s Principle

Hamilton’s principle in its most general form was derived in (10.5.2) as
N/3 t ty

[z m w] - J (8T + 8W) dt, (13.5.1)
r=1 ty to

where dx” is the rth component of the difference vector between the actual
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configuration and a simultaneous neighboring one which does not violate
the constraints, i.e., the dx" satisfy

YA, -0x=0  (s=12,...,L) (13.5.2)
r=1
Written in terms of the u, (s=1,2, ..., N), these equations become
N t t
{Z mi, 6u8] _ J (OT + W) di (13.5.3)
s=1 ty to
and .
YA ou, =0  (r=12,...,L). (13.5.4)
$=1

We also saw that Hamilton’s principle takes on the form
t
J C(OT + oWy dt =0 (13.5.5)
)

when the endpoints are fixed, i.e., when the du/t,) = du,t,) =0
(s=1,2,...,N). In (13.5.5), the kinetic energy is T = } >, my?,
and the virtual work is W =YX, F, du,.

If we proceed to generalized coordinates we find

T=TG15955 ---sGnsG1>Gas --->Gns1t) (13.5.7)

in accordance with (12.1.3), and

oW =3 0, dq, (13.5.8)
s=1
by definition. The dg, are the virtual displacement components which
satisfy

S B0, =0 (r=12...,0) (13.5.9)
s=1

in accordance with (11.2.16), and the constraints (all nonholonomic) are

3

B, +B =0 (r=12...,]) (13.5.10)
1

$
in accordance with (11.2.15). Therefore, our problem is to determine those

qs(t) (s=1,2, ..., n) which satisfy

J" (6T+ 3 0, 6q3> dt — 0 (13.5.11)

to s=1
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when the dg, satisfy (13.5.9), and such that the constraint equations (13.5.10)
are satisfied by the ¢, and the ¢, for every value of ¢ in [z, t,].

It can be shown that the rule of the Lagrange multipliers given in
Section 13.2 is also applicable to integrals and requires that

ty n n l
J <6T + 30,00, 3 Y 4B, 6(]8) dt—0,  (13.5.12)
ty s=1 r=1

where the dq, are now completely arbitrary. Forming the variation of T as
defined in (9.6.3), one finds

n 9T n oT
oT = Zl—a—~5qs+ 2 5 %
. v OT d
=L a 0, + Y. 5o ar (%9 (13.5.13)

where use was made of (11.4.7).
Now, in [ 0T dt, there arises the term

jliaq dt(é 9s) dt = [i ]1 Jllgdi< T)(Sqth

haod (0T
o J,(,Szl d (a ) 0, dt. (13.5.14)

The first equality results from an integration by parts, and the second from
the fact that the dq,(z,) = dq,(¢,) =0 (s = 1,2, ...,n); these were as-
sumed when Hamilton’s principle was written in the form (13.5.5) rather
than (13.5.3).

Making the appropriate substitutions in (13.5.12), that equation
becomes

ty n !
J Z[‘%(ST-T>+ o + Q, — Y AB,| bq,dt =0. (13.5.15)

to t=1 =

Equation (13.5.15) has as a consequence Lagrange’s equations
— = —0,+ Y AB,=0 (s=12,...,n), (13.5.16)

identical with (13.3.3). The argument on which (13.3.16) is based is similar
to the proof of Theorem (13.3.2). If one, several, or all of the quantities
in the square brackets of (13.5.15) are different from zero, we may choose
for each of these a dg, having the same sign as that quantity. In that case,
the integral in (13.5.15) would be necessarily positive, contrary to Hamilton’s
principle, which requires that it be zero.
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In Section 10.5 we observed that Hamilton’s principle for conservative
systems,

t
J 8T — Vydt =0, (13.5.17)
to

is not a problem in the calculus of variations when the system is non-
holonomic, i.e., it does not lead to the same result as the problem

2
6JI(T— V)dt — 0. (13.5.18)
to

This fact is easy to demonstrate when generalized coordinates are used,
i.e., when all constraints (13.5.10) are nonholonomic. In that case, the
first problem, (13.5.17), leads to (13.5.15) except that the O, = —adV/dq,,
i.e., one has, instead of (13.5.15),

by d (0T oT !
J‘tosgl |:_— W( 8q’s ) + aqs Z TS aqs dt = 0. (13519)

Now, the second problem, (13.5.18), is by definition a problem in the
calculus of variations. Its verbalization is that, among all ¢,(¢)
(s=1,2,...,n) which together with their time derivatives satisfy the
kinematical constraint equations (13.5.10), we seek that set which gives a
stationary value to the definite time integral of 7' — V. This is a classical
variational problem with differential equations as side conditions. Then,
the well-known rule of the Lagrange multipliers in the calculus of variations
states that the solution to this variational problem is furnished by that set
{g,(t); (s=1,2,...,n)} for which

ty n l
aj [T— V=3 Y W(Bod, + B,)] d=0 (13520
§=1 r=1

to

with no side conditions imposed. The standard techniques of the calculus
of variations transform (13.5.20) into

jw{[_i T N or 8V]6
a o3, ' oq, og,1°"

ty s=1

l
-y [(&1 - ?95 )aqs+ B, 6q3]}dt:0, (13.5.21)

and this is seen to differ from (13.5.19); hence, (13.5.21) must be false
in general. Equation (13.5.21) could still be somewhat simplified through
integration by parts.
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When the problem is holonomic, and generalized coordinates have been
used, there are no constraint equations to be satisfied; thus, one may put
B,, and B, equal to zero for all r and s in the above equations. For that
case, (13.5.19) and (13.5.21) become identical, which shows that Hamilton’s
principle for the conservative, holonomic problem may be regarded as a
variational principle.

13.6. Dynamic Coupling and Decoupling

In this section we shall show first that, in general, every one of La-
grange’s equations contains all acceleration terms. When more than one
acceleration component occurs in one, several, or all equations of motion,
the system is said to be dynamically coupled. Hence, Lagrange’s equations
of motion will be shown to be, in general, dynamically coupled. Next,
we shall show that it is always possible, in principle at least, to transform
this set of equations into one which is dynamically uncoupled.

The kinetic energy was found in (12.1.3) as

1 n n

= ;1 54,45 + Zl bg,+c (13.6.1)

and, in general, the a,4, b, , and c are all functions of all ¢, (s = 1,2, ..., n)
and of ¢

For later substitution into Lagrange’s equations we form the expressions

d oT

n 1 v 1 aasﬂ 6(1[;3
IW*-TZ(Usﬂ'i—aﬂs)%'i——z‘g( +

aq, dq,

)q'ﬂq'y

O, b ab
dss 8s \ . s . s
Ty Z ( T )qﬂ + ;_aqy g +—,-  (1362)
and
oT .. ob, . dc
F PRy Z a s + Lo e G (13.6.3)

Consider the term with gsq, in (13.6.2). It is equal to

1 8asﬂ 8a,33 .
G, +—=
2 ‘;} aqv ﬂ v Zy aqy 959y

ﬁasﬂ . . 1 aasy . s
+ = . (13.6.4)
ﬂ;' aqv Tty 2 fiz}:' aqﬂ Wty
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The first equality results from exchanging the indices 8, y in the second sum;
this does not change its value. The second equality results from the symmetry
property (12.1.5), which the a,; satisfy.

It follows that

o a0 g 2 ;(asﬁ"*_aﬂs)qﬂ
P e A
£33 (G
+2;%(g;’i _ g’;:)'y+ aab; _ g;g. (13.6.5)

The coefficient of ¢pg, in this equation occurs frequently in the field of
differential geometry and other branches of applied mathematics, and a
special symbol has been invented for it; it is called the Christoffel symbol
of the first kind and is written as

1 [ dag da da
8] = = (=2 + —=2 — W’). 13.6.6
Br.5) = 5 (o + g~ e (13.6.6)

We shall also introduce the symbol

1o, b,
Iy, s]*7< T ) (13.6.7)

The quantity [y, s] has a special meaning. The b, are, by definition, functions
of the form

by =b,q1, s s Gust)  (s=1,2,...,n).

These last equations may be thought to constitute transformations which
map a point (¢,,¢s, ...,q,) into a point (b;,b,, ..., b,) for fixed .
The Jacobian of this transformation is

J= 8(b1’b2’ abn)
a(‘h’ qss - - - ’qn) .

This Jacobian may be separated into a symmetrical part, which is

1 (db, b,
$o=z (3 5)
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and a skew-symmetric, or alternating, part:

B <8bs ob,

A, = = -
"2\ 0q, aq,

) = [y, s].

It is seen that only the alternating part of J enters into Lagrange’s equations.
Finally, if we make use of the symmetry relation a,5 = a,5 in the
remaining terms of (13.6.5), we find

d or  or days
e — o = Y agdy + Y By, slisd, + oy + 22X [y sl
i aq dq Dl t X By skdy + X5 ds + 23 b sk
b, dc
TR P (13.6.8)

Let us now substitute this expression into Lagrange’s equations. We
shall assume for the present that the ¢, are generalized coordinates (no
holonomic constraints are to be satisfied) and that there are no non-
holonomic constraints. The latter assumption is not necessary, and the
results in this section are not affected by its removal; however, it shortens
the equations which follow. Under this assumption (13.6.8) is substituted
into (13.3.2) with the result that

. .. dag . .
Y ayds + Y 1By, sYpdy + X —57-ds + 27 [, 514,
B B,y B Y
ob, dc
+ 7 —8—(]84Qs—0 (s=12,...,n). (13.6.9)

This system of equations shows that, in general, every Lagrangean equation
of motion contains all acceleration components, as claimed.

We wish to demonstrate next that this set of equations can always be
transformed into a dynamically uncoupled set. To do this, it is evidently
necessary to show that the matrix (a,) is nonsingular, or that the deter-
minant | a, | 7 0. This is easily seen. The kinetic energy is given in (13.6.1);
that equation must hold for all bounded values of the velocity components
gs. Therefore, one can always choose velocity components so large that,
approximately,

1
Tg 7 Zﬂaaﬁqaqﬁ + T (13'6-10)

where the neglected terms are negligibly small compared to those retained.
Now, it is always true that

=

1

Tzi-s

myi 2 > 0,

1

I
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and this vanishes only with the velocities. Thus, T in (13.6.10) is necessarily
positive-definite because | a,5| > 0 is necessary for T in (13.6.10) to be
positive-definite.

We now define quantities 4%° such that

rooo o [ 1 for o=8,
;m%_%_{OMQiﬁ (13.6.11)

where d,5 is Kronecker’s delta, defined in (6.3.10). Therefore, A is the
cofactor of a,, divided by |ay|.

Let us now multiply each of (13.6.9) by A2 and then add these equa-
tions. In the sum which results we shall use the notation

i ﬂw,_{é} (13.6.12)
2Aw%ﬂ:{ﬂ, (13.6.13)
imwfﬂp (13.6.14)

The first is called the Christoffel symbol of the second kind, the second
has been formed in analogy to it, and the third is the generalized force in
dynamically uncoupled coordinates. On making use of the above notation,
the Lagrange equations become

vt Bt S (G G e

. Z Aos —Qe=0 (@ =1,2,...,n) (13.6.15)
s=1

14

M

This is a dynamically uncoupled set of Lagrangean equations. Hence, it is
always possible, as claimed, to transform a dynamically coupled set of
Lagrangean equations into a set not so coupled.

It is also clear that the presence of nonholonomic constraints does
not in any way affect the above statement. If the system were subject to /
nonholonomic constraints, one would define

Y Ae1.B, = ABp, (13.6.16)

$=1

and one would add the term X!, 4.B,° to the left-hand side of (13.6.15).



Sec. 13.6. e Dynamic Coupling and Decoupling 225

In the special case when the kinetic energy is not an explicit function
of time t,onehasb, = c=0(s= 1,2, ..., n); in view of (13.6.7) one has
then also [y, s] = 0, and this implies {;} = 0; moreover, all partial deriv-
atives with respect to ¢ vanish identically as well. Therefore, when the
kinetic energy is not an explicit function of time, the dynamically un-
coupled set of Lagrangean equations reduces to

@+ {ﬂi}q'ﬁq'y —0e=0 (o=12...,n) (13.6.17)

B.y
when the system is holonomic. When it is not, the term Yi_, A.B,¢ is added
to the left-hand side.

While these demonstrations serve the purpose of showing that La-
grange’s equations can, in general, be dynamically decoupled, it turns out
that, in applications, neither the coupled form (13.6.9) nor the dynamically
decoupled form (13.6.15) is practical. It is far easier to retain the form
(13.3.2) in terms of the kinetic energy. That energy is then computed for
the problem in hand, and its value is substituted in these equations.

Example 13.6.1. As an example of dynamic decoupling, suppose the kinetic
energy is
T = ¥ang® + 20124:1G: + t32G5%),

where the «;; are constants. Then, as

d oT . .
—5 a—ql = ang, + 242,
d oT . .
I a—qg = 13G1 + %3242,

the ¢, are dynamically coupled. Let us now introduce coordinates g';,,, which
are related to the g, ,» by

¢ = aq,’ + axq.’,

q: = biqy' + bogy’,

where the constants a; and b; are to be determined so that the coordinates are dy-
namically decoupled. Substitution into the kinetic energy gives

T= %{(aualz + 2aya:b, + aZzblz)q-lyz + [Zaualaz + zalz(albz + azbl)
+ Zazzblbzlt]-llt].z, + (anaz2 + 20t1205b, + azzbzz)q.zrz}-

To be dynamically decoupled, the a; and b; must be so chosen that the coef-
ficient of ¢,'q,’ vanishes. One such choice is
(431

alzl, bI:O, bgz - as.

(3T
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Then the kinetic energy becomes

1 . 112 2 aaz s 112
T=— {d:"" + (ana — 1% 7 92 ’
2 Qja

where ¢;"' = (a11)Y%q;'. It is evident that ¢,"" and ¢," are dynamically decoupled
coordinates.

13.7. Special Forms of Lagrange’s Equations

When a strictly Newtonian system is subject to equality constraints
only (holonomic and/or nonholonomic), Lagrange’s equations are

d oT oT l _
Wa—q‘s-_-ﬁ—gs—}—rgllr&s_o (s=1,2,...,0), (13.7.1)

where the ¢, (s = 1,2, ..., i) are any set of coordinates which define the
configuration of the system uniquely. If n is the number of generalized
coordinates, one has necessarily 7i > n, and 7 — n = [’ of the constraints
are holonomic.

(a) Existence of a Potential
When some of the given forces are derivable from a potential
V= V(ql, 9o - .. ,‘Iﬁ),

Lagrange’s equations become, in view of (12.4.2),

d 9T 9T | oV
dat 9, 0q,  Oq,

!
Qs+ZArBrs:0 (S:1,2,'-~,ﬁ),
= (13.7.2)

where the Q, are now the components of the nonpotential given forces.
When all given forces are potential, the equations become

d or or oV _
R R ek + Y ABy=0 (s=1,2,...,74). (13.73)

s r=1

(b) Holonomic Systems

When the system is holonomic, and when the q, are generalized co-
ordinates, but only then, the above equations are valid if one

(i) replaces 7 by n;
(i) sets 4, =0 (r=1,2,...,D.
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(c) Rayleigh’s Dissipation Function

Let us consider a function
i @
5 L X dududs (13.7.4)

where the d,s are constants. Suppose every d,g could be expressed as

dp = dys + dip, (13.7.5)

where

daﬂ = dﬂa’ - -
do,:ﬂ __ dﬁ’a } (a,ﬁ - l’ 23 Tt n)- (137.6)

Then, the partial derivative of D with respect to a velocity component

g, 1s
oD
94,

Ve, . & O -
= 'i' {{ Z dsﬁqﬂ + Z do:sq:z] + [Z dsﬁqﬁ + Z d«aqa]}
B=1 a=1 p=1 a=1

or, in view of the second equation of (13.7.6),

oD A
a%_;ﬁ&' (13.7.7)

But this is the same result as one would obtain from a function
1 & &
D = 5 Z 2 do5d.45 > (13.7.8)
a=1 (=1

where the d,; satisfy the first equation of (13.7.6).
We now define:

When the components Q.0 of a given force are derivable from a function
D as defined in (13.7.8) or

oD

D
S

D is called Rayleigh’s dissipation function.

Evidently, these force components are derivable from a dissipation function
much in the same way as the components of a potential force are derivable
from a potential function, i.e., the negative of the potential energy. More-
over, the form of the dissipation function is strongly reminiscent of that of
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the kinetic energy of scleronomic systems. The Q, derivable from D are
always linear in the velocity; hence, they have the character of damping
forces if the d,z are negative. It is the energy-dissipating property of damping
forces which has given the name “dissipation function” to D; its introduction
is due to Lord Rayleigh. It should be noted that forces for which the d,;
are positive are also derivable from D, provided that the coefficients satisfy
the first equation of (13.7.6). In these cases the forces release energy to the
system rather than absorb energy from it.

When some of the given forces are derivable from a dissipation function
Lagrange’s equations may be written as

d 8T 9T 4D
dt 94, 0dq, 04,

1
—Q,+ Y ABy=0 (s=1,2,...,0),
= (13.7.9)

where the O, are all those components of given forces which are not derivable
from a dissipation function.

Let us consider a force component corresponding to the first equation
of (13.7.6), or

op &
0,0 = T Z Ayl (13.7.10)

The virtual work done by this force component in a virtual displacement
0q = (84, 0q;, - .., dq5) is

7
oW, = QL 0dq =Y dd, bq, (s=1,2,...,7). (13.7.11)
a=1

If the system is catastatic the class of virtual and possible displacements
coincides, i.e., the work done in a possible displacement is then

AW, = Z . da,. (13.7.12)

a=1

It follows that the rate of work done by the force component Q, is
[
W, =Y d.4.4,. (13.7.13)
a=1

The rate of work done by the force QP = (Q,”, Q,%, ..., QzP) is, then,

MSl

W= ‘Z i d,sGods = 2D. (13.7.14)

1

$

Therefore, the rate of work done by this dissipation force is twice the value
of the dissipation functions from which it is derivable.
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Let us next suppose that there exist given forces for which the second
equation of (13.7.6) is satisfied. The rate of work done by them is

2D = doisqaqs

1

p 1 ..
dasqaqs + Y dmsqaqs}

=

I

! . . 1 ! . =
dzxsqatqs + 7 Z dsmqsqm}

w

i

-fy
Ep;
{ Y dyd.ds — Z dG.q, } = (13.7.15)

S

where use was made of the second equation of (13.7.6). Therefore, if given
forces that are linear in the velocities act on a catastatic system and the
coefficients satisfy the second equation of (13.7.6), these forces cannot be
derived from a dissipation function, and the work done by them in a possible
displacement is zero. Such forces are called gyroscopic forces.

As these forces do no work in possible displacements, their presence
does not affect energy conservation. Hence, if energy is conserved in the
absence of gyroscopic forces, it is also conserved in their presence even
though these forces resemble damping forces.

(d) The Dissipation Function of Lur’e

Rayleigh’s dissipation function is a quadratic form in the generalized
velocity components. In consequence, the dissipation forces derivable from
it are always linear in the velocities. However, it is frequently useful to
consider nonlinear dissipation forces such as, for instance, “velocity-
squared” and Coulomb damping. Such dissipation forces are not derivable
from Rayleigh’s dissipation function.

Lur’e (p. 232) has generalized Rayleigh’s dissipation function to one
which admits nonlinear damping forces whose components in the u; direc-
tion are of the form

F; o= ki(uy, gy o uy) fi(dy) (i=12,...,N), (13.7.16)
where the k; are positive functions of the u; (i = 1,2, ..., N), and
u;fi(u;) = 0.

Here the u; are the Cartesian components of the N-dimensional configuration
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space. Utilizing (12.3.8) to form generalized damping force components,
one finds for the force component in the g, direction

L N . aui
Qs :Zki(ql,qu'--’qn’t)f;j(ui)a_—s
i=1 qs
which may be written, because of (12.2.3), as
L y . Ou;
Qs = Z ki(qls Gos - - -5 qn> t)f;(ul)—ag— (13'7'17)
1=1 s

Lur’e’s dissipation function is

N o
Dy = ) ki(g, t)j fi(v) dv. (13.7.18)
i=1 0
It is easily verified from (13.7.18) that
%zL =0t (s=12...,n), (13.7.19)

with Q,F, as defined in (13.7.17).
To show that Rayleigh’s dissipation function is a special case of Lur’e’s,
let
fi(@) = u;, k; = const.

Then, the dissipation function becomes in this case

Proceeding to generalized coordinates in which the relations between the
u; and ¢, are time-independent, one finds

n L N ' 0”1: aui . .
DL:_z‘Z Z Zkigéa— Bqﬂ q.495-

Now, if the relations between the u; and the g, are linear, or
< .
ui:zaisqs (121,2,...,N)’
s=1

where the a;, are constants, one has

N (9u,i 8ui . N

Z k Z amawki.

i=1 iaqa 8% i=1
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If that quantity is denoted by d,s and substituted in D;,, Rayleigh’s dissipa-
tion function (13.7.8) results.

More generally, let the damping force be proportional to a power of
the magnitude of the velocity, or

Sili;) = | ™ (13.7.20)

Then, the substitution of this function in (13.7.18) results in

l)Lj

1 Al
k; 7, [, 7.21
T L @] (13721)
Under the restriction that the relations between the Cartesian and gener-
alized coordinates do not contain the time ¢ explicitly, the above formula

becomes
m+1

Dy, = sgn(u;). (13.7.22)

1 N

Zlki(‘h)

=

r du;
; aq, "

m -1
We now suppose that the system is catastatic. Then the rate of change
of work done by the damping forces is [see (13.7.11) to (13.7.14)]

)
W B z Qqus = Z —a—L qs, (13.7.23)
s=1 s=1 qs

where use was made of (13.7.19). But D; in (13.7.22) is a homogeneous
function of degree m - 1 in the ¢,. Let(¢;, §¢s, - - - , ¢,) be such a function.
This means that, for any constant K,

(p(qu’ qus R an) = K1n+1¢(q'l, q2’ st q)v)' (13724)

Differentiating both sides with respect to K and subsequently putting
K =1 gives the well-known result

L]
Y 2 g, = (m + 1. (13.7.25)
s=1 qs

This is known as Euler’s theorem for homogeneous functions. Applying it
to (13.7.23) results in

W = (m+ 1)Dy, (13.7.26)
a result demonstrated by Lur’e. It reduces to (13.7.14) when m == 1. The

case of “velocity-squared” damping results from setting m = 2, and
Coulomb damping from m = 0.



232 Chap. 13 e Lagrange’s Equations

Example 13.7.1. (Lur’e, p. 233). Calculate Lur’e’s dissipation function
and the damping force when the system has only one generalized coordinate,
and m is an even integer.

We have n = 1 and m = 2«, where « is an integer. Then,

| 4 ™+ sgn(g),

D, — k
e +1
and
d
Qb = kg* Fr | 4| = kq¢** sgn(qg).
q

13.8. The Principle of Least Action Reconsidered

In Section 10.7 we showed that Lagrange’s principle of least action
can be found from Hamilton’s principle provided the energy level is constant
throughout the motion and is the same for all admissible trajectories
passing through the same end configurations. Moreover, in Section 13.5
we derived Lagrange’s equations from Hamilton’s principle. Can we also
derive Lagrange’s equations for conservative systems from the principle
of least action? If the answer is affirmative, we shall have found a new and
indirect way of establishing that principle.

The principle of least action requires that we find those ¢,(¢)
(s=1,2, ..., n) for which the action integral

t
J “aT dr (13.8.1)

to

is stationary under a noncontemporaneous variation §,, and under the
side condition that
T+V—h=0, (13.8.2)

and where
q(t) = q° = (% ¢.% - .., 4.0,

) L . (13.8.3)
q(tl):q :(‘ha%, 7qn)

are prescribed terminal configurations. Then, the rule of the Lagrange
multipliers states that the ¢,(¢) are those for which

151
8, = a,J Fg, §)dt =0, (13.8.4)

where
F=2T(q, q) + A)[T(q, q) + V(q) — hl, (13.8.5)
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and where 9, is the operator of the noncontemporaneous variation described
in Section 10.6; the quantity A(¢) is an undetermined Lagrange multiplier
which is, in general, a function of the independent variable, and ¢, and ¢,
are not fixed.

As in Section 10.6, we introduce an auxiliary time 7, 0 <7 <1,
such that

(=i, W0 << (13.8.6)

Under these conditions the inverse function 7(f) exists on #, < t << t,, and
1(ty) = 0, () = 1.

Denoting differentiation with respect to T by a prime, we may write in
place of (13.8.4)

1 14
0 = .| P4 de o0 (138.7)
0

or, exchanging the order of variation and integration and applying to
F - ¢t' the rules of varying a product, we find

8 — J: 8,(F)t’ dv + j: F o) dv =0, (13.8.8)
Since
F=Fig.9) = Fa. L),
we find
0F = %, gF o, + 3 b+ 3, gj 0 b
; ”+i W ti i P ;2 5.  (13.89)

It follows that the first integral on the right-hand side of (13.8.8) is

1 t oF Lo gF d
[Caumwar=[" 55 saear+ | § o 2 @ar
0 aq 8

to r=1 r 0r=1

JZ qr tt dT
0

r=1 r

When the second integral on the right-hand side of the above equation is
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integrated by parts, as was done in (13.5.14) for instance, (13.8.8) becomes

ar b/ QF d OF
0 = Z[ "]*JZ(‘&T ar aq)‘s“‘”

J [Z 24, 1 F] d,t" dv = 0. (13.8.10)

The first term on the right-hand side of (13.8.10) is zero because the
endpoints ¢° and ¢! are fixed so that d,g, vanishes in the upper and lower
limits. Also, because the variations d,g, and d,t’ are arbitrary it follows
from the argument used in connection with (13.5.16) that one must have
for all ¢, t, <t <1,

d (0F\ OF
717(‘—04, ) —5m =0 (=L2..m, (381D
and forall 7, 0 <7 <1,
F— Z aq, (13.8.12)

Substituting the definition of F in (13.8.11), that equation becomes

d oT oT /14
77[(2+A)7947]=<2+1)—9;17+1%7 =12 ...,n),
which may be rewritten as
or oT — V) oV di oT
‘“”[ (aq) ) =2 DG

(r= 1,2, co,n). (13.8.13)

The evaluation of A is made from (13.8.12). When F as given in (13.8.5)
is substituted in it, it becomes

2T + AT + V—h)—(2+l)ig—5-q,:0. (13.8.14)
r=1 r

Since energy is conserved and the system is holonomic, it is necessarily
also scleronomic, and in scleronomic systems

1 n n .
=7 Y Y updadp-

a=1 B=

-
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Then, an easy calculation shows that?
no 9T
—— G, = 2T. 13.8.15
T; 5q ( )

The substitution of (13.8.2) and (13.8.15) in (13.8.14) gives
—2(1 + )T =0. (13.8.16)

Since T # 0, we must have 4 = —1, and the substitution of A= —1 in
(13.8.13) yields the Lagrangean equations of motion of a conservative
system. This is what we wished to show.

13.9. Problems

13.1. The three weights of mass m, , m,, and m;, respectively, are the only massive
elements of the system of weights, pulleys, and inextensible strings shown.

(a) Write down the equation(s) of constraint satisfied by the coordinates
X1, X2, and x; shown.

(b) Calculate the x; in terms of the g; and show that the g; satisfy the
equation(s) of constraint identically. Hence, the ¢; are generalized

coordinates.
L L L L £ L L L L L L L L L
X

G

X2 ml

X3
_ —1-

RP)

r m,

m3

t This equation could have been written down directly because it is merely an application
of Euler’s theorem derived in (13.7.25).
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(c) Construct Lagrange’s equations of motion.
(d) Dynamically uncouple Lagrange’s equations when m, = 6, m, = 1,
ms; = 5.

To solve Problems 13.2 to 13.6 refer to Problem 7.1.

13.2. One extremity of a heavy, uniform straight rod of length 2/ and mass M

13.3.

13.4.

can slide without friction along a vertical line. The other extremity is con-
nected to one end of a massless, inextensible string of length 2/ whose other
end is tied to a fixed point O on the vertical line. Let 6 be the angle subtended
by the vertical line and the string, and let ¢ be the angle which the yz plane
makes with the plane formed by the rod and string, as shown.

o) -7
\\\<¢

Y

(a) How many and which are the constraints on the Cartesian coordinates
of the endpoints of the rod? How many degrees of freedom does the
rod have?

(b) Construct Lagrange’s equations in terms of the variables 6 and ¢ and
their time derivatives.

Answer the same questions as in Problem 13.2 when the string is replaced
by a heavy, uniform, straight rod of length 2/ and mass M.

Three heavy, uniform rods of lengths /,, I, l; and of masses M,, M,, M,
respectively, are linked together and can move in a vertical plane as shown.

(a) Which are the constraints on the Cartesian coordinates of theend points
of the rods?

(b) Isittrue that the angles 6 and ¢, as shown, are generalized coordinates?

(c) Construct Lagrange’s equations.
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13.5.

13.6.

13.7.

Two heavy, uniform rods of lengths /;, I; and of masses M; and M,, respec-
tively, form a plane, compound double pendulum, as shown. Let 6 be the
angle between /; and the vertical, and let ¢ be the angle between /; and /.

(a) What constraints do the Cartesian coordinates of the endpoints satisfy?
(b) Show that 0 and ¢ are generalized coordinates.

(¢c) Construct Lagrange’s equations in terms of the Cartesian coordinates
of the endpoints.

(d) Construct Lagrange’s equations in terms of 6 and ¢.

Four identical, uniform, heavy rods are hinged together to form a rhombus
OBAC, as shown. This rhombus is constrained to move in the vertical
plane. One of the corners of the rhombus is hinged at the fixed point O,
and all hinges are frictionless. In addition to the force of gravity, there

-

is an attractive force between the points O and A which is linearly propor-

tional to the distance OA. Let this force be written in the form Mg/kl OA,
where M is the mass of one of the rods, / is its length, and % is a constant.
Construct the equations of motion in terms of the angles 0 and ¢.

Two particles of mass m, and m,, respectively, are connected by springs and
dampers to each other and to fixed points, as shown. They can only move
to the right or left. Choose a suitable system of generalized coordinates and
construct the dissipation function for the following cases:

(a) The dampers are linear; there is no friction between the particles and
the ground.
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13.8.
13.9.

13.10.

13.11.
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il frd I [
; L = | Lo
4 m| m2
AR A A DA A - VVVWWWVVA— A ANA A A A
1 K ko k3

I7 7777777777777 777 7777777777777

(b) The dampers are of the “velocity-squared” type; there is no friction
between the particles and the ground.

(c) The above two cases when there is Coulomb friction between the par-
ticles and the ground.

Write Lagrange’s equations for all cases.
Generalize Problem 13.7 for the case of n particles.

A smooth thin ring is mounted in the vertical plane on a smooth horizontal
table so that it can rotate freely about its vertical diameter. A straight
uniform rod of length / and mass m passes through the ring. The rod
is set into motion in any way, but so that it remains with all its points
on the table. What are Lagrange’s equations of motion of the rod so long
as it does not slip out of the ring?

A uniform rod of length / and mass m lies on a smooth horizontal table.
Each mass element of the rod is attracted to a fixed line in the table with
a force which is directly proportional to its distance from the line and to the
mass of the element. What are Lagrange’s equations of motion of the rod?

A heavy homogeneous hoop of negligible thickness, of mass m and of ra-
dius a, is free to move in a vertical plane. A ring having the same mass as the
hoop slides without friction along the hoop. Determine the motion of this
system under arbitrary initial conditions.
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Embedding Constraints

14.1. Introductory Remarks

We saw that, when a system is subject to equality constraints given by
n
Y B.g,+ B, =0 r=12,...,D (14.1.1)
s=1

(which may be holonomic or nonholonomic), the motion which satisfies
the dynamical laws and the constraints is governed by the differential
equations of motion

— 0, + Y4B, =0  (s=1,2,...,0). (1412

When the constraints are introduced into the formulation of the
problem by means of the Lagrangean multipliers 4, (r = 1,2, ...,/), the
equations of constraint are said to be adjoined to the problem. The 4,
are auxiliary variables, introduced into the problem in order to ensure
that the actual motion does not violate the constraints.

When the formulation of the constrained problem is achieved without
the use of auxiliary variables, the constraints are said to be embedded in
(rather than adjoined to) the problem. In this chapter we examine means
of embedding equality constraints.

14.2. A Fallacy

It may be thought that the constraint equations (14.1.1) can be intro-
duced into the kinetic energy 7, thereby transforming it into a function

239
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T* of i — | velocity components,* and that the kinetic energy simplified
in this manner may be utilized in Lagrange’s equations of motion. We
shall now show by an example that this procedure may lead to wrong results.

Example 14.2.1. Consider the force-free constrained motion, i.e. free of
given forces, of a single particle. Let the coordinates be

¢ =X, q: =, qs = z. (14.2.1)
Since the motion is force-free, the given force is
0=\X,Y,2)=0.
The kinetic energy is
T = tm(x? + y? + 2%). (14.2.2)
Let the system be subject to the constraint
y—zi=0 (14.2.3)
This equation implies
dy —zdx =0. (14.2.4)
We shall first formulate the problem by adjoining the constraint. From (14.2.2)
we have

d or_ . d o _ d oT _ oT oT oT
—_— = —_— = _ == z _— = —— . —— —
dt 0x ’ dt dy v e

dt 0z ox oy 0z
Substitution in (14.1.2) gives
mi — Az =0,
my + 1 =0, (14.2.5)
mz =0.
These three equations together with (14.2.3) constitute the problem formulation by

adjoining the constraint.
If one eliminates A between the first two relations of (14.2.5), one finds

X4+2zy=0,
5=0, (14.2.6)
y —zx =0.

These are three equations in three unknowns. Differentiation of the last equa-
tion of (14.2.6) and subsequent multiplication by z gives

zy = z8% + zx32, (14.2.7)

* When the constraints are embedded directly into the kinetic energy 7, the resulting
expression will be written as Tt. (See also Example 10.5.2.)
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and the substitution of this expression in (14.2.6) reduces that system to two
equations in two unknowns, i.e.,

(1 + 22)% + zx%2 = 0,

14.2.
£=0. (14.28)

It is tempting to believe that this result could have been obtained more easily
and directly by substituting (14.2.3) in (14.2.2), giving

Tt = im[(1 + 2)x* + 2% (a)
Then
oT? d ort
R . R . . .
e mx(l + z?), FTRNTS mx(1 + z®) + 2mzxz,
d ort . oT? oTt )
= mz, — =0, —— = mzx*.

dt 0z ox 0z

However, the substitution of these expressions into Lagrange’s equations results in

(1 4+ 28X + 2262 =0,

Z—zx*=0.

(b)

These equations are different from (14.2.8) and, hence incorrect because equations
(14.2.8) were obtained by a previously established, correct method.

It should not be thought that this problem cannot be formulated by embedding.
We shall now show how this may be done. If one substitutes 7, as given in (14.2.2),
in the fundamental equation (13.1.1) one finds

mX dx + my oy + mz 6z = 0. (14.2.9)
One now substitutes (14.2.4) in this equation, resulting in
(¥ +zp)dx + 26z =0. (14.2.10)
Finally, the substitution of (14.2.7) gives
[(1 + 2% +zx2]0x + 76z = 0. (14.2.11)
But, for (14.2.11) to hold, one must have

e b s =0
(4 2% + 2%2 o (14.2.12)
i=0,

identical with (14.2.8).

It was shown above that wrong results may be obtained when the
velocity constraint is embedded in the kinetic energy, and the resulting
expression is then substituted in Lagrange’s equations. Nevertheless, it is
also quite possible that the result, so found, may be correct. We demonstrate
this by:
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Example 14.2.2. Consider the same problem as before, except that here the
constraint is
y—kx=0 (14.2.13)
where k is a constant. This constraint implies

dy — k éx = 0. (14.2.14)

We shall formulate the problem first by adjoining the constraints by means of
a Lagrangean multiplier. Then, one finds, analogous to (14.2.5)

mi — Ak =0,
mj+ 1=0, (14.2.15)
mi =0.

Eliminating A between the first two, one has

X+ k=0,

14.2.16
7=0. ( )
From the contraint equation (14.2.13), it follows that

ky = k*x, (14.2.17)

and the substitution of that equation in (14.2.16) gives the problem formulation as

1+ k)X =0,

14.2.18
£=0. (14218

This result could have been found more simply and more directly by substituting
(14.2.13) in the Kkinetic energy (14.2.2), giving

Tt = tm[(1 + k?)x® + 2%). (14.2.19)
The substitution of Tt in Lagrange’s equation gives

ne — 0
(1 +k5E 0 (14.2.20)
z == bl

identical with (14.2.18).

Why did the identical procedure lead to a correct result in Example
14.2.2, but not in Example 14.2.1?

The basic difference between these is that in the first the constraint is
nonholonomic, while in the second, it is holonomic.

Whether the fundamental equation or Hamilton’s principle is used to
derive Lagrange’s equations, both these dynamical principles are based on
work done in virtual displacements; hence, any constraint on these displace-
ments must be embedded in the problem in order to obtain a correct
problem formulation. In Example 14.2.1, that constraint is (14.2.4) and it
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was embedded when (14.2.10) was deduced from (14.2.9). However, (14.2.4)
does not imply (14.2.3), and it was the latter that was embedded in the
problem when (a) was deduced from (14.2.2). Moreover, at no subsequent
time was the constraint on the virtual displacement utilized in deriving (b)
from (a). Hence, the basic reason for the failure of this method in Example
14.2.1 stems from the fact that the incorrect constraint was embedded in
the problem.

When the constraint is holonomic, (14.2.13) implies (14.2.14) and,
conversely, (14.2.14) implies (14.2.13). Moreover, both imply

y—kx+c¢c=0, (14.2.21)

where ¢ is a constant. Therefore, the embedding of (14.2.13) or (14.2.14)
or (14.2.21) are all equivalent operations. It is for this reason that the
procedure used in deducing (14.2.10) leads to correct results.

14.3. Embedding of Nonholonomic Constraints

Here, we show how nonholonomic equality constraints may be em-
bedded. While the theory given below may also be used for embedding
holonomic constraints, this is not the preferred procedure. It is far easier
to embed holonomic constraints in their integrated form; this has the
effect that the remaining coordinates are a set of generalized coordinates.
Thus, we shall assume that all constraints are nonholonomic. They comprise
| < n independent equations of the form

n
Y B4, + B, =0 r=12,...,0D, (14.3.1)
s=1

and the ¢, (s = 1,2, ..., n), are generalized coordinates. These equations

imply that the virtual displacements are constrained by
Z . 0g, = r=12,...,D. (14.3.2)

Evidently these equations may be written in the matrix form

By By -+ Byl g, Bl,l+1 Bl,l+2 Bl,n, 09141

By By, - By || dq, Byiyi Byipe o By, 09142
. Dl = — . . . (14.3.3)

By By --- Byllog, Biii By - Biallog,
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Moreover, the square matrix on the left-hand side is nonsingular; if this
were not so, the equations of constraint would not be independent of

each other.
It follows that the equations of constraint may be solved for / virtual
displacements dg, as linear combinations of the remaining n — / ones, or

n

dqi= Y aydg (=121, (14.3.4)

j=l+1

where the a;; are, in general, functions of the g, (s = 1,2, ..., n), and of .
They are the elements of the matrix product

By By - Byl [Biinn By Big
le Bzz e le Bz,l+1 Bz,l+2 e Bz,n

By By - By By Biie-- By,

Let us now write the fundamental equation (13.1.1) in the form

L (d 0T aT L d 0T oT
_— —— — —— — 0, 0q; + {———_———— ir 0g; =0.
z=21{ dt 0g; dq; ¢ } 9 J=;H dt  04; dq; Qg 047
(14.3.5)
For simplicity, we put
d aT oT .
2T

Then, (14.3.5) is written as

1 Jj=l+1

-

3

If we substitute (14.3.4) in this equation and exchange the order of summa-
tion in the first term of the left-hand side we find

n !
Z <Z Riai]- + R]) (3(]] =0. (14.3.7)
i=1

j=l+1 \1

In this expression, the dg; are free; hence, we deduce from it

1
Y Ra;+R=0 (j=1+1,1+2...,n) (14.3.8)
i=1
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or, restoring the meaning of the R;,

l d 0T aT i T or
G=I+1L1+2...,n.  (1439)

These equations, together with

s

Brsq's+Br:0 (r:1,2,...,l),

i

1

constitute the formulation of the problem by embedding. They form a
system of n equations in the » unknowns ¢, (s =1, 2, ..., n), and they
involve no Lagrangean multipliers.

Example 14.3.1. Using Cartesian coordinates

Gi=x, =y, qg=3z (@)

formulate by embedding the problem of the motion of a particle under the given
force
0=W1\Y,2) (®)

when the motion is subject to the constraints

X+xy+yi=0,

yi £ zp 4+ 2 =0. ©

From (c) we deduce

ox +xdy+ydz=0,
yox +z40y 4+dz2=0,

I s

[(5):]_ 1 [ z —x][—yéz]
oyl z—xy |-y 1]l—96z |’

(@

or, in matrix form,

One finds readily

or,

©




246 Chap. 14 e Embedding Constraints
The kinetic energy is
T = im(x* + y* + %)
and, therefore, the fundamental equation is
(m% — X) 0x + (my — Y) 8y + (mz — Z) 6z = 0. ®
The embedding consists of substituting (e) in (f). Since dz is then arbitrary, one has
(mi — X)(x —yz) + (mj — V)O* — 1) + (mi — Z)(z —xy) = 0.  (g)

This equation together with (c) constitutes a system of three equations in three
unknowns. It is the formulation of this problem by embedding.

14.4. Problems

14.1. Show that the formulation found by adjoining the constraints by means
of Lagrangean multipliers leads to a result which is reducible to the system
(c) and (g) of Example 14.3.1.

14.2. Show that adjoining and embedding of constraints leads to the same results
in any of the problems at the end of Chapter 13.



15

Formulating Problems
by Lagrange’s Equations

15.1. General Remarks

Lagrange’s equations formulate the general, constrained dynamics problem
without the need for fixing the coordinate system at the outset, and in terms
of general constraints [provided only that they belong to the broad class
of constraints defined in (11.2.14) and (11.2.15)]. This is, undoubtedly,
the greatest contribution of Lagrangean mechanics to dynamics. However,
an important feature, and one cherished greatly by the practitioner con-
cerned with solving problems, is that Lagrange’s equations provide a very
simple, and a nearly foolproof device for the mathematical formulation of
a physical problem. This formulation must, of course, precede any attempts
at the solution, and it can be difficult. Consider for instance, the problem
of the simple plane double pendulum illustrated in Fig. 15.1.1. If one chooses

LilLsLzel L L

Fig. 15.1.1. Plane, simple double pendulum.

247
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the coordinates 6, and 0, to describe the configuration, the correct equations
of motion are

(my + m2)1126.1 + mghly cos(9; — 92)62 + ’”21112622 sin(6; — 6,)
+ (my + my)gl sin 6, =0,

and
myly28, + mylyl, cos(0, — 0,)8, — myl 1,62 sin(0, — 6,) + mygl, sin 6, = 0.

These are difficult to write down by inspection and appeal to Newton’s
second law, but they are readily found by means of Lagrange’s equations
(see Example 15.5.2).

In using Lagrange’s equations to formulate a given problem, the
first step is to choose a set of coordinates which describes uniquely the
configuration of the system with respect to an inertial frame. Next, the
kinetic energy and the constraints are written in terms of these coordinates,
and the force components of the given forces along these coordinates are
computed. Then, the substitution of these quantities in Lagrange’s equations
results in the mathematical formulation of the problem under study.

As there exists an infinity of sets of generalized coordinates (and of
course, also an infinity of sets which are not generalized coordinates) it is
clear that one can formulate the problem in infinitely many ways. It turns
out frequently that some coordinate systems result in a simple and trans-
parent formulation of the problem while others do not; thus, the choice
of coordinates can have a profound effect on one’s ability to solve the
problem.

The best choice of coordinates, or even merely a good one, depends
significantly on the problem under study. The formulation of the general
problem contains terms arising from the kinetic energy, components of
given forces, and constraint terms. It is very common that one choice of
coordinates makes one group of terms particularly simple while complicating
others, and a different choice may have the opposite effect.

Certain recommendations are given below for choosing suitable co-
ordinate systems; however, they are not hard and fast rules, and they may
have to be revised in specific cases.

A. When generalized coordinates are used the number of equations of
motion and the number of constraints is reduced to the least
possible; this is always desirable.

B. When a holonomically constrained problem is considered, and a
system of generalized coordinates exists which is “natural to the
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’9

constraints,” it should be used. For instance, in the case of the
spherical pendulum, spherical coordinates should be used; for
motion in a cylindrical surface, cylindrical coordinates should
be used, etc.

C. When a set of generalized coordinates renders the equations of
motion linear, it should be chosen.

D. When there is no indication as to choice of coordinates, and when
the Cartesian coordinates are also generalized coordinates, they
should be used.

These recommendations are best illustrated by examples; therefore we shall
now consider a number of specific problems.

15.2. The Unconstrained Particle

Three coordinates are necessary and sufficient to specify the position
of a single unconstrained particle in 3-space. Hence the Cartesian co-
ordinates are generalized coordinates, or

G = X, 4s =), gs = 2. (15.2.1)
The kinetic energy is
T = $m(x® + y? 4 22). (15.2.2)
If the Cartesian force components are
0 =X, &®=Y 0O=7 (15.2.3)
the substitution of (15.2.2) and (15.2.3) in Lagrange’s equations results in
mi — X =0, myp — Y =0, mi —Z =0. (15.2.4)

The position of the particle in 3-space can, of course, also be described
uniquely by the cylindrical coordinates

G0 G g3z (15.2.5)
They are connected to the Cartesian coordinates by the transformations

X = pcos g, y = psin g, z =2z (15.2.6)
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It follows from (15.2.6) that
X = ¢ cos ¢ — p@ sin g,
¥y = ¢sin g + o¢ cos ¢, (15.2.7)
=3z,
and the substitution of these in the kinetic energy results in
T = im(¢® + o%p* + 22). (15.2.8)
If we write the generalized forces as

0, = R, QzZ(p’ Q3:Z

0, i E24 =12, n), (15.2.9)
=7 0g,
we find
R = Xcos ¢ + Ysin ¢,
® = —Xpsing + Ypcosg, (15.2.10)
Z=2Z
Since
d 0T .
a o Y
S 5 = 2o + me,
d oT .
o 5 = "Mb
oT "
Do = moy*,
or _ oT _
Op 0z ’

the Lagrange equations in cylindrical coordinates become

mg — mpg* — R =0,
me*¢ + 2mogy — @ = 0, (15.2.11)
mi—7Z =0,

where R and @ are given in (15.2.10).
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From a comparison between (15.2.4) and (15.2.11) one may be tempted
to conclude that Cartesian coordinates always result in a much simpler
formulation of the problem of the unconstrained particle than do cylindrical
coordinates. In particular, the equations (15.2.11) are always nonlinear
while the terms in (15.2.4) arising from the kinetic energy are always
linear. Nevertheless, cases may arise where the formulation in cylindrical
coordinates is preferable. Suppose, for instance, that the Cartesian force
components are

_ Ax— By Bx 4 Ay

TR = W, Z=C, (15.2.12)

where 4, B, and C are real constants. In that case, direct substitution of
(15.2.12) in (15.2.10) gives

R=A4, ©=By, Z=0C. (15.2.13)

We observe that the generalized forces are nonlinear functions of the
Cartesian coordinates, but they are either constants or linear in the cylin-
drical coordinates. We have here a case where Cartesian coordinates
simplify the inertia terms (those arising from the kinetic energy), but they
complicate the forces, whereas cylindrical coordinates have the opposite
effect; the equations of motion are nonlinear in either coordinates.

Let us consider the unconstrained single particle in the spherical
coordinates

G =1, g, = 0, q; = @, (15.2.14)
which are connected to the Cartesian coordinates by the transformations

X = rsin 6 cos ¢,
y = rsin 0 sin ¢, (15.2.15)

z = rcosf.
The substitution of these in (15.2.2) gives the kinetic energy as
T = m(F® + r?sin? 0¢? + r262). (15.2.16)
If the generalized force components are denoted by

0, =R, 0, =06, 0, =9, (15.2.17)



252 Chap. 15 e Formulating Problems by Lagrange’s Equations

one finds from utilizing (15.2.9) that

R = Xsinfcos g + Ysinbsing + Zcos 0,
O = Xrcos O cos ¢ + Yrcosfsingp — Zrsin 6, (15.2.18)
® = —Xrsin 0 sin ¢ + Yrsin 6 cos ¢,

where X, Y, and Z are the Cartesian components of the given force. The
Lagrangean equations are found to be

—% (mi) — mr sin? 0@ — mr62 — R = 0,

% (mr*0) — mr® sin 0 cos ¢ — O = 0, (15.2.19)

% (mr?sin?0p) — @ = 0.

These equations would take on a more involved appearance still if the
differentiations on the left-hand side were carried out. Even as they stand,
they appear to be much more complicated than (15.2.4).

Here however, there exists a classical example—the central force
problem—for which spherical coordinates give the simplest known formula-
tion to the problem. (See Section 19.2.)

The central force problem is characterized by the fact that the Cartesian
components of the given forces are of the form

xF(n/ x* 4+ y* 4 z%)
yo 2V X4y 4+ (15.2.20)
ZF(n/ x* 4+ y* 4+ z%)

VEIFTE

X =

Z:

where F is any bounded function of the argument (x2 + y? + z2)1/2, If one
substitutes the transformations (15.2.15) in (15.2.20), and the resulting
equations in (15.2.18), the generalized force components become

R=Fr), O=0=0.



Sec. 15.3. e The Holonomically Constrained Particle 253

The substitution of these in (15.2.19) results in equations which are easily
integrated. In the central force problem, spherical coordinates are the best
set of generalized coordinates.

15.3. The Holonomically Constrained Particle

The holonomically constrained particle moves on a surface if it is
subject to only one constraint, or in the intersection of two surfaces, i.e.,
a curve, if it is subject to two constraints. These surfaces or curves are rigid
if both constraints are scleronomic; they move or warp if one or both
constraints are rheonomic.

Consider a particle moving in a smooth surface defined by

z=f(x,y) (15.3.1)
where f is a C? function of x and y. Then, one finds

_af . of
Z = Wx + W Y, (153.2)

and this constraint may be embedded directly in the kinetic energy
T = (it + j + 27)

because it is holonomic. The substitution of (15.3.2) in the kinetic energy
gives
T" = imx¥(1 + £,2) + mxyf.f, + mp*(1 + £2) (15.3.3)

where

_of _of
f;**a‘;, fy——a'y‘-

When this last relation is substituted in Lagrange’s equations, one finds

RO L2 & By B fehes 26 fofoy 5Ly = Hm =0,
Effy + VA4 5D + Bfofow + 259 fyfoy + Py — YIm =0, -

where

_of _ s _9f
fa‘m—axgs f;y*axay’ fyy__é;{’

and X and Y are the Cartesian components of the given forces. These are
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the equations of motion; they are seen to be dynamically coupled (see
Section 13.6) as both accelerations occur in each equation of motion.

Let us suppose the constraint to be rheonomic. In other terms, let
the surface be defined by

z=g(x,y,1), (15.3.5)
where g is a C? function in all arguments. Then, we may substitute
z=gX+ gy +g& (15.3.6)
in the kinetic energy with the result that

T' = Im(l + g,2)% + mg,gxy + Im(l + g,2)y*
+ m(g.g:% + g,8:0) + img’. (15.3.7)

It is seen that the kinetic energy is of the general form (12.1.3), i.e., it
contains terms which are linear in the velocities, and terms independent
of the velocities. The problem is formulated when d(dT/dx)/dt, 0T/0x,
and similar terms in y are computed and substituted into Lagrange’s
equations.

In actual problems, the functions defining the surfaces are specified
at the outset and are substituted in (15.3.7) before Lagrange’s equations
are constructed.

When the problem is holonomically constrained, it is very common
that the surface of constraint dictates the best choice of generalized co-
ordinates. We shall demonstrate this by an example.

Example 15.3.1. Formulate the problem of a particle constrained to move on
the surface of a right circular cylinder.

Cartesian coordinates are quite unsuitable to formulate this problem. We
use them nevertheless to show how awkward the formulation becomes compared to
that in cylindrical coordinates. Thus we take

91 = X, q: =Y, qs = z, (15.3.8)
subject to the constraint

x® 4yt — o =0, (15.3.9)

where o = const is the radius of the cylinder. We begin by adjoining the con-
straint. The infinitesimal constraint is
xdx +ydy =0, (15.3.10)

and the kinetic energy is
T = im(x? 4 p® + 2%). (15.3.11)
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Therefore, substitution in Lagrange’s equations gives

mi— X+ ix =0,
mj—Y+ ily=0, (15.3.12)
m: —272=0,

where X, Y, and Z are the Cartesian components of the given force, and 1 is a
Lagrange multiplier. Equations (15.3.9) and (15.3.12) are four equations in the
four unknowns x, y, z, and A.

As the problem is holonomic, one may directly embed the constraint (15.3.9)
in the kinetic energy. One has from (15.3.9)

xx +yp=0
or
y— -2, (15.3.13)
y
and also
y = & (0* — x¥)12 (15.3.14)
Combining them gives
x2x?
J'/z = o 2 (15.3.15)
0" — X

Substitution of this equation in the kinetic energy gives

TH =

2
m[(l +— 2);&2 + z'z], (15.3.16)
0 —x

in which
q1 = X, q2 =2
are generalized coordinates. The substitution of (15.3.16) in Lagrange’s equations

results in
2 202x%?

x o .
e A= R

mi—Z=0.

(15.3.17)

If the given force components X and Z depend on y and/or y, these variables may
be eliminated by utilizing (15.3.13) and (15.3.14).
For this problem, it is much more natural to use cylindrical coordinates

9= @, q: = Z.

Here, ¢ = const and is, therefore, not a generalized coordinate. The formulation
in these coordinates is found directly from (15.2.11) by setting the derivatives of o
identically equal to zero in that equation. This results in

mQE(p_ qj:O,

5.3.18
mi —Z7Z=0. a )
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These are the equations of motion in cylindrical coordinates. The latter formulation
is not only much simpler than the one in Cartesian coordinates, but (15.3.18) are
linear equations whenever @ and Z are linear functions of ¢ and z and their
time-derivatives, while the first of (15.3.17) is never linear.

Example 15.3.2. To consider a rheonomic example, let us suppose that the
radius of the cylinder of Example 15.3.1 increases with time in a prescribed manner:

o = o(t), 6> 0. (15.3.19)
From (15.2.8), the kinetic energy is
Tt = $m(g® + 02¢® + %), (15.3.20)
where the generalized coordinates are
9= 9, q, = Z.

The quantity g is not a generalized coordinate; it is a prescribed function of time.
It follows from (15.2.11) that the Lagrangean equations of motion are now

mg®§ + 2modp — @ =0,
15.3.21
mi— 27 =0. ( )

This formulates the problem.

15.4. The Nonholonomically Constrained Particle

In nonholonomic problems, the number of generalized coordinates
always exceeds the number of degrees of freedom. The reason for this is
that nonholonomic constraints do not affect the accessibility of configura-
tions (see Section 4.6). Hence, the particle in 3-space, subject to non-
holonomic constraints only, may occupy any position whatever, and three
numbers are required to specify that position.

Here, we consider nonholonomic equality constraints only. These
may always be adjoined by the method of Lagrange multipliers (see Section
13.2) or they may be embedded by the method of Section 14.3 but they
may never be embedded by the method utilized for holonomic constraints
in Section 15.3; it was already indicated in Section 14.2 that that procedure
leads to wrong results. Most nonholonomic constraints arising in physical
problems are constraints on orientation or direction of velocities. But, by
definition, a particle has no orientation; therefore, nonholonomic problems
usually involve systems of particles (for instance, the line connecting two
particles does have orientation) or rigid bodies. Nevertheless, meaningful
nonholonomic problems in the motion of a single particle do occur. Here
we discuss one catastatic and one acatastatic problem.
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Example 15.4.1. Let the horizontal velocity components X and y of a particle
be controlled by an altitude-dependent device in such a way that the velocity ratio
y/x is directly proportional to the altitude z. This mechanism may be regarded as a
steering mechanism: When z = 0 the projection of the trajectory on the xy plane
is parallel to the x axis, but it becomes more nearly parallel to the y axis, the
more the altitude increases. This is illustrated in Fig. 15.4.1.

From y/X = z we find the Pfaffian form

dy —zdx =0, (15.4.1)

and this is not integrable, as was already shown in Example 4.2.3. The generalized
coordinates are

and the constraint on the virtual displacement is

oy —zdox =0. (15.4.2)
From (13.1.3)
B, = —z B, =1, (r =1) (1543)

(x,y,2)

)
<

Fig. 15.4.1. Catastatic, nonholonomic constraint of Example 15.4.1.
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in Y, B,; 6¢, = 0. The kinetic energy is
T = im(x* + y* + 22). (15.4.4)
Then, if the Cartesian force components are X, Y, and Z, substitution in La-
grange’s equations (13.3.3) gives
mi—X—124z=0,
mj—Y+1=0, (15.4.5)
mi—272=0.
These equations together with
y—zx=0 (15.4.6)

determine x, y, z, and A.
In this problem it is simple to eliminate the Lagrange multiplier between the
first two equations of (15.4.5). One finds

mi—X+zimp —Y)=0, (15.4.7)

and this equation, (15.4.6), and the last relation of (15.4.5) formulate the problem.

Example 15.4.2. As an example of an acatastatic, nonholonomic problem
we treat a generalization of Example 10.5.2. Let a particle moving in the plane
under Cartesian force components X and Y be subject to the constraint

¥ —ty=a, (15.4.8)

where a # 0 is a constant. (Putting a = 0 gives the constraint in Example 10.5.2.)
The Pfaffian form of (15.4.8) is
dx —tdy —adt =0, (15.4.9)
and it implies
ox —tdy =0 (15.4.10)

for the constraints on the virtual displacements.
It is evident that (15.4.9) is not integrable, for, on substituting it in the integra-
bility condition (4.5.7) with z = ¢, one finds

0B ocC oC 04 04 0B
Al — — —— B — — =—1,
(6t 6y)+ (0x at)+C(ay 0x>

and not zero.
We use the embedding technique of Section 14.3 to formulate the problem.
The kinetic energy is
T = im(x? + y?). (15.4.11)
Proceeding as in Example 14.3.1, one finds

mtk —tX + my — Y = 0. (15.4.12)

This equation together with (15.4.8) determines x and y.
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15.5. Systems of Particles and Rigid Bodies

The meaning of the phrase “systems of particles” was defined in
Section 2.2. However, the difference between systems of many particles
on the one hand and of a single particle on the other is physical, rather
than mathematical, in nature. This is seen when one writes the kinetic
energy of N/3 particles:

il

T = %é mgi,>. (15.5.1)
Then, the transformations
w, = mM2u, (s=12,...,N) (15.5.2)
change (15.5.1) into
T= % i W2 (15.5.3)

$§

For N = 3, this is the kinetic energy of a single particle of unit mass moving
in 3-space, and for N > 3 it may be regarded as the kinetic energy of a
single particle (of unit mass) moving in N-space. When the transformations
(15.5.2) and their time derivatives are substituted in the force components,
there results equations of motion of the form

B — f( Wy W, Wy . Wy W, Wy | t>
8 - £ 9 v F} 9 v ety _—_,
s mll/z m21/2 2 le/z ? mll/z m21/2 mN1/2
(s=1,2,...,N), (15.5.4)

and these may be regarded as the equations of motion of a single unit mass
in N-space, subject to a force whose component in the w; direction is f;.
This view of the dynamics problem has the effect of endowing the C trajec-
tories with a certain measure of pseudo-reality because, under the scale
changes (15.5.2), the C trajectories of Section 3.1 become in fact “trajec-
tories” in the sense that they are the paths traced out by the unit mass.
Thus, the transformations (15.5.2) are often helpful in arriving at an inter-
pretation of the solution of a problem. But they are rarely helpful in for-
mulating it.

Perhaps, the best way of treating the formulation of problems in-
volving many particles is by example; therefore, we now give a number
of these.
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Example 15.5.1. Formulate the problem of two particles of masses m,
and m,, respectively, moving in the plane in such a way that the line connecting
their positions passes for all time through a fixed point in the plane. [We shall re-
turn again to this problem in the discussion of methods of integration (see Sections
16.3 and 16.6).]

We use this example to illustrate the advantages which accrue from choosing
a good set of generalized coordinates. We begin by using Cartesian coordinates,
a choice which is not very good.

Let the fixed point in the plane be the origin of the xy system. Let a particle of
mass m; have position (x;, »;), and let the Cartesian components of the force on
m; be X;, Y; (i =1, 2); all this is shown in Fig. 15.5.1.

The kinetic energy is

T = 3[m(x2 + p,®) + mao(x? + p.%)], (15.5.5)

and the constraint which ensures that both particles are on a line passing through
the origin is
Vi/x1 = Yo/ Xy

or
X1Y2. — XeY1 = 0. (15.56)

The Pfaffian forms are

yedx, — yidx, — xady, + x1dy. =0,

15.5.7)
Y2 0x; — Y1 0xy — X3 Op1 + X1 0y, =0, (
and the possible velocities satisfy

YaX1 — Y1Xs — XoP1 + X1Y2 = 0. (155.8)

The system has three degrees of freedom because the four Cartesian coordinates
must satisfy one constraint, equation (15.5.6). The procedure for formulating this
problem in generalized coordinates x,, y;, y. is to solve (15.5.6) for x,, i.e.,

X1 = XoY1/Ya, (15.5.9)
y
A Y2
Yo X2
mz
Y|

Y, X,
Fig. 15.5.1. Constrained motion !
of two particles of Example t — X

15.5.1. X X2
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and to substitute this in (15.5.8), solved for x,, i.e.,
X1 = (11Xz + X2Y1 — XeY1P2/V2)[e. (15.5.10)

When the square of (15.5.10) is substituted in the kinetic energy, one finds

1 »n . Xq* ; Xyt ;
TT :—2—[<m1—12 +m2)x22 +m1<—22+ 1)y12 + (ml g}il +m2)y22
Ve Y2 2
Xoy1 .. Xep® .. Xy
+ 2m1< ;21 Xey1 — ;: XsY2 — ;31 Y1y2>]-
2 2 2

Of course, (15.5.9) and (15.5.10) must also be substituted in the force components
if these depend on x, and/or ¥, . Finally, Tt and the force components are substituted
in Lagrange’s equations with ¢; = x,, g = y1, gs = y.. The kinetic energy con-
tains not only the squares of the velocity components but all their cross products,
and it depends on all three coordinates as well. Therefore, the use of Cartesian coor-
dinates has resulted in a very cumbersome formulation. This is not due to the
inherent difficulty of the problem but, rather, to the poor choice of coordinates.

As both masses are always on a straight line through the origin, the use of
polar coordinates r;, 0; (i = 1, 2) is indicated. They are connected with the Car-
tesian coordinates by

x; = r;cos 0;, ¥y = rysin 0; (i=1,2), (15.5.11)
and differentiating these and substituting in the kinetic energy gives
Tt = $my(F® + r,%0:2) + ma(Fa? + ra%:?)]. (15.5.12)
The constraint equation is seen from the geometry of Fig. 15.5.1 to be

6, — 6, =0
or
0, =0, = 0. (15.5.13)

This can also be derived formally by substituting (15.5.11) in the constraint equa-
tion (15.5.6); this gives
sin 6, cos 0, — cos 0, sinf; =0,

which may be written as
sin(, — 0;) = 0;

this equation implies (15.5.13). The substitution of (15.5.13) in the kinetic energy
results in

Tt = }[(mii:® + mofa?) + (muri® + mors)6%]. (15.5.14)

This expression could have been written down by inspection because the first term
is the kinetic energy due to translation of the masses along the rotating line, and
the second is that due to the rotation.
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From (15.5.14), we have

d o _ s i—l2)
?Wamh, “aﬁﬁmih 1=1,2)

d oTt ' . o oT!
7 %— = (myr® + m2r22)9 + 2(muriFy + marafs)d, ‘a‘g‘ =0.

If we write the generalized forces as R;, R., O, the Lagrange equations are

i — mir® — Ry = i =1, 2),
mify —mirf? — Ry =0 (i=1,2) (15.5.15)
(7"1"12 + mory®)0 -+ 2(myriiy + mzrzrz)é -0 =0,

and these formulate the problem.

Example 15.5.2. As a second example of a multiparticle problem, let us for-
mulate the problem of the simple plane double pendulum, acted on by the grav-
itational force only.

As the force of gravity is a potential force and the problem is holonomic,
the applicable form of Lagrange’s equation is

d 0T oT oV

- — =0 =12,...,n),
@ dg, e oq, (6=12....m

provided generalized coordinates are used. To give the problem greater generality
we shall derive the kinetic and potential energies for an N-tuple plane, simple pen-
dulum. We use as generalized coordinates the angles 6; ({ = 1, 2, ..., N) which the
pendulums make with the y axis (see Fig. 15.5.2).

In general, the position of the bob of the ith pendulum is

i
X; = Z lu sin 91,
=t (15.5.16)

i
yi=Y l,cos0,,
a=1
as is evident from Fig. 15.5.2. Then, by differentiation one has

Xp = Zz: 1,8, cos 0,,

a=1

i
.}')i = - Z lmém sin ea,
a=1

and the squares of these velocity components may be written as

i

i
N Y LdgBu8p cos 0, cos 05,

3 =1

-
=)

.X'fiz -
W (15.5.17)
Y=Y L0 sin 0, sin 0.

=1

a=1
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Fig. 15.5.2. N-tuple pendulum of Ex- i
ample 15.5.2. y
Now, the kinetic energy is
N
Z 1(’51 + y12)9
and the substitution of (15.5.17) in this expression gives the equation
1 X &< .
Z Z Y mululg.05 cos(0, — 05). (15.5.18)
i=1 a=1 =1

This formula may be put into a somewhat different form. First, let us separate
out the terms for which « = f, so that

1 X ‘ .

2 {Z L0, + Z ; Lds0,05cos(0, — oﬂ)}.

i=1 =1 =1
Ba

Now, the double sum in the braces remains unchanged by exchanging the subscripts

a and f because the cosine is an even function. In consequence, every term oc-

curs twice, i.e.,

%)

! 1,36“6,3 cos(0, — 0) =2 i Z L0 cos(0, — 05).

?TMH
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Hence, the kinetic energy becomes

1 N i N
T {L Y mib 2y
2 i=1 a=1 i=1

=1

121

a=1

i
Z mil,xl/ﬁ,éﬁ COS(GZ i 0/3)}. (15519)
p=a+1

To compute the potential energy, we regard the equilibrium position as the datum.
Suppose, the first pendulum is given a deflection 0,, and all other pendulums re-
main vertical. Then the system acquires the potential energy

m gl (1 — cos 6,)

o

-,
I
—

because all pendulum bobs are raised by /,(1 — cos 0,). Therefore, when each pen-
dulum is given a deflection 6, , the total potential energy will be

z

M=

V= mygl,(1 — cos 0,). (15.5.20)

-
I

a=1

il

As we wish to consider the double pendulum we write (15.5.19) and (15.5.20)
for N = 2. This results in

T = ${(m;y + m),20.2 + mu[1.20,® + 20,1,0,0, cos(®, — 0.)1},  (15.5.21)

and
V = glm + m)li(1 — cos 6,) + m,l,(1 — cos 0,)]. (15.5.22)

Then, one finds by direct differentiation

d 0T . . . L
F a0 (my + my)26, + mulil, cos(6, — 6,)0, — mul11,6,(6, — 6,) sin(6, — 6,),
1
d oT . . ) .
— —— = m,ly*0, + m,hl, cos(6, — 0;)0, — mzlllzel(él - 62) sin(9, — 6.),
dt 00,
oT .
= — myh 0,9, sin(6, — 0,),
90,
T bl (6, — 65)
26, = Mslhls0,0, SIN(Y; 2),
oV .
TOI = g(m; + my),sinb,,
oV .
7, = gmyl, sin 0,.

The substitution of these quantities in Lagrange’s equations gives

(my + m)l26, + mylil, cos(®, — 0,)8, + mulil,8,? sin(6, — 6,)
+ (my + my)gl, sin 6, =0, (15.5.23)
and

maly 20, + myhl, cos(6, — 0,)0, — myli1,6,2sin(0, — 0,) + mugl,sin 0, = 0. (15.5.24)



Sec. 15.5. e Systems of Particles and Rigid Bodies 265

These are the equations of motion of the simple plane double pendulum under the
action of gravity.

As a nonholonomic problem in rigid body dynamics we consider the
classical example:

Example 15.5.3. (see also Example 7.5.1). Formulate the equations of mo-
tion of a homogeneous disk of radius r that rolls without sliding on the horizontal
plane.

Consider Fig. 15.5.3; let the coordinates of the contact point be x, z, and let
the angle between the contact tangent and the positive z axis be ¢. Let 6 be the incli-
nation of the disk to the horizontal, and let » be the angle of rolling measured,
for instance, as the angle between the contact radius and the radius to some point
P fixed on the rim; let all angles be positive, as shown. Then the five coordinates
x, z, @, 0, and v specify the configuration of the disk uniquely, and they are not
holonomically constrained; thus, they are generalized coordinates.

The condition of pure rolling ensures that the instantaneous rim velocity
equals the instantaneous velocity with which the contact point, belonging to the
xz plane, translates, i.e.,

ry = — .

From the geometry of Fig. 15.5.3, we have
X = vsin ¢, Z = p Cos .
Therefore, the equations of rolling constraint are

X b si =0
. * resme = (15.5.25)
z+rypcose =0,
or, in Pfaffian form,
dx +rsingdy =0,

dz +rcospdy =0.

(15.5.26)

Fig. 15.5.3. Rolling disk of Ex- z
ample 15.5.3.




266 Chap. 15 e Formulating Problems by Lagrange’s Equations

The knife edge constraint (see Example 9.4.2) is contained in (15.5.26); it
results from dividing the first equation into the second.

We compute the kinetic energy in two parts: that due to translation of the mass
center, and that due to rotation. From Fig. 15.5.3, the coordinates x,, y,, z, of the
mass center are

Xo =x + rcos0cos ¢,
zy =12z —rcos0sin ¢,
Yo =rsin0.

On differentiating, squaring, and adding them, we find

Xo? 4 Po? 4 2,2 = Xt + 22 + r¥® + r2g? cos? 0 + 2r(— %0 sin 0 cos ¢
— X¢cos 0sin ¢ + 26sin 0sin ¢ — ¢ cos 0 cos ).

When that quantity is multiplied by one-half of the disk mass it furnishes the ki-
netic energy without rotations.

To calculate the kinetic energy due to rotation, consider Fig. 15.5.4. The lines
with single arrow heads are axes which are so chosen that the x'y’ plane is that
of the disk, the x' axis remains parallel to the xz plane, and the z' axis com-
pletes the right-handed coordinate system. One sees from Fig. 15.5.4 that

Wyt = 6,
w, = ¢sin 0, (15.5.27)
W, =1 + ¢cosb.

It is seen that 8, ¢, and v are, in fact, Euler angles because (15.5.27) are pre-
cisely the equations (6.8.14) when one puts y = 0 in them.

In this example we have departed from our usual practice of orienting the (right-
handed) coordinate system so that the positive z axis points vertically up. Also, we
have defined that direction of % as positive which gives rise to negative % and 2
components. Both these steps were taken because we wished to utilize Euler an-
gles to describe the rotations. Of course, the fact that 4 produces any translational

y

Fig. 15.5.4. Angular velocity vec-
tor of rolling disk of Example
15.5.3.
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velocities at all is a consequence of the rolling constraint. Euler angles were not
conceived in particular to treat problems with rolling constraints; therefore, the
feature that some velocity in the positive direction produces others that are neg-
ative is not common to Euler angles; it is peculiar to this problem.
It is evident that the x’, y’ and z’ axes are principal axes, and the moments of
inertia are
Ly = Ly =1, Ly =J.

Therefore, the kinetic energy of the rolling disk is
T = im[x® + 22 + r20® + r2¢? cos? 0 + 2r(— x0sin 6 cos ¢ — X%¢ cos 6 sin g
+ s6sin 0 sin ¢ — 2¢ cos 0 cos )] + $(0% + ¢*sin6) + 3J(¥ + ¢ cos 0)2.
(15.5.28)

The only given force is the force of gravity, and it is derivable from the potential
energy
V = mgrsin @, (15.5.29)

where we have used the horizontal position of the disk as the datum i.e., the x, z
plane.
From (15.5.26), the constraints on the virtual displacements are
Ox +rsingpdy =0,
6z + rcos ¢ 0y = 0.
If we define
qlzx, CI2:Z, %26» q4:(p» 45:'/’,
the B,, in the constraint equations are
By =1, By; = rsin ¢, By, = B;y = B, =0,
ngzl, Bg5=rCOS (P, B21:B33:B24:0.

Substitution in Lagrange’s equations (13.7.3) gives

d

Tt[mx + mr(— 0sin 0 cos ¢ — ¢ cos Osin g] + 4, = 0,
d , o

v [mz + mr(0 sin 0 sin ¢ — ¢ cos 0 cos ¢)] + 4, = 0,

d .
= [mr6 + mr(— % sin 6 cos ¢ 4 zsin 0 sin ¢) 4 I6] 4 mr2¢* cos 6 sin 6
+ mr(x%0 cos 0 cos ¢ — x¢ sin 0 sin ¢ — 20 cos 0 sin ¢ — Z¢ sin 0 cos @)

— I¢*sin 0 cos 0 + J(y + ¢ cos 0)@sinO + mgrcos 6 =0,
vy (15.5.30)

d
v [mr2¢ cos? 0 + mr(— x cos 0sin ¢ — Z cos 0 cos ¢)
+ Igsin® 0 + J(p + ¢ cos 0) cos 0] + mr(— %6 sin 0 sin ¢
+ %@ cos b cos ¢ — 26 sin 0 cos ¢ — z¢ cos 0 sin ) = 0,

d
v [J(% + ¢ cos 0)] + Arsin ¢ + Ayr cos ¢ = 0.
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These equations of motion and the kinematical constraints (15.5.25) are seven equa-
tions in the five generalized coordinates and the two Lagrange multipliers.

As a second example of a nonholonomic system we discuss a mechanism
which was first analyzed by Novoselov’ and is quoted here from Lur’e
(p. 406).

Example 15.5.4. Discuss the mechanism shown in Fig. 15.5.5. Its purpose
is to transmit the rotation of a driving shaft S; to a driven shaft S,, and to
have the speed of the driven shaft remain sensibly constant even when that of
the driving shaft is not.

The vertical driving shaft has a rigidly attached horizontal disk of axial mo-
ment of inertia I;. An intermediate horizontal shaft S; has a thin disk of radius
a attached to it. Its axial moment of inertia is I3, and its mass (including that of
the shaft) is m;. The shaft S, can translate along its axis of rotation; to do so
it must overcome the force from a linear spring of rate k;. The disk of S, rides on
that of S, in the manner shown; the distance from the center of S; to the rim of
the disk on S, is o, as shown. The disk on S, drives a drum of radius R, which is
rigidly attached to the driven shaft S,; the axial moment of inertia of the drum
is I,. Also mounted on S is a centrifugal governor, each of whose two weights has
mass m;. The angle between a link of the governor and the axis of rotation is 6.
The sliding sleeve of the governor has mass m,. When the sleeve translates, it does
so against a linear spring of rate k,. The position of the sleeve relative to some
fixed point is x. This sleeve is connected by an inextensible cable, running over two
pulleys, to the intermediate shaft in such a way that the translation of the shaft
is the same as that of the sleeve.

The mechanism keeps the angular speed of the driven shaft constant. For, sup-
pose the driving shaft speeds up; this speeds up the driven shaft. Hence, the gov-
ernor opens, x and thus ¢ are reduced, and this reduces the speed of the driven
shaft.

We note that x and ¢ are connected by

x — @ = ¢ = const (15.5.31)

because a change in x causes an equal change in p, but they need not be zero simul-
taneoulsy.

The tangential velocity of disk 1 at the contact point with disk 3 is ¢¢;. Under
pure rolling without slipping the tangential rim velocity of disk 3, which is ags,
is equal to both ¢¢, and to — R¢.. Hence, the constraint is

o1 = — R¢,
or, with (15.5.31), in Pfaffian form
(x —c)dyp, + Rdyp, = 0. (15.5.32)

t V. S. Novoselov, “An Example of a Nonholonomic, Nonlinear System Not of the Che-
taev Type,” Vestnik Leningradskogo Universiteta, No. 19 (1957).
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Fig. 15.5.5. Constant speed drive of Example 15.5.4.

This is a nonholonomic constraint of the form already seen in Example 4.2.3.
Finally, x is related to 0 by

x =2lcos 0, (15.5.33)

from which one finds

62 = . 15.5.34
42 — x*? ( )

The kinetic energy due to ¢, is

Ty = [l + 3m (42 — x*)]@.%.

The kinetic energy due to x is

’nll2 ms ms
T, ={ — _° e,
: (412~x2 T3t )Y

The kinetic energy due to ¢, is
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Therefore, the total kinetic energy is

1 x —c)? 1 m .
Tz-—z—— [11+Is—(7—]¢12 +T [Iz +Tl(412—x2) (Pz2
mllz ms ms .9
—_— + — + %% 15.5.35
+(4l2_x2+2+2)x ( )

To calculate the potential energy, we suppose that there exists some steady
state in which ¢; = @1, @: = @2, X = X,, and we calculate the change of po-
tential energy when this steady state is disturbed. It is

V = 3k, + ka)(x — x,)%. (15.5.36)

Let us suppose that the disk of radius a on the intermediate shaft is so thin
that its moment of inertia I, may be neglected compared to I;. This supposition
does no violence to the mechanism, and it simplifies the equations. Then, using
the embedding technique of Section 14.3 the reader may verify that the equations
of motion become

ILR* m; ) LR? . MR
[—(}—_—c—)z +12 +T(412 —xz)}w — [(x — c)s +m1x]xw = - o + Mz,
(15.5.37)
and
mll2 ms ms 2m112
o M M e STV ke
(412 e T2t )” @r—
1
+ Tmlxwz + (k2 + ks)x = (ks + ks)x,, (15.5.38)

where we have put
P2 = 0.

This formulates the problem.

15.6. Problems

15.1. An unconstrained particle of mass m moves in 3-space under a force
F =X + Yo + Zik,

where X,, Y,, Z, are constants. Write the Lagrangean equations of motion
in the generalized coordinates &, %, ¢, which are connected to the Cartesian
coordinates by

x = [ cosh & cos 7, y = Isinh &sin 7, z =2,

and state why &, #, and { are called elliptic, cylindrical coordinates. Cal-
culate an arc length ds in terms of &, #, and {. Denote the generalized
force components by =, H, and Z, respectively.
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15.2.

15.3.

15.4.

15.5.

15.6.

15.7.

15.8.

Answer the same questions as in Problem 15.1 for the biaxial, cylindrical
coordinates
Isinh & Isin 7

X:cosh§+cosn’ y:cosh5+cosn’ z=4

Answer the same questions as in Problem 15.1 for the parabolic, cylindrical
coordinates

x =& —n?), y = 2l&n, z=2_.

A heavy particle moving in 3-space is connected by a massless linear spring
to a smooth vertical rod on which the spring can slide. Formulate the
equations of motion in Cartesian coordinates, and in the generalized coor-
dinates which are natural to the force system.

A heavy particle moves on a smooth surface of revolution. Formulate La-
grange’s equations in Cartesian and cylindrical coordinates without using
multipliers. Show that the second result follows formally from the first by
utilizing the transformations from Cartesian to cylindrical coordinates.

In Example 4.2.2, a gutter was defined by a parabola whose apex descends
in a prescribed manner. Let this gutter be smooth and let a heavy particle
slide in it. Derive Lagrange’s equations in suitable generalized coordinates.

Let the Cartesian coordinates of a 4-space be w, x, y, z. A particle of
unit mass moves on the surface of a four-dimensinal sphere of radius R
under a potential force, and the potential energy is constant on the cylin-
drical surface w® + x* == const. If 0, ¢, and v are connected to w, x, y, and
z by

w = Rcosfcos ¢, x = RcosfOsin g,

y = Rsinfcos p, z = Rsinfsin vy,

show that 6, ¢, and v are suitable generalized coordinates, and construct
Lagrange’s equations in 0, ¢, and v.

A heavy eccentric disk can rotate about a fixed, smooth, horizontal axis at
O. Let its mass moment of inertia about the axis of rotation be /, and let
its mass center G be a distance s from the axis of rotation. A massless
connecting rod of length / is smoothly hinged to the disk at a point P a
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15.9.

15.10.

15.11.
15.12.
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distance R from the axis of rotation, and connected to a particle of mass
m, which is constrained to move on a smooth horizontal surface as shown.
0, G, and P lie on a straight line. If gravity is the only force acting on the
system, define suitable coordinates and construct Lagrange’s equations of
motion for this system.

A heavy bead of mass m slides on a smooth rod that rotates with constant
angular velocity 2 about a fixed point lying on the rod centerline, as shown.
What are Lagrange’s equations of motion of the bead in suitably chosen
generalized coordinates?

Two particles of masses m,; and m,, respectively, move on the surface of the
four-dimensional sphere described in Problem 15.7. The only force acting
on each particle is the Newtonian gravitational attraction from the other.
Construct Lagrange’s equations of motion without the use of multipliers.

Generalize Problem 15.10 for the case of n particles.

Construct Lagrange’s equations of motion of a particle of mass m in 2-space
without the use of multipliers using r, ¢, and A, where A4 is the double
of the area swept out by the radius vector; the three coordinates are con-
nected by the nonholonomic constraint

A —rg=0.
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The Integration

16.1. The Meaning of an Integral

We saw that the strictly Newtonian problem has the Lagrangean formulation

d T  oT l
T hdg @t L ABa=0 =12.m (6L

where the equality constraints are
Y B,g,+ B, =0 r=12,...,D. (16.1.2)
s=1

These are n second-order and / first-order ordinary differential equations
in the generalized coordinates ¢,, ¢, ..., q,. The first set is easily reduced
to 2n first-order equations. Let us write

Uy = 15 U3 = (3, - - s Uy == (y,

Vpir = Gy = D1, Upyyg = Uy, .o vy Dy = Dy
Then, the kinetic energy becomes
T = T(Ula Vgy oo vy Doy t)

and Lagrange’s equations become

d aT aT !

—_— 0, = = )} 16.1.3
W I g QL AB=0 G=12..m (613
These are n first-order equations in the v, (p = 1,2, ..., 2n) because the

273
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partial derivatives 07/dv,,, are linear functions of the wv,. Therefore,
(16.1.3) together with

dv,
dt

= Upyy (s=12,...,n) (16.1.4)

are 2n first-order equations in the v,. Using these same transformations
on the constraint equations, one finds

S By, - B, =0  (r=1,2...,1), (16.1.5)
s=1

where the B,, and the B, are, in general, functions of the v,, v,, ..., v,,
and ¢. Thus, the constraint equations are finite rather than differential
equations in the new variables.

Example 16.1.1. Let us formulate the steered particle of Example 15.4.1
in terms of first-order differential equations.
The Lagrangean equations are the second-order equations (15.4.5), and the
constraint equation is the first-order equation (15.4.6).
Let
X =u, y=u, Z=w. (@)

Then, the equations of motion become
mi — X(x’ Y, 2, U, 0, W, t) — Az = 0,
mo — Y(x,y,z,u,0,w, t) + 1 =0, (b)
mw — Z(x, y, z, u, v, w, t) =0,
and the constraint equation becomes
v—zu=0. ©)
The system (a) and (b) consists of six first-order equations in the dependent

variables x, y, z, u, v, w and the constraint equation (c) is an algebraic relation
between some of these variables.

We now give the definition of an “integral” of the equations of motion.

If one can find a function F(v,, vy, ..., Vs,, t) which has the property
that
dF, = 9F, .  OF, _
dt _,Z‘l v, O TR

whenever the v, (p = 1,2, ..., 2n) satisfy the 2n first-order equations
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(16.1.3) and (16.1.4) as well as the constraint equations (16.1.5), the
relation
F,(vy, vy, ..., 0y,,t) = C, = const

is called an integral of the motion, and C, is called a constant of in-
tegration or a constant of the motion.

The system consists of 2n first-order differential equations; thus there
exist 2n integrals

F (v, 05, ..., 09,,1) = C, (¢=1,2,...,2n). (16.1.6)

When all these functions are known, the system is said to be “completely
integrated.”

As the problems of Lagrangean mechanics are formulated in terms of
second-order rather than first-order equations in generalized coordinates,
it is useful to define integrals in terms of generalized coordinates. Then,
the first half of (16.1.6) becomes

Fodis @2y - 5005 G15Gas -5 G t) =C5 (B=1,2,...,n). (16.1.7)

These are » first-order equations; hence, finding n so-called “first integrals”
reduces the order of the system to #. Then, the missing integrals are the
integrals of the first-order equations (16.1.7). They are of the form

G(q1>G2s -5 Gus t5C1,Coy ooy Cp) = C, (y=12,...,n). (16.1.8)

The process of “solving” a dynamics problem completely is one of finding
all integrals (16.1.6). It is clear that (16.1.8) is equivalent to (16.1.6) because
both sets of equations contain 2 constants of integration. To give a concrete
example of an integral we note:

Example 16.1.2. In problems in which energy is conserved, a first integral
is known because

T(q1, Gas - Gns G1s Gos -y Gus 8) + Vg1, Goy - .., ga) = h = const
is of the form (16.1.7).

In the remaining sections of this chapter we describe some methods
for finding integrals.
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16.2. Jacobi’s Integral

Jacobi’s integral is a generalized form of the energy integral. Necessary
conditions for the existence of an energy integral are that the system be
catastatic and that all given forces be derivable from a potential energy

V: V(‘h, 612, aqn)' (1621)

In that case, we may utilize the Lagrangean function
L=T—-V, (16.2.2)

which was already introduced in (8.5.7).
In terms of the Lagrangean function the fundamental equation becomes

" d (0L oL
) [TJF (’5@) B @]j] 0g, =0 (16.2.3)

and, when the g, are generalized coordinates, Lagrange’s equations become
for holonomic systems
d 0L oL

7 W:—a—qs— (S: 1,2, ...,n), (16.2.4)

and for nonholonomic systems

!
% g—;——g—qu—r;LBm s=12,...,n). (16.2.5)
As indicated in (16.2.1), the potential function is usually a function of the
generalized coordinates, but not of the generalized velocities, nor of time.
In Example 10.5.3, we did consider a potential function that depended
explicitly on time. Now, when the potential ¥ is time-dependent, but not
velocity-dependent and when all given forces are defined by

0, = _8V/aqs’
then it can be easily verified that

d oL oL d or or 1%
- + oo

o 9. da, @ 94 aq, (16:2.6)

S

Therefore, (16.2.4) and (16.2.5) are then still applicable.
It turns out that these equations have greater generality, still. As was
shown in Section 12.5, it is possible to have velocity and/or time-dependent
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potentials ¥, and if all given forces can be computed from the equation

d odv %

QS:T

i e (16.2.7)

then Lagrange’s equations may still be written in the forms (16.2.4) and
(16.2.5). However, as shown in (12.5.6), the functional dependence of the
potential energy on the velocity components must be /inear because other-
wise the terms d(dL/dq,)/dt, and thus the Q,, would involve acceleration
components. This was shown (see Example 2.5.1) to be inadmissible in
Newtonian particle mechanics.

Let us assume that the Lagrangean function does not contain time
explicitly and that the system is catastatic. Because of the latter assumption
we may write the fundamental equation in the form

nrd 0L\ L.
[7 (a—qj) _ a_%]qs —o. (16.2.8)

i

s§=

Now, the time derivative
d g . oL n i
o] - Lewlar) - Lagr
The substitution of this expression into (16.2.8) gives
d n . aL n
w|Sea] - Lar

s=1
Then, as L depends in general on the ¢, and ¢, the last two terms in (16.2.9)
are the time derivative of L. Therefore, (16.2.9) is an exact differential
and can be integrated to give

8% Z 8% g, = 0. (16.2.9)

n
Z — L = h = const. (16.2.10)

This is Jacobi’s integral. It is easily brought into a familiar form as we shall
now show. It follows from (12.1.3) and (12.1.4) that the kinetic energy has
the general form

T—T,+ T, + T, (16.2.11)
where
1] » =n .
—2_ Zl 52::1 ozﬂqozqﬁ’
L . 16.2.12
Tl = Z bozqaz’ ( )

1

R
it

T, = ¢,
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and where a,4, b,, and ¢ are functions of the ¢, and possibly of ¢, but not
of the velocity components. Therefore, T, is a homogeneous quadratic
form, and T, is a homogeneous /inear form in the velocity components.

It follows from the definition of homogeneous functions [see Section
13.7(d)] that

i ‘;—qT,z g, = 2T,. (16.2.13)

s=1

and

n

Y or, g (16.2.14)
s=1 a $

Now, Jacobi’s integral (16.2.10) in expanded form is

n aT, T,
L4 <8qa 94, 4,

) T, =T, --Ty+ V=~h  (162.15)

If one substitutes (16.2.13) and (16.2.14) in (16.2.15) and notes that
0T,/0¢, = 0, there results

T, +V—T,=h. (16.2.16)

We have implicitly supposed that ¥ is a function of the g,, but not of the
gs, and, by definition, T, is never a function of the ¢,. Therefore, ¥ and T,
are functions of the same arguments, and the effect of these two terms in the
equations of motion is indistinguishable.

We have assumed that the Lagrangean function, and hence 7, does
not depend explicitly on time. It might be thought that, in consequence,
T, = T, = 0. But, a glance at Section 7.1 shows that 7; and T, will be
different from zero whenever the relation between the Cartesian and the
generalized coordinates depends explicitly on time, i.e., when

Uy = u(qy,qa, ... Gy 1) (r=12,...,N)

but these equations do not necessarily imply that 7" depends explicitly
on time.

Example 16.2.1. (Pars, p. 82). Let the inertial Cartesian coordinates of a
particle of mass m be x, y, z, and let the x’, y’, z' system of coordinates rotate
with constant angular velocity o about the z’ axis. Then, the coordinate transfor-
mation is

x = x'cos wt — y'sin wt,
y = x'sin wt 4 y’ cos wt,

z=7z,
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An easy calculation shows that

AP 2= - Ye) b ) 2
or
T=im(x"® + 9 + %) + om(x'y' — y'x') + to*m(x® + y'*).

Therefore, in this case the kinetic energy does not depend explicitly on time, but
T, and T, are not zero; in fact,

T, = tm(x* + y* + %),
Ty = mo(xy' — y'x'),
T, = tmow?(x? + y?).
If all given forces acting on the particle are derivable from a potential function

of the form
V=V +y22)

then V does not depend explicitly on time either, and the conditions for Jacobi’s
integral are satisfied. That integral is then

%m[x_/z + )-}/2 + z-rg . wz(xlz + y’Z)] __+_ V(x’2 + y’2’ zl) — h.

When the relation between the Cartesian and the generalized co-
ordinates does not depend explicitly on time (as is usually the case in
holonomic, scleronomic problems), one has

T, =T,=0, Tr=T1,,
and Jacobi’s integral takes on the familiar form
T+V=nh (16.2.17)

From the preceding theory it is clear that the existence of a Jacobi
integral requires that all given forces be potential. Where this is not the case,
one need not attempt to seek such an integral, for none exists.

16.3. The Routhian Function and the Momentum Integrals

The momentum integrals of dynamical systems are those which assert
that certain momenta are conserved. They arise from so-called “ignorable
coordinates,”” and they simplify the subsequent integration of the equations
of motion by a process called “ignoration of coordinates.”
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