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1 Introduction

In the present paper, we prove, under appropriate assumptions, the existence of
solutions for a second order evolution inclusion with boundary conditions governed
by subdifferential operators of the form

f (t) ∈ ü(t) + Mu̇(t) + ∂ϕ(u(t)), t ∈ [0, T ]. (I)

Here, M is positive, ϕ is a lower semicontinuous convex proper function defined
on Rd and ∂ϕ(u(t)) is the subdifferential of the function ϕ at the point u(t) and
the perturbation f belongs to L2

Rd ([0, T ]). It is well known that this problem is
difficult and needs a specific treatment via the Moreau-Yosida approximation or
epiconvergence approach. See Attouch–Cabot–Redon [4] and Schatzmann [24] for a
deep study of these problems, Castaing–Raynaud de Fitte–Salvadori [11], Castaing–
Le Xuan Truong [8] dealing with second order evolution with m-point boundary
conditions via the epiconvergence approach. These considerations lead us to consider
the variational limits of a fairly general approximating problem

f n(t) ∈ ün(t) + Mu̇n(t) + ∂ϕn(u
n(t)), t ∈ [0, T ] (II)

where un is aW 2,1
Rd ([0, T ])-solution, f n weakly converging in L2

Rd ([0, T ]) to f ∞,ϕn

is a convex Lipschitz function which epiconverges to a lower semicontinuous convex
proper functionϕ∞. This approximating problem covers various type of problems of
practical interest in several dynamic systems, evolution inclusion, control theory etc.
Here we focus on several variational limits of solutions via the Biting Lemma and
Young measures and other tools occurring in this approach by showing under suit-
able limit assumption on the boundary conditions that (ün) is L1

Rd ([0, T ])-bounded.
This main fact allows to study the variational limit of solutions in this problem, in
particular, the traditional estimated energy for the variational limit solutions is con-
served almost everywhere. The applicability of our abstract framework given therein
(Proposition 3.3) will be exemplified in considering the existence of solution for
second order differential inclusions

f (t) ∈ ü(t) + Mu̇(t) + ∂ϕ(u(t)), t ∈ [0, T ]

under m-point boundary condition or anti-periodic conditions and further related
second order evolution inclusions in the literature. This will be done by applying our
abstract result to the single valued approximating problem

f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(u
n(t)), t ∈ [0, T ] (III)

where∇ϕn is the gradient of theC1, Lipschitz, convex functionϕn that epi-converges
to a proper convex lower semicontinuous function ϕ∞ and f n weakly converges in
L2
Rd ([0, T ]) to f ∞ so that the variational limit solutions u∞ to (III) are generalized

solutions to the inclusion
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f ∞(t) ∈ ü∞(t) + Mu̇∞(t) + ∂ϕ∞(u∞(t)), t ∈ [0, T ]

with appropriate properties, namely, the solution limit u∞ is W 1,1
BV ([0, T ]), that is,

u∞ is continuous and its derivative u̇∞ is bounded variation (BV for short) and the
estimated energy holds almost everywhere

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u0) + 1

2
||u̇0)||2

− M
∫ t

0
||u̇∞(s)||2ds +

∫ t

0
〈 f ∞(s), u̇∞(s)〉ds

with further related variational inclusion, in particular,

f ∞(t) ∈ ζ∞(t) + Mu∞(t) + ∂ϕ∞(u∞(t)), t ∈ [0, T ]

almost everywhere, ζ∞ being the biting limit of the L1
Rd ([0, T ])-bounded sequence

(ün). Section3 is devoted to second order evolution inclusion with boundary con-
ditions. We present the variational limits of the general approximating problem (II)
and the applications of variational limits of the approximating problem (III) to the
existence problem of second order evolution inclusion (I) involving variational tech-
niques, the Biting Lemma, the characterization of the second dual of L1

Rd and Young
measures. It is worth to mention that the approximation (III) occurs in practical
cases of second order evolution inclusion governed by subdifferential operators. For
instance, Attouch–Cabot–Redon [4] considered the approximating problem

0 = ün(t) + γu̇n(t) + ∇ϕn(u
n(t)), t ∈ [0, T ]

un(0) = un0, u̇
n(0) = u̇n1

where γ is positive, ∇ϕn is the gradient of a C1, smooth function. Schatzmann [24]
considered the approximating problem

f (t) = üλ(t) + ∂ϕλ(uλ(t)), t ∈ [0, T ]

uλ(0) = u0, u̇λ(0) = u1

where f ∈ L2
Rd ([0, T ]) and ∂ϕλ is the Moreau-Yosida approximation to the lower

semicontinuous convex proper function ϕ. M. Mabrouk [19] continued the work of
M. Schatzmann [24] by considering the approximating problem

fλ(t) = üλ(t) + ∇ϕλ(uλ(t)), t ∈ [0, T ]
uλ(0) = u0, u̇λ(0) = u1,
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with fλ ∈ L1
Rd ([0, T ]). In Sect. 4, we apply our techniques to the study of both first

order and second order evolution equations with anti-periodic boundary condition
using the approximating problem

f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(u
n(t)), t ∈ [0, T ]

un(0) = −un(T ),

where un ∈ W 2,2
Rd ([0, T ]) and f n ∈ L2

Rd ([0, T ]), see H. Okochi [22], A. Haraux [17],
Aftabizadeh, Aizicovici and Pavel [1, 2], Aizicovici and Pavel [3] and the references
therein.

A general analysis of some related problems in Hilbert space is available, c.f K.
Maruo [19] and M. Schatzmann [24].

2 Some Existence Theorems in Second Order Evolution
Inclusions with m-Point Boundary Condition

Wewill use the following definitions and notations and summarize somebasic results.

• Let E be a separable Banach space, BE (0, 1) is the closed unit ball of E .
• c(E) (resp. cc(E)) (resp. ck(E))(resp. cwk(E)) is the collection of nonempty
closed (resp. closed convex) (resp. compact convex) (resp. weakly compact con-
vex) subsets of E .

• If A is a subset of E , δ∗(., A) is the support function of A.
• L([0, T ]) is the σ-algebra of Lebesgue measurable subsets of [0, T ].
• If X is a topological space, B(X) is the Borel tribe of X .
• L1

E ([0, T ], dt) (shortly L1
E ([0, T ])) is the Banach space of Lebesgue–Bochner

integrable functions f : [0, T ] → E .
• A mapping u : [0, T ] → E is absolutely continuous if there is a function u̇ ∈

L1
E ([0, T ]) such that u(t) = u(0) + ∫ t

0 u̇(s) ds, ∀t ∈ [0, T ].
• If X is a topological space, CE (X) is the space of continuousmappings u : X → E
equipped with the norm of uniform convergence.

• A set-valued mapping F : [0, T ] ⇒ E is measurable if its graph belongs to
L([0, T ]) ⊗ B(E).

• A convex weakly compact valued mapping F : X → ck(E) defined on a topo-
logical space X is scalarly upper semicontinuous if for every x∗ ∈ E∗, the scalar
function δ∗(x∗, F(.)) is upper semicontinuous on X .

We refer to [13] for measurable multifunctions and Convex Analysis.
For the sake of completeness, we recall and summarize some results developed

in [9]. By W 2,1
E ([0, T ]) we denote the set of all continuous functions in CE ([0, T ])

such that their first derivatives are continuous and their second derivatives belong to
L1
E ([0, T ]).
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Lemma 2.1 Assume that E is a separable Banach space. Let 0 < η1 < η2 < · · · <

ηm−2 < 1, γ > 0, m > 3 be an integer number, and αi ∈ R (i = 1, . . . ,m − 2) sat-
isfying the condition

m−2∑
i=1

αi − 1 + exp (−γ) −
m−2∑
i=1

αi exp (−γηi )) �= 0.

Let G : [0, 1] × [0, 1] → R be the function defined by

G(t, s) =
{ 1

γ (1 − exp(−γ(t − s))) , 0 ≤ s ≤ t ≤ 1
0, t < s ≤ 1

+ A

γ
(1 − exp(−γt))φ(s),

(2.1)
where

φ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − exp(−γ(1 − s)) − ∑m−2
i=1 αi (1 − exp(−γ(ηi − s))) , 0 ≤ s < η1,

1 − exp(−γ(1 − s)) − ∑m−2
i=2 αi (1 − exp(−γ(ηi − s))) , η1 ≤ s ≤ η2,

......

1 − exp(−γ(1 − s)), ηm−2 ≤ s ≤ 1,
(2.2)

and

A =
(
m−2∑
i=1

αi − 1 + exp(−γ) −
m−2∑
i=1

αi exp(−γηi )

)−1

. (2.3)

Then the following assertions hold

(i) For every fixed s ∈ [0, 1], the function G(., s) is right derivable on [0, 1[ and
left derivable on ]0, 1]. Its derivative is given by

(
∂G

∂t

)
+

(t, s) =
{
exp(−γ(t − s)), 0 ≤ s ≤ t < 1
0, 0 ≤ t < s < 1

+ A exp(−γt)φ(s),

(2.4)(
∂Gτ

∂t

)
−

(t, s) =
{
exp(−γ(t − s)), 0 ≤ s < t ≤ 1
0, 0 < t ≤ s ≤ 1

+ A exp(−γt)φ(s).

(2.5)
(ii) G(·, ·) and ∂G

∂t (·, ·) satisfies

|G(t, s)| ≤ MG and

∣∣∣∣∂G∂t (t, s)

∣∣∣∣ ≤ MG ∀(t, s) ∈ [0, 1] × [0, 1],

where

MG = max{γ−1, 1}
[
1 + |A|

(
1 +

m−2∑
i=1

|αi |
)]

.
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(iii) If u ∈ W 2,1
E ([0, 1]) with u(0) = x and u(1) = ∑m−2

i=1 αi u(ηi ), then

u(t) = ex (t) +
∫ 1

0
G(t, s)(ü(s) + γu̇(s))ds, ∀t ∈ [0, 1],

where

ex (t) = x + A

(
1 −

m−2∑
i=1

αi

)
(1 − exp(−γt))x .

(iv) Let f ∈ L1
E ([0, 1]) and let u f : [0, 1] → E be the function defined by

u f (t) = ex (t) +
∫ 1

0
G(t, s) f (s)ds ∀t ∈ [0, 1].

Then we have

u f (0) = x u f (1) =
m−2∑
i=1

αi u f (ηi ).

Further the function u f is weakly derivable on [0, 1] and its weak derivative
u̇ f is defined by

u̇ f (t) = lim
h→0

u f (t + h) − u f (t)

h
= ėx (t) +

∫ 1

τ

∂G

∂t
(t, s) f (s)ds,

with

ėx (t) = γA

(
1 −

m−2∑
i=1

αi

)
exp(−γt)x .

(v) If f ∈ L1
E ([0, 1]), the function u̇ f is weakly derivable, and its weak derivative

ü f satisfies
ü f (t) + γu̇ f (t) = f (t) a.e. t ∈ [0, 1].

The following is a direct consequence of Lemma 2.1.

Proposition 2.1 Let f ∈ L1
E ([0, 1]). The m-point boundary problem

{
ü(t) + γu̇(t) = f (t), t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

has a unique W 2,1
E ([0, 1])-solution u f , with integral representation formulas

{
u f (t) = ex (t) + ∫ 1

0 G(t, s) f (s)ds, t ∈ [0, 1]
u̇ f (t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s) f (s)ds, t ∈ [0, 1].
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where

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
.

The following result and its notation will be used in the next section.

Proposition 2.2 With the hypotheses and notations of Proposition 2.1, let E be a
separable Banach space and let X : [0, 1] ⇒ E be ameasurable convex weakly com-
pact valued and integrably bounded mapping. Then the solution set of W 2,1

E ([0, 1])-
solutions to {

ü f (t) + γu̇ f (t) = f (t), f ∈ S1X
u f (0) = x, u f (1) = ∑m−2

i=1 αi u f (ηi )

is bounded, convex, equicontinuous and sequentially weakly compact in CE ([0, 1]).
Proof Let us set

X :=
{
u f ∈ CE ([0, 1] : u f (t) = ex (t) +

∫ 1

0
G(t, s) f (s)ds, t ∈ [0, 1], f ∈ S1X

}

with

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x, t ∈ [0, 1]

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x, t ∈ [0, 1]

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
.

Taking account of the properties of G in Lemma 2.1, it is not difficult to show that
X is bounded, convex, equicontinuous and relatively weakly compact in CE ([0, 1])
because for each t ∈ [0, T ], ∫ 1

0 G(t, s)X (s)ds is convex and weakly compact, see
e.g. [11]. We only need to check the compactness property since other properties
are obvious. Indeed, let u fn ∈ X . As S1X is σ(L1

E , L∞
E∗
s
) sequentially compact, we

may assume that ( fn) σ(L1
E , L∞

E∗
s
) converges to f∞ ∈ S1X . Then we have for each

t ∈ [0, 1],

w− lim
n

u fn (t) = ex (t) + w − lim
n

∫ 1

0
G(t, s) fn(s)ds

= ex (t) +
∫ 1

0
G(t, s) f∞(s)ds := u f∞(t).
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This means that u fn (t) converges to u f∞(t) in Eσ for every t ∈ [0, 1]. Hence u fn

converges weakly in CE ([0, 1]) to u f∞ ∈ X . Similarly using the properties of ∂G
∂t in

Lemma 2.1,

Y :=
{
u̇ f ∈ CE ([0, 1] : u̇ f (t) = ėx (t) +

∫ 1

0

∂G

∂t
(t, s) f (s)ds, t ∈ [0, 1], f ∈ S1X

}

is bounded, convex, equicontinuous and sequentially weakly compact in CE ([0, 1])
with ⎧⎨

⎩
ėx (t) = γA

(
1 − ∑m−2

i=1 αi

)
exp (−γt)x, t ∈ [0, 1]

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
,

and we have

w − lim
n

u̇ fn (t) = ėx (t) + w − lim
n

∫ 1

0

∂G

∂t
(t, s) fn(s)ds

= ėx (t) +
∫ 1

0

∂G

∂t
(t, s) f∞(s)ds := u f∞(t).

This means that u̇ fn (t) converges to u̇ f∞(t) in Eσ for every t ∈ [0, 1]. �

Remark In the context of Control Theory, we have stated in the proof of Proposition
2.2, the dependence of the solution with respect to the control f ∈ S1X . Namely, if
u fn is the W

2,1
E ([0, 1])-solution to

{
ü fn (t) + γu̇ fn (t) = fn(t), t ∈ [0, 1]
u fn (0) = x, u fn (1) = ∑m−2

i=1 αi u fn (ηi )

and if ( fn) converges σ(L1
E , L∞

E∗
s
) to f∞ ∈ S1X , then (u fn (t)) converges to u f∞(t) and

(u̇ fn (t)) converges to u̇ f∞(t), in Eσ for every t ∈ [0, 1]where u f∞ is theW 2,1
E ([0, 1])-

solution to {
ü f∞(t) + γu̇ f∞(t) = f∞(t), t ∈ [0, 1]
u f∞(0) = x, u f∞(1) = ∑m−2

i=1 αi u f∞(ηi ).

The above remark is of importance since it allows to prove further results. Here is
an application to the existence ofW 2,1

E ([0, 1])-solution to a second order differential
inclusion with m-point boundary condition.

Proposition 2.3 Let X : [0, 1] ⇒ E be a convex weakly compact valued measur-
able and integrably bounded mapping, F : [0, 1] × E × E ⇒ E be a convex weakly
compact valued mapping satisfying
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(1) For each x∗ ∈ E∗, the scalar function δ∗(x∗, F(., ., .)) isLλ([0, 1]) ⊗ B(Eσ) ⊗
B(Eσ)-measurable,1

(2) For each x∗ ∈ E∗ and for each t ∈ [0, 1], the scalar function δ∗(x∗, F(t, ., .))
is sequentially weakly upper semicontinuous, i.e., for any sequence (xn) in E
weakly converging to x ∈ E, for any sequence (yn) in E weakly converging to
y ∈ E, lim supn δ∗(x∗, F(t, xn, yn)) ≤ δ∗(x∗, F(t, x, y)),

(3) F(t, x, y) ∈ X (t) for all (t, x, y) ∈ [0, 1] × E × E.
Then the W 2,1

E ([0, 1])-solutions set to
{
ü(t) + γu̇(t) ∈ F(t, u(t), u̇(t))), t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

is non empty and weakly compact in the space CE ([0, 1]).
Proof The sets

X :=
{
u f ∈ CE ([0, 1] : u f (t) = ex (t) +

∫ 1

0
G(t, s) f (s)ds, f ∈ S1X , t ∈ [0, 1]

}

(2.3.1)

and

Y :=
{
u̇ f ∈ CE ([0, 1] : u̇ f (t) = ėx (t) +

∫ 1

0

∂G

∂t
(t, s) f (s)ds, t ∈ [0, 1], f ∈ S1X

}

(2.3.2)

are bounded, convex, equicontinuous and weakly compact in CE ([0, 1]). By condi-
tion (3), it is clear that

F(t, u f (t), u̇ f (t)) ⊂ X (t) (2.3.4)

for all t ∈ [0, 1] and for all f ∈ S1X . Further, recall that S
1
X is σ(L1

E , L∞
E∗)-compact

(see e.g. [10]).Using (1)–(3), for each f ∈ S1X , let us consider the convexσ(L1
E , L∞

E∗)-
compact valued mapping � : S1X ⇒ S1X defined by

�( f ) := {g ∈ S1X : g(t) ∈ F(t, u f (t), u̇ f (t)), a.e. t ∈ [0, 1]}.

Nowweare going to show that� is upper semi continuous on the convexσ(L1
E , L∞

E∗)-
compact set S1X . We need to check that the graph of � is σ(L1

E , L∞
E∗)-closed in

S1X × S1X . Let gn ∈ �( fn) such that fn , σ(L1
E , L∞

E∗)-converges to f ∈ S1X and gn
σ(L1

E , L∞
E∗)-converges to g ∈ S1X . By compactness of X and Y , it follows that

u fn (t) → u f (t) in Eσ and u̇ fn (t) → u̇ f (t) in Eσ for every t ∈ [0, 1]. From the inclu-
sion gn ∈ �( fn), we have, for each x∗ ∈ E∗ and for each A ∈ Lλ([0, 1])

1Actually B(Eσ) = B(E) since E is separable.



10 C. Castaing et al.

〈1A(t)x
∗, gn(t)〉 ≤ 1A(t)δ

∗(x∗, F(t, u fn (t), u̇ fn (t))),

so that, by integration,

∫
A
〈x∗, gn(t)〉dt ≤

∫
A
〈x∗, F(t, u fn (t), u̇ fn (t))〉dt.

We thus have
∫
A
〈x∗, g(t)〉dt = lim

n

∫
A
〈x∗, gn(t)〉dt

≤ lim sup
n

∫
A
δ∗(x∗, F(t, u fn (t), u̇ fn (t))dt

≤
∫
A
δ∗(x∗, F(t, u f (t), u̇ f (t))〉dt.

Whence we get

∫
A
〈x∗, g(t)〉dt ≤

∫
A
δ∗(x∗, F(t, u f (t), u̇ f (t))dt

for every A ∈ Lλ([0, 1]). Consequently

〈x∗, g(t)〉 ≤ δ∗(x∗, F(t, u f (t), u̇ f (t)) a.e.

Taking a dense sequence (e∗
k ) in E∗ with respect to the Mackey topology τ (E∗, E),

we get
〈e∗

k , g(t)〉 ≤ δ∗(e∗
k , F(t, u f (t), u̇ f (t)) a.e.

for all k ∈ N. By [13, Proposition III.35], we get finally

g(t) ∈ F(t, u f (t), u̇ f (t))) a.e.

which proves that g in�( f ). Whence by Kakutani-Ky Fan fixed point theorem
� admits a fixed point f ∈ S1X . This is a solution to the second order differential
inclusion under consideration. Using Lemma 2.1, such a fixed point f verifies

{
ü f (t) + γu̇ f (t) ∈ F(t, u f (t), u̇ f (t)), a.e. t ∈ [0, 1]
u f (0) = x, u f (1) = ∑m−2

i=1 αi u(ηi ).

The compactness of the solution set follows from the compactness of X . �

Second Order Evolution Inclusions Governed by Subdifferential Operators

We need to recall and summarize some notions on the subdifferential mapping of
local Lipchitz functions developed by L. Thibault [25]. Let E be a separable Banach
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space. Let f : E → R be a locally Lipschitz function. By Christensen [14, Theorem
7.5], there is a set D f such that its complementary is Haar-nul (hence D f is dense
in E) such that for all x ∈ D f and for all v ∈ E

r f (x, v) = lim
δ→0

f (x + δv) − f (x)

δ

exists and v �→ r f (x, v) is linear and continuous. Let us set∇ f (x) = r f (x, .) ∈ E∗.
Then r f (x, v) = 〈∇ f (x), v〉, ∇ f (x) is the gradient of f at the point x . Let us set

L f (x) = { lim
j→∞ ∇ f (x j )|x j ∈ D f , x j → x}.

By definition, the subdifferential ∂ f (x) in the sense of Clarke [15] at the point x ∈ E
is defined by

∂ f (x) = coL f (x).

The generalized directional derivative of f at a point x ∈ E in the direction v ∈ E
is denoted by

f .(x, v) = lim sup
h→0,δ→0

f (x + h + δv) − f (x + h)

δ
.

Proposition 2.4 Let f : E → R be a locally Lipchitz function. Then the subdiffer-
ential ∂ f (x) at the point x ∈ E is convex weak star compact and

f .(x, v) = sup{〈ζ∗, v〉|ζ∗ ∈ ∂ f (x)} ∀v ∈ E

that is, f .(x, .) is the support function of ∂ f (x).

Proof See Thibault [25, Proposition I.12]. �

Here are some useful properties of the subdifferential mapping.

Proposition 2.5 Let f : E → R be a locally Lipchitz function. Then the convex
weak star compact valued subdifferential mapping ∂ f is upper semicontinuous with
respect to the weak star topology.

Proof See [25, Proposition I.17]. Indeed we have

δ∗(v, ∂ f (x)) = f .(x; v) = lim sup
h→0,δ→0

[ f (x + h + δv) − f (x + h)]
δ

.

As f .(.; v) is upper semicontinuous and ∂ f is convex compact valued in E∗
s , by

[13], ∂ f is upper semicontinuous in E∗
s . �

Proposition 2.6 Let (T, T ) a measurable space, and let f : T × E → R such that
f (., ζ) is T -measurable, for every ζ ∈ E.
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f (t, .) is locally Lipschitz for every t ∈ T .
Let f .

t (x; v) be the directional derivative of f (t, .) := ft in the direction v for every
fixed t ∈ T . Let x and v be two T -measurable mappings from T to E. Then the
following hold:

(a) the mapping t �→ f .
t (x(t); v(t)) is T -measurable.

(b) the mapping t �→ ∂ ft (x(t)) is graph measurable, that is, its graph belongs to
T ⊗ B(E∗

s ).

Proof See Thibault [25, Proposition I.20 and Corollary I.21]. Note that the con-
vex weak star compact valued mapping t �→ ∂ ft (x(t)) is scalarly T -measurable,
and so enjoys good measurability properties because E∗

s is a locally convex Lusin
space. �

We begin with a second order differential inclusion involving the subdifferential
operator.

Proposition 2.7 Assume that E = Rd , and h : [0, 1] × Rd × Rd → Rd be a
bounded Carathéodory mapping, that is, h is separately Lebesque-measurable
on [0, 1], separately continuous on Rd × Rd , ||h(t, x, y)|| ≤ α(t), ∀(t, x, y) ∈
[0, T ] × Rd × Rd where α is positive Lebesque-integrable. Let f : [0, 1] × E → R
be a mapping such that

(1) ∀x ∈ E, f (., x) is Lebesgue-measurable,
(2) There exists β ∈ L1

R+([0, 1]) such that, for all t ∈ [0, 1], for all x, y ∈ E,

|| f (t, x) − f (t, y)|| ≤ β(t)||x − y||.

Then the following hold

(a) ∂ ft (x) ⊂ β(t)BE, for all (t, x) ∈ [0, 1] × E,
(b) The W 2,1

E ([0, 1])-solution set to
{
ü(t) + γu̇(t) ∈ ∂ ft (u(t)) + h(t, u(t), u̇(t)), a.e. t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

is compact in the space CE ([0, T ]).
Proof The proof is immediate by applying Proposition 2.3 to the convex compact
valued mapping (t, x, y) �→ ∂ ft (x) + h(t, x, y), taking account of the properties of
the subdifferential mapping and its measurable properties given in Proposition 2.6.

�

We finish this section with a variant which has some importance in the study of
epiconvergence problem for the approximating system

ü(t) + γu̇(t) = h(t, u(t), u̇(t)) − ∇ϕ(u(t))

where ϕ is C1 and Lipschitz.
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Proposition 2.8 Assume that E = Rd , ϕ : E → R is C1, Lipschitz, and that h :
[0, 1] × Rd × Rd → Rd is a boundedCarathéodorymapping, that is, h is separately
Lebesque-measurable on [0, 1], separately continuous on Rd × Rd , ||h(t, x, y)|| ≤
α(t), ∀(t, x, y) ∈ [0, T ] × Rd × Rd where α is positive Lebesque-integrable.Then
the W 2,1

E ([0, 1])-solution set to

{
ü(t) + γu̇(t) = h(t, u(t), u̇(t)) − ∇ϕ(u(t)) a.e. t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

is compact in the space CE ([0, T ]).
Proof The proof is immediate by applying Proposition 2.3 with F(t, x, y) =
h(t, x, y) − ∇ϕ(x),∀(t, x, y) ∈ [0, 1] × E × E and by observing that the subdif-
ferential x �→ ∂ϕ(x) = ∇ϕ(x) is bounded and continuous. �

3 Applications. Towards the Variational Convergence in
Second Order Evolution Inclusions

Let us recall a useful Gronwall type lemma [12].

Lemma 3.1 (A Gronwall-like inequality) Let p, q, r : [0, T ] → [0,∞[ be three
nonnegative Lebesgue integrable functions such that for almost all t ∈ [0, T ]

r(t) ≤ p(t) + q(t)
∫ t

0
r(s) ds.

Then

r(t) ≤ p(t) + q(t)
∫ t

0
[p(s) exp(

∫ t

s
q(τ ) dτ )] ds

for all t ∈ [0, T ].
We recall below some notations and summarize some results which describe the

limiting behavior of a bounded sequence in L1
H ([0, T ]). See [10, Proposition 6.5.17].

Proposition 3.1 Let H be a separableHilbert space. Let (ζn) be a bounded sequence
in L1

H ([0, T ]). Then the following hold:

(1) (ζn) (up to an extracted subsequence) stably converges to a Young measure ν
that is, there exist a subsequence (ζ ′

n) of (ζn) and a Young measure ν belonging
to the space of Young measure Y([0, T ]; Hσ) with t �→ bar(νt ) ∈ L1

H ([0, T ])
(here bar(νt ) denotes the barycenter of νt ) such that

lim
n→∞

∫ T

0
h(t, ζ ′

n(t))) dt) =
∫ T

0

[∫
H
h(t, x) νt (dx)

]
dt
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for all bounded Carathéodory integrands h : [0, T ] × Hσ → R,
(2) (ζn) (up to an extracted subsequence) weakly biting converges to an inte-

grable function f ∈ L1
H ([0, T ]), which means that there is a subsequence (ζ ′

m)

of (ζn) and an increasing sequence of Lebesgue-measurable sets (Ap) with
lim p λ(Ap) = 1 and f ∈ L1

H ([0, T ]) such that, for each p,

lim
m→∞

∫
Ap

〈h(t), ζ ′
m(t)〉 dt =

∫
Ap

〈h(t), f (t)〉 dt

for all h ∈ L∞
H ([0, T ]),

(3) (ζn) (up to an extracted subsequence) Komlós converges to an integrable func-
tion g ∈ L1

H ([0, T ]), which means that there is a subsequence (ζβ(m)) and an
integrable function g ∈ L1

H ([0, T ]), such that

lim
n→∞

1

n
�n

j=1ζγ( j)(t) = g(t), a.e. ∈ [0, T ],

for every subsequence ( fγ(n)) of ( fβ(n)).

(4) There is a filter U finer than the Fréchet filter such that U − limn ζn = l ∈
(L∞

H )′weak where (L∞
H )′weak is the second dual of L1

H ([0, T ]).
Let wla ∈ L1

H ([0, T ]) be the density of the absolutely continuous part la of l in
the decomposition l = la + ls in absolutely continuous part la and singular part
ls .
If we have considered the same extracted subsequence in (1)–(4), then one has

f (t) = g(t) = bar(νt ) = wla (t) a.e. t ∈ [0, T ].

ByW 2,1
Rd ([0, T ]) (resp.W 2,2

Rd ([0, T ]) we denote the set of all continuous functions
in CRd ([0, T ]) such that their first derivatives are continuous and their second deriv-
atives belong to L1

Rd ([0, T ]) (resp. L2
Rd ([0, T ])) and by W 1,1

BV ([0, T ]) we denote the
set of all continuous functions in CRd ([0, T ]) such that their first derivatives are of
bounded variation (BV for short).

We begin with a preliminary result which shows the limiting properties of
W 2,1

Rd ([0, 1])-solutions for a second order ordinary differential equation withm-point
boundary conditions.

Proposition 3.2 Let E = Rd . Let ( fn)n∈N be a bounded sequence in L1
E ([0, 1]). For

each n ∈ N, let us consider the W 2,1
E ([0, 1])-solution un : [0, 1] → E of the equation

ün(t) + γu̇n(t) = fn(t), t ∈ [0, 1]; un(0) = x, un(1) =
m−2∑
i=1

αi un(ηi ).

Then there exist a subsequence of (un) still denoted by (un), a W 1,1
BV ([0, 1])-function

u : [0, 1] → E andaYoungmeasureν ∈ Y([0, 1]; E) such that t �→ bar(νt )belongs
to L1

E ([0, 1]) which satisfy the following conditions:
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(a) (un(.)) converges in CE ([0, 1]) to u(.) with u(0) = x, u(1) = ∑m−2
i=1 αi u(ηi ).

(b) (u̇n(.)) converges in L1
E ([0, 1]) to u̇(.).

(c) (δün ) stably converges in Y([0, 1], E) to ν.
(d) Assume further that the negative parts 〈un, ün〉− of the functions 〈un, ün〉 are

uniformly integrable in L1
R([0, 1]).

Then

lim inf
n→∞

∫ 1

0
〈un(t), ün(t)〉 dt ≥

∫ 1

0
〈u(t), bar(νt )〉 dt =

∫ 1

0

[∫
E
〈u(t), x〉 νt (dx)

]
dt.

Proof Existence and uniqueness of a W 2,1
E ([0, 1])-solution for the equation

ün(t) + γu̇n(t) = fn(t), t ∈ [0, 1]; u(0) = x, u(1) =
m−2∑
i=1

αi u(ηi ).

are ensured by Proposition 2.1 with integral representation formulas

{
un(t) = ex (t) + ∫ 1

0 G(t, s) fn(s)ds, t ∈ [0, 1]
u̇n(t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s) fn(s)ds, t ∈ [0, 1]

where

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
.

Since ( fn(.)) is bounded in L1
E ([0, 1]) by assumption, (u̇n(.)) is uniformly bounded

by using the integral formula for u̇n and the boundedness of the Green function
G given in Lemma 3.1. So (u̇n(.)) is uniformly bounded and bounded in vari-
ation. In view of the Helly–Banach theorem (see e.g. [20, p. 11]), we may, by
extracting a subsequence, assume that (u̇n(.)) pointwise converges to a BV func-
tion v(.). Let us set u(t) = ∫ t

0 v(s) ds for all t ∈ [0, 1]. Then u ∈ W 1,1
BV ([0, 1])

with u̇(t) = v(t) for almost every t ∈ [0, 1]. Then (u̇n(.)) is uniformly bounded
and pointwise converges to v(.). By Lebesgue’s theorem, we conclude that (u̇n(.))
converges in L1

E ([0, 1]) to u̇(.). Hence (un(.)) converges uniformly to u(.) with
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi ). It remains to check (c) and (d). Since (ün(.)) is
bounded, in view of Proposition 3.1, we may assume that the sequence (δün ) of asso-
ciated Young measures stably converges in Y([0, 1], E) to a Young measure ν such
that t �→ bar(νt ) belongs to L1

E ([0, 1]). Let us prove the last Fatou property (d). We
may suppose that

a := lim
n→∞

∫ 1

0
〈un(t), ün(t)〉 dt ∈ R.



16 C. Castaing et al.

Furthermore, since (ün(.)) is bounded in L1
E ([0, 1]), in view of Proposition 3.1 we

may suppose that (ün(.)) weakly biting converges to a function f ∈ L1
E ([0, 1]), that

is, there exist a subsequence (still denoted by (ün(.))) of (ün(.)) and an increasing
sequence of measurable sets (Ap) in [0, 1] such that lim p→∞ λ(Ap) = 1, and such
that, for each p and for each g ∈ L∞

E (Ap, Ap ∩ L([0, 1]),λ|Ap ), the following holds:

lim
n→∞

∫
Ap

〈ün(t), g(t)〉 dt =
∫
Ap

〈 f (t), g(t)〉 dt.

Let ε > 0 be given. Pick N ∈ N such that

∫
AN

〈u(t), f (t)〉 dt ≥
∫

[0,1]
〈u(t), f (t)〉 dt − ε,

and that

lim sup
n→∞

∫
[0,1]\AN

〈un(t), ün(t)〉− dt ≤ ε

(this is possible because (〈un, ün〉−)n is uniformly integrable by hypothesis). As
||un(.) − u(.)|| → 0 uniformly, it is easy to see that

lim
n→∞

∫
AN

||un(t) − u(t)|| ||ün(t)|| dt = 0.

See [6, 16] for a more general case. Whence

lim
n→∞

[ ∫
AN

〈un(t), ün(t)〉 dt −
∫
AN

〈u(t), ün(t)〉 dt
] = 0.

An easy computation gives

a ≥ lim
n→∞

∫
AN

〈un(t), ün(t)〉 − lim sup
n→∞

∫
[0,1]\AN

〈un(t), ün(t)〉− dt

≥ lim
n→∞

∫
AN

〈un(t), ün(t)〉 dt − ε.

Finally we get

a ≥ lim
n→∞

∫
AN

〈un(t), ün(t)〉 dt − ε

= lim
n→∞

∫
AN

〈u(t), ün(t)〉 dt − ε

=
∫
AN

〈u(t), f (t)〉 dt − ε
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≥
∫

[0,1]
〈u(t), f (t)〉 dt − 2ε.

By virtue of Proposition 3.1 f (t) = bar(νt ) a.e. The proof is therefore complete
because ∫ 1

0
〈u(t), bar(νt )〉 dt =

∫ 1

0

[∫
E
〈u(t), x〉 νt (dx)

]
dt. �

The above techniques can be used to prove the existence of a solution for second order
evolution inclusion with boundary conditions governed by subdifferential operators
of the form

f (t) ∈ ü(t) + Mu(t) + ∂ϕ(u(t)), t ∈ [0, T ] (I)

where M is positive, ϕ is a proper convex proper lower semicontinuous function
defined on Rd , and ∂ϕ(u(t)) is the subdifferential of the function ϕ at the point u(t)
and the perturbation f belongs to L2

Rd ([0, T ]). Similar results in this direction are
obtained by [1–4, 11].

Now we present a fairly general result for the approximating problem via the
epiconvergence approach in a second order evolution problem. The applicability of
our abstract results will be exemplified below.

Proposition 3.3 Assume that M > 0,β ∈ L2
R+([0, T ]). For each n ∈ N, let ϕn :

Rd → R+ be a convex, Lipschitz function and let ϕ∞ be a nonnegative l.s.c proper
function defined onRd such thatϕn(x) ≤ ϕ∞(x) for all n ∈ N and for all x ∈ Rd . Let
f n ∈ L2

Rd ([0, T ]) such that || fn(t)|| ≤ β(t), ∀n ∈ N, ∀t ∈ [0, T ]. For each n ∈ N,
let un be a W 2,1

Rd ([0, T ])-solution to the problem
{
f n(t) ∈ ün(t) + Mu̇n(t) + ∂ϕn(un(t)), t ∈ [0, T ]
un(0) = un0; u̇n(0) = u̇n0.

Assume that

(i) f n σ(L2
Rd , L2

Rd )-converges to f ∞ ∈ L2
Rd ([0, T ]),

(ii) ϕn epi-converges to ϕ∞,
(iii) limn un(0) = u∞

0 ∈ dom ϕ∞, limn ϕn(un(0)) = ϕ∞(u∞
0 ), and limn u̇n(0) =

u̇∞
0 ,

(iv) There exist r0 > 0 and x0 ∈ Rd such that

sup
n∈N

sup
v∈BL∞

Rd
([0,T ])

∫ T

0
ϕ∞(x0 + r0v(t)) < +∞

where BL∞
Rd

([0,T ]) is the closed unit ball in L∞
Rd ([0, T ]).
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(a) Then up to extracted subsequences, (un) converges uniformly to a
W 1,1

BV ([0, T ])-function u∞ and (u̇n) pointwisely converges to a BV function v∞
with v∞ = u̇∞, and (ün) biting converges to a function ζ∞ ∈ L1

Rd ([0, T ]) so
that the limit function u∞, u̇∞ and the biting limit ζ∞ satisfy the variational
inclusion

f ∞ ∈ ζ∞ + Mu̇∞ + ∂ Iϕ∞(u∞)

where ∂ Iϕ∞ denotes the subdifferential of the convex lower semicontinuous inte-
gral functional Iϕ∞ defined on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Furthermore limn ϕn(un(t)) = ϕ∞(u∞(t)) < ∞ a.e. and limn
∫ T
0 ϕn(un(t))

dt = ∫ T
0 ϕ∞(u∞(t))dt. Subsequently, the energy estimate holds true almost

everywhere t ∈ [0, T ],

ϕ∞(u∞(t))+ 1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 )) + 1

2
||u̇∞

0 ||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Further (ün) weakly converges to the vector measure m ∈ Mb
Rd ([0, T ]) so that

the limit functions u∞(.) and the limitmeasurem satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt +

∫ 1

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉
(Mb

Rd
([0,T ]),CRd ([0,T ])).

In other words, the vector measure −m + [−Mu̇∞ + f ∞] dt belongs to the
subdifferential ∂ Jϕ∞(u∞) of the convex functional integral Jϕ∞ defined on

CRd ([0, T ]) by Jϕ∞(v) = ∫ 1
0 ϕ∞(t, v(t)) dt, ∀v ∈ CRd ([0, T ]).

(b) There are a filter U finer than the Fréchet filter, l ∈ L∞
Rd ([0, T ])′ such that

U − lim
n

[ f n − ün − Mu̇n] = l ∈ L∞
Rd ([0, T ])′weak

where L∞
Rd ([0, T ])′weak is the second dual of L

1
Rd ([0, T ]) endowed with the topol-

ogy σ(L∞
Rd ([0, T ])′, L∞

Rd ([0, T ])) and n ∈ CRd ([0, T ])′weak such that

lim
n

[ f n − ün − Mu̇n] = n ∈ CRd ([0, T ])′weak
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where CRd ([0, T ])′weak denotes the space CRd ([0, T ])′ endowed with the weak
topology σ(CRd ([0, T ])′, CRd ([0, T ])). Let la be the density of the absolutely
continuous part la of l in the decomposition l = la + ls in absolutely continuous
part la and singular part ls . Then

la(h) =
∫ T

0
〈h(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

for all h ∈ L∞
Rd ([0, T ]) so that

I ∗
ϕ∞(l) = Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) + δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined on
L1
Rd ([0, T ]) associated with ϕ∗∞, I ∗

ϕ∞ the conjugate of the integral functional
Iϕ∞ , dom Iϕ∞ := {u ∈ L∞

Rd ([0, T ]) : Iϕ∞(u) < ∞} and

〈n, h〉 =
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt + 〈ns , h〉, ∀h ∈ CRd ([0, T ]).

with 〈ns, h〉 = ls(h), ∀h ∈ CRd ([0, T ]). Further n belongs to the subdifferential
∂ Jϕ∞(u∞) of the convex lower semicontinuous integral functional Jϕ∞ defined
on CRd ([0, T ])

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

(c) Consequently the density f ∞ − ζ∞ − Mu̇∞ of the absolutely continuous
part na

na(h) :=
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, T ])

satisfies the inclusion

f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and for any nonnegative measure θ on [0, T ] with respect to which ns is
absolutely continuous

∫ T

0
hϕ∗∞(

dns
dθ

(t))dθ(t) =
∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)

here hϕ∗∞ denotes the recession function of ϕ∗∞.
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Proof Step 1 ||u̇n(.)|| and ϕn(un(.)) are uniformly bounded.
Multiplying scalarly the inclusion

f n(t) − ün(t) − Mu̇n(t) ∈ ∂ϕn(u
n(t))

by u̇n(t) and applying the chain rule theorem [21, Theorem 2] yields

〈u̇n(t), f n(t)〉 − 〈u̇n(t), ün(t)〉 − 〈u̇n(t), Mu̇n(t)〉 = d

dt
[ϕn(un(t))]

that is,

− 〈Mu̇n(t), u̇n(t)〉 + 〈u̇n(t), f n(t)〉 = d

dt

[
ϕn(un(t)) + 1

2
||u̇n(t)||2

]
. (3.3.1)

Integrating this equality on [0, t], we get

ϕn(u
n(t)) + 1

2
||u̇n(t)||2

= ϕn(u
n(0)) + 1

2
||u̇n(0)||2

−
∫ t

0
〈Mu̇n(s), u̇n(s)〉ds +

∫ t

0
〈u̇n(s), f n(s)〉ds

≤ ϕn(u
n(0)) + 1

2
||u̇n(0)||2

+ M
∫ t

0
||u̇n(s)||2ds + || f n||L2

Rd
([0,T ])

(∫ t

0
||u̇n(s)||2ds

) 1
2

≤ ϕn(u
n(0)) + 1

2
||u̇n(0)||2

+ M
∫ t

0
||u̇n(s)||2ds + 1

2
|| f n||L2

Rd
([0,T ])

(
1 +

∫ t

0
||u̇n(s)||2ds

)

≤ ϕn(u
n(0)) + 1

2
||u̇n(0)||2

+ M
∫ t

0
||u̇n(s)||2ds + 1

2
||β||L2

R([0,T ])

(
1 +

∫ t

0
||u̇n(s)||2ds

)
.

Then, from (i i i), the preceding estimate and the Gronwall like inequality (Lemma
3.1), it is immediate that

sup
n≥1

sup
t∈[0,T ]

||u̇n(t)|| < +∞ and sup
n≥1

sup
t∈[0,T ]

ϕn(u
n(t)) < +∞. (3.3.2)

Step 2 Estimation of ||ün(.)||. As
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zn(t) := f n(t) − ün(t) − Mu̇n(t) ∈ ∂ϕn(u
n(t))

by the subdifferential inequality for convex lower semi continuous functions we have

ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ Rd . Now let v ∈ BL∞
Rd

([0,T ]), the closed unit ball of L∞
Rd [0, T ]). Taking

x = w(t) := x0 + r0v(t) in the preceding inequality we get

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈w(t) − un(t), zn(t)〉.

Integrating the preceding inequality gives

∫ T

0
〈x0 + r0v(t) − un(t), zn(t)〉dt

=
∫ T

0
〈x0 − un(t), zn(t)〉dt + r0

∫ T

0
〈v(t), zn(t)〉dt

≤
∫ T

0
ϕn(x0 + r0v(t))dt −

∫ T

0
ϕn(u

n(t))dt.

Whence follows

r0

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕn(x0 + r0v(t))dt (3.3.3)

−
∫ T

0
ϕn(u

n(t))dt −
∫ T

0
〈x0 − un(t), zn(t)〉dt.

We compute the last integral in the preceding inequality. For simplicity, let us set
vn(t) = un(t) − x0 for all t ∈ [0, T ]. By integration by parts and taking into account
(3.3.2), we have

−
∫ T

0
〈x0 − un(t), zn(t)〉dt = −

∫ T

0
〈vn(t), v̈n(t) + M v̇n(t)〉 − f n(t)〉dt (3.3.4)

= − [〈vn(t), v̇n(t) + Mvn(t)]T0 +
∫ T

0
〈v̇n(t), v̇n(t) + Mvn(t)〉dt +

∫ T

0
〈vn(t), f n(t)〉dt

≤ − 〈vn(T ), v̇n(T )〉 + 〈vn(0), v̇n(0)〉 − 〈Mvn(T ), vn(T )〉

+ 〈Mvn(0), vn(0)〉 +
∫ T

0
||v̇n(t)||2dt +

∫ T

0
〈v̇n(t), Mvn(t)〉dt +

∫ T

0
〈vn(t), f n(t)〉dt.

By (3.3.2)–(3.3.4), we get

r0

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕ∞(x0 + r0v(t))dt + L (3.3.5)
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for all v ∈ BL∞
Rd

([0,T ]), where L is a generic positive constant independent of
n ∈ N. By (iv) and (3.3.5) we conclude that (zn = f n − ün − Mu̇n) is bounded in
L1
Rd ([0, T ]), then so is (ün). It turns out that the sequence (u̇n) is uniformly bounded

by using (3.3.2) and is bounded in variation. By Helly theorem, we may assume that
(u̇n) pointwisely converges to a BV function v∞ : [0, T ] → Rd and the sequence
(un) converges uniformly to an absolutely continuous function u∞ with u̇∞ = v∞
a.e. At this point, it is clear that (u̇n) converges in L1

Rd ([0, T ]) to v∞, using (3.3.2)
and the dominated convergence theorem. Hence (Mu̇n(.)) converges in L1

Rd ([0, T ])
to Mv∞(.).
Step 3 Young measure limit and biting limit of ün . As (ün) is bounded in L1

Rd ([0, T ]),
we may assume that (ün) stably converges to a Young measure ν ∈ Y([0, T ]);Rd)

with bar(ν) : t �→ bar(νt ) ∈ L1
Rd ([0, T ]) (here bar(νt ) denotes the barycenter of νt ).

Further by Proposition 3.1, we may assume that (ün) biting converges to a function
ζ∞ : t �→ bar(νt ) that is, there exists a decreasing sequence of Lebesgue-measurable
sets (Bp)with lim p λ(Bp) = 0 such that the restriction of (ün) on each Bc

p converges
weakly in L1

Rd ([0, T ]) to ζ∞. Note that (Mu̇n) converges in L1
Rd ([0, T ]) to Mv∞.

It follows that the restriction of (zn = f n − ün − Mu̇n) to each Bc
p weakly con-

verges in L1
Rd ([0, T ]) to z∞ := f ∞ − ζ∞ − Mv∞, because ( f n) weakly converges

in L1
Rd ([0, T ]) to f ∞, (Mu̇n) converges in L1

Rd ([0, T ]) to Mv∞ and (ün) biting
converges to ζ∞ ∈ L1

Rd ([0, T ]). It follows that

lim
n

∫
B
〈−ün − Wn(t), w(t) − un(t)〉 =

∫
B
〈− bar(νt ) − W (t), w(t) − u(t)〉dt

(3.3.6)

for every B ∈ Bc
p ∩ L([0, T ]), and for every w ∈ L∞

Rd ([0, T ]), where Wn(t) =
Mu̇n(t) − f n(t) andW (t) = Mu̇∞(t) − f ∞(t). Indeed,we note that (w(t) − un(t))
is a bounded sequence in L∞

Rd ([0, 1]) which pointwisely converges to w(t) − u∞(t),
it converges uniformly on every uniformly integrable subset of L1

Rd ([0, T ]) by virtue
of a Grothendieck Lemma [16], recalling here that the restriction of −ün − Wn on
each Bc

p is uniformly integrable. Now, since ϕn lower epiconverges to ϕ∞, for every
Lebesgue-measurable set A in [0, T ], by virtue of Corollary 4.7 in [11], we have

+ ∞ > lim inf
n

∫
A
ϕn(u

n(t))dt ≥
∫
A
ϕ∞(u∞(t))dt. (3.3.7)

Combining (3.3.2)–(3.3.5)–(3.3.6)–(3.3.7) and using the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−ün(t) − Wn(t), w(t) − un(t)〉

gives

∫
B

ϕ∞(w(t)) dt ≥
∫
B

ϕ∞(u∞(t)) dt +
∫
B
〈− bar(νt ) − W (t), w(t) − u∞(t)〉 dt.
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This shows that t �→ − bar(νt ) − W (t) is a subgradient at the point u∞ of the convex
integral functional Iϕ∞ restricted to L∞

Rd (Bc
p), consequently,

− bar(νt ) − W (t) ∈ ∂ϕ∞(u∞(t)), a.e. onBc
p.

As this inclusion is true on each Bc
p and Bc

p ↑ [0, T ], we conclude that

− bar(νt ) − W (t) ∈ ∂ϕ∞(u∞(t)), a.e. on[0, T ].

Step 4 Limit measure in Mb
Rd ([0, T ]) of ün . As (ün) is bounded in L1

Rd ([0, T ]), we
may assume that (ün) weakly converges to the vector measure m ∈ Mb

Rd ([0, T ]) so
that the limit functions u∞(.) and the limitmeasurem satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt +

∫ 1

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
E ([0,T ]),CRd ([0,T ])).

In otherwords, the vectormeasure−m + [−Mu̇∞ + f ∞] dt = −m − W.dt belongs
to the subdifferential ∂ Jϕ∞(u∞) of the convex functional integral J f∞ defined
on CRd ([0, T ]) by Jϕ∞(v) = ∫ 1

0 ϕ∞(v(t)) dt , ∀v ∈ CRd ([0, T ]). Indeed, let w ∈
CRd ([0, T ]). Integrating the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−ün(t) − Wn(t), w(t) − un(t)〉

and noting that ϕ∞(w(t)) ≥ ϕn(w(t)) gives immediately

∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕn(w(t))dt

≥
∫ T

0
ϕn(u

n(t))dt + 〈−ün(t) − Wn(t), w(t) − un(t)〉dt.

We note that

lim
n

∫ T

0
〈−Wn(t), w(t) − un(t)〉dt =

∫ T

0
〈−W (t), w(t) − u∞(t)〉dt

because (Wn := Mu̇n − f n) is uniformly integrable, and weakly converges to
W := Mu̇∞ − f ∞ and the bounded sequence in w(t) − un(t) pointwise converges
to w − u∞ so that it converges uniformly on uniformly integrable subsets by virtue
of Grothendieck lemma. Whence follows
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∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕ∞(u∞(t))dt +

∫ T

0
〈−W (t), w(t) − u∞(t)〉dt

+〈−m, w − u∞〉(Mb
Rd

([0,T ]),CRd ([0,T ])),

which shows that the vector measure −m − W.dt is a subgradient at the point u∞
of the of the convex integral functional Jϕ∞ defined on CRd ([0, T ])) by Jϕ∞(v) :=∫ T
0 ϕ∞(v(t))dt,∀v ∈ CRd ([0, T ]).
Step 5 Claim limn ϕn(un(t)) = ϕ∞(u∞(t)) < ∞ a.e. and limn

∫ T
0 ϕn(un(t))dt =∫ T

0 ϕ∞(u∞(t))dt < ∞, and subsequently, the energy estimate holds for a.e. t ∈
[0, T ]:

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞(0)) + 1

2
||u̇∞(0)||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

With the above results and notations, applying the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−ün(t) − Wn(t), w(t) − un(t)〉

withw = u∞, integrating on [0, T ], and passing to the limit when n goes to∞, gives
the inequalities

∫
B

ϕ∞(u∞(t))dt ≥ lim inf
n

∫
B

ϕn(u
n(t))dt

≥
∫
B

ϕ∞(u∞(t))dt ≥ lim sup
n

∫
B

ϕn(u
n(t))dt

on B ∈ Bc
p ∩ L([0, T ]) so that

lim
n

∫
B

ϕn(u
n(t))dt =

∫
B

ϕ∞(u∞(t))dt (3.3.8)

on B ∈ Bc
p ∩ L([0, T ]). Now, from the chain rule theorem given in Step 1, recall that

〈u̇n(t), f n(t)〉 − 〈u̇n(t), ün(t) − Mu̇n(t)〉 = d

dt
[ϕn(un(t))],

that is,

〈u̇n(t), zn(t)〉 = d

dt
[ϕn(un(t))].

By the estimate (3.3.2) and the boundedness in L1
Rd ([0, T ]) of (zn), it is immedi-

ate that ( d
dt [ϕn(un(t))]) is bounded in L1

R([0, T ]) so that (ϕn(un(.)) is bounded in
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variation. By Helly theorem, we may assume that (ϕn(un(.)) pointwisely converges
to a BV functionψ. By (3.3.2), (ϕn(un(.)) converges in L1

R([0, T ]) toψ. In particular,
for every k ∈ L∞

R+([0, T ]) we have

lim
n→∞

∫ T

0
k(t)ϕn(un(t))dt =

∫ T

0
k(t)ψ(t)dt. (3.3.9)

Combining (3.3.8) and (3.3.9) yields

∫
B

ψ(t) dt = lim
n→∞

∫
B

ϕn(u
n(t)) dt =

∫
B

ϕ∞(u∞(t)) dt

for all ∈ Bc
p ∩ L([0, T ]). As this inclusion is true on each Bc

p and Bc
p ↑ [0, T ], we

conclude that
ψ(t) = lim

n
ϕn(un(t)) = ϕ∞(u∞(t)) a.e.

Hencewe get limn ϕn(un(t)) = ϕ∞(u∞(t)) a.e. Subsequently, using (iii) the passage
to the limit when n goes to ∞ in the equation

ϕn(u
n(t)) + 1

2
||u̇n(t)||2 = ϕn(u

n(0)) + 1

2
||u̇n(0)||2

−
∫ t

0
〈Mu̇n(s), u̇n(s)〉ds +

∫ t

0
〈u̇n(s), f n(s)〉ds

yields for a.e. t ∈ [0, T ]

ϕ∞(u∞(t))+1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 ) + 1

2
||u̇∞

0 ||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Noting that ( f n) is uniformly integrable and u̇n is uniformly bounded and pointwise
converges to u̇∞, by virtue of Grothendieck lemma [16], it converges uniformly on
uniformly integrable (=relatively weakly compact) subsets of L1

Rd ([0, T ]), so that

lim
n

∫ t

0
〈u̇n(s), f n(s)〉ds =

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Step 6 Localization of further limits and final step.
As (zn = f n − ün − Mu̇n) is bounded in L1

Rd ([0, T ]), in view of Step 3, it is rel-
atively compact in the second dual L∞

Rd ([0, T ])′ of L1
Rd ([0, T ]) endowed with the

weak topology σ(L∞
Rd ([0, T ])′, L∞

Rd ([0, T ])). Furthermore, (zn) can be viewed as a
bounded sequence in CRd ([0, T ])′. Hence there are a filter U finer than the Fréchet
filter, l ∈ L∞

Rd ([0, T ])′ and n ∈ CRd ([0, T ])′ such that
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U − lim
n

zn = l ∈ L∞
Rd ([0, T ])′weak (3.3.10)

and
lim
n

zn = n ∈ CRd ([0, T ])′weak (3.3.11)

where L∞
Rd ([0, T ])′weak is the second dual of L1

Rd ([0, T ]) endowed with the topol-
ogy σ(L∞

Rd ([0, T ])′, L∞
Rd ([0, T ])) and CRd ([0, T ])′weak denotes the space CRd ([0, T ])′

endowed with the weak topology σ(CRd ([0, T ])′, CRd ([0, T ])), because CRd ([0, T ])
is a separable Banach space for the norm sup, so that we may assume by extract-
ing subsequences that (zn) weakly converges to n ∈ CRd ([0, T ])′. Using Step 4, we
note that n = −m − W.dt = −m − (Mu̇∞ − f ∞).dt . Let la be the density of the
absolutely continuous part la of l in the decomposition l = la + ls in absolutely con-
tinuous part la and singular part ls , in the sense there is an decreasing sequence (An)

of Lebesgue measurable sets in [0, T ] with An ↓ ∅ such that ls(h) = ls(1An h) for all
h ∈ L∞

Rd ([0, T ]) and for all n ≥ 1. As (zn = f n − ün − Mu̇n) biting converges to
z∞ = f ∞ − ζ∞ − Mu̇∞ in Step 4, it is already seen (cf. Proposition 3.1) that

la(h) =
∫ T

0
〈h(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

for all h ∈ L∞
Rd ([0, T ]), shortly z∞ = f ∞ − ζ∞ − Mu̇∞ coincides a.e. with the den-

sity of the absolutely continuous part la . By [13, 23], we have

I ∗
ϕ∞(l) = Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) + δ∗(ls, dom Iϕ∞),

whereϕ∗∞ is the conjugate ofϕ∞, Iϕ∗∞ is the integral functional definedon L1
Rd ([0, T ])

associated with ϕ∗∞, I ∗
ϕ∞ is the conjugate of the integral functional Iϕ∞ and

dom Iϕ∞ := {u ∈ L∞
Rd ([0, T ]) : Iϕ∞(u) < ∞}.

Using the inclusion

z∞ = f ∞ − ζ∞ − Mu̇∞ ∈ ∂ Iϕ∞(u∞),

that is,

Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) = 〈 f ∞ − ζ∞ − Mu̇∞, u∞〉 − Iϕ∞(u∞),

we see that

I ∗
ϕ∞(l) = 〈 f ∞ − ζ∞ − Mu̇∞, u∞〉 − Iϕ∞(u∞) + δ∗(ls, dom Iϕ∞).

Coming back to the inclusion zn(t) ∈ ∂ϕn(un(t)), we have
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ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ Rd . By substituting x by h(t) in this inequality, where h ∈ L∞
Rd ([0, T ]),

and by integrating

∫ T

0
ϕn(h(t)) dt ≥

∫ T

0
ϕn(u

n(t)) dt +
∫ T

0
〈h(t) − un(t), zn(t)〉 dt.

Arguing as in Step 4 by passing to the limit in the preceding inequality, involving the
epiliminf property for integral functionals

∫ T
0 ϕn(h(t))dt defined on L∞

Rd ([0, T ]), it
is easy to see that

∫ T

0
ϕ∞(h(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt + 〈h − u∞,n〉.

Since this holds, in particular, when h ∈ CRd ([0, T ]), we conclude that n belongs to
the subdifferential ∂ Jϕ∞(u∞) of the convex lower semicontinuous integral functional
Jϕ∞ defined on CRd ([0, T ])

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

Now, let B : CRd ([0, T ]) → L∞
Rd ([0, T ]) be the continuous injection, and let B∗ :

L∞
Rd ([0, T ])′ → CRd ([0, T ])′ be the adjoint of B given by

〈B∗l, h〉 = 〈l, Bh〉 = 〈l, h〉, ∀l ∈ L∞
Rd ([0, T ])′, ∀h ∈ CRd ([0, T ]).

Then we have B∗l = B∗la + B∗ls , l ∈ L∞
Rd ([0, T ])′ being the limit of (zn = f n −

ün − Mu̇n) under the filterU given in Sect. 4 and l = la + ls being the decomposition
of l in absolutely continuous part la and singular part ls . It follows that

〈B∗l, h〉 = 〈B∗la, h〉 + 〈B∗ls, h〉 = 〈la, h〉 + 〈ls, h〉

for all h ∈ CRd ([0, T ]). But it is already seen that

〈la, h〉 = 〈 f ∞ − ζ∞ − Mu̇∞, h〉

=
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ L∞

Rd ([0, T ])

so that the measure B∗la is absolutely continuous

〈B∗la, h〉 =
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, T ])
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and its density f ∞ − ζ∞ − Mu̇∞ satisfies the inclusion

f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and the singular part B∗ls satisfies the equation

〈B∗ls, h〉 = 〈ls, h〉, ∀h ∈ CRd ([0, T ]).

As B∗l = n, using (3.3.10) and (3.3.11), it turns out that n is the sum of the absolutely
continuous measure na with

〈na, h〉 =
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, T ])

and the singular part ns given by

〈ns, h〉 = 〈ls, h〉, ∀h ∈ CRd ([0, T ]),

which satisfies the property: for any nonnegative measure θ on [0, T ] with respect
to which ns is absolutely continuous,

∫ T

0
hϕ∗∞

(
dns
dθ

(t)

)
dθ(t) =

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t),

where hϕ∗∞ denotes the recession function of ϕ∗∞. Indeed, as n belongs to ∂ Jϕ∞(u∞)

by applying Theorem 5 in [23] we have

J ∗
ϕ∞(n) = Iϕ∗∞

(
dna
dt

)
+

∫ T

0
hϕ∗∞

(
dns
dθ

(t)

)
dθ(t) (3.3.12)

with

Iϕ∗∞(v) :=
∫ T

0
ϕ∗

∞(v(t))dt,∀v ∈ L1
Rd ([0, T ]).

Recall that
dna
dt

= f ∞ − ζ∞ − Mu̇∞ ∈ ∂ Iϕ∞(u∞),

that is,

Iϕ∗∞

(
dna
dt

)
= 〈 f ∞ − ζ∞ − Mu̇∞, u∞〉〈L1

Rd
([0,T ]),L∞

Rd
([0,T ])〉 − Iϕ∞ (u∞). (3.3.13)

From (3.3.13), we deduce
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J ∗
ϕ∞(n) = 〈u∞,n〉〈CRd ([0,T ]),CRd ([0,T ])′〉 − Jϕ∞(u∞)

= 〈u∞,n〉〈CRd ([0,T ]),CRd ([0,T ])′〉 − Iϕ∞(u∞)

=
∫ T

0
〈u∞(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

+
∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t) − Iϕ∞(u∞)

= Iϕ∗∞

(
dna
dt

)
+

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)).

Coming back to (3.3.12) we get the equality

∫ T

0
hϕ∗∞

(
dns
dθ

(t)

)
dθ(t) =

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)). �

Actually, Proposition 3.3 completes Proposition 4.6 in [7], which is a precursor
of some results we present here.

We beginwith a second order evolution equationwithm-point boundary condition

Proposition 3.4 Assume that E = Rd , M > 0,β ∈ L2
R+([0, T ]). For each n ∈ N,

let ϕn : Rd → R+ be a C1, convex, Lipschitz function and let ϕ∞ be a nonnegative
l.s.c proper function defined on Rd such that ϕn(x) ≤ ϕ∞(x) for all n ∈ N and for
all x ∈ Rd . Let f : [0, T ] × E × E → E satisfying

(1) For each (x, y) ∈ E × E the scalar function t �→ f (t, x, y)〉 is Lebesgue mea-
surable,

(2) For each t ∈ [0, 1], function f (t, ., .) is continuous on E × E,
(3) || f (t, x, y)|| ≤ β(t) for all (t, x, y) ∈ [0, 1] × E × E.

For each n ∈ N, let un be a W 2,1
Rd ([0, 1])-solution to the approximating problem

(Pn)

{
f (t, un(t), u̇n(t)) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)), t ∈ [0, 1]
un(0) = x ∈ dom ϕ∞, un(1) = ∑m−2

i=1 αi un(ηi )

Assume that

(i) ϕn epi-converges to ϕ∞,
(ii) limn u̇n(0) = u̇∞

0 ,
(iii) There exist r0 > 0 and x0 ∈ Rd such that

sup
v∈BL∞

Rd
([0,1])

∫ T

0
ϕ∞(x0 + r0v(t)) < +∞

where BL∞
Rd

([0,1]) is the closed unit ball in L∞
Rd ([0, 1]).
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(a) Then, up to extracted subsequences, (un) converges uniformly to a W 1,1
BV

([0, 1])-function u∞ with u∞(0) = x ∈ dom ϕ∞, u∞(1) = ∑m−2
i=1 αi

u∞(ηi ) and (u̇n) pointwisely converges to a BV function v∞ with v∞ = u̇∞,
and (ün) biting converges to a function ζ∞ ∈ L1

Rd ([0, 1]) so that the limit
function u∞, u̇∞ and the biting limit ζ∞ satisfy the variational inclusion

(P∞) f ∞ ∈ ζ∞ + Mu̇∞ + ∂ Iϕ∞(u∞)

where f ∞(t) := f (t, u∞(t), u̇∞(t),∀t ∈ [0, 1], ∂ Iϕ∞ denotes the subdif-
ferential of the convex lower semicontinuous integral functional Iϕ∞ defined
on L∞

Rd ([0, 1]) by

Iϕ∞(u) :=
∫ 1

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, 1]).

(b) (ün) weakly converges to the vector measure m ∈ Mb
E ([0, 1]) so that the

limit functions u∞(.) and the limit measure m satisfy the following varia-
tional inequality:

∫ 1

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt +

∫ 1

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
Rd

([0,1]),CE ([0,1])).

(c) Furthermore lim
n

∫ 1

0
ϕn(u

n(t))dt =
∫ T

0
ϕ∞(u∞(t))dt. Subsequently

the energy estimate

ϕ∞
(
u∞(t)) + 1

2
||u̇∞(t)||2 ≤ ϕ∞(x) + 1

2
||u̇∞

0

)
||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds

holds a.e.
(d) There are a filter U finer than the Fréchet filter, l ∈ L∞

Rd ([0, 1])′ such that

U − lim
n

[ f n − ün − Mu̇n] = l ∈ L∞
Rd ([0, 1])′weak

where L∞
Rd ([0, 1])′weak is the second dual of L1

Rd ([0, 1]) endowed with the
topology σ(L∞

Rd ([0, 1])′, L∞
Rd ([0, 1])) and n ∈ CRd ([0, 1])′weak such that

lim
n

[ f n − ün − Mu̇n] = n ∈ CRd ([0, 1])′weak

whereCRd ([0, 1])′weak denotes the spaceCRd ([0, 1])′ endowedwith theweak
topology σ(CRd ([0, 1])′, CRd ([0, 1])) so that n = −m − (Mu̇∞ − f ∞)dt.
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Let la be the density of the absolutely continuous part la of l in the decom-
position l = la + ls in absolutely continuous part la and singular part ls .
Then

la(h) =
∫ T

0
〈h(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

for all h ∈ L∞
Rd ([0, 1]) so that

I ∗
ϕ∞(l) = Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) + δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined on
L1
Rd ([0, 1]) associatedwithϕ∗∞, I ∗

ϕ∞ the conjugate of the integral functional
Iϕ∞ , dom Iϕ∞ := {u ∈ L∞

Rd ([0, 1]) : Iϕ∞(u) < ∞} and

〈n, h〉 =
∫ 1

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt + 〈ns , h〉, ∀h ∈ CRd ([0, 1])

with 〈ns, h〉 = ls(h), ∀h ∈ CRd ([0, 1]). Further n belongs to the subdiffer-
ential ∂ Jϕ∞(u∞) of the convex lower semicontinuous integral functional
Jϕ∞ defined on CRd ([0, 1])

Jϕ∞(u) :=
∫ 1

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, 1]).

(c) Consequently the density f ∞ − ζ∞ − Mu̇∞ of the absolutely continu-
ous part na

na(h) :=
∫ 1

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, 1])

satisfies the inclusion

f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and for any nonnegative measure θ on [0, T ] with respect to which ns is
absolutely continuous

∫ 1

0
hϕ∗∞(

dns
dθ

(t))dθ(t) =
∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)

where hϕ∗∞ denotes the recession function of ϕ∗∞.

Proof Existence of a W 2,1
Rd ([0, 1])-solution for the approximating equation

{
ün(t) + Mu̇n(t) + ∇ϕn(un(t) = f (t, un(t), u̇n(t)), a.e. t ∈ [0, 1]
un(0) = x, un(1) = ∑m−2

i=1 αi un(ηi )
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is ensured by Proposition 2.8 with integral representation formulas

{
un(t) = ex (t) + ∫ 1

0 G(t, s)[ün(t) + Mu̇n(s)]ds, t ∈ [0, 1]
u̇n(t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s)[ün(t) + Mu̇n(s)]ds, t ∈ [0, 1]

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1

where G is the Green function given by Lemma 2.1. Then un(0) = x and un(1) =∑m−2
i=1 αi un(ηi ).
The rest of the proof follows the same lines as that of Proposition 3.3. �

The following is a new variant on the existence of solutions for the second order
evolution inclusion with m-point boundary condition.

Proposition 3.5 Let (∂ϕn) (n ∈ N ∪ {∞}) be a sequence of subdifferential oper-
ators associated with a sequence of nonnegative normal convex integrands (ϕn)

(n ∈ N ∪ {∞}). Assume that the following conditions are satisfied:

(1) For each n ∈ N, |ϕn(t, x) − ϕn(t, y)| ≤ βn(t)||x − y|| for all t ∈ [0, 1] and for
all x, y ∈ Rd , where βn is a nonnegative integrable functions.

(2) For each Lebesgue-measurable set A ∈ [0, 1], for each w ∈ L∞
Rd ([0, 1]),

lim sup
n

∫
A
ϕn(t, w(t)) dt ≤

∫
A
ϕ∞(t, w(t)) dt.

(3) For each t ∈ [0, 1], ϕn(t, .) lower epiconverges to ϕ∞(t, .), that is, for each
fixed t ∈ [0, 1], for each (xn) in Rd , converging to x ∈ Rd , lim inf ϕn(t, xn) ≥
ϕ∞(t, x).
For each n ∈ N, let un : [0, 1] → Rd be a W 2,1

Rd ([0, 1])-solution to

{
ün(t) + γu̇n(t) ∈ ∂ϕn(t, un(t)), a.e. t ∈ [0, 1]
un(0) = x, un(1) = ∑m−2

i=1 αi un(ηi ).

(4) Assume further that

sup
n∈N

∫ 1

0
ϕn(t, un(t))dt < +∞

and

sup
n∈N

∫ 1

0
|∂ϕn(t, u

n(t))|dt < +∞.

Then the following hold:
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(a) Up to extracted subsequences, (un) converges uniformly to a W 1,1
BV ([0, 1]) func-

tion u∞ with u∞(0) = x, u∞(1) = ∑m−2
i=1 αi u∞(ηi ) and (u̇n) pointwisely con-

verges to the BV function u̇∞, and (ün) stably converges to a Young measure
ν∞ ∈ Y([0, 1];Rd)with t �→ bar(ν∞

t ) ∈ L1
Rd ([0, 1]) (here bar(ν∞

t ) denotes the
barycenter of ν∞

t ) such that the limit functions u∞(.), u̇∞(.) and the Young limit
measure ν∞ satisfy

∫ 1

0
ϕ∞(t, u∞(t))dt ≤ lim inf

n

∫ 1

0
ϕn(t, u

n(t))dt

consequently

lim
n

∫ 1

0
ϕn(t, u

n(t))dt =
∫ 1

0
ϕ∞(t, u∞(t))dt < ∞

and
bar(ν∞

t ) + γu̇∞(t) ∈ ∂ϕ∞(t, u∞(t)), a.e.

equivalently the function t �→ bar(ν∞
t ) + γu̇∞(t) belongs to the subdifferential

∂ Iϕ∞(u∞) of the convex lower semicontinuous integral functional Iϕ∞ defined
on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(t, u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

(b) Up to extracted subsequences, (un) converges uniformly to a W 1,1
BV ([0, 1]) func-

tion u∞ with u∞(0) = x, u∞(1) = ∑m−2
i=1 αi u∞(ηi ) and (u̇n) pointwisely con-

verges to the BV function u̇∞, (ün) weakly converges to m∞ ∈ Mb
Rd ([0, 1]) so

that the limit functions u∞(.) and the limit measure m∞ satisfy the variational
inequality: for every v ∈ CRd ([0, 1]),
∫ 1

0
ϕ∞(t, v(t)) dt ≥

∫ 1

0
ϕ∞(t, u∞(t)) dt +

∫ 1

0
〈γu̇∞(t)), v(t) − u∞(t)〉 dt

+ 〈m∞, v − u∞〉(Mb
Rd

([0,1]),CRd ([0,1])).

In other words, the vector measure m∞ + γu̇∞ dt belongs to the subdifferential
∂ Iϕ∞(u) of the convex functional integral Iϕ∞ defined on CRd ([0, 1]) by Iϕ∞(v) =∫ 1
0 ϕ∞(t, v(t)) dt, ∀v ∈ CRd ([0, 1]).

Proof Existence of a W 2,1
Rd ([0, 1])-solution un to

{
ün(t) + γu̇n(t) ∈ ∂ϕn(t, un(t)), a.e. t ∈ [0, 1]
un(0) = x, un(1) = ∑m−2

i=1 αi un(ηi )
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is ensured by Proposition 2.7 with integral representation formulas

{
un(t) = ex (t) + ∫ 1

0 G(t, s)[ün(s) + γu̇n(s)]ds, t ∈ [0, 1]
u̇n(t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s)[ün(s) + γu̇n(s)]ds, t ∈ [0, 1]

where

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1

where G is the Green function given by Lemma 2.1.
Step 1 (a) As supn

∫ 1
0 |∂ϕn(t, un(t))|dt < +∞, it follows that (ün + γu̇n) is bounded

in L1
Rd ([0, 1]), namely

sup
n

∫ 1

0
||(ün(t) + γu̇n(t)||dt < +∞,

so that, by the representation formulas given above, it is immediate that (un) and
(u̇n) are uniformly bounded. Hence (ün) is bounded in L1

Rd ([0, 1]) and (u̇n(.)) is

bounded in variation because supn
∫ 1
0 ||ün(t)|| dt < +∞. In view of the Helly–

Banach theorem, we may, by extracting a subsequence, assume that (u̇n(.)) con-
verges pointwisely to a BV function v∞(.). Let us set u∞(t) = ∫ t

0 v∞(s) ds for
all t ∈ [0, 1]. Then u∞ ∈ W 1,1

BV ([0, 1]). As (u̇n(.)) is uniformly bounded and point-
wise converges to v∞(.), by Lebesgue’s theorem, we conclude that (u̇n(.)) con-
verges in L1

Rd ([0, 1]) to u̇∞(.). Hence un(.) converges uniformly to u∞(.) with

u∞(0) = x, u∞(1) = ∑m−2
i=1 αi u∞(ηi ). So (a) is proved. From the general com-

pactness result for Young measures, [5, 10] one may assume that ün stably converge
to an Young measure ν∞. Further, by virtue of Proposition 3.1 we may assume that
(ün) biting converges to the integrable function bar(ν∞) : t �→ bar(ν∞

t ), that is, there
exists a decreasing sequence (Bp) of Lebesgue measurable sets with λ(∩Bp) = 0
such that the restriction of (ün) on each Bc

p converges σ(L1, L∞) to bar(ν). It follows
that

lim
n

∫
B
〈ün + γu̇n(t), w(t) − un(t)〉 dt =

∫
B
〈bar(νt ) + γu̇∞(t), w(t) − u∞(t)〉 dt

(3.5.1)
for every B ∈ Bc

p ∩ L([0, 1]), and for every w ∈ L∞
E ([0, 1]) because the sequence

(w − un) in L∞
Rd ([0, 1]) is bounded and pointwise converges to w − u∞, so it con-

verges uniformly on uniformly integrable subsets of L1
Rd ([0, 1]). Since (ϕn) lower

epiconverges to ϕ∞, by Corollary 4.7 in [11], we have
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lim inf
n

∫
A
ϕn(t, u

n(t)) dt ≥
∫
A
ϕ∞(t, u∞(t)) dt (3.5.2)

for every Lebesgue-measurable set A in [0, 1]. Combining (3.5.1), (3.5.2) and
Assumption (2), and integrating the subdifferential inequality

ϕn(t, w(t)) ≥ ϕn(t, u
n(t)) + 〈ün(t) + γu̇n(t), w(t) − un(t)〉 (3.5.3)

on each B ∈ Bc
p ∩ L([0, 1]) and for every w ∈ L∞

Rd ([0, 1]), we get
∫
B

ϕ∞(t, w(t)) dt ≥
∫
B

ϕ∞(t, u∞(t)) dt +
∫
B
〈bar(ν∞

t ) + γu̇∞(t), w(t) − u∞(t)〉 dt.

This shows that t �→ bar(ν∞
t ) + γu̇∞(t) is a subgradient at the pointu∞ of the convex

integral functional Iϕ∞ restricted to L∞
E (Bc

p), consequently,

bar(νt ) + γu̇∞(t) ∈ ∂ϕ∞(t, u∞(t)), a.e. on Bc
p.

As this inclusion is true on each Bc
p and Bc

p ↑ [0, 1], we conclude that

bar(ν∞
t ) + γu̇∞(t) ∈ ∂ϕ∞(t, u∞(t)), a.e. on [0, 1].

Finally, applying the above subdifferential inequality, and puttingw = u∞ in (3.5.3),
we deduce

∫
B

ϕ∞(t, u∞(t)dt

≥ lim sup
n

∫
B

ϕn(t, u
∞(t))dt

≥ lim sup
n

∫
B
[ϕn(t, u

n(t)) + 〈ün(t) + γu̇n(t), u∞(t) − un(t)〉]dt

= lim sup
n

∫
B

ϕn(t, u
n(t))dt ≥ lim inf

n

∫
B

ϕn(t, u
n(t))dt

≥
∫
B

ϕ∞(t, u∞(t))dt

because

lim
n

∫
B
〈ün(t) + γu̇n(t), u∞(t) − un(t)〉]dt = 0

recalling that 1B[ün + γu̇n] is uniformly integrable. Whence follows

lim
n

∫
B

ϕn(t, u
n(t))dt =

∫
B

ϕ∞(t, u∞(t))dt.
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As this inclusion is true on each B in Bc
p and Bc

p ↑ [0, 1], we conclude that

lim
n

∫ 1

0
ϕn(t, u

n(t))dt =
∫ 1

0
ϕ∞(t, u∞(t))dt.

Step 2 (b) Repeating the results in Step 1, up to extracted subsequences, (un)
converges uniformly to a W 1,1

BV ([0, 1]) function u∞ with u∞(0) = x, u∞(1) =∑m−2
i=1 αi u∞(ηi ) and (u̇n) pointwisely converges to the BV function u̇∞. As (ün)

is L1-bounded we may assume that (ün) weakly converges to a vector measure
m∞ ∈ Mb

Rd ([0, 1]) since the Banach space CRd ([0, 1]) is separable and its topo-
logical dual is Mb

Rd ([0, 1]). Let w ∈ CRd (([0, 1]). Integrating the subdifferential
inequality

ϕn(t, w(t)) ≥ ϕn(t, u
n(t)) + 〈ün(t) + γu̇n(.), w(t) − un(t)〉

and passing to the limit gives immediately

∫ 1

0
ϕ∞(t, w(t)) dt ≥

∫ 1

0
ϕ∞(t, u∞(t)) dt +

∫ 1

0
〈γu̇∞(t), w(t) − u∞(t)〉 dt

+ 〈m∞, w − u〉(Mb
Rd

([0,1]),CRd ([0,1])),

which shows that the vector measure m∞ + γu̇∞ dt belongs to the subdifferential
∂ Iϕ∞ of the convex functional integral Iϕ∞ defined on CRd ([0, 1]) by Iϕ∞(v) :=∫ 1
0 ϕ∞(t, v(t)) dt , ∀v ∈ CRd ([0, 1]). �

4 Further Applications: Second Order Evolution Problems
with Anti-periodic Boundary Condition

It is worth to focus on the main difference in discussing the various approximating
problems.

f n(t) = [ün(t) + Mu̇n(t)] + ∇ϕn(u
n(t)), t ∈ [0, T ] (4.1)

f n(t) ∈ [ün(t) + Mu̇n(t)] + ∂ϕn(u
n(t)), t ∈ [0, T ] (4.2)

f n(t) = −[ün(t) + Mu̇n(t)] + ∇ϕn(u
n(t)), t ∈ [0, T ] (4.3)

f n(t) ∈ −[ün(t) + Mu̇n(t)] + ∂ϕn(u
n(t)), t ∈ [0, T ]. (4.4)

Equations (4.1) and (4.2) are usual in second order dynamical systems. We refer to
Attouch et al. [4] and Schatzmann [24] for a deep study of such models. See also the
results developed in Propositions 3.2–3.5. Here, according to a traditional vein, we
prove the existence of generalized solution with the conservation of energy in (3.3)
and (3.4). Meanwhile (4.3) and (4.4) appear in the problem of anti-periodic solution
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developed in Aizicovici et al. [1–3]. Here in Proposition 4.3 we present a first result
of the existence of generalized solution for the problem

f (t) ∈ [ü(t) + Mu̇(t)] + ∂ϕ(u(t))

using the approximating problem (4.2) with application (Proposition 3.4) to problem

f (t, u(t), u̇(t)) ∈ ü(t) + Mu̇(t) + ∂ϕ(u(t)), t ∈ [0, T ]

with m-point boundary condition using the approximating problem

f (t, un(t), u̇n(t)) = ün(t) + Mu̇n(t)] + ∇ϕn(u(t)), t ∈ [0, T ]

with m-point boundary condition. Here one can see that the techniques employed
in (4.1) and (4.2) cannot be used to develop similar results to (4.3) and (4.4), in
particular, we cannot obtain the conservation of energy for the variational limits in
(4.3) and (4.4) by contrast with (4.1) and (4.2). So it is worth to mention that our tools
allow to study the approximating problem of anti-periodic solution in the framework
of Haraux–Okochi with anti-periodic solution

f n(t) = [ün(t)+ Mu̇n(t)] + ∇ϕn(u
n(t)), t ∈ [0, T ],

un(0) = −un(T ).

In our opinion, the general problem of the existence of energy conservation solution
to second order evolution inclusion of the form

f (t) ∈ [ü(t) + Mu̇(t)] + ∂ϕ(u(t)) (4.5)

where ϕ is a lower semicontinuous convex proper function is a difficult problem
when the perturbation f ∈ L1

H ([0, T ]) and H is a separable Hilbert space.
Now, to finish the paper, we show that our abstract result in Proposition 3.3 and the

tool developed therein can be applied to the first order of evolution equation and also
to the second order evolution equation with anti-periodic boundary conditions. H.
Okochi initiated the study for anti-periodic solutions to evolution equations inHilbert
spaces. Following Okochi’s work, A. Haraux proved some existence and uniqueness
theorems for anti-periodic solutions by using Brouwer’s or Schauder fixed point
theorems. Aftabizadeh, Aizicovici and Pavel have studied the anti-periodic solutions
to second order evolution equation in Hilbert spaces and Banach spaces by using
monotone and accretive operator theory for equations of type (4.3) and (4.4). Herewe
show the applicability of our abstract result to the study of evolution equations of type
(4.1) and (4.2) with anti-periodic boundary condition. For notational convenience let
us denote by H the set of of functions f ∈ L2

loc(R, H) such that f is anti-periodic,
that is, f (t + T ) = − f (t) for all t ∈ R and
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Hβ([0, T ]) := { f ∈ H : || f (t)|| ≤ β(t),β ∈ L2
R([0, T ]), t ∈ [0, T ]}.

We begin with some examples in the first order of evolution equation with anti-
periodic condition.

Proposition 4.1 Let H = Rd . Assume that ϕn : Rd → [0,+∞[ are even, convex,
Lipschitz and ϕ∞ : Rd → [0,+∞] is proper lower semicontinuous convex function
such that ϕn(x) ≤ ϕ∞(x) for all n ∈ N and for all x ∈ Rd . Let f n be sequence in
Hβ([0, T ]) and let un be a W 1,2

Rd ([0, T ])-solution to the problem
{
f n(t) ∈ u̇n(t) + ∂ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0)

Assume that the following conditions are satisfied:

(i) ϕn epiconverges to ϕ∞,
(ii) limn un(0) = u∞

0 ∈ dom ϕ∞ and limn ϕn(un(0)) = ϕ∞(u∞
0 ).

(iii) f n σ(L2
Rd ([0, T ]), L2

Rd ([0, T ]))-converges to f ∞ ∈ L2
Rd ([0, T ]).

Then the following hold

(a) Up to extracted subsequences, (un) converges pointwisely to an anti-periodic
absolutely continuous mapping u∞ with u∞(T ) = −u∞(0), (u̇n) σ(L2

Rd , L2
Rd )-

converges to ζ∞ ∈ L2
Rd ([0, T ])with ζ∞ = u̇∞, limn ϕn(un(t)) = ϕ∞(u∞(t)) <

+∞ a.e. and limn
∫ T
0 ϕn(un(t))dt = ∫ T

0 ϕ∞(u∞(t))dt < +∞.
(b) f ∞ − ζ∞ ∈ ∂ Iϕ∞(u∞) where ∂ Iϕ∞ denotes the subdifferential of the convex

lower semicontinuous integral functional Iϕ∞ defined on L∞
Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Proof Existence of W 1,2
Rd ([0, T ])-solution un to the problem

{
f n(t) ∈ u̇n(t) + ∂ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0)

is ensured. See Haraux [17], Okochi [22].
Step 1 Estimation of un , u̇n , and ϕn(un(.) Multiplying scalarly the inclusion

f n(t) − u̇n(t) ∈ ∂ϕn(u
n(t)

by u̇n(t) and applying the chain rule formula [21] for the Lipschitz functionϕn gives

〈u̇n(t), f n(t)〉 − ||u̇n(t)||2 = d

dt
[ϕn(u

n(t))]. (4.1.1)
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Hence by integration of (4.1.1) on [0, T ] and anti-periodicity condition we get the
estimate

||u̇n||L2
H ([0,T ]) ≤ || f n||L2

H ([0,T ]). (4.1.2)

From the Poincaré inequality

||un(t)|| ≤ √
T ||u̇n||L2

H ([0,T ]),∀t ∈ [0, T ]. (4.1.3)

Integrating (4.1.1) on [0, t] we get

0 ≤ ϕn(u
n(t)) = ϕn(u

n(0)) −
∫ t

0
||u̇n(s)||2ds +

∫ t

0
〈u̇n(s), f n(s)〉ds (4.1.4)

≤ ϕn(u
n(0)) +

∫ t

0
〈u̇n(s), f n(s)〉ds

so that by using the above estimates (4.1.2)–(4.1.3)–(4.1.4), the weak convergence
of f n in L2

H ([0, T ]) and (ii) we note that ϕn(un(t)) is uniformly bounded.
Step 2 Using the results in Step 1, up to extracted subsequences (un) converges
pointwisely to an anti-periodic absolutely continuous mapping u∞ with u∞(T ) =
−u∞(0), (u̇n) σ(L2

Rd , L2
Rd )-converges to ζ∞ ∈ L2

Rd ([0, T ])with ζ∞ = u̇∞. For sim-
plicity set zn(t) := f n(t) − u̇n(t). Since we have

〈u̇n(t), zn(t)〉 = d

dt
[ϕn(u

n(t))]

and 〈u̇n(.), zn(.)〉 is bounded in L1
R([0, T ]), ϕn(un(t)) is of bounded variation and

uniformly bounded.
Claim limn ϕn(un(t)) = ϕ∞(u∞(t)) < ∞ a.e and limn

∫ T
0 ϕn(un(t))dt = ∫ T

0
ϕ∞(u∞(t))dt < ∞.

From the above estimates and Helly theorem, we may assume that (ϕn(un(.))
pointwisely converges to a BV function θ so that (ϕn(un(.)) converges in L1

R([0, T ])
to θ. In particular, for every k ∈ L∞

R+([0, T ]), we have

lim
n→∞

∫ T

0
k(t)ϕn(un(t))dt =

∫ T

0
k(t)θ(t)dt.

Coming back to the inclusion zn(t) ∈ ∂ϕn(un(t)), and using the fact that ϕn(x) ≤
ϕ∞(x),∀n ∈ N,∀x ∈ Rd , we have

ϕ∞(x) ≥ ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ Rd . Let h ∈ L∞
Rd ([0, T ]). Substituting x by h(t) in this inequality and by

integrating on each measurable set B gives
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∫
B

ϕ∞(h(t)) dt ≥
∫
B

ϕn(h(t)) dt ≥
∫
B

ϕn(u
n(t)) dt +

∫
B
〈h(t) − un(t), zn(t)〉 dt

and passing to the limit in the preceding inequality when n goes to +∞, we get

∫
B

ϕ∞(h(t)) dt ≥
∫
B

θ(t) dt +
∫
B
〈h(t) − u∞(t), z∞(t)〉 dt (4.1.5)

with z∞ = f ∞ − u̇∞. In particular, by taking h = u∞ we get the estimate

∫
B

ϕ∞(u∞(t)) dt ≥
∫
B

θ(t) dt

for all B ∈ L([0, T ]). By the epi-lower convergence result [11, Corollary 4.7], we
have
∫
B

θ(t) dt = lim
n→∞

∫
B

ϕn(u
n(t)) dt ≥ lim inf

n→∞

∫
B

ϕ∞(un(t)) dt ≥
∫
B

ϕ∞(u∞(t)) dt

for all B ∈ L([0, T ]). It turns out that ϕ∞(u∞(t)) = θ(t) a.e. and

lim
n→∞

∫
B

ϕn(u
n(t)) dt =

∫
B

ϕ∞(u∞(t)) dt < ∞. (4.1.6)

From (4.1.5) and (4.1.6) it follows that f ∞ − ζ∞ ∈ ∂ Iϕ∞(u∞) where ∂ Iϕ∞ denotes
the subdifferential of the convex lower semicontinuous integral functional Iϕ∞
defined on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]). �

Here is a variant of Proposition 4.1.

Proposition 4.2 Let H = Rd . Assume that γ > 0,ϕn : Rd → [0,+∞] is even, con-
vex, Lipschitz,ϕ∞ : Rd → [0,+∞] is proper lower semicontinuous convex function
such that ϕn(x) ≤ ϕ∞(x) for all n ∈ N and for all x ∈ Rd . Let ( f n) be an anti-
periodic sequence inHβ([0, T ]). Let un be a W 1,2

Rd ([0, T ]) anti-periodic solution to
the problem {

f n(t) ∈ u̇n(t) + ∂ϕn(un(t)) − γun(t), t ∈ [0, T ]
un(T ) = −un(0).

Assume that the following conditions are satisfied:

(i) ϕn epiconverges to ϕ∞,
(ii) limn un(0) = u∞

0 ∈ dom ϕ∞ and limn ϕ(un(0)) = ϕ∞(u∞
0 ),

(iii) f n σ(L2
Rd ([0, T ]), L2

Rd ([0, T ]))-converges to f ∞ ∈ L2
Rd ([0, T ]).

Then the following hold
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(a) Up to extracted subsequences, (un) converges pointwisely to an anti-periodic
absolutely continuous mapping u∞ with u∞(T ) = −u∞(0), (u̇n) σ(L2

Rd , L2
Rd )-

converges to ζ∞ ∈ L2
Rd ([0, T ])with ζ∞ = u̇∞, limn ϕn(un(t)) = ϕ∞(u∞(t)) <

+∞ a.e. and limn
∫ T
0 ϕn(un(t))dt = ∫ T

0 ϕ∞(u∞(t))dt < +∞.
(b) f ∞ − ζ∞ ∈ ∂ Iϕ∞(u∞) where ∂ Iϕ∞ denotes the subdifferential of the convex

lower semicontinuous integral functional Iϕ∞ defined on L∞
Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Proof Existence of un for the problem

{
f n(t) − u̇n(t) + γun(t) ∈ ∂ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0),

is ensured. See Haraux [17], Okochi [22].
Step 1 Estimation of u̇n and un . Multiplying scalarly the inclusion

f n(t) − u̇n(t) + γun(t) ∈ ∂ϕn(u
n(t)) (4.2.1)

by u̇n(t) and applying the chain rule formula [21] for the Lipschitz function ϕn gives

〈u̇n(t), f n(t)〉 − ||u̇n(t)||2 + γ〈u̇n(t), un(t)〉 = d

dt
[ϕ(un(t))]. (4.2.2)

Hence by integration in (4.2.1) and anti-periodicity conditions we get the estimate

||u̇n||L2
H ([0,T ]) ≤ || f n||L2

H ([0,T ]). (4.2.3)

From the Poincaré inequality,

||un(t)|| ≤ √
T ||u̇n||L2

H ([0,T ]) ≤ √
T || f n||L2

H ([0,T ]). (4.2.4)

Integrating (4.2.2), we get

0 ≤ ϕn(u
n(t)) = ϕn(u

n(0)) −
∫ t

0
||u̇n(s)||2ds+

∫ t

0
〈u̇n(s), f n(s)〉ds

+ γ

∫ t

0
〈u̇n(s), un(s)〉ds

We note that
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∫ t

0
〈u̇n(s), f n(s)〉ds ≤ 1

2
|| f n||L2

H ([0,T ])(1 +
∫ t

0
||u̇n(s)||2ds) ≤ Const.

γ

∫ t

0
〈u̇n(s), un(s)〉ds ≤ Const.|| f n||2L2

H ([0,T ])

so that by using the above estimate, the σ(L2
Rd ([0, T ]), L2

Rd ([0, T ])) convergence of
f n and (i i), we conclude that ϕn(un(t)) is uniformly bounded. Now the remainder
of the proof is similar to that of Proposition 4.1. �

We finish the paper with the approximating problem in second order evolution
equation with anti-periodic condition

{
f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)),
un(T ) = −un(0).

where M is a positive constant,ϕn are convex Lipschitz,C1, even, functions that epi-
converges to a lower semicontinuous convex proper function ϕ∞, ( fn) is a sequence
in L2

H ([0, T ]) which weakly converges to a function f∞ ∈ L2
H ([0, T ]). Existence of

a W 2,2
Rd ([0, T ]) anti-periodic -solution to this approximating problem is well known.

See Haraux [17], Okochi [22].

Proposition 4.3 Let H = Rd , M ∈ R+. Assume that ϕn : Rd → [0,+∞[ is C1,
even, convex, Lipschitz and,ϕ∞ : Rd → [0,+∞] is proper convex lower semicontin-
uous with ϕn(x) ≤ ϕ∞(x), ∀x ∈ Rd . Let f n ∈ Hβ([0, T ]) Let un be a W 2,2

Rd ([0, T ])
anti-periodic solution to the approximated problem

{
f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)), t ∈ [0, T ],
un(T ) = −un(0).

Assume that

(i) f nσ(L2
H , L2

H ) converges to f ∞ ∈ L2
H ([0, T ]).

(ii) limn un(0) = u∞
0 ∈ dom ϕ∞, limn ϕn(un(0)) = ϕ∞(u∞

0 ), and limn u̇n(0) =
u̇∞
0 ,

(iii) ϕn epi-converges to ϕ∞,
(iv) There exist r0 > 0 and x0 ∈ Rd such that

sup
v∈BL∞

Rd
([0,T ])

∫ T

0
ϕ∞(x0 + r0v(t))) < +∞

where BL∞
Rd

([0,1]) is the closed unit ball in L∞
Rd ([0, T ]).

Then the following hold

(a) Up to extracted subsequences, (un) converges uniformly to a W 1,1
BV ([0, T ]) anti-

periodic function u∞ with u∞(T ) = −u∞(0), and (u̇n) pointwisely converges to
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the BV function u̇∞, and (ün) biting converges to a function ζ∞ ∈ L1
Rd ([0, T ])

which satisfy the variational inclusion

f ∞ − ζ∞ − Mu̇∞ ∈ ∂ Iϕ∞(u∞)

where ∂ Iϕ∞ denotes the subdifferential of the convex lower semicontinuous inte-
gral functional Iϕ∞ defined on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Furthermore

lim
n

ϕn(u
n(t)) = ϕ∞(u∞(t)) < ∞ a.e.

lim
n

∫ T

0
ϕn(u

n(t))dt =
∫ T

0
ϕ∞(u∞(t))dt < ∞.

Subsequently, the estimated energy holds almost everywhere

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞(0)) + 1

2
||u̇∞(0)||2

− M
∫ t

0
||u̇∞(s)||2 ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Further (ün) weakly converges to the vector measure m ∈ Mb
H ([0, T ]) so that

the limit functions u∞(.) and the limitmeasurem satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt +

∫ T

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
E ([0,T ]),CE ([0,T ])).

In other words, the vector measure−m + [−Mu̇∞ + f ∞] dt belongs to the sub-
differential ∂ I f∞(u) of the convex functional integral I f∞ defined on CH ([0, T ])
by Iϕ∞(v) = ∫ T

0 ϕ∞(t, v(t)) dt, ∀v ∈ CH ([0, T ]).
Proof Existence of W 2,2

Rd ([0, T ])-solution un for the approximated problem

{
f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0)

follows fromHaraux [17]. Nowwe can finish the proof by repeatingmutatismutandis
themachinery developed in Proposition 3.3. Therefore ourW 1,1

BV ([0, T ]) anti-periodic
limit u∞ of (un) and biting limit ζ∞ of (ün) satisfies the inclusion
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f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t))

and the energy estimate holds

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 ) + 1

2
||u̇∞

0 ||2

− M
∫ t

0
||u̇∞(s)||2 ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds

almost everywhere. �
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Through the formulation of a d-property of an abstract probability space, we exhibit
a process under which a game without a PSNE in a specific class of games can be
upgraded to one with: a (counter)example on any n-fold extension of the Lebesgue
interval resolved by its (n + 1)-fold counterpart. The resulting dialectic that we
identify gives insight into both the saturation property and its recent generalization
proposedbyHe–Sun–Sun (Modeling infinitelymany agents,workingpaper,National
University of Singapore, 2013) [14] and referred to as nowhere equivalence. The
primary motivation of this self-contained essay is to facilitate the diffusion and use
of these ideas in mainstream non-cooperative game theory. (190 words).
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How Carathéodory came to think of this definition seems mysterious, since it is not in the
least intuitive. It is rather difficult to get an understanding of the meaning of ... measurability
except through familiarity with its implications... Carathéodory’s definition has many useful
implications. The greatest justification of this apparently complicated concept is, however,
its possibly surprising but absolutely complete success as a tool in proving the important
and useful extension theorem.

(Halmos (1950) and Hewitt-Stromberg (1965))1

1 Introduction

In two ground-breaking papers published in 1950–1951, Nash defined for a finite
game what, in anachronistic hindsight, is now termed a pure-strategy Nash equilib-
rium (henceforth PSNE) for a classical setting.2 As is well-understood, Nash could
not prove the existence of such an equilibrium for his game-theoretic set-up because
of the obvious reason that it was not true in general. Two decades were to pass
before Schmeidler [44] presented an existence proof for such an equilibrium in a
class of games with a continuum of players, each of whose payoffs were restricted
to depend on a suitably-defined aggregate of all the other players’ actions, rather
than on each individual action as in Nash. In a complete information setting of one-
shot simultaneous play, Schmeidler retained the assumption of a finite-action set for
each player, and pointed out how his existence theorem, apart from being of interest
for its own sake, implies the existence of a mixed-strategy Nash equilibrium, again
as defined and shown by Nash in 1950–1951. Indeed, 1973–1974 were significant

1The quotations are taken from Nillsen ([37], p. 340). The authors are grateful to Ashvin Rajan for
bringing Nillson’s book to their attention.
2These classical papers are well-known and now collected in [36].
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years for non-cooperative game theory as developed by Nash: Harsanyi in 1973 and
Aumann in 1974 presented scenarios inwhich pure-strategies taken under incomplete
information can be seen as rationalizing a given mixed-strategy Nash equilibrium
of a classical finite game.3 Harsanyi focused on disturbed (perturbed) games, while
Aumann considered games with private information and subjective beliefs. Both
papers used as their subtext Harsanyi’s pioneering papers in 1967–1968 on games
with incomplete information. We shall not have anything to say on Harsanyi’s work;
his formulation and results drew on formalizations of genericity, and thereby applied
to almost all games belonging to a well-specified class as opposed to a given game.4

The equivalence theorem of Aumann, on the other hand, deserves to be even
better known than it is. Given a mixed-strategy Nash equilibrium of a classical finite
player game of complete information, Aumann can be read as posing the question of
what conditions on a space of information and of subjective beliefs would guarantee
that the given equilibrium can be induced by each player playing a pure-strategy,
where the notion of a pure-strategy strategy is now lifted up from being a point in
an action set to being a function, a random variable, from the space of information
to the action set. In other words, Aumann asked for conditions on information and
beliefs that allow an equilibrium probability distribution of a classical finite game to
be induced by random variables in equilibrium. As is by now well-known and well-
understood, Aumann required that a player’s information be independent of, and his
beliefs be atomless on, the pooled information of all the other players. Succinctly
put, and in the vernacular that was subsequently to follow, it required the space
of information be rich enough so as to allow independent atomless supplements.
Aumann’s equivalence theorem is relevant to us here because of the significant role
that it has played for the formulation of games with private information.5

The literature on games with non-atomic measure spaces then bifurcates into two
distinct branches. Schmeidler’s paper originates the theory of large one-shot games
of complete information in which the existence of pure andmixed strategy equilibria,
as well as the relationship between them, as captured by the notion of a purifica-
tion, is investigated. We may also mention here Mas-Colell’s complementation of
Schmeidler’s existence result on non-anonymous (individualized) atomless games by
anonymous (distributionalized) ones.6 In Mas-Colell’s setting too, pure and mixed
strategy equilibria, as well as the relationship between them, as captured by the
notion of a symmetrization, is investigated. Radner–Rosenthal [40], henceforth RR,

3These papers are now classical andwell-known: for Harsanyi’s papers, see [10], and for Aumann’s,
[1]. In particular, we shall make extensive reference to the 1974 paper of Aumann’s and the 1983
paper of Aumann et al., and these are respectively Chaps. 31 and 30 in [1].
4Note that the 1973 paper of Harsanyi’s is available in [10, Sect. B], and so we only reference the
latter in our bibliography; also see Footnote 3 above. For games with incomplete information, see
[10, Sect. 1]; and also Myerson [35].
5The authors have revisited Aumann’s equivalence theorem in [29], and the reader should not
confuse it with the core equivalence theorem. It is important for the record to note that this was the
background paper at Khan’s talk at Tokyo.
6See Khan et al. [21, 22] for the terms large individualized and large distributionalized games, LIG
and LDG respectively, and references to the antecedent literature on the concepts they name.
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is the originating paper for the other branch. It is rooted in Aumann’s equivalence
theorem and is, in its undiluted essence, simply the observation that there are no
independent atomless supplements for an arbitrary measure space of information.
In three decisive examples, only the first of which is our concern here, they showed
that a two-player matching-pennies game, when converted into a game of private
information with each player’s information formalized by the Lebesgue interval, and
the joint space of information by the lower triangle of the Lebesgue square, has no
pure-strategy equilibria in the sense defined by Aumann. As such, there is then no
possibility of an equivalence theorem whereby the mixed strategy equilibrium of the
given matching-pennies game, one in which each player putting equal probability
on each of the two actions, can be induced by a pure-strategy equilibrium of the
game with private information. There is no pure-strategy equilibrium in the game
underlying the RR example, and so it inducing the given mixed strategy equilibrium
of the given matching-pennies game does not arise: it is aborted right at the very
beginning.

The RR example proved decisive for Aumann’s equivalence theorem. However,
if the assumption of independent and atomless information (dispersed and disparate
in the vernacular of RR) was made right at the outset, rather than as an extraction
requirement for the given space of information and beliefs, and the gamewith private
information as an object of interest in its own right, the question can be reformu-
lated from the search for an equivalence theorem to that for an existence theorem.
Indeed, such an existence theorem is an obvious consequence of Aumann’s result,
paired with Nash’s existence proved. If one allows the additional wrinkle that play-
ers’ payoffs also depend on their private information, one could show the existence
of pure-strategy equilibria for a game of private information. These are the 1982 RR
existence results. Their RR paper thus originates the theory of large one-shot games
of incomplete information in which the existence of pure and mixed strategy equi-
libria, as well as the relationship between them, again formalized by the notion of
purification, is investigated; also see here the contributions of Milgrom–Weber [34]
and their followers; also [42, 46]. But it bears emphasis that the resulting theory, in
so far as pure-strategy equilibria are concerned, is constrained to finite action sets,
just as it is in the Schmeidler–Mas-Colell set up.

The question then arises as to what happens to both branches of this theory of non-
atomic non-cooperative games when the restrictive assumption of finite-action sets
no longer holds. It took another decade beyond the Radner–Rosenthal–Milgrom–
Weber papers for a picture to emerge; see [40]. The outlines of this are by now well-
understood, and the details available in the PNAS announcement and the Handbook
chapter published as Khan–Sun [24], Khan–Sun [25] respectively. This need not
concern us here other than the following summary statement:

(i) Though they require some non-trivial technical work, the results all generalize
to denumerably-infinite action sets with arbitrary atomless measure spaces.

(ii) The results do not hold in general for uncountably-infinite action sets with
arbitrary atomless measure spaces.

(iii) The results hold for uncountably-infinite action sets if one restricts attention to
atomless Loeb measure spaces, as in Loeb [30].
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By 2005, it waswell-understand that the entire theory could be generalized beyond
atomless Loeb spaces to what were termed saturated or super-atomless measure
spaces. The particular name was hardly the issue: the point was that one could work
with abstract measures spaces of a type identified inMaharam [33], and conveniently
characterized by Hoover–Keisler [11], and that these spaces were not only sufficient
for the existence results, as atomless Loeb spaces were, but also necessary in some
well-specified sense. The actual publications originating this new direction were
Carmona–Podczeck [4] and Keisler–Sun [16].7 The point is that the σ-algebra of
a saturated or a super-atomless measure spaces is one which, modulo null sets, is
nowhere countably-generated. But what is it really? And what does it mean to say
that it is necessary? This essay is devoted to the pursuit of an answer to this question.
However, it is important for the reader to understand that in the sequel, we do this
only in the context of the use of these measure spaces in finite Bayesian games with
private information – the treatment of large games with complete information does
not concern us here.

A saturated probability space is in some sense an idealized limit space, but to
repeat, what is this sense? Again, even though one grants the validity of the necessity
result, as one must, the question nags as the substantive meaning of this claim. What
does it mean to say that a saturated space is necessary for the existence question? And
why is this result of any substantive (economic or game-theoretic) importance? To be
sure, the mathematical definition of a saturated space, and the various equivalences
underlying it, are clear enough,8 but what is its meaning in terms of the language
and vocabulary that mathematical economists and game theorists are used to? and
also what is its characterization in terms of the mathematics with which they work,
and are at ease, with? This essay then is addressed, at least in the first instance, to
these questions. It takes as its point of departure a neglected 1999 (KRS) example on
the non-existence of equilibria in Bayesian games based on an interval as a common
action set, and theLebesgue interval (LI) as the space of private information or types.9

In [28], the authors introduced the notion of a KRS-like game based on the KRS
example, and that of a measure spaces with the d-property with respect to a measur-
able,measure-preserving function and therebywith respect to a sub-σ-algebra. These
two concepts, though not technically intricate or in themselves mathematically deep,
can nevertheless be used to give insight and feel for answers to the questions posed
in the paragraph above. Specifically, we use these two concepts as crucial levers to
show that:

7There is some controversy stemming from the fact that the results inKeisler–Sun [16]were obtained
in 2002; see their acknowledgement, and also the use of their results by Noguchi in 2008. It is our
firm intention not to get bogged down in this controversy here.
8See Hoover–Keisler [11], and the comprehensive discussion in Fajardo–Keisler [5]; also the papers
of, Carmona–Podczeck [4] andKeisler–Sun [16]. In a recent important paper,Modukhovich–Sagara
[32] establish the relevance of the property in stochastic models of dynamic programming.
9See Khan–Rath–Sun [17], and also its footnote to the Fudenberg-Tirole text as to the possible
reason why it has remained neglected. Note that this example does not invoke any order structures
on the action sets.
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(i) an equilibrium does exist in the KRS example if the information spaces are
upgraded from the unit Lebesgue interval (LI) to the extended LI presented in
[26],

(ii) there exists an upgraded KRS example of a game without an equilibrium when
modeled on the extended LI,

(iii) the upgrading process reveals an infinite recursion in that a (counter)example
can always be constructed if the information spaces are modeled on any n-
fold extended10 LI, n a natural number, but one which can be resolved by a
(n + 1)-fold extended LI, (Proposition2 below),11

(iv) this “recursive upgrading” or “dialectic” then suggests the formulation of a
KRS-like game, one based on an abstract, atomless probability space, for which
a characterization and existence of PSNE can be established (Proposition1 and
Theorem1 below),12

(v) this infinite recursion establishes the importance of KRS-like games as a diag-
nostic tool to check whether a given information structure guarantees the exis-
tence of a PSNE for a general class of all private information games,

(vi) a visual and analytical content can be imparted into private information struc-
tures that are relatively-diffused, as inHe–Sun [13], or saturated, as in [27, 28].13

We now turn to an extended outline and overview of this essay.
After presenting the basic model and the antecedent results in Sect. 2, we recall in

Sect. 3 the principle result in [28] based on the two notions of a notion of a KRS-like
games, and the relative d-property with respect to a measure-preserving map. KRS-
like games are two-player gameswith the interval [−1, 1] as the (common) action set,
arbitrary atomless probability spaces, and with a structure of payoffs that lead their
equilibrium distributions, potential or otherwise, to have the same sort of structure as
those of the KRS example; see Proposition1 below.14 To be sure, one could consider
such games modeled on compact metric action spaces,15 but as we shall see in the
sequel, the underlying motivation for such games is to find the simplest setting that
illustrates, and can be used as a criterion for getting a handle on, the difficulties that

10This notation then would lead the LI to be viewed as 0-fold extended LI and the extended LI in
(i) above as a 1-fold extended LI.
11We shall be referring to this below as a “scrambling” operation on a particular game.
12In particular, the upgraded games in (i) and (ii) above belong to the class of KRS-like games that
is being singled out and studied in this paper.
13The references [9, 13, 14] to the relative-saturation property are also relevant in this connection.
Precise definitions of these and other properties referred to in this introduction will be offered in
the sequel.
14This is done on the basis of the fact that there exists a measurable mapping h from an abstract
atomless probability space to the usual Lebesgue unit interval such that its induced distribution is
the Lebesgue measure itself; see [16, Lemma 2.1] and the discussion in Sect. 2 below.
15This is a consequence of the well-known fact that there exists a continuous onto function from any
uncountable compact metric space to [−1, 1]; see, for example, Rath–Sun–Yamashige referenced
in [25] for this.
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come up in regard to the existence of a PSNE for all private information games. With
Proposition1 relating to KRS-like games in place, we turn to what we explicitly
identify as measure spaces satisfying the d-property with respect to a measurable,
measure-preserving function, and thereby with respect to a sub-σ-algebra. Such a
property of a probability space allows a measurable selection to be chosen from the
so-called d-correspondence, and one that induces a uniform measure on the range
of the correspondence.16 This property is motivated by a recent consideration in the
mathematical literature of correspondences that do not admit measurable selections
with pre-specified properties when based on the Lebesgue interval, but do so under an
extended Lebesgue interval that goes back to Kakutani in the forties, and one whose
σ-algebra is countably-generated.17 Sect. 3.4 places on the record sufficiency results
for the existence of PSNE in KRS-like games, Theorem1 and its three corollaries
based on the d-property. The prominence that we give to measure spaces having the
d-property is, to be sure, new to the literature: it undergirds the principal results of
this entire work.

Section4 is in keeping with the expositional thrust of this essay. It presents a
leisurely introduction to the construction of the Lebesgue extension based on a 1944
lemma of Kakutani’s, and originally introduced in [26]. Since this essay is motivated
to the non-expert reader, we also provide an exposition of the construction of the
Lebesgue interval based on Carathéodory’s theorem. This material of is of course
standard.

Section5 is the dialectical backbone of the paper, and its dynamic turns on two
sharp questions, the first of which is the following.

(a) Does the extended probability space, an extension of the Lebesgue interval,
resolve the KRS counterexample?

Based on the intuitive discussion of the extension in Sects. 4, 5.1 answers this ques-
tion in the affirmative. There exists a PSNE in the KRS example if the information
spaces are modeled on the extension of the Lebesgue interval, rather than on the
Lebesgue interval itself. And so this appears to be all that there is to it.18 Unfortu-
nately, this success is more illusory than real. We show in Sect. 5.2 that the KRS

16This correspondence is reproduced in Fig. 2 below, and was referred to in [26] as the Debreu
correspondence simply as a mnemonic; and as indicated there, Hart-Kohlberg ascribe it to Debreu
in an entirely different context and for an entirely different purpose. Our current use of the letter d
for this correspondence, and for the d-property of a measure space based on it, is meant to indicate
a situation where each type of agent has a dual best-response. However, if the reader wishes, he or
she can capitalize d and make a non-obligatory nod in Debreu’s direction.
17One of these correspondences is precisely the d-correspondence. Another derives from the cele-
brated example of Lyapunov; see Claims 1–3 in [26, Sect. 1]. We underscore for the general reader
the intuitively-obvious fact that the Lebesgue extension is mathematically much simpler than the
saturated extension of the Lebesgue interval in [45]. For Lyapunov’s theorem, see [23] and their
references.
18This, by itself is no longer surprising. It is now understood, at least by the cognoscenti, that one
only needs a σ-algebra that is finer than the Lebesgue σ-algebra in the sense that it contains a set
of measure 1/2 and which is independent of the Lebesgue σ-algebra; see [13] written subsequent
to the first version of this paper.

http://dx.doi.org/10.1007/978-981-10-4145-7_3
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example can be modified and resituated on the extended information spaces to yield
another troublesome counterexample without a PSNE. This example is of a finite
game with information spaces “richer” than those used in the KRS example, but
with the payoffs suitably modified and refined to pertain to these spaces. It is this
upgrading of the (counter)example that motivates both a KRS-like game and mea-
sure spaces satisfying the d-property. In any case, one can now reformulate/repeat
the question under discussion, and ask:

(b) Does a further extension of the extended probability space resolve this “new”
counterexample?

Perhaps somewhat surprisingly, the answer is again affirmative in that the techniques
of [26], and recapitulated in Sect. 3, are up to the task. However, a recursion now
suggests itself and is indeed executable in the form of a general result. Even though
a finite game �n based on an n-fold extension of the Lebesgue interval has no Nash
equilibrium, we can construct an (n + 1)-fold extension of the information spaces
for which it has an equilibrium! And none of these constructed games �n can have
Nash equilibria in any of the sub-extensions. The point is that all these constructed
games are KRS-like games with their information spaces satisfying the d-property.19

Indeed, this recursive non-existence property culminates in a general theorem; see
Proposition2 in Sect. 5.3 below. The question then is what works? how can this
unfortunate recursion be terminated? And it is at this point that our exposition leads
to the punchline that we want to express. The dialectic can only be terminated when
one relies on the idealized limit of a saturated space, or a space satisfying the relative
diffuseness property. These observations relating to the results of [27], and their
extension in [13], constitute the two-paragraphed Sect. 5.4.

The final substantive section of this essay concerns recent work of He–Sun–Sun
[12, 14]. In a comprehensive treatment, the authors have posed the question as to
“whichmeasure spaces aremost suitable formodelingmany economic agents?”They
propose a class of measure spaces that they refer to as satisfying a condition they
term “nowhere equivalent.” Thus their work represents the next stage of the ongoing
trajectory that we have tried to sketch in this introduction: one that begins with the
Lebesgue interval and includes an atomless Loeb space. However, the authors prin-
cipal focus is on large games and economies, and they do not consider the relevance
of their novel concept to finite Bayesian games of private information, though they
are undoubtedly aware of how their basic argumentation would extend to this setting.
In Sect. 6, we consider how the Lebesgue extension can also be used to resolve a

19There is of course a Godelian parallel here. Let T1 be a suitable theory, which is to say, complete
and consistent. Then it admits an undecidable proposition, call it S1. Let T2 be T1 extended by S1,
and denoted T2 = {T1 + G1}.Observe that although G1 is trivially deducible in T2, there is another
undecidable in T2, say S2 etc. Sn is never decidable in Tn−1. In fact there is a countably-infinite
series of pairs of theories and undecidables ! Extensions of this type never work to furnish a general
theory. The authors are grateful to Josh Epstein for bringing the relevance of Godel’s incompleteness
theorem to their attention. Josh also singled out parallels to Galois theory whose pursuit in this paper
would have taken us too far afield.
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question raised in [14], the role that the dialectic that we have identified here also
plays in this setting.

We conclude the paper in Sect. 7 with two further remarks, and with an Appendix
that collects the purely technical arguments of this essay.

2 The Model

Aprivate information gamewith independent types consists of afinite set of �players,
each of whom (say i) chooses actions from a compact metric space Ai which is not
necessarily finite, and has access to (private) information and events, represented by
a measurable space (Ti , Ti ), and known only to him, and not necessarily to the other
players. This information, or type, is independently drawn among players, moreover,
the its distribution forms is a probability measure μi on (Ti , Ti ) that is known to all
players. We refer to {(Ti , Ti ,μi ) : i = 1, . . . , �} as the private information structure
of the game. The private information structure is called diffused if for every i , μi is
an atomless probability measure. We shall follow convention and denote the product
��

j=1A j by A, and � j �=i A j by A−i .
The payoff function of player i is ui : A × Ti → R, and it depends on the actions

chosen by all the players and on his own private information ti ∈ Ti . We consider
the following assumption on the payoff function.20

Assumption 1 For each player i ,

(i) ui (·, ti ) is a continuous function on A for every ti ∈ Ti ;
(ii) for each a ∈ A, ui (a, ·) is Ti -measurable on Ti ;
(iii) ui is integrably bounded, that is, there is an integrable functionφi on (Ti , Ti ,μi )

such that |ui (a, ti )| ≤ φi (ti ) holds for each a ∈ A.

We denote a Bayesian game with independent private information by

� = {(Ti , Ti ,μi ), Ai , ui : i = 1, . . . , �}.

A pure strategy of a Bayesian game � is a Ti -measurable mapping from Ti to Ai .
A pure strategy profile f = ( f1, . . . , f�) of a Bayesian game � is a pure-strategy
Nash equilibrium (PSNE) for the game � if for every player i , fi yields the maximal
expected utility when the other players choose f−i .

In the reminder of this section, we turn to the state-of-the-art results on the exis-
tence of PSNE in Bayesian games of independent private information that will serve
as the backdrop for the results presented in this paper. In terms of background, the
original existence RR results on games with finite moves, as in [18, 34, 40], were
generalized first to games with countably-infinite moves, and then to those with
uncountably infinite ones; see [25] for discussion and basic references. The latter

20We work with the simplest model; for extensions, see [7, 8, 19, 21, 39].
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generalization invoked an atomless Loeb probability space as the formalization of
the space of private information. In [27], the authors show that a saturated private
information structure is sufficient for the existence of PSNE in private information
games.21 More interestingly, they also show that this saturation property is also nec-
essary in the sense that if at least two players’ private information spaces are modeled
by non-saturated spaces, there is a private information game without a PSNE! As
such, it closes the circle.22

In subsequent work, the sufficiency result has been generalized in an interest-
ing way to which we turn. He–Sun [13] make a distinction between the aspects of
information with respect to which a player chooses a particular strategy as opposed
to those which lead his or her payoff functions to change. Following [14], they
propose the concept of relative-diffuseness in Bayesian games. Given a private infor-
mation structure {(Ti , Ti ,μi ) : i = 1, . . . , �} with respect to which the players take
strategies, let Fi be the smallest sub-σ-algebra of Ti with respect to which this
player’s payoff function is measurable. This private information structure is called
relatively diffused if Fi is setwise coarser than Ti in the sense that for every S ∈ Ti

with positive μ-measure, there exists an Ti -measurable subset S′ ⊆ S such that
μ

(
S′�S′′) > 0 for any S′′ ∈ F S

i where S′�S′′ = (S′\S′′) ∪ (S′′\S′). For simplic-
ity, we call {(Ti , Ti ,μi ),Fi : i = 1, . . . , �} a relative private information structure.
This leads to a natural variation of Assumption1.

Assumption1′ Conditions (ii) and (iii) in Assumption1 are changed to

(ii)′ for each a ∈ A, ui (a, ·) is Fi -measurable on Ti ;
(iii)′ ui is integrably bounded, that is, there is an Fi -integrable function φi on

(Ti ,Fi ,μi ) such that |ui (a, ti )| ≤ φi (ti ) holds for each a ∈ A.

We now denote a Bayesian game with relatively diffused independent private infor-
mation by

� = {((Ti , Ti ,μi ),Fi ), Ai , ui : i = 1, . . . , �}.

As before, a pure strategy for player i is still a Ti -measurable function from Ti to her
action space Ai . In a phrase, payoffs functions hinge on Fi and strategies on Ti .

It is then shown in [13, Theorem 1] that there exists a PSNE in a Bayesian game
satisfying Assumption1′ if the information on which the players condition their
actions is relatively diffused with respect to the information related to the payoffs.
This result is a generalization of the sufficiency result in [27, Theorem 1] based on
saturated probability spaces. These require that for any nonnegligible subset S ∈ T ,
the re-scaled probability space

(
S, T S,μS

)
is not essentially countably-generated.23

Since the σ-algebra generated by any given payoff function satisfying Assumption1

21Since Loeb spaces are saturated, the sufficiency result generalizes previous work; see [27].
22It is worthy of emphasis here that, as noted in [27], this necessary and sufficient result was
already conjectured in [16]. Indeed, the necessity claim was first made by Keisler–Sun in 2002; see
the relevant footnote in their paper.
23Here T S is the σ-algebra

{
S ∩ S′ : S′ ∈ T

}
and μS is defined on T S by μ(·) = μ(·)/μ(S). The

reader is referred [27] for details and references.



On Sufficiently-Diffused Information in Bayesian Games ... 57

is always setwise-coarser than the underlying σ-algebra of the saturated space, the
relative diffuseness assumption is automatically fulfilled. It is worth underscoring,
however, that there is no necessity result in [13].24

3 KRS-Like Games Revisited

KRS-like games are studied in [28], these games are constructed based on an example
of two-player private information games in [17], and now referred to as the KRS
example. It is a two-player, private information game satisfying Assumption1 with a
common action set of uncountable cardinality. Each player i = 1, 2, can take actions
from Ai = [−1, 1]. Let (Ti , Ti ,μi ), i = 1, 2 be two atomless probability spaces, and
let hi : Ti → [0, 1] be a Ti -measurable mapping such that the induced distribution
over [0, 1] is the Lebesgue measure η.25 The payoff functions for both players are
given as below:

uh11 (a1, a2, t1) = u1(a1, a2, h1(t1)) = −|h1(t1) − |a1|| + [h1(t1) − a1] · z(h1(t1), a2),
(1)

uh22 (a1, a2, t2) = u2(a1, a2, h2(t2)) = −|h2(t2) − |a2|| − [h2(t2) − a2] · z(h2(t2), a1);
(2)

where the function z : [0, 1] × [−1, 1] → R is defined as follows. For all t ∈
[0, 1/2], b ∈ [−1, 1]

z(t, b) =
⎧
⎨

⎩

b, if 0 ≤ b ≤ t;
t, if t < b ≤ 1;

−z(t,−b), if b < 0;

and for any t ∈ (1/2, 1], z(t, ·) = z(1/2, ·); see Fig. 1 for the graph of z(t, ·) for
three different values of t .

In particular, (Ti , Ti ,μi ) are the usual Lebesgue unit intervals and hi are the
identity maps on [0, 1], this KRS-like game is the original KRS game in [17]. It is
also clear that for each player i , and for each ti ∈ Ti ,ui (·, ·, ti ) is a continuous function
on [−1, 1] × [−1, 1]. For different ti ∈ Ti , all ui (·, ·, ti ) constitute an equicontinuous
family. Thus, for any a1, a2 ∈ [−1, 1], ui (a1, a2, ·) is Ti -measurable function. As a
result, KRS-like games satisfy Assumption1.

24Even though it constitutes a rather narrow perspective from which to view this paper, one could
in principle, see the results reported here as addressing themselves to the problem left open in [13].
25There always exists such a function hi , see [2, Proposition 9.1.11].
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Fig. 1 Graph of z(t, ·) for
different t

t

z(t, ·)

1/2 1 b

z(t, ·), t < 1/2

z(0, ·)

z(t, ·), t ≥ 1/2

When the private information spaces are given, we denote this game by

�h1,h2 =
{
(Ti , Ti ,μi ), Ai = [−1, 1], uhii : i = 1, 2

}
.

In this games, for each i , a pure strategy of player i is a Ti -measurable function
from Ti to [−1, 1]. If (g1, g2) be pure-strategy profile, and νi = ηg−1

i is the induced
distribution on the action set [−1, 1].

We are now ready to introduce the equilibria in KRS-like games. First for any
t ∈ [0, 1], any Borel probability measure ν on [−1, 1], let w(t, ν) be the integral of
z(t, ·) with respect to ν, i.e.,

w(t, ν) =
∫ 1

−1
z(t, ·)dν. (3)

The best-response correspondence in the KRS-like game �h1,h2 is as follows:

B1(t1; ν2) =
⎧
⎨

⎩

−h1(t1) or h1(t1), if w(h1(t1), ν2) = 0;
h1(t1), if w(h1(t1), ν2) > 0;

−h1(t1), if w(h1(t1), ν2) < 0.

B2(t2; ν1) =
⎧
⎨

⎩

−h2(t2) or h2(t2), if w(h2(t2), ν1) = 0;
−h2(t2), if w(h2(t2), ν1) > 0;
h2(t2), if w(h2(t2), ν1) < 0.

Moreover, suppose that there exists a PSNE (g∗
1 , g

∗
2) in the game �h1,h2 , where

g∗
i is a Ti -measurable function from (Ti , Ti ,μi ) to [−1, 1]. Let ν∗

i be the induced
distribution of g∗

i , i.e., ν
∗
i = μi ◦ (g∗

i )
−1. The equilibrium action distribution of each

player’s strategy also satisfies the following statement.

Proposition 1 (Khan-Zhang [28]) Suppose that ν∗
1 , ν

∗
2 are the induced action dis-

tributions of a PSNE of the game �h1,h2 , then for i = 1, 2, w(hi (ti ), ν∗
i ) = 0 for

μi -almost all ti ∈ Ti , and ν∗
i ([0, s]) = ν∗

i ([−s, 0]) = s/2 for any s ∈ [0, 1/2].
Khan and Zhang also find that PSNE in KRS-like games is intimately related to the
following d-property concept of probability spaces.
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Definition 1 (i) Given an atomless probability space (T,F ,μ) and a F-measurable
measure-preservingmap h from T to the Lebesgue interval ([0, 1],L, η),26 (T,F ,μ)

is said to have the relative d-property with respect to h if there is a F-measurable
map g from T to [−1, 1] such that g(t) ∈ {h(t),−h(t)} and g induces the uniform
distribution on [−1, 1]. (ii) Given an atomless probability space (T,G,μ)where G is
a sub-σ-algebra ofF , (T,F ,μ) is said to have the relative d-propertywith respect
to G if for all G-measurable measure-preserving map h from T to the Lebesgue
interval ([0, 1],L, η), (T,F ,μ) has the relative d-property with respect to h.

It is clear that the usual Lebesgue unit interval ([0, 1],L, η) does not have relative
d-property with respect to the identity map on the interval, which is obviously a
measure-preserving map. The following is straightforward from Proposition1.

Corollary 1 For i = 1, 2, if an atomless probability space (Ti , Ti ,μi ) has relative
d-property with respect to a measure preserving map hi from Ti to the Lebesgue
interval, then there exists a pure-strategy Nash equilibrium in the KRS-like game
�h1,h2 .

Here is a sufficient condition for the relative d-property.

Lemma 1 Given (T,G,μ), G as in Definition1. If there is a F-measurable subset
with μ-measure (1/2), and it is independent with G, then (T,F ,μ) has the relative
d-property with respect to G.
Moreover, the relative d-property of a probability space also furnishes a necessity
condition for modeling the private information spaces such that KRS-likes games all
have PSNE.

Theorem 1 (Khan-Zhang [28]) Given a diffused private information structure
{(Ti , Ti ,μi ) : i = 1, 2}, if for some i , (Ti , Ti ,μi ) does not have relative d-property
with respect to a measure preserving map hi from Ti to the Lebesgue unit interval,
then there exists a KRS-like game possessing no pure-strategy equilibrium.

4 A Lebesgue Extension à la Kakutani

In this section, we attempt to lay out for the general reader the basic intuitions
underlying the construction of the Lebesgue extension rather than simply using it as
a black-box that furnishes a pure-strategy equilibrium in a class of games that do not
possess such an equilibrium. To put the point another way, the principles underlying
the extension go beyond the technical to the substantive considerations.

To be sure, the extension of the Lebesgue measure has by necessity to build on the
construction of the Lebesgue measure itself, and we begin this section by recalling

26A map h : (T,F,μ) → ([0, 1],L, η) is called measure-preserving if h isF − L-measurable and
the induced distribution of h is the Lebesgue measure on the unit interval.
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the basic (standard) principles underlying this construction.27 Towards this end, we
begin by recalling the notion of an outer measure θ on the power setP(X) of a space
X. This is simply a non-negative function that gives zero value to the empty set, is
monotonic and countably subadditive. This is to say

θ(∅) = 0, A ⊆ B =⇒ θ(A) ≤ θ(B) and θ(∪n∈NEn) ≤
∑

n∈N
θ(En).

If the outer measure of X is unity, then it is a pre-probability, and what one needs
to get a bona fide probability is to strengthen countable subadditivity to countably
additivity. The point is that on restricting anoutermeasure to a specific class of subsets
of X, this can be done and it turns into a measure. It is important to understand this
restricted class of sets, and we turn to it.

It is clear that any set A can be disjointly decomposed through another set B by
viewing it as the intersection of it with E and the set of its points that do not belong
to E . In symbols,

A = (A ∩ E) ∪ (A/E) where A, E ∈ P(X).

We can refer to E as a decomposing set, and the sets A ∩ B and A/E as its decom-
positions with respect to it. This much is entirely trivial.28 Now focus on a set E that
decomposes any subset of P(X) in a way that the outer measure of the set and the
sum of the outer measures of the its decompositions with respect to E are identical.
This is to ask for a focus on

∑
= {E ∈ P(X) : θ(A) = θ(A ∩ E) + θ(∪(A/E)) for all A ∈ P(X).

Now what is not trivial is that
∑

is a σ-algebra, which is to say in the language
of probability theory, a bona fide event space: closed under complementation and
countable unions. Andmore to the point, the outer measure θ restricted to this class is
a measure which is to say countably additive for a disjoint sequence of events. Again,
in the restricted language of probability theory, a pre-probability has been rendered
by restriction to a probability, a result that goes by the name of Carathéodory.29

So far, in the consideration of an abstract set X, we have had nothing to say
as regards a Lebesgue measure. Indeed, we have simply specified a methodology
by which a given outer measure on a power set can be turned into a measure on a
specific distinguished σ-algebra chosen from that power set. We now specialize X to
R, and rather than assume an outer measure, construct it. For any two real numbers

27Several excellent treatments of this standard material are available, but we hope that the following
two paragraphs will not only set the stage for what is to follow but will speak to the general reader;
for details, we recommend [6, 37].
28But see Nillson’s singling this equality out in [37, Eq.5.6, p. 304]. Khan would like to take this
opportunity to thank Metin Uyanik for discussion concerning this “Carathéodory equation.”
29See the epigraph, and the discussion in [37, Sect. 5.4].
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a and b, consider as a building block the half-open interval {x ∈ R : a ≤ x < b},
and associate with it the number b − a when b ≥ a, and zero otherwise. Refer to
this association as a function � on half-open intervals on R. This has the intuitive
property30 that the number associated with any half-open interval I , �(I ), is not
greater than the sum of the numbers associated with any countable cover of half-
open intervals I j , j ∈ N,which is to say,

∑
j∈N �(I j ).Two points need to be noticed:

the statement pertains only to half-open intervals and to any countable cover of them,
much less themost parsimonious one.As a consequence,λ is not yet an outermeasure
on P(R).

It is nowa straightforwardmatter to use the functionλdefinedon the basic building
blocks to construct a function θ defined on P(R) by limiting ourselves to the most
parsimonious cover of an arbitrary subset A in R. The symbolism is transparent:

θ(A) = inf{I j } j∈N

⎧
⎨

⎩

∑

j∈N
�(I j ) : A ⊆

⋃

j∈N
I j

⎫
⎬

⎭
,

though it bears emphasis that the infimum is taken over all countable covers of A.The
fact that θ gives the zero value to the empty set, and that it is monotonic is a triviality;
in order to show that it is countably subadditive is a routine computation drawing
what it means to have an infimum.31 But now we can appeal to Carathéodory’s
procedure to obtain a distinguishedσ-algebra inP(X), the (Lebesgue σ-algebra) and
a measure (the Lebesgue measure) on it. This measure space furnishes the Lebesgue
unit interval when it is restricted to the unit interval; and it is the extension of this
space (L = [0, 1],L, η) that is at issue.

Thus, consider the Lebesgue unit interval, L = ([0, 1],L, η) as the primitive
object to which we seek an extension. Even a cursory perusal of the argumentation
underlying the construction of the extended Lebesgue interval shows its dependence
on a 1944 Lemma of Kakutani, [15]. To facilitate the intuition behind the procedures
of this extension, think in terms of an allegory of a “treasure hunt” in which one is
to find bills of denomination ranging from zero to one, K = [0, 1], buried in loca-
tions proxied by numbers between zero to one, L = [0, 1]. The set of locations is
already furnished with a Lebesgue measure-theoretic structure: this is to say that we
have assumed an ability to measure the length of any interval between two locations
(�, �′). Let us now also explicitly assume a Lebesgue measure-theoretic structure
([0, 1],K,κ) on the set of denominations K , and seek to estimate a measure of the
size of the ‘treasure”– the total of the amount given by the bills of denomination
between (k, k ′) and buried in the strip of land between (l, l ′). To repeat, we aim here
for an exposition that gives the basic intuition behind the construction, and refer any
reader interested in the details of the rigorous argumentation to [26].

30Even though the property is intuitive, relying as it does on the notion of a length of an interval and
what it means to have cover, it nevertheless requires a proof. Henceforth, by cover we shall mean
a cover of half-open intervals.
31See the notes and comments in Fremlin ([6]; Sect. 113); also see [3, 37].
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Kakutani’s Lemma: There exists a partition of uncountable cardinality of L =
[0, 1], denoted by {Ck : k ∈ K = [0, 1]}, such that the Lebesgue outer-measure32 of
Ck is one for all k ∈ K = [0, 1].

NowKakutani’s lemma furnishes the rudiments fromwhich a “treasuremap”C in
the space of all the locations and the denominations can be constructed. The lemma
furnishes a partition of the unit interval indexed by each denomination. Heuristically,
every location is assigned a unique amount of wealth, and the location of bills with
a given denomination level k is rather dispersed among the set of all locations.
Symbolically, we are furnished with {Ck ⊆ [0, 1] : k ∈ K } such that ∪k∈[0,1]Ck =
[0, 1] and Ci �= C j , i �= j. However, the point is that the length of these Ck cannot
be determined: none of them are in general Lebesgue measurable, but only Lebesgue
outer-measurable, each with unit outer-measure. This is to say that the “smallest”
Lebesgue measurable set containing a given Ck has a unit Lebesgue measure. We
can now take this partition and “unfold” it as the “treasure-map” C where

C = ∪k∈[0,1]Ck × {k} ⊆ L × K .

The point is that this setC is also only outer-measurable with unit (square) Lebesgue
measure η ⊗ κ. The “treasure map” is not accurate enough!

To overcome this deficiency, consider the σ-algebra generated by C and the sets
inL ⊗ K, and extend the square Lebesgue measure η ⊗ κ to this extended σ-algebra
T . Denote this extended measure by γ, and note that we have a measure-theoretic
structure, (C, T , γ), onC such that the σ-algebra T is the restriction of the Lebesgue
product σ-algebraL ⊗ K on C. This takes us to the second foothold of the extension
procedure. It is simply that the size of any set of the form ((l, l ′) × (k, k ′)) ∩ C with
respect to γ inherits the size of the rectangle (l, l ′) × (k, k ′) in the square. This is to
say that for all 0 ≤ l < l ′ ≤ 1 and 0 ≤ k < k ′ ≤ 1,

γ
[
((l, l ′) × (k, k ′)) ∩ C

] = (l ′ − l)(k ′ − k).

Finally, we project the unit square to the unit interval. This is to say that we consider
the projection p from C to L , and observe it to be a one-to-one measurable map-
ping. Hence it induces a probability structure on [0, 1] by projecting the probability
structure on C .

Denote the new probability structure on [0, 1] by ([0, 1], I,λ), and this is the
extension of the Lebesgue unit interval that we seek. It is now worthwhile to sum-
marize the procedure. Each type has a double identity: an explicit identity or trait
(say, e.g., the location) indexed by elements of L and another implicit identity or
trait (say, e.g., the wealth level) indexed by elements of K , and the two traits
co-exist in single-dimensional set I . The point of consequence is that these two
traits are governed by two independent σ-algebras, and the extended Lebesgue

32Given a measure space (T, T ,μ), the associated outer measure, denoted by μ∗, is defined as
follows: for any subset E ⊆ T , μ∗(E) = inf {�nμ(En) : En ∈ T , E ⊆ ∪n En}, it bears emphasis
that the infimum is taken over all countable covers of E .
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measure is atomless on both. Next, we turn to this. For all 0 ≤ k < k ′ ≤ 1, let
Dkk ′ = ∪k<k ′′<k ′Ck ′′ , which is the set of all implicit traits lying between k and k ′.
Notice that p−1(Dkk ′) = ([0, 1] × [k, k ′)

) ∩ C , and by virtue of the way that the
extended σ-algebra I was obtained on I, Dkk ′ ∈ I. Furthermore, by virtue of the
way that the extended Lebesgue measure was obtained on I, we have

λ(Dkk ′) = γ
[
p−1(Dkk ′)

] = γ
[([0, 1] × (k, k ′)

) ∩ C
] = k ′ − k.

That is, the probability of a type whose implicit trait lies between k and k ′ is exactly
k ′ − k. That is, the wealth level, viewed as a random variable on the extended
Lebesgue interval, is a measurable measure-preservingmap to the Lebesgue interval.

Next, we claim that the two random variables, the wealth level and the location,
are independent. Fix 0 ≤ k < k ′ ≤ 1 and 0 ≤ l < l ′ ≤ 1, consider the probability of
types where the wealth lies between k and k ′ and the location lies between l and
l ′. Independence of the two random variables simply means that the probability of
the types that lie in the intersection of the two sets is the product of the probabil-
ity that the type lies in each of the sets. But this clear on account of the fact that
p−1

(
Dkk ′ ∩ (l, l ′)

) = (
(l, l ′) × (k, k ′)

) ∩ C, and thus

λ
(
Dkk′ ∩ (l, l ′)

) = γ
[
p−1 (

Dkk′ ∩ (l, l ′)
)] = γ

[(
(l, l ′) × (k, k′)

) ∩ C
] = (l ′ − l)(k′ − k).

(4)

We thus completes the proof of the independence between the wealth level and the
location.

In summary, the extension proceeds in the following steps: (i) the Kakutani par-
tition of the Lebesgue unit interval, (ii) the lifting of this partition to a set C in the
Lebesgue square, (iii) the extension of the square Lebesgue measure-theoretic struc-
ture to include C , (iv) restriction of this structure to C , and finally, (v) a projection
of this restricted structure to the given Lebesgue interval.33 The point is that one can
now estimate the size of many more sets by λ than we could before.

Once this extension is understood, only a little more is involved in understand-
ing that a sequence of Lebesgue extensions {([0, 1], In,λn) : n = 0, 1, . . .} can be
constructed in which the first countably-generated Lebesgue extension ([0, 1], I,λ)

is denoted by ([0, 1], I0,λ0), and for any n ∈ N, ([0, 1], In,λn) is an extension of
([0, 1], In−1,λn−1), where the former is obtained from the latter in precisely the way
that ([0, 1], I,λ) is obtained from the Lebesgue interval.34 We can now record the
following properties of these extensions.

33The details of each of these steps are spelt out in [26]. It is a good exercise for the interested
reader to work out for herself the routine arithmetic behind each of these steps. She should note,
in particular, that the proof of the claim that the outer-measure of C is unity (straightforwardly)
invokes Fubini’s theorem.
34As in Footnote 32, we send the reader interested in the details to [26]; and in this particular
context, to Sects. 5.2.2 and 5.2.3 in that paper.
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Lemma 2 (i) For each n ∈ N, In−1 is setwise coarser than In. (ii) For every n ∈ N,
there exists an In-measurable measure-preserving map hn such that for any E ∈ In,
there exists a Lebesgue measurable subset S ⊆ [0, 1] such that λn[E�h−1

n (S)] = 0
where � is the symmetric difference operator in In. (iii) The n-fold Lebesgue
extension does not have d-property with respect to hn, for all n ∈ N. In partic-
ular, when restricted to h−1

n ([0, 1/2]), there is no selection of the corresponding
d-correspondence of hn such that the induced distribution is uniform on [−1/2, 1/2].
Remark 1 The m-th fold Lebesgue extension has d-property with respect to In . We
also note that Lemma2(iii) allow us to assert that no matter how large a natural
number n is, the n-fold Lebesgue extension extension is not a saturated space. The
point in part (ii) is that ([0, 1], In,λn) does not have the relative d-property with
respect to the measure-preserving map hn .

5 KRS-Like Games Based on Lebesgue Extensions

In this section, we turn to the KRS example itself, and ask whether one can obtain
a PSNE in the game �0 by jettisoning the usual Lebesgue unit interval, and turning
not to a saturated or super-atomless probability space,35 but to an atomless prob-
ability structure whose measure-theoretic is rich enough only to the point that is
required to show the existence of a PSNE in the specific game �0. This is to ask
for a measure-theoretic structure that is oriented towards resolving and subduing the
canonical counterexamples. We develop the answer to this question in Sect. 5.1 by
using the countably-generated extension of the usual Lebesgue unit interval offered
by the authors in [26]. However, in Sect. 5.2, we show that this “more sophisticated
and enriched” atomless probability space generates its own example of finite-player
gameswithout a PSNE.As already stated informally in the introduction, this counter-
example on the extended information space can in its turn be resolved by a further
enrichment of the (extended) σ-algebra. In Sect. 5.3, we conclude with a general
result formalizing this dialectic. However, prior to all this, we review for the reader
the highlights of the construction of the extended Lebesgue interval.36

5.1 The KRS Example Resolved

Wenow turn to the non-existence of a PSNE in the game�, and askwhether the use of
extended Lebesgue interval as the space of private information resolves the problem.

35See [4, 16] for definition of these terms.
36It may be worth pointing out that this is the first substantive application, and an exposition, of
this extended Lebesgue interval in the economics literature.
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The affirmative answer to this question can now be routinely outlined. Consider the
game,

�̃0 = {(Ti , Ti ,μi ) = ([0, 1], I,λ), Ai = [−1, 1], ui : i = 1, 2},

and note that �̃0 is identical to �0 except for the fact that each player’s private
information space is replaced by the (countably-generated) Lebesgue extension. We
have subdued the counterexample and resolved its negativity by this “tilde” operation
involving a move from �0 to �̃0. This move is important for the argument that is
being developed here. We can now present

Claim 1 There exists a PSNE in the game �̃0.

This result is an easy consequence of Proposition1 and Lemma2(i).
However, a natural question arises as to whether a general theorem can be devel-

oped for Bayesian games with compact metric actions sets based on information
spaces modeled by the extended Lebesgue intervals. as we shall see in the next
subsection, the answer is unfortunately resoundingly negative.

5.2 Yet Another Counterexample

In order to develop the counterexample, we return to Lemma2(ii), and work with the
measurable the measure-preserving map h0 from ([0, 1], I,λ) to the usual Lebesgue
interval guaranteed therein. Use this map h0 to formulate the following KRS-like
game, �h0,h0 .

�h0,h0 = {(Ti , Ti ,μi ) = ([0, 1], I,λ), Ai = [−1, 1], uh0i : i = 1, 2.}

We can now appeal to Lemma2(iii) to assert that

Claim 2 There does not exist a PSNE in the game �h0,h0 .

But now one is on a roll. One can ask whether the non-existence of a PSNE in
the KRS-like game �h0,h0 can be is resolved in precisely the same way that the non-
existence issue for the KRS game �0 was resolved. This is to check whether a further
extension of the extended Lebesgue interval would subdue the new example. This
can be done by a consideration of the following game,

�̃h0,h0 = {(Ti , Ti ,μi ) = ([0, 1], I1,λ1), Ai = [−1, 1], uh0i : i = 1, 2},

in which each player’s private information space is “upgraded” from ([0, 1], I,λ)

to ([0, 1], I1,λ1). To use the earlier vernacular, the resolution hinges on a further
“tilde” operation involving a move from �h0,h0 to �̃h0,h0 . We can now again record
the following easy consequence of Proposition1 and Lemma2(i).

Claim1′ There does exist a PSNE in �̃h0,h0 .
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([0, 1],L, η)

([0, 1],I, λ)([0, 1],I1, λ1)([0, 1],In, λn)

C ([−1, 1] × [−1, 1])

Fig. 2 Lebesgue extensions and KRS-like games

5.3 A General Negative Result

The interesting question is whether there is a general recursion theorem here. We
develop such a result in this subsection. The point is that the argumentation in
Sect. 5.2 can be continued inductively ad infinitum. First, a sequence of countably-
generated probability spaces {([0, 1], In,λn) : n = 0, 1, . . .} can be constructed,
where the first countably-generated Lebesgue extension ([0, 1], I,λ) is denoted by
([0, 1], I0,λ0), and for any n ∈ N, ([0, 1], In,λn) is a countably-generated exten-
sion of ([0, 1], In−1,λn−1). Second, if each player’s private information space is
modeled by ([0, 1], In−1,λn−1), there exists a KRS-like game �hn−1,hn−1 without
any PSNE. Such that there does not exist a PSNE. Third, as far as this KRS-like
game is concerned, the “tilde” operation whereby each player’s private information
space is modeled by the countably-generated space ([0, 1], In,λn), again guaran-
tees a PSNE. This argumentation can be succinctly illustrated and summarized by
Fig. 2, where C ([−1, 1] × [−1, 1]) means the space of all continuous functions on
[−1, 1] × [−1, 1].

In terms of a formal statement, we can offer:

Proposition 2 For each n ∈ N, there does not exist a PSNE in the KRS-like game
�hn ,hn but there does exist one in the game �̃hn ,hn , where the private information space
for each player in �̃hn ,hn is upgraded from the n-fold extension to the (n + 1)-fold
extension.

Proposition2 embraces both a positive and a negative result, and in conclusion, it is
worthy of note that Claims1 and 2 above follow as its special cases.

5.4 A Discussion of the Results

The positive result in Proposition2 can be viewed as an illustration of Theorem1 of
[13] since the relative diffuseness assumption in such KRS-like games are satisfied.
However, as far as the KRS example and the KRS-like games �hn ,hn are concerned,
it follows from Lemma1 that a rather simpler and more modest extension of the
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underlying private information space suffices: all one has to do is to include a subset
with measure one-half and one that is independent of the underlying σ-algebra. It
serves as the “right” model of the private information space.

The negative result in Proposition2, the non-existence of PSNE in the KRS-like
games �hn ,hn , can be viewed as a special case of the necessity result, Theorem 2, in
[27]. There it states that if two players’ private information spaces are both modeled
by non-saturated probability spaces, then there exists a counterexample of a private
information game without any PSNE. In the KRS-like game �hn ,hn , the underly-
ing private information spaces are both n-fold Lebesgue extensions, and thereby
essentially countably generated spaces, and automatically not saturated spaces.37

However, the non-existence argument here is different from the one in the proof of
Theorem2 in [27]: here it is a rather straightforward consequence of Proposition1 and
Lemma2(iii). It is in this regard that the approach used in this paper is self-consistent,
as far as the construction of the counterexamples �hn ,hn are concerned.

6 A Condition of He–Sun–Sun

In work circulated in 2013, He et al. have proposed a far-reaching generalization
of the saturation property in the form of condition they of nowhere equivalence of
two σ-algebras of a probability space. They have relied on this condition to present
a comprehensive theory of economies and games with a continuum of agents, and
of the three basic mathematical operations that undergird it: integration, distribution
and conditional expectation. This work is important enough this expository paper
would not be complete in its scope without making some reference to this work. In
this section we relate the Lebesgue extension and the ideas presented above to this
important work.

He–Sun–Sun [14] motivate their condition, and their results based on it, by a
series of examples of games and economies which show pathological features as far
as the existence, closed graph and “determinateness” properties of the equilibria are
concerned. Here we consider Example 3 of [14], henceforth the HSS example. In
this example, there are two large games, both have Lebesgue interval as agent space,
the common action space is [−1, 1]. Moreover, in both games, each player’s payoff
only depends on her own action, not anybody else’s. Namely, for all agent i ∈ [0, 1],
a ∈ [−1, 1], and any action distribution ν on [−1, 1],

G1(i, a, ν) = −(a + i)2(a − i)2, and G2(i, a, ν) =
{
G1(2i, a, ν), if i ∈ [0, 1/2),
G1(2i − 1, a, ν), if i ∈ [1/2, 1].

37More precisely, in the KRS-like game �hn ,hn , the corresponding s1, s2 in the proof of
[27, Theorem 2] are both one.
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Note that in G1, player i’s best strategy, no matter what the strategy of all others,
is always either i or −i , while in G2, the best strategy for Mr i is either 2i or −2i ,
for i less than one half, and either 2i − 1 or 1 − 2i for i great than one half. As a
result, in G1, a PSNE will be a Lebesgue measurable map from [0, 1] to [−1, 1]
such that the value at i is either i or −i , or a Lebesgue-measurable selection of the
correspondence � : [0, 1] � [−1, 1] with �(i) = {i,−i}. Similarly, a PSNE in G2

is a Lebesgue-measurable selection of the correspondence� : [0, 1] � [−1, 1]with

�(i) =
{ {2i,−2i}, if i ∈ [0, 1/2),

{2i − 1, 1 − 2i}, if i ∈ [1/2, 1].

These two games G1 and G2 induce the same distribution on the space of payoff
functions, namely space of all continuous functions on the product space of [−1, 1]
and all Borel probability measure on [−1, 1]. However, the set of action distribution
of all PSNE in G1, denoted by D(G1) is not the same as that in G2, denoted by
D(G2); see Claim 3 in [14]. Namely, D(G1) is the set of induced distribution by
all Lebesgue-measurable selection of the correspondence �, and D(G2) the set of
induced distribution by all Lebesgue-measurable selection of the correspondence �.
More precisely, the uniform distribution on [−1, 1] is an element of D(G2) but not
of D(G1); see Fig. 3 below.

However, if the agent spaces in these two games are bothmodeled by the Lebesgue
extension as in Sect. 4, and if D′(G1) is the set of induced distribution of all
Le-measurable selections of � and D′(G2) the set of induced distributions by all
Le-measurable selections of �, we obtain the following result.

Proposition 3 If in this example, both agent spaces are modeled by the Lebesgue
extension, then D′(G2) = D′(G1).

13
4

1

−1

11/2

1

−1

Fig. 3 One selection of � and one of �
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The proof is postponed to the appendix.
To summarize, the problem raised in Example 3 of [14] automatically disappears

when modeling agent space by the Lebesgue extension. This result is not surprising
because the extended sigma algebra in the Lebesgue extension satisfies the conditions
in Theorem 3 of [14]. The following is a concept proposed in [14].

Definition 2 Given an atomless probability space, (T,F ,μ), and a sub-σ-algebra
G ofF .F is said to be nowhere equivalent to G if for every D ∈ F with μ(D) > 0,
there exists a F-measurable subset D0 of D such that μ(D0�D1) > 0 for any D1 ∈
GD.

In the current context, we only need to claim that the extended Lebesgue σ-algebra
in Sect. 5 is nowhere equivalent to the original Lebesgue σ-algebra. The proof of this
claim is provided in the Appendix.

We conclude this subsection with two observations. First, we note that the HSS
example, and the HSS theorems based on it, concern large games with a continuum
of players; and that the reader can generalize the necessary and sufficient results
presented in [27, 28] to a finite-playerBayesian games, focused on in the essay,where
the analog of the HSS condition is expressed for the spaces of private information.
Second, we leave it to the reader to think out for herself a dialectical argumentation
underlying the HSS example of the kind that we have considered in his essay for the
KRS example.

7 Concluding Remarks

In [27], the authors show that if each player’s private information space is modeled
by a saturated probability space, then every private information game has a PSNE.
As to whether such a saturated private information structure is a “minimal” one for
the existence of PSNE in such games, a complete answer is provided in [28] that if
every KRS-like game has a PSNE, the underlying information space for each player
must be saturated. With these two results in hand, under a given private information
structure, the hypothesis that all KRS-like games have PSNE implies that all private
information games also have PSNE! In other words, KRS-like games are precisely
the “trouble-makers” we need to consider and rule-out to establish a general theory
on the existence of PSNE for a given private information structure. It is in this sense
that we say that KRS-like games serve as a diagnostic tool for the existence of PSNE
in private information games.

The dialectic arguments using Lebesgue extensions provide some further elabora-
tion and elucidation on the above “minimal” requirement on the private information
structure to guarantee the existence of PSNE. Note that in a saturated probability
space, it has a “rich” sigma algebra such that when restricted to any non-negligible
subset, the sub-sigma algebra under the restricted measure cannot be essentially
countably generated, i.e., there is no hope to find a countable number of sets in the
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restricted sub-algebra to generate the restricted sub-algebra itself. However, in the
n-fold extensions of the Lebesgue interval considered in this essay, the underlying
sigma-algebra, no matter how large n is, is essentially countably generated; and, as a
result, each n-fold Lebesgue extension cannot be saturated. This is why there is such
a KRS-like game without a PSNE as claimed in Proposition2, a result also implied
by the necessity result in [28].

It is worth pointing out another distinction between the Lebesgue extensions con-
sidered in this paper and a saturated space. As is made clear in the construction of the
Lebesgue extension in Sect. 5, the 1-fold Lebesgue extension, the original Lebesgue
σ-algebra is enlarged in a way such that it can accommodate at most two inde-
pendent random variables, each of which is a measurable measure-preserving from
the Lebesgue extension to the Lebesgue interval. Similarly, in the n-fold Lebesgue
extension, the underlying σ-algebra can at most accommodate n independent ran-
dom variables, each of which is a measurable measure-preserving from the n-fold
Lebesgue extension to the Lebesgue interval. In comparison, in a saturated proba-
bility space, the underlying σ-algebra can accommodate at least a countable number
of such pairwise-independent random variables.

We conclude this discussion by an observation that looks at the dialectic of these
results from another, and more critical, point of view. The necessity result ensures
that for this extended probability space, there will always exist a large game without
pure-strategy Nash equilibria, but this game may not have any substantive interest.
It may be an artifice, a purely technical construction testifying to a mathematical
necessity, but with no counterpart in terms of concrete “real-life” applications. Thus,
one could legitimately hold the view that as far as the substantive applications are
concerned, there is little need for a result that proceeds beyond the modest extension
articulated in [26] all the way to a saturated space, or to the spaces satisfying the
HSS condition. This is a point of view explicitly articulated in [26] in the context
of large non-anonymous games, and further discussion and exploration of whether
this is, or is not, only cold comfort for finite games with private information, must
be left for future work that turns to concrete applications. For these, see [34, 43] and
the references therein, especially to the work of Athey and McAdams. Recall also
that the introduction of [34] opens with William Vickrey’s auction paper of 1961.
The reader should keep this cautionary skepticism in mind now that she has worked
through the dialectical argumentation.

8 Technicalities of the Proofs

Proof of Lemma2. We first prove Part (i). Note that for any natural number n, the
n-fold Lebesgue extension is constructed from the (n − 1)-fold in a similar way as
([0, 1], I,λ) from the Lebesgue unit interval. As a result, we only need to show that
([0, 1], I,λ) has the relative d-property for all measure preserving map from the
Lebesgue interval to itself.
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It follows from Lemma2 of [26] that there exists a I-measurable subset S such
that λ(S) = 1/2, and both S and Sc is independent with (0, t) for all t ∈ [0, 1], where
Sc is the complement of S. Note that the Lebesgue σ-algebra L is generated by these
subsets (0, t), t ∈ [0, 1], as a result, both S and Sc are independentwith anyLebesgue
measurable subset. Given any measure-preserving map h from the Lebesgue interval
to itself, let g : ([0, 1], I,λ) → [0, 1] defined to be g(t) = h(t) for all t ∈ S, and
g(t) = −h(t) for all t /∈ S. It is clear that g is an I-measurable map.

We finally check that g induces the uniform distribution on [−1, 1]. For
any s ∈ [0, 1], λ{t : g(t) ∈ [−s, 0]} = λ(Sc ∩ h−1([0, s])) = 1

2λ(h−1([0, s])) = s
2 ,

where the second equation follows from that Sc is independent with the Lebesgue
subset h−1([0, s])which is of measure s; similarly, λ{t : g(t) ∈ [0, s]} = s

2 . We thus
complete the proof of Part (i).

We next prove Part (ii). The existence of this measure preserving mapping hn
from the n-fold Lebesgue extension to the Lebesgue unit interval is guaranteed by
[26, Corollary 1, p. 1093], the key here is that the n-fold Lebesgue extension is an
atomless (essentially) countably generated space. �
Proof of Proposition2. The existence of pure-strategy Nash equilibria in �̃hn ,hn , for
all n, follows from Corollary1 and Part (i) of Lemma2.

We next prove the non-existence result for the KRS-like game �hn ,hn . By
Proposition1, it suffices to show that there does not exist an In-measurable map
from [0, 1] to the Lebesgue unit interval such that it takes value either hn(t)
or −hn(t) for all t , and it induces the uniform distribution on when restricted
on [−1/2, 1/2]. Suppose not, there is such a mapping g. Let S = {t : g(t) ≥ 0}.
It is clear that S ∈ In and λn(S) = 1

2 . By the construction of hn in Lemma2,
there exists an Lebesgue subset E , such that λn(S�h−1

n (E)) = 0. By Part (ii)
of Proposition1, for any s ∈ [0, 1/2], s

2 = λn{t : g ∈ [0, s]} = λn(S ∩ h−1
n [0, s]) =

λn(h−1
n (E) ∩ h−1

n [0, s]) = η(E ∩ [0, s]), where the last equation follows from the
measure preserving property. This contradicts the fact that there is no Lebesgue set
which is independent with all sets [0, s], s ∈ [0, 1/2]. �
Proof of the claim in Sect.6. Let D be an I-measurable subset with λ(D) > 0. Note
that [0, 1] = D01, it is clear that there exists two numbers k, k ′ ∈ [0, 1], such that
0 < λ(Dkk ′ ∩ D) < λ(D). We next fix such a pair of numbers k, k ′ and construct a
required subset D0 ∈ D as inDefinition2.Namely, for any subinterval [l, l ′] ⊆ [0, 1],
[l, l ′] ∩ D and D0 differ up to a non-negligible λ-null subset. If this Dkk ′ ∩ D and
[l, l ′] ∩ D do not differ up to a null set for all l, l ′, let D0 = Dkk ′ ∩ D. Otherwise,
for some l, l ′, this subset Dkk ′ ∩ D and [l, l ′] ∩ D differ up to a λ-null set. That
is, Dkk ′ ∩ [l, l ′] ⊆ D holds subject to a null set. Let D0 = Dkk" ∩ D = Dkk" ∩ [l, l ′]
where k ′′ = k+k ′

2 . It is clear that 0 < λ(D0) < λ(D) and D0 is a required subset in
Definition2, since Dkk" is independent with all subsets [a, b] for all a, b. �
Proof of Proposition3. It is clear thatD′(G1) ⊆ D′(G2).What remains is to prove the
converse direction. For any distribution μ generated by a Le-measurable selection
of �. Now consider the restricted distribution on [0, 1], still denoted by μ. It is
clear that μ is absolutely continuous with respect to the Lebesgue measure on [0, 1],
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moreover, for any t ∈ [0, 1], μ([0, t]) is at most of value t . As such, all the conditions
of Lemma 3 in [26] are satisfied, therefore, there exists Sμ ∈ Le such that for any
t ∈ [0, 1], μ([0, t]) = λe(Sμ ∩ [0, t]). Let f be a Le-measurable selection of � such
that f (i) = i if i ∈ Sμ and f (i) = −i if i /∈ Sμ. It is clear that this f induces the
same distribution μ on [−1, 1]. �
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On Supermartingale Problems
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Abstract In the present paper the author introduces a new notion, supermartingale
problems, to describe a family of probability measures on path space, and shows
some results on existence and stability.
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1 Introduction

Inmathematical finance, we usually think of a family of probabilitymeasures on path
space (e.g. EquivalentMartingaleMeasures). Inmarketmodelswith no friction, these
measures are equivalent and we can describe them by using a reference measure.
However, in market models with friction, these measures are sometimes mutually
singular (e.g. Boyle–Vorst [1], Kusuoka [4]). In the present paper we introduce a new
notion, supermartingale problems, to describe such a family of probability measures
and show some results on existence and stability.

Let d � 1.Wedenote byWd the space of continuous functions from [0,∞) toRd .

ThenWd is a Polish spacewith a usualmetric.We think of a filtration {FW
t }t∈[0,∞) on

Wd given byFW
t = σ {w(s); s � t}, t � 0.Also, we denote the space of probability

measures on Wd by P(Wd). Then P(Wd) is a Polish space with the Prohorov
metric. Also, we denote by Sd the set of d × d symmetric real matrices, and we
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denote by Sd+ the set of d × d non-negative definite symmetric real matrices. We
regard Sd as a vector space with an inner product defined by (A, B)Sd = trace(AB),

A, B ∈ Sd .

Definition 1 We say that G : [0,∞) × Wd × Sd × Rd → R is an HJ function, if
the following are satisfied.

(1) G(·, ·, A, b) : [0,∞) × Wd → R is {FW
t } progressively measurable for each

A ∈ Sd and b ∈ Rd .

(2) G(t,w, ·, ·) : Sd × Rd → R is convex and positive homogeneous for any t � 0
and w ∈ Wd .

(3) G(t,w,−A, 0) � 0 for any A ∈ Sd+.

We denote by H J d the set of HJ functions G : [0,∞) × Wd × Sd × Rd →
R. For any G ∈ H J d and f ∈ C2(Rd), we define LG f : [0,∞) × Wd → R by

LG f (t,w) = G(t,w,
1

2
(∇2 f )(w(t)), (∇ f )(w(t)))

where

(∇2 f )(x) =
{

∂2 f

∂xi∂x j
(x)

}
i, j=1,...,d

∈ S d

and

(∇ f )(x) =
(

∂ f

∂xi
(x)

)
i=1,...,d

∈ Rd , x ∈ Rd .

Definition 2 We say that μ is a solution to the supermartingale problem associated
with the HJ function G, ifμ is a probability measure onWd satisfying the following.

(1) Eμ

[∫ t

0
|LG f (s,w)|ds

]
< ∞ for any f ∈ C∞

0 (Rd) and t > 0.

(2)

{
f (w(t)) −

∫ t

0
LG f (s,w)ds; t � 0

}
is a supermartingale underμ(dw) for any

f ∈ C∞
0 (Rd).

For any HJ function G and x ∈ RN , we denote by R(G, x) the set of solu-
tions μ to the supermartingale problem associated with the HJ function G satisfying
μ(w(0) = x) = 1.

2 Preliminary Facts

Let E be a finite dimensional vector space with an inner product (·, ·)E . Also, let
| · |E : E → [0,∞) be a norm on E given by |x |E = (x, x)1/2E , x ∈ E . Let C (E)

denote the set of convex and positive homogeneous functions defined in E , and
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K (E) denote the set of non-void compact convex sets in E . We define a map
K̂ : C (E) → K (E) and � : K (E) → C (E) by

K̂ ( f ) = {ξ ∈ E; f (x) � (x, ξ)E for all x ∈ E}, f ∈ C (E),

and
�(K )(x) = sup{(x, ξ)E ; ξ ∈ K }, x ∈ E, K ∈ K (E).

Then we have the following.

Proposition 1 (1) � ◦ K̂ is the identity map in C (E).

(2) K̂ ◦ � is the identity map inK (E).

Proof (1) Let f ∈ C (E). It is obvious that (� ◦ K̂ )( f )(x) � f (x), x ∈ E .

Let us take an arbitrary point x0 in E . Since f is a convex function, there is a
ξ0 ∈ E such that

f (x) � f (x0) + (x − x0, ξ0)E , x ∈ E .

Since f is positive homogeneous, for any a > 0

a f (x) = f (ax) � f (x0) + (ax − x0, ξ0)E � a(x, ξ0)E + f (x0) − (x0, ξ0)E , x ∈ E .

Letting a ↓ 0 we have 0 � f (x0) − (x0, ξ0)E . Also, we see that

f (x) � (x, ξ0)E + 1

a
( f (x0) − (x0, ξ0)E ), x ∈ E .

Letting a → ∞, we have

f (x) � (x, ξ0)E x ∈ E .

This implies ξ0 ∈ K̂ ( f ). So we see that

f (x0) � (x0, ξ0)E � (� ◦ K̂ )( f )(x0).

Since x0 is arbitrary, we have Assertion (1).
(2) Let K ∈ K (E). It is obvious that if η ∈ K , then (x, η)E � �(K )(x), x ∈ E .

On the other hand, since K is a nonvoid compact convex set, if η /∈ K , there is a
x0 ∈ E such that

(x0, η)E > sup{(x0, ξ)E ; ξ ∈ K } = �(K )(x0)

These implies (K̂ ◦ �)(K ) = K . �

The following is an easy consequence of the previous proposition.
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Proposition 2 For any f1, f2 ∈ C (E), K̂ ( f1) ⊂ K̂ ( f2), if and only if f1(x) �
f2(x) for all x ∈ E . In particular, for any f ∈ C (E) and r > 0, K̂ ( f ) ⊂ {ξ ∈
E; |ξ |E � r}, if and only if f (x) � r |x |E for all x ∈ E .

It is easy to see that for any K ∈ K (E) and x ∈ E, there is a unique y ∈ K such
that |x − y|E = dE (x, K ). We denote by P(x, K ) this point y.

Proposition 3 Let K ∈ K (E) and x ∈ E . Then we see that

(x − P(x, K ), z − P(x, K ))E � 0 for any z ∈ K .

Proof If x ∈ K , the assertion is obvious. So we assume that x /∈ K .

For any z ∈ K , let z(t) = t z + (1 − t)P(x, K ), t ∈ (0, 1). Then z(t) ∈ K , t ∈
(0, 1), and

|x − P(x, K )|2E � |x − z(t)|2E = |x − P(x, K ) + t (P(x, K ) − z)|2E
= |x − P(x, K )|2E + t2|P(x, K ) − z)|2E − 2t (x − P(x; K ), z − P(x; K ))E

for ∈ (0, 1). So we have

t |P(x, K ) − z)|2E − 2(x − P(x; K ), z − P(x; K ))E � 0, t ∈ (0, 1).

This implies our assertion. �

Now let us think of the Hausdorff metric dE
H onK (E), i.e.,

dE
H (K , K ′) = max{sup{dE (ξ, K ); ξ ∈ K ′}, sup{dE (ξ, K ′); ξ ∈ K }}

for K , K ′ ∈ K (E). Then we have the following.

Proposition 4 For any K , K ′ ∈ K (E),

dE
H (K , K ′) = sup{|�(K )(x) − �(K ′)(x)|; x ∈ E with |x |E � 1}.

Proof Let r = dH (K , K ′) and r ′ = sup{|�(K )(x) − �(K ′)(x)|; x ∈ E with |x |E �
1}. It is sufficient to think of the case that r > 0.

First, we show that r � r ′.Wemay assume that sup{dE (ξ, K ); ξ ∈ K ′} = r with-
out loss of generality. Since K ′ is compact, there is a ξ0 ∈ K ′ such that dE (ξ0, K ) = r.
So letting x0 = r−1(ξ0 − P(ξ0, K ))), we see by Proposition3 that |x0|E = 1 and
(x0, η − P(ξ0, K ))E � 0, η ∈ K . So we have

�(K )(x0) � (x0, P(ξ0, K ))E = (x0, ξ0)E − r � �(K ′)(x0) − r

So we see that r � r ′.
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Next we show that r ′ � r. Let x ∈ E with |x |E = 1. Then there is a ξ ∈ K
such that �(K )(x) = (x, ξ)E . Since there is an η ∈ K ′ such that |ξ − η|E � r,
we see that �(K )(x) � (x, η)E + r � �(K ′)(x) + r. So we have sup{�(K )(x) −
�(K ′)(x); x ∈ E, |x |E = 1} � r. This observation shows that r ′ � r.

This completes the proof. �

Proposition 5 For any K ∈ K (E) and x0, x1 ∈ E,

|P(x1, K ) − P(x0, K )|E � 2|x1 − x0|E .

Proof Let y0 = P(x0, K ) and y1 = P(x1, K ). Then by Proposition3 we see that
(x0 − y0, y1 − y0)E � 0. Since (x1 − y1, x1 − y1)E � (x1 − y0, x1 − y0)E , we see
that

(y0 − y1, y0 − y1)E = |x1 − y1|2E − |x1 − y0|2E − 2(y0 − y1, x1 − y0)E

� 2(y1 − y0, x0 − y0)E + 2(y1 − y0, x1 − x0)E � 2(y1 − y0, x1 − x0)E .

Then we have |y1 − y0|2E � 2|y1 − y0|E |x1 − x0|E . This implies our assertion. �

Proposition 6 For any K , K ′ ∈ K (E), and x ∈ E,

|P(x, K ) − P(x, K ′)|E
� 2dH (K , K ′)1/2(dH (K , K ′) + 2(dE (x, K ) ∨ dE (x, K ′)))

Proof We may assume that d(x, K ′) � d(x, K ) without loss of generality. Let r =
dH (K , K ′), y = P(x, K ), and y′ = P(x, K ′). Then we see that |y′ − x |E � |y −
x |E . Note that there is a z ∈ K such that |y′ − z|E � r. Then by Proposition3 we
see that that (z − y, x − y)E � 0. Therefore we see that

|z − x |2E = |y − x |2E + |z − y|2E − 2(z − y, x − y)E � |y − x |2E + |z − y|2E .

So we have
|z − y|2E � (|y′ − x |E + |z − y′|E )2 − |y − x |2E

� (|y′ − x |E + r)2 − |y − x |2E � r(r + 2|y′ − x |E ).

So we have

|y − y′|E � |y′ − z|E + |z − y|E � r + r1/2(r + 2dE (x, K ′))1/2

� 2r1/2(r + 2dE (x, K ))1/2

This implies our assertion. �
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Now let us assume that dim E = N . Let K+(E) = {K ∈ K (E); νE (K ) > 0}.
Here νE is the volume measure in E .

Let ĉ : K+(E) → E be given by

ĉ(K ) = 1

νE (K )

∫
K
xνE (dx) K ∈ K+(E).

It is easy to see that ĉ(K ) ∈ K for any K ∈ K+(E). Also, it is obvious that ĉ(K −
ĉ(K )) = 0.

Proposition 7 Let K ∈ K+(E) and assume that ĉ(K ) = 0. Then �(K )(x) > 0 for
any x ∈ E \ {0}.
Proof Let x ∈ E \ {0}. Since 0 ∈ K , it is obvious that �(K )(x) � 0. Suppose that
�(K )(x) = 0. Then we see that (x, z)E � 0 for any z ∈ K . However, νE ({z ∈
E; (x, z)E = 0}) = 0. So we see that (x, z)E < 0 νE − a.e.z ∈ K . This implies
that

0 =
∫
K
(x, z)EνE (dz) < 0.

This is a contradiction. So we see that �(K )(x) > 0. �

For any R > 0, let BE (x, R) = {y ∈ E; |y − x |E � R}, x ∈ E .

Proposition 8 Let K ∈ K+(E) with ĉ(K ) = 0. Let

r0(K ) = min{�(K )(x) ; x ∈ E, |x |E = 1}

and
r1(K ) = max{�(K )(x) ; x ∈ E, |x |E = 1}

Then r0(K ) > 0 and BE (0, r0(K )) ⊂ K ⊂ BE (0, r1(K )).

In particular, vNr0(K )N � νE (K ) � vNr1(K )N , where vN = νE (B(0, 1)) and
depends only on N = dim E .

Proof We see that r0(E) > 0 by Proposition7. Note that

BE (0, R) = {ξ ∈ E; R|x |E � (x, ξ)E for all x ∈ E}.

So we see that
BE (0, r0(K )) ⊂ K̂ (�(K )) ⊂ BE (0, r1(K )).

Therefore we have our assertion from Proposition1. �
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Proposition 9 Let R1 > R0 > 0, and K ∈ K (E) and assume that BE (0, R0) ⊂
K ⊂ BE (0, R1). Then

BE (ĉ(K ),

(
R0

R1

)N

R0) ⊂ K .

Proof For any x ∈ E, we have

(x, ĉ(K ))E = 1

νE (K )

∫
K\BE (0,R0)

(x, ξ)EνE (dξ)

� νE (K \ BE (0, R0))

νE (K )
�(K )(x) �

(
1 − νE (BE (0, R0)

νE (BE (0, R1)

)
�(K )(x)

=
(
1 −

(
R0

R1

)N
)

�(K )(x).

Since BE (0, R0) ⊂ K , we see that �(K )(x) � R0|x |E . So if η ∈ BE (ĉ(K ),
(

R0
R1

)N

R0), then for any x ∈ E,

(x, η)E = (x, η − ĉ(K ))E + (x, ĉ(K ))E

�
(
R0

R1

)N

R0|x |E +
(
1 −

(
R0

R1

)N
)

�(K )(x) � �(K )(x).

So by Proposition1, we have η ∈ K̂ (�(K )) = K . So we have our assertion. �

Now for any R1 > R0 > 0, let

KR0,R1(E)

= {K ∈ K (E); there is an x ∈ E such that BE (x, R0) ⊂ K ⊂ BE (x, R1)}.

Then by Proposition9, we have the following.

Proposition 10 Let R1 > R0 > 0. Then for any K ∈ KR0,R1(E),

BE (ĉ(K ),

(
R0

R1

)N

R0) ⊂ K .

Proposition 11 Let R1 > R0 > 0. Then for any K0, K1 ∈ KR0,R1(E),

|ĉ(K1) − ĉ(K0)|E � 2N+4

(
R1

R0

)N+1

dE
H (K1, K0).
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Proof Let r = dH (K1, K0). There is an x0 ∈ E such that BE (x0, R0) ⊂ K0 ⊂
BE (x0, R1).

If x ∈ K0 ∪ K1, there is a y ∈ K0 such that |x − y|E � r. Then we see that

R0

R0 + r
x + r

R0 + r
x0 = R0

R0 + r
y + r

R0 + r

(
R0

r
(x − y) + x0

)
∈ K0.

So we see that

K0 ∪ K1 ⊂ R0 + r

R0

(
K0 − r

R0 + r
x0

)
.

So we have

νE (K1 \ K0) � νE

(
R0 + r

R0

(
K0 − r

R0 + r
x0

))
− νE (K0)

=
((

R0 + r

R0

)N

− 1

)
νE (K0) �

((
1 + r

R0

)N

− 1

)
vN R

N
1 .

Similarly we have

νE (K0 \ K1) �
((

R0 + r

R0

)N

− 1

)
vN R

N
1

and so we have

νE ((K0 ∪ K1) \ (K0 ∩ K1)) � 2

((
1 + r

R0

)N

− 1

)
vN R

N
1

Also, we see that

νE ((K0 ∪ K1) \ (K0 ∩ K1)) � νE (K0) + νE (K1) � 2vN R
N
1 .

So we have

|νE (K0) − νE (K1)| � νE ((K0 ∪ K1) \ (K0 ∩ K1))

� 2

(((
1 + r

R0

)
∧ 2

)N

− 1

)
vN R

N
1 � 2N+1 r

R0
vN R

N
1 .

Note that K1 ⊂ BE (x0, R1 + r). So we have

|ĉ(K1) − ĉ(K0)|E
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= | 1

νE (K1)

∫
K1

(x − x0)νE (dx) − 1

νE (K0)

∫
K0

(x − x0)νE (dx)|E

� | 1

νE (K1)

(∫
K1

(x − x0)νE (dx) −
∫
K0

(x − x0)νE (dx)

)
|E

+ | 1

νE (K1)
− 1

νE (K0)
||

∫
K0

(x − x0)νE (dx)|E

� νE ((K0 ∪ K1) \ (K0 ∩ K1))

νE (K1)
(R1 + r) + |νE (K1) − νE (K0)|

νE (K1)
R1

� 2N+2 r

R0

(
R1

R0

)N

(R1 + r).

Since there is a z0 ∈ K0, such that |ĉ(K1) − z0|E � r, we see that

|ĉ(K1) − ĉ(K0)|E � |ĉ(K1) − z0|E + |z0 − x0|E + |ĉ(K0) − x0|E � r + 2R1.

Combining them, we have our assertion. �

Let � : E × K+(E) → E be given by

�(x, K ) = ĉ(K ) + max{t ∈ [0, 1]; t (x − ĉ(K )) + ĉ(K ) ∈ K }(x − ĉ(K )) (1)

for x ∈ E and K ∈ K+(E).

Then we have the following.

Proposition 12 Let R1 > R0 > 0. Then for any K ∈ KR0,R1(E), and x, y ∈ E,

|�(x, K ) − �(y, K )|E � (1 + 2

(
R1

R0

)N+1

)|x − y|E .

Proof Let R2 = (R0/R1)
N R0. Then by Proposition10,

BE (ĉ(K ), R2) ⊂ K ⊂ BE (ĉ(K ), 2R1).

We may assume ĉ(K ) = 0 without loss of generality.
Let f : E → [0, 1] be given by

f (x) = max{t ∈ [0, 1]; t x ∈ K }.

Assume that x, y ∈ E, x �= y, and f (y) � f (x). Then we see that f (x)x ∈ K , and
that
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f (x)R2
1

|x − y|E (y − x) ∈ K .

So we have

f (x)
R2

R2 + |x − y|E y

= f (x)
R2

R2 + |x − y|E x + |x − y|E
R2 + |x − y|E f (x)R2

1

|x − y|E (y − x) ∈ K .

So we have

f (y) � f (x)
R2

R2 + |x − y|E .

Therefore we have

f (x) − f (y) � f (x)
|x − y|E

R2 + |x − y|E .

Then

|�(x, K ) − �(y, K )|E = | f (x)x − f (y)y|E � ( f (x) − f (y))|x |E + f (y)|x − y|E

� |x − y|E
R2 + |x − y|E f (x)|x |E + |x − y|E �

(
1 + 2R1

R2

)
|x − y|E .

This implies our assertion. �

Proposition 13 Let R1 > R0 > 0. Let K0, K1 ∈ KR0,R1(E) and assume that ĉ
(K1) = ĉ(K0) = 0. Then for any x ∈ E,

|�(x, K1) − �(x, K0)|E � 2

(
R1

R0

)N+1

dE
H (K1, K0).

Proof Let r = dE
H (K1, K0), and

ti = max{s ∈ [0, 1]; sx ∈ Ki }, i = 0, 1.

Since t0x ∈ K0, we see that there is a y ∈ K1 such that |t0x − y|E � r.
Let R2 = (R0/R1)

N R0. Then by Proposition10, we see that BE (0, R2) ⊂ K1

⊂ BE (0, 2R1), and so R2r−1(t0x − y) ∈ K1. Therefore

t0
R2

R2 + r
x = R2

R2 + r
y + r

R2 + r

R2

r
(t0x − y) ∈ K1.
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This implies

t1 � t0
R2

R2 + r
,

and so

t0 − t1 � r

R2 + r
t0 � r

R2 + r

(
1 ∧ 2R1

|x |E
)

.

Similarly we have

t1 − t0 � r

R2 + r

(
1 ∧ 2R1

|x |E
)

.

Therefore we have

|�(x, K1) − �(x, K0)|E = |t1 − t0||x |E � 2R1

R2
r.

This implies our assertion. �

Theorem 1 Let R1 > R0 > 0. Then there is a CR0,R1 < ∞ such that

|�(x1, K1) − �(x0, K0)|E � CR0,R1(|x1 − x0|E + dE
H (K1, K0))

for any K0, K1 ∈ KR0,R1(E), and x0, x1 ∈ E .

Proof Note that

�(xi , Ki ) = �(xi − ĉ(Ki ), Ki − ĉ(Ki )) + ĉ(Ki ), i = 0, 1.

So by Propositions12 and 13 we have

|�(x1, K1) − �(x0, K0)|E
�|�(x1 − ĉ(K1), K1 − ĉ(K1)) − �(x0 − ĉ(K0), K0 − ĉ(K0))|E + |ĉ(K1)) − ĉ(K0))|E
�|�(x1 − ĉ(K1), K1 − ĉ(K1)) − �(x0 − ĉ(K0), K1 − ĉ(K1))|E

+ |�(x0 − ĉ(K0), K1 − ĉ(K1)) − �(x0 − ĉ(K0), K0 − ĉ(K0))|E + |ĉ(K1)) − ĉ(K0))|E

�
(
1 + 2

(
R1
R0

)N+1
)

|(x1 − ĉ(K1)) − (x0 − ĉ(K0))|E

+ 2

(
R1
R0

)N+1
dEH (K1 − ĉ(K1), K0 − ĉ(K0)) + |ĉ(K1) − ĉ(K0))|E .
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Note that

dH
E (K1 − y1, K0 − y0)

= max{sup{dE (z − y1, K0 − y0); z ∈ K1}, sup{dE (z − y0, K1 − y1); z ∈ K0}}
� max{sup{dE (z, K0) + |y1 − y0|E ; z ∈ K1}, sup{dE (z, K1) + |y1 − y0|E ; z ∈ K0}}
= dE

H (K1, K0) + |y1 − y0|E .

This observation shows that

dE
H (K1 − ĉ(K1), K0 − ĉ(K0)) � dE

H (K1, K0) + |ĉ(K1) − ĉ(K0))|E .

So by Proposition11 we have our assertion. �

Example Let Kθ ∈ K (R2), θ ∈ [0, π/4], given by

Kθ = {(x, y) ∈ [0, 2] × [0, 1]; x � cos2 θ, (sin θ)y � cos θ(1 − x)}, θ ∈ [0, π

4
].

Then it is easy to see that P((0, 0), Kθ ) = (cos2 θ, sin θ cos θ), and dH (Kθ , K0) =
1 − cos2 θ. So we see that

lim
θ↓0

|P((0, 0), Kθ ) − P((0, 0), K0)|2
dH (Kθ , K0)

= 1

On the other hand, we have by Theorem1 we see that

lim
θ↓0

|�((0, 0), Kθ ) − �((0, 0), K0)|
dH (Kθ , K0)

< ∞.

3 Square Root

Proposition 14 Let A ∈ Sd+. Then we have

||(A + s Id)
1/2 − A1/2||Sd � d1/2s1/2, s � 0.

Here Id denotes the d × d identity matrix.

Proof Let λk, k = 1, . . . , d be the eigen values of A. Then we have

||(A + s Id)
1/2 − A1/2||2Sd =

d∑
k=1

((λk + s)1/2 − λ
1/2
k )2 =

d∑
k=1

(∫ λk+s

λk

1

2
x−1/2dx

)2
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�
d∑

k=1

(∫ s

0

1

2
x−1/2dx

)2

= ds.

This implies our assertion. �

Proposition 15 (1) Let A, B ∈ Sd+, and assume that the minimum eigenvalue
λmin(A) of A is positive. Then if ||B − A||Sd � λmin(A)/2, we have

||B1/2 − A1/2||Sd � λmin(A)−1/2||B − A||sd .

(2) For any A, B ∈ Sd+,

||B1/2 − A1/2||Sd � 4d1/2||B − A||1/2sd .

(3) Let A, B ∈ Sd+, and assume that theminimum eigenvalue λmin(A) of A is positive.
Then we have

||B1/2 − A1/2||Sd � 8d1/2λmin(A)−1/2||B − A||sd .

Proof First we prove Assertion (1). Let c = λmin(A)1/2, and let F : Sd → Sd be a
linear operator given by

F(D) = A1/2D + DA1/2, D ∈ Sd .

If A is diagonal and is given by A = (λiδi j )i, j=1,...,d , then F(D) = ((λ
1/2
i +

λ
1/2
j )di j )i, j=1,...,d for D = (di j )i, j=1,...,d ∈ Sd .This observation shows that F is bijec-

tive and
||F−1(D)||Sd � (2c)−1||D||Sd D ∈ Sd .

Let B ∈ Sd satisfy ||B − A||Sd � c2/2, and let us define Dn ∈ Sd , n = 0, 1, . . . ,
inductively by D0 = 0 and

Dn = F−1(B − A − D2
n−1), n = 1, 2, . . .

Then we see that

||Dn ||Sd � (2c)−1(||B − A||Sd + ||Dn−1||2Sd ) � c/4 + (2c)−1||Dn−1||2Sd , n = 1, 2, . . .

In particular, we see that ||Dn|| � c/2, n � 0, inductively. Then we see that

||Dn+1 − Dn||Sd � (2c)−1||D2
n − D2

n−1||Sd

= (2c)−1||(Dn − Dn−1)Dn + Dn−1(Dn − Dn−1)||Sd
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� (2c)−1(||Dn ||Sd + ||Dn−1||Sd )||Dn − Dn−1||Sd � 1

2
||Dn − Dn−1||Sd , n = 1, 2, . . .

So we see that

||Dn − Dn−1||Sd � (
1

2
)n−1(2c)−1||B − A||Sd

Thereforewe see that there is a D∞ ∈ Sd such that Dn → D∞,n → ∞, and ||D∞||Sd
� c−1||B − A||Sd . Since F(D∞) = (B − A) − D2∞, we see that (D∞ + A1/2)2 =
B. Noting that ||D∞||Sd � c/2, we see that D∞ + A1/2 ∈ Sd+. This implies that
D∞ = B1/2 − A1/2. So we have Assertion (1).

Now let us prove Assertion (2). Let r = ||B − A||Sd . Note that r � (λmin(A) +
2r)/2. So we have by (1)

||(B + 2r Id)
1/2 − (A + 2r Id)

1/2||Sd � (λmin(A) + 2r)−1/2r � r1/2

Then by Proposition14 we have

||B1/2 − A1/2||Sd
� ||(B + 2r Id)

1/2 − (A + 2r Id)
1/2||Sd + ||(B + 2r Id)

1/2 − B1/2||Sd
+ ||(A + 2r Id)

1/2 − A1/2||Sd
� 2d1/2(2r)1/2 + r1/2 � 4d1/2r1/2

This implies Assertion (2).
Assertion (3) is an easy consequence of Assertions (1) and (2). �

4 Existence Theorem

For any probability measure μ on Wd , let {Fμ
t }t∈[0,∞) be a filtration over Wd given

by
Fμ

t =
⋂
s>t

σ {FW
s ∪ N μ}, t ∈ [0,∞),

where

N μ = {B ⊂ Wd; there exists an A ∈ B(Wd) such that B ⊂ A and μ(A) = 0}.

Let Ed denote Sd × Rd . Then Ed has an inner product (·, ·)Ed given by

((A, a), (B, b))Ed = trace(AB) + (a, b)Rd , A, B ∈ Sd , a, b ∈ Rd .
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For G ∈ H J d , let KG : [0,∞) × Wd → K (Ed) be a progressively measur-
able map given by KG(t,w) = K̂ (G(t,w, ·, ·)), (t,w) ∈ [0,∞) × Wd .

Then we have the following.

Proposition 16 Let G ∈ H J d . Then KG(t,w) ⊂ (Sd+ × Rd) for any (t,w) ∈
[0,∞) × Wd .

Proof Suppose that (A, b) ∈ Ed \ Sd+ × Rd . Then there is a B ∈ Sd+ such that
(A, B)Sd < 0. So we have

0 < ((A, b), (−B, 0))Ed � G(t,w,−B, 0).

This contradicts to the definition of HJ functions (Definition1(3)). So we have our
assertion. �

Also, we have the following.

Proposition 17 Let G ∈ H J d and x0 ∈ Rd , and assume that there is a constant
C > 0 such that |G(t,w, z)| � C |z|Ed for any (t,w, z) ∈ [0,∞) × Wd × Ed . Then
we have the following.

(1) Suppose thatμ ∈ R(G, x0). Then {wi (t), t � 0}, i = 1, . . . , d, underμ areFμ
t -

semi-martingales. Moreover, there are {Fμ
t }t�0-progressively measurable processs

ai j : [0,∞) × Wd → R, i, j = 1, . . . , d, and bi : [0,∞) × Wd → R, i = 1,
. . . , d, such that wi (t) − ∫ t

0 b
i (s)ds, t � 0, i = 1, . . . , d, areFμ

t -martingales,

〈wi ,wj 〉t =
∫ t

0
ai j (s)ds, i, j = 1, . . . , d, t � 0, μ − a.s.w, (2)

and
({ai j (t)}i, j=1,...,d , (b

i (t))i=1,...,d) ∈ KG(t,w) t � 0, μ − a.s.w. (3)

(2) Let μ be a probability measure on Wd . Suppose that μ(w(0) = x0) = 1 and that
{wi (t), t � 0}, i = 1, . . . , d, underμ areFμ

t -semi-martingales. Suppose moreover
that there are {Fμ

t }t�0-progressively measurable processs ai j : [0,∞) × Wd →
R, i, j = 1, . . . , d, and bi : [0,∞) × Wd → R, i = 1, . . . , d, such that wi (t) −∫ t
0 b

i (s)ds, t � 0, i = 1, . . . , d, areFμ
t -martingales and Eqs. (2), (3), are satisfied.

Then μ ∈ R(G, x0).

Proof (1) For any R > 0 let

τR(w) = inf{t � 0; |w(t)| > R}.

Then τR be anF
μ
t -stopping time. For any f ∈ C∞(Rd), let X f : [0,∞) × Wd → R

be given by
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X f (t,w) = f (w(t)) − f (w(0)) −
∫ t

0
(LG f )(s,w)ds, t � 0, w ∈ Wd .

Then it is easy to see that (X f )τR is a supermartingale for any R > 0. In particular,
X f is a semi-martingale. Applying this for f i (x) = xi , x ∈ R, we see that

wi (t) − xi0 = X f i (t) +
∫ t

0
(LG f i )(s,w)ds

is a semimartingale. LetMi and Ai be a local martingale part and finite total variation
part of wi − xi0, i = 1, . . . , d, respectively. Then by Ito’s lemma, we see that

X f (t,w) =
d∑

i=1

∫ t

0

∂ f

∂xi
(w(s))dMi (s) +

d∑
i=1

∫ t

0

∂ f

∂xi
(w(s))d Ai (s)

+ 1

2

d∑
i, j=1

∫ t

0

∂2 f

∂xi∂x j
(w(s))d〈Mi , M j 〉(s) −

∫ t

0
(LG f )(s,w)ds,

and so

d∑
i=1

∫ t

0

∂ f

∂xi
(w(s))d Ai (s) + 1

2

d∑
i, j=1

∫ t

0

∂2 f

∂xi∂x j
(w(s))d〈Mi , M j 〉(s)

−
∫ t

0
(LG f )(s,w)ds

is a non-increasing process.
Applying this to f = f i and f = − f i , i = 1, . . . , d, we see that Ai (t) −∫ t

0 (LG f i )(s,w)ds and −Ai (t) − ∫ t
0 (LG(− f i ))(s,w)ds are non-increasing. So we

see that Ai (t) is absolutely continuous in t. Similarly applying this to f (x) = xi x j

and f (x) = −xi x j ,we see that 〈Mi , M j 〉(t) is absolutely continuous in t. So we see
that there are {Fμ

t }t�0-progressively measurable processs ai j : [0,∞) × Wd → R,

i, j = 1, . . . , d, and bi : [0,∞) × Wd → R, i = 1, . . . , d, such that

Ai (t) =
∫ t

0
bi (s)ds, t � 0, i = 1, . . . , d,

and

〈Mi , M j 〉t =
∫ t

0
ai j (s)ds, i, j = 1, . . . , d, t � 0, μ − a.s.w.
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Note that for any f ∈ C∞(Rd)

∫ t

0
((
1

2
(∇2 f )(w(s)), (∇ f )(w(s))), ({ai j (s)}i, j=1,...,d , (b

i (s))i=1,...d))Ed ds

−
∫ t

0
G(s,w, (

1

2
(∇2 f )(w(s)), (∇ f )(w(s))))ds

is a non-increasing process. Therefore

((
1

2
(∇2 f )(w(t)), (∇ f )(w(t))), ({ai j (t)}i, j=1,...,d , (b

i (t))i=1,...d))Ed

� G(t,w, (
1

2
(∇2 f )(w(t)), (∇ f )(w(t)))) a.e.t μ − a.s.w.

Let H be a countable subset of C∞(Rd) given by

H = {
d∑

i, j=1

qi j x
i x j +

d∑
i=1

ri x
i ; qi j , ri ∈ Q, i, j = 1, . . . , d}.

Then we see that for any x ∈ R, {( 12 (∇2 f )(x), (∇ f )(x)); f ∈ H } is dense in Ed .

So we see that

({ai j (t)}i, j=1,...,d , (b
i (t))i=1,...d) ∈ KG(t,w(t)) a.e.t μ − a.s.w

(2) From the assumption, we see that KG(t,w) ⊂ BEd (0,C). Then for any f ∈
C∞
0 (Rd),

f (w(t)) −
∫ t

0
((
1

2
(∇2 f )(w(s)), (∇ f )(w(s))), ({ai j (s)}i, j=1,...,d , (bi (s))i=1,...d ))Ed ds

is a martingale under μ. Since

((
1

2
(∇2 f )(w(t)), (∇ f )(w(t))), ({ai j (t)}i, j=1,...,d , (b

i (t))i=1,...d))Ed

� G(t,w, (
1

2
(∇2 f )(w(t)), (∇ f )(w(t)))) a.e.t μ − a.s.w

for any f ∈ C∞
0 (RN ), we have Assertion (2). �

Theorem 2 Let G ∈ H J d . Assume that G : [0,∞) × Wd × Ed → R is contin-
uous and that there is a constant C > 0 such that |G(t,w, z)| � C |z|Ed for any
(t,w, z) ∈ [0,∞) × Wd × Ed . Then we see that R(G, x) �= ∅ for any x ∈ Rd .
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Proof Let us take an e0 ∈ Ed . Let a : [0,∞) × Wd → Sd and b : [0,∞) × Wd →
Rd be given by

(a(t,w), b(t,w)) = P(e0, KG(t,w)), (t,w) ∈ [0,∞) × Wd .

Then by Proposition16, we see that a(t,w) ∈ Sd+ for all (t,w) ∈ [0,∞) × Wd .Also,
by Propositions4 and 6, we see that a : [0,∞) × Wd → Sd and b : [0,∞) × Wd →
Rd are bounded continuous functions. Let σ : [0,∞) × Wd → Sd be given by
σ(t,w) = a(t,w)1/2, (t,w) ∈ [0,∞) × Wd . Then by Proposition15, we see that
σ : [0,∞) × Wd → Sd is bounded and continuous. Then by Theorem2.2 in Ikeda–
Watanabe [2, p. 169], we see that for any x ∈ Rd there is a probability measure μ

on Wd such that μ(w(0) = x) = 1, wi (t) − ∫ t
0 b

i (s,w)ds, i = 1, . . . , d, are mar-
tingales under μ, and

〈wi ,wj 〉t =
∫ t

0
ai j (s,w)ds μ − a.s.w

So by Proposition17, we see that μ ∈ R(G, x). �

5 Stability

Since the set R(G, x) contains many measures in general, we cannot discuss the
uniqueness of a solution. However, in martingale problems the uniqueness of a solu-
tion and the stability of solutions are strongly related (c.f. Kaneko–Nakao [3]). So
we discuss the stability of solutions.

Proposition 18 Let G∞,Gn ∈ H J d , n = 1, 2, . . . , and assume the following.

(1) There is an R < ∞ such that

|Gn(t,w, ξ)| � R|ξ |Ed , (t,w, ξ) ∈ [0,∞) × Wd × Ed , n = 1, 2, . . . ,∞.

(2) For any t � 0, Gn(t, ·, ·) : Wd × Ed → R, n = 1, 2, . . . ,∞, are continuous.
(3)For any t � 0,Gn(t,w, ξ) → G∞(t,w, ξ), n → ∞, uniformly in compacts with
respect to (w, ξ) ∈ Wd × Ed .

Suppose moreover that x∞, xn ∈ Rd , n = 1, 2, . . . , and xn → x∞, n → ∞, and
thatμn ∈ R(Gn, xn), n = 1, 2, . . . Then there are a subsequence {nk}∞k=1 andμ∞ ∈
R(G∞, x∞) such that μnk → μ∞, k → ∞.

Proof From the assumption and Proposition2, we see that KGn (t,w) ⊂ BEd (0, R)

for any n = 1, 2, . . . ,∞, t ∈ [0,∞) and w ∈ Wd . Then by Proposition17 that⋃∞
n=1 R(Gn, xn) is relatively compact inP(Wd).So there are a subsequence {nk}∞k=1
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andμ ∈ P(Wd) such thatμnk → μ as k → ∞.Thereforewe see that for anym � 1,
t > s � sm > · > s1 � 0, f ∈ C∞

0 (Rd) and g ∈ Cb(Rdm) with g � 0,

Eμ[( f (w(t)) − f (w(s)) −
∫ t

s
(LG∞) f )(r,w)dr)g(w(s1), · · · ,w(sm))]

= lim
k→∞ Eμnk [( f (w(t))− f (w(s))−

∫ t

s
(LGnk

f )(r,w)dr)g(w(s1), · · ·,w(sm))] � 0.

This shows that μ ∈ R(G∞, x∞). �

For d, r � 1, letM d×r be the set of d × r real matrices. Let Êd,r = Rd × M d×r

and we define innerproduct on Êd,r by

((b1,C1), (b2,C2))Êd,r = (b1, b2)Rd + trace(C1C
∗
2 )

for (b1,C1), (b2,C2) ∈ Rd × M d×r . Also we define qd,r : Êd,r → Ed by

qd,r ((b,C)) = (CC∗, b), (b,C) ∈ Êd,r .

Then we have the following.

Theorem 3 Let G∞,Gn ∈ H J d , n = 1, 2, . . . , x∞, xn ∈ Rd , n = 1, 2, . . . , and
assume the following.

(1) There is a C0 < ∞ such that

|Gn(t,w, ξ)| � C0|ξ |Ed , (t,w, ξ) ∈ [0,∞) × Wd × Ed , n = 1, 2, . . . ,∞.

(2) For any t � 0, Gn(t, ·, ·) : Wd × Ed → R, n = 1, 2, . . . ,∞ are continuous.
(3) There are r � 1, and measurable maps Vn : [0,∞) × Wd × Ed → Êd,r , n =
1, 2, . . . ,∞ satisfying the following.

(i) There is a C1 < ∞ such that for any t ∈ [0,∞), w,w′ ∈ Wd and ξ ∈ Ed ,

|Vn(t,w, ξ) − Vn(t,w
′, ξ)|Êd,r � C1 sup{|w(s) − w′(s)|; s ∈ [0, t]}

for n = 1, 2, . . . ,∞.

(ii) For any n = 1, 2, . . . ,∞, t ∈ [0,∞), w ∈ Wd and ξ ∈ Ed ,

qd,r (Vn(t,w, ξ)) ∈ KGn (t,w)

and
qd,r (Vn(t,w, ξ)) = ξ, if ξ ∈ KGn (t,w).
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(iii) For any t ∈ [0,∞) and (w, ξ) ∈ Wd × Ed , Vn(t,w, ξ) → V∞(t,w, ξ), n →
∞. Also, xn → x∞, n → ∞.

(4)For any t � 0,Gn(t,w, ξ) → G∞(t,w, ξ), n → ∞, uniformly in compacts with
respect to (w, ξ) ∈ Wd × Ed .

Then R(Gn, xn) → R(G∞, x∞) as compact sets in P(Wd) with respect to the
Hausdorff metrics.

Proof Since we already have Proposition18, it is sufficient to show that for any
μ ∈ R(G∞, x∞) there areμn ∈ R(Gn, xn) such thatμn → μ, n → ∞, inP(Wd).

So let μ ∈ R(G∞, x∞).

Then we see by Propositions17 that there are {Fμ
t }t�0-progressively measurable

processs b̃i : [0,∞) × Wd → R, i = 1, . . . , d, and ãi j : [0,∞) × Wd → R, i, j =
1, . . . , d, such that wi (t) − ∫ t

0 b̃
i (s)ds, t � 0, i = 1, . . . , d, are Fμ

t -martingales,

〈wi ,wj 〉t =
∫ t

0
ãi j (s)ds, i, j = 1, . . . , d, t � 0, μ − a.s.w,

and

({ãi j (t)}i, j=1,...,d), (b̃
i (t))i=1,...,d)) ∈ KG∞(t,w) a.e.t � 0, μ − a.s.w.

Let (b̂(t), σ̂ (t)) = V∞(t,w, (b̃(t), ã(t))). Then from the assumption (3)(ii) we
see that b̃(t) = b̂(t) and ã(t) = σ̂ (t)σ̂ (t)∗.

Then by Representation Theorem (e.g. Theorem7.1′ in Ikeda–Watanabe [2] p.
90) we see that there are a filtered probability space (�,F , P, {Ft }t∈[0,∞)) with
usual condition, an r -dimensional {Ft }-Brownian motion {Bt }t∈[0,∞), a contin-
uous adapted process X : [0,∞) × � → Rd , progressively measurable processs
b : [0,∞) × � → Rd and σ : [0,∞) × � → M d×r such that

Xi (t) = xi∞ +
∫ t

0
bi (s)ds +

r∑
k=1

∫ t

0
σ ik(s)dBk(s), i = 1, . . . , d, t ∈ [0,∞)

(b(t), σ (t)) = V∞(t, X (·), (b̃(t, X (·)), ã(t, X (·))),

qd,r (b(t, X (·)), σ (t, X (·))) ∈ KG∞(t, X (·)) a.s.ω a.e.t

and that the probability law of X (·) is μ.

Let z : [0,∞) × � → Ed begivenby z(t) = (b̃(t, X (·)), ã(t, X (·))), t ∈ [0,∞).

Then we see that X is a solution to the following SDE

X (t) = x∞ +
∫ t

0
V∞(s, X (·), z(s))dB(s), s ∈ [0,∞).
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Hereweuse the notation that for any progressivelymeasurable processesη = (b̄, σ̄ ) :
[0,∞) × � → Rd × M d×r

∫ t

0
η(s)dB(s) =

∫ t

0
b̄(s)ds +

r∑
k=1

∫ t

0
σ̄k(s)dB

k(s).

Now let us think of the following SDE for each n = 1, 2, . . .

Xn(t) = xn +
∫ t

0
Vn(s, Xn(·), z(s))dB(s), s ∈ [0,∞).

Since

|Vn(t,w, z(t))|2
Êd,r � |qd,r (Vn(t,w, z(t)))|Ed + |qd,r (Vn(t,w, z(t)))|2Ed � C1/2

0 + C0

and
|Vn(t,w, z(t)) − Vn(t,w

′, z(t))|Êd,r � C1 max
s∈[0,t] |w(s) − w′(s)|

for any n = 1, 2, . . . , t ∈ [0,∞) and w,w′ ∈ Wd , we see that there is a path-wise
unique solution Xn. Let μn ∈ P(Wd) be the probability law of Xn(·). Since

qd,r (Vn(s, Xn(·), z(s))) ∈ KGn (t, Xn(·)),

we see by Proposition17 that μn ∈ R(Gn, xn), n = 1, 2, . . . Also we have

|X (t) − Xn(t)|
� |x∞ − xn| + |

∫ t

0
(V∞(s, X (·), z(s)) − Vn(s, X (·), z(s))dB(s)|

+ |
∫ t

0
(Vn(s, X (·), z(s)) − Vn(s, Xn(·), z(s))dB(s)|.

Therefore we see that

E[ sup
s∈[0,t]

|X (s) − Xn(s)|2]

� rn(T ) + 3(4d2 + Td)

∫ t

0
E[|Vn(s, X (s), z(s)) − Vn(s, Xn(s), z(s))|2Êd,r ]ds

� rn(T ) + 3(4d2 + Td)C2
1

∫ t

0
E[ sup

s∈[0,r ]
|X (s) − Xn(s)|2]dr
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for any t ∈ [0, T ], T > 0, where

rn(T ) = 3|x∞ − xn |2 + 3(4d2 + Td)

∫ T

0
E[|V∞(s, X (·), z(s)) − Vn(s, X (·), z(s))|2

Êd,r ]ds.

Since we see from the assumption that rn(T ) → 0, n → ∞, we see by Gronwall’s
inequality that

E[ sup
s∈[0,t]

|X (s) − Xn(s)|2] → 0, n → ∞, t ∈ [0, T ], T > 0.

This implies that μn → μ, n → ∞, inP(Wd). So we have our assertion. �

For any γ > 0, let Sdγ+ be the set of A ∈ Sd+ such that the minimum eigenvalue
of λmin(A) of A is greater than or equal to γ.

Then we have the following.

Corollary 1 Let G∞,Gn ∈ H J d ,n = 1, 2, . . . , x∞, xn ∈ Rd , n = 1, 2, . . . , and
assume the following.

(1) For any t � 0, Gn(t, ·, ·) : Wd × Ed → R, n = 1, 2, . . . ,∞, are continuous.
(2) There is a C0 ∈ (0,∞) such that

|Gn(t,w, ξ)| � C0|ξ |Ed ,

and
|Gn(t,w, ξ) − Gn(t,w

′, ξ)| � C0|ξ |Ed max
s∈[0,t] |w(s) − w′(s)|

for any t ∈ [0,∞), w,w′ ∈ Wd , ξ ∈ Ed , and n = 1, 2, . . . ,∞.

(3) There are R1 > R0 > 0 and γ > 0 such that KGn (t,w) ∈ KR0,R1(E
d) and

KGn (t,w) ⊂ Sdγ+ × Rd for any n = 1, 2, . . . ,∞, t ∈ [0,∞) and w ∈ Wd .

(4)For any t � 0,Gn(t,w, ξ) → G∞(t,w, ξ), n → ∞, uniformly in compacts with
respect to (w, ξ) ∈ Wd × Ed . Also, xn → x∞, n → ∞.

Then R(Gn, xn) → R(G∞, x∞) as compact sets in P(Wd) with respect to the
Hausdorff metrics.

Proof Let us define ψd : Ed → Rd × M d×d by

ψd(A, b) = (b, A1/2), (A, b) ∈ Ed .

Now let us define Vn : [0,∞) × Wd × Ed → Rd × M d×d , n = 1, 2, . . . ,∞, by

Vn(t,w, z) = ψd(�(z, KGn (t,w))), t ∈ [0,∞), w ∈ Wd , z ∈ Ed .

Then byPropositions4 and 15(3), andTheorem1,we see thatVn’s satisfy the assump-
tion (3) in Theorem3. This implies our assertion. �
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Bolza Optimal Control Problems with Linear
Equations and Periodic Convex Integrands
on Large Intervals

Alexander J. Zaslavski

Abstract We study the structure of approximate solutions of Bolza optimal control
problems, governed by linear equations, with periodic convex integrands, on large
intervals, and show that the turnpike property holds. To have this property means,
roughly speaking, that the approximate optimal trajectories are determined mainly
by the integrand, and are essentially independent of the choice of time intervals and
data, except in regions close to the endpoints of the time interval. We also show
the stability of the turnpike phenomenon under small perturbations of integrands
and study the structure of approximate optimal trajectories in regions close to the
endpoints of the time intervals.
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1 Introduction

The growing significance of the study of (approximate) solutions of variational and
optimal control problems defined on infinite intervals and on sufficiently large inter-
vals has been realized in the recent years [2, 4–11, 15, 18, 19, 21, 22, 25–27].
This is due not only to theoretical achievements in this area, but also because of
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numerous applications to engineering [1, 6, 22, 28], models of economic dynamics
[6, 14, 17, 20, 22, 25, 27] the game theory [12, 22, 24, 25], models of solid-state
physics [3] and the theory of thermodynamical equilibrium for materials [13, 16].
In [26], for the Lagrange optimal control problems, governed by linear equations,
with nonautonomous periodic convex integrands, on large intervals we proved that
the turnpike phenomenon holds and described the structure of approximate optimal
trajectories in regions close to the endpoints of the time intervals. It was established
that in these regions optimal trajectories converge to solutions of the corresponding
infinite horizon optimal control problem which depend only on the integrand. In the
present paper we generalize these results for Bolza problems.

We study the structure of approximate optimal trajectories of linear control
systems

x ′(t) = Ax(t) + Bu(t), (1.1)

x(0) = x0

with periodic convex integrands f : [0,∞) × Rn × Rm → R1, where A and B are
givenmatrices of dimensions n × n and n × m, x(t) ∈ Rn , u(t) ∈ Rm and the admis-
sible controls are Lebesgue measurable functions.

We assume that the linear system (1.1) is controllable and that the integrand f is
a Borel measurable function.

We denote by | · | the Euclidean norm and by 〈·, ·〉 the inner product in the
n-dimensional Euclidean space Rn . Denote by Z the set of all integers. For every
z ∈ R1 denote by �z	 the largest integer which does not exceed z: �z	 = max{i ∈
Z : i ≤ z}.

The performance of the above control system is measured on any finite interval
[T1, T2] ⊂ [0,∞) by the integral functional

I f (T1, T2, x, u) =
∫ T2

T1

f (t, x(t), u(t))dt. (1.2)

We suppose that the integrand f : [0,∞) × Rn × Rm → R1 satisfies the following
Assumption (A)

(i) f (t + τ , x, u) = f (t, x, u) for all t ∈ [0,∞), all x ∈ Rn and all u ∈ Rm for
some constant τ > 0 depending only on f ;

(ii) for any t ∈ [0,∞) the function f (t, ·, ·) : Rn × Rm → R1 is strictly convex;
(iii) the function f is bounded on any bounded subset of [0,∞) × Rn × Rm ;
(iv) f (t, x, u) → ∞ as |x | → ∞ uniformly in (t, u) ∈ [0,∞) × Rm ;
(v) f (t, x, u)|u|−1 → ∞ as |u| → ∞ uniformly in (t, x) ∈ [0,∞) × Rn .

Assumption (A) implies that f is bounded below on [0,∞) × Rn × Rm .
Let T2 > T1 ≥ 0. A pair of an absolutely continuous (a.c.) function

x : [T1, T2] → Rn and a Lebesgue measurable function u : [T1, T2] → Rm is called
an (A, B)-trajectory-control pair if for almost every (a. e.) t ∈ [T1, T2] (1.1) holds.
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Denote by X (A, B, T1, T2) the set of all (A, B)-trajectory-control pairs
x : [T1, T2] → Rn , u : [T1, T2] → Rm .

Let J = [a,∞) be an infinite closed subinterval of [0,∞). A pair of func-
tions x : J → Rn and u : J → Rm is called an (A, B)-trajectory-control pair if it
is an (A, B)-trajectory-control pair on any bounded closed subinterval of J . Denote
by X (A, B, a,∞) the set of all (A, B)-trajectory-control pairs x : J → Rn , u :
J → Rm .

In Chap.2 of [26] we study the structure of approximate optimal trajectories of the
linear control system (1.1) with the integrand f and show that the turnpike property
holds. To have this property means, roughly speaking, that the approximate optimal
trajectories on sufficiently large intervals are determined mainly by the integrand,
and are essentially independent of the choice of time intervals and data, except in
regions close to the endpoints of the time intervals. In Chap.2 of [26] we also show
the stability of the turnpike phenomenon under small perturbations of the integrand
and study the structure of approximate optimal trajectories in regions close to the
endpoints of the time intervals.

More precisely, in Chap.2 of [26] we consider the following optimal control
problems

I f (0, T, x, u) → min, (P1)

(x, u) ∈ X (A, B, 0, T ) such that x(0) = y, x(T ) = z,

I f (0, T, x, u) → min, (P2)

(x, u) ∈ X (A, B, 0, T ) such that x(0) = y,

I f (0, T, x, u) → min, (P3)

(x, u) ∈ X (A, B, 0, T ),

where y, z ∈ Rn and T > 0. The study of these problems is based on the properties
of solutions of the corresponding infinite horizon optimal control problem associated
with the control system (1.1) and the integrand f .

In [28] we were interested in a turnpike property of the approximate solutions
of problems (P2). In Chap.2 of [26] we established the turnpike property of the
approximate solutions of problems (P1) and (P3), showed the stability of the turnpike
phenomenon under small perturbations of the integrand f and studied the structure
of approximate optimal trajectories in regions close to the endpoints of the time
intervals.

For the problems (P2) and (P3) we showed that in regions close to the right
endpoint T of the time interval these approximate solutions are determined only by
the integrand, and are essentially independent of the choice of the interval and the
endpoint value y. For the problems (P3), approximate solutions are determined only
by the integrand also in regions close to the left endpoint 0 of the time interval.
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The following result was obtained in [28] (see also Chap.6 of [22] and Chap.2
of [26]).

Proposition 1 There exists (x f , u f ) ∈ X (A, B, 0, τ ) which is the unique solution
of the following minimization problem

I f (0, τ , x, u) → min, (x, u) ∈ X (A, B, 0, τ ) such that x(0) = x(τ ).

Let a trajectory-control pair (x f , u f ) ∈ X (A, B, 0, τ ) be as guaranteed by
Proposition 1. Put

μ( f ) = τ−1 I f (0, τ , x f , u f ). (1.3)

The following results were obtained in [28] (see also Chap.6 of [22] and Chap.2
of [26]).

Theorem 1 For any (x, u) ∈ X (A, B, 0,∞) either

(i) I f (0, T, x, u) − Tμ( f ) → ∞ as T → ∞

or (ii) sup{|I f (0, T, x, u) − Tμ( f )| : T > 0} < ∞.

Moreover, if relation (ii) holds, then

sup{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} → 0 as i → ∞, where i ∈ Z.

We say that (x, u) ∈ X (A, B, 0,∞) is ( f, A, B)-good [22, 25, 26] if

sup{|I f (0, T, x, u) − Tμ( f )| : T > 0} < ∞.

The second statement of Theorem 1 describes the asymptotic behavior of ( f, A, B)-
good trajectory-control pairs, shows that the corresponding infinite horizon optimal
control problem has the turnpike property and that the function x f is its turnpike.

We say that (x̃, ũ) ∈ X (A, B, 0,∞) is ( f, A, B)-overtaking optimal [22, 25, 26]
if for each (x, u) ∈ X (A, B, 0,∞) satisfying x(0) = x̃(0),

lim sup
T→∞

[I f (0, T, x̃, ũ) − I f (0, T, x, u)] ≤ 0.

Theorem 2 Let x0 ∈ Rn. Then there is an ( f, A, B)-overtaking optimal trajecto-
ry-control pair (x̃, ũ) ∈ X (A, B, 0,∞) satisfying x̃(0) = x0. Moreover, if (x, u) ∈
X (A, B, 0,∞) \ {(x̃, ũ)} satisfies x(0) = x0, then there are T0 > 0 and ε > 0 such
that

I f (0, T, x, u) ≥ I f (0, T, x̃, ũ) + ε for all T ≥ T0.

The next result describes the limit behavior of overtaking optimal trajectories.
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Theorem 3 Let M, ε > 0. Then there exists a natural number N such that for any
( f, A, B)-overtaking optimal trajectory-control pair (x, u) ∈ X (A, B, 0,∞) which
satisfies |x(0)| ≤ M the relation

sup{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} ≤ ε (1.4)

holds for all integers i ≥ N.Moreover, there exists δ > 0 such that for any ( f, A, B)-
overtakingoptimal trajectory-control pair (x, u) ∈ X (A, B, 0,∞) satisfying |x(0) −
x f (0)| ≤ δ, the relation (1.4) holds for all integers i ≥ 0.

Let T > 0 and y, z ∈ Rn . Set

σ( f, y, z, T ) = inf{I f (0, T, x, u) :

(x, u) ∈ X (A, B, 0, T ) and x(0) = y, x(T ) = z}, (1.5)

σ( f, y, T ) = inf{I f (0, T, x, u) : (x, u) ∈ X (A, B, 0, T ) and x(0) = y}, (1.6)

σ̂( f, z, T ) = inf{I f (0, T, x, u) : (x, u) ∈ X (A, B, 0, T ) and x(T ) = z}, (1.7)

σ( f, T ) = inf{I f (0, T, x, u) : (x, u) ∈ X (A, B, 0, T )}. (1.8)

It follows from assumption (A) and Proposition 2.28 of [26] that

−∞ < σ( f, y, z, T ),σ( f, y, T ), σ̂( f, z, T ),σ( f, T ) < ∞.

The next theorem establishes the turnpike property for approximate solutions of
problems (P2) with the turnpike x f (·).
Theorem 4 Let M, ε > 0. Then there exist an integer N ≥ 1 and δ > 0 such that
for each T > 2Nτ and each (x, u) ∈ X (A, B, 0, T ) which satisfies

|x(0)| ≤ M, I f (0, T, x, u) ≤ σ( f, x(0), T ) + δ

the inequality
sup{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} ≤ ε (1.9)

holds for all integers i ∈ [N , τ−1T − N ]. Moreover if |x(0) − x f (0)| ≤ δ, then
inequality (1.9) holds for all integers i ∈ [0, τ−1T − N ].

Theorems 1–4 were obtained in [28] (see also Chap.6 of [22]). Note that under
assumptions of Theorem 4, if |x(�τ−1T 	τ ) − x f (0)| ≤ δ, then inequality (1.9) holds
for all integers i ∈ [N , τ−1T − 1].

The next two results obtained in Chap.2 of [26] establish the turnpike property
for approximate solutions of problems (P1) and (P3) respectively with the turnpike
x f (·).
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Theorem 5 Let M, ε > 0. Then there exist an integer N ≥ 1 and δ > 0 such that
for each T > 2Nτ and each (x, u) ∈ X (A, B, 0, T ) which satisfies

|x(0)|, |x(T )| ≤ M, I f (0, T, x, u) ≤ σ( f, x(0), x(T ), T ) + δ

inequality (1.9) holds for all integers i ∈ [N , τ−1T − N ]. Moreover if |x(0) −
x f (0)| ≤ δ, then inequality (1.9) holds for all integers i ∈ [0, τ−1T − N ] and if
|x(�τ−1T 	τ ) − x f (0)| ≤ δ, then inequality (1.9) holds for all integers i ∈ [N , τ−1T −
1].
Theorem 6 Let ε > 0. Then there exist an integer N ≥ 1 and δ > 0 such that for
each T > 2Nτ and each (x, u) ∈ X (A, B, 0, T ) which satisfies

I f (0, T, x, u) ≤ σ( f, T ) + δ

inequality (1.9) holds for all integers i ∈ [N , τ−1T − N ]. Moreover if |x(0) −
x f (0)| ≤ δ, then inequality (1.9) holds for all integers i ∈ [0, τ−1T − N ] and if
|x(�τ−1T 	τ ) − x f (0)| ≤ δ, then inequality (1.9) holds for all integers i ∈ [N , τ−1T −
1].

Theorems 4–6 are partial cases of Theorem 2.13 of [26]. The next theorem estab-
lishes a weak version of the turnpike property for approximate solutions of problems
(P1), (P2) and (P3) with the turnpike x f (·).
Theorem 7 Let ε, M0, M1 > 0. Then there exist natural numbers Q, l such that for
each T > Qlτ and each (x, u) ∈ X (A, B, 0, T ) which satisfies at least one of the
following conditions below

|x(0)|, |x(T )| ≤ M0, I f (0, T, x, u) ≤ σ( f, x(0), x(T ), T ) + M1;
|x(0)| ≤ M0, I f (0, T, x, u) ≤ σ( f, x(0), T ) + M1;
I f (0, T, x, u) ≤ σ( f, T ) + M1

there exist strictly increasing sequences of nonnegative integers

{ai }qi=1, {bi }qi=1 ⊂ [0, τ−1T ]

such that q ≤ Q,
0 ≤ bi − ai ≤ l for all i = 1, . . . , q,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that for each integer i ∈
[0, τ−1T − 1] \ ∪q

j=1[a j , b j ],

|x(iτ + t) − x f (t)| ≤ ε, t ∈ [0, τ ].

Theorem 7 is a partial case of Theorem 2.14 of [26], a stability result.
We say that (x, u) ∈ X (A, B, 0,∞) is ( f, A, B)-minimal [3, 25, 26] if for each

T > 0,
I f (0, T, x, u) = σ( f, x(0), x(T ), T ). (1.10)
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The next result which is proved in Sect. 2.5 of [26] shows the equivalence of the
optimality criterions introduced above.

Theorem 8 Assume that (x, u) ∈ X (A, B, 0,∞). Then the following conditions are
equivalent:

(i) (x, u) is ( f, A, B)-overtaking optimal; (ii) (x, u) is ( f, A, B)-minimal and
( f, A, B)-good; (iii) (x, u) is ( f, A, B)-minimal and

max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} → 0 as integers i → ∞;

(iv) (x, u) is ( f, A, B)-minimal and lim inf t→∞ |x(t)| < ∞.

The following result is also proved in Sect. 2.5 of [26]. It shows that if the integrand
f does not depend on the variable t , then x f (·) is a constant function.
Theorem 9 Assume that for each x ∈ Rn, each u ∈ Rm and each t1, t2 ≥ 0,
f (t1, x, u) = f (t2, x, u). Then x f (t) = x f (0) for all t ∈ [0, τ ] and x f (0) does not
depend of τ .

Corollary 1 Assume that for each x ∈ Rn, each u ∈ Rm and each t1, t2 ≥ 0,
f (t1, x, u) = f (t2, x, u). Then for all t ∈ [0, τ ], x f (t) = x∗ and u f (t) = u∗ where
(x∗, u∗) ∈ Rn × Rm is a unique solution of the minimization problem

f (x, u) → min, (x, u) ∈ Rn × Rm, Ax + Bu = 0.

Note that autonomous integrands are used in order to determine an objective
function in models of economic growth with a technology which does not depend on
time. Nonautonomous periodic integrand can be used formodels of economic growth
with a time-depending technology under corresponding periodicity assumptions.
This periodicity can occur if one take into account that every technology has several
steps of developments and usage.

2 Stability of the Turnpike Phenomenon

In this section we state Theorems 2.12–2.14 of [26] which show that the turnpike
phenomenon is stable under small perturbations of the integrand f . We use the
notation, definitions and assumptions introduced in Sect. 1.

Recall that f : [0,∞) × Rn × Rm → R1 is a Borel measurable function satisfy-
ing assumption (A). Let a > 0 and ψ : [0,∞) → [0,∞) be an increasing function
such that

lim
t→∞ ψ(t) = ∞. (2.1)
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We suppose that for all (t, x, u) ∈ [0,∞) × Rn × Rm ,

f (t, x, u) ≥ max{ψ(|x |), ψ(|u|)|u|} − a. (2.2)

Denote byM the set of all Borelmeasurable functions g : [0,∞) × Rn × Rm → R1

which are bounded on all bounded subsets of [0,∞) × Rn × Rm and such that for
all (t, x, u) ∈ [0,∞) × Rn × Rm ,

g(t, x, u) ≥ max{ψ(|x |), ψ(|u|)|u|} − a. (2.3)

For the setM we consider the uniformity which is determined by the following base:

E(N , ε,λ) = {(g1, g2) ∈ M × M : |g1(t, x, u) − g2(t, x, u)| ≤ ε for each t ≥ 0,

each x ∈ Rn satisfying |x | ≤ N and each u ∈ Rm satisfying |u| ≤ N }

∩{(g1, g2) ∈ M × M : (|g1(t, x, u)| + 1)(|g2(t, x, u)| + 1)−1 ∈ [λ−1,λ]

for each t ≥ 0, each x ∈ Rn satisfying |x | ≤ N and each u ∈ Rm}, (2.4)

where N > 0, ε > 0, λ > 1. It is not difficult to see that the space M with this
uniformity is metrizable and complete.

Let T2 > T1 ≥ 0, y, z ∈ Rn and g ∈ M . For each pair of Lebesgue measurable
functions x : [T1, T2] → Rn , u : [T1, T2] → Rm set

I g(T1, T2, x, u) =
∫ T2

T1

g(t, x(t), u(t))dt (2.5)

and set
σ(g, y, z, T1, T2) = inf{I g(T1, T2, x, u) :

(x, u) ∈ X (A, B, T1, T2) and x(T1) = y, x(T2) = z}, (2.6)

σ(g, y, T1, T2) = inf{I g(T1, T2, x, u) :

(x, u) ∈ X (A, B, T1, T2) and x(T1) = y}, (2.7)

σ̂(g, z, T1, T2) = inf{I g(T1, T2, x, u) :

(x, u) ∈ X (A, B, T1, T2) and x(T2) = z}, (2.8)

σ(g, T1, T2) = inf{I g(T1, T2, x, u) : (x, u) ∈ X (A, B, T1, T2)}. (2.9)
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Since any g ∈ M is bounded on all the bounded subsets of [0,∞) × Rn × Rm it
follows from Proposition 2.28 of [26] and (2.3) that all the values defined above are
finite.

In Chap.2 of [26] we proved the following three stability results.

Theorem 10 Let ε, M > 0. Then there exist an integer L0 ≥ 1 and δ0 > 0 such that
for each integer L1 ≥ L0 there exists a neighborhood U of f in M such that the
following assertion holds.

Assume that T > 2L1τ , g ∈ U , (x, u) ∈ X (A, B, 0, T ) and that a finite sequence
of integers {Si }qi=0 satisfy

S0 = 0, Si+1 − Si ∈ [L0, L1], i = 0, . . . , q − 1, Sqτ ∈ (T − L1τ , T ], (2.10)

I g(Siτ , Si+1τ , x, u) ≤ (Si+1 − Si )τμ( f ) + M

for each integer i ∈ [0, q − 1],

I g(Siτ , Si+2τ , x, u) ≤ σ(g, x(Siτ ), x(Si+2τ ), Siτ , Si+2τ ) + δ0

for each nonnegative integer i ≤ q − 2 and

I g(Sq−2τ , T, x, u) ≤ σ(g, x(Sq−2τ ), x(T ), Sq−2τ , T ) + δ0.

Then there exist integers p1, p2 ∈ [0, τ−1T ] such that p1 ≤ p2, p1 ≤ 2L0, p2 >

τ−1T − 2L1 and that for all integers i = p1, . . . , p2 − 1,

max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} ≤ ε.

Moreover if |x(0) − x f (0)| ≤ δ0, then p1 = 0 and if |x(�τ−1T 	τ ) − x f (0)| ≤ δ0,
then p2 = [τ−1T ].
Theorem 11 Let ε ∈ (0, 1), M0, M1 > 0. Then there exist an integer L ≥ 1, δ ∈
(0, ε) and a neighborhood U of f inM such that for each T > 2Lτ , each g ∈ U
and each (x, u) ∈ X (A, B, 0, T ) which satisfies for each S ∈ [0, T − Lτ ],

I g(S, S + Lτ , x, u) ≤ σ(g, x(S), x(S + Lτ ), S, S + Lτ ) + δ

and satisfies at least one of the following conditions below

(a) |x(0)|, |x(T )| ≤ M0, I g(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) + M1;
(b) |x(0)| ≤ M0, I g(0, T, x, u) ≤ σ(g, x(0), 0, T ) + M1;
(c) I g(0, T, x, u) ≤ σ(g, 0, T ) + M1

there exist integers p1 ∈ [0, L], p2 ∈ [�τ−1T 	 − L , τ−1T ] such that for all integers
i = p1, . . . , p2 − 1,

|x(iτ + t) − x f (t)| ≤ ε for all t ∈ [0, τ ].
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Moreover if |x(0) − x f (0)| ≤ δ, then p1 = 0 and if |x(�τ−1T 	τ ) − x f (0)| ≤ δ, then
p2 = �τ−1T 	.

Denote by Card(A) the cardinality of the set A.

Theorem 12 Let ε ∈ (0, 1), M0, M1 > 0. Then there are an integer L ≥ 1 and a
neighborhood U of f inM such that for each T > Lτ , each g ∈ U and each

(x, u) ∈ X (A, B, 0, T )

which satisfies at least one of the following conditions below
(a) |x(0)|, |x(T )| ≤ M0, I g(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) + M1;
(b) |x(0)| ≤ M0, I g(0, T, x, u) ≤ σ(g, x(0), 0, T ) + M1;
(c) I g(0, T, x, u) ≤ σ(g, 0, T ) + M1

the following inequality holds:
Card({i ∈ {0, . . . , �τ−1T 	 − 1} :
max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > ε}) ≤ L .

3 Structure of Solutions in the Regions Close
to the End Points

In this section we state results obtained in [26] which describe the structure of solu-
tions of problems (P1), (P2) and (P3) in the regions close to the end points. Combined
with the turnpike results of Sect. 2 they provide the full description of the structure
of their solutions. We use the notation, definitions and assumptions introduced in
Sects. 1 and 2.

By Theorem 2 for each z ∈ Rn there exists a unique ( f, A, B)-overtaking optimal
pair (ξ(z), η(z)) ∈ X (A, B, 0,∞) such that ξ(z)(0) = z. Let z ∈ Rn . Set

π f (z) = lim inf
T→∞, T∈Z

[I f (0, T τ , ξ(z), η(z)) − T τμ( f )]. (3.1)

In view of Theorems 1, 2 and 8, π f (z) is a finite number. Definition (3.1) and the
definition of ( f, A, B)-overtaking optimal pairs imply the following result.

Proposition 2 1. Let (x, u) ∈ X (A, B, 0,∞) be ( f, A, B)-good. Then

π f (x(0)) ≤ lim inf
T→∞, T∈Z

[I f (0, T τ , x, u) − T τμ( f )]

and for each pair of integers S > T ≥ 0,

π f (x(T τ )) ≤ I f (T τ , Sτ , x, u) − (S − T )τμ( f ) + π f (x(Sτ )). (3.2)

2. Let S > T ≥ 0 be integers and (x, u) ∈ X (A, B, T τ , Sτ ). Then (3.2) holds.
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The next result follows from definition (3.1).

Proposition 3 Let (x, u) ∈ X (A, B, 0,∞) be ( f, A, B)-overtaking optimal. Then
for each pair of integers S > T ≥ 0,

π f (x(T τ )) = I f (T τ , Sτ , x, u) − (S − T )τμ( f ) + π f (x(Sτ )).

Theorems 2–4 and (3.1), (1.3) imply the following result.

Proposition 4 π f (x f (0)) = 0.

The following result is proved in Chap.2 of [26].

Proposition 5 The function π f is continuous at x f (0).

Proposition 6 Let (x, u) ∈ X (A, B, 0,∞) be ( f, A, B)-overtaking optimal. Then

π f (x(0)) = lim
T→∞, T∈Z

[I f (0, T τ , x, u) − T τμ( f )].

Proposition 7 The function π f is strictly convex and continuous.

Proposition 8 For each M > 0 the set {x ∈ Rn : π f (x) ≤ M} is bounded.
Set

inf(π f ) = inf{π f (z) : z ∈ Rn}. (3.3)

By Propositions 7 and 8, inf(π f ) is finite and there exists a unique θ f ∈ Rn such that
π f (θ f ) = inf(π f ).

Proposition 9 Let (x, u) ∈ X (A, B, 0,∞) be ( f, A, B)-good such that for all inte-
gers T > 0,

I f (0, T τ , x, u) − T τμ( f ) = π f (x(0)) − π f (x(T τ )).

Then (x, u) ∈ X (A, B, 0,∞) is ( f, A, B)-overtaking optimal.

Consider a linear control system

x ′(t) = −Ax(t) − Bu(t), x(0) = x0

which is also controllable. There exists a Borel measurable function f̄ : [0,∞) ×
Rn × Rm → R1 such that for all (x, u) ∈ Rn × Rm ,

f̄ (t + τ , x, u) = f̄ (t, x, u) for all t ≥ 0,

f̄ (t, x, u) = f (τ − t, x, u) for all t ∈ [0, τ ]. (3.4)

Evidently, f̄ satisfies assumption (A). For f̄ we use all the notation and definitions
introduced for f . It is clear that all the results obtained for the triplet ( f, A, B) also
hold for the triplet ( f̄ ,−A,−B).
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Assume that integers S2 > S1 ≥ 0 and that (x, u) ∈ X (A, B, S1τ , S2τ ). For all
t ∈ [S1τ , S2τ ] set

x̄(t) = x(S2τ − t + S1τ ), ū(t) = u(S2τ − t + S1τ ). (3.5)

In view of (3.5) for a. e. t ∈ [S1τ , S2τ ],

x̄ ′(t) = −x ′(S2τ − t + S1τ ) = −Ax(S2τ − t + S1τ ) − Bu(S2τ − t + S1τ )

= −Ax̄(t) − Bū(t)

and (x̄, ū) ∈ X (−A,−B, S1τ , S2τ ). By (3.4) and (3.5),

∫ S2τ

S1τ
f̄ (t, x̄(t), ū(t))dt =

∫ S2τ

S1τ
f̄ (t, x(S2τ − t + S1τ ), u(S2τ − t + S1τ ))dt

=
∫ S2τ

S1τ
f (S2τ − t + S1τ , x(S2τ − t + S1τ ), u(S2τ − t + S1τ ))dt

=
∫ S2τ

S1τ
f (t, x(t), u(t))dt. (3.6)

For each pair T2 > T1 ≥ 0 and each (x, u) ∈ X (−A,−B, T1, T2) set

I f̄ (T1, T2, x, u) =
∫ T2

T1

f̄ (t, x(t), u(t))dt.

For each y, z ∈ Rn and each T > 0 set

σ−( f̄ , y, z, T ) = inf{I f̄ (0, T, x, u) :

(x, u) ∈ X (−A,−B, 0, T ) and x(0) = y, x(T ) = z},

σ−( f̄ , y, T ) = inf{I f̄ (0, T, x, u) : (x, u) ∈ X (−A,−B, 0, T ) and x(0) = y},

σ̂−( f̄ , z, T ) = inf{I f̄ (0, T, x, u) : (x, u) ∈ X (−A,−B, 0, T ) and x(T ) = z},

σ−( f̄ , T ) = inf{I f̄ (0, T, x, u) : (x, u) ∈ X (−A,−B, 0, T )}. (3.7)

Relations (3.5) and (3.6) imply the following result.

Proposition 10 Let S2 > S1 ≥ 0 be integers, M ≥ 0 and that

(xi , ui ) ∈ X (A, B, S1τ , S2τ ), i = 1, 2.
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Then I f (S1τ , S2τ , x1, u1) ≥ I f (S1τ , S2τ , x2, u2) − M if and only if

I f̄ (S1τ , S2τ , x̄1, ū1) ≥ I f̄ (S1τ , S2τ , x̄2, ū2) − M.

Proposition 10 implies the following result.

Proposition 11 Let S2 > S1 ≥ 0 be integers and

(x, u) ∈ X (A, B, S1τ , S2τ ).

Then the following assertion holds:

I f (S1τ , S2τ , x, u) ≤ σ( f, (S2 − S1)τ ) + M

if and only if I f̄ (S1τ , S2τ , x̄, ū) ≤ σ−( f̄ , (S2 − S1)τ ) + M;

I f (S1τ , S2τ , x, u) ≤ σ( f, x(S1τ ), x(S2τ ), (S2 − S1)τ ) + M

if and only if I f̄ (S1τ , S2τ , x̄, ū) ≤ σ−( f̄ , x̄(S1τ ), x̄(S2τ ), (S2 − S1)τ ) + M;

I f (S1τ , S2τ , x, u) ≤ σ( f, x(S1τ ), (S2 − S1)τ ) + M

if and only if I f̄ (S1τ , S2τ , x̄, ū) ≤ σ̂−( f̄ , x̄(S2τ ), (S2 − S1)τ ) + M;

I f (S1τ , S2τ , x, u) ≤ σ̂( f, x(S2τ ), (S2 − S1)τ ) + M

if and only if I f̄ (S1τ , S2τ , x̄, ū) ≤ σ−( f̄ , x̄(S1τ ), (S2 − S1)τ ) + M.

By Proposition 1, (x f , u f ) ∈ X (A, B, 0, τ ) is the unique solution of the mini-
mization problem

I f (0, τ , x, u) → min, (x, u) ∈ X (A, B, 0, τ ) such that x(0) = x(τ ).

Analogously there exists (x f̄ , u f̄ ) ∈ X (−A,−B, 0, τ ) which is the unique solution
of the minimization problem

I f̄ (0, τ , x, u) → min, (x, u) ∈ X (−A,−B, 0, τ ) such that x(0) = x(τ ).

In view of Proposition 10 and (3.6), for all t ∈ [0, τ ],

x f̄ (t) = x f (τ − t), u f̄ (t) = u f (τ − t), μ( f̄ ) = μ( f ). (3.8)
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For each z ∈ Rn , set

π f̄ (z) = lim inf
T→∞, T∈Z

[I f̄ (0, T τ , x, u) − T τμ( f )], (3.9)

where (x, u) ∈ X (−A,−B, 0,∞) is the unique ( f̄ ,−A,−B)-overtaking optimal
pair such that x(0) = z. Let (x∗, u∗) ∈ X (A, B, 0,∞) be the unique ( f, A, B)-
overtaking optimal pair such that π f (x∗(0)) = inf(π f ) and

(x̄∗, ū∗) ∈ X (−A,−B, 0,∞)

be the unique ( f̄ ,−A,−B)-overtaking optimal pair such that

π f̄ (x̄∗(0)) = inf(π f̄ ).

The following three theorems obtained in Chap.2 of [26] describe the structure
of solutions of problems (P1), (P2) and (P3) in the regions closed to the end points.

Theorem 13 Let L0 > 0 be an integer, ε ∈ (0, 1), M > 0. Then there exist δ > 0,
a neighborhood U of f in M and an integer L1 > L0 such that for each integer
T ≥ L1, each g ∈ U and each (x, u) ∈ X (A, B, 0, T τ ) which satisfies

|x(0)| ≤ M, I g(0, T τ , x, u) ≤ σ(g, x(0), 0, T τ ) + δ

the following inequality holds:

|x(T τ − t) − x̄∗(t)| ≤ ε for all t ∈ [0, L0τ ].

Theorem 14 Let L0 > 0 be an integer, ε > 0. Then there exist δ > 0, a neighbor-
hoodU of f inM and an integer L1 > L0 such that for each integer T ≥ L1, each
g ∈ U and each (x, u) ∈ X (A, B, 0, T τ ) which satisfies

I g(0, T τ , x, u) ≤ σ(g, 0, T τ ) + δ

the following inequalities hold for all t ∈ [0, L0τ ]:

|x(T τ − t) − x̄∗(t)| ≤ ε, |x(t) − x∗(t)| ≤ ε.

Theorem 15 Let L0 > 0 be an integer, ε > 0, M0 > 0. Then there exist δ > 0, a
neighborhood U of f in M and an integer L1 > L0 such that for each integer
T ≥ L1, each g ∈ U and each (x, u) ∈ X (A, B, 0, T τ ) which satisfies

|x(0)|, |x(T τ )| ≤ M0, I g(0, T τ , x, u) ≤ σ(g, x(0), x(T τ ), 0, T τ ) + δ
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the inequalities
|x(T τ − t) − ξ̄(t)| ≤ ε, |x(t) − ξ(t)| ≤ ε

hold for all t ∈ [0, L0τ ], where (ξ, η) ∈ X (A, B, 0,∞) is the unique ( f, A, B)-
overtaking optimal pair such that ξ(0) = x(0) and

(ξ̄, η̄) ∈ X (−A,−B, 0,∞)

is the unique ( f̄ ,−A,−B)-overtaking optimal pair such that ξ̄(0) = x(T τ ).

4 Bolza Optimal Control Problems

Weuse the notation, definitions and assumptions introduced in Sects. 1–3. Recall that
f : [0,∞) × Rn × Rm → R1 is a Borel measurable function which satisfy assump-
tions (A). Let a > 0 and ψ : [0,∞) → [0,∞) be an increasing function such that

lim
t→∞ ψ(t) = ∞. (4.1)

We suppose that for all (t, x, u) ∈ [0,∞) × Rn × Rm ,

f (t, x, u) ≥ max{ψ(|x |), ψ(|u|)|u|} − a. (4.2)

We consider the complete metric space of Borel measurable functionsM introduced
in Sect. 2.

Let a1 > 0 and k ≥ 1 be an integer. Denote by Ak the set of all lower semicon-
tinuous functions h : Rk → R1 which are bounded on bounded subsets of Rk and
satisfy

h(z) ≥ −a1 for all z ∈ Rk . (4.3)

We equip the set Ak with the uniformity which is determined by the following base:

Ek(N , ε) = {(h1, h2) ∈ Ak × Ak : |h1(z) − h2(z)| ≤ ε

for each z ∈ Rk satisfying |z| ≤ N }, (4.4)

where N > 0, ε > 0. It is not difficult to see that the uniform space Ak is metrizable
and complete.

Let g ∈ M , h, ξ ∈ An , H ∈ A2n , y ∈ Rn and∞ > T2 > T1 ≥ 0.We consider the
following optimal control problems
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I g(T1, T2, x, u) + h(x(T2)) → min,

(x, u) ∈ X (A, B, T1, T2) such that x(T1) = y

and
I g(T1, T2, x, u) + H(x(T1), x(T2)) → min,

(x, u) ∈ X (A, B, T1, T2)

and define
σ(g, h, y, T1, T2) = inf{I g(T1, T2, x, u) + h(x(T2)) :

(x, u) ∈ X (A, B, T1, T2) and x(T1) = y}, (4.5)

σ̂(g, ξ, z, T1, T2) = inf{I g(T1, T2, x, u) + ξ(x(T1)) :

(x, u) ∈ X (A, B, T1, T2) and x(T2) = z}, (4.6)

σ(g, h, ξ, T1, T2) = inf{I g(T1, T2, x, u) + h(x(T2)) + ξ(x(T1)) :

(x, u) ∈ X (A, B, T1, T2)}, (4.7)

σ(g, H, T1, T2) = inf{I g(T1, T2, x, u) + H(x(T1), x(T2)) :

(x, u) ∈ X (A, B, T1, T2)}. (4.8)

Since every g ∈ M and every h ∈ Ak , k = n, 2n are bounded on bounded sets it
follows from Proposition 2.28 of [26], (2.3) and (4.3) that all the values defined
above are finite. Set

M∗ = max{sup{|x∗(t)| : t ∈ [0,∞)}, sup{|x̄∗(t)| : t ∈ [0,∞)}. (4.9)

Weprove the following turnpike results for ourBolza optimal control problemswhich
show that the turnpike phenomenon, for approximate solutions on large intervals, is
stable under small perturbations of the objective functions. In Theorems 16 and 17
we consider problems on intervals [0, T τ ] where T is a natural number while in
Theorems 18 and 19 the Bolza problems are considered on intervals [0, T ], where
T is a sufficiently large positive number.

Theorem 16 Let ε ∈ (0, 1), M0, M1, M2 > 0. Then there exist an integer L ≥ 1
and a neighborhood U of f in M such that for each integer T > L, each g ∈ U ,
each h ∈ An and each ξ ∈ A2n which satisfy

h(z) ≤ M2 for all z ∈ Rn satisfying |z| ≤ M∗ + 1, (4.10)
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ξ(z) ≤ M2 for all z = (z1, z2) ∈ Rn × Rn satisfying |zi | ≤ M∗ + 1, i = 1, 2
(4.11)

and each (x, u) ∈ X (A, B, 0, T τ ) which satisfies at least one of the following con-
ditions below

(a) |x(0)| ≤ M0,

I g(0, T τ , x, u) + h(x(T τ )) ≤ σ(g, h, x(0), 0, T τ ) + M1;

(b) I g(0, T τ , x, u) + ξ(x(0), x(T τ )) ≤ σ(g, ξ, 0, T τ ) + M1

the following inequality holds:

Card({i ∈ {0, . . . , T − 1} : max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > ε}) ≤ L .

Theorem 17 Let ε ∈ (0, 1), M0, M1, M2 > 0. Then there exist an integer L ≥ 1,
δ ∈ (0, ε) and a neighborhood U of f in M such that for each integer T > 2L,
each g ∈ U , each h ∈ An and each ξ ∈ A2n which satisfy

h(z) ≤ M2 for all z ∈ Rn satisfying |z| ≤ M∗ + 1,

ξ(z) ≤ M2 for all z = (z1, z2) ∈ Rn × Rn satisfying |zi | ≤ M∗ + 1, i = 1, 2

and each (x, u) ∈ X (A, B, 0, T τ ) which satisfies for each S ∈ [0, T τ − Lτ ],

I g(S, S + Lτ , x, u) ≤ σ(g, x(S), x(S + Lτ ), S, S + Lτ ) + δ

and satisfies at least one of the following conditions below

(a) |x(0)| ≤ M0,

I g(0, T τ , x, u) + h(x(T τ )) ≤ σ(g, h, x(0), 0, T τ ) + M1;

(b) I g(0, T τ , x, u) + ξ(x(0), x(T τ )) ≤ σ(g, ξ, 0, T τ ) + M1

there exist integers p1 ∈ [0, L], p2 ∈ [T − L , T ] such that for all integers i =
p1, . . . , p2 − 1,

|x(iτ + t) − x f (t)| ≤ ε for all t ∈ [0, τ ].

Moreover if |x(0) − x f (0)| ≤ δ, then p1 = 0 and if |x(T τ ) − x f (0)| ≤ δ, then
p2 = T .

Theorem 18 Let ε ∈ (0, 1), M0, M1 > 0. Then there exists M̃ > 0 such that for
each M2 > 0 there exist an integer L ≥ 1 and a neighborhood U of f in M such
that for each T > Lτ , each g ∈ U , each h ∈ An which satisfies



116 A.J. Zaslavski

h(z) ≤ M2 for all z ∈ Rn satisfying |z| ≤ M̃, (4.12)

each ξ ∈ A2n which satisfy

ξ(z) ≤ M2 for all z = (z1, z2) ∈ Rn × Rn satisfying |zi | ≤ M̃, i = 1, 2 (4.13)

and each (x, u) ∈ X (A, B, 0, T ) which satisfies at least one of the following condi-
tions below

(a) |x(0)| ≤ M0,

I g(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) + M1;

(b) I g(0, T, x, u) + ξ(x(0), x(T )) ≤ σ(g, ξ, 0, T ) + M1

the following inequality holds:

Card({i ∈ {0, . . . , �τ−1T 	 − 1} :

max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > ε}) ≤ L .

Theorem 19 Let ε ∈ (0, 1), M0, M1 > 0 and M̃ be as guaranteed by Theorem 18.
Let M2 > 0. Then there exist an integer L ≥ 1, δ ∈ (0, ε) and a neighborhoodU of
f inM such that for each T > Lτ , each g ∈ U , each h ∈ An which satisfy

h(z) ≤ M2 for all z ∈ Rn satisfying |z| ≤ M̃,

each ξ ∈ A2n which satisfy

ξ(z) ≤ M2 for all z = (z1, z2) ∈ Rn × Rn satisfying |zi | ≤ M̃, i = 1, 2

and each (x, u) ∈ X (A, B, 0, T ) which satisfies for each S ∈ [0, T − Lτ ],

I g(S, S + Lτ , x, u) ≤ σ(g, x(S), x(S + Lτ ), S, S + Lτ ) + δ

and satisfies at least one of the following conditions below

(a) |x(0)| ≤ M0,

I g(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) + M1;

(b) I g(0, T, x, u) + ξ(x(0), x(T )) ≤ σ(g, ξ, 0, T ) + M1

there exist integers p1 ∈ [0, L], p2 ∈ [�τ−1T 	 − L , τ−1T ] such that for all integers
i = p1, . . . , p2 − 1,
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|x(iτ + t) − x f (t)| ≤ ε for all t ∈ [0, τ ].

Moreover if |x(0) − x f (0)| ≤ δ, then p1 = 0 and if |x(�τ−1T 	τ ) − x f (0)| ≤ δ, then
p2 = �τ−1T 	.

Let h ∈ An and ξ ∈ A2n. Define

ψξ(z1, z2) = π f (z1) + π f̄ (z2) + ξ(z1, z2), z1, z2 ∈ Rn. (4.14)

Propositions 7 and 8 imply the following results.

Proposition 12 The function π f + h is lower semicontinuous, for every M > 0 the
set {x ∈ Rn : (π f + h)(x) ≤ M} is bounded, inf(π f + h) is finite and the function
π f + h has a point of minimum.

Proposition 13 The function ψξ is lower semicontinuous, for every M > 0 the set
{(z1, z2) ∈ Rn × Rn : ψξ(z1, z2) ≤ M} is bounded and the function ψξ has a point
of minimum.

In this paperwe also prove the following two stability results for our Bolza optimal
control problems. They show that the convergence of approximate solutions on large
intervals, in the regions close to the end points, is stable under small perturbations
of the objective functions.

Theorem 20 Let L0 ≥ 1 be an integer, h ∈ An, ε ∈ (0, 1), M > 0. Then there exist
δ > 0, a neighborhood U of f inM , a neighborhood V of h in An and an integer
L1 > L0 such that for each integer T ≥ L1, each g ∈ U , each ξ ∈ V and each
(x, u) ∈ X (A, B, 0, T τ ) which satisfies

|x(0)| ≤ M,

I g(0, T τ , x, u) + ξ(x(T τ )) ≤ σ(g, ξ, x(0), 0, T τ ) + δ

there exists an ( f̄ ,−A,−B)-overtaking optimal pair

(x̄h, ūh) ∈ X (−A,−B, 0,∞)

such that
(π f̄ + h)(x̄h(0)) = inf(π f̄ + h),

|x(T τ − t) − x̄h(t)| ≤ ε for all t ∈ [0, L0τ ].

Theorem 21 Let L0 ≥ 1 be an integer, h ∈ A2n, ε ∈ (0, 1). Then there exist δ > 0,
a neighborhood U of f in M , a neighborhood V of h in A2n and an integer
L1 > L0 such that for each integer T ≥ L1, each g ∈ U , each ξ ∈ V and each
(x, u) ∈ X (A, B, 0, T τ ) which satisfies



118 A.J. Zaslavski

I g(0, T τ , x, u) + ξ(x(0), x(T τ )) ≤ σ(g, ξ, 0, T τ ) + δ

there exist an ( f, A, B)-overtaking optimal pair (x∗, u∗) ∈ X (A, B, 0,∞) and an
( f̄ ,−A,−B)-overtaking optimal pair (x̄∗, ū∗) ∈ X (−A,−B, 0,∞) such that

ψh(x∗(0), x̄∗(0)) = inf(ψh)

and for all t ∈ [0, L0τ ],

|x(t) − x∗(t)| ≤ ε, |x(T τ − t) − x̄∗(t)| ≤ ε.

5 Auxiliary Results

In the sequel we use the following auxiliary results.

Proposition 14 (Proposition 2.35 of [26]) Let M0 > 0. Then there exists M > 0
such that for each T ≥ 3τ and each y, z ∈ Rn satisfying |y|, |z| ≤ M0,

σ( f, y, z, T ) ≤ Tμ( f ) + M.

Proposition 15 (Proposition 2.40 of [26]) Let M1 > 0, 0 < τ0 < τ1. Then there
exists M2 > 0 such that for each g ∈ M , each T2 > T1 ≥ 0 satisfying

T2 − T1 ∈ [τ0, τ1]

and each (x, u) ∈ X (A, B, T1, T2) satisfying I g(T1, T2, x, u) ≤ M1 the following
inequality holds: |x(t)| ≤ M2 for all t ∈ [T1, T2].
Proposition 16 (Proposition 2.41 of [26]) Let 0 < c1 < c2, D, ε > 0. Then there
exists a neighborhood V of f in M such that for each g ∈ V , each T2 > T1 ≥ 0
satisfying T2 − T1 ∈ [c1, c2] and each (x, u) ∈ X (A, B, T1, T2) satisfying

min{I f (T1, T2, x, u), I g(T1, T2, x, u)} ≤ D

the inequality |I f (T1, T2, x, u) − I g(T1, T2, x, u)| ≤ ε holds.

Proposition 17 (Proposition 6.2.4 of [22], Proposition 2.30 of [26]) Let M1 and
T be positive numbers and let F be the set of all (x, u) ∈ X (A, B, 0, T ) satisfying
I f (0, T, x, u) ≤ M1. Then for every sequence {(xi , ui )}∞i=1 ⊂ F there exist a subse-
quence {(xik , uik )}∞k=1 and (x, u) ∈ F such that xik (t) → x(t) as k → ∞ uniformly
in [0, T ], x ′

ik
→ x ′ as k → ∞ weakly in L1(Rn; (0, T )), and uik → u as k → ∞

weakly in L1(Rm; (0, T )).
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For each y, z ∈ Rn define

v(y, z) = inf{I f (0, τ , x, u) : (x, u) ∈ X (A, B, 0, τ )

such that x(0) = y, x(τ ) = z}. (5.1)

It was shown in Sect. 6.2 of [22] that the function v is convex, satisfies

−∞ < v(y, z) < ∞ for each y, z ∈ Rn,

v(y, z) → ∞ as |y| + |z| → ∞ (5.2)

and that there exists z f ∈ Rn such that

v(z f , z f ) < v(z, z) for all z ∈ Rn \ {z f }, (5.3)

x f (0) = z f , μ( f ) = τ−1v(z f , z f ). (5.4)

Proposition 18 (Corollary 6.2.1 of [22]) Let x1, x2 ∈ Rn. Then there is a unique
(x, u) ∈ X (A, B, 0, τ ) such that x(0) = x1, x(τ ) = x2 and I f (0, τ , x, u) =
v(x1, x2).

6 Proof of Theorem 16

By Theorems 13 and 14, there exist δ ∈ (0, 1), a neighborhood U1 of f in M and
an integer L1 > 1 such that the following properties hold:

(P1) for each integer T ≥ L1, each g ∈ U1 and each (x, u) ∈ X (A, B, 0, T τ )

which satisfies
|x(0)| ≤ M0,

I g(0, T τ , x, u) ≤ σ(g, x(0), 0, T τ ) + δ

the inequality |x(T τ − t) − x̄∗(t)| ≤ 1 holds for all t ∈ [0, τ ]:
(P2) for each integer T ≥ L1, each g ∈ U1 and each (x, u) ∈ X (A, B, 0, T τ )

which satisfies I g(0, T τ , x, u) ≤ σ(g, 0, T τ ) + δ the inequalities

|x(T τ − t) − x̄∗(t)| ≤ 1, |x(t) − x∗(t)| ≤ 1

hold for all t ∈ [0, τ ].
By Theorem 12, there exist an integer L > L1 and a neighborhood U ⊂ U1 of

f inM such that the following property holds:
(P3) for each integer T > L , each g ∈ U and each (x, u) ∈ X (A, B, 0, T τ )

which satisfies at least one of the following conditions below
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|x(0)| ≤ M0, I g(0, T τ , x, u) ≤ σ(g, x(0), 0, T τ ) + 1 + M1 + M2 + a1;

I g(0, T τ , x, u) ≤ σ(g, 0, T τ ) + 1 + M1 + 2M2 + 2a1

we have

Card({i ∈ {0, . . . , T − 1} : max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > ε}) ≤ L .

Assume that an integer
T > L , g ∈ U , (6.1)

h ∈ An , ξ ∈ A2n satisfy (4.10) and (4.11), (x, u) ∈ X (A, B, 0, T τ ) and at least one
of the conditions (a) and (b) holds. There exists (y, v) ∈ X (A, B, 0, T τ ) such that
if condition (a) holds, then

y(0) = x(0), (6.2)

I g(0, T τ , y, v) ≤ σ(g, x(0), 0, T τ ) + δ (6.3)

and if condition (b) holds, then

I g(0, T τ , y, v) ≤ σ(g, 0, T τ ) + δ. (6.4)

By (6.1)–(6.4) and properties (P1) and (P2), if condition (a) holds, then

|y(T τ − t) − x̄∗(t)| ≤ 1, t ∈ [0, τ ], (6.5)

and if condition (b) holds, then

|y(T τ − t) − x̄∗(t)| ≤ 1, |y(t) − x∗(t)| ≤ 1 (6.6)

hold for all t ∈ [0, τ ]. It follows from (4.9), (4.10), (6.5) and (6.6) that if condition
(a) holds, then

|y(T τ )| ≤ M∗ + 1, h(y(T τ )) ≤ M2 (6.7)

and if condition (b) holds, then

|y(0)|, |y(T τ )| ≤ M∗ + 1, ξ(y(0), y(T τ )) ≤ M2. (6.8)

Assume that condition (a) holds. By (4.3), (6.2), (6.3), (6.7) and condition (a),

I g(0, T τ , x, u) − a1 ≤ I g(0, T τ , x, u) + h(x(T τ ))

≤ I g(0, T τ , y, v) + h(y(T τ )) + M1 ≤ I g(0, T τ , y, v) + M1 + M2
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≤ σ(g, x(0), 0, T τ ) + 1 + M1 + M2,

I g(0, T τ , x, u) ≤ σ(g, x(0), 0, T τ ) + 1 + M1 + M2 + a1.

In view of the inequality above, (6.1), condition (a) and property (P3),

Card({i ∈ {0, . . . , T − 1} : max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > ε}) ≤ L .

(6.9)

Assume that condition (b) holds. By (4.3), (6.4), (6.8) and condition (b),

I g(0, T τ , x, u) − a1 ≤ I g(0, T τ , x, u) + ξ(x(0), x(T τ ))

≤ I g(0, T τ , y, v) + ξ(y(0), y(T τ )) + M1 ≤ I g(0, T τ , y, v) + M1 + M2

≤ σ(g, 0, T τ ) + 1 + M1 + M2,

I g(0, T τ , x, u) ≤ σ(g, 0, T τ ) + 1 + M1 + M2 + a1.

In view of the inequality above, (6.1), condition (b) and property (P3), inequality
(6.9) is true. Theorem 16 is proved.

7 Proof of Theorem 17

By Theorem 11, there exist an integer L1 ≥ 1, δ ∈ (0, ε) and a neighborhood U1 of
f inM such that the following property holds:
(P4) for each integer T > 2L1, each g ∈ U1 and each

(x, u) ∈ X (A, B, 0, T τ )

which satisfies for each S ∈ [0, T τ − L1τ ],

I g(S, S + L1τ , x, u) ≤ σ(g, x(S), x(S + L1τ ), S, S + L1τ ) + δ

and satisfies
|x(0) − x f (0)| ≤ δ, |x(T τ ) − x f (0)| ≤ δ,

I g(0, T τ , x, u) ≤ σ(g, x(0), x(T τ ), 0, T τ ) + M1

we have for all integers i = 0, . . . , T − 1,

|x(iτ + t) − x f (t)| ≤ ε for all t ∈ [0, τ ].



122 A.J. Zaslavski

By Theorem 16, there exist an integer L2 ≥ 1 and a neighborhoodU ⊂ U1 of f
inM such that the following property holds:

(P5) for each integer T > L2, each g ∈ U , each h ∈ An and each ξ ∈ A2n which
satisfy

h(z) ≤ M2 for all z ∈ Rn satisfying |z| ≤ M∗ + 1, (7.1)

ξ(z) ≤ M2 for all z = (z1, z2) ∈ Rn × Rn satisfying |zi | ≤ M∗ + 1, i = 1, 2
(7.2)

and each (x, u) ∈ X (A, B, 0, T τ ) which satisfies at least one of the following
conditions below

(a) |x(0)| ≤ M0,

I g(0, T τ , x, u) + h(x(T τ )) ≤ σ(g, h, x(0), 0, T τ ) + M1;

(b) I g(0, T τ , x, u) + ξ(x(0), x(T τ )) ≤ σ(g, ξ, 0, T τ ) + M1

we have

Card({i ∈ {0, . . . , T − 1} : max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > δ}) < L2.

Choose an integer

L ≥ 4L1 + 4L2. (7.3)

Assume that an integer

T > 2L , g ∈ U , h ∈ An, ξ ∈ A2n, (7.4)

Equations (7.1) and (7.2) hold and that (x, u) ∈ X (A, B, 0, T τ ) satisfies for each
S ∈ [0, T τ − Lτ ],

I g(S, S + Lτ , x, u) ≤ σ(g, x(S), x(S + Lτ ), S, S + Lτ ) + δ (7.5)

and satisfies at least one of the conditions (a) and (b). Together with property (P5)
this implies that there exist integers

p1 ∈ [0, L2], p2 ∈ [T − L2, T − 1] (7.6)

such that

|x(piτ ) − x f (0)| ≤ δ, i = 1, 2. (7.7)
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If |x(0) − x f (0)| ≤ δ, then we set p1 = 0 and if |x(T τ ) − x f (0)| ≤ δ, then we set
p2 = T . By (7.3)–(7.5), (7.7) and property (P4), for all integers i = p1, . . . , p2 − 1,

|x(iτ + t) − x f (t)| ≤ ε for all t ∈ [0, τ ].

Theorem 17 is proved.

8 Proof of Theorem 18

By Theorem 12, there exist an integer L0 ≥ 4 and a neighborhood U1 of f in M
such that the following property holds:

(P6) for each T > L0τ , each g ∈ U1 and each (x, u) ∈ X (A, B, 0, T ) which
satisfies at least one of the following conditions below

|x(0)| ≤ M0, I g(0, T, x, u) ≤ σ(g, x(0), 0, T ) + M1 + 2;

I g(0, T, x, u) ≤ σ(g, 0, T ) + M1 + 2

we have

Card({i ∈ {0, . . . , �τ−1T 	 − 1} :

max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > 1}) ≤ L0.

By Proposition 14, there exists M2 > 0 such that the following property holds:
(P7) for each S ≥ 3τ and each z1, z2 ∈ Rn satisfying |zi | ≤ M∗ + 2, i = 1, 2,

σ( f, z1, z2, S) ≤ Sμ( f ) + M2.

By Proposition 16, there exists a neighborhood U2 of f in M such that the
following property holds:

(P8) for each g ∈ U2, each T2 > T1 ≥ 0 satisfying T2 − T1 ∈ [L0τ , 4(L0 + 1)τ ]
and each (x, u) ∈ X (A, B, T1, T2) satisfying

min{I f (T1, T2, x, u), I g(T1, T2, x, u)} ≤ 4(L0 + 1)τ |μ( f )| + M2 + 4

we have
|I f (T1, T2, x, u) − I g(T1, T2, x, u)| ≤ 1.

By Proposition 15, there exists M̃ > 0 such that the following property holds:
(P9) for each g ∈ M , each T2 > T1 ≥ 0 satisfying

T2 − T1 ∈ [(L0 − 1)τ , 4(L0 + 1)τ ]
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and each (x, u) ∈ X (A, B, T1, T2) satisfying

I g(T1, T2, x, u) ≤ 4(L0 + 1)|μ( f )|τ + M2 + 4

we have
|x(t)| ≤ M̃ for all t ∈ [T1, T2].

Let M2 > 0. By Theorem 12, there exist an integer L > 8L0 + 4 and a neighbor-
hood U ⊂ U1 ∩ U2 of f inM such that the following property holds:

(P10) for each T > Lτ , each g ∈ U and each (x, u) ∈ X (A, B, 0, T ) which
satisfies at least one of the following conditions below

|x(0)| ≤ M0, I g(0, T, x, u) ≤ σ(g, x(0), 0, T ) + 1 + M1 + M2 + a1;

I g(0, T, x, u) ≤ σ(g, 0, T ) + M1 + 1 + 2M2 + 2a1

we have
Card({i ∈ {0, . . . , �τ−1T 	 − 1} :

max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > ε}) ≤ L .

Assume that

T > Lτ , g ∈ U , h ∈ An, ξ ∈ A2n, (8.1)

Equations (4.12) and (4.13) hold, (x, u) ∈ X (A, B, 0, T ) and at least one of the
conditions (a) and (b) of Theorem 18 holds. There exists (y, v) ∈ X (A, B, 0, T )

such that if condition (a) holds, then

y(0) = x(0), I g(0, T, y, v) ≤ σ(g, x(0), 0, T ) + 1 (8.2)

and in condition (b) holds, then

I g(0, T, y, v) ≤ σ(g, 0, T ) + 1. (8.3)

By (8.1)–(8.3), property (P6) and conditions (a) and (b) there exist

i1 ∈ {L0 − 1, . . . , 2L0 − 1}, i2 ∈ {�τ−1T 	 − 2L0 − 1, . . . , �τ−1T 	 − L0 − 1}
(8.4)

such that

|y(i1τ + t) − x f (t)| ≤ 1, |y(i2τ + t) − x f (t)| ≤ 1, t ∈ [0, τ ]. (8.5)
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It follows from (4.9) and (8.5) that

|y(i1τ )|, |y(i2τ )| ≤ M∗ + 1. (8.6)

It is not difficult to see that

I g(i2τ , T, y, v) ≤ σ(g, y(i2τ ), i2τ , T ) + 1 (8.7)

and that if the case (b) holds, then

I g(0, i1τ , y, v) ≤ σ̂(g, y(i1τ ), 0, i1τ ) + 1. (8.8)

Property (P7), (8.4) and (8.6) imply that

σ( f, y(i2τ ), 0, i2τ , T ) ≤ (T − i2τ )μ( f ) + M2 (8.9)

and
σ( f, 0, y(i1τ ), 0, i1τ ) ≤ i1τμ( f ) + M2. (8.10)

It follows from (8.1), (8.4), (8.9), (8.10) and property (P8) that

σ(g, y(i2τ ), 0, i2τ , T ) ≤ (T − i2τ )μ( f ) + M2 + 2, (8.11)

σ(g, 0, y(i1τ ), 0, i1τ ) ≤ i1τμ( f ) + M2 + 2. (8.12)

In view of (8.7), (8.8), (8.11) and (8.12),

I g(i2τ , T, y, v) ≤ (T − i2τ )μ( f ) + M2 + 3 (8.13)

and if the case (b) holds, then

I g(0, i1τ , y, v) ≤ i1τμ( f ) + M2 + 3. (8.14)

Property (P9), (8.4), (8.13) and (8.14) imply that

|y(T )| ≤ M̃ (8.15)

and if condition (b) holds, then
|y(0)| ≤ M̃ . (8.16)

Assume that condition (a) holds. By (4.3), (4.12), (8.2), (8.15) and condition (a),

I g(0, T, x, u) − a1 ≤ I g(0, T, x, u) + h(x(T ))

≤ I g(0, T, y, v) + h(y(T )) + M1 ≤ I g(0, T, y, v) + M1 + M2
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≤ σ(g, x(0), 0, T ) + 1 + M1 + M2,

I g(0, T, x, u) ≤ σ(g, x(0), 0, T ) + M1 + M2 + 1 + a1.

In view of the inequality above, (8.1), condition (a) and property (P10),

Card({i ∈ {0, . . . , �τ−1T 	 − 1} :

max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > ε}) ≤ L . (8.17)

Assume that condition (b) holds. By (4.3), (4.13), (8.3), (8.15) and (8.16),

I g(0, T, x, u) − a1 ≤ I g(0, T, x, u) + ξ(x(0), x(T ))

≤ I g(0, T, y, v) + ξ(y(0), y(T τ )) + M1 ≤ σ(g, 0, T ) + 1 + M1 + M2,

I g(0, T, x, u) ≤ σ(g, 0, T ) + 1 + M1 + M2 + a1.

In view of the inequality above, (8.1) and property (P10), inequality (8.17) is true.
Theorem 18 is proved.

9 Proof of Theorem 19

By Theorem 11, there exist an integer L1 ≥ 1, δ ∈ (0, ε) and a neighborhood U1 of
f inM such that the following property holds:
(P11) for each integer T > 2L1, each g ∈ U1 and each

(x, u) ∈ X (A, B, 0, T τ )

which satisfies for each S ∈ [0, T τ − L1τ ],

I g(S, S + L1τ , x, u) ≤ σ(g, x(S), x(S + L1τ ), S, S + L1τ ) + δ

and satisfies
|x(0) − x f (0)| ≤ δ, |x(T τ ) − x f (0)| ≤ δ,

I g(0, T τ , x, u) ≤ σ(g, x(0), x(T τ ), 0, T τ ) + M1

we have for all integers i = 0, . . . , T − 1,

|x(iτ + t) − x f (t)| ≤ ε for all t ∈ [0, τ ].
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By Theorem 18, there exist an integer L2 ≥ 1 and a neighborhoodU ⊂ U1 of f
inM such that the following property holds:

(P12) for each T > L2τ , each g ∈ U , each h ∈ An which satisfies

h(z) ≤ M2 for all z ∈ Rn satisfying |z| ≤ M̃, (9.1)

each ξ ∈ A2n which satisfy

ξ(z) ≤ M2 for all z = (z1, z2) ∈ Rn × Rn satisfying |zi | ≤ M̃, i = 1, 2 (9.2)

and each (x, u) ∈ X (A, B, 0, T ) which satisfies at least one of the following condi-
tions below

(i) |x(0)| ≤ M0,

I g(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) + M1;

(ii) I g(0, T, x, u) + ξ(x(0), x(T )) ≤ σ(g, ξ, 0, T ) + M1

the following inequality holds:

Card({i ∈ {0, . . . , �τ−1T 	 − 1} :

max{|x(iτ + t) − x f (t)| : t ∈ [0, τ ]} > δ}) ≤ L2.

Choose an integer

L ≥ 4L1 + 4L2. (9.3)

Assume that

T > Lτ , g ∈ U , h ∈ An, ξ ∈ A2n, (9.4)

Equations (9.1) and (9.2) hold and that (x, u) ∈ X (A, B, 0, T ) satisfies for each
S ∈ [0, T − Lτ ],

I g(S, S + Lτ , x, u) ≤ σ(g, x(S), x(S + Lτ ), S, S + Lτ ) + δ (9.5)

and satisfies at least one of the conditions (i) and (ii). By (9.1)–(9.4), conditions (i)
and (ii) and property (P12), there exist integers

p1 ∈ [0, L2], p2 ∈ [�τ−1T 	 − L2, �τ−1T 	] (9.6)

such that

|x(piτ ) − x f (0)| ≤ δ, i = 1, 2. (9.7)
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If |x(0) − x f (0)| ≤ δ, then we set p1 = 0 and if |x(�τ−1T 	τ ) − x f (0)| ≤ δ, then
we set p2 = �τ−1T 	. By (9.3)–(9.5), (9.7) and property (P11), for all integers i =
p1, . . . , p2 − 1,

|x(iτ + t) − x f (t)| ≤ ε for all t ∈ [0, τ ].

Theorem 19 is proved.

10 Auxiliary Results for Theorem 20

Lemma 1 Let h ∈ An, S0 ≥ 1 be an integer, ε ∈ (0, 1). Then there exists δ ∈ (0, ε)
such that for each (x, u) ∈ X (A, B, 0, S0τ ) which satisfies

(π f + h)(x(0)) ≤ inf(π f + h) + δ,

I f (0, S0τ , x, u) − S0τμ( f ) − π f (x(0)) + π f (x(S0τ )) ≤ δ

there exists an ( f, A, B)-overtaking optimal pair (x∗, u∗) ∈ X (A, B, 0,∞) such
that

(π f + h)(x∗(0)) = inf(π f + h),

|x(t) − x∗(t)| ≤ ε for all t ∈ [0, S0τ ].

Proof Assume that the lemma does not hold. Then there is a sequence {δk}∞k=1 ⊂
(0, 1] and a sequence {(xk, uk)}∞k=1 ⊂ X (A, B, 0, S0τ ) such that

lim
k→∞ δk = 0 (10.1)

and that for all integers k ≥ 1,

(π f + h)(xk(0)) ≤ inf(π f + h) + δk, (10.2)

I f (0, S0τ , xk, uk) − S0τμ( f ) − π f (xk(0)) + π f (xk(S0τ )) ≤ δk, (10.3)

and that the following property holds:
(i) for each ( f, A, B)-overtaking optimal pair (y, v) ∈ X (A, B, 0,∞) satisfying

(π f + h)(y(0)) = inf(π f + h)

we have
sup{|xk(t) − y(t)| : t ∈ [0, S0τ ]} > ε.



Bolza Optimal Control Problems with Linear Equations … 129

In view of (10.2), (10.3) and the boundedness from below of the functions π f , h,
the sequences {π f (xk(0))}∞k=1, {h(xk(0))}∞k=1, {I f (0, S0τ , xk, uk)}∞k=1 are bounded.
By Proposition 17, extracting a subsequence and re-indexing if necessary, we may
assume without loss of generality that there exists

(x, u) ∈ X (A, B, 0, S0τ )

such that
xk(t) → x(t) as k → ∞ uniformly on [0, S0τ ], (10.4)

I f (0, S0τ , x, u) ≤ lim inf
k→∞ I f (0, S0τ , xk, uk), (10.5)

uk → u as k → ∞ weakly in L1(Rm; (0, S0τ )). (10.6)

It follows from (10.1), (10.2), (10.4), the continuity of π f and lower semicontinuity
of h that

π f (x(0)) = lim
k→∞ π f (xk(0)), h(x(0)) ≤ lim inf

k→∞ h(xk(0)),

(π f + h)(x(0)) ≤ lim inf
k→∞ (π f + h)(xk(0)) = inf(π f + h). (10.7)

In view of (10.2) and (10.7),

h(x(0)) = lim
k→∞ h(xk(0)). (10.8)

By (10.4) and the continuity of π f ,

π f (x(S0τ )) = lim
k→∞ π f (xk(S0τ )). (10.9)

It follows from (10.1), (10.3), (10.5), (10.7) and (10.9) that

I f (0, S0τ , x, u) − S0τμ( f ) − π f (x(0)) + π f (x(S0τ ))

≤ lim inf
k→∞ [I f (0, S0τ , xk, uk) − S0τμ( f )] − lim

k→∞ π f (xk(0)) + lim
k→∞ π f (xk(S0τ ))

= lim inf
k→∞ [I f (0, S0τ , xk, uk) − S0τμ( f ) − π f (xk(0)) + π f (xk(S0τ ))]

≤ lim
k→∞ δk = 0.

In view of the inequality above and Proposition 2,

I f (0, S0τ , x, u) − S0τμ( f ) − π f (x(0)) + π f (x(S0τ )) = 0. (10.10)
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Theorem 2 implies that there exists an ( f, A, B)-overtaking optimal pair (x̃, ũ) ∈
X (A, B, 0,∞) such that x̃(0) = x(S0τ ). For all t > S0τ set

x(t) = x̃(t − S0τ ), u(t) = ũ(t − S0τ ). (10.11)

It is not difficult to see that the pair (x, u) ∈ X (A, B, 0,∞) is an ( f, A, B)-good
pair. By (10.10), (10.11) and Propositions 2 and 7,

I f (0, Sτ , x, u) − Sτμ( f ) − π f (x(0)) + π f (x(Sτ )) = 0 for all integers S ≥ 1.

Combined with Proposition 9 and (10.7) this implies that (x, u) is an ( f, A, B)-
overtaking optimal pair satisfying (π f + h)(x(0)) = inf(π f + h). By (10.4), for all
sufficiently large natural numbers k,

|xk(t) − x(t)| ≤ ε/2 for all t ∈ [0, S0τ ].

This contradicts condition (i). The contradiction we have reached proves Lemma 1.

Note that Lemma 1 can also be applied for the triplet ( f̄ ,−A,−B).

Lemma 2 Let h ∈ An, Ŝ2 ≥ Ŝ1 ≥ 1be integers, ε ∈ (0, 1]and let (x̄∗, ū∗) ∈ X (−A,

−B, 0,∞) be an ( f̄ ,−A,−B)-overtaking optimal pair. Then there exist a neigh-
borhood U of f in M and a neighborhood V of h in An such that for each pair
of integers S2 > S1 ≥ 0 satisfying S2 − S1 ∈ [Ŝ1, Ŝ2], each g ∈ U , each ξ ∈ V ,
(y, v) ∈ X (A, B, S1τ , S2τ ) such that

y(t) = x̄∗(S2τ − t), v(t) = ū∗(S2τ − t), t ∈ [S1τ , S2τ ] (10.12)

and each (x, u) ∈ X (A, B, S1τ , S2τ ) satisfying

I g(S1τ , S2τ , x, u) + ξ(x(S2τ )) ≤ I g(S1τ , S2τ , y, v) + ξ(y(S2τ )) + ε (10.13)

the following inequality holds:

I f (S1τ , S2τ , x, u) + h(x(S2τ )) ≤ I f (S1τ , S2τ , y, v) + h(y(S2τ )) + 2ε

= I f̄ (0, (S2 − S1)τ , x̄∗, ū∗) + h(x̄∗(0)) + 2ε.

Proof Since (x̄∗, ū∗) is an ( f̄ ,−A,−B)-overtaking optimal pair it follows from
Theorem 1 that

sup{|x̄∗(t)| : t ∈ [0,∞)} < ∞.

Choose
M0 > sup{|x̄∗(t)| : t ∈ [0,∞)}. (10.14)
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Since h ∈ An there exists M1 > 0 such that

|h(z)| ≤ M1 for all z ∈ Rn satisfying |z| ≤ M0. (10.15)

Since the function π f̄ is continuous there exists M2 > 0 such that

|π f̄ (z)| ≤ M2 for all z ∈ Rn satisfying |z| ≤ M0. (10.16)

There exists a neighborhood V0 of h in An such that for each ξ ∈ V0,

|ξ(z) − h(z)| ≤ ε/16 for all z ∈ Rn satisfying |z| ≤ M0. (10.17)

By Proposition 16, there exists a neighborhoodU of f inM such that the following
property holds:

(P13) for each g ∈ U , each pair of integers S2 > S1 ≥ 0 satisfying S2 − S1 ≤ Ŝ2
and each (x, u) ∈ X (A, B, S1τ , S2τ ) satisfying

min{I f (S1τ , S2τ , x, u), I g(S1τ , S2τ , x, u)} ≤ |μ( f )|Ŝ2τ + 2M1 + 2M2 + a1 + 4

we have |I f (S1τ , S2τ , x, u) − I g(S1τ , S2τ , x, u)| ≤ ε/16.
By Proposition 15, there exists �0 > 0 such that the following property holds:
(P14) for each g ∈ M , each pair of integers S2 > S1 ≥ 0 satisfying S2 − S1 ≤ Ŝ2

and each (x, u) ∈ X (A, B, S1τ , S2τ ) satisfying

I g(S1τ , S2τ , x, u) ≤ |μ( f )|Ŝ2τ + 2M1 + 2M2 + a1 + 4

we have |x(t)| ≤ �0 for all t ∈ [S1τ , S2τ ].
There exists a neighborhood V ⊂ V0 of h in An such that for each ξ ∈ V ,

|ξ(z) − h(z)| ≤ ε/16 for all z ∈ Rn satisfying |z| ≤ M0 + �0. (10.18)

Assume that integers S2 > S1 ≥ 0 satisfy

S2 − S1 ∈ [Ŝ1, Ŝ2], g ∈ U , ξ ∈ V , (10.19)

(y, v) ∈ X (−A,−B, S1τ , S2τ ) satisfies (10.12) and that

(x, u) ∈ X (A, B, S1τ , S2τ )

satisfies (10.13). In view of (3.6) and (10.12),

I f (S1τ , S2τ , y, v) = I f̄ (0, (S2 − S2)τ , x̄∗, ū∗). (10.20)
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Since (x̄∗, ū∗) is an ( f̄ ,−A,−B)-overtaking optimal pair Proposition 3 implies that

I f̄ (0, (S2 − S1)τ , x̄∗, ū∗) = μ( f )(S2τ − S1τ ) + π f̄ (x̄∗(0)) − π f̄ (x̄∗(S2τ − S1τ )).

(10.21)

Set

S = S2 − S1. (10.22)

In view of (10.14), (10.16) and (10.20)–(10.22),

I f (S1τ , S2τ , y, v) ≤ μ( f )Sτ + 2M2. (10.23)

Property (P13), (10.19) and (10.23) imply that

I g(S1τ , S2τ , y, v) ≤ I f (S1τ , S2τ , y, v) + ε/16. (10.24)

By (10.12), (10.14) and (10.17),

|ξ(y(S2τ )) − h(y(S2τ ))| = |ξ(x̄∗(0)) − h(x̄∗(0))| ≤ ε/16. (10.25)

In view of (10.13), (10.24) and (10.25),

I g(S1τ , S2τ , x, u) + ξ(x(S2τ )) ≤ I f (S1τ , S2τ , y, v) + h(y(S2τ )) + ε/8 + ε.
(10.26)

It follows from (4.3), (10.12), (10.14), (10.15), (10.23) and (10.26) that

I g(S1τ , S2τ , x, u) ≤ I f (S1τ , S2τ , y, v) + h(y(S2τ )) + ε/8 + ε + a1

≤ μ( f )Sτ + 2M2 + h(x̄∗(0)) + a1 + ε + ε/8. (10.27)

Property (P13), (10.19), (10.22) and (10.27) imply that

|I f (S1τ , S2τ , x, u) − I g(S1τ , S2τ , x, u)| ≤ ε/16. (10.28)

By property (P14), (10.14), (10.15), (10.19) and (10.27),

|x(t)| ≤ �0, t ∈ [S1τ , S2τ ]. (10.29)

In view of (10.18), (10.19) and (10.29),

|ξ(x(S2τ )) − h(x(S2τ ))| ≤ ε/16. (10.30)
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It follows from (10.12), (10.20), (10.26), (10.28) and (10.30) that

I f (S1τ , S2τ , x, u) + h(x(S2τ )) ≤ I g(S1τ , S2τ , x, u) + ξ(x(S2τ )) + ε/8

≤ I f (S1τ , S2τ , y, v) + h(y(S2τ )) + ε/8 + ε + ε/8

= I f̄ (0, (S2 − S1)τ , x̄∗, ū∗) + h(x̄∗(0)) + ε + ε/4.

Lemma 2 is proved.

11 Proof of Theorem 20

By Lemma 1 applied to the triplet ( f̄ ,−A − B) there exist δ1 ∈ (0, ε/4) such that
the following property holds:

(P15) for each (x, u) ∈ X (−A,−B, 0, L0τ ) which satisfies

(π f̄ + h)(x(0)) ≤ inf(π f̄ + h) + 4δ1,

I f̄ (0, L0τ , x, u) − L0τμ( f ) − π f̄ (x(0)) + π f̄ (x(L0τ )) ≤ 4δ1

there exists an ( f̄ ,−A,−B)-overtaking optimal pair

(̂x, û) ∈ X (−A−, B, 0,∞)

such that
(π f̄ + h)(̂x(0)) = inf(π f̄ + h),

|x(t) − x̂(t)| ≤ ε for all t ∈ [0, L0τ ].

In view of the continuity of π f̄ , Proposition 4 and (5.4), there exists δ2 ∈ (0, δ1) such
that for each z ∈ Rn satisfying |z − x f (0)| ≤ 2δ2,

|π f̄ (z)| = |π f̄ (z) − π f̄ (x f (0))| ≤ δ1/8; (11.1)

for each y, z ∈ Rn satisfying |y − x f (0)| ≤ 2δ2, |z − x f (0)| ≤ 2δ2,

|v(y, z) − τμ( f )| ≤ δ1/8. (11.2)

By Theorem 17, there exist an integer l0 ≥ 1, δ3 ∈ (0, δ2/8), a neighborhood U1 of
f inM and a neighborhood V1 of h in An such that the following property holds:



134 A.J. Zaslavski

(P16) for each integer T > 2l0, each g ∈ U1, each ξ ∈ V1 and each

(x, u) ∈ X (A, B, 0, T τ )

such that

|x(0)| ≤ M, I g(0, T τ , x, u) + ξ(x(T τ )) ≤ σ(g, ξ, x(0), 0, T τ ) + δ3

we have
|x(iτ ) − x f (0)| ≤ δ2 for all i = l0, . . . , T − l0.

By Theorem 2 and Proposition 12, there exists ( f̄ ,−A,−B)-overtaking optimal
pair

(x̄∗, ū∗) ∈ X (−A−, B, 0,∞) (11.3)

such that
(π f̄ + h)(x̄∗(0)) = inf(π f̄ + h). (11.4)

Since the pair (x̄∗, ū∗) ∈ X (−A,−B, 0,∞) is ( f̄ ,−A,−B)-good it follows from
Theorems 1 and 8 that there exists an integer l1 ≥ 1 such that

|x̄∗(iτ ) − x f (0)| ≤ δ2 for all integers i ≥ l1. (11.5)

By Proposition 16, there exists a neighborhoodU2 ⊂ U1 of f inM such that the
following property holds:

(P17) for each g ∈ U2 and each (x, u) ∈ X (A, B, 0, τ ) satisfying

min{I f (0, τ , x, u), I g(0, τ , x, u)} ≤ |μ( f )|τ + 2

we have |I f (0, τ , x, u) − I g(0, τ , x, u)| ≤ δ3/8.
By Lemma 2, there exist a neighborhoodU ⊂ U2 of f inM and a neighborhood

V ⊂ V1 of h in An such that the following property holds:
(P18) for each pair of integers S2 > S1 ≥ 0 satisfying S2 − S1 ∈ [1, 2L0 + 2l0 +

l1 + 4], each g ∈ U , each ξ ∈ V , (y, v) ∈ X (A, B, S1τ , S2τ ) such that

y(t) = x̄∗(S2τ − t), v(t) = ū∗(S2τ − t), t ∈ [S1τ , S2τ ]

and each (x, u) ∈ X (A, B, S1τ , S2τ ) satisfying

I g(S1τ , S2τ , x, u) + ξ(x(S2τ )) ≤ I g(S1τ , S2τ , y, v) + ξ(y(S2τ )) + δ1

we have

I f (S1τ , S2τ , x, u) + h(x(S2τ )) ≤ I f̄ (0, (S2 − S1)τ , x̄∗, ū∗) + h(x̄∗(0)) + 2δ1.
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Choose δ > 0 and an integer L1 such that

δ ≤ δ3/4, (11.6)

L1 > 2L0 + 2l0 + 2l1 + 4. (11.7)

Assume that an integer

T ≥ L1, g ∈ U , ξ ∈ V , (x, u) ∈ X (A, B, 0, T τ ), (11.8)

|x(0)| ≤ M, (11.9)

I g(0, T τ , x, u) + ξ(x(T τ )) ≤ σ(g, ξ, x(0), 0, T τ ) + δ. (11.10)

Property (P16) and (11.6)–(11.10) imply that

|x(iτ ) − x f (0)| ≤ δ2 for all i ∈ {l0, . . . , T − l0}. (11.11)

In view of (11.7) and (11.8),

[T − l0 − l1 − L0 − 4, T − l0 − l1 − L0] ⊂ [l0, T − l0 − l1 − L0]. (11.12)

By (11.11) and (11.12),

|x(iτ ) − x f (0)| ≤ δ2 for all i ∈ {T − l0 − l1 − L0 − 4, . . . , T − l0 − l1 − L0}.
(11.13)

Proposition 18 implies that there exists (x1, u1) ∈ X (A, B, 0, T τ ) such that

x1(t) = x(t), u1(t) = u(t), t ∈ [0, τ (T − l0 − l1 − L0 − 4)],

x1(t) = x̄∗(T τ − t), u1(t) = ū∗(T τ − t), t ∈ [τ (T − l0 − l1 − L0 − 3), τT ],

I f (τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1)

= v(x(τ (T − l0 − l1 − L0 − 4)), x̄∗(τ (l0 + l1 + L0 + 3))). (11.14)

By (11.10) and (11.14),

−δ ≤ I g(0, T τ , x1, u1) + ξ(x1(T τ )) − (I g(0, T τ , x, u) + ξ(x(T τ )))

= I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1)

+I g(τ (T − l0 − l1 − L0 − 3), τT, x1, u1) + ξ(x1(T τ ))
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−I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u)

− I g(τ (T − l0 − l1 − L0 − 3), τT, x, u) − ξ(x(T τ )). (11.15)

We will estimate

I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1)

−I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u).

In view of (11.2), (11.5), (11.13) and (11.14),

I f (τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1)

= v(x(τ (T − l0 − l1 − L0 − 4)), x̄∗(τ (l0 + l1 + L0 + 3))) ≤ τμ( f ) + δ1/8.

Combined with (11.8) and property (P17) this implies that

I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1)

≤ I f (τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1) + δ3/8

≤ τμ( f ) + δ1/8 + δ3/8. (11.16)

It follows from (11.2) and (11.13) that

I f (τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u)

≥ v(x(τ (T − l0 − l1 − L0 − 4)), x(τ (T − l0 − l1 − L0 − 3))) ≥ τμ( f ) − δ1/8.
(11.17)

We claim that

I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u) ≥ τμ( f ) − δ1/2.
(11.18)

Assume the contrary. Then

I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u)

< τμ( f ) − δ1/2. (11.19)
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By property (P17), (11.8) and (11.19),

I f (τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u)

≤ I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u) + δ3/8

< τμ( f ) − δ1/2 + δ3/8 < τμ( f ) − δ1/4.

This contradicts (11.17). The contradictionwehave reachedproves (11.18). It follows
from (11.16) and (11.18) that

I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1)

− I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u) ≤ δ1/8 + δ3/8 + δ1/2.
(11.20)

By (11.15),

I g(τ (T − l0 − l1 − L0 − 3), τT, x1, u1) + ξ(x1(T τ ))

−I g(τ (T − l0 − l1 − L0 − 3), τT, x, u) + ξ(x(T τ ))

≥ −δ − I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x1, u1)

+I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x, u)

≥ −δ − 5δ1/8 − δ3/8 ≥ −δ1. (11.21)

By (11.1), (11.5) and the choice of δ2,

|π f̄ (x̄∗(τ (l0 + l1 + L0 + 3)))| ≤ δ1/8. (11.22)

In view of (11.21),

I g(τ (T − l0 − l1 − L0 − 3), τT, x, u) + ξ(x(T τ ))

≤ I g(τ (T − l0 − l1 − L0 − 3), τT, x1, u1) + ξ(x1(T τ )) + δ1. (11.23)

By (11.8), (11.23) and property (P18) applied with (y, v) = (x1, u1),

I f (τ (T − l0 − l1 − L0 − 3), τT, x, u) + h(x(T τ ))

≤ I f̄ (0, (L0 + l0 + l1 + 3)τ , x̄∗, ū∗) + h(x̄∗(0)) + 2δ1. (11.24)
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Proposition 3, (11.22) and (11.24) imply that

I f (τ (T − l0 − l1 − L0 − 3), τT, x, u) + h(x(T τ ))

≤ μ( f )τ (l0 + l1 + L0 + 3) + π f̄ (x̄∗(0))

−π f̄ (x̄∗((l0 + l1 + L0 + 3)τ )) + h(x̄∗(0)) + 2δ1

≤ μ( f )τ (l0 + l1 + L0 + 3) + π f̄ (x̄∗(0)) + h(x̄∗(0)) + 2δ1 + δ1/8. (11.25)

Set

x̃(t) = x(T τ − t), ũ(t) = u(T τ − t), t ∈ [0, τ (L0 + l0 + l1 + 3)]. (11.26)

In view of (3.6), (11.25) and (11.26),

I f̄ (0, τ (l0 + l1 + L0 + 3), x̃, ũ) + h(x̃(0))

= I f (τ (T − l0 − l1 − L0 − 3), τT, x, u) + h(x(τT ))

≤ μ( f )τ (l0 + l1 + L0 + 3) + π f̄ (x̄∗(0)) + h(x̄∗(0)) + 2δ1 + δ1/8. (11.27)

It follows from (11.13) and (11.26) that

|x̃(τ (l0 + l1 + L0 + 3)) − x f (0)| ≤ δ2. (11.28)

By (11.1) and (11.28),

|π f̄ (x̃(τ (l0 + l1 + L0 + 3)))| ≤ δ1/8. (11.29)

By (11.27), (11.29) and Proposition 2,

(π f̄ + h)(x̃(0)) − (π f̄ + h)(x̄∗(0))

+I f̄ (0, L0τ , x̃, ũ) − L0τμ( f ) − π f̄ (x̃(0)) + π f̄ (x̃(L0τ ))

≤ (π f̄ + h)(x̃(0)) − (π f̄ + h)(x̄∗(0))

+I f̄ (0, τ (l0 + l1 + L0 + 3), x̃, ũ)

−μ( f )τ (l0 + l1 + L0 + 3) − π f̄ (x̃(0)) + π f̄ (x̃(τ (l0 + l1 + L0 + 3)))

≤ π f̄ (x̃(0)) − π f̄ (x̄∗(0)) − h(x̄∗(0))
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+μ( f )τ (l0 + l1 + L0 + 3) + π f̄ (x̄∗(0)) + h(x̄∗(0)) + 2δ1 + δ1/8

−μ( f )τ (l0 + l1 + L0 + 3) − π f̄ (x̃(0)) + π f̄ (x̃((l0 + l1 + L0 + 3)τ ))

≤ 2δ1 + δ1/8 + δ1/8. (11.30)

By Proposition 2, (11.4) and (11.30),

(π f̄ + h)(x̃(0)) ≤ (π f̄ + h)(x̄∗(0)) + 3δ1 ≤ inf(π f̄ + h) + 3δ1,

I f̄ (0, L0τ , x̃, ũ) − L0τμ( f ) + π f̄ (x̃(0)) + π f̄ (x̃(L0τ )) ≤ 3δ1.

It follows from the inequalities above, (11.26) and property (P15) that there exists
an ( f̄ ,−A,−B)-overtaking optimal pair (̂x, û) ∈ X (−A−, B, 0,∞) such that

(π f̄ + h)(̂x(0)) = inf(π f̄ + h)

and for all t ∈ [0, L0τ ],

ε ≥ |x̃(t) − x̂(t)| = |x(T τ − t) − x̂(t)|.

Theorem 20 is proved.

12 Auxiliary Results for Theorem 21

Recall (see (4.4)) that for each h ∈ A2n

ψh(z1, z2) = π f (z1) + π f̄ (z2) + h(z1, z2) for all (z1, z2) ∈ Rn × Rn. (12.1)

Lemma 3 Let h ∈ A2n, S0 ≥ 1 be an integer, ε ∈ (0, 1). Then there exists δ ∈ (0, ε)
such that for each (x1, u1) ∈ X (A, B, 0, S0τ ) and each

(x2, u2) ∈ X (−A,−B, 0, S0τ )

which satisfy
ψh(x1(0), x2(0)) ≤ inf(ψh) + δ,

I f (0, S0τ , x1, u1) − S0τμ( f ) − π f (x1(0)) + π f (x1(S0τ )) ≤ δ,

I f̄ (0, S0τ , x2, u2) − S0τμ( f ) − π f̄ (x2(0)) + π f̄ (x2(S0τ )) ≤ δ
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there exist an ( f, A, B)-overtaking optimal pair (x∗
1 , u

∗
1) ∈ X (A, B, 0,∞) and an

( f̄ ,−A,−B)-overtaking optimal pair (x∗
2 , u

∗
2) ∈ X (−A,−B, 0,∞) such that

ψh(x
∗
1 (0), x

∗
2 (0)) = inf(ψh)

and that for all t ∈ [0, S0τ ],

|x1(t) − x∗
1 (t)| ≤ ε, |x2(t) − x∗

2 (t)| ≤ ε.

Proof Assume that the lemma does not hold. Then there are a sequence {δk}∞k=1⊂ (0, 1] and sequences

{(xk,1, uk,1)}∞k=1 ⊂ X (A, B, 0, S0τ ), {(xk,2, uk,2)}∞k=1 ⊂ X (−A,−B, 0, S0τ )

such that
lim
k→∞ δk = 0, (12.2)

for all integers k ≥ 1,

ψh(xk,1(0), xk,2(0)) ≤ inf(ψh) + δk, (12.3)

I f (0, S0τ , xk,1, uk,1) − S0τμ( f ) − π f (xk,1(0)) + π f (xk,1(S0τ )) ≤ δk, (12.4)

I f̄ (0, S0τ , xk,2, uk,2) − S0τμ( f ) − π f̄ (xk,2(0)) + π f̄ (xk,2(S0τ )) ≤ δk (12.5)

and that for each integer k ≥ 1, each ( f, A, B)-overtaking optimal pair (ξ1, η1) ∈
X (A, B, 0,∞) and each ( f̄ ,−A,−B)-overtaking optimal pair

(ξ2, η2) ∈ X (−A,−B, 0,∞)

satisfying
ψh(ξ1(0), ξ2(0)) = inf(ψh) (12.6)

we have

sup{|ξ1(t) − xk,1(t)|, |ξ2(t) − xk,2(t)| : t ∈ [0, S0τ ]} > ε. (12.7)

In view of (12.1)–(12.3) and the boundedness from below of the functions π f , π f̄ ,
h, the sequences {π f (xk,1(0))}∞k=1, {π f̄ (xk,2(0))}∞k=1 and

{h(xk,1(0), xk,2(0))}∞k=1
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are bounded. Together with (12.4), (12.5) and the boundedness from below of the

functions π f , π f̄ this implies that the sequences

{I f (0, S0τ , xk,1, uk,1)}∞k=1, {I f̄ (0, S0τ , xk,2, uk,2)}∞k=1

are bounded. By Proposition 17, extracting a subsequence and re-indexing if nec-
essary, we may assume without loss of generality that there exists (x1, u1) ∈
X (A, B, 0, S0τ ) and (x2, u2) ∈ X (−A,−B, 0, S0τ ) such that for i = 1, 2,

xk,i (t) → xi (t) as k → ∞ uniformly on [0, S0τ ], (12.8)

I f (0, S0τ , x1, u1) ≤ lim inf
k→∞ I f (0, S0τ , xk,1, uk,1), (12.9)

I f̄ (0, S0τ , x2, u2) ≤ lim inf
k→∞ I f̄ (0, S0τ , xk,2, uk,2). (12.10)

It follows from (12.2), (12.3), (12.8), the continuity of π f , π f̄ and the lower semi-
continuity of h, ψh that

π f (x1(0)) = lim
k→∞ π f (xk,1(0)), π f̄ (x2(0)) = lim

k→∞ π f̄ (xk,2(0)), (12.11)

h(x1(0), x2(0)) ≤ lim inf
k→∞ h(xk,1(0), xk,2(0)), (12.12)

ψh(x1(0), x2(0)) ≤ lim inf
k→∞ ψh(xk,1(0), xk,2(0)) = inf(ψh), (12.13)

π f (x1(S0τ )) = lim
k→∞ π f (xk,1(S0τ )), π f̄ (x2(S0τ )) = lim

k→∞ π f̄ (xk,2(S0τ )). (12.14)

In view of (12.1)–(12.3) and (12.11)–(12.13),

h(x1(0), x2(0)) = lim
k→∞ h(xk,1(0), (xk,2(0)). (12.15)

It follows from (12.4), (12.5) and (12.9)–(12.11) that

I f (0, S0τ , x1, u1) − S0τμ( f ) − π f (x1(0)) + π f (x1(S0τ ))

≤ lim inf
k→∞ [I f (0, S0τ , xk,1, uk,1) − S0τμ( f )

− π f (xk,1(0)) + π f (xk,1(S0τ ))] ≤ lim
k→∞ δk = 0, (12.16)

I f̄ (0, S0τ , x2, u2) − S0τμ( f ) − π f̄ (x2(0)) + π f̄ (x2(S0τ ))
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≤ lim inf
k→∞ [I f̄ (0, S0τ , xk,2, uk,2) − S0τμ( f )

− π f̄ (xk,2(0)) + π f̄ (xk,2(S0τ ))] ≤ lim
k→∞ δk = 0. (12.17)

In view of (12.16), (12.17) and Proposition 2,

I f (0, S0τ , x1, u1) − S0τμ( f ) − π f (x1(0)) + π f (x1(S0τ )) = 0, (12.18)

I f̄ (0, S0τ , x2, u2) − S0τμ( f ) − π f̄ (x2(0)) + π f̄ (x2(S0τ )) = 0. (12.19)

Theorem 2 implies that there is an ( f, A, B)-overtaking optimal pair (x̃1, ũ1) ∈
X (A, B, 0,∞) such that

x̃1(0) = x1(S0τ ) (12.20)

and an ( f̄ ,−A,−B)-overtaking optimal pair (x̃2, ũ2) ∈ X (−A,−B, 0,∞) such
that

x̃2(0) = x2(S0τ ). (12.21)

For all t > S0τ and i = 1, 2 set

xi (t) = x̃i (t − S0τ ), ui (t) = ũi (t − S0τ ). (12.22)

It is not difficult to see that the pair (x1, u1) ∈ X (A, B, 0,∞) is an ( f, A, B)-good
pair and that the pair (x2, u2) ∈ X (−A,−B, 0,∞) is an ( f̄ ,−A,−B)-good pair.
By (12.18), (12.19), (12.21), (12.22) and Propositions 2 and 3, for all integers S > 0,

I f (0, Sτ , x1, u1) − Sτμ( f ) − π f (x1(0)) + π f (x1(Sτ )) = 0,

I f̄ (0, Sτ , x2, u2) − Sτμ( f ) − π f̄ (x2(0)) + π f̄ (x2(Sτ )) = 0.

Combined with Proposition 9 this implies that (x1, u1) ∈ X (A, B, 0,∞) is an
( f, A, B)-overtaking optimal pair and that the pair (x2, u2) ∈ X (−A,−B, 0,∞)

is an ( f̄ ,−A,−B)-overtaking optimal. By (12.13),

ψh(x1(0), x2(0)) = inf(ψh).

By (12.8), for all sufficiently large natural numbers k and i = 1, 2,

|xk,i (t) − xi (t)| ≤ ε/2 for all t ∈ [0, S0τ ].

This contradicts (12.7). The contradiction we have reached proves Lemma 3.
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Lemma 4 Let h ∈ A2n, Ŝ2 ≥ Ŝ1 ≥ 1 be integers, ε ∈ (0, 1) and M > 0. Then there
exist a neighborhoodU of f inM and a neighborhood V of h in A2n such that for
each g ∈ U , each ξ ∈ V , each pair of integers Si,2 > Si,1 ≥ 0, i = 1, 2 satisfying

Si,2 − Si,1 ∈ [Ŝ1, Ŝ2], i = 1, 2, (12.23)

each (x1, u1) ∈ X (A, B, S1,1τ , S1,2τ ) and each

(x2, u2) ∈ X (A, B, S2,1τ , S2,2τ )

which satisfy

I g(S1,1τ , S1,2τ , x1, u1) + I g(S2,1τ , S2,2τ , x2, u2) + ξ(x1(S1,1τ ), x2(S2,2τ )) ≤ M
(12.24)

the following inequalities hold:

|I g(Si,1τ , Si,2τ , xi , ui ) − I f (Si,1τ , Si,2τ , xi , ui )| ≤ ε, i = 1, 2,

|h(x1(S1,1τ ), x2(S2,2τ )) − ξ(x1(S1,1τ ), x2(S2,2τ ))| ≤ ε.

Proof By Proposition 16, there exists a neighborhood U of f in M such that the
following property holds:

(P19) for each g ∈ U , each pair of integers S2 > S1 ≥ 0 satisfying S2 − S1 ≤ Ŝ2
and each (x, u) ∈ X (A, B, S1τ , S2τ ) satisfying

min{I f (S1τ , S2τ , x, u), I g(S1τ , S2τ , x, u)} ≤ M + a1 + aτ S2

we have |I f (S1τ , S2τ , x, u) − I g(S1τ , S2τ , x, u)| ≤ ε.
By Proposition 15, there exists �0 > 0 such that the following property holds:
(P20) for each g ∈ M , each pair of integers S2 > S1 ≥ 0 satisfying S2 − S1 ≤ Ŝ2

and each (x, u) ∈ X (A, B, S1τ , S2τ ) satisfying

I g(S1τ , S2τ , x, u) ≤ M + a1 + aτ S2

we have |x(t)| ≤ �0 for all t ∈ [S1τ , S2τ ].
There exist a neighborhood V of h in A2n such that for each ξ ∈ V ,

|ξ(z1, z2) − h(z1, z2)| ≤ ε for all z1, z2 ∈ Rn satisfying |zi | ≤ �0, i = 1, 2.
(12.25)

Assume that

g ∈ U , ξ ∈ V , (12.26)
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integers Si, j ≥ 0, i, j ∈ {1, 2} satisfy (12.23) and that

(xi , ui ) ∈ X (A, B, Si,1τ , Si,2τ ), i = 1, 2

satisfy (12.24). In view of (4.2), (4.3), (12.23) and (12.24), for i = 1, 2,

I g(Si,1τ , Si,2τ , xi , ui ) ≤ M + a1 + aτ S2. (12.27)

Property (P19), (12.23), (12.26) and (12.27) imply that for i = 1, 2,

|I f (Si,1τ , Si,2τ , xi , ui ) − I g(Si,1τ , Si,2τ , xi , ui )| ≤ ε.

By (12.23), (12.27) and property (P20),

|xi (t)| ≤ �0, i = 1, 2. (12.28)

It follows from (12.25), (12.26) and (12.28) that

|h(x1(S1,1τ ), x2(S2,2τ )) − ξ(x1(S1,1τ ), x2(S2,2τ ))| ≤ ε.

Lemma 4 is proved.

Lemma 5 Let h ∈ A2n, Ŝ2 > Ŝ1 ≥ 1 be integers, ε ∈ (0, 1) and let (x∗, u∗) ∈
X (A, B, 0,∞) be an ( f, A, B)-overtaking optimal pair and

(x̄∗, ū∗) ∈ X (−A,−B, 0,∞)

be an ( f̄ ,−A,−B)-overtaking optimal pair. Then there exist a neighborhood U
of f in M and a neighborhood V of h in A2n such that for each pair of integers
Si,2 > Si,1 ≥ 0, i = 1, 2 satisfying

Si,2 − Si,1 ∈ [Ŝ1, Ŝ2], i = 1, 2, (12.29)

each g ∈ U , each ξ ∈ V ,

(yi , vi ) ∈ X (A, B, Si,1τ , Si,2τ ), i = 1, 2 (12.30)

such that

y1(t) = x∗(t − S1,1τ ), v1(t) = u∗(t − S1,1τ ), t ∈ [S1,1τ , S1,2τ ], (12.31)

y2(t) = x̄∗(S2,2τ − t), v2(t) = ū∗(S2,2τ − t), t ∈ [S2,1τ , S2,2τ ], (12.32)
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and each (xi , ui ) ∈ X (A, B, Si,1τ , Si,2τ ), i = 1, 2 satisfying

I g(S1,1τ , S1,2τ , x1, u1) + I g(S2,1τ , S2,2τ , x2, u2) + ξ(x1(S1,1τ ), x2(S2,2τ ))

≤ I g(S1,1τ , S1,2τ , y1, v1) + I g(S2,1τ , S2,2τ , y2, v2) + ξ(y1(S1,1τ ), y2(S2,2τ )) + ε
(12.33)

the following inequality holds:

I f (S1,1τ , S1,2τ , x1, u1) + I f (S2,1τ , S2,2τ , x2, u2) + h(x1(S1,1τ ), x2(S2,2τ ))

≤ I f (S1,1τ , S1,2τ , y1, v1) + I f (S2,1τ , S2,2τ , y2, v2) + h(y1(S1,1τ ), y2(S2,2τ )) + 2ε

= I f (0, (S1,2 − S1,1)τ , x∗, u∗) + I f̄ (0, (S2,2 − S2,1)τ , x̄∗, ū∗) + h(x∗(0), x̄∗(0)) + 2ε.
(12.34)

Proof By Theorem 8, there exists M0 > 0 such that

|x∗(t)|, |x̄∗(t)| ≤ M0, t ∈ [0,∞). (12.35)

There exists M1 > 0 such that

|h(z1, z2)| ≤ M1 for all (z1, z2) ∈ Rn × Rn satisfying |zi | ≤ M0, i = 1, 2,
(12.36)

|π f (z)|, |π f̄ (z)| ≤ M1 for all z ∈ Rn satisfying |z| ≤ M0. (12.37)

By Proposition 16, there exists a neighborhoodU1 of f inM such that the following
property holds:

(P21) for each g ∈ U1, each pair of integers S2 > S1 ≥ 0 satisfying S2 − S1 ≤ Ŝ2
and each (x, u) ∈ X (A, B, S1τ , S2τ ) satisfying

min{I f (S1τ , S2τ , x, u), I g(S1τ , S2τ , x, u)} ≤ |μ( f )|Ŝ2τ + 2M1

we have |I f (S1τ , S2τ , x, u) − I g(S1τ , S2τ , x, u)| ≤ ε/16.
Denote by V1 the set of all ξ ∈ A2n such that

|ξ(z1, z2) − h(z1, z2)| ≤ ε/16 for all z1, z2 ∈ Rn satisfying |zi | ≤ M0, i = 1, 2.
(12.38)

By Lemma 4, there exist a neighborhood U ⊂ U1 of f in M and a neighborhood
V ⊂ V1 of h in A2n such that the following property holds:

(P22) for each g ∈ U , each ξ ∈ V , each pair of integers Si,2 > Si,1 ≥ 0, i = 1, 2
satisfying

Si,2 − Si,1 ∈ [Ŝ1, Ŝ2], i = 1, 2,
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each (x1, u1) ∈ X (A, B, S1,1τ , S1,2τ ) and each

(x2, u2) ∈ X (A, B, S2,1τ , S2,2τ )

which satisfy

I g(S1,1τ , S1,2τ , x1, u1) + I g(S2,1τ , S2,2τ , x2, u2) + ξ(x1(S1,1τ ), x2(S2,2τ ))

≤ 2|μ( f )τ Ŝ2 + 5M1 + 4

we have

|I g(Si,1τ , Si,2τ , xi , ui ) − I f (Si,1τ , Si,2τ , xi , ui )| ≤ ε/16, i = 1, 2,

|h(x1(S1,1τ ), x2(S2,2τ )) − ξ(x1(S1,1τ ), x2(S2,2τ ))| ≤ ε/16. (12.39)

Assume that integers Si,2 > Si,1 ≥ 0, i = 1, 2 satisfy (12.29),

g ∈ U , ξ ∈ V , (12.40)

Equations (12.30)–(12.32) hold, (xi , ui ) ∈ X (A, B, Si,1τ , Si,2τ ), i = 1, 2 and
(12.33) holds. By (3.6), (12.31),(12.32) and Proposition 3,

I f (S1,1τ , S1,2τ , y1, v1) = I f (0, (S1,2 − S1,1)τ , x∗, u∗)

= μ( f )(S1,2τ − S1,1τ ) + π f (x∗(0)) − π f (x∗(S1,2τ − S1,1τ )), (12.41)

I f (S2,1τ , S2,2τ , y2, v2) = I f̄ (0, (S2,2 − S2,1)τ , x̄∗, ū∗)

= μ( f )(S2,2τ − S2,1τ ) + π f̄ (x̄∗(0)) − π f̄ (x̄∗(S2,2τ − S2,1τ )). (12.42)

In view of (12.29), (12.35), (12.37), (12.41) and (12.42),

I f (S1,1τ , S1,2τ , y1, v1), I f (S2,1τ , S2,2τ , y2, v2) ≤ |μ( f )|τ Ŝ2 + 2M1. (12.43)

Property (P21), (12.29), (12.40) and (12.43) imply that for i = 1, 2,

|I g(Si,1τ , Si,2τ , yi , vi ) − I f (Si,1τ , Si,2τ , yi , vi )| ≤ ε/16. (12.44)

It follows from ((12.31), (12.32), (12.35) and (12.36) that

|h(y1(S1,1τ ), y2(S2,2τ ))| ≤ M1. (12.45)
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By (12.31), (12.32), (12.38) and (12.40),

|h(y1(S1,1τ ), y2(S2,2τ )) − ξ(y1(S1,1τ ), y2(S2,2τ ))| ≤ ε/16. (12.46)

It follows from (12.33) and (12.43)–(12.46) that

I g(S1,1τ , S1,2τ , x1, u1) + I g(S2,1τ , S2,2τ , x2, u2) + ξ(x1(S1,1τ ), x2(S2,2τ ))

≤ I f (S1,1τ , S1,2τ , y1, v1) + I f (S2,1τ , S2,2τ , y2, v2)

+h(y1(S1,1τ ), y2(S2,2τ )) + 3ε/16 + ε

≤ 2|μ( f )|τ Ŝ2 + 5M1 + 4. (12.47)

Property (P22), (12.29), (12.40) and (12.47) imply (12.39). In view of (12.39),
(12.41), (12.42) and (12.47),

I f (S1,1τ , S1,2τ , x1, u1) + I f (S2,1τ , S2,2τ , x2, u2) + h(x1(S1,1τ ), x2(S2,2τ ))

≤ I g(S1,1τ , S1,2τ , x1, u1) + I g(S2,1τ , S2,2τ , x2, u2)

+ξ(x1(S1,1τ ), x2(S2,2τ )) + 3ε/16

≤ I f (S1,1τ , S1,2τ , y1, v1) + I f (S2,1τ , S2,2τ , y2, v2)

+h(y1(S1,1τ ), y2(S2,2τ )) + 3ε/16 + ε + 3ε/16

= I f (0, (S1,2 − S1,1)τ , x∗, u∗) + I f̄ (0, (S2,2 − S2,1)τ , x̄∗, ū∗)

+h(x∗(0), x̄∗(0)) + ε + 3ε/8.

Lemma 5 is proved.

13 Proof of Theorem 21

By Lemma 3, there exists δ0 ∈ (0, ε) such that the following property holds:
(P23) for each (x1, u1) ∈ X (A, B, 0, L0τ ) and each

(x2, u2) ∈ X (−A,−B, 0, L0τ )

which satisfy
ψh(x1(0), x2(0)) ≤ inf(ψh) + 4δ0,
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I f (0, L0τ , x1, u1) − L0τμ( f ) − π f (x1(0)) + π f (x1(L0τ )) ≤ 4δ0,

I f̄ (0, L0τ , x2, u2) − L0τμ( f ) − π f̄ (x2(0)) + π f̄ (x2(L0τ )) ≤ 4δ0

there exist an ( f, A, B)-overtaking optimal pair (x∗
1 , u

∗
1) ∈ X (A, B, 0,∞) and an

( f̄ ,−A,−B)-overtaking optimal pair (x∗
2 , u

∗
2) ∈ X (−A,−B, 0,∞) such that

ψh(x
∗
1 (0), x

∗
2 (0)) = inf(ψh)

and that for all t ∈ [0, L0τ ], i = 1, 2,

|xi (t) − x∗
i (t)| ≤ ε.

In view of Proposition 4, (5.3), (5.4) and the continuity of the functions π f , π f̄ ,
there exists δ1 ∈ (0, δ0/4) such that: for each z ∈ Rn satisfying |z − x f (0)| ≤ 2δ1,

|π f (z)| = |π f (z) − π f (x f (0))| ≤ δ0/8,

|π f̄ (z)| = |π f̄ (z) − π f̄ (x f (0))| ≤ δ0/8; (13.1)

for each y, z ∈ Rn satisfying

|y − x f (0)| ≤ 2δ1, |z − x f (0)| ≤ 2δ1

we have

|v(y, z) − τμ( f )| ≤ δ0/8. (13.2)

By Theorem 17, there exist an integer l0 ≥ 1, δ2 ∈ (0, δ1/8), a neighborhood U1

of f inM and a neighborhood V1 of h inA2n such that the following property holds:
(P24) for each integer T > 2l0, each g ∈ U1, each ξ ∈ V1 and each

(x, u) ∈ X (A, B, 0, T τ )

which satisfies I g(0, T τ , x, u) + ξ(x(0), x(T τ )) ≤ σ(g, ξ, 0, T τ ) + δ2 we have

|x(iτ ) − x f (0)| ≤ δ1 for all i = l0, . . . , T − l0.

ByTheorem2 andProposition 13, there exist an ( f, A, B)-overtaking optimal pair
(x∗, u∗) ∈ X (A, B, 0,∞) and an ( f̄ ,−A,−B)-overtaking optimal pair (x̄∗, ū∗) ∈
X (−A,−B, 0,∞) such that

ψh(x∗(0), x̄∗(0)) = inf(ψh). (13.3)
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In view of Theorem 8, the pair (x∗, u∗) is ( f, A, B)-good, the pair (x̄∗, ū∗) is
( f̄ ,−A,−B)-good and there exists an integer l1 > 0 such that for all integers i ≥ l1,

|x∗(iτ ) − x f (0)| ≤ δ1, |x̄∗(iτ ) − x f (0)| ≤ δ1. (13.4)

By Proposition 16, there exists a neighborhoodU2 ⊂ U1 of f inM such that the
following property holds:

(P25) for each g ∈ U2 and each trajectory-control pair

(x, u) ∈ X (A, B, 0, τ )

which satisfies min{I f (0, τ , x, u), I g(0, τ , x, u)} ≤ 2 + τ |μ( f )| the inequality

|I f (0, τ , x, u) − I g(0, τ , x, u)| ≤ δ1/8

holds.
By Lemma 5, there exist a neighborhoodU ⊂ U2 of f inM and a neighborhood

V ⊂ V1 of h in A2n such that the following property holds:
(P26) for each pair of integers Si,2 > Si,1 ≥ 0, i = 1, 2 satisfying

Si,2 − Si,1 ≤ 2L0 + 2l0 + 2l1 + 4, i = 1, 2,

each g ∈ U , each ξ ∈ V , (yi , vi ) ∈ X (A, B, Si,1τ , Si,2τ ), i = 1, 2 such that

y1(t) = x∗(t − S1,1τ ), v1(t) = u∗(t − S1,1τ ), t ∈ [S1,1τ , S1,2τ ],

y2(t) = x̄∗(S2,2τ − t), v2(t) = ū∗(S2,2τ − t), t ∈ [S2,1τ , S2,2τ ],

and each (xi , ui ) ∈ X (A, B, Si,1τ , Si,2τ ), i = 1, 2 satisfying

I g(S1,1τ , S1,2τ , x1, u1) + I g(S2,1τ , S2,2τ , x2, u2) + ξ(x1(S1,1τ ), x2(S2,2τ ))

≤ I g(S1,1τ , S1,2τ , y1, v1) + I g(S2,1τ , S2,2τ , y2, v2) + ξ(y1(S1,1τ ), y2(S2,2τ )) + δ0

we have
−2δ0 + I f (S1,1τ , S1,2τ , x1, u1)

+I f (S2,1τ , S2,2τ , x2, u2) + h(x1(S1,1τ ), x2(S2,2τ ))

≤ I f (0, (S1,2 − S1,1)τ , x∗, u∗) + I f̄ (0, (S2,2 − S2,1)τ , x̄∗, ū∗) + h(x∗(0), x̄∗(0)).
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Choose δ > 0 and an integer L1 > 0 such that

δ ≤ 4−1δ2(L0 + l0 + l1 + 8)−1, (13.5)

L1 > 4L0 + 4l0 + 4l1 + 8. (13.6)

Assume that an integer

T ≥ L1, g ∈ U , ξ ∈ V , (x, u) ∈ X (A, B, 0, T τ ), (13.7)

I g(0, T τ , x, u) + ξ(x(0), x(T τ )) ≤ σ(g, ξ, 0, T τ ) + δ. (13.8)

It follows from property (P24) and (13.5)–(13.8) that

|x(iτ ) − x f (0)| ≤ δ1 for all i = l0, . . . , T − l0. (13.9)

By Proposition 18, (5.1), (13.6) and (13.7), there exists a trajectory-control pair
(x̃, ũ) ∈ X (A, B, 0, T τ ) such that

x̃(t) = x∗(t), ũ(t) = u∗(t), t ∈ [0, τ (L0 + l0 + l1 + 3)],

x̃(t) = x(t), ũ(t) = u(t), t ∈ [τ (L0 + l0 + l1 + 4), τ (T − l0 − l1 − L0 − 4)],

x̃(t) = x̄∗(T τ − t), ũ(t) = ū∗(T τ − t), t ∈ [τ (T − l0 − l1 − L0 − 3), T τ ],

I f (τ (l0 + l1 + L0 + 3), τ (l0 + l1 + L0 + 4), x̃, ũ)

= v(x∗(τ (l0 + l1 + L0 + 3)), x(τ (l0 + l1 + L0 + 4))),

I f (τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x̃, ũ)

= v(x(τ (T − l0 − l1 − L0 − 4)), x̄∗(τ (l0 + l1 + L0 + 3))). (13.10)

By (13.4), (13.6), (13.7), (13.9) and (13.10),

|x̃(τ (L0 + l0 + l1 + 3)) − x f (0)| = |x∗(τ (L0 + l0 + l1 + 3)) − x f (0)| ≤ δ1,

|x̃(τ (L0 + l0 + l1 + 4)) − x f (0)| = |x(τ (L0 + l0 + l1 + 4)) − x f (0)| ≤ δ1,

|x̃(τ (T − L0 − l0 − l1 − 4)) − x f (0)| = |x(τ (T − L0 − l0 − l1 − 4)) − x f (0)| ≤ δ1,

|x̃(τ (T − L0 − l0 − l1 − 3)) − x f (0)| = |x̄∗(τ (L0 + l0 + l1 + 3)) − x f (0)| ≤ δ1.
(13.11)
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It follows from (13.8) and (13.10) that

−δ ≤ I g(0, T τ , x̃, ũ) + ξ(x̃(0), x̃(T τ ))

−(I g(0, T τ , x, u) − ξ(x(0), x(T τ )))

= I g(0, τ (L0 + l0 + l1 + 3), x̃, ũ) + I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x̃, ũ)

+I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x̃, ũ)

+I g(τ (T − l0 − l1 − L0 − 3), T τ , x̃, ũ) + ξ(x̃(0), x̃(τT ))

−I g(0, τ (L0 + l0 + l1 + 3), x, u) − I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u)

−I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u)

− I g(τ (T − l0 − l1 − L0 − 3), τT, x, u) − ξ(x(0), x(τT )). (13.12)

We will estimate

I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x̃, ũ)

−I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u),

I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x̃, ũ)

−I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u).

It follows from (13.10), (13.11) and the choice of δ1 (see (13.2)) that

I f (τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x̃, ũ)

= v(x∗(τ (l0 + l1 + L0 + 3)), x(τ (l0 + l1 + L0 + 4))) ≤ τμ( f ) + δ0/8,

I f (τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x̃, ũ)

= v(x(τ (T − l0 − l1 − L0 − 4)), x̄∗(τ (l0 + l1 + L0 + 3))) ≤ τμ( f ) + δ0/8.

Combined with property (P25) and (13.7) these inequalities imply that

I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x̃, ũ)

≤ I f (τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x̃, ũ) + δ1/8 ≤ τμ( f ) + δ0/8 + δ1/8,
(13.13)

I g(τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x̃, ũ)
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≤ I f (τ (T − l0 − l1 − L0 − 4), τ (T − l0 − l1 − L0 − 3), x̃, ũ) + δ1/8

≤ τμ( f ) + δ0/8 + δ1/8. (13.14)

By (13.6), (13.7), (13.9) and the choice of δ1 (see (13.2)),

I f (τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u)

≥ v(x(τ (L0 + l0 + l1 + 3)), x(τ (L0 + l0 + l1 + 4))) ≥ τμ( f ) − δ0/8, (13.15)

I f (τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u)

≥ v(x(τ (T − L0 − l0 − l1 − 4)), x(τ (T − L0 − l0 − l1 − 3))) ≥ τμ( f ) − δ0/8.
(13.16)

We show that

I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u) ≥ τμ( f ) − δ0/4. (13.17)

Assume the contrary. Then

I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u) < τμ( f ) − δ0/4.

Together with property (P25) and (13.7) this implies that

I f (τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u)

≤ I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u) + δ1/8

< τμ( f ) − δ0/4 + δ1/8 < μ( f ) − δ0/8.

This contradicts (13.15). The contradiction we have reached proves (13.17).

We show that

I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u) ≥ τμ( f ) − δ0/4.
(13.18)

Assume the contrary. Then

I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u) < τμ( f ) − δ0/4.

Together with property (P25) and (13.7) this implies that

I f (τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u)
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≤ I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u) + δ1/8

< τμ( f ) − δ0/4 + δ1/8 < τμ( f ) − δ0/8.

This contradicts (13.16). The contradiction we have reached proves (13.18). In view
of (13.13), (13.14), (13.17) and (13.18),

I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x̃, ũ)

− I g(τ (L0 + l0 + l1 + 3), τ (L0 + l0 + l1 + 4), x, u) ≤ δ0/8 + δ1/8 + δ0/4,
(13.19)

I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x̃, ũ)

− I g(τ (T − L0 − l0 − l1 − 4), τ (T − L0 − l0 − l1 − 3), x, u) ≤ δ0/8 + δ1/8 + δ0/4.
(13.20)

By (13.12), (13.19) and (13.20),

I g(0, τ (L0 + l0 + l1 + 3), x, u)

+I g(τ (T − l0 − l1 − L0 − 3)), τT, x, u) − ξ(x(0), x(τT ))

≤ δ + I g(0, τ (L0 + l0 + l1 + 3), x̃, ũ) + I g(τ (T − l0 − l1 − L0 − 3), τT, x̃, ũ)

+ ξ(x̃(0), x̃(τT )) + δ1/4 + 3δ0/4. (13.21)

Property (P26), Proposition 3, (13.7), (13.10) and (13.21) imply that

I f (0, τ (L0 + l0 + l1 + 3), x, u) + I f (τ (T − l0 − l1 − L0 − 3), τT, x, u)

+h(x(0), x(τT ))

≤ 2δ0 + I f (0, τ (L0 + l0 + l1 + 3), x∗, u∗)

+I f̄ (0, τ (L0 + l0 + l1 + 3), x̄∗, ū∗) + h(x∗(0), x̄∗(0))

≤ 2δ0 + 2τ (L0 + l0 + l1 + 3)μ( f ) + h(x∗(0), x̄∗(0))

+π f (x∗(0)) − π f (x∗(τ (L0 + l0 + l1 + 3))) + π f̄ (x̄∗(0))

− π f̄ (x̄∗(τ (L0 + l0 + l1 + 3))). (13.22)
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In view of (13.1), (13.4), (13.6), (13.8) and (13.9),

|π f (x∗(τ (L0 + l0 + l1 + 3)))|, |π f̄ (x̄∗(τ (L0 + l0 + l1 + 3)))| ≤ δ0/8,

|π f (x(τ (L0 + l0 + l1 + 3)))|, |π f̄ (x(T τ − τ (L0 + l0 + l1 + 3)))| ≤ δ0/8.
(13.23)

By (13.22) and (13.23),

I f (0, τ (L0 + l0 + l1 + 3), x, u)

+I f (τ (T − l0 − l1 − L0 − 3), τT, x, u) + h(x(0), x(τT ))

≤ 2τ (L0 + l0 + l1 + 3)μ( f ) + ψh(x∗(0), x̄∗(0)) + 2δ0 + δ0/4. (13.24)

Set

x̂(t) = x(T τ − t), û(t) = u(T τ − t), t ∈ [0, T τ ]. (13.25)

In view of (3.6) and (13.25),

I f (τ (T − l0 − l1 − L0 − 3), T τ , x, u) = I f̄ (0, τ (L0 + l0 + l1 + 3), x̂, û).

(13.26)

By (12.1) and (13.23)–(13.26),

2δ0 + δ0/4 + ψh(x∗(0), x̄∗(0))

≥ I f (0, τ (L0 + l0 + l1 + 3), x, u) − τμ( f )(L0 + l0 + l1 + 3)

+I f̄ (0, τ (L0 + l0 + l1 + 3), x̂, û) − τμ( f )(L0 + l0 + l1 + 3) + h(x(0), x̂(0))

= ψh(x(0), x̂(0)) + I f (0, τ (L0 + l0 + l1 + 3), x, u) − π f (x(0))

−τμ( f )(L0 + l0 + l1 + 3)

+π f (x(τ (L0 + l0 + l1 + 3))) − π f (x(τ (L0 + l0 + l1 + 3)))

+I f̄ (0, τ (L0 + l0 + l1 + 3), x̂, û) − τμ( f )(L0 + l0 + l1 + 3)

−π f̄ (̂x(0)) + π f̄ (̂x(τ (L0 + l0 + l1 + 3))) − π f̄ (̂x(τ (L0 + l0 + l1 + 3)))

≥ ψh(x(0), x̂(0)) + I f (0, τ (L0 + l0 + l1 + 3), x, u)

−τμ( f )(L0 + l0 + l1 + 3) − π f (x(0)) + π f (x(τ (L0 + l0 + l1 + 3)))
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+I f̄ (0, τ (L0 + l0 + l1 + 3), x̂, û) − τμ( f )(L0 + l0 + l1 + 3)

−π f̄ (̂x(0)) + π f̄ (̂x(τ (L0 + l0 + l1 + 3))) − δ0/4.

Together with (13.3) this implies that

ψh(x(0), x̂(0)) + I f (0, τ (L0 + l0 + l1 + 3), x, u)

−τμ( f )(L0 + l0 + l1 + 3) − π f (x(0)) + π f (x(τ (L0 + l0 + l1 + 3)))

+I f̄ (0, τ (L0 + l0 + l1 + 3), x̂, û) − τμ( f )(L0 + l0 + l1 + 3)

−π f̄ (̂x(0)) + π f̄ (̂x(τ (L0 + l0 + l1 + 3))) ≤ 3δ0 + inf(ψh).

Combined with Proposition 2 this implies that

ψh(x(0), x̂(0)) ≤ inf(ψh) + 3δ0, (13.27)

I f (0, τ L0, x, u) − τμ( f )L0 − π f (x(0)) + π f (x(L0τ ))

≤ I f (0, τ (L0 + l0 + l1 + 3), x, u) − τμ( f )(L0 + l0 + l1 + 3)

− π f (x(0)) + π f (x(τ (L0 + l0 + l1 + 3))) ≤ 3δ0, (13.28)

I f̄ (0, τ L0, x̂, û) − τμ( f )L0 − π f̄ (̂x(0)) + π f̄ (̂x(τ L0))

≤ I f̄ (0, τ (L0 + l0 + l1 + 3), x̂, û) − τμ( f )(L0 + l0 + l1 + 3)

− π f̄ (̂x(0)) + π f̄ (̂x(τ (L0 + l0 + l1 + 3))) ≤ 3δ0. (13.29)

By (13.25), (13.27)–(13.29) and property (P23), there are an ( f, A, B)-overtaking
optimal pair (ξ1, η1) ∈ X (A, B, 0,∞) and an ( f̄ ,−A,−B)-overtaking optimal pair
(ξ2, η2) ∈ X (−A,−B, 0,∞) such that ψh(ξ1(0), ξ2(0)) = inf(ψh) and that for all
t ∈ [0, L0τ ],

ε ≥ |x(t) − ξ1(t)|, ε ≥ |ξ2(t) − x̂(t)| = |ξ2(t) − x(T τ − t)|.

Theorem 21 is proved.
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14 Genericity Results

We use the notation, definitions and assumptions introduced in Sects. 1–4. For each
nonempty set X and each function h : X → R1 set inf(h) = inf{h(x) : x ∈ X}.We
prove the following results.

Theorem 22 There exists an everywhere dense set B ⊂ An which is a countable
intersection of open subsets ofAn such that for every h ∈ B the following assertions
hold:

(1) inf(π f̄ + h) is finite and attained at a unique point x̄ ∈ Rn.
(2) for every ε > 0 there are a neighborhood V of h in An and δ > 0 such that for

each ξ ∈ V , inf(ξ + π f̄ ) is finite and if z ∈ Rn satisfies (ξ + π f̄ )(z) ≤ inf(ξ +
π f̄ ) + δ, then

|z − x̄ | ≤ ε, |(ξ + π f̄ )(z) − (h + π f̄ )(x̄)| ≤ ε.

Theorem 23 There exists an everywhere dense set B ⊂ A2n which is a countable
intersection of open subsets ofA2n such that for every h ∈ B the following assertions
hold:

(1) inf(ψh) is finite and attained at a unique point x̄ = (x̄1, x̄2) ∈ Rn × Rn;
(2) for every ε > 0 there are a neighborhood V of h in A2n and δ > 0 such that for

each ξ ∈ V , inf(ψξ) is finite and if z = (z1, z2) ∈ Rn × Rn satisfies (ψξ)(z) ≤
inf(ψξ) + δ, then

|zi − x̄i | ≤ ε, i = 1, 2, |ψξ(z) − ψh(x̄)| ≤ ε.

Theorems 22 and 23 follow from Propositions 7 and 8 and the following result.

Theorem 24 Let k ≥ 1 be an integer and g : Rk → R1 be a continuous function
such that lim|z|→∞ g(z) = ∞. There exists an everywhere dense set B ⊂ Ak which
is a countable intersection of open subsets of Ak such that for every h ∈ B the
following assertions hold:

(1) inf(g + h) is finite and attained at a unique point x̄ ∈ Rn.
(2) for every ε > 0 there are a neighborhood V of h in Ak and δ > 0 such that

for each ξ ∈ V , inf(g + ξ) is finite and if z ∈ Rk satisfies (g + ξ)(z) ≤ inf(g +
ξ) + δ, then

|z − x̄ | ≤ ε, |(g + ξ)(z) − (g + h)(x̄)| ≤ ε.

Proof We obtain our result as a realization of the variational principle (see Theorem
4.1 of [23]). Let d be the metric in Ak induced by its uniformity. By Theorem 4.1 of
[23] it is sufficient to show that the following property holds:
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(H) for any h ∈ Ak , any ε > 0 and any γ > 0 there exist a nonempty open setW
in Ak , x ∈ Rk , α ∈ R1 and η > 0 such that

W ∩ {b ∈ Ak : d(a, b) < ε} �= ∅

and for each ξ ∈ W ,

(1) inf(g + ξ) is finite;
(2) if z ∈ Rk is such that (g + ξ)(z) ≤ inf(g + ξ) + η, then |z − x | ≤ γ and |(g +

ξ)(z) − α| ≤ γ.

Let h ∈ Ak , ε > 0 and γ > 0. There exists x̄ ∈ Rn such that

(g + h)(x̄) = inf(g + h). (14.1)

For each integer i ≥ 1 define

hi (z) = h(z) + i−1 min{1, |z − x̄ |}, z ∈ Rk . (14.2)

Clearly, for every integer i ≥ 0, hi ∈ Ak ,

{z ∈ Rk : (g + hi )(z) = inf(g + hi )} = {x̄}, (14.3)

lim
i→∞ hi = h. (14.4)

In view of (14.4), there exists a natural number j such that

d(h j , h) < ε/2. (14.5)

Choose a number M > 0 such that

|x̄ | < M, (14.6)

{z ∈ Rk : g(z) ≤ a1 + (g + h)(x̄) + 2} ⊂ {z ∈ Rk : |z| ≤ M} (14.7)

and δ, η ∈ (0, 1) such that
3δ j < min{γ, 1}, (14.8)

η ∈ (0, δ). (14.9)

Set
α = (g + h)(x̄). (14.10)

Denote by W an open neighborhood of h j in Ak such that

W ⊂ {ξ ∈ Ak : |ξ(z) − h j (z)| ≤ δ for all z ∈ Rk such that |z| ≤ M}. (14.11)
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In view of (14.5) and (14.11),

h j ∈ W ∩ {ξ ∈ Ak : d(ξ, h) < ε} �= ∅. (14.12)

Let
ξ ∈ W . (14.13)

Clearly, inf(g + ξ) is finite. By (14.1), (14.6), (14.11) and (14.13),

inf(g + ξ) ≤ (g + ξ)(x̄) ≤ (g + h j )(x̄) + δ = inf(g + h) + δ. (14.14)

Assume that z ∈ Rk satisfies

(g + ξ)(z) ≤ inf(g + ξ) + η. (14.15)

By (14.2), (14.9), (14.14) and (14.15),

(g + ξ)(z) ≤ (g + h j )(x̄) + δ + η ≤ (g + h)(x̄) + 2δ. (14.16)

In view of (14.2), (4.3) and (14.16),

g(z) ≤ (g + h)(x̄) + 2 + a1. (14.17)

Relations (14.7) and (14.17) imply that

|z| ≤ M. (14.18)

It follows from (11.11), (14.13) and (14.18) that

|ξ(z) − h j (z)| ≤ δ, |(g + ξ)(z) − (g + h j )(z)| ≤ δ. (14.19)

By (14.1), (14.2), (14.19), (14.14) and (14.15),

inf(g + h) + δ + η ≥ inf(g + ξ) + η ≥ (g + ξ)(z)

≥ (g + h j )(z) − δ ≥ (g + h j )(x̄) − δ = (g + h)(x̄) − δ. (14.20)

By (14.1), (14.8) and (14.20),

|(g + ξ)(z) − (g + h)(x̄)| ≤ δ + η ≤ 2δ < γ. (14.21)

It follows from (14.9), (14.14), (14.15) and (14.19) that
(g + h j )(z) ≤ (g + ξ)(z) + δ ≤ inf(g + ξ) + 2δ
≤ inf(g + h) + 3δ ≤ (g + h)(z) + 3δ.
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Together with (14.2) and (14.8) this implies that j−1 min{1, |z − x̄ |} ≤ 3δ, |z − x̄ | ≤
3δ j < γ. Thus (H) holds. This completes the proof of Theorem 24.
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