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Preface 

 

The remarkable advances in computing and networking have sparked an enormous 

Communication Networks, and the trend is accelerating. This yields an abundance of 
practical systems, operational algorithms and scientific publications. There is, how-
ever, no integrated book available that portrays the whole picture of this area. Our 
primary impetus for editing this book is to fill this gap by providing a comprehensive 
and unified introduction to the field. 

The prevalence of mobile devices, coupled with the proliferation of wireless net-
works, creates new opportunities for speech recognition technology. Mobile devices 
are small in size and are used while on the move, both of which make speech-
enabled user interfaces attractive in comparison with other interaction modes like 
keypad and stylus. The opportunities come along with challenges as well. For in-
stance, it is not an easy task to port state-of-the-art speech recognition systems onto 
computationally limited devices such as mobile phones, PDAs and automobiles 
where they are highly desirable. Fortunately, the barriers are being removed because 
of increasingly powerful embedded platforms and pervasive network connections. Still, 
however, the accompanying research and engineering issues are many: computational 
constraints and power limitations on the devices, speech coding and transmission 
deteriorations over the networks, diverse operating systems and hardware configura-
tions, to name just a few. To address these issues requires a wide scope of knowledge 
and experience.   

This book brings together leading researchers and practitioners from academia 
and industry to provide an in-depth review of methods and standards, share working 
knowledge, and present state-of-the-art systems and applications. We cover network 
speech recognition, distributed speech recognition and embedded speech recognition, 
which are expected to co-exist in the coming years.   

Organization and Features  

The book begins with an overview chapter and is then divided into four parts: net-
work speech recognition, distributed speech recognition, embedded speech recogni-
tion, and systems and applications.   
 

interest in deploying Automatic Speech Recognition on Mobile Devices and  Over 
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Chapter 1 gives a comprehensive overview of network, distributed and embedded 
speech recognition and discusses the pros and cons of the presented approaches. This 
chapter sets the scene for the entire book. 

Part I, Network Speech Recognition, focuses on remote speech recognition that 
uses conventional speech coders for the transmission of speech from a client device 
to a recognition server where feature extraction and recognition decoding take place. 
This part consists of three chapters.  

Chapter 2 first describes the commonly used speech coding standards for mobile 
and IP networks, and then investigates the effect of speech codecs on speech and 
speaker recognition performance, with or without packet loss. Chapter 3 addresses 
issues related to speech recognition over mobile networks, and presents solutions to 
the performance degradation caused by speech coding algorithms, transmission errors 
and environmental noise. Chapter 4 reviews robustness techniques against packet 
loss in the context of voice over IP-based network speech recognition, and introduces 
a CELP-type speech coder optimized for speech recognition over IP networks. 

Part II, Distributed Speech Recognition, makes a thorough presentation of 
speech recognition that adopts the client-server architecture by placing feature ex-
traction in the client and recognition decoding in the server. It begins with a review 
of distributed speech recognition standards. The subsequent four chapters cover the 
major blocks of distributed speech recognition.  

Chapter 5 provides a comprehensive overview of the industry standards for dis-
tributed speech recognition developed in ETSI, 3GPP and IETF in addition to a 
summary of substantial performance testing and comparisons to AMR coded speech. 
Chapter 6 presents techniques for feature extraction and back-end speech reconstruc-
tion from the MFCC features on the basis of voicing and fundamental frequency 
information either transmitted from the client device or predicted from the received 
features. Chapter 7 describes a series of schemes for quantizing the MFCC features, 
including scalar quantization, vector quantization and block quantization, where the 
optimization objective is to maximize recognition accuracy. Chapter 8 presents a 
survey of error recovery methods for transmitting the quantized features over error-
prone channels, including both forward error control coding that adds redundancy to 
the feature stream and interleaving that creates spread in it. Client-side error recovery 
cannot completely prevent the occurrence of residual bit errors or packet loss. Chap-
ter 9 therefore concentrates on sever-side error concealment to reduce the detrimental 
effect induced by transmission errors.  

Part III, Embedded Speech Recognition, addresses the main problems in realiz-
ing a speech recognition system fully on a mobile device. The problems are ap-
proached from both algorithm and arithmetic sides through three dedicated chapters. 

Chapter 10 presents an overview of algorithm implementations and optimizations 
aimed at a speech recognition system with a low computational complexity and thus 
suitable for deployment on embedded platforms. To complement this, Chap. 11 pri-
marily targets a low memory footprint and emphasizes on techniques for compress-
ing HMMs by removing redundancies from HMMs through parameter tying and 
state- or density-clustering and by quantizing HMMs. Chapter 12 reviews problems  
 
 



Preface
 

 
 
 

vii 

concerning the fixed-point arithmetic implementation of speech recognition algorithms 
and presents fixed-point methods that give the same recognition accuracy as that of 
floating-point algorithms.  

Part IV, Systems and Applications, introduces practical work and knowledge. It 
starts with the introduction to architecture considerations in a network environment. 
The succeeding three chapters present speech recognition systems and applications 
tailored for mobile phones, PDAs and automobiles, respectively. The last chapter 
presents energy-aware speech recognition for mobile devices.  

Chapter 13 examines software architectures for mobile speech applications from 
an industrial viewpoint with a thorough comparison between embedded and dis-
tributed speech engines and a highlight on supporting multimodal user interaction. 
Chapter 14 presents applications of speech recognition for mobile phones and puts 
the focuses on multilinguality, noise robustness, and footprint and complexity reduc-
tion. Chapter 15 presents a two-way free-form speech-to-speech translation system 
that includes a large vocabulary continuous speech recognizer, a translation module 
and a multi-language speech synthesis system and is completely hosted on a PDA. 
Chapter 16 describes the development of speech technology components for various 
automotive applications and reviews issues and challenges related to automotive 
platforms. With a concern that battery technology significantly lags behind semicon-
ductor technology, Chap. 17 investigates the system-level energy consumption from 
both computation and communication of distributed speech recognition on a wireless 
device and presents a set of optimization algorithms that can increase the battery 
lifetime by an order of magnitude. 

A comprehensive index is provided at the end of this book. Index words are 
highlighted in the text by using italic font.  

While chapters are complemented to each other and are presented in a unified 
manner with a clear flow from chapter to chapter, each chapter is written to be self-
contained and can be read and understood independently. As such, certain redun-
dancy is kept in the book. The book contains chapters of a tutorial nature as well as 
chapters on research advances and practical applications.  

Target Audiences 

The book is primarily intended for students, engineers and scientists working in 
speech processing and recognition. This book can also be a reference for practitio-
ners and researchers involved in user interface and application design for mobile 
devices, speech communication over networks, Internet and wireless communica-
tions, and data compression.    

Supplementary Materials 

For more information about software, databases, literature and related links, please 
refer to the book’s Web site, http://asr.es.aau.dk. 
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Network, Distributed and Embedded Speech 
Recognition: An Overview 
 
Zheng-Hua Tan and Imre Varga 

 

Abstract. As mobile devices become pervasive and small, the design of efficient user 
interfaces is rapidly developing into a major issue. The expectation for speech-centric inter-
faces has stimulated a great interest in deploying automatic speech recognition (ASR) on 
devices like mobile phones, PDAs and automobiles. Mobile devices are characterised as 
having limited computational power, memory size and battery life, whereas state-of-the-art 
ASR systems are computationally intensive. To circumvent these restrictions, a great deal of 
effort has therefore been spent on enabling efficient ASR implementation on embedded 
platforms, primarily through fixed-point arithmetic and algorithm optimisation for low com-

from the architecture side: Distributed speech recognition (DSR) splits ASR processing into 
the client based feature extraction and the server based recognition. The relief of com-
putational burden on mobile devices, however, comes at the cost of network deteriorations and 
additional components such as feature quantisation, error recovery and concealment. An 

speech transmission from client to server. Over the past decade, these areas have undergone 

1.1 Introduction 

Computing is penetrating every corner of our life: Mobile devices bring computers 
all over the place and networks connect everywhere to computing resources. Today 
masses of mobile devices are being used as digital assistants, for communication  
or simply for fun. Examples are PDAs, mobile phones, MP3 players, GPS devices, 
digital cameras and the like. With mobile phones alone, the number of subscriptions 
exceeded 2.7 billion by the end of 2006 according to Informa’s report, Mobile 
Market Status 2007 (http://www.informatm.com). The number is expected to hit 
3.5 billion by 2010. On the networking side, the goal has long been to achieve network 
access anywhere, anytime and from any devices. Besides the fast development of 
various network forms such as 3G, wireless LAN,  Bluetooth and IP networks, the 
concept of free wireless connection for the public is widely accepted and in many 
places, has been implemented or is under serious considerations.  

substantial development. This chapter gives a comprehensive overview of the areas and dis- 

alternative to DSR is network speech recognition that uses a conventional speech coder for 

cusses the pros and cons of different approaches. The optimal choice is made according to the

putational complexity and memory footprint. The restrictions can also be largely bypassed 

complexity of ASR components, the resources available on the device and in the network and
the location of associated applications. 



2 
 
 In this ubiquitous computing environment, the use of keypad, stylus and small 
screen is inconvenient and speech-centric user interface is foreseen to be a desirable 
interaction paradigm where automatic speech recognition (ASR) is the enabling 
technology. This has led to the growing interest in deploying speech recognition on 
mobile devices.  
 As ASR technology has been optimised primarily for general computers in a 
centralised architecture, specific care is required when incorporating the technology 
into mobile devices and communication networks, both of which place significant 

desktop computers, mobile devices are inherently featured with compromised com-

access, small memory size and limited battery life. Fortunately, the ‘always-on’ 
network connectivity for mobile devices opens up new opportunities to circumvent 

periods or locations. ‘Always-on’ usually means connectivity with some drop-outs, 
hence over less than 100% of time. In fact, placing ASR in the remote server is an 
efficient option for network based applications which can tolerate natural drop-outs 
in radio network connectivity. In other cases, placing ASR in the mobile devices 
represents the only possibility.  
 

transmitted to the server where feature extraction and recognition decoding are 
conducted (Kim and Cox 2001). The apparent and major advantage of the NSR 

no changes are required for the existing devices and networks. It further shares all 
the advantages of server based solutions in terms of system maintenance and update 
and device requirements. In addition to network dependency, the downside of NSR 
is that speech coding and transmission may degrade the recognition performance due 
to such factors as data compression, transmission errors, training-test mismatch, pro-
duction model oriented parameterisation and transcoding (Euler and Zinke 1994; 
Lilly and Paliwal 1996; Peinado and Segura 2006). Among the factors, effect of 
information loss over transmission channels has shown to be the most significant.  
 The curse of dimensionality is a well-known problem in pattern recognition. In 
ASR, feature extraction process is applied to the speech signal to obtain a 
representation with a low dimension and less redundant information. The generated 
features are therefore well suitable for compression and transmission. DSR directly 
quantises these features and transmits them through networks (Pearce 2004; Tan et al. 

these constraints by delivering some of the ASR computing tasks into remote ser- 

themselves, which for instance are not always reliable or even not available for some 

Due to the existence of means of interaction, the user expects perfection from 

puting power, reduced CPU (central processing unit) clock, limited-speed memory 

vers. The price to pay, however, is the effect of limitations enforced by networks 

constraints on the use of ASR to its full potential. In comparison with contemporary 

expectation, in the attempt of utilising the resources available from devices and 

speech coding. This enables a plug and play of ASR systems at the server side while 

 In NSR, speech signal, in most cases encoded by a conventional speech coder, is 

speech interfaces, presenting a significant challenge for both academia and indus- 

approach is that numerous commercial applications are developed on the basis of 

try. While efforts have been put in all aspects of ASR technology to meet the 

networks and addressing the accompanying hindrances, three approaches have been 

Zheng-Hua Tan and Imre Varga

devised: network speech recognition (NSR), distributed speech recognition (DSR) and 
embedded speech recognition (ESR).  
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2005). In the server the features are decoded and used for recognition. With recent 
advances in source coding, channel coding and error concealment, this approach 
both achieves a low bit rate and avoids the distortion introduced by speech coding. 
To provide the possibility for human listening, effort has also been put into the re-
construction of speech from ASR features with or without supplementary speech 
features such as pitch information and the results are quite encouraging (Milner and 
Shao 2007). The key barrier for deploying DSR is that it lacks foundation in the 
existing devices and networks that NSR has. Stronger motivation and more effort 
will be needed to make DSR grow in visibility and importance.   
 In ESR, all ASR processing is conducted in the target device (Varga et al. 2002). 
Such fully embedded ASR is independent of network connectivity and has the 

concern turn out to be nontrivial. Update of the ASR engine is also inconvenient due 
to the widespread, numerous devices. In many cases ASR is merely an integrated 

optimisation are therefore required to realise ASR in embedded platforms (Lam et al. 
2003). The hope lies in the continuous advance in semiconductor technology 

of ASR is expected to become less and less of a bottleneck in the future. 
 This chapter presents an overview of the various ASR areas and discusses the 
pros and cons of different approaches. The remainder of this chapter is organised as 
follows. Section 1.2 presents the basics of ASR and limitations of mobile devices 
and networks. Sections 1.3, 1.4 and 1.5 sequentially present network, distributed and 
embedded speech recognition. This chapter is ended with discussions.  

1.2.1 Automatic Speech Recognition  

et al. 1999). Modern ASR systems are firmly based on the principles of statistical 
pattern recognition, in particular the use of hidden Markov models (HMMs). Given 
the observation data Y, which are feature vectors extracted from the speech signal, 
the most likely sequence of words ˆ

                      )|()(maxarg)|(maxargˆ WPWPWPW
WW

YY                             (1.1) 

 
where )(WP  is the a priori probability of observing some specified word sequence 
W and is given by a language model, and )|( WP Y  is the probability of observing 

for compiling application specific grammars, bandwidth requirement and security 

advantage of not introducing extra distortion to speech signals. However, the re- 

part of user interfaces, so ASR is not supposed to consume a large proportion of 

sumption. Also, when the ASR involves large databases residing in networks, e.g. 

implying a rapid evolution of computing speed and memory size so the complexity 

quirements to the client are high in terms of computing, memory and power con-

computational resources and scarce battery. Fixed-point arithmetic and algorithm 

1.2 ASR and Its Deployment in Devices and Networks 

W  is found through the following Bayesian de-
cision rule: 

Automatic speech recognition converts a speech signal to a word sequence (Deller  
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speech data Y given word sequence W and is determined by an acoustic model, often 
an HMM.  
 The architecture of a typical ASR system, depicted in Fig. 1.1, shows a 
sequential structure of ASR including such components as speech signal capturing, 
front-end feature extraction and back-end recognition decoding. Feature vectors are 
first extracted from the captured speech signal and then delivered to the ASR 
decoder. The decoder searches for the most likely word sequence that matches the 

The output word sequence is then forwarded to a specific application.  
 The partition between the ASR components is sharp, enabling flexible 
architectures when deploying it on the device and in the network. Speech is always 
captured in the client and the application can reside either in the client or in the 
server. The decision on where to place the remaining ASR components distinguishes 
three approaches: NSR, DSR and ESR, as shown in the bottom panel of Fig. 1.1. The 
choice of approaches is driven by a number of factors including complexity of 
components, resources available on the device and in the network, and location of 
the application.  

Fig. 1.1 Architecture of an ASR system  

 Although the acoustic model is as well related to and may adapt to application, 
the language model has much stronger dependency on it, especially when the model 
is constructed from rule-based context-free grammars. Grammar based LM often 
dynamically changes along the application dialogue flow and necessitates data from 
application and databases. Stochastic language models, such as data-driven n-gram 
trained from text corpora, however, are less dependent on individual applications and 
can be generated offline. The data location, the size of grammar and the frequency of 
change in the grammar are among the decisive factors in choosing embedded or 
remote ASR, see Chap. 13. 
 The next factor to consider is the complexity of various ASR components. In 
general, the front-end processing is less resource demanding. Nevertheless, the 
HMM based back-end is much more computationally intensive than the front-end 
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feature vectors on the basis of the acoustic model, lexicon and language model (LM). 
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sequences takes a substantial amount of CPU resources due to the needs for 
calculating observation likelihood and for searching over a huge space. The storage 
of intermediate results brings in further demand for memory. During the decoding, 
memory is frequently accessed making memory access speed an important factor. 
Finally, it consumes a significant amount of energy. When implemented in embed-
ded platforms, these demands for resources appear to be a considerable obstacle and 
optimisation is therefore necessary to pursue.  
 In the following we discuss the constraints of mobile devices and communication 
networks.  

1.2.2 Resources and Constraints of Mobile Devices  

Key concerns with mobile devices are computing power, fixed-point arithmetic, 
memory size, memory access speed and power consumption (or battery lifetime). 
These factors are common for all low-cost consumer electronic devices including 
PDAs, mobile phones, car kits and game devices. Although resources are generally 
scarce on consumer devices, we have to carefully distinguish between various scen-
arios. The basic aspect is the targeted speech recognition application in relation-
ship to the available resources: The needs of e.g. digit dialling, keyword spotting or 
continuous dictation are largely different and a specific device will be able to run 
speech recognition up to a certain complexity level.  
 From an ASR implementation point of view, mobile devices and car kits may  
be classified into at least two classes: high-end and low-resourced platforms. It is 
important to mention that as of today, computing power, memory size and speed in a 
consumer product are usually chosen according to the requirements of the main 
functionality of the device. Speech recognition software is part of the handset soft-
ware infrastructure hence ASR based applications are considered as well although no 
driving forces when determining the actual resource level of a platform. The con-
sequence is that we have to choose the actual speech recognition solution according 
to the capabilities of the given platform. Examples for high-end devices are PDAs, 
featured car kits and smart phones, and plain mobile phones for low resourced 
platforms. For discussion purpose, it is as well interesting to somehow touch one 
more class of consumer devices—any other unit with a microphone including tele-
phone and home electronic appliances. 
 Typically, users of high-end devices expect the support of advanced features, for 
example, video telephony, audio-video streaming or mobile TV, messaging service, 
interactive content delivery—all these applications already require a (relatively) 
high-resourced platform. Speech recognition based applications may make benefit of 
the availability of those resources. Command-and-control by speech assists the user 
in a more comfortable user interface. Furthermore, some advanced features like key-
word spotting may be offered as well, in addition to name and digit dialling. The 
resources on mobile phones or game devices are still limited today to support a large 
vocabulary continuous speech-to-text dictation application. However, resources of 
high-end devices, such as PDAs, smart phones and eventually car kits, have reached 
the level to support full-featured dictation useful for SMS and email. As smart phones 

and has a high demand for memory and CPU resources. First, the acoustic model 
normally consists of several millions of parameters and the system usually has a 
large lexicon and language model to store and access. Secondly, decoding word 
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and PDAs are more and more enriched by new features, we may expect a positive 
effect on speech recognition based applications as well. 
 On the other hand, plain mobile phones basically used for telephony are no ideal 
platform for sophisticated speech recognition yet. They still may be equipped by 
speech recognition based applications: Isolated-word digit dialling is the best 
example although name dialling using a combination of speaker independent and 
speaker dependent training fits simple phones well. Good progress has been demon-
strated in this area over the last years as continuous digit dialling becomes available 
as well. Nevertheless, the wish of having enriched ASR applications in plain phones 
presents opportunities for DSR and NSR, which require a thin client only.  
 Battery lifetime (around 3–5 h in a mobile phone when talking) represents a 
major constraint in addition to limited computing power and memory size since 
robust signal processing algorithm computing, large storage with fast access and 
increased CPU speed imply increased power consumption. In addition, power 
consumption further increases when a video screen is present e.g. for video 
telephony, video streaming and mobile TV applications. The impact is even less 
power for ASR applications. Although high power drain of video applications urges 
manufacturers to improve the battery situation, this circumstance does not imply 
necessarily more power for speech recognition applications. Chapter 17 is dedicated 
to managing and optimising battery lifetime for mobile devices through techniques 
like energy aware speech recognition.  
 After elaborating the impacts of scarce resources onto the feasibility of speech 
recognition applications in mobile devices, let us take a closer look at the platform 
constraints themselves. A major constraint is the available memory: In a consumer 
device like a mobile phone, game device, car kit, the typical size is 4–16 MB for 
RAM memory with slow access and up to 32 kB for cache.  So the amount of signal 
processing algorithms that can run simultaneously is limited and they also limit the 
size of language and acoustic models. The result is a compromised performance. 
Computing power of the CPU is limited which implies the use of suboptimal methods 
in speech recognition and hence performance degradation. In addition, the CPU runs 
on fixed-point arithmetic, which implies the need for fixed-point algorithm code, or a 
floating-point arithmetic that is emulated on the CPU’s fixed-point hardware. The 
second approach allows the implementation of floating-point code but at a reduced 
speed, further decreasing the available computing power. Moreover, there is no low-
level access to the operating system by the programmer of signal processing algo-
rithms; high-level programming is more comfortable but results in a less efficient 
code. Resource scarcity is even worse when using the device in adverse acoustic 
environments, which is usually the case for mobile phones, PDAs or car kits. Car 
noise, street noise, office noise and reverberant speech all represent major impair-
ment factors to the input speech commonly referred as adverse acoustic conditions. 
Sophisticated signal processing algorithms are needed to cope with the negative 
effect of the adverse acoustic environment—their implementation is not always 
possible in highest quality due to memory and speed constraints.   
 Besides physical resource situation, it is worth drawing our attention to further 
aspects of properties of mobile device platforms with respect to speech recognition 
applications. Speech input has to compete with existing and well-accepted user interface 
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SMS text. However, there are some limiting factors of conventional user interface 
methods in consumer devices. One of them is that due to potentially increased risk of 
accidents, law prohibits the use of hand-held devices while driving in a number of 
countries. Furthermore, the size of consumer device keypads is becoming smaller 
and smaller in the course of miniaturisation. Use of tiny keypads is neither com-

cated. Indeed, handling of phones is computer-like today already and it does not 
resemble that of conventional phones in any respect. Navigation in complex menu 
structures seems inevitable although not manageable for everyone. All these factors 
strengthen the need for an alternative user interface—the most natural solution is the 
use of speech recognition. 

1.2.3 Resources and Constraints of Communication Networks 

Networking facility is becoming a standard component on mobile devices; wired  
and wireless network accesses are broadly available, though not ubiquitous yet. 
Furthermore, network service is gradually moving towards a flat-rate subscription-
based business model in which the user pays a certain fee for unlimited connection. 
Variants usually differ in service grades like basic-enhanced-premium services. All 
these factors together assure an ‘always-on’ networking and the quality of con-
nections in relationship with costs, rather than network connectivity, becomes the 
major concern. From this viewpoint, we may distinguish between circuit-switched 
and packet-switched types of networks as detailed in the following.  
 Circuit-switched networks set up a dedicated circuit (or channel) between the two 
parties for the duration of a communication and this gives a constant delay and a 
constant throughput. In contrast, packet-switched networks break data into small 
packets and based on the destination address in each packet, route them through 
nodes and data links that are shared with other traffic. Note that the previously 
mentioned data may refer to any type of information, such as text of an email or 
segments of digitised speech signal in telephony service. Once all the packets con-
stituting a message arrive at the destination, they are reassembled in the proper order 
to restore the original message.  
 Circuit-switched networks are ideal for communications that require data to be 
delivered to its destination in real-time and in its original order. Example com-
munications are speech conversation (telephony) and video telephony. Packet-
switched networks are rather oriented to non-real time data transfer, and they are 
more efficient and robust if some amount of delay is tolerable. Nowadays, packet-
switched networks are also used for speech conversation (named VoIP) although this 
service lacks the quality common for circuit-switched telephony and suffers from 
large call latency. Extensive efforts are made on the QoS area and on speech coding 
so that quality of VoIP based service improves steadily. Due to overall advantages in 

ods, like typing on a keypad or pushing buttons on a phone, pointing with stylus, 

enriched by more and more features, their handling becomes increasingly sophisti-

use of touch screen, are all well established. New users seem to learn typing of 

fortable for some people nor reliable enough. Finally, as high-end devices are 

buttons on a phone quickly and especially young people are fast when typing 

methods, for all of command-and-control, dialling or text input. The existing meth- 
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terms of flexibility and costs, packet-switched IP networks are the development 
trend and will be the dominating network form in the future.  
 Landline telephone networks are circuit-switched and are considered reliable, 
whereas radio channels cannot be considered as always reliable because fading and 
interference introduce errors into transmitted data. Specifically, in circuit-switched 
wireless channels, transmission impairments arise in the form of bit errors. In packet-
switched networks, the impairment is in packet errors: Packets are queued or 
buffered in each network node, and due to congestion at the nodes, packets can be 
lost or get delayed and thus have to be declared as lost by real-time applications. 
Packet-switched networks implement packet loss concealment mechanisms to 
improve the subjective quality of the speech signal in the presence of packet losses.  
Bit error and packet loss are two different types of channel noises, but one thing in 
common is that both tend to be burst-like, making error recovery and concealment a 
challenging task.  
 Lossless transmission schemes are applied for data transmission, so that channel 
noise is reflected as delays rather than deterioration of data quality. For real-time 
services such as speech conversation and remote speech recognition, delay above a 
certain threshold is not acceptable. As a result, transmission errors inevitably remain 
in the data and degrade ASR performance. Techniques for error recovery and con-
cealment must be applied and take effect within certain range of time for both NSR 
and DSR.    
 Although network capacity has been expanded dramatically, more and more new 
applications are constantly deployed. Thus, bandwidth is obviously a concern and 
data compression is always welcomed for transmission of speech information. Low-
bit-rate compression in NSR is a source of performance degradation, though not as 
severe a source as transmission errors. In contrast, the effect of data compression on 
DSR is often negligible.  

1.2.4 Architectural Solutions for ASR in Devices and Networks 

Through the discussions above, we get a picture about ASR and its deployment 
environments. From the system architecture point of view, ESR may be considered 
as the simplest approach since all recognition related processing is performed in the 
client and no signal or data is sent from the client device to a remote server based 
engine. This simplicity is conditioned on that the ASR related application is em-
bedded on the device, or the communication between the ASR and the application  
(if network based) is restricted to merely the recognition results. Otherwise security 
concern and data dependence may favour a remote ASR solution. Furthermore, due 
to the limitations of embedded system platforms, the implementation of ESR 
requires customised fixed-point conversion and algorithm optimisation to reduce its 
consumption of memory, computation and power (Novak 2004). Finally, porting and 
update of ESR systems are up to the user.  
 The downsides of ESR exactly represent the benefits of a remote ASR, and vice 
versa. The rule of thumb for data-intensive computing is to place computation where 
the data is, instead of moving the data to the point of computation (Bryant 2007). 
When the ASR acquires more data from the network than from the microphone,  
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a network based ASR may be preferable. Another favourable scenario for network-
based ASR is when the ASR computation is a big burden for the device. The 
network based approaches also offer some opportunities that ESR cannot offer. For 
example, humans can assist the ASR in the background to provide semi-automatic 
speech transcription service. 
 In remote ASR, speech signals are transmitted from the device to the server as 
either coded speech (NSR) or as ASR features (DSR), both of which can be effi-
ciently compressed to a bit rate of several kbps. Speech signal quality and (noise and 
channel) robustness are important parameters for choosing DSR while the wide 
deployment of high-quality speech coders makes NSR a favourite.  
 Due to the pros and cons of the three different approaches, they are expected to 
co-exist in the years to come.  

1.3 Network Speech Recognition 

voice conversation is transmitted to the server in which ASR is conducted. At  
the server side, there are two ways to extract ASR features from the bitstream of  
the coded speech. One is to reconstruct speech signal first and extract features 
subsequently; in this case, NSR is essentially the concatenation of a conventional 
speech coding and decoding (codec) system and a speech recognition system. The 
other way is to estimate features directly from the bitstream without decoding 
(reconstructing) the speech; this method has demonstrated a superior performance to 
the former in terms of both computational complexity and recognition accuracy 
(Kim et al. 2001; Peláez-Moreno et al. 2001).  
 The ubiquitous presence of speech coding on mobile devices largely leverages 
the deployment of NSR as this enables a plug and play of ASR systems at the server 
side without touching the massive clients. For some devices such as for a telephone 
which have no computing power for basic front-end processing, NSR represents the 
only possibility to have an ASR-driven interface.  
 The disadvantages of NSR are network dependency and distortion introduced by 
speech transmission specifically by low bit-rate coding and error-prone channels. 
Coding distortion occurs mainly since speech coders are optimised for receiver-side 
reconstruction and human listening rather than for computer recognition. For 
instance, parameterisation of speech coding is mainly based on a speech production 
model and thus the use of linear prediction coding (LPC) coefficients while speech 
recognition widely employs Mel-frequency cepstral coefficients (MFCCs) that  
are extracted on the basis of human perception. This difference can be overcome  
by directly estimating features from the bitstream of coded speech without re-
constructing the speech, see Chap. 3. In Kim et al. (2001), for a connected digit 
recognition task, the word error rate (WER) for wireline speech is 3.83% and it is 
5.25% for IS-641 coder at 7.4 kbps. Their proposed bitstream-based front-end achie-
ved a WER of 3.76%. However, techniques of this kind are tailored for each specific 

In NSR, speech encoded by conventional speech coders normally used for telephony 
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 As end-users of an NSR system may use various speech coders, the resulting 
mismatch between training and test is a source of degradation as well. In Euler et al. 
(1994), it is found that with matched training and test conditions, WERs for a 

models trained on 64 kbps A-law data are used for testing the 4.8 kbps CELP speech, 
the WER for it increases to 3.96%. Nevertheless, this observation is in contrast with 
that in Hirsch (2002) where training using PCM speech (no coding) generally gives 
better performance. For example, the weighted WER for PCM Aurora-2 speech is 

and testing the recogniser by using the same coder. When using PCM speech for 

matched coding condition. In contrast with the above moderate drops in ASR 
performance, certain audio codecs, such as the MPEG layer-2 8 kbps codec, can 
substantially degrade the ASR performance, or even result in almost random ASR 
output, see Chap. 2. The degradation becomes gradually less significant with better 
speech coding quality. That is achievable by using more sophisticated coding 
algorithms or increasing the bit rate and enlarging the audio bandwidth (wideband 
speech at 16 kHz sampling frequency). For example, it was shown (Fingscheidt et al. 
2002) when using the EFR or AMR codec in GSM at 12.2 kbps, the impact of 
speech coding itself is negligible on ASR performance while radio channel errors 
were found to be the main source of impairment. Overall, one firm conclusion is that 
low-bit-rate speech coding and transmission decreases ASR performance while 
transmission of >10 kbps coded speech over good channels has a negligible effect. 
 The effect of packet loss on NSR has been extensively investigated in (Mayorga 
et al. 2003). The authors reveal that packet loss may imply substantial degradation of 
recognition performance. In contrast, speech coding is a less severe problem, but 
when coupled with packet losses, it can make ASR out of function. One of the 
reasons is that speech coders usually exploit inter-frame correlation to achieve high 
compression ratio so that one frame loss affects subsequent frames—the pheno-
menon of error propagation (Pearce 2004). Lately some frame-independent coders 
have been developed. Furthermore, in a low-bit-rate coder, one packet contains a 
large amount of information making the effect of packet loss even more severe.  
 Various applications have been developed on the basis of NSR. For instance, it is 
used in interactive voice response (IVR) systems to accomplish complex transac-
tions that are difficult for touch tone based interaction to handle if a complicated 
application menu structure is to be avoided. A significant move in this direction is 

tions to be developed in a similar way to HTML based web applications. It aims ‘to 
bring the advantages of web-based development and content delivery to interactive 
voice response applications’ (http://www.voicexml.org).  

training and AMR 4.75 for testing, the WER is 28.17%, which is better than the 

and for 4.8 kbps CELP speech are 1.48% and 2.57%, respectively. When acoustic 
speaker independent isolated word recognition task for 64 kbps A-law speech 

coder. Recently Kim further proposed a CELP-type speech coder that uses MFCCs 
to represent the spectral envelop, see Chap. 4. 
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26.77% and it is 29.84% for AMR (Adaptive Multi-Rate) 4.75 mode when training 

the introduction of the W3C’s standard VoiceXML, which enables voice applica-
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1.4 Distributed Speech Recognition 

The high complexity of an ASR decoder makes it tempting to adopt a client-server 
architecture: placing the front-end in the client and the computation-intensive back-
end in the server. Since feature extraction is located in the client, the process of 
speech coding and decoding is eliminated. Instead, the feature vectors are directly 
compressed and sent to the server for recognition decoding. As data transmission 
may take place via heterogeneous networks, the use of a DSR codec further avoids 
the problem of transcoding. 
 To optimise DSR performance over adverse transmission channels, considerable 
efforts have been made ranging from front-end processing, source coding/decoding, 
channel coding/decoding, packetisation to error concealment (EC) (Tan et al. 2005). 

are introduced briefly in this section and are extensively covered by Chaps. 6, 7, 8 
and 9 in addition to a review of DSR standards in Chap. 5. 

1.4.1 Feature Extraction 

The extraction of discriminative and reliable features is a key issue in speech 

choice.  
 

de facto standard features and are therefore used in DSR systems as the primary 

reconstruction from MFCC features (Milner et al. 2007). This effort together with  
the attempt of using MFCC features for speech coding (Chap. 4) imply a convergence 

For human listening purpose an interesting exploration consists in speech 

recognition. Over the years, MFCCs (Davis and Mermelstein 1980) have become the 

A diagram of a typical DSR system is shown in Fig. 1.2. The major building blocks 

Fig. 1.2 Diagram of a DSR system
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reconstruction.  
 
hands-free mode a far field microphone further decreases the signal-to-noise ratio of 

robustness (speech enhancement) techniques must be implemented in the front-end 
at the client side.  

1.4.2 Source Coding 

limited channels. Techniques include scalar quantisation, vector quantisation (VQ) 

DSR.  
 The widely used Split VQ partitions each feature vector into sub-vectors and 
quantises each sub-vector independently by using its own codebook. Digalakis et al. 
(1999) have extensively evaluated the use of split VQ and scalar quantisation for 
compressing MFCC features. As compared with full VQ and scalar quantisation, 
split VQ has a better trade-off between storage and computation requirements and 
quantisation performance. It was found that 2 kbps is sufficient for 13-dimentional 
MFCCs.   
 Speech features contain a substantial amount of redundant information. In 
transform coding, the redundant information or correlation in the features are 
removed by transforming them, and thereafter quantisation is applied in the 
transformed domain. This is also known as block coding. An example is the two 
dimensional discrete cosine transform (2D-DCT) (Hsu and Lee 2004; Zhu and 
Alwan 2001).  
 Tan and Lindberg (2007) presented a scalable coding scheme based on a variable 
frame rate analysis where the target bit rate is met by adjusting frame rate. Prior to 
recognition in the server, frames are repeated so that the original frame rate is 
restored to fit the frame rate with the applied HMM models.  
 The ETSI-DSR front-end compresses speech source into a bit rate of 4.4 kbps 
and gives a WER of 0.95% on the Aurora 2 database (Hirsch and Pearce 2000). The 
2D-DCT achieves a bit rate of 1.45 kbps and a WER of 1.58% (Hsu et al. 2004). The 
run-length coding method obtains a WER of 0.89% at a bit rate of 1.40 kbps and a 
WER of 1.15% at a bit rate of 1.06 kbps. The performance of run-length coding is 
dependent on the amount of steady regions in the signal, so does transform coding.  

and features sent to the DSR server are in the Mel-frequency domain, those 

predictive) features, which have the advantage of being efficiently coded into as low 

speech. Noise robustness in adverse conditions is therefore a key issue to deal with. 

Acoustic environments in which mobile devices operate are typically noisy. In 

Since many robustness techniques are applied in the time and frequency domains 

one member of the speech coding family. The difference lies in that the optimisation 

system (Bernard and Alwan 2002). It, however, lacks the possibility for speech 

criterion for speech coding is primarily perceptual quality whereas it is recognition 

and transform coding (So and Paliwal 2006). In general lossy coding is applied for 

performance for DSR feature extraction.  

as 0.3 kbps while providing recognition accuracy comparable to the unquantised 

of speech coding and DSR feature extraction where the DSR codec becomes 

Zheng-Hua Tan and Imre Varga

The other features that have been investigated are the PLP  (perceptual linear 

Source coding is applied to compress speech features for transmission over bandwidth-
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resilient source coding techniques should be effective to prevent error propagation 
and minimise distortions. When inter-frame correlation is exploited, the resulting 
inter-frame dependency will make the coder more sensitive to transmission errors. 
Some coders are considered joint source-channel coding such as layered coding 
(Srinivasamurthy et al. 2006) and multiple description coding (Tan et al. 2007a) 
which are used for DSR as well.   

parameter based on the histogram or order statistics of that feature parameter within 

mismatch between the corrupted feature vectors and the fixed codebook. Another 

DSR to achieve a variable bit rate compression scheme (Borgstrom and Alwan 
2007). 

1.4.3 Channel Coding and Packetisation  

adding redundancy to the data (Bossert 2000). Channel coding techniques are mea-
sured by, among others, error detection capability and error correction capability.  
In applying techniques known as backward error correction (BEC), errors are de-
tected but not corrected; upon detection of errors, a retransmission is requested. 
Retransmission is not deployed for DSR since speech interaction is considered a real 
time application so that Real-time Transport Protocol (RTP) is used. Retransmission 
mechanism further relies on duplex communication. Instead, server-side EC can  
be used in combination with BEC. The other type of techniques, known as forward 
error correction (FEC), aims at not only detecting errors but also recovering the 
message from errors without referring back to the client. For instance, Boulis et al. 
(2002) applied Reed-Solomon codes to DSR to cope with packet erasure. In general, 
channel coding techniques trade bandwidth for redundancy and thus error resilience.   
 FEC and EC techniques are efficient in handling randomly distributed errors, but 
inefficient when errors are burst-like. Therefore, they are better used in connection 

interleaving is such a technique that is able to randomise transmission errors though 
at the cost of delay (James and Milner 2004). 
 Though being efficient, client-driven techniques have drawbacks like increased 
bandwidth, additional delay, computational overhead and weak compatibility.  
 In applying channel coding to DSR, error detection is more important than error 
correction (Bernard et al. 2002) as error detection in combination with EC is quite 
effective for speech recognition. This is further supported by a frame based CRC 
(cyclic redundancy check) for error detection, which shows a significant perform-
ance improvement with a marginal bandwidth increase (Tan et al. 2005).  

Source coding also plays a role in robustness against transmission errors. Error-

 Histogram-based quantisation (HQ) was recently proposed for feature com- 

a moving segment. This method needs no fixed codebook and eliminates the 

pression (Wan and Lee 2006), which performs the quantisation of a feature 

recent scheme applies the group of pictures concept (GoP) from video coding to 

Channel coding aims at protecting information from channel related errors through 

with appropriate packetisation, which redistributes errors or erasures. For example, 
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1.4.4 Error Concealment  

coding including simple BEC techniques (e.g. parity check, checksum, CRC) and 
more sophisticated FEC ones where the amount of errors may extend beyond their 
capability of error correction. The other is to exploit the redundancy in the speech 
signal. Due to the real-time constraint, detection of errors does not result in a request 
for retransmission to the client, but in a server-based EC.  
 EC first aims at feature reconstruction through repetition, interpolation, splicing, 
or substitution among which repetition usually gives a superior performance. Sub-
vector based EC is a repetition at the sub-vector level which uses speech correlation 
to identify consistent, thus potentially correct, features within erroneous vectors (Tan 
et al. 2007a). This is proved to be quite effective and well suitable for combining 
with ASR-decoder EC such as weighted Viterbi decoding.  
 To benefit from a priori information about speech features, statistical techniques 
exploit the statistical information about speech for feature reconstruction (Gomez  
et al. 2003). Reliability information from channel decoding can also be used either 
for feature reconstruction or for ASR decoding, resulting in a class of soft-feature 
decoding based techniques (Peinado et al. 2003).  
 Since we have a computer (speech recogniser) as destination rather than a person, 
the quality of feature reconstruction can be deployed in the ASR, resulting in ASR-
decoder based EC. At the ASR decoding stage, the reliability of the channel decoded 
features is integrated into the recognition process by using modified Viterbi de-
coding algorithm such that contributions made by observation probability associated 
with features estimated from erroneous features are decreased. The concept of un-
certainty decoding has also been applied for EC in DSR (Ion and Haeb-Umbach 
2006; Wan et al. 2006). 

Server-based EC has a good compatibility e.g. with the ETSI-DSR standards.  

1.4.5 DSR Standards  

group in ETSI. The first standard was published in 2000 that defines a feature-
extraction processing and a source and channel coding scheme (FE) (ETSI ES 201 
108 2000). It aims to handle the degradations of ASR over mobile channels due to 
lossy speech coding and transmission errors.  
 As mobile devices often operate in adverse acoustic environment and denoising 
techniques are applied in the front-end, ETSI upgraded the basic front-end by 
including a noise robustness component to the advanced front-end (AFE) in 2002 
(ETSI ES 202 050 2002). The bit rate for both FE and AFE is 4.8 kbps of which 
4.4 kbps is used for source coding and 0.4 kbps for channel coding. 
 A further update is to respond to the needs for server-side speech reconstruction 
and for tone language ASR. This is done by including fundamental frequency 
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A number of DSR standards have been produced by the STQ Aurora DSR working 

The final stronghold for error robustness is error concealment. The prerequisite for  
EC is error detection, which can be done in two ways. One is to apply channel 
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 2003). The bit rate for extended front-ends is 5.6 kbps where 5.1 kbps is for source 
coding.  
 Extensive industrial tests have been organised by the 3rd Generation Partnership 

to adaptive multi-rate codecs (3GPP TR 26.943 2004). As compared to AMR 4.75 
mode, XAFE obtained a 36% reduction in WER. The gain with using XAFE is even 

speech enabled services and published a new specification that provides a fixed-point 
implementation of XAFE (3GPP TS 26.243 2004). The significance of the selection 

GSM and 3G mobile devices (Pearce 2004). 
 In the Internet Engineering Task Force (IETF), the RTP payload formats have 
also been defined for these DSR codecs (Xie and Pearce 2004).  
 The introduction of front-end standards enables interoperability over networks 
and gets rid of transcoding, which often is needed for speech transmission over 
heterogeneous networks.  

1.4.6 A Configurable DSR System  

Based on the ETSI XAFE (3GPP TS 26.243 2004) and the SPHINX IV speech 
recogniser (Walker et al. 2004), a configurable DSR system is implemented in (Xu  
et al. 2006). The system supports simultaneous access from a number of clients each 
with its own requirements to the recognition task. The recogniser allows multiple 
recognition modes including isolated word recognition, grammar based recognition 
and large vocabulary continuous speech recognition (LVCSR). The client part of the 
system is realised on a H5550 IPAQ with a 400 MHz Intel® XScale CPU and 
128 MB memory. Evaluation shows that conversion from floating-point AFE to 
fixed-point AFE reduces the computation time by a factor of 5 and most of the com-
putation comes from the noise reduction algorithm deployed in the front-end and the 
MFCC calculation itself is computation light. With regard to memory consumption 
in the client, the size of the client DLL library file is only around 74 kB, and the 
maximal memory consumption at run-time is below 29 kB.   

1.5 Embedded Speech Recognition  

speech recognition processing is located in the target mobile or handheld consumer 
device. That is the case if no network connection is available and also for certain 
speech recognition applications even when a communication link is available, while 
others may use NSR and DSR methods. Example consumer devices are PDAs, 
mobile phones, car kits, game devices. 

more significant in the presence of transmission errors due to the frame inde- 
pendency in DSR codecs. Consequently 3GPP chose the XAFE as the codec for 

by 3GPP is that we can look forward to the widespread deployment of DSR in future 

information in the feature stream and has led to the extended versions of the two 
issued DSR standards: XFE and XAFE (ETSI ES 202 211 2003; ETSI ES 202 212 

Project (3GPP) and the results justified the superior performance of the DSR XAFE 

Commonly, embedded speech recognition (ESR) refers to a technique in which all 
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1.5.1 ESR Scenario 

From a system architecture point of view, embedded speech recognition may be 
considered as the simplest approach when implementing speech recognition. In 
contrast to network or distributed speech recognition, there is no signal or data sent 
from the client device to a remote server based engine. Hence the application is 
always ready to use, irrespective of radio link existence and conditions. 
 Given that, it becomes immediately clear there is a price to be paid for the 
architecture simplicity: The complex speech recognition algorithm has to run on a 
generically low-resourced consumer device. In fact, we are forced to develop special 
techniques to cope with limited resources in terms of computing speed (MIPS) and 
memory on the platform. The result of the efforts is that consumer platforms are 
generally able to accommodate some kind of ASR based applications. The limits 
today are best demonstrated by the availability of LVCSR recognisers (dictation) 
only on the most powerful consumer platforms, on the latest PDAs (Zhou et al. 
2004). Also, all maintenance and upgrading activity falls on the user or service of the 
consumer device. 
 Fortunately, continuous advance in semiconductor technology implies a rapid 
evolution of computing speed of microprocessors and improvement of power con-
sumption of memory devices. So the complexity of speech recognition algorithms is 
expected to become less and less of a bottleneck in the future when implemented in 
an embedded manner. Nevertheless, server-based speech recognition will always 
have an advantage in terms of available resources. The result of increasing compu-
ting resources and at the same time, more sophisticated methods to cope with low 
resources may be expected to be a convergence of embedded and remote recognition 
in terms of application: The border between applications realised by these techniques 
will disappear which allows for advanced features like the use of natural language 
understanding instead of simple command-and-control system. 
 Resource scarcity limits the available applications; on the other hand it forces the 
algorithm designer to optimise techniques in order to guarantee sufficient speech 
recognition performance even in adverse conditions and on limited platforms, and to 
optimise memory usage. 

1.5.2 Applications and Platforms 

Mobile phones, PDAs, game devices, car kits are all attractive target products for the 
application of speech recognition. Typical applications in car environment are 
continuous digit dialling and name dialling with hands-free car kits, and command-
and-control for menus and navigation systems. Mobile phones implement speaker-
dependent (trained) name dialling and digit dialling, also command-and-control 
functionality. Games benefit from command-and-control feature. Next, mobile phones 
will offer speaker-independent dialling and simple dictation features for SMS. 
Command-and-control applications will extend to interactive man-machine interfaces. 
Chapters 14, 15 and 16 are dedicated to speech recognition in mobile phones, PDAs 
and car kits, respectively.  
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 Embedded speech recognition may be implemented on a general purpose 
processor available in the consumer device already, or on a specialised IC in the 
device designed to run speech recognition only. While the former approach allows a 
higher degree of customisation, the latter one is of benefit in terms of cost reduction 
if a very large quantity can be produced. An example for a general purpose processor 
in mobile phones is the ARM family: ARM7/ARM9/ARM11 offer 50–600 MHz 
processing speed usable on proprietary or common (Windows CE, Linux, Symbian) 
OS. Car kits often apply a DSP of 50–200 MIPS (TriCore, OMAP, Blackfin, C55) or 
a RISC processor. 

1.5.3 Fixed-Point Arithmetic 

may make the integration of complex speech recognition, for example of LVCSR, 
possible at all on consumer devices. 
 Whether a general purpose hardware platform or a specific one (custom IC) is 

following discussion, we address both cases. 
 A convenient way to develop the ASR software is using C or C++ language in 
floating-point in order to have a reference code. The next step is to convert it to 
fixed-point. The fixed-point C code serves then as the basis for assembler imple-
mentation on the target CPU. A basic requirement is that the numeric precision of 
the fixed-point code should not be worse than that of the floating-point reference 
code otherwise the performance may suffer. 
 Fixed-point data types must be used in the fixed-point version and the 
corresponding fixed-point operations have to be defined. A convenient approach has 
been introduced in ITU-T and ETSI for speech codec specification with the use of 
basic operators which model the instruction set of a hypothetical but characteristic 
16 bit fixed-point DSP. The basic operators are defined as ANSI-C functions for 
typically used arithmetic (addition, subtraction, multiplication, division and shift) 
and other operations (logarithm, square root etc.). All speech codecs of the last 
decade are specified in ITU-T and ETSI using the set of 16 bit basic operators. 
Following this practice, the DSR extended advanced front-end was defined using the 
ETSI 16 bit fixed-point basic operators in 3GPP TS 26.243 (2004). This method may 
be suitable for ESR implementations but apparently this approach has not been 
followed yet. 
 The Very Smart Recogniser (VSR) presented in Varga et al. (2002) addresses a 
method to imitate the mantissa-and-exponent representation of a floating-point data 
type by fixed-point one. This is realised by shifting the value to a range where the 

tion is not possible unfortunately because data types are CPU and implementation 
dependent. In addition, often a code of complex modules (division, FFT) are pro-

used for ESR influences the applied optimisation criteria and techniques which 

computational power of fixed-point devices as compared to floating-point processors 
tion, which are important aspects for consumer devices. Moreover, the higher 

include software level optimisation and custom hardware architecture design. In the 

vided by the DSP manufacturer specially optimised for the given DSP but use of 

data is optimally used and storing the shift level in a second variable. Exact imita-

Use of fixed-point processors is the key for low cost and for low power consump- 
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purposes. In VSR feature extraction due to MFCC logarithm, the feature values can 
easily be compressed into a signed 8 bit type which is used in both floating-point and 
fixed-point versions. As shown, more than 96% of the features are identical in the 

1
recognition performance of fixed-point software using floating-point trained HMMs. 
The compressing nature of the logarithm and the smoothing nature of linear 
discriminant analysis (LDA) help to reduce numeric differences. In addition, the 
complexity is not high. 
 For the development of a customised VLSI IC for an embedded isolated word 
recognition system, a purely software level optimisation method was proposed in 

replaced by fixed-point routine calls (for arithmetic operations) or look-up table 
implementations (for cosine and logarithm functions). For that, a C++ class named 
Fixed was developed. They first find a minimum word length implementation for 
each operand and then they optimise for a minimum circuit area of arithmetic 
operations by further fraction size optimisation. After optimisation of fraction size  
in the whole isolated word recogniser, the fraction size of LPC processor, VQ and 
HMM decoder is optimised subsequently. Minimisation of fraction size for LPC 
processor showed the most significant effect. Not just the same accuracy can be 
achieved by fixed-point. For the same speech recognition accuracy as with floating-
point, they even show a circuit area improvement of 29.7% with fixed-point arith-
metic, with training in floating-point. 
 Direct hardware level optimisation is achieved by the introduction of a low 
complexity custom arithmetic architecture based on high-speed lookup tables (Li  
et al. 2006). At the price of a small additional 59 kB of lookup table memory, a 
speed improvement of at least three times is expected.
 Chapter 12 reviews methods for fixed-point implementation of ASR systems, 
focusing on introduction of a practical approach to the implementation of the  
frame-synchronous beam search Viterbi decoder, N-grams language models, HMM 
likelihood computation and Melcepstrum front-end. The fixed-point recogniser is 
shown as accurate as the floating-point recogniser in several experiments with 
different types of acoustic front-ends and HMM’s. This allows highly accurate 
LVCSR algorithms with the same performance on the device as on the server. 

1.5.4 Optimisation 

The complexity constraint in consumer devices is in fact a major challenge for signal 
processing algorithm design. Section 1.2.2 presented the resources and constraints  
on mobile devices. As pointed out, signal processing design has to be such to cope 
with the effects of reduced computing power (CPU speed) and limited amount of 
memory. Next we address some optimisation techniques, which aim to overcome 
these difficulties in order to get satisfactory performance of embedded speech recog-
nition and optimise memory usage. 

these modules cannot be recommended for general fixed-point reference C code 

fixed-point and floating-point versions and less than 0.01% have a numerical 

(Lam et al. 2003) in a way to optimise for chip area. All floating-point operations are 

difference of more than 
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 For small vocabulary ASR applications most resources concerning memory and 
computing power are needed for HMM parameter storage and for calculating the 
emission probabilities. VSR (Varga et al. 2002) has to be able to run on a platform 
with 50 MHz processing power and a memory of less than 64 kB. VSR uses the 
properties of the LDA, discriminative training and HMM parameter coding. Dis-
criminative training is used to achieve high recognition rate with a moderate amount 
of Gaussians. Here a performance measure like the minimum word error (MWE) is 
applied for training. After Viterbi based maximum likelihood training, 10 iterations 
of MWE based training were performed. HMM parameters are coded using Sub-

(CDHMMs). The WERs show that discriminative training is most effective for small 
model sizes: In case of single density modelling the error rate on the test set is 
almost reduced by 50%. The experiments show that the use of discriminative 
training allows high performance HMMs with limited costs in terms of memory. The 
emission computation is highly processing power consuming. The SDCHMM allows 
computing emission probabilities very effectively. For each frame and every code-

computed as the sum of the pre-calculated stream log likelihoods. The results have 
shown that it is possible to reduce the memory requirement of HMM-parameters by 
a factor of three. 
 In Chap. 10, speech recognition optimisation techniques are presented that are 
especially suitable for ESR. Focus is on front-end, feature extraction and search. 
Specific algorithmic improvements are discussed while the best solution can be 

 The treatment of Chap. 11 focuses on long-term memory requirements and on 

tation accuracy limits are exploited. Considering data redundancies specific to HMM 

presented with cases like semi-continuous HMMs (SCHMMs) and SDCHMMs. 
Regarding parameter representation a simple scalar quantised representation is 
shown for the case of quantised HMMs (qHMMs).  

1.5.5 Robustness 

Noise robustness is an important requirement since the acoustic environment in 
mobile usage is quite different from laboratory: Adverse acoustic environment is 
common when using the device in a car or on the street. Although enrichment of 
application portfolio would require so, direct transfer of speech recognition solutions 
designed for high-resourced platforms like PCs to handheld consumer products is 
usually not possible—dictation is still too complex even for relatively high-powered 
consumer appliances and the acoustic environment in mobile usage, especially 
hands-free, is much more difficult.  
 Experience with early speaker dependent digit dialling shows a big difference 
between the attractiveness of say keyword spotting in the lab as compared to using 

space Distribution Clustering HMMs (SDCHMMs) where the Gaussians are re- 

word the stream likelihoods can be pre-calculated once. The log likelihood is then 

presented by pointers to a codebook. The VSR uses Continuous Densities HMMs 

achieved by a dedicated combination of particular improvements depending on plat- 

based acoustic models, parameter tying and state or density clustering algorithms are 

form and speech recognition task. 

acoustic model compression in which redundancy in data and parameter represen-
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speaker dependent name dialling on the phone in a car or on the street. That is true 
both from handling point of view (need for training in speaker dependent case, 
comfort with keyword spotting) and from an accuracy point of view (ideal in lab, 
impaired in real mobile environment).  
 Robustness means a set of multiple requirements: robustness against adverse 
acoustic conditions, background noise, Lombard reflex, gender, different pronun-
ciations, non-native talker, spontaneous speech. The front-end has to adapt to these 
conditions and also so-called robust HMM models are of advantage. In VSR (Varga 
et al. 2002), a maximum likelihood channel adaptation is used in feature extraction 
and a suitable database representing mobile usage is applied for training resulting  
in robust HMM models. VSR includes a spectral attenuation and a frame dropping 
algorithm. The spectral attenuation algorithms regard noise as an additive noise 
superimposed on undisturbed speech where the noise is regarded as statistically 
independent of the undisturbed speech. The goal of the algorithms is to create a time-
varying filter function based on estimates of the short-term power spectrum of noise 
to attenuate the noisy spectrum. A Wiener filter is calculated for every spectral bin as 
the attenuation function in the first stage called short-time spectral attenuation. In the 
second stage of this basic spectral subtraction scheme, the noise power spectrum is 
estimated by the minima of the smoothed power spectrum within a moving interval. 
The advantage is that no explicit detection of non-speech segments is needed. For 
every frequency bin the noise estimate is subtracted from the noisy speech signal 
where flooring is employed.  

1.6 Discussion 

This chapter presented an extensive overview on speech recognition on mobile 
devices and over communication networks.  
 We analyzed the system architecture and requirements of speech recognition,  
the resource situation and constraints on various targets like mobile devices and 
networks, and presented the characteristics of three main solutions in detail: network 
speech recognition, distributed speech recognition and embedded speech recog-
nition. These are different solutions addressing how to provide speech recognition 
based applications when using them on a mobile device.   
 Improved noise robustness and recognition accuracy in conjunction with 
algorithm complexity reduction for low-resourced consumer platforms represent the 
major challenge of embedding speech recognition in mobile devices. Increasing 
resources and optimisation techniques will certainly facilitate the deployment of 
embedded systems although resources will remain scarce for all consumer devices in 
near future for high-complexity applications like dictation systems. For such applica-
tions, use of distributed architecture is promising since this structure efficiently 
divides the system into two parts with a robust data link between them. Moreover, 
use of network based speech recognition is an excellent solution as well for 
sophisticated applications like large-vocabulary continuous dictation because high-
quality speech transmission can be achieved from mobile phone to server due to 
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mission. That is especially true if wideband (16 kHz sampling) speech will become 
widely deployed. Still the drawback of effect of packet losses remains, which will 
imply the need for implementation of effective packet loss concealment algorithms. 
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2 
Speech Coding and Packet Loss Effects on Speech  
and Speaker Recognition 

Laurent Besacier  

 

Abstract. This chapter is related to the speech coding and packet loss problems that occur in 
network speech recognition where speech is transmitted (and most of the time coded) from a 
client terminal to a recognition server. The first part describes some commonly used speech 
coding standards and presents a packet loss model useful to evaluate different channel degra-
dation conditions in a controlled fashion. The second part evaluates the influence of different 
speech and audio codecs on the performance of a continuous speech recognition engine. It is 
shown that MPEG transcoding degrades the speech recognition performance for low bit rates 
whereas performance remains acceptable for specialized speech coders like G723. The same 
system is also evaluated for different simulated and real packet loss conditions; in that case, 

lyzed. The third part presents an overview of joint compression and packet loss effects on 
speech biometrics. Conversely to the ASR task, it is experimentally demonstrated that the 
adverse effects of packet loss alone are negligible, while the encoding of speech, particularly 
at a low bit rate, coupled with packet loss, can reduce the speaker recognition accuracy con-
siderably. The fourth part discusses these experimental observations and refers to robustness 
approaches. 

2.1 Introduction 

Today in the context of industry and telecommunication, speech technologies are 
ever increasingly used for several tasks, including speech and speaker recognition. 
In this framework, a widely used architecture is client-server based where a distant 

of the speech signal is then generally necessary to reduce transmission delays and to 
respect bandwidth constraints. Many problems can appear with this kind of architec-
ture, particularly when the transmission is made via the internet or wireless net-
works: 

 • First, transcoding (the process of coding and decoding) modifies the spectral 
characteristics of the speech signal, and thereby can adversely affect the system 
performance;  

speech or speaker recognition server is remotely accessed by a client. Compression 

the significant degradation of the automatic speech recognition (ASR) performance is ana-
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these experimental observations and concludes this chapter.  

2.2 Sources of Degradation in Network Speech Recognition 

2.2.1 Speech and Audio Coding Standards 

stance, voice servers (used to obtain information via the telephone) are more and 
more developed. Nowadays, access to a voice server is not only made through the 
conventional telephone network, but voice can also be transmitted through wireless 
networks (with mobile phones or mobile devices) or through IP networks (through 
H323 videoconferencing standard for instance). Nowadays, the number of standard 
and proprietary coders developed to compress speech and audio data has been 
quickly increased. It is thus impossible to present a detailed view of all of them in 
this chapter. For more details on speech coding standards and algorithms, the inter-
ested reader may refer to (Goldberg and Riek 2000) or to international organizations 
websites like ITU (www.itu.int) or ETSI (www.etsi.org).  

As a consequence, we decided to present, in this section, only the coders that are 
used in the experiments further described in this chapter. Theses coders are neverthe-

rent channel degradation conditions in a controlled fashion. Section 2.3 evaluates 

 

This chapter is not dedicated to the proposal of robust methods to speech com-

that occur in network speech recognition. Section 2.2 describes some commonly used 

• Secondly, transmission errors can occur on the transmission line: thus, data 
packets can be lost (for example with UDP transport protocols over the Internet 
which do not implement any error recovery); 

• Finally, the time response of the system is increased by coding, transmission 
and possible error recovery processes.  This delay (termed “jitter” as used in 
the domain of computer networks) can be potentially very disturbing. For ex-

is only one subsystem amongst a number of other subsystems. In such cases, 
the effective operation of the whole system depends heavily on the response 
time of the individual subsystems.    

ample, in some applications (e.g. man-machine dialogue), speech recognition 

      This chapter presents an overview of the speech coding and packet loss problems  

speech coding standards and presents a packet loss model useful to evaluate diffe-

the influence of different speech and audio codecs on the performance of a continuous 
speech recognition engine. A common ASR system is also evaluated for different 
simulated and real packet loss conditions. Section 2.4 presents an overview of joint 

pression and packet loss. While these issues have been addressed by the author of 
this chapter, for instance, in (Mayorga et al. 2003), they will be deeply discussed
in other chapters of this book (notably Chaps. 3 and 4). 

Different human-machine interfaces use speech recognition technology. For in-

less widely used in different applications: GSM (used in European mobile wireless 

compression and packet loss effects on speech biometrics. Section 2.5 discusses 
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for audio compression). 
 

 

and enhanced full rate coders. Their corresponding European telecommunications 

ers work on a 13-bit uniform PCM speech input signal, sampled at 8 kHz. The input 
is processed on a frame-by-frame basis, with a frame size of 20 ms (160 samples). A 
brief description of these coders follows. 

 
Full Rate (FR) Speech Coder 

 
The FR coder was standardized in 1987. This coder belongs to the class of Regular 
Pulse Excitation-Long Term Prediction—linear predictive (RPE-LTP) coders. In the 
encoder part, a frame of 160 speech samples is encoded as a block of 260 bits,  

supports 22.8 kbps. Thus, the remaining 9.8 kbps are used for error protection.  

(http://kbs.cs.tu-berlin.de/~jutta/toast.html). 
 

Half Rate (HR) Speech Coder 
 

The HR coder standard was established to cope with the increasing number of sub-
scribers. This coder is a 5.6 kbps VSELP (Vector Sum Excited Linear Prediction) 

sequences for compliance verification. 
 

Enhanced Full Rate (EFR) Speech Coder 
 

The EFR coder was standardized later. This coder is intended for utilization in the 
full rate channel, and it provides a substantial improvement in quality compared  

Code Excited Linear Prediction (ACELP). The bit exact ANSI-C code for the EFR 

 

coder from Motorola (Gerson and Jasiuk 1993). In order to double the capacity of  

kbps are used for error protection. The measured output speech quality for the HR
coder is comparable to the quality of the FR coder in all tested conditions, except for

2.2.1.1 GSM (Global System for Mobile Communications) Coders 

communication), G711 and G723 (used in some VoIP protocols) and MPEG (used 

There exist different GSM speech coders; among them, we find the full rate, half rate 

standards are the GSM 06.10, GSM 06.20 and GSM 06.60, respectively. These cod-

leading to a bit rate of 13 kbps. The decoder maps the encoded blocks of 260 bits  
to output blocks of 160 reconstructed speech samples. The GSM full rate channel 

cation by means of a set of digital test sequences which are also given in GSM 

the GSM cellular system, the half rate channel supports 11.4  kbps. Therefore, 5.8

tandem and background noise conditions. The normative GSM 06.06 gives the bit 
exact ANSI-C code for this algorithm, while GSM 06.07 gives a set of digital test 

and 10.6 kbps for error protection. The speech coding scheme is based on Algebraic 

coder is given in GSM 06.53 and the verification test sequences are given in GSM 06.54. 

The FR coder is described in GSM 06.10 down to the bit level, enabling its verifi-

06.10. A public domain bit exact C-code implementation of this coder is available 

to the FR coder (Järvinen 1997). The EFR coder uses 12.2 kbps for speech coding 
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G.723.1, G.729, G.728, G.726/7 and G.711. This set of coders is also used in video 
transmission and is part of the standard H323. There are several software packages 
for videoconferencing which can also be used for voice transmission on the Internet, 
for example Microsoft’s NetMeeting uses H323. Recently, some VoIP softwares like 
Skype, for instance, use private standards. We will use in our experiments the H323 

with the highest bitrate: G711 (64 kbits/s: 8 kHz, 8 bits) while we also transmitted 
PCM speech without any compression. 

While G711 coder is very low complexity (it basically corresponds to a speech 

ACELP family (ETSI Consortium 1998). The Mean Opinion Score (MOS) which 

G711. 
 

 

mission of speech data but for compression of audiovisual data (TV programs for 

news and TV programs or films for archiving and retrieval. It is thus interesting to 

ance. Moreover, MPEGI audio coding supports a variable bit rate (from 8 to 

PCX11+ specialized board for layers 1, 2 and 3 of MPEG I and for different bit 
rates. The perceptual quality of these coders is similar to the one of ITU coders with 
similar bit rates. MPEG4 implements a specific speech coder that can operate below 
2 kbits/s but it is not considered in our experiments. 

2.2.2 Packet Loss 

While “live transmission” of a complete database over the network seems to be the 

et al. 2001), it is most of the time difficult to obtain a large range of degradation 
conditions with this method, which also needs numerous and time consuming con-
nections between distant sites. Another possibility is to simulate how the packets are  
lost on the network. In the experiments further reported in this chapter, we will use 
both real and simulated approaches which are more deeply described in the follow-
ing sections. 

 
 
 

Nowadays some popular speech coders in voice transmission over IP (VoIP) are: 

2.2.1.2 G711 and G723.1 Coders 

2.2.1.3 MPEG Audio Coders 

audio codec which has the lowest bit rate: G723.1 (6.4 and 5.3 kbits/s), and the one 

stream downsampled to 8 kHz with 8 bits per sample only), G723 is from the 

measures the perceptual quality of a coder is 3.9 for G723.1 whereas it is above 4 for 

Unlike GSM and G7XX which are specific speech coders, MPEG coders can com-
press any audio signal. In fact, MPEG audio coding is generally not used for trans-

instance). Another application of speech recognition is the transcription of broadcast 

test the influence of MPEG audio coding algorithms on speech recognition perform-

64 kbits/s), which allows us to test speech recognition on more and more com-
pressed speech. For the experiments on MPEG transcoded speech, we used a 

best approach to evaluate packet loss and ASR degradation in real conditions (Metze 
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If we suppose that the speech packets are transmitted over the Internet, the process of 

ted. In this model p is the probability of going from state 0 to state 1, and q the prob-
ability of going from state 1 to state 0. This model is then characterized by two  
parameters, p and q, which indicate the probability of transition from either state. 

p (1  q) n  1. If (1  q) > p, the probability of losing a packet is greater after having 
already lost one packet than after having successfully received a packet; which is 

Note that p + q is not necessarily equal to 1. When p and q parameters are fixed, the 
mean number of consecutive packets lost depends on p/q. The higher the quantity is, 
the stronger the degradation should be. For our experiments, this model was applied 
to obtain five different degraded versions of an existing database (Table 2.1). 

 

 

 
 
 
 
 
 
 

 

Fig. 2.1 Gilbert Model 
 
 

 
In order to observe what happens in real transmissions, the speech signals of the 
same database can be passed through different coders and different network conditions 

Condition  1 2 3 4 5 
p  0.10 0.05 0.07 0.20 0.25

0.85 0.67 0.50 0.40
p/q  0.14 0.06 0.10 0.4  0.62
q  0.7. 0

Table 2.1 Different packet loss conditions 

2.2.2.2 Packet Loss in Real Transmission (Over IP) 

audio packet loss can be characterized with the Gilbert model (Yajnik et al. 1999) of 
two states, as we can see in Fig. 2.1. One of the states (state 1) represents a packet 
loss; the other state (state 0) represents the case where packets are correctly transmit-

generally the case on Internet data transmission where packet losses occur in bursts. 

occur on the Internet. The probability that at least n consecutive packets are lost is 
The different values of p and q define different packet loss conditions that may 

0 1
1-p

q

1-q

p

no loss packet loss

2.2.2.1 Packet Loss Simulation:  The Gilbert Model 
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initiated a transatlantic connection with videoconferencing software but we replaced 
the microphone (on the emitting site) by a computer playing the test database. These 
connections were established at different times of the day and at different days of the 
week in order to investigate a large variety of real-life network conditions. Finally, 

chapter). 

2.3 Effects on the Automatic Speech Recognition Task 

2.3.1 Experimental Setup 

CMU (Finke et al. 1997). The context dependent acoustic model (750 CD code-
books, 16 Gaussians each) was learned on a corpus, which contains 12 h of continu-
ous speech of 72 speakers extracted from Bref 80 database (Lamel et al. 1991). The 
system uses 24-dimensional LDA features obtained from 43-dimensional acoustic 
vectors (13 MFCC, 13 MFCC, 13 MFCC, E, E, E, zero-crossing parame-
ter) and extracted every 10 ms. The vocabulary contains nearly 5,500 phonetic vari-
ants of 2,900 distinct words; it is specific to the tourist reservation and information 
domain. The trigram language model that we used for our experimentation was com-

We conducted a series of recognition experiments with 120-recorded sentences 
focused on reservation and tourist information task. The database was duplicated 
into several versions, according to the degradation methodology described in Sect. 2 

2.3.2 Degradation Due to Simulated Packet Loss 

The first experiment was performed to show the influence of the degradation condi-

ance for different audio packet sizes (10, 20, 30 or 60 ms). In Fig. 2.2, the results for 
each packet size and for each condition are shown (for the degradation, we assumed 
that PCM wave signals were transmitted on the simulated network, without any 

on the Internet as well. For our experiments, we decided to play and record our test 
TM software. We did this 

by playing our speech database into a computer setup for videoconferencing. We 
database at both points of an IP connection with NetMeeting

the packet loss rate (always found to be very high for the transatlantic connections) 
was measured for each codec and each connection, and the speech or speaker recog-
nition performance was evaluated (results will be presented in Sects. 3 and 4 of this 

Our continuous French speech recognition system uses the Janus-III toolkit from 

(database either transcoded or passed through a packet loss process). 

tions (described in Table 2.1) of the Gilbert model, on speech recognition perform-

puted using an interpolation between two LMs trained on task specific docu-
ments and on more general documents gathered from the Internet, as described in 
(Vaufreydaz et al. 1999). 
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radation is 14.4% WER) (From Mayorga and Besacier 2003, © 2003 IEEE) 
 

 

2.3.3 Degradation with Real Transmissions 

A second experiment was performed to show the influence of the degradation due to 

performance was assessed and we show a summary of the results in Table 2.2. For 
each series of experiments (several connections were performed for each type  

(WER) and the correlation coefficients between both series of PLR and WER were 
measured.  

In real VoIP conditions, there are three additional problems: (1) noise due to our 
experimental transmission protocol (we noticed that playing our speech database  
into a computer setup for videoconferencing, as explained in Sect. 2.2.2.2, sometimes 

 

 

 
 
 
 

 

 

(Table 2.1). This figure also shows that the ASR degradation can be very significant

Fig. 2.2 Degradation by packet size and by condition (baseline performance without deg-

introduced signal degradation which is not quantified here), degradation due to (2) 

increases). From this figure, we can observe that the most severe condition is the 
condition 5, followed by the condition 4, then condition 3 and 1, and the least severe 
one is the condition 2. As expected, the performance is correlated with the p/q ratio  

codec applied). These word error rate (WER) measurements were done without 
applying any reconstruction. It can be observed that the WER tends to be relatively  
independent of the packet size (it only increases very slightly when the packet size 

in strong adverse conditions (high packet loss rate). 

rate codec), G711 (high bit rate codec) and PCM (no codec). The speech recognition 

of audio bitstream), the mean packet loss rate (PLR), the mean word error rate 
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means that the same quantity of signal is lost on average. But, as we can see in Table 

level is, the higher the value of WER will be. This difference may be due to the 
effect of the compression itself, but also to the fact that in the case of real transmis-

ger quantity of consecutive speech information lost, compared to the case where 
G711 codec or no codec (PCM) is used. In other words, lost information occurs 

data transmitted. If we compare this with results in Fig. 2.2, it may be found surpris-
ing that packet size does not matter much in the simulated case: one explanation of 
this might be that, in this case, the packet size only varied from 10 to 60 ms (factor 6 

packets is much more important (50). The correlation between WER and PLR was 
also measured and the results show that the real conditions do not really lead to the 
same ideal and predictable results obtained in simulated conditions. In the simulated 
case, a correlation value of 0.98 was obtained whereas in the real conditions, the 
correlation between WER and PLR is smaller (0.64 for PCM instead of 0.98) and 
tends to decrease with additional factors like speech compression (0.28 and 0.49 for 

2.3.4 Degradation Due to Speech and Audio Codecs 

The results are presented in Table 2.3 where the MPEG codecs were all applied on 
16 kHz speech signals while the test database was downsampled to 8 kHz before the 

Consequently, the acoustic model used in the last two lines of this table, was also 
trained on a downsampled version of our training database. 

Results in Table 2.3 show that above 32 kbits/s bit rate, no significant degrada-

performance starts to decrease dramatically. Moreover, performance is better for 

Table 2.2 Results of WER and Packet Loss Rate (PLR) in real VoIP conditions (10 transmis- 
sions/audio bitstream); baseline = 14.4% WER 

Audio bitstream G723 G711 PCM 
Mean PLR 31.8 29.8 30.5 
Mean WER 81.8 62.9 53.5 
Correlationcoeff. 
(WER,PLR) 0.28  0.49 0.64 

the three bitstreams: 31.8% for G723, 29.8% for G711 and 30.5% for PCM, which 
speech compression, and (3) lost packets. Comparable average PLR’s are found for 

2.2, the highest WER is for G723, with an average of 81.8%, then 62.9% for G711, 
and 53.5% for PCM. Thus, for a same packet loss rate, the higher the compression 

sions with G723 (the highest compression degree), one packet lost represents a big-

dramatically as long bursts for G723 whereas it is more spread for G711 and PCM 

maximum) whereas the ratio between PCM (256 kbits/s) and G723 (5.3 kbits/s) 

G711 and G723 respectively).  

use of G711 and G723 codecs (which are generally applied on telephonic signals). 

tion of speech recognition performance is observed, whereas below this threshold,  

MPEG layer 3 than for MPEG layer 2 which is again better than MPEG layer 1. 



Speech Coding and Packet Loss Effects on Speech and Speaker Recognition 35

 

Moreover, we do not see much difference between G711 and G723 performance 

(64 kbits/s). This result and the result from the previous section lead us to think that 

compression, if not too drastic, does not have such a big influence on the perform-
ance. 

 

a

 
Coder for test Word error rate 

None (16 kHz sig.) 7.7% 
MPEG Lay3 64 kbits/s 7.8% 
MPEG Lay3 32 kbits/s 7.9% 
MPEG Lay3 24 kbits/s 8.4% 
MPEG Lay3 16 kbits/s 14.6% 
MPEG Lay3 8 kbits/s 66.2% 
MPEG Lay2 64 kbits/s 7.5% 
MPEG Lay2 32 kbits/s 7.7% 
MPEG Lay2 24 kbits/s 29.4% 
MPEG Lay2 16 kbits/s 41.7% 
MPEG Lay2 8 kbits/s 93.8% 
MPEG Lay1 32 kbits/s 27.0% 
G711 (model 8 kHz) 8.1% 
G723 (model 8 kHz) 8.8% 

a

different baseline performance. 

2.4 Effect for the Automatic Speaker Verification Task 

This part presents the same methodology for evaluating the speaker verification 

existing and well-known database used for speaker verification by passing its speech 
signals through different coders and different network conditions representative of 

 

These results are in correspondence with the known perceptual speech quality of the 
different MPEG layers. The results of this table also show that G711 and G723 

(same test database  transcoded with different codecs) (From Besacier 2001 © 2001 IEEE) 

what can occur over the Internet or wireless networks. First section is dedicated to  

transcoding alone do not significantly degrade the speech recognition performance. 

whereas G723 is a very low bit rate coder (5.3 kbits/s) compared to G711 coder 

packet loss is certainly the biggest source of degradation for ASR whereas speech 

Table 2.3 Effect of different audio and speech codecs on speech recognition performance 

performance over compressed speech and packet loss. The idea is to duplicate an 

the effect of joint speech compression and packet loss over IP networks on 
speaker verification while the second section evaluates the effect of GSM speech 
coding on speaker verification (SV) performance. 

But different LM used compared to previous experiments which explains the  
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         and Packet Loss 

 
In acquiring the XM2VTS database (Messer et al. 1999), 295 volunteers from the 
University of Surrey visited a recording studio four times at approximately one 
month intervals. On each visit (session) two recordings (shots) were made. The first 
shot consisted of speech while the second consisted of rotating head movements. The 
experiments described in this chapter were made on the speech part of this database 
where the subjects were asked to read three sentences twice. The three sentences 
remained the same throughout all four recording sessions and a total of 7,080 speech 
files were made available on 4 CD-ROMs. The audio, which had originally been 
stored in mono, 16 bit, 32 kHz, PCM wave files, was down-sampled to 8 kHz. This 
is the input sampling frequency required in the speech codecs considered in this 
study. As previously, we used in our experiments the codec which has the lowest  

(64 kbps). 
The speaker verification system used here is based on the ELISA framework 

system including audio parameterization as well as score normalization techniques 
for speaker verification.  

For the purpose of this investigation, the Lausanne protocol (configuration 2) is 
adopted. This has already been defined for the XM2VTS database (Messer et al. 
1999). There are 199 clients in the XM2VTS DB. The training of the client models is 
carried out using full session1 and full session2 of the clients part of XM2VTS. 398 
client test accesses are obtained using full session4 ( 2 shots) of the clients part. 
111,440 impostor accesses are obtained using the impostor part of the database (70 
impostors  4 sessions  2 shots  199 clients = 111,440 impostor accesses). The 25 
evaluation impostors of XM2VTS are used to develop a World Model. The text 
independent speaker verification experiments are conducted in matched conditions 
(same training/test conditions). 

(Meignier et al. 2002). The speaker verification system uses 32 parameters (16 
LFCC + 16 DeltaLFCC). Silence frame removal is applied as well as Cepstral Mean 
Subtraction. For the world model, 128 Gaussian component GMM was trained using 
Switchboard II phase II data (8 kHz landline telephone) and then adapted [MAP 
(Gauvain and Lee 1994), mean only] on XM2VTS data (25 evaluation impostors 
set). The client models are 128 Gaussian component GMM developed by adapting 
(MAP, mean only) the previous world model. Decision logic is based on using the 
conventional log likelihood ratio (LLR). No LLR normalization is applied here  
before the decision process. 

 
 
 
 

2.4.1.1 Experimental Setup 

The speaker verification system on XM2VTS is similar to the one presented in 

bit rate: G723.1 (6.4 and 5.3 kbps), and the one with the highest bit rate: G711 

2.4.1 Speaker Verification Experiments Over Compressed Speech  

(The ELISA Consortium 2000; Magrin-Chagnolleau et al. 2001). It is a GMM-based 
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The speaker verification performance with the simulated degraded versions of 
XM2VTS is presented in Table 2.4. Based on these results, it can be concluded that 

for text-independent speaker verification, even with bad network conditions. Com-

probably due to the fact that the modeling is GMM which considers every frame as 
an independent entity. Then GMMs are not sensitive to temporal breakdown induced 

available for taking a decision. To our feeling, conclusions would be very different 
in a text-dependent mode where temporal information is important. 
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adversely affected when the speech material is encoded at low bit rates (e.g. using 
G723.1). 

Table 2.5 shows speaker verification experiments reported in (Besacier et al. 2003) 
where the used database (TIMIT in this paper) was downsampled from 16 kHz to 
8 kHz and transcoded using the three GSM speech coders. All the experiments were 
carried out under matching conditions (i.e. training and testing are both made using 
the same database) and a GMM-based speaker verification system was used. For 
more details on this experiment see (Besacier et al. 2003). 

The results of Table 2.5 show a significant performance degradation when using 
GSM transcoded databases, compared to the normal and downsampled versions of 

recognition performance is. 
 
 
 

Table 2.4 EER (Equal Error Rate) of speaker verification results using degraded XM2VTS

2.4.1.2 Results 

(128kbitts/s)  

the degradation due to packet loss is negligible regarding the one due to compression 

paring these results with those for speech recognition detailed in Sect. 3, it can be 
said that the speaker verification performance is far less sensitive to packet loss. It is 

by packet loss and the only consequence is a reduction of the amount of signal data 

On the other hand, Table 2.4 shows that the speaker verification performance is 

TIMIT. The results obtained are in correspondence with the perceptual speech qual-
ity of each coder. That is, the higher the speech quality is, the higher the measured 

2.4.2 Speaker Verification Experiments Over GSM Compressed Speech 
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Table 2.5 EER of speaker verification results for original and GSM transcoded speech 
 

Original GSM transcoded 
16 kHz 8 kHz  FR HR EFR 
1.1% 5.1% 7.3% 7.8% 6.6% 

2.5 Conclusion 

considered: the simulation of lost audio packets, and the real audio transmission 
through IP networks. In the simulation case, a strong correlation between word error 

additional problems like speech compression may increase the degradation. In both 

cantly. In a second experiment, it was shown, on the contrary, that the effect of 

2003). Some chapters of this book are more specifically dedicated to this issue: com-

tectures (Chap. 5), error recovery by channel coding (Chap. 8). 
 Concerning speech biometrics, the experiments have shown that the degradation 

pendent voice person authentication. It is probably due to the GMM models used 
which consider every frame as an independent entity. This is in contrast with the 

accuracy significantly. However, a degradation of the speaker verification perform-
ance is observed when low bit-rate speech compression is applied to the speech 

tion. 

Acknowledgments 

This paper is a compilation of different works made in collaboration with the follow-
ing persons: P. Mayorga, R. Lamy, C. Fredouille, S. Meignier, J.-F. Bonastre and 
S. Grassi. 

This chapter presented an overview on the effect of speech coding and packet loss on 
two different tasks: automatic speech recognition and speaker verification. Concern-
ing ASR, the effect of packet loss was first assessed. For this, two scenarios were 

rate and packet loss ratio was obtained. This is less clear in real conditions where 

cases, it was shown that packet loss can hurt the ASR performance very signifi-

transcoding alone is not a big issue for ASR since we have observed that  the speech 
recognition performance remains acceptable for specialized speech coders like G723 
or reasonable bit rates of MPEG (above 24 kbits/s). To treat the critical degradations 
due to packet loss, packet recovering strategies can be used, like in (Mayorga et al. 

pensation for channel errors (Chaps. 3 and 4), distributed speech recognition archi-

due to packet loss is negligible regarding the one due to compression for text inde-

automatic speech recognition experiments where packet loss was found to reduce the 

signal (GSM and G723.1 codecs). In this case, packet loss can increase the degrada-
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Hong Kook Kim and Richard C. Rose 

Abstract. This chapter addresses issues associated with automatic speech recognition (ASR) 
over mobile networks, and introduces several techniques for improving speech recognition 
performance. One of these issues is the performance degradation of ASR over mobile net-
works that results from distortions produced by speech coding algorithms employed in mobile 
communication systems, transmission errors occurring over mobile telephone channels, and 
ambient background noise that can be particularly severe in mobile domains. In particular, 
speech coding algorithms have difficulty in modeling speech in ambient noise environments. 
To overcome this problem, noise reduction techniques can be integrated into speech coding 
algorithms to improve reconstructed speech quality under ambient noise conditions, or speech 
coding parameters can be made more robust with respect to ambient noise. As an alternative 
to mitigating the effects of speech coding distortions in the received speech signal, a bit-
stream-based framework has been proposed. In this framework, the direct transformation of 
speech coding parameters to speech recognition parameters is performed as a means of im-
proving ASR performance. Furthermore, it is suggested that the receiver-side enhancement of 
speech coding parameters can be performed using either an adaptation algorithm or model 
compensation. Finally, techniques for reducing the effects of channel errors are also discussed 
in this chapter. These techniques include frame erasure concealment for ASR, soft-decoding, 
and missing feature theory-based ASR decoding. 

3.1 Introduction 

Interest in voice-enabled services over mobile networks has created a demand for 
more natural human-machine interfaces (Rabiner 1997; Cox et al. 2000; Lee and Lee 
2001; Nakano 2001), which has in turn placed increased demands on the perform-
ance of automatic speech recognition (ASR) technology. It is interesting that the 
evolution of mobile networks has fostered increased interest in ASR research (Chang 
2000; Mohan 2001). This is because the performance of ASR systems over mobile 
networks is degraded by factors that are in general not important in more traditional 
ASR deployments (Euler and Zinke 1994; Lilly and Paliwal 1996; Milner and Semnani 
2000). These factors can be classified as device-oriented noise and network-oriented 
noise. 

Mobile communication technologies provide access to communications networks 
anytime, anywhere, and from any device. Under this framework, communications 
devices like cell phones and PDAs are becoming increasingly smaller to support 
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various levels of mobility. Furthermore, different combinations of microphone tech-
nologies including close talking device mounted microphones, wired and wireless 
headsets, and device mounted far-field microphones may be used with a given device 
depending on the user’s needs. All of these issues can result in a large variety of 
acoustic environments as compared to what might be expected in the case of a plain 
old telephony service (POTS) phone. For example, a handheld device can be consid-
ered as a distance-talking microphone, where the distance might be continually 
changing and thus background noise could be characterized as being time-varying 
and non-stationary. The issues of ASR under such a device-oriented noise condition 
have been discussed in the context of feature compensation and acoustic model com-
bination under a background noise condition (Dufour et al. 1996; Rose et al. 2001) 
and acoustic echo cancellation (Barcaroli et al. 2005), distance speech recognition, 
and multiple-microphone speech recognition (Wang et al. 2005).  

Network-oriented sources of ASR performance degradation include distortion 
from low-bit-rate speech coders employed in the networks and the distortions arising 
from transmission errors occurring over the associated communication channels. 
Even though a state-of-the-art speech coder can compress speech signals with near 
transparent quality from a perceptual point of view, the performance of an ASR 
system using the decoded speech can degrade relative to the performance obtained 
for the original speech (Euler and Zinke 1994; Lilly and Paliwal 1996). One of the 
major reasons is that the parameterization of speech for speech coding is different 
from that for speech recognition. For example, speech coding is mainly based on a 
speech production model, which represents the spectral envelope of speech signals 
using linear predictive coding (LPC) coefficients. However, feature representations 
used for speech recognition like, for example, Mel-frequency cepstral coefficients 
(MFCC), are usually extracted on the basis of human perception. In addition to 
speech coding distortion, mobile networks can introduce a range of transmission 
errors that impact speech quality at the speech decoder (Choi et al. 1999). Transmis-
sion errors are generally represented using measures like the carrier-to-interference 
(C/I) ratio or the frame erasure rate.   

There are three general configurations used for extracting feature parameters for 
ASR over mobile networks; the decoded speech-based approach, the bitstream-based 
approach, and the distributed speech recognition (DSR) approach (Gallardo-Antolín 
et al. 1998; Milner and Semnani 2000; Kim and Cox 2001).  

The decoded speech-based approach involves extracting speech recognition 
parameters from the decoded speech after transmission over the network. This corre-
sponds to conventional ASR performed without explicitly accounting for the com-
munication network.  

The bitstream-based approach obtains speech recognition parameters for ASR 
directly from the transmitted bitstream of the speech coder. It exploits the decompo-
sition of speech signals into spectral envelope and excitation components that is 
performed by the speech coder. The two components are quantized separately where 
the spectral envelope is represented as an all-pole model using LPC coefficients. 
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Deriving ASR feature parameters directly from the bitstream is primarily motivated 



 

 
 
 

of the spectral envelope with the quantized excitation signal while reconstructing 
speech in the decoder represents another source of performance degradation in ASR. 
Bitstream approaches avoid this source of degradation. It will be shown in this chap-
ter that a bitstream based approach applies a feature transformation directly to the 
LPC-based spectral representation derived from the transmitted bitstream.  

The DSR approach involves extracting, quantizing, and channel encoding the 
speech recognition parameters at the client before transmitting the channel encoded 
feature parameters over the mobile network. Thus, ASR is performed at the server 
using features that were quantized, encoded, and transmitted over a protected data 
channel. The general framework for DSR will be discussed in Chap. 5. For all three 
of the above configurations, approaches for compensating with respect to sources of 
spectral distortion and channel distortion can be applied both in the ASR feature 
space and in the acoustic model domain.  

In this chapter, we focus on the techniques that can be applied to the bitstream-
based approach and to overcoming network-oriented and device-oriented sources of 
ASR performance degradation. Following this introduction, Sect. 3.2 describes the 
techniques in more depth. Section 3.3 explains the bitstream-based approaches in 
detail. The transformation of spectral parameters obtained from the bitstream into 
MFCC-like parameters for the purpose of improving ASR performance is discussed 
in Sect. 3.4. We introduce compensation techniques for cellular channels, speech 
coding distortion, and channel errors in Sect. 3.5. Summary and conclusion are pro-
vided in Sect. 3.6.  

Networks 

This section addresses the general scenario of ASR over mobile networks. Figure 3.1 
shows a series of processing blocks applicable to ASR over mobile networks. There 
are two processing paths: one is for the decoded speech-based approach and the other 
is for the bitstream-based approach. The processing blocks dedicated to the decoded 
speech-based approach include the speech decoding algorithm itself, enhancing the 
quality of the decoded speech in the signal domain, and extracting ASR features. 
Processing blocks such as spectral feature decoding and feature transformation from 
speech coding features to ASR features are used for the bitstream-based approach. In 
addition to these processing blocks, common processing blocks include: 1) frame 
loss concealment, 2) compensating for ASR features in communication channels, 3) 
adapting acoustic models to compensate for spectral distortion or channel errors, and 
4) Viterbi decoding incorporating ASR decoder-based concealment.  
 

by the fact that ASR feature parameters are based on the speech spectral envelope 
and not on the excitation. Moreover, the distortion that is introduced by convolution 

3.2 Techniques for Improving ASR Performance   ver Mobile   O
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It is assumed that all robust ASR techniques discussed in this chapter can be applied 
to the cases where ASR parameters are extracted either from speech reconstructed by 
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the decoder or directly from the transmitted bitstream. Previously-developed tech-
niques for robust ASR in the conventional ASR framework can also be applied to the 
decoded speech-based approach by considering the effects of the mobile network to 
be similar in nature to the effects of an adverse environment. However, there are 
several techniques that will be presented here, which are strictly relevant to the bit-
stream-based approach. These include feature transformations from the feature rep-
resentations used in the speech coding algorithm to the feature representations used 
in ASR and techniques for feature compensation in the bitstream domain. Moreover, 
the existence of network-oriented noise sources such as speech coding distortions 
and channel transmission errors has led to the development of compensation tech-
niques in the signal space, feature space, and model space. A brief summary of the 
techniques developed for the bitstream-based approach and the network-oriented 
noise compensation is provided here. 

Fig. 3.1 Scenarios for the implementation of robust feature analysis and feature and model com-
pensation for ASR over mobile networks 
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In the decoded speech-based approach, the decoded speech is used directly for 
feature extraction on the receiver side of the network. There has been a great deal of 
work devoted to exploring the effect of speech coding on ASR performance and to 
training or improving ASR acoustic models to compensate for these effects. In (Euler 
and Zinke 1994; Lilly and Paliwal 1996; Nour-Eldin et al. 2004), it was shown that 
ASR performance degraded when the input speech was subjected to encoding/decoding 
from standard speech coding algorithms. One approach used to mitigate this problem 
was to train the model with the equivalence of the multi-style training of a hidden 
Markov model (HMM) by using utterances that are recorded over a range of com-
munication channels and environmental conditions. This approach was followed 
successfully for ASR over cellular telephone networks in (Sukkar et al. 2002), who 
noted the severe impact of the acoustic environment in mobile applications on the 
ASR word error rate (WER). Another approach was to improve the average transmit-
ted speech quality by adjusting the trade-off between the number of bits assigned to 
coded speech and the number of bits assigned to channel protection based on an 
estimate of the current network conditions. To this end, Fingscheidt et al. (Fingscheidt 

(AMR) coder for ASR over noisy GSM channels. It was shown that the effects of 
communication channels on ASR WER could be significantly reduced with respect 
to WER obtained using standard fixed rate speech coders. 

Bitstream-based techniques for robust ASR obtain speech recognition parameters 
directly from the bitstream transmitted to the receiver over digital mobile networks. 
The difference between bitstream-based techniques and techniques that operate on 
the decoded speech is that bitstream-based techniques avoid the step of reconstruct-
ing speech from the coded speech parameters. In this scenario, the transformation of 
speech coding parameters to speech recognition parameters is required to improve 
ASR performance (Peláez-Moreno et al. 2001). Since each mobile network relies on 
its own standardized speech coder, the bitstream-based approaches are dependent 
upon the characteristics of the mobile network. Moreover, each speech coder has a 
different spectral quantization scheme and different levels of resolution associated 
with its spectral quantizer. Therefore, dedicated feature extraction and transform 
techniques must be developed for each speech coder. Such techniques have been 
developed and published for GSM RPE-LTP (Huerta and Stern 1998; Gallardo-
Antolín et al. 2005), the TIA standard IS-641 (Kim and Cox 2001), the ITU-T  
Recommendation G.723.1 (Peláez-Moreno et al. 2001), and the TIA standard IS-96 
QCELP and IS-127 EVRC (Choi et al. 2000). 

Frame loss concealment refers to a technique used to reconstruct ASR features 
even if the bitstream associated with a given transmitted frame is lost (Tan et al. 
2005). In general, a frame loss concealment algorithm is embedded in the speech 
decoder. It allows the parameters of lost frames to be estimated by repeating those of 
the previous uncorrupted frame (ITU-T Recommendation G.729 1996). Conse-
quently, the estimated parameters can be directly used for extracting ASR features in 
the bitstream-based approach. Otherwise, in the decoded speech approach, speech is 
reconstructed using the estimated parameters and ASR can be performed with this 
decoded speech. Furthermore, the frame erasure rate of the network or the indication 
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et al. 2002) investigated the effect of coding speech using the adaptive multi-rate 
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of the lost frames can be used for ASR decoder-based error concealment (Bernard 
and Alwan 2001b). 

Feature and model compensation techniques can be implemented without consid-
eration of the speech coding algorithm used in the network. The approaches empha-

any explicit knowledge of the distortions introduced by the speech coder. These 
robust algorithms can be realized in the feature domain, the HMM model domain, 
and through modification of the ASR decoding algorithms. In the feature domain, 

parameters in a variety of ways. Current methods compensate for these distortions by 
applying linear filtering, normalization techniques, or some other nonlinear process-
ing applied to the feature parameters (Dufour et al. 1996; Kim 2004; Vicente-Pena  
et al. 2006). In addition, speech coding parameters can be directly enhanced in the 
coding parameter domain to compensate for speech coding distortion and environ-
mental background noise (Kim et al. 2002). In the HMM model domain, model com-
pensation or combination techniques can be applied by incorporating parametric 
models of the noisy environment (Gómez et al. 2006). In the ASR decoder, the effect 
of channel errors can be mitigated by incorporating probabilistic models that charac-
terize the confidence associated with a given observation or spectral region. These 
techniques have been implemented under the headings of missing features and “soft” 
Viterbi decoding frameworks (Gómez et al. 2006; Siu and Chan 2006). 

3.3 Bitstream-Based Approach 

This section describes how ASR feature analysis can be performed directly from the 

the channel decoder in a mobile cellular communications network. First, spectral 

CELP parameters and producing ASR feature parameters are described. 

ˆ )(nu
pole system function, 1/A(z), which describes the spectral envelope of the vocal tract 

excitation signal as a combination of: 1) periodic information, )(nxg pp

cludes parameters such as pitch or long-term predictor (adaptive codebook) lag and 
)(ncgc

indices and gain coefficients associated with a fixed codebook containing random 
excitation sequences. 
 

s(n)constructed speech, 
speech coding is based on the speech production model shown in Fig. 3.2. The re-

response. The spectral envelope can be represented by LPC or equivalent parameter 

sis procedures are compared. Then, techniques for taking coded representations of 

, driving an all-

, which in-

, is modeled as an excitation signal, 

tion coefficients. The model in Fig. 3.2 for CELP-type speech coders represents the 

gain value; and 2) random source information, 

analysis performed for speech coding and that for speech recognition. In general, 

, which is represented by the  

It is important to understand the similarities and differences between the speech 

 

size the development of robust algorithms for improving ASR performance without 
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spectral distortion is considered to be a nonlinear noise source, distorting the feature 

analysis procedures performed in both CELP speech coders and ASR feature analy-

bitstream of a code-excited linear predictive (CELP) speech coder, as produced by 

sets, including line spectral pairs (LSP), immitance spectral pairs (ISP), and reflec-
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Fig. 3.2 General structure of code-excited linear prediction speech coding 

 
The block diagram in Fig. 3.3 compares the steps that are typically involved in 

feature extraction for ASR and CELP speech coding. Figure 3.3(a) shows a typical 
example of frame-based ASR feature analysis. The speech signal is pre-emphasized 
using a first-order differentiator, (1-0.95z-1), and the signal is then windowed. In the 
case of LPC-derived cepstral coefficient (LPCC) analysis, a linear prediction poly-
nomial is estimated using the autocorrelation method. Then, the shape and the duration 
of the analysis window are determined as a trade-off between time and frequency 
resolution. Typically, a Hamming window of length 30 ms is applied to the speech 
segment. The Levinson-Durbin recursion is subsequently applied to the autocorrela-
tion coefficients to extract LPC coefficients. Finally, LPCCs are computed up to the 
12 order, and a cepstral lifter can be applied to the cepstral coefficients. This analysis 
is repeated once every 10 ms, which results in a frame rate of 100 Hz. 

Figure 3.3(b) shows the simplified block diagram of the LPC analysis performed 
in the IS-641 speech coder (Honkanen et al. 1997). In this analysis, undesired low 
frequency components are removed using a high-pass filter with a cutoff frequency 
of 80 Hz. Because of delay constraints that are imposed on the speech coder, an 
asymmetric analysis window is used, where one side of the window is half of a 
Hamming window and the other is a quarter period of the cosine function. Two addi-
tional processes are applied to the autocorrelation sequence; one is lag-windowing, 
and the other is white noise correction. The former helps smooth the LPC spectrum 
to remove sharp spectral peaks (Tohkura et al. 1978). The latter gives the effect of 
adding white noise to the speech signal and thus avoids modeling an anti-aliasing 
filter response at high frequencies with the LPC coefficients (Atal 1980). Finally, the 
Levinson-Durbin recursion is performed with this modified autocorrelation se-
quence, and LPC coefficients of order ten are converted into ten LSPs. The speech 
encoder quantizes the LSPs and then transmits them to the decoder. Of course, the 
LSPs recovered at the decoder differ from the unquantized LSPs by an amount that 
depends on the LSP spectral quantization algorithm. 

  The windowed spectral analysis procedures in Figs. 3.3(a) and 3.3(b) are similar 
in that they both extract the parameters of the spectral envelope filter 1/A(z), as 
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ing the procedure in Fig. 3.3(b) to obtain the ASR features. The first is that the frame 
shown in Fig. 3.2. However, there are two differences that are important when apply-
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Cox 2001) 

rate used for the LPC analysis in the speech coder is 50 Hz, as opposed to the 100 Hz 

mitigated by using an interpolation technique (Kim and Cox 2001), duplicating the 
frames under such a low frame rate condition, or reducing the number of HMM 
states (Tan et al. 2007). The second difference is the spectral quantization that is 
applied to the LSPs, where the distortion resulting from this LSP quantization cannot 
be recovered.  

Figure 3.4 shows a procedure for extracting cepstral coefficients from the bit-
stream of the IS-641 speech coder (Kim and Cox 2001). The figure displays the 
parameters that are packetized together for a single transmitted analysis frame. The 
bitstream for a frame is largely divided into two classes for vocal tract information 
and excitation information. 26 bits are allocated per frame for the spectral envelope 
which is represented using LSP quantization indices. 122 bits per frame are allocated 
for excitation information which includes pitch, algebraic codebook indices, and 
gains. The procedure shown in the block diagram begins with tenth order LSP coef-
ficients being decoded from the LSP bitstream. In order to match the 50 Hz frame 
rate used for LPC analysis in the speech coder with the 100 Hz frame rate used in 
ASR feature analysis, the decoded LSPs are interpolated with the LSP coefficients 

frame rate used for ASR. This lack of resolution in time-frequency sampling can be 

Fig. 3.3 Comparison of feature extraction for (a) ASR and (b) speech coding (After Kim and 

48 

decoded from the previous frame. This results in a frame rate of 100 Hz for the ASR 



 

 
 
 
 

front-end (Peláez-Moreno et al. 2001; Kim and Cox 2001).  For the case of LPCC-
based ASR feature analysis, cepstral coefficients of order 12 are obtained from the 
conversion of LSP to LPC followed by LPC-to-cepstrum conversion. The twelve 
liftered cepstral coefficients are obtained by applying a band-pass lifter to the cep-
stral coefficients. Lastly, an energy parameter is obtained by using the decoded exci-
tation, )(nu , or the decoded speech signal, )(ˆ ns , which is equivalent to a log energy 
parameter of the conventional MFCC feature (Davis and Mermelstein 1980). 
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and Cox 2001) 

 
Figure 3.4 also depicts the process of extracting MFCC-based ASR features from 

the IS-641 speech coder bitstream. As shown in Fig. 3.3(a), MFCC feature analysis 
can be performed for ASR by applying a 512-point fast Fourier transform (FFT) to 
compute the magnitude spectrum of the windowed speech signal. The magnitude 
spectrum is subsequently passed through a set of triangular weighting functions that 
simulate a filterbank defined over a Mel-warped frequency scale. For a 4 kHz band-
width, 23 filters are used. The filterbank outputs are transformed to a logarithmic 
scale, and a discrete cosine transform (DCT) is applied to obtain 13 MFCCs. In order 
to obtain MFCC-based ASR features from the bitstream, the MFCCs can be obtained 
directly from the decoded LSPs. This LSP-to-MFCC conversion will be described in 
the next section. 

Fig. 3.4 A typical procedure of feature extraction in the bitstream-based approach (After Kim 
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There has been a large body of work on the bitstream-based approach in the con-
text of a variety of standard speech coding algorithms. This work falls into two gen-
eral categories. The first includes procedures for deriving ASR features from the 
bitstreams associated with standard speech coding algorithms. Peláez-Moreno et al. 
(2001) compared ASR WER using ASR features derived from the bitsream of the 
ITU–T G.723.1 speech coding standard with the WER obtained  using reconstructed 
speech from the same coding standard and found that the bitstream derived parame-
ters resulted in lower ASR WER. Additional work has been reported where ASR 
features were derived from the bitstream of the LPC-10E coder (Yu and Wang 
1998), the Qualcomm CELP coder (Choi et al. 2000), and the continuously variable 
slope delta modulation (CVSD) waveform coder (Nour-Eldin et al. 2004). In all of 
these cases, the WER obtained by deriving ASR features from the bitstream was 
lower than that obtained by deriving features from the reconstructed speech. The 
second category of work on bitstream-based approaches includes techniques for 
compensating bitstream-based parameters to improve ASR robustness. Kim et al. 
(Kim and Cox 2002) proposed the enhancement of spectral parameters in the LSP 
domain at the decoder by estimating the background noise level. Yu and Wang 
(2003) proposed an iterative method for compensating channel distortion in the LSP 
domain, where the ITU-T G.723.1 coder was used for their experiments.  

3.4 Feature Transform 

Though bitstream-based ASR is known to be more robust than that using decoded 
speech, the spectral parameters used for speech coding are not adequate for ASR 
(Choi et al. 2000).  Most speech coders operating at moderate bit-rates are based on a 
model of the type used in code-excited linear prediction as is illustrated in Fig. 3.2. 
In these coders, LPCs are further transformed into LSPs to exploit the coding effi-
ciency, simple stability check for synthesis filters, and superior linear interpolation 
performance enjoyed by the LSP representation. There have been several research 
efforts focused on using LSP coefficients as feature representations for ASR (Paliwal 
1988; Zheng et al. 1988).  Signal processing steps that are thought to emulate aspects 
of speech perception including critical band theory and non-linear amplitude com-
pression have been found to have a far greater impact in ASR. For example, LPC 

vide significantly better ASR performance than LPCs (Hermansky 1990). As such, 
one of the research issues associated with a bitstream-based ASR front-end is to 
obtain more robust parameters for ASR by transforming the spectral parameters that 
are used by the speech coder (Fabregas et al. 2005; Peláez-Moreno et al. 2006). 

Figure 3.5 illustrates several ways for obtaining feature parameters from the bit-
stream, where it is assumed that LSPs are the bitstream-based spectral parameters 
transmitted to the speech decoder. Note that there are three main approaches to trans-
forming LSPs. The first is to convert LSPs into LPCs followed by a further transfor-
mation to obtain MFCC-type parameters. The second approach is to obtain the spectral 
magnitude from LSPs or LPCs and to apply conventional Mel-filterbank analysis and 
DCT to obtain MFCC parameters. The last approach is to directly convert LSPs into 
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coefficients based on perceptual linear prediction (PLP) analysis are known to pro-



 

  
 

approximate cepstral coefficients, which are called pseudo-cepstral coefficients 
(PCEPs). Of course, a frequency-warping technique can be applied to LSPs prior to 
the pseudo-cepstral conversion, which results in a Mel-scaled PCEP (MPCEP). 
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Fig. 3.5 Feature transforms from LSPs to ASR feature parameters 

3.4.1 Mel-Scaled LPCC 

conversion from LSP to LPC, the conversion from LPC to LPC cepstrum, and the 
frequency warping of LPC cepstrum using an all-pass filter. For a given set of LSP 
coefficients of order M, M,,1 L , where typically M = 10, the LPC coefficients, 

Maa ,,1 L , can be obtained by using the following equations 
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Mel-scaled LPCCs (MLPCCs) can be derived using the following three steps: the 
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Next, the real valued cepstrum for the spectral envelope can be defined by the in-
verse z-transform of the log spectral envelope represented by )](/1ln[ zA . In other 
words, 

1
)(/1ln

n

n
n zczA                                                      (3.4) 

 
where nc is the n-th LPCC, and obtained from the recursion described in (Schroeder 
1981). That is,  
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It is common to truncate the order of LPCCs to 12–16 for ASR by applying a 

cepstral lifter (Juang et al. 1987; Junqua et al. 1993).  This obtains a reasonable bal-

the affects of the vocal tract excitation from the cepstrum.  

of LPCCs (Oppenheim and Johnson 1972). Here, the n-th MLPCC, MLPCC
nc

tained from the LPCCs }{ nc by filtering the LPCCS with a sequence of all-pass filters 
such that 
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In Eq. 3.7, the degree of frequency warping is controlled by changing 

3.4.2 LPC-Based MFCC (LP-MFCC) 

putation of the magnitude spectrum from LSPs. The squared magnitude spectrum of 
A(z) evaluated at frequency  is given by 
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In order to obtain MLPCCs, a bilinear transform is applied to the frequency axis 

c , n 0                                                (3.6) 

, is ob-

ance between spectral resolution and spectral smoothing and also largely removes 

; a typi-
cal value of for speech sampled at 8 kHz is 0.3624 (Wölfel and McDonough 2005). 

A procedure for obtaining MFCC-type parameters from LSPs begins with the com-
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Thus, the n-th MFCC-type parameter, MFCCLP
nc ,  can be obtained by applying a 

conventional Mel-filterbank analysis (Davis and Mermelstein 1980) to the inverse of 
Eq. 3.8 and transforming the filterbank output using the DCT. 

3.4.3 Pseudo-Cepstrum (PCEP) and Its Mel-Scaled Variant (MPCEP) 

Pseudo-cepstral analysis has been proposed by (Kim et al. 2000) as a computation-
ally efficient approach for obtaining ASR parameters from LSPs. Using this analysis, 
the n-th pseudo-cepstrum (PCEP), PCEP

nc , is defined by 
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that represented by LPCCs, but can be computed with lower computational complex-
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 where controls the degree of frequency warping and is set as 45.0  (Choi et al. 
2000). Finally, a Mel-scaled version of PCEP or Mel-scaled (MPCEP) can be ob-
tained by combining Eqs. 3.9 and 3.10 such that 
 

1,)cos(1))1(1(
2
1

1
nn

nn
c

M

k

Mel
k

nMPCEP
n .                             (3.11) 

 
MPCEP required lower computational resources than MLPCC but the ASR per-

formance using MLPCC was better than that obtained using MPCEP. However, the 
two Mel-scaled ASR features, MPCEP and MLPCC, provided comparable ASR 
performance when the transmission errors of the network were under certain levels 
(Fabregas et al. 2005). In addition, when used in combination with techniques that 
will be described in the next section, the transformed ASR features obtained from 
LSPs, PCEP, and MPCEP have the potential to further improve ASR performance. 
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3.5.1 Compensation for the Effect of Mobile Systems 

In performing ASR over cellular networks, ASR WER can be improved by applying 
techniques that have been developed for noise-robust ASR. For example, HMMs can 

3.5 Enhancement of ASR Performance    ver Mobile Networks O

It was shown that the spectral envelope represented by PCEPs is very similar to 

ity. As such, PCEP can be further transformed to accommodate the characteristics  
of frequency warping. First, each LSP is transformed into its Mel-scaled version  
by using an all-pass filter (Gurgen et al. 1990), and then the i-th Mel-scaled LSP 
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be trained using a large amount of speech data collected from a range of different 
communications environments (Sukkar et al. 2002). This is similar to a kind of 
HMM multi-condition training. An alternative set of approaches is to train separate 
environment-specific HMMs and combine the models during ASR decoding (Karray 
et al. 1998). This approach can also incorporate dedicated models of specific non-
stationary noise types, like impulsive noise or frame erasures, which can be trained 
from labeled examples of occurrences of these noise events in training data. Karray 
et al. (1998) proposed several examples of this class of approach, each differing in 
the manner in which the environment specific HMM models were integrated during 
search. Finally, the most widely discussed class of approaches for robust ASR in the 
cellular domain is the application of feature compensation techniques to ASR fea-
tures. One of many examples is the work of Dufour et al. (1996) involving compen-
sation for GSM channel distortion by applying non-linear spectral subtraction and 
cepstral mean normalization to root MFCCs.  

Finally, HMM models can be adapted or combined with models of environmental 
or network noise to improve the performance of ASR over mobile networks. Linear 
transform-based adaptation methods such as maximum likelihood linear regression 
(MLLR), Bayesian adaptation, and model combination have been shown to be useful 
for compensating for the non-linear characteristics of mobile networks (Kim 2004; 
Zhang and Xu 2006). In particular, Kim (2004) exploited the relationship between 
the signal-to-quantization noise ratio (SQNR) measured from low-bit-rate speech 
coders in mobile environments and the signal-to-noise ratio (SNR) in wireline acous-
tic noise environments. This was motivated from the insight that the quantization 
noise introduced by the speech coder can be characterized as a white noise process. 
In order to obtain HMM acoustic models for use on decoded speech, a model combi-
nation technique was applied to compensate the mean and variance matrices of 
HMMs that were trained using uncoded speech. As a result, the ASR system using 
this compensation approach achieved a relative reduction in average WER of 7.5–
16.0% with respect to a system that did not use any compensation techniques. More-
over, explicit knowledge of the characteristics associated with the mobile system can 
be used to improve the performance of model compensation procedures (Zhang and 
Xu 2006). 

3.5.2 Compensation for Speech Coding Distortion in LSP Domain 

In order to further improve the performance of ASR over mobile networks, we can 
also apply feature enhancement or model compensation in the speech coding pa-
rameter domain, i.e., LSP domain. Kim et al. (2002) proposed the enhancement of 
spectral parameters in the LSP domain at the decoder by estimating the level of 
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background noise. Figure 3.6 shows the block diagram for feature enhancement in 
the LSP domain. Note that the objective of a speech enhancement algorithm is to  
obtain a smaller spectral distortion between clean speech and enhanced speech than 
that obtained between clean speech and noisy speech. Likewise, the purpose of the 
proposed feature enhancement algorithm is to obtain enhanced features that are close 



 
 

to the features obtained from clean speech. In the figure, the estimate of clean speech 
LSP, sˆ , is updated from the LSP decoded from the bitstream, n ,  using two LSPs.  
The first is the LSP, eq , obtained from the enhanced version of the decoded speech 
signal, eqs , and the other is the LSP, qn ,  obtained from the LPC analysis of the 
decoded speech, qns . The decoded speech is assumed to include background noise 
and speech coding distortion. The update equation for the estimated clean speech 
LSPs is  

 

Miiqnieqinis 1),(ˆ ,,,,               (3.12) 
 

where is the step size for the adaptive algorithm of Eq. 3.12 and is set to 
M/1 . In practice, was set to 0.2.  
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Fig. 3.6 Block diagram of the feature enhancement algorithm (After Kim et al. 2002) 

 
To prevent the enhanced LSPs from being distorted by the feature enhancement 

algorithm, the update to the estimated LSPs in Eq. 3.12 is only applied at moderate 
SNR levels. The SNR of the decoded speech signal is estimated from the ratio be-
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3.5.3 Compensation for Channel Errors 

In speech coding, channel impairments can be characterized by bit errors and frame 
erasures, where the number of bit errors and frame erasures primarily depends on the 
noise, co-channel and adjacent channel interface, and frequency selective fading. 
Fortunately, most speech coders are combined with a channel coder so that the most 
sensitive bits are strongly protected by the channel coder. Protecting bits unequally 
has an advantage over protecting all the transmission bits when only a small number 
of bits are available for channel coding. In this case, a frame erasure is declared if 
any of the bits that are most sensitive to channel error are in error (Sollenberger et al. 
1999). The bits for LSPs and gains are usually classified as the most sensitive bits 
(Servetti and de Martin 2002; Kataoka and Hayashi 2007), and they are strongly 
protected by the channel encoder. However, a method needs to be designed to deal 
with channel bit errors because ASR is generally more sensitive to channel errors 
than it is to channel erasures (Bernard and Alwan 2001b). The ASR problem regard-
ing bit errors is usually overcome by designing a frame erasure concealment algo-
rithm, whereas the ASR problem of frame errors is overcome by using soft-decoding 
in a Viterbi search for HMM-based ASR. 

Frame erasure concealment algorithms can be classified into sender-based algo-
rithms and receiver-based algorithms, based on where the concealment algorithm is 
implemented. Typically, sender-based algorithms, e.g., forward error correction 
(FEC), are more effective than receiver-based algorithms but require additional bits 
used for detecting or correcting errors in the decoder (Wah et al. 2000). Conversely, 
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tween the decoded speech, qns , and its enhanced version, eqs . Eq. 3.12 is modified 
as so that it is only applied when the estimated SNR does not exceed a threshold 
 

otherwise
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is ,
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ˆ

,
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,

                 (3.13) 

 
where SNRth is empirically determined according to the amount of SNR improve-
ment by the speech enhancement and is set to 40 dB in Kim et al. (2002). 

The performance of the proposed feature enhancement algorithm was evaluated 
on a large vocabulary word recognition task recorded by both a close-talking micro-
phone and a far-field microphone and processed by the IS-641 speech coder. The 
twelve LP-MFCCs described in Sect. 3.4.2 were obtained for the bitstream-based 
front-end, and the log-energy obtained from the excitation information described in 
Sect. 3.3 was appended to the feature vector. The difference and second difference of 
this feature vector were concatenated with the static features to construct a 39-
dimensional feature vector. It was subsequently determined that the bitstream-based 
front-end provided better performance than the front-end approach that extracted 
MFCCs from the decoded speech for the close-talking microphone speech recogni-
tion but not for the far-field microphone speech recognition. However, incorporating 
the feature enhancement algorithm into the bitstream-based front-end significantly 
improved ASR performance for far-field microphone speech recognition. 

 



 

 
 
 

receiver-based algorithms such as repetition-based frame erasure concealment and 
interpolative frame erasure concealment (de Martin et al. 2000) have advantages 
over the sender-based algorithms since they do not need any additional bits, and thus 
we can use existing standard speech encoders without any modification. Likewise, 
such a receiver-based algorithm can be used for ASR, enabling the reconstruction of 
speech signals corresponding to the erased frames prior to the extraction of ASR 
features.  

Gómez et al. (2006) proposed a linear interpolation method between feature vec-
tors obtained from the first and last correctly received frames to reconstruct feature 
vectors for the erased frames. However, instead of using linear interpolation, Milner 
and Semnani (2000) introduced a polynomial interpolation method. Since delay was 
not critical for speech recognition, this interpolation method could provide better 
feature vectors, even under burst frame erasure conditions, than an extrapolation 
method. Moreover, Bernard and Alwan (2002) proposed a frame dropping technique 
that removes all feature vectors from the erased frames or any suspicious frames due 
to channel errors. The frame dropping technique worked reasonably well for random 
erasure channels, but provided poor performance when the channel erasure was 
bursty. It was also shown in Kim and Cox (2001) that the performance of bitstream-
based front-end approaches employing frame dropping was better than that of the 
decoded speech-based front-end that included a frame erasure concealment algorithm.  

Channel errors or frame erasures can be addressed by modifying the ASR de-
coder. The Viterbi algorithm can be modified to incorporate a time-varying weight-
ing factor that characterizes the degree of reliability of the feature vectors (Bernard 
and Alwan 2001a; Siu and Chan 2006). The probability of a path terminating in 
HMM state j at time t, )( jt , in the Viterbi algorithm can be written to include a 
reliability measure 
 

t
tjijtit obaij )()(max)( 1

                                    (3.14) 

 
where )|( ttt yoP is a time-varying weighting factor, and ty is a received bitstream. 
Note that 1t  if the decoded ASR feature is completely reliable, and 0t if it is 

the Viterbi path selection. This was implemented by expanding the search space of 
the Viterbi algorithm and by introducing a likelihood ratio threshold for the section. 

3.6 Conclusion 

This chapter has presented the major issues that must be addressed to facilitate robust 
automatic speech recognition over mobile networks. It has summarized new ap-
proaches for minimizing the impact of distortions introduced by speech coders, 
acoustic environments, and channel impairments. Obtaining ASR features directly 
from the bitstream of standardized speech coders was originally developed as a new 
paradigm for feature extraction over mobile communications networks. It was found 
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completely unreliable. On the other hand, Siu and Chan (2006) proposed a robust 
Viterbi algorithm, where corrupted frames by impulsive noise would be skipped for 
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that optimal ASR feature representations could be obtained by transforming spectral 
parameters transmitted with the coded bitstream. It was also found that feature pa-
rameter enhancement techniques that exploited the bitstream-based spectral parameters 
could result in more noise robust ASR. More recently, bitstream-based techniques 
have been applied to network-based ASR applications using many standard speech 
coding algorithms. 

As mobile networks and the mobile devices that are connected to these networks 
evolve, it is likely that automatic speech recognition robustness over these networks 
will continue to be a challenge. With enhanced mobility and increased connectivity, 
the characteristics of future mobile networks are likely to be different from those 
existing today. They are also likely to lend themselves to new paradigms for novel 
distributed implementation of robust techniques that better configure ASR algo-
rithms for these mobile domains. The work presented in this chapter contains several 
examples of new methods for implementing robust ASR processing techniques that 
exploit knowledge of the communications environment. This class of techniques will 
only become more important with time. 
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Abstract. This chapter introduces the basic features of speech recognition over an IP-based 
network. First of all, we review typical lossy packet channel models and several speech coders 
used for voice over IP, where the performance of a network speech recognition (NSR) system 
can significantly degrade. Second, several techniques for maintaining the performance of NSR 
against packet loss are addressed. The techniques are classified into client-based techniques 
and server-based techniques; the former ones include rate control approaches, forward error 
correction, and interleaving, and the latter ones include packet loss concealment and ASR-
decoder based concealment. The last part of this chapter is devoted to explaining a new 
framework of NSR over IP networks. In particular, a speech coder that is optimized for auto-
matic speech recognition (ASR) is presented, where it provides speech quality comparable to the 
conventional standard speech coders used in the IP networks. In addition, we compare the 
performance of NSR using the ASR-optimized speech coder to that using a conventional 
speech coder. 

4.1 Introduction 

The Internet is a worldwide publicly-accessible network of interconnected computer 
networks that transmits data by packet switching using standard Internet protocols 
(IP) (http://en.wikipedia.org/wiki/Internet). Currently, voice data is seen as one of 
the more important types of data, and the transfer of voice conversations over IP 
networks, referred to as voice over IP (VoIP), has significantly grown in recent 
years. In addition to the convergence of voice and traditional data, there has also 
been considerable convergence of IP networks with cellular/wireless networks such 
as GSM, WiMAX, WiFi, Bluetooth, etc. (Chandra and Lide 2007). This trend to-
wards convergence has created quite a number of challenges associated with the 
architecture and implementation of automatic speech recognition (ASR) in conver-
gent network environments. 

In this chapter, we present issues related to ASR over IP networks in a frame-
work of network speech recognition (NSR). In this framework, it is basically as-
sumed that speech must be encoded for transmission at a client. However, an ASR 
server can make use of decoded speech or the bitstream prior to ASR decoding, as 

Furthermore, when compared to ASR over mobile networks, speech transmitted over 
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shown in Figs. 4.1a and b, respectively (Milner and James 2006; Kim and Cox 2001). 
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IP networks is subject to degradation from sources based on the characteristics and 
limitations inherent to IP networks and end-to-end environments. In other words, in 
addition to speech coder distortion and acoustic environmental noises, IP networks 
primarily distort speech quality by network-oriented impairment factors such as jitter 
and packet loss. 
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Fig. 4.1 Architecture for network speech recognition (NSR): (a) decoded speech based NSR 
and (b) bitstream-based NSR (After Kim and Cox 2001) 

 
One can improve the quality of speech in an NSR framework by detecting jittered 

or lost packets and then recovering or concealing them. For this end, techniques for 
maintaining NSR performance against jitter or packet loss can be classified into 
either client-based techniques or server-based techniques. The former includes lay-
ered coding, forward error correction, and interleaving, among others. The latter 

techniques dedicated to ASR over IP networks. 
Due to limitations in bandwidth, a low-bit-rate speech coder is also applied in IP 

networks to compress speech. However, when compared to mobile networks, several 
speech coders can be selectively used in IP networks though a speech coder is exclu-
sively standardized for mobile networks. Moreover, there is flexibility in delivering 
voice through the development of a new speech coder in IP networks. This implies 
that NSR performance would be significantly improved if a speech coder could be 
designed to optimize ASR performance rather than speech quality for speech com-
pression. Of course, the speech coder should provide speech quality comparable to 
conventional speech coders currently used in IP networks. 

includes techniques based on packet loss concealment and ASR decoder-based con-
cealment. Since a number of these techniques are commonly used for ASR over 
mobile networks and/or distributed speech recognition (DSR), we only focus on the 
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Following this Introduction, Sect. 4.2 will briefly discuss the relationship be-
tween ASR performance and speech quality affected by IP network-oriented im-
pairment factors including jitter and packet loss. Section 4.3 will classify robust 
techniques against such network-oriented impairment factors into client-based tech-
niques and server-based techniques, and discuss the techniques dedicated to ASR 
over IP networks. Section 4.4 will explain such a speech coder and then show the 
effect of the new speech coder on ASR performance and speech quality in an NSR 
framework. Finally, this chapter is concluded in Sect. 4.5. 

4.2 Speech Recognition and IP Networks 

The deployment of ASR services over IP networks has been realized in several 
forms of architectures. Of these architectures, NSR using either the decoded speech 
or the bitstream of the encoded speech does not require any constraints to a client 
that supports VoIP. It, however, is well known that the performance of NSR over IP 
networks degrades due to sources of IP distortion, which include low-bit-rate speech 
coding, packet loss, and jitter. Among them, jitter can be ignored if the jitter buffer 
size of IP networks is allowed to be sufficiently large such that no speech packets are 
lost due to delay, which is a condition that does not harm overall ASR performance.  

This chapter further discusses the two key points: speech coding distortion and 
packet loss. There have been many research previous works that have investigated 
the effect of IP networks on ASR performance (Milner and Semnani 2000; Milner 
2001; Peláez-Moreno et al. 2001; Van Sciver et al. 2002; Falavigna et al. 2003; Mayorga 
et al. 2003; Mayorga and Besacier 2006). This section briefly summarizes some of 
these works, especially in terms of motivation for the development of the new 
speech coder described in Sect. 4.4.  

4.2.1 Relationship Between ASR Performance and Speech Quality 

There are several processing blocks required prior to successfully transmitting 
speech over IP networks. Fig. 4.2 shows the processing steps in VoIP at the client 
and at the server (Chandra and Lide 2007), where each processing block can be seen 
to contribute to the quality of speech. In this way, the conversation quality of speech 
becomes a function of factors such as distortion, loudness, delay, and echo. Actually, 
distortion is mainly caused by speech coding distortion and packet loss, which de-
fines the listening quality of speech commonly measured in the mean opinion score 
(MOS) (Takahashi et al. 2004). 

In general, it is known that the listening quality of speech degrades depending on 
the bit-rate of the speech coder used in an IP network and the condition of packet 
loss. Sun et al. (2004) demonstrated that ASR performance of noisy speech could be 
predicted using an objective speech quality measure, i.e., the perceptual evaluation 
of speech quality (PESQ) defined as ITU-T Recommendation P.861 (ITU-T Rec-
ommendation P.862 2001). This result provides evidence that ASR performance is 
highly associated with speech quality since PESQ can be used as a measure of esti-
mating the quality of decoded speech even under a packet loss condition. Moreover, 
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Hooper and Russell (2000) described the relationship between ASR performance and 
speech quality in VoIP, where speech quality was represented in terms of speech 
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coder type, packet size, and packet loss rate (PLR), and concluded that ASR might 
be a viable quantitative measure of speech quality. Therefore, in order to improve 
ASR performance, we need to improve the quality of the decoded speech or develop 
a method that compensates for factors that can potentially degrade speech quality. 
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Fig. 4.2 Processing steps in VoIP and NSR scenarios; the first scenario of NSR, denoted as 
Fig. 4.1a, can be seen to include the use of the bitstream before or after the packet loss con-
cealment block, and the second scenario, denoted as Fig. 4.1b, includes the application of a 
conventional ASR front-end to the speech output (From Chandra and Lide 2007) 

4.2.2 Impact of Speech Coding Distortion 

Speech is commonly transmitted over IP networks by one of the speech coders de-
scribed in Table 4.1 (Walker and Hicks 2004). As shown in the table, the real band-
width required by VoIP communications is higher than that of the speech coder. For 
example, speech is compressed by the G.729 coder with a bit-rate of 8 kbit/s, but the 
actual bitstream over IP is 32.2 kbit/s when the packet size is twice the analysis 
frame size of G.729. This size increase is due to the fact that headers are accumu-
lated before the actual speech data, such as the real time protocol (RTP) header of 
12 bytes, the user datagram protocol (UDP) of 8 bytes, the IP header of 20 bytes, 
and the Ethernet header of 18 bytes. Of course, the total overhead of 58 bytes per  
packet can be reduced by enlarging the packet size. However, it increases subsequent 
delays, and as a result the VoIP system is apt to be fragile to packet loss because 
single packet loss corresponds to a large number of consecutive frame losses (Hooper 
and Russell 2000). 
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Table 4.1 Five common speech coders used in VoIP (From Walker and Hicks 2004) 

There have also been many works investigating the effect of speech coding on 
ASR performance in terms of two different scenarios, as shown in Fig. 4.1 (Gal-
lardo-Antolín et al. 1998; Milner and Semnani 2000; Kim and Cox 2001). In Van 
Sciver et al. (2002), the ASR performance of four different coders was compared 

it was found that the performance of ASR over IP networks was always worse than 
that using uncoded speech at the client. Furthermore, the performance was more 
degraded when a lower bit-rate coder was used for speech coding, for whatever 
packet loss rate incurred in the recognition experiments. This coincides with the 
result suggesting that ASR performance is closely related to the decoded speech 
quality. From an ASR point of view, the reason why speech quality degrades with a 
low-bit-rate coder is that decoded speech can be distorted by the quantization distor-
tion of spectral parameters in combination with excitation distortion (Peláez-Moreno 
et al. 2001). However, this problem can be overcome by using a bitstream-based 
approach, as shown in Fig. 4.1b. 

On the other hand, the primary cause of performance degradation is the different 
frame rate of speech coding from that of ASR. In Falavigna et al. (2003), by obtain-
ing speech recognition features with a frame rate of 7.5 ms from the bitstream of the 
G.723.1 speech coder, ASR performance was significantly improved compared to 
when they were obtained with a frame rate of 30 ms. For this end, Tan et al. (2007) 
investigated the relationship between ASR frame rate and the number of HMM 
states and showed that ASR performance was improved by matching the two factors 
such as by duplicating the frames under a low frame rate condition or by reducing 
the number of HMM states.  

4.2.3 Impact of Network Channel Distortion 

The effect of packet loss on ASR performance has been investigated in two NSR 
scenarios. In order to simulate the behavior of transmission models with memory, 

Coder Data 
Rate 
(kbit/s) 

Typical 
Packet 
Size(ms) 

Packetization 
Delay (ms) 

Bandwidth 
(kbit/s) 

Maximum 
MOS 

G.711 64.0 20   1.0 87.2 4.41 
G.726 32.0 20   1.0 55.2 4.22 
G.723.1   5.3 30 67.5 20.8 3.69 
G.723.1  6.3 30 67.5 21.9 3.87 
G.729  8.0 20 25.0 31.2 4.07 

 

based on the first scenario of Fig. 4.1a, where the coders were 6.3 kbit/s G.723.1, 
6.4 kbit/s G.729D, 8 kbit/s G.729, and 11.2 kbit/s G.729E. Through this comparison, 

1

1

Speech Recognition Over IP Networks

Default Attributes for Six Common Codes, © Cisco Systems, Inc. Reproduced by 
permission of Pearson Education, Inc. All rights reserved. 

Walker/Hicks, TAKING CHARGE OF YOUR VOIP PROJECT, p. 86 Table 3-3 
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the Gilbert-Elliott channel model (Peláez-Moreno et al. 2001; Falavigna et al. 2003; 
ITU-T Recommendation G.191 2000) can be used for random and burst packet 
losses, as shown in Fig. 4.3a. A three-state packet loss model, shown in Fig. 4.3b, 
was further introduced to simulate the burst-like nature of packet loss with an inter-
mediate state between packet loss free and burst packet loss (Milner 2001).  

These models can be used to generate a packet loss pattern, and the received 
packet is declared either lost or not according to a binary number in the pattern. The 
probability of packet loss, i.e., the PLR, in the Gilbert-Elliot model is determined by 

 

21 11
PPPPPLR ts                                           (4.1) 

 
where 1P  and 2P  are the probabilities of staying at the good and bad state, respec-
tively, tP  and sP  are the transition probabilities from the good state to the bad state 
and vice versa, respectively, and )(1 ts PP controls the burstiness of packet loss. 
In Fig. 4.3b, PLR and burstiness are determined by efP and ebP , respectively. 
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Fig. 4.3 Packet loss models: (a) Gilbert-Elliot model and (b) three-state burst-like packet loss 
model (From Milner 2001) 

This packet loss pattern should reflect the characteristics of real voice traffic in 
IP networks. It was shown from the results reported in Borella (2000) that PLR was 
about 0.5–3.5% with a mean number of packets lost in a single burst of about 6.9, 
where around 90% of the bursts consisted of three packets or less for the G.723.1 
coder, corresponding to a speech interval of 90 ms. Under this condition, the per-
formance of NSR using the bitstream was always better than that using speech de-
coded by the coder for all PLRs and burstiness (Peláez-Moreno et al. 2001; Van 
Sciver et al. 2002; Mayorga and Besacier 2006), though it was significantly lower 
than that without any packet loss. This result is the basis of the motivation for en-
couraging the further development of techniques robust to packet loss. 
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4.3 Robustness Against Packet Loss  

In this section, we address techniques associated with preventing, recovering, or 
concealing packet loss to improve ASR performance. Note that some techniques 
(Tan et al. 2005, 2007) are dedicated for application in other speech recognition 
scenarios, such as the ASR over mobile networks described in Chap. 3 and distrib-
uted speech recognition described in the following chapters. This section solely 
focuses on the techniques used for ASR over IP networks based on the NSR frame-
work; Fig. 4.4 shows the basic taxonomy of error robust techniques applicable to 
NSR (Perkins et al. 1998; Tan et al. 2005). 
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Fig. 4.4 Robustness techniques against packet loss for NSR 

4.3.1 Rate Control  

Maintaining a high quality of speech at the client is important for reliable ASR per-
formance in an NSR framework. To this extent, speech quality can be improved by 
controlling QoS in the Internet via adaptive packet size or jitter buffer length and by 
optimizing network resources in active or passive ways. Rate shaping techniques are 
an active method of optimizing network resources and attempt to adjust the rate of 
speech encoding according to current network conditions. Seo et al. (2001) reported 
that the network condition was monitored based on the arriving time difference be-
tween a pair of packets by using the timestamp in an RTP header. As the time differ-
ence decreased, a higher rate of the adaptive multi-rate (AMR) coder (3GPP TS 
26.090 1999) was preferred. As a result, the AMR coder could improve overall 
speech quality by trading off PLR and the bit-rate of the speech coding PLR, as 
compared to a fixed rate coder. A similar approach was proposed in Ruggeri et al. 
(2001) by modifying the G.729 coder into a multi-mode and multi-rate coder for rate 
shaping. In addition, Fingscheidt et al. (2002) used the AMR coder for rate shaping 
over GSM and showed that the performance of NSR using rate shaping of the AMR 
coder was comparable to that of DSR. 

Speech Recognition Over IP Networks
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Layered encoding encodes speech into several layers, where a reasonable quality 

of speech can be obtained with the base layer. Then, when the network transmits 
layered speech, it can drop the higher layers in the event of network congestion; 
recently, the G.729 coder was extended with such a layered coding scheme (Ragot  
et al. 2007). 

4.3.2 Forward Error Correction 

formation to help the decoder recover from packet loss. For example, media-
independent channel coding is realized by using parity codes, cyclic redundancy 
codes, and Reed-Solomon codes, which enables the decoder to accurately repair lost 
packets without knowing the type of content. However, it requires additional delays 
and bandwidth (Shacham and McKenney 1990).  

On the other hand, a media-specific FEC sends the same or similar contents in 
multiple packets. If a packet is lost, the packet may be recovered using a duplicate 
packet. For example, in Hardman et al. (1995) a current speech frame was basically 
encoded by the 13.2 kbit/s GSM coder and also encoded by a 4.8 kbit/s low-bit-rate 
LPC vocoder for a media-specific FEC. The actual information transmitted was 
composed of the 13.2 kbit/s GSM bitstream of the current frame and the 4.8 kbit/s 
LPC vocoder bitstream of the previous frame, thus speech could be decoded by 
using the LPC vocoder bitstream for the lost previous frame. 

Another kind of media-specific FEC that attempts to make the decoder robust to 
bit error is unequal error protection (UEP), which protects only a part of the bits in 
each packet (Swaminathan et al. 1996). The bits are judged based on a bit sensitivity 
analysis (Servetti and De Martin 2002; Kataoka and Hayashi 2007). 

4.3.3 Interleaving 

The technique of interleaving aims at distributing the effects of the lost packets in 
such a way that the overall packet loss effects are reduced. For instance, burst packet 
loss affects the speech bitstream or speech quality as if it were a random packet loss. 
Moreover, compared to FEC techniques, interleaving does not increase the network 
load. For example, in Mayorga et al. (2003), each packet was divided into several 
units for PCM transmission. However, each packet of the bitstream of a speech coder, 
e.g., the G.729 or G.723.1 speech coder, consisted of 2–4 frames in an attempt to 
reduce the network overhead caused by the RTP/UDP/IP header (Mayorga and 
Besacier 2006). In this case, the unit corresponds to a single frame of the speech 
coder. Units are then combined in a different sequential order that is generated by a 
speech coder and rearranged into their original order at the decoder. Thus, packet 
loss results in the loss of several units distributed in the other packets. The error 
concealment (EC) techniques described in the next subsection will be applied to 
reconstruct the lost frames. 

fects of packet loss by splitting the bitstream into multiple streams or paths, though 
this technique consumes a wider bandwidth (Anandakumar et al. 2000). To overcome 

Forward error correction (FEC) is a method by which the encoder sends extra in-

Multiple description coding (MDC) is an alternative to FEC for reducing the ef-
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the increased bandwidth demand, zero redundancy MDC can be designed by exploit-
ing the characteristics of a CELP-type coder (Wah and Lin 2005). In other words, 
spectral parameters, LSPs in CELP-type coding, are temporally correlated such that 
LSPs can be interleaved in MDC while excitation is replicated along multiple de-
scriptions in the interleaved units. 

There have been a number of research works associated with EC based on insertion-
based, interpolation-based, and statistical approaches reported in a DSR framework 
(Tan et al. 2005; Milner and James 2006). These approaches are further discussed in 
other chapters; here, we only discuss EC with respect to NSR. 

In insertion-based EC techniques, lost frames are replaced with silence, noise, or 
estimated values. In general, the parameters of a lost frame are estimated by extrapo-
lating those of a previous good frame. That is, the parameters of lost frames are 
estimated by repeating a down-scaled version of previous ones (ITU-T Recommen-
dation G.729 1996). In particular, the specific steps taken for reconstructing a lost 
frame in G.729 are: (1) repeating the synthesis filter parameters, (2) attenuating the 
adaptive and fixed codebook gains, followed by attenuating the memory values of 
the gain predictor, and (3) randomly generating the excitation. This approach works 
well for speech communication, where delay is an essential issue as there is no time 
to wait for future good frames at the decoder. 

Assuming that in a VoIP system a future good packet will be available in the 
playout buffer just after a series of lost packets, interpolation-based EC techniques 
can be applied (de Martin et al. 2000). This assumption can yield additional delays in 
speech decoding, though such delays do not affect ASR if the average time delay 
caused by burst packet loss is less than 100 ms as mentioned in Sect. 4.2.3. The 
interpolation-based EC algorithm has the potential to reconstruct a lost frame by 
applying a linear or polynomial interpolation technique between the parameters of 
the first and last correct speech frames before and after the burst packet loss. Such an 
interpolation-based EC algorithm has been successfully implemented for NSR 
(Mayorga et al. 2003; Gómez et al. 2006). 

A novel approach was proposed in Mayorga et al. (2003), where different 
weights of the language model with respect to the acoustic model were assigned 
depending on PLR. From the NSR experiment using decoded speech from the 
G.723.1 coder, it was shown that the average word error rate could be relatively 
reduced by around 20% by changing the weight of the language model for a con-
tinuous French database when PLR was 10%.  

4.4 Speech Coder for Speech Recognition Over IP Networks 

In this section, a high-quality speech coder for NSR over IP networks is described, 
which has been proposed in Yoon et al. (2007). From the view of speech quality and 

4.3.4 Error Concealment and ASR Decoder-Based Concealment 

Speech Recognition Over IP Networks
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instead of linear prediction coefficients (LPCs). In other words, MFCCs are directly 
transmitted to the decoder and used for ASR, where they are converted to LPCs for 
speech coding. Therefore, one of the major concerns in the proposed speech coder is 
how to efficiently compress or quantize MFCCs in terms of both speech coding and 
speech recognition.  

4.4.1 MFCC-Based Speech Coder 

We propose a CELP-type speech coder, where the spectral envelope is represented 
as MFCCs to maintain speech recognition performance at the server. In conventional 
CELP speech coders, the spectral envelope is represented as LPCs, and then the LPCs 
are quantized for transmission. However, since the proposed speech coder extracts and 
quantizes MFCCs, a conversion procedure from MFCCs to LPCs is required, as shown 
in Fig. 4.5. Since NSR can be performed with quantized MFCCs on the decoder side, the 
performance of MFCC quantization is closely related to NSR performance. Thus, we 
develop an efficient MFCC quantization method having a smaller number of bits, while 
maintaining speech recognition performance. 

The proposed speech coder was developed by making use of the structure of the 
ITU-T Recommendation G.729 (1996). Here, the frame size is 10 ms, and each 
frame is divided into two subframes for long-term prediction and excitation model-
ing. However, it should be noted that MFCC extraction, MFCC-to-LPC conversion, 
and MFCC quantization are all different from G.729. 

Figure 4.6 shows the procedure for obtaining MFCCs from the input speech. As 
can be seen from the figure, the speech signal is high-pass filtered with a cut-off 
frequency of 140 Hz, and then scaled down by a factor of 2 in the pre-processing 
block. Next, the pre-processed signal is windowed by an asymmetric window identi-
cal to the window used in G.729. Then, each frame is zero-padded to form an ex-
tended frame of 256 samples. A 256-point fast Fourier transform (FFT) is then  
applied to compute the magnitude spectrum of the windowed signal. The magnitude 
spectrum is subsequently passed through 23 triangular mel-filterbanks, and each 
mel-filtering output is transformed into a logarithmic scale. Finally, a discrete cosine 
transform (DCT) is applied to obtain the 13 MFCCs, ( 1210 ,,, ccc L ). 

Figure 4.7 shows the procedure for obtaining LPCs from MFCCs. Note that the 
13 MFCCs are first zero-padded to make 23 MFCCs. Then, an inverse DCT (IDCT) 
followed by the inverse logarithm is applied to these MFCCs, resulting in 23 fre-
quency samples. Next, the 23 frequency samples are linearly interpolated to make 
256 frequency samples. The power density spectrum is then computed by the square 
of the interpolated 256 frequency samples. A 256-point inverse FFT (IFFT) is ap-
plied to compute the autocorrelation coefficients, and the autocorrelation coefficients 
are subsequently smoothed by the application of a lag window. Finally, 10 LPCs can 
be obtained by using the Levinson-Durbin recursion.  

 
 

speech recognition performance, the proposed speech coder is based on the useof 
Mel-frequency cepstral coefficients (MFCCs) for spectral envelope parameters  
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Fig. 4.6 Procedure for extracting MFCCs from speech signals 

Fig. 4.5 Encoding structure of the proposed MFCC-based speech coder (From Yoon et al. 
2007, © 2007 IEICE) 
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Fig. 4.7 Procedure for converting MFCCs to LPCs for CELP-type speech coding 

4.4.2 Efficient Vector Quantization of MFCCs 

In this section, we propose a vector quantizer (VQ) based on predictive VQ (PVQ) to 
reduce the bit-rate of the proposed speech coder by using the interframe correlation 
of MFCCs (Ramaswamy and Gopalakrishnan 1998). In addition, a safety-net PVQ is 

ognition performance by minimizing error propagation (Eriksson et al. 1999). 
Our proposed structure is based on the following investigation. First of all, we 
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where i is the quefrency index, k is the frame interval, N is the total number of 
frames, and nic ,

correlations of each MFCC according to a different number of intervals, where we 
used 3,200 frames collected from the utterances spoken by 2 males and 2 females. 
As shown in the figure, the MFCC of each frame was highly correlated with that of 
the previous frame. Moreover, it was found that 0c  had the highest correlation 
among all the MFCCs, with a correlation coefficient greater than 0.95. Accordingly, 
we divided MFCCs into two subvectors for quantization: a 1-dimensional vector 1C , 

0c , and a 12-dimensional vector 2C , Tcc 121 ,,L . 
Second, a safety-net PVQ is introduced by combining a PVQ with a memoryless 

VQ, where the memoryless VQ plays a role in reducing the error propagation due to 
the prediction structure of the PVQ (Eriksson et al. 1999). For a given MFCC vector, 
selecting either PVQ or the memoryless VQ in the safety-net PVQ is required. To 
this end, we use the Euclidean distance measure to select one of the VQs; PVQ is 
selected if the distance from PVQ is smaller than that from the memoryless VQ, and 
vice versa. 

 

measure the interframe correlations to justify the use of PVQ, which are defined by 

introduced to mitigate the effect of frame erasure on speech quality and speech rec-

 is the i-th MFCC of the n-th frame. Figure 4.8 shows the interframe 
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Fig. 4.8 Intraframe correlations of MFCCs (From Yoon et al. 

 
Figure 4.9 shows the proposed VQ used in this paper. Here, an input MFCC vec-

tor of the n-th frame is split into two subvectors as  
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where ][1 nC  and ][2 nC  are, respectively, a 1-dimensional subvector and a 12-
dimensional subvector, as described above. Then, each subvector is quantized by its 
corresponding safety-net PVQ, where a selector chooses between either PVQ or the 
memoryless VQ depending on the Euclidean distance measure. In PVQ, the predic-
tion is based on the quantized MFCC vector of the previous frame, such that 

 
    ]1[ˆ][ nn iiip CC                                                         (4.4) 
 

where i  is the prediction coefficient of the previous frame of the i-th subvector in 
Eq. 4.3. Specifically, we construct the memoryless VQ and PVQ for 2C  with a 
multi-stage VQ, as it is generally known to be efficient in the search and training of 
VQ for high dimensional vectors (Juang and Gray 1982). Finally, the number of bits 
assigned to each quantization index is as described in Table 4.2. 

 
 

2007, © 2007 IEICE) 
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Fig. 4.9 Structure of a safety-net MFCC VQ combining PVQ and a memoryless VQ (From 
Yoon et al. 

In order to select the optimal numbers of bits for 3i , 4i  and 5i , we divide the 
speech database into two parts. The first one, consisting of 172,800 American English 
and Korean frames, is used for training the proposed VQ; the other, consisting of 
48,400 frames, is used for the evaluation of VQ. Typically, the number of bits for 
PVQ is closely related to the value of i . In fact, we first select an optimal i , and 
then assign the proper number of bits to each index when PVQ works with the se-
lected optimal i . 

Table 4.2 Bit allocation for the MFCC VQ 

Index No. of bits Description 

1i  1 Prediction selector for 1C  

2i  1 Prediction selector for 2C  

3i  5 VQ index for 1C  

4i        11 First stage VQ index for 2C  

5i  7 Second stage VQ index for 2C  
Total 25  

2007, © 2007 IEICE) 
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where K is the dimension of a subvector and is set as 1 for 1C  and 12 for 2C , N is 
the total number of frames, and nic ,  and nic ,ˆ are the i-th elements of unquantized and 
quantized subvectors of the n-th frame, respectively. Table 4.3 and Fig. 4.10 present 
the performance comparison measured from Eq. 4.5 by varying the prediction coeffi-
cient and the number of bits for 1C and 2C , respectively. Note that as compared to the 
distance of SVQ, the proper number of bits for 1C  should be set to 5 or more  
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Fig. 4.10 Performance comparison by varying 2  and the number of bits for 2C , where (a,b) 
in the x-axis represents the number of bits for the first and second stage, respectively (From 
Yoon et al. 

Table 4.3 Performance comparison of the Euclidean distance according to different values of 
the prediction coefficient and the different number of bits assigned for 1C  

 

As a criterion for selecting i and assigning the number of bits, we use the fol-
lowing Euclidean distance measure 

Safety-net PVQ SVQ 1  
4 bits 5 bits 6 bits 8 bits 

1.0 0.72  0.36  0.18 
0.95  1.18  0.71  0.42  
0.90 1.54  0.88  0.51 

0.41 

 

2007, © 2007 IEICE) 
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when 1  = 1. However, when 1  is less than 1, we need to assign more bits to PVQ 
for 1C . For this reason, we set 1 =1, and assign 5 bits to 3i , as shown in the third 
row of Table 4.2. Similarly, the proper number of bits for 2C  is determined to be 18 
when 2  is between 0.75 and 0.95, with 2  = 0.85 giving the best result. Exhaustive 
experiments confirm that the best performance can be achieved using 18 bits, where 
18 bits are split into 11 bits for 4i  and 7 bits for 5i . As a result, the 13 MFCCs are 
quantized with 25 bits, which is a reduction of 19 bits when compared with the SVQ 
quantizer. Finally, we summarize the bit allocation of the proposed speech coder 
with a bit-rate of 8.7 kbit/s, as shown in Table 4.4. 

4.4.3 Speech Quality Comparison 

We evaluated the performance of the proposed speech coder using the perceptual 
evaluation of speech quality (PESQ) measure (ITU-T Recommendation P. 862 2001). 
The experimental data consisted of 64 sentences spoken by four male and four fe-
male speakers. Each sentence was sampled with a rate of 8 kHz, and then filtered by 
the modified IRS filter (ITU-T Recommendation G.191 2000) to simulate the condi-
tion as if the recording were done through mobile devices. 

Table 4.5 shows the mean opinion score (ITU-T Recommendation P. 862 2001) 
when the performances of the 8 kbit/s G.729 and the 8.7 kbit/s MFCC-based speech 
coders were evaluated under packet loss free conditions. It also shows the MOS 
score of the proposed speech coder according to different values of the prediction 
coefficient 2  for 2C . Note that the prediction coefficient for 1C  was fixed as 1, as 
described in Sect. 4.4.2. The MOS score of the MFCC-based speech coder was about 
0.02 higher than that of G.729 when 2  was between 0.85 and 0.95. That is, by 
selecting an appropriate setting for 2 , the MFCC-based speech coder had a better 
performance than G.729. Fig. 4.11 and Table 4.5 further imply that 0.85 was the best 
choice for 2  under a packet loss free condition. 

In practice, it is essential for a coding scheme to cope with packet loss. For this 
reason, in order to evaluate the performance of the proposed speech coder under 
packet loss conditions, we used the error insertion algorithm defined by the ITU-T 
Recommendation G.191 (2000) to generate error patterns. Then, when a frame was 

Table 4.4 Bit allocation for the MFCC-based speech coder 

Subframe Parameter 1st 2nd Frame 

MFCC            – 25 
Adaptive codebook index 8 5 13 
Pitch parity 1 – 1 
Fixed codebook index 13 13 26 
Fixed codebook sign 4 4 8 
Conjugate codebook gain 7 7 14 
Total  87 
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erased, the proposed speech coder reconstructed the speech by using an extrapolation 
technique from a previous good frame, which is similar to the interpolation-based 
EC in G.729. Fig. 4.11 shows the MOS scores according to 2  and frame erasure 
rate (FER), where FER is identical to PLR if each packet is composed of a single 
frame. Note that for the FER from 0% to 10%, it was found that the more 2  de-
creased, the more robust the coder was to packet loss. Then, by considering the re-
sults shown in Table 4.5 and Fig. 4.11, it was concluded that 2 =0.85 was again the 
best selection for the MFCC-based speech coder. 

Table 4.5 Comparison of PESQ scores of G.729 and the MFCC-based speech coder with 
different 2  with 1 =1 
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Fig. 4.11 PESQ scores under packet loss conditions obtained by varying the frame erasure 
rates against 2  for 2C  when 1 =1 (From Yoon et al. 

4.4.4 ASR Performance Comparison 

A. ASR Baseline and Task 

We evaluated the performance of NSR using the MFCC-based speech coder. As a 
comparative experiment, a conventional client-based ASR, DSR, and another NSR 
using G.729 were also evaluated in this subsection. For the client-based ASR system, 

MFCC-based speech coder ( 2 ) (8.7 kbit/s) G.729 
(8 kbit/s) 0.75 0.80 0.85 0.90 0.95 

3.828   
3.836 

  
3.837 

  
3.848 

 
3.843 

 
3.848 

 

2007, © 2007 IEICE) 
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we used the ETSI DSR front-end (ETSI Standard ES 201 108, 2003) to extract 
MFCCs from the input speech signals but did not apply SVQ quantization to them; 
conversely, we used the ETSI DSR compression algorithm to quantize MFCCs for 
DSR. For the other NSR system using G.729, speech signals decoded by G.729 were 
used for the ETSI DSR front-end.  

The Aurora 4 database (Hirsch 2002) was derived from the Wall Street Journal 
5000-word closed-loop task (WSJ0) to evaluate the performance of large vocabulary 
continuous speech recognition (LVCSR). The database was divided into training and 
test sets, where all utterances were sampled at a rate of 8 kHz. The training set was 
constructed by adding six different noises (cars, babble, street traffic, train station, 
restaurant, and airport) to the 7,138 utterances recorded by a Sennheiser close talking 
microphone and several far talking microphones. Here, we performed the multi-
condition training for acoustic models. In the Aurora 4 database, fourteen test sets 
were defined in order to evaluate speech recognition performance under the different 
microphone and noise conditions. For this evaluation, we selected seven test sets, 
where each set was composed of 330 utterances recorded by the Sennheiser close-
talking microphone under one clean and six different noise conditions. The average 
signal-to-nose ratio (SNR) for the test utterances under noise conditions was meas-
ured at around 10 dB. 

 
B. Loss-Free Condition  

Table 4.6 shows the word error rates (WERs) of the ASR systems classified by three 
configurations. The second and third columns show the WERs of the ASR system 
under the client-based configuration and under the DSR configuration, respectively. 
The WERs of the NSR systems using the MFCC-based speech coder and G.729 are 
shown in the last two columns. As shown in Table 4.6, the client-based ASR system 
provided the best ASR performance. The client-based ASR system, however, is 
impractical for LVCSR because of the low power inherent in the small client devices.  

Table 4.6 Comparison of the average word error rate (%) of different ASR configurations for 
the Aurora 4 database under multi-condition training 

ASR configuration NSR 

Test set 

 Client-
based DSR G.729 

coder 

MFC
C-based 
coder 

Clean (Set 1) 18.21 18.92 19.39 18.87 
Car (Set 2) 20.34 20.81 22.98 22.70 
Babble (Set 3) 29.63 30.79 30.97 36.52 
Restaurant (Set 4) 31.70 33.22 33.03 36.82 
Street (Set 5) 32.51 32.71 34.19 36.41 
Airport (Set 6) 28.21 28.73 29.93 32.36 

32.84 33.79 35.36 37.18 
Average WER 27.63 28.42 29.41 31.55 
Train station (Set 7) 
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A report regarding the complexity of ASR conducted by ETSI on the Aurora 4 
database Parihar and Picone (2001) showed that the computational amount was 85 
times longer than real-time on an 800 MHz dual processor Pentium III with 1 GB 
RAM. This implies that the ASR system required a CPU time of 850 s to recognize 
an utterance if the utterance was 10 s long. In addition, it was further reported in 
Parihar and Picone (2001) that a memory size of around 300 MB to 650 MB was 
required to process the Aurora 4 database. This indicates that a client-based ASR 
approach is not yet realizable in terms of real-time processing, whereas the DSR 
approach is more desirable for small computing devices due to the heavy computing 
requirement of ASR. Thus, it was determined that our target performance should be 
that of the DSR system, especially if we take into consideration the feasible imple-

that the average WER of the NSR system using G.729 significantly increased by 

WER of the NSR using the MFCC-based speech coder only increased by about 3.5%. 

creased by 6.8% compared with that of the NSR system using G.729. 
 

C. Packet Loss Condition 
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We further evaluated the performance of ASR front-ends under packet loss conditions

Moreover, the relative WER of the NSR using the MFCC-based speech coder de-

mentation of the LVCSR system. When compared to the DSR system, it was found 

11.0%. On the other hand, contrary to the NSR system using G.729, the average 

The experimental setup for simulating the packet loss condition was identical to  

formance to DSR for all frame erasure rates. 

rage WERs of the three front-ends according to different frame erasure rates. It can 
that used for speech quality, as shown in Fig. 4.11. Figure 4.12 then shows the ave- 

be seen in the figure that NSR using the MFCC-based speech coder provided a 
more robust ASR performance than NSR using G.729, and it had comparable per-

Speech Recognition Over IP Networks

Fig. 4.12 Comparison of average word error rates (%) of each ASR configuration under 
different packet loss conditions (From Yoon et al. 2007, © 2007 IEICE) 
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4.5 Conclusion 

framework of NSR. In this framework, it is basically assumed that speech must be 
encoded for transmission at a client and an ASR server can make use of decoded 
speech or the bitstream prior to speech decoding. Moreover, when compared to ASR 
over mobile networks, speech transmitted over IP networks is subject to degradation 

to-end environments. We then discussed methods for improving speech quality and 
the feature parameters for NSR according to speech coder distortion and packet loss. 
It was suggested that there was no single unique method to compensate for all the 
factors that could potentially degrade ASR performance, resulting in the combination 
of several techniques to solve such problems.  

Next, we proposed a CELP-type speech coder using MFCC for NSR, where the 
spectral envelope was represented as MFCCs for speech recognition and speech 
reconstruction on the decoder side. To efficiently quantize MFCCs with a low bit-
rate and make the proposed speech coder robust to packet loss, we then proposed a 
safety-net scheme that combined predictive VQ and memoryless VQ. Through the 
results of our experimental analysis, 25 bits per frame were assigned to MFCCs, and 
an 8.7 kbit/s speech coder was developed by using the proposed quantization. In 
addition, it was shown from the PESQ tests that the proposed MFCC-based speech 
coder provided slightly better speech quality under both packet loss free and packet 
loss conditions compared to the 8 kbit/s G.729 speech coder. Moreover, since the 
proposed speech coder directly transmitted MFCC, the word error rate of NSR using 
the proposed speech coder was relatively decreased by 6.8%, as compared to that of 
NSR using G.729. 
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Distributed Speech Recognition Standards 
 

David Pearce 

Abstract. This chapter provides an overview of the industry standards for Distributed Speech 
Recognition developed in ETSI, 3GPP and IETF. These standards were created to ensure 
interoperability between the feature extraction running on a client device and a compatible 
recogniser running on a remote server. They are intended for use in the implementation of 
commercial services for speech and multimodal services over mobile networks. In the process 
of developing and agreeing the standards substantial performance testing was conducted and 
these results are also summarised here. While other chapters provide more general information 
about feature extraction and channel error processing for DSR this chapter focuses on intro-
ducing the specifics of the standards. 

5.1 Introduction 

It is estimated that in 2007 there are over 2 billion mobile phone subscribers worldwide 
and the numbers continue to grow. The market was originally fuelled by person-to-
person voice communications and this remains the dominant “application.” Recently 
we have seen increasingly sophisticated devices packed with many new features 
including messaging, cameras, browsers, games and music. Alongside device devel-
opments the mobile networks have improved, giving increased coverage and wide-
spread availability of the 2.5G packet data such as General Packet Radio Service 
(GPRS). There are also many new deployments of 3G networks, bringing much larger 
bandwidths to mobile users. The 2.5G and 3G data capabilities provide the opportu-
nity to deliver a range of different audio and visual information to the user’s device 
and enable access to “content” while on the move. The user interface for these devices 
has certainly improved but the small keypad remains a barrier to data entry. Reliable 
speech input holds the potential to help greatly. Alongside pure speech input and 
output, the benefits of a multimodal interface are well appreciated. The ability to 
combine alternative input modalities (e.g., speech and/or keypad) with visual (e.g., 
graphics, text, pictures) and/or audio output can greatly enhance the user experience 
and effectiveness of the interaction. 

For some applications it is best to use a recogniser on the device itself (e.g., inter-
facing to the phone functions and voice dialling using personal address book) while 



 

these devices is increasing, the complexity of large vocabulary speech recognition 
systems is beyond the memory and computational resources of many devices. Also 
the associated delay to download speech data files (e.g., grammars, acoustic models, 
language models, vocabularies) may be prohibitive or be confidential (e.g., a corpo-
rate directory). 

Server-side processing of the combined speech input and speech output can over-
come many of these constraints by taking full advantage of memory and processing 
power as well as specialised speech engines and data files. New applications can also 
be more easily introduced, refined, extended and upgraded at the server. 

So, with the speech input remote from the recognition engine in the server, we 
are faced with the challenge of how to obtain reliable recognition performance over 
the mobile network. In addition we would like to have an architecture that can pro-
vide a multimodal user interface. These have been two motivators that have led to 
the creation of the standards for Distributed Speech Recognition (DSR):  

 
1. Improved recognition performance over wireless channels 

 
The use of DSR avoids the degradations introduced by the speech codec and 

channel transmission errors over mobile voice channels:  

(a) By using a packet data channel (for example GPRS for GSM) to transport the 
DSR features, instead of the circuit switched voice channel that is normally 
used for voice calls, the effects of channel transmission errors are greatly re-
duced and consistent performance is obtained over the coverage area.  

(b) By performing the front-end processing in the device directly on the speech 
waveform, rather than after transcoding with a voice codec, the degradations 
introduced by the codec are avoided. 

(c) In addition the DSR Advanced Front-end is very noise robust and halves the 
error rate in background noise compared to the Mel-Cepstrum front-end, giv-
ing robust performance for mobile users who are often calling from environ-
ments where there is background noise. 

2. Ease of integration of combined speech and data applications for multimodal inter-
faces. 

 
In multimodal interfaces, different modes of input (including speech or keypad) 

may be used and different media for output (e.g., audio or visual on the device 
display) are used to convey the information back to the user. The use of DSR en-
ables these to operate over a single wireless data transport rather than having sepa-
rate speech and data channels. As such, DSR can be seen as a building block for 
distributed multimodal interfaces. See the chapter on “Software Architectures for 
Networked Mobile Speech Applications” for a detailed discussion on multimodal 
architectures. 

for others it will be preferable to connect to a remote recognition server (e.g., directory 
assistance, voice search, information access). Although the computational power of 
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5.2 Overview of the Set of DSR Standards 

A comprehensive set of DSR standards has been developed and agreed within the 

 

The feature extraction algorithms were developed and standardised within the 
ETSI STQ Aurora DSR working group (more commonly referred to as “Aurora”). 
The Mel-Cepstrum front-end was in widespread use for speech recognition systems 
but with many variations using different parameters in their implementations. So the 

feature compression algorithm to reduce the transmission bandwidth to 4.8 kbit/s. 

Cepstrum front-end, its compression and its circuit switched transmission format. 
For mobile environments where there is often background noise it was desired to 

was created with the goal of halving the word error rate in background noise compared 
to the Mel-Cepstrum front-end standard. To compare the performance of different 
candidate algorithms a set of evaluation databases, and back-end HMM recogniser 
configurations together with an associated selection criteria were developed. A com-
petitive selection process was organised that eventually resulted in agreement on the 

ETSI Aurora also saw the need in some applications to be able to reconstruct the 
speech signal and to have a fundamental frequency feature to assist with tonal lan-
guage recognition. Rather than having a competition to develop this capability it was  
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Standard no. Description Standards body 

ES 201 108 Mel-Cepstrum Front-end ETSI STQ-Aurora 

ES 202 050 Advanced Front-end (AFE) ETSI STQ-Aurora 

ES 202 211 Extended Mel-Cepstrum Front-end (XFE) ETSI STQ-Aurora 

ES 202 212 Extended Advanced Front-end (XAFE) ETSI STQ-Aurora 

TS 26.243 Fixed point specifications for ES 202 050  
and ES 202 212 

3GPP 

Rfc3557 RTP payload format for ES 201 108 IETF 

Rfc4060 RTP payload formats for ES 201 050, ES 202 
211 and ES 202 212 

IETF 

 

Table 5.1 Summary list of the set of DSR standards 

standards is given in Table 5.1. 

international standards bodies (Pearce 2000). These cover the feature extraction algo-

cation and software, and the protocols and formats for feature transmission between 
rithms with their floating point specification and software, their fixed-point specifi-

client device and remote recognition server. A summary of the set of DSR related 

This resulted in the creation of the first ETSI Standard ES 201 108 2000 for the Mel-

first activity was to agree the specific parameters for a standard and to develop a 

algorithms for the DSR Advanced front-end (AFE) (ETSI Standard ES 202 050 2002).  

have a feature extraction standard that was more noise robust. So a new work item 



 
created by collaboration between the two companies that had candidate technologies. 

For each of these ETSI standards, the algorithm is specified in floating-point 
form, and a reference implementation in C forms part of the specification. 

At the time of the Aurora work, the wireless industry was also introducing packet 

specified in ETSI Aurora, appropriate protocols and payload definitions needed to 
be standardised for the DSR features. The IETF already had a framework to support 

within their Real Time Protocols (RTP), so this was a natural place to standardise the 

two extended front-ends.  
With the DSR front-end standards created in ETSI Aurora it was anticipated that 

these would be adopted and referenced within the specifications for the different 

work using the same DSR standard it would improve implementation efficiency and 
interoperability providing ubiquitous access to voice servers over different data trans-
port networks. 

The 3GPP (3rd Generation Partnership Project) is the body responsible for the 
GSM and UMTS standards, and it was the first to consider the use of DSR for their 
requirement to support of “Speech Enabled Services.” Before adopting DSR, the SA4 
working group that looks after the specification of codecs wanted to be sure of the 
performance advantages and to compare with any other alternatives. So a lot more 
additional testing was performed within 3GPP working with commercial recognition 
vendors, IBM and Nuance (Speechworks at the time), using their commercial recog-
nisers and testing with many larger speech databases (both public and private). The 
result of this process was the selection of the DSR Extended Advanced Front-end as 
the recommended codec for speech enabled services in 3GPP release 6. The fixed-
point version of the AFE and XAFE were also specified as standards to ensure inter-
operability by having bit-exact implementation of the standard. This is published as 
standard 3GPP TS 26.243 (2004) which has the fixed-point C code specification 
software included. There are also a set of test vectors specified for testing bit-
exactness to the standard (3GPP TS 26.177 2004).  

Further details about each of these standards and their performance are given the 
sections that follow. 

5.3 Scope of the Standards 

Figure 5.1 shows a block diagram of the processing stages of a DSR system. These 
are split into the terminal (or client) side processing and the server side processing. 
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IETF AVT working group to define the payload format for DSR in RTP and after 

wireless and wireline networks (for example 3GPP, 3GPP2 and ITU). By each net-

format and create a MIME type for DSR. An activity was therefore started in the 

many different payload types for applications like Voice over IP and streaming video 

the first being rfc3557 for ES 201 108 and the second, rfc4060, for the AFE and the 
following the appropriate processes in the IETF two specifications were published: 

Standard ES 202 212 2003) provides this functionality for the Advanced front-end. 

This produced the extended front-end standards. One standard (ETSI Standard ES 202 

data network capabilities, so in addition to the circuit switched payload formats 

211 2003) provides the extension of the Mel-Cepstrum front-end while the other (ETSI 
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Transmission between the client and server could be over either a wireless or a wireline 
communication network or a combination. While the standards are not restricted to 
this case it is anticipated that implementations will most likely use packet data proto-
cols to support the end-to-end connectivity. The general principle that was applied 
when setting the standards was to specify the minimum to allow interoperability 
between client and server. Where there are blocks in the processing chain that vendors 
can further optimise in proprietary ways to obtain better overall performance then 
these are not mandated but left open for service providers to implement as they 
choose. For example, the standards only cover as far as the regeneration of static Mel-
Cepstrum features and it is left to the ASR vendor to select which features to use in 
the recogniser and how to generate any derivative features as input to the decoder. 

In the section below we progress through each of the blocks in the processing 
chain and the last digit of the section numbers used below correspond to the num-
bered blocks in Fig. 5.1. The grey filled boxes in the processing chain are those 
covered by the standard while the white filled ones are not.  

 
Client Side Processing

3
Pre-processing

5
Compression & 
error protection

6
Formatting

4
Parameterisation

1
Electro-acoustics

2
Speech Detection or 

External control signal

A

Server Side 
Processing

7
Error detection & 

mitigation

8
Decompression

9
Server side FE
Post-processing

10
Feature

Derivatives

DC

B

 

Fig. 5.1 Terminal/client side DSR processing chain 

5.3.1 Electro-Acoustics 

This block refers to everything that occurs during the conversion of the sound pressure 
waveform to a digitised signal. These include the microphone transducer, analogue 
filtering, automatic gain control, analogue to digital conversion. 

The characteristics of the input audio parts of a DSR terminal will have an effect 
on the resulting recognition performance at the remote server. Developers of DSR 
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ranges of characteristics as specified in GSM 03.50 (GTS GSM 03.50). DSR terminal 
developers should be aware that reduced recognition performance might be obtained 
if they operate outside the recommended tolerances. 

Sampling frequencies of 8, 11 and 16 kHz are supported in the original ETSI 
Aurora DSR standards but for 3GPP only sampling rates of 8 and 16 kHz were stan-
dardised. 

5.3.2 Speech Detection or External Control Signal  

In many applications a function performed at the terminal side will determine when 
the speech is to be processed and the DSR parameters transmitted over the network 
to the server. Three alternative ways in which this transmission control can be per-
formed are:  

1. speech detection—the input speech signal is used to determine when there is 
speech activity 

2. push-to-talk—a user controlled button indicates when processing and trans-
mission are to occur 

3. a signal coming from another software module. 

Speech detection is not part of the DSR front-end standard that is mandated. The 
AFE standard does include a Voice Activity Detector (VAD) that can be used in con-
junction with the AFE and has been extensively tested but its use is not mandated.  

5.3.3 Pre-Processing 

This block is optional and in most implementations it will be absent. It is not part of 
the DSR standard. Implementers may apply proprietary pre-processing stages ahead 
of the DSR standard. When doing so it is a manufacturer’s responsibility to ensure 
that any pre-processing does not degrade performance of a DSR service. The desired 
result of any pre-processing is to give a signal as if it had been recorded at a higher 
signal to noise ratio and it should not result in spectral distortion or clipping of the 
speech signal. The output of this stage should remain within the constraints of GSM 
03.50. 

5.3.4 Parameterisation 

The frame based speech processing algorithm generates the feature vector represen-
tation (B). This is specified in the front-end processing part of the DSR standard. In 
the case of both the Mel-Cepstrum Front-end and the AFE it is the specification of 
the front-end feature vector extraction that produces the 14-element vector consisting 
of 13 Cepstral coefficients and log energy.  

After further processing stages the corresponding feature vector is recreated at 
the server side (point C in Fig. 5.1). 

speech recognition servers can assume that the DSR terminals will operate within the 
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5.3.5 Compression and Error Protection 

The feature vector is compressed to reduce the data rate and error protection bits are 
added. This stage is specified as part of the DSR standards. In the DSR standards a 
split vector quantisation algorithm is used and error detection bits are added to each 
frame pair. 

5.3.6 Formatting 

The compressed speech frames are formatted into a bitstream for transmission. Both 
circuit data and packet data transmission are supported. The format is defined for a 
pair of 10 ms speech frames consisting of the quantised cepstral parameters. For 
circuit switched transmission a multiframe format with associated header and syn-
chronisation bits is defined while for packet data a payload consisting of any number 
of frame pairs is specified in the IETF real-time protocol (RTP) payloads. The same 
frame pair format is used in both cases. 

5.3.7 Error Detection and Mitigation 

The formatted bitstream is received and unpacked at the remote server. Depending 
on the particular transmission channel the number and type of transmission errors 
will vary but for an unreliable channel (e.g., without retransmission) there will be 
errors in the received payload. For mobile channels these are often have burst char-
acteristic. The standard therefore specifies a method for error detection and mitigation 
of these errors although there are situations where these may not be needed.  

5.3.8 Decompression 

Decompression is often performed in conjunction with the error mitigation using the 
quantisation tables to look up the corresponding cepstral features and recover the 
static feature vector.  

5.3.9 Server Side Post Processing 

This block is optional and often not present. It is to allow vendors the freedom to 
further process the received cepstral features and deliver any chosen representation 
(or subset of the features) to their back-end recogniser.  

5.3.10 Feature Derivatives 

It is common practice in speech recognition systems to extend the static cepstral 
feature parameters by adding derivative features (velocity and acceleration) before 
passing them to the back-end decoder. These have been found to give better recogni-
tion performance and it is usual to use 12 cepstral coefficients and either the log 
energy or C0 plus as the static features plus their first and second order derivatives to 
make a feature vector of dimension 39. Nevertheless, since this part of the processing 
is entirely at the server side and does not impact interoperability, it is left open to the 
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implementer to choose whatever processing is most appropriate for their recognition 
system. Vendors may also choose whether or not to use the voice activity detection 
(VAD) bit in the AFE to drop non-speech frames between utterances and not pass 
these to the recogniser. 

5.4 DSR Basic Front-End ES 201 108 

The goal of the first standard was to agree the details of the processing for the widely 
used Mel-Cepstrum front-end features and produce a DSR standard relatively 
quickly while acknowledging it had weaknesses in background noise. The process of 
obtaining agreement on the details was based on starting with a software implemen-
tation proposed by one of the Aurora participants (Nokia) and then modified based 
on discussion and inputs from other organisations. Each change was justified by 
demonstrating performance gains on the Aurora-1 database (a predecessor to Aurora-
2 database based on noisy connected digits recognition task—see below) and a pub-
licly available and widely used recognizer called HTK (Hidden Markov Model Tool 
Kit) (http://htk.eng.cam.ac.uk) at that time produced by the company Entropic (and 
currently distributed by Cambridge University, UK).  

5.4.1 Feature Extraction 

Figure 5.2 shows a block diagram of the processing for the Mel-Cepstrum feature 
extraction algorithm. After pre-emphasis and windowing the short term spectrum is 
obtained by an FFT. This linear spectrum is then warped into a non-linear spectral 
distribution of 24 bins using triangular weighting filters on a Mel-scale. The 12 cep-
stral coefficients are obtained by retaining the 12 lowest quefrency coefficients after 
taking the cosine transform of the logarithm of the 24 Mel-spectrum bins. The chosen 
frame rate is 10 ms. The total energy of each frame is also computed before the pre-
emphasis filter. The final output feature vector consists of 12 cepstral coefficients 
(C1-C12), log Energy and C0.  

5.4.2 Compression 

The requirement set for the target bit-rate was 4.8 kbit/s. The feature compression 
method selected uses split vector quantisation (SVQ). The 14 coefficients are split into 
7 subvectors each consisting of a pair of cepstral coefficients. Ci and Ci+1, i=1,3…11 
are quantised using a codebook size of 64 (6 bits) while the C0 and logE pair uses a 
larger codebook size of 256 (8 bits). The larger codebook was needed for C0 and logE 
to cover wider dynamic range without recognition performance degradation due to 
quantisation. The 7 subvectors at 6 bits each plus the one codebook with 8 bits gives a 
total of 44 bits per 10 ms frame. The chosen SVQ scheme provides a reasonable com-
promise between coding efficiency, computational complexity and error resilience. 
While other published papers have shown that it is possible to achieve greater 
compression without performance loss, the design requirement of 4.8 kbit/s was 
met and the small subvectors allow flexibility in alternative error mitigation strategies. 
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Fig. 5.2 Block diagram of the Mel-Cepstrum front-end algorithm 

5.4.3 Error Detection and Mitigation 

To assist with the detection of transmission errors 4 bits of error detection bits in the 
form of a Cyclic Redundancy Code (CRC) are added to each pair of speech frames 
(i.e., 44 bits for the first frame + 44 bits for the second + 4 bits of CRC). 
The algorithm for error mitigation consists of two stages: 

1. Detection of speech frames received with errors 
2. Substitution of parameters when errors are detected. 

To detect the speech frames received with errors the 4 error detection bits on 
each pair of frames are used first. Since errors may be missed due to overloading of 
the CRC a heuristic algorithm that looks at the consistency of the parameters in the 
decoded frames is also used. It measures the difference between cepstral coefficients 
for adjacent frames and flags them as errored if the difference is greater than ex-
pected for speech. The thresholds used are based on measurements of error free 
speech. If this algorithm was to run continuously then the number of misfirings could 
be too high, therefore it is only applied in the vicinity of detected CRC errors.  

When a frame is flagged as having errors then the whole frame is replaced with a 
copy of the cepstral parameters for the nearest good frame received (occurring before 
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or after the frame under consideration) (Pearce 2004b). 



 
5.5 DSR Advanced Front-End ES 202 050 

5.5.1 Feature Extraction 

The AFE uses 10 ms frames and produces an output feature vector consisting of 12 
cepstral features, C0 and log energy. Keeping the frame rate and parameters the same 
as for the Mel-Cepstrum front-end standard makes it relatively easy for server recogni-
tion engines to integrate the new robust DSR features without needing to change 
substantial aspects of the rest of the system. In most cases it is sufficient to retrain 
the recognition models from the source speech data and perhaps reoptimise a few 
control parameters. 

The noise robustness of the AFE comes from the combination of a set of process-
ing stages all of which contribute to the overall performance. At the heart of the algo-
rithm are two stages of Wiener filtering that are performed first in the frequency 
domain before converting back to the time domain for a stage of waveform processing 
noise reduction. Finally, the cepstral features are computed and blind equalisation is 
applied to these. This stage helps to reduce the variability in the features and has a 
similar motivation to cepstral mean normalisation techniques.  

The details of the algorithms are presented in the standard documents themselves 
(ES 202 050 2002) and readers may also find the explanations in the book by 
Peinado and Segura (Peinado and Segura 2006) helpful gaining a better understanding 
of the techniques used in the standard. 

5.5.2 VAD 

Compared to the DSR Mel-Cepstrum standard, one further enhancement coming 
from the Advanced Front-end is the inclusion of a bit in the bitstream to allow the 
communication of VAD. The VAD algorithm marks each 10 ms frame in an utter-
ance as speech/non-speech so that this information can optionally be used for frame 
dropping at the server recogniser. During recognition, frame dropping reduces inser-
tion errors in any pauses between the spoken words particularly in noisy utterances 
and can be used for end-pointing for training. It has been found that performance is 
particularly helped by model training with end-pointed data. The VAD information 
can also be used to reduce response time latencies experienced by users in deployed 
applications by giving early information on utterance completion. 

5.5.3 Compression 

The compression algorithm for the cepstral features uses the same split vector quan-
tisation scheme as the earlier standard but with the quantiser tables retrained for the 
Advanced Front-end. To allow the VAD bit to be transmitted for each frame within 
the same payload size of 44 bits per 10 ms frame, the codebook size for the pair of 
highest order cepstral coefficients (C11 and C12) was reduced from 64 to 32. The 
frame pair transmission format is therefore very similar to that of the Mel-Cepstrum 
DSR standard with the only difference being that for each frame the 6 bit codebook 
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for C11 and C12 in ES 201 108 is replaced by the 5 bit codebook for C11 and C12 
plus the one bit for the VAD flag for the frame. 

5.6 Recognition Performance of the DSR Front-Ends 

5.6.1 Aurora Speech Databases and ETSI Performance Testing 

Between 1999 and 2002 ETSI Aurora conducted a competitive selection process to 
create an Advanced DSR front-end standard that would provide improved robustness 
compared to the Mel-Cepstrum front-end. To support this, a new performance 
evaluation process and associated speech databases were created to allow the com-
parison between candidates. Three sets of noisy database were used for these per-
formance evaluations: 

2000) 

guages) 

lated noise addition.  

These databases have been made available for public distribution through the 
European Language Resource Association (ELRA) (www.elra.info) and are widely 
used in the speech research community to assess and compare new algorithm per-
formance. 

For the ETSI Aurora evaluations a reference back-end recogniser was defined for 
each database so that comparisons between different candidate front-ends could be 
made with the same fixed recogniser. For Aurora-2 and Aurora-3 the publicly avail-
able HTK was used with an agreed specific configuration for the model training 
and testing (number of states and mixtures per model, training iterations etc). For 
Aurora 4 an HMM recogniser framework suitable for this large vocabulary task was 
commissioned and prepared by the University of Mississippi. In each case the Mel-
Cepstrum front-end in ES 201 108 provided a reference recognition performance on 
each database by which to measure the performance improvements from the alterna-
tive candidates. The performance was measured using word error rate. 

A scoring procedure was agreed that gave appropriate weight to the results from 
each of the databases. The winning candidate that became the AFE standard gave an 
average of 53% reduction in word error rate compared to the DSR Mel-cepstrum 
standard (ES 202 108). Details of the Aurora-3 performance results are given below, 
while results on the other databases can be found in Macho et al. (2002). 

5.6.2 Aurora 3: Multilingual SpeechDat-Car Digits—Small Vocabulary 
Evaluation 

The purpose of the Aurora-3 tests was to evaluate the performance of the front-end on 
a database that has been collected from speakers in a real-world noisy environment. 
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1. Aurora-2 connected digits with simulated addition of noises (Hirsch, Pearce 

2. Aurora-3 connected digits from real-world data collected in vehicle (5 lan-

3. Aurora-4 large vocabulary 5000 word Wall Street Journal dictation with simu-



 
It tests the performance of the front-end both when the training and testing conditions 
are well-matched as well as in mismatched conditions as often encountered in de-
ployed DSR systems. The database also served to test the front-end on a variety of 
languages: Finnish, Italian, Spanish, German, and Danish. It is a small vocabulary 
task consisting of the digits selected from a larger database collection called 
SpeechDat-Car obtained from users in the real-world noise environment of the car. 
The databases each have 3 experiments consisting of training and test sets to measure 
performance with: 

1. Well matched training and testing—Train and test with the hands-free micro-
phone over the range of vehicle speeds with the training and test sets covering 
a similar range of noise conditions. 

2. Moderate mismatch training and testing—Model training is performed on only 
of a subset of the range of noises present in the test set. The hands-free micro-
phone for lower speed driving conditions is used for training and hands-free 
microphone at higher vehicle speeds for testing. 

3. High mismatch training and testing—Model training is performed with 
speech from the close-talking microphone and tested with the data from the 
hands-free microphone at range of vehicle speeds. 

The results are presented below for the five languages making up the Aurora 3 
database and using the HTK recogniser in its “simple” configuration i.e., 3 mixtures 
per state. The overall performance was computed as a weighted average of the dif-
ferent conditions i.e., 40% weight given to the well matched (W), 35% weight given 
to the medium mismatch (M) and 25% given to the high mismatch (H) results. These 
are shown in the row in the tables of results labelled “0.4W+0.35M+0.25H.” Table 
5.2 shows the absolute performance for the DSR Mel-Cepstrum Front-End as word 
accuracy, which then serves as a baseline for the performance comparisons with the 
Advanced Front-end. 

 

Table 5.2 Baseline word accuracy performance of the Mel-Cepstum front-end ES 201 108 on 
the Aurora 3 database 
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Absolute performance 

Training mode Italian Finnish Spanish German Danish Average 

Well matched 92.39% 92.00% 92.51% 91.00% 86.24% 90.83% 

Medium mismatch 74.11% 78.59% 83.60% 79.50% 64.45% 76.05% 

High mismatch 50.16% 35.62% 52.30% 72.85% 35.01% 49.19% 

0.4W+0.35M+0.25H 75.43% 73.21% 79.34% 82.44% 65.81% 75.25% 
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The top half of Table 5.3 shows the absolute performance that is obtained when 
the speech is processed by the DSR Advanced Front End. The bottom half of the 
table shows the relative performance when compared to the Mel-Cepstrum baseline 
shown above in Table 5.2. The relative improvement is computed as the percentage 
reduction in the word error rate. On the Aurora 3 database the Advanced front-end 
provides an average improvement of 56%. 

Table 5.3 Word accuracy performance of the Advanced front-end (ES 202 050) on the 
Aurora 3 Database 

5.7 3GPP Evaluations and Comparisons to AMR Coded Speech 

3GPP is the body that sets the standards for GSM and UMTS mobile communications. 
In 2002 3GPP conducted a study and produced a technical report on the feasibility of 
speech enabled services. The technical report (3GPP TR 22.977 2002) provides an 
overview of the speech and multimodal services envisaged and a new work item called 
Speech Enabled Services (SES) was started. The SA4 codecs group within 3GPP was 
the working group with responsibility for the selection and recommendation of the 
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Absolute performance 

Training mode Italian Finnish Spanish German Danish Average 

Well matched 96.90% 95.99% 96.66% 95.15% 93.65% 95.67% 

Medium mismatch 93.41% 80.10% 93.73% 89.60% 81.10% 87.59% 

High mismatch 88.64% 84.77% 90.50% 91.30% 78.35% 86.71% 

0.4W+0.35M+0.25H 93.61% 87.62% 94.09% 92.25% 85.43% 90.60% 

 

Performance relative to Mel-Cepstrum Front-End 

Training mode Italian Finnish Spanish German Danish Average 

Well matched 59.26% 49.87% 55.41% 46.11% 53.85% 52.90% 

Medium mismatch 74.55% 7.05% 61.77% 49.27% 46.84% 47.89% 

High mismatch 77.21% 76.34% 80.08% 67.96% 66.69% 73.66% 

0.4W+0.35M+0.25H 69.10% 41.50% 63.80% 52.68% 54.60% 56.34% 

codec for SES. Following the usual process SA4 first agreed a selection procedure 



 
consisting of “design constraints” to set requirements on the SES front-end, “test 
and processing plan” to specify how to test and evaluate the performance of the can-
didates and “recommendation criteria” to define in advance what criterion would be 
used to select and recommend a “codec” standard for SES. Two candidates for the 
SES codec were considered: AMR and AMR-WB (being the existing voice codecs 
for 3GPP) and the DSR Extended Advanced Front-end. DSR would need to demon-
strate substantial performance gains compared to the existing voice codec to justify 
the introduction of a new codec for SES services. Rather than using HTK for the 
performance evaluations it was decided that it would be best to use the talents of 
major server recognition vendors for the evaluations. By using commercial recognis-
ers results would be indicative of what could be obtained from deployed commercial 
services. IBM and SpeechWorks (now Nuance) were the two ASR vendors who 
volunteered to undertake the extensive testing. The performance evaluations were 
conducted over a wide range of different databases some of which were brought in 
from 3GPP but also large proprietary databases owned by the ASR vendors. Testing 
covered many different languages (German, Italian, Spanish, Japanese, US English, 
Mandarin), environments (handheld, vehicle) and tasks (digits, name dialling, and 
place names). In addition, the codecs were tested under block transmission errors.  

The results were reported at the SA4 meeting in February 2004 in Malaga and are 

error rate provided by DSR compared to the AMR speech codec. Note that the results 

The comparisons between the AMR and DSR performances were made at two 

over a variety of different packet data channels and consideration of these determined 
that it was appropriate to compare at a low data rate and at a high data rate. For ex-
ample, the lowest bit rate was determined by considering the conversational class of 
service on a GPRS single slot uplink channel (coding scheme CS-1) the maximum 
source data rate is 5.6 kbit/s. The AMR narrow band speech codec can operate at a 
range of bit rates from 4.8 kbit/s to 12.2 kbit/s but to limit the number of experiments 

comparison, AMR 12.2 was compared to DSR (5.6 kbit/s). Evaluations were also 
made at higher sampling rate of 16 kHz; for this comparison the AMR wideband 

A detailed summary of the selection process followed, the testing procedures and 
the results can be found in the 3GPP Technical Report reference (3GPP TR 26.943 

performance advantage for DSR compared to AMR both at 8 kHz and at 16 kHz. 
DSR also shows particularly good robustness to channel errors with no degradation 
at 3% block error rate (BLER) and a further result obtained at 10% BLER also shows 
consistent performance for DSR whereas AMR performance falls substantially.  
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different categories of transmission bit rates. Speech enabled services need to operate 

as the percentage word error rates and the relative improvement as the reduction in word 

from both the ASR vendors have been averaged to preserve anonymity the source. 

summarised in Tables 5.4, 5.5 and 5.6. The average absolute performances are given 

rate comparison, AMR 4.75 was compared to DSR (5.6 kbit/s). For the high data rate 

Based on these results DSR was selected as the recommended codec for Speech 

codec (AMR-WB) at 12.65 kbit/s was compared to 16 kHz DSR (5.6 kbit/s).  

2004). The results are reproduced in the tables below. These results show a substantial 

(Pearce 2004a).

to a practical number it was decided to test at these two rates. Thus for the low data 

Enabled Services by SA4 and subsequently approved by 3GPP SA in June 2004 
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Table 5.4 3GPP WER performance comparisons between DSR and AMR-NB 4.75 

8 kHz No. of 
databases

tested 

AMR4.75 
average 
absolute  

WER 

DSR 
average  
absolute 

WER 

Average 
improvement 

(%) 

Digits 11 13.2 7.7 39.9 

Sub-word 5 9.1 6.5 30.0 

Tone confusability 1 3.6 3.1 14.8 

Channel errors 4 6.1 2.4 52.8 

Weighted average  36 

 

Table 5.5 3GPP WER performance comparisons between DSR and AMR-NB 12.2 

8 kHz No. of 
databases

tested 

AMR4.75 
average 
absolute 

WER 

DSR 
average  
absolute 
WER 

Average  
improvement 

(%) 

Digits 11 10.9 7.7 27.6 

Sub-word 5 7.1 6.5 14.5 

Tone confusability 1 3.8 3.1 19.7 

Channel errors 4 5.5 2.4 40.9 

Weighted average  25 

 

Table 5.6 3GPP performance comparisons at 16 kHz between DSR and AMR-WB 12.65  

16 kHz No. of 
databases

tested 

AMR4.75 
average 
absolute 

WER 

DSR 
average 
absolute 

WER 

Average  
improvement 

(%) 

Digits 8 9 5.6 35 

Sub-word 5 8.2 5.9 23.5 

Channel errors 4 6.1 3.4 42.2 

Weighted average  31 
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5.8 ETSI DSR Extended Front-End Standards ES 202 211 and ES 

202 212 

ES 202 211 is an extension of the Mel-Cepstrum DSR Front-end standard ES 201 
108. In a similar way, ES 202 212 provides the extension of the DSR Advanced 
Front-end ES 202 050 to allow reconstruction for the AFE. The front-ends provide 
the features for speech recognition but these are not available for human listening. 
The purpose of the extension is to allow the reconstruction of the speech waveform 
from these features so that they can be replayed for human audition. The front-end 
feature extraction part of the processing is exactly the same as for ES 201 108. For 
speech reconstruction additional fundamental frequency (perceived as pitch) and 
voicing class (e.g., non-speech, voiced, unvoiced and mixed) information is needed. 
This is the extra information that is provided by the extended front-end processing 
algorithms at the device side that is compressed and transmitted along with the front-
end features to the server. This extra information may also be useful for improved 
speech recognition performance with tonal languages such as Mandarin, Cantonese 
and Thai. The compressed extension bits need an extra 800 bps on top of the 

One of the main use cases for the reconstruction is to assist dialogue design and 
refinement. During pre-deployment trials of services it is desirable to be able to lis-
ten to dialogues and check the overall flow of the application and refine the vocabu-
lary used in the grammars. For this and other applications of the reconstruction the 
designer needs to be able to replay what was spoken to the system at the server (off-
line) and understand what was spoken. To test the intelligibility of the speech two 
evaluations were conducted. The first is a formal listening test for intelligibility 
called the Diagnostic Rhyme Test (DRT) that was conducted by Dynastat listening 
laboratories. The results of this are shown in Table 5.7. For comparison the MELP 
codec used for military communications was chosen as a suitable reference. The 
DSR reconstruction performs as well as MELP in the DRT tests giving confidence 
that the intelligibility is good. The transcription task is closer to the situation that 
would occur in an actual application. To measure and compare the transcription 
accuracy, a professional transcription house was used to transcribe sentences sourced  
from the Wall Street Journal that had been passed through the DSR reconstruction 
and the LPC-10 and MELP reference codecs. As well as clean speech, car, street and 
babble noises were added to the source sentences. Afterwards the number of errors 
was measured by counting the number of missed, wrongly transcribed or partially 
transcribed words. Table 5.8 shows the results of this assessment and the average 
percentage transcription error for each coder. The DSR reconstruction gave less than 
1% transcription errors and fewer errors than for either LPC-10 or MELP reference 
codecs.  

In ETSI Aurora, the pitch feature was also tested for tonal language recognition of 
Mandarin and Cantonese and shown to give better performance than proprietary 
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4800 bps for the Mel-Cepstral features, as shown in Fig. 5.3. 
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Fig. 5.3 Extended DSR front-ends 

Table 5.7 Intelligibility listening tests using Diagnostic Rhyme tests (conducted by Dynastat 
listening laboratory)  

 Clean Car 
10 dB 

Street 
15 dB 

Babble 
15 dB 

Unprocessed 95.7 95.5 92.4 93.8 

XFE reconstruction 93.0 88.8 85.0 87.1 

XAFE reconstruction 92.8 88.9 87.5 87.9 

LPC-10 86.9 81.3 81.2 81.2 

MELP 91.6 86.8 85.0 85.3 

Table 5.8 Listening test transcription task results: The list numbers in each cell of the table 
show the number of missed/wrongly transcribed/partially transcribed words 

 Clean Car Street Babble Clean Average 
error (%) 

Uncoded (original) 1,1,2 1,0,1 0,2,4 3,9,3 0,4,1 0.6 

XFE reconstruction 1,6,1 0,3,6 2,9,4 5,9,2 1,4,5 1.0 

XAFE reconstruction 0,6,2 0,5,4 0,4,3 3,5,2 1,6,5 0.8 

LPC-10 coder 8,18,6 62,26,7 67,22,7 47,12,3 18,10,9 5.5 

MELP coder 0,3,1 1,6,3 4,6,2 16,10,3 1,9,5 1.2 

No. of words in 
message 

1166 1153 1155 1149 1204 Total: 

5827 
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pitch extraction algorithms available at the time. Further information about the ex-
tension algorithms and their performance can be found in Ramabadran et al. (2004) 
and Sorin et al. (2004). 

5.9 Transport Protocols: The IETF RTP Payload Formats  
for DSR 

In addition to the standards for the front-end features themselves, protocols for the 
transport of these features from the device to the server are also needed. The IETF 
Real Time Protocol (RTP) is a well established mechanism for the transport of many 
different media types including video, VoIP, and music. Associated with RTP are 
also the SIP protocols for session initiation and codec negotiation. By defining a 
RTP format for the DSR features, services benefit from all of the added functionality 
of this set of protocols, as well as the support of other media types for multimodal 
applications. Formats for the RTP payloads for all the DSR standards have been 
published as at the IETF (IETF Xie 2003; IETF Xie and Pearce 2005).  

Within these payloads any number of frame pairs may be sent within a packet. 
For the front-end features on their own this takes 12 bytes per frame pair and with 
the extension it takes 14 bytes per frame pair. The format allows an arbitrary number 
of frame pairs to send in each RTP payload. This allows the system designer flexibil-
ity with the choice depending on the latency and bandwidth of the channel available. 

The total overhead for the protocol headers in the stack is quite high as shown in 

 

Table 5.9 RTP Protocol header sizes for packet data transport 

Data Size (bytes) 

RTP 12 
UDP 8 
IP 20 
Total 40 

 
 
For low data rate channels such as GPRS it is appropriate to use multiple 

frames (DSR uplink or coded speech on downlink) per RTP payload to reduce the 
total bandwidth and therefore latency (e.g., four to ten). For higher data rate channels 
perhaps with residual packet loss such as UMTS a smaller number of frames per 
packet can be used (e.g., one or two). In testing a prototype implementation it has 
been found that even on GPRS the latencies are quite acceptable (less than two sec-
onds) and for higher speed channels much less. 
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5.10 Conclusion 

This chapter has presented the DSR standards that were created within ETSI, 3GPP 
and the IETF to enable the implementation of speech and multimodal services with 
the best possible performance. In particular they target services using remote speech 
recognition over narrow bandwidth mobile channels. For mobile device users access-
ing such services, the speech recognition performance in background noise, the ro-
bustness to channel errors and the response time are all important factors impacting 
the usability and quality of the user experience. As the capabilities of mobile speech 
services such as voice driven search progress, the enhanced performance from DSR 
can only help grow the take-up and popularity of these services and the satisfaction 
of users.  
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6 
Speech Feature Extraction and Reconstruction 

Ben Milner 

 

Abstract. This chapter is concerned with feature extraction and back-end speech reconstruction 
and is particularly aimed at distributed speech recognition (DSR) and the work carried out by 
the ETSI Aurora group. Feature extraction is examined first and begins with a basic imple-
mentation of mel-frequency cepstral coefficients (MFCCs). Additional processing, in the form 
of noise and channel compensation, is explained and has the aim of increasing speech recogni-
tion accuracy in real-world environments. Source and channel coding issues relevant to DSR 
are also briefly discussed. Back-end speech reconstruction using a sinusoidal model is explained 
and it is shown how this is possible by transmitting additional source information (voicing and 
fundamental frequency) from the terminal device. An alternative method of back-end speech 
reconstruction is then explained, where the voicing and fundamental frequency are predicted 
from the received MFCC vectors. This enables speech to be reconstructed solely from the 
MFCC vector stream and requires no explicit voicing and fundamental frequency transmission. 

6.1 Introduction 

To perform automatic speech recognition from a terminal device, three architectures 
can be considered. The first is an embedded architecture where all speech processing 
is performed on the terminal device itself. Processing power limitations make this 
suitable only for small-scale speech recognition applications such as voice dialling. 
Part III of this book examines embedded speech recognition. The second architecture 

and transmitted to a remote speech recogniser for decoding. This is currently the most 
frequently used method of performing speech recognition from mobile devices. Part 
I of this book examines network speech recognition. Finally, the third method is 

ing) is performed on the terminal device and decoding (or back-end processing) is 
performed remotely. Figure 6.1 illustrates example architectures for NSR and DSR 
to highlight their differences. 

The main difference between NSR and DSR is the location of feature extraction 
and the format of speech data that is transmitted from a terminal device to a remote 
recogniser. In NSR a speech codec is used to encode and decode speech for trans-

is network speech recognition (NSR) where the speech signal is encoded by a codec 

distributed speech recognition (DSR), where feature extraction (or front-end process-
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feature vectors is transmitted to the remote recogniser, as opposed to an encoded 
audio signal as in NSR. Chapters 2 and 5 provide detailed discussions into NSR and 
DSR architectures and examine their advantages and disadvantages. 

In both NSR and DSR, the feature extraction components are often identical, as 
both have the task of transforming a time-domain speech signal into a series of feature 
vectors. With NSR, the input to feature extraction will have been compressed by a 
low bit-rate speech codec that will have distorted the speech in some way. In DSR, 
the original time-domain signal forms the input to the feature extraction, although 
both source coding and channel coding of the speech feature vectors must be applied 
in preparation for transmission to the remote recogniser. This leads to one of the 
problems of DSR which is that only parameterised speech feature vectors are re-
ceived by the remote recogniser back-end. As no time-domain signal is received 
playback of the speech signal is not straightforward. This has been identified as a 
particular problem with DSR architectures, although several methods have been 
proposed to enable back-end speech reconstruction.  

 

Speech codec 
(encoding) 

Speech codec 
(decoding) 

Feature 
extraction 

Temporal 
derivatives 

Recognition 
decoding 

speech 

Network 
 

codec parameters 
  

Feature 
extraction 

Compression 

Packetisation Unpack 

Uncompress 

Temporal 
derivatives 

Recognition 
decoding speech 

Network 
 

feature vectors 
 

a)                                                                   b) 

Fig. 6.1 Comparison of (a) network speech recognition (NSR) and (b) distributed speech 
recognition (DSR) architectures 

The aim of this chapter is to first explain the operation of feature extraction, 
whether it be implemented for NSR or DSR. Some consideration is given to DSR 
applications where compression and error protection of the speech features is impor-
tant. Practical issues such as robustness to acoustic noise and channel distortion are 
also examined. The discussion on feature extraction is strongly biased towards mel-
frequency cepstral coefficients (MFCCs) as they are probably the most widely used 
speech feature in current speech recognition technology (Davis and Mermelstein 
1980). They have also been adopted as the standardised speech feature for DSR by 

mission across the network to the remote recogniser, whereupon feature extraction is 
applied. In DSR, feature extraction takes place on the terminal device and a stream of 
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methods to achieve this are explained with the first discussing the implementation 
proposed by the ETSI Aurora group which utilises the received MFCC vectors and 
additional source information (ETSI 2003b). The second method is an alternative 
that requires no additional information other than the MFCC vector stream itself 
(Milner and Shao 2007). 

6.2 Feature Extraction 

the input audio signal into a form suitable for classification. This typically involves 

feature extraction methods incorporate perceptual properties of human hearing and 

also consider properties of speech generation to maximise the discrimination between 
different speech sounds. For speech recognition, vocal tract information is considered 
more useful than source information. As a result, many feature extraction methods 
apply cepstral processing to separate vocal tract information from source information 
(Oppenheim and Schafer 1989). 

the most effective and widely used. Their use has been further re-enforced by their 
adoption by the ETSI Aurora group as the standard for DSR (ETSI 2003a). Due to 
their widespread deployment in DSR, MFCC features form the basis of the discus-
sions into feature extraction in this section. A basic implementation of MFCC-based 
feature extraction is described first, which is suitable for clean, undistorted speech. 
Consideration is then given to the practical deployment of feature extraction which 
needs to take into account the undesirable affects of acoustic noise and channel dis-
tortion. The last stages of feature extraction, which take place on the server side, 
such as computation of temporal derivatives, are finally discussed. 

6.2.1 Basic Terminal-Side Feature Extraction 

Terminal-side feature extraction transforms the input audio signal into a stream of 
static feature vectors that are subsequently compressed and packetised for transmission 
to the recogniser back-end located on a remote server. This section describes basic 
MFCC feature extraction as specified in the first version of the ETSI Aurora DSR 
standard (ETSI 2003a). Figure 6.2 shows the processing stages for transforming a 
speech signal, s(n), into MFCC vectors, cx. 
  

the ETSI Aurora group (ETSI 2003a,b, 2007). The second part of the chapter describes 
how a speech signal can be reconstructed at the back-end of a DSR system. Two  
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human speech production. For example, feature extraction methods such as Mel-

Of all features proposed for speech recognition, MFCCs have been proved to be 

corporate properties of human hearing at several stages of the feature extraction process

spectral and temporal evolution of the speech signal. Some of the more successful 

frequency cepstral coefficients (MFCCs) and perceptual linear prediction (PLP) in-

several processing stages that output a stream of feature vectors which encode the 

(Davis and Mermelstein 1980; Hermansky 1990). Most feature extraction algorithms 

Feature extraction is the first stage of automatic speech recognition and transforms 
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Fig. 6.2 ETSI Aurora standard for computing MFCC vectors 

Pre-Emphasis 

Feature extraction begins by pre-emphasising the speech signal using a high-pass 
filter. Speech signals tend to be low-pass in character and the application of high-
pass filtering serves to spectrally balance the signal. Given an input speech signal, 
s(n), the pre-emphasised output speech signal, x(n), is computed, 

x n s n s n 1      (6.1) 

 is the filter coefficient and a suitable value, as used in the ETSI Aurora standard, is 
= 0.9. In practice the precise choice of  does not have a significant effect on 

recognition accuracy.  
 

Hamming Window 

A Hamming window, h(n), is applied to the pre-emphasised speech signal to extract 
short-duration frames, xi(n), which will subsequently be transformed into feature 
vectors, where i indicates the frame number,  

0 1ix n x n Si h n n W    (6.2) 

where the Hamming window, h(n), is defined,  

2 0.5
0.54 0.46cos 

n
h n

W
    (6.3)  

The time duration of the Hamming window varies for different feature extraction 
algorithms, but is typically in the range 10 ms to 50 ms which gives W= 80–W= 400 
samples for 8 kHz sampled speech. This represents a time duration over which the 
speech can be assumed stationary, although for some sounds the speech remains 
stationary for much longer. A stream of short-duration frames of speech is extracted 
by sliding the Hamming window along the speech signal by S samples and output-
ting a new window of samples. For the ETSI Aurora standard, the window width is 
25 ms and the window slide is 10 ms to give a frame rate of 100 frames per second. 
Another commonly used frame slide is half the duration of the window. Many other 
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Power Spectrum 

The time-domain frames of speech are now converted to a power spectral representa-
tion, Xi f

2 , using a discrete Fourier transform, 
 

Xi f
2

xi n e
j2 fn
W

n 0

W 1
2

    (6.4) 
 

Transforming the speech to a spectral representation reveals more structure in the 
speech signal, which is important for classification. In some implementations of 
MFCC extraction a magnitude spectrum is used rather than a power spectrum although 
this makes very little difference to classification accuracy. In practice the DFT is 

computation time, particularly for longer duration windows (Cooley and Tukey 1965).  

Mel-Filterbank 

The spectrally detailed power spectral representation is now non-linearly quantised 
in frequency through the application of a mel-scaled filterbank. The non-linear fre-
quency spacing of the filterbank channels reflects the non-linear frequency sensitivity 
of human hearing and places a greater density of filterbank channels at low frequen-
cies than at higher frequencies. Implementation of the mel-filterbank can take several 
forms although in this chapter a matrix transformation is adopted. A K-dimensional 
vector of mel-filterbank channel energies, m i

x , is computed as, 

m i
x Mpi

x      (6.5) 

where pi
x  is a column vector containing the 2

W  dimensional power spectrum of Eq. 

6.4. The rows of matrix M are the frequency responses of the K channels in the mel-
filterbank. For illustration, the frequency response of a K=23 mel-filterbank is shown 
in Fig. 6.3. 

The mel-spacing of filterbank channels defines MFCCs, but other non-linear fre-
quency scales exist, such as the Bark scale which is used in PLP feature extraction 
(Hermansky 1990). No strict rules exist for the number of filterbank channels or their 
spectral shape. In the ETSI Aurora MFCC standard, the number of filterbank channels 
is 23 and their shape is triangular. For 4 kHz bandwidth speech the lowest frequency 
channel is centred at 125 Hz and spans 125 Hz, while the highest frequency channel 
is centred at 3657 Hz and spans 656 Hz.  

windowing functions exist, such as Hanning, Bartlet and Kaiser, but for speech rec-
ognition applications the Hamming window is generally preferred. 
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replaced by a fast Fourier transform (FFT) which gives considerable reductions in 
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Fig. 6.3 Frequency responses of the 23 mel-filterbank channels 

Log 

Applying a log to the filterbank channel energies reduces their sensitivity to both 
very loud and very quiet sounds and models the non-linear amplitude sensitivity of 
human hearing. The effect on speech recognition accuracy is significant and without 
the log, recognition accuracy is severely reduced. 
 

Discrete Cosine Transform 

The final stage in extracting MFCC feature vectors, ci
x , is to apply a discrete cosine 

transform (DCT) to the K log filterbank channel energies, 
 

ci
x j mi

x k cos
j k 0.5

Kk 1

K
    (6.6) 

 
The DCT serves two purposes. First, the DCT performs the final part of a cep-

stral transformation which separates the slowly varying spectral envelope (or vocal 
tract) information from the faster varying speech excitation. Lower-order coefficients 
represent the slowly varying vocal tract while higher-order coefficients contain exci-
tation information. For speech recognition, vocal tract information is more useful for 
classification than excitation information. Therefore, to create the final MFCC vec-
tor, the output vector from the DCT is truncated to retain only the lower-order coef-
ficients. In the ETSI Aurora standard, the lower 13 coefficients are retained— ci

x 0  
to ci

x 12 .  
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The second purpose of the DCT is to decorrelate the elements of the feature vec-
tor. Elements of the log filterbank vector exhibit correlation due to both the spectral 
characteristics of speech and the overlapping nature of the filterbank. For statistical 
classifiers, such as HMMs, to accurately model correlated feature vectors requires full 
covariance matrices which are both computationally expensive and require large amounts 
of training data. To optimally decorrelate, or diagonalise, the log filterbank features 
requires a Karhunen-Loeve transform (KLT) which needs to be estimated from a set 
of training data. However, a good approximation to the KLT for log filterbank features 
is the DCT. This means that applying the DCT serves to decorrelate the elements of 
the feature vector, making it suitable for diagonal covariance matrix statistical classifiers. 
 

Frame Energy 

Including a measure of the energy of each frame of speech gives significant increases 
in speech recognition accuracy. The zeroth MFCC, ci

x 0 , is the sum of the log ener-
gies from each filterbank channel and can be considered a geometric measure of 
frame energy. A common alternative is to compute the log energy, lnEi, of the time-
domain frames of speech without pre-emphasis being applied. In practice these 
energy measures are similar and only one needs to be included in the feature vector. 
In the ETSI Aurora standard log energy is computed on the terminal device and 
transmitted to the back-end in addition to the 13 MFCCs. Rather than including both 
energy measures in classification, it is usual to select just one or to combine them 
through an appropriate weighing. 

To illustrate the operations in MFCC feature extraction, Fig. 6.4 shows the trans-
formation of both a voiced speech frame (left-hand column) and an unvoiced speech 
frame (right-hand column). Time-domain frames of speech are shown in the top 
panels and below are shown the resulting power spectra. For the voiced speech, har-
monic structure is clearly visible and the fundamental frequency is seen to be ~250 Hz. 
The third row shows the resulting mel-filterbank feature. The effect of the non-linear 
spacing of filterbank channels is evident when examining the position of the spectral 
harmonics seen in the power spectrum of the voiced speech. In the mel-filterbank the 
first two harmonics (at frequencies ~250 Hz and 500 Hz) occur in channels 4 and 7 
which shows the stretching of frequency in these lower channels made by the non-
linear frequency spacing of the mel-scale. The bottom panels show the output of the 
DCT—for clarity the zeroth coefficient is not shown as its amplitude is very large. 
By considering the basis functions of the DCT, some spectral meaning can be given 
to the MFCCs. The basic function associated with MFCC 0 is a constant and as pre-
viously discussed represents the energy of the filterbank. The first basis function of 
the DCT is a half cosine wave which means that the first MFCC indicates the spec-
tral slope. This is evident in the figure where the voiced filterbank shows signifi-
cantly more energy at low frequencies than at higher frequencies and has a strongly 
positive value for MFCC 1. The unvoiced filterbank has an opposite spectral slope 
and has a strongly negative value for MFCC 1. This analysis can be continued—for 
example the second basis function is a full cosine wave and hence MFCC 2 indicates 
the proportion of mid-band spectral energy to outer-band spectral energy. 
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Fig. 6.4 Example of MFCC feature extraction for voiced speech (left-hand column) and un-
voiced speech (right-hand column). Top row shows original frames of speech, then power 
spectrum followed by filterbank and finally DCT output 

For the MFCC extraction described above, it is assumed that the speech is sam-
pled at 8 kHz. However, speech sampled at other sampling frequencies can also be 
parameterised through appropriate modifications to the feature extraction algorithm. 
For example, at a sampling frequency of 16 kHz the ETSI Aurora standard specifies 
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a Hamming window width of 400 samples and a frame slide of 160 samples, which 
retains the same duration frame width and slide as with 8 kHz sampled speech.  

6.2.2 Advanced Terminal-Side Feature Extraction 

The feature extraction algorithm described in the previous section is a basic method 
of extracting MFCC vectors and should give satisfactory performance in clean envi-
ronments. However, to achieve good recognition accuracy in more realistic environ-
ments, where both acoustic noise and channel distortions are present, it is necessary 
to include extra processing. This includes noise reduction and channel equalisation 
stages. A later version of the ETSI Aurora standard, namely the Advanced Front-End 
(AFE), includes such processing (ETSI 2007).  
 

Noise Reduction 

Acoustic noise can severely corrupt the feature vectors produced by the front-end 
and cause large reductions in classification accuracy. Noise is usually considered 
additive in the time-domain and therefore has an additive effect in the power spectral 
domain and subsequent filterbank domain. Depending on the spectral character of 
the noise, the amplitudes of filterbank channels will be increased, leading to a distor-
tion of the resulting MFCC vector. Even if the noise is narrowband, it will effect all 
elements of the MFCC vector as the DCT has the effect of smearing out the noise.  

Many algorithms have been developed to reduce additive noise from the speech 
feature vectors. Most of these make an estimate of the contaminating noise during 
speech inactive periods and then remove this noise estimate during periods of speech 
activity. A reasonably successful noise reduction technique is spectral subtraction, 
which subtracts noise estimates in either the spectral domain or filterbank domain 
(Boll 1979). Performing noise reduction in the filterbank domain can take advantage 
of the spectral averaging made by the filterbank channels which reduces processing 
distortion resulting from excessive noise removal. Many extensions to spectral sub-
traction have been made since it was first proposed and these have reduced its sensi-
tivity to noise type and power (Wu and Chen 2001). The spectral subtraction class of 
algorithms represent just one type of noise reduction method. Many other noise re-
duction methods for speech recognition have also been proposed and have varying 
levels of success. For example, in the ETSI AFE noise reduction is carried out during 
a pre-processing stage that is implemented before feature extraction. This is based on 
a two-stage Wiener filter which outputs a noise reduced speech signal that is input 
into feature extraction (ETSI 2007). 
 

Blind Equalisation 

Channel distortion, such as from a microphone in a handset, may cause a significant 
reduction in speech recognition accuracy. As such channel equalisation can play an 
important role in achieving robust speech recognition accuracy. For cepstral-based 
features, such as MFCCs, channel distortion is additive in the cepstral-domain. For 
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example, consider a speech signal, x(n), that is convolved with a channel distortion, 
g(n), to give a channel distorted signal, y(n). In the frequency domain this distortion 
becomes multiplicative, i.e. Y f X f G f . After the log and DCT operations the 
channel distortion becomes an additive offset, 

ci
y j ci

x j ci
g j      (6.7) 

where ci
y j , ci

x j  and ci
g j  represent the jth MFCC of the distorted speech, clean 

speech and channel, respectively, at time frame i. If the channel distortion is stationary 
its time index can be ignored to give a constant offset distortion,  

ci
y j ci

x j cg j      (6.8) 

Equalising the distortion becomes a process of removing the offset from the signal 
and several approaches have been developed to achieve this. A simple method is 
cepstral mean normalisation (CMN) (also known as cepstral mean subtraction 
(CMS)) which computes a mean cepstral vector from the stream of input vectors and 
subtracts it from the input vectors (Rosenberg 1994). This not only removes the 
channel but also removes the mean of the speech, although this has been found to be 
beneficial in terms of speech recognition accuracy. An alternative equalisation 
method is the RASTA filter (Hermansky and Morgan 1994). This uses a highpass 
filter to remove stationary and slowly time-varying components of the cepstral features 
which includes the channel distortion. The RASTA filter also includes a lowpass 
filter component which removes fast varying components of the cepstral vectors that 
improves robustness to noise. In the ETSI Aurora AFE, channel equalisation is 
achieved by least mean square (LMS) filtering, with a reference signal equal to the 
cepstrum of a flat spectrum (ETSI 2007). 

6.2.3 Quantisation and Packetisation  

Feature extraction generates a stream of static feature vectors that must be transmitted 
to the remote back-end for recognition. Before transmission they must first be com-
pressed and formatted with the inclusion of appropriate error protection. 

In the ETSI Aurora standard, 13 dimensional MFCC vectors and a log energy 
term are created at a rate of 100 vectors per second. Assuming the number represen-
tation used by HTK (4 byte floats for each element) this represents a bit rate of 
44,800 bits per second, which is too high in terms of channel capacity for most ap-
plications (HTK 2007). Instead, source coding must be applied to reduce the bit-rate 
of the feature vector stream to an acceptable level. In the ESTI Aurora standard split 
vector quantisation is applied to pairs of coefficients to reduce the storage for each 
feature vector to 43 bits. A 1 bit voice activity detection (VAD) flag is also allocated 
to each frame which gives a source coded bit rate of 4400 bps for the MFCC feature 
vector stream. Chapter 7 describes the source coding of speech feature vectors in 
more detail. 

The compressed feature vectors are next placed in an agreed framing structure 
and suitable error protection applied. In the ETSI Aurora front-end, pairs of feature 
vectors are grouped together and a 4-bit cyclic redundancy check (CRC) computed 
and included for error protection. Multiframes, which represent 240 ms of speech, 

116 



Speech Feature Extraction and Reconstruction
 
are then formed by grouping together 12 pairs of feature vectors. The multiframe 
includes 48 bits of header information with the result that the final bit rate is 
4800 bps. Chapter 8 discusses these channel coding methods and framing in more 
detail. 

6.2.4 Server-Side Processing 

At the recogniser back-end on the remote server the received feature vectors are 
unpacked and uncompressed. In the event that some feature vectors have either be-
come lost or corrupt due to adverse network conditions, error concealment tech-
niques can be applied. These may estimate the value of missing vectors or modify 
the decoding process of the speech recogniser to take into account the unreliability of 
parts of the feature vector stream. This is discussed in detail in Chap. 9.  

Following any error correction, the unpacked stream of static feature vectors are 
augmented by their temporal derivatives (Furui 1986; Hanson and Applebaum 1990). 
Including temporal derivatives in the feature vector stream partially overcomes the 
assumption in HMM-based speech recognisers that the feature vectors are independ-
ent and identically distributed and gives substantial increases in recognition accuracy. 
Velocity derivatives, ci

x , are computed as, 

ci
x d

D
ci d

x ci d
x

d 1

D
    (6.9) 

 
Similarly, acceleration derivatives, ci

x , are computed as, 

ci
x a

A
ci a

x ci a
x

a 1

A
    (6.10) 

D and A specify the number of vectors used in computing the velocity and accel-
eration derivatives. Typical values range from D=2 and A=1 to D=4 and A=4, with 
the latter used in the ETSI Aurora standard. 

6.3 Speech Reconstruction 

In network speech recognition the time-domain speech signal is transmitted to the 
speech recogniser where feature extraction and classification take place. As the time-
domain signal itself is transmitted to the speech recogniser, playback of speech on 
the server is straightforward. However, in distributed speech recognition only the 
speech feature vectors are received at the remote server. As no time-domain signal is 
transmitted, no readily available time-domain signal can be used for playback at the 
server. While this is not a problem for speech recognition, it may be desirable to 
listen to the speech. This is particularly true for automated services that are used for 
financial services. For example, a speech recognition error could lead to unwanted 
transactions in which case there may be a need to listen to the speech input to confirm 
what was actually said. Providing a back-end playback facility is a legal requirement in 
the US. 
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This section begins by examining the speech information present at the back-end 
through a received stream of MFCC vectors. This reveals the spectral envelope to be 
present but not source information needed for speech reconstruction. The method 
used in the ETSI Aurora extended front-end (XFE) for speech reconstruction is then 
discussed whereby source information is supplied to the back-end through additional 
feature extraction and data transmission from the terminal device (ETSI 2003b).  

6.3.1 Analysis of Received Speech Information 

The MFCC feature extraction process discards too much information to allow the 
features to be simply inverted back into a time-domain signal. Examining the MFCC 
extraction process of Fig. 6.2, shows some of the processing stages to be invertible 
while others are not. The effect of the pre-emphasis filter is invertible and can be 
equalised by a suitably designed lowpass filter. The log operation can also be in-
verted by a simple exponential operation. However, several stages in feature extrac-
tion are not invertible. Applying a magnitude operation to the complex frequency 
spectrum of the Fourier transform discards phase information which makes inversion 
of the power spectrum to a time-domain signal not possible. The quantisation of the 
power spectrum by the mel-filterbank loses spectral detail which cannot be recovered 
during inversion. Further spectral detail is also lost by truncating the DCT coeffi-
cients when forming the MFCC vector. Of course, for speech recognition purposes, 
these losses of spectral detail and phase are beneficial, but for playback their loss is 
serious. 

The received MFCC vectors can provide a smoothed estimate of the speech 
power spectrum which encodes vocal tract information. Starting with an MFCC 
vector, an estimate of the mel-filterbank can be computed by zero padding the 
MFCC vector to the dimensionality of the filterbank and applying an inverse DCT 
followed by an exponential operation. A 2

W  dimensional power spectrum can be 
estimated from the K mel-spaced filterbank channels (where 2W >>K) using interpo-
lation techniques (Vaseghi 2006). However, at this stage it is important to note that 
the resulting power spectrum is subject to high frequency tilt which arises from both 
the effect of pre-emphasis and the increasing mel-filterbank channel bandwidths. As 
was the case for channel distortion, discussed in Sect. 6.2.2, these effects are multi-
plicative in the frequency domain and can be equalised in the cepstral domain by 
subtracting their cepstral equivalents from the MFCC vector.  

The area, and hence energy, wk, of each filterbank channel increases with channel 
number due to the widening of channel bandwidths—see Fig. 6.3. Given a vector, w, 
that comprises the areas, wk, of the K mel-spaced triangular filterbank windows, the 
resulting cepstral representation, cw, can be computed through log and DCT opera-
tions. Similarly the cepstrum, cp, of the pre-emphasis filter can be computed by pass-
ing its impulse response through the MFCC extraction algorithm.  

An equalised MFCC vector, ˆ c i
x , can be estimated by subtracting the filterbank 

and pre-emphasis cepstra from the unequalised MFCC vector, ci
y , produced by the 

feature extraction process, 
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ˆ c i
x ci

y cw c p     (6.11) 

The MFCC vector can be inverted to provide an equalised power spectrum esti-

mate, ˆ X f
2
. Figure 6.5 illustrates the effectiveness of recovery by showing the log 

power spectrum (dotted line) of a frame of 200 speech samples and the log power 
spectra recovered from MFCC vectors extracted from the same 200 speech samples. 
The spectrum recovered from a non-truncated 23-D MFCC vector (solid line) closely 
follows the spectral envelope of the original speech. When the inversion is applied to 
a truncated 13-D MFCC vector a similar spectral envelope (dashed line) is produced 
but the truncation of higher order cepstral coefficients removes some of the spectral 
detail that was retained in the 23-D MFCC. In particular, the 13-D MFCC-derived 
spectrum is unable to resolve the high frequency spectral peak at 3 kHz into two 
separate formants as the 23-D MFCC-derived spectrum can. 
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Fig. 6.5 Power spectrum reconstruction—the dotted line is the original log power spectrum 
while the solid and dashed lines show the reconstructed log power spectrum from non-
truncated and truncated MFCC vectors, respectively 

6.3.2 Speech Reconstruction 

To reconstruct an audio speech signal the spectral envelope alone is insufficient as 
important source information such as voicing and fundamental frequency (for voiced 
speech) are missing. The ETSI Aurora extended front-end (XFE) addresses this 
problem by estimating the voicing and fundamental frequency on the terminal device 
and transmitting them to the back-end along with the MFCC vectors. This approach 
delivers sufficient source information to the back-end to enable speech reconstruc-
tion but increases terminal-side processing and also increases bit-rate requirements 
of the communication channel. This method of providing source information at the 
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back-end for speech reconstruction is discussed in the next section. An alternative to 
explicitly transmitting source information for back-end reconstruction has recently 
been proposed whereby the source information is predicted from the received MFCC 

 

Terminal-Side Voicing and Fundamental Frequency Estimation 

Many algorithms for estimating the voicing and fundamental frequency of speech 
have been proposed in the last 40 years. These vary in many ways and operate in the 
time-domain, frequency-domain or cepstral-domain (de Cheveigne and Kawahara 
2001). The fundamental frequency estimator used in the ETSI XFE operates in the 
frequency-domain and searches for spectral peaks that correspond to the fundamental 
frequency. The search begins in an upper band (200 Hz–420 Hz) and if no suitable 
fundamental frequency is found, the search moves to a middle band (100 Hz–
210 Hz) and then to a low band (52 Hz–120 Hz). In implementation, the algorithm 
contains many processing stages that minimise estimation errors. A detailed discus-
sion of these is can be found in (ETSI 2003b). 

Once voicing and fundamental frequency have been estimated on the terminal 
device they must be transmitted to the back-end. In the ETSI Aurora XFE the fun-
damental frequency is converted into a fundamental period. This is measured in 
samples and is constrained to be in the range 19 samples to 140 samples which cor-
responds to fundamental frequencies from 57 Hz to 421 Hz. Even numbered frames 
are allocated 7 bits to represent the period while odd numbered frames are allocated 
5 bits and represent the difference in period. The voicing class of each frame is also 
encoded and takes one of four different values—non-speech, unvoiced speech, mixed 
voiced speech and fully voiced speech. For non-speech and unvoiced speech, the 
7 bit period value, or 5 bit differential period value, are set to zero and an additional 
single bit is used to identify non-speech or unvoiced speech. Mixed voiced and fully 
voiced speech are indicated by non-zero period values with the single bit indicating 
whether the frame is mixed or fully voiced. 

For each pair of frames, 12 bits are used to represent the fundamental period and 
another 2 bits provide information to determine the voicing class. These 14 data bits 
are protected by a 2 bit CRC. Therefore, with 50 frame pairs per second, the trans-
mission of voicing and fundamental frequency requires 800 bits per second of chan-
nel capacity. This is in addition to the 4800 bits per second used by MFCC vector 
transmission which give an overall bit rate for the ETSI XFE of 5600 bps. 
 

Sinusoidal Modelling of Speech 

The MFCC vectors, voicing and fundamental frequency provide sufficient informa-
tion to enable back-end speech reconstruction. Several models of speech production 
have been developed that are suitable for reconstructing, or synthesising, a speech wave-
form. These include the linear predictive (LP) model, the sinusoidal model and the har-
monic plus noise (HNM) model (Rabiner and Schaeffer 1978; McAulay and Quatiery 
1986). The ETSI Aurora XFE speech reconstruction is based on the sinusoidal 
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model. The principles of sinusoidal model speech reconstruction from MFCCs are 
presented next and specific implementation details can be found in (ETSI 2003b). 
The sinusoidal model synthesises a speech signal, x(n), as a sum of L sinusoids with 
amplitudes, Al, frequencies, fl, and phases, l, 

x n Al cos 2 f l n l
l 1

L
    (6.12) 

 
The sinusoid frequencies are selected to be equal to the fundamental frequency 

and its harmonics. Given only the fundamental frequency, the frequencies of the 
sinusoids, fl, can be approximated as multiples of the fundamental frequency, f0, 

f l l f0      (6.13) 

The amplitude, Al, of each sinusoid can be estimated from the smoothed spectral 
envelope provided by inverting the MFCC vector, at frequency, fl, 

Al
ˆ X fl       (6.14) 

The phase offset, l, is calculated as the sum of phase components from the 
speech excitation, l, and the vocal tract, l, 

 l l l       (6.15) 

The excitation phase component at the fundamental frequency is estimated using 
a linear phase model and maintains continuity of the phase at frame boundaries. The 
phases at harmonic frequencies are calculated by multiplying the harmonic number  

log power spectrum of a frame of speech, (b) shows its spectral envelope and (c) a set of 
harmonically spaced sinusoids and (d) the sinusoidal model of log power spectrum 
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Fig. 6.6 Illustration of sinusoidal modelling of a frame of speech. Panel (a) shows the original 
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with the phase at the fundamental frequency. The phase from the vocal tract is 
calculated by assuming a minimum phase system. This allows the phase at each har-
monic frequency to be computed from the spectral envelope using a Hilbert transform. 

To illustrate speech reconstruction, Fig. 6.6a shows the log power spectrum of a 
25 ms segment of phoneme /u/. Figure 6.6b shows the spectral envelope of the same 
frame of speech and Fig. 6.6c shows a series of sinusoids that are placed at harmon-
ics of the fundamental frequency (in this example the fundamental frequency is 
240 Hz). These provide the vocal tract and excitation information needed for speech 
reconstruction and multiplying the two results in the synthesised log power spectrum 
shown in Fig. 6.6d. For comparison, the original log power spectrum is shown as the 
dashed line which reveals the assumption of harmonicity in the excitation signal to 
be valid. 

 

 

Fig. 6.7 Spectrograms showing (a) original and (b) reconstructed speech of the sentence “On 
May evenings the rooks were busy building nests in the birch tree” 

From each MFCC vector and fundamental frequency estimate, a frame of recon-
structed speech can be generated. For unvoiced speech the sinusoid frequencies are 
chosen randomly to provide a wideband excitation source. Continuous speech is 
reconstructed by extending the duration of each frame of speech by a half at both 
sides with a triangular windowing function. This allows the overlap-and-add algo-
rithm to combine frames of speech and smooth discontinuities at frame boundaries 
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(George and Smith 1992). To demonstrate the effectiveness of sinusoidal model-based 
reconstruction, Fig. 6.7a shows a spectrogram of the utterance “On May evenings the 
rooks were busy building nests in the birch tree.” The spectrogram of the same utter-
ance, but reconstructed from its MFCC vector representation and estimates of voicing 
and fundamental frequency is shown in Fig. 6.7b. 

Comparing the two spectrograms shows the MFCC-based reconstruction to 
be highly effective in reproducing the original speech signal. The reconstructed 
harmonic tracks follow closely the original harmonics which is due to the accuracy 
of fundamental frequency estimation. Similarly, formant frequencies tend to be well 
preserved and these are provided by the MFCC vectors. 

6.4 Prediction of Voicing and Fundamental Frequency 

This section describes how speech can be reconstructed solely from the MFCC 
vector stream without explicitly transmitting voicing and fundamental frequency 
(Milner et al. 2007; Shao and Milner 2004). This is achieved by predicting the voic-
ing and fundamental frequency of each frame of speech from the received MFCC 
vectors. Prediction of fundamental frequency is based on forming a model of the 
joint density of MFCCs and fundamental frequency. This model can then be used to 
predict the fundamental frequency associated with an MFCC vector. Similarly, the 
voicing associated with an MFCC vector is predicted from two models, one model-
ling voiced speech and the other modelling unvoiced speech and non-speech. 

6.4.1 Fundamental Frequency Prediction from MFCC Vectors 

Fundamental frequency is predicted from MFCC vectors using a model of the joint 
density of MFCC vectors and fundamental frequency. To begin, a joint feature vec-
tor, yi, is defined which comprises the MFCC vector, xi, and the fundamental fre-
quency fi, of frame i, 

y i x i f i
T                 (6.16) 

For unvoiced frames the fundamental frequency is set to zero.  
 

Phoneme-Independent Prediction of Fundamental Frequency 

A simple method to model the joint density of MFCC vectors and fundamental fre-
quency is to use a single model for all voiced speech sounds, making no distinction 
between different phonemes. Using a training data set, Z, joint vectors corresponding 
to voiced speech can be pooled into a voiced vector set, v (the superscript v indi-
cates voiced speech), 

v y i Z : f i 0      (6.17) 

Expectation-maximisation (EM) clustering can be applied to this data to create a 
Gaussian mixture model (GMM), v, that models the joint density of MFCC vectors 
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and fundamental frequency using a set of Kv clusters that localise the correlation 
between MFCCs and fundamental frequency in the joint feature vector space, 
 

 p y i
v y i k

v N y i : k
v , k

v

k 1

K v

               (6.18) 

Each cluster is represented by a prior probability, k
v , and a Gaussian probability 

density function (PDF), N, with mean vector, k
v , and covariance matrix, k

v . The 
mean vector comprises two components, the mean vector of the voiced MFCC vec-
tors in cluster k and the mean of the fundamental frequency in cluster k. Similarly, 
the covariance matrix comprises four components; the covariance matrix of the 
MFCC vectors, the variance of the fundamental frequency and the covariances of the 
MFCCs and fundamental frequency. This allows the mean and variance associated 
with the kth cluster to be decomposed as,  
 

k
v k

v,x

k
v, f

 and k
v k

v,xx
k
v,xf

k
v, fx

k
v, ff

    (6.19) 

 
Knowledge of the joint density of MFCCs and fundamental frequency in the GMM 
can be used to predict the fundamental frequency of a frame of speech from the 
MFCC vector representing that frame. From the kth cluster in the GMM, k

v , a MAP 
prediction of fundamental frequency, ˆ f i

k , from MFCC vector xi can be made, 
ˆ f i

k argmax
f

p f x i , k
v     (6.20) 

This leads to the prediction of the fundamental frequency in terms of the statistics 
of the kth GMM cluster as,  

ˆ f i
k

k
v, f

k
v, fx

k
v,xx 1

x i k
v,x    (6.21) 

The predicted fundamental frequencies from all of the GMM clusters can be 
combined according to the posterior probability of the MFCC coming from that 
cluster, hk(xi), 

ˆ f i hk x i
k 1

K V

k
v, f

k
v, fx

k
v,xx 1

x i k
v,x   (6.22) 

where the posterior probability, hk(xi), is given as, 
 

hk x i
k
v p x i k

v,x

k
v p x i k

v,x

k 1

K v     (6.23) 

 

Phoneme-Dependent Prediction of Fundamental Frequency 

An alternative to using a single GMM to model the joint density of MFCCs and 
fundamental frequency over all speech sounds is to allow a phoneme-dependent 
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prediction. With this method phoneme-specific models of the joint density of 
MFCCs and fundamental frequency are created and subsequently used to provide 
phoneme-specific fundamental frequency predictions. This method is more complex 
than the phoneme-independent method, as a phoneme decoding for the MFCC vec-
tors is required, but does provide more detailed modelling of the joint density. 

The first stage in phoneme-dependent prediction of fundamental frequency is to 
train a set of phoneme HMMs that will be used to decode the input MFCC stream 
into a phoneme sequence. Assuming a set of W phonemes in the vocabulary (a typi-
cal value is W = 44 phonemes), then a set of HMMs, = { 1, 2,.., W}, must be 
trained using the MFCC component, x, of the augmented feature vector, y.  

The next stage in training is to use the phoneme HMMs to supply a model and 
state allocation to the MFCC vectors in the training data to allow phoneme-
dependent GMMs to be trained. The resulting GMMs provide more localised model-
ling of the joint density of MFCCs and fundamental frequency. The state-dependent 
GMMs are created by force aligning the training data vectors to the correct sequence 
of HMMs using Viterbi decoding. The correct sequence of HMMs can be taken from 
phoneme-level annotations of the training database that may be created manually or 
automatically through forced word-level decoding with an appropriate pronunciation 
dictionary. This provides for each training data utterance X = [x1, …, xi, ..., xM] a 
model allocation, m = [m1, …, mi, …, mM], and a state allocation, q = [q1, …, qi, …, 
qM], for each MFCC vector. This indicates the state, qi, and model, mi, that the ith 
MFCC vector, xi, is allocated, where mi  {1, .., W} and qi  {1, .., Smi

 } where Smi
 

indicates the number of states in model mi. This provides sufficient information to 
allow state-dependent clustering of the voiced vectors to take place. Voiced vectors 
allocated to each state, s, of each model, w, are pooled to form state and model de-
pendent subsets of voiced feature vectors, s,w

v , 

s,w
v y i Z : f i 0, qi s, mi w 1 s Sw 1 w W  (6.24) 

 
Unvoiced vectors allocated to each state of each model can also be pooled to 

form subsets of unvoiced vectors, s,w
u , 

s,w
u y i Z : f i 0, qi s, mi w 1 s Sw 1 w W  (6.25) 

At this stage the state-dependent unvoiced vectors pools are not used but they 
will be used later for voicing prediction. 

The state and model specific joint densities of MFCCs and fundamental fre-
quency can now be modelled by applying EM clustering to the voiced vector pools. 
This creates a set of model and state-dependent voiced GMMs, s,w

v , that are repre-
sented by mean vectors, k,s,w

v , covariance matrices, k,s,w
v , and prior probabilities, 

k,s,w
v , corresponding to the kth cluster of the GMM associated with state s of model w.  

To predict the fundamental frequencies associated with a stream of MFCC vec-
tors their model and state sequence must first be determined. These are obtained by 
decoding the MFCC vectors into a model and state sequence, m = [m1, …, mi, …, 
mM] and q = [q1, …, qi, …, qM], using the set of HMMs trained previously together 
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with an appropriate grammar. For unconstrained speech input the grammar should be 
an unconstrained phoneme grammar, while for specific tasks a more constrained 
grammar may be appropriate. For each MFCC vector the decoding provides a state 
and model specific GMM, qi ,mi

v , from which fundamental frequency can be pre-
dicted. Utilising the MAP prediction, as applied previously, yields a state and model 
specific fundamental frequency prediction, ˆ f i, from MFCC vector, xi, as,  
 

ˆ f i hk,qi ,wi
x i

k 1

K V

k,qi ,wi
v, f

k,qi ,wi
v, fx

k,qi ,wi
v,xx 1

x i k,qi ,wi
v,x   (6.26) 

 
where the posterior probability, hk,qi ,wi

x i , of the MFCC vector in cluster k of state 
qi and model wi is given as, 
 

hk,qi ,wi
x i

k,qi ,wi
v p x i k,qi ,wi

v,x

k,qi ,wi
v p x i k,qi ,wi

v,x

k 1

K v    (6.27) 

 

where p x i k,qi ,wi

v,x  is the marginal distribution of the MFCC vector in the kth cluster 

of GMM k,qi ,mi
v . 

6.4.2 Voicing Prediction from MFCC Vectors  

Fundamental frequency should be predicted only from MFCC vectors corresponding 
to voiced speech. To classify MFCC vectors as voiced or unvoiced a prior voicing 
probability is first computed from voicing information present in the states of the 
HMMs used for fundamental frequency prediction. The prior voicing probability can 
then be incorporated into a posterior voicing probability which classifies the MFCC 
vectors as being either voiced or unvoiced. 
  

Prior Voicing Probabilities 

The phoneme HMMs that provide localisation for fundamental frequency prediction 
contain useful prior voicing information. From the number of MFCC vectors allo-
cated to the voiced and unvoiced vector pools in each state, s, and model, w, a prior 
voicing probability, vs,w, can be computed, 
 

vs,w
n s,w

v

n s,w
v n s,w

u
1 s Sw , 1 w W         (6.28) 

 

where the function n(.) returns the number of vectors in the set. To examine the prior 
voicing probabilities for different phonemes, Table 6.1 shows the prior voicing prob-
abilities for the 3 states of phonemes /ow/, /uw/, /s/ and /f/.  
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Table 6.1 Prior voicing probabilities of 3-state phoneme HMMs for models (a) /ow/, (b) /uw/, 
(c) /s/, (d) /f/ 

Phoneme State 1 State 2 State 3 
/ow/ 0.84 0.98 0.96 
/uw/ 0.81 0.97 0.95 
/s/ 0.39 0.04 0.06 
/f/ 0.37 0.07 0.09 

 
Voiced phonemes (/ow/ and /uw/) have very high prior voicing probabilities 

while the unvoiced phonemes (/s/ and /f/) have very low probabilities. The first state, 
and to a lesser extent the final state, are not as strongly voiced or unvoiced as the 
centre state. The first and last states are transitional states and minor errors in state 
alignment contribute to this effect. 

 

Posterior Voicing Probabilities  

A simple method of determining the voicing is to select the voicing class (voiced or 
unvoiced) in the state that the MFCC vector is allocated to that has the highest prior 
voicing probability. For states that are strongly voiced or strongly unvoiced this 
gives satisfactory results, but for states with less strong voicing or for MFCC vectors 
with inaccurate state alignment, this method is likely to introduce voicing classifica-
tion errors. A better solution is to compute the posterior voicing probability for an 
MFCC vector allocated to a particular state. In Sect. 6.4.1, state-dependent voiced 
GMMs, s,w

v , were trained from the sets of voiced augmented vectors, s,w
v , within 

each state and model. For voicing classification a further set of GMMs, s,w
u , (the 

superscript u indicates unvoiced) each comprising Ku clusters, can be trained from 
the sets of unvoiced vectors, s,w

u , associated with each state of each model. 
This produces a set of unvoiced means, k,s,w

u , covariances, k,s,w
u , and priors, 

k,s,w
u , associated with each cluster, k, state, s, and model, w. The probability of an 

MFCC vector, xi, allocated to state, qi, and model, mi, belonging to the voiced GMM, 
qi ,mi
v , can be computed as, 

 

p voiced x i

k,qi ,mi

v,x p x i qi ,mi

v,x

k 1

K v

p x i
   (6.29) 

 
Similarly the probability of the MFCC vector belonging to the unvoiced GMM, 

qi ,mi

u , can be computed, 

 

p unvoiced x i

k,qi ,mi

u,x p x i qi ,mi

u,x

k 1

K u

p x i
   (6.30) 
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Using these two probabilities the voicing of an MFCC vector allocated to state, 
qi, of model, mi, can be determined, 
 

voicingi
voiced p voiced x i p unvoiced x i

unvoiced p voiced x i p unvoiced x i
   (6.31) 

 

For the purposes of the voicing prediction, the probability of the MFCC vector, 
i

6.4.3 Speech Reconstruction from Predicted Fundamental Frequency 
and Voicing 

The predicted voicing and fundamental frequency can be applied to the sinusoidal 
model based speech reconstruction described in Sect. 6.3.2. In this case the speech is 
reconstructed solely from the MFCC vector stream and uses no explicit fundamental 
frequency or voicing information. Figure 6.8 shows the spectrogram of the sentence “On May evenings the rooks were busy building nests in the birch tree” recon-
structed solely from 13-D MFCC vectors.  
 

 

Fig. 6.8 Spectrogram of sentence “On May evenings the rooks were busy building nests in the 
birch tree” reconstructed solely from a stream of 13-D MFCC vectors 

Comparing Fig. 6.8 with Fig. 6.7b (which shows speech reconstructed from esti-
mated fundamental frequency and voicing) reveals very little difference between the 
two speech signals. This suggests that the MFCC vectors contain source information 
which has traditionally not been thought the case. The presence of fundamental fre-
quency information in the MFCC features is also highlighted in Fig. 6.4. Examining 
the mel-filterbank shows that the first two harmonics shown in the power spectrum 
are preserved by the relatively close spacing of filterbank channel. 
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6.5 Conclusion 

This chapter has examined the feature extraction and speech reconstruction compo-
nents associated with distributed speech recognition and has placed emphasis on the 
standards specified by ETSI Aurora DSR group. The first ETSI front-end standard 
(FE) provided a basic MFCC feature which was superseded by the advanced front-
end (AFE) that included noise reduction and channel equalisation. An extended 
front-end (XFE) was also standardised and provided voicing and fundamental fre-
quency information to enable back-end speech reconstruction.  

An examination of back-end reconstructed speech shows it to be a good ap-
proximation of the original speech in both its harmonic and formant structure. An 
alternative to the XFE is to predict the fundamental frequency and voicing from the 
MFCC vectors themselves. This approach has also led to a good approximation of 
the original speech although not quite as good as in the XAFE. However, the predic-
tion method has the significant advantage that no source information needs to be 
transmitted to the back-end which saves 800 bps and allows speech reconstruction 
solely from the MFCC vector stream. 
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7 
Quantization of Speech Features: Source Coding 

Stephen So and Kuldip K. Paliwal 

Abstract. In this chapter, we describe various schemes for quantizing speech features to be 
used in distributed speech recognition (DSR) systems. We analyze the statistical properties of 
Mel frequency-warped cepstral coefficients (MFCCs) that are most relevant to quantization, 
namely the correlation and probability density function shape, in order to determine the type 
of quantization scheme that would be most suitable for quantizing them efficiently. We also 
determine empirically the relationship between mean squared error and recognition accuracy 
in order to verify that quantization schemes, which minimize mean squared error, are also 
guaranteed to improve the recognition performance. Furthermore, we highlight the importance 
of noise robustness in DSR and describe the use of a perceptually weighted distance measure 
to enhance spectral peaks in vector quantization. Finally, we present some experimental results 
on the quantization schemes in a DSR framework and compare their relative recognition 
performances. 

7.1 Introduction 

With the increase in popularity of wireless devices such as personal digital assistants 
(PDAs) and cellular phones, there has been a growing interest in incorporating auto-
matic speech recognition (ASR) technology into mobile communication systems. 
Speech recognition can facilitate consumers in performing common tasks, which 
have traditionally been accomplished via buttons and/or pointing devices. 

Distributed speech recognition (DSR) is a mode of client-server-based ASR, 
where speech features are extracted on the client device and then transmitted to the 
server, which performs the recognition task, as shown in Fig. 7.1. Let us calculate the 

Mel frequency-warped cepstral coefficients (MFCCs) are extracted at a frame rate of 
100 Hz and that each MFCC is represented as a 32 bit floating point value, then the 
required bitrate is 41.6 kbps. As we shall see later on, current state-of-the-art quanti-

In this chapter, we are interested in the lossy coding of feature vectors for DSR 
applications. The ultimate aim is to quantize feature vectors using the least amount of 
bits, while maintaining a recognition performance that is as close as possible to that 
of ASR. Note that when we use the term ASR performance, we are referring to the  
 

bitrate that is required to transmit uncoded feature vectors. If feature vectors of 13 

zation schemes used in DSR can operate at bitrates as low as 300 bps. 
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Fig. 7.1 Block diagram of a typical distributed speech recognition system (From So and 
Paliwal 2006) 

recognition performance achieved when no lossy coding has been applied to the 
feature vectors, as opposed to DSR performance, where feature vectors have been 
coded in a lossy fashion. It is reasonable to assume that, using the same features, 
DSR performance will generally be less than and upper bounded by the ASR per-
formance, hence the latter serves as a useful baseline for evaluating quantization 
schemes. 

This chapter is divided into four sections. In the first section, we will review some 
basic concepts of source coding and quantization as well as outline some quantization 
schemes that will be evaluated later in the chapter. In the second section, we examine 
the statistical properties of the MFCC feature vectors as well as determine the rela-
tionship between mean squared error and recognition accuracy. In the third section, 
we present a brief review of the literature on the topic of quantizing feature vectors. 
Following this, we will present some results of recent quantization schemes that we 
have investigated in our laboratory (So and Paliwal 2005, 2006). We then conclude 
the chapter in the final section. 

7.2 Quantization Schemes 

7.2.1 Brief Introduction to Quantization Theory 

Source coding schemes can be broadly classified into two categories: lossless and 
lossy coding. While lossless coding incurs no loss of information (that is, the decoded 
output data is exactly the same as the input data), the amount of compression is lim-
ited by the Shannon entropy of the data (Gersho and Gray 1992). Examples of loss-
less coding schemes (often referred to as entropy coders) include Huffman coding, 
arithmetic coding and runlength encoding. 

It is common for an entropy coder to be cascaded on the output of a lossy coder 
to further reduce the bitrate (Gray and Neuhoff 1998). An example of this is in the 
JPEG image coder, where the output coefficients of the lossy scalar quantization 
stage are coded using a runlength encoder and a Huffman coder (Wallace 1991). 
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schemes discussed in this chapter to reduce the bitrate further, various complications 
arise, such as the resulting bitrate being variable over time. Therefore, buffering is 
often required to handle the variable bitrates, which adds to the complexity of the 
overall DSR system. 

On the other hand, lossy coding schemes have no constraints on the amount of 
compression that can be achieved, hence they are often more useful in scenarios 
where channel capacity is low and limited. The bitrate of lossy coding schemes can 
be made fixed, thus removing the requirement for buffering. The challenge with 
lossy coding schemes is minimizing the distortion given a fixed bitrate, or given an 
allowed and fixed distortion, minimizing the bitrate required—this is often referred 
to as the rate-distortion trade-off.  

Quantization is a fundamental process for information reduction in lossy coding 
schemes and is generally the source of information loss. It is defined as the mapping 
of individual (scalar) or a vector of input samples to a codebook of a finite number of 
codewords. Each codeword has a unique binary word or index associated with it so 
each input sample is substituted with this binary word before transmission. The map-
ping is done in such a way that the distortion incurred by substituting the input sample 
by its corresponding codeword is minimized. The input samples may be quantized 
individually (referred to as scalar quantization), or as vectors (referred to as vector 
quantization). Figure 7.2 shows where the quantization scheme ‘fits’ in the DSR 
feature encoder.  

The rate-distortion (RD) efficiency of any quantizer is influenced by the properties 
of the signal source, such as statistical dependencies (otherwise known as memory) 
and the probability density function (PDF) (Makhoul et al. 1985). Furthermore, it has 
been shown that vector quantizers always have a better RD efficiency than scalar 
quantizers, and therefore are optimal quantizers (Lookabaugh and Gray 1989). The 
properties of the speech features used in DSR will be discussed in the following 
subsections. However, before we move further, we will present popular distortion 
measures that have been used in speech processing as well as describe the quantization 
schemes that will be evaluated later in the chapter. 

 
 

Bitstream
Indices

(speech features)

samples
Input

Scheme
Binary

Encoder

Feature Encoder

Quantization

 

Fig. 7.2 Block diagram of the ‘Feature encoder’ in Fig. 7.1, showing the quantization scheme 
and binary encoder 

 

While it is possible to apply entropy coding on the output of the quantization  
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7.2.2 Distortion Measures for Quantization in Speech Processing 

It is important to define the distortion measure to be used in quantizers as different 
applications may require the minimization of an error calculation that incorporates 
some signal-based or perceptual properties in order to improve the overall fidelity. 
The simplest distortion measure that is commonly used in the coding literature is 
mean squared error (MSE), dMSE, which is defined below: 

 

MSE ˆ ˆ ˆ( , ) [( ) ( )]Td Ex x x x x x     (7.1) 

 
In this equation, E[ ] is the expectation operator, x and x̂  are the input vector and 
quantized vector, respectively, and T is the transpose operator. The error contribu-
tion of each vector component is weighted the same. 

Weighted distortion measures are often used to perform quantization noise shap-
ing, which can improve the overall fidelity by exploiting signal-based properties. For 
example, in speech coding applications, line spectral frequency (LSF) vectors can be 
quantized using a weighted mean square error, where the error contributions of each 
LSF are non-uniformly weighted based on the relative spectral power at that particu-
lar frequency (Paliwal and Atal 1993). For components that have a higher weighting, 
the quantization error will be less. This weighted mean squared error (WMSE) can 
be expressed as: 

WMSE ˆ ˆ ˆ( , ) [( ) ( )]Td Ex x x x W x x    (7.2) 
 

In this equation, W is a square diagonal weighting matrix whose diagonal elements 
consist of the relative weightings of each vector component. 

Another common distortion measure that is used for evaluation in speech coding 
is the logarithmic spectral distortion (this is often simply referred to as spectral 
distortion). It is defined as the root mean squared error between the log power spec-
tral density estimates of the original and quantized frame of speech: 

 

2
SD 10 100

1 ˆ [10log ( ) 10log ( )]sF

s

d P f P f df
F

   (7.3) 

In Eq. 7.3, Fs is the sampling frequency, )( fP and )(ˆ fP are the power spectral den-

distortion (Rabiner and Juang 1993). 
Other distortion measures that have been used in speech processing include the 

will discuss this further in Sect. 7.3.4. Because of their relatively low computational 
complexity, we will mostly focus on MSE-based distortion measures as these need to 
be computed multiple times in quantization schemes such as VQ.  

that the MSE distortion measure in the cepstral domain is equivalent to the spectral 

be somewhat correlated to the desired performance metric—recognition accuracy. We 

Itakura-Saito distortion, Itakura distortion, COSH distance, etc. (Rabiner and Juang 

sity estimates of the input and quantized speech frame, respectively. It can be shown 

1993). For distributed speech recognition, the quantization distortion measure should 
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Fig. 7.3 Block diagram of scalar quantization of vectors, with mean removal, variance nor-
malization and bit allocation 

7.2.3 Scalar Quantization 

The simplest quantizer is the scalar quantizer (SQ), where input samples are mapped 
individually to scalar codewords, which are also referred to as code-points or repro-

b

For input samples that have a non-uniform probability density function, such as 
Gaussian or Laplacian, it has been shown that non-uniform scalar quantizers incur less 
distortion than uniform scalar quantizers, where quantization levels are uniformly 
spaced (Max 1960). The quantization levels for Gaussian and other arbitrary distri-
butions (with zero-mean and unity variance) have been reported in the coding litera-
ture (Max 1960; Paez and Glisson 1972; Lloyd 1982). The input samples should 
have zero-mean and normalized variance before quantization, as shown in Fig. 7.3. 

When quantizing a vector of input samples using scalar quantizers, we need to allo-
cate the bit budget among the individual SQs. For example, if the vector dimensionality 
is 
to the n SQs. The objective is to determine the best bit allocation such that the 
quantization distortion is minimized. We discuss two methods for bit allocation in 

heuristic algorithm. 
In HRO bit allocation, which was first presented in relation to block quantization 

(Huang and Schultheiss 1963), the average distortion incurred by the overall scalar 

scalar quantization: high resolution-based optimization (HRO) and the greedy-based 

quantization levels, n, is given by n = 2 , where b is the number of bits.  

n and the bitrate is fixed at b bits/sample, then a total of nb bits need to be allocated 

duction values (Gersho and Gray 1992). The number of reproduction values or 
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    (7.4) 

 
In this equation, n is the vector dimensionality, K is a constant which varies for 

different PDFs (for Gaussian PDFs, 2
3K ), 2

i is the variance of the ith vector 
component, and bi is the number of bits allocated to the ith scalar quantizer. This 
expression is to be minimized using the fixed bitrate constraint, 
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We are then left with the following bit allocation formula (for the full derivation, 

 
2

tot
2 1

2

1

1 log
2

i
i

n n

i
i

bb
n

   (7.6) 

 
Let us consider an example of scalar quantizing vectors of dimension 4 using a 

total of 20 bits, given the following variances: }52 ,10 ,30 ,2{2
i . Using Eq. 7.6, 

we calculate a bit allocation of }984.5 ,7948.4 ,587.5 ,634.3{ib bits. We note that, 
firstly, more bits have been allocated to vector components with higher variances; 
and secondly, the formula gives fractional (and even negative in some cases) bit 
allocations. One may truncate these fractional bit allocations though this generally 
leads to a total bitrate that is less than the target. A method is presented in Paliwal 
and So (2005) for handling fractional bit allocations so that more of the bit budget is 
utilized. A further constraint that enforces the bi to be always positive may also be 
applied to the optimization process (Segall 1976). 

The greedy-based heuristic algorithm for allocating bits is simpler than the HRO 
algorithm and is more readily applicable to vectors with non-standard PDFs, where 
deriving closed-form expressions may be difficult or impossible. Allocation is per-
formed one bit at a time for each vector component, with the one resulting in the 
largest drop in quantization distortion to be selected to receive the bit. The process 
continues until all bits have been allocated, where the resulting solution may only be 
locally optimal. Greedy-based heuristic bit allocation has been investigated in DSR 
in the literature (Digalakis et al. 1999). 

 

 
 
 
 

quantization scheme is expressed in terms of the high resolution approximation of 
the non-uniform scalar quantizer: 
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7.2.4 Block Quantization 

In block quantization, also known as transform coding, an orthogonal linear trans-
formation P, whose columns consist of the basis vectors, is applied to a zero-mean 
input vector, x, before scalar quantization (Huang et al. 1963): 

 
xPy T     (7.7) 

 
where y is the transformed vector containing the transform coefficients, n

iiy 1}{ . The 
inverse linear transformation is expressed as: 
 

Pyx      (7.8) 
 

The covariance matrix of the transformed vectors is given by:  
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When scalar quantizing input samples, the statistical dependencies between these 
samples are not exploited and this leads to wasted bits and thus inefficient quantiza-
tion. In block quantization, the linear transformation serves to decorrelate the samples 
before scalar quantization, which will improve the coding efficiency. The correlation 
is ‘added’ back in the decoding stage via the inverse transformation of Eq. 7.8. 

The decorrelating transformation also tends to pack the energy or variance into 
the first few coefficients. When using the HRO bit allocation formula of Eq. 7.6, the 
skewed variance distribution of the transformed coefficients will cause more bits to 
be allocated to the scalar quantizers of the first few coefficients. Typical transforma-
tions used in coding include the Karhunen-Loève transform (KLT) and the discrete 
cosine transform (DCT). 

The basic definition of a vector quantizer Q of dimension n and size K is a map-
ping of a vector from n dimensional Euclidean space, n,  to a finite set, C, containing 
K reproduction codevectors: 

 

CQ n:     (7.9) 
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The most popular form of vector quantizer is the Voronoi or nearest neighbour 

vector quantizer (Gersho et al. 1992), where for each input source vector x, a search 
is done throughout the entire codebook to find the nearest codevector yi, which has 
the minimum distance: 

 

[ ]   if ( , ) ( , )   for all i i jQ d d i jy x x y x y   (7.10) 
 

where ),( yxd is the distortion measure between the vectors, x and y. Generally, the 
most common distortion measure used in vector quantizers is the MSE. 

The VQ codebook is designed using a large number of training vectors, which 
are representative of the set of vectors that will be quantized by the VQ. The iterative 
Linde-Buzo-Gray (LBG) algorithm (Linde et al. 1980) is applied to the training 
vectors and the resulting K centroids or codevectors constitute the VQ codebook. 
The bitrate of the vector quantizer is K2log  bits/vector. 

Though the unconstrained VQ (that is, the VQ codebook has no structural con-
straints) is theoretically the optimal quantizer that one can design, its computational 
complexity and memory requirements may become prohibitive at high bitrates. Fur-
thermore, designing a high bitrate VQ codebook requires a large amount of training 
data. Therefore, the application of unconstrained VQ is often constrained to low 
bitrates, while structurally constrained forms, such as multistage, split, and tree-
structured VQ are used when higher bitrates are required. Constrained VQs sacrifice 
rate-distortion performance for lower computational and memory requirements. 

The GMM-based block quantizer (Subramaniam and Rao 2003) is an improved 
version of the Gaussian block quantizer (Huang et al. 1963). Rather than assume the 
PDF of the input vectors to be Gaussian, Gaussian mixture models (GMMs) are used 
to approximate the PDF and each mixture component is quantized using a Gaussian 
block quantizer. These modifications result in better RD performance as the GMM-
based block quantizer is designed to match the PDF more closely, assuming that 

Compared with vector quantizers, the GMM-based block quantizer has the 
advantages of: fixed computational and memory requirements that are independent 
of the bitrate; and bitrate scalability, where any bitrate can be used without the need 

feature in DSR applications, since one may need to adjust the bitrate adaptively, 

This quantization scheme can be broken down into three stages: PDF estimation, 
bit allocation and minimum distortion block quantization. Each stage will be de-
scribed in the following subsections. 

 

 

 
 
 
 

where };{ IiC iy  and n
iy . Associated with each reproduction codevector is a 

partition of n, called a region or cell, };{ IiSS i . 
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7.2.6 GMM-Based Block Quantization 

to redesign the codebook (Subramaniam and Rao 2003). Bitrate scalability is a desirable 

there is minimal overlap between the mixture components.  

depending on the network conditions (So and Paliwal 2006).  
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Fig 7.4 PDF estimation and bit allocation from training data (From So and Paliwal 2006) 

 
PDF Estimation using Gaussian Mixture Models 

 
The PDF model and Karhunen-Loève transform (KLT) orthogonal matrices are the 
only static and bitrate-independent parameters of the GMM-based block quantizer. 
These only need to be calculated once during the training stage and stored at the 
client encoder and server decoder. The bit allocations for different bitrates can be 
calculated ‘on-the-fly’ using the common PDF model stored on both client and 
server. The PDF estimation procedure is shown in Fig. 7.4. 

The PDF model, G, as a mixture of multivariate Gaussians, ),;(xN , can be 
expressed as: 

 
m

i
iii NcG

1

),;()|( xMx     (7.11) 

],...,,,...,,,...,,[ 111 mmmccmM    (7.12) 
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T

n eN    (7.13) 

 
where x is a source vector, m is the number of mixture components, and n is the 
dimensionality of the vector space. ci, i i are the weight, mean, and covariance 
matrix of the ith mixture component, respectively. 

The parametric model, M, is initialized by applying the LBG algorithm (Linde  
et al. 1980) on the training vectors where m mixture components are produced, each 
represented by a mean or centroid, , a covariance matrix, , and a mixture compo-
nent weight, c. These form the initial parameters for the GMM estimation procedure. 
Using the expectation-maximization (EM) algorithm (Dempster et al. 1977), the 
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maximum-likelihood estimate of the parametric model is computed iteratively and a 
final set of means, covariance matrices, and weights are produced. 

An eigenvalue decomposition (EVD) is calculated for each of the m covariance 
matrices. The eigenvectors form the rows of the orthogonal transformation matrix, K, 
of the KLT. 

 
Bit Allocation 

 
Assuming there are a total of btot bits available for quantizing each vector, these need 
to be allocated to each of the block quantizers of each mixture component in an op-
timal fashion. Using Lagrangian minimization (Subramaniam et al. 2003), the fol-
lowing formula is derived: 
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     (7.15) 

 

In Eqs. 7.14 and 7.15, ji,  is the jth eigenvalue of mixture component i and bi is the 
number of bits allocated to the block quantizer of mixture component i. 

Once bits have been allocated to the block quantizer of each mixture component, 
these need to be further allocated to the scalar quantizers within the block quantizer. 
The bit allocation was presented in Sect. 7.2.3 and the formula for allocating bits is 
given by Eq. 7.6.  
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Fig. 7.5 Minimum distortion block quantization (BQ, block quantizer) (From So and Paliwal 
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Minimum Distortion Block Quantization 
 

Figure 7.5 shows the minimum distortion block quantization stage, whose operation 
is described in more detail in Subramaniam et al. (2003). At first glance, it can 
be seen to consist of m independent block quantizers, BQi, each with their own 
orthogonal matrix, Ki, and bit allocations, n

jjib 1, }{ . A vector, x, is quantized m times 
and the kth block quantizer is chosen such that it incurs the least distortion. 

 
)ˆ,(minarg i

i
dk xx     (7.16) 

7.3 Quantization of ASR Feature Vectors 

7.3.1 Introduction and Literature Review 

So far, we have only discussed quantization and the various schemes in general with 
no reference made to quantizing ASR feature vectors. In this section, we discuss the 
task of quantizing ASR feature vectors as well as examine some statistical properties 
that may affect the quantization and recognition performance. We will also examine 
the performance of the DSR system in the presence of background noise. Unless 
otherwise specified, we will be mostly focusing on Mel frequency-warped cepstral 
coefficients (MFCCs) (Davis and Mermelstein 1980) as the ASR feature set. 

Various schemes for quantizing the ASR features have been proposed in the 
literature. Digalakis et al. (1999) evaluated the use of uniform and non-uniform 
scalar quantizers as well as product code vector quantizers for coding MFCCs at 
rates of between 1.2 and 10.4 kbps. They used the greedy-based bit allocation algo-
rithm for the scalar quantizers, where the component, which resulted in the largest 
improvement in recognition performance, was chosen to receive the allocated bit. 
They concluded that split vector quantizers achieved word error rates (WER) similar to 
that of scalar quantizers while requiring fewer bits. A bitrate of 2 kbps was the re-
quired bitrate for split vector quantization to achieve ASR recognition performance. 
Also scalar quantizers with non-uniform bit allocation performed better than those 
with uniform bit allocation.  

In Ramaswamy and Gopalakrishnan (1998), the authors investigated the applica-
tion of tree-searched multistage vector quantizers (MSVQ) with first-order linear 
prediction operating at a bitrate of 4 kbps. The current MFCC feature vector was 
subtracted from the previous quantized frame to give a residual vector. The first 12 
coefficients of the residual vector were then quantized using a two-stage MSVQ, 
while the last coefficient, c0, was scalar quantized. Their system achieved near iden-
tical recognition performance as the ASR recognition performance, with only minor 
degradation.  

Transform coding, based on the DCT, was investigated in Kiss and Kapanen 
(1999) at a bitrate of 4.2 kbps. In this scheme, feature vectors of dimension 14 (13 
MFCCs plus the energy coefficients, c0 and log E) were processed. For each cepstral 
coefficient, eight temporally consecutive coefficients were grouped together and 
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processed by the DCT, which exploited temporal correlation. The energy coefficient 
was encoded separately. 

In Zhu and Alwan (2001), 12 successive MFCC frames were stacked together to 
form a block of 12  12 and a two-dimensional DCT was applied. Zonal sampling 

and across-frame correlation is exploited by the 2D-DCT. Noise-robust feature sets, 
such as peak isolated MFCCs (MFCCP) (Strope and Alwan 1997) and variable 
frame-rate peak isolated MFCCs (VFR_MFCCP) (Zhu and Alwan 2000) were also 
tested. Their results showed that, firstly, the DSR recognition performance always 
performed slightly worse than the ASR recognition performance at all signal-to-

0 and log E belonging 

ter subvector. 
In Srinivasamurthy et al. (2006), correlation across consecutive MFCC features 

7.3.2 Statistical Properties of MFCCs 

The statistical properties of the MFCC vectors have a direct influence on the rate-

 
linear dependency (i.e. correlation);  
non-linear dependency;  
probability density function shape; and  
dimensionality (i.e. quantizing vectors is more efficient than scalars).  
 

section. In particular, the correlation across successive vectors will be examined as 
this property is exploited by interframe schemes such as multiframe/matrix and pre-
diction-based quantizers. 

 
Correlation within MFCC Vectors (Intraframe Dependencies) 

 
We examine the amount of correlation between cepstral coefficients within a feature 
vector by computing the covariance matrix of MFCCs from the training speech set of 
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That is, a coarsely quantized base layer is transmitted. If higher recognition perform-
ance is required, the client can transmit further enhancement layers, which are 

in recognition accuracies that even surpassed the ASR performance at low SNRs. 
The ETSI DSR standard (2003) uses split vector quantizers to compress the 

noise (SNR) levels. Secondly, the quantized noise-robust features at 624 bps resulted 

We will investigate properties 1 and 3 of MFCC vectors in the following sub-

(1985), these properties are:  

entropy coding. Their scheme is a scalable one, where the bitstream is embedded. 

distortion performance of any quantization scheme. According to Makhoul et al. 

MFCC vectors at 4.4 kbps. Feature vectors of dimension 14 (13 MFCCs and log E) 
are split into pairs of subvectors, with the energy parameters, c

was performed, where a fraction of the lowest energy components was set to zero and

to the same pair. A weighted MSE distortion measure is used for the energy parame-

the remaining coefficients were scalar quantized and entropy coded. The advantage of 

was exploited by a differential pulse coded modulation (DPCM) scheme followed by 

this scheme compared to that of Kiss and Kapanen (1999) is that both within-frame 

combined with the base layer by the server to obtain higher quality features. 
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the Aurora-2 database (Hirsch and Pearce 2000). The MFCCs consist of 13 cepstral 
coefficients, 12

0}{ iic . The log energy coefficient log E, which is often concatenated 
with the MFCC feature set in ASR, has not been included. Rather than presenting a 
13  13 matrix of coefficients, we have plotted the absolute value of the covariance 
coefficients in Fig. 7.6. Because of the large difference in magnitude of the variance 
of c0 compared with those of the other cepstral coefficients, we have applied a square 
root operation to the covariance coefficients to compress the dynamic range. There-
fore, the coefficients on the diagonal represent the standard deviation of each cepstral 
coefficient rather than the variance. 

We can see that a large percentage of the energy is contained in the zeroth cep-
stral coefficient, c0. Recall that the final stage of MFCC computation comprises a 
discrete cosine transform (DCT), which tends to compact most of the energy into the 
zeroth cepstral coefficient or DC component. In addition, most of the off-diagonal 
covariance coefficients have low magnitude, which indicates that the cepstral coeffi-
cients are weakly correlated with each other—apart from c0, where the cross-
variance with the other cepstral coefficients appears to be higher. This suggests that 
the other cepstral coefficients 12

1}{ iic  contain some information of the zeroth cepstral 
coefficient. Hence, in most speech recognition systems, c0 is not included in the 
feature set. 
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Fig. 7.6 Graphical representation showing the absolute value of the covariance coefficients of 
MFCCs within a single vector with compressed dynamic range (log energy is not included) 
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Because the efficiency of scalar quantization is generally optimal when the vector 

components are not correlated (which is the basis of block quantization), the covari-
ance statistics of MFCCs (shown in Fig. 7.6) suggest that directly scalar quantizing 
the MFCCs may not be optimal. In which case, a further transform (such as the KLT) 
may be required to remove the remaining correlation and henceforth improve the 
rate-distortion performance.  

This improvement will be become apparent when comparing the results between 
the scalar quantizer and the block quantizer. 

 
Correlation across Successive MFCC Vectors (Interframe Dependencies) 

 
In order to examine the correlation across successive MFCC vectors, we concatenate 
these vectors to form higher dimensional vectors and compute the covariance matrix 
of this new vector set. Any linear dependencies between MFCCs in successive vec-
tors will be shown by large off-diagonal coefficients in the corresponding rows and 
columns of the covariance matrix. Figure 7.7 is similar to Fig. 7.6, where the covari-
ance matrix is graphically represented in a three dimensional representation. We also 
present the graphical covariance matrix representation for two, three, four, and five  

 
Fig. 7.7 Graphical representation showing the coefficients of the covariance matrix of MFCCs 
within a multiple successive vectors with compressed dynamic range: a two vectors, b three 
vectors, c four vectors, and d five vectors 
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concatenated MFCC vectors in order to show the amount of correlation between 
MFCCs across these successive vectors. As before, the log energy coefficient has not 
been included and an absolute value followed by a square root operation has been 
applied to all covariance coefficients in order to compress the dynamic range.  

Looking at Fig. 7.7a, where two vectors have been concatenated together, we 
notice a large number of off-diagonal covariance coefficients that have a large 
magnitude, which indicates a high degree of correlation between the MFCCs across 
successive frames.  

This is to be expected, as the speech frames used to compute the MFCCs are 
highly overlapped. When we look at the covariance coefficients for three, four, and 
five vectors, in Fig. 7.7b–d, we notice greater numbers of off-diagonal elements with 
large magnitude. Therefore, it is expected that quantization schemes, which exploit 
memory across multiple successive, will be more efficient in the rate-distortion 
sense, than memoryless schemes. 

We should point out that this method of vector concatenation does not capture all 
of the dependencies. For example, if we represent four successive MFCC vectors as 
x1, x2, x3, x4, then concatenating them will produce: [x1, x2], [x3, x4]. The covariance 
matrix will capture the dependencies between MFCCs in both x1 and x2 and between 
MFCCs in both x3 and x4, but not the dependences between x2 and x3.  

 
Fig. 7.8 Graphical representation showing the prediction coefficients from a single-step linear 
prediction of MFCC vectors (c0 and log E are represented as cepstral coefficient 13 and 14, 
respectively) 
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Fig. 7.9 Probability density function estimates of MFCCs 
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As a further method of capturing the correlation that exists across successive 

method over the MFCC feature vector set to compute prediction coefficients. Both 
the energy coefficients, c0 and log E have been included. Up to 10 past vectors were 
used in the analysis. The closer the prediction coefficients are to unity, the higher the 
degree of correlation between any MFCC vector and a past vector. Figure 7.8 shows 
a graphical representation of the prediction coefficients for each cepstral coefficient. 
We can see that consecutive vectors (past vector number equal to one) are highly 
correlated as is shown by the prediction coefficients being closest to unity. The coef-
ficients decrease in value as vectors further away in the past are used to predict the 
current vector, with some MFCCs decreasing faster than others. It is interesting to 
point out that the energy coefficients across 10 frames are highly correlated. This 
observation suggests that the energy coefficients could be efficiently quantized using 
prediction-based schemes. 
 
Probability Density Functions of MFCCs 

 
The probability density function (PDF) of MFCCs are particularly important when 
we consider scalar quantization-based schemes. Figure 7.9 shows the probability den-
sity function (PDF) estimates of the MFCCs in addition to the log E coefficient. 

The PDFs of the MFCCs, apart from c0 and log E, resemble unimodal Gaussians, 
which suggests that they are amenable to non-uniform scalar quantization optimized 
for Gaussian sources as well as block quantization. This is to be expected as the 
MFCCs were formed from linear combinations of vector components during the 
DCT operation. According to the central limit theorem, as the dimension of the vec-
tors increases, the distributions of the transform coefficients approach a Gaussian 
(Chen and Smith 1977). In contrast, the c0 and log E coefficients possess a bimodal 
distribution, which suggests that custom-designed scalar quantizers would be needed 
here. 

We conclude this section on the statistical properties of MFCCs by noting the dif-
ferences in the statistics of the energy coefficients (c0 and log E) when compared 
with those of c1…c12, in terms of the correlation and PDF. It is for this reason that 
the energy coefficients are often quantized independently from the rest of the cepstral 
coefficients. Because of this, the issue of bit allocation arises. That is, how much of 
the bit budget should be allocated for quantizing energy coefficients in order to 
maximize the recognition performance? The majority of the quantization schemes 
reported in the literature have arbitrarily allocated bits to the energy coefficients, 
rather than utilising a formula obtained from constrained minimization. The problem 
is that it is not entirely clear how much impact quantization errors in the energy 
coefficients have on the recognition performance, compared with errors in the other 
cepstral coefficients. In order to isolate the uncertainty associated with energy coeffi-
cient quantization as well as to present a simple and consistent bit allocation frame-
work, we have performed all DSR experiments where the energy coefficients are not 
included as part of the MFCC feature set. For the Aurora-2 recognition task, the ASR 
performance dropped from 99% to 98% as a result of not including the energy coef-
ficients. 
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frames, we apply a single-step backward prediction analysis using the covariance 
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7.3.3 Use of Cepstral Liftering for MFCC Variance Normalization 

The variances of each MFCC are shown in Fig. 7.10. The variances of c0 and log E 
(not shown in Fig. 7.10), are 2,530 and 260, respectively. The non-uniform variance 
distribution of the MFCCs is a result of the energy-packing characteristics of the 
discrete cosine transform. It is also well known that the lower order cepstral coeffi-
cients are particularly sensitive to undesirable variations caused by factors such as 
transmission, speaker characteristics, vocal efforts, etc. (Juang et al. 1987). 

According to the HRO bit allocation formula for scalar quantization in Eq. 7.6, 
bits are allocated to vector components on the basis of variance, in order to minimize 
the mean squared error. This can be seen in the first row of Table 7.1, which shows 
the number of bits that are allocated to each MFCC, using HRO bit allocation. Be-
cause c1 has the highest variance, it has been allocated the most number of bits. 
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Fig. 7.10 Variances of MFCCs (c0 and log E are not included) 

 
 

Table 7.1 Number of bits allocated to each MFCC with and without the application of cepstral 
liftering (computed using Eq. 7.6) 
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 Total 

bits c1 c2 c3 c4 c4 c6 c7 c8 c9 c10 c11 c12 
Without 
liftering 15 3.1 2.4 1.9 1.6 1.3 1.1 0.9 0.7 0.7 0.6 0.4 0.3 

With 
liftering 15 2.4 2.3 2.2 2.2 2.0 1.8 1.5 1.3 1.0 0.5 -0.4 -2 
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Fig. 7.11 Variances of MFCCs after cepstral liftering (c0 and log E are not included) 

 
 

Fig. 7.12 Lifter window function of Eq. 7.16 

 
From a quantization point of view, where the mean squared error between the 

original and reconstructed MFCC vectors is minimized, finely quantizing the first 
few MFCCs makes sense since they have higher variance. As will be shown in the 
next section, the relationship between MSE and recognition accuracy is monotonic 
and non-linear. However, if the operating bitrate is low, there may be a shortage of 
bits to allocate to the important middle-order MFCCs. 
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If the shortage of bits that is due to a low operating bitrate, is found to cause a 

performance degradation, then one may normalize the variances of the MFCCs so 
that the bit allocation is not too highly skewed. This normalization can be done via 
the use of liftering, which performs ‘filtering’ in the cepstral domain. Cepstral lifter-
ing was a technique that was investigated in the literature to improve the recognition 
performance (Paliwal 1982), where cepstral coefficients were linearly weighted. 
Another method of cepstral liftering (Juang et al. 1987) uses the following sinusoidal 
lifter window function: 

 

L
nLnw sin

2
1)(     (7.16) 

where L is the dimensionality of the MFCCs. This window function is plotted in Fig. 
7.12, where we can see an emphasis on the middle order cepstral coefficients. The 
effect of the liftering operation on the MFCC variances and the bit allocation are 
shown in Fig. 7.11 and Table 7.1, respectively, where bits are allocated more uni-
formly to the middle order MFCCs. In our experiments, we have used cepstral liftering 
for the purpose of variance normalization. Further work is needed to determine the 
benefits that it may provide to the recognition performance as well as noise-robustness 
in a DSR scenario. This is in light of the results presented in Paliwal (1999), where 
cepstral liftering on MFCCs was shown to improve the noise robustness for dynamic 
time warping-based speech recognizers, which use Euclidean distance measures. 

7.3.4 Relationship Between the Distortion Measure and Recognition 
Performance 

All quantization schemes attempt to minimize the error between the original and 
quantized samples. For instance, the HRO bit allocation formula of Eq. 7.6 for scalar 
quantizing vector components was obtained from a constrained minimization of the 
average MSE. In vector quantization, the codebook vector that minimizes the distor-
tion is selected.  

The direct application of these quantization schemes to distributed speech recog-
nition readily assumes that decreasing the MSE between the original and quantized 
MFCC features will guarantee that the degradation in recognition performance due to 
the quantization decreases as well. We will validate this assumption by applying 
unconstrained vector quantization on MFCCs at varying bitrates, measuring the 
average MSE and recognition rates for each bitrate. Figure 7.13 shows the average 
recognition rate plotted against the average MSE incurred by the vector quantizer.  

We can see from Fig. 7.13 that the recognition rate appears to decrease mono-
tonically as the average MSE increases. Therefore, this shows that a quantization 
scheme that minimizes the MSE is also guaranteed to improve the recognition accu-
racy. Furthermore, we note that it is a non-linear relationship, where if the average 
MSE was large, a decrease in quantization distortion leads to a larger improvement 
in recognition rate than if the MSE were low. 
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Fig. 7.13 Relationship between average recognition rate and average MSE 
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Fig. 7.14 Extraction of logarithmic filterbank energies from speech 
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7.3.5 Improving Noise Robustness: Perceptual Weighting of Filterbank 
Energies 

Noise-robustness is an important consideration in DSR since the user at the client 
end will mostly be immersed in various environmental sounds. It is well known in 
the ASR literature that noise has a detrimental effect on the recognition performance 
when using conventional MFCC features. Much of the current work in ASR research 
involves finding speech features that are robust to the effects of noise. These speech 
features can be used in DSR as well.  

Using a two-dimensional discrete cosine transform coder, Zhu and Alwan (2001) 
improved the robustness of DSR to noise by using peak-isolated MFCCs (MFCCPs). 

to noise because of the preservation and emphasis of power spectral peaks, whose 
frequency locations are known to be important for the discrimination of vowels. The 
idea is that accuracy in the location of spectral peaks is more important than the 
location of spectral valleys. 

In order to achieve quantization noise shaping, we apply a perceptually-weighted 
distance measure to vary the emphasis of the quantization, which can easily be in-

)ˆ,( EEwd  between the original LFBE vector E and the LFBE Ê is defined as: 
n

i
iiiw EEwd

1

2)]ˆ([)ˆ,( EE    (7.17) 

where n is the vector dimensionality, wi is the weight of the ith component, Ei and 
iÊ are the ith component of the original and code-vector, respectively. In order to 

emphasize a vector component, Ei, such that it is quantized more finely, the weight 
wi should be made larger. In the LFBE vector quantizer, it is desirable to emphasize 
the LFBEs that represent the spectral peaks. Therefore, wi is set to be a scaled ver-
sion of the FBE, iEe : 

rE
i

iew ][     (7.18) 
 

Through experimentation, we have found 0.5 to be a good value for r. 
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MFCCPs are derived by applying half-wave rectification to the spectrum reconstructed
from a bandpass liftered cepstral vector (Strope and Alwan 1997). They are robust 

2005). The advantage of working with LFBEs is their correspondence with the power 

corporated into a vector quantizer (So et al. 2005). The weighted distance measure 

spectrum. That is, a strong peak in the power spectrum would generally lead to a large 

Another method of exploiting this idea is to quantize the logarithmic filterbank 

LFBE coefficient in the same critical band. On the other hand, the frequency location 

each MFCC consists of a linear combination of all LFBEs. By quantizing the LFBEs, 
we can apply noise-shaping techniques to quantize LFBEs that correspond to spectral 

energies (LFBEs) (see Fig. 7.14) rather than the MFCCs themselves (So and Paliwal 

peaks more finely than those that correspond to spectral valleys. The disadvantage of 

information of this spectral peak is not readily available in the MFCC representation as 

using LFBE vectors is that they have a higher dimensionality than MFCC vectors. 
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7.4 Experimental Results 

7.4.1 ETSI Aurora-2 Distributed Speech Recognition Task 

The purpose of the ETSI Aurora-2 experiment is to provide a common framework 
for evaluating noise-robust speech recognition systems. It consists of a clean speech 
database, a noise database, a standard MFCC-based frontend, and scripts for per-
forming the various training and test sets. The recognition engine that is used is the 
HMM Toolkit (HTK) software (Young et al. 2002). 

The TIDigits database (Leonard 1984) forms the basis of the clean speech data-
base, where the original 20 kHz speech was downsampled to 8 kHz and filtered 
using the frequency characteristic of ITU G.712 (300–3,400 Hz). Aurora-2 also pro-
vides a database of eight background noises, which were deemed to be commonly 
encountered in real-life operating conditions for DSR. These noises were recorded at 
the following places (Hirsch

 Suburban train (subway) 
 Crowd of people (babble) 
 Car 
 Exhibition hall (exhibition) 
 Restaurant 
 Street 
 Airport 
 Train station 

corruption.  
There are two training modes: training with clean speech only and training with 

clean and noisy (multicondition) speech. In multicondition training, the noises added 
are subway, babble, car, and exhibition. When training with clean speech only, the 
best recognition performance is achieved in matched conditions, i.e. when testing 
with clean speech as well. However, when the speech to be tested has background 
noise, then multicondition training is desirable, as it includes the distorted speech in 
the training data. 

For the testing, there are three test sets, known as test set A, B, and C. In test set 
A and B, 4,004 test utterances from the TIDigits database are divided into four sub-
sets of 1,001 utterances each and four different types of noises are added to each 
subset at varying levels of SNRs ( , 20, 15, 10, 5, 0, 5 dB). Therefore, there are a 
total of 4  7 = 28 recognition accuracies reported in test set A and B. In test set C, 
only two subsets of 1001 utterances and two noises are used, giving a total of 14 
recognition accuracies. 

In test set A, the subway, babble, car, and exhibition noises are added to each 
subset and these are the same noises used in multicondition training, hence test set A 
evaluates the system in matched conditions. In test set B, the other four noises, 
namely restaurant, street, airport, and train station, are used instead. Because these 
noises were not present in the multicondition training, then test set B evaluates the 

153 

This noise is added to the filtered clean speech at various SNRs to simulate noise 

 and Pearce 2000): 
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system in mismatched conditions (mismatched noise). Test set C contains two utter-
ance subsets only (of the four) with the noises, subway and street, added. Both the 
speech and noise are filtered using the MIRS frequency characteristic before they are 
added, hence test set C evaluates the system in mismatched conditions (mismatched 
frequency characteristic). 

Whole word HMMs are used for modelling the digits with the following pa-
rameters: 

 16 states per word (with 2 additional dummy states at beginning and end); 
 left-to-right topology without skips over states; 
 3 Gaussian mixtures per state; and 
 diagonal covariance matrices. 

 
7.4.2 Experimental Setup 

We have evaluated the recognition performance of various quantization schemes 
version 3.2.1 of the HMM Toolkit (HTK) software. Training was done on clean data 
only (no multicondition training) and testing was performed using test set A. In order 
to see the recognition performance as a function of bitrate, we focus on the results of 

noise are averaged to give the final score for the specific quantization scheme. In 
addition to this, the effect of different types of noise at varying levels of SNR on the 
recognition performance is also investigated at the bitrates of 1.2 kbps and 0.6 kbps 
for each quantization scheme.  

The ETSI DSR standard Aurora frontend (2003) was used for the MFCC feature 
extraction. MFCCs are extracted at a frame rate of 100 Hz. As a slight departure 
from the ETSI DSR standard, we have used 12 MFCCs (excluding the zeroth cep-
stral coefficient, c0, and logarithmic frame energy, log E) as the feature vectors to be 
quantized. We have applied the cepstral liftering technique (Juang et al. 1987) to the 
MFCC vectors. Cepstral mean subtraction (CMS) is applied to the decoded 12 
MFCC features, which are concatenated with their corresponding delta and accelera-
tion coefficients, giving the final feature vector dimension of 36 for the ASR system. 
The HTK parameter type is MFCC_D_A_Z. The baseline average recognition accu-
racy or ASR accuracy using unquantized MFCC features derived from clean speech 
is 98.0 %. 

7.4.3 Non-Uniform Scalar Quantization Using HRO Bit Allocation 

For the scalar quantization experiment, each MFCC was quantized using a non-
uniform Gaussian Lloyd-Max scalar quantizer whose bit allocation was calculated 
using the HRO bit allocation formula of Eq. 7.6. We have chosen this method over 
the WER-based greedy algorithm (Digalakis et al. 1999) because of its computa-
tional simplicity and this allows us to scale any bitrate with ease. Table 7.2 shows the 
average recognition accuracy of the non-uniform scalar quantizer. It can be seen that 
the accuracy decreases linearly in the range of 4.4 to 1.2 kbps and drops rapidly 
below this range. 
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testing on clean speech, where the four word recognition accuracies for each type of 
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Table 7.2 Average DSR word recognition accuracy as a function of bitrate for non-uniform 
scalar quantizer (ASR accuracy = 98.0%) 
 

Bitrate (kbps) Average recognition accuracy (in %) 
0.6 38.2 
0.8 72.3 
1.0 86.7 
1.2 93.3 
1.5 95.5 
1.7 96.2 
2.0 97.0 
2.2 97.2 
2.4 97.4 
3.0 97.8 
4.4 98.0 

 

7.4.4 Unconstrained Vector Quantization 

An unconstrained, full-search vector quantizer was used to quantize single MFCC 
frames. The distance measure used was MSE. In terms of minimizing quantization 
distortion, the vector quantizer is considered the optimum coding scheme, hence it 
will serve as an informal upper recognition bound for single frame quantization. Table 
7.3 shows the average recognition accuracies at several bitrates. 

Table 7.3 Average DSR word recognition accuracy as a function of bitrate for the uncon-
strained vector quantizer (ASR accuracy = 98.0%) 

 

Bitrate (kbps) Average recognition accuracy (in %) 
0.4 76.9 
0.6 91.8 
0.8 95.7 
1.0 96.9 
1.2 97.0 

 
When comparing with Table 7.2, we can see that the superior rate-distortion effi-

ample, at 600 bps, which corresponds to 6 bits in total for quantizing 12 coefficient 

for the scalar quantizer. With such a small bit budget, the scalar quantizer cannot 
allocate bits to some MFCCs, thus in the decoding, they would simply be replaced 
by the mean value. On the other hand, the vector quantizer codebook, which contains 

155 

64 code-vectors, exploits linear and non-linear dependencies between the MFCCs, 

MFCC vectors, the recognition rate for the vector quantizer is 53.6% higher than that 

ciency of the vector quantizer translates to better recognition rates as well. For ex-

matches the joint PDF, and uses optimal quantization cell shapes (Lookabaugh and
Gray 1989). 
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7.4.5 GMM-Based Block Quantization 

Table 7.4 shows the average recognition accuracies for the GMM-based block quan-
tizer with 16 mixture components. We can see that for this quantization scheme, the 
recognition accuracy decreases gracefully to about 800 bps. Comparing it with Table 
7.2, we notice higher recognition accuracies in the GMM-based block quantizer, 
which may be attributed to better PDF matching as well as the use of a decorrelating 
transformation. At 600 bps, the GMM-based block quantizer is 49.4% better than the 
scalar quantizer. However, it is not as high as the recognition performance achieved 
with the vector quantizer at 600 bps (Table 7.3). This is consistent in the rate-
distortion sense since the vector quantizer should be the optimum single-frame quan-
tizer. However, in practice, the vector quantizer suffers from high computational 
complexity, while the GMM-based block quantizer has fixed requirements as well as 
possessing the feature of bitrate scalability. 

7.4.6 Multi-frame GMM-Based Block Quantization 

The multi-frame GMM-based block quantizer is similar to the matrix quantizer (Tsao 
and Gray 1985). Five successive MFCC frames are concatenated to form a vector of 

age word recognition accuracy of the 16 mixture component, five frame multi-frame 
GMM-based block quantizer for different bitrates. 

It can be observed that this quantizer achieves an accuracy that is close to the 
unquantized, baseline system at 1 kbps or 10 bits/frame, which is half the bitrate of 
the single-frame GMM-based block quantizer. For bitrates lower than 600 bps, the 
performance gradually rolls off.  

In terms of quantizer distortion, the multi-frame GMM-based block quantizer 
generally performs better as more frames are concatenated together because inter-
frame memory can be exploited by the KLT. Furthermore, because the dimensionality 
of the vectors is high, the block quantizer operates at a higher rate. 

Compared with the results of the single frame GMM-based block quantizer in 
Table 7.4, the multi-frame scheme does not suffer from a dramatic drop in recogni-
tion accuracy at low bitrates. Unlike the single frame scheme, where there was a 
shortage of bits to distribute among mixture components, the multi-frame GMM-
based block quantizer is able to provide enough bits, thanks to the increased dimen-
sionality of the vectors. For example, at 300 bps, a 16-mixture component, single 
frame GMM-based block quantizer has a total bit budget of 3 bits. On the other hand, 
a 16-mixture component, five-frame scheme has a total bit budget of 15 bits. There-
fore, the multi-frame GMM-based block quantizer can operate at lower bitrates while 
maintaining good recognition performance. 

The multi-frame GMM-based block quantizer also outperforms the vector quan-
tizer since the latter is only a single frame scheme. As we have seen previously, 
successive MFCC frames are highly correlated with each other so it is expected that 
quantization schemes that exploit multiple frame dependencies will perform much 
better in the rate-distortion sense. The disadvantage of this scheme is the inherent 
delay that is introduced. 
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dimension 60 and these larger vectors are then quantized. Table 7.5 shows the aver-
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Table 7.4 Average DSR word recognition accuracy as a function of bitrate for the GMM-
based block quantizer with 16 mixture components (ASR accuracy = 98.0%) 

 
Bitrate (kbps) Average recognition accuracy (in %) 
0.3  8.1 
0.4 23.3 
0.6 87.6 
0.8 93.7 
1.0 95.5 
1.2 96.4 
1.5 97.2 
1.7 97.3 
2.0 97.6 
2.2 97.7 
2.4 97.9 
3.0 97.8 
4.4 98.0 

Table 7.5 Average word recognition accuracy as a function of bitrate for the multi-frame 
GMM-based block quantizer with 16 mixtures and 5 frames (ASR accuracy = 98.0%) 

Bitrate (kbps) Average recognition accuracy (in %) 
0.2 82.9 
0.3 93.0 
0.4 95.4 
0.6 96.8 
0.8 97.5 
1.0 97.7 
1.2 97.9 
1.5 97.8 
1.7 98.0 
2.0 98.0 

 

7.4.7 Perceptually-Weighted Vector Quantization of Logarithmic 
Filterbank Energies 

We can see from Fig. 7.15 that the proposed perceptually weighted vector quantiza-
tion scheme operating on logarithmic filterbank energies (PWVQ-LFBE) is more 
robust to noise than the unweighted vector quantization of MFCCs (VQ-MFCC). At 
SNRs of 10 and 15 dB, the PWVQ-LFBE scheme achieves up to 6 to 10% improve-
ment over VQ-MFCC. This may be attributed to the use of the weighted distance 
measure to emphasize the spectral peaks. However, for low SNRs, the PWVQ-LFBE  
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Fig. 7.15 Word recognition accuracy for speech corrupted with noise at varying SNRs (in dB) 
at 1.2 kbps using the perceptually weighted vector quantizer on LFBEs (PWVQ-LFBE) (solid 
line represents the ASR accuracy; squares represent PWVQ-LFBE and crosses represent VQ-
MFCC): a corrupted with subway noise, b corrupted with babble noise, c corrupted with car 
noise, d corrupted with exhibition noise 

 
scheme fails to improve the noise robustness, when compared with VQ-MFCC. Fur-
thermore, this quantization scheme appears to be bounded by the ASR recognition 
accuracy (shown as the solid line in Fig. 7.15). We should point out that higher 
bitrates were not investigated due to computational constraints. 

7.5 Conclusion 

In this chapter, we have described a series of quantization schemes for coding MFCC 
feature vectors that are to be used for distributed speech recognition. These include 
the scalar quantizer, vector quantizer, perceptually weighted vector quantizer and 
GMM-based block quantizer. These quantization schemes have been described in 
detail in the coding literature but their application to quantizing MFCC feature vectors 
has been a relatively recent development. It is important to note that the objective 
measure in DSR that is to be optimized is the recognition accuracy, rather than the 
mean squared error. Therefore, quantization in the context of DSR deserves further 
investigation. 

We have discussed the statistical properties of MFCCs that are relevant to quanti-
zation. In particular, we have shown that successive MFCC vectors are highly corre-
lated with each other. Because of this property, multi-frame and predictive quantization 
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schemes should perform more efficiently. In relation to the energy coefficients 
(c0 and log E), which were shown to possess different statistical properties, we con-
cluded that they should be quantized independently from the rest of the cepstral 
coefficients. We have also shown via empirical results that the recognition rate in-
creases monotonically as MSE decreases. That is, optimizing quantizers to minimize 
the MSE, in general, should guarantee an improvement in recognition rate. However, 
the relationship is a non-linear one. 

Next, we presented a brief review of the distributed speech recognition literature, 
where various schemes for quantizing MFCCs were investigated. The Aurora-2 
database used for evaluating the performance of our MFCC quantization schemes as 
well as the parameters for the recognition task were described in detail. Following 
this, we presented our results on MFCC quantization in a DSR framework using non-
uniform scalar quantization with HRO bit allocation, vector quantization, and single-
frame as well as multi-frame GMM-based block quantization. For clean speech, the 
multi-frame GMM-based block quantizer achieved the best recognition at lower 
bitrates, exhibiting a negligible 1% degradation (word error rate of 2.5%) in recogni-
tion performance over the ASR accuracy at 800 bps and 5% degradation (word error 
rate of 7%) at 300 bps. Unlike vector quantization schemes, the multi-frame GMM-
based block quantizer is scalable in bitrate and has a complexity that is independent 
of bitrate.  

We also looked at the performance of vector quantization of MFCCs derived 
from noise corrupted speech at various SNR levels and compared this with the per-
ceptually-weighted vector quantizer (PWVQ). Rather than quantizing MFCCs, the 
PWVQ works with logarithmic filterbank energies (LFBEs). The non-linearly 
weighted distance measure allows for the shaping of quantization noise, putting more 
emphasis on spectral peaks so that they are quantized more finely. We showed that 
this scheme improves noise-robustness for medium SNRs (10–15 dB) over the vector 
quantization of MFCCs. 
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8 
Error Recovery: Channel Coding and Packetization 

Bengt J. Borgström, Alexis Bernard and Abeer Alwan 

Abstract. Distributed Speech Recognition (DSR) systems rely on efficient transmission of 
speech information from distributed clients to a centralized server. Wireless or network com-
munication channels within DSR systems are typically noisy and bursty. Thus, DSR systems 
must utilize efficient Error Recovery (ER) schemes during transmission of speech information. 
Some ER strategies, referred to as forward error control (FEC), aim to create redundancy in 
the source coded bitstream to overcome the effect of channel errors, while others are designed 
to create spread or delay in the feature stream in order to overcome the effect of bursty channel 
errors. Furthermore, ER strategies may be designed as a combination of the previously de-
scribed techniques. This chapter presents an array of error recovery techniques for remote 
speech recognition applications. 
 This chapter is organized as follows. First, channel characterization and modeling are 
discussed. Next, media-specific FEC is presented for packet erasure applications, followed by 
a discussion on media-independent FEC techniques for bit error applications, including gen-
eral linear block codes, cyclic codes, and convolutional codes. The application of unequal 
error protection (UEP) strategies utilizing combinations of the aforementioned FEC methods 
is also presented. Finally, frame-based interleaving is discussed as an alternative to overcom-
ing the effect of bursty channel erasures. The chapter concludes with examples of modern 
standards for channel coding strategies for distributed speech recognition (DSR). 

8.1 Distributed Speech Recognition Systems 

Throughout this chapter various error recovery and detection techniques are dis-
cussed. It is therefore necessary to present an overview of a complete experimental 
DSR system, including feature extraction, a noisy channel model, and an automatic 
speech recognition engine at the server end (Fig. 8.1). 

are similar to those described by the ETSI standards (ETSI 2000), whereby split 
vector quantization (SVQ) is used to compress the first 13 Mel-Frequency Cepstral 
Coefficients (MFCCs) as well as the log-energy of the speech frame. The SVQ then 
allocates 8 bits to the vector-quantization of the log-energy and the 0th cepstral coef-
ficient pair, and 6 bits to each of the following 6 pairs. The vector quantizers were 
trained using the K-means algorithm, and quantization was carried out via an exhaus-
tive search.  
 

The feature extraction and source coding algorithms implemented for this chapter 
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                   Fig. 8.1 Overview of the complete distributed speech recognition system 

Two types of communication channels are studied, wireless circuit-switched and 
IP packet-switched. Although these channels are inherently different, they do share 
the characteristic that errors, whether they are flipped bits or packet erasures, tend to 
occur in bursts. Thus, similar models are used to simulate the effects of noisy chan-
nels in the wireless and IP network scenarios. Channel degradation and modeling are 
discussed in further detail in Sect. 8.2. 

The server-end speech recognition engine is implemented using the HTK toolkit 
(Young et al. 2000). The training process uses an implementation of the forward-
backward algorithm, and the recognition process uses an implementation of the 
Viterbi algorithm. The speech database used for experiments is the Aurora-2 data-
base (Hirsch and Pearce 2000), which consists of connected digit strings, spoken by 
various male and female speakers. During the recognition process, 16-state word 
models were used, with each state comprised of 3 mixtures. 8,440 digit utterances 
were used for training, and 1,001 utterances were used for testing (500 males, 501 
females for a total of 3,257 digits). 

8.2 Characterization and Modeling of Communication Channels 

Distributed speech recognition systems face the challenge of processing signal noise 
induced by communication channels. Such systems transmit extracted speech fea-
tures from distributed clients to the server, and typically operate at lower bitrates 
than traditional speech communication systems.  

8.2.1 Signal Degradation Over Wireless Communication Channels 

cific physical properties of the environment between the transmitter and receiver, and 
it is a difficult task to accurately generalize performance results of communication 
over a wireless channel (Sklar 1997; Bai and Atiquzzaman 2003). 
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Signal degradations caused by wireless channels are highly dependent on the spe-



 

 
 
 

There are three general phenomena that affect the propagation of radio waves in 
wireless communication systems: 

 
1. 

in comparison to the wavelength of the wave.  
2. 

by a large object. 
3. 

whose size is smaller than the wavelength of the radio wave. 
 
These propagation phenomena cause fluctuations of the amplitude, phase, and 

angle of incidence of wireless signals, resulting in multipath propagation from the 
transmitter to the receiver. Multipath propagation leads to fading characteristics  
in the received signal. Large-scale fading occurs when the mobile receiver moves 
to/from the transmitter over large distances. Small-scale fading occurs when the 
distance between the receiver and transmitter changes in small increments. Thus, the 
speed of the mobile client has a great effect on the resulting channel behavior. When 
no dominant path exists, the statistics for the signal envelope can be described by a 
Rayleigh distribution, and when a dominant LOS path exists, the statistics of the 
signal envelope can be described by a Ricean distribution. 

Since wireless communication systems are generally built upon circuit-switched 
networks, corrupted data occur as bit errors in the modulated bitstream. Furthermore, 
due to the fading nature of wireless channels, bit errors tend to occur in bursts. The 
probability of occurrence and expected duration of bit error bursts are dependent 
upon the time varying channel signal-to-noise ratio (SNR).   

8.2.2 Signal Degradation Over IP Networks  

IP networks rely on packet-switching, wherein packet loss and delay are caused 
mainly by congestion at the routers, and individual bit errors rarely occur (Tan et al. 
2005). Specifically, packet losses may appear if the input flow of data is higher than 
the processing capacity of the switching logic, or if the processing capacity of the 
switching logic is higher than the output flow speed (Kurose and Rose 2003).  

Similar to the occurrence of bit-error bursts in wireless networks, packet losses in 
packet-switched IP networks tend to occur in bursts (Jiao et al. 2002; Bolot 2003). 
Probability of occurrence and expected duration of the packet loss bursts are depend-
ent on the congestion of the network. 

8.2.3 Modeling Bursty Communication Channels 

A common method for simulating a bursty channel in a communication system is the 
two-state Gilbert-Elliot (GE) model (Elliot 1963), which has been widely used for 
DSR studies. The GE model includes a good state, Sg, which incurs no loss, and a 
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Reflection: Radio waves are reflected off smooth surfaces which are large 

Diffraction: Radio waves propagate around relatively large impenetrable 

receiver. This effect is also referred to as “shadowing”, since radio waves 
objects when there exists no line of sight (LOS) between the transmitter and 

are able to travel from the transmitter to the receiver even when shadowed 

Scattering: Radio waves are disrupted by objects in the transmission path 
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bad state, Sb, which assumes some probability of loss, as is illustrated in Fig. 8.2. 
Here, p represents the probability of transitioning from Sg to Sb, whereas q represents 
the probability of transitioning from Sb to Sg. To completely characterize the model, 
the parameter h, which represents the probability of loss while in state Sb, is used.  
 

Sg Sb

p

q

1-p 1-q

 
Fig. 8.2 The Gilbert-Elliot Model for simulating bursty channels: Sg and Sb represent the goodand 
bad states, respectively, and p and q represent transitional probabilities 

 
8.2.3.1 Bit-Level Channel Models 

Throughout this chapter, specific bit-level channel conditions are used for simula-
tions and the probability of transition from Sg to Sb is set to p = 0.002. The noise 
incurred in Sb is additive white noise at a level of 2 dB, corresponding to an error 
probability of Perr|Sb = 0.157, whereas the noise incurred in Sg is at a level of 20 dB, 
corresponding to an error probability of Perr|Sg  0.00. Thus, the remaining variable 
is the transitional probability q. The conditions to be used, similar to those described 
in (Han et al. 2004), are shown in Table 8.1. 

 
                               Table 8.1 Channel conditions used for bit-level simulations 

Channel 
condition 

p q BER (%) 

Clean 0.000 1.000 0.00 
1 0.002 0.019 1.50 
2 0.002 0.009 2.87 
3 0.002 0.0057 4.10 
4 0.002 0.003 6.32 
5 0.002 0.002 7.90 
6 0.002 0.0013 9.58 
7 0.002 0.0009 10.90 

8.2.3.2 Packet-Level Channel Models 

An efficient method to simulate errors introduced by IP networks is to apply the GE 
model on the packet level, and thus the GE model iterates at each packet. Further-
more, the loss incurred in Sb represents a packet erasure. 
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Throughout this chapter, specific packet-level channel conditions will be used for 
simulations. These conditions, as described in Han et al. (2004), are shown in Table 
8.2. Note that for simulating packet-level channels, the probability of packet loss 
while in Sb is assumed to be 1.0. In Fig. 8.2, the average burst duration can be deter-
mined as 1/q, and the percentage of packets lost can be calculated as 100[p/(p + q)]%. 

                            Table 8.2 Channel conditions used for packet-level simulations 

Channel 
condition 

p q Packets 
lost 
(%) 

Average 
burst 

duration 
Clean 0.000 1.000 0.0 0.00 frames 
1 0.005 0.853 0.6 1.17 frames 
2 0.066 0.670 9.0 1.49 frames 
3 0.200 0.500 28.6 2.00 frames 
4 0.250 0.400 38.5 2.50 frames 
5 0.300 0.300 50.0 3.33 frames 
6 0.244 0.200 55.0 5.00 frames 

 

8.3 Media-Specific FEC 

the DSR datastream prior to transmission. The additional copies, referred to as repli-
cas, are coarsely quantized in order to reduce the additional required bandwidth. 
Furthermore, due to the bursty nature of both wireless and IP-network transmission, 
speech feature replicas are inserted into the source-coded bitstream at certain frame 
intervals away from the original features. 

vq-bit vector quan-
tization applied to the entire 14-element feature vector of each speech frame. 
Additionally, the VQ replicas are inserted into the bitstream at intervals of Tfec 
frames away from the original speech feature, with the aim of overcoming the effects 
of clustered packet erasures characteristic of bursty channels. In general, optimal per-
formance of media-specific FEC can be expected if Tfec is chosen to be at least as long 
as the expected burst duration. Figure 8.3 illustrates an example of media-specific FEC 
packetization for Tfec = 4. Here, the source-coded frames are shown along the top, and 
the FEC replicas are shown along the bottom. Note the separation between coded 
frames and corresponding vector quantized replicas. Additionally, Fig. 8.4 shows 

vq, for Tfec = 6 frames, and for 
various channel conditions described in Table 8.2. 

formance for DSR systems in the case of bursty channels, as compared with trans-

word-accuracy results obtained for various values of B

mission without VQ replicas. However, the recognized speech at the server can be  
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Media-specific FEC involves insertion of additional copies of speech features into 

In (Peinado et al. 2005a) the authors introduce a media-specific FEC method 
compatible with the ETSI DSR source coding standards (ETSI 2000). The media-
specific FEC algorithm creates speech feature replicas by using B

As can be concluded from Fig. 8.4, media-specific FEC provides improved per-



Bengt J. Borgström, Alexis Bernard and Abeer Alwan 

 

7

3 12

8 9

5 14

10 11

7 16

12 13

9 18

14

packet #4 packet #5 packet #6 packet #7

Features

VQ Replicas  
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Fig. 8.4 Word-accuracy results obtained using the Aurora-2 database with Media-Specific 
FEC using Bvq-bit VQ replicas and packetization with Tfec = 6 
 
delayed by up to Tfec
applications. 

8.4 Media-Independent FEC 

while channel errors have a disastrous effect on recognition accuracy, the recognizer 
is able withstand up to 15% of randomly inserted channel erasures with negligible 
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especially with wireless transmission. These techniques include the use of linear block 

 frames, which may introduce problems for delay-sensitive 

codes, cyclic codes, or convolutional codes. It has been shown in (Bernard and Alwan

Media-independent FEC techniques are applied within DSR systems with the aim of 

ance of DSR much less than incorrectly decoded packets. Specifically, it is shown that 

correcting transmission errors or predicting reliability of transmitted speech features, 

2002a, Bernard 2002) that packet losses or erasures degrade the word-accuracy perform-



 

data. Thereafter, lost speech features can be estimated at the server through various 

8.4.1 Combining FEC with Error Concealment Methods    

There exist numerous error concealment methods to deal with packet erasures in 
DSR systems which estimate lost speech features before speech recognition. The 
simplest of such methods include frame dropping and frame repetition. These meth-
ods involve low complexity, although they may produce poor recognition accuracy 
as error burst durations increase (Bernard and Alwan 2002a). Other algorithms to 
estimate lost speech features include various interpolation techniques, such as linear 
interpolation or polynomial interpolation, which provide better performance for 
longer error bursts (Peinado and Segura 2006). 

More successful EC methods, however, are based on minimum-mean-square-
error (MMSE) algorithms. In Peindao et al. (2005b), the authors successfully apply 
the Forward-Backward MMSE (FB-MMSE) algorithm to determine the maximum 
likelihood lost or erroneous observations given the most recent correct observation 
and the nearest correct future observation. However, due to the high complexity of 
the FB-MMSE algorithm (Peinado et al. 2005b) introduce simplified versions which 
greatly decrease the computational load without significantly reducing the perform-
ance. 

There also exist recognizer-based EC methods which involve soft-feature Viterbi 
decoding at the server (Bernard and Alwan 2001), known as weighted viterbi decod-
ing. In such techniques, channel decoding is performed to determine a measure of 
reliability of the current received packet. The reliability measure is then passed to the 
recognition engine, which applies corresponding weights to speech features during 
the Viterbi algorithm within the recognition process. 

8.4.2 Linear Block Codes 

For wireless communication channels, the transmitted bitstream generally becomes 
degraded due to reasons discussed in Sect. 8.2. An option for providing the detec-

The aim of block codes is to provide m = n  k redundancy bits to a block of k 
dataword bits, resulting in a block of n codeword bits prior to transmission. Such a 
code is referred to as a (n,k) block code. 

Let D = {d1,d2,…,dk} represent the set of all possible k-dimensional datawords, 
where k

i
1d . Also, let C = {c1,c2,…,cn} represent the set of all possible n-

dimensional codewords, where n
i

1c . Thus, block codes can be represented in 
matrix form as Gdc ii  where the matrix nkG

loss of accuracy. Therefore, it may at many times be enough for the overall DSR 
system to simply detect packet errors, as opposed to attempting to decode unreliable 
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Error Concealment (EC) methods, which are discussed in Chap. 9.   

tion or correction of transmission errors is through the use of linear block codes. 
Linear block codes are especially attractive for the problem of error-robust wire-

 is referred to as the generator 
matrix.  

less communication due to their low delay, complexity, and overhead. 
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Furthermore, a code is defined as systematic if each dataword is contained within 

its corresponding codeword (Blahut 2004). For systematic codes, the generator ma-
trix must be in the form 

 
,k PIG                                                                    (8.1) 

 
where )( knkP  is referred to as the parity matrix, and Ik is the kk  identity 
matrix. The parity-check matrix, )( nknH , which is used in the decoding proc-
ess, is then defined as: 

 
.kn

T IPH                                      (8.2) 
 
An important parameter to measure the effectiveness of a specific linear block 

min
set C represents the minimum Hamming distance between any two codewords 

,, Cji cc  for ji . It can be shown that the dmin of a systematic code can be de-

),(min
,min c

0cc
wd

C
                                                  (8.3) 

where the function )(w  represents the Hamming weight, i.e. the number of 1’s in a 
given binary vector. 

min is able to detect no more than 

1mind  errors, or is able to correct no more than )1(
2
1

mind  errors.   

Table 8.3 Systematic linear block codes for channel coding of speech features (From Bernard 
and Alwan 2002a, © 2002 IEEE) 

(n,k) m  PT dmin  
(12,10) 2  [1,1,1,2,2,2,3,3,3,3] 2 
(12,9) 3  [1,2,3,3,4,5,5,6,7] 2 
(12,8) 4  [3,5,6,9,A,D,E,F] 3 
(10,8) 2  [1,1,1,2,2,3,3,3] 2 
(12,7) 5  [07,0B,0D,0E,13,15,19] 4 
(10,7) 3  [1,2,3,4,5,6,7] 2 

 
In Bernard and Alwan (2002a), the authors provide analysis of the performance 

In this work, good codes are determined through exhaustive searches by maximizing 
dmin for various values of n and k, and minimizing the corresponding weights. Table 
8.3 shows the resulting optimal codes. Note that the parity matrix P is given in hexa-
decimal form. 

termined by finding the minimum Hamming weight of any nonzero codeword in C: 
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code is the minimum distance, d . The minimum distance of a code with codeword 

A linear code with a minimum distance of d

of systematic linear block codes for the application of DSR over wireless channels. 



 

 
 

8.4.2.1 Hard vs. Soft Decoding 

Linear block code theory discussed in the previous section builds on arithmetic over 
Galois Fields (Blahut 2004), most commonly over GF(2), i.e. binary data with 
modulo-2 operations. However, the input data stream at the receiver is in the form of 
demodulated bits with superimposed channel noise. That is, the received data vector 
is in the form y = x + n, where x is the transmitted codeword and n is the channel 
noise vector. Binary decisions must be made for each received noisy bit, y(i), before 
channel decoding of the block can be performed, resulting in the approximated bit-
stream y~ , where }1,0{)(~ iy . There exists two classical methods of decoding noisy 
data into a binary bitstream: hard-decision decoding and soft-decision decoding, 
which will be denoted as hy~  and sy~ , respectively. 

Hard-decision decoding maps each received noisy data vector to an approxi-
mated transmitted bitstream by the following relationship: 

 
)),(,(minarg)(~

}1,0{
iybdiy E

b
h                         (8.4) 

 where ),(Ed  represents the Euclidean distance, and b corresponds to possible bit 
values. 

ing to the nearest modulated bit. The resulting approximated bitstream, hy~ , is then 
used to find the estimated transmitted codeword by minimizing the Hamming dis-
tance between itself and all possible true codewords. Thus, the detected codeword 
chosen for channel decoding, denoted as opt

h%y , is determined as: 
 

opt arg min ( , ),
i

h H h i
D

d% %
d

y y d                         (8.5) 

where ),(Hd  represents the Hamming distance (Bernard and Alwan 2002a). 
Since the mapping function described by Eq. 8.5 is not one-to-one, hard-decision 

decoding can lead to scenarios in which distinct transmitted codewords may be ap-
proximated as the same received codeword. That is, there may exist xi and xj, for 

ji , such that opt opt( , ) ( , )H h i H h jd d% %y x y x . In such situations, the decoder can 
detect an error, but cannot correct the error, since multiple distinct codewords could 
have been transmitted.  

Figure 8.5a shows an example of hard-decision decoding. In this example, a (2,1) 
linear code with a generator matrix G = [1,1] was used to transmit the dataword 
d = [1]. The next most likely dataword in this example is [ 1]. In Fig. 8.5a, the re-
gion labeled CD corresponds to the region in which the received noisy data vector y 
would have been correctly decoded. Conversely, UE (undetected error) corresponds 
to the region in which y would have been incorrectly decoded. Furthermore, the 
regions labeled ED (error detected) refer to the regions in which y could not have 
been decoded, and an error would have been declared.   
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As can be interpreted from Eq. 8.4, hard-decision decoding simply entails round-
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Fig. 8.5 Examples of (a) hard-decision decoding, (b) soft-decision decoding, and (c) -soft-
decision decoding: This scenario represents a transmitted dataword of d = [1], with G = [1,1]. 
Also, CE represents the region corresponding to a corrected error, UE corresponds to the region 
of an uncorrected error, and DE represents the region corresponding to a detected error (From 
Bernard and Alwan 2002a, © 2002 IEEE) 

An alternative to the previously discussed hard-decision decoding is soft-decision 
decoding, which minimizes the Euclidean distance between the received noisy data 
vector and all possible codewords. The approximated bitstream obtained through 
soft-decision decoding, denoted by sy~ , can be determined as: 

 
opt 2arg min ( , ).

i
s E i

D
d%

d
y d y                             (8.6) 

 
Figure 8.5b illustrates an example of soft-decision decoding for the same channel 

coding scheme explained for Fig. 8.5a. Once again, CD denotes the region corre-
sponding to a correctly decoded transmitted dataword, and UE denotes the region 
corresponding to an incorrectly decoded transmitted dataword. Note that for soft-
decision decoding, all received data vectors must be decoded, and thereis no region 
for error detection (ED). 
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For AWGN channels, soft-decision decoding typically shows a 2 dB gain relative 
to hard-decision decoding in terms of the bit error rate (BER). However, for the 
specific application of DSR, the authors of (Bernard and Alwan 2002a) show the 
negative effect of incorrectly decoded transmission errors on word recognition re-
sults.  

 
8.4.2.2 -Soft Decoding 

provides the error-correcting advantage of soft-decision decoding with the error 
detecting capabilities of hard-decision decoding by recreating an “error detection” 
region based on the confidence in the decoding operation. 

In order to accept a soft-decision decoded codeword as correct, the -soft decod-
ing algorithm compares the likelihood of that transmitted codeword relative to the 
next most likely codeword. Let y represent the received codeword, and let x1 and x2 
represent the first and second most probable transmitted codewords. The ratio of 
likelihoods of x1 and x2 can be expressed as:  

 

,exp),(),(exp
)(
)( 12

2
12

2

1

D
dd

N
D

N
dd

|P
|P

oo

EE xyxy
xxy
xxy      (8.7) 

 
where d1 and d2 represent the distances from the orthogonal projection of the re-
ceived codevector y to the line joining x1 and x2, and D represents the distance be-
tween x1 and x2. Note that Ddd2 . Also, N  is a constant related to the noise 
level of the channel. 

The important factor in Eq. 8.7 is 
D

dd 12 , since it relates the relative proximity 

of the received codeword to the two possible transmitted codewords. Note that if 0, 
the codevectors x1 and x2 are almost equiprobable, the soft-decision decoded code-

1
soft-decision decoded codeword is highly likely. Thus, the region corresponding to 
error detection (DE) grows as  increases.  

For a system implementing the -soft decoding algorithm, parameter  is prede-
termined to perform soft-decision decoding with error detection capability. For re-
ceived codewords resulting in , soft-decision decoding is utilized, and for 

, an error is declared. Recognition accuracy results for hard, soft, and -soft 
decoding are shown in Table 8.4. Here, the -soft parameter is set as  = 0.16, and 
the linear block codes used are described in Table 8.3. Note that -soft decoding 
significantly outperforms both hard and soft decoding by reducing the word error 
rate.  

 

1 0

0

0

0

0

, the word should be rejected, and an error should be declared. Conversely, if 
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The adaptive -soft decoding algorithm presented in Bernard and Alwan (2002a) 
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Table 8.4 Word accuracy results using hard-, soft-, and -soft decoding over Rayleigh fading 
channels (From Bernard and Alwan 2002a, © 2002 IEEE) 

Code (n,k) SNR (dB) Hard (%) Soft (%)  -Soft (%) 
(10,10) 19.96 94.71 94.71 98.32  
(10,9) 13.87 97.31 96.35 98.12  
(10,8) 10.69 94.47 95.03 97.82  
(11,8) 8.80 87.24 95.62 97.43  
(12,8) 6.29 67.25 93.17 97.04  
(12,7) 4.53 40.48 91.31 95.88  

8.4.3 Cyclic Codes 

c = [c0,c1,…,cn-1]T C, this guarantees that ĉ  = [cn-1,c0,…,cn-2]T C. A convenient 
way to represent cyclic codes is in polynomial form. Thus, the codeword c can be 
described as: 
 

.
1

0

1
110

n

j

j
j

n
n xcxcxccxc Lc                   (8.8) 

 
The generator matrix can also be written in polynomial form as: 

.)(
0

kn

j

j
j xgxg                                                 (8.9) 

 
Since a cyclic code is specific to its generator polynomial, a cyclic code can 

therefore be defined as all multiples of the generator polynomial g(x) by a polyno-
mial of degree k  1 or less. Thus, for any polynomial ai(x) of degree d  k  1, the 
corresponding codeword polynomial is given by: 
 

.xaxgxc ii                                     (8.10) 
 

Cyclic codes are often used for DSR applications. Specifically, three types of cy-
clic codes are very useful: cyclic redundancy codes (CRCs), Reed-Solomon (RS) 
codes, and Bose-Chaudhuri-Hocquenghem (BCH) codes.  

8.4.4 Convolutional Codes 

stream as a linear combination of the current bit and past data in mod-2 arithme-
tic, and the encoder can be interpreted as a system of binary shift registers and 
mod-2 addition components. Similar to linear block codes, convolutional codes 
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is also a codeword (Blahut 2004). That is, if C is a cyclic code, then whenever 
Cyclic codes are a subclass of linear block codes, for which a shift of any codeword 

A convolutional code is a channel coding technique which encodes the input bit 



 

 
 

are characterized by their protection rate: a rate-k/n encoder processes n output bits 
for every k input bits. A major difference between linear block codes and convolu-
tional codes is the fact that convolutional codes contain memory. 

Although there exist various ways to decode convolutional coded data, the most 
common is the Viterbi algorithm (Viterbi 1971), due to its relatively low computa-
tional load. The goal of the Viterbi algorithm is to find the most likely transmitted 
bitstream by minimizing the total error between the entire received noisy datastream 
and potential transmitted bitstreams. The Viterbi algorithm accomplishes this mini-
mization by iterating through a trellis, for which the number of states and possible 
paths within the trellis are determined by the structure of the given encoder (Wesel 
2003). 

That is, the minimization discussed can be carried out on the hard-decision decoded 
bitstream, which can be determined from the received datastream through Eq. 8.5, or 
it can be carried out directly on the received soft data. Typically, soft-decision de-
coding outperforms hard-decision decoding by approximately 2 dB.  

rate through puncturing. Puncturing entails deleting certain outputs bits according to 
a specific pattern to obtain a lower final bitrate. For example, a rate-1/2 encoder can 
be punctured by deleting every 4th bit, and the resulting code will be rate-2/3. By 
puncturing bits in convolutional codes, the channel coding rate can be varied instan-
taneously, allowing for rate compatible punctured codes (RCPC) (Bernard et al. 
2002b). Word recognition results for error protection schemes based on convolution 
codes are shown in Fig. 8.6.     
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Fig. 8.6 Word recognition results tested on the Aurora-2 database for error protection using 
convolutional codes (Simulation details are given in Sect. 8.1.) 
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 Viterbi decoding of convolutional codes can be performed on hard or soft data. 

      Convolutional codes also provide added flexibility to adjust the final protection 
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Performance of media-independent FEC codes, with respect to the level of redun-
dancy inserted, can be enhanced by providing for each bit in the bitstream the ade-
quate level of protection against channel errors. The bits comprising the transmitted 
datastream of DSR systems do not have equal effect on the word recognition per-
formance of the overall system (Boulis et al. 2002; Weerackody et al. 2002). For 
example, in the case of scalar quantization of extracted speech features, the most 
significant bits (MSBs) generally provide more information for the recognizer than 
the least significant bits (LSBs). Furthermore, in some source coding algorithms, 
various speech features affect the system performance differently. For example, in 
ETSI (2000), the log-energy and 1st MFCC are considered to play a greater role in 
speech recognition than higher order MFCCs.  

ing UEP schemes, due to their flexibility regarding protection rate. 
For example, in Boulis et al. (2002), the authors present an UEP scheme for DSR 

the first 5 MFCCs, and quantizes the 1st, 2nd, and 4th coefficients using 6 bits, while 
allocating 4 bits each to the 3rd and 5th coefficient. Also, 20 adjacent windowed 
frames are packetized, and corresponding bits are grouped across time to form 20 bit 
symbols. Furthermore, these symbols are allocated to different streams, each of 
which is protected by a separate RS code. Table 8.5 illustrates the UEP scheme pro-

the given symbol, and F denotes an error correction symbol. In this example, streams 
1 and 2 are protected with (12,4) RS codes, stream 3 is protected with a (12,6) code, 
and stream 4 is transmitted without protection. 

Linear Prediction analysis. 

Table 8.5 Unequal error protection scheme utilizing cyclic codes: integers represent 
the MFCC corresponding to the given symbol, and F denotes an error correction sym-
bol (From Boulis et al. 2002, © 2002 IEEE) 

Stream Symbols (1-12) 
1 1 2 3 4 F F F F F F F F 
2 5 1 1 3 F F F F F F F F 
3 5 1 2 2 3 4 F F F F F F 
4 4 5 4 1 1 4 3 4 2 2 2 2 

  

posed in Boulis et al. (2002), where integers represent the MFCC corresponding to 

first 11 cepstral coefficients, either obtained through Mel Filterbank analysis or through 
The source coding used in the study involves the extraction of the frame energy and the 

error protection for bits within a data block. In Weerackody et al. (2002), the authors 

systems utilizing shortened RS codes. The proposed source coding scheme extracts 

propose two different UEP schemes for DSR applications based on convolutional codes. 
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In bandwidth-restrictive systems, it may therefore be beneficial to use Unequal 

viding less protection for others. Cyclic codes provide an efficient tool for construct-

     Convolutional codes can be used for UEP schemes to provide various amounts of  

8.5 Unequal Error Protection 

Error Protection algorithms to provide more protection for certain bits, while pro-



 

 
 

The source coder allocates 6 bits each to the frame energy and the first 5 cepstral 
coefficients, while allocating 4 bits each to the remaining coefficients, resulting in a 
payload bitrate of 4.8 kbps.  

60 bits of each block into 4 different levels of importance. Each level is then encoded 
into a separate bitstream using a distinct channel coding scheme, and the total bitrate 
for each case is 9.6 kbps. Let ei (n) represent the ith bit of the frame energy value at 
block n, and let ci

j (n) represent the ith bit of the jth cepstral coefficient for block n. 
Tables 8.6 illustrates the bit allocation and channel coding scheme involved in the 
UEP scheme proposed in Weerackody et al. (2002), referred to as UEP1. The corre-
sponding results reported for Rayleigh fading channels are provided in Table 8.7.  

1

Level Speech feature bits Error protection 
1 e0(n),e1(n),c0

1(n),c0
2(n),c0

3(n),c0
4(n),c0

5(n) rate-1/2 Convolutional 
code 

2 e2(n),c1
1(n),c1

2(n),c1
3(n),c1

4(n),c1
5(n) rate-1/2 convolutional 

code 
3 e3(n),e4(n),c2

1(n),c3
1(n),c2

2(n),c3
2(n),… 

c0
6(n),c1

6(n),c0
7(n),c1

7(n),…,c0
11(n),c1

11(n) 
rate-1/2 convolutional 
code  + puncturing 

4 e5(n),c4
1(n),c5

1(n),c4
5(n),c5

5(n), 
c2

6(n),c3
6(n),c2

7(n),c3
7(n),…,c2

11(n),c3
11(n) 

No code  

Table 8.7 Word accuracy results for unequal error protection scheme utilizing convolutional 
codes: “dec. type” refers to the type of data used, i.e. hard-decision decoded data (Hard) or soft-
decision decoded data (Soft) (From Weerackody et al. 2002, © 2002 IEEE) 

UEP 
scheme 

Dec. type SNR 
15  dB             10 dB              7 dB              5 dB 

UEP1 Hard  92.6% 89.8% 82.7%  71.7% 
UEP1 Soft  92.7% 91.3% 87.1%  80.1% 

8.6 Frame Interleaving 

It is known that for speech recognition purposes, errors that occur in groups are more 
degrading to word-accuracy performance than errors which occur randomly. Frame 
interleaving is a technique aimed at countering the effects of such bursty channels, 
through the addition of delay but no redundancy. 

Frame interleaving aims to reorder speech frame packets within the transmitted 
bitstream so that frames which are adjacent with respect to the original speech signal 
are separated within the transmitted signal. Thus, grouped errors in the interleaved 
signal will result in scattered errors in the de-interleaved signal.  

Weerackody et al. 2002, © 2002 IEEE) 
Table 8.6 Unequal error protection scheme UEP  utilizing convolutional codes (From
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The UEP algorithms presented in Weerackody et al. (2002) groups the total 
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Two parameters commonly used to measure the effectiveness of an interleaver 

maximum delay that any packet experiences before being transmitted. That is, for the 
interleaving function described by j =  (i), where j is the original packet position 

as: 
 

ii
i

1max                          (8.11) 

1 2
within the original ordering: 

 
 

.2121 sppspp                        (8.12) 
 
In James and Milner (2004), three classes of interleavers are discussed for the use 

of DSR: optimal spread block interleavers, convolutional interleavers, and decorre-
lated block interleavers. They are successfully shown to provide improved results for 
DSR systems. 

8.6.1 Optimal Spread Block Interleavers 

A defining parameter of a block interleaver is the degree d. A block interleaver of 
degree d operates on a set of d 2 packets by reordering them prior to transmission. A 
pair of interleaving functions, 1  and 2 , of degree d are considered optimal 
with respect their spread if, and only if: 
 

,11 idjdjdi          (8.13) 
    and  

,12 iddjjdi                                     (8.14) 
 

for 1,0 dji . Note that 1  and 2  are inverse functions, i.e. ii21 . 

function pairs can be interpreted as 90  clockwise and counter-clockwise rotations of 
dd  packet matrices. Figure 8.7 illustrates the d = 3 case. 

 It can also be concluded that for optimal spread block interleavers,  
 

  2
opt ,d d                                             (8.15) 

                                  and  
             opt .s d                                              (8.16) 
 

° 
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are the delay, , and the spread, s. The delay of an interleaver is defined as the 

and i is the resulting packet position for transmission, the delay can be determined 

An interleaver is said to have a spread of s if for any packet positions, p  and p , 

Furthermore, it is shown in (James et al. 2004) that optimal spread block interleaver 
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Fig. 8.7 Example of an optimal spread block interleaver with d = 3. Note that the interleaving 

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
55

60

65

70

75

80

85

90

95

100

Channel Condition

W
A

cc
 (

%
)

none
d

opt
=2

d
opt

=3
d

opt
=4

 
Fig. 8.8 Word recognition results tested on the Aurora-2 database using optimal spread block 
interleavers and decorrelated block interleavers of various degrees: dopt refers to the degree of the 
optimal spread interleaver (Simulation details are given in Sect. 8.1) 

The performances of optimal spread block interleavers of various degrees are 
shown in Fig. 8.8.  

8.6.2 Convolutional Interleavers 

stream of packets. It involves an input multiplexer, followed by a group of shift reg-
isters in parallel, and finally an output multiplexer. A convolutional interleaver of 
degree d = 4 is illustrated in Fig. 8.9. 
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A convolutional interleaver can be interpreted as a multirate device operating on a 

function can be interpreted as a  9 °0  counter-clockwise rotation of the d × d block  
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                            Fig. 8.9 Example of a convolutional interleaver with degree d = 4 

by: 

conv mod .i i i d                                (8.17) 
 

It is also shown in (James et al. 2004) that the maximum delay and spread are 
given by: 

2
conv ,d d                                   (8.18) 

                   and 

conv 1.s d          (8.19) 

8.6.3 Decorrelated Block Interleavers 

The optimal spread block interleaver and convolutional interleaver previously dis-
cussed utilize the maximum delay and spread parameters to measure the effective-
ness of specific interleaving functions. However, there exist other parameters by 
which the performance of an interleaving function can be measured.  

For example, in James et al. (2004), the authors introduce a decorrelation meas-
urement given by: 

 

.
2 2

1 1

d

i

d

j ji
ji

D                 (8.20) 

 
The decorrelation measurement D shows the ability of an interleaving function to 

spread the input feature stream. In order to illustrate this, 2000 interleaving functions 
with degree d = 4 were randomly created, and the corresponding decorrelation values 
were determined. Additionally, the chosen interleavers were tested on a bursty 
packet-level channel with parameters p = 0.75 and q = 0.75. Note that the given 
channel parameters produce an average burst duration of 4bd  without interleav-
ing. The average burst lengths of the de-interleaved feature streams were then plotted 
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Fig. 8.10 Average burst durations of de-interleaved feature streams as a function of the corre-
sponding decorrelation values 

As can be concluded from Fig. 8.10, there is a strong correlation between the D 
values of interleaver functions and the resulting burst durations.  

8.7 Examples of Modern Error Recovery Standards 

There exist a number of standards for DSR and speech recognition systems currently 
in use, for which a main contributer is the European Telecommunications Standards 
Institute (ETSI). ETSI has developed error protection and packetization standards for 
both low bitrate DSR systems (ETSI 2000), and for full rate NSR systems (ETSI 
1998). The channel coding schemes described by these systems are summarized in 
the following sections. 

8.7.1 ETSI DSR Standard (ETSI 2000) 

DSR applications. The compression algorithm implemented by the given standard 
extracts the frame energy, as well as the first 13 MFCCs, for every window of speech, 
at a windowing frequency of 100 Hz. A total of 44 bits is allocated to the extracted 
speech data through a split vector quantization (SVQ) system, resulting in a data bitrate 
of 4.4 kbps.  
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block interleaving function chosen for each degree is determined through an exhaus-

The ETSI DSR standard describes a low bitrate speech recognition system intended for 

against the corresponding decorrelation values in Fig. 8.10. The final decorrelated 
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reduce the overhead required for synchronization and header information. Thus, speech 
feature data from 24 adjacent speech frames are grouped with one synchronization se-
quence and one header field. 

The information contained in the header field is considered to be critical for de-
coding purposes, and thus a great deal of error protection is allocated to this data. 
The header field is protected by an extended (31, 16) systematic cyclic code, with the 
addition of an overall parity check bit. The cyclic code has a minimum distance of 
dmin = 8, and can therefore support correction of up to 3 channel errors or detection of 
up to 7 channel errors. 

The 24 frames included with the header field and synchronization sequence are 
grouped into 88 bit pairs. Each pair of frames is then protected with a 4-bit CRC 
code. The resulting error protection and packetization scheme requires a data rate of 
4.8 kbps. 

8.7.2 ETSI GSM/EFR Standard (ETSI 1998) 

The ETSI GSM Enhanced Full Rate (EFR) system, described by (ETSI 1998), is 
intended for speech transmission, and thus operates at a higher rate than the system 
described by (ETSI 2000). The GSM/EFR speech coding algorithm compresses 
20 ms windows of speech signal into 244-bit blocks of data, which corresponds to a 
preliminary data rate of 12.2 kbps. The channel coding algorithm presented by (ETSI 
1998) is a UEP scheme involving CRC cyclic codes, convolutional codes, and inter-
leaving.  

The first step in the channel coding and packetization scheme described for the 
GSM/EFR system is an expansion of the 244-bit blocks into 260-bit blocks, which 
results in 16 redundancy bits. Of these 16 redundancy bits, 8 are repetition bits, and 8 
correspond to a CRC code.  

Each 260-bit expanded data block is then grouped into two classes of bits. The 
first 50 bits of class 1, referred to as class 1a, are protected with three parity check 
bits generated with a shortened cyclic code. Both class 1a and class 1b bits are pro-
tected with a rate-1/2 convolutional code and interleaved with a bit-level interleaving 
function. Class 2 bits are transmitted without protection, and thus the resulting bitrate 
of the GSM/EFR system after channel coding and packetization becomes 28.4 kbps. 
The UEP scheme described in (ETSI 1998) is illustrated in Table 8.8.     

Class Original bits Channel coded bits Error protection 
1a 50 106 Cyclic code +  

rate-1/2 convolu-
tional code 

1b  132 264 rate-1/2 convolu-
tional code 

2  78 78 No code 
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The packetization scheme in (ETSI 2000) includes a multiframe format in order to 

       Table 8.8 UEP Scheme for channel coding in ETSI GSM/EFR system (Based on ETSI 1998) 



 

 
 
 

8.8 Summary  

This chapter focused on error recovery (ER) methods for transmission of speech 
features over error-prone channels in remote speech recognition applications. Such 
systems tend to be bandwidth-restrictive and often delay-sensitive, and thus channel 
coding schemes must be efficient. We discussed both FEC techniques, which add 
redundancy to the source coded data stream prior to transmission, as well as frame-
based interleaving, which creates spread in the data stream prior to transmission to 
overcome the effect of bursty errors. Table 8.9 summarizes the discussed ER methods. 

The individual ER techniques discussed in this chapter, and summarized in Table 
8.9, serve as useful tools in providing protection against channel noise or packet 
erasures within DSR systems. However, channel coding strategies can be enhanced 
by combining these techniques and offering more error protection to those bits in the 
bitstream which provide more utility to the overall system, as in UEP schemes. This 
chapter concludes with example standards of channel coding for modern DSR and 
speech recognition systems.   

  

FEC technique 
Error pattern 
application Advantages Disadvantages 

Media-specific FEC: coarsely quantized feature replicas are inserted into the datastream with the aim 
of reconstructing lost packets  

Media-specific FEC (Sect. 
8.3) Packet erasures Low complexity Introduces delay  

Media-independent FEC: redundancy is added to blocks of data in order to detect or correctly decode 
corrupted data in the presence of bit-level errors 

Linear block codes (Sect. 
8.4.2) 

Bit errors or 
additive noise 

Low delay, low over-
head 

Complexity increases 
for soft and -soft 
decoding 

Cyclic codes          (Sect. 8.4.3) Bit errors or 
additive noise 

Low delay, efficient 
for decoding bursty 
channels 

Restrictive in terms of 
block length 

Convolutional codes       
(Sect. 8.4.4) 

Bit errors or 
additive noise 

Low delay, flexible in 
terms of block length   

Complexity increases 
for soft-decision  
decoding 

Frame interleaving: frames are interleaved prior to transmission so that bursty packet losses in the 
transmitted stream may become scattered packet losses in the de-interleaved stream 

Optimal spread block 
interleavers (Sect. 8.6.1) Packet erasures No required additional 

bandwidth  Introduces delay  

Convolutional         inter-
leavers (Sect. 8.6.2) Packet erasures No required additional 

bandwidth  Introduces delay 

Decorrelatedinterleavers        
(Sect. 8.6.3) Packet erasures No required additional 

bandwidth 

Introduces delay, 
requires extensive and 
complex training 

               Table 8.9 Summary of discussed error recovery techniques  
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Error Concealment 

Reinhold Haeb-Umbach and Valentin Ion 

  

Abstract. In distributed and network speech recognition the actual recognition task is not 
carried out on the user’s terminal but rather on a remote server in the network. While there are 
good reasons for doing so, a disadvantage of this client-server architecture is clearly that the 
communication medium may introduce errors, which then impairs speech recognition accu-
racy. Even sophisticated channel coding cannot completely prevent the occurrence of residual 
bit errors in the case of temporarily adverse channel conditions, and in packet-oriented trans-

declared lost. The goal of error concealment is to reduce the detrimental effect that such errors 
may induce on the recipient of the transmitted speech signal by exploiting residual redun-
dancy in the bit stream at the source coder output. In classical speech transmission a human is 
the recipient, and erroneous data are reconstructed so as to reduce the subjectively annoying 
effect of corrupted bits or lost packets. Here, however, a statistical classifier is at the receiving 
end, which can benefit from knowledge about the quality of the reconstruction. In this book 
chapter we show how the classical Bayesian decision rule needs to be modified to account for 
uncertain features, and illustrate how the required feature posterior density can be estimated in 
the case of distributed speech recognition. Some other techniques for error concealment can 
be related to this approach. Experimental results are given for both a small and a medium 
vocabulary recognition task and both for a channel exhibiting bit errors and a packet erasure 
channel. 

9.1 Introduction 

In a client-server speech recognition system the client, e.g. a cellular phone, captures 
the speech signal, codes it and sends it via a digital communication link to the re-
mote recognition server. At the server side, the received signal is decoded and for-
warded to the speech recognition engine, which outputs the decoded word string. 
Depending on the type of data transmitted, one distinguishes between distributed 
(DSR) and network speech recognition (NSR). In DSR speech recognition features, 
such as Mel-Frequency Cepstral Coefficients (MFCC), are computed, coded and 
transmitted (Pearce 2000), while in NSR a typical speech codec, such as the adaptive 
multi-rate (AMR) codec is employed (Fingscheidt et al. 2002). 

Compared to a realization of the recognizer on the client, the client-server architec-
ture has many obvious advantages, such as ease of maintainability of the application data 
on the server and avoidance of resource-intensive tasks on the client. However, the price 

mission packets of data may arrive too late for the given real-time constraints and have to be 
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to pay is an additional processing delay due to transmission and the potential corrup-
tion of the digitized speech data due to channel-induced errors. Here we are con-
cerned with the latter and show how error concealment techniques help mitigate the 
negative effects of transmission errors on the speech recognition accuracy.  

Two channel models exhibiting different error types are considered in the fol-
lowing: a channel characterized by bit errors and a packet erasure channel. Channel 
degradations at the bit level are for example typical of cellular circuit-switched 
transmission, where noise, multi-path fading and interference from neighboring 
stations are frequent error causes. Packet loss is a typical phenomenon of packet-
based transmission of data with real-time constraints over the internet. The combina-
tion of both error types is an approximate model for communications over a wireless 
packet network, or communications that involve both a wireless and a (packet-
based) wireline link (Lahouti and Khandani 2007). 

To mitigate transmission errors researchers have proposed several different ap-
proaches. One category is comprised of methods that perform error or packet-loss 
concealment techniques at the receiving end. Another class of techniques requires 
certain coordination with the transmitter side, e.g. forward error correction or diver-
sity schemes based on multiple description coding. A third category requires a certain 
degree of support from the network, such as using packets with different priorities. 
The schemes rely on the network to drop the packets with low priority during con-
gestion periods. Currently, this support, however, may only be available in proprie-
tary networks and in the next generation of the Internet Protocol (IPv6) (RFC 2460, 
1998).  

In this contribution we restrict ourselves to purely receiver (server) based tech-
niques which leave the transmitter (client) side untouched, since they have the 
striking advantage that they are fully compatible with the current European Tele-
communications Standards Institute (ETSI) standards for distributed speech recog-
nition (ETSI Standard ES 202 050, 2002; ETSI Standard ES 201 108, 2003a) and 
can be readily applied in current networks. Actually, the frame repetition scheme 
proposed in the ETSI standard is an example of such an error concealment method. 

The term error concealment denotes techniques which aim to reduce or even 
eliminate the effect of uncorrected transmission errors on the quality as perceived by 
the consumer of the transmitted data. For data transmission with no latency con-
straints a virtually error-free transmission can be achieved by a combination of for-
ward and backward error correction. This no longer holds for speech, audio or video 
transmissions, which typically have to adhere to real-time constraints.  

The detrimental effect of transmission errors can be concealed by exploiting re-
sidual redundancy still present at the output of the (in the Shannon sense) imperfect 
source coder. One might argue that, since low-bit rate source coding has been an 
issue since the early days of digital speech transmission, it is unlikely to find enough 
residual redundancy in the output bit stream of the speech coder to be exploited for 
error concealment. But even for the low-rate codes used in GSM successful error 
concealment based on exploiting the non-uniform bit pattern probabilities and the 
correlation between successive frames has been demonstrated (Fingscheidt et al. 
2007). 
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Error concealment has been studied extensively in the field of mobile communi-

cations and, more recently, for voice or other real-time data transmission over the 
internet protocol (IP). In cellular systems standards such as GSM error concealment 
algorithms are proposed as non-mandatory recommendations (GSM 06.11 Recom-
mendation, 1992), and very sophisticated techniques have been developed in recent 
years (Vary and Martin 2006). In Voice-over-IP packet loss is a frequent phenome-
non, which is addressed, among others, by replacing the missing segments of speech 
with estimates constructed form previous or future available speech segments. For 
example, a waveform substitution algorithm based on pitch detection has been pro-
posed for G.711 pulse code modulation speech coding standard (ITU-T Recommen-
dation G.711 Appendix I, 1999). Packet loss concealment methods for code excited 
linear prediction (CELP)-based coders often replace the missing parameters with the 
corresponding parameters of the previous frame (Cox et al. 1989) and use scaled-
down gains. Methods that interpolate between previous and future frames can also 
be employed. 

Similar techniques have been proposed for distributed speech recognition (DSR), 
where speech recognition related parameters, such as MFCCs (Davis and Mermel-
stein 1980) are computed in the user’s terminal and then transmitted to the remote 
speech recognition engine (Tan et al. 2005). Feature reconstruction techniques range 
from quite simple methods such as substitution (with silence, noise or source-data), 
repetition or interpolation (Boulis et al. 2002; Milner and Semnani 2000) to more 
elaborated schemes, such as repetition on a subvector level (Tan et al. 2004) and 
minimum mean square error (MMSE)-based reconstruction which models inter-

In a DSR scenario we would like to alleviate the effect that transmission errors 
have on the consumer of the data, the automatic speech recognition (ASR) decoder. 
Unlike a human recipient, the recognizer not only benefits from a good reconstruc-
tion of lost or corrupted data but also from knowledge about the quality of the recon-
struction. The ASR decoder is then modified such that features deemed unreliable 
are deemphasized (Bernard and Alwan 2001, 2002) or completely excluded from 
consideration in the recognizer (Weerackody et al. 2002; Endo et al. 2003). How-
ever, it is not an easy task to identify corrupt features or even quantify the degree of 
corruption, at least on a channel exhibiting bit errors. While in Haeb-Umbach and 
Ion (2004) the availability of a soft-output channel decoder was assumed, in Ion and 

ties based on a priori knowledge of plausible bit patterns. 
Actually, the close connection between feature reconstruction and modification 

of the decoding engine becomes apparent once the problem of speech recognition in 
the presence of unreliable feature vectors is cast in a Bayesian framework. Here, 
results form noisy speech recognition can be borrowed, where so-called Uncertainty 
Decoding has been investigated already for a couple of years (Morris et al. 1998; 
Morris et al. 2001; Arrowood and Clements 2002; Droppo et al. 2002; Kristjansson 
and Frey 2002). Let the speech be corrupted by additive noise or by transmission 
errors, in either case the original clean or uncorrupted speech feature vector is not 

frame correlation by a first-order Markov model (Peinado et al. 2003; James et al.  
2004; Haeb-Umbach and Ion 2004). However, in DSR we can do even considerbly

Haeb-Umbach (2005) a technique was proposed which estimates bit error probabili-

more. 
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the MMSE estimate. This estimate is then “plugged into” the Bayes decision rule 
and used in the ASR decoder as if it were the true clean speech feature.  

However, one can do better if one takes the reliability of the estimate into ac-
count. In one formulation of uncertainty decoding the probability density function of 
the corrupted speech feature vector, conditioned on the unobservable clean speech 
feature vector, is computed and averaged over the observation probability of the 
clean speech (Liao and Gales 2004). In another formulation the front-end delivers 
uncertain observations, expressed as a posteriori density of the clean speech feature 
vector, given the observed noisy vector. It is well known, that the mean of the poste-
rior is exactly the MMSE estimate. Its variance is a measure of the uncertainty about 
this estimate. In the case of jointly Gaussian random variables, it is even equal to the 
variance of the estimation error. This frame-level uncertainty can be incorporated in 
the decoding process by using a modified Bayesian decision rule, where integration 
over the uncertainty in the feature space is carried out. Under certain assumptions 
this can be accomplished by a simple modification of the means and variances of the 
observation probabilities.  

In the context of distributed speech recognition the concept of uncertainty decod-
ing has been proposed for the first time in Haeb-Umbach and Ion (2004). Here, 
inter-frame correlation has been identified as a major knowledge source which helps 
in reconstructing lost or corrupted features.  

This volume chapter is organized as follows. In the following section we present 
the probabilistic framework of speech recognition in the presence of corrupted ob-
servations. In Sect. 9.3 this concept is applied to distributed speech recognition, 

9.2.1 Modified Observation Probability 

The Bayesian decision rule is at the heart of statistical speech recognition. Given the 
sequence of T (uncorrupted) feature vectors T

T xx ,,11 Kx  extracted from an 
utterance, the goal is to find the sequence of words Ŵ  from of a given vocabulary, 
which maximizes the probability TP 1| xW . Using the Bayesian theorem for condi-
tional probabilities this can be expressed more conveniently as maximizing the 
product between observation probability Wx |1

Tp  and word sequence probability 
WP : 
 

where we consider channels characterized by either bit errors or packet loss. Experi-
mental results, both for a small and a medium vocabulary recognition task, are given

9.2 Speech Recognition in the Presence of Corrupted Features 

in Sect. 9.4, followed by some conclusions drawn in Sect. 9.5. 

WWxW
W

Pp T |maxargˆ
1 . (9.1) 
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observable, but rather a distorted version of it. Traditionally, the goal of speech 
feature enhancement is to obtain a point estimate of the clean speech feature, such as 
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Introducing the hidden state sequence ),...,,( 211 T

T ssss  we obtain 

TT s

TTT

s

TTT sPspspp
11

111111 ||,| xWxWx , (9.2) 

where the sum is over all state sequences within W . As there is exactly one word 
sequence corresponding to a state sequence, the condition on W  can be left out. 

A common assumption employed in speech recognition is the so-called condi-
tional independence assumption ,  which states that tx  is conditionally independent 
of neighboring feature vectors, given the HMM state ts : 

T

t
tt

T

t
t

t
t

TT spspsp
11

1
111 |,|| xxxx . (9.3) 

Using this in Eq. 9.9.2 we obtain 

Ts

T
T

t
tt

T sPspp
1

1
1

1 || xWx , (9.4) 

Often we are unable to observe the uncorrupted feature vector sequence T
1x . We 

observe a corrupted sequence T
T yyy ,...11 , which may differ from T

1x . In DSR, 
transmission errors are the reason for this difference. The speech recognition prob-
lem thus amounts to solving 

WWyW
W

Pp T |maxargˆ
1 . (9.1) 

 In solving this we need to find an efficient way to compute TT sp 11 |y . To this 
end we introduce the (hidden) uncorrupted feature sequence: 

T

TTTTTTT dsppsp
1

1111111 |||
x

xxxyy  (9.2) 

Using Eq. 9.9.3 and noting that 

T

t
tt

TT pp
1

11 || xyxy  (9.3) 

we obtain 

T

t
ttttt

T

t

T
tttt

TT

t
T

dsppdsppsp
11

111 |||||
1 xx

xxxyxxxyy  (9.4) 
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i.e. it is possible to interchange the product and the integral since the terms inside the 
integral only depend on t. 

Often it is more convenient to express ttp xy |  via a posterior probability 

t

ttt
tt p

ppp
x

yyxxy ||  
(9.5) 

If inter-frame correlation among the feature vector sequence is to be taken into 
account, ttp yx |  has to be replaced by T

tp 1| yx , i.e. the a posteriori density of 
the clean feature sequence, given all observed corrupted features. This posterior is, 
from an estimation theory point of view, the complete solution to the problem of 
estimating the clean feature vector, given all observations. In Sect. 9.3 we will show 
how this posterior can be efficiently estimated in a distributed speech recognition 
scenario. 

Since we are eventually only interested in the word (state) sequence which 
maximizes Eq. 9.9.4, the probability of the noisy features tp y  can be disregarded. 
Further, replacing ttp yx |  by T

tp 1| yx  in Eq. 9.9.5  and using it in Eq. 9.9.4 we 
arrive at 

T

t
ttt

t

T
tTT

t

dsp
p

psp
1

1
11 |||

x

xx
x

yxy . (9.6) 

Replacing TT sp 11 |x  by TT sp 11 |y  in Eq. 9.9.2 and using Eq. 9.9.6 we finally 
arrive at 

T
ts

T
T

t
ttt

t

T
tT sPdsp

p
pp

1

1
1

1
1 |||

x

xx
x

yxWy . (9.7) 

The only difference to the standard ASR decoder is that the observation probability 
tt sp |x  has to be replaced by the modified observation probability: 

t

ttt
t

T
t

tt dsp
p

psp
x

xx
x

yxx ||| 1 . (9.8) 

It is instructive to consider the extreme cases of an error-free transmission and a 
completely unreliable transmission. In case of an error-free transmission there is 

tt xy , and the a posteriori density T
tp 1| yx  reduces to a Dirac delta-impulse. As 

a result, the modified observation probability, Eq. 9.9.8, reduces to the standard 
observation probability (the denominator is then a constant and can be neglected as 
it does not influence the maximization in Eq. 9.9.1). 

In the other extreme case the channel does not transmit any information, which 
can be expressed by t

T
t pp xyx 1|  for all Tt ,...,1 . In this case the modified 
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observation probability evaluates to one and Eq. 9.9.1 reduces to WW
W

pmaxargˆ . 

As the observed features are uninformative, the recognizer has to rely solely on the 
prior word probabilities.  

The key element of the novel decoding rule is the posterior density T
tp 1| yx . 

The processing of the corrupted features in front of the recognizer has to produce a 
posterior density instead of a point estimate. It is well-known from estimation the-
ory, that the posterior density comprises all information about the parameter to be 
estimated, here tx , that is available from the observations, here T

1y . Optimal point 
estimates, such as MMSE or maximum a posteriori (MAP) can be obtained as the 
mean or mode of this density. Further, the (co)variance of the posterior is a measure 
of reliability of the point estimate. For this reason the posterior has sometimes been 
called soft feature (Haeb-Umbach and Ion 2004). 

Related decoding rules can be found e.g. in Morris et al. (1998, 2001), Arrowood 
and Clements (2002), Droppo et al. (2002), Kristjansson and Frey (2002), Liao and 
Gales (2004). However, in most cases past and future observed feature vectors are 
not taken into account for the estimation of the posterior density of the current un-
corrupted feature vector, i.e. T

tp 1| yx  is replaced by ttp yx | . In doing so inter-
frame correlation is neglected for the posterior estimation. In Sect. 9.3, however, we 
will show that inter-frame correlation is a powerful knowledge source to be utilized 
for transmission error-robust speech recognition.  

9.2.2 Gaussian Approximation 

Still, the modified observation probability given in Eq. 9.9.8 looks intimidating. The 
computation of the observation probabilities is the single most time consuming 
processing step in speech recognition. Replacing the evaluation of a mixture density 
by the numerical evaluation of an integral may increase the computational burden 
beyond the limits of practical interest. Fortunately, the integral can be solved ana-
lytically, if we make the following assumptions: 

1. The observation probability is a Gaussian mixture density: 

msmst

M

m
mstt Ncsp ,,

1
, ,;| xx  (9.9) 

2. The a priori density of the uncorrupted feature vector can be modeled by a 
Gaussian density: 

xxxx ,;ttp  (9.10) 

3. The a posteriori density of the uncorrupted feature vector, given the se-
quence of received feature vectors, can be approximated by a Gaussian 
density: 

yxyxxyxyx ||11 ,;||
ttt

T
tN

T
t pp  (9.11) 
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Further we assume that all Gaussians, Eqs. 9.9.9–9.9.11, have diagonal covari-

ance matrices. Since the individual elements of a diagonal-covariance Gaussian are 
independent, the densities can then be factorized over the feature vector elements. 
Let xms ,,  and y|tx  denote the means and 22

, , xmx  and 2
|ytx  the corresponding 

variances of the Gaussians of an individual vector component of the observation, 
prior and posterior density, respectively. Then the integral present in Eq. 9.9.8 can 
be solved analytically (Droppo et al. 2002; Ion and Haeb-Umbach 2006c), where for 
each dimension we obtain the following: 

M

m
emsmsemst
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x|xt
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xc tt
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if 2
|

2
ytxx . Equation 9.9.12 states that the variance of the original observation 

probability of the uncorrupted features is to be increased by 2
e  and that it is to be 

evaluated at e  and weighted by A. 
The assumption of Eq. 9.9.9 is the standard model for observation probabilities. 

Further, the prior density of the feature vector tp x  can be reasonably well ap-
proximated by a Gaussian density. The most critical assumption seems to be Eq. 
9.9.11. We often observed a multi-modal shape of the posterior density. However, 
the Gaussian approximation was adopted due to computational complexity reasons. 

9.3 Feature Posterior Estimation in a DSR Framework 

The decoding rule derived in the last section requires knowledge of T
tp 1| yx , 

vectors. In this section we show how this term can be estimated in the case of dis-
tributed speech recognition, where coded MFCCs are transmitted over an error-
prone channel. We first describe the ETSI DSR standard to the extent necessary for 

present in the output bit stream of the source coder. The two channel models under 
consideration are explained in Subsects. 9.3.3, and 9.3.4 shows how the feature 
posterior density can be computed from a priori and “transmission probabilities”. 

 the
a posteriori density of the transmitted feature vector, given all received feature 

understanding the subsequent derivation. Subsection 9.3.2 quantifies the redundancy 
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This section is concluded by relating other approaches for error concealment to the 
one presented here. 

9.3.1 ETSI DSR Standards 

The ETSI distributed speech recognition standards define two feature extraction 
schemes, standard front end and advanced front end processing, together with the 
source coding, packet construction, and the backend source decoding scheme (ETSI 
Standard ES 202 050, 2002; ETSI Standard ES 201 108, 2003a). For the purpose of 
error concealment we need to consider the source coder in more detail. 

A source coder is a mapping of the N-dimensional Euclidian space into a finite 
index set J of M2  elements. It consists of two components: the quantizer and the 
index generator. The quantizer maps the N-dimensional parameter vector x  to a N-
dimensional codeword (centroid) c in the finite codebook C. This codeword repre-
sents all vectors falling in this quantization cell. The index generator then maps this 
codeword c  to an index (bit pattern) b in an index set J. 

The source coder of the ETSI DSR standard employs a split vector quantizer 
(VQ) for the quantization of the static MFCC parameters. The input to the quantizer 
is the 14N  dimensional parameter vector, consisting of the thirteen-dimensional 
MFCC feature vector and as a fourteenth component the logarithmic frame energy 
( Elog ). The parameter vector is split into seven subvectors, each of dimension two, 
which are quantized with bit-rates (6,6,6,6,6,5,8) bits, respectively. Including one bit 
for voice-activity information this sums to 44 bits per frame. Before transmission 
two quantized frames are grouped together creating a frame pair. A 4-bit cyclic 
redundancy check (CRC) is calculated for each frame pair, resulting in a total of 
92 bits per frame pair.  

In our notation we will not distinguish between individual subvectors in the fol-
lowing, since the same operations are performed for all subvectors. We even do not 
make a distinction between the complete vector and any of the subvectors in our 
notation. Which interpretation is used should become clear from the context. 

9.3.2 Source Coder Redundancy 

The key to error concealment is the exploit the residual redundancy present in the 
source coder output bit stream. Let tx  denote any of the real-valued MFCC subvec-
tors at time frame t produced by the front-end. The source coder quantizes the sub-
vector to a codeword tc  and maps the codeword to a bit pattern 1(),...0( Mbb tttb  
of M bits, which is transmitted over an equivalent discrete-time channel.  

Table 9.1 gives the entropies tbH  and mutual information 1; ttI bb  of the 
individual subvectors. The values have been obtained on the training set of the 
Aurora 2 database (Hirsch and Pearce 2000) using the ETSI advanced feature ex-
traction front-end. Here, subvector 1 denotes the bit pattern corresponding to the 
first and second mel-frequency cepstral coefficient, subvector 2 the third and fourth, 
and so on. Subvector 7 comprises the zero-th cepstral coefficient and Elog . M is 

195



Reinhold Haeb-Umbach and Valentin Ion 
 

the number of bits used to code a subvector, i.e. the length of the bit pattern tb . 
Comparing M with the entropy  tbH  of the bit pattern, one can observe that for all 
subvectors the two values are fairly close to each other. This indicates that the bit 
pattern has almost a uniform distribution. Not much redundancy is left within a 
subvector which could be utilized for error concealment. 

Table 9.1 Entropies and mutual information among the subvectors produced by the ETSI 
advanced DSR front-end (measured on Aurora 2 training database) 

The mutual information 1; ttI bb  indicates how much information about the 
current bit pattern tb  is already present in the previous 1tb . The larger the mutual 
information the better a bit pattern following in time can be predicted from the one 
of the previous frame. Obviously, strong inter-frame correlation exists.  

The last line of the table gives the mutual information between the current bit 
pattern and the bit pattern 1

2
11 ,, ttt bbb  of the previous frame, which consists 

of the coded static MFCC components 1tb  and the coded dynamic features. For this 
experiment a 31D  bit vector quantizer was used for the delta (velocity) and just a 

12D  bit quantizer for the delta-delta (acceleration) parameter. Obviously, the 
dynamic parameters of the previous frame provide additional knowledge about the 
static parameters of the current frame, since the measured mutual information is 
larger than the one observed between tb  and 1tb . This comes to no surprise, as the 
dynamic features capture the trend present in the feature trajectory.  

Obviously, the key to successful error concealment is the exploitation of the 
strong inter-frame correlation of MFCC feature vectors. In specifying the inter-
frame correlation models of different complexity may be chosen. A good compro-
mise between modeling accuracy and complexity is to assume that the source vector 
sequence tb , ,...2,1t  is a homogeneous first-order Markov process, whose “transi-
tion probabilities” Mj

t
i

t jiP 2,...,1,,| )()( bb  are independent of time. With this 
model, however, long-term dependencies e.g. on the phone level cannot be captured.  

9.3.3 Channel Models 

Let us now consider the transmission model of Fig. 9.1. At the channel output a bit 
pattern 1(),...0( Myy ttty  is observed. Due to transmission errors ty  and tb  
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Subvector 1 2 3 4 5 6 7 
M 6 6 6 6 6 5 8 

tbH  5.8 5.8 5.8 5.8 5.8 4.8 7.7 

1; ttI bb  2.6 2.1 1.6 1.4 1.2 1.0 3.4 

1
2

11 ,,; ttttI bbbb  3.0 2.4 1.9 1.7 1.5 1.3 4.5 
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are not identical. Please note that ty  is a discrete random variable here, while we 
assumed ty  to be a continuous random variable in Sect. 9.2. We prefer this abuse of 
notation to more easily link the DSR case considered in this section to the more 
general theory presented in Sect. 9.2. 

In the following we use a superscript if we want to denote a specific bit pattern, 
i.e. )(i

tb  indicates the bit pattern corresponding to the i-th codebook centroid )(i
tc , 

Mi 2,...,1 . 
 

Feature
Extraction Quantization Index 

Generation

Equivalent
Discrete 
Channel

Source Decoder &
Posterior Computation

ASR
Decoder

Source Coder

Speech tx tc tb

tyT
tp 1| yxWords

 

Fig. 9.1 Block diagram of distributed speech recognition system 

 We consider two channel models: 

The TV-BSC is an equivalent discrete channel which models the effects of addi-
tive white Gaussian noise on the transmitted bit sequence. While one usually as-
sumes constant bit error probability in a BSC, we want to allow here the bit error 
probability tp  to be time-variant. This model can be used to characterize wireless 
circuit-switched transmission, where the bit error rate varies, e.g. due to time-variant 
multi-path fading.  

As the channel is assumed to be memoryless, the probability of a received bit 
pattern given the sent can be expressed as 

1

0

)()( )(|)(|
M

m

i
tt

i
tt mbmyPP by  (9.18) 
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Here, )(mpt  is the (instantaneous) bit error probability of the m-th bit of the t-th 

bit pattern. This probability can either be obtained from a soft-output channel de-
coder or can be estimated from consistency checks applied to the received bits (Ion 
and Haeb-Umbach 2006a). 

b) Packet erasure channel 
In this channel model, a data packet is either completely lost or received without 

any bit error. It models the random loss of data packets, e.g. due to network conges-
tion. Most real communication channels exhibit packet losses occurring in bursts. 
Such channels can be modeled by a 2-state Markov chain, known as Gilbert model, 
see Fig. 9.2. In the figure p is the probability that the next packet is lost, provided 
the previous one has arrived; q is the probability that the next packet is not lost, 
given that the previous one was lost. The parameter q can be seen as controlling the 
burstiness of packet losses. This channel model is often described in terms of the 
mean loss probability qppmlp / , the average probability of loosing a packet, 
and conditional loss probability qclp 1 , i.e. the probability of loosing a packet, 
conditioned on the event that the previous packet was lost. 

non-
loss loss

p

q

q1p1

 

 Gilbert model 

 
It is important to model the bursty nature of packet losses. It was shown that the 

word error rate of a DSR system depends strongly on the burstiness of the channel: 
Frame losses of up to 50% hardly have an effect on the word error rate, provided the 
average burst length is one packet (i.e. one frame pair), while the word error rate 
dramatically increases for longer average burst lengths (Gómez et al. 2007). 

 For a packet erasure channel model the probability of the received bit pattern, 
given the sent, is as follows: 

lostpacket 
receivedpacket

2
1|

)(

)( ifP
M

i
tti

tt

by
by  (9.20) 

Here  denotes the Kronecker delta impulse. 
Note that in practice often a combination of both error types is present. Commu-

nications that involve both a wireless and a packet-based wireline link may exhibit 
both packet losses and bit errors. Packets with bit errors are discarded by the User 
Datagram Protocol (UDP). While this is reasonable for many payloads, for DSR or 
speech transmission it would make more sense to deliver packets with bit errors, as 

Fig. 9.2

198 



 
it allows for more effective error concealment. UDP-Lite (RFC 3828, 2004) is a 
transport protocol that allows the application to receive partially corrupted packets. 

9.3.4 Estimation of Feature Posterior 

At the receiving end we are given the sequence T
T yyy ,...11 , and our goal is to 

carry out speech recognition by employing the modified observation probability 
given by Eq. 9.9.8. 

To this end we need to compute the a posteriori probability density T
tp 1| yx . 

Figure 9.3 illustrates the different processing steps. Note, that the input to the ASR 
decoder is no longer a feature vector, but a probability density function.  
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Fig. 9.3 Block diagram of posterior estimation and uncertainty decoding 

Introducing the hidden (unobservable) sent bit pattern, we can express the poste-
rior density as follows: 

M
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T
t Ppp
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)()(
1 ||| ybbxyx  (9.14) 

The computation of the posterior probability Ti
tP 1

)( | yb  can be accomplished 
using the Forward-Backward (FB) algorithm (Bahl et al. 1974; Peinado et al. 2003): 
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Both )(i
t  and )(i

t  are computed recursively.  
Using the FB algorithm the a posteriori density can be computed for either of the 

two channel models outlined in Sect. 9.3.3 and either of the two source models con-
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Although the dynamic vector components are not transmitted, error concealment 
can benefit from the superior prediction quality of a source model including static 
and dynamic vector components. For the source model which models the sequence 
of bit patterns corresponding to the static MFCC vectors only as a first-order 
Markov model, there are M2  bit patterns )(ib , Mi 2,...,1  per subvector, and the 
inter-frame correlation is captured by a MM 22  matrix, whose th, ji  element is 

)()( | j
t

i
tP bb . On the other hand, for the source model which considers a feature 

vector including dynamic components, inter-frame correlation is captured by a 
2121 22 DDMDDM  matrix, where M, D1, and D2 are the number of bits used to code 

the subvector of static, first-order and second-order differential coefficients. The 
matrices are estimated beforehand on clean training data. Since only the bits corre-
sponding to the static MFCC vector are actually transmitted, the “transition prob-
ability” is independent of the bits corresponding to the dynamic part of the feature 
vector: tttttt PP bybbby |,,| 2 . In Sect. 9.4 we compare the two source 
models w.r.t. speech recognition accuracy obtained on an error-prone channel. To 
simplify notation we will assume the source model of static components only in the 
remainder of this section.  

Note that the FB algorithm needs to be performed only inside isolated erroneous 
regions (error bursts), i.e. when )(| i

ttP by  is not a Delta impulse. Then the FB 
recursions are initialized using the last uncorrupted feature vector before and the 
first uncorrupted feature vector after the error burst. Detecting the presence of an 
uncorrupted feature vector is trivial in the case of a packet erase channel, but it is not 
that trivial in the case of a time-variant BSC. In the latter case erroneous bit patterns 
can be detected based on consistency checks among subsequent bit patterns and on 
cyclic redundancy check failure (Ion and Haeb-Umbach  2006a). 

The other term needed in Eq. 9.9.14, )(| i
ttp bx , is the probability density func-

tion (pdf) of the feature vector, given the i-th centroid. This VQ cell-conditioned pdf 
is modeled as a Gaussian )()()( ,;| i

t
i

tt
i

tt Np cxbx , where )(i
tc  is the VQ centroid 

corresponding to )(i
tb . The within-cell covariance matrix )(i

t  can be estimated on 
the training data. 

In order to simplify subsequent processing, the feature posterior, Eq. 9.9.14, is 
approximated a Gaussian density yxyxxyx ||1 ,;|

ttt
T

tNp , see Eq. 9.9.11. The 
parameters yxyx || ,

tt
 of this Gaussian can be obtained by finding that Gaussian 

which has the smallest Kullback-Leibler divergence to the original non-Gaussian 
posterior T

tp 1| yx . This results in the following estimates: 

M

t
i

i
t

Ti
tP

2

1

)(
1

)(
| | cybyx  (9.24) 

sidered in Sect. 9.3.2. In the case of a packet erasure channel a very efficient realiza-
tion of the recursions can be found exploiting the property of Eq. 9.9.20 (Ion and 
Haeb-Umbach 2006b).  
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This result makes intuitively sense: The mean yx |t

 of the Gaussian is equal to 
the mean of the original posterior, and the covariance is the sum of the between-VQ-
cell covariance and the within-VQ-cell covariance. For high resolution, i.e. suffi-
ciently large M, as is e.g. the case for the vector quantizer used in the ETSI DSR 
standard, the within-cell variance is negligibly small, such that Eq. 9.9.17 simplifies 
to  
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The posterior probability is the complete solution to the problem of estimating 
the uncorrupted features from the corrupted ones. The mean of the posterior given in 
(9.24) is the MMSE estimate of the feature vector tx . If one were only interested in 
the reconstruction of the uncorrupted feature vector, one could, for example, use this 
estimate. The maximum of the posterior is the maximum a posteriori estimate of the 
feature vector, another estimate commonly used in various estimation problems. The 
covariance matrix of the posterior, Eq. 9.9.17, is a measure of reliability of the re-
constructed features. If the parameter to be estimated and the observation are jointly 
Gaussian, it equals the covariance matrix of the MMSE estimation error. 

9.3.5 Related Work 

Several server based error mitigation schemes proposed for distributed speech rec-
ognition can be related to the framework presented in this article. 

Peinado et al. (2003) employ the MMSE estimate, Eq. 9.9.24, to reconstruct cor-
rupted feature vectors on a channel exhibiting bit errors. A crucial issue, however, is 
the determination of the instantaneous bit error probability )(mpt  needed in Eq. 
9.9.19. It may either be obtained from the soft-output of the channel and SNR esti-
mation (Peinado et al. 2003) or a soft-output channel decoder (Haeb-Umbach and 
Ion 2004). If the soft-output is not available the bit error probability can be estimated 
from consistency checks applied to the received bit patterns (Ion and Haeb-Umbach 
2006a). 

Marginalization reformulates the classification to perform recognition based on 
the reliable features alone (Endo et al. 2003). On a packet erasure channel there is a 
straightforward association of packet loss with unreliable data. However on a chan-
nel characterized by bit errors it is difficult to decide whether a feature is reliable or 
not, even if the instantaneous bit error probability of all bits making up the represen-
tation of the feature is available. In Endo et al. (2003) a threshold was experimentally 
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determined. If the bit error probability was larger than the threshold the corresponding 
feature was marginalized. 

Marginalization can be obtained in the presented framework, if the (simpler) fea-
ture posterior ttp yx | , which is only conditioned on the received data correspond-
ing to the current frame, is used instead of T

tp 1| yx  in the modified observation 
probability of Eq. 9.9.8. If a feature is declared lost, then ttt pp xyx | . Using 
this in Eq. 9.9.8, the integral evaluates to one, i.e. the corresponding frame is mar-
ginalized. 

The binary reliability measure used in marginalization can be replaced by a con-
tinuous confidence measure ,  taking values between zero and one. Weighted 
Viterbi (WV) decoding takes into account the confidence about a feature vector by 
raising the observation probability to the power of  (Bernard and Alwan 2001). 
Obviously, for the correctly received feature vectors there is 1 , and no changes 
to the observation probability occur. For a lost feature vector the maximum uncer-
tainty is expressed by 0 , resulting in an observation probability evaluating to 
one and being independent of the state. Thus with binary weighting WV is equiva-
lent to marginalization. However, raising the observation probability to some power 

 anywhere between zero and one lacks a probabilistic interpretation. Moreover, 
determining an optimal value for  is not an easy task. The methods proposed to 
determine the confidence measure  are rather empirical, and the optimal value 
depends on the recognition task (Cardenal-López et al. 2006).  

The effect of raising the observation probability to some power between zero and 
one is to deemphasize the contribution of this frame to the ASR decision. The same 
effect is achieved with the observation probability of Eq. 9.9.8 proposed in this 
paper, if the feature posterior is not a Dirac delta impulse.  

9.4 Performance Evaluations 

In this section we present experimental results for distributed speech recognition 
employing the proposed error concealment techniques. We first describe the experi-
mental setup and then give speech recognition results for the two channel models 
outlined in Sect. 9.3.3 and for two recognition tasks, a small vocabulary and a me-
dium vocabulary task. 

9.4.1 Experimental Setup 

We consider a setup which is compatible to the ETSI standards for DSR. The whole 
front-end processing, consisting of feature extraction, source coding and packetiza-
tion is carried out according to the ETSI advanced front-end (ETSI 2002) standard. 

As an example for a channel exhibiting bit errors the GSM data channel was consid-
ered. A realistic simulation of the GSM physical layer processing was carried out includ-
ing channel coding/decoding, interleaving/deinterleaving, modulation/demodulation. The 
channel coding was TCH/F4.8 described in (ETSI 2003b) which uses convolutional 
coding at a rate 3/1r . The channel decoding employed the FB algorithm (Bahl et al. 
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1974) which is able to provide the instantaneous bit error probability )(mpt . We pre-
ferred this full channel simulation, since if we had used merely GSM error patterns, the 
instantaneous bit error rate would not have been available. 

We have chosen a channel model approximating a “typical urban” profile speci-
fied by COST 207 (COST 1989). The model is characterized by 12 propagation 
paths, delay spread of 1.03 µs and Rayleigh fading. The terminal was assumed to be 
moving at 50 km/h. Various Carrier-to-Interference (C/I) power ratios were simu-
lated, ranging from 10 dB to 2.5 dB. Note that C/I=2.5 dB is a very poor channel, 
where the bit error rate is as high as 3.6%.  

For the packet erasure channel we adopted the Gilbert model to model that 
packet losses occur in bursts. In the literature often four channel conditions are 
evaluated, with C1 corresponding to mildly bad and C4 to very poor channel condi-
tions. Table 9.2 gives the conditional and mean loss probabilities of the four condi-
tions (Boulis et al. 2002). In our simulations we transmitted one frame pair per 
packet. 

Table 9.2 Packet erasure channel test conditions 

 
Different error concealment techniques were applied at the receiving (server) 

side and compared in terms of achieved word error rate obtained on two databases. 
The small vocabulary task is the clean test set of the Aurora 2 database, which 

consists of 4004 utterances from 52 male and 52 female speakers distributed over 
four subsets. The sampling rate is 8 kHz. The acoustic models used in the recognizer 
were those described in (Hirsch and Pearce 2000): 16 states per word, 3 Gaussians 
per state. 

The medium vocabulary task is the Wall Street Journal WSJ0 5k Nov. ’92 

16 kHz. Recognition experiments were carried out on this test set using a closed 
vocabulary bigram language model. The acoustic model consisted of 3437 tied 

9.4.2 Results on GSM Data Channel 

Figure 9.4 gives an illustrative example of the reconstruction achieved by employing 
the a posteriori density. The figure shows how the feature Elog  is reconstructed in 
the presence of bit errors during transmission. The continuous solid line labeled tx  
is the sent (“true”) value of the parameter over the frame index t. y|tx  is the MMSE 

states. The parameters of the 10-component mixture densities were trained on the SI-

evaluation test set (Paul and Baker 1992) comprising 330 utterances of 4 male and  

84 set of the WSJ corpus using the HTK toolkit (Young et al. 2004). 

4 female speakers, summing up to 40 min of speech. Here, the sampling rate is 
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Condition C1 C2 C3 C4 
clp 0.147 0.33 0.50 0.60 
mlp 0.006 0.09 0.286 0.385 
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estimate, and yy || tt xx  the MMSE estimate plus/minus one standard deviation of 
the a posteriori density. The interval given in this way can be interpreted as confi-
dence interval for the MMSE estimate. The curve NFR shows the reconstruction by 
nearest frame repetition, which is the error concealment strategy proposed in the 
ETSI standard. The grey areas show intervals in which transmission errors occurred. 
We used two grey scales to distinguish between regions where transmission errors 
occurred in the bit pattern carrying the Elog  component (dark grey) and regions 
where the bit patterns corresponding to other subvectors of the same frame were 
affected by errors (light grey). It can be seen that the Elog  component is not af-
fected by transmission errors in other subvectors. This can be attributed to the fact 
that the a posteriori computation operates on a per-subvector basis. Uncorrupted 
parts are forwarded to the recognizer without modification. A subvector-based error 
concealment, such as this or the one proposed by Tan et al. (2004) is superior to a 
frame-based scheme, such as NFR, where a complete frame is modified, even if only 
one subvector is degraded by transmission errors. But even if the illustrated Elog  
component is affected by transmission errors, much better feature reconstruction is 
achieved with the proposed method compared to NFR. 
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Fig. 9.4 Example of feature reconstruction. The figure shows the trajectory of the Elog  
feature over time (labeled tx ) and its reconstructions, either by nearest frame repetition 
(NFR) or by the proposed scheme. The shaded areas indicate regions where bit errors oc-
curred during transmission, either in the  Elog  component (dark grey) or another component 
of the feature vector (light grey) 

Figures 9.5 and 9.6 present word error rates for different Carrier-to-Interference 
(C/I) power ratios for the Aurora 2 and WSJ0 database, respectively. In these fig-
ures, the performance of the proposed scheme, termed uncertainty decoding (UD), is 
compared with marginalization (M), nearest frame repetition (NFR) and Weighted 
Viterbi decoding (WV). For WV, the confidence  was computed as in Potamianos 

UD, we employed the source model based on the from the channel decoder. For  
and Weerackody (2001), however using the instantaneous bit error probability 
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correlation of static features only. It can be seen, that UD outperforms all other 
schemes. Speech recognition accuracy is hardly affected for C/I-values as low as 
2.5 dB. Figure 9.5 also shows the bit error rate (BER) at the output of the channel 
decoder. It is interesting to note that BER increases by almost three orders of magni-
tude when C/I is reduced from 10 dB to 2.5 dB, while the word error rate achieved 
by UD is only mildly affected. This underscores that uncertainty decoding makes the 
ASR decoder very robust towards degraded channel conditions.  
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Fig. 9.5 Word error rates for transmission over GSM TCH/F4.8 channel using different error 
concealment schemes; Aurora 2 task. The dash-dotted line indicates the bit error rate (BER) at 
the output of the channel decoder 
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Fig. 9.6 Word error rates for transmission over GSM TCH/F4.8 channel using different error 
concealment schemes; WSJ0 task 
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As the two are closely related, the frame error rate increases similarly to BER, 

from 0.08% at C/I = 10 dB to 60% at C/I = 2.5 dB. As a consequence marginalization 
and nearest frame repetition, which operate on a vector rather than a subvector basis, 
perform poorly.  

9.4.3 Results on Packet Erasure Channel 

For the experiments on the packet erasure channel we used the channel conditions 
C1 to C4, specified in Table 9.2. Figures 9.7 and 9.8 display the word error rates of 
different error concealment techniques for the Aurora 2 and WSJ0 task, respectively. 
In the figures we included a condition C0 as a reference, which corresponds to an 
error-free transmission. Results are presented for two variants of the proposed 
scheme: uncertainty decoding employing an a priori model of the source which 
captures correlation among the static MFCCs alone (UD) and the one utilizing the 
correlation among the full (static and dynamic) feature vector (UD-dyn). It can be 
seen, that UD outperforms marginalization (M) and nearest frame repetition (NFR). 
The performance of Weighted Viterbi (WV) decoding comes close to UD. For the 
WV curve the lost features were reconstructed by NFR, and their confidence t  
was chosen dependant on the relative position ( ) within an error burst. It equals 
one at the start and end of the burst and decreases exponentially according to 

endstart tt  towards the middle (Cardenal-López et al. 2006). Here, 
startt  and endt  denote the starting and ending time of the error burst. The optimal 

value of  was experimentally found to be 7.0  for this task. 
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Fig. 9.7 Word error rates for packet erasure channel using different error concealment schemes; 
Aurora 2 task 
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Fig. 9.8 Word error rates for packet erasure channel using different error concealment schemes; 
WSJ0 task 

9.5 Conclusion 

Error concealment is concerned with mitigating the detrimental effect that transmis-
sion errors may have on the recipient of the signal by exploiting residual redundancy 
in the bit stream of the source coder output. In distributed speech recognition (DSR) 
the recipient is the ASR decoder, which, unlike a human listener, can take advantage 
of both the optimally reconstructed transmitted data and information about the reli-
ability of the reconstruction. The Bayes decision rule therefore has to be reformu-
lated to account for a corrupted or unreliable feature vector sequence. This results, 
under certain assumptions, in just a modification of the observation probability 
computation, while the structure of the decoder, which is based on the Viterbi 
search, remains unchanged. Crucial to the performance of this modified decoding rule is the accuracy of the a posteriori probability density estimate of the uncor-
rupted feature vector, given all the received corrupted ones. For DSR we were able 
to find an efficient estimation method, both for channels characterized by bit errors 
and channels exhibiting packet losses. The key was to exploit the high inter-frame 
correlation of MFCC feature vectors. Using these techniques high recognition accu-
racy can be maintained over a wide range of channel conditions.  

It should be noted that server-based error concealment techniques, as the ones 
described in this contribution, are fully compatible with the ETSI standards for dis-
tributed speech recognition. 
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Abstract. Advances in ASR are driven by both scientific achievements in the field and the 
availability of more powerful hardware. While very powerful CPUs allow us to use ever more 
complex algorithms in server-based large vocabulary ASR systems (e.g. in telephony applica-
tions), the capability of embedded platforms will always lag behind. Nevertheless as the popu-
larity of ASR application grows, we can expect an increasing demand for functionality on 

based applications by natural language understanding (NLU) systems leads to increased vo-
cabulary sizes and thus the need for greater CPU performance. In this chapter we present an 
overview of ASR decoder design options with an emphasis on techniques which are suitable 
for embedded platforms. One needs to keep in mind that there is no one-size-fits-all solution; 
specific algorithmic improvements may only be best applied to highly restricted applications 
or scenarios. The optimal solution can usually be achieved by making choices with respect to 
algorithms aimed at maximizing specific benefits for a particular platform and task. 

10.1 Introduction 

While systems for dealing with large vocabulary recognition in real-time ASR have 
been available for many years, deployment on platforms with limited resources pre-
sents new challenges with respect to many aspects of the overall ASR system design. 
There is an obvious tendency to utilize any new beneficial technique over the wide 
spectrum of ASR applications and platforms. But in numerous respects embedded 
platforms lag behind the state of the art in speech recognition with respect to general 
CPU architectures. The limitations of the embedded platforms affecting this state of 
affairs includes: lower CPU clock speeds, limited or missing ability to process float-
ing point operations, and restricted memory capacity both with respect to speed and 
size having implications to all levels of caching. Those constraints are bad enough, 
but added to this is the relatively restricted capability of tools/platforms tailored 
specifically to embedded systems development, which results in many important 
language features (e.g., templates in the C++ case) not being fully supported.  

Hence any new algorithm targeting embedded platforms must therefore be evalu-
ated in light of the above restrictions. Possible actions that one needs to consider 
taking may include finding more efficient implementation of a given algorithm, fin-
ding and applying an even more efficient algorithm with the same or similar results,  

embedded platforms as well. For example, replacing simple command and control grammar-



 
or resorting to the use of approximations applied to the algorithm or simply reducing 
the overall model complexity, while at the same time striving to ensure an acceptable 
trade-off between accuracy and efficiency. 

10.2 Common Limitations of Embedded Platforms 

In comparison to a typical workstation used for large vocabulary ASR, the embedded 
platforms are limited both in terms of CPU power and memory. While the work-
station market for desktop and server applications is dominated by a single platform 
(i.e. 32-bit or more recently 64-bit Intel), the situation for embedded devices is much 
more diverse (a variety of chips ranging from 8 to 32 bit architectures are fairly 
common), which makes the development of one-size-fits-all implementation all the 
more difficult if not completely impossible.  

10.2.1 Memory Limitations 

Memory (not only the amount available but, more importantly, its speed) seems to be 
the most pronounced limiting factor. It is well known that a fast CPU is not very 
helpful when it is used in combination with slow memory – especially when a very 
small memory cache is used.  

There is a popular belief that in the implementation of many algorithms, speed 
can be improved by using more memory. Caution is advised with embedded systems 

and an overall degradation in performance. Algorithmic improvements developed on 
a large computer do not always translate to improvements on systems with limited 
resources. 

32 kB range). Also, slow RAM is often used due to constraints on the hardware cost 

they use a block of fast scratchpad memory and content must be managed by the 
application software and DMA transfers. Porting more complex code to such archi-
tectures can be extremely difficult.  

Embedded systems that use memory management (i.e. logical to physical address 
translation) usually have only simple memory management units (MMUs),which 
have only a limited number of Translation Lookaside Buffer (TLB) entries (typically 
16-64). Moreover, they rely on software handling of TLB faults by the operating 
system that cost hundreds of CPU cycles per fault. As most systems use a memory 
page size of 4 kB, the memory size that can be handled without TLB faults is only 
64-256 kB. Any task accessing a large amount of memory will be slowed down by 
expensive handling of TLB fault interrupts. 

One of the impacts of slow memory access is the high cost of heap allocation 
routines, often observed on embedded systems. In addition, memory allocation fail-
ures are much more common than on desktop or server systems due to limits of the 
memory size and runtime environment. 
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however because the use of more memory can often lead to a higher cache miss rate 

Most embedded CPUs have small instruction  and data caches (typically in the 4-

and power consumption. Simple CPUs sometimes even have no data cache. Instead 



 

 
 
 

These memory limitations must be kept in mind during the implementation of any 
ASR algorithm. One goal is to maximize the locality of memory access by organizing 
data structures so that concurrently accessed elements are always close to each other. 
Another goal is to maximize the use of any model data when it is accessed. A typical 
task encountered in ASR algorithms requires some type of evaluation of a data stream 
against model data in memory. This model can occupy a significant amount of memory 
so it is beneficial to process several samples of the data stream when a particular part of 

several feature vectors as opposed to the evaluation of all components during each time 
frame. 

10.2.2 CPU Limitations 

Typical embedded CPUs often lack hardware support for floating point operations. 
Although software emulation is usually available, it is often prohibitively expensive. 
Hence, many algorithms need to be redesigned in order to work efficiently in situa-
tions involving integer arithmetic and for specific word lengths (32 or 16 bit).  The 

proper scaling is essential. To avoid the overhead of dynamic scaling, the scaling 
factors are typically precomputed offline. To maximize use of the limited dynamic 
range, a separate scaling factor can be estimated for each step.   

Proper application of architecture knowledge can significantly improve the exe-
cution efficiency of the code. Many embedded CPUs are RISC load-store architec-
tures, often with limited number of general-purpose registers (GPRs). This constrains 
the number of local variables that can be efficiently accessed. For example, on a 
CPUs with 16 GPRs (e.g. ARM), usually only about 5 local variables can be stored 
in registers. Other local variables must be located on the stack and using them in 
operations is more expensive. This can have a serious performance impact, for ex-
ample on code performing various iterative computations. 

Modern CPUs use sophisticated branching prediction methods, which are usually 
not available on embedded CPUs.  For example, insertion of a conditional statement 
inside of a loop has an adverse effect on the instructions cache and can significantly 
slow down execution of the code, even if it were intended to avoid unnecessary com-
putations.  In such situations performing more operations can be faster, as long as the 
code does not contain branches. 

10.3 Overview of an ASR System 

 

 Search  

A block diagram of an ASR decoder is shown in Fig. 10.1. It contains three major

 

components: 
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Feature extraction (front end) 
Observation model (labeler) 
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the model is accessed and loaded into the memory cache. A typical example of such an 
approach involves the evaluation of a Gaussian mixture component on a sequence of 

ASR front end requires several multiplication steps applied to each feature vector so 



 
 While this is a very simple diagram which does not show the complex interac-
tions in ever more complex modern ASR designs, these fundamental blocks can be 
found in basically any decoder implementation. 
  

observation
extraction

buffer Viterbi
search

output
text

acoustic
model graph

search

waveform feature
model

 

Fig. 10.1 ASR block diagram 

The waveform is converted into a sequence of feature vectors by the front end. 
Each feature vector represents a short segment of the utterance corresponding to an 
acoustic event which is assumed to be stationary. These vectors are statistically mod-

density function. These classes typically model phoneme parts in a specific acoustic 

compute probabilities of a particular feature vector. These are called “emission” or 
“output” probabilities because they are used as state output probabilities of Hidden 
Markov Model (HMM) states in the search graph network representing all possible 
utterances. The role of the search module is to find the best matching path through 
this network.  Often it is required to find the N- best matching paths, or a word lattice 
representing alternative hypotheses in a compact form.  

10.4 Front End 

feature vectors. Each feature vector describes a portion of the waveform, called 
frame (typically 10–15 ms).  FFT (Fast Fourier Transform) followed by MEL band 
filtering or similar technique is applied on each frame to produce a feature vector. 
The vector elements are converted to cepstral coefficients by computing their loga-
rithms and applying Discrete Cosine Transformation (DCT). The DCT has a de-

tors or by splicing several vectors together and applying a linear discrimination analy-
sis (LDA) transformation. The transformation more expensive but usually leads to 
higher accuracy and the vector dimension can be reduced with a minimal impact on 
overall accuracy.  

The final dimension of the feature vector typically varies from 13 to 60. Choice 
of the dimensionality entails making a tradeoff between CPU cost and recognition 
accuracy. Eventually, a transformation for runtime adaptation (usually unsupervised) 
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eled as a set of acoustic classes (acoustic model), each having its own probability 

context (e.g. tri-phones). The observation model provides the means to efficiently 

The role of the front end is to convert the input waveform into a sequence of acoustic 

correlating effect facilitating use of diagonal Gaussian models in the observation 
model. Dynamic features are captured either by computing double-delta feature vec-



 

 
 
 

can be applied to compensate for channel and/or speaker mismatch (Feature space 

 FFT computation 
 Matrix multiplication 

Efficient implementations of these algorithms for specific platforms have been 
extensively covered in the literature and a more detailed description in beyond the 
scope of this chapter. 

If feature space adaptation is employed, it is preferable to use algorithms that do 
not require matrix inversion (which can cause instability), particularly in integerized 
implementations. (Balakrishnan 2003) proposes stochastic gradient based estimation, 
which also significantly reduces the computational cost from O(n3) to O(n2) and 
memory use from O(n3) to O(n2) , where n is the vector dimension, in comparison to 
the originally proposed method (Gales 1997). 

10.5 Observation Model 

10.5.1 Model Organization 

computation is often the dominating one. The models are almost exclusively based 
on Gaussian Mixture Models (GMM) of some form (untied or tied) such that each 

ASR system. The main design criteria include: 

 Number of acoustic classes 
 Number of components in each mixture 
 Size of the phonetic context 

the amount of training data available for reliable estimation of their parameters 
(means, variances and weights). In practice, this limit is determined by the amount of 

tends to get wider (i.e. more states becoming active) and thus slower.  
The Bayesian Information Criterion (BIC) has been successfully used to assign 

tive function for GMM estimation is extended by a factor which imposes a penalty 
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Maximum Likelihood Linear regression fMLLR) (Gales 1997). 
The computational cost of the front end is relatively small in comparison to the 

rest of the decoder. There are two main operations utilized by the front end: 

The observation model computes the likelihoods of acoustic model classes (typically 
context dependent sub-phonetic units). The CPU cost of the observation likelihood 

components can be shared across classes. 
acoustic class is modeled by one Gaussian mixture. In a tied system, the Gaussian 

 Proper design of the observation model is essential for the performance of the 

both CPU resources available for the Gaussian likelihood computation and the 
memory for their storage. Lowering the number of Gaussians to reduce the CPU cost 
is effective up to a certain degree. If the observation model is less accurate, the search 

the number of Gaussian components to each state (Deligne et al. 2002). The objec-

The theoretical upper limit on the number of Gaussian components is  given by 



 

during the model building only if they significantly contribute to the likelihood increase.  
Further improvement in accuracy can be achieved by using gender dependent 

models. To avoid the memory cost of having two models, (Olsen and Dharanipragada 

speaker. 

modeling at the expense of a more complex model. The effect is twofold: the number 
of acoustic classes increases and the complexity of the search increases. The latter is 

The dynamic range of the observation likelihood is very large. To have the capabil-
ity to process the likelihood in integer arithmetic, logarithms are employed.  Computa-

dependent state with the highest likelihood is used. The likelihood of one diagonal 
 with M components for a given D-dimensional feature 

vector x can be computed as: 
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10.5.2 Efficient Computation Strategies 

for good accuracy will likely be much greater than the number that can be evaluated 
at every time frame. Since there are only a limited number of states active in any 

 On-demand computation  
 

In the on-demand scheme only those mixtures corresponding to active states in 
the search are computed. This approach does not scale well. As the search space 
grows, the number of active mixtures grows as well. As the number of components 
in a mixture grows, the on-demand computation is even less effective since only a 
few components contribute significantly to the mixture likelihood.  
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for the number of parameters in the final model. This way, new Gaussians are added 

2003) propose a method which uses only one set of Gaussians but adjusts the mix-

The size of phonetic context information used to create context dependent models 
is also a very important factor. The wider the context, the better is the coarticulation 

ture weights adaptively in accordance with the automatically detected gender of the 

particularly evident when the phonetic context is modeled across word boundaries.  

internal context modeling also significantly simplifies the construction of the graph.  

Often the phonetic context is modeled only within each word and not across word 
boundaries to reduce the complexity of the resulting search graph. Use of word 

tion of logarithms is very expensive but can be avoided by using the best Gaussian 

Gaussian mixture model 

Regardless of the particular scheme, the number of Gaussians in the model needed 

given time frame, it is clear that not all Gaussians are always needed. There exist 
two basic approaches to reducing Gaussian evaluation: 

Gaussian selection 

approximation where only the component within the mixture of a particular context-



 

 
 
 

Another disadvantage of the on-demand approach is that the likelihoods must  
be computed synchronously with the search, i.e. it is more difficult to efficiently  
evaluate the likelihood of one state several frames ahead (some form of a fast match 
is needed). 

In the selection-based schemes, the goal is to evaluate only a limited number of 

in some other manner which will achieve reasonable active state coverage. Popular 
techniques are those which create a shortlist of components; some form of an inex-
pensive metric is used to partition the feature space and to create an active shortlist(s) 
given the feature vector. Bocchieri (1993) uses vector Quantization (VQ). Ortmanns 
et al. (1997) compare space partitioning schemes, projection search, Hamming dis-
tance, and VQ pre-selection. Fritsch and Rogina (1996) propose the Bucket Box 
Intersection method, which partitions the space into rectangular regions, each defined 

greater than a fixed threshold. 

selection implementation by using non-overlapping shortlist and an n-ary search tree. 
These non-overlapping lists can be represented much more efficiently in memory. 

shortlists are combined and evaluated. Subsequently, the top N list is created and 

the selection scheme, the state likelihood computation can be completely decoupled 
from the search and be performed on blocks of feature vectors. This can significantly 
improve the memory cache utilization.  

There are also hybrid schemes Saon et al. (2005) combining the advantages of the 
on-demand and selection schemes. The higher levels of the tree are evaluated as in 
the selection scheme for several frames at a time and the shortlists are stored. During 
the search, state likelihoods are computed on demand by using the precomputed 
shortlists. 

Bahl et al. (1994) use an alternative method for state likelihood computation 

was originally introduced in an asynchronous stack decoder implementation and its 
main purpose was to normalize the likelihood range. It has been shown that its 
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expanded to the next level until the final level is reached. In this level, a contribution 
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Gaussian components chosen either completely independently of the active states or 

as a bounding box around the Gaussian component within which the likelihood is 

Novak et al. (2002) reduce the memory overhead associated with the Gaussian 

The structure of the tree can be seen in Fig. 10.2. At each level of the tree, one Gaus-

all Gaussians with likelihood less the maximum minus a certain threshold are dis-

sian is used to represent each shortlist at the next level. The Gaussians in the top tree 
level are evaluated first.  Only the top N scoring Gaussians are then processed. To 
reduce the cost for the top N search, the likelihood of the best Gaussian is found and 

carded first.  Each Gaussian represents a shortlist in the next tree level. These 

of each Gaussian component is added to its corresponding HMM state likelihood. In 

based on rank likelihoods. Rather than using the likelihood of the Gaussian mixture 
directly, the probability of the rank of the mixture can be used instead. The observa-
tion model distribution represents the probability that a given state will have a certain 
rank when all states are sorted by their likelihoods. The concept of rank distribution 

use has advantages in the Viterbi decoder as well. A likelihood value from the tail of 
the rank distribution provides a robust estimate for states which are not evaluated in 
the Gaussian selection scheme. While the direct use of mixture likelihoods yields a 
slightly lower error rate when all or a large portion of Gaussians are evaluated, the 



 

Fig. 10.2 Multilevel Gaussian evaluation scheme 

The difference in performance can be seen in Table 10.1. String error rates are 

lihoods eventually lead to better accuracy, the rank-based system is much less af-

Table 10.1 String error rate comparison of rank and mixture likelihood 

due to the huge dynamic range of mixture likelihoods in comparison to the range of 
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Number of evaluated 
Gaussians 

Rank likelihoods Mixture likelihoods 

1000 8.51 9.13 
1500 8.21 8.43 
2000 8.19 8.10 
3000 8.10 8.05 

rank-based likelihoods are more robust against underestimation when only a small 
fraction is computed. In such cases the use of rank likelihoods leads to a smaller 
accuracy loss due to the limited number of evaluated Gaussians.  

measured on a grammar containing 30 thousand stock names using an acoustic 
model with a total of 150k Gaussians. Each line shows the error rate when only the 
top N Gaussians were used in each frame. It can be seen that while the mixture like-

fected when the number of evaluated Gaussians is significantly reduced. 

The use of a rank distribution also has an effect on the state transition probabili-
ties. While many believe that transition probabilities do not play a significant role 



 
 
 

 

Fig. 10.3 Search memory organization 

10.6 Search 

Search is often the most computationally expensive part of the decoder, depending 
on the vocabulary and language model size.  While the search implementations pre-
dominantly use Viterbi search, there are many variations in the implementation de-
tails. An excellent overview of search techniques is presented by Aubert (2002). 

Several comparisons (Kanthak et al. 2000; Dolfing 2002) have shown that the use 
of finite state transducers (FST) (Mohri et al. 2002) to produce a minimized static 

but there is a significant computational overhead association with dynamic composi-
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vation likelihoods closer to that of transition probabilities.  It has been observed that 
transition probabilities, the rank distribution brings the dynamic range of the obser-

the use of transition probabilities can improve the recognition accuracy, particularly 
when the language model is weak, and in a presence of noise.  

graph is the most computationally efficient design for Viterbi based decoders on 
unrestricted platforms. The search graph is prepared offline and use of global mini-
mization guaranties that the smallest possible graph is searched. Embedded system 
memory restrictions put a limit on the size of the usable acoustic and language 

tion of the search graph.  

models. Large models may require a dynamic scheme, e.g. (Ortmanns et al. 1998), 



 
10.6.1 Viterbi Search Implementation 

objectively compare the various techniques found in the literature as the speed of the 
decoder results from the mutual interaction of many factors, such as type and speed 
of CPU,  C compilers, amount and speed of memory, task complexity, etc. 

We will focus our comparison mainly on memory organization, since it is a pri-

decoder can be divided into three classes:   

 static representation of the HMM states—graph space (search graph),  
 memory for active states, updated  at each time frame—search space,  
 

All information related to the graph space can possibly be stored in read-only 

memory to evaluate likelihoods for each frame and to propagate the traceback in-
formation.  The search can be implemented in three distinct ways: 

Combination of the static graph space and static search space Fig. 10.3a 
represents the most efficient implementation from the search point of view. Here all 
memory is allocated before the search starts with a one-to-one correspondence be-
tween the graph state and search state, i.e. the position of each state of the search 
space is fixed during the search. This arrangement minimizes overhead during the 
search. To improve locality of access on platforms with enough RAM to store the 

other. The static search space can be represented in a very compact form using local 
properties of the network, e.g. linear sequences of HMM states can be stored very 
efficiently without the need for explicit connections between states. The code for 
evaluation of these linear segments can be very compact and efficient; Deligne at al. 
(2002) found that faster decoding can be achieved by avoiding full minimization of 
the graph to preserve longer linear state sequences.  

This method is very efficient for small tasks, but does not scale well to systems 
with large vocabularies. As the size of the network grows, a significant portion of the 
search space memory is wasted since only a small portion of it will be used. In this 
scenario, it is more difficult to take advantage of more complex memory reduction 
techniques such as graph factoring (Mohri at al. 2002). 

Static graph space with dynamic search space Fig. 10.3b is a more memory ef-
ficient option. The amount of search space memory corresponds to the number of 
active states at each time frame.  This also gives the option to limit the amount of 
state space memory, e.g. by top N active state pruning. There is some runtime and 
memory overhead associated with the mapping between the graph and search spaces 
which changes for each time frame.  On the other hand the improved locality of the 
memory access due to a much smaller search space can significantly improve the 
search speed. 

where reoccurring linear state sequences are referenced by a single index. Expansion 
of these indices back to state sequences creates some runtime overhead, so for the 
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The details of a Viterbi search implementation can vary significantly. It is difficult to 

mary factor affecting the efficiency on embedded platforms. Memory usage in a Viterbi 

traceback  information (tokens). 

memory, while both the search space and traceback inherently require read-write 

search graph, states of the search graph and search space can be placed next to each 

Graph factoring can be used to reduce the memory needed for the search graph, 



 

search memory to the corresponding states in the graph space), the graph representa-
tion needs to be simple, i.e. without factoring. The efficiency of this approach has 

evaluation (Saon et al. 2003). 
Dynamically built graph Fig. 10.3c offers the most memory efficient de-

coder, but there can be a significant cost associated with the graph construction.
 

in memory, with possibly significant memory savings in comparison to static graph 
methods.  Another advantage is that grammar can be quickly modified (e.g. adding

 

new pronunciations). The drawback is a higher computational cost, which can be con-
strued as having two main parts. The first part is associated with the overhead of the 

the loss of the minimal property of the dynamically built graph. This leads to dupli-
cate evaluations of some graph parts, which is eliminated by global minimization in 
the static graph approach.  

during the search and the static graph size, depends on many factors (e.g. vocabulary  

not easily predictable. This is the technique of choice when the static graph size is 
too large or when it is not possible to build the full graph. On systems with limited 

rithm needs to be carefully designed to limit its overhead cost.  
Recent methods for on-the-fly composition employ the finite state transducer

 

tages of the static and dynamic methods have been proposed. (Willet and Katagiri  

 

states. Proper application of the pruning algorithm always involves a tradeoff be-
tween the efficiency and admissibility of the search. There are two main approaches 
to pruning: beam pruning and rank pruning.  

In the beam pruning approach, at each time frame the state with the highest like-
lihood is found and then only those states are kept whose likelihood lie within a 
certain threshold from this maximum. This is an inexpensive and very efficient 
method; there exist variations of this approach which utilize multiple thresholds, e.g. 
for word internal states and for inter-word transitions.  

keeping only top N active state at each time frame. One disadvantage of the beam 

representing large list of choices. Application of a uniform pruning threshold may 
cause the search to be too slow in the beginning and have too many search errors at 

most efficient search space implementation (i.e. the dynamic assignment of the 
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The advantage is obvious – only the part of the graph which is searched is constructed 

on-the-fly HMM network construction. Secondly, the less obvious cost is caused by 

The memory savings, i.e., the ratio between the expected number of states visited 

memory this approach clearly offers benefits, but the dynamic graph building algo-

pruning is that the number of active states can vary significantly. The ambiguity is 

framework (Caseiro and Trancose 2006). Techniques which try to combine advan-

The most critical part of any search implementation is the pruning of active 
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2002) statically compile only the part of the graph corresponding to the unigram

10.6.1.1 Pruning 

been demonstrated on LVCSR in the context of the DARPA Switchboard 1xRT 

size, number of alternative pronunciations, specific structure of the grammar) and is

language model, and Dolfing (2002) proposes an incremental application of a factor-
ized language model to the search graph.  

Rank based pruning can be used in addition the beam pruning on larger tasks by 

usually much higher at the beginning of an utterance, in particular on grammars 



 
the end of the utterance. In such a case, the search cost can be reduced by selecting 
the top N active states. This is clearly a more expensive algorithm and its effect 
should be evaluated specifically for each task.  

 

alternative hypotheses to the best path are required. The alternative paths are typi-

including multiple-pass search algorithm, computation of a confidence measure and 

sequences is too expensive for practical use, but approximations can be used with 

the alternative paths as well. There are two alternative approaches to this problem. 
The first approach is illustrated in Fig. 10.4a on a segment of an HMM network. For 
simplicity, HMM states shown in the figure are either word end states (white circles) 
or internal states with path merges (black circles).  In this approach, multiple hy-
potheses (shown as gray wide lines) are propagated through the HMM network seg-

between word ends (dotted lines). This approach increases the cost of the search, 
since some HMM states are effectively evaluated multiple times. 

1

2
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4

5
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10.6.1.2 Lattice Generation 

T he implementation of the Viterbi search becomes much more complex when 

cally represented as a word lattice. Word lattices can be used for many purposes 

N-best list generation. Exact lattice generation that would consider all possible state 

only a small degradation in the lattice quality (Schwartz and Austin 1993).  
Finding the best path only requires storage of one traceback record for the best 

path at each word end in each time frame. The traceback record contains the score of 
the path, identification of the word and a pointer the previous record. For lattice 
generation, significantly more memory is needed to store the traceback records for 

ment towards the next word end. Their new traceback records are created for each 
hypothesis. These records are then used during the lattice generation to create links 
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Fig 10.4 Lattice generation methods 
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For example, a link between states 5 and 2 can be created since there is a valid 
record b in state 2. The score of this link is assumed to be the same except for the 

state 2 to 5. To be able to calculate this difference, information about possible word 

10.6.2 Search Graph Construction 

In comparisons of the static graph scenario with that of dynamic decoders, the time 
needed to construct the graph is usually not considered as a run-time cost. But the 

Even if the static graph scenario is used, there may exist a need to quickly compile 
the graph using the limited resources of the particular platform before the search 

dialog state).  The ability to customize the system by the user also requires that the 
graph be built locally.  

speech recognition community. It provides a solid theoretical framework for the 

of a composition: 
 

The use of finite state transducers (Mohri et al. 2002) has become popular in the 

This approach does not increase the cost of search but is more memory demand-

problem, since it creates merges of word internal states. One possible way to reduce 
the runtime memory overhead is to use a non-minimal graph in which alternative 
paths can merge at word ends only.  

Novak (2005) proposes a method that saves the runtime memory by adding auxil-

assumption that only internal states of the same words are merged, i.e. the state 5 
represents an end state of a unique word, links of the alternative paths can still be 
recovered (with some approximation). 

 
GLC oo                                                       (10.2) 

 

 
 

by concatenating connections between these records, considering all alternative re-
cords in each state.   
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 In the second approach, shown in Fig. 10.4b, a new traceback record is created 
for each alternative path at each word internal merge state. Lattice links are created 

ing. Application of global minimization on the search graph actually aggravates this 

iary information to the search graph, which can be used to recover alternative paths 
even when traceback records are created at word ends only. It can be seen in Fig. 
10.4c that only one lattice link can be created between states 1 and 5. Under the 

difference between language model scores of the path from state 1 to 5 and from 

links and their language model scores for each word end state is added to the static 
search graph during the offline graph compilation. 

assumption that the search graph never changes is clearly not practical. Having an 
efficient method for the search graph compilation is desirable for several reasons. 

starts (e.g., when the grammar is constructed dynamically in response to a certain  

operations needed to create a search graph. In general, the search graph is the result 



 
 

Language models fall into two distinct categories: n-grams and grammars. Each 

straightforward approximate method can be used to construct the FSA representation 

transitions. If the back-off symbol is treated as a part of the vocabulary, G can be 
considered deterministic.  It would be impractical – and even impossible – to deter-
minize the n-gram model by removing the null arcs. Each state represents a unique 

Grammars represent a way to define a set of (possibly infinite) allowed sen-
tences. Most of the systems use a formal syntax based on Context Free Grammars 
with regular expression construct extensions to enable more compact representations. 
By allowing only right recursion, regular languages can be generated and a corre-

first step of the compiler usually produces a nondeterministic WFSA.  The next step 
is determinization, usually the most expensive part of the process (possibly with 

number of states and arcs. The final compilation step finds a minimal form of the 
deterministic WFSA. The complexity of minimization is O(NA log(N)) where N is 
the number of states and A is the average branching factor. For acyclic FSA much 

 and 
compile only those parts used at search time by exploiting properties of a particular 

The concept of Recursive Transition Networks and a late binding scheme is used 

Instead of working with transducers, it is possible to use acceptors. An acceptor 
has only one label on each arc and can be constructed by taking a union of the input 

when performed on finite state acceptors. By not using transducers, the full advan-

Keeping the placement of word labels at the word ends simplifies the decoder de-
sign, since the proper time alignment is preserved. Novak and Bergl (2004) uses a 
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dependent HMMs.  
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where G represents the language model as a finite state acceptor (FSA), L represents 
the pronunciation model and C converts the context independent phones to context

has different properties from the graph construction point of view. For n-gram  
models, the back-off model type is widely preferred for use in a Viterbi decoder. A 

history and the graph is usually close to being minimal.  

of an n-gram back-off model using non-emitting (null) arcs representing the back-off 

sponding FSA can be found. The task of a grammar compiler is to convert the 
grammar definition (e.g. written in BNF language) into a (weighted) WFSA. The 

exponential cost). In some situations determinization can significantly increase the 

faster (O(N+A)) minimization algorithms  exist. 
Various schemes have been proposed for more efficient search graph compila-

tion of grammars. A common idea is to avoid full expansion of the search graph

grammar.  

by Schalkwyk et al. (2003). The grammar is factored into several parts that are com-
piled into separate search graphs, and which are composed together at the runtime. 

specific address list as one of the parts. Zheng and Franco (2002) propose hierarchi-
This approach allows fast modification of the final search graph, e.g. by using a user 

cal non-deterministic grammar compilation to avoid graph size increases caused by 
the determinization step in some situations. 

and output alphabets. Both determinization and minimization are simpler and faster 

tage of minimization by pushing the output labels is not utilized. However, if such 
minimization is used, the word labels are no longer attached to actual word ends. 



 
graph construction method that performs all operations (composition, determiniza-
tion, minimization and weight pushing) in a single step, applied incrementally to 

a time.  The resulting graph is fully minimized (as an acceptor) with no intermediate 
step requiring more memory than the final graph. In other words, during the compilation 
the graph never has more arcs or states than the final one. An important advantage of 

10.6.3 Fast Match 

Search cost can be reduced by the use of a fast match. The idea is to use inexpensive 
models to look into the near future to decide which paths can be pruned. The effec-
tiveness of the fast match increases with the accuracy of the approximate models and 
the amount of look-ahead time and decreases with the computation costs, so a trade-
off needs to be found. In an asynchronous stack decoder (Gopalakrishnan et al. 1995) 
a fast match can be used very efficiently with a look-ahead of whole words. In a 
synchronous scheme, that is difficult to do. Hence, the most popular schemes, e.g. 
(Ortmanns et al. 1997), are usually limited to predicting the next active phone. In this 
instance, most of the time savings comes from the elimination of the observation 

Long-term fast match can be used in certain tasks (Novak et al. 2003). When the 

tree, then a two pass method can be used with inexpensive phonetic models used in 
the first pass to find the  N-best list of paths to be  rescored in a second pass. 

10.6.4 Alternative Decoding Schemes 

A decoding strategy based on building HMM networks covering the entire search 
space (either statically or dynamically) has limitations. Memory use is certainly an 
issue for static graphs, but even for dynamically build graphs the expansion of the 
active space may be too memory intensive. Direct incorporation of both the acoustic 

The acoustic search space can be much smaller (or significantly reduced) without the 

This idea is utilized in multi-pass decoding schemes, where a more complex 

applied in the first pass and bi-gram and tri-gram parts are applied on the N-best list 
of paths found in the first pass. The multi-pass approach has several disadvantages, 
in particular the inherent latency, which makes it less attractive for use in interactive 
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each state of G (and for each context class for cross-word context models) one at  

the incremental construction is that it does not require use of a general minimization 
procedure; rather, a much more efficient local acyclic graph minimization is used.    

short term fast match is less effective.  
selection scheme, where the Gaussian computation is independent of the search, the 

utterances are relatively short and the grammar can be effectively expressed as a 

and the language models into the search graph may not be the most optimal ap-
proach in all situations. The context affecting the acoustic search (several phones) is 
typically much shorter than the context affecting the language model (several words). 

application of the language model.  

model is applied at each pass. For example, only the uni-gram language model is 

likelihood computation for the states not selected by the fast match. In the Gaussian 



 

 
 
 

path search. Finally, the two pass approach is not necessarily faster since the lower 
n-gram model is less discriminatory and more paths need to be explored by the 
search. 

 The time conditioned search (Ortmanns and Ney 2000) can be seen as a method 

decoding scheme. Acoustic scores for words are evaluated for all possible starting 

advantage of this approach is that both the acoustic scores of each word and a par-

be considered (Gopalakrishnan et al. 1995).  This approach is best suited (in combi-

reusing (with some approximations not affecting the accuracy) acoustic scores of 

search and less robust, i.e. it requires many more parameters which need to be care-
fully tuned.  

10.7 Conclusion 

We have presented several ASR algorithm implementations aimed at achieving high 
efficiency, which make them suitable for deployment on embedded platforms. This 
is a very wide area and we tried here to cover only the most commonly encountered 
issues. The reader should refer to the extensive list of reference for specific details. 
As one might expect, this area is constantly evolving. As more and more powerful 
embedded hardware devices become available, we can certainly expect more com-
plex algorithms being deployed.  
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systems.  To compute the top N choices, additional memory is needed to store sig-

229

nificantly large amount of traceback information over that required by the single best 

which performs acoustic search independently of the language model in a single pass 

times and then combined with the language model to find the best hypothesis. The 

ticular start time are computed only once regardless of the number of language 
model contexts it appears in. A significant advantage was not found when a 3-gram 
model was used, as the cost of recombination with the language model reduced the 
efficiency of the method. One can expect that for much more complex language 
models the benefits would be more apparent.  

Another alternative to the Viterbi search, an asynchronous decoding scheme, can 

decoder, Novak and Picheny (2000) reported a significant speed improvement by 

nations with a fast match) for dynamic search cases where acoustic and language 
model decoupling is desired. Renals and Hochberg (1999) use synchronous acoustic 
search and asynchronous search for the language model part. In an asynchronous 

words in multiple language model contexts. Unfortunately, the asynchronous de-
coder implementation is significantly more complex in comparison to the Viterbi 
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Algorithm Optimizations: Low Memory Footprint 

Marcel Vasilache 

 

Abstract. For speech recognition algorithms targeting mobile devices the memory footprint is 
a critical parameter. Although the memory consumption can be both static (long-term) and 
dynamic (run-time) in this chapter we focus mainly on the long-term memory requirements 
and, more specifically, on the techniques for acoustic model compression. As all compression 
methods, acoustic model compression is exploiting redundancies within the data as well as the 
limits for the parameter representation accuracy. Considering data redundancies specific for 
hidden Markov models (HMMs), parameter tying and state or density clustering algorithms 
are presented with cases like semicontinuous HMMs (SCHMMs) and subspace distribution 
clustered HMMs (SDCHMMs). Regarding parameter representation a simple scalar quantized 
representation is shown for the case of quantized HMMs (qHMMs). The effects on computa-
tional complexity are also reviewed for all the compression methods presented. 

11.1 Introduction 

In practical speech recognition systems, especially when targeting the mobile or 
embedded environment, complexity considerations play a major role when selecting 
the type of algorithms employed. Computational and storage complexity limits often 
require making performance compromises in order to meet the implementation con-
straints. Fortunately, there are numerous techniques which aim at minimizing the 
loss of performance with respect to the complexity savings.  

In the following the focus will be on reducing the memory footprint of the 
acoustic models as they usually represent the most significant memory expenditure 

in this chapter we aim at offering an overview of the main design factors, a few 

revising the fundamentals of hidden Markov models (HMMs) based classification 
and stating the optimization problem. Following this, a few model selection 
criterions are presented. In Sect. 11.4 are presented the main levels of parameter 
tying for the continuous density HMMs and next, in Sect. 11.5, we illustrate the main 
options for parameter representation. We then examine some of the methods 

of the classifier. Since a large body of literature targeting this area exists and a com 
prehensive presentation of specific algorithms would require a book of its own, 

selected methods and links to relevant references. With this goal we first proceed in 

frequently used for model size reduction like quantized parameters HMMs in  



 

complexity implications are briefly mentioned in Sect. 11.8. Finally, some practical 
implementation aspects are revealed and a few concluding statements are made. 

11.2 Notations and Problem Statement 

In speech recognition the input audio waveform is transformed into a sequence of 
observation vectors nn oooo ,...,,= 21:1  which is often modeled as a 1st order Markov 

An HMM (Rabiner 1989; Jelinek 1998) consists of: 
 a set of states 

}1,|{= NisS i  

 the initial probability distribution for the states 

  )}=(0)(=,1,|{= iii ssPNi  

 a matrix of state transition probabilities 

  )}=)(|=1)((=,1,,1,|{= ,, ijjiji stsstsPaNjNiaA 1 

 a set of state dependent probability distributions or probability density func-
tions (pdf) for observation vectors 

  )}|(=)(,1,|)({= iii soPobNiobB  

More compactly, the parameters for such a model can be grouped into a set 

}.,,{= BA  

HMMs allow us to effectively compute  

)|( :1 noP  

which is the probability that an observation sequence no :1 was generated by the model 
 can be  optimized such that the previous 

probabilities are maximized for observation sequences of selected acoustic classes. 
For a majority of the current practical systems the observation vectors form  

a continuous space therefore the set B  consists of probability density functions  
and the resulting HMMs are named continuous density hidden Markov models 
(CDHMMs). For a simpler parameter estimation the functions B  are formed as 

                                                             
1 )(ts  being a function denoting the temporal state sequence. 

. In addition, the set of parameters 
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chain using hidden Markov models (HMM). 

Sect. 11.6 and subspace distribution clustering HMMs in Sect. 11.7. The computational 
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mixtures of log-concave or elliptically symmetric densities, very frequently 
Gaussians or Laplacians using the following formula 

),,(=)( 2

1=
ininin

M

n
i oGcob  (11.1) 

where G  denotes, for instance, the Gaussian pdf parameterized by the mean vector 
 and variance vector 2 and the mixture coefficients 0inc  satisfy the normaliz-

ing condition 1=
1= in

M

n
c . 

When having a set of words from a given vocabulary 

}|{= VocabwwW  

the recognition problem consists in finding the word with the maximum a-posteriori 
probability given the current observations 

).()|(maxarg=)|(maxarg= :1:1 wPwoPowPw n
Ww

n
Ww

rec  

To compute the probabilities above, a set of HMMs can be used, each one represent-
ing one word and having its parameters w  optimized after a training process. With 
this, the recognizer

‘

s job consists in the evaluation of the expression below 

).()|(maxarg= :1 wPoPw wn
Ww

rec  

performance when the memory complexity is upper bounded by practical 
implementation limits. 

With an HMM based speech recognizer the memory complexity is directly 
dependent on the total parameter space  

}.|},,{={= VocabwBA wwww  

Consider we have a set of modeling options indexed by m  with the corresponding 
parameter spaces denoted by m  and memory cost and performance functions denoted 
with  and , respectively. The indexing m  covers only the model structure and it is 
not dependent on the parameter values. For optimality, in general, the parameters for 
each m  have to be chosen as 

),(maxarg=*
m

m
m m  

This results in finding the optimum model set *m  within the memory constraints 
Mem  as 
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Acoustic model compression aims, in essence, at maximizing the recognition 



 
The direct, exhaustive search approach for solving this under the assumption that 

 does not depend on actual parameter values2 can be summarized as: 
 
 Step 1. Generate all possible model sets within the limit Memm)( . 

 Step 2. For each of them find the optimal parameter values, *
m . 

 Step 3. Pick the best set. 
 

Enumerating all possible model structures at step 1 can be a very difficult task. 
The combinatorial explosion due to the multiple distinct modeling parameters 
(feature vector dimension, number of states, mixture sizes, sparsity of transition 
matrices, ...) quickly results into an intractable size for the search space. Even if the 
modeling search space is severely pruned, the optimization at step 2 is very 
expensive for nearly all practical cases. Each of the typical objective functions: 
maximum likelihood (Rabiner and Juang 1986, 1993; Huang et al. 1990), minimum 
classification error (Juang et al. 1997; Katagiri et al. 1998), maximum mutual infor-
mation (Bahl et al. 1986; Normandin et al. 1994), largest classification margin (Hui 
et al. 2006), require expensive optimization procedures usually performed on very 
large training databases. 

In practice, the usual alternatives are: 
 

1. Gradually grow a model structure folowing a set of transformation rules until 
either its performance does not improve or the memory limits are reached. 
The typical transformations consist of model, state or mixture density 
splitting. 

2. Start with a model set which has good classification performance but it is over 
the imposed memory limit. Apply then a set of compression transformations 
which, while minimally degrading the objective function , allow for the 
complexity to fit within the imposed limit. In this case the key operations are 
parameter pruning, tying, clustering and quantization. 

 
Most frequently, from a simple set of models increasingly more complex ones are  

created by iterating type 1 transforms until the performance saturates or a modeling 
performance/complexity criterion is maximized. At this point, the type 2 transforms 
are used to bring the models within more acceptable complexity limits. 

An illustration is provided in Fig. 11.1 where all the possible model con-
figurations are bounded by an optimal performance/complexity curve. The required 
maximal complexity limit is marked by the vertical dotted line. The ideal 
configuration is the highest performing model on the left side of the limit line which, 
                                                            
 
2 If  depends on the parameter values but a lower bound for it exists, then generat-
ing all models which have this lower bound below the imposed memory limit is 
sufficient to guarantee that the optimal model is included in the search space. 

),(maxarg= *

})(|{

*
m

Memmm
mm  

236 Marcel Vasilache 



 
in this case, is the one closest to the intesection point (marked with a black circle). 
With arrows are shown model evolutions when procedures of type 1 or 2 are used. 
Also visible is a typical sequence of complexity and performance growing 
transforms followed by a complexity reduction stage. 
 

Performance

Complexity1

1

1

1

2

2

1

1

1

 
Fig. 11.1 Model structures in the performance/complexity space 

11.3 Model Complexity Control 

As introduced in the previous section, the total parameter set is 

= { = { , , } | }w w w wA B w Vocab  

Controlling this set involves the selection of model sizes (number of states), model 
topology (i.e., A  matrices), and the degree of accuracy in modelling the state pdfs 
( B  functions). For most practical situations the dominant number of parameters is 
formed by the B  functions for which the total number of states and number of 
mixture densities are the key elements. 

A fundamental problem in pattern recognition is having the parameter set of 
“adequate” complexity given the classification task at hand. To address this objective 
one can use either direct or indirect methods. 

The direct method consists in selecting a representative validation set for the 
targeted use case and then monitoring the classification performance on it for increa-
singly complex models in order to find the complexity point from where the 
performance is no longer improved. 

Since a direct method can be costly to implement the indirect approaches aim at 
estimating how a model behaves on unseen data given its performance on the 
training set. In the following, we denote by O  the concatenation of all observation 
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vectors in the training set, by seqW  the corresponding sequence of words of the 
correct transcription and we index by m  all the model structures under evaluation. 

11.3.1 Akaike’s Information Criterion 

For addressing the issue of model selection, Akaike’s Information Criterion (AIC) 
was proposed in a pioneering work (Akaike 1973, 1974). AIC has the form shown in 
Eq. 11.2 below and it has to be maximized by the optimal model. 

)(),|(log *
mseqm NWOP  (11.2) 

Here with )( mN  is denoted the number of parameters for model m  and with *
m  

the maximum likelihood parameters. 
This criterion was derived starting with the relative entropy (Kullback-Leibler 

divergence) between the true pdf and the modelled one and linking it to the 
maximum likelihood. Akaike found that the maximum likelihood value is a biased 
estimate of the model dependent part of the relative entropy and that a bias cor-
rection term in the form of the number of parameters must be included. With such 
correction minimizing the expected divergence more closely amounts to maximizing 
Eq. 11.2 hence resulting in a much simpler model selection rule. 

11.3.2 Bayesian Information Criterion 

In a Bayesian framework the optimal model is the one maximizing the evidence 
integral over the parameter space for the training data. The best model is hence 
found as in the following formula 

mmseqseqm
m

dPWPWOPmP )()(),|()(maxarg  

In practice it is not feasible to use the previous expression therefore approxi-
mation schemes are derived. 

A commonly used 1st order approximation near the maximum likelihood para-
meters ( * ) is the Bayesian Information Criterion (BIC) (Schwartz 1978). Under the 
assumption of uninformative priors for the models this transforms the previous 
formula into the maximization of the expression below 

)(log)(
2

),|(log * ONNWOP mseqm  

where )(ON  denotes the size of the training data. Here  is a tuning parameter 
which allows the original value of 1  to be better adapted to the specific task (Chou 
and Reichl 1999). Other practical examples of using this criterion can be seen in 
Chen and Gopalakrishnan (1998) and Mak (2004). 
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11.3.3 Second Order Approximation 

In the previous cases the model parameters are equally treated irrespective of their 
impact on the likelihood function. A 2nd order Laplace approximation of the evidence 
integral can be made with an assumption of a local Gaussian curvature for the likeli-
hood function at the maximum point in the parameter space. This results in maximiz-
ing 

),|(log2
=log

2
12log

2
)(),|(log *

*
seqm

mm

m
seqm WOPNWOP  

where in the final term is the determinant of the Hessian matrix for the log-likelihood 
function computed at the ML point. 

This criterion, however, is far more demanding in practical use since for large 
systems the Hessian becomes intractable and approximations are needed (Roberts  
et al. 1998) 

11.3.4 Other Measures 

A different perspective over the problem based on information and coding theory, is 
offered by Minimum Description Length (MDL) (Barron et al. 1998) and Minimum 
Message Length (MML) (Wallance and Boulton 1968). Although using different 
premises, form a practical perspective, all these model selection criteria can be 
viewed as penalizing the likelihood with a method specific term which has linear or 
near linear variation on the number of model parameters. In Yang and Barron (1998) 
a multitude of such measures is presented while excellent historical perspectives with 
a closer examination of the various criteria can be found in Lanterman (2001) and 
Burnham and Anderson (2002, 2004). More recent approaches based on discrimina-
tive or predictive methods which are directly targeting the speech recognition do-
main can also be found in Padmanabhan and Ban (2000), Chien and Furui (2005), 
and Liu and Gales (2007). 

11.4 Parameter Tying 

The main conclusion concerning the measures introduced in the previous section is 
that when having model sets giving identical performance on the training set, for 
better performance on unseen data, it is best to select the set with the minimum num-
ber of parameters. In addition, a reduced number of parameters allows in most cases 
more reliable estimates of their values, especially when the training data does not 
cover extensively the multitude of acoustic events which the models are expected to 
encounter. 

Parameter tying is an effective approach for reducing the number of model 
parameters with immediate gains in terms of memory and computational complexity 
savings. Due to this, the subject has received a good deal of attention (Huang and 
Jack 1989;Young 1992). 
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Parameter tying can be implemented on several levels as briefly described next 

and illustrated in Fig. 11.2. However, this is not a complete coverage of the tied 
structures as also other possibilities exist [e.g., for Gaussian mixtures tying the 
covariance matrices with particular cases such as global variance or semi-tied 
covariances Gales (1999)]. 

11.4.1 Model Level 

If we consider the totality of words in the recognition vocabulary as forming the 

words

models

states

densities

subspaces

s1 s2 sM

m1 mN

d1

d2

d3

d4

dK

w1

model tying

state tying

subspace tying

density tying

 
Fig. 11.2 Tying levels 

parameter space for the classifier, the basic model level tying consists in building  
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each word as a concatenation of smaller units shared for the whole recognition lexi-
con. These units are often a set of allophones or even syllables (Ganapathiraju et al. 

lexicon.  
Even with the relatively smaller number of allophones, further tying is some-

times demanded, especially in the context of multilingual speech recognition  where 

11.4.2 State Level 

done when a large number of HMM units are used for capturing contextual informa-
tion. The typical cases are biphones or triphones models in large vocabulary speech 
recognition systems for which the middle states are shared among the models corre-
sponding to the same allophone. 

The selection of the tying structure can be done top-down when using phonetical 

11.4.3 Density Level 

Semicontinuous HMMs (SCHMMs), also known as tied-mixture HMMs, implement 

Jack 1989; Huang 1992). In SCHMMs all states share the same set of densities. For 
Gaussian densities the state pdf has nearly the same form as in Eq. 11.1 with the 
difference that now the mixture components are indexed over a global codebook and 
only the mixture weights inc  are still state dependent. 

),,(=)( 2

1=
nnin

globM

n
i oGcob  (11.3) 

With this structure and by allowing a sparse representation of the mixture 
weights we can observe that, in fact, SCHMMs offer a generalization for the mixture 
based CDHMM. Following this a more general framemork for mixture tying is 
created as presented in Digalakis et al. (1996) and Willett and Rigoll (1997) where 
algorithms for automatic sharing the mixture components among states are proposed. 

11.4.4 Subspaces 

When going below the density level the natural approach is to examine the models 
from the perspective of the feature space. As this is usually of moderately high di-

2001) which allow for the complete representation of the words in the recognition 

et al. 1997; Young et al. 1994; Junqua and Vassallo 1996). 
rules and decision trees or bottom-up with data driven clustering procedures (Nock 
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The next level of tying involves individual HMM states. This type of tying is often 

tying at the level of the mixture density of the state emission functions (Huang and 

mensions, splitting it into disjoint orthogonal subspaces allows for a new level of 

phonetic similarities across languages can be exploited (Harju et al. 2001). Although the 
tying decisions can be phonetically motivated, data-driven methods or combinations 
are also being used (Vihola et al. 2002). 



 
tying where each density is split into several components as given by its projections 
into the selected subspaces. The number of densities in each subspace can be signifi-
cantly reduced using a clustering procedure which replaces the initial densities with 
the corresponding cluster representatives. For each subspace a density codebook is 
therefore formed and a tying structure induced. The likelihood for a full space den-
sity is a product of likelihoods of its corresponding subspace densities. This model 
structure is named Subspace Distribution Clustering HMM (SDCHMM) (Mak 1998; 
Mak and Bocchieri 2001b).  

SCHMMs also have an extension to multiple subspaces as a parallel concept to 
multi-stream HMMs (Rabiner and Juang 1993). In multi-stream HMMs the state 
emission score is given by 

kw
ik

K

k
i obob )(=)(

1=

 

where we considered K  streams (subspaces) and the stream weights kw  are all 
positive.3 For SCHMMs, in each subspace the functions )(obik  have a similar form  
as in Eq. 11.3 where the densities are all shared from a subspace specific codebook. 
It is now visible that, even with unity stream weights, SDCHMMs will be equivalent 
to SCHMMs only when each substream‘s pdf consists of a single density. In all other 
cases the difference consists in having mixture weight parameters on all subspaces 
for SCHMMs, while only allowing for a single set, at state level, in the case of 
SDCHMMs. 

At the limit, when the subspaces are of unitary dimension and if considering only 
the mean values of the distributions, a feature level tying can be obtained, as  
presented in Takahashi and Sagayama (1995b) The additional effect of tying  vari-
ance values is examined in Takahashi and Sagayama (1995a). If both mean and variances 
are scalar quantized then the quantizers can also be seen to introduce an implicit 
tying as in Vasilache (2000). However, in this latter case, the tying is not explicit 
since parameter changes (e.g., due to model adaptation) do not preserve the original 
tying structure in the model updates. 

11.4.5 Clustering 

playing a significant role in the selection of the tied structures presented earlier. 
Aiming at creating optimal partitions for a set of objects, the clustering can be done 
with hierarchical or partitional types of algorithms. 

                                                           
 

 

3 The unity summation condition is frequently relaxed since the value of this sum is 
effectively balancing the impact on recognition scores of the A  matrix of transition 
probabilities against the state score values B. 

 
The hierarchical algorithms which are further divided into divisive (top-down) 

and agglomerative (bottom-up) methods create the partition with a succession of 
splits, respectively, unions of the clusters until a termination criterion is valid. Typi-
cally, in the first case we start with all the elements placed into a single class while  
in the second case we start with each element forming a class of its own. 
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Of fundamental importance for pattern recognition in general, data clustering is 



In partitional algorithms the number of clusters and initial cluster memberships 
are given at start. These types of algorithms are then changing the element member-
ships until an optimality criterion is reached. The K-means algorithm is repre-
sentative for this case (Duda et al. 2001, Chap. 10). 
 When evaluating the optimality of a given clustering an appropriate distortion  
measure is required. In speech recognition such measures usually take advantage of 
the statistical nature of the components of the classifier from the perspective of their 
corresponding generating distributions. Frequently used are the 

Considering two pdfs, p  and q , these measures have the form 

dx
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where a symmetrical version is often desirable for the divergence 

).,(),(=),( pqDqpDqpD KLKLsKL  

As example, for Gaussian densities 1,2=),,,( 2 ioG iii , they have the closed 
form expressions below while the symmetrized KL can also be written as in the last 
equation. 
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11.5 Parameter Representations 

Model parameters can be represented in three distinct forms: floating point, fixed 
point or quantized. 

11.5.1 Floating Point Representation 

Without special requirements on computation or storage, the floating point formats 
are, by far, the most frequently used. ANSI/IEEE Standard 754-1985 defines the two 
most commonly used floating point representations which require 32 bits of storage 
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Bhattacharyya dis-
tance (Kailath 1967; Rigazio et al. 2000) and the Kullbak-Leibler divergence 
(Myrvoll and Soong 2003; Li et al. 2005). For both measures optimal centroid algo- 
rithms exist (for Gaussian densities the previous references provide full details). 



for single precision numbers and 64 bits for double precision. Both formats offer 
adequate range for storing any of the HMMs parameters provided that minor precau-
tions are made (i.e., “well behaved” range for the input feature vectors, logarithm 
representation for transition likelihoods mixture weights and state emission likeli-
hoods constants).  

For most systems already the single precision format offers a more than adequate 
range for representing all types of model parameters. However, even if for density 
means and variances a more restricted floating point representation would have 
worked (for instance with only 16 bit size) such data type is not available in general, 
therefore fixed point representations are needed for a smaller memory footprint. 

11.5.2 Fixed Point Representation 

When using fixed point numbers a larger variety of such representations exist. The 
fixed point arithmetic makes use of integer numbers for which standard data types 
are available. For them the memory requirements are of 8, 16, 32 and 64 bits giving 
more storage options but also much stronger dynamic range constraints (please check 
Chap. 12 for more details).  

The drawbacks to the increased storage flexibility are the additional processing 
and careful data normalization demanded by the fixed point computation mode.  
If a high performance floating point unit is also available then it is possible to  
avoid converting the whole recognizer into fixed point and only add a module for 
packing/unpacking the acoustic model data into the floating point format. However, 
these operations must be done efficiently and carefully scheduled within the data-
flow of the classifier such as not to significantly increase its run-time complexity 
requirements. 

11.5.3 Quantization 

For parameter representations below 8-bits and/or for non-linear representations of 
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Fig. 11.3 Histogram for  and 1  parameters 
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the parameter values, quantization schemes are needed (Gersho and Gray 1992; Gray 



 

 More complex model structures having Gaussians with full covariance matrices 
can also be addressed if first partitioning the densities, possibly at subspace level, 
into a reduced set of rotation classes (Gales 1999). In essence, the procedure aims at 
tying the covariance matrices among the densities within a class and forming the 
classes such that a minimal impact is seen on the model performance function . 
For each such class an orthogonal transform is used which brings the associated 
densities into diagonal form, simplifying the quantization task as well as reducing the 
complexity for the likelihood computation.  

In quantization the conventional procedure is to start with a set of CDHMMs 
optimized for the given recognition task, quantize the parameters by replacing them 
with index values into the newly constructed quantization codebooks and then 
append these codebooks to the model data. Retraining the models is seldom effective 
or even needed unless also a tying structure is introduced. 

From a scalar quantization perspective, as example, typical distributions for  
and 1  parameters can be seen in Fig. 11.3. 

11.6 Quantized Parameters HMMs 

main design decisions consist on how many quantizers to employ, at what rates and 
how to partition the data into these quantization classes. 

For diagonal covariance densities, a natural approach is to separately consider the 
dimensions of the parameter space and create a mean and a variance quantizer for 

and Neuhoff 1998). In this case most of the memory expense is taken by indices in 
quantization codebooks. Considering typical model structures most of the parameters 
are represented by the mean and variance vectors from the mixture densities. As a 
result, all the quantization procedures focus on either a vector (subvector) or a scalar 
quantization of these values.  

each. Although for low quantization rates the memory overhead of storing so many 
quantizers is manageable we can exploit the fact that classifiers based on Gaussian 
mixtures are invariant to invertible affine transformations of the observation vector 
space. If observation vectors are affine transformed 

bAoo =  

and the matrix A  is invertible, we obtain an equivalent classifier if mean values and 
covariance matrices are also transformed as 

TAA

bA

=

=
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The simplest form of parameter quantization is a scalar quantizer. For this case the 

11.6.1 Scalar Quantization 



 
We can use such a transformation to bring the model parameters into an 

optimized range, aiming at sharing the scalar quantizers among all the feature vector 
dimensions. With diagonal covariance matrices the matrix A  should also be 
diagonal allowing then for the optimization of only two values for each feature 
dimension d.  These are the scale dda  and the shift db . An acceptable optimization 
criterion aims for a maximal overlap of the parameter distributions for each 
dimension. This, in practice, allows for sharing of a single mean and a single 
variance quantizer for all model dimensions. The sharing comes at a cost of storing 
two additional D  dimensional vectors (the diagonal of A  and the shift b ) while 
saving the memory expense of 1D  mean and variance quantizers. 

The quantizers themselves are of Lloyd-Max type and use an Euclidean distance 
measure for  and 1  (the means and the inverse standard deviations are the 
quantization values). An example of how such scalar quantizers are maped over the 2 

can be found in Vasilache (2000) and Vasilache and Viikki (2001). 
Previously we have assumed that the same quantization rate is required for all 

feature vector components. In practice, not all the feature vector dimensions have 
similar impact on the classification performance therefore for the components with 
lower discriminating power we can assign lower rate quantizers as well. As example, 
if looking again at Fig. 11.4, half rate quantizers can be created by a selection of 
values from the full rate scalar quantizers (the full circles in the figure). A selection 
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Fig. 11.4 Scalar quantizers over the space ),( 1  

246 Marcel Vasilache 

dimensional space of mean and variances can be seen on Fig. 11.4 while more details 



11.6.2 Vector Quantization 

necesity. From Fig. 11.4 it can be seen that the scalar quantizers are wasting a 
significant number of combination values. For this example a 2 dimensional vector 
quantizer might have done a better quantization job although at the expense of larger 
memory requirements for the quantizer codebook.  

As before, the design decisions consists in how to split the parameter space into 
subspaces, what type of distortion measure to employ,4 how many quantizers and at 
what rates. There are, therefore, many possibilities with some of them covered in the 
literature (Ravishankar et al. 1997; Pan et al. 2000; Lahti et al. 2003). 

                                                           
 
 4 Especially if dealing with different types of parameters in the same quantizer (e.g., 
means and variances). 

procedure which worked well in practice consisted in building an independent half 
rate scalar quantizer for the corresponding feature components and then replacing the 
quantizer values with the closest ones from the full rate quantizer (Vasilache in 
preparation). 

 

 

 
11.7 Subspace Distribution Clustering HMM 

This type of models is created by partitioning the feature vector space into  
orthogonal subspaces. Under the assumption of statistical independence for these 
subspaces the likelihood for each density becomes a product of the subspace likeli-
hoods. In this case, the state likelihood has the expression below 
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where we considered K  subspaces each one with dimension kd  such that 

Ddk
K

k
=

1=
. 

SDCHMM are formed by allowing density sharing at the subspace level. A tying 
structure is therefore created, the density components being formed by indexing 
within these subspace level codebooks. 

When the tying structure is known it is possible to directly train SDCHMMs with 
the advantage of good performance even for smaller training set sizes (Mak and 
Bocchieri 2001a). However, most often SDCHMMs are obtained by converting a set 
of CDHMMs. The conversion process consists in two stages: subspace partitioning 
and density clustering. 
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When aiming for the highest possible compression, vector quantization becomes a 



11.7.1 Subspace Partitioning 

The problem of optimal partitioning the D dimensional feature space into subspaces 
does not have a direct solution. From combinatorial analysis it is known that the 
number of all possible partitions is the Dth Bell number. As example, when D = 39, 
which is a typical case in practice, there are about 7.4 × 1032 partitions. 

In most cases the subspaces are empirically formed by grouping related 
dimensions of the feature stream. For instance, when the feature vector contains time 
derivatives the subspaces can each contain a static component together with its 

(Leppänen and Kiss 2005). 

clustering with a minimal distortion induced to the original models. As we have seen, 
enumerating the subspaces and doing a clustering process for each case is not 
feasible therefore indirect approaches are required. 

A possible approach consists in using as heuristic the measure of correlation 
between the feature space dimensions. Such a measure can be created based on the 
correlation for 2 dimensions 

accociated time derivatives. Another option, as a limit case, is to create 1 dim 

When forming each subspace the objective is to achieve a very effective 

ensional subspaces. For such setup good results have been reported in practice 
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where i , j  are variances and ij  is the covariance for the feature dimensions i  
and j . 

Using this measure with a greedy algorithm it is possible to generate a subspace 
partitioning by repeatedly extracting the most correlated group of dimensions from 
the set of dimensions still available (Mak and Bocchieri 2001b). 

Focusing now on the model parameters themselves, another measure used in 
subspace partitioning is their entropy. The target is now the formation of subspaces 
with minimal joint entropy and, as before, a set of greedy algorithms can be used 
(Filali et al. 2002, 2005). 

248 Marcel Vasilache 



 
11.7.2 Density Clustering  

Once the subspaces are created the density clustering can be done following the same 
general principles as introduced in Sect. 11.4.5. A series of algorithms have been 
proposed in the literature (Mak and Bocchieri 2001b) or even been patented (Acero 
and Plumpe 2004). 

Finally, we must emphasize again the fundamental difference between subspace 
vector quantized HMMs and SDCHMMs. When building these models the clustering 
and quantization procedures are, arguably, similar. However, although in both cases 
the densities are formed using a set of subspace densities taken from codebooks, in 
quantization the parameters are not tied while for SDCHMMs the tied structure is 
part of the model. 

11.8 Computational Complexity Implications 

A reduced set of parameters directly translates into significant computational gains 
as well. For SCHMMs the reduced number of densities, which is shared by all states, 
allows precomputing their likelihoods hence substantially reducing the costs of the 
state level computation from Eq. 11.3. 

Subspace distribution clustering presents a similar advantage. In this case the 
density likelihoods are first computed for the subspace codebooks. For each of the 
full-space densities its score is then obtained by summing up the precomputed values 
using its associated subspace indexes. Even these summations can be significantly 
reduced by exploiting indexing similarities for groups of subspaces among the 
densities of the model. Savings of up to 50% in the number of additions have been 
reported (Aiyer et al. 2000).  

The computational advantage of scalar quantization follows directly from  
the possiblity of tabulating the most expensive computational part, the evaluation  
of state emission likelihoods. For instance, for states with mixtures of Gaussian 
densities the state emission log-likelihood formula is 
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where K  represents the number of densities in the mixture and D  is the dimension 
of the feature vector space. 

The term containing the mixture weight and the Gaussian normalization factor is 
a constant with respect to the observed features therefore the most costly operation is 
the computation of the second term, the Mahalanobis distance. 
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With quantization, for any given feature vector, each of the terms 2

2

2
)(

ki

kiix  can 

take a limited range of values. For a typical rate of 5 bits for a mean component and 
3 for a variance there are just 25+3 = 256 distinct values which, when computed in 
advance, will reduce the distance evaluation to an indexed summation from the 
precomputed tables. 

With even lower rates the number of terms in the sum can be reduced by 
combining adjacent tables into a single one (e.g., with half the previous rate, 
combining two such tables results in the same number of distinct values but reduces 
the summation costs to half). 

Computing the tables for each frame can be avoided if the feature vectors are also 
quantized (Vasilache et al. 2004). In this case the entire state likelihood evaluation is 
reduced to table lookup and summation with no other overhead costs per observation 
vector. 

11.9 Practicalities and Conclusion 

In practice the acoustic model compression methods are selected in close relation 
with the specifics of the problem at hand. As example, if the memory requirements 
are not very tight and/or the models need to support speaker or environment 
adaptation as well, a scalar quantization approach might work very well and it is also 
very simple. By accommodating larger missmatches between the trained model 
statistics versus the testing conditions it also allows more room for parameter 
updates. On the other hand, if we have a large model set to begin with and a higher 
compression ratio is required, then a vector quantization or subspace distribution 
clustering approach is needed. If also support for parameter adaptation is required 
then the tyied structure induced by SDCHMMs can help if it truly matches  
the intrinsic properties of the data since with tying it allows for faster, more effec-
tive model updates. However, with high compression it might happen that excessive 
tying severly reduces the degrees of freeedom for adaptation in which case vector 
quantization might be a better choice. 

With respect to specific performance figures, scalar quantization at 5 bit for the 
mean parameters and 3 bits for the variances does not alter the original recognition 
performance and it also gives a good packing into one byte of the joint indices. At 
half this rate (3 bit means and 1 bit variances) a moderate recognition performance 
degradation must be tolerated for the substantial gain in memory (and computation). 
Even for extreme situations, globally tied variances and only 2 bit rates for the mean 
parameters more than 95% of the original recognition performance is preserved 
signaling a high degree of robustness and redundancy. 

For subspace distribution clustering or vector quantization there are more 
alternatives to evaluate such as formation of subspaces and bitrate allocation for  
each codebook. Good results were reported with 6-bit rates for a mean-variance  
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pair (Leppänen and Kiss 2005) or 4-bit rates for mean parameters in 2 dimensional 
codebooks with a global variance (Astrov 2002; Varga et al. 2002). When pushing 
the limits, as for the scalar case, it is surprising to observe that the performance is not 
dramatically decreased with rates as low as 1 bit per mean-variance pairs (Mak 2004, 
Sect. 3). 

Of considerable practical importance during the state likelihood computation is 
the quick access into codebooks of parameters or of precomputed values. Due to this, 
byte sized indexes are desirable as these can avoid potentially costly bit unpacking 
operations. Here the costs are either the extra programming complexity in scheduling 
the unpacking in parallel with useful computation, or an unavoidable run-time 
complexity increase, or both. 

With the massive market for portable devices and the growing interest for speech 
enabled user interfaces, embedded speech recognition has received considerable 
interest in recent years. A large body of work is targeting directly or indirectly the 

the literature beyond the incomplete list of references included throughout this 
chapter. Although the methods introduced in this chapter were targeting acoustic 

criterions, the principles of parameter tying, formation of subspaces in multi-
dimensional feature streams with data clustering and quantization are universal 
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12 
Fixed-Point Arithmetic 

Enrico Bocchieri 

 

Abstract. There are two main requirements for embedded/mobile systems: one is low power 
consumption for long battery life and miniaturization, the other is low unit cost for compo-
nents produced in very large numbers (cell phones, set-top boxes). Both requirements are 
addressed by CPU’s with integer-only arithmetic units which motivate the fixed-point arith-
metic implementation of automatic speech recognition (ASR) algorithms. Large vocabulary 
continuous speech recognition (LVCSR) can greatly enhance the usability of devices, whose 
small size and typical on-the-go use hinder more traditional interfaces. The increasing compu-
tational power of embedded CPU’s will soon allow real-time LVCSR on portable and low-
cost devices. This chapter reviews problems concerning the fixed-point implementation of 
ASR algorithms and it presents fixed-point methods yielding the same recognition accuracy of 
the floating-point algorithms. In particular, the chapter illustrates a practical approach to the 
implementation of the frame-synchronous beam-search Viterbi decoder, N-grams language 
models, HMM likelihood computation and mel-cepstrum front-end. The fixed-point recog-
nizer is shown to be as accurate as the floating-point recognizer in several LVCSR experi-
ments, on the DARPA Switchboard task, and on an AT&T proprietary task, using different 
types of acoustic front-ends, HMM’s and language models. Experiments on the DARPA 
Resource Management task, using the StrongARM-1100 206 MHz and the XScale PXA270 
624 MHz CPU’s show that the fixed-point implementation enables real-time performance: the 
floating point recognizer, with floating-point software emulation is several times slower for 
the same accuracy. 

12.1 Introduction 

There is an on-going world-wide powerful expansion of network technologies such 

(WLAN) and on the 802.16 (WIMAX) standards, and broadband networking to the 
home by fiber, DSL and wireless. There is a parallel growth of client devices such as 
cell and smart phones, PDA’s, portable media players, set-top boxes, internet tablets, 
GPS systems, with applications in the areas of communication, entertainment and 
productivity. For example, the global volume of Short Message Services was about 
1 trillion messages in 2005, and it is expected to grow to 3.7 trillion messages by 
2012 yielding 67 billion USD of revenue.  

Speech technologies can play a very significant role in these global developments 
by enhancing the user interface that is still limiting the device usability, in spite of 

as 3G cellular telephone networks, wireless data networks based on the IEEE 802.11 
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continuous improvements over the years. Traditional interfaces based on screen, 
vision and keyboard arehindered by the physical size and by the typical on-the-go use of 
devices. The speech recognition algorithms can be implemented on the network 
server, distributed between server and device, or fully embedded on the device 

allow the real-time embedded implementation of high accuracy large-vocabulary 
continuous speech recognition (LVCSR), thus enabling access to data residing on the 
ever-growing memory of the device and on the network, through a speech-centric 
interface.  

LVCSR on embedded platforms must overcome several and unique challenges 
(Novak 2004; Viikki 2001). To lower hardware cost and power consumption, as 

point arithmetic units. This motivates the study of the fixed-point implementation 
(for operation on the device) of high-accuracy, computationally intensive LVCSR al-
gorithms that are traditionally implemented on the floating-point server. Relevant 
studies are Sagayama and Takahashi (1995) and Bocchieri and Mak (2001) concern-
ing HMM parameter tying, (Kanthak et al. 2000; Vasilache 2000; Leppänen and Kiss 
2005) for the state-likelihood computation in fixed-point. There are many other sig-
nificant issues studied in the literature such as front-end implementation, noise ro-
bustness and memory reduction (Gong and Kao 2000; Kao and Rajasekaran 2000; 
Jeong et al. 2004; Rose et al. 2001; Vasilache et al. 2004), recognition of large lists 
(Novak et al. 2003) and rapid porting (Köhler et al. 2005). Custom hardware can also 
be designed to efficiently support speech recognition algorithms (Li et al. 2006).  

Previous works on fixed-point decoding concern either small-vocabulary con-
tinuous-speech tasks or large-vocabulary tasks with deterministic grammars. This 
chapter also focuses on LVCSR tasks based on word N-gram language models. Sec-
tion 12.2 presents the general principles of algorithm implementation in fixed-point 
arithmetic. Section 12.3 reviews the most popular LVCSR method, based on hidden 
Markov models (HMM), focusing on the system components needed for fixed-point 
recognition. Section 12.4 describes a systematic approach to the fixed-point represen-
tation of the parameters of the recognizer components, including frame-synchronous 
Viterbi beam-search, with stochastic and deterministic language models, HMM  
state and state-duration likelihood computations, and the acoustic front-end.  
Thefixed-point recognizer is shown to be as accurate as the floating-point recog- 

(http://www.nist.gov/speech) and on fluently spoken telephone speech from an 
AT&T customer care application. The design is quite general, and the same fixed-
point parameterization is successfully used for different acoustic front-end features, 
feature transformations, and HMM’s (ML and MMI trained), without the need of 
critical task-specific calibrations. The target hardware is 32-bit integer CPU’s (e.g., 
StrongARM), but the approach may be suitable for 16-bit CPU’s with 32-bit accu-
mulators as well. Section 12.5 also reports about real-time recognition results on the 
DARPA Resource Management (RM) benchmark (1000 word vocabulary, speaker 
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needed for longer battery life and miniaturization, the CPU’s do not have floating-

(Zaykovskiy 2006). The increasing computational power of the device will soon 

nizer in LVCSR experiments (Sect. 12.5) on the DARPA  Switchboard task 

independent), as tested on two fixed-point devices, namely the 206 MHz Strong-
ARM and the 624 MHz XScale PXA270 CPU’s. Fixed-point implementation is 
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necessary for real-time recognition because software emulation of floating-point 
operations is several times slower. 

12.2 Fixed-Point Arithmetic 

In computing, real numbers are commonly represented either in floating-point or in 
fixed-point notation. The latter is especially useful for CPU’s capable of efficient 
computation on integer operands but lacking hardware support (thus inefficient) for 
floating-point types. Every-day life offers many examples of the fixed-point nota-
tion. The accepted tolerance for money amounts is half a cent and retail prices are 
rounded to the nearest cent. Money is therefore represented by an integer number of 
cents (e.g.,¢932 ) or, equivalently, as a number of dollars specified to two decimal 
places (e.g., $9.32 ). In this “dollars and cents” notation there are an integer part 

This is perfectly suitable for most transactions, but it is inconvenient for large sums. 
For example the estimated 2005 U.S. GNP of $11,350,000,000,000.00 is more com-

14$0.1135 10 .  In floating-point 
the position of the decimal point is variable as specified by the exponent, which 
allows for a wider range of values for a given number of digits in the number repre-
sentation. 

and fractional parts in a memory word. If the fractional part is stored in the p least 
significant bits, the number format is defined as Q p.  Intuitively p denotes that an 
imaginary radix point (or decimal point in base 10) is between the thp and the 
( 1)thp  least significant bits of the computer word. In practice, the choice of p is 
a compromise: larger values of p  allow for smaller round-off errors 12 p  and 
higher precision, but they give a smaller dynamic range. For example, in a 32-bit 
word the number of bits assigned to the integer part is 32 p,  which limits the 
range of values to 322 p . In programming with the fixed-point notation, special care 
must be taken to avoid overflow problems while maintaining a suitable precision.  

fact, the floating-point representation (by mantissa and exponent) of real numbers 
provides a much wider dynamic range because the radix point position, specified by 
the exponent, spans a wider range. In computations, the mantissa value is scaled up 
or down to use all available bits without overflowing, while the exponent keeps track 
of the radix point position.  

 
12.2.1 Programming with Fixed-Point Numbers 

Common programming languages, such as C and C++, do not have a native type for 
fixed-point numbers. From the above “dollars and cents” example it is evident that 
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(dollars) and a fractional part (cents), and the position of the decimal point is fixed. 

pactly expressed in the floating point notation, or 

In computing, a real number is represented in fixed-point by storing its integer 

From this respect, floating-point types are much more convenient and flexible. In 
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fixed-point numbers are essentially integers, and the programmer can store fixed-
point variables as integer types in C. Arithmetic with fixed-point numbers uses 
integer operations, with additional rules concerning the position of the radix point. In 
operations on ,  and x y z , with radix-point positions ,x yp p  and zp , these conditions 
apply: 

 

   :     

       :      

/     :     

        :      

z x y

z x y

z x y

x y

z x y p p p

z xy p p p

z x y p p p

x y p p

 

 
The operand radix point position can be changed to satisfy the above conditions. 

Arithmetic shifts to the left and to the right move the radix point to left and right, 
respectively: 

 
x

x
 

A right or left shift of a fixed-point number multiplies its integer representation 
by a negative or positive power of two, respectively. Therefore changes of the radix 
point position can avoid errors of overflow and underflow. In a typical example, the 
product of two integers representing two fixed-point numbers may overflow the 
range 31 31[ 2 , 2 ) of a 32-bit CPU: the problem can be avoided by suitable right-
shifts of the factors before multiplication. For these several reasons arithmetic shifts 
are common in the implementation of fixed-point algorithms, and CPU’s (e.g., 
StrongARM) may support integer arithmetic operations, shifts, and condition testing 
in a single instruction cycle. 

A useful fixed-point programming technique makes use of the block floating- 
point format. The method consists in scaling a block of numbers so that the maxi-
mum absolute value uses all available bits (e.g., the full word length). The scale up 
(or down) operation is implemented by left (or right) shifts, with the number of shifts 
recorded as an “exponent” common to all the numbers of the block. 

In the interest of computational speed, complex mathematical functions are im-
plemented in fixed-point by table look-up. To reduce the table size, the programmer 
may exploit the properties of the desired function. For example, for 10log (.)  one 
may store values over a limited input range, such as [1, 2] : to find 10log ( )x  the 
table look-up function performs the search (e.g., binary search) of the inte-
ger 1 2 2kk x , and it computes  10 10log (2 ) log (2)k x k  from the stored 
logarithm values. The implementation of trigonometric functions may exploit their 
symmetry. To limit the table size and maintaining precision, the table look-up access 
method may use interpolation of stored values. 

x i   has fixed-point format  Q( p i )

x i   has fixed-point format  Q( p i)
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12.2.2 Fixed-Point Representation and Quantization 

The Q p  fixed-point representation of a real number x  can be determined as the 
nearest integer of 2 p x : for example, in base 10 , the Q 2  fixed point representation 
of  is 314  (with an imaginary decimal point between the second and third signifi-
cant digits) that is in fact the closest integer of 210 .  

Later in the chapter we will use the following procedure to design a linear quan-
tizer and to identify the Q p  fixed-point format of its output. Suppose that we want 
to quantize real values from the interval  

 ,a b   (12.1) 

 using m  bits, e.g.,  to the  range of integers 1 1[ 2 , 2 )m m . We  follow the pro-
cedure: 

i.  Optional. Demean decimal values, by subtracting 
2

a b
: 

 , ,
2 2

a b a b
a b  

ii.  Find the largest integer p , such that: 

 1 12 2 2 , ,m p mx x a b   

iii . Quantize ,x a b  to the nearest integer of 2 p x . 
Step iii yields a fixed-point format of x  with an average round-off error that is 

essentially scale invariant, because of the choice of p in step ii. We can then operate 

the Loyd-Max quantizer, are useful to minimize the average distortion for the desired 
number of bits. The output of these non-linear quantizers can be used in fixed-point 
arithmetic by mapping the quantizer code-words to a suitable fixed-point representa-
tion.  

12.3 LVCSR MAP Recognizer 

Speech recognition is the process of mapping the speech signal to a sequence of 
discrete symbols such as phonemes, words and sentences, the large variability of  

phonology, syntax and prosody.  
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on the quantizer output with Q p  fixed-point arithmetic. Other quantizers, such as 

the signal being the obstacle to high accuracy. Causes of variability are the channel/
environment, the speaker, and various aspects of the language such as phonetics, 
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Fig. 12.1 Diagram of a speech recognizer 

A typical recognition system based on the so called noisy channel formulation is 
shown in Fig. 12.1. The recognizer decodes the most likely word sequence given the 
acoustic signal, represented by a time sequence of feature or observation vectors 

T, ...1O o  o . An acoustic front-end typically outputs a vector every 10 ms , 
each vector providing a parametric representation of the short time spectrum over a 
time window of duration between 20  and 40ms . If 1( ,... )M  denotes a 
generic word sequence, the recognizer output according to the noisy channel formula-
tion is ˆ arg max Pr( | )O , and after applying Bayes rule: 

 ˆ arg max Pr( | ) Pr( )O  (12.2) 

This probabilistic model relates the observed signal to the recognized sentence, 
and its implementation is based on several assumptions about speech and language. 
A sentence is thought as a word sequence with probability Pr( ) , as provided by 
the language model of the speech recognition application. Words are modeled ac-
cording to a dictionary, or lexicon, as sequences of basic language units, the pho-
nemes. In general, because of physical constraints of the human articulatory system, 
the acoustic realization of a certain phoneme is affected by neighboring sounds. This 
co-articulation phenomenon is represented as a mapping from the phonetic context-
dependent acoustic realizations to the (context-independent) phonemic units of the 
language. Finally, the context-dependent phonetic units are related to the observation 
vectors through an acoustic model, typically based on techniques like hidden Markov 
models (HMM), neural-networks (NN), or NN-HMM hybrids. This chapter is con-
cerned with the most popular HMM. HMM’s are Markovian chains of observation 
probability density functions, known as states, that can be viewed as generative 
models of the observation vectors. In this interpretation the observation vectors are 
emitted from the state output densities thus modeling the signal variability caused by 
speaker and channel. Different states implicitly correspond to different parts of an 
acoustic unit, with state transitions controlled by the Markov chain topology and by 
the state duration model (Sect. 12.3.2). Thus, the HMM state sequence is related to 
the word sequence by the HMM topology, context-dependency, lexical and lan-
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guage models; Eq. 12.2 can be solved by finding the sequence of HMM states that 
maximizes a suitable decoding function. After well known steps, Eq. 12.2 becomes: 

 
 ˆ arg max F( )   (12.3) 

with the decoding function: 
 

  (12.4) 
and: 

 ,

,

S
 

 

12.3.1 HMM State Likelihoods 

HMM’s can be classified according to the type of output density functions. In con-
tinuous observation density HMM’s, the state output observation densities are de-
fined as a weighted mixture of base densities, typically Gaussians or Laplacians. 
Continuous HMM’s are the most popular because they provide the highest accuracy 
in many tasks, and their fixed-point characterization is detailed in this chapter. Such 
a characterization can clearly be extended to the semi-continuous HMM’s, where all 

mixtures characterized only by a different sets of weights. The semi-continuous 
approach, such as used for embedded ASR in Huggins-Daines et al. (2006), facili-
tates a smaller memory foot-print. In discrete HMM’s the observations are vectors of 
symbols from a finite alphabet: for a given state, a discrete density is estimated for 
every observation component. The state observation density is obtained by multiply-
ing the probabilities of the individual components under the assumption of independ-
ence. Typically the discrete models are the least accurate and normally used only in 
simple tasks. The computation of the discrete state likelihoods can be solely based on 
table look-ups of fixed-point numbers. 

We define the generic HMM state s as a weighted mixture of sN  Gaussians 
with diagonal co-variances (  denotes the vector of standard deviations): 

  , ,Pr( N
sN

s,i s i s i
i=1

| s)= w ,o o  

Given the sequence 1( ,..., )TS s s  of states corresponding to 

T, ... ,1O  o o , the total state log-likelihood contribution to Eq. 12.4 is: 

Pr( ) : likelihood of language model,

F l n Pr( ) ln A(S D) ln (S)

:  HMM state sequence corresponding to ,
A O S

:  empirical state and state-duration multipliers.
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mixtures are expressed in terms of a common set of base functions, with different 

 : likelihood of    given 
D :  likelihood of the durations of the states in S ,
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 , ,
1

ln( ) ln N
st

t t t

NT

s ,i t s i s i
t i=1

A w ,o  

By approximation of the inner-most summation over the Gaussians probabilities 
(index i ) with the maximum of its addenda, and after simple manipulations: 

21

, , ,1,...,1 1

j th
t , , t , , ,

, , ,
1

ln( ) max 2
2

, , : j  component of ,

: ln( ) ln 2

t t t
s

T d
j j j

s i t s i s ii Nt j

j j
s i s i s i s i

d
j

s i s i s i
j

A c o

d
o

c w

o
             (12.5) 

Standard deviation reciprocals are used in Eq. 12.5 because multiplications are 
computed more quickly than divisions. In Sects. 12.4.1 and 12.4.3 we address the 
fixed-point computation of Eq. 12.5, with the corresponding fixed-point representa-
tion of the HMM state parameters. 

 
12.3.2 State Duration Model 

When considering the state sequence 1( ,..., )TS s s , corresponding to observa-
tions T, ...1O o  o , let’s suppose that starting at generic time t , exactly  
consecutive frames are generated by the state , i.e.: 

 

 1 1 1,    ... ,   t t t t ts s s s s
 

Then  is said to have duration , and we denote with Pr |  such state 
duration probability. The duration models are estimated from data, typically as 
gamma probability density functions. For run-time access during recognition, 
Pr |  are stored in look-up tables for a suitable range of durations, such as 

1 32 .  
Given the states 1,..., , with durations 1,..., , the con-

tribution of the duration model to Eq. 12.4 is: 

 
1

ln ln Pr | ln Pr |D  (12.6) 

The fixed-point representation of the duration probabilities for the computation 
of Eq. 12.6 is discussed in Sect. 12.4.1. 

 

: feature vector dimension

262 



    Fixed-Point Arithmetic
 

12.3.3 Language Model 

A simple yet successful stochastic language modeling basis for LVCSR is the N-
gram model. In general, because of the chain rule of probability: 

 1 1 1
1

Pr( ) Pr( ,... ) Pr | ,...,
M

M m m
m

 

The N-gram model assumes that the conditional probability of m  depends only 
on the N preceding words. The language model probability becomes: 

 1
1

Pr( ) Pr | ,...,
M

m m N m
m

 

Therefore, the language model log-probability is: 

  1
1

ln Pr( ) ln Pr | ,...,
M

m m N m
m

 (12.7) 

There is a vast body of literature concerning both the N-gram model estimation 
from large text corpora and various N-gram model extensions. This chapter is con-
cerned with the fixed-point representation of the N-gram log-probability contribution 
to the ASR decoding function (Eq. 12.4), as detailed in Sect. 12.4.1. 

 

12.3.4 Viterbi Decoder 

The acoustic HMM’s are related to the word sequence by the context-dependency, 
dictionary and language models, as briefly discussed in Sect. 12.3. The recognized 
word sequence ˆ  in Eq. 12.3 is determined by searching for the HMM state se-
quence that maximizes F  as in Eq. 12.4. Today, the most adopted decoder is 
based on the time-synchronous Viterbi search where all partial state paths are ex-
tended (using the Markovian assumption of the model) in parallel from generic time 
t  to 1t , until all the T  observation vectors are processed. In the Viterbi decoder 
implementation we adopt the formulation based on weighted finite-state transducers 
(Mohri et al. 2002). A finite-state transducer is a finite automaton whose between-
state transitions are labeled with input and output symbols. Therefore a path through 
the transducer maps an input symbol sequence to an output symbol sequence. In a 
weighted transducer, quantities (such as probabilities) are encoded into transition 
weights. These are accumulated along the transducer path to provide the total weight 
for mapping the input sequence to the output sequence. The speech recognition 
transducer uses the state observation distributions as input and the words as output 
symbols, respectively. The transducer encodes all aspects of the recognition model, 
such as the HMM topology, context dependency, lexicon and language model. The 
arc weights encode the HMM state likelihoods, and the pronunciation and language 
model probabilities. The decoding process, or searching for the best HMM state path, 
becomes therefore equivalent to searching for the transducer path with maximum 
total weight. 
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  12.3.5 Acoustic Front-End 

There are many different parametric representations of the speech signal for the 
purpose of speech recognition and a respective vast literature. As a working exam-
ple, we consider one of the most popular parameterizations, namely the vector of 

Mermelstein (1980). MFCC’s are derived from a cepstral analysis of the speech 
signal. The principal difference from the standard cepstrum is that the frequencies 
are equally spaced on the mel auditory scale to approximate the response of the hu-
man auditory system. The MFCC computation is depicted in Fig. 12.2.  

 
Speech
samples Pre-

emphasis
Windowing
(Hanning)

2|| FFT ||

Mel scale
filter-bankLogarithmDCT

MFCC’s

Speech
samples Pre-

emphasis
Windowing
(Hanning)
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filter-bankLogarithmDCT

MFCC’s

 
 

Fig. 12.2 Computation of MFCC’s 

The filters are simulated by weighted sums of the square magnitudes of the FFT 
components. The weighting function of the generic thi  filter is triangularly shaped, 
with maximum at the center-frequency 
 1100  Hz ,  1 10  ;      1.1  , 10i i if i i f f i  

and linearly tapered to zero at frequencies 1if and 1if . The key-points of the fixed-
point computation of the MFCC’s are discussed in Sect. 12.4.4. Dynamic aspects of 
the MFCC’s are also parameterized in the observation vectors, either explicitly as 
first and second time differentials (delta-delta coefficients) or through discrimina-
tively trained transforms (Saon et al. 2000). 

12.4 Fixed-Point Implementation of the Recognizer 

This section describes the application of fixed-point arithmetic (Sect. 12.2) to the 
speech recognition problem (Sect. 12.3). In general, a practical approach to fixed-
point implementations is to examine histograms of the algorithm variables to choose 
the fixed-point formats giving the required numerical precision without overflow 
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types, HMM’s and language models. Intuitively, a crucial role in the evaluation of 
the search hypotheses during decoding is played in Eq. 12.5 by the normalized dif-
ference 

 
1

, ,t t

j j j
t s i s io  (12.8) 

and by the distance 

 
21

, ,t t

j j j
t s i s io  (12.9) 

Distributions of Eq. 12.8 and Eq. 12.9 are respectively Gaussian (zero mean and 
unit variance) and 2 , regardless of the type of observation vector and vector com-
ponent: thus the same fixed-point representation may be appropriate for different 
feature vector types and components, and for different HMM’s. Our fixed-point 
design of Eq. 12.4 is parametrized by ,  and ve m , as summarized in Table 12.1.  

 
12.4.1 Log-Likelihoods  

For the weighted difference of Eq. 12.8 and its square (Eq. 12.9) we adopt Q e  and 
Q 2e  fixed-point representations, respectively, as in Table 12.1. Since Eq. 12.5 
accumulates Eq. 12.9 into the Mahalanobis distance 

 
2

1

, ,
1

t t

d
j j j

t s i s i
j

o  (12.10) 

and then into the state log-likelihoods, we also represent Eq. 12.10 and the state log-
likelihoods in Q 2e  format. The HMM log-terms ,2 s ic  (Eq. 12.5) are also Q 2e  
fixed-point numbers, because they are added into Eq. 12.10.  

In the implementation of the multiplication by 2 , an appropriate arithmetic 

shift yields a Q 2e  fixed-point product. The constant 2  is typically optimized to 

the speech recognition task, type of observation vectors and HMM’s. In our systems 
this parameter varies between 0.025 and 0.05. To help regressing the 32-bit fixed-

point implementation against the floating-point decoder, it is useful to represent 2  
with a significant precision, choosing its fixed-point format to yield an integer repre-

sentation between 1024 and 2048. Before multiplication by 2  in Eq. 12.5, the 
radix-point position of the log-likelihood factor is adjusted to prevent overflow. 
Similarly, the duration log-probabilities (Eq. 12.6) are Q 2e  fixed-point numbers, 
and when multiplying by , the Q 2e  format is maintained by arithmetic shift.  

problems. However, the statistical properties of the decoding function (Eq. 12.4) 
suggest a more systematic approach that generalizes to different observation vector 
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Table 12.1 Fixed-point parameters ,m v  and e  

e : fixed point Qe  format for: 

 – normalized error 
1

, ,t t

j j j
t s i s io  

– and Q2e  format for: 
– HMM state log-likelihoods, 
– duration model log-likelihoods, 
– language model probabilities, and 
– cumulative log-probabilities of partial state paths   
– during decoding, and related parameters such as  
– beam threshold. 
m : bits for the d quantizers of , , 1,...,j

s i j d . 

v : bits for the d  quantizers of 
1

, , 1,...,j
s i j d . 

 
The language model log-probability (Eq. 12.7) is added to the state and state-

duration likelihoods into the cumulative log-probability (Eq. 12.4). Therefore Eq. 
12.7, its N-gram log-probabilities addenda, and the decoding function (Eq. 12.4) are 
represented in the Q 2e  format. The Q 2e  format is also adopted for cumulative 
log-probabilities of the partial state-path hypotheses that are evaluated during 
decoding. In the weighted finite state formulation of (Mohri et al. 2002) the language 
model (e.g., N-gram) log-probabilities are encoded in the arc weights. The transducer 
semi-ring can be implemented in fixed-point: for example, if the transducer arc 
weights share the same fixed-point representation, the product operator of the 
tropical semi-ring is the integer addition, and the sum operator is the max function. 
Delayed composition (Mohri et al. 2002) can be supported in the fixed-point 
implementation, which is useful to reduce run-time memory in many applications 
such as (Novak et al. 2003). 

 
12.4.2 Viterbi Frame-Synchronous Search 

As motivated above, the cumulative log-likelihoods of partial state paths are 
represented in the Q 2e  format. To save computation while extending the paths 
from an observation vector to the next, it is common practice to prune (ignore) the 
paths whose log-likelihoods fall below a certain threshold (or beam-width). The 
fixed-point representation of the beam-width is therefore Q 2e . 

A normalization procedure is important to avoid that the cumulative log-
likelihoods of the state paths grow too large and overflow the fixed-point representa-
tion. Before extending the state paths ending at a certain time t, one may simply 
subtract the maximum log-likelihood score from all path scores. The search for the 
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on the adopted Q 2e  representation of the log-likelihoods. With 16-bit words it may 
be necessary to normalize the scores after processing every observation vector, or at 
least every few vectors. With 32-bit words several minutes of speech may be proc-
essed without normalization. 

 
12.4.3 Gaussian Parameters  

We need to address the fixed-point representation of the Gaussian mean and variance 

12.10). To account for the different dynamic ranges of the Gaussian mean 
components, we build a quantizer for every 1,...,thj j d  component, as in i, ii 

  

, ,State , Gaussian State , Gaussian 
, maxj j

s i s is i s i
 

 
Parameter m  in Table 12.1 specifies the number of bits of the mean quantizers. 

We denote by Q jp  the fixed-point format of ,
j

s i  induced by the thj  quantizer. 
The same format is adopted for j

to  because it is subtracted from the mean 

component in Eq. 12.10. Similarly, we build another set of d  quantizers, one for 

every 
1

,
j

s �  (the thj  inverse standard deviation component) using steps ii and iii of 
Sect. 12.2.2, with the range as in Eq. 12.1: 

 

 
1 1

, ,State , Gaussian State , Gaussian 
min , maxj j

s i s is i s i
 (12.11) 

Parameter v  specifies the number of bits, with output range [0, 2 )v , of these 

quantizers. We denote by Q jr  the fixed point format of 
1

,
j

s �  induced by its 
quantizer. Because of artifacts in the training data, there may be a small number of 
variance estimates that are exceedingly small. These incorrect estimates are 
problematic because they may cause exceedingly large (and erroneous) likelihood 
values during recognition. In fact, the estimated variance values should be suitably 
floored: this is good practice in floating-point recognizers and even more so in fixed-
point systems because of the limited dynamic range. In particular the artifact of small 
variance values may determine an exceedingly large range of the inverse standard 
deviations in Eq. 12.11, and very large average distortions of the corresponding 
linear quantizer. To avoid these problems we simply floor the estimated variance of 
the generic thj  feature component to one thousandth of its average value across the 
Gaussians of the HMM states. 

and iii of Sect. 12.2.2, with the range of Eq. 12.1: 

min

most likely path is not affected, because the same value is subtracted from all the 
hypotheses. The frequency of this normalization step depends on the word size and 
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The pseudo-code of the fixed-point computation of Eq. 12.10 is shown in Table 

12.2.  

 
Table 12.2 Pseudo-code for the fixed-point implementation of Eq. 12.10 

1
, ,

 ( ) {
     1

       // Q

}

j j j j j
t s i s i

j

sum = 0; j = 0;
while j d

j j
     temp = o p r  

The integer product 
1

, ,t t

j j j
t s i s io  is j jp r  fixed-point, then it is 

changed to  with a right arithmetic shift of j j
jshift p r e  bits, and 

finally it is squared and accumulated into the sum with the desired  format. 
In Table 12.2 a negative jshift designates a left shift of jshift  bits. In practice 

we can choose ,e m  and v  so that jshift is positive for every component. Typically 
Eq. 12.10 is the most computational intensive operation in the speech recognition 
process. Depending on the CPU architecture, other implementations, for example 
based on multiply-add operations, may give a higher throughput. 

 
12.4.4  MFCC Front-End 

This section reviews the most critical details of the fixed-point implementation of the 

(2000). Empirically, as tested on speech data, our fixed-point implementation typi-
cally approximates the floating-point computation to the third decimal digit. This 
approximation is sufficient. In fact the Gaussian means, subtracted from the MFCC’s 
in Eq. 12.9, are more coarsely quantized with no loss of recognition accuracy, as 
observed in the experiments of the next section. We experimented with speech sam-
pled at 8 and 16 KHz: before FFT input the analysis window ( ) is zero-
padded to 512 and 1024 samples, respectively. Scaling operations are essential in  
the fixed-point computation of the FFT (Oppenheim and Schafer 1975). We store the 
sine values of the FFT butterflies as Q 15  numbers, and we scale the outputs of the 
butterfly banks so that the maximum absolute value lies between 132  and 142 . Scal-
ing is by block floating point, see Sect. 12.2.1. We also store the weights of every 
mel filter in block floating-point format, with maximum filter weight not to exceed 

Q e
Q 2e

Q

     temp = temp >> shift        // change to Qe
     sum = sum+temp* temp   // sum is Q 2e

20 ms
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128. Then, knowing the maximum number of weights of the filters, we can apply the 
block floating-point representation to the input of the mel-filter to prevent overflow 
with 32-bits. The logarithm function for the MFCC computation is implemented by 
table look-up, with values stored as Q12  fixed-point numbers, as discussed in Sect. 
12.2.1. The cosine values of the discrete cosine transform are stored in Q10  format. 

12.5 Experiments 

In this section we perform several recognition experiments on different tasks and we 
verify that the described fixed-point approach is as accurate as the floating point 
recognizer. The design is largely based on the fixed-point representation of Eq. 12.8, 
whose statistics are independent of the ASR task, type of observation vector and 
HMM: in fact we also verify that the fixed-point parameters do not require critical 
task-specific calibrations. The experiment setup is shown in Fig. 12.3. The floating-
point HMM and the language model are converted to the fixed-point representation 
by quantizers, as described in Sect. 12.4. Thus we compare the accuracies of the 
fixed-point and floating-point recognizers with the same models. To experiment with 
different types of acoustic front-ends (besides the MFCC front-end of Sect. 12.3.5 
that is implemented in fixed-point), we convert the front-end output to fixed-point  
by quantization. The Gaussian mean quantizers (Sect. 12.4.3) are applied to the 
front-end feature components, as these are subtracted from the Gaussian means in 
Eq. 12.8. 
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decoder
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Fig. 12.3 Testing the fixed-point decoder 
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The recognition experiments are performed on the following tasks: 

 
SWBD :   DARPA Switchboard task, tested on the 2003 real-time test set (recognition  
                from first-pass only), 
CCAPP: fluent telephone speech from a customer-care application, with word  
                tri-gram language model (perplexity  of  60), vocabulary of 7,000 words, 
                5,000 test sentences, and up to 50 words/sentence, 
RM :        DARPA Naval Resource Management, word-pair grammar, 40 speakers, 
                speaker independent task, 1,200 test sentences, speech sampled at 16 KHz 
                (Lee 1989). 
 
In the experiments we used these types of feature vectors: 

 

PLP
  
with feature transformations: 

 
DD :     cepstra and energy with 1st and 2nd differentials, 39 components, 
HDA :  discriminative linear transformation of the cepstrum and energy features  

      (Saon et al. 2000), 60 components, 
VTLN : vocal tract length normalization (Lee and Rose 1996). 

 
The HMM’s are context-dependent triphonic models, estimated either by maxi-

mum likelihood (ML) or maximum mutual information (MMI) methods. The 
CCAPP and SWBD HMM’s were trained on 170 and 300 hours of audio, respec-
tively.   

Table 12.3 compares the LVCSR accuracies of the fixed-point and of the float-
ing-point recognizers on a Pentium 4 PC, for different tasks. For example, the 
CCAPP system, with MFCC features, discriminative transformation, vocal tract 
length normalization, and MMI-trained HMM, is denoted by CCAPP_MFCC-HDA-
VTLN_MMI. On the PC, fixed-point implementations may be faster than floating-
point, as shown in Kanthak et al. (2000) for the state likelihoods. Our target is the 
StrongARM CPU, and we have not optimized the fixed-point software for speed on 
the Pentium. However, the Pentium is convenient for measuring accuracies, because 
it runs the recognition software much faster (higher clock rate) than the embedded 
CPU while producing exactly the same results. The large memory on the PC allows 
for testing the recognition accuracy of the fixed-point recognizer for very large tasks, 
such as the DARPA Switchboard.  

The accuracies (Table 12.3) of the fixed-point and of the floating-point recogniz-
0.1% ,  for all tasks. All systems use 

the same configuration of the fixed-point parameters, without task-specific tuning. 
 

270 

  :      p erceptual linear prediction cepstra (Hermansky and Morgan 1994), 

ers (equal beam-width), are the same, within 

MFCC   :  mel-frequency cepstrum coefficients,  



    Fixed-Point Arithmetic
 

m v ) 

Word accuracy (%) ASR 
system Floating Fixed 

RM_MFCC-HDA_MMI 96.4 96.4 
RM_MFCC-DD_ML 95.7 95.6 
RM_PLP-DD_ML 95.6 95.5 
CCAPP_MFCC-HDA-VTLN_MMI 80.5 80.6 
CCAPP_MFCC-HDA_MMI 78.4 78.4 
SWBD_MFCC-HDA_MMI 59.2 59.1 
SWBD_MFCC-HDA_ML 56.7 56.6 
SWBD_PLP-HDA_ML 55.7 55.6 

 
The values of the fixed point parameters m , v  and e  can be changed over a 

wide range without affecting the recognition accuracy, (Table 12.4 and 12.5). Even 
though the tables show results only for the system CCAPP_MFCC-HDA-
VTLN_MMI, the accuracies of the other tasks are equally affected by m , v  and e . 

Means and variances are linearly quantized to 5 bits, without significant loss of 
accuracy (Table 12.4).  

 

 of fixed-point system 
CCAPP_MFCC-HDA-VTLN_MMI 

 v = 3 v = 4 v = 5 v = 6 v = 7 v = 8 
m = 3 
m = 4 
m = 5 
m = 6 
m = 7 
m = 8 

43.5 
44.1 
45.0 
45.3 
45.7 
45.6 

53.3 
74.4 
76.3 
76.4 
76.5 
76.6 

56.9 
77.8 
80.0 
80.1 
80.2 
80.2 

57.0 
77.6 
80.1 
80.2 
80.4 
80.5 

56.6 
78.0 
80.2 
80.5 
80.6 
80.5 

56.4 
77.8 
80.3 
80.4 
80.5 
80.6 

 

2005; Vasilache 2000), at the cost of additional indirections in the computation. Our 
goal was to quantize HMM means and variances to no more than eight bits to reduce 
the HMM size to a relatively small fraction of total run-time memory. The accuracy 
doesn’t change (within 0.1% ) for 2 6e  (Table 12.5). Accuracy is affected by 
truncation errors for 1e , and by overflows for 7e . Larger e ’s, would require 

Sect. 12.3.4. In any case the decoder operates correctly over a wide range of e, on 
the various tasks. We use 32-bit fixed-point arithmetic, but the good performance for 
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m and  v  (m 5 )

Table 12.3 Accuracies of floating-point and fixed-point decoders (fixed-point parameters: 
8,e 5

Table 12.4 Word accuracy (%)  as function of 

Nonlinear quantization would provide additional compression (Leppänen and Kiss

normalization of the cumulative log-likelihoods in the Viterbi search, as discussed in 
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 e as small as 2 or 1, suggests that the implementation is suitable for 16-bit CPU’s 
with 32-bit accumulators. 

 

)
CCAPP_MFCC-HDA-VTLN_MMI 

e = 0 e = 1 e = 2 e = 3 e = 4 e = 5 e = 6 e = 7 e = 8 

75.6 80.2 80.5 80.5 80.5 80.6 80.5 79.9 69.2 
 

12.5.1 Real-Time on the Device 

The fixed-point recognizer has been benchmarked on the RM task (RM_MFCC-
DD_ML) using these devices: 

 

206 MHz, with 30 MBytes of RAM, and Linux 2.6.6. 
 

 

iar distribution) following the instructions at www.handhelds.org. 
 
The device executables were cross-compiled on the PC (see Fig. 12.4), with the 

GNU “tool-chain” and gcc version 3.4.2. For testing ASR on the device, access to 
executables and to fixed-point speech feature files is through the network link. The 
Unix command “top” shows a run-time memory use for the RM_MFCC-DD_ML of 
7.5 Mbytes (virtual and resident). The HMM (with mean and variance parameters 
stored in one byte) and the pre-compiled transducer require one mega-byte each. 

 

Device:
desk-top phone (206 MHz StrongArm), or
iPAQ hx4700 (624 MHz XScale)

with Linux OS.

Pentium PC,
Linux OS

NetworkDevice:
desk-top phone (206 MHz StrongArm), or
iPAQ hx4700 (624 MHz XScale)

with Linux OS.

Pentium PC,
Linux OS

Network

 

Fig. 12.4 Device development system 

Real-time recognition performance for the RM_MFCC-DD_ML task is shown in 
Fig. 12.5.  

A desk-top  telephone with a StrongARM-1100 CPU, running at  206•  

• 
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e m( 8vTable 12. 5 Word accuracy  (%) as function of  of  fixed-point system 

A Pocket Pc iPAQ hx4700 with an XScale PXA270 CPU, running at 
624 MHz and 64 Mbytes of RAM. We installed the Linux OS (Famil-
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Here the recognition accuracy is plotted as a function of time (normalized by the 

duration of the input audio). The recognition times and the corresponding accuracies 
were measured in various experiments using different beam-width values. Two plots 
are shown for the fixed-point recognizer running either on the 206 MHz StrongARM 
or on the 624 MHz XScale, respectively, both showing recognition in real-time. As 
reference, the third plot shows the accuracy of the floating-point recognizer running 
on the PC. The time axis of this plot was scaled by a factor of 23, to account for the 
speed difference between the 2.4 GHz Pentium and the embedded CPU. The tick 
marks on the plots correspond to specific values of the beam-width, showing that the 
fixed-point implementation provides the same accuracy (within a small difference) as 
the floating-point recognizer over the entire range of beam-widths. 

It should be noted that a program containing floating-point operations can be 
executed on a fixed-point CPU by means of software emulation of the floating-point 
instructions. However, the program will be slower (depending on the number of 
floating-point instructions contained in the code) than the corresponding fixed-point 
implementation. We measured that the floating-point recognizer running on the 
206 MHz StrongARM-1100 CPU is about 40 times slower than the fixed-point im-
plementation (task RM_MFCC-DD_ML). Floating-point emulation can be obtained 
in two ways. In one method (used in our experiments) the compiler generates float-
ing-point instructions that trigger run-time instruction faults: these are caught and 
properly handled by the Linux kernel. In the other method the programmer provides 
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Fig. 12.5 Word accuracy of task RM_MFCC-DD_ML as a function of recognition time 
normalized by input audio time 
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a library of floating-point emulation functions that are invoked at compile-time 
(compiler flag –msoft-float). This second emulation method is generally more effi-
cient than the former (there is no kernel overhead, the actual improvement depends 
on the user-supplied library), but it still is several times slower than the fixed-point 
implementation. 

12.6 Conclusion 

The on-going expansion of network technologies and the need of enhanced user 
interfaces for the client-devices motivate the fixed-point implementation of speech 
recognition algorithms, for operation on CPU’s without floating-point arithmetic 
units. This chapter has reviewed problems and it has proposed methods concerning 
the fixed-point implementation of ASR algorithms. In particular it has described a 
practical approach to the implementation of the frame-synchronous beam-search 
Viterbi decoder, N-grams language models, HMM likelihood computation and mel-
cepstrum front-end, typical of large vocabulary continuous speech recognition 
(LVCSR) systems. The described methods are also useful to prototype ASR applica-
tions in embedded systems. In fact, the decoder fixed-point parameters do not need 
critical task-dependent calibrations, and the language and acoustic models, trained 
with the standard floating-point algorithms, can be automatically ported to the re-
quired fixed-point representation.  

The presented fixed-point implementation of the LVCSR algorithms is as accu-
rate as the floating-point recognizer, in medium and large vocabulary continuous 
speech recognition tasks. The chapter results demonstrate real-time recognition of 
the standard DARPA Resource Management on two embedded CPU’s namely the 
206 MHz StrongARM-1100 and the 624 MHz XScale PXA270. The fixed-point 
implementation enables real-time operation: the floating point recognizer, with float-
ing-point software emulation, is several times slower for the same accuracy. 
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13 
Software Architectures for Networked  
Mobile Speech Applications 

James C. Ferrans and Jonathan Engelsma 

Abstract. We examine architectures for mobile speech applications. These use speech engines 
for synthesizing audio output and for recognizing audio input; a key architectural decision is 
whether to embed these speech engines on the mobile device or to locate them in the network. 
While both approaches have advantages, our focus here is on networked speech application 
architectures. Because user experience with speech is greatly improved when the speech modal-
ity is coupled with a visual modality, mobile speech applications will increasingly tend to be 
multimodal, so speech architectures therefore must support multimodal user interaction. Good 
architectures must reflect commercial reality and be economical, efficient, robust, reliable, and 
scalable. They must leverage existing commercial ecosystems if possible, and we contend that 
speech and multimodal applications must build on both the web model of application develop-
ment and deployment, and the large ecosystem that has grown up around the W3C’s web speech 
standards. 

13.1 Introduction 

In this chapter we explore architectures that support multimodal user interaction on 

engines located in the network instead of on the device. We will briefly survey the 
current state of speech recognition, then describe how voice-only applications have 
rapidly shifted to a standards-based web model of development and deployment. Because 
mobile devices already have very capable visual modalities, and because combining a 
voice and a visual modality greatly improves the user experience on mobile devices, 

ground we present a conceptual model for categorizing multimodal architectures, de-

wide adoption of multimodal systems can occur. Our discussion is informed by a com-
mercial-grade multimodal system developed by Motorola and partner companies. 

13.1.1 Embedded and Distributed Speech Engines 

Mobile devices first supported “speech recognition” via simple template matching: to 
enable voice dialing, the user first trained an embedded template matching algorithm by 
providing it with an audio input sample to associate with each phone book entry. To 

mobile devices. Our particular emphasis is on those architectures that rely on speech 

mobile voice applications will increasingly be multimodal. After providing this back-

scribe several commercial multimodal systems, and discuss the standards needed before 
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voice dial, the user would repeat the name or phrase associated with that contact, and 
the algorithm would compare the new audio sample against the stored waveforms to 
determine the contact to call. This approach is speaker-dependent and suffices for up to 
a few hundred contacts. 

True speech recognition became practical commercially about a decade ago, and 
took two forms. Transcription systems on desktop PCs were speaker-dependent and 
required high-quality microphones and a quiet environment. The user would spend 
perhaps 10 or 15 min reading sample sentences to train the system, which would then 
do a fairly credible job of transcribing what the user said.  

The second form of commercial speech recognition to arrive in the mid to late 
1990s was the network-based speech recognizer. These were reached over circuit-
switched voice calls and were speaker-independent. Instead of being able to transcribe 
all of a single user’s speech based on a relatively large dictionary, network-based 
speech recognizers could understand many users but had to be given strict constraints 
on what to expect them to say. Constraints were specified by context-free grammars 
much like those used to specify programming languages. So while a grammar-based 
speech recognizer achieved speaker-independence by limiting what users can say, a 
transcription base speech recognizer achieved grammar independence by limiting the 
users who can speak with it. 

As mobile devices have become more powerful, it became possible to embed 
grammar-based speech recognition systems on them. They remain less capable than 
their larger cousins running on network-based computers. They typically support vo-
cabularies in the ten to twenty thousand word range, and take up roughly ten megabytes 
of storage. As a rule of thumb, network-based and desktop speech recognizers have 
vocabularies ten times larger than embedded recognizers, and have proportionately 
greater hardware requirements. 

Transcription systems are now just starting to appear on mobile devices, where 
voice entry of SMS messages and email is a very valuable use case. So far these have 
had mixed results. Transcription systems are also moving into network-based server 
farms in configurations that support speaker-independent recognition, which is poten-
tially a very significant development. 

Speech recognition has steadily improved over the years, both in the network and 
on devices. We will see more speaker-independence, less restriction on what people 
can say, and other advances, although challenges remain (Deng and Huang 2004). 

speech from acoustic models, and tended to sound rather unnatural. But these are giv-
ing way to concatenative systems that string together segments of prerecorded speech 
samples to sound far more human. As with speech recognition, speech synthesis sys-
tems based in the network are more advanced than those embedded on mobile devices. 

13.1.2 The Voice Web 

By the mid-1990s, speech technologies had matured to a point where voice applications 
could begin to displace existing touch-tone (DTMF) applications. Voice applications 

which were connected to the public switched telephony network (PSTN) with special-
ized hardware that supported banks of incoming analog lines or digital T1 or E1 lines. 
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Speech synthesis has made parallel gains. Older formant-based systems synthesized 

were initially deployed on proprietary interactive voice response (IVR) systems, 



 

 
 
 
 

In addition to integration with the PSTN, an IVR system contained speech engines, one 
or more voice applications, and also the back-end business logic, database interfaces, 
and legacy application interfaces needed to integrate the voice applications with the 
existing infrastructure. The proprietary nature of IVR systems meant that voice appli-
cations were costly to deploy, and difficult to port to other platforms. 

In the mid 1990s, researchers at AT&T exploring ways to best implement web ser-
vices realized that the web model for application development and delivery was as well 
suited for voice applications as it was for visual ones: it made no difference at all if the 
user was interfacing with microphone and speaker instead of a keyboard and display 
(Atkins et al. 1997). The web model enables and encourages a clean division between 
each application’s interface and its back-end business logic. All the application’s leg-
acy system integration, database access, and business logic could be factored out of the 
IVR platform and onto standard application web servers, using the rich variety of tools 
developed for visual web applications, and leveraging the simplicity of web application 
deployment. 

This factoring required standards that would enable any IVR platform to render the 
same backend web application to callers in the same way. Standard web protocols such 
as HTTP and TCP/IP would be used of course, and resources such as audio files would 
be delivered to the IVR platform the same way as they would to a visual web browser. 
But how would the web application convey voice dialogs to the IVR platform? Some 
researchers proposed augmenting HTML with voice dialog constructs, but most con-
cluded that the unique aspects of voice dialogs—the need to manage temporal flow, 
handle input errors, resolve ambiguous inputs, specify timings, and so on—required a 
new markup language. 

Some early voice markup languages were AT&T’s PML (Atkins et al. 1997), HP’s 
TalkML (Raggett 1999), IBM’s SpeechML, and Motorola’s VoxML (Ladd et al. 
1999). Commercial realities dictated there be only one, so in early 1999 AT&T, IBM, 

standard language. The Forum published VoiceXML 1.0 (Boyer et al. 2000) and then 

2.0 Recommendation (McGlashan et al. 2004). 
The industry eagerly adopted the VoiceXML standards, because they were a first 

major step in the disaggregation of proprietary IVR platforms into interchangeable 
components based on open standards. The IVR platform was transformed into a ge-
neric VoiceXML voice server, and it now rendered standard voice web applications 
hosted on standard application web servers (see Fig. 13.1). Web development and 
deployment technologies, coupled with these new standards, dramatically drove down 
the cost of voice applications, so that today literally billions of calls are processed each 
year by VoiceXML-based voice servers, and applications as large as the North Ameri-
can Directory Assistance service are based on VoiceXML. 

These new voice server platforms have become further commoditized by standards 
closely related to VoiceXML. The first is the Internet Engineering Task Force (IETF) 

interface to speech engines, to make them easily interchangeable (Shanmugham et al. 
2006). Developed with VoiceXML servers in mind, MRCP can be adapted to other 
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Lucent, and Motorola created the VoiceXML Forum, whose purpose was to develop a 

gave it to the World-Wide Web Consortium (W3C) which published the VoiceXML 

Media Resource Control Protocol (MRCP), whose goal is to provide a standard control 
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contexts. It is comparable to HTTP, with each textual request to the speech engines 
specifying the prompts to play and the speech grammars to listen for, and each corre-
sponding textual responses from the speech engines giving the recognition results. 
MRCP makes it far easier to integrate new speech engines into a voice server, to give it 
better speech technologies, customize it for new locales, or simply switch to a lower 
cost supplier. 

Fig. 13.1 Voice web architecture 

 
While MRCP is the protocol for the control of speech engines and other media re-

tocol (SIP) (Rosenberg et al. and Schooler 2002) and RTP are protocols for directing 
audio streams to and from the speech engines (Sutherland and Danielsen 2006).  

The first benefit of VoIP to the voice platform architect is that specialized hardware 
terminating incoming PSTN lines no longer needs to be located inside the voice server 
platform itself. A media gateway can now terminate the lines and convert their time-
division multiplexed (TDM) audio streams into VoIP. This significantly drops the 
hardware costs and makes the overall system more flexible. Without VoIP, the incom-
ing audio channels need to be terminated at a telephony hardware card attached to 
some machine in the voice server, either one running speech engines or one doing 
media gateway-like conversion of the TDM audio into IP packets for processing in 
speech engines on another machine. This means that machines must handle some mul-
tiple of the incoming PSTN line size. In North America this typically means the speech 
engine box has to support one or more 23-channel T1 lines, while in Europe it has to 
handle one or more 31-channel E1 lines. If the box could comfortably handle, say 80 
incoming calls instead of 69 (three T1s) or 62 (two E1s), that extra capacity is wasted. 
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sources, Voice over Internet Protocol (VoIP)  standards like the Session Initiation pro-



 

 
 
 

fewer are needed. And VoIP-based voice platforms can serve pure IP traffic such as 
Skype calls directly, with no need for a media gateway. 

platform to cleanly separate the VoiceXML dialog interpreter from the speech engines 
and place them in various convenient and efficient topologies. For example, platforms 
are usually composed of self-contained “pods” of machines, each of which operates 
independently and handles several hundred callers. A pod supporting two hundred 
callers had to dedicate a speech recognizer channel to each possible incoming call, but 
now with MRCP and VoIP they can easily get by with, say, fifty speech recognizers, 
each of which is shared among many calls. For each prompt and collect cycle, a 
VoiceXML interpreter will use SIP to establish a session to an available speech recog-
nizer and a media player and to set up the RTP audio pathways to each. Then the inter-

When MRCP returns the recognition results are returned to the VoiceXML interpreter, 
the interpreter closes the SIP session to release the speech engines for another caller to 
use. This greatly increases the scalability and flexibility of the voice server platform 
architecture. This efficiency is possible because people interacting with voice applica-
tions spend much more time listening and thinking than they do speaking. 

server platform architectures. VoiceXML cleanly separates the application and busi-
ness logic from the voice platform, MRCP provides a generic “plug-and-play” control 
interface to the speech engines, and VoIP standards enable very flexible internal audio 
pathways in the voice server platform. But the VoiceXML interpreter is still coupled to 
platform-dependent call control operations for accepting incoming calls, placing outgo-

out in a standard way, and this is what CCXML enables (Auburn 2007). A CCXML 
interpreter now becomes part of the platform, and is driven by web pages in the 
CCXML markup language. These tell the interpreter how to establish and tear down 
call legs between two or more human and computer endpoints. The platform then uses 
CCXML to start up sessions and to bring in new participants as needed (as in telecon-
ferences). A VoiceXML interpreter participating in such a session implements its call 
control operations by sending markup to the CCXML interpreter. Platform dependent 
call control interfaces are now encapsulated inside the CCXML interpreter. 

We covered these topics at some length to convey something of the scale and 
commercial importance of the voice web, and to lay groundwork to return to later in 
our discussion. It turns out that this sophisticated network infrastructure, with only 
minor change, can support multimodal applications as well as voice-only applications. 
Multimodal architectures that leverage the VoiceXML-based voice web ecosystem will 
therefore have significant commercial advantages. 

13.1.3 Multimodal User Interfaces 

Mobile devices are physically small, making interaction with the keypad, stylus, and 

ing calls, disconnecting calls, transferring calls, etc. Call control needs to be factored 

preter will use MRCP to tell the engines what to play to the user and what to listen for. 

lematic: we may be wearing gloves, walking on an uneven sidewalk, or trying to read 
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With VoIP, the media gateway ca n deliver exactly the right amount to each box so that 

The combination of MRCP and VoIP also allows the architect of a voice server 

The W3C’s Call Control XML (CCXML) is a final standard used to open up voice 

display relatively difficult. These difficulties are compounded when we have accessi-
bility problems like arthritis or poor eyesight. “Situational impairments” are also prob-
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the screen in bright sunlight. Various user studies quantify these difficulties: a joint 
study at Columbia and Google analyzed one million Google Mobile Search queries and 
found that the average time to enter even short one to four character search terms on a 
mobile keypad was over 40 s, with 30–34 character searches taking over 90 s. Stylus 
input was faster, at 25 s and 50 s respectively (Kamvar and Baluja 2005). 

vices are poor at keypad entry, they are highly optimized for audio interaction, which 
makes voice input especially attractive in mobile search: assuming the speed and accu-
racy of the system is high enough, speech entry of search terms can take just a few 
seconds. 

But pure speech applications have their own issues. We do not want to blurt out 
personal information, and complex spoken output is much harder to remember than 
visual output. Speech interfaces have their own accessibility issues, e.g., for people 
with accents and hearing problems, and they have associated situational impairments 
such as background noise and laryngitis. 

Conveniently, the weaknesses of mobile visual user interfaces are offset by the 
strengths of speech user interfaces: while it is slow and difficult to type (or even spell) 
Albuquerque in a mobile airline application, it is quite fast and easy to say it. And 
likewise, the strengths of visual interfaces offset the weaknesses of speech interfaces: 
visual information often is faster to process and remember than spoken information, 
while disambiguation of speech input can be done quickly with a visual drop-down 
menu of the alternatives (Oviatt 2000). The weaknesses of one modality are offset by 
the strengths of the other, which makes mobile multimodal applications very attractive 
(Suhm et al. 2001). 

13.1.4 Distributed Speech Recognition 

Speech recognizers should be given the highest quality audio input to reduce mis-
recognition, but telephony channel quality is generally not of the best quality. Land-
lines deliver only about 4 kHz of bandwidth, though they are circuit-switched and tend 
not to drop segments of audio. Mobile audio channels use codecs that favor low band-
width over audio fidelity, and they also drop packets. IP telephony channels can also 
drop packets, but their codecs can use more bandwidth. 

2000). They achieve this by moving the earliest stage of audio processing from the 
speech recognizer to the mobile device. This stage converts the raw audio into a digital 
stream of audio samples, called feature vectors. These are encoded in an RTP stream 
transmitted by a UDP/IP data channel to the speech recognizer. In this way channel 
loss is reduced, the fidelity of the audio signal is kept high, and bandwidth is reduced. 
Moreover, DSR front-ends on mobile devices can do special processing to eliminate 
background noise, approximately halving the error rate due to background noise 
(Pearce 2004). 

These benefits are substantial, but compete against alternative approaches such as 
using existing audio channels and accepting higher recognition error rates, or shipping 
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These times are very problematic from a usability standpoint. But while mobile de-

To deliver high-quality audio to speech recognizers over mobile channels, the ETSI 
Aurora group developed the Distributed Speech Recognition (DSR) standards (Pearce 



 

 
 
 

the full raw audio over reliable broadband connections to the speech server. The best 
chance for widespread adoption of DSR will be to pair it with distributed multimodal 
systems, since its benefits are synergistic with those of multimodal systems. 

13.1.5 Multimodal Architectures 

open standards for the mobile phone industry. It consists of mobile operators, device 
manufacturers, software vendors and others. One of their working groups is Browser 
Technologies, and a subgroup called Mobile Application Environment recently pub-
lished a conceptual multimodal architecture (Open Mobile Alliance 2006). 

This architectural view is at a high enough level to cover cases where the speech 
engines are in the network and cases where they are embedded on the device. Figure 
13.2 illustrates the key entities in their architecture. Each user interface modality is 
controlled by a user agent (UA), which has zero or more processing engines (PEs) sup-
porting it. A web browser is a canonical example of a user agent for the visual modal-
ity; one of its processing engines might be its input processing subsystem, another 
processing engine could be the subsystem that renders output using HTML, CSS, and 
so on. Similarly, a VoiceXML-based voice browser is a user agent: its speech recog-
nizer is a processing engine for speech input, and its audio output subsystem, which 
includes speech synthesis, forms a second processing engine. 

Multimodal systems are those that have at least two user agents (modalities). Typi-
cally, they are comprised of a visual modality and a voice modality, but many other 

driven by motion input detected by a three-axis accelerometer and can generate motion 
output by causing a transducer to vibrate at various frequencies: using it you could turn 
pages by flicking the phone left and right, and get feedback when you try to go beyond 
the first or last page through feeling a particular vibrational pattern. A pulse sensor 

user on how intensely to exercise. 

other than speech. A head-mounted sensor can track one’s gaze to determine what is 
being looked at, and therefore forms a sort of ocular input modality. An “emotional” 
input modality is even within reach of current technology: several startups are working 
with low-cost electroencephalogram (EEG) sensors that measure “focus” and “tran-
quility.” At the Consumer Electronics Show in 2006, a startup called NeuroSky dem-
onstrated a multimodal computer game with three modalities: (1) a standard computer 
display showing a 3D world of objects, (2) a head-mounted gaze sensor to pick out 
what object the player is looking at, and (3) a head-mounted “emotion” sensor that 
measured focus and tranquility. The system caused objects looked at with a high de-
gree of focus to be moved closer to the player, and caused objects looked at with tran-
quility to float off the floor (NeuroSky 2007). 

activity, the pulse modality can be linked to an audio output modality that coaches the 

writing recognition and, perhaps, cursive handwritten output. A haptic modality can be 

Some fairly unusual multimodal systems have been developed using modalities 

combinations are possible. For example, we can add in a third modality for hand-

could be part of an input-only modality used in wellness applications: during physical 
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The Open Mobile Alliance (OMA) is a standards group formed in 2002 to develop 
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Fig. 13.2 Conceptual multimodal architecture (OMA) 

 
When using a speech modality, the visual modality need not be a standard form-

based interface or web browser. It could be a game engine (Zyda et al. 2007) or an 
avatar interface. 

Modalities may or may not support both input and output. A voice modality can 

may affect the visual display (i.e., field values are updated) or a typed input value af-

OMA architectural element that effects this coordination: it synchronizes the data and 
execution flow between the user agents. 

Multimodal applications generally do not operate in a vacuum and therefore must 
obtain external information and update external state. A weather application needs to 
look up weather conditions, download spoken weather reports, download radar images 

The OMA architectural element representing the external world is called the backend, 
and the IM communicates with the backend. The backend is generally the web and all 

rapidly to location-based services (Engelsma and Ferrans 2007).  
Returning to the OMA conceptual architecture in Fig. 13.2, there is a need to coor-

have speech recognition but not generate audio prompts. Or the visual modality can be 

fects the active speech recognition grammar. The interaction manager (IM) is the 

used for output but not for input. An example illustrating this point is a Bluetooth 

dinate the user agents (modalities). For instance, the results of a speech recognition 

service discovery application that features speech input and visual output to connect 

and other visuals, and download advertisements. It also might upload user preferences. 
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its applications and services, but in a self-contained system it might be a local web 
server, a set of local files, etc. The minimal backend is probably a static specification 
file defining a multimodal dialog. 

In practice of course a real multimodal system will differ from this ideal view. A 
visual web browser’s processing engines are not necessarily distinctly separable, since 
input and output have close cross linkages. And it is very common for each user agent 
to fetch needed resources directly from the backend rather than use the IM as a client-
side proxy. But overall, the OMA model is a very helpful tool for understanding and 
comparing variant multimodal architectures. 

Looking again at Fig. 13.2, one can draw a horizontal line across it at various 
heights to effect divisions between client and server components. Each possible divi-
sion defines a class of multimodal architectures. Draw the line at the top, with only the 
backend above it, and it describes the family of multimodal architectures with every-
thing resident on the device. Draw the line above the visual modality’s user agent (“UA 
A”), and you describe a family where everything but the visual user agent is in the 
network. We will explore these families in more depth later. 

13.1.6 Simultaneous and Sequential Multimodality 

Multimodal systems are divided into two broad categories depending on whether the 
user interacts with the modes simultaneously or not. In a simultaneous multimodal 
system, more than one mode is active at the same time. In a sequential multimodal 
system only one mode is active at any time. A simultaneous multimodal map applica-
tion could both display a map and play a voice prompt at the same time, and allow 
input by keypad, touch screen, or voice at any time. For instance the user could select a 
“zoom in” menu item or say “zoom in” (Maes and Saraswat 2003). 

A sequential multimodal map application would only have one mode active at a 
time. For example, the user could place a voice call to establish the current location and 
the destination for a trip, hang up, and then start a visual application that downloads 
this information and the turn-by-turn directions for that route. Or in a sequential stock 
trading application the user might again interact first by voice, then later get an SMS or 
multimedia message containing a trade confirmation. Sequential multimodal systems 

complex to architect and implement. 

single input before being given to the application. Take an application for finding out 
movie theater shows and show times. In a non-composite approach the user might first 
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system, inputs from two or more modalities that occur at or close to the same time are 

the various modalities are independent and are presented to the application in the order 

Simultaneous multimodal systems are further subdivided into composite and non-

considered to be a single coordinated input, so they must be composed or “fused” into a 

In a composite approach, the user might draw a circle around a theater push-pin on the map 

composite multimodal systems. In a non-composite multimodal system the inputs from 

offer some of the same advantages as simultaneous multimodal systems, but are less 

that they occur, even if they occur at nearly the same time. In a composite multimodal 

are potentially faster and easier to use, but have not yet been introduced commercially. 

select a theater from a list or a map, and then a moment later say “show times, please.” 

while saying “show times” (Maes and Saraswat 2003). Composite multimodal systems 
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13.1.7 Mode Composition 

The OMA architectural model supports hierarchical decomposition: a user agent can 
itself be decomposed into an interaction manager and two or more lower level user 
agents. For example, consider adding a new voice modality to an existing user interface 
that supports visual output, input from the keypad, input from a virtual keyboard with 
touch screen and stylus, and input by handwriting recognition with the stylus. The 
existing user interface is already multimodal, and so must consist of an interaction 
manager, a couple of lower level user agents, and some internal processing engines 
(e.g., the handwriting recognizer). To add the new voice modality then, one has to add 
the voice modality’s user agent and processing engines, and couple the voice user 
agent to the existing system with a new higher level interaction manager. 

13.2 Classes of Multimodal Architectures 

We now turn to how best to architect a multimodal system. We consider only simulta-
neous multimodality: sequential systems are a kind of “degenerate” case of simultane-
ous multimodality where a relatively lengthy context switch has to take place to shut 
down one mode and activate another. Simultaneous multimodal systems require much 
tighter coordination, and hence are more difficult to architect than sequential multimo-
dal systems. 

Fig. 13.3 Five families of simultaneous multimodal architectures 



 

 
 
 

Architecting a multimodal system is a complex process with no one right solution: 
each family of multimodal architectures has its own comparative advantages. 

Figure 13.3 shows the OMA conceptual multimodal architecture with five alterna-
tive horizontal dividing lines between client and server. Each division identifies a fam-
ily of simultaneous multimodal architectures. We consider only the very common case 
of a visual modality plus a voice modality: other architectural families are possible 
when combining other modalities. 

13.2.1 Fully Embedded or “Fat Client” (a) 

Let’s consider each class in turn. First we consider the case where every component is 
placed on the mobile device. 

Dividing line (a) places only the backend on the server.1 All other components are 
on the mobile client: the visual modality, the voice modality, and the interaction man-
ager linking them together. This approach is necessary if multimodal applications must 
operate when the device is not connected to a network, but it requires a fairly powerful 
device. On the surface it would seem to be the class of multimodal architecture that 
makes the least use of network bandwidth, but that depends in large part how self-
contained the speech applications are. An embedded driving direction application with 
voice entry of addresses would need to download huge speech grammar files for each 
town or postal code, but a networked driving direction application would only have to 
send a relatively short audio stream up to the voice server. 

One instance of this architecture is a prototype created by IBM and Opera on a 
Windows Mobile handset (Kennedy 2005). In this prototype, the visual user agent is 

2.0 interpreter. The processing engines for the voice user agent are from IBM (embed-
ded ViaVoice). The interaction manager is IBM client middleware. 

This prototype’s demonstration application was voice-activated local search. 
Search terms were entered by voice, and after each term was recognized on the device, 
it was sent to the Yahoo local search web service to obtain the results. Mobile local 
search is a very compelling multimodal application: it is valuable to people, requires 
rich visual output, and works far better with voice input than with keypad input. The 

clean unification of XHTML for the visual modality and VoiceXML for the voice 
modality (Axelsson et al. 2004). 

13.2.2 Distributed Processing Engines (b) 

Dividing line (b) defines the class of multimodal architectures where the speech en-
gines are distributed to a network-based voice server, but nothing else is. (A variant on 

                                                           
 
 
 
1 Here and subsequently we gloss over the special, and relatively rare case where 

the application backend is entirely local to the client device. 

289Software Architectures for Networked Mobile Speech Applications

IBM application is authored in the XHTML+Voice Profile  (X+V) markup language, a 

the Opera XHTML browser, and the voice user agent is an IBM embedded VoiceXML 
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this would be to distribute the speech recognizer, but leave the speech synthesizer on 
the device.) The natural protocol to communicate with distributed speech engines is 
MRCP, which as described above is the IETF’s textual protocol, patterned after HTTP, 
that sends prompt-and-collect requests to the speech engines and gets recognition re-

There are some very highly significant advantages to distributing speech engines. If 
they are on the device they take up substantial memory, even though only a minority of 
device owners may be using them. They are also compute-intensive, which can make 
battery drain an issue (Delaney et al. 2005). Administration is far easier if speech engines 
are on the network: it is much more efficient to patch the speech recognizer on a thou-
sand voice servers than ten million mobile devices. The speech application itself is 
much easier to tune and update in a distributed architecture: usability experts can listen 

on scores and hundreds of different types of mobile device. 
A final advantage of distributing speech engines to the network is that it can greatly 

minimize network traffic and delay in many common scenarios. The speech recognizer 
needs to have both the audio to recognize, and compiled speech recognition grammars 
to tell it what to look for. The audio originates on the handset, while the grammars 
originate in the backend application. There are two pathways into the speech recog-
nizer: the inexpensive high-speed wired network, or the expensive, slower-speed wire-
less network. The relative size of the audio and the speech grammars, the frequency of 
change in the speech grammars, and the speeds of the two networks all must be taken 
into account by the architect in deciding where to place the speech recognizers.  

One anti-pattern to avoid is using an embedded speech recognizer driven by huge 
frequently changing speech grammars generated in the network. For example, if the 
user is browsing an online music store with five million songs divided into a hundred 
categories of 50,000 titles per category, with new titles added each day, then each day 
and for each category the user triggers a speech recognition grammar download of 
perhaps five megabytes, and an embedded grammar compilation step that together 

up a couple of kilobytes of DSR-compressed audio to the voice server: the results will 
be back in a couple of seconds, and the battery will barely be affected. This tradeoff 
turns out to be fairly common: think of mobile search, map applications with points of 
interest being added and removed each day, corporate directory access, access to back 
end enterprise data, looking for auctions on eBay, ordering books from Amazon, and 
so on.2  

                                                           
 
 
 
2 One optimization would be to do the grammar compilation in the network instead 

of the device, but then each application needs to have the grammar compiler for each 
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sults in the corresponding responses (Shanmugham et al. 2006). Before we talk about

revise prompts and tune speech grammars. Testing itself is much easier, since only one 
to recorded sessions to find places where users run into difficulties, and use that data to 

benefits of placing speech engines in the network. 

set of speech engines must be tested, not a multiplicity of speech engines and versions 

this family of architectures in particular, we will take a lengthy discursion into the

might take 5–10 min and substantial battery power. In this case, it is far better to send 



 

 
 
 
 

On the other hand, if the application backend is on the mobile device, it is better to 
do the speech recognition on the device, otherwise the device would have to generate a 
potentially large speech grammar for the network-based speech recognizer. 

speech recognition should be done at the point closest to the location of the speech 

systems, which leverage local recognition for local applications, and remote recogni-
tion for network-based applications.3 This is similar to the data-intensive supercomput-
ing principle of locating computation where the data resides, rather than moving the 
data to the point of computation (Bryant 2007). This insight has also long been known 
in the area of query processing in distributed databases.  

Returning from our discursion into the virtues of distributed speech engines, the 
Distributed Processing Engines family of distributed multimodal architectures has a 
significant disadvantage in that it requires MRCP or a protocol at the same level to go 
over the wireless network to the server hosting the speech engines. This is relatively 
expensive in terms of bandwidth and round trips: MRCP was designed to be a lower-
level protocol used within a voice server platform and hence it has many more, and 
much larger messages than a higher level protocol would have. 

13.2.3 Thin Client (d) 

We will return to architectural family (c) after we discuss (d) and (e).Family (d) is the 
“thin client” multimodal architecture. This places the full voice modality in the net-
work, along with the interaction manager. This approach is fairly balanced for contem-
porary mobile devices and networks. It turns out to be second best in terms of network 
bandwidth, but there can be some awkwardness in writing applications where some 
logic has to be broken out into an explicit interaction manager off in the network. But 
overall it shares many virtues with family (c), which we believe edges it out in desir-
ability. 

13.2.4 Remote Visual Interface (e) 

With the dividing line drawn beneath the visual user agent, as in (e), we have an archi-
tecture class where everything but the visual user interface rendering and the input 
subsystem is distributed to the server. A protocol for driving a remote user interface 

                                                                                                                                           
 

 
 

possible mobile device configuration, and know each device’s configuration, a com-
plex task. Even if this reduced data transmission, battery drain, and elapsed time by an 
order of magnitude, the resulting delay would still make the experience very painful for 
the user. 

3 When high-quality embedded transcription engines become practical, and applica-
tion developers take advantage of them, the dynamics change: transcription systems do 
not use speech grammars. 
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grammar being listened for. This provides a rational for hybrid speech recognition 

This tradeoff is captured in the Pearce Principle (Pearce 2002), which states that 
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needs to be developed, and the mobile device just contains a module that does the 
lower levels of the visual user interface. Most of the logic driving the visual user inter-
face is in the network.  

This is the same approach that the X Window System takes. One instantiation of 
the Remote Visual Interface architecture would be to put an X Server on the mobile 
device and drive it from an X Client in the network. They would communicate with the 
X11 protocol. In this approach, the X Server corresponds to the OMA visual process-
ing engines and the X client corresponds to the OMA visual user agent.  

Auvo, an early multimodal startup (ca. 2000–2002), used this architecture, but un-
fortunately they were years ahead of the market and ran out of funding. 

The main drawback of remoting the visual user interface over a mobile data net-
work is of course bandwidth and latency. Bandwidth is becoming less and less impor-
tant, but a protocol that introduces many round trip delays will be less useful than one 
that has few delays. Another drawback is that this architecture makes it very hard to 
expose the full power of the native visual user interfaces on each device: it almost 
invariably presupposes that each device runs a client that understands a “least common 
denominator” protocol and API. 

13.2.5 “Pudgy” Client (c) 

The final major family of multimodal architectures is described by dividing line (c), the 
so-called “Pudgy” Client. This is a slight variation on Thin Client, moving the interac-
tion manager from the server over to the mobile client. This makes it a bit fatter than 
Thin Client, hence the name. 

This approach is more optimal in terms of network usage (the interaction manager 
has somewhat more work to do to drive the visual interface than the voice interface, 
and hence should be located with it). It is more intuitive for developers, who tend to 
view the mobile client as the proper locus of control, just as it is for purely visual ap-
plications. The notion that voice is a sort of supplemental input method under control 
of the client software has proven to be especially appealing. We cover an implementa-
tion of Pudgy Client at length in Sect. 13.3. 

13.2.6 Discussion 

We have just described five main families of distributed architectures that support 
simultaneous multimodal interaction. 

The Fully Embedded architecture is well-suited for more powerful devices and ap-
plications that reside on the device itself. It has trouble running applications that re-
quire significant fetching of speech grammars from a network-based source, since 
these can take very significant amounts of bandwidth and time to download and com-
pile. Embedded speech engines lead to various administration difficulties, and also 
make voice application testing more complex and problematic. Nevertheless, devices 
and networks are both gaining in power and speed, diminishing some of these difficul-
ties. As device-based speech recognition becomes more transcription-based (open 
vocabulary), the need for speech grammars will diminish. We therefore believe that 
this will be an effective architecture going forward. 
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The four remaining approaches leverage network speech engines and do not share 
many of the above limitations. On the other hand, they cannot be used in a discon-
nected mode. Of the four, Distributed Processing Engines requires the client to exercise 
detailed low-level control and therefore requires more network message round trips, 
introducing delay. The Remote User Interface also requires a lot of network traffic, and 
pushes off on the multimodal server a lot of user interface control logic, which means 
that the server has to support a single generic abstract visual user interface with least 
common denominator functionality, and that therefore the native user interface capa-
bilities of each device cannot be fully leveraged. 

The Thin Client and Pudgy client architectures are both nice balances that minimize 
network traffic and are easy to develop applications for. Of the two we have a moder-
ate preference for Pudgy: it is more natural to have the interaction management done 
close to the visual modality than the voice modality, as the client application is the 
natural locus of control. 

13.3 The “Plus V” Distributed Multimodal Architecture 

Motorola began working on a distributed multimodal system connected to a standard 

Client. A major motivating factor was a series of unpublished simulation studies  
we did to evaluate the architectural families. The goal was to determine bandwidth and 
latency costs of each approach on GPRS networks. We found that Pudgy Client was 
much better overall than the others we tested. Our subsequent implementations con-

0.8 s and 2.0 s between the end of speech and the visual display of the recognition 

networks. This speed is due to Pudgy’s low messaging requirements, its terse binary 
message format, and the use of the DSR codec, which takes only 5.6 kbps of band-
width, on the audio channel. 

In this approach, the client is fully in charge of the interaction. The networked 
VoiceXML server is under its control and merely adds the voice modality to the inter-
action, hence the architecture’s more formal name “Plus V.” A key advantage of Plus 

another that connects a C++ application using Qt user interface on Linux handsets to 
the voice server (Qt+V), and a third that connects a version of the Konqueror XHTML 

interface can be supported: for instance the Torque 3D game engine could be used in a 
“Torque+V.” This agnosticism to the graphical user interface is a strong advantage.  
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connects a Java J2ME  MIDlet on the handset to the networked voice server (J+V), 

to the VoiceXML Form Interpretation Algorithm, so the voice dialog actually drove the 

firmed this: on the 2.5G GPRS and the 2G iDEN networks, our system takes between 

visual dialog as a side effect. We quickly found this to be awkward and unnatural, 
as developers believed interaction management belonged in the client device. 

explicitly made a module in the client software. This was an implementation of Pudgy 

browser using the X+V multimodal markup language (Axelsson et al. 2004). Any visual 

V is that it supports any visual user interface. We have created three instances: one that 

was primarily Thin Client (d), with the interaction manager consisting of a few extensions 

result, substantially faster than even today’s multimodal systems running on 3G data 

VoiceXML server in the network in 2001 (Pearce et al. 2005). Our initial architecture

In early 2002 we tried another approach, where the interaction management was 
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Fig. 13.4 Plus V multimodal architecture 

Figure 13.4 shows the Plus V multimodal architecture at the next level of detail. 
The voice server is a very slightly modified VoiceXML server. We started with the 
commercial SandCherry Voice Platform (see www.sandcherry.com) and dropped in 
the commercial Motorola VoxGateway VoiceXML 2.0/2.1 interpreter (Ferrans 2003) 
and the Nuance OSR 3.0 speech recognizer, which supports the DSR codec. 

On the client we have the standard codec for audio output, a DSR front end to do 
the encoding of the audio, a native user interface, and one of the Plus V implementa-
tions as described above. 

In the OMA terminology, the visual user interface and the VoiceXML voice 
browser are the user agents, the speech engines are the voice modality’s processing 
engines, and the visual modality’s processing engines are elements of the graphical 
user interface software. The interaction manager is represented by the Plus V device-
side framework (the client application can do some interaction management).  

The client drives the voice server using the Distributed Multimodal Synchroniza-
tion Protocol (Engelsma and Cross 2007) over a reliable TCP/IP channel. The client 
tells the voice server which VoiceXML page to load and which VoiceXML dialog on 
that page to run. Once the dialog is running, if the user speaks to the system, the voice 
server uses DMSP to convey the recognition result back to the client. If the user types, 
the Plus V Framework sends the new field value to the voice server via DMSP, where 
it causes the VoiceXML dialog to advance. If the user scrolls through the visual form’s 
fields, the client also tells the voice server the new focus field. This level of coordina-
tion is necessary because each visual field may have a distinct audio prompt introduc-
ing it, and each field typically also has a speech grammar associated with it. Mixed 
initiative dialogs are also supported by this approach. DMSP is currently an IETF 
Draft, and for performance it seeks to minimize messages, message size, and round 
trips. The message format is a very condensed binary format, with an optional XML 
format for use when message size is not an issue. 

The efficiency of DMSP and of the DSR speech recognition codec makes Plus V 
the fastest distributed multimodal architecture we are aware of in terms of recognition 
response latency. As mentioned above the time between the raising of the push-to-talk 
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key and visual confirmation of the user’s speech runs between 0.8 s and 2.0 s on the 2G 
iDEN network, and 1.0 s and 3.0 s on the 2.5G GPRS network. These times are also at 
least as fast as the embedded speech approaches we are familiar with. 

The DMSP protocol has its client endpoint inside the Plus V Framework; its voice 
server endpoint is the DMSP Controller. The Controller in turn has some hooks inside 
the VoiceXML interpreter’s main loop: the Form Interpretation Algorithm (FIA), 
which determines what field to prompt and collect at each iteration. The FIA just needs 
to stop and check for commands coming from the client, and if it is in its listen phase 
when control commands come in, it needs to break out of that speech recognition to see 
what to do next. It was not at all hard to make this modification: we estimate that the 
effort needed to multimodal-enable a VoiceXML interpreter is at most 2% or 3% of the 
effort needed to write that interpreter.  

13.4 Other Distributed Multimodal Architectures 

Plus V is by no means the only way to architect a multimodal system. In this section 
we briefly sketch several other commercial distributed architectures. The goal is to 
show how varied the solutions are, not to exhaustively enumerate them. 

13.4.1 Video Interactive Services with VoiceXML 

In 2005 several people realized that VoiceXML could be adapted to video telephony 
quite easily. It already supported the playback of recorded audio, identified by URL 
and media type. It also already supported the recording of audio, of a given media type, 
and the posting of that audio to a web server. Why not plumb the voice platform to 
carry mixed audio and video streams via SIP and RTP, link those streams to the mobile 
handset, and support the idea of video prompts and video recordings? 

This turned out to be relatively straightforward, and the only impact on VoiceXML 
itself was a desire to generalize the name of the “audio” prompt element. 

The resulting platforms support multimodal applications that combine voice and 
video modalities. A video answering machine application can play different video 
prompts based on the caller, and take video messages from callers. Support applica-
tions can now show videos of procedures and accept videos showing problems to sup-
port representatives. Many other interesting multimodal applications are enabled by 
this approach (Burke and McGlashan 2006). 

Because the modes used are voice and video, these systems do not fit neatly into 
our architectural families, but it is somewhat analogous to the Remote User Interface 
(e). The drawbacks of the Remote UI approach do not apply when using a video user 
interface instead of a graphical user interface: video playback is very standard and not 
highly interactive. 

13.4.2 Multimodal for Set-Top Boxes 

PromptU (www.promptu.com) began a few years ago as a company specializing in 
using voice to interact with the electronic program guide (EPG) displayed on televi-
sions via the cable operator’s set-top boxes. The EPG application runs on the head-end 
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equipment in the operator’s infrastructure, and is controlled by keys on the television 
remote. 

In the PromptU system, the remote is augmented by a microphone and a push-to-
talk button. When the user speaks (“Find actress Penelope Cruz”), the audio from the 
remote goes to the set-top box, where it is encoded by an Aurora DSR Front End 
(Pearce 2000) and sent up to a voice server located in the head-end. The voice server 
runs an application that maps the voice commands into actions on the EPG, and the 
output is sent back to the set-top box for display on the television. 

More recently, PromptU has been moving into the general mobile multimodal  
application space, supporting music download, ring tones, games, and so on. The 
PromptU architecture is in the Thin Client family. 

13.4.3 Bare Minimum Mobile Voice Search 

Plus V was developed at a mobile handset company, where we had luxuries to do 
things that others cannot. We wrote DSR front end encoders for DSP chips, ensured 
that audio packets could be streamed using RTP, and even influenced the future MIDP 
3.0 J2ME implementation. 

many handsets as possible would have to start from a different point, deploying a sys-
tem that made the least possible assumptions about those handsets, and then influenc-
ing the industry to add the sort of enablers that we put into Plus V. Let’s assume this 
company is doing a mobile multimodal search application. 

By necessity, this company would choose a distributed architecture, since that off-
loads a huge amount of complexity and variability from the mobile devices. On the 

tion would present the visual interface, use the JSR 135 Mobile Media API to gather 
voice input, and use HTTP to post that audio up to the server. Along with the audio, the 
HTTP request would contain the location, from GPS or the carrier’s cell tower ID 
information. The request might contain a cookie identifying the user, and perhaps other 
contextual information. 

On the server receiving this request runs the server side of their application. This 
first would send the audio over to a speech server for recognition, a process that proba-
bly would take into account the user’s desired search location and radius. The speech 
server sends back the results, and the server-side search application feeds them to the 
existing web services API for the search service. At the same time the server-side ap-
plication could interact with an ad server to get contextually relevant advertising to 
show the user. The server-side application then sends back the HTTP response with the 
search results, advertisements, and other response information. 

The architecture described is not highly optimized or general, but it can be im-
proved on handsets that support streamed audio, and if the application is successful, the 
industry will quickly try to add enablers to improve the user experience. 
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A company that wanted to get a multimodal application out to its customers on as 

client they would probably select Java J2ME for its ubiquit y. Their Java client applica-



 

 
 
 

13.4.4 A Transcription-Based Architecture 

Our last example architecture is from Mobeus, a startup just coming out of stealth 
mode in May 2007 (http://www.podtech.net/scobleshow/search/Mobeus). They have 
server side technology for doing speaker-independent transcription, which is ideal for 
mobile multimodal search applications, voice to SMS and email applications and so on. 
Their view of how this should be integrated with a visual user interface on the client is 
radically simple: provide a text entry widget connected to this transcription server, plus 
controls for speaking into it and editing the result to correct any errors or select from 
the “n-best” alternatives for each word. The results are very impressive, and while 
again it may not be the fastest or most general system (audio prompting is not ad-
dressed, e.g.), at this stage these sorts of approaches can unlock a lot of value. 

13.5 Toward a Commercial Ecosystem 

standards since early 2002. Progress has been slow mainly because of a lack of early 
proprietary implementations, but as we have seen above this is soon going to change. 
As the value of multimodal systems becomes apparent, there will be a renewed push to 
create interoperability standards to grow the industry. Where do things stand today? 

The W3C Voice Browser and Multimodal Interaction working groups (www.w3.org) 

State Chart XML (SCXML) which is closely patterned on David Harel’s State Chart 

to attract developers from ad hoc approaches. 
The W3C is also working to “modularize” VoiceXML into a subset appropriate for  

to do call control operations like disconnect in a multimodal configuration). They are 
also revising VoiceXML’s stand-alone event model to allow control events to come in 
from external sources, a task necessary if VoiceXML interpreters need to be controlled 
by interaction managers. 

scribed at a very high level one such control protocol between the interaction manager 

The 3GPP, an industry standards body focused on GSM standards, has approved 
the use of DSR for multimodal applications, and 3GPP2, the parallel organization for 
CDMA standards, is also considering it. DSR should offer continued incremental bene-
fits even in a world of huge bandwidth. 

Other standards would be needed to mature this ecosystem. There needs to be a 
standard for how a control protocol like DMSP drives a VoiceXML interpreter, perhaps a 
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The World-Wide Web Consortium  (W3C) has been working in the area of multimodal 

framework that integrates the two markup languages will be a markup language called 
(Axelsson 2004) in that a combination of XHTML and VoiceXML is called for. The 

The IETF is to protocols what the W3C is to web markup languages. We have de-

and user agents: DMSP (Engelsma and Cross 2007) which has been submitted to the 

formalism (Harel 1987). The challenge will be to create a language accessible enough 

IETF as an Internet Draft. The outcome of this submittal is not yet clear, but it will 

are working on a future markup language. This will be philosophically similar to X+V 

probably take the upcoming impetus of successful proprietary multimodal systems to 

use in a multimodal system (for instance it makes no sense for the executed VoiceXML 

push this forward. 
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standard for authoring languages other than the W3C’s StateChart-based one (e.g., for 
Java or C++ application authoring), standard APIs for integrating XHTML browsers 
on the mobile device, and so on. 

13.6 Conclusion 

Multimodal user interaction is very natural and is about to become a common part of 
our lives. Systems like our Plus V platform demonstrate conclusively that multimodal 
technology is practical, fast, and efficient even on older mobile data networks. Speech 
recognition has advanced to the point where complex and commercially important 
applications like mobile voice search, voice media search, and voice to SMS and email 
transcription can be implemented.  

Commercial interest from companies like Google, Microsoft, and Nuance is very 

Google will merge their new 1.800.GOOG411 voice directory assistance application in 
with their visual Google Local Mobile. Microsoft paid $800 million in early 2007 to 
acquire TellMe for their deep experience in voice directory assistance and driving 
directions. Nuance has acquired at least two companies with multimodal capabilities, 
Lobby7 and Mobile Voice Control, and acquired BeVocal for their application hosting 
capability. Japanese mobile operator KDDI deployed the EZ Navi Walk pedestrian 
navigation multimodal application (with DSR) in late 2006. Other players like Yahoo, 
PromptU, V-Enable, Kirusa, and VoiceBox are entering this arena. All of these are 
deploying distributed multimodal architectures. 

This wide range of proprietary architectures will inform standards efforts at the 
W3C and elsewhere. Multimodal interaction will remain a fruitful area of research, 
especially as other innovative modalities are developed. 
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14 
Speech Recognition in Mobile Phones 

Imre Varga and Imre Kiss 

 

Abstract. Speech input implemented in voice user interface (voice UI) plays an important role 
in enhancing the usability of small portable devices, such as mobile phones. In these devices 
more traditional ways of interaction (e.g. keyboard and display) are limited by small size, 
battery life and cost. Speech is considered as a natural way of interaction for man-machine 
interfaces. After decades of research and development, voice UIs are becoming widely 
deployed and accepted in commercial applications. It is expected that the global proliferation 
of embedded devices will further strengthen this trend in the coming years. A core technology 
enabler of voice UIs is automatic speech recognition (ASR). Example applications in mobile 
phones relying on embedded ASR are name dialling, phone book search, command-and-
control and more recently large vocabulary dictation. In the mobile context several tech-
nological challenges have to be overcome concerning ambient noise in the environment, 
constraints of available hardware platforms and cost limitations, and necessity for wide 
language coverage. In addition, mobile ASR systems need to achieve a virtually perfect per-
formance level for user acceptance. This chapter reviews the application of embedded ASR in 
mobile phones, and describes specific issues related to language development, noise robust-
ness and embedded implementation and platforms. Several practical solutions are presented 
throughout the chapter with supporting experimental results. 

14.1 Introduction 

As in virtually every area, manufacturers of mobile phones are interested to enrich 
their product portfolio for offering added value to end users. This includes additional 
features as well as improving existing ones. For this, clear user benefit is balanced 
with additional costs on the manufacturing side. In certain market segments end 
users may refuse to accept an increase in price even if the improvement of the feature 
set makes the product much more attractive. 

ASR is considered as a comfortable input modality of man-machine-interfaces. 
Meeting the expectation of end users fully is the target that we mean by the term 
natural man-machine-interface. 

Some typical applications covered by ASR are supported by other means already. 
Indeed, speech input is an alternative method of user interface in mobile phones 
which compares and measures against existing methods like keypad or joystick. That 
is the main reason why it is not obvious how to implement ASR technology in a 
generally accepted and successful way in consumer products like mobile phones. 
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Attracting end users also includes meeting the user expectation of virtually perfect 
accuracy of ASR—they expect a similar level of perfection to a human. ASR 
demonstrated significant advances during the past decade and achieved excel-ent 
performance in certain application areas. However, it is still has not yet reached the 
level of human performance. 

Speech input in mobile phones seems especially attractive in combination with 
other features, e.g. hands-free operation. Various factors increase the importance of 
hands free. One of them is the introduction of new, mobile multimedia applications: 
for example, video telephony requires hands-free mode. A further aspect is the use of 
mobile phones in cars, which has been recognized as dangerous due to conventional 
methods of user interface. Violation of basic traffic safety requirements motivated 
many countries to prohibit the use of mobile phones by law while driving. 

On the other hand, the typical acoustic environment when using mobile phones, 
especially in hands-free operation, makes it much more difficult to achieve high ASR 
accuracy. Indeed, noise robustness in adverse conditions is one of the key issues of 
designing ASR for mobile phones. 

Some further specialities of ASR in mobile phones are important to mention as 
well. Miniaturization resulted in keypads shrunk in size making the role of speech 
input more important. Terminals without any keypad may stand at the end of an 
evolution path where voice control is the only method of user control. Support of 
multiple languages is needed in mobile phones. Cost sensitivity represents a further 
important aspect in consumer product implementation. This includes hardware cost, 
such as fixed-point DSP and memory and implementation cost components as part of 
the unit end price. 

Based on the elaboration above, we can state the challenge we are facing is to 
achieve a high quality (virtually error-free) ASR under adverse conditions at virtu-
ally no extra costs for the user, competing with existing and already accepted user 
interface techniques—all at the same time. Even though this is an extremely tall 
order, in certain practical applications this challenge can be coped with successfully 
(Varga et al. 2002). 

14.2 Applications of Speech Recognition for Mobile Phones 

The various applications of speech recognition in mobile phones make the handling 
of the devices more user-friendly. First we address the basic functionalities. 

The name dialling feature seems very useful since it supports the basic function-
ality of a mobile phone, i.e., to place a call. After activation of the function, the user 
says the name of the person to be called. This implies immediate action. For name 
dialling, a pre-defined register of names with associated phone numbers (contact 
database) is needed. A less user-friendly (although simpler) method is digit dialling 
where the user must have the phone number of the person to be called in mind and 
speaks the digits one after the other. A more comfortable variant of digit dialling is 
natural number dialling (22). Name and digit dialling can be implemented directly in 
the phone or in a car kit associated with the phone. 
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Command-and-control improves the user experience by flattening complex menu 
structures. This makes the multi-step approach of navigation by keypad or joystick 
super-fluous. The user just inputs the desired action which is passed to an interpreter 
causing the action performed. Voice control is especially attractive in combination 
with hands-free operation. 

Speech-to-text or dictation is fundamentally different in scope since this func-
tionality is not basic to mobile phones originally. Dictation systems exist for a long 
time for desktop computers and their performance is continuously improving. How-
ever, these systems have been mostly successful in applications where dictation has 
already been an established practice, such as legal or medical domains (Fenn 2005). 
For general-purpose text entry ASR systems are more likely to succeed in the mobile 
environment, where there is a stronger motivation for users to adopt the new 
technology due to cumbersome traditional input mechanisms. ASR for dictation may 
be fully implemented in the network with speech transmitted over the wireless 
network by usual transmission techniques, or be partly located in the mobile phone 
and partly in the network. The latter approach is usually referred to as distributed 
speech recognition (DSR). For more details see Chap. 5 of this book. Alternatively, 
large vocabulary dictation systems can also be implemented in mobile phones as 
mobile computing platforms become more and more powerful. 

Next, we review the basic technologies relevant for the above mentioned appli-
cations. Isolated word recognition means the capability of recognizing a single word 
(the command). Typically, isolated word recognition is useful for name dialling and 

like) speaking style. The complexity is rather low, both in terms of algorithmic 
processing power and vocabulary size (below 100 in most cases). 

Keyword spotting allows for a much more user-friendly operation because the 
user is not required to speak isolated words anymore. The speaker may speak natural 
phrases which contain dedicated keyword(s), the actual command(s). The speech 
recognizer separates the useful information (keyword) from the non-useful informa-
tion (classified as garbage). The vocabulary size can be kept still restricted as with 
isolated word recognition, up to 100 words. 

Keyword spotting is hence a kind of connected word recognition. The term 
connected word recognition stands in contrast to isolated word recognition. It refers 
to a technique which allows the speaker to speak several keywords in a connected 
manner. Connected word recognition greatly improves the value of the user interface 
feature. The difficulty is that words are pronounced differently when connected than 
when separated which causes an increase of the algorithmic complexity. 

Continuous speech recognition allows natural speaking style by requiring no 
pauses between words. The difference to keyword spotting from technical point of 
view is the vocabulary size. Large vocabulary makes dictation possible. On the other 
hand, the computing complexity and memory requirements increase significantly. 

A further dimension to consider is the distinction between speaker-dependent, 
speaker-independent and speaker-adapted systems. In a speaker-dependent system, 

 
the user may include any new word in the vocabulary at the expense of training. In  

command-and-control applications; however, it results in a rather artificial (machine-
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this way, the language and pronunciation behaviour of the speaker are automatically 
taken into account. Speaker-dependent recognition is independent of languages, 
dialects, and pronunciations. Examples of speaker-dependent ASR are name dialling 
applications. Dynamic Time Warping (DTW) (Ning et al. 2002) and Hidden Markov 
Model (HMM) based (Laurila 1997) speaker dependent name diallers have been 
widely used in mobiles. 

The need for training in speaker-dependent systems impacts their usability 
greatly. Users may not be willing to train the system, or may forget the voice tags 
trained. Speaker-independent systems overcome this difficulty by pre-training speech 
models on large amounts of training data and they are predominantly HMM-based. 
To cope with various languages, dialects, speaker behaviours, high efforts are spent 
in the algorithmic design and pre-training of HMM-based speaker-independent sys-
tems. In order to achieve a good performance over a wide range of speaker variations, 
databases in various languages containing a large set of speech samples taken from 
different speakers in different conditions are needed for pre-training (Höge 2000). 

The combination of speaker-independent and speaker-dependent recognizers 
leverages the benefits of both systems: user-friendliness due to pre-trained vocabulary 
and high performance due to user-trained additions to the vocabulary. Furthermore, 
advanced speaker independent systems support on-the-fly adaptation of the acoustic 
models. These speaker-adaptive systems maximize the accuracy of the system for 
user and environment variations, while maintaining a low level of user interaction. 
Adaptation is typically carried out during the normal course of use, in a transparent 
manner to the user. Table 14.1 illustrates some typical mobile ASR applications in 
function of speech recognizer capabilities.  
 
UIs provide convenience and ease of use as an alternative to small sized keypad  
and display. In addition, in developing regions, with low rate of literacy among the 

 
Table 14.1 Typical applications in terms of speech recognition capabilities 

 

 

population, voice (and graphical) UIs lower the usage entry barrier for people. Many 

In the context of ASR application in mobile phones we emphasize that voice  
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 Isolated word Keyword spotting Continuous 
Speaker 
independent (SI) 

Basic digit or natural 
number dialling, 
basic command-and-
control 

Flexible 
command-and-
control 

SMS and/or 
Email dictation 

Speaker 
dependent (SD) 

Basic name dialling High accuracy 
voice activation 

n.a. 

Mix of SI and SD 
and/or speaker 
adaptive 

Advanced digit and 
name (or natural 
number and name) 
dialling 

Flexible digit 
dialling, name 
dialling, and 
command-and-
control 

High accuracy 
SMS and/or 
email dictation 
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semi-literate or illiterate users’ first experience with voice communication and/or the 
Internet may be a portable mobile device. Since small portable devices, such as 
mobile phones and multimedia computers are produced in large volumes for a global 
market, it is essential to offer them with a wide set of languages. 

There are two important factors that make this challenging. First, as already 
mentioned, speech recognition systems rely on statistical techniques that usually 
require large training corpora for providing sufficient performance. This includes 
both textual and acoustic databases. For some languages the necessary language 
resources are readily available. For some others, they may be difficult to find or 
collect. Second, as in practical configurations a set of languages needs to be sup-
ported by a mobile device, several languages have to coexist in the limited memory 
space. Therefore, a suitably compact representation has to be developed—we address 
these issues next. 

14.3 Multilinguality and Language Support 

In the context of this paragraph, we refer to multilinguality as simultaneous support for 
several languages for ASR and TTS. Multilingual systems typically also possess the 
capability of easy adaptation to unseen (or scarcely resourced) languages (Schultz 
and Waibel 2000, 2001).  

14.3.1 Multilingual Speaker Independent Name Dialing 

In this section we discuss multilinguality in the context of a typical embedded app-
lication: speaker independent name dialling. A typical architecture for a multilingual 
isolated word speech recognition engine is shown in Fig. 14.1. The system consists 
of the following modules: text-based language identification (LID), pronunciation 
modelling or text-to-phoneme conversion (T2P), acoustic modelling (AM) and isolated 
word decoder (DEC). 

Written entries (e.g., name tags from a contact database) are first fed into language 
identification, which assigns the most likely languages to the word in question. Lan-
guage identification may be based on e.g., statistical models using neural networks or 
N-gram probabilities. Normally the character set used in the entries also limits the 
possible language choices. 

Next, the words and language tags are inputted to the T2P module that produces 
the respective pronunciations for the word. To account for possible LID errors, as 
well as the possible ambiguity of some names (e.g., Peter may be an English or 
Swedish name) several pronunciation variants are provided for a given word. The 
methods applicable for T2P depend heavily on the language in question. Simple 
pronunciation rules can be used for regular languages, while more sophisticated 

1987; McCulloch et al. 1987; Häkkinen et al. 2000) or finite-state transducers (Caseiro 
et al. 2002) can be applied for less regular ones. 

 

models, i.e., decision trees (Quinlan 1993), neural networks (Sejnowski and Rosenberg  
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Language 
Identification 

LID 

Pronunciation 
Modeling 

T2P 

Acoustic 
Modeling 

AM 

Decoder 
DEC 

Language 
ID Models 

English 
German 
Spanish 
Italian 

Swedish 
Finnish Pronunciation 

Models 
English 
German 
Spanish 
Italian 

Swedish 
Finnish 

name tag 
e.g.,“Peter” 

Multilingual 
Acoustic 
Models 

Language ID(s) of 
name tag 

Pronunciation(s) 
of name tag 

Acoustic model 
sequence(s) of 

name tag 

“Peter”; ENG 
“Peter”; SWE 

“Peter”; ENG; “p i: dt s@r” 
“Peter”; SWE; “p e: t E r” 

 
Fig. 14.1 Architecture of a multilingual ASR system 

 
Finally, the complete set of pronunciations (all words, all pronunciation variants) 

and the sub-word acoustic models are used to build a recognition network. To save 

between language specific phoneme sets are identified. This can be done in a 
knowledge-based manner (e.g., based on the IPA phoneme definitions), a data driven 
manner by clustering phonemes based on the statistical properties of their reali-
zations in the acoustic model and database, or as a third option, a combination of 
these methods can be used. It is also a good practice to verify the resulting phoneme 
set by recognition experiments on a test database and compare the performance to a 

identified this way. 
mono-lingual setup. In many cases, some problematic phoneme combinations can be 

space for acoustic models, as well as to provide robustness for languages with less or 
no training data, acoustic models are trained in the following manner. First, overlaps 

306 



Speech Recognition in Mobile Phones
 

Usually the number of languages a system has to support depends on the market a 
product variant is produced for. In the case of name dialling, certain pronunciation 
variants of names can be eventually eliminated from the recognition network based 
on usage statistics. If the owner of the mobile device pronounces an ambiguous word 
consistently, the system may be able to identify which pronunciation variant is the 
most likely and discard the rest. 

As the number of languages grows, the benefits of multilingual phoneme set be-
come more and more dominant (Fischer et al. 2000). In addition, when no acoustic 
data is available for some language, but a knowledge-based mapping can be created 
between the phonemes of the language and the phoneme-set in the multilingual sys-
tem the language coverage can be easily extended for the unseen language. 

Figure 14.2 illustrates the performance of a practical multilingual ASR system 

command words. For the rest of the languages no acoustic training data was available. 
Only clean speech was used in the training phase. The quantized (Vasilache 2000) 
acoustic models were 8-mixture monophone HMMs with 76 phonemes as defined in 
our in-house multilingual phoneme set. 

A small vocabulary, isolated word recognition task was chosen for the evalua-
tion. For each of the languages, a 120-word lexicon was defined containing both 
native and non-native name entries. The recognition tests were carried out using an 
in-house isolated-word database comprising of 1,000–8,000 test utterances from 
several speakers for each of the languages. The actual number of utterances de-
pended on the language. The performance evaluation was carried out both under 
clean and noisy operating conditions. The noisy test data was obtained by artificially 
mixing noise to the clean test utterances. Four kinds of noise (car, café, car noise 
with background speech and/or music, airport hall) were used at randomly chosen SNRs 
between +5 dB and +20 dB. The SNR distribution was set to be uniform. To reduce the 
effects of speaker, language, pronunciation and environmental mismatches, on-line, 
supervised, maximum a posteriori (MAP) adaptation was applied to the acoustic 
models as described in (Vasilache and Viikki 2001).   

The average recognition accuracies are 93.61% (SI) and 97.01% (SA) in clean, 
85.73% (SI) and 93.01% (SA) in noise. The figure also shows that the lack of native 
training data did not necessarily imply worse recognition accuracy. Some languages, 
e.g., Romanian and Slovak even outperformed e.g., Danish and Dutch for which 
native training data was available. For this small vocabulary recognition application, 
the 25-lingual phoneme set proved to be well performing and robust solution. 
 

 

 

 

word hypotheses can then be displayed to the user for selection or confirmation. 

(Kiss and Vasilache 2002). The name dialling system supports 25 languages. The 
speech data for multilingual acoustic model training (using a common multilingual 
phoneme set) consisted of Danish, Dutch, English, Finnish, French, German, Portuguese 
and Spanish material. Altogether 11 databases were used for training. Depending on 
the language, the material contained natural sentences, phonetically rich words and 

307

(representing the words uttered by a speaker) to the recognition network. Most likely 
The task of the decoder is to match the incoming sequence of features 



Imre Varga and Imre Kiss 

Fig. 14.2 Multilingual name dialling results with 25 languages in clean environment (top) and 
noise (bottom). The bars reflect the accuracy for each language for speaker independent (SI) 
and speaker adapted (SA) models 

14.3.2 Multilinguality in Other ASR Applications 

In this section we address more complex ASR tasks that are attractive for small 
portable devices. More sophisticated command-and-control type of applications in-
clude voice control for music player or radio (‘play song X’, ‘tune to station Y’); or 
entering calendar entries or natural numbers by voice (‘meeting on Monday, 22nd  
of May at 8 AM’, ‘two hundred and thirty five’). Most of these applications can be 
efficiently realized by an ASR engine using a recognition network defined by compact 
context-free grammars. Multilinguality in these cases may require language-specific 
variants of the grammars. Extending a system to new languages is relatively straight-
forward. 

One of the most demanding ASR applications for embedded systems is large 
vocabulary dictation. These systems can significantly improve the ease and speed of 
text input on devices with limited (small sized qwerty, or only numerical) keypads. 
On contrary to simple name dialling and command and control type of applications, 
dictation systems require statistical language models (in many cases in the form of 
statistical N-grams). There are two difficulties that arise from language modelling. 
First, the size of these language models in most cases is quite significant (the other 
significant factor usually being the context-dependent acoustic model set). Second, 

14.3.3 Language Resources 

As we discussed above, language resources play an important role in state-of-the-art 
ASR systems. Automatic text-to-phoneme mapping requires large pronunciation 
lexica, acoustic modelling and language modelling require acoustic and text data. In 

languages are different and they may call for different types of language models. 

best represented by morpheme-based language models with longer context size, 
while analytic languages, such as English can be well described by word models 
with relatively short contexts. 

For example, highly inflecting languages, such as Hungarian, Finnish, Turkish are 
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various Frame Programs of the European Community there have been several pro- 
jects targeting at language resource creation for ASR applications. The SpeechDat-Car 
(http://www.speechdat.org/SP-CAR/) project partners collected large multi-channel 
speech databases in automotive environments for several languages. The Speecon 
(http://www.speechdat.org/speecon/index.html) project focused on collecting linguis-
tic data for speech recogniser training in the consumer devices. The LC-STAR and  
LC-STAR II projects (www.lc-star.com) created lexica and text corpora. Recently, it 
has been demonstrated in an increasing number of application that language models 
can significantly be improved by using freely available text resources from the 
World Wide Web (Bulyko et al. 2003; Sarikaya et al. 2005; Sethy et al. 2006; Sethy 
et al. 2007). 

14.4 Noise Robustness 

Robustness of speech recognizers in mobile phones is a key requirement to achieve a 
high recognition rate needed for user satisfaction. The term ‘robustness’ in general 
reflects the desired high-quality system behaviour in adverse conditions which in-
clude the presence of environmental and background noise, transmission channel 
characteristics, speaker specific variations (Lombard reflex, male/female/child, spon-
taneous speech, dialects etc.).  

In mobile phones, use of single channel techniques seems feasible. In car 
environment, microphone array has found to be an effective means to perform noise 
reduction by directional characteristics. The combination of microphone array with 
beamforming signal processing proves very effective (Balan et al. 2004). In case of 
severe disturbances in car, speech recognition rate is so low that the application of 
noise reduction is mandatory. The improvement of speech recognition rate is sub-
stantial and varies as a function of input SNR. 

A proven method to cope with adverse conditions is to follow a multi-step 
approach including the use of robust HMM models, feature extraction, and noise 
reduction (Varga et al. 2002).  

14.4.1 Robust HMM Models 

Robust HMM models are an effective means to capture the variability. Robustness is 
achieved when the emission probabilities observed from the real speech data come 
close to the emission probabilities incorporated in the used HMM models. In order to 
reduce the probability differences and hence increasing recognition rate, training by 
appropriate databases (Höge 2000; SpeechDat 2000) is essential in order to produce 
robust HMM models. 

14.4.2 Feature Extraction 

Feature extraction algorithms in the front-end are implemented to adapt to varying 
channel characteristics, various background noises, and to extract tonal features as 
well. A Maximum Likelihood channel adaptation algorithm proved to be efficient 
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(Varga et al. 2002). In the enhanced MFCC (Mel Frequency Cepstral Coefficients) 
analysis the parameters are aug-mented by first and second order derivatives. Op-
tionally two tonal features (voicing parameter and pitch value) can be added to the 
feature set. Two parameter sets resulting from the analysis of two adjacent frames are 
transformed via a Linear Discriminant Analysis (LDA) leading to a 24-dimensional 
feature vector. The main purpose of the LDA is to reduce the dimensionality of the 
vector to achieve a memory efficient solution although it is effective in improving 
noise robustness as well (Westphal 1997). 

14.4.3 Noise Reduction 

Among different kinds of noises, non-stationary noises are the most difficult to 
compensate for. Examples of non-stationary noises are background speech in a café-
teria, music and street noise. Their spectral and temporal properties overlap with speech 
and hence it is difficult to separate the speech from noise. 

Spectral attenuation and subtraction algorithms have proven as effective means in 

component over clean speech in the captured signal. Noise reduction forms a time-

noise spectrum. Various versions of the noise reduction algorithms were proposed.  

spectral bin as the attenuation function. For the second stage of spectral attenuation, 
the noise power spectrum is estimated by the minima of the smoothed power spec-
trum within a moving interval having the advantage that no explicit detection of non-
speech segments is needed. For every frequency bin the noise estimate is subtracted 
of the noisy speech signal. In both stages the noise estimate is weighted by an 
oversubtraction factor pending on the frequency and on the signal to noise ratio in 
order to reflect the uncertainty of the noise estimate. To prevent the thus proces- 
sed signal from being negative flooring is employed. The channel compensation 
reduces signal changes due to the different characteristics of the transmission chan-
nels. The signal distortion caused by the transmission channel is assumed to lead to 
an offset in the cepstral domain. This offset is estimated using a Maximum Likelihood 
Estimator. Finally a frame drop algorithm is contained in the front-end in order to 
reduce insertion errors by dropping non-speech frames. The speech/non-speech de-
cision is based on an energy criterion. 

proaches like RASTA and high-pass filtering have been effective in reducing channel 
distortions. As shown in (Sivadas 2006), spectral subtraction can also be successfully 
applied in the modulation spectral domain. 

Linguistic information in speech signals is concentrated between 0.4 and 20 Hz 
in modulation frequency domain (Houtgast 1989), the region around 4 Hz being  
the most significant. Many of the popular temporal filtering algorithms such as 

reducing acoustic noise. These schemes regard noise as an additive uncorrelated 

varying filter whose parameters are calculated from estimated short-term signal and 
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In the method of cascading of two stages in combination with a frame dropping 
scheme (Andrassy et al. 2001), in the first stage, a Wiener filter is calculated for every 

Next, we describe a noise reduction algorithm called spectral subtraction in the 
modulated spectral domain in more detail. Modulation spectral enhancement ap-
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techniques assume that the channel distor-tion is predominantly linear time invariant 
and convolutive and that additive noise is minimal. Channel distortion becoming 
additive in the log spectral domain, is removed by linear filtering. The most common 
approach to minimize the effect of both convolutional and additive noises is to cas-
cade the algorithms to remove each of them. First, spectral subtraction is applied  
to reduce the additive noise followed by RASTA filtering or some other bandpass 
filtering to remove the convolutional noise. 

For effective suppression of non-stationary noise, spectral subtraction needs 
special improvement like noise spectrum update during non-speech intervals. An 
alternative noise compensation approach tackles the effect of spectrally overlap- 
ping non-stationary noises. Modulation spectrum gives the temporal spectral charac-
teristics of the signal within each (mel) frequency band. By applying the Wiener 
filter to the time trajectories of each mel frequency filter output it is possible to 
alleviate the effect of non-stationary noises. A possible use case for this is voice 
activated name dialling in mobile phones. The user may be trying to dial a number in 
a crowded cafeteria or in a subway. Due to the non-stationary nature of the back-
ground noise, the effectiveness of conventional noise robustness approaches is 
limited. 

 

 
Figure 14.3 shows the block diagram of the noise reduction scheme. First, Short 

Time Fourier Transform (STFT) of the noisy speech is computed. Triangular mel 
filter weights are applied to the magnitude spectrum to obtain a mel-spectrogram. A 

),( nky  and ),( nkw  represent instantaneous energy of clean speech, noisy speech and 
noise respectively at frame index n for mel-frequency bin k. 

Assuming that speech and noise are uncorrelated, the spectral energy of speech 
corrupted by additive noise is given by 

),(),(),( nkwnkxnky . (14.1) 

 
 

Noisy speech signal 

Windowing 
+ FFT 

Voice activity 
detection (VAD)

Noise modulation 
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Mel 
filterbanks 

Modulation spectrum 
computation 

Wiener filter in 
modulation 

spectral domain 

Filtered mel 
spectrum 

Mel frequency 
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computation 

y(n) 

Noise robust 
features 

voice activity detector (VAD) is used to keep track of non-speech regions. Let x(k, n), 

Fig. 14.3 Additive noise reduction by filtering in modulation spectral domain 

RASTA (Hermansky, Morgan 1994), dynamic features (Furui 1986) suppress the 
modulation frequencies outside the required modulation frequency domain. These 
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Modulation spectrum for each mel filter bank output is computed using N point 
FFT window for every sample.  

),(),(),( kWkYkX ,  (14.2) 

where  is the modulation frequency. Subtractive noise reduction algorithms can be 
expressed as (Virag 1999) 

1),(0),(),(),( kGwithkYkGkX .                    (14.3) 

Dropping the mel-frequency bin index k, the gain function can be written as  
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where, )(Ŵ  is the modulation spectral magnitude of noise estimated during non-
speech segments,  is the oversubtraction factor,  is the noise floor and exponent 

2
11  determines the rate of change of gain )(G  from 0 to 1. The a posteriori 

Signal to Noise Ratio (SNR) is given by 
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Modulation spectral component of clean speech is estimated as 

)),(arg(),(ˆ),(ˆ kYjekXkX . (14.6) 

)),(ˆ(),(ˆ 1 kXFFTnkx . (14.7) 

The algorithms were tested on a multilingual small vocabulary isolated word 
recognition task. Test set comprises of ~40,000 words from seven European 
languages: Finnish, Swedish, German, English, Danish, Icelandic and Norwegian. 
The size of vocabulary per language was ~120. 

The baseline front-end used in the experiments was based on 13 FFT-derived Mel-
frequency cepstral coefficients (MFCC) and their first and second order derivatives (39 

The mel-spectral energy trajectory of clean speech is given by 
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coefficients in total). Recursive mean removal was applied on all components of the 
resulting feature vectors, and the variance of all the components was normalized to 
unity (Viikki et al. 1998). A generalized Wiener filter is applied to the magnitude of the 
modulation spectrum. The mel filter bank output is reconstructed from the filtered 
magnitude spectrum and phase of the noisy speech modulation spectrum using overlap-
add method. Modulation spectrum of the noise is computed during the non-speech 
segments using a VAD. 
 

Table 14.2 Performance of noise reduction front-ends on an isolated word recognition task. 
The numbers represent Word Error Rate (WER) in percentage 
 

 

The acoustic model set consists of three state monophone models with eight 
Gaussian densities per state. The model sets were trained on an in-house training set 
containing clean speech data from various European languages. Both sets contained 
a total of 75 multilingual phone models that were used to model the basic acoustic 
units of the seven European languages mentioned above. 

pensation in spectral domain and in modulation spectral domain are tabulated in 
Table 14.2. Noise is artificially added to the clean utterances at Signal to Noise 
Ratios (SNR) ranging from 5 dB to 20 dB in steps of 5 dB. The non-stationary noises 
are cafeteria and street noise. Car noise is the stationary one. Results in Table 14.2 
are the average WER for the 5 dB to 20 dB SNR conditions. 

The highest detectable modulation frequency is half the analysis frame rate. In 
our experiments, the frame rate was kept at 100 Hz (= 10 ms frame shift), resulting 

frequency noise suppression approach depends on the resolution of the FFT to obtain 
the modulation spectrum. With 50 Hz Nyquist frequency, FFT length of 16 provides 
resolution of ~6 Hz. Since we want to resolve modulation frequency components less 
than 4 Hz, a longer analysis window is required. From the table it can be seen that 
longer FFT windows give better noise robustness.  

Comparing the relative improvements obtained using spectral subtraction and 
modulation spectral Wiener filter for different types of noises, it can be seen that the 

The Word Error Rates (WER) of Wiener filter based front-end with noise com-

in maximum modulation frequency of 50 Hz. The effectiveness of the modulation 
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 Car Cafe Street Clean 

Baseline 8.79 13.56 12.27 3.67 

Spectral subtraction 6.77 9.90 9.12 3.69 

FFT = 16 6.79 9.34 8.39 3.72 

FFT = 32 6.05 8.44 7.88 3.69 

Modulation 
Spectral 
Wiener filter 

FFT = 64 6.02 8.29 7.81 3.68 
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improvements in the case of non-stationary noises is higher in the case of modulation 
spectral filtering. 

14.5 Footprint and Complexity Reduction 

Small memory footprint and low computational complexity are essential for any 
embedded ASR system. The reasons are several-fold: cost reduction, competing 

Concerning memory footprint, we differentiate between static (Flash) and dynamic 
(RAM) memory. In most embedded ASR systems, the Flash memory footprint is 
largely determined by three factors: the size of acoustic models (AM), the size of 
language model (LM) and the size of pronunciation lexicon (Lex) and/or automatic 
text-to-phoneme model. 

14.5.1 Footprint Reduction of Acoustic Models 

In speaker independent, sub-word based systems acoustic models are usually context-
independent or context-dependent phonemes. These models aim at capturing the 
statistical properties of phoneme realizations (phones) in real-life speech. There are  
two major options for reduction of AM size: to reduce the number of parameters in  
the model set, and to reduce the memory necessary to represent model parameters. 
Fortunately, the first approach coincides with the goals of robust model training, i.e. 
the amount of training data available usually limits the number of parameters in the 

There are two widely used parameter tying methods to reduce the size of acoustic 

common properties in the model set are pooled together, so a common pool of train-

branching point, the tree is grown (phonetic question is selected) in a manner to 
maximize the likelihood of the training data given the final set of state tyings. 

The second method is called density tying. It is usually done in a completely 
data-drive manner, and aims at reducing the number of acoustic densities in the 
model space by combining densities that are closer to each other (as defined by a 
suitably chosen distance metric) than a certain threshold. Density tying does not take 
into account the state structure in the model space, and can be used in combination 

using subsequently state and density tying, than either of these methods alone. As we 
shall see in Sect. 14.6, these techniques can be successfully applied to build a 
practical embedded dictation system. 

The next large category of footprint reduction techniques consist of various 
quantization schemes aiming at representing model parameters at a reduced resolution 
to save memory. 

called decision tree-based state-tying (Young et al. 2002), where states sharing some 

model set that can be estimated in a reliable manner. 

ing data can be used to estimate state parameters more reliably. In most cases, state-

of questions (phonetic questions) are used to train a binary decision tree. At each 

with state-tying. In many practical cases, more compact AM models can be trained by 

models while retaining as high modelling accuracy as possible. The first method is 

tying is performed in a knowledge and data-driven manner, whereby pre-defined set 
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In HMM-based systems the model parameters are density means, variances 
(assuming diagonal covariance matrix), and mixture weights. Usually the first two 
are considered more important, because in practice mixture weights contribute only 
little to the overall state emission probabilities. These density parameters can be 
quantized in several ways. Popular techniques include scalar quantization (Vasilache 
2000), joint vector quantization of mean and variance, and subspace vector quanti-
zation (Bocchieri and Mak 1997). A comparison of these techniques is presented in 
(Leppänen and Kiss 2005). As we shall see later in this section, the quantization of 
model parameters can be combined with quantization of feature vectors to result in 
fast state emission probability computation. 

14.5.2 Footprint Reduction of Language Models 

For language modeling, we focus our attention to statistical N-gram language models 
as they are widely used in many practical systems (for the sake of simplicity we 
assume that the basic modeling unit in the LM is a word and the model is a back-off 
bi-gram): 

  
otherwisejpib

tjiNifiNDjiN
jip

)()(
),()(/),(

),(                            (14.8) 

where N(i; j) is the number of times word j follows word i and N(i) is the number of 
times that word i appears. Essentially, a small part of the available probability mass 
is deducted from the higher bi-gram counts and distributed amongst the infrequent 
bi-grams. This process is called discounting. When a bi-gram count falls below the 
threshold t, the bi-gram is backed-off to the unigram probability suitably scaled by a 
back-off weight in order to ensure that all bi-gram probabilities for a given history 
sum to one (Young et al. 2002). Bi-gram N-gram models need the following para-
meters to be stored: word pairs, bi-gram probabilities and back-off scaling factors. 
An LM can be considered as a sparse graph where vertices are words from the 
vocabulary and edges represent bi-grams. As such, it can be efficiently represented 
using adjacency lists. 

For language model compression, the same two principles can be applied as we 
showed for acoustic models. First, the number of parameters in a language model can 
be effectively reduced (and the model be made more robust) by using e.g., entropy-
based pruning schemes (Stolcke 1998). 

LM model parameters can be represented in an efficient manner by using profile-
based compression (Olsen and Oria 2006) and quantization. The idea behind profile-
based com-pression is simple. When N-grams with the same history are ordered 
according to decreasing probability, the resulting probability profiles are remarkably 
similar. Some profiles may be identical (especially when the probability values are 
quantized), or they may be prefixes of longer profiles. Therefore, the same profile 
can be re-used to represent the probability distribution of N-grams for several 
different word histories, thereby saving memory.  

Profiles in effect act as a codebook. Profiles themselves can also be compressed. 
As they tend to follow an exponential decay, non-uniform sampling can effectively 
be applied. Values in between samples can be interpolated. Table 14.3 shows the LM 
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footprint reduction achieved for representing N-gram probabilities in a practical large 
vocabulary embedded dictation system. In the table Q represents the quantization 
levels for probability values (e.g., Q16 corresponds to 4-bit quantization), while S 
represents the parameter for non-uniform (logarithmic) sampling of profiles. So for ik 
denoting the location of the kth sample in the profile: 

Siroundii
i

kkk /log,1max
1

1101

0

.                  
               (14.9) 

 It can be seen that the memory footprint can be reduced 12-fold from 436 KB 
(S = 1,000, NoQ) to 36 KB (S = 0.5, Q16) with a minor loss in word accuracy 
(85.1% vs. 85.0%). 

 
Another useful practical technique to reduce the footprint and improve the 

performance of language models in embedded systems is clustering. The use of 
semantic classes has been proposed in (Oria and Olsen 2006). In a large vocabulary 
(33Kwords) embedded dictation task for US English, the use of semantic classes 
reduced the model size by 16%, while at the same time also reduced the word error 
rate by 12% relatively. 
 
Table 14.3 Number of profiles, average profile length, size of profile codebook and word 

©
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 S = 1,000 S = 0.5 S = 0.1 S = 0.05 S = 0.01 

No Q 4033/52 
436 kb 
85.1% 

4017/10 
103 kb 
85.0% 

3849/4 
51 kb 
84.6% 

3814/3 
45 kb 
84.0% 

3810/2 
39 kb 
79.5% 

Q32 3108/64 
213 kb 
85.0% 

2797/13 
48 kb 
85.0% 

1279/6 
13 kb 
84.6% 

905/5 
8 kb 

84.1% 

456/3 
4 kb 

81.2% 

Q16 2454/78 
202 kb 
84.9% 

1773/16 
36 kb 
85.0% 

566/8 
7 kb 

84.5% 

344/6 
4 kb 

84.1% 

151/4 
1 kb 

81.1% 

Q8 937/164 
157 kb 
73.7% 

479/30 
17 kb 
84.7% 

154/12 
2.6 kb 
84.2% 

90/9 
1 kb 

83.7% 

42/5 
0.4 kb 
81.9% 

Q4 297/356 
107 kb 
84.0% 

119/61 
8 kb 

83.7% 

44/22 
1 kb 

82.4% 

26/13 
0.5 kb 
81.8% 

14/5 
0.1 kb 
78.3% 

accuracy for different quantization and profile compression settings (From Olsen et al. 2006, 
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14.5.3 Footprint Reduction of Pronunciation Lexicon 

In addition to acoustic and language models, the large size of pronunciation lexica  
can also affect the footprint of embedded ASR system. In most cases, however, word 
labels (written form) and corresponding phoneme sequences (pronunciations) can be 
effectively compressed by relatively simple means. In a large vocabulary system, it is 
likely that several words in the lexicon have the same starting characters, or starting 
phonemes in their pronunciation. This property can be used to store written word labels 
(or pronunciations) in a tree structure. Words can share the common starting letters, 
and these prefixes need to be stored only once. The benefit of the tree representation is 
that it lends itself to efficient search. 

In addition to storing the pronunciation lexicon explicitly, automatic T2P methods, 
based on decision trees (Quinlan 1993), neural networks (Sejnowski and Rosenberg 
1987; McCulloch et al. 1987; Häkkinen et al. 2000), or finite-state transducers (Caseiro 
et al. 2002) can also be applied. 

14.5.4 Reduction of Computational Complexity in Embedded ASR 
Systems 

Next we look into methods to reduce the computational complexity of embedded 
ASR algorithms. We divide these methods into two categories. The first category 
contains algorithms for efficiently computing state emission probabilities, while the 
second category focuses on efficient search in the recognition network. 

In state emission probability computation, first we focus on continuous density 
HMMs (CDHMMs) with state densities consisting of a mixture of diagonal Gaussian 
densities. The logarithmic Gaussian density likelihoods are computed as follows 

N

i ki

kii
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2

2

2
1 , (14.10) 

where Lk is the log-likelihood of the density k, xi denotes the ith component of the 
feature vector, ki and ki stand for the ith mean and standard deviation component of 
density k. N denotes the total number of components in the feature vector. The 
additive constant Ck is given by 

N

i ki

kC
1

22
1log . (14.11) 

Finally, the emission probability for one state is expressed as 

kskkk
ksks LWLWB max)exp(log , (14.12) 

where Wsk is the mixture weight for density k in state s and the summation is 
performed for all mixture densities corresponding to s. In practice the log sum 
operation can be avoided by taking into account only the best scoring density in 
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every state. This significantly reduces the state score computation without significant 
effect on recognition accuracy. 

In (Kiss and Vasilache 2002) three methods for simplifying the computation of 
state emission probabilities of continuous density-based HMMs are proposed. Feature 
component masking, variable-rate partial likelihood update and density pruning all 
resulted in significant savings in the decoding complexity with marginal impact on the 
recognition performance. A combination of feature component masking and density 
pruning was evaluated in a small vocabulary, 25-lingual, speaker-independent, isolated 
word recognition system. With a computational complexity reduction of 62% com-
pared to the baseline system, a marginal, 1.6%/6.5% relative error rate increase was 
obtained without/with on-line Maximum A-Posteriori (MAP) adaptation on the aver-
age in clean and noisy operating environments. The presented framework can also be 
extended to larger vocabulary systems. 

An often used technique to speed up density score computation is Gaussian 
selection (Bocchieri 1993; Gales et al. 1999). The idea behind GS is to reduce the 
search space for density score computation by clustering the densities in the model 
space. During decoding, in a two-level GS setup, first the cluster centroids are matched 
to the incoming feature vector, and in the second step only members of the best 
matching clusters are used for score computation. The number of densities in the best 
clusters can be significantly less than in the entire model space. Usually densities are 
clustered into overlapping clusters (one density may belong to more than one clus-
ter). This improves accuracy, but also increases the memory needed for storing the 
model. The reason is that storing the identities of densities belonging to a given 
cluster can be excessive when the overall density count in the model set is large. In 
(Leppänen and Kiss 2006) a novel Gaussian selection algorithm is proposed. It uses 
non-overlapping clusters, therefore cluster members can be identified by a starting 
and ending index in a linear array. The overhead to store the identity of cluster 
members is thus minimal. The scheme achieves 66% computational savings with a 
relative increase in word error rate (WER) of 4%. The GS scheme is also combined 
with frame rate reduction and feature masking provides further savings in com-
putation. 75% (4% increase in WER) and 68% (3.5% increase in WER) savings were 
obtained by adding frame rate reduction and feature masking, respectively. 

All of the above schemes can be applied to HMM models with continuous or 
discrete probability distributions. However, in case of discrete HMMs state emission 
probability computation can also speeded up significantly, if in addition to model 
parameters, feature vectors are also quantized. In the simple case of scalar model 
quantization (Vasilache 2000) with 5-bit allocated to mean and 3-bit allocated to 
variance (more precisely inverse standard deviation), any given pair of mean and 
inverse standard deviation component can take 256 different values. Feature vectors 
can usually be quantized at a rate of 3–4 bits per component, without any loss in 
recognition accuracy. In a system utilizing 5 + 3 bit quantization for model parameters 
and 4-bit quantization for feature vector components state emission probabilities can be 
calculated as a simple lookup operation in a 256  16 table. The model parameters and 
the feature vector can be used to address the table, which stores pre-computed state 
emission probabilities. 
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14.5.5 Low Memory, Fast Decoding 

A large network recognition network will have many nodes and one way to make a 
significant reduction in the computation needed is to only propagate tokens (Young 
et al. 1989) which have some chance of being amongst the eventual winners. This 

bedded ASR systems. It can be implemented at each time step by keeping a record of 

than a beam-width below the best. In certain cases, it may be necessary to limit the 
worst-case RAM memory use for the decoding network (not to risk running out of 
memory when several applications are used concurrently). In this case, a maximum 
limit can be set for the overall number of active tokens. In the beginning of decod-
ing this token buffer is filled up, but when progressing in the utterance, the log-
probability-based thresholding may limit the number of active tokens below the 
maximum level. At first it may seem risky to set a hard limit in the number of tokens 
for a decoding network. In practice, however, tree-structured networks prove quite 
robust to this, because in the initial phase of decoding tokens are active close to the root 
of the tree (shared prefixes of words), and when progressing further, only the most 
likely word candidates must be covered by active tokens. 

Finally, a practical and important approach to reduce active RAM footprint of 
embedded ASR systems is to dynamically load large components of the system (e.g., 
lexicon or LM). The idea is similar to caching, whereby only the most actively used 
parts are kept in RAM memory, and less frequently used parts are stored in slower 
access Flash memory. 

14.6 Platforms and an Example Application  

In Table 14.4 we summarize the basic technical properties of some recent embedded 
platforms. Nokia’s smartphones and N800 Internet tablet are ARM-based devices 
running around 220–330 MHz featuring 10–128 MB of SDRAM and 10–256 MB of 
NAND Flash memory that can be extended up to 1–4 GB using removable memory 
cards. The smartphones use Symbian OS, while the Internet tablet is Linux-based. 
Depending on the model and OS used, the free RAM memory available for user 
applications varies between ~4 and 22 MB for smartphones, and is ~112 MB for the 

the smartphones and ~176 MB on the Internet tablet. ARM 9 (OMAP1710) supports 

 The ARM11 core also includes hardware acceleration for 3D graphics, but this 
feature is not easily used for ASR purposes. Both the OMAP 1710 and 2420 
processors include a powerful DSP in addition to the ARM MCU. For easy 

add-on ASR applications. 

 

the best token overall and de-activating all tokens whose log probabilities fall more 

process is called token pruning (Young et al. 2002) and is widely applied in em-

application development (and portability) reasons, however, the DSP is not used by 

co-processor, making porting easier. 
only fixed-point arithmetics, while ARM11 (OMAP2420) has a built-in floatingpoint 

Internet tablet. Internal Flash memory has 8.5–160 MB free space for applications on 
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Table 14.4 Basic properties of example embedded portable platforms 

Device Nokia 6630 Nokia E60 Nokia N93 Nokia N95 Nokia N800 HP iPAQ 
HX2495

Phrase-lator 
P2

HP iPAQ 
H2750

HP iPAQ 
H3800

OS Symbian OS Symbian OS Symbian OS Symbian OS Linux Windows Windows Windows Linux

SW platform S60 2.6 S60 3.0 S60 3.2 S60 4.1
Internet 

Tablet OS 
2007

Windows 
Mobile 5.0

Windows 
CE 3.0

Windows 
Mobile 2003 

SE

Familiar 
v0.6.1

Processor
ARM926 
(OMAP 
1710)

ARM926 
(OMAP 
1710)

ARM11 
(OMAP 
2420)

ARM11 
(OMAP 
2420)

ARM11 
(OMAP 
2420)

Intel Xscale 
PXA270 

Intel XScale 
PXA 255

Intel XScale 
PXA 270

Intel 
StrongARM

Clock rate 220MHz 220MHz 332MHz 332MHz 332MHz 520MHz 400MHz 624MHz 206MHz

SDRAM 10MB 64MB 64MB 64MB 128MB 64MB 256MB 128MB 64MB

SDRAM 
available for 
apps.

~4-5MB ~21MB ~22MB ~18MB ~112MB N/A N/A N/A ~35MB

Flash / 
Memory 
card (max)

 10MB / 
1GB

128MB / 
2GB

128MB / 
2GB

256MB / 
2GB

256MB / 
4GB

192MB / 
N/A N/A / 1GB 82MB / N/A 32MB / N/A

Fash 
available for 
apps.

~8.5MB ~64MB ~50MB ~160MB ~176MB N/A N/A N/A N/A

Virtual 
memory no no no no yes yes yes yes yes

 
 HP’s PDAs are built around Inter’s Xscale processors (PXA255, PXA270) 
running around 400–620 MHz. An older model released in 2002 used Intel Strong-
ARM processor running at 206 MHz. They include 64–128 MB of RAM (with the 
exception of custom made Phraselator P2 device having 256 MB of RAM). The 
amount of available Flash memory ranges from 32 MB up to 1 GB using external 
memory card. All Xscale processors are fixed-point. Most systems use various 
versions of Windows CE/Mobile, however some devices have been used with Linux 
and Pocket Mac operation systems. Linux and Windows operating systems support 
virtual memory, while the presented versions of Symbian do not. 

14.6.1 Example Application: Large Vocabulary Isolated Word Dictation 

In this section we describe the work done in Nokia Research Center on low footprint 
embedded dictation (Karpov et al. 2006). The system supports five languages: US 
English, UK English, French, Spanish and Mandarin Chinese. It runs in 1.5–2 MB of 
RAM and requires 1.7–2.4 MB of Flash storage depending on the language. The 
system works reliably in speaker independent mode, but for the best accuracy a few 
minutes of speaker enrollment is advised. The word accuracy of the system (after 
enrollment) varies between 85% and 92% on the average for western languages and 
~90% character accuracy for Chinese. The size of the vocabulary is between 23,000 
and 43,000 words depending on the language (Fig. 4.4). 
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Fig. 14.4 Screen shots of the embedded dictation application running on a Nokia 6630 mobile 
phone. The left and right panels respectively show the dictation process and the enrollment  
  

The system is designed for isolated word dictation; users are required to leave 
short pauses between words. This dictation style allows word segments to be iden-
tified reliably, and feedback can be given to the user between word segments. 
Isolated word decoding also made it possible to keep the RAM footprint very low. 

Isolated word dictation is computationally simpler than continuous word dictation 
because the word segmentation can be decoupled from the recognition process. In our 
engine we do this by using a VAD module for identifying word segments based on the 
pauses between the words. Word segments are decoded left to right in real time as they 
become available by an isolated word decoder. The words to be scored in a segment 
are selected by using a langu-age model for predicting likely word continuations of the 
words in the previous segment. Depending on the UI mode, a sentence decoder can 
optionally be used for computing the overall most likely sentence hypothesis given the 
scored word lists in each word segment. 

Voice activity detection: The VAD algorithm measures the long-term spectral 
divergence (LTSD) between speech and noise (Ramírez et al. 2004). It formulates 
the speech/non-speech decision rule by comparing the long-term spectral envelope to 
the average noise spectrum. The decision threshold is adapted to the measured noise 
energy while a controlled hangover is activated only when the observed SNR is low. 
It uses a long-term speech window to track the spectral envelope and is based on the 
estimation of so-called long-term spectral envelope (LTSE). The decision rule is then 
formulated in terms of the long-term spectral divergence (LTSD) between speech 
and noise. 

Word decoder: For every word in the dictated message, the system predicts a 
number of possible follower words using a language model. These words form the 
system vocabulary for the next word. The recognition network is composed as follows: 
first phonetic pronunciations are fetched from the pronunciation lexicon for all words 
in the vocabulary. Next, a tree-structured phoneme-decoder network is created in 
such a way that common prefixes in the phonetic pronunciations are shared (i.e., Dave 
d-eI-v and David d-eI-v-I-d will share the three initial phonemes d-eI-v). This re-
presentation reduces memory footprint and increases decoding speed. The decoding is 
carried out in the conventional token-passing way with pruning. 
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Language modelling: The language model (LM) used in the demonstrator is 
based on a second order n-gram model: bi-grams and unigrams. The LM has two 
roles: vocabulary selection and sentence modelling. When the beginning of a new 
speech segment has been identified by the VAD module, the LM is used for selecting 
the words that are to receive acoustic scoring by the decoder in that segment. In the 
demonstrator, selection is based on bi-gram ‘prediction’. Assuming the correct word 
in the previous segment is known, the most likely word continuations will be the bi-
grams that start with that particular word. In case the list of predicted words is short, 
the word list is padded by backing off to unigram prediction. This minimizes the 
probability of not having the correct word in the list that is selected for acoustic 
scoring. Vocabulary prediction selects the most likely words, but at that stage the 
LM probabilities are not needed. However, when the selected words have received 
acoustic scoring, the word probabilities are required so that a correct ranking can be 
made which takes both acoustic probability and LM probability into account. Hence, 
both the word and the n-gram probabilities need to be stored in the language model. 
The probabilities do not have to be represented very accurately, and therefore they 

bi-phone HMMs. Each model is made up of three states with 16 Gaussian densities 
in each state. All bi-phones are left-context. To make the models more compact and 
to enable proper training of all parameters the models have been tied using decision-

model parameters and feature vectors are quantized. 
Language resources: A large amount of domain-specific data is required for 

training reliable acoustic and language models. This is especially true for LMs that 
show a very strong dependency on the genre, style and topic of the data they are trained 

cient than a large amount of generic training data. A database of Personal Communi-

The text database for LM training consists of 2 million words of simulated SMS 
messages that were submitted by native speakers of the language. The messages cover 
12 topics representative of typical messaging communication (‘vacation report’, 
‘change of plans’, ‘family communication’, ‘invitation’, ‘congratulations’, ‘travel plans’, 

speakers per language (evenly distributed by gender, age and dialectal region) in  
the office environment. Each speaker has 30 enrollment utterances for acoustic 
adaptation and 240 test utterances (SMS messages). Enrollment and SMS messages 
were read by the speakers both in continuous and isolated word manner. We used on 
the average 70 speakers for training and 30 speaker for testing. The total amount of 

can be heavily compressed (Olsen and Oria 2006). 

‘business’, ‘feedback’, ‘teenagers’, ‘school’, ‘notes/reminders’, and ‘open domain’). 

tree state-tying and density-tying. For fast observation probability computation, both 

The acoustic model training data consisted of off-the-shelf databases (Speech-

Acoustic modelling: The acoustic model set used in the demonstrator consists of 

on. This means that an LM that performs well in one specific domain will most pro-
bably perform quite poorly on test data from a different domain. On the other hand, a
relatively small amount of domain-specific training data is considerably more effi-

Dat-Car, Speecon, Wall Street Journal, etc.) and the in-house PCOM databases 
for each language. The PCOM acoustic databases were recorded from 100 native 

training material was ~200 h e.g., for US English. The addition of the PCOM
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14.7 Conclusion and Outlook 

of mobile phones. In order to make this possible, several problems ranging from 
adverse noise conditions and implementation constraints to wide language support 
have to be overcome. 

In this chapter, we reviewed the typical mobile application scenarios and presented 
some advanced solutions to address the above problems. We described methods for 
robustness impro-vement by robust HMM modelling, feature extraction, and noise 
reduction techniques. 

Simultaneous support of multiple languages is important for mobile phones dis-
tributed on the global market. We described the necessary technology components in 
the framework of a practical multilingual speaker-independent name dialling system. 
We also briefly reviewed the implications of multilinguality to more complex ASR 
applications, such as embedded dictation. 

Our presentation also focused on implementation aspects including effective te-
chniques for small memory footprint and low computational complexity. We ad-
dressed the charac-teristics of typical mobile phone platforms from the perspective of 
speech recognition and presented the details of an example application on large 
vocabulary isolated word dictation system. 

Voice UIs clearly compete with already accepted UI methods of mobile phones. 
Due to the significant advances in embedded ASR technology over the past years, 
the technology is becoming more and more widespread. However, in practical de-
ployments ASR technology often faces extremely high level user expectation. 
Human-like performance still remains a challenge for speech recognizers. As ASR 
algorithms improve and mobile phone platforms become more and more powerful, 
we can expect embedded ASR to become a viable and widely used solution for more 
and more complex applications in mobile phones. 
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15 
Handheld Speech to Speech Translation System 

Yuqing Gao, Bowen Zhou, Weizhong Zhu and Wei Zhang 

 

Abstract. Recent Advances in the processing capabilities of handheld devices (PDAs or mo-
bile phones) have provided the opportunity for enablement of speech recognition system, and 
even end-to-end speech translation system on these devices. However, two-way free-form 
speech-to-speech translation (as opposite to fixed phrase translation) is a highly complex task. 
A large amount of computation is involved to achieve reliable transformation performance. 
Resource limitations are not just CPU speed, but also the memory and storage requirements, 
and the audio input and output requirements all tax current systems to their limits. When the 
resource demand exceeds the computational capability of available state-of-the-art hand-held 
devices, a common technique for mobile speech-to-speech translation system is to use a client-
server approach, where the handheld device (a mobile phone or PDA) is treated simply as a 
system client. While we will briefly describe the client/server approach, we will mainly focus 
on the approach that the end-to-end speech-to-speech translation system is completely hosted 
on the handheld devices. We will describe the challenges and algorithm and code optimization 
solutions we developed for the handheld MASTOR systems (Multilingual Automatic Speech-
to-Speech Translator) for between English and Mandarin Chinese, and between English and 
Arabic on embedded Linux and Windows CE operating systems. The system includes an 
HMM-based large vocabulary continuous speech recognizer using statistical n-grams, a trans-
lation module, and a multi-language speech synthesis system.  

15.1 Introduction 

In recent years, there have been significant efforts to develop reliable and satisfactory 
automatic speech-to-speech translation systems, which are typically available on more 
powerful platforms such as desktop servers or laptop computers. However, because 
such devices are not compact, they are not convenient for mobile applications. This 
limits the usefulness of this form of translation technology. Many circumstances 

such as a Personal Digital Assistant (PDA). 
On the one hand, automatic speech-to-speech translation is a highly complex task. 

A large amount of computation is required to achieve reliable translation performance. 
Memory and storage requirements, and the audio input and output requirements all 
tax current systems to their limits. Therefore, when the resource demand exceeds the 
computational capability of available state-of-the-art hand-held devices, a common 
technique for mobile speech-to-speech translation system is to use a client-server 

where translation is required can only be effectively aided by truly mobile devices 
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approach. Here, the hand-held device (either a mobile phone or PDA) is treated  
simply as a system client, and the speech input is compressed and transmitted from 
this client to a back-end server that is much more powerful, either over a wireless 
telephone network or a wireless LAN connection such as Wi-Fi (IEEE 802.11b). The 
entire end-to-end speech translation task is conducted at the server. Finally, the spo-
ken utterance in the target language is sent back to the hand-held device, thus provid-
ing the user audio output on location. 

Obviously, there are several disadvantages of the client-server based approach. 
First, the service area is limited to locations where wireless connections are available. 
Second, large vocabulary speech recognition over conventional telephone channels, 
especially unreliable wireless channels, will degrade the quality of the translation. 
Third, this approach limits the flexibility of the user’s control over the overall trans-
lation system, making highly customized applications much more difficult to design 
and deploy. 

On the other hand, the development of increasingly powerful mobile devices is 
reaching a level that is comparable to the power of desktop systems of only a few 
years ago. In order to bridge the gap between the requirements of contemporary tran-
slation systems and the current mobile computing platforms, we have employed a 
number of optimizations, significantly enhancing the accessibility of our automatic 
speech translation technology. We have developed our speech-to-speech translation 
systems on PDA with an embedded Linux platform as well as the popular Window-
CE platform. 

Our PDA-based system achieves comparable translation performance and speed 
to that found in our MASTOR desktop system. Numerous optimizations were em-
ployed to improve translation speed and to reduce resource demands. However, the 
system still maintains a large vocabulary continuous speech recognizer that operates 
in real time, or near-real time. The typical response time for an end-to-end translation 
is under 5 s. 

The organization of this chapter is as follows. Section 15.2 describes the system 
overview. Section 15.3 covers each major components of the system. Section 15.4 
explains the experiments results and has some discussions. And we give the conclu-
sion in the final section. 

15.2 System Overview 

15.2.1 System Architecture 

Our system employs the same architecture as its desktop counterpart, the MASTOR 
system (Gao et al. 2002). Specifically, the system consists of a Large Vocabulary 
Continuous Speech Recognizer (LVCSR) that operates in real-time or near-real time 
to recognize input utterances, a fast translation module to translate the recognized 
text from the source language into text in the target language, and a multi-language 
speech synthesizer to convert the translated text into audio output in the target lan-
guage. The system GUI is designed to let the user check both recognition and trans-
lation results, and to allow the user to re-play the output. Logging of results from  
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the recognition and translation modules, as well as system configuration is also  
implemented in the system. 

Figure 15.1a, b show the architectures of our speech translation systems when 
two different translation approaches are used respectively. Figure 1a shows the con-
cept based translation approach is used. The input speech is recognized using an 
automatic speech recognizer (ASR) and then parsed by a statistical natural language 
understanding (NLU) module. An information extraction component is responsible 
for analyzing the semantic tree obtained from the NLU. This component is responsi-
ble for representing the (recognized) spoken sentence information in a language 
independent “interlingua” representation (Gu et al. 2006). This is combined with the 
canonical representation of “named entities” such as numbers and other attributes 
detected by our semantic model. The resulting representations are sent to a natural 
language generation (NLG) engine to render in the target language. The two types of 
information are translated using distinct models, with the specific attributes of items, 
such as times and dates, using conventional techniques familiar to the machine trans-
lation community. The interlingua translation, however, uses statistical techniques 
and can perform considerable surface changes when required for the target language. 
Finally, when a textual representation of the utterance in the target language is com-
plete, a text-to-speech synthesizer is used to produce spoken output. 

 

based phrase translation approach  

Figure 15.1b shows the architecture when statistical phrase based translation 
approach is used. The target translation can be obtained from a multi-layer Viterbi 
search, given the Statistical Integrated Phrase Lattices (SIPL) and a statistical  
language model, which is a novel framework for performing phrase-based statisti-
cal machine translation. IBM internal finite-state transducer toolkit is used during 

 
   ASR  

    TTS 
 
     Multi-Layer Viterbi Decoder 

 
SIPL  

   LM 

ASR 
 

NLU
 

NLG TTS 
  

Fig. 15.1 System architecture of a speech-to-speech translation system on a handheld  device: 
a Statistical NLU-NLG based concept translation approach. b statistical finite-state transducer 

329 



Yuqing Gao et al. 
 
the development. In this work, we propose a novel framework for performing 
phrase-based statistical machine translation using weighted finite-state transducers 
(WFST’s) that is significantly faster than existing frameworks while still being 
memory-efficient. In particular, we represent the entire translation model with a 
single WFST that is statically optimized, in contrast to previous work that represents 
the translation model as multiple WFST’s that must be composed on the fly. While 
the language model must still be dynamically combined with the translation model, 
we describe a new decoding algorithm (Zhou et al. 2006) that can be viewed as an 
optimized implementation of dynamic composition. 

15.2.2 Hardware and OS Specifications 

To demonstrate the feasibility of building a system with our speech translation archi-
tecture on a standard PDA, we have built our system on three target hardware plat-
forms. The first one (Zhou et al. 2004) is an iPaq PDA model H3800. It is equipped 
with an Intel’s String ARM CPU with 206 MHz. The system has 64 MB of RAM 
and 32 MB of flash ROM. The original of this iPaq is shipped with Microsoft’s 
Pocket PC 2002 and it is replaced with Familiar, a full featured Lunix distribution for 
mobile devices, based on the embedded Linux kernel. This PDA is also equipped 
with either an IBM Compact-Flash Micro drive, or a MultiMediaCard. We use it to 
store n-gram language models, translation models and dictionaries.  

The second one (Zhu et al. 2006) is a customized PDA (referred to as the P2 be-
low). It is equipped with an Intel 400 MHz XScale PXA 255 processor. The system 
has 256 MB of RAM and an SD (Secure Digital) card for additional storage. The P2 
has been ruggedized for outdoor use. The original P2 was equipped with software for 
one-way, fixed phrase translation.  

The third one is the HP iPaq PDA model H2750, a popular and commercially 
available device. The processor shipped with this product is Intel’s XScale PXA 270 
running at a frequency of 624 MHz. The system has 128 MB of RAM and an 82 MB 
iPAQ File Store system. It is also equipped with an SD card for additional storage. 
We use SD card to store the weighted finite state transducer based translation models 
and TTS voice files for the concatenated embedded TTS. All systems have a built-in 
microphone for speech input and an integrated speaker for audio output. The buttons 
on the PDA are used as push-to-talk for speech input, and user can also use the stylus 
to start or stop speech input. 

15.2.3 Interface 

Figure 15.2 shows the MASTOR user interfaces for several the handheld devices. On 
the left is on a Linux-based iPaq, on the middle is on a custom designed PDA using 
Microsoft Windows WinCE.NET 4.2 operation system, on the right is on HP iPAQ 
H2750 using Microsoft Pocket PC 2003 OS system. Usually, on the top of the 
screen, there are two radio buttons or two Start/Stop buttons for each direction show-
ing the status of the microphone. There are also buttons showing the current speech 
translation direction.  In the middle, there are two edit controls, one for displaying 
recognition results, the other for displaying translation results. The translation button  
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Fig. 15.2 Screenshots of Mastor system on several platforms a iPAQ H3800 using Embedded 
Linux; b Customized PDA using WinCE.net 2.4.0; c iPAQ H2750 using Pocket PC 2003 

is for initiating the translation. The play output button is for playing or re-playing the 
audio output. 
       On the custom designed ruggedized PDA system. There are five buttons on the 
bottom of the screen: The Setting button is for setting the system parameters; 1.5  
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way button is to enable 1.5-way translation mode. Using 1.5 Way mode may be more 
convenient for the user in cases when the speech recognition results are slightly dif-
ferent from what was said.  The list contains sentences sorted in order of similarity  
to what was spoken and allows the user to quickly choose a similar sentence. A sen-
tence in the list can be clicked and then translated by pressing the Play button.  1.5 
Way mode displays common, short phrases. Reset button is for system reset; Exit 
button is for exiting the Mastor system; and finally, the Instruction button is used for 
playing instruction of the system. 

On Pocket PC 2003 system, there is one plus and one minus button which let the 
user change the volume level of speech output. There is also an indicator which 
shows the state of the adaptation function in the Automatic Speech Recognition 
(ASR) engines. The action of turning on or off this adaptation function is in the sys-
tem menu. There are two switch buttons and one toggle button on this specially de-
signed PDA. We utilize the switch buttons to turn on or off the microphone for both 
languages. We use the toggle button for translation and playing output, as well as 
increasing or decreasing the playback volume. Therefore, the system on this PDA is 
stylus free, making it possible to operate with one hand.  

15.3 System Components and Optimization 

15.3.1 LVCSR on Handheld Devices 

The recognition module developed for our mobile speech translation system is an 
HMM-based LVCSR engine using statistical n-grams. Unlike most grammar-based 
embedded speech recognition systems, our system has the advantage of large voca-
bulary coverage. Moreover, it has the flexibility to switch to new application domains, 
which is typically only found on desktop-based systems. To accomplish this, IBM’s 
large vocabulary speech recognition engine, as featured in the popular ViaVoice dicta-
tion product, was ported to the XScale processor architecture. 

On porting this large scale system to ARM architecture, it is first noted that the 
StrongARM platform (as well as most currently available handheld devices), unlike 
the Intel x86 series, has no integrated floating point (FP) hardware. It depends en-
tirely on software that emulates the FP co-processor. Despite much of the IBM rec-
ognizer being developed to use mostly integer computations, our initial profiling 
experiments showed that substantial amounts of time were consumed by FP calcula-
tions. Therefore, significant efforts were made to integerize the most of the signal 
processing front-end and search components of this system. This includes a fixed 
point math implementation of the following major recognizer components: the Mel-
cepstrum feature extraction, the Gaussian likelihood computation of the context de-
pendent phone models, as well as the procedures of fast match and detailed match 
during the decoding process. Particularly, at the feature extraction front-end compu-
tation modules such as high-pass filtering, discrete cosine transformation, Fast 
Fourier transform, LDA, pitch calculation and silence detection have been mostly 
integerized. 

332 



Handheld Speech to Speech Translation System 
 

 
 
 

The English acoustic model uses an alphabet of 52 phones. Each phone is mod-
eled with a 3-state left-to-right hidden Markov model (HMM). This system has 
approximately 3,500 context-dependent states modeled using 42 K Gaussian dis-
tributions and trained using 40 dimensional features. The context-dependent states 
are generated using a decision-tree classifier. The Chinese acoustic model uses 162 
phones, including some phones that are tone-dependent. Each phone is also modeled 
with a 3-state left-to-right HMM. It has about 3,000 context-dependent states mod-

about 30 grapheme phones that essentially correspond to letters in the Arabic alpha-
bet, not including any diacritics such as short vowels.  The colloquial Arabic HMM 
structure is the same as that of the English model. The colloquial Arabic acoustic 
model is also built using 40 dimensional features. It has 28 K Gaussian distributions. 
All models are trained using discriminative training (Povey and Woodland 2002). 

A statistical trigram language model is built for English, Chinese and colloquial 
Arabic languages recognized in this speech translation system. The English language 
model is built using a corpus of 6.4 million words. This corpus is split as training and 
holdout sets with 5.7 million and 0.64 million words, respectively. The vocabulary 
size is about 30 K. The language model is smoothed using a deleted interpolation 
technique. Due to memory limitations of the P2 device, the language model is further 
pruned with bigram and trigram thresholds of 1 and 2, respectively. The size of the 
English language model is about 7 MB. In Chinese, the language model is built  
using a corpus of 2 million words, with a vocabulary size of 10 K. The size of Chi-
nese language is about 5 million. 

In Arabic, words can take prefixes and suffixes to generate new words that are 
semantically related to the root form of the word (stem). As a result, the vocabulary 
size in modern standard Arabic as well as dialectal Arabic can become very large 
even for specific domains. For colloquial Arabic, we used a corpus of 3.3 million 
words that is again split as training and holdout sets with 2.9 million and 0.32 million 
words, respectively. The vocabulary size for this corpus is about 98 K, which is too 
large to be used on the P2 system due to the CPU and memory limitations on the 
device. Aggressive pruning of both the vocabulary and the counts of the language 
model would be required. Instead, we built the language model on morphologically 
tokenized data. Applying the morphological analysis, we split some of the words 
into prefix + stem + suffix, prefix + stem, or stem + suffix forms. We refer the reader 
to (Afify et al. 2006) to learn more about the morphological tokenization algorithm. 
Morphological analysis reduced the vocabulary size to 58 K without sacrificing cov-
erage. Nevertheless even this was too large to be used in the P2 device. Next, we 
eliminated singletons from the vocabulary, which reduced the vocabulary further 
down to 37 K, and applied cutoff thresholds to the bi-gram and tri-gram counts in the 
language model. The size of the final language model is about 9MB. 

bedded speech recognition as these systems are deployed in unpredictable real world 
situations. Feature space Maximum Likelihood Regression (fMLLR) has proven to 
be especially effective for this purpose, particularly when used for incremental unsu-
pervised adaptation (Li et al. 2002). Unfortunately the standard implementation used 
by most authors requires unacceptable CPU power for embedded speech recognition 

eled using 40 K Gaussian distributions. The colloquial Arabic acoustic model uses 

Adaptation to a new speaker or environment is becoming very important in em-
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systems. The CPU requirements can, to a degree, be lowered by using the block 
diagonal transformation matrix, but we will show that there are other problematic 
issues with the standard approach later. 

We have decided to use the stochastic gradient descent approach. It has been suc-
cessfully implemented in IBM’s Embedded ViaVoice (EVV), where we face the 
fundamental problems of embedded systems: limited CPU performance, slow and 
small memory, no floating point unit. Adaptation is implemented through a feature 
space transform of the form O  = AO + B, where O are the speech frames, A is the 
transformation, and B is the bias. The total amount of parameters to estimate is only 
n(n + 1), where n is the dimension of the feature vector. The adaptation is thus effec-
tive even with just a few seconds of data. One of the main challenges we face when 
deploying fMLLR on embedded platforms is integerization. The classical approach 
used in (Li et al. 2002) requires the need to compute the inverse of A. The inverse is 
usually performed using the Choleski decomposition algorithm. The implementation 
in integer arithmetic is fast, but unfortunately very sensitive to numerical errors (due 
to the necessary scaling and rounding), and can end up with completely wrong ei-
genvalues. This Choleski decomposition break down can be detected and an extra 
fail-safe mechanism usually takes care of resetting the transform in this case.  In our 
solution (Zhu et al. 2006) we use the stochastic gradient descent approach which 
avoids the computation of the inverse (Balakrishnan 2003) and thus the eigenvalue 
related problems do not exist.  

We have developed two approaches for translation module. One is composed of a 

generation (NLG) module. The other is Weight Finite State Transducer based ap-
proach. We address the NLU/NLG approach in this section. 

approach, which have been explored within C-STAR project by CMU (Lavie et al. 
1997; Levin et al. 2000), ATR (Yamamoto 2000), ITC-IRST (Lazzari 2000), CAS 
(Zhou et al. 2004) and CLIPS (Blanchon and Boitet 2000), etc.  

The NLU module is based on the statistical parser employed in IBM telephony 
natural language dialog systems. This component utilizes statistical decision-tree 
models to determine the meaning and structure of the input utterance, which is 
achieved by assigning a hierarchical tree structure to the recognized sentence as 
predicted by the statistical model. The semantic parser examines the class-tagged 
sentence and determines the meaning of the sentence by evaluating a large set of 
potential parse tree in a bottom-up left-to-right fashion. The parse hypothesis that 
scores the highest based on the statistical models is returned as the best parse hy-
pothesis. 
 Current English and Chinese corpora include 10,000 sentences for each language 
in the domain of security and emergency medical care. 68 distinct labels and 144 
distinct tags are used to capture the semantic information. An example of an anno-
tated English sentence is illustrated in Fig. 15.3. In this parse tree, “FOOD” is a 

statistical natural language understanding (NLU) and a statistical natural language 

15.3.2  Natura l Languag e Understandin g an d Generation Based Translation 

The NLU/NLG based concept translation approach is similar to the interlingua 
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semantic concept represented by one or a group of words, while “food” is a tag that 
refers to a semantic concept represented by only one word. The concepts and tags in 
Fig. 15.3 are not designed to exclusively represent semantic meanings and may rep-
resent syntactic information as well, such as those shown in the label of “SUBJECT” 
and the tag of “query”. While the semantic information remains the main annotation 
target, syntactic-related labels and tags are used to group the semantically less  
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important words into classes, which were found very useful in the NLG procedure 
to deal with the serious data sparseness problem. 
     An example of English-to-Chinese translation using the statistical interlingual 
approach is illustrated in Fig. 15.4. The source English sentence and the correspond-
ing Chinese translation are represented by a set of concepts—{PLACE, SUBJECT, 
WELLNESS, QUERY, PREPPH, BODY-PART}. Some of the concepts (such as 
PLACE, WELLNESS and BODY-PART) are semantic representations while some 
of the concepts (such as PREPPH) are syntactic representations. There are also con-
cepts (such as SUBJECT and QUERY) that represent both semantic and syntactic 
information. Note that although the source-language and target-language sentences 
share the same set of concepts, their tree structures could be significantly different 
because of the distinct nature of these two languages (i.e., English and Chinese). 
Therefore, in our approach, a natural language generation (NLG) algorithm, and in 
particular, a natural concept generation (NCG) algorithm, is required to transform the 
tree structures in the source language into appropriate tree structures in the target 
language, so that the source language sentences can be reliably translated into the 
target language sentences. 

While the NLU module is not a significant computational bottleneck, it is impor-
tant to improve the runtime speed of this module to lower the overall response time 
of the system. An effort was made to reduce the runtime memory requirements and 
to improve the parsing speed. 

As we briefly mentioned in previous paragraph, very little work has been done 
using a statistical learning approach to produce natural language text directly form a 
semantic representation. Such as in our case, Ratnaparkhi (2000) introduced a statis-
tic method to generate noun phrase from a simple semantic representation, attribute-
value pairs, which is a special subclass of the semantic representation we want to 
deal with. We have developed our NLG component using a similar approach. The 
high-level semantic translation is accomplished by NLG in the target language from 
the semantic representation. More specifically, statistical NLG is used to discover the 
preferred concept ordering and to assign the lexical form of a grammatical sentence 
in the target language. The statistical models are directly learned from a training 
corpus, using no manually designed grammars or knowledge bases. In our speech 
translation system, the statistical NLG component has three kinds of input: a set tree-
structured language-independent semantic variables, as shown in Fig. 15.3; a set of 
unordered translation attributes in the target language; a probability model for lan-
guage generation. 

During the translation, the source sentence is parsed, yielding the constituent 
structure of the semantic tree that is kept, while the concept ordering information is 
discarded. The word generation probability model is a maximum likelihood prediction 
based on maximum entry modeling. 

On porting this component to ARM platform, this NLG module is re-implemented 
to fit with low computational resources available on PDA. This includes a more effi-
cient implementation of search procedures, as well as significantly reduced I/O rou-
tines. 
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15.3.3 Weighted Finite State Transducer Based Translation 

There is another approach based on a statistical MT methodology, originally pro-
posed for written-text translation by an IBM group (Brown et al. 1993). It was then 
applied to spoken language translation by the RWTH group (Ney et al. 2000; Ney 
2003) and used in VerbMobil project (Wahlster 2000). More recently, finite state 
methods have been widely applied in various speech and language processing appli-
cations (Mohri et al. 2002). Of particular interest are the recent efforts in approach-
ing the task of machine translation using Weighted Finite State Transducers (WFST). 
Various translation methods have been implemented using WFST in the literature. 
Among them, Knight and Al-Onaizan (1998) described a system based on word-to-
word statistical translation models in the light of Brown et al. (1993). Bangalore and 
Riccardi (2001) propose to apply WFST to select and reorder lexical items, and 
Kumar et al. (2005) implemented the alignment template translation models using 
WFST. One of the reasons why WFST-based approaches are favored is because of 
the availability of mature and efficient algorithms for general purpose decoding and 
optimization. For the task of speech-to-speech translation where our ultimate goal is 
obtain a direct translation from source speech to target language, the WFST frame-
work is even more attractive as it provides the additional advantages of integrating 
speech recognition and machine translation more coherently. In addition, the nature 
of WFST that combines cascaded models together as compositions offers an elegant 
framework that is able to incorporate heterogeneous statistical knowledge from mul-
tiple sources. This should be particularly valuable when the translation task is more 
complicated by the presence of conversational disfluent speech and recognition  
errors. On the other hand, compared with word level SMT (Brown et al. 1993), 
phrase-based methods explicitly take the word contexts into consideration to build 
translation models. Koehn et al. (2003) compared several schemes proposed by vari-
ous researchers as how to establish phrase-level correspondences and they showed 
that all of these methods achieved consistently better performance over word-based 
approaches. 

We use Weighted Finite State Transducer to build the entire translation model. A 
Viterbi decoder is used to combine the translation model and language model FST’s 
with input lattice efficiently. 

The phrase-based translation task can be framed as finding the best path in the 
following FSM, S = I o H, where, the “o” denotes the composition operation, I repre-
sents the source sentence with possible reordering, and, 

H = P o T o W o L                (15.1) 
 

phrase translation, the target language phrase-to-word, and the target language model, 
respectively.  

To minimize the amount of computation required at translation time, it is desir-
able to perform as many composition operations in Eq. 15.1 as possible, ahead of 
time. The ideal situation is to compute H offline. At translation time, one need only 
compute the best path of S = I o H. However, it can be very difficult to construct H 

here P, T, W, and L refer to the transducers of source language segmentation, the 
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given practical memory constraints. While this has been done in the past for word-
level and constrained phrase-level systems (Zhou et al. 2005), this has yet to be done 
for unconstrained phrase-based systems. In Zhou et al. (2006), this issue is tackled as 
the following. 

First, we note that the source language segmentation transducer P explores all 
“acceptable” phrase sequences for any given source sentence. It is crucial that this 
transducer to be deterministic because this can radically affect translation speed and 
memory usage. In Zhou et al. (2006), we introduce an auxiliary symbol, denoted 
EOP, marking the end of each distinct source phrase. By adding these artificial 
phrase boundary markers, each input sequence corresponds to a single segmented 
output sequence and the transducer becomes determinizable. 

Secondly, while it may not be feasible to compute H in its entirety as a single 
FSM, we separate H into two pieces: the language model L and the translation model 
M: 

M = Min(Min(Det(P)  o T)  o W )                               (15.2) 
 
where Det and Min denotes the determinization and minimization operation respec-
tively. In spite of the fact that T and W in (2) are not deterministic, and that minimi-
zation is formally defined on deterministic machines (Mohri et al. 2002), in practice, 
we often find that minimization can help reduce the number of states of non-
deterministic machines. It should also be noted that due to the determinizability of P, 
M (the SIPL) in the above equation can be computed offline using a moderate 
amount of memory. See Fig. 15.5 for a sample portion of the resulting transducer.  

In this approach, translation has been defined as finding the best path in I o M o 
L. To address the problem of efficient computation, Zhou et al. (2006) have devel-
oped a multilayer search algorithm. Specifically, as shown in Fig. 15.6, we have one 
layer for each of the input FSM’s: I , L, and M.  At each layer, the search process is 
performed via a state traversal procedure starting from the start state, and consuming 
an input word in each step in a left-to-right manner. This can be viewed as an opti-
mized version of on-the-fly or dynamic composition integrated with a Viterbi search 
procedure. However, this specialized decoding algorithm has the advantage of not 
only significant memory efficiency and being possibly many times faster than gen-
eral composition implementations found in FSM toolkits, but it can also incorporate 
information sources that cannot be easily or compactly represented using WFST’s. 
For example, the decoder can allow us to apply the translation length penalties and 
phrase penalties to score the partial translation candidates during search.  
  

We represent each state  in the search space using the following 7-tuple: (SI, SM, 
SL, CM, CL, , prev), where SI, SM, and SL record the current state in each input FSM; 
CM and CL record the accumulated cost in M and L in the best path up to this point;  
records the target word sequence labeling the best path up to this point; and prev 
records the best previous state. The initial search state 0 corresponds to being lo-
cated at the start state of each input FSM with no accumulated costs. To reduce the 
search space, two active search states are merged whenever they have identical SI, 
SM and SL values; the remaining state components are inherited from the state with 
lower cost. In addition, two pruning methods, histogram pruning and threshold or 
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Fig. 15.6 Search state of the multi-layer search 

beam pruning, are used to achieve the desired balance between translation accuracy 
and speed. The search algorithm is implemented using fixed-point arithmetic for 
deployment on PDA devices that lack a floating point processor. This results in 
translation speeds of hundreds of words per second on a PDA device, while using 
less than 20 MB runtime memory. 

15.3.4 Embedded Speech Synthesis 

Once an utterance is translated by the translation model, it is sent to the screen for 
display and to a text-to-speech (TTS) engine. Considering the limited resources 
available in a mobile device, formant TTS could be a reasonable choice. But high 
quality synthesized speech is vital for speech to speech communication. Therefore,  
compact concatenate voices have been developed both English and foreign lan-
guages. 

Our synthesis system uses a set of speaker-dependent decision-tree state-clustered 
hidden Markov models to automatically generate a leaf level segmentation of a large 
signal-speaker continuous-read-speech database. During synthesis, the phone se-
quence to be synthesized is converted to an acoustic leaf sequence by descending the 
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HMM decision tree. Duration, energy and pitch values are predicted using separate 
trainable models. To determine the segment sequence to concatenate, a dynamic 
programming search is performed overall the waveform segments aligned to each 
leaf in training. The dynamic programming attempts to ensure that the selected seg-
ments join each other spectrally, and have durations, energies and pitches such that 
the amount of degradation introduced by the subsequence of using TD-PSOLA is 
minimized. More detail about IBM concatenate TTS is in paper (Donovan and Eide 
1998). Due to the limited memory space available in a typical PDA device, the actual 
TTS voice segment fonts are stored in SD card while the search algorithm runs in the 
memory. The typical time for synthesis a sentence with 10 words is about one second. 

15.4 Experiments and Discussions 

15.4.1 Speech Recognition Experiments 

Speech recognition experiments are designed to measure the effectiveness of our 
integrization algorithms and the proposed fast incremental adaptive method. Experi-
ments were conducted on 3 different speech data sets. Tables 15.1 and 15.2 show the 
results on read speech recorded in quiet and noisy conditions. The first data set 
(shown in Table 15.1) is read speech from 5 speakers, each read 150 English sen-
tences in quiet office. The second data set (shown in Table 15.2) was recorded  
in noisy condition from 3 speakers, each read 100 English sentences. These noisy 
speeches were recorded by using Andrea NC-65 microphone. The speakers’ lips  
are about 2–3 in. away from the microphones. The vehicle noise source is about  
5–6 ft away from the microphones, and the noise level of 70–75 dbA measured next 
to the microphones. The third test data set is spontaneous speech (results shown in 
Table 15.3). The spontaneous speech data was recorded in two different conditions. 
Test 1, Test 2 and Test 3 were recorded from S2S system mediated cross-lingual 
conversations. Test 4 was also from cross-lingual conversations but it was mediated 
by human interpreters, therefore the speech is much more casual and includes a lot of 
disfluencies.  

Speech recognition results measuring in word error rates (WERs) with and with-
out the adaptation method are shown also in Tables 15.1–15.3. As for the compari-
son, the results from PC version of ASR code are also shown in the same tables. In 
Table 15.1, clean speech, the average of WER of integerized ASR engine is 5.21% 
while WER on laptop version ASR engine is 4.60%. The degradation is reasonable 

4.28% which is 22.09% relative improvement and is very close to results of laptop 
version (4.25%). In Table 15.2, for noisy speech, on average, the difference between  
integerized engine code and PC version is less than 1%. Here we also see the signifi-
cant gain by using the adaptation algorithm. In Table 15.3, the degradation of inte-
gerization varies within different test, and the range is between 1% and 3%. With 
fMLLR, we see a significant gain on Test 1 data set, but not for Test 2 data set. Since 
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the speech in Test4 data set was from conversations between people mediated human 
interpreters, therefore they are highly spontaneous, the WERs are particularly high. 
We noticed that the adaptation algorithm does not work well when the WERs are 
high. 

Overall, these results indicate that the performance degradation of the integeriza-
tion compared with the float-point engine is within expectation and significant gain 
is achieved by using proposed fast adaptation method.  

 
Table 15.1 Read speech in quiet condition 

 

Different ASR code WER (%) 
PDA (integerized code) 5.21 

With f MLLR 4.28 

PC (floating point code) 4.60 

With f MLLR 4.25 

 

Table 15.2 Read speech in noisy condition 

 
Table 15.3 Spontaneous speech recognition 

  
We also measured CPU usage with adaptation enabled and disabled.  On average, 

the proposed stochastic gradient descent method only increases CPU usage by about 
15%. Fortunately, most of this extra usage occurs at the end of recognition, after the 
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Different ASR code WER (%) 
PDA (integerized code) 15.82 
With fMLLR 11.14 
PC (floating point code) 14.69 
With fMLLR 12.46 

 
English        

  
Test 
1 (%) 

Test 
2 (%) 

Test
 3 (%) 

Test 
4 (%) 

PDA (integerized code) 21.84  17.54 15.23 46.18 
with fMLLR 15.57  18.76 13.80 46.29 
PC (floating point code) 18.07  16.79 14.24 39.86 
with fMLLR 13.19  14.93 12.00 35.83 
Arabic     
PC (floating point code) 
with fMLLR 25.80  24.56 23.00 29.58 
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user has been presented with recognition results, so it does not affect real time rec-
ognition performance. 

15.4.2 Translation Experiments 

The English–Mandarin recognition and translation experiments were done on the 
DARPA CAST Aug’04 offline evaluation data, which has an English script of 130 
sentences and a Chinese script of 73 sentences for medical domain. Each script was 
read by 4 speakers. The recognition word error rate for English is 11.06%, while the 
character error rate for Mandarin is 13.60%, both are run on speaker-independent 
models. The translation experiments are done on both clean text and the ASR de-
coded scripts. The 4-g Bleu score results measured using 8 human translations as 
references are shown in Table 15.4.  The oracle scores show that if one can combine 
the translation results from these two different approaches, the accuracy can be fur-
ther improved. Currently, we present two alternate translations to users in the real-
time system and give them more information for communication purpose. It is very 
useful to notice that the translation results generated by our two approaches are al-
ways consistent in meaning. 

English–Arabic experiments are done on several S2S system mediated cross-
lingual conversations (a subset of DARPA development set). In each dialog, an English 
speaker and an Arabic speaker were talking to each other via a speech-to-speech trans-
lation device. We extracted 395 English utterances and 200 colloquial Arabic utter-
ances from the dialogs. Three human translation references are created for measuring 
the BLEU score purpose. The results are shown in Table 15.5. Since the data is spon-
taneous conversational speech, the recognition WERs for both English and Arabic 
are not as high as those observed in human interpreter mediated conversation. The 
BLEU scores of English-to-Arabic is slightly lower than that of Arabic-to-English.  
One possible reason is that spelling of words in colloquial Arabic dialect is not stan-
dardized (more variations for the same word), which can lead to a low BLEU score. 
Another observation is that the ASR errors degrade the BLEU score more signifi-
cantly for English-to-Arabic. Although the ASR WERs look similar for English and 
Arabic, we notice that the WER of English content words is higher than that of Ara-
bic.  A possible reason is that the English acoustic model is not trained from sponta-
neous speech, while the Arabic acoustic model is trained with more conversational 
style speech mainly from in-domain data.  
 
 Table 15.4 BLUE score of English–Mandarin translation 
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  En-to-Cn  Cn-to-En  
Input Clean ASR Clean ASR 
NLU/NLG 0.578 0.513  0.276 0.245 
WFST 0.572 0.504 0.276 0.246 
NLU/NLG+WFST(Oracle) 0.691  0.606 0.365 0.342 
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Table 15.5 BLUE score of English–Arabic translation 

 
We described two different statistical approaches for speech-to-speech transla-

tion. The concept based approach focuses on understanding and re-generating the 
meaning of the speech input, while the finite-state transducer based approach empha-
sizes both system development and search speed and memory efficiency. The former 
approaches usually involve large amount of human effort in linguistic information 
annotation, although the amount of annotated data needed is not very large. The latter 
approach, weighted FST, may exploit un-annotated parallel corpora at the cost of 
potential meaning loss and the requirement of large amount of parallel text data. 

Both approaches have shown comparable results. The oracle scores show that if 
one can combine the translation results from these two different approaches, the 
accuracy can be further improved significantly. Currently we present two alternate 
translations to users in the real-time system to enhance the communications. It is 
very useful to notice that the translation results generated by our two approaches are 
always consistent in meaning. 

In cases where under studied languages (low resource) are involved in speech 
translation, the task would be more complex due to a number of reasons. Here are 
two particular ones in our concern. (1) lack of large amount of speech data which 
represent the oral language spoken by the right target native speakers, consequently 
traditional statistical translation approach is not applicable, the speech recognition 
error rate is much higher than popular languages, such as English or Chinese; (2) 
lack of linguistic knowledge realization in annotated corpus. Therefore neither lin-
guistic knowledge based approaches (such as our concept-based approaches) nor 
pure statistical approaches (such as IBM model 1–5 and FST-based methods) are 
suitable for rapid development of applicable systems.  

We believe that integration of the two research paradigms into a unified frame-
work, e.g., in a unified FST composition, should be the way to go. A shallow seman-
tic/syntactic parser is designed and implemented to enable statistical speech translation 
using knowledge-based shallow semantic/syntactic structures. This information is 
further utilized to process inevitable speech recognition errors and disfluencies in the  
 colloquial speech. While the shallow-structure parser is initiated upon lightly anno-
tated linguistic corpora and trained using statistical model, it can be greatly enhanced 
and expanded by applying machine learning algorithms on un-annotated parallel 
corpora. The integration of the two approaches should increase the system end-to-end 
performance, and reduces the amount of parallel text data required by the statistical 
algorithm. 
 
15.5 Conclusion 

We present our recent effort to develop two-way free-form speech-to-speech transla-
tion systems on a PDA using embedded Linux and Window CE or general Pocket 
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En-to-Ar  15.9% 0.388 0.202 
Ar-to-En  25.8% 0.596 0.416 



Handheld Speech to Speech Translation System 

 
 

 

PC platform. Due to the limited resources in both computational capability and 
memory and storage constrain in a typical handheld device, building an entire end-to 
end system on such devices is a highly complex task. 

We developed the handheld MASTOR systems (Multilingual Automatic Speech-
to-Speech Translator) for between English and Mandarin Chinese and between Eng-
lish and Arabic on embedded Linux and Windows CE operating systems. The system 
includes an HMM-based large vocabulary continuous speech recognizer using statis-
tical n-grams, a translation module, and a multi-language speech synthesis system. 
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Automotive Speech Recognition 

Harald Höge, Sascha Hohenner, Bernhard Kämmerer, Niels Kunstmann, 

Abstract. In the coming years speech recognition will be a commodity feature in car. Control of 
communication systems integrated in the car infotainment system including telephony, audio 
devices and destination inputs for navigation can be done via voice. Concerning speech recogni-
tion technology biggest the challenge is the recognition of large vocabularies in noisy environ-
ments using cost sensitive hardware platforms. Further intuitive dialog design coupled with 
natural sounding text to speech systems has to be provided to achieve a smooth man-machine 
interaction. This chapter describes commercial driven activities to develop and produce speech 
technology components for various automotive applications including the used speech recogni-
tion, speaker characterization, speech synthesis and dialog technology, the used platforms, and a 
methodology for the evaluation of recognition performance.  

16.1 Introduction 

Man Machine Interaction in car is a typical application demanding a “hands-free,” 
“eyes-free” operation mode. Speech recognition is well suited to fulfill these demands. 
Yet the specific acoustic environment and specific platforms found in cars are chal-
lenging: 

 
 — Noisy environment with a signal-noise ratio in the range of 20 dB till 5 dB  
 — Low cost microphones mounted 30–100 cm from the speaker 
 — Embedded platforms with restricted computing power and memory 

 
First applications were focused on command and control functions as name dialing 

to handle the telephone integrated in car. Nowadays destination input for navigation 
containing more than 100 000 street and city names is the most challenging task for 
speech recognition technology. 

In the following recent advances and activities performed in Siemens Corporate 
Technology by the group “Siemens Speech Processing” are described. 

Stefanie Schachtl, Martin Schönle, and Panji Setiawan  
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 16.2 Siemens Speech Processing—From Research to Products 

Siemens Corporate Technology was founded in the late 70th to support Siemens Oper-
ating Groups to secure a forefront position. Speech processing was one of the first 
topics of Corporate Technology, therefore now looking back on a history of more than 
25 years. While the first decade—the 80th—was mainly research oriented, there was 
already demand for large vocabulary recognition (at that time 1000–2000 isolated 
words in a speaker-dependent mode). Requests came, among others, from the Medical 
Group to support doctors for report generation from Computer Tomography images. 

The second decade—the 90th—saw increased utilization of the speaker-
independent recognition in communications. Large switching systems were enhanced 
with generic recognition units for later application integration—implemented on inte-
ger DSPs—as well as with dedicated speech-enabled functions e.g., for voice-mail 
control. 

The late 90th and the beginning of the new century finally brought speech technol-

kets like mobile phones and car infotainment. 
While command and control like recognition allows for basic voice access to  

services, more user convenience can be realized with natural voice dialogs. Dialog 
systems control the flow of user input and system output to collect all parameters as 
dates or money amounts needed for an application query. For applications in commu-
nications/telephony, dialog systems control speech in and speech out, but future sys-
tems are foreseen to provide multi-modal interaction combining voice, graphics, and 
haptics in a synchronized and consistent way. 

Speech signals carry more than just words and sentences: there is implicit informa-
tion about the speaker—gender, age, language, and mood or stress—which is of value 
for many applications. In order to make this information accessible, Siemens Speech 

independently. 
Finally, universal voice feedback to users needs a flexible text-to-speech synthesis 

system which is optimized for the chosen application domain.  

16.2.1 Development for Performance and Quality 

Speech technology serves as the connector between users and systems, requesting safe 
and reliable operation. Development at Siemens Speech Processing therefore follows  
a well defined process from requirements analysis (driven by market pull, product 
component demands, and research/technology push), development frameworks, and 

bug-free software and functional completeness the (recognition) performance of speech 
components is crucial for the final deployment. Therefore procedures and measures 
have to de developed that serve both the supplier and the customer to gain confidence 
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ogy on embedded platforms which became cheap enough to serve vast consumer mar-

tion. While speaker recognition has to be trained on the person to be recognized (enroll-
Processing developed components for speaker recognition and speaker characteriza-

ment) speaker characterization derives age/gender or language decisions speaker-

acceptance tests. Tools for versioning, workflow management, and defect/change track-
ing help to maintain a high level of software and functionality quality. Apart from 



 
and trust in the operation of the components. As an example, a systematic approach for 

described later on. 
Siemens Speech Processing is organized into “Innovation,” “Technology,” “Prod-

ucts,” and “Natural Language Understanding,” implementing a chain of valueads that 
narrows down from the broad spectrum of science and research over proven technology 

nies—opens the way to natural interaction with optimized functionality. 
The following will give a short overview of components developed and delivered 

by Siemens Speech Processing. 
 

16.2.2 High-Performance Recognizer 

With the event of cellular phones, processing power became cheap enough to bring 

was developed that offers various benefits. The Siemens Recognizer Embedded is tar-
geted for mobile phones, car infotainment and navigation, PDA/PNA deployment, and 

comes with selected European, US and Asian languages (see Fig. 16.1). 

Fig. 16.1 User interface for voice driven applications in car 
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SNR-based measurements of recognizer performance has been developed which is 

pieces to products that match market requirements. The focus on Natural Language 
Understanding combined with dialog capabilities—often found in separate compa-

speech recognition on mobile devices. For that purpose a dedicated recognizer product 

dedicated embedded systems in hearing aids, medical devices, or industrial panels and 
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 This Siemens Recognizer Embedded is complemented by the Siemens Recognizer 
Server that offers standard interfaces and protocols like MRCP and RTP, multi-port 
and multi-threading with load-balancing, and optimizations for Windows and Linux. 
Acoustic models for selected languages of Europe, US, China, and India are provided 

center automation, auto-attendant solutions, and industrial applications. 

 16.2.3 Ultra-Compact Text-to-Speech Synthesizer 

The generation of artificial voices has to meet several requirements—the speech must 
be intelligible and natural while the footprint must match given hardware limits. Sie-
mens Speech Processing decided to concentrate on a solution for extremely small foot-
prints. A state-of-the-art diphone based technology is used where short segments from 
real speech are concatenated, adjusted at the boundaries, and modulated by the prosody 
contour. For advanced applications a dedicated text pre-processing module resolves 
e.g., abbreviations and numbers.  

The Siemens Text-to-Speech Synthesizer Embedded starts from just around 250 kB 
for tasks like caller name announcement in mobile phones and reaches 1.5 MB for 
email or SMS reading (one language). The system is available for European languages, 
US English and Mandarin Chinese and is targeted for low-footprint, low-cost devices 
like mobile phones e.g., for developing countries or mobile industrial devices. 

 

 
Fig. 16.2 Carefully designed dialog machines are needed for a smooth man-machine interaction 
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to serve these important markets. The Siemens Recognizer Server is targeted for call-



 
16.2.4 Natural Voice Dialog 

Mixed-initiative conversational voice dialog systems offer a maximum of convenience 
to users. These “how can I help you” systems were first implemented in telephony 
voice portals and advanced IVR systems. Siemens Speech Processing gained consi-

systems. By that, convenient voice access to complex information sources like  
web-services or manuals can now be experienced for example in cars that are “always-
on” (see Sect. 16.3). 

Traditional dialog systems operate in a state-based manner on VoiceXML scripts 
that are hand-crafted to implement certain functionality. While this approach showed  
to be widely accepted, it is very time consuming for a first implementation. Siemens 
Speech Processing therefore developed a slot-filling solution which allows for a  
descriptive dialog design. This dialog engine knows about the task and associated  
parameters, allows for multi-parameter input and over-answering and performs an 
automatic dialog in case of unclear or missing entries. 

Additional state-based procedures and a complementary communication with the 
platform over dynamic VoiceXML pages combine the best of both worlds. 

Especially in automotive applications there is a need for coherence between the 

this, relieving the UI developer of a heavy burden and securing a consistent user ex-
perience (see Fig. 16.2).  

16.2.5 Speaker Characterization and Recognition 

Imagine a system that adapts to a driver without knowing him: speaker characteriza-
tion determines automatically age, gender, and language of the current user as basis for 
adaptive dialogs. Spoken language identification allows a user to interact in his lan-
guage, even if it differs from the system language (e.g., in rental cars). With age classes 
“child,” “teenager (f/m),” “adult (f/m),” and “senior,” dedicated dialog styles can be 
chosen—from uncouth to serious. And knowing the gender the recognition perform-
ance can be optimized as well as, e.g., the content of services re-ordered.  

identification to the Siemens Recognizer Server while the Siemens Speaker Recogni-
tion performs a biometric recognition of individuals after enrollment—text dependent 
as well as text-independent. 

16.3 Example Automotive Voice Applications: Infotainment, 
Navigation, Manuals, and Internet 

High performance recognition opens new opportunities for a more natural interaction 
by voice in cars. When vocabularies are no longer restricted to few commands or 
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derable experience from these areas before converting the technology to embedded 

GUI and a voice dialog. The Siemens dialog engine is perfectly prepared to achieve 

The Siemens Speaker Characterization adds age/gender recognition and language 

names but extend to several thousand words, and when those recognizers are combined 
with an appropriate dialog engine and Text-to-Speech synthesizer, especially in the 
automotive scenario new speech applications become reality that will significantly 
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enhance usability. Siemens Speech Processing explores various applications that bene-
fit from speech user interfaces, already today or in the near future. The following gives 
a short survey on the results and solutions obtained so far. 

16.3.1 Radio Station Selection 

A typical use-case for speech recognition is the control of entertainment sources of car 
infotainment systems. Available radios already display the name of the tuned station, 
provided as the “Program Service Name” by the radio data system RDS. A serious 
issue for voice-based selection of radio stations is the limitation to at most eight charac-
ters for the Program Service Name. Due to this it is a common to transmit abbrevia-
tions or short forms for the station names like, e.g., “CEREDIGN” for Radio Ceredigion 
in the UK. This raises the question how an inexperienced user knows what in order to 
switch to the corresponding station. One solution here is to provide an exception list for 

An automatic conversion of text to phonemes is then utilized only for RDS names not 
contained in this list. 

16.3.2 MP3 Title Selection 

There is an increasing demand to consume audio and video media wherever they are. 
The development of effective compression techniques for audio like MP3-coding and 
the availability of portable players, even integrate in various recent cell phones acceler-
ated this trend. The use of speech control for the administration of large amounts of 
audio files, playback control, and the selection of titles and artist becomes a desirable 
feature, especially for the case of limited interaction possibilities of portable players or 

specific? 
First of all, with genres, interprets, albums, and titles there is a large amount of 

partly structured data to be operated on. The phoneme strings for genres are normally 
provided by the supplier and fit to the chosen speech recognition language, while the 
names of interprets, titles, or albums need not to stem from the current speech recogni-

for interprets and titles (see e.g., www.gracenote.com), suitable information in this area 
is still sparse. This situation leads to the third particularity of the MP3 selection, the 
need to deduce a phonetic representation for arbitrary song names where the originat-
ing language is not known beforehand. Unfortunately, usually provided language in-
formation in subjective property frames of an ID3 tag is not reliable enough. 

The task of language identification is made even more ambitious when the titles do 
not contain valid words, or when there are purposeful spelling “errors” like for the 
album “Konvicted” by Akon. Furthermore, song titles are often short and consist of 
only a few words not necessarily typical for the chosen language. A related issue arises 
from phrases which contain words from different languages, e.g., in the title “Femme 
Like U” of the album “La Good Life” by K-Maro. 
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the recognizer which contains multiple pronunciations for each (known) RDS name. 

car infotainment systems. What makes the task of voice control for portable players so 

tion language. Although there are activities going on to supply possible pronunciations 



 
Usually employed techniques for language identification employ n-gram statistics, 

decision trees, or neural networks and operate on phrase level or on word level. On the 
word level, useful cues are language-specific letters or letter sequences, e.g., the Ger-
man “ß,” or “th” for English. On phrase level the approaches try to combine the indica-
tive features from single words in an intelligent way or one use the sequence of words. 
Presumably, the best solution for the language identification task in the given situation 
will be a weighted combination of different approaches. 

Once the system has decided on the language of a phrase and of the underlying 
words, the grapheme-to-phoneme conversion deduces the phoneme string corres-

Even if the language was correctly detected there arises another issue that has great 
impact on the recognition performance: in many situations the language of the speech 
engine is different from the language of the title to be spoken. As a consequence, e.g., a 
non-French who wants to select “Je ne regrette rien” by Edith Piaf will produce a more 
or less strong foreign accent. Whether a sophisticated phoneme substitution technique 
can handle such cases in a satisfying way remains to be clarified when voice control for 
portable players becomes more widespread. 

jority of titles and albums are in English. As a consequence, various issues of multi-
linguality are still the most prominent challenges for the MP3 title selection use case. 

16.3.3 Navigation Destination Entry 

tion system. Depending on what is regarded as a city there are between 50 k and 100 k 

words combined with the adverse sound conditions in a moving car the recognition 
result is typically provided as an n-best-list on the display of the head unit for final 
selection by the user.  

of a destination entry, the phonetic data for all city names (or all street names respec-
tively) has to be provided to the recognition engine. This poses strong requirements on 

tion time itself.  
It can be observed that there a different cities with the same name as well as  

identical phonetic representations for names with different writings. As an example,  

graphic forms of 11 cities: 
 

entities in Germany, comprising up to 12 k streets. Due to this large number of active 

A challenging task for speech recognition is the input of a destination into naviga-
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ponding to a possible pronunciation.  

At the moment most systems operate with an English speech recognizer as the ma-

Since the pronunciation of city and street names is often non-regular, the corre-
sponding phoneme strings are normally contained in the navigation database. In case 

either data transfer rates in case of separated units for navigation and recognition or on 
memory space to cache all information in advance, since the response time of the rec-
ognizer increases considerably when adding the time for data transfer to the recogni-

the phonetic pronunciation “SnaIt” for a German city corresponds to 5 different ortho-
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Schnaitt

Schneit

Schnaidt

Schnaid

Schnait

Memmingen

Feldkirchen-Westerham

Teisendorf

bei Tettnang

Grünenbach, Allgäu

am Bodensee

bei Neukirchen am Teisenberg

Wallenfels
Hallerndorf

Remstal
Bad Tölz
Wangen, Allgäu

 
 
The task here is to provide a multi-modal HMI for recognition in combination with 

an appropriate approach to resolve such ambiguities. As a solution the list of different 
written forms is displayed and the final destination is selected in a consecutive dialog 
step. 

16.3.4 Manuals and Help Systems 

“Where is the gas cap located ?” When approaching a gas station with a rental car this 
question is not unlikely to arise, and a spoken dialog help system in that car would then 
be very welcome. However, to provide an appropriate interaction the dialog has to 
perform much more than simple command and control. Such a system must be able to 
understand questions in natural language, and it has to understand as many variations 
of this question as possible.  
 

different help topics have been modeled. For each topic a key grammar for possible 
phrasings of the question (all in all about 1150 words) as well as an answer prompt 
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User: How do I start a conference call? 
System: In order to start a conference call, call the first 

participant. Then press the call back button, ...  
User: Which one is the call back button? 
System  The call back button is found on …. 

Siemens Speech Processing explored this task by generating an interactive help 
 system for a PABX telephone system (see Block et al. 2004), for which about 200 

"SnaIt

Fig. 16.3 Example: spoken dialog help system for a PABX 

"



 

 

 

further tuning was performed, a usability test showed already 85% task completion.  
It seems obvious that—while driving—a user would prefer to access the car manual 

by voice instead of filing through a (even electronic) booklet, making this approach a 
major step towards improved overall usability in cars.  

16.3.5 Access to Structured Web Content 

The internet offers a lot of information that might be of value for drivers. Again the 
question arises how a driver can access this information (which was originally  
designed for graphical interaction) in an eyes-free/hands-free mode when on the road. 
As participants in the research project SmartWeb1 Siemens Speech Processing ex-
plored the automatic generation of spoken dialogs from structured Web content. These 
dialog applications then allow the driver to gather relevant information in a free voice 
dialog without too much distraction, leaving his/her hands on the steering wheel.  

By structuring its information in headers, columns and lines, a table can be perceived 
by humans at a glance. Another important characteristic of tables is that they allow for 
easy comparison of values, cf. example below: 

Table 16.1 Gas prices for Bonn and surroundings 

Station Fuel City Code Address Price/l 
Name 1 Normal Bonn 53115 Street 1 1,189  
Name 4 Normal Bonn 53115 Street 4 1,199  
Name 2 Normal Siegburg 53721 Street 2 1,199 
Name 3 Normal Rheinbach 53359 Street 3 1,179 
Name 1 Super Bonn 53115 Street 1 1,239 
Name 4 Super Bonn 53115 Street 4 1,249 

 
These characteristics are now used to automatically generate speech dialog applica-

tions. Tables are collected by a web crawler, sorted according to their usefulness, and 
normalized. After these steps, the linguistic content of a table is parsed and transformed 
into three units: introduction, key grammars, and answer prompts.  

The introduction is necessary to tell the user what the new dialog application is 
about, in order to prevent out-of-vocabulary and out-of-domain questions by the user. 
From the Table 16.1 in Example2 the following introduction would be generated: “Gas 

                                                           
 
 
 
 
1This work was partially funded by the German Ministry of Education and Re-

search BMBF in the framework of the SmartWeb project under grant 01IMD01K. See 
Wahlster (2004) and www.smartweb-projekt.de for more information on the Smart-
Web project. 

with the required help was developed. In addition, prompts for each topic were formu-
lated that are used for a clarification sub-dialog when the user input could not be inter-
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preted straight forward. These elements then constitute the parameters for the dialog 
engine which combines them into a spoken dialog system (cf. Fig. 16.3). While no 

The chosen approach focuses on Web content that is represented as HTML tables. 
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 Prices in Bonn and surroundings, with information on station, fuel, city, code,  
address and price per liter. You can ask me for example, what do you know about 
Name 1?”.  

In order to model possible questions a user might ask after such an introduction—
e.g., “Where do I get the cheapest super in Bonn?” or “How much is super in 
Bonn?”—several mechanisms are deployed. First, the system tries to identify the type 
of a column automatically. If this was successful, it assigns standard grammars that 
belong to the type determined. For example, the heading “Price per liter ” followed by 
many numerical values is likely to be of type “price” and would be assigned the stan-
dard grammars provided for querying the price of something, i.e., phrases like “How 
much is,” “What’s the price of ” etc. If no type can be identified, grammars are gener-
ated from the values themselves by putting a “Which” in front of the column headline, 
e.g., “which city,” and enumerating the values, e.g., “Bonn” etc. Through this mecha-
nism a question like “Where do I find a Shell station in Bonn? ” is captured. Finally, 
typical phrases for comparison are incorporated wherever a numeric value is found, 
adding “cheapest,” “cheaper than ” etc. to the vocabulary.  

For the automatic generation of an answer prompt it is important, that the system 
tells the user first what was understood before the answer is given, e.g.: “As answer to 
your question about address, super, Bonn, the cheapest price, I found: Hauptstraße 
14.”  

The content of the table is stored in a serialized file to feed the answers, and some 
algorithms are added in order to allow cross comparison of the numeric values trig-
gered by the comparative grammars. By this, all relevant information is contained in 
the system once it is generated from the internet, which means that the application does 
not need to be online while in use. Only when the contents of the table change the 
system has to be updated. See Berton et al. (2006) for a description of the transport of 

HMI of the research prototype. 

16.3.6 Access to Web Services 

collection of databases for which a description of fields and access methods are pro-

offering access to all kinds of information, e.g., to yellow pages (e.g., dialo.de), event 
calendars (e.g., eventful.com), or weather reports (wetteronline.de). The information 
provided in these services is always up to date while the interface remains stable in 
comparison to normal web pages.  

If these services are to be accessed by speech, necessary parameter values have to 
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internet applications into the car and their integration in a multimodal infotainment 

Another way to access web content is given by web services, which offer standardized 
methods for accessing enclosed data. A web service can be seen as a database or a 

be gathered in a dialog. This is depicted in Fig. 16.4 for voice access to an event web 
service, where recognition results are (indirectly) confirmed and missing parameters

vided in the WSDL format. An increasing number of those services appear in the web, 

are asked from the user before the query to the web service is started.  



 
An interface layer for the dialog application was implemented that transforms the 

question of the user into a correct WSDL query and transmits it, e.g., via UMTS, to the 
database.  

 
 

User: Are there any concerts in Munich? 
System: Concerts in Munich, on which day? 
User: Tomorrow. 
System: Tomorrow, Tuesday, 10th of April? 
User: Yes. 
System: I found seven concerts. 

Beethoven. Herkulessaal der Residenz. 
Start time 8 p.m. 

User: – 
System: More than Soul. Nightclub Bayerischer 

Hof. Start time 8 p.m. 
… … 

sists of a long table consisting of all entries matching the query. A pre-processing unit 
phrases the answer so that it can be well read out by the Text-to-Speech and understood 
by the driver. Two approaches for this pre-processing step were studied. In the first 
procedure, the items on the answer list are read one after the other and the user can 
barge in anywhere with commands like “details,” in order to hear more information on 
this specific item, or “drive me there” in order to enter an intermediate destination into 

otherwise would have been out of vocabulary, e.g.: “Are there any concerts with Alfred 
Brendel next week?”  

In contrast to the processed HTML tables described in the section above—for 

must always be accessed online. But this also implies the potential to provide the driver 
with up-to-the-minute information where necessary, e.g., when looking for a free park-
ing lot at the destination—and this can pay in terms of fuel and time savings.  

 
16.4 Automotive Platform Issues and Challenges 

The environment for the implementation of speech recognition on automotive plat-
forms differs from the one on a mobile phone for a couple of reasons. Before going 
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Fig. 16.4 Spoken dialog access to web services 

The answer sent by the web service—in this case again via UMTS—usually con-

the navigation system. The second approach implements an additional dialog built on 
the answers from the web service. This dialog allows the user to ask for items which 

which a one way communication such as broadcast suffices—web service information 

Alban Berg Quartett-Haydn, Schönberg, 
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16.4.1 Hardware Constraints 

The most salient difference of an automotive environment when compared to a mobile 
device is the amount of electric energy. By this some of the restrictions known from 
mobile devices vanish and higher clock rates for processors (therefore processing 
power) and busses (throughput) become possible. 

to be considered. The quality requirements regarding temperature range for electronic 
components, data retention time for non-volatile memory and operational life time as 

 
into detail here we take a very coarse look at the situation. There is more than one 
control unit in the car where the actual recognition engine can reside on (cf. Fig. 16.5). 

system (b), in dedicated telephone unit connected to the mobile phone via Bluetooth (c) 

Fig. 16.5 Distribution of dialog control and speech recognition between different processing 
units in cars: Both in the head unit (a), in different units connected by an automotive bus 
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But concerning hardware there are other important topics for automotive platforms 

formulated in the quasi-standard “AEC-Q100” (Automotive Electronic Council 2003) 



 
are much higher than in the ordinary consumer electronics industry. Table 16.2 shows 

essor as currently used in office PCs (rightmost column). Apart from the most promi-
nent difference—the clock speed of the processor—there are quite a couple of issues to 
be mentioned in this context. For systems like the blackfin BF533 (which is a derivate 
from a DSP development line) it is still important to support an integer implementation 
of the relevant signal processing parts of speech recognition. Another topic with some-
times underestimated importance is an efficient access to code and data in the memory. 

caches are often missing and the clock speed for the memory bus is way below the one 
for current desktop processors. Future developments, e.g., the so-called CarPCs might 

quirements on robustness prohibit the catch up for basic performance numbers. 
 

ADSP BF533 i.MX31 
Renesas 
SH7785 

AMD Athlon 64 
FX 

Clock speed 594 MHz 532 MHz 600 MHz 3000 MHz 

Type 
32 Bit 32 Bit 32/64 Bit 

L1 I–Cache 16 k 16 k 32 k 64 k (per core) 
L1 D–Cache 32 k 16 k 32 k 64 k (per core) 
System mem-
ory clock 

120 MHz 133 MHz 300 MHz 2000 MHz 

Floating point SW HW HW HW 

16.4.2 Software Constraints 

certain qualification criteria. The so-called MISRA guidelines (The Motor Industry 
Software Reliability Association 2004) together with an approved development process 

software. 
Furthermore, possible complexity of use cases makes it necessary to employ an  

advanced real time operating system. Even in the case of challenging tasks like the 
concurrent streaming of two MP3-streams for rear seat entertainment with additional 
recalculation of the route, voice control of, e.g., the radio for station selection should 
not be deferred on the head unit. 

and QNX, with Windows CE becoming a constantly maturing alternative. 
The above mentioned software conditions for the deployment of speech recognition 

tributed to the product life cycle for cars which—being around 6 years—is much 
higher than for any mobile consumer electronics device. 

Native data  16/32 Bit 
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 Analog devices Freescale 

a comparison of typical processors used in automotive infotainment systems to a proc-

Although modern embedded systems already feature L1-caches for code and data, L2-

reduce the gap between automotive hardware to desktop systems, but the special re-

Table 16.2 Comparison of typical processors for automotive infotainment 

Not only the hardware, but also the software in automotive environments has to obey 

(The SPICE User Group 2005) set the touchstones for any development of automotive 

The typical real time operation systems in automotive environments are VxWorks 

as well as the demands on the hardware in automotive environment can be partly con-
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16.4.3 User Constraints 

In the car voice control is part of a multimodal man machine interface. Switching of 
the input modality between a touch screen, other haptic input, and voice control—
which is commonly activated by pressing a push-to-talk key—should be possible at 
any time. Hence, at system design time there has to be a clear decision on the function-
ality and use cases which should be operable by voice input. 

If the chosen approach attaches variable voice commands to the wording of any 

time of the entire system. People expecting the vehicle engine to start at turn-key are 

16.4.4 Acoustic Channel 

the position of the microphone(s) with respect to the speaker and on the quality of the 
microphone(s) themselves. The microphone is typically mounted in the roof of the car 
somewhere near the sunshields or next to the rear-view mirror. Hence there is no close-
talk situation and the direction of ventilation might be right towards the microphone, 
e.g., in the defrost operation mode. 

The combination of multiple microphones for microphone array processing with 
beam-forming can be used for the reduction of ambient noise and the masking of peo-
ple talking on the co-driver’s seat. However, since an amount of four microphones 
quadruples the price on the bill-of-material and additional space and mounting is 
needed as compared to a single microphone, this option is not chosen very often by the 
car manufacturers, even though DSPs for microphone array signal processing are 
available. 

As described in Sect. 16.4.4 the reduction of noise captured by the acoustic channel is a 
challenging task for speech recognition. Various noise sources contribute to a noise 
mixture that can often reach or exceed the level of the desired speech signal. Stationary 
noises produced by tires, airstreams, and fan noise sum up with non-stationary noises 
from the engine, exterior traffic or the indicator.  
In speech recognition two basic approaches are used in parallel to handle the problem 
of noise: 

 
Use of noise reduction algorithms  
Use of “environment-matched” HMMs.  

 
 The purpose of noise reduction is to deliver features as MFCCs with minimal  
disturbances compared to clean speech. The feature extraction including the noise 
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possible screen on the display, quite a large number of different recognizer configura-

A crucial point for the acceptance of an automotive control device is the start-up 

unlikely to accept waiting for a long time until the car infotainment system is operable. 

tions may emerge. This inherently complicates verification and testing of dialog flows. 

The acoustic environment constitutes one of the greatest challenges for automotive 
speech recognition. The degree of noise to be handled by the recognizer depends on 

16.5 Noise Robust Recognition Technology 



 
reduction is performed in the front-end of the Siemens Recognizer Embedded. Cur-
rently this front-end is optimized with the goal to exceed the performance of the stan-
dardized “advanced front-end” (Ramabadran et al. 2004). Environment-matched 
HMMs are used in the back-end of the recognizer. They are trained with speech data-
bases which were recorded in an acoustic environment as expected in the applications 
(Höge 2000). This is motivated by the fact that environment-matched HMMs are theo-
retically providing the best recognition performance. As already mentioned in Chap. 14 
(Speech Recognition in Mobile Phones) databases dedicated to car environment have 
been produced for many languages by EC-funded projects. 

Fig. 16.6 Autocorrelation function of power spectra of car noise (left) and of clean speech (right)  

 As shown in Sect. 16.5.5 noise reduction algorithms improve recognition also in 
the case when “environment-matched” HMMs are used. The reason for these findings 
can be seen in the imperfectness of current HMM technology which assumes statistical 
independencies of features across frames and do not model the strong temporal correla-
tion of spectral features. As shown in Fig. 16.6 and 16.7, the autocorrelation of power 
spectra extracted per FFT-bin, which are the basis for the MFCC features, show high 
correlation in time, where the noise reaches after ca. 20 ms its offset (average value of 
power spectrum) and speech beyond 100 ms. This behavior is quite uniform over the 
different frequency bins. 

change of the level of noise. Another property of the car noise is shown in Fig. 16.8, 
which shows that the power spectra from car noise and clean speech are quite different 
(e.g., in contrast to babble noise). This property explains further why recognition in car 
works quite successfully under noisy condition. 
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As shown in Fig. 16.6, the offset of car noise is quite high, which shows the slow 
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(301,5 Hz; 3617,6 Hz) 

In the following we describe shortly the Siemens Recognizer Embedded, after-
wards the noise reduction algorithms with related recognition results. 

 
16.5.1 ASR Front-End  

The ASR front-end (Varga et al. 2002) is based on the MFCC feature extraction 
method. Sampling frequency is 11.025 kHz, the length of the audio frames is 23 ms 
with a 15 ms frame-shift. Per frame a 256 bin FFT is performed and the power spec-
trum per bin is calculated. This power spectrum is used for noise reduction delivering 
noise reduced power spectra. After Mel-filtering and logarithmic compression of the 
power spectra 12 cepstral coefficients and one energy coefficient are computed per 
frame. To remove spectral bias a maximum likelihood based channel compensation 
technique is used. From these coefficients delta and delta-delta coefficients are calcu-
lated and a “super-vector” containing the coefficients of two consecutive frames is 
built. The super-vector is reduced to dimension 24 using LDA.  
 The back-end is based on HMM technology. In the experiments presented below 
we use a phoneme modeling approach (Bauer 1997).  
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Fig. 16.7 Autocorrelation of power spectra of clean speech and car noise for two selected bins 



Fig. 16.8 Power Spectra of car noise and clean speech  

16.5.2 Minimum Mean Square Weighting Rules 

Most noise reduction algorithms are computed in the frequency domain, where an 
individual gain factor is applied for every frequency bin. Short-time spectral analysis 
based on overlapping speech frames is usually employed as a frequency domain trans-

mized, the most famous being the Wiener Filter 
 

                                                      
1)(

)()(
lSNR

lSNRlG
k

kW
k ,                                            (16.1)  

  
where l denotes the frame index, k the frequency index, and SNRk(l) the Signal-to-
Noise-Ratio of the actual frame. As the original speech signal Sk(l) is usually not avail-
able SNRk(l) has to be estimated. An algorithm which represents the state-of-the-art in 
speech enhancement, the so-called a priori SNR Wiener Filter (Scalart and Filho 1996), 
is based on the a-priori Signal-to-Noise-Ratio SNRprio. SNRprio is estimated by a deci-
sion-directed approach which was first described in Ephraim and Malah (1984). The 
estimated values of the previous frame for the clean speech spectrum )1(ˆ lSk and noise 
variance }|)1({|)1(ˆ 2lNEl kNk

are considered recursively for the computation of 
the actual SNR value: 
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formation. Many weighting rules are derived in a way, that the mean square error be-
tween the original speech signal and the resulting estimated speech signal is mini-
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 being the smoothing constant. The a-posteriori Signal-to-Noise-Ratio SNRk,post(l) is 
computed from the noisy speech spectrum Yk(l) and the estimated noise variance of the 
actual frame:  
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lSNR

kN

k
postk .                                             (16.3)  

 
16.5.3 Recursive Least Squares Weighting Rules 

Only the actual frame is considered in the derivation of weighting rules based on the 
minimum mean square error cost function. However, the key signal components used 
in the weighting rules, estimations of speech and noise power spectral densities, are 
computed recursively incorporating the frame(s) before. A good example is the compu-
tation of SNRprio in Eq. 16.2.  
 To avoid this contradiction a family of weighting rules based on the Recursive 
Least Squares (RLS) criterion can be derived. The dependency of the actual frame on 
the previous ones is explicitly considered in the corresponding cost function  

                                                  
M

l
kLS lElwMJ

0

2 ,)()()(                                     (16.4)  

where w(l) is a weighting coefficient and M denotes the actual frame. The error Ek(l) is 
defined as  
 
                                               )()()()( lYlGlSlE kkkk ,                                     (16.5) 
 
Sk(l) representing the clean speech spectrum and k(l)= Gk(l) Yk(l) its estimate, where 
Gk(l) denotes the desired gain factor and Yk(l) the noisy speech signal.  
  Using Eq. 16.5 in Eq. 16.4 and minimizing the result with respect to Gk(l) leads to 
the well-known recursive least squares weighting rule 
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From this generic weighting rule various implementations can be derived, mainly dif-
fering in the way of estimating the clean speech signal.  
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16.5.4 Implementations of RLS Weighting Rules 

For the following implementations an exponential weighting coefficient w(l) is used, 
taking into account all frames from the past, 

 
                                           .10,0,)( Mllw lM                            (16.7)  
  
1. Recursive Least Squares (RLS) Algorithm 
 

k(l) = 
Sk(l) + Nk(l) and the assumption is made that on average speech and noise are uncorre-
lated  

                                                .0)()(
0

*
M

l
kk

lM lNlS                                             (16.8)  

This results in  
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Subsequently Sk(l) is approximated by the noisy observation Yk(l). Using different 
weighting coefficients for noise and speech power spectral densities and introducing an 
overestimation factor  for the noise term the following weighting rule is obtained: 
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(16.10) 

 
The exponential forgetting factor U smoothes the involved signals. Usually different 
values are applied for Y and N. 
  
2. Recursive Gain Least Squares (RGLS) 
 
A new weighting rule is obtained by directly applying Eq. 16.6. A recursive formula-
tion for the weighting factors Gk(l) can be stated (Setiawan 2005a): 
 
                                     ,)1()( M

k
M
k

RGLS
k

RGLS
k rKMGMG                                   (16.11) 

 
where M

kK is a gain factor and M
kr is called the residual with  

  
                                       .)1()()( MGMYMSr RGLS

kkk
M

k                                (16.12) 
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For the derivation of the Recursive Least Squares algorithm described in Beaugeant
et al. (2002) the noisy speech signal in the nominator of (16.6) is expressed as Y
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The mathematical derivation is given in Setiawan (2005a). The clean speech signal 
Sk(M) is approximated by  

                                      ,e)()()(ˆ )(Mj
NYk

kY
kk

MEMEMS
                             

 (16.13)  
)(e Mj kY being the phase component of the noisy signal.  

 
3. RLS with Modified Spectral Subtraction 

Another method for estimating the clean speech signal is given in Setiawan (2005a): 
The same derivation as for the RLS algorithm is used, but the average power spectral 
density of speech in the nominator of Eq. 16.6 is now computed from the power spec-
tral densities of noisy signal and noise signal averaged over all past frames: 
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Using the same notations as above results in the weighting rule 
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16.5.5 Recognition Results 

Table 16.3 shows some recognition results achieved with the new algorithmic ap-
proaches. The recognition tests have been carried out on the Spanish versions of the 

 The channels given in the table represent signals recorded with far-talk micro-
phones at a medium distance of 0.5m–1m. For the SpeechDat Car recordings the mi-
crophones have been mounted at typical positions at the car ceiling (channel 2: A-
pillar, channel 3: sun visor in front of driver, channel 4: rear mirror). Different isolated 
word recognition tasks have been examined. The back-end of the ASR, a phoneme-
based HMM recognizer trained with 20000 Gaussian densities has been used (Bauer 
1997). As a baseline system serves the RLS implementation (Beaugeant et al. 2002). 
Results using this kind of noise reduction have also been published in the context of the 
ETSI Aurora front-end evaluation (Andrassy et al. 2001). For comparison purposes the 
results achieved with the state-of-the art Wiener approach using a-priori SNR estima-
tion (Scalart and Filho 1996) are given as well. It can be seen from the table that a 
relative improvement of the word error rate up to 18 % can be achieved on the average, 
the best results are achieved with the modified spectral subtraction approach. We were 
able to improve these results up to 22 % relative word error rate improvement by com-
bining the new weighting rules with root compression algorithms (Setiawan 2005b).  
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SpeechDat Car, SPEECON Car, and SPEECON Adult databases (SpeechDat 2000).  
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Database  Word accuracies 

858 commands Channel 2 
Channel 3 
Channel 4 

93.0 
92.0 
88.9 

92.8 
92.5 
88.6 

92.0 
92.4 
89.9 

93.0 
92.3 
90.3 

SpeechDat 
Car 
ES(306 
speakers) 150 city names Channel 2 

Channel 3 
Channel 4 

87.8 
88.4 
87.6 

88.0 
89.2 
88.8 

90.6 
90.7 
89.2 

90.0 
91.1 
89.0 

 
Channel 2 
Channel 3 

 
85.4 
87.2 

 

 
88.0 
90.2 

 

 
88.2 
89.6 

 

 
88.8 
90.0 

 

Speecon 
Car 
ES(625 
speakers) 

100 city names Channel 2 
Channel 3 

79.8 
81.8 

82.7 
85.6 

82.3 
85.8 

82.7 
85.8 

 
92.2 
89.5 

95.0 
92.3 

94.2 
92.6 

94.3 
92.6 

Speecon 
Adult 
ES(561 
speakers) 

208 application 
specific words Channel 2  

Channel 3 
    

  

  

 Mean word 
accuracy 
Rel. WER 
improvement 

87.8 

 0.0 

89.5 
 

13.9 

89.8 
 

16.4 

90.0 
 

18.0 

16.6 Methodology for Evaluation of Automotive Recognizers 
Quality Measurement Using SNR Curves  

The evaluation of speech recognition systems is an essential issue for the customer 
acceptance of a product. However, evaluation results of individual customer-specific 
tests are hardly comparable due to different test setups, while database tests often do 
not reflect the real-life environment for the final product. 

Therefore, we have developed a well-defined procedure for an independent evalua-
tion of speech recognizer products in real-life car-environments. The procedure has 
been exemplified and validated in comprehensive in-car tests by deploying the Sie-

208 application 
specific words 
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Accuracies (ACC) as defined in Eq. 16.16; WER=1—ACC 

mens Recognizer Embedded based on the RLS Algorithm shown in Eq. 16.10 of  

Table 16.3 Recognition results with SpeechDat Car ES and SPEECON Adult ES—Word
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performances under real-life conditions.  

16.6.1 Common Evaluation Procedures 

The common evaluation procedures for speech recognition products can roughly be 
subdivided into three different approaches: customer-specific tests, database tests, and 
a hybrid approach of both.  

With customer-specific tests the fulfillment of different customer requirements can 
be verified very well. However, there is nearly no possibility to compare evaluation 
results from different customer-specific test setups. 

With tests on common databases it is possible to produce comparable test results. 
However, such database tests often do not reflect the real-life environment for the final 
product: for example, the audio path of the final product is not taken into account, and 
the recordings were in most cases performed in cars different to the target car. Finally, 
common databases often do not contain all commands of the final product, and there-
fore allow to verify only a subset of the overall commands. 

The following approach can be seen as a hybrid of a customer-specific test and 
common database tests: clean speech from databases is mixed with noise recorded with 
the final target in the final environment. However, this approach has also some disad-
vantages. First, as for database tests already stated, often not all commands of the final 
product are included in a database. And second, the mixing of clean speech and noise is 
not the same as speech recorded in real noise, as e.g., due to the Lombard-effect speech 
characteristics often change under noise (Junqua 1993). 

16.6.2 Proposed SNR-Approach 

In order to overcome the constraints of the previously described approaches, we pro-
pose in the following an objective and practical evaluation procedure especially for 
automotive environments based on SNR (Signal-To-Noise Ratio) values. For our 
evaluation procedure, recordings are taken on a normalized roundtrip with typical 
traffic and road situations. For each utterance a specific signal-to-noise ratio is calcu-
lated to assign the utterance to an SNR-bin of the main car noise range. In a defined 
evaluation procedure, the SNR-bins are compiled into normalized SNR recognition 
curves. This SNR-based approach has the advantage of better comparability in opposi-
tion to conventional tests with fixed driving speed (e.g., 0/50/130 km/h), as environ-
mental conditions like weather, tires or road type are implicitly considered. Further-
more an SNR-based approach takes the speaker loudness correctly into account. 

16.6.3 Data Recording 

To provide a comparable and comprehensive assessment of the recognizer perform-
ance, recordings from 12 test speakers (6 male and 6 female from target group) are 
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Sect. 16.5 allowing a comprehensive, objective and comparable assessment of recognizer 



 recognition results. The normalized roundtrip should contain most of normal traffic 
situations and road types like town traffic, country roads and highways. To diversify 
the in-car situation, recordings are taken with opened as well as with closed windows 
and comprise different settings of the air conditioning. All test speakers get a list of the 
same test utterances. This list should contain all commands, that have to be tested, and 
every command should occur in the same quantity (preferably at least five times each).  

16.6.4 Evaluation 

After the calculation of the signal-to-noise ratio with a well-defined algorithm (Höge 
and Andrassy 2006) for every recorded utterance, all recordings are grouped into SNR-
bins from 2 to 16 with a step of 2, where every SNR-bin X includes all recordings with 
a signal-to-noise ration higher or equal X  2 and lower X + 2. The idea of this group-
ing is that every utterance within the same SNR-bin has the same “level of challenge” 
for the recognizer, as the challenge notably depends on the ratio between the intensity 
of speech signal and environmental noise. Furthermore the grouping summarizes the 
utterances in few SNR-bins improving the statistical relevance of recognition results. 

After this grouping, the word accuracy ACCmean for every SNR-bin S is calculated: 

)(
)()()(1)(

Sutt
SinsSdelSsubstSACC mean   (16.16) 

 

is the number of false recognized (substituted) utterances, del(S) is the number of not 
recognized (deleted) utterances, and ins(S) is the number of additionally recognized, 
but not spoken (inserted) utterances in the SNR-bin S. 

 To avoid a strong influence of very good or very bad recognized speakers on the 
word accuracy, the best and the worst speaker are removed from all SNR-bins. For this 
purpose, an individual word accuracy ACCn over all SNR-bins S is calculated for every 
speaker n as follows 
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(16.17) 

 where ACCmean
ing SNR S from equation (1), and uttn(S) is the number of utterances of speaker n in the 
SNR-bin S.  

taken on a normalized roundtrip. All recordings are performed with the final target. 
The audio signals are recorded as provided to the recognizer engine as well as the 
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where utt(S) is the total number of recorded utterances in the SNR-bin S, subst(S) 

(S) is the mean word accuracy over all speakers for the correspond-
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Fig. 16.9 SNR-curves for different languages/products 

 
With this approach the decision on best and worst speaker is based on their relative 

performance to the other speakers per SNR-bin rather than on an overall word accu-
racy, which heavily depends on the particular noise conditions per speaker. 

After removing all utterances from the best and worst speakers, the final word ac-
curacy for every SNR-bin is calculated receiving SNR-curves like shown in the Fig. 
16.9. These SNR-curves shown in Fig. 16.9 give a comparative overview about the 
performance of a recognition product under different aspects. First, the distribution of a 
SNR-curve shows the characteristics of the recognizer under different noise levels. 
Second, all recognition curves (e.g., for different languages or products) are directly 
comparable, as every SNR-curve has been created under the same conditions and sub-
divided into the SNR-bins by the same algorithm. For example, if two recognizers with 
a similar performance have been recorded under different weather conditions (e.g., 
sunny vs. rainy), the overall word accuracy will normally differ due to the different 
noise levels. However, with our approach, SNR-curve of both recognizers can be com-
pared directly, as every SNR-bin reflects a similar noise level for the corresponding 
utterances.  

370 



 
The SNR-curves can finally be translated into normalized SNR-curves as shown in 

)(
)()()(

SACC
SACCSACCSACC

baseline

baseline
relative  (16.18)

 
With such a normalized representation it is now very easy to compare the recogni-

tion performances visually. 

Fig. 16.10 Normalized SNR-curves for different languages/products 

 
16.6.5 Best Practice 

We experienced some issues to be considered to get a good coverage of the utterances 
over the whole SNR-range and to avoid unnatural accentuation of the test utterances. 
First of all, the sequence of the test utterances should be varied a little bit for every 
speaker to avoid dependences between certain utterances in the sequence and certain 
traffic situations, as often the same circuit will be driven. Second, the sequence of 
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Fig. 16.10, taking the mean over all curves within every SNR-bin (or e.g., customer
requirements) as baseline 



Harald Höge et al. 
  

utterances should not contain a series of same commands. Otherwise the test speakers 
sometimes start to play with the accentuation of this command. The same applies for 
unnatural digit-sequences (e.g., like 0102030405). Finally, the round trip should con-
tain as much different driving situations as possible to get a good distribution of the 
utterances over the whole SNR-range for all speakers and therefore to get a compre-
hensive assessment of the recognizers performance. 

16.7 Conclusion 

Various voice driven automotive applications will be installed in car in the coming 
years. The most challenging task is destination input for navigation due to the large 
vocabulary of city and street names. The Siemens Speech Processing Group delivers a 
set of speech processing components, which are suited for realizing these applications 
on the automotive platforms. Recent advances in noise reduction technology are pre-
sented which lead to further improvement in recognition rate. The proposed methodol-
ogy for evaluation of recognizers has been exhaustively field-tested in comprehensive 
in-car tests by deploying the Siemens Recognizer Embedded. Several car manufactur-
ers request the proposed procedure for judging the quality of a recognizer. 

Future developments will go in the direction of multimodal, speaker adapted dialog 
technology, where also infrared cameras will be involved. Fusing facial and acoustic 
features will improve the recognition rate (lip reading) and will improve speaker char-
acterization parameters (stress, uncertainty, etc.) to allow speaker state adapted dialog 
steering. For the next years we expect advances in microphone array technology 
(hardware and software) improving further recognition. 

Still some “hard” problems in speech recognition technology will not be solved in 
the near future and need basic research. Substantial improvement in recognition per-
formance on phoneme level is needed to achieve human performance. Further varia-
tions in pronunciation caused by dialectal and casual speech have to be handled. 
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17 
Energy Aware Speech Recognition for Mobile Devices 

Brian Delaney 

Abstract. As portable electronic devices move to smaller form-factors with more features, one 
challenge is managing and optimizing battery lifetime. Unfortunately, battery technology has 
not kept up with the rapid pace of semiconductor and wireless technology improvements over 
the years. In this chapter, we present a study of speech recognition with respect to energy 
consumption. Our analysis considers distributed speech recognition on hardware platforms 
with PDA-like functionality. We investigate quality of service and energy trade-offs in this 
context. We present software optimizations on a speech recognition front-end that can reduce 
the energy consumption by over 80% compared to the original implementation. A power 
on/off scheduling algorithm for the wireless interface is presented. This scheduling of the 

effects of wireless networking and fading channel characteristics on distributed speech recog-
nition using Bluetooth and IEEE 802.11b networks. When viewed as a whole, the optimized 
distributed speech recognition system can reduce the total energy consumption by over 95% 
compared to a software client-side ASR implementation. Error concealment techniques can be 
used to provide further energy savings in low channel SNR conditions. 

17.1 Introduction 

In this chapter we present software and hardware optimizations to reduce the energy 
consumption for distributed speech recognition on portable hardware with PDA-like 
functionality. We concentrate specifically on general-purpose hardware including 
StrongARM processors, IEEE 802.11, and Bluetooth networks. We explore the en-
ergy design space with respect to delay, wireless channel characteristics, and local 
processing capability. We begin with a brief overview of battery technology fol-
lowed by a review of energy-aware design principles. Next, we present energy opti-
mization results for the speech recognition front-end on the HP Labs Smartbadge 
hardware platform. Finally, energy tradeoffs with respect to the wireless network 
interface are explored for both IEEE 802.11 and Bluetooth networks. 

17.1.1 Battery Technology 

In the past 30 years, processor speeds and memory sizes have increased at a stag-
gering rate, while battery technology has only increase by a factor of two to three.  
 

wireless interface can increase the battery lifetime by an order of magnitude. We study the 



 
New battery technologies are being developed to minimize this gap, but the fact 
remains that battery technology has traditionally lagged behind advances of proces-
sor and memory technology. With the proliferation of portable electronic devices, 
this emphasizes the need to use battery resources efficiently.  
 A battery technology can be rated according to several factors (Green and Wilson 
2001): 

 Energy density The amount of energy stored per unit volume (Wh/l3) 
 Specific energy The energy per unit weight of a battery (Wh/kg) 
 Nominal Voltage The average rated voltage output throughout the discharge 

cycle (V) 
 Rated Capacity The amount of current the battery can deliver over a specified 

period of time (milliamp-hours). 

 The energy density and specific energy are used to rate the amount of energy 
with respect to the size and weight of the battery. A battery with a rated capacity of 
1000 mAh will be able to deliver current of 1000 mA for one hour, 500 mA for 2 h, 
or 2000 mA for half an hour. Given the rated capacity and nominal voltage, one can 
find the total battery energy by multiplying the two values.  
 In the area of rechargeable battery technology, there have been several types over 
the years. The first, nickel-cadmium (NiCd) technology is virtually non-existent in 
the marketplace today. This battery technology suffered from low energy densities 
and a memory effect that reduced the capacity after relatively few charge/discharge 
cycles. Nickel-metal hydride (NiMH) technology alleviates some of the memory 
effect of NiCd with increased energy densities, but the total lifetime of the battery is 
reduced. The most common technology is lithium-ion (Li-ion). Li-ion batteries have 
a much longer life cycle with increased energy densities, but the charging process 
requires more sophisticated electronics, which drives up cost. The newest battery 
technology, lithium-polymer, has even greater energy density than Li-ion but with 
increased cost. Despite the cost, lithium-polymer has found its way into smaller 
devices where weight and size are critical. While new technologies are being devel-
oped, such as miniature generators and fuel cells, there is an ever-increasing demand 
for improved battery technology with today’s power hungry portable devices. 

17.1.2 Energy Aware Design Principles 

Given a fixed amount of battery energy, there has been an emphasis on energy-
aware design principles in the literature. The goals of energy aware design are to put 
hooks or knobs into the hardware, software, or applications that allow scalability in 
quality vs. energy. This is different from low-power design, which often does not 

adapt to changing conditions and modify its energy usage accordingly. For example, 
a hand-held video streaming application might opt to send and decode video of de-
creased quality to extend battery lifetime. In another situation, the user might de-
mand high-quality video, even if only for a short time. 
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seek to allow scalability. The result of energy-aware design is a system that can 
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level to the application layer. Many CPUs already allow energy scalable operation 
through techniques such as dynamic voltage and frequency scaling. Running a par-
ticular application at its lowest frequency and voltage setting that still provides  
acceptable performance will save energy. Dynamic application of this technique can 
be difficult since the operating system must have knowledge of the operating re-
quirements of various applications running on the system. For applications such as 
speech recognition, this information may be difficult to predict far in advance. Oper-
ating systems are becoming increasingly aware of energy considerations, but fine 
grained control requires the assistance from the application layer. Memory subsystems 
can be designed such that entire banks of memory are shut off when not needed, but, 
once again, the operating system must maintain control of these adaptations.  

Software optimization techniques can also help to reduce energy consumption. 
By writing software that will run efficiently on a particular platform, the program 
can use fewer resources, including battery energy. Compiler optimizations only offer 
marginal improvements in energy consumption. Any significant gains will require 
optimizations that address bottlenecks with respect to the particular architecture 
studied. This may include limiting the mathematical precision (i.e. fixed point arith-
metic), efficient data structure organization to reduce cache misses, and the use of 
approximate algorithms when hardware accelerated versions are not available, such 
as square root, logarithmic, or trigonometric functions. 

Table 17.1 Power dissipation for major subsystems of the HP Labs Smartbadge IV 
 
 
 
 
 
 
 
 

some moderate CPU processing and wireless network activity. The 802.11b network 
interface used almost half of the power of the total system; therefore wireless net-
work optimization is an important consideration. 

The wireless network power optimization problem has been addressed at different 
abstraction layers, starting from the semiconductor device level to the system and 
application level. Energy efficient channel coding and traffic shaping to exploit  
battery lifetime of portable devices were proposed in Chiasserini et al. (2002). A 
physical layer aware scheduling algorithm aimed at efficient management of sleep 

1.  Subsystem 2. Power 
(mW) 

3. Percentage 

4.  CPU 5. 694 6. 21 
7.  Memory 8. 1115 9. 34 
10. Wireless 11. 1500 12. 45 
13. Total 14. 3309 15. 100 
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Energy-aware design and scalability must take place at all levels, from the device 

The wireless network can use significant amounts of power in an embedded sys-
tem. Table 17.1 shows the power dissipation of various components of the HP Labs 
Smartbadge IV embedded system. These are average power measurements during 

17.1.3 Related Work 



 
modes in sensor network nodes is illustrated in Shih et al. (2002). Energy efficiency 
can be improved at the data link layer by performing adaptive packet length and 
error control (Lettieri et al. (1999). At the protocol level, there have been attempts to 
improve the efficiency of the standard 802.11b, and proposals for new protocols 
(Jones et al. 1999). Packet scheduling strategies also can be used to reduce the  
energy consumption of transmit power. A server-driven scheduling methodology 
aimed at reducing power consumption for streaming MPEG4 video was introduced 
in Acquaviva et al. (2003). Savings of as much as 50% in the wireless local area 
network (WLAN) power consumption, relative to just using 802.11b power man-
agement, were reported. 
 Traditional system-level power management techniques are divided into those 
aimed at shutting down components and policies that dynamically scale down process-
ing voltage and frequency (Simunic et al. 2001). Energy-performance tradeoffs 
based on application needs have been addressed (Kravets and Krishnan 2000). A 
different approach is to perform transcoding and traffic smoothing at the server 
side by exploiting estimation of energy budget at the clients (Shenoy and Radkov 
2003). A new communication system, consisting of a server, clients and proxies, 
which reduce the energy consumption of 802.11b compliant portable devices by 
exploiting a secondary low-power channel is presented in Shih et al. (2001). Since 
multimedia applications are often most demanding of system resources, a few 
researchers studied the cooperation between such applications and the OS to save 
energy.  
 
recognition. Analog signal processing techniques were used in Smith and Hasler 
(2002) to build both the signal processing front-end and HMM acoustic modeling. In 
analog signal processing, DSP algorithms are realized with analog CMOS circuits. 

ducing the computation and memory access can also reduce energy consumption. By 
using a subset of available features for likelihood computation Li and Bilmes (2005) 

consumption simulator. Other authors have considered custom chip architectures 
designed specifically for speech recognition. By exploiting parallelism in the speech 
recognition process Krishna et al. (2003) were able to increase battery lifetime by 
about 25% while improving recognition speed on a custom XScale-based architec-

lower than that of a software-based ARM processor solution. In Mathew et al. (2003) 
a hardware accelerator for Gaussian evaluation was built alongside a general purpose 
processor. The resulting system used 100 times less energy than a Pentium 4 system 

eral purpose hardware, DSP chips, and custom ASIC designs. 
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Power consumption estimates for the front-end were less than 100 microwatts. Re-

There have been several studies of power consumption with respect to speech 

report a 27%–43% reduction in power consumption using a cycle accurate energy 

ture. In Nedevschi et al. (2005) a custom hardware architecture for low-power speech 
recognition was introduced. Power consumption was found to be about 12 times 

when running the CMU Sphinx recognition system. Figure 17.1 shows the power 
consumption estimates of several published speech recognition applications on gen-
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Fig. 17.1 Power consumption figures for various ASR hardware/software configurations 

17.2 Case Study of Distributed Speech Recognition Using the HP 
Labs Smartbadge System 

As we have seen, implementing high quality speech recognition on an embedded 
system, such as a cellular phone, PDA, or other device is a difficult challenge. In this 
section, we discuss some of these challenges in detail and present some solutions. 
First, we present a software based front-end feature extraction for a distributed 
speech recognition system that is designed for minimal power consumption. Through 
algorithmic, architectural optimizations, and dynamic voltage scaling, we are able to 
reduce the energy consumption of the signal processing algorithm on a general pur-
pose processor by 89%. Next, we model and analyze the energy required to transmit 
speech features across a network using IEEE 802.11 and Bluetooth networks.  

17.2.1 Signal Processing Front-End 

experiments is version 0.3 of the open-source Sphinx II speech recognizer from 
Carnegie Mellon University. The optimization methods used for the algorithm sub-
stantially decrease the power usage while increasing speed (measured in processor 
cycle counts). Estimates of total power usage are performed using a cycle-accurate 

 The architecture of the embedded system simulated in the experiments mimics 
that of the Smartbadge IV system developed at the Appliance Platform department of 

ARM processor running a lightweight Linux O/S. In addition to performing energy 
consumption simulations to evaluate the quality of source code optimizations, we  
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traction for a distributed speech recognition system. The baseline system used in the 

energy consumption simulator (Simunic et al. 2001a). 
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Hewlett-Packard Laboratories (Maguire et al. 2004). It is based on a Strong- 

This section describes the optimization of a signal processing front-end feature ex-



 

hardware. We found that real-time signal processing of speech is possible at eleven 
discrete CPU frequency and voltage settings, thus enabling further power savings. 

desirable to perform this step on the embedded device and to send compressed fea-
tures across the network. The signal processing itself consists of a pre-emphasis 
filter, an FFT, filter-bank computation, a DCT, and a logarithm. It has been shown 
that mel-frequency cepstral coefficients can be compressed with little effect on the 
error rate of the speech recognizer (Zhu and Alwan 2001). The ETSI standard for 

transmit these speech features (Pearce 2001). We consider several bit rates and quan-
tization levels, including one that is similar to the ETSI standard. 
 The source code optimizations can be grouped into two categories. The first 
category, architectural optimizations, aims to reduce power consumption while in-
creasing speed by using optimization methods targeted to a particular processor or 
platform (e.g. an embedded system with no floating-point hardware). Ideally, many 
of these optimizations should be done by a compiler. However, currently available 
compilers for most embedded systems do not have these optimizations built-in.  
In addition, measurements presented in Simunic et al. (2001) show that the im-
provements that can be gained using standard compiler optimizations are marginal 
compared to writing energy efficient source code. The second category of source 
code optimizations is more general and involves changes in the algorithmic imple-
mentation of the source code with the goal of faster performance with less power 
consumption.  
 The final optimization presented in this work, dynamic voltage scaling (DVS), is 
the most general since it can be applied at run-time without any changes to the 

changing processor speed and voltage at run-time depending on the needs of the 
applications running. The maximum power savings obtained with DVS are propor-
tional to the savings in frequency and to the square of voltage.  
 Profiling of the original source code under a StrongARM simulator revealed that 
most of the execution time was spent in the computation of the DFT (which is im-

required to get the desired result, but this overhead is minimal compared to the re-
duction in computation.  Additional savings can be obtained when the trigonometric 
functions used in the computation of the 

cally, the source code is now ready for optimizations specific to the StrongARM 
architecture. 
 Further profiling of the source code on a StrongARM simulator revealed that 

on-chip floating-point processor, so all floating-point operations must be emulated in 
software. Simply changing from double- to single-precision floats improved the 
performance considerably. However, additional profiling showed that 80% of the 
time was still being spent in floating point emulation. Any further gains require 
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also implemented and ran the optimized version of the front-end on Smartbadge IV 

 Since the front-end feature extraction step is relatively low in complexity, it is 

distributed speech recognition describes algorithms to compute, compress, and 

source code. Dynamic voltage scaling algorithms reduce energy consumption by 

plemented as an FFT). Since speech is a real-valued signal, an N-point complex FFT 
can be reduced to an N/2-point real FFT. Some further processing of the output is 

FFT are pre-computed and stored in a 
lookup table, thus eliminating multiple function calls in the FFT loop. Algorithmi-

over 90% of the time was spent in floating-point emulation. The StrongARM has no 
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fixed-point arithmetic. Implementing a pre-emphasis filter and Hamming window 

and have often been implemented on digital signal processor chips. Careful attention 
must be paid to the location of the decimal point to avoid overflow while maintain-
ing precision. 
 After passing the input frame through the FFT, the mel filter bank must be ap-
plied. The filter bank amplitudes are calculated using the squared magnitude. This 
presents some challenges since this squared number multiplied by the filter coeffi-
cients, ][kHi , can easily overflow the 32-bit registers. A 64-bit result can be ob-
tained from the StrongARM multiplier using assembly language, but overflow can 
be avoided simply by rewriting the filter bank equation to use just the magnitude: 

     
2/2

0=

][][=][ kHkXiY i

N

k

   (17.1) 

This avoids overflow since 1][kHi , therefore the result of each multiplication is 
small. The coefficients, ][kHi , are stored in a lookup table. The one drawback to 
this method is that computing the magnitude requires a square root operation. Fast 
integer square root algorithms exist, but they must be used on each output from the 
FFT, which is costly. Fortunately, the magnitude can be estimated as a linear combi-
nation of the real and imaginary parts using the following equation (Frerking 1994): 

  |)}{||,}{(|min|)}{||,}{(|max|| xxxxx    (17.2) 

where and  can be chosen to minimize the mean squared error, and }{x  and 
}{x  represent the real and imaginary parts of the complex number x .  

 

Fig. 17.2 Cycle count (left axis) and energy consumption (right axis) per frame of speech 
(Delaney et al. 2002, © 2002 IEEE) 
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using fixed-point arithmetic is straight-forward. Fixed-point FFTs are well studied 



 
 Computing the first 13 coefficients of the DCT is relatively easy to do in fixed-point 
arithmetic, but taking the natural logarithm is a more difficult task. One possible option 
is to perform a floating-point logarithm, but profiling showed that the logarithm itself 
as well as the transition to and from fixed-point is costly. A fixed-point logarithm 
using a polynomial expansion requires some divides, which are slow on the Stron-
gARM. However, we can approximate the logarithm in base 2 using simple bit ma-
nipulation (Crenshaw 2000). A shift and scaling of the result is used to obtain the 

                                            (2)ln)(log=
2

ln 2 nxx
n                                (17.3) 

 Three main criteria are considered in order to evaluate the effectiveness of a 
particular optimization: performance (in terms of processor cycle count), energy 
consumption, and accuracy or word error rate (WER). Simulation results for process-
ing one frame (25 ms) of speech on the Smartbadge IV architecture running at 
202.4 MHz are shown in Fig 17.2. The x-axis shows the source code in various 
stages of optimization. The “baseline” source code contains no software optimiza-
tions. The “optimized float” code contains the algorithmic optimizations as well as 
some additional source code optimizations. Double-precision floating-point numbers 
were changed to single-precision 32-bit floats in the “32-bit float” version of the 

timizations described in this chapter. For each version of the code, we report the 
performance (in CPU cycles) and the total battery energy consumed (in Joules). 
The simulation results are computed by the cycle-accurate energy simulator, and 
include processor core and level 1 cache energy, interconnect and pin energy, energy 
used by the memory, losses from the DC/DC converter, and battery inefficiency. The 
reduction in energy consumption is not as dramatic as the reduction in cycle count 
for the fixed-point version due to an increase in memory references per unit of time. 
In fixed-point code, basic math operations are reduced to a few cycles as opposed to 
long iterations of floating-point emulation which do not require as many memory 
references. However, we have still achieved a reduction in the total battery energy 
required to process one frame of speech data by 83.5%.  
 Once the code is optimized for both power consumption and speed, we investi-
gate the energy savings from DVS. The StrongARM processor on Smartbadge IV 
can be configured at run-time by a simple write to a hardware register to execute at 
one of eleven different frequencies. We measured the transition time between two 
different frequency settings at 150 ms. Since typical processing time for the front-
end is much longer than the transition time, it is possible to change the CPU fre-
quency without perceivable overhead. In our case, we obtained real time performance 
at all possible frequency and voltage settings. At 59 MHz the system uses 34.7% less 
power than at 206 MHz. Combining the DVS results with the source code optimiza-
tions, we calculate the overall reduction in power consumption to be 89.2%.  
 
consider different bit rates and quantization levels. Although some differing tech-
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natural logarithm for a fixed point number x, whose decimal is located at the nth bit.  

code. Finally, the “fixed-point” implementation contains all of the source code op-

Finally, we include the fixed-point vector quantization code in our profiling and 

niques have been proposed, the most common technique for compressing Mel-
frequency cepstral coefficients (MFCC) is some form of vector quantization. For our 
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Pearce (2001). We train a set of codebooks using a K-means training algorithm with 

that is similar to the ETSI standard that will operate at 4.2 kbps. In general, we can 
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Fig. 17.3 Computational energy usage and measured average power for different quantization 
bit allocation schemes 

 
point for the StrongARM processor and profiled using the energy consumption simu-
lator. Figure 17.3 shows a comparison of energy consumption for various vector 

per frame of speech for the quantization step, and the line represents the measured 
CPU power dissipation at each bit rate. The measured values closely match the re-
sults from the energy consumption simulator. There is approximately a 14% increase 
in CPU power consumption but a greater than 50% reduction in WER between the 
highest and lowest bit rates. Even at the highest bit rate, the vector quantization is 
only 12% of the total energy usage. This suggests that speeding up the quantization 
process by using smaller codebooks would produce minimal reductions in energy 
consumption and would have a much greater impact on speech recognition accuracy.  
  In this section, we have outlined some optimization techniques to reduce the 
energy consumption of a particular signal processing algorithm. On embedded sys-
tems with no floating-point hardware, fixed-point arithmetic is an important step in 
lowering the power consumption of a program. However, careful attention must be 
paid to basic math functions (i.e. cosine, log, etc.) and overflow/underflow issues. 
Approximate algorithms perform well for certain applications and can result in sav-
ings in both time and power usage. By using software optimizations, we were able to 
achieve a reduction in energy usage by 83.5% compared to the non-optimized source 
code. We show that additional power savings are possible by scaling processor fre-
quency and voltage at run time, while still meeting the performance requirements.  
At the lowest frequency/voltage setting, we calculate an overall reduction in power 
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system, we use an intra-frame product code vector quantization scheme presented in 

bit rates ranging from 1.2 kbps to 2.0 kbps. We include an additional bit allocation 

expect increased WER at lower bit rates. 

Source code to perform the quantization of the MFCC data was written in fixed-

quantization bit allocation schemes. The bars represent the total energy consumption 



 
consumption by 89.2%. With the addition of vector quantization, the total energy 
required to process one frame of speech data is approximately 380 Joules. 

17.2.2 Energy Consumption of DSR with IEEE 802.11 Wireless 
Networks 

In this section we address the issue of energy consumption of the wireless interface 
for a distributed speech recognition system. As we have discussed earlier, the wire-
less interface can occupy almost half of the energy budget on many mobile wireless 
devices. We introduce techniques to minimize the energy consumption required to 
transmit speech parameters to an ASR server. We model the energy consumption of 
a DSR system using the IEEE 802.11b wireless interface. By employing synchro-
nous burst transmission of speech parameters, we can maximize the amount of time 
spent in a low power state or off state while adding minimal delay to the application. 
Using this technique, we can significantly reduce the energy consumption required 
for transmission. We explore these tradeoffs with respect to latency, channel condi-
tions, and energy consumption. These techniques can provide reductions in energy 
consumption of over 90% compared to a software based client-side ASR system. 
 Given the relatively low bit rates used in DSR, these networks will operate well 
below their maximum throughput range. In this situation, more energy saving oppor-
tunities will develop from exploiting moderate increases in application latency by 
transmitting more data less often. This allows the network interface to either be pow-
ered down or placed into a low-power state in between transmissions. Other wireless 
networks with throughput in the low kbps range, such as many cellular telephony 
networks, may require other techniques, such as better compression, to minimize 
energy consumption. However, we do not consider such wireless networks here. 
 In order to estimate the power consumption for wireless transmission, we directly 
measure the average current into the network interface. These measurements are 
performed under ideal conditions with no competing mobile hosts or excessive inter-
ference. Using these measurements as a baseline, we are able to tailor a simple en-
ergy consumption model to investigate the effects of increased application latency. 
By buffering compressed speech features, we maximize the amount of time spent in 
the low-power or off state. We introduce a power on/off scheduling algorithm for the 
802.11b device that exploits this increased latency. Given the medium access control 
(MAC) scheme for both 802.11b and Bluetooth, we can incorporate the effects of 
channel errors into the energy model. We use these results to investigate which tech-
niques should be used to maintain a minimum quality of service for the speech rec-
ognition task with respect to channel conditions. 
 The 802.11b interface operates at a maximum bit rate of 11 Mbps with a maxi-
mum range of 100 m. The MAC protocol is based on a carrier sense multiple ac-
cess/collision avoidance schemes, which includes a binary exponential back-off 
system to avoid collision. It uses an automatic repeat request (ARQ) system with 

face card and measured the average current going into the interface to get the power 
dissipation. 
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CRC error detection to maintain data integrity. We used a PCMCIA 802.11b inter-
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 Our measurements indicate there is only a difference of a few mW in power 
consumption between the highest and lowest bit rates. This is expected since the bit 
rates are low, and the transmit times are very short. Also, the use of UDP/IP protocol 
stacks and 802.11b MAC layer protocols both add significant overhead for small 
packet sizes. The 11 Mbps WLAN interface is under-utilized with this type of low 
bit rate traffic. The other 802.11 standards, including 802.11g, have similar operation 
but with different modulation schemes which provide higher bit rates. However, we 
can obtain some improvement in power consumption by increasing the number of 
frames per packet. This increases the total delay of the system, but less battery en-
ergy is used since the various networking overhead is amortized across a larger 
packet size. However, due to the relatively high data rates provided by 802.11b, the 
WLAN interface spends most of its time waiting for the next packet to transmit. The 
802.11b power management (PM) mode can provide some savings in energy con-
sumption but this does not hold under heavy broadcast traffic conditions (Acquaviva 
et al. 2003), defined as a higher than average amount of broadcast packets. In addi-
tion, the PM mode is not available in the ad-hoc (as opposed to infrastructure) top-
ography. We present an on/off scheduling algorithm to reduce the total energy 
consumption of the 802.11b device under these conditions. While operating in the 
802.11b power management mode, a WLAN card goes into an idle state. Every 
100 ms it wakes up and receives a traffic indication map, which is used to indicate 
when the base station will be transmitting data to this particular mobile host. With 
heavy broadcast traffic, the WLAN interface will rarely be in the idle state and it will 
consume power as if it were in the always-on mode. This is because the time re-
quired to analyze the broadcast packets is larger than the sleep interval. This increase 
in power consumption will happen even if there are no applications running on the 
mobile host. 

                         (a) light traffic                                        (b) heavy traffic  

Fig. 17.4 WLAN power consumption in 802.11b PM mode in light and heavy traffic conditions 

 Figure 17.4 shows the power consumption of the WLAN card in the 802.11b 
power management mode in both heavy and light traffic conditions. Notice that in the 
left graph, under heavy traffic, the card is unable to transition to the low-power idle 
state very often. The average power approaches the always-on mode. Measurements 
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in Acquaviva et al. (2003) indicate that even in less than average amounts of broadcast 
traffic, energy is wasted by the extra processing. 
 Since the energy consumption of PM mode on 802.11b networks breaks down in 
heavy traffic conditions, we consider an alternate technique. If we are only interested 
in transmitting speech recognition related traffic and not any other broadcast traffic, 
we can simply power off the WLAN card until we have buffered enough data to 
transmit. However, powering the card on and off has an energy-related cost that 
needs to be accounted for. 
 Figure 17.5 shows the timing of this scheduling algorithm. The period, T , is 
determined by the number of speech frames sent in one packet. The transmission is 
synchronous such that every T  seconds we will send that amount of compressed 
speech features and stay in the off state for the remainder of the time. With larger 
values of T  we can hope to amortize the cost of turning the WLAN card on and off 
at the expense of longer delay. Assuming that a speech recognizer server is able to 
process speech at or near real-time, the user will experience delay near the value of 
T . Depending on the type of application, a longer delay may or may not be accept-
able to the end user. 
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Fig. 17.5 The timing of the 802.11b scheduling algorithm (Delaney et al. 2005, © 2005 IEEE) 
 
 The two interesting parameters to consider are the power on time ( onbackT _ ) and 

Figure 17.6 shows the power on delay on the x-axis and estimated energy consump-
tion on the y-axis. We fixed the value of T  to 0.48 s, or 48 frames of speech data. 
The PM mode configuration in light traffic almost always outperforms the proposed 
scheduling algorithm except for very small values of onbackT _ . Typical values may 
range from 100 ms to 300 ms, with newer hardware possibly using less time. How-
ever, in heavy traffic conditions, the PM mode approaches the always on power 
consumption (shown by the top line in the plot), so the scheduling algorithm can give 
better performance under these conditions. With onbackT _  at 100 ms, the total energy 
consumption per packet is approximately 75 mJ for the scheduling algorithm and 
approximately 390 mJ for PM mode in heavy traffic conditions (from Fig. 17.6). 
This is a reduction in energy consumption by about 80%. However, this only holds 
true for heavy broadcast traffic conditions, so the mobile device will have to monitor  
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the number of speech frames transmitted at once, which dictates the total period T .  
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Fig. 17.6 Wireless LAN power on delay vs. energy consumption per packet (Delaney et al. 
2005, © 2005 IEEE) 
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Fig. 17.7 Average energy consumption per 10 ms speech frame versus DSR latency for 
various 802.11b power management schemes. (WLAN power on delay is fixed at 100 ms.) 
(Delaney et al. 2005, © 2005 IEEE) 

the broadcast traffic and decide between the standard 802.11b PM mode or the 
scheduling algorithm. 

Finally, we consider increased delay or latency, T , in Fig. 17.7 with onbackT _  
fixed at 100ms. In this plot, the energy cost was determined using measured values 
of power consumption. The energy cost has been normalized to show the average 
energy required to transmit one frame of speech data. As the total number of frames 
approaches 80 ( msT 800= ), we can see that the scheduling algorithm ( schedE ) 
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will be able to outperform the PM mode configuration ( saveE ) regardless of traffic 
conditions. This will result in less than one second of delay for a user interface appli-
cation with speech recognition. Shorter power on ( onbackT _ ) times can help move this 
crossover point to shorter delays. Longer delays of two seconds or more can further 
reduce energy consumption and are good candidates for applications requiring lower 
interactivity such as dictation. 
 Since the 802.11b MAC protocol uses an automatic-repeat-request (ARQ) proto-
col with CRC error detection to maintain data integrity, the energy consumption will 
be a function of channel signal to noise ratio (SNR). After the reception of a good 
packet, an ACK is sent across a robust control channel. For a given bit error rate and 

coding techniques is:  

                                           L
r BERP )(11=                                                (17.4) 

where L  is the packet length, and BER  is the bit error probability for the current 
channel conditions. For our analysis, we used the BER probability for 256-QAM 
modulation in a Rayleigh fading channel to approximate the 802.11b CCK modula-
tion (Proakis 1995). 

rP ), the expected number of retransmis-
sions ( rT ) is given by (Wicker 1995):  

                                                   
r

r P
T

1
1=                                                       (17.5) 

 Using these equations, an energy model can be constructed that incorporates the 
energy used in the MAC overhead as well as the energy required for repeated re-
transmissions, assuming the average SNR remains the same. Such an energy model 
is presented in Ebert et al. (2002) and is summarized here:  

        Ltxtxaqrxackaqtx BER
PTEPTELBERE

)(1
1=),(            (17.6) 

 where aqE  is the average energy required to acquire the channel, ackT  is the time 
required to receive the ACK packet, rxP  is the receive power for the robust control 
channel, and txP  is the power used during transmission. Given this energy model, we 
can incorporate it into our scheduling shown in Fig. 17.5. 
 We use this expression in our final comparison to quantify the energy consump-
tion of 802.11b vs. channel SNR. In particular, we show how larger packet sizes and 
lack of error correction techniques force 802.11b to operate in higher channel SNR. 
However, techniques such as packet fragmentation and error correction can be used 
to extend the lower SNR range of 802.11b. 
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packet length, the probability of a packet error in the absence of any error correction 

Given the probability of retransmission (
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17.2.3 Energy Consumption of DSR Using Bluetooth Networks 

variety of different packet types are available to support different traffic require-
ments. It supports a range that is considerably less than 802.11b, on the order of 

packet containing both voice and data. Media access is handled via a time-division 
duplex (TDD) scheme where each time slot lasts 625 s. Voice packets are given 
priority over data packets in scheduling. In this work, we consider only pure voice or 
pure data packets. Data packets are available in both high-rate and medium-rate 
packets. These are DHn or DMn packets for both high and medium data rate respec-
tively, where n  depicts the number of TDD slots the packet occupies: 1, 3, or 5. 
High-rate packets use a stop-and-wait automatic-repeat-request (ARQ) protocol with 
CRC error detection within the packet. Medium-rate packets use a 2/3 rate (15,10) 
shortened Hamming code in addition to the ARQ protocol. Voice packets, due to 
their time-sensitive nature, do not use an ARQ protocol. Voice packets are available 
in HV1, HV2, or HV3 types, where the number denotes the amount of error correc-
tion rather than slot length. All voice packets occupy one TDD slot with varying 

Hamming code, and HV1 packets use a 1/3 rate repetition code. Given the soft time 
deadlines with speech data intended for a machine listener, we can easily use either 
data packets or voice packets without consideration of packet jitter or delay charac-
teristics. 
 First we use a model for the energy consumption of a single Bluetooth voice or 
data packet given in Delaney (2004). We then consider the use of Bluetooth power 
saving modes to reduce the energy consumption during the idle time, similar to the 
802.11b scheduling algorithm. Finally, we investigate the implications of bit errors 
on both voice and data packets.  
 Using power measurements of a USB Bluetooth device attached to the Smart-
Badge IV combined with our energy model, we are able to estimate the energy usage 
for our system. Figure 17.8 shows the energy required to transmit one frame of 
speech data at various DSR compression rates over a Bluetooth link. We consider the 
use of both high-speed and medium-speed data packets. We assume an error-free 
channel with no retransmissions. We can see in Fig. 17.8 that there is a higher energy 

However, these packets will be a better choice for lower SNR conditions. Energy 

However, these estimates do not consider idle time between packets that will con-
sume energy as well. 

in a variety of different power management modes. These are connected/transmit, 
park, hold, and sniff. There is a fixed cost to transition from one mode to the next, 
and the power consumption of each mode can be measured directly. For our analysis, 
we will use the park, since it provides competitive transition times as well as the 
 

389

The Bluetooth personal area network provides a maximum bit rate of 1 Mbps, and a 

10 m. Bluetooth supports both data and voice traffic packets as well as a hybrid 

data payloads. HV3 packets use no error correction. HV2 packets use the (15,10) 

cost for medium-rate packets due to the forward error correction (FEC) overhead. 

consumption approximately doubles between the 1.2 kbps and 4.2 kbps bit rates. 

We can incorporate the Bluetooth power saving modes into our model to account 
for the idle time in between packets. A node within a Bluetooth piconet can operate 
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Fig. 17.8 Energy used to transmit one frame of speech with varying compression rates for 
Bluetooth radio 

ability for a master node performing multiple speech recognition requests to support 
more nodes. 

A Bluetooth node in park mode will wake up upon activity to transmit some data 
and then enter the park mode when finished. The energy consumption of this scenario 
is as follows:  

                              parkparktransitiontxtx TPETPE =                                 (17.7) 

where transitionE  is the total energy used to transition to/from the various operating 
states, and parkP  and parkT  are the power dissipation and times in the park mode 
respectively. The time spent in the park state is a function of the overall latency of 
the system and the amount of data being transmitted. We measure 0.18 watts in the 
transmit mode, and 0.077 watts in the park mode. Transition times to and from the 
park state are on the order of several milliseconds each. 
 Next, we investigate how the presence of bit errors on the wireless channel will 
affect both the energy consumption and, in the case of voice packets, speech recogni-
tion accuracy. We use this data to identify which types of packets can be used effec-
tively in various channel conditions. The main difference between the two types of 

pendent of channel conditions. Therefore, we can estimate the energy consumption 
using an equation similar to Eq. 7. The main difference in energy consumption per 

 Bluetooth voice packets have energy consumption that is independent of SNR 
since no ARQ protocol is used. By using increased delay, as with the data packets, 
we can minimize the energy consumption by increasing the amount of time spent in  
the low-power park state. However, since ARQ is not used, bit errors can have an 
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use both FEC and ARQ. The energy consumption of Bluetooth voice packets is inde-

frame of speech will come from the reduced user payload due to FEC bits. 

packets is that voice packets rely only on FEC and no ARQ, while data packets can 
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racy as well as reduce energy consumption in low channel SNR conditions. 
 In Fig. 17.9, the energy consumption per frame of speech is plotted vs. the inter-
leaving delay. This energy consumption includes the time between transmissions, 
including the low-power park state. For a given packet type the reduction in energy 
consumption with respect to increased delay levels off after 64 frames. This knee 
coincides with accuracy experiments in Delaney (2004), suggesting that delays be-
yond 0.64 s have little benefit in terms of improved accuracy and decreased energy 
consumption. 
 

 

Fig. 17.9 Energy vs. interleaver delay for Bluetooth voice packet types 
 
 Conversely, data packets in the presence of bit errors will continue to be retrans-
mitted until they are received correctly or a timeout occurs. For the purposes of this 
analysis, we calculate the BER using BFSK modulation under a Rayleigh fading 
channel. By accounting for the various modes of packet failure and error correction 
performance, the probability of a packet retransmission for a given BER can be de-
rived theoretically (Valenti et al. 2002). Given this information, the energy can be 
estimated as: 

                                    
r

txDxn P
nsPE

1
1625=                              (17.8) 

where rP  is the probability of a retransmit for the appropriate packet type. By divid-
ing the energy by the number of frames in a packet, which varies with packet length 
and coding technique, we can get the energy required to send one frame of speech. 

17.2.4 Comparison of 802.11 and Bluetooth in DSR 

We have provided energy models for both 802.11b and Bluetooth wireless networks 
for distributed speech recognition traffic. The two main variables of interest are the 
total delay, T , and the average channel SNR. Bluetooth networks do not generally 
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concealment approach (Delaney 2004), increased delay can improve the ASR accu-
impact on speech recognition accuracy. Using a combined interleaving and error 



 
benefit from increased delay, as the energy consumption spent in the park mode 
dominates the energy usage after about 100 ms. Powering off a Bluetooth node is not 
an option because the paging/inquiry process to rejoin a piconet can take in excess  
of 10 s. 
 For the purposes of this work, it is sufficient to describe the energy requirements 
for local ASR as the product of the average power dissipation of the processor and 
memory under load and the time required to perform the speech recognition task. For 
the Smartbadge IV, we have measured the average CPU and memory power dissipa-
tion as cpuP  = 694 mW and memP  = 1115 mW when under full load. Given the real-
time factor R  for the speech recognition task, we can estimate the energy consumption 
to recognize one frame of speech as:  

                                     
100

1)(= RPPE memcpulocal                           (17.9) 

 Therefore, for a speech recognition task that runs R = 2.5 times slower than real-
time, we can expect to use approximately 45 mJ of battery energy to process one 
frame of speech. Similarly, we can estimate energy usage for speech recognition that 
occurs at or near real-time, R = 1, thus providing a range of realistic energy con-
sumption estimates for a client-side implementation. 

Bluetooth and 802.11b wireless networks, we can examine the energy tradeoffs with 
respect to channel quality, delay, and ASR accuracy. Higher bit rates have small 
increases in system level energy consumption due to the overhead of the power sav-
ing algorithms on the wireless device.  
 In Fig. 17.10, we plot the energy consumption per frame of speech for client-side 
ASR and DSR under both 802.11b and Bluetooth wireless networks with respect to 
channel quality. For DSR, we include the both the communication and computation 
(feature extraction/quantization) energy costs. For 802.11b, we consider the energy 
consumption of the power on/off scheduling algorithm with a latency of 240 ms, 
480 ms, and 2 s and unlimited ARQ retransmissions. For the Bluetooth interface we 
show the energy consumption for both medium- and high-rate data packets as well as 
the three types of voice packets with latency of 480 ms. To the right of the Y-axis we 

slower than real-time. We can expect a scaled down speech recognition task (i.e. 
simpler acoustic and language models or smaller vocabulary) running at real-time to 
give 60% energy savings. However, this will come at a cost of reduced functionality 
for the user, perhaps going to a more constrained vocabulary and speaking style. We 
have not quantified the cost of reduced utility for the user in this work. However, for 
the various DSR scenarios in Fig. 17.10 we assume little to no reduction in quality 
for the end-user by maintaining sufficient data integrity through source coding tech-
niques and/or ARQ retransmissions. Table 17.2 shows the percentages of computation 
and communication energy for a few different configurations as well as the expected 
battery lifetime with a 1400 mAh/3.6V lithium-ion cell. The 802.11b interface with 
long delays gives the lowest overall energy consumption and an almost even division 
between energy spent in computation and communication. DSR with Bluetooth uses 
a higher percentage of communication energy, and this amount does not decrease  
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 By using the client-side ASR energy model and the DSR energy model for both 

have the approximate energy savings over client-side ASR operating 2.5 times 
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Fig. 17.10 The energy consumption of client-side ASR and DSR under Bluetooth and 802.11b 
vs. SNR. The Y-axis is log-scale (Delaney et al. 2005, © 2005 IEEE) 
 

Table 17.2 Summary of speech recognition energy consumption in high channel SNR conditions 
(Delaney et al. 2005, © 2005 IEEE) 
 

Type  Comp. 
(%) Comm. (%) Total/Frame 

(mJ) 
Battery 

lifetime (h) 
DSR w/Bluetooth 
(T = 0.48 s)  32 68 1.17  43.1  

DSR w/802.11b (T = 0.48 s)  15 85 2.5  20.2  
DSR w/802.11b (T = 2 s)  42 58 0.92  54.8  

Local ASR (R = 2.5)  100 0 45  1.12  

significantly with increased delay due to the overhead of the park mode. Even modest 
delays of less than half a second can yield significant battery lifetime with constant 
streaming of DSR data. 

In a good channel with high SNR, Bluetooth allows system wide energy savings 
of over 95% compared with full client-side ASR. DH5 packets offer the lowest over-
head and best energy savings, while DM1 packets offer the most robust operation 
down to around 10 dB with some minimal energy cost. The ARQ retransmission  
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protocol causes rapid increases in energy consumption after some SNR threshold is 
reached. It is possible to operate in lower SNR through packet fragmentation, which 
will lower the probability of a packet being received in error. This is evident in Fig. 
17.10 by comparing DH1 and DH5 data packets. The longer packet length in DH5 
packets causes a sharp increase in retransmits and energy consumption at around 
25 dB, whereas DH1 packets can operate down 15 dB before the number of retrans-
mits becomes excessive. In addition, FEC bits can be used to lower the probability of 
a packet retransmit. The Hamming code in DM1 and DM5 packets allows operation 
down to around 10 and 16 dB respectively. 
 IEEE 802.11b networks allow system wide energy savings of approximately 89–
94% with relatively small values of T . With larger values of T , such as one second 
or more, we can use less energy than Bluetooth. However, due to the larger packet 
overhead, larger maximum packet sizes, different modulation, techniques, and lack 
of error-correcting codes, the 802.11b network does not operate as well in lower 
SNR ranges. Packet fragmentation or a switch to a more robust modulation technique 
with lower maximum bit rate can extend the lower SNR range at the cost of in-
creased energy consumption, but we have not considered these effects here. How-
ever, 802.11b does offer increased range and may be more appropriate in certain 
scenarios. 

Table 17.3 Lower SNR bound for Bluetooth packets using server-side error concealment and 
interleaving 

 SNR lower bound (dB)  

Packet type  ETSI Error concealment Energy ( J) 
HV3  27 17 23.4 
HV2  17 10.5 37.5 

HV1  12 5 70.3 
 
 
using Bluetooth voice packets with and without server-side error concealment and 
interleaving is shown. The table is derived from a series of experiments under vari-
ous channel conditions from Delaney (2004). The ETSI bit-stream is corrupted by 
burst errors and speech recognition is performed. The WER is calculated in each 
case, and the error concealment technique provides more graceful degradation in the 
presence of bit errors. Error concealment and interleaving can reduce the energy 
consumption by allowing Bluetooth packets with higher data payloads to be used in 
lower SNR conditions. Between 27 and 17 dB a 37% reduction in transmit energy is 
possible since HV3 packets can be used instead of HV2 packets. A 46% reduction in 
transmit energy between 17 and 10.5 dB since HV2 packets can be used instead of 
HV1 packets. DSR can still be used down to 5 dB SNR, so the much more expensive 
client-side ASR does not need to be used. 
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In Table 17.3, the practical lower SNR bound for distributed speech recognition 
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17.3 Conclusion 

In this chapter, we investigated the system-level energy consumption of distributed 
speech recognition on a portable wireless device. We considered energy usage from 
both computation and communication in our final analysis. Careful optimization of 
the signal processing front-end from an energy consumption perspective was per-
formed. The advantages of DSR from an energy consumption perspective are clear. 
Client-side speech recognition in software can consume several orders of magnitude 
more energy than a DSR system. However, the use of low-power ASIC chips for 
speech recognition may help reduce the energy consumption of client-side ASR 
below that of off-the-shelf hardware. 
 In our analysis of DSR, we have considered both 802.11b and Bluetooth wireless 
networks. Given the relatively high bit rates these standards provide with respect to 
DSR traffic, we investigated the use of synchronous burst transmission of the data to 
maximize the amount of time spent in a low-power or off state. While this adds a 
small delay to the end-user, the energy savings can be significant. With 802.11b, we 
can reduce the energy consumption of the wireless interface by around 80% with 
modest application delays of just under half a second. Bluetooth offers lower energy 
consumption for smaller values of delay, T, but as delay increases, the Bluetooth 
energy consumption is dominated by the time spent in park mode. The 802.11b inter-
face with on/off scheduling can operate with a lower energy consumption than Blue-
tooth when T  exceeds 1.3 s. Through the use of error concealment and interleaving, 
we can operate Bluetooth voice packets in low SNR conditions with minimal impact 
on speech recognition and accuracy while still consuming small amounts of energy. 
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